code
stringlengths 1
13.8M
|
---|
tar_rep_map_raw <- function(
name,
command,
targets,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue")
) {
targets::tar_warn_deprecate(
"tar_rep_map() in tarchetypes is deprecated ",
"(version 0.4.0, 2021-12-06). Please use tar_rep2() instead."
)
do.call(tar_rep2_raw, rlang::call_args(match.call()))
} |
JDSI<-function (X,Y,ts=6,type=1)
{
X=matrix(X,ncol=1)
Y=matrix(Y,ncol=1)
if ((length(X)/12 != round(length(X)/12)))
{
return("ERROR: The input data should be the vector of the monthly data for a few years")
}
AX=ACCU(X,ts)
AY=ACCU(Y,ts)
JDSI_A=matrix(NA,nrow=length(X)/12,ncol=12,byrow=T)
JDSI_K=matrix(NA,nrow=length(X)/12,ncol=12,byrow=T)
for (k in 1:12)
{
mdx=AX[,k]
mdy=AY[,k]
if (k<ts)
{
xd=mdx[2:length(mdx)]
yd=mdy[2:length(mdy)]
p=BiEmp(xd,yd)
u=copula::pobs(cbind(xd,yd))
p1=p
p2=copula::Kn(p,u)*length(xd)/(length(xd)+1)
JDSI_A[2:length(mdx),k]=stats::qnorm(p1)
JDSI_K[2:length(mdx),k]=stats::qnorm(p2)
}
else
{
xd=mdx
yd=mdy
p=BiEmp(xd,yd)
u=copula::pobs(cbind(xd,yd))
p1=p
p2=copula::Kn(p,u)*length(xd)/(length(xd)+1)
JDSI_A[,k]=stats::qnorm(p1)
JDSI_K[,k]=stats::qnorm(p2)
}
}
if (type==1)
{result<-list(JDSI=JDSI_A) }
else if (type==2)
{
{result<-list(JDSI=JDSI_K) }
}
else
{
stop("Only the type =1 and 2 are included. Others will be included in the future ")
}
return(result)
} |
getHyperPars = function(learner, for.fun = c("train", "predict", "both")) {
assertSubset(for.fun, choices = c("train", "predict", "both"))
UseMethod("getHyperPars")
}
getHyperPars.Learner = function(learner, for.fun = c("train", "predict", "both")) {
assertClass(learner, classes = "Learner")
pars = learner$par.set$pars
pv = learner$par.vals
ns = Filter(function(x) pars[[x]]$when %in% for.fun, names(pv))
pv[ns]
}
getHyperParsString = function(learner, show.missing.values = TRUE) {
if ("fw.base.methods" %in% names(learner$par.set$pars)) {
learner$par.set$pars$fw.base.methods = NULL
learner$par.set$pars$fw.method = NULL
learner$par.vals$fw.method = NULL
learner$par.vals$fw.base.methods = NULL
}
if ("fw.base.methods" %in% names(learner$next.learner$par.set$pars)) {
learner$next.learner$par.set$pars$fw.base.methods = NULL
learner$next.learner$par.set$pars$fw.method = NULL
learner$next.learner$par.vals$fw.method = NULL
learner$next.learner$par.vals$fw.base.methods = NULL
}
hps = getHyperPars(learner)
ns = names(hps)
pars = getParamSet(learner)$pars[ns]
s = mapply(paramValueToString, pars, hps, MoreArgs = list(show.missing.values = show.missing.values))
stri_paste(ns, s, sep = "=", collapse = ",")
} |
rlevel=function(fit,var,oldrf,newrf,cl=NA){
if(is.null(fit$call)){
type=as.character(fit$glmnet.fit$call)
}else{
type=as.character(fit$call)
}
w=paste(var,newrf,sep="")
if(type[1]=="glm"|type[1]=="lm"){
cv=vcov(fit)
fit_sum=summary(fit)
c=fit_sum$coefficients
c=as.data.frame(c)
for(i in 1:length(oldrf)){
x=c[substr(rownames(c),1,nchar(var[i]))==var[i],]
y=c[substr(rownames(c),1,nchar(var[i]))!=var[i],]
if(nrow(x)==1){
y[1,1]=y[1,1]+x[1,1]
x[1,1]=-x[1,1]
x[1,3]=-x[1,3]
rownames(x)=paste(var[i],oldrf[i],sep="")
}else{
n=which(substr(rownames(x),nchar(var[i])+1,nchar(rownames(x)))==newrf[i])
rownames(x)[n]=paste(var[i],oldrf[i],sep="")
y[1,1]=y[1,1]+x[n,1]
x[n,1]=-x[n,1]
x[n,3]=-x[n,3]
for(j in 1:nrow(x)){
if(j==n){
x[j,1]=x[j,1]
}else{
x[j,1]=x[j,1]+x[n,1]
x[j,2]=sqrt((x[j,2])^2+(x[n,2])^2-2*cv[which(rownames(cv)==rownames(x[j,])),which(colnames(cv)==paste(var[i],newrf[i],sep=""))])
x[j,3]=x[j,1]/x[j,2]
if(type[1]=="glm"){
x[j,4]=2*pnorm(-abs(x[j,3]))
}else{
x[j,4]=2*pt(abs(x[j,3]),fit$df.residual,lower.tail = FALSE)
}
}
}
}
if(i==1){
e=which(colnames(cv)==paste(var[i],newrf[i],sep=""))
vr=cv[1,1]+cv[which(rownames(cv)==paste(var[i],newrf[i],sep="")),which(colnames(cv)==paste(var[i],newrf[i],sep=""))]+
2*cv[which(rownames(cv)==w[i]),1]
}else{
vr=vr+cv[which(rownames(cv)==paste(var[i],newrf[i],sep="")),which(colnames(cv)==paste(var[i],newrf[i],sep=""))]+
2*sum(cv[which(rownames(cv)==w[i]),c(1,e)])
e=c(e,which(colnames(cv)==paste(var[i],newrf[i],sep="")))
}
c=rbind(y,x)
}
c[1,2]=sqrt(vr)
c[1,3]=c[1,1]/c[1,2]
if(type[1]=="glm"){
c[1,4]=2*pnorm(-abs(c[1,3]))
}else{
c[1,4]=2*pt(abs(c[1,3]),fit$df.residual,lower.tail = FALSE)
}
return(c)
}
if(type[1]=="glmnet"){
if(is.na(cl)){
cl=1
}
if(is.null(fit$call)){
c=coef(fit$glmnet.fit)[,cl]
}else{
c=coef(fit)[,cl]
}
c=as.data.frame(c)
c$p=1
for(i in 1:length(oldrf)){
x=c[substr(rownames(c),1,nchar(var[i]))==var[i],]
y=c[substr(rownames(c),1,nchar(var[i]))!=var[i],]
if(nrow(x)==1){
y[1,1]=y[1,1]+x[1,1]
x[1,1]=-x[1,1]
rownames(x)=paste(var[i],oldrf[i],sep="")
}else{
n=which(substr(rownames(x),nchar(var[i])+1,nchar(rownames(x)))==newrf[i])
rownames(x)[n]=paste(var[i],oldrf[i],sep="")
y[1,1]=y[1,1]+x[n,1]
x[n,1]=-x[n,1]
for(j in 1:nrow(x)){
if(j==n){
x[j,1]=x[j,1]
}else{
x[j,1]=x[j,1]+x[n,1]
}
}
}
c=rbind(y,x)
}
name=rownames(c)
c=c[,1]
names(c)=name
return(c)
}
} |
library(scoper)
library(dplyr)
results <- identicalClones(ExampleDb, method="nt")
results_db <- as.data.frame(results)
glimpse(results_db)
plot(results, binwidth=0.02)
glimpse(summary(results))
results <- hierarchicalClones(ExampleDb, threshold=0.15)
results_db <- as.data.frame(results)
glimpse(results_db)
plot(results, binwidth=0.02)
glimpse(summary(results))
results <- spectralClones(ExampleDb, method="novj")
plot(results, binwidth=0.02)
results <- spectralClones(ExampleDb, method="novj",
threshold=0.15)
plot(results, binwidth=0.02)
results <- spectralClones(ExampleDb, method="vj",
threshold=0.15,
germline="germline_alignment_d_mask")
results_db <- as.data.frame(results)
glimpse(results_db)
plot(results, binwidth=0.02)
glimpse(summary(results)) |
setAs("denseMatrix", "symmetricMatrix",
function(from)
.Call(dense_to_symmetric, from, "U", TRUE))
setAs("matrix", "symmetricMatrix",
function(from) .Call(dense_to_symmetric, from, "U", TRUE))
setMethod("forceSymmetric", signature(x = "matrix", uplo="ANY"),
function(x, uplo)
.Call(dense_to_symmetric, x,
if(missing(uplo)) "U" else uplo, FALSE))
symCls <- names(getClass("symmetricMatrix")@subclasses)
for(cls in symCls) {
setMethod("forceSymmetric", signature(x = cls, uplo="missing"),
function(x, uplo) x)
setMethod("forceSymmetric", signature(x = cls, uplo="character"),
function(x, uplo) {
if(uplo == x@uplo)
x
else
t(x)
})
}
setMethod("forceSymmetric", signature(x = "denseMatrix", uplo="character"),
function(x, uplo) .Call(dense_to_symmetric, x, uplo, FALSE))
setMethod("forceSymmetric", signature(x = "denseMatrix", uplo="missing"),
function(x, uplo) {
uplo <- if(is(x, "triangularMatrix")) x@uplo else "U"
.Call(dense_to_symmetric, x, uplo, FALSE)
})
setMethod("forceSymmetric", signature(x="sparseMatrix"),
function(x, uplo) {
x <- as(x, "CsparseMatrix")
callGeneric()
})
forceCspSymmetric <- function(x, uplo, isTri = is(x, "triangularMatrix"), symDimnames = NA)
{
if(isTri && x@diag == "U")
x <- .Call(Csparse_diagU2N, x)
if(missing(uplo))
uplo <- if(isTri) x@uplo else "U"
.Call(Csparse_general_to_symmetric, x, uplo, symDimnames)
}
.gC2sym <- function(x, uplo, symDimnames = NA)
.Call(Csparse_general_to_symmetric, x, uplo, symDimnames)
setMethod("forceSymmetric", signature(x="CsparseMatrix"),
function(x, uplo) forceCspSymmetric(x, uplo))
setMethod("symmpart", signature(x = "symmetricMatrix"), function(x) x)
setMethod("skewpart", signature(x = "symmetricMatrix"), function(x) .setZero(x))
if(FALSE)
symmetricDimnames <- function(x) {
r <- x@Dimnames
if(is.null(r[[1L]]) && !is.null(r[[2L]]))
r[[1L]] <- r[[2L]]
else if(is.null(r[[2L]]) && !is.null(r[[1L]]))
r[[2L]] <- r[[1L]]
r
}
symmetricDimnames <- function(x) .Call(R_symmetric_Dimnames, x)
setMethod("dimnames", signature(x = "symmetricMatrix"), symmetricDimnames)
packM <- function(x, Mtype, kind, unpack=FALSE) {
cd <- getClassDef(cx <- class(x))
if(extends(cd, "sparseMatrix"))
stop(sprintf("(un)packing only applies to dense matrices, class(x)='%s'",
cx))
if(!missing(kind) && kind == "symmetric") {
as(x, if(unpack) {
if(extends(cd, "dppMatrix")) "dpoMatrix"
else paste0(.M.kindC(cd), "syMatrix")
} else {
if(extends(cd, "dpoMatrix")) "dppMatrix"
else paste0(.M.kindC(cd), "spMatrix")
})
} else as(x, paste0(.M.kindC(cd), Mtype))
}
setMethod("unpack", "symmetricMatrix",
function(x, ...) packM(x, kind="symmetric", unpack=TRUE))
setMethod("pack", "symmetricMatrix", function(x, ...) packM(x, kind="symmetric"))
setMethod("unpack", "triangularMatrix",
function(x, ...) packM(x, "trMatrix", unpack=TRUE))
setMethod("pack", "triangularMatrix", function(x, ...) packM(x, "tpMatrix"))
pckErr <- function(x, ...)
stop(sprintf("(un)packing only applies to dense matrices, class(x)='%s'",
class(x)))
setMethod("unpack", "sparseMatrix", pckErr)
setMethod("pack", "sparseMatrix", pckErr)
rm(pckErr)
setMethod("pack", signature(x = "matrix"),
function(x, symmetric=NA, upperTri = NA, ...) {
if(is.na(symmetric))
symmetric <- isSymmetric.matrix(x)
if(symmetric) {
pack(.Call(dense_to_symmetric, x, "U", TRUE), ...)
} else {
if(isTr <- isTriMat(x, upper=upperTri)) {
uplo <- attr(isTr, "kind")
pack(new(paste0(.M.kind(x),"tpMatrix"),
x = x[indTri(nrow(x), upper=(uplo == "U"), diag=TRUE)],
Dim = dim(x), Dimnames = .M.DN(x), uplo = uplo), ...)
} else
stop("'x' is not symmetric nor triangular")
}
})
setMethod("unpack", "dspMatrix",
function(x, ...) dsp2dsy(x), valueClass = "dsyMatrix")
setMethod("unpack", "dtpMatrix",
function(x, ...) dtp2dtr(x), valueClass = "dtrMatrix")
if(FALSE)
local({
allCl <- getClasses("package:Matrix")
clss <- allCl[sapply(allCl, extends, class2 = "Matrix")]
virt <- sapply(clss, isVirtualClass)
for(cl in clss[!virt]) {
cld <- getClassDef(cl)
if(extends(cld, "symmetricMatrix"))
cat("\tsymmetric:\t", cl,"\n")
else if(extends(cld, "triangularMatrix"))
cat("\ttriangular:\t", cl,"\n")
else if(extends(cld, "diagonalMatrix"))
cat("\tdiagonal:\t", cl,"\n")
else {
cat("do ",cl,"\n")
}
}
}) |
bind.mcmc <- function(mcmc.list1,mcmc.list2,start,n.new.iter){
nchains <- length(mcmc.list1)
samples <- list()
for (i in 1:nchains){
d <- rbind(mcmc.list1[[i]],mcmc.list2[[i]])
samples[[i]] <- mcmc(data=d,start=start,end=(end(mcmc.list1[[i]])+n.new.iter),thin=thin(mcmc.list1[i]))
}
return(as.mcmc.list(samples))
} |
if(interactive()){
library(shiny)
library(shinymaterial)
ui <- material_page(
title = "Basic Page",
primary_theme_color = "blue",
secondary_theme_color = "green",
tags$h1("Page Content"),
material_file_input(input_id = "example_file_input", label = "ok")
)
server <- function(input, output, session) {
observeEvent(input$example_file_input, {
inFile <- input$example_file_input
if (is.null(inFile)) {
return(NULL)
}
x <- read.csv(inFile$datapath)
message(head(x))
})
}
shinyApp(ui = ui, server = server)
} |
count_multigrams <- function(ns, ds = rep(0, length(ns)), seq, u, pos = FALSE, scale = FALSE, threshold = 0) {
if(length(ns) != length(ds))
stop("'ns' vector must have equal length to 'ds' list.")
n_loops <- length(ns)
do.call(cbind, lapply(1L:n_loops, function(current_loop) {
count_ngrams(seq, ns[current_loop], u, ds[[current_loop]],
pos, scale, threshold)
}))
} |
verificaTipoColuna <- function(coluna){
if(typeof(coluna) == "character")
{
return ("as.character()");
}
return ("as.numeric()");
} |
estimate.autocorr.m <- function(dat, ac.cutoff = 0.95){
autocorr.m <- data.frame(autocorr.time = rep(NA, length(unique(dat$chain))), row.names = unique(dat$chain))
for(i in 1:nrow(autocorr.m)){
thischain <- rownames(autocorr.m)[i]
thisdata <- dat[dat$chain == thischain,]
this.ac.result <- optim(par = c(1, 1),
function(data, par){sum((par[1] * (1 - exp(-(data$sampling.interval/par[2]))) - data$topo.distance)^2)},
data = thisdata)
if(any(thisdata$topo.distance/this.ac.result$par[1] > ac.cutoff)){
autocorr.m[i,1] <- thisdata$sampling.interval[min(which(thisdata$topo.distance/this.ac.result$par[1] > ac.cutoff))]
} else {
autocorr.m[i,1] <- -1
}
}
autocorr.m$chains = rownames(autocorr.m)
rownames(autocorr.m) = NULL
return(autocorr.m)
} |
plot.cardiMetacdw <- function(x, y, type = "lattice", scale = TRUE, col.poly = "black", ...) {
if (is.null(y)) stop("original data must be provided as second argument")
tt <- x
dat <- y
if (type == "lattice") {
if (length(tt$weibullfits[[1]]$p) == 4) {
fweibull <- fweibull4
} else {
fweibull <- fweibull6
}
xyplot(y ~ x|as.factor(sample), data=dat, ...,
panel=function(x, y, subscripts, groups, ...) {
i <- panel.number()
mres <- tt$weibullfits[[i]]
smdx <- tt$metares[i, c("tBegin", "tMid", "tEnd")]
smdy <- fweibull(smdx, mres$p)
panel.xyplot(x, y)
xx <- seq(min(x), max(x), length=100)
yy <- fweibull(xx, mres$p)
panel.lines(xx, mres$ymax * yy, col="darkgreen", lwd=2)
panel.points(smdx, smdy * mres$ymax, col="tomato", pch=16)
}
)
} else {
if (type == "polygon") {
par(las=1, font=2, font.lab=2, font.axis=2, mai=c(1.5,1,1,0.5))
erg <- tt$metares
count <- nrow(erg)
if (!(length(col.poly) %in% c(1, count))) stop("length of col.poly does not match number of samples")
polygoncols <- if(length(col.poly == 1)){rep(col.poly, count)} else {col.poly}
yrange <- 1:count
xrange <- floor(seq(min(dat$x), max(dat$x), length=12))
ymax <- max(erg$yMid)
ys <- if(scale == TRUE){erg$yMid / ymax} else {rep(1,count)}
plot(c(min(xrange),max(xrange)), c(min(yrange), max(yrange) + 1),
type="n", yaxt="n", ylab="", xlab="Julian Day of Year", ...)
axis(2, at=yrange, labels=levels(erg$sample))
abline(h=yrange, lty=3, col=grey(0.7))
abline(v=xrange, lty=3, col=gray(0.7))
for (i in 1:count) {
x <- c(erg$tBegin[i], erg$tMid[i], erg$tEnd[i])
y <- c(i, i + ys[i], i)
polygon(x, y, border = NA, col = polygoncols[i])
}
} else {stop("plot type unknown")}
}
} |
JDEoptim <-
function(lower, upper, fn, constr = NULL, meq = 0, eps = 1e-5,
NP = 10*d, Fl = 0.1, Fu = 1,
tau_F = 0.1, tau_CR = 0.1, tau_pF = 0.1,
jitter_factor = 0.001,
tol = 1e-15, maxiter = 200*d, fnscale = 1,
compare_to = c("median", "max"),
add_to_init_pop = NULL,
trace = FALSE, triter = 1,
details = FALSE, ...)
{
handle.bounds <- function(x, u) {
bad <- x > upper
x[bad] <- 0.5*(upper[bad] + u[bad])
bad <- x < lower
x[bad] <- 0.5*(lower[bad] + u[bad])
x
}
performReproduction <- function() {
ignore <- runif(d) > CRtrial
if (all(ignore))
ignore[sample(d, 1)] <- FALSE
trial <- if (runif(1) <= pFtrial)
X.base + Ftrial*(X.r1 - X.r2)
else X.base + 0.5*(Ftrial + 1)*(X.r1 + X.r2 - 2*X.base)
trial[ignore] <- X.i[ignore]
trial
}
which.best <-
if (!is.null(constr))
function(x) {
ind <- TAVpop <= mu
if (all(ind))
which.min(x)
else if (any(ind))
which(ind)[which.min(x[ind])]
else which.min(TAVpop)
}
else which.min
compare_to <- match.arg(compare_to)
d <- length(lower)
if (length(upper) != d)
stop("'lower' must have same length as 'upper'")
stopifnot(is.numeric(lower), is.numeric(upper),
is.finite(lower), is.finite(upper), lower <= upper,
length(fnscale) == 1, is.finite(fnscale), fnscale > 0,
is.function(fn))
if (!is.null(constr)) {
stopifnot(is.function(constr))
stopifnot(length(meq) == 1, meq == as.integer(meq), meq >= 0,
is.numeric(eps), is.finite(eps), eps > 0)
if (length(eps) == 1)
eps <- rep.int(eps, meq)
else if (length(eps) != meq)
stop("eps must be either of length meq, or length 1")
}
stopifnot(length(NP) == 1, NP == as.integer(NP),
length(Fl) == 1, is.numeric(Fl),
length(Fu) == 1, is.numeric(Fu), Fl <= Fu)
stopifnot(length(tau_F) == 1, is.numeric(tau_F), 0 <= tau_F, tau_F <= 1,
length(tau_CR) == 1, is.numeric(tau_CR), 0 <= tau_CR, tau_CR <= 1,
length(tau_pF) == 1, is.numeric(tau_pF), 0 <= tau_pF, tau_pF <= 1)
if (!is.null(jitter_factor))
stopifnot(length(jitter_factor) == 1, is.numeric(jitter_factor))
stopifnot(length(tol) == 1, is.numeric(tol),
length(maxiter) == 1, maxiter == as.integer(maxiter),
length(triter) == 1, triter == as.integer(triter))
if (!is.null(add_to_init_pop))
stopifnot(NROW(add_to_init_pop) == d,
is.numeric(add_to_init_pop),
add_to_init_pop >= lower,
add_to_init_pop <= upper)
child <- if (is.null(constr)) {
expression({
ftrial <- fn1(trial)
if (ftrial <= fpop[i]) {
pop[, i] <- trial
fpop[i] <- ftrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
}
})
} else if (meq > 0) {
expression({
htrial <- constr1(trial)
TAVtrial <- sum( pmax(htrial, 0) )
if (TAVtrial > mu) {
if (TAVtrial <= TAVpop[i]) {
pop[, i] <- trial
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
}
} else if (TAVpop[i] > mu) {
pop[, i] <- trial
fpop[i] <- fn1(trial)
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
} else {
ftrial <- fn1(trial)
if (ftrial <= fpop[i]) {
pop[, i] <- trial
fpop[i] <- ftrial
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
FF <- sum(TAVpop <= mu)/NP
mu <- mu*(1 - FF/NP)
}
}
})
} else {
expression({
htrial <- constr1(trial)
TAVtrial <- sum( pmax(htrial, 0) )
if (TAVtrial > mu) {
if (TAVtrial <= TAVpop[i]) {
pop[, i] <- trial
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
}
} else if (TAVpop[i] > mu) {
pop[, i] <- trial
fpop[i] <- fn1(trial)
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
FF <- sum(TAVpop <= mu)/NP
mu <- mu*(1 - FF/NP)
} else {
ftrial <- fn1(trial)
if (ftrial <= fpop[i]) {
pop[, i] <- trial
fpop[i] <- ftrial
hpop[, i] <- htrial
F[, i] <- Ftrial
CR[i] <- CRtrial
pF[i] <- pFtrial
TAVpop[i] <- TAVtrial
FF <- sum(TAVpop <= mu)/NP
mu <- mu*(1 - FF/NP)
}
}
})
}
fn1 <- function(par) fn(par, ...)
if (!is.null(constr))
constr1 <-
if (meq > 0) {
eqI <- 1:meq
function(par) {
h <- constr(par, ...)
h[eqI] <- abs(h[eqI]) - eps
h
}
} else function(par) constr(par, ...)
use.jitter <- !is.null(jitter_factor)
conv <- expression(
( do.call(compare_to, list(fpop)) - fpop[x.best.ind] )/fnscale
)
pop <- matrix(runif(NP*d, lower, upper), nrow = d)
if (!is.null(add_to_init_pop)) {
pop <- unname(cbind(pop, add_to_init_pop))
NP <- ncol(pop)
}
stopifnot(NP >= 4)
F <- if (use.jitter)
(1 + jitter_factor*runif(d, -0.5, 0.5)) %o% runif(NP, Fl, Fu)
else matrix(runif(NP, Fl, Fu), nrow = 1)
CR <- runif(NP)
pF <- runif(NP)
fpop <- apply(pop, 2, fn1)
if (!is.null(constr)) {
hpop <- apply(pop, 2, constr1)
if ( any(is.na(hpop)) )
stop("value of meq is invalid")
if (is.vector(hpop)) dim(hpop) <- c(1, length(hpop))
TAVpop <- apply( hpop, 2, function(x) sum(pmax(x, 0)) )
mu <- median(TAVpop)
}
popIndex <- 1:NP
x.best.ind <- which.best(fpop)
converge <- eval(conv)
rule <- if (!is.null(constr))
expression(converge >= tol || any(hpop[, x.best.ind] > 0))
else expression(converge >= tol)
convergence <- 0
iteration <- 0
while (eval(rule)) {
if (iteration >= maxiter) {
warning("maximum number of iterations reached without convergence")
convergence <- 1
break
}
iteration <- iteration + 1
for (i in popIndex) {
i <- ((iteration + i) %% NP) + 1
Ftrial <- if (runif(1) <= tau_F) {
if (use.jitter)
runif(1, Fl, Fu) * (1 + jitter_factor*runif(d, -0.5, 0.5))
else runif(1, Fl, Fu)
} else F[, i]
CRtrial <- if (runif(1) <= tau_CR) runif(1) else CR[i]
pFtrial <- if (runif(1) <= tau_pF) runif(1) else pF[i]
X.i <- pop[, i]
r <- sample(popIndex[-i], 3)
X.base <- pop[, r[1L]]
X.r1 <- pop[, r[2L]]
X.r2 <- pop[, r[3L]]
trial <- handle.bounds(performReproduction(), X.base)
eval(child)
x.best.ind <- which.best(fpop)
}
converge <- eval(conv)
if (trace && (iteration %% triter == 0))
cat(iteration, ":", "<", converge, ">", "(", fpop[x.best.ind], ")",
pop[, x.best.ind],
if (!is.null(constr))
paste("{", which(hpop[, x.best.ind] > 0), "}"),
fill = TRUE)
}
res <- list(par = pop[, x.best.ind],
value = fpop[x.best.ind],
iter = iteration,
convergence = convergence)
if (details) {
res$poppar <- pop
res$popcost <- fpop
}
res
}
doExtras <- function() {
interactive() || nzchar(Sys.getenv("R_DEoptimR_check_extra")) ||
identical("true", unname(Sys.getenv("R_PKG_CHECKING_doExtras")))
} |
expected <- eval(parse(text="c(\"Subject\", \"predict.fixed\", \"predict.Subject\")"));
test(id=0, code={
argv <- eval(parse(text="list(c(\"Subject\", \"predict.fixed\", \"predict.Subject\"), TRUE)"));
.Internal(make.names(argv[[1]], argv[[2]]));
}, o=expected); |
library("RUnit")
library(mcr)
options(warn=1)
testSuite <- defineTestSuite(name="MCReg",
dirs=".",
testFileRegexp="runit.*\\.R$",
rngKind="default",
rngNormalKind="default")
testData <- runTestSuite(testSuite, verbose=0L)
printTextProtocol(testData, showDetails=FALSE)
printHTMLProtocol(testData,file="testProtocol.html") |
knitr::opts_chunk$set(echo = TRUE)
opt <- options()
options(continue=" ", width=70, prompt=" ")
on.exit(options(opt))
library(DOVE, quietly=TRUE)
data(doveData)
head(doveData)
summary(doveData)
result1 <- readRDS(file = "doveResult.rds")
result1$covariates
head(result1$vaccine$efficacy)
tail(result1$vaccine$efficacy)
result1$vaccine$period_efficacy
knitr::include_graphics(
path=c("dove1a.pdf","dove1b.pdf"),
auto_pdf = getOption("knitr.graphics.auto_pdf", FALSE),
dpi = NULL,
error = getOption("knitr.graphics.error", TRUE)
)
result2 <- dove2(formula = Surv(event.time, event.status) ~ priority + sex +
vaccine(entry.time, vaccine.status, vaccine.time),
data = doveData,
changePts = 4*7,
timePts = c(4, 16, 28, 40)*7)
result2$call
result2$changePts
result2$covariates
head(result2$vaccine$VE_a)
tail(result2$vaccine$VE_a)
head(result2$vaccine$VE_h)
tail(result2$vaccine$VE_h)
result2$vaccine$VE_period
knitr::include_graphics(
path=c("dove2a.pdf","dove2b.pdf"),
auto_pdf = getOption("knitr.graphics.auto_pdf", FALSE),
dpi = NULL,
error = getOption("knitr.graphics.error", TRUE)
)
result3 <- dove2(formula = Surv(event.time, event.status) ~ priority + sex +
vaccine(entry.time, vaccine.status, vaccine.time),
data = doveData,
constantVE = TRUE)
result3$changePts
result3$covariates
result3$vaccine$VE
plot(x = result3) |
test <- data.frame(
time = strptime("2016-03-12 16:32:56", format = "%Y-%m-%d %X") + 60 * 1:100,
x = cos(1:100)
)
p <- ggplot(test, aes(time, x)) + geom_point()
test_that("datetimes are displayed in tooltip properly", {
l <- expect_doppelganger_built(p, "tooltip-datetime")
txt <- strsplit(l$data[[1]]$text, br())
expect_identical(
paste0("time: ", test$time), sapply(txt, "[[", 1)
)
})
test <- data.frame(
time = strptime("2016-03-12", format = "%Y-%m-%d") + 1:100,
x = sin(1:100)
)
p <- ggplot(test, aes(time, x)) + geom_point()
test_that("dates are displayed in tooltip properly", {
l <- expect_doppelganger_built(p, "tooltip-date")
txt <- strsplit(l$data[[1]]$text, br())
expect_identical(
paste0("time: ", test$time), sapply(txt, "[[", 1)
)
})
test_that("tooltip argument respects ordering", {
p <- ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) + geom_density()
p <- ggplotly(p, tooltip = c("density", "x"))
info <- plotly_build(p)$x
txt <- strsplit(info$data[[1]]$text, br())
expect_true(all(grepl("^density", sapply(txt, "[[", 1))))
expect_true(all(grepl("^mpg", sapply(txt, "[[", 2))))
})
test_that("can hide x values in tooltip", {
gg2 <- ggplot(mtcars, aes(factor(cyl), mpg, fill = factor(cyl))) + geom_violin()
p <- ggplotly(gg2, tooltip = "y")
l <- plotly_build(p)$x
expect_equivalent(sum(grepl("cyl", l$data[[1]]$text)), 0)
})
cars <- ggplot(mtcars, aes(mpg, factor(cyl)))
p <- cars + stat_bin2d(aes(fill = ..density..), binwidth = c(3,1))
test_that("geom_tile() displays correct info in tooltip with discrete y", {
L <- expect_doppelganger_built(p, "heatmap-discrete-tooltip")
expect_equivalent(length(L$data), 2)
expect_equivalent(L$data[[1]]$type, "heatmap")
txt <- c(L$data[[1]]$text)
txt <- txt[!is.na(txt)]
expect_true(all(grepl("factor\\(cyl\\): [4,6,8]", txt)))
})
p <- ggplot(txhousing, aes(x = date, y = median, group = city)) +
geom_line(alpha = 0.3)
test_that("group domain is included in hovertext", {
L <- expect_doppelganger_built(p, "group-lines-hovertext")
expect_equivalent(length(L$data), 1)
txt <- L$data[[1]]$text
txt <- txt[!is.na(txt)]
pattern <- paste(unique(txhousing$city), collapse = "|")
expect_true(all(grepl(pattern, txt)))
})
test_that("tooltip elements are not crossed", {
mydata <- data.frame(id = paste0("Sample", rep(1:2, times = 4)),
x = rep(1:4, each = 2),
y = rep(c(1, 10), times = 4),
stringsAsFactors = FALSE)
gplt <- ggplot(mydata) + geom_line(aes(x=x, y = y, group = id))
pltly <- plotly::ggplotly(gplt)
y_equal_ten <- grepl("y: 10", pltly$x$data[[1]]$text)
sample_2 <- grepl("id: Sample2", pltly$x$data[[1]]$text)
expect_equivalent(y_equal_ten, sample_2)
})
labelDF <- data.frame(
label = paste0(("label"), c(1:10)),
x = runif(10, 1, 10),
y = runif(10, 1, 10)
)
edgeDF <- data.frame(
x = runif(10, 1, 10),
y = runif(10, 1, 10),
xend = runif(10, 1, 10),
yend = runif(10, 1, 10)
)
myPlot <- ggplot(data = labelDF, aes(x = x, y = y)) +
geom_segment(data = edgeDF, aes(x = x, y = y, xend = xend, yend = yend),
colour = "pink") +
geom_text(data = labelDF, aes(x = x, y = y, label = label), size = 10)
test_that("Hoverinfo is only displayed if no tooltip variables are present", {
L <- expect_doppelganger_built(p, "hovertext-display")
L <- plotly_build(ggplotly(myPlot, tooltip = "label"))[["x"]]
expect_equivalent(length(L$data), 2)
expect_equivalent(sum(nchar(L$data[[1]]$text)), 0)
expect_true(all(grepl("^label", L$data[[2]]$text)))
}) |
lsmi_cv <- function(net, n.seeds, n.wave, seeds = NULL,
B = 100, prob = 0.95, cl = 1,
param = c("mu"),
method = c("percentile", "basic"),
proxyRep = 19, proxySize = 30)
{
method <- match.arg(method)
param <- match.arg(param)
param <- ifelse(param == "mu", 2, 1)
clStop <- FALSE
if (!is.list(cl)) {
if (is.null(cl)) {
cores <- parallel::detectCores()
} else {
cores <- cl
}
if (cores > 1) {
cl <- parallel::makeCluster(cores)
clStop <- TRUE
}
}
patch <- lsmi_union(net, n.seeds, n.wave, seeds)
subpatch <- subsubpatch <- patch$lsmi_big
ss <- patch$sequence_seeds
ns <- length(ss)
if (proxySize < 0.7*length(ss[[1]])) {
proxyReplace <- FALSE
used <- ss[[1]]
} else {
proxyReplace <- TRUE
used <- unique(na.omit(unlist(patch$lsmi_big)))
}
used <- net$degree[used]
CIs <- estimate <- as.list(rep(NA, ns * n.wave))
counter <- 1
for (i in 1:ns) {
if (i > 1) {
subpatch <- subsubpatch <- subpatch[is.element(ss[[i - 1]], ss[[i]])]
}
for (j in 1:(n.wave)) {
if (j > 1) {
subsubpatch <- lapply(subsubpatch, function(x) x[1:(n.wave - j + 1)])
}
dd <- lsmi_dd(subsubpatch, net)
bdd <- boot_dd(dd, B, cl = cl)
CIs[[counter]] <- boot_ci(bdd, prob, method)[[param]]
estimate[[counter]] <- dd[[param]]
counter <- counter + 1
}
}
if (param == 2) {
proxies <- sapply(1:proxyRep, function(x) mean(sample(used, proxySize, replace = proxyReplace)) )
}
proxiCoverage <- sapply(CIs, function(x) mean(x[1] <= proxies & proxies <= x[2]))
SWcombinations <- cbind(rep(1:ns, each = n.wave), rep(n.wave:1, ns))
best_comb_index <- which.min(abs(proxiCoverage - prob))[1]
SeedWave <- SWcombinations[best_comb_index,]
seeds <- ss[[SeedWave[1]]]
best_combination <- SeedWave
best_combination[1] <- length(seeds)
names(best_combination) <- c("n.seed", "n.wave")
if(clStop) { parallel::stopCluster(cl) }
list(bci = CIs[[best_comb_index]],
estimate = estimate[[best_comb_index]],
best_combination = best_combination,
seeds = seeds)
} |
library(knitr)
opts_chunk$set(cache = FALSE, tidy = FALSE, fig.align = "center")
library(biogas)
options(width=75)
library(biogas)
data("vol")
dim(vol)
head(vol)
summary(vol)
data("comp")
dim(comp)
head(comp)
summary(comp)
data("setup")
setup
args(cumBg)
cum.prod <- cumBg(vol, comp = comp, time.name = "days", temp = 35, pres = 1,
extrap = TRUE)
head(cum.prod)
dim(cum.prod)
library(ggplot2)
qplot(x = days, y = cvCH4, data = cum.prod, xlab = "Time (d)",
ylab = "Cumulative methane production (mL)", color = id,
geom = "line")
data("s3voll")
data("s3compl")
data("s3volw")
data("s3compw")
data("s3lcombo")
s3voll
s3compl
s3volw
s3compw
s3lcombo
cpl <- cumBg(s3lcombo, comp = s3compl, temp = 25, pres = 1,
id.name = 'id', time.name = 'time.d',
dat.name = 'vol.ml', comp.name = 'xCH4',
extrap = TRUE)
cpw <- cumBg(s3volw, comp = s3compw, temp = 25, pres = 1,
time.name = 'time.d',
data.struct = 'wide',
dat.name = 'D', comp.name = 'D',
extrap = TRUE)
cpc <- cumBg(s3lcombo, temp = 25, pres = 1,
id.name = 'id', time.name = 'time.d',
data.struct = 'longcombo',
dat.name = 'vol.ml', comp.name = 'xCH4',
extrap = TRUE)
head(cpl)
head(cpw)
head(cpc)
args(summBg)
summBg(cum.prod, setup = setup, time.name = "days", descrip.name = "descrip",
when = 30)
BMP <- summBg(cum.prod, setup = setup, time.name = "days", inoc.name = "inoc",
inoc.m.name = "minoc", norm.name = "mvs.sub", when = "1p3d")
BMP
predBg("C6H10O5")
BMP
predBg("C6H10O5", fs = 0.1)
predBg(COD = c(A = 1.439, B = 1.561, cellu = 1.184))
BMP$mean/predBg(COD = c(A = 1.439, B = 1.561, cellu = 1.184)) |
test_that("'nest_join_zoomed_dm()'-method for `zoomed_dm` works", {
skip("FIXME")
skip_if_remote_src()
expect_equivalent_tbl(
zoomed_dm_2() %>%
nest_join_zoomed_dm() %>%
pull_tbl(),
tf_3() %>%
nest_join(tf_2(), name = "tf_2", by = c("f" = "e", "f1" = "e1")) %>%
mutate(tf_2 = as_list_of(tf_2)) %>%
nest_join(tf_4(), name = "tf_4", by = c("f" = "j")) %>%
mutate(tf_4 = as_list_of(tf_4))
)
expect_equivalent_tbl(
zoomed_dm_2() %>%
nest_join_zoomed_dm(tf_4, tf_2) %>%
pull_tbl(),
tf_3() %>%
nest_join(tf_4(), name = "tf_4", by = c("f" = "j")) %>%
mutate(tf_4 = as_list_of(tf_4)) %>%
nest_join(tf_2(), name = "tf_2", by = c("f" = "e", "f1" = "e1")) %>%
mutate(tf_2 = as_list_of(tf_2))
)
expect_message(
expect_equivalent_dm(
dm_rm_pk(dm_for_filter(), tf_3, TRUE) %>% dm_zoom_to(tf_3) %>% nest_join_zoomed_dm(),
dm_rm_pk(dm_for_filter(), tf_3, TRUE) %>% dm_zoom_to(tf_3)
),
"didn't have a primary key"
)
expect_dm_error(
zoomed_dm_2() %>% select(g) %>% nest_join_zoomed_dm(),
"pk_not_tracked"
)
})
test_that("'nest_join_zoomed_dm()' fails for DB-'dm'", {
expect_dm_error(
dm_zoom_to(dm_for_filter_sqlite(), tf_3) %>% nest_join_zoomed_dm(),
"only_for_local_src"
)
}) |
TOTVar <- function(data, starttime.vec, endtime.vec, divBy = NA, tot.var) {
for (i in seq(length(starttime.vec))) {
if (is.na(divBy)) {
data$TOT <- data[[endtime.vec[i]]] - data[[starttime.vec[i]]]
} else{
data$TOT <- (data[[endtime.vec[i]]] - data[[starttime.vec[i]]]) / divBy
}
names(data)[length(data)] <- tot.var
}
return(data)
} |
NULL
swf <- function(config = list()) {
svc <- .swf$operations
svc <- set_config(svc, config)
return(svc)
}
.swf <- list()
.swf$operations <- list()
.swf$metadata <- list(
service_name = "swf",
endpoints = list("*" = list(endpoint = "swf.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "swf.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "swf.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "swf.{region}.sc2s.sgov.gov", global = FALSE)),
service_id = "SWF",
api_version = "2012-01-25",
signing_name = "swf",
json_version = "1.0",
target_prefix = "SimpleWorkflowService"
)
.swf$service <- function(config = list()) {
handlers <- new_handlers("jsonrpc", "v4")
new_service(.swf$metadata, handlers, config)
} |
auc_roc <- function(preds, actuals, returnDT=FALSE){
Pred <- NULL
Actual <- NULL
CumulativeFPR <- NULL
CountFalse <- NULL
CumulativeTPR <- NULL
CountTrue <- NULL
AdditionalArea <- NULL
CumulativeArea <- NULL
if(length(unique(preds)) == 1L) return(0.5)
if(is(actuals, "factor")){
if(is.ordered(actuals) & length(levels(actuals)) == 2) actuals <- as.numeric(actuals) - 1 else stop("actuals is type factor, but is unordered. Make it an ordered factor.")
