code
stringlengths
1
13.8M
context("Loading tests") string1 <- "data/0005/00/00050060.dpa" string2 <- "00050060.dpa" dp <- dpload(dp.file = system.file("extdata", "00010001.dpa", package = "densitr")) dpl <- dpload(dp.directory = system.file("extdata", package = "densitr")) dpl2 <- dpload(dp.directory = system.file("extdata", package = "densitr"), recursive = FALSE) test_that("Extract dpa regex", { expect_match(extract_dpa_name(string1), "00050060") expect_match(extract_dpa_name(string2), "00050060") }) test_that("Loading file vs folder", { expect_equal(length(dpl), 15) expect_equal(length(dpl2), 5) expect_is(dp, "dp") expect_is(dpl[[1]], "dp") }) test_that("Combining dpas should always return df", { expect_true(is.data.frame(combine_footers(dpl2))) expect_true(is.data.frame(combine_data(dpl2))) })
library(shiny) library(shinyMobile) shinyApp( ui = f7Page( title = "My app", options = list(pullToRefresh = TRUE), f7SingleLayout( navbar = f7Navbar( title = "Single Layout", hairline = FALSE, shadow = TRUE ), toolbar = f7Toolbar( position = "bottom", f7Link(label = "Link 1", href = "https://www.google.com"), f7Link(label = "Link 2", href = "https://www.google.com") ), uiOutput("growingList") ) ), server = function(input, output, session) { observe({ print(input$ptr) print(counter()) }) counter <- reactiveVal(value = 1) observeEvent(input$ptr, { ptrStatus <- if (input$ptr) "on" f7Dialog( text = paste('ptr is', ptrStatus), type = "alert" ) newValue <- counter() + 1 counter(newValue) }) output$growingList <- renderUI({ f7List( lapply(seq_len(counter()), function(j) { f7ListItem( letters[j], media = f7Icon("alarm_fill"), right = "Right Text", header = "Header", footer = "Footer" ) }) ) }) } )
library(ergm) context("clustering coefficient function") nNodes = sample(5:100, 1) test_that("A complete graph of random size has a clustering coefficient of 1", expect_equal(gwdegree:::clusteringCoef(network(nNodes, density = 1, directed = FALSE)), 1)) test_that("A graph with a single two-path has a clustering coefficient of 0", expect_equal(gwdegree:::clusteringCoef(network(3, numedges = 2, directed = FALSE)), 0)) test_that("Clustering coefficient can't be calculated for an empty graph of random size", expect_true(is.nan(gwdegree:::clusteringCoef(network(nNodes, density = 0, directed = FALSE)))))
saveDetrendJPG = function (rwl, detrend, folderName = "Detrend", work.dir=NULL, detrend.method="", select.series =1:(ncol(rwl)) ){ if (is.null(work.dir)) work.dir = getwd() dir.create(folderName, showWarnings = FALSE) setwd(folderName) for (i in select.series){ seriesnames=colnames(rwl) yr.vec = as.numeric(rownames(rwl)) jpeg(paste(seriesnames[i], ".jpg", sep=""),width = 1200, height = 600, quality=100) plot(yr.vec, rwl[,i], type="l", xlab = "Years",ylab = "", main = seriesnames[i], las = 1, col="blue") mtext(paste(detrend.method, sep=""), line=0.5, side =3, adj =1, cex=0.90, col="blue",font=1) mtext("Detrender", line=0.5, side =3, adj =0, cex=0.90, col="blue",font=1) lines(yr.vec, detrend[,i], col=2) dev.off() } setwd(work.dir) }
variance_adjust <- function (fit, ctl.idx = NULL, ebayes = TRUE, pooled = TRUE, evar = TRUE, rsvar = TRUE, bin = 10, rescaleconst = NULL) { n = ncol(fit$betahat) p = nrow(fit$betahat) if (is.null(ctl.idx)) { if (is.list(fit$ctl)) rsvar = FALSE else ctl.idx = fit$ctl } if (length(fit$multiplier) == p) fit$multiplier = matrix(fit$multiplier, p, n) if (length(fit$df) == 1) fit$df = rep(fit$df, n) if (TRUE) { varbetahat = p.BH = matrix(NA, p, n) for (l in 1:p) { varbetahat[l, ] = fit$sigma2 * fit$multiplier[l, ] p.BH[l, ] = p.adjust(fit$p[l, ], method = "BH") } fit$p.BH = p.BH fit$varbetahat = varbetahat fit$Fpvals.BH = p.adjust(fit$Fpvals, method = "BH") } if (rsvar) { varbetahat = pvals = p.BH = tvals = matrix(0, p, n) for (l in 1:p) { multiplier = mean(fit$betahat[l, ctl.idx]^2/fit$sigma2[ctl.idx]) varbetahat[l, ] = fit$sigma2 * multiplier tvals[l, ] = fit$betahat[l, ]/sqrt(varbetahat[l, ]) pvals[l, ] = 2 * pt(-abs(tvals[l, ]), fit$df) p.BH[l, ] = p.adjust(pvals[l, ], method = "BH") } fit$p.rsvar = pvals fit$p.rsvar.BH = p.BH fit$varbetahat.rsvar = varbetahat } if (evar) { varbetahat = pvals = p.BH = tvals = matrix(0, p, n) for (l in 1:p) { varbetahat[l, ] = get_empirical_variances(fit$sigma2, fit$betahat[l, ], bin = bin, rescaleconst = rescaleconst) tvals[l, ] = fit$betahat[l, ]/sqrt(varbetahat[l, ]) pvals[l, ] = 2 * pt(-abs(tvals[l, ]), Inf) p.BH[l, ] = p.adjust(pvals[l, ], method = "BH") } fit$p.evar = pvals fit$p.evar.BH = p.BH fit$varbetahat.evar = varbetahat } if (ebayes) { temp = sigmashrink(fit$sigma2, fit$df) fit$sigma2.ebayes = temp$sigma2 fit$df.ebayes = temp$df varbetahat = pvals = p.BH = tvals = matrix(0, p, n) for (l in 1:p) { varbetahat[l, ] = fit$sigma2.ebayes * fit$multiplier[l, ] tvals[l, ] = fit$betahat[l, ]/sqrt(varbetahat[l, ]) pvals[l, ] = 2 * pt(-abs(tvals[l, ]), fit$df.ebayes) p.BH[l, ] = p.adjust(pvals[l, ], method = "BH") } fit$p.ebayes = pvals fit$p.ebayes.BH = p.BH fit$varbetahat.ebayes = varbetahat fit$Fpvals.ebayes = pf(fit$Fstats * (fit$sigma2/fit$sigma2.ebayes), p, fit$df.ebayes, lower.tail = FALSE) fit$Fpvals.ebayes.BH = p.adjust(fit$Fpvals.ebayes, method = "BH") } if (rsvar & ebayes) { varbetahat = pvals = p.BH = tvals = matrix(0, p, n) for (l in 1:p) { multiplier = mean(fit$betahat[l, ctl.idx]^2/fit$sigma2.ebayes[ctl.idx]) varbetahat[l, ] = fit$sigma2.ebayes * multiplier tvals[l, ] = fit$betahat[l, ]/sqrt(fit$sigma2.ebayes * multiplier) pvals[l, ] = 2 * pt(-abs(tvals[l, ]), fit$df.ebayes) p.BH[l, ] = p.adjust(pvals[l, ], method = "BH") } fit$p.rsvar.ebayes = pvals fit$p.rsvar.ebayes.BH = p.BH fit$varbetahat.rsvar.ebayes = varbetahat } if (pooled) { fit$sigma2.pooled = rep(mean(fit$sigma2, na.rm = TRUE), n) fit$df.pooled = rep(sum(fit$df, na.rm = TRUE), n) varbetahat = pvals = p.BH = tvals = matrix(0, p, n) for (l in 1:p) { varbetahat[l, ] = fit$sigma2.pooled * fit$multiplier[l, ] tvals[l, ] = fit$betahat[l, ]/sqrt(varbetahat[l, ]) pvals[l, ] = 2 * pt(-abs(tvals[l, ]), fit$df.pooled) p.BH[l, ] = p.adjust(pvals[l, ], method = "BH") } fit$p.pooled = pvals fit$p.pooled.BH = p.BH fit$varbetahat.pooled = varbetahat fit$Fpvals.pooled = pf(fit$Fstats * (fit$sigma2/fit$sigma2.pooled), p, fit$df.pooled, lower.tail = FALSE) fit$Fpvals.pooled.BH = p.adjust(fit$Fpvals.pooled, method = "BH") } if (rsvar & pooled) { varbetahat = pvals = p.BH = tvals = matrix(0, p, n) for (l in 1:p) { multiplier = mean(fit$betahat[l, ctl.idx]^2/fit$sigma2.pooled[ctl.idx]) varbetahat[l, ] = fit$sigma2.pooled * multiplier tvals[l, ] = fit$betahat[l, ]/sqrt(fit$sigma2.pooled * multiplier) pvals[l, ] = 2 * pt(-abs(tvals[l, ]), fit$df.pooled) p.BH[l, ] = p.adjust(pvals[l, ], method = "BH") } fit$p.rsvar.pooled = pvals fit$p.rsvar.pooled.BH = p.BH fit$varbetahat.rsvar.pooled = varbetahat } if (evar & pooled) { varbetahat = pvals = p.BH = tvals = matrix(0, p, n) for (l in 1:p) { multiplier = mean(fit$betahat[l, ]^2/fit$sigma2.pooled) varbetahat[l, ] = fit$sigma2.pooled * multiplier tvals[l, ] = fit$betahat[l, ]/sqrt(fit$sigma2.pooled * multiplier) pvals[l, ] = 2 * pt(-abs(tvals[l, ]), fit$df.pooled) p.BH[l, ] = p.adjust(pvals[l, ], method = "BH") } fit$p.evar.pooled = pvals fit$p.evar.pooled.BH = p.BH fit$varbetahat.evar.pooled = varbetahat } return(fit) }
tTMTI_CDF <- function (x, m, tau) { if (m == 1) { x } P <- function(x, a) { m <- length(a) sum(1 / factorial(m:1) * x^(m:1) * a) } xs <- numeric(m) xs <- stats::qbeta(x, 1:m, m + 1 - 1:m) PP <- list() PP[[1]] <- xs[1] for (i in 2:m) { PP[[i]] <- P(xs[i], c(1, -do.call("c", PP[1:(i - 1)]))) } hh_terms <- c ( 1 - (1 - PP[[1]] / tau) * (xs[1] <= tau), sapply ( 2:m, function (K) { Ptau <- P(tau, c(1, -do.call("c", PP[1:(K - 1)]))) 1 - (factorial(K) / tau**K) * ( Ptau - PP[[K]] ) * (xs[K] <= tau) } ) ) tau_terms <- sapply ( 1:m, function (i) { choose(m, i) * tau^i * (1 - tau)^(m - i) } ) pbeta_tau <- stats::pbeta(tau, 1, m) (1 - tau)**m * (x - pbeta_tau) / (1 - pbeta_tau) * (xs[1] > tau) + sum(hh_terms * tau_terms) }
extract.prob <- function(train, gs, gstable, thre = 0.95, type = c("quantile", "fixed", "empirical")[1], isNumeric = FALSE, impute=TRUE){ if(isNumeric){ yes <- 1 no <- 0 miss <- -1 }else{ yes <- "Y" no <- c("", "N") miss <- c(".", "-") } countyes <- function(x){length(which(toupper(x) %in% yes))} countno <- function(x){length(which(x %in% no))} countmiss <- function(x){length(which(x %in% miss))} countna <- function(x){length(which(is.na(x)))} toLevel <- function(cond.prob, levels, cutoffs){ cond.prob.vec <- as.vector(cond.prob) new <- rep(NA, length(cond.prob.vec)) cdf <- ecdf(cond.prob.vec) table <- table.median <- rep(0, length(cutoffs)) for(i in length(cutoffs) : 1){ table[i] <- quantile(cdf, cutoffs[i]) if(i > 1){ table.median[i] <- quantile(cdf, (cutoffs[i] + cutoffs[i-1])/2) }else{ table.median[i] <- quantile(cdf, (cutoffs[i])/2) } } for(i in length(cutoffs) : 1){ new[which(cond.prob.vec <= table[i])] <- levels[i] } new <- matrix(new, dim(cond.prob)[1], dim(cond.prob)[2]) colnames(new) <- colnames(cond.prob) rownames(new) <- rownames(cond.prob) return(list(cond.prob = new, table.cut = table, table.median = table.median)) } train.id <- as.character(train[, 1]) train <- train[, -1] train.gs <- as.character(train[, gs]) if(is.null(gstable)){ gstable <- unique(train.gs) } train <- train[, -which(colnames(train) == gs)] miss.train <- apply(train, 2, countmiss) / dim(train)[1] miss.too.many <- which(miss.train > thre) if(length(miss.too.many) > 0){ train <- train[, -miss.too.many] warning(paste(length(miss.too.many), "symptoms deleted for missing rate over the pre-specified threshold", thre), immediate. = TRUE) } gs.missing <- which(gstable %in% unique(train.gs) == FALSE) if(length(gs.missing) > 0){ warning(paste("Causes not found in training data and deleted:", paste(gstable[gs.missing], collapse = ", ")), immediate. = TRUE) gstable <- gstable[-gs.missing] } cond.prob <- NULL for(i in 1:length(gstable)){ cause <- gstable[i] list <- which(train.gs == cause) cases <- train[list, ] if(length(list) == 1){ cond <- rep(0, length(cases)) cond[which(toupper(cases) == yes)] <- 1 cond[which(cases == miss)] <-- NA }else{ count <- apply(cases, 2, countyes) denom <- (length(list) - apply(cases, 2, countmiss)) denom[denom < length(list)*(1-thre)] <- NA cond <- count / denom } cond.prob <- cbind(cond.prob, cond) } colnames(cond.prob) <- gstable rownames(cond.prob) <- colnames(train) S <- dim(cond.prob)[1] C <- dim(cond.prob)[2] bysymps <- apply(cond.prob, 1, countna) if(impute){ if(length(which(bysymps > 0)) > 0){ message(paste("\n", length(which(bysymps > 0)), "missing symptom-cause combinations in training data, imputed using average symptom prevalence\n")) overall <- apply(train, 2, countyes) / dim(train)[1] for(i in 1:S){ cond.prob[i, which(is.na(cond.prob[i,]))] <- overall[i] } } } zeroes <- which(cond.prob == 0) ones <- which(cond.prob == 1) if(impute) cond.prob[zeroes] <- runif(length(zeroes), min = 1e-6, max = 2e-6) if(impute) cond.prob[ones] <- 1 - runif(length(ones), min = 1e-6, max = 2e-6) conditionals <- as.vector(cond.prob) data("probbase", envir = environment()) probbase <- get("probbase", envir = environment()) intertable <- probbase[2:246, 17:76] intertable[which(intertable == "B -")] <- "B-" intertable[which(intertable == "")] <- "N" levels <- c("I", "A+", "A", "A-", "B+", "B" , "B-", "C+", "C", "C-", "D+", "D", "D-", "E", "N") counts <- rep(0, length(levels)) for(i in 1:length(levels)){ counts[i] <- length(which(as.vector(intertable) == levels[i])) } freqs <- cumsum(counts / sum(counts)) if(type == "quantile"){ level.tmp <- toLevel(cond.prob, rev(levels), freqs) cond.prob.alpha <- level.tmp$cond.prob table.num <- rev(level.tmp$table.median) }else if(type == "fixed"){ table.num <- c(1, 0.8, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0001, 0.00001, 0) inter.cut <- c(1, table.num[-length(table.num)] + diff(table.num)/2 ) cond.prob.alpha <- matrix("N", dim(cond.prob)[1], dim(cond.prob)[2]) for(i in 1:length(inter.cut)){ cond.prob.alpha[which(cond.prob <= inter.cut[i])] <- levels[i] } colnames(cond.prob.alpha) <- colnames(cond.prob) rownames(cond.prob.alpha) <- rownames(cond.prob) }else if(type == "empirical"){ cond.prob.alpha <- NULL levels <- NULL table.num <- NULL } if(sum(is.na(cond.prob)) > 0){ cond.prob.alpha[is.na(cond.prob)] <- NA } return(list(cond.prob = cond.prob, cond.prob.alpha = cond.prob.alpha, table.alpha = levels, table.num = table.num, symps.train = train)) }
renderPieChart <- function(div_id, data, theme = "default", radius = "50%", center_x = "50%", center_y = "50%", show.label = TRUE, show.legend = TRUE, show.tools = TRUE, font.size.legend = 12, animation = TRUE, hyperlinks = NULL, running_in_shiny = TRUE){ data <- isolate(data) theme_placeholder <- .theme_placeholder(theme) .check_logical(c('show.label', 'show.tools', 'show.legend', 'animation', 'running_in_shiny')) if(is.vector(data) & (is.null(hyperlinks) == FALSE)){ stop("'hyperlinks' feature doesn't support vector data for now. Only data.frame data is supported.") } if(is.vector(data)){ data <- data.frame(table(data)) names(data) <- c("name", "value") } else { if((dim(data)[2] != 2) | ("name" %in% names(data) == FALSE) | ("value" %in% names(data) == FALSE)){ stop("The data must be made up of two columns, 'name' and 'value'") } if(class(data$value) != 'numeric' & class(data$value) != 'integer'){ stop("The 'value' column must be numeric or integer.") } } if(is.null(hyperlinks) == FALSE){ item_names <- data$name if((length(hyperlinks) != length(item_names)) & (is.null(hyperlinks) == FALSE)){ stop("The length of 'hyperlinks' should be the same as the number of unique items in the pie chart.") } } legend_data <- paste(sapply(sort(unique(data$name)), function(x){paste0("'", x, "'")}), collapse=", ") legend_data <- paste0("[", legend_data, "]") data <- as.character(jsonlite::toJSON(data)) data <- gsub("\"", "\'", data) js_statement <- paste0("var " , div_id, " = echarts.init(document.getElementById('", div_id, "')", theme_placeholder, ");", "option_", div_id, " = {tooltip : {trigger: 'item',formatter: '{b} : {c} ({d}%)'}, ", ifelse(show.tools, "toolbox:{feature:{saveAsImage:{}}}, ", ""), ifelse(is.null(hyperlinks), "", "tooltip : {textStyle: {fontStyle:'italic', color:'skyblue'}},"), ifelse(show.legend, paste0("legend:{orient: 'vertical', left: 'left', data:", legend_data, ", textStyle:{fontSize:", font.size.legend, "}", "},"), ""), "series : [{type: 'pie', radius:'", radius, "', center :['", center_x, "','", center_y, "'],", ifelse(show.label, "label:{normal:{show: true}},", "label:{normal:{show: false}},"), ifelse(animation, "animation:true,", "animation:false,"), "data:", data, ", itemStyle: { emphasis: { shadowBlur: 10, shadowOffsetX: 0, shadowColor: 'rgba(0, 0, 0, 0.5)'}}}]};", div_id, ".setOption(option_", div_id, ");", "window.addEventListener('resize', function(){", div_id, ".resize()", "});", ifelse(is.null(hyperlinks), "", paste0(div_id, ".on('click', function (param){ var name=param.name;", paste(sapply(1:length(hyperlinks), function(i){ paste0("if(name=='", item_names[i], "'){", "window.location.href='", hyperlinks[i], "';}") }), collapse = ""), "});", div_id, ".on('click');") )) to_eval <- paste0("output$", div_id ," <- renderUI({tags$script(\"", js_statement, "\")})") if(running_in_shiny == TRUE){ eval(parse(text = to_eval), envir = parent.frame()) } else { cat(to_eval) } }
get_several_artists<-function(artist_ids_df, ids_label = 1, access_token = DSpoty::get_spotify_access_token()){ uris<-artist_ids_df[,ids_label] %>% split(., ceiling(seq_along(.)/50)) %>% .$`1` %>% apply(., paste, MARGIN=2, collapse = ',') res<-lmap(seq_len(length(uris)), function(x){ res1<-RETRY('GET', url = str_glue('https://api.spotify.com/v1/artists/'), query = list(ids=uris[[x]], type = 'artist', access_token= access_token), quiet = TRUE) %>% content %>% .$artists }) artista<-map_df(seq_len(length(res)), function(this_row){ artist<-res[[this_row]] list( artist_name = artist$name, artist_uri = artist$id, artist_img = if(length(artist$images)>0){artist$images[[1]]$url} else {NA}, num_followers = if(length(artist$followers[[2]])>0) {as.character(artist$followers[[2]])} else{NA}, spotify_url = artist$external_urls$spotify, popularity = as.character(artist$popularity), musical_genre = if(length(artist$genres)>0){str_replace_all(str_c(unlist(artist$genres), collapse = "-")," ","_")} else {NA} ) }) %>% filter(.,!duplicated(tolower(artist_uri))) %>% filter(.,!duplicated(tolower(artist_name))) return(artista) }
context('submodules') test_that('submodules can be loaded one by one', { on.exit(clear_mods()) result = capture.output(box::use(mod/nested/a/b)) expect_equal(result, 'a/b/__init__.r') result = capture.output(box::use(mod/nested/a/b/c)) expect_equal(result, 'a/b/c/__init__.r') result = capture.output(box::use(mod/nested/a/b/d)) expect_equal(result, 'a/b/d/__init__.r') }) test_that('module can export nested submodules', { box::use(mod/b) expect_equal(b$answer, 42L) })
company_information <- function(x) { doc <- if (is(x, "xml_node")) { x } else { browse_edgar(x) } entry_xpath <- "company-info" info_pieces <- list( "name" = "conformed-name", "cik" = "cik", "fiscal_year_end" = "fiscal-year-end", "company_href" = "cik-href", "sic" = "assigned-sic", "sic_description" = "assigned-sic-desc", "state_location" = "state-location", "state_incorporation" = "state-of-incorporation", "mailing_city" = "//address[@type='mailing']/city", "mailing_state" = "//address[@type='mailing']/state", "mailing_zip" = "//address[@type='mailing']/zip", "mailing_street" = "//address[@type='mailing']/street1", "mailing_street2" = "//address[@type='mailing']/street2", "business_city" = "//address[@type='business']/city", "business_state" = "//address[@type='business']/state", "business_zip" = "//address[@type='business']/zip", "business_street" = "//address[@type='business']/street1", "business_street2" = "//address[@type='business']/street2", "business_phone" = "//address[@type='business']/phone" ) res <- map_xml(doc, entry_xpath, info_pieces) return(res) }
parity <- function(number) { list(parity = if (as.integer(number) %% 2 == 0) "even" else "odd") } no_arguments <- function() { list(animal = "dog", breed = "corgi") } expect_setup_failure <- function(endpoint_function, ...) { eval(bquote({ expect_error( endpoint_function(...), "The AWS Lambda runtime is not configured" ) })) } basic_lambda_config <- function(handler = "sqrt", runtime_api = "red_panda", task_root = "giraffe", direct_handler = NULL, log_threshold = test_debug_level, ...) { setup_logging(log_threshold = log_threshold) env_vars <- if (is.null(direct_handler)) { c( "AWS_LAMBDA_RUNTIME_API" = runtime_api, "LAMBDA_TASK_ROOT" = task_root, "_HANDLER" = handler ) } else { c( "AWS_LAMBDA_RUNTIME_API" = runtime_api, "LAMBDA_TASK_ROOT" = task_root ) } withr::with_envvar(env_vars, withr::with_environment( parent.frame(), lambda_config(handler = direct_handler, ...) ) ) } mock_response <- function(input, expected_response_body, expected_response_headers = default_response_headers, request_id = "abc123", timeout_seconds = 0.5, config = basic_lambda_config()) { webmockr::enable(quiet = TRUE) withr::defer(webmockr::disable(quiet = TRUE)) invocation_endpoint <- get_next_invocation_endpoint(config) response_endpoint <- get_response_endpoint(config, request_id) webmockr::stub_request("get", invocation_endpoint) %>% webmockr::to_return( body = input, headers = list("lambda-runtime-aws-request-id" = request_id), status = 200 ) webmockr::stub_request("post", response_endpoint) %>% webmockr::wi_th( headers = expected_response_headers, body = expected_response_body ) %>% webmockr::to_return(status = 200) start_listening( config = config, timeout_seconds = timeout_seconds ) requests <- webmockr::request_registry() n_responses <- requests$times_executed( webmockr::RequestPattern$new("post", response_endpoint) ) n_responses >= 1 } mock_invocation_error <- function(input, expected_error_body, request_id = "abc123", timeout_seconds = 0.5, config = basic_lambda_config()) { webmockr::enable(quiet = TRUE) withr::defer(webmockr::disable(quiet = TRUE)) invocation_endpoint <- get_next_invocation_endpoint(config) invocation_error_endpoint <- get_invocation_error_endpoint(config, request_id) webmockr::stub_request("get", invocation_endpoint) %>% webmockr::to_return( body = input, headers = list("lambda-runtime-aws-request-id" = request_id), status = 200 ) webmockr::stub_request("post", invocation_error_endpoint) %>% webmockr::wi_th( headers = list( "Accept" = "application/json, text/xml, application/xml, */*", "Content-Type" = "application/vnd.aws.lambda.error+json" ), body = expected_error_body ) %>% webmockr::to_return(status = 202) start_listening(config = config, timeout_seconds = timeout_seconds) requests <- webmockr::request_registry() n_responses <- requests$times_executed( webmockr::RequestPattern$new("post", invocation_error_endpoint) ) n_responses >= 1 } trigger_initialisation_error <- function(expected_error, task_root = "giraffe", handler = "sqrt", direct_handler = NULL, deserialiser = NULL, serialiser = NULL) { webmockr::enable(quiet = TRUE) withr::defer(webmockr::disable(quiet = TRUE)) lambda_runtime_api <- "red_panda" request_id <- "abc123" invocation_endpoint <- paste0( "http://", lambda_runtime_api, "/2018-06-01/runtime/invocation/next" ) initialisation_error_endpoint <- paste0( "http://", lambda_runtime_api, "/2018-06-01/runtime/init/error" ) webmockr::stub_request("get", invocation_endpoint) %>% webmockr::to_return( body = list(), headers = list("lambda-runtime-aws-request-id" = request_id), status = 200 ) webmockr::stub_request("post", initialisation_error_endpoint) %>% webmockr::wi_th( headers = list( "Accept" = "application/json, text/xml, application/xml, */*", "Content-Type" = "application/vnd.aws.lambda.error+json" ), body = as_json( list( errorMessage = expected_error, errorType = "simpleError", stackTrace = list() ) ) ) %>% webmockr::to_return(status = 202) error_message <- tryCatch( basic_lambda_config( runtime_api = "red_panda", task_root = task_root, handler = handler, direct_handler = direct_handler, deserialiser = deserialiser, serialiser = serialiser ), error = function(e) e$message ) if (error_message != expected_error) { stop(error_message) } requests <- webmockr::request_registry() request_pattern <- webmockr::RequestPattern$new( "post", initialisation_error_endpoint ) return(requests$times_executed(request_pattern) == 1) }
library(BART) data(ACTG175) ex <- is.na(ACTG175$cd496) | ACTG175$cd40<200 | ACTG175$cd40>500 table(ex) y <- ((ACTG175$cd496-ACTG175$cd40)/ACTG175$cd40)[!ex] summary(y) y <- 1*(y > -0.5) a <- table(y, ACTG175$arms[!ex]) b <- apply(a, 2, sum) a/rbind(b, b) train <- as.matrix(ACTG175)[!ex, -c(1, 10, 14:15, 17, 18, 20:27)] train <- cbind(1*(ACTG175$strat[!ex]==1), 1*(ACTG175$strat[!ex]==2), 1*(ACTG175$strat[!ex]==3), train) dimnames(train)[[2]][1:3] <- paste0('strat', 1:3) train <- cbind(1*(ACTG175$arms[!ex]==0), 1*(ACTG175$arms[!ex]==1), 1*(ACTG175$arms[!ex]==2), 1*(ACTG175$arms[!ex]==3), train) dimnames(train)[[2]][1:4] <- paste0('arm', 0:3) N <- nrow(train) test0 <- train; test0[ , 1:4] <- 0; test0[ , 1] <- 1 test1 <- train; test1[ , 1:4] <- 0; test1[ , 2] <- 1 test2 <- train; test2[ , 1:4] <- 0; test2[ , 3] <- 1 test3 <- train; test3[ , 1:4] <- 0; test3[ , 4] <- 1 test <- rbind(test0, test1, test2, test3) set.seed(21) post <- mc.lbart(train, y, test, mc.cores=8) itr <- cbind(post$prob.test.mean[(1:N)], post$prob.test.mean[N+(1:N)], post$prob.test.mean[2*N+(1:N)], post$prob.test.mean[3*N+(1:N)]) itr.pick <- integer(N) for(i in 1:N) itr.pick[i] <- which(itr[i, ]==max(itr[i, ]))-1 table(itr.pick) diff. <- apply(post$prob.test[ , 2*N+(1:N)]- post$prob.test[ , N+(1:N)], 2, mean) plot(sort(diff.), type='h', main='ACTG175 trial: 50% CD4 decline from baseline at 96 weeks', xlab='Arm 2 (1) Preferable to the Right (Left)', ylab='Prob.Diff.: Arms 2 - 1') library(rpart) library(rpart.plot) var <- as.data.frame(train[ , -(1:4)]) dss <- rpart(diff. ~ var$age+var$gender+var$race+var$wtkg+ var$karnof+var$symptom+var$hemo+var$homo+var$drugs+var$z30+ var$oprior+var$strat1+var$strat2+var$strat3, method='anova', control=rpart.control(cp=0.05)) rpart.plot(dss, type=3, extra=101) print(dss) all0 <- apply(post$prob.test[ , (1:N)], 1, mean) all1 <- apply(post$prob.test[ , N+(1:N)], 1, mean) all2 <- apply(post$prob.test[ , 2*N+(1:N)], 1, mean) all3 <- apply(post$prob.test[ , 3*N+(1:N)], 1, mean) BART.itr <- apply(post$prob.test[ , c(N+which(itr.pick==1), 2*N+which(itr.pick==2))], 1, mean) test <- train test[ , 1:4] <- 0 test[var$drugs==1, 2] <- 1 test[ , 3] <- 1-test[ , 2] table(test[ , 2], test[ , 3]) BART.itr.simp <- predict(post, newdata=test, mc.cores=8) BART.itr.simp$prob <- apply(BART.itr.simp$prob.test, 1, mean) plot(density(BART.itr), xlab='Value', lwd=2, xlim=c(0.7, 0.95), main='ACTG175 trial: 50% CD4 decline from baseline at 96 weeks') lines(density(BART.itr.simp$prob), col='brown', lwd=2) lines(density(all0), col='green', lwd=2) lines(density(all1), col='red', lwd=2) lines(density(all2), col='blue', lwd=2) lines(density(all3), col='yellow', lwd=2) legend('topleft', legend=c('All Arm 0 (ZDV only)', 'All Arm 1 (ZDV+DDI)', 'All Arm 2 (ZDV+DDC)', 'All Arm 3 (DDI only)', 'BART ITR simple', 'BART ITR'), col=c('green', 'red', 'blue', 'yellow', 'brown', 'black'), lty=1, lwd=2)
dplyr::`%>%` NULL NULL NULL NULL glue_stop <- function(..., .sep = "") { stop(glue::glue(..., .sep, .envir = parent.frame()), call. = FALSE) } string_length <- function(x) { split <- unlist(strsplit(x, "")) length(split) } index_attributes <- function() { c("index_quo", "index_time_zone") } make_dummy_dispatch_obj <- function(x) { structure(list(), class = x) } remove_time_group <- function(x) { if(".time_group" %in% colnames(x)) { x[[".time_group"]] <- NULL } x }
coef.pvarhk <- function(object, ...) { object$HK$coef } se.pvarhk <- function(object, ...) { object$HK$se } pvalue.pvarhk <- function(object, ...) { object$HK$pvalues } extract.pvarhk <- function(model, ...) { co.m <- coef(model) modelnames <- row.names(co.m) se.m <- se(model) pval.m <- pvalue(model) equationList <- list() for (eq in 1:length(model$dependent_vars)) { tr <- texreg::createTexreg( coef.names = colnames(co.m), coef = as.vector(co.m[eq,]), se = as.vector(se.m[eq,]), pvalues = as.vector(pval.m[eq,]), model.name = modelnames[eq] ) equationList[[eq]] <- tr } names(equationList) <- modelnames equationList } print.pvarhk <- function(x, ...) { res <- extract(x) print(texreg::screenreg(res, custom.model.names = names(res), digits = 4)) } knit_print.pvarhk <- function(x, ...) { res <- extract(x) knitr::asis_output(texreg::htmlreg(res, custom.model.names = names(res), digits = 4)) } summary.pvarhk <- function(object, ...) { x <- object sumry <- list() sumry$model_name <- "Hahn Kuehrsteiner Panel VAR estimation" sumry$transformation <- x$transformation sumry$groupvariable <- x$panel_identifier[1] sumry$timevariable <- x$panel_identifier[2] sumry$nof_observations <- x$nof_observations sumry$obs_per_group_min <- x$obs_per_group_min sumry$obs_per_group_avg <- x$obs_per_group_avg sumry$obs_per_group_max <- x$obs_per_group_max sumry$nof_groups = x$nof_groups sumry$results <- extract(x) class(sumry) <- "summary.pvarhk" sumry } print.summary.pvarhk <- function(x, ...) { cat("---------------------------------------------------\n") cat(x$model_name, "\n") cat("---------------------------------------------------\n") cat("Transformation:", x$transformation,"\n") cat("Group variable:", x$groupvariable,"\n") cat("Time variable:",x$timevariable,"\n") cat("Number of observations =", x$nof_observations,"\n") cat("Number of groups =", x$nof_groups, "\n") cat("Obs per group: min =",x$obs_per_group_min,"\n") cat(" avg =",x$obs_per_group_avg,"\n") cat(" max =",x$obs_per_group_max,"\n") print(texreg::screenreg(x$results, custom.model.names = names(x$results), digits = 4)) cat("\n") } knit_print.summary.pvarhk <- function(x, ...) { res <- paste0(c("<p><b>",x$model_name,"</b></p>", "<p>Transformation: <em>",x$transformation,"</em><br>", "Group variable: <em>",x$groupvariable,"</em><br>", "Time variable: <em>",x$timevariable,"</em><br>", "Number of observations = <em>",x$nof_observations,"</em><br>", "Number of groups = <em>",x$nof_groups,"</em><br>", "Obs per group: min = <em>",x$obs_per_group_min,"</em><br>", "Obs per group: avg = <em>",x$obs_per_group_avg,"</em><br>", "Obs per group: max = <em>",x$obs_per_group_max,"</em><br>", "</p>", texreg::htmlreg(x$results, custom.model.names = names(x$results), digits = 4, caption = "", center = FALSE), "</p>" ) ) knitr::asis_output(res) }
