code
stringlengths
1
13.8M
"SxM_pheno"
calc_CobbleDoseRate <- function(input,conversion = "Guerinetal2011"){ if ((max(input[,1])>input$CobbleDiameter[1]*10) || ((max(input[,1]) + input[length(input[,1]),3]) > input$CobbleDiameter[1]*10)) stop("[calc_CobblDoseRate()] Slices outside of cobble. Please check your distances and make sure they are in mm and diameter is in cm!", call. = FALSE) SedDoseData <- matrix(data = NA, nrow = 1, ncol = 10) CobbleDoseData <- matrix(data = 0, nrow = 1, ncol = 10) CobbleDoseData <- input[1,5:12] CobbleDoseData <- cbind(CobbleDoseData,0,0) SedDoseData <- cbind(input[1,5],input[1,15:20],input[1,12],input[1,23:24]) CobbleDoseRate <- get_RLum(convert_Concentration2DoseRate( input = CobbleDoseData, conversion = conversion)) SedDoseRate <- get_RLum( convert_Concentration2DoseRate(input = SedDoseData, conversion = conversion)) N <- length(input$Distance) Diameter <- input$CobbleDiameter[1] if (Diameter<25){ CobbleGammaAtt <- (0.55 * exp(-0.45 * Diameter) + 0.09 * exp(-0.06 * Diameter)) * 10 }else { CobbleGammaAtt <- 0.02 } Scaling <- input$Density[1] / 2.7 GammaEdge <- 0.5 * (1 - exp(-0.039 * Diameter)) GammaCentre <- 2 * GammaEdge DiameterSeq <- seq(0, Diameter * 10, by = 0.01) Temp <- matrix(data = NA, nrow = length(DiameterSeq), ncol = 9) DistanceError <- matrix(data = NA, nrow = N, ncol = 8) ThicknessError <- matrix(data = NA, nrow = N, ncol = 8) DataIndividual <- matrix(data = NA, nrow = N, ncol = 25) DataComponent <- matrix(data = NA, nrow = N, ncol = 9) DoseRates <- matrix(data = NA, nrow = 1, ncol = 24) output <- matrix(list(), nrow = 2, ncol = 1) t <- Diameter * 10 - DiameterSeq tGamma <- t KBetaCobble <- function(x) (1 - 0.5 * exp(-3.77 * DiameterSeq))+(1-0.5*exp(-3.77*t))-1 ThBetaCobble_short <- function(x) (1 - 0.5 * exp(-5.36 * x * Scaling))+(1-0.5*exp(-5.36*t*Scaling))-1 ThBetaCobble_long <- function(x) (1 - 0.33 * exp(-2.36 * x * Scaling))+(1-0.33*exp(-2.36*t*Scaling))-1 UBetaCobble_short <- function(x) (1 - 0.5 * exp(-4.15 * x * Scaling))+(1-0.5*exp(-4.15*t*Scaling))-1 UBetaCobble_long <- function(x) (1 - 0.33 * exp(-2.36 * x * Scaling))+(1-0.33*exp(-2.36*t*Scaling))-1 GammaCobble <- function(x) { (GammaCentre - GammaEdge * exp(-CobbleGammaAtt * x * Scaling)) + (GammaCentre - GammaEdge * exp(-CobbleGammaAtt * tGamma * Scaling)) - GammaCentre } KBetaSed <- function(x) 2 - (1 - 0.5 * exp(-3.77 * x * Scaling)) - (1 - 0.5 * exp(-3.77 * t * Scaling)) ThBetaSed_short <- function(x) 2 - (1 - 0.5 * exp(-5.36 * x * Scaling)) - (1 - 0.5 * exp(-5.36 * t * Scaling)) ThBetaSed_long <- function(x) 2 - (1 - 0.33 * exp(-2.36 * x * Scaling)) - (1 - 0.33 * exp(-2.36 * t * Scaling)) UBetaSed_short <- function(x) 2 - (1 - 0.5 * exp(-4.15 * x * Scaling)) - (1 - 0.5 * exp(-4.15 * t * Scaling)) UBetaSed_long <- function(x) 2 - (1 - 0.33 * exp(-2.36 * x * Scaling)) - (1 - 0.33 * exp(-2.36 * t * Scaling)) GammaSed <- function(x) 2 - (1 - 0.5 * exp(-0.02 * x * Scaling)) - (1 - 0.5 * exp(-0.02 * tGamma * Scaling)) Temp[, 1] <- DiameterSeq Temp[, 2] <- KBetaCobble(DiameterSeq) Temp[, 3] <- ThBetaCobble_long(DiameterSeq) Temp[, 4] <- UBetaCobble_long(DiameterSeq) Temp[, 5] <- GammaCobble(DiameterSeq) Temp[, 6] <- KBetaSed(DiameterSeq) Temp[, 7] <- ThBetaSed_long(DiameterSeq) Temp[, 8] <- UBetaSed_long(DiameterSeq) Temp[, 9] <- GammaSed(DiameterSeq) TempThCob <- ThBetaCobble_short(DiameterSeq) TempUCob <- UBetaCobble_short(DiameterSeq) TempThSed <- ThBetaSed_short(DiameterSeq) TempUSed <- UBetaSed_short(DiameterSeq) n <- which(DiameterSeq >= (max(DiameterSeq)-0.15))[1] Max <- length(DiameterSeq) Temp[0:16, 3] <- TempThCob[0:16] Temp[n:Max, 3] <- TempThCob[n:Max] Temp[0:16, 7] <- TempThSed[0:16] Temp[n:Max, 7] <- TempThSed[n:Max] Temp[0:16, 4] <- TempUCob[0:16] Temp[n:Max, 4] <- TempUCob[n:Max] Temp[0:16, 8] <- TempUSed[0:16] Temp[n:Max, 8] <- TempUSed[n:Max] colnames(Temp) <- c( "Distance", "KBetaCob", "ThBetaCob", "UBetaCob", "GammaCob", "KBetaSed", "ThBetaSed", "UBetaSed", "GammaSed" ) Distances <- input$Distance / 0.01 + 1 Thicknesses <- input$Thickness / 0.01 MinDistance <- (input$Distance - input$DistanceError) / 0.01 + 1 MaxDistance <- (input$Distance + input$DistanceError) / 0.01 + 1 MinThickness <- (input$Thickness - input$ThicknessError) / 0.01 MaxThickness <- (input$Thickness + input$ThicknessError) / 0.01 for (i in 1:N){ Start <- Distances[i] End <- Start+Thicknesses[i] d_min <- MinDistance[i] d_max <- MaxDistance[i] t_min <- MinThickness[i] t_max <- MaxThickness[i] if (MinDistance[i]<0){ d_min <- 0 } j <- d_min+Thicknesses[i] k <- d_max+Thicknesses[i] for (l in 1:8){ m <- l + 1 if (d_min == Start){ DistanceError[i,l]<- abs( (mean(Temp[d_max:k,m])-mean(Temp[Start:End,m]))/(2*mean(Temp[Start:End,m]))) } else if (k > Max){ DistanceError[i,l] <- abs( (mean(Temp[Start:End,m])-mean(Temp[d_min:j,m]))/(2*mean(Temp[Start:End,m]))) } else { DistanceError[i,l] <- abs( mean((mean(Temp[d_max:k,m])-mean(Temp[Start:End,m])):(mean(Temp[Start:End,m])-mean(Temp[d_min:j,m])))/(2*mean(Temp[Start:End,m]))) } j2 <- Start+t_min k2 <- Start+t_max if (k2 > Max){ ThicknessError[i,l] <- abs( (mean(Temp[Start:End,m])-mean(Temp[Start:j2,m]))/(2*mean(Temp[Start:End,m]))) } else { ThicknessError[i,l] <- abs( mean((mean(Temp[Start:k2,m])-mean(Temp[Start:End,m])):(mean(Temp[Start:End,m])-mean(Temp[Start:j2,m])))/(2*mean(Temp[Start:End,m]))) } } DataIndividual[i, 1] <- input[i, 1] DataIndividual[i, 2] <- mean(Temp[Start:End, 2]) * CobbleDoseRate[1, 1] DataIndividual[i, 3] <- DataIndividual[i, 2] * sqrt(DistanceError[i, 1] ^ 2 + ThicknessError[i, 1] ^ 2 + (CobbleDoseRate[1, 2] / CobbleDoseRate[1, 1]) ^ 2) DataIndividual[i, 4] <- mean(Temp[Start:End, 3]) * CobbleDoseRate[1, 3] DataIndividual[i, 5] <- DataIndividual[i, 4] * sqrt(DistanceError[i, 2] ^ 2 + ThicknessError[i, 2] ^ 2 + (CobbleDoseRate[1, 4] / CobbleDoseRate[1, 3]) ^ 2) DataIndividual[i, 6] <- mean(Temp[Start:End, 4]) * CobbleDoseRate[1, 5] DataIndividual[i, 7] <- DataIndividual[i, 6] * sqrt(DistanceError[i, 3] ^ 2 + ThicknessError[i, 3] ^ 2 + (CobbleDoseRate[1, 6] / CobbleDoseRate[1, 5]) ^ 2) DataIndividual[i, 8] <- mean(Temp[Start:End, 5]) * CobbleDoseRate[2, 1] DataIndividual[i, 9] <- DataIndividual[i, 8] * sqrt(DistanceError[i, 4] ^ 2 + ThicknessError[i, 4] ^ 2 + (CobbleDoseRate[2, 2] / CobbleDoseRate[2, 1]) ^ 2) DataIndividual[i, 10] <- mean(Temp[Start:End, 5]) * CobbleDoseRate[2, 3] DataIndividual[i, 11] <- DataIndividual[i, 10] * sqrt(DistanceError[i, 4] ^ 2 + ThicknessError[i, 4] ^ 2 + (CobbleDoseRate[2, 4] / CobbleDoseRate[2, 3]) ^ 2) DataIndividual[i, 12] <- mean(Temp[Start:End, 5]) * CobbleDoseRate[2, 5] DataIndividual[i, 13] <- DataIndividual[i, 12] * sqrt(DistanceError[i, 4] ^ 2 + ThicknessError[i, 4] ^ 2 + (CobbleDoseRate[2, 6] / CobbleDoseRate[2, 5]) ^ 2) DataIndividual[i, 14] <- mean(Temp[Start:End, 6]) * SedDoseRate[1, 1] DataIndividual[i, 15] <- DataIndividual[i, 14] * sqrt(DistanceError[i, 5] ^ 2 + ThicknessError[i, 5] ^ 2 + (SedDoseRate[1, 2] / SedDoseRate[1, 1]) ^ 2) DataIndividual[i, 16] <- mean(Temp[Start:End, 7]) * SedDoseRate[1, 3] DataIndividual[i, 17] <- DataIndividual[i, 16] * sqrt(DistanceError[i, 6] ^ 2 + ThicknessError[i, 6] ^ 2 + (SedDoseRate[1, 4] / SedDoseRate[1, 3]) ^ 2) DataIndividual[i, 18] <- mean(Temp[Start:End, 8]) * SedDoseRate[1, 5] DataIndividual[i, 19] <- DataIndividual[i, 18] * sqrt(DistanceError[i, 7] ^ 2 + ThicknessError[i, 7] ^ 2 + (SedDoseRate[1, 6] / SedDoseRate[1, 5]) ^ 2) DataIndividual[i, 20] <- mean(Temp[Start:End, 9]) * SedDoseRate[2, 1] DataIndividual[i, 21] <- DataIndividual[i, 20] * sqrt(DistanceError[i, 8] ^ 2 + ThicknessError[i, 8] ^ 2 + (SedDoseRate[2, 2] / SedDoseRate[2, 1]) ^ 2) DataIndividual[i, 22] <- mean(Temp[Start:End, 9]) * SedDoseRate[2, 3] DataIndividual[i, 23] <- DataIndividual[i, 22] * sqrt(DistanceError[i, 8] ^ 2 + ThicknessError[i, 8] ^ 2 + (SedDoseRate[2, 4] / SedDoseRate[2, 3]) ^ 2) DataIndividual[i, 24] <- mean(Temp[Start:End, 9]) * SedDoseRate[2, 5] DataIndividual[i, 25] <- DataIndividual[i, 24] * sqrt(DistanceError[i, 8] ^ 2 + ThicknessError[i, 8] ^ 2 + (SedDoseRate[2, 6] / SedDoseRate[2, 5]) ^ 2) DataComponent[i, 1] <- input[i, 1] DataComponent[i, 2] <- DataIndividual[i, 2] + DataIndividual[i, 4] + DataIndividual[i, 6] DataComponent[i, 3] <- DataComponent[i,2]*sqrt((DataIndividual[i,3]/DataIndividual[i,2])^2+(DataIndividual[i,5]/DataIndividual[i,4])^2+(DataIndividual[i,7]/DataIndividual[i,6])^2) DataComponent[i, 4] <- DataIndividual[i, 8] + DataIndividual[i, 10] + DataIndividual[i, 12] DataComponent[i, 5] <- DataComponent[i,4]*sqrt((DataIndividual[i,9]/DataIndividual[i,8])^2+(DataIndividual[i,11]/DataIndividual[i,10])^2+(DataIndividual[i,13]/DataIndividual[i,12])^2) DataComponent[i, 6] <- DataIndividual[i, 14] + DataIndividual[i, 16] + DataIndividual[i, 18] DataComponent[i, 7] <- DataComponent[i,6]*sqrt((DataIndividual[i,15]/DataIndividual[i,14])^2+(DataIndividual[i,17]/DataIndividual[i,16])^2+(DataIndividual[i,19]/DataIndividual[i,18])^2) DataComponent[i, 8] <- DataIndividual[i, 20] + DataIndividual[i, 22] + DataIndividual[i, 24] DataComponent[i, 9] <- DataComponent[i,8]*sqrt((DataIndividual[i,21]/DataIndividual[i,20])^2+(DataIndividual[i,23]/DataIndividual[i,22])^2 + (DataIndividual[i,25]/DataIndividual[i,24])^2) } colnames(DataIndividual) <- c( "Distance.", "K Beta cobble", "SE", "Th Beta cobble", "SE", "U Beta cobble", "SE", "K Gamma cobble", "SE", "Th Gamma cobble", "SE", "U Gamma cobble", "SE", "K Beta sed.", "SE", "Th Beta sed.", "SE", "U Beta sed.", "SE", "K Gamma sed.", "SE", "Th Gamma sed.", "SE", "U Gamma sed.", "SE" ) colnames(DataComponent) <- c( "Distance", "Total Cobble Beta", "SE", "Total Cobble Gamma", "SE", "Total Beta Sed.", "SE", "Total Gamma Sed.", "SE" ) DataIndividual[is.na(DataIndividual)] <- 0 DataComponent[is.na(DataComponent)] <- 0 return( set_RLum( class = "RLum.Results", data = list( DataIndividual = DataIndividual, DataComponent = DataComponent, input = input ), info = list( call = sys.call() ))) }
rmetalog <- function(m, n = 1, term = 3) { UseMethod("rmetalog", m) } rmetalog.default <- function(m, n = 1, term = 3) { print('Object must be of calss metalog') } rmetalog.metalog <- function(m, n = 1, term = 3){ valid_terms <- m$Validation$term valid_terms_printout <- paste(valid_terms, collapse = " ") if (class(n) != 'numeric' | n < 1 | n %% 1 != 0) { stop('Error: n must be a positive numeric interger') } if (class(term) != 'numeric' | term < 2 | term %% 1 != 0 | !(term %in% valid_terms) | length(term) > 1) { stop( paste('Error: term must be a single positive numeric interger contained', 'in the metalog object. Available terms are:', valid_terms_printout) ) } x <- stats::runif(n) Y <- data.frame(y1 = rep(1, n)) Y$y2 <- (log(x / (1 - x))) if (term > 2) { Y$y3 <- (x - 0.5) * Y$y2 } if (term > 3) { Y$y4 <- x - 0.5 } if (term > 4) { for (i in 5:(term)) { y <- paste0('y', i) if (i %% 2 != 0) { Y[`y`] <- Y$y4 ^ (i %/% 2) } if (i %% 2 == 0) { z <- paste0('y', (i - 1)) Y[`y`] <- Y$y2 * Y[`z`] } } } Y <- as.matrix(Y) amat <- paste0('a', term) a <- as.matrix(m$A[`amat`]) s <- Y %*% a[1:term] if (m$params$boundedness == 'sl') { s <- m$params$bounds[1] + exp(s) } if (m$params$boundedness == 'su') { s <- m$params$bounds[2] - exp(-(s)) } if (m$params$boundedness == 'b') { s <- (m$params$bounds[1] + (m$params$bounds[2]) * exp(s)) / (1 + exp(s)) } return(as.numeric(s)) } qmetalog <- function(m, y, term = 3) { UseMethod("qmetalog", m) } qmetalog.default <- function(m, y, term = 3){ print('Object must be of class metalog') } qmetalog.metalog <- function(m, y, term = 3){ valid_terms <- m$Validation$term valid_terms_printout <- paste(valid_terms, collapse = " ") if (class(y) != 'numeric' | max(y) >= 1 | min(y) <= 0) { stop('Error: y must be a positive numeric vector between 0 and 1') } if (class(term) != 'numeric' | term < 2 | term %% 1 != 0 | !(term %in% valid_terms) | length(term) > 1) { stop( paste('Error: term must be a single positive numeric interger contained', 'in the metalog object. Available terms are:', valid_terms_printout) ) } Y <- data.frame(y1 = rep(1, length(y))) Y$y2 <- (log(y / (1 - y))) if (term > 2) { Y$y3 <- (y - 0.5) * Y$y2 } if (term > 3) { Y$y4 <- (y - 0.5) } if (term > 4) { for (i in 5:(term)) { y <- paste0('y', i) if (i %% 2 != 0) { Y[`y`] <- Y$y4 ^ (i %/% 2) } if (i %% 2 == 0) { z <- paste0('y', (i - 1)) Y[`y`] <- Y$y2 * Y[`z`] } } } Y <- as.matrix(Y) amat <- paste0('a', term) a <- as.matrix(m$A[`amat`]) s <- Y %*% a[1:term] if (m$params$boundedness == 'sl') { s <- m$params$bounds[1] + exp(s) } if (m$params$boundedness == 'su') { s <- m$params$bounds[2] - exp(-(s)) } if (m$params$boundedness == 'b') { s <- (m$params$bounds[1] + (m$params$bounds[2]) * exp(s)) / (1 + exp(s)) } return(as.numeric(s)) } pmetalog <- function(m, q, term = 3) { UseMethod("pmetalog", m) } pmetalog.default <- function(m, q, term = 3){ print('Object must be of class metalog') } pmetalog.metalog <- function(m, q, term = 3){ valid_terms <- m$Validation$term if (class(q) != 'numeric') { stop('Error: q must be a positive numeric vector between 0 and 1') } if (class(term) != 'numeric' | term < 2 | term %% 1 != 0 | !(term %in% valid_terms) | length(term) > 1) { stop( cat('Error: term must be a single positive numeric interger contained', 'in the metalog object. Available terms are:', valid_terms) ) } qs<-sapply(q,newtons_method_metalog,m=m,t=term) return(qs) } dmetalog <- function(m, q, term = 3) { UseMethod("dmetalog", m) } dmetalog.default <- function(m, q, term = 3){ print('Object must be of class metalog') } dmetalog.metalog <- function(m, q, term = 3){ valid_terms <- m$Validation$term if (class(q) != 'numeric') { stop('Error: q must be a numeric vector') } if (class(term) != 'numeric' | term < 2 | term %% 1 != 0 | !(term %in% valid_terms) | length(term) > 1) { stop( paste('Error: term must be a single positive numeric interger contained', 'in the metalog object. Available terms are:', valid_terms) ) } qs<-sapply(q,newtons_method_metalog,m=m,term=term) ds<-sapply(qs,pdfMetalog_density, m=m,t=term) return(ds) } summary.metalog <- function(object, ...) { cat(' -----------------------------------------------\n', 'Summary of Metalog Distribution Object\n', '-----------------------------------------------\n', '\nParameters\n', 'Term Limit: ', object$params$term_limit, '\n', 'Term Lower Bound: ', object$params$term_lower_bound, '\n', 'Boundedness: ', object$params$boundedness, '\n', 'Bounds (only used based on boundedness): ', object$params$bounds, '\n', 'Step Length for Distribution Summary: ', object$params$step_len, '\n', 'Method Use for Fitting: ', object$params$fit_method, '\n', 'Number of Data Points Used: ', object$params$number_of_data, '\n', 'Original Data Saved: ', object$params$save_data, '\n', '\n\n Validation and Fit Method\n' ) print(object$Validation, row.names = FALSE) } plot.metalog <- function(x, ...) { InitalResults <- data.frame( term = (rep( paste0(x$params$term_lower_bound, ' Terms'), length(x$M[, 1]) )), pdfValues = x$M[, 1], quantileValues = x$M[, 2], cumValue = x$M$y ) if (ncol(x$M) > 3) { for (i in 2:(length(x$M[1,] - 1) / 2)) { TempResults <- data.frame( term = (rep(paste((x$params$term_lower_bound + (i - 1)), 'Terms'), length(x$M[, 1]))), pdfValues = x$M[, (i * 2 - 1)], quantileValues = x$M[, (i * 2)], cumValue = x$M$y ) InitalResults <- rbind(InitalResults, TempResults) } } p <- ggplot2::ggplot(InitalResults, aes(x = quantileValues, y = pdfValues)) + ggplot2::geom_line(colour = "blue") + ggplot2::xlab("Quantile Values") + ggplot2::ylab("PDF Values") + ggplot2::facet_wrap(~ term, ncol = 4, scales = "free_y") q <- ggplot2::ggplot(InitalResults, aes(x = quantileValues, y = cumValue)) + ggplot2::geom_line(colour = "blue") + ggplot2::xlab("Quantile Values") + ggplot2::ylab("CDF Values") + ggplot2::facet_wrap(~ term, ncol = 4, scales = "free_y") list(pdf = p, cdf = q) }
require(OpenMx) data(latentMultipleRegExample2) numberFactors <- 3 indicators <- names(latentMultipleRegExample2) numberIndicators <- length(indicators) totalVars <- numberIndicators + numberFactors latents <- paste("F", 1:numberFactors, sep="") loadingLabels <- paste("b_F", rep(1:numberFactors, each=numberIndicators), rep(indicators, numberFactors), sep="") loadingLabels uniqueLabels <- paste("U_", indicators, sep="") meanLabels <- paste("M_", indicators, sep="") factorVarLabels <- paste("Var_", latents, sep="") latents1 <- latents[1] indicators1 <- indicators[1:4] loadingLabels1 <- paste("b_F1", indicators[1:4], sep="") latents2 <- latents[2] indicators2 <- indicators[5:8] loadingLabels2 <- paste("b_F2", indicators[5:8], sep="") latents3 <- latents[3] indicators3 <- indicators[9:12] loadingLabels3 <- paste("b_F3", indicators[9:12], sep="") threeLatentOrthoRaw1 <- mxModel("threeLatentOrthogonal", type="RAM", manifestVars=indicators, latentVars=latents, mxPath(from=latents1, to=indicators1, arrows=1, connect="all.pairs", free=TRUE, values=.2, labels=loadingLabels1), mxPath(from=latents2, to=indicators2, arrows=1, connect="all.pairs", free=TRUE, values=.2, labels=loadingLabels2), mxPath(from=latents3, to=indicators3, arrows=1, connect="all.pairs", free=TRUE, values=.2, labels=loadingLabels3), mxPath(from=latents1, to=indicators1[1], arrows=1, free=FALSE, values=1), mxPath(from=latents2, to=indicators2[1], arrows=1, free=FALSE, values=1), mxPath(from=latents3, to=indicators3[1], arrows=1, free=FALSE, values=1), mxPath(from=indicators, arrows=2, free=TRUE, values=.8, labels=uniqueLabels), mxPath(from=latents, arrows=2, free=TRUE, values=.8, labels=factorVarLabels), mxPath(from="one", to=indicators, arrows=1, free=TRUE, values=.1, labels=meanLabels), mxData(observed=latentMultipleRegExample2, type="raw") ) threeLatentOrthoRaw1Out <- mxRun(threeLatentOrthoRaw1, suppressWarnings=TRUE) summary(threeLatentOrthoRaw1Out) threeLatentObliqueRaw1 <- mxModel(threeLatentOrthoRaw1, mxPath(from=latents,to=latents,connect="unique.pairs", arrows=2, free=TRUE, values=.3), mxPath(from=latents, arrows=2, free=TRUE, values=.8, labels=factorVarLabels), name="threeLatentOblique" ) threeLatentObliqueRaw1Out <- mxRun(threeLatentObliqueRaw1, suppressWarnings=TRUE) summary(threeLatentObliqueRaw1Out) threeLatentMultipleReg1 <- mxModel(threeLatentOrthoRaw1, mxPath(from="F1",to="F2", arrows=2, free=TRUE, values=.3), mxPath(from=c("F1","F2"), to="F3", arrows=1, free=TRUE, values=.2, labels=c("b1", "b2")), name="threeLatentMultipleReg" ) threeLatentMultipleReg1Out <- mxRun(threeLatentMultipleReg1, suppressWarnings=TRUE) summary(threeLatentMultipleReg1Out) threeLatentMultipleReg2 <- mxModel(threeLatentMultipleReg1, mxPath(from="F1",to="F3", arrows=1, free=FALSE, values=0), name="threeLatentMultipleReg2" ) threeLatentMultipleReg2Out <- mxRun(threeLatentMultipleReg2, suppressWarnings=TRUE) summary(threeLatentMultipleReg2Out) threeLatentMultipleReg3 <- mxModel(threeLatentMultipleReg1, mxPath(from="F2",to="F3", arrows=1, free=FALSE, values=0), name="threeLatentMultipleReg3" ) threeLatentMultipleReg3Out <- mxRun(threeLatentMultipleReg3, suppressWarnings=TRUE) summary(threeLatentMultipleReg3Out) expectVal <- c(0.899885, 1.211974, 1.447476, 0.700916, 1.295793, 1.138494, 0.90601, 0.89185, 0.847205, 1.038429, 1.038887, 0.820293, 0.945828, 0.835869, 0.973786, 0.9823, 1.049919, 1.331468, 1.038726, 0.767559, 0.965987, 1.742792, 1.095046, 1.089994, 0.828187, 0.516085, 1.139466, 0.067508, 0.121391, 0.088573, -0.034883, -0.094189, 0.012756, -0.067871, -0.059441, -0.070524, -0.049503, -0.049853, -0.098781) expectSE <- c(0.07695, 0.087954, 0.102656, 0.088136, 0.119946, 0.111449, 0.11528, 0.113175, 0.110252, 0.122903, 0.11859, 0.114598, 0.145985, 0.106003, 0.106815, 0.141517, 0.133942, 0.17212, 0.133215, 0.10943, 0.121737, 0.26635, 0.162563, 0.18551, 0.158593, 0.118376, 0.235046, 0.117896, 0.110676, 0.129977, 0.151584, 0.098098, 0.086849, 0.118565, 0.110935, 0.11116, 0.099326, 0.091469, 0.094438) expectMin <- 7710.615 omxCheckCloseEnough(expectVal, threeLatentObliqueRaw1Out$output$estimate, 0.001) omxCheckCloseEnough(expectSE, as.vector(threeLatentObliqueRaw1Out$output[['standardErrors']]), 0.001) omxCheckCloseEnough(expectMin, threeLatentObliqueRaw1Out$output$minimum, 0.001) expectVal <- c(0.899885, 1.211973, 1.447476, 0.481912, 0.700916, 1.295792, 1.138493, -0.010669, 0.906009, 0.891849, 0.847204, 1.038428, 1.038887, 0.820293, 0.945828, 0.835868, 0.973786, 0.982301, 1.049919, 1.331467, 1.038726, 0.767558, 0.965987, 1.742797, 1.09505, 1.089998, 0.745861, 0.067508, 0.12139, 0.088573, -0.034883, -0.09419, 0.012755, -0.067872, -0.059441, -0.070524, -0.049503, -0.049853, -0.098781) expectSE <- c(0.0769, 0.087865, 0.102543, 0.127828, 0.088084, 0.119791, 0.111236, 0.152625, 0.115206, 0.113084, 0.110164, 0.122883, 0.118535, 0.114589, 0.145932, 0.10598, 0.106799, 0.141507, 0.133841, 0.171978, 0.13313, 0.109413, 0.121718, 0.26595, 0.16229, 0.185135, 0.157228, 0.11835, 0.111086, 0.13054, 0.152265, 0.098407, 0.087037, 0.119005, 0.111335, 0.11135, 0.09954, 0.091682, 0.094603) expectMin <- 7710.615 omxCheckCloseEnough(expectVal, threeLatentMultipleReg1Out$output$estimate, 0.01) omxCheckCloseEnough(expectSE, as.vector(threeLatentMultipleReg1Out$output[['standardErrors']]), 0.01) omxCheckCloseEnough(expectMin, threeLatentMultipleReg1Out$output$minimum, 0.01) expectVal <- c(0.90026, 1.208833, 1.450523, 0.714247, 1.294955, 1.145001, 0.539993, 0.925794, 0.907651, 0.857963, 1.038481, 1.037751, 0.833617, 0.930552, 0.865281, 0.968228, 1.033987, 1.072283, 1.360517, 1.022325, 0.759087, 0.966464, 1.742743, 1.115285, 1.060584, 0.801163, 0.067507, 0.12139, 0.088573, -0.034883, -0.09419, 0.012755, -0.067872, -0.059442, -0.070524, -0.049503, -0.049853, -0.098781) expectSE <- c(0.07703, 0.088125, 0.103052, 0.089582, 0.121094, 0.113147, 0.102949, 0.118661, 0.116812, 0.113105, 0.123476, 0.118851, 0.116296, 0.146876, 0.106735, 0.105913, 0.142948, 0.13435, 0.17478, 0.133635, 0.110398, 0.122877, 0.266637, 0.163601, 0.183091, 0.171665, 0.11752, 0.110322, 0.129462, 0.150946, 0.097806, 0.086686, 0.118153, 0.110619, 0.111, 0.099205, 0.091341, 0.09432) expectMin <- 7726.295 omxCheckCloseEnough(expectVal, threeLatentMultipleReg2Out$output$estimate, 0.01) omxCheckCloseEnough(expectSE, as.vector(threeLatentMultipleReg2Out$output[['standardErrors']]), 0.01) omxCheckCloseEnough(expectMin, threeLatentMultipleReg2Out$output$minimum, 0.01) expectVal <- c(0.899897, 1.211937, 1.447488, 0.474834, 0.701118, 1.296061, 1.138723, 0.905957, 0.891751, 0.8471, 1.038272, 1.03872, 0.820213, 0.945435, 0.836219, 0.973649, 0.982129, 1.049802, 1.331303, 1.038698, 0.767626, 0.96607, 1.742954, 1.094587, 1.089649, 0.746656, 0.067506, 0.121389, 0.088571, -0.034885, -0.09419, 0.012755, -0.067873, -0.059442, -0.070525, -0.049504, -0.049854, -0.098782) expectSE <- c(0.076951, 0.087964, 0.102685, 0.077557, 0.088124, 0.119953, 0.111436, 0.115278, 0.11316, 0.110212, 0.122951, 0.118561, 0.114641, 0.145913, 0.105921, 0.106784, 0.141498, 0.133944, 0.172141, 0.133254, 0.109461, 0.121748, 0.266409, 0.162381, 0.185465, 0.157074, 0.117716, 0.110489, 0.129714, 0.151265, 0.097968, 0.086774, 0.118361, 0.110787, 0.111027, 0.09925, 0.091375, 0.094362) expectMin <- 7710.62 omxCheckCloseEnough(expectVal, threeLatentMultipleReg3Out$output$estimate, 0.01) omxCheckCloseEnough(expectSE, as.vector(threeLatentMultipleReg3Out$output[['standardErrors']]), 0.01) omxCheckCloseEnough(expectMin, threeLatentMultipleReg3Out$output$minimum, 0.01) expectVal <- c(0.901891, 1.20158, 1.427049, 0.692088, 1.351975, 1.149558, 0.987615, 0.966986, 0.902343, 1.013963, 1.012679, 0.828678, 0.998327, 0.86774, 1.002452, 0.878394, 1.064433, 1.459186, 0.987214, 0.727833, 0.960052, 1.767278, 1.058139, 1.01176, 0.067512, 0.121394, 0.088578, -0.034877, -0.094186, 0.012757, -0.067868, -0.059437, -0.070521, -0.049501, -0.04985, -0.098779) expectSE <- c(0.076528, 0.088527, 0.103665, 0.092459, 0.136218, 0.118764, 0.130232, 0.129587, 0.123389, 0.125806, 0.119984, 0.12382, 0.163071, 0.117211, 0.111291, 0.161268, 0.14648, 0.181275, 0.136797, 0.113505, 0.125792, 0.269576, 0.189346, 0.226953, 0.117883, 0.110644, 0.129952, 0.151555, 0.098128, 0.086865, 0.118584, 0.110962, 0.111143, 0.099336, 0.091474, 0.094429) expectMin <- 7897.082 omxCheckCloseEnough(expectVal, threeLatentOrthoRaw1Out$output$estimate, 0.01) omxCheckCloseEnough(expectSE, as.vector(threeLatentOrthoRaw1Out$output[['standardErrors']]), 0.01) omxCheckCloseEnough(expectMin, threeLatentOrthoRaw1Out$output$minimum, 0.01)
rm(list=ls()) d<-read.csv("/data/abomb/lsshempy.csv",header=T) head(d,2) d=d[d$mar_an>=0,] sum(d$cml) d=within(d,{rm(distcat,agxcat, agecat, dcat, time,upyr,subjects,year, nhl,hl,mye,all,oll,alltot,cll,hcl,clltot,atl,aml,oml,amol,amltot, othleuk,noncll,leuktot,hldtot,mar_ag,mar_an)}) head(d,2) d=within(d, {nic = as.numeric(gdist > 12000); over4gy = 1 - un4gy ; tsx = (age -agex) ; lt25 = log(tsx/25) ; rm(gdist,un4gy) a = log(age/70) ; a55 = log(age/55) ; age55=age-55 agex30=agex-30 ax30 = log(agex/30) ; py10k = pyr/10000 ; py = pyr; s=sex-1 c=city-1 sv=mar_ad10/1000; hiro = as.numeric(city == 1) ; naga = as.numeric(city ==2); rm(sex,city,pyr,mar_ad10) }) head(d) bk=d[d$sv<0.05,] library(bbmle) summary(p1<-mle2(cml~dpois(lambda=py10k*A*exp(cs*s+ca*a+csa*a*s)), start=list(A=.22,cs=-0.06,ca=1.38,csa=1.75),data=bk) ) summary(e1<-mle2(cml~dpois(lambda=py10k*A*exp(cs*s+k*age55)), start=list(A=.22,cs=-0.6,k=0.04),data=bk) ) summary(e2<-mle2(cml~dpois(lambda=py10k*A*exp(cs*s+k*age55+ks*s*age55)), start=list(A=.22,cs=-0.6,k=0.03,ks=.02),data=bk) ) AIC(p1,e1,e2) BIC(p1,e1,e2) summary(err<-mle2(cml~dpois(lambda=py10k*(A1*exp(c1s*s+c1a*a+c1sa*a*s+c1nic0*hiro*nic+c1nic1*naga*nic)* (1+sv*A2*exp(c2c*c + c2t*lt25 + c2a*a55+c2o4g*over4gy) ) ) ), start=list(A1=.22,c1s=-0.06,c1a=1.38,c1sa=1.75,c1nic0=-0.2,c1nic1=-0.86, A2=5.24,c2c=-1.50,c2t=-1.59,c2a=-1.42,c2o4g=-0.3),data=d) ) AIC(err) logLik(err) deviance(err) summary(err) prd=predict(err) sum(d$cml==1) -2*sum(d$cml*log(prd))+2*length(coef(err)) -2*sum(d$cml*log(prd)) -2*sum(d$cml*log(prd)-prd-log(factorial(d$cml))) -2*sum(d$cml*log(prd)-prd) sum(predict(err)) summary(ear<-mle2(cml~dpois(lambda=py10k*(A1*exp(c1s*s+c1a*a+c1sa*a*s+c1nic0*hiro*nic+c1nic1*naga*nic) +sv*A2*exp(c2c*c + c2s*s+c2t*lt25 + c2a*a55+c2sa*s*a55+c2o4g*over4gy) ) ) , start=list(A1=.22,c1s=-0.06,c1a=1.38,c1sa=1.75,c1nic0=-0.2,c1nic1=-0.86, A2=5.24,c2c=-1.50,c2s=-0.18,c2t=-1.59,c2a=-1.42,c2sa=2.3,c2o4g=-0.3),data=d) ) prd=predict(ear) -2*sum(d$cml*log(prd)) -2*sum(d$cml*log(prd))+2*length(coef(ear)) AIC(err,ear) ICtab(err,ear) anova(err,ear) summary(s1<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+k*age+ks*s*age) +sv*exp(c20+c2c*c + c2s*s+c2t*tsx+c2ts*s*tsx) ) ), start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50,c2s=-0.18,c2t=-0.4,c2ts=0.3),data=d) ) prd=predict(s1) -2*sum(d$cml*log(prd)) -2*sum(d$cml*log(prd))+2*length(coef(s1)) ICtab(err,s1) anova(err,s1) summary(s1a55<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+k*age+ks*s*age) +sv*exp(c20+c2c*c + c2s*s+c2t*tsx+c2ts*s*tsx + c2a*a55+c2sa*s*a55 ) ) ), start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50, c2s=-0.18,c2t=-0.4,c2ts=0.3,c2a=-1.42,c2sa=2.3),data=d) ) prd=predict(s1a55) -2*sum(d$cml*log(prd)) -2*sum(d$cml*log(prd))+2*length(coef(s1a55)) ICtab(err,s1a55) anova(err,s1a55) summary(s1a55f<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+(k+ks*s)*age) +sv*exp(c20+c2c*c + c2s*s+c2t*tsx+c2ts*s*tsx +c2sa*s*a55 ) ) ), start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50, c2s=-0.18,c2t=-0.4,c2ts=0.3,c2sa=2.3),data=d) ) prd=predict(s1a55f) -2*sum(d$cml*log(prd)) -2*sum(d$cml*log(prd))+2*length(coef(s1a55f)) ICtab(err,s1a55f) anova(err,s1a55f) summary(s1a55f) a55HMb<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+k*age+ks*s*age) + sv*exp(c20+c2c*c + c2s*s+c2t*tsx+c2ts*s*tsx +c2sa*s*a55+ c2x*(1-c)*(1-s)*abs(agex-30)) ) ), start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50, c2s=-0.18,c2t=-0.4,c2ts=0.3,c2x=.1,c2sa=2.3),data=d) prd=predict(a55HMb) -2*sum(d$cml*log(prd)) -2*sum(d$cml*log(prd))+2*length(coef(a55HMb)) summary(a55HMb) AIC(a55HMb,s1a55f) ICtab(a55HMb,s1a55f) anova(a55HMb,s1a55f) summary(best<-mle2(cml~dpois(lambda=py*(exp(c10+c2c*c+c2s*s+k*age+ks*s*age) +sv*exp(c20+c2c*c + c2s*s-tsx/(c2t+exp(c2ts)*s) +c2sa*s*a55 ) ) ), start=list(c10=-12.4,k=0.025,ks=0,c20=-10.5,c2c=-1.50, c2s=-0.18,c2t=5,c2ts=log(10),c2sa=2.3),data=d) ) prd=predict(best) -2*sum(d$cml*log(prd)) -2*sum(d$cml*log(prd))+2*length(coef(best)) AIC(s1a55f,best) (sb=summary(best)) sd=coef(sb)["c2ts",2] mn=coef(best)["c2ts"] (tauDiff=c(mn,mn-1.96*sd,mn+1.96*sd)) d=transform(d,tsxf=cut(tsx,6),sex=as.factor(s)) head(d) summary(s3<-mle2(cml~dpois(lambda=py*(exp(c10 + c2c*c + c2s*s + k*age + ks*s*age) +sv*exp(c2c*c + f + c2sa*s*a55 ) ) ), parameters=list(f~-1 + tsxf:sex), start=list(c10=-12.4,k=0.025,ks=0,c2c=-1.50, c2s=-0.18,f=-5,c2sa=2),data=d) ) prd=predict(s3) -2*sum(d$cml*log(prd)) -2*sum(d$cml*log(prd))+2*length(coef(s3)) ss3=summary(s3) wait=exp(coef(ss3)[6:17,1])*1e4 waitL=exp(coef(ss3)[6:17,1]-1.96*coef(ss3)[6:17,2])*1e4 waitU=exp(coef(ss3)[6:17,1]+1.96*coef(ss3)[6:17,2])*1e4 (lvls=levels(d$tsxf)) (Lvls=strsplit(lvls,",")) substring("(4.23",2) (lows=sapply(Lvls,function(x) as.numeric(substring(x[1],2)))) (ups=sapply(Lvls,function(x) as.numeric(substring(x[2],1,4)))) (mids=round(apply(rbind(lows,ups),2,mean),2)) (dfc=data.frame(mids,wait,waitL,waitU,Sex=gl(2,6,labels=c("Male","Female") ) ) ) dfc library(ggplot2) pd <- position_dodge(1) (p=ggplot(dfc, aes(x=mids, y=wait, shape=Sex,ymax=10)) + geom_point(size=6,position=pd) ) (p=p+labs(title="IR-to-CML Latency",x="Years since exposure", y=expression(paste("Cases per ",10^4," Person-Year-Sv") ) ) ) (p=p+geom_errorbar(aes(ymin=waitL, ymax=waitU),width=.01,position=pd)) (p=p+theme(plot.title = element_text(size = rel(2.3)), axis.title = element_text(size = rel(2.3)), axis.text = element_text(size = rel(2.3))) ) (p=p+theme(legend.position = c(0.8, .5), legend.title = element_text(size = rel(2)) , legend.text = element_text(size = rel(2)) ) ) waitm=exp(coef(ss3)[6:11,1]) waitf=exp(coef(ss3)[12:17,1]) (MovF<-format(sum(waitm)/sum(waitf),digits=3)) pm=waitm/sum(waitm) pf=waitf/sum(waitf) (taum<-round(mids%*%pm,2)) (tauf<-round(mids%*%pf,2)) (p=p+annotate("text",x=25,y=10, hjust=0, label = paste("M/F =",MovF),size=9) ) (lb1=paste0("tau[m] == ",taum,"*~Yrs")) (p=p+annotate("text",x=25,y=9, hjust=0, label = lb1,size=9,parse=T) ) (lb1=paste0("tau[f] == ",tauf,"*~Yrs")) (p=p+annotate("text",x=25,y=8, hjust=0, label = lb1,size=9,parse=T) ) rdiscrete <- function(n, probs,values) { cumprobs <- cumsum(probs) singlenumber <- function() { x <- runif(1) N <- sum(x > cumprobs) N } values[replicate(n, singlenumber())+1] } x=rdiscrete(1e5,pf,mids) summary(as.factor(x)) y=rdiscrete(1e5,pm,mids) summary(as.factor(y)) (delT=quantile(x-y,c(0.025,0.975))) (lb1=paste0("Delta*tau == ",tauf-taum,"(",delT[1],", ",delT[2],")")) windows(height=7,width=8,xpos=-100,ypos=-100) (p=p+annotate("text",x=25,y=7, hjust=0, label = lb1,size=7,parse=T) ) ggsave(p,file="/users/radivot/downloads/sachs/IR2CML.wmf") graphics.off() windows(height=6,width=6,xpos=-100,ypos=-100) k=0.025 Tp=22.1 Rp=1.73 Tf=-15:23 fR=function(Tf) exp(-k*(Tf-Tp)) R=fR(Tf) par(mar=c(4.5,4.5,0,.5)) plot(Tf,R,type="l",lwd=2.5,cex.lab=1.8,cex.axis=1.8, ylab="(male risk)/(female risk) M/F", xlab="extra female latency time T in years",axes=F,font=2) mtext(side=3,line=-4,"Continuum of SEER CML\n Sex Difference Interpretations",cex=1.5,font=2) axis(1);axis(2) points(x=c(0,Tp),y=c(Rp,1),pch=1,cex=3,lwd=3) abline(h=1,v=0,lty=3) fT=function(R) Tp-log(R)/k Tx=3.86 Rx=1.26 points(x=c(fT(Rx),Tx),y=c(Rx,fR(Tx)),pch="+",cex=3) x=seq(Tx,fT(Rx),0.1) y=fR(x) points(x,y,type="l",lwd=6) rect(-1,1.13*Rp,23,1.26*Rp,lwd=2) text(12,1.2*Rp,"interpretations by\n a single cause",cex=1.4,font=2,bty="o") arrows(x0=0,y0=1.13*Rp,x1=0,y1=Rp+0.05,lwd=2,angle=20) arrows(x0=Tp,y0=1.13*Rp,x1=Tp,y1=1.05,lwd=2,angle=20) text(4,1.04*Rp,"higher\nmale\nrisk",cex=1.4,font=2) text(10,0.96*Rp,"or",cex=1.4,font=2) text(18,0.9*Rp,"shorter\nmale\nlatency",cex=1.4,font=2) text(-9,1.28, "interpretations\nconsistent with\ntime-since-\nexposure data\n(heavy line)", cex=1.4,font=2) arrows(x0=-2,y0=1.4,fT(1.4),y1=1.4,lwd=2,angle=20) windows(height=7,width=8,xpos=-100,ypos=-100) head(d) d$Dose<-cut(d$sv,c(-1,.02,1,100),labels=c("Low","Moderate","High")) d$agexc<-cut(d$agex,c(0,20,40,180),labels=c("10","30","50")) d$Sex<-factor(d$s,labels=c("Male","Female")) head(d) library(plyr) (d2<-ddply(subset(d,c==0), .(Dose,Sex,agexc), summarise, PY=sum(py),cases=sum(cml),agex=weighted.mean(agex,py) )) (d2=within(d2,{incid=1e5*cases/PY})) library(ggplot2) (p <- ggplot(d2,aes(x=agex,y=incid,shape=Dose,group=Dose))+geom_point(size=5) +geom_line() + labs(title="Hiroshima A-bomb Survivors",x="Age-at-exposure (PY-weighted)", y=expression(paste("CML Cases per ",10^5," Person-Years"))) + scale_y_log10(limits=c(.1,130)) +xlim(8,52) ) (p=p + facet_grid(. ~ Sex)) (p=p+theme(legend.position = c(0.67, .85), legend.title = element_text(size = rel(2)) , legend.text = element_text(size = rel(1.7)) ) ) (p=p+theme(plot.title = element_text(size = rel(2.5)), strip.text = element_text(size = rel(2)), axis.title.y = element_text(size = rel(2.5)), axis.title.x = element_text(size = rel(2.3)), axis.text = element_text(size = rel(2.3))) ) dHM=subset(d,Sex=="Male"&c==0) head(dHM) summary(hm0<-mle2(cml~dpois(lambda=py*(exp(c10 + k*age)+sv*exp(f)) ), parameters=list(f~-1 + tsxf), start=list(c10=-12.4,k=0.025,f=-10),data=dHM ) ) summary(hm1<-mle2(cml~dpois(lambda=py*(exp(c10 + k*age)+ exp(-b*abs(agex-30)/28.85)*sv*exp(f)) ), parameters=list(f~-1 + tsxf), start=list(c10=-12.4,k=0.025,f=-10,b=0.5),data=dHM ) ) anova(hm0,hm1)
GetTransactionEnabled <- function(reportsuite.ids) { request.body <- c() request.body$rsid_list <- reportsuite.ids request.body$locale <- unbox(AdobeAnalytics$SC.Credentials$locale) request.body$elementDataEncoding <- unbox("utf8") response <- ApiRequest(body=toJSON(request.body),func.name="ReportSuite.GetTransactionEnabled") if(length(response$transaction[[1]]) == 0) { return(print("Transactions Not Defined For This Report Suite")) } return(response) }
if (Sys.info()['sysname'] != "Windows") { set.seed(1234) rmse <- function(theta, theta_star) { sqrt(sum((theta - theta_star)^2)/sum(theta_star^2)) } nbNodes <- 40 nbBlocks <- 2 blockProp <- c(.5, .5) covarParam <- c(-2,2) dimLabels <- list(row = "rowLabel", col = "colLabel") covar1 <- matrix(rnorm(nbNodes**2), nbNodes, nbNodes) covar2 <- matrix(rnorm(nbNodes**2), nbNodes, nbNodes) covarList_directed <- list(covar1 = covar1, covar2 = covar2) covar1 <- covar1 + t(covar1) covar2 <- covar2 + t(covar2) covarList <- list(covar1 = covar1, covar2 = covar2) test_that("SimpleSBM_fit 'Bernoulli' model, undirected, one covariate", { means <- diag(.4, 2) + 0.05 connectParam <- list(mean = means) mySampler <- SimpleSBM$new('bernoulli', nbNodes, FALSE, blockProp, connectParam, covarParam = covarParam[1], covarList = covarList[1]) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) mySBM <- SimpleSBM_fit$new(mySampler$networkData, 'bernoulli', FALSE, covarList = covarList[1]) expect_error(SimpleSBM_fit$new(mySampler$networkData, 'bernouilli', FALSE, covarList = covarList[1])) expect_error(SimpleSBM_fit$new(mySampler$networkData[1:20, 1:30], 'bernouilli', FALSE, covarList = covarList[1])) expect_error(SimpleSBM_fit$new(mySampler$networkData, 'bernoulli', TRUE, covarList = covarList[1])) expect_error(SimpleSBM_fit$new(mySampler$networkData, 'bernoulli', FALSE, covarList = covarList[[1]])) expect_true(inherits(mySBM, "SBM")) expect_true(inherits(mySBM, "SimpleSBM")) expect_true(inherits(mySBM, "SimpleSBM_fit")) expect_equal(mySBM$modelName, 'bernoulli') expect_equal(unname(mySBM$nbNodes), nbNodes) expect_equal(mySBM$dimLabels, c(node="nodeName")) expect_equal(mySBM$nbDyads, nbNodes*(nbNodes - 1)/2) expect_true(all(is.na(diag(mySBM$networkData)))) expect_true(isSymmetric(mySBM$networkData)) expect_true(!mySBM$directed) expect_true(is.matrix(mySBM$connectParam$mean)) expect_true(all(dim(mySBM$covarEffect) == c(nbNodes, nbNodes))) expect_equal(mySBM$nbCovariates, 1) expect_equal(mySBM$covarList, covarList[1]) expect_equal(mySBM$covarParam, c(0)) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) BM_out <- mySBM$optimize(estimOptions = list(verbosity = 0, fast = TRUE)) mySBM$setModel(2) expect_equal(dim(mySBM$expectation), c(nbNodes, nbNodes)) expect_true(all(mySBM$expectation >= 0, na.rm = TRUE)) expect_true(all(mySBM$expectation <= 1, na.rm = TRUE)) expect_null(mySBM$connectParam$var) expect_equal(mySBM$nbBlocks, nbBlocks) expect_equal(dim(mySBM$probMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySBM$memberships)), 1:nbBlocks) expect_equal(length(mySBM$memberships), nbNodes) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) expect_equal(mySBM$predict(), predict(mySBM)) expect_equal(predict(mySBM), fitted(mySBM)) expect_equal(predict(mySBM, covarList[1]), fitted(mySBM)) expect_error(predict(mySBM, covarList)) for (Q in mySBM$storedModels$indexModel) { pred_bm <- BM_out$prediction(Q = Q) mySBM$setModel(Q) pred_sbm <- predict(mySBM) expect_lt( rmse(pred_bm, pred_sbm), 1e-12) } }) test_that("SimpleSBM_fit 'Bernoulli' model, directed, one covariate", { means <- matrix(c(0.1, 0.4, 0.6, 0.9), 2, 2) connectParam <- list(mean = means) mySampler <- SimpleSBM$new('bernoulli', nbNodes, TRUE, blockProp, connectParam, c(node = "nodeName"), covarParam[1], covarList_directed[1]) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) mySBM <- SimpleSBM_fit$new(mySampler$networkData, 'bernoulli', TRUE, covarList = covarList_directed[1]) expect_error(SimpleSBM_fit$new(mySampler$networkData, 'bernouilli', TRUE, covarList = covarList_directed[1])) expect_error(SimpleSBM_fit$new(mySampler$networkData, 'bernoulli', FALSE, covarList = covarList_directed[1])) expect_error(SimpleSBM_fit$new(mySampler$networkData[1:20, 1:30], 'bernouilli', FALSE, covarList = covarList_directed[1])) expect_true(inherits(mySBM, "SBM")) expect_true(inherits(mySBM, "SimpleSBM")) expect_true(inherits(mySBM, "SimpleSBM_fit")) expect_equal(mySBM$modelName, 'bernoulli') expect_equal(unname(mySBM$nbNodes), nbNodes) expect_equal(mySBM$dimLabels, c(node="nodeName")) expect_equal(mySBM$nbDyads, nbNodes*(nbNodes - 1)) expect_true(all(is.na(diag(mySBM$networkData)))) expect_true(!isSymmetric(mySBM$networkData)) expect_true(mySBM$directed) expect_true(is.matrix(mySBM$connectParam$mean)) expect_true(all(dim(mySBM$covarEffect) == c(nbNodes, nbNodes))) expect_equal(mySBM$nbCovariates, 1) expect_equal(mySBM$covarList, covarList_directed[1]) expect_equal(mySBM$covarParam, c(0)) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) BM_out <- mySBM$optimize(estimOptions = list(verbosity = 0, fast = TRUE)) mySBM$setModel(2) expect_equal(dim(mySBM$expectation), c(nbNodes, nbNodes)) expect_true(all(mySBM$expectation >= 0, na.rm = TRUE)) expect_true(all(mySBM$expectation <= 1, na.rm = TRUE)) expect_null(mySBM$connectParam$var) expect_equal(mySBM$nbBlocks, nbBlocks) expect_equal(dim(mySBM$probMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySBM$memberships)), 1:nbBlocks) expect_equal(length(mySBM$memberships), nbNodes) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) expect_equal(mySBM$predict(), predict(mySBM)) expect_equal(predict(mySBM), fitted(mySBM)) expect_equal(predict(mySBM, covarList[1]), fitted(mySBM)) for (Q in mySBM$storedModels$indexModel) { pred_bm <- BM_out$prediction(Q = Q) mySBM$setModel(Q) pred_sbm <- predict(mySBM) expect_lt( rmse(pred_bm, pred_sbm), 1e-12) } }) test_that("SimpleSBM_fit 'Poisson' model, undirected, two covariates", { means <- diag(15, 2) + 5 connectParam <- list(mean = means) mySampler <- SimpleSBM$new('poisson', nbNodes, FALSE, blockProp, connectParam, covarParam = covarParam[1], covarList = covarList[1]) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) mySBM <- SimpleSBM_fit$new(mySampler$networkData, 'poisson', FALSE, covarList = covarList[1]) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData, 'poison', FALSE, covarList = covarList[1])) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData[1:20, 1:30], 'poisson', FALSE, covarList = covarList[1])) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData, 'poisson', TRUE, covarList = covarList[1])) expect_true(inherits(mySBM, "SBM")) expect_true(inherits(mySBM, "SimpleSBM")) expect_true(inherits(mySBM, "SimpleSBM_fit")) expect_equal(mySBM$modelName, 'poisson') expect_equal(unname(mySBM$nbNodes), nbNodes) expect_equal(mySBM$dimLabels, c(node="nodeName")) expect_equal(mySBM$nbDyads, nbNodes*(nbNodes - 1)/2) expect_true(all(is.na(diag(mySBM$networkData)))) expect_true(isSymmetric(mySBM$networkData)) expect_true(!mySBM$directed) expect_true(is.matrix(mySBM$connectParam$mean)) expect_true(all(dim(mySBM$covarEffect) == c(nbNodes, nbNodes))) expect_equal(mySBM$nbCovariates, 1) expect_equal(mySBM$covarList, covarList[1]) expect_equal(mySBM$covarParam, c(0)) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) BM_out <- mySBM$optimize(estimOptions=list(verbosity = 0)) mySBM$setModel(2) expect_equal(dim(mySBM$expectation), c(nbNodes, nbNodes)) expect_true(all(mySampler$expectation >= 0, na.rm = TRUE)) expect_null(mySBM$connectParam$var) expect_equal(mySBM$nbBlocks, nbBlocks) expect_equal(dim(mySBM$probMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySBM$memberships)), 1:nbBlocks) expect_equal(length(mySBM$memberships), nbNodes) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) expect_equal(mySBM$predict(), predict(mySBM)) expect_equal(predict(mySBM), fitted(mySBM)) expect_equal(predict(mySBM, covarList[1]), fitted(mySBM)) for (Q in mySBM$storedModels$indexModel) { pred_bm <- BM_out$prediction(Q = Q) mySBM$setModel(Q) pred_sbm <- predict(mySBM) expect_lt( rmse(pred_bm, pred_sbm), 1e-12) } }) test_that("SimpleSBM_fit 'Poisson' model, directed, two covariates", { means <- matrix(c(1, 4, 7, 9), 2, 2) connectParam <- list(mean = means) mySampler <- SimpleSBM$new('poisson', nbNodes, TRUE, blockProp, connectParam, covarParam = covarParam[1], covarList = covarList_directed[1]) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) mySBM <- SimpleSBM_fit$new(mySampler$networkData, 'poisson', TRUE, covarList = covarList_directed[1]) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData, 'poison', TRUE, covarList = covarList_directed[1])) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData[1:20, 1:30], 'poisson', FALSE, covarList = covarList_directed[1])) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData, 'poisson', FALSE, covarList = covarList_directed[1])) expect_true(inherits(mySBM, "SBM")) expect_true(inherits(mySBM, "SimpleSBM")) expect_true(inherits(mySBM, "SimpleSBM_fit")) expect_equal(mySBM$modelName, 'poisson') expect_equal(unname(mySBM$nbNodes), nbNodes) expect_equal(mySBM$dimLabels, c(node="nodeName")) expect_equal(mySBM$nbDyads, nbNodes*(nbNodes - 1)) expect_true(all(is.na(diag(mySBM$networkData)))) expect_true(!isSymmetric(mySBM$networkData)) expect_true(mySBM$directed) expect_true(is.matrix(mySBM$connectParam$mean)) expect_true(all(dim(mySBM$covarEffect) == c(nbNodes, nbNodes))) expect_equal(mySBM$nbCovariates, 1) expect_equal(mySBM$covarList, covarList_directed[1]) expect_equal(mySBM$covarParam, c(0)) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) BM_out <- mySBM$optimize(estimOptions=list(verbosity = 0)) mySBM$setModel(2) expect_equal(dim(mySBM$expectation), c(nbNodes, nbNodes)) expect_true(all(mySampler$expectation >= 0, na.rm = TRUE)) expect_null(mySBM$connectParam$var) expect_equal(mySBM$nbBlocks, nbBlocks) expect_equal(dim(mySBM$probMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySBM$memberships)), 1:nbBlocks) expect_equal(length(mySBM$memberships), nbNodes) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) expect_equal(mySBM$predict(), predict(mySBM)) expect_equal(predict(mySBM), fitted(mySBM)) expect_equal(predict(mySBM, covarList[1]), fitted(mySBM)) for (Q in mySBM$storedModels$indexModel) { pred_bm <- BM_out$prediction(Q = Q) mySBM$setModel(Q) pred_sbm <- predict(mySBM) expect_lt( rmse(pred_bm, pred_sbm), 1e-12) } }) test_that("SimpleSBM_fit 'Gaussian' model, undirected, two covariates", { means <- diag(15., 2) + 5 connectParam <- list(mean = means, var = 2) mySampler <- SimpleSBM$new('gaussian', nbNodes, FALSE, blockProp, connectParam, covarParam = covarParam, covarList = covarList) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) mySBM <- SimpleSBM_fit$new(mySampler$networkData, 'gaussian', FALSE, covarList = covarList) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData, 'normal', FALSE, covarList = covarList)) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData[1:20, 1:30], 'gaussian', FALSE, covarList = covarList)) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData, 'gaussian', TRUE, covarList = covarList)) expect_true(inherits(mySBM, "SBM")) expect_true(inherits(mySBM, "SimpleSBM")) expect_true(inherits(mySBM, "SimpleSBM_fit")) expect_equal(mySBM$modelName, 'gaussian') expect_equal(unname(mySBM$nbNodes), nbNodes) expect_equal(mySBM$dimLabels, c(node="nodeName")) expect_equal(mySBM$nbDyads, nbNodes*(nbNodes - 1)/2) expect_true(all(is.na(diag(mySBM$networkData)))) expect_true(isSymmetric(mySBM$networkData)) expect_true(!mySBM$directed) expect_true(is.matrix(mySBM$connectParam$mean)) expect_true(all(dim(mySBM$covarEffect) == c(nbNodes, nbNodes))) expect_equal(mySBM$nbCovariates, 2) expect_equal(mySBM$covarList, covarList) expect_equal(mySBM$covarParam, c(0,0)) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) BM_out <- mySBM$optimize(estimOptions=list(verbosity = 0)) mySBM$setModel(2) expect_equal(dim(mySBM$expectation), c(nbNodes, nbNodes)) expect_gt(mySBM$connectParam$var, 0) expect_equal(mySBM$nbBlocks, nbBlocks) expect_equal(dim(mySBM$probMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySBM$memberships)), 1:nbBlocks) expect_equal(length(mySBM$memberships), nbNodes) expect_lt(rmse(mySBM$connectParam$mean, means), 1e-1) expect_lt(rmse(mySBM$covarParam, covarParam), 0.1) expect_lt(1 - aricode::ARI(mySBM$memberships, mySampler$memberships), 1e-1) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) expect_equal(mySBM$predict(), predict(mySBM)) expect_equal(predict(mySBM), fitted(mySBM)) expect_equal(predict(mySBM, covarList), fitted(mySBM)) for (Q in mySBM$storedModels$indexModel) { pred_bm <- BM_out$prediction(Q = Q) mySBM$setModel(Q) pred_sbm <- predict(mySBM) expect_lt( rmse(pred_bm, pred_sbm), 1e-12) } }) test_that("SimpleSBM_fit 'Gaussian' model, undirected, two covariates", { means <- matrix(c(1, 4, 7, 10),2,2) connectParam <- list(mean = means, var = 2) mySampler <- SimpleSBM$new('gaussian', nbNodes, TRUE, blockProp, connectParam, covarParam = covarParam, covarList = covarList_directed) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) mySBM <- SimpleSBM_fit$new(mySampler$networkData, 'gaussian', TRUE, covarList = covarList_directed) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData, 'normal', TRUE, covarList = covarList_directed)) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData[1:20, 1:30], 'gaussian', TRUE, covarList = covarList_directed)) expect_error(SimpleSBM_fit$new(SamplerBernoulli$networkData, 'gaussian', FALSE, covarList = covarList_directed)) expect_true(inherits(mySBM, "SBM")) expect_true(inherits(mySBM, "SimpleSBM")) expect_true(inherits(mySBM, "SimpleSBM_fit")) expect_equal(mySBM$modelName, 'gaussian') expect_equal(unname(mySBM$nbNodes), nbNodes) expect_equal(mySBM$dimLabels, c(node="nodeName")) expect_equal(mySBM$nbDyads, nbNodes*(nbNodes - 1)) expect_true(all(is.na(diag(mySBM$networkData)))) expect_true(!isSymmetric(mySBM$networkData)) expect_true(mySBM$directed) expect_true(is.matrix(mySBM$connectParam$mean)) expect_true(all(dim(mySBM$covarEffect) == c(nbNodes, nbNodes))) expect_equal(mySBM$nbCovariates, 2) expect_equal(mySBM$covarList, covarList_directed) expect_equal(mySBM$covarParam, c(0,0)) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) BM_out <- mySBM$optimize(estimOptions=list(verbosity = 0)) mySBM$setModel(2) expect_equal(dim(mySBM$expectation), c(nbNodes, nbNodes)) expect_gt(mySBM$connectParam$var, 0) expect_equal(mySBM$nbBlocks, nbBlocks) expect_equal(dim(mySBM$probMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySBM$memberships)), 1:nbBlocks) expect_equal(length(mySBM$memberships), nbNodes) expect_lt(rmse(sort(mySBM$connectParam$mean), means), 1e-1) expect_lt(rmse(mySBM$covarParam, covarParam), 0.1) expect_lt(1 - aricode::ARI(mySBM$memberships, mySampler$memberships), 1e-1) expect_equal(coef(mySBM, 'connectivity'), mySBM$connectParam) expect_equal(coef(mySBM, 'block') , mySBM$blockProp) expect_equal(coef(mySBM, 'covariates') , mySBM$covarParam) expect_equal(mySBM$predict(), predict(mySBM)) expect_equal(predict(mySBM), fitted(mySBM)) expect_equal(predict(mySBM, covarList), fitted(mySBM)) for (Q in mySBM$storedModels$indexModel) { pred_bm <- BM_out$prediction(Q = Q) mySBM$setModel(Q) pred_sbm <- predict(mySBM) expect_lt( rmse(pred_bm, pred_sbm), 1e-12) } }) }
