code
stringlengths
1
13.8M
languageserver_startup <- function( rlsLib = getOption("langserver_library"), langServerProcessPatt = getOption("langserver_processPatt"), strictLibrary = TRUE, os = tolower(Sys.info()[["sysname"]]), pid = Sys.getpid() ) { lg("languageserver_startup Starting") on.exit(lg("languageserver_startup Exiting")) if (identical(Sys.getenv("RSTUDIO"), "1")) { lg(" This looks like RStudio, not doing anything.") return(invisible(NA)) } oldLibPaths <- .libPaths() lg(" Current .libPaths: ", toString(oldLibPaths)) isLangServer <- languageserver_detect( pid = pid, os = os, langServerProcessPatt = langServerProcessPatt ) if (!isLangServer) { lg(" Not language server process. No changes made.") return(invisible(NA)) } lgsrvr(" This seems to be language server process. Aligning libraries.") newLibLoc <- if (isTRUE(strictLibrary)) { c(rlsLib, .libPaths()[length(.libPaths())]) } else { c(rlsLib, .libPaths()) } lgsrvr(" Determined new library locations: ", toString(newLibLoc)) assign(".lib.loc", newLibLoc, envir = environment(.libPaths)) lgsrvr(" Now .libpaths() is:\n ", paste(.libPaths(), collapse = "\n ")) lgsrvr(" Trying to requireNamespace of languageserver.") serverLoadable <- do.call( "requireNamespace", list(package = "languageserver", lib.loc = rlsLib, quietly = TRUE) ) if (!isTRUE(serverLoadable)) { lg(" Not loadable, restoring .libPaths to: ", toString(oldLibPaths)) assign(".lib.loc", oldLibPaths, envir = environment(.libPaths)) stop( "The languageserver package is not loadable. \n", "You can try running languageserver_install()" ) } else { lgsrvr(" Package languageserver is loadable, functionality should work.") } invisible(serverLoadable) }
.pmmlMiningSchema <- function(field, target = NULL, transformed = NULL, missing_value_replacement = NULL, invalidValueTreatment = "returnInvalid") { namelist <- .origFieldList(field, transformed, target) mining.schema <- xmlNode("MiningSchema") target <- .removeAsFactor(target) unknownVal <- NULL for (j in 1:length(namelist)) { if (!is.na(namelist[[j]])) { usage <- ifelse(namelist[[j]] == target, "predicted", "active") if ((!is.null(target)) && (namelist[[j]] != target)) { if (!is.null(missing_value_replacement)) { unknownVal <- missing_value_replacement invalidValueTreatment <- "asMissing" } } else if (is.null(target) && !is.null(missing_value_replacement)) { unknownVal <- missing_value_replacement invalidValueTreatment <- "asMissing" } if (namelist[[j]] == "Temp" || namelist[[j]] == "DiscretePlaceHolder") { if (length(field$levels[[namelist[[j]]]]) == 1) { mf <- xmlNode("MiningField", attrs = c( name = namelist[[j]], usageType = usage, missingValueReplacement = field$levels[[namelist[[j]]]] )) } } else { mf <- xmlNode("MiningField", attrs = c( name = namelist[[j]], usageType = usage, missingValueReplacement = unknownVal, invalidValueTreatment = invalidValueTreatment )) } mining.schema <- append.XMLNode(mining.schema, mf) } } return(mining.schema) } .pmmlMiningSchemaARIMA <- function(field, target = NULL, transformed = NULL, missing_value_replacement = NULL, invalidValueTreatment = "returnInvalid") { namelist <- .origFieldList(field, transformed, target) mining.schema <- xmlNode("MiningSchema") target <- .removeAsFactor(target) unknownVal <- NULL for (j in 1:length(namelist)) { if (!is.na(namelist[[j]])) { usage <- ifelse(namelist[[j]] == target, "predicted", ifelse(namelist[[j]] == "h", "supplementary", "active")) if ((!is.null(target)) && (namelist[[j]] != target)) { if (!is.null(missing_value_replacement)) { unknownVal <- missing_value_replacement invalidValueTreatment <- "asMissing" } } else if (is.null(target) && !is.null(missing_value_replacement)) { unknownVal <- missing_value_replacement invalidValueTreatment <- "asMissing" } if (namelist[[j]] == "Temp" || namelist[[j]] == "DiscretePlaceHolder") { if (length(field$levels[[namelist[[j]]]]) == 1) { mf <- xmlNode("MiningField", attrs = c( name = namelist[[j]], usageType = usage, missingValueReplacement = field$levels[[namelist[[j]]]] )) } } else { mf <- xmlNode("MiningField", attrs = c( name = namelist[[j]], usageType = usage, missingValueReplacement = unknownVal, invalidValueTreatment = invalidValueTreatment )) } mining.schema <- append.XMLNode(mining.schema, mf) } } return(mining.schema) } .pmmlMiningSchemaSurv <- function(field, timeName, statusName, target = NULL, inactive = NULL, transformed = NULL, missing_value_replacement = NULL) { namelist <- NULL number.of.fields <- length(field$name) mining.fields <- list() targetExists <- 0 ii <- 0 unknownVal <- NULL for (i in 1:number.of.fields) { if (length(grep(":", field$name[i])) == 1) { } else { ii <- ii + 1 if (is.null(target)) { usage <- "active" } else { usage <- ifelse(field$name[i] == target, "predicted", "active") } if (usage != "predicted") { unknownVal <- missing_value_replacement } if (usage == "predicted") { targetExists <- 1 } if (field$name[i] %in% inactive) usage <- "supplementary" if (!is.null(transformed)) { if (is.na(transformed$field_data[field$name[i], "orig_field_name"])) { if (is.na(transformed$field_data[field$name[i], "transform"])) { if (!(field$name[i] %in% namelist)) { namelist <- c(namelist, field$name[i]) } } } else { ofname <- transformed$field_data[field$name[i], "orig_field_name"][[1]] for (j in 1:length(ofname)) { fname <- ofname[j] while (!is.na(ofname[j])) { fname <- ofname[j] xvalue <- transformed$field_data[fname, "transform"] if (!is.na(xvalue) && xvalue == "MapValues") { parents <- transformed$field_data[fname, "orig_field_name"][[1]] for (j in 1:length(parents)) { if (!(parents[j] %in% namelist)) { namelist <- c(namelist, parents[j]) } } fname <- NA break } ofname[j] <- transformed$field_data[ofname[j], "orig_field_name"][[1]] } if (!(fname %in% namelist)) { namelist <- c(namelist, fname) } } } nmbr <- 1 for (ndf2 in 1:length(namelist)) { if (!is.na(namelist[ndf2])) { mining.fields[[nmbr]] <- xmlNode("MiningField", attrs = c( name = namelist[ndf2], usageType = usage, missingValueReplacement = unknownVal, invalidValueTreatment = "asMissing" )) nmbr <- nmbr + 1 } } } else { fName <- .removeAsFactor(field$name[i]) mining.fields[[i]] <- xmlNode("MiningField", attrs = c( name = fName, usageType = usage, missingValueReplacement = unknownVal, invalidValueTreatment = "asMissing" ) ) } } } if (targetExists == 0) { mining.fields[[ii + 1]] <- xmlNode("MiningField", attrs = c( name = statusName, usageType = "active" ) ) } mining.fields[[ii + 2]] <- xmlNode("MiningField", attrs = c( name = timeName, usageType = "active" ) ) mining.fields[[ii + 3]] <- xmlNode("MiningField", attrs = c( name = "cumulativeHazard", usageType = "predicted" ) ) mining.schema <- xmlNode("MiningSchema") mining.schema$children <- mining.fields return(mining.schema) } .origFieldList <- function(field, transformed = NULL, target = NULL) { number.of.fields <- length(field$name) mining.fields <- list() if (field$name[1] == "ZementisClusterIDPlaceHolder" || field$name[1] == "ZementisHiddenTargetField") { begin <- 2 } else { begin <- 1 } DPL1 <- "DiscretePlaceHolder" DPL2 <- "Temp" DPL3 <- "predictedScore" namelist <- list() dnamelist <- list() if (!is.null(transformed)) { for (i in begin:number.of.fields) { if (.removeAsFactor(field$name[i]) %in% c(target, .removeAsFactor(target), DPL1, DPL2, DPL3)) { namelist <- c(namelist, .removeAsFactor(field$name[i])) next } if (transformed$field_data[field$name[i], "type"] == "original") { if (!(.removeAsFactor(field$name[i]) %in% namelist)) { namelist <- c(namelist, .removeAsFactor(field$name[i])) } } else { ofnames <- strsplit(transformed$field_data[field$name[i], "orig_field_name"][[1]], ",")[[1]] for (j in 1:length(ofnames)) { ofname <- gsub("^\\s+|\\s+$", "", ofnames[j]) hname <- transformed$field_data[ofname, "orig_field_name"] ancestorField <- ofname while (!is.na(hname)) { ancestorField <- hname hname <- transformed$field_data[hname, "orig_field_name"] } fname <- .removeAsFactor(ancestorField) if ((!(fname %in% namelist)) && (!(fname %in% dnamelist))) { namelist <- c(namelist, fname) if (!(.removeAsFactor(fname) %in% dnamelist)) { dnamelist <- c(dnamelist, .removeAsFactor(field$name[i])) } } } } } } else { for (i in begin:number.of.fields) { fName <- .removeAsFactor(field$name[i]) if (!(fName %in% namelist) && fName != "ZementisClusterIDPlaceHolder") { namelist <- c(namelist, fName) } } } return(namelist) }
AEI.grad <- function(x, model, new.noise.var=0, y.min=NULL, type = "UK", envir=NULL){ d <- length(x) if (d != model@d){ stop("x does not have the right size") } newdata.num <- as.numeric(x) newdata <- data.frame(t(newdata.num)) colnames(newdata) = colnames(model@X) if (is.null(y.min)) { pred <- predict(object=model, newdata=model@X, type=type, checkNames = FALSE) mk <- pred$mean sk <- pred$sd qk <- mk + qnorm(0.75)*sk y.min <- mk[which.min(qk)] } T <- model@T X <- model@X z <- model@z u <- model@M covStruct <- model@covariance if (is.null(envir)) { predx <- predict.km(object=model, newdata=newdata, type=type, checkNames = FALSE) mk <- predx$mean sk <- predx$sd c <- predx$c v <- predx$Tinv.c xcr <- (y.min - mk)/sk xcr.prob <- pnorm(xcr) xcr.dens <- dnorm(xcr) } else { toget <- matrix(c("xcr", "xcr.prob", "xcr.dens", "c", "Tinv.c", "mk","sk"),1,7) apply(toget, 2, get, envir=envir) xcr <- envir$xcr xcr.prob <- envir$xcr.prob xcr.dens <- envir$xcr.dens c <- envir$c v <- envir$Tinv.c mk <- envir$mk sk <- envir$sk } F.newdata <- model.matrix([email protected], data=newdata) if (sk < sqrt(model@covariance@sd2)/1e6) { aei.grad.val <- rep(0,d) } else { ei.val <- (y.min - mk) * xcr.prob + sk * xcr.dens pen <- (1- sqrt(new.noise.var)/sqrt(new.noise.var + sk^2)) aei.val <- ei.val * pen dc <- covVector.dx(x=newdata.num, X=X, object=covStruct, c=c) f.deltax <- trend.deltax(x=newdata.num, model=model) W <- backsolve(t(T), dc, upper.tri=FALSE) mk.grad <- t(W)%*%z + t([email protected]%*%f.deltax) if (type=="UK") { tuuinv <- solve(t(u)%*%u) sk2.grad <- t( -2*t(v)%*%W + 2*(F.newdata - t(v)%*%u )%*% tuuinv %*% ( f.deltax - t(t(W)%*%u) )) } else { sk2.grad <- t( -2*t(v)%*%W) } sk.grad <- sk2.grad / (2*sk) ei.grad <- - mk.grad * xcr.prob + sk.grad * xcr.dens pen.grad <- sqrt(new.noise.var)/2*sk2.grad*(new.noise.var + sk^2)^(-3/2) aei.grad.val <- ei.grad*pen + ei.val*pen.grad } return(aei.grad.val) }
check_rnaturalearthhires <- function() { rnaturalearthhires_version <- "0.0.0.9000" if (!requireNamespace("rnaturalearthhires", quietly = TRUE)) { message("The rnaturalearthhires package needs to be installed.") install_rnaturalearthhires() } else if (utils::packageVersion("rnaturalearthhires") < rnaturalearthhires_version) { message("The rnaturalearthhires package needs to be updated.") install_rnaturalearthhires() } } install_rnaturalearthhires <- function() { instructions <- paste(" Please try installing the package for yourself", "using the following command: \n", " devtools::install_github(\"ropensci/rnaturalearthhires\")") error_func <- function(e) { stop(paste("Failed to install the rnaturalearthhires package.\n", instructions)) } input <- 1 if (interactive()) { input <- utils::menu(c("Yes", "No"), title = "Install the rnaturalearthhires package?") } if (input == 1) { message("Installing the rnaturalearthhires package.") tryCatch( devtools::install_github("ropensci/rnaturalearthhires"), error = error_func, warning = error_func) } else { stop(paste("The rnaturalearthhires package is necessary for that method.\n", instructions)) } }
RRlin.ll <- function(phi, nbeta, y, u, gidx, U, intercept, n.star, PWarray, PWpp, M){ beta <- phi[1:nbeta] sigma <- phi[nbeta+1] pi.true <- c(phi[(nbeta+2):length(phi)] , 0) pi.true[length(pi.true)] <- 1-sum(pi.true) G <- ncol(n.star) J <- nrow(n.star) K <- ncol(PWarray[,,1]) N <- length(y) if(M==1){ patterns <- dimnames(PWarray)$true }else{ patterns <- unlist(strsplit(dimnames(PWarray)$true,":")) } patterns <- matrix(as.numeric(patterns),nrow=K,byrow=T) first <- rep(0,G) sec <- rep(0,G) for (g in 1:G){ Ng <- colSums(n.star)[g] t1 <- matrix(NA,Ng,K) for (j in 1:K){ xx <- matrix(patterns[j,], Ng, M, T) if (U>0){ xx <- cbind(xx, u[gidx == g,,drop=FALSE]) } if (intercept){ xx <- cbind(1,xx) } t1[,j] <- exp(-.5 * ( ( y[gidx == g] - (xx %*% beta) ) /sigma)^2 ) } t2 <- PWpp[gidx == g,] * matrix(pi.true, nrow=Ng, ncol=K, byrow=T) temp <- rowSums(t1 * t2) / (sigma*sqrt(2*pi) * PWpp[gidx == g,]%*%pi.true ) first[g] <- sum(log( temp ) ) sec[g] <- t(n.star[,g]) %*% log( PWarray[,,g] %*% pi.true ) } ll <- sum (first,sec) if(ll == -Inf) ll <- -9e300 ll }
expected <- eval(parse(text="TRUE")); test(id=0, code={ argv <- eval(parse(text="list(3.001e+155, 0)")); do.call(`>`, argv); }, o=expected);
Greg.em <- function(formula,data=NULL,R=1,tol=1e-10,itmax=1000,verbose=F){ model=model.frame(formula,data) Y=model.response(model) X=model.matrix(formula,model) ldmvnorm=function(y,mu=rep(0,length(y)),Sig=diag(1,length(y))){ -.5*( length(y)*log(2*pi) + log(det(Sig)) + t(y-mu)%*%solve(Sig)%*%(y-mu) ) } p=dim(Y)[2] ; q=dim(X)[2] ; n=dim(Y)[1] dvar = apply(Y,2,var) A = diag(dvar) iA=diag(1/dvar) B=matrix(rep(t(coef(lm(Y~X[,2]))),R),ncol=q*R) iter=0 LL=NULL rll=10 while( rll > tol & iter<itmax) { B0=B ; iter=iter+1 Vz=array(dim=c(R,R,n)) ; Mz=matrix(nrow=n,ncol=R) for(i in 1:n) { Bx=apply(array(B,dim=c(p,q,R)),3,"%*%",X[i,]) Vz[,,i]=solve( t(Bx)%*%iA%*%Bx + diag(R) ) Mz[i,]=Vz[,,i]%*%t(Bx)%*%iA%*%Y[i,] } Y1=Y ; X1=NULL ; for(r in 1:R) { X1=cbind(X1,diag(Mz[,r])%*%X )} Y0=matrix(0,nrow=n*R,ncol=p) ; X0=NULL for(i in 1:n) { xi=matrix(outer(X[i,],diag(R)),nrow=R*q,ncol=R) ZZ=xi%*%Vz[,,i]%*%t(xi) ; ZZ=.5*(ZZ+t(ZZ)) Z=eigen(ZZ);Z=Z$vec[,1:R]%*%diag(sqrt(Z$val[1:R]),nrow=R) X0=rbind(X0,t(Z)) } YA=rbind(Y0,Y1) ; XA=rbind(X0,X1) B=t(YA)%*%XA%*%solve(t(XA)%*%XA) E=YA-XA%*%t(B) A= (t(E)%*%E)/n dA=diag(A) iA=diag(1/dA) A = diag(dA) if(iter%%5==0) { ll=0 for(i in 1:dim(Y)[1]) { xi=matrix(outer(X[i,],diag(R)),nrow=R*q,ncol=R) ll=ll+ldmvnorm(Y[i,],Sig=A+B%*%xi%*%t(xi)%*%t(B)) } LL=c(LL,ll) if(iter>5){rll=abs(LL[length(LL)]-LL[length(LL)-1])/abs(LL[length(LL)])} if (verbose )cat(iter,log(rll,base=10),ll," ",round(diag(A),2)," ",round(c(B),2),"\n") } } list(A=A,B=B) }
get_recdevs <- function(iteration, n, seed = 21) { set.seed(seed) x <- sample(1:1e6)[iteration] set.seed(x) rnorm(n, 0, 1) }
pdfpng <- function( expr, file, pdf=TRUE, png=TRUE, overwrite=FALSE, open=TRUE, quiet=FALSE, tracewarnmes=!quiet, filargs=NULL, width=7, height=5, units="in", res=500, seed=runif(1,-1e9,1e9), envlevel=1, pdfargs=NULL, pngargs=NULL, ... ) { if(!is.logical(pdf)) stop("pdf argument must be logical (T/F), not '", class(pdf),"'.") if(!is.logical(png)) stop("pdf argument must be logical (T/F), not '", class(png),"'.") if(!pdf & !png) {warning("pdf and png both FALSE, not saving plot."); return(expr)} fig <- normalizePath(file, winslash="/", mustWork=FALSE) fig <- paste0(fig, c(".pdf",".png")) fig <- do.call(newFilename, owa( list(filename=fig[c(pdf,png)], ignore=overwrite, quiet=quiet), filargs)) fig <- rep(fig, length.out=2) dots <- list(...) seed <- seed if(pdf) { do.call(grDevices::pdf, owa( c(list(file=fig[1], width=width, height=height), dots), pdfargs)) set.seed(seed) tryStack( eval.parent(substitute(expr), envlevel), silent=quiet, warn=tracewarnmes, skip=c("tryStack(eval.parent(substitute(expr), envlevel), silent = quiet, ", "eval(expr, p)")) dev.off() } if(png) { do.call(grDevices::png, owa( c(list(file=fig[2], width=width, height=height, units=units, res=res), dots), pngargs)) set.seed(seed) tryStack( eval.parent(substitute(expr), envlevel), silent=quiet, warn=tracewarnmes, skip=c("tryStack(eval.parent(substitute(expr), envlevel), silent = quiet, ", "eval(expr, p)")) dev.off() } if(open) { if(pdf) openPDF(fig[1]) ; if(png) openFile(fig[2]) } return(invisible(fig)) }
W_from_AD <- function(A, X){ K <-dim(A)[2] n <- dim(X)[2] W_hat <- matrix(0, K, n) M <- rbind(diag(K-1), rep(-1,K-1)) bM <- diag(K)[,K] Dmat <- 2*t(A%*%M)%*%(A%*%M) Amat <- t(M) bvec <- -bM AM <- A%*%M AbM <- A%*%bM if (class(X)!="matrix"){ X <- as.matrix(X) } for (i in 1:n){ dvec <- 2*t(X[,i]-AbM)%*%AM qp_sol <- solve.QP(Dmat, dvec, Amat, bvec)$solution W_hat[,i] <- c(qp_sol, 1-sum(qp_sol)) } W_hat <- pmax(W_hat,0) return(W_hat) }
md_issue <- function(repo, num) { if (suppressWarnings(any(is.na(as.numeric(num))))) { stop("The num must be coercible to numeric.") } if (!grepl("/", repo)) { warning("use the \"user/repo\" format") } glue::glue("{repo} }
covI <- function(II,m,n,ll, ThePsiJ){ K <- length(II) Pll <- ThePsiJ[[ll]] Nll <- (length(Pll)-1)/2 bigans <- 0 for(k in 1:K) { Pk <- ThePsiJ[[k]] Nk <- (length(Pk)-1)/2 mintau <- max(-Nll+n-m, -Nk) maxtau <- min(Nll+n-m, Nk) if (mintau <= maxtau) { v <- mintau:maxtau ans <- sum(Pk[v+Nk+1]*Pll[m-n+v+Nll+1]) } else ans <- 0 bigans <- bigans + II[k]*ans } 2*bigans^2 }
context("Kristof Coefficient") test_that('kristof and population covariance matrices',{ cong.1f<-as.numeric(round(kristof(cong1f)[[1]],6)) expect_that(cong.1f, equals(.854614)) par.1f<-as.numeric(round(kristof(par1f)[[1]],6)) expect_that(par.1f, equals(.888889)) tau.1f<-as.numeric(round(kristof(tau1f)[[1]],6)) expect_that(tau.1f, equals(.833575)) cong.3f<-as.numeric(round(kristof(cong3f)[[1]],6)) expect_that(cong.3f, equals(.801693)) par.3f<-as.numeric(round(kristof(par3f)[[1]],6)) expect_that(par.3f, equals(.841216)) tau.3f<-as.numeric(round(kristof(tau3f)[[1]],6)) expect_that(tau.3f, equals(.778395)) cong.5f<-as.numeric(round(kristof(cong5f)[[1]],6)) expect_that(cong.5f, equals(.848932)) par.5f<-as.numeric(round(kristof(par5f)[[1]],6)) expect_that(par.5f, equals(.880476)) tau.5f<-as.numeric(round(kristof(tau5f)[[1]],6)) expect_that(tau.5f, equals(.829901)) })
msk.create <- function(language = "English", dictionaries = NA, col = "black", modify.nutrients = F) { dict <- ecoval.dict(language,dictionaries) morphol <- msk.morphol.1998.create(language=language,dictionaries=dictionaries,col=col) hydrol <- msk.hydrol.2011.create (language=language,dictionaries=dictionaries,col=col) physapp <- msk.physapp.2007.create(language=language,dictionaries=dictionaries,col=col) phys.branch <- utility.aggregation.create(name.node = ecoval.translate("N_phys",dict), nodes = list(morphol,hydrol,physapp), name.fun = "utility.aggregate.addmin", par = c(0.4,0.4,0.2,0.5), names.par = c("w_morphol","w_hydrol","w_physapp", "w_add_phys"), col = col, required = TRUE) nutrients <- msk.nutrients.2010.create(language=language,dictionaries=dictionaries,col=col, modify=modify.nutrients) chem.branch <- utility.aggregation.create(name.node = ecoval.translate("N_chem",dict), nodes = list(nutrients), name.fun = "utility.aggregate.addmin", par = c(1,0.5), names.par = c("w_nutrients","w_add_chem"), col = col, required = TRUE) diatoms <- msk.diatoms.2007.create (language=language,dictionaries=dictionaries,col=col) invertebrates <- msk.invertebrates.2010.create(language=language,dictionaries=dictionaries,col=col) fish <- msk.fish.2004.create (language=language,dictionaries=dictionaries,col=col) biol.branch <- utility.aggregation.create(name.node = ecoval.translate("N_biol",dict), nodes = list(diatoms,invertebrates,fish), name.fun = "utility.aggregate.addmin", par = c(1,1,1,0.5), names.par = c("w_diatoms","w_invertebrates","w_fish", "w_add_biol"), col = col, required = TRUE) ecol <- utility.aggregation.create(name.node = ecoval.translate("N_ecol",dict), nodes = list(phys.branch,chem.branch,biol.branch), name.fun = "utility.aggregate.addmin", par = c(1,1,1,0.5), names.par = c("w_phys","w_chem","w_biol","w_add_ecol"), col = col) return(ecol) }
theta.ini <- function(z, X, CorModels, use.nugget, use.anisotropy, dist.hydro.data, x.dat, y.dat, REs) { n.models <- length(CorModels) var.resid <- mean((z - X %*% mginv(t(X) %*% X) %*% t(X) %*% z)^2) theta <- NULL scale <- NULL type <- NULL terms <- NULL if(length(grep("tailup",CorModels)) > 0){ if(length(grep("tailup",CorModels)) > 1) stop("Cannot have more than 1 tailup model") theta <- rbind(theta,matrix(c(log(.9/n.models*var.resid), log(mean(dist.hydro.data))),ncol = 1)) scale <- c(scale,c("log","log")) type <- c(type,c("parsill","range")) terms <- c(terms,rep(CorModels[grep("tailup",CorModels)], times = 2)) } if(length(grep("taildown",CorModels)) > 0){ if(length(grep("taildown",CorModels)) > 1) stop("Cannot have more than 1 taildown model") theta <- rbind(theta,matrix(c(log(.9/n.models*var.resid), log(mean(dist.hydro.data))),ncol = 1)) scale <- c(scale,c("log","log")) type <- c(type,c("parsill","range")) terms <- c(terms,rep(CorModels[grep("taildown",CorModels)], times = 2)) } if(length(grep("Euclid",CorModels)) > 0){ if(length(grep("Euclid",CorModels)) > 1) stop("Cannot have more than 1 Euclidean model") dist.Euclid.data <- distGeo(x.dat,y.dat,x.dat,y.dat) if(use.anisotropy == FALSE) { theta <- rbind(theta,matrix(c(log(.9/n.models*var.resid), log(mean(dist.Euclid.data))),ncol = 1)) scale <- c(scale,c("log","log")) type <- c(type,c("parsill","range")) terms <- c(terms,rep(CorModels[grep("Euclid",CorModels)], times = 2)) } else { theta <- rbind(theta,matrix(c(log(.9/n.models*var.resid), log(mean(dist.Euclid.data)),0,0),ncol = 1)) scale <- c(scale,c("log","log","logistic","logistic180")) type <- c(type,c("parsill","range","axratio","rotate")) terms <- c(terms,rep(CorModels[grep("Euclid",CorModels)], times = 4)) } } if(length(REs) > 0) { theta <- rbind(theta,matrix(rep(log(.9/n.models*var.resid), times = length(REs)), ncol = 1)) scale <- c(scale,rep("log", times = length(REs))) type <- c(type,rep("parsill", times = length(REs))) terms <- c(terms, names(REs)) } if(use.nugget == TRUE) { if(is.null(theta)) { theta <- log(var.resid) scale <- "log" type <- "parsill" terms <- "Nugget" } else { theta <- c(theta,log(.1*var.resid)) scale <- c(scale,"log") type <- c(type,"parsill") terms <- c(terms,"Nugget") } } attr(theta,"scale") <- scale attr(theta,"type") <- type attr(theta,"terms") <- terms theta }
index_age_rc <- function(pars = NULL, long = TRUE){ child_dependency <- NULL comp1 <- c("a1", "alpha1") comp2 <- c("a2", "alpha2", "lambda2", "mu2") if (any(comp1 %in% names(pars))){ stopifnot(all(comp1 %in% names(pars))) } if (any(comp2 %in% names(pars))){ stopifnot(all(comp2 %in% names(pars))) } p <- pars tibble::tibble( peaking = p[stringr::str_detect(string = names(p), pattern = "mu2")], child_dependency = p[stringr::str_starts(string = names(p), pattern = "a1")]/ p[stringr::str_starts(string = names(p), pattern = "a2")], labor_dependency = 1/child_dependency, labor_asymmetry = p[stringr::str_detect(string = names(p), pattern = "lambda2")]/ p[stringr::str_detect(string = names(p), pattern = "alpha2")], regularity = p[stringr::str_detect(string = names(p), pattern = "alpha1")]/ p[stringr::str_detect(string = names(p), pattern = "alpha2")] ) %>% {if(long) tidyr::pivot_longer(data = ., cols = 1:ncol(.), names_to = "measure") else .} }
test_that("regr_brnn", { requirePackagesOrSkip("brnn", default.method = "load") parset.list = list( list(), list(neurons = 3L), list(mu = 0.001) ) old.predicts.list = list() for (i in seq_along(parset.list)) { pars = list(formula = regr.formula, data = regr.train) pars = c(pars, parset.list[[i]]) set.seed(getOption("mlr.debug.seed")) capture.output({ m = do.call(brnn::brnn, pars) }) p = predict(m, newdata = regr.test) old.predicts.list[[i]] = p } testSimpleParsets("regr.brnn", regr.df, regr.target, regr.train.inds, old.predicts.list, parset.list) })
player_season_multicomp = function (username, password, competitionmatrix, version = "v6", baseurl = "https://data.statsbomb.com/api/", parallel = TRUE, cores = detectCores()) { events <- tibble() for (i in 1:dim(competitionmatrix)[1]) { player_seasons <- tibble() competition_id <- as.numeric(competitionmatrix[i, 1]) season_id <- as.numeric(competitionmatrix[i, 2]) player_seasons = player_season(username, password, competition_id, season_id) events <- bind_rows(events, player_seasons) } return(events) }
source("ESEUR_config.r") pal_col=rainbow(3) feld=read.csv(paste0(ESEUR_dir, "developers/feldman_cases76.csv.xz"), as.is=TRUE) feld$col=pal_col[feld$P-1] up=subset(feld, Parity == "up") down=subset(feld, Parity == "down") plot(feld$BC, feld$PropCorr*100, col=feld$col, xlab="Boolean complexity", ylab="Percent correct\n") legend(x="bottomleft", legend=c("P = 2", "P = 3", "P = 4"), bty="n", fill=pal_col, cex=1.2)
geom_ribbon <- function(mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE) { layer( data = data, mapping = mapping, stat = stat, geom = GeomRibbon, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( na.rm = na.rm, ... ) ) } GeomRibbon <- gganimintproto("GeomRibbon", Geom, default_aes = aes(colour = NA, fill = "grey20", size = 0.5, linetype = 1, alpha = NA), required_aes = c("x", "ymin", "ymax"), draw_key = draw_key_polygon, handle_na = function(data, params) { data }, draw_group = function(data, panel_scales, coord, na.rm = FALSE) { if (na.rm) data <- data[stats::complete.cases(data[c("x", "ymin", "ymax")]), ] data <- data[order(data$group, data$x), ] aes <- unique(data[c("colour", "fill", "size", "linetype", "alpha")]) if (nrow(aes) > 1) { stop("Aesthetics can not vary with a ribbon") } aes <- as.list(aes) missing_pos <- !stats::complete.cases(data[c("x", "ymin", "ymax")]) ids <- cumsum(missing_pos) + 1 ids[missing_pos] <- NA positions <- plyr::summarise(data, x = c(x, rev(x)), y = c(ymax, rev(ymin)), id = c(ids, rev(ids))) munched <- coord_munch(coord, positions, panel_scales) ggname("geom_ribbon", polygonGrob( munched$x, munched$y, id = munched$id, default.units = "native", gp = gpar( fill = alpha(aes$fill, aes$alpha), col = aes$colour, lwd = aes$size * .pt, lty = aes$linetype) )) }, pre_process = function(g, g.data, ...) { if("fill"%in%names(g.data) & !"colour"%in%names(g.data)){ g.data[["colour"]] <- g.data[["fill"]] } return(list(g = g, g.data = g.data)) } ) geom_area <- function(mapping = NULL, data = NULL, stat = "identity", position = "stack", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) { layer( data = data, mapping = mapping, stat = stat, geom = GeomArea, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( na.rm = na.rm, ... ) ) } GeomArea <- gganimintproto("GeomArea", GeomRibbon, default_aes = aes(colour = NA, fill = "grey20", size = 0.5, linetype = 1, alpha = NA), required_aes = c("x", "y"), setup_data = function(data, params) { transform(data, ymin = 0, ymax = y) }, pre_process = function(g, g.data, ...) { g$geom <- "ribbon" g.data <- g.data[order(g.data$x), ] return(list(g = g, g.data = g.data)) } )
setGeneric('getAnnual', function(data, output = 'series', minRecords = 355, ...) { standardGeneric('getAnnual') }) setMethod('getAnnual', signature('data.frame'), function(data, output, minRecords, ...) { result <- getAnnual.TS(data) getAnnual.plot(result, output, minRecords, ...) return(result) }) setMethod('getAnnual', signature('list'), function(data, output, minRecords, ...) { result <- getAnnual.list(data) getAnnual.plot(result, output, minRecords, ...) return(result) }) getAnnual.TS <- function(dataframe) { Date <- as.POSIXlt(dataframe[, 1]) stations <- colnames(dataframe)[2:ncol(dataframe)] data <- lapply(stations, function(x) { dataframe_new <- data.frame(Date, dataframe[, x]) colnames(dataframe_new)[2] <- x getAnnual_dataframe(dataframe_new) }) data <- rbindlist(data) data$Year <- factor(data$Year, levels = sort(unique(data$Year)), ordered = TRUE) rownames(data) <- NULL return(data) } getAnnual.list <- function(datalist) { data <- lapply(datalist, FUN = getAnnual_dataframe) data <- rbindlist(data) data$Year <- factor(data$Year, levels = sort(unique(data$Year)), ordered = TRUE) rownames(data) <- NULL return(data) } getAnnual.plot <- function(data, output, minRecords, ...) { theme_set(theme_bw()) if (output == 'mean') { validData <- data[data$recordNum >= minRecords,] data <- aggregate(validData$AnnualPreci, list(validData$Name), mean) colnames(data) <- c('Name', 'AnnualPreci') mainLayer <- with(data, { ggplot(data)+ geom_bar(aes(x = Name, y = AnnualPreci, fill = Name), stat = 'identity')+ labs(empty = NULL, ...) }) print(mainLayer) } else { plotData <- with(data, { subset(data, select = c(Year, Name, NANum, AnnualPreci)) }) plotData <- melt(plotData, var.id = c('Year', 'Name')) mainLayer <- with(plotData, { ggplot(plotData) + geom_bar(aes(x = Year, y = value , fill = Name), stat = 'identity') + facet_grid(variable ~ Name, scale = 'free') + xlab('Year') + ylab(NULL) + labs(empty = NULL, ...) + theme(plot.title = element_text(size = 20, face = 'bold', vjust = 1)) + theme(axis.text.x = element_text(angle = 90, hjust = 1, size = rel(1.5)), axis.text.y = element_text(size = rel(1.5))) }) print(mainLayer) } } getAnnual_dataframe <- function(dataset) { if (!grepl('-|/', dataset[1, 1])) { stop ('First column is not date or Wrong Date formate, check the format in ?as.Date{base}, and use as.Date to convert.') } Date <- as.Date(dataset[, 1]) year <- format(Date, '%Y') yearUnique <- unique(year) calcuNum <- c(1:length(yearUnique)) annualPreci <- tapply(dataset[, 2], INDEX = year, FUN = sum, na.rm = TRUE) recordNum <- tapply(dataset[, 2], INDEX = year, function(x) length(which(!is.na(x)))) NANum <- tapply(dataset[, 2], INDEX = year, function(x) length(which(is.na(x)))) name <- rep(colnames(dataset)[2], length(calcuNum)) output <- data.frame(Year = as.numeric(yearUnique), Name = name, AnnualPreci = annualPreci, recordNum, NANum) return(output) }
context("testing 'sequences' package'") test_that("dnaseq validity", { data(dnaseq) expect_true(validObject(dnaseq)) }) test_that("readFasta", { data(dnaseq) f <- dir(system.file("extdata",package="sequences"),pattern="fasta",full.names=TRUE) xx <- readFasta(f[1]) expect_true(all.equal(xx, dnaseq)) }) test_that("ccpp code", { gccountr <- function(x) tabulate(factor(strsplit(x, "")[[1]])) x <- "AACGACTACAGCATACTAC" expect_true(identical(gccount(x), gccountr(x))) expect_true(identical(gccount2(x), gccountr(x))) })
library(HiddenMarkov) n <- 5000 N <- 1 Pi <- matrix(c(0.8, 0.2, 0.3, 0.7), byrow=TRUE, nrow=2) delta <- c(1, 0) y <- dthmm(NULL, Pi=Pi, distn="norm", delta=delta, pm=list(mean=c(5, 2), sd=c(1, 1))) y <- simulate(y, nsim=N*n, seed=10) print(logLik(y)) tmp <- BaumWelch(y, bwcontrol(posdiff=FALSE, tol=1e-05, prt=FALSE)) print(summary(tmp)) print(logLik(tmp)) glmformula <- formula(y$x ~ 1) glmfamily <- gaussian(link="identity") Xdesign <- model.matrix(glmformula) beta <- matrix(c(5, 2), ncol=ncol(Pi), nrow=ncol(Xdesign), byrow=TRUE) y1 <- mmglm1(y$x, Pi, delta, glmfamily, beta, Xdesign, sigma=c(1, 1), msg=FALSE) print(logLik(y1)) tmp1 <- BaumWelch(y1, bwcontrol(posdiff=FALSE, tol=1e-05, prt=FALSE)) print(summary(tmp1)) print(logLik(tmp1, fortran=TRUE)) print(logLik(tmp1, fortran=FALSE)) if (abs(logLik(tmp)-logLik(tmp1)) > 1e-06) warning("WARNING: See tests/dthmm-mmglm1-gaussian.R, log-likelihoods are different") if (any(Viterbi(tmp)!=Viterbi(tmp1))) warning("WARNING: See tests/dthmm-mmglm1-gaussian.R, Viterbi paths are different") if (any(abs(residuals(tmp)-residuals(tmp1)) > 1e-06)) warning("WARNING: See tests/dthmm-mmglm1-gaussian.R, residuals are different") print(tmp$pm) print(tmp1$beta) print(tmp1$sigma) print(tmp$Pi) print(tmp1$Pi)