}
dt <- data.table(Pred=preds, Actual=actuals*1L)
setorder(dt, -Pred)
dt <- dt[ , {
CountTrue = sum(Actual)
list(CountFalse=.N - CountTrue, CountTrue=CountTrue)
}, by=Pred]
dt[, CumulativeFPR := cumsum(CountFalse)/sum(CountFalse)]
dt[, CumulativeTPR := cumsum(CountTrue)/sum(CountTrue)]
dt[, AdditionalArea := c(head(CumulativeFPR, 1) * head(CumulativeTPR, 1)/2,
(tail(CumulativeFPR, -1) - head(CumulativeFPR, -1)) * (head(CumulativeTPR, -1) + (tail(CumulativeTPR, -1) - head(CumulativeTPR, -1))/2))]
dt[, CumulativeArea := cumsum(AdditionalArea)]
if(returnDT) return(dt[]) else return(tail(dt$CumulativeArea, 1))
} |
pValueFun <-
function(ndx, coeffMissingAllowed = 0.75) {
notMissing <- apply(!is.na(geData[, ndx]), 1, sum)
notMissing <- notMissing > floor((length(ndx)-1)^coeffMissingAllowed)
aClassify <- classify(geData[notMissing, ndx])$clusters
ans <- 1
if(min(table(aClassify)) > floor(0.1 * nrow(geData)))
ans <- 1 - pchisq(survdiff(stData[notMissing] ~ aClassify)$chisq, df = 1)
return(ans)
} |
nstr <- function(string, times) {
if(!is.atomic(string))
stop("argument string must be an atomic vector")
if(!is.numeric(times))
stop("len must be a numeric vector")
if(length(string) == 0)
return(NULL)
if(length(times) == 0)
return(character(0))
return(.Call("do_nstr", as.character(string), as.integer(times)))
} |
library("matrixStats")
source("utils/validateIndicesFramework.R")
x <- runif(6, min = -6, max = 6)
for (l in 1:2) {
for (d in 1:2) {
for (idxs in index_cases) {
validateIndicesTestVector(x, idxs,
ftest = diff2, fsure = base::diff,
lag = l, differences = d)
}
}
} |
NULL
realized_count <- function(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
allow_short = TRUE,
realized_only = FALSE
) {
qty_diff <- portfolio_quantity + transaction_quantity
prz_diff <- transaction_price - portfolio_price
if (realized_only) {
if (allow_short) {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
} else if (prz_diff < 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
} else {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 0)
} else {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 0)
}
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "S") {
if (prz_diff > 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
} else if (prz_diff < 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "B") {
if (prz_diff > 0) {
if (qty_diff < 0) {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 0)
} else {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff < 0) {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
} else {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
} else if (prz_diff < 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
} else {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 0)
} else {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 0)
}
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
}
} else {
if (allow_short) {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 1, "PL_count" = 0)
} else if (prz_diff < 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 1)
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 1, "PL_count" = 0)
} else {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 1)
} else {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 0)
}
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "S") {
if (prz_diff > 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 1)
} else if (prz_diff < 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 1, "PL_count" = 0)
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "B") {
if (prz_diff > 0) {
if (qty_diff < 0) {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 1)
} else {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff < 0) {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 1, "PL_count" = 0)
} else {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 1, "PL_count" = 0)
} else if (prz_diff < 0) {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 1)
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 1, "PL_count" = 0)
} else {
res <- c("RG_count" = 1, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 1)
} else {
res <- c("RG_count" = 0, "RL_count" = 1, "PG_count" = 0, "PL_count" = 0)
}
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
} else {
res <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
}
}
}
return(res)
}
realized_total <- function(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
allow_short = TRUE,
realized_only = FALSE
) {
qty_diff <- portfolio_quantity + transaction_quantity
prz_diff <- transaction_price - portfolio_price
if (realized_only) {
if (allow_short) {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
} else if (prz_diff < 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_total" = abs(transaction_quantity), "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
} else {
res <- c("RG_total" = abs(transaction_quantity) + qty_diff, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_total" = 0, "RL_total" = abs(transaction_quantity), "PG_total" = 0, "PL_total" = 0)
} else {
res <- c("RG_total" = 0, "RL_total" = abs(transaction_quantity) + qty_diff, "PG_total" = 0, "PL_total" = 0)
}
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "S") {
if (prz_diff > 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
} else if (prz_diff < 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "B") {
if (prz_diff > 0) {
if (qty_diff < 0) {
res <- c("RG_total" = 0, "RL_total" = transaction_quantity, "PG_total" = 0, "PL_total" = 0)
} else {
res <- c("RG_total" = 0, "RL_total" = transaction_quantity - qty_diff, "PG_total" = 0, "PL_total" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff < 0) {
res <- c("RG_total" = transaction_quantity, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
} else {
res <- c("RG_total" = transaction_quantity - qty_diff, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
} else if (prz_diff < 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_total" = abs(transaction_quantity), "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
} else {
res <- c("RG_total" = abs(transaction_quantity) + qty_diff, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_total" = 0, "RL_total" = abs(transaction_quantity), "PG_total" = 0, "PL_total" = 0)
} else {
res <- c("RG_total" = 0, "RL_total" = abs(transaction_quantity) + qty_diff, "PG_total" = 0, "PL_total" = 0)
}
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
}
} else {
if (allow_short) {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = portfolio_quantity, "PL_total" = 0)
} else if (prz_diff < 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = portfolio_quantity)
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_total" = abs(transaction_quantity), "RL_total" = 0, "PG_total" = qty_diff, "PL_total" = 0)
} else {
res <- c("RG_total" = abs(transaction_quantity) + qty_diff, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_total" = 0, "RL_total" = abs(transaction_quantity), "PG_total" = 0, "PL_total" = qty_diff)
} else {
res <- c("RG_total" = 0, "RL_total" = abs(transaction_quantity) + qty_diff, "PG_total" = 0, "PL_total" = 0)
}
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "S") {
if (prz_diff > 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = abs(portfolio_quantity))
} else if (prz_diff < 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = abs(portfolio_quantity), "PL_total" = 0)
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "B") {
if (prz_diff > 0) {
if (qty_diff < 0) {
res <- c("RG_total" = 0, "RL_total" = transaction_quantity, "PG_total" = 0, "PL_total" = abs(qty_diff))
} else {
res <- c("RG_total" = 0, "RL_total" = transaction_quantity - qty_diff, "PG_total" = 0, "PL_total" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff < 0) {
res <- c("RG_total" = transaction_quantity, "RL_total" = 0, "PG_total" = abs(qty_diff), "PL_total" = 0)
} else {
res <- c("RG_total" = transaction_quantity - qty_diff, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = portfolio_quantity, "PL_total" = 0)
} else if (prz_diff < 0) {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = portfolio_quantity)
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_total" = abs(transaction_quantity), "RL_total" = 0, "PG_total" = qty_diff, "PL_total" = 0)
} else {
res <- c("RG_total" = abs(transaction_quantity) + qty_diff, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_total" = 0, "RL_total" = abs(transaction_quantity), "PG_total" = 0, "PL_total" = qty_diff)
} else {
res <- c("RG_total" = 0, "RL_total" = abs(transaction_quantity) + qty_diff, "PG_total" = 0, "PL_total" = 0)
}
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
} else {
res <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
}
}
}
return(res)
}
realized_value <- function(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
allow_short = TRUE,
realized_only = FALSE
) {
qty_diff <- portfolio_quantity + transaction_quantity
prz_diff <- transaction_price - portfolio_price
Er <- prz_diff / portfolio_price
if (realized_only) {
if (allow_short) {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
} else if (prz_diff < 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_value" = Er, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
} else {
res <- c("RG_value" = Er, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_value" = 0, "RL_value" = Er, "PG_value" = 0, "PL_value" = 0)
} else {
res <- c("RG_value" = 0, "RL_value" = Er, "PG_value" = 0, "PL_value" = 0)
}
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "S") {
if (prz_diff > 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
} else if (prz_diff < 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "B") {
if (prz_diff > 0) {
if (qty_diff < 0) {
res <- c("RG_value" = 0, "RL_value" = -Er, "PG_value" = 0, "PL_value" = 0)
} else {
res <- c("RG_value" = 0, "RL_value" = -Er, "PG_value" = 0, "PL_value" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff < 0) {
res <- c("RG_value" = -Er, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
} else {
res <- c("RG_value" = -Er, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
} else if (prz_diff < 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_value" = Er, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
} else {
res <- c("RG_value" = Er, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_value" = 0, "RL_value" = Er, "PG_value" = 0, "PL_value" = 0)
} else {
res <- c("RG_value" = 0, "RL_value" = Er, "PG_value" = 0, "PL_value" = 0)
}
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
}
} else {
if (allow_short) {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = Er, "PL_value" = 0)
} else if (prz_diff < 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = Er)
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_value" = Er, "RL_value" = 0, "PG_value" = Er, "PL_value" = 0)
} else {
res <- c("RG_value" = Er, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_value" = 0, "RL_value" = Er, "PG_value" = 0, "PL_value" = Er)
} else {
res <- c("RG_value" = 0, "RL_value" = Er, "PG_value" = 0, "PL_value" = 0)
}
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "S") {
if (prz_diff > 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = -Er)
} else if (prz_diff < 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = -Er, "PL_value" = 0)
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "B") {
if (prz_diff > 0) {
if (qty_diff < 0) {
res <- c("RG_value" = 0, "RL_value" = -Er, "PG_value" = 0, "PL_value" = -Er)
} else {
res <- c("RG_value" = 0, "RL_value" = -Er, "PG_value" = 0, "PL_value" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff < 0) {
res <- c("RG_value" = -Er, "RL_value" = 0, "PG_value" = -Er, "PL_value" = 0)
} else {
res <- c("RG_value" = -Er, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = Er, "PL_value" = 0)
} else if (prz_diff < 0) {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = Er)
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_value" = Er, "RL_value" = 0, "PG_value" = Er, "PL_value" = 0)
} else {
res <- c("RG_value" = Er, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_value" = 0, "RL_value" = Er, "PG_value" = 0, "PL_value" = Er)
} else {
res <- c("RG_value" = 0, "RL_value" = Er, "PG_value" = 0, "PL_value" = 0)
}
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
} else {
res <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
}
}
}
return(res)
}
realized_duration <- function(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
previous_transaction_datetime,
previous_datetime,
transaction_datetime,
allow_short = TRUE,
realized_only = FALSE
) {
qty_diff <- portfolio_quantity + transaction_quantity
prz_diff <- transaction_price - portfolio_price
dtt_diff <- difftime_financial(previous_datetime, transaction_datetime)
dtt_diff0 <- difftime_financial(previous_transaction_datetime, transaction_datetime)
if (realized_only) {
if (allow_short) {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
} else if (prz_diff < 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
} else {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = 0)
} else {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "S") {
if (prz_diff > 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
} else if (prz_diff < 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "B") {
if (prz_diff > 0) {
if (qty_diff < 0) {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = 0)
} else {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff < 0) {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
} else {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
} else if (prz_diff < 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
} else {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = 0)
} else {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
}
} else {
if (allow_short) {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = dtt_diff, "PL_duration" = 0)
} else if (prz_diff < 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = dtt_diff)
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = dtt_diff, "PL_duration" = 0)
} else {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = dtt_diff)
} else {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "S") {
if (prz_diff > 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = dtt_diff)
} else if (prz_diff < 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = dtt_diff, "PL_duration" = 0)
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (portfolio_quantity < 0 && transaction_type == "B") {
if (prz_diff > 0) {
if (qty_diff < 0) {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = dtt_diff)
} else {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff < 0) {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = dtt_diff, "PL_duration" = 0)
} else {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
if (portfolio_quantity > 0 && transaction_type == "B") {
if (prz_diff > 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = dtt_diff, "PL_duration" = 0)
} else if (prz_diff < 0) {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = dtt_diff)
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (portfolio_quantity > 0 && transaction_type == "S") {
if (prz_diff > 0) {
if (qty_diff > 0) {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = dtt_diff, "PL_duration" = 0)
} else {
res <- c("RG_duration" = dtt_diff0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else if (prz_diff < 0) {
if (qty_diff > 0) {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = dtt_diff)
} else {
res <- c("RG_duration" = 0, "RL_duration" = dtt_diff0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
} else {
res <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
}
}
}
return(res)
}
realized_compute <- function(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
previous_transaction_datetime,
previous_datetime,
transaction_datetime,
transaction_asset,
allow_short = TRUE,
realized_only = FALSE,
method = "all"
) {
if (method == "count") {
rgl_count <- realized_count(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
allow_short,
realized_only
)
res_df <- as.data.frame(c("asset" = transaction_asset, as.list(rgl_count)))
} else if (method == "total") {
rgl_total <- realized_total(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
allow_short,
realized_only
)
res_df <- as.data.frame(c("asset" = transaction_asset, as.list(rgl_total)))
} else if (method == "value") {
rgl_value <- realized_value(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
allow_short,
realized_only
)
res_df <- as.data.frame(c("asset" = transaction_asset, as.list(rgl_value)))
} else if (method == "duration") {
rgl_duration <- realized_duration(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
previous_transaction_datetime,
previous_datetime,
transaction_datetime,
allow_short,
realized_only
)
res_df <- as.data.frame(c("asset" = transaction_asset, as.list(rgl_duration)))
} else {
rgl_count <- realized_count(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
allow_short,
realized_only
)
rgl_total <- realized_total(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
allow_short,
realized_only
)
rgl_value <- realized_value(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
allow_short,
realized_only
)
rgl_duration <- realized_duration(
portfolio_quantity,
portfolio_price,
transaction_quantity,
transaction_price,
transaction_type,
previous_transaction_datetime,
previous_datetime,
transaction_datetime,
allow_short,
realized_only
)
res_df <- as.data.frame(
c("asset" = transaction_asset,
as.list(rgl_count),
as.list(rgl_total),
as.list(rgl_value),
as.list(rgl_duration)
)
)
}
return(res_df)
}
realized_empty <- function(transaction_asset, method = "all") {
if (method == "count") {
rgl_count <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
res_df <- as.data.frame(c("asset" = transaction_asset, as.list(rgl_count)))
} else if (method == "total") {
rgl_total <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
res_df <- as.data.frame(c("asset" = transaction_asset, as.list(rgl_total)))
} else if (method == "value") {
rgl_value <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
res_df <- as.data.frame(c("asset" = transaction_asset, as.list(rgl_value)))
} else if (method == "duration") {
rgl_duration <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
res_df <- as.data.frame(c("asset" = transaction_asset, as.list(rgl_duration)))
} else {
rgl_count <- c("RG_count" = 0, "RL_count" = 0, "PG_count" = 0, "PL_count" = 0)
rgl_total <- c("RG_total" = 0, "RL_total" = 0, "PG_total" = 0, "PL_total" = 0)
rgl_value <- c("RG_value" = 0, "RL_value" = 0, "PG_value" = 0, "PL_value" = 0)
rgl_duration <- c("RG_duration" = 0, "RL_duration" = 0, "PG_duration" = 0, "PL_duration" = 0)
res_df <- as.data.frame(
c("asset" = transaction_asset,
as.list(rgl_count),
as.list(rgl_total),
as.list(rgl_value),
as.list(rgl_duration)
)
)
}
return(res_df)
} |
MCp.RInSp = function(dataset, pop.diet = "sum", replicates = 999){
if (!inherits(dataset, "RInSp")) stop("The input must be an object of class RInSp")
if (dataset$data.type %in% c("integer", "double") == FALSE) stop("Input data type must be 'integer' or 'double'.")
if (pop.diet %in% c("sum", "average") == FALSE) stop("Wrong population diet option.")
replicates <- as.integer(replicates)
if (replicates <=0) stop("Wrong value for replicates.")
if (dataset$data.type == "integer") type.mc = 1 else type.mc= 2
if (pop.diet == "sum") {
diet <- apply(dataset$resources, 2, sum) / sum(dataset$resources)} else {
diet <- apply(dataset$proportion, 2, mean)}
ris <- .Call("MCprocedure", dataset$resources, as.vector(type.mc), as.vector(diet), as.vector(replicates), PACKAGE="RInSp")
ris <- array(c(as.vector(dataset$resources), as.vector(ris)), c(dataset$num.individuals, dataset$num.prey, (replicates +1)))
return(ris)} |
context("Building a knn model")
expect_error(knn_model(ts(1:5), lags = 0:3, k = 5))
expect_error(knn_model(ts(1:5), lags = 3:5, k = 1))
expect_error(knn_model(ts(1:5), lags = 2:4, k = 2)) |
multi_dsciat <- function(sciat1, sciat2,
graph = c("density", "violin", "point"),
x_values = TRUE,
gcolors = c("dark", "greens", "blues", "pinks"),
label_sc1 = "SC-IAT1",
label_sc2 = "SC-IAT2",
label_y = "SC-IAT scores",
dens_mean = TRUE){
graph <- match.arg(graph)
gcolors <- match.arg(gcolors)
if(is.na(class(sciat1)[2]) | is.na(class(sciat2)[2])) {
stop("Objects must be of class dsciat")
}
if (class(sciat1)[2] != "dsciat" | class(sciat2)[2] != "dsciat") {
stop("Objects must be of class dsciat")
}
d_small1 <- sciat1[ , c("participant", "d_sciat")]
d_small1$sciat <- label_sc1
d_small2 <- sciat2[ , c("participant", "d_sciat")]
d_small2$sciat <- label_sc2
sciat_all <- rbind(d_small1, d_small2)
sc_mean <- aggregate(sciat_all$d_sciat,
by = list(sciat_all$sciat),
FUN = mean)
sc_mean <- aggregate(sciat_all$d_sciat,
by = list(sciat_all$sciat),
FUN = mean)
colnames(sc_mean) <- c("sciat", "msc")
sciat_all <- merge(sciat_all, sc_mean, by = "sciat")
data <- sciat_all
if (graph == "density") {
d_graph <- ggplot(data,
aes(x = .data$d_sciat,
color = .data$sciat)) +
geom_density(size = 1.1) +
theme_minimal() + theme(axis.title.y = element_blank()) +
xlab(label_y)
if (dens_mean == TRUE) {
d_graph <- d_graph + geom_vline(data=data,
aes(xintercept = .data$msc,
color = .data$sciat),
linetype = "dashed",
size = 0.9)
} else {
d_graph <- d_graph
}
} else if (graph == "violin") {
d_graph <- ggplot(data,
aes(y = .data$d_sciat,
x = .data$sciat,
color = .data$sciat)) +
geom_violin(trim = FALSE) +
stat_summary(fun.data = mean_sdl,
geom = "pointrange",
color = "black") +
theme_minimal() +
ylab(label_y)
} else if (graph == "point") {
d_graph <- ggplot(data,
aes(x = .data$participant,
y = .data$d_sciat,
group = .data$sciat)) +
geom_point(aes(shape = .data$sciat,
color = .data$sciat)) +
theme_minimal() + theme(axis.text.x = element_text(size = 5)) +
scale_shape_discrete(name = "SC-IAT type") + ylab(label_y) +
xlab("Participant")
if (x_values == TRUE){
d_graph <- d_graph
} else {
d_graph <- d_graph + theme(axis.text.x = element_blank())
}
}
if (gcolors == "greens"){
d_graph <- d_graph + scale_color_manual(values = c("palegreen",
"palegreen4"),
name = "SC-IAT type")
} else if (gcolors == "blues"){
d_graph <- d_graph + scale_color_manual(values = c("royalblue1",
"royalblue4"),
name = "SC-IAT type")
} else if (gcolors == "pinks") {
d_graph <- d_graph + scale_color_manual(values = c("rosybrown1",
"plum1"),
name = "SC-IAT type")
} else {
d_graph <- d_graph + scale_color_manual(values = c("gray74",
"gray8"),
name = "SC-IAT type")
}
return(d_graph)
} |
context("pxweb_data_comments")
test_that(desc="test data comment structure",{
skip_on_cran()
url <- "http://api.scb.se/OV0104/v1/doris/sv/ssd/BE/BE0101/BE0101A/BefolkningNy"
json_query <- file.path(system.file(package = "pxweb"), "extdata", "examples", "json_query_example.json")
expect_silent(px_data1 <- pxweb_get(url = url, query = json_query))
expect_silent(pxdcs <- pxweb_data_comments(x = px_data1))
expect_output(print(pxdcs), regexp = "pxweb_data_comments\\[\\[2\\]\\]")
expect_equal(length(pxdcs$pxweb_data_comments), 2)
expect_silent(pxdc_df <- as.data.frame(pxdcs, stringsAsFactors = TRUE))
expect_equal(dim(pxdc_df), c(2, 4))
expect_equal(unname(unlist(lapply(pxdc_df, class))), c("integer", "integer", "factor", "factor"))
expect_silent(pxdc_df <- as.data.frame(pxdcs, stringsAsFactors = FALSE))
expect_equal(dim(pxdc_df), c(2, 4))
expect_equal(unname(unlist(lapply(pxdc_df, class))), c("integer", "integer", "character", "character"))
url <- "http://api.scb.se/OV0104/v1/doris/sv/ssd/BE/BE0101/BE0101A/BefolkningNy"
json_query <- file.path(system.file(package = "pxweb"), "extdata", "examples", "json_query_variables_example.json")
expect_silent(px_data2 <- suppressWarnings(pxweb_get(url = url, query = json_query)))
expect_silent(pxdcs <- pxweb_data_comments(x = px_data2))
expect_output(print(pxdcs), regexp = "NO PXWEB DATA COMMENTS")
expect_equal(length(pxdcs$pxweb_data_comments), 0)
expect_silent(pxdc_df <- as.data.frame(pxdcs, stringsAsFactors = FALSE))
expect_equal(dim(pxdc_df), c(0, 4))
expect_equal(colnames(pxdc_df), colnames(as.data.frame(pxweb_data_comments(x = px_data1))))
expect_equal(unname(unlist(lapply(pxdc_df, class))), c("integer", "integer", "character", "character"))
}) |
library("graphsim")
library("igraph")
context("Make Distance Matrix")
test_that("Generate distance relation matrix from adjacency matrix", {
graph_test1_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test1 <- graph.edgelist(graph_test1_edges, directed = TRUE)
adjacency_matrix1 <- make_adjmatrix_graph(graph_test1)
distance_matrix1 <- make_distance_adjmat(adjacency_matrix1)
expect_equal(isSymmetric(distance_matrix1), TRUE)
expect_true(all(diag(distance_matrix1) == rep(1, nrow(adjacency_matrix1))))
expect_equal(nrow(distance_matrix1), length(V(graph_test1)))
expect_equal(ncol(distance_matrix1), length(V(graph_test1)))
expect_equal(sum(distance_matrix1), 8.5)
expect_true(all(adjacency_matrix1 == cbind(c(0, 1, 0, 0), c(1, 0, 1, 1), c(0, 1, 0, 0), c(0, 1, 0, 0))))
expect_true(all(distance_matrix1 == 1/cbind(c(1, 2, 4, 4), c(2, 1, 2, 2), c(4, 2, 1, 4), c(4, 2, 4, 1))))
expect_true(all(distance_matrix1 %in% c(0, 1/2^c(0:100))))
})
test_that("Generate distance relation matrix from commonlink matrix", {
graph_test1_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test1 <- graph.edgelist(graph_test1_edges, directed = TRUE)
adjacency_matrix1 <- make_adjmatrix_graph(graph_test1)
common_link_matrix1 <- make_commonlink_adjmat(adjacency_matrix1)
distance_matrix1 <- make_distance_adjmat(common_link_matrix1)
expect_equal(isSymmetric(distance_matrix1), TRUE)
expect_true(all(diag(distance_matrix1) == rep(1, nrow(adjacency_matrix1))))
expect_equal(nrow(distance_matrix1), length(V(graph_test1)))
expect_equal(ncol(distance_matrix1), length(V(graph_test1)))
expect_equal(sum(distance_matrix1), length(V(graph_test1)))
expect_true(all(adjacency_matrix1 == cbind(c(0, 1, 0, 0), c(1, 0, 1, 1), c(0, 1, 0, 0), c(0, 1, 0, 0))))
expect_true(all(common_link_matrix1 == cbind(c(1, 0, 1, 1), c(0, 3, 0, 0), c(1, 0, 1, 1), c(1, 0, 1, 1))))
expect_true(all(distance_matrix1 == diag(4)))
expect_true(all(distance_matrix1 %in% c(0, 1/2^c(0:100))))
})
test_that("Generate distance relation matrix matrix from graph structure", {
graph_test1_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test1 <- graph.edgelist(graph_test1_edges, directed = TRUE)
adjacency_matrix1 <- make_adjmatrix_graph(graph_test1)
common_link_matrix1 <- make_commonlink_graph(graph_test1)
distance_matrix1 <- make_distance_graph(graph_test1)
expect_equal(isSymmetric(distance_matrix1), TRUE)
expect_true(all(diag(distance_matrix1) == rep(1, nrow(adjacency_matrix1))))
expect_equal(nrow(distance_matrix1), length(V(graph_test1)))
expect_equal(ncol(distance_matrix1), length(V(graph_test1)))
expect_equal(sum(distance_matrix1), 8.5)
expect_true(all(adjacency_matrix1 == cbind(c(0, 1, 0, 0), c(1, 0, 1, 1), c(0, 1, 0, 0), c(0, 1, 0, 0))))
expect_true(all(distance_matrix1 == 1/cbind(c(1, 2, 4, 4), c(2, 1, 2, 2), c(4, 2, 1, 4), c(4, 2, 4, 1))))
expect_true(all(distance_matrix1 %in% c(0, 1/2^c(0:100))))
}) |
summary.likert.gap <- function(object, ...) {
return(list(
Satisfaction=summary.likert(object, ...),
Importance=summary.likert(object$importance, ...)
))
} |
setClass("QueryResults", slots = c(librdf_query_results = "_p_librdf_query_results"))
setMethod("initialize", signature = "QueryResults", definition = function(.Object, results) {
.Object@librdf_query_results <- results
return(.Object)
})
setGeneric("freeQueryResults", function(.Object) {
standardGeneric("freeQueryResults")
})
setMethod("freeQueryResults", signature("QueryResults"), function(.Object) {
if (!is.null(.Object@librdf_query_results) && librdf_query_results_finished(.Object@librdf_query_results) == 0) {
num_nodes <- librdf_query_results_get_bindings_count(.Object@librdf_query_results)
for (i in 1:num_nodes-1) {
binding_name <- librdf_query_results_get_binding_name(.Object@librdf_query_results, i)
val = librdf_query_results_get_binding_value(.Object@librdf_query_results, i)
if (!is.null.externalptr(val@ref)) {
librdf_free_node(val)
}
}
}
librdf_free_query_results(.Object@librdf_query_results)
}) |
NAME <- "ses"
source(file.path('_helper', 'init.R'))
all.equal(ses(letters[1:10], letters[1:10]), character())
all.equal(ses(letters[1:10], LETTERS[1:10]), "1,10c1,10")
all.equal(ses(letters[1:5], LETTERS[1:10]), "1,5c1,10")
all.equal(ses(letters[1:10], LETTERS[1:5]), "1,10c1,5")
all.equal(ses(letters[2:10], letters[1:7]), c("0a1", "7,9d7"))
all.equal(
ses(letters[c(1:5, 1:5, 1:5)], c("e", "d", "a", "b", "c")),
c("1,4d0", "6,8d1", "10d2", "14,15d5")
)
all.equal(
ses(c("e", "d", "a", "b", "c"), letters[c(1:5, 1:5, 1:5)]),
c("0a1,4", "1a6,8", "2a10", "5a14,15")
)
all.equal(ses("a", c("a", "b")), "1a2")
all.equal(ses(c("a", "b"), "a"), "2d1")
all.equal(ses("c", c("b", "c")), "0a1")
all.equal(ses(c("b", "c"), "c"), "1d0")
all.equal(ses("a", character()), "1d0")
all.equal(ses(character(), "a"), "0a1")
all.equal(ses(character(), character()), character())
set.seed(2)
w1 <- sample(
c(
"carrot", "cat", "cake", "eat", "rabbit", "holes", "the", "a", "pasta",
"boom", "noon", "sky", "hat", "blah", "paris", "dog", "snake"
), 25, replace=TRUE
)
w4 <- w3 <- w2 <- w1
w2[sample(seq_along(w1), 5)] <- LETTERS[1:5]
w3 <- w1[8:15]
w4 <- c(w1[1:5], toupper(w1[1:5]), w1[6:15], toupper(w1[1:5]))
all.equal(ses(w1, w4), c("5a6,10", "15,21d19", "23,25c21,25"))
string <- do.call(paste0, expand.grid(LETTERS, LETTERS, LETTERS))
all.equal(
ses(string, c("hello", string[-c(5, 500, 1000)], "goodbye")),
c("0a1", "5d5", "500d499", "1000d998", "17576a17575")
)
all.equal(
ses(c(string[200:500], "hello", string[-(1:400)][-c(5, 500, 1000)]), string),
c("0a1,199", "207,306d405", "800a900", "1299a1400")
)
ses(letters[1:10], LETTERS[1:10], max.diffs=5)
all.equal(
ses(letters[1:10], LETTERS[1:10], max.diffs=5, warn=FALSE),
"1,10c1,10"
)
all.equal(
ses(
letters[1:10],
c(letters[1], LETTERS[2:5], letters[6:10]), max.diffs=5, warn=FALSE
),
"2,5c2,5"
)
all.equal(
ses(
letters[1:10],
c(letters[1], LETTERS[2:5], letters[6:8], LETTERS[9], letters[10]),
max.diffs=5, warn=FALSE
),
c("2,5c2,5", "9c9")
)
all.equal(ses(letters[1:4], letters[1:3]), "4d3")
all.equal(ses(letters[1:3], letters[1:4]), "3a4")
ses(1, 2:9, max.diffs = 8)
a <- c(39.6, 40.1, 35, 42, 34.5, 41.4, 39, 40.6, 36.5, 37.6, 35.7,
41.3, 37.6, 41.1, 36.4, 41.6, 35.5, 41.1, 35.9, 41.8, 33.5, 39.7,
39.6, 45.8, 35.5, 42.8, 40.9, 37.2, 36.2, 42.1, 34.6, 42.9, 36.7,
35.1, 37.3, 41.3, 36.3, 36.9, 38.3, 38.9, 35.7, 41.1, 34, 39.6,
36.2, 40.8, 38.1, 40.3, 33.1, 43.2, 49.1, 48.4, 42.6, 44.4, 44,
48.7, 42.7, 49.6, 45.3, 49.6, 50.5, 43.6, 45.5, 50.5, 44.9, 45.2,
46.6, 48.5, 45.1, 50.1, 46.5, 45, 43.8, 45.5, 43.2, 50.4, 45.3,
46.2, 45.7, 54.3, 45.8, 49.8, 46.2, 49.5, 43.5, 50.7, 47.7, 46.4,
48.2, 46.5, 46.4, 48.6, 47.5, 51.1, 45.2, 45.2, 50.5, 49.5, 46.4,
52.8, 40.9, 54.2, 42.5, 51, 49.7, 47.5, 47.6, 52, 46.9, 53.5,
49, 46.2, 50.9, 45.5)
b <- c(39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, 42, 37.8,
37.8, 41.1, 38.6, 34.6, 36.6, 38.7, 42.5, 34.4, 46, 37.8, 37.7,
35.9, 38.2, 38.8, 35.3, 40.6, 40.5, 37.9, 40.5, 39.5, 37.2, 39.5,
40.9, 36.4, 39.2, 38.8, 42.2, 37.6, 39.8, 36.5, 40.8, 36, 44.1,
37, 39.6, 41.1, 37.5, 36, 42.3, 46.1, 50, 48.7, 50, 47.6, 46.5,
45.4, 46.7, 43.3, 46.8, 40.9, 49, 45.5, 48.4, 45.8, 49.3, 42,
49.2, 46.2, 48.7, 50.2, 45.1, 46.5, 46.3, 42.9, 46.1, 44.5, 47.8,
48.2, 50, 47.3, 42.8, 45.1, 59.6, 49.6, 50.5, 50.5, 50.1, 50.4,
46.2, 54.3, 49.8, 49.5, 50.7, 46.4, 48.2, 48.6, 45.2, 52.5, 50,
50.8, 52.1, 52.2, 49.5, 50.8, 46.9, 51.1, 55.9, 49.1, 49.8, 51.5,
55.1, 48.8, 50.4, 46.5, 50, 51.3, 45.4, 52.7, 45.2, 46.1, 51.3,
46, 51.3, 46.6, 51.7, 47, 52, 45.9, 50.5, 50.3, 58, 46.4, 49.2,
42.4, 48.5, 43.2, 50.6, 46.7, 52)
ses(a[-c(15:38, 50:90)], b[-c(40:85, 100:125)], max.diffs=80)
ses(a[-(18:38)], b[-(50:80)], max.diffs=115)
a <- c('a', 'b', 'c', 'A', 'X', 'Y', 'Z', 'W')
b <- c('X', 'C', 'A', 'U', 1, 2, 3)
ses(a, b, max.diffs=13)
ses(letters[1:2], LETTERS[1:2], max.diffs = 4)
ses(c("G", "C", "T", "C", "A", "C", "G", "C"), c("T", "G"), max.diffs=2)
ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=0)
ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=1)
ses(c('A','A','A','A','A'), c('B','A','B','A','B'), max.diffs=2)
ses_dat(
a=c("T", "A", "A", "C", "C", "A"),
b=c("A", "G", "A", "A"), max.diffs = 0
)
try(ses('a', 'b', max.diffs='hello'))
try(ses('a', 'b', warn='hello'))
a <- structure(1, class='diffobj_ogewlhgiadfl2')
try(ses(a, 1))
try(ses(1, a))
if(
R.Version()$major >= 3 && R.Version()$minor >= "3.1" ||
R.Version()$major >= 4) {
rdsf1 <- function(x)
readRDS(file.path("_helper", "objs", "diffStr", sprintf("%s.rds", x)))
all.equal(
as.character(
diffStr(mdl1, mdl2, extra=list(strict.width="wrap"), line.limit=30)
),
rdsf1(500)
)
}
A3 <- c("a b c", "d e f A B C D", "g h i", "f")
B3 <- c("a b c", "xd e f E Q L S", "g h i", "q")
diffChr(A3, B3, max.diffs=2)
a <- b <- do.call(paste0, expand.grid(LETTERS, LETTERS))
set.seed(2)
b <- b[-sample(length(b), 100)]
a <- a[-sample(length(b), 100)]
dat <- ses_dat(a, b)
all.equal(dat[['val']][dat[['op']] != 'Delete'], b)
all.equal(dat[['val']][dat[['op']] != 'Insert'], a)
all.equal(a[dat[['id.a']][!is.na(dat[['id.a']])]], a)
dat2 <- ses_dat(a, b, extra=FALSE)
all.equal(dat[1:2], dat2)
all.equal(length(dat2), 2L)
try(ses_dat(a, b, extra=NA))
x <- c("fa\xE7ile", "fa\ue7ile")
Encoding(x) <- c("latin1", "UTF-8")
y <- rev(x)
all.equal(diffobj::ses(x, y), character()) |
get_data <- function(path = NULL, query = NULL, token) {
if (grepl("management", paste(path, collapse = "/"))) {
limit <- 1000L
items <- "items"
} else {
limit <- 10000L
items <- "rows"
}
if (is.null(query$start.index))
query$start.index <- 1L
total <- ifelse(!is.null(query$max.results) && query$max.results > limit, query$max.results, NA)
if (is.null(query$max.results) || query$max.results > limit) {
query$max.results <- limit
pagination <- getOption("rga.pagination", TRUE)
} else
pagination <- FALSE
if (grepl("data/realtime", paste(path, collapse = "/")))
pagination <- FALSE
res <- api_request(get_url(path, query), token)
if (res$totalResults == 0L || is.null(res[[items]]) || length(res[[items]]) == 0L)
return(NULL)
if (isTRUE(pagination) && query$max.results < res$totalResults) {
message(sprintf("API response contains more then %d items. Batch processing mode enabled.", query$max.results))
if (is.na(total) || total >= res$totalResults)
total <- res$totalResults
sidx <- seq.int(query$start.index, total, query$max.results)
midx <- diff(c(sidx, total + 1L))
pages <- vector(mode = "list", length = length(sidx))
pb <- txtProgressBar(min = 0, max = length(sidx), initial = 1, style = 3)
for (i in 2L:length(sidx)) {
query$start.index <- sidx[i]
query$max.results <- midx[i]
pages[[i]] <- api_request(get_url(path, query), token)[[items]]
setTxtProgressBar(pb, i)
}
pages[[1L]] <- res[[items]]
if (is.matrix(pages[[1L]]))
pages <- rbind.fill.matrix(pages)
if (is.data.frame(pages[[1L]]))
pages <- rbind.fill(pages)
else if (is.list(pages[[1L]]))
pages <- unlist(pages, recursive = FALSE, use.names = FALSE)
res[[items]] <- pages
close(pb)
}
res[[items]] <- build_df(res)
if (nrow(res[[items]]) < res$totalResults)
warning(sprintf("Only %d observations out of %d were obtained. Set max.results = NULL (default value) to get all results.", nrow(res[[items]]), res$totalResults), call. = FALSE)
return(res)
} |
extractLMS <- function(fit, data, sex="M", grid="classic",
decimals = c(4,4,4),
flatAge = NULL)
{
check.names(df=data, needed=c("age","t.age"))
if (!is.gamlss(fit)) stop("fit not a gamlss object.")