doAmap <- function(stas, doproj=TRUE) { proj = GEOmap::setPROJ(type=2, LAT0 =median(stas$lat) , LON0 = median(stas$lon) ) if(doproj) { XY = GEOmap::GLOB.XY(stas$lat, stas$lon, proj) BEX = GEOmap::expandbound(range(XY$x), 0.1) BEY = GEOmap::expandbound(range(XY$y), 0.1) plot(BEX, BEY, type='n', xlab="km", ylab="km" ) points(XY, pch=25, bg=stas$col, cex=1.2) text(XY, labels=stas$name, pos=3, xpd=TRUE, cex=1.1) } else { plot(stas$lon, stas$lat, pch=25, bg=stas$col, cex=1.2) text(stas$lon, stas$lat, labels=stas$name, pos=3, xpd=TRUE, cex=1.1) } return(proj) }
"print.nestedn0" <- function(x, ...) { cat("Nestedness index N0:", format(x$statistic), "\n") invisible(x) }
"BivalvePBDB"
UpdateTau.GL <- function(survObj, priorPara, ini){ lambdaSq <- ini$lambdaSq sigmaSq <- ini$sigmaSq tauSq <- ini$tauSq be.normSq <- ini$be.normSq K <- priorPara$K groupInd <- priorPara$groupInd groupNo <- priorPara$groupNo nu.ind<-NULL nu=sqrt(lambdaSq * sigmaSq/be.normSq) nu.ind <- which(nu == Inf) if(length(nu.ind) > 0){nu[nu.ind] <- max(nu[-nu.ind]) + 10} gam <- c() for (j in 1:K){ repeat{ gam[j] <- rinvGauss(1, nu = nu[j], lambda = lambdaSq) if (gam[j] > 0) break } tauSq[j] <- 1/gam[j] } return(tauSq) }
data{ n <- length(distance) n.papers <- max(paper) n.angles <- max(angle) n.designs <- max(design) } model{ for (i in 1:n) { distance[i] ~ dnorm(mu[i], tau) mu[i] <- b0 + b3[design[i]] } for (j in 2:n.papers) { b1[j] <- paper[j] } for (k in 2:n.angles) { b2[k] <- angle[k] } for (m in 2:n.designs) { b3[m] ~ dnorm(0, 1e-07) } b3[1] <- 0 tau ~ dgamma(0.001, 0.001) b0 ~ dunif(0, 10000) }
draw_lines <- function(){ head <- dashboardHeader(disable=TRUE) sidebar <- dashboardSidebar(disable=TRUE) body <- dashboardBody( fluidRow( box(width=8, leafletOutput('map', height=800)), box(width=4, textInput('file_name', label='File Name', value='lines.rds'), actionButton('make', 'Make'), actionButton('clear', 'Clear'), actionButton('save', 'Save'), actionButton('load', 'Load') ) ) ) ui <- dashboardPage(head, sidebar, body) server <- function(input, output){ rv <- reactiveValues( clicks = data.frame(lng = numeric(), lat = numeric()), objects = list() ) output$map <- { renderLeaflet({ leaflet() %>% addTiles() %>% setView(lat=37.56579, lng=126.9386, zoom=5) }) } observeEvent(input$map_click, { lastest.click <- data.frame( lng = input$map_click$lng, lat = input$map_click$lat ) rv$clicks <- rbind(rv$clicks, lastest.click) leafletProxy('map') %>% addCircles(data=rv$clicks, lng=~lng, lat=~lat, radius=2, color='black', opacity=1, layerId='circles') %>% addPolylines(data=rv$clicks, lng=~lng, lat=~lat, weight=2, dashArray=3, color='black', opacity=1, layerId='lines') }) observeEvent(input$make, { if(nrow(rv$clicks) > 0){ new.line <- rv$clicks %>% as.matrix %>% st_linestring rv$objects[[length(rv$objects) + 1]] <- new.line rv$clicks <- data.frame(lng = numeric(), lat = numeric()) leafletProxy('map') %>% removeShape('circles') %>% removeShape('lines') %>% addPolylines(data=new.line %>% st_sfc, weight=2, color='black', fillColor='black') } }) observeEvent(input$clear, { rv$clicks <- data.frame(lng = numeric(), lat = numeric()) rv$objects <- list() leafletProxy('map') %>% clearShapes() }) observeEvent(input$save, { base_crs = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs' rv$objects %>% st_sfc(crs=base_crs) %>% saveRDS(file=input$file_name) save.file.message <- paste('lines are saved at: ', getwd(), '/', input$file_name, sep='') print(save.file.message) }) observeEvent(input$load, { rv$objects <- readRDS(input$file_name) %>% st_sfc rv$clicks <- data.frame(lng = numeric(), lat = numeric()) leafletProxy('map') %>% clearShapes() %>% addPolylines(data=rv$objects %>% st_sfc, weight=2, color='black', fillColor='black') }) } shinyApp(ui, server) }
globalVariables(c("..count..","..density..","ind", "values", "Success Probability", "Expected Data Transmissions", "Expected ACK Transmissions", "Expected Total Transmissions", "Expected Data Receptions", "Expected ACK Receptions", "Expected Total Receptions")) ETE <- function(p1,p2,L,N) { if(p1 >= 1 | p1 <= 0) stop("p1 must be a real number in (0,1)") if(p2 >= 1 | p2 <= 0) stop("p2 must be a real number in (0,1)") if(L != Inf && (L%%1!=0 | L<0)) stop("L must be a positive integer") if(N%%1!=0 | N<1) stop("N must be a positive integer") cat(" ","\n") cat(" cat("END TO END - THEORETICAL RESULTS","\n") cat(" cat(" ","\n") cat(paste("Data success probability p1 = ",p1),"\n") cat(paste("ACK success probability p2 = ",p2),"\n") cat(paste("Maximum number of transmissions L = ",L),"\n") cat(paste("Number of Hops N = ",N),"\n") cat(" ","\n") pp = p1*p2 if(L==Inf) { ETData = ((1 - p1^N)/(1-p1)) * ((1)/(p1*p2)^N) ETACK = ((p1^N)*((1 - p2^N)/(1-p2))) * ((1)/(p1*p2)^N) ETS = ETData + ETACK REC_ETData = p1*((1 - p1^N)/(1-p1)) * ((1)/(p1*p2)^N) REC_ETACK = p2 * ((p1^N)*((1 - p2^N)/(1-p2))) * ((1)/(p1*p2)^N) REC_ETS = REC_ETData + REC_ETACK }else { if((p1*p2)<0.05) { ETData = L/(1-p1) ETACK = 0 ETS = ETData + ETACK REC_ETData = (p1*L)/(1-p1) REC_ETACK = 0 REC_ETS = (p1*L)/(1-p1) }else{ ETData = ((1 - p1^N)/(1-p1)) * ((1 - (1-(p1*p2)^N)^L)/(p1*p2)^N) ETACK = ((p1^N)*((1 - p2^N)/(1-p2))) * ((1 - (1-(p1*p2)^N)^L)/(p1*p2)^N) ETS = ETData + ETACK REC_ETData = p1*((1 - p1^N)/(1-p1)) * ((1 - (1-(p1*p2)^N)^L)/(p1*p2)^N) REC_ETACK = p2 * ((p1^N)*((1 - p2^N)/(1-p2))) * ((1 - (1-(p1*p2)^N)^L)/(p1*p2)^N) REC_ETS = REC_ETData + REC_ETACK } } PrS = 1-(1-p1^N)^L res = round(matrix(data = c(c(PrS),c(ETData),c(ETACK),c(ETS),c(REC_ETData),c(REC_ETACK),c(REC_ETS)),nrow = 7,ncol = 1,byrow = T),4) rownames(res)=c("Success Probability", "Expected Data Transmissions", "Expected ACK Transmissions", "Expected Total Transmissions", "Expected Data Receptions", "Expected ACK Receptions","Expected Total Receptions") colnames(res)= c("Total") return(res) } MCETE = function(p1,p2,L,N,M=5000) { if(p1 >= 1 | p1 <= 0) stop("p1 must be a real number in (0,1)") if(p2 >= 1 | p2 <= 0) stop("p2 must be a real number in (0,1)") if(L != Inf && (L%%1!=0 | L<0)) stop("L must be a positive integer") if(N%%1!=0 | N<1) stop("N must be a positive integer") if(M%%1!=0 | M<1) stop("N must be a positive integer") cat(" ","\n") cat(" cat("END TO END - MONTE CARLO SIMULATION RESULTS","\n") cat(" cat(" ","\n") cat(paste("Data success probability p1 = ",p1),"\n") cat(paste("ACK success probability p2 = ",p2),"\n") cat(paste("Maximum number of transmissions L = ",L),"\n") cat(paste("Number of Hops N = ",N),"\n") cat(paste("Monte Carlo Simulations M = ",M),"\n") cat(" ","\n") prog2 = function(p1,p2,L,N) { pos = 1 trans = 0 ack = 0 maxpos = 1 ok = FALSE okACK = FALSE arr = 0 abj = 0 failUP = 0 failACK = 0 failT = 0 chegou = 0 while(failT < L && okACK == FALSE) { back = FALSE while(pos<=N && failT < L) { maxpos = max(maxpos,pos) u1 = runif(1) trans = trans +1 if(u1<p1){arr = arr + 1;pos = pos + 1}else{pos = 1;failUP = failUP + 1;failT = failT + 1} } if(pos == N+1) { maxpos = N+1 posACK = pos ok = TRUE chegou=1 while(posACK >1 && back == FALSE) { u2 = runif(1) ack = ack +1 if(u2<p2){abj = abj + 1;posACK = posACK - 1}else{back = TRUE;pos = 1;failACK = failACK + 1;failT = failT + 1} if(posACK == 1){okACK = TRUE} } } } return(list(pos=pos,tDATA = trans,tACK = ack, trans = trans+ack,RDATA = arr, RACK = abj,Rtrans = arr+abj,ok=chegou)) cat(" ","\n") } resul = matrix(data = NA,nrow = M,ncol = 8) pb <- txtProgressBar(min = 0, max = M, style = 3) for(k in 1:M) { run = prog2(p1,p2,L,N) resul[k,1]=run$pos resul[k,2]=run$tDATA resul[k,3]=run$tACK resul[k,4]=run$trans resul[k,5]=run$RDATA resul[k,6]=run$RACK resul[k,7]=run$Rtrans resul[k,8]=run$ok setTxtProgressBar(pb, k) } close(pb) success = sum(resul[,8])/M tarr = mean(resul[,2]) tabj = mean(resul[,3]) tt = tarr + tabj rarr = mean(resul[,5]) rabj = mean(resul[,6]) rt = rarr + rabj table = round(rbind(success,tarr,tabj,tt,rarr,rabj,rt),4) rownames(table)=c("MC Success Probability","MC Mean Data Transmissions","MC Mean ACK Transmissions","MC Mean Total Transmissions","MC Mean Data Receptions","MC Mean ACK Receptions","MC Mean Total Receptions") colnames(table)= c("Total") return(table) cat(" ","\n") } ETE0 = function (p1, p2, L, N){ pp = p1 * p2 if (L == Inf) { ETData = ((1 - p1^N)/(1 - p1)) * ((1)/(p1 * p2)^N) ETACK = ((p1^N) * ((1 - p2^N)/(1 - p2))) * ((1)/(p1 * p2)^N) ETS = ETData + ETACK REC_ETData = p1 * ((1 - p1^N)/(1 - p1)) * ((1)/(p1 * p2)^N) REC_ETACK = p2 * ((p1^N) * ((1 - p2^N)/(1 - p2))) * ((1)/(p1 * p2)^N) REC_ETS = REC_ETData + REC_ETACK }else { if ((p1 * p2) < 0.05) { ETData = L/(1 - p1) ETACK = 0 ETS = ETData + ETACK REC_ETData = (p1 * L)/(1 - p1) REC_ETACK = 0 REC_ETS = (p1 * L)/(1 - p1) }else { ETData = ((1 - p1^N)/(1 - p1)) * ((1 - (1 - (p1 * p2)^N)^L)/(p1 * p2)^N) ETACK = ((p1^N) * ((1 - p2^N)/(1 - p2))) * ((1 - (1 - (p1 * p2)^N)^L)/(p1 * p2)^N) ETS = ETData + ETACK REC_ETData = p1 * ((1 - p1^N)/(1 - p1)) * ((1 - (1 - (p1 * p2)^N)^L)/(p1 * p2)^N) REC_ETACK = p2 * ((p1^N) * ((1 - p2^N)/(1 - p2))) * ((1 - (1 - (p1 * p2)^N)^L)/(p1 * p2)^N) REC_ETS = REC_ETData + REC_ETACK } } PrS = 1 - (1 - p1^N)^L res = round(matrix(data = c(c(PrS), c(ETData), c(ETACK), c(ETS), c(REC_ETData), c(REC_ETACK), c(REC_ETS)), nrow = 7, ncol = 1, byrow = T), 4) return(res) } stochastic_ETE = function(dist1,p11,p12,dist2,p21,p22,L,N,M=10^5,printout=TRUE,plotspdf=TRUE){ if(L != Inf && (L%%1!=0 | L<0)) stop("L must be a positive integer") if(N%%1!=0 | N<1) stop("N must be a positive integer") if(dist1 == "uniform"){ p1 = runif(M,p11,p12) }else{ if(dist1 == "beta"){ p1 = rbeta(M,p11,p12) }else{ stop("p1 distribution must be either 'uniform' or 'beta'.") } } if(dist2 == "uniform"){ p2 = runif(M,p21,p22) }else{ if(dist2 == "beta"){ p2 = rbeta(M,p21,p22) }else{ stop("p1 distribution must be either 'uniform' or 'beta'.") } } out = apply(X = cbind(p1,p2),MARGIN = 1, function(x) ETE0(x[1], x[2], L, N)) outsum = matrix(apply(out,1,mean),7,1) rownames(outsum) = c("Success Probability", "Expected Data Transmissions", "Expected ACK Transmissions", "Expected Total Transmissions", "Expected Data Receptions", "Expected ACK Receptions", "Expected Total Receptions") colnames(outsum) = c("Total") df = data.frame(p1,p2,t(out)) colnames(df) = c("p1","p2",rownames(outsum)) stats = as.data.frame(t(stat.desc(df))[,-c(1:3)]) p1 = ggplot(df,aes(p1)) + geom_histogram(aes(y=..density.., fill = "p1"),alpha = 0.4,color="gray40",breaks = seq(min(p1),max(p1),length.out = round(diff(range(p1))/0.0625)+1)) + geom_histogram(aes(x = p2, y = ..density..,fill = "p2"),alpha = 0.4,color="gray40",breaks = seq(min(p2),max(p2),length.out = round(diff(range(p2))/0.0625)+1))+ theme(axis.title.x=element_blank(), axis.ticks.x=element_blank()) + labs(fill = "")+ xlab("probability") + ylab("density") + ggtitle("Data and ACK Success Probabilities") + xlim(0,1) + theme_classic() p2 = ggplot(df,aes(x=`Success Probability`)) + geom_histogram(aes(y = (..count..)/sum(..count..)),alpha = 0.2,color="gray40",fill = 1, breaks = seq(min(df$`Success Probability`),max(df$`Success Probability`),length.out = 17)) + theme(axis.title.x=element_blank(), axis.ticks.x=element_blank())+ geom_vline(xintercept = outsum[1],color="gray40",lwd=1.2) + ggtitle(paste("Success Probability (mean = ",round(outsum[1],3),")",sep = "")) + ylab("relative frequency")+ theme_classic() p3 = ggplot(df,aes(x=`Expected Data Transmissions`)) + geom_histogram(aes(y = (..count..)/sum(..count..)),alpha = 0.2,color="gray40",fill = 2, breaks = seq(min(df$`Expected Data Transmissions`),max(df$`Expected Data Transmissions`),length.out = 17)) + theme(axis.title.x=element_blank(), axis.ticks.x=element_blank()) + geom_vline(xintercept = outsum[2],color="gray40",lwd=1.2) + ggtitle(paste("Expected Data Transmissions (mean = ",round(outsum[2],3),")",sep = "")) + ylab("relative frequency") + theme_classic() p4 = ggplot(df,aes(x=`Expected ACK Transmissions`)) + geom_histogram(aes(y = (..count..)/sum(..count..)),alpha = 0.2,color="gray40",fill = 3, breaks = seq(min(df$`Expected ACK Transmissions`),max(df$`Expected ACK Transmissions`),length.out = 17)) + theme(axis.title.x=element_blank(), axis.ticks.x=element_blank()) + geom_vline(xintercept = outsum[3],color="gray40",lwd=1.2) + ggtitle(paste("Expected ACK Transmissions (mean = ",round(outsum[3],3),")",sep = "")) + ylab("relative frequency") + theme_classic() p5 = ggplot(df,aes(x=`Expected Total Transmissions`)) + geom_histogram(aes(y = (..count..)/sum(..count..)),alpha = 0.2,color="gray40",fill = 4, breaks = seq(min(df$`Expected Total Transmissions`),max(df$`Expected Total Transmissions`),length.out = 17)) + theme(axis.title.x=element_blank(), axis.ticks.x=element_blank()) + geom_vline(xintercept = outsum[4],color="gray40",lwd=1.2) + ggtitle(paste("Expected Total Transmissions (mean = ",round(outsum[4],3),")",sep = "")) + ylab("relative frequency") + theme_classic() p6 = ggplot(df,aes(x=`Expected Data Receptions`)) + geom_histogram(aes(y = (..count..)/sum(..count..)),alpha = 0.2,color="gray40",fill = 5, breaks = seq(min(df$`Expected Data Receptions`),max(df$`Expected Data Receptions`),length.out = 17)) + theme(axis.title.x=element_blank(), axis.ticks.x=element_blank()) + geom_vline(xintercept = outsum[5],color="gray40",lwd=1.2) + ggtitle(paste("Expected Data Receptions (mean = ",round(outsum[5],3),")",sep = "")) + ylab("relative frequency") + theme_classic() p7 = ggplot(df,aes(x=`Expected ACK Receptions`)) + geom_histogram(aes(y = (..count..)/sum(..count..)),alpha = 0.2,color="gray40",fill = 6, breaks = seq(min(df$`Expected ACK Receptions`),max(df$`Expected ACK Receptions`),length.out = 17)) + theme(axis.title.x=element_blank(), axis.ticks.x=element_blank()) + geom_vline(xintercept = outsum[6],color="gray40",lwd=1.2) + ggtitle(paste("Expected ACK Receptions (mean = ",round(outsum[6],3),")",sep = "")) + ylab("relative frequency") + theme_classic() p8 = ggplot(df,aes(x=`Expected Total Receptions`)) + geom_histogram(aes(y = (..count..)/sum(..count..)),alpha = 0.2,color="gray40",fill = 7, breaks = seq(min(df$`Expected Total Receptions`),max(df$`Expected Total Receptions`),length.out = 17)) + theme(axis.title.x=element_blank(), axis.ticks.x=element_blank()) + geom_vline(xintercept = outsum[7],color="gray40",lwd=1.2) + ggtitle(paste("Expected Total Receptions (mean = ",round(outsum[7],3),")",sep = "")) + ylab("relative frequency") + theme_classic() df2 = stack(df[,c(4:9)]) p9 = ggplot(df2, aes(x = ind, y = values)) + geom_boxplot(fill = rev(2:7),alpha = 0.2,color="gray40") + coord_flip() + xlab("") + scale_x_discrete(limits = rev(levels(df2$ind))) + theme_classic() if(isTRUE(printout)){ cat(paste("Monte Carlo simulations M = ", M), "\n") cat(paste("Maximum number of transmissions L = ", L), "\n") cat(paste("Number of Hops N = ", N), "\n") print(stats) print(p1) print(p2) print(p3) print(p4) print(p5) print(p6) print(p7) print(p8) print(p9) } if(isTRUE(plotspdf)){ plotsPath = paste("ETE",format(Sys.time(),"%d%m%y_%H%M%S"),".pdf",sep="") pdf(file=plotsPath,width = 8.27,height = 5.83) print(p1) print(p2) print(p3) print(p4) print(p5) print(p6) print(p7) print(p8) print(p9) dev.off() print(paste("Plots file ",plotsPath," saved in working directory ",getwd(),".",sep = "")) } return(list(data=df,stats = stats)) }
qgis_sanitize_arguments <- function(algorithm, ..., .algorithm_arguments = qgis_arguments(algorithm), .use_json_input = FALSE) { dots <- rlang::list2(...) if (length(dots) > 0 && !rlang::is_named(dots)) { abort("All ... arguments to `qgis_sanitize_arguments()` must be named.") } arg_meta <- .algorithm_arguments dot_names <- names(dots) duplicated_dot_names <- unique(dot_names[duplicated(dot_names)]) regular_dot_names <- setdiff(dot_names, duplicated_dot_names) user_args <- vector("list", length(unique(dot_names))) names(user_args) <- unique(dot_names) user_args[regular_dot_names] <- dots[regular_dot_names] for (arg_name in duplicated_dot_names) { items <- unname(dots[dot_names == arg_name]) user_args[[arg_name]] <- qgis_list_input(!!! items) } unknown_args <- setdiff(names(dots), c("PROJECT_PATH", "ELLIPSOID", arg_meta$name)) if (length(unknown_args) > 0){ for (arg_name in unknown_args) { message(glue("Ignoring unknown input '{ arg_name }'")) } } special_args <- user_args[c("PROJECT_PATH", "ELLIPSOID")] special_args <- special_args[!sapply(special_args, is.null)] args <- rep(list(qgis_default_value()), nrow(arg_meta)) names(args) <- arg_meta$name args[intersect(names(args), names(user_args))] <- user_args[intersect(names(args), names(user_args))] args <- c(args, special_args) arg_spec <- Map( qgis_argument_spec_by_name, rep_len(list(algorithm), length(args)), names(args), rep_len(list(arg_meta), length(args)) ) names(arg_spec) <- names(args) args_sanitized <- vector("list", length(args)) names(args_sanitized) <- names(args) all_args_sanitized <- FALSE on.exit(if (!all_args_sanitized) qgis_clean_arguments(args_sanitized)) for (name in names(args)) { args_sanitized[[name]] <- as_qgis_argument(args[[name]], arg_spec[[name]], use_json_input = .use_json_input) } all_args_sanitized <- TRUE is_default_value <- vapply(args_sanitized, is_qgis_default_value, logical(1)) args_sanitized <- args_sanitized[!is_default_value] args_sanitized } qgis_serialize_arguments <- function(arguments, use_json_input = FALSE) { if (use_json_input) { unclass_recursive <- function(x) { is_list <- vapply(x, is.list, logical(1)) x[is_list] <- lapply(x[is_list], unclass_recursive) lapply(x, unclass) } jsonlite::toJSON(list(inputs = unclass_recursive(arguments)), auto_unbox = TRUE) } else { args_dict <- vapply(arguments, inherits, logical(1), "qgis_dict_input") if (any(args_dict)) { labels <- names(arguments)[args_dict] abort("`qgis_run_algorithm()` can't generate command-line arguments from `qgis_dict_input()`") } args_flat <- unlist(arguments) arg_name_n <- vapply(arguments, length, integer(1)) names(args_flat) <- unlist(Map(rep, names(arguments), arg_name_n)) if (length(args_flat) > 0) { paste0("--", names(args_flat), "=", vapply(args_flat, as.character, character(1))) } else { character(0) } } } qgis_clean_arguments <- function(arguments) { lapply(arguments, qgis_clean_argument) invisible(NULL) } as_qgis_argument <- function(x, spec = qgis_argument_spec(), use_json_input = FALSE) { UseMethod("as_qgis_argument") } qgis_default_value <- function() { structure(list(), class = "qgis_default_value") } is_qgis_default_value <- function(x) { inherits(x, "qgis_default_value") } as_qgis_argument.default <- function(x, spec = qgis_argument_spec(), use_json_input = FALSE) { abort( glue( paste0( "Don't know how to convert object of type ", "'{ paste(class(x), collapse = \" / \") }' ", "to QGIS type '{ spec$qgis_type }'" ) ) ) } as_qgis_argument.list <- function(x, spec = qgis_argument_spec(), use_json_input = FALSE) { if (use_json_input) { return(x) } NextMethod() } as_qgis_argument.qgis_default_value <- function(x, spec = qgis_argument_spec(), use_json_input = FALSE) { if (isTRUE(spec$qgis_type %in% c("sink", "vectorDestination"))) { message(glue("Using `{ spec$name } = qgis_tmp_vector()`")) qgis_tmp_vector() } else if (isTRUE(spec$qgis_type == "rasterDestination")) { message(glue("Using `{ spec$name } = qgis_tmp_raster()`")) qgis_tmp_raster() } else if (isTRUE(spec$qgis_type == "folderDestination")) { message(glue("Using `{ spec$name } = qgis_tmp_folder()`")) qgis_tmp_folder() } else if (isTRUE(spec$qgis_type == "fileDestination")) { message(glue("Using `{ spec$name } = qgis_tmp_file(\"\")`")) qgis_tmp_file("") } else if (isTRUE(spec$qgis_type == "enum") && length(spec$available_values) > 0) { default_enum_value <- rlang::as_label(spec$available_values[1]) message(glue("Using `{ spec$name } = { default_enum_value }`")) if (use_json_input) 0 else "0" } else { message(glue("Argument `{ spec$name }` is unspecified (using QGIS default value).")) qgis_default_value() } } as_qgis_argument.NULL <- function(x, spec = qgis_argument_spec(), use_json_input = FALSE) { qgis_default_value() } as_qgis_argument.character <- function(x, spec = qgis_argument_spec(), use_json_input = FALSE) { result <- switch( as.character(spec$qgis_type), field = if (use_json_input) x else paste0(x, collapse = ";"), enum = { x_int <- match(x, spec$available_values) invalid_values <- x[is.na(x_int)] if (length(invalid_values) > 0) { abort( paste0( glue("All values for input '{ spec$name }' must be one of the following:\n\n"), glue::glue_collapse( paste0('"', spec$available_values, '"'), ", ", last = " or " ) ) ) } x_int - 1 }, x ) if (use_json_input) result else paste(result, collapse = ",") } as_qgis_argument.logical <- function(x, spec = qgis_argument_spec(), use_json_input = FALSE) { if (use_json_input) x else paste0(x, collapse = ",") } as_qgis_argument.numeric <- function(x, spec = qgis_argument_spec(), use_json_input = FALSE) { if (use_json_input) x else paste0(x, collapse = ",") } qgis_clean_argument <- function(value) { UseMethod("qgis_clean_argument") } qgis_clean_argument.default <- function(value) { } qgis_clean_argument.qgis_tempfile_arg <- function(value) { unlink(value) } qgis_argument_spec <- function(algorithm = NA_character_, name = NA_character_, description = NA_character_, qgis_type = NA_character_, available_values = character(0), acceptable_values = character(0)) { list( algorithm = algorithm, name = name, description = description, qgis_type = qgis_type, available_values = available_values, acceptable_values = acceptable_values ) } qgis_argument_spec_by_name <- function(algorithm, name, .algorithm_arguments = qgis_arguments(algorithm)) { if (isTRUE(name %in% c("ELLIPSOID", "PROJECT_PATH"))) { return(qgis_argument_spec(algorithm, name, name)) } position <- match(name, .algorithm_arguments$name) if (is.na(position)) { abort( glue( paste0( "'{ name }' is not an argument for algorithm '{ algorithm }'.", "\nSee `qgis_show_help(\"{ algorithm }\")` for a list of supported arguments." ) ) ) } c(list(algorithm = algorithm), lapply(.algorithm_arguments, "[[", position)) } qgis_list_input <- function(...) { dots <- rlang::list2(...) if (length(dots) > 0 && rlang::is_named(dots)) { abort("All ... arguments to `qgis_list_input()` must be unnamed.") } structure(dots, class = "qgis_list_input") } qgis_dict_input <- function(...) { dots <- rlang::list2(...) if (length(dots) > 0 && !rlang::is_dictionaryish(dots)) { abort("All ... arguments to `qgis_dict_input()` must have unique names.") } structure(dots, class = "qgis_dict_input") } as_qgis_argument.qgis_list_input <- function(x, spec = qgis_argument_spec(), use_json_input = FALSE) { qgis_list_input(!!! lapply(x, as_qgis_argument, spec = spec, use_json_input = use_json_input)) } as_qgis_argument.qgis_dict_input <- function(x, spec = qgis_argument_spec(), use_json_input = FALSE) { qgis_dict_input(!!! lapply(x, as_qgis_argument, spec = spec, use_json_input = use_json_input)) } qgis_clean_argument.qgis_list_input <- function(value) { lapply(value, qgis_clean_argument) } qgis_clean_argument.qgis_dict_input <- function(value) { lapply(value, qgis_clean_argument) }
rm(list=ls()) setwd("C:/Users/Tom/Documents/Kaggle/Santander") library(data.table) library(bit64) library(xgboost) library(stringr) submissionDate <- "29-11-2016" loadFile <- "xgboost weighted posFlanks 5, linear increase jun15 times6 back 13-0 no zeroing, exponential normalisation joint" submissionFile <- "xgboost weighted posFlanks 5, less weight jun15 cno_fin linear increase jun15 times6 back 13-0 no zeroing, exponential normalisation joint" targetDate <- "12-11-2016" trainModelsFolder <- "trainTrainAll" trainAll <- grepl("TrainAll", trainModelsFolder) testFeaturesFolder <- "testOld" loadPredictions <- FALSE loadBaseModelPredictions <- TRUE savePredictions <- TRUE saveBaseModelPredictions <- TRUE savePredictionsBeforeNormalisation <- TRUE normalizeProdProbs <- TRUE normalizeMode <- c("additive", "linear", "exponential")[3] additiveNormalizeProds <- NULL fractionPosFlankUsers <- 0.035 expectedCountPerPosFlank <- 1.25 marginalNormalisation <- c("linear", "exponential")[2] monthsBackModels <- 0:13 monthsBackWeightDates <- rev(as.Date(paste(c(rep(2015, 9), rep(2016, 5)), str_pad(c(4:12, 1:5), 2, pad='0'), 28, sep="-"))) monthsBackModelsWeights <- rev(c(1.2, 1.3, 13, 0.1*(15:25))) weightSum <- sum(monthsBackModelsWeights) monthsBackLags <- 16:3 nominaNomPensSoftAveraging <- FALSE predictSubset <- FALSE nbLags <- length(monthsBackModelsWeights) if(nbLags != length(monthsBackModels) || nbLags != length(monthsBackLags) || nbLags != length(monthsBackWeightDates)) browser() predictionsFolder <- "Predictions" ccoNoPurchase <- FALSE zeroTargets <- NULL source("Common/exponentialNormaliser.R") monthProductWeightOverride <- NULL monthProductWeightOverride <- rbind(monthProductWeightOverride, data.frame(product = "ind_cco_fin_ult1", month = as.Date(c("2015-12-28" )), weight = 13) ) monthProductWeightOverride <- rbind(monthProductWeightOverride, data.frame(product = "ind_cco_fin_ult1", month = as.Date(c("2015-04-28", "2015-05-28", "2015-07-28", "2015-08-28", "2015-09-28", "2015-10-28", "2015-11-28", "2016-01-28", "2016-02-28", "2016-03-28", "2016-04-28", "2016-05-28" )), weight = 0) ) predictionsPath <- file.path(getwd(), "Submission", submissionDate, predictionsFolder) dir.create(predictionsPath, showWarnings = FALSE) if(saveBaseModelPredictions && !loadBaseModelPredictions){ baseModelPredictionsPath <- file.path(predictionsPath, submissionFile) dir.create(baseModelPredictionsPath, showWarnings = FALSE) } else{ if(loadBaseModelPredictions){ baseModelPredictionsPath <- file.path(predictionsPath, loadFile) } } if(loadPredictions){ rawPredictionsPath <- file.path(predictionsPath, paste0("prevNorm", loadFile, ".rds")) } else{ rawPredictionsPath <- file.path(predictionsPath, paste0("prevNorm", submissionFile, ".rds")) } posFlankClientsFn <- file.path(getwd(), "Feature engineering", targetDate, "positive flank clients.rds") posFlankClients <- readRDS(posFlankClientsFn) modelsBasePath <- file.path(getwd(), "First level learners", targetDate, trainModelsFolder) modelGroups <- list.dirs(modelsBasePath)[-1] nbModelGroups <- length(modelGroups) baseModelInfo <- NULL baseModels <- list() for(i in 1:nbModelGroups){ modelGroup <- modelGroups[i] slashPositions <- gregexpr("\\/", modelGroup)[[1]] modelGroupExtension <- substring(modelGroup, 1 + slashPositions[length(slashPositions)]) modelGroupFiles <- list.files(modelGroup) nbModels <- length(modelGroupFiles) monthsBack <- as.numeric(substring(gsub("Lag.*$", "", modelGroupExtension), 5)) lag <- as.numeric(gsub("^.*Lag", "", modelGroupExtension)) relativeWeightOrig <- monthsBackModelsWeights[match(monthsBack, monthsBackModels)] weightDate <- monthsBackWeightDates[match(monthsBack, monthsBackModels)] for(j in 1:nbModels){ modelInfo <- readRDS(file.path(modelGroup, modelGroupFiles[j])) targetProduct <- modelInfo$targetVar overrideId <- which(monthProductWeightOverride$product == targetProduct & monthProductWeightOverride$month == weightDate) if(length(overrideId)>0){ relativeWeight <- monthProductWeightOverride$weight[overrideId] } else{ relativeWeight <- relativeWeightOrig } baseModelInfo <- rbind(baseModelInfo, data.table( modelGroupExtension = modelGroupExtension, targetProduct = targetProduct, monthsBack = monthsBack, modelLag = lag, relativeWeight = relativeWeight) ) baseModels <- c(baseModels, list(modelInfo)) } } baseModelInfo[, modelId := 1:nrow(baseModelInfo)] uniqueBaseModels <- sort(unique(baseModelInfo$targetProduct)) for(i in 1:length(uniqueBaseModels)){ productIds <- baseModelInfo$targetProduct==uniqueBaseModels[i] productWeightSum <- baseModelInfo[productIds, sum(relativeWeight)] normalizeWeightRatio <- weightSum/productWeightSum baseModelInfo[productIds, relativeWeight := relativeWeight* normalizeWeightRatio] } if(all(is.na(baseModelInfo$modelLag))){ nbGroups <- length(unique(baseModelInfo$modelGroupExtension)) baseModelInfo$monthsBack <- 0 baseModelInfo$modelLag <- 17 baseModelInfo$relativeWeight <- 1 monthsBackLags <- rep(17, nbGroups) nbLags <- length(monthsBackLags) monthsBackModelsWeights <- rep(1, nbGroups) weightSum <- sum(monthsBackModelsWeights) } baseModelInfo <- baseModelInfo[order(monthsBack), ] baseModelNames <- unique(baseModelInfo[monthsBack==0, targetProduct]) testDataLag <- readRDS(file.path(getwd(), "Feature engineering", targetDate, testFeaturesFolder, "Lag17 features.rds")) if(predictSubset){ testDataLag <- testDataLag[1:predictFirst] } testDataPosFlank <- testDataLag$ncodpers %in% posFlankClients trainFn <- "train/Back13Lag3 features.rds" colOrderData <- readRDS(file.path(getwd(), "Feature engineering", targetDate, trainFn)) targetCols <- grep("^ind_.*_ult1$", names(colOrderData), value=TRUE) nbBaseModels <- length(targetCols) countContributions <- readRDS(file.path(getwd(), "Feature engineering", targetDate, "monthlyRelativeProductCounts.rds")) if(!trainAll){ posFlankModelInfo <- baseModelInfo[targetProduct=="hasNewProduct"] newProdPredictions <- rep(0, nrow(testDataLag)) if(nrow(posFlankModelInfo) != nbLags) browser() for(i in 1:nbLags){ cat("Generating new product predictions for lag", i, "of", nbLags, "\n") lag <- posFlankModelInfo[i, lag] weight <- posFlankModelInfo[i, relativeWeight] newProdModel <- baseModels[[posFlankModelInfo[i, modelId]]] testDataLag <- readRDS(file.path(getwd(), "Feature engineering", targetDate, testFeaturesFolder, paste0("Lag", lag, " features.rds"))) if(predictSubset){ testDataLag <- testDataLag[1:predictFirst] } predictorData <- testDataLag[, newProdModel$predictors, with=FALSE] predictorDataM <- data.matrix(predictorData) newProdPredictionsLag <- predict(newProdModel$model, predictorDataM) newProdPredictions <- newProdPredictions + newProdPredictionsLag*weight } newProdPredictions <- newProdPredictions/weightSum meanGroupPredsMayFlag <- c(mean(newProdPredictions[testDataLag$hasMay15Data==0]), mean(newProdPredictions[testDataLag$hasMay15Data==1])) meanGroupPredsPosFlank <- c(mean(newProdPredictions[!testDataPosFlank]), mean(newProdPredictions[testDataPosFlank])) expectedPosFlanks <- sum(newProdPredictions) leaderboardPosFlanks <- fractionPosFlankUsers*nrow(testDataLag) normalisedProbRatio <- leaderboardPosFlanks/expectedPosFlanks cat("Expected/leaderboard positive flank ratio", round(1/normalisedProbRatio, 2), "\n") if(marginalNormalisation == "linear"){ newProdPredictions <- newProdPredictions * normalisedProbRatio } else{ newProdPredictions <- probExponentNormaliser(newProdPredictions, normalisedProbRatio) } } else{ newProdPredictions <- rep(1, nrow(testDataLag)) } if(loadPredictions && file.exists(rawPredictionsPath)){ allPredictions <- readRDS(rawPredictionsPath) } else{ allPredictions <- NULL for(lagId in 1:nbLags){ cat("\nGenerating positive flank predictions for lag", lagId, "of", nbLags, "@", as.character(Sys.time()), "\n\n") lag <- monthsBackLags[lagId] testDataLag <- readRDS(file.path(getwd(), "Feature engineering", targetDate, testFeaturesFolder, paste0("Lag", lag, " features.rds"))) if(predictSubset){ testDataLag <- testDataLag[1:predictFirst] } for(i in 1:nbBaseModels){ targetVar <- targetCols[i] targetModelId <- baseModelInfo[targetProduct==targetVar & modelLag==lag, modelId] if(length(targetModelId)>1){ targetModelId <- targetModelId[lagId] } targetModel <- baseModels[[targetModelId]] weight <- baseModelInfo[modelId == targetModelId, relativeWeight] if(targetModel$targetVar != targetVar) browser() cat("Generating test predictions for model", i, "of", nbBaseModels, "\n") baseModelPredPath <- file.path(baseModelPredictionsPath, paste0(targetVar, " Lag ", lag, ".rds")) if(loadBaseModelPredictions && file.exists(baseModelPredPath)){ predictionsDT <- readRDS(baseModelPredPath) } else{ if(targetVar %in% zeroTargets){ predictions <- rep(0, nrow(testDataLag)) } else{ predictorData <- testDataLag[, targetModel$predictors, with=FALSE] predictorDataM <- data.matrix(predictorData) predictions <- predict(targetModel$model, predictorDataM) alreadyOwned <- is.na(testDataLag[[paste0(targetVar, "Lag1")]]) | testDataLag[[paste0(targetVar, "Lag1")]] == 1 predictionsPrevNotOwned <- predictions[!alreadyOwned] } predictions[alreadyOwned] <- 0 predictionsDT <- data.table(ncodpers = testDataLag$ncodpers, predictions = predictions, product = targetVar) } predictionsDT[, weightedPrediction := predictionsDT$predictions*weight] if(targetVar %in% allPredictions$product){ allPredictions[product==targetVar, weightedPrediction:= weightedPrediction + predictionsDT$weightedPrediction] } else{ allPredictions <- rbind(allPredictions, predictionsDT) } if(saveBaseModelPredictions && !loadBaseModelPredictions){ predictionsDT[, weightedPrediction:=NULL] saveRDS(predictionsDT, baseModelPredPath) } } } allPredictions[, prediction := weightedPrediction / weightSum] allPredictions[, weightedPrediction := NULL] allPredictions[, predictions := NULL] if(savePredictionsBeforeNormalisation){ saveRDS(allPredictions, file=rawPredictionsPath) } } if(nominaNomPensSoftAveraging){ nominaProb <- allPredictions[product == "ind_nomina_ult1", prediction] * newProdPredictions nomPensProb <- allPredictions[product == "ind_nom_pens_ult1", prediction] * newProdPredictions avIds <- nominaProb>0 & nomPensProb>0 & (nomPensProb-nominaProb < 0.1) avVals <- (nominaProb[avIds] + nomPensProb[avIds])/2 ncodpers <- unique(allPredictions$ncodpers) avNcodPers <- ncodpers[avIds] allPredictions[ncodpers %in% avNcodPers & product == "ind_nomina_ult1", prediction := avVals] allPredictions[ncodpers %in% avNcodPers & product == "ind_nom_pens_ult1", prediction := avVals] } probMultipliers <- rep(NA, nbBaseModels) if(normalizeProdProbs){ for(i in 1:nbBaseModels){ cat("Normalizing product predictions", i, "of", nbBaseModels, "\n") targetVar <- targetCols[i] alreadyOwned <- is.na(testDataLag[[paste0(targetVar, "Lag1")]]) | testDataLag[[paste0(targetVar, "Lag1")]] == 1 predictions <- allPredictions[product==targetVar, prediction] predictionsPrevNotOwned <- predictions[!alreadyOwned] if(suppressWarnings(max(predictions[alreadyOwned]))>0) browser() predictedPosFlankCount <- sum(predictionsPrevNotOwned * newProdPredictions[!alreadyOwned]) probMultiplier <- nrow(testDataLag) * fractionPosFlankUsers * expectedCountPerPosFlank * countContributions[17, i] / predictedPosFlankCount probMultipliers[i] <- probMultiplier if(is.finite(probMultiplier)){ if(normalizeMode == "additive" || targetVar %in% additiveNormalizeProds){ predictions[!alreadyOwned] <- predictions[!alreadyOwned] + (probMultiplier-1)*mean(predictions[!alreadyOwned]) } else{ if(normalizeMode == "linear"){ predictions[!alreadyOwned] <- predictions[!alreadyOwned] * probMultiplier } else{ predictions[!alreadyOwned] <- probExponentNormaliser( predictions[!alreadyOwned], probMultiplier) } } allPredictions[product==targetVar, prediction:=predictions] } } } if(ccoNoPurchase){ allPredictions[!ncodpers %in% posFlankClients & ncodpers %in% testDataLag[ind_cco_fin_ult1Lag1==0, ncodpers] & product == "ind_cco_fin_ult1", prediction := 10] } setkey(allPredictions, ncodpers) allPredictions[,order_predict := match(1:length(prediction), order(-prediction)), by=ncodpers] allPredictions <- allPredictions[order(ncodpers, -prediction), ] orderCount <- allPredictions[, .N, .(ncodpers, order_predict)] if(max(orderCount$N)>1) browser() hist(allPredictions[order_predict==1, prediction]) topPredictions <- allPredictions[order_predict==1, .N, product] topPredictions <- topPredictions[order(-N)] topPredictionsPosFlanks <- allPredictions[order_predict==1 & ncodpers %in% posFlankClients, .N, product] topPredictionsPosFlanks <- topPredictionsPosFlanks[order(-N)] productRankDelaFin <- allPredictions[product=="ind_dela_fin_ult1", .N, order_predict] productRankDelaFin <- productRankDelaFin[order(order_predict),] productRankDecoFin <- allPredictions[product=="ind_deco_fin_ult1", .N, order_predict] productRankDecoFin <- productRankDecoFin[order(order_predict),] productRankTjcrFin <- allPredictions[product=="ind_tjcr_fin_ult1", .N, order_predict] productRankTjcrFin <- productRankTjcrFin[order(order_predict),] productRankRecaFin <- allPredictions[product=="ind_reca_fin_ult1", .N, order_predict] productRankRecaFin <- productRankRecaFin[order(order_predict),] allPredictions[, totalProb := prediction * rep(newProdPredictions, each = nbBaseModels)] meanProductProbs <- allPredictions[, .(meanCondProb = mean(prediction), meanProb = mean(totalProb)), product] meanProductProbs <- meanProductProbs[order(-meanCondProb), ] productString <- paste(allPredictions[order_predict==1, product], allPredictions[order_predict==2, product], allPredictions[order_predict==3, product], allPredictions[order_predict==4, product], allPredictions[order_predict==5, product], allPredictions[order_predict==6, product], allPredictions[order_predict==7, product]) if(length(productString) != nrow(testDataLag)) browser() submission <- data.frame(ncodpers = testDataLag$ncodpers, added_products = productString) paddedSubmission <- fread("Data/sample_submission.csv") paddedSubmission[, added_products := ""] matchIds <- match(submission$ncodpers, paddedSubmission$ncodpers) paddedSubmission[matchIds, added_products := submission$added_products] write.csv(paddedSubmission, file.path(getwd(), "Submission", submissionDate, paste0(submissionFile, ".csv")), row.names = FALSE) if(savePredictions){ saveRDS(allPredictions, file=file.path(predictionsPath, paste0(submissionFile, ".rds"))) } cat("Submission file created successfully!\n", nrow(submission)," records were predicted (", round(nrow(submission)/nrow(paddedSubmission)*100,2), "%)\n", sep="")