require(copula) source(system.file("Rsource", "utils.R", package="copula")) dDiagF <- copula:::dDiagFrank meths <- eval(formals(dDiagF)$method) (meths <- meths[meths != "auto"]) tt <- 2^(-32:-2) str(u <- sort(c(tt, seq(1/512, 1-1/512, length= 257), 1 - tt))) (taus <- c(10^(-4:-2), (1:5)/10, (12:19)/20, 1 - 10^(-2:-5))) thetas <- copFrank@iTau(taus) taus <- copFrank@tau(thetas <- signif(thetas, 2)) noquote(cbind(theta = thetas, tau = formatC(taus, digits = 3, width= -6))) d.set <- c(2:4, 7, 10, 15, 25, 35, 50, 75, 120, 180, 250) str(m.tu <- as.matrix(d.tu <- expand.grid(th = thetas, u = u))) tu.attr <- attr(d.tu, "out.attrs") str(rNum <- sapply(meths, function(METH) sapply(d.set, function(d) dDiagF(u=m.tu[,"u"], theta = m.tu[,"th"], d=d, method = METH)), simplify = "array")) rNum. <- rNum rNum <- rNum. (dim(rNum) <- c(tu.attr$dim, dim(rNum)[-1])) names(dim(rNum))[3:4] <- c("d","meth") dim(rNum) dimnames(rNum) <- list(tu.attr$dimnames$th, NULL, paste("d",d.set, sep="="), meths) str(rNum) filR <- "Frank-dDiag.rda" if(isMMae <- identical("maechler",Sys.getenv("USER"))) { resourceDir <- "~/R/D/R-forge/copula/www/resources" if(file.exists(ff <- file.path(resourceDir, filR))) cat("Will use ", (filR <- ff),"\n") } develR <- isMMae if(canGet(filR)) attach(filR) else { stopifnot(requireNamespace("Rmpfr")) m.M <- Rmpfr::mpfr(m.tu, precBits = 512) stopifnot(dim(m.M) == dim(m.tu), identical(dimnames(m.M), dimnames(m.tu))) print(system.time({ r.mpfr <- lapply(d.set, function(d) { cat(sprintf("d = %4d:",d)) CT <- system.time(r <- dDiagF(u=m.M[,"u"], theta = m.M[,"th"], d=d, method = "polyFull"))[[1]] cat(formatC(CT, digits=5, width=8), " [Ok]\n") r }) })) length(r.Xct <- do.call(c, r.mpfr)) object.size(r.Xct) object.size(r.xct <- as(r.Xct,"numeric")) dim (r.xct) <- dim (rNum) [1:3] dimnames(r.xct) <- dimnames(rNum)[1:3] objL1 <- c("u", "taus", "thetas", "d.set", "m.tu", "meths", "rNum", "r.xct") objL2 <- c(objL1, "m.M", "r.Xct") sFileW <- { if(isMMae) file.path("~/R/Pkgs/copula", "demo", "Frank-dDiag-mpfr.rda") else tempfile("nacop-Frank-dDiag-mpfr", fileext="rda")} if(develR) { if(!exists("resourceDir") || !file.exists(resourceDir)) stop("need writable pkg dir for developer") sFileR.dev <- file.path(resourceDir, filR) save(list = objL1, file = sFileR.dev) dim (r.Xct) <- dim (rNum) [1:3] dimnames(r.Xct) <- dimnames(rNum)[1:3] save(list = objL2, file = sFileW) } else { save(list = objL1, file = sFileW) } } dim(rNum) stopifnot(prod(dim(rNum)[1:3]) == length(r.xct)) n.c <- nCorrDigits(r.xct, rNum) str(n.c) p.nCorr <- function(nc, d, i.th, u, type="l", legend.loc = "bottomleft") { stopifnot(is.numeric(nc), length(di <- dim(nc)) == 4, d == round(d), is.character(names(di)), length(u) == di[["u"]]) dnam <- (dn <- dimnames(nc))[[3]] stopifnot((c.d <- paste("d",d,sep="=")) %in% dnam) names(dn) <- names(di) th.nam <- sub("^th=","", dn[["th"]]) for(jd in dnam[dnam %in% c.d]) { dd <- as.integer(sub("^d=", "", jd)) for(it in i.th) { matplot(u, nc[it,,jd,], type=type) TH <- as.numeric(th.nam[it]) mtext(bquote(theta == .(TH) ~~~~ d == .(dd)), line = 1) legend(legend.loc, legend = dn[["meth"]], lty=1:5, col=1:6, bty = "n") } } } p.nCorr(n.c, d=3, i.th=12, u=u) p.nCorr(n.c, i.th= 16, d=120, u=u, leg = "right") p.nCorr(n.c, i.th= 4, d=120, u=u, leg = "left") p.nCorr(n.c, i.th= 10, d=120, u=u, leg = "left") p.nCorr(n.c, i.th= 12, d=120, u=u, leg = "left") if(dev.interactive()) getOption("device")() p.nCorr(n.c, i.th= 12, d= 7, u=u, leg = "left") if(doPDF <- !dev.interactive(orNone=TRUE)) pdf("dDiag-Frank-accuracy.pdf") p.nCorr(n.c, i.th= which(abs(taus - 0.75) < .01), d= d.set, u=u, leg = "left") p.nCorr(n.c, i.th= seq_along(thetas), d= c(2, 4, 10, 50, 180), u=u, leg = "left") if(doPDF) dev.off()
DS.macro.inf.pgu <- function(DS.GF.obj, num.modes =1 , iters = 25, method = c("mean","mode"), pred.type = c("posterior","prior")){ switch(DS.GF.obj$LP.type, "L2" = { method = match.arg(method) switch(method, "mode" = { out <- list() modes.mat <- matrix(0, nrow = iters, ncol = num.modes) if(sum(DS.GF.obj$LP.par^2) == 0){ m.new = 0 out$model.modes <- Local.Mode(DS.GF.obj$prior.fit$theta.vals, DS.GF.obj$prior.fit$parm.prior) if(out$model.modes[1] == DS.GF.obj$prior.fit$theta.vals[1]) out$model.modes <- out$model.modes[-1] } else { m.new = length(DS.GF.obj$LP.par) out$model.modes <- Local.Mode(DS.GF.obj$prior.fit$theta.vals, DS.GF.obj$prior.fit$ds.prior) if(out$model.modes[1] == DS.GF.obj$prior.fit$theta.vals[1]){ out$model.modes <- out$model.modes[-1]} } for(i in 1:iters){ len.mode = num.modes+1 while(len.mode != num.modes){ par.g <- c(NA,NA) while(!is.finite(par.g[1])==TRUE | !is.finite(par.g[2])==TRUE){ ifelse(pred.type == "posterior", y.new <- rPPD.ds(DS.GF.obj,1,pred.type = "posterior")$first.set, y.new <- rPPD.ds(DS.GF.obj,1, pred.type = "prior")$first.set) possibleError <- tryCatch(par.g <- gMLE.pg(y.new, start.par = DS.GF.obj$g.par), error = function(e) e ) er.check <- !inherits(possibleError, "error") if(er.check == TRUE){ par.g <- gMLE.pg(y.new, start.par = DS.GF.obj$g.par) } else { par.g <- c(NA, NA) } } new.LPc <- DS.prior.pgu(y.new, max.m = m.new, start.par = par.g) if(sum(new.LPc$LP.par^2) == 0){ modes.new <- Local.Mode(new.LPc$prior.fit$theta.vals, new.LPc$prior.fit$parm.prior) } else { modes.new <- Local.Mode(new.LPc$prior.fit$theta.vals, new.LPc$prior.fit$ds.prior) } len.mode <- length(modes.new) } modes.mat[i,] <- modes.new } out$boot.modes <- modes.mat out$mode.sd <- apply(modes.mat,2,sd) out$prior.fit <- DS.GF.obj$prior.fit class(out) <- "DS_GF_macro_mode" return(out) }, "mean" = { out <- list() if(sum(DS.GF.obj$LP.par^2) == 0){ m.new = 0 out$model.mean <- DS.GF.obj$g.par[1]*DS.GF.obj$g.par[2] } else { m.new = length(DS.GF.obj$LP.par) out$model.mean <- sintegral(DS.GF.obj$prior.fit$theta.vals, DS.GF.obj$prior.fit$theta.vals*DS.GF.obj$prior.fit$ds.prior)$int } par.mean.vec <- NULL for(i in 1:iters){ par.g <- c(NA,NA) while(!is.finite(par.g[1])==TRUE | !is.finite(par.g[2])==TRUE){ ifelse(pred.type == "posterior", y.new <- rPPD.ds(DS.GF.obj,1,pred.type = "posterior")$first.set, y.new <- rPPD.ds(DS.GF.obj,1, pred.type = "prior")$first.set) possibleError <- tryCatch(par.g <- gMLE.pg(y.new, start.par = DS.GF.obj$g.par), error = function(e) e ) er.check <- !inherits(possibleError, "error") if(er.check == TRUE){ par.g <- gMLE.pg(y.new, start.par = DS.GF.obj$g.par) } else { par.g <- c(NA, NA) } } new.LPc <- DS.prior.pgu(y.new, max.m = m.new, start.par = par.g) if(sum(new.LPc$LP.par^2) == 0){ par.mean.vec[i] <- par.g[1]*par.g[2] } else { par.mean.vec[i] <- sintegral(new.LPc$prior.fit$theta.vals, new.LPc$prior.fit$theta.vals*new.LPc$prior.fit$ds.prior)$int } } out$boot.mean <- par.mean.vec out$mean.sd <- sd(par.mean.vec) out$prior.fit <- DS.GF.obj$prior.fit class(out) <- "DS_GF_macro_mean" return(out) } ) }, "MaxEnt" = { method = match.arg(method) switch(method, "mode" = { out <- list() modes.mat <- matrix(0, nrow = iters, ncol = num.modes) if(sum(DS.GF.obj$LP.par^2) == 0){ m.new = 0 out$model.modes <- Local.Mode(DS.GF.obj$prior.fit$theta.vals, DS.GF.obj$prior.fit$parm.prior) if(out$model.modes[1] == DS.GF.obj$prior.fit$theta.vals[1]) out$model.modes <- out$model.modes[-1] } else { m.new = length(DS.GF.obj$LP.par) out$model.modes <- Local.Mode(DS.GF.obj$prior.fit$theta.vals, DS.GF.obj$prior.fit$ds.prior) if(out$model.modes[1] == DS.GF.obj$prior.fit$theta.vals[1]){ out$model.modes <- out$model.modes[-1]} } for(i in 1:iters){ len.mode = num.modes+1 while(len.mode != num.modes){ L2.norm.thres <- 1.1*sqrt(sum((DS.GF.obj$LP.max.smt[1:DS.GF.obj$m.val]^2))) L2.norm <- L2.norm.thres + 1 while(L2.norm > L2.norm.thres){ par.g <- c(NA,NA) while(!is.finite(par.g[1])==TRUE | !is.finite(par.g[2])==TRUE){ ifelse(pred.type == "posterior", y.new <- rPPD.ds(DS.GF.obj,1,pred.type = "posterior")$first.set, y.new <- rPPD.ds(DS.GF.obj,1, pred.type = "prior")$first.set) possibleError <- tryCatch(par.g <- gMLE.pg(y.new, start.par = DS.GF.obj$g.par), error = function(e) e ) er.check <- !inherits(possibleError, "error") if(er.check == TRUE){ par.g <- gMLE.pg(y.new, start.par = DS.GF.obj$g.par) } else { par.g <- c(NA, NA) } } new.LPc <- DS.prior.pgu(y.new, max.m = m.new, start.par = par.g) L2.norm <- sqrt(sum((new.LPc$LP.par)^2)) } if(sum(new.LPc$LP.par^2) == 0){ modes.new <- new.LPc$prior.fit$theta.vals[which.max(new.LPc$prior.fit$parm.prior)] } else { new.LP.ME <- maxent.obj.convert(new.LPc) modes.new <- Local.Mode(new.LP.ME$prior.fit$theta.vals, new.LP.ME$prior.fit$ds.prior) } len.mode <- length(modes.new) } modes.mat[i,] <- modes.new } out$boot.modes <- modes.mat out$mode.sd <- apply(modes.mat,2,sd) out$prior.fit <- DS.GF.obj$prior.fit class(out) <- "DS_GF_macro_mode" return(out) }, "mean" = { out <- list() if(sum(DS.GF.obj$LP.par^2) == 0){ m.new = 0 out$model.mean <- DS.GF.obj$g.par[1]*DS.GF.obj$g.par[2] } else { m.new = length(DS.GF.obj$LP.par) out$model.mean <- sintegral(DS.GF.obj$prior.fit$theta.vals, DS.GF.obj$prior.fit$theta.vals*DS.GF.obj$prior.fit$ds.prior)$int } par.mean.vec <- NULL for(i in 1:iters){ L2.norm.thres <- 1.1*sqrt(sum((DS.GF.obj$LP.max.smt[1:DS.GF.obj$m.val]^2))) L2.norm <- L2.norm.thres + 1 while(L2.norm > L2.norm.thres){ par.g <- c(NA,NA) while(!is.finite(par.g[1])==TRUE | !is.finite(par.g[2])==TRUE){ ifelse(pred.type == "posterior", y.new <- rPPD.ds(DS.GF.obj,1,pred.type = "posterior")$first.set, y.new <- rPPD.ds(DS.GF.obj,1, pred.type = "prior")$first.set) possibleError <- tryCatch(par.g <- gMLE.pg(y.new, start.par = DS.GF.obj$g.par), error = function(e) e ) er.check <- !inherits(possibleError, "error") if(er.check == TRUE){ par.g <- gMLE.pg(y.new, start.par = DS.GF.obj$g.par) } else { par.g <- c(NA, NA) } } new.LPc <- DS.prior.pgu(y.new, max.m = m.new, start.par = par.g) L2.norm <- sqrt(sum((new.LPc$LP.par)^2)) } if(sum(new.LPc$LP.par^2) == 0){ par.mean.vec[i] <- par.g[1]*par.g[2] } else { new.LP.ME <- maxent.obj.convert(new.LPc) par.mean.vec[i] <- sintegral(new.LP.ME$prior.fit$theta.vals, new.LP.ME$prior.fit$theta.vals*new.LP.ME$prior.fit$ds.prior)$int } } out$boot.mean <- par.mean.vec out$mean.sd <- sd(par.mean.vec) out$prior.fit <- DS.GF.obj$prior.fit class(out) <- "DS_GF_macro_mean" return(out) } ) } ) }
graphab_metric <- function(proj_name, graph, metric, dist = NULL, prob = 0.05, beta = 1, cost_conv = FALSE, return_val = TRUE, proj_path = NULL, alloc_ram = NULL){ if(!is.null(proj_path)){ chg <- 1 wd1 <- getwd() setwd(dir = proj_path) } else { chg <- 0 proj_path <- getwd() } if(!inherits(proj_name, "character")){ if(chg == 1){setwd(dir = wd1)} stop("'proj_name' must be a character string") } else if (!(paste0(proj_name, ".xml") %in% list.files(path = paste0("./", proj_name)))){ if(chg == 1){setwd(dir = wd1)} stop("The project you refer to does not exist. Please use graphab_project() before.") } proj_end_path <- paste0(proj_name, "/", proj_name, ".xml") if(!inherits(graph, "character")){ if(chg == 1){setwd(dir = wd1)} stop("'graph' must be a character string") } else if (!(paste0(graph, "-voronoi.shp") %in% list.files(path = paste0("./", proj_name)))){ if(chg == 1){setwd(dir = wd1)} stop("The graph you refer to does not exist") } else if (length(list.files(path = paste0("./", proj_name), pattern = "-voronoi.shp")) == 0){ if(chg == 1){setwd(dir = wd1)} stop("There is not any graph in the project you refer to. Please use graphab_graph() before.") } list_all_metrics <- c("PC", "IIC", "dPC", "F", "BC", "IF", "Dg", "CCe", "CF") list_glob_metrics <- list_all_metrics[1:3] list_loc_metrics <- list_all_metrics[4:length(list_all_metrics)] list_dist_metrics <- c("PC", "F", "BC", "IF", "dPC") if(metric %in% list_dist_metrics){ if(is.null(dist)){ if(chg == 1){setwd(dir = wd1)} stop(paste0("To compute ", metric, ", specify a distance associated to a dispersal probability (default=0.05)")) } else if(!inherits(dist, c("numeric", "integer"))){ if(chg == 1){setwd(dir = wd1)} stop("'dist' must be a numeric or integer value") } else if(!inherits(prob, c("numeric", "integer"))){ if(chg == 1){setwd(dir = wd1)} stop("'prob' must be a numeric or integer value") } else if(!inherits(beta, c("numeric", "integer"))){ if(chg == 1){setwd(dir = wd1)} stop("'beta' must be a numeric or integer value") } else if(beta < 0 || beta > 1){ if(chg == 1){setwd(dir = wd1)} stop("'beta' must be between 0 and 1") } else if(prob < 0 || prob > 1){ if(chg == 1){setwd(dir = wd1)} stop("'prob' must be between 0 and 1") } } if(metric == "dPC"){ if(cost_conv){ if(chg == 1){setwd(dir = wd1)} stop("Option 'cost_conv = TRUE' is not available with the metric dPC") } } if(metric == "CF"){ if(beta < 0 || beta > 1){ if(chg == 1){setwd(dir = wd1)} stop("'beta' must be between 0 and 1") } } if(!inherits(metric, "character")){ if(chg == 1){setwd(dir = wd1)} stop("'metric' must be a character string") } else if(!(metric %in% list_all_metrics)){ if(chg == 1){setwd(dir = wd1)} stop(paste0("'metric' must be ", paste(list_all_metrics, collapse = " or "))) } else if(metric %in% list_loc_metrics){ level <- "patch" } else if(metric %in% list_glob_metrics){ level <- "graph" } if(!is.logical(cost_conv)){ if(chg == 1){setwd(dir = wd1)} stop("'cost_conv' must be a logical (TRUE or FALSE).") } if(!is.logical(return_val)){ if(chg == 1){setwd(dir = wd1)} stop("'return_val' must be a logical (TRUE or FALSE).") } gr <- get_graphab(res = FALSE, return = TRUE) if(gr == 1){ message("Graphab has been downloaded") } java.path <- Sys.which("java") version <- "graphab-2.6.jar" path_to_graphab <- paste0(rappdirs::user_data_dir(), "/graph4lg_jar/", version) cmd <- c("-Djava.awt.headless=true", "-jar", path_to_graphab, "--project", proj_end_path, "--usegraph", graph) if(level == "graph"){ cmd <- c(cmd, "--gmetric", metric) } else if (level == "patch"){ cmd <- c(cmd, "--lmetric", metric) } if(metric %in% list_dist_metrics){ if(cost_conv){ cmd <- c(cmd, paste0("d={", dist, "}"), paste0("p=", prob), paste0("beta=", beta)) } else { cmd <- c(cmd, paste0("d=", dist), paste0("p=", prob), paste0("beta=", beta)) } } else if (metric == "CF"){ cmd <- c(cmd, paste0("beta=", beta)) } if(metric == "dPC"){ cmd[8] <- "--delta" cmd[13] <- "obj=patch" } if(!is.null(alloc_ram)){ if(inherits(alloc_ram, c("integer", "numeric"))){ cmd <- c(paste0("-Xmx", alloc_ram, "g"), cmd) } else { if(chg == 1){setwd(dir = wd1)} stop("'alloc_ram' must be a numeric or an integer") } } rs <- system2(java.path, args = cmd, stdout = TRUE) if(length(rs) == 1){ if(rs == 1){ message("An error occurred") } else { message(paste0("Metric '", metric, "' has been computed in the project ", proj_name)) } } else { message(paste0("Metric '", metric, "' has been computed in the project ", proj_name)) } if(return_val){ if(level == "graph"){ if(metric != "dPC"){ val <- as.numeric(stringr::str_split(rs[2], pattern = ":")[[1]][2]) vec_res <- c(paste0("Project : ", proj_name), paste0("Graph : ", graph), paste0("Metric : ", metric)) if(metric %in% list_dist_metrics){ vec_res <- c(vec_res, paste0("Dist : ", dist), paste0("Prob : ", prob), paste0("Beta : ", beta)) } vec_res <- c(vec_res, paste0("Value : ", val)) res <- vec_res } else if (metric == "dPC") { name_txt <- paste0("delta-dPC_d", dist, "_p", prob, "_", graph, ".txt") res_dpc <- utils::read.table(file = paste0("./", proj_name, "/", name_txt), header = TRUE)[-1, ] vec_res <- c(paste0("Project : ", proj_name), paste0("Graph : ", graph), paste0("Metric : ", metric), paste0("Dist : ", dist), paste0("Prob : ", prob), paste0("Beta : ", beta)) res <- list(vec_res, res_dpc) } } else if (level == "patch"){ name_met <- gsub(stringr::str_split(rs[3], pattern = ":")[[1]][2], pattern = " ", replacement = "") tab <- utils::read.csv(file = paste0(proj_name, "/patches.csv")) df_res <- tab[, c(1, which(colnames(tab) == paste0(name_met, "_", graph)))] vec_res <- c(paste0("Project : ", proj_name), paste0("Graph : ", graph), paste0("Metric : ", metric)) if(metric %in% list_dist_metrics){ vec_res <- c(vec_res, paste0("Dist : ", dist), paste0("Prob : ", prob), paste0("Beta : ", beta)) } else if (metric == "CF"){ vec_res <- c(vec_res, paste0("Beta : ", beta)) } res <- list(vec_res, df_res) } return(res) } if(chg == 1){ setwd(dir = wd1) } }
construct.splitSelect <- function(object, fn_call, x, y, intercept=TRUE, family=family){ class(object) <- append("splitSelect", class(object)) object$num_splits <- nrow(object$splits) if(intercept) object$intercepts <- object$betas[1,] object$call <- fn_call object$family <- family return(object) } construct.cv.splitSelect <- function(object, fn_call, x, y, intercept=TRUE, family=family){ class(object) <- append("cv.splitSelect", class(object)) object$num_splits <- nrow(object$splits) if(intercept) object$intercepts <- object$betas[1,] object$call <- fn_call object$family <- family return(object) }
context("literature") test_that("/literature/gwas", { skip_on_cran() url <- getOption("epigraphdb.api.url") trait <- "Body mass index" semmed_predicate <- NULL r <- httr::RETRY("GET", glue::glue("{url}/literature/gwas"), query = list( trait = trait, semmed_predicate = semmed_predicate ), config = httr::add_headers(.headers = c("client-type" = "R", "ci" = "true")) ) expect_equal(httr::status_code(r), 200) expect_true(length(httr::content(r)) > 0) }) test_that("literature_gwas", { skip_on_cran() trait <- "Body mass index" expect_error( literature_gwas( trait = trait ), NA ) })
treenode.pls <- function (xtree, node, boot.val = TRUE, br = 500) { if (class(xtree) != "xtree.pls") stop("\nAn object of class 'xtree.pls' was expected") if (missing(node)) stop("\nargument 'node' (number of node) is missing") if (mode(node)!="numeric" || length(node)!=1 || node<=1 || (node%%1)!=0) stop("\nInvalid number of 'node'. Must be an integer larger than 1") if (boot.val) { if (!is.null(br)) { if(!is_positive_integer(br) || length(br) != 1L || br < 10) { warning("Warning: Invalid argument 'br'. Default 'br=500' is used.") br = 500 } } else br = 500 } x = xtree$model$data inner = as.matrix(xtree$model$inner) outer = xtree$model$outer mode = xtree$model$mode scaling = xtree$model$scaling scaled = xtree$model$scaled scheme = xtree$model$scheme MOX = xtree$MOX nodes = xtree$nodes x.node = x[unlist(nodes[node]),] pls=plspm(x.node,inner,outer,mode,scaling,scheme,scaled=scaled,boot.val = boot.val,br=br) cor.lat=round(cor(pls$scores),3) diag(cor.lat) = sqrt(pls$inner_summary[,5]) disc_val<-round(cor.lat,3) disc_val[upper.tri(cor.lat)]<-"" disc_val<-as.data.frame(disc_val) res=list(Reliability_indexes_and_unidimensionality =round(cbind(pls$unidim[,-(1:2)][,c(1:4)]),3), Internal_consistency_and_R2=round(pls$inner_summary[,c(2,5)],3), loading=round(pls$boot$loading,3), weights=round(pls$boot$weights,3),discriminant_validity=disc_val, path_coef=round(pls$boot$paths,3), total_effects=round(pls$boot$total,3) ) cat("\n") cat("---------------------------------------------") cat("\n") cat("---------------------------------------------") cat("\n") cat("PLS-SEM RESULTS FOR PATHMOX TERMINAL NODE: ",node,"\n") cat("\n") cat("---------------------------------------------") cat("\n") cat("---------------------------------------------") cat("\n") cat("\n") cat("\n") return(res) }
.dt_row_groups_key <- "_row_groups" dt_row_groups_get <- function(data) { dt__get(data, .dt_row_groups_key) } dt_row_groups_set <- function(data, row_groups) { dt__set(data, .dt_row_groups_key, row_groups) } dt_row_groups_init <- function(data) { stub_df <- dt_stub_df_get(data = data) if (any(!is.na(stub_df[["group_id"]]))) { row_groups <- unique(stub_df[["group_id"]]) } else { row_groups <- character(0) } data <- row_groups %>% dt_row_groups_set(data = data) data }
source('~/git/derivmkts/R/greeks.R') library(testthat) load('~/git/derivmkts/tests/testthat/option_testvalues.Rdata') barrierchecks <- FALSE barrierchecks <- TRUE tol <- 5e-07 tol2 <- 1e-04 test_that('greeks works bscall', { correct <- greeksvals[['bscall']] unknown <- greeks(bscall(s=s, k=kseq, v=v, r=r, tt=tt, d=d), initcaps=TRUE) expect_equal(correct, unknown, tolerance=tol) } ) print('bscall greeks okay') test_that('tidy greeks works bscall', { correct <- greeksvals2[['bscalltidy']] unknown <- greeks(bscall(s=s, k=kseq, v=v, r=r, tt=tt, d=d), complete=TRUE, initcaps=FALSE) expect_equal(correct, unknown, tolerance=tol) } ) print('complete bscall greeks okay') test_that('long tidy greeks works bscall', { correct <- greeksvals2[['bscalltidylong']] unknown <- greeks(bscall(s=s, k=kseq0, v=v, r=r, tt=tt, d=d), long=TRUE, initcaps=FALSE) expect_equivalent(correct, unknown, tolerance=tol) } ) print('complete long bscall greeks okay') test_that('greeks2 works bscall', { correct <- greeksvals2[['bscall']] unknown <- greeks2(bscall, greeksinputs) expect_equal(correct, unknown, tolerance=tol) } ) print('bscall greeks2 okay') if (barrierchecks) { test_that('greeks works assetuicall', { correct <- greeksvals[['assetuicall']] colnames(correct) <- tolower(colnames(correct)) unknown <- greeks2(assetuicall, list(s=40, k=kseq, v=v, r=r, tt=tt, d=d, H=Hseq2) ) expect_equal(correct, unknown, tolerance=tol2) } ) print('assetuicall greeks okay') test_that('greeks2 works assetuicall', { correct <- greeksvals2[['assetuicalltidy']] correct$funcname <- tolower(correct$funcname) unknown <- greeks(assetuicall(s=s, k=kseq, v=v, r=r, tt=tt, d=d, H=Hseq2), complete=TRUE, initcaps=FALSE) expect_equal(correct, unknown, tolerance=tol2) } ) print('assetuicall greeks2 okay') test_that('greeks2 works assetuicall', { correct <- greeksvals2[['assetuicall']] colnames(correct) <- tolower(colnames(correct)) unknown <- greeks(assetuicall(s=s, k=kseq, v=v, r=r, tt=tt, d=d, H=Hseq2), initcaps=TRUE) expect_equal(correct, unknown, tolerance=tol2) } ) print('assetuicall greeks2 okay') }
fast_filter_variables <- function(data_set, level = 3, keep_cols = NULL, verbose = TRUE, ...) { function_name <- "fast_filter_variables" args <- list(...) data_set_name <- get_data_set_name_from_args(args) data_set <- check_and_return_datatable(data_set = data_set, data_set_name = data_set_name) is.verbose_level(verbose, max_level = 2, function_name = function_name) keep_cols <- real_cols(data_set = data_set, cols = keep_cols, function_name = function_name) is.filtering_level(level, function_name = function_name) if (level >= 1) { if (verbose) { printl(function_name, ": I check for constant columns.") } constant_cols <- which_are_constant(data_set, keep_cols = keep_cols, verbose = verbose >= 2) if (length(constant_cols) > 0) { if (verbose) { printl(function_name, ": I delete ", length(constant_cols), " constant column(s) in ", data_set_name, ".") } set(data_set, NULL, constant_cols, NULL) } } if (level >= 2) { if (verbose) { printl(function_name, ": I check for columns in double.") } double_cols <- which_are_in_double(data_set, keep_cols = keep_cols, verbose = verbose >= 2) if (length(double_cols) > 0) { if (verbose) { printl(function_name, ": I delete ", length(double_cols), " column(s) that are in double in ", data_set_name, ".") } set(data_set, NULL, double_cols, NULL) } } if (level >= 3) { if (verbose) { printl(function_name, ": I check for columns that are bijections of another column.") } bijection_cols <- which_are_bijection(data_set, keep_cols = keep_cols, verbose = verbose >= 2) if (length(bijection_cols) > 0) { if (verbose) { printl(function_name, ": I delete ", length(bijection_cols), " column(s) that are bijections of another column in ", data_set_name, ".") } set(data_set, NULL, bijection_cols, NULL) } } if (level >= 4) { if (verbose) { printl(function_name, ": I check for columns that are included in another column.") } included_cols <- which_are_included(data_set, keep_cols = keep_cols, verbose = verbose >= 2) if (length(included_cols) > 0) { if (verbose) { printl(function_name, ": I delete ", length(included_cols), " column(s) that are bijections of another column in ", data_set_name, ".") } set(data_set, NULL, included_cols, NULL) } } return(data_set) } get_data_set_name_from_args <- function(args) { data_set_name <- "data_set" if (length(args) > 0) { if (! is.null(args[["data_set_name"]])) { data_set_name <- args[["data_set_name"]] } } return(data_set_name) } is.filtering_level <- function(level, function_name = "is.filtering_level") { if (! is.numeric(level) || level < 1 || level > 4) { stop(paste0(function_name, ": level should be 1, 2, 3 or 4.")) } } fast_round <- function(data_set, cols = "auto", digits = 2, verbose = TRUE) { function_name <- "fast_round" data_set <- check_and_return_datatable(data_set) if (! is.numeric(digits)) { stop(paste0(function_name, ": digits should be an integer.")) } is.verbose(verbose) cols <- real_cols(data_set, cols = cols, function_name = function_name, types = c("numeric", "integer")) digits <- round(digits, 0) if (verbose) { pb <- init_progress_bar(function_name, cols) } for (col in cols) { set(data_set, NULL, col, round(data_set[[col]], digits)) if (verbose) { add_a_tick_to_progress_bar(pb) } } return(data_set) } fast_handle_na <- function(data_set, set_num = 0, set_logical = FALSE, set_char = "", verbose = TRUE) { function_name <- "fast_handle_na" data_set <- check_and_return_datatable(data_set) is.verbose(verbose) num_fun <- function.maker(set_num, "numeric", function_name, "set_num") logical_fun <- function.maker(set_logical, "logical", function_name, "set_logical") char_fun <- function.maker(set_char, "character", function_name, "set_char") if (verbose) { pb <- init_progress_bar(function_name, names(data_set)) } for (col in names(data_set)) { if (is.numeric(data_set[[col]])) { set(data_set, which(is.na(data_set[[col]])), col, num_fun(data_set[[col]])) } if (is.logical(data_set[[col]])) { set(data_set, which(is.na(data_set[[col]])), col, logical_fun(data_set[[col]])) } if (is.character(data_set[[col]])) { set(data_set, which(is.na(data_set[[col]])), col, char_fun(data_set[[col]])) } if (is.factor(data_set[[col]])) { if (sum(is.na(data_set[[col]])) > 0) { set(data_set, NULL, col, addNA(data_set[[col]])) levels(data_set[[col]])[is.na(levels(data_set[[col]]))] <- "NA" } } if (verbose) { add_a_tick_to_progress_bar(pb) } } return(data_set) } fast_is_equal <- function(object1, object2) { if (any(class(object1) != class(object2))) { return(FALSE) } if (length(object1) != length(object2)) { return(FALSE) } if (is.data.frame(object1) || is.list(object1)) { for (i in seq_len(length(object1))) { if (! fast_is_equal(object1[[i]], object2[[i]])) { return(FALSE) } } return(TRUE) } if (is.factor(object1)) { if (! identical(levels(object1), levels(object2))) { return(FALSE) } } return(exponential_equality_check(object1, object2)) } exponential_equality_check <- function(object1, object2) { exp_factor <- 10 max_power <- floor(log(length(object1)) / log(exp_factor)) + 1 for (i in 1 : max_power) { indexes <- (exp_factor ^ (i - 1)) : min(exp_factor ^ i - 1, length(object1)) if (! identical(object1[indexes], object2[indexes])) { return(FALSE) } } return(TRUE) } fast_is_bijection <- function(object1, object2) { nrows <- length(object1) exp_factor <- 10 max_power <- floor(log(nrows) / log(exp_factor)) + 1 empty_object_of_class_1 <- get(paste0("as.", class(object1)[1]))(character()) empty_object_of_class_2 <- get(paste0("as.", class(object2)[1]))(character()) unique_couples <- data.table(object1 = empty_object_of_class_1, object2 = empty_object_of_class_2) for (i in 1 : max_power) { indexes <- (exp_factor ^ (i - 1)) : min(exp_factor ^ i - 1, nrows) n1 <- uniqueN(c(object1[indexes], unique_couples[["object1"]])) n2 <- uniqueN(c(object2[indexes], unique_couples[["object2"]])) if (n2 != n1) { return(FALSE) } potential_unique_couples <- rbind(data.table(object1 = object1[indexes], object2 = object2[indexes]), unique_couples) unique_couples <- potential_unique_couples[, unique(.SD), .SDcols = c("object1", "object2")] n12 <- nrow(unique_couples) if (n12 != n1) { return(FALSE) } } return(TRUE) } fast_is_there_less_than <- function(object, n_values = 1) { unique_elements <- NULL exp_factor <- 10 object_length <- length(object) max_power <- floor(log(object_length) / log(exp_factor)) + 1 for (i in 1 : max_power) { indexes <- (exp_factor ^ (i - 1)) : min(exp_factor ^ i - 1, object_length) unique_elements <- unique(c(unique_elements, unique(object[indexes]))) if (length(unique_elements) > n_values) { return(FALSE) } } return(TRUE) }