Proportional <- function(E,C,Names=NULL){ lambda<-E/sum(C) R<-lambda*C Output<-list(Results=R,Claims=C,Method="Proportional Rule",Short="P",E=E,Names=Names) class(Output)<-"ClaimsRule" return(Output) }
str_replace <- function(string, pattern, replacement) { if (!missing(replacement) && is_replacement_fun(replacement)) { replacement <- as_function(replacement) return(str_transform(string, pattern, replacement)) } check_lengths(string, pattern, replacement) switch(type(pattern), empty = stop("Empty `pattern` not supported", call. = FALSE), bound = stop("Boundary `pattern` not supported", call. = FALSE), fixed = stri_replace_first_fixed(string, pattern, replacement, opts_fixed = opts(pattern)), coll = stri_replace_first_coll(string, pattern, replacement, opts_collator = opts(pattern)), regex = stri_replace_first_regex(string, pattern, fix_replacement(replacement), opts_regex = opts(pattern)) ) } str_replace_all <- function(string, pattern, replacement) { if (!missing(replacement) && is_replacement_fun(replacement)) { replacement <- as_function(replacement) return(str_transform_all(string, pattern, replacement)) } if (!is.null(names(pattern))) { vec <- FALSE replacement <- unname(pattern) pattern[] <- names(pattern) } else { check_lengths(string, pattern, replacement) vec <- TRUE } switch(type(pattern), empty = stop("Empty `pattern`` not supported", call. = FALSE), bound = stop("Boundary `pattern` not supported", call. = FALSE), fixed = stri_replace_all_fixed(string, pattern, replacement, vectorize_all = vec, opts_fixed = opts(pattern)), coll = stri_replace_all_coll(string, pattern, replacement, vectorize_all = vec, opts_collator = opts(pattern)), regex = stri_replace_all_regex(string, pattern, fix_replacement(replacement), vectorize_all = vec, opts_regex = opts(pattern)) ) } is_replacement_fun <- function(x) { is.function(x) || is_formula(x) } fix_replacement <- function(x) { if (!is.character(x)) { stop("`replacement` must be a character vector", call. = FALSE) } vapply(x, fix_replacement_one, character(1), USE.NAMES = FALSE) } fix_replacement_one <- function(x) { if (is.na(x)) { return(x) } chars <- str_split(x, "")[[1]] out <- character(length(chars)) escaped <- logical(length(chars)) in_escape <- FALSE for (i in seq_along(chars)) { escaped[[i]] <- in_escape char <- chars[[i]] if (in_escape) { if (char == "$") { out[[i]] <- "\\\\$" } else if (char >= "0" && char <= "9") { out[[i]] <- paste0("$", char) } else { out[[i]] <- paste0("\\", char) } in_escape <- FALSE } else { if (char == "$") { out[[i]] <- "\\$" } else if (char == "\\") { in_escape <- TRUE } else { out[[i]] <- char } } } paste0(out, collapse = "") } str_replace_na <- function(string, replacement = "NA") { stri_replace_na(string, replacement) } str_transform <- function(string, pattern, replacement) { loc <- str_locate(string, pattern) str_sub(string, loc, omit_na = TRUE) <- replacement(str_sub(string, loc)) string } str_transform_all <- function(string, pattern, replacement) { locs <- str_locate_all(string, pattern) for (i in seq_along(string)) { for (j in rev(seq_len(nrow(locs[[i]])))) { loc <- locs[[i]] str_sub(string[[i]], loc[j, 1], loc[j, 2]) <- replacement(str_sub(string[[i]], loc[j, 1], loc[j, 2])) } } string }
arg_match <- function(arg, values = NULL, ..., multiple = FALSE, error_arg = caller_arg(arg), error_call = caller_env()) { check_dots_empty0(...) arg_expr <- enexpr(arg) error_arg <- as_string(error_arg) check_symbol(arg_expr, arg = "arg", call = caller_env(), .internal = TRUE) check_character(arg, arg = error_arg, call = error_call) if (is_null(values)) { fn <- caller_fn() values <- formals(fn)[[error_arg]] values <- eval_bare(values, get_env(fn)) } if (multiple) { return(arg_match_multi(arg, values, error_arg, error_call)) } if (length(arg) > 1 && !setequal(arg, values)) { abort( arg_match_invalid_msg(arg, values, error_arg), call = error_call ) } arg <- arg[[1]] arg_match0( arg, values, error_arg, error_call = error_call ) } arg_match_multi <- function(arg, values, error_arg, error_call) { map_chr(arg, ~ arg_match0(.x, values, error_arg, error_call = error_call)) } arg_match0 <- function(arg, values, arg_nm = caller_arg(arg), error_call = caller_env()) { .External(ffi_arg_match0, arg, values, arg_nm, error_call) } stop_arg_match <- function(arg, values, error_arg, error_call) { if (length(arg) > 1) { sorted_arg <- sort(unique(arg)) sorted_values <- sort(unique(values)) if (!identical(sorted_arg, sorted_values)) { msg <- sprintf( "%s must be length 1 or a permutation of %s.", format_arg("arg"), format_arg("values") ) abort(msg, call = quote(arg_match())) } } msg <- arg_match_invalid_msg(arg, values, error_arg) candidate <- NULL i_partial <- pmatch(arg, values) if (!is_na(i_partial)) { candidate <- values[[i_partial]] } i_close <- adist(arg, values) / nchar(values) if (any(i_close <= 0.5)) { candidate <- values[[which.min(i_close)]] } if (is_null(candidate)) { i_close_nocase <- adist(arg, values, ignore.case = TRUE) / nchar(values) if (any(i_close_nocase <= 0.5)) { candidate <- values[[which.min(i_close_nocase)]] } } if (!is_null(candidate)) { candidate <- chr_quoted(candidate, "\"") msg <- c(msg, i = paste0("Did you mean ", candidate, "?")) } abort(msg, call = error_call) } arg_match_invalid_msg <- function(val, values, error_arg) { msg <- paste0(format_arg(error_arg), " must be one of ") msg <- paste0(msg, chr_enumerate(chr_quoted(values, "\""))) if (is_null(val)) { msg <- paste0(msg, ".") } else { msg <- paste0(msg, sprintf(', not "%s\".', val[[1]])) } msg } check_required <- function(x, arg = caller_arg(x), call = caller_env()) { if (!missing(x)) { invisible(return(TRUE)) } arg_expr <- substitute(x) if (!is_symbol(arg_expr)) { abort(sprintf("%s must be an argument name.", format_arg("x"))) } msg <- sprintf("%s is absent but must be supplied.", format_arg(arg)) abort(msg, call = call) } chr_quoted <- function(chr, type = "`") { paste0(type, chr, type) } chr_enumerate <- function(chr, sep = ", ", final = "or") { n <- length(chr) if (n < 2) { return(chr) } n <- length(chr) head <- chr[seq_len(n - 1)] last <- chr[length(chr)] head <- paste(head, collapse = sep) if (n > 2) { paste0(head, sep, final, " ", last) } else { paste0(head, " ", final, " ", last) } } check_exclusive <- function(..., .require = TRUE, .frame = caller_env(), .error_call = .frame) { args <- enexprs(..., .named = TRUE) if (length(args) < 2) { abort("Must supply at least two arguments.") } if (!every(args, is_symbol)) { abort("`...` must be function arguments.") } present <- map_lgl(args, ~ inject(!base::missing(!!.x), .frame)) n_present <- sum(present) if (n_present == 0) { if (.require) { args <- map(names(args), format_arg) enum <- chr_enumerate(args) msg <- sprintf("One of %s must be supplied.", enum) abort(msg, call = .error_call) } else { return("") } } if (n_present == 1) { return(as_string(args[[which(present)]])) } args <- map_chr(names(args), format_arg) enum <- chr_enumerate(args) msg <- sprintf("Exactly one of %s must be supplied.", enum) if (n_present != length(args)) { enum <- chr_enumerate(args[present], final = "and") msg <- c(msg, x = sprintf("%s were supplied together.", enum)) } abort(msg, call = .error_call) } missing_arg <- function() { .Call(ffi_missing_arg) } is_missing <- function(x) { missing(x) || identical(x, quote(expr = )) } maybe_missing <- function(x, default = missing_arg()) { if (is_missing(x)) { default } else { x } }
isDigit <- function(ch) switch(ch,'0'= , '1'= , '2'= , '3'= , '4'= , '5'= , '6'= , '7'= , '8'= , '9'=TRUE,FALSE)
tumat<-function(sim,family="gaussian"){ Smat<-sim FA<-family if (is.null(Smat$O1)) {Base<-0} else {Base<-1} Nstage<-nstage(data=Smat) Dmat<-atsscan(data=Smat) G<-nrow(Dmat) Uvec<-NULL if (Nstage==1 && Base==0) { for (g in 1:G) {ATS<-as.numeric(Dmat[g,2]) ATS[which(is.na(ATS))]<-0 S1<-Smat[which(Smat$A1==ATS[1]),] u<-S1$MEAN Uvec<-c(Uvec,u) }} else if (Nstage==1 && Base==1) { for (g in 1:G) {ATS<-as.numeric(Dmat[g,2:3]) ATS[which(is.na(ATS))]<-0 S0<-Smat[which(Smat$O1==0 & Smat$A1==ATS[1]),] S1<-Smat[which(Smat$O1==1 & Smat$A1==ATS[2]),] u0<-S0$MEAN; if (length(u0)==0L) {u0<-0} u1<-S1$MEAN; if (length(u1)==0L) {u1<-0} p0<-S0$P1; if (length(p0)==0L) {p0<-0} p1<-S1$P1; if (length(p1)==0L) {p1<-0} u<-sum(p0*u0,p1*u1) Uvec<-c(Uvec,u) }} else if (Nstage==2 && Base==0) { for (g in 1:G){ ATS<-as.numeric(Dmat[g,2:4]) ATS[which(is.na(ATS))]<-0 S0<-Smat[which(Smat$A1==ATS[1] & Smat$O2==0 & Smat$A2==ATS[2]),] S1<-Smat[which(Smat$A1==ATS[1] & Smat$O2==1 & Smat$A2==ATS[3]),] u0<-S0$MEAN; if (length(u0)==0L) {u0<-0} u1<-S0$MEAN; if (length(u1)==0L) {u1<-0} p0<-S0$P2; if (length(p0)==0L) {p0<-0} p1<-S1$P2; if (length(p1)==0L) {p1<-0} u<-sum(p0*u0,p1*u1) Uvec<-c(Uvec,u) }} else if (Nstage==2 && Base==1) { for (g in 1:G){ ATS<-as.numeric(Dmat[g,2:8]) ATS[which(is.na(ATS))]<-0 S00<-Smat[which(Smat$O1==0 & Smat$A1==ATS[1] & Smat$O2==0 & Smat$A2==ATS[3]),] S01<-Smat[which(Smat$O1==0 & Smat$A1==ATS[1] & Smat$O2==1 & Smat$A2==ATS[4]),] S10<-Smat[which(Smat$O1==1 & Smat$A1==ATS[2] & Smat$O2==0 & Smat$A2==ATS[5]),] S11<-Smat[which(Smat$O1==1 & Smat$A1==ATS[2] & Smat$O2==1 & Smat$A2==ATS[6]),] u00<-S00$MEAN; if (length(u00)==0L) {u00<-0} u01<-S01$MEAN; if (length(u01)==0L) {u01<-0} u10<-S10$MEAN; if (length(u10)==0L) {u10<-0} u11<-S11$MEAN; if (length(u11)==0L) {u11<-0} p0<-S01$P1; if (length(p0)==0L) {p0<-0} p1<-S11$P1; if (length(p1)==0L) {p1<-0} p00<-S00$P2; if (length(p00)==0L) {p00<-0} p01<-S01$P2; if (length(p01)==0L) {p01<-0} p10<-S00$P2; if (length(p10)==0L) {p10<-0} p11<-S01$P2; if (length(p11)==0L) {p11<-0} u<-sum(p0*p00*u00,p0*p01*u01,p1*p10*u10,p1*p11*u11) Uvec<-c(Uvec,u) }} else if (Nstage==3 && Base==0) { for (g in 1:G){ ATS<-as.numeric(Dmat[g,2:8]) ATS[which(is.na(ATS))]<-0 S00<-Smat[which(Smat$A1==ATS[1] & Smat$O2==0 & Smat$A2==ATS[2] & Smat$O3==0 & Smat$A3==ATS[4]),] S01<-Smat[which(Smat$A1==ATS[1] & Smat$O2==0 & Smat$A2==ATS[2] & Smat$O3==1 & Smat$A3==ATS[5]),] S10<-Smat[which(Smat$A1==ATS[1] & Smat$O2==1 & Smat$A2==ATS[3] & Smat$O3==0 & Smat$A3==ATS[6]),] S11<-Smat[which(Smat$A1==ATS[1] & Smat$O2==1 & Smat$A2==ATS[3] & Smat$O3==1 & Smat$A3==ATS[7]),] u00<-S00$MEAN; if (length(u00)==0L) {u00<-0} u01<-S01$MEAN; if (length(u01)==0L) {u01<-0} u10<-S10$MEAN; if (length(u10)==0L) {u10<-0} u11<-S11$MEAN; if (length(u11)==0L) {u11<-0} p0<-S01$P2; if (length(p0)==0L) {p0<-0} p1<-S11$P2; if (length(p1)==0L) {p1<-0} p00<-S00$P3; if (length(p00)==0L) {p00<-0} p01<-S01$P3; if (length(p01)==0L) {p01<-0} p10<-S00$P3; if (length(p10)==0L) {p10<-0} p11<-S01$P3; if (length(p11)==0L) {p11<-0} u<-sum(p0*p00*u00,p0*p01*u01,p1*p10*u10,p1*p11*u11) Uvec<-c(Uvec,u) }} Umat<-matrix(Uvec,ncol=1) return(Umat) }
Single_Mptbl<-R6Class("Single_Mptbl", public =list( field= NULL, variable= NULL, default_field= NULL, preselection_field= NULL, mapping_table= NULL, initialize = function(field=NULL, variable=NULL, default_field=NULL, preselection_field=NULL, mapping_table=NULL ) { self$field=field self$variable=variable self$default_field=default_field self$preselection_field=preselection_field self$mapping_table=mapping_table }, create_mptbl= function() { nr<-length(self$variable) nc<-length(self$field) local_mptbl<-matrix(as.integer(rep(0,nc*nr)),nrow=nr,ncol=nc, byrow = TRUE) colnames(local_mptbl)<-self$field rownames(local_mptbl)<-self$variable self$mapping_table <- local_mptbl local_mptbl<-NULL }, mptbl_select_default_field= function(default_field) { local_mptbl<-self$mapping_table nr<-nrow(local_mptbl) nc<-ncol(local_mptbl) for (i in seq_len(nr)){ if(sum(local_mptbl[i,])!=1){ local_mptbl[i,]<-rep(0,nc) local_mptbl[i,default_field]<- 1 } } self$mapping_table <- local_mptbl local_mptbl<-NULL }, mptbl_select_preselection_field= function() { }, mptbl_event_select= function(selection_inf) { aaa<-selection_inf local_mptbl<-self$mapping_table for (i in 1:nrow(selection_inf)){ n_row<-as.integer(selection_inf[i,1]) n_col<-as.integer(selection_inf[i,2]) if (selection_inf[i,3]==0 ) { local_mptbl[n_row,n_col]<-1 selection_inf[i,3]<-1 self$mptbl_event_fill(selection_inf) }else{ if (selection_inf[i,3]==1 ) { local_mptbl[n_row,n_col]<-0 selection_inf[i,3]<-0 self$mptbl_event_fill(selection_inf) } } } local_mptbl<-NULL }, mptbl_event_fill= function(fill_inf) { local_mptbl<-self$mapping_table select_row_fist<-fill_inf[1,1] select_row_end<-fill_inf[nrow(fill_inf),1] select_col<-as.integer(c(fill_inf[1,2])) select_mptal_range<-local_mptbl[select_row_fist:select_row_end,,drop=F] nr<-nrow(select_mptal_range) nc<-ncol(select_mptal_range) if (fill_inf[1,3]==0){ select_mptal_range[,select_col]<-rep(0,nrow(select_mptal_range)) local_mptbl[select_row_fist:select_row_end,]<-select_mptal_range self$mapping_table <- local_mptbl local_mptbl<-NULL self$mptbl_select_default_field(self$default_field) } else { select_mptal_range[]<-matrix(rep(0,nr*nc),nrow=nr,ncol=nc) select_mptal_range[,select_col]<-rep(1,nr) local_mptbl[select_row_fist:select_row_end,]<-select_mptal_range self$mapping_table <- local_mptbl } } ) ) Multiple_Mptbl<-R6Class("Multiple_Mptbl", inherit =Single_Mptbl, public =list( mptbl_event_select= function(selection_inf) { aaa<-selection_inf local_mptbl<-self$mapping_table for (i in 1:nrow(selection_inf)){ n_row<-as.integer(selection_inf[i,1]) n_col<-as.integer(selection_inf[i,2]) if (selection_inf[i,3]==0 ) { local_mptbl[n_row,n_col]<-1 }else{ if (selection_inf[i,3]==1 ) { local_mptbl[n_row,n_col]<-0 } } } self$mapping_table <- local_mptbl local_mptbl<-NULL }, mptbl_event_fill= function(fill_inf) { local_mptbl<-self$mapping_table select_row_fist<-fill_inf[1,1] select_row_end<-fill_inf[nrow(fill_inf),1] select_col<-as.integer(c(fill_inf[1,2])) select_mptal_range<-local_mptbl[select_row_fist:select_row_end,,drop=F] nr<-nrow(select_mptal_range) nc<-ncol(select_mptal_range) if (fill_inf[1,3]==0){ select_mptal_range[,select_col]<-rep(0,nrow(select_mptal_range)) local_mptbl[select_row_fist:select_row_end,]<-select_mptal_range self$mapping_table <- local_mptbl local_mptbl<-NULL self$mptbl_select_default_field(self$default_field) } else { select_mptal_range[,select_col]<-rep(1,nr) local_mptbl[select_row_fist:select_row_end,]<-select_mptal_range self$mapping_table <- local_mptbl } } ) ) Mapping_Table_class<-R6Class("Mapping_Table", public =list( field_groups= NULL, variable= NULL, default_field= NULL, preselection_field= NULL, field_index_transform= NULL, mapping_table= NULL, inf_of_mptbl= NULL, field_right_bound= NULL, DT_container= NULL, initialize = function(field_groups=NULL, variable=NULL, default_field=NULL, preselection_field=NULL, field_index_transform=NULL, mapping_table=NULL, inf_of_mptbl=NULL, field_right_bound=NULL, DT_container=NULL ){self$field_groups=field_groups self$variable=variable self$default_field=default_field self$preselection_field=preselection_field self$field_index_transform=field_index_transform self$mapping_table=mapping_table self$inf_of_mptbl=inf_of_mptbl self$field_right_bound=field_right_bound self$DT_container=DT_container }, create_mptbl= function() { nr<-length(self$variable) nc<-length(self$field_groups[1,]) local_mptbl<-matrix(as.integer(rep(0,nc*nr)),nrow=nr,ncol=nc, byrow = TRUE) colnames(local_mptbl)<-self$field_groups[1,] rownames(local_mptbl)<-self$variable self$mapping_table <- local_mptbl local_mptbl<-NULL self$mptbl_select_default_field(self$default_field) self$set_field_right_bound(self$field_groups) self$set_DT_container(self$field_groups) }, assign_field_by_field_group=function() { field_value<-self$field_groups[1,] field_group<-as.integer(c(self$field_groups[2,])) field_display_group<-self$field_groups[3,] group<-unique(self$field_group) for (i in group){ if (i%%2 ==0){ group_name<-paste("multiple",i,sep ="") group_index<-c(field_group==i) assign(group_name,Multiple_Mptbl$new(mapping_table=self$mapping_table[,group_index,drop=F])) }else{ group_name<-paste("single",i,sep ="") group_index<-c(field_group==i) assign(group_name,Multiple_Mptbl$new(mapping_table=self$mapping_table[,group_index,drop=F])) } } }, mptbl_select_default_field = function(default_field) { self$mapping_table[,default_field]<-1L }, mptbl_select_preselection_field = function(preselection_field) { self$mptbl_event_select(preselection_field) }, mptbl_event_select= function(selection_inf) { for (j in 1:nrow(selection_inf)){ i_num<-selection_inf[j,2] i<-as.integer(self$field_groups[2,i_num]) if (i%%2 ==0){ group_name<-paste("multiple",i,sep ="") assign(group_name,self$get_sub_group(group_name)) selection_inf[j,2]<-self$field_index_transform[4,i_num] local_default_field<-as.integer(self$field_index_transform[4,self$default_field]) local_obj<-get(group_name) local_obj$default_field<-local_default_field local_obj$mptbl_event_select(selection_inf[j,,drop=F]) self$set_mptabl(group_name,local_obj$mapping_table) }else{ group_name<-paste("single",i,sep ="") assign(group_name,self$get_sub_group(group_name)) selection_inf[j,2]<-self$field_index_transform[4,i_num] local_default_field<-as.integer(self$field_index_transform[4,self$default_field]) local_obj<-get(group_name) local_obj$default_field<-local_default_field local_obj$mptbl_event_select(selection_inf[j,,drop=F]) self$set_mptabl(group_name,local_obj$mapping_table) } } }, mptbl_event_fill= function(fill_inf) { fill_inf<-as.matrix(fill_inf,ncol=3) i_num<-fill_inf[1,2] i<-as.integer(self$field_groups[2,i_num]) if (i%%2 ==0){ group_name<-paste("multiple",i,sep ="") assign(group_name,self$get_sub_group(group_name)) fill_inf[,2]<-field_index_transform[4,i_num] local_default_field<-as.integer(field_index_transform[4,self$default_field]) local_obj<-get(group_name) local_obj$default_field<-local_default_field local_obj$mptbl_event_fill(fill_inf) self$set_mptabl(group_name,local_obj$mapping_table) }else{ group_name<-paste("single",i,sep ="") assign(group_name,self$get_sub_group(group_name)) fill_inf[,2]<-as.integer(field_index_transform[4,i_num]) local_default_field<-as.integer(field_index_transform[4,self$default_field]) local_obj<-get(group_name) local_obj$default_field<-local_default_field local_obj$mptbl_event_fill(fill_inf) self$set_mptabl(group_name,local_obj$mapping_table) } }, get_sub_group=function(group_name) { field_group<-as.integer(c(self$field_groups[2,])) aaab<-rbind(self$field_groups,NA) self$field_index_transform<-aaab get_group<-function(group_name){ if (substring(group_name,1,1)=="s") { substring(group_name,7,8) }else{ if (substring(group_name,1,1)=="m") substring(group_name,9,10) } } group<-get_group(group_name) i<-as.integer(group) if (i%%2 ==0){ group_index<-c(field_group==i) assign(group_name,Multiple_Mptbl$new(mapping_table=self$mapping_table[,group_index,drop=F])) self$field_index_transform[4,group_index]<-c(1:sum(group_index)) }else{ group_index<-c(field_group==i) assign(group_name,Single_Mptbl$new(mapping_table=self$mapping_table[,group_index,drop=F])) self$field_index_transform[4,group_index]<-c(1:sum(group_index)) } get(group_name) }, set_mptabl = function(group_name,mptbl) { field_group<-as.integer(c(self$field_groups[2,])) get_group<-function(group_name){ if (substring(group_name,1,1)=="s") { substring(group_name,7,8) }else{ if (substring(group_name,1,1)=="m") substring(group_name,9,10) } } group<-as.integer(get_group(group_name)) group_index<-c(field_group==group) self$mapping_table[,group_index]<-mptbl self$mptbl_to_inf(self$mapping_table) }, mptbl_to_inf= function(local_mapping_table) { nr<-nrow(local_mapping_table) nc<-ncol(local_mapping_table) m<-matrix(as.numeric(rep(0,nr*nc*3)),nrow=nr*nc,ncol=3, byrow = TRUE) colnames(m)<-c("row","col","value") k<-1 for (i in seq_len(nr)) { for (j in seq_len(nc)) { m[k,1] = i m[k,2] = j m[k,3] = local_mapping_table[i,j] k<-k+1 } } self$inf_of_mptbl<-m }, set_field_right_bound = function(field_groups) { field_display_group<-field_groups[3,] v<-c() for (i in 1: (length(field_display_group)-1)){ if (field_display_group[i]!=field_display_group[i+1]){ v<-c(v,i) } } self$field_right_bound<-v }, set_DT_container = function(field_groups) { field_value<-field_groups[1,] field_display_group<-field_groups[3,] group<-unique(field_display_group) n_of_group<-length(group) container_head<-c("<table class = 'display'> <thead>") container_foot<-c("</thead></table>") container_body1_element<-NULL for (i in 1:length(group)){ container_body1_element[i]<-paste(sep="",collapse = "", "<th ", "colspan =",sum(c(field_display_group==group[i]))," ", "class='sorting_disabled dt-center' ", "style='border-right: solid;'>", "",group[i],"", "</th>" ) } container_body1_element<-c(c("<th rowspan = 2 ></th>"),container_body1_element) container_body1_es<-paste(sep="",collapse = "",container_body1_element) container_body1<-paste(sep="",collapse = "","<tr>",container_body1_es,"</tr>") container_body2_element<-NULL for (i in 1:length(field_value)){ container_body2_element[i]<-paste(sep="",collapse = "","<th>","",field_value[i],"","</th>") } container_body2_es<-paste(sep="",collapse = "",container_body2_element) container_body2<-paste(sep="",collapse = "","<tr>",container_body2_es,"</r>") container_value<-paste(sep="",collapse = "",container_head,container_body1,"",container_body2,container_foot) self$DT_container<-container_value } ) )
createSSP <- function(x, f=30e3, nc=NULL, ncVars=c('salinity', 'water_temp'), dropNA=TRUE) { if(!all(c('UTC', 'Longitude', 'Latitude') %in% names(x))) { warning('Need UTC, Longitude, and Latitude columns') return(NULL) } if(is.null(nc)) { nc <- PAMmisc::hycomList nc$varSelect <- nc$vars %in% ncVars } result <- vector('list', length=nrow(x)) x <- matchEnvData(x, nc=nc, raw=TRUE) for(i in seq_along(result)) { ssp <- wasp(f=f, t=x[[i]][[ncVars[2]]], s=x[[i]][[ncVars[1]]], d=x[[i]]$matchDepth, medium='sea') if(dropNA) { keepers <- !is.na(ssp$c) result[[i]] <- list(speed=ssp$c[keepers], depth=x[[i]]$matchDepth[keepers]) } else { result[[i]] <- list(speed=ssp$c, depth=x[[i]]$matchDepth) } } result }
add_sublinks <- function(x, ..., .track_id = "genes", .transform = "aa2nuc"){ UseMethod("add_sublinks") } add_sublinks.gggenomes <- function(x, ..., .track_id = "genes", .transform = "aa2nuc"){ x$data <- add_sublinks(x$data, ..., .track_id = {{ .track_id }}, .transform = .transform) x } add_sublinks.gggenomes_layout <- function(x, ..., .track_id = "genes", .transform = c("aa2nuc", "none","nuc2aa")){ if(!has_dots()) return(x) dot_exprs <- enexprs(...) .transform <- match_arg(.transform) if(.transform != "none") inform(str_glue('Transforming sublinks with "{.transform}".', ' Disable with `.transform = "none"`')) tracks <- as_tracks(list(...), dot_exprs, track_ids(x)) add_sublink_tracks(x, {{.track_id}}, tracks, .transform) } add_sublink_tracks <- function(x, parent_track_id, tracks, transform){ feats <- pull_track(x, {{parent_track_id}}) links <- map(tracks, as_sublinks, get_seqs(x), feats, transform = transform, compute_layout=FALSE) x$links <- c(x$links, map(links, layout_links, get_seqs(x))) x$orig_links <- c(x$orig_links, map(links, as_orig_links, get_seqs(x))) x } as_sublinks <- function(x, seqs, feats, ..., everything=TRUE){ UseMethod("as_sublinks") } as_sublinks.default <- function(x, seqs, feats, ..., everything=TRUE) { as_sublinks(as_tibble(x), ...) } as_sublinks.tbl_df <- function(x, seqs, feats, ..., everything=TRUE, transform = c("none", "aa2nuc", "nuc2aa"), compute_layout=TRUE){ transform <- match.arg(transform) vars <- c("feat_id","feat_id2") require_vars(x, vars) require_vars(feats, "feat_id") x <- mutate_at(x, vars(feat_id, feat_id2), as.character) if(!has_vars(x, c("start", "end", "start2", "end2"))){ if(has_vars(x, c("start", "end", "start2", "end2"),any=TRUE)){ abort("Need either all of start,fend1,start2,end2 or none!") } x <- x %>% left_join(select(feats, feat_id=feat_id, seq_id=seq_id, .feat_start=start, .feat_end = end, .feat_strand = strand), by = shared_names(x, "seq_id", "feat_id")) %>% mutate( start = .feat_start, end = .feat_end, .feat_start=NULL, .feat_end=NULL) %>% left_join(select(feats, feat_id2=feat_id, seq_id2=seq_id, .feat_start=start, .feat_end = end, .feat_strand2 = strand), by = shared_names(x, "seq_id2", "feat_id2")) %>% mutate( start2 = .feat_start, end2 = .feat_end, strand = strand_chr(.feat_strand == .feat_strand2), .feat_start=NULL, .feat_end=NULL, .feat_strand=NULL, .feat_strand2=NULL) vars <- c("feat_id", "start", "end", "feat_id2", "start2", "end2") other_vars <- if(everything) tidyselect::everything else function() NULL; x <- as_tibble(select(x, vars, other_vars())) }else{ vars <- c("feat_id", "start", "end", "feat_id2", "start2", "end2") other_vars <- if(everything) tidyselect::everything else function() NULL; x <- as_tibble(select(x, vars, other_vars())) x %<>% mutate_if(is.factor, as.character) if(!has_name(x, "strand")){ x$strand <- strand_chr((x$start < x$end) == (x$start2 < x$end2)) }else{ x$strand <- strand_chr(x$strand) } x <- x %>% swap_if(start > end, start, end) x <- x %>% swap_if(start2 > end2, start2, end2) if(transform != "none"){ transform <- switch(transform, aa2nuc = ~3*.x-2, nuc2aa = ~(.x+2)/3) x <- mutate(x, across(c(start, end, start2, end2), transform)) } feats <- select(feats, feat_id, seq_id, bin_id, .feat_start=start, .feat_end=end, .feat_strand=strand) x <- x %>% inner_join(feats, by = shared_names(x, "seq_id", "bin_id", "feat_id")) %>% mutate( start = if_reverse(.feat_strand, .feat_end-start, .feat_start+start), end = if_reverse(.feat_strand, .feat_end-end, .feat_start+end), .feat_start=NULL, .feat_end=NULL, .feat_strand=NULL) feats <- rename_with(feats, ~paste0(.x,"2")) x <- x %>% inner_join(feats, by = shared_names(x, "seq_id2", "bin_id2", "feat_id2")) %>% mutate( start2 = if_reverse(.feat_strand2, .feat_end2-start2, .feat_start2+start2), end2 = if_reverse(.feat_strand2, .feat_end2-end2, .feat_start2+end2), .feat_start2=NULL, .feat_end2=NULL, .feat_strand2=NULL) x$strand <- strand_chr((x$start < x$end) == (x$start2 < x$end2)) x <- x %>% swap_if(start > end, start, end) x <- x %>% swap_if(start2 > end2, start2, end2) } if(compute_layout) layout_links(x, seqs, ...) else x }
hard.hmac<- function(hmacobj,level=NULL,n.cluster=NULL,plot=TRUE,colors=1:6,...){ if(class(hmacobj)!="hmac") stop (" Your object is not of class hmac") if(is.null(level)+is.null(n.cluster)+(plot!="TRUE")==3) level=1 if(is.null(level) & is.null(n.cluster)){ par(ask=TRUE) cat("As no specific level is specified plots are provided for all levels",unique(hmacobj$level),"\n\n") for(i in 1:max(hmacobj$level)){ cat("Level",i,"..") hard.hmac(hmacobj,level=i) } par(ask=FALSE) } else{ if(is.null(level) & !is.null(n.cluster)){ levels=hmacobj$level[which(hmacobj$n.cluster>=n.cluster)] if(length(levels)==0){ stop("Cannot find a level with ", n.cluster," clusters \n Choose the number of clusters between ", min(hmacobj$n.cluster), " and ", max(hmacobj$n.cluster))} else { level=max(levels) if(hmacobj$n.cluster[min(which(hmacobj$level==level))]==n.cluster) cat("The level at which there are",n.cluster,"clusters is", level,"\n") else{ cat("There are no levels with exactly",n.cluster,"clusters\n") cat("The level at which there are",hmacobj$n.cluster[min(which(hmacobj$level==level))],"clusters is", level,"\n") } }} if(level> max(hmacobj$level) ) stop ("Provide a level not greater than ", max(hmacobj$level)) member=hmacobj$membership[[level]] hmacobj$dat=as.matrix(hmacobj$dat) if(plot==TRUE){ if(dim(hmacobj$dat)[2]==1){ plot(density(hmacobj$dat,bw=apply(hmacobj$dat,2,sd)*min(hmacobj$sigmas[which(level==hmacobj$level)])),main="",xlab="Data") for(k in 1:max(unique(member))){ points(hmacobj$dat[member==k],rep(0,sum(member==k)),pch="|",col=k,main=NULL) } } else plot(data.frame(hmacobj$dat),col=colors[member],...) title(main="Hard clustering produced by HMAC \n Colors represent different clusters",cex.main=1,sub=paste("Level",level,"with number of clusters",length(unique(member))) ) } else return(member) } }
var.sim <- function(mu, Sigma) mu * (1 - mu) - (sqrt(exp(1/(Sigma * mu^2 * (1 - mu)^2))) * gamma(1/2) * (1 - pgamma(1/(2 * Sigma * mu^2 * (1 - mu)^2), 1/2)))/sqrt(2 * Sigma)
test_that('REQUIRE TEST normalsurvey Monte Carlo', { z <- znormalsurvey$new() test.normalsurvey <- z$mcunit(plot = FALSE) expect_true(test.normalsurvey) }) test_that('REQUIRE TEST to_zelig for normalsurvey', { data(api) dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat, fpc = ~fpc) m1 <- svyglm(api00 ~ ell + meals + mobility, design = dstrat) expect_error(plot(sim(setx(m1))), NA) })
HDcvlars <- function(X, y, nbFolds = 10, index = seq(0, 1, by = 0.01), mode = c("fraction", "lambda"), maxSteps = 3 * min(dim(X)), partition = NULL, intercept = TRUE, eps = .Machine$double.eps^0.5) { mode <- match.arg(mode) if (missing(X)) stop("X is missing.") if (missing(y)) stop("y is missing.") index = unique(index) .checkcvlars(X, y, maxSteps, eps, nbFolds, index, intercept, mode) if (!is.null(partition)) { if (!is.numeric(partition) || !is.vector(partition)) stop("partition must be a vector of integer.") if (length(partition) != length(y)) stop("partition and y must have the same size.") part = table(partition) nbFolds = length(part) if (max(part) - min(part) > 1) stop("Size of different folds are not good.") nam = as.numeric(names(part)) for (i in 1:length(nam)) { if (!(nam[i] == i)) stop("check the number in the partition vector.") } ord = order(part, decreasing = TRUE) partb = partition for (i in 1:nbFolds) partition[partb == ord[i]] = i partition = partition - 1 } else partition = -1 lambdaMode = FALSE if (mode == "lambda") lambdaMode = TRUE val = .Call("cvlars", X, y, nrow(X), ncol(X), maxSteps, intercept, eps, nbFolds, partition, index, lambdaMode, PACKAGE = "HDPenReg") cv = list(cv = val$cv, cvError = val$cvError, minCv = min(val$cv), minIndex = index[which.min(val$cv)], index = index, maxSteps = maxSteps, mode = mode) class(cv) = "HDcvlars" return(cv) } .checkcvlars = function(X, y, maxSteps, eps, nbFolds, index, intercept, mode) { if (!is.numeric(X) || !is.matrix(X)) stop("X must be a matrix of real") if (!is.numeric(y) || !is.vector(y)) stop("y must be a vector of real") if (length(y) != nrow(X)) stop("The number of rows of X doesn't match with the length of y") if (!.is.wholenumber(maxSteps)) stop("maxSteps must be a positive integer") if (maxSteps <= 0) stop("maxSteps must be a positive integer") if (!.is.wholenumber(nbFolds)) stop("nbFolds must be a positive integer") if (nbFolds <= 0) stop("nbFolds must be a positive integer") if (nbFolds > length(y)) stop("nbFolds must be lower than the number of samples") if (!is.double(eps)) stop("eps must be a positive real") if (eps <= 0) stop("eps must be a positive real") if (!is.numeric(index) || !is.vector(index)) stop("index must be a vector") if ((mode == "fraction") && (max(index) > 1 || min(index) < 0)) stop("index must be a vector of real between 0 and 1") if ((mode == "lambda") && (min(index) < 0)) stop("index must be a vector of positive real") if (!is.logical(intercept)) stop("intercept must be a boolean") } plot.HDcvlars <- function(x, ...) { if (missing(x)) stop("x is missing.") if (class(x) != "HDcvlars") stop("x must be an output of the HDcvlars function.") index = x$index minIndex = x$minIndex lab = "Fraction L1 Norm" if (x$mode == "lambda") { lab = "log(lambda)" index = log(index) minIndex = log(minIndex) } plot(index, x$cv, type = "b", ylim = range(x$cv, x$cv + x$cvError, x$cv - x$cvError), xlab = lab, ylab = "Cross-Validated MSE", ...) lines(index, x$cv + x$cvError, lty = 2) lines(index, x$cv - x$cvError, lty = 2) abline(v = minIndex, lty = "dotted", col = "blue") invisible() }