structure(list( url = "https://example.com/login/", status_code = 204L, headers = structure(list( allow = "GET, HEAD, OPTIONS, POST", `content-type` = "application/json;charset=utf-8", date = "Thu, 14 Sep 2017 04:27:22 GMT", server = "nginx", `set-cookie` = "token=12345; Domain=example.com; Max-Age=31536000; Path=/", vary = "Cookie, Accept-Encoding", connection = "keep-alive" ), class = c( "insensitive", "list" )), all_headers = list(list( status = 204L, version = "HTTP/1.1", headers = structure(list( allow = "GET, HEAD, OPTIONS, POST", `content-type` = "application/json;charset=utf-8", date = "Thu, 14 Sep 2017 04:27:22 GMT", server = "nginx", `set-cookie` = "token=12345; Domain=example.com; Max-Age=31536000; Path=/", vary = "Cookie, Accept-Encoding", connection = "keep-alive" ), class = c( "insensitive", "list" )) )), cookies = structure(list( domain = "example.com", flag = TRUE, path = "/", secure = FALSE, expiration = structure(1536899241, class = c( "POSIXct", "POSIXt" )), name = "token", value = "12345" ), row.names = c( NA, -1L ), class = "data.frame"), content = raw(0), date = structure(1505363242, class = c( "POSIXct", "POSIXt" ), tzone = "GMT"), times = c( redirect = 0, namelookup = 0.115726, connect = 0.467124, pretransfer = 1.405551, starttransfer = 2.041081, total = 2.041137 ), request = structure(list( method = "POST", url = "https://example.com/login/", headers = c( Accept = "application/json, text/xml, application/xml, */*", `Content-Type` = "application/json", `user-agent` = "libcurl/7.54.0 curl/2.8.1 httr/1.3.1" ), fields = NULL, options = list( useragent = "libcurl/7.54.0 r-curl/2.8.1 httr/1.3.1", post = TRUE, postfieldsize = 46L, postfields = charToRaw('{"username":"password"}'), postredir = 3 ), auth_token = NULL, output = structure(list(), class = c( "write_memory", "write_function" )) ), class = "request") ), class = "response")
get_tweets <- function(method = 'stream', location = c(-180, -90, 180, 90), timeout = Inf, keywords = "", n_max = 100L, file_name = NULL, ...) { if (method == 'stream') { stopifnot(is.double(location)|is.character(location)) if (is.double(location)) rtweet::stream_tweets(q = location, timeout = timeout, parse = FALSE, file_name = file_name, ...) if (is.character(location)) { if (location %in% row.names(bbox_country)) { location <- as.double(bbox_country[location, ]) rtweet::stream_tweets(q = location, timeout = timeout, parse = FALSE, file_name = file_name, ...) } else if (!location %in% row.names(bbox_country)) { tryCatch(location <- rtweet::lookup_coords(location)$box, error = function(e) { e$message <- paste("Could not find coordinates for your location or a Google Maps API key. The `location` parameter requires a valid character string or Google Maps API key. Use Twitmo:::bbox_country and rtweet:::citycoords for a full list of supported character strings for locations or use supply your own bounding box coordinates in the following format: c(sw.long, sw.lat, ne.long, ne.lat)", sep = " ") stop(e) } ) location <- as.double(location) rtweet::stream_tweets(q = location, timeout = timeout, parse = FALSE, file_name = file_name, ...) } } } if (method == 'search') { message("You're using the search endpoint. For search this package includes 250 cities worldwide (type rtweet::citycoords to see a list). If you want to use your a custom location with the search endpoint use rtweet::search_tweets()") stopifnot(is.character(location)|NULL) if (is.character(location)) { location <- rtweet::lookup_coords(location)$point location <- paste(paste(location, collapse = ",", sep = ","), "50mi", collapse = ",", sep = ",") } rtweet::search_tweets(q = keywords, n = n_max, retryonratelimit = TRUE, geocode = location, parse = TRUE, ...) } }
CCTfromXYZ <- function( XYZ, isotherms='robertson', locus='robertson', strict=FALSE ) { uv = uvfromXYZ( XYZ, space=1960 ) if( is.null(uv) ) return(NULL) out = CCTfromuv( uv, isotherms=isotherms, locus=locus, strict=strict ) return( out ) } CCTfromxy <- function( xy, isotherms='robertson', locus='robertson', strict=FALSE ) { uv = uvfromxy( xy, space=1960 ) if( is.null(uv) ) return(NULL) out = CCTfromuv( uv, isotherms=isotherms, locus=locus, strict=strict ) return(out) } CCTfromuv <- function( uv, isotherms='robertson', locus='robertson', strict=FALSE ) { uv = prepareNxM( uv, M=2 ) if( is.null(uv) ) return(NULL) if( length(isotherms) == 0 ) { log.string( ERROR, "isotherms is invalid, because length(isotherms)=0." ) return( NULL ) } isofull = c( 'native', 'Robertson', 'McCamy' ) isotherms = as.character(isotherms) isotherms[ is.na(isotherms) ] = 'native' idx.isotherms = pmatch( tolower(isotherms), tolower(isofull), nomatch=0, duplicates.ok=TRUE ) if( any( idx.isotherms==0 ) ) { log.string( ERROR, "isotherms='%s' is invalid.", isotherms[idx.isotherms==0] ) return( NULL ) } ok = is.character(locus) && length(locus)==1 if( ! ok ) { log.string( ERROR, "Argument locus is invalid. It must be a character vector with length 1." ) return(NULL) } locusfull = c( 'Robertson', 'precision' ) idx.locus = pmatch( tolower(locus), tolower(locusfull), nomatch=0 ) if( idx.locus == 0 ) { log.string( ERROR, "locus='%s' is invalid.", as.character(locus) ) return( NULL ) } if( idx.locus == 1 ) locus.list = p.uvCubicsfromMired else locus.list = p.uvQuinticsfromMired n = nrow(uv) out = matrix( NA_real_, n, length(idx.isotherms) ) rownames(out) = rownames(uv) colnames(out) = isofull[ idx.isotherms ] for( j in 1:length(idx.isotherms) ) { idx = idx.isotherms[j] if( idx == 1 ) { for( i in 1:n ) out[i,j] = CCTfromuv_native( uv[i, ], locus.list, strict ) } else if( idx == 2 ) { for( i in 1:n ) out[i,j] = CCTfromuv_Robertson( uv[i, ], locus.list, strict ) } else if( idx == 3 ) { for( i in 1:n ) { denom = uv[i,1] - 4*uv[i,2] + 2 if( is.na(denom) || denom < 1.e-16 ) next xy = c( 1.5*uv[i,1], uv[i,2] ) / denom out[i,j] = CCTfromxy_McCamy( xy, locus.list, strict ) } } } if( length(idx.isotherms) == 1 ) { rnames = rownames(out) dim(out) = NULL names(out) = rnames } return(out) } CCTfromuv_native <- function( uv, locus.list, strict ) { if( any( is.na(uv) ) ) return(NA_real_) if( FALSE ) { idx = which( (uv[1] == p.dataCCT$u) & (uv[2] == p.dataCCT$v) ) if( length(idx) == 1 ) return( 1.e6 / p.dataCCT$mired[idx] ) } myfun <- function( mir, uv ) { uv.locus = c( locus.list$ufun( mir ), locus.list$vfun( mir ) ) tangent = c( locus.list$ufun( mir, deriv=1 ), locus.list$vfun( mir, deriv=1 ) ) return( sum( tangent * (uv.locus - uv) ) ) } miredInterval = locus.list$miredInterval f1 = myfun( miredInterval[1], uv ) f2 = myfun( miredInterval[2], uv ) if( 0 < f1 * f2 ) { log.string( WARN, "uv=%g,%g is in invalid region. CCT cannot be calculated.", uv[1], uv[2] ) return( NA_real_ ) } if( f1 == 0 ) mired.end = miredInterval[1] else if( f2 == 0 ) mired.end = miredInterval[2] else { res = try( stats::uniroot( myfun, interval=miredInterval, uv=uv, tol=.Machine$double.eps^0.5 ), silent=FALSE ) if( class(res) == "try-error" ) { cat( 'stats::uniroot() res = ', utils::str(res), '\n', file=stderr() ) return( NA_real_ ) } mired.end = res$root } if( strict ) { uv.locus = c( locus.list$ufun( mired.end ),locus.list$vfun( mired.end ) ) resid = uv - uv.locus dist = sqrt( sum(resid^2) ) if( 0.05 < dist ) { log.string( WARN, "uv=%g,%g is invalid, because its distance to the Planckian locus = %.7f > 0.05. (mired=%g)", uv[1], uv[2], dist, mired.end ) return( NA_real_ ) } } return( 1.e6 / mired.end ) } CCTfromuv_Robertson <- function( uv, locus.list, strict ) { if( any( is.na(uv) ) ) return(NA_real_) mired = miredfromuv_Robertson_nocheck( uv, extrap=FALSE ) if( is.na(mired) ) return(NA_real_) CCT = 1.e6 / mired if( strict ) { res = nativeFromRobertson( CCT, locus.list ) if( is.null(res) ) return( NA_real_ ) offset = uv - res$uv test = sqrt( sum(offset*offset) ) if( 0.05 < test ) { log.string( WARN, "uv=%g,%g is invalid, because its distance to the Planckian locus = %g > 0.05. (mired=%g)", uv[1], uv[2], test, mired ) return( NA_real_ ) } } return( CCT ) } miredfromuv_Robertson_nocheck <- function( uv, extrap=FALSE ) { di = (uv[2] - p.dataCCT$v) - p.dataCCT$t * (uv[1] - p.dataCCT$u) n = length(di) idx = which( di == 0 ) if( 0 < length(idx) ) { if( length(idx) == 1 ) return( p.dataCCT$mired[idx] ) log.string( WARN, "uv=%g,%g lies on more than 1 isotherm. Mired cannot be calculated.", uv[1], uv[2] ) return( NA_real_ ) } idx = which( di[1:(n-1)] * di[2:n] < 0 ) if( length(idx) == 0 ) { if( ! extrap ) { log.string( WARN, "uv=%g,%g is in invalid region. Found no zero-crossings. Mired cannot be calculated.", uv[1], uv[2] ) return( NA_real_ ) } if( di[1] < 0 ) return( p.dataCCT$mired[1] + 100 * di[1] ) else return( p.dataCCT$mired[n] + 30 * di[n] ) } else if( 2 <= length(idx) ) { log.string( WARN, "uv=%g,%g is in invalid region. Found multiple zero-crossings. Mired cannot be calculated.", uv[1], uv[2] ) return( NA_real_ ) } i = idx[1] + 1 d0 = di[i] / sqrt( 1 + p.dataCCT$t[i]^2 ) dm = di[i-1] / sqrt( 1 + p.dataCCT$t[i-1]^2 ) p = dm / (dm - d0) mired = (1-p)*p.dataCCT$mired[i-1] + p*p.dataCCT$mired[i] return( mired ) } nativeFromRobertson <- function( CCT, locus.list ) { mired = 1.e6 / CCT j = findInterval( mired, p.dataCCT$mired ) if( j == 0 ) { log.string( WARN, "CCT=%g is out of the Robertson LUT range. mired < %g", CCT, p.dataCCT$mired[1] ) return(NULL) } n = length( p.dataCCT$mired ) if( j == n ) { epsilon = 1.e-12 if( p.dataCCT$mired[n] + epsilon < mired ) { log.string( WARN, "CCT=%g is outside the Robertson LUT range. %g < %g mired", CCT, p.dataCCT$mired[n], mired ) return(NULL) } mired = p.dataCCT$mired[n] } out = list() if( p.dataCCT$mired[j] == mired ) { out$uv = c( p.dataCCT$u[j], p.dataCCT$v[j] ) out$CCT = CCT tanj = c( 1, p.dataCCT$t[j] ) len = sqrt( sum(tanj^2) ) out$normal = -tanj / len return(out) } alpha = (mired - p.dataCCT$mired[j]) / (p.dataCCT$mired[j+1] - p.dataCCT$mired[j]) pj = c( p.dataCCT$u[j], p.dataCCT$v[j] ) pj1 = c( p.dataCCT$u[j+1], p.dataCCT$v[j+1] ) tanj = c( 1, p.dataCCT$t[j] ) len = sqrt( sum(tanj^2) ) normj = c( -tanj[2], tanj[1] ) / len tanj1 = c( 1, p.dataCCT$t[j+1] ) len = sqrt( sum(tanj1^2) ) normj1 = c( -tanj1[2], tanj1[1] ) / len norm = (1-alpha)*normj + alpha*normj1 delta = pj1 - pj s = alpha * sum( delta * normj1 ) / sum( delta * norm ) p = pj + s*delta myfun <- function( mired ) { uv = c( locus.list$ufun( mired ), locus.list$vfun( mired ) ) return( sum( (uv - p)*norm ) ) } miredInterval = locus.list$miredInterval f1 = myfun( miredInterval[1] ) f2 = myfun( miredInterval[2] ) if( 0 < f1 * f2 ) { log.string( WARN, "CCT=%g mired=%g p=%g,%g. norm=%g,%g. Test function has the same sign at endpoints [%g,%g]. %g and %g CCT cannot be calculated.", CCT, mired, p[1], p[2], norm[1], norm[2], miredInterval[1], miredInterval[2], f1, f2 ) return( NULL ) } if( f1 == 0 ) mired.end = miredInterval[1] else if( f2 == 0 ) mired.end = miredInterval[2] else { res = try( stats::uniroot( myfun, interval=miredInterval ), silent=FALSE ) if( class(res) == "try-error" ) { cat( 'stats::uniroot() res = ', utils::str(res), '\n', file=stderr() ) return( NULL ) } mired.end = res$root } out$uv = c( locus.list$ufun( mired.end ), locus.list$vfun( mired.end ) ) out$CCT = 1.e6 / mired.end norm = norm / sqrt( sum(norm^2) ) out$normal = c( -norm[2], norm[1] ) return( out ) } CCTfromxy_McCamy_nocheck <- function( xy ) { topbot = xy - c(0.3320,0.1858) if( topbot[2] <= 0 ) return( NA_real_ ) w = topbot[1]/topbot[2] out = ((-449*w + 3525)*w - 6823.3)*w + 5520.33 if( out <= 0 ) return( NA_real_ ) return( out ) } CCTfromxy_McCamy <- function( xy, locus.list, strict ) { if( any( is.na(xy) ) ) return( NA_real_ ) CCT = CCTfromxy_McCamy_nocheck( xy ) if( is.finite(CCT) && strict ) { res = nativeFromMcCamy( CCT, locus.list ) if( is.null(res) ) return( NA_real_ ) uv = c( 4*xy[1] , 6*xy[2] ) / ( -2*xy[1] + 12*xy[2] + 3 ) offset = uv - res$uv dist = sqrt( sum(offset^2) ) if( 0.05 < dist ) { log.string( WARN, "uv=%g,%g is invalid, because its distance to the Planckian locus = %g > 0.05. CCT=%g", uv[1], uv[2], dist, CCT ) return( NA_real_ ) } } return(CCT) } nativeFromMcCamy <- function( CCT, locus.list ) { if( 34530 < CCT ) return(NULL) if( CCT < 1621 ) return(NULL) ifun <- function( w ) { ((-449*w + 3525)*w - 6823.3)*w + 5520.33 - CCT } res = try( stats::uniroot( ifun, interval=c(-1.91,1.28), tol=.Machine$double.eps^0.33 ), silent=FALSE ) if( class(res) == "try-error" ) { cat( 'stats::uniroot() res = ', utils::str(res), '\n', file=stderr() ) return( NULL ) } alpha = res$root meet = c(0.3320,0.1858) C = sum( c(1,-alpha) * meet ) normal = c( 1.5 - C, 4*C - alpha ) uv0 = uvfromxy( meet, 1960 ) myfun <- function( mired ) { uv = c( locus.list$ufun(mired), locus.list$vfun(mired) ) return( sum( (uv-uv0)*normal ) ) } miredInterval = locus.list$miredInterval f1 = myfun( miredInterval[1] ) f2 = myfun( miredInterval[2] ) if( 0 < f1 * f2 ) { log.string( WARN, "CCT=%g. Test function has the same sign at endpoints [%g,%g]. %g and %g. Intersection of isotherm and locus cannot be calculated.", CCT, miredInterval[1], miredInterval[2], f1, f2 ) return( NULL ) } if( f1 == 0 ) mired.end = miredInterval[1] else if( f2 == 0 ) mired.end = miredInterval[2] else { res = try( stats::uniroot( myfun, interval=miredInterval, tol=.Machine$double.eps^0.33 ), silent=FALSE ) if( class(res) == "try-error" ) { cat( 'stats::uniroot() res = ', utils::str(res), '\n', file=stderr() ) return( NULL ) } mired.end = res$root } uv = c( locus.list$ufun( mired.end ), locus.list$vfun( mired.end ) ) out = list() out$uv = uv out$CCT = 1.e6 / mired.end out$normal = c(-normal[2],normal[1]) / sqrt( sum(normal^2) ) return(out) } planckLocus <- function( temperature, locus='robertson', param='robertson', delta=0, space=1960 ) { ok = is.numeric(temperature) && 0<length(temperature) if( ! ok ) { log.string( ERROR, "Argument temperature is invalid. It must be a numeric vector with positive length." ) return(NULL) } ok = is.character(locus) && length(locus)==1 if( ! ok ) { log.string( ERROR, "Argument locus is invalid. It must be a character vector with length 1." ) return(NULL) } locusfull = c( 'Robertson', 'precision' ) idx.locus = pmatch( tolower(locus), tolower(locusfull), nomatch=0 ) if( idx.locus == 0 ) { log.string( ERROR, "locus='%s' is invalid.", as.character(locus) ) return( NULL ) } if( idx.locus == 1 ) locus.list = p.uvCubicsfromMired else locus.list = p.uvQuinticsfromMired if( length(param) != 1 ) { log.string( ERROR, "param is invalid, because it has length=%d != 1.", length(param) ) return( NULL ) } param = as.character(param) param[ is.na(param) ] = 'native' paramfull = c( 'native', 'Robertson', 'McCamy' ) idx.param = pmatch( tolower(param), tolower(paramfull), nomatch=0 ) if( idx.param == 0 ) { log.string( ERROR, "param='%s' is invalid.", param ) return( NULL ) } n = length(temperature) ok = is.numeric(delta) && length(delta) %in% c(1,n) if( ! ok ) { log.string( ERROR, "Argument delta is invalid. It must be a numeric vector with length 1 or %d.", n ) return(NULL) } if( length(delta) == 1 ) delta = rep( delta[1], n ) if( ! match(space,c(1960,1976,1931),nomatch=FALSE) ) { log.string( ERROR, "space='%s' is invalid.", as.character(space[1]) ) return(NULL) } uv = matrix( NA_real_, n, 2 ) rnames = names(temperature) if( is.null(rnames) ) rnames = sprintf( "%gK", round(temperature) ) rownames(uv) = rnames colnames(uv) = c('u','v') if( FALSE ) { temperaturerange = range( 1.e6 / locus.list$miredInterval ) ok = temperaturerange[1]<=temperature & temperature<=temperaturerange[2] temperature[ ! ok ] = NA_real_ } if( idx.param == 1 ) { mired = 1.e6 / temperature uv[ ,1] = locus.list$ufun( mired ) uv[ ,2] = locus.list$vfun( mired ) if( any( delta!=0 ) ) { for( i in 1:n ) { if( delta[i] == 0 || is.na(mired[i]) ) next normal = c( -locus.list$vfun( mired[i], deriv=1 ), locus.list$ufun( mired[i], deriv=1 ) ) len = sqrt( sum(normal^2) ) if( len == 0 ) next normal = normal / len uv[i, ] = uv[i, ] + delta[i]*normal } } } else { for( i in 1:n ) { if( is.na(temperature[i]) ) next if( idx.param == 3 ) { res = nativeFromMcCamy( temperature[i], locus.list ) } else { res = nativeFromRobertson( temperature[i], locus.list ) } if( is.null(res) ) next uv[i, ] = res$uv if( is.finite(delta[i]) && delta[i]!=0 ) { uv[i, ] = uv[i, ] + delta[i] * res$normal } } } if( space == 1931 ) { xy = uv colnames(xy) = c('x','y') denom = uv[ ,1] - 4*uv[ ,2] + 2 xy[ ,1] = 1.5*uv[ ,1] / denom xy[ ,2] = uv[ ,2] / denom return( xy ) } else if( space == 1976 ) { colnames(uv) = c("u'","v'") uv[ ,2] = 1.5 * uv[ ,2] } return(uv) }
`%<-%` <- function(var, value) { if (!is.character(value)) { stop("Please enter a proper character matrix. See ?`%<-%`") } txt <- gsub("\\,[^0-9]*(?=\\n)", "", value, perl = TRUE) rows <- strsplit(txt, "[\n\\\\]", perl = TRUE)[[1]] commas <- sapply(gregexpr(",", rows, fixed = TRUE), function(x) { if (x[1] < 0) { return(0) } else { length(x) } }) commasTotal <- sum(commas) nc <- max(commas) + 1 nr <- length(rows) nValues <- commasTotal + nr if (nValues != nr*nc) { isLowerTriangular <- all(commas == seq_along(commas) - 1) isUpperTriangular <- all(commas == rev(seq_along(commas) - 1)) if (isLowerTriangular) { for (i in seq_along(rows)) { sRows <- strsplit(rows, ",") rows[[i]] <- paste(sapply(sRows, function(x) x[i]), collapse = ",") } } else if (isUpperTriangular) { stop("Upper triangular matrices not yet supported, use lower triangular.") } else { stop("(Syntax) number of values not equal to number of cells in matrix.") } } d <- paste(rows, collapse = ",") matExp <- paste0("matrix(data = c(", d, "), byrow = TRUE, nrow = ", nr, ", ncol = ", nc, ")") pf <- parent.frame() eval(parse(text = paste0("`__MassignMat__` <-", matExp)), envir = pf) eval(parse(text = paste0(deparse(substitute(var)), " <- `__MassignMat__`")), envir = pf) evalq(rm("__MassignMat__"), envir = pf) } `%->%` <- function(value, var) { eval(parse(text = paste0(deparse(substitute(var)), "<- NULL")), envir = parent.frame()) if (is.character(value)) { eval(parse(text = paste0("`%<-%`(", deparse(substitute(var)), ",'", value,"')")), envir = parent.frame()) } else { eval(parse(text = paste0("`%<-%`(", deparse(substitute(var)), ",", deparse(substitute(value)), ")")), envir = parent.frame()) } }
structure.stat <- function(g,subnodes) { subg=induced.subgraph(g, subnodes) CZ=sum(degree(subg))/2;CG=sum(degree(g))/2 MuZ=(sum(degree(g)[subnodes]))^2/(4*CG);MuG=CG t.stat=CZ*log(CZ/MuZ)+(CG-CZ)*log((CG-CZ)/(MuG-MuZ)) p1=(CZ/MuZ);p10=(CG-CZ)/(MuG-MuZ) return(c(t.stat,p10,p1)) }
require(quantstrat) oldtz <- Sys.getenv('TZ') if(oldtz=='') { Sys.setenv(TZ="UTC") } suppressWarnings(rm("account.faber","portfolio.faber",pos=.blotter)) suppressWarnings(rm("ltaccount", "ltportfolio", "ClosePrice", "CurrentDate", "equity", "GSPC", "stratFaber", "startDate", "initEq", "Posn", "UnitSize", "verbose")) suppressWarnings(rm("order_book.faber",pos=.strategy)) startDate='1997-12-31' initEq=100000 currency("USD") symbols = c("XLF", "XLP", "XLE", "XLY", "XLV", "XLI", "XLB", "XLK", "XLU") for(symbol in symbols){ stock(symbol, currency="USD",multiplier=1) } getSymbols(symbols, src='yahoo', index.class=c("POSIXt","POSIXct"), from='1999-01-01') for(symbol in symbols) { x<-get(symbol) x<-to.monthly(x,indexAt='lastof',drop.time=TRUE) indexFormat(x)<-'%Y-%m-%d' colnames(x)<-gsub("x",symbol,colnames(x)) assign(symbol,x) } initPortf('faber', symbols=symbols) initAcct('faber', portfolios='faber', initEq=100000) initOrders(portfolio='faber') posval<-initEq/length(symbols) for(symbol in symbols){ pos<-round((posval/first(getPrice(get(symbol)))[,1]),-2) addPosLimit('faber', symbol, startDate, maxpos=pos, minpos=-pos) } print("setup completed") strategy("faber", store=TRUE) add.indicator('faber', name = "SMA", arguments = list(x = quote(Cl(mktdata)), n=10), label="SMA10") add.signal('faber',name="sigCrossover",arguments = list(columns=c("Close","SMA10"),relationship="gte"),label="Cl.gt.SMA") add.signal('faber',name="sigCrossover",arguments = list(columns=c("Close","SMA10"),relationship="lt"),label="Cl.lt.SMA") add.rule('faber', name='ruleSignal', arguments = list(sigcol="Cl.gt.SMA", sigval=TRUE, orderqty=100000, osFUN='osMaxPos', ordertype='market', orderside='long', pricemethod='market',TxnFees=-5), type='enter', path.dep=TRUE) add.rule('faber', name='ruleSignal', arguments = list(sigcol="Cl.lt.SMA", sigval=TRUE, orderqty='all', ordertype='market', orderside='long', pricemethod='market',TxnFees=-5), type='exit', path.dep=TRUE) add.rule('faber', 'rulePctEquity', arguments=list(rebalance_on='quarters', trade.percent=1/length(symbols), refprice=quote(last(getPrice(mktdata)[paste('::',as.character(curIndex),sep='')][,1])), digits=0 ), type='rebalance', label='rebalance' ) start_t<-Sys.time() out<-applyStrategy.rebalancing(strategy='faber' , portfolios='faber') end_t<-Sys.time() print("Strategy Loop:") print(end_t-start_t) Sys.setenv(TZ=oldtz) start_t<-Sys.time() updatePortf(Portfolio='faber',Dates=paste('::',as.Date(Sys.time()),sep='')) updateAcct('faber') end_t<-Sys.time() print("trade blotter portfolio update:") print(end_t-start_t) themelist<-chart_theme() themelist$col$up.col<-'lightgreen' themelist$col$dn.col<-'pink' dev.new() layout(mat=matrix(1:(length(symbols)+1),ncol=2)) for(symbol in symbols){ chart.Posn(Portfolio='faber',Symbol=symbol,theme=themelist,TA="add_SMA(n=10,col='darkgreen')") } ret1 <- PortfReturns('faber') ret1$total <- rowSums(ret1) print(ret1) if("package:PerformanceAnalytics" %in% search() || require("PerformanceAnalytics",quietly=TRUE)){ getSymbols("SPY", src='yahoo', index.class=c("POSIXt","POSIXct"), from='1999-01-01') SPY<-to.monthly(SPY, indexAt='lastof') SPY.ret <- Return.calculate(SPY$SPY.Close) dev.new() charts.PerformanceSummary(cbind(ret1$total,SPY.ret), geometric=FALSE, wealth.index=TRUE) } faber.stats<-tradeStats('faber')[,c('Net.Trading.PL','Max.Drawdown','Num.Trades','Profit.Factor','Std.Dev.Trade.PL','Largest.Winner','Largest.Loser','Max.Equity','Min.Equity')] faber.stats
source("library.R") a_date <- ymd(c("20151201", "20160201")) a_ct <- ymd_h(c("20151201 03", "20160201 03")) b_date <- span(a_date, convert_interval("month")) b_ct <- ymd_hms(c("2015-01-01 00:00:00", "2016-01-01 00:00:00", "2017-01-01 00:00:00")) b_ct_tz_is_NULL <- b_ct attr(b_ct_tz_is_NULL, 'tzone') <- NULL context("to_posix creates correct result") test_that("to_posix sets second to posix if first is", { date_date <- to_posix(a_date, b_date) posix_date <- to_posix(a_ct, b_date) date_posix <- to_posix(a_date, b_ct) posix_posix <- to_posix(a_ct, b_ct) date_posix_tz_null <- to_posix(a_date, b_ct_tz_is_NULL) posix_date_tz_null <- to_posix(b_ct_tz_is_NULL, a_date) expect_equal( date_date$a %>% class, "Date") expect_equal( date_date$b %>% class, "Date") expect_equal( posix_date$a %>% class, c("POSIXct", "POSIXt")) expect_equal( posix_date$b %>% class, c("POSIXct", "POSIXt")) expect_equal( date_posix$a %>% class, c("POSIXct", "POSIXt")) expect_equal( date_posix$b %>% class, c("POSIXct", "POSIXt")) expect_equal( posix_posix$a %>% class, c("POSIXct", "POSIXt")) expect_equal( posix_posix$b %>% class, c("POSIXct", "POSIXt")) expect_equal( date_posix_tz_null$a %>% class, c("POSIXct", "POSIXt")) expect_equal( date_posix_tz_null$b %>% class, c("POSIXct", "POSIXt")) }) context("round_up_core and round_down_core work as expected") test_that("round_up_core gives correct result", { expect_equal( round_up_core(a_date, b_date), as.numeric (as.Date ( c("2016-01-01", "2016-03-01")))) expect_equal( round_up_core(a_ct, b_ct), as.numeric (ymd_hms ( c("2016-01-01 00:00:00", "2017-01-01 00:00:00")))) }) test_that("round_down_core gives correct result", { expect_equal( round_down_core(a_date, b_date), as.numeric (as.Date ( c("2015-12-01", "2016-02-01")))) expect_equal( round_down_core(a_ct, b_ct), as.numeric (ymd_hms ( c("2015-01-01 00:00:00", "2016-01-01 00:00:00")))) }) context("posix_to_date works as expected") test_that("posix_to_date gives date when possible", { expect_equal( posix_to_date(a_date) %>% class, "Date" ) expect_equal( posix_to_date(a_ct) %>% class, c("POSIXct", "POSIXt")) expect_equal( posix_to_date(b_ct) %>% class, "Date" ) })
formatpv <- function(p, text = FALSE) { if(p < 0.0001) {return("<0.0001")} if(p >= 0.0001 & p < 0.00095) { ifelse(text == FALSE, return(sprintf("%.4f", p)), return(paste("=", sprintf("%.4f", p), sep = "")) ) } if(p >= 0.00095 & p <= 0.0095) { ifelse(text == FALSE, return(as.character(signif(p, 1))), return(paste("=", as.character(signif(p, 1)), sep = "")) ) } if(p > 0.0095 & p < 0.0995) { ifelse(text == FALSE, return(sprintf("%.3f", signif(p, 2))), return(paste("=", sprintf("%.3f", signif(p, 2)), sep = "")) ) } if(p >= 0.0995) { ifelse(text == FALSE, return(sprintf("%.2f", signif(p, 2))), return(paste("=", sprintf("%.2f", signif(p, 2)), sep = "")) ) } }
context("Test that functions gracefully fail when retrieving data from \"OsloW\", which has been removed.") library(testthat) testthat::skip_on_cran() test_that("fread_trips_data() produces an error when city = 'OsloW'", { expect_error(fread_trips_data(year = 2019, month = 01, city = "OsloW")) } ) test_that("read_trips_data() produces an error when city = 'OsloW'", { expect_error(read_trips_data(year = 2019, month = 01, city = "OsloW")) } ) test_that("dl_trips_data() produces an error when city = 'OsloW'", { expect_error(dl_trips_data(year = 2019, month = 01, city = "OsloW")) } )
setMethod("asJSON", "complex", function(x, digits = 5, collapse = TRUE, complex = c("string", "list"), na = c("string", "null", "NA"), oldna = NULL, ...) { na <- match.arg(na); complex <- match.arg(complex) if (complex == "string") { mystring <- prettyNum(x = x, digits = digits) if (any(missings <- which(!is.finite(x)))){ if (na %in% c("null", "NA")) { mystring[missings] <- NA_character_; } } asJSON(mystring, collapse = collapse, na = na, ...) } else { if(na == "NA"){ na <- oldna; } asJSON(list(real = Re(x), imaginary = Im(x)), na = na, digits = digits, ...) } })
.get_dtcc_name_df <- function() { dtcc_name_df <- tibble( nameDTCC = c( "DISSEMINATION_ID", "ORIGINAL_DISSEMINATION_ID", "ACTION", "EXECUTION_TIMESTAMP", "CLEARED", "INDICATION_OF_COLLATERALIZATION", "INDICATION_OF_END_USER_EXCEPTION", "INDICATION_OF_OTHER_PRICE_AFFECTING_TERM", "BLOCK_TRADES_AND_LARGE_NOTIONAL_OFF-FACILITY_SWAPS", "EXECUTION_VENUE", "EFFECTIVE_DATE", "END_DATE", "DAY_COUNT_CONVENTION", "SETTLEMENT_CURRENCY", "ASSET_CLASS", "SUB-ASSET_CLASS_FOR_OTHER_COMMODITY", "TAXONOMY", "PRICE_FORMING_CONTINUATION_DATA", "UNDERLYING_ASSET_1", "UNDERLYING_ASSET_2", "PRICE_NOTATION_TYPE", "PRICE_NOTATION", "ADDITIONAL_PRICE_NOTATION_TYPE", "ADDITIONAL_PRICE_NOTATION", "NOTIONAL_CURRENCY_1", "NOTIONAL_CURRENCY_2", "ROUNDED_NOTIONAL_AMOUNT_1", "ROUNDED_NOTIONAL_AMOUNT_2", "PAYMENT_FREQUENCY_1", "RESET_FREQUENCY_1", "OPTION_STRIKE_PRICE", "OPTION_TYPE", "OPTION_FAMILY", "OPTION_CURRENCY", "OPTION_PREMIUM", "OPTION_LOCK_PERIOD", "OPTION_EXPIRATION_DATE", "PRICE_NOTATION2_TYPE", "PRICE_NOTATION2", "PRICE_NOTATION3_TYPE", "PRICE_NOTATION3", "urlData", "EMBEDED_OPTION", "PAYMENT_FREQUENCY_2", "RESET_FREQUENCY_2", "Action", "UPI/Taxonomy", "PublicationTimestamp (UTC)", "ExecutionTimestamp (UTC)", "UnderlyingAsset 1", "UnderlyingAsset 2", "MaturityDate", "RoundedNotionalCurrency/Quantity", "NotionalQuantity UOM/Currency", "Clear", "PriceNotation", "PriceNotationType", "Bespoke(Y/N)", "OptionType", "ExerciseDate", "OptionLevel", "OptionPremium", "RoundedNotional(MMs)", "Curr", "Addl PriceNotationExists(Y/N)", "RoundedNotional 2/Units", "EffectiveDate", "RoundedNotional1(MMs)", "Curr1", "Curr2", "Exotic(Y/N)", "EmbeddedOption(Y/N)", "OptionFamily", "CLEARED_OR_UNCLEARED", "COLLATERALIZATION", "END_USER_EXCEPTION", "BESPOKE_SWAP", "BLOCK_TRADE", "ASSET_ID" ), nameActual = c( "idDissemination", "idDisseminationOriginal", "typeAction", "dateTimeExecution", "isCleared", "idTypeCollateralization", "hasEndUserAccepted", "hasOtherPriceAffectingTerm", "hasBlockTradeLargeNotionalOffFacilitySwap", "typeExecutionVenue", "dateEffective", "dateEnd", "idDayCount", "codeCurrencySettlement", "idAssetClass", "idSubAssetClass", "descriptionTaxonomy", "typePriceFormingContinuation", "nameUnderylingAsset1", "nameUnderylingAsset2", "typePriceNotation", "priceNotation", "typePriceNotationAdditional", "detailsPriceNotation", "codeCurrencyNotional1", "codeCurrencyNotional2", "amountNotionalRounded1", "amountNotionalRounded2", "idPaymentFrequency1", "idResetFrequency1", "priceOptionStrike", "typeOption", "familyOption", "codeCurrencyOption", "amountOptionPremium", "dateOptionLockPeriod", "dateOptionExpiration", "typePriceNotation2", "priceNotation2", "typePriceNotation3", "priceNotation3", "urlData", "descriptionEmbeddedOption", "idPaymentFrequency2", "idResetFrequency2", "typeAction", "descriptionTaxonomy", "dateTimePublication", "dateTimeExecution", "nameUnderylingAsset1", "nameUnderylingAsset2", "dateMaturity", "amountNotionalRounded1", "codeNotionalQuantity", "isCleared", "priceNotation", "typePriceNotation", "isBespoke", "typeOption", "dateExercise", "amountLevelOption", "amountOptionPremium", "amountNotionalRounded1", "codeCurrency", "hasAdditionalPriceNotation", "amountRoundedNotionalUnits", "dateEffective", "amountNotionalRounded2", "codeCurrency1", "codeCurrency2", "isExotic", "hasEmbeddedOption", "codeOptionFamily", "type", "idTypeCollateralization", "hasEndUserException", "isBespokeSwap", "isBlockTrade", "idAssetType" ) ) return(dtcc_name_df) } .resolve_dtcc_name_df <- function(data) { options(scipen = 9999999) name_df <- .get_dtcc_name_df() %>% mutate(idRow = 1:n()) rf_names <- data %>% names() has_missing_names <- rf_names[!rf_names %in% name_df$nameDTCC] %>% length() > 0 if (has_missing_names) { df_has <- data %>% select(one_of(rf_names[rf_names %in% name_df$nameDTCC])) has_names <- names(df_has) %>% map_chr(function(x) { name_df %>% filter(nameDTCC == x) %>% filter(idRow == min(idRow)) %>% .$nameActual }) df_has <- df_has %>% purrr::set_names(has_names) data <- df_has %>% bind_cols(data %>% select(one_of(rf_names[!rf_names %in% name_df$nameDTCC]))) return(data) } actual_names <- names(data) %>% map_chr(function(x) { name_df %>% filter(nameDTCC == x) %>% filter(idRow == min(idRow)) %>% .$nameActual }) data <- data %>% purrr::set_names(actual_names) has_notional <- data %>% select(dplyr::matches("amountNotionalRounded1")) %>% names() %>% length() > 0 if (has_notional) { data <- data %>% mutate( isNotionalEstimate = amountNotionalRounded1 %>% str_detect('\\+'), amountNotionalRounded1 = amountNotionalRounded1 %>% as.character() %>% readr::parse_number() ) if ('amountNotionalRounded2' %in% names(data)) { data <- data %>% mutate( isNotionalEstimate2 = amountNotionalRounded2 %>% str_detect('\\+'), amountNotionalRounded2 = amountNotionalRounded2 %>% as.character() %>% readr::parse_number() ) } } data <- data %>% mutate_at(data %>% select(dplyr::matches("isCleared")) %>% names(), funs(ifelse(. == "C", TRUE, FALSE))) %>% mutate_at(data %>% select(dplyr::matches("^has|^is")) %>% names(), funs(ifelse(. == "Y", TRUE, FALSE))) %>% mutate_at(data %>% select(dplyr::matches("nameUnderylingAsset|^code|^type")) %>% names(), funs(ifelse(. == '', NA, .))) if ('amountLevelOption' %in% names(data)) { data <- data %>% mutate(amountLevelOption = amountLevelOption %>% as.character()) } data <- data %>% mutate_at(data %>% select(dplyr::matches("^name|^description|^idDay|^type")) %>% names(), funs(. %>% str_to_upper())) %>% mutate_at(data %>% select(dplyr::matches("^price|amountOptionPremium")) %>% names(), funs(. %>% as.character() %>% readr::parse_number())) %>% mutate_at( data %>% select( dplyr::matches("^dateOptionLockPeriod|dateOptionExpiration|^date") ) %>% select(-dplyr::matches("dateTime|dateMaturity|dateExercise")) %>% names(), funs(. %>% lubridate::ymd()) ) %>% mutate_at(data %>% select(dplyr::matches("dateMaturity|dateExercise")) %>% names(), funs(. %>% lubridate::mdy())) %>% mutate_at(data %>% select(dplyr::matches("^dateTime")) %>% names(), funs(. %>% lubridate::ymd_hms())) %>% mutate_at(data %>% select(dplyr::matches("^details|idDisseminationOriginal")) %>% names(), funs(. %>% as.character())) if ('amountLevelOption' %in% names(data)) { data <- data %>% mutate(amountLevelOption = amountLevelOption %>% as.character()) } return(data) } .parse_most_recent_dtcc_url <- function(url = "https://kgc0418-tdw-data-0.s3.amazonaws.com/gtr/static/gtr/html/tracker.html") { } .generate_dtcc_dump_urls <- function(date = "2016-01-07", assets = NULL) { if (length(assets) == 0) { assets <- c('COMMODITIES', 'credits', 'equities', 'forex', 'rates') %>% str_to_upper() } if (length(assets) > 0) { actual_assets <- c('COMMODITIES', 'credits', 'equities', 'forex', 'rates') %>% str_to_upper() wrong <- !assets %>% str_to_upper() %in% actual_assets %>% sum() == length(assets) if (wrong) { stop(list( "Financial assets can only be\n", paste0(actual_assets, collapse = '\n') ) %>% purrr::invoke(paste0, .)) } assets <- assets %>% str_to_upper() } date_actual <- date %>% lubridate::ymd() date <- date_actual %>% str_replace_all("\\-", '\\_') urls <- list( "https://kgc0418-tdw-data-0.s3.amazonaws.com/slices/CUMULATIVE_", assets, "_", date, ".zip" ) %>% purrr::invoke(paste0, .) url_df <- tibble(dateData = date_actual, urlData = urls) return(url_df) } .parse_for_underlying_asset <- function(data) { if ('nameUnderylingAsset1' %in% names(data)) { data <- data %>% separate( nameUnderylingAsset1, into = c( 'descriptionUnderlyingAsset1', 'durationIndex', 'idSeriesUnderlyingAsset1' ), sep = '\\:', remove = FALSE ) %>% mutate( idSeriesUnderlyingAsset1 = ifelse( idSeriesUnderlyingAsset1 %>% is.na(), durationIndex, idSeriesUnderlyingAsset1 ), descriptionUnderlyingAsset1 = ifelse( descriptionUnderlyingAsset1 == durationIndex, NA, descriptionUnderlyingAsset1 ), durationIndex = ifelse( durationIndex == idSeriesUnderlyingAsset1, NA, durationIndex ) ) %>% suppressWarnings() has_desc_df <- data %>% mutate(idRow = 1:n()) %>% filter(!descriptionUnderlyingAsset1 %>% is.na()) %>% select(idRow, descriptionUnderlyingAsset1) %>% nrow() > 0 if (has_desc_df) { description_df <- data %>% filter(!descriptionUnderlyingAsset1 %>% is.na()) %>% mutate(idRow = 1:n()) %>% select(idRow, descriptionUnderlyingAsset1) desc_df <- 1:nrow(description_df) %>% future_map_dfr(function(x) { row_number <- description_df$idRow[[x]] if (description_df$descriptionUnderlyingAsset1[[x]] %>% str_count('\\.') == 0) { return(tibble(idRow = row_number)) } items <- description_df$descriptionUnderlyingAsset1[[x]] %>% str_split('\\.') %>% flatten_chr() items <- items[!items == 'NA'] count_items <- items %>% length() if (count_items == 2) { df <- tibble( idRow = row_number, item = c('idSubIndex', 'idSeries'), values = items ) %>% spread(item, values) %>% mutate(idSeries = idSeries %>% as.numeric()) } if (count_items == 3) { df <- tibble( idRow = row_number, item = c('idIndex', 'idSubIndex', 'idSeries'), values = items ) %>% spread(item, values) %>% mutate(idSeries = idSeries %>% as.numeric()) } if (count_items == 4) { df <- tibble( idRow = row_number, item = c('idIndex', 'idSubIndex', 'idSeries', 'idSubIndex1'), values = items ) %>% spread(item, values) %>% mutate(idSeries = idSeries %>% as.numeric()) } if (count_items == 5) { df <- tibble( idRow = row_number, item = c( 'idIndex', 'idSubIndex', 'idSeries', 'idSubIndex1', 'idRating' ), values = items ) %>% spread(item, values) %>% mutate(idSeries = idSeries %>% as.numeric()) } if (count_items == 6) { df <- tibble( idRow = row_number, item = c( 'idIndex', 'idSubIndex', 'idSeries', 'idSeries1', 'idRating', 'idOther' ), values = items ) %>% spread(item, values) %>% mutate(idSeries = idSeries %>% as.numeric()) } if (count_items == 7) { df <- tibble( idRow = row_number, item = c( 'idIndex', 'idSubIndex', 'idSeries', 'idSeries1', 'idRating', 'idOther', 'idOther1' ), values = items ) %>% spread(item, values) %>% mutate(idSeries = idSeries %>% as.numeric()) } if (count_items == 8) { df <- tibble( idRow = row_number, item = c( 'idIndex', 'idSubIndex', 'idSeries', 'idSeries1', 'idRating', 'idOther', 'idOther1', 'idOther2' ), values = items ) %>% spread(item, values) %>% mutate(idSeries = idSeries %>% as.numeric()) } return(df) }) %>% distinct() data <- data %>% mutate(idRow = 1:n()) %>% left_join(desc_df) %>% select(-idRow) %>% suppressMessages() } return(data) } } .resolve_taxonomy <- function(data) { has_taxonomy <- 'descriptionTaxonomy' %in% names(data) if (has_taxonomy) { df_taxonomy <- data %>% filter(!descriptionTaxonomy %>% is.na()) %>% select(descriptionTaxonomy) %>% distinct() %>% arrange(descriptionTaxonomy) df_taxonomies <- 1:nrow(df_taxonomy) %>% future_map_dfr(function(x) { tax <- df_taxonomy$descriptionTaxonomy[[x]] levels <- tax %>% str_count('\\:') if (levels == 0) { return(tibble(descriptionTaxonomy = tax)) } tax_items <- tax %>% str_split('\\:') %>% flatten_chr() asset <- tax_items[[1]] %>% str_to_upper() if (asset == 'COMMODITY') { items <- c( 'typeFinancialProduct', 'nameProduct', 'nameSubProduct', 'typeFuture', 'methodDelivery' ) df_long <- tibble(value = tax_items, item = items[seq_along(tax_items)]) %>% mutate(descriptionTaxonomy = tax) col_order <- c('descriptionTaxonomy', df_long$item) df <- df_long %>% spread(item, value) %>% select(one_of(col_order)) } if (asset == "CREDIT") { items <- c( 'typeFinancialProduct', 'typeIndex', 'nameIndexReference', 'nameSubIndexReference' ) df_long <- tibble(value = tax_items, item = items[seq_along(tax_items)]) %>% mutate(descriptionTaxonomy = tax) col_order <- c('descriptionTaxonomy', df_long$item) df <- df_long %>% spread(item, value) %>% select(one_of(col_order)) } if (asset == "EQUITY") { items <- c( 'typeFinancialProduct', 'typeFuture', 'nameIndexReference', 'typeIndexReference' ) df_long <- tibble(value = tax_items, item = items[seq_along(tax_items)]) %>% mutate(descriptionTaxonomy = tax) col_order <- c('descriptionTaxonomy', df_long$item) df <- df_long %>% spread(item, value) %>% select(one_of(col_order)) } if (asset %in% c("FOREIGNEXCHANGE", "INTERESTRATE")) { items <- c( 'typeFinancialProduct', 'typeFuture', 'nameIndexReference', 'typeIndexReference' ) df_long <- tibble(value = tax_items, item = items[seq_along(tax_items)]) %>% mutate(descriptionTaxonomy = tax) col_order <- c('descriptionTaxonomy', df_long$item) df <- df_long %>% spread(item, value) %>% select(one_of(col_order)) } df <- df %>% mutate_all(as.character) return(df) }) data <- data %>% left_join(df_taxonomies) %>% suppressMessages() return(data) } } .download_dtcc_url <- function(url = "https://kgc0418-tdw-data-0.s3.amazonaws.com/slices/CUMULATIVE_CREDITS_2017_01_06.zip", return_message = TRUE) { tmp <- tempfile() date_data <- url %>% str_replace_all( "https://kgc0418-tdw-data-0.s3.amazonaws.com/slices/|.zip|CUMULATIVE_|COMMODITIES|CREDITS|EQUITIES|FOREX|RATES|\\_", '' ) %>% lubridate::ymd() type_item <- url %>% str_replace_all("https://kgc0418-tdw-data-0.s3.amazonaws.com/slices/CUMULATIVE_", '') %>% str_split('\\_') %>% flatten_chr() %>% .[[1]] url %>% curl::curl_download(url = ., tmp) con <- unzip(tmp) data <- con %>% readr::read_csv() %>% suppressWarnings() %>% suppressMessages() %>% select(which(colMeans(is.na(.)) < 1)) %>% as_tibble() con %>% unlink() data <- data %>% .resolve_dtcc_name_df() %>% mutate(nameAsset = type_item, dateData = date_data) %>% select(nameAsset, dateData, everything()) %>% select(which(colMeans(is.na(.)) < 1)) data <- data %>% .parse_for_underlying_asset() %>% .resolve_taxonomy() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(data) } .get_data_dtcc_assets_days <- function(assets = NULL, start_date = "2017-01-21", end_date = "2017-01-22", nest_data = TRUE, return_message = TRUE) { start_date <- start_date %>% as.character() %>% readr::parse_date() end_date <- end_date %>% as.character() %>% readr::parse_date() days <- seq(start_date, end_date, by = 1) df_date <- days %>% future_map_dfr(function(x) { .generate_dtcc_dump_urls(date = x, assets = assets) }) .download_dtcc_url_safe <- purrr::possibly(.download_dtcc_url, tibble()) all_df <- 1:nrow(df_date) %>% future_map_dfr(function(x) { .download_dtcc_url_safe(url = df_date$urlData[[x]], return_message = TRUE) }) if (return_message) { list( "Parsed ", all_df %>% nrow() %>% formattable::comma(digits = 0), ' DTCC cleared trades from ', all_df$dateData %>% min(na.rm = T), ' to ', all_df$dateData %>% max(na.rm = T) ) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } if (nest_data) { all_df <- all_df %>% nest(-c(dateData, nameAsset), .key = dataDTCC) } return(all_df) } .get_dtcc_recent_schema_df <- function() { tibble( idCSS = c( ' ' ' ' ' ' ' ' ' ), nameAsset = c( 'commodities', 'commodities', 'credits', 'credits', 'equities', 'forex', 'forex', 'rates', 'rates' ), urlData = c( "https://kgc0418-tdw-data-0.s3.amazonaws.com/prices/COMMODITIES_SWAPS_PRICES.HTML", "https://kgc0418-tdw-data-0.s3.amazonaws.com/prices/COMMODITIES_OPTIONS_PRICES.HTML", "https://kgc0418-tdw-data-0.s3.amazonaws.com/prices/CREDITS_SWAPS_PRICES.HTML", "https://kgc0418-tdw-data-0.s3.amazonaws.com/prices/CREDITS_OPTIONS_PRICES.HTML", "https://kgc0418-tdw-data-0.s3.amazonaws.com/prices/EQUITIES_SWAPS_PRICES.HTML", "https://kgc0418-tdw-data-0.s3.amazonaws.com/prices/FOREX_SWAPS_PRICES.HTML", "https://kgc0418-tdw-data-0.s3.amazonaws.com/prices/FOREX_OPTIONS_PRICES.HTML", "https://kgc0418-tdw-data-0.s3.amazonaws.com/prices/RATES_SWAPS_PRICES.HTML", "https://kgc0418-tdw-data-0.s3.amazonaws.com/prices/RATES_OPTIONS_PRICES.HTML" ) ) } .parse_most_recent_url <- function(url = "https://kgc0418-tdw-data-0.s3.amazonaws.com/prices/COMMODITIES_SWAPS_PRICES.HTML", return_message = TRUE) { css_df <- .get_dtcc_recent_schema_df() page <- "https://kgc0418-tdw-data-0.s3.amazonaws.com/gtr/static/gtr/html/tracker.html" %>% read_html() id_css <- css_df %>% filter(urlData == url) %>% .