tm <- data$t.age[which.min(data$age)]
grd <- ageGrid(grid)
grid.age <- grd$year
minage <- min(data$age, na.rm=TRUE)
maxage <- max(data$age, na.rm=TRUE)
outside <- grid.age < minage | grid.age > maxage
grid.age <- grid.age[!outside]
t.grid.age <- approx(x=data$age, y=data$t.age, xout=grid.age, ties=mean)$y
if (length(t.grid.age)==0) stop("No overlap between age grid and data.")
newdata <- data.frame(t.age=t.grid.age)
lms <- predictAll(fit, newdata=newdata, data=data)
lms$mu <- round(lms$mu, decimals[2])
lms$sigma <- round(lms$sigma/lms$mu, decimals[3])
if (length(lms)>2) lms$nu <- round(lms$nu, decimals[1])
else lms$nu <- 1
lms <- as.data.frame(lms)
result <- data.frame(sex=sex, x=grd$year, L=NA, M=NA, S=NA)
result[!outside, "L"] <- lms$nu
result[!outside, "M"] <- lms$mu
result[!outside, "S"] <- lms$sigma
if (!is.null(flatAge)) {
if (!(flatAge %in% result$x)) stop("FlatAge value (', FlatAge,') not found in age grid")
flatLMS <- result[flatAge==result$x, c("L","M","S")]
result[!outside & flatAge<result$x, c("L","M","S")] <- flatLMS
}
return(result)
}
ageGrid <- function(grid="compact"){
formats <- c("compact", "classic", "extensive", "0-104w", "0-24m", "0-21y", "0-21yd", "0-21yc")
fmi <- pmatch(grid, formats)
if (is.na(fmi)) stop("Grid format ",grid," unknown.")
grid <- switch(fmi,
compact =
c((0:14)/365.25,
(3:13)*7/365.25,
seq(3,11.5,0.5)/12,
(12:23)/12,
seq(2, 21, 0.5)
),
classic =
{
grid.weeks <- c(0,1,2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,24,26,
28,32,36,40,44,48,52,56,60,64)
c(grid.weeks*7/365.25,seq(1.5,21,0.5))
},
extensive = (0:(365.25*21+1))/365.25,
week = (0:104)*7/365.25,
month = (0:24)/12,
year = 0:21,
dyear = seq(0, 21, 0.1),
cyear = seq(0, 21, 0.01)
)
year <- round(grid, 4)
month <- round(grid*12, 4)
week <- round(grid*365.25/7, 4)
day <- round(grid*365.25, 4)
return(list(format = formats[fmi],
year = year, month = month, week = week, day = day))
} |
fit_multi = function(time_col,
intensity_col,
data,
strata_cols ,
starting_par = list(y0 = 0.01, r = 0.03, K = 0.8),
maxiter=500,
nlin = FALSE,
estimate_K = FALSE){
if (missing(data)) {
stop(gettextf("Missing 'data' argument"))
}
if (missing(intensity_col)) {
stop(gettextf("Missing 'intensity_col' argument"))
}
if (missing(time_col)) {
stop(gettextf("Missing 'time_col' argument"))
}
box = data.frame()
pred_box = data.frame()
strata_col = strata_cols
if(is.null(strata_col)){
data_uni=data %>%
dplyr::mutate(strata = "")
strata_col= "strata"
}else{
data_uni = data %>%
tidyr::unite(strata, strata_col, sep = "---")
}
STRATA = data_uni[["strata"]]
strata = as.character(unique(STRATA))
for(i in 1:length(strata)){
rowi = data_uni[["strata"]]==strata[i]
datai = data_uni[rowi,]
if(nlin == T & estimate_K == T ){
model = fit_nlin2(time = datai[[time_col]],
y = datai[[intensity_col]],
starting_par = starting_par,
maxiter=maxiter)
}
if(nlin == T & estimate_K == F ){
model = fit_nlin(time = datai[[time_col]],
y = datai[[intensity_col]],
starting_par = starting_par[1:2],
maxiter = maxiter)}
if(nlin == F & estimate_K == F){
model = fit_lin(time = datai[[time_col]],
y = datai[[intensity_col]])
}
if(nlin == F & estimate_K == T){
model = fit_lin(time = datai[[time_col]],
y = datai[[intensity_col]])
gettextf("'K' is not estimated when nlin = F. To estimate K, use nlin = T and estimate_K = T ")
}
lil_pred_box= model$data %>%
dplyr::mutate(strata = strata[i])
pred_box = pred_box %>%
dplyr::bind_rows(lil_pred_box)
lil_box = model$stats_all %>%
dplyr::mutate(strata = strata[i])
box = box %>%
dplyr::bind_rows(lil_box)
}
colnames = colnames(lil_box)[colnames(lil_box)!="strata"]
colnames_prbox = colnames(lil_pred_box)[colnames(lil_pred_box)!="strata"]
box2 = box %>%
dplyr::select("strata",colnames) %>%
tidyr::separate(strata,into = strata_col, sep = "---")
pred_box2 = pred_box %>%
dplyr::select("strata",colnames_prbox) %>%
tidyr::separate(strata,into = strata_col, sep = "---")
if(nlin == F & estimate_K == T){
message("'K' is not estimated when nlin = F. To estimate K, use nlin = T and estimate_K = T ")
}
a = list(Parameters = box2,
Data = pred_box2)
return(a)
} |
search_msig <- function(keywords,
collection='',organism='',contributor='',
email){
message('Loading HTML')
keywords <- key(keywords)
url <- constuct(keywords,collection,organism,contributor)
if (missing(email)) email = get('email',envir = .GlobalEnv)
h <- httr::GET(URLencode(url),httr::authenticate(email, "password"))
x <- httr::content(h)
if (!grepl('var myDataSource =',x)){
message(' === your search returned no results=== ')
}else{
message('Clear javascript')
f <- x |>
do::Replace0('\r') |>
do::Replace0('.*var myData =[\\[ ]{0,}') |>
do::Replace0(c('[; ]{0,}\\][; ]{0,}var myDataSource =.*')) |>
do::Replace0(c("<span class='highlight' style='padding-left: 0px; padding-right: 0px;'>",'</span>')) |>
do::Replace('name:','"name":') |>
do::Replace('nameRaw:','"nameRaw":') |>
do::Replace('numGenes:','"numGenes":') |>
do::Replace('description:','"description":') |>
do::Replace('collections:','"collections":') |>
do::Replace('organism:','"organism":') |>
do::Replace('contributor:','"contributor":') |>
do::Replace(' {0,}}','}') |>
do::Replace(' {0,}, {1,}',', ') |>
do::Replace('\\}, \\{','}}, {{') |>
strsplit('\\}, \\{') |>
unlist() |>
lapply(function(i) as.data.frame(jsonlite::fromJSON(i))) |>
do.call(what = plyr::rbind.fill)
message('gene sets: ',nrow(f),'\n')
message('add description_full')
f[,2] <- tolower(f[,2])
colnames(f)[2] <- 'standard_name'
if ('NewMsigDB' %in% ls(envir = .GlobalEnv)) msigdb <- get('NewMsigDB',envir = .GlobalEnv)
f <- dplyr::inner_join(f,msigdb[,c('standard_name','description_full')],'standard_name')
f[,1] <- sprintf('http://www.gsea-msigdb.org/gsea/msigdb/geneset_page.jsp%s', do::Replace0(f[,1],'.*\\|msigdb/geneset_page.jsp')) |> do::Replace('&','&')
colnames(f)[1]='link'
f <- f[,c(colnames(f)[-1],colnames(f)[1])]
f <- f[,c("standard_name", "numGenes", "description",'description_full',"collections", "organism", "contributor", "link")]
hightlitht <- strsplit(keywords,' AND | OR | ')[[1]]
hightlitht <- hightlitht[nchar(hightlitht)>0]
attr(f,'search_msig') <- hightlitht
f
}
}
constuct <- function(keywords,collection,organism,contributor){
if (length(keywords) != 1) stop('keywords must be one')
keywords <- paste0('keywords=',keywords)
collection <- paste0(paste0('&collection=',collection),collapse = '')
organism <- paste0(paste0('&organism=',organism),collapse = '')
contributor <- paste0(paste0('&contributor=',contributor),collapse = '')
q <- paste0(keywords,collection,organism,contributor)
sprintf('http://www.gsea-msigdb.org/gsea/msigdb/search.jsp?%s',
q)
}
key <- function(keywords){
if (missing(keywords)) stop('keywords can not be missing')
do::Replace(keywords,pattern = c(' {1,}and {1,}: AND ',
' {1,}or {1,}: OR ',
' {1,}& {1,}: AND ',
' {1,}\\| {1,}: OR '))
} |
set_reactive_grob <- function(loon.grob, index, ...) {
obj <- character(0)
class(obj) <- names(loon.grob$children)
UseMethod("set_reactive_grob", obj)
}
set_reactive_grob.l_plot <- function(loon.grob, index, ...) {
args <- list(...)
pointsTreeName <- args$pointsTreeName
if(pointsTreeName != "points: missing glyphs" & length(index) != 0) {
newGrob <- grid::getGrob(loon.grob, pointsTreeName)
lapply(index,
function(i) {
if(grepl(newGrob$children[[i]]$name, pattern = "primitive_glyph")) {
newGrob$children[[i]] <<- do.call(pointsGrob, getGrobArgs(newGrob$children[[i]]))
} else if(grepl(newGrob$children[[i]]$name, pattern = "pointrange_glyph")) {
newGrob$children[[i]] <<- gTree(
children = gList(
do.call(pointsGrob, getGrobArgs(grid::getGrob(newGrob$children[[i]], "point"))),
do.call(grid::linesGrob, getGrobArgs(grid::getGrob(newGrob$children[[i]], "range")))
),
name = newGrob$children[[i]]$name
)
} else if(grepl(newGrob$children[[i]]$name, pattern = "text_glyph")) {
newGrob$children[[i]] <<- do.call(grid::textGrob, getGrobArgs(newGrob$children[[i]]))
} else if(grepl(newGrob$children[[i]]$name, pattern = "serialaxes_glyph")) {
gTree_names <- newGrob$children[[i]]$childrenOrder
newGrob$children[[i]] <<- if("polyline" %in% gTree_names) {
grid::setGrob(
gTree = newGrob$children[[i]],
gPath = "polyline",
newGrob = do.call(grid::linesGrob, getGrobArgs(grid::getGrob(newGrob$children[[i]], "polyline")))
)
} else if("polyline: showArea" %in% gTree_names) {
grid::setGrob(
gTree = newGrob$children[[i]],
gPath = "polyline: showArea",
newGrob = do.call(grid::polygonGrob, getGrobArgs(grid::getGrob(newGrob$children[[i]], "polyline: showArea")))
)
} else stop("serialaxes name does not match")
if("boundary" %in% gTree_names) {
newGrob$children[[i]] <<- grid::setGrob(
gTree = newGrob$children[[i]],
gPath = "boundary",
newGrob = do.call(grid::polylineGrob, getGrobArgs(grid::getGrob(newGrob$children[[i]], "boundary")))
)
}
if("axes" %in% gTree_names) {
newGrob$children[[i]] <<- grid::setGrob(
gTree = newGrob$children[[i]],
gPath = "axes",
newGrob = do.call(grid::polylineGrob, getGrobArgs(grid::getGrob(newGrob$children[[i]], "axes")))
)
}
} else if(grepl(newGrob$children[[i]]$name, pattern = "polygon_glyph")) {
newGrob$children[[i]] <<- if(grepl(newGrob$children[[i]]$name, pattern = "showArea")) {
do.call(grid::polygonGrob, getGrobArgs(newGrob$children[[i]]))
} else {
do.call(grid::polylineGrob, getGrobArgs(newGrob$children[[i]]))
}
} else if(grepl(newGrob$children[[i]]$name, pattern = "image_glyph")) {
raster_args <- getGrobArgs(grid::getGrob(newGrob$children[[i]], "image"))
names(raster_args) <- c("image", names(raster_args)[-1])
newGrob$children[[i]] <<- gTree(
children = gList(
do.call(grid::rectGrob, getGrobArgs(grid::getGrob(newGrob$children[[i]], "image_border"))),
do.call(rasterGrob, raster_args)
),
name = newGrob$children[[i]]$name
)
} else stop("not inplemented")
}
)
grid::setGrob(
gTree = loon.grob,
gPath = pointsTreeName,
newGrob = newGrob
)
} else loon.grob
}
set_reactive_grob.l_graph <- function(loon.grob, index, ...) {
if(length(index) > 0) {
args <- list(...)
swap <- args$swap
edgesTree <- args$graph_edges
if(swap) {
edgesTree <- gTree(
children = do.call(
gList,
lapply(1:length(edgesTree$children),
function(i){
grobi <- edgesTree$children[[i]]
if(!is.null(grobi$x) & !is.null(grobi$y)) {
grid::editGrob(grobi,
x = grobi$y,
y = grobi$x
)
} else grobi
}
)
), name = "graph edges"
)
}
loon.grob <- grid::setGrob(
gTree = loon.grob,
gPath = "graph edges",
newGrob = edgesTree
)
nodesGrob <- grid::getGrob(loon.grob, "graph nodes")
lapply(index,
function(i) {
nodesGrob$children[[i]] <<- do.call(pointsGrob, getGrobArgs(nodesGrob$children[[i]]))
}
)
loon.grob <- grid::setGrob(
gTree = loon.grob,
gPath = "graph nodes",
newGrob = nodesGrob
)
labelsGrob <- grid::getGrob(loon.grob, "graph labels")
lapply(index,
function(i) {
labelsGrob$children[[i]] <<- do.call(grid::textGrob, getGrobArgs(labelsGrob$children[[i]]))
}
)
grid::setGrob(
gTree = loon.grob,
gPath = "graph labels",
newGrob = labelsGrob
)
} else loon.grob
}
set_reactive_grob.l_serialaxes <- function(loon.grob, index, ...) {
if(length(index) > 0) {
args <- list(...)
axesGpath <- args$axesGpath
showArea <- args$showArea
axesGrob <- grid::getGrob(loon.grob, axesGpath)
lapply(index,
function(i) {
axesGrob$children[[i]] <<- if(showArea) {
do.call(grid::polygonGrob, getGrobArgs(axesGrob$children[[i]]))
} else {
do.call(grid::linesGrob, getGrobArgs(axesGrob$children[[i]]))
}
}
)
grid::setGrob(
gTree = loon.grob,
gPath = axesGpath,
newGrob = axesGrob
)
} else loon.grob
} |
library(fpp3)
download.file("http://robjhyndman.com/data/tourism.xlsx", tourism_file <- tempfile())
my_tourism <- readxl::read_excel(tourism_file) %>%
mutate(Quarter = yearquarter(Quarter)) %>%
as_tsibble(
index = Quarter,
key = c(Region, State, Purpose)
)
my_tourism %>%
as_tibble() %>%
group_by(Region, Purpose) %>%
summarise(Trips = mean(Trips)) %>%
ungroup() %>%
filter(Trips == max(Trips))
state_tourism <- my_tourism %>%
group_by(State) %>%
summarise(Trips = sum(Trips)) %>%
ungroup()
aus_production %>% autoplot(Bricks)
pelt %>% autoplot(Lynx)
gafa_stock %>%
autoplot(Close)
vic_elec %>%
autoplot(Demand) +
labs(y = "Demand (MW)",
title = "Half-hourly electricity demand",
subtitle = "Victoria, Australia")
snowy <- tourism %>%
filter(Region == "Snowy Mountains") %>%
select(-State, -Region)
snowy %>% autoplot(Trips)
snowy %>% gg_season(Trips)
snowy %>% gg_subseries(Trips)
library(sugrrants)
(tsibble::pedestrian %>%
filter(year(Date) == 2016, Sensor == "Southern Cross Station") %>%
frame_calendar(x = Time, y = Count, date = Date) %>%
ggplot(aes(x = .Time, y = .Count, group = Date)) +
geom_line()) %>%
prettify()
aus_production %>% gg_lag(Bricks)
aus_production %>% ACF(Bricks) %>% autoplot()
pelt %>% gg_lag(Lynx)
pelt %>% ACF(Lynx) %>% autoplot()
amzn_stock <- gafa_stock %>%
filter(Symbol == "AMZN") %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index=trading_day, regular=TRUE)
amzn_stock %>% gg_lag(Close)
amzn_stock %>% ACF(Close) %>% autoplot()
vic_elec %>% gg_lag(Demand, period = 1, lags = c(1, 2, 24, 48, 336, 17532))
vic_elec %>% ACF(Demand, lag_max = 336) %>% autoplot()
dgoog <- gafa_stock %>%
filter(Symbol == "GOOG", year(Date) >= 2018) %>%
mutate(trading_day = row_number()) %>%
update_tsibble(index=trading_day, regular=TRUE) %>%
mutate(diff = difference(Close))
dgoog %>% autoplot(diff)
dgoog %>% ACF(diff) %>% autoplot()
global_economy %>%
autoplot(GDP/Population, alpha = 0.3) +
guides(colour = FALSE)
avg_gdp_pc <- global_economy %>%
as_tibble() %>%
group_by(Country) %>%
summarise(
gdp_pc = mean(GDP/Population, na.rm = TRUE),
last = last((GDP/Population)[!is.na(GDP/Population)])
)
top_n(avg_gdp_pc, 5, gdp_pc)
max_gdp_pc <- global_economy %>%
semi_join(
avg_gdp_pc %>%
filter(gdp_pc == max(gdp_pc, na.rm = TRUE)),
by = "Country"
)
library(ggrepel)
global_economy %>%
ggplot(aes(x = Year, y = GDP / Population, group = Country)) +
geom_line(alpha = 0.3) +
geom_line(colour = "red", data = max_gdp_pc) +
geom_label_repel(
aes(label = Country, x = 2020, y = last),
data = top_n(avg_gdp_pc, 5, last),
)
holidays <- tourism %>%
filter(Purpose == "Holiday") %>%
group_by(State) %>%
summarise(Trips = sum(Trips))
holidays %>%
model(stl = STL(Trips ~ season(window = 13) + trend(window = 21))) %>%
components() %>%
autoplot()
global_economy %>%
filter(Code == "USA") %>%
autoplot(box_cox(GDP, 0.3))
aus_livestock %>%
filter(
State == "Victoria",
Animal == "Bulls, bullocks and steers"
) %>%
autoplot(log(Count))
vic_elec %>%
autoplot(log(Demand))
aus_production %>%
autoplot(box_cox(Gas, 0.1))
canadian_gas %>% autoplot()
canadian_gas %>%
model(STL(Volume ~ season(window=7) + trend(window=11))) %>%
components() %>%
autoplot()
canadian_gas %>%
model(STL(Volume ~ season(window=7) + trend(window=11))) %>%
components() %>%
gg_season(season_year)
canadian_gas %>%
model(STL(Volume ~ season(window=7) + trend(window=11))) %>%
components() %>%
select(Month, season_adjust) %>%
autoplot(season_adjust)
library(GGally)
tourism %>%
features(Trips, feat_stl) %>%
select(-Region, -State, -Purpose) %>%
mutate(
seasonal_peak_year = factor(seasonal_peak_year),
seasonal_trough_year = factor(seasonal_trough_year),
) %>%
ggpairs()
tourism %>%
group_by(State) %>%
summarise(Trips = sum(Trips)) %>%
features(Trips, feat_stl) %>%
select(State, seasonal_peak_year)
PBS_no_zeros <- PBS %>%
group_by_key() %>%
filter(!all(Cost == 0)) %>%
ungroup()
library(broom)
PBS_feat <- PBS_no_zeros %>%
features(Cost, feature_set(pkgs = "feasts"))
PBS_prcomp <- PBS_feat %>%
select(-Concession, -Type, -ATC1, -ATC2) %>%
prcomp(scale = TRUE) %>%
augment(PBS_feat)
PBS_prcomp %>%
ggplot(aes(x = .fittedPC1, y = .fittedPC2)) +
geom_point()
outliers <- PBS_prcomp %>%
filter(.fittedPC1 == max(.fittedPC1))
outliers
PBS %>%
semi_join(outliers, by = c("Concession", "Type", "ATC1", "ATC2")) %>%
autoplot(Cost) +
facet_grid(vars(Concession, Type, ATC1, ATC2)) +
ggtitle("Outlying time series in PC space")
hh_budget %>% autoplot(Wealth)
hh_budget %>%
model(drift = RW(Wealth ~ drift())) %>%
forecast(h = "5 years") %>%
autoplot(hh_budget)
aus_takeaway <- aus_retail %>%
filter(Industry == "Cafes, restaurants and takeaway food services") %>%
summarise(Turnover = sum(Turnover))
aus_takeaway %>% autoplot(Turnover)
aus_takeaway %>%
model(snaive = SNAIVE(log(Turnover) ~ drift())) %>%
forecast(h = "3 years") %>%
autoplot(aus_takeaway)
beer_model <- aus_production %>%
model(snaive = SNAIVE(Beer))
beer_model %>%
forecast(h = "3 years") %>%
autoplot(aus_production)
beer_model %>% gg_tsresiduals()
augment(beer_model) %>%
features(.resid, ljung_box, lag = 8, dof = 0)
hh_budget_train <- hh_budget %>%
filter(Year <= max(Year) - 4)
hh_budget_forecast <- hh_budget_train %>%
model(
mean = MEAN(Wealth),
naive = NAIVE(Wealth),
drift = RW(Wealth ~ drift())
) %>%
forecast(h = "4 years")
hh_budget_forecast %>%
autoplot(hh_budget, level=NULL)
hh_budget_forecast %>%
accuracy(hh_budget) %>%
group_by(.model) %>%
summarise_if(is.numeric, mean)
aus_takeaway_train <- aus_takeaway %>%
filter(year(Month) <= max(year(Month)) - 4)
aus_takeaway_forecast <- aus_takeaway_train %>%
model(
mean = MEAN(Turnover),
naive = NAIVE(Turnover),
drift = RW(Turnover ~ drift()),
snaive = SNAIVE(Turnover)
) %>%
forecast(h = "4 years")
aus_takeaway_forecast %>%
accuracy(aus_takeaway)
global_economy %>%
filter(Country == "China") %>%
autoplot(box_cox(GDP, 0.2))
global_economy %>%
filter(Country == "China") %>%
features(GDP, guerrero)
fit <- global_economy %>%
filter(Country == "China") %>%
model(
ets = ETS(GDP),
ets_damped = ETS(GDP ~ trend("Ad")),
ets_bc = ETS(box_cox(GDP, 0.2)),
ets_log = ETS(log(GDP))
)
fit
report(fit)
fit %>% select(ets) %>% report()
glance(fit)
tidy(fit)
coef(fit)
fit %>%
forecast(h = "20 years") %>%
autoplot(global_economy, level = NULL)
gas <- aus_production %>%
select(Gas) %>%
filter(Quarter <= yearquarter("2006 Q4"))
autoplot(gas)
fit <- gas %>%
model(
auto = ETS(Gas),
damped = ETS(Gas ~ trend("Ad")),
log = ETS(log(Gas)),
snaive = SNAIVE(Gas)
)
fit
fc <- fit %>%
forecast(h = "4 years")
fc %>%
autoplot(aus_production, level=NULL)
fc %>%
autoplot(
filter(aus_production,
Quarter > yearquarter("2000 Q4")),
level=NULL)
fc %>%
accuracy(aus_production)
us_gdp <- global_economy %>%
filter(Code == "USA")
autoplot(us_gdp, log(GDP))
us_gdp_model <- us_gdp %>%
model(
arima_notransform = ARIMA(GDP),
arima = ARIMA(log(GDP)),
arima1= ARIMA(log(GDP) ~ pdq(d=1)),
)
us_gdp_model
glance(us_gdp_model)
us_gdp_model %>%
forecast(h = "10 years") %>%
autoplot(us_gdp, level=NULL)
us_gdp_model %>%
select(Country,arima_notransform) %>%
forecast(h = "10 years") %>%
autoplot(us_gdp)
tourism_models <- tourism %>%
filter(Purpose=="Holiday") %>%
model(arima = ARIMA(Trips))
tourism_fc <- forecast(tourism_models)
tourism_fc
tourism_fc %>%
filter(Region == "Snowy Mountains") %>%
autoplot(tourism)
tourism_fc %>%
filter(Region == "Melbourne") %>%
autoplot(tourism)
vic_elec_daily <- vic_elec %>%
filter(year(Time) == 2014) %>%
index_by(Date = date(Time)) %>%
summarise(
Demand = sum(Demand)/1e3,
Temperature = max(Temperature),
Holiday = any(Holiday)) %>%
mutate(
Day_Type = case_when(
Holiday ~ "Holiday",
wday(Date) %in% 2:6 ~ "Weekday",
TRUE ~ "Weekend")
)
elec_model <- vic_elec_daily %>%
model(fit = ARIMA(Demand ~ Temperature +
I(pmax(Temperature-22,0)) +
(Day_Type=="Weekday")))
report(elec_model)
elec_model %>% gg_tsresiduals()
augment(elec_model) %>%
features(.resid, ljung_box, dof = 9, lag = 14)
vic_next_day <- new_data(vic_elec_daily, 1) %>%
mutate(Temperature = 26, Day_Type = "Holiday")
forecast(elec_model, vic_next_day)
vic_elec_future <- new_data(vic_elec_daily, 14) %>%
mutate(
Temperature = 26,
Holiday = c(TRUE, rep(FALSE, 13)),
Day_Type = case_when(
Holiday ~ "Holiday",
wday(Date) %in% 2:6 ~ "Weekday",
TRUE ~ "Weekend"
)
)
forecast(elec_model, vic_elec_future) %>%
autoplot(vic_elec_daily) + ylab("Electricity demand (GW)")
vic_elec_daily <- vic_elec %>%
index_by(Date = date(Time)) %>%
summarise(
Demand = sum(Demand)/1e3,
Temperature = max(Temperature),
Holiday = any(Holiday)) %>%
mutate(
Day_Type = case_when(
Holiday ~ "Holiday",
wday(Date) %in% 2:6 ~ "Weekday",
TRUE ~ "Weekend")
)
elec_model <- vic_elec_daily %>%
model(fit = ARIMA(Demand ~
fourier("year", K = 10) +
PDQ(0,0,0) +
Temperature +
lag(Temperature) +
I(pmax(Temperature-20,0)) +
(Day_Type=="Weekday")))
report(elec_model)
augment(elec_model) %>%
gg_tsdisplay(.resid, plot_type = "histogram")
augment(elec_model) %>%
features(.resid, ljung_box, dof = 9, lag = 14)
vic_next_day <- new_data(vic_elec_daily, 1) %>%
mutate(Temperature = 26, Day_Type = "Holiday")
forecast(elec_model, vic_next_day)
vic_elec_future <- new_data(vic_elec_daily, 14) %>%
mutate(
Temperature = 26,
Holiday = c(TRUE, rep(FALSE, 13)),
Day_Type = case_when(
Holiday ~ "Holiday",
wday(Date) %in% 2:6 ~ "Weekday",
TRUE ~ "Weekend"
)
)
forecast(elec_model, vic_elec_future) %>%
autoplot(filter(vic_elec_daily, year(Date) > 2013)) +
ylab("Electricity demand (GW)")
PBS_aggregated <- PBS %>%
aggregate_key(
Concession * Type * ATC1,
Cost = sum(Cost) / 1e6
)
fit <- PBS_aggregated %>%
filter(Month <= yearmonth("2005 Jun")) %>%
model(
ets = ETS(Cost),
arima = ARIMA(Cost),
snaive = SNAIVE(Cost)
)
fc <- fit %>%
reconcile(
ets_adj = min_trace(ets),
arima_adj = min_trace(arima),
snaive_adj = min_trace(snaive)
) %>%
forecast(h = "3 years")
accuracy(fc, PBS_aggregated) %>%
group_by(.model) %>%
summarise(MASE = mean(MASE)) %>%
arrange(MASE) |
atom2mass <- function(...)
UseMethod("atom2mass")
atom2mass.default <- function(x, mass.custom=NULL, elety.custom=NULL,
grpby=NULL, rescue=TRUE, ...){
if(!is.null(mass.custom)) {
if(!all(c("symb","mass") %in% names(mass.custom)))
stop("'mass.custom' must contains 'symb' and 'mass' components")
inds <- unlist(lapply(mass.custom, is.factor))
mass.custom[inds] <- lapply(mass.custom[inds], as.character)
}
elements <- rbind(mass.custom[,c("symb","mass")], elements[,c("symb","mass")])
symb <- atom2ele.default(x, elety.custom, rescue, ...)
M <- elements[match(symb, elements[,"symb"]), "mass"]
if(any(is.na(M)))
stop(paste("\n\tatom2mass: mass of element '", symb[is.na(M)], "' unknown", sep=""))
if(!is.null(grpby)) {
if(length(grpby) != length(M))
warning("'grpby' as been recycled")
M <- unlist(lapply(split(M, grpby), sum))
}
return(M)
}
atom2mass.pdb <- function(pdb, inds=NULL, mass.custom=NULL, elety.custom=NULL,
grpby=NULL, rescue=TRUE, ...){
if(!is.null(inds))
pdb <- trim.pdb(pdb, inds)
atom.names <- pdb$atom[,"elety"]
M <- atom2mass.default(atom.names, mass.custom, elety.custom, grpby, rescue, ...)
return(M)
} |
dglg = function(x, location, scale, shape) {
if(missingArg(x))
return("The real value x is missing!")
if(missingArg(location))
location <- 0
if(missingArg(scale))
scale <- 1
if(missingArg(shape))
shape <- 1
base_dglg <- function(x, location, scale, shape){
y <- (x - location)/scale
out <- (1/shape)*y -(1/shape^2)*exp(shape*y)
out <- exp(out)
out <- c_l(shape)*out/scale
return(out)
}
v_dglg <- Vectorize(base_dglg,vectorize.args = c("x","location"))
return(v_dglg(x, location, scale, shape))
} |
fit_diagram <- function(combinations,
type = c("euler", "venn"),
input = c("disjoint", "union"),
shape = c("circle", "ellipse"),
control = list(),
...)
{
input <- match.arg(input)
shape <- match.arg(shape)
type <- match.arg(type)
n_restarts <- 10L
small <- sqrt(.Machine$double.eps)
if (!is.numeric(combinations))
stop("`combinations` must be numeric")
if (any(combinations < 0))
stop("values in `combinations` cannot be negative")
if (is.null(attr(combinations, "names")) || any(names(combinations) == ""))
stop("every element in `combinations` needs to be named")
if (any(duplicated(names(combinations))))
stop("names of elements in `combinations` cannot be duplicated")
combo_names <- strsplit(names(combinations), split = "&", fixed = TRUE)
setnames <- unique(unlist(combo_names, use.names = FALSE))
n <- length(setnames)
id <- bit_indexr(n)
N <- NROW(id)
areas <- double(N)
for (i in 1L:N) {
s <- setnames[id[i, ]]
for (j in seq_along(combo_names)) {
if (setequal(s, combo_names[[j]])) {
areas[i] <- combinations[j]
}
}
}
if (input == "disjoint") {
areas_disjoint <- areas
areas[] <- 0
for (i in rev(seq_along(areas))) {
prev_areas <- rowSums(id[, id[i, ], drop = FALSE]) == sum(id[i, ])
areas[i] <- sum(areas_disjoint[prev_areas])
}
} else if (input == "union") {
areas_disjoint <- double(length(areas))
for (i in rev(seq_along(areas))) {
prev_areas <- rowSums(id[, id[i, ], drop = FALSE]) == sum(id[i, ])
areas_disjoint[i] <- areas[i] - sum(areas_disjoint[prev_areas])
}
if (any(areas_disjoint < 0))
stop("Check your set configuration. Some disjoint areas are negative.")