observe({ val <- input$itemanalysis_DDplot_groups_slider updateSliderInput(session, "itemanalysis_DDplot_range_slider", min = 1, max = val, step = 1, value = c(1, val) ) }) observe({ val <- input$report_itemanalysis_DDplot_groups_slider updateSliderInput(session, "report_itemanalysis_DDplot_range_slider", min = 1, max = val, step = 1, value = c(1, val) ) }) output$itemanalysis_DDplot_text <- renderUI({ range1 <- input$itemanalysis_DDplot_range_slider[[1]] range2 <- input$itemanalysis_DDplot_range_slider[[2]] if (any(range1 != 1, range2 != 3, input$itemanalysis_DDplot_groups_slider != 3)) { HTML(paste0( "Discrimination is defined as a difference in average (scaled) item score between the ", "<b>", range1, "</b>", ifelse(range1 >= 4, "-th", switch(range1, "1" = "-st", "2" = "-nd", "3" = "-rd")), " and <b>", range2, "</b>", ifelse(range2 >= 4, "-th", switch(range2, "1" = "-st", "2" = "-nd", "3" = "-rd")), " group out of total number of ", "<b>", input$itemanalysis_DDplot_groups_slider, "</b>", " groups. " )) } }) itemanalysis_DDplot <- reactive({ correct <- ordinal() average.score <- (input$itemanalysis_DDplot_difficulty == "AVGS") validate(need( input$itemanalysis_DDplot_range_slider[[2]] <= input$itemanalysis_DDplot_groups_slider, "" )) DDplot(Data = correct, item.names = item_numbers(), k = input$itemanalysis_DDplot_groups_slider, l = input$itemanalysis_DDplot_range_slider[[1]], u = input$itemanalysis_DDplot_range_slider[[2]], discrim = input$itemanalysis_DDplot_discrimination, average.score = average.score, thr = switch(input$itemanalysis_DDplot_threshold, "TRUE" = input$itemanalysis_DDplot_threshold_value, "FALSE" = NULL ) ) }) report_itemanalysis_DDplot <- reactive({ correct <- ordinal() if (input$customizeCheck) { average.score <- (input$report_itemanalysis_DDplot_difficulty == "AVGS") DDplot(Data = correct, item.names = item_numbers(), k = input$report_itemanalysis_DDplot_groups_slider, l = input$report_itemanalysis_DDplot_range_slider[[1]], u = input$report_itemanalysis_DDplot_range_slider[[2]], discrim = input$report_itemanalysis_DDplot_discrimination ) } else { itemanalysis_DDplot() } }) output$itemanalysis_DDplot <- renderPlotly({ p <- itemanalysis_DDplot() %>% ggplotly(tooltip = c("item", "fill", "value", "yintercept")) for (i in 1:2) { for (j in 1:length(p$x$data[[i]][["text"]])) { p$x$data[[i]][["text"]][j] <- str_remove( str_replace( str_remove_all(p$x$data[[i]][["text"]][j], "parameter: |value: "), "item", "Item" ), "(?<=\\.\\d{3}).*" ) } } if (input$itemanalysis_DDplot_threshold) { p$x$data[[3]][["text"]] <- str_replace(p$x$data[[3]][["text"]], "yintercept", "Threshold") } p %>% plotly::config(displayModeBar = FALSE) }) output$itemanalysis_DDplot_download <- downloadHandler( filename = function() { "fig_DDplot.png" }, content = function(file) { ggsave(file, plot = itemanalysis_DDplot() + theme(text = element_text(size = setting_figures$text_size)), device = "png", height = setting_figures$height, width = setting_figures$width, dpi = setting_figures$dpi ) } ) itemanalysis_cronbach_note <- reactive({ cronbach <- list() cronbach$est <- round(psych::alpha(ordinal())$total[1], 2) cronbach$sd <- round(psych::alpha(ordinal())$total[8], 2) cronbach }) output$itemanalysis_cronbach_note <- renderUI({ HTML( paste0( "<sup>1</sup>Estimate (SD) of Cronbach's \\(\\alpha\\) for the test as a whole is: ", itemanalysis_cronbach_note()$est, " (", itemanalysis_cronbach_note()$sd, ")." ) ) }) output$itemanalysis_table_text <- renderUI({ range1 <- input$itemanalysis_DDplot_range_slider[[1]] range2 <- input$itemanalysis_DDplot_range_slider[[2]] num.groups <- input$itemanalysis_DDplot_groups_slider HTML(paste0( "<b>Explanation:<br>Diff.</b>&nbsp;", "&ndash; item difficulty estimated as an average item score divided by its range, ", "<b>Avg. score</b>&nbsp;", "&ndash; average item score, ", "<b>SD</b>&nbsp;", "&ndash; standard deviation, ", "<b>ULI</b>&nbsp;", "&ndash; Upper-Lower Index, ", if (num.groups != 3 | range1 != 1 | range2 != 3) { paste0( "<b>gULI</b>&nbsp;", "&ndash; generalized ULI, difference between the difficulty recorded in the ", range1, ifelse(range1 >= 4, "-th", switch(range1, "1" = "-st", "2" = "-nd", "3" = "-rd")), " and ", range2, ifelse(range2 >= 4, "-th", switch(range2, "1" = "-st", "2" = "-nd", "3" = "-rd")), " group out of total number of ", num.groups, " groups, " ) }, "<b>RIT</b>&nbsp;", "&ndash; Pearson correlation between item and total score, ", "<b>RIR</b>&nbsp;", "&ndash; Pearson correlation between item and rest of the items, ", "<b>Rel.</b>&nbsp;", "&ndash; item reliability index, ", "<b>Rel. drop</b>&nbsp;", "&ndash; as previous, but scored without the respective item, ", "<b>I-C cor.</b>&nbsp;", "&ndash; item-criterion correlation, ", "<b>Val. index</b>&nbsp;", "&ndash; item validity index, ", "<b>\\(\\alpha\\)&nbsp;drop </b>&nbsp;", "&ndash; Cronbach\'s \\(\\alpha\\) of test without given item (the value for the test as a whole is presented in the note below), ", "<b>Missed</b>&nbsp;", "&ndash; percentage of missed responses on the particular item, ", "<b>Not-reached</b>&nbsp;", "&ndash; percentage of respondents that did not reach the item nor the subsequent ones" )) }) itemanalysis_table <- reactive({ k <- input$itemanalysis_DDplot_groups_slider l <- input$itemanalysis_DDplot_range_slider[[1]] u <- input$itemanalysis_DDplot_range_slider[[2]] item_crit_cor <- if (any(crit_wo_val() == "missing", na.rm = TRUE)) { "none" } else { unlist(crit_wo_val()) } tab <- ItemAnalysis(Data = ordinal(), criterion = item_crit_cor, k, l, u, minscore = minimal(), maxscore = maximal() ) tab <- tab[, !(colnames(tab) %in% c("Prop.max.score"))] if (item_crit_cor[1] == "none") { colnames(tab) <- c( "Diff.", "Avg. score", "SD", "Min", "Max", "obsMin", "obsMax", "gULI", "ULI", "RIT", "RIR", "Rel.", "Rel. drop", "Alpha drop", "Missed [%]", "Not-reached [%]" ) } else { colnames(tab) <- c( "Diff.", "Avg. score", "SD", "Min", "Max", "obsMin", "obsMax", "gULI", "ULI", "RIT", "RIR", "I-C cor.", "Val. index", "Rel.", "Rel. drop", "Alpha drop", "Missed [%]", "Not-reached [%]" ) } remove_gULI <- (k == 3 & l == 1 & u == 3) if (remove_gULI) { tab <- tab[, !(colnames(tab) %in% "gULI")] } row.names(tab) <- item_names() tab }) report_itemanalysis_table <- reactive({ a <- nominal() k <- key() correct <- ordinal() range1 <- ifelse(input$customizeCheck, input$report_itemanalysis_DDplot_range_slider[[1]], input$itemanalysis_DDplot_range_slider[[1]] ) range2 <- ifelse(input$customizeCheck, input$report_itemanalysis_DDplot_range_slider[[2]], input$itemanalysis_DDplot_range_slider[[2]] ) num.groups <- ifelse(input$customizeCheck, input$report_itemanalysis_DDplot_groups_slider, input$itemanalysis_DDplot_groups_slider ) tab <- ItemAnalysis(Data = correct) tab <- data.table( item_numbers(), tab[, c("Difficulty", "Mean", "SD", "ULI", "RIT", "RIR", "Alpha.drop")] ) tab <- cbind(tab, gDiscrim(Data = correct, k = num.groups, l = range1, u = range2)) colnames(tab) <- c( "Item", "Difficulty", "Average score", "SD", "Discrimination ULI", "Discrimination RIT", "Discrimination RIR", "Alpha Drop", "Customized Discrimination" ) tab }) output$itemanalysis_table_coef <- renderTable( { tab <- itemanalysis_table() colnames(tab)[which(colnames(tab) == "Alpha drop")] <- "\\(\\mathit{\\alpha}\\) drop\\(\\mathrm{^1}\\)" tab }, rownames = TRUE ) output$itemanalysis_table_download <- downloadHandler( filename = function() { "Item_Analysis.csv" }, content = function(file) { data <- itemanalysis_table() write.csv(data, file) write( paste0( "Note: Estimate (SD) of Cronbach's alpha for the test as a whole is: ", itemanalysis_cronbach_note()$est, " (", itemanalysis_cronbach_note()$sd, ")." ), file, append = TRUE ) } ) observe({ item_count <- ncol(binary()) updateSliderInput( session = session, inputId = "distractor_item_slider", max = item_count ) }) distractor_admissible_groups <- reactive({ sc <- total_score() sc_quant <- lapply(1:5, function(i) quantile(sc, seq(0, 1, by = 1 / i), na.rm = TRUE)) sc_quant_unique <- sapply(sc_quant, function(i) !any(duplicated(i))) groups <- c(1:5)[sc_quant_unique] groups }) distractor_change_cut_indicator <- reactiveValues(change = FALSE) observeEvent(!(input$distractor_group_slider %in% distractor_admissible_groups()), { if (!(input$distractor_group_slider %in% distractor_admissible_groups())) { distractor_change_cut_indicator$change <- TRUE c <- max(distractor_admissible_groups(), na.rm = TRUE) updateSliderInput(session, "distractor_group_slider", value = c) } }) output$distractor_groups_alert <- renderUI({ if (distractor_change_cut_indicator$change) { txt <- paste0( '<font color = "orange">The cut of criterion variable was not unique. The maximum number of groups for which criterion variable is unique is ', max(distractor_admissible_groups(), na.rm = TRUE), ".</font>" ) HTML(txt) } else { txt <- "" HTML(txt) } }) output$distractor_text <- renderUI({ txt1 <- paste("Respondents are divided into ") txt2 <- paste("<b>", input$distractor_group_slider, "</b>") txt3 <- paste("groups by their total score. For each group, we subsequently display a proportion of respondents who have selected a given response. In case of multiple-choice items, the correct answer should be selected more often by respondents with a higher total score than by those with lower total scores, i.e.,") txt4 <- paste("<b>", "solid line should be increasing.", "</b>") txt5 <- paste("The distractor should work in the opposite direction, i.e.,") txt6 <- paste("<b>", "dotted lines should be decreasing.", "<b>") HTML(paste(txt1, txt2, txt3, txt4, txt5, txt6)) }) distractor_plot <- reactive({ i <- input$distractor_item_slider plotDistractorAnalysis( Data = nominal(), key = key(), num.group = input$distractor_group_slider, item = i, item.name = item_names()[i], multiple.answers = input$distractor_type == "Combinations", criterion = total_score() ) + xlab("Group by total score") }) output$distractor_plot <- renderPlotly({ g <- distractor_plot() p <- ggplotly(g) for (i in 1:length(p$x$data)) { text <- p$x$data[[i]]$text text <- lapply(strsplit(text, split = "<br />"), unique) text <- unlist(lapply(text, paste, collapse = "<br />")) p$x$data[[i]]$text <- text } p$elementId <- NULL p %>% plotly::config(displayModeBar = FALSE) }) output$distractor_plot_download <- downloadHandler( filename = function() { paste0("fig_DistractorPlot_", item_names()[input$distractor_item_slider], ".png") }, content = function(file) { ggsave(file, plot = distractor_plot() + theme(text = element_text(size = setting_figures$text_size)), device = "png", height = setting_figures$height, width = setting_figures$width, dpi = setting_figures$dpi ) } ) distractor_table_counts <- reactive({ num.group <- input$distractor_group_slider a <- nominal() k <- key() item <- input$distractor_item_slider sc <- total_score() DA <- DistractorAnalysis(Data = a, key = k, num.groups = num.group, criterion = sc)[[item]] df <- DA %>% addmargins() %>% as.data.frame.matrix() %>% add_column(.before = 1, Response = as.factor(rownames(.))) colnames(df) <- c("Response", paste("Group", 1:ifelse(num.group > (ncol(df) - 2), ncol(df) - 2, num.group)), "Total") levels(df$Response)[nrow(df)] <- "Total" rownames(df) <- NULL df }) output$distractor_table_counts <- renderTable( { distractor_table_counts() }, digits = 0 ) distractor_table_proportions <- reactive({ a <- nominal() k <- key() num.group <- input$distractor_group_slider item <- input$distractor_item_slider sc <- total_score() DA <- DistractorAnalysis(Data = a, key = k, num.groups = num.group, p.table = TRUE, criterion = sc)[[item]] df <- DA %>% as.data.frame.matrix() %>% add_column(.before = 1, Response = as.factor(rownames(.))) colnames(df) <- c("Response", paste("Group", 1:ifelse(num.group > (ncol(df) - 1), ncol(df) - 1, num.group))) rownames(df) <- NULL df }) output$distractor_table_proportions <- renderTable({ distractor_table_proportions() }) distractor_barplot_item_response_patterns <- reactive({ a <- nominal() k <- key() num.group <- 1 item <- input$distractor_item_slider sc <- total_score() DA <- DistractorAnalysis(Data = a, key = k, num.groups = num.group, p.table = TRUE, criterion = sc)[[item]] df <- DA %>% as.data.frame.matrix() %>% add_column(.before = 1, Response = as.factor(rownames(.))) colnames(df) <- c("Response", "Proportion") rownames(df) <- NULL ggplot(df, aes(x = Response, y = Proportion)) + geom_bar(stat = "identity") + xlab("Item response pattern") + ylab("Relative frequency") + scale_y_continuous(limits = c(0, 1), expand = c(0, 0)) + theme_app() + ggtitle(item_names()[item]) }) output$distractor_barplot_item_response_patterns <- renderPlotly({ g <- distractor_barplot_item_response_patterns() p <- ggplotly(g) for (i in 1:length(p$x$data)) { text <- p$x$data[[i]]$text text <- lapply(strsplit(text, split = "<br />"), unique) text <- unlist(lapply(text, paste, collapse = "<br />")) p$x$data[[i]]$text <- text } p$elementId <- NULL p %>% plotly::config(displayModeBar = FALSE) }) output$distractor_barplot_item_response_patterns_download <- downloadHandler( filename = function() { paste0("fig_ItemResponsePatterns_", item_names()[input$distractor_item_slider], ".png") }, content = function(file) { ggsave(file, plot = distractor_barplot_item_response_patterns() + theme(text = element_text(size = setting_figures$text_size)), device = "png", height = setting_figures$height, width = setting_figures$width, dpi = setting_figures$dpi ) } ) distractor_histogram <- reactive({ a <- nominal() k <- key() num.groups <- input$distractor_group_slider sc <- total_score() sc.level <- cut(sc, quantile(sc, seq(0, 1, by = 1 / num.groups), na.rm = TRUE), include.lowest = TRUE) df <- data.frame(Score = sc, Group = sc.level) col <- c("darkred", "red", "orange2", "gold1", "green3") col <- switch(input$distractor_group_slider, "1" = col[4], "2" = col[4:5], "3" = col[c(2, 4:5)], "4" = col[2:5], "5" = col ) ggplot(df, aes(x = Score, fill = Group, group = Group)) + geom_histogram(binwidth = 1, color = "black") + scale_fill_manual("", values = col) + labs( x = "Total score", y = "Number of respondents" ) + scale_y_continuous( expand = c(0, 0), limits = c(0, max(table(sc), na.rm = TRUE) + 0.01 * nrow(a)) ) + scale_x_continuous( limits = c(-0.5 + min(sc, na.rm = TRUE), max(sc, na.rm = TRUE) + 0.5) ) + theme_app() }) output$distractor_histogram <- renderPlotly({ g <- distractor_histogram() p <- ggplotly(g) for (i in 1:length(p$x$data)) { text <- p$x$data[[i]]$text text <- lapply(strsplit(text, split = "<br />"), unique) text <- unlist(lapply(text, paste, collapse = "<br />")) text <- gsub("count", "Count", text) text <- gsub("Score", "Total score", text) p$x$data[[i]]$text <- text } p$elementId <- NULL p %>% plotly::config(displayModeBar = FALSE) }) output$distractor_histogram_download <- downloadHandler( filename = function() { "fig_HistrogramByDistractorGroups.png" }, content = function(file) { ggsave(file, plot = distractor_histogram() + theme(text = element_text(size = setting_figures$text_size)), device = "png", height = setting_figures$height, width = setting_figures$width, dpi = setting_figures$dpi ) } ) distractor_table_total_score_by_group <- reactive({ sc <- total_score() num.group <- input$distractor_group_slider sc.level <- quantile(sc, seq(0, 1, by = 1 / num.group), na.rm = TRUE) tab <- table(cut(sc, sc.level, include.lowest = TRUE, labels = sc.level[-1] )) tab <- t(data.frame(tab)) tab <- matrix(round(as.numeric(tab), 2), nrow = 2) rownames(tab) <- c("Max points", "Count") colnames(tab) <- paste("Group", 1:num.group) tab }) output$distractor_table_total_score_by_group <- renderTable( { distractor_table_total_score_by_group() }, include.colnames = TRUE, include.rownames = TRUE, digits = 0 ) report_distractor_change_cut_indicator <- reactiveValues(change = FALSE) observeEvent(list(input$customizeCheck, !(input$report_distractor_group_slider %in% distractor_admissible_groups())), { if (!(input$report_distractor_group_slider %in% distractor_admissible_groups())) { report_distractor_change_cut_indicator$change <- TRUE c <- max(distractor_admissible_groups(), na.rm = TRUE) updateSliderInput(session, "report_distractor_group_slider", value = c) } }) output$report_distractor_groups_alert <- renderUI({ if (report_distractor_change_cut_indicator$change) { txt <- paste0('<font color = "orange">The cut of criterion variable was not unique. The maximum number of groups, for which criterion variable is unique is ', max(distractor_admissible_groups(), na.rm = TRUE), ".</font>") HTML(txt) } else { txt <- "" HTML(txt) } }) report_distractor_plot <- reactive({ a <- nominal() colnames(a) <- item_names() k <- key() sc <- total_score() if (!input$customizeCheck) { multiple.answers_report <- c(input$distractor_type == "Combinations") num.group <- input$distractor_group_slider } else { multiple.answers_report <- c(input$report_distractor_type == "Combinations") num.group <- input$report_distractor_group_slider } graflist <- list() for (i in 1:length(k)) { g <- plotDistractorAnalysis( Data = a, key = k, num.group = num.group, item = i, item.name = item_names()[i], multiple.answers = multiple.answers_report, criterion = sc ) + xlab("Group by total score") g <- g + ggtitle(paste("Distractor plot for item", item_numbers()[i])) + theme_app() graflist[[i]] <- g } graflist })
.spawn_multi_selection_graph <- function(all_memory) { graph <- make_graph(edges=character(0), isolates=names(all_memory)) for (x in names(all_memory)) { instance <- all_memory[[x]] for (f in c(.selectRowSource, .selectColSource)) { parent <- slot(instance, f) if (parent %in% names(all_memory)) { graph <- .add_interpanel_link(graph, x, parent, field=f) } } } if (!is_dag(graph)) { stop("multiple selection dependencies cannot be cyclic") } graph } .spawn_single_selection_graph <- function(all_memory) { graph <- make_graph(edges=character(0), isolates=names(all_memory)) for (x in names(all_memory)) { instance <- all_memory[[x]] fields <- .singleSelectionSlots(instance) for (f in fields) { parent <- slot(instance, f$source) if (parent %in% names(all_memory)) { graph <- .add_interpanel_link(graph, x, parent, field=f$parameter) } } } graph } .add_interpanel_link <- function(graph, panel_name, parent_name, field) { if (parent_name %in% names(V(graph))) { idx <- get.edge.ids(graph, c(parent_name, panel_name)) if (idx==0L) { graph <- add_edges(graph, c(parent_name, panel_name), attr=list(fields=list(field))) } else { E(graph)$fields[[idx]] <- union(E(graph)$fields[[idx]], field) } } graph } .delete_interpanel_link <- function(graph, panel_name, parent_name, field) { if (parent_name %in% names(V(graph))) { idx <- get.edge.ids(graph, c(parent_name, panel_name)) if (idx!=0L) { fields <- E(graph)$fields[[idx]] remaining <- setdiff(fields, field) if (length(remaining)) { E(graph)$fields[[idx]] <- remaining } else { graph <- delete_edges(graph, idx) } } } graph } .get_direct_children <- function(graph, panel_name) { children <- names(adjacent_vertices(graph, panel_name, mode="out")[[1]]) children <- setdiff(children, panel_name) if (!length(children)) { return(list()) } ids <- get.edge.ids(graph, as.vector(rbind(panel_name, children))) output <- E(graph)$fields[ids] names(output) <- children output } .choose_new_parent <- function(graph, panel_name, new_parent_name, old_parent_name, field) { graph <- .delete_interpanel_link(graph, panel_name, old_parent_name, field) .add_interpanel_link(graph, panel_name, new_parent_name, field) } .establish_eval_order <- function(graph) { iso <- V(graph)[degree(graph, mode="out") == 0] graph <- delete.vertices(graph, iso) names(topo_sort(graph, mode="out")) } .has_child <- function(graph) { names(V(graph)[degree(graph, mode="out") != 0]) } .spawn_dynamic_multi_selection_list <- function(all_memory) { multi_rows <- multi_cols <- list() for (x in all_memory) { panel_name <- .getEncodedName(x) if (slot(x, .selectRowDynamic)) { multi_rows[[panel_name]] <- .selectRowSource } if (slot(x, .selectColDynamic)) { multi_cols[[panel_name]] <- .selectColSource } } list(row=multi_rows, column=multi_cols) } .spawn_dynamic_single_selection_list <- function(all_memory) { single_feat <- single_samp <- list() for (x in all_memory) { all_singles <- .singleSelectionSlots(x) cur_feat <- cur_samp <- character(0) for (s in all_singles) { if (is.null(s$dimension)) { next } if (is.null(s$dynamic) || !x[[s$dynamic]]) { next } if (s$dimension=="feature") { cur_feat <- c(cur_feat, s$source) } else { cur_samp <- c(cur_samp, s$source) } } panel_name <- .getEncodedName(x) if (length(cur_feat)) { single_feat[[panel_name]] <- cur_feat } if (length(cur_samp)) { single_samp[[panel_name]] <- cur_samp } } list(feature=single_feat, sample=single_samp) } .add_panel_to_dynamic_sources <- function(listing, panel_name, source_type, field) { existing <- listing[[source_type]][[panel_name]] listing[[source_type]][[panel_name]] <- union(existing, field) listing } .delete_panel_from_dynamic_sources <- function(listing, panel_name, source_type, field) { existing <- listing[[source_type]][[panel_name]] existing <- setdiff(existing, field) if (!length(existing)) { existing <- NULL } listing[[source_type]][[panel_name]] <- existing listing }
plotDoseResponse.survDataCstExp <- function(x, xlab = "Concentration", ylab = "Survival probability", main = NULL, target.time = NULL, style = "ggplot", log.scale = FALSE, remove.someLabels = FALSE, addlegend = TRUE, ...) { if (is.null(target.time)) target.time <- max(x$time) if (!target.time %in% x$time || target.time == 0) stop("[target.time] is not one of the possible time !") if (style == "generic" && remove.someLabels) warning("'remove.someLabels' argument is valid only in 'ggplot' style.", call. = FALSE) x <- cbind(aggregate(cbind(Nsurv, Ninit) ~ time + conc, x, sum), replicate = 1) x$resp <- x$Nsurv / x$Ninit xf <- filter(x, x$time == target.time) conf.int <- survConfInt(xf, log.scale) sel <- if(log.scale) xf$conc > 0 else TRUE x <- xf[sel, ] transf_data_conc <- optLogTransform(log.scale, x$conc) display.conc <- (function() { x <- optLogTransform(log.scale, x$conc) if(log.scale) exp(x) else x })() x$color <- as.numeric(as.factor(x$replicate)) if (style == "generic") { plot(transf_data_conc, seq(0, max(conf.int["qsup95",]), length.out = length(transf_data_conc)), type = "n", xaxt = "n", yaxt = "n", main = main, xlab = xlab, ylab = ylab) axis(side = 1, at = transf_data_conc, labels = display.conc) axis(side = 2, at = unique(round(pretty(c(0, max(x$resp))))), labels = unique(round(pretty(c(0, max(x$resp)))))) points(transf_data_conc, x$resp, pch = 20) segments(transf_data_conc, x$resp, transf_data_conc, conf.int["qsup95", ]) segments(transf_data_conc, x$resp, transf_data_conc, conf.int["qinf95", ]) if (addlegend) { legend("bottomleft", pch = c(20, NA), lty = c(NA, 1), lwd = c(NA, 1), col = c(1, 1), legend = c("Observed values", "Confidence intervals"), bty = "n") } } else if (style == "ggplot") { valCols <- fCols(x, fitcol = NA, cicol = NA) df <- data.frame(x, transf_data_conc, display.conc, Points = "Observed values") dfCI <- data.frame(conc = transf_data_conc, qinf95 = conf.int["qinf95",], qsup95 = conf.int["qsup95",], Conf.Int = "Confidence intervals") fd <- ggplot(df) + geom_point(aes(x = transf_data_conc, y = resp, fill = Points), data = df, col = valCols$cols1) + geom_segment(aes(x = conc, xend = conc, y = qinf95, yend = qsup95, linetype = Conf.Int), dfCI, col = valCols$cols3) + scale_fill_hue("") + scale_linetype(name = "") + expand_limits(x = 0, y = 0) + ggtitle(main) + theme_minimal() + labs(x = xlab, y = ylab) + scale_x_continuous(breaks = unique(df$transf_data_conc), labels = if (remove.someLabels) { exclude_labels(unique(df$display.conc)) } else { unique(df$display.conc) } ) + scale_y_continuous(breaks = unique(round(pretty(c(0, max(df$resp)))))) + expand_limits(x = 0, y = 0) if (addlegend) { fd } else { fd + theme(legend.position = "none") } } else stop("Unknown plot style") } survConfInt <- function(x, log.scale) { ci <- apply(x, 1, function(x) { binom.test(x["Nsurv"], x["Ninit"])$conf.int }) rownames(ci) <- c("qinf95", "qsup95") colnames(ci) <- x$conc if (log.scale) ci <- ci[ ,colnames(ci) != 0] return(ci) }
to_broom_names = function(data) { lookup = c( .variable = "term", .value = "estimate", .prediction = ".fitted", .lower = "conf.low", .upper = "conf.high" ) select_all(data, ~ lookup[.] %||% .) } from_broom_names = function(data) { lookup = c( term = ".variable", estimate = ".value", .fitted = ".prediction", conf.low = ".lower", conf.high = ".upper" ) select_all(data, ~ lookup[.] %||% .) } to_ggmcmc_names = function(data) { lookup = c( .chain = "Chain", .iteration = "Iteration", .variable = "Parameter", .value = "value" ) select_all(data, ~ lookup[.] %||% .) } from_ggmcmc_names = function(data) { lookup = c( Chain = ".chain", Iteration = ".iteration", Parameter = ".variable", value = ".value" ) select_all(data, ~ lookup[.] %||% .) }
NULL raudkePplot<- function(Ce,Qe){ .Deprecated("raudkepanalysis") x <- 1/(1+Ce)^2 y <- 1/Qe fit72<- lm(y~x) plot(y~x, main="Raudke-Prausniiz Analysis", xlab="1/Ce", ylab="1/Qe") abline(fit72,col="black") }
plot.gdina <- function( x, ask=FALSE, ... ) { probitem <- x$probitem I <- max( probitem$itemno ) for (ii in 1:I){ pii <- probitem[ probitem$itemno==ii, ] graphics::barplot( pii$prob, ylim=c(0,1), xlab="Skill Pattern", names.arg=pii$skillcomb, main=paste0( "Item ", pii[1,"item" ], " (Rule ", x$rule[ii], ")\n", "Attributes ", pii[1,"partype.attr"] ), ask=ask ) } }
mppm <- local({ mppm <- function(formula, data, interaction=Poisson(), ..., iformula=NULL, random=NULL, weights=NULL, use.gam=FALSE, reltol.pql=1e-3, gcontrol=list() ) { cl <- match.call() callstring <- paste(short.deparse(sys.call()), collapse="") if(!inherits(formula, "formula")) stop(paste("Argument", dQuote("formula"), "should be a formula")) stopifnot(is.hyperframe(data)) data.sumry <- summary(data, brief=TRUE) npat <- data.sumry$ncases if(npat == 0) stop(paste("Hyperframe", sQuote("data"), "has zero rows")) if(!is.null(iformula) && !inherits(iformula, "formula")) stop(paste("Argument", sQuote("iformula"), "should be a formula or NULL")) if(has.random <- !is.null(random)) { if(!inherits(random, "formula")) stop(paste(sQuote("random"), "should be a formula or NULL")) if(use.gam) stop("Sorry, random effects are not available in GAMs") } if(! (is.interact(interaction) || is.hyperframe(interaction))) stop(paste("The argument", sQuote("interaction"), "should be a point process interaction object (class", dQuote("interact"), "), or a hyperframe containing such objects", sep="")) if(is.null(weights)) { weights <- rep(1, npat) } else { check.nvector(weights, npat, things="rows of data", oneok=TRUE) if(length(weights) == 1L) weights <- rep(weights, npat) } backdoor <- list(...)$backdoor if(is.null(backdoor) || !is.logical(backdoor)) backdoor <- FALSE checkvars(formula, data.sumry$col.names, extra=c("x","y","id","marks"), bname="data") if(length(formula) < 3) stop(paste("Argument", sQuote("formula"), "must have a left hand side")) Yname <- formula[[2]] trend <- formula[c(1,3)] if(!is.name(Yname)) stop("Left hand side of formula should be a single name") Yname <- paste(Yname) if(!inherits(trend, "formula")) stop("Internal error: failed to extract RHS of formula") allvars <- variablesinformula(trend) itags <- if(is.hyperframe(interaction)) names(interaction) else "Interaction" ninteract <- length(itags) if(is.null(iformula)) { if(ninteract > 1) stop(paste("interaction hyperframe has more than 1 column;", "you must specify the choice of interaction", "using argument", sQuote("iformula"))) iused <- TRUE iformula <- as.formula(paste("~", itags)) } else { if(length(iformula) > 2) stop(paste("The interaction formula", sQuote("iformula"), "should not have a left hand side")) permitted <- paste(sQuote("interaction"), "or permitted name in", sQuote("data")) checkvars(iformula, itags, extra=c(data.sumry$dfnames, "id"), bname=permitted) ivars <- variablesinformula(iformula) iused <- itags %in% ivars if(sum(iused) == 0) stop("No interaction specified in iformula") allvars <- c(allvars, ivars) } if(!is.null(random)) { if(length(random) > 2) stop(paste("The random effects formula", sQuote("random"), "should not have a left hand side")) checkvars(random, itags, extra=c(data.sumry$col.names, "x", "y", "id"), bname="either data or interaction") allvars <- c(allvars, variablesinformula(random)) } allvars <- unique(allvars) data <- cbind.hyperframe(data, id=factor(1:npat)) data.sumry <- summary(data, brief=TRUE) allvars <- unique(c(allvars, "id")) Y <- data[, Yname, drop=TRUE] if(npat == 1) Y <- solist(Y) Yclass <- data.sumry$classes[Yname] if(Yclass == "ppp") { Y <- solapply(Y, quadscheme, ...) } else if(Yclass == "quad") { Y <- as.solist(Y) } else { stop(paste("Column", dQuote(Yname), "of data", "does not consist of point patterns (class ppp)", "nor of quadrature schemes (class quad)"), call.=FALSE) } datanames <- names(data) used.cov.names <- allvars[allvars %in% datanames] has.covar <- (length(used.cov.names) > 0) if(has.covar) { dfvar <- used.cov.names %in% data.sumry$dfnames imvar <- data.sumry$types[used.cov.names] == "im" if(any(nbg <- !(dfvar | imvar))) stop(paste("Inappropriate format for", ngettext(sum(nbg), "covariate", "covariates"), paste(sQuote(used.cov.names[nbg]), collapse=", "), ": should contain image objects or vector/factor")) covariates.hf <- data[, used.cov.names, drop=FALSE] has.design <- any(dfvar) dfvarnames <- used.cov.names[dfvar] datadf <- if(has.design) as.data.frame(covariates.hf, discard=TRUE, warn=FALSE) else NULL if(has.design) { if(any(nbg <- matcolany(is.na(datadf)))) stop(paste("There are NA's in the", ngettext(sum(nbg), "covariate", "covariates"), commasep(dQuote(names(datadf)[nbg])))) } } else { has.design <- FALSE datadf <- NULL } if(is.interact(interaction)) { ninteract <- 1 processes <- list(Interaction=interaction$name) interaction <- hyperframe(Interaction=interaction, id=1:npat)[,1] constant <- c(Interaction=TRUE) } else if(is.hyperframe(interaction)) { inter.sumry <- summary(interaction) ninteract <- inter.sumry$nvars nr <- inter.sumry$ncases if(nr == 1 && npat > 1) { interaction <- cbind.hyperframe(id=1:npat, interaction)[,-1] inter.sumry <- summary(interaction) } else if(nr != npat) stop(paste("Number of rows in", sQuote("interaction"), "=", nr, "!=", npat, "=", "number of rows in", sQuote("data"))) ok <- (inter.sumry$classes == "interact") if(!all(ok)) { nbg <- names(interaction)[!ok] nn <- sum(!ok) stop(paste(ngettext(nn, "Column", "Columns"), paste(sQuote(nbg), collapse=", "), ngettext(nn, "does", "do"), "not consist of interaction objects")) } ok <- unlist(lapply(as.list(interaction), consistentname)) if(!all(ok)) { nbg <- names(interaction)[!ok] stop(paste("Different interactions may not appear in a single column.", "Violated by", paste(sQuote(nbg), collapse=", "))) } processes <- lapply(as.list(interaction), firstname) constant <- (inter.sumry$storage == "hyperatom") if(any(!constant)) { others <- interaction[,!constant] constant[!constant] <- sapply(lapply(as.list(others), unique), length) == 1 } } trivial <- unlist(lapply(as.list(interaction), allpoisson)) nondfnames <- datanames[!