$idCSS names_dtcc <- page %>% html_nodes(id_css) %>% html_text() page <- url %>% read_html() df <- page %>% html_table(fill = F) %>% flatten_df() %>% purrr::set_names(names_dtcc) df <- df %>% .resolve_dtcc_name_df() %>% mutate(urlData = url, datetimeData = Sys.time()) %>% inner_join(css_df %>% select(urlData, nameAsset)) %>% mutate(nameAsset = nameAsset %>% str_to_upper()) %>% select(datetimeData, nameAsset, everything()) %>% suppressMessages() if (return_message) { list("Parsed: ", url) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } return(df) } dtcc_recent_trades <- function(assets = NULL, nest_data = TRUE, return_message = TRUE) { assets <- assets %>% str_to_lower() css_df <- .get_dtcc_recent_schema_df() if (length(assets) > 0 ) { assets_options <- css_df$nameAsset %>% unique() if (assets %>% str_to_lower() %in% assets_options %>% sum() == 0) { stop( list( "Assets can only be:\n", assets_options %>% paste0(collapse = '\n') ) %>% purrr::invoke(paste0, .) ) } css_df <- css_df %>% filter(nameAsset %in% assets) } .parse_most_recent_url_safe <- purrr::possibly(.parse_most_recent_url, tibble()) all_data <- css_df$urlData %>% future_map_dfr(function(x) { .parse_most_recent_url(url = x, return_message = return_message) }) %>% select(which(colMeans(is.na(.)) < 1)) %>% suppressMessages() %>% suppressWarnings() all_data <- all_data %>% .parse_for_underlying_asset() %>% suppressWarnings() %>% select(which(colMeans(is.na(.)) < 1)) if ('amountLevelOption' %in% names(all_data)) { all_data <- all_data %>% mutate(amountLevelOption = amountLevelOption %>% as.character() %>% readr::parse_number()) } if (return_message) { list( "Parsed ", all_data %>% nrow() %>% formattable::comma(digits = 0), ' DTCC most recent cleared trades as of ', Sys.time() ) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } if (nest_data) { all_data <- all_data %>% nest(-c(nameAsset, typeAction), .key = dataDTCC) } return(all_data) } .get_c_url_data <- function(c_url = "curl 'https://rtdata.dtcc.com/gtr/dailySearch.do?action=dailySearchNextPage&dailySearchCurrentPage=10&dailySearchHasMore=yes&dailySearchMaxDailyNumber=49369457&displayType=c' -H 'DNT: 1' -H 'Accept-Encoding: gzip, deflate, sdch, br' -H 'Accept-Language: en-US,en;q=0.8' -H 'Upgrade-Insecure-Requests: 1' -H 'User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.59 Safari/537.36' -H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8' -H 'Cookie: JSESSIONID_TDW01_Cluster=0000w-S0Gm-OK-9X7LvjnOgRFHE:1a9spvpvu' -H 'Connection: keep-alive' --compressed") { clean_url <- c_url %>% curlconverter::straighten() %>% suppressMessages() res <- clean_url %>% make_req(add_clip = FALSE) dtcc_df <- res[[1]]() %>% content(as = "parsed") %>% as_tibble() %>% suppressWarnings() %>% suppressMessages() if (dtcc_df %>% nrow() == 0) { return(tibble()) } dtcc_df <- dtcc_df %>% mutate_at(dtcc_df %>% select( dplyr::matches( "PRICE_NOTATION2|PRICE_NOTATION3|OPTION_EXPIRATION_DATE|OPTION_LOCK_PERIOD|OPTION_PREMIUM|ADDITIONAL_PRICE_NOTATION|ROUNDED_NOTIONAL_AMOUNT_1|ROUNDED_NOTIONAL_AMOUNT_2|OPTION_STRIKE_PRICE|ORIGINAL_DISSEMINATION_ID" ) ) %>% names(), funs(. %>% as.character())) return(dtcc_df) } .get_data_today <- function(dtcc_url = "https://rtdata.dtcc.com/gtr/dailySearch.do?action=dailySearchNextPage&dailySearchCurrentPage=1&dailySearchHasMore=yes&dailySearchMaxDailyNumber=993694579&displayType=c") { dtcc_url <- list( "curl '", dtcc_url, "' -H 'DNT: 1' -H 'Accept-Encoding: gzip, deflate, sdch, br' -H 'Accept-Language: en-US,en;q=0.8' -H 'Upgrade-Insecure-Requests: 1' -H 'User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.59 Safari/537.36' -H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8' -H 'Cookie: JSESSIONID_TDW01_Cluster=0000w-S0Gm-OK-9X7LvjnOgRFHE:1a9spvpvu' -H 'Connection: keep-alive' --compressed" ) %>% purrr::invoke(paste0, .) .get_c_url_data_safe <- purrr::possibly(.get_c_url_data, tibble()) data <- dtcc_url %>% .get_c_url_data_safe() return(data) } .get_data_dtcc_today <- function(assets = NULL, nest_data = TRUE, return_message = TRUE) { date_data <- Sys.Date() %>% str_split('\\-') %>% flatten_chr() %>% { list(.[2], .[3], .[1]) %>% purrr::invoke(paste, ., sep = "%2F") } nameAsset <- c('credits', 'commodities', 'equities', 'forex', 'rates') types <- c("CR", 'CO', 'EQ', 'FX', 'IR') urls <- list( 'https://rtdata.dtcc.com/gtr/dailySearch.do?action=dailySearch&disseminationDateLow=', date_data, '&disseminationDateHigh=', date_data, '&assetClassification=', types, '&notionalRangeLow=0&notionalRangeHigh=50000000000000&disseminationHourLow=0&disseminationMinuteLow=0&disseminationHourHigh=23&disseminationMinuteHigh=59&currency=USD&displayType=c' ) %>% purrr::invoke(paste0, .) df_types <- tibble(nameAsset, idAssetType = types, urlData = urls) %>% mutate(nameAsset = nameAsset %>% str_to_upper()) .get_data_today_safe <- purrr::possibly(.get_data_today, tibble()) if (length(assets) == 0 | assets %>% length() > 0) { assets <- assets %>% str_to_upper() assets_options <- df_types$nameAsset %>% unique() if (assets %>% str_to_upper() %in% assets_options %>% sum() == 0) { stop( list( "Assets can only be:\n", assets_options %>% paste0(collapse = '\n') ) %>% purrr::invoke(paste0, .) ) } df_types <- df_types %>% filter(nameAsset %in% assets) } urls <- df_types$urlData all_data <- urls %>% sort(decreasing = T) %>% future_map_dfr(function(x) { .get_data_today(dtcc_url = x) %>% mutate(urlData = x) }) %>% mutate(dateData = Sys.Date()) %>% mutate_at(.vars = c('ORIGINAL_DISSEMINATION_ID'), funs(. %>% as.numeric())) if (all_data %>% nrow() == 0) { return(all_data) } all_data <- all_data %>% .resolve_dtcc_name_df() %>% .parse_for_underlying_asset() %>% .resolve_taxonomy() %>% mutate(dateData = Sys.Date()) %>% left_join(df_types %>% select(-urlData)) %>% suppressWarnings() %>% mutate(nameAsset = nameAsset %>% str_to_upper()) %>% select(idAssetType, nameAsset, everything()) %>% suppressMessages() all_data <- all_data %>% mutate_at( all_data %>% select(dplyr::matches("^priceNotation")) %>% names(), funs(. %>% as.character() %>% readr::parse_number()) ) if ('isCleared' %in% names(all_data)) { all_data <- all_data %>% mutate(isCleared = ifelse(isCleared == "C", TRUE, FALSE)) } if (return_message) { list( "Parsed ", all_data %>% nrow() %>% formattable::comma(digits = 0), ' DTCC most recent cleared trades for ', Sys.Date() ) %>% purrr::invoke(paste0, .) %>% cat(fill = T) } if (nest_data) { all_data <- all_data %>% nest(-c(dateData, nameAsset), .key = dataDTCC) } return(all_data) } dtcc_trades <- function(assets = NULL, include_today = FALSE, start_date = NULL, end_date = NULL, nest_data = TRUE, return_message = TRUE) { all_data <- tibble() if (length(assets) > 0) { assets <- assets %>% str_to_upper() } if (include_today) { today <- .get_data_dtcc_today(assets = assets, nest_data = FALSE, return_message = return_message) if (today %>% nrow() > 0) { today <- today %>% .resolve_dtcc_name_df() %>% select(which(colMeans(is.na(.)) < 1)) today <- today %>% mutate_at(today %>% select(dplyr::matches( "dateTime|idDisseminationOriginal|^date" )) %>% names(), funs(. %>% as.character())) %>% mutate_at(today %>% select(dplyr::matches("^amount|priceOptionStrike")) %>% names(), funs(. %>% as.numeric())) %>% suppressWarnings() all_data <- all_data %>% bind_rows(today) } } if (length(start_date) > 0) { if (length(end_date) == 0) { end_date <- Sys.Date() } data <- .get_data_dtcc_assets_days( assets = assets, start_date = start_date, end_date = end_date, nest_data = FALSE, return_message = return_message ) data <- data %>% .resolve_dtcc_name_df() %>% mutate_at(data %>% select( dplyr::matches( "^dateTime|idDisseminationOriginal|^date|^priceNotation" ) ) %>% names(), funs(. %>% as.character())) data <- data %>% mutate_at( data %>% select(dplyr::matches("^priceNotation")) %>% names(), funs(. %>% as.character() %>% readr::parse_number()) ) if (data %>% nrow() > 0) { all_data <- all_data %>% bind_rows(data) } } all_data <- all_data %>% mutate_at(all_data %>% select(dplyr::matches("^dateTime[A-Z]")) %>% names(), funs(. %>% lubridate::ymd_hms())) %>% mutate_at( all_data %>% select(dplyr::matches("^date[A-Z]")) %>% select(-dplyr::matches("^dateTime")) %>% names(), funs(. %>% lubridate::ymd()) ) %>% mutate_at(all_data %>% select(dplyr::matches("^idDissemination")) %>% names(), funs(. %>% as.character() %>% as.integer())) %>% suppressMessages() %>% suppressWarnings() if ('urlData' %in% names(all_data)) { all_data <- all_data %>% select(-urlData) } if ('idAssetType' %in% names(all_data)) { all_data <- all_data %>% select(-idAssetType) } all_data <- all_data %>% arrange(desc(idDissemination)) if (nest_data) { all_data <- all_data %>% nest(-c(dateData, nameAsset), .key = dataDTCC) } return(all_data) }
recluster.boot <- function (tree,mat,phylo=NULL,tr=100,p=0.5,dist="simpson", method="average",boot=1000,level=1) { mat<-as.matrix(mat) if(length(tree$tip.label)!= nrow(mat)) stop("ERROR: different site numbers between tree and matrix") treesb<-(as.phylo(hclust(recluster.dist(mat,phylo,dist),method=method))) for (i in 1 : boot){ for (testNA in 1:10000){ xs<-mat[,sample(ncol(mat),ncol(mat)*level,replace=T)] if(prod(rowSums(xs))>0){ break } } treesb[[i]]<-recluster.cons(xs,phylo,tr,p,dist)$cons } btr2 <- .compressTipLabel(treesb) tr2 <- recluster.check(tree, attr(btr2, "TipLabel")) btr2 <- .uncompressTipLabel(btr2) result <- prop.clades(tr2, btr2, rooted=T)*(100/boot) rows<-nrow(mat) matrix<-dist.nodes(tree)[(rows+1):(rows*2-1),(rows+1):(rows*2-1)] for (i in 2 : (rows-1)) { if(min(matrix[1:i-1,i])==0) { result[i]<- NA } } result<-as.matrix(result) result }
gensvm.accuracy <- function(y.true, y.pred) { n <- length(y.true) if (n != length(y.pred)) { cat("Error: Can't compute accuracy if vector don't have the ", "same length\n") return(-1) } return (sum(y.true == y.pred) / n) }
DetMM<-function(x,y,intercept=1,alpha=0.75,h=NULL,scale_est="scaleTau2",tuning.chi=1.54764,tuning.psi=4.685061){ conv<-1 if(!is.numeric(tuning.chi)) stop("tuning.chi nust be a finite numeric or NULL.") if(!is.finite(tuning.chi)) stop("tuning.chi nust be a finite numeric or NULL.") if(tuning.chi<=0) stop("tuning.chi nust be a finite numeric or NULL.") if(!is.numeric(tuning.psi)) stop("tuning.psi nust be a finite numeric or NULL.") if(!is.finite(tuning.psi)) stop("tuning.psi nust be a finite numeric or NULL.") if(tuning.psi<=0) stop("tuning.psi nust be a finite numeric or NULL.") s1<-robustbase::lmrob.control() s1$subsampling<-"simple" s1$max.it<-1000 s1$k.max<-1000 s1$maxit.scale<-1000 niter.k<-2 S2<-DetLTS_raw(x=x,y=y,h=h,alpha=alpha,scale_est=scale_est,doCsteps=0) S4<-S1<-vector("list",length(S2$Subset)) names(S4)<-names(S1)<-names(S2$Subset) for(i in 1:length(which(S2$SubsetSize<nrow(x)))){ S4[[i]]<-fast.s(x=x,y=y,int=intercept,H1=S2$Raw,k=niter.k,b=1-S2$SubsetSize[i]/nrow(x),cc=tuning.chi,conv=conv) names(S4[[i]])<-c('coef','scale') s1$bb<-1-S2$SubsetSize[i]/nrow(x) S1[[i]]<-robustbase::lmrob(y~x,control=s1,init=list(coefficients=S4[[i]][[1]],scale=S4[[i]][[2]])) } if(max(S2$SubsetSize)==nrow(x)){ i<-i+1 S4[[i]]<-S1[[i]]<-ordreg(x=x,y=y,intercept=intercept) } S3<-vector('list',2) names(S3)<-c('DetS','DetMM') S3[[1]]<-S4 S3[[2]]<-S1 return(S3) }
to_munich <- function (sdf, idbrin, typo, width, height, crs= 4326){ sdf <- sf::st_as_sf(sdf) x <- sapply(sf::st_set_geometry(sdf, NULL), class) if(any(x != "units")){ stop("All emissions must have units. Check ?units::set_units") } sdf$id <- NULL if(missing(crs)) { dft <- as.data.frame(sf::st_coordinates(sdf)) } else { dft <- as.data.frame(sf::st_coordinates(sf::st_transform(sdf, crs))) } lista <- split(x = dft, f = dft$L1) df <- do.call("rbind",(lapply(1:length(lista), function(i){ cbind(names(lista)[i], lista[[i]][1,], lista[[i]][2,]) }))) names(df) <- c("i", "xa", "ya", "borrar1", "xb", "yb", "borrar2") if(missing(idbrin)) idbrin <- df$i if(missing(typo)) typo <- rep(0, nrow(df)) if(missing(width)) width <- rep(0, nrow(df)) if(missing(height)) height <- rep(30, nrow(df)) dfa <- data.frame(i = df$i, idbrin = idbrin, typo = typo, xa = df$xa, ya = df$ya, xb = df$xb, yb = df$yb) dfb <- sf::st_set_geometry(sdf, NULL) dfr <- cbind(dfa, dfb) dfr2 <- data.frame(i = dfa$i, length = sf::st_length(sdf), width, height) dfl <- list(Emissions = dfr, Street = dfr2) return(dfl) }
mnlfa_create_vector_with_names <- function( vec, val=0 ) { NP <- length(vec) res <- rep(val, NP) names(res) <- vec return(res) }
OLSv <- function(data=NULL,xcol=1,ycol=2,conf.level=0.95,pred.level=0.95,npoints=1000,q=1,xpred=NULL) { if(length(conf.level) > 1) stop("Only one confidence level is allowed.") if(length(pred.level) > 1) stop("Only one predictive level is allowed.") if(conf.level <= 0 | conf.level >= 1) stop("The confidence level must be between 0 and 1 (excluded)") if(pred.level <= 0 | pred.level >= 1) stop("The predictive level must be between 0 and 1 (excluded)") if(length(npoints) > 1) stop("npoints must be an integer (at least 10)") if(floor(npoints) != ceiling(npoints) | npoints < 10 | !is.numeric(npoints)) stop("npoints must be an integer (at least 10)") if(length(q) > 1) stop("q must be an integer (at least 1)") if(floor(q) != ceiling(q) | q < 1 | !is.numeric(q)) stop("q must be an integer (at least 1)") if(!is.null(xpred) & !is.numeric(xpred)) stop("xpred must be numeric") res=desc.stat(data=data,xcol=xcol,ycol=ycol) x=res$Xi y=res$Yi xmean=res$statistics$Xmean ymean=res$statistics$Ymean Sxx=res$statistics$Sxx Syy=res$statistics$Syy Sxy=res$statistics$Sxy n=res$statistics$N slope_OLSv=Sxy/Sxx intercept_OLSv=ymean-xmean*slope_OLSv S2_OLSv=sum((y-intercept_OLSv-slope_OLSv*x)^2)/(n-2) S_slope_OLSv=sqrt(S2_OLSv/Sxx) S_intercept_OLSv=sqrt(S2_OLSv*(1/n+xmean^2/Sxx)) cov_slope_intercept_OLSv=-S2_OLSv*xmean/Sxx cov_matrix_OLSv=matrix(nrow=2,ncol=2,c(S_slope_OLSv^2,cov_slope_intercept_OLSv,cov_slope_intercept_OLSv,S_intercept_OLSv^2)) Hotelling_correction=(2*(n-1))/(n-2) ell_OLSv=ellipse(cov_matrix_OLSv,centre=c(slope_OLSv,intercept_OLSv),npoints=npoints, t = sqrt(qf(conf.level,2,n-2)*Hotelling_correction)) F1=matrix(nrow=1,ncol=2,c(slope_OLSv-1,intercept_OLSv)) F2=solve(cov_matrix_OLSv) F3=t(F1) Fell=F1%*%F2%*%F3 alpha=1-conf.level CI_slope_OLSv_1=slope_OLSv-qt(1-alpha/2,n-2)*S_slope_OLSv CI_slope_OLSv_2=slope_OLSv+qt(1-alpha/2,n-2)*S_slope_OLSv CI_intercept_OLSv_1=intercept_OLSv-qt(1-alpha/2,n-2)*S_intercept_OLSv CI_intercept_OLSv_2=intercept_OLSv+qt(1-alpha/2,n-2)*S_intercept_OLSv pval_slope_OLSv=(1-pt(abs(slope_OLSv-1)/S_slope_OLSv,n-2))*2 pval_intercept_OLSv=(1-pt(abs(intercept_OLSv)/S_intercept_OLSv,n-2))*2 pval_ell_OLSv=1-pf(F1%*%F2%*%F3/Hotelling_correction,2,n-2) rownames=c("Intercept","Slope","Joint") name1=paste("Lower ",conf.level*100,"%CI",sep="") name2=paste("Upper ",conf.level*100,"%CI",sep="") colnames=c("H0","Estimate","Std Error",name1,name2,"pvalue") Table.OLSv=as.data.frame(matrix(nrow=length(rownames),ncol=length(colnames),dimnames=list(rownames,colnames))) Table.OLSv$H0=c("0","1","(0,1)") Table.OLSv$Estimate=c(intercept_OLSv,slope_OLSv,"") Table.OLSv$'Std Error'=c(S_intercept_OLSv,S_slope_OLSv,"") Table.OLSv[,name1]=c(CI_intercept_OLSv_1,CI_slope_OLSv_1,"") Table.OLSv[,name2]=c(CI_intercept_OLSv_2,CI_slope_OLSv_2,"") Table.OLSv$pvalue=c(pval_intercept_OLSv,pval_slope_OLSv,pval_ell_OLSv) xx=c(seq(min(x),max(x),length.out=npoints),xpred) xx.pred=xx*slope_OLSv+intercept_OLSv CI1=paste(conf.level*100,"% CI Lower",sep="") CI2=paste(conf.level*100,"% CI Upper",sep="") CB1=paste(conf.level*100,"% CB Lower",sep="") CB2=paste(conf.level*100,"% CB Upper",sep="") PI1=paste(pred.level*100,"% PI Lower",sep="") PI2=paste(pred.level*100,"% PI Upper",sep="") GI1=paste(pred.level*100,"% GI Lower",sep="") GI2=paste(pred.level*100,"% GI Upper",sep="") colnames=c("X0","Ypred",CI1,CI2,PI1,PI2,GI1,GI2,CB1,CB2) if(is.null(xpred)) rownames=1:npoints else rownames=c(1:npoints,paste("xpred",1:length(xpred))) data.pred=as.data.frame(matrix(nrow=npoints+length(xpred),ncol=length(colnames),dimnames=list(rownames,colnames))) data.pred$X0=xx data.pred$Ypred=xx.pred alpha.pred=1-pred.level data.pred[,CI1]=xx.pred-qt(1-alpha/2,n-2)*sqrt(S2_OLSv)*sqrt(1/n+(xx-xmean)^2/Sxx) data.pred[,CI2]=xx.pred+qt(1-alpha/2,n-2)*sqrt(S2_OLSv)*sqrt(1/n+(xx-xmean)^2/Sxx) data.pred[,PI1]=xx.pred-qt(1-alpha.pred/2,n-2)*sqrt(S2_OLSv)*sqrt(1+1/n+(xx-xmean)^2/Sxx) data.pred[,PI2]=xx.pred+qt(1-alpha.pred/2,n-2)*sqrt(S2_OLSv)*sqrt(1+1/n+(xx-xmean)^2/Sxx) data.pred[,GI1]=xx.pred-qt(1-alpha.pred/2,n-2)*sqrt(S2_OLSv)*sqrt(1/q+1/n+(xx-xmean)^2/Sxx) data.pred[,GI2]=xx.pred+qt(1-alpha.pred/2,n-2)*sqrt(S2_OLSv)*sqrt(1/q+1/n+(xx-xmean)^2/Sxx) data.pred[,CB1]=xx.pred-sqrt(qf(conf.level,2,n-2)*Hotelling_correction)*sqrt(S2_OLSv)*sqrt(1/n+(xx-xmean)^2/Sxx) data.pred[,CB2]=xx.pred+sqrt(qf(conf.level,2,n-2)*Hotelling_correction)*sqrt(S2_OLSv)*sqrt(1/n+(xx-xmean)^2/Sxx) results=list(ell_OLSv,Table.OLSv,data.pred[1:npoints,],data.pred[-(1:npoints),]) names(results)=c("Ellipse.OLSv","Estimate.OLSv","Pred.OLSv","xpred.OLSv") return(results) }
spellTree_3 <- function(letra = character(), bandera = integer(), left = integer(), rigth = integer(), center = integer(), palabra = list()) { tree <- list(ch = letra, flag = bandera, L = left, R = rigth, C = center, word = palabra) class(tree) <- append(class(tree), "spellTree_3") return(tree) }
ind.crsp <- function(crsp, loc1, loc2) { nLoc <- length(crsp) ind1 <- rep(0, length(loc1)) ind2 <- rep(0, length(loc2)) res <- .C("indCrsp", as.integer(nLoc), as.integer(crsp), as.integer(loc1), as.integer(loc2), as.integer(ind1), as.integer(ind2) ) return(list(i1=res[[5]], i2=res[[6]])) }
gitcreds_get <- NULL gitcreds_set <- NULL gitcreds_delete <- NULL gitcreds_list_helpers <- NULL gitcreds_cache_envvar <- NULL gitcreds_fill <- NULL gitcreds_approve <- NULL gitcreds_reject <- NULL gitcreds_parse_output <- NULL gitcreds <- local({ gitcreds_get <<- function(url = "https://github.com", use_cache = TRUE, set_cache = TRUE) { stopifnot( is_string(url), has_no_newline(url), is_flag(use_cache), is_flag(set_cache) ) cache_ev <- gitcreds_cache_envvar(url) if (use_cache && !is.null(ans <- gitcreds_get_cache(cache_ev))) { return(ans) } check_for_git() out <- gitcreds_fill(list(url = url), dummy = TRUE) creds <- gitcreds_parse_output(out, url) if (set_cache) { gitcreds_set_cache(cache_ev, creds) } creds } gitcreds_set <<- function(url = "https://github.com") { if (!is_interactive()) { throw(new_error( "gitcreds_not_interactive_error", message = "`gitcreds_set()` only works in interactive sessions" )) } stopifnot(is_string(url), has_no_newline(url)) check_for_git() current <- tryCatch( gitcreds_get(url, use_cache = FALSE, set_cache = FALSE), gitcreds_no_credentials = function(e) NULL ) if (!is.null(current)) { gitcreds_set_replace(url, current) } else { gitcreds_set_new(url) } msg("-> Removing credentials from cache...") gitcreds_delete_cache(gitcreds_cache_envvar(url)) msg("-> Done.") invisible() } gitcreds_set_replace <- function(url, current) { current_username <- current$username while (!is.null(current)) { if (!ack(url, current, "Replace")) { throw(new_error("gitcreds_abort_replace_error")) } msg("\n-> Removing current credentials...") gitcreds_reject(current) current <- tryCatch( gitcreds_get(url, use_cache = FALSE, set_cache = FALSE), gitcreds_no_credentials = function(e) NULL ) if (!is.null(current)) msg("\n!! Found more matching credentials!") } msg("") pat <- readline("? Enter new password or token: ") username <- get_url_username(url) %||% gitcreds_username(url) %||% current_username msg("-> Adding new credentials...") gitcreds_approve(list(url = url, username = username, password = pat)) invisible() } gitcreds_set_new <- function(url) { msg("\n") pat <- readline("? Enter password or token: ") username <- get_url_username(url) %||% gitcreds_username(url) %||% default_username() msg("-> Adding new credentials...") gitcreds_approve(list(url = url, username = username, password = pat)) invisible() } gitcreds_delete <<- function(url = "https://github.com") { if (!is_interactive()) { throw(new_error( "gitcreds_not_interactive_error", message = "`gitcreds_delete()` only works in interactive sessions" )) } stopifnot(is_string(url)) check_for_git() current <- tryCatch( gitcreds_get(url, use_cache = FALSE, set_cache = FALSE), gitcreds_no_credentials = function(e) NULL ) if (is.null(current)) { return(invisible(FALSE)) } if (!ack(url, current, "Delete")) { throw(new_error("gitcreds_abort_delete_error")) } msg("-> Removing current credentials...") gitcreds_reject(current) msg("-> Removing credentials from cache...") gitcreds_delete_cache(gitcreds_cache_envvar(url)) msg("-> Done.") invisible(TRUE) } gitcreds_list_helpers <<- function() { check_for_git() out <- git_run(c("config", "--get-all", "credential.helper")) clear <- rev(which(out == "")) if (length(clear)) out <- out[-(1:clear[1])] out } gitcreds_cache_envvar <<- function(url) { pcs <- parse_url(url) bad <- is.na(pcs$protocol) | is.na(pcs$host) if (any(bad)) { stop("Invalid URL(s): ", paste(url[bad], collapse = ", ")) } proto <- sub("^https?_$", "", paste0(pcs$protocol, "_")) user <- ifelse(pcs$username != "", paste0(pcs$username, "_AT_"), "") host0 <- sub("^api[.]github[.]com$", "github.com", pcs$host) host1 <- gsub("[.:]+", "_", host0) host <- gsub("[^a-zA-Z0-9_-]", "x", host1) slug1 <- paste0(proto, user, host) slug2 <- ifelse(grepl("^AT_", slug1), paste0("AT_", slug1), slug1) slug3 <- ifelse(grepl("^[0-9]", slug2), paste0("AT_", slug2), slug2) paste0("GITHUB_PAT_", toupper(slug3)) } gitcreds_get_cache <- function(ev) { val <- Sys.getenv(ev, NA_character_) if (is.na(val) && ev == "GITHUB_PAT_GITHUB_COM") { val <- Sys.getenv("GITHUB_PAT", NA_character_) } if (is.na(val) && ev == "GITHUB_PAT_GITHUB_COM") { val <- Sys.getenv("GITHUB_TOKEN", NA_character_) } if (is.na(val) || val == "") { return(NULL) } if (val == "FAIL" || grepl("^FAIL:", val)) { class <- strsplit(val, ":", fixed = TRUE)[[1]][2] if (is.na(class)) class <- "gitcreds_no_credentials" throw(new_error(class)) } unesc <- function(x) { gsub("\\\\(.)", "\\1", x) } spval <- strsplit(val, "(?<!\\\\):", perl = TRUE)[[1]] spval0 <- unesc(spval) if (length(spval) == 1) { return(new_gitcreds( protocol = NA_character_, host = NA_character_, username = NA_character_, password = unesc(val) )) } if (length(spval) == 2) { return(new_gitcreds( protocol = NA_character_, host = NA_character_, username = spval0[1], password = spval0[2] )) } if (length(spval) %% 2 == 1) { warning("Invalid gitcreds credentials in env var `", ev, "`. ", "Maybe an unescaped ':' character?") return(NULL) } creds <- structure( spval0[seq(2, length(spval0), by = 2)], names = spval[seq(1, length(spval0), by = 2)] ) do.call("new_gitcreds", as.list(creds)) } gitcreds_set_cache <- function(ev, creds) { esc <- function(x) gsub(":", "\\:", x, fixed = TRUE) keys <- esc(names(creds)) vals <- esc(unlist(creds, use.names = FALSE)) value <- paste0(keys, ":", vals, collapse = ":") do.call("set_env", list(structure(value, names = ev))) invisible(NULL) } gitcreds_delete_cache <- function(ev) { Sys.unsetenv(ev) } gitcreds_fill <<- function(input, args = character(), dummy = TRUE) { if (dummy) { helper <- paste0( "credential.helper=\"! echo protocol=dummy;", "echo host=dummy;", "echo username=dummy;", "echo password=dummy\"" ) args <- c(args, "-c", helper) } gitcreds_run("fill", input, args) } gitcreds_approve <<- function(creds, args = character()) { gitcreds_run("approve", creds, args) } gitcreds_reject <<- function(creds, args = character()) { gitcreds_run("reject", creds, args) } gitcreds_parse_output <<- function(txt, url) { if (is.null(txt) || txt[1] == "protocol=dummy") { throw(new_error("gitcreds_no_credentials", url = url)) } nms <- sub("=.*$", "", txt) vls <- sub("^[^=]+=", "", txt) structure(as.list(vls), names = nms, class = "gitcreds") } gitcreds_run <- function(command, input, args = character()) { env <- gitcreds_env() oenv <- set_env(env) on.exit(set_env(oenv), add = TRUE) stdin <- create_gitcreds_input(input) git_run(c(args, "credential", command), input = stdin) } git_run <- function(args, input = NULL) { stderr_file <- tempfile("gitcreds-stderr-") on.exit(unlink(stderr_file, recursive = TRUE), add = TRUE) out <- tryCatch( suppressWarnings(system2( "git", args, input = input, stdout = TRUE, stderr = stderr_file )), error = function(e) NULL ) if (!is.null(attr(out, "status")) && attr(out, "status") != 0) { throw(new_error( "git_error", args = args, stdout = out, status = attr(out, "status"), stderr = read_file(stderr_file) )) } out } ack <- function(url, current, what = "Replace") { msg("\n-> Your current credentials for ", squote(url), ":\n") msg(paste0(format(current, header = FALSE), collapse = "\n"), "\n") choices <- c( "Keep these credentials", paste(what, "these credentials"), if (has_password(current)) "See the password / token" ) repeat { ch <- utils::menu(title = "-> What would you like to do?", choices) if (ch == 1) return(FALSE) if (ch == 2) return(TRUE) msg("\nCurrent password: ", current$password, "\n\n") } } has_password <- function(creds) { is_string(creds$password) && creds$password != "" } create_gitcreds_input <- function(args) { paste0( paste0(names(args), "=", args, collapse = "\n"), "\n\n" ) } gitcreds_env <- function() { c( GCM_INTERACTIVE = "Never", GCM_MODAL_PROMPT = "false", GCM_VALIDATE = "false" ) } check_for_git <- function() { has_git <- tryCatch({ suppressWarnings(system2( "git", "--version", stdout = TRUE, stderr = null_file() )) TRUE }, error = function(e) FALSE) if (!has_git) throw(new_error("gitcreds_nogit_error")) } gitcreds_username <- function(url = NULL) { gitcreds_username_for_url(url) %||% gitcreds_username_generic() } gitcreds_username_for_url <- function(url) { if (is.null(url)) return(NULL) tryCatch( git_run(c( "config", "--get-urlmatch", "credential.username", shQuote(url) )), git_error = function(err) { if (err$status == 1) NULL else throw(err) } ) } gitcreds_username_generic <- function() { tryCatch( git_run(c("config", "credential.username")), git_error = function(err) { if (err$status == 1) NULL else throw(err) } ) } default_username <- function() { "PersonalAccessToken" } new_gitcreds <- function(...) { structure(list(...), class = "gitcreds") } gitcred_errors <- function() { c( git_error = "System git failed", gitcreds_nogit_error = "Could not find system git", gitcreds_not_interactive_error = "gitcreds needs an interactive session", gitcreds_abort_replace_error = "User aborted updating credentials", gitcreds_abort_delete_error = "User aborted deleting credentials", gitcreds_no_credentials = "Could not find any credentials", gitcreds_no_helper = "No credential helper is set", gitcreds_multiple_helpers = "Multiple credential helpers, only using the first", gitcreds_unknown_helper = "Unknown credential helper, cannot list credentials" ) } new_error <- function(class, ..., message = "", call. = TRUE, domain = NULL) { if (message == "") message <- gitcred_errors()[[class]] message <- .makeMessage(message, domain = domain) cond <- list(message = message, ...) if (call.) cond$call <- sys.call(-1) class(cond) <- c(class, "gitcreds_error", "error", "condition") cond } new_warning <- function(class, ..., message = "", call. = TRUE, domain = NULL) { if (message == "") message <- gitcred_errors()[[class]] message <- .makeMessage(message, domain = domain) cond <- list(message = message, ...) if (call.) cond$call <- sys.call(-1) class(cond) <- c(class, "gitcreds_warning", "warning", "condition") cond } throw <- function(cond) { cond if ("error" %in% class(cond)) { stop(cond) } else if ("warning" %in% class(cond)) { warning(cond) } else if ("message" %in% class(cond)) { message(cond) } else { signalCondition(cond) } } set_env <- function(envs) { current <- Sys.getenv(names(envs), NA_character_, names = TRUE) na <- is.na(envs) if (any(na)) { Sys.unsetenv(names(envs)[na]) } if (any(!na)) { do.call("Sys.setenv", as.list(envs[!na])) } invisible(current) } get_url_username <- function(url) { nm <- parse_url(url)$username if (nm == "") NULL else nm } parse_url <- function(url) { re_url <- paste0( "^(?<protocol>[a-zA-Z0-9]+)://", "(?:(?<username>[^@/:]+)(?::(?<password>[^@/]+))?@)?", "(?<host>[^/]+)", "(?<path>.*)$" ) mch <- re_match(url, re_url) mch[, setdiff(colnames(mch), c(".match", ".text")), drop = FALSE] } is_string <- function(x) { is.character(x) && length(x) == 1 && !is.na(x) } is_flag <- function(x) { is.logical(x) && length(x) == 1 && !is.na(x) } has_no_newline <- function(url) { ! grepl("\n", url, fixed = TRUE) } re_match <- function(text, pattern, perl = TRUE, ...) { stopifnot(is.character(pattern), length(pattern) == 1, !is.na(pattern)) text <- as.character(text) match <- regexpr(pattern, text, perl = perl, ...) start <- as.vector(match) length <- attr(match, "match.length") end <- start + length - 1L matchstr <- substring(text, start, end) matchstr[ start == -1 ] <- NA_character_ res <- data.frame( stringsAsFactors = FALSE, .text = text, .match = matchstr ) if (!is.null(attr(match, "capture.start"))) { gstart <- attr(match, "capture.start") glength <- attr(match, "capture.length") gend <- gstart + glength - 1L groupstr <- substring(text, gstart, gend) groupstr[ gstart == -1 ] <- NA_character_ dim(groupstr) <- dim(gstart) res <- cbind(groupstr, res, stringsAsFactors = FALSE) } names(res) <- c(attr(match, "capture.names"), ".text", ".match") res } null_file <- function() { if (get_os() == "windows") "nul:" else "/dev/null" } get_os <- function() { if (.Platform$OS.type == "windows") { "windows" } else if (Sys.info()[["sysname"]] == "Darwin") { "macos" } else if (Sys.info()[["sysname"]] == "Linux") { "linux" } else { "unknown" } } `%||%` <- function(l, r) if (is.null(l)) r else l msg <- function(..., domain = NULL, appendLF = TRUE) { cnd <- .makeMessage(..., domain = domain, appendLF = appendLF) withRestarts(muffleMessage = function() NULL, { signalCondition(simpleMessage(cnd)) output <- default_output() cat(cnd, file = output, sep = "") }) invisible() } default_output <- function() { if (is_interactive() && no_active_sink()) stdout() else stderr() } no_active_sink <- function() { sink.number("output") == 0 && sink.number("message") == 2 } is_interactive <- function() { opt <- getOption("rlib_interactive") opt2 <- getOption("rlang_interactive") if (isTRUE(opt)) { TRUE } else if (identical(opt, FALSE)) { FALSE } else if (isTRUE(opt2)) { TRUE } else if (identical(opt2, FALSE)) { FALSE } else if (tolower(getOption("knitr.in.progress", "false")) == "true") { FALSE } else if (identical(Sys.getenv("TESTTHAT"), "true")) { FALSE } else { base::interactive() } } squote <- function(x) { old <- options(useFancyQuotes = FALSE) on.exit(options(old), add = TRUE) sQuote(x) } read_file <- function(path, ...) { readChar(path, nchars = file.info(path)$size, ...) } environment() })
knitr::opts_chunk$set(message=FALSE, error=FALSE, warning=FALSE, comment=NA) savefigs <- FALSE library("rprojroot") root<-has_file(".ROS-Examples-root")$make_fix_file() library("rstanarm") library("arm") library("ggplot2") library("bayesplot") theme_set(bayesplot::theme_default(base_family = "sans")) hibbs <- read.table(root("ElectionsEconomy/data","hibbs.dat"), header=TRUE) head(hibbs) if (savefigs) pdf(root("ElectionsEconomy/figs","hibbsdots.pdf"), height=4.5, width=7.5, colormodel="gray") n <- nrow(hibbs) par(mar=c(0,0,1.2,0)) left <- -.3 right <- -.28 center <- -.07 f <- .17 plot(c(left-.31,center+.23), c(-3.3,n+3), type="n", bty="n", xaxt="n", yaxt="n", xlab="", ylab="", xaxs="i", yaxs="i") mtext("Forecasting elections from the economy", 3, 0, cex=1.2) with(hibbs, { for (i in 1:n){ ii <- order(growth)[i] text(left-.3, i, paste (inc_party_candidate[ii], " vs. ", other_candidate[ii], " (", year[ii], ")", sep=""), adj=0, cex=.8) points(center+f*(vote[ii]-50)/10, i, pch=20) if (i>1){ if (floor(growth[ii]) != floor(growth[order(growth)[i-1]])){ lines(c(left-.3,center+.22), rep(i-.5,2), lwd=.5, col="darkgray") } } } }) lines(center+f*c(-.65,1.3), rep(0,2), lwd=.5) for (tick in seq(-.5,1,.5)){ lines(center + f*rep(tick,2), c(0,-.2), lwd=.5) text(center + f*tick, -.5, paste(50+10*tick,"%",sep=""), cex=.8) } lines(rep(center,2), c(0,n+.5), lty=2, lwd=.5) text(center+.05, n+1.5, "Incumbent party's share of the popular vote", cex=.8) lines(c(center-.088,center+.19), rep(n+1,2), lwd=.5) text(right, n+1.5, "Income growth", adj=.5, cex=.8) lines(c(right-.05,right+.05), rep(n+1,2), lwd=.5) text(right, 16.15, "more than 4%", cex=.8) text(right, 14, "3% to 4%", cex=.8) text(right, 10.5, "2% to 3%", cex=.8) text(right, 7, "1% to 2%", cex=.8) text(right, 3.5, "0% to 1%", cex=.8) text(right, .85, "negative", cex=.8) text(left-.3, -2.3, "Above matchups are all listed as incumbent party's candidate vs.\ other party's candidate.\nIncome growth is a weighted measure over the four years preceding the election. Vote share excludes third parties.", adj=0, cex=.7) if (savefigs) dev.off() if (savefigs) pdf(root("ElectionsEconomy/figs","hibbsscatter.pdf"), height=4.5, width=5, colormodel="gray") par(mar=c(3,3,2,.1), mgp=c(1.7,.5,0), tck=-.01) plot(c(-.7, 4.5), c(43,63), type="n", xlab="Avg recent growth in personal income", ylab="Incumbent party's vote share", xaxt="n", yaxt="n", mgp=c(2,.5,0), main="Forecasting the election from the economy ", bty="l") axis(1, 0:4, paste(0:4,"%",sep=""), mgp=c(2,.5,0)) axis(2, seq(45,60,5), paste(seq(45,60,5),"%",sep=""), mgp=c(2,.5,0)) with(hibbs, text(growth, vote, year, cex=.8)) abline(50, 0, lwd=.5, col="gray") if (savefigs) dev.off() M1 <- stan_glm(vote ~ growth, data = hibbs, refresh = 0) print(M1) prior_summary(M1) summary(M1) round(posterior_interval(M1),1) if (savefigs) pdf(root("ElectionsEconomy/figs","hibbsline.pdf"), height=4.5, width=5, colormodel="gray") par(mar=c(3,3,2,.1), mgp=c(1.7,.5,0), tck=-.01) plot(c(-.7, 4.5), c(43,63), type="n", xlab="Average recent growth in personal income", ylab="Incumbent party's vote share", xaxt="n", yaxt="n", mgp=c(2,.5,0), main="Data and linear fit", bty="l") axis(1, 0:4, paste(0:4,"%",sep=""), mgp=c(2,.5,0)) axis(2, seq(45,60,5), paste(seq(45,60,5),"%",sep=""), mgp=c(2,.5,0)) with(hibbs, points(growth, vote, pch=20)) abline(50, 0, lwd=.5, col="gray") abline(coef(M1), col="gray15") text(2.7, 53.5, paste("y =", fround(coef(M1)[1],1), "+", fround(coef(M1)[2],1), "x"), adj=0, col="gray15") if (savefigs) dev.off() if (savefigs) pdf(root("ElectionsEconomy/figs","hibbspredict.pdf"), height=3.5, width=6.5, colormodel="gray") par(mar=c(3,3,3,1), mgp=c(1.7,.5,0), tck=-.01) mu <- 52.3 sigma <- 3.9 curve (dnorm(x,mu,sigma), ylim=c(0,.103), from=35, to=70, bty="n", xaxt="n", yaxt="n", yaxs="i", xlab="Clinton share of the two-party vote", ylab="", main="Probability forecast of Hillary Clinton vote share in 2016,\nbased on 2% rate of economic growth", cex.main=.9) x <- seq (50,65,.1) polygon(c(min(x),x,max(x)), c(0,dnorm(x,mu,sigma),0), col="darkgray", border="black") axis(1, seq(40,65,5), paste(seq(40,65,5),"%",sep="")) text(50.7, .025, "Predicted\n72% chance\nof Clinton victory", adj=0) if (savefigs) dev.off() if (savefigs) pdf(root("ElectionsEconomy/figs","hibbsline2a.pdf"), height=4.5, width=5, colormodel="gray") par(mar=c(3,3,2,.1), mgp=c(1.7,.5,0), tck=-.01) plot(c(-.7, 4.5), c(43,63), type="n", xlab="x", ylab="y", xaxt="n", yaxt="n", mgp=c(2,.5,0), main="Data and linear fit", bty="l", cex.lab=1.3, cex.main=1.3) axis(1, 0:4, cex.axis=1.3) axis(2, seq(45, 60, 5), cex.axis=1.3) abline(coef(M1), col="gray15") with(hibbs, points(growth, vote, pch=20)) text(2.7, 53.5, paste("y =", fround(coef(M1)[1],1), "+", fround(coef(M1)[2],1), "x"), adj=0, col="gray15", cex=1.3) if (savefigs) dev.off() if (savefigs) pdf(root("ElectionsEconomy/figs","hibbsline2b.pdf"), height=4.5, width=5, colormodel="gray") par(mar=c(3,3,2,.1), mgp=c(1.7,.5,0), tck=-.01) plot(c(-.7, 4.5), c(43,63), type="n", xlab="x", ylab="y", xaxt="n", yaxt="n", mgp=c(2,.5,0), main="Data and range of possible linear fits", bty="l", cex.lab=1.3, cex.main=1.3) axis(1, 0:4, cex.axis=1.3) axis(2, seq(45, 60, 5), cex.axis=1.3) sims <- as.matrix(M1) n_sims <- nrow(sims) for (s in sample(n_sims, 50)) abline(sims[s,1], sims[s,2], col="gray50", lwd=0.5) with(hibbs, points(growth, vote, pch=20)) if (savefigs) dev.off() sims <- as.matrix(M1) a <- sims[,1] b <- sims[,2] sigma <- sims[,3] n_sims <- nrow(sims) Median <- apply(sims, 2, median) MAD_SD <- apply(sims, 2, mad) print(cbind(Median, MAD_SD)) a <- sims[,1] b <- sims[,2] z <- a/b print(median(z)) print(mad(z)) new <- data.frame(growth=2.0) y_point_pred <- predict(M1, newdata=new) a_hat <- coef(M1)[1] b_hat <- coef(M1)[2] y_point_pred <- a_hat + b_hat*as.numeric(new) y_linpred <- posterior_linpred(M1, newdata=new) a <- sims[,1] b <- sims[,2] y_linpred <- a + b*as.numeric(new) y_pred <- posterior_predict(M1, newdata=new) sigma <- sims[,3] n_sims <- nrow(sims) y_pred <- a + b*as.numeric(new) + rnorm(n_sims, 0, sigma) Median <- median(y_pred) MAD_SD <- mad(y_pred) win_prob <- mean(y_pred > 50) cat("Predicted Clinton percentage of 2-party vote: ", round(Median,1), ", with s.e. ", round(MAD_SD, 1), "\nPr (Clinton win) = ", round(win_prob, 2), sep="") hist(y_pred) new_grid <- data.frame(growth=seq(-2.0, 4.0, 0.5)) y_point_pred_grid <- predict(M1, newdata=new_grid) y_linpred_grid <- posterior_linpred(M1, newdata=new_grid) y_pred_grid <- posterior_predict(M1, newdata=new_grid) if (savefigs) pdf(root("ElectionsEconomy/figs","hibbspredict_bayes_1.pdf"), height=4, width=10, colormodel="gray") par(mfrow=c(1,2), mar=c(3,2,3,0), mgp=c(1.5,.5,0), tck=-.01) hist(a, ylim=c(0,0.25*n_sims), xlab="a", ylab="", main="Posterior simulations of the intercept, a,\nand posterior median +/- 1 and 2 std err", cex.axis=.9, cex.lab=.9, yaxt="n", col="gray90") abline(v=median(a), lwd=2) arrows(median(a) - 1.483*median(abs(a - median(a))), 550, median(a) + 1.483*median(abs(a - median(a))), 550, length=.1, code=3, lwd=2) arrows(median(a) - 2*1.483*median(abs(a - median(a))), 250, median(a) + 2*1.483*median(abs(a - median(a))), 250, length=.1, code=3, lwd=2) hist(b, ylim=c(0,0.27*n_sims), xlab="b", ylab="", main="Posterior simulations of the slope, b,\nand posterior median +/- 1 and 2 std err", cex.axis=.9, cex.lab=.9, yaxt="n", col="gray90") abline(v=median(b), lwd=2) arrows(median(b) - 1.483*median(abs(b - median(b))), 550, median(b) + 1.483*median(abs(b - median(b))), 550, length=.1, code=3, lwd=2) arrows(median(b) - 2*1.483*median(abs(b - median(b))), 250, median(b) + 2*1.483*median(abs(b - median(b))), 250, length=.1, code=3, lwd=2) if (savefigs) dev.off() if (savefigs) pdf(root("ElectionsEconomy/figs","hibbspredict_bayes_2a.pdf"), height=4.5, width=5) par(mar=c(3,3,2,.1), mgp=c(1.7,.5,0), tck=-.01) plot(a, b, xlab="a", ylab="b", main="Posterior draws of the regression coefficients a, b ", bty="l", pch=20, cex=.2) if (savefigs) dev.off() ggplot(data.frame(a = sims[, 1], b = sims[, 2]), aes(a, b)) + geom_point(size = 1) + labs(title = "Posterior draws of the regression coefficients a, b") if (savefigs) pdf(root("ElectionsEconomy/figs","hibbspredict_bayes_2b.pdf"), height=4.5, width=5, colormodel="gray") par(mar=c(3,3,2,.1), mgp=c(1.7,.5,0), tck=-.01) plot(c(-.7, 4.5), c(43,63), type="n", xlab="Average recent growth in personal income", ylab="Incumbent party's vote share", xaxt="n", yaxt="n", mgp=c(2,.5,0), main="Data and 100 posterior draws of the line, y = a + bx ", bty="l") axis(1, 0:4, paste(0:4,"%",sep=""), mgp=c(2,.5,0)) axis(2, seq(45,60,5), paste(seq(45,60,5),"%",sep=""), mgp=c(2,.5,0)) for (i in 1:100){ abline(a[i], b[i], lwd=.5) } abline(50, 0, lwd=.5, col="gray") with(hibbs, { points(growth, vote, pch=20, cex=1.7, col="white") points(growth, vote, pch=20) }) if (savefigs) dev.off() ggplot(hibbs, aes(x = growth, y = vote)) + geom_abline( intercept = sims[1:100, 1], slope = sims[1:100, 2], size = 0.1 ) + geom_abline( intercept = mean(sims[, 1]), slope = mean(sims[, 2]) ) + geom_point(color = "white", size = 3) + geom_point(color = "black", size = 2) + labs( x = "Avg recent growth in personal income", y ="Incumbent party's vote share", title = "Data and 100 posterior draws of the line, y = a + bx" ) + scale_x_continuous( limits = c(-.7, 4.5), breaks = 0:4, labels = paste(0:4, "%", sep = "") ) + scale_y_continuous( limits = c(43, 63), breaks = seq(45, 60, 5), labels = paste(seq(45, 60, 5), "%", sep = "") ) x <- rnorm(n_sims, 2.0, 0.3) y_hat <- a + b*x y_pred <- rnorm(n_sims, y_hat, sigma) Median <- median(y_pred) MAD_SD <- 1.483*median(abs(y_pred - median(y_pred))) win_prob <- mean(y_pred > 50) cat("Predicted Clinton percentage of 2-party vote: ", round(Median, 1), ", with s.e. ", round(MAD_SD, 1), "\nPr (Clinton win) = ", round(win_prob, 2), sep="", "\n") if (savefigs) pdf(root("ElectionsEconomy/figs","hibbspredict_bayes_3.pdf"), height=3.5, width=6) par(mar=c(3,3,3,1), mgp=c(1.7,.5,0), tck=-.01) hist(y_pred, breaks=seq(floor(min(y_pred)), ceiling(max(y_pred)),1), xlim=c(35,70), xaxt="n", yaxt="n", yaxs="i", bty="n", xlab="Clinton share of the two-party vote", ylab="", main="Bayesian simulations of Hillary Clinton vote share,\nbased on 2% rate of economic growth") axis(1, seq(40,65,5), paste(seq(40,65,5),"%",sep="")) if (savefigs) dev.off() qplot(y_pred, binwidth = 1) + labs( x ="Clinton share of the two-party vote", title = "Simulations of Hillary Clinton vote share,\nbased on 2% rate of economic growth" ) + theme(axis.line.y = element_blank()) theta_hat_prior <- 0.524 se_prior <- 0.041 n <- 400 y <- 190 theta_hat_data <- y/n se_data <- sqrt((y/n)*(1-y/n)/n) theta_hat_bayes <- (theta_hat_prior / se_prior^2 + theta_hat_data / se_data^2) / (1 / se_prior^2 + 1 / se_data^2) se_bayes <- sqrt(1/(1/se_prior^2 + 1/se_data^2)) se_data <- .075 print((theta_hat_prior/se_prior^2 + theta_hat_data/se_data^2)/(1/se_prior^2 + 1/se_data^2)) M1a <- lm(vote ~ growth, data=hibbs) print(M1a) summary(M1a)
isurvdiff.smax <- function(formula,...,verbose=FALSE,accuracy=0.05,smax=12) { s <- 0 if(verbose) print(paste('Trying s=',s)) out <- isurvdiff(formula, ...,s=s, display=FALSE) if (out$h==2) { s=-1 return(list("s"=s,"test0"=out)) } ds <- 3 while(out$h!=2 && s<smax) { s <- s + ds if(verbose) print(paste('Trying s=',s)) test0 <- out out <- isurvdiff(formula, ...,s=s, display=FALSE) } if(out$h!=2) { return(list("s"=s,"test0"=out)) } mins <- s-ds maxs <- s while(mins < maxs - accuracy) { s <- (mins+maxs)/2 if(verbose) print(paste('Trying s=',s)) out <- isurvdiff(formula, ...,s=s,display=FALSE) if (out$h==2) maxs <- s else { mins <- s test0 <- out } } return(list("s"=mins, "test0"=test0)) }
context("build_output") describe("build_output", { source("helper.R") it("status available", { output <- c("line 1", "\n", "line 2") attr(output, "status") <- 15 script_output <- scriptexec::build_output(output, wait = TRUE) expect_equal(script_output$status, 15) expect_equal(script_output$output, "line 1\nline 2") expect_true(is.null(attr(script_output, "error"))) }) it("status null wait", { output <- c("line 1", "\n", "line 2") script_output <- scriptexec::build_output(output, wait = TRUE) expect_equal(script_output$status, 0) expect_equal(script_output$output, "line 1\nline 2") expect_true(is.null(attr(script_output, "error"))) }) it("status null nowait", { output <- c("line 1", "\n", "line 2") script_output <- scriptexec::build_output(output, wait = FALSE) expect_equal(script_output$status, -1) expect_equal(script_output$output, "line 1\nline 2") expect_true(is.null(attr(script_output, "error"))) }) it("errmsg", { output <- c("line 1", "\n", "line 2") attr(output, "errmsg") <- "error message" script_output <- scriptexec::build_output(output, wait = TRUE) expect_equal(script_output$status, 0) expect_equal(script_output$output, "line 1\nline 2") expect_equal(script_output$error, "error message") }) })