}
orig <- rep.int(0, N)
fit <- rep.int(0, N)
names(orig) <- names(fit) <-
apply(id, 1L, function(x) paste0(setnames[x], collapse = "&"))
if (type == "venn") {
fpar <- venn_spec[[n]]
rownames(fpar) <- setnames
orig[] <- areas_disjoint
out <- structure(list(ellipses = fpar,
original.values = orig,
fitted.values = rep(1, length(orig))),
class = c("venn", "euler", "list"))
return(out)
}
fpar <- as.data.frame(matrix(
NA,
ncol = 5L,
nrow = n,
dimnames = list(setnames, c("h", "k", "a", "b", "phi"))
), stringsAsFactors = TRUE)
empty_sets <- areas[seq_len(n)] < sqrt(.Machine$double.eps)
empty_subsets <- rowSums(id[, empty_sets, drop = FALSE]) > 0
id <- id[!empty_subsets, !empty_sets, drop = FALSE]
N <- NROW(id)
n <- sum(!empty_sets)
areas <- areas[!empty_subsets]
areas_disjoint <- areas_disjoint[!empty_subsets]
control <- utils::modifyList(
list(extraopt = (n == 3) && (match.arg(shape) == "ellipse"),
extraopt_threshold = 0.001,
extraopt_control = list()),
control)
if (n > 1L) {
if (all(areas == 0)) {
fpar[] <- 0
} else {
id_sums <- rowSums(id)
ones <- id_sums == 1L
twos <- id_sums == 2L
two <- choose_two(1:n)
r <- sqrt(areas[ones]/pi)
subset <- disjoint <- matrix(FALSE, ncol = n, nrow = n)
distances <- area_mat <- matrix(0, ncol = n, nrow = n)
lwrtri <- lower.tri(subset)
tmp <- matrix(areas[ones][two], ncol = 2L)
subset[lwrtri] <- areas[twos] == tmp[, 1L] | areas[twos] == tmp[, 2L]
disjoint[lwrtri] <- areas[twos] == 0
distances[lwrtri] <- mapply(separate_two_discs,
r1 = r[two[, 1L]],
r2 = r[two[, 2L]],
overlap = areas[twos],
USE.NAMES = FALSE)
loss <- Inf
initial_layouts <- vector("list", n_restarts)
bnd <- sqrt(sum(r^2*pi))
i <- 1L
while (loss > small && i <= n_restarts) {
initial_layouts[[i]] <- stats::nlm(
f = optim_init,
p = stats::runif(n*2, 0, bnd),
d = distances,
disjoint = disjoint,
subset = subset,
iterlim = 1000L,
check.analyticals = FALSE
)
loss <- initial_layouts[[i]]$minimum
i <- i + 1L
}
best_init <- which.min(lapply(initial_layouts[1L:(i - 1L)],
"[[",
"minimum"))
initial_layout <- initial_layouts[[best_init]]
circle <- match.arg(shape) == "circle"
if (circle) {
pars <- as.vector(matrix(c(initial_layout$estimate, r), 3L,
byrow = TRUE))
lwr <- rep.int(0, 3L)
upr <- rep.int(bnd, 3L)
} else {
pars <- as.vector(rbind(matrix(initial_layout$estimate, 2L,
byrow = TRUE),
r, r, 0, deparse.level = 0L))
lwr <- c(rep.int(0, 4L), -2*pi)
upr <- c(rep.int(bnd, 4L), 2*pi)
}
orig[!empty_subsets] <- areas_disjoint
nlm_solution <- stats::nlm(f = optim_final_loss,
p = pars,
areas = areas_disjoint,
circle = circle,
iterlim = 1e6)$estimate
tpar <- as.data.frame(matrix(
data = nlm_solution,
ncol = if (circle) 3L else 5L,
dimnames = list(setnames[!empty_sets],
if (circle)
c("h", "k", "r")
else
c("h", "k", "a", "b", "phi")),
byrow = TRUE
), stringsAsFactors = TRUE)
if (circle)
tpar <- cbind(tpar, tpar[, 3L], 0)
nlm_fit <- as.vector(intersect_ellipses(nlm_solution, circle))
nlm_pars <- compress_layout(normalize_pars(tpar), id, nlm_fit)
nlm_diagError <- diagError(nlm_fit, orig[!empty_subsets])
if (!circle && control$extraopt &&
nlm_diagError > control$extraopt_threshold) {
newpars <- matrix(
data = as.vector(t(nlm_pars)),
ncol = 5L,
dimnames = list(setnames, c("h", "k", "a", "b", "phi")),
byrow = TRUE
)
constraints <- get_constraints(compress_layout(newpars, id, nlm_fit))
last_ditch_effort <- GenSA::GenSA(
par = as.vector(newpars),
fn = optim_final_loss,
lower = constraints$lwr,
upper = constraints$upr,
circle = circle,
areas = areas_disjoint,
control = utils::modifyList(
list(threshold.stop = sqrt(.Machine$double.eps),
max.call = 1e7,
trace.mat = FALSE),
control$extraopt_control
)
)$par
last_ditch_fit <- as.vector(intersect_ellipses(last_ditch_effort,
circle))
last_ditch_diagError <- diagError(last_ditch_fit, orig)
if (last_ditch_diagError < nlm_diagError) {
final_par <- last_ditch_effort
fit[!empty_subsets] <- last_ditch_fit
} else {
final_par <- nlm_solution
fit[!empty_subsets] <- nlm_fit
}
} else {
final_par <- nlm_solution
fit[!empty_subsets] <- nlm_fit
}
regionError <- regionError(fit, orig)
diagError <- diagError(regionError = regionError)
stress <- stress(orig, fit)
temp <- matrix(data = final_par,
ncol = if (circle) 3L else 5L,
byrow = TRUE)
if (circle)
temp <- cbind(temp, temp[, 3L], 0)
temp <- normalize_pars(temp)
temp <- compress_layout(temp, id, fit[!empty_subsets])
fpar[!empty_sets, ] <- center_layout(temp)
}
} else {
if (length(areas) == 0) {
fpar[] <- 0
} else {
fpar[!empty_sets, ] <- c(0, 0, sqrt(areas/pi), sqrt(areas/pi), 0)
orig[!empty_subsets] <- fit[!empty_subsets] <- areas
}
regionError <- diagError <- stress <- 0
}
structure(list(ellipses = fpar,
original.values = orig,
fitted.values = fit,
residuals = orig - fit,
regionError = regionError,
diagError = diagError,
stress = stress),
class = c("euler", "list"))
} |
expected <- eval(parse(text="c(\"% This file is part of the 'foreign' package for R\", \"% It is distributed under the GPL version 2 or later\", \"\", \"\\\\name{S3 read functions}\", \"\\\\alias{data.restore}\", \"\\\\alias{read.S}\", \"\\\\title{Read an S3 Binary or data.dump File}\", \"\\\\description{\", \" Reads binary data files or \\\\code{data.dump} files that were produced\", \" in S version 3.\", \"}\", \"\\\\usage{\", \" data.restore(file, print = FALSE, verbose = FALSE, env = .GlobalEnv)\", \" read.S(file)\", \"}\", \"\\\\arguments{\", \" \\\\item{file}{the filename of the S-PLUS \\\\code{data.dump} or binary\", \" file.}\", \" \\\\item{print}{whether to print the name of each object as read from the\", \" file.}\", \" \\\\item{verbose}{whether to print the name of every subitem within each\", \" object.}\", \" \\\\item{env}{environment within which to create the restored object(s).}\", \"}\", \"\\\\value{\", \" For \\\\code{read.S}, an R version of the S3 object.\", \"\", \" For \\\\code{data.restore}, the name of the file.\", \"}\", \"\\\\details{\", \" \\\\code{read.S} can read the binary files produced in some older\", \" versions of S-PLUS on either Windows (versions 3.x, 4.x, 2000) or Unix\", \" (version 3.x with 4 byte integers). It automatically detects whether\", \" the file was produced on a big- or little-endian machine and adapts\", \" itself accordingly.\", \"\", \" \\\\code{data.restore} can read a similar range of files produced by\", \" \\\\code{data.dump} and for newer versions of S-PLUS, those from\", \" \\\\code{data.dump(....., oldStyle=TRUE)}.\", \"\", \" Not all S3 objects can be handled in the current version. The most\", \" frequently encountered exceptions are functions and expressions; you\", \" will also have trouble with objects that contain model formulas. In\", \" particular, comments will be lost from function bodies, and the\", \" argument lists of functions will often be changed.\", \"}\", \"\\\\author{\", \" Duncan Murdoch\", \"}\", \"\\\\examples{\", \"\\\\dontrun{read.S(file.path(\\\"_Data\\\", \\\"myobj\\\"))\", \"data.restore(\\\"dumpdata\\\", print = TRUE)\", \"}}\", \"\\\\keyword{data}\", \"\\\\keyword{file}\")"));
test(id=0, code={
argv <- eval(parse(text="list(c(\"% This file is part of the 'foreign' package for R\", \"% It is distributed under the GPL version 2 or later\", \"\", \"\\\\name{S3 read functions}\", \"\\\\alias{data.restore}\", \"\\\\alias{read.S}\", \"\\\\title{Read an S3 Binary or data.dump File}\", \"\\\\description{\", \" Reads binary data files or \\\\code{data.dump} files that were produced\", \" in S version 3.\", \"}\", \"\\\\usage{\", \" data.restore(file, print = FALSE, verbose = FALSE, env = .GlobalEnv)\", \" read.S(file)\", \"}\", \"\\\\arguments{\", \" \\\\item{file}{the filename of the S-PLUS \\\\code{data.dump} or binary\", \" file.}\", \" \\\\item{print}{whether to print the name of each object as read from the\", \" file.}\", \" \\\\item{verbose}{whether to print the name of every subitem within each\", \" object.}\", \" \\\\item{env}{environment within which to create the restored object(s).}\", \"}\", \"\\\\value{\", \" For \\\\code{read.S}, an R version of the S3 object.\", \"\", \" For \\\\code{data.restore}, the name of the file.\", \"}\", \"\\\\details{\", \" \\\\code{read.S} can read the binary files produced in some older\", \" versions of S-PLUS on either Windows (versions 3.x, 4.x, 2000) or Unix\", \" (version 3.x with 4 byte integers). It automatically detects whether\", \" the file was produced on a big- or little-endian machine and adapts\", \" itself accordingly.\", \"\", \" \\\\code{data.restore} can read a similar range of files produced by\", \" \\\\code{data.dump} and for newer versions of S-PLUS, those from\", \" \\\\code{data.dump(....., oldStyle=TRUE)}.\", \"\", \" Not all S3 objects can be handled in the current version. The most\", \" frequently encountered exceptions are functions and expressions; you\", \" will also have trouble with objects that contain model formulas. In\", \" particular, comments will be lost from function bodies, and the\", \" argument lists of functions will often be changed.\", \"}\", \"\\\\author{\", \" Duncan Murdoch\", \"}\", \"\\\\examples{\", \"\\\\dontrun{read.S(file.path(\\\"_Data\\\", \\\"myobj\\\"))\", \"data.restore(\\\"dumpdata\\\", print = TRUE)\", \"}}\", \"\\\\keyword{data}\", \"\\\\keyword{file}\"), \"\", \"ASCII\", NA_character_, TRUE, FALSE)"));
.Internal(iconv(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]]));
}, o=expected); |
test_that("can round-trip Rd", {
rd <- tools::parse_Rd(test_path("escapes.Rd"))
field <- find_field(rd, "description")
lines <- strsplit(field, "\n")[[1]]
expect_equal(
lines,
c(
"% Comment",
"\\code{\\\\}"
)
)
})
test_that("\\links are transformed", {
out <- roc_proc_text(rd_roclet(), "
wrapper <- function(algo) {}"
)[[1]]
verify_output(
test_path("test-rd-inherit-link.txt"),
{
"\\link{} should include [digest]"
out$get_section("param")
}
)
})
test_that("warns on unknown inherit type", {
expect_warning(
parse_text("
NULL
"),
"Unknown inherit type: blah"
)
})
test_that("no options gives default values", {
block <- parse_text("
NULL
")[[1]]
expect_equal(
block_get_tag_value(block, "inherit")$fields,
c(
"params", "return", "title", "description", "details", "seealso",
"sections", "references", "examples", "author", "source"
)
)
})
test_that("some options overrides defaults", {
block <- parse_text("
NULL
")[[1]]
expect_equal(block_get_tag_value(block, "inherit")$fields, "return")
})
test_that("can inherit return values from roxygen topic", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x) {}
b <- function(y) {}
")[[2]]
expect_equal(out$get_value("value"), "ABC")
})
test_that("takes value from first with return", {
out <- roc_proc_text(rd_roclet(), "
a1 <- function(x) {}
a2 <- function() {}
b <- function(x) {}
c <- function(y) {}
")[[3]]
expect_equal(out$get_value("value"), "B")
})
test_that("can inherit return value from external function", {
out <- roc_proc_text(rd_roclet(), "
a1 <- function(x) {}
")[[1]]
expect_match(out$get_value("value"), "before the mean is computed.$")
expect_match(out$get_value("value"), "^If \\\\code")
})
test_that("can inherit return values from roxygen topic", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x) {}
b <- function(y) {}
")[[2]]
expect_equal(out$get_value("seealso"), "ABC")
})
test_that("can inherit description from roxygen topic", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x) {}
b <- function(y) {}
")[[2]]
expect_equal(out$get_value("description"), "B")
})
test_that("inherits description if omitted", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x) {}
b <- function(y) {}
")[[2]]
expect_equal(out$get_value("description"), "B")
})
test_that("can inherit details from roxygen topic", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x) {}
b <- function(y) {}
")[[2]]
expect_equal(out$get_value("description"), "E")
expect_equal(out$get_value("details"), "C")
})
test_that("inherits missing sections", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x) {}
b <- function(y) {}
")[[2]]
section <- out$get_value("section")
expect_equal(section$title, c("A", "B"))
expect_equal(section$content, c("2", "1"))
})
test_that("can inherit single section", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x) {}
b <- function(y) {}
")[[2]]
section <- out$get_value("section")
expect_equal(section$title, "B")
expect_equal(section$content, "1")
})
test_that("multiple @inheritParam tags gathers all params", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x) {}
b <- function(y) {}
c <- function(x, y) {}
")
params <- out[["c.Rd"]]$get_value("param")
expect_equal(length(params), 2)
expect_equal(params[["x"]], "X")
expect_equal(params[["y"]], "Y")
})
test_that("multiple @inheritParam tags gathers all params", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x) {}
b <- function(.y) {}
c <- function(.x, y) {}
")
params <- out[["c.Rd"]]$get_value("param")
expect_equal(length(params), 2)
expect_equal(params[[".x"]], "X")
expect_equal(params[["y"]], "Y")
})
test_that("@inheritParams can inherit from inherited params", {
out <- roc_proc_text(rd_roclet(), "
c <- function(x) {}
b <- function(x) {}
a <- function(x) {}
")
expect_equal(out[["c.Rd"]]$get_value("param"), c(x = "X"))
})
test_that("multiple @inheritParam inherits from existing topics", {
out <- roc_proc_text(rd_roclet(), "
mymean <- function(x, trim) {}")[[1]]
params <- out$get_value("param")
expect_equal(length(params), 2)
expect_equal(sort(names(params)), c("trim", "x"))
})
test_that("@inheritParam can cope with multivariable argument definitions", {
out <- roc_proc_text(rd_roclet(), "
mymerge <- function(x, y) {}")[[1]]
params <- out$get_value("param")
expect_equal(length(params), 2)
expect_equal(sort(names(params)), c("x", "y"))
})
test_that("@inheritParam understands compound docs", {
out <- roc_proc_text(rd_roclet(), "
x <- function(x, y) {}
y <- function(x, y) {}")[[2]]
params <- out$get_value("param")
expect_equal(params, c(x = "x", y = "y"))
})
test_that("warned if no params need documentation", {
code <- "
x <- function(x, y) {}
"
expect_warning(roc_proc_text(rd_roclet(), code), "no parameters to inherit")
})
test_that("argument order, also for incomplete documentation", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x, y) {}
b <- function(x, y) {}
c <- function(x, y) {}
d <- function(x, y, z) {}
e <- function(x, y, z) {}
")
expect_equal(out[["a.Rd"]]$get_value("param"), c(x="X", y="Y"))
expect_equal(out[["b.Rd"]]$get_value("param"), c(y="Y"))
expect_equal(out[["c.Rd"]]$get_value("param"), c(x="X"))
expect_equal(out[["d.Rd"]]$get_value("param"), c(y="Y", z="Z"))
expect_equal(out[["e.Rd"]]$get_value("param"), c(x="X", y="Y"))
})
test_that("argument order with @inheritParam", {
out <- roc_proc_text(rd_roclet(), "
a <- function(x, y) {}
b1 <- function(x, y) {}
b2 <- function(x, y) {}
c1 <- function(x, y) {}
c2<- function(x, y) {}
")
expect_equal(out[["b1.Rd"]]$get_value("param"), c(x = "X", y = "B"))
expect_equal(out[["b2.Rd"]]$get_value("param"), c(x = "X", y = "B"))
expect_equal(out[["c1.Rd"]]$get_value("param"), c(x = "C", y = "Y"))
expect_equal(out[["c2.Rd"]]$get_value("param"), c(x = "C", y = "Y"))
})
test_that("inherit params ... named \\dots", {
out <- roc_proc_text(rd_roclet(), "
foo <- function(x, ...) {}
bar <- function(x=1, ...) {}
")[[2]]
expect_equal(
out$get_value("param"),
c(x = "x", "\\dots" = "bar")
)
})
test_that("can inherit all from single function", {
out <- roc_proc_text(rd_roclet(), "
foo <- function(x, y) {}
bar <- function(...) {}
")[[2]]
verify_output(
test_path("test-rd-inherit-dots.txt"),
out$get_section("param")
)
})
test_that("does not produce multiple ... args", {
out <- roc_proc_text(rd_roclet(), "
foo <- function(x, ...) {}
bar <- function(x, ...) {}
baz <- function(y, z) {}
")[[1]]
verify_output(
test_path("test-rd-inherit-dots-inherit.txt"),
out$get_section("param")
)
})
test_that("can inherit dots from several functions", {
out <- roc_proc_text(rd_roclet(), "
foo <- function(x, y) {}
bar <- function(z) {}
foobar <- function(...) {}
")[[3]]
verify_output(
test_path("test-rd-inherit-dots-multi.txt"),
out$get_section("param")
)
})
test_that("inheritDotParams does not add already-documented params", {
out <- roc_proc_text(rd_roclet(), "
wrapper <- function(x = 'some_value', y = 'some other value', ...) {
original(x = x, y = y, ...)
}
original <- function(x, y, z, ...) {}
")[[1]]
params <- out$get_value("param")
dot_param <- params[["..."]]
expect_named(params, c("x", "y", "..."))
expect_false(grepl("item{x}{x description}", dot_param, fixed = TRUE))
expect_false(grepl("item{y}{y description}", dot_param, fixed = TRUE))
expect_match(dot_param, "item{\\code{z}}{z description}", fixed = TRUE)
})
test_that("can inherit all from single function", {
out <- roc_proc_text(rd_roclet(), "
foo <- function(x, y) {}
bar <- function(x, y) {}
")[[2]]
expect_named(out$get_value("param"), c("x", "y"))
expect_equal(out$get_value("title"), "Foo")
expect_equal(out$get_value("description"), "Description")
expect_equal(out$get_value("details"), "Details")
expect_equal(out$get_value("examples"), rd("x <- 1"))
expect_equal(out$get_value("author"), "Hadley")
expect_equal(out$get_value("source"), "my mind")
})
test_that("useful warnings if can't find topics", {
expect_warning(get_rd("base2::attach"), "Can't find package")
expect_warning(get_rd("base::function_not_found"), "Can't find help topic")
expect_warning(get_rd("function", RoxyTopics$new()), "Can't find help topic")
})
test_that("can find section in existing docs", {
out <- find_sections(get_rd("base::attach"))
expect_equal(out$title, "Good practice")
})
test_that("find_params parses input", {
params <- find_params("utils::`?`", NULL)
expect_equal(names(params), c("topic", "type"))
}) |
stat_density <- function(mapping = NULL, data = NULL,
geom = "area", position = "stack",
...,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
trim = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = StatDensity,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
bw = bw,
adjust = adjust,
kernel = kernel,
trim = trim,
na.rm = na.rm,
...
)
)
}
StatDensity <- gganimintproto("StatDensity", Stat,
required_aes = "x",
default_aes = aes(y = ..density.., fill = NA),
compute_group = function(data, scales, bw = "nrd0", adjust = 1, kernel = "gaussian",
trim = FALSE, na.rm = FALSE) {
if (trim) {
range <- range(data$x, na.rm = TRUE)
} else {
range <- scales$x$dimension()
}
compute_density(data$x, data$weight, from = range[1], to = range[2],
bw = bw, adjust = adjust, kernel = kernel)
}
)
compute_density <- function(x, w, from, to, bw = "nrd0", adjust = 1,
kernel = "gaussian") {
n <- length(x)
if (is.null(w)) {
w <- rep(1 / n, n)
}
if (n < 3) {
return(data.frame(
x = x,
density = w / sum(w),
scaled = w / max(w),
count = 1,
n = n
))
}
dens <- stats::density(x, weights = w, bw = bw, adjust = adjust,
kernel = kernel, from = from, to = to)
data.frame(
x = dens$x,
density = dens$y,
scaled = dens$y / max(dens$y, na.rm = TRUE),
count = dens$y * n,
n = n
)
} |
summaryBundles <-
function (x, file = NULL, latex = FALSE, byties)
{
if (isTRUE(attr(x, "class")[1] == "Rel.Bundles") == FALSE)
stop("Data must be a \"Rel.Bundles\" class.")
sep <- dhc(attr(x, "class")[2], ": ")[2]
ifelse(isTRUE(sep == " -- ") == TRUE, sep2 <- ", ", sep2 <- " -- ")
ifelse(missing(byties) == FALSE && isTRUE(byties == TRUE) ==
TRUE, byties <- TRUE, byties <- FALSE)
if (latex) {
if (isTRUE(is.null(file)) == TRUE)
stop("No connection provided.")
}
else {
if (isTRUE(is.null(file)) == FALSE)
file = NULL
}
ulx <- unlist(x)
if (isTRUE(length(ulx) != 0) == TRUE) {
lb <- vector()
for (i in seq_len(length(ulx))) {
lb <- append(lb, strsplit(ulx[i], sep)[[1]])
}
rm(i)
lb <- levels(factor(lb))
}
asym <- list()
k <- 1L
if (length(unlist(x[[k]])) > 0) {
q <- 1L
for (i in seq_len(length(x[[k]]))) {
for (j in seq_len(length(x[[k]][[i]]))) {
if (isTRUE(length(x[[k]][[i]]) != 0) == TRUE) {
if (latex) {
if (isTRUE(is.null(attr(x[[k]], "names")) ==
FALSE)) {
asym[[q]] <- noquote(paste("\\stackrel{\\rightarrow}{\\sf ",
attr(x[[k]][i], "names"), "} (", x[[k]][[i]][j],
")", sep = ""))
}
else {
asym[[q]] <- noquote(paste("\\stackrel{\\rightarrow}{",
"R", "} (", x[[k]][[i]][j], ")", sep = ""))
}
}
else if (isTRUE(byties == TRUE) == TRUE) {
asym[[q]] <- x[[k]][[i]][j]
}
else {
if (isTRUE(is.null(attr(x[[k]], "names")) ==
FALSE)) {
asym[[q]] <- noquote(paste("->", "{", attr(x[[k]][i],
"names"), "} (", x[[k]][[i]][j], ")",
sep = ""))
}
else {
asym[[q]] <- noquote(paste("->", "{", "R",
"} (", x[[k]][[i]][j], ")", sep = ""))
}
}
q <- q + 1L
}
}
rm(j)
}
rm(i)
}
recp <- list()
k <- 2L
if (length(unlist(x[[k]])) > 0) {
q <- 1L
if (isTRUE(is.list(x[[k]])) == TRUE) {
for (i in seq_len(length(x[[k]]))) {
if (isTRUE(length(x[[k]][[i]]) != 0) == TRUE) {
tmp <- trnf(x[[k]][[i]], tolist = FALSE, lb2lb = TRUE,
lbs = lb, ord = length(lb), sep = sep)
tmp[lower.tri(tmp)] <- NA
tmp[is.na(tmp)] <- 0
if (isTRUE(sum(tmp) == 0) == FALSE) {
tmp <- trnf(tmp, tolist = TRUE, lb2lb = TRUE,
lbs = lb, sep = sep)
for (j in seq_len(length(tmp))) {
if (latex) {
if (isTRUE(is.null(attr(x[[k]], "names")) ==
FALSE)) {
recp[[q]] <- noquote(paste("\\stackrel{\\leftrightarrow}{\\sf ",
attr(x[[k]][i], "names"), "} (",
tmp[j], ")", sep = ""))
}
else {
recp[[q]] <- noquote(paste("\\stackrel{\\leftrightarrow}{",
"R", "} (", tmp[j], ")", sep = ""))
}
}
else if (isTRUE(byties == TRUE) == TRUE) {
recp[[q]] <- (paste0(c(tmp[j], swp(tmp[j],
sep = sep)), collapse = sep2))
}
else {
if (isTRUE(is.null(attr(x[[k]], "names")) ==
FALSE)) {
recp[[q]] <- noquote(paste("<->", "{",
attr(x[[k]][i], "names"), "} (",
tmp[j], ")", sep = ""))
}
else {
recp[[q]] <- noquote(paste("<->", "{",
"R", "} (", tmp[j], ")", sep = ""))
}
}
q <- q + 1L
}
rm(j)
}
}
}
rm(i)
}
else if (isTRUE(is.list(x[[k]])) == FALSE) {
tmp <- men(x[[k]], sep = sep)
for (j in seq_len(length(tmp))) {
if (latex) {
recp[[q]] <- noquote(paste("\\stackrel{\\leftrightarrow}{",
"R", "} (", tmp[j], ")", sep = ""))
}
else if (isTRUE(byties == TRUE) == TRUE) {
recp[[q]] <- (paste0(c(tmp[j], swp(tmp[j],
sep = sep)), collapse = sep2))
}
else {
recp[[q]] <- noquote(paste("<->", "{", "R",
"} (", tmp[j], ")", sep = ""))
}
q <- q + 1L
}
rm(j)
}
}
tent <- list()
k <- 3L
if (length(unlist(x[[k]])) > 0) {
q <- 1L
tmp <- vector()
for (l in seq_len(length(levels(factor(unlist(x[[k]])))))) {
for (i in seq_len(length(x[[k]]))) {
if (isTRUE(levels(factor(unlist(x[[k]])))[l] %in%
x[[k]][[i]]) == TRUE) {
if (latex) {
tmp <- append(tmp, paste("\\stackrel{\\rightarrow}{\\sf ",
attr(x[[k]][i], "names"), "}", sep = ""))
}
else {
ifelse(isTRUE(byties == TRUE) == TRUE, tmp <- append(tmp,
levels(factor(unlist(x[[k]])))[l]), tmp <- append(tmp,
paste("->", "{", attr(x[[k]][i], "names"),
"}", sep = "")))
}
}
}
rm(i)
if (isTRUE(byties == TRUE) == FALSE) {
tmp <- append(tmp, paste(" (", levels(factor(unlist(x[[k]])))[l],
")", sep = ""))
tent[[q]] <- noquote(paste(tmp, collapse = " "))
}
else if (isTRUE(byties == TRUE) == TRUE) {
tent[[q]] <- (paste0(tmp, collapse = sep2))
}
q <- q + 1L
tmp <- vector()
}
rm(l)
}
txch <- list()
k <- 4L
if (length(unlist(x[[k]])) > 0) {
q <- 1L
temp <- men(levels(factor(unlist(x[[k]]))), sep = sep)
tmp <- vector()
for (l in seq_len(length(temp))) {
for (i in seq_len(length(x[[k]]))) {
if (isTRUE(length(x[[k]][[i]]) != 0) == TRUE) {
if (isTRUE(temp[l] %in% x[[k]][[i]]) == TRUE) {
if (latex) {
tmp <- append(tmp, paste("\\stackrel{\\rightarrow}{\\sf ",
attr(x[[k]][i], "names"), "}", sep = ""))
}
else {
ifelse(isTRUE(byties == TRUE) == TRUE,
tmp <- append(tmp, temp[l]), tmp <- append(tmp,
paste("->", "{", attr(x[[k]][i], "names"),
"}", sep = "")))
}
}
if (isTRUE(swp(temp[l], sep = sep) %in% x[[k]][[i]]) ==
TRUE) {
if (latex) {
tmp <- append(tmp, paste("\\stackrel{\\leftarrow}{\\sf ",
attr(x[[k]][i], "names"), "}", sep = ""))
}
else {
ifelse(isTRUE(byties == TRUE) == TRUE,
tmp <- append(tmp, swp(temp[l], sep = sep)),
tmp <- append(tmp, paste("<-", "{", attr(x[[k]][i],
"names"), "}", sep = "")))
}
}
}
}
rm(i)
if (isTRUE(byties == TRUE) == FALSE) {
tmp <- append(tmp, paste("(", temp[l], ")", sep = ""))
txch[[q]] <- noquote(paste(tmp, collapse = " "))
}
else if (isTRUE(byties == TRUE) == TRUE) {
txch[[q]] <- (paste0(tmp, collapse = sep2))
}
q <- q + 1L
tmp <- vector()
}
rm(l)
}
mixd <- list()
k <- 5L
if (length(unlist(x[[k]])) > 0) {
q <- 1L
temp <- men(levels(factor(unlist(x[[k]]))), sep = sep)
tmp <- vector()
for (l in seq_len(length(temp))) {
for (i in seq_len(length(x[[k]]))) {
if (isTRUE(length(x[[k]][[i]]) != 0) == TRUE) {
if (isTRUE(temp[l] %in% x[[k]][[i]]) == TRUE &&
isTRUE(swp(temp[l], sep = sep) %in% x[[k]][[i]]) ==
TRUE) {
if (latex) {
tmp <- append(tmp, paste("\\stackrel{\\leftrightarrow}{\\sf ",
attr(x[[k]][i], "names"), "}", sep = ""))
}
else {
ifelse(isTRUE(byties == TRUE) == TRUE,
tmp <- append(tmp, c(temp[l], swp(temp[l],
sep = sep))), tmp <- append(tmp, paste("<->",
"{", attr(x[[k]][i], "names"), "}",
sep = "")))
}
}
else {
if (isTRUE(temp[l] %in% x[[k]][[i]]) == TRUE) {
if (latex) {
tmp <- append(tmp, paste("\\stackrel{\\rightarrow}{\\sf ",
attr(x[[k]][i], "names"), "}", sep = ""))
}
else {
ifelse(isTRUE(byties == TRUE) == TRUE,
tmp <- append(tmp, temp[l]), tmp <- append(tmp,
paste("->", "{", attr(x[[k]][i],
"names"), "}", sep = "")))
}
}
if (isTRUE(swp(temp[l], sep = sep) %in% x[[k]][[i]]) ==
TRUE) {
if (latex) {
tmp <- append(tmp, paste("\\stackrel{\\leftarrow}{\\sf ",
attr(x[[k]][i], "names"), "}", sep = ""))
}
else {
ifelse(isTRUE(byties == TRUE) == TRUE,
tmp <- append(tmp, swp(temp[l], sep = sep)),
tmp <- append(tmp, paste("<-", "{",
attr(x[[k]][i], "names"), "}", sep = "")))
}
}
}
}
}
rm(i)
if (isTRUE(byties == TRUE) == FALSE) {
tmp <- append(tmp, paste(" (", temp[l], ")",
sep = ""))
mixd[[q]] <- noquote(paste(tmp, collapse = " "))
}
else if (isTRUE(byties == TRUE) == TRUE) {
mixd[[q]] <- (paste0(tmp, collapse = sep2))
}
q <- q + 1L
tmp <- vector()
}
rm(l)
}
full <- list()
k <- 6L
if (length(unlist(x[[k]])) > 0) {
q <- 1L
temp <- men(levels(factor(unlist(x[[k]]))), sep = sep)
tmp <- vector()
for (l in seq_len(length(temp))) {
for (i in seq_len(length(x[[k]]))) {
if (isTRUE(length(x[[k]][[i]]) != 0) == TRUE) {
if (isTRUE(temp[l] %in% x[[k]][[i]]) == TRUE) {
if (latex) {
tmp <- append(tmp, paste("\\stackrel{",
"\\leftrightarrow}{\\sf ", attr(x[[k]][i],
"names"), "}", sep = ""))
}
else {
ifelse(isTRUE(byties == TRUE) == TRUE,
tmp <- append(tmp, c(temp[l], swp(temp[l],
sep = sep))), tmp <- append(tmp, paste("<->",
"{", attr(x[[k]][i], "names"), "}",
sep = "")))
}
}
}
}
rm(i)
if (isTRUE(byties == TRUE) == FALSE) {
tmp <- append(tmp, paste(" (", temp[l], ")",
sep = ""))
full[[q]] <- noquote(paste(tmp, collapse = " "))
}
else if (isTRUE(byties == TRUE) == TRUE) {
full[[q]] <- (paste0(tmp, collapse = sep2))
}
q <- q + 1L
tmp <- vector()
}
rm(l)
}
if (isTRUE(length(x) == 7L) == TRUE) {
loop <- list()
k <- 7L
if (length(unlist(x[[k]])) > 0) {
q <- 1L
for (i in seq_len(length(x[[k]]))) {
for (j in seq_len(length(x[[k]][[i]]))) {
if (isTRUE(length(x[[k]][[i]]) != 0) == TRUE) {
if (latex) {
if (isTRUE(is.null(attr(x[[k]], "names")) ==
FALSE)) {
loop[[q]] <- noquote(paste("\\stackrel{\\curvearrowright}{\\sf ",
attr(x[[k]][i], "names"), "} (", x[[k]][[i]][j],
")", sep = ""))
}
else {
loop[[q]] <- noquote(paste("\\stackrel{\\curvearrowright}{",
"R", "} (", x[[k]][[i]][j], ")", sep = ""))
}
}
else if (isTRUE(byties == TRUE) == TRUE) {
loop[[q]] <- x[[k]][[i]][j]
}
else {
if (isTRUE(is.null(attr(x[[k]], "names")) ==
FALSE)) {
loop[[q]] <- noquote(paste("o", "{",
attr(x[[k]][i], "names"), "} (", x[[k]][[i]][j],
")", sep = ""))
}
else {
loop[[q]] <- noquote(paste("o", "{",
"R", "} (", x[[k]][[i]][j], ")", sep = ""))
}
}
q <- q + 1L
}
}
rm(j)
}
rm(i)
}
}
ifelse(isTRUE(length(x) == 7L) == TRUE, bndl <- list(Asym = asym,
Recp = recp, Tent = tent, Txch = txch, Mixd = mixd, Full = full,
Loop = loop), bndl <- list(Asym = asym, Recp = recp,
Tent = tent, Txch = txch, Mixd = mixd, Full = full))
Bundles <- unlist(bndl)
if (latex) {
cat(paste("%% Produced by \"multiplex\"", paste("\"",
utils::packageDescription("multiplex")["Version"]$Version,
"\"", sep = ""), collapse = " \\\\\n"), file = file,
sep = "\n", append = TRUE)
cat(paste("\\documentclass{article}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
cat(paste("\\usepackage[landscape,a4paper]{geometry}",
collapse = "\n"), file = file, sep = "\n", append = TRUE)
if (isTRUE(length(bndl) == 7L) == TRUE) {
cat(paste("\\usepackage{amssymb}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
}
cat(paste("\\begin{document}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
cat(paste("\\pagestyle{empty}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
cat("", file = file, sep = "\n", append = TRUE)
cat(paste("\\setlength{\\tabcolsep}{5pt}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
cat(paste("\\begin{tabular}[t]{lllllll}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
cat("", file = file, sep = "\n", append = TRUE)
cat(paste("\\begin{tabular}[t]{l}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
cat(paste("\\normalsize{\\bf Asymmetric}:", length(bndl[[1]]),
sep = " "), file = file, append = TRUE)
cat("\\\\", file = file, sep = "\n", append = TRUE)
cat(paste("$", bndl[[1]], "$", sep = "", collapse = " \\\\\n"),
file = file, append = TRUE)
cat(" \\\\", file = file, sep = "\n", append = TRUE)
cat(paste("\\end{tabular}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
cat("&", file = file, sep = "\n", append = TRUE)
cat(paste("\\begin{tabular}[t]{l}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
cat(paste("\\normalsize{\\bf Reciprocal}:", length(bndl[[2]]),
sep = " "), file = file, append = TRUE)
cat("\\\\", file = file, sep = "\n", append = TRUE)
cat(paste("$", bndl[[2]], "$", sep = "", collapse = " \\\\\n"),
file = file, append = TRUE)
cat(" \\\\", file = file, sep = "\n", append = TRUE)
cat(paste("\\end{tabular}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
cat("&", file = file, sep = "\n", append = TRUE)
cat(paste("\\begin{tabular}[t]{l}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
cat(paste("\\normalsize{\\bf Tie Entrainment}:", length(bndl[[3]]),
sep = " "), file = file, append = TRUE)
cat("\\\\", file = file, sep = "\n", append = TRUE)
cat(paste("$", bndl[[3]], "$", sep = "", collapse = " \\\\\n"),
file = file, append = TRUE)
cat(" \\\\", file = file, sep = "\n", append = TRUE)
cat(paste("\\end{tabular}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
cat("&", file = file, sep = "\n", append = TRUE)
cat(paste("\\begin{tabular}[t]{l}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
cat(paste("\\normalsize{\\bf Tie Exchange}:", length(bndl[[4]]),
sep = " "), file = file, append = TRUE)
cat("\\\\", file = file, sep = "\n", append = TRUE)
cat(paste("$", bndl[[4]], "$", sep = "", collapse = " \\\\\n"),
file = file, append = TRUE)
cat(" \\\\", file = file, sep = "\n", append = TRUE)
cat(paste("\\end{tabular}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
cat("&", file = file, sep = "\n", append = TRUE)
cat(paste("\\begin{tabular}[t]{l}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
cat(paste("\\normalsize{\\bf Mixed}:", length(bndl[[5]]),
sep = " "), file = file, append = TRUE)
cat("\\\\", file = file, sep = "\n", append = TRUE)
cat(paste("$", bndl[[5]], "$", sep = "", collapse = " \\\\\n"),
file = file, append = TRUE)
cat(" \\\\", file = file, sep = "\n", append = TRUE)
cat(paste("\\end{tabular}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
cat("&", file = file, sep = "\n", append = TRUE)
cat(paste("\\begin{tabular}[t]{l}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
cat(paste("\\normalsize{\\bf Full}:", length(bndl[[6]]),
sep = " "), file = file, append = TRUE)
cat("\\\\", file = file, sep = "\n", append = TRUE)
cat(paste("$", bndl[[6]], "$", sep = "", collapse = " \\\\\n"),
file = file, append = TRUE)
cat(" \\\\", file = file, sep = "\n", append = TRUE)
cat(paste("\\end{tabular}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
if (isTRUE(length(bndl) == 7) == TRUE) {
cat("&", file = file, sep = "\n", append = TRUE)
cat(paste("\\begin{tabular}[t]{l}", collapse = "\n"),
file = file, sep = "\n", append = TRUE)
cat(paste("\\normalsize{\\bf Loops}:", length(bndl[[7]]),
sep = " "), file = file, append = TRUE)
cat("\\\\", file = file, sep = "\n", append = TRUE)
cat(paste("$", bndl[[7]], "$", sep = "", collapse = " \\\\\n"),
file = file, append = TRUE)
cat(" \\\\", file = file, sep = "\n", append = TRUE)
cat(paste("\\end{tabular}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
}
cat("", file = file, sep = "\n", append = TRUE)
cat(paste("\\end{tabular}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
cat("", file = file, sep = "\n", append = TRUE)
cat(paste("\\end{document}", collapse = "\n"), file = file,
sep = "\n", append = TRUE)
}
else {
if (isTRUE(byties == TRUE) == TRUE && isTRUE(length(ulx) !=
0) == TRUE) {
dfbndl <- as.data.frame(Bundles)
ltbndl <- list()
length(ltbndl) <- nrow(dfbndl)
for (i in seq_len(nrow(dfbndl))) {
ltbndl[[i]] <- dhc(as.vector(dfbndl[i, ]), sep = sep2)
}
rm(i)
attr(ltbndl, "names") <- attr(Bundles, "names")
return(ltbndl)
}
else {
return(as.data.frame(Bundles))
}
}
} |
pSeqStop <- function(p) {
m <- length(p)
int <- seq(1, m, 1)
pFDR <- cumsum(-log(1-p[int])) / int
pFWER <- rev(exp(cumsum(rev(log(p[int])) / rev(int)))) * (m / int)
out <- cbind.data.frame(pFWER, pFDR, p)
colnames(out) <- c("StrongStop", "ForwardStop", "UnAdjusted")
out
} |
context("estCdf & estQdf")
tol <- 1e-4
xx <- seq(-5, 5, length.out = 1e5)
test_that("estCdf works.", {
approxCdf <- estCdf(dnorm(xx))
trueCdf<- pnorm(xx)
expect_equal(
object = approxCdf,
expected = trueCdf,
tolerance = tol
)
})
test_that("estQdf works", {
d <- dnorm(xx)
p <- seq(0, 1, length.out = 21)
cEst <- estCdf(d)
approxQdf <- estQdf(p = p, x = xx, cdf = cEst)
trueQdf <- qnorm(p)
expect_equal(
object = approxQdf[-c(1, length(approxQdf))],
expected = trueQdf[-c(1, length(trueQdf))],
tolerance = tol
)
})
test_that("Normalize works", {
d <- dnorm(xx)
d0 <- normalize(d, xx)
expect_equal(
object = DstarM:::simpson(xx, d),
expected = 0.9999994,
label = "simpson integrates to approximately 1.",
tolerance = tol
)
expect_equal(
object = DstarM:::simpson(xx, d0),
expected = 1,
label = "After normalization integrates to 1.",
tolerance = tol
)
d1 <- normalize(d, xx, props = .5)
expect_equal(
object = DstarM:::simpson(xx, d1),
expected = .5,
label = "After normalization integrates to 0.5.",
tolerance = tol
)
}) |
a <- matrix(c(-3, 2,1, 1), byrow = TRUE, ncol = 2)
b <- matrix(c(0, 1), nrow = 2)
c <- matrix(c(1, -1), ncol=2)
q <- t(c)%*%c
r <- 3
res <- care(a,b,q,r)
X <- rbind( c(0.5895174, 1.821575), c(1.8215747, 8.818840))
L <- rbind(-3.502629, -1.436984)
G <- cbind(0.6071916, 2.939613)
context("CARE: (A, B, Q, R) test")
test_that("Alebraic Ricatti Equation Function matches expectation", {
expect_equal(res$X, X, tolerance = 1e-05)
expect_equal(res$L, L, tolerance = 1e-05)
expect_equal(res$G, G, tolerance = 1e-05)
})
X2 <- rbind( c(0.2949113, 0.5198625), c(0.5198625, 3.0197648))
L2 <- rbind(-3.605551, -1.414214)
G2 <- cbind(0.5198625, 3.019765)
res2 <- care(a,b,q)
context("CARE: (A, B, Q) test")
test_that("Alebraic Ricatti Equation Function matches expectation", {
expect_equal(res2$X, X2, tolerance = 1e-05)
expect_equal(res2$L, L2, tolerance = 1e-05)
expect_equal(res2$G, G2, tolerance = 1e-05)
}) |
test_that("data structure", {
skip_if_not(winch_available())
out <- winch_trace_back()
expect_s3_class(out, "data.frame")
expect_identical(names(out), c("func", "ip", "pathname"))
}) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
warning = FALSE,
message = FALSE,
fig.width = 7,
fig.height = 7
)
library(MazamaSpatialPlots)
head(example_US_stateObesity)
stateMap(
data = example_US_stateObesity,
parameter = 'obesityRate',
palette = 'BuPu',
breaks = seq(20, 38, 3),
stateBorderColor = 'white',
title = "Obesity Rate in U.S. States"
)
head(example_US_countyCovid)
countyMap(
data = example_US_countyCovid,
parameter = "cases",
breaks = c(0,100,200,500,1000,2000,5000,10000,20000,50000,1e6),
countyBorderColor = "white",
title = "COVID19 Cases in U.S. States"
) |
SL.mean <- function (Y, X, newX, family, obsWeights, id, ...)
