code
stringlengths
1
13.8M
fitFMM_restr<-function(vData, nback, betaRestrictions, omegaRestrictions, timePoints = seqTimes(length(vData)), maxiter = nback, stopFunction = alwaysFalse, lengthAlphaGrid = 48, lengthOmegaGrid = 24, alphaGrid = seq(0,2*pi,length.out = lengthAlphaGrid), omegaMin = 0.0001, omegaMax = 1, omegaGrid = exp(seq(log(omegaMin),log(omegaMax), length.out = lengthOmegaGrid)), numReps = 3, parallelize = FALSE){ betaRestrictions <- sort(betaRestrictions) omegaRestrictions <- sort(omegaRestrictions) numOmegas <- length(unique(omegaRestrictions)) listOmegas <- replicate(n = numOmegas, omegaGrid, simplify = FALSE) omegasIter <- expand.grid(listOmegas)[,omegaRestrictions] objectFMMList <- iterateOmegaGrid(vData = vData, omegasIter = omegasIter, betaRestrictions = betaRestrictions, timePoints = timePoints, alphaGrid = alphaGrid, numReps = numReps, nback = nback, maxiter = maxiter, stopFunction = stopFunction, parallelize = parallelize) SSElist <- lapply(objectFMMList, getSSE) outMobius <- objectFMMList[[which.min(SSElist)]] uniqueOmegas <- unique(getOmega(outMobius)) uniqueOmegasOptim <- optim(par = uniqueOmegas, fn = stepOmega, indOmegas = omegaRestrictions, objFMM = outMobius, omegaMax = omegaMax, control = list(warn.1d.NelderMead = FALSE))$par beta <- getBeta(outMobius) alpha <- getAlpha(outMobius) omega <- uniqueOmegasOptim[omegaRestrictions] designMatrix <- calculateCosPhi(alpha = alpha, beta = beta, omega = omega, timePoints = timePoints) regresion <- lm(vData ~ designMatrix) M <- as.vector(coefficients(regresion)[1]) A <- as.vector(coefficients(regresion)[-1]) fittedFMMvalues <- predict(regresion) SSE <- sum((fittedFMMvalues-vData)^2) nIter <- getNIter(outMobius) explainedVarOrder <- order(getR2(outMobius),decreasing = TRUE) A <- A[explainedVarOrder] alpha <- alpha[explainedVarOrder] beta <- beta[explainedVarOrder] omega <- omega[explainedVarOrder] return(FMM( M = M, A = A, alpha = alpha, beta = beta, omega = omega, timePoints = timePoints, summarizedData = vData, fittedValues= fittedFMMvalues, SSE = SSE, R2 = PVj(vData, timePoints, alpha, beta, omega), nIter = nIter )) } fitFMM_restr_omega_beta<-function(vData, nback, betaRestrictions, omegaRestrictions, timePoints = seqTimes(length(vData)), maxiter = nback, stopFunction = alwaysFalse, lengthAlphaGrid = 48, lengthOmegaGrid = 24, alphaGrid = seq(0, 2*pi, length.out = lengthAlphaGrid), omegaMin = 0.0001, omegaMax = 1, omegaGrid = exp(seq(log(omegaMin),log(omegaMax), length.out=lengthOmegaGrid)), numReps = 3, showProgress = TRUE, parallelize = FALSE){ nObs <- length(vData) if(showProgress){ totalMarks <- 50 partialMarkLength <- 2 progressHeader<-paste(c("|",rep("-",totalMarks),"|\n|"), collapse = "") cat(progressHeader) completedPercentage <- 0.00001 previousPercentage <- completedPercentage } numBlocks <- length(unique(omegaRestrictions)) fittedValuesPerBlock <- matrix(0, ncol = numBlocks, nrow = nObs) fittedFMMPerBlock <- list() prevFittedFMMvalues <- NULL