anocvaStats =function(idx, dataDist, id, k, N, r, clusteringFunction){ Ab = array(0, c(k, N, N)) Abb = array(0, c(N, N)) Sj = array(0, c(k, N)) S = array(0, N) for (j in seq(k)){ if (idx != 1){ resample = sample(seq(dim(dataDist)[1]), sum(id == j), replace = TRUE) }else{ resample = which(id == j) } dataJ = dataDist[resample, , ] Ab[j, , ] = colMeans(dataJ) Abb = Abb + colSums(dataJ) } Abb = (Abb / dim(dataDist)[1]) labels = clusteringFunction(1 - Abb, r) S = silhouette(labels, dmatrix = Abb)[, 3] deltaS = 0 deltaSq = array(0, N) for (j in seq(k)){ Sj[j, ] = silhouette(labels, dmatrix = Ab[j, , ])[, 3] deltaS = deltaS + ((S - Sj[j, ]) %*% (S - Sj[j, ])) deltaSq = deltaSq + ((S - Sj[j, ]) ^ 2) } return(list("deltaS" = deltaS, "deltaSq" = deltaSq)) }
reg_const <- function(regulator, r_const, CVswitch, CVcap, pe_constr) { regulator <- toupper(regulator) if (regulator=="USER"){ if (missing(CVswitch) | missing(CVcap) | missing(r_const)){ stop("r_const, CVswitch and CVcap must be given.") } if (missing(pe_constr)) pe_constr <- TRUE r <- list(name="USER", CVswitch=CVswitch, r_const=r_const, CVcap=CVcap, pe_constr=pe_constr) } else if (regulator=="FDA"){ r <- list(name="FDA", CVswitch=0.3, r_const=log(1.25)/0.25, CVcap=Inf, est_method="ISC") } else if (regulator=="EMA"){ r <- list(name="EMA", CVswitch=0.3, r_const=0.76, CVcap=0.5) } else if (regulator=="HC"){ r <- list(name="HC", CVswitch=0.3, r_const=0.76, CVcap=0.57382, est_method="ISC") } else if (regulator=="GCC") { r <- list(name="GCC", CVswitch=0.3, r_const=log(1/0.75)/CV2se(0.3), CVcap=0.3) } else { stop("Unknown regulator.") } class(r) <- "regSet" if (is.null(r$pe_constr)) r$pe_constr <- TRUE if (is.null(r$est_method)) r$est_method <- "ANOVA" r } reg_check <- function(regulator, choices=c("EMA", "HC", "FDA", "GCC")) { if (class(regulator)=="character"){ reg <- toupper(regulator) reg <- match.arg(reg, choices) reg <- reg_const(reg) } else if (class(regulator)=="regSet") { reg <- regulator } else { stop("Arg. regulator has to be character or an object of class 'regSet'.") reg <- NULL } reg } print.regSet <- function(x, ...) { if(x$name=="USER"){ cat(x$name, "defined regulatory settings\n") } else { cat(x$name, "regulatory settings\n") } cat("- CVswitch =", x$CVswitch,"\n") if (!is.null(x$CVcap)) { if (is.finite(x$CVcap)){ cat("- cap on scABEL if CVw(R) > ", x$CVcap,"\n",sep="") } else { cat("- no cap on scABEL\n", sep="") } } cat("- regulatory constant =", x$r_const,"\n") if (is.null(x$pe_constr)) x$pe_constr <- TRUE if (x$pe_constr) { cat("- pe constraint applied") } else { cat("- no pe constraint") } cat("\n") } scABEL <- function(CV, regulator) { if (missing(regulator)) regulator <-"EMA" rc <- reg_check(regulator) CVcap <- rc$CVcap CVswitch <- rc$CVswitch r_const <- rc$r_const ret <- ifelse(CV <= (CVswitch + 1e-10), 1.25, exp(r_const*CV2se(CV))) ret <- ifelse(CV>CVcap, exp(r_const*CV2se(CVcap)), ret) if (length(CV)>1){ ret <- cbind(1/ret, ret) colnames(ret) <- c("lower", "upper") } else { ret <- c(1/ret, ret) names(ret) <- c("lower", "upper") } ret } scABEL_LO <- function(CV) { gamma <- 0.0336 sw0 <- 0.3853 gamma <- 0.03361 sw0 <- 0.38535 beta <- scABEL(CV=0.5)["upper"] uppr <- 1.25 + (beta - 1.25)/(1 + exp(-(CV2se(CV)-sw0)/gamma)) if (length(CV)>1){ ret <- cbind(1/uppr, uppr) colnames(ret) <- c("lower", "upper") } else { ret <- c(1/uppr, uppr) names(ret) <- c("lower", "upper") } ret }
context("Consistency of getcdfupdates with updates") set.seed(129301) checkupdates <- function(chart, X){ P <- chart@model$Pofdata(X) xi <- chart@model$xiofP(P) sample <- unlist(replicate(500,updates(chart,data=chart@model$resample(P),xi))) f1 <- ecdf(sample) f2 <- getcdfupdates(chart,P,xi) x <- c(sample,rcauchy(100)) res <- max(abs(f1(x)-f2(x))) id <- paste(class(chart)[1],"Maximum error:",format(res)) expect_true(res<0.03,id) } test_that("Updates/Resample CUSUM Normal",{ skip_on_cran() chart <- new("SPCCUSUM",model=SPCModelNormal(Delta=1)) checkupdates(chart,rexp(50)) checkupdates(chart,rnorm(100)) checkupdates(chart,rnorm(1000)) checkupdates(chart,runif(1000)) }) test_that("Updates/Resample CUSUM Nonnpar",{ skip_on_cran() chart <- new("SPCCUSUM",model=SPCModelNonparCenterScale(Delta=1)) checkupdates(chart,rexp(50)) checkupdates(chart,rnorm(100)) checkupdates(chart,rnorm(1000)) checkupdates(chart,runif(1000)) }) test_that("Updates/Resample Shewhart Normal",{ skip_on_cran() chart <- new("SPCShew",model=SPCModelNormal(),twosided=TRUE) checkupdates(chart,rexp(50)) checkupdates(chart,rnorm(100)) checkupdates(chart,rnorm(1000)) chart <- new("SPCShew",model=SPCModelNormal(),twosided=FALSE) checkupdates(chart,rexp(50)) checkupdates(chart,rnorm(100)) checkupdates(chart,rnorm(1000)) }) test_that("Updates/Resample Shewhart Nonnpar",{ skip_on_cran() chart <- new("SPCShew",model=SPCModelNonparCenterScale(),twosided=TRUE) checkupdates(chart,rexp(50)) checkupdates(chart,rnorm(100)) checkupdates(chart,rnorm(1000)) chart <- new("SPCShew",model=SPCModelNonparCenterScale(),twosided=FALSE) checkupdates(chart,rexp(50)) checkupdates(chart,rnorm(100)) checkupdates(chart,rnorm(1000)) })
computeMemberIndices<-function ( h, clusterIdx ) { clusterCount<-nrow(h$merge) indices<-rep(NA,clusterCount+1) indicesCount<-0 toTraverse<-c(clusterIdx,rep(NA,clusterCount-1)) toTraverseStart<-1 toTraverseEnd<-2 repeat { i<-toTraverse[toTraverseStart] if (is.na(i)) break toTraverse[toTraverseStart]<-NA toTraverseStart<-toTraverseStart+1 if (h$merge[i,1]>0) { toTraverse[toTraverseEnd]<-h$merge[i,1] toTraverseEnd<-toTraverseEnd+1 } else { indicesCount<-indicesCount+1 indices[indicesCount]<- -h$merge[i,1] } if (h$merge[i,2]>0) { toTraverse[toTraverseEnd]<-h$merge[i,2] toTraverseEnd<-toTraverseEnd+1 } else { indicesCount<-indicesCount+1 indices[indicesCount]<- -h$merge[i,2] } } return(indices[1:indicesCount]) }
context("Compute genotype counts") test_that("compute genotype counts correctly", { s<-make_seq_mappoly(tetra.solcap, 3:7) o<-cache_counts_twopt(s) expect_is(o, "cache.info") expect_null(print(o)) o2<-get_cache_two_pts_from_web(ploidy = 4) expect_is(o2, "cache.info") })
series_info_url = function(x) { url = "https://www3.bcb.gov.br/sgspub/consultarvalores/consultarValoresSeries.do?method=consultarGraficoPorId" httr::modify_url(url, query = list(hdOidSeriesSelecionadas = x$code)) } series_info = function(x) { url = series_info_url(x) res = httr::GET(url) cnt = httr::content(res, as = "text") doc = xml2::read_html(cnt) info = xml2::xml_find_first(doc, '//tr[@class="fundoPadraoAClaro3"]') if (length(info) == 0) stop("Given code returned no info from SGS: ", x$code) info = xml2::xml_find_all(info, ".//td") info = xml2::xml_text(info) info = as.list(info[-length(info)]) info = setNames(info, c("code", "description", "unit", "frequency", "start_date", "last_date")) if (as.numeric(info$code) != x$code) stop("Downloaded info is different from series info") info$code = NULL info$url = url info$start_date = as.Date(info$start_date, "%d/%m/%Y") info$last_date = as.Date(info$last_date, "%d/%m/%Y") info }
tv_programmes <- function(legislature = NULL, start_date = "1900-01-01", end_date = Sys.Date(), extra_args = NULL, tidy = TRUE, tidy_style = "snake", verbose = TRUE) { dates <- paste0( "&max-endDate=", as.Date(end_date), "T23:59:59Z&min-startDate=", as.Date(start_date), "T00:00:00Z" ) legislature <- tolower(legislature) if (legislature == "commons") { leg_query <- "&legislature.prefLabel=House%20of%20Commons" } else if (legislature == "lords") { leg_query <- "&legislature.prefLabel=House%20of%20Lords" } else { leg_query <- "" } baseurl <- paste0(url_util, "tvprogrammes.json?") tv <- jsonlite::fromJSON(paste0( baseurl, leg_query, dates, extra_args, "&_pageSize=1" ), flatten = TRUE ) if (verbose == TRUE) { message("Connecting to API") } jpage <- floor(tv$result$totalResults / 100) query <- paste0(baseurl, leg_query, dates, extra_args) df <- loop_query(query, jpage, verbose) if (nrow(df) == 0) { message("The request did not return any data. Please check your parameters.") } else { if (tidy == TRUE) { df <- tv_tidy(df, tidy_style) } df } } hansard_tv_programmes <- tv_programmes tv_clips <- function(mp_id = NULL, start_date = "1900-01-01", end_date = Sys.Date(), extra_args = NULL, tidy = TRUE, tidy_style = "snake", verbose = TRUE) { dates <- paste0( "&max-startDate=", as.Date(end_date), "T00:00:00Z", "&min-startDate=", as.Date(start_date), "T00:00:00Z" ) member_query <- ifelse( is.null(mp_id) == FALSE, paste0("&member=http://data.parliament.uk/members/", mp_id), "" ) baseurl <- paste0(url_util, "tvclips.json?") tv <- jsonlite::fromJSON(paste0( baseurl, member_query, dates, extra_args ), flatten = TRUE ) jpage <- floor(tv$result$totalResults / 100) query <- paste0(baseurl, member_query, dates, extra_args) df <- loop_query(query, jpage, verbose) if (nrow(df) == 0) { message("The request did not return any data. Please check your parameters.") } else { if (tidy == TRUE) { df <- tv_tidy2(df, mp_id, tidy_style) } df <- tibble::as_tibble(df) df } } hansard_tv_clips <- tv_clips tv_channels <- function(tidy = TRUE, tidy_style = "snake", verbose = TRUE) { channels <- jsonlite::fromJSON(paste0( url_util, "tvchannels.json?_pageSize=100" ), flatten = TRUE ) df <- tibble::as_tibble(channels$result$items) if (tidy == TRUE) { df <- hansard_tidy(df, tidy_style) } df } hansard_tv_channels <- tv_channels
AEplot = function(RSinput = 30, makeTitle=FALSE){ boxcolors = colorRampPalette(c("lightgrey", "red"))(6) if(is.null(RSinput)) RSinput = 48 par.save = par(mai=c(0,0,0.5,0.5)) aeProb = c(2.9,15,57,20,5,0.1) boxwidths = c(1, (nnt[RSinput] - 1) * aeProb / 100) opts = options(warn=-1) symbols(x=rep(0, 7), y=1:7, inches=F, xlim=c(-ceiling(max(boxwidths)), ceiling(max(boxwidths))) * 0.75, rectangles = cbind(boxwidths, 1), bg = c("green", boxcolors), axes=F, xlab="", ylab="") par(par.save) options(opts) "%except%" <- function (vector, condition) vector[match(vector, condition, 0) == 0] verticalsX = lapply(boxwidths[-1], function(bw) if(bw <= 1) numeric(0) else -floor(bw/2):floor(bw/2) ) verticalsY = rep(1:6, times=sapply(verticalsX, length)) segments(x0= unlist(verticalsX), y0 = verticalsY + 1/2, y1 = verticalsY + 3/2 ) graphics::text(x = boxwidths/2, y=1:7, c("benefitted", "no adverse event", "mild AE", "moderate", "severe AE", "life-threatening AE", "fatal toxicity"), pos=4 , xpd=NA) graphics::text(x = - boxwidths/2, y=1:7, round(boxwidths, 1), pos=2 , xpd=NA) if(makeTitle) title(paste0("Outcomes for ", round(nnt[RSinput]), " patients, \n", "if all are treated, and 1 benefits\n", "RS = ", RSinput, " NNT = ", round(nnt[RSinput]))) print(paste0("RS = ", RSinput, " NNT = ", round(nnt[RSinput]))) print(boxwidths) }
searchExtremePaired <- function(TX, N, alternative, method, int, delta, alpha, lookupArray) { TXunique <- unique(TX[is.na(TX[ , 4]), 3]) if (length(TXunique) == 0) {return(TX[as.logical(TX[ , 4]), 1:2, drop=FALSE])} m <- floor(length(TXunique)/2) + 1 s <- TXunique[m] if (method %in% c("am", "amcc")) { pvalue <- ifelse(alternative=="two.sided",2,1)*pnorm(TX[TX[,3] == s, 3][[1]]) } else { Tbls <- TX[TX[,3] <= s, 1:2, drop=FALSE] pvalue <- maxPvaluePairedLookup(Tbls, int=int, lookupArray=lookupArray, doublePvalue=FALSE)$pvalue } if (pvalue <= alpha){ TX[TX[,3] <= s, 4] <- TRUE } else { TX[TX[,3] >= s, 4] <- FALSE } return(searchExtremePaired(TX = TX, N = N, alternative = alternative, method = method, int = int, delta = delta, alpha = alpha, lookupArray = lookupArray)) }
parMIKD <- function (idx) { getIndex <- function(idx){ rrow <- ceiling((-1 + sqrt(8*idx + 1))/2) ccol <- idx - rrow*(rrow - 1)/2 ans <- c(rrow, ccol) return(ans) } idx <- getIndex(idx) x <- counts[idx[1], ] y <- counts[idx[2], ] xgs <- 50 ygs <- 50 bandx<- tryCatch(dpik(x), error=function(err) 0.2) bandy<- tryCatch(dpik(y), error=function(err) 0.2) Px <- KernSec(x, xgridsize = xgs, xbandwidth = bandx)$yden Py <- KernSec(y, xgridsize = ygs, xbandwidth = bandy)$yden Pxy <- KernSur(x, y, xgridsize = xgs, ygridsize = ygs, xbandwidth = bandx, ybandwidth = bandy)$zden s <- sum(Px) Px <- Px/s; s <- sum(Py); Py <- Py/s; s <- sum(Pxy); Pxy <- Pxy/s; ans <- 0 for(i in 1:xgs) for(j in 1:ygs){ tmp <- Pxy[i,j]*log2(Pxy[i,j]/(Px[i]*Py[j])) if(tmp != "NaN") ans <- ans + tmp } return(ans) }
predict.psf <- function (object, n.ahead = 1, ...) { original.n.ahead = n.ahead fit = n.ahead %% object$cycle if (fit > 0) { n.ahead = object$cycle * ceiling(n.ahead / object$cycle) warning(paste("Prediction horizon is not multiple of", object$cycle, ". Using", n.ahead, "as prediction horizon!")) } res <- psf_predict(object$train_data, object$k, object$w, n.ahead, object$cycle) res <- as.vector(t(res))[1:original.n.ahead] res <- res * (object$dmax - object$dmin) + object$dmin return(res) }
context("Test main api functions") library(tibble) httptest::with_mock_api({ test_that("Ask for api key before making any request", { expect_error(get_installation_by_id(8077), "You have to set apikey first! See set_apikey function.") expect_error(get_nearest_installations(50.11670, 19.91429), "You have to set apikey first! See set_apikey function.") expect_error(get_nearest_measurements(50.11670, 19.91429), "You have to set apikey first! See set_apikey function.") expect_error(get_point_measurements(50.11670, 19.91429), "You have to set apikey first! See set_apikey function.") expect_error(get_installation_measurements(8077), "You have to set apikey first! See set_apikey function.") expect_error(get_indexes(), "You have to set apikey first! See set_apikey function.") expect_error(get_measurements_info(), "You have to set apikey first! See set_apikey function.") expect_error(remaining_requests(), "You have to set apikey first! See set_apikey function.") }) }) test_that("Apikey is set correctly", { set_apikey("testkey") key <- .get_apikey() expect_equal(key, "testkey") }) test_that("Api key takes only string as argument", { expect_error(set_apikey(123456789), "apikey must be a string") }) httptest::with_mock_api({ test_that("Get installation by id is working", { set_apikey("testkey") station <- get_installation_by_id(8077) expected <- tibble(id = 8077, elevation = 2137, is_airly = TRUE, location = tibble(latitude = 50, longitude = 19), address = tibble(country = "Poland", city = "Kraków", street = "Mikołajska", number = "4", displayAddress1 = "Kraków", displayAddress2 = "Mikołajska"), sponsor = tibble(id = 489, name ="Chatham Financial", description = "Airly Sensor's sponsor", logo = "https://cdn.airly.eu/some.jpg", link = "https://crossweb.pl") ) expect_equal(station, expected) }) }) httptest::with_mock_api({ test_that("Get nearest installation is working", { set_apikey("testkey") station <- get_nearest_installations(lat = 50, lng = 19)[2,] expected <- tibble(id = 8077, elevation = 2137, is_airly = TRUE, location = tibble(latitude = 50, longitude = 19), address = tibble(country = "Poland", city = "Kraków", street = "Mikołajska", number = "4", displayAddress1 = "Kraków", displayAddress2 = "Mikołajska"), sponsor = tibble(id = 489, name ="Chatham Financial", description = "Airly Sensor's sponsor", logo = "https://cdn.airly.eu/some.jpg", link = "https://crossweb.pl") ) expect_equal(station, expected) }) }) httptest::with_mock_api({ test_that("Get nearest measurements is working", { set_apikey("testkey") current <- get_nearest_measurements(lat = 21, lng = 37)$current history <- get_nearest_measurements(lat = 21, lng = 37)$history[1:7,] forecast <- get_nearest_measurements(lat = 21, lng = 37)$forecast[1:7,] exp_curr <- tibble(time = tibble(from = as.POSIXct(strptime("2020-03-11T10:43:29.983Z", format = "%Y-%m-%dT%H:%M:%OSZ")), to = as.POSIXct(strptime("2020-03-11T11:43:29.983Z", format = "%Y-%m-%dT%H:%M:%OSZ"))), measure = tibble(PM1 = 4.58, PM25 = 6.83, PM10 = 12.54, PRESSURE = 1010.3, HUMIDITY = 77.69, TEMPERATURE = 10.82), index = tibble(AIRLY_CAQI = 12.54) ) exp_hist <- tibble(time = tibble(from = as.POSIXct(strptime(c("2020-03-10T11:00:00.000Z", "2020-03-10T12:00:00.000Z", "2020-03-10T13:00:00.000Z", "2020-03-10T14:00:00.000Z", "2020-03-10T15:00:00.000Z", "2020-03-10T16:00:00.000Z", "2020-03-10T17:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ")), to = as.POSIXct(strptime(c("2020-03-10T12:00:00.000Z", "2020-03-10T13:00:00.000Z", "2020-03-10T14:00:00.000Z", "2020-03-10T15:00:00.000Z", "2020-03-10T16:00:00.000Z", "2020-03-10T17:00:00.000Z", "2020-03-10T18:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ"))), measure = tibble(PM1 = c(9.87, 8.40, 7.45, 7.70, 7.99, 8.52, 13.64), PM25 = c(14.16, 11.86, 10.53, 10.99, 11.60, 11.89, 19.93), PM10 = c(25.74, 21.66, 19.16, 20.31, 21.60, 21.42, 37.58), PRESSURE = c(1013.37, 1012.38, 1011.55, 1010.89, 1010.23, 1010.26, 1010.37), HUMIDITY = c(66.01, 58.89, 54.92, 53.60, 55.20, 59.38, 64.65), TEMPERATURE = c(10.75, 11.50, 11.91, 11.96, 11.39, 10.24, 8.92)), index = tibble(AIRLY_CAQI = c(21.66, 21.66, 19.16, 20.31, 21.60, 21.42,37.58)) ) exp_fore <- tibble(time = tibble(from = as.POSIXct(strptime(c("2020-03-11T11:00:00.000Z", "2020-03-11T12:00:00.000Z", "2020-03-11T13:00:00.000Z", "2020-03-11T14:00:00.000Z", "2020-03-11T15:00:00.000Z", "2020-03-11T16:00:00.000Z", "2020-03-11T17:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ")), to = as.POSIXct(strptime(c("2020-03-11T12:00:00.000Z", "2020-03-11T13:00:00.000Z", "2020-03-11T14:00:00.000Z", "2020-03-11T15:00:00.000Z", "2020-03-11T16:00:00.000Z", "2020-03-11T17:00:00.000Z", "2020-03-11T18:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ"))), measure = tibble(PM25 = c(2.07, 0.38, 0.10, 0.10, 0.45, 2.70, 5.33), PM10 = c(7.82, 5.75, 4.28, 5.09, 7.35, 10.37, 13.86)), index = tibble(AIRLY_CAQI = c(7.82, 5.75, 4.28, 5.09, 7.35, 10.37, 13.86)) ) expect_equal(history, exp_hist) expect_equal(current, exp_curr) expect_equal(forecast, exp_fore) }) }) httptest::with_mock_api({ test_that("Get id measurements is working", { set_apikey("testkey") current <- get_installation_measurements(id = 5)$current history <- get_installation_measurements(id = 5)$history[1:7,] forecast <- get_installation_measurements(id = 5)$forecast[1:7,] exp_curr <- tibble(time = tibble(from = as.POSIXct(strptime("2020-03-11T18:58:36.380Z", format = "%Y-%m-%dT%H:%M:%OSZ")), to = as.POSIXct(strptime("2020-03-11T19:58:36.380Z", format = "%Y-%m-%dT%H:%M:%OSZ"))), measure = tibble(PM1 = 8.73, PM25 = 12.37, PM10 = 23.29, PRESSURE = 1014.23, HUMIDITY = 81.05, TEMPERATURE = 8.27), index = tibble(AIRLY_CAQI = 23.29) ) exp_hist <- tibble(time = tibble(from = as.POSIXct(strptime(c("2020-03-10T19:00:00.000Z", "2020-03-10T20:00:00.000Z", "2020-03-10T21:00:00.000Z", "2020-03-10T22:00:00.000Z", "2020-03-10T23:00:00.000Z", "2020-03-11T00:00:00.000Z", "2020-03-11T01:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ")), to = as.POSIXct(strptime(c("2020-03-10T20:00:00.000Z", "2020-03-10T21:00:00.000Z", "2020-03-10T22:00:00.000Z", "2020-03-10T23:00:00.000Z", "2020-03-11T00:00:00.000Z", "2020-03-11T01:00:00.000Z", "2020-03-11T02:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ"))), measure = tibble(PM1 = c(16.30, 10.72, 9.97, 7.42, 2.95, 4.12, 3.17), PM25 = c(24.18, 15.42, 14.13, 10.53, 4.55, 6.23, 4.87), PM10 = c(46.03, 28.37, 25.84, 19.07, 8.57, 11.55, 9.33), PRESSURE = c(1009.94, 1009.13, 1008.49, 1007.75, 1007.17, 1006.81, 1006.01), HUMIDITY = c(66.36, 66.55, 67.21, 69.24, 71.58, 73.79, 77.09), TEMPERATURE = c(7.84, 7.42, 7.03, 7.04, 7.19, 7.42, 7.40)), index = tibble(AIRLY_CAQI = c(46.03, 28.37, 25.84, 19.07, 8.57, 11.55, 9.33)) ) exp_fore <- tibble(time = tibble(from = as.POSIXct(strptime(c("2020-03-11T19:00:00.000Z", "2020-03-11T20:00:00.000Z", "2020-03-11T21:00:00.000Z", "2020-03-11T22:00:00.000Z", "2020-03-11T23:00:00.000Z", "2020-03-12T00:00:00.000Z", "2020-03-12T01:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ")), to = as.POSIXct(strptime(c("2020-03-11T20:00:00.000Z", "2020-03-11T21:00:00.000Z", "2020-03-11T22:00:00.000Z", "2020-03-11T23:00:00.000Z", "2020-03-12T00:00:00.000Z", "2020-03-12T01:00:00.000Z", "2020-03-12T02:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ"))), measure = tibble(PM25 = c(10.22, 9.22, 7.53, 5.57, 3.82, 2.47, 1.57), PM10 = c(18.57, 16.76, 13.75, 10.00, 6.64, 4.16, 2.44)), index = tibble(AIRLY_CAQI = c(18.57, 16.76, 13.75, 10.00, 6.64, 4.16, 2.62)) ) expect_equal(history, exp_hist) expect_equal(current, exp_curr) expect_equal(forecast, exp_fore) }) }) httptest::with_mock_api({ test_that("Get point measurements is working", { set_apikey("testkey") current <- get_point_measurements(50.11670, 19.91429)$current history <- get_point_measurements(50.11670, 19.91429)$history[1:7,] forecast <- get_point_measurements(50.11670, 19.91429)$forecast[1:7,] exp_curr <- tibble(time = tibble(from = as.POSIXct(strptime("2020-03-11T18:58:36.380Z", format = "%Y-%m-%dT%H:%M:%OSZ")), to = as.POSIXct(strptime("2020-03-11T19:58:36.380Z", format = "%Y-%m-%dT%H:%M:%OSZ"))), measure = tibble(PM1 = 8.73, PM25 = 12.37, PM10 = 23.29, PRESSURE = 1014.23, HUMIDITY = 81.05, TEMPERATURE = 8.27), index = tibble(AIRLY_CAQI = 23.29) ) exp_hist <- tibble(time = tibble(from = as.POSIXct(strptime(c("2020-03-10T19:00:00.000Z", "2020-03-10T20:00:00.000Z", "2020-03-10T21:00:00.000Z", "2020-03-10T22:00:00.000Z", "2020-03-10T23:00:00.000Z", "2020-03-11T00:00:00.000Z", "2020-03-11T01:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ")), to = as.POSIXct(strptime(c("2020-03-10T20:00:00.000Z", "2020-03-10T21:00:00.000Z", "2020-03-10T22:00:00.000Z", "2020-03-10T23:00:00.000Z", "2020-03-11T00:00:00.000Z", "2020-03-11T01:00:00.000Z", "2020-03-11T02:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ"))), measure = tibble(PM1 = c(16.30, 10.72, 9.97, 7.42, 2.95, 4.12, 3.17), PM25 = c(24.18, 15.42, 14.13, 10.53, 4.55, 6.23, 4.87), PM10 = c(46.03, 28.37, 25.84, 19.07, 8.57, 11.55, 9.33), PRESSURE = c(1009.94, 1009.13, 1008.49, 1007.75, 1007.17, 1006.81, 1006.01), HUMIDITY = c(66.36, 66.55, 67.21, 69.24, 71.58, 73.79, 77.09), TEMPERATURE = c(7.84, 7.42, 7.03, 7.04, 7.19, 7.42, 7.40)), index = tibble(AIRLY_CAQI = c(46.03, 28.37, 25.84, 19.07, 8.57, 11.55, 9.33)) ) exp_fore <- tibble(time = tibble(from = as.POSIXct(strptime(c("2020-03-11T19:00:00.000Z", "2020-03-11T20:00:00.000Z", "2020-03-11T21:00:00.000Z", "2020-03-11T22:00:00.000Z", "2020-03-11T23:00:00.000Z", "2020-03-12T00:00:00.000Z", "2020-03-12T01:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ")), to = as.POSIXct(strptime(c("2020-03-11T20:00:00.000Z", "2020-03-11T21:00:00.000Z", "2020-03-11T22:00:00.000Z", "2020-03-11T23:00:00.000Z", "2020-03-12T00:00:00.000Z", "2020-03-12T01:00:00.000Z", "2020-03-12T02:00:00.000Z"), format = "%Y-%m-%dT%H:%M:%OSZ"))), measure = tibble(PM25 = c(10.22, 9.22, 7.53, 5.57, 3.82, 2.47, 1.57), PM10 = c(18.57, 16.76, 13.75, 10.00, 6.64, 4.16, 2.44)), index = tibble(AIRLY_CAQI = c(18.57, 16.76, 13.75, 10.00, 6.64, 4.16, 2.62)) ) expect_equal(history, exp_hist) expect_equal(current, exp_curr) expect_equal(forecast, exp_fore) }) }) httptest::with_mock_api({ test_that("get_indexes return valid index information", { indexes <- get_indexes() expected <- data.frame( minValue = c(0.0, 25.0, 50.0, 75.0, 87.5, 100.0, 125.0, 0.0, 25.0, 50.0, 75.0, 100.0, 0.0, 1.0, 3.0 , 5.0, 7.0, 10.0), maxValue = c(25.0, 50.0, 75.0, 87.5, 100.0, 125.0, NA, 25.0, 50.0, 75.0, 100.0, NA, 1.0, 3.0, 5.0, 7.0, 10.0, NA), description = c("Very Low","Low","Medium","High","Very High","Extreme","Airmageddon!", "Very Low","Low", "Medium","High","Very High","Very Good","Good","Moderate","Satisfactory", "Bad","Very Bad"), color = c(" " name = c("AIRLY_CAQI", "AIRLY_CAQI", "AIRLY_CAQI", "AIRLY_CAQI", "AIRLY_CAQI", "AIRLY_CAQI", "AIRLY_CAQI", "CAQI","CAQI","CAQI", "CAQI","CAQI","PIJP","PIJP","PIJP","PIJP","PIJP","PIJP" ), stringsAsFactors = FALSE ) expect_equal(indexes, expected) }) }) httptest::with_mock_api({ test_that("get_measurements_info return valid index information", { measures <- get_measurements_info() expected <- data.frame( name = c("PM1", "PM25", "PM10", "TEMPERATURE", "HUMIDITY", "PRESSURE", "WIND_SPEED", "WIND_BEARING", "NO2", "O3", "SO2", "CO", "H2S", "NO"), label = c("PM1", "PM2.5", "PM10", "Temperature", "Humidity", "Pressure", "Wind speed", "Wind bearing", "NO₂", "O₃", "SO₂", "CO", "H₂S", "NO"), unit = c("µg/m³", "µg/m³", "µg/m³", "°C", "%", "hPa", "km/h", "°", "µg/m³", "µg/m³", "µg/m³", "µg/m³", "µg/m³", "µg/m³"), stringsAsFactors = FALSE) expect_equal(measures, expected) }) }) test_that("remaining request are not set", { expect_warning(remaining_requests(), "You should make at least one request. Check me after making first call.") })
if (require("testthat")) { library(see) if (length(strsplit(packageDescription("see")$Version, "\\.")[[1]]) > 3) { Sys.setenv("RunAllseeTests" = "yes") } else { Sys.setenv("RunAllseeTests" = "no") } osx <- tryCatch( { si <- Sys.info() if (!is.null(si["sysname"])) { si["sysname"] == "Darwin" || grepl("^darwin", R.version$os) } else { FALSE } }, error = function(e) { FALSE } ) if (!osx) { test_check("see") } }
contextCluster <- function(datasets, clusterCounts, dataDistributions="diagNormal", prior=NULL, maxIter=1000, burnin=NULL, lag=3, verbose = FALSE){ nDataPoints <- dim(datasets[[1]])[1] nContexts <- length(datasets) if (nContexts != length(clusterCounts)) stop("Number of datasets is different from number of contexts.") if (sum(laply(datasets, function(dt) nrow(dt) == nDataPoints)) != nContexts) { stop("Number of data points is different in individual contexts.") } if(verbose) message('Running initialisation') if (length(dataDistributions) == 1) { fullDataDistributions <- rep(dataDistributions, nContexts) } else { fullDataDistributions <- dataDistributions } if (is.null(burnin)) { burnin <- maxIter/2 } if (is.null(prior)) { prior <- empiricalBayesPrior(datasets, fullDataDistributions) } state <- createGibbsState(datasets, clusterCounts, fullDataDistributions) dataStats <- createDataStats(datasets, prior, fullDataDistributions) logliks <- rep(0, maxIter) assignSamples <- vector("list", length=maxIter) for (iter in 1:maxIter) { if (((iter%%10) == 0 ) && verbose) { message(paste("iter ",iter)) } state <- state %>% gibbsSampleZ(dataStats, prior, clusterCounts) %>% gibbsSampleContextK(prior, clusterCounts) logliks[iter] <- logJoint(state, prior, clusterCounts) assignSamples[[iter]]$dataAssignments <- state$Z assignSamples[[iter]]$contextAssignments <- state$contextK } thinned_logliks <- getMCMCSamples(logliks, burnin, lag) thinned_samples <- getMCMCSamples(assignSamples, burnin, lag) DIC <- computeDIC(thinned_logliks, thinned_samples, nDataPoints, state$distributions, clusterCounts, prior, datasets) assignments <- thinned_samples %>% llply(getClustersAssignments) return(list(samples=assignments, logliks=logliks, DIC=DIC)) } logsumexp <- function(xs){ xMax <- max(xs) values <- (xs - xMax) %>% exp %>% sum %>% log values + xMax } normalizeProbs <- function(logliks) { normalizer <- logsumexp(logliks) probs <- exp(logliks - normalizer) probs } sampleCategorical <- function(logliks) { normalizer <- logsumexp(logliks) probs <- exp(logliks - normalizer) cdf <- cumsum(probs) min(which(runif(1) < cdf)) } rep.row<-function(x,n){ matrix(rep(x,each=n),nrow=n) } rep.col<-function(x,n){ matrix(rep(x,each=n), ncol=n, byrow=TRUE) } generateMapping <- function(clusterCounts) { nGlobalClusters <- prod(clusterCounts) nContexts <- length(clusterCounts) mapping <- matrix(nrow=nGlobalClusters,ncol=nContexts+1) mapping[,nContexts+1] <- 1:nGlobalClusters localClusters <- list() for(c in 1:nContexts) localClusters[[c]] <- 1:clusterCounts[c] grid <- expand.grid(localClusters) for(c in 1:nContexts) mapping[,c] <- grid[[c]] mapping } getGlobalClusters <- function(state, mapping) { nDataPoints <- length(state$Z) nContexts <- length(state$distributions) clusterAssgn <- matrix(nrow=nDataPoints,ncol=nContexts) for (context in 1:nContexts) { clusterAssgn[,context] <- state$contextK[state$Z, context] } aaply(clusterAssgn,1,function(row) as.character(row) %>% paste(collapse='')) } saveSample <- function(state, mapping, iter, filename) { nDataPoints <- length(state$Z) nContexts <- length(state$distributions) if (!file.exists(filename)) { contextHeaders <- laply(1:nContexts, function(context) { laply(1:nDataPoints, function(n) paste("Context", context, " x", n, sep='')) %>% paste(collapse=',') }) %>% paste(collapse=',') globalHeaders1 <- laply(1:nDataPoints, function(n) paste("Global_assgn x", n, sep='')) %>% paste(collapse=',') globalHeaders2 <- laply(1:nDataPoints, function(n) paste("Global x", n, sep='')) %>% paste(collapse=',') header <- paste('Sample', contextHeaders, globalHeaders1, globalHeaders2, sep=',') fileConn<-file(filename,open = "a") writeLines(header, fileConn) } else { fileConn<-file(filename, open = "a") } clusterAssgn = matrix(nrow=nDataPoints,ncol=nContexts) for (context in 1:nContexts) { clusterAssgn[,context] <- state$contextK[state$Z, context] } contextClusters <- clusterAssgn %>% as.vector %>% as.matrix assignments <- state$Z %>% as.matrix globalClusters <- getGlobalClusters(state, mapping) writeLines(c(iter, t(contextClusters), t(assignments), t(globalClusters)) %>% paste(collapse=','), fileConn) close(fileConn) } computeDIC <- function(thinned_logliks, thinned_samples, nDataPoints, distributions, clusterCounts, prior, datasets) { D_bar <- -2 * mean(thinned_logliks) theta_bar <- c() modeDataAssignments <- 1:nDataPoints %>% laply(function(id) {thinned_samples %>% laply(function(s) s$dataAssignments[id])}) %>% aaply(1, function(column) which.max(tabulate(column))) idx2d <- dim(thinned_samples[[1]]$contextAssignments) %>% lapply(seq) %>% expand.grid() %>% as.matrix modeContextAssignmentsTmp <- idx2d %>% aaply(1, function(x) { i <- x[1]; j <- x[2] thinned_samples %>% laply(function(s) s$contextAssignments[i,j]) %>% tabulate %>% which.max }) modeContextAssignments <- matrix(nrow=nrow(thinned_samples[[1]]$contextAssignments), ncol=ncol(thinned_samples[[1]]$contextAssignments)) for (i in 1:nrow(modeContextAssignments)) { for (j in 1:ncol(modeContextAssignments)) { modeContextAssignments[i,j] <- modeContextAssignmentsTmp[idx2d[,1] == i & idx2d[,2] == j] } } modeState <- c() modeState$Z <- modeDataAssignments modeState$contextK <- modeContextAssignments modeState$distributions <- distributions modeState$clusterStats <- precomputeClusterStatistics(datasets, clusterCounts, modeState$Z, modeState$contextK, modeState$distributions) D_hat <- -2 * logJoint(modeState, prior, clusterCounts) p_D <- D_bar - D_hat DIC <- p_D + D_bar DIC } precomputeClusterStatistics <- function(datasets, clusterCounts, Z, contextAssgn, fullDataDistributions) { N <- laply(1:clusterCounts$global, function(s) sum(Z == s)) globalStats <- llply(1:length(datasets), function(context) { initGlobalClusterStatistics(Z, clusterCounts$global, datasets[[context]], fullDataDistributions[[context]]) }) globalStats$N <- N contextStats <- llply(1:length(datasets), function(context) { initContextClusterStatistics(Z, contextAssgn[,context], clusterCounts$context[context], datasets[[context]], fullDataDistributions[[context]]) }) list(globalStats = globalStats, contextStats = contextStats) } createDataStats <- function(datasets, prior, fullDataDistributions) { dataStats <- precomputeDataStatistics(datasets, fullDataDistributions) dataMarginals <- precomputeDataMarginals(dataStats, prior, fullDataDistributions) list(Stats = dataStats, Marginals = dataMarginals) } precomputeDataStatistics <- function(datasets, fullDataDistributions) { nContexts <- length(datasets) N <- nrow(datasets[[1]]) llply(1:N, function(n) { llply(1:nContexts, function(context) { getDataStatistics(datasets[[context]][n,, drop=F], fullDataDistributions[[context]]) }) }) } precomputeDataMarginals <- function(dataStatistics, prior, fullDataDistributions) { N <- length(dataStatistics) nContexts <- length(fullDataDistributions) llply(1:N, function(n) { llply(1:nContexts, function(context) { getMarginal(dataStatistics[[n]][[context]], 1, prior[[context]], fullDataDistributions[[context]]) }) }) } createGibbsState <- function(datasets, clusterCounts, fullDataDistributions) { nContexts <- length(datasets) N <- nrow(datasets[[1]]) Z <- rep(1, N) contextK <- matrix(nrow=clusterCounts$global, ncol=nContexts) for (ic in 1:nContexts) { contextK[,ic] <- sample(1:clusterCounts$context[ic], clusterCounts$global, replace=T) } clusterStats <- precomputeClusterStatistics(datasets, clusterCounts, Z, contextK, fullDataDistributions) state <- list(Z = Z, contextK = contextK, distributions=fullDataDistributions, clusterStats = clusterStats) state } getLogliksForGlobalCluster <- function(n, N, state, dataStats, prior) { S <- nrow(state$contextK) nContexts <- length(state$distributions) N_s <- state$clusterStats$globalStats$N N_s[state$Z[n]] <- N_s[state$Z[n]] - 1 globalCurrentCluster <- state$Z[n] contextLogliks <- matrix(nrow=nContexts, ncol=S) for (context in 1:nContexts) { currentCluster <- state$contextK[globalCurrentCluster, context] clusterStats <- state$clusterStats$contextStats[[context]] cl <- predictiveLoglik(dataStats$Stats[[n]][[context]], dataStats$Marginals[[n]][[context]], 1, currentCluster, clusterStats, prior[[context]], state$distributions[[context]]) contextLogliks[context, ] <- cl[state$contextK[,context]] } logliks <- log(prior$gamma/S + N_s) - log(prior$gamma + N - 1) + colSums(contextLogliks) logliks } gibbsSampleZ <- function(state, dataStats, prior, clusterCounts) { N <- length(state$Z) nContexts <- length(state$distributions) for (n in (sample(1:N,N,replace = F))) { logliks <- getLogliksForGlobalCluster(n, N, state, dataStats, prior) probs <- normalizeProbs(logliks) newZ <- sample(length(probs), 1, prob=probs) oldZ <- state$Z[n] if (newZ != oldZ) { state$clusterStats$globalStats$N[newZ] <- state$clusterStats$globalStats$N[newZ] + 1 state$clusterStats$globalStats$N[oldZ] <- state$clusterStats$globalStats$N[oldZ] - 1 for (context in 1:nContexts) { state$clusterStats$globalStats[[context]] <- updateGlobalClusterStats(oldZ, newZ, state$clusterStats$globalStats[[context]], state$clusterStats$globalStats$N, dataStats$Stats[[n]][[context]], 1, state$distributions[[context]]) oldK <- state$contextK[oldZ, context] newK <- state$contextK[newZ, context] if(oldK != newK) { state$clusterStats$contextStats[[context]] <- updateContextClusterStats(oldK, newK, state$clusterStats$contextStats[[context]], dataStats$Stats[[n]][[context]], 1, state$distributions[[context]]) } } state$Z[n] <- newZ } } state } getLogliksForContextCluster <- function(s, S, context, K, state, prior) { xStats <- getGlobalClusterStats(s, state$clusterStats$globalStats[[context]], state$distributions[[context]]) clusterMarginal <- getMarginal(xStats, state$clusterStats$globalStats$N[s], prior[[context]], state$distribution[[context]]) m_l <- rep(0,K) for (l in 1:K) { kIdxs <- which(state$contextK[,context] == l) m_l[l] <- if (s %in% kIdxs) {length(kIdxs) - 1} else {length(kIdxs)} } clusterLoglik <- predictiveLoglik(xStats, clusterMarginal, state$clusterStats$globalStats$N[s], state$contextK[s,context], state$clusterStats$contextStats[[context]], prior[[context]], state$distributions[[context]]) log(prior[[context]]$alpha/K + m_l) - log(prior[[context]]$alpha + S - 1) + clusterLoglik } gibbsSampleContextK <- function(state, prior, clusterCounts) { nContexts <- length(clusterCounts$context) S <- clusterCounts$global for (context in 1:nContexts) { K <- clusterCounts$context[context] for (s in (sample(1:S, S, replace=F))) { logliks <- getLogliksForContextCluster(s, S, context, K, state, prior) probs <- normalizeProbs(logliks) oldK <- state$contextK[s,context] newK <- sample(length(probs), 1, prob=probs) if (oldK != newK) { globalClusterStats <- getGlobalClusterStats(s, state$clusterStats$globalStats[[context]], state$distributions[[context]]) xN <- state$clusterStats$globalStats$N[s] contextClusterStats <- state$clusterStats$contextStats[[context]] contextClusterStats$xN <- state$clusterStats$contextStats[[context]]$xN state$clusterStats$contextStats[[context]] <- updateContextClusterStats(oldK, newK, contextClusterStats, globalClusterStats, xN, state$distributions[[context]]) } state$contextK[s,context] <- newK } } state } predictiveLoglik <- function(x, xMarginals, xN, currentCluster, clusterStats, priorParams, distribution) { switch(distribution, diagNormal=predictiveLogLik_diagNormal(x, xMarginals, xN, currentCluster, clusterStats, priorParams)) } getMarginal <- function(dataStats, dataN, priorParams, distribution) { switch(distribution, diagNormal=marginal_diagNormal(dataStats, dataN, priorParams)) } getDataStatistics <- function(xs, distribution) { switch(distribution, diagNormal=getDataStatistics_diagNormal(xs)) } initContextClusterStatistics <- function(Z, contextK, K, contextData, distribution) { switch(distribution, diagNormal = initContextClusterStatistics_diagNormal(Z, contextK, K, contextData)) } initGlobalClusterStatistics <- function(Z, S, contextData, distribution) { switch(distribution, diagNormal = initGlobalClusterStatistics_diagNormal(Z, S, contextData)) } updateContextClusterStats <- function(oldK, newK, clusterStats, dataStats, xN, distribution) { switch(distribution, diagNormal=updateContextClusterStats_diagNormal(oldK, newK, clusterStats, dataStats, xN)) } updateGlobalClusterStats <- function(oldZ, newZ, clusterStats, clusterN, dataStats, xN, distribution) { switch(distribution, diagNormal=updateGlobalClusterStats_diagNormal(oldZ, newZ, clusterStats, clusterN, dataStats, xN)) } getGlobalClusterStats <- function(globalClusterIdxs, clusterStats, distribution) { switch(distribution, diagNormal=getGlobalClusterStats_diagNormal(globalClusterIdxs, clusterStats)) } getContextClusterMarginals <- function(clusterStats, prior, distribution) { switch(distribution, diagNormal = getContextClusterMarginals_diagNormal(clusterStats, prior)) } getParams_diagNormal <- function(sumX, sumX2, N, priorParams) { D <- length(priorParams$theta$m) S <- nrow(sumX) sXX <- sumX*sumX beta <- priorParams$theta$beta + N a <- priorParams$theta$a + N/2 invN <- 1/N invN[is.infinite(invN)] <- 0 if (all(priorParams$theta$m == 0)) { dataContributions <- 0.5 * sumX2 - sXX * (1/2*invN) + (priorParams$theta$beta * invN * sXX ) * 1/(2*(priorParams$theta$beta + N)) b <- sweep(dataContributions, 2, priorParams$theta$b, '+') } else { dataContributions <- 0.5 * sumX2 - rep.col(1/(2*N), D) * sXX + (priorParams$theta$beta * ( rep.col(1/N, D) * sXX - 2*rep.row(priorParams$theta$m,S) * sumX + rep.col(N, D) * rep.row(priorParams$theta$m^2, S)))/rep.col(2*(priorParams$theta$beta + N), D) b <- sweep(dataContributions, 2, priorParams$theta$b, '+') } list(a = a, b = b, beta = beta) } predictiveLogLik_diagNormal <- function(xStats, xMarginals, xN, currentCluster, clusterStats, priorParams) { clusterStats$xN[currentCluster] <- clusterStats$xN[currentCluster] - xN clusterStats$sumX[currentCluster,] <- clusterStats$sumX[currentCluster,] - xStats$sumX clusterStats$sumX2[currentCluster,] <- clusterStats$sumX2[currentCluster,] - xStats$sumX2 paramsOther <- getParams_diagNormal(clusterStats$sumX, clusterStats$sumX2, clusterStats$xN, priorParams) paramsAll <- getParams_diagNormal(sweep(clusterStats$sumX, 2, xStats$sumX, '+'), sweep(clusterStats$sumX2, 2, xStats$sumX2, '+'), clusterStats$xN + xN, priorParams) D <- length(priorParams$theta$m) logliks <- D * (lgamma(paramsAll$a) - lgamma(paramsOther$a)) + paramsOther$a * rowSums(log(paramsOther$b)) - paramsAll$a * rowSums(log(paramsAll$b)) + D/2 * (log(paramsOther$beta) - log(paramsAll$beta)) - (xN * D)/2 * log(2*pi) logliks[clusterStats$xN == 0] <- xMarginals logliks } marginal_diagNormal <- function(xStats, xN, priorParams) { params <- getParams_diagNormal(xStats$sumX %>% as.matrix, xStats$sumX2 %>% as.matrix, xN, priorParams) D <- length(priorParams$theta$m) loglik <- D* (lgamma(params$a) - lgamma(priorParams$theta$a)) + D/2 * (log(priorParams$theta$beta) - log(params$beta)) - (xN * D)/2 * log(2*pi) + sum( priorParams$theta$a * log(priorParams$theta$b) - params$a * log(params$b)) loglik[xN == 0] <- 0 loglik } getDataStatistics_diagNormal <- function(xs) { list(sumX = t(as.matrix(colSums(xs))), sumX2 = t(as.matrix(colSums(xs*xs)))) } initGlobalClusterStatistics_diagNormal <- function(Z, S, contextData) { sumX <- laply(1:S, function(s) contextData[Z == s,,drop=F] %>% colSums, .drop=F) sumX2 <- laply(1:S, function(s) { xs <- contextData[Z == s,,drop=F] (xs * xs) %>% colSums }, .drop=F) list(sumX = sumX, sumX2 = sumX2) } initContextClusterStatistics_diagNormal <- function(Z, contextK, K, contextData) { sumX <- laply(1:K, function(k) { globalIdxs <- which(contextK == k) contextData[Z %in% globalIdxs,,drop=F] %>% colSums }, .drop = F) sumX2 <- laply(1:K, function(k) { globalIdxs <- which(contextK == k) xs <- contextData[Z %in% globalIdxs,,drop=F] (xs * xs) %>% colSums }, .drop=F) xN <- laply(1:K, function(k) { globalIdxs <- which(contextK == k) sum(Z %in% globalIdxs) }) list(sumX = sumX, sumX2 = sumX2, xN = xN) } updateContextClusterStats_diagNormal <- function(oldK, newK, clusterStats, dataStats, xN) { clusterStats$xN[newK] <- clusterStats$xN[newK] + xN clusterStats$sumX[newK,] <- clusterStats$sumX[newK,] + dataStats$sumX clusterStats$sumX2[newK,] <- clusterStats$sumX2[newK,] + dataStats$sumX2 clusterStats$xN[oldK] <- clusterStats$xN[oldK] - xN if (clusterStats$xN[oldK] == 0) { clusterStats$sumX[oldK,] <- 0 clusterStats$sumX2[oldK,] <- 0 } else { clusterStats$sumX[oldK,] <- clusterStats$sumX[oldK,] - dataStats$sumX clusterStats$sumX2[oldK,] <- clusterStats$sumX2[oldK,] - dataStats$sumX2 } clusterStats } updateGlobalClusterStats_diagNormal <- function(oldZ, newZ, clusterStats, clusterN, dataStats, xN) { clusterStats$sumX[newZ,] <- clusterStats$sumX[newZ,] + dataStats$sumX clusterStats$sumX2[newZ,] <- clusterStats$sumX2[newZ,] + dataStats$sumX2 if (clusterN[oldZ] == 0) { clusterStats$sumX[oldZ,] <- 0 clusterStats$sumX2[oldZ,] <- 0 } else { clusterStats$sumX[oldZ,] <- clusterStats$sumX[oldZ,] - dataStats$sumX clusterStats$sumX2[oldZ,] <- clusterStats$sumX2[oldZ,] - dataStats$sumX2 } clusterStats } getGlobalClusterStats_diagNormal <- function(s, clusterStats) { sumX <- clusterStats$sumX[s,,drop=F] sumX2 <- clusterStats$sumX2[s,,drop=F] list(sumX = sumX, sumX2 = sumX2) } logZ <- function(state, S, N, prior) { n_s <- state$clusterStats$globalStats$N lgamma(prior$gamma) - (S * lgamma(prior$gamma/S)) + sum(lgamma(prior$gamma/S + n_s)) - lgamma(prior$gamma + N) } logK <- function(state, context, K, prior) { m_l <- rep(0,K) for (l in 1:K) { m_l[l] <- sum(state$contextK[,context]==l) } M <- state$contextK %>% nrow lgamma(prior[[context]]$alpha) - K * lgamma(prior[[context]]$alpha/K) + sum(lgamma(prior[[context]]$alpha/K + m_l)) - lgamma(prior[[context]]$alpha + M) } logJoint <- function(state, prior, clusterCounts) { S <- clusterCounts$global N <- state$Z %>% length nContexts <- length(clusterCounts$context) dataLoglik <- 0 loglikK <- 0 for (context in 1:nContexts) { dataLoglik <- dataLoglik + getContextClusterMarginals(state$clusterStats$contextStats[[context]], prior[[context]], state$distributions[[context]]) %>% sum loglikK <- loglikK + logK(state, context, clusterCounts$context[context], prior) } logZ(state, S, N, prior) + loglikK + dataLoglik } getContextClusterMarginals_diagNormal <- function(clusterStats, priorParams) { params <- getParams_diagNormal(clusterStats$sumX, clusterStats$sumX2, clusterStats$xN, priorParams) D <- length(priorParams$theta$m) loglik <- D * (lgamma(params$a) - lgamma(priorParams$theta$a)) + D/2 * (log(priorParams$theta$beta) - log(params$beta)) - (clusterStats$xN * D)/2 * log(2*pi) + rowSums( priorParams$theta$a * log(priorParams$theta$b) - params$a * log(params$b)) loglik[clusterStats$xN == 0] <- 0 loglik }
.sfcr_make_scenario_matrix <- function(baseline, scenario, periods) { sfcr_random <- function(.f, ...) { match.arg(.f, c("rnorm", "rbinom", "runif")) args <- list(...) args$n <- NULL n <- list(n=periods) args <- c(n, args) do.call(eval(parse(text=.f)), args) } steady <- utils::tail(attributes(baseline)$matrix, n = 1) m <- steady[rep(seq_len(nrow(steady)), periods), ] external <- attr(baseline, "external") exgs_names <- external$lhs exg_exprs <- purrr::map(external$rhs, function(x) parse(text=x)) for (var in seq_along(exgs_names)) { m[, exgs_names[[var]]] <- eval(exg_exprs[[var]]) } scenario_eqs <- purrr::map(scenario, function(x) .eq_as_tb(x[[1]])) scenario_names <- purrr::map(scenario_eqs, function(x) x$lhs) scenario_exprs <- purrr::map(scenario_eqs, function(x) purrr::map(x$rhs, function(y) parse(text = y))) scenario_start <- purrr::map(scenario, function(x) x[[2]]) scenario_end <- purrr::map(scenario, function(x) x[[3]]) sfcr_random <- function(.f, ...) { match.arg(.f, c("rnorm", "rbinom", "runif")) args <- list(...) args$n <- NULL n <- list(n=shock_length) args <- c(n, args) do.call(eval(parse(text=.f)), args) } for (scenario in seq_len(vctrs::vec_size(scenario_eqs))) { shock_length <- length(seq(scenario_start[[scenario]], scenario_end[[scenario]])) scenario_nms <- scenario_names[[scenario]] scenario_xprs <- scenario_exprs[[scenario]] for (var in seq_along(scenario_nms)) { m[scenario_start[[scenario]]:scenario_end[[scenario]], scenario_nms[[var]]] <- eval(scenario_xprs[[var]]) } } return(m) } .extend_baseline_matrix <- function(baseline, periods) { steady <- utils::tail(attributes(baseline)$matrix, n = 1) m <- steady[rep(seq_len(nrow(steady)), periods), ] sfcr_random <- function(.f, ...) { match.arg(.f, c("rnorm", "rbinom", "runif")) args <- list(...) args$n <- NULL n <- list(n=periods) args <- c(n, args) do.call(eval(parse(text=.f)), args) } external <- attr(baseline, "external") exgs_names <- external$lhs exg_exprs <- purrr::map(external$rhs, function(x) parse(text=x)) for (var in seq_along(exgs_names)) { m[, exgs_names[[var]]] <- eval(exg_exprs[[var]]) } return(m) } .abort_wrong_shock_var <- function(wrong_var) { if (length(wrong_var) == 1) { rlang::abort(message = paste0("Shocked variable `", wrong_var, "` is not included in the external variables of the model. Please check your shocks and try again.")) } else { rlang::abort(message = paste0("Shocked variables `", paste0(wrong_var, collapse = ", "), "` are not present in the external variables of the model. Please check your shocks and try again.")) } } .check_shock_consistency <- function(shock, periods=periods) { start = shock$start end = shock$end if (start < 0) { rlang::abort("Please supply a non-negative start period for the shock.") } if (end > periods) { rlang::abort("The end of the shock must be smaller or equal to the periods in the scenario.") } length_shock = length(seq(start, end)) vars <- .eq_as_tb(shock$variables) vars <- dplyr::filter(vars, stringr::str_detect(.data$rhs, "sfcr_random", negate=TRUE)) if (vctrs::vec_is_empty(vars)) { } else { parse_vars <- purrr::map(vars$rhs, ~eval(parse(text=.x))) vars_length <- purrr::map_dbl(parse_vars, length) if (mean(vars_length) > 1) { abortifnot(all(vars_length %in% c(1, length_shock)), "All exogenous variables supplied as a shock must have either length 1 or exactly the same length as the shock.") rlang::warn("Passing exogenous series with a shock can lead to unexpected behavior if the length of the series is smaller than the periods to the end of the scenario. Be cautious when using this functionality.", .frequency_id = "scenario_warn", .frequency="once") } } } sfcr_scenario <- function(baseline, scenario, periods, max_iter = 350, tol = 1e-10, method = "Broyden", ...) { match.arg(method, c("Gauss", "Newton", "Broyden")) if (inherits(scenario, "sfcr_shock")) { scenario <- list(scenario) } eqs <- attr(baseline, "calls") if (!is.null(scenario)) { check_all_shocks <- purrr::map_lgl(scenario, ~inherits(.x, "sfcr_shock")) if (mean(check_all_shocks) < 1) rlang::abort("Please use `sfcr_shock()` to create shocks.") ends_names <- eqs$lhs all_names <- colnames(baseline) exgs_names <- all_names[which(!(all_names %in% ends_names))] all_shock_vars <- unlist(purrr::map(scenario, ~.eq_as_tb(.x$variables)$lhs)) check_valid_vars <- purrr::map_lgl(all_shock_vars, ~{.x %in% exgs_names}) if (mean(check_valid_vars) < 1) { wrong_var <- all_shock_vars[!check_valid_vars] .abort_wrong_shock_var(wrong_var) } } if (!is.null(scenario)) { purrr::map(scenario, ~.check_shock_consistency(.x, periods)) } if (is.null(scenario)) { m <- .extend_baseline_matrix(baseline, periods) } else { m <- .sfcr_make_scenario_matrix(baseline, scenario, periods) } if (method == "Gauss") { s1 <- .sfcr_gauss_seidel(m, eqs, periods, max_iter, tol) } else if (method == "Newton") { s1 <- .sfcr_newton(m, eqs, periods, max_iter, tol, ...) } else { s1 <- .sfcr_broyden(m, eqs, periods, max_iter, tol) } s2 <- tibble::tibble(data.frame(s1)) %>% dplyr::mutate(period = dplyr::row_number()) %>% dplyr::select(-tidyselect::contains('block')) %>% dplyr::select(.data$period, tidyselect::everything()) ext <- attr(baseline, "external") x <- new_sfcr_tbl(s2, s1, eqs, ext) return(x) }
dashboard = function(maf, color = NULL, rmOutlier = TRUE, log_conv = FALSE, titv.color = NULL, sfs = statFontSize, fontSize = fs, n = 10, donut = pie, rawcount = TRUE, stat = NULL, titleSize = NULL, barcodes = NULL, barcodeSize = NULL){ if(is.null(color)){ col = get_vcColors() }else{ col = color } vcs = getSampleSummary(maf) vcs = vcs[,colnames(vcs)[!colnames(x = vcs) %in% c('total', 'Amp', 'Del', 'CNV_total')], with = FALSE] vcs = vcs[,c(1,order(colSums(x = vcs[,2:(ncol(vcs)), with =FALSE]), decreasing = TRUE)+1), with =FALSE] vcs.m = data.table::melt(data = vcs, id = 'Tumor_Sample_Barcode') colnames(vcs.m) = c('Tumor_Sample_Barcode', 'Variant_Classification', 'N') data.table::setDF(vcs) rownames(x = vcs) = vcs$Tumor_Sample_Barcode vcs = vcs[,-1, drop = FALSE] vcs = t(vcs) lo = matrix(data = 1:6, nrow = 2, byrow = TRUE) graphics::layout(mat = lo, heights = c(3.5, 3), widths = c(3, 2, 2)) par(cex.axis = fontSize, font = 3, cex.main = titleSize[1], lwd = 1.2) vc.plot.dat = rev(rowSums(vcs)) if(log_conv){ vc.plot.dat = log10(vc.plot.dat) } xt = pretty(c(0, vc.plot.dat)) par(mar = c(3, 9, 3, 1)) b = barplot(vc.plot.dat, axes = FALSE, horiz = TRUE, col = col[names(vc.plot.dat)], border = NA, xlim = c(0, max(xt)), names.arg = rep("", length(vc.plot.dat))) abline(v = xt, h = 1:length(b)-0.25, lty = 2, lwd = 0.3, col = grDevices::adjustcolor(col = "gray70", alpha.f = 0.6)) axis(side = 2, at = b, labels = names(vc.plot.dat), lwd = 1.2, cex.axis = fontSize, las = 2, line = 0.2, hadj = 0.9, font = 3, tick = FALSE) axis(side = 1, at = xt, lwd = 1.2, font = 3, las = 2, cex.axis = fontSize*0.9) title(main = "Variant Classification", adj = 0, cex.main = titleSize[1], font = 3) if(log_conv){ axis(side = 2, at = 0, labels = "(log10)", lwd = 1.2, font = 3, las = 1, cex.axis = fontSize*0.9, hadj = 0.5, padj = 2, line = 0.75, tick = FALSE, outer = FALSE) } vt.plot.dat = [email protected] vt.plot.dat = vt.plot.dat[,colnames(vt.plot.dat)[!colnames(x = vt.plot.dat) %in% c('total', 'CNV')], with = FALSE] vt.plot.dat = suppressWarnings(data.table::melt(vt.plot.dat[,c(2:(ncol(vt.plot.dat))), with = FALSE], id = NULL)[,sum(value), variable]) colnames(vt.plot.dat)[2] = "sum" vt.cols = RColorBrewer::brewer.pal(n = 10, name = "Set3") if(log_conv){ vt.plot.dat$sum = log10(vt.plot.dat$sum) } xt = pretty(c(0, vt.plot.dat$sum)) par(mar = c(3, 3, 3, 1)) b = barplot(vt.plot.dat$sum, axes = FALSE, horiz = TRUE, col = vt.cols[1:length(vt.plot.dat$variable)], border = NA, xlim = c(0, max(xt))) abline(v = xt, h = 1:length(b)-0.25, lty = 2, lwd = 0.3, col = grDevices::adjustcolor(col = "gray70", alpha.f = 0.6)) axis(side = 2, at = b, labels = vt.plot.dat$variable, lwd = 1.2, cex.axis = fontSize, las = 2, line = 0.2, hadj = 0.8, font = 3, tick = FALSE) axis(side = 1, at = xt, lwd = 1.2, font = 3, las = 2, cex.axis = fontSize*0.9) title(main = "Variant Type", adj = 0, cex.main = titleSize[1], font = 3) if(log_conv){ axis(side = 2, at = 0, labels = "(log10)", lwd = 1.2, font = 3, las = 1, cex.axis = fontSize*0.9, hadj = 0.5, padj = 2, line = 0.75, tick = FALSE, outer = FALSE) } titv = titv(maf = maf, useSyn = TRUE, plot = FALSE) titv.counts = titv$raw.counts titv.sums = data.frame(value = colSums(titv.counts[,2:7]), stringsAsFactors = FALSE) titv.sums$class = rownames(titv.sums) if(!rawcount){ titv.sums$raw_value = titv.sums$value titv.sums$value = titv.sums$value/sum(titv.sums$value) xt = seq(0, 1, 0.25) }else{ xt = as.integer(seq(0, max(titv.sums$value, na.rm = TRUE), length.out = 4)) } if(is.null(titv.color)){ titv.color = get_titvCol() } par(mar = c(3, 3, 3, 1)) b = barplot(titv.sums$value, axes = FALSE, horiz = TRUE, col = titv.color[rownames(titv.sums)], border = NA, xlim = c(0, xt[length(xt)])) axis(side = 2, at = b, labels = rownames(titv.sums), lwd = 1.2, cex.axis = fontSize, las = 2, line = 0.2, hadj = 0.8, font = 3, tick = FALSE) axis(side = 1, at = xt, lwd = 1.2, font = 3, las = 2, cex.axis = fontSize*0.9) title(main = "SNV Class", adj = 0, cex.main = titleSize[1], font = 3) if(!rawcount){ text(x = titv.sums$value+0.03, y = b, labels = titv.sums$raw_value, font = 4, col = "black", cex = fontSize, adj = 0) } abline(v = xt, h = 1:length(b)-0.25, lty = 2, lwd = 0.3, col = grDevices::adjustcolor(col = "gray70", alpha.f = 0.6)) if(barcodes){ par(mar = c(6, 2, 3, 1)) } else{ par(mar = c(3, 2, 3, 1)) } if(log_conv){ vcs = apply(vcs, 2, function(x){ x_fract = x / sum(x) x_log_total = log10(sum(x)) x_fract * x_log_total }) vcs[is.nan(x = vcs)] = 0 vcs = vcs[,-which(colSums(x = vcs) == 0)] } b = barplot(vcs, col = col[rownames(vcs)], border = NA, axes = FALSE, names.arg = rep("", ncol(vcs))) axis(side = 2, at = as.integer(seq(0, max(colSums(vcs)), length.out = 4)), lwd = 1.2, font = 3, las = 2, line = -0.3, hadj = 0.6, cex.axis = fontSize) title(main = "Variants per sample", adj = 0, cex.main = titleSize[1], font = 3, line = 2) if(barcodes){ mtext(text = colnames(vcs), side = 1, line = 0.2, outer = FALSE, las = 2, at = b, cex = barcodeSize) } if(!is.null(stat)){ if(stat == 'mean'){ med.line = round(maf@summary[ID %in% "total", Mean], 2) if(log_conv){ med.line = round(log10(med.line), 2) } df = data.frame(y = c(med.line), x = as.integer(0.8*nrow(getSampleSummary(maf))), label = c(paste('Mean: ', med.line, sep=''))) title(main = paste0("Mean: ", med.line), adj = 0, cex.main = titleSize[1]*0.8, font = 3, line = 1) lines(x = c(1, b[length(b)]), y = c(med.line, med.line), col = "maroon", lwd = 1.2, lty = 2) }else if(stat == 'median'){ med.line = round(maf@summary[ID %in% "total", Median], 2) if(log_conv){ med.line = log10(med.line) title(main = paste0("Median: ", round(10^med.line)), adj = 0, cex.main = titleSize[1]*0.8, font = 3, line = 1) }else{ title(main = paste0("Median: ", med.line), adj = 0, cex.main = titleSize[1]*0.8, font = 3, line = 1) } df = data.frame(y = c(med.line), x = as.integer(0.8*nrow(getSampleSummary(maf))), label = c(paste('Median: ', med.line, sep=''))) lines(x = c(1, b[length(b)]), y = c(med.line, med.line), col = "maroon", lwd = 1.2, lty = 2) } } if(log_conv){ mtext(text = "(log10)", side = 2, lwd = 1.2, font = 3, cex = fontSize*0.7, line = 1) } par(mar = c(3, 2, 3, 1)) boxH = vcs.m[,boxplot.stats(N)$stat[5], by = .(Variant_Classification)] colnames(boxH)[ncol(boxH)] = 'boxStat' bcol = col[levels(vcs.m$Variant_Classification)] b = boxplot(N ~ Variant_Classification, data = vcs.m, xaxt="n", outline=FALSE, lty=1, lwd = 1.4, outwex=0, staplewex=0, axes = FALSE, border = bcol) axis(side = 2, at = as.integer(seq(0, max(boxH[,boxStat], na.rm = TRUE), length.out = 4)), lwd = 1.2, font = 3, cex.axis = fontSize, las = 2) title(main = "Variant Classification \nsummary", adj = 0, cex.main = titleSize[1], font = 3, line = 1) abline(v = 1:length(bcol), h = as.integer(seq(0, max(boxH[,boxStat], na.rm = TRUE), length.out = 4)), lty = 2, lwd = 0.3, col = grDevices::adjustcolor(col = "gray70", alpha.f = 0.6)) gs = getGeneSummary(maf) nsamps = as.numeric(maf@summary[ID %in% "Samples", summary]) gs.load = gs[,.(Hugo_Symbol, AlteredSamples)] gs.load[,AlteredSamples := round(AlteredSamples/nsamps, digits = 2) * 100] data.table::setDF(x = gs.load, rownames = gs.load$Hugo_Symbol) gs = gs[,colnames(gs)[!colnames(x = gs) %in% c('total', 'Amp', 'Del', 'CNV_total', 'MutatedSamples', 'AlteredSamples')], with = FALSE] if(nrow(gs) < n){ gs.dat = gs }else{ gs.dat = gs[1:n] } data.table::setDF(gs.dat) rownames(gs.dat) = gs.dat$Hugo_Symbol gs.dat = gs.dat[,-1, drop = FALSE] gs.dat = t(gs.dat) gs.dat = gs.dat[names(sort(rowSums(gs.dat), decreasing = TRUE)),, drop = FALSE] gs.dat = gs.dat[,names(sort(colSums(gs.dat))), drop = FALSE] xt = as.integer(seq(0, max(colSums(gs.dat))+2, length.out = 4)) par(mar = c(3, 4, 3, 1)) gs.load = gs.load[rev(colnames(gs.dat)),,] b = barplot(gs.dat, axes = FALSE, horiz = TRUE, col = col[rownames(gs.dat)], border = NA, xlim = c(0, max(xt)+(max(xt)*0.15)), names.arg = rep("", ncol(gs.dat))) axis(side = 2, at = b, labels = colnames(gs.dat), lwd = 1.2, cex.axis = fontSize, las = 2, line = 0.2, hadj = 0.8, font = 3, tick = FALSE) axis(side = 1, at = xt, lwd = 1.2, font = 3, las = 2, cex.axis = fontSize*0.9) title(main = paste0('Top ', n, '\nmutated genes'), adj = 0, cex.main = titleSize[1], font = 3) text(x = colSums(gs.dat)+1, y = b, labels = rev(paste0(gs.load$AlteredSamples, "%")), font = 4, col = "black", cex = fontSize*0.9, adj = 0, xpd = TRUE) abline(h = b, v = xt,lty = 2, lwd = 0.3, col = grDevices::adjustcolor(col = "gray70", alpha.f = 0.6)) }
convert_umlauts_to_tex <- function(x) { s <- iconv(enc2native(x), to = "UTF-8", sub = "unicode") s <- gsub("\u00e4", "\\\\\u0022a{}", s) s <- gsub("\u00c4", "\\\\\u0022A{}", s) s <- gsub("\u00f6", "\\\\\u0022o{}", s) s <- gsub("\u00d6", "\\\\\u0022O{}", s) s <- gsub("\u00fc", "\\\\\u0022u{}", s) s <- gsub("\u00dc", "\\\\\u0022U{}", s) s <- gsub("\u00df", "\\\\ss{}", s) return(s) }
library(shiny) library(DT) library(ggplot2) library(fontawesome) unminified_css_dep <- htmltools::htmlDependency( name = "font-awesome", version = fontawesome:::fa_version, src = "fontawesome", package = "fontawesome", stylesheet = c("css/all.css", "css/v4-shims.css") ) ui <- fluidPage( titlePanel("Basic DataTable"), fluidRow( column( width = 4, selectInput( inputId = "man", label = tags$p(fa_i("car", html_dependency = unminified_css_dep), "Manufacturer:"), choices = c( "All", unique(as.character(mpg$manufacturer)))) ), column( width = 4, selectInput( inputId = "trans", label = tags$p(fa_i("car", html_dependency = unminified_css_dep), "Transmission:"), choices = c( "All", unique(as.character(mpg$trans)))) ), column( width = 4, selectInput( inputId = "cyl", label = tags$p(fa_i("car", html_dependency = unminified_css_dep), "Cylinders:"), choices = c( "All", unique(as.character(mpg$cyl)))) ) ), fluidRow( dataTableOutput("table") ) ) server <- function(input, output) { output$table <- renderDataTable({ data <- mpg if (input$man != "All") { data <- data[data$manufacturer == input$man,] } if (input$cyl != "All") { data <- data[data$cyl == input$cyl,] } if (input$trans != "All") { data <- data[data$trans == input$trans,] } data }) } shinyApp(ui = ui, server = server)
md.vcov <- function(r, nt, nc, n_rt = NA, n_rc = NA, sdt, sdc) { K <- length(r) if (length(as.vector(nt)) == length(as.matrix(nt)[, 1])) { colum.number <- 1} else { colum.number <- ncol(nt)} col.vac.number <- (colum.number + 1)*colum.number/2 if (is.na(n_rt)&(length(n_rt) == 1)){ n_rt <- rep(list(matrix(NA, colum.number, colum.number)), K) } for (k in 1:K) { for (i in 1:colum.number){ for (j in 1:colum.number){ if (is.na(n_rt[[k]][i, j])) n_rt[[k]][i, j] <- min(nt[k, i], nt[k, j]) } } } if (is.na(n_rc)&(length(n_rc) == 1)){ n_rc <- rep(list(matrix(NA, colum.number, colum.number)), K) } for (k in 1:K) { for (i in 1:colum.number){ for (j in 1:colum.number){ if (is.na(n_rc[[k]][i, j])) n_rc[[k]][i, j] <- min(nc[k, i], nc[k, j]) } } } list.corr.st.varcovar <- list() for (k in 1:K){ list.corr.st.varcovar[[k]] <- matrix(NA, colum.number, colum.number) for (i in 1:colum.number){ for (j in 1:colum.number) {list.corr.st.varcovar[[k]][i, j] <- unlist(r[[k]][i, j]*n_rc[[k]][i, j]*sdc[k, i]*sdc[k, j]/(nc[k, i]*nc[k, j]) + r[[k]][i, j]*n_rt[[k]][i, j]*sdt[k, i]*sdt[k, j]/(nt[k, i]*nt[k, j])) } } } corr.st.varcovar <- matrix(unlist(lapply(1:K, function(k){ smTovec(list.corr.st.varcovar[[k]])})), K, col.vac.number, byrow = TRUE) list(list.vcov = list.corr.st.varcovar, matrix.vcov = corr.st.varcovar) }
cnltspec.plot <-function(spec, timevec, scalevec, zrange = NULL, xtitle = "Time", ytitle= "Scale", col.scale = tim.colors(64)[1:45], SFratio = 2, dt = 1, parsw = 3, axis4 = FALSE, frequencies = NULL){ scaleP <- unique(round(scalevec)) freqP <- (SFratio*2^scaleP)/dt switch(parsw, { par( mar=c( 3.5,4,2,6.5)) }, { par( mar=c( 3.5,4,2,6.5)) }, { par( mar=c( 5,4,4,7.5)) }) spec[which(is.na(spec))]<-0 if(is.null(zrange)){ zrange<-range(spec, na.rm = TRUE) } image(sort(timevec),scalevec,t(spec)[order(timevec),], xlab=xtitle,ylab=ytitle, add=FALSE,col=col.scale,zlim=zrange, cex.lab=1, axes=FALSE) axis(1) axis(2) box() if(axis4){ if(is.null(frequencies)){ axis(4, at= scaleP, tick=TRUE, labels= freqP); } else{ axis(4, at= logb((frequencies*dt)/2,2), tick=TRUE, labels= frequencies) } } image.plot(sort(timevec),scalevec,t(spec)[order(timevec),],legend.only=TRUE, zlim=zrange, graphics.reset=FALSE,col=col.scale) }