{
meanY <- weighted.mean(Y, w = obsWeights)
pred <- rep.int(meanY, times = nrow(newX))
fit <- list(object = meanY)
out <- list(pred = pred, fit = fit)
class(out$fit) <- c("SL.mean")
return(out)
}
predict.SL.mean <- function (object, newdata, family, X = NULL, Y = NULL, ...)
{
pred <- rep.int(object$object, times = nrow(newdata))
return(pred)
} |
expected <- eval(parse(text="0L"));
test(id=0, code={
argv <- eval(parse(text="list(\"fanny.object.\", \"fanny.object\", 0L, FALSE)"));
.Internal(pmatch(argv[[1]], argv[[2]], argv[[3]], argv[[4]]));
}, o=expected); |
library(qtl2pleio)
context("calc_covs testing")
phe <- matrix(runif(200), ncol = 2)
sex <- matrix(rbinom(100, size = 1, prob = 1 / 2), ncol = 1)
calc_covs(phe, kinship = diag(100)) -> cc1
calc_covs(phe, kinship = diag(100), covariates = sex) -> cc2
phe3 <- matrix(runif(300), ncol = 3)
phe5 <- matrix(runif(500), ncol = 5)
test_that("calc_covs returns different answers when covariates are used vs. not used", {
expect_false(identical(cc1$Vg, cc2$Vg))
expect_false(identical(cc1$Ve, cc2$Ve))
})
test_that("calc_covs, when kinship is identity, has output that sums to give same result as cov()", {
expect_equal(round(cc1$Vg + cc1$Ve, 4), round(cov(phe), 4), )
})
test_that("calc_covs accommodates d-variate phenotype for d more than 2 & Vg = Ve when kinship is identity", {
expect_equal(calc_covs(phe3, diag(100))$Vg, calc_covs(phe3, diag(100))$Ve)
expect_equal(calc_covs(phe5, diag(100))$Vg, calc_covs(phe5, diag(100))$Ve)
expect_equal(calc_covs(phe5, diag(100), covariates = sex)$Vg, calc_covs(phe5, diag(100), covariates = sex)$Ve)
})
test_that("calc_covs outputs are full rank matrices", {
expect_equal(qr(calc_covs(phe3, diag(100))$Vg)$rank, 3)
expect_equal(qr(calc_covs(phe3, diag(100))$Ve)$rank, 3)
expect_equal(qr(calc_covs(phe5, diag(100))$Ve)$rank, 5)
expect_equal(qr(calc_covs(phe5, diag(100))$Vg)$rank, 5)
expect_equal(qr(calc_covs(phe3, diag(100), covariates = sex)$Vg)$rank, 3)
expect_equal(qr(calc_covs(phe3, diag(100), covariates = sex)$Ve)$rank, 3)
expect_equal(qr(calc_covs(phe5, diag(100), covariates = sex)$Ve)$rank, 5)
expect_equal(qr(calc_covs(phe5, diag(100), covariates = sex)$Vg)$rank, 5)
})
test_that("calc_covs outputs are symmetric", {
expect_true(isSymmetric(calc_covs(phe3, diag(100))$Vg, tol = 0.001))
expect_true(isSymmetric(calc_covs(phe3, diag(100))$Ve, tol = 0.001))
expect_true(isSymmetric(calc_covs(phe5, diag(100))$Vg, tol = 0.001))
expect_true(isSymmetric(calc_covs(phe5, diag(100))$Ve, tol = 0.001))
expect_true(isSymmetric(calc_covs(phe3, diag(100), covariates = sex)$Vg, tol = 0.001))
expect_true(isSymmetric(calc_covs(phe3, diag(100), covariates = sex)$Ve, tol = 0.001))
expect_true(isSymmetric(calc_covs(phe5, diag(100), covariates = sex)$Vg, tol = 0.001))
expect_true(isSymmetric(calc_covs(phe5, diag(100), covariates = sex)$Ve, tol = 0.001))
}) |
tucker_4wayna <-
function(data,nfac,naid=which(is.na(data)),maxit=500,
ctol=1e-4,Afixed=NULL,Bfixed=NULL,Cfixed=NULL,
Dfixed=NULL,Bstart=NULL,Cstart=NULL,Dstart=NULL){
xcx.nona <- sumsq(data, na.rm = TRUE)
data[naid] <- rnorm(length(naid))
xcx <- sum(data^2)
xdims <- dim(data)
Xa <- matrix(data,xdims[1],xdims[2]*xdims[3]*xdims[4])
if(is.null(Bfixed)){Xb <- matrix(aperm(data,perm=c(2,1,3,4)),xdims[2],xdims[1]*xdims[3]*xdims[4])}
if(is.null(Cfixed)){Xc <- matrix(aperm(data,perm=c(3,1,2,4)),xdims[3],xdims[1]*xdims[2]*xdims[4])}
if(is.null(Dfixed)){Xd <- matrix(aperm(data,perm=c(4,1,2,3)),xdims[4],xdims[1]*xdims[2]*xdims[3])}
if(is.null(Afixed)){
Aold <- svd(matrix(rnorm(xdims[1]*nfac[1]),xdims[1],nfac[1]),nu=nfac[1],nv=0)$u
} else {Aold <- Anew <- Afixed}
if(is.null(Bfixed)){
if(is.null(Bstart)){
Bold <- svd(matrix(rnorm(xdims[2]*nfac[2]),xdims[2],nfac[2]),nu=nfac[2],nv=0)$u
} else {Bold <- Bstart}
} else {Bold <- Bnew <- Bfixed}
if(is.null(Cfixed)){
if(is.null(Cstart)){
Cold <- svd(matrix(rnorm(xdims[3]*nfac[3]),xdims[3],nfac[3]),nu=nfac[3],nv=0)$u
} else {Cold <- Cstart}
} else {Cold <- Cnew <- Cfixed}
if(is.null(Dfixed)){
if(is.null(Dstart)){
Dold <- svd(matrix(rnorm(xdims[4]*nfac[4]),xdims[4],nfac[4]),nu=nfac[4],nv=0)$u
} else {Dold <- Dstart}
} else {Dold <- Dnew <- Dfixed}
vtol <- sseold <- xcx + ctol
iter <- 0
cflag <- NA
while(vtol>ctol && iter<maxit) {
if(is.null(Afixed)){ Anew <- svd(Xa%*%kronecker(Dold,kronecker(Cold,Bold)),nu=nfac[1],nv=0)$u }
if(is.null(Bfixed)){ Bnew <- svd(Xb%*%kronecker(Dold,kronecker(Cold,Anew)),nu=nfac[2],nv=0)$u }
if(is.null(Cfixed)){ Cnew <- svd(Xc%*%kronecker(Dold,kronecker(Bnew,Anew)),nu=nfac[3],nv=0)$u }
if(is.null(Dfixed)){ Dnew <- svd(Xd%*%kronecker(Cnew,kronecker(Bnew,Anew)),nu=nfac[4],nv=0)$u }
DkCkB <- kronecker(Dnew,kronecker(Cnew,Bnew))
Ga <- crossprod(Anew,Xa%*%DkCkB)
ssenew <- xcx - sum(rowSums(Ga^2))
vtol <- (sseold - ssenew) / xcx
Aold <- Anew
Bold <- Bnew
Cold <- Cnew
Dold <- Dnew
sseold <- ssenew
iter <- iter + 1
Xhat <- tcrossprod(Anew %*% Ga, DkCkB)
data[naid] <- Xhat[naid]
xcx <- sum(data^2)
Xa <- matrix(data,xdims[1],xdims[2]*xdims[3]*xdims[4])
if(is.null(Bfixed)){Xb <- matrix(aperm(data,perm=c(2,1,3,4)),xdims[2],xdims[1]*xdims[3]*xdims[4])}
if(is.null(Cfixed)){Xc <- matrix(aperm(data,perm=c(3,1,2,4)),xdims[3],xdims[1]*xdims[2]*xdims[4])}
if(is.null(Dfixed)){Xd <- matrix(aperm(data,perm=c(4,1,2,3)),xdims[4],xdims[1]*xdims[2]*xdims[3])}
}
ssenew <- sum((Xa-Xhat)^2)
Adf <- xdims[1]*nfac[1] - nfac[1]*(nfac[1]+1)/2
Bdf <- xdims[2]*nfac[2] - nfac[2]*(nfac[2]+1)/2
Cdf <- xdims[3]*nfac[3] - nfac[3]*(nfac[3]+1)/2
Ddf <- xdims[4]*nfac[4] - nfac[4]*(nfac[4]+1)/2
edf <- c(Adf,Bdf,Cdf,Ddf,prod(nfac))
pxdim <- prod(xdims)
GCV <- (ssenew/pxdim) / (1 - sum(edf)/pxdim)^2
Rsq <- 1 - ssenew / xcx.nona
if(is.na(cflag)){
if(vtol<=ctol){cflag <- 0} else {cflag <- 1}
}
names(edf) <- c("A","B","C","D","G")
tuck <- list(A=Anew,B=Bnew,C=Cnew,D=Dnew,G=array(Ga,dim=nfac),
SSE=ssenew,Rsq=Rsq,GCV=GCV,edf=edf,iter=iter,cflag=cflag)
return(tuck)
} |
context("Errors")
library(fairness)
data("compas")
compas$Two_yr_Recidivism_01 <- ifelse(compas$Two_yr_Recidivism == 'yes', 1, 0)
test_that("errors in acc_parity", {
expect_error(acc_parity(data = compas, outcome = "Two_yr_Recidivism_01", group = "ethnicity",
probs = NULL, preds = NULL,
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in dem_parity", {
expect_error(dem_parity(data = compas, outcome = "Two_yr_Recidivism_01", group = "ethnicity",
probs = NULL, preds = NULL,
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in equal_odds", {
expect_error(equal_odds(data = compas, outcome = "Two_yr_Recidivism_01", group = "ethnicity",
probs = NULL, preds = NULL,
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in fnr_parity", {
expect_error(fnr_parity(data = compas, outcome = "Two_yr_Recidivism_01", group = "ethnicity",
probs = NULL, preds = NULL,
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in fpr_parity", {
expect_error(fpr_parity(data = compas, outcome = "Two_yr_Recidivism_01", group = "ethnicity",
probs = NULL, preds = NULL,
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in mcc_parity", {
expect_error(mcc_parity(data = compas, outcome = "Two_yr_Recidivism_01", group = "ethnicity",
probs = NULL, preds = NULL,
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in npv_parity", {
expect_error(npv_parity(data = compas, outcome = "Two_yr_Recidivism_01", group = "ethnicity",
probs = NULL, preds = NULL,
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in pred_rate_parity", {
expect_error(pred_rate_parity(data = compas, outcome = "Two_yr_Recidivism_01", group = "ethnicity",
probs = NULL, preds = NULL,
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in prop_parity", {
expect_error(prop_parity(data = compas, outcome = "Two_yr_Recidivism_01", group = "ethnicity",
probs = NULL, preds = NULL,
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in spec_parity", {
expect_error(spec_parity(data = compas, outcome = "Two_yr_Recidivism_01", group = "ethnicity",
probs = NULL, preds = NULL,
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in acc_parity, no outcome", {
expect_error(acc_parity(data = compas, group = "ethnicity",
probs = NULL, preds = "predicted",
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in acc_parity, no outcome", {
expect_error(acc_parity(data = compas, group = "ethnicity",
probs = NULL, preds = "predicted",
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in equal_odds, no outcome", {
expect_error(equal_odds(data = compas, group = "ethnicity",
probs = NULL, preds = "predicted",
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in fnr_parity, no outcome", {
expect_error(fnr_parity(data = compas, group = "ethnicity",
probs = NULL, preds = "predicted",
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in fpr_parity, no outcome", {
expect_error(fpr_parity(data = compas, group = "ethnicity",
probs = NULL, preds = "predicted",
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in mcc_parity, no outcome", {
expect_error(mcc_parity(data = compas, group = "ethnicity",
probs = NULL, preds = "predicted",
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in npv_parity, no outcome", {
expect_error(npv_parity(data = compas, group = "ethnicity",
probs = NULL, preds = "predicted",
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in pred_rate_parity, no outcome", {
expect_error(pred_rate_parity(data = compas, group = "ethnicity",
probs = NULL, preds = "predicted",
cutoff = 0.5, base = "Caucasian"))})
test_that("errors in spec_parity, no outcome", {
expect_error(spec_parity(data = compas, group = "ethnicity",
probs = NULL, preds = "predicted",
cutoff = 0.5, base = "Caucasian"))}) |
context("Parsing Zonation input files")
options <- get_options()
test_that("Parsing a bat file works", {
bat.file <- options$bat.file
faulty.bat.file <- file.path(dirname(bat.file), "wrong.bat")
if (.Platform$OS.type == "unix") {
correct.sequence <- c("zig4", "-r",
"01/01.dat",
"01/01.spp",
"01/01_out/01.txt",
"0.0", "0", "1.0", "0",
"--grid-output-formats=compressed-tif",
"--image-output-formats=png")
} else {
correct.sequence <- c("call", "zig4.exe", "-r",
"01/01.dat",
"01/01.spp",
"01/01_out/01.txt",
"0.0", "0", "1.0", "0",
"--grid-output-formats=compressed-tif",
"--image-output-formats=png")
}
expect_identical(parse_bat(bat.file), paste(correct.sequence, collapse = " "))
if (.Platform$OS.type == "unix") {
correct.sequence[1] <- "zig4"
expect_identical(parse_bat(bat.file, exe = "zig4"),
paste(correct.sequence, collapse = " "))
} else {
correct.sequence[2] <- "zig4.exe"
expect_identical(parse_bat(bat.file, exe = "zig4.exe"),
paste(correct.sequence, collapse = " "))
}
})
test_that("Parsing an ini file (dat) works", {
dat.file <- options$dat.file
faulty.dat.file <- file.path(dirname(dat.file), "wrong.bat")
suppressWarnings(expect_error(read_dat(faulty.dat.file),
"(dat-file).+(not found!)",
info = "Error raised should name the dat file"))
bat.file <- options$bat.file
suppressWarnings(expect_error(read_dat(bat.file),
"(dat-file).+(doesn't seem to have any section headers.).+",
info = "Error raised should name the dat file"))
correct.data <- list()
correct.data[["Settings"]] <- list()
correct.data[["Settings"]][["removal rule"]] <- "1"
correct.data[["Settings"]][["warp factor"]] <- "100"
correct.data[["Settings"]][["edge removal"]] <- "1"
correct.data[["Settings"]][["annotate name"]] <- "0"
correct.data[["Settings"]][["use groups"]] <- "1"
correct.data[["Settings"]][["groups file"]] <- "01/01_groups.txt"
expect_equal(read_dat(dat.file), correct.data,
info = "Data parsed from dat file is not correct")
})
test_that("Parsing a valid groups file works", {
groups.file <- options$groups.file
groups.data <- read_groups(groups.file)
expect_true(is.data.frame(groups.data),
"Groups data read in not a data frame")
correct.data <- data.frame(output.group = c(1, 2, 2, 1, 2, 1, 1),
condition.group = -1,
retention.group = -1,
retention.mode = 1,
local.edge.correct.group = -1)
expect_true(all(names(groups.data) == names(correct.data)),
paste("Groups data names no what expected:",
paste(names(groups.data), collapse = " ")))
expect_true(all(groups.data == correct.data),
"Groups data does not correspond to expectations")
})
test_that("Parsing an invalid groups file works", {
groups.file <- system.file("extdata/tutorial/basic", "invalid_groups.txt",
package = "zonator")
expect_error(groups.data <- read_groups(groups.file),
info = "Invalid groups file should throw an error")
})
test_that("Parsing an unpopulated spp file works", {
spp.file <- system.file("extdata", "template.spp",
package = "zonator")
suppressWarnings(spp.data <- read_spp(spp.file))
expect_true(is.data.frame(spp.data),
"Spp data read in not a data frame")
expect_true(all(dim(spp.file) == c(0, 0)),
"Spp data should have dim c(0,0)")
})
test_that("Parsing a populated spp file works", {
spp.file <- options$spp.file
correct.data <- data.frame(weight = 1,
alpha = c(1.0, 0.5, 0.25, 0.75, 0.50, 1.50, 1.0),
bqp = 1,
bqp_p = 1,
cellrem = 1,
filepath = paste0("../data/species", 1:7, ".tif"),
stringsAsFactors = FALSE)
spp.data <- read_spp(spp.file)
expect_true(is.data.frame(spp.data),
"Spp data read in not a data frame")
expect_true(all(names(spp.data) == names(correct.data)),
paste("Spp data names no what expected:",
paste(names(spp.data), collapse = " ")))
expect_true(all(spp.data == correct.data),
"Spp data does not correspond to expectations")
}) |
suppressPackageStartupMessages(library(vegdata))
tmp <- tempdir()
options(tv_home = tmp)
dir.create(file.path(tmp, 'Species'))
dir.create(file.path(tmp, 'Popup'))
dir.create(file.path(tmp, 'Data'))
file.copy(from = file.path(path.package("vegdata"), 'tvdata', 'Popup'), to = tmp, recursive = TRUE)
file.copy(from = file.path(path.package("vegdata"), 'tvdata', 'Species'), to = tmp, recursive = TRUE)
file.copy(from = file.path(path.package("vegdata"), 'tvdata', 'Data'), to = tmp, recursive = TRUE)
library(eHOF)
library(vegdata)
db <- 'elbaue'
site <- tv.site(db)
veg <- tv.veg(db, taxval = FALSE, spcnames = 'Numbers')
obs <- tv.obs(db)
taxa <- tax('all')
names(veg) <- sub('.0', '', names(veg), fixed=TRUE)
for(i in 1:ncol(veg)) names(veg)[i] <- as.character(taxa$LETTERCODE[match(as.numeric(names(veg)[i]), taxa$TaxonUsageID)])
veg.sqrt <- tv.veg(db, cover.transform='sqrt', tax=FALSE, spcnames='Numbers')
names(veg.sqrt) <- sub('.0', '', names(veg.sqrt), fixed=TRUE)
names(veg.sqrt) <- taxa$LETTERCODE[match(names(veg.sqrt), taxa$TaxonUsageID)]
veg.pa <- tv.veg(db, cover.transform='pa', tax=FALSE, spcnames='Numbers')
names(veg.pa) <- sub('.0', '', names(veg.pa), fixed=TRUE)
names(veg.pa) <- taxa$LETTERCODE[match(names(veg.pa), taxa$TaxonUsageID)]
data(acre)
sel <- c('ELYMREP', 'VEROPES', 'CONSREG', 'DESUSOP', 'VEROARV', 'ARTE
mo <- HOF(acre[match(sel, names(acre))], acre.env$PH_KCL, M=1, bootstrap=NULL)
par(mar=c(4,4,1,1)+.1)
autolayout(7)
par(mar=c(4,4,1,1)+.1)
for(i in 1:7) plot(mo[[i]], model = eHOF.modelnames[i], marginal ='n')
mods <- HOF(veg, site$MGL, M=100, family = poisson, bootstrap = NULL)
mods
mods.sq <- HOF(veg.sqrt, site$MGL, M=10, family= poisson, freq.limit=10, bootstrap=NULL)
plot(mods.sq)
mods.pa <- HOF(veg.pa, site$MGL, M=1, bootstrap=NULL)
plot(mods.pa)
lRP <- taxa$LETTERCODE[taxa$TaxonName == 'Ranunculus repens']
plot(mods.pa[[lRP]], para=TRUE, onlybest=FALSE)
mod.sqrt <- HOF(veg.sqrt[[lRP]], site$MGL, M=10, family=poisson, bootstrap = 10)
plot(mod.sqrt, marginal='point', para=TRUE, onlybest=FALSE, newdata=seq(min(mod.sqrt$range), max(mod.sqrt$range), length.out=10000) )
Para(mod.sqrt) |
library(tidymodels)
library(nycflights13)
library(doMC)
library(rlang)
library(xgboost)
library(vctrs)
library(embed)
library(rstanarm)
num_resamples <- 5
num_grid <- 10
num_cores <- 3
preproc <- "expensive preprocessing"
par_method <- "everything"
set.seed(123)
flight_data <-
flights %>%
mutate(
arr_delay = ifelse(arr_delay >= 30, "late", "on_time"),
arr_delay = factor(arr_delay),
date = as.Date(time_hour)
) %>%
inner_join(weather, by = c("origin", "time_hour")) %>%
select(dep_time, flight, origin, dest, air_time, distance,
carrier, date, arr_delay, time_hour) %>%
na.omit() %>%
mutate_if(is.character, as.factor) %>%
sample_n(4000)
flights_rec <-
recipe(arr_delay ~ ., data = flight_data) %>%
update_role(flight, time_hour, new_role = "ID") %>%
step_date(date, features = c("dow", "month")) %>%
step_holiday(date, holidays = timeDate::listHolidays("US")) %>%
step_rm(date) %>%
step_mutate(flight = as.factor(flight)) %>%
step_lencode_bayes(flight, outcome = vars(arr_delay)) %>%
step_dummy(all_nominal_predictors()) %>%
step_zv(all_predictors())
xgboost_spec <-
boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(),
loss_reduction = tune(), sample_size = tune()) %>%
set_mode("classification") %>%
set_engine("xgboost")
if (preproc != "no preprocessing") {
xgboost_workflow <-
workflow() %>%
add_recipe(flights_rec) %>%
add_model(xgboost_spec)
set.seed(33)
bt <- bootstraps(flight_data, times = num_resamples)
} else {
xgboost_workflow <-
workflow() %>%
add_variables(arr_delay, predictors = c(everything())) %>%
add_model(xgboost_spec)
set.seed(33)
bt <- bootstraps(preproc_data, times = num_resamples)
}
set.seed(22)
xgboost_grid <-
xgboost_workflow %>%
parameters() %>%
update(trees = trees(c(100, 2000))) %>%
grid_max_entropy(size = num_grid)
if (num_cores > 1) {
registerDoMC(cores=num_cores)
}
roc_res <- metric_set(roc_auc)
ctrl <- control_grid(parallel_over = par_method)
grid_time <- system.time({
set.seed(99)
xgboost_workflow %>%
tune_grid(bt, grid = xgboost_grid, metrics = roc_res, control = ctrl)
})
times <- tibble::tibble(
elapsed = grid_time[3],
num_resamples = num_resamples,
num_grid = num_grid,
num_cores = num_cores,
preproc = preproc,
par_method = par_method
)
save(times, file = paste0("xgb_", num_cores, format(Sys.time(), "_%Y_%m_%d_%H_%M_%S.RData")))
sessioninfo::session_info()
if (!interactive()) {
q("no")
} |
context("columns")
source('helpers.R')
test_that("Columns identical across old and new sources", {
skip_on_cran()
g1 <- fast_scraper(game_ids[1])
g2 <- fast_scraper(game_ids[2])
expect_identical(names(g1), names(g2))
}) |
context("stat-alluvium")
test_that("`stat_alluvium` weights computed variables but drops weight", {
data <- expand.grid(alluvium = letters[1:3], x = 1:2)
data$stratum <- LETTERS[c(1, 1, 2, 1, 2, 2)]
data$y <- c(1, 1, 1, 1, 1, 2)
data$weight <- c(.5, 1, 1, .5, 1, 1)
comp <- StatAlluvium$compute_panel(data)
comp <- comp[with(comp, order(x, alluvium)), ]
expect_equivalent(comp$n, c(0.5, 1, 1, 0.5, 1, 1))
expect_equivalent(comp$count, c(0.5, 1, 1, 0.5, 1, 2))
expect_equivalent(comp$prop, c(c(1, 2, 2) / 5, c(1, 2, 4) / 7))
expect_equal(comp$lode, factor(rep(letters[1:3], times = 2)))
expect_null(comp$weight)
data$stratum <- LETTERS[c(1, 1, 2)]
comp <- StatAlluvium$compute_panel(data, cement.alluvia = TRUE)
comp <- comp[with(comp, order(x, alluvium)), ]
expect_equivalent(comp$n, c(1.5, 1, 1.5, 1))
expect_equivalent(comp$count, c(1.5, 1, 1.5, 2))
expect_equivalent(comp$prop, c(c(3, 2) / 5, c(3, 4) / 7))
expect_equal(comp$lode, rep(factor(letters[1:3])[c(1, 3)], times = 2))
expect_null(comp$weight)
})
test_that("`stat_alluvium` orders alluvia without regard to negative values", {
data <- expand.grid(alluvium = letters[1:2], x = 1:2)
data$stratum <- LETTERS[1]
data$y <- c(-1, -1)
comp <- StatAlluvium$compute_panel(data)
expect_identical(comp[with(comp, order(x, alluvium)), ]$y,
c(-0.5, -1.5, -0.5, -1.5))
comp <- StatAlluvium$compute_panel(data, absolute = FALSE)
expect_identical(comp[with(comp, order(x, alluvium)), ]$y,
c(-0.5, -1.5, -0.5, -1.5))
})
test_that("`stat_alluvium` orders alluvia correctly according to `aes.bind`", {
data <- expand.grid(alluvium = letters[1:4], x = 1:2)
data$stratum <- LETTERS[1:2][c(1, 1, 2, 2, 2, 2, 2, 1)]
data$y <- 1
data$fill <- c("red", "blue", "blue", "blue")
comp <- StatAlluvium$compute_panel(data)
expect_identical(comp[with(comp, order(x, alluvium)), ]$y,
c(3.5, 2.5, 0.5, 1.5, 2.5, 1.5, 0.5, 3.5))
comp <- StatAlluvium$compute_panel(data, aes.bind = "flows")
expect_identical(comp[with(comp, order(x, alluvium)), ]$y,
c(2.5, 3.5, 0.5, 1.5, 1.5, 2.5, 0.5, 3.5))
comp <- StatAlluvium$compute_panel(data, aes.bind = "alluvia")
expect_identical(comp[with(comp, order(x, alluvium)), ]$y,
c(2.5, 3.5, 0.5, 1.5, 0.5, 2.5, 1.5, 3.5))
})
test_that("`stat_flow` handles exceptional data with out errors", {
data(Refugees, package = "alluvial")
refugees_sub <- subset(Refugees, year %in% c(2003, 2005, 2010, 2013))
gg <- ggplot(refugees_sub, aes(x = year, y = refugees, alluvium = country)) +
geom_alluvium(aes(fill = country))
expect_silent(ggplot_build(gg))
}) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
backup_option <- options()
base_wd <- getwd()
options(rgl.useNULL=TRUE)
library(spNetwork)
library(rgeos)
library(sp)
library(maptools)
library(rgl)
library(FNN)
wkt_lines <- c(
"LINESTRING (0 0, 1 0)", "LINESTRING (1 0, 2 0)", "LINESTRING (2 0, 3 0)",
"LINESTRING (0 1, 1 1)", "LINESTRING (1 1, 2 1)", "LINESTRING (2 1, 3 1)",
"LINESTRING (0 2, 1 2)", "LINESTRING (1 2, 2 2)", "LINESTRING (2 2, 3 2)",
"LINESTRING (0 3, 1 3)", "LINESTRING (1 3, 2 3)", "LINESTRING (2 3, 3 3)",
"LINESTRING (0 0, 0 1)", "LINESTRING (0 1, 0 2)", "LINESTRING (0 2, 0 3)",
"LINESTRING (1 0, 1 1)", "LINESTRING (1 1, 1 2)", "LINESTRING (1 2, 1 3)",
"LINESTRING (2 0, 2 1)", "LINESTRING (2 1, 2 2)", "LINESTRING (2 2, 2 3)",
"LINESTRING (3 0, 3 1)", "LINESTRING (3 1, 3 2)", "LINESTRING (3 2, 3 3)"
)
linesdf <- data.frame(wkt = wkt_lines,
id = paste("l",1:length(wkt_lines),sep=""))
geoms <- do.call(rbind,lapply(1:nrow(linesdf),function(i){
txt <- as.character(linesdf[i,]$wkt)
geom <- rgeos::readWKT(txt,id=i)
return(geom)
}))
all_lines <- sp::SpatialLinesDataFrame(geoms, linesdf,match.ID = F)
event <- data.frame(x=c(1),
y=c(1.5))
sp::coordinates(event) <- cbind(event$x,event$y)
par(mar=c(0.1,0.1,0.1,0.1))
sp::plot(all_lines)
sp::plot(event,add=T,col="red",pch = 19)
d3_plot_situation <- function(lines, events, pt_samples, densities, scales){
open3d(scale=scales)
densities < round(densities,7)
XY1 <- coordinates(pt_samples)
XY2 <- coordinates(events)
idx <- knnx.index(XY1, query = XY2, k = 1)
events$dens <- densities[idx]
events$x <- XY2[,1]
events$y <- XY2[,2]
eidx <- do.call(c,lapply(1:nrow(events), function(i){c(i,i)}))
vert_lines <- events@data[eidx,]
vert_lines$dens <- ifelse(1:nrow(vert_lines)%%2 == 0, vert_lines$dens,0)
line_coords <- do.call(rbind,unlist(coordinates(lines), recursive = FALSE))
sample_coords <- coordinates(pt_samples)
segments3d(x=line_coords[,1],
y=line_coords[,2],
z=rep(0, nrow(line_coords)))
segments3d(x=vert_lines$x,
y=vert_lines$y,
z=vert_lines$dens,
col = "red")
coords_events <- coordinates(events)
points3d(
x = coords_events[,1],
y = coords_events[,2],
z = rep(0,nrow(event)),
col = "red",
size = 5
)
points3d(
x = sample_coords[,1],
y = sample_coords[,2],
z = densities,
col = "blue"
)
axes3d()
title3d(xlab="X",ylab="Y",zlab="Z")
}
knitr::knit_hooks$set(webgl = hook_webgl)
samples_pts <- lines_points_along(all_lines,0.01)
simple_kernel <- nkde(all_lines, event, w = 1,
samples = samples_pts, kernel_name = "quartic",
bw = 2, method = "simple", div = "bw",
digits = 3, tol = 0.001, grid_shape = c(1,1),
check = FALSE,
verbose = FALSE)
d3_plot_situation(all_lines, event, samples_pts, simple_kernel, scales = c(1,1,3))
discontinuous_kernel <- nkde(all_lines, event, w = 1,
samples = samples_pts, kernel_name = "quartic",
bw = 2, method = "discontinuous", div = "bw",
digits = 3, tol = 0.001, grid_shape = c(1,1),
check = FALSE,
verbose = FALSE)
d3_plot_situation(all_lines, event, samples_pts, discontinuous_kernel, scales = c(1,1,3))
continuous_kernel <- nkde(all_lines, event, w = 1,
samples = samples_pts, kernel_name = "quartic",
bw = 2, method = "continuous", div = "bw",
digits = 3, tol = 0.001, grid_shape = c(1,1),
check = FALSE,
verbose = FALSE)
d3_plot_situation(all_lines, event, samples_pts, continuous_kernel, scales = c(1,1,3))
events <- data.frame(x=c(1,2),
y=c(1.5,1.5))
sp::coordinates(events) <- cbind(events$x,events$y)
continuous_kernel <- nkde(all_lines, events, w = 1,
samples = samples_pts, kernel_name = "quartic",
bw = 1.3, method = "continuous", div = "bw",
digits = 3, tol = 0.001, grid_shape = c(1,1),
check = FALSE,
verbose = FALSE)
d3_plot_situation(all_lines, events, samples_pts, continuous_kernel, scales = c(1,1,3))
continuous_kernel <- nkde(all_lines, events, w = 1,
samples = samples_pts, kernel_name = "quartic",
bw = 1.6, method = "continuous", div = "bw",
digits = 3, tol = 0.001, grid_shape = c(1,1),
check = FALSE,
verbose = FALSE)
d3_plot_situation(all_lines, events, samples_pts, continuous_kernel, scales = c(1,1,3))
options(backup_option)
setwd(base_wd)
oldpar <- par(mfrow = c(1,2))
par(oldpar) |
test_that("cusum_control_median works", {
test_vec <- c(1,1,2,11,3,5,7,2,4,3,5)
x <- c(1,1,2,11,3,5,7,2,4,3,5)
target <- c(3,3,3,3,3,3,3,3,3,3,3)
variance <- c(-2, -2, -1, 8,0,2,4,-1,1,0,2)
std_dev <- c(2.8368794, 2.8368794, 2.8368794, 2.8368794, 2.8368794, 2.8368794,
2.8368794, 2.8368794, 2.8368794, 2.8368794, 2.8368794)
cusum <- c(-2, -4, -5, 3, 3, 5, 9, 8, 9, 9, 11)
cplus <- c(0, 0, 0, 6.58156028, 5.16312057, 5.74468085, 8.32624113, 5.90780142,
5.48936170, 4.07092199, 4.652482)
cneg <- c(-0.58156028, -1.16312057, -0.74468085, 0, 0, 0, 0, 0, 0, 0,0)
cum_nplus <- c(0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8)
cum_nneg <- c(1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0)
ucl <- rep(11.34752,11)
ucl <- round(ucl,3)
lcl <- rep(-11.34752,11)
lcl <- round(lcl,3)
centre <- 0
obs <- 1:11
output <- data.frame(x, target, variance,std_dev, cusum, cplus, cneg,
cum_nplus,cum_nneg,ucl,lcl,centre,obs)
res <- cusum_control_median(test_vec)
res$ucl <- round(res$ucl,3)
res$lcl <- round(res$lcl,3)
expect_equal(output, res)
})
test_that("non numeric vector fails", {
test_vec3 <- as.character(c(1,1,2,11,3,5,7,2,4,3,5))
expect_error(cusum_control_median(test_vec3, target = 5))
})
test_that("na elements fail", {
test_vec3 <- c(0.175, NA, 0.15, 0.207, 0.136, NA, 0.166)
expect_error(cusum_control_median(test_vec3, target = 0.16))
})
test_that("high k generates warning",{
test_vec <- c(1,1,2,11,3,5,7,2,4,3,5)
expect_warning(cusum_control_median(test_vec,k = 2))
})
test_that("high h generates warning",{
test_vec <- c(1,1,2,11,3,5,7,2,4,3,5)
expect_warning(cusum_control_median(test_vec, h = 6))
})
test_that("k = NULL generates message", {
