code
stringlengths 1
13.8M
|
---|
binary_fun <- function(beta,rho,x,id, corstr){
response=c()
N=length(unique(id))
for(i in 1:N){
mu_i <- 1/(1+exp(-(x[which(id==i),]%*%beta)))
if(corstr=="independence"){
R_i=diag(1,length(mu_i))
}
else if (corstr=="exchangeable"){
R_i=diag(1,length(mu_i))+matrix(rho,ncol=length(mu_i),nrow=length(mu_i))-diag(rho,length(mu_i))
}
else {
H <- abs(outer(1:length(mu_i),1:length(mu_i), "-"))
R_i=rho^H
}
response <- c(response, rmvbin(1, margprob = as.vector(mu_i), bincorr = R_i))
}
data=cbind(id,x,response)
data=data.frame(data)
return(data)
} |
library(knotR)
filename <- "9_44.svg"
a <- reader(filename)
ou944 <- matrix(c(
8,2,
20,10,
11,17,
16,21,
3,15,
22,14,
13,5,
23,7,
4,21
), byrow=TRUE,ncol=2)
sym944 <- symmetry_object(a,xver=18)
a <- symmetrize(a,sym944)
jj <- knotoptim(filename,
symobj=sym944,
ou = ou944,
prob=0,
control=list(trace=100,maxit=100000), useNLM=FALSE
)
write_svg(jj,filename,safe=FALSE)
dput(jj,file=sub('.svg','.S',filename)) |
xpData <- local(get(load("xp_data.rda"))) |
MakeSnapshots <-
function(info, outputdir = './anim', prefix = 'snapshot', nums = 1:info$N, dt = 0.1, makesec1 = TRUE, makesec2 = TRUE, makesurf = TRUE, res = 96, fn_topomap = 'topomap.png', width = 480, height = NaN, asp = 1, pointsize = 12){
prettytitle = function(x, m1, m2){
digits = getOption('digits')
options(digits = 22)
nd2 = floor(log(m2, 10)) + 1
nd1 = nchar(as.character(m1)) - regexpr('\\.', m1)
start = 7 - (nd2-1)
end = 7 + nd1 + (m1 < 1)
y=substr(as.character(x+1e6+1e-6), start, end)
if(nd2 >= 2){
for(i in 1:(nd2-1)){
if(x < 10^(nd2-i)){
substr(y, i, i) = ' '
}
}
}
options(digits = digits)
y
}
N = info$N
topo = info$topo
coords_sec1 = info$coords_sec1
coords_sec2 = info$coords_sec2
coords_surf = info$coords_surf
surfline_sec1 = info$surfline_sec1
surfline_sec2 = info$surfline_sec2
mai=c(0.8,0.8,0.2,0.2)
zz_sec1 = unique(coords_sec1[,3])
zz_sec2 = unique(coords_sec2[,3])
dist_sec2 = surfline_sec2$h
if(is.na(height)){
width_plot = width - res * (mai[2]+mai[4])
if(makesec1){
height_sec1 = diff(range(zz_sec1))/max(surfline_sec1$h) * width_plot + res * (mai[1]+mai[3])
}
if(makesec2){
height_sec2 = diff(range(zz_sec2))/max(dist_sec2) * width_plot + res * (mai[1]+mai[3])
}
height_surf = diff(range(topo$y))/diff(range(topo$x)) * width_plot + res * (mai[1]+mai[3])
}
mycols = colorRampPalette(c('darkblue','blue', 'white', 'orange', 'red'),bias=1,space=c('rgb'))
png(filename=fn_topomap,width=4,height=length(topo$y)/length(topo$x)*4,units='in',res=200)
par(omi=c(0,0,0,0),mai=mai,mgp=c(2,0.5,0),tck=-0.01)
par(font.lab=2,font.axis=2,cex.lab=1.5,cex.axis=1.2)
image(topo,col=topo.colors(50),xlab='X (m)',ylab='Y (m)', useRaster = TRUE)
contour(topo,nlevels=10,lwd=1,add=TRUE)
dev.off()
for(j in nums){
ndigits_fn = 1 + floor(log(N, 10))
png_num = formatC(j, flag = 0, width = ndigits_fn)
main = prettytitle(j*dt, dt, N*dt)
print(paste(j, 'of', N, ': t =', main))
fn_sec1 = info$fn_sec1list[j]
fn_sec2 = info$fn_sec2list[j]
fn_sur = info$fn_surlist[j]
if(makesec1){
con=file(fn_sec1,"rb")
PP0=readBin(con,what=numeric(),n=dim(coords_sec1)[1],size=4)
close(con)
PP=matrix(PP0,ncol=length(zz_sec1))/info$MASKsec1
png(filename=paste(outputdir, '/', prefix, '_sec1_', png_num, '.png',sep=''),width=width, height=height_sec1, res=res, pointsize = pointsize)
par(omi=c(0,0,0,0),mai=mai,mgp=c(2,0.5,0),tck=-0.01)
par(font.lab=2,font.axis=2,cex.lab=1.5,cex.axis=1.2)
image(surfline_sec1$h,sort(zz_sec1),PP[,order(zz_sec1)],xlab='Distance (m)',ylab='Elevation (m)',col=mycols(100), breaks = info$breaks_sec1, main = main, useRaster = TRUE, asp = asp)
lines(surfline_sec1$h,surfline_sec1$z,col='black',lwd=2)
dev.off()
}
if(makesec2){
con=file(fn_sec2,"rb")
PP0=readBin(con,what=numeric(),n=dim(coords_sec2)[1],size=4)
close(con)
PP=matrix(PP0,ncol=length(zz_sec2))/info$MASKsec2
mai=c(0.8,0.8,0.2,0.2)
png(filename=paste(outputdir, '/', prefix, '_sec2_', png_num, '.png',sep=''),width=width, height=height_sec2, res=res, pointsize = pointsize)
par(omi=c(0,0,0,0),mai=mai,mgp=c(2,0.5,0),tck=-0.01)
par(font.lab=2,font.axis=2,cex.lab=1.5,cex.axis=1.2)
image(surfline_sec2$h, sort(zz_sec2),PP[,order(zz_sec2)],xlab='Distance (m)',ylab='Elevation (m)',col=mycols(100), breaks = info$breaks_sec2, main = main, useRaster = TRUE, asp = asp)
lines(surfline_sec2$h, surfline_sec2$z,col='black',lwd=2)
dev.off()
}
if(makesurf){
con=file(fn_sur,"rb")
PP0=readBin(con,what=numeric(),n=nrow(coords_surf),size=4)
close(con)
PP=matrix(PP0,ncol=ncol(info$MASKsurf))/info$MASKsurf
mai=c(0.8,0.8,0.2,0.2)
png(filename=paste(outputdir, '/', prefix, '_surf_', png_num, '.png',sep=''),width=width, height=height_surf, res=res, pointsize = pointsize)
par(omi=c(0,0,0,0),mai=mai,mgp=c(2,0.5,0),tck=-0.01)
par(font.lab=2,font.axis=2,cex.lab=1.5,cex.axis=1.2)
image(topo$x,topo$y,PP,xlab='X (m)',ylab='Y (m)',col=mycols(100), breaks = info$breaks_surf, main = main, useRaster = TRUE, asp = asp)
contour(topo,nlevels=10,lwd=1,add=TRUE)
dev.off()
}
}
} |
tk_tbl <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
UseMethod("tk_tbl", data)
}
tk_tbl.data.frame <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
if (preserve_index == TRUE) {
idx <- rownames(data)
if (!is.null(idx) &&
!identical(as.character(idx), as.character(1:nrow(as.data.frame(data))))
) {
ret <- data %>%
as.data.frame() %>%
tibble::rownames_to_column(var = rename_index) %>%
tibble::as_tibble(...)
if (any(vapply(ret, is.character, logical(1)))) {
ret <- suppressMessages(readr::type_convert(ret))
}
} else {
if (!silent) warning("Warning: No index to preserve. Object otherwise converted to tibble successfully.")
ret <- tibble::as_tibble(data, ...)
}
} else {
ret <- tibble::as_tibble(data, ...)
}
return(ret)
}
tk_tbl.xts <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
ret <- tk_tbl(zoo::as.zoo(data), preserve_index, rename_index, timetk_idx, silent, ...)
return(ret)
}
tk_tbl.matrix <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
ret <- tk_tbl(as.data.frame(data), preserve_index, rename_index, timetk_idx, silent, ...)
return(ret)
}
tk_tbl.zoo <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
if (preserve_index == TRUE) {
if (!is.null(zoo::index(data))) {
idx <- zoo::index(data)
} else {
idx = NULL
}
if (!is.null(idx) &&
!identical(as.character(idx), as.character(1:nrow(as.data.frame(data))))
) {
ret <- tibble::as_tibble(data, ...) %>%
tibble::add_column(idx, .before = 1)
if (!is.null(rename_index)) colnames(ret)[[1]] <- rename_index
if (any(vapply(ret, is.character, logical(1)))) {
ret <- suppressMessages(readr::type_convert(ret))
}
} else {
if (!silent) warning(paste0("Warning: No index to preserve. ",
"Object otherwise converted to tibble successfully."))
ret <- tibble::as_tibble(data, ...)
}
} else {
ret <- tibble::as_tibble(data, ...)
}
return(ret)
}
tk_tbl.zooreg <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
if (timetk_idx && preserve_index) {
first_val <- rownames(data)[[1]]
if (!is.null(first_val)) {
index <- tk_index(data, timetk_idx = TRUE)
ret <- tk_xts(data, order.by = index) %>%
tk_tbl(preserve_index = preserve_index,
rename_index = rename_index,
timetk_idx = timetk_idx,
silent = silent,
... = ...)
} else {
if (!silent) warning("No `timetk index` attribute found. Using regularized index.")
ret <- tk_tbl(zoo::as.zoo(data), preserve_index, rename_index, timetk_idx, silent, ...)
}
} else {
ret <- tk_tbl(zoo::as.zoo(data), preserve_index, rename_index, timetk_idx, silent, ...)
}
return(ret)
}
tk_tbl.ts <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
if (timetk_idx && preserve_index) {
index_attr <- attr(data, "index")
if (!is.null(index_attr)) {
index <- tk_index(data, timetk_idx = TRUE)
ret <- tk_xts(data, order.by = index) %>%
tk_tbl(preserve_index = preserve_index,
rename_index = rename_index,
timetk_idx = timetk_idx,
silent = silent,
... = ...)
} else {
ret <- tk_tbl(zoo::as.zoo(data), preserve_index, rename_index, timetk_idx, silent, ...)
}
} else {
ret <- tk_tbl(zoo::as.zoo(data), preserve_index, rename_index, timetk_idx, silent, ...)
}
return(ret)
}
tk_tbl.msts <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
ret <- tk_tbl(zoo::as.zoo(data), preserve_index, rename_index, timetk_idx, silent, ...)
return(ret)
}
tk_tbl.timeSeries <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
ret <- tk_tbl(as.data.frame(data), preserve_index, rename_index, timetk_idx, silent, ...)
return(ret)
}
tk_tbl.irts <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
ret <- tk_tbl(zoo::as.zoo(data), preserve_index, rename_index, timetk_idx, silent, ...)
return(ret)
}
tk_tbl.default <- function(data, preserve_index = TRUE, rename_index = "index", timetk_idx = FALSE, silent = FALSE, ...) {
ret <- tk_tbl(as.data.frame(data), preserve_index, rename_index, timetk_idx, silent, ...)
return(ret)
} |
context("Performance optimizations")
test_that("Optimized version of wt.bases.dog is equal to original", {
for (param in 1:10) {
expect_equal(
biwavelet:::wt.bases.dog(1:10, 2, param),
biwavelet:::rcpp_wt_bases_dog(1:10, 2, param)
)
expect_equal(
biwavelet:::wt.bases.dog(1:10, 1 / 3, param),
biwavelet:::rcpp_wt_bases_dog(1:10, 1 / 3, param)
)
}
})
test_that("Optimized version of wt.bases.paul is equal to original", {
for (param in 1:10) {
expect_equal(
biwavelet:::wt.bases.paul(1:10, 2, param),
biwavelet:::rcpp_wt_bases_paul(1:10, 2, param)
)
expect_equal(
biwavelet:::wt.bases.paul(1:10, 1 / 3, param),
biwavelet:::rcpp_wt_bases_paul(1:10, 1 / 3, param)
)
}
})
test_that("Optimized version of wt.bases.morlet is equal to original", {
for (param in 1:10) {
expect_equal(
biwavelet:::wt.bases.morlet(1:10, 2, param),
biwavelet:::rcpp_wt_bases_morlet(1:10, 2, param)
)
expect_equal(
biwavelet:::wt.bases.morlet(1:10, 1 / 3, param),
biwavelet:::rcpp_wt_bases_morlet(1:10, 1 / 3, param)
)
}
})
test_that("Parameter m outside supported interval should fail", {
FMIN <- -2
FMAX <- 11
ERRMSG <- "must be within"
expect_error(biwavelet:::rcpp_wt_bases_dog(1:10, 2, FMIN), regexp = ERRMSG)
expect_error(biwavelet:::rcpp_wt_bases_dog(1:10, 2, FMAX), regexp = ERRMSG)
expect_error(biwavelet:::rcpp_wt_bases_morlet(1:10, 2, FMIN), regexp = ERRMSG)
expect_error(biwavelet:::rcpp_wt_bases_morlet(1:10, 2, FMAX), regexp = ERRMSG)
expect_error(biwavelet:::rcpp_wt_bases_paul(1:10, 2, FMIN), regexp = ERRMSG)
expect_error(biwavelet:::rcpp_wt_bases_paul(1:10, 2, FMAX), regexp = ERRMSG)
})
test_that("Default 'param' values for rcpp_wt_bases", {
expect_equal(
biwavelet:::rcpp_wt_bases_dog(1:10, 2, -1),
biwavelet:::rcpp_wt_bases_dog(1:10, 2, 2))
expect_equal(
biwavelet:::rcpp_wt_bases_morlet(1:10, 2, -1),
biwavelet:::rcpp_wt_bases_morlet(1:10, 2, 6))
expect_equal(
biwavelet:::rcpp_wt_bases_paul(1:10, 2, -1),
biwavelet:::rcpp_wt_bases_paul(1:10, 2, 4))
})
test_that("replacing seq(1,N,1) with 1:N", {
m <- J1 <- npad <- n.obs <- num_waves <- 17
expect_equal(
2:(2 * m - 1),
seq(2, 2 * m - 1, 1) )
expect_equal(
1:(J1 + 1),
seq(1, J1 + 1, 1) )
expect_equal(
1:as.integer(npad / 2),
seq(1, as.integer(npad / 2), 1) )
expect_equal(
as.integer((npad - 1) / 2):1,
seq(as.integer((npad - 1) / 2), 1, -1) )
expect_equal(
1:((n.obs + 1) / 2 - 1),
seq(1, (n.obs + 1) / 2 - 1) )
expect_equal(
floor(n.obs / 2 - 1):1,
seq(floor(n.obs / 2 - 1), 1, -1) )
expect_equal(
1:num_waves,
seq(from = 1, to = num_waves, by = 1) )
}) |
context("test-form_tails")
expect_self_x_tbl <- function(pdqr_f) {
for (method in methods_tails) {
for (dir in c("both", "left", "right")) {
expect_equal_x_tbl(form_tails(pdqr_f, 0, method, dir), pdqr_f)
}
}
}
expect_dirac <- function(pdqr_f, x_vec) {
max_levels <- c("both" = 0.5, "left" = 1, "right" = 1)
for (method in methods_tails) {
for (dir in c("both", "left", "right")) {
expect_equal_x_tbl(
form_tails(pdqr_f, max_levels[dir], method, dir),
new_pdqr_by_ref(pdqr_f)(x_vec[dir], meta_type(pdqr_f))
)
}
}
}
expect_error_negative_level <- function(pdqr_f) {
for (method in methods_tails) {
for (dir in c("both", "left", "right")) {
expect_error(
form_tails(pdqr_f, -0.1, method = method, direction = dir),
"`level`.*negative"
)
}
}
}
cur_dis <- new_d(data.frame(x = 1:4, prob = (1:4) / 10), "discrete")
cur_con <- new_d(data.frame(x = 0:1, y = c(1, 1)), "continuous")
test_that("form_tails works with `method='trim'` and 'discrete' type", {
expect_ref_x_tbl(
form_tails(cur_dis, 0.1, "trim", "both"),
data.frame(x = 2:4, prob = c(0.2, 0.3, 0.3) / 0.8)
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.15, "trim", "both"),
data.frame(x = 2:4, prob = c(0.15, 0.3, 0.25) / 0.7)
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.1, "trim", "left"),
data.frame(x = 2:4, prob = c(0.2, 0.3, 0.4) / 0.9)
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.15, "trim", "left"),
data.frame(x = 2:4, prob = c(0.15, 0.3, 0.4) / 0.85)
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.8, "trim", "left"),
data.frame(x = 4, prob = 1)
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.4, "trim", "right"),
data.frame(x = 1:3, prob = c(0.1, 0.2, 0.3) / 0.6)
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.45, "trim", "right"),
data.frame(x = 1:3, prob = c(0.1, 0.2, 0.25) / 0.55)
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.8, "trim", "right"),
data.frame(x = 1:2, prob = c(0.5, 0.5))
)
})
test_that("form_tails works with `method='trim'` and 'continuous' type", {
expect_ref_x_tbl(
form_tails(cur_con, 0.05, "trim", "both"),
data.frame(x = c(0.05, 0.95), y = c(1, 1) / 0.9)
)
expect_ref_x_tbl(
form_tails(cur_con, 0.4, "trim", "both"),
data.frame(x = c(0.4, 0.6), y = c(1, 1) / 0.2)
)
expect_ref_x_tbl(
form_tails(cur_con, 0.05, "trim", "left"),
data.frame(x = c(0.05, 1), y = c(1, 1) / 0.95)
)
expect_ref_x_tbl(
form_tails(cur_con, 0.8, "trim", "left"),
data.frame(x = c(0.8, 1), y = c(1, 1) / 0.2)
)
expect_ref_x_tbl(
form_tails(cur_con, 0.05, "trim", "right"),
data.frame(x = c(0, 0.95), y = c(1, 1) / 0.95)
)
expect_ref_x_tbl(
form_tails(cur_con, 0.8, "trim", "right"),
data.frame(x = c(0, 0.2), y = c(1, 1) / 0.2)
)
})
test_that("form_tails works with `method='winsor'` and 'discrete' type", {
expect_ref_x_tbl(
form_tails(cur_dis, 0.1, "winsor", "both"),
data.frame(x = 1:4, prob = (1:4) / 10)
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.11, "winsor", "both"),
data.frame(x = 2:4, prob = c(0.3, 0.3, 0.4))
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.1, "winsor", "left"),
data.frame(x = 1:4, prob = (1:4) / 10)
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.11, "winsor", "left"),
data.frame(x = 2:4, prob = c(0.3, 0.3, 0.4))
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.4, "winsor", "right"),
data.frame(x = 1:3, prob = c(0.1, 0.2, 0.7))
)
expect_ref_x_tbl(
form_tails(cur_dis, 0.41, "winsor", "right"),
data.frame(x = 1:3, prob = c(0.1, 0.2, 0.7))
)
})
test_that("form_tails works with `method='winsor'` and 'continuous' type", {
expect_ref_x_tbl(
form_tails(cur_con, 0.1, "winsor", "both"),
data.frame(
x = c(0.1, 0.1 + 1e-8, 0.9 - 1e-8, 0.9),
y = c(2e7 + 1, 1, 1, 2e7 + 1)
)
)
expect_ref_x_tbl(
form_tails(cur_con, 0.1, "winsor", "left"),
data.frame(
x = c(0.1, 0.1 + 1e-8, 1),
y = c(2e7 + 1, 1, 1)
)
)
expect_ref_x_tbl(
form_tails(cur_con, 0.1, "winsor", "right"),
data.frame(
x = c(0, 0.9 - 1e-8, 0.9),
y = c(1, 1, 2e7 + 1)
)
)
})
test_that("form_tails returns self when `level = 0`", {
expect_self_x_tbl(cur_dis)
expect_self_x_tbl(cur_con)
})
test_that("form_tails returns dirac-like distribution at maximum level", {
expect_dirac(cur_dis, c("both" = 3, "left" = 4, "right" = 1))
expect_dirac(cur_con, c("both" = 0.5, "left" = 1, "right" = 0))
})
test_that("form_tails validates input", {
expect_error(form_tails("a", 0.1), "`f`.*not pdqr-function")
expect_error(form_tails(cur_dis), "`level`.*missing.*tail level to modify")
expect_error(form_tails(cur_dis, "a"), "`level`.*single number")
expect_error(form_tails(cur_dis, 0.1, method = 1), "`method`.*string")
expect_error(form_tails(cur_dis, 0.1, method = "a"), "`method`.*one of")
expect_error(form_tails(cur_dis, 0.1, direction = 1), "`direction`.*string")
expect_error(form_tails(cur_dis, 0.1, direction = "a"), "`direction`.*one of")
expect_error_negative_level(cur_dis)
expect_error(form_tails(cur_dis, 0.6, "trim", "both"), "`level`.*0.5")
expect_error(form_tails(cur_dis, 0.6, "winsor", "both"), "`level`.*0.5")
expect_error(form_tails(cur_dis, 1.2, "trim", "left"), "`level`.*1")
expect_error(form_tails(cur_dis, 1.2, "winsor", "left"), "`level`.*1")
expect_error(form_tails(cur_dis, 1.2, "trim", "right"), "`level`.*1")
expect_error(form_tails(cur_dis, 1.2, "winsor", "right"), "`level`.*1")
})
test_that("assert_form_tails_args respects global options", {
op <- options(pdqr.assert_args = FALSE)
on.exit(options(op))
expect_silent(assert_form_tails_args("a", "b", "c", "d"))
}) |
lslx$set("public",
"extract_specification",
function() {
specification <-
private$model$specification
return(specification)
})
lslx$set("public",
"extract_saturated_cov",
function() {
saturated_cov <-
private$fitting$reduced_data$saturated_cov
return(saturated_cov)
})
lslx$set("public",
"extract_saturated_mean",
function() {
saturated_mean <-
private$fitting$reduced_data$saturated_mean
return(saturated_mean)
})
lslx$set("public",
"extract_saturated_moment_acov",
function() {
saturated_moment_acov <-
private$fitting$reduced_data$saturated_moment_acov
return(saturated_moment_acov)
})
lslx$set("public",
"extract_lambda_grid",
function() {
lambda_grid <-
private$fitting$control$lambda_grid
return(lambda_grid)
})
lslx$set("public",
"extract_delta_grid",
function() {
delta_grid <-
private$fitting$control$delta_grid
return(delta_grid)
})
lslx$set("public",
"extract_weight_matrix",
function() {
if (!(private$fitting$control$loss %in% c("uls", "dwls", "wls"))) {
stop("Weight matrix can be only extracted when 'loss' = 'uls', 'dwls', or 'wls'.")
} else {
weight_matrix <-
private$fitting$control$weight_matrix
}
return(weight_matrix)
})
lslx$set("public",
"extract_penalty_level",
function(selector,
lambda,
delta,
step,
include_faulty = FALSE) {
if (!include_faulty) {
idx_convergent <-
which(private$fitting$fitted_result$is_convergent)
if (length(idx_convergent) == 0) {
stop(
"PL estimate under EACH penalty level is derived under nonconverged result. \n",
" To include faulty results, please set 'include_faulty = TRUE'. \n"
)
}
idx_convex <-
which(private$fitting$fitted_result$is_convex)
if (length(idx_convex) == 0) {
stop(
"PL estimate under EACH penalty level is derived under nonconvex approximated hessian. \n",
" To include faulty results, please set 'include_faulty = TRUE'. \n"
)
}
} else {
idx_convergent <-
seq_len(length(private$fitting$fitted_result$numerical_condition))
idx_convex <-
seq_len(length(private$fitting$fitted_result$numerical_condition))
}
idx_used <-
intersect(x = idx_convergent, y = idx_convex)
if (length(idx_used) == 0) {
stop(
"PL estimate under EACH penalty/convex level is derive under problematic optimization.\n",
" To include faulty results, please set 'include_faulty = TRUE'. \n"
)
}
if (length(private$fitting$fitted_result$numerical_condition) == 1) {
penalty_level <-
names(private$fitting$fitted_result$numerical_condition[idx_used])
} else {
if (private$fitting$control$regularizer) {
if (missing(selector) & missing(lambda) & missing(delta)) {
if (length(private$fitting$fitted_result$numerical_condition) > 1) {
stop(
"Argument 'selector', 'lambda', and 'delta' cannot be all empty if there are many regularization levels."
)
}
}
} else {}
if (private$fitting$control$searcher) {
if (missing(selector) & missing(step)) {
if (length(private$fitting$fitted_result$numerical_condition) > 1) {
stop(
"Argument 'selector' and 'step' cannot be all empty if there are many searching steps."
)
}
}
} else {}
if (!missing(selector)) {
if (length(selector) > 1) {
stop("The length of argument 'selector' can be only one.\n")
}
if (!(selector %in% names(private$fitting$fitted_result$information_criterion[[1]]))) {
stop(
"Argument 'selector' is unrecognized.\n",
" Selector currently recognized by 'lslx' is \n ",
do.call(paste, as.list(
names(
private$fitting$fitted_result$information_criterion[[1]]
)
)),
"."
)
}
if ((selector %in% c("raic", "raic3", "rcaic", "rbic", "rabic", "rhbic")) &
(!private$fitting$control$response)) {
stop(
"When lslx object is initialized via moments,",
" 'raic', 'raic3', 'rcaic', 'rbic', 'rabic', and 'rhbic' are not available."
)
}
if (private$fitting$control$regularizer) {
if ((!missing(lambda)) | (!missing(delta))) {
stop("When 'selector' is specified, 'lambda' or 'delta' will not be used.\n")
}
} else {}
if (private$fitting$control$searcher) {
if ((!missing(step))) {
stop("When 'selector' is specified, 'step' will not be used.\n")
}
} else {}
penalty_level <-
sapply(
X = selector,
FUN = function(selector_i) {
information_criterion_i <- sapply(
X = private$fitting$fitted_result$information_criterion,
FUN = function(information_criterion_j) {
getElement(object = information_criterion_j,
name = selector_i)
}
)
penalty_level_i <-
names(which.min(information_criterion_i[idx_used]))
return(penalty_level_i)
}
)
} else {
if (private$fitting$control$regularizer) {
if (missing(lambda)) {
stop("When 'selector' is not specified, 'lambda' cannot be empty.")
} else {
if (!private$fitting$control$double_regularizer) {
if (length(lambda) != 1) {
stop("When only one regularizer is implemented, length of 'lambda' must be 1.")
} else {
lambda <- list(lambda[[1]], 0)
}
} else {
if ((!is.list(lambda))|(length(lambda) != 2)) {
stop("When two regularizers are implemented, 'lambda' must be a list with length 2.")
}
if (!is.numeric(lambda[[1]])|!is.numeric(lambda[[2]])) {
stop("Element in 'lambda' must be a numeric with length 1.")
}
}
}
if (missing(delta)) {
if (private$fitting$control$penalty_method %in% c("elastic_net", "mcp")) {
stop(
"When 'selector' is not specified, 'delta' cannot be empty."
)
} else if (private$fitting$control$penalty_method == "lasso") {
delta <- c(1, 1)
} else if (private$fitting$control$penalty_method == "ridge") {
delta <- c(0, 0)
} else{}
} else {
if (!private$fitting$control$double_regularizer) {
if (length(delta) != 1) {
stop("When only one regularizer is implemented, length of 'delta' must be 1.")
} else {
if (private$fitting$control$penalty_method == "ridge") {
delta <- list(delta[[1]], 0)
} else if (private$fitting$control$penalty_method == "lasso") {
delta <- list(delta[[1]], 1)
} else if (private$fitting$control$penalty_method == "elastic_net") {
delta <- list(delta[[1]], .5)
} else if (private$fitting$control$penalty_method == "mcp") {
delta <- list(delta[[1]], Inf)
} else {}
}
} else {
if ((!is.list(delta))|(length(delta) != 2)) {
stop("When two regularizers are implemented, 'delta' must be a list with length 2.")
}
if (!is.numeric(delta[[1]])|!is.numeric(delta[[2]])) {
stop("Element in 'delta' must be a numeric with length 1.")
}
}
}
penalty_used_split <-
strsplit(
x = names(private$fitting$fitted_result$numerical_condition),
split = "=|\\,|\\(|\\)"
)
penalty_used <-
sapply(
X = penalty_used_split,
FUN = function(penalty_used_split_i) {
penalty_used_i <-
as.numeric(c(penalty_used_split_i[3],
penalty_used_split_i[4],
penalty_used_split_i[8],
penalty_used_split_i[9]))
return(penalty_used_i)
}
)
lambda_1st_used <- penalty_used[1, ]
if (lambda[[1]] %in% lambda_1st_used) {
lambda_1st_nearest <- lambda[[1]]
} else {
if (lambda[[1]] == Inf) {
lambda_1st_nearest <- max(lambda_1st_used)
} else {
lambda_1st_nearest <-
max(abs(unique(lambda_1st_used)[which.min(abs(unique(lambda_1st_used) - lambda[[1]]))]))
}
}
lambda_2nd_used <- penalty_used[2, ]
if (lambda[[2]] %in% lambda_2nd_used) {
lambda_2nd_nearest <- lambda[[2]]
} else {
if (lambda[[2]] == Inf) {
lambda_2nd_nearest <- max(lambda_2nd_used)
} else {
lambda_2nd_nearest <-
max(abs(unique(lambda_2nd_used)[which.min(abs(unique(lambda_2nd_used) - lambda[[2]]))]))
}
}
delta_1st_used <- penalty_used[3, ]
if (delta[[1]] %in% delta_1st_used) {
delta_1st_nearest <- delta[[1]]
} else {
if (delta[[1]] == Inf) {
delta_1st_nearest <- max(delta_1st_used)
} else {
delta_1st_nearest <-
max(abs(unique(delta_1st_used)[which.min(abs(unique(delta_1st_used) - delta[[1]]))]))
}
}
delta_2nd_used <- penalty_used[4, ]
if (delta[[2]] %in% delta_2nd_used) {
delta_2nd_nearest <- delta[[2]]
} else {
if (delta[[2]] == Inf) {
delta_2nd_nearest <- max(delta_2nd_used)
} else {
delta_2nd_nearest <-
max(abs(unique(delta_2nd_used)[which.min(abs(unique(delta_2nd_used) - delta[[2]]))]))
}
}
penalty_level <-
paste0("lambda", "=c(",
lambda_1st_nearest, ",",
lambda_2nd_nearest, ")", ",",
"delta", "=c(",
delta_1st_nearest, ",",
delta_2nd_nearest, ")")
} else {}
if (private$fitting$control$searcher) {
if (missing(step)) {
stop("When 'selector' is not specified, 'step' cannot be empty.")
}
if (private$fitting$control$penalty_method == "forward") {
step_nearest <-
min(abs(unique(private$fitting$control$step_grid)[
which.min(abs(unique(private$fitting$control$step_grid) - step))]))
} else if (private$fitting$control$penalty_method == "backward") {
step_nearest <-
max(abs(unique(private$fitting$control$step_grid)[
which.min(abs(unique(private$fitting$control$step_grid) - step))]))
} else {}
penalty_level <- paste0("step=", step_nearest)
} else {}
}
}
return(penalty_level)
})
lslx$set("public",
"extract_coefficient_indicator",
function(selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
if (!(type %in% c(
"default",
"all",
"fixed",
"free",
"pen",
"effective",
"selected"
))) {
stop(
"Argument 'type' can be only either 'default', 'all', 'fixed', 'free', 'pen', 'active', or 'selected'."
)
}
if (type == "default") {
type <- "all"
}
if (type == "all") {
coefficient_indicator <- rep(T, length(coefficient))
} else if (type == "fixed") {
coefficient_indicator <-
!(
private$fitting$reduced_model$theta_is_free |
private$fitting$reduced_model$theta_is_pen
)
} else if (type == "free") {
coefficient_indicator <-
private$fitting$reduced_model$theta_is_free
} else if (type == "pen") {
coefficient_indicator <-
private$fitting$reduced_model$theta_is_pen
} else if (type == "effective") {
coefficient_indicator <-
private$fitting$reduced_model$theta_is_free |
(private$fitting$reduced_model$theta_is_pen &
coefficient != 0)
} else if (type == "selected") {
coefficient_indicator <-
private$fitting$reduced_model$theta_is_pen &
coefficient != 0
} else {}
return(coefficient_indicator)
})
lslx$set("public",
"extract_numerical_condition",
function(selector,
lambda,
delta,
step,
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
numerical_condition <-
private$fitting$fitted_result$numerical_condition[[penalty_level]]
return(numerical_condition)
})
lslx$set("public",
"extract_information_criterion",
function(selector,
lambda,
delta,
step,
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
information_criterion <-
private$fitting$fitted_result$information_criterion[[penalty_level]]
return(information_criterion)
})
lslx$set("public",
"extract_fit_index",
function(selector,
lambda,
delta,
step,
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
fit_index <-
private$fitting$fitted_result$fit_index[[penalty_level]]
return(fit_index)
})
lslx$set("public",
"extract_cv_error",
function(selector,
lambda,
delta,
step,
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
cv_error <-
private$fitting$fitted_result$cv_error[[penalty_level]]
return(cv_error)
})
lslx$set("public",
"extract_coefficient",
function(selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
coefficient_indicator <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = type,
include_faulty = include_faulty
)
if (!(all(coefficient_indicator))) {
coefficient <- coefficient[coefficient_indicator]
}
return(coefficient)
})
lslx$set("public",
"extract_debiased_coefficient",
function(selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE) {
coefficient <-
self$extract_coefficient(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
debiased_coefficient <- coefficient
if (private$fitting$control$regularizer) {
is_effective <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = "effective",
include_faulty = include_faulty
)
is_selected <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = "selected",
include_faulty = include_faulty
)
if (any(is_selected)) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
lambda_1st <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][3])
lambda_2nd <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][4])
delta_1st <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][8])
delta_2nd <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][9])
regularizer_gradient <-
compute_regularizer_gradient_cpp(
theta_value = coefficient,
lambda_1st = lambda_1st,
lambda_2nd = lambda_2nd,
delta_1st = delta_1st,
delta_2nd = delta_2nd,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
observed_information <-
2 * self$extract_observed_information(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
observed_information_inv <-
matrix(0, length(coefficient), length(coefficient))
observed_information_inv[is_effective, is_effective] <-
solve(observed_information[is_effective, is_effective])
debiased_coefficient[is_effective] <-
coefficient[is_effective] +
observed_information_inv[is_effective, is_effective, drop = FALSE] %*%
(regularizer_gradient[is_effective, 1, drop = FALSE])
}
} else {}
coefficient_indicator <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = type,
include_faulty = include_faulty
)
if (!(all(coefficient_indicator))) {
debiased_coefficient <- debiased_coefficient[coefficient_indicator]
}
return(debiased_coefficient)
})
lslx$set("public",
"extract_implied_cov",
function(selector,
lambda,
delta,
step,
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
implied_cov <-
compute_implied_cov_cpp(
theta_value = coefficient,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
implied_cov <-
lapply(
X = implied_cov,
FUN = function(implied_cov_i) {
rownames(implied_cov_i) <- private$model$name_response
colnames(implied_cov_i) <-
private$model$name_response
return(implied_cov_i)
}
)
names(implied_cov) <- private$model$level_group
return(implied_cov)
})
lslx$set("public",
"extract_implied_mean",
function(selector,
lambda,
delta,
step,
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
implied_mean <-
compute_implied_mean_cpp(
theta_value = coefficient,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
implied_mean <-
lapply(
X = implied_mean,
FUN = function(implied_mean_i) {
rownames(implied_mean_i) <- private$model$name_response
return(implied_mean_i)
}
)
names(implied_mean) <- private$model$level_group
return(implied_mean)
})
lslx$set("public",
"extract_residual_cov",
function(selector,
lambda,
delta,
step,
include_faulty = FALSE) {
implied_cov <-
self$extract_implied_cov(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
residual_cov <-
mapply(
FUN = function(implied_cov_i,
saturated_cov_i) {
residual_cov_i <-
implied_cov_i - saturated_cov_i
return(residual_cov_i)
},
implied_cov,
private$fitting$reduced_data$saturated_cov,
SIMPLIFY = FALSE,
USE.NAMES = TRUE
)
return(residual_cov)
})
lslx$set("public",
"extract_residual_mean",
function(selector,
lambda,
delta,
step,
include_faulty = FALSE) {
implied_mean <-
self$extract_implied_mean(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
residual_mean <-
mapply(
FUN = function(implied_mean_i,
saturated_mean_i) {
residual_mean_i <-
implied_mean_i - saturated_mean_i
return(residual_mean_i)
},
implied_mean,
private$fitting$reduced_data$saturated_mean,
SIMPLIFY = FALSE,
USE.NAMES = TRUE
)
return(residual_mean)
})
lslx$set("public",
"extract_coefficient_matrix",
function(selector,
lambda,
delta,
step,
block,
include_faulty = FALSE) {
if (missing(block)) {
stop("Argument 'block' is missing.")
}
if (length(block) > 1) {
stop("The length of argument 'block' can be only one.")
}
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
coefficient_matrix <-
compute_coefficient_matrix_cpp(
theta_value = coefficient,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
if (block %in% c("f<-1", "y<-1")) {
selected_matrix <- coefficient_matrix$alpha
col_names <- "1"
} else {
if (block %in% c("f<-f", "f<-y", "y<-f", "y<-y")) {
selected_matrix <- coefficient_matrix$beta
} else if (block %in% c("f<->f", "f<->y", "y<->f", "y<->y")) {
selected_matrix <- coefficient_matrix$phi
} else {
stop(
"Argument 'block' is unrecognized. It must be one of the following:\n",
" 'f<-1', 'y<-1', 'f<-f', 'f<-y', 'y<-f', 'f<-f', 'f<->f', 'f<->y', 'y<->f', 'f<->f'."
)
}
col_names <- private$model$name_eta
}
row_select <-
strsplit(block, split = "<-|<->|->")[[1]][1]
col_select <-
strsplit(block, split = "<-|<->|->")[[1]][2]
if (row_select == "f") {
row_select <- private$model$name_factor
} else if (row_select == "y") {
row_select <- private$model$name_response
}
if (col_select == "f") {
col_select <- private$model$name_factor
} else if (col_select == "y") {
col_select <- private$model$name_response
}
selected_matrix <-
lapply(
X = selected_matrix,
FUN = function(selected_matrix_i) {
rownames(selected_matrix_i) <- private$model$name_eta
colnames(selected_matrix_i) <- col_names
return(selected_matrix_i)
}
)
coefficient_matrix_block <-
lapply(
X = selected_matrix,
FUN = function(selected_matrix_i) {
coefficient_matrix_block_i <-
selected_matrix_i[row_select,
col_select,
drop = FALSE]
return(coefficient_matrix_block_i)
}
)
names(coefficient_matrix_block) <-
private$model$level_group
return(coefficient_matrix_block)
})
lslx$set("public",
"extract_moment_jacobian",
function(selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
moment_jacobian <-
compute_model_jacobian_cpp(
theta_value = coefficient,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
colnames(moment_jacobian) <-
rownames(private$model$specification)
coefficient_indicator <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = type,
include_faulty = include_faulty
)
if (!(all(coefficient_indicator))) {
moment_jacobian <-
moment_jacobian[, coefficient_indicator, drop = FALSE]
}
return(moment_jacobian)
})
lslx$set("public",
"extract_expected_information",
function(selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
expected_information <-
compute_expected_information_cpp(
theta_value = coefficient,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
colnames(expected_information) <-
rownames(private$model$specification)
rownames(expected_information) <-
rownames(private$model$specification)
coefficient_indicator <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = type,
include_faulty = include_faulty
)
if (!(all(coefficient_indicator))) {
expected_information <- expected_information[coefficient_indicator,
coefficient_indicator,
drop = FALSE]
}
return(expected_information)
})
lslx$set("public",
"extract_observed_information",
function(selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
observed_information <-
compute_observed_information_cpp(
theta_value = coefficient,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
colnames(observed_information) <-
rownames(private$model$specification)
rownames(observed_information) <-
rownames(private$model$specification)
coefficient_indicator <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = type,
include_faulty = include_faulty
)
if (!(all(coefficient_indicator))) {
observed_information <- observed_information[coefficient_indicator,
coefficient_indicator,
drop = FALSE]
}
return(observed_information)
})
lslx$set("public",
"extract_score_acov",
function(selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
score_acov <-
compute_score_acov_cpp(
theta_value = coefficient,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
colnames(score_acov) <-
rownames(private$model$specification)
rownames(score_acov) <-
rownames(private$model$specification)
coefficient_indicator <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = type,
include_faulty = include_faulty
)
if (!(all(coefficient_indicator))) {
score_acov <- score_acov[coefficient_indicator,
coefficient_indicator,
drop = FALSE]
}
return(score_acov)
})
lslx$set("public",
"extract_coefficient_acov",
function(selector,
lambda,
delta,
step,
standard_error = "default",
ridge_penalty = "default",
type = "default",
include_faulty = FALSE) {
if (!(
standard_error %in% c(
"default",
"sandwich",
"observed_information",
"expected_information"
)
)) {
stop(
"Argument 'standard_error' can be only either 'default', 'sandwich', 'observed_information', or 'expected_information'."
)
}
if (standard_error == "default") {
if (private$fitting$control$response) {
standard_error <- "sandwich"
} else {
standard_error <- "observed_information"
}
}
if (ridge_penalty == "default") {
if (private$fitting$control$penalty_method %in% c("ridge", "elastic_net")) {
ridge_penalty <- TRUE
} else {
ridge_penalty <- FALSE
}
}
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
self$extract_coefficient(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
is_effective <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = "effective",
include_faulty = include_faulty
)
coefficient_acov <-
matrix(NA, length(coefficient), length(coefficient))
if (standard_error == "sandwich") {
score_acov <-
self$extract_score_acov(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
observed_information <-
self$extract_observed_information(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
if (ridge_penalty) {
penalty_level_split <- strsplit(penalty_level, ",|\\(|\\)")
lambda_1st <- as.numeric(penalty_level_split[[1]][2])
lambda_2nd <- as.numeric(penalty_level_split[[1]][3])
delta_1st <- as.numeric(penalty_level_split[[1]][6])
delta_2nd <- as.numeric(penalty_level_split[[1]][7])
if (private$fitting$control$penalty_method == "ridge") {
observed_information <-
observed_information +
diag(private$fitting$reduced_model$theta_weight * (private$fitting$reduced_model$theta_set == 1) * lambda_1st +
private$fitting$reduced_model$theta_weight * (private$fitting$reduced_model$theta_set == 2) * lambda_2nd)
} else if (private$fitting$control$penalty_method == "elastic_net") {
observed_information <-
observed_information +
diag(private$fitting$reduced_model$theta_weight *
(private$fitting$reduced_model$theta_set == 1) * lambda_1st * (1 - delta_1st) +
private$fitting$reduced_model$theta_weight *
(private$fitting$reduced_model$theta_set == 2) * lambda_2nd * (1 - delta_2nd))
} else if (private$fitting$control$penalty_method == "mcp") {
observed_information <-
observed_information -
diag(private$fitting$reduced_model$theta_weight * (abs(coefficient) <= (lambda_1st * delta_1st)) *
(private$fitting$reduced_model$theta_set == 1) * (.5 / delta_1st) +
private$fitting$reduced_model$theta_weight * (abs(coefficient) <= (lambda_2nd * delta_2nd)) *
(private$fitting$reduced_model$theta_set == 2) * (.5 / delta_2nd))
} else {}
}
observed_information_pinv <-
solve(observed_information[is_effective, is_effective])
coefficient_acov[is_effective, is_effective] <-
(observed_information_pinv %*%
score_acov[is_effective, is_effective] %*%
observed_information_pinv)
} else if (standard_error == "expected_information") {
expected_information <-
self$extract_expected_information(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
if (ridge_penalty) {
penalty_level_split <- strsplit(penalty_level, ",|\\(|\\)")
lambda_1st <- as.numeric(penalty_level_split[[1]][2])
lambda_2nd <- as.numeric(penalty_level_split[[1]][3])
delta_1st <- as.numeric(penalty_level_split[[1]][6])
delta_2nd <- as.numeric(penalty_level_split[[1]][7])
if (private$fitting$control$penalty_method == "ridge") {
expected_information <-
expected_information +
diag(private$fitting$reduced_model$theta_weight * (private$fitting$reduced_model$theta_set == 1) * lambda_1st +
private$fitting$reduced_model$theta_weight * (private$fitting$reduced_model$theta_set == 2) * lambda_2nd)
} else if (private$fitting$control$penalty_method == "elastic_net") {
expected_information <-
expected_information +
diag(private$fitting$reduced_model$theta_weight *
(private$fitting$reduced_model$theta_set == 1) * lambda_1st * (1 - delta_1st) +
private$fitting$reduced_model$theta_weight *
(private$fitting$reduced_model$theta_set == 2) * lambda_2nd * (1 - delta_2nd))
} else if (private$fitting$control$penalty_method == "mcp") {
expected_information <-
expected_information -
diag(private$fitting$reduced_model$theta_weight * (abs(coefficient) <= (lambda_1st * delta_1st)) *
(private$fitting$reduced_model$theta_set == 1) * (.5 / delta_1st) +
private$fitting$reduced_model$theta_weight * (abs(coefficient) <= (lambda_2nd * delta_2nd)) *
(private$fitting$reduced_model$theta_set == 2) * (.5 / delta_2nd))
} else {}
}
coefficient_acov[is_effective, is_effective] <-
solve(expected_information[is_effective, is_effective]) /
private$fitting$reduced_data$n_observation
} else if (standard_error == "observed_information") {
observed_information <-
self$extract_observed_information(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
if (ridge_penalty) {
penalty_level_split <- strsplit(penalty_level, ",|\\(|\\)")
lambda_1st <- as.numeric(penalty_level_split[[1]][2])
lambda_2nd <- as.numeric(penalty_level_split[[1]][3])
delta_1st <- as.numeric(penalty_level_split[[1]][6])
delta_2nd <- as.numeric(penalty_level_split[[1]][7])
if (private$fitting$control$penalty_method == "ridge") {
observed_information <-
observed_information +
diag(private$fitting$reduced_model$theta_weight * (private$fitting$reduced_model$theta_set == 1) * lambda_1st +
private$fitting$reduced_model$theta_weight * (private$fitting$reduced_model$theta_set == 2) * lambda_2nd)
} else if (private$fitting$control$penalty_method == "elastic_net") {
observed_information <-
observed_information +
diag(private$fitting$reduced_model$theta_weight *
(private$fitting$reduced_model$theta_set == 1) * lambda_1st * (1 - delta_1st) +
private$fitting$reduced_model$theta_weight *
(private$fitting$reduced_model$theta_set == 2) * lambda_2nd * (1 - delta_2nd))
} else if (private$fitting$control$penalty_method == "mcp") {
observed_information <-
observed_information -
diag(private$fitting$reduced_model$theta_weight * (abs(coefficient) <= (lambda_1st * delta_1st)) *
(private$fitting$reduced_model$theta_set == 1) * (.5 / delta_1st) +
private$fitting$reduced_model$theta_weight * (abs(coefficient) <= (lambda_2nd * delta_2nd)) *
(private$fitting$reduced_model$theta_set == 2) * (.5 / delta_2nd))
} else {}
}
coefficient_acov[is_effective, is_effective] <-
solve(observed_information[is_effective, is_effective]) /
private$fitting$reduced_data$n_observation
} else {}
colnames(coefficient_acov) <-
rownames(private$model$specification)
rownames(coefficient_acov) <-
rownames(private$model$specification)
coefficient_indicator <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = type,
include_faulty = include_faulty
)
if (!(all(coefficient_indicator))) {
coefficient_acov <- coefficient_acov[coefficient_indicator,
coefficient_indicator,
drop = FALSE]
}
attr(coefficient_acov, "standard_error") <- standard_error
return(coefficient_acov)
})
lslx$set("public",
"extract_loss_gradient",
function(selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
loss_gradient <-
compute_loss_gradient_cpp(
theta_value = coefficient,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
rownames(loss_gradient) <-
rownames(private$model$specification)
coefficient_indicator <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = type,
include_faulty = include_faulty
)
if (!(all(coefficient_indicator))) {
loss_gradient <- loss_gradient[coefficient_indicator, ,
drop = FALSE]
}
return(loss_gradient)
})
lslx$set("public",
"extract_regularizer_gradient",
function(selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE) {
if (private$fitting$control$regularizer) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
lambda_1st <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][3])
lambda_2nd <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][4])
delta_1st <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][8])
delta_2nd <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][9])
regularizer_gradient <-
compute_regularizer_gradient_cpp(
theta_value = coefficient,
lambda_1st = lambda_1st,
lambda_2nd = lambda_2nd,
delta_1st = delta_1st,
delta_2nd = delta_2nd,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
} else {
regularizer_gradient <-
matrix(0, nrow = private$fitting$reduced_model$n_theta, ncol = 1)
}
rownames(regularizer_gradient) <-
rownames(private$model$specification)
coefficient_indicator <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = type,
include_faulty = include_faulty
)
if (!(all(coefficient_indicator))) {
regularizer_gradient <-
regularizer_gradient[coefficient_indicator, ,
drop = FALSE]
}
return(regularizer_gradient)
})
lslx$set("public",
"extract_objective_gradient",
function(selector,
lambda,
delta,
step,
type = "default",
include_faulty = FALSE) {
penalty_level <-
self$extract_penalty_level(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
include_faulty = include_faulty
)
coefficient <-
private$fitting$fitted_result$coefficient[[penalty_level]]
if (private$fitting$control$regularizer) {
lambda_1st <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][3])
lambda_2nd <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][4])
delta_1st <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][8])
delta_2nd <- as.numeric(strsplit(x = penalty_level,
split = "=|\\,|\\(|\\)")[[1]][9])
objective_gradient <-
compute_objective_gradient_cpp(
theta_value = coefficient,
lambda_1st = lambda_1st,
lambda_2nd = lambda_2nd,
delta_1st = delta_1st,
delta_2nd = delta_2nd,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
} else {
objective_gradient <-
compute_loss_gradient_cpp(
theta_value = coefficient,
reduced_data = private$fitting$reduced_data,
reduced_model = private$fitting$reduced_model,
control = private$fitting$control,
supplied_result = private$fitting$supplied_result
)
}
rownames(objective_gradient) <-
rownames(private$model$specification)
coefficient_indicator <-
self$extract_coefficient_indicator(
selector = selector,
lambda = lambda,
delta = delta,
step = step,
type = type,
include_faulty = include_faulty
)
if (!(all(coefficient_indicator))) {
objective_gradient <-
objective_gradient[coefficient_indicator, ,
drop = FALSE]
}
return(objective_gradient)
}) |
set_secrets <- function(keyvault, secrets) {
keyvault$set_secrets(secrets)
invisible(NULL)
}
get_secrets <- function(keyvault, secrets) {
keyvault$get_secrets(secrets)
}
delete_secrets <- function(keyvault, secrets) {
keyvault$delete_secrets(secrets)
invisible(NULL)
}
list_secrets <- function(keyvault) {
keyvault$list_secrets()
} |
rpcauchy = function(n, lambda = 1, mu= 0, sigma = 1){
n = runif(n)
x = qpcauchy(n, lambda, mu, sigma)
return(x)
} |
options(stringsAsFactors = FALSE)
expect_equal(
data.frame(x = 1) %>% mutate(across()),
data.frame(x = 1),
info = "across() works on one column data.frame"
)
expect_equivalent(
mtcars %>% group_by(cyl) %>% summarise(across(starts_with("c"), mean)) %>% ungroup(),
data.frame(cyl = c(4, 6, 8), carb_1 = c(1.54545455, 3.42857, 3.5)),
tolerance = 0.00001,
info = "across() does not select grouping variables"
)
gf <- data.frame(x = 1, y = 2, z = 3, s = "") %>% group_by(x)
expect_named <- function(x, y, info = NA_character_) expect_equal(colnames(x), y, info = info)
expect_named(
summarise(gf, across()),
c("x", "y", "z", "s"),
"across() correctly names output columns"
)
expect_named(
summarise(gf, across(where(is.numeric), mean)),
c("x", "y", "z"),
"across() correctly names output for non-named functions"
)
expect_named(
summarise(gf, across(where(is.numeric), list(mean = mean, sum = sum))),
c("x", "y_mean", "y_sum", "z_mean", "z_sum"),
info = "across() correctly names output columns for named lists of functions"
)
expect_named(
summarise(gf, across(where(is.numeric), list(mean = mean, sum))),
c("x", "y_mean", "y_2", "z_mean", "z_2"),
info = "across() correctly names output columns for partially named lists of functions"
)
expect_named(
summarise(gf, across(where(is.numeric), list(mean, sum = sum))),
c("x", "y_1", "y_sum", "z_1", "z_sum"),
info = "across() correctly names output columns for partially named lists of functions"
)
expect_named(
summarise(gf, across(where(is.numeric), list(mean, sum))),
c("x", "y_1", "y_2", "z_1", "z_2"),
info = "across() correctly names output columns for non-named lists of functions"
)
expect_identical(
data.frame(x = 1:2, y = c("a", "b")) %>% summarise(across(everything(), list(cls = class, type = is.numeric))),
data.frame(x_cls = "integer", x_type = TRUE, y_cls = "character", y_type = FALSE),
info = "across() result locations are aligned with column names"
)
expect_equal(
summarise(data.frame(x = c(1, NA)), across(everything(), mean, na.rm = TRUE)),
data.frame(x = 1),
info = "across() passes ... to functions"
)
expect_equal(
summarise(data.frame(x = c(1, NA)), across(everything(), list(mean = mean, median = median), na.rm = TRUE)),
data.frame(x_mean = 1, x_median = 1),
info = "across() passes ... to functions"
)
df <- data.frame(x = 1)
expect_equal(
mutate(df, across(x, `+`, 1)),
data.frame(x = 2),
info = "across() passes unnamed arguments following .fns as ..."