tsmcplm <- function(Y, X, method = c("lasso", "adapt", "mcp", "scad"), c) { n <- length(Y) m <- ceiling(c * sqrt(n)) q <- floor(n/m) K_temp <- matrix(0, nrow = q, ncol = q, byrow = TRUE) p <- dim(X)[2] if (length(p) == 0) { p <- 0 } X_temp <- cbind(rep(1, n), X) Y_temp <- c(Y) for (i in 1:q) K_temp[i, 1:i] <- rep(1, i) x <- NULL y <- NULL x[[1]] <- as.matrix(X_temp[1:((n - (q - 1) * m)), ]) y[[1]] <- Y_temp[1:((n - (q - 1) * m))] for (i in 2:q) { x[[i]] <- as.matrix(X_temp[(n - (q - i + 1) * m + 1):((n - (q - i) * m)), ]) y[[i]] <- Y_temp[(n - (q - i + 1) * m + 1):((n - (q - i) * m))] } X_temp1 <- lapply(1:length(x), function(j, mat, list) kronecker(K_temp[j, , drop = FALSE], x[[j]]), mat = K_temp, list = x) Xn <- do.call("rbind", X_temp1) w1 <- stats::lm(Y_temp ~ Xn - 1)$coefficients w <- w1 for (i in 1:q) { w[c(((i - 1) * (p + 1) + 1):(i * (p + 1)))] <- sum(w1[c(((i - 1) * (p + 1) + 1):(i * (p + 1)))]^2) } if (method == "adapt") { X_temp <- scale(Xn, center = FALSE, scale = 1/w) object <- lars(X_temp, Y_temp, type = "lasso", intercept = FALSE, normalize = FALSE) bic <- log(n) * object$df + n * log(as.vector(object$RSS)/n) step.bic2 <- which.min(bic) coeff <- coef.lars(object, s = step.bic2, mode = "step") adcp.coef.s <- sum(abs(coeff)) adcp.coef.v.m <- abs(matrix(c(coeff), q, (p + 1), byrow = T)) adcp.coef.m <- c(apply(adcp.coef.v.m, 1, max)) adcp.cp <- which(adcp.coef.m != 0) if (length(adcp.cp) > 1) { for (i in 2:length(adcp.cp)) { if (adcp.cp[i] - adcp.cp[i - 1] == 1) adcp.cp[i] <- 0 } } adcp.cp1 <- adcp.cp[adcp.cp > 1 & adcp.cp < q] d1 <- length(adcp.cp1) if (d1 == 0) { adcpcss.cp <- 0 } if (d1 >= 1) { adcpcss.cp <- NULL adcp.cp1 <- c(0, adcp.cp1, q + 1) for (i in 1:d1) { y1 <- NULL x1 <- NULL for (k in (adcp.cp1[i + 1] - 1):(adcp.cp1[i + 1] + 1)) { y1 <- c(y1, y[[k]]) x1 <- rbind(x1, as.matrix(x[[k]])) } cp <- css(y1, x1) if (cp == 0) next if (cp != 0) { if (adcp.cp1[i + 1] == 0) adcpcss.cp <- c(adcpcss.cp, cp) if (adcp.cp1[i + 1] > 0) adcpcss.cp <- c(adcpcss.cp, cp + n - (q - adcp.cp1[i + 1] + 2) * m) } } if (length(adcpcss.cp) == 0) adcpcss.cp <- 0 else adcpcss.cp <- adcpcss.cp } tt <- which(abs(diff(adcpcss.cp)) < 10) if (length(tt) > 0) adcpcss.cp <- adcpcss.cp[-tt] if (length(adcpcss.cp) >= 1 & min(adcpcss.cp) > 0) { cp1 <- c(0, adcpcss.cp, n) q <- length(cp1) - 1 K_temp <- matrix(0, nrow = q, ncol = q, byrow = TRUE) for (i in 1:q) K_temp[i, 1:i] <- rep(1, i) X_temp <- cbind(rep(1, n), X) Y_temp <- c(Y) x <- NULL y <- NULL for (t in 2:length(cp1)) { x[[t - 1]] <- as.matrix(X_temp[(cp1[t - 1] + 1):cp1[t], ]) y[[t - 1]] <- Y_temp[(cp1[t - 1] + 1):cp1[t]] } cp0 <- NULL for (t in 2:(length(cp1) - 1)) { x1 <- rbind(x[[t - 1]], x[[t]]) y1 <- c(y[[t - 1]], y[[t]]) tt <- css(y1, x1) if (tt != 0) cp0 <- c(cp0, tt + cp1[t - 1]) } adcpcss.cp <- cp0 tt <- which(abs(diff(adcpcss.cp)) < 10) if (length(tt) > 0) adcpcss.cp <- adcpcss.cp[-tt] } } if (method == "lasso") { X_temp <- Xn object <- lars(X_temp, Y_temp, type = "lasso", intercept = FALSE, normalize = FALSE) bic <- log(n) * object$df + n * log(as.vector(object$RSS)/n) step.bic2 <- which.min(bic) coeff <- coef.lars(object, s = step.bic2, mode = "step") adcp.coef.s <- sum(abs(coeff)) adcp.coef.v.m <- abs(matrix(c(coeff), q, (p + 1), byrow = T)) adcp.coef.m <- c(apply(adcp.coef.v.m, 1, max)) adcp.cp <- which(adcp.coef.m != 0) if (length(adcp.cp) > 1) { for (i in 2:length(adcp.cp)) { if (adcp.cp[i] - adcp.cp[i - 1] == 1) adcp.cp[i] <- 0 } } adcp.cp1 <- adcp.cp[adcp.cp > 1 & adcp.cp < q] d1 <- length(adcp.cp1) if (d1 == 0) { adcpcss.cp <- 0 } if (d1 >= 1) { adcpcss.cp <- NULL adcp.cp1 <- c(0, adcp.cp1, q + 1) for (i in 1:d1) { y1 <- NULL x1 <- NULL for (k in (adcp.cp1[i + 1] - 1):(adcp.cp1[i + 1] + 1)) { y1 <- c(y1, y[[k]]) x1 <- rbind(x1, as.matrix(x[[k]])) } cp <- css(y1, x1) if (cp == 0) next if (cp != 0) { if (adcp.cp1[i + 1] == 0) adcpcss.cp <- c(adcpcss.cp, cp) if (adcp.cp1[i + 1] > 0) adcpcss.cp <- c(adcpcss.cp, cp + n - (q - adcp.cp1[i + 1] + 2) * m) } } if (length(adcpcss.cp) == 0) adcpcss.cp <- 0 else adcpcss.cp <- adcpcss.cp } tt <- which(abs(diff(adcpcss.cp)) < 10) if (length(tt) > 0) adcpcss.cp <- adcpcss.cp[-tt] if (length(adcpcss.cp) >= 1 & min(adcpcss.cp) > 0) { cp1 <- c(0, adcpcss.cp, n) q <- length(cp1) - 1 K_temp <- matrix(0, nrow = q, ncol = q, byrow = TRUE) for (i in 1:q) K_temp[i, 1:i] <- rep(1, i) X_temp <- cbind(rep(1, n), X) Y_temp <- c(Y) x <- NULL y <- NULL for (t in 2:length(cp1)) { x[[t - 1]] <- as.matrix(X_temp[(cp1[t - 1] + 1):cp1[t], ]) y[[t - 1]] <- Y_temp[(cp1[t - 1] + 1):cp1[t]] } cp0 <- NULL for (t in 2:(length(cp1) - 1)) { x1 <- rbind(x[[t - 1]], x[[t]]) y1 <- c(y[[t - 1]], y[[t]]) tt <- css(y1, x1) if (tt != 0) cp0 <- c(cp0, tt + cp1[t - 1]) } adcpcss.cp <- cp0 tt <- which(abs(diff(adcpcss.cp)) < 10) if (length(tt) > 0) adcpcss.cp <- adcpcss.cp[-tt] } } if (method == "mcp") { object <- plus(Xn, Y_temp, method = "mc+", gamma = 2.4, intercept = F, normalize = F, eps = 1e-30) bic <- log(dim(Xn)[1]) * object$dim + dim(Xn)[1] * log(as.vector((1 - object$r.square) * sum(Y_temp^2))/length(Y_temp)) step.bic <- which.min(bic) mcp.coef <- coef.plus(object, lam = object$lam[step.bic]) mcp.coef.s <- sum(abs(mcp.coef)) mcp.coef.v.m <- abs(matrix(c(mcp.coef), q, (p + 1), byrow = T)) mcp.coef.m <- c(apply(mcp.coef.v.m, 1, max)) mcp.cp <- which(mcp.coef.m != 0) if (length(mcp.cp) > 1) { for (i in 2:length(mcp.cp)) { if (mcp.cp[i] - mcp.cp[i - 1] == 1) mcp.cp[i] <- 0 } } mcp.cp1 <- mcp.cp[mcp.cp > 1 & mcp.cp < q] d1 <- length(mcp.cp1) if (d1 == 0) { mcpcss.cp <- 0 adcpcss.cp <- mcpcss.cp } if (d1 >= 1) { mcpcss.cp <- NULL mcp.cp1 <- c(0, mcp.cp1, q + 1) for (i in 1:d1) { y1 <- NULL x1 <- NULL for (k in (mcp.cp1[i + 1] - 1):(mcp.cp1[i + 1] + 1)) { y1 <- c(y1, y[[k]]) x1 <- rbind(x1, as.matrix(x[[k]])) } cp <- css(y1, x1) if (cp == 0) next if (cp != 0) { if (mcp.cp1[i + 1] == 0) mcpcss.cp <- c(mcpcss.cp, cp) if (mcp.cp1[i + 1] > 0) mcpcss.cp <- c(mcpcss.cp, cp + n - (q - mcp.cp1[i + 1] + 2) * m) } } if (length(mcpcss.cp) == 0) adcpcss.cp <- 0 else adcpcss.cp <- mcpcss.cp } tt <- which(abs(diff(adcpcss.cp)) < 10) if (length(tt) > 0) adcpcss.cp <- adcpcss.cp[-tt] if (length(adcpcss.cp) >= 1 & min(adcpcss.cp) > 0) { n <- length(Y) cp1 <- c(0, adcpcss.cp, n) q <- length(cp1) - 1 K_temp <- matrix(0, nrow = q, ncol = q, byrow = TRUE) for (i in 1:q) K_temp[i, 1:i] <- rep(1, i) X_temp <- cbind(rep(1, n), X) Y_temp <- c(Y) x <- NULL y <- NULL for (t in 2:length(cp1)) { x[[t - 1]] <- as.matrix(X_temp[(cp1[t - 1] + 1):cp1[t], ]) y[[t - 1]] <- Y_temp[(cp1[t - 1] + 1):cp1[t]] } cp0 <- NULL for (t in 2:(length(cp1) - 1)) { x1 <- rbind(x[[t - 1]], x[[t]]) y1 <- c(y[[t - 1]], y[[t]]) tt <- css(y1, x1) if (tt != 0) cp0 <- c(cp0, tt + cp1[t - 1]) } adcpcss.cp <- cp0 tt <- which(abs(diff(adcpcss.cp)) < 10) if (length(tt) > 0) adcpcss.cp <- adcpcss.cp[-tt] } } if (method == "scad") { object <- plus(Xn, Y_temp, method = "scad", gamma = 2.4, intercept = F, normalize = F, eps = 1e-30) bic <- log(dim(Xn)[1]) * object$dim + dim(Xn)[1] * log(as.vector((1 - object$r.square) * sum(Y_temp^2))/length(Y_temp)) step.bic <- which.min(bic) mcp.coef <- coef.plus(object, lam = object$lam[step.bic]) mcp.coef.s <- sum(abs(mcp.coef)) mcp.coef.v.m <- abs(matrix(c(mcp.coef), q, (p + 1), byrow = T)) mcp.coef.m <- c(apply(mcp.coef.v.m, 1, max)) mcp.cp <- which(mcp.coef.m != 0) if (length(mcp.cp) > 1) { for (i in 2:length(mcp.cp)) { if (mcp.cp[i] - mcp.cp[i - 1] == 1) mcp.cp[i] <- 0 } } mcp.cp1 <- mcp.cp[mcp.cp > 1 & mcp.cp < q] d1 <- length(mcp.cp1) if (d1 == 0) { mcpcss.cp <- 0 adcpcss.cp <- mcpcss.cp } if (d1 >= 1) { mcpcss.cp <- NULL mcp.cp1 <- c(0, mcp.cp1, q + 1) for (i in 1:d1) { y1 <- NULL x1 <- NULL for (k in (mcp.cp1[i + 1] - 1):(mcp.cp1[i + 1] + 1)) { y1 <- c(y1, y[[k]]) x1 <- rbind(x1, as.matrix(x[[k]])) } cp <- css(y1, x1) if (cp == 0) next if (cp != 0) { if (mcp.cp1[i + 1] == 0) mcpcss.cp <- c(mcpcss.cp, cp) if (mcp.cp1[i + 1] > 0) mcpcss.cp <- c(mcpcss.cp, cp + n - (q - mcp.cp1[i + 1] + 2) * m) } } if (length(mcpcss.cp) == 0) adcpcss.cp <- 0 else adcpcss.cp <- mcpcss.cp } tt <- which(abs(diff(adcpcss.cp)) < 10) if (length(tt) > 0) adcpcss.cp <- adcpcss.cp[-tt] if (length(adcpcss.cp) >= 1 & min(adcpcss.cp) > 0) { n <- length(Y) cp1 <- c(0, adcpcss.cp, n) q <- length(cp1) - 1 K_temp <- matrix(0, nrow = q, ncol = q, byrow = TRUE) for (i in 1:q) K_temp[i, 1:i] <- rep(1, i) X_temp <- cbind(rep(1, n), X) Y_temp <- c(Y) x <- NULL y <- NULL for (t in 2:length(cp1)) { x[[t - 1]] <- as.matrix(X_temp[(cp1[t - 1] + 1):cp1[t], ]) y[[t - 1]] <- Y_temp[(cp1[t - 1] + 1):cp1[t]] } cp0 <- NULL for (t in 2:(length(cp1) - 1)) { x1 <- rbind(x[[t - 1]], x[[t]]) y1 <- c(y[[t - 1]], y[[t]]) tt <- css(y1, x1) if (tt != 0) cp0 <- c(cp0, tt + cp1[t - 1]) } adcpcss.cp <- cp0 tt <- which(abs(diff(adcpcss.cp)) < 10) if (length(tt) > 0) adcpcss.cp <- adcpcss.cp[-tt] } } if (length(adcpcss.cp) == 0) return(0) else return(change.points = adcpcss.cp) }
newpolr <- function(formula, data, weights, start, ..., subset, na.action, contrasts = NULL, Hess = FALSE, model = TRUE, method = c("logit", "probit", "cloglog","loglog", "cauchit")) { m <- match.call(expand.dots = FALSE) method <- match.arg(method) if(is.matrix(eval.parent(m$data))) m$data <- as.data.frame(data) m$start <- m$Hess <- m$method <- m$model <- m$... <- NULL m[[1L]] <- as.name("model.frame") m <- eval.parent(m) Terms <- attr(m, "terms") x <- model.matrix(Terms, m, contrasts) xint <- match("(Intercept)", colnames(x), nomatch = 0L) n <- nrow(x) pc <- ncol(x) cons <- attr(x, "contrasts") if(xint > 0L) { x <- x[, -xint, drop = FALSE] pc <- pc - 1L } else warning("an intercept is needed and assumed") wt <- model.weights(m) if(!length(wt)) wt <- rep(1, n) offset <- model.offset(m) if(length(offset) <= 1L) offset <- rep(0, n) y <- model.response(m) if(!is.factor(y)) stop("response must be a factor") lev <- levels(y); llev <- length(lev) if(llev <= 2L) stop("response must have 3 or more levels") y <- unclass(y) q <- llev - 1L Y <- matrix(0, n, q) if(missing(start)) { q1 <- llev %/% 2L y1 <- (y > q1) X <- cbind(Intercept = rep(1, n), x) fit <- switch(method, "logit"= glm.fit(X, y1, wt, family = binomial(), offset = offset), "probit" = glm.fit(X, y1, wt, family = binomial("probit"), offset = offset), "cloglog" = glm.fit(X, y1, wt, family = binomial("probit"), offset = offset), "loglog" = glm.fit(X, y1, wt, family = binomial("probit"), offset = offset), "cauchit" = glm.fit(X, y1, wt, family = binomial("cauchit"), offset = offset)) if(!fit$converged) stop("attempt to find suitable starting values failed") coefs <- fit$coefficients if(any(is.na(coefs))) { warning("design appears to be rank-deficient, so dropping some coefs") keep <- names(coefs)[!is.na(coefs)] coefs <- coefs[keep] x <- x[, keep[-1L], drop = FALSE] pc <- ncol(x) } logit <- function(p) log(p/(1 - p)) spacing <- logit((1L:q)/(q+1L)) if(method != "logit") spacing <- spacing/1.7 gammas <- -coefs[1L] + spacing - spacing[q1] start <- c(coefs[-1L], gammas) } else if(length(start) != pc + q) stop("'start' is not of the correct length") ans <- newpolr.fit(x, y, wt, start, offset, method, hessian = Hess, ...) beta <- ans$coefficients zeta <- ans$zeta deviance <- ans$deviance grad <- ans$grad res <- ans$res niter <- c(f.evals = res$counts[1L], g.evals = res$counts[2L]) eta <- if(pc) offset + drop(x %*% beta) else offset + rep(0, n) pfun <- switch(method, logit = plogis, probit = pnorm, cloglog = pgumbel,loglog=pGumbel, cauchit = pcauchy) dfun <- switch(method, logit = dlogis, probit = dnorm, cloglog = dgumbel,loglog=dGumbel, cauchit = dcauchy) cumpr <- matrix(pfun(matrix(zeta, n, q, byrow=TRUE) - eta), , q) dcumpr <- matrix(dfun(matrix(zeta, n, q, byrow=TRUE) - eta), , q) dimnames(cumpr) <- dimnames(dcumpr) <- list(row.names(m), names(zeta)) fitted <- t(apply(cumpr, 1L, function(x) diff(c(0, x, 1)))) dfitted <- t(apply(dcumpr, 1L, function(x) diff(c(0, x, 0)))) dimnames(fitted) <- dimnames(dfitted) <- list(row.names(m), lev) fit <- list(coefficients = beta, zeta = zeta, deviance = deviance, grad = grad, cumpr=cumpr, dcumpr=dcumpr, fitted.values = fitted, dfitted.values=dfitted, lev = lev, terms = Terms, df.residual = sum(wt) - pc - q, edf = pc + q, n = sum(wt), nobs = sum(wt), call = match.call(), method = method, convergence = res$convergence, niter = niter, lp = eta) if(Hess) { dn <- c(names(beta), names(zeta)) H <- res$hessian dimnames(H) <- list(dn, dn) Hessian <- matrix(nrow=nrow(H),ncol=ncol(H)) dimnames(Hessian) <- list(c(names(zeta),names(beta)),c(names(zeta),names(beta))) Hessian[names(zeta),names(zeta)] <- -H[names(zeta),names(zeta)] Hessian[names(beta),names(beta)] <- -H[names(beta),names(beta)] Hessian[names(beta),names(zeta)] <- H[names(beta),names(zeta)] Hessian[names(zeta),names(beta)] <- H[names(zeta),names(beta)] fit$Hessian <- Hessian } if(model) fit$model <- m fit$na.action <- attr(m, "na.action") fit$contrasts <- cons fit$xlevels <- .getXlevels(Terms, m) class(fit) <- "polr" fit } newpolr.fit <- function(x, y, wt, start, offset, method, ...) { fmin <- function(beta) { theta <- beta[pc + ind_q] gamm <- c(-Inf , theta, Inf) eta <- offset if (pc) eta <- eta + drop(x %*% beta[ind_pc]) pr <- pfun(pmin(100, gamm[y + 1L] - eta)) - pfun(pmax(-100, gamm[y] - eta)) if (all(pr > 0)) -sum(wt * log(pr)) else Inf } gmin <- function(beta) { theta <- beta[pc + ind_q] gamm <- c(-Inf, theta, Inf) eta <- offset if(pc) eta <- eta + drop(x %*% beta[ind_pc]) z1 <- pmin(100, gamm[y+1L] - eta) z2 <- pmax(-100, gamm[y] - eta) pr <- pfun(z1) - pfun(z2) p1 <- dfun(z1); p2 <- dfun(z2) g1 <- if(pc) crossprod(x, wt*(p1 - p2)/pr) else numeric() xx <- .polrY1*p1 - .polrY2*p2 g2 <- - crossprod(xx, wt/pr) if (all(pr > 0)) c(g1, g2) else rep(NA_real_, pc+q) } gfun <- function(beta) { theta <- beta[pc + ind_q] gamm <- c(-Inf, theta, Inf) eta <- offset if(pc) eta <- eta + drop(x %*% beta[ind_pc]) z1 <- gamm[y + 1L] - eta z2 <- gamm[y] - eta pr <- pfun(z1) - pfun(z2) p1 <- dfun(z1) p2 <- dfun(z2) g1 <- if(pc) x * (wt*(p1 - p2)/pr) else numeric() xx <- .polrY1*p1 - .polrY2*p2 g2 <- - xx * (wt/pr) if(all(pr > 0)) cbind(-g2, g1) else matrix(NA_real_, n, pc+q) } dgamma <- function(beta) { theta <- beta[pc + ind_q] gamm <- c(-Inf, theta, Inf) eta <- offset if(pc) eta <- eta + drop(x %*% beta[ind_pc]) p1 <- dfun(gamm[y + 1L] - eta) g1 <- if(pc) x * (wt*(p1)) g2 <- .polrY1*wt*p1 cbind(g1,g2) } dp0 <- function(beta) { theta <- beta[pc + ind_q] gamm <- c(-Inf, theta, Inf) eta <- offset if(pc) eta <- eta + drop(x %*% beta[ind_pc]) p1 <- dfun(gamm[y + 1L] - eta) p2 <- dfun(gamm[y] - eta) g1 <- if(pc) x * (wt*(p1 - p2)) g2 <- wt*(.polrY1*p1 - .polrY2*p2) cbind(g1,g2) } pfun <- switch(method, logit = plogis, probit = pnorm, cloglog = pgumbel,loglog=pGumbel, cauchit = pcauchy) dfun <- switch(method, logit = dlogis, probit = dnorm, cloglog = dgumbel,loglog=dGumbel, cauchit = dcauchy) n <- nrow(x) pc <- ncol(x) ind_pc <- seq_len(pc) lev <- levels(y) if(length(lev) <= 2L) stop("response must have 3 or more levels") y <- unclass(y) q <- length(lev) - 1L ind_q <- seq_len(q) Y <- matrix(0L, n, q) .polrY1 <- col(Y) == y; .polrY2 <- col(Y) == (y - 1L) res <- optim(start, fmin, gmin, method="BFGS", ...) beta <- res$par[ind_pc] theta <- res$par[pc + ind_q] zeta <- theta grad <- gfun(res$par) deviance <- 2 * res$value names(zeta) <- paste(lev[-length(lev)], lev[-1L], sep="|") if(pc) names(beta) <- colnames(x) dn <- c(names(beta), names(zeta)) colnames(grad) <- dn list(coefficients = beta, zeta = zeta, grad=grad, deviance = deviance, res = res) }
setId = function(learner, id) { .Deprecated("setLearnerId") learner = checkLearner(learner) assertString(id) learner$id = id return(learner) }
calculateStatistics_gui <- function(data = NULL, target = NULL, quant = 0.95, group = NULL, count = NULL, env = parent.frame(), savegui = NULL, debug = FALSE, parent = NULL) { .gData <- NULL .gDataName <- NULL fnc <- as.character(match.call()[[1]]) if (debug) { print(paste("IN:", fnc)) } strWinTitle <- "Calculate summary statistics" strChkGui <- "Save GUI settings" strBtnHelp <- "Help" strFrmDataset <- "Dataset" strLblDataset <- "Dataset:" strDrpDataset <- "<Select dataset>" strLblRows <- "rows" strFrmOptions <- "Options" strLblTarget <- "Select target column:" strLblGroupBy <- "Group by column(s):" strLblCount <- "Count unique values in column:" strDrpColumn <- "<Select Columns>" strLblQuantile <- "Calculate quantile" strFrmSave <- "Save as" strLblSave <- "Name for result:" strBtnCalculate <- "Calculate" strBtnProcessing <- "Processing..." strMsgDataset <- "A dataset must be selected." strMsgTitleDataset <- "Dataset not selected" strMsgCheck <- "Data frame is NULL!\n\nMake sure to select a sample dataset." strMsgTitleError <- "Error" dtStrings <- getStrings(gui = fnc) if (!is.null(dtStrings)) { strtmp <- dtStrings["strWinTitle"]$value strWinTitle <- ifelse(is.na(strtmp), strWinTitle, strtmp) strtmp <- dtStrings["strChkGui"]$value strChkGui <- ifelse(is.na(strtmp), strChkGui, strtmp) strtmp <- dtStrings["strBtnHelp"]$value strBtnHelp <- ifelse(is.na(strtmp), strBtnHelp, strtmp) strtmp <- dtStrings["strFrmDataset"]$value strFrmDataset <- ifelse(is.na(strtmp), strFrmDataset, strtmp) strtmp <- dtStrings["strLblDataset"]$value strLblDataset <- ifelse(is.na(strtmp), strLblDataset, strtmp) strtmp <- dtStrings["strDrpDataset"]$value strDrpDataset <- ifelse(is.na(strtmp), strDrpDataset, strtmp) strtmp <- dtStrings["strLblRows"]$value strLblRows <- ifelse(is.na(strtmp), strLblRows, strtmp) strtmp <- dtStrings["strFrmOptions"]$value strFrmOptions <- ifelse(is.na(strtmp), strFrmOptions, strtmp) strtmp <- dtStrings["strLblTarget"]$value strLblTarget <- ifelse(is.na(strtmp), strLblTarget, strtmp) strtmp <- dtStrings["strLblGroupBy"]$value strLblGroupBy <- ifelse(is.na(strtmp), strLblGroupBy, strtmp) strtmp <- dtStrings["strLblCount"]$value strLblCount <- ifelse(is.na(strtmp), strLblCount, strtmp) strtmp <- dtStrings["strDrpColumn"]$value strDrpColumn <- ifelse(is.na(strtmp), strDrpColumn, strtmp) strtmp <- dtStrings["strLblQuantile"]$value strLblQuantile <- ifelse(is.na(strtmp), strLblQuantile, strtmp) strtmp <- dtStrings["strFrmSave"]$value strFrmSave <- ifelse(is.na(strtmp), strFrmSave, strtmp) strtmp <- dtStrings["strLblSave"]$value strLblSave <- ifelse(is.na(strtmp), strLblSave, strtmp) strtmp <- dtStrings["strBtnCalculate"]$value strBtnCalculate <- ifelse(is.na(strtmp), strBtnCalculate, strtmp) strtmp <- dtStrings["strBtnProcessing"]$value strBtnProcessing <- ifelse(is.na(strtmp), strBtnProcessing, strtmp) strtmp <- dtStrings["strMsgDataset"]$value strMsgDataset <- ifelse(is.na(strtmp), strMsgDataset, strtmp) strtmp <- dtStrings["strMsgTitleDataset"]$value strMsgTitleDataset <- ifelse(is.na(strtmp), strMsgTitleDataset, strtmp) strtmp <- dtStrings["strMsgCheck"]$value strMsgCheck <- ifelse(is.na(strtmp), strMsgCheck, strtmp) strtmp <- dtStrings["strMsgTitleError"]$value strMsgTitleError <- ifelse(is.na(strtmp), strMsgTitleError, strtmp) } w <- gwindow(title = strWinTitle, visible = FALSE) addHandlerUnrealize(w, handler = function(h, ...) { .saveSettings() if (!is.null(parent)) { focus(parent) } if (gtoolkit() == "tcltk") { if (as.numeric(gsub("[^0-9]", "", packageVersion("gWidgets2tcltk"))) <= 106) { message("tcltk version <= 1.0.6, returned TRUE!") return(TRUE) } else { message("tcltk version >1.0.6, returned FALSE!") return(FALSE) } } else { message("RGtk2, returned FALSE!") return(FALSE) } }) gv <- ggroup( horizontal = FALSE, spacing = 8, use.scrollwindow = FALSE, container = w, expand = TRUE ) gh <- ggroup(container = gv, expand = FALSE, fill = "both") savegui_chk <- gcheckbox(text = strChkGui, checked = FALSE, container = gh) addSpring(gh) help_btn <- gbutton(text = strBtnHelp, container = gh) addHandlerChanged(help_btn, handler = function(h, ...) { print(help(fnc, help_type = "html")) }) data_frm <- gframe( text = strFrmDataset, horizontal = TRUE, spacing = 5, container = gv ) glabel(text = strLblDataset, container = data_frm) dfs <- c(strDrpDataset, listObjects(env = env, obj.class = "data.frame")) data_drp <- gcombobox( items = dfs, selected = 1, editable = FALSE, container = data_frm, ellipsize = "none" ) data_rows_lbl <- glabel( text = paste(" 0", strLblRows), container = data_frm ) addHandlerChanged(data_drp, handler = function(h, ...) { .updateWidgets() }) option_frm <- gframe( text = strFrmOptions, horizontal = FALSE, spacing = 10, container = gv ) glabel(text = strLblTarget, container = option_frm) target_drp <- gcombobox( items = strDrpColumn, container = option_frm, ellipsize = "none" ) glabel(text = strLblGroupBy, container = option_frm) group_drp <- gcombobox( items = strDrpColumn, container = option_frm, ellipsize = "none" ) group_edt <- gedit( text = ifelse(is.null(group), "", paste(group, collapse = ",")), container = option_frm ) addHandlerChanged(group_drp, handler = function(h, ...) { val_column <- svalue(group_drp) val_value <- svalue(group_edt) if (!is.null(val_column)) { if (val_column != strDrpColumn) { if (nchar(val_value) == 0) { svalue(group_edt) <- val_column } else { svalue(group_edt) <- paste(val_value, val_column, sep = ",") } } } }) glabel(text = strLblCount, container = option_frm) count_drp <- gcombobox( items = strDrpColumn, container = option_frm, ellipsize = "none" ) glabel(text = strLblQuantile, container = option_frm) quant_spb <- gspinbutton( from = 0, to = 1, by = 0.01, value = quant, container = option_frm ) save_frame <- gframe(text = strFrmSave, container = gv) glabel(text = strLblSave, container = save_frame) save_edt <- gedit(expand = TRUE, fill = TRUE, container = save_frame) calculate_btn <- gbutton(text = strBtnCalculate, container = gv) addHandlerClicked(calculate_btn, handler = function(h, ...) { val_data <- .gData val_obj <- .gDataName val_name <- svalue(save_edt) val_target <- svalue(target_drp) val_group <- svalue(group_edt) val_count <- svalue(count_drp) val_quant <- svalue(quant_spb) if (val_group == strDrpColumn) { val_group <- NULL } if (debug) { print("Read Values:") print("val_data") print(head(val_data)) print("val_name") print(val_name) print("val_target") print(val_target) print("val_group") print(val_group) print("val_count") print(val_count) print("val_quant") print(val_quant) } if (!is.null(val_data)) { if (!nchar(val_target) > 0 || val_target == strDrpColumn) { val_target <- NULL } else { val_target } if (!nchar(val_group) > 0 || val_group == strDrpColumn) { val_group <- NULL } else { val_group <- unlist(strsplit(val_group, split = ",")) } if (!nchar(val_count) > 0 || val_count == strDrpColumn) { val_count <- NULL } else { val_count } requiredCol <- c(val_target, val_group, val_count) requiredCol <- requiredCol[requiredCol != strDrpColumn] ok <- checkDataset( name = val_obj, reqcol = requiredCol, env = env, parent = w, debug = debug ) if (ok) { if (debug) { print("Sent Values:") print("val_target") print(val_target) print("val_group") print(val_group) print("val_count") print(val_count) print("val_quant") print(val_quant) } blockHandlers(calculate_btn) svalue(calculate_btn) <- strBtnProcessing unblockHandlers(calculate_btn) enabled(calculate_btn) <- FALSE datanew <- calculateStatistics( data = val_data, target = val_target, group = val_group, count = val_count, quant = val_quant, debug = debug ) keys <- list("data", "target", "group", "count", "quant") values <- list(val_obj, val_target, val_group, val_count, val_quant) datanew <- auditTrail( obj = datanew, key = keys, value = values, label = fnc, arguments = FALSE, package = "strvalidator" ) saveObject(name = val_name, object = datanew, parent = w, env = env) if (debug) { print(str(datanew)) print(head(datanew)) print(paste("EXIT:", fnc)) } if (all(is.null(data), is.null(target), is.null(group))) { .saveSettings() } dispose(w) } } else { gmessage( msg = strMsgDataset, title = strMsgTitleDataset, icon = "error", parent = w ) } }) .updateWidgets <- function() { val_obj <- svalue(data_drp) if (val_obj != strDrpDataset) { .gData <<- get(val_obj, envir = env) .gDataName <<- val_obj svalue(data_rows_lbl) <- paste(nrow(.gData), strLblRows) target_columns <- unique(c(strDrpColumn, names(.gData))) target_drp[] <- target_columns group_drp[] <- target_columns count_drp[] <- target_columns svalue(target_drp, index = TRUE) <- ifelse(is.null(target), 1, which(target_columns %in% target) ) svalue(group_drp, index = TRUE) <- 1 svalue(count_drp, index = TRUE) <- ifelse(is.null(count), 1, which(target_columns %in% count) ) svalue(save_edt) <- paste(val_obj, "_stats", sep = "") } else { .gData <<- NULL .gDataName <<- NULL svalue(data_drp, index = TRUE) <- 1 svalue(data_rows_lbl) <- paste(" 0", strLblRows) svalue(save_edt) <- "" target_drp[] <- strDrpColumn group_drp[] <- strDrpColumn count_drp[] <- strDrpColumn svalue(target_drp, index = TRUE) <- 1 svalue(group_drp, index = TRUE) <- 1 svalue(count_drp, index = TRUE) <- 1 } blockHandlers(calculate_btn) svalue(calculate_btn) <- strBtnCalculate unblockHandlers(calculate_btn) enabled(calculate_btn) <- TRUE } .loadSavedSettings <- function() { if (!is.null(savegui)) { svalue(savegui_chk) <- savegui enabled(savegui_chk) <- FALSE if (debug) { print("Save GUI status set!") } } else { if (exists(".strvalidator_calculateStatistics_gui_savegui", envir = env, inherits = FALSE)) { svalue(savegui_chk) <- get(".strvalidator_calculateStatistics_gui_savegui", envir = env) } if (debug) { print("Save GUI status loaded!") } } if (debug) { print(svalue(savegui_chk)) } if (svalue(savegui_chk)) { if (exists(".strvalidator_calculateStatistics_gui_group", envir = env, inherits = FALSE)) { svalue(group_edt) <- get(".strvalidator_calculateStatistics_gui_group", envir = env) } if (exists(".strvalidator_calculateStatistics_gui_quant", envir = env, inherits = FALSE)) { svalue(quant_spb) <- get(".strvalidator_calculateStatistics_gui_quant", envir = env) } if (debug) { print("Saved settings loaded!") } } } .saveSettings <- function() { if (svalue(savegui_chk)) { assign(x = ".strvalidator_calculateStatistics_gui_savegui", value = svalue(savegui_chk), envir = env) assign(x = ".strvalidator_calculateStatistics_gui_group", value = svalue(group_edt), envir = env) assign(x = ".strvalidator_calculateStatistics_gui_quant", value = svalue(quant_spb), envir = env) } else { if (exists(".strvalidator_calculateStatistics_gui_savegui", envir = env, inherits = FALSE)) { remove(".strvalidator_calculateStatistics_gui_savegui", envir = env) } if (exists(".strvalidator_calculateStatistics_gui_group", envir = env, inherits = FALSE)) { remove(".strvalidator_calculateStatistics_gui_group", envir = env) } if (exists(".strvalidator_calculateStatistics_gui_quant", envir = env, inherits = FALSE)) { remove(".strvalidator_calculateStatistics_gui_quant", envir = env) } if (debug) { print("Settings cleared!") } } if (debug) { print("Settings saved!") } } i_drp <- which(dfs %in% data) svalue(data_drp, index = TRUE) <- ifelse(length(i_drp) == 0, 1, i_drp) .updateWidgets() if (all(is.null(data), is.null(target), is.null(group))) { .loadSavedSettings() } else { enabled(savegui_chk) <- FALSE } visible(w) <- TRUE focus(w) }
mash <- function(object, origin = c(0,0), clustergroup = NULL, ...) { if (is.list(clustergroup) & (length(clustergroup) > 1)) { if (ms(object)) stop ("cannot regroup multisession capthist") out <- vector('list') for (i in 1:length(clustergroup)) { out[[i]] <- mash (object, origin, clustergroup[[i]], ...) } names(out) <- names(clustergroup) class(out) <- c('capthist', 'list') if (length(out) == 1) out <- out[[1]] return(out) } else if (ms(object)) { out <- lapply(object, mash, origin, clustergroup, ...) names(out) <- names(object) class(out) <- c('capthist', 'list') if (length(out) == 1) out <- out[[1]] return(out) } else { if (!is.null(clustergroup)) { trapsi <- clusterID(traps(object)) %in% clustergroup object <- subset(object, traps = trapsi) } trps <- traps(object) if (!is.null(covariates(trps))) warning ("detector covariates are discarded by mash()") if (!is.null(usage(trps))) warning ("usage discarded by mash()") cluster <- clusterID(trps) centres <- cluster.centres(trps) cl <- cluster[trap(object, names = FALSE, sortorder = 'ksn')] ID <- animalID(object, names = FALSE, sortorder = 'ksn') n.mash <- table (cl[match(unique(ID),ID)]) class(n.mash) <- 'integer' if (is.null(cluster)) stop ("requires cluster covariate") tmp <- split(trps, cluster) if (length(unique(sapply(tmp, nrow))) != 1) warning ("unequal number of detectors per cluster") trapnum <- clustertrap(trps) if (is.null(trapnum)) { tmp <- lapply(tmp, function(x) {x$trapnum <- 1:nrow(x); x}) trapnum <- unlist(sapply(tmp, function(x) x$trapnum)) tmp[[1]]$trapnum <- NULL } newtraps <- tmp[[1]] rownames(newtraps) <- 1:nrow(newtraps) mxy <- apply(newtraps, 2, min) newtraps <- shift(newtraps, origin-mxy[1:2]) attr(newtraps, 'cluster') <- NULL attr(newtraps, 'clustertrap') <- NULL attr(newtraps, 'covariates') <- NULL sigcov <- NULL if ( length(animalID(object)) == 0) { tempdf <- data.frame( session = session(object), ID = 'NONE', occ = ncol(object), trap = 1) } else { tempdf <- data.frame( session = rep(session(object), length(animalID(object))), ID = animalID(object, sortorder = 'ksn'), occ = occasion(object, sortorder = 'ksn'), trap = trapnum[trap(object, names=FALSE, sortorder = 'ksn')] ) if (!is.null(attr(object, 'signalframe'))) { tempdf <- cbind(tempdf, attr(object, 'signalframe')) sigcov <- names(tempdf)[!(names(tempdf) %in% c('signal','noise'))] } } tempcapt <- make.capthist(tempdf, newtraps, cutval = attr(object, "cutval"), signalcovariates = sigcov, ...) attr(tempcapt, 'n.mash') <- n.mash attr(tempcapt, 'centres') <- centres tempcapt } }
library(hamcrest) require("org.renjin.test:native") m <- matrix(as.double(1:12), nrow = 3) copy <- .Call("call_copyMatrix", m) assertThat(copy, identicalTo(matrix(as.double(1:12), nrow = 3)))
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(pcLasso) set.seed(944) n <- 100 p <- 20 x <- matrix(rnorm(n*p), n, p) beta <- matrix(c(rep(2, 5), rep(0, 15)), ncol = 1) y <- x %*% beta + rnorm(n) fit <- pcLasso(x, y, ratio = 0.8) fit$a0[20] fit$beta[, 20] fit$nzero predict(fit, x[1:5, ])[, 20] groups <- vector("list", 4) for (k in 1:4) { groups[[k]] <- 5 * (k-1) + 1:5 } groups fit <- pcLasso(x, y, ratio = 0.8, groups = groups) groups[[1]] <- 1:7 groups fit <- pcLasso(x, y, ratio = 0.8, groups = groups) fit$a0[20] fit$origbeta[, 20] fit$orignzero cvfit <- cv.pcLasso(x, y, groups = groups, ratio = 0.8) cvfit <- cv.pcLasso(x, y, groups = groups, ratio = 0.8, nfolds = 5) foldid <- sample(rep(seq(10), length = n)) cvfit <- cv.pcLasso(x, y, groups = groups, ratio = 0.8, foldid = foldid) plot(cvfit) plot(cvfit, orignz = FALSE) cvfit$lambda.min cvfit$lambda.1se predict(cvfit, x[1:5, ]) predict(cvfit, x[1:5, ], s = "lambda.min")
gdina_standardize_weights <- function( weights ) { N <- length(weights) weights <- N*weights / sum(weights) return(weights) }
`focleg` <- function(i) { FKINDS = c("STRIKESLIP" , "REV-OBL STRK-SLP" , "OBLIQUE REVERSE", "REVERSE" , "NORM-OBLQ STRKSLP", "OBLQ NORM", "NORMAL") return(FKINDS[i]) }