test_vec <- c(1,1,2,11,3,5,7,2,4,3,5)
expect_message(cusum_control_median(test_vec,
target = 4,
k = NULL,
h = 5),
"k was not supplied so using 0.5 as a default")
})
test_that("h = NULL generates message", {
test_vec <- c(1,1,2,11,3,5,7,2,4,3,5)
expect_message(cusum_control_median(test_vec,
target = 4,
k = 1,
h = NULL),
"h was not supplied so using 4 as a default")
})
test_that("target value propagates", {
test_vec <- c(1,1,2,11,3,5,7,2,4,3,5)
target1 <- rep(6,11)
res <- cusum_control_median(test_vec,target = 6)
expect_equal(target1,res$target)
}) |
regpolca_penalty_fun <- function(x, regular_grouped, I, partable,
combis_classes_list, regular_lam, eps, penalty_used, Ni,
combis_categ_list, fuse_categories, K)
{
pen <- 0
if (regular_grouped=="none"){
for (ii in 1L:I){
x_ii <- x[ partable$itemnr==ii ]
a1 <- regpolca_penalty_fun_value_nongrouped(x_ii=x_ii,
combis_ii=combis_classes_list[[ii]],
regular_lam=regular_lam[1],
eps=eps, penalty_used=penalty_used)
pen <- pen + Ni[ii]*sum(a1)
}
for (ii in 1L:I){
if (fuse_categories[ii]){
x_ii <- x[ partable$itemnr==ii ]
a1 <- regpolca_penalty_fun_value_nongrouped(x_ii=x_ii,
combis_ii=combis_categ_list[[ii]],
regular_lam=regular_lam[2],
eps=eps, penalty_used=penalty_used)
pen <- pen + Ni[ii]*sum(a1)
}
}
} else {
for (ii in 1L:I){
x_ii <- x[ partable$itemnr==ii ]
combis_ii <- combis_categ_list[[ii]]
nc <- nrow(combis_ii)
a1 <- 0
if (regular_grouped=="class"){
K1 <- max(combis_ii$cat_pair)
for (kk in 1:K1){
cii_kk <- combis_ii[ seq(kk,nc,by=nc/K), ]
a2 <- regpolca_penalty_fun_value_grouped(x_ii=x_ii,
combis_ii=cii_kk, regular_lam=regular_lam[1],
eps=eps, penalty_used=penalty_used)
a1 <- a1 + a2
}
}
if (regular_grouped=="categ"){
for (kk in 1:K){
cii_kk <- combis_ii[ combis_ii$class==kk, ]
a2 <- regpolca_penalty_fun_value_grouped(x_ii=x_ii,
combis_ii=cii_kk, regular_lam=regular_lam[1],
eps=eps, penalty_used=penalty_used)
a1 <- a1 + a2
}
}
pen <- pen + Ni[ii]*sum(a1)
}
}
return(pen)
} |
is_keyed_by_columns <- function(d, keys) {
if(length(keys)<1) {
return(nrow(d)<=1)
}
dt <- as.data.table(d)
dt <- dt[ , j = list(RQDATATABLE_TMP = 1), by = keys ]
return(nrow(dt)==nrow(d))
}
ex_data_table_step.relop_project <- function(optree,
...,
tables = list(),
source_usage = NULL,
source_limit = NULL,
env = parent.frame()) {
force(env)
wrapr::stop_if_dot_args(substitute(list(...)), "rqdatatable::ex_data_table_step.relop_project")
n <- length(optree$parsed)
if(is.null(source_usage)) {
source_usage <- columns_used(optree)
}
x <- ex_data_table_step(optree$source[[1]],
tables = tables,
source_usage = source_usage,
source_limit = source_limit,
env = env)
byi <- ""
if(length(optree$groupby)>0) {
pterms <- paste0("\"", optree$groupby, "\"")
byi <- paste0(" , by = c(", paste(pterms, collapse = ", "), ")")
}
tmpnam <- ".rquery_ex_project_tmp"
tmpenv <- patch_global_child_env(env)
assign(tmpnam, x, envir = tmpenv)
cols_to_remove <- character(0)
rqdatatable_temp_one_col <- NULL
if(n>0) {
prepped <- prepare_prased_assignments_for_data_table(optree$parsed)
enames <- prepped$enames
eexprs <- prepped$eexprs
if(prepped$need_one_col) {
x[ , rqdatatable_temp_one_col := 1.0]
}
cols_to_remove <- "rqdatatable_temp_one_col"
} else {
enames <- "RQDATATABLE_FAKE_COL"
eexprs <- "1"
cols_to_remove <- enames
need_one_col <- FALSE
}
src <- paste0(tmpnam, "[ ",
" , j = list(", paste(paste(enames, "=", eexprs), collapse = ", "), ") ",
byi,
" ]")
expr <- parse(text = src)
res <- eval(expr, envir = tmpenv, enclos = tmpenv)
cols_to_remove <- intersect(cols_to_remove, colnames(res))
if(length(cols_to_remove)>0) {
res[, (cols_to_remove) := NULL]
}
if(!is_keyed_by_columns(res, optree$groupby)) {
stop("project: result was not keyed by groubpy columns, likely unaggregated columns in calculation")
}
res
} |
library(sand)
data(hc)
head(hc)
ID.stack <- c(hc$ID1,hc$ID2)
Status.stack <- c(as.character(hc$S1),
as.character(hc$S2))
my.t <- table(ID.stack,Status.stack)
v.status <- character(nrow(my.t))
for(i in (1:length(v.status))){
v.status[i] <- names(which(my.t[i,]!=0))
}
table(v.status)
status.t <- table(hc$S1,hc$S2)
status.t <- status.t + t(status.t)
diag(status.t) <- round(diag(status.t)/2)
status.t
tmp.es <- paste(hc$S1,"-",hc$S2,sep="")
e.status <- character(dim(hc)[[1]])
e.status[tmp.es=="ADM-ADM"] <- "ADM-ADM"
e.status[tmp.es=="MED-MED"] <- "MED-MED"
e.status[tmp.es=="NUR-NUR"] <- "NUR-NUR"
e.status[tmp.es=="PAT-PAT"] <- "PAT-PAT"
e.status[(tmp.es=="ADM-MED") |
(tmp.es=="MED-ADM")] <- "ADM-MED"
e.status[(tmp.es=="ADM-NUR") |
(tmp.es=="NUR-ADM")] <- "ADM-NUR"
e.status[(tmp.es=="ADM-PAT") |
(tmp.es=="PAT-ADM")] <- "ADM-PAT"
e.status[(tmp.es=="MED-NUR") |
(tmp.es=="NUR-MED")] <- "MED-NUR"
e.status[(tmp.es=="MED-PAT") |
(tmp.es=="PAT-MED")] <- "MED-PAT"
e.status[(tmp.es=="NUR-PAT") |
(tmp.es=="PAT-NUR")] <- "NUR-PAT"
my.hc <- data.frame(Time = hc$Time/(60*60),
ID1 = hc$ID1,
ID2 = hc$ID2,
Status = e.status)
library(lattice)
histogram(~Time|Status, data=my.hc, xlab="Hours",
layout=c(5,2))
vids <- sort(unique(c(hc$ID1, hc$ID2)))
g.week <- graph_from_data_frame(hc[, c("ID1", "ID2",
"Time")], vertices=data.frame(vids),
directed=FALSE)
E(g.week)$Time <- E(g.week)$Time / (60 * 60)
summary(g.week)
status <- unique(rbind(data.frame(id=hc$ID1,
status=hc$S1), data.frame(id=hc$ID2, status=hc$S2)))
V(g.week)$Status <-
as.character(status[order(status[,1]),2])
E(g.week)$weight <- 1
g.week.wgtd <- simplify(g.week)
summary(g.week.wgtd)
is_simple(g.week.wgtd)
summary(E(g.week.wgtd)$weight)
g.week.96 <- subgraph.edges(g.week,
E(g.week)[Time <= 96])
g.sl12 <- lapply(1:8, function(i) {
g <- subgraph.edges(g.week,
E(g.week)[Time > 12*(i-1) &
Time <= 12*i],
delete.vertices=FALSE)
simplify(g)
})
sapply(g.sl12,vcount)
sapply(g.sl12,ecount)
library(networkDynamic)
hc.spls <- cbind((hc$Time-20)/(60*60),
hc$Time/(60*60),
hc$ID1,hc$ID2)
hc.dn <- networkDynamic(edge.spells=hc.spls)
is.active(hc.dn,onset=0,terminus=1,e=c(1))
is.active(hc.dn,onset=1,terminus=2,e=c(1))
get.edge.activity(hc.dn,e=c(1))
get.edge.activity(hc.dn,e=c(10))
g.sl12.dN <- get.networks(hc.dn,start=0,end=96,
time.increment=12)
hc.dn.df <- as.data.frame(hc.dn)
names(hc.dn.df)
summary(hc.dn.df$duration)
detach(package:networkDynamic)
set.seed(42)
l = layout_with_fr(g.week.wgtd)
v.cols <- character(75)
v.cols[V(g.week.wgtd)$Status=="ADM"] <- "yellow"
v.cols[V(g.week.wgtd)$Status=="MED"] <- "blue"
v.cols[V(g.week.wgtd)$Status=="NUR"] <- "green"
v.cols[V(g.week.wgtd)$Status=="PAT"] <- "black"
plot(g.week.wgtd, layout=l, vertex.size=3,
edge.width=2*(E(g.week.wgtd)$weight)/100,
vertex.color=v.cols,vertex.label=NA,)
opar <- par()
par(mfrow=c(2,4),
mar=c(0.5, 0.5, 0.5, 0.5),
oma=c(0.5, 1.0, 0.5, 0))
for(i in (1:8)) {
plot(g.sl12[[i]], layout=l, vertex.size=5,
edge.width=2*(E(g.week.wgtd)$weight)/1000,
vertex.color=v.cols,vertex.label=NA)
title(paste(12*(i-1),"to",12*i,"hrs"))
}
par(opar)
tmp.es <- paste(v.status[hc.dn.df$tail],"-",
v.status[hc.dn.df$head],sep="")
mycols <- numeric(nrow(hc.dn.df))
mycols[tmp.es=="ADM-ADM"] <- 1
mycols[tmp.es=="MED-MED"] <- 2
mycols[tmp.es=="NUR-NUR"] <- 3
mycols[tmp.es=="PAT-PAT"] <- 4
mycols[(tmp.es=="ADM-MED") | (tmp.es=="MED-ADM")] <- 5
mycols[(tmp.es=="ADM-NUR") | (tmp.es=="NUR-ADM")] <- 6
mycols[(tmp.es=="ADM-PAT") | (tmp.es=="PAT-ADM")] <- 7
mycols[(tmp.es=="MED-NUR") | (tmp.es=="NUR-MED")] <- 8
mycols[(tmp.es=="MED-PAT") | (tmp.es=="PAT-MED")] <- 9
mycols[(tmp.es=="NUR-PAT") | (tmp.es=="PAT-NUR")] <- 10
my.palette <- rainbow(10)
ne <- max(hc.dn.df$edge.id)
max.t <- max(hc.dn.df$terminus)
plot(c(0,max.t),c(0,ne),ann=F,type='n')
segments(hc.dn.df$onset,hc.dn.df$edge.id,
hc.dn.df$terminus,hc.dn.df$edge.id,
col=my.palette[mycols])
title(xlab="Time (hours)",
ylab="Interacting Pair
(Ordered by First Interaction)")
clip(0,max.t,0,ne)
abline(v=c(11,35,59,83),lty="dashed",lw=2,
col="lightgray")
status.pairs <- c("ADM-ADM","MED-MED","NUR-NUR",
"PAT-PAT", "ADM-MED","ADM-NUR","ADM-PAT",
"MED-NUR", "MED-PAT","NUR-PAT")
legend(7,1140,status.pairs,
text.col=my.palette[(1:10)],cex=0.7)
all.deg <- sapply(g.sl12,degree)
sl.lab<- sapply(1:8, function(i)
paste(12*(i-1), "-", 12*i, "hrs", sep=""))
deg.df <- data.frame(Degree=as.vector(all.deg),
Slice = rep(sl.lab,each=75),
Status = rep(V(g.week)$Status, times=8))
library(ggplot2)
p = qplot(factor(Degree), data=deg.df,
geom="bar",fill=Status)
p+facet_grid(Slice~.) + xlab("Degree") + ylab("Count")
top.deg <- lapply(1:8,function(i) {
all.deg[,i][rank(all.deg[,i])>=70]
})
table(unlist(lapply(1:8,function(i)
as.numeric(names(top.deg[[i]])))))
V(g.week)$Status[c(7,15)]
all.str <- sapply(g.sl12,strength)
all.r <- all.str/all.deg
round(all.r[c(7,15),],digits=2)
summary(c(all.r))
sp.len <- lapply(1:8, function(i) {
spl <- distances(g.sl12[[i]],v=c(7,15),
to=V(g.sl12[[i]]),
weights=NA)
spl[spl==Inf] <- NA
spl
})
ave.spl <- sapply(1:8,function(i)
apply(sp.len[[i]],1,mean,na.rm=T))
round(ave.spl,digits=2)
sapply(g.sl12,diameter)
round(sapply(g.sl12,mean_distance),digits=2) |
jacobian_Ising_group <- function(omega,tau,beta,squares,means,responses,nobs,exp_v1,exp_v2,exp_H,...){
thresholds <- as.vector(tau)
graph <- as.matrix(omega)
beta <- as.numeric(beta)
v1 <- as.vector(means * nobs)
v2 <- as.matrix(squares)
H <- (
- sum(thresholds * v1) -
sum((graph * v2)[lower.tri(v2,diag=FALSE)])
)
threshGrad <- (
2 * beta * exp_v1 - 2 * beta * v1 / nobs
)
graphGrad <- (
2 * beta * exp_v2 - 2 * beta * v2 / nobs
)[lower.tri(v2,diag=FALSE)]
betaGrad <- (
2*(H/nobs - exp_H)
)
grad <- Matrix(c(threshGrad, graphGrad, betaGrad),nrow = 1)
return(grad)
}
jacobian_Ising <- function(prep){
g_per_group <- lapply(prep$groupModels,do.call,what=jacobian_Ising_group)
for (i in 1:length(prep$groupModels)){
g_per_group[[i]] <- (prep$nPerGroup[i] / prep$nTotal) * g_per_group[[i]]
}
Reduce("cbind",g_per_group)
} |
glamlasso <-function(X,
Y,
Z = NULL,
family = "gaussian",
penalty = "lasso",
intercept = FALSE,
weights = NULL,
betainit = NULL,
alphainit = NULL,
nlambda = 100,
lambdaminratio = 0.0001,
lambda = NULL,
penaltyfactor = NULL,
penaltyfactoralpha = NULL,
reltolinner = 1e-07,
reltolouter = 1e-04,
maxiter = 15000,
steps = 1,
maxiterinner = 3000,
maxiterouter = 25,
btinnermax = 100,
btoutermax = 100,
iwls = "exact",
nu = 1) {
dimglam <- length(X)
if (dimglam < 2 || dimglam > 3){
stop(paste("the dimension of the GLAM must be 2 or 3!"))
}else if(dimglam == 2){X[[3]] <- matrix(1, 1, 1)}
X1 <- X[[1]]
X2 <- X[[2]]
X3 <- X[[3]]
dimX <- rbind(dim(X1), dim(X2), dim(X3))
n1 <- dimX[1, 1]
n2 <- dimX[2, 1]
n3 <- dimX[3, 1]
p1 <- dimX[1, 2]
p2 <- dimX[2, 2]
p3 <- dimX[3, 2]
n <- prod(dimX[,1])
p <- prod(dimX[,2])
if(is.null(Z) == TRUE & intercept == FALSE){
nonten <- 0
q <- 1
Z <- matrix(0, 1, q)
}else if(is.null(Z) == TRUE & intercept == TRUE){
nonten <- 1
q <- 1
Z <- matrix(1, n, q)
}else if(is.null(Z) == FALSE & intercept == FALSE){
nonten <- 1
q <- dim(Z)[2]
}else{
nonten <- 1
Z <- cbind(matrix(1, n, 1), Z)
q <- dim(Z)[2]
}
Y <- matrix(Y, n1, n2 * n3)
if(sum(family == c("gaussian", "binomial", "poisson", "gamma")) != 1){
stop(paste("family must be correctly specified"))
}
if(sum(penalty == c("lasso", "scad")) != 1){stop(paste("penalty must be correctly specified"))}
if(penalty == "lasso"){steps <- 1}
if(family == "binomial" & is.null(weights)){stop(paste("for binomial model number of trials (weights) must be specified"))}
if(is.null(weights)){
weightedgaussian <- 0
weights <- matrix(1, n1, n2 * n3)
}else{
if(min(weights) < 0){stop(paste("only positive weights allowed"))}
weightedgaussian <- 1
weights <- matrix(weights, n1, n2 * n3)
}
if(is.null(betainit)){betainit <- matrix(0, p1, p2 * p3)}else{betainit <- matrix(betainit, p1, p2 * p3)}
if(is.null(alphainit)){alphainit <- matrix(0, q, 1)}
if(is.null(lambda)){
makelamb <- 1
lambda <- rep(NA, nlambda)
}else{
if(length(lambda) != nlambda){
nlambda <- length(lambda)
}
makelamb <- 0
}
if(is.null(penaltyfactor)){
penaltyfactor <- matrix(1, p1, p2 * p3)
}else if(prod(dim(penaltyfactor)) != p){
stop(
paste("number of elements in penaltyfactor (", length(penaltyfactor),") is not equal to the number of coefficients (", p,")", sep = "")
)
}else {
if(min(penaltyfactor) < 0){stop(paste("penaltyfactor must be positive"))}
penaltyfactor <- matrix(penaltyfactor, p1, p2 * p3)
}
if(is.null(penaltyfactoralpha)){
penaltyfactoralpha <- matrix(1, q, 1)
}else if(prod(dim(penaltyfactoralpha)) != q){
stop(
paste("number of elements in penaltyfactoralpha (", length(penaltyfactoralpha),") is not equal to the number of coefficients (", q,")", sep = "")
)
}else {
if(min(penaltyfactoralpha) < 0){stop(paste("penaltyfactoralpha must be positive"))}
}
if(is.null(iwls)){
iwls <- "exact"
}else{
if(sum(iwls == c("exact", "identity", "kron1", "kron2")) != 1){stop(paste("iwls must be correctly specified"))}
}
if(nu < 0 || nu > 1){stop(paste("nu must be between 0 and 1"))}
res <- gdpg(X1, X2, X3,
Z, matrix(0, n, q),
Y, matrix(0, n3, n1 * n2),
matrix(0, n1, n2 * n3),
weights, matrix(0, n3, n1 * n2),
betainit, matrix(0, 1, 1), matrix(0, 1, 1),
alphainit,
family,
penalty,
nonten,
iwls,
nu,
lambda, makelamb, nlambda, lambdaminratio,
penaltyfactor, matrix(0, 1, 1), matrix(0, 1, 1),
penaltyfactoralpha,
reltolinner,
reltolouter,
0,
maxiter,
steps,
maxiterinner,
maxiterouter,
1,
btinnermax,
btoutermax,
weightedgaussian, 0, 0, n1, n2, n3)
if(res$STOPmaxiter == 1){
warning(paste("program exit due to maximum number of iterations (",maxiter,") reached for model no ",res$endmodelno,""))
}
if(res$STOPprox == 1){
warning(paste("program exit due to maximum number of backtraking steps in the inner loop reached for model no ",res$endmodelno,""))
}
if(res$STOPnewt == 1){
warning(paste("program exit due to max number of backtraking steps in the outer loop reached for model no ",res$endmodelno,""))
}
endmodelno <- res$endmodelno + 1
Iter <- res$Iter
if(family != "gaussian" || (weightedgaussian == 1 & iwls == "kron")){
maxiterouterreached <- ifelse(Iter[1:endmodelno, maxiterouter] > 0, 1, 0) * (1:endmodelno)
maxiterouterreached <- maxiterouterreached[maxiterouterreached > 0]
if(length(maxiterouterreached)){
models <- paste("", maxiterouterreached)
warning(paste("maximum number of outer iterations (", maxiterouter,") reached for model(s):"), models)
}
}
maxiterinnerpossible <- sum(Iter > 0)
maxiterinnerreached <- sum(Iter >= (maxiterinner - 1))
if(maxiterinnerreached > 0){
warning(
paste("maximum number of inner iterations (",maxiterinner,") reached ",maxiterinnerreached," time(s) out of ",maxiterinnerpossible," possible")
)
}
out <- list()
class(out) <- "glamlasso"
out$alpha <- res$alpha[ , 1:endmodelno]
out$coef <- res$Beta[ , 1:endmodelno]
out$df <- res$df[1:endmodelno]
out$dimcoef <- c(p1, p2, p3)[1:dimglam]
out$dimobs <- c(n1, n2, n3)[1:dimglam]
out$family <- family
out$lambda <- res$lambda[1:endmodelno]
out$spec <- paste("", dimglam,"-dimensional ", penalty," penalized ", family," GLAM")
Iter <- list()
Iter$bt_enter_inner <- res$btenterprox
Iter$bt_iter_inner <- res$btiterprox
Iter$bt_iter_outer <- res$btiternewt
Iter$iter_mat <- res$Iter[1:endmodelno, ]
Iter$iter <- sum(Iter$iter_mat, na.rm = TRUE)
out$Iter <- Iter
return(out)
} |
bposa<-function(m,n,n.chains,data)
{
cl<-match.call()
cl1<-as.list(cl[-1])
if(cl1$data==deparse(substitute(catdata))){
data<-catdata[c(1:26),c(9:11)]
}else{
data<-data
}
data1=function(d){
data1=matrix(ncol=ncol(d),nrow=nrow(d))
for(i in 1:nrow(d))
{
for(j in 1:ncol(d)){
data1[i,j]=ifelse(is.na(d[i,j])==TRUE,1,d[i,j])
}
}
data1
}
tim<-unname(unlist(data[1,c(m:n)]))
data<-data1(data)
data<-data[,m:n]
N <- nrow(data)
M <- n-m+1
Y <-data
mdata<-list("N","M","Y",
"tim")
mreg105A<-function(){
for (i in 1:N){for (j in 1:M){Y[i,j]~dpois(mu[i,j])
log(mu[i,j])<-beta[1]+beta[2]*tim[j]+b1[i]+b2[i]*tim[j]}}
for(i in 1:2){beta[i]~dnorm(0,.0001)}
for (i in 1:N){b1[i]~dnorm(0,tau1)}
for (i in 1:N){b2[i]~dnorm(0,tau2)}
tau1~dgamma(0.001,.001)
tau2~dgamma(0.001,.001)
sigma1<-1/tau1
sigma2<-1/tau2
}
jagsfit1 <- jags( model.file=mreg105A,
data =mdata,
n.chains=n.chains,parameters.to.save =c('beta','sigma1') )
jagsfit1
}
utils::globalVariables(c("b2","tau1","tau2","catdata","log<-")) |
JobProvider <- R6::R6Class(
inherit = BaseProvider,
'JobProvider',
public = list(
locale = NULL,
formats = NULL,
allowed_locales = function() private$locales,
initialize = function(locale = NULL) {
if (!is.null(locale)) {
super$check_locale(locale)
check_locale_(locale, private$locales)
self$locale <- locale
} else {
self$locale <- 'en_US'
}
self$formats <- parse_eval("job_formats_", self$locale)
},
render = function() {
super$random_element(self$formats)
}
),
private = list(
locales = c("da_DK", "fa_IR", "fr_CH", "uk_UA", "ru_RU", "pl_PL",
"en_US", "fr_FR", "hr_HR", "zh_TW", "fi_FI")
)
) |
getHDmembers <-
function (data, maxrows = 10000, radius = NULL)
{
data <- as.matrix(data)
n <- nrow(data)
p <- ncol(data)
if (is.null(radius))
radius <- 0.1/(log(n)^(1/p))
if (n <= maxrows) {
cl <- partuniq(data)
U <- unique(cl)
m <- length(U)
if (m != n) {
members <- rep(list(NULL), m)
j <- 0
for (u in U) {
j <- j + 1
members[[j]] <- which(cl == u)
}
}
else members <- as.list(1:n)
}
else {
members <- rep(list(NULL), n)
exemplars <- 1
members[[1]] <- 1
for (i in 2:n) {
KNN <- get.knnx(data = data[exemplars, , drop = F],
query = data[i, , drop = F], k = 1)
m <- KNN$nn.index[1, 1]
d <- KNN$nn.dist[1, 1]
if (d < radius) {
l <- exemplars[m]
members[[l]] <- c(members[[l]], i)
next
}
exemplars <- c(exemplars, i)
members[[i]] <- i
}
}
members <- members[!sapply(members, is.null)]
exemplars <- sapply(members, function(x) x[[1]])
names(members) <- exemplars
members
} |
pasteC <- function(...,collapse=", ",lastCol=" and ",quoteC=""){
inp <- list(...)
chNa0 <- list(.seqCutStr("collapse",2),.seqCutStr("lastCol",2),.seqCutStr("quoteC",2))
chNa <- lapply(chNa0,function(x) stats::na.omit(match(x,names(inp)))[1])
if(any(!is.na(chNa[[1]]))) {collapse <- inp[[chNa[[1]]]]; inp <- inp[-chNa[[1]]]}
if(any(!is.na(chNa[[2]]))) {lastCol <- inp[[chNa[[2]]]]; inp <- inp[-chNa[[2]]]}
if(any(!is.na(chNa[[3]]))) {quoteC <- inp[[chNa[[3]]]]; inp <- inp[-chNa[[3]]]}
.paQ <- function(x,quo) sapply(x,function(y) paste(quo,y,quo,sep=""))
if(nchar(quoteC) >0) inp <- lapply(inp,.paQ,quoteC)
if(length(unlist(inp)) >1) {
out <- if(length(inp) >1) paste(unlist(inp[-length(inp)]),collapse=collapse) else NULL
tmp <- inp[[length(inp)]]
tmp <- list(tmp[-length(tmp)], tmp[length(tmp)])
out <- paste0(paste(c(out,tmp[[1]]),collapse=collapse),lastCol,tmp[[2]])
} else out <- as.character(unlist(inp))
out }
.seqCutStr <- function(txt,startFr=1,reverse=TRUE){
nCh <- nchar(txt)
out <- if(startFr > nCh) NULL else sapply(startFr:nCh, function(x) substr(txt,1,x))
if(reverse & length(out) >1) out <- rev(out)
out }
|
rcox <- function(gm=NULL, vcc=NULL, ecc=NULL,
type = c('rcon', 'rcor'),
method = "ipm",
fit=TRUE, data=NULL, S=NULL, n=NULL, Kstart=NULL,
control=list(),
details=1,
trace=0){
type <- match.arg(type)
method <- match.arg(method,c("ipm", "scoring", "matching", "ipms", "hybrid1"))
modelSpec <- list(gm=gm, vcc=vcc, ecc=ecc)
con <- list(
vccfit = TRUE,
eccfit = TRUE,
vcov = "inf",
nboot = 100,
maxouter = 500,
maxinner = 10,
logL = FALSE,
logLeps = 1e-6,
deltaeps = 1e-3,
hybrid1switch = 10,
short = FALSE
)
con[(namc <- names(control))] <- control
gmN <- formula2names(gm)
vccN <- formula2names(vcc)
eccN <- formula2names(ecc)
usedVars <- unique(unlist(c(gmN, vccN, eccN)))
if (trace>=2)
cat("..Building data representation\n")
dataRep <- .buildDataRepresentation (data, S, n, usedVars, type, trace)
nodes <- dataRep$nodes
if (trace>=2)
cat("..Building data representation - done\n")
if (trace>=2)
cat("..Building standard representation\n")
stdRep <- .buildStandardRepresentation (gmN, vccN, eccN,
dataNames=dataRep$dataNames, trace)
vccN <- .addccnames(stdRep$vccN, type="vcc")
eccN <- .addccnames(stdRep$eccN, type="ecc")
if (trace>=2)
cat("..Building internal representation\n")
intRep <- .buildInternalRepresentation(vccN=vccN, eccN=eccN,
dataNames=dataRep$dataNames, trace)
ans <- structure(list(vcc = vccN,
ecc = eccN,
nodes = nodes,
intRep = intRep,
dataRep = dataRep,
Kstart = Kstart,
type = type,
method = method,
trace = trace,
control = con
),
class=c(type, "rcox"))
if (fit){
ans$fitInfo <- fit(ans, method=method, trace=trace, returnModel=FALSE)
}
return(ans)
}
print.rcox <- function(x, ...){
cat(toupper(getSlot(x,"type")), "model: ")
if (!is.null(x$fitInfo)){
cat("logL=", x$fitInfo$logL, " dimension=", dimension(x),
" method=", x$method, " time=", fitInfo(x,"time"),sep='')
}
cat("\n")
if (!(x$control$short)){
xcc <- getvcc(x)
xcc <- getecc(x)
xf <- names2formula(xcc)
xs <- formula2string(xf)
cat("vcc: ",paste(unlist(xs),collapse=", "),"\n")
if (length(xcc)){
xf <- names2formula(xcc)
xs <- formula2string(xf)
cat("ecc: ",paste(unlist(xs),collapse=", "),"\n")
}
}
}
.buildDataRepresentation <- function(data=NULL, S=NULL, n=NULL, nodes, type="rcon",
trace=2){
if (is.null(data) & is.null(S)){
stop("No data given...\n")
}
if (!is.null(data)){
dataNames <- names(data)
S <- cov(data)
n <- nrow(data)
} else {
dataNames <- colnames(S)
}
nodes <- dataNames[sort(match(nodes, dataNames))]
S <- S[nodes, nodes]
ans <- list(S=S, n=n, dataNames=rownames(S), nodes=nodes)
return(ans)
}
.buildStandardRepresentation <- function(gmN, vccN, eccN, dataNames, trace=2){
t0 <- proc.time()
idx <- unlistPrim(lapply(gmN, length))
gmNvertices <- lapply(uniquePrim(unlistPrim(gmN)),list)
x <- unlist(lapply(gmN[idx>1], names2pairs),recursive=FALSE)
gmNedges <- lapply(x, list)
eccN <- c(eccN, gmNedges)
uuu <- unlistPrim(eccN)
uuu <- lapply(uuu, as.list)
vccN <- uniquePrim(c(uuu, vccN, gmNvertices))
vccI <- names2indices(vccN, dataNames, matrix=FALSE)
eccI <- names2indices(eccN, dataNames, matrix=FALSE)
xxxx2 <- lapply(vccI, function(x3)
{z<-do.call("rbind",x3); z[,1]<-z[,1]*10000; rowSumsPrim(z)})
ri <- which(remove_redundant(xxxx2, index=TRUE)>0)
vccN <- vccN[ri]
if (length(eccI)){
xxxx2 <- lapply(eccI, function(x3)
{z<-do.call("rbind",x3); z[,1]<-z[,1]*10000; rowSumsPrim(z)})
ri <- which(remove_redundant(xxxx2, index=TRUE)>0)
eccN <- eccN[ri]
}
varNames <- uniquePrim(unlistPrim(c(vccN,eccN)))
ans <- list(vccN=vccN, eccN=eccN, varNames=varNames)
return(ans)
}
.redundant.index <- function(xxxx){
if (length(xxxx)==0)
return(FALSE)
else
if (length(xxxx)==1)
return(TRUE)
xxxx2 <- lapply(xxxx, function(x3)
{z<-do.call("rbind",x3); z[,1]<-z[,1]*10000; rowSums(z)})
ind <- rep(TRUE, length(xxxx2))
for (i in 1:length(xxxx2)){
xi <- xxxx2[[i]]
for (j in 1:length(xxxx2)){
if (i != j){
xj <- xxxx2[[j]]
if (subsetof(xj,xi) && ind[i])
ind[j] <- FALSE
}
}
}
ind
}
.buildInternalRepresentation <- function(vccN, eccN, dataNames, trace=2){
vccI <- names2indices(vccN, dataNames, matrix=TRUE)
eccI <- names2indices(eccN, dataNames, matrix=TRUE)
eccV <- indices2vectors(eccI)
vccV <- indices2vectors(vccI)
ans <- list(vccI=vccI, eccI=eccI, vccV=vccV, eccV=eccV)
return(invisible(ans))
}
summary.rcox <- function(object, type="coef",...){
type <- match.arg(type, c("coef", "K", "KC", "ACA"))
m <- object
vn <- unlist(lapply(getcc(object),names))
cctype <-
c(rep("vcc", length(getSlot(m,"vcc"))),
rep("ecc", length(getSlot(m,"ecc"))))
ans <- list(type=type,
self = object,
vcc = getSlot(m, "vcc"),
ecc = getSlot(m, "ecc"),
logL = fitInfo(m, "logL"),
dimension = dimension(m),
method = getSlot(m, "method"),
time = fitInfo(m, "time"),
short = object$control$short
)
switch(type,
"coef"={
cm <- as.numeric(coef(m))
if (!is.null(fitInfo(m)$J)){
V <- vcov(m)
vv <- (diag(V))
X2 <- cm^2 / vv
p <- 1 - pchisq(X2, 1)
v <- data.frame(cctype=cctype, cc=vn, estimate=cm, stderr=sqrt(vv),
X2=X2, p=p)
} else {
v <- data.frame(cctype=cctype, cc=vn, estimate=cm)
}
ans$coefficients <- v
rownames(v) <- NULL
},
"K"={
ans$K <- fitInfo(m, "K")
},
"KC"={
KC <- fitInfo(m, "K")
dKC <- diag(KC)
CorMatrix <- -cov2cor(KC)
KC[lower.tri(KC)] <- CorMatrix[lower.tri(CorMatrix)]
diag(KC) <- sqrt(dKC)
ans$KC <- KC
},
"ACA"={
K <- fitInfo(m," K")
C <- -cov2cor(K)
diag(C) <- 1
ans$A <- sqrt(diag(K))
ans$C <- C
}
)
class(ans) <- "summary.rcox"
ans
}
print.summary.rcox <- function(x, ...){
print(x$self)
switch(x$type,
"coef"={
cat("\n")
print(x$coefficients)
if (!x$short){
cat("\n");print(getvcc(x));print(getecc(x))
}
},
"K"={
print(x$K)
},
"KC"={
print(x$KC)
},
"ACA"={
print(x$A)
print(x$C)
}
)
return(invisible(x))
} |
library(leaflet.extras)
leaf <- leaflet() %>% addTiles()
leaf %>%
addPulseMarkers(
lng = -118.456554, lat = 34.078039,
label = "This is a label",
icon = makePulseIcon(heartbeat = 0.5))
cities <- read.csv(textConnection("
City,Lat,Long,Pop
Boston,42.3601,-71.0589,645966
Hartford,41.7627,-72.6743,125017
New York City,40.7127,-74.0059,8406000
Philadelphia,39.9500,-75.1667,1553000
Pittsburgh,40.4397,-79.9764,305841
Providence,41.8236,-71.4222,177994"))
library(dplyr)
cities <- cities %>% mutate(PopCat = ifelse(Pop < 500000, "blue", "red"))
leaflet(cities) %>% addTiles() %>%
addPulseMarkers(lng = ~Long, lat = ~Lat,
label = ~City,
icon = makePulseIcon())
icon.pop <- pulseIcons(color = ifelse(cities$Pop < 500000, "blue", "red"),
heartbeat = ifelse(cities$Pop < 500000, "0.8", "0.4"))
leaflet(cities) %>% addTiles() %>%
addPulseMarkers(lng = ~Long, lat = ~Lat,
label = ~City,
icon = icon.pop)
popIcons <- pulseIconList(
blue = makePulseIcon(color = "blue"),
red = makePulseIcon(color = "red")
)
leaflet(cities) %>% addTiles() %>%
addPulseMarkers(lng = ~Long, lat = ~Lat,
label = ~City,
labelOptions = rep(labelOptions(noHide = T), nrow(cities)),
icon = ~popIcons[PopCat] ) |
pwe_error_checks <- function(effect_vals, hist_control_data, rand_control_diff, time_vec, censor_value, alpha) {
hist_chk <- class(hist_control_data)
rcp_chk <- is.null(rand_control_diff)
tv_chk <- is.null(time_vec)
for (eff_val in effect_vals) {
if (!is.numeric(eff_val))
stop("historic_sim() requires effect_vals to be numeric.")
if (eff_val <= 0)
stop("For pwe, historic_sim() requires effect_vals to represent Hazard Ratios which must be positive numbers")
}
if (hist_chk == "data.frame") {
colnamevals <- colnames(hist_control_data)
colnamechk <- (colnamevals == c("id", "treatment", "event_time", "status", "indicator"))
if (sum(colnamechk) != 5) {
stop("historic_sim() requires hist_control_data to have columns: id, treatment, event_time, status, and indicator.")
}
if (sum(colnamechk) == 5) {
if (!is.numeric(hist_control_data$event_time)) {
stop("historic_sim() requires hist_control_data$event_time to be positive numeric data.")