)
expect_equal(
summarize(data.frame(x = c(1, 2)), across(x, tail, n = 1)),
data.frame(x = 2),
info = "across() avoids simple argument name collisions with ..."
)
df <- data.frame(a = 1)
expect_equal(
mutate(df, x = ncol(across(where(is.numeric))), y = ncol(across(where(is.numeric)))),
data.frame(a = 1, x = 1L, y = 2L),
info = "across() works sequentially"
)
expect_equal(
mutate(df, a = "x", y = ncol(across(where(is.numeric)))),
data.frame(a = "x", y = 0L),
info = "across() works sequentially"
)
expect_equal(
mutate(df, x = 1, y = ncol(across(where(is.numeric)))),
data.frame(a = 1, x = 1, y = 2L),
info = "across() works sequentially"
)
expect_named(
mutate(data.frame(a = 1, b = 2), a = 2, x = across())$x,
c("a", "b"),
info = "across() retains original ordering"
)
expect_equal(
mutate(data.frame(a = 1, b = 2), x = ncol(across(where(is.numeric))) + ncol(across(a))),
data.frame(a = 1, b = 2, x = 3),
info = "across() can be used twice in the same expression"
)
expect_equal(
mutate(data.frame(a = 1, b = 2), x = ncol(across(where(is.numeric))), y = ncol(across(a))),
data.frame(a = 1, b = 2, x = 2, y = 1),
info = "across() can be used in separate expressions"
)
df <- data.frame(g = 1:2, a = 1:2, b = 3:4) %>% group_by(g)
expect_equal(
mutate(df, x = if_else(cur_group_id() == 1L, across(a)$a, across(b)$b)),
structure(
list(g = 1:2, a = 1:2, b = 3:4, x = c(1L, 4L)),
groups = structure(list(g = 1:2, .rows = list(1L, 2L)),
row.names = 1:2,
class = "data.frame",
.drop = TRUE
), row.names = 1:2, class = c("grouped_df", "data.frame")
),
info = "across() usage can depend on the group id"
)
df <- data.frame(g = rep(1:2, each = 2), a = 1:4) %>% group_by(g)
expect_identical(
mutate(df, data.frame(x = across(where(is.numeric), mean)$a, y = across(where(is.numeric), max)$a)),
mutate(df, x = mean(a), y = max(a)),
info = "across() internal cache key depends on all inputs"
)
expect_error(
data.frame(x = 1) %>% summarise(across(everything(), "foo")),
info = "across() fails on non-function"
)
expect_equal(
mutate(data.frame(), across()),
data.frame(),
info = "across() works with empty data.frames"
)
expect_equal(
data.frame(x = 1, y = 2) %>% summarise(across(everything(), ~rep(42, .))),
data.frame(x = rep(42, 2), y = rep(42, 2)),
info = "across() uses tidy recycling rules"
)
expect_error(
data.frame(x = 2, y = 3) %>% summarise(across(everything(), ~rep(42, .))),
info = "across() uses tidy recycling rules
)
expect_equal(
iris %>% group_by(Species) %>% summarise(across(starts_with("Sepal"), ~mean(., na.rm = TRUE))) %>% ungroup(),
data.frame(
Species = structure(1:3, .Label = c("setosa", "versicolor", "virginica"), class = "factor"),
Sepal.Length = c(5.006, 5.936, 6.588),
Sepal.Width = c(3.428, 2.77, 2.974)
),
info = "purrr style formulas work"
)
expect_equal(
mtcars %>% summarise(across(starts_with("m"), list(~mean(.x), ~sd(.x)))),
data.frame(mpg_1 = mean(mtcars$mpg), mpg_2 = sd(mtcars$mpg)),
info = "list of purrr style formulas works"
)
expect_equal(
mtcars %>% summarise(across(starts_with("m"), list("mean", "sd"))),
data.frame(mpg_1 = mean(mtcars$mpg), mpg_2 = sd(mtcars$mpg)),
info = "character vector style functions work"
)
d <- data.frame(x = 10, y = 10)
expect_error(filter(d, if_all(x:y, identity)), info = "if_all() enforces logical in filter")
expect_error(filter(d, if_any(x:y, identity)), info = "if_any() enforces logical in filter")
expect_error(mutate(d, ok = if_all(x:y, identity)), info = "if_all() enforces logical in mutate")
expect_error(mutate(d, ok = if_any(x:y, identity)), info = "if_any() enforces logical in mutate")
d <- data.frame(x = c(1, 5, 10, 10), y = c(0, 0, 0, 10), z = c(10, 5, 1, 10))
res <- mutate(.data = d, any = if_any(x:z, ~ . > 8), all = if_all(x:z, ~ . > 8))
expect_equal(res$any, c(TRUE, FALSE, TRUE, TRUE), info = "if_any() can be used in mutate")
expect_equal(res$all, c(FALSE, FALSE, FALSE, TRUE), info = "if_all() can be used in mutate")
df <- expand.grid(
x = c(TRUE, FALSE, NA), y = c(TRUE, FALSE, NA)
)
expect_identical(
filter(df, x & y),
filter(df, if_all(c(x, y), identity)),
info = "if_all() respects filter()-like NA handling"
)
expect_identical(
filter(df, x | y),
filter(df, if_any(c(x, y), identity)),
info = "if_any() respects filter()-like NA handling"
)
expect_equal(
mtcars %>% filter(if_any(contains("Width"), ~ . > 4)),
mtcars[mtcars$mpg > 100, ],
info = "if_any() conditions that return empty data.frames do not fail."
)
expect_equal(
mtcars %>% filter(if_all(contains("Width"), ~ . > 4)),
mtcars[mtcars$mpg > 100, ],
info = "if_all() conditions that return empty data.frames do not fail."
) |
genre.table <- read.table(text = "
genre, genre.id
unset, unset
Alternative, 48
Gothic, 38
Grunge, 103
Metal - Extreme, 37
Metal (general), 36
Punk, 35
Chiptune, 54
Demo Style, 55
One Hour Compo, 53
Chillout, 106
Electronic - Ambient, 2
Electronic - Breakbeat, 9
Electronic - Dance, 3
Electronic - Drum and Bass, 6
Electronic - Gabber, 40
Electronic - Hardcore, 39
Electronic - House, 10
Electronic - IDM, 99
Electronic - Industrial, 34
Electronic - Jungle, 60
Electronic - Minimal, 101
Electronic - Other, 100
Electronic - Progressive, 11
Electronic - Rave, 65
Electronic - Techno, 7
Electronic (general), 1
Trance - Acid, 63
Trance - Dream, 67
Trance - Goa, 66
Trance - Hard, 64
Trance - Progressive, 85
Trance - Tribal, 70
Trance (general), 71
Big Band, 74
Blues, 19
Jazz - Acid, 30
Jazz - Modern, 31
Jazz (general), 29
Swing, 75
Bluegrass, 105
Classical, 20
Comedy, 45
Country, 18
Experimental, 46
Fantasy, 52
Folk, 21
Fusion, 102
Medieval, 28
New Ages, 44
Orchestral, 50
Other, 41
Piano, 59
Religious, 49
Soundtrack, 43
Spiritual, 47
Video Game, 8
Vocal Montage, 76
World, 42
Ballad, 56
Disco, 58
Easy Listening, 107
Funk, 32
Pop - Soft, 62
Pop - Synth, 61
Pop (general), 12
Rock - Hard, 14
Rock - Soft, 15
Rock (general), 13
Christmas, 72
Halloween, 82
Hip-Hop, 22
R and B, 26
Reggae, 27
Ska, 24
Soul, 25", header = T, sep = ",", stringsAsFactors = F, strip.white = T)
htmlcodes <- read.table(text = "
char, code
8364, 'euro'
32, 'nbsp'
34, 'quot'
38, 'amp'
60, 'lt'
62, 'gt'
160, 'nbsp'
161, 'iexcl'
162, 'cent'
163, 'pound'
164, 'curren'
165, 'yen'
166, 'brvbar'
167, 'sect'
168, 'uml'
169, 'copy'
170, 'ordf'
172, 'not'
173, 'shy'
174, 'reg'
175, 'macr'
176, 'deg'
177, 'plusmn'
178, 'sup2'
179, 'sup3'
180, 'acute'
181, 'micro'
182, 'para'
183, 'middot'
184, 'cedil'
185, 'sup1'
186, 'ordm'
187, 'raquo'
188, 'frac14'
189, 'frac12'
190, 'frac34'
191, 'iquest'
192, 'Agrave'
193, 'Aacute'
194, 'Acirc'
195, 'Atilde'
196, 'Auml'
197, 'Aring'
198, 'AElig'
199, 'Ccedil'
200, 'Egrave'
201, 'Eacute'
202, 'Ecirc'
203, 'Euml'
204, 'Igrave'
205, 'Iacute'
206, 'Icirc'
207, 'Iuml'
208, 'ETH'
209, 'Ntilde'
210, 'Ograve'
211, 'Oacute'
212, 'Ocirc'
213, 'Otilde'
214, 'Ouml'
215, 'times'
216, 'Oslash'
217, 'Ugrave'
218, 'Uacute'
219, 'Ucirc'
220, 'Uuml'
221, 'Yacute'
222, 'THORN'
223, 'szlig'
224, 'agrave'
225, 'aacute'
226, 'acirc'
227, 'atilde'
228, 'auml'
229, 'aring'
230, 'aelig'
231, 'ccedil'
232, 'egrave'
233, 'eacute'
234, 'ecirc'
235, 'euml'
236, 'igrave'
237, 'iacute'
238, 'icirc'
239, 'iuml'
240, 'eth'
241, 'ntilde'
242, 'ograve'
243, 'oacute'
244, 'ocirc'
245, 'otilde'
246, 'ouml'
247, 'divide'
248, 'oslash'
249, 'ugrave'
250, 'uacute'
251, 'ucirc'
252, 'uuml'
253, 'yacute'
254, 'thorn'
", sep = ",", header = T, quote = "'", strip.white = T)
htmlcodes$char <- intToUtf8(htmlcodes$char, T)
htmlcodes$code <- paste0("&", htmlcodes$code, ";")
htmlcodes <- rbind(htmlcodes, data.frame(
char = intToUtf8(32:383, T),
code = sprintf("&
))
.htmlUnescape <- function(text) {
for (i in 1:nrow(htmlcodes))
text <- gsub(htmlcodes$code[i], htmlcodes$char[i], text, fixed = T)
Encoding(text) <- "UTF-8"
return(text)
}
modArchive.info <- function(mod.id, api.key)
{
mod.id <- as.integer(mod.id[[1]])
api.key <- as.character(api.key[[1]])
request.mod <- paste0("http://api.modarchive.org/xml-tools.php?key=",
api.key, "&request=view_by_moduleid&query=",mod.id)
result <- .get.module.table(request.mod, "module")
return(result)
}
.get.module.table <- function(xmlcode, what) {
xmlcode <- XML::xmlParse(xmlcode, options = XML::NOCDATA)
result <- XML::xmlToList(xmlcode)
if (any("error" %in% names(result))) stop (as.character(result$error))
totalpages <- as.numeric(result$totalpages)
results <- as.numeric(result$results)
if (what == "item") result <- result$items
result <- lapply(result[names(result) == what], function(x) {
lapply(x, function(x) {
if (length(x) > 1) {
x <- lapply(x, function(x) {
x[is.null(x)] <- "NULL"
x
})
x <- unlist(x)
paste(apply(cbind(names(x), paste0("<", x, ">")), 1, paste,
collapse = "="), collapse = ";")
} else
{
x[is.null(x)] <- ""
x
}
})
})
result <- lapply(result, function(x) {
x <- lapply(x, function(x) if (length(x) == 0) return("") else return(x))
data.frame(t(unlist(x)))
})
result <- do.call(rbind, result)
row.names(result) <- NULL
if (what == "module") result <- .fix.module.table(result)
if (what == "item") result <- .fix.artist.table(result)
attr(result, "results") <- results
attr(result, "totalpages") <- totalpages
return(result)
}
.fix.module.table <- function(result) {
result <- as.data.frame(as.matrix(result), stringsAsFactors = F)
result$songtitle <- .htmlUnescape(result$songtitle)
result$instruments <- .htmlUnescape(result$instruments)
result$comment <- .htmlUnescape(result$comment)
result$timestamp <- as.POSIXct(as.numeric(result$timestamp),
origin = "1970-01-01 00:00", tz = "CET")
numeric_sel <- c("bytes", "hits", "genreid", "id", "channels")
result[,numeric_sel] <- as.data.frame(lapply(result[,numeric_sel], as.numeric))
return(result)
}
.fix.artist.table <- function(result) {
result <- as.data.frame(as.matrix(result), stringsAsFactors = F)
result$timestamp <- as.POSIXct(as.numeric(result$timestamp),
origin = "1970-01-01 00:00", tz = "CET")
numeric_sel <- c("id", "isartist")
result[,numeric_sel] <- as.data.frame(lapply(result[,numeric_sel], as.numeric))
return(result)
}
modArchive.download <- function(mod.id, ...)
{
mod.id <- as.integer(mod.id[[1]])
con <- url(paste("http://api.modarchive.org/downloads.php?moduleid=", mod.id, sep = ""), "rb")
mod <- read.module(con, ...)
close(con)
return (mod)
}
modArchive.search.mod <- function(search.text,
search.where = c("filename_or_songtitle", "filename_and_songtitle", "filename", "songtitle", "module_instruments", "module_comments"),
format.filter = c("unset", "669", "AHX", "DMF", "HVL", "IT", "MED", "MO3", "MOD", "MTM", "OCT", "OKT", "S3M", "STM", "XM"),
size.filter = c("unset", "0-99", "100-299", "300-599", "600-1025", "1025-2999", "3072-6999", "7168-100000"),
genre.filter = "deprecated",
page,
api.key)
{
search.text <- utils::URLencode(as.character(search.text[[1]]))
search.where <- match.arg(search.where)
format.filter <- match.arg(format.filter)
size.filter <- match.arg(size.filter)
api.key <- as.character(api.key[[1]])
if (!missing(genre.filter)) warning("Argument 'genre.filter' is deprecated in this function and not used since ProTrackR version 0.3.4. Use 'modArchive.view.by' to browse modules by genre.")
xmlcode <- paste0("http://api.modarchive.org/xml-tools.php?key=",
api.key,
"&request=search&query=",
search.text,
"&type=",
search.where)
if (format.filter != "unset") xmlcode <- paste0(xmlcode, "&format=", format.filter)
if (genre.filter != "unset") xmlcode <- paste0(xmlcode, "&genreid=", genre.filter)
if (size.filter != "unset") xmlcode <- paste0(xmlcode, "&size=", size.filter)
if (!missing(page)) xmlcode <- paste0(xmlcode, "&page=", as.integer(page[[1]]))
result <- .get.module.table(xmlcode, "module")
return(result)
}
modArchive.request.count <- function(api.key) {
return(.requests("current", api.key))
}
modArchive.max.requests <- function(api.key) {
return(.requests("maximum", api.key))
}
.requests <- function(index, api.key)
{
request.count <- XML::xmlTreeParse(paste0("http://api.modarchive.org/xml-tools.php?key=",
api.key,
"&request=view_requests"))
count.root <- XML::xmlRoot(request.count)
count.values <- XML::xmlSApply(count.root, function(x) XML::xmlSApply(x, XML::xmlValue))
return(as.integer(count.values$requests[[index]]))
}
modArchive.view.by <- function(view.query,
view.by = c("view_by_list",
"view_by_rating_comments",
"view_by_rating_reviews",
"view_modules_by_artistid",
"view_modules_by_guessed_artist"),
format.filter = c("unset", "669", "AHX", "DMF", "HVL", "IT", "MED", "MO3", "MOD", "MTM", "OCT", "OKT", "S3M", "STM", "XM"),
size.filter = c("unset", "0-99", "100-299", "300-599", "600-1025", "1025-2999", "3072-6999", "7168-100000"),
page,
api.key) {
view.query <- as.character(view.query[[1]])
format.filter <- match.arg(format.filter)
size.filter <- match.arg(size.filter)
api.key <- as.character(api.key[[1]])
xmlcode <- paste0("http://api.modarchive.org/xml-tools.php?key=",
api.key,
"&request=", view.by,
"&query=",
view.query)
if (format.filter != "unset") xmlcode <- paste0(xmlcode, "&format=", format.filter)
if (size.filter != "unset") xmlcode <- paste0(xmlcode, "&size=", size.filter)
if (!missing(page)) xmlcode <- paste0(xmlcode, "&page=", as.integer(page[[1]]))
result <- .get.module.table(xmlcode, "module")
return(result)
}
modArchive.search.genre <- function(genre.filter = c("unset", "Alternative", "Gothic", "Grunge", "Metal - Extreme", "Metal (general)", "Punk", "Chiptune", "Demo Style",
"One Hour Compo", "Chillout", "Electronic - Ambient", "Electronic - Breakbeat", "Electronic - Dance",
"Electronic - Drum and Bass", "Electronic - Gabber", "Electronic - Hardcore", "Electronic - House", "Electronic - IDM",
"Electronic - Industrial", "Electronic - Jungle", "Electronic - Minimal", "Electronic - Other",
"Electronic - Progressive", "Electronic - Rave", "Electronic - Techno", "Electronic (general)", "Trance - Acid",
"Trance - Dream", "Trance - Goa", "Trance - Hard", "Trance - Progressive", "Trance - Tribal", "Trance (general)",
"Big Band", "Blues", "Jazz - Acid", "Jazz - Modern", "Jazz (general)", "Swing", "Bluegrass", "Classical", "Comedy",
"Country", "Experimental", "Fantasy", "Folk", "Fusion", "Medieval", "New Ages", "Orchestral", "Other", "Piano",
"Religious", "Soundtrack", "Spiritual", "Video Game", "Vocal Montage", "World", "Ballad", "Disco", "Easy Listening",
"Funk", "Pop - Soft", "Pop - Synth", "Pop (general)", "Rock - Hard", "Rock - Soft", "Rock (general)", "Christmas",
"Halloween", "Hip-Hop", "R and B", "Reggae", "Ska", "Soul"),
format.filter = c("unset", "669", "AHX", "DMF", "HVL", "IT", "MED", "MO3", "MOD", "MTM", "OCT", "OKT", "S3M", "STM", "XM"),
size.filter = c("unset", "0-99", "100-299", "300-599", "600-1025", "1025-2999", "3072-6999", "7168-100000"),
page,
api.key) {
genre.filter <- match.arg(genre.filter)
genre.filter <- genre.table$genre.id[genre.table$genre == genre.filter]
format.filter <- match.arg(format.filter)
size.filter <- match.arg(size.filter)
api.key <- as.character(api.key[[1]])
xmlcode <- paste0("http://api.modarchive.org/xml-tools.php?key=",
api.key,
"&request=search&type=genre&query=",
genre.filter)
if (format.filter != "unset") xmlcode <- paste0(xmlcode, "&format=", format.filter)
if (size.filter != "unset") xmlcode <- paste0(xmlcode, "&size=", size.filter)
if (!missing(page)) xmlcode <- paste0(xmlcode, "&page=", as.integer(page[[1]]))
result <- .get.module.table(xmlcode, "module")
return(result)
}
modArchive.search.artist <- function(search.artist, page, api.key) {
api.key <- as.character(api.key[[1]])
search.artist <- as.character(search.artist[[1]])
api.key <- as.character(api.key[[1]])
xmlcode <- paste0("http://api.modarchive.org/xml-tools.php?key=",
api.key,
"&request=search_artist&query=",
search.artist)
if (!missing(page)) xmlcode <- paste0(xmlcode, "&page=", as.integer(page[[1]]))
result <- .get.module.table(xmlcode, "item")
return(result)
}
modArchive.search.hash <- function(search.hash, api.key) {
search.hash <- as.character(search.hash[[1]])
api.key <- as.character(api.key[[1]])
xmlcode <- paste0("http://api.modarchive.org/xml-tools.php?key=",
api.key,
"&request=search&type=hash&query=",
search.hash)
result <- .get.module.table(xmlcode, "module")
return(result)
}
modArchive.random.pick <- function(genre.filter = c("Alternative", "Gothic", "Grunge", "Metal - Extreme", "Metal (general)", "Punk", "Chiptune", "Demo Style",
"One Hour Compo", "Chillout", "Electronic - Ambient", "Electronic - Breakbeat", "Electronic - Dance",
"Electronic - Drum and Bass", "Electronic - Gabber", "Electronic - Hardcore", "Electronic - House", "Electronic - IDM",
"Electronic - Industrial", "Electronic - Jungle", "Electronic - Minimal", "Electronic - Other",
"Electronic - Progressive", "Electronic - Rave", "Electronic - Techno", "Electronic (general)", "Trance - Acid",
"Trance - Dream", "Trance - Goa", "Trance - Hard", "Trance - Progressive", "Trance - Tribal", "Trance (general)",
"Big Band", "Blues", "Jazz - Acid", "Jazz - Modern", "Jazz (general)", "Swing", "Bluegrass", "Classical", "Comedy",
"Country", "Experimental", "Fantasy", "Folk", "Fusion", "Medieval", "New Ages", "Orchestral", "Other", "Piano",
"Religious", "Soundtrack", "Spiritual", "Video Game", "Vocal Montage", "World", "Ballad", "Disco", "Easy Listening",
"Funk", "Pop - Soft", "Pop - Synth", "Pop (general)", "Rock - Hard", "Rock - Soft", "Rock (general)", "Christmas",
"Halloween", "Hip-Hop", "R and B", "Reggae", "Ska", "Soul"),
format.filter = c("unset", "669", "AHX", "DMF", "HVL", "IT", "MED", "MO3", "MOD", "MTM", "OCT", "OKT", "S3M", "STM", "XM"),
size.filter = c("unset", "0-99", "100-299", "300-599", "600-1025", "1025-2999", "3072-6999", "7168-100000"),
api.key) {
genre.filter <- match.arg(genre.filter)
genre.filter <- genre.table$genre.id[genre.table$genre == genre.filter]
format.filter <- match.arg(format.filter)
size.filter <- match.arg(size.filter)
api.key <- as.character(api.key[[1]])
xmlcode <- paste0("http://api.modarchive.org/xml-tools.php?key=",
api.key, "&request=random")
if (format.filter != "unset") xmlcode <- paste0(xmlcode, "&format=", format.filter)
if (size.filter != "unset") xmlcode <- paste0(xmlcode, "&size=", size.filter)
if (genre.filter != "unset") xmlcode <- paste0(xmlcode, "&genreid=", genre.filter)
result <- .get.module.table(xmlcode, "module")
return(result)
} |
facet_wrap_paginate <- function(facets, nrow = NULL, ncol = NULL,
scales = "fixed", shrink = TRUE,
labeller = "label_value", as.table = TRUE,
switch = NULL, drop = TRUE, dir = "h",
strip.position = "top", page = 1) {
facet <- ggplot2::facet_wrap(
facets,
nrow = nrow, ncol = ncol, scales = scales,
shrink = shrink, labeller = labeller,
as.table = as.table,
switch = switch, drop = drop, dir = dir,
strip.position = strip.position
)
if (is.null(nrow) || is.null(ncol)) {
facet
} else {
ggplot2::ggproto(
NULL, FacetWrapPaginate,
shrink = shrink,
params = c(facet$params, list(page = page))
)
}
}
`%||%` <- function(x, y) {
if (is.null(x)) y else x
}
FacetWrapPaginate <-
ggplot2::ggproto(
"FacetWrapPaginate", ggplot2::FacetWrap,
setup_params = function(data, params) {
if (!is.null(params$nrow)) {
modifyList(
params,
list(
max_rows = params$nrow,
nrow = NULL
)
)
} else {
params
}
},
compute_layout = function(data, params) {
layout <- FacetWrap$compute_layout(data, params)
layout$page <- ceiling(layout$ROW / params$max_rows)
layout
},
draw_panels = function(panels, layout, x_scales,
y_scales, ranges, coord, data,
theme, params) {
include <- which(layout$page == params$page)
panels <- panels[include]
ranges <- ranges[include]
layout <- layout[include, , drop = FALSE]
layout$ROW <- layout$ROW - min(layout$ROW) + 1
x_scale_ind <- unique(layout$SCALE_X)
x_scales <- x_scales[x_scale_ind]
layout$SCALE_X <- match(layout$SCALE_X, x_scale_ind)
y_scale_ind <- unique(layout$SCALE_Y)
y_scales <- y_scales[y_scale_ind]
layout$SCALE_Y <- match(layout$SCALE_Y, y_scale_ind)
table <- FacetWrap$draw_panels(
panels, layout,
x_scales, y_scales,
ranges, coord, data,
theme, params
)
if (max(layout$ROW) != params$max_rows) {
spacing <- theme$panel.spacing.y %||% theme$panel.spacing
missing_rows <- params$max_rows - max(layout$ROW)
strip_rows <- unique(
table$layout$t[grepl("strip", table$layout$name) &
table$layout$l %in% panel_cols(table)$l]
)
strip_rows <-
strip_rows[as.numeric(table$heights[strip_rows]) != 0]
axis_b_rows <-
unique(table$layout$t[grepl("axis-b", table$layout$name)])
axis_b_rows <-
axis_b_rows[as.numeric(table$heights[axis_b_rows]) != 0]
axis_t_rows <-
unique(table$layout$t[grepl("axis-t", table$layout$name)])
axis_t_rows <-
axis_t_rows[as.numeric(table$heights[axis_t_rows]) != 0]
table <- gtable_add_rows(table, unit(missing_rows, "null"))
table <- gtable_add_rows(table, spacing * missing_rows)
if (length(strip_rows) != 0) {
table <-
gtable_add_rows(
table,
min(table$heights[strip_rows]) * missing_rows
)
}
if (params$free$x) {
if (length(axis_b_rows) != 0) {
table <-
gtable_add_rows(
table,
min(table$heights[axis_b_rows]) * missing_rows
)
}
if (length(axis_t_rows) != 0) {
table <-
gtable_add_rows(
table,
min(table$heights[axis_t_rows]) * missing_rows
)
}
}
}
if (max(layout$COL) != params$ncol) {
spacing <- theme$panel.spacing.x %||% theme$panel.spacing
missing_cols <- params$ncol - max(layout$COL)
strip_cols <-
unique(
table$layout$t[
grepl("strip", table$layout$name) &
table$layout$t %in% panel_rows(table)$t
]
)
strip_cols <- strip_cols[as.numeric(table$widths[strip_cols]) != 0]
axis_l_cols <-
unique(table$layout$l[grepl("axis-l", table$layout$name)])
axis_l_cols <- axis_l_cols[as.numeric(table$widths[axis_l_cols]) != 0]
axis_r_cols <-
unique(table$layout$l[grepl("axis-r", table$layout$name)])
axis_r_cols <- axis_r_cols[as.numeric(table$widths[axis_r_cols]) != 0]
table <- gtable_add_cols(table, unit(missing_cols, "null"))
table <- gtable_add_cols(table, spacing * missing_cols)
if (length(strip_cols) != 0) {
table <-
gtable_add_cols(
table,
min(table$widths[strip_cols]) * missing_cols
)
}
if (params$free$y) {
if (length(axis_l_cols) != 0) {
table <-
gtable_add_cols(
table,
min(table$widths[axis_l_cols]) * missing_cols
)
}
if (length(axis_r_cols) != 0) {
table <-
gtable_add_cols(
table,
min(table$widths[axis_r_cols]) * missing_cols
)
}
}
}
table
}
)
n_pages <- function(plot) {
page <- ggplot_build(plot)$layout$panel_layout$page
if (!is.null(page)) {
max(page)
} else {
NULL
}
} |
library(testthat)
library(parsnip)
library(rlang)
context("poly SVM")
source(test_path("helpers.R"))
source(test_path("helper-objects.R"))
hpc <- hpc_data[1:150, c(2:5, 8)]
test_that('primary arguments', {
basic <- svm_rbf(mode = "regression")
basic_kernlab <- translate(basic %>% set_engine("kernlab"))
expect_equal(
object = basic_kernlab$method$fit$args,
expected = list(
x = expr(missing_arg()),
data = expr(missing_arg()),
kernel = "rbfdot"
)
)
rbf_sigma <- svm_rbf(mode = "regression", rbf_sigma = .2)
rbf_sigma_kernlab <- translate(rbf_sigma %>% set_engine("kernlab"))
rbf_sigma_obj <- expr(list())
rbf_sigma_obj$sigma <- new_empty_quosure(.2)
expect_equal(
object = rbf_sigma_kernlab$method$fit$args,
expected = list(
x = expr(missing_arg()),
data = expr(missing_arg()),
kernel = "rbfdot",
kpar = rbf_sigma_obj
)
)
})
test_that('engine arguments', {
kernlab_cv <- svm_rbf(mode = "regression") %>% set_engine("kernlab", cross = 10)
expect_equal(
object = translate(kernlab_cv, "kernlab")$method$fit$args,
expected = list(
x = expr(missing_arg()),
data = expr(missing_arg()),
cross = new_empty_quosure(10),
kernel = "rbfdot"
)
)
})
test_that('updating', {
expr1 <- svm_rbf(mode = "regression") %>% set_engine("kernlab", cross = 10)
expr1_exp <- svm_rbf(mode = "regression", rbf_sigma = .1) %>% set_engine("kernlab", cross = 10)
expr2 <- svm_rbf(mode = "regression") %>% set_engine("kernlab", cross = varying())
expr2_exp <- svm_rbf(mode = "regression") %>% set_engine("kernlab", cross = 10)
expr3 <- svm_rbf(mode = "regression", rbf_sigma = .2) %>% set_engine("kernlab")
expr3_exp <- svm_rbf(mode = "regression", rbf_sigma = .3) %>% set_engine("kernlab")
expect_equal(update(expr1, rbf_sigma = .1), expr1_exp)
expect_equal(update(expr2, cross = 10), expr2_exp)
expect_equal(update(expr3, rbf_sigma = .3, fresh = TRUE), expr3_exp)
param_tibb <- tibble::tibble(rbf_sigma = 3, cost = 10)
param_list <- as.list(param_tibb)
expr1_updated <- update(expr1, param_tibb)
expect_equal(expr1_updated$args$rbf_sigma, 3)
expect_equal(expr1_updated$args$cost, 10)
expect_equal(expr1_updated$eng_args$cross, rlang::quo(10))
expr1_updated_lst <- update(expr1, param_list)
expect_equal(expr1_updated_lst$args$rbf_sigma, 3)
expect_equal(expr1_updated_lst$args$cost, 10)
expect_equal(expr1_updated_lst$eng_args$cross, rlang::quo(10))
})
test_that('bad input', {
expect_error(svm_rbf(mode = "reallyunknown"))
expect_error(translate(svm_rbf(mode = "regression") %>% set_engine( NULL)))
})
reg_mod <-
svm_rbf(mode = "regression", rbf_sigma = .1, cost = 1/4) %>%
set_engine("kernlab") %>%
set_mode("regression")
cls_mod <-
svm_rbf(mode = "classification", rbf_sigma = .1, cost = 1/8) %>%
set_engine("kernlab") %>%
set_mode("classification")
ctrl <- control_parsnip(verbosity = 0, catch = FALSE)
test_that('svm poly regression', {
skip_if_not_installed("kernlab")
expect_error(
res <- fit_xy(
reg_mod,
control = ctrl,
x = hpc[,2:4],
y = hpc$input_fields
),
regexp = NA
)
expect_false(has_multi_predict(res))
expect_equal(multi_predict_args(res), NA_character_)
expect_output(print(res), "parsnip model object")
expect_error(
fit(
reg_mod,
input_fields ~ .,
data = hpc[, -5],
control = ctrl
),
regexp = NA
)
})
test_that('svm rbf regression prediction', {
skip_if_not_installed("kernlab")
hpc_no_m <- hpc[-c(84, 85, 86, 87, 88, 109, 128),] %>%
droplevels()
ind <- c(2, 1, 143)
reg_form <-
fit(
reg_mod,
input_fields ~ .,
data = hpc[, -5],
control = ctrl
)
kern_pred <-
structure(
list(.pred = c(131.7743, 372.0932, 902.0633)),
row.names = c(NA, -3L), class = c("tbl_df", "tbl", "data.frame"))
parsnip_pred <- predict(reg_form, hpc[ind, -c(2, 5)])
expect_equal(as.data.frame(kern_pred),
as.data.frame(parsnip_pred),
tolerance = .0001)
reg_xy_form <-
fit_xy(
reg_mod,
x = hpc[, c(1, 3, 4)],
y = hpc$input_fields,
control = ctrl
)
expect_equal(reg_form$fit@alphaindex, reg_xy_form$fit@alphaindex)
parsnip_xy_pred <- predict(reg_xy_form, hpc[ind, -c(2, 5)])
expect_equal(as.data.frame(kern_pred),
as.data.frame(parsnip_xy_pred),
tolerance = .0001)
})
test_that('svm rbf classification', {
skip_if_not_installed("kernlab")
hpc_no_m <- hpc[-c(84, 85, 86, 87, 88, 109, 128),] %>%
droplevels()
ind <- c(2, 1, 143)
expect_error(
fit_xy(
cls_mod,
control = ctrl,
x = hpc_no_m[, -5],
y = hpc_no_m$class
),
regexp = NA
)
expect_error(
fit(
cls_mod,
class ~ .,
data = hpc_no_m,
control = ctrl
),
regexp = NA
)
})
test_that('svm rbf classification probabilities', {
skip_if_not_installed("kernlab")
hpc_no_m <- hpc[-c(84, 85, 86, 87, 88, 109, 128),] %>%
droplevels()
ind <- c(4, 55, 143)
set.seed(34562)
cls_form <-
fit(
cls_mod,
class ~ .,
data = hpc_no_m,
control = ctrl
)
kern_class <-
structure(list(
.pred_class = structure(
c(1L, 1L, 3L),
.Label = c("VF", "F", "L"), class = "factor")),
row.names = c(NA, -3L), class = c("tbl_df", "tbl", "data.frame"))
parsnip_class <- predict(cls_form, hpc_no_m[ind, -5])
expect_equal(kern_class, parsnip_class)
set.seed(34562)
cls_xy_form <-
fit_xy(
cls_mod,
x = hpc_no_m[, 1:4],
y = hpc_no_m$class,
control = ctrl
)
expect_equal(cls_form$fit@alphaindex, cls_xy_form$fit@alphaindex)
library(kernlab)
kern_probs <-
kernlab::predict(cls_form$fit, hpc_no_m[ind, -5], type = "probabilities") %>%
as_tibble() %>%
setNames(c('.pred_VF', '.pred_F', '.pred_L'))
parsnip_probs <- predict(cls_form, hpc_no_m[ind, -5], type = "prob")
expect_equal(as.data.frame(kern_probs), as.data.frame(parsnip_probs))
parsnip_xy_probs <- predict(cls_xy_form, hpc_no_m[ind, -5], type = "prob")
expect_equal(as.data.frame(kern_probs), as.data.frame(parsnip_xy_probs))
}) |
.install_packages <- function(args = NULL)
{
curPkg <- character()
lockdir <- ""
is_first_package <- TRUE
stars <- "*"
user.tmpdir <- Sys.getenv("PKG_BUILD_DIR")
keep.tmpdir <- nzchar(user.tmpdir)
tmpdir <- ""
clean_on_error <- TRUE
do_exit_on_error <- function()
{
if(clean_on_error && length(curPkg)) {
pkgdir <- file.path(lib, curPkg)
if (nzchar(pkgdir) && dir.exists(pkgdir) &&
is_subdir(pkgdir, lib)) {
starsmsg(stars, "removing ", sQuote(pkgdir))
unlink(pkgdir, recursive = TRUE)
}
if (nzchar(lockdir) &&
dir.exists(lp <- file.path(lockdir, curPkg)) &&
is_subdir(lp, lockdir)) {
starsmsg(stars, "restoring previous ", sQuote(pkgdir))
if (WINDOWS) {
file.copy(lp, dirname(pkgdir), recursive = TRUE,
copy.date = TRUE)
unlink(lp, recursive = TRUE)
} else {
setwd(startdir)
system(paste("mv", shQuote(lp), shQuote(pkgdir)))
}
}
}
do_cleanup()
q("no", status = 1, runLast = FALSE)
}
do_cleanup <- function()
{
if(!keep.tmpdir && nzchar(tmpdir)) do_cleanup_tmpdir()
if (!is_first_package) {
if (lib == .Library && "html" %in% build_help_types)
utils::make.packages.html(.Library, docdir = R.home("doc"))
}
if (nzchar(lockdir)) unlink(lockdir, recursive = TRUE)
}
do_cleanup_tmpdir <- function()
{
setwd(startdir)
if (!keep.tmpdir && dir.exists(tmpdir)) unlink(tmpdir, recursive=TRUE)
}
on.exit(do_exit_on_error())
WINDOWS <- .Platform$OS.type == "windows"
if (WINDOWS) MAKE <- "make"
else MAKE <- Sys.getenv("MAKE")
rarch <- Sys.getenv("R_ARCH")
if (WINDOWS && nzchar(.Platform$r_arch))
rarch <- paste0("/", .Platform$r_arch)
test_archs <- rarch
SHLIB_EXT <- if (WINDOWS) ".dll" else {
mconf <- file.path(R.home(), paste0("etc", rarch), "Makeconf")
sub(".*= ", "", grep("^SHLIB_EXT", readLines(mconf), value = TRUE,
perl = TRUE))
}
options(warn = 1)
invisible(Sys.setlocale("LC_COLLATE", "C"))
if (WINDOWS) {
rhome <- chartr("\\", "/", R.home())
Sys.setenv(R_HOME = rhome)
if (nzchar(rarch)) Sys.setenv(R_ARCH = rarch, R_ARCH_BIN = rarch)
}
Usage <- function() {
cat("Usage: R CMD INSTALL [options] pkgs",
"",
"Install the add-on packages specified by pkgs. The elements of pkgs can",
"be relative or absolute paths to directories with the package",
"sources, or to gzipped package 'tar' archives. The library tree",
"to install to can be specified via '--library'. By default, packages are",
"installed in the library tree rooted at the first directory in",
".libPaths() for an R session run in the current environment",
"",
"Options:",
" -h, --help print short help message and exit",
" -v, --version print INSTALL version info and exit",
" -c, --clean remove files created during installation",
" --preclean remove files created during a previous run",
" -d, --debug turn on debugging messages",
if(WINDOWS) " and build a debug DLL",
" -l, --library=LIB install packages to library tree LIB",
" --no-configure do not use the package's configure script",
" --no-docs do not install HTML, LaTeX or examples help",
" --html build HTML help",
" --no-html do not build HTML help",
" --latex install LaTeX help",
" --example install R code for help examples",
" --fake do minimal install for testing purposes",
" --no-lock install on top of any existing installation",
" without using a lock directory",
" --lock use a per-library lock directory (default)",
" --pkglock use a per-package lock directory",
" (default for a single package)",
" --build build binaries of the installed package(s)",
" --install-tests install package-specific tests (if any)",
" --no-R, --no-libs, --no-data, --no-help, --no-demo, --no-exec,",
" --no-inst",
" suppress installation of the specified part of the",
" package for testing or other special purposes",
" --no-multiarch build only the main architecture",
" --libs-only only install the libs directory",
" --data-compress= none, gzip (default), bzip2 or xz compression",
" to be used for lazy-loading of data",
" --resave-data re-save data files as compactly as possible",
" --compact-docs re-compress PDF files under inst/doc",
" --with-keep.source",
" --without-keep.source",
" use (or not) 'keep.source' for R code",
" --byte-compile byte-compile R code",
" --no-byte-compile do not byte-compile R code",
" --no-test-load skip test of loading installed package",
" --no-clean-on-error do not remove installed package on error",
" --merge-multiarch multi-arch by merging (from a single tarball only)",
"\nfor Unix",
" --configure-args=ARGS",
" set arguments for the configure scripts (if any)",
" --configure-vars=VARS",
" set variables for the configure scripts (if any)",
" --dsym (OS X only) generate dSYM directory",
" --built-timestamp=STAMP",
" set timestamp for Built: entry in DESCRIPTION",
"\nand on Windows only",
" --force-biarch attempt to build both architectures",
" even if there is a non-empty configure.win",
" --compile-both compile both architectures on 32-bit Windows",
"",
"Which of --html or --no-html is the default depends on the build of R:",
paste0("for this one it is ",
if(static_html) "--html" else "--no-html", "."),
"",
"Report bugs at bugs.r-project.org .", sep = "\n")
}
is_subdir <- function(dir, parent)
normalizePath(parent) == normalizePath(file.path(dir, ".."))
fullpath <- function(dir)
{
owd <- setwd(dir)
full <- getwd()
setwd(owd)
full
}
parse_description_field <- function(desc, field, default = TRUE)
{
tmp <- desc[field]
if (is.na(tmp)) default
else switch(tmp,
"yes"=, "Yes" =, "true" =, "True" =, "TRUE" = TRUE,
"no" =, "No" =, "false" =, "False" =, "FALSE" = FALSE,
errmsg("invalid value of ", field, " field in DESCRIPTION")
)
}
starsmsg <- function(stars, ...)
message(stars, " ", ..., domain = NA)
errmsg <- function(...)