(datanames %in% data.sumry$dfnames)] ip <- impliedpresence(itags, iformula, datadf, nondfnames) if(any(rowSums(ip) > 1)) stop("iformula invokes more than one interaction on a single row") Vnamelist <- rep(list(character(0)), ninteract) names(Vnamelist) <- itags Isoffsetlist <- rep(list(logical(0)), ninteract) names(Isoffsetlist) <- itags for(i in 1:npat) { Yi <- Y[[i]] covariates <- if(has.covar) covariates.hf[i, , drop=TRUE, strip=FALSE] else NULL if(has.design) { covariates[dfvarnames] <- lapply(as.list(as.data.frame(covariates[dfvarnames])), as.im, W=Yi$data$window) } prep0 <- bt.frame(Yi, trend, Poisson(), ..., covariates=covariates, allcovar=TRUE, use.gam=use.gam) glmdat <- prep0$glmdata for(j in (1:ninteract)[iused & !trivial]) { inter <- interaction[i,j,drop=TRUE] if(!is.null(ss <- inter$selfstart)) interaction[i,j] <- inter <- ss(Yi$data, inter) prepj <- bt.frame(Yi, ~1, inter, ..., covariates=covariates, allcovar=TRUE, use.gam=use.gam, vnamebase=itags[j], vnameprefix=itags[j]) vnameij <- prepj$Vnames if(i == 1) Vnamelist[[j]] <- vnameij else if(!identical(vnameij, Vnamelist[[j]])) stop("Internal error: Unexpected conflict in glm variable names") isoffset.ij <- prepj$IsOffset if(i == 1) Isoffsetlist[[j]] <- isoffset.ij else if(!identical(isoffset.ij, Isoffsetlist[[j]])) stop("Internal error: Unexpected conflict in offset indicators") glmdatj <- prepj$glmdata if(nrow(glmdatj) != nrow(glmdat)) stop("Internal error: differing numbers of rows in glm data frame") iterms.ij <- glmdatj[vnameij] subset.ij <- glmdatj$.mpl.SUBSET glmdat <- cbind(glmdat, iterms.ij) glmdat$.mpl.SUBSET <- glmdat$.mpl.SUBSET & subset.ij } if(i == 1) { moadf <- glmdat } else { recognised <- names(glmdat) %in% names(moadf) if(any(!recognised)) { newnames <- names(glmdat)[!recognised] zeroes <- as.data.frame(matrix(0, nrow(moadf), length(newnames))) names(zeroes) <- newnames moadf <- cbind(moadf, zeroes) } provided <- names(moadf) %in% names(glmdat) if(any(!provided)) { absentnames <- names(moadf)[!provided] zeroes <- as.data.frame(matrix(0, nrow(glmdat), length(absentnames))) names(zeroes) <- absentnames glmdat <- cbind(glmdat, zeroes) } m.isfac <- sapply(as.list(glmdat), is.factor) g.isfac <- sapply(as.list(glmdat), is.factor) if(any(uhoh <- (m.isfac != g.isfac))) errorInconsistentRows("values (factor and non-factor)", colnames(moadf)[uhoh]) if(any(m.isfac)) { m.levels <- lapply(as.list(moadf)[m.isfac], levels) g.levels <- lapply(as.list(glmdat)[g.isfac], levels) clash <- !mapply(identical, x=m.levels, y=g.levels) if(any(clash)) errorInconsistentRows("factor levels", (colnames(moadf)[m.isfac])[clash]) } moadf <- rbind(moadf, glmdat) } } moadf$caseweight <- weights[moadf$id] if(backdoor) return(moadf) fmla <- prep0$trendfmla if(!all(trivial)) fmla <- paste(fmla, "+", as.character(iformula)[[2]]) fmla <- as.formula(fmla) for(j in (1:ninteract)[iused]) { vnames <- Vnamelist[[j]] tag <- itags[j] isoffset <- Isoffsetlist[[j]] if(any(isoffset)) { vnames[isoffset] <- paste("offset(", vnames[isoffset], ")", sep="") } if(trivial[j]) moadf[[tag]] <- 0 else if(!identical(vnames, tag)) { if(length(vnames) == 1) vn <- paste("~", vnames[1]) else vn <- paste("~(", paste(vnames, collapse=" + "), ")") vnr <- as.formula(vn)[[2]] vnsub <- list(vnr) names(vnsub) <- tag fmla <- eval(substitute(substitute(fom, vnsub), list(fom=fmla))) if(has.random && tag %in% variablesinformula(random)) random <- eval(substitute(substitute(fom, vnsub), list(fom=random))) } } fmla <- as.formula(fmla) assign("glmmsubset", moadf$.mpl.SUBSET, envir=environment(fmla)) for(nama in colnames(moadf)) assign(nama, moadf[[nama]], envir=environment(fmla)) glmmsubset <- .mpl.SUBSET <- moadf$.mpl.SUBSET .mpl.W <- moadf$.mpl.W caseweight <- moadf$caseweight want.trend <- prep0$info$want.trend if(want.trend && use.gam) { fitter <- "gam" ctrl <- do.call(gam.control, resolve.defaults(gcontrol, list(maxit=50))) FIT <- gam(fmla, family=quasi(link=log, variance=mu), weights=.mpl.W * caseweight, data=moadf, subset=(.mpl.SUBSET=="TRUE"), control=ctrl) deviants <- deviance(FIT) } else if(!is.null(random)) { fitter <- "glmmPQL" ctrl <- do.call(lmeControl, resolve.defaults(gcontrol, list(maxIter=50))) attr(fmla, "ctrl") <- ctrl fixed <- 42 FIT <- hackglmmPQL(fmla, random=random, family=quasi(link=log, variance=mu), weights=.mpl.W * caseweight, data=moadf, subset=glmmsubset, control=attr(fixed, "ctrl"), reltol=reltol.pql) deviants <- -2 * logLik(FIT) } else { fitter <- "glm" ctrl <- do.call(glm.control, resolve.defaults(gcontrol, list(maxit=50))) FIT <- glm(fmla, family=quasi(link="log", variance="mu"), weights=.mpl.W * caseweight, data=moadf, subset=(.mpl.SUBSET=="TRUE"), control=ctrl) deviants <- deviance(FIT) } env <- list2env(moadf, parent=sys.frame(sys.nframe())) environment(FIT$terms) <- env W <- with(moadf, .mpl.W * caseweight) SUBSET <- moadf$.mpl.SUBSET Z <- (moadf$.mpl.Y != 0) maxlogpl <- -(deviants/2 + sum(log(W[Z & SUBSET])) + sum(Z & SUBSET)) result <- list(Call = list(callstring=callstring, cl=cl), Info = list( has.random=has.random, has.covar=has.covar, has.design=has.design, Yname=Yname, used.cov.names=used.cov.names, allvars=allvars, names.data=names(data), is.df.column=(data.sumry$storage == "dfcolumn"), rownames=row.names(data), correction=prep0$info$correction, rbord=prep0$info$rbord ), Fit= list( fitter=fitter, use.gam=use.gam, fmla=fmla, FIT=FIT, moadf=moadf, Vnamelist=Vnamelist, Isoffsetlist=Isoffsetlist ), Inter = list( ninteract=ninteract, interaction=interaction, iformula=iformula, iused=iused, itags=itags, processes=processes, trivial=trivial, constant=constant ), formula=formula, trend=trend, iformula=iformula, random=random, npat=npat, data=data, Y=Y, maxlogpl=maxlogpl, datadf=datadf) class(result) <- c("mppm", class(result)) return(result) } checkvars <- function(f, b, extra=NULL, bname=short.deparse(substitute(b))){ fname <- short.deparse(substitute(f)) fvars <- variablesinformula(f) bvars <- if(is.character(b)) b else names(b) bvars <- c(bvars, extra) nbg <- !(fvars %in% bvars) if(any(nbg)) { nn <- sum(nbg) stop(paste(ngettext(nn, "Variable", "Variables"), commasep(dQuote(fvars[nbg])), "in", fname, ngettext(nn, "is not one of the", "are not"), "names in", bname)) } return(NULL) } consistentname <- function(x) { xnames <- unlist(lapply(x, getElement, name="name")) return(length(unique(xnames)) == 1) } firstname <- function(z) { z[[1]]$name } allpoisson <- function(x) all(sapply(x, is.poisson.interact)) marklevels <- function(x) { levels(marks(x)) } errorInconsistentRows <- function(what, offending) { stop(paste("There are inconsistent", what, "for the", ngettext(length(offending), "variable", "variables"), commasep(sQuote(offending)), "between different rows of the hyperframe 'data'"), call.=FALSE) } mppm }) is.mppm <- function(x) { inherits(x, "mppm") } coef.mppm <- function(object, ...) { coef(object$Fit$FIT) } fixef.mppm <- function(object, ...) { if(object$Fit$fitter == "glmmPQL") fixef(object$Fit$FIT) else coef(object$Fit$FIT) } ranef.mppm <- function(object, ...) { if(object$Fit$fitter == "glmmPQL") ranef(object$Fit$FIT) else as.data.frame(matrix(, nrow=object$npat, ncol=0)) } print.mppm <- function(x, ...) { print(summary(x, ..., brief=TRUE)) } is.poisson.mppm <- function(x) { trivial <- x$Inter$trivial iused <- x$Inter$iused all(trivial[iused]) } quad.mppm <- function(x) { as.solist(x$Y) } data.mppm <- function(x) { solapply(x$Y, getElement, name="data") } is.marked.mppm <- function(X, ...) { any(sapply(data.mppm(X), is.marked)) } is.multitype.mppm <- function(X, ...) { any(sapply(data.mppm(X), is.multitype)) } windows.mppm <- function(x) { solapply(data.mppm(x), Window) } logLik.mppm <- function(object, ..., warn=TRUE) { if(warn && !is.poisson.mppm(object)) warning(paste("log likelihood is not available for non-Poisson model;", "log-pseudolikelihood returned")) ll <- object$maxlogpl attr(ll, "df") <- length(fixef(object)) class(ll) <- "logLik" return(ll) } AIC.mppm <- function(object, ..., k=2, takeuchi=TRUE) { ll <- logLik(object, warn=FALSE) pen <- attr(ll, "df") if(takeuchi && !is.poisson(object)) { vv <- vcov(object, what="all") J <- vv$fisher H <- vv$internals$A1 JiH <- try(solve(H, J), silent=TRUE) if(!inherits(JiH, "try-error")) pen <- sum(diag(JiH)) } return(- 2 * as.numeric(ll) + k * pen) } extractAIC.mppm <- function(fit, scale = 0, k = 2, ..., takeuchi = TRUE) { edf <- length(coef(fit)) aic <- AIC(fit, k = k, takeuchi = takeuchi) c(edf, aic) } getCall.mppm <- function(x, ...) { x$Call$cl } terms.mppm <- function(x, ...) { terms(formula(x)) } nobs.mppm <- function(object, ...) { sum(sapply(data.mppm(object), npoints)) } simulate.mppm <- function(object, nsim=1, ..., verbose=TRUE) { subs <- subfits(object) nr <- length(subs) sims <- list() if(verbose) { splat("Generating simulated realisations of", nr, "models..") state <- list() } for(irow in seq_len(nr)) { model.i <- subs[[irow]] dont.complain.about(model.i) sims[[irow]] <- do.call(simulate, resolve.defaults(list(object=quote(model.i), nsim=nsim, drop=FALSE), list(...), list(progress=FALSE))) if(verbose) state <- progressreport(irow, nr, state=state) } sim1list <- lapply(sims, "[[", i=1) h <- hyperframe("Sim1"=sim1list) if(nsim > 1) { for(j in 2:nsim) { simjlist <- lapply(sims, "[[", i=j) hj <- hyperframe(Sim=simjlist) names(hj) <- paste0("Sim", j) h <- cbind(h, hj) } } return(h) } model.matrix.mppm <- function(object, ..., keepNA=TRUE, separate=FALSE) { df <- object$Fit$moadf FIT <- object$Fit$FIT environment(FIT) <- list2env(df) ok <- complete.cases(df) & df$.mpl.SUBSET nok <- sum(ok) nfull <- nrow(df) if(keepNA) { mm <- model.matrix(FIT, ..., subset=NULL, na.action=NULL) nr <- nrow(mm) if(nr != nfull) { if(nr == nok) { mmfull <- matrix(NA, nfull, ncol(mm), dimnames=list(NULL, colnames(mm))) mmfull[ok,] <- mm mm <- mmfull } else { stop(paste("Internal error: model matrix has wrong number of rows:", nr, "should be", nfull, "or", nok), call.=FALSE) } } } else { mm <- model.matrix(FIT, ...) if(nrow(mm) != nok) stop("Internal error: model matrix has wrong number of rows", call.=FALSE) df <- df[ok, , drop=FALSE] } ctr <- attr(mm, "contrasts") if(is.null(ctr) && !is.null(ctr <- FIT[["contrasts"]])) attr(mm, "contrasts") <- ctr ass <- attr(mm, "assign") if(is.null(ass)) { ass <- FIT[["assign"]] if(length(ass) == ncol(mm)) { attr(mm, "assign") <- ass } else { ass <- NULL warning("Unable to determine 'assign' in model.matrix.mppm", call.=FALSE) } } if(separate) { id <- df$id mm <- split.data.frame(mm, id) if(!is.null(ass)) mm <- lapply(mm, "attr<-", which="assign", value=ass) if(!is.null(ctr)) mm <- lapply(mm, "attr<-", which="contrasts", value=ctr) } return(mm) }
run.control <- function(check_tpl=TRUE, write_files=TRUE, checkparam=c("stop","warn","write","ignore"), checkdata=c("stop","warn","write","ignore"), compile=TRUE, run=TRUE, read_files=TRUE, clean_files="all") { checkparam <- match.arg(checkparam) checkdata <- match.arg(checkdata) if (is.logical(clean_files)) { if (clean_files) clean_files <- "all" else clean_files <- "none" } c(check_tpl=check_tpl,checkparam=checkparam,checkdata=checkdata, write_files=write_files,compile=compile,run=run,read_files=read_files, clean_files=clean_files) }
test_that("ISR() obtains the estimators of the PCA-based missing data with HC", { library(MASS) set.seed(88) etatol=0.9 n=100;p=10;per=0.1 mu=as.matrix(runif(p,0,10)) sigma=as.matrix(runif(p,0,1)) ro=as.matrix(c(runif(round(p/2),-1,-sqrt(0.75)),runif(p-round(p/2),sqrt(0.75),1))) RO=ro%*%t(ro);diag(RO)=1 Sigma=sigma%*%t(sigma)*RO X0=data=mvrnorm(n,mu,Sigma) m=round(per*n*p,digits=0) mr=sample(1:(n*p),m,replace=FALSE) X0[mr]=NA;data0=X0 n=nrow(X0);p=ncol(X0) mr=which(is.na(X0)==TRUE) m=nrow(as.matrix(mr)) cm0=colMeans(X0,na.rm=T) ina=as.matrix(mr%%n) jna=as.matrix(floor((mr+n-1)/n)) data0[is.na(data0)]=cm0[ceiling(which(is.na(X0))/n)] X=as.matrix(data0) Z=scale(X,center=TRUE,scale=FALSE) niter=0;d=1;tol=1e-5;nb=10 while((d>=tol) & (niter<=nb)){ niter=niter+1 Zold=Z lambda=svd(cor(Z))$d l=lambda/sum(lambda) J=rep(l,times=p);dim(J)=c(p,p) upper.tri(J,diag=T);J[lower.tri(J)]=0 eta=matrix(colSums(J),nrow = 1,ncol = p,byrow = FALSE) k=which(eta>=etatol)[1] Ak=matrix(svd(Z)$v[,1:k],p,k) Lambdak=diag(sqrt(lambda[1:k]),k,k) for( i in 1:n){ M=is.na(X0[i,]) job=which(M==FALSE);jna=which(M==TRUE) piob=nrow(as.matrix(job));pina=nrow(as.matrix(jna)) while((piob>0)&(pina>0)){ Qi=matrix(0,p,p) for( u in 1:piob){ Qi[job[u],u]=1 } for( v in 1:pina){ Qi[jna[v],v+piob]=1 } zQi=Z[i,]%*%Qi ZQi=Z%*%Qi AQi=t(t(Ak)%*%Qi) ziob=matrix(zQi[,1:piob],1,piob) zina=matrix(zQi[,piob+(1:pina)],1,pina) Ziob=matrix(ZQi[,1:piob],n,piob,byrow=FALSE) Zina=matrix(ZQi[,piob+(1:pina)],n,pina,byrow=FALSE) Aiob=matrix(AQi[1:piob,],piob,k,byrow=FALSE) Aina=matrix(AQi[piob+(1:pina),],pina,k,byrow=FALSE) Ti=Ziob%*%Aiob;Ti betaihat=ginv(t(Ti)%*%Ti)%*%t(Ti)%*%Zina;betaihat zinahat=ziob%*%Aiob%*%betaihat;zinahat ZQi[i,piob+(1:pina)]=zinahat Z=Zi=ZQi%*%t(Qi) pina=0 } } ZISR=Znew=Z d=sqrt(sum(diag((t(Zold-Znew)%*%(Zold-Znew))))) } XISR=Xnew=Znew+matrix(rep(1,n*p),ncol=p)%*%diag(cm0) })
get.my.pPropType <- function(type){ if(!any(type[1] %in% .CF.CT$type.p)){ stop("type is not found.") } ret <- eval(parse(text = paste("my.pPropType.", type[1], sep = ""))) assign("my.pPropType", ret, envir = .cubfitsEnv) ret } my.pPropType.lognormal_fix <- function(n.G, log.phi.Obs, phi.Curr, p.Curr, hp.param){ nu.Phi.Curr <- p.Curr[2] sigma.Phi.Curr <- p.Curr[3] log.phi.Obs.mean <- hp.param$log.phi.Obs.mean log.phi.Curr <- log(phi.Curr) if(.CF.CONF$estimate.Phi.noise) { sigmaW.Curr <- sqrt(1 / rgamma(1, shape = (n.G - 1) / 2, rate = sum((log.phi.Obs - log.phi.Curr)^2) / 2)) }else{ sigmaW.Curr <- p.Curr[1] } sigma.Phi.Curr <- sqrt(1 / rgamma(1, shape = (n.G - 1) / 2, rate = sum((log.phi.Curr - log.phi.Obs.mean)^2) / 2)) nu.Phi.Curr <- log.phi.Obs.mean + rnorm(1) * sigma.Phi.Curr / sqrt(n.G) my.update.acceptance("p", 1) my.update.adaptive("p", 1) ret <- c(sigmaW.Curr, nu.Phi.Curr, sigma.Phi.Curr) ret }
santaR_auto_fit <- function(inputData,ind,time,group=NA,df,ncores=0,CBand=TRUE,pval.dist=TRUE,pval.fit=FALSE,nBoot=1000,alpha=0.05,nPerm=1000,nStep=5000,alphaPval=0.05,forceParIndTimeMat=FALSE) { if( is.factor(ind) ){ message("Error: Check input, 'ind' should not be a factor") stop("Check input, 'ind' should not be a factor") } if( is.factor(time) ){ message("Error: Check input, 'time' should not be a factor") stop("Check input, 'time' should not be a factor") } if (any(!is.na(group))) { grouping <- get_grouping( ind=ind, group=group ) } else { grouping <- NA pval.dist <- FALSE pval.fit <- FALSE } if( ncores!=0 | forceParIndTimeMat ) { cl <- parallel::makeCluster( ncores ) doParallel::registerDoParallel( cl ) } tot.time <- Sys.time() ttime <- Sys.time() if( forceParIndTimeMat ) { res.in <- foreach::foreach( x=iterators::iter(inputData, by='col'), .export=c('get_ind_time_matrix'), .inorder=TRUE) %dopar% get_ind_time_matrix(x, ind, time) names(res.in) <- colnames(inputData) } else { res.in <- apply( inputData, 2, function(x) get_ind_time_matrix( Yi=as.numeric(x), ind=ind, time=time)) } ttime2 <- Sys.time() message('Input data generated: ',round(as.double(difftime(ttime2,ttime)),2),' ',units( difftime(ttime2,ttime))) ttime <- Sys.time() if( ncores!=0 ) { res.spline <- foreach::foreach( x=res.in, .export=c('santaR_fit'), .inorder=TRUE) %dopar% santaR_fit( x, df=df, grouping=grouping, verbose=FALSE) names(res.spline) <- names(res.in) } else { res.spline <- lapply(res.in, function(x) santaR_fit( x, df=df, grouping=grouping, verbose=FALSE)) } ttime2 <- Sys.time() message('Spline fitted: ',round(as.double(difftime(ttime2,ttime)),2),' ',units( difftime(ttime2,ttime))) if( CBand ) { ttime <- Sys.time() if( ncores!=0 ) { res.spline <- foreach::foreach( x=res.spline, .export=c('santaR_CBand'), .inorder=TRUE) %dopar% santaR_CBand(x, nBoot=nBoot, alpha=alpha) names(res.spline) <- names(res.in) } else { res.spline <- lapply(res.spline, function(x) santaR_CBand(x, nBoot=nBoot, alpha=alpha)) } ttime2 <- Sys.time() message('ConfBands done: ',round(as.double(difftime(ttime2,ttime)),2),' ',units( difftime(ttime2,ttime))) } if( pval.dist ) { ttime <- Sys.time() if( ncores!=0 ) { res.spline <- foreach::foreach( x=res.spline, .export=c('santaR_pvalue_dist'), .inorder=TRUE) %dopar% santaR_pvalue_dist(x, nPerm=nPerm, nStep=nStep, alpha=alphaPval) names(res.spline) <- names(res.in) } else { res.spline <- lapply(res.spline, function(x) santaR_pvalue_dist(x, nPerm=nPerm, nStep=nStep, alpha=alphaPval)) } ttime2 <- Sys.time() message('p-val dist done: ',round(as.double(difftime(ttime2,ttime)),2),' ',units( difftime(ttime2,ttime))) } if( pval.fit ) { ttime <- Sys.time() if( ncores!=0 ) { res.spline <- foreach::foreach( x=res.spline, .export=c('santaR_pvalue_fit'), .inorder=TRUE) %dopar% santaR_pvalue_fit(x, nPerm=nPerm, alpha=alphaPval) names(res.spline) <- names(res.in) } else { res.spline <- lapply(res.spline, function(x) santaR_pvalue_fit(x, nPerm=nPerm, alpha=alphaPval)) } ttime2 <- Sys.time() message('p-val fit done: ',round(as.double(difftime(ttime2,ttime)),2),' ',units( difftime(ttime2,ttime))) } tot.time2 <- Sys.time() message('total time: ',round(as.double(difftime(tot.time2,tot.time)),2),' ',units( difftime(tot.time2,tot.time))) if( ncores!=0 | forceParIndTimeMat ) { parallel::stopCluster( cl ) } return( res.spline ) }
version_aw <- function(){ "v1beta" } ga_data <- function( propertyId, metrics, date_range = NULL, dimensions = NULL, dim_filters = NULL, dimensionDelimiter = "/", met_filters = NULL, orderBys = NULL, limit = 100, page_size = 100000L, realtime = FALSE, raw_json = NULL) { if(!is.null(raw_json)){ if(is.list(raw_json)){ raw_json_txt <- jsonlite::toJSON(raw_json, auto_unbox = TRUE) } else { raw_json_txt <- raw_json } myMessage("Making API request with raw JSON: ", raw_json_txt, level = 3) if(realtime) return(ga_aw_realtime(propertyId, raw_json)) return(do_runreport_req(propertyId, raw_json)) } assert_that(is.integer(page_size), page_size <= 100000) dimensionFilter <- as_filterExpression(dim_filters) metricFilter <- as_filterExpression(met_filters) metricAggregations <- c("TOTAL","MAXIMUM","MINIMUM") dims <- gaw_dimension(dimensions, delimiter = dimensionDelimiter) mets <- gaw_metric(metrics) if(realtime){ brrr <- RunRealtimeReport( dimensions = dims, metrics = mets, limit = limit, dimensionFilter = dimensionFilter, metricFilter = metricFilter, metricAggregations = metricAggregations, orderBys = orderBys, returnPropertyQuota = TRUE ) myMessage("Realtime Report Request", level = 3) res <- ga_aw_realtime(propertyId, brrr) return(res) } dates <- gaw_dates(date_range) brrr <- RunReportRequest( metrics = mets, dimensions = dims, dateRanges = dates, limit = limit, dimensionFilter = dimensionFilter, metricFilter = metricFilter, metricAggregations = metricAggregations, orderBys = orderBys, keepEmptyRows = TRUE, returnPropertyQuota = TRUE ) ga_aw_report(propertyId, brrr, page_size) } ga_aw_realtime <- function(propertyId, requestObj){ url <- sprintf("https://analyticsdata.googleapis.com/%s/properties/%s:runRealtimeReport", version_aw(), propertyId) f <- gar_api_generator(url, "POST", data_parse_function = parse_realtime) o <- f(the_body = requestObj) o } ga_aw_report <- function(propertyId, requestObj, page_size){ request_limit <- requestObj$limit if(request_limit == -1 || page_size < request_limit){ requestObj$limit <- page_size } o <- do_runreport_req(propertyId, requestObj) rowCount <- attr(o, "rowCount") to_fetch <- min(rowCount, request_limit) if(request_limit == -1){ to_fetch <- rowCount } if(to_fetch < page_size) return(o) pages <- (to_fetch %/% page_size) offsets <- seq(from = page_size, by = page_size, length.out = pages) o_pages <- lapply(offsets, function(x){ myMessage("Paging API from offset [", x,"]", level = 3) remaining_rows <- to_fetch - x if(remaining_rows < page_size){ requestObj$limit <- remaining_rows } requestObj$offset <- x do_runreport_req(propertyId, requestObj) }) ooo <- c(list(o), o_pages) bind_rows(ooo) } do_runreport_req <- function(property, requestObj){ url <- sprintf("https://analyticsdata.googleapis.com/%s/properties/%s:runReport", version_aw(), property) f <- gar_api_generator(url, "POST", data_parse_function = parse_runreport) f(the_body = requestObj) } parse_realtime <- function(x){ if(no_rows(x)) return(data.frame()) dim_names <- x$dimensionHeaders$name met_names <- x$metricHeaders$name parse_rows(x, dim_names, met_names) } parse_runreport <- function(o){ if(no_rows(o)) return(data.frame()) dim_names <- o$dimensionHeaders$name met_names <- o$metricHeaders$name parse_rows(o, dim_names, met_names) } no_rows <- function(o){ if(is.null(o$rows)){ myMessage("No data found", level = 3) return(TRUE) } FALSE } row_types <- function(res, met_names){ if("date" %in% names(res)){ res$date <- as.Date(res$date, format = "%Y%m%d") } if("firstTouchDate" %in% names(res)){ res$firstTouchDate <- as.Date(res$firstTouchDate, format = "%Y%m%d") } res %>% mutate(across(met_names, as.numeric)) } get_field_values <- function(x, name){ o <- lapply(x, function(y) setNames(y$value, name)) bind_rows(o) } my_bind_cols <- function(x, y){ if(nrow(x) == 0){ return(y) } if(nrow(y) == 0){ return(x) } bind_cols(x, y) } parse_aggregations <- function(agg, dim_names, met_names){ if(is.null(agg)) return(NULL) dds <- get_field_values(agg$dimensionValues, name = dim_names) mms <- get_field_values(agg$metricValues, name = met_names) res <- my_bind_cols(dds, mms) res <- row_types(res, met_names) res } parse_rows <- function(o, dim_names, met_names){ quota_messages(o) dds <- get_field_values(o$rows$dimensionValues, name = dim_names) mms <- get_field_values(o$rows$metricValues, name = met_names) res <- my_bind_cols(dds, mms) res <- row_types(res, met_names = met_names) dl <- attr(res, "metadata")[["dataLossFromOtherRow"]] if(!is.null(dl) && dl){ myMessage("Warning: some buckets of dimension combinations are rolled into '(other)' row. This can happen for high cardinality reports.", level = 3) } if(!is.null(o$metadata) && length(o$metadata) > 1){ attr(res, "metadata") <- o$metadata } attr(res, "metricAggregations") <- list( totals = parse_aggregations(o$totals, dim_names, met_names), maximums = parse_aggregations(o$maximums, dim_names, met_names), minimums = parse_aggregations(o$minimums, dim_names, met_names) ) myMessage("Downloaded [",nrow(res), "] of total [", o$rowCount,"] rows", level = 3) attr(res, "rowCount") <- o$rowCount if(!is.null(res[["dateRange"]]) && all(unique(res$dateRange) == "date_range_0")){ res$dateRange <- NULL } res } ga_data_aggregations <- function(df, type = c("all","totals", "maximums","minimums", "count")){ type <- match.arg(type) if(is.null(attr(df, "metricAggregations"))){ stop("No aggregations found. Is the data.frame from ga_data()?", call. = FALSE) } ma <- attr(df, "metricAggregations") if(type == "all"){ return(ma) } ma[[type]] }
OptSig.anova <- function(K=NULL,n=NULL,f=NULL,p=0.5,k=1,Figure=TRUE){ alphavec=seq(0.00001,1,0.00001) powervec=pwr.anova.test(k=K,n=n,f=f,sig.level=alphavec,power=NULL)$power betavec=1-powervec M=E.loss(alphavec,betavec,p,k,Figure) alphas=M$alpha.opt return(list(alpha.opt = alphas, beta.opt = M$beta.opt))}
CNOT4_02 <- function(a){ cnot4_02 = TensorProd(CNOT3_02(diag(8)),diag(2)) result = cnot4_02 %*% a result }
options( width=150, max.print=250 ) library(ggplot2) R <- readRDS("LRDS/salbmResults0.rds") Narm <- R$Narm K <- R$K alphas <- R$alphas mina <- min(alphas) maxa <- max(alphas) M1RL <- as.data.frame(R$Main1RL ) M1wts <- as.data.frame(R$Main1wts) M2RL <- as.data.frame(R$Main2RL ) M2wts <- as.data.frame(R$Main2wts) R1 <- M1RL[ M1RL[,"type"]==2, c("alpha","k","type","Est")] R2 <- M2RL[ M2RL[,"type"]==2, c("alpha","k","type","Est")] k <- K b <- R1[ R1[,"k"] == k & R1[,"alpha"] == mina, "Est"] loc1 <- c( mina + 2, b ) b <- R2[ R2[,"k"] == k & R2[,"alpha"] == mina, "Est"] loc2 <- c( mina + 2, b ) loc <- rbind(loc1,loc2) loc <- as.data.frame(loc) names(loc) <- c("alpha","Est") loc[,"txt"] <- c("trt = 1", "trt = 2") rownames(loc) <- NULL nplt <- function( dat, name, ylim = c(0,1), h=4.0, w=6, ylab, col = c(" alphas <- dat[,"alpha"] dat[,"colk"] <- as.character( dat[,"trt"] ) theme_set(theme_minimal()) pdf(file=name, height=h, width=w) h <- ggplot( dat, aes(x=alpha,y=Est,group=colk,color=colk)) + geom_line(size=1.2,color=" geom_point(size=2.0,alpha=0.7) + geom_text( data = loc, aes(x=alpha,y=Est,group=txt,label=txt), hjust=0, vjust=2, color=" scale_x_continuous( name = expression(alpha),breaks=seq(mina,maxa,by=5)) + scale_y_continuous( name = eval(parse(text=ylab))) + scale_color_manual( values= col ) + coord_cartesian(xlim=c(mina,maxa), ylim = ylim) + theme(legend.position="none", axis.text.x=element_text(size=10), axis.text.y=element_text(size=10), axis.title.x=element_text(size=11,margin=margin(10,0,3,0)), axis.title.y=element_text(size=11,margin=margin(0,10,0,3))) print(h) dev.off() return(invisible()) } ylab <- "expression('E['~Sigma~Y[k]~'|'~alpha~']')"; col <- c(" R1[,"trt"] <- 1 R1 <- R1[order(R1[,"k"],R1[,"alpha"]),] rownames(R1) <- NULL R2[,"trt"] <- 2 R2 <- R2[order(R2[,"k"],R2[,"alpha"]),] rownames(R2) <- NULL dta <- rbind(R1,R2) dta <- dta[ dta[,"k"] == K, ] nplt( dat = dta , name = "Plots/BoundsPlotS.pdf", ylim = c(2.0,6.0), ylab = ylab, col = col )
binary_row <- function( list_obj , row_var , col_var=NULL , newdata=FALSE , rowlabel=NULL , summary=NULL , reference=NULL , compact=TRUE , missing=NULL , overall=NULL , comparison=NULL , digits=2 , indent=5 ){ if (is.null(summary)){ summary <- list_obj[["default_binary_summary"]] } if (is.null(missing)){ missing <- list_obj[["missing"]] } if (is.null(overall)){ overall <- list_obj[["overall"]] } if (is.null(comparison)){ comparison <- list_obj[["comparison"]] if (comparison == TRUE){ comparison <- binary_diff } } if (is.null(col_var)){ col_var <- list_obj[["col_var"]] num_col <- list_obj[['num_col']] } else { if (class(newdata) == 'logical'){ num_col <- list_obj[['data']][col_var] %>% filter(!is.na(list_obj[['data']][col_var])) %>% unique() %>% nrow() } } if (class(newdata) == 'logical'){ data <- list_obj[['data']][,c(row_var, col_var)] } else { data <- newdata[,c(row_var, col_var)] if (!is.null(col_var)){ num_col <- data[col_var] %>% filter(!is.na(data[col_var])) %>% unique() %>% nrow() } else { num_col <- 1 } } if (is.null(rowlabel)){ if (is.null(dim(data))) { if (!is.null(attr(data, "label"))){ rowlabel <- attr(data, "label") } else { rowlabel <- row_var } } else { if (!is.null(attr(data[,1], "label"))) { rowlabel <- attr(data[,1], "label") } else { rowlabel <- row_var } } } if (!is.null(col_var)){ data[,2] <- as.factor(data[,2]) } if (is.null(reference)){ if (is.null(col_var)){ reference = sort(unique(data))[1] } else { reference = sort(unique(data[,1]))[1] } } binary_out <- summary(data, reference = reference, rowlabel = rowlabel, compact = compact, missing = missing, digits = digits) if (overall == FALSE){ binary_out <- binary_out[,-ncol(binary_out)] } if (class(comparison) == "function" & num_col > 1){ comp <- comparison(data, num_col, reference, digits) for (i in 1:ncol(comp)){ binary_out$compare <- "" binary_out$compare[1] <- comp[i] binary_out$compare <- as.character(binary_out$compare) colnames(binary_out)[ncol(binary_out)] <- colnames(comp)[i] } colnames(binary_out)[ncol(binary_out)] <- "Compare: All Groups" } idt <- paste(rep(" ", indent), collapse="") binary_out[,1] <- ifelse(binary_out[,2]=="" & binary_out[,1] != "", paste0(idt, binary_out[,1]), binary_out[,1]) list_obj[[length(list_obj) + 1]] <- binary_out return(list_obj) }
c_list_of <- function(x) { if (length(x) == 0) { return(attr(x, "ptype")) } vec_c(!!!x, .name_spec = zap()) } unnest_col <- function(x, col, ptype) { col_data <- x[[col]] out <- x[rep(seq_len(nrow(x)), lengths(col_data)), ] if (length(col_data) > 0) { col_data <- unlist(col_data, recursive = FALSE, use.names = FALSE) if (!identical(col_data[0], ptype)) { abort(paste0( "Internal: unnest_col() ptype mismatch, must be ", class(ptype)[[1]], ", not ", class(col_data[0])[[1]] )) } } else { col_data <- ptype } out[[col]] <- col_data out } unnest_list_of_df <- function(x, col) { col_data <- x[[col]] stopifnot(is_list_of(col_data)) out <- x[rep(seq_len(nrow(x)), map_int(col_data, vec_size)), setdiff(names(x), col)] out <- vec_cbind(out, c_list_of(col_data)) out } unnest_df <- function(x, col, ptype) { col_data <- x[[col]] out <- x[rep(seq_len(nrow(x)), map_int(col_data, vec_size)), setdiff(names(x), col)] if (length(col_data) > 0) { col_data <- vec_rbind(!!!col_data) if (!identical(col_data[0, ], ptype)) { abort(paste0( "Internal: unnest_df() ptype mismatch." )) } } else { col_data <- ptype } out <- vec_cbind(out, col_data) out }
SIRVector <- function(pars = NULL, init = NULL, time = NULL, ...) { if (is.null(pars)) { stop("undefined 'pars'") } if (is.null(pars)) { stop("undefined 'inits'") } if (is.null(pars)) { stop("undefined 'time'") } SolveSIRMosVecfu <- function(pars = NULL, init = NULL, time = NULL) { SolveSIRMosVec.fu <- function(time, init, pars) { with(as.list(c(init, pars)), { dXH = vH - XH * r * (betaHM * YM) - muH * XH dXM = vM - XM * r * (betaMH * YH) - muM * XM dYH = XH * r * (betaHM * YM) - gamma * YH - muH * YH dYM = XM * r * (betaMH * YH) - muM * YM list(c(dXH, dXM, dYH, dYM)) }) } init <- c(init['XH'], init['XM'], init['YH'], init['YM']) output <- ode(times = time, func = SolveSIRMosVec.fu, y = init, parms = pars, ...) return(output) } output <- SolveSIRMosVecfu(pars = pars, init = init, time = time) return(list(model = SolveSIRMosVecfu, pars = pars, init = init, time = time, results = as.data.frame(output))) }
Tau2Rho <-function(family,theta){ N=100000 switch(family, "gaussian" = { u = copula::rCopula(N,copula::normalCopula(theta[1], dim = 2)) }, "t" = { u = copula::rCopula(N,copula::tCopula(theta[1], df=theta[2], dim = 2)) }, "clayton" = { u = copula::rCopula(N,copula::claytonCopula(theta[1], dim = 2)) }, "frank" = { u = copula::rCopula(N,copula::frankCopula(theta[1], dim = 2)) }, "gumbel" = { u = copula::rCopula(N,copula::gumbelCopula(theta[1], dim = 2)) } ) rho <- stats::cor(u, method = "spearman")[1,2] return(rho) }
test.g_plus <- function() { dataPath <- file.path(path.package(package="clusterCrit"),"unitTests","data","testsInternal_400_4.Rdata") load(file=dataPath, envir=.GlobalEnv) idx <- intCriteria(traj_400_4, part_400_4[[4]], c("G_plus")) cat(paste("\nFound idx =",idx)) val <- 2.38694956623705e-08 cat(paste("\nShould be =",val,"\n")) checkEqualsNumeric(idx[[1]],val) }