}
if (is.numeric(hist_control_data$event_time)) {
if (min(hist_control_data$event_time) <= 0) {
stop("historic_sim() requires hist_control_data$event_time to be positive numeric data.")
}
}
if (!is.numeric(hist_control_data$treatment)) {
stop("historic_sim() requires hist_control_data$treatment to be numeric 0/1 data.")
}
if (is.numeric(hist_control_data$treatment)) {
trt_levels <- names(table(hist_control_data$treatment))
if (length(trt_levels) > 2 | (trt_levels[1] != "0" & trt_levels[2] != "1")) {
stop("historic_sim() requires hist_control_data$treatment to be numeric 0/1 data.")
}
}
if (!is.numeric(hist_control_data$status)) {
stop("historic_sim() requires hist_control_data$status to be numeric 0/1 data.")
}
if (is.numeric(hist_control_data$status)) {
trt_levels <- names(table(hist_control_data$status))
if (length(trt_levels) > 2 | (trt_levels[1] != "0" & trt_levels[2] != "1")) {
stop("historic_sim() requires hist_control_data$status to be numeric 0/1 data.")
}
}
if (!is.numeric(hist_control_data$indicator)) {
stop("historic_sim() requires hist_control_data$indicator to be a vector of 2s.")
}
if (2*dim(hist_control_data)[1] != sum(hist_control_data$indicator)) {
stop("historic_sim() requires hist_control_data$indicator to be a vector of 2s.")
}
}
}
if (rcp_chk == FALSE) {
for (Rand_cp in rand_control_diff) {
if (!is.numeric(Rand_cp))
stop("historic_sim() requires rand_control_diff to be numeric.")
if (Rand_cp <= 0)
stop("historic_sim() requires rand_control_diff to be Hazard Ratios, so they must be positive.")
}
}
if (tv_chk == TRUE) {
stop("historic_sim() requires at least one value in time_vec for a pwe model.")
}
if (tv_chk == FALSE) {
for (tvcp in time_vec) {
if (!is.numeric(tvcp))
stop("historic_sim() requires time_vec to be numeric.")
if (tvcp <= 0)
stop("historic_sim() requires time_vec to be positive.")
}
}
if (!is.null(censor_value) == TRUE) {
if (!is.numeric(censor_value))
stop("historic_sim() requires censor_value to be numeric.")
if (censor_value <= 0)
stop("historic_sim() requires censor_value to be positive.")
}
if (!is.null(alpha) == TRUE) {
if (!is.numeric(alpha))
stop("historic_sim() requires alpha to be numeric.")
if (alpha <= 0 | alpha >= 1)
stop("historic_sim() requires alpha to be between 0 and 1 but not equal to 0 or 1.")
}
}
pwe_error_checks_simple <- function(effect_vals, time_vec, control_parms, censor_value, alpha) {
tv_chk <- is.null(time_vec)
tv_len <- length(time_vec)
rv_chk <- is.null(control_parms)
rv_len <- length(control_parms)
for (eff_val in effect_vals) {
if (!is.numeric(eff_val))
stop("simple_sim() requires effect_vals to be numeric.")
if (eff_val <= 0)
stop("For pwe, simple_sim() requires effect_sizes to represent Hazard Ratios which must be positive numbers")
}
if (tv_chk == TRUE) {
stop("simple_sim() requires at least one value in time_vec for a pwe model.")
}
if (tv_chk == FALSE) {
for (tvcp in time_vec) {
if (!is.numeric(tvcp))
stop("simple_sim() requires time_vec to be numeric.")
if (tvcp <= 0)
stop("simple_sim() requires time_vec to be positive.")
}
}
if (rv_chk == TRUE) {
stop("simple_sim() requires at least two value in control_parms for a pwe model.")
}
if (rv_chk == FALSE) {
if (length(control_parms) < 2) {
stop("simple_sim() requires at least two value in control_parms for a pwe model.")
}
if (rv_len != (tv_len + 1)) {
stop("simple_sim() requires control_parms to have one more element than time_vec")
}
for (rvcp in control_parms) {
if (!is.numeric(rvcp))
stop("simple_sim() requires control_parms to be numeric.")
if (rvcp <= 0)
stop("simple_sim() requires control_parms to be positive.")
}
}
if (!is.null(censor_value) == TRUE) {
if (!is.numeric(censor_value))
stop("simple_sim() requires censor_value to be numeric.")
if (censor_value <= 0)
stop("simple_sim() requires censor_value to be positive.")
}
if (!is.null(alpha) == TRUE) {
if (!is.numeric(alpha))
stop("simple_sim() requires alpha to be numeric.")
if (alpha <= 0 | alpha >= 1)
stop("simple_sim() requires alpha to be between 0 and 1 but not equal to 0 or 1.")
}
} |
prepare_edges <- function(g, k = NULL, distance = 1, create_edge_name = TRUE){
g_list <- igraph::as_data_frame(g, what = "both")
edges_df <- g_list$edges
if(!is.null(k)){
edges_df <- edges_df %>%
dplyr::mutate( k = k)
}
if(!is.null(distance)){
edges_df <- edges_df %>%
dplyr::mutate( distance = distance)
}
if(create_edge_name){
edges_df <- edges_df %>%
dplyr::mutate( edge_name = paste(from, to, sep ="-"))
}
g2 <- igraph::graph_from_data_frame(edges_df, directed = FALSE, vertices = g_list$vertices)
return(g2)
} |
set.seed(1010093)
pValues2 <- rep(NA,1000)
for(i in 1:1000){
x <- rnorm(20)
if(i <= 500){y <- rnorm(20)}else{ y <- rnorm(20,mean=2*x)}
pValues2[i] <- summary(lm(y ~ x))$coeff[2,4]
}
trueStatus <- rep(c("zero","not zero"),each=500) |
load(system.file("extdata", "study_data.RData", package = "dataquieR"))
sd1 <- study_data
load(system.file("extdata", "meta_data.RData", package = "dataquieR"))
md1 <- meta_data
code_labels <- read.csv2(system.file("extdata",
"Missing-Codes-2020.csv",
package = "dataquieR"),
stringsAsFactors = FALSE, na.strings = c())
item_miss <- com_item_missingness(study_data = sd1,
meta_data = md1,
label_col = 'LABEL',
show_causes = TRUE,
cause_label_df = code_labels,
include_sysmiss = TRUE,
threshold_value = 80
)
View(item_miss$ReportSummaryTable)
View(md0)
View(mdmd1)
View(md1)
View(item_miss$ReportSummaryTable)
x <- (item_miss$ReportSummaryTable)
rownames(x)
rownames(x) <- x$Variables
x$Variables <- NULL
x
x <- x / X$N
x <- x / x$N
x
x$N <- NULL
x <- x * 100
View(x)
melt(x)
x$Variable <- rownames(x)
x
melt(x, measure.vars = setdiff(colnames(x, c("Variable"))))
melt(x)
ggballoonplot(melt(x))
apm <- pro_applicability_matrix(study_data, meta_data)
print(item_miss$ReportSummaryTable, dt = TRUE)
print(apm$ReportSummaryTable, dt = TRUE)
item_missc <- com_item_missingness(study_data = sd1,
resp_vars = c("CENTER_0"),
meta_data = md1,
label_col = 'LABEL',
show_causes = TRUE,
cause_label_df = code_labels,
include_sysmiss = TRUE,
threshold_value = 80
)
item_misss <- com_item_missingness(study_data = sd1,
resp_vars = c("SEX_0"),
meta_data = md1,
label_col = 'LABEL',
show_causes = TRUE,
cause_label_df = code_labels,
include_sysmiss = TRUE,
threshold_value = 80
)
item_missa <- com_item_missingness(study_data = sd1,
resp_vars = c("AGE_0"),
meta_data = md1,
label_col = 'LABEL',
show_causes = TRUE,
cause_label_df = code_labels,
include_sysmiss = TRUE,
threshold_value = 80
)
item_missb <- com_item_missingness(study_data = sd1,
resp_vars = c("SBP_0"),
meta_data = md1,
label_col = 'LABEL',
show_causes = TRUE,
cause_label_df = code_labels,
include_sysmiss = TRUE,
threshold_value = 80
)
item_miss_combined <- rbind(item_missa$ReportSummaryTable,
item_missb$ReportSummaryTable,
item_missc$ReportSummaryTable,
item_misss$ReportSummaryTable)
item_miss_combined
print(item_miss_combined, dt = TRUE)
print(item_missa$ReportSummaryTable, dt = TRUE)
print(item_missb$ReportSummaryTable, dt = TRUE)
print(item_missc$ReportSummaryTable, dt = TRUE)
print(item_misss$ReportSummaryTable, dt = TRUE) |
library(testit)
assert(
'parse_params() parses chunk options to a list',
identical(parse_params('a-s-d,b=TRUE,c=def'), alist(label = 'a-s-d', b = TRUE, c = def)),
has_error(parse_params('a,b')),
has_error(parse_params('a,b,c=qwer')),
identical(parse_params('a,opt=c(1,3,5)'), alist(label = 'a', opt = c(1, 3, 5))),
identical(parse_params('label="xx",opt=zz'), alist(label = 'xx', opt = zz)),
identical(parse_params('label=foo'), alist(label = 'foo')),
identical(parse_params('a,b=2,c="qwer",asdf="efg"'),
alist(label = 'a', b = 2, c = 'qwer', asdf = 'efg')),
identical(parse_params('2a'), alist(label = '2a')),
identical(parse_params('abc-function,fig.path="foo/bar-"'),
alist(label = 'abc-function', fig.path = "foo/bar-"))
)
opts_knit$set(out.format = 'markdown')
assert(
'parse_params() parses the language engine from ```{lang}',
identical(
parse_block(NULL, '', 'r, foo, a=1,')$params,
alist(label = 'foo', a = 1)
),
identical(
parse_block(NULL, '', 'Rcpp, foo, a=1,')$params,
alist(label = 'foo', a = 1, engine = 'Rcpp')
)
)
res = split_file(
c('abc', '```{r foo}', '1+1', '```{r bar}', '2+2', '```', 'def'),
patterns = all_patterns$md
)
assert(
'split_file() treats ``` as part of code chunk instead of beginning of text chunk',
knit_code$get('foo') == '1+1',
knit_code$get('bar') == '2+2',
identical(res[[4]][['input']], 'def')
)
opts_knit$restore()
knit_code$restore(); knit_concord$restore()
res = parse_inline(c('aaa \\Sexpr{x}', 'bbb \\Sexpr{NA} and \\Sexpr{1+2}',
'another expression \\Sexpr{rnorm(10)}'), all_patterns$rnw)
assert(
'parse_inline() parses inline text',
identical(res$code, c('x', 'NA', '1+2', 'rnorm(10)')),
identical(nchar(res$input), 81L),
identical(parse_inline('\\Sexpr{}', all_patterns$rnw)$code, character(0)),
identical(parse_inline('<!--rinline "<a>" -->', all_patterns$html)$code, ' "<a>" ')
)
res = parse_inline('inline expressions `r pi+1`, +r cos(0)+ in AsciiDoc',
all_patterns$asciidoc)
assert(
'both `r expression` and +r expression+ work for AsciiDoc',
identical(res$code, c('pi+1', 'cos(0)'))
)
knit_code$restore()
read_chunk(lines = c('1+1'))
assert(
'read_chunk() does not discard code without chunk headers',
identical(knit_code$get(), list('unnamed-chunk-1' = '1+1'))
)
knit_code$restore()
read_chunk(lines = c('
assert(
'read_chunk() can identify chunk labels',
identical(knit_code$get(), list(foo = '1+1'))
)
knit_code$restore()
knit_code$restore(list(
a = '1+1', b = '2-2', c = c('if (T)', ' <<a>>'), d = c('function() {', ' <<c>>', '}')
))
pc = function(x) parse_chunk(x, all_patterns$rnw$ref.chunk)
assert(
'parse_chunk() preserves indentation',
identical(pc(c('3*3', '<<a>>', ' <<b>>', 'if (T)', ' <<a>>')),
c("3*3", "1+1", " 2-2", "if (T)", " 1+1" )),
identical(pc('<<d>>'), c('function() {', ' if (T)', ' 1+1', '}'))
)
knit_code$restore() |
TableStyle <- R6::R6Class("TableStyle",
public = list(
initialize = function(parentTable, styleName=NULL, declarations= NULL) {
if(parentTable$argumentCheckMode > 0) {
checkArgument(parentTable$argumentCheckMode, FALSE, "TableStyle", "initialize", parentTable, missing(parentTable), allowMissing=FALSE, allowNull=FALSE, allowedClasses="BasicTable")
checkArgument(parentTable$argumentCheckMode, FALSE, "TableStyle", "initialize", styleName, missing(styleName), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
checkArgument(parentTable$argumentCheckMode, FALSE, "TableStyle", "initialize", declarations, missing(declarations), allowMissing=TRUE, allowNull=TRUE, allowedClasses="list", allowedListElementClasses=c("character", "integer", "numeric"))
}
private$p_parentTable <- parentTable
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$new", "Creating new Table Style...", list())
private$p_declarations <- list()
private$p_name <- styleName
if(!is.null(declarations)) {
if(length(declarations)>0) {
nms <- names(declarations)
for(i in 1:length(declarations)) {
nme <- nms[i]
val <- declarations[[i]]
if(is.null(nme)) next
if(is.null(val)) next
private$p_declarations[[tolower(trimws(nme))]] <- as.character(val)
}
}
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$new", "Created new Table Style")
},
setPropertyValue = function(property=NULL, value=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyle", "setPropertyValue", property, missing(property), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyle", "setPropertyValue", value, missing(value), allowMissing=FALSE, allowNull=FALSE, allowedClasses=c("character", "integer", "numeric"))
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$setPropertyValue", "Setting property value...", list(property=property, value=value))
private$p_declarations[[tolower(trimws(property))]] <- value
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$setPropertyValue", "Set property value.")
return(invisible())
},
setPropertyValues = function(declarations=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyle", "setPropertyValues", declarations, missing(declarations), allowMissing=FALSE, allowNull=FALSE, allowedClasses="list", allowedListElementClasses=c("character", "integer", "numeric"))
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$setPropertyValues", "Setting property values...")
nms <- names(declarations)
if(length(nms)==0) return(invisible())
for(i in 1:length(nms)) {
property <- nms[i]
if(is.null(property)) stop("TableStyle$setPropertyValues(): NULL style property encountered.")
value <- declarations[[i]]
private$p_declarations[[tolower(trimws(property))]] <- value
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$setPropertyValues", "Set property values.")
return(invisible())
},
getPropertyValue = function(property=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyle", "getPropertyValue", property, missing(property), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$getPropertyValue", "Getting property value...", list(property=property))
val <- private$p_declarations[[tolower(trimws(property))]]
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$getPropertyValue", "Got property value.")
return(invisible(val))
},
asCSSRule = function(selector=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyle", "asCSSRule", selector, missing(selector), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$asCSSRule", "Getting CSS rule...")
cssRule <- NULL
if(!is.null(selector)) cssRule <- paste0(selector, " {")
if(length(private$p_declarations)>0) {
nms <- names(private$p_declarations)
for(i in 1:length(private$p_declarations)) {
if(length(nms[i])==0) stop("TableStyle$asCSSRule(): Encountered a style declaration without a name.", call. = FALSE)
if(startsWith(tolower(nms[i]), "xl-")) next
cssRule <- paste0(cssRule, nms[i], ": ", private$p_declarations[[i]], "; ")
}
}
if(!is.null(selector)) cssRule <- paste0(cssRule, "}")
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$asCSSRule", "Got CSS rule.")
return(invisible(cssRule))
},
asNamedCSSStyle = function(styleNamePrefix=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyle", "asNamedCSSStyle", styleNamePrefix, missing(styleNamePrefix), allowMissing=TRUE, allowNull=TRUE, allowedClasses="character")
}
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$asCSSRule", "Getting named CSS rule...")
if(is.null(styleNamePrefix)) { selector <- paste0(".", private$p_name) }
else { selector <- paste0(".", styleNamePrefix, private$p_name) }
cssRule <- self$asCSSRule(selector=selector)
if(private$p_parentTable$traceEnabled==TRUE) private$p_parentTable$trace("TableStyle$asNamedCSSStyle", "Got named CSS rule.")
return(invisible(cssRule))
},
getCopy = function(newStyleName=NULL) {
if(private$p_parentTable$argumentCheckMode > 0) {
checkArgument(private$p_parentTable$argumentCheckMode, FALSE, "TableStyle", "getCopy", newStyleName, missing(newStyleName), allowMissing=FALSE, allowNull=FALSE, allowedClasses="character")
}
copy <- TableStyle$new(parentTable=private$p_parentTable, styleName=newStyleName, declarations=private$p_declarations)
return(invisible(copy))
},
asList = function() {
lst <- list(
name = private$p_name,
declarations = private$p_declarations
)
return(invisible(lst))
},
asJSON = function() {
if (!requireNamespace("jsonlite", quietly = TRUE)) {
stop("The jsonlite package is needed to convert to JSON. Please install the jsonlite package.", call. = FALSE)
}
jsonliteversion <- utils::packageDescription("jsonlite")$Version
if(numeric_version(jsonliteversion) < numeric_version("1.1")) {
stop("Version 1.1 or above of the jsonlite package is needed to convert to JSON. Please install an updated version of the jsonlite package.", call. = FALSE)
}
return(jsonlite::toJSON(self$asList()))
}
),
active = list(
name = function(value) { return(invisible(private$p_name)) },
declarations = function(value) { return(invisible(private$p_declarations)) }
),
private = list(
p_parentTable = NULL,
p_name = NULL,
p_declarations = NULL
)
) |
lnorms <- function(n, mean = 2, var = 1) {
nmeans <- log(mean) - 0.5 * log(var / mean^2 + 1)
nvars <- log(var / mean^2 + 1)
normals <- rnorm(n) * sqrt(nvars) + nmeans
lns <- exp(normals)
lns
} |
context("ncbi_children")
test_that("ncbi_children returns correct class and result", {
skip_on_cran()
vcr::use_cassette("ncbi_children", {
tt <- ncbi_children(id = '4751')
tt2 <- ncbi_children(id = '4751', out_type = 'uid')
})
expect_is(tt, "list")
expect_is(tt[[1]], "data.frame")
expect_equal(ncol(tt[[1]]), 3)
expect_is(tt2, "list")
expect_is(tt2[[1]], "character")
expect_error(ncbi_children(name = 'Ilex', id = '4751'))
expect_equal(ncbi_children(name = NA)[[1]], NA)
expect_equal(
unname(sapply(ncbi_children('dragon', db='ncbi')[[1]], class)),
c('character', 'character', 'character')
)
})
test_that("ncbi_children does remove some ambiguous taxa", {
skip_on_cran()
vcr::use_cassette("ncbi_children_ambiguous", {
subsp <- ncbi_children(id = '28901')
sp <- ncbi_children(id = '2508041')
})
expect_is(subsp, "list")
expect_is(subsp[[1]], "data.frame")
expect_is(sp, "list")
expect_is(sp[[1]], "data.frame")
})
test_that("ncbi_children accepts numeric and character class ids", {
skip_on_cran()
vcr::use_cassette("ncbi_children_id_class_check", {
tt <- ncbi_children(id = 4751)
tt2 <- ncbi_children(id = '4751')
})
expect_identical(tt, tt2)
}) |
NULL
xray <- function(config = list()) {
svc <- .xray$operations
svc <- set_config(svc, config)
return(svc)
}
.xray <- list()
.xray$operations <- list()
.xray$metadata <- list(
service_name = "xray",
endpoints = list("*" = list(endpoint = "xray.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "xray.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "xray.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "xray.{region}.sc2s.sgov.gov", global = FALSE)),
service_id = "XRay",
api_version = "2016-04-12",
signing_name = "xray",
json_version = "",
target_prefix = ""
)
.xray$service <- function(config = list()) {
handlers <- new_handlers("restjson", "v4")
new_service(.xray$metadata, handlers, config)
} |
mendelianCheck = function(x, remove = FALSE, verbose = !remove) {
if (is.singleton(x) || !hasMarkers(x))
return(if(remove) x else numeric(0))
nucs = subnucs(x)
chromX = which(isXmarker(x))
chromAUT = .mysetdiff(seq_markers(x), chromX)
errorlist = vector(length = pedsize(x), mode = "list")
names(errorlist) = labels(x)
nuc_errors = numeric()
if (length(chromAUT) > 0) {
allelematr = do.call(cbind, x$MARKERS[chromAUT])
for (sub in nucs) {
fa = allelematr[sub$father, ]
mo = allelematr[sub$mother, ]
offs = sub$children
labs = attr(sub, 'labels')
for (of in offs) {
triopass = trioCheckFast(fa, mo, allelematr[of, ])
if (all(triopass))
next
new_errs = chromAUT[!triopass]
errorlist[[of]] = c(errorlist[[of]], new_errs)
if (verbose)
message(sprintf("Individual `%s` incompatible with parents at markers: %s",
labs[of], toString(new_errs)))
}
if (length(offs) == 1)
next
sibpass = sibshipCheck(allelematr[offs, ])
if(all(sibpass))
next
new_errs = chromAUT[!sibpass]
nuc_errors = c(nuc_errors, new_errs)
if (verbose)
message(sprintf("Sibship with parents `%s` and `%s` have too many alleles at markers: %s",
labs[sub$father], labs[sub$mother], toString(new_errs)))
}
}
if (length(chromX) > 0) {
sex = x$SEX
allelematr = do.call(cbind, x$MARKERS[chromX])
even = 2 * seq_along(chromX)
odd = even - 1
maleXhet = allelematr[sex == 1, odd, drop = FALSE] != allelematr[sex == 1, even, drop = FALSE]
if(any(maleXhet)) {
maleXhet_errors = which(maleXhet, arr.ind = TRUE)
error_males_int = which(sex == 1)[maleXhet_errors[, 1]]
error_markers = maleXhet_errors[, 2]
for(i in unique.default(error_males_int)) {
new_errs = chromX[error_markers[error_males_int == i]]
errorlist[[i]] = c(errorlist[[i]], new_errs)
if (verbose)
message(sprintf("Male `%s` is heterozygous at markers: %s", labels(x)[i], toString(new_errs)))
}
}
for (sub in nucs) {
fa = allelematr[sub$father, ]
mo = allelematr[sub$mother, ]
offs = sub$children
labs = attr(sub, 'labels')
for (of in offs) {
ofdat = allelematr[of, ]
if (sex[of] == 1) {
maleXpass = maleXCheck(mo, ofdat)
if (all(maleXpass))
next
new_errs = chromX[!maleXpass]
errorlist[[of]] = c(errorlist[[of]], new_errs)
if (verbose)
message(sprintf("Male `%s` incompatible with mother at markers: %s",
labs[of], toString(new_errs)))
}
else {
triopass = trioCheckFast(fa, mo, ofdat)
if (all(triopass))
next
new_errs = chromX[!triopass]
errorlist[[of]] = c(errorlist[[of]], new_errs)
if (verbose)
message(sprintf("Female `%s` incompatible with parents at markers: %s",
labs[of], toString(new_errs)))
}
}
next
if (length(offs) <= 2)
next
sibpass = sibshipCheck(allelematr[offs, ])
if(all(sibpass))
next
new_errs = chromX[!sibpass]
nuc_errors = c(nuc_errors, new_errs)
if (verbose)
message(sprintf("Sibship with parents `%s` and `%s` have too many alleles at markers: %s",
labs[sub$father], labs[sub$mother], toString(new_errs)))
}
}
err_index = sort.int(unique.default(c(unlist(errorlist), nuc_errors)))
if (remove)
return(removeMarkers(x, err_index)) else return(err_index)
}
trioCheckFast = function(fa, mo, of) {
even = 2 * seq_len(length(fa)/2)
odd = even - 1
fa_odd = fa[odd]
fa_even = fa[even]
mo_odd = mo[odd]
mo_even = mo[even]
of_odd = of[odd]
of_even = of[even]
fa0 = (fa_odd == 0 | fa_even == 0)
mo0 = (mo_odd == 0 | mo_even == 0)
of_odd0 = (of_odd == 0)
of_even0 = (of_even == 0)
ff1 = (fa0 | of_odd0 | of_odd == fa_odd | of_odd == fa_even)
ff2 = (fa0 | of_even0 | of_even == fa_odd | of_even == fa_even)
mm1 = (mo0 | of_odd0 | of_odd == mo_odd | of_odd == mo_even)
mm2 = (mo0 | of_even0 | of_even == mo_odd | of_even == mo_even)
(ff1 & mm2) | (ff2 & mm1)
}
maleXHomoz = function(of) {
even = 2 * seq_len(length(of)/2)
odd = even - 1
of[odd] == of[even]
}
maleXCheck = function(mo, of) {
even = 2 * seq_len(length(of)/2)
odd = even - 1
mo_odd = mo[odd]
mo_even = mo[even]
of = of[odd]
mo0 = (mo_odd == 0 | mo_even == 0)
of == 0 | mo0 | of == mo_odd | of == mo_even
}
sibshipCheck = function(offs) {
even = 2 * seq_len(ncol(offs)/2)
unlist(lapply(even, function(i) {
genos = offs[, (i - 1):i]
homoz_alleles = genos[genos[,1] == genos[,2], 1]
n_homoz = length(.mysetdiff(homoz_alleles, 0))
n_alleles = length(.mysetdiff(genos, 0))
n_alleles <= (4 - n_homoz)
}))
} |
df <- data_frame(x = 1:3, y = 3:1)
p <- ggplot(df, aes(x, y)) + geom_point()
p_col <- ggplot(df, aes(x, y, colour = factor(x))) + geom_point()
test_that("setting parameters makes one row df", {
b <- p + geom_hline(yintercept = 1.5)
expect_equal(layer_data(b, 2)$yintercept, 1.5)
b <- p + geom_vline(xintercept = 1.5)
expect_equal(layer_data(b, 2)$xintercept, 1.5)
b <- p + geom_abline()
expect_equal(layer_data(b, 2)$intercept, 0)
expect_equal(layer_data(b, 2)$slope, 1)
b <- p + geom_abline(slope = 0, intercept = 1)
expect_equal(layer_data(b, 2)$intercept, 1)
expect_equal(layer_data(b, 2)$slope, 0)
})
test_that("setting aesthetics generates one row for each input row", {
b <- p + geom_hline(aes(yintercept = 1.5))
expect_equal(layer_data(b, 2)$yintercept, rep(1.5, 3))
b <- p + geom_vline(aes(xintercept = 1.5))
expect_equal(layer_data(b, 2)$xintercept, rep(1.5, 3))
b <- p + geom_abline(aes(slope = 0, intercept = 1))
expect_equal(layer_data(b, 2)$intercept, rep(1, 3))
expect_equal(layer_data(b, 2)$slope, rep(0, 3))
}) |
expected <- eval(parse(text="structure(list(), .Names = character(0))"));
test(id=0, code={
argv <- eval(parse(text="list(NULL)"));
.Internal(options(argv[[1]]));
}, o=expected); |
test_that("`str_can_be_numeric()` works", {
expect_true(str_can_be_numeric("3"))
expect_true(str_can_be_numeric("5 "))
expect_equal(str_can_be_numeric(c("1a", "abc")), rep(FALSE, 2))
expect_equal(str_can_be_numeric(character()), logical())
expect_equal(str_can_be_numeric(numeric()), logical())
}) |
.estimate2 <- function(object, epsilon, n.cluster,
name.param, name.endogenous, name.meanparam, name.varparam,
index.Omega,
adjust.Omega, adjust.n, tol, n.iter, trace){
Omega <- object$conditionalMoment$Omega
dmu <- object$conditionalMoment$dmu
dOmega <- object$conditionalMoment$dOmega
name.hybridparam <- intersect(name.meanparam, name.varparam)
n.param <- length(name.param)
n.meanparam <- length(name.meanparam)
n.varparam <- length(name.varparam)
n.hybridparam <- length(name.hybridparam)
n.endogenous <- length(name.endogenous)
grid.meanparam <- .combination(name.meanparam, name.meanparam)
n.grid.meanparam <- NROW(grid.meanparam)
grid.varparam <- .combination(name.varparam, name.varparam)
n.grid.varparam <- NROW(grid.varparam)
name2num <- setNames(1:n.param,name.param)
if(!all(name2num[grid.meanparam[,1]]-name2num[grid.meanparam[,2]]>=0)){
stop("Incorrect allocation of the computation of the information matrix (mean parameter) \n")
}
name2num <- setNames(1:n.param,name.param)
if(!all(name2num[grid.varparam[,1]]-name2num[grid.varparam[,2]]>=0)){
stop("Incorrect allocation of the computation of the information matrix (variance parameter) \n")
}
leverage <- matrix(NA, nrow = n.cluster, ncol = n.endogenous,
dimnames = list(NULL, name.endogenous))
ls.dmu <- vector(mode = "list", length = n.cluster)
for(iC in 1:n.cluster){
if(is.null(index.Omega)){
leverage[iC,] <- 0
ls.dmu[[iC]] <- matrix(0, nrow = n.param, ncol = n.endogenous,
dimnames = list(name.param, name.endogenous))
ls.dmu[[iC]][name.meanparam,] <- do.call(rbind, lapply(dmu[name.meanparam],function(x){x[iC,]}))
}else{
leverage[iC,index.Omega[[iC]]] <- 0
ls.dmu[[iC]] <- matrix(0, nrow = n.param, ncol = length(index.Omega[[iC]]),
dimnames = list(name.param, name.endogenous[index.Omega[[iC]]]))
ls.dmu[[iC]][name.meanparam,] <- do.call(rbind, lapply(dmu[name.meanparam],function(x){x[iC,index.Omega[[iC]]]}))
}
}
if(any(eigen(Omega)$value<=0)){
stop("the residual variance-covariance matrix is not positive definite \n")
}
if(is.null(index.Omega)){
n.corrected <- rep(n.cluster, n.endogenous)
}else{
n.corrected <- NULL
}
ls.Psi <- vector(mode = "list", length = n.cluster)
Omega.adj <- Omega
if(!adjust.n){
epsilon.adj <- epsilon
}
if(trace>0){
cat("* Reconstruct estimated information matrix ")
}
iInfo <- .information2(dmu = dmu,
dOmega = dOmega,
Omega = Omega,
n.corrected = n.corrected,
leverage = leverage, index.Omega = index.Omega, n.cluster = n.cluster,
grid.meanparam = grid.meanparam,
n.grid.meanparam = n.grid.meanparam,
grid.varparam = grid.varparam,
n.grid.varparam = n.grid.varparam,
name.param = name.param,
n.param = n.param)
iVcov.param <- try(chol2inv(chol(iInfo)), silent = TRUE)
if(inherits(iVcov.param, "try-error")){
iVcov.param <- solve(iInfo)
}
if(trace>0){
cat("- done \n")
}
if(adjust.Omega || adjust.n){
if(trace>0){
cat("* iterative small sample correction: ")
}
iIter <- 0
iTol <- Inf
Omega_save <- Omega
iOmega.adj <- Omega.adj
}else{
iIter <- Inf
iTol <- -Inf
}
while(iIter < n.iter & iTol > tol){
if(trace>0){
cat("*")
}
Psi <- matrix(0, nrow = n.endogenous, ncol = n.endogenous,
dimnames = list(name.endogenous, name.endogenous))
M.countCluster <- matrix(0, nrow = n.endogenous, ncol = n.endogenous,
dimnames = list(name.endogenous, name.endogenous))
for(iC in 1:n.cluster){
ls.Psi[[iC]] <- t(ls.dmu[[iC]]) %*% iVcov.param %*% ls.dmu[[iC]]
if(is.null(index.Omega)){
Psi <- Psi + ls.Psi[[iC]]
M.countCluster <- M.countCluster + 1
}else{
Psi[index.Omega[[iC]],index.Omega[[iC]]] <- Psi[index.Omega[[iC]],index.Omega[[iC]]] + ls.Psi[[iC]]
M.countCluster[index.Omega[[iC]],index.Omega[[iC]]] <- M.countCluster[index.Omega[[iC]],index.Omega[[iC]]] + 1
}
}
for(iPsi in 1:length(Psi)){
if(M.countCluster[iPsi]>0){
Psi[iPsi] <- Psi[iPsi]/M.countCluster[iPsi]
}
}
if(adjust.n){
epsilon.adj <- .adjustResiduals(Omega = Omega.adj,
Psi = Psi,
epsilon = epsilon,
index.Omega = index.Omega,
name.endogenous = name.endogenous,
n.endogenous = n.endogenous,
n.cluster = n.cluster)
leverage <- .adjustLeverage(Omega = Omega.adj,
epsilon = epsilon.adj,
ls.dmu = ls.dmu,
dOmega = dOmega,
vcov.param = iVcov.param,
index.Omega = index.Omega,
name.endogenous = name.endogenous,
n.endogenous = n.endogenous,
name.varparam = name.varparam,
n.varparam = n.varparam,
n.cluster = n.cluster)
n.corrected <- rep(n.cluster, n.endogenous) - colSums(leverage, na.rm = TRUE)
}
if(adjust.Omega){
Omega.adj <- Omega + Psi
object$conditionalMoment <- .adjustMoment(object, Omega = Omega.adj)
dOmega <- object$conditionalMoment$dOmega
}
iInfo <- .information2(dmu = dmu,
dOmega = dOmega,
Omega = Omega.adj,
n.corrected = n.corrected,
leverage = leverage,
index.Omega = index.Omega,
n.cluster = n.cluster,
grid.meanparam = grid.meanparam,
n.grid.meanparam = n.grid.meanparam,
grid.varparam = grid.varparam,
n.grid.varparam = n.grid.varparam,
name.param = name.param,
n.param = n.param)
iVcov.param <- try(chol2inv(chol(iInfo)), silent = TRUE)
if(inherits(iVcov.param, "try-error")){
iVcov.param <- solve(iInfo)
}
iIter <- iIter + 1
iTol <- norm(Omega.adj-Omega_save, type = "F")
Omega_save <- Omega.adj
}
if(!is.infinite(iIter)){
if(iTol > tol){
warning("small sample correction did not reach convergence after ",iIter," iterations \n")
if(trace>0){
cat(" - incomplete \n")
}
}else{
if(trace>0){
cat(" - done \n")
}
}
}
vcov.param <- try(chol2inv(chol(iInfo)), silent = TRUE)
if("try-error" %in% class(vcov.param)){
errorMessage <- vcov.param
vcov.param <- solve(iInfo)
attr(vcov.param, "warning") <- errorMessage
}
dimnames(vcov.param) <- dimnames(iInfo)
object$conditionalMoment$Omega <- Omega.adj
object$dVcov <- list(param = object$conditionalMoment$param,
score = NULL,
vcov.param = vcov.param,
dVcov.param = NULL,
Omega = Omega.adj,
residuals = epsilon.adj,
leverage = leverage,
n.corrected = rep(n.cluster, n.endogenous) - colSums(leverage, na.rm = TRUE),
opt = list(objective = iTol, iterations = iIter, convergence = (iTol <= tol), grid.meanparam = grid.meanparam, grid.varparam = grid.varparam))
return(object)
}
.adjustResiduals <- function(Omega, Psi, epsilon,
index.Omega,
name.endogenous, n.endogenous, n.cluster){
if(is.null(index.Omega)){
Omega.chol <- matrixPower(Omega, symmetric = TRUE, power = 1/2)
H <- Omega %*% Omega - Omega.chol %*% Psi %*% Omega.chol
HM1 <- tryCatch(matrixPower(H, symmetric = TRUE, power = -1/2), warning = function(w){w})
if(inherits(HM1,"warning")){
stop("Cannot compute the adjusted residuals \n",
"Estimated bias too large compared to the estimated variance-covariance matrix \n",
"Consider setting argument \'adjust.n\' to FALSE when calling sCorrect \n")
}
epsilon.adj <- epsilon %*% Omega.chol %*% HM1 %*% Omega.chol
}else{
epsilon.adj <- matrix(NA, nrow = n.cluster, ncol = n.endogenous,
dimnames = list(NULL, name.endogenous))
for(iC in 1:n.cluster){
iIndex <- index.Omega[[iC]]
iOmega <- Omega[iIndex,iIndex,drop=FALSE]
iOmega.chol <- matrixPower(iOmega, symmetric = TRUE, power = 1/2)
iH <- iOmega %*% iOmega - iOmega.chol %*% Psi[iIndex,iIndex,drop=FALSE] %*% iOmega.chol
iHM1 <- tryCatch(matrixPower(iH, symmetric = TRUE, power = -1/2), warning = function(w){w})
if(inherits(iHM1,"warning")){
stop("Cannot compute the adjusted residuals \n",
"Estimated bias too large compared to the estimated variance-covariance matrix \n",
"Consider setting argument \'adjust.n\' to FALSE when calling sCorrect \n")
}
epsilon.adj[iC,iIndex] <- epsilon[iC,iIndex] %*% iOmega.chol %*% iHM1 %*% iOmega.chol
}
}
dimnames(epsilon.adj) <- list(NULL,name.endogenous)
return(epsilon.adj)
}
.adjustLeverage <- function(Omega, epsilon, ls.dmu, dOmega, vcov.param,
index.Omega,
name.endogenous, n.endogenous, name.varparam, n.varparam, n.cluster){
leverage <- matrix(NA, nrow = n.cluster, ncol = n.endogenous,
dimnames = list(NULL, name.endogenous))
if(is.null(index.Omega)){
iIndex <- 1:n.endogenous
iOmegaM1 <- chol2inv(chol(Omega))
iOmegaM1.dOmega.OmegaM1 <- lapply(dOmega, function(x){iOmegaM1 %*% x %*% iOmegaM1})
}
for(iC in 1:n.cluster){
if(!is.null(index.Omega)){
iIndex <- index.Omega[[iC]]
iOmegaM1 <- chol2inv(chol(Omega[iIndex,iIndex,drop=FALSE]))
iOmegaM1.dOmega.OmegaM1 <- lapply(dOmega, function(x){iOmegaM1 %*% x[iIndex,iIndex] %*% iOmegaM1})
}
scoreY <- ls.dmu[[iC]] %*% iOmegaM1
for(iP in 1:n.varparam){
scoreY[name.varparam[iP],] <- scoreY[name.varparam[iP],] + 2 * epsilon[iC,iIndex] %*% iOmegaM1.dOmega.OmegaM1[[name.varparam[iP]]]
}
leverage[iC,iIndex] <- colSums(vcov.param %*% ls.dmu[[iC]] * scoreY)
}
return(leverage)
}
`.adjustMoment` <-
function(object, ...) UseMethod(".adjustMoment")
.adjustMoment.lm <- function(object, Omega){
object$conditionalMoment$param["sigma2"] <- as.double(Omega)
return(object$conditionalMoment)
}
.adjustMoment.gls <- function(object, Omega, ...){
class.cor <- object$conditionalMoment$skeleton$class.cor
class.var <- object$conditionalMoment$skeleton$class.var
name.corcoef <- object$conditionalMoment$skeleton$name.corcoef
name.otherVar <- object$conditionalMoment$skeleton$name.otherVar
name.varcoef <- object$conditionalMoment$skeleton$name.varcoef
ref.group <- object$conditionalMoment$skeleton$ref.group
M.corcoef <- object$conditionalMoment$skeleton$M.corcoef
name.endogenous <- object$conditionalMoment$skeleton$name.endogenous
n.endogenous <- object$conditionalMoment$skeleton$n.endogenous
if(identical(class.var, "NULL")){
object$conditionalMoment$param["sigma2"] <- mean(diag(Omega))
}else{
index.Sigma2 <- which(ref.group %in% name.otherVar == FALSE)
object$conditionalMoment$param["sigma2"] <- mean(diag(Omega)[index.Sigma2])
vec.k <- tapply(diag(Omega)/Omega[index.Sigma2,index.Sigma2], ref.group, mean)
object$conditionalMoment$param[name.otherVar] <- vec.k[name.otherVar]
}
if(identical(class.cor, "NULL")){
}else if("corCompSymm" %in% class.cor){
object$conditionalMoment$param[name.corcoef] <- mean(stats::cov2cor(Omega)[lower.tri(Omega)])
}else if("corSymm" %in% class.cor){
vec.cor <- tapply(stats::cov2cor(Omega)[lower.tri(Omega)],
M.corcoef[lower.tri(Omega)],
mean)
object$conditionalMoment$param[name.corcoef] <- vec.cor[name.corcoef]
}
object$conditionalMoment$Omega <- .getVarCov2(object,
param = object$conditionalMoment$param,
attr.param = attributes(object$conditionalMoment$param),
name.endogenous = name.endogenous,
n.endogenous = n.endogenous,
ref.group = ref.group)
object$conditionalMoment$dOmega <- skeletonDtheta(object, class.cor = class.cor, class.var = class.var,
sigma2.base0 = object$conditionalMoment$skeleton$sigma2.base0,
Msigma2.base0 = object$conditionalMoment$skeleton$Msigma2.base0,
M.corcoef = M.corcoef, ref.group = ref.group,
index.lower.tri = object$conditionalMoment$skeleton$index.lower.tri,
indexArr.lower.tri = object$conditionalMoment$skeleton$indexArr.lower.tri,
name.endogenous = name.endogenous, n.endogenous = n.endogenous,
cluster = object$conditionalMoment$skeleton$cluster,
n.cluster = object$conditionalMoment$skeleton$n.cluster,
var.coef = object$conditionalMoment$param[name.varcoef],
name.varcoef = name.varcoef, name.otherVar = name.otherVar,
n.varcoef = object$conditionalMoment$skeleton$n.varcoef,
cor.coef = object$conditionalMoment$param[name.corcoef],
name.corcoef = name.corcoef,
n.corcoef = object$conditionalMoment$skeleton$n.corcoef,
update.mean = FALSE, update.variance = TRUE, ...)$dOmega
return(object$conditionalMoment)
}
.adjustMoment.lme <- function(object, Omega){
name.rancoef <- attr(object$conditionalMoment$param,"ran.coef")
if(!identical(object$conditionalMoment$skeleton$class.cor,"NULL")){
stop("Does not know how to identify the correlation coefficients when corStruct is not NULL \n")
}
object$conditionalMoment$param[name.rancoef] <- mean(Omega[lower.tri(Omega)])
save <- object$conditionalMoment$dOmega$ranCoef1
conditionalMoment <- .adjustMoment.gls(object, Omega = Omega - object$conditionalMoment$param["ranCoef1"],
name.rancoef = name.rancoef)
conditionalMoment$dOmega$ranCoef1 <- save
return(conditionalMoment)
}
.adjustMoment.lvmfit <- function(object, Omega){
n.endogenous <- NROW(Omega)
df.param <- object$conditionalMoment$df.param
index.matrix <- object$conditionalMoment$adjustMoment$index.matrix
index.Psi <- object$conditionalMoment$adjustMoment$index.Psi
A <- object$conditionalMoment$adjustMoment$A
name.var <- object$conditionalMoment$adjustMoment$name.var
n.rhs <- object$conditionalMoment$adjustMoment$n.rhs
index.LambdaB <- object$conditionalMoment$adjustMoment$index.LambdaB
name.endogenous <- object$conditionalMoment$adjustMoment$name.endogenous
name.latent <- object$conditionalMoment$adjustMoment$name.latent
skeleton <- object$conditionalMoment$skeleton
param <- object$conditionalMoment$param
Lambda <- object$conditionalMoment$value$Lambda
iIB <- object$conditionalMoment$value$iIB
iIB.Lambda <- object$conditionalMoment$value$iIB.Lambda
dLambda <- object$conditionalMoment$dMoment.init$dLambda
dB <- object$conditionalMoment$dMoment.init$dB
eq.rhs <- Omega[index.matrix$index]
if(NROW(index.Psi)>0){
n.index.Psi <- NROW(index.Psi)
n.latent <- NROW(skeleton$Psi)
Z <- iIB %*% Lambda
for(iIndex in 1:n.rhs){
iRow <- index.matrix[iIndex,"row"]
iCol <- index.matrix[iIndex,"col"]
for(iPsi in 1:n.index.Psi){
iRowPsi <- index.Psi[iPsi,"row"]
iColPsi <- index.Psi[iPsi,"col"]
A[iIndex,skeleton$Psi[iRowPsi,iColPsi]] <- A[iIndex,skeleton$Psi[iRowPsi,iColPsi]] + Z[iRowPsi,iRow]*Z[iColPsi,iCol]
}
}
}
if(lava.options()$method.estimate2=="svd"){
asvd <- svd(A)
iSolution <- try((asvd$v %*% diag(1/asvd$d) %*% t(asvd$u) %*% eq.rhs)[,1], silent = TRUE)
}else if(lava.options()$method.estimate2=="ols"){
iSolution <- try(OLS_cpp(A, eq.rhs)[,1], silent = TRUE)
}else{
stop("unknown OLS methods \n")
}
if(inherits(iSolution, "try-error")){
if(abs(det(t(A) %*% A)) < 1e-10){
stop("Singular matrix: cannot update the estimates \n")
}else{
stop(iSolution)
}
}
object$conditionalMoment$param[name.var] <- setNames(iSolution, name.var)
object$conditionalMoment$skeleton$toUpdate <- object$conditionalMoment$adjustMoment$toUpdate
object$conditionalMoment$value <- skeleton.lvmfit(object,
param = param,
data = NULL,
name.endogenous = name.endogenous,
name.latent = name.latent)
object$conditionalMoment$Omega <- Omega
if(length(index.LambdaB)>0){
object$conditionalMoment$dMoment.init$toUpdate[] <- FALSE
object$conditionalMoment$dMoment.init$toUpdate[index.LambdaB] <- TRUE
object$conditionalMoment$dOmega <- skeletonDtheta.lvmfit(object,
name.endogenous = name.endogenous,
name.latent = name.latent)$dOmega
}
return(object$conditionalMoment)
} |
library("shiny")
library("billboarder")
library("magrittr")
ui <- fluidPage(
tags$h1("Update billboard chart"),
billboarderOutput(outputId = "mybb1"),
actionButton(inputId = "update", label = "Update data !")