{
message("ERROR: ", ..., domain = NA)
do_exit_on_error()
}
pkgerrmsg <- function(msg, pkg)
{
message("ERROR: ", msg, " for package ", sQuote(pkg), domain = NA)
do_exit_on_error()
}
do_install <- function(pkg)
{
if (WINDOWS && grepl("\\.zip$", pkg)) {
pkg_name <- basename(pkg)
pkg_name <- sub("\\.zip$", "", pkg_name)
pkg_name <- sub("_[0-9.-]+$", "", pkg_name)
utils:::unpackPkgZip(pkg, pkg_name, lib, libs_only)
return()
}
setwd(pkg)
desc <- tryCatch(read.dcf(fd <- file.path(pkg, "DESCRIPTION")),
error = identity)
if(inherits(desc, "error") || !length(desc))
stop(gettextf("error reading file '%s'", fd),
domain = NA, call. = FALSE)
desc <- desc[1L,]
if (!is.na(desc["Bundle"])) {
stop("this seems to be a bundle -- and they are defunct")
} else {
pkg_name <- desc["Package"]
if (is.na(pkg_name)) errmsg("no 'Package' field in 'DESCRIPTION'")
curPkg <<- pkg_name
}
instdir <- file.path(lib, pkg_name)
Sys.setenv(R_PACKAGE_NAME = pkg_name, R_PACKAGE_DIR = instdir)
status <- .Rtest_package_depends_R_version()
if (status) do_exit_on_error()
dir.create(instdir, recursive = TRUE, showWarnings = FALSE)
if (!dir.exists(instdir)) {
message("ERROR: unable to create ", sQuote(instdir), domain = NA)
do_exit_on_error()
}
if (!is_subdir(instdir, lib)) {
message("ERROR: ", sQuote(pkg_name), " is not a legal package name",
domain = NA)
do_exit_on_error()
}
owd <- setwd(instdir)
if (owd == getwd()) pkgerrmsg("cannot install to srcdir", pkg_name)
setwd(owd)
is_source_package <- is.na(desc["Built"])
if (is_source_package) {
sys_requires <- desc["SystemRequirements"]
if (!is.na(sys_requires)) {
sys_requires <- unlist(strsplit(sys_requires, ","))
if(any(grepl("^[[:space:]]*C[+][+]11[[:space:]]*$",
sys_requires, ignore.case=TRUE))) {
Sys.setenv("R_PKG_CXX_STD"="CXX11")
on.exit(Sys.unsetenv("R_PKG_CXX_STD"))
}
}
}
if (!is_first_package) cat("\n")
if (is_source_package)
do_install_source(pkg_name, instdir, pkg, desc)
else
do_install_binary(pkg_name, instdir, desc)
.Call(dirchmod, instdir, group.writable)
is_first_package <<- FALSE
if (tar_up) {
starsmsg(stars, "creating tarball")
version <- desc["Version"]
filename <- if (!grepl("darwin", R.version$os)) {
paste0(pkg_name, "_", version, "_R_",
Sys.getenv("R_PLATFORM"), ".tar.gz")
} else {
paste0(pkg_name, "_", version,".tgz")
}
filepath <- file.path(startdir, filename)
owd <- setwd(lib)
res <- utils::tar(filepath, curPkg, compression = "gzip",
compression_level = 9L,
tar = Sys.getenv("R_INSTALL_TAR"))
if (res)
errmsg(sprintf("packaging into %s failed", sQuote(filename)))
message("packaged installation of ",
sQuote(pkg_name), " as ", sQuote(filename),
domain = NA)
setwd(owd)
}
if (zip_up) {
starsmsg(stars, "MD5 sums")
.installMD5sums(instdir)
ZIP <- "zip"
version <- desc["Version"]
filename <- paste0(pkg_name, "_", version, ".zip")
filepath <- shQuote(file.path(startdir, filename))
unlink(filepath)
owd <- setwd(lib)
res <- system(paste(shQuote(ZIP), "-r9Xq", filepath,
paste(curPkg, collapse = " ")))
setwd(owd)
if (res)
message("running 'zip' failed", domain = NA)
else
message("packaged installation of ",
sQuote(pkg_name), " as ", filename, domain = NA)
}
if (Sys.getenv("_R_INSTALL_NO_DONE_") != "yes") {
starsmsg(stars, "DONE (", pkg_name, ")")
}
curPkg <<- character()
}
do_install_binary <- function(pkg, instdir, desc)
{
starsmsg(stars, "installing *binary* package ", sQuote(pkg), " ...")
if (file.exists(file.path(instdir, "DESCRIPTION"))) {
if (nzchar(lockdir))
system(paste("mv", shQuote(instdir),
shQuote(file.path(lockdir, pkg))))
dir.create(instdir, recursive = TRUE, showWarnings = FALSE)
}
TAR <- Sys.getenv("TAR", 'tar')
res <- system(paste("cp -R .", shQuote(instdir),
"|| (", TAR, "cd - .| (cd", shQuote(instdir), "&&", TAR, "-xf -))"
))
if (res) errmsg("installing binary package failed")
if (tar_up) {
starsmsg(stars, sQuote(pkg),
" was already a binary package and will not be rebuilt")
tar_up <- FALSE
}
}
run_clean <- function()
{
if (dir.exists("src") && length(dir("src", all.files = TRUE) > 2L)) {
if (WINDOWS) archs <- c("i386", "x64")
else {
wd2 <- setwd(file.path(R.home("bin"), "exec"))
archs <- Sys.glob("*")
setwd(wd2)
}
if(length(archs))
for(arch in archs) {
ss <- paste("src", arch, sep = "-")
.Call(dirchmod, ss, group.writable)
unlink(ss, recursive = TRUE)
}
owd <- setwd("src")
if (WINDOWS) {
if (file.exists("Makefile.win"))
system(paste(MAKE, "-f Makefile.win clean"))
else
unlink(c("Makedeps",
Sys.glob("*_res.rc"),
Sys.glob("*.[do]")))
} else {
if (file.exists("Makefile")) system(paste(MAKE, "clean"))
else
unlink(Sys.glob(paste0("*", SHLIB_EXT)))
}
setwd(owd)
}
if (WINDOWS) {
if (file.exists("cleanup.win")) system("sh ./cleanup.win")
} else if (file_test("-x", "cleanup")) system("./cleanup")
else if (file.exists("cleanup"))
warning("'cleanup' exists but is not executable -- see the 'R Installation and Administration Manual'", call. = FALSE)
}
do_install_source <- function(pkg_name, instdir, pkg_dir, desc)
{
Sys.setenv("R_INSTALL_PKG" = pkg_name)
on.exit(Sys.unsetenv("R_INSTALL_PKG"))
shlib_install <- function(instdir, arch)
{
if (file.exists("install.libs.R")) {
message("installing via 'install.libs.R' to ", instdir,
domain = NA)
local.env <- local({ SHLIB_EXT <- SHLIB_EXT
R_PACKAGE_DIR <- instdir
R_PACKAGE_NAME <- pkg_name
R_PACKAGE_SOURCE <- pkg_dir
R_ARCH <- arch
WINDOWS <- WINDOWS
environment()})
parent.env(local.env) <- .GlobalEnv
source("install.libs.R", local = local.env)
return(TRUE)
}
files <- Sys.glob(paste0("*", SHLIB_EXT))
if (length(files)) {
libarch <- if (nzchar(arch)) paste0("libs", arch) else "libs"
dest <- file.path(instdir, libarch)
message('installing to ', dest, domain = NA)
dir.create(dest, recursive = TRUE, showWarnings = FALSE)
file.copy(files, dest, overwrite = TRUE)
if (!WINDOWS)
Sys.chmod(file.path(dest, files), dmode)
if (dsym && startsWith(R.version$os, "darwin")) {
message(gettextf("generating debug symbols (%s)", "dSYM"),
domain = NA)
dylib <- Sys.glob(paste0(dest, "/*", SHLIB_EXT))
for (file in dylib) system(paste0("dsymutil ", file))
}
if(config_val_to_logical(Sys.getenv("_R_SHLIB_BUILD_OBJECTS_SYMBOL_TABLES_",
"TRUE"))
&& file_test("-f", "symbols.rds")) {
file.copy("symbols.rds", dest)
}
}
}
run_shlib <- function(pkg_name, srcs, instdir, arch)
{
args <- c(shargs, "-o", paste0(pkg_name, SHLIB_EXT), srcs)
if (WINDOWS && debug) args <- c(args, "--debug")
if (debug) message("about to run ",
"R CMD SHLIB ", paste(args, collapse = " "),
domain = NA)
if (.shlib_internal(args) == 0L) {
if(WINDOWS && !file.exists("install.libs.R")
&& !length(Sys.glob("*.dll"))) {
message("no DLL was created")
return(TRUE)
}
shlib_install(instdir, arch)
return(FALSE)
} else return(TRUE)
}
Sys.setenv(R_LIBRARY_DIR = lib)
if (nzchar(lib0)) {
rlibs <- Sys.getenv("R_LIBS")
rlibs <- if (nzchar(rlibs)) paste(lib, rlibs, sep = .Platform$path.sep) else lib
Sys.setenv(R_LIBS = rlibs)
.libPaths(c(lib, .libPaths()))
}
Type <- desc["Type"]
if (!is.na(Type) && Type == "Frontend") {
if (WINDOWS) errmsg("'Frontend' packages are Unix-only")
starsmsg(stars, "installing *Frontend* package ", sQuote(pkg_name), " ...")
if (preclean) system(paste(MAKE, "clean"))
if (use_configure) {
if (file_test("-x", "configure")) {
res <- system(paste(paste(configure_vars, collapse = " "),
"./configure",
paste(configure_args, collapse = " ")))
if (res) pkgerrmsg("configuration failed", pkg_name)
} else if (file.exists("configure"))
errmsg("'configure' exists but is not executable -- see the 'R Installation and Administration Manual'")
}
if (file.exists("Makefile"))
if (system(MAKE)) pkgerrmsg("make failed", pkg_name)
if (clean) system(paste(MAKE, "clean"))
return()
}
if (!is.na(Type) && Type == "Translation")
errmsg("'Translation' packages are defunct")
OS_type <- desc["OS_type"]
if (WINDOWS) {
if ((!is.na(OS_type) && OS_type == "unix") && !fake)
errmsg(" Unix-only package")
} else {
if ((!is.na(OS_type) && OS_type == "windows") && !fake)
errmsg(" Windows-only package")
}
if(group.writable) {
fmode <- "664"
dmode <- "775"
} else {
fmode <- "644"
dmode <- "755"
}
pkgInfo <- .split_description(.read_description("DESCRIPTION"))
pkgs <- unique(c(names(pkgInfo$Depends), names(pkgInfo$Imports),
names(pkgInfo$LinkingTo)))
if (length(pkgs)) {
miss <- character()
for (pkg in pkgs) {
if(!length(find.package(pkg, quiet = TRUE)))
miss <- c(miss, pkg)
}
if (length(miss) > 1)
pkgerrmsg(sprintf("dependencies %s are not available",
paste(sQuote(miss), collapse = ", ")),
pkg_name)
else if (length(miss))
pkgerrmsg(sprintf("dependency %s is not available",
sQuote(miss)), pkg_name)
}
starsmsg(stars, "installing *source* package ",
sQuote(pkg_name), " ...")
stars <- "**"
res <- checkMD5sums(pkg_name, getwd())
if(!is.na(res) && res) {
starsmsg(stars,
gettextf("package %s successfully unpacked and MD5 sums checked",
sQuote(pkg_name)))
}
if (file.exists(file.path(instdir, "DESCRIPTION"))) {
if (nzchar(lockdir)) {
if (debug) starsmsg(stars, "backing up earlier installation")
if(WINDOWS) {
file.copy(instdir, lockdir, recursive = TRUE,
copy.date = TRUE)
if (more_than_libs) unlink(instdir, recursive = TRUE)
} else if (more_than_libs)
system(paste("mv", shQuote(instdir),
shQuote(file.path(lockdir, pkg_name))))
else
file.copy(instdir, lockdir, recursive = TRUE,
copy.date = TRUE)
} else if (more_than_libs) unlink(instdir, recursive = TRUE)
dir.create(instdir, recursive = TRUE, showWarnings = FALSE)
}
if (preclean) run_clean()
if (use_configure) {
if (WINDOWS) {
if (file.exists("configure.win")) {
res <- system("sh ./configure.win")
if (res) pkgerrmsg("configuration failed", pkg_name)
} else if (file.exists("configure"))
message("\n",
" **********************************************\n",
" WARNING: this package has a configure script\n",
" It probably needs manual configuration\n",
" **********************************************\n\n", domain = NA)
} else {
if (file_test("-x", "configure")) {
cmd <- paste(paste(configure_vars, collapse = " "),
"./configure",
paste(configure_args, collapse = " "))
if (debug) message("configure command: ", sQuote(cmd),
domain = NA)
cmd <- paste("_R_SHLIB_BUILD_OBJECTS_SYMBOL_TABLES_=false",
cmd)
res <- system(cmd)
if (res) pkgerrmsg("configuration failed", pkg_name)
} else if (file.exists("configure"))
errmsg("'configure' exists but is not executable -- see the 'R Installation and Administration Manual'")
}
}
if (more_than_libs) {
for (f in c("NAMESPACE", "LICENSE", "LICENCE", "NEWS", "NEWS.md"))
if (file.exists(f)) {
file.copy(f, instdir, TRUE)
Sys.chmod(file.path(instdir, f), fmode)
}
res <- try(.install_package_description('.', instdir, built_stamp))
if (inherits(res, "try-error"))
pkgerrmsg("installing package DESCRIPTION failed", pkg_name)
if (!file.exists(namespace <- file.path(instdir, "NAMESPACE")) ) {
if(dir.exists("R"))
errmsg("a 'NAMESPACE' file is required")
else writeLines("
}
}
if (install_libs && dir.exists("src") &&
length(dir("src", all.files = TRUE) > 2L)) {
starsmsg(stars, "libs")
if (!file.exists(file.path(R.home("include"), "R.h")))
warning("R include directory is empty -- perhaps need to install R-devel.rpm or similar", call. = FALSE)
has_error <- FALSE
linkTo <- pkgInfo$LinkingTo
if (!is.null(linkTo)) {
lpkgs <- sapply(linkTo, function(x) x[[1L]])
paths <- find.package(lpkgs, quiet = TRUE)
bpaths <- basename(paths)
if (length(paths)) {
have_vers <-
(lengths(linkTo) > 1L) & lpkgs %in% bpaths
for (z in linkTo[have_vers]) {
p <- z[[1L]]
path <- paths[bpaths %in% p]
current <- readRDS(file.path(path, "Meta", "package.rds"))$DESCRIPTION["Version"]
target <- as.numeric_version(z$version)
if (!do.call(z$op, list(as.numeric_version(current), target)))
stop(gettextf("package %s %s was found, but %s %s is required by %s",
sQuote(p), current, z$op,
target, sQuote(pkgname)),
call. = FALSE, domain = NA)
}
clink_cppflags <- paste(paste0('-I"', paths, '/include"'),
collapse = " ")
Sys.setenv(CLINK_CPPFLAGS = clink_cppflags)
}
} else clink_cppflags <- ""
libdir <- file.path(instdir, paste0("libs", rarch))
dir.create(libdir, showWarnings = FALSE)
if (WINDOWS) {
owd <- setwd("src")
makefiles <- character()
if (!is.na(f <- Sys.getenv("R_MAKEVARS_USER",
NA_character_))) {
if (file.exists(f)) makefiles <- f
} else if (file.exists(f <- path.expand("~/.R/Makevars.win")))
makefiles <- f
else if (file.exists(f <- path.expand("~/.R/Makevars")))
makefiles <- f
if (file.exists("Makefile.win")) {
makefiles <- c("Makefile.win", makefiles)
message(" running 'src/Makefile.win' ...", domain = NA)
res <- system(paste("make --no-print-directory",
paste("-f", shQuote(makefiles), collapse = " ")))
if (res == 0) shlib_install(instdir, rarch)
else has_error <- TRUE
} else {
srcs <- dir(pattern = "\\.([cfmM]|cc|cpp|f90|f95|mm)$",
all.files = TRUE)
archs <- if (!force_both && !grepl(" x64 ", utils::win.version()))
"i386"
else {
f <- dir(file.path(R.home(), "bin"))
f[f %in% c("i386", "x64")]
}
one_only <- !multiarch
if(!one_only && file.exists("../configure.win")) {
if(!pkg_name %in% c("AnalyzeFMRI", "CORElearn",
"PearsonDS", "PKI", "RGtk2",
"RNetCDF", "RODBC", "RSclient",
"Rcpp", "Runuran", "SQLiteMap",
"XML", "arulesSequences",
"cairoDevice", "diversitree",
"foreign", "fastICA", "glmnet",
"gstat", "igraph", "jpeg", "png",
"proj4", "randtoolbox", "rgdal",
"rngWELL", "rphast", "rtfbs",
"sparsenet", "tcltk2", "tiff",
"udunits2"))
one_only <- sum(nchar(readLines("../configure.win", warn = FALSE), "bytes")) > 0
if(one_only && !force_biarch) {
if(parse_description_field(desc, "Biarch", FALSE))
force_biarch <- TRUE
else
warning("this package has a non-empty 'configure.win' file,\nso building only the main architecture\n", call. = FALSE, domain = NA)
}
}
if(force_biarch) one_only <- FALSE
if(one_only || length(archs) < 2L)
has_error <- run_shlib(pkg_name, srcs, instdir, rarch)
else {
setwd(owd)
test_archs <- archs
for(arch in archs) {
message("", domain = NA)
starsmsg("***", "arch - ", arch)
ss <- paste("src", arch, sep = "-")
dir.create(ss, showWarnings = FALSE)
file.copy(Sys.glob("src/*"), ss, recursive = TRUE)
.Call(dirchmod, ss, group.writable)
setwd(ss)
ra <- paste0("/", arch)
Sys.setenv(R_ARCH = ra, R_ARCH_BIN = ra)
has_error <- run_shlib(pkg_name, srcs, instdir, ra)
setwd(owd)
if (has_error) break
}
}
}
setwd(owd)
} else {
if (file.exists("src/Makefile")) {
arch <- substr(rarch, 2, 1000)
starsmsg(stars, "arch - ", arch)
owd <- setwd("src")
system_makefile <-
file.path(R.home(), paste0("etc", rarch), "Makeconf")
makefiles <- c(system_makefile,
makevars_site(),
"Makefile",
makevars_user())
res <- system(paste(MAKE,
paste("-f", shQuote(makefiles), collapse = " ")))
if (res == 0) shlib_install(instdir, rarch)
else has_error <- TRUE
setwd(owd)
} else {
owd <- setwd("src")
srcs <- dir(pattern = "\\.([cfmM]|cc|cpp|f90|f95|mm)$",
all.files = TRUE)
allfiles <- if (file.exists("Makevars")) c("Makevars", srcs) else srcs
wd2 <- setwd(file.path(R.home("bin"), "exec"))
archs <- Sys.glob("*")
setwd(wd2)
if (length(allfiles)) {
if (!multiarch || length(archs) <= 1 ||
file_test("-x", "../configure")) {
if (nzchar(rarch))
starsmsg("***", "arch - ",
substr(rarch, 2, 1000))
has_error <- run_shlib(pkg_name, srcs, instdir, rarch)
} else {
setwd(owd)
test_archs <- archs
for(arch in archs) {
if (arch == "R") {
has_error <- run_shlib(pkg_name, srcs, instdir, "")
} else {
starsmsg("***", "arch - ", arch)
ss <- paste("src", arch, sep = "-")
dir.create(ss, showWarnings = FALSE)
file.copy(Sys.glob("src/*"), ss, recursive = TRUE)
setwd(ss)
ra <- paste0("/", arch)
Sys.setenv(R_ARCH = ra)
has_error <- run_shlib(pkg_name, srcs, instdir, ra)
Sys.setenv(R_ARCH = rarch)
setwd(owd)
if (has_error) break
}
}
}
} else warning("no source files found", call. = FALSE)
}
setwd(owd)
}
if (has_error)
pkgerrmsg("compilation failed", pkg_name)
fi <- file.info(Sys.glob(file.path(instdir, "libs", "*")))
dirs <- basename(row.names(fi[fi$isdir %in% TRUE, ]))
if(WINDOWS) dirs <- dirs[dirs %in% c("i386", "x64")]
if (length(dirs)) {
descfile <- file.path(instdir, "DESCRIPTION")
olddesc <- readLines(descfile, warn = FALSE)
olddesc <- grep("^Archs:", olddesc,
invert = TRUE, value = TRUE, useBytes = TRUE)
newdesc <- c(olddesc,
paste("Archs:", paste(dirs, collapse = ", "))
)
writeLines(newdesc, descfile, useBytes = TRUE)
}
} else if (multiarch) {
if (WINDOWS) {
wd2 <- setwd(file.path(R.home(), "bin"))
archs <- Sys.glob("*")
setwd(wd2)
test_archs <- archs[archs %in% c("i386", "x64")]
} else {
wd2 <- setwd(file.path(R.home("bin"), "exec"))
test_archs <- Sys.glob("*")
setwd(wd2)
}
}
if (WINDOWS && "x64" %in% test_archs) {
if (!grepl(" x64 ", utils::win.version())) test_archs <- "i386"
}
if (install_R && dir.exists("R") && length(dir("R"))) {
starsmsg(stars, "R")
dir.create(file.path(instdir, "R"), recursive = TRUE,
showWarnings = FALSE)
res <- try(.install_package_code_files(".", instdir))
if (inherits(res, "try-error"))
pkgerrmsg("unable to collate and parse R files", pkg_name)
if (file.exists(f <- file.path("R", "sysdata.rda"))) {
comp <- TRUE
if(!is.na(lazycompress <- desc["SysDataCompression"])) {
comp <- switch(lazycompress,
"none" = FALSE,
"gzip" = TRUE,
"bzip2" = 2L,
"xz" = 3L,
TRUE)
} else if(file.size(f) > 1e6) comp <- 3L
res <- try(sysdata2LazyLoadDB(f, file.path(instdir, "R"),
compress = comp))
if (inherits(res, "try-error"))
pkgerrmsg("unable to build sysdata DB", pkg_name)
}
if (fake) {
if (file.exists("NAMESPACE")) {
cat("",
'.onLoad <- .onAttach <- function(lib, pkg) NULL',
'.onUnload <- function(libpaths) NULL',
sep = "\n",
file = file.path(instdir, "R", pkg_name), append = TRUE)
writeLines(sub("useDynLib.*", 'useDynLib("")',
readLines("NAMESPACE", warn = FALSE),
perl = TRUE, useBytes = TRUE),
file.path(instdir, "NAMESPACE"))
} else {
cat("",
'.onLoad <- function (libname, pkgname) NULL',
'.onAttach <- function (libname, pkgname) NULL',
'.onDetach <- function(libpath) NULL',
'.onUnload <- function(libpath) NULL',
'.Last.lib <- function(libpath) NULL',
sep = "\n",
file = file.path(instdir, "R", pkg_name), append = TRUE)
}
}
}
if (install_data && dir.exists("data") && length(dir("data"))) {
starsmsg(stars, "data")
files <- Sys.glob(file.path("data", "*"))
if (length(files)) {
is <- file.path(instdir, "data")
dir.create(is, recursive = TRUE, showWarnings = FALSE)
file.remove(Sys.glob(file.path(instdir, "data", "*")))
file.copy(files, is, TRUE)
thislazy <- parse_description_field(desc, "LazyData",
default = lazy_data)
if (!thislazy && resave_data) {
paths <- Sys.glob(c(file.path(is, "*.rda"),
file.path(is, "*.RData")))
if (pkg_name == "cyclones")
paths <-
c(paths, Sys.glob(file.path(is, "*.Rdata")))
if (length(paths)) {
starsmsg(paste0(stars, "*"), "resaving rda files")
resaveRdaFiles(paths, compress = "auto")
}
}
Sys.chmod(Sys.glob(file.path(instdir, "data", "*")), fmode)
if (thislazy) {
starsmsg(paste0(stars, "*"),
"moving datasets to lazyload DB")
lazycompress <- desc["LazyDataCompression"]
if(!is.na(lazycompress))
data_compress <- switch(lazycompress,
"none" = FALSE,
"gzip" = TRUE,
"bzip2" = 2L,
"xz" = 3L,
TRUE)
res <- try(data2LazyLoadDB(pkg_name, lib,
compress = data_compress))
if (inherits(res, "try-error"))
pkgerrmsg("lazydata failed", pkg_name)
}
} else warning("empty 'data' directory", call. = FALSE)
}
if (install_demo && dir.exists("demo") && length(dir("demo"))) {
starsmsg(stars, "demo")
dir.create(file.path(instdir, "demo"), recursive = TRUE,
showWarnings = FALSE)
file.remove(Sys.glob(file.path(instdir, "demo", "*")))
res <- try(.install_package_demos(".", instdir))
if (inherits(res, "try-error"))
pkgerrmsg("ERROR: installing demos failed")
Sys.chmod(Sys.glob(file.path(instdir, "demo", "*")), fmode)
}
if (install_exec && dir.exists("exec") && length(dir("exec"))) {
starsmsg(stars, "exec")
dir.create(file.path(instdir, "exec"), recursive = TRUE,
showWarnings = FALSE)
file.remove(Sys.glob(file.path(instdir, "exec", "*")))
files <- Sys.glob(file.path("exec", "*"))
if (length(files)) {
file.copy(files, file.path(instdir, "exec"), TRUE)
if (!WINDOWS)
Sys.chmod(Sys.glob(file.path(instdir, "exec", "*")), dmode)
}
}
if (install_inst && dir.exists("inst") &&
length(dir("inst", all.files = TRUE)) > 2L) {
starsmsg(stars, "inst")
i_dirs <- list.dirs("inst")[-1L]
i_dirs <- grep(.vc_dir_names_re, i_dirs,
invert = TRUE, value = TRUE)
ignore_file <- ".Rinstignore"
ignore <- if (file.exists(ignore_file)) {
ignore <- readLines(ignore_file, warn = FALSE)
ignore[nzchar(ignore)]
} else character()
for(e in ignore)
i_dirs <- grep(e, i_dirs, perl = TRUE, invert = TRUE,
value = TRUE, ignore.case = TRUE)
lapply(gsub("^inst", instdir, i_dirs),
function(p) dir.create(p, FALSE, TRUE))
i_files <- list.files("inst", all.files = TRUE,
full.names = TRUE, recursive = TRUE)
i_files <- grep(.vc_dir_names_re, i_files,
invert = TRUE, value = TRUE)
for(e in ignore)
i_files <- grep(e, i_files, perl = TRUE, invert = TRUE,
value = TRUE, ignore.case = TRUE)
i_files <- i_files[!i_files %in%
c("inst/doc/Rplots.pdf", "inst/doc/Rplots.ps")]
i_files <- grep("inst/doc/.*[.](log|aux|bbl|blg|dvi)$",
i_files, perl = TRUE, invert = TRUE,
value = TRUE, ignore.case = TRUE)
if (!dir.exists("vignettes") && ! pkgname %in% c("RCurl"))
i_files <- grep("inst/doc/.*[.](png|jpg|jpeg|gif|ps|eps)$",
i_files, perl = TRUE, invert = TRUE,
value = TRUE, ignore.case = TRUE)
i_files <- i_files[! i_files %in% "Makefile"]
i2_files <- gsub("^inst", instdir, i_files)
file.copy(i_files, i2_files)
if (!WINDOWS) {
modes <- file.mode(i_files)
execs <- as.logical(modes & as.octmode("100"))
Sys.chmod(i2_files[execs], dmode)
}
if (compact_docs) {
pdfs <- dir(file.path(instdir, "doc"), pattern="\\.pdf",
recursive = TRUE, full.names = TRUE,
all.files = TRUE)
res <- compactPDF(pdfs, gs_quality = "none")
print(res[res$old > 1e5, ])
}
}
if (install_tests && dir.exists("tests") &&
length(dir("tests", all.files = TRUE) > 2L)) {
starsmsg(stars, "tests")
file.copy("tests", instdir, recursive = TRUE)
}
if (install_R && dir.exists("R") && length(dir("R"))) {
BC <- if (!is.na(byte_compile)) byte_compile
else
parse_description_field(desc, "ByteCompile", default = FALSE)
rcps <- Sys.getenv("R_COMPILE_PKGS")
rcp <- switch(rcps,
"TRUE"=, "true"=, "True"=, "yes"=, "Yes"= 1,
"FALSE"=,"false"=,"False"=, "no"=, "No" = 0,
as.numeric(rcps)
)
BC <- BC || (!is.na(rcp) && rcp > 0)
if (BC) {
starsmsg(stars,
"byte-compile and prepare package for lazy loading")
Sys.setenv(R_ENABLE_JIT = 0L)
compiler::compilePKGS(1L)
compiler::setCompilerOptions(suppressUndefined = TRUE)
} else
starsmsg(stars, "preparing package for lazy loading")
keep.source <-
parse_description_field(desc, "KeepSource",
default = keep.source)
if (isNamespaceLoaded(pkg_name))
unloadNamespace(pkg_name)
deps_only <-
config_val_to_logical(Sys.getenv("_R_CHECK_INSTALL_DEPENDS_", "FALSE"))
if(deps_only) {
env <- setRlibs(LinkingTo = TRUE)
libs0 <- .libPaths()
env <- sub("^.*=", "", env[1L])
.libPaths(c(lib0, env))
} else libs0 <- NULL
res <- try({
suppressPackageStartupMessages(.getRequiredPackages(quietly = TRUE))
makeLazyLoading(pkg_name, lib, keep.source = keep.source)
})
if (BC) compiler::compilePKGS(0L)
if (inherits(res, "try-error"))
pkgerrmsg("lazy loading failed", pkg_name)
if (!is.null(libs0)) .libPaths(libs0)
}
if (install_help) {
starsmsg(stars, "help")
if (!dir.exists("man") ||
!length(list_files_with_type("man", "docs")))
cat("No man pages found in package ", sQuote(pkg_name), "\n")
encoding <- desc["Encoding"]
if (is.na(encoding)) encoding <- "unknown"
res <- try(.install_package_Rd_objects(".", instdir, encoding))
if (inherits(res, "try-error"))
pkgerrmsg("installing Rd objects failed", pkg_name)
starsmsg(paste0(stars, "*"), "installing help indices")
.writePkgIndices(pkg_dir, instdir)
if (build_help) {
outenc <- desc["Encoding"]
if (is.na(outenc)) outenc <- "latin1"
.convertRdfiles(pkg_dir, instdir,
types = build_help_types,
outenc = outenc)
}
if (dir.exists(figdir <- file.path(pkg_dir, "man", "figures"))) {
starsmsg(paste0(stars, "*"), "copying figures")
dir.create(destdir <- file.path(instdir, "help", "figures"))
file.copy(Sys.glob(c(file.path(figdir, "*.png"),
file.path(figdir, "*.jpg"),
file.path(figdir, "*.jpeg"),
file.path(figdir, "*.svg"),
file.path(figdir, "*.pdf"))), destdir)
}
}
if (install_inst || install_demo || install_help) {
starsmsg(stars, "building package indices")
res <- try(.install_package_indices(".", instdir))
if (inherits(res, "try-error"))
errmsg("installing package indices failed")
if(dir.exists("vignettes")) {
starsmsg(stars, "installing vignettes")
enc <- desc["Encoding"]
if (is.na(enc)) enc <- ""
if (!fake &&
file_test("-f", file.path("build", "vignette.rds")))
installer <- .install_package_vignettes3
else
installer <- .install_package_vignettes2
res <- try(installer(".", instdir, enc))
if (inherits(res, "try-error"))
errmsg("installing vignettes failed")
}
}
if (install_R && file.exists("NAMESPACE")) {
res <- try(.install_package_namespace_info(if(fake) instdir else ".", instdir))
if (inherits(res, "try-error"))
errmsg("installing namespace metadata failed")
}
if (clean) run_clean()
if (test_load) {
starsmsg(stars, "testing if installed package can be loaded")
cmd <- paste0("tools:::.test_load_package('", pkg_name, "', '", lib, "')")
deps_only <-
config_val_to_logical(Sys.getenv("_R_CHECK_INSTALL_DEPENDS_", "FALSE"))
env <- if (deps_only) setRlibs(lib0, self = TRUE, quote = TRUE) else ""
if (length(test_archs) > 1L) {
msgs <- character()
opts <- "--no-save --slave"
for (arch in test_archs) {
starsmsg("***", "arch - ", arch)
out <- R_runR(cmd, opts, env = env, arch = arch)
if(length(attr(out, "status")))
msgs <- c(msgs, arch)
if(length(out))
cat(paste(c(out, ""), collapse = "\n"))
}
if (length(msgs)) {
msg <- paste("loading failed for",
paste(sQuote(msgs), collapse = ", "))
errmsg(msg)
}
} else {
opts <- if (deps_only) "--vanilla --slave"
else "--no-save --slave"
out <- R_runR(cmd, opts, env = env)
if(length(out))
cat(paste(c(out, ""), collapse = "\n"))
if(length(attr(out, "status")))
errmsg("loading failed")
}
}
}
options(showErrorCalls=FALSE)
pkgs <- character()
if (is.null(args)) {
args <- commandArgs(TRUE)
args <- paste(args, collapse = " ")
args <- strsplit(args,'nextArg', fixed = TRUE)[[1L]][-1L]
}
args0 <- args
startdir <- getwd()
if (is.null(startdir))
stop("current working directory cannot be ascertained")
lib <- lib0 <- ""
clean <- FALSE
preclean <- FALSE
debug <- FALSE
static_html <- nzchar(system.file("html", "mean.html", package="base"))
build_html <- static_html
build_latex <- FALSE
build_example <- FALSE
use_configure <- TRUE
configure_args <- character()
configure_vars <- character()
fake <- FALSE
lazy_data <- FALSE
byte_compile <- NA
lock <- getOption("install.lock", NA)
pkglock <- FALSE
libs_only <- FALSE
tar_up <- zip_up <- FALSE
shargs <- character()
multiarch <- TRUE
force_biarch <- FALSE
force_both <- FALSE
test_load <- TRUE
merge <- FALSE
dsym <- nzchar(Sys.getenv("PKG_MAKE_DSYM"))
get_user_libPaths <- FALSE
data_compress <- TRUE
resave_data <- FALSE
compact_docs <- FALSE
keep.source <- getOption("keep.source.pkgs")
built_stamp <- character()
install_libs <- TRUE
install_R <- TRUE
install_data <- TRUE
install_demo <- TRUE
install_exec <- TRUE
install_inst <- TRUE
install_help <- TRUE
install_tests <- FALSE
while(length(args)) {
a <- args[1L]
if (a %in% c("-h", "--help")) {
Usage()
q("no", runLast = FALSE)
}
else if (a %in% c("-v", "--version")) {
cat("R add-on package installer: ",
R.version[["major"]], ".", R.version[["minor"]],
" (r", R.version[["svn rev"]], ")\n", sep = "")
cat("",
"Copyright (C) 2000-2013 The R Core Team.",
"This is free software; see the GNU General Public License version 2",
"or later for copying conditions. There is NO warranty.",
sep = "\n")
q("no", runLast = FALSE)
} else if (a %in% c("-c", "--clean")) {
clean <- TRUE
shargs <- c(shargs, "--clean")
} else if (a == "--preclean") {
preclean <- TRUE
shargs <- c(shargs, "--preclean")
} else if (a %in% c("-d", "--debug")) {
debug <- TRUE
} else if (a == "--no-configure") {
use_configure <- FALSE
} else if (a == "--no-docs") {
build_html <- build_latex <- build_example <- FALSE
} else if (a == "--no-html") {
build_html <- FALSE
} else if (a == "--html") {
build_html <- TRUE
} else if (a == "--latex") {
build_latex <- TRUE
} else if (a == "--example") {
build_example <- TRUE
} else if (a == "--use-zip-data") {
warning("use of '--use-zip-data' is defunct",
call. = FALSE, domain = NA)
warning("use of '--use-zip-data' is deprecated",
call. = FALSE, domain = NA)
} else if (a == "--auto-zip") {
warning("'--auto-zip' is defunct",
call. = FALSE, domain = NA)
} else if (a == "-l") {
if (length(args) >= 2L) {lib <- args[2L]; args <- args[-1L]}
else stop("-l option without value", call. = FALSE)
} else if (substr(a, 1, 10) == "--library=") {
lib <- substr(a, 11, 1000)
} else if (substr(a, 1, 17) == "--configure-args=") {
configure_args <- c(configure_args, substr(a, 18, 1000))
} else if (substr(a, 1, 17) == "--configure-vars=") {
configure_vars <- c(configure_vars, substr(a, 18, 1000))
} else if (a == "--fake") {
fake <- TRUE
} else if (a == "--no-lock") {
lock <- pkglock <- FALSE
} else if (a == "--lock") {
lock <- TRUE; pkglock <- FALSE
} else if (a == "--pkglock") {
lock <- pkglock <- TRUE
} else if (a == "--libs-only") {
libs_only <- TRUE
} else if (a == "--no-multiarch") {
multiarch <- FALSE
} else if (a == "--force-biarch") {
force_biarch <- TRUE
} else if (a == "--compile-both") {
force_both <- TRUE
} else if (a == "--maybe-get-user-libPaths") {
get_user_libPaths <- TRUE
} else if (a == "--build") {
if (WINDOWS) zip_up <- TRUE else tar_up <- TRUE
} else if (substr(a, 1, 16) == "--data-compress=") {
dc <- substr(a, 17, 1000)
dc <- match.arg(dc, c("none", "gzip", "bzip2", "xz"))
data_compress <- switch(dc,
"none" = FALSE,
"gzip" = TRUE,
"bzip2" = 2,
"xz" = 3)
} else if (a == "--resave-data") {
resave_data <- TRUE
} else if (a == "--install-tests") {
install_tests <- TRUE
} else if (a == "--no-inst") {
install_inst <- FALSE
} else if (a == "--no-R") {
install_R <- FALSE
} else if (a == "--no-libs") {
install_libs <- FALSE
} else if (a == "--no-data") {
install_data <- FALSE
} else if (a == "--no-demo") {
install_demo <- FALSE
} else if (a == "--no-exec") {
install_exec <- FALSE
} else if (a == "--no-help") {
install_help <- FALSE
} else if (a == "--no-test-load") {
test_load <- FALSE
} else if (a == "--no-clean-on-error") {
clean_on_error <- FALSE
} else if (a == "--merge-multiarch") {
merge <- TRUE
} else if (a == "--compact-docs") {
compact_docs <- TRUE
} else if (a == "--with-keep.source") {
keep.source <- TRUE
} else if (a == "--without-keep.source") {
keep.source <- FALSE
} else if (a == "--byte-compile") {
byte_compile <- TRUE
} else if (a == "--no-byte-compile") {
byte_compile <- FALSE
} else if (a == "--dsym") {
dsym <- TRUE
} else if (substr(a, 1, 18) == "--built-timestamp=") {
built_stamp <- substr(a, 19, 1000)
} else if (substr(a, 1, 1) == "-") {
message("Warning: unknown option ", sQuote(a), domain = NA)
} else pkgs <- c(pkgs, a)
args <- args[-1L]
}
if (keep.tmpdir) {
make_tmpdir <- function(prefix, nchars = 8, ntries = 100) {
for(i in 1:ntries) {
name = paste(sample(c(0:9, letters, LETTERS), nchars, replace=TRUE), collapse="")
path = paste(prefix, name, sep = "/")
if (dir.create(path, showWarnings = FALSE, recursive = T)) {
return(path)
}
}
stop("cannot create unique directory for build")
}
tmpdir <- make_tmpdir(user.tmpdir)
} else {
tmpdir <- tempfile("R.INSTALL")
if (!dir.create(tmpdir))
stop("cannot create temporary directory")
}
if (merge) {
if (length(pkgs) != 1L || !file_test("-f", pkgs))
stop("ERROR: '--merge-multiarch' applies only to a single tarball",
call. = FALSE)
if (WINDOWS) {
f <- dir(file.path(R.home(), "bin"))
archs <- f[f %in% c("i386", "x64")]
if (length(archs) > 1L) {
args <- args0[! args0 %in% c("--merge-multiarch", "--build")]
Sys.setenv("_R_INSTALL_NO_DONE_" = "yes")
for (arch in archs) {
cmd <- c(file.path(R.home(), "bin", arch, "Rcmd.exe"),
"INSTALL", args, "--no-multiarch")
if (arch == "x64") {
cmd <- c(cmd, "--libs-only", if(zip_up) "--build")
Sys.unsetenv("_R_INSTALL_NO_DONE_")
}
cmd <- paste(cmd, collapse = " ")
if (debug) message("about to run ", cmd, domain = NA)
message("\n", "install for ", arch, "\n", domain = NA)
res <- system(cmd)
if(res) break
}
}
} else {
archs <- dir(file.path(R.home("bin"), "exec"))
if (length(archs) > 1L) {
args <- args0[! args0 %in% c("--merge-multiarch", "--build")]
Sys.setenv("_R_INSTALL_NO_DONE_" = "yes")
last <- archs[length(archs)]
for (arch in archs) {
cmd <- c(file.path(R.home("bin"), "R"),
"--arch", arch, "CMD",
"INSTALL", args, "--no-multiarch")
if (arch != archs[1L]) cmd <- c(cmd, "--libs-only")
if (arch == last) {
Sys.unsetenv("_R_INSTALL_NO_DONE_")
if(tar_up) cmd <- c(cmd, "--build")
}
cmd <- paste(cmd, collapse = " ")
if (debug) message("about to run ", cmd, domain = NA)
message("\n", "install for ", arch, "\n", domain = NA)
res <- system(cmd)
if(res) break
}
}
}
if (length(archs) > 1L) {
if (res) do_exit_on_error()
do_cleanup()
on.exit()
return(invisible())
}
message("only one architecture so ignoring '--merge-multiarch'",
domain = NA)
}
allpkgs <- character()
for(pkg in pkgs) {
if (debug) message("processing ", sQuote(pkg), domain = NA)
if (file_test("-f", pkg)) {
if (WINDOWS && grepl("\\.zip$", pkg)) {
if (debug) message("a zip file", domain = NA)
pkgname <- basename(pkg)
pkgname <- sub("\\.zip$", "", pkgname)
pkgname <- sub("_[0-9.-]+$", "", pkgname)
allpkgs <- c(allpkgs, pkg)
next
}
if (debug) message("a file", domain = NA)
of <- dir(tmpdir, full.names = TRUE)
if (utils::untar(pkg, exdir = tmpdir,
tar = Sys.getenv("R_INSTALL_TAR", "internal")))
errmsg("error unpacking tarball")
nf <- dir(tmpdir, full.names = TRUE)
new <- nf[!nf %in% of]
if (!length(new))
errmsg("cannot extract package from ", sQuote(pkg))
if (length(new) > 1L)
errmsg("extracted multiple files from ", sQuote(pkg))
if (dir.exists(new)) pkgname <- basename(new)
else errmsg("cannot extract package from ", sQuote(pkg))
if (file.exists(file.path(tmpdir, pkgname, "DESCRIPTION"))) {
allpkgs <- c(allpkgs, file.path(tmpdir, pkgname))
} else errmsg("cannot extract package from ", sQuote(pkg))
} else if (file.exists(file.path(pkg, "DESCRIPTION"))) {
if (debug) message("a directory", domain = NA)
pkgname <- basename(pkg)
allpkgs <- c(allpkgs, fullpath(pkg))
} else {
warning("invalid package ", sQuote(pkg), call. = FALSE)
next
}
}
if (!length(allpkgs))
stop("ERROR: no packages specified", call.=FALSE)
if (!nzchar(lib)) {
lib <- if (get_user_libPaths) {
system(paste(file.path(R.home("bin"), "Rscript"),
"-e 'cat(.libPaths()[1L])'"),
intern = TRUE)
}
else .libPaths()[1L]
starsmsg(stars, "installing to library ", sQuote(lib))
} else {
lib0 <- lib <- path.expand(lib)
cwd <- tryCatch(setwd(lib), error = function(e)
stop(gettextf("ERROR: cannot cd to directory %s", sQuote(lib)),
call. = FALSE, domain = NA))
lib <- getwd()
setwd(cwd)
}
ok <- dir.exists(lib)
if (ok) {
if (WINDOWS) {
fn <- file.path(lib, paste("_test_dir", Sys.getpid(), sep = "_"))
unlink(fn, recursive = TRUE)
res <- try(dir.create(fn, showWarnings = FALSE))
if (inherits(res, "try-error") || !res) ok <- FALSE
else unlink(fn, recursive = TRUE)
} else ok <- file.access(lib, 2L) == 0
}
if (!ok)
stop("ERROR: no permission to install to directory ",
sQuote(lib), call. = FALSE)
group.writable <- if(WINDOWS) FALSE else {
d <- as.octmode("020")
(file.mode(lib) & d) == d
}
if (libs_only) {
install_R <- FALSE
install_data <- FALSE
install_demo <- FALSE
install_exec <- FALSE
install_inst <- FALSE
install_help <- FALSE
}
more_than_libs <- !libs_only
mk_lockdir <- function(lockdir)
{
if (file.exists(lockdir)) {
message("ERROR: failed to lock directory ", sQuote(lib),
" for modifying\nTry removing ", sQuote(lockdir),
domain = NA)
do_cleanup_tmpdir()
q("no", status = 3, runLast = FALSE)
}
dir.create(lockdir, recursive = TRUE)
if (!dir.exists(lockdir)) {
message("ERROR: failed to create lock directory ", sQuote(lockdir),
domain = NA)
do_cleanup_tmpdir()
q("no", status = 3, runLast = FALSE)
}
if (debug) starsmsg(stars, "created lock directory ", sQuote(lockdir))
}
if (is.na(lock)) {
lock <- TRUE
pkglock <- length(allpkgs) == 1L
}
if (lock && !pkglock) {
lockdir <- file.path(lib, "00LOCK")
mk_lockdir(lockdir)
}
if ((tar_up || zip_up) && fake)
stop("building a fake installation is disallowed")
if (fake) {
use_configure <- FALSE
build_html <- FALSE
build_latex <- FALSE
build_example <- FALSE
install_libs <- FALSE
install_demo <- FALSE
install_exec <- FALSE
}
build_help_types <- character()
if (build_html) build_help_types <- c(build_help_types, "html")
if (build_latex) build_help_types <- c(build_help_types, "latex")
if (build_example) build_help_types <- c(build_help_types, "example")
build_help <- length(build_help_types) > 0L
if (debug)
starsmsg(stars, "build_help_types=",
paste(build_help_types, collapse = " "))
if (debug)
starsmsg(stars, "DBG: 'R CMD INSTALL' now doing do_install()")
for(pkg in allpkgs) {
if (pkglock) {
lockdir <- file.path(lib, paste("00LOCK", basename(pkg), sep = "-"))
mk_lockdir(lockdir)
}
do_install(pkg)
}
do_cleanup()
on.exit()
invisible()
}
.SHLIB <- function()
{
status <- .shlib_internal(commandArgs(TRUE))
q("no", status = (status != 0), runLast=FALSE)
}
.shlib_internal <- function(args)
{
Usage <- function()
cat("Usage: R CMD SHLIB [options] files | linker options",
"",
"Build a shared object for dynamic loading from the specified source or",
"object files (which are automagically made from their sources) or",
"linker options. If not given via '--output', the name for the shared",
"object is determined from the first source or object file.",
"",
"Options:",
" -h, --help print short help message and exit",
" -v, --version print version info and exit",
" -o, --output=LIB use LIB as (full) name for the built library",
" -c, --clean remove files created during compilation",
" --preclean remove files created during a previous run",
" -n, --dry-run dry run, showing commands that would be used",
"",
"Windows only:",
" -d, --debug build a debug DLL",
"",
"Report bugs at [email protected] .",
sep = "\n")
p1 <- function(...) paste(..., collapse = " ")
WINDOWS <- .Platform$OS.type == "windows"
if (!WINDOWS) {
mconf <- readLines(file.path(R.home(),
paste0("etc", Sys.getenv("R_ARCH")),
"Makeconf"))
SHLIB_EXT <- sub(".*= ", "", grep("^SHLIB_EXT", mconf, value = TRUE,
perl = TRUE))
SHLIB_LIBADD <- sub(".*= ", "", grep("^SHLIB_LIBADD", mconf,
value = TRUE, perl = TRUE))
MAKE <- Sys.getenv("MAKE")
rarch <- Sys.getenv("R_ARCH")
} else {
rhome <- chartr("\\", "/", R.home())
Sys.setenv(R_HOME = rhome)
SHLIB_EXT <- ".dll"
SHLIB_LIBADD <- ""
MAKE <- "make"
rarch <- Sys.getenv("R_ARCH", NA_character_)
if(is.na(rarch)) {