setGeneric("readWorksheet", function(object, sheet, startRow = 0, startCol = 0, endRow = 0, endCol = 0, autofitRow = TRUE, autofitCol = TRUE, region = NULL, header = TRUE, rownames = NULL, colTypes = character(0), forceConversion = FALSE, dateTimeFormat = getOption("XLConnect.dateTimeFormat"), check.names = TRUE, useCachedValues = FALSE, keep = NULL, drop = NULL, simplify = FALSE, readStrategy = "default") standardGeneric("readWorksheet")) setMethod("readWorksheet", signature(object = "workbook", sheet = "numeric"), function(object, sheet, startRow = 0, startCol = 0, endRow = 0, endCol = 0, autofitRow = TRUE, autofitCol = TRUE, region = NULL, header = TRUE, rownames = NULL, colTypes = character(0), forceConversion = FALSE, dateTimeFormat = getOption("XLConnect.dateTimeFormat"), check.names = TRUE, useCachedValues = FALSE, keep = NULL, drop = NULL, simplify = FALSE, readStrategy = "default") { if(!is.null(region)) { idx = rg2idx(region) startRow = idx[,1] startCol = idx[,2] endRow = idx[,3] endCol = idx[,4] } boundingBoxDim = getBoundingBox(object, sheet, startRow = startRow, startCol = startCol, endRow = endRow, endCol = endCol, autofitRow = autofitRow, autofitCol = autofitCol) startRow = boundingBoxDim[1, ] startCol = boundingBoxDim[2, ] endRow = boundingBoxDim[3, ] endCol = boundingBoxDim[4, ] numcols = ifelse(endCol == 0, 0, endCol - startCol + 1) subset <- getColSubset(object, sheet, startRow, endRow, startCol, endCol, header, numcols, keep, drop) dataFrame <- xlcCall(object, "readWorksheet", as.integer(sheet - 1), as.integer(startRow - 1), as.integer(startCol - 1), as.integer(endRow - 1), as.integer(endCol - 1), header, .jarray(classToXlcType(colTypes)), forceConversion, dateTimeFormat, useCachedValues, subset, readStrategy, .simplify = FALSE) dataFrame = lapply(dataFrame, dataframeFromJava, check.names = check.names) dataFrame = extractRownames(dataFrame, rownames) dataFrame = mapply(df = dataFrame, simplify = rep(simplify, length.out = length(dataFrame)), FUN = function(df, simplify) { if(simplify) unlist(df, use.names = FALSE) else df }, SIMPLIFY = FALSE ) if(length(dataFrame) == 1) dataFrame[[1]] else dataFrame } ) setMethod("readWorksheet", signature(object = "workbook", sheet = "character"), function(object, sheet, startRow = 0, startCol = 0, endRow = 0, endCol = 0, autofitRow = TRUE, autofitCol = TRUE, region = NULL, header = TRUE, rownames = NULL, colTypes = character(0), forceConversion = FALSE, dateTimeFormat = getOption("XLConnect.dateTimeFormat"), check.names = TRUE, useCachedValues = TRUE, keep = NULL, drop = NULL, simplify = FALSE, readStrategy = "default") { sheetNames = sheet sheet = getSheetPos(object, sheet) dataFrame = callGeneric() if(length(sheet) > 1) names(dataFrame) = sheetNames dataFrame } )
library(hamcrest) Sys.setlocale('LC_COLLATE', 'C') is.logical.foo <- function(...) 41L as.vector.foo <- function(...) 99 as.vector.bar <- function(...) 98 Math.bar <- function(...) 44 Summary.bar <- function(...) 45 Ops.bar <- function(...) 46 test.is.logical.1 <- function() assertThat(is.logical(NULL), identicalTo(FALSE)) test.is.logical.2 <- function() assertThat(is.logical(logical(0)), identicalTo(TRUE)) test.is.logical.3 <- function() assertThat(is.logical(c(TRUE, TRUE, FALSE, FALSE, TRUE)), identicalTo(TRUE)) test.is.logical.4 <- function() assertThat(is.logical(structure(c(TRUE, FALSE), .Names = c("a", ""))), identicalTo(TRUE)) test.is.logical.5 <- function() assertThat(is.logical(c(TRUE, FALSE, NA)), identicalTo(TRUE)) test.is.logical.6 <- function() assertThat(is.logical(integer(0)), identicalTo(FALSE)) test.is.logical.7 <- function() assertThat(is.logical(structure(integer(0), .Names = character(0))), identicalTo(FALSE)) test.is.logical.8 <- function() assertThat(is.logical(1:3), identicalTo(FALSE)) test.is.logical.9 <- function() assertThat(is.logical(c(1L, NA, 4L, NA, 999L)), identicalTo(FALSE)) test.is.logical.10 <- function() assertThat(is.logical(c(1L, 2L, 1073741824L, 1073741824L)), identicalTo(FALSE)) test.is.logical.11 <- function() assertThat(is.logical(numeric(0)), identicalTo(FALSE)) test.is.logical.12 <- function() assertThat(is.logical(c(3.14159, 6.28319, 9.42478, 12.5664, 15.708)), identicalTo(FALSE)) test.is.logical.13 <- function() assertThat(is.logical(c(-3.14159, -6.28319, -9.42478, -12.5664, -15.708)), identicalTo(FALSE)) test.is.logical.14 <- function() assertThat(is.logical(structure(1:2, .Names = c("a", "b"))), identicalTo(FALSE)) test.is.logical.15 <- function() assertThat(is.logical(structure(c(1.5, 2.5), .Names = c("a", "b"))), identicalTo(FALSE)) test.is.logical.16 <- function() assertThat(is.logical(c(1.5, 1.51, 0, 1.49, -30)), identicalTo(FALSE)) test.is.logical.17 <- function() assertThat(is.logical(c(1.5, 1.51, 0, 1.49, -30, NA)), identicalTo(FALSE)) test.is.logical.18 <- function() assertThat(is.logical(c(1.5, 1.51, 0, 1.49, -30, NaN)), identicalTo(FALSE)) test.is.logical.19 <- function() assertThat(is.logical(c(1.5, 1.51, 0, 1.49, -30, Inf)), identicalTo(FALSE)) test.is.logical.20 <- function() assertThat(is.logical(c(1.5, 1.51, 0, 1.49, -30, -Inf)), identicalTo(FALSE)) test.is.logical.21 <- function() assertThat(is.logical(character(0)), identicalTo(FALSE)) test.is.logical.22 <- function() assertThat(is.logical(c("4.1", "blahh", "99.9", "-413", NA)), identicalTo(FALSE)) test.is.logical.23 <- function() assertThat(is.logical(complex(0)), identicalTo(FALSE)) test.is.logical.24 <- function() assertThat(is.logical(list(1, 2, 3)), identicalTo(FALSE)) test.is.logical.25 <- function() assertThat(is.logical(list(1, 2, NULL)), identicalTo(FALSE)) test.is.logical.26 <- function() assertThat(is.logical(list(1L, 2L, 3L)), identicalTo(FALSE)) test.is.logical.27 <- function() assertThat(is.logical(list(1L, 2L, NULL)), identicalTo(FALSE)) test.is.logical.28 <- function() assertThat(is.logical(list(1, 2, list(3, 4))), identicalTo(FALSE)) test.is.logical.29 <- function() assertThat(is.logical(list(1, 2, numeric(0))), identicalTo(FALSE)) test.is.logical.30 <- function() assertThat(is.logical(list(3, "a", structure(list("b", list(TRUE, "c")), .Names = c("", "z")))), identicalTo(FALSE)) test.is.logical.31 <- function() assertThat(is.logical(structure(list(1, 2, 3), .Names = c(NA, "", "b"))), identicalTo(FALSE)) test.is.logical.32 <- function() assertThat(is.logical(pairlist(41, "a", 21L)), identicalTo(FALSE)) test.is.logical.33 <- function() assertThat(is.logical(structure(pairlist(a = 41, 42))), identicalTo(FALSE)) test.is.logical.34 <- function() assertThat(is.logical(structure(pairlist(a = 41, NULL))), identicalTo(FALSE)) test.is.logical.35 <- function() assertThat(is.logical(structure(1:12, .Dim = 3:4)), identicalTo(FALSE)) test.is.logical.36 <- function() assertThat(is.logical(structure(1:12, .Dim = 3:4, .Dimnames = structure(list( c("a", "b", "c"), c("d", "e", "f", "g")), .Names = c("x", "y")))), identicalTo(FALSE)) test.is.logical.37 <- function() assertThat(is.logical(structure(1:3, rando.attrib = 941L)), identicalTo(FALSE)) test.is.logical.38 <- function() assertThat(is.logical(structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c")))), identicalTo(FALSE)) test.is.logical.39 <- function() assertThat(is.logical(structure(1:3, .Dim = 3L, .Dimnames = structure(list( c("a", "b", "c")), .Names = "z"))), identicalTo(FALSE)) test.is.logical.40 <- function() assertThat(is.logical(structure(list("foo"), class = "foo")), identicalTo(FALSE)) test.is.logical.41 <- function() assertThat(is.logical(structure(list("bar"), class = "foo")), identicalTo(FALSE)) test.is.logical.42 <- function() assertThat(is.logical(quote(xyz)), identicalTo(FALSE)) test.is.logical.43 <- function() assertThat(is.logical(quote(sin(3.14))), identicalTo(FALSE)) test.is.logical.44 <- function() assertThat(is.logical("NaN"), identicalTo(FALSE)) test.is.logical.45 <- function() assertThat(is.logical("NABOOM!"), identicalTo(FALSE)) test.is.logical.46 <- function() assertThat(is.logical("NaNaNabooboo"), identicalTo(FALSE)) test.is.logical.47 <- function() assertThat(is.logical("-Inf"), identicalTo(FALSE)) test.is.logical.48 <- function() assertThat(is.logical("+Infinity"), identicalTo(FALSE)) test.is.logical.49 <- function() assertThat(is.logical("Infinity and beyond!"), identicalTo(FALSE)) test.is.logical.50 <- function() assertThat(is.logical("Infi"), identicalTo(FALSE)) test.is.logical.51 <- function() assertThat(is.logical("0.03f"), identicalTo(FALSE)) test.is.logical.52 <- function() assertThat(is.logical(" 0.0330 "), identicalTo(FALSE)) test.is.logical.53 <- function() assertThat(is.logical(structure("foo", class = "foo")), identicalTo(FALSE)) test.is.logical.54 <- function() assertThat(is.logical(structure(list(1L, "bar"), class = "bar")), identicalTo(FALSE))
mispr <- function(x, x.select=FALSE, pen=FALSE, maxit=5, m=5, track=FALSE, init.method="random", L2.fix=NULL, cv=TRUE, maxL2=2^10) { if(!is.data.frame(x)){ if(is.matrix(x)) x <- as.data.frame(x) else stop("data frame must be provided") } if(!is.null(L2.fix)) {if( L2.fix<0 | !is.numeric(L2.fix)) stop("L2 penalty must be non.negative value")} if(!is.null(L2.fix) & cv==TRUE) { cat("cv option is set automatically to FALSE since fixed value of L2 penalty is given") cv <- FALSE } types <- lapply(x,class1) attributes(types)$names <-NULL types <- unlist(types) if(any(types=="character")){ chrInd <- which(types=="character") warning("At least one character variable is converted into a factor") for(ind in chrInd){ x[,ind] <- as.factor(x[,ind]) types[ind] <- "factor" } } indFac <- which(types=="factor") for(ind in indFac){ if(length(levels(x[,ind]))==2) types[ind] <- "binary" else if(length(levels(x[,ind]))>2) stop("factor with more than 2 levels detected and has not yet implemented!") else stop("factor with less than 2 levels detected!") } missingSummary <- data.frame(types,apply(x,2,function(x)sum(is.na(x)))) colnames(missingSummary) <- c("type"," N <- n <- dim(x)[1] P <- dim(x)[2] if(dim(x)[2] < 2) stop("Less than 2 variables included in x.") if(!any(is.na(x))) print("No missings in x. Nothing to impute") if(any(apply(x, 1, function(x) all(is.na(x))))) stop("Unit non-responses included in x.") factors <- vector() for(i in 1:ncol(x)){ factors <- c(factors,is.factor(x[,i])) } x.na <-vector() for(i in seq(P)){ if(na.exist(x[,i])) x.na <- c(x.na,i) } w2 <- is.na(x) if(requireNamespace("e1071")) if(requireNamespace("MASS")) if(requireNamespace("penalized")) res =list() res$m = m res$iteration = maxit res$imputation <- list() res$missingSummary <- missingSummary if(m>0){ data.input = x for(imp in 1:m){ x=data.input if(init.method=="median"){ x.init <- initialise(x,method="median") } else if(init.method=="random"){ x.init <- initialise(x,method="random") } else {stop("The value of init.method is misspecified, please choose any of two options i.e., random or median") } x=x.init rm(x.init) if(track) print(head(x)) for(iteration in 1:maxit){ for(i in x.na){ if(track){ print(paste("iteration ",iteration, "; imputed dataset", imp )) } yPart <- x[, i, drop=FALSE] wy <- which(w2[,i]) xPart <- x[, -i, drop=FALSE] dataForReg <- data.frame(yPart,xPart) if( types[i]=="numeric" ){ meth = "numeric" } else if( types[i]=="binary" ){ meth = "bin" } if(length(wy) > 0){ if(track){ if(meth=="bin") print(paste("fitting model with ", colnames(dataForReg)[1], " as a binary response y.imp" )) else print(paste("fitting model with ", colnames(dataForReg)[1], " as a continuous response y.imp"))} colnames(dataForReg)[1] <- "y.imp" x[wy,i] <- lm.glm(xReg=dataForReg, x.select=x.select, pen=pen, index=wy, type=meth, L2.fix=L2.fix, cv=cv, maxL2=maxL2, track=track) } } } res$imputation[[imp]] <- x } } else { stop("value of m should be positive") } return(res) }
dberngamma <- function(x, prob, scale, shape){ if(length(prob)==1) prob <- rep(prob, length(x)) if(length(scale)==1) scale <- rep(scale, length(x)) if(length(shape)==1) shape <- rep(shape, length(x)) d <- 1-prob d[x>0] <- prob[x>0]*dgamma(x[x>0], scale=scale[x>0], shape=shape[x>0]) d } pberngamma <- function(q, prob, scale, shape){ if(length(prob)==1) prob <- rep(prob, length(q)) if(length(scale)==1) scale <- rep(scale, length(q)) if(length(shape)==1) shape <- rep(shape, length(q)) p <- 1-prob p[q>0] <- 1-prob[q>0]+prob[q>0]*pgamma(q[q>0], scale=scale[q>0], shape=shape[q>0]) p } qberngamma <- function(p, prob, scale, shape){ if(length(prob)==1) prob <- rep(prob, length(p)) if(length(scale)==1) scale <- rep(scale, length(p)) if(length(shape)==1) shape <- rep(shape, length(p)) q <- rep(0, length(p)) cases <- p > (1-prob) q[cases] <- qgamma((prob[cases]+p[cases]-1)/prob[cases], scale=scale[cases], shape=shape[cases]) q } rberngamma <- function(n, prob, scale, shape){ if(max(length(prob), length(scale), length(shape)) > 1) stop("parameters must be of length 1") p <- runif(n) q <- rep(0, length(p)) cases <- p > (1-prob) q[cases] <- rgamma(sum(cases), scale=scale, shape=shape) q }
control.gsym.point <- function( B = 499, c_sampling = 0.25, c_F = 0.25 , c_ELq = 0.25, c_R = 0.25 , I = 2500) list(B = B, c_sampling = c_sampling, c_F = c_F , c_ELq = c_ELq, c_R = c_R, I = I)
convertbaselineltolr<-function(dataset,choice,covs,strs="chid",alt="alt"){ nobs<-dim(dataset)[1] mxstr<-0 ustrs<- unique(dataset[[strs]]) for(str in ustrs){ mxstr<-max(mxstr,sum(!is.na(match(dataset[[strs]],str)))) } altnames<-unique(dataset[[alt]]) out<-array(0,c(nobs,length(ustrs)+(length(covs)+1)*(mxstr-1)+1)) dimnames(out)<-list(NULL,c(paste("s",ustrs,sep=""), as.vector(t(outer(altnames[-1],c("Intercept",covs),paste,sep=":"))),"y")) for(str in ustrs){ out[str==dataset[[strs]], paste("s",str,sep="") ]<-1 } for(jj in seq(nobs)){ for(ii in 2:length(altnames)){ if(dataset[[alt]][jj]==altnames[ii]){ out[jj,paste(altnames[ii],c("Intercept",covs),sep=":")]<-c(1,as.matrix(dataset[jj,covs])) } } } out[,"y"]<-0+dataset[,choice] return(out) }
var.expDeath <- function(contribution,incid,cox,fuzz = 0.01, Poisson = FALSE, covnames) { f1 = function1(cox); times_np = f1[[1]]; deceased = f1[[2]]; covar = f1[[3]]; Omega_1 = f1[[4]];beta = f1[[5]]; S0_i = f1[[6]]; S1_i = f1[[7]]; S02_i = f1[[8]]; increment = as.numeric(contribution[[4]]); p_incid = as.numeric(contribution[[2]]); p_surv = as.numeric(contribution[[3]]); ti = as.matrix(contribution[[1]][1]); cov_incid = as.matrix(contribution[[1]][2:(1+p_incid)]); cov_surv = as.data.frame(contribution[[1]][(2+p_incid):(1+p_incid+p_surv)]); colnames(cov_surv) = covnames; freq = as.matrix(contribution[[1]][,2+p_incid+p_surv]); equal_row<-function(x,y,fuzz = 0) { (sum(abs(x - y)) < fuzz); } surv_p<-function(x,cov,time) { y = survfit(x,newdata=cov, se.fit = F); return(approx(x=y$time,y=y$surv,xout=time,rule=2)$y); } variance1 = 0; variance2 = 0; if(Poisson == FALSE) { for(i in seq(1,length(freq))[ti!=0]) { g = seq(1,length(incid[,1]),1)[apply(incid[,2:(1+p_incid)],1,function(x){equal_row(x,cov_incid[i,],fuzz)})]; if(incid[g,1]==0) next; for(j in seq(i,length(freq))[ti[seq(i,length(freq))]!=0]) { g_prime = seq(1,length(incid[,1]),1)[apply(incid[,2:(1+p_incid)],1,function(x){equal_row(x,cov_incid[j,],fuzz)})]; if(incid[g_prime,1]==0) next facteur = 2*freq[i]*freq[j]; if(i==j) facteur = 1/2*facteur; if(g==g_prime) { variance1 = variance1 + facteur*((1 - surv_p(cox,cov_surv[i,],ti[i]))* (1 - surv_p(cox,cov_surv[j,],ti[j]))* incid[g,1]*(1-incid[g,1])/incid[g,p_incid+2] + (incid[g,1]*(1-incid[g,1])/incid[g,p_incid+2] + incid[g,1]**2)* surv_p(cox,cov_surv[i,, drop = F],ti[i])* surv_p(cox,cov_surv[j,, drop = F],ti[j])* covariance(times_np, deceased, beta, ti[i], cov_surv[i,], ti[j], cov_surv[j,], S0_i, S1_i, S02_i, Omega_1)); } else { variance2 = variance2 + facteur*incid[g,1]*incid[g_prime,1]* surv_p(cox,cov_surv[i,, drop = F],ti[i])* surv_p(cox,cov_surv[j,, drop = F],ti[j])* covariance(times_np, deceased, beta, ti[i],cov_surv[i,],ti[j],cov_surv[j,], S0_i, S1_i, S02_i, Omega_1); } } } } if(Poisson == TRUE) { for(i in seq(1,length(freq))[ti!=0]) { g = seq(1,length(incid[,1]),1)[apply(incid[,2:(1+p_incid)],1,function(x){equal_row(x,cov_incid[i,],fuzz)})]; if(incid[g,1]==0) next; for(j in seq(i,length(freq))[ti[seq(i,length(freq))]!=0]) { g_prime = seq(1,length(incid[,1]),1)[apply(incid[,2:(1+p_incid)],1,function(x){equal_row(x,cov_incid[j,],fuzz)})]; if(incid[g_prime,1]==0) next facteur = 2*freq[i]*freq[j]; if(i==j) facteur = 1/2*facteur; if(g==g_prime) { variance1 = variance1 + facteur*((1 - surv_p(cox,cov_surv[i,],ti[i]))* (1 - surv_p(cox,cov_surv[j,],ti[j]))* incid[g,1]/incid[g,p_incid+2] + (incid[g,1]/incid[g,p_incid+2] + incid[g,1]**2)* surv_p(cox,cov_surv[i,, drop = F],ti[i])* surv_p(cox,cov_surv[j,, drop = F],ti[j])* covariance(times_np, deceased, beta, ti[i],cov_surv[i,],ti[j],cov_surv[j,], S0_i, S1_i, S02_i, Omega_1)); } else { variance2 = variance2 + facteur*incid[g,1]*incid[g_prime,1]* surv_p(cox,cov_surv[i,, drop = F],ti[i])* surv_p(cox,cov_surv[j,, drop = F],ti[j])* covariance(times_np, deceased, beta, ti[i],cov_surv[i,],ti[j],cov_surv[j,], S0_i, S1_i, S02_i, Omega_1); } } } } return(increment**2*(variance1+variance2)); }
library(PEcAn.all) library(PEcAn.data.atmosphere) library(RPostgreSQL) for (i in dbListConnections(PostgreSQL())) db.close(i) dbparms <- list(driver=driver, user=user, dbname=dbname, password=password, host=host) if (raw == TRUE){ con <- db.open(dbparms) outfolder <- paste0(dir,data.set,"/") pkg <- "PEcAn.data.atmosphere" fcn <- paste0("download.",fcn.data) args <- list(data.set,outfolder,pkg,raw.host,start_year,end_year,site.id,dbparms,con) raw.id <- do.call(fcn,args) } if (cf == TRUE){ con <- db.open(dbparms) input.id <- raw.id outfolder <- paste0(dir,data.set,"_CF/") pkg <- "PEcAn.data.atmosphere" fcn <- paste0("met2CF.",fcn.data) write <- TRUE cf.id <- convert.input(input.id,outfolder,pkg,fcn,write,username,con) } if (perm == TRUE){ con <- db.open(dbparms) input.id <- cf.id outfolder <- paste0(dir,data.set,"_CF_Permute/") pkg <- "PEcAn.data.atmosphere" fcn <- "permute.nc" write <- TRUE perm.id <- convert.input(input.id,outfolder,pkg,fcn,write,username,con) } if (extract == TRUE){ con <- db.open(dbparms) input.id <- perm.id str_ns <- paste0(newsite %/% 1000000000, "-", newsite %% 1000000000) outfolder <- paste0("/projectnb/dietzelab/pecan.data/input/",data.set,"_CF_site_",str_ns,"/") pkg <- "PEcAn.data.atmosphere" fcn <- "extract.nc" write <- TRUE extract.id <- convert.input(input.id,outfolder,pkg,fcn,write,username,con,newsite = newsite) } if(nchar(model) >2){ con <- db.open(dbparms) lst <- site.lst(newsite,con) input.id <- extract.id outfolder <- paste0(dir,data.set,"_",model,"_site_",str_ns,"/") pkg <- paste0("PEcAn.",model) fcn <- paste0("met2model.",model) write <- TRUE overwrite <- "" model.id <- convert.input(input.id,outfolder,pkg,fcn,write,username,con,lst=lst,overwrite=overwrite) } for (i in dbListConnections(PostgreSQL())) db.close(i)
lpls <- function(X1,X2,X3, ncomp = 2, doublecenter = TRUE, scale = c(FALSE,FALSE,FALSE), type = c("exo"), impute = FALSE, niter = 25, subsetX2 = NULL, subsetX3 = NULL,...){ X1a <- X1 X1 <- X2 X2 <- X1a X3 <- t(X3) if(impute){ if(any(is.na(X1))) X1 <- svd.imp(X1) if(any(is.na(X2))) X2 <- svd.imp(X2) if(any(is.na(X3))) X3 <- svd.imp(X3) } if(!is.null(subsetX2)){ X1 <- X1[subsetX2,,drop=F] X2 <- X2[subsetX2,,drop=F] } if(!is.null(subsetX3)){ X3 <- X3[subsetX3,,drop=F] X2 <- X2[,subsetX3,drop=F] } X1save <- X1 X2save <- X2 X3save <- X3 X1dim <- dim(X1) X2dim <- dim(X2) X3dim <- dim(X3) X1 <- scale(X1, scale=scale[2]) mX1 <- attr(X1, "scaled:center") X3 <- scale(X3, scale=scale[3]) mX3 <- attr(X3, "scaled:center") rowmX2 <- apply(X2,1,mean, na.rm=TRUE) colmX2 <- apply(X2,2,mean, na.rm=TRUE) grandmX2 <- mean(X2, na.rm=TRUE) if(doublecenter){ X2 <- X2 - t(matrix(rep(1, X2dim[2]), ncol = 1)%*%rowmX2) - matrix(rep(1,X2dim[1]), ncol = 1)%*%colmX2 + matrix(grandmX2, nrow=X2dim[1], ncol = X2dim[2]) } else { X2 <- X2 - matrix(grandmX2,nrow=X2dim[1],ncol=X2dim[2]) } X2 <- scale(X2, scale = scale[1]) attributes(X1save) <- attributes(X1) attributes(X2save) <- attributes(X2) attributes(X3save) <- attributes(X3) dlist <- list(X1 = as.matrix(t(X1)), X2 = as.matrix(X2), X3 = as.matrix(X3)) T11 <- T12 <- T21 <- T22 <- T31 <- T32 <- numeric(0) W21 <- W22 <- numeric(0) P1 <- P3 <- P21 <- P22 <- numeric(0) D <- diag(rep(1,ncomp)) X1totvar <- X2totvar <- X3totvar <- rep(0,ncomp+1) for(a in 1:ncomp){ X1totvar[a] <- sum(dlist$X1^2, na.rm=TRUE) X2totvar[a] <- sum(dlist$X2^2, na.rm=TRUE) X3totvar[a] <- sum(dlist$X3^2, na.rm=TRUE) latent <- extractscores(dlist,niter=niter) T11 <- cbind(T11, vecnorm(latent[[1]]$t1)) T12 <- cbind(T12, vecnorm(latent[[1]]$t2)) T21 <- cbind(T21, vecnorm(latent[[2]]$t1)) T22 <- cbind(T22, vecnorm(latent[[2]]$t2)) T31 <- cbind(T31, vecnorm(latent[[3]]$t1)) T32 <- cbind(T32, vecnorm(latent[[3]]$t2)) if(type=="exo_ort"){ P1 <- cbind(P1, projectonto(dlist$X1,T21[,a])) P3 <- cbind(P3, projectonto(dlist$X3,T22[,a])) P21 <- cbind(P21, projectonto(dlist$X2,T21[,a])) P22 <- cbind(P22, projectonto(dlist$X2,T22[,a])) d <- drop(solve(crossprod(T21[,a]))%*%t(T21[,a])%*%P22[,a]) D[a,a] <- d dlist$X1 <- dlist$X1 - P1[,a]%*%t(T21[,a]) dlist$X3 <- dlist$X3 - T22[,a]%*%t(P3[,a]) dlist$X2 <- dlist$X2 - T21[,a]%*%t(P21[,a]) - P22[,a]%*%t(T22[,a]) + T21[,a]%*%t(T22[,a])*drop(d) } if(type=="exo"){ P1 <- projectonto(t(X1),T21) P3 <- projectonto(t(X3),T22) P21 <- projectonto(t(X2),T21) P22 <- projectonto(X2,T22) D <- solve(crossprod(T21))%*%t(T21)%*%P22 dlist$X1 <- t(X1 - T21%*%t(P1)) dlist$X3 <- X3 - T22%*%t(P3) dlist$X2 <- X2 - T21%*%D%*%t(T22) } if(type=="endo"){ P1 <- projectonto(t(X1),T12) P3 <- projectonto(t(X3),T31) D <- solve(crossprod(T12))%*%t(T12)%*%projectonto(X2, T31) dlist$X1 <- t(X1 - T12%*%t(P1)) dlist$X3 <- X3 - T31%*%t(P3) dlist$X2 <- X2 - T12%*%D%*%t(T31) } } X1totvar[ncomp+1] <-sum(dlist$X1^2, na.rm=TRUE) X2totvar[ncomp+1] <-sum(dlist$X2^2, na.rm=TRUE) X3totvar[ncomp+1] <-sum(dlist$X3^2, na.rm=TRUE) X1varprop <- diff((X1totvar[1]-X1totvar)/(X1totvar[1])) X2varprop <- diff((X2totvar[1]-X2totvar)/(X2totvar[1])) X3varprop <- diff((X3totvar[1]-X3totvar)/(X3totvar[1])) B1 <- B3 <- Ca <- NULL if(type!="endo"){ B1 <- T31%*%solve(t(P21)%*%T31)%*%t(P1) B3 <- T12%*%solve(t(P22)%*%T12)%*%t(P3) suppressWarnings({ R1 <- cor(X1,T21, use="pairwise.complete.obs") R21 <- t(cor(T21,X2, use="pairwise.complete.obs")) R22 <- t(cor(T22,t(X2), use="pairwise.complete.obs")) R3 <- cor(X3,T22, use="pairwise.complete.obs") R2rmean <- cor(rowmX2,T21, use="pairwise.complete.obs") R2cmean <- cor(colmX2,T22, use="pairwise.complete.obs") }) } else if(type=="endo"){ V1 <- T11%*%solve(t(P1)%*%T11) V3 <- T32%*%solve(t(P3)%*%T32) Ca <- V1%*%D%*%t(V3) suppressWarnings({ R1 <- cor(X1,T12, use="pairwise.complete.obs") R21 <- t(cor(T12,X2, use="pairwise.complete.obs")) R22 <- t(cor(T31,t(X2), use="pairwise.complete.obs")) R3 <- cor(X3,T31, use="pairwise.complete.obs") R2rmean <- cor(rowmX2,T12, use="pairwise.complete.obs") R2cmean <- cor(colmX2,T31, use="pairwise.complete.obs") }) } res <- list(call=match.call()) res$ncomp <- ncomp res$coefficients <- list(B1=B1, B3=B3, C=Ca) res$blockScores <- list(T11=T11, T12=T12, T21=T21, T22=T22, T31=T31, T32=T32) res$blockLoadings<- list(P1=P1, P3=P3, P21=P21, P22=P22, D=D) res$corloadings <- list(R1=R1, R21=R21, R22=R22, R3=R3, R2rmean=R2rmean, R2cmean=R2cmean) res$means <- list(mX1=mX1, mX3=mX3, grandmX2=grandmX2, rowmX2=rowmX2, colmX2=colmX2) res$data <- list(X1=X1save, X2=X2save, X3=X3save) res$residuals <- dlist res$options <- list(doublecenter=doublecenter, scale=scale, type=type) res$vars <- list(X1varprop=X1varprop, X2varprop=X2varprop, X3varprop=X3varprop) res$info <- list(method = "L-PLS", scores = "Not used", loadings = "Not used", blockScores = "Block scores", blockLoadings = "Block loadings") class(res) <- c('lpls', 'multiblock','list') return(res) } extractscores <- function(datalist, niter = 25, truncperc = NULL, truncvec = NULL){ nmat <- length(datalist) dims <- lapply(datalist, dim) dimok <- TRUE for(ii in 1:(nmat-1)){ dimok <- ifelse(dims[[ii]][2]==dims[[(ii+1)]][1], TRUE, FALSE) } if(!dimok) stop("Dimension mismatch\n") scorelist<-list() for(ii in 1:nmat){ scorelist[[ii]]<-list(t1 = matrix(0, nrow = dims[[ii]][1], ncol = 1), t2 = matrix(0, nrow = dims[[ii]][2], ncol = 1)) } scorelist[[1]]$t1 <- as.matrix(rnorm(dims[[1]][1], 0, 1)) for(k in 1:niter){ scorelist[[1]]$t2 <- projectonto(datalist[[1]], scorelist[[1]]$t1) for(j in 2:nmat){ scorelist[[j]]$t2 <- projectonto(datalist[[j]], scorelist[[(j-1)]]$t2) } scorelist[[nmat]]$t1 <- projectonto(datalist[[nmat]], scorelist[[nmat]]$t2) for(j in (nmat-1):1){ scorelist[[j]]$t1 <- projectonto(datalist[[j]], scorelist[[(j+1)]]$t1) } } return(scorelist) } projectonto <- function(A,b){ A.na <- any(is.na(A)) if(is.null(dim(A))) A <- matrix(A, ncol = 1) if(is.null(dim(b))) b <- matrix(b, ncol = 1) if(!any(dim(A)==dim(b)[1])) stop("Non-matching dimensions") q <- dim(b)[2] if(A.na && q>1){ svd1 <- svd(b) b <- b%*%svd1$v } if(dim(A)[1]==dim(b)[1]) A <- t(A) if(!A.na){ proj <- A%*%b%*%solve(crossprod(b)) } else { miss <- which(is.na(A)) A[miss] <- 0 if(q==1){ bb <- t(b^2) ones <- matrix(1,dim(A)[2],dim(A)[1]) ones[miss] <- 0 btbinv <- 1/drop(bb%*%ones) proj <- (A%*%b)*btbinv } else if(q>1){ proj <- numeric() for(i in 1:q){ bb <- t(b[,i]^2) ones <- matrix(1,dim(A)[2],dim(A)[1]) ones[miss] <- 0 btbinv <- 1/drop(bb%*%ones) proj <- cbind(proj,(A%*%b[,i])*btbinv) } proj <- proj%*%t(svd1$v) } } return(proj) } vecnorm <- function(vec){ vec / sqrt(drop(crossprod(vec))) } svd.imp <- function(X, max.niter=50, expl.min=0.98, interactive=FALSE, tol=1e-3, ploteval=FALSE){ ncomp = min(dim(X)) missing <- which(is.na(X)) X.scaled <- scale(X,scale=FALSE) colmeans <- attr(X.scaled,"scaled:center") meanmat <- matrix(1,nrow=dim(X)[1],ncol=1)%*%colmeans X.imp <- X impvals <- meanmat[missing] X.imp[missing] <- impvals initiate <- TRUE j<-1 relchange <- 1 change <- numeric() while(relchange > tol & j<=max.niter){ uvd <- svd(X.imp) if(initiate){ ssx <- rep(0,ncomp) for(i in 1:ncomp){ D <- matrix(0,i,i) diag(D) <- uvd$d[1:i] ssx[i] <- sum((uvd$u[,1:i,drop=F]%*%D%*%t(uvd$v[,1:i]))^2) initiate <- FALSE } ssxtot <- sum(X.imp^2) explvar <- ssx/ssxtot if(interactive){ plot(1:ncomp,explvar) ncomp <- readline("Choose number of components for imputation \n") ncomp <- as.numeric(ncomp) }else{ ncomp <- min(which(explvar > expl.min)) } } D <- matrix(0,ncomp,ncomp) diag(D) <- uvd$d[1:ncomp] Xhat <- uvd$u[,1:ncomp,drop=F]%*%D%*%t(uvd$v[,1:ncomp,drop=F]) impvallength <- sqrt(sum((impvals)^2)) change[j] <- relchange <- sqrt(sum((impvals-Xhat[missing])^2)) impvals <- Xhat[missing] X.imp[missing] <- impvals if(ploteval){ plot(0:j,c(1,change/impvallength),ylab="Change",main=paste("Relative change in imputed values using",ncomp,"components\n"),xlab="iteration") } j <- j+1 } X.imp }
Frank <- compiler::cmpfun(function(param, dim = 2L, density = FALSE) { if (param < 0) stop("Wrong 'param' input") verif <- eval(parse(text = paste0(dim, "L"))) if (!is.integer(verif) || dim <= 1) stop("The dimension must be an integer greater than or equal to 2") phi <- "log(1 - (alpha) * exp(-(z))) / log(1 - (alpha))" phi.inv <- "-log((1 - (1 - (alpha))^(z)) / (alpha))" dep.param <- "(1 - exp(-alpha))" param.th <- "(1 - exp(-alpha))" phi <- stringr::str_replace_all(phi, "alpha", dep.param) phi.inv <- stringr::str_replace_all(phi.inv, "alpha", dep.param) rBiv <- function(n, alpha, u) -log(1 - (runif(n) * (exp(-alpha) - 1)) / (runif(n) * (exp(-alpha * u) - 1) - exp(-alpha * u))) / alpha th <- function(z, alpha) copula::rlog(z, alpha) param <- as.character(param) if (density) { tt <- LOG(1/10, 1:dim, NULL) uu <- paste("u", 1:dim, sep = "") expr1 <- numeric(dim) for (i in 1:dim) expr1[i] <- stringr::str_replace_all(tt@Der("z", 1, "LaplaceInv"), "z", uu[i]) expr1 <- paste("(", expr1, ")", sep = "", collapse = " * ") nu <- numeric(dim) for(i in 1:dim) nu[i] <- stringr::str_replace_all(tt@LaplaceInv, "z", uu[i]) nu <- paste("(", nu, ")", sep = "", collapse = " + ") expr2 <- stringr::str_replace_all(tt@Der("z", dim, "Laplace"), "z", nu) densit <- paste("(", expr1, ") * (", expr2, ")", sep = "") densit <- stringr::str_replace_all(densit, "alpha", dep.param) new("frank", phi = phi, phi.inv = phi.inv, rBiv = rBiv, theta = th, depend = dep.param, dimension = dim, parameter = param, dens = densit, par.th = param.th, name = "Frank copula") } else { new("frank", phi = phi, phi.inv = phi.inv, rBiv = rBiv, theta = th, depend = dep.param, dimension = dim, parameter = param, par.th = param.th, name = "Frank copula") } })