)
server <- function(input, output, session) {
data_r <- reactive({
input$update
data.frame(x = letters[1:10], y = round(runif(n = 10, min = 10, max = 100)))
})
output$mybb1 <- renderBillboarder({
billboarder() %>%
bb_barchart(data = isolate(data_r())) %>%
bb_axis(y = list(max = 100, padding = 0, tick = list(outer = FALSE)))
})
observeEvent(input$update, {
billboarderProxy("mybb1") %>%
bb_barchart(data = data_r())
}, ignoreInit = TRUE)
}
shinyApp(ui = ui, server = server) |
compare <- function(x, y, ...) {
UseMethod("compare", x)
}
comparison <- function(equal = TRUE, message = "Equal") {
stopifnot(is.logical(equal), length(equal) == 1)
stopifnot(is.character(message))
structure(
list(
equal = equal,
message = paste(message, collapse = "\n")
),
class = "comparison"
)
}
difference <- function(..., fmt = "%s") {
comparison(FALSE, sprintf(fmt, ...))
}
no_difference <- function() {
comparison()
}
print.comparison <- function(x, ...) {
if (x$equal) {
cat("Equal\n")
return()
}
cat(x$message)
}
compare.default <- function(x, y, ..., max_diffs = 9) {
same <- all.equal(x, y, ...)
if (length(same) > max_diffs) {
same <- c(same[1:max_diffs], "...")
}
comparison(identical(same, TRUE), as.character(same))
}
print_out <- function(x, ...) {
lines <- capture_output_lines(x, ..., print = TRUE)
paste0(lines, collapse = "\n")
}
same_length <- function(x, y) length(x) == length(y)
diff_length <- function(x, y) difference(fmt = "Lengths differ: %i is not %i", length(x), length(y))
same_type <- function(x, y) identical(typeof(x), typeof(y))
diff_type <- function(x, y) difference(fmt = "Types not compatible: %s is not %s", typeof(x), typeof(y))
same_class <- function(x, y) {
if (!is.object(x) && !is.object(y)) {
return(TRUE)
}
identical(class(x), class(y))
}
diff_class <- function(x, y) {
difference(fmt = "Classes differ: %s is not %s", format_class(class(x)), format_class(class(y)))
}
same_attr <- function(x, y) {
is.null(attr.all.equal(x, y))
}
diff_attr <- function(x, y) {
out <- attr.all.equal(x, y)
difference(out)
}
vector_equal <- function(x, y) {
(is.na(x) & is.na(y)) | (!is.na(x) & !is.na(y) & x == y)
}
vector_equal_tol <- function(x, y, tolerance = .Machine$double.eps ^ 0.5) {
(is.na(x) & is.na(y)) |
(!is.na(x) & !is.na(y)) & (x == y | abs(x - y) < tolerance)
}
compare.character <- function(x, y, check.attributes = TRUE, ...,
max_diffs = 5, max_lines = 5,
width = cli::console_width()) {
if (identical(x, y)) {
return(no_difference())
}
if (!same_type(x, y)) {
return(diff_type(x, y))
}
if (!same_class(x, y)) {
return(diff_class(x, y))
}
if (!same_length(x, y)) {
return(diff_length(x, y))
}
if (check.attributes && !same_attr(x, y)) {
return(diff_attr(x, y))
}
diff <- !vector_equal(x, y)
if (!any(diff)) {
no_difference()
} else {
mismatches <- mismatch_character(x, y, diff)
difference(format(
mismatches,
max_diffs = max_diffs,
max_lines = max_lines,
width = width
))
}
}
mismatch_character <- function(x, y, diff = !vector_equal(x, y)) {
structure(
list(
i = which(diff),
x = x[diff],
y = y[diff],
n = length(diff),
n_diff = sum(diff)
),
class = "mismatch_character"
)
}
format.mismatch_character <- function(x, ...,
max_diffs = 5,
max_lines = 5,
width = cli::console_width()) {
width <- width - 6
n_show <- seq_len(min(x$n_diff, max_diffs))
encode <- function(x) encodeString(x, quote = '"')
show_x <- str_trunc(encode(x$x[n_show]), width * max_lines)
show_y <- str_trunc(encode(x$y[n_show]), width * max_lines)
show_i <- x$i[n_show]
sidebyside <- Map(function(x, y, pos) {
x <- paste0("x[", pos, "]: ", str_chunk(x, width))
y <- paste0("y[", pos, "]: ", str_chunk(y, width))
paste(c(x, y), collapse = "\n")
}, show_x, show_y, show_i)
summary <- paste0(x$n_diff, "/", x$n, " mismatches")
paste0(summary, "\n", paste0(sidebyside, collapse = "\n\n"))
}
print.mismatch_character <- function(x, ...) {
cat(format(x, ...), "\n", sep = "")
}
str_trunc <- function(x, length) {
too_long <- nchar(x) > length
x[too_long] <- paste0(substr(x[too_long], 1, length - 3), "...")
x
}
str_chunk <- function(x, length) {
lines <- ceiling(nchar(x) / length)
start <- (seq_len(lines) - 1) * length + 1
substring(x, start, start + length - 1)
}
compare.numeric <- function(x, y,
tolerance = testthat_tolerance(),
check.attributes = TRUE,
..., max_diffs = 9) {
all_equal <- all.equal(
x, y, tolerance = tolerance,
check.attributes = check.attributes, ...
)
if (isTRUE(all_equal)) {
return(no_difference())
}
if (!typeof(y) %in% c("integer", "double")) {
return(diff_type(x, y))
}
if (!same_class(x, y)) {
return(diff_class(x, y))
}
if (!same_length(x, y)) {
return(diff_length(x, y))
}
if (check.attributes && !same_attr(x, y)) {
return(diff_attr(x, y))
}
diff <- !vector_equal_tol(x, y, tolerance = tolerance)
if (!any(diff)) {
no_difference()
} else {
mismatches <- mismatch_numeric(x, y, diff)
difference(format(mismatches, max_diffs = max_diffs))
}
}
testthat_tolerance <- function() {
if (identical(capabilities("long.double"), FALSE)) {
skip("Long doubles not available and `tolerance` not supplied")
}
.Machine$double.eps ^ 0.5
}
mismatch_numeric <- function(x, y, diff = !vector_equal(x, y)) {
structure(
list(
i = which(diff),
x = x[diff],
y = y[diff],
n = length(diff),
n_diff = sum(diff),
mu_diff = mean(abs(x[diff] - y[diff]), na.rm = TRUE)
),
class = "mismatch_numeric"
)
}
format.mismatch_numeric <- function(x, ..., max_diffs = 9, digits = 3) {
summary <- paste0(x$n_diff, "/", x$n, " mismatches")
if (x$n_diff > 1) {
mu <- format(x$mu_diff, digits = digits, trim = TRUE)
summary <- paste0(summary, " (average diff: ", mu, ")")
}
n_show <- seq_len(min(x$n_diff, max_diffs))
diffs <- paste0(
format(paste0("[", x$i[n_show], "]")), " ",
format(x$x[n_show], digits = digits),
" - ",
format(x$y[n_show], digits = digits),
" == ",
format(x$x[n_show] - x$y[n_show], digits = digits)
)
if (x$n_diff > length(n_show)) {
diffs <- c(diffs, "...")
}
paste0(summary, "\n", paste(diffs, collapse = "\n"))
}
print.mismatch_numeric <- function(x, ...) {
cat(format(x, ...), "\n", sep = "")
}
compare.POSIXt <- function(x, y, tolerance = 0.001, ..., max_diffs = 9) {
if (!inherits(y, "POSIXt")) {
return(diff_class(x, y))
}
if (!same_length(x, y)) {
return(diff_length(x, y))
}
x <- standardise_tzone(as.POSIXct(x))
y <- standardise_tzone(as.POSIXct(y))
if (!same_attr(x, y)) {
return(diff_attr(x, y))
}
diff <- !vector_equal_tol(x, y, tolerance = tolerance)
if (!any(diff)) {
no_difference()
} else {
mismatches <- mismatch_numeric(x, y, diff)
difference(format(mismatches, max_diffs = max_diffs))
}
}
standardise_tzone <- function(x) {
if (is.null(attr(x, "tzone")) || identical(attr(x, "tzone"), Sys.timezone())) {
attr(x, "tzone") <- ""
}
x
} |
sortSets <- function(sets,
order.by = "cardinality",
limit = NULL) {
setAttr <- function(order.by.attr) {
if (order.by.attr == "cardinality") {
sapply(sets, function(x) {
if (length(x$elems) == 0) {
x$cardinality * -1
} else {
length(x$elems) * -1
}
})
} else if (order.by.attr == "degree") {
sapply(sets, function(x) {
length(x$setNames)
})
} else {
sapply(sets, function(x) {
x$name
})
}
}
if (length(order.by) == 1 && order.by[1] == "cardinality") {
order.by <- c("cardinality", "name")
} else if (length(order.by) == 1 && order.by[1] == "degree") {
order.by <- c("degree", "name")
}
if (length(sets) > 1) {
values <- lapply(order.by, setAttr)
o <- do.call(order, values)
r <- sets[o]
} else {
r <- sets
}
if (is.null(limit) || length(r) <= limit) {
r
} else {
r[1:limit]
}
}
colorLookup <- function(colors = NULL) {
if (is.null(colors)) {
function(c) {
NULL
}
} else {
colorNames <- names(colors)
function(c) {
if (c %in% colorNames) {
colors[[c]]
} else {
NULL
}
}
}
}
generateCombinationsImpl <- function(sets,
c_type,
min,
max,
empty,
order.by,
limit,
colors = NULL,
symbol = "&",
store.elems = TRUE) {
combinations <- list()
distinct <- (c_type == "distinctIntersection")
cc <- colorLookup(colors)
mergeUnion <- function(a, b) {
abSets <- union(a$setNames, b$setNames)
abName <- paste(abSets, collapse = symbol)
abElems <- c()
if (a$cardinality == 0) {
abElems <- b$elems
} else if (b$cardinality == 0) {
abElems <- a$elems
} else {
abElems <- union(a$elems, b$elems)
}
asCombination(abName, abElems, "union", abSets, color = cc(abName))
}
mergeIntersect <- function(a, b) {
abSets <- union(a$setNames, b$setNames)
abName <- paste(abSets, collapse = symbol)
abElems <- c()
if (a$cardinality > 0 && b$cardinality > 0) {
abElems <- intersect(a$elems, b$elems)
}
asCombination(abName, abElems, "intersect", abSets, color = cc(abName))
}
calc <- ifelse(c_type == "union", mergeUnion, mergeIntersect)
pushCombination <- function(s) {
if (s$degree < min || (!is.null(max) && s$degree > max) || (s$cardinality == 0 && !empty)) {
return()
}
if (!store.elems) {
s <<- asCombination(s$name, c(), "distinctIntersection", s$setNames, cardinality = s$cardinality, color = s$color)
}
if (!distinct) {
combinations <<- c(combinations, list(s))
return()
}
otherSets <- Filter(function(ss) {
!(ss$name %in% s$setNames)
}, sets)
dElems <- Filter(function(e) {
for (o in otherSets) {
if (e %in% o$elems) {
return(FALSE)
}
}
TRUE
}, s$elems)
if (s$cardinality == length(dElems)) {
combinations <<- c(combinations, list(s))
return()
}
sDistinct <- asCombination(s$name, if (store.elems) {
dElems
} else {
c()
}, "distinctIntersection", s$setNames, cardinality = length(dElems), color = s$color)
if (sDistinct$cardinality > 0 || empty) {
combinations <<- c(combinations, list(sDistinct))
}
}
generateLevel <- function(arr, degree) {
if (!is.null(max) && degree > max) {
return()
}
l <- length(arr)
for (i in 1:l) {
a <- arr[[i]]
sub <- list()
if (i < l) {
for (j in (i + 1):l) {
b <- arr[[j]]
ab <- calc(a, b)
pushCombination(ab)
if (c_type == "union" || ab$cardinality > 0 || empty) {
sub[[length(sub) + 1]] <- ab
}
}
}
if (length(sub) > 1) {
generateLevel(sub, degree + 1)
}
}
}
degree1 <- lapply(seq_along(sets), function(i) {
s <- sets[[i]]
sC <- asCombination(s$name, s$elems, c_type, c(s$name), s$cardinality, s$color)
pushCombination(sC)
sC
})
generateLevel(degree1, 2)
names(combinations) <- NULL
sortSets(combinations, order.by, limit)
}
extractCombinationsImpl <- function(df,
sets,
empty,
order.by,
limit = NULL,
colors = NULL,
symbol = "&",
store.elems = TRUE) {
allSetNames <- sapply(seq_along(sets), function(i) sets[[i]]$name)
if (is.list(allSetNames)) {
allSetNames <- unlist(allSetNames)
}
cc <- colorLookup(colors)
elems <- rownames(df)
dfSets <- df[, allSetNames]
cName <- apply(dfSets, 1, function(r) {
nn <- allSetNames[as.logical(r)]
if (length(nn) == 1) {
nn
} else {
paste(nn, collapse = symbol)
}
})
dd <- aggregate(elems, list(c_name = cName), function(r) {
r
})
setNames <- strsplit(dd$c_name, symbol, fixed = TRUE)
setColors <- cc(dd$c_name)
combinations <- lapply(seq_len(nrow(dd)), function(i) {
elems <- as.character(dd[i, "x"][[1]])
structure(
list(
name = dd[i, "c_name"],
color = setColors[i],
type = "distinctIntersection",
elems = if (store.elems) elems else c(),
setNames = setNames[i][[1]], cardinality = length(elems)
),
class = "upsetjs_combination"
)
})
names(combinations) <- NULL
sortSets(combinations, order.by, limit)
} |
make.soapgrid<-function(bnd,n.grid){
if(length(n.grid)==2){
m<-n.grid[1]
n<-n.grid[2]
}else{
m<-n<-n.grid
}
xmin<-min(bnd$x,na.rm=TRUE)
ymin<-min(bnd$y,na.rm=TRUE)
xmax<-max(bnd$x,na.rm=TRUE)
ymax<-max(bnd$y,na.rm=TRUE)
ng<-expand.grid(x=seq(xmin,xmax,length=m),
y=seq(ymin,ymax,length=n))
x <- ng$x; y <- ng$y
onoff<-inSide(as.list(bnd),x,y)
ng<-ng[onoff,]
return(ng)
} |
coef.trial <- function(object,...){
par <- coef(object$mr)
row.names(par) <- paste("mr :",row.names(coef(object$mr)))
if(!is.null(coef(object$ds)$exponent)){
rn <- row.names(par)
par <- rbind(par,coef(object$ds)$exponent)
row.names(par) <- c(rn, paste("ds expon:",
row.names(coef(object$ds)$exponent)))
}
rn <- row.names(par)
ds.scale <- coef(object$ds)$scale
if(!is.null(ds.scale)){
par <- rbind(par,coef(object$ds)$scale)
row.names(par) <- c(rn,paste("ds scale:",
row.names(coef(object$ds)$scale)))
}
if(!is.null(coef(object$ds)$adjustment)){
rn <- row.names(par)
par <- rbind(par,coef(object$ds)$adjustment)
row.names(par) <- c(rn, paste("ds adjust:",
row.names(coef(object$ds)$adjustment)))
}
return(par)
} |
map.eda7 <-
function (xx, yy, zz, sfact = 1, logz = FALSE, xlab = "Easting",
ylab = "Northing", zlab = deparse(substitute(zz)), main = "",
ifgrey = FALSE, symcolr = NULL, tol = 0.04, iflgnd = FALSE,
title = deparse(substitute(zz)), cex.lgnd = 0.8, ...)
{
frame()
old.par <- par(); on.exit(par(old.par))
par(pty = "m")
temp.x <- remove.na(cbind(xx, yy, zz))
x <- temp.x$x[1:temp.x$n, 1]
y <- temp.x$x[1:temp.x$n, 2]
z <- temp.x$x[1:temp.x$n, 3]
nz <- temp.x$n
if (main == "")
if (zlab == "")
banner <- ""
else {
if (logz)
banner <- paste("EDA Tukey Boxplot Based Map for Log10",
zlab)
else banner <- paste("EDA Tukey Boxplot Based Map for",
zlab)
}
else banner <- main
eqscplot(x, y, type = "n", xlab = xlab, ylab = ylab, main = banner,
tol = tol, ...)
if (logz)
z <- log10(z)
q <- quantile(z, probs = c(0.25, 0.75))
zcut <- numeric(6)
hw <- q[2] - q[1]
zcut[1] <- q[1] - 3 * hw
zcut[2] <- q[1] - 1.5 * hw
zcut[3] <- q[1]
zcut[4] <- q[2]
zcut[5] <- q[2] + 1.5 * hw
zcut[6] <- q[2] + 3 * hw
zzz <- cutter(z, zcut)
npch <- c(1, 1, 1, 3, 0, 0, 0)
size <- c(2, 1.5, 1, 0.5, 1, 1.5, 2) * sfact
if (ifgrey) {
symcolr <- grey(c(0, 0.15, 0.3, 0.4, 0.3, 0.15, 0))
}
else {
palette(rainbow(36))
if (length(symcolr) != 7)
symcolr <- c(25, 22, 20, 13, 6, 4, 1)
}
for (i in 1:nz) {
points(x[i], y[i], pch = npch[zzz[i]], cex = size[zzz[i]],
col = symcolr[zzz[i]])
}
cat("\n\tCut Levels\t No. of Symbols Symbol - size - Colour\n\tLog =",
logz, "\t\t\t\tsfact =", format(sfact, nsmall = 2), "\n\n")
stype <- character(7)
stype[1:3] <- "Circle "
stype[4] <- "Cross "
stype[5:7] <- "Square "
for (i in 1:6) {
if (logz)
zcut[i] <- 10^zcut[i]
ni <- length(zzz[zzz == i])
cat("\t\t\t ", ni, "\t ", stype[i], format(size[i],
nsmall = 2), " ", symcolr[i], "\n\t", round(zcut[i],
2), "\n")
}
cat("\t\t\t ", length(zzz[zzz == 7]), "\t ", stype[7],
format(size[7], nsmall = 2), " ", symcolr[7], "\n")
if (iflgnd) {
lgnd.line <- numeric(7)
zcut <- signif(zcut, 3)
lgnd.line[1] <- paste(">", zcut[6])
lgnd.line[2] <- paste(zcut[5], "-", zcut[6])
lgnd.line[3] <- paste(zcut[4], "-", zcut[5])
lgnd.line[4] <- paste(zcut[3], "-", zcut[4])
lgnd.line[5] <- paste(zcut[2], "-", zcut[3])
lgnd.line[6] <- paste(zcut[1], "-", zcut[2])
lgnd.line[7] <- paste("<", zcut[1])
legend(locator(1), pch = npch[7:1], col = symcolr[7:1],
pt.cex = size[7:1], lgnd.line[1:7], cex = cex.lgnd,
title = title, ...)
}
palette("default")
invisible()
} |
climate.anom.dendro.season<-function(climate.data,year1,year2,year.start,is.anomaly) {
colnames(climate.data)[1] <- "YEAR"
x<-climate.data
aver.month.year1.year2<-function(x,year1,year2){
xx<-subset(x=x,subset=("YEAR">=year1))
xxx<-subset(x=xx,subset=("YEAR"<=year2))
colMeans(xxx)
}
year<-as.vector(climate.data$YEAR,"character")
if (is.anomaly == "TRUE"){
xxx<-climate.data[2:13] }else{
aver.month<-aver.month.year1.year2(climate.data,year1,year2)
month<-dimnames(x)[[2]][2:13]
xxx<-matrix("na",dim(x)[1],dim(x)[2]-1)
rownames(xxx)<-year
colnames(xxx)<-month
for( j in 1:12){
xxx[,month[j]]<-apply(x,1,function(y){y[month[j]]-aver.month[month[j]]})
}
}
Jan.Aug.dendro<-rbind(xxx[2:length(year),1:8],NA)
rownames(Jan.Aug.dendro)<-year[1:(length(year))]
Sep.Dec.dendro<-xxx[,9:12]
dendro.anom<-cbind(Jan.Aug.dendro,Sep.Dec.dendro)
JJA<-matrix("na",length(year),1)
rownames(JJA)<-year
for( k in 1:length(year)){
JJA[k]<-if(is.na(dendro.anom[year[k],"Jun"])==FALSE &
is.na(dendro.anom[year[k],"Jul"])==FALSE &
is.na(dendro.anom[year[k],"Aug"])==FALSE){
mean(as.numeric(c(dendro.anom[year[k],"Jun"],
dendro.anom[year[k],"Jul"],
dendro.anom[year[k],"Aug"])))}else{"NA"}
}
MAM<-matrix("na",length(year),1)
rownames(MAM)<-year
for( k in 1:length(year)){
MAM[k]<-if(is.na(dendro.anom[year[k],"Mar"])==FALSE &
is.na(dendro.anom[year[k],"Apr"])==FALSE &
is.na(dendro.anom[year[k],"May"])==FALSE){
mean(as.numeric(c(dendro.anom[year[k],"Mar"],
dendro.anom[year[k],"Apr"],
dendro.anom[year[k],"May"])))}else{"NA"}
}
DJF<-matrix("na",length(year),1)
rownames(DJF)<-year
for( k in 1:length(year)){
DJF[k]<-if(is.na(dendro.anom[year[k],"Dec"])==FALSE &
is.na(dendro.anom[year[k],"Jan"])==FALSE &
is.na(dendro.anom[year[k],"Feb"])==FALSE){
mean(as.numeric(c(dendro.anom[year[k],"Dec"],
dendro.anom[year[k],"Jan"],
dendro.anom[year[k],"Feb"])))}else{"NA"}
}
SON<-matrix("na",length(year),1)
rownames(SON)<-year
for( k in 1:length(year)){
SON[k]<-if(is.na(dendro.anom[year[k],"Sep"])==FALSE &
is.na(dendro.anom[year[k],"Oct"])==FALSE &
is.na(dendro.anom[year[k],"Nov"])==FALSE){
mean(as.numeric(c(dendro.anom[year[k],"Sep"],
dendro.anom[year[k],"Oct"],
dendro.anom[year[k],"Nov"])))}else{"NA"}
}
JJA_1<-matrix(c("NA",JJA[1:(length(JJA)-1)]))
rownames(JJA_1)<-year[1:(length(year))]
MAM_1<-matrix(c("NA",MAM[1:(length(MAM)-1)]))
rownames(MAM_1)<-year[1:(length(year))]
DJF_1<-matrix(c("NA",DJF[1:(length(DJF)-1)]))
rownames(DJF_1)<-year[1:(length(year))]
SON_1<-matrix(c("NA",SON[1:(length(SON)-1)]))
rownames(SON_1)<-year[1:(length(year))]
JJA_2<-matrix(c("NA",JJA_1[1:(length(JJA_1)-1)]))
rownames(JJA_2)<-year[1:(length(year))]
MAM_2<-matrix(c("NA",MAM_1[1:(length(MAM_1)-1)]))
rownames(MAM_2)<-year[1:(length(year))]
DJF_2<-matrix(c("NA",DJF_1[1:(length(DJF_1)-1)]))
rownames(DJF_2)<-year[1:(length(year))]
SON_2<-matrix(c("NA",SON_1[1:(length(SON_1)-1)]))
rownames(SON_2)<-year[1:(length(year))]
climate.season<-cbind(SON_2,DJF_2,MAM_2,JJA_2,SON_1,DJF_1,MAM_1,JJA_1,SON,DJF,MAM,JJA)
col.names.season<-list("SON_2","DJF_2","MAM_2","JJA_2","SON_1","DJF_1","MAM_1",
"JJA_1","SON","DJF","MAM","JJA")
colnames(climate.season)<-(col.names.season)
climate.season<- ts ( climate.season , start=year.start )
climate.season
} |
getMinimumSpanningTree <- function(nodes, arcs, algorithm, start.node = 1,
show.data = TRUE, show.graph = TRUE,
check.graph = FALSE) {
if (check.graph) {
validGraph <- checkGraph(nodes, arcs, start.node, directed = FALSE)
if (validGraph == FALSE) {
stop("Invalid graph")
}
}
arcs <- removeLoops(arcs)
arcs <- removeMultiArcs(arcs, directed = FALSE)
tini <- proc.time()
if (algorithm == "Prim") {
mst <- msTreePrim(nodes, arcs, start.node)
} else if (algorithm == "Kruskal") {
mst <- msTreeKruskal(nodes, arcs)
} else if (algorithm == "Boruvka") {
mst <- msTreeBoruvka(nodes, arcs)
} else {
stop("Unknown algorithm")
}
running.time <- proc.time() - tini
if (show.data) {
dfTree <- mst$tree.arcs
weight <- sum(dfTree[, 3])
df <- as.data.frame(dfTree)
colnames(df) <- c(" ept1 ", " ept2 ", " weight ")
showdf <- capture.output(print(df, row.names=FALSE))
pastedf <- paste(showdf, "\n", sep="")
cat("\n")
cat(" Minimum Cost Spanning Tree \n")
cat(" Algorithm:", algorithm, "\n")
cat(" Stages: ", mst$stages, "| Time: ", running.time[3], "\n")
cat(" ------------------------------\n")
cat(" ", pastedf)
cat(" ------------------------------\n")
cat(" Total =", weight, "\n")
cat("\n")
}
if (show.graph) {
repGraph(nodes, arcs, tree = mst$tree.arcs,
plot.title = "Minimum Cost Spanning Tree")
}
output <- list("tree.nodes" = mst$tree.nodes, "tree.arcs" = mst$tree.arcs,
"weight" = sum(mst$tree.arcs[, 3]),
"stages" = mst$stages, "stages.arcs" = mst$stages.arcs,
"time" = running.time)
invisible(output)
} |
timestamp <- Sys.time()
library(caret)
library(plyr)
library(recipes)
library(dplyr)
model <- "AdaBag"
set.seed(2)
training <- twoClassSim(50, linearVars = 2)
testing <- twoClassSim(500, linearVars = 2)
trainX <- training[, -ncol(training)]
trainY <- training$Class
rec_cls <- recipe(Class ~ ., data = training) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors())
seeds <- vector(mode = "list", length = nrow(training) + 1)
seeds <- lapply(seeds, function(x) 1:20)
grid <- expand.grid(mfinal = (1:3)*3, maxdepth = c(1, 3))
cctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all",
classProbs = TRUE,
summaryFunction = twoClassSummary,
seeds = seeds)
cctrl2 <- trainControl(method = "LOOCV",
classProbs = TRUE,
summaryFunction = twoClassSummary,
seeds = seeds)
cctrl3 <- trainControl(method = "none",
classProbs = TRUE,
summaryFunction = twoClassSummary,
seeds = seeds)
cctrlR <- trainControl(method = "cv", number = 3, returnResamp = "all", search = "random")
set.seed(849)
test_class_cv_model <- train(trainX, trainY,
method = "AdaBag",
trControl = cctrl1,
tuneGrid = grid,
metric = "ROC",
preProc = c("center", "scale"))
set.seed(849)
test_class_cv_form <- train(Class ~ ., data = training,
method = "AdaBag",
tuneGrid = grid,
trControl = cctrl1,
metric = "ROC",
preProc = c("center", "scale"))
test_class_pred <- predict(test_class_cv_model, testing[, -ncol(testing)])
test_class_prob <- predict(test_class_cv_model, testing[, -ncol(testing)], type = "prob")
test_class_pred_form <- predict(test_class_cv_form, testing[, -ncol(testing)])
test_class_prob_form <- predict(test_class_cv_form, testing[, -ncol(testing)], type = "prob")
set.seed(849)
test_class_rand <- train(trainX, trainY,
method = "AdaBag",
trControl = cctrlR,
tuneLength = 4,
preProc = c("center", "scale"))
set.seed(849)
test_class_loo_model <- train(trainX, trainY,
method = "AdaBag",
trControl = cctrl2,
tuneGrid = grid,
metric = "ROC",
preProc = c("center", "scale"))
set.seed(849)
test_class_none_model <- train(trainX, trainY,
method = "AdaBag",
trControl = cctrl3,
tuneLength = 1,
metric = "ROC",
preProc = c("center", "scale"))
test_class_none_pred <- predict(test_class_none_model, testing[, -ncol(testing)])
test_class_none_prob <- predict(test_class_none_model, testing[, -ncol(testing)], type = "prob")
set.seed(849)
test_class_rec <- train(x = rec_cls,
data = training,
method = "AdaBag",
trControl = cctrl1,
tuneGrid = grid,
metric = "ROC")
if(
!isTRUE(
all.equal(test_class_cv_model$results,
test_class_rec$results))
)
stop("CV weights not giving the same results")
test_class_imp_rec <- varImp(test_class_rec)
test_class_pred_rec <- predict(test_class_rec, testing[, -ncol(testing)])
test_class_prob_rec <- predict(test_class_rec, testing[, -ncol(testing)],
type = "prob")
test_levels <- levels(test_class_cv_model)
if(!all(levels(trainY) %in% test_levels))
cat("wrong levels")
sInfo <- sessionInfo()
timestamp_end <- Sys.time()
tests <- grep("test_", ls(), fixed = TRUE, value = TRUE)
save(list = c(tests, "sInfo", "timestamp", "timestamp_end"),
file = file.path(getwd(), paste(model, ".RData", sep = "")))
if(!interactive())
q("no") |
mpcollapse <- function(mallele, nloci) {
tmp <- data.frame(m2 = (m <- floor(mallele/2):0), m1 = mallele - 2 * m)
tmp[tmp$m1 <= nloci & tmp$m2 <= nloci, ]
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.