stopCriteria<-"Stopped by reaching maximum iterations (" for(i in 1:maxiter){ blockIndex <- 1 for(j in unique(omegaRestrictions)){ currentBlock <- which(omegaRestrictions == j) nCurrentBlock <- length(currentBlock) backfittedData <- vData - apply(as.matrix(fittedValuesPerBlock[,-blockIndex]), 1, sum) fittedFMMPerBlock[[blockIndex]] <- fitFMM_restr(backfittedData, nback = nCurrentBlock, betaRestrictions = betaRestrictions[currentBlock], omegaRestrictions = rep(1,nCurrentBlock), timePoints = timePoints, maxiter = ifelse(nCurrentBlock > 1, min(nCurrentBlock + 1, 4), 1), lengthAlphaGrid = lengthAlphaGrid, lengthOmegaGrid = lengthOmegaGrid, alphaGrid = alphaGrid, omegaMax = omegaMax, omegaGrid = omegaGrid, numReps = numReps, parallelize = parallelize) fittedValuesPerBlock[,blockIndex] <- getFittedValues(fittedFMMPerBlock[[blockIndex]]) blockIndex <- blockIndex + 1 if(showProgress){ completedPercentage <- completedPercentage + 100/(nback*maxiter) if(ceiling(previousPercentage) < floor(completedPercentage)){ progressDone <- paste(rep("=",sum((seq(ceiling(previousPercentage), floor(completedPercentage), by = 1) %% partialMarkLength == 0))), collapse = "") cat(progressDone) previousPercentage <- completedPercentage } } } fittedFMMvalues <- apply(fittedValuesPerBlock, 1, sum) if(!is.null(prevFittedFMMvalues)){ if(PV(vData, prevFittedFMMvalues) > PV(vData, fittedFMMvalues)){ fittedFMMPerBlock <- prevFittedFMMPerBlock fittedFMMvalues <- prevFittedFMMvalues stopCriteria <- "Stopped by reaching maximum R2 (" break } if(stopFunction(vData, fittedFMMvalues, prevFittedFMMvalues)){ stopCriteria <- "Stopped by the stopFunction (" break } } prevFittedFMMvalues <- fittedFMMvalues prevFittedFMMPerBlock <- fittedFMMPerBlock } nIter <- i if(showProgress){ if(completedPercentage < 100){ completedPercentage <- 100 nMarks <- ifelse(ceiling(previousPercentage) < floor(completedPercentage), sum((seq(ceiling(previousPercentage), floor(completedPercentage), by = 1) %% partialMarkLength == 0)), 0) if (nMarks > 0) { cat(paste(rep("=",nMarks), collapse = "")) previousPercentage <- completedPercentage } } cat("|\n", paste(stopCriteria, nIter, sep = ""), "iteration(s))", "\n") } alpha <- unlist(lapply(fittedFMMPerBlock, getAlpha)) beta <- unlist(lapply(fittedFMMPerBlock, getBeta)) omega <- unlist(lapply(fittedFMMPerBlock, getOmega)) cosPhi <- calculateCosPhi(alpha = alpha, beta = beta, omega = omega, timePoints = timePoints) regression <- lm(vData ~ cosPhi) M <- as.vector(coefficients(regression)[1]) A <- as.vector(coefficients(regression)[-1]) fittedFMMvalues <- predict(regression) SSE <- sum((fittedFMMvalues - vData)^2) explainedVarOrder <- order(PVj(vData, timePoints, alpha, beta, omega),decreasing = TRUE) A <- A[explainedVarOrder] alpha <- alpha[explainedVarOrder] beta <- beta[explainedVarOrder] omega <- omega[explainedVarOrder] return(FMM( M = M, A = A, alpha = alpha, beta = beta, omega = omega, timePoints = timePoints, summarizedData = vData, fittedValues = fittedFMMvalues, SSE = SSE, R2 = PVj(vData, timePoints, alpha, beta, omega), nIter = nIter )) }