CovStep = function() { e$STEP = "COV" StartTime = Sys.time() Rmat = hessian(Obj, e$FinalPara)/2 Smat = CalcSmat() if (is.nan(Smat[1,1])) stop("Error - NaN produced") invR = solve(Rmat) Cov = invR %*% Smat %*% invR SE = sqrt(diag(Cov)) Correl = cov2cor(Cov) InvCov = Rmat %*% solve(Smat) %*% Rmat EigenVal = sort(eigen(Correl)$values) RunTime = difftime(Sys.time(), StartTime) Result = list(RunTime, SE, Cov, Correl, InvCov, EigenVal, Rmat, Smat) names(Result) = list("Time", "Standard Error", "Covariance Matrix of Estimates", "Correlation Matrix of Estimates", "Inverse Covariance Matrix of Estimates", "Eigen Values", "R Matrix", "S Matrix") return(Result) }
str(exp1) res1 <- expirest_osle(data = exp1[exp1$Batch %in% c("b2", "b5", "b7"), ], response_vbl = "Potency", time_vbl = "Month", batch_vbl = "Batch", sl = 95, sl_sf = 3, srch_range = c(0, 500)) gg1 <- plot_expirest_osle( model = res1, show_grouping = "no", response_vbl_unit = "%", y_range = c(93, 107), x_range = NULL, plot_option = "full", ci_app = "line") gg2 <- plot(gg1) class(gg1) class(gg2)
sessionInfo <- function(package = NULL) { z <- list() z$R.version <- R.Version() z$platform <- z$R.version$platform if(nzchar(.Platform$r_arch)) z$platform <- paste(z$platform, .Platform$r_arch, sep = "/") z$platform <- paste0(z$platform, " (", 8*.Machine$sizeof.pointer, "-bit)") z$locale <- Sys.getlocale() if (.Platform$OS.type == "windows") { z$running <- win.version() } else if (nzchar(Sys.which('uname'))) { uname <- system("uname -a", intern = TRUE) os <- sub(" .*", "", uname) z$running <- switch(os, "Linux" = if(file.exists("/etc/os-release")) { tmp <- readLines("/etc/os-release") t2 <- if (any(startsWith(tmp, "PRETTY_NAME="))) sub("^PRETTY_NAME=", "", grep("^PRETTY_NAME=", tmp, value = TRUE)[1L]) else if (any(startsWith(tmp, "NAME"))) sub("^NAME=", "", grep("^NAME=", tmp, value = TRUE)[1L]) else "Linux (unknown distro)" sub('"(.*)"', "\\1", t2) } else if(file.exists("/etc/system-release")) { readLines("/etc/system-release") }, "Darwin" = { ver <- readLines("/System/Library/CoreServices/SystemVersion.plist") ind <- grep("ProductUserVisibleVersion", ver) ver <- ver[ind + 1L] ver <- sub(".*<string>", "", ver) ver <- sub("</string>$", "", ver) ver1 <- strsplit(ver, ".", fixed = TRUE)[[1L]][2L] sprintf("OS X %s (%s)", ver, switch(ver1, "4" = "Tiger", "5" = "Leopard", "6" = "Snow Leopard", "7" = "Lion", "8" = "Mountain Lion", "9" = "Mavericks", "10" = "Yosemite", "11" = "El Capitan", "unknown")) }, "SunOS" = { ver <- system('uname -r', intern = TRUE) paste("Solaris", strsplit(ver, ".", fixed = TRUE)[[1L]][2L]) }, uname) } if(is.null(package)){ package <- grep("^package:", search(), value=TRUE) keep <- vapply(package, function(x) x == "package:base" || !is.null(attr(as.environment(x), "path")), NA) package <- .rmpkg(package[keep]) } pkgDesc <- lapply(package, packageDescription, encoding = NA) if(length(package) == 0) stop("no valid packages were specified") basePkgs <- sapply(pkgDesc, function(x) !is.null(x$Priority) && x$Priority=="base") z$basePkgs <- package[basePkgs] if(any(!basePkgs)){ z$otherPkgs <- pkgDesc[!basePkgs] names(z$otherPkgs) <- package[!basePkgs] } loadedOnly <- loadedNamespaces() loadedOnly <- loadedOnly[!(loadedOnly %in% package)] if (length(loadedOnly)) { names(loadedOnly) <- loadedOnly pkgDesc <- c(pkgDesc, lapply(loadedOnly, packageDescription)) z$loadedOnly <- pkgDesc[loadedOnly] } class(z) <- "sessionInfo" z } print.sessionInfo <- function(x, locale=TRUE, ...) { mkLabel <- function(L, n) { vers <- sapply(L[[n]], function(x) x[["Version"]]) pkg <- sapply(L[[n]], function(x) x[["Package"]]) paste(pkg, vers, sep = "_") } cat(x$R.version$version.string, "\n", sep = "") cat("Platform: ", x$platform, "\n", sep = "") if (!is.null(x$running)) cat("Running under: ", x$running, "\n", sep = "") cat("\n") if(locale){ cat("locale:\n") print(strsplit(x$locale, ";", fixed=TRUE)[[1]], quote=FALSE, ...) cat("\n") } cat("attached base packages:\n") print(x$basePkgs, quote=FALSE, ...) if(!is.null(x$otherPkgs)){ cat("\nother attached packages:\n") print(mkLabel(x, "otherPkgs"), quote=FALSE, ...) } if(!is.null(x$loadedOnly)){ cat("\nloaded via a namespace (and not attached):\n") print(mkLabel(x, "loadedOnly"), quote=FALSE, ...) } invisible(x) } toLatex.sessionInfo <- function(object, locale=TRUE, ...) { opkgver <- sapply(object$otherPkgs, function(x) x$Version) nspkgver <- sapply(object$loadedOnly, function(x) x$Version) z <- c("\\begin{itemize}\\raggedright", paste0(" \\item ", object$R.version$version.string, ", \\verb|", object$R.version$platform, "|")) if(locale){ z <- c(z, paste0(" \\item Locale: \\verb|", gsub(";","|, \\\\verb|", object$locale) , "|")) } z <- c(z, strwrap(paste("\\item Base packages: ", paste(sort(object$basePkgs), collapse = ", ")), indent = 2, exdent = 4)) if(length(opkgver)){ opkgver <- opkgver[sort(names(opkgver))] z <- c(z, strwrap(paste(" \\item Other packages: ", paste(names(opkgver), opkgver, sep = "~", collapse = ", ")), indent = 2, exdent = 4)) } if(length(nspkgver)){ nspkgver <- nspkgver[sort(names(nspkgver))] z <- c(z, strwrap(paste(" \\item Loaded via a namespace (and not attached): ", paste(names(nspkgver), nspkgver, sep = "~", collapse = ", ")), indent = 2, exdent = 4)) } z <- c(z, "\\end{itemize}") class(z) <- "Latex" z }
plot.evodivparam <- function(x, legend = TRUE, legendposi = "topright", axisLABEL = "Tree-based diversity", type="b", col = if(is.numeric(x)) NULL else sample(colors(distinct = TRUE), nrow(x$div)), lty = if(is.numeric(x)) NULL else rep(1, nrow(x$div)), pch = if(is.numeric(x)) NULL else rep(19, nrow(x$div)), ...) { if(is.numeric(x)){ y <- as.vector(x) names(y) <- names(x) dotchart(y, xlab = axisLABEL, ...) } if(is.list(x)){ if(length(col)==1) col <- rep(col, nrow(x$div)) if(length(pch)==1) pch <- rep(pch, nrow(x$div)) plot(x$q, x$div[1, ], type = type, col = col[1], ylim = c(min(x$div), max(x$div)), pch = pch[1], , ylab = axisLABEL, xlab="q", ...) for(i in 1:nrow(x$div)){ lines(x$q, x$div[i, ], type = type, col = col[i], pch = pch[i], ...) } if(legend[1]){ legend(legendposi, legend = rownames(x$div), col = col, lty = lty, pch = pch, ...) } } }
tvSURE <- function (formula, z = NULL, ez = NULL, bw = NULL, cv.block = 0, data, method = c("tvOLS", "tvFGLS", "tvGLS"), Sigma = NULL, est = c("lc", "ll"), tkernel = c("Triweight", "Epa", "Gaussian"), bw.cov = NULL, singular.ok = TRUE, R = NULL, r = NULL, control = tvreg.control(...), ...) { is.data <- inherits(data, c("data.frame", "matrix")) if(!is.data) stop("\nArgument 'data' should be entered and it should be a 'matrix' or a 'data.frame'.\n") if(!inherits(data, c("data.frame"))) data <- as.data.frame(data) if(!inherits(formula, "list")) stop("\nArgument 'formula' must be a list of formulas. \n") if(!all(lapply(formula, class) == "formula")) stop("\nArgument 'formula' must contain only objects of class 'formula'") neq <- length(formula) if(neq < 2) stop("\nThe list 'formula' should contain at least two equations for multivariate analysis.\n") if(!is.null(Sigma)) if(any(is.na(Sigma))) stop("\nNAs in Sigma.\n") method <- match.arg(method) tkernel <- match.arg(tkernel) est <- match.arg(est) nvar <- numeric(neq) if(is.null(names(formula))) { eq.names <- paste0("eq", c(1:neq)) } else { eq.names <- names(formula) if(sum(regexpr(" |_", eq.names) != -1) > 0) stop("\nEquation labels may not contain blanks (' ') or underscores ('_')") } results <- list() callNoDots <- match.call(expand.dots = FALSE) mf <- callNoDots[c(1, match(c("data"), names(callNoDots), 0L))] mf$na.action <- as.name("na.pass") mf[[1]] <- as.name("model.frame") y <- NULL x <- list() y.names <- NULL for(i in 1:neq) { mf.eq <- mf mf.eq$formula <- formula[[i]] eval.mf <- eval(mf.eq, parent.frame()) terms <- attr(eval.mf, "terms") y <- cbind(y, stats::model.extract(eval.mf, "response")) y.names <- c(y.names, formula[[i]][[2]]) x[[i]] <- stats::model.matrix(terms, eval.mf) nvar[i] <- NCOL(x[[i]]) if(is.null(colnames(x[[i]]))) colnames(x[[i]]) <- paste0("X", i, 1:nvar[i]) } names(x) <- eq.names colnames(y) <- y.names obs <- NROW(y) if(!is.null(R)) { R <- as.matrix(R) if(NCOL(R) != sum(nvar)) stop("\nWrong dimension of R, it should have as many columns as variables in the whole system. \n") if (is.null(r)) r <- rep(0, NROW(R)) else if (length(r) == 1) r <- rep(r, NROW(R)) else if (length(r) != NROW(R) & length(r) != 1) stop("\nWrong dimension of r, it should be as long as the number of rows in R. \n") } if (method == "identity" | method == "tvOLS") { if (is.null(bw)) { cat("Calculating regression bandwidth...\n") bw <- bw(x = x, y = y, z = z, cv.block = cv.block, est = est, tkernel = tkernel, singular.ok = singular.ok) cat("bw = ", bw, "\n") } else { if (any(bw < 5/obs)) stop("\nAt least one of your bw bandwidths is smaller than 5/obs, please increase! \n") else if (any(is.na(bw))) stop("\nThe bandwidth cannot be a no number.\n") } result <- tvGLS(x = x, y = y, z = z, ez = ez, bw = bw, R = R, r = r, est = est, tkernel = tkernel) Sigma <- array(rep(crossprod(result$residuals)/ (obs - neq), obs), dim = c(neq, neq, obs)) } else if(method == "tvFGLS") { if (is.null(bw)) { cat("Calculating regression bandwidth...\n") bw <- bw(x = x, y = y, z = z, cv.block = cv.block, est = est, tkernel = tkernel, singular.ok = singular.ok) cat("bw = ", bw, "\n") } else { if (any(bw<5/obs)) stop("\nAt least one of your bw bandwidths is smaller than 5/obs, please increase! \n") else if (any (is.na(bw))) stop("\nThe bandwidth cannot be a no number.\n") } result <- tvGLS(x = x, y = y, z = z, ez = ez, bw = bw, R = R, r = r, est = est, tkernel = tkernel) if(is.null(bw.cov)) { cat("Calculating variance-covariance estimation bandwidth...\n") bw.cov <- bwCov(x = result$residuals, cv.block = cv.block, tkernel = tkernel) cat("bw = ", bw.cov, "\n") } Sigma <- tvCov(x = result$residuals, bw = bw.cov, tkernel = tkernel) result <- tvGLS(x = x, y = y, z = z, ez = ez, bw = bw, Sigma = Sigma, R = R, r = r, est = est, tkernel = tkernel) itertemp <- 1 tol <- control$tol maxiter <- control$maxiter tolold <- sum(result$coefficients^2) tolnew <- 0 while((abs(tolold-tolnew)>tol) && (itertemp < maxiter)) { tolold <- tolnew Sigma <- tvCov(bw = bw.cov, x = result$residuals, tkernel = tkernel) temp <- tvGLS(x = x, y = y, z = z, ez = ez, bw = bw, Sigma = Sigma, R = R, r = r, est = est, tkernel = tkernel) tolnew <- sqrt(sum((result$coefficients - temp$coefficients)^2)/sum(result$coefficients^2)) result <- temp itertemp <- itertemp + 1 } } else if(method == "tvGLS") { if(is.matrix(Sigma)) { if(NCOL(Sigma) != neq | NROW(Sigma) != neq) stop("\nWrong dimensions of Sigma. \n.") Sigma2 <- array(0, dim = c(neq, neq, obs)) for (t in 1:obs) Sigma2[, , t] <- Sigma Sigma <- Sigma2 } else if (is.array(Sigma)) { dimensions <- dim(Sigma) if(dimensions[3] != obs | dimensions[2] != neq | dimensions[1] != neq) stop("\nWrong dimensions of Sigma. \n.") } else stop("\nSigma must be a matrix of dimensions neq x neq or an array of dimensions neq x neq x obs. \n") if (is.null(bw)) { cat("Calculating regression bandwidth...\n") bw <- bw(x = x, y = y, z = z, Sigma = Sigma, est = est, tkernel = tkernel) cat("bw = ", bw, "\n") } else { if (any(bw < 5/obs)) stop("\nAt least one of your bw bandwidths is smaller than 5/obs, please increase! \n") else if (any (is.na(bw))) stop("\nThe bandwidth cannot be a no number.\n") } result <- tvGLS(x = x, y = y, z = z, ez = ez, bw = mean(bw), Sigma = Sigma, R = R, r = r, est = est, tkernel = tkernel) } coefficients <- result$coefficients resid <- result$residuals fitted <- result$fitted if(length(bw) == 1) names(bw) <- "bw.mean" else names(bw) <- paste("bw.", eq.names, sep = "") colnames(resid) <- eq.names colnames(fitted) <- eq.names var.names <- NULL for(i in 1:neq) var.names <- c(var.names, paste(colnames(x[[i]]), ".", eq.names[i], sep = "")) colnames(coefficients) <- var.names result <- list(coefficients = coefficients, Lower = NULL, Upper = NULL, Sigma = Sigma, fitted = fitted, residuals = resid, x = x, y = y, z = z, ez = ez, bw = bw, cv.block = cv.block, obs = obs, neq = neq, nvar = nvar, method = method, est = est, tkernel = tkernel, bw.cov = bw.cov, level = 0, runs = 0, tboot = NULL, BOOT = NULL, R = R, r = r, control = control, formula = formula, call = match.call()) class(result) <- "tvsure" return(result) }
cv.mrelnet <- function(predmat,y,type.measure,weights,foldid,grouped){ ndim = dim(y) nc = ndim[2] nobs = ndim[1] N = nobs - apply(is.na(predmat[, 1,,drop=FALSE ]), 2, sum) bigY = array(y, dim(predmat)) cvraw = switch(type.measure, mse = apply((bigY - predmat)^2,c(1, 3), sum), deviance = apply((bigY - predmat)^2, c(1,3), sum), mae = apply(abs(bigY - predmat), c(1, 3), sum) ) list(cvraw=cvraw,weights=weights,N=N,type.measure=type.measure,grouped=grouped) }
bgcolor <- function(color){ theme(panel.background = element_rect(fill = color)) }
make.lapply.loop.resample <- function(one_subset, replicates, pop_size) { return(list("elements" = one_subset, replicate(replicates, sample(1:pop_size, length(one_subset), replace = TRUE)))) } make.lapply.loop.nosample <- function(one_subset, replicates, pop_size) { return(list("elements" = one_subset, replicate(replicates, sample((1:pop_size)[-one_subset], length(one_subset), replace = TRUE)))) } one.randtest <- function(results, replicates, resample, alternative, get.p.value, match_call) { observed <- c(results$elements) simulated <- c(results[[2]]) test_results <- c("Mean Normal residuals" = mean((observed - mean(simulated)) / stats::sd(simulated)), "Random mean" = mean(simulated), "Random variance" = stats::var(simulated)) p_value <- get.p.value(simulated, observed, replicates) res <- list() res$rep <- replicates res$observed <- observed res$random <- simulated res$call <- match_call res$sim <- simulated res$obs <- observed r0 <- c(simulated, observed) l0 <- max(simulated, observed) - min(simulated, observed) w0 <- l0/(log(length(simulated), base = 2) + 1) xlim0 <- range(r0) + c(-w0, w0) h0 <- graphics::hist(simulated, plot = FALSE, nclass = 10) res$plot <- list(hist = h0, xlim = xlim0) res$alter <- alternative res$pvalue <- p_value res$expvar <- test_results class(res) <- "randtest" return(res) }
context("test-featureimpcluster") set.seed(123) nr_other_vars = 2 dat <- create_random_data(n=100,nr_other_vars = nr_other_vars)$data res <- flexclust::kcca(dat,k=4) base_pred <- flexclust::predict(res,dat) biter = 2 f <- FeatureImpCluster(res,dat,biter=biter) test_that("Test dimension of outputs", { expect_equal(dim(f$misClassRate)[1],biter) expect_equal(dim(f$misClassRate)[2],nr_other_vars+2) expect_equal(length(f$featureImp),nr_other_vars+2) }) test_that("Result is not NA", { expect_equal(sum(is.na(f$featureImp)),0) }) set.seed(123) dat_cat <- copy(dat) dat_cat[,cat1:=factor(rbinom(100,size=1,prob=0.3),labels = c("yes","no"))] dat_cat[,cat2:=factor(c(rep("yes",50),rep("no",50)))] test_that("FeatureImp plots", { p <- plot(f) ps <- plot(f,showPoints = TRUE) expect_equal(p$labels$y,"Misclassification rate") expect_equal(ps$layers[[2]]$position$width,.1) expect_error(plot(f,color="type")) res_kproto <- clustMixType::kproto(x=dat_cat,k=4) f <- FeatureImpCluster(res_kproto,dat_cat,biter=biter) p_cat <- plot(f,dat_cat,color="type") })
meltt_duplicates = function(object,columns=NULL){ UseMethod("meltt_duplicates") } meltt_duplicates.meltt = function(object,columns=NULL){ if(length(columns)==0){ for(m in seq_along(object$inputData)){columns = c(columns,colnames(object$inputData[[m]]))} columns = unique(columns) columns = c('dataset','obs.count',columns[!columns %in% c('dataset','obs.count')]) }else{ columns = c('dataset','obs.count',columns) } event_to_event = object$processed$event_matched episode_to_episode = object$processed$episode_matched key = rbind.fill(event_to_event,episode_to_episode) key$match_type = c(rep("event_to_event",nrow(event_to_event)), rep("episode_to_episode",nrow(episode_to_episode))) determine = !apply(key,1,function(x){all(as.numeric(x[-1*c(1,2,length(x))])==0)}) key = key[determine,] data_key = key[,seq_along(key) %% 2 != 0];data_key = data_key[,colnames(data_key)!="match_type"] data_key = data_key[,!colnames(data_key) %in% c("data0","dataNA")] obs_key = key[,seq_along(key) %% 2 == 0] input_data = object$inputData key2 = key[,colnames(key)!="match_type"]; key3 = c() for(row in 1:nrow(key2)){ even = function(x){x1 = 1:ncol(x);x1 %% 2 == 0} datanames = paste0('data',key2[row,!even(key2)]) eventnames = paste0('event',key2[row,!even(key2)]) col_names=c();for(i in 1:length(datanames)){col_names=c(col_names,datanames[i],eventnames[i])} s = key2[row,] colnames(s) = col_names key3 = rbind.fill(key3,s) } recon_key = key3[,!(colnames(key3) %in% c("data0","event0","dataNA","eventNA"))] datanames = colnames(recon_key)[grepl("data",colnames(recon_key))];datanames = datanames[order(datanames)] eventnames = colnames(recon_key)[grepl("event",colnames(recon_key))];eventnames = eventnames[order(eventnames)] col_names=c();for(i in 1:length(datanames)){col_names=c(col_names,datanames[i],eventnames[i])} recon_key = recon_key[,col_names] drop = !apply(recon_key,1,function(x){sum(!is.na(x)) <= 2}) recon_key=recon_key[drop,] recon_key[is.na(recon_key)] = 0 recon_key = recon_key[!apply(recon_key,1,function(x) all(x == 0)),] for(d in ncol(data_key):1){ consider = input_data[[d]] consider = consider[consider$obs.count %in% obs_key[data_key==d],] consider2 = consider[,colnames(consider) %in% columns] colnames(consider2)[!colnames(consider2) %in% c("dataset","obs.count")] = paste(object$inputDataNames[d],colnames(consider2)[!colnames(consider2) %in% c("dataset","obs.count")],sep = "_") if(d==ncol(data_key)){ out = merge(recon_key,consider2, by.x=c(paste0("data",d),paste0("event",d)), by.y=c("dataset","obs.count"),all.x=T) }else{ out = merge(out,consider2, by.x=c(paste0("data",d),paste0("event",d)), by.y=c("dataset","obs.count"),all.x=T) } } .ind = c();for( c in data_key){.ind = c(.ind,c)} viable_options = unique(.ind[.ind>0]) colnames(out)[colnames(out) %in% colnames(data_key)] = paste0(object$inputDataNames[viable_options],"_dataset") colnames(out)[colnames(out) %in% colnames(obs_key)] = paste0(object$inputDataNames[viable_options],"_event") return(out) }
test_multi_arg_fn <- function() { expect_error( ops <- mk_td('d', 'str') %.>% extend(., strs = paste(str, collapse = ', '))) invisible(NULL) } test_multi_arg_fn()
print.permutest.rma.uni <- function(x, digits=x$digits, signif.stars=getOption("show.signif.stars"), signif.legend=signif.stars, ...) { mstyle <- .get.mstyle("crayon" %in% .packages()) .chkclass(class(x), must="permutest.rma.uni") digits <- .get.digits(digits=digits, xdigits=x$digits, dmiss=FALSE) if (!exists(".rmspace")) cat("\n") if (!x$int.only) { cat(mstyle$section(paste0("Test of Moderators (coefficient", ifelse(x$m == 1, " ", "s "), .format.btt(x$btt),"):"))) cat("\n") if (is.element(x$test, c("knha","adhoc","t"))) { cat(mstyle$result(paste0("F(df1 = ", x$QMdf[1], ", df2 = ", x$QMdf[2], ") = ", .fcf(x$QM, digits[["test"]]), ", p-val* ", .pval(x$QMp, digits=digits[["pval"]], showeq=TRUE, sep=" ")))) } else { cat(mstyle$result(paste0("QM(df = ", x$QMdf[1], ") = ", .fcf(x$QM, digits[["test"]]), ", p-val* ", .pval(x$QMp, digits[["pval"]], showeq=TRUE, sep=" ")))) } cat("\n\n") } if (is.element(x$test, c("knha","adhoc","t"))) { res.table <- data.frame(estimate=.fcf(c(x$beta), digits[["est"]]), se=.fcf(x$se, digits[["se"]]), tval=.fcf(x$zval, digits[["test"]]), df=round(x$ddf,2), "pval*"=.pval(x$pval, digits[["pval"]]), ci.lb=.fcf(x$ci.lb, digits[["ci"]]), ci.ub=.fcf(x$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) colnames(res.table)[5] <- "pval*" if (x$permci) colnames(res.table)[6:7] <- c("ci.lb*", "ci.ub*") } else { res.table <- data.frame(estimate=.fcf(c(x$beta), digits[["est"]]), se=.fcf(x$se, digits[["se"]]), zval=.fcf(x$zval, digits[["test"]]), "pval*"=.pval(x$pval, digits[["pval"]]), ci.lb=.fcf(x$ci.lb, digits[["ci"]]), ci.ub=.fcf(x$ci.ub, digits[["ci"]]), stringsAsFactors=FALSE) colnames(res.table)[4] <- "pval*" if (x$permci) colnames(res.table)[5:6] <- c("ci.lb*", "ci.ub*") } rownames(res.table) <- rownames(x$beta) signif <- symnum(x$pval, corr=FALSE, na=FALSE, cutpoints=c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", "**", "*", ".", " ")) if (signif.stars) { res.table <- cbind(res.table, signif) colnames(res.table)[ncol(res.table)] <- "" } if (x$int.only) res.table <- res.table[1,] cat(mstyle$section("Model Results:")) cat("\n\n") if (x$int.only) { tmp <- capture.output(.print.vector(res.table)) } else { tmp <- capture.output(print(res.table, quote=FALSE, right=TRUE, print.gap=2)) } .print.table(tmp, mstyle) if (signif.legend) { cat("\n") cat(mstyle$legend("---\nSignif. codes: "), mstyle$legend(attr(signif, "legend"))) cat("\n") } if (!exists(".rmspace")) cat("\n") invisible() }
allowed.styles <- c("wide", "tall", "tallw") rpart.rules <- function(x=stop("no 'x' argument"), style="wide", cover=FALSE, nn=FALSE, roundint=TRUE, clip.facs=FALSE, varorder=NULL, ...) { if(!inherits(x, "rpart")) stop("Not an rpart object") ret <- check.if.dot.arg.supported.by.rpart.rules(...) extra <- ret$extra digits <- ret$digits varlen <- ret$varlen faclen <- ret$faclen trace <- ret$trace facsep <- ret$facsep eq <- ret$eq lt <- ret$lt ge <- ret$ge and <- ret$and when <- ret$when because <- ret$because null.model <- ret$null.model response.name <- ret$response.name rpart.predict <- ret$rpart.predict where <- ret$where obj <- x style <- match.choices(style, allowed.styles) cover <- check.boolean(cover) nn <- check.boolean(nn) roundint <- check.boolean(roundint) clip.facs <- check.boolean(clip.facs) rpart.predict <- check.boolean(rpart.predict) digits <- process.digits.arg(digits) if(digits < 0) digits <- -digits varlen <- check.integer.scalar(varlen, logical.ok=FALSE) faclen <- check.integer.scalar(faclen, logical.ok=FALSE) obj$varinfo <- get.modelframe.info(obj, roundint, trace, parent.frame(), "rpart.rules") if(is.null(response.name)) response.name <- obj$varinfo$response.name stopifnot.string(response.name) stopifnot.string(facsep) stopifnot.string(eq, allow.empty=TRUE); eq <- trim.surrounding.space(eq) stopifnot.string(lt, allow.empty=TRUE); lt <- trim.surrounding.space(lt) stopifnot.string(ge, allow.empty=TRUE); ge <- trim.surrounding.space(ge) stopifnot.string(and, allow.empty=TRUE); and <- trim.surrounding.space(and) stopifnot.string(when, allow.empty=TRUE); when <- trim.surrounding.space(when) if(when == "" && (style %in% c("tall", "tallw") || rpart.predict)) when <- ":EMPTY:" else if(nrow(obj$frame) == 1) when <- null.model stopifnot.string(because, allow.empty=TRUE); because <- trim.surrounding.space(because) stopifnot.string(null.model) trace <- as.numeric(check.numeric.scalar(trace, logical.ok=TRUE)) varnames <- if(nrow(obj$frame) == 1) varnames <- ":NULL.MODEL:" else unique(rownames(obj$splits)) ret <- get.raw.rules(obj, extra, varlen, faclen, roundint, trace, facsep, varnames) rules <- ret$rules nrules.per.var <- ret$nrules.per.var if(trace >= 1) trace.print.rules(rules, "raw rules") rules <- process.rules(obj, rules, style, cover, nn, clip.facs, rpart.predict, where, eq, lt, ge, and, when, because, null.model, digits, trace, varorder, varlen, nrules.per.var, varnames, response.name, obj$method == "class" || is.class.response(obj), attr(obj, "ylevels")) node.numbers <- rownames(rules) if(trace >= 1) trace.print.rules(rules, "processed rules") class(rules) <- c("rpart.rules", "data.frame") attr(rules, "style") <- style attr(rules, "eq") <- eq attr(rules, "and") <- and attr(rules, "when") <- when if(rpart.predict) { rules <- capture.output(print.rpart.rules(rules)) rules <- rules[-1] rules <- gsub("^ ", "", rules) } rules } print.rpart.rules <- function(x=stop("no 'x' argument"), style=attr(x, "style"), ...) { old.warnPartialMatchDollar <- getOption("warnPartialMatchDollar") if(is.boolean(old.warnPartialMatchDollar)) on.exit(options(warnPartialMatchDollar=old.warnPartialMatchDollar)) options(warnPartialMatchDollar=FALSE) dots <- match.call(expand.dots=FALSE)$... if(!is.null(dots$di) || !is.null(dots$dig) || !is.null(dots$digi) || !is.null(dots$digit) || !is.null(dots$digits)) stop0("specify 'digits' in rpart.rules (not in print.rpart.rules)") if(is.boolean(old.warnPartialMatchDollar)) options(warnPartialMatchDollar=old.warnPartialMatchDollar) stop.if.dot.arg.used(...) style <- match.choices(style, allowed.styles) old.width <- options(width=1e4)$width on.exit(options(width=old.width)) if(style == "wide") { class(x) <- "data.frame" print(x, row.names=FALSE) } else if(style == "tall" || style == "tallw") print.style.tall(x, style, eq=attr(x, "eq"), and=attr(x, "and"), when=attr(x, "when")) else stop0("illegal style ", style) } get.raw.rules <- function(obj, extra, varlen, faclen, roundint, trace, facsep, varnames) { ret <- get.node.and.split.labs(obj, extra, faclen, roundint, trace, facsep, under.percent=2) node.labs <- ret$node.labs split.labs <- ret$split.labs frame <- obj$frame is.leaf <- is.leaf(frame) node.numbers <- as.numeric(row.names(frame)) iframe.to.isplit.mat <- descendants(node.numbers) maxrules <- 1e3 nrules <- 0 rules <- matrix("", nrow=maxrules, ncol=4 + 3 * length(varnames)) colnames(rules) <- c("lab", "fit", "iclass", "cover", paste0(rep(varnames, each=3), c("=", "<", ">="))) rules <- as.data.frame(rules, stringsAsFactors=FALSE) nrules.per.var <- repl(0, length(varnames)) names(nrules.per.var) <- varnames trace1(trace, "\n") for(iframe in 1:nrow(frame)) if(is.leaf[iframe]) { nrules <- nrules + 1 if(nrules > maxrules) stopf("too many rules (maximum number of rules is %d)", maxrules) ret <- get.rule(obj, rules[nrules,], nrules.per.var, iframe, node.numbers, node.labs, split.labs, iframe.to.isplit.mat, trace) rules[nrules,] <- ret$rule nrules.per.var <- ret$nrules.per.var } trace1(trace, "\n") rules <- rules[1:nrules, , drop=FALSE] rownames(rules) <- rownames(obj$frame)[is.leaf] list(rules=rules, nrules.per.var=nrules.per.var) } get.node.and.split.labs <- function(obj, extra, faclen, roundint, trace, facsep, under.percent) { class.stats <- NULL if(obj$method == "class" || is.class.response(obj)) class.stats <- get.class.stats(obj) extra <- handle.extra.for.rules(extra, obj, class.stats) list(node.labs = internal.node.labs(obj, node.fun=NULL, node.fun.name="NULL", type=TYPE0.default, extra=extra, under=FALSE, xsep=NULL, digits=-10, varlen=0, prefix="", suffix="", class.stats, under.percent), split.labs = internal.split.labs(obj, type=TYPE4.fancy.all, digits=-10, varlen=0, faclen=faclen, roundint=roundint, clip.facs=FALSE, clip.left.labs=FALSE, clip.right.labs=FALSE, xflip=FALSE, trace=trace, facsep=facsep, eq="|=|", logical.eq="|=|", lt="|<|", ge="|>=|", split.prefix="", right.split.suffix="", split.suffix="", right.split.prefix="")) } handle.extra.for.rules <- function(extra, obj, class.stats) { if(is.numeric(extra)) { stopifnot(length(extra) == 1) if(extra >= 100) extra <- extra - 100 if(extra == EX0) extra <- get.default.extra(obj, class.stats) - 100 else if(extra == EX1.NOBS || extra == EX2.CLASS.RATE || extra == EX3.MISCLASS.RATE) { warning0( "extra=", extra, " is not supported by rpart.rules (although useable for plots)") extra <- get.default.extra(obj, class.stats) - 100 } else if(extra == EX5.PROB.PER.CLASS.DONT || extra == EX7.PROB.2ND.CLASS.DONT || extra == EX11.PROB.ACROSS.ALL.2ND.CLASS.DONT) extra <- extra - 1 } else if(is.auto(extra, n=1)) { extra <- get.default.extra(obj, class.stats) } else stop0("rpart.rules: illegal extra") if(obj$method == "poisson" || obj$method == "exp") extra <- 0 if(extra < 100) extra <- extra + 100 extra } descendants <- function(nodes, include = TRUE) { n <- length(nodes) if (n == 1L) return(matrix(TRUE, 1L, 1L)) ind <- 1:n desc <- matrix(FALSE, n, n) if (include) diag(desc) <- TRUE parents <- match((nodes %/% 2L), nodes) lev <- floor(log(nodes, base = 2)) desc[1L, 2L:n] <- TRUE for (i in max(lev):2L) { desc[cbind(ind[parents[lev == i]], ind[lev == i])] <- TRUE parents[lev == i] <- parents[parents[lev == i]] lev[lev == i] <- i - 1L } desc } get.rule <- function(obj, rule, nrules.per.var, iframe, node.numbers, node.labs, split.labs, iframe.to.isplit.mat, trace) { ret <- parse.node.lab(node.labs[iframe]) rule$lab <- ret$lab rule$fit <- ret$fit rule$cover <- ret$cover rule$iclass <- floor(obj$frame[iframe, "yval"]) path <- split.labs[iframe.to.isplit.mat[, iframe]] trace1(trace, "iframe %3d node %3d path %s\n", iframe, node.numbers[iframe], bar.to.space(path)) stopifnot(path[1] == "root") path <- path[-1] for(split.lab in path) { ret <- parse.split.lab(split.lab, trace) if(!var.is.in.rule(ret$varname, rule)) nrules.per.var[ret$varname] <- nrules.per.var[ret$varname] + 1 rule[paste0(ret$varname, ret$op)] <- ret$cut } list(rule=rule, nrules.per.var=nrules.per.var) } trace.print.rules <- function(rules, msg) { old.width <- options(width=1e4)$width on.exit(options(width=old.width)) cat0(msg, ":\n") class(rules) <- "data.frame" print(rules) cat0("\n") } process.rules <- function(obj, rules, style, cover, nn, clip.facs, rpart.predict, where, eq, lt, ge, and, when, because, null.model, digits, trace, varorder, varlen, nrules.per.var, varnames, response.name, is.class.response, ylevels) { ret <- format.fit(rules$fit, digits, is.class.response) rules$fit <- ret$fit rowmaxs <- ret$rowmaxs ncol.fit <- ret$ncol.fit fit <- rules$fit rules <- order.rows(rules, rowmaxs) ret <- order.cols(rules, varorder, varnames, nrules.per.var) rules <- ret$rules varnames <- ret$varnames if(varlen != 0) { ret <- apply.varlen.to.colnames(rules, varnames, varlen) colnames(rules) <- ret$colnames varnames <- ret$shortnames } rules.cover <- rules$cover rules <- format.rules(rules, style, cover, clip.facs, eq, lt, ge, and, when, digits, trace, response.name, varnames, ncol.fit) rules <- rules[, apply(rules, 2, function(col) any(col != "")), drop=FALSE] if(!rpart.predict) { colnames(rules) <- c(response.name, repl("", ncol(rules)-1)) } else { if(nrow(obj$frame) == 1) rules <- as.data.frame(matrix(paste0(because, paste0(" ", null.model)), nrow=nrow(rules)), stringsAsFactors=FALSE) else { iwhen <- match("when", colnames(rules))[1] if(iwhen < ncol(rules)) { rules <- rules[, iwhen:ncol(rules), drop=FALSE] rules[1] <- because } colnames(rules) <- NULL } } if(cover) { rules$cover <- sprint("%3.0f%%", as.numeric(rules.cover)) colnames(rules)[ncol(rules)] <- " cover" } if(nn) { colnames <- colnames(rules) rules <- cbind(rownames(rules), rules, stringsAsFactors=FALSE) colnames(rules) <- c("nn", colnames) } if(rpart.predict) { if(style != "wide") stop0("style = \"", style, "\" is not supported by rpart.predict") check.vec(where, "where", na.ok=TRUE) nn <- as.numeric(rownames(obj$frame)[where]) stopifnot(!any(is.na(nn))) rules.nn <- rules rules.nn[1:max(nn), ] <- rules[1, , drop=FALSE] for(name in rownames(rules)) rules.nn[as.numeric(name),] <- rules[which(rownames(rules) == name), , drop=FALSE] rules <- rules.nn[nn, , drop=FALSE] rownames(rules) <- NULL rules <- rules[, apply(rules, 2, function(col) any(col != "")), drop=FALSE] } else if(ncol.fit > 1) { colnames(rules)[2+nn] <- fit.colname(ylevels, fit, ncol.fit) rules[,2+nn] <- paste0("[", rules[,2+nn], "]") rules[,3+nn] <- paste0(" ", when) } trim.leading.space.in.columns(rules) } format.fit <- function(fit, digits, is.class.response) { fit <- strsplit(fit, " ", fixed=TRUE) nrow <- length(fit) fit <- matrix(as.numeric.na.ok(unlist(fit)), nrow=nrow, byrow=TRUE) ncol.fit <- ncol(fit) rowmaxs <- if(ncol.fit == 2) { rowmaxs <- fit[,2] } else rowmaxs <- apply(fit, 1, max) if(ncol.fit == 1) { fit <- if(is.class.response) format(sprint("%.2f", fit), justify="right") else format(fit, digits=digits, justify="right") } else { digits <- 2 max.rowmaxs <- max(rowmaxs, na.rm=TRUE) format <- if(max.rowmaxs >= 1) sprint("%%%d.