NULL chisq_test <- function(x, y = NULL, correct = TRUE, p = rep(1/length(x), length(x)), rescale.p = FALSE, simulate.p.value = FALSE, B = 2000){ args <- as.list(environment()) %>% add_item(method = "chisq_test") if(is.data.frame(x)) x <- as.matrix(x) if(inherits(x, c("matrix", "table"))) n <- sum(x) else n <- length(x) res.chisq <- stats::chisq.test( x, y, correct = correct, p = p, rescale.p = rescale.p, simulate.p.value = simulate.p.value, B = B ) as_tidy_stat(res.chisq, stat.method = "Chi-square test") %>% add_significance("p") %>% add_columns(n = n, .before = 1) %>% set_attrs(args = args, test = res.chisq) %>% add_class(c("rstatix_test", "chisq_test")) } pairwise_chisq_gof_test <- function(x, p.adjust.method = "holm", ...){ if(is.null(names(x))){ names(x) <- paste0("grp", 1:length(x)) } compare_pair <- function(levs, x, ...){ levs <- as.character(levs) suppressWarnings(chisq_test(x[levs], ...)) %>% add_columns(group1 = levs[1], group2 = levs[2], .before = "statistic") } args <- as.list(environment()) %>% add_item(method = "chisq_test") comparisons <- names(x) %>% .possible_pairs() results <- comparisons %>% map(compare_pair, x, ...) %>% map(keep_only_tbl_df_classes) %>% bind_rows() %>% adjust_pvalue("p", method = p.adjust.method) %>% add_significance("p.adj") %>% mutate(p.adj = signif(.data$p.adj, digits = 3)) %>% select(-.data$p.signif, -.data$method) results %>% set_attrs(args = args) %>% add_class(c("rstatix_test", "chisq_test")) } pairwise_chisq_test_against_p <- function(x, p = rep(1/length(x), length(x)), p.adjust.method = "holm", ...){ args <- as.list(environment()) %>% add_item(method = "chisq_test") if (sum(p) != 1) { stop( "Make sure that the `p` argument is correctly specified.", "sum of probabilities must be 1." ) } if(is.null(names(x))){ names(x) <- paste0("grp", 1:length(x)) } results <- list() for (i in 1:length(x)) { res.chisq <- suppressWarnings(chisq_test(c(x[i], sum(x) - x[i]), p = c(p[i], 1 - p[i]), ...)) res.desc <- chisq_descriptives(res.chisq) res.chisq <- res.chisq %>% add_columns(observed = res.desc$observed[1], expected = res.desc$expected[1], .before = 1) results[[i]] <- res.chisq } results <- results %>% map(keep_only_tbl_df_classes) %>% bind_rows() %>% add_columns(group = names(x), .before = 1) %>% adjust_pvalue("p", method = p.adjust.method) %>% add_significance("p.adj") %>% mutate(p.adj = signif(.data$p.adj, digits = 3)) %>% select(-.data$p.signif, -.data$method) results %>% set_attrs(args = args) %>% add_class(c("rstatix_test", "chisq_test")) } chisq_descriptives <- function(res.chisq){ res <- attr(res.chisq, "test") %>% augment() colnames(res) <- gsub(pattern = "^\\.", replacement = "", colnames(res)) res } expected_freq <- function(res.chisq){ attr(res.chisq, "test")$expected } observed_freq <- function(res.chisq){ attr(res.chisq, "test")$observed } pearson_residuals <- function(res.chisq){ attr(res.chisq, "test")$residuals } std_residuals <- function(res.chisq){ attr(res.chisq, "test")$stdres }
test_that("Test Data Handling", { expect_true(all(samples_modis_4bands[1:3, ]$label %in% c("Pasture"))) expect_true(sum(sits_labels_summary(samples_modis_4bands)$prop) == 1) expect_true(all(sits_bands(samples_modis_4bands) %in% c("NDVI", "EVI", "MIR", "NIR"))) })
pnn.optmiz_logl <- function(net, lower = 0, upper, nfolds = 4, seed = 1, method = 1) { if (class(net) != "Probabilistic Neural Net") stop("net needs to be a PNN object.", call. = F) if (!(method %in% c(1, 2))) stop("the method is not supported.", call. = F) fd <- folds(seq(nrow(net$x)), n = nfolds, seed = seed) cv <- function(s) { cls <- parallel::makeCluster(min(nfolds, parallel::detectCores() - 1), type = "PSOCK") obj <- c("fd", "net", "pnn.fit", "pnn.predone", "pnn.predict", "dummies", "logl") parallel::clusterExport(cls, obj, envir = environment()) rs <- Reduce(rbind, parallel::parLapply(cls, fd, function(f) data.frame(ya = net$y.ind[f, ], yp = pnn.predict(pnn.fit(net$x[-f, ], net$y.raw[-f], sigma = s), net$x[f, ])))) parallel::stopCluster(cls) return(logl(y_pred = as.matrix(rs[, grep("^yp", names(rs))]), y_true = as.matrix(rs[, grep("^ya", names(rs))]))) } if (method == 1) { rst <- optimize(f = cv, interval = c(lower, upper)) } else if (method == 2) { rst <- optim(par = mean(lower, upper), fn = cv, lower = lower, upper = upper, method = "Brent") } return(data.frame(sigma = rst[[1]], logl = rst[[2]])) }
makeRLearner.regr.cubist = function() { makeRLearnerRegr( cl = "regr.cubist", package = "Cubist", par.set = makeParamSet( makeIntegerLearnerParam(id = "committees", default = 1L, lower = 1L, upper = 100L), makeLogicalLearnerParam(id = "unbiased", default = FALSE), makeIntegerLearnerParam(id = "rules", default = 100L, lower = 1L), makeNumericLearnerParam(id = "extrapolation", default = 100, lower = 0, upper = 100), makeIntegerLearnerParam(id = "sample", default = 0L, lower = 0L), makeIntegerLearnerParam(id = "seed", default = sample.int(4096, size = 1) - 1L, tunable = FALSE), makeUntypedLearnerParam(id = "label", default = "outcome"), makeIntegerLearnerParam(id = "neighbors", default = 0L, lower = 0L, upper = 9L, when = "predict") ), properties = c("missings", "numerics", "factors"), name = "Cubist", short.name = "cubist", callees = c("cubist", "cubistControl", "predict.cubist") ) } trainLearner.regr.cubist = function(.learner, .task, .subset, .weights = NULL, unbiased, rules, extrapolation, sample, seed, label, ...) { ctrl = learnerArgsToControl(Cubist::cubistControl, unbiased, rules, extrapolation, sample, seed, label) d = getTaskData(.task, .subset, target.extra = TRUE) Cubist::cubist(x = d$data, y = d$target, control = ctrl, ...) } predictLearner.regr.cubist = function(.learner, .model, .newdata, ...) { predict(.model$learner.model, newdata = .newdata, ...) }
test_that("label can be missing", { case <- textpathGrob(x = c(0, 1), y = c(0, 1), id = c(1, 1), as_label = TRUE) ctrl <- textpathGrob(x = c(0, 1), y = c(0, 1), id = c(1, 1), label = "ABC", as_label = TRUE) expect_null(case$textpath) expect_type(ctrl$textpath, "list") case <- makeContent(case) ctrl <- makeContent(ctrl) expect_s3_class(case, "zeroGrob") expect_s3_class(ctrl, "gTree") test <- textpathGrob( x = c(0, 1), y = c(0, 1), id = c(1, 1), label = "ABC", polar_params = list(x = 0.5, y = 0.5), as_label = TRUE ) ppar <- test$textpath$params$polar_params expect_equal(convertUnit(ppar$x, "npc", valueOnly = TRUE), 0.5) expect_equal(convertUnit(ppar$y, "npc", valueOnly = TRUE), 0.5) }) test_that("straight and curved setting produce similar boxes", { pth <- textpathGrob( "ABC", x = c(0, 1), y = c(0, 1), id = c(1, 1), gp_box = gpar(fill = "white"), as_label = TRUE ) pth <- makeContent(pth) box1 <- pth$children[[2]] pth <- textpathGrob( "ABC", x = c(0, 1), y = c(0, 1), id = c(1, 1), gp_box = gpar(fill = "white"), straight = TRUE, as_label = TRUE ) pth <- makeContent(pth) box2 <- pth$children[[2]] x1 <- as_inch(box1$x) x2 <- as_inch(box2$x) expect_lt(sum(abs(x1 - x2)), 2) y1 <- as_inch(box1$y) y2 <- as_inch(box2$y) expect_lt(sum(abs(y1 - y2)), 2) }) test_that("radius is shrunk when needed", { pth <- textpathGrob( "ABC", x = c(2.5, 7.5), y = c(5, 5), id = c(1, 1), gp_box = gpar(fill = "white"), default.units = "in", label.r = unit(0.1, "inch"), label.padding = unit(0, "inch"), as_label = TRUE ) attr(pth$textpath$label[[1]], "metrics")$height <- 0.2 pth <- makeContent(pth) box1 <- pth$children[[2]] pth <- textpathGrob( "ABC", x = c(2.5, 7.5), y = c(5, 5), id = c(1, 1), gp_box = gpar(fill = "white"), default.units = "in", label.r = unit(1, "inch"), label.padding = unit(0, "inch"), as_label = TRUE ) attr(pth$textpath$label[[1]], "metrics")$height <- 0.2 pth <- makeContent(pth) box2 <- pth$children[[2]] expect_equal(as_inch(box1$x), as_inch(box2$x), tolerance = 1e-4) expect_equal(as_inch(box1$y), as_inch(box2$y), tolerance = 1e-4) }) test_that("straight richtext is similar to richtext on straight path", { labels <- c( "A<span style='color:blue'>B</span>C", "D\nE<br>F" ) x <- c(0, 1, 0, 1) y <- c(0, 1, 1, 0) id <- c(1, 1, 2, 2) ctrl <- textpathGrob(x = x, y = y, id = id, label = labels, rich = TRUE, default.units = "inch", as_label = TRUE) case <- textpathGrob(x = x, y = y, id = id, label = labels, rich = TRUE, straight = TRUE, default.units = "inch", as_label = TRUE) ctrl <- makeContent(ctrl)$children[[2]] case <- makeContent(case)$children[[2]] expect_equal(ctrl$gp, case$gp) expect_equal(ctrl$x, case$x, tolerance = 0.05) expect_equal(ctrl$y, case$y, tolerance = 0.05) expect_equal(ctrl$label, case$label) }) test_that("We can set blank lines", { gp <- data_to_path_gp(data.frame(linetype = NA)) expect_equal(gp$lty, 0) }) test_that("We can remove labels too long for the path to support", { grob <- textpathGrob(label = "A label that is too long for its path", x = c(0.45, 0.55), y = c(0.5, 0.5), id = c(1, 1), default.units = "npc", remove_long = TRUE, as_label = TRUE) grob <- makeContent(grob) expect_equal(class(grob$children[[1]])[1], "polyline") })
CIbeta <- function(m,alpha=0.95) { if(!is.momentuHMM(m)) stop("'m' must be a momentuHMM object (as output by fitHMM)") if(!is.null(m$conditions$fit) && !m$conditions$fit) stop("The given model hasn't been fitted.") if(alpha<0 | alpha>1) stop("alpha needs to be between 0 and 1.") nbStates <- length(m$stateNames) dist <- m$conditions$dist distnames <- names(dist) fullDM <- m$conditions$fullDM m <- delta_bc(m) reForm <- formatRecharge(nbStates,m$conditions$formula,m$conditions$betaRef,m$data,par=m$mle) recharge <- reForm$recharge covs <- reForm$covs nbCovs <- reForm$nbCovs if(!is.null(m$mod$hessian) && !inherits(m$mod$Sigma,"error")) Sigma <- m$mod$Sigma else Sigma <- NULL p <- parDef(dist,nbStates,m$conditions$estAngleMean,m$conditions$zeroInflation,m$conditions$oneInflation,m$conditions$DM,m$conditions$userBounds) bounds <- p$bounds ncmean <- get_ncmean(distnames,fullDM,m$conditions$circularAngleMean,nbStates) nc <- ncmean$nc meanind <- ncmean$meanind tmPar <- lapply(m$mle[distnames],function(x) c(t(x))) parCount<- lapply(fullDM,ncol) for(i in distnames[!unlist(lapply(m$conditions$circularAngleMean,isFALSE))]){ parCount[[i]] <- length(unique(gsub("cos","",gsub("sin","",colnames(fullDM[[i]]))))) } parindex <- c(0,cumsum(unlist(parCount))[-length(fullDM)]) names(parindex) <- distnames quantSup <- qnorm(1-(1-alpha)/2) wpar <- m$mod$estimate Par <- list() for(i in distnames){ est <- w2wn(wpar[parindex[[i]]+1:parCount[[i]]],m$conditions$workBounds[[i]]) pnames <- colnames(fullDM[[i]]) if(!isFALSE(m$conditions$circularAngleMean[[i]])) pnames <- unique(gsub("cos","",gsub("sin","",pnames))) Par[[i]] <- get_CIwb(wpar[parindex[[i]]+1:parCount[[i]]],est,parindex[[i]]+1:parCount[[i]],Sigma,alpha,m$conditions$workBounds[[i]],cnames=pnames) } mixtures <- m$conditions$mixtures if(nbStates>1){ est <- w2wn(wpar[tail(cumsum(unlist(parCount)),1)+1:((nbCovs+1)*nbStates*(nbStates-1)*mixtures)],m$conditions$workBounds$beta) Par$beta <- get_CIwb(wpar[tail(cumsum(unlist(parCount)),1)+1:((nbCovs+1)*nbStates*(nbStates-1)*mixtures)],est,tail(cumsum(unlist(parCount)),1)+1:((nbCovs+1)*nbStates*(nbStates-1)*mixtures),Sigma,alpha,m$conditions$workBounds$beta,rnames=rownames(m$mle$beta),cnames=colnames(m$mle$beta)) Par$beta <- lapply(Par$beta,function(x) matrix(x[c(m$conditions$betaCons)],dim(x),dimnames=list(rownames(x),colnames(x)))) nbCovsDelta <- ncol(m$covsDelta)-1 } if(mixtures>1){ nbCovsPi <- ncol(m$covsPi)-1 piInd <- tail(cumsum(unlist(parCount)),1) + ((nbCovs+1)*nbStates*(nbStates-1)*mixtures) + 1:((nbCovsPi+1)*(mixtures-1)) est <- w2wn(wpar[piInd],m$conditions$workBounds[["pi"]]) Par[["pi"]] <- get_CIwb(wpar[piInd],est,piInd,Sigma,alpha,m$conditions$workBounds[["pi"]],rnames=colnames(m$covsPi),cnames=paste0("mix",2:mixtures)) } if(nbStates>1 & !m$conditions$stationary){ dInd <- length(wpar)-ifelse(reForm$nbRecovs,(reForm$nbRecovs+1)+(reForm$nbG0covs+1),0) foo <- dInd -(nbCovsDelta+1)*(nbStates-1)*mixtures+1 est <- w2wn(wpar[foo:dInd],m$conditions$workBounds$delta) rnames <- rep(colnames(m$covsDelta),mixtures) if(mixtures>1) rnames <- paste0(rep(colnames(m$covsDelta),mixtures),"_mix",rep(1:mixtures,each=length(colnames(m$covsDelta)))) Par$delta <- get_CIwb(wpar[foo:dInd],est,foo:dInd,Sigma,alpha,m$conditions$workBounds$delta,rnames=rnames,cnames=m$stateNames[-1]) } if(!is.null(recharge)){ ind <- tail(cumsum(unlist(parCount)),1)+(nbCovs+1)*nbStates*(nbStates-1)+(nbCovsDelta+1)*(nbStates-1)+1:(reForm$nbG0covs+1) est <- w2wn(wpar[ind],m$conditions$workBounds$g0) Par$g0 <- get_CIwb(wpar[ind],est,ind,Sigma,alpha,m$conditions$workBounds$g0,rnames="[1,]",cnames=colnames(reForm$g0covs)) ind <- tail(cumsum(unlist(parCount)),1)+(nbCovs+1)*nbStates*(nbStates-1)+(nbCovsDelta+1)*(nbStates-1)+reForm$nbG0covs+1+1:(reForm$nbRecovs+1) est <- w2wn(wpar[ind],m$conditions$workBounds$theta) Par$theta <- get_CIwb(wpar[ind],est,ind,Sigma,alpha,m$conditions$workBounds$theta,rnames="[1,]",cnames=colnames(reForm$recovs)) } return(Par) } get_gradwb<-function(wpar,workBounds){ ind1<-which(is.finite(workBounds[,1]) & is.infinite(workBounds[,2])) ind2<-which(is.finite(workBounds[,1]) & is.finite(workBounds[,2])) ind3<-which(is.infinite(workBounds[,1]) & is.finite(workBounds[,2])) dN <- diag(length(wpar)) dN[cbind(ind1,ind1)] <- exp(wpar[ind1]) dN[cbind(ind2,ind2)] <- (workBounds[ind2,2]-workBounds[ind2,1])*exp(wpar[ind2])/(1+exp(wpar[ind2]))^2 dN[cbind(ind3,ind3)] <- exp(-wpar[ind3]) dN } get_CIwb<-function(wpar,Par,ind,Sigma,alpha,workBounds,rnames="[1,]",cnames){ npar <- length(wpar) bRow <- (rnames=="[1,]") lower<-upper<-se<-rep(NA,npar) if(!is.null(Sigma)){ dN <- get_gradwb(wpar,workBounds) se <- suppressWarnings(sqrt(diag(dN%*%Sigma[ind,ind]%*%t(dN)))) lower <- Par - qnorm(1-(1-alpha)/2) * se upper <- Par + qnorm(1-(1-alpha)/2) * se } est<-matrix(Par,ncol=length(cnames),byrow=bRow) l<-matrix(lower,ncol=length(cnames),byrow=bRow) u<-matrix(upper,ncol=length(cnames),byrow=bRow) s<-matrix(se,ncol=length(cnames),byrow=bRow) beta_parm_list(est,s,l,u,rnames,cnames) } beta_parm_list<-function(est,se,lower,upper,rnames,cnames){ Par <- list(est=est,se=se,lower=lower,upper=upper) rownames(Par$est) <- rownames(Par$se) <- rownames(Par$lower) <- rownames(Par$upper) <- rnames colnames(Par$est) <- cnames colnames(Par$se) <- cnames colnames(Par$lower) <- cnames colnames(Par$upper) <- cnames Par }
mixmat <- function(p = 2) { a <- matrix(rnorm(p * p), p, p) sa <- svd(a) d <- sort(runif(p) + 1) mat <- sa$u %*% (sa$v * d) attr(mat, "condition") <- d[p]/d[1] mat }
source('../gsDesign_independent_code.R') x <- gsDesign(k = 5, test.type = 2, n.fix = 800) pltobj <- plotgsZ(x) test_that( desc = "check the sample size", code = { nplot <- subset(pltobj$data, Bound == "Upper")$N expect_equal(object = nplot, expected = x$n.I) expect_lte(abs(nplot[1] - x$n.I[1]), 1e-6) expect_lte(abs(nplot[2] - x$n.I[2]), 1e-6) expect_lte(abs(nplot[3] - x$n.I[3]), 1e-6) expect_lte(abs(nplot[4] - x$n.I[4]), 1e-6) expect_lte(abs(nplot[5] - x$n.I[5]), 1e-6) } ) zlow <- subset(pltobj$data, Bound == "Lower")$Z expectedlowb <- x$lower$bound test_that( desc = "check Z values for lower boundary", code = { expect_lte(abs(zlow[1] - expectedlowb[1]), 1e-6) expect_lte(abs(zlow[2] - expectedlowb[2]), 1e-6) expect_lte(abs(zlow[3] - expectedlowb[3]), 1e-6) expect_lte(abs(zlow[4] - expectedlowb[4]), 1e-6) expect_lte(abs(zlow[5] - expectedlowb[5]), 1e-6) } ) zup <- subset(pltobj$data, Bound == "Upper")$Z expectedupb <- x$upper$bound test_that( desc = "check Z value for upper boundary", code = { expect_lte(abs(zup[1] - expectedupb[1]), 1e-6) expect_lte(abs(zup[2] - expectedupb[2]), 1e-6) expect_lte(abs(zup[3] - expectedupb[3]), 1e-6) expect_lte(abs(zup[4] - expectedupb[4]), 1e-6) expect_lte(abs(zup[5] - expectedupb[5]), 1e-6) } ) test_that("Test plotgsZ graphs are correctly rendered ", { save_plot_obj <- save_gg_plot(plotgsZ(x)) local_edition(3) expect_snapshot_file(save_plot_obj, "plot_plotgsz_1.png") })
svg.images <- function(file, corners, name = gsub('[.][A-Za-z]+$', '', tail(strsplit(file[1], '/')[[1]], 1)), seg = 2, opacity = 1, ontop = FALSE, times = NULL){ if('svg' == getOption("svgviewr_glo_type")) stop("Image plotting is currently only available with webgl svgViewR output.") if('html' == getOption("svgviewr_glo_type")) stop('Image plotting is currently only available with server-based visualization.') env <- as.environment(getOption("svgviewr_glo_env")) input_params <- mget(names(formals()),sys.frame(sys.nframe())) input_params$type <- gsub('svg[.]', '', input_params$fcn) add_at <- length(svgviewr_env$svg$image)+1 if(!file.exists(file[1])) stop(paste0("File '", file[1], "' not found.")) if(file.info(file[1])$isdir) file <- paste0(file[1], '/', list.files(file[1])) input_params$fname <- rep(NA, length(file)) for(i in 1:length(file)){ if(!file.exists(file[i])) stop(paste0('Input file "', file[i], '" not found.')) if(!grepl('[.](jpeg|jpg)$', file[i])) stop(paste0('Input file "', file[i], '" is of unrecognized file type. Currently only jpeg files are allowed.')) input_params$fname[i] <- tail(strsplit(file[i], '/')[[1]], 1) } file_norm <- normalizePath(path=file[1]) file_norm_split <- strsplit(file_norm, '/')[[1]] input_params$src <- '' if(length(file_norm_split) > 1) input_params$src <- paste0(paste0(file_norm_split[1:(length(file_norm_split)-1)], collapse='/'), '/') if(length(seg) == 1) seg <- rep(seg, 2) if(!is.null(times) && length(file) > 1){ if(is.null(svgviewr_env$svg$animate$times)) svgviewr_env$svg$animate$times <- times } plane_mesh <- create_plane_mesh(corners, seg, create.uvs=TRUE) vertices <- plane_mesh$vertices faces <- plane_mesh$faces uvs <- plane_mesh$uvs input_params[['opacity']] <- setNames(opacity, NULL) input_params[['depthTest']] <- !ontop svgviewr_env$svg$image[[add_at]] <- input_params svgviewr_env$svg$image[[add_at]]$vertices <- t(vertices) svgviewr_env$svg$image[[add_at]]$faces <- t(faces) svgviewr_env$svg$image[[add_at]]$uvs <- t(uvs) svgviewr_env$ref$names <- c(svgviewr_env$ref$names, name) svgviewr_env$ref$num <- c(svgviewr_env$ref$num, add_at) svgviewr_env$ref$type <- c(svgviewr_env$ref$type, 'image') obj_ranges <- apply(corners, 2, 'range', na.rm=TRUE) corners <- lim2corners(obj_ranges) svgviewr_env$svg$image[[add_at]][['lim']] <- obj_ranges svgviewr_env$svg$image[[add_at]][['corners']] <- corners ret = NULL }
c( output$Mod2Step1_plot_alligator <- renderPlot({ t <- input$Mod2Step1_temperature prop <- ifelse(t < 30, 0, ifelse(t > 33, 1, (t-30)/(33-30))) dat <- data.frame("Sex" = c("Female", "Male"), "Proportion" = c(1-prop, prop)) ggplot2::ggplot(data=dat, aes(x=Sex, y=Proportion)) + ggplot2::geom_col(width=0.3) + ggplot2::ylim(0,1) }), output$Mod2Step1_plot_coin_flip <- renderPlot({ if(input$Mod2Step1_Refresh_1 == 0){} size <- input$Mod2Step1_n_offspring prop <- rbinom(n=1, size=size, prob=0.5) / size dat <- data.frame("Sex" = c("Female", "Male"), "Proportion" = c(1-prop, prop)) ggplot2::ggplot(data=dat, aes(x=Sex, y=Proportion)) + ggplot2::geom_col(width=0.3) + ggplot2::ylim(0,1) + ggplot2::geom_hline(yintercept=0.5, color="red", linetype="dashed") }), output$Mod2Step1_plot_female_prob <- renderPlot({ if(input$Mod2Step1_Refresh_2 == 0){} f_prob <- input$Mod2Step1_female_probability prop <- rbinom(n=1, size=100, prob=f_prob) / 100 dat <- data.frame("Sex" = c("Female", "Male"), "Proportion" = c(prop, 1-prop)) ggplot2::ggplot(data=dat, aes(x=Sex, y=Proportion)) + ggplot2::geom_col(width=0.3) + ggplot2::ylim(0,1) + ggplot2::geom_hline(yintercept=f_prob, color="red", linetype="dashed") }), output$Mod2Step1_plot_female_hist <- renderPlot({ size <- input$Mod2Step1_n_offspring_2 prob <- input$Mod2Step1_female_probability_2 prop <- rbinom(n=1000, size=size, prob=prob) / size dat <- data.frame("Proportion" = prop) ggplot2::ggplot(data=dat, aes(x=Proportion)) + ggplot2::geom_histogram(binwidth=0.1) + ggplot2::xlim(-0.1,1.1) + ggplot2::ylim(0, 1000) + ggplot2::xlab("Female proportion") + ggplot2::geom_vline(xintercept=prob, color="red", linetype="dashed") }), output$Mod2Step1_plot_count_hist <- renderPlot({ rate <- input$Mod2Step1_poisson_rate counts <- rpois(n=1000, lambda=rate) dat <- data.frame("Counts" = counts) ggplot2::ggplot(data=dat, aes(x=Counts)) + ggplot2::geom_histogram(binwidth=0.5) + ggplot2::geom_vline(xintercept=rate, color="red", linetype="dashed") }) )
getArgs <- function() { myargs.list <- strsplit(grep("=",gsub("--","",commandArgs()),value=TRUE),"=") myargs <- lapply(myargs.list,function(x) x[2] ) names(myargs) <- lapply(myargs.list,function(x) x[1]) return (myargs) }
bin.fit.Cpp <- function(resp, design, kat, epsilon = 1e-05, penalty, lambda, max.iter = 200, start = NULL, adaptive = NULL, norm = "L1", control = list(c = 1e-06, gama = 20, index = NULL), m, hat.matrix = FALSE, lambda2 = 1e-04) { N <- length(resp) q <- kat - 1 n <- N/q acoefs <- penalty$acoefs if (is.null(start)) { start <- rep(0,ncol(design)) if(any(which(rowSums(abs(acoefs)) == 0))){ start[which(rowSums(abs(acoefs)) == 0)] <- coef(glm.fit(y = resp, x = design[,which(rowSums(abs(acoefs)) == 0)], family = binomial())) } if (any(is.na(start))) { start[which(is.na(start))] <- 0 } } if (is.null(adaptive)) { weight <- as.vector(rep(1, ncol(acoefs))) } else { weight <- abs(t(acoefs) %*% adaptive) if (any(weight == 0)) weight[which(weight == 0)] <- epsilon weight <- as.vector(weight^(-1)) } pen.nums <- c(penalty$numpen.order, penalty$numpen.intercepts, penalty$numpen.X, penalty$numpen.Z1, penalty$numpen.Z2) if (sum(pen.nums) > 0) { if (penalty$weight.penalties) { pen.nums.scaled <- c(penalty$numpen.order/penalty$n.order, penalty$numpen.intercepts/(m - 1), penalty$numpen.X/penalty$p.X/(m - 1), penalty$numpen.Z1/penalty$p.Z1/m, penalty$numpen.Z2/penalty$p.Z2) weight <- weight/rep(pen.nums.scaled, pen.nums) } } beta.old <- beta.new <- start diff <- 1 delta.new <- delta.old <- 1 rcpp.out <- binfit(matrix(beta.new, ncol = 1), epsilon, max.iter, acoefs, lambda, matrix(weight, ncol = 1), control, design, N, n, q, matrix(resp, ncol = 1), control$index, control$c, control$gama, norm, as.numeric(hat.matrix), lambda2) beta.new <- rcpp.out$beta.new start <- rcpp.out$start df <- rcpp.out$df df2 <- rcpp.out$df2 rownames(beta.new) <- names(start) if (norm == "grouped") { beta.pen <- matrix(beta.new[rowSums(acoefs) != 0], nrow = m - 1) norm.col <- sqrt(colSums((beta.pen)^2))/(m - 1) beta.pen[, norm.col < epsilon] <- 0 beta.new[rowSums(acoefs) != 0] <- c(beta.pen) } return(list(coefficients = beta.new, start = start, df = df, weight = weight, df2 = df2)) }
qsr <- function(dataset, ipuc = "ipuc", hhcsw = "DB090", hhsize = "HX040", ci = NULL, rep = 1000, verbose = FALSE){ dataset <- dataset[order(dataset[,ipuc]), ] dataset$wHX040 <- dataset[,hhcsw]*dataset[,hhsize] if(is.null(ci)){ dataset$acum.wHX040 <- cumsum(dataset$wHX040) dataset$abscisa2 <- dataset$acum.wHX040/dataset$acum.wHX040[length(dataset$acum.wHX040)] A <- dataset[,ipuc]*dataset$wHX040 uc.S20 <- sum(A[which(dataset$abscisa2 < 0.2)]) uc.S80 <- sum(A[which(dataset$abscisa2 > 0.8)]) qsr <- uc.S80/uc.S20 return(qsr) }else{ qsr3 <- function(dataset, i){ dataset.boot <- dataset[i,] dataset.boot <- dataset.boot[order(dataset.boot[,ipuc]), ] dataset.boot$acum.wHX040 <- cumsum(dataset.boot$wHX040) dataset.boot$abscisa2 <- dataset.boot$acum.wHX040/dataset.boot$acum.wHX040[length(dataset.boot$acum.wHX040)] A <- dataset.boot[,ipuc]*dataset.boot$wHX040 uc.S20 <- sum(A[which(dataset.boot$abscisa2 < 0.2)]) uc.S80 <- sum(A[which(dataset.boot$abscisa2 > 0.8)]) uc.S80/uc.S20 } boot.qsr <- boot::boot(dataset, statistic = qsr3, R = rep, sim = "ordinary", stype = "i") qsr.ci <- boot::boot.ci(boot.qsr, conf = ci, type = "basic") if(verbose == FALSE){ return(qsr.ci) }else{ plot(boot.qsr) summary(qsr.ci) return(qsr.ci) } } }
plot_hierarchy_shape <- function(identity, rank, winners, losers, fitted=FALSE) { winners.rank <- rank[match(winners,identity)] losers.rank <- rank[match(losers,identity)] xx <- winners.rank-losers.rank x <- 1:(max(abs(xx))) y <- rep(NA,length(x)) CI.upper <- y CI.lower <- y for (i in 1:length(x)) { y[i] <- sum(xx==-x[i])/sum(abs(xx)==x[i]) CI.upper[i] <- y[i] + sqrt(y[i]*(1-y[i])/sum(abs(xx)==x[i])) + 0.5/sum(abs(xx)==x[i]) CI.upper[i] <- min(CI.upper[i],1) CI.lower[i] <- y[i] - sqrt(y[i]*(1-y[i])/sum(abs(xx)==x[i])) - 0.5/sum(abs(xx)==x[i]) CI.lower[i] <- max(CI.lower[i],0) } CI.upper <- CI.upper[!is.na(y)] CI.lower <- CI.lower[!is.na(y)] x <- x[!is.na(y)] y <- y[!is.na(y)] sizes <- sapply(x,function(x) { sum(abs(xx)==x)}) plot(x,y, xlab="Difference in rank", ylab="Probability that higher rank wins", ylim=c(min(0.5,min(y)),1), pch=20, cex=3*(sizes/max(sizes))) arrows(x,CI.lower,x,CI.upper,length=0.1,angle=90,code=3, lwd=2*(sizes/max(sizes))) legend("bottomright", pch=c(20,20,20,20),pt.cex=3*rev(c(0.2,0.4,0.6,0.8)),legend=rev(c(round(0.2*max(sizes)),round(0.4*max(sizes)),round(0.6*max(sizes)),round(0.8*max(sizes)))),title="Interactions") if (fitted) { l <- loess(y~x) lines(x,l$fitted, col="red", lwd=2) } invisible(data.frame(Rank.diff=x,Prob.dom.win=y,CI.upper=CI.upper,CI.lower=CI.lower)) }
library(grid) eikos_x_probs <- function(data, xprobs = NULL, xprobs_size = 8, margin = unit(2, "points"), rotate = TRUE) { if(is.null(xprobs)) { labels <- round(as.vector(unique(data$xmax[data$xmax < 1])), 2) } else { labels <- round(xprobs, 2) } probs <- if(length(labels) > 0) { if(rotate) { textGrob(labels, x = labels, y = margin, gp = gpar(fontsize = xprobs_size), just = "left", rot = 90, name = "x probs") } else { textGrob(labels, x = labels, y = unit(0.5, "npc") + 0.5*margin, gp = gpar(fontsize = xprobs_size), just = "center", name = "x probs") } } else nullGrob(name = "null: no x probs") return(probs) } eikos_y_probs <- function(data, yprobs, yprobs_size = 8, margin = unit(2, "points")) { if(is.null(yprobs)) { labels <- round(as.vector(unique(data$ymax[data$ymax < 1])), 2) } else { labels <- round(yprobs, 2) } probs <- if(length(labels) > 0) { textGrob(labels, y = labels, x = margin, gp = gpar(fontsize = yprobs_size), just = "left", name = "y probs") } else nullGrob(name = "null: no y probs") return(probs) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(shinybusy) knitr::include_graphics(path = "figures/add_busy_spinner.png") knitr::include_graphics(path = "figures/add_busy_bar.png") knitr::include_graphics(path = "figures/add_busy_gif.png") knitr::include_graphics(path = "figures/modal_spinner.png") knitr::include_graphics(path = "figures/modal_progress.png")
"MacroTS"
ibd.length = function(inher.hap1, inher.hap2, startpos = NULL, endpos = NULL){ n1 = nrow(inher.hap1) n2 = nrow(inher.hap2) if(is.null(startpos)){ startpos = 0 } if(is.null(endpos)){ endpos = inher.hap1[n1,2] } if(startpos < 0 || endpos > inher.hap1[n1,2] || startpos > endpos){ stop("Check starting and ending genetic positions.") } index1 = 1 index2 = 1 relatedness = 0 ibd = 0 while(index1 <= n1 && index2 <= n2){ if(inher.hap1[index1,2] < startpos){ index1 = index1 + 1 next }else if(inher.hap2[index2,2] < startpos){ index2 = index2 + 1 next } if(inher.hap1[index1,1] == inher.hap2[index2,1]){ ibd = 1 }else{ ibd = 0 } if(inher.hap1[index1,2] >= endpos && inher.hap2[index2,2] >= endpos){ relatedness = relatedness + ibd * (endpos - startpos) break }else{ if(inher.hap1[index1,2] < inher.hap2[index2,2]){ relatedness = relatedness + ibd * (inher.hap1[index1,2] - startpos) startpos = inher.hap1[index1,2] index1 = index1 + 1 }else{ relatedness = relatedness + ibd * (inher.hap2[index2,2] - startpos) startpos = inher.hap2[index2,2] index2 = index2 + 1 } } } return(as.numeric(relatedness)) } ibd.proportion = function(inheritance, ind1index, ind2index = NULL, startpos = NULL, endpos = NULL){ if(is.null(startpos)){ startpos = 0 } if(is.null(endpos)){ endpos = tail(c(inheritance[[1]]), 1) } seglength = endpos - startpos if(is.null(ind2index)){ proportion = ibd.length(inheritance[[2*ind1index-1]], inheritance[[2*ind1index]], startpos, endpos)/seglength }else{ proportion = (ibd.length(inheritance[[2*ind1index-1]], inheritance[[2*ind2index-1]], startpos, endpos) + ibd.length(inheritance[[2*ind1index-1]], inheritance[[2*ind2index]], startpos, endpos) + ibd.length(inheritance[[2*ind1index]], inheritance[[2*ind2index-1]], startpos, endpos) + ibd.length(inheritance[[2*ind1index]], inheritance[[2*ind2index]], startpos, endpos)) / 2 / seglength } return(proportion) } fgl2ibd = function(fgl1p, fgl1m, fgl2p, fgl2m){ if(fgl1p == fgl1m){ if(fgl2p == fgl2m){ if(fgl1p ==fgl2p){ ibdstate = 1 }else{ ibdstate = 4 } }else{ if(fgl1p == fgl2p){ ibdstate = 2 }else if(fgl1p == fgl2m){ ibdstate = 3 }else{ ibdstate = 5 } } }else{ if(fgl2p == fgl2m){ if(fgl1p == fgl2p){ ibdstate = 6 }else if(fgl1m == fgl2p){ ibdstate = 10 }else{ ibdstate = 14 } }else{ if(fgl1p == fgl2p){ if(fgl1m == fgl2m){ ibdstate = 7 }else{ ibdstate = 8 } }else if(fgl1p == fgl2m){ if(fgl1m == fgl2p){ ibdstate = 9 }else{ ibdstate = 12 } }else{ if(fgl1m == fgl2p){ ibdstate = 11 }else if(fgl1m == fgl2m){ ibdstate = 13 }else{ ibdstate = 15 } } } } return(ibdstate) } fgl2relatedness = function(fgl1p, fgl1m, fgl2p, fgl2m){ relatedness = ((fgl1p == fgl2p) + (fgl1p == fgl2m) + (fgl1m == fgl2p) + (fgl1m == fgl2m))/2 return(relatedness) } ibd.segment = function(inheritance, ind1index, ind2index = NULL, relatedness = TRUE){ ibd = NULL startpos = 0 endpos = NULL if(is.null(ind2index)){ N = nrow(inheritance[[2*ind1index-1]]) + nrow(inheritance[[2*ind1index]]) ibd = ifelse(inheritance[[2*ind1index-1]][1, 1] == inheritance[[2*ind1index]][1, 1], 1, 0) recomb.index = c(1, 1) data = list(inheritance[[2*ind1index-1]], inheritance[[2*ind1index]]) while(sum(recomb.index) < N){ min.index = which.min(c(data[[1]][recomb.index[1], 2], data[[2]][recomb.index[2], 2])) min.recomb = data[[min.index]][recomb.index[min.index], 2] if(data[[1]][recomb.index[1],2] == min.recomb){ recomb.index[1] = recomb.index[1] + 1 } if(data[[2]][recomb.index[2],2] == min.recomb){ recomb.index[2] = recomb.index[2] + 1 } ibd.temp = ifelse((data[[1]][recomb.index[1], 1] == data[[2]][recomb.index[2], 1]), 1, 0) if(ibd.temp != tail(ibd, 1)){ ibd = c(ibd, ibd.temp) endpos = c(endpos, data[[min.index]][recomb.index[min.index]-1, 2]) startpos = c(startpos, data[[min.index]][recomb.index[min.index]-1, 2]) } } endpos = c(endpos, inheritance[[2*ind1index-1]][recomb.index[1], 2]) return(data.frame(ibd, startpos, endpos)) }else{ N = nrow(inheritance[[2*ind1index-1]]) + nrow(inheritance[[2*ind1index]]) + nrow(inheritance[[2*ind2index-1]]) + nrow(inheritance[[2*ind2index]]) recomb.index = rep(1, 4) data = list(inheritance[[2*ind1index-1]], inheritance[[2*ind1index]], inheritance[[2*ind2index-1]], inheritance[[2*ind2index]]) if(relatedness){ relatedness = fgl2relatedness(data[[1]][1, 1], data[[2]][1, 1], data[[3]][1, 1], data[[4]][1, 1]) while(sum(recomb.index) < N){ min.index = which.min(c(data[[1]][recomb.index[1], 2], data[[2]][recomb.index[2], 2], data[[3]][recomb.index[3], 2], data[[4]][recomb.index[4], 2])) min.recomb = data[[min.index]][recomb.index[min.index], 2] recomb.index[min.index] = recomb.index[min.index] + 1 while(min(c(data[[1]][recomb.index[1], 2], data[[2]][recomb.index[2], 2], data[[3]][recomb.index[3], 2], data[[4]][recomb.index[4], 2])) == min.recomb){ min.index = which.min(c(data[[1]][recomb.index[1], 2], data[[2]][recomb.index[2], 2], data[[3]][recomb.index[3], 2], data[[4]][recomb.index[4], 2])) recomb.index[min.index] = recomb.index[min.index] + 1 } relatedness.temp = fgl2relatedness(inheritance[[2*ind1index-1]][recomb.index[1], 1], inheritance[[2*ind1index]][recomb.index[2], 1], inheritance[[2*ind2index-1]][recomb.index[3], 1], inheritance[[2*ind2index]][recomb.index[4], 1]) if(relatedness.temp != tail(relatedness, 1)){ relatedness = c(relatedness, relatedness.temp) endpos = c(endpos, data[[min.index]][recomb.index[min.index]-1, 2]) startpos = c(startpos, data[[min.index]][recomb.index[min.index]-1, 2]) } } endpos = c(endpos, inheritance[[2*ind1index-1]][recomb.index[1], 2]) return(data.frame(relatedness, startpos, endpos)) }else{ ibd = fgl2ibd(data[[1]][1, 1], data[[2]][1, 1], data[[3]][1, 1], data[[4]][1, 1]) while(sum(recomb.index) < N){ min.index = which.min(c(data[[1]][recomb.index[1], 2], data[[2]][recomb.index[2], 2], data[[3]][recomb.index[3], 2], data[[4]][recomb.index[4], 2])) min.recomb = data[[min.index]][recomb.index[min.index], 2] recomb.index[min.index] = recomb.index[min.index] + 1 while(min(c(data[[1]][recomb.index[1], 2], data[[2]][recomb.index[2], 2], data[[3]][recomb.index[3], 2], data[[4]][recomb.index[4], 2])) == min.recomb){ min.index = which.min(c(data[[1]][recomb.index[1], 2], data[[2]][recomb.index[2], 2], data[[3]][recomb.index[3], 2], data[[4]][recomb.index[4], 2])) recomb.index[min.index] = recomb.index[min.index] + 1 } ibd.temp = fgl2ibd(inheritance[[2*ind1index-1]][recomb.index[1], 1], inheritance[[2*ind1index]][recomb.index[2], 1], inheritance[[2*ind2index-1]][recomb.index[3], 1], inheritance[[2*ind2index]][recomb.index[4], 1]) if(ibd.temp != tail(ibd, 1)){ ibd = c(ibd, ibd.temp) endpos = c(endpos, data[[min.index]][recomb.index[min.index]-1, 2]) startpos = c(startpos, data[[min.index]][recomb.index[min.index]-1, 2]) } } endpos = c(endpos, inheritance[[2*ind1index-1]][recomb.index[1], 2]) return(data.frame(ibd, startpos, endpos)) } } } ibd.marker = function(inheritance, marker, ind1index, ind2index = NULL, relatedness = TRUE){ L = tail(c(inheritance[[1]]),1) if(min(marker) < 0 || max(marker) > L){ stop("Marker positon out of bounds.") } nsnp = length(marker) output = rep(0, nsnp) if(relatedness){ segment = ibd.segment(inheritance, ind1index, ind2index) }else{ segment = ibd.segment(inheritance, ind1index, ind2index, relatedness = FALSE) } current.index = 1 current.ibd = segment[1, 1] current.recomb = segment[1, 3] start.mindex = 1 end.mindex = 1 L = segment[nrow(segment), 3] if(current.recomb == L){ output = rep(current.ibd, nsnp) } while(current.recomb < L && end.mindex <= nsnp){ if(marker[end.mindex] > current.recomb){ if(start.mindex != end.mindex){ output[start.mindex:(end.mindex-1)] = rep(current.ibd, (end.mindex-start.mindex)) start.mindex = end.mindex } current.index = current.index + 1 current.ibd = segment[current.index, 1] current.recomb = segment[current.index, 3] }else{ end.mindex = end.mindex + 1 } } output[start.mindex:nsnp] = rep(current.ibd, (nsnp-start.mindex+1)) return(output) }
skip_on_cran() tbl1 <- lm(time ~ sex + ph.ecog, survival::lung) %>% tbl_regression() tbl2 <- lm(time ~ ph.ecog + sex, survival::lung) %>% tbl_regression(label = list(sex = "Sex", ph.ecog = "ECOG Score")) test_that("works as expected without error", { expect_error( tbl1 %>% add_significance_stars(hide_ci = FALSE, hide_p = FALSE), NA ) expect_error( tbl_stars <- tbl1 %>% add_significance_stars(hide_ci = FALSE, hide_p = FALSE), NA ) expect_error( tbl_merge(list(tbl_stars, tbl_stars)), NA ) expect_equal( tbl_stack(list(tbl_stars, tbl_stars)) %>% as_tibble(col_labels = FALSE) %>% pull(estimate), c("52", "-58**", "52", "-58**") ) expect_error( tbl1 %>% add_significance_stars( thresholds = c(0.0000001, 0.55, 0.9, 1), hide_p = FALSE ), NA ) expect_equal( tbl2 %>% add_significance_stars( pattern = "{estimate} ({conf.low}, {conf.high}){stars}", hide_ci = TRUE, hide_se = TRUE ) %>% as_tibble(col_labels = FALSE) %>% purrr::pluck("estimate", 1), "-58 (-96, -21)**" ) }) test_that("errors/messages with bad inputs", { expect_error( tbl1 %>% add_significance_stars(thresholds = c(0.0000001, 0.55, 0.9, 1.1)) ) expect_error( add_significance_stars(trial) ) expect_error( add_significance_stars(trial, pattern = c("afds", "asf")) ) expect_error( tbl1 %>% add_significance_stars(pattern = c("afds", "asf")) ) expect_error( tbl1 %>% add_significance_stars(pattern = "no columns selected") ) expect_message( tbl1 %>% add_significance_stars(pattern = "{estimate}") ) })
cdcc_estimation <- function(ini.para=c(0.05,0.93) ,ht ,residuals, method=c("COV","LS","NLS"), ts = 1){ stdresids <- residuals/sqrt(ht) flag <- match.arg(method) if(flag == "NLS"){ print("non-linear shrinkage Step Now...") uncR <- nlshrink::nlshrink_cov(stdresids) } else if(flag == "LS"){ print("linear shrinkage Step Now...") uncR <- nlshrink::linshrink_cov(stdresids) } else{ uncR <- stats::cov(stdresids) } print("Optimization Step Now...") result <- cdcc_optim(param=ini.para,ht=ht, residuals=residuals, stdresids=stdresids, uncR=uncR) print("Construction Rt Step Now...") cdcc_Rt <- cdcc_correlations(result$par, stdresids, uncR, ts) list(result=result,cdcc_Rt=cdcc_Rt) }
data_color <- function(data, columns, colors, alpha = NULL, apply_to = c("fill", "text"), autocolor_text = TRUE) { stop_if_not_gt(data = data) apply_to <- match.arg(apply_to) colors <- rlang::enquo(colors) data_tbl <- dt_data_get(data = data) colors <- rlang::eval_tidy(colors, data_tbl) colnames <- names(data_tbl) resolved_columns <- resolve_cols_c(expr = {{ columns }}, data = data) rows <- seq_len(nrow(data_tbl)) data_color_styles_tbl <- dplyr::tibble( locname = character(0), grpname = character(0), colname = character(0), locnum = numeric(0), rownum = integer(0), colnum = integer(0), styles = list() ) for (column in resolved_columns) { data_vals <- data_tbl[[column]][rows] if (inherits(colors, "character")) { if (is.numeric(data_vals)) { color_fn <- scales::col_numeric(palette = colors, domain = data_vals, alpha = TRUE) } else if (is.character(data_vals) || is.factor(data_vals)) { if (length(colors) > 1) { nlvl <- if (is.factor(data_vals)) { nlevels(data_vals) } else { nlevels(factor(data_vals)) } if (length(colors) > nlvl) { colors <- colors[seq_len(nlvl)] } } color_fn <- scales::col_factor(palette = colors, domain = data_vals, alpha = TRUE) } else { stop("Don't know how to map colors to a column of class ", class(data_vals)[1], ".", call. = FALSE) } } else if (inherits(colors, "function")) { color_fn <- colors } else { stop("The `colors` arg must be either a character vector of colors or a function", call. = FALSE) } color_fn <- rlang::eval_tidy(color_fn, data_tbl) color_vals <- color_fn(data_vals) color_vals <- html_color(colors = color_vals, alpha = alpha) color_styles <- switch( apply_to, fill = lapply(color_vals, FUN = function(x) cell_fill(color = x)), text = lapply(color_vals, FUN = function(x) cell_text(color = x)) ) data_color_styles_tbl <- dplyr::bind_rows( data_color_styles_tbl, generate_data_color_styles_tbl( column = column, rows = rows, color_styles = color_styles ) ) if (apply_to == "fill" && autocolor_text) { color_vals <- ideal_fgnd_color(bgnd_color = color_vals) color_styles <- lapply(color_vals, FUN = function(x) cell_text(color = x)) data_color_styles_tbl <- dplyr::bind_rows( data_color_styles_tbl, generate_data_color_styles_tbl( column = column, rows = rows, color_styles = color_styles ) ) } } dt_styles_set( data = data, styles = dplyr::bind_rows(dt_styles_get(data = data), data_color_styles_tbl) ) } generate_data_color_styles_tbl <- function(column, rows, color_styles) { dplyr::tibble( locname = "data", grpname = NA_character_, colname = column, locnum = 5, rownum = rows, styles = color_styles ) } is_rgba_col <- function(colors) { grepl("^rgba\\(\\s*(?:[0-9]+?\\s*,\\s*){3}[0-9\\.]+?\\s*\\)$", colors) } is_hex_col <- function(colors) { grepl("^ } is_short_hex <- function(colors) { grepl("^ } expand_short_hex <- function(colors) { gsub("^ } ideal_fgnd_color <- function(bgnd_color, light = " dark = " bgnd_color <- rgba_to_hex(colors = bgnd_color) bgnd_color <- html_color(colors = bgnd_color, alpha = 1) yiq_contrasted_threshold <- 128 colors <- grDevices::col2rgb(bgnd_color) score <- colSums(colors * c(299, 587, 144)) / 1000 ifelse(score >= yiq_contrasted_threshold, dark, light) } rgba_to_hex <- function(colors) { colors_vec <- rep(NA_character_, length(colors)) colors_rgba <- is_rgba_col(colors = colors) colors_vec[!colors_rgba] <- colors[!colors_rgba] color_matrix <- colors[colors_rgba] %>% gsub(pattern = "(rgba\\(|\\))", replacement = "", x = .) %>% strsplit(",") %>% unlist() %>% as.numeric() %>% matrix( ., ncol = 4, dimnames = list(c(), c("r", "g", "b", "alpha")), byrow = TRUE ) alpha <- color_matrix[, "alpha"] %>% unname() colors_to_hex <- grDevices::rgb( red = color_matrix[, "r"] / 255, green = color_matrix[, "g"] / 255, blue = color_matrix[, "b"] / 255, alpha = alpha ) colors_vec[colors_rgba] <- colors_to_hex colors_vec } html_color <- function(colors, alpha = NULL) { if (any(is.na(colors))) { stop("No values supplied in `colors` should be NA") } is_rgba <- is_rgba_col(colors = colors) is_short_hex <- is_short_hex(colors = colors) colors[is_short_hex] <- expand_short_hex(colors = colors[is_short_hex]) is_hex <- is_hex_col(colors = colors) is_named <- !is_rgba & !is_hex colors[is_named] <- tolower(colors[is_named]) named_colors <- colors[is_named] if (length(named_colors) > 0) { check_named_colors(named_colors) named_colors[named_colors == "transparent"] <- " is_css_excl_named <- colors %in% names(css_exclusive_colors()) if (any(is_css_excl_named)) { colors[is_css_excl_named] <- unname(css_exclusive_colors()[colors[is_css_excl_named]]) } } colors[!is_rgba] <- normalize_colors( colors = colors[!is_rgba], alpha = alpha ) colors } col_matrix_to_rgba <- function(color_matrix) { paste0( "rgba(", color_matrix[, "red"], ",", color_matrix[, "green"], ",", color_matrix[, "blue"], ",", round(color_matrix[, "alpha"], 2), ")" ) } normalize_colors <- function(colors, alpha) { color_matrix <- t(grDevices::col2rgb(col = colors, alpha = TRUE)) color_matrix[, "alpha"] <- color_matrix[, "alpha"] / 255 if (!is.null(alpha)) { color_matrix[, "alpha"] <- alpha } colors_html <- rep(NA_character_, nrow(color_matrix)) colors_alpha_1 <- color_matrix[, "alpha"] == 1 colors_html[colors_alpha_1] <- grDevices::rgb( red = color_matrix[colors_alpha_1, "red", drop = FALSE] / 255, green = color_matrix[colors_alpha_1, "green", drop = FALSE] / 255, blue = color_matrix[colors_alpha_1, "blue", drop = FALSE] / 255 ) colors_html[!colors_alpha_1] <- color_matrix[!colors_alpha_1, , drop = FALSE] %>% col_matrix_to_rgba() colors_html } css_exclusive_colors <- function() { color_tbl_subset <- css_colors[!css_colors$is_x11_color, ] color_values <- color_tbl_subset[["hexadecimal"]] color_values <- stats::setNames( color_values, tolower(color_tbl_subset[["color_name"]]) ) color_values } valid_color_names <- function() { c(tolower(grDevices::colors()), names(css_exclusive_colors()), "transparent") } check_named_colors <- function(named_colors) { named_colors <- tolower(named_colors) if (!all(named_colors %in% valid_color_names())) { invalid_colors <- base::setdiff(unique(named_colors), valid_color_names()) stop( ifelse( length(invalid_colors) > 1, "Several invalid color names were ", "An invalid color name was " ), "used (", str_catalog(invalid_colors, conj = "and"), "):\n", " * Only R/X11 color names and CSS 3.0 color names can be used", call. = FALSE ) } }
cat("Checking Chapter 1 - Introduction\n\n") setwd('01-Introduction') source('ufo_sightings.R') setwd('..') cat("Checking Chapter 2 - Exploration\n\n") setwd('02-Exploration') source('chapter02.R') setwd('..') cat("Checking Chapter 3 - Classification\n\n") setwd('03-Classification') source('email_classify.R') setwd('..') cat("Checking Chapter 4 - Ranking\n\n") setwd('04-Ranking') source('priority_inbox.R') setwd('..') cat("Checking Chapter 5 - Regression\n\n") setwd('05-Regression') source('chapter05.R') setwd('..') cat("Checking Chapter 6 - Regularization\n\n") setwd('06-Regularization') source('chapter06.R') setwd('..') cat("Checking Chapter 7 - Optimization\n\n") setwd('07-Optimization') source('chapter07.R') setwd('..') cat("Checking Chapter 8 - PCA\n\n") setwd('08-PCA') source('chapter08.R') setwd('..') cat("Checking Chapter 9 - MDS\n\n") setwd('09-MDS') source('chapter09.R') setwd('..') cat("Checking Chapter 10 - Recommendations\n\n") setwd('10-Recommendations') source('chapter10.R') setwd('..') cat("Checking Chapter 12 - Model Comparison\n\n") setwd('12-Model_Comparison') source('chapter12.R') setwd('..')