if (nzchar(.Platform$r_arch)) {
rarch <- paste0("/", .Platform$r_arch)
Sys.setenv(R_ARCH = rarch)
} else rarch <- ""
}
}
OBJ_EXT <- ".o"
objs <- character()
shlib <- ""
site <- Sys.getenv("R_MAKEVARS_SITE", NA_character_)
if (is.na(site))
site <- file.path(paste0(R.home("etc"), rarch), "Makevars.site")
makefiles <-
c(file.path(paste0(R.home("etc"), rarch), "Makeconf"),
if(file.exists(site)) site,
file.path(R.home("share"), "make",
if (WINDOWS) "winshlib.mk" else "shlib.mk"))
shlib_libadd <- if (nzchar(SHLIB_LIBADD)) SHLIB_LIBADD else character()
with_cxx <- FALSE
with_f77 <- FALSE
with_f9x <- FALSE
with_objc <- FALSE
use_cxx1x <- FALSE
pkg_libs <- character()
clean <- FALSE
preclean <- FALSE
dry_run <- FALSE
debug <- FALSE
while(length(args)) {
a <- args[1L]
if (a %in% c("-h", "--help")) {
Usage()
return(0L)
}
else if (a %in% c("-v", "--version")) {
cat("R shared object builder: ",
R.version[["major"]], ".", R.version[["minor"]],
" (r", R.version[["svn rev"]], ")\n", sep = "")
cat("",
"Copyright (C) 2000-2013 The R Core Team.",
"This is free software; see the GNU General Public License version 2",
"or later for copying conditions. There is NO warranty.",
sep = "\n")
return(0L)
} else if (a %in% c("-n", "--dry-run")) {
dry_run <- TRUE
} else if (a %in% c("-d", "--debug")) {
debug <- TRUE
} else if (a %in% c("-c", "--clean")) {
clean <- TRUE
} else if (a == "--preclean") {
preclean <- TRUE
} else if (a == "-o") {
if (length(args) >= 2L) {shlib <- args[2L]; args <- args[-1L]}
else stop("-o option without value", call. = FALSE)
} else if (substr(a, 1, 9) == "--output=") {
shlib <- substr(a, 10, 1000)
} else {
base <- sub("\\.[[:alnum:]]*$", "", a)
ext <- sub(paste0(base, "."), "", a, fixed = TRUE)
nobj <- ""
if (nzchar(ext)) {
if (ext %in% c("cc", "cpp")) {
with_cxx <- TRUE
nobj <- base
} else if (ext == "m") {
with_objc <- TRUE
nobj <- base
} else if (ext %in% c("mm", "M")) {
with_objc <- with_cxx <- TRUE
nobj <- base
} else if (ext == "f") {
with_f77 <- TRUE
nobj <- base
} else if (ext %in% c("f90", "f95")) {
with_f9x <- TRUE
nobj <- base
} else if (ext == "c") {
nobj <- base
} else if (ext == "o") {
nobj <- base
}
if (nzchar(nobj) && !nzchar(shlib))
shlib <- paste0(nobj, SHLIB_EXT)
}
if (nzchar(nobj)) objs <- c(objs, nobj)
else pkg_libs <- c(pkg_libs, a)
}
args <- args[-1L]
}
if (length(objs)) objs <- paste0(objs, OBJ_EXT, collapse = " ")
if (WINDOWS) {
if (!is.na(f <- Sys.getenv("R_MAKEVARS_USER", NA_character_))) {
if (file.exists(f)) makefiles <- c(makefiles, f)
} else if (rarch == "/x64" &&
file.exists(f <- path.expand("~/.R/Makevars.win64")))
makefiles <- c(makefiles, f)
else if (file.exists(f <- path.expand("~/.R/Makevars.win")))
makefiles <- c(makefiles, f)
else if (file.exists(f <- path.expand("~/.R/Makevars")))
makefiles <- c(makefiles, f)
} else {
makefiles <- c(makefiles, makevars_user())
}
makeobjs <- paste0("OBJECTS=", shQuote(objs))
if (WINDOWS && file.exists("Makevars.win")) {
makefiles <- c("Makevars.win", makefiles)
lines <- readLines("Makevars.win", warn = FALSE)
if (length(grep("^OBJECTS *=", lines, perl=TRUE, useBytes = TRUE)))
makeobjs <- ""
if (length(ll <- grep("^CXX_STD *=", lines, perl = TRUE,
value = TRUE, useBytes = TRUE))) {
cxxstd <- gsub("^CXX_STD *=", "", ll)
cxxstd <- gsub(" *", "", cxxstd)
if (cxxstd == "CXX11") {
use_cxx1x <- TRUE
}
}
} else if (file.exists("Makevars")) {
makefiles <- c("Makevars", makefiles)
lines <- readLines("Makevars", warn = FALSE)
if (length(grep("^OBJECTS *=", lines, perl = TRUE, useBytes = TRUE)))
makeobjs <- ""
if (length(ll <- grep("^CXX_STD *=", lines, perl = TRUE,
value = TRUE, useBytes = TRUE))) {
cxxstd <- gsub("^CXX_STD *=", "", ll)
cxxstd <- gsub(" *", "", cxxstd)
if (cxxstd == "CXX11") {
use_cxx1x <- TRUE
}
}
}
if (!use_cxx1x) {
val <- Sys.getenv("USE_CXX1X", NA_character_)
if(!is.na(val)) {
use_cxx1x <- TRUE
}
else {
val <- Sys.getenv("R_PKG_CXX_STD")
if (val == "CXX11") {
use_cxx1x <- TRUE
}
}
}
makeargs <- paste0("SHLIB=", shQuote(shlib))
if (with_f9x) {
makeargs <- c("SHLIB_LDFLAGS='$(SHLIB_FCLDFLAGS)'",
"SHLIB_LD='$(SHLIB_FCLD)'", makeargs)
} else if (with_cxx) {
makeargs <- if (use_cxx1x)
c("CXX='$(CXX1X) $(CXX1XSTD)'",
"CXXFLAGS='$(CXX1XFLAGS)'",
"CXXPICFLAGS='$(CXX1XPICFLAGS)'",
"SHLIB_LDFLAGS='$(SHLIB_CXX1XLDFLAGS)'",
"SHLIB_LD='$(SHLIB_CXX1XLD)'", makeargs)
else
c("SHLIB_LDFLAGS='$(SHLIB_CXXLDFLAGS)'",
"SHLIB_LD='$(SHLIB_CXXLD)'", makeargs)
}
if (with_objc) shlib_libadd <- c(shlib_libadd, "$(OBJC_LIBS)")
if (with_f77) shlib_libadd <- c(shlib_libadd, "$(FLIBS)")
if (with_f9x) shlib_libadd <- c(shlib_libadd, "$(FCLIBS)")
if (length(pkg_libs))
makeargs <- c(makeargs,
paste0("PKG_LIBS='", p1(pkg_libs), "'"))
if (length(shlib_libadd))
makeargs <- c(makeargs,
paste0("SHLIB_LIBADD='", p1(shlib_libadd), "'"))
if (WINDOWS && debug) makeargs <- c(makeargs, "DEBUG=T")
if (WINDOWS && rarch == "/x64") makeargs <- c(makeargs, "WIN=64 TCLBIN=64")
build_objects_symbol_tables <-
config_val_to_logical(Sys.getenv("_R_SHLIB_BUILD_OBJECTS_SYMBOL_TABLES_",
"FALSE"))
cmd <- paste(MAKE, p1(paste("-f", shQuote(makefiles))), p1(makeargs),
p1(makeobjs))
if (dry_run) {
cat("make cmd is\n ", cmd, "\n\nmake would use\n", sep = "")
system(paste(cmd, "-n"))
res <- 0
} else {
if (preclean) system(paste(cmd, "shlib-clean"))
res <- system(cmd)
if((res == 0L) && build_objects_symbol_tables) {
system(paste(cmd, "symbols.rds"))
}
if (clean) system(paste(cmd, "shlib-clean"))
}
res
}
.writePkgIndices <-
function(dir, outDir, OS = .Platform$OS.type, html = TRUE)
{
re <- function(x)
{
xx <- rep(TRUE, length(x))
xx[grep("-package", x, fixed = TRUE)] <- FALSE
order(xx, toupper(x), x)
}
html_header <- function(pkg, title, version, conn)
{
cat(paste(HTMLheader(title, Rhome="../../..",
up="../../../doc/html/packages.html",
css = "R.css"),
collapse = "\n"),
'<h2>Documentation for package ‘', pkg, '’ version ',
version, '</h2>\n\n', sep = "", file = conn)
cat('<ul><li><a href="../DESCRIPTION">DESCRIPTION file</a>.</li>\n', file=conn)
if (file.exists(file.path(outDir, "doc")))
cat('<li><a href="../doc/index.html">User guides, package vignettes and other documentation.</a></li>\n', file=conn)
if (file.exists(file.path(outDir, "demo")))
cat('<li><a href="../demo">Code demos</a>. Use <a href="../../utils/help/demo">demo()</a> to run them.</li>\n',
sep = "", file=conn)
if (any(file.exists(c(file.path(outDir, "NEWS"), file.path(outDir, "NEWS.Rd")))))
cat('<li><a href="../NEWS">Package NEWS</a>.</li>\n',
sep = "", file=conn)
cat('</ul>\n\n<h2>Help Pages</h2>\n\n\n',
sep ="", file = conn)
}
firstLetterCategory <- function(x)
{
x[grep("-package$", x)] <- " "
x <- toupper(substr(x, 1, 1))
x[x > "Z"] <- "misc"
x[x < "A" & x != " "] <- "misc"
x
}
Rd <- if (file.exists(f <- file.path(outDir, "Meta", "Rd.rds")))
readRDS(f)
else {
db <- tryCatch(Rd_db(basename(outDir), lib.loc = dirname(outDir)),
error = function(e) NULL)
if (is.null(db)) db <- Rd_db(dir = dir)
Rd <- Rd_contents(db)
saveRDS(Rd, file.path(outDir, "Meta", "Rd.rds"))
Rd
}
topics <- Rd$Aliases
M <- if (!length(topics)) {
data.frame(Topic = character(),
File = character(),
Title = character(),
Internal = character(),
stringsAsFactors = FALSE)
} else {
lens <- lengths(topics)
files <- sub("\\.[Rr]d$", "", Rd$File)
internal <- sapply(Rd$Keywords, function(x) "internal" %in% x)
data.frame(Topic = unlist(topics),
File = rep.int(files, lens),
Title = rep.int(Rd$Title, lens),
Internal = rep.int(internal, lens),
stringsAsFactors = FALSE)
}
outman <- file.path(outDir, "help")
dir.create(outman, showWarnings = FALSE)
MM <- M[re(M[, 1L]), 1:2]
utils::write.table(MM, file.path(outman, "AnIndex"),
quote = FALSE, row.names = FALSE, col.names = FALSE,
sep = "\t")
a <- structure(MM[, 2L], names=MM[, 1L])
saveRDS(a, file.path(outman, "aliases.rds"))
outman <- file.path(outDir, "html")
dir.create(outman, showWarnings = FALSE)
outcon <- file(file.path(outman, "00Index.html"), "wt")
on.exit(close(outcon))
desc <- read.dcf(file.path(outDir, "DESCRIPTION"))[1L, ]
if(!is.na(enc <- desc["Encoding"])) {
desc <- iconv(desc, enc, "UTF-8", sub = "byte")
}
M <- M[!M[, 4L], ]
if (desc["Package"] %in% c("base", "graphics", "stats", "utils")) {
for(pass in 1:2) {
gen <- gsub("\\.data\\.frame", ".data_frame", M$Topic)
gen <- sub("\\.model\\.matrix$", ".modelmatrix", gen)
gen <- sub("^(all|as|is|file|Sys|row|na|model)\\.", "\\1_", gen)
gen <- sub("^(.*)\\.test", "\\1_test", gen)
gen <- sub("([-[:alnum:]]+)\\.[^.]+$", "\\1", gen)
last <- nrow(M)
nongen <- gen %in% c("ar", "bw", "contr", "dyn", "lm", "qr", "ts", "which", ".Call", ".External", ".Library", ".First", ".Last")
nc <- nchar(gen)
asg <- (nc > 3) & substr(gen, nc-1, nc) == "<-"
skip <- (gen == c("", gen[-last])) & (M$File == c("", M$File[-last])) & !nongen
skip <- skip | asg
M <- M[!skip, ]
}
}
M$Topic <- sub("^([^,]*),.*-method$", "\\1-method", M$Topic)
M <- M[!duplicated(M[, c("Topic", "File")]),]
M <- M[re(M[, 1L]), ]
htmlize <- function(x, backtick)
{
x <- gsub("&", "&", x, fixed = TRUE)
x <- gsub("<", "<", x, fixed = TRUE)
x <- gsub(">", ">", x, fixed = TRUE)
if (backtick) {
x <- gsub("---", "-", x, fixed = TRUE)
x <- gsub("--", "-", x, fixed = TRUE)
}
x
}
M$HTopic <- htmlize(M$Topic, FALSE)
M$Title <- htmlize(M$Title, TRUE)
html_header(desc["Package"], htmlize(desc["Title"], TRUE),
desc["Version"], outcon)
use_alpha <- (nrow(M) > 100)
if (use_alpha) {
first <- firstLetterCategory(M$Topic)
nm <- sort(names(table(first)))
m <- match(" ", nm, 0L)
if (m) nm <- c(" ", nm[-m])
m <- match("misc", nm, 0L)
if (m) nm <- c(nm[-m], "misc")
writeLines(c('<p style="text-align: center;">',
paste0("<a href=\"
"</p>\n"), outcon)
for (f in nm) {
MM <- M[first == f, ]
if (f != " ")
cat("\n<h2><a name=\"", f, "\">-- ", f, " --</a></h2>\n\n",
sep = "", file = outcon)
writeLines(c('<table width="100%">',
paste0('<tr><td style="width: 25%;"><a href="', MM[, 2L], '.html">',
MM$HTopic, '</a></td>\n<td>', MM[, 3L],'</td></tr>'),
"</table>"), outcon)
}
} else if (nrow(M)) {
writeLines(c('<table width="100%">',
paste0('<tr><td style="width: 25%;"><a href="', M[, 2L], '.html">',
M$HTopic, '</a></td>\n<td>', M[, 3L],'</td></tr>'),
"</table>"), outcon)
} else {
writeLines("There are no help pages in this package", outcon)
}
writeLines('</body></html>', outcon)
file.copy(file.path(R.home("doc"), "html", "R.css"), outman)
invisible(NULL)
}
.convertRdfiles <-
function(dir, outDir, types = "html", silent = FALSE, outenc = "UTF-8")
{
showtype <- function(type) {
if (!shown) {
nc <- nchar(bf)
if (nc < 38L)
cat(" ", bf, rep(" ", 40L - nc), sep = "")
else
cat(" ", bf, "\n", rep(" ", 44L), sep = "")
shown <<- TRUE
}
cat(type, rep(" ", max(0L, 6L - nchar(type))), sep = "")
}
dirname <- c("html", "latex", "R-ex")
ext <- c(".html", ".tex", ".R")
names(dirname) <- names(ext) <- c("html", "latex", "example")
mandir <- file.path(dir, "man")
if (!dir.exists(mandir)) return()
desc <- readRDS(file.path(outDir, "Meta", "package.rds"))$DESCRIPTION
pkg <- desc["Package"]
ver <- desc["Version"]
for(type in types)
dir.create(file.path(outDir, dirname[type]), showWarnings = FALSE)
cat(" converting help for package ", sQuote(pkg), "\n", sep = "")
if ("html" %in% types) {
if (!silent) message(" finding HTML links ...", appendLF = FALSE, domain = NA)
Links <- findHTMLlinks(outDir, level = 0:1)
if (!silent) message(" done")
.Links2 <- function() {
message("\n finding level-2 HTML links ...", appendLF = FALSE, domain = NA)
Links2 <- findHTMLlinks(level = 2)
message(" done", domain = NA)
Links2
}
delayedAssign("Links2", .Links2())
}
db <- tryCatch(Rd_db(basename(outDir), lib.loc = dirname(outDir)),
error = function(e) NULL)
if (is.null(db)) db <- Rd_db(dir = dir)
if (!length(db)) return()
.whandler <- function(e) {
.messages <<- c(.messages,
paste("Rd warning:", conditionMessage(e)))
invokeRestart("muffleWarning")
}
.ehandler <- function(e) {
message("", domain = NA)
unlink(ff)
stop(conditionMessage(e), domain = NA, call. = FALSE)
}
.convert <- function(expr)
withCallingHandlers(tryCatch(expr, error = .ehandler),
warning = .whandler)
files <- names(db)
for(nf in files) {
.messages <- character()
Rd <- db[[nf]]
attr(Rd, "source") <- NULL
bf <- sub("\\.[Rr]d$", "", basename(nf))
f <- attr(Rd, "Rdfile")
shown <- FALSE
if ("html" %in% types) {
type <- "html"
ff <- file.path(outDir, dirname[type],
paste0(bf, ext[type]))
if (!file_test("-f", ff) || file_test("-nt", f, ff)) {
showtype(type)
.convert(Rd2HTML(Rd, ff, package = c(pkg, ver),
defines = NULL,
Links = Links, Links2 = Links2))
}
}
if ("latex" %in% types) {
type <- "latex"
ff <- file.path(outDir, dirname[type],
paste0(bf, ext[type]))
if (!file_test("-f", ff) || file_test("-nt", f, ff)) {
showtype(type)
.convert(Rd2latex(Rd, ff, defines = NULL,
outputEncoding = outenc))
}
}
if ("example" %in% types) {
type <- "example"
ff <- file.path(outDir, dirname[type],
paste0(bf, ext[type]))
if (!file_test("-f", ff) || file_test("-nt", f, ff)) {
.convert(Rd2ex(Rd, ff, defines = NULL))
if (file_test("-f", ff)) showtype(type)
}
}
if (shown) {
cat("\n")
if (length(.messages)) writeLines(unique(.messages))
}
}
bfs <- sub("\\.[Rr]d$", "", basename(files))
if ("html" %in% types) {
type <- "html"
have <- list.files(file.path(outDir, dirname[type]))
have2 <- sub("\\.html", "", basename(have))
drop <- have[! have2 %in% c(bfs, "00Index", "R.css")]
unlink(file.path(outDir, dirname[type], drop))
}
if ("latex" %in% types) {
type <- "latex"
have <- list.files(file.path(outDir, dirname[type]))
have2 <- sub("\\.tex", "", basename(have))
drop <- have[! have2 %in% bfs]
unlink(file.path(outDir, dirname[type], drop))
}
if ("example" %in% types) {
type <- "example"
have <- list.files(file.path(outDir, dirname[type]))
have2 <- sub("\\.R", "", basename(have))
drop <- have[! have2 %in% bfs]
unlink(file.path(outDir, dirname[type], drop))
}
}
.makeDllRes <-
function(name="", version = "0.0")
{
if (file.exists(f <- "../DESCRIPTION") ||
file.exists(f <- "../../DESCRIPTION")) {
desc <- read.dcf(f)[[1L]]
if (!is.na(f <- desc["Package"])) name <- f
if (!is.na(f <- desc["Version"])) version <- f
}
writeLines(c('
'
'',
'VS_VERSION_INFO VERSIONINFO',
'FILEVERSION R_FILEVERSION',
'PRODUCTVERSION 3,0,0,0',
'FILEFLAGSMASK 0x3L',
'FILEOS VOS__WINDOWS32',
'FILETYPE VFT_APP',
'BEGIN',
' BLOCK "StringFileInfo"',
' BEGIN',
' BLOCK "040904E4"',
' BEGIN'))
cat(" VALUE \"FileDescription\", \"DLL for R package `", name,"'\\0\"\n",
" VALUE \"FileVersion\", \"", version, "\\0\"\n", sep = "")
writeLines(c(
' VALUE "Compiled under R Version", R_MAJOR "." R_MINOR " (" R_YEAR "-" R_MONTH "-" R_DAY ")\\0"',
' VALUE "Project info", "https://www.r-project.org\\0"',
' END',
' END',
' BLOCK "VarFileInfo"',
' BEGIN',
' VALUE "Translation", 0x409, 1252',
' END',
'END'))
}
makevars_user <-
function()
{
m <- character()
if(.Platform$OS.type == "windows") {
if(!is.na(f <- Sys.getenv("R_MAKEVARS_USER", NA_character_))) {
if(file.exists(f)) m <- f
}
else if((Sys.getenv("R_ARCH") == "/x64") &&
file.exists(f <- path.expand("~/.R/Makevars.win64")))
m <- f
else if(file.exists(f <- path.expand("~/.R/Makevars.win")))
m <- f
else if(file.exists(f <- path.expand("~/.R/Makevars")))
m <- f
}
else {
if(!is.na(f <- Sys.getenv("R_MAKEVARS_USER", NA_character_))) {
if(file.exists(f)) m <- f
}
else if(file.exists(f <- path.expand(paste("~/.R/Makevars",
Sys.getenv("R_PLATFORM"),
sep = "-"))))
m <- f
else if(file.exists(f <- path.expand("~/.R/Makevars")))
m <- f
}
m
}
makevars_site <-
function()
{
m <- character()
if(is.na(f <- Sys.getenv("R_MAKEVARS_SITE", NA_character_)))
f <- file.path(paste0(R.home("etc"), Sys.getenv("R_ARCH")),
"Makevars.site")
if(file.exists(f))
m <- f
m
} |
context("iso")
test_all <- (identical (Sys.getenv ("MPADGE_LOCAL"), "true") |
identical (Sys.getenv ("GITHUB_WORKFLOW"), "test-coverage"))
if (!test_all)
RcppParallel::setThreadOptions (numThreads = 2)
source ("../sc-conversion-fns.R")
test_that("isodists", {
expect_silent (hsc <- sf_to_sc (hampi))
requireNamespace ("geodist")
requireNamespace ("dplyr")
expect_silent (net <- weight_streetnet (hsc,
wt_profile = "bicycle"))
npts <- 100
set.seed (1)
from <- sample (net$.vx0, size = npts)
dlim <- c (1, 2, 5, 10, 20) * 100
expect_silent (d <- dodgr_isodists (net, from = from, dlim))
expect_is (d, "data.frame")
expect_equal (ncol (d), 5)
expect_identical (names (d), c ("from", "dlim", "id", "x", "y"))
expect_true (nrow (d) > 0)
expect_true ((npts - length (unique (d$from))) >= 0)
expect_true (length (unique (d$dlim)) <= length (dlim))
})
skip_on_cran ()
skip_if (!test_all)
test_that ("turn penalty", {
hsc <- sf_to_sc (hampi)
net0 <- weight_streetnet (hsc, wt_profile = "bicycle")
npts <- 100
set.seed (1)
from <- sample (net0$.vx0, size = npts)
dlim <- c (1, 2, 5, 10, 20) * 100
d0 <- dodgr_isodists (net0, from = from, dlim)
net <- weight_streetnet (hsc, wt_profile = "bicycle",
turn_penalty = TRUE)
expect_true (nrow (net) > nrow (net0))
d <- dodgr_isodists (net, from = from, dlim)
expect_false (identical (d0, d))
})
test_that ("errors", {
expect_silent (hsc <- sf_to_sc (hampi))
expect_silent (net <- weight_streetnet (hsc,
wt_profile = "bicycle"))
npts <- 100
set.seed (1)
from <- sample (net$.vx0, size = npts)
dlim <- c (1, 2, 5, 10, 20) * 100
expect_error (d <- dodgr_isodists (net, from = from),
"dlim must be specified")
expect_error (d <- dodgr_isodists (net, from = from, dlim = "a"),
"dlim must be numeric")
expect_error (d <- dodgr_isoverts (net, from = from,
dlim = dlim, tlim = 500),
"Only one of dlim or tlim can be provided")
net <- weight_streetnet (hampi)
expect_error (d <- dodgr_isochrones (net,
from = from,
tlim = 500),
"isochrones can only be calculated from SC-class networks")
expect_error (d <- dodgr_isoverts (net,
from = from,
tlim = 500),
"isoverts can only be calculated from SC-class networks")
})
test_that("isochrones", {
expect_silent (hsc <- sf_to_sc (hampi))
expect_silent (net <- weight_streetnet (hsc,
wt_profile = "bicycle"))
npts <- 100
set.seed (1)
from <- sample (net$.vx0, size = npts)
tlim <- c (5, 10, 20, 30, 60) * 60
expect_silent (x <- dodgr_isochrones (net, from = from, tlim))
expect_is (x, "data.frame")
expect_equal (ncol (x), 5)
expect_identical (names (x), c ("from", "tlim", "id", "x", "y"))
expect_true (nrow (x) > 0)
expect_true ((npts - length (unique (x$from))) >= 0)
expect_true (length (unique (x$tlim)) <= length (tlim))
})
test_that("isoverts", {
expect_silent (hsc <- sf_to_sc (hampi))
expect_silent (net <- weight_streetnet (hsc,
wt_profile = "bicycle"))
npts <- 100
set.seed (1)
from <- sample (net$.vx0, size = npts)
dlim <- c (1, 2, 5, 10, 20) * 100
expect_silent (dd <- dodgr_isodists (net, from = from, dlim))
expect_silent (d <- dodgr_isoverts (net, from = from, dlim))
expect_identical (names (dd), names (d))
expect_true (nrow (d) > nrow (dd))
tlim <- c (60, 120, 300)
expect_silent (v <- dodgr_isoverts (net,
from = from,
tlim = tlim))
expect_true ("tlim" %in% names (v))
expect_true ("dlim" %in% names (d))
expect_true (all (paste0 (tlim) %in% unique (v$tlim)))
}) |
is_valid_package <- function(file) {
if (!file.exists(file)) {
FALSE
} else if (grepl("\\.zip$", file)) {
is_valid_package_zip(file)
} else if (grepl("\\.tgz$|\\.tar\\.gz$", file)) {
is_valid_package_targz(file)
} else {
FALSE
}
}
is_valid_package_zip <- function(file) {
if (file.info(file)$size == 0) return(FALSE)
tryCatch(
is_package_file_list(file, suppressWarnings(zip_list(file))),
error = function(e) FALSE
)
}
is_valid_package_targz <- function(file) {
if (file.info(file)$size == 0) return(FALSE)
con <- gzfile(file, open = "rb")
on.exit(close(con), add = TRUE)
tryCatch(
is_package_file_list(file, untar(con, list = TRUE)),
error = function(e) FALSE
)
}
is_package_file_list <- function(file, list) {
pkgname <- pkg_name_from_file(file)
if (any(! grepl(paste0("^", pkgname, "\\b"), list))) return(FALSE)
if (! paste0(pkgname, "/DESCRIPTION") %in% list) return(FALSE)
return(TRUE)
}
pkg_name_from_file <- function(x) {
sub("^([a-zA-Z0-9\\.]+)_.*$", "\\1", basename(x))
} |
test_that("latch", {
testthat::expect_error(latch.e())
testthat::expect_error(latch.w())
x <- 1
testthat::expect_error(latch.e(x))
testthat::expect_error(latch.w(x))
testthat::expect_error(latch.e(x, "error"))
testthat::expect_error(latch.w(x, "warning"))
le <- latch.e(x, e("Probematic"))
lw <- latch.w(x, w("Suspicious"))
testthat::expect_snapshot_output(le)
testthat::expect_snapshot_output(lw)
testthat::expect_true(is.e(le))
testthat::expect_true(is.w(lw))
testthat::expect_error(resolve(le))
testthat::expect_warning(resolve(lw))
unlatch(le)
unlatch(lw)
}) |
library(poweRlaw)
library(plyr)
library(ggplot2)
context('Test the fitting of distributions')
test_that("dtpl handles the log argument correctly", {
testpoints <- 10^(seq(0, 5, length.out = 64))
expect_equal(exp(dtpl(testpoints, 2, 1.0, 1, log = TRUE)),
dtpl(testpoints, 2, 1.0, 1, log = FALSE),
tol = 1e-8)
})
if ( exists("EXTENDED_TESTS") && EXTENDED_TESTS ) {
test_that('PL fitting works', {
if ( file.exists('./tests/testthat') ) {
library(testthat)
setwd('./tests/testthat')
}
for ( s in dir('./pli-R-v0.0.3-2007-07-25',
full.names = TRUE, pattern = '*.R') ) {
source(s)
}
system("cd ./pli-R-v0.0.3-2007-07-25/zeta-function/ && make")
system("cd ./pli-R-v0.0.3-2007-07-25/exponential-integral/ && make")
system("cd ./pli-R-v0.0.3-2007-07-25/ && \
gcc discpowerexp.c -lm -o discpowerexp && \
chmod +x discpowerexp")
expos <- c(1.2, 2.5)
xmins <- c(1, 10)
for ( expo in expos ) {
for ( xmin in xmins ) {
dat <- unique(round(seq.int(1, 1000, length.out = 100)))
pldat <- poweRlaw::rpldis(1000, xmin = xmin, alpha = expo)
pldat <- pldat[pldat < 1e5]
expect_equal(dzeta(dat,, exponent = expo, threshold = xmin),
dpl(dat, expo, xmin = xmin))
expect_equal(pzeta(dat, exponent = expo, threshold = xmin, lower.tail = FALSE),
ippl(dat, expo, xmin = xmin))
expect_equal(zeta.loglike(pldat, exponent = expo, threshold = xmin),
pl_ll(pldat, expo, xmin = xmin))
our_expo <- pl_fit(pldat, xmin = xmin)[['plexpo']]
clauset_expo <- zeta.fit(pldat, threshold = xmin)[['exponent']]
powerlaw_expo <- estimate_pars( poweRlaw::displ$new(pldat) )[["pars"]]
expect_equal(clauset_expo, our_expo, tol = 1e-3)
plot(log10(cumpsd(pldat[pldat>=xmin])))
xs <- c(min(pldat[pldat>=xmin]), max(pldat[pldat>=xmin]))
lines(log10(xs), log10(ippl(xs, clauset_expo, xmin = xmin)),
lwd = 2, col = 'blue')
lines(log10(xs), log10(ippl(xs, powerlaw_expo, xmin = xmin)),
lwd = 2, col = 'green')
lines(log10(xs), log10(ippl(xs, our_expo, xmin = xmin)), col = 'red')
title('PLFIT')
}
}
})
test_that('EXP fitting works', {
rates <- c(1.1, 1.5)
xmins <- c(1, 3)
for (xmin in xmins) {
for ( rate in rates ) {
dat <- seq.int(1000)
expdat <- ceiling(rexp(1000, rate = rate))
expect_equal(ddiscexp(dat, rate, threshold = xmin),
ddisexp(dat, rate, xmin = xmin))
ipdisexp(dat, rate, xmin = xmin)
fit <- exp_fit(expdat, xmin = xmin)
expect_equal(fit[['cutoff']],
discexp.fit(expdat, threshold = xmin)[["lambda"]],
tol = 1e-3)
plot(log10(cumpsd(expdat[expdat >= xmin])))
xs <- seq(min(expdat), max(expdat), length.out = 100)
lines(log10(xs),
log10(ipdisexp(xs, fit[["cutoff"]], xmin = xmin)),
col = 'red')
title('EXPFIT')
}
}
})
test_that('LNORM fitting works', {
meanlogs <- c(1, 10)
sdlogs <- c(1, 3)
xmins <- c(1, 30)
for (xmin in xmins) {
for ( meanlog in meanlogs ) {
for ( sdlog in sdlogs ) {
xmax <- 1000
dat <- seq.int(xmax)
lnormdat <- ceiling(rlnorm(xmax, meanlog, sdlog))
expect_equal(ddislnorm(dat, meanlog, sdlog, xmin),
dlnorm.tail.disc(dat, meanlog, sdlog, threshold = xmin))
our_dlnorm <- ddislnorm(dat, meanlog, sdlog, xmin = 0)
clauset_dlnorm <- dlnorm.disc(dat, meanlog, sdlog)
expect_equal(our_dlnorm,
clauset_dlnorm)
our_fit <- suppressWarnings( lnorm_fit(lnormdat, xmin = xmin) )
clauset_fit <- suppressWarnings( fit.lnorm.disc(lnormdat, threshold = xmin) )
plot(log10(cumpsd(lnormdat[lnormdat >= xmin])))
xs <- seq(min(lnormdat), max(lnormdat), length.out = 10000)
suppressWarnings(
lines(log10(xs),
log10(ipdislnorm(xs,
our_fit[['meanlog']],
our_fit[['sdlog']],
xmin = xmin)), col = 'red')
)
suppressWarnings(
lines(log10(xs),
log10(ipdislnorm(xs,
fit.lnorm.disc(lnormdat, threshold = xmin)[["meanlog"]],
fit.lnorm.disc(lnormdat, threshold = xmin)[["sdlog"]],
xmin = xmin)),
col = "blue")
)
title('LNORMFIT')
}
}
}
})
test_that('TPL fitting works', {
rates <- c(0.05, 1.1)
expos <- c(1.1, 1.3)
xmins <- c(1, 10)
for (xmin in xmins) {
for ( rate in rates ) {
for ( expo in expos ) {
tpldat <- round(rpowerexp(1000, 1, expo, rate))
tpldat <- tpldat[tpldat < 1e5]
dat <- seq(0, 1000)
clauset_result <- suppressWarnings({
discpowerexp.norm(xmin, expo, rate)
})
if ( length(clauset_result) > 0 ) {
expect_equal(clauset_result, tplnorm(expo, rate, xmin),
tolerance = 1e-4)
}
dtpl_result <- dtpl(dat, expo, rate, xmin)
ddpxp_result <- suppressWarnings (
as.numeric( ddiscpowerexp(dat, expo, rate, threshold = xmin) )
)
if ( ! all( is.na(dtpl_result) ) ) {
expect_equal(dtpl_result, ddpxp_result,
tolerance = 1e-4)
}
clauset_result <- suppressWarnings(
discpowerexp.loglike(tpldat, expo, rate, threshold = xmin)
)
if (length(clauset_result) > 0) {
expect_equal(tpl_ll(tpldat, expo, rate, xmin),
clauset_result,
tolerance = 1e-4)
}
our_fit <- tpl_fit(tpldat, xmin = xmin)
clauset_fit <- tryNULL(discpowerexp.fit(tpldat, threshold = xmin))
if ( !is.null(clauset_fit) &&
abs(clauset_fit$exponent - (-1)) > 1e-4 &&
!is.na(our_fit$ll) ) {
if ( our_fit$ll < clauset_fit$loglike ) {
if ( abs(our_fit$ll - clauset_fit$loglike) > 1e-3 ) {
message("We found a better fit than the reference code")
}
} else {
if ( abs(our_fit$ll - clauset_fit$loglike) > 1e-3 ) {
message("Reference code found a better fit")
browser()
fail()
}
}
}
if ( !is.null(clauset_fit) ) {
plot(log10(cumpsd(tpldat[tpldat >= xmin])))
xs <- unique( round( seq(min(tpldat), max(tpldat),
length.out = 100) ))
lines(log10(xs),
log10(iptpl(xs,
clauset_fit[["exponent"]],
clauset_fit[["rate"]], xmin)), col = 'blue',
lwd = 2)
lines(log10(xs),
log10(iptpl(xs, our_fit[["plexpo"]],
our_fit[["cutoff"]], xmin)),
col = 'red')
title('TPLFIT')
}
}
}
}
})
test_that("PL estimations work with xmins", {
expos <- c(1.5, 2)
for (expo in expos) {
for (xmin in c(1, 5)) {
x <- seq.int(1000)
pldat <- poweRlaw::rpldis(1000, xmin, expo)
pldat <- pldat[pldat < 1e5]
expect_equal(dzeta(x, xmin, expo),
dpl(x, expo, xmin))
expect_equal(pzeta(x, xmin, expo, lower.tail = FALSE),
ippl(x, expo, xmin))
expect_equal(zeta.loglike(pldat, xmin, expo),
pl_ll(pldat, expo, xmin))
expect_equal(pl_fit(pldat, xmin = xmin)[["plexpo"]],
zeta.fit(pldat, xmin)[["exponent"]],
tol = 1e-3)
expect_is(xmin_estim(pldat), "numeric")
}
}
})
system("cd ./pli-R-v0.0.3-2007-07-25/zeta-function/ && rm zeta_func zeta_func.o")
system("cd ./pli-R-v0.0.3-2007-07-25/exponential-integral/ && rm exp_int exp_int.o")
system("cd ./pli-R-v0.0.3-2007-07-25/ && rm discpowerexp")
} |
make_seeds <- function(seed, n) {
if (is.list(seed)) {
seed <- validate_supplied_seeds(seed, n)
return(seed)
}
if (is_true(seed)) {
seed <- as_lecyer_cmrg_seed_from_base_r_seed()
} else if (is.integer(seed)) {
seed <- as_lecyer_cmrg_seed_from_integer(seed)
} else {
abort("Internal error: Unknown type of `seed` encountered.")
}
oseed <- next_random_seed()
on.exit(set_random_seed(oseed), add = TRUE)
out <- vector("list", length = n)
for (i in seq_len(n)) {
out[[i]] <- nextRNGSubStream(seed)
seed <- nextRNGStream(seed)
}
out
}
validate_supplied_seeds <- function(seeds, n) {
if (length(seeds) != n) {
abort(paste0(
"If `furrr_options(seed = )` is a list, it must have length equal ",
"to the common length of the inputs, ", n, ", ",
"not length ", length(seeds), "."
))
}
seeds
}
is_valid_random_seed <- function(seed) {
oseed <- get_random_seed()
on.exit(set_random_seed(oseed), add = TRUE)
env <- globalenv()
env$.Random.seed <- seed
res <- tryCatch(
simpleWarning = function(cnd) cnd,
sample.int(n = 1L, size = 1L, replace = FALSE)
)
ok <- !inherits(res, "simpleWarning")
ok
}
next_random_seed <- function(seed = get_random_seed()) {
sample.int(n = 1L, size = 1L, replace = FALSE)
seed_next <- get_random_seed()
stopifnot(!any(seed_next != seed))
invisible(seed_next)
}
get_random_seed <- function() {
env <- globalenv()
env$.Random.seed
}
set_random_seed <- function(seed) {
env <- globalenv()
if (is.null(seed)) {
rm(list = ".Random.seed", envir = env, inherits = FALSE)
} else {
env$.Random.seed <- seed
}
}
as_lecyer_cmrg_seed_from_base_r_seed <- function() {
oseed <- get_random_seed()
if (is_lecyer_cmrg_seed(oseed)) {
return(oseed)
}
on.exit(set_random_seed(oseed), add = TRUE)
RNGkind("L'Ecuyer-CMRG")
return(get_random_seed())
}
as_lecyer_cmrg_seed_from_integer <- function(seed) {
if (is_lecyer_cmrg_seed(seed)) {
return(seed)
}
if (length(seed) == 1L) {
oseed <- get_random_seed()
on.exit(set_random_seed(oseed), add = TRUE)
RNGkind("L'Ecuyer-CMRG")
set.seed(seed)
return(get_random_seed())
}
abort(paste0(
"Integer `seed` must be L'Ecuyer-CMRG RNG seed as returned by ",
"`parallel::nextRNGStream()` or a single integer."
))
}
is_lecyer_cmrg_seed <- function(seed) {
is.numeric(seed) &&
length(seed) == 7L &&
all(is.finite(seed)) &&
(seed[[1]] %% 10000L == 407L)
} |
global_exhaustive2p_cluster <- function(formula, data, phase_id, cluster, boundary_weights, exhaustive){
n2<- sum(data[[phase_id[["phase.col"]]]] == phase_id[["terrgrid.id"]])
n1<- Inf
model.object_plot_level <- lm(formula, data=data[data[[phase_id[["phase.col"]]]]%in%phase_id[["terrgrid.id"]],], x=TRUE, y=TRUE)
data_ext <- as.data.frame(cbind(model.object_plot_level$y, model.object_plot_level$x))
names(data_ext)[1] <- all.vars(formula)[1]
data_ext[, cluster] <- data[,cluster][match(rownames(data_ext),rownames(data))]
if(!is.na(boundary_weights)){
data_ext[,boundary_weights]<- data [data[[phase_id[["phase.col"]]]]%in%phase_id[["terrgrid.id"]],boundary_weights]
}
cluster_weights <- aggregate(data_ext[,all.vars(formula)[1]], list(data_ext[,cluster]), length)
cluster_means <- aggregate(data_ext[,-which(names(data_ext)==cluster)], list(cluster = data_ext[,cluster]), mean)
if(!is.na(boundary_weights)){
clustmeans.temp<- ddply(data_ext[,-which(names(data_ext) == all.vars(formula)[1])], .(cluster), function(x) colwise(weighted.mean, w = x[[boundary_weights]]) (x))
clustmeans.temp<- clustmeans.temp[, -which(names(clustmeans.temp) == boundary_weights)]
cluster_means<- merge(clustmeans.temp, cluster_means[,c(cluster, all.vars(formula)[1])], by=cluster)
}
names(cluster_weights)[1] <- cluster
names(cluster_means)[1] <- cluster
data_clust_s2 <- merge(cluster_means, cluster_weights, by=cluster)
Yc_x <- data_clust_s2[, all.vars(formula)[1]]
design_matrix.s2 <- as.matrix(data_clust_s2[, -1*c(which(names(data_clust_s2) %in% c(cluster,all.vars(formula)[1])), ncol(data_clust_s2))])
M_x.s2 <- data_clust_s2[, ncol(data_clust_s2)]
n1_clusters <- Inf
n2_clusters <- length(Yc_x)
As2inv <- solve( (t(design_matrix.s2) %*% (M_x.s2*design_matrix.s2)) / n2_clusters )
beta_s2 <- As2inv %*% t(t(M_x.s2*Yc_x) %*% design_matrix.s2 / n2_clusters)
Yc_x_hat <- design_matrix.s2 %*% beta_s2
Rc_x_hat <- Yc_x - Yc_x_hat
MR_square <- as.vector((M_x.s2^2)*(Rc_x_hat^2))
middle_term <- ((t(as.matrix(design_matrix.s2)) %*% ( MR_square*(as.matrix(design_matrix.s2)))) / n2_clusters^2)
cov_beta_s2 <- As2inv %*% middle_term %*% As2inv
w <- (M_x.s2 / mean(M_x.s2))
weighted_mean_Yc_x <- sum(M_x.s2*Yc_x)/sum(M_x.s2)
weighted_mean_Rc_x_hat <- sum(M_x.s2*Rc_x_hat)/sum(M_x.s2)
estimate <- exhaustive %*% beta_s2
ext_variance <- (1/n2_clusters)*(1/(n2_clusters-1))*sum((w^2)*(Rc_x_hat - weighted_mean_Rc_x_hat)^2)
g_variance <- (t(exhaustive) %*% cov_beta_s2 %*% exhaustive)
samplesizes<- data.frame(cbind (n1_clusters, n2_clusters, n1, n2))
colnames(samplesizes)<- c("n1_clust", "n2_clust", "n1", "n2")
rownames(samplesizes)<- "plots"
estimation<- data.frame(estimate=estimate, ext_variance=ext_variance, g_variance=g_variance,
n1=samplesizes$n1, n2=samplesizes$n2, n1_clust=samplesizes$n1_clust, n2_clust=samplesizes$n2_clust,
r.squared=summary(model.object_plot_level)$r.squared)
inputs<- list()
inputs[["data"]]<- data
inputs[["formula"]]<- formula
inputs[["boundary_weights"]]<- boundary_weights
inputs[["method"]]<- "exhaustive"
inputs[["cluster"]]<- TRUE
inputs[["exhaustive"]]<- TRUE
warn.messages<- NA
result<- list(input=inputs,
estimation=estimation,
samplesizes=samplesizes,
coefficients=t(beta_s2),
cov_coef=cov_beta_s2,
Rc_x_hat=Rc_x_hat,
mean_Rc_x_hat=weighted_mean_Rc_x_hat,
warn.messages=warn.messages)
class(result)<- c("global", "twophase")
return(result)
} |
p2r = function(subcircle = 0, na.fill = NULL)
{
assert_is_a_number(subcircle)
assert_all_are_non_negative(subcircle)
subcircle <- lazyeval::uq(subcircle)
na.fill <- lazyeval::uq(na.fill)
if (!is.null(na.fill) && !is(na.fill, "SpatialInterpolation"))
stop("'na.fill' is not an algorithm for spatial interpolation")
f = function(las, layout)
{
assert_is_valid_context(LIDRCONTEXTDSM, "p2r")
dsm <- fasterize(las, layout, subcircle, "max")
if (!is.null(na.fill))
{
verbose("Interpolating empty cells...")
layout[[1]][] <- NA_real_
layout[[1]][] <- dsm
hull <- st_convex_hull(las)
hull <- sf::st_buffer(hull, dist = raster_res(layout)[1])
where <- raster_as_dataframe(layout, xy = FALSE, na.rm = FALSE)
where <- where[is.na(where$Z)]
where <- sf::st_multipoint(as.matrix(where[,1:2]))
where <- sf::st_geometry(where)
where <- sf::st_set_crs(where, sf::st_crs(hull))
where <- sf::st_intersection(where, hull)
where <- sf::st_coordinates(where)[,-3]
where <- as.data.frame(where)
data.table::setnames(where, c("X", "Y"))
grid <- raster_as_las(layout)
lidR.context <- "p2r"
cells <- raster_cell_from_xy(layout, where$X, where$Y)
layout[[1]][cells] <- na.fill(grid, where)
dsm <- as.numeric(layout[[1]])
}
return(dsm)
}
f <- plugin_dsm(f)
return(f)
}
dsmtin = function(max_edge = 0)
{
max_edge <- lazyeval::uq(max_edge)
return(pitfree(0, c(max_edge, 0), 0))
}
pitfree <- function(thresholds = c(0, 2, 5, 10, 15), max_edge = c(0, 1), subcircle = 0)
{
assert_is_numeric(thresholds)
assert_all_are_non_negative(thresholds)
assert_is_numeric(max_edge)
assert_all_are_non_negative(max_edge)
assert_is_a_number(subcircle)
assert_all_are_non_negative(subcircle)
if (length(thresholds) > 1L & length(max_edge) < 2L)
{
stop("'max_edge' should contain 2 numbers")
}
thresholds <- lazyeval::uq(thresholds)
max_edge <- lazyeval::uq(max_edge)
subcircle <- lazyeval::uq(subcircle)
f <- function(las, layout)
{
assert_is_valid_context(LIDRCONTEXTDSM, "pitfree")
if (!"ReturnNumber" %in% names(las)) stop("No attribute 'ReturnNumber' found. This attribute is needed to extract first returns", call. = FALSE)
if (fast_countequal(las$ReturnNumber, 1L) == 0) stop("No first returns found. Operation aborted.", call. = FALSE)
. <- .N <- X <- Y <- Z <- ReturnNumber <- NULL
xscale <- las[["X scale factor"]]
yscale <- las[["Y scale factor"]]
xoffset <- las[["X offset"]]
yoffset <- las[["Y offset"]]
scales <- c(xscale, yscale)
offsets <- c(xoffset, yoffset)
verbose("Selecting first returns...")
cloud <- las@data[ReturnNumber == 1L, .(X, Y, Z)]
cloud <- LAS(cloud, las@header, st_crs(las), check = FALSE, index = las@index)
if (subcircle > 0)
{
verbose("Subcircling points...")
cloud <- subcircle(cloud, subcircle, 8L)
}
verbose("Selecting only the highest points within the grid cells...")
template <- raster_template(layout)
i <- C_highest(cloud, template)
cloud <- cloud[i]
if (nrow(cloud) < 3) stop("There are not enought points to triangulate.", call. = FALSE)
grid <- raster_as_dataframe(layout, na.rm = FALSE)
z <- rep(NA_real_, nrow(grid))
thresholds <- sort(thresholds)
for (i in seq_along(thresholds))
{
verbose(glue::glue("Triangulation pass {i} of {length(thresholds)}..."))
th <- thresholds[i]
edge <- if (th == 0) max_edge[1] else max_edge[2]
if (fast_countover(cloud$Z, th) > 3)
{
b <- cloud$Z >= th
cloud <- cloud[b]
Ztemp <- interpolate_delaunay(cloud@data, grid, edge, scales, offsets)
if (i == 1 && all(is.na(Ztemp)))
{
stop("Interpolation failed in the first layer (NAs everywhere). Maybe there are too few points.", call. = FALSE)
}
z <- pmax(z, Ztemp, na.rm = T)
}
}
if (all(is.na(z)))
stop("Interpolation failed (NAs everywhere). Input parameters might be wrong.", call. = FALSE)
return(z)
}
f <- plugin_dsm(f, omp = TRUE)
return(f)
}
subcircle = function(las, r, n)
{
xscale <- las[["X scale factor"]]
yscale <- las[["Y scale factor"]]
xoffset <- las[["X offset"]]
yoffset <- las[["Y offset"]]
bbox <- st_bbox(las)
dt <- las@data
X <- Y <- Z <- NULL
f = function(x, y, z, px, py)
{
x = x + px
y = y + py
z = rep(z, length(px))
list(X = x, Y = y, Z = z)
}
n = n + 1
alpha = seq(0, 2*pi, length.out = n)[-n]
px = r*cos(alpha)
py = r*sin(alpha)
dt <- dt[, f(X, Y, Z, px, py), by = 1:nrow(dt)][, nrow := NULL][]
dt <- dt[data.table::between(X, bbox$xmin, bbox$xmax) & data.table::between(Y, bbox$ymin, bbox$ymax)]
dt[1:.N, `:=`(X = round_any(X - xoffset, xscale) + xoffset, Y = round_any(Y - yoffset, yscale) + yoffset)]
return(LAS(dt, las@header, st_crs(las), check = FALSE, index = las@index))
} |
setAs("ddenseMatrix", "dgeMatrix", ..2dge)
setAs("ddenseMatrix", "matrix",
function(from) as(..2dge(from), "matrix"))
setAs("dgeMatrix", "lgeMatrix", function(from) d2l_Matrix(from, "dgeMatrix"))
setAs("dsyMatrix", "lsyMatrix", function(from) d2l_Matrix(from, "dsyMatrix"))
setAs("dspMatrix", "lspMatrix", function(from) d2l_Matrix(from, "dspMatrix"))
setAs("dtrMatrix", "ltrMatrix", function(from) d2l_Matrix(from, "dtrMatrix"))
setAs("dtpMatrix", "ltpMatrix", function(from) d2l_Matrix(from, "dtpMatrix"))
if(FALSE)
setAs("ddenseMatrix", "CsparseMatrix",
function(from) {
if (class(from) != "dgeMatrix")
as_Csparse(from)
else .Call(dense_to_Csparse, from)
})
setAs("dgeMatrix", "dgCMatrix",
function(from) .Call(dense_to_Csparse, from))
setMethod("as.numeric", "ddenseMatrix", function(x, ...) ..2dge(x)@x)
setMethod("norm", signature(x = "ddenseMatrix", type = "missing"),
function(x, type, ...) norm(..2dge(x)))
setMethod("norm", signature(x = "ddenseMatrix", type = "character"),
function(x, type, ...) norm(..2dge(x), type))
setMethod("rcond", signature(x = "ddenseMatrix", norm = "missing"),
function(x, norm, ...) rcond(..2dge(x), ...))
setMethod("rcond", signature(x = "ddenseMatrix", norm = "character"),
function(x, norm, ...) rcond(..2dge(x), norm, ...))
setMethod("solve", signature(a = "ddenseMatrix", b = "missing"),
function(a, b, ...) solve(..2dge(a)))
for(.b in c("Matrix","ANY"))
setMethod("solve", signature(a = "ddenseMatrix", b = .b),
function(a, b, ...) solve(..2dge(a), b))
for(.b in c("matrix","numeric"))
setMethod("solve", signature(a = "ddenseMatrix", b = .b),
function(a, b, ...) solve(..2dge(a), Matrix(b)))
rm(.b)
setMethod("lu", signature(x = "ddenseMatrix"),
function(x, ...)