rp.checkbox <- function(panel, variable, action = I, labels = NULL, names = NULL, title = NULL, initval = rep(FALSE, length(labels)), pos = NULL, doaction = FALSE, foreground = NULL, background = NULL, font = NULL, parentname = deparse(substitute(panel)), name = paste("checkbox", .nc(), sep=""), ...) { if (!exists(panel$panelname, .rpenv, inherits = FALSE)) panelname <- deparse(substitute(panel)) else panelname <- panel$panelname varname <- deparse(substitute(variable)) if (is.null(labels)) labels <- varname if (!rp.isnull(panelname, varname)) { variable <- rp.var.get(panelname, varname) if (is.null(names)) { if (!is.null(names(variable))) names <- names(variable) else names <- labels } } else { if (length(initval) == 0) initval <- FALSE if (is.null(names)) names <- labels variable <- initval } names(variable) <- names rp.var.put(panelname, varname, variable) if (is.null(pos) & length(list(...)) > 0) pos <- list(...) f <- function(val) { valexisting <- rp.var.get(panelname, varname) names(val) <- names(valexisting) rp.var.put(panelname, varname, val) panel <- rp.control.get(panelname) panel <- action(panel) rp.control.put(panelname, panel) } if (rp.widget.exists(panelname, parentname)) parent <- rp.widget.get(panelname, parentname) else parent <- panel if (is.list(pos) && !is.null(pos$grid)) parent <- rp.widget.get(panelname, pos$grid) widget <- w.checkbox(parent, action = f, labels = labels, names = names, title = title, initval = variable, pos = pos, foreground = foreground, background = background, font = font) rp.widget.put(panelname, name, widget) if (doaction) f(initval) if (.rpenv$savepanel) rp.control.put(panelname, panel) invisible(panelname) } w.checkbox <- function(parent, action = I, labels, names, title, initval = rep(FALSE, length(labels)), pos = NULL, foreground = NULL, background = "white", font = NULL) { widget <- w.createwidget(parent, pos, background, title) widget$.type <- "checkgroup" widget$.var <- c() widget$.cb <- list() f <- function(...) { variable <- c() for (j in (1:length(labels))) variable[j] <- !(handshake(tclvalue, widget$.var[[j]]) == '0') names(variable) <- names action(variable) } for (i in (1:length(labels))) { if (initval[i] == TRUE) widget$.var[i] <- list(handshake(tclVar, '1')) else widget$.var[i] <- list(handshake(tclVar, '0')) cb <- w.createwidget(widget, pos = list(column = 0, row = i - 1, sticky = "news", width = as.integer(handshake(.Tcl, paste('font measure systemfont "', labels[[i]], '"', sep = "") )), height = 2 + as.integer(handshake(.Tcl, 'font metrics systemfont -linespace')) ), background) cb$.type <- "checkbutton" cb$.widget <- handshake(tkcheckbutton, widget$.handle, command = f, text = labels[[i]], variable = widget$.var[[i]]) w.appearancewidget(cb, font, foreground, background) widget$.cb[i] <- list(cb) } invisible(widget) }
nvsd <- function(X, y, fold=10, step.size=0.01, stop.alpha=0.05, stop.var.count=20, max.model.var.count=10, roughening.method="DCOL", do.plot=F, pred.method="MARS") { nonlin.pred<-function(x, y, x.new, method=c("MARS", "RF", "SVM")) { if(is.null(nrow(x))) { x<-matrix(x, nrow=1) x.new<-matrix(x.new, nrow=1) } this.x<-as.data.frame(t(x)) this.test.x<-as.data.frame(t(x.new)) if(method=="MARS") e<-earth(x=this.x, y=y) else if(method=="RF") e<-randomForest(this.x, y, ntree=max(500, 4*row(this.x))) else if(method=="SVM") e<-svm(x=this.x, y=y) ee<-predict(e, this.test.x) ee } find.cut<-function(x,y) { pred <- prediction(x, y) perf <- performance(pred,"tpr","fpr") opt.cut = function(perf, pred){ cut.ind = mapply(FUN=function(x, y, p){ d = (x - 0)^2 + (y-1)^2 ind = which(d == min(d))[1] c(sensitivity = y[[ind]], specificity = 1-x[[ind]], cutoff = p[[ind]]) }, [email protected], [email protected], pred@cutoffs) } opt.cut(perf,pred)[3,1] } grp<-rep(1:fold, length(y))[1:length(y)] grp<-sample(grp, length(y), replace=FALSE) y.pred<-new("list") for(i in 1:stop.var.count) y.pred[[i]]<-matrix(NA, nrow=1, ncol=length(y)) b<-stage.forward(X, y, stop.alpha=stop.alpha, stop.var.count=stop.var.count, step.size=step.size, roughening.method=roughening.method, do.plot=F) if(length(b$found.pred) > 0) { for(m in 1:fold) { this.X<-X[,grp != m] this.y<-y[grp != m] for(j in 1:min(length(b$found.pred), max.model.var.count)) { x.train<-this.X[b$found.pred[1:j],] y.train<-this.y x.test<-X[b$found.pred[1:j], grp == m] predicted<-nonlin.pred(x.train, y.train, x.test, method=pred.method) if(length(table(y))==2) { predicted.0<-nonlin.pred(x.train, y.train, x.train, method=pred.method) predicted<-1*(predicted>find.cut(predicted.0, y.train)) } y.pred[[j]][grp == m]<-predicted } } for(j in 1:min(length(b$found.pred), max.model.var.count)) { y.pred[[j]][is.na(y.pred[[j]])]<-Inf } ssr<-matrix(NA, nrow=1, ncol=stop.var.count) for(j in 1:stop.var.count) { ssr[1,j]<-sum((y-y.pred[[j]][1,])^2) } n.var.err<-apply(ssr,2,min) n.var.choice<-which(n.var.err == min(n.var.err,na.rm=T))[1] return(list(selected.pred=b$found.pred[1:n.var.choice], all.pred=b$found.pred)) }else{ return(list(selected.pred=NULL, all.pred=NULL)) } }
summary.immer_ccml <- function( object, digits=3, file=NULL, ... ) { immer_osink( file=file ) cat("-----------------------------------------------------------------\n") immer_summary_print_package_rsession(pack="immer") cat( object$description, "\n\n") immer_summary_print_call(CALL=object$CALL) immer_summary_print_computation_time(object=object ) cat( "Number of iterations ","=", object$nlminb_result$iterations, "\n" ) cat( "Convergence code ","=", object$nlminb_result$convergence, "\n" ) cat("\n") cat( "Objective function value ","=", round( object$objective, 2 ), "\n" ) cat( "Number of person-rater-interactions ","=", object$ic$ND, "\n" ) cat( "Number of persons ","=", object$ic$N, "\n" ) cat( "Number of items ","=", object$ic$I, "\n" ) cat( "Number of raters ","=", object$ic$R, "\n\n" ) cat( "Number of estimated item parameters ","=", object$ic$np, "\n" ) cat("\n") immer_ccml_summary_print_ic(object=object) cat("-----------------------------------------------------------------\n") cat("Item Parameters \n") immer_summary_print_objects(obji=object$item, from=2, digits=digits, rownames_null=TRUE) cat("-----------------------------------------------------------------\n") cat("Basis Item Parameters \n") immer_summary_print_objects(obji=object$xsi_out, from=1, digits=digits, rownames_null=FALSE) immer_csink( file=file ) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(ggplot2) theme_set(theme_bw()) library(liminal) data(pdfsense) pcs <- prcomp(pdfsense[, 7:ncol(pdfsense)]) res <- data.frame( component = 1:56, variance_explained = cumsum(pcs$sdev / sum(pcs$sdev)) ) ggplot(res, aes(x = component, y = variance_explained)) + geom_point() + scale_x_continuous( breaks = seq(0, 60, by = 5) ) + scale_y_continuous( labels = function(x) paste0(100*x, "%") ) pdfsense <- dplyr::bind_cols( pdfsense, as.data.frame(pcs$x) ) pdfsense$Type <- factor(pdfsense$Type) set.seed(3099) start <- clamp_sd(as.matrix(dplyr::select(pdfsense, PC1, PC2)), sd = 1e-4) tsne <- Rtsne::Rtsne( dplyr::select(pdfsense, PC1:PC56), pca = FALSE, normalize = TRUE, perplexity = 50, exaggeration_factor = nrow(pdfsense) / 100, Y_init = start ) tsne_embedding <- as.data.frame(tsne$Y) tsne_embedding <- dplyr::rename(tsne_embedding, tsneX = V1, tsneY = V2) tsne_embedding$Type <- pdfsense$Type ggplot(tsne_embedding, aes(x = tsneX, y = tsneY, color = Type)) + geom_point() + scale_color_manual(values = limn_pal_tableau10())
orcid_services <- function(orcid, put_code = NULL, format = "application/json", summary = FALSE, ...) { pth <- path_picker(put_code, summary, "service") orcid_putcode_helper(pth, orcid, put_code, format, ...) }
svc <- paws::qldb() test_that("list_journal_s3_exports", { expect_error(svc$list_journal_s3_exports(), NA) }) test_that("list_journal_s3_exports", { expect_error(svc$list_journal_s3_exports(MaxResults = 20), NA) }) test_that("list_ledgers", { expect_error(svc$list_ledgers(), NA) }) test_that("list_ledgers", { expect_error(svc$list_ledgers(MaxResults = 20), NA) })
allocolo<-function(mlkm,pg,mlkmpre,pgpre,colopre,coloind,colofall,paletti) { lkmpre<-mlkmpre$lkm lkm<-mlkm$lkm modecolo<-matrix("",lkm,1) if (!is.null(colopre)){ dist<-matrix(NA,lkm,lkmpre) for (i in 1:lkm){ for (j in 1:lkmpre){ cent<-pg$center[,mlkm$modloc[i]] centpre<-pgpre$center[,mlkmpre$modloc[j]] dist[i,j]<-etais(cent[1:2],centpre[1:2]) } } } if (is.null(colopre)){ for (k in 1:lkm){ modecolo[k]<-paletti[k] } coloind<-lkm } else if (lkm>=lkmpre){ for (k in 1:lkmpre){ minimi<-min(dist,na.rm=TRUE) argmin<-which(minimi==dist)[1] yind<-ceiling(argmin/lkm) xind<-argmin-(yind-1)*lkm dist[xind,]<-NA modecolo[k]<-colopre[yind] } k<-lkmpre+1 while (k<=lkm){ modecolo[k]<-paletti[coloind+k-lkmpre] k<-k+1 } coloind<-lkm } else{ for (k in 1:lkm){ minimi<-min(dist,na.rm=TRUE) argmin<-which(minimi==dist)[1] yind<-ceiling(argmin/lkm) xind<-argmin-(yind-1)*lkm dist[xind,]<-NA modecolo[k]<-colopre[yind] } colofall<-lkm } return(list(modecolo=modecolo,coloind=coloind,colofall=colofall)) }
par(mar = c(1, 1, 1, 1)) circos.par("default.track.height" = 0.1) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(nr = 100) circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, type = "l", ...) }) bed1 = generateRandomBed(nr = 100) bed2 = generateRandomBed(nr = 100) bed_list = list(bed1, bed2) circos.genomicTrackPlotRegion(bed_list, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicLines(region, value, col = i, ...) }) circos.genomicTrackPlotRegion(bed_list, stack = TRUE, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicLines(region, value, col = i, ...) }) bed = generateRandomBed(nr = 100, nc = 4) circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, col = 1:4, ...) }) circos.genomicTrackPlotRegion(bed, stack = TRUE, panel.fun = function(region, value, ...) { i = getI(...) circos.genomicLines(region, value, col = i, ...) }) bed = generateRandomBed(nr = 100) circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, type = "segment", lwd = 2, ...) }) circos.clear() circos.par("default.track.height" = 0.1) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(nr = 20) circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, ...) }) bed = generateRandomBed(nr = 100) bed = cbind(bed[1:3], rep(1, nrow(bed)), bed[4]) circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, ...) }) circos.genomicTrackPlotRegion(bed, numeric.column = 5, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, ...) }) circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) { circos.genomicLines(region, value, numeric.column = 1, ...) }) circos.clear() circos.par("default.track.height" = 0.1) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(nr = 100, nc = 0) circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) { circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...) }) bed = cbind(bed, rep("text", nrow(bed))) circos.genomicTrackPlotRegion(bed, numeric.column = 4, panel.fun = function(region, value, ...) { circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...) }) bed1 = generateRandomBed(nr = 100, nc = 1) bed2 = generateRandomBed(nr = 100, nc = 0) bed_list = list(bed1, bed2) circos.genomicTrackPlotRegion(bed_list, panel.fun = function(region, value, ...) { circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...) }) circos.clear() circos.par("default.track.height" = 0.1) circos.initializeWithIdeogram(plotType = NULL) bed = generateRandomBed(nr = 100, nc = 0) circos.genomicTrackPlotRegion(bed, panel.fun = function(region, value, ...) { circos.genomicPoints(region, value, ...) }) bed = cbind(bed, rep("text", nrow(bed))) circos.genomicTrackPlotRegion(bed, numeric.column = 4, panel.fun = function(region, value, ...) { circos.genomicPoints(region, value, ...) }) bed1 = generateRandomBed(nr = 100, nc = 1) bed2 = generateRandomBed(nr = 100, nc = 0) bed_list = list(bed1, bed2) circos.genomicTrackPlotRegion(bed_list, panel.fun = function(region, value, ...) { circos.genomicPoints(region, value, ...) }) circos.clear()
dscore.default <- function(x, ...) { if(all(is.numeric(x)) & any(x>1 | x<0)) stop("argument 'x' should be a vector containing probabilities (e.g. values in [0,1]") v <- c(0:(2*length(x))) ans <- dpoisbinom(v, rep(x, each=2)) names(ans) <- paste(v, "alleles") class(ans) <- "dscore" ans }
check_design_opt <- function(design_opt_input) { design_opt <- list(rules = NULL, actions = NULL, min = NA, max = NA, min_fit = 0, obligatory = 0, sd_entropy = NA, designs = 1, max_iter = 1e5, seed = NA) design_opt[names(design_opt_input)] <- design_opt_input return(design_opt) }
test_that("read in PNG file in binary format", { df <- c("fig/fig1.png", "fig/fig2.png") png_vec_in <- rtf_read_figure(df) png_in_1 <- readBin(df[1], what = "raw", size = 1, signed = TRUE, endian = "little", n = 1e8) png_in_2 <- readBin(df[2], what = "raw", size = 1, signed = TRUE, endian = "little", n = 1e8) png_lst <- list(png_in_1, png_in_2) attr(png_vec_in, "fig_format") <- NULL expect_equal(png_vec_in, png_lst) })
".Build.terms" <- function(x, coefs, cov = NULL, assign, collapse = TRUE) { cov.true <- !is.null(cov) if(collapse) { fit <- drop(x %*% coefs) if(cov.true) { var <- ((x %*% cov) * x) %*% rep(1., length(coefs)) list(fit = fit, se.fit = drop(sqrt(var))) } else fit } else { constant <- attr(x, "constant") if(!is.null(constant)) constant <- sum(constant * coefs) if(missing(assign)) assign <- attr(x, "assign") if(is.null(assign)) stop("Need an 'assign' list") fit <- array(0., c(nrow(x), length(assign)), list(dimnames( x)[[1.]], names(assign))) if(cov.true) se <- fit TL <- sapply(assign, length) simple <- TL == 1. complex <- TL > 1. if(any(simple)) { asss <- unlist(assign[simple]) ones <- rep(1., nrow(x)) fit[, simple] <- x[, asss] * outer(ones, coefs[asss]) if(cov.true) se[, simple] <- abs(x[, asss]) * outer(ones, sqrt(diag(cov))[asss]) } if(any(complex)) { assign <- assign[complex] for(term in names(assign)) { TT <- assign[[term]] xt <- x[, TT] fit[, term] <- xt %*% coefs[TT] if(cov.true) se[, term] <- sqrt(drop(((xt %*% cov[ TT, TT]) * xt) %*% rep(1., length(TT)))) } } attr(fit, "constant") <- constant if(is.null(cov)) fit else list(fit = fit, se.fit = se) } }
md_stock_symbol_hk = function(source="163", return_price=FALSE) { symbol = exchange = market_symbols = stock_list_hk2 = NULL if (source == "163") { fun_listcomp_hk = function(urli, mkt_board) { dt = V1 = name = NULL doc = readLines(urli, warn = FALSE) datetime = as.Date(sub(".+time\":\"([0-9\\-]+).+", "\\1", doc)) listcomp = data.table(dt = doc)[ , strsplit(sub(".+\\[\\{(.+)\\}\\].+", "\\1", dt), "\\},\\{") ][, c("eps", "exchange_rate", "financedata.net_profit", "financedata.totalturnover_", "high", "low", "market_capital", "name", "open", "pe", "percent", "price", "symbol", "turnover", "updown", "volume", "yestclose", "zf", "no") := tstrsplit(V1, ",", fixed=TRUE) ][, lapply(.SD, function(x) gsub("\".+\"\\:|\\}|\"", "", x)) ][, `:=`( V1 = NULL, date = datetime, board = mkt_board, name = stri_unescape_unicode(name), market = "stock", exchange = "hkex" )][, c("market", "exchange", "board", "symbol", "name", "date", "open", "high", "low", "price", "percent", "updown", "volume", "turnover", "exchange_rate", "zf", "pe", "market_capital", "eps", "financedata.net_profit", "financedata.totalturnover_"), with=FALSE] return(listcomp) } urls = c( main = "http://quotes.money.163.com/hk/service/hkrank.php?host=/hk/service/hkrank.php&page=0&query=CATEGORY:MAIN;TYPE:1;EXCHANGE_RATE:_exists_true&fields=no,time,SYMBOL,NAME,PRICE,PERCENT,UPDOWN,OPEN,YESTCLOSE,HIGH,LOW,VOLUME,TURNOVER,EXCHANGE_RATE,ZF,PE,MARKET_CAPITAL,EPS,FINANCEDATA.NET_PROFIT,FINANCEDATA.TOTALTURNOVER_&sort=SYMBOL&order=desc&count=300000&type=query&callback=callback_1620346970&req=12219", gem = "http://quotes.money.163.com/hk/service/hkrank.php?host=/hk/service/hkrank.php&page=0&query=CATEGORY:GEM;TYPE:1;EXCHANGE_RATE:_exists_true&fields=no,SYMBOL,NAME,PRICE,PERCENT,UPDOWN,OPEN,YESTCLOSE,HIGH,LOW,VOLUME,TURNOVER,EXCHANGE_RATE,ZF,PE,MARKET_CAPITAL,EPS,FINANCEDATA.NET_PROFIT,FINANCEDATA.TOTALTURNOVER_&sort=SYMBOL&order=desc&count=20000&type=query&callback=callback_2057363736&req=12220" ) stock_list_hk = mapply(fun_listcomp_hk, urls, names(urls), SIMPLIFY = FALSE) stock_list_hk = rbindlist(stock_list_hk) } else if (source=="sina") { fun_listcomp_hk_sina = function(urli) { num = doc = V1 = symbol = NULL dt = data.table( doc = readLines(urli, warn = FALSE) )[, doc := iconv(doc, "GB18030", "UTF-8") ][, doc := gsub("(\\[\\{)|(\\]\\})", "", doc) ][, strsplit(doc, "\\},\\{") ][, (c("symbol","name","engname","tradetype","lasttrade","prevclose","open","high","low","volume","currentvolume","amount","ticktime","buy","sell","high_52week","low_52week","eps","dividend","stocks_sum","pricechange","changepercent")) := tstrsplit(V1, ",", fixed=TRUE) ][, V1 := NULL ][, lapply(.SD, function(x) gsub(".+:|\"", "", x)) ][, `:=`( market = "stock", exchange = "hkex", board = ifelse(substr(symbol,1,2)=="08", "gem", "main") )] return(dt) } url_hk <- c( "http://vip.stock.finance.sina.com.cn/quotes_service/api/json_v2.php/Market_Center.getHKStockData?page=1&num=100000&sort=symbol&asc=1&node=qbgg_hk&_s_r_a=init" ) stock_list_hk = fun_listcomp_hk_sina(url_hk) } stock_list_hk = stock_list_hk[, symbol := paste(symbol, substr(exchange,1,2) ,sep=".")] if (return_price == FALSE) stock_list_hk = stock_list_hk[, c("market", "exchange", "board", "symbol", "name"), with=FALSE] return(stock_list_hk) } symbol_163_format = function(df_symbol) { type = . = id = name = symbol = tags = market = submarket = region = exchange = board = prov = indu = sec = mkt = syb = syb3 = NULL prov_indu_163 = setDT(copy(prov_indu_163)) if (all(c('province', 'industry', 'sector') %in% names(df_symbol))) { df_symbol = merge(df_symbol, prov_indu_163[type=="prov",.(province=id, prov=name)], by = "province", all.x = TRUE) df_symbol = merge(df_symbol, prov_indu_163[type=="indu",.(industry=id, indu=name)], by = "industry", all.x = TRUE) df_symbol = merge(df_symbol, prov_indu_163[type=="indu",.(sector=id, sec=name)], by = "sector", all.x = TRUE) } if (!('market' %in% names(df_symbol))) { df_symbol = copy(df_symbol)[, `:=`(market = ifelse(grepl("\\^", symbol), "index", "stock") )] } df_symbol = merge( df_symbol[ , syb := sub(".*?(\\d+).*","\\1", symbol) ][nchar(syb)==6, syb3 := substr(syb,1,3)], tags_dt()[, c("exchange","submarket","board") := tstrsplit(tags,",") ][,.(market=mkt, syb3, exchange, submarket, board)], all.x = TRUE, by = c('syb3', 'market') )[order(-market, exchange, symbol) ][, (c('syb','syb3')) := NULL] return(df_symbol) } md_stock_symbol_163 = function() { . = board = exchange = indu = market = name = prov = sec = submarket = symbol = NULL df_syb = md_stock_spotall_163(symbol = c('a', 'b', 'index'), only_symbol=TRUE, show_tags=TRUE)[,.( market, submarket, exchange, board, symbol, name, sector = sec, industry = indu, province = prov )] return(df_syb) } md_stock_symbol_nasdaq = function(exchange) { . = symbol = name = sector = industry = country = ipoyear = marketCap = NULL url = sprintf( "https://api.nasdaq.com/api/screener/stocks?tableonly=true&exchange=%s&download=true", toupper(exchange)) dat = fromJSON(url) dat2 = setDT(dat$data$rows)[,.(market='stock', exchange=exchange, board=NA, symbol, name, sector, industry, cap_market=marketCap, ipoyear, country)] return(dat2) } md_stock_symbol_exchange = function(XCHG=NULL, print_step=1L) { exchange = NULL exchange_list = c('sse','szse', 'hkex', "amex", "nasdaq", "nyse") while ((is.null(XCHG) || length(XCHG)==0)) { XCHG = select_rows_df(dt = setDT(list(exchange = exchange_list)), column = 'exchange')[,exchange] } XCHG = intersect(tolower(XCHG), exchange_list) i = 1 exc_len = length(XCHG) dat_lst = NULL if (any(c("sse", "szse") %in% XCHG)) { temp = md_stock_symbol_163()[exchange %in% XCHG] exc = intersect(c("sse", "szse"),XCHG) for (e in exc) { if ((print_step > 0) & (i %% print_step == 0)) cat(sprintf('%s %s\n', paste0(format(c(i, exc_len)), collapse = '/'), e)) i = i+1 dat_lst[[e]] = temp[exchange == e] } } if (any("hkex" %in% XCHG)) { exc = intersect(c('hkex'),XCHG) for (e in exc) { if ((print_step > 0) & (i %% print_step == 0)) cat(sprintf('%s %s\n', paste0(format(c(i, exc_len)), collapse = '/'), e)) i = i+1 dat_lst[[e]] = md_stock_symbol_hk() } } if (any(c("amex", "nasdaq", "nyse") %in% XCHG)) { exc = intersect(c("amex", "nasdaq", "nyse"),XCHG) for (e in exc) { if ((print_step > 0) & (i %% print_step == 0)) cat(sprintf('%s %s\n', paste0(format(c(i, exc_len)), collapse = '/'), e)) i = i+1 dat_lst[[e]] = md_stock_symbol_nasdaq(e) } } return(dat_lst) } stk_syb_idx1 = function(syb) { exchange = NULL url = sprintf("http://www.csindex.com.cn/uploads/file/autofile/cons/%scons.xls",syb) dat = load_read_xl(url) setDT(dat) setnames(dat, c("date","index_symbol","index_name","index_name_en","stock_symbol","stock_name", "stock_name_en","exchange")) dat = dat[, exchange := ifelse(exchange=="SHH","sse", ifelse(exchange=="SHZ","szse", exchange))] return(dat) } md_stock_symbol_index = function(symbol, print_step=1L) { dat_list = load_dat_loop(symbol, "stk_syb_idx1", args = list(), print_step=print_step) return(dat_list) } md_stock_symbol = function(exchange=NULL, index=NULL) { if (is.null(index)) { dt = md_stock_symbol_exchange(exchange) } else { dt = md_stock_symbol_index(index) } return(dt) }
get.partdep.x <- function(pmethod, x, y, n.apartdep, grid.levels, pred.names) { if(pmethod != "partdep" && pmethod != "apartdep") return(NA) partdep.x <- if(pmethod == "partdep" || nrow(x) <= n.apartdep) x else { stopifnot(nrow(x) == NROW(y)) index <- order(as.numeric(y), sample.int(NROW(y))) index <- index[seq.int(1, nrow(x), length.out=n.apartdep)] x[index, , drop=FALSE] } if(!is.null(grid.levels)) { check.grid.levels.arg(x, grid.levels, pred.names) for(ipred in seq_len(ncol(x))) { grid.val <- get.fixed.gridval.for.partdep(x[[ipred]], ipred, pred.names[ipred], grid.levels) if(!is.na(grid.val)) partdep.x[[ipred]] <- grid.val } } partdep.x } check.grid.class <- function(x1, xgrid, predname) { class.x1 <- class(x1)[1] class.xgrid <- class(xgrid)[1] if(!(class.x1 == class.xgrid || (class.x1 == "integer" && class.xgrid == "numeric"))) { cat("\n") stopf("class(%s) == \"%s\" but class(xgrid) == \"%s\"", predname, class.x1, class.xgrid) } } degree1.partdep.yhat <- function(object, type, nresponse, pmethod, inverse.func, trace, partdep.x, xframe, ipred, pred.names, resp.levs, ...) { trace0(trace, "calculating %s for %s%s", pmethod, pred.names[ipred], if(trace >= 2) "\n" else " ") xgrid <- xframe[[ipred]] nxgrid <- length(xgrid) stopifnot(nxgrid >= 1) check.grid.class(partdep.x[[ipred]], xgrid, pred.names[ipred]) expanded.partdep.x <- partdep.x[rep(1:nrow(partdep.x), times=nxgrid), , drop=FALSE] expanded.partdep.x[[ipred]] <- rep(xgrid, each=nrow(partdep.x)) yhats <- plotmo_predict(object, expanded.partdep.x, nresponse, type, resp.levs, trace, inverse.func, ...)$yhat trace0(trace, "\n") colMeans(matrix(yhats, ncol=nxgrid), na.rm=TRUE) } degree2.partdep.yhat <- function(object, type, nresponse, pmethod, inverse.func, trace, partdep.x, x1grid, ipred1, x2grid, ipred2, pred.names, resp.levs, ...) { trace0(trace, "calculating %s for %s:%s %s", pmethod, pred.names[ipred1], pred.names[ipred2], if(trace >= 0 && trace < 2) "0" else if(trace >= 2) "\n") n1 <- length(x1grid) stopifnot(n1 >= 1) check.grid.class(partdep.x[[ipred1]], x1grid, pred.names[ipred1]) n2 <- length(x2grid) stopifnot(n2 >= 1) check.grid.class(partdep.x[[ipred2]], x2grid, pred.names[ipred2]) yhat <- matrix(0., nrow=n1, ncol=n2) pacifier.i <- n1 / 10 pacifier.digit <- -1 expanded.partdep.x <- partdep.x[rep(1:nrow(partdep.x), times=n2), , drop=FALSE] for(i in 1:n1) { while(pacifier.i < i) { if(trace >= 0 && pacifier.digit != floor(10 * pacifier.i / n1)) { pacifier.digit <- floor(10 * pacifier.i / n1) cat(pacifier.digit) } pacifier.i <- pacifier.i + n1 / 10 } expanded.partdep.x[[ipred1]] <- x1grid[i] expanded.partdep.x[[ipred2]] <- rep(x2grid, each=nrow(partdep.x)) yhats <- plotmo_predict(object, expanded.partdep.x, nresponse, type, resp.levs, trace, inverse.func, ...)$yhat yhats <- matrix(yhats, ncol=n2) yhat[i,] <- colMeans(yhats, na.rm=TRUE) if(trace > 0) trace <- 0 } trace0(trace, "0\n") matrix(yhat, nrow=n1 * n2, ncol=1) }
GSTTest <- function(x, ...) UseMethod("GSTTest") GSTTest.default <- function(x, g, dist=c("Chisquare", "KruskalWallis"), ...) { if (is.list(x)) { if (length(x) < 2L) stop("'x' must be a list with at least 2 elements") DNAME <- deparse(substitute(x)) x <- lapply(x, function(u) u <- u[complete.cases(u)]) k <- length(x) l <- sapply(x, "length") if (any(l == 0)) stop("all groups must contain data") g <- factor(rep(1 : k, l)) if(is.null(x$dist)){ dist <- "Chisquare" } else { dist <- x$dist } x <- unlist(x) } else { if (length(x) != length(g)) stop("'x' and 'g' must have the same length") DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(g))) OK <- complete.cases(x, g) x <- x[OK] g <- g[OK] if (!all(is.finite(g))) stop("all group levels must be finite") g <- factor(g) k <- nlevels(g) if (k < 2) stop("all observations are in the same group") } dist <- match.arg(dist) ord <- order(x) gord <- g[ord] n <- tapply(x[ord], gord, length) N <- sum(n) a <- rep(seq(ceiling(N / 4)), each=2) b <- rep(c(0, 1), ceiling(N)/4) suppressWarnings( rk.up <- c(1, (a * 4 + b))[1:ceiling(N / 2)] ) suppressWarnings( rk.down <- rev(c(a * 4 + b - 2)[1:floor(N / 2)]) ) r <- c(rk.up, rk.down) T <- tapply(r, gord, sum) if(sum(T) != N * (N + 1) /2) { warning("Does not sum up to check sum!") } C <- gettiesKruskal(x) if (C != 1) warning("Ties are present. Quantiles were corrected for ties.") H <- (12 / (N * (N + 1))) * sum(T * T / n) - 3 * (N + 1) PSTAT <- H / C if (dist == "Chisquare"){ PARMS <- k - 1 PVAL <- pchisq(PSTAT, df = PARMS, lower.tail = FALSE) names(PSTAT) <- "chi-squared" names(PARMS) <- "df" } else if (dist == "KruskalWallis"){ U <- sum(1 / n) c <- k PARMS <- c(c, U, N) PVAL <- pKruskalWallis(PSTAT, c = c, N = N, U = U, lower.tail = FALSE) names(PSTAT) <- "H" names(PARMS) <- c("k", "U", "N") } METHOD <- paste("Generalized Siegel-Tukey test of homogeneity of scales") ans <- list(method = METHOD, data.name = DNAME, p.value = PVAL, statistic = PSTAT, parameter = PARMS) class(ans) <- "htest" ans } GSTTest.formula <- function(formula, data, subset, na.action, dist=c("Chisquare", "KruskalWallis"), ...) { mf <- match.call(expand.dots=FALSE) m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0L) mf <- mf[c(1L, m)] mf[[1L]] <- quote(stats::model.frame) if(missing(formula) || (length(formula) != 3L)) stop("'formula' missing or incorrect") mf <- eval(mf, parent.frame()) if(length(mf) > 2L) stop("'formula' should be of the form response ~ group") DNAME <- paste(names(mf), collapse = " by ") dist <- match.arg(dist) names(mf) <- NULL y <- do.call("GSTTest", c(as.list(mf), dist = dist)) y$data.name <- DNAME y }
cluster_heatmap<-function(data){ string_db<-STRINGdb::STRINGdb$new(version="11.0",species=9606,score_threshold=700) db_interactors<-string_db$map(data,"Symbol",removeUnmappedRows = FALSE) db_interactors$"Interactor_list"<-lapply(db_interactors$"STRING_id", function(x){string_db$get_neighbors(x)}) matrix<-matrix(0, length(db_interactors$"Symbol"),length(db_interactors$"Symbol")) colnames(matrix)<-db_interactors$"Symbol" rownames(matrix)<-db_interactors$"Symbol" interactor_list<-list() for(index in seq(1:nrow(db_interactors))){ id_list<-unlist(db_interactors[index,"Interactor_list"]) symbol<-db_interactors[index,"Symbol"] if(any(db_interactors$"STRING_id"%in%id_list)){ matches<-db_interactors$"STRING_id"[db_interactors$"STRING_id"%in%id_list] for(match in matches){ match_symbol<-db_interactors[which(db_interactors$"STRING_id"==match),"Symbol"] interactor_list[[symbol]]<-match_symbol matrix[symbol, match_symbol]<-1 } } } stats::heatmap(matrix, scale = "none", col = c("lightyellow","red"), main = "Interactor heatmap for all genes") interactor_matrix<-matrix[names(interactor_list),unique(unlist(interactor_list))] stats::heatmap(interactor_matrix, scale = "none", col = c("lightyellow","red"), main = "Interactor heatmap") }
fitRMU_MHmcmc <- function(result=stop("An output from fitRMU() must be provided"), n.iter=10000, parametersMCMC=stop("A parameter set from fitRMU_MHmcmc_p() must be provided"), n.chains = 1, n.adapt = 0, thin=1, adaptive=FALSE, adaptive.lag=500, adaptive.fun=function(x) {ifelse(x>0.234, 1.3, 0.7)}, trace=FALSE, traceML=FALSE, intermediate=NULL, filename="intermediate.Rdata", previous=NULL) { if (is.character(previous)) { itr <- NULL load(previous) previous <- itr rm(itr) print("Continue previous mcmc run") } if (class(result)!="fitRMU") { warning("An output from fitRMU() must be provided") return() } fun <- getFromNamespace(".LikelihoodRMU", ns="phenology") print(parametersMCMC) out <- MHalgoGen(n.iter=n.iter, parameters=parametersMCMC, n.chains = n.chains, n.adapt = n.adapt, thin=thin, trace=trace, traceML=traceML, likelihood=fun, adaptive = adaptive, adaptive.fun = adaptive.fun, adaptive.lag = adaptive.lag, fixed.parameters=result$fixed.parameters.computing, RMU.data=result$RMU.data, model.trend=result$model.trend, model.SD=result$model.SD, colname.year=result$colname.year, RMU.names=result$RMU.names) fin <- try(summary(out), silent=TRUE) if (class(fin)=="try-error") { lp <- rep(NA, nrow(out$parametersMCMC$parameters)) names(lp) <- rownames(out$parametersMCMC$parameters) out <- c(out, SD=list(lp)) } else { out <- c(out, SD=list(fin$statistics[,"SD"])) } class(out) <- "mcmcComposite" return(out) }