fitted.gpcm <- function (object, resp.patterns = NULL, type = c("expected", "marginal-probabilities", "conditional-probabilities"), ...) { if (!inherits(object, "gpcm")) stop("Use only with 'gpcm' objects.\n") type <- match.arg(type) betas <- object$coefficients p <- length(betas) X <- if (is.null(resp.patterns)) { object$patterns$X } else { if (!is.matrix(resp.patterns) && !is.data.frame(resp.patterns)) stop("'resp.patterns' should be a matrix or a data.frame.\n") if (ncol(resp.patterns) != p) stop("the number of items in ", deparse(substitute(object)), " and the number of columns of 'resp.patterns' do not much.\n") rp <- resp.patterns if (!is.data.frame(rp)) rp <- as.data.frame(rp) for (i in 1:p) { if (is.factor(rp[[i]])) { if (!all(levels(rp[[i]]) %in% levels(object$X[[i]]))) stop("the levels in the ", i, "th column of 'resp.patterns' does not much with the levels of the ", i, " item in the original data set.\n") } else { rp[[i]] <- factor(rp[[i]], levels = sort(unique(object$patterns$X[, i]))) } } rp <- sapply(rp, unclass) if (!is.matrix(rp)) rp <- t(rp) rp } if (type == "expected" || type == "marginal-probabilities") { colnames(X) <- names(betas) log.crf <- crf.GPCM(betas, object$GH$Z, object$IRT.param, log = TRUE) log.p.xz <- matrix(0, nrow(X), object$control$GHk) for (j in 1:p) { log.pr <- log.crf[[j]] xj <- X[, j] na.ind <- is.na(xj) log.pr <- log.pr[xj, , drop = FALSE] if (any(na.ind)) log.pr[na.ind, ] <- 0 log.p.xz <- log.p.xz + log.pr } p.xz <- exp(log.p.xz) out <- switch(type, "expected" = cbind(X, Exp = nrow(object$X) * colSums(object$GH$GHw * t(p.xz))), "marginal-probabilities" = cbind(X, "Marg-Probs" = colSums(object$GH$GHw * t(p.xz)))) rownames(out) <- if (!is.null(resp.patterns) && !is.null(nams <- rownames(resp.patterns))) nams else NULL out } else { Z <- factor.scores(object, resp.patterns = resp.patterns)$score.dat$z1 names(Z) <- if (!is.null(resp.patterns) && !is.null(nams <- rownames(resp.patterns))) nams else NULL res <- vector(mode = "list", length = p) out <- lapply(crf.GPCM(betas, Z, object$IRT.param), t) for (i in seq_along(out)) { if (is.factor(object$X[[i]])) colnames(out[[i]]) <- levels(object$X[[i]]) } out } }
change_pwd <- function(old, new, ...) { query <- list(Action = "ChangePassword", NewPassword = new, OldPassword = old) out <- iamHTTP(query = query, ...) if (!inherits(out, "aws_error")) { out <- TRUE } out } get_pwd_policy <- function(...) { query <- list(Action = "GetAccountPasswordPolicy") out <- iamHTTP(query = query, ...) out[["GetAccountPasswordPolicyResponse"]][["GetAccountPasswordPolicyResult"]][["PasswordPolicy"]] } set_pwd_policy <- function(allowchange, hardexpire, age, length, previous, requirements, ...) { query <- list(Action = "UpdateAccountPasswordPolicy") if (!missing(allowchange)) { query[["AllowUsersToChangePassword"]] <- tolower(as.character(allowchange)) } if (!missing(hardexpire)) { query[["HardExpiry"]] <- tolower(as.character(hardexpire)) } if (!missing(age)) { if(age > 1095 | age < 6) stop("'age' must be between 1 and 1095") query[["MaxPasswordAge"]] <- age } if (!missing(length)) { if (length > 128 | length < 6) { stop("'length' must be between 6 and 128") } query[["MinPasswordLength"]] <- length } if (!missing(previous)) { if (previous > 24 | age < 0) { stop("'age' must be between 0 and 24") } query[["PasswordReusePrevention"]] <- previous } if (!missing(requirements)){ if ("upper" %in% requirements) { query[["RequireUppercaseCharacters"]] <- "true" } if ("lower" %in% requirements) { query[["RequireLowercaseCharacters"]] <- "true" } if ("number" %in% requirements) { query[["RequireNumbers"]] <- "true" } if ("symbol" %in% requirements) { query[["RequireSymbols"]] <- "true" } } out <- iamHTTP(query = query, ...) if (!inherits(out, "aws_error")) { out <- TRUE } out }
setMethod("StateIndependentInFluxList_by_PoolIndex", signature=signature(object="list"), definition=function(object){ makeListInstance( object ,targetClassName='StateIndependentInFlux_by_PoolIndex' ,targetListClassName="StateIndependentInFluxList_by_PoolIndex" ,permittedValueClassName='ScalarTimeMap' ,key_value_func=function(key,val){ StateIndependentInFlux_by_PoolIndex( destinationIndex=PoolIndex(key) ,flux=object[[key]] ) } ) } )
ms_chat_message <- R6::R6Class("ms_chat_message", inherit=ms_object, public=list( initialize=function(token, tenant=NULL, properties=NULL) { self$type <- "Teams message" if(!is.null(properties$channelIdentity)) { parent <- properties$channelIdentity private$api_type <- file.path("teams", parent[[1]], "channels", parent[[2]], "messages") } else if(!is.null(properties$chatId)) private$api_type <- file.path("chats", properties$chatId, "messages") else stop("Unable to get parent", call=FALSE) if(!is.null(properties$replyToId)) private$api_type <- file.path(private$api_type, properties$replyToId, "replies") super$initialize(token, tenant, properties) }, send_reply=function(body, content_type=c("text", "html"), attachments=NULL, inline=NULL, mentions=NULL) { private$assert_not_nested_reply() content_type <- match.arg(content_type) call_body <- build_chatmessage_body(private$get_parent(), body, content_type, attachments, inline, mentions) res <- self$do_operation("replies", body=call_body, http_verb="POST") ms_chat_message$new(self$token, self$tenant, res) }, list_replies=function(filter=NULL, n=50) { private$assert_not_nested_reply() private$make_basic_list("replies", filter, n) }, get_reply=function(message_id) { private$assert_not_nested_reply() op <- file.path("replies", message_id) ms_chat_message$new(self$token, self$tenant, self$do_operation(op)) }, delete_reply=function(message_id, confirm=TRUE) { private$assert_not_nested_reply() self$get_reply(message_id)$delete(confirm=confirm) }, delete=function(confirm=TRUE) { stop("Deleting Teams messages is not currently supported", call.=FALSE) }, print=function(...) { cat("<Teams message>\n", sep="") cat(" directory id:", self$properties$id, "\n") if(!is.null(self$properties$channelIdentity)) { parent <- self$properties$channelIdentity cat(" team:", parent[[1]], "\n") cat(" channel:", parent[[2]], "\n") } else cat(" chat:", self$properties$chatId, "\n") if(!is_empty(self$properties$replyToId)) cat(" in-reply-to:", self$properties$replyToId, "\n") cat("---\n") cat(format_public_methods(self)) invisible(self) } ), private=list( get_parent=function() { parent <- if(!is.null(self$properties$channelIdentity)) { channel <- self$properties$channelIdentity ms_channel$new(self$token, self$tenant, list(id=channel$channelId), team_id=channel$teamId) } else ms_channel$new(self$token, self$tenant, list(id=self$properties$chatId)) parent$sync_fields() }, assert_not_nested_reply=function() { stopifnot("Nested replies not allowed in Teams channels"=is.null(self$properties$replyToId)) } ))
Scenario2 <- function(sigmak=0.1){ g=100 m=1000 s=100 mu1=-0.65 mu2=0 mu3=0.65 mu4=1.5 mu=c(mu1,mu2,mu3,mu4) sigma1=0.1 sigma2=0.1 sigma3=0.1 sigma4=0.2 sigma=c(sigma1,sigma2,sigma3,sigma4) A=matrix(c(0.3,0.6,0.095,0.005,0.09,0.818,0.09,0.002,0.095,0.6,0.3,0.005,0.005,0.71,0.005,0.28),nrow=4,byrow=T) AC=matrix(nrow=4,ncol=4) for (i in 1:4){ AC[i,1]=A[i,1] for (j in 2:4){ AC[i,j]=AC[i,(j-1)]+A[i,j] } } A1=A A1[1,]=c(0.7500, 0.1800, 0.0500, 0.020) A1[2,]=c(0.4955, 0.0020, 0.4955, 0.007) A1[3,]=c(0.0200, 0.1800, 0.7000, 0.100) A1[4,]=c(0.0001, 0.3028, 0.1001, 0.597) AC1=matrix(nrow=4,ncol=4) for (i in 1:4){ AC1[i,1]=A1[i,1] for (j in 2:4){ AC1[i,j]=AC1[i,(j-1)]+A1[i,j] } } xi=matrix(2,nrow=s,ncol=m) change=c(4:8,100:109,250:259,300,306,380,390,420:426,490:495,500:503,505,525:530,sample(531:1000,197)) change.complete=rep(0,m) change.complete[change]=1 change.pos.two=which(change.complete==0) change.partial=sample(change.pos.two[-1],375) change.complete[change.partial]=2 q=10 for(j in 2:m){ if(change.complete[j]==1){ for(i in 1:s){ temp2=runif(1,0,1) if(temp2<AC1[xi[i,j-1],1]){ xi[i,j]=1 } if(AC1[xi[i,j-1],1]<=temp2 && temp2<AC1[xi[i,j-1],2]){ xi[i,j]=2 } if(AC1[xi[i,j-1],2]<=temp2 && temp2<AC1[xi[i,j-1],3]){ xi[i,j]=3 } if(AC1[xi[i,j-1],3]<=temp2){ xi[i,j]=4 } } } if(change.complete[j]==2){ samples.to.change=sample(1:s,q) for(i in 1:q){ temp2=runif(1,0,1) if(temp2<AC1[xi[samples.to.change[i],j-1],1]){ xi[samples.to.change[i],j]=1 } if(AC1[xi[samples.to.change[i],j-1],1]<=temp2 && temp2<AC1[xi[samples.to.change[i],j-1],2]){ xi[samples.to.change[i],j]=2 } if(AC1[xi[samples.to.change[i],j-1],2]<=temp2 && temp2<AC1[xi[samples.to.change[i],j-1],3]){ xi[samples.to.change[i],j]=3 } if(AC1[xi[samples.to.change[i],j-1],3]<=temp2){ xi[samples.to.change[i],j]=4 } } } } X=matrix(nrow=s,ncol=m) for (i in 1:s){ for(j in 1:m){ X[i,j]=rnorm(1,mean=mu[xi[i,j]],sd=sigma[xi[i,j]]) } } beta=matrix(0,nrow=g,ncol=m) beta[4,change[6:15]]=((-1)^(floor(runif(1,0,2))))*rnorm(10,mean=0.5,sd=0.3) beta[10,change[16:25]]=((-1)^(floor(runif(1,0,2))))*rnorm(10,mean=0.5,sd=0.3) epsilon=NULL for(i in 1:s){ epsilon=rbind(epsilon,rnorm(g,mean=0,sd=sigmak)) } mu.g=rnorm(g,0,sd=0.1) Y=xi%*%t(beta)+mu.g+epsilon realA=Tran(xi) realA[1,]=realA[1,]/sum(realA[1,]) realA[2,]=realA[2,]/sum(realA[2,]) realA[3,]=realA[3,]/sum(realA[3,]) realA[4,]=realA[4,]/sum(realA[4,]) signbeta=which(beta!=0) distance=rexp(m-1) disfix=2*sum(distance) return(list(Y=Y,X=X,Xi=xi,A=realA,mu=mu,Sd=sigma,coeff=beta,distance=distance,disfix=disfix)) }
toolstartmessage <- function(argumentValues, level = NULL) { functionAndArgs <- as.list(sys.call(-1)) theFunction <- functionAndArgs[[1]] nonDefaultArguments <- getNonDefaultArguments(eval(theFunction), argumentValues) argsString <- paste0(list(nonDefaultArguments)) argsString <- substr(argsString, 6, nchar(argsString) - 1) if (nchar(argsString) <= getConfig("maxLengthLogMessage")) { functionCallString <- paste0(theFunction, "(", argsString, ")", collapse = "") hint <- "" } else { functionCallString <- paste0(deparse(sys.call(-1)), collapse = "") hint <- paste0(" -- to print evaluated arguments: setConfig(maxLengthLogMessage = ", nchar(argsString), ")") } vcat(1, "Run ", functionCallString, hint, level = level, fill = 300, show_prefix = FALSE) return(list(time1 = proc.time(), functionCallString = functionCallString)) }
context("nonportable-inheritance") test_that("Inheritance", { AC <- R6Class("AC", portable = FALSE, public = list( x = 0, z = 0, initialize = function(x) self$x <- x, getx = function() x, getx2 = function() x*2 ), private = list( getz = function() z, getz2 = function() z*2 ), active = list( x2 = function(value) { if (missing(value)) return(x * 2) else x <<- value/2 }, x3 = function(value) { if (missing(value)) return(x * 3) else x <<- value/3 } ) ) BC <- R6Class("BC", portable = FALSE, inherit = AC, public = list( y = 0, z = 3, initialize = function(x, y) { super$initialize(x) self$y <- y }, getx = function() x + 10 ), private = list( getz = function() z + 10 ), active = list( x2 = function(value) { if (missing(value)) return(x + 2) else x <<- value-2 } ) ) B <- BC$new(1, 2) expect_identical(B, environment(B$getx)) expect_identical(B, parent.env(environment(B$getx2))) expect_identical(B, environment(B$private$getz)) expect_identical(B, parent.env(environment(B$private$getz2))) expect_identical(B$x, 1) expect_identical(B$y, 2) expect_identical(B$z, 3) expect_identical(B$getx(), 11) expect_identical(B$getx2(), 2) expect_identical(B$private$getz(), 13) expect_identical(B$private$getz2(), 6) expect_identical(B$x2, 3) expect_identical(B$x3, 3) expect_identical(class(B), c("BC", "AC", "R6")) }) test_that("Inheritance: superclass methods", { AC <- R6Class("AC", portable = FALSE, public = list( x = 0, initialize = function() { inc_x() inc_self_x() inc_y() inc_self_y() incz }, inc_x = function() x <<- x + 1, inc_self_x = function() self$x <- self$x + 10, inc = function(val) val + 1, pinc = function(val) priv_inc(val), z = 0 ), private = list( y = 0, inc_y = function() y <<- y + 1, inc_self_y = function() private$y <- private$y + 10, priv_inc = function(val) val + 1 ), active = list( incz = function(value) { z <<- z + 1 } ) ) BC <- R6Class("BC", portable = FALSE, inherit = AC, public = list( inc_x = function() x <<- x + 2, inc_self_x = function() self$x <- self$x + 20, inc = function(val) super$inc(val) + 20 ), private = list( inc_y = function() y <<- y + 2, inc_self_y = function() private$y <- private$y + 20, priv_inc = function(val) super$priv_inc(val) + 20 ), active = list( incz = function(value) { z <<- z + 2 } ) ) B <- BC$new() expect_identical(parent.env(B$super), emptyenv()) expect_identical(parent.env(environment(B$super$inc_x)), B) expect_identical(B$x, 22) expect_identical(B$private$y, 22) expect_identical(B$z, 2) expect_identical(B$inc(0), 21) expect_identical(B$pinc(0), 21) CC <- R6Class("CC", portable = FALSE, inherit = BC, public = list( inc_x = function() x <<- x + 3, inc_self_x = function() self$x <- self$x + 30, inc = function(val) super$inc(val) + 300 ), private = list( inc_y = function() y <<- y + 3, inc_self_y = function() private$y <- private$y + 30, priv_inc = function(val) super$priv_inc(val) + 300 ), active = list( incz = function(value) { z <<- z + 3 } ) ) C <- CC$new() expect_identical(C$x, 33) expect_identical(C$private$y, 33) expect_identical(C$z, 3) expect_identical(C$inc(0), 321) expect_identical(C$pinc(0), 321) expect_identical(class(C), c("CC", "BC", "AC", "R6")) }) test_that("Inheritance hierarchy for super$ methods", { AC <- R6Class("AC", portable = FALSE, public = list(n = function() 0 + 1) ) expect_identical(AC$new()$n(), 1) BC <- R6Class("BC", portable = FALSE, public = list(n = function() super$n() + 10), inherit = AC ) expect_identical(BC$new()$n(), 11) CC <- R6Class("CC", portable = FALSE, inherit = BC ) expect_identical(CC$new()$n(), 11) AC <- R6Class("AC", portable = FALSE, public = list(n = function() 0 + 1) ) expect_identical(AC$new()$n(), 1) BC <- R6Class("BC", portable = FALSE, inherit = AC ) expect_identical(BC$new()$n(), 1) CC <- R6Class("CC", portable = FALSE, public = list(n = function() super$n() + 100), inherit = BC ) expect_identical(CC$new()$n(), 101) DC <- R6Class("DC", portable = FALSE, inherit = CC ) expect_identical(DC$new()$n(), 101) AC <- R6Class("AC", portable = FALSE, public = list(n = function() 0 + 1) ) expect_identical(AC$new()$n(), 1) BC <- R6Class("BC", portable = FALSE, inherit = AC) expect_identical(BC$new()$n(), 1) CC <- R6Class("CC", portable = FALSE, inherit = BC) expect_identical(CC$new()$n(), 1) }) test_that("Private env is created when all private members are inherited", { AC <- R6Class("AC", portable = FALSE, public = list( getx = function() x, getx2 = function() private$x ), private = list(x = 1) ) BC <- R6Class("BC", portable = FALSE, inherit = AC) expect_identical(BC$new()$getx(), 1) expect_identical(BC$new()$getx2(), 1) AC <- R6Class("AC", portable = FALSE, public = list( getx = function() x(), getx2 = function() private$x() ), private = list(x = function() 1) ) BC <- R6Class("BC", portable = FALSE, inherit = AC) expect_identical(BC$new()$getx(), 1) expect_identical(BC$new()$getx2(), 1) })
selEstan<-function(emod=c('basemodel.rds','mrmodel.rds')){ emod<-match.arg(emod) if(isTRUE(grep("64",Sys.getenv("R_ARCH"))>0)){ ebase<-'comp64' }else ebase<-'comp32' emod<-file.path(ebase,emod) emod<-system.file(package="clinDR", "models", emod) if(file.access(emod,mode=0)<0)stop(paste('The compiled rstan model', 'could not be accessed. You must', 'run compileStanModels once before using', 'the Bayesian functions')) estan<-readRDS(emod) if(!inherits(estan,'stanmodel'))stop('unable to create estan model') return(estan) }
library(OpenMx) source('inst/tools/dummyFunctions.R') dummies <- ls() options('mxPrintUnitTests' = FALSE) directories <- c('staging/doctest') null <- tryCatch(suppressWarnings(file('/dev/null', 'w')), error = function(e) { file('nul', 'w') } ) sink(null, type = 'output') files <- list.files(directories, pattern = '^.+[.]R$', full.names = TRUE, recursive = TRUE) errors <- list() errorRecover <- function(script, index) { sink(type = 'output') cat(paste("Running model", index, "of", length(files), script, "...\n")) sink(null, type = 'output') tryCatch(source(script, chdir = TRUE), error = function(x) { errors[[script]] <<- x }) rm(envir=globalenv(), list=setdiff(ls(envir=globalenv()), c('errors', 'errorRecover', 'null', 'files', 'directories', 'dummies', dummies))) } if (length(files) > 0) { for (i in 1:length(files)) { errorRecover(files[[i]], i) } } sink(type = 'output') close(null) cat("Number of errors:", length(errors), '\n') if (length(errors) > 0) { fileName <- names(errors) for (i in 1:length(errors)) { cat("From model", fileName[[i]], ':\n') print(errors[[i]]$message) cat('\n') } } cat("Finished testing models.\n")
optimizerNlminb <- function(start, objective=objectiveML, gradient=TRUE, maxiter, debug, par.size, model.description, warn, ...){ with(model.description, { obj <- objective(gradient=gradient) objective <- obj$objective grad <- if (gradient) obj$gradient else NULL if (!warn) save.warn <- options(warn=-1) res <- nlminb(start, objective, gradient=grad, model.description=model.description, control=list(trace=if(debug) 1 else 0, iter.max=maxiter, ...)) if (!warn) options(save.warn) result <- list() result$convergence <- res$convergence == 0 result$iterations <- res$iterations par <- res$par names(par) <- param.names result$par <- par if (!result$convergence) warning(paste('Optimization may not have converged; nlminb return code = ', res$convergence, '. Consult ?nlminb.\n', sep="")) result$criterion <- res$objective obj <- objective(par, model.description) C <- attr(obj, "C") rownames(C) <- colnames(C) <- var.names[observed] result$C <- C A <- attr(obj, "A") rownames(A) <- colnames(A) <- var.names result$A <- A P <- attr(obj, "P") rownames(P) <- colnames(P) <- var.names result$P <- P class(result) <- "semResult" result } ) }
TAR.coeff<-function(reg,ay,p1,p2,sig,lagd,thres,mu0,v0,lagp1,lagp2,constant=1,thresVar){ p<-max(max(lagp1),max(lagp2))+constant n<- length(ay) if (!missing(thresVar)){ if (length(thresVar) > n ){ zt <- thresVar[1:n] cat("Using only first", n, "elements of threshold Variable\n") } else zt<-thresVar lag.y<- zt[(p+1-lagd):(n-lagd)] } else lag.y<- ay[(p+1-lagd):(n-lagd)] yt<- ay[(p+1):n] if (reg==1){ ph<-rep(0.01,p1) y.1<-matrix(yt[lag.y<=thres],ncol=1) x.1<-matrix(NA,nrow=p1,ncol=n-p) for (i in 1:p1){ x.1[i,]<-ay[(p-lagp1[i]+1):(n-lagp1[i])]} if(p1>1){ if (constant==1){ tx<-cbind(1,t(x.1[,lag.y<=thres])) } else { tx<-t(x.1[,lag.y<=thres]) } } if(p1 == 1){ if (constant==1){ tx<-cbind(1,t(t(x.1[,lag.y<=thres]))) } else { tx<-t(t(x.1[,lag.y<=thres])) } } yt<- matrix(yt[lag.y<=thres],ncol=1) sigma<- (t(tx)%*%tx)/sig+v0 mu<- solve(sigma,((t(tx)%*%tx)/sig)%*%(solve((t(tx)%*%tx),t(tx)%*%yt))+v0%*%mu0) ph<- rmvnorm(n = 1, mu, solve(sigma),method="chol") } else { ph<-rep(0.01,p2) y.2<-matrix(yt[lag.y>thres],ncol=1) x.2<-matrix(NA,nrow=p2,ncol=n-p) for ( i in 1:p2){ x.2[i,]<-ay[(p-lagp2[i]+1):(n-lagp2[i])]} if(p2 > 1) { if (constant==1){ tx<-cbind(1,t(x.2[,lag.y>thres])) } else { tx<-t(x.2[,lag.y>thres]) } } if(p2 == 1){ if (constant==1){ tx<-cbind(1,t(t(x.2[,lag.y>thres]))) } else { tx<-t(t(x.2[,lag.y>thres])) } } yt<- matrix(yt[lag.y>thres],ncol=1) sigma<- (t(tx)%*%tx)/sig+v0 mu<- solve(sigma,((t(tx)%*%tx)/sig)%*%(solve((t(tx)%*%tx),t(tx)%*%yt))+v0%*%mu0) ph<- rmvnorm(n=1,mu,solve(sigma),method="chol") } return(ph) }
blr_test_hosmer_lemeshow <- function(model, data = NULL) UseMethod("blr_test_hosmer_lemeshow") blr_test_hosmer_lemeshow.default <- function(model, data = NULL) { blr_check_model(model) if (is.null(data)) { resp <- model$y data <- model$model } else { namu <- formula(model)[[2]] blr_check_data(data) resp_temp <- data[[namu]] resp <- as.numeric(levels(resp_temp))[resp_temp] } hoslem_data <- hoslem_data_prep(model, data, resp) int_limits <- hoslem_int_limits(hoslem_data) h1 <- hoslem_data_mutate(hoslem_data, int_limits = int_limits) hoslem_table <- hoslem_table_data(h1, resp = resp) chisq_stat <- hoslem_chisq_stat(hoslem_table) hoslem_df <- 8 hoslem_pval <- pchisq(chisq_stat, df = hoslem_df, lower.tail = FALSE) result <- list(partition_table = hoslem_table, chisq_stat = chisq_stat, df = hoslem_df, pvalue = hoslem_pval ) class(result) <- "blr_test_hosmer_lemeshow" return(result) } print.blr_test_hosmer_lemeshow <- function(x, ...) { print_blr_test_hosmer_lemeshow(x) } hoslem_data_prep <- function(model, data, resp) { data$prob <- predict.glm(model, newdata = data, type = "response") data$resp <- resp data[order(data$prob), ] } hoslem_int_limits <- function(hoslem_data) { unname(quantile(hoslem_data$prob, probs = seq(0, 1, 0.1))) } hoslem_data_mutate <- function(hoslem_data, int_limits) { d <- hoslem_data d$group <- lest::case_when( d$prob <= int_limits[2] ~ 1, d$prob > int_limits[2] & d$prob <= int_limits[3] ~ 2, d$prob > int_limits[3] & d$prob <= int_limits[4] ~ 3, d$prob > int_limits[4] & d$prob <= int_limits[5] ~ 4, d$prob > int_limits[5] & d$prob <= int_limits[6] ~ 5, d$prob > int_limits[6] & d$prob <= int_limits[7] ~ 6, d$prob > int_limits[7] & d$prob <= int_limits[8] ~ 7, d$prob > int_limits[8] & d$prob <= int_limits[9] ~ 8, d$prob > int_limits[9] & d$prob <= int_limits[10] ~ 9, d$prob > int_limits[10] ~ 10 ) return(d) } hoslem_table_data <- function(data, resp) { d <- data.table(data) d <- d[, .(n = .N, `1s_observed` = sum(resp), avg_prob = mean(prob)), by = group] d <- setDF(d) d$`0s_observed` <- d$n - d$`1s_observed` d$`1s_expected` <- d$n * d$avg_prob d$`0s_expected` <- d$n - d$`1s_expected` d$positive <- ((d$`1s_observed` - d$`1s_expected`) ^ 2 / d$`1s_expected`) d$negative <- ((d$`0s_observed` - d$`0s_expected`) ^ 2 / d$`0s_expected`) return(d) } hoslem_chisq_stat <- function(hoslem_table) { d <- hoslem_table[c('positive', 'negative')] sum(unlist((lapply(d, sum)))) }
default_style_guide_attributes <- function(pd_flat) { initialize_newlines(pd_flat) %>% initialize_spaces() %>% remove_attributes(c("line1", "line2", "col1", "col2", "parent", "id")) %>% initialize_multi_line() %>% initialize_indention_ref_pos_id() %>% initialize_indent() %>% validate_parse_data() } NULL initialize_newlines <- function(pd_flat) { pd_flat$line3 <- lead(pd_flat$line1, default = tail(pd_flat$line2, 1)) pd_flat$newlines <- pd_flat$line3 - pd_flat$line2 pd_flat$lag_newlines <- lag(pd_flat$newlines, default = 0L) pd_flat$line3 <- NULL pd_flat } initialize_spaces <- function(pd_flat) { pd_flat$col3 <- lead(pd_flat$col1, default = tail(pd_flat$col2, 1) + 1L) pd_flat$col2_nl <- ifelse(pd_flat$newlines > 0L, rep(0L, nrow(pd_flat)), pd_flat$col2 ) pd_flat$spaces <- pd_flat$col3 - pd_flat$col2_nl - 1L pd_flat$col3 <- pd_flat$col2_nl <- NULL pd_flat } remove_attributes <- function(pd_flat, attributes) { pd_flat[attributes] <- rep(list(NULL), length(attributes)) pd_flat } initialize_multi_line <- function(pd_flat) { nrow <- nrow(pd_flat) pd_flat$multi_line <- ifelse(pd_flat$terminal, rep(0L, nrow), rep(NA, nrow) ) pd_flat } initialize_indention_ref_pos_id <- function(pd_flat) { pd_flat$indention_ref_pos_id <- NA pd_flat } initialize_indent <- function(pd_flat) { if (!("indent" %in% names(pd_flat))) { pd_flat$indent <- 0 } pd_flat } validate_parse_data <- function(pd_flat) { if (any(pd_flat$spaces < 0L)) { abort("Invalid parse data") } pd_flat }
context("Test models with custom objective") data(agaricus.train, package = "lightgbm") data(agaricus.test, package = "lightgbm") dtrain <- lgb.Dataset(agaricus.train$data, label = agaricus.train$label) dtest <- lgb.Dataset(agaricus.test$data, label = agaricus.test$label) watchlist <- list(eval = dtest, train = dtrain) TOLERANCE <- 1e-6 logregobj <- function(preds, dtrain) { labels <- get_field(dtrain, "label") preds <- 1.0 / (1.0 + exp(-preds)) grad <- preds - labels hess <- preds * (1.0 - preds) return(list(grad = grad, hess = hess)) } evalerror <- function(preds, dtrain) { labels <- get_field(dtrain, "label") preds <- 1.0 / (1.0 + exp(-preds)) err <- as.numeric(sum(labels != (preds > 0.5))) / length(labels) return(list( name = "error" , value = err , higher_better = FALSE )) } param <- list( num_leaves = 8L , learning_rate = 1.0 , objective = logregobj , metric = "auc" ) num_round <- 10L test_that("custom objective works", { bst <- lgb.train(param, dtrain, num_round, watchlist, eval = evalerror) expect_false(is.null(bst$record_evals)) }) test_that("using a custom objective, custom eval, and no other metrics works", { set.seed(708L) bst <- lgb.train( params = list( num_leaves = 8L , learning_rate = 1.0 ) , data = dtrain , nrounds = 4L , valids = watchlist , obj = logregobj , eval = evalerror ) expect_false(is.null(bst$record_evals)) expect_equal(bst$best_iter, 4L) expect_true(abs(bst$best_score - 0.000621) < TOLERANCE) eval_results <- bst$eval_valid(feval = evalerror)[[1L]] expect_true(eval_results[["data_name"]] == "eval") expect_true(abs(eval_results[["value"]] - 0.0006207325) < TOLERANCE) expect_true(eval_results[["name"]] == "error") expect_false(eval_results[["higher_better"]]) })
context("Test RSA formats") sk1 <- read_key("../keys/id_rsa") pk1 <- read_pubkey("../keys/id_rsa.pub") test_that("reading protected keys", { sk2 <- read_key("../keys/id_rsa.pw", password = "test") sk3 <- read_key("../keys/id_rsa.openssh") sk4 <- read_key("../keys/id_rsa.openssh.pw", password = "test") expect_equal(sk1, sk2) expect_equal(sk1, sk3) expect_equal(sk1, sk4) expect_error(read_key("../keys/id_rsa.pw", password = ""), "bad") }) test_that("reading public key formats", { pk2 <- read_pubkey("../keys/id_rsa.pem") pk3 <- read_pubkey("../keys/id_rsa.pub") pk4 <- read_pubkey("../keys/id_rsa.sshpub") pk5 <- read_pubkey("../keys/id_rsa.sshpem2") pk6 <- as.list(sk1)$pubkey expect_equal(pk1, pk2) expect_equal(pk1, pk3) expect_equal(pk1, pk4) expect_equal(pk1, pk5) expect_equal(pk1, pk6) }) test_that("legacy pkcs1 format", { expect_equal(sk1, read_key(write_pkcs1(sk1))) expect_equal(sk1, read_key(write_pkcs1(sk1, password = 'test'), password = 'test')) expect_equal(pk1, read_pubkey(write_pkcs1(pk1))) expect_error(read_key(write_pkcs1(sk1, password = 'test'), password = '')) }) test_that("pubkey ssh fingerprint", { fp <- paste(as.list(pk1)$fingerprint, collapse = "") expect_equal(fp, "3ad46117a06192f13e55beb3cd4cfa6f") pk7 <- read_pubkey(readLines("../keys/authorized_keys")[2]) expect_equal(pk1, pk7) pk8 <- read_pubkey(write_ssh(pk1)) expect_equal(pk1, pk8) }) test_that("signatures", { msg <- readBin("../keys/message", raw(), 100) sig <- readBin("../keys/message.sig.rsa.md5", raw(), 1000) expect_equal(signature_create(msg, md5, sk1), sig) expect_true(signature_verify(msg, sig, md5, pk1)) sig <- readBin("../keys/message.sig.rsa.sha1", raw(), 1000) expect_equal(signature_create(msg, sha1, sk1), sig) expect_true(signature_verify(msg, sig, sha1, pk1)) sig <- readBin("../keys/message.sig.rsa.sha256", raw(), 1000) expect_equal(signature_create(msg, sha256, sk1), sig) expect_true(signature_verify(msg, sig, sha256, pk1)) }) test_that("roundtrip pem format", { expect_equal(pk1, read_pubkey(write_pem(pk1))) expect_equal(sk1, read_key(write_pem(sk1, password = NULL))) expect_equal(pk1, read_pubkey(write_pem(pk1, tempfile()))) expect_equal(sk1, read_key(write_pem(sk1, tempfile(), password = NULL))) }) test_that("roundtrip der format", { expect_equal(pk1, read_pubkey(write_der(pk1), der = TRUE)) expect_equal(sk1, read_key(write_der(sk1), der = TRUE)) expect_equal(pk1, read_pubkey(write_der(pk1, tempfile()), der = TRUE)) expect_equal(sk1, read_key(write_der(sk1, tempfile()), der = TRUE)) }) test_that("signature path interface", { sig <- signature_create("../keys/message", sha256, "../keys/id_rsa") writeBin(sig, tmp <- tempfile()) expect_true(signature_verify("../keys/message", tmp, sha256, "../keys/id_rsa.pub")) }) test_that("rsa_keygen works", { key <- rsa_keygen(1024) expect_is(key, "rsa") expect_equal(as.list(key)$size, 1024) rm(key) key <- rsa_keygen(2048) expect_is(key, "rsa") expect_equal(as.list(key)$size, 2048) rm(key) }) rm(sk1, pk1)
require(Rcpp) require(Matrix) NAMESPACE <- environment() .onLoad <- function(libname, pkgname){ require(methods) loadRcppModules() if (exists(".presto.shutdown.handle.reg", envir = .GlobalEnv) == FALSE) { assign(".presto.shutdown.handle.reg", TRUE, envir = .GlobalEnv) assign(".Last", lastCleanupFunc, envir = .GlobalEnv) } } .onDetach <- function(libpath){ distributedR_shutdown() remove(list=".Last", envir = .GlobalEnv) remove(list=".presto.shutdown.handle.reg", envir = .GlobalEnv) } lastCleanupFunc <- function(){ pkgname <- "distributedR" packagename <- paste("package:",pkgname,sep="") if(packagename %in% search()){ for(pkg in search()[-1L]) { if(grepl("^package:", pkg) && exists(".Depends", pkg, inherits = FALSE) && pkgname %in% get(".Depends", pkg, inherits = FALSE)){ detach(name=pkg, unload=TRUE, force=TRUE, character.only=TRUE) } } detach(name=packagename, unload=TRUE, force=TRUE, character.only=TRUE) } } get_pm_object <- function(){ pm <- mget(".PrestoMaster", envir = .GlobalEnv, ifnotfound=list(NULL)) pm <- pm[[1]] if(is.null(pm)) { clear_presto_r_objs(FALSE) stop("distributedR is not running") } else { if (pm$running() == FALSE) { clear_presto_r_objs(FALSE) stop("distributedR is not running") } } pm } stop_workers <- function(bin_name="R-worker-bin") { pm <- get_pm_object() if (!is.null(pm)) { hosts <- pm$worker_hosts() ports <- pm$worker_ports() rm(pm) for (i in 1:length(hosts)) { cmd = paste("ssh -n", hosts[[i]], "'", "killall", bin_name, "'", sep=" ") message(paste("Running ", cmd, sep="")) system(cmd, wait=FALSE, ignore.stdout=TRUE, ignore.stderr=TRUE) } } return(TRUE) } .pass_env_var <- function() { env_list <- c("ODBCINI", "VERTICAINI") ret_str <- "" for (el in env_list) { ev <- Sys.getenv(el) if (nchar(ev) > 0) { ret_str <- paste(ret_str, "-v ", el, ":", ev, " ", sep="") } } return (ret_str) } clean_string <- function(string) { clean <- string; clean <- gsub(" ","", clean, fixed=TRUE) clean <- gsub("\n","", clean, fixed=TRUE) clean <- gsub("\r","", clean, fixed=TRUE) clean <- gsub("\t","", clean, fixed=TRUE) } start_workers <- function(cluster_conf, storage, bin_path="./bin/start_proto_worker.sh", executors=0, mem=0, rmt_home="", rmt_uid="", log=2) { if (rmt_home == ""){ rmt_home <- getwd() } if (rmt_uid==""){ rmt_uid = Sys.getenv(c("USER")) } library(XML) resourcePool <- data.frame() iscolocated <- isColocated(cluster_conf) if(isTRUE(iscolocated)){ dsnName <- getDSN_Name(cluster_conf) if(is.null(dsnName) | dsnName == 'NULL'){ stop("DSN Name in the config file cannot be null when Co-locating with Vertica.") } if(! require(vRODBC)) library(RODBC) connect <- odbcConnect(dsnName) resourcePool <- sqlQuery(connect, "select memory_size_kb, cpu_affinity_mask, cpu_affinity_mode from resource_pool_status where pool_name = 'distributedr' limit 1"); close(connect) if(nrow(resourcePool)!=1){ stop("Could not locate the distritubedr resource pool. Please create a resource pool named distributedr.") } } worker_conf <- conf2df(cluster_conf) master_addr <- get_pm_object()$get_master_addr() master_port <- get_pm_object()$get_master_port() master_addr <- clean_string(master_addr) master_port <- clean_string(master_port) env_variables <- .pass_env_var() tryCatch({ for(i in 1:nrow(worker_conf)) { r <- worker_conf[i,] r$Hostname <- clean_string(r$Hostname) r$StartPortRange <- clean_string(r$StartPortRange) r$EndPortRange <- clean_string(r$EndPortRange) r$SharedMemory <- clean_string(r$SharedMemory) r$Executors <- clean_string(r$Executors) m <- ifelse(as.numeric(mem)>0, mem, ifelse(is.na(r$SharedMemory), 0, r$SharedMemory)) e <- ifelse(as.numeric(executors)>0, executors, ifelse(is.na(r$Executors), 0, r$Executors)) if (as.numeric(e)>64) { message(paste("Warning: distributedR only supports 64 Executors per worker.\nNumber of Executors has been truncated from ", e, " to 64 for worker ", r$Hostname, "\n", sep="")) e <- 64 } sp_opt <- getOption("scipen") options("scipen"=100000) local_cmd <- paste("cd",rmt_home,";", bin_path, "-m", m, "-e", e, "-s", storage, "-p", r$StartPortRange, "-q", r$EndPortRange, "-l", log, "-a", master_addr, "-b", master_port, "-w", r$Hostname, env_variables, sep=" ") ssh_cmd <- paste("ssh -n", paste(rmt_uid,"@",r$Hostname,sep=""), "'", local_cmd,"'", sep=" ") if(r$Hostname == "localhost" || r$Hostname == "127.0.0.1") { cmd <- local_cmd; } else { cmd <- ssh_cmd; } if(isTRUE(iscolocated)){ cmd <- paste(cmd, "-c", iscolocated, "-o", resourcePool[1,1], "-k", resourcePool[1,2], "-d", resourcePool[1,3], sep=" ") } options("scipen"=sp_opt) system(cmd, wait=FALSE, ignore.stdout=TRUE, ignore.stderr=TRUE) } }, error = handle_presto_exception) return(TRUE) } distributedR_start <- function(inst=0, mem=0, cluster_conf="", executors=0, log=2, storage="worker") { gcinfo(FALSE) gc() ret<-TRUE presto_home="" workers=TRUE rmt_home="" rmt_uid="" yarn=FALSE if(tolower(storage) != "executor" && tolower(storage) != "worker") stop("Argument 'storage' can either be worker or executor") if(!(is.numeric(executors) && floor(executors)==executors && executors>=0)) stop("Argument 'executors' should be a non-negative integral value") if(!(is.numeric(inst) && floor(inst)==inst && inst>=0)) stop("Argument 'inst' should be a non-negative integral value") if(!(is.numeric(mem) && mem>=0)) stop("Argument 'mem' should be a non-negative number") if(executors == 0) executors <- inst pm <- NULL tryCatch(pm <- get_pm_object(), error=function(e){}) if (!is.null(pm)){ stop("distributedR is already running. Call distributedR_shutdown() to terminate existing session\n") } if(presto_home==""){ presto_home<-ifelse(Sys.getenv(c("DISTRIBUTEDR_HOME"))=="", system.file(package='distributedR'), Sys.getenv(c("DISTRIBUTEDR_HOME"))) } if (cluster_conf==""){ cluster_conf <- ifelse(Sys.getenv(c("DR_CLUSTER_CONF")) != "", Sys.getenv(c("DR_CLUSTER_CONF")), paste(presto_home,"/conf/cluster_conf.xml",sep="")) } bin_path <- "./bin/start_proto_worker.sh" normalized_config <- normalizePath(cluster_conf) pm <- new ( PrestoMaster, normalized_config ) if (rmt_home == ""){ rmt_home <- presto_home } dobject_map <- new.env() assign(".PrestoMaster", pm , envir = .GlobalEnv) assign(".PrestoDobjectMap", dobject_map, envir = .GlobalEnv) tryCatch({ if (workers) { start_workers(cluster_conf=cluster_conf, storage=storage, bin_path=bin_path, executors=executors, mem=mem, rmt_home=rmt_home, rmt_uid=rmt_uid, log=log) } else if (yarn){ dr_path <- system.file(package = "distributedR") full_path <- paste(dr_path,'/yarn/yarn.R', sep='') source(full_path) } pm$start(log, storage) },error = function(excpt){ pm <- get_pm_object() distributedR_shutdown(pm) gcinfo(FALSE) gc() ret<-FALSE stop(excpt$message)}) cat(paste("Master address:port - ", pm$get_master_addr(),":",pm$get_master_port(),"\n",sep="")) ret<-ret && (check_dr_version_compatibility()) } conf2df <- function(cluster_conf) { tryCatch({ library(XML) if(file.access(cluster_conf,mode=4)==-1) stop("Cannot read configuration file. Check file permissions.") conf_xml <- xmlToList(cluster_conf) conf_xml$Workers[which(names(conf_xml$Workers) %in% c("comment"))] <- NULL for(i in 1:length(conf_xml$Workers)) { conf_xml$Workers[[i]][which(names(conf_xml$Workers[[i]]) %in% c("comment"))] <- NULL } conf_df <- lapply(conf_xml$Workers, data.frame, stringsAsFactors=FALSE) conf_df <- lapply(conf_df, function(X){ nms <- c("Hostname", "StartPortRange", "EndPortRange", "Executors", "SharedMemory") missing <- setdiff(nms, names(X)) X[missing] <- NA X <- X[nms]}) conf_df <- do.call(rbind.data.frame, conf_df) row.names(conf_df) <- NULL return(conf_df) }, error = function(e) { message(paste("Fail to parse cluster configuration XML file. Start with default values\n", e, "\n", sep="")) }) tryCatch({ pm <- get_pm_object() if (!is.null(pm)) { hosts <- pm$worker_hosts() port_start <- pm$worker_start_port_range() port_end <- pm$worker_end_port_range() conf_df <- data.frame(Hostname=hosts, StartPortRange=port_start, EndPortRange=port_end, Executors=NA, SharedMemory=NA, stringsAsFactors=FALSE) return(conf_df) }}, error = handle_presto_exception) } isColocated <- function(cluster_conf){ tryCatch({ if(file.access(cluster_conf,mode=4)==-1) stop("Cannot read configuration file. Check file permissions.") conf_xml <- xmlToList(cluster_conf) iscolocated <- FALSE if(!is.null(conf_xml$ServerInfo$isColocatedWithVertica)){ iscolocated <- conf_xml$ServerInfo$isColocatedWithVertica } return(as.logical(iscolocated)) }, error = handle_presto_exception) } getDSN_Name <- function(cluster_conf){ tryCatch({ if(file.access(cluster_conf,mode=4)==-1) stop("Cannot read configuration file. Check file permissions.") conf_xml <- xmlToList(cluster_conf) return(conf_xml$ServerInfo$VerticaDSN) }, error = handle_presto_exception) } distributedR_shutdown <- function(pm=NA, quiet=FALSE) { ret<-TRUE if(class(pm) != "Rcpp_PrestoMaster"){ tryCatch(pm <- get_pm_object(), error=function(e){}) if (is.null(pm)){ return(NULL) } } tryCatch(pm$shutdown(),error = function(e){}) ret<-ret && clear_presto_r_objs(FALSE) } clear_presto_r_objs <- function(darray_only=TRUE) { if(darray_only == FALSE) { rm_by_name <- c(".PrestoMaster", ".PrestoDobjectMap", "pm", ".__C__Rcpp_DistributedObject", ".__C__Rcpp_PrestoMaster") for(rl in rm_by_name){ if(exists(rl, envir=.GlobalEnv) == TRUE){ rm(list=c(rl), envir=.GlobalEnv) } } rm_by_class <- c("dobject", "splits", "Rcpp_PrestoMaster") } else { rm_by_class <- c("dobject", "splits") } vars <- ls(all=TRUE, envir=.GlobalEnv) for(v in vars){ for (c in rm_by_class) { eval_obj <- eval(as.name(v), envir=.GlobalEnv) if (inherits(eval_obj, "list") == TRUE) { lsize = length(eval_obj) if (lsize > 0) { for (i in lsize:1) { if (inherits(eval_obj[[i]], c) == TRUE) { eval(parse(text = paste(as.name(v), "[[", i, "]] <- NULL", sep="")), envir=.GlobalEnv) } } } } else { if(inherits(eval_obj, c) == TRUE){ rm(list=c(eval(v)), envir=.GlobalEnv) break } } } } gcinfo(FALSE) gc() TRUE } distributedR_status <- function(help=FALSE){ stat_df <- NA tryCatch({ pm <- get_pm_object() if (!is.null(pm)) { stat <- pm$presto_status() stat_df <- as.data.frame(t(data.frame(stat, check.names = FALSE))) stat_df <- data.frame(row.names(stat_df), stat_df) row.names(stat_df) <- NULL names(stat_df) <- c("Workers", "Inst", "SysMem", "MemUsed", "DarrayQuota", "DarrayUsed") }},error = handle_presto_exception) if(help==TRUE) { cat("\ndistributedR_status - help\nWorkers: list of workers\nInst: number of executors on a worker\n") cat("SysMem: total available system memory (MB)\nMemUsed: memory currently used in a worker (MB)\n") cat("DarrayQuota: memory for darrays (MB)\nDarrayUsed: memory currently used by darray (MB)\n\n") } stat_df } .distributedR_ls <- function(){ tryCatch({ pm <- get_pm_object() if (!is.null(pm)) { pm$presto_ls() } },error = handle_presto_exception) } distributedR_master_info <- function() { tryCatch({ pm <- get_pm_object() if (!is.null(pm)) { master_addr <- pm$get_master_addr() master_port <- as.integer(pm$get_master_port()) asc <- function(x) {strtoi(charToRaw(x),16L)} session_id <- master_port + sum(unlist(lapply(strsplit(master_addr, "")[[1]], asc))) list(address=master_addr, port=master_port, sessionID=session_id) } },error = handle_presto_exception) } handle_presto_exception <- function (excpt){ excpt_class <- class(excpt)[1L] if (excpt_class=="presto::PrestoShutdownException") { message(excpt$message) pm <- get_pm_object() distributedR_shutdown(pm) gcinfo(FALSE) gc() stop() } else if (excpt_class=="presto::PrestoWarningException"){ stop(excpt$message) } else { stop(excpt$message) } } check_dr_version_compatibility<-function(){ nworkers<-get_pm_object()$get_num_workers() temp<-dframe(c(nworkers,1),c(1,1)) foreach(i, 1:npartitions(temp), function(x=splits(temp,i)){ x=data.frame(v=packageVersion("distributedR")) update(x) }, progress=FALSE) vers<-getpartition(temp) master_version<-packageVersion("distributedR") bad_workers<-which(master_version != vers$v) if(length(bad_workers)>0){ message(paste("Error: Incompatible distributedR versions in the cluster (master=",master_version,", worker(s)=",vers$v[(bad_workers[1])],")\nInstall same version across cluster. Shutting down session.", sep="")) distributedR_shutdown() return (FALSE) } return (TRUE) } ddyn.load <- function(x, trace = FALSE){ number_of_executors <- sum(distributedR_status()$Inst) y <- lapply(x, .loadLibrary , trace=trace, num_of_Exec = number_of_executors) } .loadLibrary <- function(x, trace = FALSE, num_of_Exec) { if(!is.character(x)){ stop("x must be of type character") } foreach(i, 1:num_of_Exec, progress=trace, function(x=x) { thePath = paste(find.package(x), "/libs/", x, ".so", sep="") dyn.load(thePath) }) } ddyn.unload <- function(x, trace = FALSE){ number_of_executors <- sum(distributedR_status()$Inst) y <- lapply(x, .unloadLibrary, trace=trace, num_of_Exec = number_of_executors) } .unloadLibrary <- function(x, trace = FALSE, num_of_Exec) { if(!is.character(x)){ stop("x must be of type character") } foreach(i, 1:num_of_Exec, progress=trace, function(x=x) { thePath = paste(find.package(x), "/libs/", x, ".so", sep="") dyn.unload(thePath) }) }
lrppage <- tabItem(tabName = "lrpos", h2("Positive likelihood ratio"), "Calculate precision or sample size for the positive likelihood ratio based on sensitivity and specificity. Formula 10 from Simel et al is used.", tags$br(), "Groups here refer to e.g. the disease status.", tags$br(), "", h4("Please enter the following"), sliderInput("lrp_prev", "Prevalence", min = 0, max = 1, value = .5), sliderInput("lrp_sens", "Sensitivity", min = 0, max = 1, value = .5), sliderInput("lrp_spec", "Specificity", min = 0, max = 1, value = .5), h4("Please enter one of the following"), uiOutput("lrp_resetable_input"), actionButton("lpr_reset_input", "Reset 'Total sample size' or 'Confidence interval width'"), h4("Results"), verbatimTextOutput("lrp_out"), tableOutput("lrp_tab"), "Code to replicate in R:", verbatimTextOutput("lrp_code"), h4("References"), "Simel, DL, Samsa, GP and Matchar, DB (1991) Likelihood ratios with confidence: Sample size estimation for diagnostic test studies. ", tags$i("J Clin Epidemiol"), "44(8), 763-770, DOI 10.1016/0895-4356(91)90128-v" ) lrp_fn <- function(input, code = FALSE){ if(is.na(input$lrp_n) & is.na(input$lrp_ciwidth)) { cat("Awaiting 'number of observations' or 'confidence interval width'") } else { z <- ifelse(is.na(input$lrp_n), paste0("conf.width = ", input$lrp_ciwidth), paste0("n = ", input$lrp_n)) x <- paste0("prec_pos_lr(prev = ", input$lrp_prev, ", sens = ", input$lrp_sens, ", spec = ", input$lrp_spec, ", ", z, ", conf.level = ", input$conflevel, ")") if(code){ cat(x) } else { eval(parse(text = x)) } } }
"covid_testing"
library(epos) context("test_calcCosine") test_that("Test calcCosine if it calculates the correct vector with cosine coefficients", { expect_that(calcCosine(c(1,2,3), c(2,3,4)), equals(1-c(0.0, 0.5, 2/3))) })