.set.factors(x, "LU", lu(..2dge(x), ...)))
setMethod("chol", signature(x = "ddenseMatrix"), cholMat)
setMethod("determinant", signature(x = "ddenseMatrix", logarithm = "missing"),
function(x, logarithm, ...) determinant(..2dge(x)))
setMethod("determinant", signature(x = "ddenseMatrix", logarithm = "logical"),
function(x, logarithm, ...)
determinant(..2dge(x), logarithm))
.trilDense <- function(x, k = 0, ...) {
k <- as.integer(k[1])
d <- dim(x)
stopifnot(-d[1] <= k, k <= d[1])
.Call(dense_band, x, -d[1], k)
}
setMethod("tril", "denseMatrix", .trilDense)
setMethod("tril", "matrix", .trilDense)
.triuDense <- function(x, k = 0, ...) {
k <- as.integer(k[1])
d <- dim(x)
stopifnot(-d[1] <= k, k <= d[1])
.Call(dense_band, x, k, d[2])
}
setMethod("triu", "denseMatrix", .triuDense)
setMethod("triu", "matrix", .triuDense)
.bandDense <- function(x, k1, k2, ...) {
k1 <- as.integer(k1[1])
k2 <- as.integer(k2[1])
dd <- dim(x)
sqr <- dd[1] == dd[2]
stopifnot(-dd[1] <= k1, k1 <= k2, k2 <= dd[2])
r <- .Call(dense_band, x, k1, k2)
if (sqr && k1 < 0 && k1 == -k2 && isSymmetric(x))
forceSymmetric(r)
else
r
}
setMethod("band", "denseMatrix", .bandDense)
setMethod("band", "matrix", .bandDense)
setMethod("symmpart", signature(x = "ddenseMatrix"),
function(x) .Call(ddense_symmpart, x))
setMethod("skewpart", signature(x = "ddenseMatrix"),
function(x) .Call(ddense_skewpart, x))
setMethod("is.finite", signature(x = "dgeMatrix"),
function(x) {
if(all(ifin <- is.finite(x@x)))
allTrueMat(x)
else if(any(ifin)) {
r <- as(x, "lMatrix")
r@x <- ifin
as(r, "nMatrix")
}
else is.na_nsp(x)
})
setMethod("is.finite", signature(x = "ddenseMatrix"),
function(x) {
if(all(ifin <- is.finite(x@x))) return(allTrueMat(x))
cdx <- getClassDef(class(x))
r <- new(if(extends(cdx,"symmetricMatrix"))"nsyMatrix" else "ngeMatrix")
r@Dim <- (d <- x@Dim)
r@Dimnames <- x@Dimnames
isPacked <- (le <- prod(d)) > length(ifin)
r@x <- rep.int(TRUE, le)
iTr <- indTri(d[1], upper= x@uplo == "U", diag= TRUE)
if(isPacked) {
r@x[iTr] <- ifin
} else {
r@x[iTr] <- ifin[iTr]
}
r
})
setMethod("is.infinite", signature(x = "ddenseMatrix"),
function(x) {
if(any((isInf <- is.infinite(x@x)))) {
r <- as(x, "lMatrix")
r@x <- isInf
as(r, "nMatrix")
}
else is.na_nsp(x)
}) |
acrossFormsConstraint <- function(nForms,
nItems = NULL,
operator = c("<=", "=", ">="),
targetValue,
whichForms = seq_len(nForms),
whichItems = NULL,
itemIDs = NULL,
itemValues = NULL,
info_text = NULL){
check_out <- do_checks_eatATA(
nItems = nItems,
itemIDs = itemIDs,
itemValues = itemValues,
operator = operator,
nForms = nForms,
targetValue = targetValue,
info_text = info_text,
whichItems = whichItems,
itemValuesName = deparse(substitute(itemValues)))
nItems <- check_out$nItems
itemIDs <- check_out$itemIDs
itemValues <- check_out$itemValues
operator <- check_out$operator
info_text <- check_out$info_text
whichItems <- check_out$whichItems
makeItemFormConstraint(nForms = nForms, nItems = nItems,
values = rep(itemValues, times = nForms),
realVar = NULL, operator = operator,
targetValue = targetValue,
whichForms = whichForms,
whichItems = whichItems,
sense = NULL,
info_text = info_text, itemIDs = itemIDs)
} |
context("miss_var_summary tidiers")
dat <- tibble::tribble(
~air, ~wind, ~water, ~month,
-99, NA, 23, 1,
-98, NA, NA, 1,
25, 30, 21, 2,
NA, 99, NA, 2,
23, 40, NA, 2
)
test_that("miss_var_summary errors when a non-dataframe given",{
expect_error(miss_var_summary(NULL))
expect_error(miss_var_summary(matrix(0)))
})
test_that("miss_var_summary produces a tibble", {
expect_is(miss_var_summary(dat), "tbl_df")
})
aq_group <- dplyr::group_by(dat, month)
test_that("miss_var_summary grouped_df returns a tibble", {
expect_is(miss_var_summary(aq_group), "tbl_df")
})
test_that("miss_var_summary returns the right number of columns", {
expect_equal(ncol(miss_var_summary(dat)), 3)
})
test_that("miss_var_summary group returns the right number of columns", {
expect_equal(ncol(miss_var_summary(aq_group)), 4)
})
test_that("grouped_df returns 1 more column than regular miss_var_summary", {
expect_equal(ncol(miss_var_summary(aq_group)),
ncol(miss_var_summary(dat)) + 1)
})
test_that("grouped_df returns a column named 'Month'", {
expect_identical(names(miss_var_summary(aq_group)),
c("month", "variable", "n_miss","pct_miss"))
})
test_that("grouped_df returns a dataframe with more rows than regular", {
expect_gt(nrow(miss_var_summary(aq_group)),
nrow(miss_var_summary(dat)))
})
test_that("grouped_df returns a column named 'Month' with the right levels", {
expect_identical(unique(miss_var_summary(aq_group)$month),
c(1,2))
})
test_that("miss_var_summary adds cumsum when add_cumsum = TRUE", {
expect_equal(names(miss_var_summary(dat, add_cumsum = TRUE)),
c("variable", "n_miss", "pct_miss", "n_miss_cumsum"))
})
test_that("miss_var_summary grouped adds cumsum when add_cumsum = TRUE", {
expect_equal(names(miss_var_summary(aq_group, add_cumsum = TRUE)),
c("month", "variable", "n_miss", "pct_miss", "n_miss_cumsum"))
}) |
src <- function(x) {
if(!missing(x)) {
y <- paste(as.character(substitute(x)),".s",sep="")
options(last.source=y, TEMPORARY=FALSE)
}
else y <- options()$last.source
if(is.null(y))
stop("src not called with file name earlier")
source(y)
cat(y, "loaded\n")
invisible()
} |
download.MACA <- function(outfolder, start_date, end_date, site_id, lat.in, lon.in, model='IPSL-CM5A-LR', scenario='rcp85', ensemble_member='r1i1p1',
overwrite=FALSE, verbose=FALSE, ...){
start_date <- as.POSIXlt(start_date, tz = "UTC")
end_date <- as.POSIXlt(end_date, tz = "UTC")
start_year <- lubridate::year(start_date)
end_year <- lubridate::year(end_date)
site_id <- as.numeric(site_id)
model <- paste0(model)
scenario <- paste0(scenario)
ensemble_member <- paste0(ensemble_member)
outfolder <- paste0(outfolder,"_site_",paste0(site_id %/% 1000000000, "-", site_id %% 1000000000))
if (model == 'CCSM4'){
ensemble_member <- 'r6i1p1'
}
lat.in <- as.numeric(lat.in)
lat <- lat.in - 25.063077926635742
lat_MACA <- round(lat*24)
lon.in <- as.numeric(lon.in)
if (lon.in < 0){
lon.in <- 180 - lon.in}
lon <- lon.in - 235.22784423828125
lon_MACA <- round(lon*24)
dap_base <-'http://thredds.northwestknowledge.net:8080/thredds/dodsC/MACAV2'
ylist <- seq(start_year,end_year,by=1)
rows <- length(ylist)
results <- data.frame(file=character(rows), host=character(rows),
mimetype=character(rows), formatname=character(rows),
startdate=character(rows), enddate=character(rows),
dbfile.name = paste("MACA",model,scenario,ensemble_member,sep="."),
stringsAsFactors = FALSE)
var <- data.frame(DAP.name <- c("tasmax","tasmin","rsds","uas","vas","huss","pr","none","none","none"),
long_DAP.name <- c("air_temperature","air_temperature","surface_downwelling_shortwave_flux_in_air",
"eastward_wind","northward_wind","specific_humidity","precipitation","air_pressure",
"surface_downwelling_longwave_flux_in_air","air_temp"),
CF.name <- c("air_temperature_max","air_temperature_min","surface_downwelling_shortwave_flux_in_air",
"eastward_wind","northward_wind","specific_humidity","precipitation_flux","air_pressure",
"surface_downwelling_longwave_flux_in_air","air_temperature"),
units <- c('Kelvin','Kelvin',"W/m2","m/s","m/s","g/g","kg/m2/s", "Pascal", "W/m2","Kelvin")
)
for (i in 1:rows){
year <- ylist[i]
ntime <- (1825)
met_start <- 2006
met_block <- 5
url_year <- met_start + floor((year-met_start)/met_block)*met_block
start_url <- paste0(url_year)
end_url <- paste0(url_year+met_block-1)
dir.create(outfolder, showWarnings=FALSE, recursive=TRUE)
loc.file <- file.path(outfolder,paste("MACA",model,scenario,ensemble_member,year,"nc",sep="."))
lat <- ncdf4::ncdim_def(name='latitude', units='degree_north', vals=lat.in, create_dimvar=TRUE)
lon <- ncdf4::ncdim_def(name='longitude', units='degree_east', vals=lon.in, create_dimvar=TRUE)
time <- ncdf4::ncdim_def(name='time', units="sec", vals=(1:365)*86400, create_dimvar=TRUE, unlim=TRUE)
dim<-list(lat,lon,time)
var.list <- list()
dat.list <- list()
for(j in 1:length(var$CF.name)){
dap_end <- paste0('/',
model,'/macav2metdata_',
var$DAP.name[j],'_',
model,'_',
ensemble_member,'_',
scenario,'_',
start_url,'_',
end_url,'_CONUS_daily.nc')
dap_file <- paste0(dap_base,dap_end)
if(j < 8){
dap <- ncdf4::nc_open(dap_file)
dat.list[[j]] <- ncdf4::ncvar_get(dap,as.character(var$long_DAP.name[j]),c(lon_MACA,lat_MACA,1),c(1,1,ntime))
var.list[[j]] <- ncdf4::ncvar_def(name=as.character(var$CF.name[j]), units=as.character(var$units[j]), dim=dim, missval=-9999.0, verbose=verbose)
ncdf4::nc_close(dap)
} else {
dat.list[[j]] <- NA
var.list[[j]] <- ncdf4::ncvar_def(name=as.character(var$CF.name[j]), units=as.character(var$units[j]), dim=dim, missval=-9999.0, verbose=verbose)}
}
dat.list <- as.data.frame(dat.list)
colnames(dat.list) <- c("air_temperature_max","air_temperature_min","surface_downwelling_shortwave_flux_in_air","eastward_wind","northward_wind","specific_humidity","precipitation_flux","air_pressure", "surface_downwelling_longwave_flux_in_air","air_temperature")
dat.list[["air_temperature"]] <- (dat.list[["air_temperature_max"]]+dat.list[["air_temperature_min"]])/2
dat.list[["precipitation_flux"]] <- (dat.list[["precipitation_flux"]]/(24*3600))
if (year%%5 == 1){
dat.list = dat.list[1:365,]
}
if (year%%5 == 2){
dat.list = dat.list[366:730,]
}
if (year%%5 == 3){
dat.list = dat.list[731:1095,]
}
if (year%%5 == 4){
dat.list = dat.list[1096:1460,]
}
if (year%%5 == 0){
dat.list = dat.list[1461:1825,]
}
loc <- ncdf4::nc_create(filename=loc.file, vars=var.list, verbose=verbose)
for(j in seq_along(var$CF.name)){
ncdf4::ncvar_put(nc=loc, varid=as.character(var$CF.name[j]), vals=dat.list[[j]])
}
ncdf4::nc_close(loc)
results$file[i] <- loc.file
results$host[i] <- PEcAn.remote::fqdn()
results$startdate[i] <- paste0(year,"-01-01 00:00:00")
results$enddate[i] <- paste0(year,"-12-31 23:59:59")
results$mimetype[i] <- 'application/x-netcdf'
results$formatname[i] <- 'CF Meteorology'
}
return(invisible(results))
} |
rlaptrans <- function(n, ltpdf, ..., tol=1e-7, x0=1, xinc=2, m=11, L=1, A=19, nburn=38)
{
maxiter = 500
nterms = nburn + m*L
seqbtL = seq(nburn,nterms,L)
y = pi * (1i) * seq(1:nterms) / L
expy = exp(y)
A2L = 0.5 * A / L
expxt = exp(A2L) / L
coef = choose(m,c(0:m)) / 2^m
u = sort(runif(n), method="qu")
xrand = u
t = x0/xinc
cdf = 0
kount0 = 0
set1st = FALSE
while (kount0 < maxiter & cdf < u[n]) {
t = xinc * t
kount0 = kount0 + 1
x = A2L / t
z = x + y/t
ltx = ltpdf(x, ...)
ltzexpy = ltpdf(z, ...) * expy
par.sum = 0.5*Re(ltx) + cumsum( Re(ltzexpy) )
par.sum2 = 0.5*Re(ltx/x) + cumsum( Re(ltzexpy/z) )
pdf = expxt * sum(coef * par.sum[seqbtL]) / t
cdf = expxt * sum(coef * par.sum2[seqbtL]) / t
if (!set1st & cdf > u[1]) {
cdf1 = cdf
pdf1 = pdf
t1 = t
set1st = TRUE
}
}
if (kount0 >= maxiter) {
stop('Cannot locate upper quantile')
}
upplim = t
lower = 0
t = t1
cdf = cdf1
pdf = pdf1
kount = numeric(n)
maxiter = 1000
for (j in 1:n) {
upper = upplim
kount[j] = 0
while (kount[j] < maxiter & abs(u[j]-cdf) > tol) {
kount[j] = kount[j] + 1
t = t - (cdf-u[j])/pdf
if (t < lower | t > upper) {
t = 0.5 * (lower + upper)
}
x = A2L / t
z = x + y/t
ltx = ltpdf(x, ...)
ltzexpy = ltpdf(z, ...) * expy
par.sum = 0.5*Re(ltx) + cumsum( Re(ltzexpy) )
par.sum2 = 0.5*Re(ltx/x) + cumsum( Re(ltzexpy/z) )
pdf = expxt * sum(coef * par.sum[seqbtL]) / t
cdf = expxt * sum(coef * par.sum2[seqbtL]) / t
if (cdf <= u[j]) {
lower = t}
else {
upper = t}
}
if (kount[j] >= maxiter) {
warning('Desired accuracy not achieved for F(x)=u')
}
xrand[j] = t
lower = t
}
if (n > 1) {
rsample <- sample(xrand) }
else {
rsample <- xrand}
rsample
} |
bhl_getpartnames <- function(...) {
.Defunct(new = "bhl_getpartmetadata", package = "rbhl",
msg = "see ?bhl_getpartmetadata")
} |
expected <- eval(parse(text="\"The following object is masked from ‘package:base’:\\n\\n det\\n\""));
test(id=0, code={
argv <- eval(parse(text="list(NULL, \"The following object is masked from ‘package:base’:\\n\\n det\\n\")"));
.Internal(gettext(argv[[1]], argv[[2]]));
}, o=expected); |
data_collection_program <- function(interactive = TRUE, ...) {
interactive <- check_interactive(interactive)
observation <- if (interactive) {
interactive_data_collection_program(...)
} else {
manual_data_collection_program(...)
}
return(observation)
}
compendium_reference <- function(obs_data, interactive = TRUE, ...){
interactive <- check_interactive(interactive)
obs_data <- if (interactive) {
interactive_compendium_reference(obs_data, ...)
} else {
manual_compendium_reference(obs_data, ...)
}
return(obs_data)
} |
test_that("check_packages_installed", {
expect_equal(check_packages_installed("mlr3misc"), setNames(TRUE, "mlr3misc"))
expect_warning(check_packages_installed("this_is_not_a_package999"), "required but not installed")
expect_warning(check_packages_installed("this_is_not_a_package999", msg = "foobar %s"), "foobar")
expect_logical(check_packages_installed("this_is_not_a_package999", warn = FALSE))
expect_true(tryCatch(check_packages_installed("this_is_not_a_package999"),
packageNotFoundWarning = function(e) TRUE))
}) |
PERC <- function (Sigma, par = NULL, percentage = TRUE, optctrl = ctrl(), ...){
if(!isSymmetric(Sigma)){
stop("Matrix provided for Sigma is not symmetric.\n")
}
N <- ncol(Sigma)
mrc <- rep(1/N, N)
if(is.null(par)){
par <- mrc
} else {
if(length(par) != N){
stop("Length of 'par' not comformable with dimension of 'Sigma'.\n")
}
}
call <- match.call()
opt <- rp(x0 = par, P = Sigma, mrc = mrc, optctrl = optctrl)
w <- drop(getx(opt))
w <- w / sum(w)
if(percentage) w <- w * 100
if(is.null(dimnames(Sigma))){
names(w) <- paste("Asset", 1:N, sep = "")
} else {
names(w) <- colnames(Sigma)
}
new("PortSol", weights = w, opt = list(opt),
type = "Equal Risk Contribution", call = call)
} |
context("local_style()")
test_that("can be empty", {
f <- function() {
local_style()
div(.style %>% background("red"))
}
f() %>%
expect_html_class("cas-bg-red")
})
test_that("rename prefix", {
f <- function() {
local_style(background = "bg")
div(.style %>% background("indigo"))
}
f() %>%
expect_html_class("bg-indigo")
})
test_that("modifies passed .style", {
f <- function(...) {
local_style(margin = "margin")
div(
"hello, world!",
...
)
}
f(.style %>% margin(5)) %>%
expect_s3_class("shiny.tag") %>%
expect_html_class("margin-5")
}) |
"simple_ts" |
complete.mids.nmi <- function( x, action=c(1,1) )
{
if ( x$type=="mice" ){
x1 <- x$imp
data <- mice::complete( x1[[ action[1] ]], action=action[2] )
}
if ( x$type=="mice.1chain" ){
data <- complete.mids.1chain( x$imp[[ action[1] ]], action=action[2] )
}
return(data)
}
complete.mids.1chain <- function( x, action=1 )
{
mice::complete( x$midsobj, action=action )
} |
library(testthat)
library(distill)
test_check("distill") |
library(ggplot2)
library(ggiraph)
dataset <- structure(list(qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22
), disp = c(160, 160, 108, 258, 360, 225), carname = c("Mazda RX4",
"Mazda RX4 Wag", "Datsun 710", "Hornet 4 Drive", "Hornet Sportabout",
"Valiant"), wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46)), row.names = c("Mazda RX4",
"Mazda RX4 Wag", "Datsun 710", "Hornet 4 Drive", "Hornet Sportabout",
"Valiant"), class = "data.frame")
dataset
gg_point = ggplot(data = dataset) +
geom_point_interactive(aes(x = wt, y = qsec, color = disp,
tooltip = carname, data_id = carname)) + theme_minimal()
x <- girafe(ggobj = gg_point)
if( interactive() ) print(x) |
process_target_command <- function(name, dat, file_extensions) {
core <- c("command", "rule", "args", "depends", "is_target")
invalid <- c("rule", "target_argument", "quoted")
if (any(invalid %in% names(dat))) {
stop("Invalid keys: ",
paste(intersect(invalid, names(dat)), collapse=", "))
}
if (length(dat$depends) > 0) {
dat$depends <- unlist(from_yaml_map_list(dat$depends))
} else {
dat$depends <- character(0)
}
if (!is.null(dat$command)) {
cmd <- parse_target_command(name, dat$command)
if (length(dat$depends > 0)) {
cmd$depends <- c(cmd$depends, dat$depends)
}
rewrite <- intersect(names(cmd), core)
dat[rewrite] <- cmd[rewrite]
}
type <- target_infer_type(name, dat, file_extensions)
is_command <- names(dat) %in% core
list(command=dat[is_command], opts=dat[!is_command], type=type)
}
parse_target_command <- function(target_name, command, file_extensions) {
if (is.character(command) && length(command) > 1L) {
stop("commands must be scalar")
}
dat <- parse_command(command)
if (length(dat$depends) > 0L) {
depends <- dat$depends
is_dot <- depends == "."
if (sum(is_dot) > 1L) {
stop("Only a single dot argument allowed")
} else if (sum(is_dot) == 1L) {
i <- which(is_dot)
if (is.character(dat$args[[i]])) {
stop("Dot argument must not be quoted (it's like a variable)")
}
}
pos <- c(target_name, "target_name")
i <- sapply(pos, function(x) depends == x)
if (length(depends) == 1) {
i <- rbind(i, deparse.level=0)
}
if (sum(i) == 1L) {
j <- unname(which(rowSums(i) == 1L))
v <- dat$args[[j]]
if (is.character(v) && v == "target_name") {
stop("target_name must not be quoted (it's like a variable)")
} else if (is.name(v) && v != quote(target_name)) {
stop("target name must be quoted (it must be a file name)")
}
dat$args[[j]] <- target_name
dat$depends <- dat$depends[-j]
dat$command[[j + 1L]] <- target_name
dat$is_target[[j]] <- FALSE
} else if (sum(i) > 1L) {
n <- colSums(i)
n <- n[n > 0]
stop(sprintf("target name matched multiple times in command for '%s': %s",
dat$rule,
paste(sprintf("%s (%d)", names(n), n), collapse=", ")))
}
}
dat
}
parse_command <- function(str) {
command <- check_command(str)
rule <- check_command_rule(command[[1]])
is_target <- unname(vlapply(command[-1], is_target_like))
if (any(!is_target)) {
i <- c(FALSE, !is_target)
command[i] <- lapply(command[i], check_literal_arg)
}
args <- as.list(command[-1])
depends <- vcapply(args[is_target], as.character)
list(rule=rule, args=args, depends=depends, is_target=is_target,
command=command)
}
check_command <- function(str) {
if (is.language(str)) {
command <- str
} else {
assert_scalar_character(str)
command <- parse(text=as.character(str), keep.source=FALSE)
if (length(command) != 1L) {
stop("Expected single expression")
}
command <- command[[1]]
}
if (length(command) == 0) {
stop("I don't think this is possible")
}
if (!is.call(command)) {
stop("Expected a function call (even with no arguments)")
}
command
}
check_command_rule <- function(x) {
if (is.name(x)) {
x <- as.character(x)
} else if (!is.character(x)) {
stop("Rule must be a character or name")
}
x
}
check_literal_arg <- function(x) {
if (is.atomic(x)) {
x
} else if (is.call(x)) {
if (identical(x[[1]], quote(I))) {
x[[2]]
} else {
stop("Unknown special function ", as.character(x[[1]]))
}
} else {
stop("Unknown type in argument list")
}
}
is_target_like <- function(x) {
is.character(x) || is.name(x)
}
target_infer_type <- function(name, dat, file_extensions) {
type <- dat$type
if (is.null(type)) {
type <- if (target_is_file(name, file_extensions)) "file" else "object"
if ("knitr" %in% names(dat)) {
type <- "knitr"
} else if ("download" %in% names(dat)) {
type <- "download"
} else if ("plot" %in% names(dat)) {
type <- "plot"
} else if (type == "object" && is.null(dat$command)) {
type <- "fake"
}
} else {
assert_scalar_character(type)
}
type
}
target_is_file <- function(x, file_extensions) {
is_file <- grepl("/", x, fixed=TRUE)
check <- !is_file
if (any(check)) {
if (is.null(file_extensions)) {
file_extensions <- file_extensions()
}
is_file[check] <- tolower(file_extension(x[check])) %in% file_extensions
}
is_file
} |
itis_downstream <- function(id, downto, intermediate = FALSE, tsns = NULL,
...) {
pchk(tsns, "id")
if (!is.null(tsns)) id <- tsns
downto <- tolower(downto)
downto2 <- taxize_ds$rank_ref[which_rank(downto), "rankid"]
torank_ids <- taxize_ds$rank_ref[
which_rank(downto):NROW(taxize_ds$rank_ref), "rankid"]
stop_ <- "not"
notout <- data.frame(rankname = "")
out <- list()
if (intermediate) intermed <- list()
iter <- 0
while (stop_ == "not") {
iter <- iter + 1
if (!nchar(as.character(notout$rankname[[1]])) > 0) {
temp <- dt2df(lapply(as.character(id), ritis::rank_name),
idcol = FALSE)
} else {
temp <- notout
}
tt <- dt2df(lapply(as.character(temp$tsn), ritis::hierarchy_down),
idcol = FALSE)
names_ <- dt2df(lapply(split(tt, row.names(tt)), function(x) {
ritis::rank_name(as.character(x$tsn))[,c("rankid","rankname","tsn")]
}), idcol = FALSE)
if (nrow(names_) == 0) {
out[[iter]] <- data.frame(tsn = "No data", parentname = "No data",
parenttsn = "No data", taxonname = "No data",
rankid = "No data", rankname = "No data")
stop_ <- "nodata"
} else {
tt <- merge(tt, names_[,-2], by = "tsn")
if (intermediate) intermed[[iter]] <- tt
if (nrow(tt[tt$rankid == downto2, ]) > 0)
out[[iter]] <- tt[tt$rankid == downto2, ]
if (nrow(tt[!tt$rankid == downto2, ]) > 0) {
notout <- tt[!tt$rankid %in% torank_ids, ]
} else {
notout <- data.frame(rankname = downto)
}
if (length(notout$rankname) > 0)
notout$rankname <- tolower(notout$rankname)
if (all(notout$rankname == downto)) {
stop_ <- "fam"
} else {
id <- notout$tsn
stop_ <- "not"
}
}
if (intermediate) {
intermed[[iter]] <- stats::setNames(intermed[[iter]],
tolower(names(intermed[[iter]])))
intermed[[iter]]$rankname <- tolower(intermed[[iter]]$rankname)
}
}
tmp <- dt2df(out, idcol = FALSE)
tmp$rankname <- tolower(tmp$rankname)
if (intermediate) {
list(target = stats::setNames(tmp, tolower(names(tmp))),
intermediate = intermed)
} else {
stats::setNames(tmp, tolower(names(tmp)))
}
} |
test.dayOfWeek <- function() {
old <- setRmetricsOptions(myFinCenter = "Zurich")
on.exit(setRmetricsOptions(old))
td <- timeDate("2010-01-01")
check <- c("2010-01-01" = "Fri")
checkIdentical(dayOfWeek(td), check)
setRmetricsOptions(myFinCenter = "GMT")
td <- timeDate("2010-01-01")
check <- c("2010-01-01" = "Fri")
checkIdentical(dayOfWeek(td), check)
} |
FreeMatches <- function(Competitions){
print("Whilst we are keen to share data and facilitate research, we also urge you to be responsible with the data. Please register your details on https://www.statsbomb.com/resource-centre and read our User Agreement carefully.")
Matches.df <- tibble()
for(i in 1:nrow(Competitions)){
Matches.url <- paste0("https://raw.githubusercontent.com/statsbomb/open-data/master/data/matches/", Competitions$competition_id[i], "/", Competitions$season_id[i], ".json")
raw.matches <- GET(url = Matches.url)
matches.string <- rawToChar(raw.matches$content)
matches <- fromJSON(matches.string, flatten = T)
Matches.df <- bind_rows(Matches.df, matches)
}
return(Matches.df)
} |
mjs_plot <- function(data, x, y,
show_rollover_text = TRUE,
linked = FALSE,
decimals=2, format="count",
missing_is_hidden=FALSE,
left = 80, right = 10,
top = 40, bottom = 60, buffer = 8,
width = NULL, height = NULL,
title=NULL, description=NULL) {
if (!format %in% c("percentage", "count")) {
stop("'format' must be either 'percentage' or 'count'")
}
if (inherits(data, "data.frame")) data <- data.frame(data, stringsAsFactors=FALSE)
eid <- sprintf("mjs-%s",
paste(sample(c(letters[1:6], 0:9), 30, replace=TRUE), collapse=""))
if (!missing(x)) {
x <- substitute(x)
res <- try(eval(x, data, parent.frame()), silent = TRUE)
if (!inherits(res, "try-error") && inherits(res, "character")) {
if (length(res) != 1) {
x <- as.character(substitute(x))
} else {
x <- res
}
} else if (inherits(x, "name")) { x <- as.character(x) }
} else {
x <- as.character(substitute(x))
}
if (!missing(y)) {
y <- substitute(y)
res <- try(eval(y, data, parent.frame()), silent = TRUE)
if (!inherits(res, "try-error") && inherits(res, "character")) {
if (length(res) != 1) {
y <- as.character(substitute(y))
} else {
y <- res
}
} else if (inherits(y, "name")) { y <- as.character(y) }
} else {
y <- as.character(substitute(y))
}
is_datetime <- function(x) {
inherits(x, c('Date', 'POSIXct', 'POSIXlt'))
}
is_posix <- function(x) {
inherits(x, c('POSIXct', 'POSIXlt'))
}
orig_posix <- FALSE
if (is.null(dim(data))) {
if (is_posix(data)) orig_posix <- TRUE
} else if (is_posix(data[, x])) {
orig_posix <- TRUE
}
if (is.null(dim(data))) {
if (is_datetime(data)) data <- as.numeric(data)
} else if (is_datetime(data[, x])) {
data[, x] <- as.numeric(data[, x])
}
params = list(
forCSS=NULL,
regions=NULL,
orig_posix=orig_posix,
data=data,
x_axis=TRUE,
y_axis=TRUE,
baseline_accessor=NULL,
predictor_accessor=NULL,
show_confidence_band=NULL,
show_secondary_x_label=NULL,
chart_type="line",
xax_format="plain",
x_label=NULL,
y_label=NULL,
markers=NULL,
baselines=NULL,
linked=linked,
title=title,
description=description,
left=left,
right=right,
bottom=bottom,
buffer=buffer,
format=format,
y_scale_type="linear",
yax_count=5,
xax_count=6,
x_rug=FALSE,
y_rug=FALSE,
area=FALSE,
missing_is_hidden=missing_is_hidden,
size_accessor=NULL,
color_accessor=NULL,
color_type="number",
color_range=c("blue", "red"),
size_range=c(1, 5),
bar_height=20,
min_x=NULL,
max_x=NULL,
min_y=NULL,
max_y=NULL,
bar_margin=1,
binned=FALSE,
bins=NULL,
least_squares=FALSE,
interpolate="cardinal",
decimals=decimals,
show_rollover_text=show_rollover_text,
x_accessor=x,
y_accessor=y,
multi_line=NULL,
geom="line",
yax_units="",
legend=NULL,
legend_target=NULL,
y_extended_ticks=FALSE,
x_extended_ticks=FALSE,
target=sprintf("
)
if (is.null(width)) params$full_width <- TRUE
if (is.null(height)) params$full_height <- TRUE
htmlwidgets::createWidget(
name = 'metricsgraphics',
x = params,
width = width,
height = height,
package = 'metricsgraphics',
elementId = eid
)
}
metricsgraphicsOutput <- function(outputId, width = '100%', height = '400px'){
htmlwidgets::shinyWidgetOutput(outputId, 'metricsgraphics', width, height, package = 'metricsgraphics')
}
renderMetricsgraphics <- function(expr, env = parent.frame(), quoted = FALSE) {
if (!quoted) { expr <- substitute(expr) }
htmlwidgets::shinyRenderWidget(expr, metricsgraphicsOutput, env, quoted = TRUE)
}
metricsgraphics_html <- function(id, style, class, ...) {
list(tags$div(id = id, class = class, style = style),
tags$div(id = sprintf("%s-legend", id), class = sprintf("%s-legend", class)))
} |
MNP <- function(level){
x <- NULL
if(level==1){
x <- github.nytimes.covid19data(fips = "69", level = 2)
}
return(x)
} |
bootEff <- function(mod, R, seed = NULL,
type = c("nonparametric", "parametric", "semiparametric"),
ran.eff = NULL, cor.err = NULL, catch.err = TRUE,
parallel = c("snow", "multicore", "no"), ncpus = NULL,
cl = NULL, bM.arg = NULL, ...) {
if (missing(R))
stop("Number of bootstrap resamples (R) must be specified.")
m <- mod; type <- match.arg(type); re <- ran.eff; ce <- cor.err;
parallel <- match.arg(parallel); nc <- ncpus;
if (class(m)[1] == "psem") {
m <- m[sapply(m, isMod)]
ce <- do.call(c, m[sapply(m, class) == "formula.cerror"])
}
if (isList(m) && is.null(names(m))) {
names(m) <- sapply(m, function(i) {
if (isList(i)) i <- i[[1]]
names(model.frame(i, data = getData(i)))[1]
})
}
a <- list(...)
w <- a$weights; a$weights <- NULL
if (isList(m) && (is.null(w) || all(w == "equal"))) {
if (is.null(w) && any(sapply(m, isList)))
stop("'weights' must be supplied for model averaging (or specify 'equal').")
w <- lapply(m, function(i) w)
}
upd <- function(m, d) {
upd <- function(m) {
eval(update(m, data = d, evaluate = FALSE))
}
rMapply(upd, m, SIMPLIFY = FALSE)
}
d <- a$data; a$data <- NULL
if (!is.null(d)) m <- upd(m, d)
main.env <- environment()
env <- a$env; a$env <- NULL
if (is.null(env)) env <- parent.frame()
if (!is.null(d)) env <- main.env
mer <- unlist(rMapply(isMer, m))
if (any(mer) && !all(mer))
warning("Mixed and non-mixed models together in list. Resampling will treat all models as mixed.")
mer <- any(mer)
mer2 <- isTRUE(if (mer) {
pb <- type %in% c("parametric", "semiparametric")
if (!pb && is.null(re))
stop("Name of random effect to resample must be specified to 'ran.eff' (or use parametric bootstrapping).")
mer && pb
})
if (mer2) {
bootMer2 <- function(...) {
C <- match.call()
n <- length(C)
a <- c(list(FUN = s, nsim = R, seed = NULL, type = type,
parallel = parallel, ncpus = nc, cl = cl), bM.arg)
for (i in 1:length(a)) {
C[n + i] <- a[i]
names(C)[n + i] <- names(a)[i]
}
C[[1]] <- as.name("bootMer")
set.seed(seed)
eval.parent(C)
}
s <- NULL
}
any.ce <- isList(m) && !is.null(ce)
if (any.ce) {
cv <- sapply(ce, function(i) {
gsub(" ", "", unlist(strsplit(i, "~~")))
}, simplify = FALSE)
cv <- cv[sapply(cv, function(i) {
all(i %in% names(m)) && all(i %in% names(w))
})]
if (length(cv) < 1)
stop("Names of variable(s) with correlated errors missing from list of models and/or weights.")
}
if (parallel != "no") {
if (is.null(nc)) nc <- parallel::detectCores()
if (parallel == "snow") {
if (is.null(cl)) {
cl <- parallel::makeCluster(getOption("cl.cores", nc))
}
P <- function(...) {
paste(..., collapse = " ")
}
mc <- P(unlist(rMapply(function(i) P(getCall(i)), m)))
o <- unlist(lapply(search(), ls))
o <- o[sapply(o, function(i) grepl(i, mc, fixed = TRUE))]
o <- c(o, ls("package:semEff"))
parallel::clusterExport(cl, o)
}
}
if (is.null(seed)) {
set.seed(NULL)
seed <- sample(10000:99999, 1)
}
bootEff <- function(m, w) {
d <- getData(m, subset = TRUE, merge = TRUE, env = env)
if (!mer2) x <- if (mer) unique(d[re]) else d
stat <- function(x, i) {
xi <- if (mer) {
do.call(rbind, lapply(x[i, ], function(j) {
d[d[, re] == j, ]
}))
} else x[i, ]
do.call(stdEff, c(list(m, w, xi), a))
}
stat2 <- function(x) {
do.call(stdEff, c(list(x), a))
}
s <- if (mer2) stat <- stat2 else stat
if (catch.err) {
s <- function(...) {
tryCatch(stat(...), error = function(e) NA)
}
}
if (mer2) assign("s", s, main.env)
B <- if (!mer2) {
set.seed(seed)
boot::boot(x, s, R, parallel = parallel, ncpus = nc, cl = cl)
} else {
if (isList(m)) {
B <- lapply(m, bootMer2)
bn <- a$term.names
b <- lapply(B, "[[", 1)
b <- avgEst(b, w, bn)
bb <- t(sapply(1:R, function(i) {
bb <- lapply(B, function(j) j$t[i, ])
avgEst(bb, w, bn)
}))
if (ncol(bb) == R) bb <- t(bb)
B <- B[[1]]
B$t0 <- b; B$t <- bb
B$call <- NULL; B$statistic <- NULL; B$mle <- NULL
B
} else bootMer2(m)
}
n.err <- sum(apply(rbind(B$t0, B$t), 1, function(i) any(is.na(i))))
if (n.err > 0)
warning(paste(n.err, "model fit(s) or parameter estimation(s) failed. NAs reported/generated."))
colnames(B$t) <- names(B$t0)
attributes(B$t)[c("sim", "seed", "n")] <- c(B$sim, seed, nrow(B$data))
B
}
BE <- rMapply(bootEff, m, w, SIMPLIFY = FALSE)
if (any.ce) {
if (is.null(d)) d <- getData(m, merge = TRUE, env = env)
obs <- rownames(d)
res <- function(x, w = NULL) {
f <- function(m) {
if (!isGls(m) && !isGlm(m)) {
resid(m, type = "deviance")
} else resid(m)
}
if (isList(x)) {
if (all(sapply(x, isBoot))) {
r <- lapply(x, "[[", 1)
r <- avgEst(r, w)
rb <- t(sapply(1:R, function(i) {
rb <- lapply(x, function(j) j$t[i, ])
avgEst(rb, w)
}))
list(r, rb)
} else {
r <- lapply(x, f)
avgEst(r, w)
}
} else {
if (isBoot(x)) list(x$t0, x$t) else f(x)
}
}
BCE <- Map(function(i, j) {
m1 <- m[[i[1]]]; w1 <- w[[i[1]]]
d1 <- getData(m1, subset = TRUE, merge = TRUE, env = env)
m2 <- m[[i[2]]]; w2 <- w[[i[2]]]
d2 <- getData(m2, subset = TRUE, merge = TRUE, env = env)
o <- obs %in% rownames(d1) & obs %in% rownames(d2)
if (!all(o)) d <- d[o, ]
if (!mer2) {
x <- if (mer) unique(d[re]) else d
} else {
if (!all(o)) {m1 <- upd(m1, d); m2 <- upd(m2, d)}
}
stat <- function(x, i) {
xi <- if (mer) {
do.call(rbind, lapply(x[i, ], function(j) {
d[d[, re] == j, ]
}))
} else x[i, ]
r1 <- res(upd(m1, xi), w1)
r2 <- res(upd(m2, xi), w2)
cor(r1, r2)
}
s <- if (mer2) stat <- res else stat
if (catch.err) {
na <- if (mer2) rep(NA, nrow(d)) else NA
s <- function(...) {
tryCatch(stat(...), error = function(e) na)
}
}
if (mer2) assign("s", s, main.env)
B <- if (!mer2) {
set.seed(seed)
boot::boot(x, s, R, parallel = parallel, ncpus = nc, cl = cl)
} else {
B1 <- rMapply(bootMer2, m1, SIMPLIFY = FALSE)
R1 <- res(B1)
r1 <- R1[[1]]; rb1 <- R1[[2]]
B2 <- rMapply(bootMer2, m2, SIMPLIFY = FALSE)
R2 <- res(B2)
r2 <- R2[[1]]; rb2 <- R2[[2]]
B <- if (isList(B1)) B1[[1]] else B1
B$t0 <- cor(r1, r2)
B$t <- matrix(sapply(1:R, function(i) cor(rb1[i, ], rb2[i, ])))
B$call <- NULL; B$statistic <- NULL; B$mle <- NULL
B
}
n.err <- sum(apply(rbind(B$t0, B$t), 1, function(i) any(is.na(i))))
if (n.err > 0)
warning(paste(n.err, "model fit(s) or parameter estimation(s) failed. NAs reported/generated."))
names(B$t0) <- j; colnames(B$t) <- j
attributes(B$t)[c("sim", "seed", "n")] <- c(B$sim, seed, nrow(B$data))
B
}, cv, names(cv))
if (!isList(BE)) BE <- list(BE)
BE <- c(BE, BCE)
}
if (parallel == "snow") parallel::stopCluster(cl)
set.seed(NULL)
BE
}
bootCI <- function(mod, conf = 0.95, type = "bca", digits = 3, bci.arg = NULL,
...) {
m <- mod
is.B <- all(unlist(rMapply(isBoot, m)))
B <- if (!is.B) bootEff(m, ...) else m
bootCI <- function(B) {
if (B$sim == "parametric" && type[1] == "bca") {
message("Percentile confidence intervals used for parametric bootstrap samples.")
type <- "perc"
}
e <- B$t0
bi <- colMeans(B$t, na.rm = TRUE) - e
se <- apply(B$t, 2, sd, na.rm = TRUE)
se[is.na(e)] <- NA
ci <- sapply(1:length(e), function(i) {
if (!is.na(e[i])) {
if (e[i] != 0) {
ci <- suppressWarnings(
do.call(
boot::boot.ci,
c(list(B, conf, type, i), bci.arg)
)
)
tail(as.vector(ci[[4]]), 2)
} else rep(0, 2)
} else rep(NA, 2)
})
e <- data.frame("Effect" = e, "Bias" = bi, "Std. Err." = se,
"Lower CI" = ci[1, ], "Upper CI" = ci[2, ],
check.names = FALSE)
e <- round(e, digits)
stars <- apply(e, 1, function(i) {
if (!any(is.na(i))) {
i <- c(i[1], tail(i, 2))
if (all(i > 0) || all(i < 0)) "*" else ""
} else ""
})
e <- cbind(e, " " = stars)
e <- format(e, nsmall = digits)
e <- cbind(" " = rownames(e), "|",
e[1], "|", e[2], "|", e[3], "|", e[4:5], "|", e[6],
fix.empty.names = FALSE)
b <- mapply(function(i, j) {
n1 <- nchar(j)
n2 <- max(sapply(i, nchar), n1, 3)
b <- if (n1 > 1) rep("-", n2) else ""
paste(b, collapse = "")
}, e, names(e))
e <- rbind(b, e)
e[1] <- format(e[1], justify = "left")
rownames(e) <- 1:nrow(e)
class(e) <- c("bootCI", class(e))
attr(e, "ci.conf") <- conf
attr(e, "ci.type") <- type
e
}
rMapply(bootCI, B, SIMPLIFY = FALSE)
}
print.bootCI <- function(x, ...) {
print.data.frame(x, row.names = FALSE)
} |
check_netmhc2pan_data_url <- function(
netmhc2pan_data_url = get_netmhc2pan_data_url(),
verbose = FALSE,
temp_local_file = tempfile(pattern = "check_netmhc2pan_data_url_")
) {
if (verbose) {
message(
"netmhc2pan_data_url: ", netmhc2pan_data_url, " \n",
"temp_local_file: ", temp_local_file, " \n"
)
}
netmhc2pan::check_can_create_file(
filename = temp_local_file,
overwrite = FALSE
)
tryCatch({
suppressWarnings(
utils::download.file(
url = netmhc2pan_data_url,
destfile = temp_local_file,
quiet = !verbose
)
)
}, error = function(e) {
stop(
"'netmhc2pan_data_url' is invalid.\n",
"netmhc2pan_data_url: ", netmhc2pan_data_url, "\n",
"\n",
"Full error message: \n",
"\n",
e
)
})
file.remove(temp_local_file)
} |
sql_render <- function (query)
{
dplyr::check_dbplyr()
dbplyr::sql_render(query = query)
} |
carpools.waterfall.pval = function(type=NULL,dataset=NULL, pval=0.05, mageck.type="pos", log=TRUE)
{
pval.old=pval
if(is.null(type))
{stop("No analysis type selected. Please use either type='deseq2', type='mageck' or type='wilcox'.")}
else if(type=="wilcox")
{
plot.data = dataset$p.value
} else if (type=="deseq2")
{
plot.data = dataset$genes[,"padj"]
} else if(type=="mageck")
{
plot.data = dataset$genes[,mageck.type]
}
if(identical(log,TRUE))
{
plot.data = sapply(plot.data, function(x)
{
if(is.finite(-log10(as.numeric(x))))
{
return(-log10(as.numeric(x)))}
else return(1)
})
pval = -log10(pval)
plot.data = sort(plot.data, decreasing=TRUE)
plot.col = sapply(plot.data, function(x)
{
if(as.numeric(x) >= pval)
{return("red")}
else { return("black")}
})
ylab = "-log10 adjusted p-value"
}
else
{
plot.data = sort(plot.data, decreasing=FALSE)
plot.col = sapply(plot.data, function(x)
{
if(as.numeric(x) <= pval)
{return("red")}
else { return("black")}
})
ylab = "adjusted p-value"
}
plot(1:length(plot.data), plot.data, main="p-value Distribution", ylab = ylab, xlab="Gene",
col= plot.col,
pch = 16
)
lines(1:length(plot.data), rep(pval, length(plot.data)), col="black", lty="dashed", lwd=2)
legend("topright", legend=paste("p-value:",pval.old, sep=" "))
} |
"ecld.mu_D" <- function(object, validate=TRUE)
{
ecld.validate(object, sged.allowed=TRUE)
one <- if([email protected]) ecd.mp1 else 1
lambda <- object@lambda * one
s <- object@sigma * one
b <- object@beta
pass <- function(x) {
if (validate) {
if (is.na(x)) {
stop(paste("mu_D is NaN:",
"lambda=", ecd.mp2f(lambda), "beta=", ecd.mp2f(b), "sigma=", ecd.mp2f(s)))
}
if (abs(x)==Inf) {
stop(paste("mu_D is infinite:",
"lambda=", ecd.mp2f(lambda), "beta=", ecd.mp2f(b), "sigma=", ecd.mp2f(s)))
}
}
return(x)
}
if ([email protected]) {
d0 <- ecd(lambda=ecd.mp2f(lambda), sigma=one, bare.bone=TRUE)
sn <- s*(1-b)
sp <- s*(1+b)
e_y1 <- function(xi) exp(-xi^(2/lambda))*(exp(sp*xi)-1)
xt <- ecld.y_slope_trunc(object)/sp
if (xt > .ecd.mpfr.N.sigma) xt <- .ecd.mpfr.N.sigma
M1 <- ecd.integrate(d0, e_y1, 0, xt)
e_y2 <- function(xi) exp(-xi^(2/lambda))*(exp(-sn*xi)-1)
M2 <- ecd.integrate(d0, e_y2, 0, Inf)
if (M1$message != "OK") {
stop("Failed to integrate right tail from unit distribution")
}
if (M2$message != "OK") {
stop("Failed to integrate left tail from unit distribution")
}
C <- ecld.const(object)
return(pass(ecd.mpnum(object, -log(1 + (sp*M1$value + sn*M2$value)/C))))
}
if (lambda==1) {
if (b != 0) {
stop("lambda=1: beta must be zero")
}
return(pass(-s^2/4))
}
if (lambda==2) {
return(pass(log(1-b*s-s^2)))
}
if (lambda==4 & b==0) {
object@mu <- 0
return(ecld.mu_D_by_sum(object))
}
if (TRUE) {
return(ecld.mu_D_integrate(object, validate=validate))
}
stop("Unknown analytic formula for mu_D")
}
"ecld.mu_D_quartic" <- function(object)
{
s <- object@sigma
z = 1/2/sqrt(s)
dz = z^2*exp(-z^2)
Mz <- z^3*(ecd.erfq(z,-1) -ecd.erfq(z,1))
return(-log(Mz + dz))
}
"ecld.mu_D_by_sum" <- function(object)
{
return(-log(ecld.mgf_by_sum(object))+object@mu)
}
"ecld.mu_D_integrate" <- function(object, validate=TRUE)
{
ecld.validate(object, sged.allowed=TRUE)
one <- if([email protected]) ecd.mp1 else 1
lambda <- object@lambda * one
s <- object@sigma * one
b <- object@beta
pass <- function(x) {
if (validate) {
if (is.na(x)) {
stop(paste("mu_D is NaN:",
"lambda=", ecd.mp2f(lambda), "beta=", ecd.mp2f(b), "sigma=", ecd.mp2f(s)))
}
if (abs(x)==Inf) {
stop(paste("mu_D is infinite:",
"lambda=", ecd.mp2f(lambda), "beta=", ecd.mp2f(b), "sigma=", ecd.mp2f(s)))
}
}
return(x)
}
ld0 <- ecld(lambda=ecd.mp2f(lambda), beta=ecd.mp2f(b), sigma=one)
d0 <- ecd(lambda=ecd.mp2f(lambda), beta=ecd.mp2f(b), sigma=one, bare.bone=TRUE)
e_y1 <- function(xi) exp(ecld.solve(ld0,xi))*(exp(s*xi)-1)
xt <- ecld.y_slope_trunc(object)/s
if (xt > .ecd.mpfr.N.sigma) xt <- .ecd.mpfr.N.sigma
M1 <- ecd.integrate(d0, e_y1, 0, xt)
e_y2 <- function(xi) exp(ecld.solve(ld0,-xi))*(exp(-s*xi)-1)
M2 <- ecd.integrate(d0, e_y2, 0, Inf)
if (M1$message != "OK") {
stop("Failed to integrate right tail from unit distribution")
}
if (M2$message != "OK") {
stop("Failed to integrate left tail from unit distribution")
}
C <- ecld.const(object)/s
return(pass(ecd.mpnum(object, -log(1+(M1$value+M2$value)/C))))
} |
context("survival-coxph")
skip_if_not_installed("modeltests")
library(modeltests)
skip_if_not_installed("survival")
library(survival)
fit <- coxph(Surv(time, status) ~ age + sex, lung)
fit2 <- coxph(Surv(time, status) ~ age + sex, lung, robust = TRUE)
fit3 <- coxph(Surv(time, status) ~ age + sex + frailty(inst), lung)
bladder1 <- bladder[bladder$enum < 5, ]
fit4 <- coxph(Surv(stop, event) ~ (rx + size + number) * strata(enum) +
cluster(id), bladder1)
fit5 <- coxph(Surv(time, status) ~ age + pspline(nodes), data = colon)
test_that("coxph tidier arguments", {
check_arguments(tidy.coxph)
check_arguments(glance.coxph)
check_arguments(augment.coxph)
})
test_that("tidy.coxph", {
td <- tidy(fit)
td2 <- tidy(fit, exponentiate = TRUE)
td3 <- tidy(fit2)
td4 <- tidy(fit3)
td5 <- tidy(fit3, exponentiate = TRUE)
td6 <- tidy(fit3, conf.int = TRUE)
td7 <- tidy(fit4)
td8 <- tidy(fit4, exponentiate = TRUE)
td9 <- tidy(fit4, conf.int = TRUE)
td10 <- tidy(fit5)
td11 <- tidy(fit5, conf.int = TRUE)
check_tidy_output(td)
check_tidy_output(td2)
check_tidy_output(td3)
check_tidy_output(td4)
check_tidy_output(td5)
check_tidy_output(td6)
check_tidy_output(td7)
check_tidy_output(td8)
check_tidy_output(td9)
check_tidy_output(td10)
check_tidy_output(td11)
})
test_that("glance.coxph", {
gl <- glance(fit)
gl2 <- glance(fit2)
gl3 <- glance(fit3)
gl4 <- glance(fit4)
check_glance_outputs(gl, gl2, gl3, gl4, strict = FALSE)
})
test_that("augment.coxph", {
expect_error(
augment(fit),
regexp = "Must specify either `data` or `newdata` argument."