ScanCBSPlot <- function(cases, controls, CBSObj, filename, mainTitle, CIObj=NULL, length.out=10000, localWindow=0.5*10^5, localSeparatePlot=TRUE, smoothF=0.025, xlabScale=10^6, width=12, height=18) { p = length(cases)/(length(cases)+length(controls)) maxCase = max(cases) maxControl = max(controls) maxVal = max(c(maxCase, maxControl)) cpts = matrix(CBSObj$statHat[,c(1,2,5)], nrow=nrow(CBSObj$statHat)) tauHatFull = CBSObj$tauHat tauHat = tauHatFull[c(-1, -length(tauHatFull))] relCN = CBSObj$relCN relCN[relCN <= 0] = 1 ylims = c(min(c(0, cpts[,3])), max(c(0, cpts[,3]))) if(!is.null(CIObj)) { CIBounds = CIObj$CIRes[3:4,] CIL = as.numeric(CIObj$CIRes[5,]) CIU = as.numeric(CIObj$CIRes[6,]) relCNCIL = CIL/(1-CIL+10^(-5))/(p/(1-p)) relCNCIU = CIU/(1-CIU+10^(-5))/(p/(1-p)) } grid.fix = seq(1, maxVal, length.out=length.out) gridSize = grid.fix[2]-grid.fix[1] casesCountInGrid = getCountsInWindow(cases, 0, maxVal, gridSize, sorted=FALSE) casesCountInGridSmooth = lowess(x=grid.fix, y=casesCountInGrid, smoothF) casesCountInGridSmooth$y[casesCountInGridSmooth$y<0] = 0 controlCountInGrid = getCountsInWindow(controls, 0, maxVal, gridSize, sorted=FALSE) controlCountInGridSmooth = lowess(x=grid.fix, y=controlCountInGrid, smoothF) controlCountInGridSmooth$y[controlCountInGridSmooth$y<0] = 0 PInGrid = casesCountInGrid/(casesCountInGrid+controlCountInGrid) PInGrid[is.nan(PInGrid)]=0 relCNInGrid = PInGrid/(1-PInGrid)/(p/(1-p)) relCNInGrid[is.nan(relCNInGrid) | !is.finite(relCNInGrid) | relCNInGrid <= 0]=1 relCNInGrid = log(relCNInGrid, base=2) relCNlims = c(min(min(log(relCN, base=2)), min(relCNInGrid)), max(max(log(relCN, base=2)), max(relCNInGrid))) PInGridSmooth = lowess(x=grid.fix, y=PInGrid, smoothF) tauHatInGrid = grid.fix[tauHat %/% gridSize]/xlabScale gridYLims = c(min(log(casesCountInGrid+1) - log(controlCountInGrid+1)), log(max(casesCountInGrid, controlCountInGrid))) plotTauHatInd = c(min(min(cases),min(controls)), tauHat, maxVal) %/% gridSize plotTauHatInd = sapply(plotTauHatInd, function(x) {max(x,1)}) plotTauHatInd = sapply(plotTauHatInd, function(x) {min(x,max(grid.fix))}) plotTauHat = grid.fix[plotTauHatInd]/xlabScale pdf(paste(filename, ".pdf", sep=""), width=width, height=height) par(mfrow=c(3,1)) plot(x=grid.fix/xlabScale, y=rep(0, length(grid.fix)), type="n", ylim=ylims, main=mainTitle, ylab="Statistic", xlab=paste("Base Pairs", xlabScale)) for(i in 1:nrow(cpts)) { plotX = c(grid.fix[max(floor(cpts[i,1]/gridSize), 1)]/xlabScale, grid.fix[ceiling(cpts[i,2]/gridSize)]/xlabScale) lines(x=plotX, y=rep(cpts[i,3],2), lwd=3) } abline(v=tauHatInGrid, lty=3, col=4) matplot(x=grid.fix/xlabScale, y=log(cbind(casesCountInGridSmooth$y, controlCountInGridSmooth$y)+1), type="l", lty=c(1,1), col=c(2,1), main="Log Read Intensity", ylab="Read Intensity", xlab=paste("Base