setMethod("cnetplot", signature(x = "enrichResult"), function(x, showCategory = 5, foldChange = NULL, layout = "kk", ...) { cnetplot.enrichResult(x, showCategory = showCategory, foldChange = foldChange, layout = layout, ...) }) setMethod("cnetplot", signature(x = "list"), function(x, showCategory = 5, foldChange = NULL, layout = "kk", ...) { cnetplot.enrichResult(x, showCategory = showCategory, foldChange = foldChange, layout = layout, ...) }) setMethod("cnetplot", signature(x = "gseaResult"), function(x, showCategory = 5, foldChange = NULL, layout = "kk", ...) { cnetplot.enrichResult(x, showCategory = showCategory, foldChange = foldChange, layout = layout, ...) }) setMethod("cnetplot", signature(x = "compareClusterResult"), function(x, showCategory = 5, foldChange = NULL, layout = "kk", ...) { cnetplot.compareClusterResult(x, showCategory = showCategory, foldChange = foldChange, layout = layout, ...) }) cnetplot.enrichResult <- function(x, showCategory = 5, foldChange = NULL, layout = "kk", colorEdge = FALSE, circular = FALSE, node_label = "all", cex_category = 1, cex_gene = 1, cex_label_category = 1, cex_label_gene = 1, color_category = " color_gene = " shadowtext = "all", ...) { label_size_category <- 5 label_size_gene <- 5 node_label <- match.arg(node_label, c("category", "gene", "all", "none")) if (circular) { layout <- "linear" geom_edge <- geom_edge_arc } else { geom_edge <- geom_edge_link } if (is.logical(shadowtext)) { shadowtext <- ifelse(shadowtext, "all", "none") } shadowtext_category <- shadowtext_gene <- FALSE if (shadowtext == "all") shadowtext_category <- shadowtext_gene <- TRUE if (shadowtext == "category") shadowtext_category <- TRUE if (shadowtext == "gene") shadowtext_gene <- TRUE geneSets <- extract_geneSets(x, showCategory) g <- list2graph(geneSets) if (!inherits(x, "list")) { foldChange <- fc_readable(x, foldChange) } size <- sapply(geneSets, length) V(g)$size <- min(size)/2 n <- length(geneSets) V(g)$size[1:n] <- size node_scales <- c(rep(cex_category, n), rep(cex_gene, (length(V(g)) - n))) if (colorEdge) { E(g)$category <- rep(names(geneSets), sapply(geneSets, length)) edge_layer <- geom_edge(aes_(color = ~category), alpha=.8) } else { edge_layer <- geom_edge(alpha=.8, colour='darkgrey') } if (!is.null(foldChange)) { fc <- foldChange[V(g)$name[(n+1):length(V(g))]] V(g)$color <- NA V(g)$color[(n+1):length(V(g))] <- fc show_legend <- c(TRUE, FALSE) names(show_legend) <- c("color", "size") p <- ggraph(g, layout=layout, circular = circular) p <- p + edge_layer + geom_node_point(aes_(color=~I(color_category), size=~size), data = p$data[1:n, ]) + scale_size(range=c(3, 8) * cex_category) + ggnewscale::new_scale_color() + geom_node_point(aes_(color=~as.numeric(as.character(color)), size=~I(3 * cex_gene)), data = p$data[-(1:n), ], show.legend = show_legend) + scale_colour_gradient2(name = "fold change", low = "blue", mid = "white", high = "red", guide = guide_colorbar(order = 2)) } else { V(g)$color <- color_gene V(g)$color[1:n] <- color_category p <- ggraph(g, layout=layout, circular=circular) p <- p + edge_layer + geom_node_point(aes_(color=~I(color), size=~size), data = p$data[1:n, ]) + scale_size(range=c(3, 8) * cex_category) + geom_node_point(aes_(color=~I(color), size=~I(3 * cex_gene)), data = p$data[-(1:n), ], show.legend = FALSE) } p <- p + theme_void() if (node_label == "category") { p <- add_node_label(p = p, data = p$data[1:n,], label_size_node = label_size_category, cex_label_node = cex_label_category, shadowtext = shadowtext_category) } else if (node_label == "gene") { p <- add_node_label(p = p, data = p$data[-c(1:n),], label_size_node = label_size_gene, cex_label_node = cex_label_gene, shadowtext = shadowtext_gene) } else if (node_label == "all") { p <- add_node_label(p = p, data = p$data[-c(1:n),], label_size_node = label_size_gene, cex_label_node = cex_label_gene, shadowtext = shadowtext_gene) p <- add_node_label(p = p, data = p$data[1:n,], label_size_node = label_size_category, cex_label_node = cex_label_category, shadowtext = shadowtext_category) } if (!is.null(foldChange)) { p <- p + guides(size = guide_legend(order = 1), color = guide_colorbar(order = 2)) } return(p) } cnetplot.compareClusterResult <- function(x, showCategory = 5, foldChange = NULL, layout = "kk", colorEdge = FALSE, circular = FALSE, node_label = "all", split=NULL, pie = "equal", cex_category = 1, cex_gene = 1, legend_n = 5, x_loc = NULL, y_loc = NULL, cex_label_category = 1, cex_label_gene = 1, shadowtext = "all", ...) { label_size_category <- 2.5 label_size_gene <- 2.5 range_category_size <- c(3, 8) range_gene_size <- c(3, 3) if (is.logical(shadowtext)) { shadowtext <- ifelse(shadowtext, "all", "none") } shadowtext_category <- shadowtext_gene <- FALSE if (shadowtext == "all") shadowtext_category <- shadowtext_gene <- TRUE if (shadowtext == "category") shadowtext_category <- TRUE if (shadowtext == "gene") shadowtext_gene <- TRUE y <- fortify(x, showCategory = showCategory, includeAll = TRUE, split = split) y$Cluster <- sub("\n.*", "", y$Cluster) if ("core_enrichment" %in% colnames(y)) { y$geneID <- y$core_enrichment } y_union <- merge_compareClusterResult(y) node_label <- match.arg(node_label, c("category", "gene", "all", "none")) if (circular) { layout <- "linear" geom_edge <- geom_edge_arc } else { geom_edge <- geom_edge_link } geneSets <- setNames(strsplit(as.character(y_union$geneID), "/", fixed = TRUE), y_union$Description) n <- length(geneSets) g <- list2graph(geneSets) edge_layer <- geom_edge(alpha=.8, colour='darkgrey') if(is.null(dim(y)) | nrow(y) == 1) { V(g)$size <- 1 V(g)$size[1] <- 3 V(g)$color <- " V(g)$color[1] <- " title <- y$Cluster p <- ggraph(g, layout=layout, circular=circular) p <- p + edge_layer + theme_void() + geom_node_point(aes_(color=~I(color), size=~size), data = p$data[1:n, ]) + scale_size(range = range_category_size * cex_category) + ggnewscale::new_scale("size") + geom_node_point(aes_(color=~I(color), size=~size), data = p$data[-(1:n), ], show.legend = FALSE) + scale_size(range = range_gene_size * cex_gene) + labs(title= title) + theme(legend.position="none") p <- add_node_label(p = p, data = p$data[-c(1:n),], label_size_node = label_size_gene, cex_label_node = cex_label_gene, shadowtext = shadowtext_gene) p <- add_node_label(p = p, data = p$data[1:n,], label_size_node = label_size_category, cex_label_node = cex_label_category, shadowtext = shadowtext_category) return(p) } if(is.null(dim(y_union)) | nrow(y_union) == 1) { p <- ggraph(g, "tree") + edge_layer } else { p <- ggraph(g, layout=layout, circular=circular) + edge_layer } ID_Cluster_mat <- prepare_pie_category(y, pie=pie) gene_Cluster_mat <- prepare_pie_gene(y) if(ncol(ID_Cluster_mat) > 1) { clusters <- match(colnames(ID_Cluster_mat),colnames(gene_Cluster_mat)) ID_Cluster_mat <- ID_Cluster_mat[,clusters] gene_Cluster_mat <- gene_Cluster_mat[,clusters] } ID_Cluster_mat2 <- rbind(ID_Cluster_mat,gene_Cluster_mat) aa <- p$data ii <- match(rownames(ID_Cluster_mat2), aa$name) ID_Cluster_mat2$x <- aa$x[ii] ID_Cluster_mat2$y <- aa$y[ii] ii <- match(rownames(ID_Cluster_mat2)[1:n], y_union$Description) node_scales <- c(rep(cex_category, n), rep(cex_gene, (length(V(g)) - n))) sum_yunion <- sum(y_union[ii, "Count"]) sizee <- sqrt(y_union[ii, "Count"] / sum_yunion) ID_Cluster_mat2$radius <- min(sizee)/2 * sqrt(cex_gene) ID_Cluster_mat2$radius[1:n] <- sizee * sqrt(cex_category) if(is.null(x_loc)) x_loc <- min(ID_Cluster_mat2$x) if(is.null(y_loc)) y_loc <- min(ID_Cluster_mat2$y) if (node_label == "category") { p$data$name[(n+1):nrow(p$data)] <- "" } else if (node_label == "gene") { p$data$name[1:n] <- "" } else if (node_label == "none") { p$data$name <- "" } if(ncol(ID_Cluster_mat2) > 4) { if (!is.null(foldChange)) { log_fc <- abs(foldChange) genes <- rownames(ID_Cluster_mat2)[(n+1):nrow(ID_Cluster_mat2)] gene_fc <- rep(1,length(genes)) gid <- names(log_fc) ii <- gid %in% names(x@gene2Symbol) gid[ii] <- x@gene2Symbol[gid[ii]] ii <- match(genes,gid) gene_fc <- log_fc[ii] gene_fc[is.na(gene_fc)] <- 1 gene_fc2 <- c(rep(1,n),gene_fc) ID_Cluster_mat2$radius <- min(sizee)/2*gene_fc2 * sqrt(cex_gene) ID_Cluster_mat2$radius[1:n] <- sizee * sqrt(cex_category) p <- p + geom_scatterpie(aes_(x=~x,y=~y,r=~radius), data=ID_Cluster_mat2[1:n, ], cols=colnames(ID_Cluster_mat2)[1:(ncol(ID_Cluster_mat2)-3)], color=NA) + geom_scatterpie_legend(ID_Cluster_mat2$radius[1:n], x=x_loc, y=y_loc + 3, n = legend_n, labeller=function(x) round(x^2 * sum_yunion / cex_category)) + geom_scatterpie(aes_(x=~x,y=~y,r=~radius), data=ID_Cluster_mat2[-(1:n), ], cols=colnames(ID_Cluster_mat2)[1:(ncol(ID_Cluster_mat2)-3)], color=NA, show.legend = FALSE) + coord_equal()+ geom_scatterpie_legend(ID_Cluster_mat2$radius[(n+1):nrow(ID_Cluster_mat2)], x=x_loc, y=y_loc, n = legend_n, labeller=function(x) round(x*2/(min(sizee))/sqrt(cex_gene),3)) + ggplot2::annotate("text", x = x_loc + 3, y = y_loc, label = "log2FC") + ggplot2::annotate("text", x = x_loc + 3, y = y_loc + 3, label = "gene number") p <- add_node_label(p = p, data = p$data[-c(1:n),], label_size_node = label_size_gene, cex_label_node = cex_label_gene, shadowtext = shadowtext_gene) p <- add_node_label(p = p, data = p$data[1:n,], label_size_node = label_size_category, cex_label_node = cex_label_category, shadowtext = shadowtext_category) p <- p + theme_void() + labs(fill = "Cluster") return(p) } p <- p + geom_scatterpie(aes_(x=~x,y=~y,r=~radius), data=ID_Cluster_mat2[1:n, ], cols=colnames(ID_Cluster_mat2)[1:(ncol(ID_Cluster_mat2)-3)], color=NA) + geom_scatterpie(aes_(x=~x,y=~y,r=~radius), data=ID_Cluster_mat2[-(1:n), ], cols=colnames(ID_Cluster_mat2)[1:(ncol(ID_Cluster_mat2)-3)], color=NA, show.legend = FALSE) + coord_equal() + geom_scatterpie_legend(ID_Cluster_mat2$radius[1:n], x=x_loc, y=y_loc, n = legend_n, labeller=function(x) round(x^2 * sum_yunion / cex_category)) + ggplot2::annotate("text", x = x_loc + 3, y = y_loc, label = "gene number") p <- add_node_label(p = p, data = p$data[-c(1:n),], label_size_node = label_size_gene, cex_label_node = cex_label_gene, shadowtext = shadowtext_gene) p <- add_node_label(p = p, data = p$data[1:n,], label_size_node = label_size_category, cex_label_node = cex_label_category, shadowtext = shadowtext_category) p <- p + theme_void() + labs(fill = "Cluster") return(p) } title <- colnames(ID_Cluster_mat2)[1] V(g)$size <- ID_Cluster_mat2$radius V(g)$color <- " V(g)$color[1:n] <- " ggraph(g, layout=layout, circular=circular) + edge_layer + geom_node_point(aes_(color=~I(color), size=~size), data = p$data[1:n, ]) + scale_size(range = range_category_size * cex_category) + ggnewscale::new_scale("size") + geom_node_point(aes_(color=~I(color), size=~size), data = p$data[-(1:n), ], show.legend = FALSE) + scale_size(range = range_gene_size * cex_gene) + labs(title= title) p <- add_node_label(p = p, data = p$data[-c(1:n),], label_size_node = label_size_gene, cex_label_node = cex_label_gene, shadowtext = shadowtext_gene) p <- add_node_label(p = p, data = p$data[1:n,], label_size_node = label_size_category, cex_label_node = cex_label_category, shadowtext = shadowtext_category) p <- p + theme_void() + theme(legend.position="none") }
test_that("works as expected", { ecopy( iris, showrowcolnames = "cols", show = 'show' ) ecopy( iris ) ecopy( 'hello' ) result = tryCatch({ readClipboard(format = 1, raw = FALSE) }, error = function(e) {} ) if(!is.null(result)){ expect_equal(result, 'hello') expect_error( { ecopy( iris, showrowcolnames = "wrong", show = 'show' ) }, 'should be one of' ) } })
fit_SKAT_NULL = function(kins = NULL, phenoFile = "", phenoCol = "", traitType = "quantitative", invNormalize = FALSE, covarColList = NULL, qCovarCol = NULL, sampleIDColinphenoFile = "", outputPrefix = "", isCovariateTransform = FALSE, sampleFileForDosages="", methodforRelatedSample="EMMAX", isDiagofKinSetAsOne = FALSE){ modelOut=paste0(outputPrefix, ".rda") if(!file.exists(modelOut)){ file.create(modelOut, showWarnings = TRUE) } if(!file.exists(phenoFile)){ stop("ERROR! phenoFile ", phenoFile, " does not exsit\n") }else{ ydat = data.table:::fread(phenoFile, header=T, stringsAsFactors=FALSE, colClasses=list(character = sampleIDColinphenoFile)) data = data.frame(ydat) for(i in c(phenoCol, covarColList, qCovarCol, sampleIDColinphenoFile)){ if(!(i %in% colnames(data))){ stop("ERROR! column for ", i, " does not exsit in the phenoFile \n") } } if(length(covarColList) > 0){ formula = paste0(phenoCol,"~", paste0(covarColList,collapse="+")) hasCovariate = TRUE }else{ formula = paste0(phenoCol,"~ 1") hasCovariate = FALSE } cat("formula is ", formula,"\n") formula.null = as.formula(formula) mmat = model.frame(formula.null, data, na.action=NULL) mmat$IID = data[,which(sampleIDColinphenoFile == colnames(data))] mmat_nomissing = mmat[complete.cases(mmat),] cat(nrow(mmat_nomissing), " samples have non-missing phenotypes\n") } if(traitType == "quantitative"){ if(invNormalize){ cat("Perform the inverse nomalization for ", phenoCol, "\n") invPheno = qnorm((rank(mmat_nomissing[,which(colnames(mmat_nomissing) == phenoCol)], na.last="keep")-0.5)/sum(!is.na(mmat_nomissing[,which(colnames(mmat_nomissing) == phenoCol)]))) mmat_nomissing[,which(colnames(mmat_nomissing) == phenoCol)] = invPheno } } if(!is.null(kins)){ if(isDiagofKinSetAsOne){ diag(kins) = 1 } if(methodforRelatedSample == "EMMAX"){ if(traitType == "quantitative"){ out.obj = SKAT:::SKAT_NULL_emmaX(formula.null, data = mmat_nomissing, K=kins) }else{ stop("SKAT_NULL_emmaX does not work for binary tratis \n") } }else if(methodforRelatedSample == "GMMAT"){ if(traitType == "quantitative"){ out.obj = GMMAT:::glmmkin(formula.null, data = mmat_nomissing, family=gaussian(link = "identity"), kins=as.matrix(kins), verbose=T) }else{ out.obj = GMMAT:::glmmkin(formula.null, data = mmat_nomissing, family=binomial(link = "logit"), kins=as.matrix(kins), verbose=T) } } }else{ if(traitType == "quantitative"){ out.obj = SKAT:::SKAT_Null_Model(formula.null, data = mmat_nomissing, out_type="C") }else{ out.obj = SKAT:::SKAT_Null_Model(formula.null, data = mmat_nomissing, out_type="D") } } out.obj$sampleID = mmat_nomissing$IID out.obj$traitType = traitType save(out.obj, file = modelOut) }
vote_mun_zone_local <- function(year, uf = "all", ascii = FALSE, encoding = "latin1", export = FALSE, temp = TRUE){ test_encoding(encoding) test_local_year(year) uf <- test_uf(uf) filenames <- paste0("/votacao_candidato_munzona_", year, ".zip") dados <- paste0(file.path(tempdir()), filenames) url <- "https://cdn.tse.jus.br/estatistica/sead/odsele/votacao_candidato_munzona%s" download_unzip(url, dados, filenames, year) if(temp == FALSE){ unlink(dados) } setwd(as.character(year)) banco <- juntaDados(uf, encoding, FALSE) setwd("..") unlink(as.character(year), recursive = T) if(year <= 2012){ names(banco) <- c("DATA_GERACAO", "HORA_GERACAO", "ANO_ELEICAO", "NUM_TURNO", "DESCRICAO_ELEICAO", "SIGLA_UF", "SIGLA_UE", "CODIGO_MUNICIPIO", "NOME_MUNICIPIO", "NUMERO_ZONA", "CODIGO_CARGO", "NUMERO_CAND", "SQ_CANDIDATO", "NOME_CANDIDATO", "NOME_URNA_CANDIDATO", "DESCRICAO_CARGO", "COD_SIT_CAND_SUPERIOR", "DESC_SIT_CAND_SUPERIOR", "CODIGO_SIT_CANDIDATO", "DESC_SIT_CANDIDATO", "CODIGO_SIT_CAND_TOT", "DESC_SIT_CAND_TOT", "NUMERO_PARTIDO", "SIGLA_PARTIDO", "NOME_PARTIDO", "SEQUENCIAL_LEGENDA", "NOME_COLIGACAO", "COMPOSICAO_LEGENDA", "TOTAL_VOTOS") } else { names(banco) <- c("DATA_GERACAO", "HORA_GERACAO", "ANO_ELEICAO", "COD_TIPO_ELEICAO", "NOME_TIPO_ELEICAO", "NUM_TURNO", "COD_ELEICAO", "DESCRICAO_ELEICAO", "DATA_ELEICAO", "ABRANGENCIA", "SIGLA_UF", "SIGLA_UE", "NOME_UE", "CODIGO_MUNICIPIO", "NOME_MUNICIPIO", "NUMERO_ZONA", "CODIGO_CARGO", "DESCRICAO_CARGO", "SQ_CANDIDATO", "NUMERO_CAND", "NOME_CANDIDATO", "NOME_URNA_CANDIDATO", "NOME_SOCIAL_CANDIDATO", "CODIGO_SIT_CANDIDATO", "DESC_SIT_CANDIDATO", "COD_SIT_CAND_SUPERIOR", "DESC_SIT_CAND_SUPERIOR", "TIPO_AGREMIACAO", "NUMERO_PARTIDO", "SIGLA_PARTIDO", "NOME_PARTIDO", "SEQUENCIAL_LEGENDA", "NOME_COLIGACAO", "COMPOSICAO_LEGENDA", "CODIGO_SIT_CAND_TOT", "DESC_SIT_CAND_TOT", "TRANSITO","TOTAL_VOTOS" ) } if(ascii == T) banco <- to_ascii(banco, encoding) if(export) export_data(banco) message("Done.\n") return(banco) }
context("test-function") test_that("test-function", { N <- 100 declaration <- randomizr::declare_ra(N = N, m = 50) Z <- randomizr::conduct_ra(declaration) X <- rnorm(N) Y <- .9 * X + .2 * Z + rnorm(N) df <- data.frame(Y, X, Z) test_fun <- function(data) { with(data, var(Y[Z == 1]) - var(Y[Z == 0])) } ri_out <- conduct_ri( test_function = test_fun, declaration = declaration, assignment = "Z", sharp_hypothesis = 0, data = df, sims = 100 ) plot(ri_out) summary(ri_out) balance_fun <- function(data) { f_stat <- summary(lm(Z ~ X, data = data))$f[1] names(f_stat) <- NULL return(f_stat) } balance_fun(df) ri_out <- conduct_ri( test_function = balance_fun, declaration = declaration, assignment = "Z", sharp_hypothesis = 0, data = df, sims = 100 ) plot(ri_out) summary(ri_out) summary(lm(Z ~ X, data = df)) expect_true(TRUE) })
library(dplyr) library(corrr) knitr::opts_chunk$set(collapse = TRUE, comment = " library(corrr) d <- correlate(mtcars, quiet = TRUE) d library(dplyr) d %>% filter(cyl > .7) d %>% select(term, mpg, cyl, disp) d %>% filter(cyl > .7) %>% select(term, mpg, cyl, disp) library(purrr) d %>% select(-term) %>% map_dbl(~ mean(., na.rm = TRUE)) d %>% focus(mpg, cyl) d %>% focus(mpg:drat, mirror = TRUE) %>% shave() %>% fashion() d %>% focus(mpg:drat, mirror = TRUE) %>% shave(upper = FALSE) %>% rplot() d %>% focus(mpg:drat, mirror = TRUE) %>% rearrange(absolute = FALSE) %>% shave() %>% rplot()
paths_allowed <- function( paths = "/", domain = "auto", bot = "*", user_agent = utils::sessionInfo()$R.version$version.string, check_method = c("spiderbar"), warn = getOption("robotstxt_warn", TRUE), force = FALSE, ssl_verifypeer = c(1,0), use_futures = TRUE, robotstxt_list = NULL, verbose = FALSE, rt_request_handler = robotstxt::rt_request_handler, rt_robotstxt_http_getter = robotstxt::get_robotstxt_http_get, on_server_error = on_server_error_default, on_client_error = on_client_error_default, on_not_found = on_not_found_default, on_redirect = on_redirect_default, on_domain_change = on_domain_change_default, on_file_type_mismatch = on_file_type_mismatch_default, on_suspect_content = on_suspect_content_default ){ if( all(domain == "auto") ){ domain <- guess_domain(paths) paths <- remove_domain(paths) } if( all(is.na(domain)) & !is.null(robotstxt_list) ){ domain <- "auto" } if( is.null(robotstxt_list) ){ robotstxt_list <- get_robotstxts( domain = domain, warn = warn, force = force, user_agent = user_agent, ssl_verifypeer = ssl_verifypeer, use_futures = use_futures, verbose = verbose, rt_request_handler = rt_request_handler, rt_robotstxt_http_getter = rt_robotstxt_http_getter, on_server_error = on_server_error, on_client_error = on_client_error, on_not_found = on_not_found, on_redirect = on_redirect, on_domain_change = on_domain_change, on_file_type_mismatch = on_file_type_mismatch, on_suspect_content = on_suspect_content ) names(robotstxt_list) <- domain } if ( check_method[1] == "robotstxt"){ warning( " This check method is deprecated, please stop using it - use 'spiderbar' instead or do not specify check_method parameter at all. " ) } res <- paths_allowed_worker_spiderbar( domain = domain, bot = bot, paths = paths, robotstxt_list = robotstxt_list ) return(res) }
row_mean_dgcmatrix <- function(matrix) { .Call('_sctransform_row_mean_dgcmatrix', PACKAGE = 'sctransform', matrix) } row_mean_grouped_dgcmatrix <- function(matrix, group, shuffle) { .Call('_sctransform_row_mean_grouped_dgcmatrix', PACKAGE = 'sctransform', matrix, group, shuffle) } row_gmean_dgcmatrix <- function(matrix, eps) { .Call('_sctransform_row_gmean_dgcmatrix', PACKAGE = 'sctransform', matrix, eps) } row_gmean_grouped_dgcmatrix <- function(matrix, group, eps, shuffle) { .Call('_sctransform_row_gmean_grouped_dgcmatrix', PACKAGE = 'sctransform', matrix, group, eps, shuffle) } row_nonzero_count_dgcmatrix <- function(matrix) { .Call('_sctransform_row_nonzero_count_dgcmatrix', PACKAGE = 'sctransform', matrix) } row_nonzero_count_grouped_dgcmatrix <- function(matrix, group) { .Call('_sctransform_row_nonzero_count_grouped_dgcmatrix', PACKAGE = 'sctransform', matrix, group) } row_var_dgcmatrix <- function(x, i, rows, cols) { .Call('_sctransform_row_var_dgcmatrix', PACKAGE = 'sctransform', x, i, rows, cols) } grouped_mean_diff_per_row <- function(x, group, shuffle) { .Call('_sctransform_grouped_mean_diff_per_row', PACKAGE = 'sctransform', x, group, shuffle) } mean_boot <- function(x, N, S) { .Call('_sctransform_mean_boot', PACKAGE = 'sctransform', x, N, S) } mean_boot_grouped <- function(x, group, N, S) { .Call('_sctransform_mean_boot_grouped', PACKAGE = 'sctransform', x, group, N, S) } distribution_shift <- function(x) { .Call('_sctransform_distribution_shift', PACKAGE = 'sctransform', x) } qpois_reg <- function(X, Y, tol, maxiters, minphi, returnfit) { .Call('_sctransform_qpois_reg', PACKAGE = 'sctransform', X, Y, tol, maxiters, minphi, returnfit) }
ia.samp<-function(n.pair,conj=0){ mat<-matrix(0,2^n.pair,n.pair) for(i in 1:n.pair) mat[, i]<-rep(rep(c(1,conj),e=2^(n.pair-i)),2^(i-1)) mat }
image_WINDOW <- function(){ initializeDialog(title = gettextRcmdr("Drawing Heatmaps"),use.tabs=TRUE,tabs=c("tab1","tab2")) AllResults <- .makeResultList() onOK <- function(){} onCancel <- function() { if (GrabFocus()) tkgrab.release(top) tkdestroy(top) tkfocus(CommanderWindow()) } onDataImage <- function(){ transf <- tclvalue(trans_vars) if(transf=="none"){ temp.data <- get(ActiveDataSet(),envir=.GlobalEnv) if(.is.binary.matrix(as.matrix(temp.data))){ col="c('grey','blue')" image.command <- paste0("image(c(1:dim(",ActiveDataSet(),")[2]),c(1:dim(",ActiveDataSet(),")[1]),t(as.matrix(",ActiveDataSet(),")),col=",col,",axes=FALSE,useRaster=TRUE,ylab='Genes',xlab='Samples')") doItAndPrint(image.command) } else{ image.command <- paste0("image(c(1:dim(",ActiveDataSet(),")[2]),c(1:dim(",ActiveDataSet(),")[1]),t(as.matrix(",ActiveDataSet(),")),col=viridis(511),axes=FALSE,useRaster=TRUE,ylab='Genes',xlab='Samples')") doItAndPrint(image.command) } } if(transf=="bin"){ col="c('grey','blue')" thres <- tclvalue(thres_vars) trans.command <- paste0("x <- binarize(x=as.matrix(",ActiveDataSet(),"),threshold=",thres,")") doItAndPrint(trans.command) image.command <- paste0("image(c(1:dim(x)[2]),c(1:dim(x)[1]),t(x),col=",col,",axes=FALSE,useRaster=TRUE,ylab='Genes',xlab='Samples')") doItAndPrint(image.command) } if(transf=="disc"){ nlvl <- tclvalue(level_vars) quan <- ifelse(tclvalue(quantile_vars)=='1',TRUE,FALSE) trans.command <- paste0("x <- discretize(x=as.matrix(",ActiveDataSet(),"),nof=",nlvl,",quant=",quan,")") doItAndPrint(trans.command) image.command <- paste0("image(c(1:dim(x)[2]),c(1:dim(x)[1]),t(x),col=viridis(511,begin=1,end=0),axes=FALSE,useRaster=TRUE,ylab='Genes',xlab='Samples')") doItAndPrint(image.command) } } onResultImage <- function(){ sel <- as.integer(tkcurselection(resultBox))+1 if(length(AllResults)==0){ justDoIt(paste0("warning('No available results',call.=FALSE)")) } else if(length(sel)==0){ justDoIt(paste0("warning('No result selected',call.=FALSE)")) } else{ SelResult <- AllResults[sel] eval(parse(text=paste0("temp.correct <- .correctdataforresult(",SelResult,")"))) if(temp.correct){ transf <- tclvalue(trans_vars2) bin.thres <- tclvalue(thres_vars2) disc.nof <- tclvalue(level_vars2) disc.quant <- ifelse(tclvalue(quantile_vars)=='1',TRUE,FALSE) BC <- tclvalue(BC_vars) reorder <- ifelse(tclvalue(reorder_vars)=='1',TRUE,FALSE) background <- ifelse(tclvalue(background_vars)=='1',TRUE,FALSE) zeroBC <- ifelse(tclvalue(zeroBC_vars)=='1',TRUE,FALSE) thresZ <- tclvalue(thresZ_vars) thresL <- tclvalue(thresL_vars) BCResult <- .tobiclust_transf(SelResult,thresZ=paste0(thresZ),thresL=paste0(thresL)) BC.highlight <- tclvalue(BChighlightSel_vars) if(length(BC.highlight)==0){BC.highlight <- NULL} BC.highlight.opacity <- tclvalue(BChighlightOpa_vars) image.command <- paste0("HeatmapBC.GUI(data=",ActiveDataSet(),",res=",BCResult,",BC=",BC,",reorder=",reorder,",background=",background,",zeroBC=",zeroBC,",transf='",transf,"',bin.thres=",bin.thres,",disc.nof=",disc.nof,",disc.quant=",disc.quant,",BC.highlight=",BC.highlight,",BC.highlight.opacity=",BC.highlight.opacity,")") doItAndPrint(image.command) } } } tab1Frame <- tkframe(tab1) transformFrame <- tkframe(tab1Frame) radioButtons(transformFrame,name="radioTransform",buttons=c("bin","disc","none"),values=c("bin","disc","none"),labels=gettextRcmdr(c("Binarization:","Discretation:","None")),initialValue="none",title="") trans_vars <- radioTransformVariable tkgrid(labelRcmdr(transformFrame,fg=getRcmdr("title.color"),font="RcmdrTitleFont" ,text=gettextRcmdr("Data Manipulation")),sticky="nw") transformEntry <- tkframe(transformFrame) thres_entry <- tkframe(transformEntry) thres_vars <- tclVar("NA") thres_field <- ttkentry(thres_entry,width=3,textvariable=thres_vars) tkgrid(labelRcmdr(thres_entry,text=gettextRcmdr("Threshold (NA=median)")),thres_field,sticky="nw") tkgrid(thres_entry,stick="nw") disc_pms <- tkframe(transformEntry) level_entry <- tkframe(disc_pms) level_vars <- tclVar("10") level_field <- ttkentry(level_entry,width=3,textvariable=level_vars) tkgrid(labelRcmdr(level_entry,text=gettextRcmdr("Number of Levels")),level_field,sticky="nw") checkBoxes(disc_pms,frame="quantilesCheck",boxes=paste("quantile"),initialValues=0,labels=gettextRcmdr("Use quantiles? (else equally spaced)")) quantile_vars <- quantileVariable tkgrid(level_entry,quantilesCheck,sticky="nw") tkgrid.configure(quantilesCheck,padx="10") tkgrid(disc_pms,sticky="nw") tkgrid(radioTransformFrame,transformEntry,stick='nw') tkgrid(transformFrame,stick="nw",padx="6",pady="6") drawdataButton <- buttonRcmdr(tab1Frame,command=onDataImage,text=gettextRcmdr("Heatmap"),foreground="darkgreen",default="active",width="12",borderwidth=3) tkgrid(drawdataButton,sticky="w",pady="15",padx="10") tab2Frame <- tkframe(tab2) ResultTransFrame <- tkframe(tab2Frame) resultFrame <- tkframe(ResultTransFrame) resultBox <- tklistbox( resultFrame , height=5, exportselection="FALSE", selectmode="single", background="white") for (result in AllResults) tkinsert(resultBox, "end", result) resultScroll <- ttkscrollbar(resultFrame,command=function(...) tkyview(resultBox, ...)) tkconfigure(resultBox, yscrollcommand=function(...) tkset(resultScroll, ...)) if(length(AllResults)!=0){tkselection.set(resultBox,0)} tkgrid(labelRcmdr(resultFrame,fg=getRcmdr("title.color"),font="RcmdrTitleFont",text=gettextRcmdr("Biclustering Results:")),sticky="nw") tkgrid(resultBox,resultScroll) tkgrid.configure(resultScroll,sticky="ns") transformFrame2 <- tkframe(ResultTransFrame) radioButtons(transformFrame2,name="radioTransform2",buttons=c("bin","disc","none"),values=c("bin","disc","none"),labels=gettextRcmdr(c("Binarization:","Discretation:","None")),initialValue="none",title="") trans_vars2 <- radioTransform2Variable tkgrid(labelRcmdr(transformFrame2,fg=getRcmdr("title.color"),font="RcmdrTitleFont" ,text=gettextRcmdr("Data Manipulation")),sticky="nw") transformEntry2 <- tkframe(transformFrame2) thres_entry2 <- tkframe(transformEntry2) thres_vars2 <- tclVar("NA") thres_field2 <- ttkentry(thres_entry2,width=3,textvariable=thres_vars2) tkgrid(labelRcmdr(thres_entry2,text=gettextRcmdr("Threshold (NA=median)")),thres_field2,sticky="nw") tkgrid(thres_entry2,stick="nw") disc_pms2 <- tkframe(transformEntry2) level_entry2 <- tkframe(disc_pms2) level_vars2 <- tclVar("10") level_field2 <- ttkentry(level_entry2,width=3,textvariable=level_vars2) tkgrid(labelRcmdr(level_entry2,text=gettextRcmdr("Number of Levels")),level_field2,sticky="nw") checkBoxes(disc_pms2,frame="quantilesCheck2",boxes=paste("quantile2"),initialValues=0,labels=gettextRcmdr("Use quantiles? (else equally spaced)")) quantile_vars2 <- quantile2Variable tkgrid(level_entry2,quantilesCheck2,sticky="nw") tkgrid.configure(quantilesCheck2,padx="10") tkgrid(disc_pms2,sticky="nw") tkgrid(radioTransform2Frame,transformEntry2,stick='nw') tkgrid(resultFrame,sticky="nw",padx="6",pady="6") tkgrid(transformFrame2,sticky="nw",padx="6",pady="6") tkgrid(ResultTransFrame,sticky="nw") plotOptions <- tkframe(tab2Frame) tkgrid(labelRcmdr(plotOptions,fg=getRcmdr("title.color"),font="RcmdrTitleFont",text=gettextRcmdr("Heatmap Options")),sticky="nw") BC_entry <- tkframe(plotOptions) BC_vars <- tclVar("c()") BC_field <- ttkentry(BC_entry,width=15,textvariable=BC_vars) tkgrid(labelRcmdr(BC_entry,text=gettextRcmdr("Biclusters Selection ('c()' = All): ")),BC_field,sticky="nw") tkgrid(BC_entry,sticky="nw") checkBoxes(plotOptions,frame="backgroundCheck",boxes=paste("background"),initialValues=0,labels=gettextRcmdr("Add data heatmap on background?")) background_vars <- backgroundVariable tkgrid(backgroundCheck,sticky="nw") checkBoxes(plotOptions,frame="reorderCheck",boxes=paste("reorder"),initialValues=0,labels=gettextRcmdr("Reorder rows and columns for Bicluster Visualization?")) reorder_vars <- reorderVariable tkgrid(reorderCheck,sticky="nw") checkBoxes(plotOptions,frame="zeroBCCheck",boxes=paste("zeroBC"),initialValues=1,labels=gettextRcmdr("Also color genes of Biclusters which have '0' as response?")) zeroBC_vars <- zeroBCVariable tkgrid(zeroBCCheck,sticky="nw") BChighlight <- tkframe(plotOptions) BChighlightSel_entry <- tkframe(BChighlight) BChighlightSel_vars <- tclVar("") BChighlightSel_field <- ttkentry(BChighlightSel_entry,width=4,textvariable=BChighlightSel_vars) tkgrid(labelRcmdr(BChighlightSel_entry,text=gettextRcmdr("Bicluster Highlight: ")),BChighlightSel_field,sticky="nw") BChighlightOpa_entry <- tkframe(BChighlight) BChighlightOpa_vars <- tclVar("0.4") BChighlightOpa_field <- ttkentry(BChighlightOpa_entry,width=4,textvariable=BChighlightOpa_vars) tkgrid(labelRcmdr(BChighlightOpa_entry,text=gettextRcmdr("Opacity [0;1]: ")),BChighlightOpa_field,sticky="nw") tkgrid(BChighlightSel_entry,BChighlightOpa_entry,sticky="nw") tkgrid(BChighlight,sticky="nw") tkgrid(plotOptions,sticky="nw",padx="6",pady="6") fabiaoptionsFrame <- tkframe(tab2Frame) tkgrid(labelRcmdr(fabiaoptionsFrame,fg=getRcmdr("title.color"),font="RcmdrTitleFont",text=gettextRcmdr("Fabia Result Options")),sticky="nw") thresZ_entry <- tkframe(fabiaoptionsFrame) thresZ_vars <- tclVar("0.5") thresZ_field <- ttkentry(thresZ_entry,width=6,textvariable=thresZ_vars) tkgrid(labelRcmdr(thresZ_entry,text=gettextRcmdr("Threshold Bicluster Sample: ")),thresZ_field,sticky="nw") tkgrid(thresZ_entry,sticky="ne") thresL_entry <- tkframe(fabiaoptionsFrame) thresL_vars <- tclVar("NULL") thresL_field <- ttkentry(thresL_entry,width=6,textvariable=thresL_vars) tkgrid(labelRcmdr(thresL_entry,text=gettextRcmdr("Threshold Bicluster Loading: ")),thresL_field,sticky="nw") tkgrid(thresL_entry,sticky="ne") tkgrid(fabiaoptionsFrame,padx="6",pady="6",sticky="nw") drawresultButton <- buttonRcmdr(tab2Frame,command=onResultImage,text=gettextRcmdr("Heatmap"),foreground="darkgreen",default="active",width="12",borderwidth=3) tkgrid(drawresultButton,sticky="w",pady="15",padx="10") buttonsFrame <- tkframe(top) exitButton <- buttonRcmdr(buttonsFrame,command=onCancel,text=gettextRcmdr("Exit"),foreground="darkgreen",width="8",borderwidth=3) tkgrid(exitButton,sticky="es") tkgrid(tab1Frame) tkgrid(tab2Frame) dialogSuffix(use.tabs=TRUE, grid.buttons=TRUE,onOK=onOK,tabs=c("tab1","tab2"),tab.names=c("Data","Biclustering Results"),preventGrabFocus=TRUE) }
pymjsDependency <- function() { list( htmltools::htmlDependency( name = 'pymjs', version = '1.3.2', src = system.file('htmlwidgets/pymjs', package = 'widgetframe'), script = c('pym.v1.min.js') ) ) } addPymjsDependency <- function(widget) { widget$dependencies <- c(pymjsDependency(), widget$dependencies) widget } blazyDependency <- function() { list( htmltools::htmlDependency( name = 'blazy', version = '1.8.2', src = system.file('htmlwidgets/blazy', package = 'widgetframe'), script = c('blazy.min.js') ) ) } addBlazyDependency <- function(widget) { widget$dependencies <- c(blazyDependency(), widget$dependencies) widget } frameOptions <- function(xdomain = '*', title=NULL, name=NULL, id = NULL, allowfullscreen=FALSE, sandbox=NULL, lazyload = FALSE) { purrr::keep( list( xdomain = xdomain, title = title, name = name, id = id, allowfullscreen = allowfullscreen, sandbox = sandbox, lazyload = lazyload ), ~!is.null(.)) } frameableWidget <- function(widget, renderCallback = NULL) { if (!("htmlwidget" %in% class(widget))) { stop ("The input widget argument is not a htmldidget.") } if ("widgetframe" %in% class(widget)) { stop ("Can't make an already framed widget frameable.") } if ('frameablewidget' %in% class(widget)) { return(widget) } numClasses <- length(class(widget)) class(widget) <- c(class(widget)[1:(numClasses-1)], 'frameablewidget', class(widget)[[numClasses]]) widget$sizingPolicy$padding <- 0 widget$sizingPolicy$viewer$padding <- 0 widget$sizingPolicy$browser$padding <- 0 initChildJsCode <- NULL if (is.null(renderCallback)) { initChildJsCode <- "HTMLWidgets.pymChild = new pym.Child();" } else { initChildJsCode <- sprintf( "HTMLWidgets.pymChild = new pym.Child({renderCallback : %s});", renderCallback) } initChildJsCode <- paste0(initChildJsCode, "HTMLWidgets.addPostRenderHandler(function(){ setTimeout(function(){HTMLWidgets.pymChild.sendHeight();},100); });") widget %>% addPymjsDependency() %>% htmlwidgets::appendContent(htmltools::tags$script(initChildJsCode)) } frameWidget <- function(targetWidget, width = '100%', height = NULL, elementId = NULL, options = frameOptions()) { if ('widgetframe' %in% class(targetWidget)) { warning("Re-framing an already framed widget with new params") targetWidget <- attr(targetWidget$x,'widget') } targetWidget <- frameableWidget(targetWidget) if (!is.null(width)) { targetWidget$width <- width } else { if (!is.null(targetWidget$width)) { width <- targetWidget$width } } if (!is.null(height)) { targetWidget$height <- height } else { if (!is.null(targetWidget$height)) { height <- targetWidget$height } } widgetData = structure( list( url = 'about:blank', options = options ), widget = targetWidget ) widget <- htmlwidgets::createWidget( name = 'widgetframe', x = widgetData, width = width, height = height, package = 'widgetframe', elementId = elementId ) if(!is.null(options) && options$lazyload) { widget <- widget %>% addBlazyDependency() %>% htmlwidgets::appendContent(htmltools::tags$script("if(!window.bLazy){window.bLazy = new Blazy();}")) } widget } print.widgetframe <- function(x, ..., view = interactive()) { viewer <- getOption("viewer", utils::browseURL) parentDir <- tempfile('widgetframe') dir.create(parentDir) childWidget <- attr(x$x,'widget') if (!is.null(childWidget)) { childDir <- file.path(parentDir,'widget') dir.create(childDir) childHTML <- file.path(childDir, "index.html") htmltools::save_html( htmltools::as.tags(childWidget, standalone = TRUE), file = childHTML) x$x$url <- './widget/index.html' } parentHTML <- file.path(parentDir,'index.html') htmltools::save_html( htmltools::as.tags(x, standalone = TRUE), file = parentHTML) if (view) { viewer(parentHTML) } invisible(x) } saveWidgetframe <- function(widget, file, selfcontained = FALSE, libdir = NULL, background = "white", knitrOptions = list()) { parentWidget <- NULL if ('widgetframe' %in% class(widget)) { parentWidget <- widget } else { parentWidget <- frameWidget(widget) } childDir <- file.path( dirname(file), paste0(tools::file_path_sans_ext(basename(file)),'_widget')) dir.create(childDir) parentWidget$x$url <- paste0( tools::file_path_sans_ext(basename(file)),'_widget/index.html') childWidget <- attr(parentWidget$x,'widget') oldwd <- setwd(childDir) htmlwidgets::saveWidget(childWidget, 'index.html', selfcontained = selfcontained, libdir = libdir, background = background, knitrOptions = knitrOptions) setwd(oldwd) htmlwidgets::saveWidget(parentWidget, file, selfcontained = selfcontained, libdir = libdir, background = background, knitrOptions = knitrOptions) } widgetframeOutput <- function(outputId, width = '100%', height = '400px'){ htmlwidgets::shinyWidgetOutput(outputId, 'widgetframe', width, height, package = 'widgetframe') } renderWidgetframe <- function(expr, env = parent.frame(), quoted = FALSE) { if (!quoted) { expr <- substitute(expr) } htmlwidgets::shinyRenderWidget(expr, widgetframeOutput, env, quoted = TRUE) }
icrsf <- function(data, subject, testtimes, result, sensitivity, specificity, Xmat, root.size, ntree, ns, node, pval=1){ getparm <- function(id, Xmat, treemat, hdidx = 1) { stopifnot(is.numeric(id), length(id) == 1) vec <- treemat[hdidx, ] obs <- Xmat[id, ] dir <- (obs[vec[3]] >= vec[4]) + 1 if (is.na(vec[dir])) { fparm <- vec[-(1:5)] fparm[1] <- fparm[1] + (dir-1)*vec[5]*obs[vec[3]] return(list(fparm=fparm, id=hdidx)) } else { getparm(id, Xmat, treemat, vec[dir]) } } varimp1 <- function(Dmat, Xmat, treemat, OOBid){ J <- ncol(Dmat) - 1 nOOB <- length(OOBid) ncov <- ncol(Xmat) newpred <- function(inc){ m <- rep(NA, inc) m[1] <- 1 return(list(mat=m, nxt=2, inc=inc)) } insertpred <- function(pred, newval){ newidx <- pred$nxt if (pred$nxt == length(pred) + 1) { pred$mat <- c(pred$mat, rep(NA, pred$inc)) } pred$mat[newidx] <- newval pred$nxt <- pred$nxt + 1 return(pred) } getparm <- function(x, treemat, hdidx = 1) { vec <- treemat[hdidx, ] dir <- (x[vec[3]] >= vec[4]) + 1 if (is.na(vec[dir])) { fparm <- vec[6:(J+5)] fparm[1] <- fparm[1] + (dir-1)*vec[5]*x[vec[3]] return(list(fparm=fparm, id=hdidx)) } else { getparm(x, treemat, vec[dir]) } } getpred <- function(x, treemat, hdidx = 1, pmat) { vec <- treemat[hdidx, ] dir <- (x[vec[3]] >= vec[4]) + 1 if(is.na(hdidx) == FALSE){ if(hdidx == 1){ pmat <- newpred(3) } else { pmat <- insertpred(pmat, hdidx) } hdidx <- vec[dir] pmat <- getpred(x, treemat, hdidx, pmat) } return(pmat) } OOBloglik <- function(Dmat, Xmat, OOBid, varid, treemat){ simdata <- cbind(Dmat, Xmat) OOB <- simdata[OOBid, ] OOBDmat <- OOB[, 1:(J+1)] OOBDes <- OOB[, -(1:(J+1))] nOOB <- nrow(OOB) if (varid > 0) OOBDes[, varid] <- sample(OOBDes[, varid], nOOB, replace=FALSE) p <- apply(OOBDes, 1, function(x) getparm(x, treemat)) parms <- t(sapply(p, function(x) cumsum(x$fparm))) l <- rowSums(OOBDmat*cbind(1, exp(-exp(parms)))) freq <- unlist(sapply(1:nOOB, function(x) getpred(OOBDes[x, ], treemat, 1, 1)[[1]])) freq <- freq[!is.na(freq)] l1 <- ifelse(l>0, log(l), NA) return(l1) } cov <- unique(treemat[, 3]) cov <- cov[!is.na(cov)] varimp <- rep(0, ncov) lik.org <- OOBloglik(Dmat, Xmat, OOBid, 0, treemat) permutelik <- lapply(cov, function(x) OOBloglik(Dmat, Xmat, OOBid, x, treemat)) varimp[cov] <- sapply(permutelik, function(x) sum(lik.org - x, na.rm=T)) return(varimp) } treebuilder <- function(Dmat, Xmat, root.size, ns, pval=1){ hdidx <- 1 tree <- 1 thres <- stats::qchisq(1-pval, df=1) getchisq <- function(Dmat, x) { if(length(unique(x))==1){ chisq <- 0 parm <- rep(0, J+1) }else{ q <- try(optim(parmD, loglikCD, gradlikCD, lower = c(rep(-Inf, 2), rep(1e-8, J-1)), Dmat = Dmat, x = x, method="L-BFGS-B")) q0 <- try(optim(parmD0, loglikCD0, gradlikCD0, lower = c(-Inf, rep(1e-8, J-1)), Dmat = Dmat, method="L-BFGS-B")) if (class(q)=="try-error" | class(q0)=="try-error") return(rep(0, J+2)) chisq <- 2*(q0$value - q$value) parm <- q$par } return(c(chisq, parm)) } simdata <- cbind(Dmat, Xmat) J <- ncol(Dmat) - 1 nsub <- nrow(Dmat) ncov <- ncol(Xmat) parmi <- c(0, log(-log((J:1)/(J+1)))) parmD <- c(parmi[1], diff(c(0, parmi[-1]))) parmD0 <- parmD[-1] bootid <- sample(1:nrow(simdata),nrow(simdata), replace = T) bootdata <- simdata[bootid, ] OOBid <- setdiff(1:nsub, unique(bootid)) OOB <- simdata[setdiff(1:nsub, unique(bootid)), ] nOOB <- nrow(OOB) newtree <- function(firstval, firstc, inc, parm, firstnobs) { m <- matrix(rep(NA, inc*(J+6)), nrow = inc, ncol = J + 6) m[1, 3] <- firstval m[1, 4] <- firstc m[1, 5:(J+5)] <- parm m[1, J+6] <- firstnobs return(list(mat=m, nxt=2, inc=inc)) } insert <- function(hdidx, dir, tr, newval, newc, parm, nobs) { newidx <- tr$nxt if (tr$nxt == nrow(tr$mat) + 1) { tr$mat <- rbind(tr$mat, matrix(rep(NA, tr$inc*(J+6)), nrow=tr$inc, ncol=J+6)) } tr$mat[newidx, 3] <- newval tr$mat[newidx, 4] <- newc tr$mat[newidx, 5:(J+5)] <- parm tr$mat[newidx, (J+6)] <- nobs tr$mat[hdidx, dir] <- newidx tr$nxt <- tr$nxt + 1 return(tr) } training <- function(bootdata, hdidx, dir, tree, root.size, ns, pval) { if (length(unique(row.names(bootdata))) > root.size) { Dmat <- bootdata[, 1:(J+1)] Xmat <- bootdata[, -(1:(J+1))] selid <- sample(1:ncov, ns, replace=FALSE) X <- Xmat[, selid] bsplit <- apply(X, 2, function(t) splitpointC(Dmat, t, getchisq)) if(length(selid) > 0){ id <- which.max(bsplit[2, ]) if(max(bsplit[2, ])>= thres){ bvar <- selid[id] bcp <- bsplit[1, id] bootdata.L <- bootdata[X[,id] <= bcp, ] bootdata.R <- bootdata[X[, id] > bcp, ] parm <- bsplit[-(1:2), id] nobs <- nrow(bootdata) if (nrow(bootdata) == nsub) { tree <- newtree(bvar, bcp, 3, parm, nobs) } else { tree <- insert(hdidx, dir, tree, bvar, bcp, parm, nobs) } a <- tree$nxt - 1 tree <- training(bootdata.L, a, 1, tree, root.size, ns, pval) tree <- training(bootdata.R, a, 2, tree, root.size, ns, pval) } } } return(tree) } tr <- training(bootdata, hdidx, dir, tree, root.size, ns, pval) tr<- tr$mat tr <- tr[!is.na(tr[, 3]), ] return(list(tree=tr, OOBid=OOBid)) } id <- eval(substitute(subject), data, parent.frame()) time <- eval(substitute(testtimes), data, parent.frame()) result <- eval(substitute(result), data, parent.frame()) ord <- order(id, time) if (is.unsorted(ord)) { id <- id[ord] time <- time[ord] result <- result[ord] data <- data[ord, ] } utime <- sort(unique(time)) stopifnot(is.numeric(sensitivity), is.numeric(specificity), is.numeric(root.size), is.numeric(node), is.numeric(pval), is.numeric(ns)) stopifnot(length(sensitivity) == 1, sensitivity >= 0, sensitivity <= 1, length(specificity) == 1, specificity >= 0, specificity <= 1, length(root.size) == 1, root.size >= 1, root.size <= nrow(Xmat), length(node) ==1, node >=1, length(ns) ==1, ns >=1, ns<=ncol(Xmat), all(time > 0), all(is.finite(time))) if (!all(result %in% c(0, 1))) stop("result must be 0 or 1") if (any(tapply(time, id, anyDuplicated))) stop("existing duplicated visit times for some subjects") timen0 <- (time != 0) Dmat <- dmat(id[timen0], time[timen0], result[timen0], sensitivity, specificity, 1) row.names(Dmat) <- unique(id) trees <- mclapply(1:ntree, function(x) treebuilder(Dmat, Xmat, root.size, ns, pval), mc.cores=node) treemats <- mclapply(trees, function(x) x[[1]], mc.cores=node) OOBids <- mclapply(trees, function(x) x[[2]], mc.cores=node) vimp <- mclapply(1:ntree, function(x) varimp1(Dmat, Xmat, treemats[[x]], OOBid=OOBids[[x]])) vimp.adj <- mclapply(vimp, function(x) ifelse(x>0, x, 0)) vimp1 <- do.call("rbind", vimp.adj) vimp2 <- colSums(vimp1, na.rm=T) return(ensemble.vimp=vimp2) }
get_table_metadata <- function(table_id, variables_only = FALSE, language = c("en", "da")){ language <- match.arg(language) call_body <- list(lang = language, table = table_id) result <- httr::POST(METADATA_ENDPOINT, body = call_body, encode = "json") check_http_type(result) full_result <- jsonlite::fromJSON(httr::content(result)) if (variables_only) return(full_result$variables) return(full_result) } get_valid_variable_values <- function(table_id, variable_id){ vars <- get_table_metadata(table_id = table_id, variables_only = TRUE) return(vars[["values"]][[which(tolower(vars$id) == tolower(variable_id))]]$id) }
get_ylu.default <- function(y, t) { ylu_min <- aggregate(y, list(year = year(t)), min)$x %>% median() ylu_max <- aggregate(y, list(year = year(t)), max)$x %>% median() A <- ylu_max - ylu_min listk(ylu_min, ylu_max, A) } get_A <- function(x, na.rm = FALSE) { range(x, na.rm = na.rm) %>% diff() } default_nups <- function(nptperyear) { ifelse(nptperyear >= 100, 2, 1) } default_minpeakdistance <- function(nptperyear) { floor(nptperyear / 6) } guess_nyear <- function(INPUT) { nlen = length(INPUT$y) nptperyear = INPUT$nptperyear nyear = nlen / nptperyear date_year <- year(INPUT$t) + ((month(INPUT$t) >= 7) - 1) * INPUT$south info <- table(date_year) years <- info[info > nptperyear*0.2] %>% {as.numeric(names(.))} listk(nyear, year = years) } di2dt <- function(di, t, ypred){ dt = di %>% mutate(across(.fns = ~ ypred[.x], .names = "y_{.col}")) %>% mutate(across(beg:end, .fns = ~ t[.x])) if (is.Date(t)) { dt %>% mutate(len = as.integer(difftime(end, beg, units = "days") + 1), year = year(peak)) } else { dt %>% mutate(len = end - beg + 1, year = NA_integer_) } } rename_season <- function(d) { names(d)[1:6] <- c("time_start", "time_peak", "time_end", "val_start", "val_peak", "val_end") d } removeClosedExtreme <- function(pos, ypred, A = NULL, y_min, minpeakdistance) { if (is.null(A)) A = max(ypred) - min(ypred) for (i in 1:2) { if (i == 1) { I_del <- which(diff(pos$pos) < minpeakdistance/3) + 1 } else if(i == 2) { I_del <- which(abs(diff(pos$val)) < 0.05 * A) + 1 } if (length(I_del) > 0) pos <- pos[-I_del, ] pos$flag <- cumsum(c(1, diff(pos$type) != 0)) has_duplicated <- duplicated(pos$flag) %>% any() if (has_duplicated) { pos %<>% group_by(flag) %>% group_modify(~merge_duplicate(.x, y = ypred, threshold = y_min)) %>% ungroup() %>% select(-flag) } pos } pos } merge_duplicate <- function(d, y, threshold, max_gap = 180){ if (nrow(d) > 1) { type <- d$type[1] diff_val = diff(range(d$val)) diff_gap = diff(range(d$pos)) if ( diff_gap < max_gap) { if (diff_val < threshold) { I <- floor(median(d$pos)) data.table( val = y[I], pos = I, left = min(d$left), right = max(d$right), type = type ) } else { fun <- ifelse(type == 1, which.max, which.min) d[fun(d$val), ] } } else { d[1, ] } } else { d } } fixYearBroken <- function(di, t, ypred) { is_date <- is(di$beg[1], "Date") origin <- t[1] if (is_date) { I_beg <- match(di$beg, t) I_end <- match(di$end, t) I_peak <- match(di$peak, t) } else { I_beg <- di$beg I_end <- di$end I_peak <- di$peak } for (i in 1:nrow(di)) { I <- I_beg[i]:I_end[i] I_nona <- I ti <- t[I_nona] I_brkyear <- which(diff(ti) >= 365) nbrk <- length(I_brkyear) if (nbrk > 0 & nbrk <= 2) { if (nbrk == 1) { I_1 <- I_nona[1:I_brkyear] I_2 <- I_nona[(I_brkyear + 1):length(I_nona)] lst <- list(I_1, I_2) } else if (nbrk == 2) { I_1 <- I_nona[1:I_brkyear[1]] I_2 <- I_nona[(I_brkyear[1] + 1):I_brkyear[2]] I_3 <- I_nona[(I_brkyear[2] + 1):length(I_nona)] lst <- list(I_1, I_2, I_3) } I_nona <- lst[[which.max(sapply(lst, length))]] I_beg[i] <- first(I_nona) I_end[i] <- last(I_nona) I_peak[i] <- I_nona[which.max(ypred[I_nona])] } } di <- data.table(beg = I_beg, peak = I_peak, end = I_end) di2dt(di, t, ypred) } check_GS_HeadTail <- function(pos, ypred, minlen, A = NULL, ...) { if (is.null(A)) A <- diff(range(ypred)) nlen <- length(ypred) locals <- pos[, c("pos", "type")] ns <- nrow(locals) if (last(pos$type) == 1 && (nlen - nth(pos$pos, -2)) > minlen && abs(last(ypred) - nth(pos$val, -2)) < 0.15 * A) { locals %<>% rbind.data.frame(., data.frame(pos = nlen, type = -1)) } if (pos$type[1] == 1 && pos$pos[2] > minlen && abs(ypred[1] - pos$val[2]) < 0.15 * A) { locals %<>% rbind.data.frame(data.frame(pos = 1, type = -1), .) } I <- which(locals$type == -1) locals <- locals[I[1]:I[length(I)], ] s <- locals$pos ns <- length(s) if (ns < 3) { warning("Can't find a complete growing season!") return(NULL) } data.table( beg = s[seq(1, ns - 1, 2)], peak = s[seq(2, ns, 2)], end = s[seq(3, ns, 2)] ) }
qm_is_cluster <- function(obj, verbose = FALSE){ if (verbose != TRUE & verbose != FALSE){ stop("The 'verbose' argument must be either 'TRUE' or 'FALSE'.") } if (ncol(obj) < 4){ count <- FALSE } else { count <- TRUE } if ("RID" %in% names(obj) == FALSE){ rid <- FALSE } else { rid <- TRUE } if ("CID" %in% names(obj) == FALSE){ cid <- FALSE } else { cid <- TRUE } if ("CAT" %in% names(obj) == FALSE){ cat <- FALSE } else { cat <- TRUE } output <- dplyr::tibble( test = c("Contains at least 4 columns", "Contains RID variable", "Contains CID variable", "Contains CAT variable"), result = c(count, rid, cid, cat) ) if (verbose == FALSE){ output <- all(output$result) } return(output) }
ans1 <- expand_array_indexes(c("123_1", "55_[1-5]", "122_[1, 5-6]", "44_[1-3:2]")) ans0 <- c("123_1", "55_1", "55_2", "55_3", "55_4", "55_5", "122_1", "122_5", "122_6", "44_1", "44_3") expect_equal(ans1, ans0)
NULL vegtable2kml <- function(obj, ...) { .Deprecated(msg = paste("This function is deprecated.", "Visit the package's site for alternative mapping methods.")) }