visuOutGP <- function (ogp, selecmod = NULL, id = 1, prioMinMax = 'data', opt3D = 'TRUE', maxPages = NULL, seeEq = 1) { if (is.null(selecmod)) { nmod <- sum(ogp$okMod == id) cat(nmod, 'models identified as id = ', id, ":", "\n") cat(which(ogp$okMod == 1), "\n") which(ogp$okMod == id) seemod <- which(ogp$okMod == id) } else { nmod <- length(selecmod) seemod <- selecmod } if (is.null(selecmod)) { maxPages = 4 } nVar <- dim(ogp$models[[1]])[2] pMax <- dim(ogp$models[[1]])[1] dMax <- p2dMax(nVar, pMax) modInfo <- matrix(0, ncol = 3, nrow = 0) IstepMax <- NULL Np <- NULL for (imod in 1:length(ogp$okMod) ) { block <- paste("IstepMax <- dim(ogp$stockoutreg$model", imod, ")[1]", sep="") eval((parse(text = block))) block <- paste("Np <- sum(ogp$models$mToTest", imod, "!=0)", sep="") eval((parse(text = block))) if (!is.null(IstepMax)) { modInfo = rbind(modInfo, c(ogp$okMod[imod], Np, IstepMax)) } else { modInfo = rbind(modInfo, c(ogp$okMod[imod], Np, 0)) } } fdat <- ogp$filtdata for (i in 1:dim(ogp$filtdata)[2]) { fdat[ogp$Wfiltdata==0,i] <- NaN } firstOk <- which(is.nan(ogp$Wfiltdata)==0)[1] if (nmod <= 24) { dev.new() op <- par(mfrow = c(4, 6), pty = "s") if (nmod <= 20) op <- par(mfrow = c(4, 5), pty = "s") if (nmod <= 18) op <- par(mfrow = c(3, 6), pty = "s") if (nmod <= 15) op <- par(mfrow = c(3, 5), pty = "s") if (nmod <= 12) op <- par(mfrow = c(3, 4), pty = "s") if (nmod <= 9) op <- par(mfrow = c(3, 3), pty = "s") if (nmod <= 6) op <- par(mfrow = c(3, 2), pty = "m") if (nmod <= 4) op <- par(mfrow = c(2, 2), pty = "m") if (nmod == 2) op <- par(mfrow = c(2, 1), pty = "m") if (nmod == 1) op <- par(mfrow = c(1, 1), pty = "m") for (imod in seemod) { block0 <- paste("Model ", imod, " (Np = ", modInfo[imod, 2], ")", sep="") if (prioMinMax == 'data') { plot(fdat[,1], fdat[,2], type='l', col='green', xlab='X1', ylab='X2', main = block0) lines(fdat[firstOk,1], fdat[firstOk,2], type='p', col='green', xlab='X1', ylab='X2', main = block0, cex = 1.2) block <- paste( "lines(ogp$stockoutreg$model", imod, "[,2], ogp$stockoutreg$model", imod, "[,3], type='l', col='red')", sep="") eval((parse(text = block))) block <- paste( "lines(ogp$stockoutreg$model", imod, "[1,2], ogp$stockoutreg$model", imod, "[1,3], type='p', cex = 1.2, col='red')", sep="") eval((parse(text = block))) if (opt3D) { plot3d(fdat[,1], fdat[,2], fdat[,3], type='l', col='green', xlab='X1', ylab='X2', zlab='X3', main = block0) plot3d(fdat[firstOk,1], fdat[firstOk,2], fdat[firstOk,3], type='p', size = 5, col='green', xlab='X1', ylab='X2', zlab='X3', main = block0, add = TRUE) block <- paste( "plot3d(ogp$stockoutreg$model", imod, "[,2], ogp$stockoutreg$model", imod, "[,3], ogp$stockoutreg$model", imod, "[,4], type='l', col='red', add = TRUE)", sep="") eval((parse(text = block))) block <- paste( "plot3d(ogp$stockoutreg$model", imod, "[1,2], ogp$stockoutreg$model", imod, "[1,3], ogp$stockoutreg$model", imod, "[1,4], type='p', size = 5, col='red', add = TRUE)", sep="") eval((parse(text = block))) } } else if (prioMinMax == 'dataonly') { plot(fdat[,1], fdat[,2], type='l', col='green', xlab='X1', ylab='X2', main = block0) lines(fdat[firstOk,1], fdat[firstOk,2], type='p', col='green', xlab='X1', ylab='X2', main = block0, cex = 1.2) if (opt3D) { plot3d(fdat[,1], fdat[,2], fdat[,3], type='l', col='green', xlab='X1', ylab='X2', zlab='X3', main = block0) plot3d(fdat[firstOk,1], fdat[firstOk,2], fdat[firstOk,3], type='p', size = 5, col='green', xlab='X1', ylab='X2', zlab='X3', main = block0) } } else if (prioMinMax == 'model') { block <- paste( "plot(ogp$stockoutreg$model", imod, "[,2], ogp$stockoutreg$model", imod, "[,3], type='l', col='red', xlab='X1', ylab='X2', main = block0)", sep="") eval((parse(text = block))) block <- paste( "lines(ogp$stockoutreg$model", imod, "[1,2], ogp$stockoutreg$model", imod, "[1,3], type='p', cex = 1.2, col='red', xlab='X1', ylab='X2', main = block0)", sep="") eval((parse(text = block))) lines(fdat[,1], fdat[,2], type='l', col='green') lines(fdat[firstOk,1], fdat[firstOk,2], type='p', col='green', cex = 1.2) if (opt3D) { block <- paste( "plot3d(ogp$stockoutreg$model", imod, "[,2], ogp$stockoutreg$model", imod, "[,3], ogp$stockoutreg$model", imod, "[,4], type='l', col='red', xlab='X1', ylab='X2', zlab='X3', main = block0)", sep="") eval((parse(text = block))) block <- paste( "plot3d(ogp$stockoutreg$model", imod, "[1,2], ogp$stockoutreg$model", imod, "[1,3], ogp$stockoutreg$model", imod, "[1,4], type='p', size = 5, col='red', xlab='X1', ylab='X2', zlab='X3', main = block0, add = TRUE)", sep="") eval((parse(text = block))) plot3d(fdat[,1], fdat[,2], fdat[,3], type='l', col='green', add = TRUE) plot3d(fdat[firstOk,1], fdat[firstOk,2], fdat[firstOk,3], type='p', size = 5, col='green', add = TRUE) } } else if (prioMinMax == 'modelonly') { block <- paste( "plot(ogp$stockoutreg$model", imod, "[,2], ogp$stockoutreg$model", imod, "[,3], type='l', col='red', xlab='X1', ylab='X2', main = block0)", sep="") eval((parse(text = block))) block <- paste( "plot(ogp$stockoutreg$model", imod, "[1,2], ogp$stockoutreg$model", imod, "[1,3], type='p', cex = 1.2, col='red', xlab='X1', ylab='X2', main = block0)", sep="") eval((parse(text = block))) if (opt3D) { block <- paste( "plot3d(ogp$stockoutreg$model", imod, "[,2], ogp$stockoutreg$model", imod, "[,3], ogp$stockoutreg$model", imod, "[,4], type='l', col='red', xlab='X1', ylab='X2', zlab='X3', main = block0)", sep="") eval((parse(text = block))) block <- paste( "plot3d(ogp$stockoutreg$model", imod, "[1,2], ogp$stockoutreg$model", imod, "[1,3], ogp$stockoutreg$model", imod, "[1,4], type='p', size = 5, col='red', xlab='X1', ylab='X2', zlab='X3', main = block0, add = TRUE)", sep="") eval((parse(text = block))) } } } } else { if (ceiling(nmod / 24) > maxPages) { for (iPage in 1:maxPages) { visuOutGP(ogp, selecmod = which(ogp$okMod == 1)[((iPage-1)*24+1):((iPage)*24)], seeEq = seeEq) } warning('Too many models nmod = ', nmod,'. By default the fonction ', 'can display four pages 24 models each (that is nmod <= 96).', 'Too have more page, please use the option maxPages = ', ceiling(nmod / 24)) } else { maxPages <- ceiling(nmod / 24) for (iPage in 1:maxPages) { if (iPage < maxPages) { visuOutGP(ogp, selecmod = which(ogp$okMod == 1)[((iPage-1)*24+1):((iPage)*24)], seeEq = seeEq) } else if (iPage == maxPages) { visuOutGP(ogp, selecmod = which(ogp$okMod == 1)[((iPage-1)*24+1):nmod], seeEq = seeEq) } } } } if (seeEq == 1) { cat('Equations of', "\n") ic <- NULL for (imod in seemod) { block <- paste(" " (Np = ", modInfo[imod,2], "):", sep="") cat(block, "\n") block <- paste("ic <- ogp$stockoutreg$model", imod, "[1,]", sep="") eval((parse(text = block))) cat(" block <- paste(ic, sep="") cat(block, "\n") cat(" block <- paste( "visuEq(ogp$models$model", imod, ")", sep="") eval((parse(text = block))) } } invisible(t(modInfo)) }
show_connection <- function() { cat("url =", get("url", envir = atsdEnv)) cat("\nuser =", get("user", envir = atsdEnv)) cat("\npassword =", get("password", envir = atsdEnv)) verify <- get("verify", envir = atsdEnv) if (is.na(verify)) { cat("\nverify = NA") } else if (verify) { cat("\nverify = yes") } else { cat("\nverify = no") } cat("\nencryption =", get("encryption", envir = atsdEnv)) }
seriesExtent <- function(s, type = c('vector', 'raster'), timeout = 60) { if(!requireNamespace('rgdal', quietly=TRUE)) stop('please install the `rgdal` package', call.=FALSE) type <- match.arg(type) s <- gsub(pattern=' ', replacement='_', x = tolower(s), fixed = TRUE) res <- switch( type, vector = {.vector_extent(s, timeout = timeout)}, raster = {.raster_extent(s, timeout = timeout)} ) return(res) } .vector_extent <- function(s, timeout) { u <- URLencode(paste0('https://casoilresource.lawr.ucdavis.edu/series-extent-cache/json/', s, '.json')) tf <- tempfile(fileext='.json') res <- tryCatch( suppressWarnings( download.file(url=u, destfile=tf, extra=c(timeout = timeout), quiet=TRUE) ), error = function(e) {e} ) if(inherits(res, 'error')){ message('no data returned') return(NULL) } x <- rgdal::readOGR(dsn=tf, verbose=FALSE) unlink(tf) x <- spChFIDs(x, as.character(x$series)) return(x) } .raster_extent <- function(s, timeout) { u <- URLencode(paste0('https://casoilresource.lawr.ucdavis.edu/series-extent-cache/grid/', s, '.tif')) tf <- tempfile(fileext='.tif') res <- tryCatch( suppressWarnings( download.file(url = u, destfile = tf, extra = c(timeout = timeout), quiet=TRUE, mode = 'wb') ), error = function(e) {e} ) if(inherits(res, 'error')){ message('no data returned') return(NULL) } x <- suppressWarnings( raster(tf, verbose=FALSE) ) x <- readAll(x) names(x) <- gsub(pattern='_', replacement=' ', x = s, fixed = TRUE) unlink(tf) return(x) }
knitr::opts_chunk$set( collapse = TRUE, comment = " eval = "dplyr" %in% rownames(installed.packages()) ) library(ftExtra) ft <- iris[1:2, ] %>% as_flextable ft ft %>% separate_header() ft %>% separate_header(sep = "e") ft %>% span_header()
pseudotime.knetl <- function (x = NULL, dist.method = "euclidean", k = 5, abstract = TRUE, data.type = "pca", dims = 1:20, conds.to.plot = NULL, my.layout = "layout_with_fr", node.size = 10, cluster.membership = FALSE, interactive = TRUE, node.colors = NULL, edge.color = "gray", out.name = "Pseudotime.Abstract.KNetL", my.seed = 1 ) { start_time1 <- Sys.time() if(data.type == "pca") { DATA = (t([email protected]))[dims, ] message(paste("Getting PCA data")) } if(data.type == "umap") { DATA <- t([email protected][1:2]) message(paste("Getting UMAP data")) } if(data.type == "tsne") { DATA <- t([email protected]) message(paste("Getting tSNE data")) } MYtitle = "Pseudotime Abstract KNetL (PAK)" MyClusters <- [email protected] if (!is.null(conds.to.plot)) { Conditions <- data.frame(do.call('rbind', strsplit(as.character(colnames(DATA)),'_',fixed=TRUE)))[1] Conditions <- as.character(as.matrix(Conditions)) Conditions <- as.data.frame(cbind(colnames(DATA),Conditions)) colnames(Conditions) <- c("row","conds") Conditions <- subset(Conditions, Conditions$conds %in% conds.to.plot) Conditions <- as.character(Conditions$row) DATA <- as.data.frame(t(DATA)) DATA <- subset(DATA, rownames(DATA) %in% Conditions) DATA <- t(DATA) MYtitle = paste(MYtitle," (",conds.to.plot,")", sep="") MyClusters <- subset(MyClusters, rownames(MyClusters) %in% Conditions) } message(paste(" Calculating", dist.method,"distance ...")) My.distances = as.matrix(dist(t(DATA),dist.method)) ncells=dim(DATA)[2] cell.num = k pb <- progress_bar$new(total = ncells, format = "[:bar] :current/:total (:percent) :elapsedfull eta: :eta", clear = FALSE, width= 60) message(paste(" Finding",cell.num, "neighboring cells per cell ...")) KNN1 = lapply(1:ncells, function(findKNN){ pb$tick() MyOrd <- order(My.distances[,findKNN])[2:cell.num] MyOrd.IDs <- row.names(My.distances)[MyOrd] MyOrd.IDs.clust <- as.numeric(as.matrix(subset(MyClusters, row.names(MyClusters) %in% MyOrd.IDs))) MyDist <- My.distances[MyOrd] MyRoot <- rep(findKNN,cell.num-1) MYRoot.ID <- colnames(My.distances)[findKNN] MYRoot.IDs <- rep(MYRoot.ID,length(MyRoot)) MYRoot.clust <- as.numeric(as.matrix(subset(MyClusters, row.names(MyClusters) %in% MYRoot.ID))) MYRoot.clusts <- rep(MYRoot.clust,length(MyRoot)) data <- cbind(MyRoot,MyOrd,MyDist,MYRoot.IDs,MyOrd.IDs,MYRoot.clusts,MyOrd.IDs.clust) colnames(data)<- c("from","to","weight","from.id","to.id","from.clust","to.clust") data <- as.data.frame(data) }) if (abstract == TRUE) { message(" Generating abstract graph ...") data <- do.call("rbind", KNN1) df <- as.data.frame(table(data[6:7])) colnames(df) <- c("from","to","weight") df <- subset(df, df$weight > 5) gg <- graph.data.frame(df, directed=FALSE) message(" Simplifying graph ...") gg <- simplify(gg) } if (abstract == FALSE) { message(" Generating graph ...") data <- do.call("rbind", KNN1) df <- as.data.frame(data[1:3]) colnames(df) <- c("from","to","weight") gg <- graph.data.frame(df, directed=FALSE) } if (is.null(node.colors)) { gg_color_hue <- function(n) { hues = seq(15, 375, length = n + 1) hcl(h = hues, l = 65, c = 100)[1:n] } n = max(MyClusters$clusters) colbar = gg_color_hue(n) } else { colbar = node.colors } if (abstract == FALSE) { colbar <- colbar[MyClusters$clusters] } MYedgeWith <- log2(as.numeric(E(gg)$weight) + 1) message("Drawing layout and generating plot ...") if (interactive == TRUE) { graph = gg set.seed(my.seed) L <- get(my.layout)(graph) vs <- V(graph) es <- as.data.frame(get.edgelist(graph)) Ne <- length(es[1]$V1) Xn <- L[,1] Yn <- L[,2] edge_shapes <- list() for(i in 1:Ne) { v0 <- es[i,]$V1 v1 <- es[i,]$V2 edge_shape = list( type = "line", line = list(color = rep(edge.color), width = MYedgeWith[i]), x0 = Xn[match(v0,names(vs))], y0 = Yn[match(v0,names(vs))], x1 = Xn[match(v1,names(vs))], y1 = Yn[match(v1,names(vs))], opacity = 0.5, layer="below" ) edge_shapes[[i]] <- edge_shape} if (abstract == FALSE) { network <- plot_ly(type = "scatter", x = Xn, y = Yn, mode = "markers+text", opacity = 1, marker = list(size = (node.size/2), color = colbar), ) network <- layout(network,shapes = edge_shapes, xaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE, zeroline = FALSE), yaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE, zeroline = FALSE)) %>% layout(plot_bgcolor = "white") %>% layout(paper_bgcolor = "white") %>% layout(title = MYtitle) } if (abstract == TRUE) { network <- plot_ly(type = "scatter", x = Xn, y = Yn, mode = "markers+text", opacity = 1, marker = list(size = (node.size * 2), color = colbar), text = names(vs),) network <- layout(network,shapes = edge_shapes, xaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE, zeroline = FALSE), yaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE, zeroline = FALSE)) %>% layout(plot_bgcolor = "white") %>% layout(paper_bgcolor = "white") %>% layout(title = MYtitle) } OUT.PUT <- paste(out.name, ".html", sep="") htmlwidgets::saveWidget(ggplotly(network), OUT.PUT) } else { rm(.Random.seed, envir=.GlobalEnv) set.seed(my.seed) if (cluster.membership == TRUE) { ceb <- cluster_fast_greedy(as.undirected(gg)) return( plot(ceb,gg, layout=get(my.layout), vertex.size=node.size, vertex.color=colbar, edge.width=MYedgeWith, main = MYtitle, edge.color=edge.color)) } if (cluster.membership == FALSE) { if (abstract == FALSE) { return( plot(gg, layout=layout_nicely, vertex.size=(node.size/2), vertex.label=NA, margin=0, vertex.color=colbar)) } return( plot(gg, layout=get(my.layout), vertex.size=node.size, vertex.color=colbar, edge.width=MYedgeWith, main = MYtitle, edge.color=edge.color)) } } }
corrPartClass <- R6::R6Class( "corrPartClass", inherit = corrPartBase, private = list( .init=function() { private$.initCorrTable() }, .run=function() { results <- private$.compute() private$.populateCorrTable(results) }, .compute = function() { vars <- self$options$vars nVars <- length(vars) hyp <- self$options$hypothesis controls <- self$options$controls type <- self$options$type results <- list() if (nVars > 1) { for (i in 1:nVars) { rowVar <- vars[[i]] for (j in 1:nVars) { if (j >= i) next colVar <- vars[[j]] resLst <- private$.test(rowVar, colVar, controls, type, hyp) results[[rowVar]][[colVar]] <- resLst[, 1] if (type == 'semi') results[[colVar]][[rowVar]] <- resLst[, 2] } } } return(results) }, .initCorrTable = function() { matrix <- self$results$matrix vars <- self$options$vars nVars <- length(vars) type <- self$options$type for (i in seq_along(vars)) { var <- vars[[i]] matrix$addColumn(name=paste0(var, '[r]'), title=var, type='number', format='zto', visible='(pearson)') matrix$addColumn(name=paste0(var, '[rp]'), title=var, type='number', format='zto,pvalue', visible='(pearson && sig)') matrix$addColumn(name=paste0(var, '[rho]'), title=var, type='number', format='zto', visible='(spearman)') matrix$addColumn(name=paste0(var, '[rhop]'), title=var, type='number', format='zto,pvalue', visible='(spearman && sig)') matrix$addColumn(name=paste0(var, '[tau]'), title=var, type='number', format='zto', visible='(kendall)') matrix$addColumn(name=paste0(var, '[taup]'), title=var, type='number', format='zto,pvalue', visible='(kendall && sig)') matrix$addColumn(name=paste0(var, '[n]'), title=var, type='integer', visible='(n)') } for (i in seq_along(vars)) { var <- vars[[i]] values <- list() if (type != 'semi') { for (j in seq(i, nVars)) { v <- vars[[j]] values[[paste0(v, '[r]')]] <- '' values[[paste0(v, '[rp]')]] <- '' values[[paste0(v, '[rho]')]] <- '' values[[paste0(v, '[rhop]')]] <- '' values[[paste0(v, '[tau]')]] <- '' values[[paste0(v, '[taup]')]] <- '' values[[paste0(v, '[n]')]] <- '' } } values[[paste0(var, '[r]')]] <- '\u2014' values[[paste0(var, '[rp]')]] <- '\u2014' values[[paste0(var, '[rho]')]] <- '\u2014' values[[paste0(var, '[rhop]')]] <- '\u2014' values[[paste0(var, '[tau]')]] <- '\u2014' values[[paste0(var, '[taup]')]] <- '\u2014' values[[paste0(var, '[n]')]] <- '\u2014' matrix$setRow(rowKey=var, values) } hyp <- self$options$hypothesis flag <- self$options$flag controls <- self$options$controls nControls <- length(controls) if (length(controls) > 0) { matrix$setNote('controls', jmvcore::format('controlling for {}', listItems(controls))) } if (hyp == 'pos') { matrix$setNote('hyp', 'H\u2090 is positive correlation') if (flag) matrix$setNote('flag', '* p < .05, ** p < .01, *** p < .001, one-tailed') } else if (hyp == 'neg') { matrix$setNote('hyp', 'H\u2090 is negative correlation') if (flag) matrix$setNote('flag', '* p < .05, ** p < .01, *** p < .001, one-tailed') } else { matrix$setNote('hyp', NULL) if (flag) matrix$setNote('flag', '* p < .05, ** p < .01, *** p < .001') } if ( ! flag) matrix$setNote('flag', NULL) if (type == 'part' && nControls > 0) { titleMatrix <- "Partial Correlation" } else if (type == 'semi' && nControls > 0) { titleMatrix <- "Semipartial Correlation" matrix$setNote('part', 'variation from the control variables is only removed from the variables in the columns') } else { titleMatrix <- "Correlation" } pearson <- self$options$pearson spearman <- self$options$spearman kendall <- self$options$kendall n <- self$options$n sig <- self$options$sig if ( ! sum(pearson, spearman, kendall) > 1 && ! n && ! sig) { if (pearson) titleMatrix <- jmvcore::format("{} - Pearson's r", titleMatrix) else if (spearman) titleMatrix <- jmvcore::format("{} - Spearman's rho", titleMatrix) else if (kendall) titleMatrix <- jmvcore::format("{} - Kendall's Tau B", titleMatrix) } matrix$setTitle(titleMatrix) }, .populateCorrTable = function(results) { matrix <- self$results$matrix vars <- self$options$vars nVars <- length(vars) flag <- self$options$flag type <- self$options$type if (nVars > 1) { for (i in 1:nVars) { rowVarName <- vars[[i]] for (j in 1:nVars) { if (i == j || (type != 'semi' && j > i)) next values <- list() colVarName <- vars[[j]] result = results[[rowVarName]][[colVarName]] values[[paste0(colVarName, '[r]')]] <- result$r values[[paste0(colVarName, '[rp]')]] <- result$rp values[[paste0(colVarName, '[rho]')]] <- result$rho values[[paste0(colVarName, '[rhop]')]] <- result$rhop values[[paste0(colVarName, '[tau]')]] <- result$tau values[[paste0(colVarName, '[taup]')]] <- result$taup values[[paste0(colVarName, '[n]')]] <- result$n matrix$setRow(rowNo=i, values) if (flag) { if (result$rp < .001) matrix$addSymbol(rowNo=i, paste0(colVarName, '[r]'), '***') else if (result$rp < .01) matrix$addSymbol(rowNo=i, paste0(colVarName, '[r]'), '**') else if (result$rp < .05) matrix$addSymbol(rowNo=i, paste0(colVarName, '[r]'), '*') if (result$rhop < .001) matrix$addSymbol(rowNo=i, paste0(colVarName, '[rho]'), '***') else if (result$rhop < .01) matrix$addSymbol(rowNo=i, paste0(colVarName, '[rho]'), '**') else if (result$rhop < .05) matrix$addSymbol(rowNo=i, paste0(colVarName, '[rho]'), '*') if ( ! self$options$kendall) {} else if (result$taup < .001) matrix$addSymbol(rowNo=i, paste0(colVarName, '[tau]'), '***') else if (result$taup < .01) matrix$addSymbol(rowNo=i, paste0(colVarName, '[tau]'), '**') else if (result$taup < .05) matrix$addSymbol(rowNo=i, paste0(colVarName, '[tau]'), '*') } } } } }, .cleanData = function(var1, var2) { dataRaw <- self$data controls <- self$options$controls data <- list() data[[var1]] <- jmvcore::toNumeric(dataRaw[[var1]]) data[[var2]] <- jmvcore::toNumeric(dataRaw[[var2]]) for (control in controls) { data[[control]] <- jmvcore::toNumeric(dataRaw[[control]]) } attr(data, 'row.names') <- seq_len(length(data[[1]])) attr(data, 'class') <- 'data.frame' data <- jmvcore::naOmit(data) return(data) }, .test = function(var1, var2, controls, type, hyp) { data <- private$.cleanData(var1, var2) var1 <- data[[var1]] var2 <- data[[var2]] nSubj <- length(data[[1]]) nResR <- 1 + as.integer(type == 'semi') nCtrV <- length(controls) if (nCtrV == 0) rdta <- cbind(var1, var2) else rdta = cbind(var1, var2, data[, controls]) results <- replicate(nResR, list(r = NaN, rp = 1, rho = NaN, rhop = 1, tau = NaN, taup = 1, n = nSubj)) suppressWarnings({ for (method in c('pearson', 'spearman', 'kendall')) { if (method == 'kendall' && !self$options$kendall) next try({ cvx <- cov(rdta, method = method) if (det(cvx) < .Machine$double.eps) icvx = ginv(cvx) else icvx = solve(cvx) if (method == 'pearson') statNm <- 'r' else if (method == 'spearman') statNm <- 'rho' else if (method == 'kendall') statNm <- 'tau' if (type == 'part') { results[[statNm, 1]] <- -cov2cor(icvx)[1, 2] } else { spcor <- -cov2cor(icvx) / sqrt(diag(cvx)) / sqrt(abs(diag(icvx) - t(t(icvx ^ 2) / diag(icvx)))) results[[statNm, 1]] <- spcor[1, 2] results[[statNm, 2]] <- spcor[2, 1] } for (i in 1:nResR) { if (hyp == 'corr') { if (method == 'kendall') { results[paste0(statNm, 'p'), i] <- 2 * pnorm(-abs(results[[statNm, i]] / sqrt(2 * (2 * (nSubj - nCtrV) + 5) / (9 * (nSubj - nCtrV) * (nSubj - 1 - nCtrV))))) } else { results[paste0(statNm, 'p'), i] <- 2 * pt(-abs(results[[statNm, i]] * sqrt((nSubj - 2 - nCtrV) / (1 - results[[statNm, i]] ^ 2))), (nSubj - 2 - nCtrV)) } } else if ((hyp == 'neg' && results[statNm, i] < 0) || (hyp == 'pos' && results[statNm, i] > 0)) { if (method == 'kendall') { results[paste0(statNm, 'p'), i] <- pnorm(-abs(results[[statNm, i]] / sqrt(2 * (2 * (nSubj - nCtrV) + 5) / (9 * (nSubj - nCtrV) * (nSubj - 1 - nCtrV))))) } else { results[paste0(statNm, 'p'), i] <- pt(-abs(results[[statNm, i]] * sqrt((nSubj - 2 - nCtrV) / (1 - results[[statNm, i]] ^ 2))), (nSubj - 2 - nCtrV)) } } } }) } }) return(results) } ) )
"mff" <- function(a,b,m=nrow(a)) { if (missing(a)) messagena("a") if (missing(b)) messagena("b") k <- ncol(a) n <- ncol(b) mda <- nrow(a) mdb <- nrow(b) mdc <- m c <- matrix(single(1),mdc,n) f.res <- .Fortran("mffz", a=to.single(a), b=to.single(b), c=to.single(c), m=to.integer(m), k=to.integer(k), n=to.integer(n), mda=to.integer(mda), mdb=to.integer(mdb), mdc=to.integer(mdc)) list(c=f.res$c) }
context("Custom Vision training and prediction") custvis_url <- Sys.getenv("AZ_TEST_CUSTOMVISION_URL") custvis_key <- Sys.getenv("AZ_TEST_CUSTOMVISION_KEY") storage <- Sys.getenv("AZ_TEST_STORAGE_ACCT") custvis_sas <- Sys.getenv("AZ_TEST_CUSTOMVISION_SAS") custvis_pred_resid <- Sys.getenv("AZ_TEST_CUSTOMVISION_PRED_RESID") custvis_pred_url <- Sys.getenv("AZ_TEST_CUSTOMVISION_PRED_URL") custvis_pred_key <- Sys.getenv("AZ_TEST_CUSTOMVISION_PRED_KEY") if(custvis_url == "" || custvis_key == "" || storage == "" || custvis_sas == "" || custvis_pred_resid == "" || custvis_pred_url == "" || custvis_pred_key == "") skip("Tests skipped: resource details not set") projname <- paste0(sample(letters, 10, TRUE), collapse="") cans <- paste0(storage, "customvision/", 1:5, ".jpg", custvis_sas) cartons <- paste0(storage, "customvision/", 33:37, ".jpg", custvis_sas) tags <- rep(c("can", "carton"), each=5) endp <- customvision_training_endpoint(custvis_url, key=custvis_key) test_that("Model training works", { expect_is(endp, c("customvision_training_endpoint", "cognitive_endpoint")) expect_true(is_empty(list_projects(endp))) proj <- create_classification_project(endp, projname, export_target="standard") expect_is(proj, "classification_project") Sys.sleep(2) img_ids <- add_images(proj, c(cans, cartons), tags) expect_type(img_ids, "character") img_df <- list_images(proj, "tagged", as="dataframe") expect_is(img_df, "data.frame") img_df <- img_df[match(img_ids, img_df$id), ] img_tags <- do.call(rbind.data.frame, img_df$tags)$tagName expect_identical(img_tags, tags) Sys.sleep(2) mod <- train_model(proj) expect_is(mod, "customvision_model") show <- show_model(mod) expect_type(show, "list") perf <- show_training_performance(mod) expect_type(perf, "list") }) test_that("Training endpoint prediction and export works", { proj <- get_project(endp, projname) mod <- get_model(proj) expect_is(mod, "customvision_model") pred1 <- predict(mod, cans) expect_type(pred1, "character") expect_identical(length(pred1), length(cans)) pred2 <- predict(mod, "../../inst/images/can1.jpg", type="prob") expect_is(pred2, "matrix") expect_type(pred2, "double") expect_identical(dim(pred2), c(1L, 2L)) pred3 <- predict(mod, cans[1], type="list") expect_is(pred3, "list") expect_true(all(sapply(pred3, is.data.frame))) expect_error(predict(mod, c(cans, "../../inst/images/can1.jpg"))) exp_url <- export_model(mod, "tensorflow lite", destfile=NULL) expect_true(is_url(exp_url)) }) test_that("Prediction endpoint works", { proj <- get_project(endp, projname) mod <- get_model(proj) expect_silent(publish_model(mod, projname, custvis_pred_resid)) pred_endp <- customvision_prediction_endpoint(custvis_pred_url, key=custvis_pred_key) expect_is(pred_endp, "customvision_prediction_endpoint") svc <- classification_service(pred_endp, proj, projname) pred1 <- predict(svc, cans) expect_type(pred1, "character") expect_identical(length(pred1), length(cans)) }) mod <- get_model(get_project(endp, projname)) unpublish_model(mod, confirm=FALSE) delete_project(endp, projname, confirm=FALSE)
setSelection.parameterDef <- function(x,...){ temp<-list(...) i<-NULL j<-NULL flag<- foreach( i = temp, .combine=c ) %:% foreach(j=i, .combine=c ) %do% !(is.numeric(j) & length(j)==1) if ( sum(flag)!=0) stop("selection Parameter must be numeric scaler") if (length(temp)==0) stop("Nothing to set") if (length(x$banker)!=0 && length(intersect(names(temp),names(x$banker)))>0 ){ warning("Same variables name as banker parameter. banker paramter will be removed") x$banker <- x$banker[[names(x$banker) %in% names(temp)]] } repeated<-names(temp) %in% names(x$selection) x$selection<-c(x$selection,temp[!repeated]) if (sum(repeated)>0){ warning(paste("\nOriginal value of ",names(temp)[repeated] ," is replaced")) foreach (i = names(temp)[repeated]) %do% { x$selection[[i]]<-temp[[i]] } } x }
library(hamcrest) expected <- c(-0x1.2763f05570461p+1 + 0x0p+0i, -0x1.1e5e72d18d226p+0 + -0x1.1239764b6b8d8p-2i, 0x1.745539cb5fd84p-1 + -0x1.72776d8b759cap-1i, 0x1.6252c67a642eap-4 + 0x1.05e7648c63537p-5i, 0x1.6a19246cbf78p-8 + 0x1.2414691fe3461p-2i, 0x1.9b5a98a9edb1cp-3 + -0x1.f475aacbfa0c4p-1i, 0x1.2aed1bc895087p-1 + 0x0p+0i, 0x1.9b5a98a9edb0cp-3 + 0x1.f475aacbfa0c4p-1i, 0x1.6a19246cbf74p-8 + -0x1.2414691fe3464p-2i, 0x1.6252c67a64306p-4 + -0x1.05e7648c63527p-5i, 0x1.745539cb5fd83p-1 + 0x1.72776d8b759ccp-1i, -0x1.1e5e72d18d226p+0 + 0x1.1239764b6b8d7p-2i ) assertThat(stats:::fft(z=c(-0.160079704513844, -0.209564461138627, -0.252441123424499, -0.14837468584751, -0.361860085340984, 0.0448021418465043, 0.117009480618862, -0.0255479628574397, 0.134217864388091, -0.574117433515573, -0.338795004593553, -0.532986415870729)) , identicalTo( expected, tol = 1e-6 ) )
MLCDF = function (ysA, ysB, pik_A, pik_B, domains_A, domains_B, xsA, xsB, xA, xB, ind_samA, ind_samB, ind_domA, ind_domB, N, N_ab = NULL, met = "linear", conf_level = NULL){ ysA <- as.data.frame(ysA) ysB <- as.data.frame(ysB) xsA <- as.matrix(xsA) xsB <- as.matrix(xsB) xA <- as.matrix(xA) xB <- as.matrix(xB) if (any(is.na(ysA))) stop("There are missing values in sample from frame A.") if (any(is.na(ysB))) stop("There are missing values in sample from frame B.") if (any(is.na(pik_A))) stop("There are missing values in pikl from frame A.") if (any(is.na(pik_B))) stop("There are missing values in pikl from frame B.") if (any(is.na(domains_A))) stop("There are missing values in domains from frame A.") if (any(is.na(domains_B))) stop("There are missing values in domains from frame B.") if (nrow(ysA) != length(pik_A) | nrow(ysA) != length(domains_A) | length(domains_A) != length(pik_A)) stop("Arguments from frame A have different sizes.") if (nrow(ysB) != length(pik_B) | nrow(ysB) != length(domains_B) | length(domains_B) != length(pik_B)) stop("Arguments from frame B have different sizes.") if (ncol(ysA) != ncol(ysB)) stop("Number of variables does not match.") if (length(which(domains_A == "a")) + length(which(domains_A == "ab")) != length(domains_A)) stop("Domains from frame A are not correct.") if (length(which(domains_B == "b")) + length(which(domains_B == "ba")) != length(domains_B)) stop("Domains from frame B are not correct.") cl <- match.call() estimations <- list() interv <- list() c <- ncol(ysA) R <- ncol(xA) n_A <- nrow(ysA) n_B <- nrow(ysB) n <- n_A + n_B N_A <- nrow(xA) N_B <- nrow(xB) ones_ab_A <- Domains (rep (1, n_A), domains_A, "ab") ones_ab_B <- Domains (rep (1, n_B), domains_B, "ba") Vhat_Nhat_ab_A <- varest(ones_ab_A, pik = pik_A) Vhat_Nhat_ab_B <- varest(ones_ab_B, pik = pik_B) eta_0 <- Vhat_Nhat_ab_B / (Vhat_Nhat_ab_A + Vhat_Nhat_ab_B) domains <- factor(c(as.character(domains_A), as.character(domains_B))) delta_a <- Domains (rep (1, n), domains, "a") delta_ab <- Domains (rep (1, n), domains, "ab") delta_b <- Domains (rep (1, n), domains, "b") delta_ba <- Domains (rep (1, n), domains, "ba") for (k in 1:c){ ys <- factor(c(as.character(ysA[,k]),as.character(ysB[,k]))) y_sA <- as.factor(ysA[,k]) y_sB <- as.factor(ysB[,k]) lev <- sort(levels(ys)) levA <- sort(levels(y_sA)) levB <- sort(levels(y_sB)) m <- length(lev) mA <- length(levA) mB <- length(levB) mat <- matrix (NA, 2, m) rownames(mat) <- c("Class Tot.", "Prop.") colnames(mat) <- lev z <- disjunctive(ys) pik <- c(pik_A, pik_B) d <- 1/pik modA <- multinom(formula = y_sA ~ 0 + xsA, weights = 1/pik_A, trace = FALSE) beta_tilde_A <- rbind(rep(0, R), summary(modA)$coefficients) modB <- multinom(formula = y_sB ~ 0 + xsB, weights = 1/pik_B, trace = FALSE) beta_tilde_B <- rbind(rep(0, R), summary(modB)$coefficients) denomA <- rowSums(exp(xA %*% t(beta_tilde_A))) denomB <- rowSums(exp(xB %*% t(beta_tilde_B))) pA <- exp (xA %*% t(beta_tilde_A)) / denomA pB <- exp (xB %*% t(beta_tilde_B)) / denomB if (mA < m){ common <- which(lev %in% levA) pA2 <- matrix(0, N_A, m) pA2[,common] <- pA pA <- pA2 } if (mB < m){ common <- which(lev %in% levB) pB2 <- matrix(0, N_B, m) pB2[,common] <- pB pB <- pB2 } psA <- pA[ind_samA,] psB <- pB[ind_samB,] ps <- rbind(psA, psB) pA[ind_domA == "ab",] <- eta_0 * pA[ind_domA == "ab",] pB[ind_domB == "ba",] <- (1 - eta_0) * pB[ind_domB == "ba",] if (is.null(N_ab)){ Xs <- cbind(delta_a + delta_ab + delta_ba, delta_b + delta_ab + delta_ba, ps * (delta_a + delta_ab), ps * (delta_b + delta_ba)) total <- c(N_A, N_B, colSums(pA), colSums(pB)) } else { Xs <- cbind(delta_a, delta_ab, delta_ba, delta_b, ps * (delta_a + delta_ab), ps * (delta_b + delta_ba)) total <- c(N_A - N_ab, eta_0 * N_ab, (1 - eta_0) * N_ab, N_B - N_ab, colSums(pA), colSums(pB)) } g <- calib (Xs, d, total, method = met) mat[1,] <- colSums (g * d * z) mat[2,] <- 1/N * mat[1,] estimations[[k]] <- mat if (!is.null(conf_level)){ alpha <- ginv(t(Xs) %*% diag(d) %*% Xs) %*% t(Xs) %*% diag(d) %*% z e <- z - Xs %*% alpha e <- e * d e[domains == "ab",] <- eta_0 * e[domains == "ab",] e[domains == "ba",] <- (1 - eta_0) * e[domains == "ba",] Vhat_AMLCDF <- apply(e, 2, var) Vhat_PMLCDF <- 1/N^2 * Vhat_AMLCDF interval <- matrix (NA, 6, m) rownames(interval) <- c("Class Tot.", "Lower Bound", "Upper Bound", "Prop.", "Lower Bound", "Upper Bound") colnames(interval) <- lev interval[1,] <- mat[1,] interval[2,] <- mat[1,] + qnorm(1 - (1 - conf_level) / 2) * sqrt(Vhat_AMLCDF) interval[3,] <- mat[1,] - qnorm(1 - (1 - conf_level) / 2) * sqrt(Vhat_AMLCDF) interval[4,] <- mat[2,] interval[5,] <- mat[2,] + qnorm(1 - (1 - conf_level) / 2) * sqrt(Vhat_PMLCDF) interval[6,] <- mat[2,] - qnorm(1 - (1 - conf_level) / 2) * sqrt(Vhat_PMLCDF) interv[[k]] <- interval } } results = list(Call = cl, Est = estimations, ConfInt = interv) class(results) = "EstimatorMDF" attr(results, "attributesMDF") = conf_level return(results) }