Pairs", xlabScale), ylim=gridYLims) points(x=grid.fix/xlabScale, y=log(casesCountInGrid+1) - log(controlCountInGrid+1), pch=".", col=1) abline(v=tauHatInGrid, lty=3, col=4) legend("topright", c("case","control", "case-control"), pch=".", lty=c(1,1,0), col=c(2,1,1)) plot(x=grid.fix/xlabScale, y=relCNInGrid, type="p", pch=20, ylim=relCNlims, main="Log Relative Copy Number", ylab="Log2 Relative CN", xlab=paste("Base Pairs", xlabScale)) lines(x=plotTauHat, y=log(c(relCN, relCN[length(relCN)]), base=2), type="s", col="red") dev.off() nTauHat = length(tauHat) if(localSeparatePlot == FALSE) { nPlotCol = as.integer(sqrt(nTauHat/(height/width))) nPlotRow = ceiling(nTauHat/nPlotCol) pdf(paste(filename, "_localDetails.pdf", sep=""), width=width*2, height=height*2) par(mfrow=c(nPlotRow, nPlotCol)) } for(i in 1:nTauHat) { if(localSeparatePlot) { pdf(paste(filename, "_local_", i, "_", tauHat[i], ".pdf", sep=""), width=width, height=height/2, pointsize=24) } lBound = max(0, tauHat[i]-localWindow) rBound = min(maxVal, tauHat[i]+localWindow) localCas = cases[cases >= lBound & cases < rBound] localCon = controls[controls >= lBound & controls < rBound] grid.fix = seq(lBound, rBound, length.out=length.out/100) gridSize = grid.fix[2]-grid.fix[1] grid.mpt = grid.fix + gridSize/2 CasCountInGrid = getCountsInWindow(localCas, lBound, rBound, gridSize, sorted=FALSE) ConCountInGrid = getCountsInWindow(localCon, lBound, rBound, gridSize, sorted=FALSE) pInGrid = CasCountInGrid/(CasCountInGrid+ConCountInGrid) pInGrid[is.nan(pInGrid)] = 0.0 combLocalCasCon = CombineCaseControlC(localCas, localCon) plotReadRangeInd = combLocalCasCon$combL >= lBound & combLocalCasCon$combL <= rBound plotReadX = combLocalCasCon$combL[plotReadRangeInd] plotReadY = combLocalCasCon$combZ[plotReadRangeInd] > 0 plotPX = cbind(tauHatFull[-length(tauHatFull)], tauHatFull[-1]) pSegment = relCN*p/(1-p)/(1+relCN*p/(1-p)) plotPY = cbind(pSegment, pSegment) if(!is.null(CIObj)) { localCIBounds = (CIBounds[1,] <= rBound) & (CIBounds[2,] >= lBound) localYLims = c(min(CIL[localCIBounds]), max(CIU[localCIBounds])) * c(0.8, 1.2) if(is.nan(localYLims[1]) || !is.finite(localYLims[1])) localYLims[1] = 0 if(is.nan(localYLims[2]) || !is.finite(localYLims[2])) localYLims[2] = 1 } else { localYLims = c(0,1) } plot(x=1, y=1, type="n", xlim=c(lBound, rBound), xaxt="n", ylim=localYLims, main=paste("Reads and Inference around", tauHat[i]), xlab="Base Pair Locations", ylab="p(case read)", cex.main=0.75, cex.lab=0.75, cex.axis=0.75) axis(side=1, at=plotReadX[!plotReadY], labels=FALSE, tcl=0.3) axis(side=3, at=plotReadX[plotReadY], labels=FALSE, tcl=0.3) axis(side=1, xaxp=c(lBound, rBound, 10), tcl=-0.5, cex.axis=0.75) if(is.null(CIObj)) { if(length(grid.mpt) != length(pInGrid)) { grid.mpt = grid.mpt[1:max(length(grid.mpt), length(pInGrid))] pInGrid = pInGrid[1:max(length(grid.mpt), length(pInGrid))] } points(x=grid.mpt, y=pInGrid, pch=20, col=3) } else { for(j in 1:ncol(CIBounds)) { lines(x=CIBounds[,j], y=rep(CIL[j],2), col=" lines(x=CIBounds[,j], y=rep(CIU[j],2), col=" } } for(j in 1:nrow(plotPY)) { lines(x=plotPX[j,], y=plotPY[j,], lwd=3) } abline(v=tauHat, lty=3, lwd=2, col=" if(localSeparatePlot) { dev.off() } } if(localSeparatePlot == FALSE) dev.off() }