%df", digits+2, digits) else sprint("%%%d.%df", digits+1, digits) fit <- matrix(paste(sprint(format, fit)), nrow=nrow(fit)) fit <- apply(fit, 1, paste, collapse=" ") fit <- if(max.rowmaxs >= 1) gsub("0.", " .", fit, fixed=TRUE) else gsub("0.", ".", fit, fixed=TRUE) } list(fit=fit, rowmaxs=rowmaxs, ncol.fit=ncol.fit) } trim.surrounding.space <- function(s) { gsub("^ | $", "", s) } as.numeric.na.ok <- function(x) { old.warn <- getOption("warn") on.exit(options(warn=old.warn)) options(warn=-1) as.numeric(x) } apply.varlen.to.colnames <- function(rules, varnames, varlen) { shortnames <- my.abbreviate(varnames, varlen) colnames <- colnames(rules) for(i in seq_along(varnames)) { ivar <- 3 * i + 2 colnames[ivar:(ivar+2)] <- sub(varnames[i], shortnames[i], colnames[ivar:(ivar+2)], fixed=TRUE) } list(colnames=colnames, shortnames=shortnames) } format.rules <- function(rules, style, cover, clip.facs, eq, lt, ge, and, when, digits, trace, response.name, varnames, ncol.fit) { n <- function() { icol <<- icol + 1 sprint("c%d", icol) } new <- if(ncol.fit > 1) data.frame(class=rules$lab, fit=rules$fit, stringsAsFactors=FALSE) else data.frame(fit=rules$fit, stringsAsFactors=FALSE) rownames(new) <- rownames(rules) new$when <- when icol <- 0 subsequent <- repl(FALSE, nrow(rules)) for(i in seq_along(varnames)) { varname <- varnames[i] ivar <- 3 * i + 2 rules.eq <- rules[, ivar] rules.lt <- rules[, ivar+1] rules.ge <- rules[, ivar+2] is.eq <- rules.eq != "" is.lt <- rules.lt != "" is.ge <- rules.ge != "" lt.or.ge <- is.lt | is.ge if(any(is.eq)) { new[,n()] <- ifelse(subsequent & is.eq, and, "") subsequent <- (subsequent | is.eq) new[,n()] <- ifelse(clip.facs & is.eq & rules.eq == "0", sprint("not %s", varname), ifelse(clip.facs & is.eq & rules.eq == "1", sprint("%s ", varname), ifelse(!clip.facs & is.eq, sprint("%s", varname), ""))) new[,n()] <- ifelse(is.eq & !clip.facs, eq, "") new[,n()] <- ifelse(is.eq & (!clip.facs | (rules.eq != "1" & rules.eq != "0")), rules.eq, "") } else if(any(lt.or.ge)) { new[,n()] <- ifelse(subsequent & lt.or.ge, and, "") subsequent <- (subsequent | lt.or.ge) verysmall <- exp10(-abs(digits) - 8) if(any(is.lt)) rules.lt <- format(as.numeric(rules.lt) + verysmall, digits=digits, justify="right") if(any(is.ge)) rules.ge <- format(as.numeric(rules.ge) + verysmall, digits=digits, justify="right") new[,n()] <- ifelse(lt.or.ge, varname, "") if(any(is.lt & is.ge)) { new[,n()] <- ifelse(is.lt & !is.ge, lt, ifelse(is.ge & !is.lt, ge, ifelse(is.ge | is.lt, eq, ""))) new[,n()] <- ifelse(is.lt & is.ge, rules.ge, ifelse(is.lt, rules.lt, "")) new[,n()] <- ifelse(is.lt & is.ge, "to", "") new[,n()] <- ifelse(is.lt & is.ge, rules.lt, ifelse(is.ge, rules.ge, "")) } else { new[,n()] <- ifelse(is.lt, lt, ifelse(is.ge, ge, "")) new[,n()] <- ifelse(is.lt, rules.lt, ifelse(is.ge, rules.ge, "")) } } } new } fit.colname <- function(ylevels, fit, ncol.fit) { ylevels <- ylevels[1:ncol.fit] width <- unlist(gregexpr(" ", substring(fit, 2)))[1] if(width < 1) width <- 1 format <- sprint("%%%d.%ds", width, width) colname <- paste.collapse(sprint(format, ylevels)) colname <- paste0(colname, " ") colname } trim.leading.space.in.columns <- function(x) { stopifnot(NROW(x) > 0) for(j in 1:NCOL(x)) { x1 <- x[,j] x1 <- x1[x1 != ""] len <- unlist(gregexpr("^ +", x1)) if(!is.null(len)) { min <- min(len) if(min > 0) x[,j] <- substring(x[,j], min+1) } } x } var.is.in.rule <- function(varname, rule) { rule[paste0(varname, "=") ] != "" || rule[paste0(varname, "<") ] != "" || rule[paste0(varname, ">=")] != "" } parse.split.lab <- function(split.lab, trace) { i <- gregexpr("|", split.lab, fixed=TRUE)[[1]] if(length(i) != 2 || i[2] < i[1] + 2) stopf("Cannot parse split.lab %s", bar.to.space(split.lab)) varname <- substring(split.lab, 1, i[1]-1) op <- substring(split.lab, i[1]+1, i[2]-1) cut <- substring(split.lab, i[2]+1) trace2(trace, " split.lab %-20.20s varname %s op %s cut %s\n", bar.to.space(split.lab), varname, op, cut) list(varname=varname, op=op, cut=cut) } parse.node.lab <- function(node.lab) { err <- function(node.lab) stop0("Cannot parse node.lab \"", gsub("\n", "\\\\n", node.lab[1]), "\"") lab <- fit <- cover <- repl("", length(node.lab)) i <- gregexpr("\n", node.lab, fixed=TRUE)[[1]] if(length(i) > 2) { i <- c(i[1], i[length(i)]) } if(length(i) == 1) { if(i <= 0) err(node.lab) fit <- substr(node.lab, 1, i-1) cover <- substr(node.lab, i+1, nchar(node.lab)-1) } else if(length(i) == 2) { lab <- substr(node.lab, 1, i[1]-1) fit <- substr(node.lab, i[1]+1, i[2]-1) fit <- gsub(" ", " ", fit) fit <- gsub("\n", " ", fit) cover <- substr(node.lab, i[2]+1, nchar(node.lab)-1) } else err(node.lab) list(lab=lab, fit=fit, cover=cover) } bar.to.space <- function(s) { quote.with.c(gsub("|", " ", s, fixed=TRUE)) } order.rows <- function(rules, rowmaxs) { order <- order(as.numeric(rules$iclass), rowmaxs, 1:length(rowmaxs), na.last=TRUE) rules[order, , drop=FALSE] } order.cols <- function(rules, varorder, varnames, nrules.per.var) { order <- order(nrules.per.var, decreasing=TRUE) if(!is.null(varorder)) { stopifnot(is.character(varorder)) varorder <- rev(varorder) pmatch <- pmatch(varorder, varnames, duplicates.ok=TRUE) for(i in seq_along(pmatch)) { if(is.na(pmatch[i])) warnf( "varorder=\"%s\" does not uniquely match one of: %s", varorder[i], paste.trunc(quotify(varnames))) else { order <- order[order != pmatch[i]] order <- c(pmatch[i], order) } } } ivar <- 3 * rep(order, each=3) + c(2, 3, 4) list(rules = rules[, c(1:4, ivar), drop=FALSE], varnames = varnames[order]) } print.style.tall <- function(rules, style, eq, and, when) { newline.with.spaces <- function() { printf("\n") if(style == "tall") printf(" ") else printf(format, "", " ", "") printf(format2, "") if(have.nn) printf(format.nn, "") } colnames <- colnames(rules) ncol <- ncol(rules) have.nn <- colnames[1] == "nn" have.cover <- colnames[ncol] == " cover" response.name <- colnames[1 + have.nn] class.probs <- colnames[2 + have.nn] have.class.probs <- class.probs != "" if(is.null(and)) and <- " & " format <- sprint("%%-%ds %%s %%-%ds", nchar(response.name), max(nchar(rules[, 1 + have.nn]))) nn.width <- if(have.nn) max(nchar(rules[, 1]))+3 else 0 format.nn <- sprint("%%-%ds", nn.width) format2 <- "%0.0s" if(have.class.probs) { printf(format.nn, "") printf(format, "", " ", "") printf(" %s\n", colnames[2 + have.nn]) if(style == "tallw") format2 <- sprint("%%-%ds ", nchar(colnames[2 + have.nn])) } for(i in 1:nrow(rules)) { if(have.nn) printf(format.nn, sprint("[%s] ", rules[i, 1])) printf(format, response.name, eq, rules[i, 1 + have.nn]) for(j in (2 + have.nn):(ncol(rules) - have.cover)) { e <- trim.surrounding.space(rules[i, j]) if(nchar(e)) { if(e == when) { if(have.cover) printf(" with cover %-s", gsub("^ *", "", rules[i, ncol])) printf(" %s", if(when == ":EMPTY:") "" else when) newline.with.spaces() } else if(e == and) newline.with.spaces() else printf(" %s", e) } } printf("\n") if(i != nrow(rules)) printf("\n") } } stop.if.dot.arg.used <- function() { NULL } check.if.dot.arg.supported.by.rpart.rules <- function(x=stop("no 'x' arg"), type=0, extra="auto", under=FALSE, fallen.leaves=FALSE, nn=FALSE, ni=FALSE, yesno=TRUE, branch=if(fallen.leaves) 1 else .2, uniform=TRUE, left=TRUE, xflip=FALSE, yflip=FALSE, digits=2, varlen=0, faclen=0, cex=NULL, tweak=1, clip.right.labs=TRUE, compress=TRUE, ycompress=uniform, Margin=0, space=1, gap=NULL, snip=FALSE, snip.fun=NULL, trace=FALSE, box.col=0, box.palette=0, pal.thresh=NULL, pal.node.fun=FALSE, border.col=col, round=NULL, leaf.round=NULL, shadow.col=0, prefix="", suffix="", xsep=NULL, under.font=1, under.col=1, under.cex=.8, split.cex=1, split.font=2, split.family=1, split.col=1, split.box.col=0, split.border.col=0, split.lty=1, split.lwd=NULL, split.round=0, split.shadow.col=0, split.prefix="", right.split.prefix=NULL, split.suffix="", right.split.suffix=NULL, facsep=" or ", eq=" is ", lt=" < ", ge=" >= ", branch.col=if(is.zero(branch.type)) 1 else "gray", branch.lty=1, branch.lwd=NULL, branch.type=0, branch.tweak=1, min.branch.width=.002, branch.fill=branch.col, nn.cex=NULL, nn.font=3, nn.family="", nn.col=1, nn.box.col=0, nn.border.col=nn.col, nn.lty=1, nn.lwd=NULL, nn.round=.3, yes.text="yes", no.text="no", node.fun=NULL, split.fun=NULL, FUN="text", nspace=branch, minbranch=.3, do.par=TRUE, add.labs=TRUE, clip.left.labs=(type == 5), fam.main="", yshift=0, yspace=space, shadow.offset=.4, split.adj=NULL, split.yshift=0, split.space=space, split.yspace=yspace, split.shadow.offset=shadow.offset, nn.adj=.5, nn.yshift=0, nn.space=.8, nn.yspace=.5, ygap=gap/2, under.ygap=.5, yesno.yshift=0, xcompact=TRUE, ycompact=uniform, xcompact.ratio=.8, min.inter.height=4, max.auto.cex=1, min.auto.cex=.15, ycompress.cex=.7, accept.cex=1.1, shift.amounts=c(1.5, 2), Fallen.yspace=.1, boxes.include.gap=FALSE, legend.x=NULL, legend.y=NULL, legend.cex=1, and=" & ", when=" when ", because=" because ", null.model="null model", response.name=NULL, RPART.PREDICT=FALSE, WHERE=NULL) { warn1 <- function(arg) { warnf("rpart.rules: ignoring argument '%s'", deparse(substitute(arg))) } if(!missing(type)) warn1(type) if(!missing(under)) warn1(under) if(!missing(fallen.leaves)) warn1(fallen.leaves) if(!missing(nn)) warn1(nn) if(!missing(ni)) warn1(ni) if(!missing(yesno)) warn1(yesno) if(!missing(branch)) warn1(branch) if(!missing(uniform)) warn1(uniform) if(!missing(left)) warn1(left) if(!missing(xflip)) warn1(xflip) if(!missing(yflip)) warn1(yflip) if(!missing(cex)) warn1(cex) if(!missing(tweak)) warn1(tweak) if(!missing(clip.right.labs)) warn1(clip.right.labs) if(!missing(compress)) warn1(compress) if(!missing(ycompress)) warn1(ycompress) if(!missing(Margin)) warn1(Margin) if(!missing(space)) warn1(space) if(!missing(gap)) warn1(gap) if(!missing(snip)) warn1(snip) if(!missing(snip.fun)) warn1(snip.fun) if(!missing(box.col)) warn1(box.col) if(!missing(box.palette)) warn1(box.palette) if(!missing(pal.thresh)) warn1(pal.thresh) if(!missing(pal.node.fun)) warn1(pal.node.fun) if(!missing(border.col)) warn1(border.col) if(!missing(round)) warn1(round) if(!missing(leaf.round)) warn1(leaf.round) if(!missing(shadow.col)) warn1(shadow.col) if(!missing(prefix)) warn1(prefix) if(!missing(suffix)) warn1(suffix) if(!missing(xsep)) warn1(xsep) if(!missing(under.font)) warn1(under.font) if(!missing(under.col)) warn1(under.col) if(!missing(under.cex)) warn1(under.cex) if(!missing(split.cex)) warn1(split.cex) if(!missing(split.font)) warn1(split.font) if(!missing(split.family)) warn1(split.family) if(!missing(split.col)) warn1(split.col) if(!missing(split.box.col)) warn1(split.box.col) if(!missing(split.border.col)) warn1(split.border.col) if(!missing(split.lty)) warn1(split.lty) if(!missing(split.lwd)) warn1(split.lwd) if(!missing(split.round)) warn1(split.round) if(!missing(split.shadow.col)) warn1(split.shadow.col) if(!missing(split.prefix)) warn1(split.prefix) if(!missing(right.split.prefix)) warn1(right.split.prefix) if(!missing(split.suffix)) warn1(split.suffix) if(!missing(right.split.suffix)) warn1(right.split.suffix) if(!missing(branch.col)) warn1(branch.col) if(!missing(branch.lty)) warn1(branch.lty) if(!missing(branch.lwd)) warn1(branch.lwd) if(!missing(branch.type)) warn1(branch.type) if(!missing(branch.tweak)) warn1(branch.tweak) if(!missing(min.branch.width)) warn1(min.branch.width) if(!missing(branch.fill)) warn1(branch.fill) if(!missing(nn.cex)) warn1(nn.cex) if(!missing(nn.font)) warn1(nn.font) if(!missing(nn.family)) warn1(nn.family) if(!missing(nn.col)) warn1(nn.col) if(!missing(nn.box.col)) warn1(nn.box.col) if(!missing(nn.border.col)) warn1(nn.border.col) if(!missing(nn.lty)) warn1(nn.lty) if(!missing(nn.lwd)) warn1(nn.lwd) if(!missing(nn.round)) warn1(nn.round) if(!missing(yes.text)) warn1(yes.text) if(!missing(no.text)) warn1(no.text) if(!missing(node.fun)) warn1(node.fun) if(!missing(split.fun)) warn1(split.fun) if(!missing(FUN)) warn1(FUN) if(!missing(nspace)) warn1(nspace) if(!missing(minbranch)) warn1(minbranch) if(!missing(do.par)) warn1(do.par) if(!missing(add.labs)) warn1(add.labs) if(!missing(clip.left.labs)) warn1(clip.left.labs) if(!missing(fam.main)) warn1(fam.main) if(!missing(yshift)) warn1(yshift) if(!missing(yspace)) warn1(yspace) if(!missing(shadow.offset)) warn1(shadow.offset) if(!missing(split.adj)) warn1(split.adj) if(!missing(split.yshift)) warn1(split.yshift) if(!missing(split.space)) warn1(split.space) if(!missing(split.yspace)) warn1(split.yspace) if(!missing(split.shadow.offset)) warn1(split.shadow.offset) if(!missing(nn.adj)) warn1(nn.adj) if(!missing(nn.yshift)) warn1(nn.yshift) if(!missing(nn.space)) warn1(nn.space) if(!missing(nn.yspace)) warn1(nn.yspace) if(!missing(ygap)) warn1(ygap) if(!missing(under.ygap)) warn1(under.ygap) if(!missing(yesno.yshift)) warn1(yesno.yshift) if(!missing(xcompact)) warn1(xcompact) if(!missing(ycompact)) warn1(ycompact) if(!missing(xcompact.ratio)) warn1(xcompact.ratio) if(!missing(min.inter.height)) warn1(min.inter.height) if(!missing(max.auto.cex)) warn1(max.auto.cex) if(!missing(min.auto.cex)) warn1(min.auto.cex) if(!missing(ycompress.cex)) warn1(ycompress.cex) if(!missing(accept.cex)) warn1(accept.cex) if(!missing(shift.amounts)) warn1(shift.amounts) if(!missing(Fallen.yspace)) warn1(Fallen.yspace) if(!missing(boxes.include.gap)) warn1(boxes.include.gap) if(!missing(legend.x)) warn1(legend.x) if(!missing(legend.y)) warn1(legend.y) if(!missing(legend.cex)) warn1(legend.cex) list(extra=extra, digits=digits, varlen=varlen, faclen=faclen, trace=trace, facsep=facsep, eq=eq, lt=lt, ge=ge, and=and, when=when, because=because, null.model=null.model, response.name=response.name, rpart.predict=RPART.PREDICT, where=WHERE) }
event.size.plot <- function(netfacs.data) { plot.netfacs <- netfacs.data$event.size.information plot.netfacs <- plot.netfacs[plot.netfacs$observed.prob > 0 | plot.netfacs$expected.prob > 0, ] if (is.null(netfacs.data$used.parameters$test.condition)) { netfacs.data$used.parameters$test.condition <- "all cases" } if (is.null(netfacs.data$used.parameters$null.condition)) { netfacs.data$used.parameters$null.condition <- "random" } plot.data <- data.frame( combination.size = c( plot.netfacs$combination.size, plot.netfacs$combination.size ), prob = c( plot.netfacs$expected.prob, plot.netfacs$observed.prob ), type = c("expected probability", "observed probability") ) plot.data$type <- sort(plot.data$type) plot.data$combination.size <- as.factor(plot.data$combination.size) p <- ggplot( plot.data, aes( x = .data$combination.size, y = .data$prob, color = .data$type ) ) + xlab("element size") + ylab("event size probability") + ggtitle(paste( c( "Comparison of event sizes between ", netfacs.data$used.parameters$test.condition, " and ", netfacs.data$used.parameters$null.condition ), collapse = "" )) + geom_point(size = 3, alpha = 0.7) + ylim(0, 1) + theme_bw() return(p) }
realloc <- function(h, x, nh, Nh, nume, my_env){ Dh <- double(h) deno.new <- 0 DhTot <- 0 for(i in 1:(length(x)-1)) { if(nh[i] == Nh[i]){ nh[i] <- nh[i] } else if(nh[i] > Nh[i]){ Dh[i] <- nh[i]-Nh[i] DhTot <- DhTot + Dh[i] nh[i] <- Nh[i] } else { deno.new <- deno.new + nume[i] } } for(i in 1:(length(x)-1)) { if(nh[i] < Nh[i]){ nh[i] <- nh[i] + DhTot*(nume[i]/deno.new) } } my_env$nh <- nh }
type_ensure <- function(df, ensure_nms, type = "numeric") { ensure <- df[ensure_nms] is_type <- paste0("is.", type) is_to_fix <- !purrr::map_lgl(ensure, rlang::as_function(is_type)) col_nms_to_fix <- names(ensure[is_to_fix]) warn_if_changing_type(ensure = ensure, is_to_fix = is_to_fix, type = type) as_type <- paste0("as.", type) purrr::modify_at(df, col_nms_to_fix, rlang::as_function(as_type)) } warn_if_changing_type <- function(ensure, is_to_fix, type) { nm_to_fix <- names(ensure[is_to_fix]) if (any(is_to_fix)) { msg <- paste0( commas(nm_to_fix), " should be ", type, ". Type found: ", commas(unique(purrr::map_chr(ensure[nm_to_fix], typeof))), "\n", "* Changing type (of ", commas(nm_to_fix), ") accordingly." ) warn(msg) } }
add_css_second_header <- function(tableHTML, css, second_headers) { if (!inherits(tableHTML, 'tableHTML')) stop('tableHTML needs to be a tableHTML object') if (length(css[[1]]) != length(css[[2]])) stop('css needs to be a list of two elements of the same length') attributes <- attributes(tableHTML) css_comp <- paste0(css[[1]], ':', css[[2]], ';') css_comp <- paste(css_comp, collapse = '') style <- paste0('style="', css_comp, '"') for (i in second_headers) { tableHTML <- gsub(paste0('id="tableHTML_second_header_', i, '" style='), paste0('id="tableHTML_second_header_', i, '"'), tableHTML) tableHTML <- gsub(paste0('id="tableHTML_second_header_', i, '"'), paste0('id="tableHTML_second_header_', i, '" ', style), tableHTML) tableHTML <- gsub(';""', ';', tableHTML) } attributes(tableHTML) <- attributes tableHTML }
context('Testing \'bitbucket\'') skip_if_offline() skip_on_cran() test_that('bitbucket_repo_search() works', { res <- bitbucket_repo_search(repo = 'dominicjbennett/om..hello.world') expect_true(inherits(res, 'data.frame')) expect_warning(bitbucket_repo_search(repo = 'dominicjbennett/notarepo')) }) test_that('bitbucket_tags() works', { res <- bitbucket_tags(repos = 'dominicjbennett/om..hello.world') expect_true(inherits(res, 'tbl_df')) expect_warning(bitbucket_tags(repos = 'dominicjbennett/notarepo')) })
beast123 <- function( Y, metadata=list(), prior=list(),mcmc=list(), extra=list(), season=c('harmonic','dummy','none'), ... ) { if (!hasArg("Y") || is.list(Y) || length(Y)==1) { warning("Something is wrong with the input 'Y'. Make sure the Y par is a vector, a matrix, or an 3D array.") invisible(return(NULL)) } season=match.arg(season) if ( season=='none') { if( is.numeric(metadata) ) { tmp = metadata metadata = list(); if (length(tmp)==1){ metadata$startTime=tmp(1) } else if( length(tmp)==2 ){ metadata$startTime=tmp(1) metadata$deltaTime=tmp(2) } } else if (is.list(metadata)) { } else{ metatata=list() } } else { if( is.numeric(metadata) ) { tmp = metadata metadata = list(); if(length(tmp)==1){ metadata$period=tmp(1) } } else if (is.list(metadata)) { } else{ metadata=list() } } if (is.null(metadata$season)) metadata$season=season; funstr='beastv4' ANS=.Call( BEASTV4_rexFunction, list(funstr,Y,metadata,prior,mcmc,extra), 212345) invisible(return(ANS)) } meanfilter <- function(x,n=5){filter(x,rep(1,n), sides=2)}
simrun_binomial <- function(t, band_const, choose.n = 100, num.holdout.points = 10, true.beta = c(-1, 0.5), CI = 0.95) { set.seed(123 + t) choose.k <- band_const * ceiling(choose.n^0.2) all.results <- matrix(NA, nrow = 9, ncol = 5) rownames(all.results) = c("comptime", "mse", "bias-para", "mse-para", "confint-para", "width-para", "width-smooth", "intervalscore-smooth","mse-meanresp") colnames(all.results) = c("mgcv-default", "mgcv-psplines", "gamm4", "vagams-unstructuredA", "vagams-bdiagA") sel.holdout.points <- sample(1:choose.n, num.holdout.points) binomial_dat <- gamsim(n = choose.n, dist = "binomial", extra.X = data.frame(intercept = rep(1,choose.n), treatment = rep(c(0,1), each = choose.n/2)), beta = true.beta) tic <- proc.time() fit.mgcv1 <- gam(y~treatment + s(x0) + s(x1) + s(x2) + s(x3), data = binomial_dat, family = binomial(link = "logit")) all.results[1,1] <- (proc.time() - tic)[3] all.results[2,1] <- mean((fit.mgcv1$linear.predictors - binomial_dat$linear.predictor)^2) all.results[3,1] <- fit.mgcv1$coefficients[2] - true.beta[2] all.results[4,1] <- (fit.mgcv1$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.mgcv1)$p.coeff[2] - qnorm(0.5 + CI/2) *summary(fit.mgcv1)$se[2], summary(fit.mgcv1)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.mgcv1)$se[2]) all.results[5,1] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,1] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- gam(y ~ treatment + s(x0) + s(x1) + s(x2) + s(x3), family = binomial(link = "logit"), data = new.dat) get.pred <- predict.gam(fit1, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$coefficients[1:2], se.fit = c(get.pred$se.fit)) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = binomial_dat, holdout.points = sel.holdout.points) all.results[7,1] <- colMeans(do.holdfits)[1] all.results[8,1] <- colMeans(do.holdfits)[3] all.results[9,1] <- mean((binomial()$linkinv(fit.mgcv1$linear.predictors) - binomial()$linkinv(binomial_dat$linear.predictor))^2) rm(holdout.fit) tic <- proc.time() fit.mgcv2 <- gam(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), data = binomial_dat, family = binomial(link = "logit")) all.results[1,2] <- (proc.time() - tic)[3] all.results[2,2] <- mean((fit.mgcv2$linear.predictors - binomial_dat$linear.predictor)^2) all.results[3,2] <- fit.mgcv2$coefficients[2] - true.beta[2] all.results[4,2] <- (fit.mgcv2$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.mgcv2)$p.coeff[2] - qnorm(0.5 + CI/2) * summary(fit.mgcv2)$se[2], summary(fit.mgcv2)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.mgcv2)$se[2]) all.results[5,2] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,2] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- gam(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), family = binomial(link = "logit"), data = new.dat) get.pred <- predict.gam(fit1, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$coefficients[1:2], se.fit = c(get.pred$se.fit)) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = binomial_dat, holdout.points = sel.holdout.points) all.results[7,2] <- colMeans(do.holdfits)[1] all.results[8,2] <- colMeans(do.holdfits)[3] all.results[9,2] <- mean((binomial()$linkinv(fit.mgcv2$linear.predictors) - binomial()$linkinv(binomial_dat$linear.predictor))^2) rm(holdout.fit) tic <- proc.time() fit.gamm4 <- gamm4(y ~ treatment + s(x0, bs = "ps", k = choose.k+2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), data = binomial_dat, family = binomial(link = "logit")) all.results[1,3] <- (proc.time() - tic)[3] all.results[2,3] <- mean((fit.gamm4$gam$linear.predictors - binomial_dat$linear.predictor)^2) all.results[3,3] <- fit.gamm4$gam$coefficients[2] - true.beta[2] all.results[4,3] <- (fit.gamm4$gam$coefficients[2] - true.beta[2])^2 make.ci <- c(summary(fit.gamm4$gam)$p.coeff[2] - qnorm(0.5 + CI/2) * summary(fit.gamm4$gam)$se[2], summary(fit.gamm4$gam)$p.coeff[2] + qnorm(0.5 + CI/2) * summary(fit.gamm4$gam)$se[2]) all.results[5,3] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,3] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- gamm4(y ~ treatment + s(x0, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x1, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x2, bs = "ps", k = choose.k + 2, m = c(2,1)) + s(x3, bs = "ps", k = choose.k + 2, m = c(2,1)), family = binomial(link = "logit"), data = new.dat) get.pred <- predict.gam(fit1$gam, newdata = data[holdout.points,], se.fit = TRUE) get.pred <- list(fit = c(get.pred$fit) - cbind(1,data[holdout.points,"treatment"])%*%fit1$gam$coefficients[1:2], se.fit = c(get.pred$se.fit)) make.ci <- cbind(get.pred$fit - qnorm(0.5 + CI/2) * get.pred$se.fit, get.pred$fit + qnorm(0.5 + CI/2) * get.pred$se.fit) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- try(holdout.fit(data = binomial_dat, holdout.points = sel.holdout.points), silent = TRUE) if(!inherits(do.holdfits, "try-error")) { all.results[7,3] <- colMeans(do.holdfits)[1] all.results[8,3] <- colMeans(do.holdfits)[3] rm(holdout.fit) } all.results[9,3] <- mean((binomial()$linkinv(fit.gamm4$gam$linear.predictors) - binomial()$linkinv(binomial_dat$linear.predictor))^2) tic <- proc.time() Rprof() fit.va1 <- vagam(y = binomial_dat$y, smooth.X = binomial_dat[,c(2:5)], para.X = data.frame(treatment = binomial_dat$treatment), int.knots = choose.k, A.struct = "unstructured", save.data = TRUE, family = binomial(), para.se = TRUE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) Rprof(NULL) all.results[1,4] <- (proc.time() - tic)[3] all.results[2,4] <- mean((fit.va1$linear.predictors - binomial_dat$linear.predictor)^2) all.results[3,4] <- fit.va1$kappa[2] - true.beta[2] all.results[4,4] <- (fit.va1$kappa[2] - true.beta[2])^2 make.ci <- c(fit.va1$para.stat[1,2] - qnorm(0.5 + CI/2) * fit.va1$para.stat[2,2], fit.va1$para.stat[1,2] + qnorm(0.5 + CI/2) * fit.va1$para.stat[2,2]) all.results[5,4] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,4] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- vagam(y = new.dat$y, smooth.X = new.dat[,2:5], para.X = data.frame(treatment = new.dat$treatment), int.knots = choose.k, A.struct = "unstructured", save.data = TRUE, para.se = FALSE, family = binomial(), control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) get.pred <- predict.vagam(fit1, new.smoothX = data[holdout.points,2:5]) make.ci <- cbind(get.pred$lower.bound, get.pred$upper.bound) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = binomial_dat, holdout.points = sel.holdout.points) all.results[7,4] <- colMeans(do.holdfits)[1] all.results[8,4] <- colMeans(do.holdfits)[3] all.results[9,4] <- mean((binomial()$linkinv(fit.va1$linear.predictors) - binomial()$linkinv(binomial_dat$linear.predictor))^2) rm(holdout.fit) tic <- proc.time() fit.va2 <- vagam(y = binomial_dat$y, smooth.X = binomial_dat[,2:5], para.X = data.frame(treatment = binomial_dat$treatment), int.knots = choose.k, A.struct = "block", save.data = TRUE, family = binomial(), para.se = TRUE, control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) all.results[1,5] <- (proc.time() - tic)[3] all.results[2,5] <- mean((fit.va2$linear.predictors - binomial_dat$linear.predictor)^2) all.results[3,5] <- fit.va2$kappa[2] - true.beta[2] all.results[4,5] <- (fit.va2$kappa[2] - true.beta[2])^2 make.ci <- c(fit.va2$para.stat[1,2] - qnorm(0.5 + CI/2) * fit.va2$para.stat[2,2], fit.va2$para.stat[1,2] + qnorm(0.5 + CI/2) * fit.va2$para.stat[2,2]) all.results[5,5] <- findInterval(true.beta[2], make.ci) == 1 all.results[6,5] <- diff(make.ci) holdout.fit <- function(data, holdout.points) { new.dat <- data[-holdout.points,] fit1 <- vagam(y = new.dat$y, smooth.X = new.dat[,2:5], para.X = data.frame(treatment = new.dat$treatment), int.knots = choose.k, A.struct = "block", save.data = TRUE, para.se = FALSE, family = binomial(), control = list(eps = 1e-3, maxit = 1000, trace = FALSE, seed_number = t, mc.samps = 4000, pois.step.size = 0.01)) get.pred <- predict.vagam(fit1, new.smoothX = data[holdout.points,2:5]) make.ci <- cbind(get.pred$lower.bound, get.pred$upper.bound) all.widths <- apply(make.ci,1,diff) all.coverage <- sapply(1:length(holdout.points), function(x) findInterval(data$f[x], make.ci[x,]) != 1) all.interval.score <- all.widths + (2/(1 - CI))*as.numeric(all.coverage) return(cbind(all.widths, all.coverage, all.interval.score)) } do.holdfits <- holdout.fit(data = binomial_dat, holdout.points = sel.holdout.points) all.results[7,5] <- colMeans(do.holdfits)[1] all.results[8,5] <- colMeans(do.holdfits)[3] all.results[9,5] <- mean((binomial()$linkinv(fit.va2$linear.predictors) - binomial()$linkinv(binomial_dat$linear.predictor))^2) return(all.results) }
context("canvasXpress Web Charts - Oncoprint") test_that("cXoncoprint1", { check_ui_test(cXoncoprint1()) }) test_that("cXoncoprint2", { check_ui_test(cXoncoprint2()) }) test_that("cXoncoprint3", { check_ui_test(cXoncoprint3()) }) test_that("cXoncoprint4", { if (interactive()) { check_ui_test(cXoncoprint4()) warning("The values on Tooltips are different from web. In the R version, there are NaN values while the web has zeroes. ", "This is due to the differences in the underlying data") } else { message("Non-interactive oncoprint-4 test skipped") } })
plot.retention <- function( x, type="all", percentages=TRUE, omitLast=TRUE, colors, durations, y, ... ) { if(percentages) d = x$retainPerc else d = x$retainCount nCohorts = nrow(d) nPeriods = ncol(d) - ifelse(omitLast, 1, 0) if(missing(colors)) colors = 1:nPeriods if (any(c("cohortsByDate", "all") %in% type)) { plot(c(1, nPeriods), range(d, na.rm=T), type="n", xlab="Calendar Date", ylab="", axes=F) axis(1, 1:nPeriods, x$dates[1:nPeriods]); axis(2); axis(4) title("Retention Rates of Multiple Cohorts") for (i in 1:nCohorts) { len = nPeriods - (i - 1) lines(i:nPeriods, d[i, 1:len], col=colors[i]) } } if (any(c("cohortsByAge", "all") %in% type)) { plot(c(1, nPeriods), range(d, na.rm=T), type="n", xlab="Periods since Cohort Start", ylab="", axes=F) axis(1, 1:nPeriods, colnames(d)[1:nPeriods]); axis(2); axis(4) title("Retention Rates of Multiple Cohorts") for (i in 1:nCohorts) { len = nPeriods - (i - 1) lines(1:len, d[i, 1:len], col=colors[i]) } } if (any(c("byDuration", "all") %in% type)) { if(missing(durations)) durations = c(1, 2, 5, 10) nDurations = length(durations) plot(c(1, nPeriods), range(d, na.rm=T), type="n", xlab="Calendar Date", ylab="", axes=F) axis(1, 1:nPeriods, x$dates[1:nPeriods]); axis(2); axis(4) title("Retention for Different Durations") for (i in 1:nDurations) { len = nPeriods - (i - 1) lines(1:len, d[1:len, i], col=colors[i]) } legend("left", legend=colnames(d)[durations], lty=rep(1, nDurations), col=colors[1:nDurations], bty="n") } }
summarizeSigCounts <- function(contrastList, columns = c("P.Value", "adj.P.Val", "Qvalue", "qvalue.lfdr", "ihw.adj_pvalue"), sigThresholds = c(0.01, 0.05, 0.05, 0.05, 0.05), fcThreshold = 0) { assertthat::assert_that(length(columns) == length(sigThresholds), msg = "Supplied sigThresholds should be same length as supplied columns.") getSigCounts <- function(df, columns, thresholds, fcThreshold) { counts <- list() for (i in 1:length(columns)) { idx <- df[columns[i]] <= thresholds[i] if (fcThreshold > 0) { fcidx <- abs(df$logFC) >= log2(fcThreshold) idx <- idx & fcidx } counts[columns[i]] <- sum(idx) } return(unlist(counts)) } columns <- columns[columns %in% colnames(contrastList[[1]])] sigThresholds <- sigThresholds[columns %in% colnames(contrastList[[1]])] myrows <- list() for (i in 1:length(contrastList)) { myrows[[i]] <- getSigCounts(contrastList[[i]], columns, sigThresholds, fcThreshold) } DF <- do.call("rbind", myrows) rownames(DF) <- names(contrastList) colnames(DF) <- columns return(DF) }
last_check <- function() { package_data$last_handle }