)
check_augment_function(
aug = augment.coxph,
model = fit,
data = lung,
newdata = lung
)
check_augment_function(
aug = augment.coxph,
model = fit2,
data = lung,
newdata = lung
)
}) |
test_that("Testing log-likelihood function", {
discrete_data = readRDS("discrete_data.RData")
m = displ$new(discrete_data)
m$setPars(2.58); m$setXmin(2)
expect_equal(dist_ll(m), -9155.62809, tol = 1e-4)
x = c(1, 1)
m = dislnorm$new(x)
m$setPars(c(1, 1))
l = (plnorm(1.5, 1, 1) - plnorm(0.5, 1, 1)) / (1 - plnorm(0.5, 1, 1))
ll1 = 2 * log(l)
expect_equal(dist_ll(m), ll1, tol = 1e-4)
x = c(1, 1, 3, 4)
m$setDat(x); m$setXmin(2)
ll3 = (plnorm(3.5, 1, 1) - plnorm(2.5, 1, 1)) / (1 - plnorm(1.5, 1, 1))
ll4 = (plnorm(4.5, 1, 1) - plnorm(3.5, 1, 1)) / (1 - plnorm(1.5, 1, 1))
ll = log(ll3) + log(ll4)
expect_equal(dist_ll(m), ll, tol = 1e-4)
x = c(1, 1, 3, 4)
m = dispois$new(x); m$setPars(2)
ll = log(prod(dpois(x, 2) / (1 - sum(dpois(0, 2)))))
expect_equal(dist_ll(m), ll, tol = 1e-4)
m$setXmin(2)
ll = log(prod(dpois(3:4, 2) / (1 - sum(dpois(0:1, 2)))))
expect_equal(dist_ll(m), ll, tol = 1e-4)
x = c(1, 1)
m = disexp$new(x)
m$setPars(1)
l = (pexp(1.5, 1, 1) - pexp(0.5, 1, 1)) / (1 - pexp(0.5, 1, 1))
ll1 = 2 * log(l)
expect_equal(dist_ll(m), ll1, tol = 1e-4)
x = c(1, 1, 3, 4)
m$setDat(x); m$setXmin(2)
ll3 = (pexp(3.5, 1, 1) - pexp(2.5, 1, 1)) / (1 - pexp(1.5, 1, 1))
ll4 = (pexp(4.5, 1, 1) - pexp(3.5, 1, 1)) / (1 - pexp(1.5, 1, 1))
ll = log(ll3) + log(ll4)
expect_equal(dist_ll(m), ll, tol = 1e-4)
ctn_data = readRDS("ctn_data.RData")
m = conpl$new(ctn_data)
m$setPars(2.53282); m$setXmin(1.43628)
expect_equal(dist_ll(m), -9276.4, tolerance = 0.00001);
x = c(1, 1)
m = conlnorm$new(x); m$setPars(c(1, 1))
ll1 = sum(log(dlnorm(x, 1, 1) / (1 - plnorm(1, 1, 1))))
expect_equal(dist_ll(m), ll1, tol = 1e-4)
x = c(1, 1, 3, 4)
m$setDat(x)
ll2 = sum(log(dlnorm(3:4, 1, 1) / (1 - plnorm(1, 1, 1))))
expect_equal(dist_ll(m), ll1 + ll2, tol = 1e-4)
m$setXmin(2)
ll3 = sum(log(dlnorm(3:4, 1, 1) / (1 - plnorm(2, 1, 1))))
expect_equal(dist_ll(m), ll3, tol = 1e-4)
x = c(1, 1)
m = conexp$new(x); m$setPars(1)
ll1 = sum(log(dexp(x, 1) / (1 - pexp(1, 1))))
expect_equal(dist_ll(m), ll1, tol = 1e-4)
x = c(1, 1, 3, 4)
m$setDat(x)
ll2 = sum(log(dexp(3:4, 1) / (1 - pexp(1, 1))))
expect_equal(dist_ll(m), ll1 + ll2, tol = 1e-4)
m$setXmin(2)
ll3 = sum(log(dexp(3:4, 1) / (1 - pexp(2, 1))))
expect_equal(dist_ll(m), ll3, tol = 1e-4)
}
) |
homog.test <- function(resmca,var,dim=c(1,2)) {
type <- attr(resmca,'class')[1]
if(type %in% c("MCA","stMCA","multiMCA")) eigen <- resmca$eig[,"eigenvalue"]
if(type %in% c("speMCA","csMCA")) eigen <- resmca$eig$eigen
vs <- varsup(resmca,var)
N <- sum(vs$weight)
a <- sqrt(1/outer(1/vs$weight,1/vs$weight,"+"))
res <- vector("list",length(dim))
for(i in 1:length(dim)) {
temp <- abs(outer(vs$coord[,dim[i]],vs$coord[,dim[i]],"-"))/sqrt(eigen[dim[i]])
test.stat <- a*sqrt((N-1)/N)*temp
res[[i]]$test.stat <- test.stat
res[[i]]$p.values <- 2*(1 -pnorm(test.stat))
}
names(res) <- paste('dim',dim,sep='.')
return(res)
} |
weibreg <-
function (formula = formula(data),
data = parent.frame(),
na.action = getOption("na.action"),
init,
shape = 0,
control = list(eps = 1e-4, maxiter = 10, trace = FALSE),
singular.ok = TRUE,
model = FALSE,
x = FALSE,
y = TRUE,
center = TRUE)
{
pfixed <- (shape > 0)
call <- match.call()
m <- match.call(expand.dots = FALSE)
temp <- c("", "formula", "data", "na.action")
m <- m[match(temp, names(m), nomatch = 0)]
special <- "strata"
Terms <- if (missing(data))
terms(formula, special)
else terms(formula, special, data = data)
m$formula <- Terms
m[[1]] <- as.name("model.frame")
m <- eval(m, parent.frame())
Y <- model.extract(m, "response")
if (!inherits(Y, "Surv"))
stop("Response must be a survival object")
weights <- model.extract(m, "weights")
offset <- attr(Terms, "offset")
tt <- length(offset)
offset <- if (tt == 0)
rep(0, nrow(Y))
else if (tt == 1)
m[[offset]]
else {
ff <- m[[offset[1]]]
for (i in 2:tt) ff <- ff + m[[offset[i]]]
ff
}
attr(Terms, "intercept") <- 1
strats <- attr(Terms, "specials")$strata
dropx <- NULL
if (length(strats)) {
temp <- survival::untangle.specials(Terms, "strata", 1)
dropx <- c(dropx, temp$terms)
if (length(temp$vars) == 1)
strata.keep <- m[[temp$vars]]
else strata.keep <- survival::strata(m[, temp$vars], shortlabel = TRUE)
strats <- as.numeric(strata.keep)
}
if (length(dropx))
newTerms <- Terms[-dropx]
else newTerms <- Terms
X <- model.matrix(newTerms, m)
assign <- lapply(survival::attrassign(X, newTerms)[-1], function(x) x - 1)
X <- X[, -1, drop = FALSE]
ncov <- NCOL(X)
if (ncov){
if (length(dropx)){
covars <- names(m)[-c(1, (dropx + 1))]
}else{
covars <- names(m)[-1]
}
isF <- logical(length(covars))
for (i in 1:length(covars)){
if (length(dropx)){
isF[i] <- ( is.factor(m[, -(dropx + 1)][, (i + 1)]) ||
is.logical(m[, -(dropx + 1)][, (i + 1)]) )
}else{
isF[i] <- ( is.factor(m[, (i + 1)]) ||
is.logical(m[, (i + 1)]) )
}
}
if (ant.fak <- sum(isF)){
levels <- list()
index <- 0
for ( i in 1:length(covars) ){
if (isF[i]){
index <- index + 1
if (length(dropx)){
levels[[i]] <- levels(m[, -(dropx + 1)][, (i + 1)])
}else{
levels[[i]] <- levels(m[, (i + 1)])
}
}else{
levels[[i]] <- NULL
}
}
}else{
levels <- NULL
}
}
type <- attr(Y, "type")
if (type != "right" && type != "counting")
stop(paste("This model doesn't support \"", type, "\" survival data",
sep = ""))
if (NCOL(Y) == 2){
Y <- cbind(numeric(NROW(Y)), Y)
}
n.events <- sum(Y[, 3] != 0)
if (n.events == 0) stop("No events; no sense in continuing!")
if (missing(init))
init <- NULL
if (is.list(control)){
if (is.null(control$eps)) control$eps <- 1e-4
if (is.null(control$maxiter)) control$maxiter <- 10
if (is.null(control$trace)) control$trace <- FALSE
}else{
stop("control must be a list")
}
fit <- weibreg.fit(X,
Y,
strats,
offset,
init,
shape,
control,
center)
if (ncov){
fit$linear.predictors <- offset + X %*% fit$coefficients[1:ncov]
fit$means <- apply(X, 2, mean)
}else{
fit$linear.predictors <- NULL
fit$means <- NULL
}
if (!fit$fail){
fit$fail <- NULL
}else{
out <- paste("Singular hessian; suspicious variable No. ",
as.character(fit$fail), ":\n",
names(coefficients)[fit$fail], " = ",
as.character(fit$value),
"\nTry running with fixed shape", sep = "")
stop(out)
}
fit$convergence <- as.logical(fit$conver)
fit$conver <- NULL
if (is.character(fit)) {
fit <- list(fail = fit)
class(fit) <- "mlreg"
}
else if (is.null(fit$fail)){
if (!is.null(fit$coef) && any(is.na(fit$coef))) {
vars <- (1:length(fit$coef))[is.na(fit$coef)]
msg <- paste("X matrix deemed to be singular; variable",
paste(vars, collapse = " "))
if (singular.ok)
warning(msg)
else stop(msg)
}
fit$n <- nrow(Y)
fit$terms <- Terms
fit$assign <- assign
if (FALSE){
if (length(fit$coef) && is.null(fit$wald.test)) {
nabeta <- !is.na(fit$coef)
if (is.null(init))
temp <- fit$coef[nabeta]
else temp <- (fit$coef - init)[nabeta]
}
}
na.action <- attr(m, "na.action")
if (length(na.action))
fit$na.action <- na.action
if (model)
fit$model <- m
if (x) {
fit$x <- X
if (length(strats))
fit$strata <- strata.keep
}
if (y)
fit$y <- Y
}
s.wght <- (Y[, 2] - Y[, 1])
fit$ttr <- sum(s.wght)
if (ncov){
fit$isF <- isF
fit$covars <- covars
fit$w.means <- list()
for (i in 1:length(fit$covars)){
nam <- fit$covars[i]
col.m <- which(nam == names(m))
if (isF[i]){
n.lev <- length(levels[[i]])
fit$w.means[[i]] <- numeric(n.lev)
for (j in 1:n.lev){
who <- m[, col.m] == levels[[i]][j]
fit$w.means[[i]][j] <-
sum( s.wght[who] ) / fit$ttr
}
}else{
fit$w.means[[i]] <- sum(s.wght * m[, col.m]) / fit$ttr
}
}
fit$means <- colMeans(X)
}
fit$ttr <- sum(s.wght)
fit$levels <- levels
fit$formula <- formula(Terms)
fit$call <- call
fit$n.events <- n.events
class(fit) <- c("weibreg", "phreg")
fit$pfixed <- pfixed
fit
} |
EmpEst <- function( lst, alpha, NEst, m, K ) {
tab1 <- lst[[1]]
p1 <- aggregate( f ~ y1, data=tab1, sum)
samp <- sample( p1[,"y1"], size=NEst, prob = p1[,"f"], replace = TRUE)
samp <- data.frame( y1 = samp )
Mout <- matrix(NA, nrow=2, ncol=K+2)
Mout[1,1:3] <- c(alpha,1,mean(samp[,"y1"]))
Mout[2,1:3] <- c(alpha,2,mean(samp[,"y1"]))
cSum <- samp[,"y1"]
for ( j in 2:K ) {
st <- max(1,j-m)
nt <- min(m,j-1)
nm <- paste("y",j,sep="")
nml <- paste("y",st:(j-1),sep="")
tab <- lst[[j]]
tab <- tab[ tab[,nm] == 1, ]
stmp <- seq( nt-1, 0, by=-1 )
pow <- 2^stmp
loc <- as.matrix(samp[, nml, drop=FALSE ]) %*% matrix(pow,ncol=1) + 1
p <- tab[ loc, "cf" ]
y <- as.numeric( runif(NEst) <= p )
samp[,nm] <- y
if (j > m) samp <- samp[,-1]
Mout[1,j+2] <- mean(y)
cSum <- cSum + y
Mout[2,j+2] <- mean(cSum)
}
colnames(Mout) <- c("alpha","type",paste("t",1:K,sep=""))
return(Mout)
} |
nzffdr_razzle_dazzle <- function(){
dat <- nzffdr::nzffdr_import()
dat <- nzffdr::nzffdr_clean(dat)
dat <- nzffdr::nzffdr_add_dates(dat)
dat <- nzffdr::nzffdr_taxon_threat(dat)
dat <- nzffdr::nzffdr_widen_habitat(dat)
return(dat)
} |
ggplot_global <- new.env(parent = emptyenv())
ggplot_global$theme_current <- list()
ggplot_global$element_tree <- list()
.all_aesthetics <- c(
"adj", "alpha", "angle", "bg", "cex", "col", "color",
"colour", "fg", "fill", "group", "hjust", "label", "linetype", "lower",
"lty", "lwd", "max", "middle", "min", "pch", "radius", "sample", "shape",
"size", "srt", "upper", "vjust", "weight", "width", "x", "xend", "xmax",
"xmin", "xintercept", "y", "yend", "ymax", "ymin", "yintercept", "z"
)
ggplot_global$all_aesthetics <- .all_aesthetics
.base_to_ggplot <- c(
"col" = "colour",
"color" = "colour",
"pch" = "shape",
"cex" = "size",
"lty" = "linetype",
"lwd" = "size",
"srt" = "angle",
"adj" = "hjust",
"bg" = "fill",
"fg" = "colour",
"min" = "ymin",
"max" = "ymax"
)
ggplot_global$base_to_ggplot <- .base_to_ggplot
ggplot_global$x_aes <- c("x", "xmin", "xmax", "xend", "xintercept",
"xmin_final", "xmax_final", "xlower", "xmiddle", "xupper", "x0")
ggplot_global$y_aes <- c("y", "ymin", "ymax", "yend", "yintercept", "ymin_final",
"ymax_final", "lower", "middle", "upper", "y0") |
createReservoir.base <-
function(type,name,priority,downstream,netEvaporation,
seepageFraction,seepageObject,geometry,plant,
penstock,initialStorage)
{
reservoir<-list(type=type,
name=name,
label=runif(1),
priority=priority,
downstream=downstream,
netEvaporation=netEvaporation,
seepageFraction=seepageFraction,
seepageObject=seepageObject,
geometry=geometry,
plant=plant,
penstock=penstock,
initialStorage=initialStorage)
return(reservoir)
} |
extract_formula <- function(formula, data, wanted = "both") {
data_matrix_formula <- model.frame(formula, data, na.action = NULL)
x <- data_matrix_formula[, 1]
if (formula[[3]] == 1) {
y <- 1
} else{
y <- data_matrix_formula[, 2]
x_values <- x[y == levels(y)[1]]
y_values <- x[y == levels(y)[2]]
x <- x_values
y <- y_values
}
if (wanted == "x") {
x
} else if (wanted == "y") {
y
} else {
list(x, y)
}
} |
plot.pred.density <-
function (x, predict_index = NULL, addons = "eslz", realized.y = NULL,
addons.lwd = 1.5, ...)
{
if (!is(x, "pred.density"))
stop("x must be of class 'pred.density'!")
x$plot(predict_index, realized.y = realized.y, addons = addons,
addons.lwd = addons.lwd, ...)
} |
sample_wav <- torchaudio:::audiofile_read_wav(system.file("ARCTIC/cmu_us_aew_arctic/wav/arctic_a0001.wav", package = "torchaudio"))
test_that("audiofile_loader", {
audiofile_obj <- audiofile_loader(system.file("ARCTIC/cmu_us_aew_arctic/wav/arctic_a0001.wav", package = "torchaudio"))
expect_equal(class(audiofile_obj)[1], "audiofile")
waveform_and_sample_rate <- transform_to_tensor(audiofile_obj)
expect_equal(waveform_and_sample_rate[[2]], sample_wav$sample_rate)
expect_tensor(waveform_and_sample_rate[[1]])
expect_equal(length(waveform_and_sample_rate[[1]]), length(sample_wav$waveform[[1]]))
expect_equal(dim(waveform_and_sample_rate[[1]]), c(1, length(sample_wav$waveform[[1]])))
}) |
req_suggested_packages <- c("rtdists", "microbenchmark",
"reshape2", "ggplot2", "ggforce")
pcheck <- lapply(req_suggested_packages, requireNamespace,
quietly = TRUE)
if (any(!unlist(pcheck))) {
message("Required package(s) for this vignette are not available/installed and code will not be executed.")
knitr::opts_chunk$set(eval = FALSE)
}
knitr::opts_chunk$set(
collapse = TRUE,
error = TRUE,
comment = "
)
RT <- seq(0.1, 2, by = 0.1)
A <- seq(0.5, 3.5, by = 0.5)
V <- c(-5, -2, 0, 2, 5)
t0 <- 0
W <- seq(0.3, 0.7, by = 0.1)
SV <- c(0, 1, 2, 3.5)
err_tol <- 1e-6
library("fddm")
source(system.file("extdata", "Blurton_et_al_distribution.R",
package = "fddm", mustWork = TRUE))
library("rtdists")
library("microbenchmark")
library("reshape2")
library("ggplot2")
library("ggforce")
rt_benchmark_vec <- function(RT, resp, V, A, t0 = 1e-4, W = 0.5, SV = 0.0,
err_tol = 1e-6, times = 1000) {
fnames <- c("Mills", "NCDF", "Blurton", "rtdists")
nf <- length(fnames)
nV <- length(V)
nA <- length(A)
nW <- length(W)
nSV <- length(SV)
resp <- rep(resp, length(RT))
mbm_res <- data.frame(matrix(ncol = 4+nf, nrow = nV*nA*nW*nSV))
colnames(mbm_res) <- c('V', 'A', 'W', 'SV', fnames)
row_idx <- 1
for (v in 1:nV) {
for (a in 1:nA) {
for (w in 1:nW) {
for (sv in 1:nSV) {
mbm <- microbenchmark(
Mills = pfddm(rt = RT, response = resp, a = A[a], v = V[v], t0 = t0,
w = W[w], sv = SV[sv], log = FALSE, method = "Mills",
err_tol = err_tol),
NCDF = pfddm(rt = RT, response = resp, a = A[a], v = V[v], t0 = t0,
w = W[w], sv = SV[sv], log = FALSE, method = "NCDF",
err_tol = err_tol),
Blurton = G_0(t = RT-t0, a = A[a], nu = V[v], w = W[w],
eta2 = SV[sv]*SV[sv], sigma2 = 1, eps = err_tol),
rtdists = pdiffusion(RT, resp, a = A[a], v = V[v], t0 = t0,
z = W[w]*A[a], sv = SV[sv], precision = 3),
times = times)
mbm_res[row_idx, 1] <- V[v]
mbm_res[row_idx, 2] <- A[a]
mbm_res[row_idx, 3] <- W[w]
mbm_res[row_idx, 4] <- SV[sv]
for (i in 1:nf) {
mbm_res[row_idx, 4+i] <- median(mbm[mbm[,1] == fnames[i],2])
}
row_idx = row_idx + 1
}
}
}
}
return(mbm_res)
}
load(system.file("extdata", "pfddm_distribution", "bm_vec_0-2.Rds",
package = "fddm", mustWork = TRUE))
t_idx <- match("SV", colnames(bm_vec))
bm_vec[, -seq_len(t_idx)] <- bm_vec[, -seq_len(t_idx)]/1000
mbm_vec <- melt(bm_vec, measure.vars = -seq_len(t_idx),
variable.name = "FuncName", value.name = "time")
Names_vec <- c("Mills", "NCDF", "Blurton", "rtdists")
Color_vec <- c("
Outline_vec <- c("
mi <- min(bm_vec[, (t_idx+1):(ncol(bm_vec)-2)])
ma <- max(bm_vec[, (t_idx+1):(ncol(bm_vec)-2)])
ggplot(mbm_vec, aes(x = factor(FuncName, levels = Names_vec), y = time,
color = factor(FuncName, levels = Names_vec),
fill = factor(FuncName, levels = Names_vec))) +
geom_violin(trim = TRUE, alpha = 0.5) +
scale_color_manual(values = Outline_vec, guide = FALSE) +
scale_fill_manual(values = Color_vec, guide = FALSE) +
geom_boxplot(width = 0.15, fill = "white", alpha = 0.5) +
stat_summary(fun = mean, geom = "errorbar",
aes(ymax = ..y.., ymin = ..y..),
width = .35, linetype = "dashed") +
scale_x_discrete(labels = c(
bquote(F[s] ~ Mills), bquote(F[s] ~ NCDF), "Blurton (Mills)", "rtdists")) +
facet_zoom(ylim = c(mi, ma)) +
labs(x = "Implementation", y = "Time (microseconds)") +
theme_bw() +
theme(panel.border = element_blank(),
axis.text.x = element_text(size = 16, angle = 90,
vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 16),
axis.title.x = element_text(size = 20,
margin = margin(10, 0, 0, 0)),
axis.title.y = element_text(size = 20,
margin = margin(0, 10, 0, 0)),
legend.position = "none")
rt_benchmark_ind <- function(RT, resp, V, A, t0 = 1e-4, W = 0.5, SV = 0.0,
err_tol = 1e-6, times = 100) {
fnames <- c("Mills", "NCDF", "Blurton", "rtdists")
nf <- length(fnames)
nRT <- length(RT)
nV <- length(V)
nA <- length(A)
nW <- length(W)
nSV <- length(SV)
mbm_res <- data.frame(matrix(ncol = 5+nf, nrow = nRT*nV*nA*nW*nSV))
colnames(mbm_res) <- c('RT', 'V', 'A', 'W', 'SV', fnames)
row_idx <- 1
for (rt in 1:nRT) {
for (v in 1:nV) {
for (a in 1:nA) {
for (w in 1:nW) {
for (sv in 1:nSV) {
mbm <- microbenchmark(
Mills = pfddm(rt = RT[rt], response = resp, a = A[a], v = V[v],
t0 = t0, w = W[w], sv = SV[sv], log = FALSE,
method = "Mills", err_tol = err_tol),
NCDF = pfddm(rt = RT[rt], response = resp, a = A[a], v = V[v],
t0 = t0, w = W[w], sv = SV[sv], log = FALSE,
method = "NCDF", err_tol = err_tol),
Blurton = G_0(t = RT[rt]-t0, a = A[a], nu = V[v], w = W[w],
eta2 = SV[sv]*SV[sv], sigma2 = 1, eps = err_tol),
rtdists = pdiffusion(RT[rt], resp, a = A[a], v = V[v], t0 = t0,
z = W[w]*A[a], sv = SV[sv], precision = 3),
times = times)
mbm_res[row_idx, 1] <- RT[rt]
mbm_res[row_idx, 2] <- V[v]
mbm_res[row_idx, 3] <- A[a]
mbm_res[row_idx, 4] <- W[w]
mbm_res[row_idx, 5] <- SV[sv]
for (i in 1:nf) {
mbm_res[row_idx, 5+i] <- median(mbm[mbm[,1] == fnames[i],2])
}
row_idx = row_idx + 1
}
}
}
}
}
return(mbm_res)
}
load(system.file("extdata", "pfddm_distribution", "bm_ind_0-2.Rds",
package = "fddm", mustWork = TRUE))
t_idx <- match("SV", colnames(bm_ind))
bm_ind[,-seq_len(t_idx)] <- bm_ind[, -seq_len(t_idx)]/1000
mbm_ind <- melt(bm_ind, measure.vars = -seq_len(t_idx),
variable.name = "FuncName", value.name = "time")
Names_meq <- c("Mills", "NCDF", "Blurton", "rtdists")
Color_meq <- c("
my_labeller <- as_labeller(c(Mills = "F[s] ~ Mills",
NCDF = "F[s] ~ NCDF",
fl_Nav_09 = "f[l] ~ Nav",
Blurton = "Blurton (Mills)",
rtdists = "rtdists"),
default = label_parsed)
ggplot(mbm_ind, aes(x = RT, y = time,
color = factor(FuncName, levels = Names_meq),
fill = factor(FuncName, levels = Names_meq))) +
stat_summary(fun.min = min, fun.max = max,
geom = "ribbon", color = NA, alpha = 0.1) +
stat_summary(fun.min = function(z) { quantile(z, 0.1) },
fun.max = function(z) { quantile(z, 0.9) },
geom = "ribbon", color = NA, alpha = 0.2) +
stat_summary(fun = mean, geom = "line") +
scale_x_log10(breaks = c(0.1, 0.25, 0.5, 1, 2),
labels = as.character(c(0.1, 0.25, 0.5, 1, 2))) +
scale_color_manual(values = Color_meq) +
scale_fill_manual(values = Color_meq) +
labs(subtitle = paste(
"The darker shaded regions represent the 10% and 90% quantiles",
"The lighter shaded regions represent the min and max times",
sep = ";\n"),
x = bquote(t ~ ", response time"),
y = "Time (microseconds)") +
theme_bw() +
theme(panel.grid.minor = element_blank(),
panel.border = element_blank(),
plot.subtitle = element_text(size = 16,
margin = margin(0, 0, 15, 0)),
axis.text.x = element_text(size = 16, angle = 90,
vjust = 0.5, hjust = 1),
axis.text.y = element_text(size = 16),
axis.title.x = element_text(size = 20,
margin = margin(10, 0, 0, 0)),
axis.title.y = element_text(size = 20,
margin = margin(0, 10, 0, 0)),
strip.text = element_text(size = 16),
strip.background = element_rect(fill = "white"),
legend.position = "none") +
facet_wrap(~ factor(FuncName, levels = Names_meq), scales = "free_y",
labeller = my_labeller)
sessionInfo() |
pCart <-
function (L) {
pCartAB <- function (v1, v2) {
v12<-list(); p12<-0;
for (i in 1:length(v1) ) {
for (j in 1:length(v2) ){
p12<-p12+1;
if (typeof(v1[[i]])=="list")
{ v12[[p12]]<-list();
for (k in 1:length(v1[[i]]))
v12[[p12]][k] <- v1[[i]][k];
v12[[p12]][k+1] <- v2[j] ;
}
else
{ v12[[p12]] <- c( c(v1[i]), c(v2[j]) ); }
}}
return(v12);
}
vL<-list(); pL<-0;
if (length(L)==1) return(L);
vL<-pCartAB(L[[1]],L[[2]]);
if (length(L) < 3) return(vL);
for (i in 3:length(L) ) {
vL<-pCartAB(vL, L[[i]]);
}
return(vL);
} |
designTwophaseAnatomies <- function(formulae, data, which.designs = "all",
printAnatomies = TRUE, titles,
orthogonalize = "hybrid",
marginality = NULL,
which.criteria = c("aefficiency", "eefficiency",
"order"), ...)
{
ntiers <- length(formulae)
if (ntiers != 3 || !all(unlist(lapply(formulae, plyr::is.formula))))
stop("must supply a list with three formulas")
if (length(orthogonalize) == 1)
orthogonalize <- rep(orthogonalize, ntiers)
else
if (length(orthogonalize) != ntiers)
{ warning("Length of orthogonalize is not equal to 1 or the number of formulae - only using first value")
orthogonalize <- rep(orthogonalize[1], ntiers)
}
anat.titls <- c("Anatomy for the full two-phase design",
"Anatomy for the first-phase design",
"Anatomy for the cross-phase, treatments design",
"Anatomy for the combined-units design")
if (!missing(titles))
{
if (length(titles) != 4 | !is.character(titles))
stop("titles must be a character of length fours")
anat.titls <- mapply(FUN = function(titl, anat.titl)
{
if (is.na(titl)) titl <- anat.titl
invisible(titl)
},
titles, anat.titls, USE.NAMES = FALSE)
}
designs <- c("two-phase", "first-phase", "cross-phase", "combined-units")
options <- c(designs, "all")
kdesigns <- options[unlist(lapply(which.designs, check.arg.values,
options=options))]
if ("all" %in% which.designs)
kdesigns <- designs
if (!is.null(marginality))
{
if (!is.list(marginality))
stop("marginality must be a list")
if (!all(unlist(lapply(marginality, inherits, what="matrix")) ||
unlist(lapply(marginality, is.null))))
stop("marginality must contain a list of matrices or NULL components")
if (length(marginality) != ntiers)
if (is.null(names(marginality)) | is.null(names(formulae)))
{
stop(paste("if the marginality list is not the same length as the formulae list, ",
"these two lists must be named", sep = ""))
} else
{
tmp <- vector(mode = "list", length = ntiers)
names(tmp) <- names(formulae)
for (f in names(formulae))
tmp[f] <- marginality[f]
marginality <- tmp
}
}
twoph.lay.canon <- twoph1.lay.canon <- ph12.lay.canon <- twoph2.lay.canon <- NULL
if ("two-phase" %in% kdesigns)
{
twoph.lay.canon <- designAnatomy(formulae = formulae, data = data,
orthogonalize = orthogonalize,
marginality = marginality,
which.criteria = which.criteria, ...)
if (printAnatomies)
{
cat("\n
print(summary(twoph.lay.canon, which.criteria = which.criteria))
}
}
if ("first-phase" %in% kdesigns)
{
twoph1.lay.canon <- designAnatomy(formulae = c(formulae[2], formulae[3]),
data = data,
orthogonalize = orthogonalize[c(2,3)],
marginality = c(marginality[2],marginality[3]),
which.criteria = which.criteria, ...)
if (printAnatomies)
{
cat("\n
print(summary(twoph1.lay.canon, which.criteria = which.criteria))
}
}
if ("cross-phase" %in% kdesigns)
{
ph12.lay.canon <- designAnatomy(formulae = c(formulae[1], formulae[3]),
data = data,
orthogonalize = orthogonalize[c(1,3)],
marginality = c(marginality[1],marginality[3]),
which.criteria = which.criteria, ...)
if (printAnatomies)
{
cat("\n
print(summary(ph12.lay.canon, which.criteria = which.criteria))
}
}
if ("combined-units" %in% kdesigns)
{
twoph2.lay.canon <- designAnatomy(formulae = c(formulae[1], formulae[2]),
data = data,
orthogonalize = orthogonalize[c(1,2)],
marginality = c(marginality[1],marginality[2]),
which.criteria = which.criteria, ...)
if (printAnatomies)
{
cat("\n
print(summary(twoph2.lay.canon, which.criteria = which.criteria))
}
}
anats <- list(twophase = twoph.lay.canon, first = twoph1.lay.canon, cross = ph12.lay.canon,
units = twoph2.lay.canon)
attr(anats, which = "titles") <- anat.titls
invisible(anats)
} |
quoted_list <- function(x) {
paste(shQuote(x, type = "csh"), collapse = ", ")
}
add_expr_after <- function(calls, add_after, expr, new_name = NULL) {
if (!rlang::is_string(add_after) || !add_after %in% names(calls)) {
stop(glue("`add_after=` must be one of {quoted_list(names(calls))}"))
}
index <- which(names(calls) == add_after)
new_name <- new_name %||% "user_added"
new_list <- list(expr) %>% set_names(new_name)
append(calls, new_list, after = index)
}
gts_mapper <- function(x, context) {
if (!rlang::is_function(x) && !rlang::is_formula(x)) {
paste(
"Expecting a function in argument `{context}`,\n",
"e.g. `fun = function(x) style_pvalue(x, digits = 2)`, or\n",
"`fun = ~style_pvalue(., digits = 2)`"
) %>%
stringr::str_glue() %>%
rlang::abort()
}
purrr::as_mapper(x)
}
type_check <-
list(
is_string =
list(msg = "Expecting a string as the passed value.",
fn = function(x) is_string(x)),
is_character =
list(msg = "Expecting a character as the passed value.",
fn = function(x) is.character(x)),
is_function =
list(msg = "Expecting a function as the passed value.",
fn = function(x) is.function(x)),
is_function_or_string =
list(msg = "Expecting a function or a string of a function name.",
fn = function(x) is_string(x) || is.function(x)),
is_string_or_na =
list(msg = "Expecting a string or NA as the passed value.",
fn = function(x) is_string(x) || is.na(x)),
is_named =
list(msg = "Expecting a named vector or list as the passed value.",
fn = function(x) is_named(x)),
digits =
list(msg = "Expecting an integer, function, or a vector/list of intergers/functions as the passed value.",
fn = function(x) rlang::is_integerish(x) || is.function(x) || purrr::every(x, ~rlang::is_integerish(.x) || is.function(.x)))
) |
test_that("repo_string_as_named_list() works", {
expect_equal(
repo_string_as_named_list('ropensci|https://ropensci.r-universe.dev|ddsjoberg|https://ddsjoberg.r-universe.dev'),
list(ropensci = "https://ropensci.r-universe.dev",
ddsjoberg = "https://ddsjoberg.r-universe.dev")
)
expect_equal(
repo_string_as_named_list(NULL),
list()
)
}) |
RW <- function(X) {
if (!is.numeric((X)) && !is.logical((X))) {
warning("Argument is not numeric or logical: returning NA")
return(NA)
}
RW_Cpp(X);
} |
test_that("resp_condition_fun1 has expected output when age is out of range", {
expect_equal(resp_condition_fun1(-1, 1, 1), "NA(b)")
})
test_that("resp_condition_fun1 has expected output when
COPD/Emphs is out of range", {
expect_equal(resp_condition_fun1(40, 0, 1), 1)
})
test_that("resp_condition_fun1 has expected output when
Asthma is out of range", {
expect_equal(resp_condition_fun1(40, 1, 0), 1)
})
test_that("resp_condition_fun1 has expected output when age is NA", {
expect_equal(resp_condition_fun1(NA, 1, 1), "NA(b)")
})
test_that("resp_condition_fun1 has expected output when COPD/Emphs is NA", {
expect_equal(resp_condition_fun1(40, NA, 1), 1)
})
test_that("resp_condition_fun1 has expected output when Asthma is NA", {
expect_equal(resp_condition_fun1(40, 1, NA), 1)
})
test_that("resp_condition_fun1 has expected output when all arguments are NA", {
expect_equal(resp_condition_fun1(NA, NA, NA), "NA(b)")
})
test_that("resp_condition_fun1 has expected output when
all arguments are in range", {
expect_equal(resp_condition_fun1(40, 1, 1), 1)
})
test_that("resp_condition_fun2 has expected output when age is out of range", {
expect_equal(resp_condition_fun2(-1, 1, 1, 1, 1), "NA(b)")
})
test_that("resp_condition_fun2 has expected output when
emphysema is out of range", {
expect_warning(out <- resp_condition_fun2(40, 3, 1, 1, 1))
expect_equal(out, 1)
})
test_that("resp_condition_fun2 has expected output when COPD is out of range", {
expect_warning(out <- resp_condition_fun2(40, 1, 3, 1, 1))
expect_equal(out, 1)
})
test_that("resp_condition_fun2 has expected output when
chronic bronchitis is out of range", {
expect_warning(out <- resp_condition_fun2(40, 1, 1, 3, 1))
expect_equal(out, 1)
})
test_that("resp_condition_fun2 has expected output when Age is out of range", {
expect_warning(out <- resp_condition_fun2(40, 1, 3, 1, -1))
expect_equal(out, 1)
})
test_that("resp_condition_fun2 has expected output when
all parameters are in range", {
expect_equal(resp_condition_fun2(40, 1, 1, 1, 1), 1)
})
test_that("resp_condition_fun2 has expected output when
COPD, bronchitis, and asthma are negative but emphysema is
positive", {
expect_equal(resp_condition_fun2(40, 1, 2, 2, 2), 1)
})
test_that("resp_condition_fun2 has expected output when
emphysema, bronchitis, and asthma are negative but COPD is positive",
{
expect_equal(resp_condition_fun2(40, 2, 1, 2, 2), 1)
})
test_that("resp_condition_fun2 has expected output when
emphysema, COPD, and asthma are negative but bronchitis is positive",
{
expect_equal(resp_condition_fun2(40, 2, 2, 1, 2), 1)
})
test_that("resp_condition_fun2 has expected output when
emphysema, COPD, and bronchitis are negative but asthma is positive",
{
expect_equal(resp_condition_fun2(40, 2, 2, 2, 1), 1)
})
test_that("resp_condition_fun2 has expected output when
all parameters are negative", {
expect_equal(resp_condition_fun2(40, 2, 2, 2, 2), 3)
})
test_that("resp_condition_fun2 has expected output when
age is less than 35 and condition positive", {
expect_equal(resp_condition_fun2(34, 1, 2, 2, 2), 2)
})
test_that("resp_condition_fun3 has expected output when
age is out of range", {
expect_equal(resp_condition_fun3(-1, 1, 1, 1), "NA(b)")
})
test_that("resp_condition_fun3 has expected output when
COPD/Emphys is out of range", {
expect_warning(out <- resp_condition_fun3(35, 4, 1, 1))
expect_equal(out, 1)
})
test_that("resp_condition_fun3 has expected output when
bronchitis is out of range", {
expect_warning(out <- resp_condition_fun3(35, 1, 4, 1))
expect_equal(out, 1)
})
test_that("resp_condition_fun3 has expected output when
age is out of range", {
expect_warning(out <- resp_condition_fun3(35, 1, 1, 4))
expect_equal(out, 1)
})
test_that("resp_condition_fun3 has expected output when
all parameters are in range", {
expect_equal(resp_condition_fun3(35, 1, 1, 1), 1)
})
test_that("resp_condition_fun3 has expected output when
COPD/Emphys & asthma are negative but bronchitis is positive", {
expect_equal(resp_condition_fun3(40, 2, 1, 2), 1)
})
test_that("resp_condition_fun3 has expected output when
bronchitis & asthma are negative but COPD/Emphys is positive", {
expect_equal(resp_condition_fun3(40, 1, 2, 2), 1)
})
test_that("resp_condition_fun3 has expected output when
bronchitis & COPD/Emphys are negative but asthma is positive", {
expect_equal(resp_condition_fun3(40, 2, 2, 1), 1)
})
test_that("resp_condition_fun3 has expected output when
all parameters are negative", {
expect_equal(resp_condition_fun3(40, 2, 2, 2), 3)
})
test_that("resp_condition_fun3 has expected output when
age is less than 35 and condition positive", {
expect_equal(resp_condition_fun3(34, 1, 2, 1), 2)
})
test_that("COPD_Emph_der_fun1 has expected output when
age is out of range", {
expect_equal(COPD_Emph_der_fun1(-1, 1, 1), "NA(b)")
})
test_that("COPD_Emph_der_fun1 has expected output when
CCC_91E is out of range", {
expect_warning(out <- COPD_Emph_der_fun1(20, -1, 1))
expect_equal(out, 2)
})
test_that("COPD_Emph_der_fun1 has expected output when
CCC_91F is out of range", {
expect_warning(out <- COPD_Emph_der_fun1(20, 1, -1))
expect_equal(out, 2)
})
test_that("COPD_Emph_der_fun1 has expected output when
all parameters are in range", {
expect_equal(COPD_Emph_der_fun1(20, 1, 1), 2)
})
test_that("COPD_Emph_der_fun2 has expected output when
age is out of range", {
expect_equal(COPD_Emph_der_fun2(-1, 1), "NA(b)")
})
test_that("COPD_Emph_der_fun2 has expected output when
CCC_91E is out of range", {
expect_equal(COPD_Emph_der_fun2(20, -1), "NA(b)")
})
test_that("COPD_Emph_der_fun2 has expected output when
all parameters are in range", {
expect_equal(COPD_Emph_der_fun2(20, 1), 2)
}) |
if (Sys.getenv("RunAllRcppTests") != "yes") exit_file("Set 'RunAllRcppTests' to 'yes' to run.")