"locfit"<- function(formula, data = sys.frame(sys.parent()), weights = 1, cens = 0, base = 0, subset, geth = FALSE, ..., lfproc = locfit.raw) { Terms <- terms(formula, data = data) attr(Terms, "intercept") <- 0 m <- match.call() m[[1]] <- as.name("model.frame") z <- pmatch(names(m), c("formula", "data", "weights", "cens", "base", "subset")) for(i in length(z):2) if(is.na(z[i])) m[[i]] <- NULL frm <- eval(m, sys.frame(sys.parent())) if (nrow(frm) < 1) stop("fewer than one row in the data") vnames <- as.character(attributes(Terms)$variables)[-1] if(attr(Terms, "response")) { y <- model.extract(frm, "response") yname <- deparse(formula[[2]]) vnames <- vnames[-1] } else { y <- yname <- NULL } x <- as.matrix(frm[, vnames]) if(!inherits(x, "lp")) { if(length(vnames) == dim(x)[2]) { dimnames(x) <- list(NULL, vnames) } } if(!missing(weights)) weights <- model.extract(frm, weights) if(!missing(cens)) cens <- model.extract(frm, cens) if(!missing(base)) base <- model.extract(frm, base) ret <- lfproc(x, y, weights = weights, cens = cens, base = base, geth = geth, ...) if(geth == 0) { ret$terms <- Terms ret$call <- match.call() if(!is.null(yname)) ret$yname <- yname ret$frame <- sys.frame(sys.parent()) } ret } "locfit.raw"<- function(x, y, weights = 1, cens = 0, base = 0, scale = FALSE, alpha = 0.7, deg = 2, kern = "tricube", kt = "sph", acri = "none", basis = list(NULL), deriv = numeric(0), dc = FALSE, family, link = "default", xlim, renorm = FALSE, ev = rbox(), maxk = 100, itype = "default", mint = 20, maxit = 20, debug = 0, geth = FALSE, sty = "none") { if(inherits(x, "lp")) { alpha <- attr(x, "alpha") deg <- attr(x, "deg") sty <- attr(x, "style") acri <- attr(x, "acri") scale <- attr(x, "scale") } if(!is.matrix(x)) { vnames <- deparse(substitute(x)) x <- matrix(x, ncol = 1) d <- 1 } else { d <- ncol(x) if(is.null(dimnames(x))) vnames <- paste("x", 1:d, sep = "") else vnames <- dimnames(x)[[2]] } n <- nrow(x) if((!missing(y)) && (!is.null(y))) { yname <- deparse(substitute(y)) if(missing(family)) family <- if(is.logical(y)) "binomial" else "qgaussian" } else { if(missing(family)) family <- "density" y <- 0 yname <- family } if(!missing(basis)) { deg0 <- deg <- length(basis(matrix(0, nrow = 1, ncol = d), rep(0, d))) } if(length(deg) == 1) deg = c(deg, deg) xl <- rep(0, 2 * d) lset <- 0 if(!missing(xlim)) { xl <- lflim(xlim, vnames, xl) lset <- 1 } if(is.character(ev)) { stop("Character ev argument no longer used.") } if(is.numeric(ev)) { xev <- ev mg <- length(xev)/d ev <- list(type = "pres", xev = xev, mg = mg, cut = 0, ll = 0, ur = 0) if(mg == 0) stop("Invalid ev argument") } fl <- c(rep(ev$ll,length.out=d), rep(ev$ur,length.out=d)) mi <- c(n, 0, deg, d, 0, 0, 0, 0, mint, maxit, renorm, 0, 0, 0, dc, maxk, debug, geth, 0, !missing(basis)) if(any(is.na(mi))) print(mi) if(is.logical(scale)) scale <- 1 - as.numeric(scale) if(length(scale) == 1) scale <- rep(scale, d) if(is.character(deriv)) deriv <- match(deriv, vnames) alpha <- c(alpha, 0, 0, 0)[1:3] style <- pmatch(sty, c("none", "z1", "z2", "angle", "left", "right", "cpar")) if(length(style) == 1) style <- rep(style, d) dp <- c(alpha, ev$cut, 0, 0, 0, 0, 0, 0) size <- .C("guessnv", lw = integer(7), evt = as.character(c(ev$type, kt)), dp = as.numeric(dp), mi = as.integer(mi), nvc = integer(5), mg = as.integer(ev$mg), PACKAGE="locfit") nvc <- size$nvc lw <- size$lw z <- .C("slocfit", x = as.numeric(x), y = as.numeric(rep(y, length.out = n)), cens = as.numeric(rep(cens, length.out = n)), w = as.numeric(rep(weights, length.out = n)), base = as.numeric(rep(base, length.out = n)), lim = as.numeric(c(xl, fl)), mi = as.integer(size$mi), dp = as.numeric(size$dp), strings = c(kern, family, link, itype, acri, kt), scale = as.numeric(scale), xev = if(ev$type == "pres") as.numeric(xev) else numeric(d * nvc[1]), wdes = numeric(lw[1]), wtre = numeric(lw[2]), wpc = numeric(lw[4]), nvc = as.integer(size$nvc), iwk1 = integer(lw[3]), iwk2 = integer(lw[7]), lw = as.integer(lw), mg = as.integer(ev$mg), L = numeric(lw[5]), kap = numeric(lw[6]), deriv = as.integer(deriv), nd = as.integer(length(deriv)), sty = as.integer(style), PACKAGE="locfit") nvc <- z$nvc names(nvc) <- c("nvm", "ncm", "vc", "nv", "nc") nvm <- nvc["nvm"] ncm <- nvc["ncm"] nv <- max(nvc["nv"], 1) nc <- nvc["nc"] if(geth == 1) return(matrix(z$L[1:(nv * n)], ncol = nv)) if(geth == 2) return(list(const = z$kap, d = d)) if(geth == 3) return(z$kap) dp <- z$dp mi <- z$mi names(mi) <- c("n", "p", "deg0", "deg", "d", "acri", "ker", "kt", "it", "mint", "mxit", "renorm", "ev", "tg", "link", "dc", "mk", "debug", "geth", "pc", "ubas") names(dp) <- c("nnalph", "fixh", "adpen", "cut", "lk", "df1", "df2", "rv", "swt", "rsc") if(geth == 4) { p <- mi["p"] return(list(residuals = z$y, var = z$wdes[n * (p + 2) + p * p + (1:n)], nl.df = dp["df1"] - 2)) } if(geth == 6) return(z$L) if(length(deriv) > 0) trans <- function(x) x else trans <- switch(mi["link"] - 2, function(x) x, exp, expit, function(x) 1/x, function(x) pmax(x, 0)^2, function(x) pmax(sin(x), 0)^2) t1 <- z$wtre t2 <- z$iwk1 xev <- z$xev[1:(d * nv)] if(geth == 7) return(list(x = xev, y = trans(t1[1:nv]))) coef <- matrix(t1[1:((3 * d + 8) * nvm)], nrow = nvm)[1:nv, ] if(nv == 1) coef <- matrix(coef, nrow = 1) if(geth >= 70) { data <- list(x = x, y = y, cens = cens, base = base, w = weights) return(list(xev = matrix(xev, ncol = d, byrow = TRUE), coef = coef[, 1], sd = coef[, d + 2], lower = z$L[1:nv], upper = z$L[nvm + (1:nv)], trans = trans, d = d, vnames = vnames, kap = z$kap, data = data, mi = mi)) } eva <- list(ev = ev, xev = xev, coef = coef, scale = z$scale, pc = z$wpc) class(eva) <- "lfeval" if(nc == 0) { cell <- list(sv = integer(0), ce = integer(0), s = integer(0), lo = as.integer(rep(0, nv)), hi = as.integer(rep(0, nv))) } else { mvc <- max(nv, nc) mvcm <- max(nvm, ncm) vc <- nvc["vc"] cell <- list(sv = t1[nvm * (3 * d + 8) + 1:nc], ce = t2[1:(vc * nc)], s = t2[vc * ncm + 1:mvc], lo = t2[vc * ncm + mvcm + 1:mvc], hi = t2[vc * ncm + 2 * mvcm + 1:mvc]) } ret <- list(eva = eva, cell = cell, terms = NULL, nvc = nvc, box = z$lim[2 * d + 1:(2 * d)], sty = style, deriv = deriv, mi = mi, dp = dp, trans = trans, critval = crit(const = c(rep(0, d), 1), d = d), vnames = vnames, yname = yname, call = match.call(), frame = sys.frame(sys.parent())) class(ret) <- "locfit" ret } "ang" <- function(x, ...) { ret <- lp(x, ..., style = "angle") dimnames(ret) <- list(NULL, deparse(substitute(x))) ret } "gam.lf"<- function(x, y, w, xeval, ...) { if(!missing(xeval)) { fit <- locfit.raw(x, y, weights = w, geth = 5, ...) return(predict(fit, xeval)) } ret <- locfit.raw(x, y, weights = w, geth = 4, ...) names(ret) <- c("residuals", "var", "nl.df") ret } "gam.slist"<- c("s", "lo", "random", "lf") "lf"<- function(..., alpha = 0.7, deg = 2, scale = 1, kern = "tcub", ev = rbox(), maxk = 100) { if(!any(gam.slist == "lf")) warning("gam.slist does not include \"lf\" -- fit will be incorrect") x <- cbind(...) scall <- deparse(sys.call()) attr(x, "alpha") <- alpha attr(x, "deg") <- deg attr(x, "scale") <- scale attr(x, "kern") <- kern attr(x, "ev") <- ev attr(x, "maxk") <- maxk attr(x, "call") <- substitute(gam.lf(data[[scall]], z, w, alpha = alpha, deg = deg, scale = scale, kern = kern, ev = ev, maxk = maxk)) attr(x, "class") <- "smooth" x } "left"<- function(x, ...) { ret <- lp(x, ..., style = "left") dimnames(ret) <- list(NULL, deparse(substitute(x))) ret } "right"<- function(x, ...) { ret <- lp(x, ..., style = "right") dimnames(ret) <- list(NULL, deparse(substitute(x))) ret } "cpar"<- function(x, ...) { ret <- lp(x, ..., style = "cpar") dimnames(ret) <- list(NULL, deparse(substitute(x))) ret } "lp"<- function(..., nn = 0, h = 0, adpen = 0, deg = 2, acri = "none", scale = FALSE, style = "none") { x <- cbind(...) z <- as.list(match.call()) z[[1]] <- z$nn <- z$h <- z$adpen <- z$deg <- z$acri <- z$scale <- z$style <- NULL dimnames(x) <- list(NULL, z) if(missing(nn) & missing(h) & missing(adpen)) nn <- 0.7 attr(x, "alpha") <- c(nn, h, adpen) attr(x, "deg") <- deg attr(x, "acri") <- acri attr(x, "style") <- style attr(x, "scale") <- scale class(x) <- c("lp", class(x)) x } "[.lp" <- function (x, ..., drop = FALSE) { cl <- oldClass(x) oldClass(x) <- NULL ats <- attributes(x) ats$dimnames <- NULL ats$dim <- NULL ats$names <- NULL y <- x[..., drop = drop] attributes(y) <- c(attributes(y), ats) oldClass(y) <- cl y } "fitted.locfit"<- function(object, data = NULL, what = "coef", cv = FALSE, studentize = FALSE, type = "fit", tr, ...) { if(missing(data)) { data <- if(is.null(object$call$data)) sys.frame(sys.parent()) else eval(object$call$ data) } if(missing(tr)) tr <- if((what == "coef") & (type == "fit")) object$trans else function(x) x mm <- locfit.matrix(object, data = data) n <- object$mi["n"] pred <- .C("sfitted", x = as.numeric(mm$x), y = as.numeric(rep(mm$y, length.out = n)), w = as.numeric(rep(mm$w, length.out = n)), ce = as.numeric(rep(mm$ce, length.out = n)), ba = as.numeric(rep(mm$base, length.out = n)), fit = numeric(n), cv = as.integer(cv), st = as.integer(studentize), xev = as.numeric(object$eva$xev), coef = as.numeric(object$eva$coef), sv = as.numeric(object$cell$sv), ce = as.integer(c(object$cell$ce, object$cell$s, object$cell$lo, object$ cell$hi)), wpc = as.numeric(object$eva$pc), scale = as.numeric(object$eva$scale), nvc = as.integer(object$nvc), mi = as.integer(object$mi), dp = as.numeric(object$dp), mg = as.integer(object$eva$ev$mg), deriv = as.integer(object$deriv), nd = as.integer(length(object$deriv)), sty = as.integer(object$sty), what = as.character(c(what, type)), basis = list(eval(object$call$basis)), PACKAGE="locfit") tr(pred$fit) } "formula.locfit"<- function(x, ...) x$call$formula "predict.locfit"<- function(object, newdata = NULL, where = "fitp", se.fit = FALSE, band = "none", what = "coef", ...) { if((se.fit) && (band == "none")) band <- "global" for(i in 1:length(what)) { pred <- preplot.locfit(object, newdata, where = where, band = band, what = what[i], ...) fit <- pred$trans(pred$fit) if(i == 1) res <- fit else res <- cbind(res, fit) } if(band == "none") return(res) return(list(fit = res, se.fit = pred$se.fit, residual.scale = pred$ residual.scale)) } "lines.locfit"<- function(x, m = 100, tr = x$trans, ...) { newx <- lfmarg(x, m = m)[[1]] y <- predict(x, newx, tr = tr) lines(newx, y, ...) } "points.locfit"<- function(x, tr, ...) { d <- x$mi["d"] p <- x$mi["p"] nv <- x$nvc["nv"] if(d == 1) { if(missing(tr)) tr <- x$trans x1 <- x$eva$xev x2 <- x$eva$coef[, 1] points(x1, tr(x2), ...) } if(d == 2) { xx <- lfknots(x, what = "x") points(xx[, 1], xx[, 2], ...) } } "print.locfit"<- function(x, ...) { if(!is.null(cl <- x$call)) { cat("Call:\n") dput(cl) } cat("\n") cat("Number of observations: ", x$mi["n"], "\n") cat("Family: ", c("Density", "PP Rate", "Hazard", "Gaussian", "Logistic", "Poisson", "Gamma", "Geometric", "Circular", "Huber", "Robust Binomial", "Weibull", "Cauchy")[x$mi["tg"] %% 64], "\n") cat("Fitted Degrees of freedom: ", round(x$dp["df2"], 3), "\n") cat("Residual scale: ", signif(sqrt(x$dp["rv"]), 3), "\n") invisible(x) } "residuals.locfit"<- function(object, data = NULL, type = "deviance", ...) { if(missing(data)) { data <- if(is.null(object$call$data)) sys.frame(sys.parent()) else eval(object$call$ data) } fitted.locfit(object, data, ..., type = type) } "summary.locfit"<- function(object, ...) { mi <- object$mi fam <- c("Density Estimation", "Poisson process rate estimation", "Hazard Rate Estimation", "Local Regression", "Local Likelihood - Binomial", "Local Likelihood - Poisson", "Local Likelihood - Gamma", "Local Likelihood - Geometric", "Local Robust Regression")[mi["tg"] %% 64] estr <- c("Rectangular Tree", "Triangulation", "Data", "Rectangular Grid", "k-d tree", "k-d centres", "Cross Validation", "User-provided")[mi["ev"]] ret <- list(call = object$call, fam = fam, n = mi["n"], d = mi["d"], estr = estr, nv = object$nvc["nv"], deg = mi["deg"], dp = object$dp, vnames = object$vnames) class(ret) <- "summary.locfit" ret } "print.summary.locfit"<- function(x, ...) { cat("Estimation type:", x$fam, "\n") cat("\nCall:\n") print(x$call) cat("\nNumber of data points: ", x$n, "\n") cat("Independent variables: ", x$vnames, "\n") cat("Evaluation structure:", x$estr, "\n") cat("Number of evaluation points: ", x$nv, "\n") cat("Degree of fit: ", x$deg, "\n") cat("Fitted Degrees of Freedom: ", round(x$dp["df2"], 3), "\n") invisible(x) } "rbox"<- function(cut = 0.8, type = "tree", ll = rep(0, 10), ur = rep(0, 10)) { if(!any(type == c("tree", "kdtree", "kdcenter", "phull"))) stop("Invalid type argument") ret <- list(type = type, xev = 0, mg = 0, cut = as.numeric(cut), ll = as.numeric(ll), ur = as.numeric(ur)) class(ret) <- "lf_evs" ret } "lfgrid"<- function(mg = 10, ll = rep(0, 10), ur = rep(0, 10)) { if(length(mg) == 1) mg <- rep(mg, 10) ret <- list(type = "grid", xev = 0, mg = as.integer(mg), cut = 0, ll = as.numeric(ll), ur = as.numeric(ur)) class(ret) <- "lf_evs" ret } "dat"<- function(cv = FALSE) { type <- if(cv) "crossval" else "data" ret <- list(type = type, xev = 0, mg = 0, cut = 0, ll = 0, ur = 0) class(ret) <- "lf_evs" ret } "xbar"<- function() { ret <- list(type = "xbar", xev = 0, mg = 0, cut = 0, ll = 0, ur = 0) class(ret) <- "lf_evs" ret } "none"<- function() { ret <- list(type = "none", xev = 0, mg = 0, cut = 0, ll = 0, ur = 0) class(ret) <- "lf_evs" ret } "plot.locfit"<- function(x, xlim, pv, tv, m, mtv = 6, band = "none", tr = NULL, what = "coef", get.data = FALSE, f3d = (d == 2) && (length(tv) > 0), ...) { d <- x$mi["d"] ev <- x$mi["ev"] where <- "grid" if(missing(pv)) pv <- if(d == 1) 1 else c(1, 2) if(is.character(pv)) pv <- match(pv, x$vnames) if(missing(tv)) tv <- (1:d)[ - pv] if(is.character(tv)) tv <- match(tv, x$vnames) vrs <- c(pv, tv) if(any(duplicated(vrs))) warning("Duplicated variables in pv, tv") if(any((vrs <= 0) | (vrs > d))) stop("Invalid variable numbers in pv, tv") if(missing(m)) m <- if(d == 1) 100 else 40 m <- rep(m, d) m[tv] <- mtv xl <- x$box if(!missing(xlim)) xl <- lflim(xlim, x$vnames, xl) if((d != 2) & (any(ev == c(3, 7, 8)))) pred <- preplot.locfit(x, where = "fitp", band = band, tr = tr, what = what, get.data = get.data, f3d = f3d) else { marg <- lfmarg(xl, m) pred <- preplot.locfit(x, marg, band = band, tr = tr, what = what, get.data = get.data, f3d = f3d) } plot(pred, pv = pv, tv = tv, ...) } "preplot.locfit"<- function(object, newdata = NULL, where, tr = NULL, what = "coef", band = "none", get.data = FALSE, f3d = FALSE, ...) { mi <- object$mi dim <- mi["d"] ev <- mi["ev"] nointerp <- any(ev == c(3, 7, 8)) wh <- 1 n <- 1 if(is.null(newdata)) { if(missing(where)) where <- if(nointerp) "fitp" else "grid" if(where == "grid") newdata <- lfmarg(object) if(any(where == c("fitp", "ev", "fitpoints"))) { where <- "fitp" newdata <- lfknots(object, what = "x", delete.pv = FALSE) } if(where == "data") newdata <- locfit.matrix(object)$x if(where == "vect") stop("you must give the vector points") } else { where <- "vect" if(is.data.frame(newdata)) newdata <- as.matrix(model.frame(delete.response(object$terms), newdata)) else if(is.list(newdata)) where <- "grid" else newdata <- as.matrix(newdata) } if(is.null(tr)) { if(what == "coef") tr <- object$trans else tr <- function(x) x } if((nointerp) && (where == "grid") && (dim == 2)) { nv <- object$nvc["nv"] x <- object$eva$xev[2 * (1:nv) - 1] y <- object$eva$xev[2 * (1:nv)] z <- preplot.locfit.raw(object, 0, "fitp", what, band)$y fhat <- interp::interp(x, y, z, newdata[[1]], newdata[[2]], ncp = 2)$z } else { z <- preplot.locfit.raw(object, newdata, where, what, band) fhat <- z$y } fhat[fhat == 0.1278433] <- NA band <- pmatch(band, c("none", "global", "local", "prediction")) if(band > 1) sse <- z$se else sse <- numeric(0) if(where != "grid") newdata <- list(xev = newdata, where = where) else newdata$where <- where data <- if(get.data) locfit.matrix(object) else list() if((f3d) | (dim > 3)) dim <- 3 ret <- list(xev = newdata, fit = fhat, se.fit = sse, residual.scale = sqrt( object$dp["rv"]), critval = object$critval, trans = tr, vnames = object$ vnames, yname = object$yname, dim = as.integer(dim), data = data) class(ret) <- "preplot.locfit" ret } "preplot.locfit.raw"<- function(object, newdata, where, what, band, ...) { wh <- pmatch(where, c("vect", "grid", "data", "fitp")) switch(wh, { mg <- n <- nrow(newdata) xev <- newdata } , { xev <- unlist(newdata) mg <- sapply(newdata, length) n <- prod(mg) } , { mg <- n <- object$mi["n"] xev <- newdata } , { mg <- n <- object$nvc["nv"] xev <- newdata } ) .C("spreplot", xev = as.numeric(object$eva$xev), coef = as.numeric(object$eva$coef), sv = as.numeric(object$cell$sv), ce = as.integer(c(object$cell$ce, object$cell$s, object$cell$lo, object$ cell$hi)), x = as.numeric(xev), y = numeric(n), se = numeric(n), wpc = as.numeric(object$eva$pc), scale = as.numeric(object$eva$scale), m = as.integer(mg), nvc = as.integer(object$nvc), mi = as.integer(object$mi), dp = as.numeric(object$dp), mg = as.integer(object$eva$ev$mg), deriv = as.integer(object$deriv), nd = as.integer(length(object$deriv)), sty = as.integer(object$sty), wh = as.integer(wh), what = c(what, band), bs = list(eval(object$call$basis)), PACKAGE="locfit") } "print.preplot.locfit"<- function(x, ...) { print(x$trans(x$fit)) invisible(x) } "plot.locfit.1d"<- function(x, add=FALSE, main="", xlab="default", ylab=x$yname, type="l", ylim, lty = 1, col = 1, ...) { y <- x$fit nos <- !is.na(y) xev <- x$xev[[1]][nos] y <- y[nos] ord <- order(xev) if(xlab == "default") xlab <- x$vnames tr <- x$trans yy <- tr(y) if(length(x$se.fit) > 0) { crit <- x$critval$crit.val cup <- tr((y + crit * x$se.fit))[ord] clo <- tr((y - crit * x$se.fit))[ord] } ndat <- 0 if(length(x$data) > 0) { ndat <- nrow(x$data$x) xdsc <- rep(x$data$sc, length.out = ndat) xdyy <- rep(x$data$y, length.out = ndat) dok <- xdsc > 0 } if(missing(ylim)) { if(length(x$se.fit) > 0) ylim <- c(min(clo), max(cup)) else ylim <- range(yy) if(ndat > 0) ylim <- range(c(ylim, xdyy[dok]/xdsc[dok])) } if(!add) { plot(xev[ord], yy[ord], type = "n", xlab = xlab, ylab = ylab, main = main, xlim = range(x$xev[[1]]), ylim = ylim, ...) } lines(xev[ord], yy[ord], type = type, lty = lty, col = col) if(length(x$se.fit) > 0) { lines(xev[ord], cup, lty = 2) lines(xev[ord], clo, lty = 2) } if(ndat > 0) { xd <- x$data$x[dok] yd <- xdyy[dok]/xdsc[dok] cd <- rep(x$data$ce, length.out = ndat)[dok] if(length(x$data$y) < 2) { rug(xd[cd == 0]) if(any(cd == 1)) rug(xd[cd == 1], ticksize = 0.015) } else { plotbyfactor(xd, yd, cd, col = col, pch = c("o", "+"), add = TRUE) } } invisible(NULL) } "plot.locfit.2d"<- function(x, type="contour", main, xlab, ylab, zlab=x$yname, ...) { if(x$xev$where != "grid") stop("Can only plot from grids") if(missing(xlab)) xlab <- x$vnames[1] if(missing(ylab)) ylab <- x$vnames[2] tr <- x$trans m1 <- x$xev[[1]] m2 <- x$xev[[2]] y <- matrix(tr(x$fit)) if(type == "contour") contour(m1, m2, matrix(y, nrow = length(m1)), ...) if(type == "image") image(m1, m2, matrix(y, nrow = length(m1)), ...) if((length(x$data) > 0) && any(type == c("contour", "image"))) { xd <- x$data$x ce <- rep(x$data$ce, length.out = nrow(xd)) points(xd[ce == 0, 1], xd[ce == 0, 2], pch = "o") if(any(ce == 1)) points(xd[ce == 1, 1], xd[ce == 1, 2], pch = "+") } if(type == "persp") { nos <- is.na(y) y[nos] <- min(y[!nos]) persp(m1, m2, matrix(y, nrow = length(m1)), zlab=zlab, ...) } if(!missing(main)) title(main = main) invisible(NULL) } "plot.locfit.3d"<- function(x, main = "", pv, tv, type = "level", pred.lab = x$vnames, resp.lab = x$yname, crit = 1.96, ...) { xev <- x$xev if(xev$where != "grid") stop("Can only plot from grids") xev$where <- NULL newx <- as.matrix(expand.grid(xev)) newy <- x$trans(x$fit) wh <- rep("f", length(newy)) if(length(x$data) > 0) { dat <- x$data for(i in tv) { m <- xev[[i]] dat$x[, i] <- m[1 + round((dat$x[, i] - m[1])/(m[2] - m[1]))] } newx <- rbind(newx, dat$x) if(is.null(dat$y)) newy <- c(newy, rep(NA, nrow(dat$x))) else { newy <- c(newy, dat$y/dat$sc) newy[is.na(newy)] <- 0 } wh <- c(wh, rep("d", nrow(dat$x))) } if(length(tv) == 0) { newdat <- data.frame(newy, newx[, pv]) names(newdat) <- c("y", paste("pv", 1:length(pv), sep = "")) } else { newdat <- data.frame(newx[, tv], newx[, pv], newy) names(newdat) <- c(paste("tv", 1:length(tv), sep = ""), paste("pv", 1: length(pv), sep = ""), "y") for(i in 1:length(tv)) newdat[, i] <- as.factor(signif(newdat[, i], 5)) } loc.strip <- function(...) strip.default(..., strip.names = c(TRUE, TRUE), style = 1) if(length(pv) == 1) { clo <- cup <- numeric(0) if(length(x$se.fit) > 0) { if((!is.null(class(crit))) && (class(crit) == "kappa")) crit <- crit$crit.val cup <- x$trans((x$fit + crit * x$se.fit)) clo <- x$trans((x$fit - crit * x$se.fit)) } formula <- switch(1 + length(tv), y ~ pv1, y ~ pv1 | tv1, y ~ pv1 | tv1 * tv2, y ~ pv1 | tv1 * tv2 * tv3) pl <- xyplot(formula, xlab = pred.lab[pv], ylab = resp.lab, main = main, type = "l", cup = cup, wh = wh, panel = panel.xyplot.lf, data = newdat, strip = loc.strip, ...) } if(length(pv) == 2) { formula <- switch(1 + length(tv), y ~ pv1 * pv2, y ~ pv1 * pv2 | tv1, y ~ pv1 * pv2 | tv1 * tv2, y ~ pv1 * pv2 | tv1 * tv2 * tv3) if(type == "contour") pl <- contourplot(formula, xlab = pred.lab[pv[1]], ylab = pred.lab[pv[2]], main = main, data = newdat, strip = loc.strip, ...) if(type == "level") pl <- levelplot(formula, xlab = pred.lab[pv[1]], ylab = pred.lab[pv[2]], main = main, data = newdat, strip = loc.strip, ...) if((type == "persp") | (type == "wireframe")) pl <- wireframe(formula, xlab = pred.lab[pv[1]], ylab = pred.lab[pv[2]], zlab = resp.lab, data = newdat, strip = loc.strip, ...) } if(length(tv) > 0) { if(exists("is.R") && is.function(is.R) && is.R()) names(pl$cond) <- pred.lab[tv] else names(attr(pl$glist, "endpts")) <- attr(pl$glist, "names") <- names( attr(pl$glist, "index")) <- pred.lab[tv] } pl } "panel.xyplot.lf"<- function(x, y, subscripts, clo, cup, wh, type = "l", ...) { wh <- wh[subscripts] panel.xyplot(x[wh == "f"], y[wh == "f"], type = type, ...) if(length(clo) > 0) { panel.xyplot(x[wh == "f"], clo[subscripts][wh == "f"], type = "l", lty = 2, ...) panel.xyplot(x[wh == "f"], cup[subscripts][wh == "f"], type = "l", lty = 2, ...) } if(any(wh == "d")) { yy <- y[wh == "d"] if(any(is.na(yy))) rug(x[wh == "d"]) else panel.xyplot(x[wh == "d"], yy) } } "plot.preplot.locfit"<- function(x, pv, tv, ...) { if(x$dim == 1) plot.locfit.1d(x, ...) if(x$dim == 2) plot.locfit.2d(x, ...) if(x$dim >= 3) print(plot.locfit.3d(x, pv=pv, tv=tv, ...)) invisible(NULL) } "summary.preplot.locfit"<- function(object, ...) object$trans(object$fit) "panel.locfit"<- function(x, y, subscripts, z, rot.mat, distance, shade, light.source, xlim, ylim, zlim, xlim.scaled, ylim.scaled, zlim.scaled, region, col, lty, lwd, alpha, col.groups, polynum, drape, at, xlab, ylab, zlab, xlab.default, ylab.default, zlab.default, aspect, panel.aspect, scales.3d, contour, labels, ...) { if(!missing(z)) { zs <- z[subscripts] fit <- locfit.raw(cbind(x, y), zs, ...) marg <- lfmarg(fit, m = 10) zp <- predict(fit, marg) if(!missing(contour)) { lattice::panel.contourplot(marg[[1]], marg[[2]], zp, 1:length(zp), at=at) } else { lattice::panel.wireframe(marg[[1]], marg[[2]], zp, rot.mat, distance, shade, light.source, xlim, ylim, zlim, xlim.scaled, ylim.scaled, zlim.scaled, col, lty, lwd, alpha, col.groups, polynum, drape, at) } } else { panel.xyplot(x, y, ...) args <- list(x = x, y = y, ...) ok <- names(formals(locfit.raw)) llines.locfit(do.call("locfit.raw", args[ok[ok %in% names(args)]])) } } llines.locfit <- function (x, m = 100, tr = x$trans, ...) { newx <- lfmarg(x, m = m)[[1]] y <- predict(x, newx, tr = tr) llines(newx, y, ...) } "lfmarg"<- function(xlim, m = 40) { if(!is.numeric(xlim)) { d <- xlim$mi["d"] xlim <- xlim$box } else d <- length(m) marg <- vector("list", d) m <- rep(m, length.out = d) for(i in 1:d) marg[[i]] <- seq(xlim[i], xlim[i + d], length.out = m[i]) marg } "lfeval"<- function(object) object$eva "plot.lfeval"<- function(x, add = FALSE, txt = FALSE, ...) { if(class(x) == "locfit") x <- x$eva d <- length(x$scale) v <- matrix(x$xev, nrow = d) if(d == 1) { xx <- v[1, ] y <- x$coef[, 1] } if(d == 2) { xx <- v[1, ] y <- v[2, ] } if(!add) { plot(xx, y, type = "n", ...) } points(xx, y, ...) if(txt) text(xx, y, (1:length(xx)) - 1) invisible(x) } "print.lfeval"<- function(x, ...) { if(class(x) == "locfit") x <- x$eva d <- length(x$scale) ret <- matrix(x$xev, ncol = d, byrow = TRUE) print(ret) } "lflim"<- function(limits, nm, ret) { d <- length(nm) if(is.numeric(limits)) ret <- limits else { z <- match(nm, names(limits)) for(i in 1:d) if(!is.na(z[i])) ret[c(i, i + d)] <- limits[[z[i]]] } as.numeric(ret) } "plot.eval"<- function(x, add = FALSE, text = FALSE, ...) { d <- x$mi["d"] v <- matrix(x$eva$xev, nrow = d) ev <- x$mi["ev"] pv <- if(any(ev == c(1, 2))) as.logical(x$cell$s) else rep(FALSE, ncol(v)) if(!add) { plot(v[1, ], v[2, ], type = "n", xlab = x$vnames[1], ylab = x$vnames[2]) } if(text) text(v[1, ], v[2, ], (1:x$nvc["nv"]) - 1) else { if(any(!pv)) points(v[1, !pv], v[2, !pv], ...) if(any(pv)) points(v[1, pv], v[2, pv], pch = "*", ...) } if(any(x$mi["ev"] == c(1, 2))) { zz <- .C("triterm", as.numeric(v), h = as.numeric(lfknots(x, what = "h", delete.pv = FALSE)), as.integer(x$cell$ce), lo = as.integer(x$cell$lo), hi = as.integer(x$cell$hi), as.numeric(x$eva$scale), as.integer(x$nvc), as.integer(x$mi), as.numeric(x$dp), nt = integer(1), term = integer(600), box = x$box, PACKAGE="locfit") ce <- zz$term + 1 } else ce <- x$cell$ce + 1 if(any(x$mi["ev"] == c(1, 5, 7))) { vc <- 2^d ce <- matrix(ce, nrow = vc) segments(v[1, ce[1, ]], v[2, ce[1, ]], v[1, ce[2, ]], v[2, ce[2, ]], ...) segments(v[1, ce[1, ]], v[2, ce[1, ]], v[1, ce[3, ]], v[2, ce[3, ]], ...) segments(v[1, ce[2, ]], v[2, ce[2, ]], v[1, ce[4, ]], v[2, ce[4, ]], ...) segments(v[1, ce[3, ]], v[2, ce[3, ]], v[1, ce[4, ]], v[2, ce[4, ]], ...) } if(any(x$mi["ev"] == c(2, 8))) { vc <- d + 1 m <- matrix(ce, nrow = 3) segments(v[1, m[1, ]], v[2, m[1, ]], v[1, m[2, ]], v[2, m[2, ]], ...) segments(v[1, m[1, ]], v[2, m[1, ]], v[1, m[3, ]], v[2, m[3, ]], ...) segments(v[1, m[2, ]], v[2, m[2, ]], v[1, m[3, ]], v[2, m[3, ]], ...) } invisible(NULL) } "rv"<- function(fit) fit$dp["rv"] "rv<-"<- function(fit, value) { fit$dp["rv"] <- value fit } "regband"<- function(formula, what = c("CP", "GCV", "GKK", "RSW"), deg = 1, ...) { m <- match.call() m$geth <- 3 m$deg <- c(deg, 4) m$what <- NULL m$deriv <- match(what, c("CP", "GCV", "GKK", "RSW")) m[[1]] <- as.name("locfit") z <- eval(m, sys.frame(sys.parent())) names(z) <- what z[1:length(what)] } "kdeb"<- function(x, h0 = 0.01 * sd, h1 = sd, meth = c("AIC", "LCV", "LSCV", "BCV", "SJPI", "GKK"), kern = "gauss", gf = 2.5) { n <- length(x) sd <- sqrt(var(x)) z <- .C("kdeb", x = as.numeric(x), mi = as.integer(n), band = numeric(length(meth)), ind = integer(n), h0 = as.numeric(gf * h0), h1 = as.numeric(gf * h1), meth = as.integer(match(meth, c("AIC", "LCV", "LSCV", "BCV", "SJPI", "GKK") )), nmeth = as.integer(length(meth)), kern = pmatch(kern, c("rect", "epan", "bisq", "tcub", "trwt", "gauss")), PACKAGE="locfit") band <- z$band names(band) <- meth band } "lfknots"<- function(x, tr, what = c("x", "coef", "h", "nlx"), delete.pv = TRUE) { nv <- x$nvc["nv"] d <- x$mi["d"] p <- x$mi["p"] z <- 0:(nv - 1) ret <- matrix(0, nrow = nv, ncol = 1) rname <- character(0) if(missing(tr)) tr <- x$trans coef <- x$eva$coef for(wh in what) { if(wh == "x") { ret <- cbind(ret, matrix(x$eva$xev, ncol = d, byrow = TRUE)) rname <- c(rname, x$vnames) } if(wh == "coef") { d0 <- coef[, 1] d0[d0 == 0.1278433] <- NA ret <- cbind(ret, tr(d0)) rname <- c(rname, "mu hat") } if(wh == "f1") { ret <- cbind(ret, coef[, 1 + (1:d)]) rname <- c(rname, paste("d", 1:d, sep = "")) } if(wh == "nlx") { ret <- cbind(ret, coef[, d + 2]) rname <- c(rname, "||l(x)||") } if(wh == "nlx1") { ret <- cbind(ret, coef[, d + 2 + (1:d)]) rname <- c(rname, paste("nlx-d", 1:d, sep = "")) } if(wh == "se") { ret <- cbind(ret, sqrt(x$dp["rv"]) * coef[, d + 2]) rname <- c(rname, "StdErr") } if(wh == "infl") { z <- coef[, 2 * d + 3] ret <- cbind(ret, z * z) rname <- c(rname, "Influence") } if(wh == "infla") { ret <- cbind(ret, coef[, 2 * d + 3 + (1:d)]) rname <- c(rname, paste("inf-d", 1:d, sep = "")) } if(wh == "lik") { ret <- cbind(ret, coef[, 3 * d + 3 + (1:3)]) rname <- c(rname, c("LocLike", "fit.df", "res.df")) } if(wh == "h") { ret <- cbind(ret, coef[, 3 * d + 7]) rname <- c(rname, "h") } if(wh == "deg") { ret <- cbind(ret, coef[, 3 * d + 8]) rname <- c(rname, "deg") } } ret <- as.matrix(ret[, -1]) if(nv == 1) ret <- t(ret) dimnames(ret) <- list(NULL, rname) if((delete.pv) && (any(x$mi["ev"] == c(1, 2)))) ret <- ret[!as.logical(x$cell$s), ] ret } "locfit.matrix"<- function(fit, data) { m <- fit$call n <- fit$mi["n"] y <- ce <- base <- 0 w <- 1 if(m[[1]] == "locfit.raw") { x <- as.matrix(eval(m$x, fit$frame)) if(!is.null(m$y)) y <- eval(m$y, fit$frame) if(!is.null(m$weights)) w <- eval(m$weights, fit$frame) if(!is.null(m$cens)) ce <- eval(m$cens, fit$frame) if(!is.null(m$base)) base <- eval(m$base, fit$frame) } else { Terms <- terms(as.formula(m$formula)) attr(Terms, "intercept") <- 0 m[[1]] <- as.name("model.frame") z <- pmatch(names(m), c("formula", "data", "weights", "cens", "base", "subset")) for(i in length(z):2) if(is.na(z[i])) m[[i]] <- NULL frm <- eval(m, fit$frame) vnames <- as.character(attributes(Terms)$variables)[-1] if(attr(Terms, "response")) { y <- model.extract(frm, "response") vnames <- vnames[-1] } x <- as.matrix(frm[, vnames]) if(any(names(m) == "weights")) w <- model.extract(frm, weights) if(any(names(m) == "cens")) ce <- model.extract(frm, "cens") if(any(names(m) == "base")) base <- model.extract(frm, base) } sc <- if(any((fit$mi["tg"] %% 64) == c(5:8, 11, 12))) w else 1 list(x = x, y = y, w = w, sc = sc, ce = ce, base = base) } "expit"<- function(x) { y <- x ix <- (x < 0) y[ix] <- exp(x[ix])/(1 + exp(x[ix])) y[!ix] <- 1/(1 + exp( - x[!ix])) y } "plotbyfactor"<- function(x, y, f, data, col = 1:10, pch = "O", add = FALSE, lg, xlab = deparse( substitute(x)), ylab = deparse(substitute(y)), log = "", ...) { if(!missing(data)) { x <- eval(substitute(x), data) y <- eval(substitute(y), data) f <- eval(substitute(f), data) } f <- as.factor(f) if(!add) plot(x, y, type = "n", xlab = xlab, ylab = ylab, log = log, ...) lv <- levels(f) col <- rep(col, length.out = length(lv)) pch <- rep(pch, length.out = length(lv)) for(i in 1:length(lv)) { ss <- f == lv[i] if(any(ss)) points(x[ss], y[ss], col = col[i], pch = pch[i]) } if(!missing(lg)) legend(lg[1], lg[2], legend = levels(f), col = col, pch = paste(pch, collapse = "")) } "hatmatrix"<- function(formula, dc = TRUE, ...) { m <- match.call() m$geth <- 1 m[[1]] <- as.name("locfit") z <- eval(m, sys.frame(sys.parent())) nvc <- z[[2]] nvm <- nvc[1] nv <- nvc[4] matrix(z[[1]], ncol = nvm)[, 1:nv] } "locfit.robust"<- function(x, y, weights, ..., iter = 3) { m <- match.call() if((!is.numeric(x)) && (class(x) == "formula")) { m1 <- m[[1]] m[[1]] <- as.name("locfit") m$lfproc <- m1 names(m)[[2]] <- "formula" return(eval(m, sys.frame(sys.parent()))) } n <- length(y) lfr.wt <- rep(1, n) m[[1]] <- as.name("locfit.raw") for(i in 0:iter) { m$weights <- lfr.wt fit <- eval(m, sys.frame(sys.parent())) res <- residuals(fit, type = "raw") s <- median(abs(res)) lfr.wt <- pmax(1 - (res/(6 * s))^2, 0)^2 } fit } "locfit.censor"<- function(x, y, cens, ..., iter = 3, km = FALSE) { m <- match.call() if((!is.numeric(x)) && (class(x) == "formula")) { m1 <- m[[1]] m[[1]] <- as.name("locfit") m$lfproc <- m1 names(m)[[2]] <- "formula" return(eval(m, sys.frame(sys.parent()))) } lfc.y <- y cens <- as.logical(cens) m$cens <- m$iter <- m$km <- NULL m[[1]] <- as.name("locfit.raw") for (i in 0:iter) { m$y <- lfc.y fit <- eval(m, sys.frame(sys.parent())) fh <- fitted(fit) if(km) { sr <- y - fh lfc.y <- y + km.mrl(sr, cens) } else { rdf <- sum(1 - cens) - 2 * fit$dp["df1"] + fit$dp["df2"] sigma <- sqrt(sum((y - fh) * (lfc.y - fh))/rdf) sr <- (y - fh)/sigma lfc.y <- fh + (sigma * dnorm(sr))/pnorm( - sr) } lfc.y[!cens] <- y[!cens] } m$cens <- substitute(cens) m$y <- substitute(y) fit$call <- m fit } "km.mrl"<- function(times, cens) { n <- length(times) if(length(cens) != length(times)) stop("times and cens must have equal length") ord <- order(times) times <- times[ord] cens <- cens[ord] n.alive <- n:1 haz.km <- (1 - cens)/n.alive surv.km <- exp(cumsum(log(1 - haz.km[ - n]))) int.surv <- c(diff(times) * surv.km) mrl.km <- c(rev(cumsum(rev(int.surv)))/surv.km, 0) mrl.km[!cens] <- 0 mrl.km.ord <- numeric(n) mrl.km.ord[ord] <- mrl.km mrl.km.ord } "locfit.quasi"<- function(x, y, weights, ..., iter = 3, var = abs) { m <- match.call() if((!is.numeric(x)) && (class(x) == "formula")) { m1 <- m[[1]] m[[1]] <- as.name("locfit") m$lfproc <- m1 names(m)[[2]] <- "formula" return(eval(m, sys.frame(sys.parent()))) } n <- length(y) w0 <- lfq.wt <- if(missing(weights)) rep(1, n) else weights m[[1]] <- as.name("locfit.raw") for(i in 0:iter) { m$weights <- lfq.wt fit <- eval(m, sys.frame(sys.parent())) fh <- fitted(fit) lfq.wt <- w0/var(fh) } fit } "density.lf"<- function(x, n=50, window="gaussian", width, from, to, cut=if(iwindow == 4) 0.75 else 0.5, ev=lfgrid(mg=n, ll=from, ur=to), deg=0, family="density", link="ident", ...) { if(!exists("logb")) logb <- log x <- sort(x) r <- range(x) iwindow <- pmatch(window, c("rectangular", "triangular", "cosine", "gaussian" ), -1.) if(iwindow < 0.) kern <- window else kern <- c("rect", "tria", NA, "gauss")[iwindow] if(missing(width)) { nbar <- logb(length(x), base = 2.) + 1. width <- diff(r)/nbar * 0.5 } if(missing(from)) from <- r[1.] - width * cut if(missing(to)) to <- r[2.] + width * cut if(to <= from) stop("Invalid from/to values") h <- width/2 if(kern == "gauss") h <- h * 1.25 fit <- locfit.raw(lp(x, h = h, deg = deg), ev = ev, kern = kern, link = link, family = family, ...) list(x = fit$eva$xev, y = fit$eva$coef[, 1]) } "smooth.lf"<- function(x, y, xev = x, direct = FALSE, ...) { if(missing(y)) { y <- x x <- 1:length(y) } if(direct) { fit <- locfit.raw(x, y, ev = xev, geth = 7, ...) fv <- fit$y xev <- fit$x if(is.matrix(x)) xev <- matrix(xev, ncol = ncol(x), byrow = TRUE) } else { fit <- locfit.raw(x, y, ...) fv <- predict(fit, xev) } list(x = xev, y = fv, call = match.call()) } "gcv"<- function(x, ...) { m <- match.call() if(is.numeric(x)) m[[1]] <- as.name("locfit.raw") else { m[[1]] <- as.name("locfit") names(m)[2] <- "formula" } fit <- eval(m, sys.frame(sys.parent())) z <- fit$dp[c("lk", "df1", "df2")] n <- fit$mi["n"] z <- c(z, (-2 * n * z[1])/(n - z[2])^2) names(z) <- c("lik", "infl", "vari", "gcv") z } "gcvplot"<- function(..., alpha, df = 2) { m <- match.call() m[[1]] <- as.name("gcv") m$df <- NULL if(!is.matrix(alpha)) alpha <- matrix(alpha, ncol = 1) k <- nrow(alpha) z <- matrix(nrow = k, ncol = 4) for(i in 1:k) { m$alpha <- alpha[i, ] z[i, ] <- eval(m, sys.frame(sys.parent())) } ret <- list(alpha = alpha, cri = "GCV", df = z[, df], values = z[, 4]) class(ret) <- "gcvplot" ret } "plot.gcvplot"<- function(x, xlab = "Fitted DF", ylab = x$cri, ...) { plot(x$df, x$values, xlab = xlab, ylab = ylab, ...) } "print.gcvplot"<- function(x, ...) plot.gcvplot(x = x, ...) "summary.gcvplot"<- function(object, ...) { z <- cbind(object$df, object$values) dimnames(z) <- list(NULL, c("df", object$cri)) z } "aic"<- function(x, ..., pen = 2) { m <- match.call() if(is.numeric(x)) m[[1]] <- as.name("locfit.raw") else { m[[1]] <- as.name("locfit") names(m)[2] <- "formula" } m$pen <- NULL fit <- eval(m, sys.frame(sys.parent())) dp <- fit$dp z <- dp[c("lk", "df1", "df2")] z <- c(z, -2 * z[1] + pen * z[2]) names(z) <- c("lik", "infl", "vari", "aic") z } "aicplot"<- function(..., alpha) { m <- match.call() m[[1]] <- as.name("aic") if(!is.matrix(alpha)) alpha <- matrix(alpha, ncol = 1) k <- nrow(alpha) z <- matrix(nrow = k, ncol = 4) for(i in 1:k) { m$alpha <- alpha[i, ] z[i, ] <- eval(m, sys.frame(sys.parent())) } ret <- list(alpha = alpha, cri = "AIC", df = z[, 2], values = z[, 4]) class(ret) <- "gcvplot" ret } "cp"<- function(x, ..., sig2 = 1) { m <- match.call() if(is.numeric(x)) m[[1]] <- as.name("locfit.raw") else { m[[1]] <- as.name("locfit") names(m)[2] <- "formula" } m$sig2 <- NULL fit <- eval(m, sys.frame(sys.parent())) z <- c(fit$dp[c("lk", "df1", "df2")], fit$mi["n"]) z <- c(z, (-2 * z[1])/sig2 - z[4] + 2 * z[2]) names(z) <- c("lik", "infl", "vari", "n", "cp") z } "cpplot"<- function(..., alpha, sig2) { m <- match.call() m[[1]] <- as.name("cp") m$sig2 <- NULL if(!is.matrix(alpha)) alpha <- matrix(alpha, ncol = 1) k <- nrow(alpha) z <- matrix(nrow = k, ncol = 5) for(i in 1:k) { m$alpha <- alpha[i, ] z[i, ] <- eval(m, sys.frame(sys.parent())) } if(missing(sig2)) { s <- (1:k)[z[, 3] == max(z[, 3])][1] sig2 <- (-2 * z[s, 1])/(z[s, 4] - 2 * z[s, 2] + z[s, 3]) } ret <- list(alpha = alpha, cri = "CP", df = z[, 3], values = (-2 * z[, 1])/ sig2 - z[, 4] + 2 * z[, 2]) class(ret) <- "gcvplot" ret } "lcv"<- function(x, ...) { m <- match.call() if(is.numeric(x)) m[[1]] <- as.name("locfit.raw") else { m[[1]] <- as.name("locfit") names(m)[2] <- "formula" } fit <- eval(m, sys.frame(sys.parent())) z <- fit$dp[c("lk", "df1", "df2")] res <- residuals(fit, type = "d2", cv = TRUE) z <- c(z, sum(res)) names(z) <- c("lik", "infl", "vari", "cv") z } "lcvplot"<- function(..., alpha) { m <- match.call() m[[1]] <- as.name("lcv") if(!is.matrix(alpha)) alpha <- matrix(alpha, ncol = 1) k <- nrow(alpha) z <- matrix(nrow = k, ncol = 4) for(i in 1:k) { m$alpha <- alpha[i, ] z[i, ] <- eval(m, sys.frame(sys.parent())) } ret <- list(alpha = alpha, cri = "LCV", df = z[, 2], values = z[, 4]) class(ret) <- "gcvplot" ret } "lscv"<- function(x, ..., exact = FALSE) { if(exact) { ret <- lscv.exact(x, ...) } else { m <- match.call() m$exact <- NULL if(is.numeric(x)) m[[1]] <- as.name("locfit.raw") else { m[[1]] <- as.name("locfit") names(m)[2] <- "formula" } m$geth <- 6 ret <- eval(m, sys.frame(sys.parent())) } ret } "lscv.exact"<- function(x, h = 0) { if(!is.null(attr(x, "alpha"))) h <- attr(x, "alpha")[2] if(h <= 0) stop("lscv.exact: h must be positive.") ret <- .C("slscv", x = as.numeric(x), n = as.integer(length(x)), h = as.numeric(h), ret = numeric(2), PACKAGE="locfit")$ret ret } "lscvplot"<- function(..., alpha) { m <- match.call() m[[1]] <- as.name("lscv") if(!is.matrix(alpha)) alpha <- matrix(alpha, ncol = 1) k <- nrow(alpha) z <- matrix(nrow = k, ncol = 2) for(i in 1:k) { m$alpha <- alpha[i, ] z[i, ] <- eval(m, sys.frame(sys.parent())) } ret <- list(alpha = alpha, cri = "LSCV", df = z[, 2], values = z[, 1]) class(ret) <- "gcvplot" ret } "sjpi"<- function(x, a) { dnorms <- function(x, k) { if(k == 0) return(dnorm(x)) if(k == 1) return( - x * dnorm(x)) if(k == 2) return((x * x - 1) * dnorm(x)) if(k == 3) return(x * (3 - x * x) * dnorm(x)) if(k == 4) return((3 - x * x * (6 - x * x)) * dnorm(x)) if(k == 6) return((-15 + x * x * (45 - x * x * (15 - x * x))) * dnorm(x)) stop("k too large in dnorms") } alpha <- a * sqrt(2) n <- length(x) M <- outer(x, x, "-") s <- numeric(length(alpha)) for(i in 1:length(alpha)) { s[i] <- sum(dnorms(M/alpha[i], 4)) } s <- s/(n * (n - 1) * alpha^5) h <- (s * 2 * sqrt(pi) * n)^(-0.2) lambda <- diff(summary(x)[c(2, 5)]) A <- 0.92 * lambda * n^(-1/7) B <- 0.912 * lambda * n^(-1/9) tb <- - sum(dnorms(M/B, 6))/(n * (n - 1) * B^7) sa <- sum(dnorms(M/A, 4))/(n * (n - 1) * A^5) ah <- 1.357 * (sa/tb * h^5)^(1/7) cbind(h, a, ah/sqrt(2), s) } "scb"<- function(x, ..., ev = lfgrid(20), simul = TRUE, type = 1) { oc <- m <- match.call() if(is.numeric(x)) m[[1]] <- as.name("locfit.raw") else { m[[1]] <- as.name("locfit") names(m)[2] <- "formula" } m$type <- m$simul <- NULL m$geth <- 70 + type + 10 * simul m$ev <- substitute(ev) fit <- eval(m, sys.frame(sys.parent())) fit$call <- oc class(fit) <- "scb" fit } "plot.scb"<- function(x, add = FALSE, ...) { fit <- x$trans(x$coef) lower <- x$trans(x$lower) upper <- x$trans(x$upper) d <- x$d if(d == 1) plot.scb.1d(x, fit, lower, upper, add, ...) if(d == 2) plot.scb.2d(x, fit = fit, lower = lower, upper = upper, ...) if(!any(d == c(1, 2))) stop("Can't plot this scb") } "plot.scb.1d"<- function(x, fit, lower, upper, add = FALSE, style = "band", ...) { if(style == "test") { lower <- lower - fit upper <- upper - fit } if(!add) { yl <- range(c(lower, fit, upper)) plot(x$xev, fit, type = "l", ylim = yl, xlab = x$vnames[1]) } lines(x$xev, lower, lty = 2) lines(x$xev, upper, lty = 2) if(is.null(x$call$deriv)) { dx <- x$data$x sc <- if(any((x$mi["tg"] %% 64) == c(5:8, 11, 12))) x$data$w else 1 dy <- x$data$y/sc points(dx, dy) } if(style == "test") abline(h = 0, lty = 3) } "plot.scb.2d" <- function(x, fit, lower, upper, style = "tl", ylim, ...) { plot.tl <- function(x, y, z, nint = c(16, 15), v1, v2, xlab=deparse(substitute(x)), ylab=deparse(substitute(y)), legend=FALSE, pch="", ...) { xl <- range(x) if (legend) { mar <- par()$mar if (mar[4] < 6.1) par(mar = c(mar[1:3], 6.1)) on.exit(par(mar = mar)) dlt <- diff(xl) xl[2] <- xl[2] + 0.02 * dlt } plot(1, 1, type = "n", xlim = xl, ylim = range(y), xlab = xlab, ylab = ylab, ...) nx <- length(x) ny <- length(y) if (missing(v)) { v <- seq(min(z) - 0.0001, max(z), length.out = nint + 1) } else { nint <- length(v) - 1 } ix <- rep(1:nx, ny) iy <- rep(1:ny, rep(nx, ny)) r1 <- range(z[, 1]) r2 <- range(z[, 2]) hue <- if (missing(v1)) { floor((nint[1] * (z[, 1] - r1[1]))/(r1[2] - r1[1]) * 0.999999999) } else cut(z[, 1], v1) - 1 sat <- if (missing(v2)) { floor((nint[2] * (z[, 2] - r2[1]))/(r2[2] - r2[1]) * 0.999999999) } else cut(z[, 2], v2) - 1 col <- hue + nint[1] * sat + 1 x <- c(2 * x[1] - x[2], x, 2 * x[nx] - x[nx - 1]) y <- c(2 * y[1] - y[2], y, 2 * y[ny] - y[ny - 1]) x <- (x[1:(nx + 1)] + x[2:(nx + 2)])/2 y <- (y[1:(ny + 1)] + y[2:(ny + 2)])/2 for (i in unique(col)) { u <- col == i if(pch == "") { xx <- rbind(x[ix[u]], x[ix[u] + 1], x[ix[u] + 1], x[ix[u]], NA) yy <- rbind(y[iy[u]], y[iy[u]], y[iy[u] + 1], y[iy[u] + 1], NA) polygon(xx, yy, col = i, border = 0) } else points(x[ix[u]], y[iy[u]], col = i, pch = pch) } if(legend) { yv <- seq(min(y), max(y), length = length(v)) x1 <- max(x) + 0.02 * dlt x2 <- max(x) + 0.06 * dlt for(i in 1:nint) { polygon(c(x1, x2, x2, x1), rep(yv[i:(i + 1)], c(2, 2)), col = i, border = 0) } axis(side = 4, at = yv, labels = v, adj = 0) } } if(style == "trell") { if(missing(ylim)) ylim <- range(c(fit, lower, upper)) loc.dat = data.frame(x1 = x$xev[, 1], x2 = x$xev[, 2], y = fit) pl <- xyplot(y ~ x1 | as.factor(x2), data = loc.dat, panel = panel.xyplot.lf, clo=lower, cup=upper, wh=rep("f", nrow(loc.dat))) plot(pl) } if(style == "tl") { ux <- unique(x$xev[, 1]) uy <- unique(x$xev[, 2]) sig <- abs(x$coef/x$sd) rv1 <- max(abs(fit)) * 1.0001 v1 <- seq( - rv1, rv1, length.out = 17) v2 <- - c(-1e-100, crit(const = x$kap, cov = c(0.5, 0.7, 0.8, 0.85, 0.9, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999))$crit.val, 1e+300) plot.tl(ux, uy, cbind(fit, - sig), v1 = v1, v2 = v2, xlab = x$vnames[1], ylab = x$vnames[2]) } } "print.scb"<- function(x, ...) { m <- cbind(x$xev, x$trans(x$coef), x$trans(x$lower), x$trans(x$upper)) dimnames(m) <- list(NULL, c(x$vnames, "fit", "lower", "upper")) print(m) } "kappa0"<- function(formula, cov=0.95, ev=lfgrid(20), ...) { if(class(formula) == "locfit") { m <- formula$call } else { m <- match.call() m$cov <- NULL } m$dc <- TRUE m$geth <- 2 m$ev <- substitute(ev) m[[1]] <- as.name("locfit") z <- eval(m, sys.frame(sys.parent())) crit(const = z$const, d = z$d, cov = cov) } "crit"<- function(fit, const = c(0, 1), d = 1, cov = 0.95, rdf = 0) { if(!missing(fit)) { z <- fit$critval if(missing(const) & missing(d) & missing(cov)) return(z) if(!missing(const)) z$const <- const if(!missing(d)) z$d <- d if(!missing(cov)) z$cov <- cov if(!missing(rdf)) z$rdf <- rdf } else { z <- list(const = const, d = d, cov = cov, rdf = rdf, crit.val = 0) class(z) <- "kappa" } z$crit.val <- .C("scritval", k0 = as.numeric(z$const), d = as.integer(z$d), cov = as.numeric(z$cov), m = as.integer(length(z$const)), rdf = as.numeric(z$rdf), x = numeric(1), k = as.integer(1), PACKAGE="locfit")$x z } "crit<-"<- function(fit, value) { if(is.numeric(value)) fit$critval$crit.val <- value[1] else { if(class(value) != "kappa") stop("crit<-: value must be numeric or class kappa") fit$critval <- value } fit } "spence.15"<- function(y) { n <- length(y) y <- c(rep(y[1], 7), y, rep(y[n], 7)) n <- length(y) k <- 3:(n - 2) a3 <- y[k - 1] + y[k] + y[k + 1] a2 <- y[k - 2] + y[k + 2] y1 <- y[k] + 3 * (a3 - a2) n <- length(y1) k <- 1:(n - 3) y2 <- y1[k] + y1[k + 1] + y1[k + 2] + y1[k + 3] n <- length(y2) k <- 1:(n - 3) y3 <- y2[k] + y2[k + 1] + y2[k + 2] + y2[k + 3] n <- length(y3) k <- 1:(n - 4) y4 <- y3[k] + y3[k + 1] + y3[k + 2] + y3[k + 3] + y3[k + 4] y4/320 } "spence.21"<- function(y) { n <- length(y) y <- c(rep(y[1], 10), y, rep(y[n], 10)) n <- length(y) k <- 4:(n - 3) y1 <- - y[k - 3] + y[k - 1] + 2 * y[k] + y[k + 1] - y[k + 3] n <- length(y1) k <- 4:(n - 3) y2 <- y1[k - 3] + y1[k - 2] + y1[k - 1] + y1[k] + y1[k + 1] + y1[k + 2] + y1[ k + 3] n <- length(y2) k <- 3:(n - 2) y3 <- y2[k - 2] + y2[k - 1] + y2[k] + y2[k + 1] + y2[k + 2] n <- length(y3) k <- 3:(n - 2) y4 <- y3[k - 2] + y3[k - 1] + y3[k] + y3[k + 1] + y3[k + 2] y4/350 } "store"<- function(data = FALSE, grand = FALSE) { lfmod <- c("ang", "gam.lf", "gam.slist", "lf", "left", "right", "cpar", "lp") lfmeth <- c("fitted.locfit", "formula.locfit", "predict.locfit", "lines.locfit", "points.locfit", "print.locfit", "residuals.locfit", "summary.locfit", "print.summary.locfit") lfev <- c("rbox", "gr", "dat", "xbar", "none") lfplo <- c("plot.locfit", "preplot.locfit", "preplot.locfit.raw", "print.preplot.locfit", "plot.locfit.1d", "plot.locfit.2d", "plot.locfit.3d", "panel.xyplot.lf", "plot.preplot.locfit", "summary.preplot.locfit", "panel.locfit", "lfmarg") lffre <- c("hatmatrix", "locfit.robust", "locfit.censor", "km.mrl", "locfit.quasi", "density.lf", "smooth.lf") lfscb <- c("scb", "plot.scb", "plot.scb.1d", "plot.scb.2d", "print.scb", "kappa0", "crit", "crit<-", "plot.tl") lfgcv <- c("gcv", "gcvplot", "plot.gcvplot", "print.gcvplot", "summary.gcvplot", "aic", "aicplot", "cp", "cpplot", "lcv", "lcvplot", "lscv", "lscv.exact", "lscvplot", "sjpi") lfspen <- c("spence.15", "spence.21") lffuns <- c("locfit", "locfit.raw", lfmod, lfmeth, lfev, lfplo, "lfeval", "plot.lfeval", "print.lfeval", "lflim", "plot.eval", "rv", "rv<-", "regband", "kdeb", "lfknots", "locfit.matrix", "expit", "plotbyfactor", lffre, lfgcv, lfscb, lfspen, "store") lfdata <- c("bad", "cltest", "cltrain", "co2", "diab", "geyser", "ethanol", "mcyc", "morths", "border", "heart", "trimod", "insect", "iris", "spencer", "stamp") lfgrand <- c("locfit.raw", "crit", "predict.locfit", "preplot.locfit", "preplot.locfit.raw", "expit", "rv", "rv<-", "knots") dump(lffuns, "S/locfit.s") if(data) dump(lfdata, "S/locfit.dat") if(grand) dump(lfgrand, "src-gr/lfgrand.s") dump(lffuns, "R/locfit.s") }
gettrainmethod <- function (method) { if (method == "logistic") { rval = function(Z, T) { if (length(levels(T)) == 2) return(matrix(coefficients(multinom(T ~ Z, trace = FALSE)))) else return(t(coefficients(multinom(T ~ Z, trace = FALSE)))) } } else if (method == "logistic2") { rval = function(Z, T) { if (length(levels(T)) == 2) return(matrix(coefficients(multinom(T ~ .^2, data = data.frame(Z), trace = FALSE)))) else return(t(coefficients(multinom(T ~ .^2, data = data.frame(Z), trace = FALSE)))) } } else if (method == "lda") { rval = function(Z, T) { gn = length(levels(T)) return(lda(Z, T, prior = rep(1/gn, gn), tol = 1e-05)) } } else if (method == "forest") { rval = function(Z, T) { return(randomForest(Z, T)) } } else if (method == "glmnet") { rval = function(Z, T) { return(cv.glmnet(Z, T, family = "multinomial")) } } else if (method == "glmnet2") { rval = function(Z, T) { means = apply(Z, 2, mean) sds = apply(Z, 2, sd) Z = scale(Z) Z = as.matrix(model.matrix(~.^2, data = data.frame(Z))[, -1]) return(list(means, sds, cv.glmnet(Z, T, family = "multinomial"))) } } return(rval) }
regulomeSearch <- function(query=NULL, genomeAssembly = NULL, limit=1000, timeout=100) { if(is.null(genomeAssembly)) { genomeAssembly <- "GRCh37" } tryCatch({ qr <- paste("https://", "www.regulomedb.org/regulome-search/?regions=", paste(query, collapse = '%0A'), "&genome=", genomeAssembly, "&limit=", limit, "&format=json", sep="") r <- GET(qr, timeout=timeout) raw <- content(r, "text") json_content <- fromJSON(raw) guery_coordinates <- json_content$query_coordinates features1 <- lapply(json_content$features, function(x) { x[sapply(x, is.null)] <- NA unlist(x) }) features <- t(data.frame(do.call("rbind", features1), check.names = FALSE, check.rows = FALSE)) rownames(features) <- seq(1:nrow(features)) regulome_score <- lapply(json_content$regulome_score, function(x) { x[sapply(x, is.null)] <- NA unlist(x) }) regulome_score <- t(data.frame(do.call("rbind", regulome_score), check.names = FALSE, check.rows = FALSE)) rownames(regulome_score) <- seq(1:nrow(regulome_score)) tryCatch({ variants <- lapply(json_content$variants, function(x) { x[sapply(x, is.null)] <- NA unlist(x) }) variants <- t(data.frame(do.call("rbind", variants), check.names = FALSE, check.rows = FALSE)) rownames(variants) <- seq(1:nrow(variants)) }, error=function(e) { print(e) variants <- NULL }) nearby_snps <- data.frame(do.call("rbind", json_content$nearby_snps)) assembly <- json_content$assembly return(list(guery_coordinates=guery_coordinates, features=features, regulome_score=regulome_score, variants=variants, nearby_snps=nearby_snps, assembly=assembly)) }, error=function(e) { print(e) return(NULL) }) }