filterpts <- function(dset, box, keepin=FALSE){ ndimr <- length(box[[1]]) lmat <- matrix(nrow=nrow(dset),ncol=ndimr) for (i in 1:ndimr){ lmat[,i] <- dset[,box[[1]][i]] > box[[2]][i,1] & dset[,box[[1]][i]] < box[[2]][i,2] } if(keepin){ return(dset[apply(lmat,1,all),]) }else{ return(dset[!apply(lmat,1,all),]) } }
setGeneric("isSheetVisible", function(object, sheet) standardGeneric("isSheetVisible")) setMethod("isSheetVisible", signature(object = "workbook", sheet = "numeric"), function(object, sheet) { !isSheetHidden(object, sheet) && !isSheetVeryHidden(object, sheet) } ) setMethod("isSheetVisible", signature(object = "workbook", sheet = "character"), function(object, sheet) { !isSheetHidden(object, sheet) && !isSheetVeryHidden(object, sheet) } )
MeasureSurvSongTPR = R6Class("MeasureSurvSongTPR", inherit = MeasureSurvAUC, public = list( initialize = function() { ps = ps( times = p_dbl(0), lp_thresh = p_dbl(default = 0), type = p_fct(c("incident", "cumulative"), default = "incident") ) ps$values = list(lp_thresh = 0, type = "incident") super$initialize( id = "surv.song_tpr", properties = c("requires_task", "requires_train_set", "requires_learner"), man = "mlr3proba::mlr_measures_surv.song_tpr", param_set = ps ) } ), private = list( .score = function(prediction, learner, task, train_set, ...) { if (is.null(self$param_set$values$times)) { stop("`times` must be non-NULL") } tpr = super$.score( prediction = prediction, learner = learner, task = task, train_set = train_set, FUN = survAUC::sens.sh, type = self$param_set$values$type, ... ) tpr[, findInterval(self$param_set$values$lp_thresh, sort(unique(prediction$lp)))] } ) )
read_plate <- function(file, well_ids_column = "Wells") { check_that_only_one_file_is_provided(file) check_file_path(file) check_that_file_is_non_empty(file) check_well_ids_column_name(well_ids_column) plate_size <- guess_plate_size(file) raw_file_list <- get_list_of_plate_layouts(file, plate_size) result <- convert_all_layouts(raw_file_list, plate_size) result <- combine_list_to_dataframe(result, plate_size) colnames(result)[colnames(result) == "wellIds"] <- well_ids_column class(result) <- c("tbl_df", "tbl", "data.frame") result } convert_all_layouts <- function(raw_file_list, plate_size) { convert <- function(f, layout_number) { tryCatch( expr = convert_plate_to_column(f, plate_size), error = function(e) { e <- paste0("Error in layout e$message) stop(e, call. = FALSE) } ) } Map(f = convert, raw_file_list, 1:length(raw_file_list)) } calculate_number_of_plates <- function(raw_file, number_of_rows) { is_integer <- function(x) x %% 1 == 0 result <- (length(raw_file) + 1) / (number_of_rows + 2) if (is_integer(result)) { return(result) } else { result <- (length(raw_file)) / (number_of_rows + 2) if (raw_file[length(raw_file)] == "" || is_integer(result)) { return(result) } else { stop(paste0("File length is incorrect. Must be a multiple of the ", "number of rows in the plate plus a header row for each ", "plate and a blank row between plates."), call. = FALSE) } } } get_list_of_plate_layouts <- function(file, plate_size) { raw_file <- read_lines(file) number_of_rows <- number_of_rows(plate_size) number_of_plates <- calculate_number_of_plates(raw_file, number_of_rows) raw_file_list <- lapply(1:number_of_plates, FUN = function(plate) { first_row <- (plate - 1) * (number_of_rows + 1) + plate last_row <- first_row + number_of_rows raw_file[first_row:last_row] } ) raw_file_list } check_unique_plate_names <- function(result) { plate_names <- vapply(result, FUN = function(x) colnames(x)[2], FUN.VALUE = "character") if(any(duplicated(plate_names))) { duplicates <- which(duplicated(plate_names)) result <- lapply(1:length(result), FUN = function(n) { if (n %in% duplicates) { new_name <- paste0(colnames(result[[n]])[2], ".", n) colnames(result[[n]])[2] <- new_name result[[n]] } else { result[[n]] } }) } return(result) } combine_list_to_dataframe <- function(result, plate_size) { if (length(result) == 1) { result <- result[[1]] } else { result <- check_unique_plate_names(result) result <- Reduce(function(x, y) merge(x, y, by = "wellIds", all = TRUE), result) } keep <- rowSums(!is.na(result)) > 1 result <- result[keep, ] sort_by_well_ids(result, "wellIds", plate_size) }
epmeans <- function(elist, k=2){ clist = elist_epmeans(elist) myk = round(k) myn = length(clist) mylength = 1000 qseq = seq(from=1e-6, to=1-(1e-6), length.out=mylength) qmat = array(0,c(myn,mylength)) for (n in 1:myn){ qmat[n,] = as.vector(stats::quantile(clist[[n]], qseq)) } tmpcpp = cpp_kmeans(qmat, myk)$means mylist1 = list() mylist2 = list() for (n in 1:myn){ mylist1[[n]] = stats::ecdf(as.vector(qmat[n,])) } for (k in 1:myk){ mylist2[[k]] = stats::ecdf(as.vector(tmpcpp[k,])) } pdistmat = dist2_wasserstein(mylist1, mylist2, 1) label = base::apply(pdistmat, 1, which.min) output = list() output$cluster = as.integer(label) output$centers = mylist2 return(output) }
canonicalize <- function(intervals) { errorCheck(intervals, FALSE) makeCanonicalRep(1:nrow(intervals), intervals[, 'left'], intervals[, 'right']) }
fg_milb_pitcher_game_logs <- function(playerid, year) { url_basic <- paste0("http://www.fangraphs.com/statsd-legacy.aspx?playerid=", playerid, "&season=", year, "&position=P","&type=-1") url <- paste0("https://cdn.fangraphs.com/api/players/game-log?position=P&type=-1&&gds=&gde=&z=1637230004112&playerid=", playerid, "&season=", year) res <- httr::RETRY("GET", url) resp <- res %>% httr::content(as = "text", encoding = "UTF-8") payload <- jsonlite::fromJSON(resp)[['minor']] %>% as.data.frame() payload <- payload[-1,] suppressWarnings( payload <- payload %>% tidyr::separate(.data$Team, into = c("Team","Level"),sep=" ") ) player_name <- url_basic %>% xml2::read_html() %>% rvest::html_elements("h1") %>% rvest::html_text() payload <- payload %>% dplyr::mutate( player_name = player_name, minor_playerid = playerid) %>% dplyr::select(.data$player_name, .data$minor_playerid, tidyr::everything()) return(payload) } milb_pitcher_game_logs_fg <- fg_milb_pitcher_game_logs
context("id") simple_vectors <- list( letters, sample(letters), 1:26 ) test_that("for vector, equivalent to rank", { for (case in simple_vectors) { rank <- rank(case, ties = "min") rank_df <- id(as.data.frame(case)) expect_that(rank, is_equivalent_to(rank_df)) } }) test_that("duplicates numbered sequentially", { for (case in simple_vectors) { rank <- rep(rank(case, ties = "min"), each = 2) rank_df <- id(as.data.frame(rep(case, each = 2))) expect_that(rank, is_equivalent_to(rank_df)) } }) test_that("n calculated correctly", { n <- function(x) attr(id(x), "n") for (case in simple_vectors) { expect_that(n(as.data.frame(case)), equals(26)) } }) test_that("for vector + constant, equivalent to rank", { for (case in simple_vectors) { rank <- rank(case, ties = "min") after <- id(data.frame(case, x = 1)) before <- id(data.frame(x = 1, case)) expect_that(rank, is_equivalent_to(before)) expect_that(rank, is_equivalent_to(after)) } }) test_that("grids are correctly ranked", { df <- rev(expand.grid(1:10, 1:2)) expect_that(id(df), is_equivalent_to(1:20)) expect_that(id(df, drop = T), is_equivalent_to(1:20)) }) test_that("NAs are placed last", { expect_that(id_var(c(NA, 1)), is_equivalent_to(c(2, 1))) }) test_that("factor with missing levels has correct count", { id <- id_var(factor(1, NA)) expect_equal(attr(id, "n"), 1) }) test_that("zero length input gives single number", { expect_that(id(character()), is_equivalent_to(integer())) }) test_that("zero column data frame gives seq_len(nrow)", { df <- as.data.frame(matrix(nrow = 10, ncol = 0)) expect_equivalent(id(df), 1:10) }) test_that("empty list doesn't affect n", { out <- id(list(integer(), 1:5)) expect_equivalent(out, 1:5) expect_equal(attr(out, "n"), 5) })
get_taxa_meta <- function(nexml, what='href'){ out <- lapply(nexml@otus, function(otus) sapply(otus@otu, function(otu) slot(otu@meta[[1]], what))) unname(unlist(out, recursive = FALSE)) } get_otu_meta <- get_taxa_meta get_taxa_meta_list <- function(nexml, what='href'){ out <- lapply(nexml@otus, function(otus){ out <- sapply(otus@otu, function(otu) slot(otu@meta[[1]], what)) names(out) <- name_by_id(otus@otu) out }) names(out) <- name_by_id(nexml@otus) out } get_otu_meta_list <- get_taxa_meta_list
ModuleStopIfNotDataFrame <- function(data) { if (is.data.frame(data) == FALSE) { stop("The data argument needs to be a data frame (no quote).") } } ModuleReturnVarsExist <- function(vars, data) { varsNotInData <- setdiff(vars, names(data)) if (length(varsNotInData) > 0) { warning("The data frame does not have: ", paste0(varsNotInData, sep = " "), " Dropped") vars <- intersect(vars, names(data)) } logiAllNaVars <- sapply(X = data[vars], FUN = function(VAR) { all(is.na(VAR)) }, simplify = TRUE) if (any(logiAllNaVars)) { warning("These variables only have NA/NaN: ", paste0(vars[logiAllNaVars], sep = " "), " Dropped") vars <- vars[!logiAllNaVars] } return(vars) } ModuleStopIfNoVarsLeft <- function(vars) { if (length(vars) < 1) {stop("No valid variables.")} } ModuleReturnFalseIfNoStrata <- function(strata, test) { if(missing(strata)) { test <- FALSE } return(test) } ModuleReturnStrata <- function(strata, data) { if(missing(strata)) { strata <- rep("Overall", nrow(data)) } else { strata <- unique(strata) strata <- ModuleReturnVarsExist(strata, data) if (length(strata) == 0) { stop("None of the stratifying variables are present in the data frame.") } else { logiSingleLevelOnly <- lapply(data[c(strata)], function(VEC) { nLevels <- ifelse(test = is.factor(VEC), yes = nlevels(VEC), no = nlevels(factor(VEC))) nLevels == 1 }) logiSingleLevelOnly <- unlist(logiSingleLevelOnly) if (any(logiSingleLevelOnly)) { warning("These variables have only one valid level: ", paste0(strata[logiSingleLevelOnly], sep = " "), " Dropped") strata <- strata[!logiSingleLevelOnly] } if (length(strata) == 0) { stop("None of the stratifying variables have 2+ valid levels.") } strata <- data[c(strata)] } } return(strata) } ModuleCreateTableForOneVar <- function(x) { freqRaw <- table(x) freq <- data.frame(level = names(freqRaw), stringsAsFactors = FALSE) freq$n <- length(x) freq$miss <- sum(is.na(x)) freq$p.miss <- (freq$miss / freq$n) * 100 freq$freq <- freqRaw freq$percent <- freqRaw / sum(freqRaw) * 100 freq$cum.percent <- cumsum(freqRaw) / sum(freqRaw) * 100 freq <- freq[c("n","miss","p.miss","level","freq","percent","cum.percent")] return(freq) } ModuleIncludeNaAsLevel <- function(data) { logiAnyNA <- (colSums(is.na(data)) > 0) data[logiAnyNA] <- lapply(data[logiAnyNA], function(var) { if (all(!is.na(levels(var)))) { var <- factor(var, c(levels(var), NA), exclude = NULL) } var }) data } ModuleCreateStrataVarName <- function(obj) { paste0(names(attr(obj, "dimnames")), collapse = ":") } ModuleCreateStrataVarAsFactor <- function(result, strata) { dfStrataLevels <- expand.grid(attr(result, "dimnames")) strataLevels <- apply(X = dfStrataLevels, MARGIN = 1, FUN = paste0, collapse = ":") strataVar <- as.character(interaction(strata, sep = ":")) strataVar <- factor(strataVar, levels = strataLevels) return(strataVar) } ModuleCreateOverallColumn <- function(call) { call$strata <- NULL call$addOverall <- FALSE return(eval(call)) } ModuleReapplyNameAndDimAttributes <- function(result, strataVarName, levelsStrataVar) { attributes(result)$names <- c(attributes(result)$names[1], levelsStrataVar) attributes(result) <- c(attributes(result), list(strataVarName = strataVarName)) attr(result, "dim") <- length(attr(result, "names")) overall_dimnames <- list(attr(result, "names")) names(overall_dimnames) <- attr(result, "strataVarName") dimnames(result)<- overall_dimnames return(result) } ModuleTryCatchWE <- function(expr) { W <- NULL w.handler <- function(w) { W <<- w invokeRestart("muffleWarning") } list(value = withCallingHandlers(tryCatch(expr, error = function(e) e), warning = w.handler), warning = W) } ModuleTestSafe <- function(obj, testFunction, testArgs = NULL) { out <- ModuleTryCatchWE(do.call(testFunction, args = c(list(obj), testArgs))$p.value) pValue <- ifelse(is.numeric(out$value), out$value, NA) if (any(class(obj) %in% "xtabs")) { if (dim(obj)[1] == 1) { return(NA) } else { pValue } } else { pValue } } ModuleSasSkewness <- function(x) { out <- ModuleTryCatchWE(e1071::skewness(x, na.rm = TRUE, type = 2)) ifelse(is.numeric(out$value), out$value, NaN) } ModuleSasKurtosis <- function(x) { out <- ModuleTryCatchWE(e1071::kurtosis(x, na.rm = TRUE, type = 2)) ifelse(is.numeric(out$value), out$value, NaN) } ModuleApproxExactTests <- function(result, strata, dat, strataVarName, testApprox, argsApprox, testExact, argsExact) { strataVar <- ModuleCreateStrataVarAsFactor(result, strata) listXtabs <- sapply(X = names(dat), FUN = function(var) { formula <- as.formula(paste0("~ `", var, "` + ", "strataVar")) xtabs(formula = formula, data = dat) }, simplify = FALSE) for (i in seq_along(listXtabs)) { names(dimnames(listXtabs[[i]]))[2] <- strataVarName } pValues <- sapply(X = listXtabs, FUN = function(xtabs) { data.frame(pApprox = ModuleTestSafe(xtabs, testApprox, argsApprox), pExact = ModuleTestSafe(xtabs, testExact, argsExact)) }, simplify = FALSE) pValues <- do.call(rbind, pValues) list(pValues = pValues, xtabs = listXtabs) } ModulePercentMissing <- function(data) { unlist(lapply(data, function(x) {sum(is.na(x)) / length(x) * 100})) }
importList <- function(x, ask = TRUE ) { if( !methods::is(x,"list") & !methods::is(x,"data.frame")) stop( '"x" must be a list or data frame') if( !methods::is(ask,"logical") | length(ask) !=1 ) { stop( '"ask" must be a single logical value') } envir = parent.frame() vars <- names(x) vars <- make.unique(vars) vars <- make.names(vars) if( ask ) { cat("Names of variables to be created:\n") print(vars) ans <- NA while( ! (ans %in% c("y","n") ) ) { ans <- readline("Create these variables? [y/n] ") } if (ans == "n") { return( invisible(0) ) } } for (v in seq_along(vars)) { assign(x = vars[v], value = x[[v]], envir = envir) } return( invisible(1) ) }
mcgd.lr <- function(y, var.type, lambda1 = NULL, maxit = 100, thresh = 1e-6, theta0 = NULL, trace.it = T){ y <- as.matrix(y) d <- dim(y) n <- d[1] p <- d[2] p1 <- sum(var.type == "gaussian") p2 <- sum(var.type == "binomial") p3 <- sum(var.type == "poisson") omega <- !is.na(y) if(is.null(theta0)) theta0 <- matrix(rep(0, n * p), nrow = n) R0 <- svd(theta0, nu = 1, nv = 1)$d[1] if(is.null(lambda1)){ sigma <- sum((y-mean(y, na.rm = T))^2, na.rm = T)/(n*p) beta <- sum(is.na(y))/sum(!is.na(y))*max(n,p) lambda1 <- 2*sigma*sqrt(beta*log(n+p)) } theta <- theta0 R <- R0 objective <- NULL error <- 1 iter <- 0 list.theta <- list() list.R <- list() y0 <- y y0[is.na(y0)] <- 0 low_bound <- 0 ypois <- y0[, var.type == "poisson"] upper <- 12 lower <- -12 if(p2>0){ low_bound <- low_bound - n*sum(var.type == "binomial")*(-2*max(abs(upper), abs(lower)) + log(1+exp(-2*max(abs(upper), abs(lower))))) } if(p3>0){ low_bound <- low_bound - sum(ypois[!(ypois==0)]*(1-log(ypois[!(ypois==0)]))) } obj0 <- low_bound if(p1>0){ obj0 <- obj0 + (1 / 2) * sum((y[, var.type == "gaussian"] - theta[, var.type == "gaussian"])^2, na.rm = T) } if(p2>0){ obj0 <- obj0 + sum(- (y[, var.type == "binomial"] * theta[, var.type == "binomial"]) + log(1 + exp(theta[, var.type == "binomial"])), na.rm = T) } if(p3>0){ obj0 <- obj0 + sum(- (y[, var.type == "poisson"] * theta[, var.type == "poisson"]) + exp(theta[, var.type == "poisson"]), na.rm = T) } U <- obj0/lambda1 while((error > thresh) && (iter < maxit)){ iter <- iter + 1 list.theta[[iter]] <- theta list.R[[iter]] <- R theta.tmp <- theta R.tmp <- R grad <- matrix(rep(0, n*p), nrow = n) if(p1>0){ grad[, var.type == "gaussian"] <- -omega[, var.type == "gaussian"]*(y0 - theta)[, var.type == "gaussian"] } if(p2>0){ grad[, var.type == "binomial"] <- -omega[, var.type == "binomial"] *( y0 - exp(theta)/(1+exp(theta)))[, var.type == "binomial"] } if(p3>0){ grad[, var.type == "poisson"] <- - omega[, var.type == "poisson"]*(y0 - exp(theta))[, var.type == "poisson"] } step <- 2 flag <- TRUE obj0 <- low_bound if(p1>0){ obj0 <- obj0 + (1 / 2) * sum((y[, var.type == "gaussian"] - theta[, var.type == "gaussian"])^2, na.rm = T) } if(p2>0){ obj0 <- obj0 + sum(- (y[, var.type == "binomial"] * theta[, var.type == "binomial"]) + log(1 + exp(theta[, var.type == "binomial"])), na.rm = T) } if(p3>0){ obj0 <- obj0 + sum(- (y[, var.type == "poisson"] * theta[, var.type == "poisson"]) + exp(theta[, var.type == "poisson"]), na.rm = T) } obj0 <- obj0 + lambda1*R grad_theta <- matrix(rep(0, n*p), nrow = n) if(p1>0){ grad_theta[, var.type == "gaussian"] <- -omega[, var.type == "gaussian"]*(y0 - theta)[, var.type == "gaussian"] } if(p2>0){ grad_theta[, var.type == "binomial"] <- -omega[, var.type == "binomial"] *( y0 - exp(theta)/(1+exp(theta)))[, var.type == "binomial"] } if(p3>0){ grad_theta[, var.type == "poisson"] <- - omega[, var.type == "poisson"]*(y0 - exp(theta))[, var.type == "poisson"] } svd_theta <- rARPACK::svds(grad_theta, k=1, nu = 1, nv = 1) D_t <- - svd_theta$u%*%t(svd_theta$v) step <- 2 flag <- TRUE obj0 <- low_bound if(p1>0){ obj0 <- obj0 + (1 / 2) * sum((y[, var.type == "gaussian"] - theta[, var.type == "gaussian"])^2, na.rm = T) } if(p2>0){ obj0 <- obj0 + sum(- (y[, var.type == "binomial"] * theta[, var.type == "binomial"]) + log(1 + exp(theta[, var.type == "binomial"])), na.rm = T) } if(p3>0){ obj0 <- obj0 + sum(- (y[, var.type == "poisson"] * theta[, var.type == "poisson"]) + exp(theta[, var.type == "poisson"]), na.rm = T) } obj0 <- obj0 + lambda1*R while((flag )){ step <- 0.5*step if(lambda1 >= - sum(D_t*grad_theta)){ R_hat <- 0 theta_hat <- matrix(rep(0, n*p), nrow = n) if(norm(theta_hat - theta.tmp, type = "F")^2==0){ beta <- 1 } else { beta <- min(1, step) } theta <- theta.tmp + beta*(theta_hat - theta.tmp) R <- R.tmp + beta*(R_hat - R.tmp) } else{ R_hat <- U theta_hat <- U*D_t if(norm(theta_hat - theta.tmp, type = "F")^2==0){ beta <- 1 theta <- theta.tmp + beta*(theta_hat - theta.tmp) R <- R.tmp + beta*(R_hat - R.tmp) } else { beta <- min(1, step) theta <- theta.tmp + beta*(theta_hat - theta.tmp) R <- R.tmp + beta*(R_hat - R.tmp) } } obj <- low_bound if(p1>0){ obj <- obj + (1 / 2) * sum((y[, var.type == "gaussian"] - theta[, var.type == "gaussian"])^2, na.rm = T) } if(p2>0){ obj <- obj + sum(- (y[, var.type == "binomial"] * theta[, var.type == "binomial"]) + log(1 + exp(theta[, var.type == "binomial"])), na.rm = T) } if(p3>0){ obj <- obj + sum(- (y[, var.type == "poisson"] * theta[, var.type == "poisson"]) + exp(theta[, var.type == "poisson"]), na.rm = T) } obj <- obj + lambda1*R flag <- (obj > obj0 + thresh * abs(obj0)) } obj <- low_bound if(p1>0){ obj <- obj + (1 / 2) * sum((y[, var.type == "gaussian"] - theta[, var.type == "gaussian"])^2, na.rm = T) } if(p2>0){ obj <- obj + sum(- (y[, var.type == "binomial"] * theta[, var.type == "binomial"]) + log(1 + exp(theta[, var.type == "binomial"])), na.rm = T) } if(p3>0){ obj <- obj + sum(- (y[, var.type == "poisson"] * theta[, var.type == "poisson"]) + exp(theta[, var.type == "poisson"]), na.rm = T) } obj <- obj + lambda1*R objective <- c(objective, obj) U <- obj/lambda1 if(iter == 1){ error <- 1 } else { if(abs(objective[iter]) == 0) { error <- abs(objective[iter]-objective[iter - 1]) } else { error <- abs(objective[iter]-objective[iter - 1]) /abs(objective[iter]) } } if(trace.it && (iter%%10 == 0) ){ print(paste("iter ", iter, ": error ", error, " - objective: ", objective[iter])) } } yy <- theta yy[, var.type == "poisson"] <- exp(yy[, var.type == "poisson"]) yy[, var.type == "binomial"] <- exp(yy[, var.type == "binomial"])/(1+exp(yy[, var.type == "binomial"])) y.imputed <- y y.imputed[is.na(y)] <- yy[is.na(y)] return(list(y.imputed = y.imputed, theta = theta)) }
sensmodel <- function(peaksens, range = c(300, 700), lambdacut = NULL, Bmid = NULL, oiltype = NULL, beta = TRUE, om = NULL, integrate = TRUE, sensnames = NULL) { if (!is.null(lambdacut)) { if (is.null(Bmid) & is.null(oiltype)) stop("Bmid or oiltype must be included when including a lambdacut vector", call. = FALSE) if (length(lambdacut) != length(peaksens)) stop("lambdacut must be same length as peaksens", call. = FALSE) } if (!is.null(Bmid) & is.null(lambdacut)) { stop("lambdacut has to be provided together with Bmid") } if (!is.null(lambdacut) & !is.null(Bmid) & !is.null(oiltype)) { stop("only 2 of lambdacut, Bmid, and oiltype can be provided") } if (!is.null(lambdacut) & !is.null(oiltype)) { if (length(lambdacut) != length(oiltype)) stop("lambdacut and oiltype must be of same length") } if (!is.null(lambdacut) & !is.null(Bmid)) { if (length(lambdacut) != length(Bmid)) stop("lambdacut and Bmid must be of same length") } sensecurves <- matrix(ncol = length(peaksens), nrow = (range[2] - range[1] + 1)) wl <- range[1]:range[2] for (i in seq_along(peaksens)) { peak <- 1 / (exp(69.7 * (.8795 + .0459 * exp(-(peaksens[i] - range[1])^2 / 11940) - (peaksens[i] / wl))) + exp(28 * (.922 - peaksens[i] / wl)) + exp(-14.9 * (1.104 - (peaksens[i] / wl))) + .674) if (beta) { betaband <- 0.26 * exp(-((wl - (189 + 0.315 * peaksens[i])) / (-40.5 + 0.195 * peaksens[i]))^2) peak <- peak + betaband } peak <- peak / max(peak) if (!is.null(lambdacut) & !is.null(Bmid)) { if (is.na(lambdacut[i]) & !is.na(Bmid[i])) { warning("NA in lambdacut not paired with NA in Bmid, value of Bmid omitted") T.oil <- 1 } else { T.oil <- exp(-exp(-2.89 * Bmid[i] * (wl - lambdacut[i]) + 1.08)) peak <- peak * T.oil } } if (!is.null(lambdacut) & !is.null(oiltype)) { if (oiltype[i] == "T") { T.oil <- 1 } else { if (oiltype[i] == "C") oil <- c(0.99, 24.38) if (oiltype[i] == "Y") oil <- c(0.9, 70.03) if (oiltype[i] == "R") oil <- c(0.99, 28.65) if (oiltype[i] == "P") oil <- c(0.96, 33.57) T.oil <- exp(-exp(-2.89 * (.5 / ((oil[1] * lambdacut[i] + oil[2]) - lambdacut[i])) * (wl - lambdacut[i]) + 1.08)) } peak <- peak * T.oil } if (integrate) { peak <- peak / sum(peak) } if (!is.null(om)) { if (length(om) == 1) { if (om == "bird") { T.e <- log(8.928 * 10^-13 * wl^5 - 2.595 * 10^-9 * wl^4 + 3.006 * 10^-6 * wl^3 - .001736 * wl^2 + .5013 * wl - 55.56) T.e[which(T.e < 0)] <- 0 peak <- peak * T.e } } else { T.e <- om peak <- peak * T.e } } sensecurves[, i] <- peak } sensecurves <- as.data.frame(sensecurves) if (!is.null(sensnames)) { if (length(sensnames) != length(sensecurves)) { message("The length of argument 'sensnames' does not equal the number of curves specified by 'peaksens'. Reverting to default names.") sensnames <- NULL } else { names(sensecurves) <- sensnames } } if (is.null(sensnames)) { names(sensecurves) <- paste0("lmax", peaksens) } sensecurves <- cbind(wl, sensecurves) class(sensecurves) <- c("sensmod", "rspec", "data.frame") if (is.null(om)) { attr(sensecurves, "om") <- FALSE } else { attr(sensecurves, "om") <- TRUE } sensecurves }
lnre.cost.gof <- function (model, spc, m.max=15) { N <- N(spc) V <- V(spc) m.vec <- seq_len(m.max) Vm <- Vm(spc, m.vec) E.Vm <- EVm(model, m.vec, N) E.V <- EV(model, N) E.Vm.2N <- EVm(model, seq_len(2 * m.max), 2 * N) E.V.2N <- EV(model, 2 * N) err.vec <- c(V, Vm) - c(E.V, E.Vm) cov.Vm.Vk <- diag(E.Vm, nrow=m.max) - outer(m.vec, m.vec, function (m, k) choose(m+k, m) * E.Vm.2N[m+k] / 2^(m+k)) cov.Vm.V <- E.Vm.2N[m.vec] / 2^(1:m.max) R <- rbind(c(VV(model, N), cov.Vm.V), cbind(cov.Vm.V, cov.Vm.Vk)) t(err.vec) %*% solve(R, err.vec) } lnre.cost.chisq <- function (model, spc, m.max=15) { N <- N(spc) E.Vm <- EVm(model, 1:m.max, N) E.V <- EV(model, N) E.Vplus <- E.V - sum(E.Vm) V.Vm <- VVm(model, 1:m.max, N) V.V <- VV(model, N) V.Vplus <- V.V - sum(V.Vm) V.Vm <- pmax(V.Vm, 9) V.Vplus <- max(V.Vplus, 9) O.Vm <- Vm(spc, 1:m.max) O.V <- V(spc) O.Vplus <- O.V - sum(O.Vm) X2 <- sum( (O.Vm - E.Vm)^2 / V.Vm ) + (O.Vplus - E.Vplus)^2 / V.Vplus X2 } lnre.cost.linear <- function (model, spc, m.max=15) { N <- N(spc) E.Vm <- EVm(model, 1:m.max, N) E.V <- EV(model, N) O.Vm <- Vm(spc, 1:m.max) O.V <- V(spc) abs(E.V - O.V) + sum( abs(E.Vm - O.Vm) ) } lnre.cost.smooth.linear <- function (model, spc, m.max=15) { N <- N(spc) E.Vm <- EVm(model, 1:m.max, N) E.V <- EV(model, N) O.Vm <- Vm(spc, 1:m.max) O.V <- V(spc) sqrt(1 + (E.V - O.V)^2) + sum( sqrt(1 + (E.Vm - O.Vm)^2) ) } lnre.cost.mse <- function (model, spc, m.max=15) { N <- N(spc) E.Vm <- EVm(model, 1:m.max, N) E.V <- EV(model, N) O.Vm <- Vm(spc, 1:m.max) O.V <- V(spc) ( (E.V - O.V)^2 + sum((E.Vm - O.Vm)^2) ) / (1 + m.max) }
context("setShadow") test_that("setBackgroundColor works", { tag <- setShadow(class = "box") expect_is(tag, "shiny.tag") expect_length(tag$children, 1) tag <- setShadow(id = "my-progress") expect_is(tag, "shiny.tag") expect_length(tag$children, 1) })
gr.SGB <- function(x,d,u,V,weight,...){ D <- NCOL(u) n <- NROW(u) D1 <- D-1 npar <- length(x) r <- NCOL(d)-1 shape1 <- x[1] R <- r*D1 beta <- matrix(x[2:(D+R)], ncol=D1,byrow=TRUE) shape2 <- as.vector(x[-(1:(D+R))]) P <- sum(shape2) inV <- ginv(V) b <- exp((d%*%beta)%*%inV) b <- b/rowSums(b) z <- (u/b)^shape1 z <- z/rowSums(z) logub <- as.matrix(log(u/b)) Kb <- sum(weight*z*logub) dl_dbeta <- shape1*inV %*% t(P*z-rep(1,n)%*%t(shape2)) %*% (weight*d ) dl_dbeta <- as.vector(dl_dbeta) names(dl_dbeta) <- paste(sort(rep(paste("dl_dbeta",0:r,sep=""),D1)),rep(1:D1,r),sep="") dl_dshape1 <- n*D1/shape1 + sum(weight * logub %*% shape2)- P*Kb names(dl_dshape1) <- "dl_dshape1" dl_dshape2 <- n*(digamma(P)-digamma(shape2)) + colSums(weight*log(z)) names(dl_dshape2) <- paste("dl_dshape2",1:D,sep="") return(c(dl_dshape1, dl_dbeta, dl_dshape2)) }
pdbart = function ( x.train, y.train, xind=1:ncol(x.train), levs=NULL, levquants=c(.05,(1:9)/10,.95), pl=TRUE, plquants=c(.05,.95), ... ) { n = nrow(x.train) nvar = length(xind) nlevels = rep(0,nvar) if(is.null(levs)) { levs = list() for(i in 1:nvar) { ux = unique(x.train[,xind[i]]) if(length(ux) < length(levquants)) levs[[i]] = sort(ux) else levs[[i]] = unique(quantile(x.train[,xind[i]],probs=levquants)) } } nlevels = unlist(lapply(levs,length)) x.test=NULL for(i in 1:nvar) { for(v in levs[[i]]) { temp = x.train temp[,xind[i]] = v x.test = rbind(x.test,temp) } } pdbrt = bart(x.train,y.train,x.test,...) fdr = list() cnt=0 for(j in 1:nvar) { fdrtemp=NULL for(i in 1:nlevels[j]) { cind = cnt + ((i-1)*n+1):(i*n) fdrtemp = cbind(fdrtemp,(apply(pdbrt$yhat.test[,cind],1,mean))) } fdr[[j]] = fdrtemp cnt = cnt + n*nlevels[j] } if(is.null(colnames(x.train))) xlbs = paste('x',xind,sep='') else xlbs = colnames(x.train)[xind] if('sigma' %in% names(pdbrt)) { retval = list(fd = fdr,levs = levs,xlbs=xlbs, bartcall=pdbrt$call,yhat.train=pdbrt$yhat.train, first.sigma=pdbrt$first.sigma,sigma=pdbrt$sigma, yhat.train.mean=pdbrt$yhat.train.mean,sigest=pdbrt$sigest,y=pdbrt$y) } else { retval = list(fd = fdr,levs = levs,xlbs=xlbs, bartcall=pdbrt$call,yhat.train=pdbrt$yhat.train, y=pdbrt$y) } class(retval) = 'pdbart' if(pl) plot(retval,plquants=plquants) return(retval) }
lama_select <- function(.data, ...) { UseMethod("lama_select") } lama_select.lama_dictionary <- function(.data, ...) { args <- rlang::quos(...) err_handler <- composerr( text_1 = "Error while calling 'lama_select'", text_2 = "Use unquoted arguments e.g. 'lama_select(.data, x, y, z)'.", sep_2 = " " ) if (length(args) == 0) err_handler("Selected translation names are missing.") key <- as.character(sapply(seq_len(length(args)), function(i) { err_handler <- composerr_parent( paste( "Invalid argument at position", stringify(i + 1) ), err_handler ) x <- args[[i]] if (!rlang::quo_is_symbol(x)) err_handler(paste( "The expression", stringify(rlang::quo_name(x)), "could not be parsed." )) rlang::quo_name(x) })) check_select(.data, key, err_handler) new_lama_dictionary(.data[key]) } lama_select_ <- function(.data, key) { UseMethod("lama_select_") } lama_select_.lama_dictionary <- function(.data, key) { err_handler <- composerr("Error while calling 'lama_select_'") if (!is.character(key) || length(key) == 0) err_handler("The object given in the argument 'key' must be a character vector.") check_select(.data, key, err_handler) new_lama_dictionary(.data[key]) } check_select <- function(.data, key, err_handler) { if (!is.lama_dictionary(.data)) err_handler("The object given in the argument '.data' must be a lama_dictionary class object.") invalid <- !key %in% names(.data) if (any(invalid)) err_handler(paste0( "The following translation names could not be ", "found in the lama_dictionary object: ", stringify(key[invalid]), ".\nOnly the following variable translations exist: ", stringify(names(.data)), "." )) duplicates <- table(key) duplicates <- names(duplicates[duplicates > 1]) if (length(duplicates) > 0) err_handler(paste0( "The following translation names are used more than once: ", stringify(duplicates), "." )) }