Rcpp::sourceCpp("cpp/rcppversion.cpp")
pv <- packageVersion("Rcpp")
pvstr <- as.character(pv)
v <- as.integer(unlist(strsplit(pvstr, "\\.")))
relstr <- as.character(as.package_version(paste(v[1:3], collapse=".")))
res <- checkVersion(v)
expect_equal(res$cur_ver, res$def_ver, info="current computed version equal defined version")
expect_equal(relstr, res$def_str, info="current computed version equal defined dev string")
if (length(v) >= 4) {
expect_equal(res$cur_dev_ver, res$def_dev_ver, info="current computed dev version greater equal defined dev version")
}
if (length(v) <= 4) {
expect_equal(pvstr, res$def_dev_str, info="current computed version equal defined dev string")
} |
NULL
is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) {
(length(x)==1) && (abs(x - round(x)) < tol)
}
is.pos_wholenumber <- function(x, tol = .Machine$double.eps^0.5) {
is.wholenumber(x) && (x>0)
}
scaled_binomial_difference_table <- function(nA, multA,
nB, multB,
probi) {
if(!is.pos_wholenumber(nA)) {
stop("sigr::scaled_binomial_difference_table nA must be a positive integer")
}
if(!is.pos_wholenumber(multA)) {
stop("sigr::scaled_binomial_difference_table multA must be a positive integer")
}
if(!is.pos_wholenumber(nB)) {
stop("sigr::scaled_binomial_difference_table nB must be a positive integer")
}
if(!is.pos_wholenumber(multB)) {
stop("sigr::scaled_binomial_difference_table multB must be a positive integer")
}
if((probi<0)||(probi>1)) {
stop("sigr::scaled_binomial_difference_table probi must in the interval [0,1]")
}
if(abs(nA*multA - nB*multB)>1.e-3) {
stop("scaled_binomial_difference_table: (nA*multA - nB*multB) must be zero")
}
vA <- dbinom(0:nA, prob = probi, size = nA)
if(multA>1) {
pad <- numeric(multA-1)
vA <- unlist(lapply(vA, function(vi) c(vi, pad)))[1:(nA*multA+1)]
}
if(length(vA)!=(nA*multA+1)) {
stop("sigr::scaled_binomial_difference_table bad vA length")
}
vB <- dbinom(0:nB, prob = probi, size = nB)
if(multB>1) {
pad <- numeric(multB-1)
vB <- unlist(lapply(vB, function(vi) c(vi, pad)))[1:(nB*multB+1)]
}
if(length(vB)!=(nB*multB+1)) {
stop("sigr::scaled_binomial_difference_table bad vA length")
}
probs <- convolve(vA, vB, type = "open")
probs <- pmax(probs, 0)
probs <- probs/sum(probs)
d <- data.frame(
diff = (-nA*multA):(nA*multA),
prob = probs)
d$prob_le <- cumsum(d$prob)
d$prob_lt <- d$prob_le - d$prob
d$prob_ge <- rev(cumsum(rev(d$prob)))
d$prob_gt <- d$prob_ge - d$prob
d
}
calc_probs <- function(d,
nA, multA,
nB, multB,
test_rate_difference) {
if(!is.pos_wholenumber(nA)) {
stop("sigr::scaled_binomial_difference_table nA must be a positive integer")
}
if(!is.pos_wholenumber(multA)) {
stop("sigr::scaled_binomial_difference_table multA must be a positive integer")
}
if(!is.pos_wholenumber(nB)) {
stop("sigr::scaled_binomial_difference_table nB must be a positive integer")
}
if(!is.pos_wholenumber(multB)) {
stop("sigr::scaled_binomial_difference_table multB must be a positive integer")
}
if((test_rate_difference<0)||(test_rate_difference>1)) {
stop("sigr::scaled_binomial_difference_table test_rate_difference must in the interval [0,1]")
}
if(abs(nA*multA - nB*multB)>1.e-3) {
stop("scaled_binomial_difference_table: (nA*multA - nB*multB) must be zero")
}
en <- round(max(nA, nB)*test_rate_difference, digits = 7)
i1 <- match(ceiling(-en), d$diff)
if(is.na(i1)) {
i1 <- 1
} else {
if((i1>1)&&(d$diff[[i1]] > (-en))) {
i1 <- i1 - 1
}
}
i2 <- match(floor(en), d$diff)
if(is.na(i2)) {
i2 <- nrow(d)
} else {
if((i2<nrow(d))&&(d$diff[[i2]]<en)) {
i2 <- i2 + 1
}
}
test_sig <- d$prob_le[[i1]] + d$prob_ge[[i2]]
test_sig
} |
NULL
personalizeevents <- function(config = list()) {
svc <- .personalizeevents$operations
svc <- set_config(svc, config)
return(svc)
}
.personalizeevents <- list()
.personalizeevents$operations <- list()
.personalizeevents$metadata <- list(
service_name = "personalizeevents",
endpoints = list("*" = list(endpoint = "personalize-events.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "personalize-events.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "personalize-events.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "personalize-events.{region}.sc2s.sgov.gov", global = FALSE)),
service_id = "Personalize Events",
api_version = "2018-03-22",
signing_name = "personalize",
json_version = "1.1",
target_prefix = ""
)
.personalizeevents$service <- function(config = list()) {
handlers <- new_handlers("restjson", "v4")
new_service(.personalizeevents$metadata, handlers, config)
} |
step_tf <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
weight_scheme = "raw count",
weight = 0.5,
vocabulary = NULL,
res = NULL,
prefix = "tf",
skip = FALSE,
id = rand_id("tf")) {
if (!(weight_scheme %in% tf_funs) | length(weight_scheme) != 1) {
rlang::abort(paste0(
"`weight_scheme` should be one of: ",
"'",
tf_funs,
"'",
collapse = ", "
))
}
add_step(
recipe,
step_tf_new(
terms = enquos(...),
role = role,
trained = trained,
res = res,
columns = columns,
weight_scheme = weight_scheme,
weight = weight,
vocabulary = vocabulary,
prefix = prefix,
skip = skip,
id = id
)
)
}
tf_funs <- c(
"binary", "raw count", "term frequency", "log normalization",
"double normalization"
)
step_tf_new <-
function(terms, role, trained, columns, weight_scheme, weight, vocabulary,
res, prefix, skip, id) {
step(
subclass = "tf",
terms = terms,
role = role,
trained = trained,
columns = columns,
weight_scheme = weight_scheme,
weight = weight,
vocabulary = vocabulary,
res = res,
prefix = prefix,
skip = skip,
id = id
)
}
prep.step_tf <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_list(training[, col_names])
token_list <- list()
for (i in seq_along(col_names)) {
token_list[[i]] <- x$vocabulary %||%
sort(get_unique_tokens(training[, col_names[i], drop = TRUE]))
}
step_tf_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
weight_scheme = x$weight_scheme,
weight = x$weight,
vocabulary = x$vocabulary,
res = token_list,
prefix = x$prefix,
skip = x$skip,
id = x$id
)
}
bake.step_tf <- function(object, new_data, ...) {
col_names <- object$columns
for (i in seq_along(col_names)) {
tf_text <- tf_function(
new_data[, col_names[i], drop = TRUE],
object$res[[i]],
paste0(object$prefix, "_", col_names[i]),
object$weight_scheme,
object$weight
)
new_data <-
new_data[, !(colnames(new_data) %in% col_names[i]), drop = FALSE]
new_data <- vctrs::vec_cbind(new_data, tf_text)
}
as_tibble(new_data)
}
print.step_tf <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Term frequency with ", sep = "")
printer(x$columns, x$terms, x$trained, width = width)
invisible(x)
}
tidy.step_tf <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = unname(x$columns),
value = x$weight_scheme
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
value = na_chr
)
}
res$id <- x$id
res
}
tf_function <- function(data, names, labels, weights, weight) {
counts <- as.matrix(tokenlist_to_dtm(data, names))
tf <- tf_weight(counts, weights, weight)
colnames(tf) <- paste0(labels, "_", names)
as_tibble(tf)
}
tf_weight <- function(x, scheme, weight) {
if (scheme == "binary") {
return(x > 0)
}
if (scheme == "raw count") {
return(x)
}
if (scheme == "term frequency") {
rowsums_x <- rowSums(x)
res <- x / rowsums_x
res[rowsums_x == 0, ] <- 0
return(res)
}
if (scheme == "log normalization") {
return(log(1 + x))
}
if (scheme == "double normalization") {
max_ftd <- apply(x, 1, max)
return(weight + weight * x / max_ftd)
}
}
required_pkgs.step_tf <- function(x, ...) {
c("textrecipes")
}
tunable.step_tf <- function(x, ...) {
tibble::tibble(
name = c("weight_scheme", "num_terms"),
call_info = list(
list(pkg = "dials", fun = "weight_scheme"),
list(pkg = "dials", fun = "weight")
),
source = "recipe",
component = "step_tf",
component_id = x$id
)
} |
ral_vector <- function(..., .data = NULL, .subclass = NULL, .meta = NULL) {
val <- if (is.null(.data)) {
list(...)
} else {
stopifnot(is.list(`.data`))
`.data`
}
class(val) <- c(.subclass, "ral_vector")
ral_meta_data <- if (!is.null(.meta) && inherits(.meta, "ral_map")) {
.meta
}
new_vctr(val, ral_meta_data = ral_meta_data, class = class(val), inherit_base_type = TRUE)
}
set_meta_data.ral_vector <- function(x, val, envir = NULL) {
attr(x, "ral_meta_data") <- val
x
}
meta_data.ral_vector <- function(x) {
attr(x, "ral_meta_data", exact = TRUE)
}
format.ral_vector <- function(x, ...) {
paste0(
"[",
paste0(vapply(x, function(x) llr_format(x), character(1)), collapse = " "),
"]"
)
}
print.ral_vector <- default_print
vec_ptype2.ral_vector.list <- function(x, y, ...) {
ral_vector()
}
vec_ptype2.list.ral_vector <- function(x, y, ...) {
ral_vector()
}
vec_cast.character.llr_boolean <- function(x, to, ...) {
format(x)
} |
NULL
.efetch <- setRefClass(
Class = "efetch",
contains = "eutil",
methods = list(
initialize = function(method, ...) {
callSuper()
perform_query("efetch", method = method, ...)
if (errors$all_empty() && retmode() == "xml") {
errors$check_errors(.self)
}
},
show = function() {
cat("Object of class", sQuote(eutil()), "\n")
nhead <- getOption("reutils.show.headlines")
if (no_errors()) {
if (retmode() == "xml") {
methods::show(get_content("xml"))
} else {
con <- get_content("textConnection")
on.exit(close(con))
headlines <- readLines(con, n = nhead %||% -1L)
cat(headlines, "...", sep="\n")
}
} else {
methods::show(get_error())
}
tail <- sprintf("EFetch query using the %s database.\nQuery url: %s\nRetrieval type: %s, retrieval mode: %s\n",
sQuote(database()), sQuote(ellipsize(get_url(), offset=15)),
sQuote(rettype()), sQuote(retmode()))
cat(tail, sep="\n")
}
)
)
setMethod("content", "efetch", function(x, as = NULL) {
as <- as %||% retmode(x)
if (as == "asn.1") {
as <- "text"
}
if (as == "parsed") {
as <- retmode(x)
}
callNextMethod(x = x, as = as)
})
efetch <- function(uid, db = NULL, rettype = NULL, retmode = NULL,
outfile = NULL, retstart = NULL, retmax = NULL,
querykey = NULL, webenv = NULL, strand = NULL,
seqstart = NULL, seqstop = NULL, complexity = NULL) {
params <- parse_params(uid, db, querykey, webenv)
r <- ncbi_retrieval_type(params$db, rettype %||% "", retmode)
if (is.null(retmax)) {
retmax <- Inf
}
if (retmax > 500 && (is.finite(params$count) && (params$count > 500))) {
if (is.null(outfile)) {
stop("You are attempting to download more than 500 records.\n",
" efetch() will download them iteratively in batches.\n",
" Specify an 'outfile' where they can be saved to.", call. = FALSE)
}
if (is.na(webenv(uid))) {
stop("You are attempting to download more than 500 records.\n",
" Use the NCBI history server to store the UIDs and\n",
" specify an 'outfile' where the data can be saved to.", call. = FALSE)
}
retstart <- 0
retmax <- 500
out <- file(outfile, open = "w+")
on.exit(close(out))
while (retstart < params$count) {
message("Retrieving UIDs ", retstart + 1, " to ", retstart + retmax)
ans <- .efetch("GET", db = params$db, id = NULL, query_key = params$querykey,
WebEnv = params$webenv, retmode = r$retmode, rettype = r$rettype,
retstart = retstart, retmax = retmax, strand = strand,
seq_start = seqstart, seq_stop = seqstop, complexity = complexity)
writeLines(ans$get_content("text"), con = out)
retstart <- retstart + retmax
Sys.sleep(0.33)
}
invisible(outfile)
} else {
if (!is.null(outfile)) {
out <- file(outfile, open = "wt")
on.exit(close(out))
ans <- .efetch(method = if (length(params$uid) < 100) "GET" else "POST",
db = params$db, id = .collapse(params$uid),
query_key = params$querykey, WebEnv = params$webenv,
retmode = r$retmode, rettype = r$rettype, retstart = retstart,
retmax = retmax, strand = strand, seq_start = seqstart,
seq_stop = seqstop, complexity = complexity)
writeLines(ans$get_content("text"), con = out)
invisible(outfile)
} else {
.efetch(method = if (length(params$uid) < 100) "GET" else "POST",
db = params$db, id = .collapse(params$uid),
query_key = params$querykey, WebEnv = params$webenv,
retmode = r$retmode, rettype = r$rettype, retstart = retstart,
retmax = retmax, strand = strand, seq_start = seqstart,
seq_stop = seqstop, complexity = complexity)
}
}
}
setMethod("[", c(x = "efetch", i = "character", j = "missing"), function(x, i, j) {
if (retmode(x) != "xml") {
stop("This document does not contain XML data", call.=FALSE)
}
x$xmlSet(i)
})
setMethod("[[", c(x = "efetch", i = "character"), function(x, i) {
ans <- x[i]
if (length(ans) > 1) {
warning(length(ans), " elements in node set. Returning just the first!")
}
ans[[1]]
}) |
get_district_counts <- function(
path = "https://api.covid19india.org/csv/latest/districts.csv",
raw = FALSE
) {
d <- data.table::fread(path, showProgress = FALSE)
if (raw == FALSE) {
setnames(d, names(d), janitor::make_clean_names(names(d)))
setnames(d, c("confirmed", "recovered", "deceased"), c("total_cases", "total_recovered", "total_deaths"))
d <- data.table::melt(d[, !c("other")], id.vars = c("date", "state", "district"))[value >= 0]
d <- data.table::dcast.data.table(d, date + state + district ~ variable)[order(date)][
, `:=` (
daily_cases = total_cases - data.table::shift(total_cases),
daily_recovered = total_recovered - data.table::shift(total_recovered),
daily_deaths = total_deaths - data.table::shift(total_deaths)
), by = c("state", "district")
][!is.na(daily_cases) & !is.na(daily_recovered) & !is.na(daily_deaths)][
, date := as.Date(date)
][
, .(state, district, date,
daily_cases, daily_recovered, daily_deaths,
total_cases, total_recovered, total_deaths)
]
d <- na.omit(d, c("daily_cases", "daily_recovered", "daily_deaths"))
setkeyv(d, cols = c("state", "district", "date"))
}
return(d)
} |
mice.impute.passive <- function(data, func) {
model.frame(func, data)
} |
cor.folder <- function(x, use = "everything", method = "pearson") {
if (!is.folder(x))
stop("x must be an object of class 'folder'.")
fold <- x
x <- fold[[1]]
jnum <- logical(ncol(x))
for (j in 1:ncol(x)) {
jnum[j] <- is.numeric(x[, j])
}
notnum <- colnames(x)[!jnum]
if (length(notnum) > 0)
warning(paste("There are omitted variables (non numeric): ", paste(notnum, collapse = " "), sep = ""), immediate. = TRUE)
fold.num <- vector("list", length(fold))
for (n in 1:length(fold.num))
fold.num[[n]] <- fold[[n]][jnum]
names(fold.num) <- names(fold)
return(lapply(fold.num, cor, use = use, method = method))
} |
context("Unit tests for parameter passing for PLIV, partial_z")
lgr::get_logger("mlr3")$set_threshold("warn")
skip_on_cran()
test_cases = expand.grid(
learner = "regr.rpart",
dml_procedure = c("dml1", "dml2"),
score = "partialling out",
stringsAsFactors = FALSE)
test_cases_nocf = expand.grid(
learner = "regr.rpart",
dml_procedure = "dml1",
score = "partialling out",
stringsAsFactors = FALSE)
test_cases[".test_name"] = apply(test_cases, 1, paste, collapse = "_")
test_cases_nocf[".test_name"] = apply(test_cases_nocf, 1, paste, collapse = "_")
patrick::with_parameters_test_that("Unit tests for parameter passing of PLIV.partialZ (oop vs fun):",
.cases = test_cases, {
n_rep_boot = 498
n_folds = 2
n_rep = 3
learner_pars = get_default_mlmethod_pliv(learner)
df = data_pliv$df
set.seed(3141)
pliv_hat = dml_pliv_partial_z(df,
y = "y", d = "d", z = c("z", "z2"),
n_folds = n_folds, n_rep = n_rep,
ml_r = mlr3::lrn(learner_pars$mlmethod$mlmethod_r),
params_r = learner_pars$params$params_r,
dml_procedure = dml_procedure, score = score)
theta = pliv_hat$coef
se = pliv_hat$se
boot_theta = bootstrap_pliv_partial_z(pliv_hat$thetas, pliv_hat$ses,
df,
y = "y", d = "d", z = c("z", "z2"),
n_folds = n_folds, n_rep = n_rep,
smpls = pliv_hat$smpls,
all_preds = pliv_hat$all_preds,
bootstrap = "normal", n_rep_boot = n_rep_boot)$boot_coef
set.seed(3141)
Xnames = names(df)[names(df) %in% c("y", "d", "z", "z2") == FALSE]
dml_data = double_ml_data_from_data_frame(df,
y_col = "y",
d_cols = "d", x_cols = Xnames, z_cols = c("z", "z2"))
dml_pliv_obj = DoubleMLPLIV.partialZ(
data = dml_data,
n_folds = n_folds, n_rep = n_rep,
ml_r = mlr3::lrn(learner_pars$mlmethod$mlmethod_r),
dml_procedure = dml_procedure,
score = score)
dml_pliv_obj$set_ml_nuisance_params(
treat_var = "d",
learner = "ml_r",
params = learner_pars$params$params_r)
dml_pliv_obj$fit()
theta_obj = dml_pliv_obj$coef
se_obj = dml_pliv_obj$se
dml_pliv_obj$bootstrap(method = "normal", n_rep = n_rep_boot)
boot_theta_obj = dml_pliv_obj$boot_coef
expect_equal(theta, theta_obj, tolerance = 1e-8)
expect_equal(se, se_obj, tolerance = 1e-8)
expect_equal(as.vector(boot_theta), as.vector(boot_theta_obj), tolerance = 1e-8)
}
)
patrick::with_parameters_test_that("Unit tests for parameter passing of PLIV.partialZ (no cross-fitting)",
.cases = test_cases_nocf, {
n_folds = 2
learner_pars = get_default_mlmethod_pliv(learner)
df = data_pliv$df
set.seed(3141)
my_task = Task$new("help task", "regr", data_pliv$df)
my_sampling = rsmp("holdout", ratio = 0.5)$instantiate(my_task)
train_ids = list(my_sampling$train_set(1))
test_ids = list(my_sampling$test_set(1))
smpls = list(list(train_ids = train_ids, test_ids = test_ids))
pliv_hat = dml_pliv_partial_z(df,
y = "y", d = "d", z = c("z", "z2"),
n_folds = 1,
ml_r = mlr3::lrn(learner_pars$mlmethod$mlmethod_r),
params_r = learner_pars$params$params_r,
dml_procedure = dml_procedure, score = score,
smpls = smpls)
theta = pliv_hat$coef
se = pliv_hat$se
set.seed(3141)
Xnames = names(df)[names(df) %in% c("y", "d", "z", "z2") == FALSE]
dml_data = double_ml_data_from_data_frame(df,
y_col = "y",
d_cols = "d", x_cols = Xnames, z_cols = c("z", "z2"))
dml_pliv_nocf = DoubleMLPLIV.partialZ(
data = dml_data,
n_folds = n_folds,
ml_r = mlr3::lrn(learner_pars$mlmethod$mlmethod_r),
dml_procedure = dml_procedure,
score = score,
apply_cross_fitting = FALSE)
dml_pliv_nocf$set_ml_nuisance_params(
treat_var = "d",
learner = "ml_r",
params = learner_pars$params$params_r)
dml_pliv_nocf$fit()
theta_obj = dml_pliv_nocf$coef
se_obj = dml_pliv_nocf$se
expect_equal(theta, theta_obj, tolerance = 1e-8)
expect_equal(se, se_obj, tolerance = 1e-8)
}
)
patrick::with_parameters_test_that("Unit tests for parameter passing of PLIV.partialZ (fold-wise vs global)",
.cases = test_cases, {
n_folds = 2
n_rep = 3
learner_pars = get_default_mlmethod_pliv(learner)
df = data_pliv$df
Xnames = names(df)[names(df) %in% c("y", "d", "z", "z2") == FALSE]
dml_data = double_ml_data_from_data_frame(df,
y_col = "y",
d_cols = "d", x_cols = Xnames, z_cols = c("z", "z2"))
set.seed(3141)
dml_pliv_obj = DoubleMLPLIV.partialZ(dml_data,
n_folds = n_folds, n_rep = n_rep,
ml_r = mlr3::lrn(learner_pars$mlmethod$mlmethod_r),
dml_procedure = dml_procedure,
score = score)
dml_pliv_obj$set_ml_nuisance_params(
treat_var = "d",
learner = "ml_r",
params = learner_pars$params$params_r)
dml_pliv_obj$fit()
theta = dml_pliv_obj$coef
se = dml_pliv_obj$se
params_r_fold_wise = rep(list(rep(list(learner_pars$params$params_r), n_folds)), n_rep)
set.seed(3141)
dml_pliv_obj_fold_wise = DoubleMLPLIV.partialZ(dml_data,
n_folds = n_folds, n_rep = n_rep,
ml_r = mlr3::lrn(learner_pars$mlmethod$mlmethod_r),
dml_procedure = dml_procedure,
score = score)
dml_pliv_obj_fold_wise$set_ml_nuisance_params(
treat_var = "d",
learner = "ml_r",
params = params_r_fold_wise,
set_fold_specific = TRUE)
dml_pliv_obj_fold_wise$fit()
theta_fold_wise = dml_pliv_obj_fold_wise$coef
se_fold_wise = dml_pliv_obj_fold_wise$se
expect_equal(theta, theta_fold_wise, tolerance = 1e-8)
expect_equal(se, se_fold_wise, tolerance = 1e-8)
}
)
patrick::with_parameters_test_that("Unit tests for parameter passing of PLIV.partialXZ (default vs explicit)",
.cases = test_cases, {
n_folds = 2
n_rep = 3
params_r = list(cp = 0.01, minsplit = 20)
df = data_pliv$df
Xnames = names(df)[names(df) %in% c("y", "d", "z", "z2") == FALSE]
dml_data = double_ml_data_from_data_frame(df,
y_col = "y",
d_cols = "d", x_cols = Xnames, z_cols = c("z", "z2"))
set.seed(3141)
dml_pliv_default = DoubleMLPLIV.partialZ(dml_data,
n_folds = n_folds, n_rep = n_rep,
ml_r = lrn("regr.rpart"),
dml_procedure = dml_procedure,
score = score)
dml_pliv_default$fit()
theta_default = dml_pliv_default$coef
se_default = dml_pliv_default$se
set.seed(3141)
dml_pliv_obj = DoubleMLPLIV.partialZ(dml_data,
n_folds = n_folds, n_rep = n_rep,
ml_r = lrn("regr.rpart"),
dml_procedure = dml_procedure,
score = score)
dml_pliv_obj$set_ml_nuisance_params(
treat_var = "d",
learner = "ml_r",
params = params_r)
dml_pliv_obj$fit()
theta = dml_pliv_obj$coef
se = dml_pliv_obj$se
expect_equal(theta, theta_default, tolerance = 1e-8)
expect_equal(se, se_default, tolerance = 1e-8)
}
) |
NULL
ycfunc <- function(Q = NULL, d = NULL, g = NULL) {
thetafull <- 2 * acos(1 - (2 * (0.99)))
Qcfull <- sqrt(g * d^5 * ((thetafull - sin(thetafull))^3)/(8^3 * sin(thetafull/2.0)))
if ( Q >= Qcfull ) {
yc <- d
} else {
thetafun <- function(theta) {Q^2 / ( g * d^5 ) - ((theta - sin(theta))^3)/(8^3 * sin(theta/2.0))}
theta <- uniroot(thetafun, interval = c(0.00001, 2*pi))$root
yc <- (d / 2) * (1 - cos(theta / 2))
}
return(yc)
}
Qfull <- function(d = NULL, Sf = NULL, n = NULL, k = NULL) {
Vf <- (k / n) * ((d / 4.0) ^ (2.0/3.0)) * sqrt( Sf )
Qf <- Vf * (0.25 * pi * d^2)
return(Qf)
}
units::units_options(allow_mixed = TRUE)
return_fcn2 <- function(x = NULL, units = NULL, ret_units = FALSE) {
if (units == "SI") {
out_units <- c("m^3/s","m/s","m^2","m","m","m","m",1,1,"m",1,1,"m^3/s")
} else {
out_units <- c("ft^3/s","ft/s","ft^2","ft","ft","ft","ft",1,1,"ft",1,1,"ft^3/s")
}
if( ret_units ) {
a <- units::mixed_units(unlist(x), out_units)
x <- a
}
return(x)
}
manningc <- function (Q = NULL, n = NULL, Sf = NULL, y = NULL, d = NULL, y_d = NULL,
units = c("SI", "Eng"), ret_units = FALSE ) {
units <- units
for( i in c("Q", "n", "Sf", "y", "d", "y_d") ) {
v <- get(i)
if(class(v) == "units" ) assign(i, units::drop_units(v))
}
if(missing(y_d)) {
if (length(c(Q, n, Sf, y, d)) != 4) {
stop("There must be exactly one unknown variable among Q, n, Sf, y, d")
}
if (any(c(Q, n, Sf, y, d) <= 0)) {
stop("Either Q, n, Sf, y, d is <= 0. All of these variables must be positive")
}
if ( ( ! missing(d) ) & ( ! missing(y) ) ) {
if ( y > d ) stop("depth y cannot exceed diameter d.")
}
case <- 1
} else {
if ( (length(c(Q, Sf, n)) != 3) & (! missing(d)) & (! missing(y)) ) {
stop("d, y must be missing when given y_d.")
}
if (any(c(Q, Sf, n, y_d) <= 0)) {
stop("Either Q, n, Sf, y_d is <= 0. All of these variables must be positive")
}
if ( y_d > 1.0 ) {
stop("y_d cannot exceed 1.0")
}
case <- 2
}
if (units == "SI") {
g <- 9.80665
k <- 1.0
mu <- dvisc(T = 20, units = 'SI')
rho <- dens(T = 20, units = 'SI')
dmax <- 3.5
} else if (units == "Eng") {
g <- 32.2
k <- 1.4859
mu <- dvisc(T = 68, units = 'Eng')
rho <- dens(T = 68, units = 'Eng')
dmax <- 12
} else if (all(c("SI", "Eng") %in% units == FALSE) == FALSE) {
stop("Incorrect unit system. Must be SI or Eng")
}
if (case == 1) {
if (missing(Q)) {
Qf <- Qfull(d = d, Sf = Sf, n = n, k = k)
theta <- 2 * acos(1 - (2 * (y / d)))
A <- (theta - sin(theta)) * (d ^ 2 / 8)
P <- ((theta * d) / 2)
B <- d * sin(theta / 2)
R <- A / P
D <- A / B
Qfun <- function(Q) {Q - ((((theta - sin(theta)) * (d ^ 2 / 8)) ^ (5 / 3) * sqrt(Sf)) * (k / n) / ((theta * d) / 2) ^ (2 / 3))}
Quse <- uniroot(Qfun, interval = c(0.0000001, 200), extendInt = "yes")
Q <- Quse$root
V <- Q / A
Re <- (rho * R * V) / mu
if (Re < 2000) {
message(sprintf("Low Reynolds number: %.0f indicates not rough turbulent, Manning eq. not valid\n",Re))
}
Fr <- V / (sqrt(g * D))
yc <- ycfunc(Q = Q, d = d, g = g)
out <- list(Q = Q, V = V, A = A, P = P, R = R, y = y, d = d, Sf = Sf, n = n, yc = yc, Fr = Fr, Re = Re, Qf = Qf)
return(return_fcn2(x = out, units = units, ret_units = ret_units))
} else if (missing(n)) {
theta <- 2 * acos(1 - (2 * (y / d)))
A <- (theta - sin(theta)) * (d ^ 2 / 8)
P <- ((theta * d) / 2)
B <- d * sin(theta / 2)
R <- A / P
D <- A / B
nfun <- function(n) {Q - ((((theta - sin(theta)) * (d ^ 2 / 8)) ^ (5 / 3) * sqrt(Sf)) * (k / n) / ((theta * d) / 2) ^ (2 / 3))}
nuse <- uniroot(nfun, interval = c(0.0000001, 200), extendInt = "yes")
n <- nuse$root
Qf <- Qfull(d = d, Sf = Sf, n = n, k = k)
V <- Q / A
Re <- (rho * R * V) / mu
if (Re < 2000) {
message(sprintf("Low Reynolds number: %.0f indicates not rough turbulent, Manning eq. not valid\n",Re))
}
Fr <- V / (sqrt(g * D))
yc <- ycfunc(Q = Q, d = d, g = g)
out <- list(Q = Q, V = V, A = A, P = P, R = R, y = y, d = d, Sf = Sf, n = n, yc = yc, Fr = Fr, Re = Re, Qf = Qf)
return(return_fcn2(x = out, units = units, ret_units = ret_units))
} else if (missing(Sf)) {
theta <- 2 * acos(1 - (2 * (y / d)))
A <- (theta - sin(theta)) * (d ^ 2 / 8)
P <- ((theta * d) / 2)
B <- d * sin(theta / 2)
R <- A / P
D <- A / B
Sffun <- function(Sf) {Q - ((((theta - sin(theta)) * (d ^ 2 / 8)) ^ (5 / 3) * sqrt(Sf)) * (k / n) / ((theta * d) / 2) ^ (2 / 3))}
Sfuse <- uniroot(Sffun, interval = c(0.0000001, 200), extendInt = "yes")
Sf <- Sfuse$root
Qf <- Qfull(d = d, Sf = Sf, n = n, k = k)
V <- Q / A
Re <- (rho * R * V) / mu
if (Re < 2000) {
message(sprintf("Low Reynolds number: %.0f indicates not rough turbulent, Manning eq. not valid\n",Re))
}
Fr <- V / (sqrt(g * D))
yc <- ycfunc(Q = Q, d = d, g = g)
out <- list(Q = Q, V = V, A = A, P = P, R = R, y = y, d = d, Sf = Sf, n = n, yc = yc, Fr = Fr, Re = Re, Qf = Qf)
return(return_fcn2(x = out, units = units, ret_units = ret_units))
} else if (missing(y)) {
Qf <- Qfull(d = d, Sf = Sf, n = n, k = k)
if ( Q > Qf ) {
stop("Flow Q exceeds full flow for the pipe.")
}
rh <- (n * Q) / (k * sqrt(Sf))
thetafun <- function (theta) ((theta - sin(theta)) * (d ^ 2 / 8)) * (((theta - sin(theta)) * (d ^ 2 / 8) / ((theta * d) / 2)) ^ (2 / 3)) - rh
thetause <- uniroot(thetafun, c(-1000, 1000), extendInt = "yes")
theta <- thetause$root
y <- (d / 2) * (1 - cos(theta / 2))
A <- (theta - sin(theta)) * (d ^ 2 / 8)
P <- ((theta * d) / 2)
B <- d * sin(theta / 2)
R <- A / P
D <- A / B
V <- Q / A
Re <- (rho * R * V) / mu
if (Re < 2000) {
message(sprintf("Low Reynolds number: %.0f indicates not rough turbulent, Manning eq. not valid\n",Re))
}
Fr <- V / (sqrt(g * D))
yc <- ycfunc(Q = Q, d = d, g = g)
out <- list(Q = Q, V = V, A = A, P = P, R = R, y = y, d = d, Sf = Sf, n = n, yc = yc, Fr = Fr, Re = Re, Qf = Qf)
return(return_fcn2(x = out, units = units, ret_units = ret_units))
}
}
if (case == 2) {
theta <- 2 * acos(1 - (2 * (y_d)))
rh <- (n * Q) / (k * sqrt(Sf))
dfun <- function (d) ((theta - sin(theta)) * (d ^ 2 / 8)) * (((theta - sin(theta)) * (d ^ 2 / 8) / ((theta * d) / 2)) ^ (2 / 3)) - rh
duse <- uniroot(dfun, interval = c(0.001, dmax), extendInt = "yes")
d <- duse$root
Qf <- Qfull(d = d, Sf = Sf, n = n, k = k)
y <- y_d * d
A <- (theta - sin(theta)) * (d ^ 2 / 8)
P <- ((theta * d) / 2)
B <- d * sin(theta / 2)
R <- A / P
D <- A / B
V <- Q / A
Re <- (rho * R * V) / mu
if (Re < 2000) {
message(sprintf("Low Reynolds number: %.0f indicates not rough turbulent, Manning eq. not valid\n",Re))
}
Fr <- V / (sqrt(g * D))
yc <- ycfunc(Q = Q, d = d, g = g)
out <- list(Q = Q, V = V, A = A, P = P, R = R, y = y, d = d, Sf = Sf, n = n, yc = yc, Fr = Fr, Re = Re, Qf = Qf)
return(return_fcn2(x = out, units = units, ret_units = ret_units))
}
} |
SegSeqResProcess <-
function(filename) {
segseqRaw = read.delim(filename)
chrs = sort(unique(segseqRaw[,1]))
segseqRes = vector("list", length(chrs))
for(j in 1:length(chrs)) {
segseqRes[[j]] = as.matrix(segseqRaw[segseqRaw[,1]==chrs[j],-1])
}
names(segseqRes) = as.character(chrs)
nChrs = length(segseqRes)
tauHat = vector("list", nChrs)
for(j in 1:nChrs) {
tauHat[[j]] = unique(c(segseqRes[[j]][1,1],segseqRes[[j]][,2]))
}
names(tauHat) = names(segseqRes)
return(tauHat)
} |
get_current_forecast <- function(latitude, longitude,
units="us", language="en",
exclude=NULL, extend=NULL,
add_json=FALSE, add_headers=FALSE,
...) {
url <- sprintf("https://api.darksky.net/forecast/%s/%s,%s",
darksky_api_key(), latitude, longitude)
params <- list(units=units, language=language)
if (!is.null(exclude)) params$exclude <- exclude
if (!is.null(extend)) params$extend <- extend
resp <- httr::GET(url=url, query=params, ...)
httr::stop_for_status(resp)
tmp <- httr::content(resp, as="parsed")
lys <- c("hourly", "minutely", "daily")
lapply(
lys[which(lys %in% names(tmp))],
function(x) {
dat <- plyr::rbind.fill(lapply(tmp[[x]]$data, as.data.frame, stringsAsFactors=FALSE))
ftimes <- c("time", "sunriseTime", "sunsetTime", "temperatureMinTime",
"temperatureMaxTime", "apparentTemperatureMinTime",
"apparentTemperatureMaxTime", "precipIntensityMaxTime")
cols <- ftimes[which(ftimes %in% colnames(dat))]
for (col in cols) {
dat[,col] <- convert_time(dat[,col])
}
dat
}
) -> fio_data
fio_data <- setNames(fio_data, lys[which(lys %in% names(tmp))])
if ("currently" %in% names(tmp)) {
currently <- as.data.frame(tmp$currently, stringsAsFactors=FALSE)
if ("time" %in% colnames(currently)) {
currently$time <- convert_time(currently$time)
}
fio_data$currently <- currently
}
if (add_json) fio_data$json <- tmp
ret_val <- fio_data
if (add_headers) {
dev_heads <- c("cache-control", "expires", "x-forecast-api-calls", "x-response-time")
ret_heads <- httr::headers(resp)
ret_val <- c(fio_data, ret_heads[dev_heads[which(dev_heads %in% names(ret_heads))]])
}
class(ret_val) <- c("darksky", "current", class(ret_val))
return(ret_val)
} |
logit.spls.cv <- function(X, Y, lambda.ridge.range, lambda.l1.range,
ncomp.range, adapt=TRUE, maxIter=100,
svd.decompose=TRUE, return.grid=FALSE,
ncores=1, nfolds=10, nrun=1,
center.X=TRUE, scale.X=FALSE, weighted.center=TRUE,
seed=NULL, verbose=TRUE) {
X <- as.matrix(X)
n <- nrow(X)
p <- ncol(X)
index.p <- c(1:p)
if(is.factor(Y)) {
Y <- as.numeric(levels(Y))[Y]
}
Y <- as.integer(Y)
Y <- as.matrix(Y)
q <- ncol(Y)
one <- matrix(1,nrow=1,ncol=n)
if(!is.null(seed)) {
set.seed(seed)
}
if(length(table(Y)) > 2) {
warning("message from logit.spls.cv: multicategorical response")
results = multinom.spls.cv(X=X, Y=Y, lambda.ridge.range=lambda.ridge.range,
lambda.l1.range=lambda.l1.range, ncomp.range=ncomp.range,
adapt=adapt, maxIter=maxIter, svd.decompose=svd.decompose,
return.grid=return.grid, ncores=ncores,
nfolds=nfolds, nrun=nrun,
center.X=center.X, scale.X=scale.X,
weighted.center=weighted.center,
seed=seed, verbose=verbose)
return(results)
}
if ((!is.matrix(X)) || (!is.numeric(X))) {
stop("Message from logit.spls.cv: X is not of valid type")
}
if (p==1) {
warning("Message from logit.spls.cv: p=1 is not valid, ncomp.range is set to 0")
ncomp.range <- 0
}
if ((!is.matrix(Y)) || (!is.numeric(Y))) {
stop("Message from logit.spls.cv: Y is not of valid type")
}
if (q != 1) {
stop("Message from logit.spls.cv: Y must be univariate")
}
if (nrow(Y)!=n) {
stop("Message from logit.spls.cv: the number of observations in Y is not equal to the number of row in X")
}
if (sum(is.na(Y))!=0) {
stop("Message from logit.spls.cv: NA values in Ytrain")
}
if (sum(!(Y %in% c(0,1)))!=0) {
stop("Message from logit.spls.cv: Y is not of valid type")
}
if (sum(as.numeric(table(Y))==0)!=0) {
stop("Message from logit.spls.cv: there are empty classes")
}
if (any(!is.numeric(lambda.ridge.range)) || any(lambda.ridge.range<0)
|| any(!is.numeric(lambda.l1.range)) || any(lambda.l1.range<0) || any(lambda.l1.range>1)) {
stop("Message from logit.spls.cv: lambda is not of valid type")
}
if (any(!is.numeric(ncomp.range)) || any(round(ncomp.range)-ncomp.range!=0) || any(ncomp.range<0) || any(ncomp.range>p)) {
stop("Message from logit.spls.cv: ncomp is not of valid type")
}
if ((!is.numeric(maxIter)) || (round(maxIter)-maxIter!=0) || (maxIter<1)) {
stop("Message from logit.spls.cv: maxIter is not of valid type")
}
if ((!is.numeric(ncores)) || (round(ncores)-ncores!=0) || (ncores<1)) {
stop("Message from logit.spls.cv: ncores is not of valid type")
}
if ((!is.numeric(nfolds)) || (round(nfolds)-nfolds!=0) || (nfolds<1)) {
stop("Message from logit.spls.cv: nfolds is not of valid type")
}
if ((!is.numeric(nrun)) || (round(nrun)-nrun!=0) || (nrun<1)) {
stop("Message from logit.spls.cv: nrun is not of valid type")
}
if( any(as.vector(table(Y))<nfolds)) {
stop("Message from logit.spls.cv: there is a class defined by Y that has less members than the number of folds nfold")
}
fold.size = n %/% nfolds
folds.obs = sapply(1:nrun, function(run) {
index0 = (1:n)[Y==0]
index1 = (1:n)[Y==1]
folds0 = c(1:nfolds, rep(0, length(index0) - nfolds))[sample(x=1:length(index0), size=length(index0), replace=FALSE)]
folds1 = c(1:nfolds, rep(0, length(index1) - nfolds))[sample(x=1:length(index1), size=length(index1), replace=FALSE)]
ind.folds0 = index0[folds0!=0]
ind.folds1 = index1[folds1!=0]
rest = c(index0[folds0==0], index1[folds1==0])
folds.rest = rep(1:nfolds, length.out = length(rest))[sample(x=1:length(rest), size=length(rest), replace=FALSE)]
folds.res = rep(NA, n)
folds.res[ind.folds0] = folds0[folds0!=0]
folds.res[ind.folds1] = folds1[folds1!=0]
folds.res[rest] = folds.rest
return(folds.res)
})
folds.grid = expand.grid(k=1:nfolds, run=1:nrun, KEEP.OUT.ATTRS=FALSE)
ntrain_values <- matrix(NA, nrow=nfolds, ncol=nrun)
ntest_values <- matrix(NA, nrow=nfolds, ncol=nrun)
meanXtrain_values <- list()
sigma2train_values <- list()
for(index in 1:nrow(folds.grid)) {
k = folds.grid$k[index]
run = folds.grid$run[index]
Xtrain <- subset(X, folds.obs[,run] != k)
Ytrain <- subset(Y, folds.obs[,run] != k)
ntrain <- nrow(Xtrain)
Xtest <- subset(X, folds.obs[,run] == k)
Ytest <- subset(Y, folds.obs[,run] == k)
ntest <- nrow(Xtest)
r <- p
DeletedCol <- NULL
sigma2train <- apply(Xtrain, 2, var) * (ntrain-1)/(ntrain)
if (sum(sigma2train < .Machine$double.eps)!=0){
if (sum(sigma2train < .Machine$double.eps)>(p-2)){
stop("Message from logit.spls.cv: the procedure stops because number of predictor variables with no null variance is less than 1.")
}
warning("Message from logit.spls.cv: There are covariables with null variance in the current sub-sampling, they will be ignored.")
Xtrain <- Xtrain[,which(sigma2train >= .Machine$double.eps)]
if (!is.null(Xtest)) {
Xtest <- Xtest[,which(sigma2train>= .Machine$double.eps)]
}
DeletedCol <- index.p[which(sigma2train < .Machine$double.eps)]
sigma2train <- sigma2train[which(sigma2train >= .Machine$double.eps)]
p <- ncol(Xtrain)
r <- p
}
meanXtrain <- apply(Xtrain,2,mean)
if(center.X && scale.X) {
sXtrain <- scale(Xtrain, center=meanXtrain, scale=sqrt(sigma2train))
} else if(center.X && !scale.X) {
sXtrain <- scale(Xtrain, center=meanXtrain, scale=FALSE)
} else {
sXtrain <- Xtrain
}
sXtrain.nosvd = sXtrain
if ((p > ntrain) && (svd.decompose) && (p>1)) {
svd.sXtrain <- svd(t(sXtrain))
r <- length(svd.sXtrain$d[abs(svd.sXtrain$d)>10^(-13)])
V <- svd.sXtrain$u[,1:r]
D <- diag(c(svd.sXtrain$d[1:r]))
U <- svd.sXtrain$v[,1:r]
sXtrain <- U %*% D
rm(D)
rm(U)
rm(svd.sXtrain)
}
meanXtest <- apply(Xtest,2,mean)
sigma2test <- apply(Xtest,2,var)
if(center.X && scale.X) {
sXtest <- scale(Xtest, center=meanXtrain, scale=sqrt(sigma2train))
} else if(center.X && !scale.X) {
sXtest <- scale(Xtest, center=meanXtrain, scale=FALSE)
} else {
sXtest <- Xtest
}
sXtest.nosvd <- sXtest
if ((p > ntrain) && (svd.decompose)) {
sXtest <- sXtest%*%V
}
assign(paste0("sXtrain_", k, "_", run), sXtrain)
assign(paste0("sXtest_", k, "_", run), sXtest)
assign(paste0("sXtrain.nosvd_", k, "_", run), sXtrain.nosvd)
assign(paste0("sXtest.nosvd_", k, "_", run), sXtest.nosvd)
ntrain_values[k,run] <- ntrain
ntest_values[k,run] <- ntest
meanXtrain_values[[k + (run-1)*nfolds]] <- meanXtrain
sigma2train_values[[k + (run-1)*nfolds]] <- sigma2train
}
paramGrid <- expand.grid(fold=1:nfolds, run=1:nrun, lambdaL1=lambda.l1.range, lambdaL2=lambda.ridge.range, ncomp=ncomp.range, KEEP.OUT.ATTRS=FALSE)
res_cv <- Reduce("rbind", mclapply(split(paramGrid, f=row.names(paramGrid)), function(gridRow) {
k <- gridRow$fold
run <- gridRow$run
ntrain <- ntrain_values[k,run]
ntest <- ntest_values[k,run]
Ytrain <- subset(Y, folds.obs[,run] != k)
Ytest <- subset(Y, folds.obs[,run] == k)
model <- tryCatch( logit.spls.aux(sXtrain=get(paste0("sXtrain_", k, "_", run)),
sXtrain.nosvd=get(paste0("sXtrain.nosvd_", k, "_", run)),
Ytrain=Ytrain, lambda.ridge=gridRow$lambdaL2,
lambda.l1=gridRow$lambdaL1, ncomp=gridRow$ncomp,
sXtest=get(paste0("sXtest_", k, "_", run)),
sXtest.nosvd=get(paste0("sXtest.nosvd_", k, "_", run)),
adapt=adapt, maxIter=maxIter, svd.decompose=svd.decompose,
meanXtrain=meanXtrain_values[[k + (run-1)*nfolds]],
sigma2train=sigma2train_values[[k + (run-1)*nfolds]],
center.X=center.X, scale.X=scale.X, weighted.center=weighted.center),
error = function(e) { print(e); warnings("Message from logit.spls.cv: error when fitting a model in crossvalidation"); return(NULL);} )
res = numeric(8)
if(!is.null(model)) {
res = c(gridRow$fold, gridRow$run, gridRow$lambdaL1, gridRow$lambdaL2, gridRow$ncomp, model$lenA, model$converged, sum(model$hatYtest != Ytest) / ntest)
} else {
res = c(gridRow$fold, gridRow$run, gridRow$lambdaL1, gridRow$lambdaL2, gridRow$ncomp, 0, NA, NA)
}
return(res)
}, mc.cores=ncores, mc.silent=!verbose))
rownames(res_cv) <- paste(1:nrow(res_cv))
res_cv = data.frame(res_cv)
colnames(res_cv) = c("nfold", "nrun", "lambda.l1", "lambda.ridge", "ncomp", "lenA", "converged", "error")
cv.grid.fails <- data.frame( as.matrix( with( res_cv, aggregate(error, list(lambda.ridge, lambda.l1, ncomp), function(x) {sum(is.na(x))}))))
colnames(cv.grid.fails) <- c("lambda.ridge", "lambda.l1", "ncomp", "nb.fail")
if(sum(cv.grid.fails$nb.fail>0.8*nrun*nfolds) > (0.8*nrow(paramGrid))) {
warnings("Message from logit.spls.cv: too many errors during the cross-validation process, the grid is not enough filled")
}
cv.grid.error <- data.frame( as.matrix( with( res_cv, aggregate(error, list(lambda.ridge, lambda.l1, ncomp), function(x) c(mean(x, na.rm=TRUE), sd(x, na.rm=TRUE)) ))))
colnames(cv.grid.error) <- c("lambda.ridge", "lambda.l1", "ncomp", "error", "error.sd")
cv.grid.conv <- data.frame( as.matrix( with( res_cv, aggregate(converged, list(lambda.ridge, lambda.l1, ncomp), mean, na.rm=TRUE))))
colnames(cv.grid.conv) <- c("lambda.ridge", "lambda.l1", "ncomp", "converged")
conv.per <- mean(cv.grid.conv$converged)
cv.grid1 <- merge(cv.grid.error, cv.grid.conv, by = c("lambda.ridge", "lambda.l1", "ncomp"))
cv.grid <- merge(cv.grid1, cv.grid.fails, by = c("lambda.ridge", "lambda.l1", "ncomp"))
index_min <- which.min(cv.grid$error)
lambdaL1.opt <- cv.grid$lambda.l1[index_min]
lambdaL2.opt <- cv.grid$lambda.ridge[index_min]
ncomp.opt <- cv.grid$ncomp[index_min]
if(return.grid) {
return( list(lambda.ridge.opt=lambdaL2.opt, lambda.l1.opt=lambdaL1.opt, ncomp.opt=ncomp.opt, conv.per=conv.per, cv.grid=cv.grid) )
} else {
return( list(lambda.ridge.opt=lambdaL2.opt, lambda.l1.opt=lambdaL1.opt, ncomp.opt=ncomp.opt, conv.per=conv.per, cv.grid=NULL) )
}
} |
context("test-unname_all_chunks")
test_that("unname_all_chunks works in case is.null(chunk_name_prefix) == TRUE", {
R_version <- paste(R.version$major,
R.version$minor,
sep = ".")
skip_if_not(R_version >= "3.5.0")
skip_if_not(rmarkdown::pandoc_available("1.12.3"))
temp_file_path <- file.path(tempdir(check = TRUE), "example4.Rmd")
file.copy(system.file("examples", "example4.Rmd", package = "namer"),
temp_file_path)
unname_all_chunks(temp_file_path)
lines <- readLines(temp_file_path)
chunk_info <- get_chunk_info(lines)
testthat::expect_identical(chunk_info$name[1],'setup')
testthat::expect_true(all(is.na(chunk_info$name[-1])))
rendering <- rmarkdown::render(temp_file_path)
testthat::expect_is(rendering, "character")
file.remove(temp_file_path)
basename <- fs::path_ext_remove(temp_file_path)
file.remove(paste0(basename, ".html"))
})
test_that("unname_all_chunks works in case is.null(chunk_name_prefix) == FALSE", {
R_version <- paste(R.version$major,
R.version$minor,
sep = ".")
skip_if_not(R_version >= "3.5.0")
skip_if_not(rmarkdown::pandoc_available("1.12.3"))
temp_file_path <- file.path(tempdir(check = TRUE), "example4.Rmd")
file.copy(system.file("examples", "example4.Rmd", package = "namer"),
temp_file_path)
unname_all_chunks(temp_file_path,chunk_name_prefix='example4')
lines <- readLines(temp_file_path)
chunk_info <- get_chunk_info(lines)
testthat::expect_identical(chunk_info$name[1],'setup')
testthat::expect_identical(chunk_info$name[6],'sessioninfo')
testthat::expect_true(all(is.na(chunk_info$name[2:5])))
rendering <- rmarkdown::render(temp_file_path)
testthat::expect_is(rendering, "character")
file.remove(temp_file_path)
basename <- fs::path_ext_remove(temp_file_path)
file.remove(paste0(basename, ".html"))
})
test_that("unname_all_chunks works in case chunk_name_prefix == 'setup' ", {
R_version <- paste(R.version$major,
R.version$minor,
sep = ".")