JSU <- function (mu.link="identity", sigma.link="log", nu.link ="identity", tau.link="log") { mstats <- checklink( "mu.link", "Johnson SU", substitute(mu.link), c("inverse", "log", "identity", "own")) dstats <- checklink("sigma.link", "Johnson SU", substitute(sigma.link), c("inverse", "log", "identity", "own")) vstats <- checklink( "nu.link", "Johnson SU", substitute(nu.link), c("inverse", "log", "identity", "own")) tstats <- checklink( "tau.link", "Johnson SU", substitute(tau.link), c("inverse", "log", "identity", "own")) structure( list(family = c("JSU", "Johnson SU"), parameters = list(mu=TRUE, sigma=TRUE, nu=TRUE, tau=TRUE), nopar = 4, type = "Continuous", mu.link = as.character(substitute(mu.link)), sigma.link = as.character(substitute(sigma.link)), nu.link = as.character(substitute(nu.link)), tau.link = as.character(substitute(tau.link)), mu.linkfun = mstats$linkfun, sigma.linkfun = dstats$linkfun, nu.linkfun = vstats$linkfun, tau.linkfun = tstats$linkfun, mu.linkinv = mstats$linkinv, sigma.linkinv = dstats$linkinv, nu.linkinv = vstats$linkinv, tau.linkinv = tstats$linkinv, mu.dr = mstats$mu.eta, sigma.dr = dstats$mu.eta, nu.dr = vstats$mu.eta, tau.dr = tstats$mu.eta, dldm = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dldm <- (z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))/(c*sigma) dldm }, d2ldm2 = function(y,mu,sigma,nu,tau){ rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dldm <- (z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))/(c*sigma) d2ldm2 <- -dldm*dldm d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2,-1e-15) d2ldm2 }, dldd = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dldd <- (z+w^(0.5)*sinh(omega))*(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5)))) dldd <- (dldd-1)/sigma dldd } , d2ldd2 = function(y,mu,sigma,nu,tau){ rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dldd <- (z+w^(0.5)*sinh(omega))*(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5)))) dldd <- (dldd-1)/sigma d2ldd2 <- -dldd*dldd d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2,-1e-15) d2ldd2 }, dldv = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dlogcdv <- (rtau*w*sinh(2*omega))/(w*cosh(2*omega)+1) dzdv <- -(z+w^(.5)*sinh(omega))*dlogcdv+(rtau*w^(.5)*cosh(omega)) dldv <- -dlogcdv-(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))*dzdv+r dldv } , d2ldv2 = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dlogcdv <- (rtau*w*sinh(2*omega))/(w*cosh(2*omega)+1) dzdv <- -(z+w^(.5)*sinh(omega))*dlogcdv+(rtau*w^(.5)*cosh(omega)) dldv <- -dlogcdv-(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))*dzdv+r d2ldv2 <- -dldv*dldv d2ldv2 <- ifelse(d2ldv2 < -1e-4, d2ldv2,-1e-4) d2ldv2 }, dldt = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dlogcdt <- -rtau*w*((1/(w-1))+((cosh(2*omega))/(w*cosh(2*omega)+1))) dlogcdt <- dlogcdt+((nu*w*sinh(2*omega))/(w*cosh(2*omega)+1)) dzdt <- -(z+w^(.5)*sinh(omega))*dlogcdt-rtau*w^(.5)*sinh(omega)+nu*w^(.5)*cosh(omega) dldt <- -dlogcdt-(1/rtau)-(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))*dzdt+(r*(r+nu))/rtau dldt <- -dldt*rtau*rtau dldt } , d2ldt2 = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dlogcdt <- -rtau*w*((1/(w-1))+((cosh(2*omega))/(w*cosh(2*omega)+1))) dlogcdt <- dlogcdt+((nu*w*sinh(2*omega))/(w*cosh(2*omega)+1)) dzdt <- -(z+w^(.5)*sinh(omega))*dlogcdt-rtau*w^(.5)*sinh(omega)+nu*w^(.5)*cosh(omega) dldt <- -dlogcdt-(1/rtau)-(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))*dzdt+(r*(r+nu))/rtau dldt <- -dldt*rtau*rtau d2ldt2 <- -dldt*dldt d2ldt2 <- ifelse(d2ldt2 < -1e-4, d2ldt2,-1e-4) d2ldt2 } , d2ldmdd = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dldm <- (z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))/(c*sigma) dldd <- (z+w^(0.5)*sinh(omega))*(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5)))) dldd <- (dldd-1)/sigma d2ldmdd <- -(dldm*dldd) d2ldmdd }, d2ldmdv = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dldm <- (z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))/(c*sigma) dlogcdv <- (rtau*w*sinh(2*omega))/(w*cosh(2*omega)+1) dzdv <- -(z+w^(.5)*sinh(omega))*dlogcdv+(rtau*w^(.5)*cosh(omega)) dldv <- -dlogcdv-(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))*dzdv+r d2ldmdv <- -(dldm*dldv) d2ldmdv }, d2ldmdt = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dldm <- (z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))/(c*sigma) dlogcdt <- -rtau*w*((1/(w-1))+((cosh(2*omega))/(w*cosh(2*omega)+1))) dlogcdt <- dlogcdt+((nu*w*sinh(2*omega))/(w*cosh(2*omega)+1)) dzdt <- -(z+w^(.5)*sinh(omega))*dlogcdt-rtau*w^(.5)*sinh(omega)+nu*w^(.5)*cosh(omega) dldt <- -dlogcdt-(1/rtau)-(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))*dzdt+(r*(r+nu))/rtau dldt <- -dldt*rtau*rtau d2ldmdt <- -(dldm*dldt) d2ldmdt }, d2ldddv = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dldd <- (z+w^(0.5)*sinh(omega))*(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5)))) dldd <- (dldd-1)/sigma dlogcdv <- (rtau*w*sinh(2*omega))/(w*cosh(2*omega)+1) dzdv <- -(z+w^(.5)*sinh(omega))*dlogcdv+(rtau*w^(.5)*cosh(omega)) dldv <- -dlogcdv-(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))*dzdv+r d2ldddv <- -(dldd*dldv) d2ldddv }, d2ldddt = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dldd <- (z+w^(0.5)*sinh(omega))*(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5)))) dldd <- (dldd-1)/sigma dlogcdt <- -rtau*w*((1/(w-1))+((cosh(2*omega))/(w*cosh(2*omega)+1))) dlogcdt <- dlogcdt+((nu*w*sinh(2*omega))/(w*cosh(2*omega)+1)) dzdt <- -(z+w^(.5)*sinh(omega))*dlogcdt-rtau*w^(.5)*sinh(omega)+nu*w^(.5)*cosh(omega) dldt <- -dlogcdt-(1/rtau)-(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))*dzdt+(r*(r+nu))/rtau dldt <- -dldt*rtau*rtau d2ldddt <- -(dldd*dldt) d2ldddt }, d2ldvdt = function(y,mu,sigma,nu,tau) { rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (y-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau dlogcdv <- (rtau*w*sinh(2*omega))/(w*cosh(2*omega)+1) dzdv <- -(z+w^(.5)*sinh(omega))*dlogcdv+(rtau*w^(.5)*cosh(omega)) dldv <- -dlogcdv-(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))*dzdv+r dlogcdt <- -rtau*w*((1/(w-1))+((cosh(2*omega))/(w*cosh(2*omega)+1))) dlogcdt <- dlogcdt+((nu*w*sinh(2*omega))/(w*cosh(2*omega)+1)) dzdt <- -(z+w^(.5)*sinh(omega))*dlogcdt-rtau*w^(.5)*sinh(omega)+nu*w^(.5)*cosh(omega) dldt <- -dlogcdt-(1/rtau)-(z/(z*z+1)+(r/(rtau*(z*z+1)^(.5))))*dzdt+(r*(r+nu))/rtau dldt <- -dldt*rtau*rtau d2ldvdt <- -(dldv*dldt) d2ldvdt }, G.dev.incr = function(y,mu,sigma,nu,tau,...) { -2*dJSU(y,mu,sigma,nu,tau,log=TRUE) } , rqres = expression( rqres(pfun="pJSU", type="Continuous", y=y, mu=mu, sigma=sigma, nu=nu, tau=tau)) , mu.initial = expression(mu <- (y+mean(y))/2), sigma.initial = expression(sigma<- rep(sd(y)/4, length(y))), nu.initial = expression(nu <- rep(0, length(y))), tau.initial = expression(tau <-rep(1, length(y))), mu.valid = function(mu) TRUE, sigma.valid = function(sigma) all(sigma > 0), nu.valid = function(nu) TRUE , tau.valid = function(tau) all(tau > 0), y.valid = function(y) TRUE, mean = function(mu, sigma, nu, tau) mu, variance = function(mu, sigma, nu, tau) sigma^2 ), class = c("gamlss.family","family")) } dJSU <- function(x, mu = 0, sigma = 1, nu = 1, tau = 1, log = FALSE) { if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", "")) if (any(tau < 0)) stop(paste("tau must be positive", "\n", "")) rtau <- 1/tau if (length(tau)>1) w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) else w <- if (rtau<0.0000001) 1 else exp(rtau^2) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (x-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau loglik <- -log(sigma)-log(c)-log(rtau)-.5*log(z*z+1)-.5*log(2*pi)-.5*r*r if(log==FALSE) ft <- exp(loglik) else ft <- loglik ft } pJSU <- function(q, mu = 0, sigma = 1, nu = 1, tau = 1, lower.tail = TRUE, log.p = FALSE) { if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", "")) if (any(tau < 0)) stop(paste("tau must be positive", "\n", "")) rtau <- 1/tau w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) z <- (q-(mu+c*sigma*w^(.5)*sinh(omega)))/(c*sigma) r <- -nu + asinh(z)/rtau p <- pNO(r,0,1) if(lower.tail==TRUE) p <- p else p <- 1-p if(log.p==FALSE) p <- p else p <- log(p) p } qJSU <- function(p, mu=0, sigma=1, nu=1, tau=1, lower.tail = TRUE, log.p = FALSE) { if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", "")) if (any(tau < 0)) stop(paste("tau must be positive", "\n", "")) if (log.p==TRUE) p <- exp(p) else p <- p if (any(p <= 0)|any(p >= 1)) stop(paste("p must be between 0 and 1", "\n", "")) if (lower.tail==TRUE) p <- p else p <- 1-p rtau <- 1/tau r <- qNO(p,0,1) z <- sinh(rtau*(r+nu)) w <- ifelse(rtau<0.0000001,1,exp(rtau^2)) omega <- -nu*rtau c <- (.5*(w-1)*(w*cosh(2*omega)+1))^(-0.5) q <- (mu+c*sigma*w^(.5)*sinh(omega))+c*sigma*z q } rJSU <- function(n, mu=0, sigma=1, nu=1, tau=1) { if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", "")) n <- ceiling(n) p <- runif(n) r <- qJSU(p, mu=mu, sigma=sigma, nu=nu, tau=tau, lower.tail = TRUE, log.p = FALSE) r }
Hitem <- function(X,index=NULL,EO,O){ J <- colnames(X) nn <- length(J) cmbf <- combinations(n=nn, r=3, v=J, set=FALSE, repeats.allowed=FALSE) Hj <- NULL if (is.null(index)){ for (iter in 1:nn){ persi <- cmbf[which(apply(cmbf,1, function(x) J[iter] %in% x)),] Hj <- c(Hj,1 - sum(O[persi]) / sum(EO[persi])) } }else{ persi <- cmbf[which(apply(cmbf,1, function(x) index %in% x)),] Hj <- c(Hj,1 - sum(O[persi]) / sum(EO[persi])) } return(Hj) }
poisson.objective = function(theta, x, y, lower, components, constraints = constraints, upper, penalty, residuals){ ini_vars <- function(x,y,upper, lower){ coef_reg = stats::coef(stats::glm.fit(x = x, y = y, family = stats::poisson())) coef_reg <- ifelse(data.table::between(coef_reg, upper = upper, lower = lower), coef_reg, stats::runif(1, min = lower, max = upper)) names(coef_reg) = c(colnames(x)) return(coef_reg) } prepareBounds <- function(upper, lower, x){ total_params = ncol(x) if(is.null(upper)) upper = rep(Inf, total_params) if(length(upper) == 1) upper = rep(upper, total_params) if(length(upper) != total_params) upper = c(upper, rep(Inf,total_params-length(upper))) if(is.null(lower))lower = rep(-Inf, total_params) if(length(lower) == 1)lower = rep(lower, total_params) if(length(lower) != total_params) lower = c(lower, rep(-Inf,total_params-length(lower))) lower = lower[1:total_params] upper = upper[1:total_params] return(list(upper = upper, lower = lower)) } objective = function(theta, x, y, LOWER, UPPER, penalty, constraints = NULL, nms){ names(theta) = nms if(is.null(constraints)){ z = 0 }else{ text_split = strsplit(constraints, ',')[[1]] TH <- data.table::setDT(as.list(theta)) z = sapply(text_split, function(cond){ with(TH, !eval(rlang::parse_expr(cond))) }) z = any(z) * 1 } k <- ncol(x) beta <- theta[1:k] expected_y <- exp(x %*% beta) N = nrow(x) LL <- - sum(stats::dpois(y, lambda = expected_y, log = T)) + any(beta > UPPER[1:k]) * penalty + any(beta < LOWER[1:k]) * penalty + z * penalty return(LL) } final_coef <- function(coef){ return(coef) } fitted = function(coef, x, components = F, type = c('response')){ expected_y <- x %*% coef if(components){ MatCoef = diag(coef) colnames(MatCoef) = names(coef) com = x %*% MatCoef expected_y = cbind(expected_y, com) colnames(expected_y)[1] = 'Total' } if(type == 'response'){ expected_y = exp(expected_y) return(expected_y) } if(type == 'link'){ return(expected_y) } } predict = function(coef, newxreg, components = F, type = c('response')){ expected_y <- newxreg %*% coef if(components){ MatCoef = diag(coef) colnames(MatCoef) = names(coef) com = newxreg %*% MatCoef expected_y = cbind(expected_y, com) colnames(expected_y)[1] = 'Total' } if(type == 'response'){ expected_y = exp(expected_y) } if(type == 'link'){ return(expected_y) } return(expected_y) } vcov = function(coef, x, fitted, data, residuals){ w <- as.numeric(fitted) v <- diag(w, length(w), length(w)) XtX_inv <- solve(t(x) %*% v %*% x) } error_fun <- function(y, fitted){ data.frame( LogLik = sum(stats::dpois(y, lambda = fitted, log = T)) ) } return(list(objective = objective, ini_vars = ini_vars, prepareBounds = prepareBounds, final_coef = final_coef, fitted = fitted, predict = predict, error_fun = error_fun, vcov = vcov)) }
knitr::opts_chunk$set(collapse = TRUE, comment = " library(madrat, quietly = TRUE) getConfig("cachefolder", verbose = FALSE) getDependencies("calcTauTotal") setConfig(verbosity=3) fp <- madrat:::fingerprint("calcTauTotal", details = TRUE) setConfig(globalenv = TRUE) readData <- function() return(1) readData2 <- function() return(2) calcExample <- function() { a <- readSource("Data") } calcExample2 <- function() { a <- readSource("Data") if(FALSE) b <- readSource("Data2") } fp <- madrat:::fingerprint("calcExample", details = TRUE) fp2 <- madrat:::fingerprint("calcExample2", details = TRUE) readData <- function() return(99) fp <- madrat:::fingerprint("calcExample", details = TRUE) fp2 <- madrat:::fingerprint("calcExample2", details = TRUE) readData2 <- function() { "! return(99) } fp <- madrat:::fingerprint("calcExample", details = TRUE) fp2 <- madrat:::fingerprint("calcExample2", details = TRUE) calcExample2 <- function() { "! a <- readSource("Data") if(FALSE) b <- readSource("Data2") } calcExample3 <- function() { a <- calcOutput("Example2") } fp2 <- madrat:::fingerprint("calcExample2", details = TRUE) fp3 <- madrat:::fingerprint("calcExample3", details = TRUE)
[ { "title": "Rose plot using Deducers ggplot2 plot builder", "href": "https://www.r-statistics.com/2010/08/rose-plot-using-deducers-ggplot2-plot-builder/" }, { "title": "Updated climate projections by cities", "href": "https://blog.snap.uaf.edu/2015/04/02/updated-climate-projections-by-cities/" }, { "title": "Building a custom database of country time-series data using Quandl", "href": "http://stevepowell.blot.im/building-a-custom-database-using-quandl/" }, { "title": "Universal portfolio, part 10", "href": "http://optimallog.blogspot.com/2012/08/universal-portfolio-part-10.html" }, { "title": "HOW TO: Package vignettes in plain LaTeX", "href": "http://www.jottr.org/2015/02/latex-vignettes.html" }, { "title": "Maximum likelihood estimates for multivariate distributions", "href": "http://blog.free.fr/" }, { "title": "A probability exercise on the Bernoulli distribution", "href": "http://statistic-on-air.blogspot.com/2009/07/probability-exercise-on-bernoulli.html" }, { "title": "Variance matrix differences", "href": "https://feedproxy.google.com/~r/PortfolioProbeRLanguage/~3/DZHwlFLXyKo/" }, { "title": "Optimizing a multivariable function parameters using a random method, genetic algorithm and simulated annealing in R", "href": "http://tata-box-blog.blogspot.com/2013/10/optimizing-multivariable-function.html" }, { "title": "Package intergraph goes 2.0", "href": "http://bc.bojanorama.pl/2013/05/package-intergraph-goes-2-0/" }, { "title": "Hadley Wickham goes behind the scenes on ggplot2", "href": "http://blog.revolutionanalytics.com/2012/01/hadley-wickham-goes-behind-the-scenes-on-ggplot2.html" }, { "title": "Multiseat setup via Userful", "href": "http://dirk.eddelbuettel.com/blog/2009/01/03/" }, { "title": "Part 2: Make your R figures legible in Powerpoint/Keynote presentations", "href": "http://lukemiller.org/index.php/2014/01/part-2-make-your-r-figures-legible-in-powerpointkeynote-presentations/" }, { "title": "Practical Implementation of Neural Network based time series (stock) prediction – PART 1", "href": "http://intelligenttradingtech.blogspot.com/2010/01/systems.html" }, { "title": "RMarkdown and Metropolis/Mtheme", "href": "http://dirk.eddelbuettel.com/blog/2016/06/30/" }, { "title": "For those interested in knitr with Rmarkdown to beamer slides", "href": "https://web.archive.org/web/http://r.andrewredd.us/?p=63" }, { "title": "Geolocate IP addresses in R", "href": "https://heuristically.wordpress.com/2013/05/20/geolocate-ip-addresses-in-r/" }, { "title": "Extended (Simple) ASN Graph Visualization Example [R to D3]", "href": "http://rud.is/b/2013/02/08/extended-simple-example-asn-graph-visualization-example-r-to-d3/" }, { "title": "How to Remove State Abbreviations from a Choroplethr Map", "href": "http://www.arilamstein.com/blog/2015/08/20/how-to-remove-state-abbreviations-from-a-choroplethr-map/" }, { "title": "Market predictions for years 2011 and 2012", "href": "https://feedproxy.google.com/~r/PortfolioProbeRLanguage/~3/uDaLFCWTqYk/" }, { "title": "the vim cheat sheet", "href": "https://xianblog.wordpress.com/2015/03/18/the-vim-cheat-sheet/" }, { "title": "Exporting data from R into WinBUGS’s “R/S-plus list format”", "href": "https://robertgrantstats.wordpress.com/2012/11/27/exporting-data-from-r-into-winbugss-rs-plus-list-format/" }, { "title": "How to show explained variance in a multilevel model", "href": "http://ww1.danielmarcelino.com/how-to-show-explained-variance-in-a-multilevel-model/" }, { "title": "R package for Computational Actuarial Science", "href": "http://freakonometrics.hypotheses.org/17074" }, { "title": "Alternate R Markdown Templates", "href": "http://rud.is/b/2016/02/04/alternate-r-markdown-templates/" }, { "title": "Presenting your findings with R", "href": "https://grollchristian.wordpress.com/2013/09/07/presentations-in-r/" }, { "title": "Thoughts on the Ljung-Box test", "href": "http://robjhyndman.com/hyndsight/ljung-box-test/" }, { "title": "Special issue of TOMACS", "href": "https://xianblog.wordpress.com/2011/03/10/special-issue-of-tomacs/" }, { "title": "How UpStream uses R for Attribution Analysis", "href": "http://blog.revolutionanalytics.com/2013/04/upstream-attribution-analysis.html" }, { "title": "New Revolution Analytics office in Singapore", "href": "http://blog.revolutionanalytics.com/2012/08/new-revolution-analytics-office-in-singapore.html" }, { "title": "Rによるモンテカルロ法入門", "href": "https://xianblog.wordpress.com/2013/05/14/%EF%BD%92%E3%81%AB%E3%82%88%E3%82%8B%E3%83%A2%E3%83%B3%E3%83%86%E3%82%AB%E3%83%AB%E3%83%AD%E6%B3%95%E5%85%A5%E9%96%80/" }, { "title": "Programming languages, ranked by popularity", "href": "http://blog.revolutionanalytics.com/2010/12/programming-languages-ranked-by-popularity.html" }, { "title": "Extending accessibility of open-source statistical software to the masses A shiny case study", "href": "http://educate-r.org//2016/10/07/canam.html" }, { "title": "Example 7.36: Propensity score stratification", "href": "https://feedproxy.google.com/~r/SASandR/~3/6ZjuluboPF4/example-736-propensity-score.html" }, { "title": "dvn – Sharing Reproducible Research from R", "href": "http://ropensci.org/blog/2014/02/20/dvn-dataverse-network/" }, { "title": "useR 2010 at NIST in Gaithersburg", "href": "http://dirk.eddelbuettel.com/blog/2010/07/24/" }, { "title": "Slouching towards simulating investment skill", "href": "https://feedproxy.google.com/~r/PortfolioProbeRLanguage/~3/-Ske3KEykkc/" }, { "title": "Documentation and tutorial roundup", "href": "https://web.archive.org/web/https://dataninja.wordpress.com/2007/06/04/documentation-and-tutorial-roundup/" }, { "title": "Streamline your analyses linking R to SAS: the workfloweR experiment", "href": "http://datascienceplus.com/streamline-your-analyses-linking-r-to-sas/" }, { "title": "Migrating from SPSS/Excel to R, Part 3: Preparing your Data", "href": "https://psychwire.wordpress.com/2011/10/29/migrating-from-spssexcel-to-r-part-3-preparing-your-data/" }, { "title": "cricketr adapts to the Twenty20 International!", "href": "https://gigadom.wordpress.com/2015/08/08/cricketr-adapts-to-the-twenty20-international/" }, { "title": "sample(): “Monkey’s Paw” style programming in R", "href": "http://www.win-vector.com/blog/2016/03/sample-monkeys-paw-style-programming-in-r/" }, { "title": "Optimizing My R Code", "href": "https://web.archive.org/web/http://blog.quanttrader.org/2011/04/optimizing-my-r-code/" }, { "title": "An Integrated Shiny App for a Course on Repeated Measurements Analysis", "href": "http://iprogn.blogspot.com/2015/10/an-integrated-shiny-app-for-course-on.html" }, { "title": "Determine your Fitbit stride length using a GPS watch", "href": "http://blog.tafkas.net/2014/07/15/determine-your-fitbit-stride-length-using-a-gps-watch/" }, { "title": "Stan 1.2.0 and RStan 1.2.0", "href": "http://andrewgelman.com/2013/03/06/stan-1-2-0-and-rstan-1-2-0/" }, { "title": "Six of One (Plot), Half-Dozen of the Other", "href": "http://badhessian.org/2014/07/six-of-one-plot-half-dozen-of-the-other/" }, { "title": "bayesboot: An R package for doing the Bayesian bootstrap", "href": "http://www.sumsar.net/blog/2016/02/bayesboot-an-r-package/" }, { "title": "Visualising a Classification in High Dimension, part 2", "href": "http://freakonometrics.hypotheses.org/19536" }, { "title": "R Markdown v0.9.5", "href": "https://blog.rstudio.org/2016/03/21/rmarkdown-v0-9-5/" } ]
cat("\014") rm(list = ls()) setwd("~/git/of_dollars_and_data") source(file.path(paste0(getwd(),"/header.R"))) library(MASS) library(tidyr) library(dplyr) n_simulations <- 10000 initial_client_capital <- 1 * 10^6 n_years <- 40 set.seed(12345) mu_market <- 0.1 sd_market <- 0.2 run_sim <- function(hf_outperformance, hf_management_fee, hf_performance_fee, hf_performance_above_benchmark, management_and_performance_fee, hf_deduct_fees, market_management_fee, hf_corr_to_market ){ mu_hf <- mu_market + hf_outperformance sd_hf <- sd_market rho <- hf_corr_to_market cor_matrix <- matrix(c(1, rho, rho, 1), ncol = 2, byrow = TRUE) var_matrix <- c(sd_market, sd_hf) %*% t(c(sd_market, sd_hf)) cov_matrix <- var_matrix * cor_matrix client_hf_matrix <- matrix(NA, nrow = n_simulations, ncol = n_years) client_market_matrix <- matrix(NA, nrow = n_simulations, ncol = n_years) for (i in 1:n_years){ ret <- mvrnorm(n_simulations, mu = c(mu_market, mu_hf), Sigma = cov_matrix, empirical = TRUE) if (hf_performance_above_benchmark == 1){ ret_above_benchmark <- pmax(0, ret[, 2] - ret[, 1]) } else { ret_above_benchmark <- pmax(0, ret[, 2]) } if (i == 1){ client_market_matrix[, i] <- initial_client_capital * (1 + ret[, 1]) * (1 - market_management_fee) management_fee <- initial_client_capital * hf_management_fee if (management_and_performance_fee == 0){ performance_fee <- initial_client_capital * ret_above_benchmark * hf_performance_fee hf_final_fee <- pmax(management_fee, performance_fee) } else { performance_fee <- pmax(0, ((initial_client_capital * ret_above_benchmark - management_fee) * hf_performance_fee)) hf_final_fee <- management_fee + performance_fee } client_hf_matrix[, i] <- (initial_client_capital * (1 + ret[, 2])) - hf_final_fee if (hf_deduct_fees == 1){ fee_deduction <- sapply(performance_fee, function(x){ ifelse(x == 0, management_fee, 0)}) }else { fee_deduction <- 0 } } else { client_market_matrix[, i] <- client_market_matrix[, (i - 1)] * (1 + ret[, 1]) * (1 - market_management_fee) management_fee <- client_hf_matrix[, (i - 1)] * hf_management_fee if (management_and_performance_fee == 0){ performance_fee <- client_hf_matrix[, (i - 1)] * ret_above_benchmark * hf_performance_fee hf_final_fee <- pmax(0, pmax(management_fee, performance_fee) - fee_deduction) } else { performance_fee <- pmax(0, ((client_hf_matrix[, (i - 1)] * ret_above_benchmark - management_fee) * hf_performance_fee)) hf_final_fee <- management_fee + performance_fee } client_hf_matrix[, i] <- (client_hf_matrix[, (i - 1)] * (1 + ret[, 2])) - hf_final_fee if (hf_deduct_fees == 1){ fee_deduction <- sapply(performance_fee, function(x){ ifelse(x == 0, management_fee, 0)}) }else { fee_deduction <- 0 } } } print(paste0("The hedge fund outperformed the market (net of fees) in ", sum(client_hf_matrix[, n_years] > client_market_matrix[, n_years])/n_simulations * 100, "% of simulations")) return(sum(client_hf_matrix[, n_years] > client_market_matrix[, n_years])/n_simulations) } results <- data.frame(hf_outperformance = numeric(), hf_management_fee = numeric(), hf_performance_fee = numeric(), hf_performance_above_benchmark = integer(), management_and_performance_fee = integer(), hf_deduct_fees = integer(), market_management_fee = numeric(), hf_corr_to_market = numeric(), hf_outperform_pct = numeric(), scenario = integer(), mu_market = numeric(), sd_market = numeric() ) i <- 1 for (o in seq(0, 0.04, by = 0.01)){ for (c in c(0, 0.5, 0.9)){ for (scenario in seq(1, 3, by = 1)){ if (scenario == 1){ mf <- 0.01 pf <- 0.3 pab <- 1 map <- 0 df <- 1 } else if (scenario == 2){ mf <- 0.02 pf <- 0.2 pab <- 0 map <- 1 df <- 0 } else if (scenario == 3){ mf <- 0.01 pf <- 0.0 pab <- 0 map <- 1 df <- 0 } results[i, "hf_outperformance"] <- o results[i, "hf_management_fee"] <- mf results[i, "hf_performance_fee"] <- pf results[i, "hf_performance_above_benchmark"] <- pab results[i, "management_and_performance_fee"] <- map results[i, "hf_deduct_fees"] <- df results[i, "market_management_fee"] <- 0.0005 results[i, "hf_corr_to_market"] <- c results[i, "scenario"] <- scenario results[i, "mu_market"] <- mu_market results[i, "sd_market"] <- sd_market results[i, "hf_outperform_pct"] <- run_sim( hf_outperformance = o, hf_management_fee = mf, hf_performance_fee = pf, hf_performance_above_benchmark = pab, management_and_performance_fee = map, hf_deduct_fees = df, market_management_fee = 0.0005, hf_corr_to_market = c ) i <- i + 1 print(i) } } } saveRDS(results, paste0(localdir, "13-hf-correlation-results.Rds"))
annotatemsbatch <- function(msbatch, ppm_precursor = 5, ppm_products = 10, rttol = 5, coelCutoff = 0.8, lipidClassesPos = c("MG", "LPC", "LPE", "PC", "PCo", "PCp", "PE", "PEo", "PEp", "PG", "Sph", "SphP", "Cer", "CerP", "AcylCer", "SM", "Carnitines", "CE", "DG", "TG"), lipidClassesNeg = c("FA", "FAHFA", "LPC", "LPE", "LPG", "LPI", "LPS", "PC", "PCo", "PCp", "PE", "PEo", "PEp", "PG", "PI", "PS", "Sph", "SphP", "Cer", "CerP", "AcylCer", "CL", "BA"), dbs, simplifyAnnotations = FALSE, parallel = FALSE, ncores){ if (parallel){ if (missing(ncores)){ stop("ncores argument is required if parallel is TRUE") } if (ncores > parallel::detectCores()){ ncores <- parallel::detectCores() - 1 message("ncores is greater than availables cores. ", ncores, " will be used.") } } if (missing(dbs)){ dbs <- assignDB() } toannotate <- which(msbatch$metaData$acquisitionmode %in% c("DIA", "DDA")) if (parallel) { cl <- makePSOCKcluster(ncores) doParallel::registerDoParallel(cl) `%d%` <- `%dopar%` } else { `%d%` <- `%do%` } x <- c() msbatch$msobjects[toannotate] <- foreach::foreach(x = 1:length(toannotate)) %d% { if (msbatch$msobjects[[toannotate[x]]]$metaData$generalMetadata$polarity == "positive"){ idPOS(msobject = msbatch$msobjects[[toannotate[x]]], ppm_precursor = 5, ppm_products = 10, rttol = 5, coelCutoff = 0.8, lipidClasses = lipidClassesPos, dbs = dbs) } else if (msbatch$msobjects[[toannotate[x]]]$metaData$generalMetadata$polarity == "negative"){ idNEG(msobject = msbatch$msobjects[[toannotate[x]]], ppm_precursor = 5, ppm_products = 10, rttol = 5, coelCutoff = 0.8, lipidClasses = lipidClassesNeg, dbs = dbs) } } if (parallel){ parallel::stopCluster(cl) } msbatch <- joinAnnotationResults(msbatch, simplifyAnnotations = simplifyAnnotations) return(msbatch) }
library(sp23design) trueParameters <- list(p0 = 0.3, p1 = 0.6, pdiffHyp=0.3, theta = list( alpha = log(.17), beta = log(1.0), gamma = log(1.0)), baselineLambda = 0.35, etaHyp = 0.25) trialParameters <- list(minimumNumberOfEvents = 20, minimumIncreaseInV = 0.2, numberRecruitedEachYear = c(80, 120, 160, 160), followupTime = 3, adminCensoringTime = 7, interimLookTime = c(1, 2, 3, 5, 7), type1ErrorForResponse = 0.05, type2ErrorForResponse = 0.01, glrBoundarySidedness = "one", type1Error = 0.05, type2Error = 0.10, epsType1 = 1/3, epsType2 = 1/3) sp23Design <- generateSP23Design(trueParameters, trialParameters) trialHistory <- exploreSP23Design(sp23Design, numberOfSimulations=25, rngSeed=7325543) result <- analyzeSP23Design(sp23Design, trialHistory)$designSummary cat("numberOfTimesH0RIsRejectedAtFirstLook", result[["numberOfTimesH0RIsRejectedAtFirstLook"]], "\n") cat("numberOfTimesH0RIsRejected", result[["numberOfTimesH0RIsRejected"]], "\n") cat("numberOfTimesStoppedForFutility", result[["numberOfTimesStoppedForFutility"]], "\n") cat("numberOfTimesH0SIsAccepted", result[["numberOfTimesH0SIsAccepted"]], "\n") cat("numberOfTimesH0SIsRejected", result[["numberOfTimesH0SIsRejected"]], "\n") cat("numberOfTimesFutilityDecidedAtLastLook", result[["numberOfTimesFutilityDecidedAtLastLook"]], "\n") cat("numberOfTimesTrialEndedAtLook", result[["numberOfTimesTrialEndedAtLook"]], "\n") cat("avgExitTime", result[["avgExitTime"]], "\n")
context("xml_schema") test_that("xml schema validates", { doc <- read_xml(system.file("extdata/order-doc.xml", package = "xml2")) schema <- read_xml(system.file("extdata/order-schema.xml", package = "xml2")) expect_true(xml_validate(doc, schema)) }) test_that("xml schema errors", { str <- readLines(system.file("extdata/order-doc.xml", package = "xml2")) str <- sub("<quantity>1", "<quantity>", str) str <- sub("95819", "ABC95819", str) str <- sub('partNum="926-AA"', "", str) doc <- read_xml(paste(str, collapse = "\n")) schema <- read_xml(system.file("extdata/order-schema.xml", package = "xml2")) out <- xml_validate(doc, schema) expect_false(out) errors <- attr(out, "errors") expect_is(errors, "character") expect_length(errors, 4) })
est.mfa <- function (init_para, Y, itmax, tol, conv_measure, ...) { p <- ncol(Y) n <- nrow(Y) fit <- init_para loglikeNtau <- try(do.call('logL_tau.mfa', c(list(Y = Y), fit)), silent = TRUE) if ((any(class(loglikeNtau) %in% "try-error")) || (any(class(loglikeNtau) %in% 'character'))) { FIT <- paste('in computing the log-likelihood before EM-steps') class(FIT) <- "error" return(FIT) } fit <- append(fit, loglikeNtau) for (niter in 1 : itmax) { FIT <- do.call('Mstep.mfa', c(list(Y = Y), fit)) if (any(class(FIT) %in% 'error')) { FIT <- paste('in ', niter, 'iteration of the M-step', FIT) class(FIT) <- "error" return(FIT) } loglikeNtau <- try(do.call('logL_tau.mfa', c(list(Y = Y), FIT)), silent = TRUE) if ((any(class(loglikeNtau) %in% "try-error")) || (any(class(loglikeNtau) %in% 'character'))) { FIT <- paste('in computing the log-likelihood after the ', niter, 'th the M-step', FIT$logL, sep = '') class(FIT) <- "error" return(FIT) } FIT <- append(FIT, loglikeNtau) if ((any(class(FIT$logL) == "NULL")) || (any(class(FIT$logL) == 'character'))) { FIT <- paste('in computing the log-likelihood after the ', niter, 'th the M-step', FIT$logL, sep = '') class(FIT) <- "error" return(FIT) } else { if ((FIT$logL == -Inf) | is.na(FIT$logL)) { FIT <- paste('the log-likelihood computed after the ', niter, 'th iteration of the M-step is not finite', sep = '') class(FIT) <- "error" return(FIT) } } if ((conv_measure == "diff") && (abs(FIT$logL - fit$logL) < tol)) break if ((conv_measure == "ratio") && (abs((FIT$logL - fit$logL) / FIT$logL) < tol)) break fit <- FIT } class(FIT) <- "mfa" return(FIT) }
isNonZeroNumberOrInfScalar <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = 1, zeroAllowed = FALSE, negativeAllowed = TRUE, positiveAllowed = TRUE, nonIntegerAllowed = TRUE, naAllowed = FALSE, nanAllowed = FALSE, infAllowed = TRUE, message = message, argumentName = argumentName) }
library(Polychrome) set.seed(9641) Dark24 <- createPalette(24, c(" M = 100000) set.seed(701138) Light24 <- createPalette(24, " ddir <- file.path("..", "..", "data") save(Dark24, file = file.path(ddir, "Dark24.rda")) save(Light24, file = file.path(ddir, "Light24.rda"))