skip_if_not(R_version >= "3.5.0")
skip_if_not(rmarkdown::pandoc_available("1.12.3"))
temp_file_path <- file.path(tempdir(check = TRUE), "example4.Rmd")
file.copy(system.file("examples", "example4.Rmd", package = "namer"),
temp_file_path)
unname_all_chunks(temp_file_path,chunk_name_prefix='setup')
lines <- readLines(temp_file_path)
chunk_info <- get_chunk_info(lines)
testthat::expect_identical(chunk_info$name[1],'setup')
testthat::expect_identical(chunk_info$name[3],'example4-1')
testthat::expect_identical(chunk_info$name[4],'example4-1-bis')
testthat::expect_identical(chunk_info$name[6],'sessioninfo')
testthat::expect_true(all(is.na(chunk_info$name[c(2,5)])))
rendering <- rmarkdown::render(temp_file_path)
testthat::expect_is(rendering, "character")
file.remove(temp_file_path)
basename <- fs::path_ext_remove(temp_file_path)
file.remove(paste0(basename, ".html"))
}) |
library(data.table)
load("BENCHMARK/DATA/base_all_simulations.Rdata")
library(MASS)
library(lfe)
library(glmmML)
library(alpaca)
library(plm)
library(fixest)
getime = function(x) (proc.time() - x)[[3]]
getime_errcheck = function(x, y) ifelse("try-error" %in% class(y), NA, (proc.time() - x)[[3]])
all_n = 1000 * 10**(0:3)
all_rep = 1:10
results_all = data.frame(family = NA, method = NA, n_obs = NA, G = NA, rep = NA, time = NA)
all_fixef = c("dum_1", "dum_2", "dum_3")
all_families = c("poisson", "gaussian", "negbin", "logit")
setFixest_notes(FALSE)
for(fam in all_families){
cat("-------\nFAMILY: ", fam, "\n-------\n")
for(i in 1:length(all_n)){
cat("---- i =", i, "\n")
n_obs = all_n[i]
for(g in 1:3){
cat("g =", g)
for(r in all_rep){
cat(".")
base = base_all[i, r][[1]]
if(fam == "negbin"){
pt = proc.time()
res_fixest = fenegbin(y ~ X1, base, fixef = all_fixef[1:g])
results_all = rbind(results_all,
data.frame(family=fam, method="fenegbin", n_obs=n_obs, G=g, rep=r,
time=getime(pt)))
if(i <= 2){
pt = proc.time()
fml_glmnb = switch(g, "1"=y~X1+factor(dum_1), "2"=y~X1+factor(dum_1)+factor(dum_2), "3"=y~X1+factor(dum_1)+factor(dum_2)+factor(dum_3))
res_glmnb = try(glm.nb(fml_glmnb, base), silent = TRUE)
results_all = rbind(results_all,
data.frame(family=fam, method="glmnb", n_obs=n_obs, G=g, rep=r,
time=getime_errcheck(pt, res_glmnb)))
}
}
if(fam == "gaussian"){
pt = proc.time()
res_fixest = feols(ln_y ~ X1, base, fixef = all_fixef[1:g])
results_all = rbind(results_all,
data.frame(family=fam, method="feols", n_obs=n_obs, G=g, rep=r,
time=getime(pt)))
pt = proc.time()
fml_lfe = switch(g, "1"=ln_y~X1|dum_1, "2"=ln_y~X1|dum_1+dum_2, "3"=ln_y~X1|dum_1+dum_2+dum_3)
res_lfe = try(felm(fml_lfe, base), silent = TRUE)
results_all = rbind(results_all,
data.frame(family=fam, method="lfe", n_obs=n_obs, G=g, rep=r,
time=getime_errcheck(pt, res_lfe)))
if(FALSE && g == 1){
pt = proc.time()
res_plm = try(plm(ln_y~X1, base, index = "dum_1", model = "within"), silent = TRUE)
results_all = rbind(results_all,
data.frame(family=fam, method="plm", n_obs=n_obs, G=g, rep=r,
time=getime_errcheck(pt, res_plm)))
}
}
if(fam == "logit"){
pt = proc.time()
res_fixest = fixest::feglm(sign(y) ~ X1, base, fixef = all_fixef[1:g], family = binomial())
results_all = rbind(results_all,
data.frame(family=fam, method="feglm (fixest)", n_obs=n_obs, G=g, rep=r,
time=getime(pt)))
if(g == 1){
pt = proc.time()
res_glmmML = try(glmmboot(sign(y)~X1, base, family=binomial, cluster = base$dum_1), silent = FALSE)
results_all = rbind(results_all,
data.frame(family=fam, method="glmmboot", n_obs=n_obs, G=g, rep=r,
time=getime_errcheck(pt, res_glmmML)))
}
base$sy = sign(base$y)
pt = proc.time()
fml_alpaca = switch(g, "1"=sy~X1|dum_1, "2"=sy~X1|dum_1+dum_2, "3"=sy~X1|dum_1+dum_2+dum_3)
res_alpaca = try(alpaca::feglm(fml_alpaca, base), silent = TRUE)
results_all = rbind(results_all,
data.frame(family=fam, method="feglm (alpaca)", n_obs=n_obs, G=g, rep=r,
time=getime_errcheck(pt, res_alpaca)))
}
if(fam == "poisson") {
pt = proc.time()
res_fixest = fepois(y ~ X1, base, fixef = all_fixef[1:g])
results_all = rbind(results_all,
data.frame(family=fam, method="fepois", n_obs=n_obs, G=g, rep=r,
time=getime(pt)))
if(g == 1){
pt = proc.time()
res_glmmML = try(glmmboot(y~X1, base, family=poisson, cluster = base$dum_1), silent = FALSE)
results_all = rbind(results_all,
data.frame(family=fam, method="glmmboot", n_obs=n_obs, G=g, rep=r,
time=getime_errcheck(pt, res_glmmML)))
}
pt = proc.time()
fml_alpaca = switch(g, "1"=y~X1|dum_1, "2"=y~X1|dum_1+dum_2, "3"=y~X1|dum_1+dum_2+dum_3)
res_alpaca = try(alpaca::feglm(fml_alpaca, base, family = poisson()), silent = TRUE)
results_all = rbind(results_all,
data.frame(family=fam, method="feglm (alpaca)", n_obs=n_obs, G=g, rep=r,
time=getime_errcheck(pt, res_alpaca)))
}
}
cat("\n")
}
}
}
results_all = results_all[-1, ]
library(data.table)
base = fread("BENCHMARK/DATA/base_10M.csv")
for(g in 1:3){
cat("g =", g)
for(r in 1:10){
cat("|")
pt = proc.time()
res_fixest = feols(ln_y ~ X1, base, fixef = all_fixef[1:g])
results_all = rbind(results_all,
data.frame(family="gaussian", method="feols", n_obs=1e7, G=g, rep=r,
time=getime(pt)))
cat(".")
pt = proc.time()
fml_lfe = switch(g, "1"=ln_y ~ X1|dum_1, "2"=ln_y~X1|dum_1+dum_2, "3"=ln_y~X1|dum_1+dum_2+dum_3)
res_lfe = felm(fml_lfe, base)
results_all = rbind(results_all,
data.frame(family="gaussian", method="lfe", n_obs=1e7, G=g, rep=r,
time=getime_errcheck(pt, res_lfe)))
}
cat("\n")
}
data.table::fwrite(results_all, file = "BENCHMARK/DATA/results_bench_R.txt")
library(fixest)
library(lfe)
load("BENCHMARK/DATA/base_all_diff.Rdata")
results_all_diff = data.frame(family = NA, method = NA, n_obs = NA, G = NA, rep = NA, time = NA)
for(i in 1:4){
cat("------\nOBS = ", 10**(3+i), "\n------\n")
base = base_all_diff[[i]]
for(g in 1:3){
cat("g =", g)
for(r in 1:10){
fml = switch(g, "1"=y ~ x1+x2|id_indiv,
"2"=y ~ x1+x2|id_indiv+id_firm,
"3"=y ~ x1+x2|id_indiv+id_firm+id_year)
cat("|")
pt = proc.time()
res_fixest = feols(fml, base)
results_all_diff = rbind(results_all_diff,
data.frame(family="gaussian", method="feols", n_obs=10**(3+i), G=g, rep=r,
time=getime(pt)))
cat(".")
if(i < 4){
pt = proc.time()
res_lfe = felm(fml, base)
results_all_diff = rbind(results_all_diff,
data.frame(family="gaussian", method="lfe", n_obs=10**(3+i), G=g, rep=r,
time=getime_errcheck(pt, res_lfe)))
}
}
cat("\n")
}
}
results_all_diff = results_all_diff[-1, ]
data.table::fwrite(results_all_diff, file = "BENCHMARK/DATA/results_diff_bench_R.txt") |
NULL
translate_create_parallel_data <- function(Name, Description = NULL, ParallelDataConfig, EncryptionKey = NULL, ClientToken) {
op <- new_operation(
name = "CreateParallelData",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$create_parallel_data_input(Name = Name, Description = Description, ParallelDataConfig = ParallelDataConfig, EncryptionKey = EncryptionKey, ClientToken = ClientToken)
output <- .translate$create_parallel_data_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$create_parallel_data <- translate_create_parallel_data
translate_delete_parallel_data <- function(Name) {
op <- new_operation(
name = "DeleteParallelData",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$delete_parallel_data_input(Name = Name)
output <- .translate$delete_parallel_data_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$delete_parallel_data <- translate_delete_parallel_data
translate_delete_terminology <- function(Name) {
op <- new_operation(
name = "DeleteTerminology",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$delete_terminology_input(Name = Name)
output <- .translate$delete_terminology_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$delete_terminology <- translate_delete_terminology
translate_describe_text_translation_job <- function(JobId) {
op <- new_operation(
name = "DescribeTextTranslationJob",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$describe_text_translation_job_input(JobId = JobId)
output <- .translate$describe_text_translation_job_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$describe_text_translation_job <- translate_describe_text_translation_job
translate_get_parallel_data <- function(Name) {
op <- new_operation(
name = "GetParallelData",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$get_parallel_data_input(Name = Name)
output <- .translate$get_parallel_data_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$get_parallel_data <- translate_get_parallel_data
translate_get_terminology <- function(Name, TerminologyDataFormat) {
op <- new_operation(
name = "GetTerminology",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$get_terminology_input(Name = Name, TerminologyDataFormat = TerminologyDataFormat)
output <- .translate$get_terminology_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$get_terminology <- translate_get_terminology
translate_import_terminology <- function(Name, MergeStrategy, Description = NULL, TerminologyData, EncryptionKey = NULL) {
op <- new_operation(
name = "ImportTerminology",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$import_terminology_input(Name = Name, MergeStrategy = MergeStrategy, Description = Description, TerminologyData = TerminologyData, EncryptionKey = EncryptionKey)
output <- .translate$import_terminology_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$import_terminology <- translate_import_terminology
translate_list_parallel_data <- function(NextToken = NULL, MaxResults = NULL) {
op <- new_operation(
name = "ListParallelData",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$list_parallel_data_input(NextToken = NextToken, MaxResults = MaxResults)
output <- .translate$list_parallel_data_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$list_parallel_data <- translate_list_parallel_data
translate_list_terminologies <- function(NextToken = NULL, MaxResults = NULL) {
op <- new_operation(
name = "ListTerminologies",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$list_terminologies_input(NextToken = NextToken, MaxResults = MaxResults)
output <- .translate$list_terminologies_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$list_terminologies <- translate_list_terminologies
translate_list_text_translation_jobs <- function(Filter = NULL, NextToken = NULL, MaxResults = NULL) {
op <- new_operation(
name = "ListTextTranslationJobs",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$list_text_translation_jobs_input(Filter = Filter, NextToken = NextToken, MaxResults = MaxResults)
output <- .translate$list_text_translation_jobs_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$list_text_translation_jobs <- translate_list_text_translation_jobs
translate_start_text_translation_job <- function(JobName = NULL, InputDataConfig, OutputDataConfig, DataAccessRoleArn, SourceLanguageCode, TargetLanguageCodes, TerminologyNames = NULL, ParallelDataNames = NULL, ClientToken) {
op <- new_operation(
name = "StartTextTranslationJob",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$start_text_translation_job_input(JobName = JobName, InputDataConfig = InputDataConfig, OutputDataConfig = OutputDataConfig, DataAccessRoleArn = DataAccessRoleArn, SourceLanguageCode = SourceLanguageCode, TargetLanguageCodes = TargetLanguageCodes, TerminologyNames = TerminologyNames, ParallelDataNames = ParallelDataNames, ClientToken = ClientToken)
output <- .translate$start_text_translation_job_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$start_text_translation_job <- translate_start_text_translation_job
translate_stop_text_translation_job <- function(JobId) {
op <- new_operation(
name = "StopTextTranslationJob",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$stop_text_translation_job_input(JobId = JobId)
output <- .translate$stop_text_translation_job_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$stop_text_translation_job <- translate_stop_text_translation_job
translate_translate_text <- function(Text, TerminologyNames = NULL, SourceLanguageCode, TargetLanguageCode) {
op <- new_operation(
name = "TranslateText",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$translate_text_input(Text = Text, TerminologyNames = TerminologyNames, SourceLanguageCode = SourceLanguageCode, TargetLanguageCode = TargetLanguageCode)
output <- .translate$translate_text_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$translate_text <- translate_translate_text
translate_update_parallel_data <- function(Name, Description = NULL, ParallelDataConfig, ClientToken) {
op <- new_operation(
name = "UpdateParallelData",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .translate$update_parallel_data_input(Name = Name, Description = Description, ParallelDataConfig = ParallelDataConfig, ClientToken = ClientToken)
output <- .translate$update_parallel_data_output()
config <- get_config()
svc <- .translate$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.translate$operations$update_parallel_data <- translate_update_parallel_data |
context("tests of supporting functions")
test_that("load the demo data", {
result <- data(PolyHaplotyper_demo)
expect_equal(dim(snpdos), c(30, 663))
expect_equal(dim(ped), c(661, 4))
expect_equal(names(ped), c("genotype", "mother", "father", "sample_nr"))
})
test_that("test several functions", {
result <- allHaplotypes(mrknames=letters[1:4])
expect_equal(dim(result), c(16, 4))
expect_equal(colnames(result), letters[1:4])
expect_true(all(result[nrow(result),] == 1))
expect_equal(result[1:2, ncol(result)], c(0, 1))
result <- mrkdos2mrkdid(
mrkDosage=matrix(c(1,2,3,4,4,3,2,1), ncol=2,
dimnames=list(letters[1:4], c("ind1", "ind2"))),
ploidy=4)
expect_equal(result, setNames(c(195, 587), c("ind1", "ind2")))
parhac <- matrix(c(1,1,2,2,5,6,1,1,1,1,1,3), ncol=2,
dimnames=list(NULL, c("P1", "P2")))
result <- getFSfreqs(parhac=parhac, DRrate=0.1)
expect_equal(names(result), c("FShac", "freq"))
expect_equal(dim(result$FShac), c(6, 54))
expect_equal(sum(result$freq), 1, tolerance=1e-6)
}) |
multitest_evaluation <- function(evaluations, iterations, cross_validation, preserve_distribution, name, method, problem){
structure(class="multitest_evaluation",
list(
evaluations = evaluations,
iterations = iterations,
cross_validation = cross_validation,
preserve_distribution = preserve_distribution,
name = name,
method = method,
problem = problem
))
}
summary.multitest_evaluation <- function(object,...){
measures <- data.frame(
t(sapply(object$evaluations,
function(x){
unlist(x$measures)
}))
)
test_attributes <- data.frame(
t(sapply(object$evaluations,
function(x){
x$test_attributes
}))
)
overall_measures <- t(
sapply(measures,
function(x){
summary(na.omit(x))
}
)
)
numeric_attrs <- plyr::ldply(test_attributes,
function(x){
unlisted_x <- unlist(x)
if(is.numeric(unlisted_x)){
summary(unlisted_x)
}
}
)
row.names(numeric_attrs) <- numeric_attrs[,1]
numeric_attrs <- numeric_attrs[,-1]
other_attrs <- unlist(
sapply(test_attributes,
function(x){
x <- unlist(x)
if(is.character(x) || is.factor(x)){
unique(x)
}
},
simplify = FALSE)
)
structure(
list(evaluations = object$evaluations,
overall_test_attributes = list(numeric = numeric_attrs,
other = other_attrs
),
overall_measures = overall_measures,
test_attributes = test_attributes,
measures = measures,
iterations = object$iterations,
cross_validation = object$cross_validation,
preserve_distribution = object$preserve_distribution,
name = object$name,
method = object$method,
problem = object$problem
),
class = "multitest_evaluation.summary"
)
}
print.multitest_evaluation.summary <- function(x, digits = max(3, getOption("digits")-4), ...){
overall_measures <- replace_names(x$overall_measures,
replace_colnames = FALSE)
if(x$problem == "classification"){
row.names(overall_measures)<- c("Accuracy",
"Lower bound of 95% CI",
"Upper bound of 95% CI",
"No information rate",
"P-value (accuracy > NIR)",
"McNemar's test P-value")
}
overall_attributes <- replace_names(x$overall_test_attributes$numeric,
replace_colnames = FALSE)
test_problem <- capitalize_first(x$problem)
test_name <- x$name
cat(paste(test_problem,
"Multiple Test Evaluation:",
test_name,
"\n\n"))
cat("Test attributes:\n\n")
cat("General:\n")
sample_method <- ""
if(x$cross_validation){
sample_method <- paste0(x$iterations,
"-fold cross validation")
} else{
sample_method <- paste(x$iterations,
"random samples")
}
if(x$problem == "classification"){
if(x$preserve_distribution){
sample_method <- paste(sample_method,
"with")
} else {
sample_method <- paste(sample_method,
"without")
}
sample_method <- paste(sample_method,
"preservation of class distribution")
sample_method <- strwrap(sample_method, width = getOption("width") * .4)
names(sample_method) <- rep("", length(sample_method))
names(sample_method)[1] <- "Sampling method"
}
if(length(sample_method)==1){
gen_attrs <- c(x$overall_test_attributes$other,
"Sampling method" = sample_method)
} else {
gen_attrs <- c(x$overall_test_attributes$other,
sample_method)
}
allnames <- c(
row.names(overall_attributes),
names(gen_attrs),
row.names(x$overall_measures)
)
width = max(stringr::str_length(allnames))
gen_attrs <- replace_names(gen_attrs)
gen_attr_names <- paste0(
format(
names(gen_attrs),
justify = "right",
width = width
),
":"
)
gen_attr_names[grep("\\s:", gen_attr_names)] <- ""
gen_attrs_matrix <- cbind(
gen_attr_names,
gen_attrs
)
print(
remove_names(
gen_attrs_matrix
),
quote = FALSE
)
cat("\nSummary of attributes per test iteration:\n\n")
row.names(overall_attributes) <- format(row.names(overall_attributes),
width = width + 2,
justify = "right")
print(overall_attributes,
quote=FALSE,
digits = digits)
cat("\nPerformance measures:\n\n")
row.names(overall_measures) <- format(row.names(overall_measures),
width = width + 2,
justify = "right")
print(overall_measures,
quote = FALSE,
digits = digits)
invisible(x)
}
print.multitest_evaluation <- function(x, ...){
summary_x <- summary(x)
print(summary_x$measures)
invisible(x)
} |
source("ESEUR_config.r")
pal_col=rainbow(3)
fit_and_summary=function(kind_bsd)
{
kind_bsd$date=as.POSIXct(kind_bsd$date, format="%Y-%m-%d")
start_date=kind_bsd$date[1]
kind_bsd$Number_days=as.integer(difftime(kind_bsd$date,
start_date,
units="days"))
rad_per_day=(2*pi)/365
kind_bsd$rad_Number_days=rad_per_day*kind_bsd$Number_days
season_mod=glm(sloc ~ Number_days+
sin(rad_Number_days)+cos(rad_Number_days),
data=kind_bsd)
print(summary(season_mod))
}
freebsd=read.csv(paste0(ESEUR_dir, "regression/Herraiz-freebsd.txt.xz"), as.is=TRUE)
fit_and_summary(freebsd) |
pearson.dist <- function (x) {
x <- as.matrix (x)
x <- x - rowMeans (x)
x <- x / sqrt (rowSums (x^2))
if (hy.getOption("gc")) gc ()
x <- tcrossprod (x)
if (hy.getOption("gc")) gc ()
x <- as.dist (x)
if (hy.getOption("gc")) gc ()
0.5 - x / 2
}
.test (pearson.dist) <- function (){
context ("pearson.dist")
test_that("pearson.dist against manual calculation", {
expect_equivalent (
pearson.dist (flu),
as.dist (0.5 - cor (t (as.matrix (flu))) / 2))
})
} |
library(ggplot2)
library(ggtikz)
plus1 <- function(x) x + 1
plus2 <- function(x) x + 2
test_that("numeric coordinate components are transformed", {
expect_equal(try_transform("1", plus1), 2)
expect_equal(try_transform("1", plus2), 3)
})
test_that("transformation to infinite and NA values raise an errors", {
expect_error(try_transform("-1", log), "value -1 could not be transformed")
expect_error(try_transform("0", log), "value 0 could not be transformed")
})
test_that("non-numeric coordinate components are not transformed", {
expect_equal(try_transform("1in", plus1), "1in")
expect_equal(try_transform("2 cm", plus2), "2 cm")
})
test_that("explicitly input infinite coordinate components are not transformed", {
expect_equal(try_transform("inf", plus1), "inf")
expect_equal(try_transform("-inf", plus1), "-inf")
expect_equal(try_transform("Inf", plus1), "Inf")
expect_equal(try_transform("-Inf", plus1), "-Inf")
})
test_that("a single coordinate can be transformed", {
expect_equal(transform_coord("(0,0)", plus1, plus1), "(1,1)")
expect_equal(transform_coord("(0,0)", plus1, plus2), "(1,2)")
expect_equal(transform_coord("(0,0)", plus2, plus1), "(2,1)")
expect_equal(transform_coord("(0 , 0 )", plus1, plus1), "(1,1)")
expect_equal(transform_coord("( 0, 0 )", plus1, plus1), "(1,1)")
})
test_that("multiple coordinates can be transformed", {
coords <- "(0,0) -- (1,1) -- (2,2)"
expect_equal(transform_tikz(coords, plus1, plus1), "(1,1) -- (2,2) -- (3,3)")
})
test_that("multi-line tikz code can be transformed", {
tikz_code <- "
\\draw (0,0) -- (50,50) -- cycle;
\\node at (5,5) {Text};
"
expect <- "
\\draw (1,2) -- (51,52) -- cycle;
\\node at (6,7) {Text};
"
expect_equal(transform_tikz(tikz_code, plus1, plus2), expect)
})
test_that("coordinates intermixed with radii can be transformed", {
input <- "\\draw (0,20) circle (20mm) node at (30,40) to (2,3)(4,5) (3mm) to (3,4)"
expect <- "\\draw (1,21) circle (20mm) node at (31,41) to (3,4)(5,6) (3mm) to (4,5)"
result <- transform_tikz(input, plus1, plus1)
expect_equal(result, expect)
})
expect_transformed_equal <- function(canvas, annotation, expect) {
transformed <- ggtikzTransform(canvas, annotation)
expect_equal(transformed$tikz_code, expect)
}
test_that("tikz_code in annotations is transformed for data reference frames", {
canvas <- canvas_y_log10()
annotation <- ggtikzAnnotation("\\draw (10,10) -- (100,100);", xy="data", panelx=1, panely=1)
expect_transformed_equal(canvas, annotation, "\\draw (10,1) -- (100,2);")
})
test_that("tikz_code in annotations is transformed correctly for discrete scales", {
canvas <- canvas_x_discrete()
annotation <- ggtikzAnnotation("\\draw (1,1) -- (2,2);", xy="data", panelx=1, panely=1)
expect_transformed_equal(canvas, annotation, "\\draw (1,1) -- (2,2);")
})
test_that("tikz_code in annotations is not transformed for panel reference frames", {
canvas <- canvas_y_log10()
annotation <- ggtikzAnnotation("\\draw (0.5,0.5) -- (0.5,0.5);", xy="panel", panelx=1, panely=1)
expect_transformed_equal(canvas, annotation, "\\draw (0.5,0.5) -- (0.5,0.5);")
})
test_that("tikz_code in annotations is not transformed for plot reference frames", {
canvas <- canvas_y_log10()
annotation <- ggtikzAnnotation("\\draw (0.5,0.5) -- (0.5,0.5);", xy="plot")
expect_transformed_equal(canvas, annotation, "\\draw (0.5,0.5) -- (0.5,0.5);")
})
test_that("tikz_code in annotations is transformed correctly for mixed references", {
canvas <- canvas_y_log10()
annotation <- ggtikzAnnotation("\\draw (0.5,10) -- (0.5,100);", x="panel", y="data", panelx=1, panely=1)
expect_transformed_equal(canvas, annotation, "\\draw (0.5,1) -- (0.5,2);")
})
test_that("tikz_code in annotations is transformed only once", {
canvas <- canvas_y_log10()
annotation <- ggtikzAnnotation("\\draw (10,10) -- (100,100);", xy="data", panelx=1, panely=1)
expect_false(annotation$.transformed)
canvas <- canvas + annotation
annotation_tf <- canvas$.annotations[[1]]
expect_true(annotation_tf$.transformed)
expect_equal(annotation_tf$tikz_code, "\\draw (10,1) -- (100,2);")
annotation_tf2 <- ggtikzTransform(canvas, annotation_tf)
expect_equal(annotation_tf2$tikz_code, "\\draw (10,1) -- (100,2);")
})
test_that("get_stringr_required raises an error when transforms are necessary and stringr is missing", {
need_tfs <- list(x=function(){}, y=function(){})
with_mock_requireNamespace(FALSE,
expect_error(get_stringr_required(need_tfs), "requires the `stringr` package")
)
})
test_that("get_stringr_required raises no error when transforms are necessary and stringr is available", {
need_tfs <- list(x=function(){}, y=function(){})
with_mock_requireNamespace(TRUE,
expect_error(get_stringr_required(need_tfs), NA)
)
})
test_that("get_stringr_required raises no error when no transforms are necessary", {
noneed_tfs <- list(x=identity, y=identity)
with_mock_requireNamespace(TRUE,
expect_error(get_stringr_required(noneed_tfs), NA)
)
with_mock_requireNamespace(FALSE,
expect_error(get_stringr_required(noneed_tfs), NA)
)
}) |
library(plm)
data("Hedonic", package = "plm")
pHed <- pdata.frame(Hedonic, index = "townid")
plm:::pos.index(pHed)
pHed_new_plm.data <- plm.data(Hedonic, indexes = "townid")
Hedonic_const <- Hedonic
Hedonic_const$constantNr <- 1
Hedonic_const$constantStr <- "constant"
Hedonic_const <- Hedonic_const[ , c("constantNr", setdiff(names(Hedonic), c("constantNr", "constantStr")), "constantStr")]
pHed_const_new_plm.data <- plm.data(Hedonic_const, indexes = "townid")
class(pHed_const_new_plm.data)
names(pHed_const_new_plm.data)
lapply(pHed_const_new_plm.data, class) |
EFT_clust <- function(obj2clust = NULL,
n_clust = 20,
standardise_vars = TRUE,
filename = "",
...){
if(is.null(obj2clust)) stop("Please provide objects of classe Raster* (or file names to read in some)")
if(is.character(obj2clust)){
obj2clust <- stack(obj2clust)
}else if(!class(obj2clust) %in% c("RasterLayer", "RasterStack", "RasterBrick")){
stop("Please provide objects of classe Raster* (or a file name to read in from)")
}
if(!is.numeric(n_clust) | is.na(n_clust) | is.null(n_clust))
stop("Please provide a number of clusters")
obj2clust_ini <- as.data.frame(obj2clust)
obj2clust_ini$rn <- 1:nrow(obj2clust_ini)
setDT(obj2clust_ini)
clstr <- NULL
obj2clust_ini_NA <- obj2clust_ini[!complete.cases(obj2clust_ini), ]
obj2clust_ini_NA[, clstr := NA]
obj2clust_ini_NA[, clstr := as.integer(clstr)]
obj2clust_ini_NA <- obj2clust_ini_NA[, .SD, .SDcols = c("clstr", "rn")]
obj2clust_ini <- na.omit(obj2clust_ini)
if(standardise_vars == TRUE){
cols2scale <- colnames(obj2clust_ini)
cols2scale <- cols2scale[!cols2scale %in% c("rn")]
cols2keep <- paste0(cols2scale, "_scld")
obj2clust_ini[, (cols2keep) := lapply(.SD, function(x) as.vector(scale(x))), .SDcols = cols2scale]
obj2clust_ini <- obj2clust_ini[, .SD, .SDcols = c(cols2keep, "rn")]
}
dts <- list(...)
if(is.null(dts$nstart)) dts$nstart <- 1
if(is.null(dts$iter.max)) dts$iter.max <- 500
if(is.null(dts$algorithm)) dts$algorithm <- "MacQueen"
kmeans_clustring <- kmeans(obj2clust_ini[, - c("rn")],
centers = n_clust,
nstart = dts$nstart,
iter.max = dts$iter.max,
algorithm = dts$algorithm
)
clust_eval <- kmeans_clustring$betweenss / kmeans_clustring$totss * 100
obj2clust_ini[, clstr := kmeans_clustring$cluster]
obj2clust_ini <- obj2clust_ini[, .SD, .SDcols = c("clstr", "rn")]
all_data <- bind_rows(obj2clust_ini, obj2clust_ini_NA)
setorder(all_data, rn)
EFTs_raster <- raster(nrows = obj2clust@nrows, ncols = obj2clust@ncols,
crs = crs(obj2clust),
ext = extent(obj2clust),
vals = all_data$clstr)
names(EFTs_raster) <- "clusterNum"
if (filename != "") writeRaster(EFTs_raster, filename = filename, overwrite = TRUE)
return(list(EFTs_raster, clust_eval))
} |
library("knitr")
Rscript_executable <- paste(file.path(R.home(), "bin", "Rscript"), "--vanilla")
opts_knit$set(root.dir = system.file("exec", package="optparse"))
opts_chunk$set(comment=NA, echo=FALSE)
list_file_command <- "ls"
chmod_command <- "chmod ug+x display_file.R example.R"
path_command <- "export PATH=$PATH:`pwd`"
run_command <- function(string) { suppressWarnings(cat(system(string, intern=TRUE), sep="\n")) }
run_command(sprintf("%s", list_file_command))
command <- "display_file.R example.R"
run_command(sprintf("%s %s 2>&1", Rscript_executable, command))
command <- "example.R --help"
run_command(sprintf("%s %s 2>&1", Rscript_executable, command))
command <- "example.R"
run_command(sprintf("%s %s 2>&1", Rscript_executable, command))
command <- "example.R --mean=10 --sd=10 --count=3"
run_command(sprintf("%s %s 2>&1", Rscript_executable, command))
command <- "example.R --quiet -c 4 --generator=\"runif\""
run_command(sprintf("%s %s 2>&1", Rscript_executable, command))
command <- "example.R --silent -m 5"
run_command(sprintf("%s %s 2>&1", Rscript_executable, command))
command <- "example.R -c 100 -c 2 -c 1000 -c 7"
run_command(sprintf("%s %s 2>&1", Rscript_executable, command))
command <- "display_file.R --help"
run_command(sprintf("%s %s 2>&1", Rscript_executable, command))
command <- "display_file.R --add_numbers display_file.R"
run_command(sprintf("%s %s 2>&1", Rscript_executable, command))
command <- "display_file.R non_existent_file.txt"
run_command(sprintf("%s %s 2>&1", Rscript_executable, command))
command <- "display_file.R"
run_command(sprintf("%s %s 2>&1", Rscript_executable, command)) |
rings_segmentation <- function(z, angle_width, return_angle = FALSE) {
stopifnot(class(z) == "RasterLayer")
stopifnot(class(return_angle) == "logical")
stopifnot(length(angle_width) == 1)
if (!.is_whole(90 / angle_width)) {
stop(
paste("angle_width should divide the,",
"0 to 90 range into a whole number of segments.")
)
}
intervals <- seq(0, 90, angle_width)
c1 <- intervals[1:(length(intervals) - 1)]
c2 <- intervals[2:length(intervals)]
if (return_angle) {
c3 <- (c1 + c2) / 2
} else {
c3 <- 1:(length(intervals) - 1)
}
rcl <- matrix(c(c1, c2, c3), ncol = 3)
reclassify(z, rcl)
} |
with_mock_api({
test_that("get_user_profile: expected behaviour", {
skip_if(!dir.exists("api.twitter.com"))
ori_test <- "../testdata/commtwitter/"
user_ids <- unique(bind_tweets(ori_test, verbose = FALSE)$author_id)[c(1,2,3)]
res <- get_user_profile(x = user_ids)
expect_equal(readRDS("../testdata/user_profiles.RDS"), res)
})
})
with_mock_api({
test_that("get_user_following: expected behaviour", {
skip_if(!dir.exists("api.twitter.com"))
ori_test <- "../testdata/commtwitter/"
user_ids <- unique(bind_tweets(ori_test, verbose = FALSE)$author_id)[c(1,2,3)]
res <- get_user_following(x = user_ids)
expect_equal(nrow(readRDS("../testdata/user_following.RDS")), nrow(res))
})
})
with_mock_api({
test_that("get_user_following: expected behaviour", {
skip_if(!dir.exists("api.twitter.com"))
ori_test <- "../testdata/commtwitter/"
user_ids <- unique(bind_tweets(ori_test, verbose = FALSE)$author_id)[c(1,2,3)]
res <- get_user_followers(x = user_ids)
expect_equal(nrow(readRDS("../testdata/user_followers.RDS")), nrow(res))
})
}) |
estimateActivations <- function(cuesOutcomes, weightMatrix, unique=FALSE,...) {
cues = rownames(weightMatrix)
outcomes = colnames(weightMatrix)
NA.cue_strings <- grep("(^NA_)|(_NA_)|(_NA$)",cuesOutcomes$Cues)
NA.outcome_strings <- grep("(^NA)|(_NA_)|(_NA$)",cuesOutcomes$Outcomes)
if(length(NA.cue_strings)>0)
warning(paste("Potential NA's in ",length(NA.cue_strings)," 'Cues'.",sep=""))
if(length(NA.outcome_strings)>0)
warning(paste("Potential NA's in ",length(NA.outcome_strings)," 'Outcomes'.",sep=""))
NA.cues <- which(is.na(cuesOutcomes$Cues))
if("Outcomes" %in% names(cuesOutcomes))
NA.outcomes <- which(is.na(cuesOutcomes$Outcomes))
else
{
NA.outcomes = NULL
warning("No 'Outcomes' column specified in 'cuesOutcomes'.")
}
if(length(NA.cues)>0)
stop(paste("NA's in 'Cues': ",length(NA.cues)," cases.",sep=""))
if(length(NA.outcomes)>0)
stop(paste("NA's in 'Outcomes': ",length(NA.outcomes)," cases.",sep=""))
obsCues = strsplit(as.character(cuesOutcomes$Cues), "_")
uniqueObsCues = unique(unlist(obsCues))
newCues = uniqueObsCues[!is.element(uniqueObsCues, cues)]
if(length(newCues) > 0) {
wnew = matrix(0, length(newCues), ncol(weightMatrix))
rownames(wnew)=newCues
colnames(wnew)=colnames(weightMatrix)
w = rbind(weightMatrix, wnew)
cues = c(cues, newCues)
} else {
w = weightMatrix
}
obsOutcomes = strsplit(as.character(cuesOutcomes$Outcomes), "_")
uniqueObsOutcomes = unique(unlist(obsOutcomes))
newOutcomes = uniqueObsOutcomes[!is.element(uniqueObsOutcomes, outcomes)]
m = matrix(0, length(cues), nrow(cuesOutcomes))
rownames(m) = cues
v = rep(0, length(cues))
names(v) = cues
for(i in 1:nrow(cuesOutcomes)) {
v[obsCues[[i]]]=1
m[,i] = v
v[obsCues[[i]]]=0
}
a = t(w) %*% m
if (unique) {
activationMatrix <- unique(t(a))
} else {
activationMatrix <- t(a)
}
if (length(newCues)>0)
warning(paste("There were ", length(newCues), " cues not present in 'weightMatrix'.",sep=""))
if (length(newOutcomes)>0)
{
warning(paste("There were ", length(newOutcomes), " outcomes not present in 'weightMatrix'.",sep=""))
}
result <- list(activationMatrix = activationMatrix, newCues = newCues, newOutcomes = newOutcomes)
return(result)
} |
em.fil.interaction <-
function(parameter, X, full.missing.data, observed.data,
full.data, k, family = family)
{
p1 <- ncol(X)
beta <- parameter[1:p1]
alpha <- parameter[(p1 + 1):length(parameter)]
linear.pred.y <- X %*% beta
linear.pred.r <- cbind(X, X[, k + 1] * full.missing.data[, 1],
full.missing.data[, 1]) %*% alpha
likelihood.y <- exp(full.missing.data[, 1]*linear.pred.y)/(1 + exp(linear.pred.y))
likelihood.r <- exp(full.missing.data[, (p1 + 1)]*linear.pred.r)/(1 + exp(linear.pred.r))
likelihood.0 <- exp(0 * linear.pred.y)/(1 + exp(linear.pred.y))
likelihood.1 <- exp(1 * linear.pred.y)/(1 + exp(linear.pred.y))
weight.missing <- (likelihood.y*likelihood.r)/(likelihood.0*likelihood.r + likelihood.1*likelihood.r)
weight.observed <- rep(1, nrow(observed.data))
weight <- c(weight.observed, weight.missing)
full.x1 <- full.data[, -c(1, p1 + 1)]
full.y <- full.data[, 1]
full.r <- full.data[, p1 + 1]
brglm.fit.y <- brglm::brglm(formula = full.y ~ full.x1,
family = family,
weights = weight)
temp.y <- full.y * full.x1[, k]
glm.fit.r <- brglm::brglm(formula = full.r ~ full.x1 + temp.y + full.y,
family = family)
alpha.hat <- stats::coef(glm.fit.r)
beta.hat.firth <- stats::coef(brglm.fit.y)
Fisher <- brglm.fit.y$FisherInfo
weights <- brglm.fit.y$weights
current.Q.firth <- brglm.fit.y$deviance/(-2) + glm.fit.r$deviance/(-2)
parameter.hat.firth <- c(beta.hat.firth, alpha.hat)
Fisher.alpha <- glm.fit.r$FisherInfo
result <- list(Q.firth = current.Q.firth, parameter.firth = parameter.hat.firth,
Fisher.firth = Fisher, weights = weights,
Fisher.firth.alpha = Fisher.alpha)
return(result)
} |
.year <- 1947:1962
longley <- data.frame(
GNP.deflator = c(83, 88.5, 88.2, 89.5, 96.2, 98.1, 99, 100, 101.2, 104.6,
108.4, 110.8, 112.6, 114.2, 115.7, 116.9),
GNP = c(234.289, 259.426, 258.054, 284.599, 328.975, 346.999,
365.385, 363.112, 397.469, 419.18, 442.769,
444.546, 482.704, 502.601, 518.173, 554.894),
Unemployed = c(235.6, 232.5, 368.2, 335.1, 209.9, 193.2, 187, 357.8,
290.4, 282.2, 293.6, 468.1, 381.3, 393.1, 480.6, 400.7),
Armed.Forces = c(159, 145.6, 161.6, 165, 309.9, 359.4, 354.7, 335,
304.8, 285.7, 279.8, 263.7, 255.2, 251.4, 257.2, 282.7),
Population = c(107.608, 108.632, 109.773, 110.929, 112.075, 113.27,
115.094, 116.219, 117.388, 118.734, 120.445,
121.95, 123.366, 125.368, 127.852, 130.081),
Year = .year,
Employed = c(60.323, 61.122, 60.171, 61.187, 63.221, 63.639, 64.989, 63.761,
66.019, 67.857, 68.169, 66.513, 68.655, 69.564, 69.331, 70.551),
row.names = .year)
rm(.year) |
test_that("download_checkpoint works", {
new_cpdir <- download_BERT_checkpoint(
model = "bert_base_uncased",
dir = checkpoint_main_dir
)
expect_identical(new_cpdir, cpdir)
testthat::expect_true(
file.exists(file.path(cpdir, "vocab.txt"))
)
testthat::expect_true(
file.exists(file.path(cpdir, "bert_config.json"))
)
testthat::expect_true(
file.exists(file.path(cpdir, "bert_model.ckpt.index"))
)
testthat::expect_true(
file.exists(file.path(cpdir, "bert_model.ckpt.meta"))
)
testthat::expect_true(
file.exists(file.path(cpdir, "bert_model.ckpt.data-00000-of-00001"))
)
})
test_that("dir chooser works.", {
expect_identical(
.choose_BERT_dir("fake"), "fake"
)
temp_dir <- tempdir()
testing_dir <- paste0(temp_dir, "/testing")
old_dir <- set_BERT_dir(testing_dir)
expect_identical(
normalizePath(getOption("BERT.dir"), mustWork = FALSE),
normalizePath(testing_dir, mustWork = FALSE)
)
expect_identical(
.choose_BERT_dir(NULL),
normalizePath(testing_dir, mustWork = FALSE)
)
options(BERT.dir = NULL)
default_dir <- rappdirs::user_cache_dir("RBERT")
expect_identical(
.choose_BERT_dir(NULL),
default_dir
)
options(BERT.dir = old_dir$BERT.dir)
unlink(normalizePath(testing_dir), recursive = TRUE)
})
test_that("Can download a cp by url.", {
target_dir <- file.path(
checkpoint_main_dir, "uncased_L-12_H-768_A-12"
)
dir.create(target_dir)
file.copy(
cpdir,
target_dir,
recursive = TRUE
)
google_base_url <- "https://storage.googleapis.com/bert_models/"
bert_base_uncased_url <- paste0(
google_base_url,
"2018_10_18/uncased_L-12_H-768_A-12.zip"
)
expect_warning(
expect_identical(
download_BERT_checkpoint(
url = bert_base_uncased_url
),
normalizePath(target_dir)
),
NA
)
unlink(target_dir, recursive = TRUE)
scibert_url <- paste0(
"https://s3-us-west-2.amazonaws.com/ai2-s2-research/scibert/",
"tensorflow_models/scibert_scivocab_uncased.tar.gz"
)
expect_warning(
scibert_path <- download_BERT_checkpoint(
url = scibert_url, dir = checkpoint_main_dir
),
NA
)
unlink(scibert_path, recursive = TRUE)
})
test_that(".has_checkpoint works as expected.", {
expect_error(
expect_true(.has_checkpoint(model = "bert_base_uncased")),
NA
)
}) |
nose.rr <-
function(nos,cc)
{
tcol=ncol(nos)
trow=nrow(nos)
nature=matrix(0,trow,1,byrow=FALSE)
e=cc
f=1/e
for(m in 1:trow)
{
a=nos[m,1]
b=nos[m,2]
c=nos[m,3]
d=nos[m,4]
if(a>=0 && b>=0 && c>=0 && d>=0 && e>=0)
{
if(a>0 && b>0 && c>0 && d>0)
{nature[m]='atleast one of the four arguments must be zero'}
n=a+b
p=c+d
if(a==0 && b>0 && c>0 && d>0)
{
if(d>(b+c))
{cl1= (c * n) / (d - c - b)
clr1=round(cl1,3)
if(e>clr1)
{nature[m]='SEVERE SPARSE'}
else
{nature[m]='MILD SPARSE'}
}
else
{nature[m]='MILD SPARSE'}
}
if(c==0 && a>0 && b>0 && d>0)
{
if(b<=(d+a))
{nature[m]='MILD SPARSE'}
else
{cl2 = (a * p) / (b - a - d)
clr2=round(cl2,3)
if(e>clr2)
{nature[m]='SEVERE SPARSE'}
else
{nature[m]='MILD SPARSE'}
}
}
if(b==0 && a>0 && c>0 && d>0)
{nature[m]='MILD SPARSE'}
if(d==0 && a>0 && b>0 && c>0)
{nature[m]='MILD SPARSE'}
if(a==0 && b==0 && c>0 && d>0)
{nature[m]='MILD SPARSE'}
if(a==0 && c==0 && b>0 && d>0)
{nature[m]='MILD SPARSE'}
if(a==0 && d==0 && b>0 && c>0)
{nature[m]='MILD SPARSE'}
if(b==0 && c==0 && a>0 && d>0)
{nature[m]='MILD SPARSE'}
if(b==0 && d==0 && a>0 && c>0)
{
if(a==c)
{nature[m]='MILD SPARSE'}
else
{nature[m]='SEVERE SPARSE'}
}
if(c==0 && d==0 && a>0 && b>0)
{nature[m]='MILD SPARSE'}
if(a==0 && b==0 && c==0 && d>0)
{nature[m]='MILD SPARSE'}
if(a==0 && b==0 && d==0 && c>0)
{nature[m]='MILD SPARSE'}
if(a==0 && c==0 && d==0 && b>0)
{nature[m]='MILD SPARSE'}
if(b==0 && c==0 && d==0 && a>0)
{nature[m]='MILD SPARSE'}
if(a==0 &&b==0 && c==0 && d==0 )
{nature[m]='MILD SPARSE'}
}
else
{
nature[m]='arguments must be non negative numbers'
}
}
nosrr=cbind(nos,nature)
nosrr
} |
test_that("error when wrong template", {
a <- data.frame(letters[1:3], 1:3)
expect_error(pie_bake_pro(a, template = "abbassomilan"), "exist")
expect_error(pie_bake_pro(a, template = "basic3"), "pie_bake")
})
test_that("data_check is properly linked", {
a <- data.frame(1:3, letters[1:3])
expect_error(pie_bake_pro(a, template = "eye1"), "second variable")
expect_error(pie_bake_pro(a, template = "eye2"), "second variable")
})
test_that("output has 'list' type", {
a <- data.frame(letters[1:3], 1:3)
expect_type(pie_bake_pro(a, template = "dart1"), "list")
expect_type(pie_bake_pro(a, template = "dart3", title = "tt"), "list")
})
test_that("output is a 'ggplot' object", {
a <- data.frame(letters[1:3], 1:3)
expect_match(class(pie_bake_pro(a, template = "eaten3")), "gg")
expect_match(class(pie_bake_pro(a, template = "eaten1", title = "gg")), "gg")
expect_match(class(pie_bake_pro(a, template = "cirbar1", title = "prova")), "gg")
expect_match(class(pie_bake_pro(a, template = "cirbar2")), "gg")
expect_match(class(pie_bake_pro(a, template = "cirbar3", title = "ciao")), "gg")
expect_match(class(pie_bake_pro(a, template = "cirbar4", title = "nop")), "gg")
expect_match(class(pie_bake_pro(a, template = "cirbar5")), "gg")
})
test_that("output is NULL when the template is a spider chart", {
a <- data.frame(letters[1:3], 1:3)
expect_match(class(pie_bake_pro(a, template = "spider1")), "NULL")
expect_match(class(pie_bake_pro(a, template = "spider2")), "NULL")
expect_match(class(pie_bake_pro(a, template = "spider3")), "NULL")
expect_match(class(pie_bake_pro(a, template = "spider4")), "NULL")
expect_match(class(pie_bake_pro(a, template = "spider5")), "NULL")
})
test_that("title specification works", {
a <- data.frame(letters[1:3], 1:3)
out1 <- pie_bake_pro(a, template = "watermelon1")
out2 <- pie_bake_pro(a, template = "watermelon3", title = "ciaociao")
expect_match(out1$labels$title, "")
expect_match(out2$labels$title, "ciaociao")
})
test_that("percentages are properly computed", {
a <- data.frame(letters[1:3], 1:3)
b <- data.frame(letters[1:5], sample(1:100,5))
out1 <- pie_bake_pro(a, template = "watermelon4")
out2 <- pie_bake_pro(b, template = "eye1", title = "ciaociao")
expect_equal(sum(out1$data[,2]), 100, tolerance = 3)
expect_equal(sum(out2$data[,2]), 100, tolerance = 3)
})
test_that("also tibbles can be baked", {
a <- data.frame(letters[1:3], 1:3)
b <- tibble::tibble(letters[1:5], 1:5)
c <- tibble::tibble(letters[1:5], c(4.3, 2.2, 1, 2, 3.0))
expect_match(class(pie_bake_pro(tibble::as_tibble(a), template = "dart2")), "gg")
expect_match(class(pie_bake_pro(b, template = "dart4")), "gg")
expect_match(class(pie_bake_pro(c, template = "dart5")), "gg")
}) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.