ff_starters.flea_conn <- function(conn, week = 1:17, ...) { starters <- ff_schedule(conn, week) %>% dplyr::filter(!is.na(.data$result)) %>% dplyr::distinct(.data$week, .data$game_id) %>% dplyr::mutate(starters = purrr::map2(.data$week, .data$game_id, .flea_starters, conn)) %>% tidyr::unnest("starters") %>% dplyr::arrange(.data$week, .data$franchise_id) } .flea_starters <- function(week, game_id, conn) { x <- fleaflicker_getendpoint("FetchLeagueBoxscore", sport = "NFL", scoring_period = week, fantasy_game_id = game_id, league_id = conn$league_id ) %>% purrr::pluck("content", "lineups") %>% list() %>% tibble::tibble() %>% tidyr::unnest_longer(1) %>% tidyr::unnest_wider(1) %>% tidyr::unnest_longer("slots") %>% tidyr::unnest_wider("slots") %>% dplyr::mutate( position = purrr::map_chr(.data$position, purrr::pluck, "label"), positionColor = NULL ) %>% tidyr::pivot_longer(c("home", "away"), names_to = "franchise", values_to = "player") %>% tidyr::hoist("player", "proPlayer", "owner", "points" = "viewingActualPoints") %>% tidyr::hoist("proPlayer", "player_id" = "id", "player_name" = "nameFull", "pos" = "position", "team" = "proTeamAbbreviation" ) %>% dplyr::filter(!is.na(.data$player_id)) %>% tidyr::hoist("owner", "franchise_id" = "id", "franchise_name" = "name") %>% tidyr::hoist("points", "player_score" = "value") %>% dplyr::select(dplyr::any_of(c( "franchise_id", "franchise_name", "starter_status" = "position", "player_id", "player_name", "pos", "team", "player_score" ))) return(x) }
test_that("score_type3", { correct_s3_r <- c(387) correct_s3_p <- c(387) correct_s3_d <- c(387) expect_equal(which(score_type3(a, w2) > thr2 & lp2), correct_s3_r) expect_equal(which(score_type3(a, w2, "periodic") > thr2 & lp2), correct_s3_p) expect_equal_na_allowed(which(score_type3(a, w2, "discard") > thr2 & lp2), correct_s3_d) })
WCY <- function(x, d, zc = rep(1, length(d)), wt = rep(1,length(d)), maxit = 25, error = 1e-09) { xvec <- as.vector(x) nn <- length(xvec) if (nn <= 1) stop("Need more observations") if (length(d) != nn) stop("length of x and d must agree") if (any((d != 0) & (d != 1) & (d != 2))) stop("d must be 0(right-censored) or 1(uncensored) or 2(left-censored)") if (!is.numeric(xvec)) stop("x must be numeric") temp <- Wdataclean3(z=xvec, d=d, zc=zc, wt=wt) x <- temp$value d <- temp$dd w <- temp$weight INDEX10 <- which(d != 2) d[INDEX10[length(INDEX10)]] <- 1 INDEX12 <- which(d != 0) d[INDEX12[1]] <- 1 xd1 <- x[d == 1] if (length(xd1) <= 1) stop("need more distinct uncensored obs.") xd0 <- x[d == 0] xd2 <- x[d == 2] wd1 <- w[d == 1] wd0 <- w[d == 0] wd2 <- w[d == 2] m <- length(xd0) mleft <- length(xd2) if ((m > 0) && (mleft > 0)) { pnew <- wd1/sum(wd1) n <- length(pnew) k <- rep(NA, m) for (i in 1:m) { k[i] <- 1 + n - sum(xd1 > xd0[i]) } kk <- rep(NA, mleft) for (j in 1:mleft) { kk[j] <- sum(xd1 < xd2[j]) } num <- 1 while (num < maxit) { wd1new <- wd1 sur <- cumsumsurv(pnew) cdf <- 1 - c(sur[-1], 0) for (i in 1:m) { wd1new[k[i]:n] <- wd1new[k[i]:n] + wd0[i] * pnew[k[i]:n]/sur[k[i]] } for (j in 1:mleft) { wd1new[1:kk[j]] <- wd1new[1:kk[j]] + wd2[j] * pnew[1:kk[j]]/cdf[kk[j]] } pnew <- wd1new/sum(wd1new) num <- num + 1 } sur <- cumsumsurv(pnew) cdf <- 1 - c(sur[-1], 0) logel<-sum(wd1*log(pnew))+sum(wd0*log(sur[k])) + sum(wd2*log(cdf[kk])) } return(list(logEL=logel, time=xd1, jump=pnew, surv=1-cdf, prob=cdf)) }
.classVectorChecker <- function(dataSet){ checkMark <- FALSE if(length(dataSet$class) == ncol(dataSet$expr)){ if(length(which(dataSet$class==0)) > 1 && length(which(dataSet$class==1)) > 1){ checkMark <- TRUE } } return(checkMark) } .leaveOneOutMetaAnalysisWrapper <- function(originalData, old = FALSE, maxCores=Inf){ max_cores <- min(length(originalData), maxCores) if(max_cores>10){ max_cores <- 10 } return(mclapply(1:length(originalData), function(i) invisible(.runMetaAnalysisCore(originalData[-i],old=old)), mc.cores = max_cores)) } .runMetaAnalysisCore <- function(originalData, old = FALSE){ annDB <- .createAnnTable(originalData[[1]]) if(length(originalData) > 1) { for(i in 2:length(originalData)) { tempAnnTable <- .createAnnTable(originalData[[i]]) commonProbes <- match(annDB[,1], tempAnnTable[,1]) commonProbes <- commonProbes[!is.na(commonProbes)] if(length(commonProbes) > 0) { cat("Found common probes in", i, "\n", sep=" ") tempAnnTable <- tempAnnTable[-commonProbes,] } annDB = rbind(annDB, tempAnnTable) } } rownames(annDB) <- annDB[,1] annDB <- as.matrix(annDB[,2]) colnames(annDB) <- c("symbol") cat("Computing effect sizes...") all.ES <- lapply( originalData,.effect.sizes) output.REM <- .combine.effect.sizes( all.ES ) cat("\nComputing summary effect sizes...") pooled.ES <- output.REM$pooled.estimates pooled.ES$p.fdr <- stats::p.adjust( pooled.ES$p.value, method="fdr" ) pooled.ES <- pooled.ES[ order(pooled.ES$p.fdr), ] output.Fisher <- NULL if(old==TRUE){ cat("\nComputing Q-values...") all.Qvals <- lapply(originalData, .ttest.Qvalues) cat("\nComputing Fisher's output...") output.Fisher <- .sum.of.logs(all.Qvals) }else{ .adjust.fisher <- function(output.Fisher, method="fdr"){ F.Qval.up <- stats::p.adjust(output.Fisher[, "F.pval.up"], method=method) F.Qval.down <- stats::p.adjust(output.Fisher[, "F.pval.down"], method=method) return(cbind(output.Fisher, F.Qval.up, F.Qval.down)) } cat("\nComputing Fisher's output...") all.Pvals <- lapply(originalData, .ttest.Pvalues) output.Fisher <- .sum.of.logs(all.Pvals) output.Fisher <- .adjust.fisher(output.Fisher = output.Fisher) } datasetEffectSizes <- output.REM$g colnames(datasetEffectSizes) <- as.character(strsplit(colnames(datasetEffectSizes), "_g")) datasetEffectSizeStandardErrors <- output.REM$se.g colnames(datasetEffectSizeStandardErrors) <- as.character(strsplit(colnames(datasetEffectSizeStandardErrors), "_se.g")) pooledResults <- pooled.ES[,c('summary', 'se.summary', 'p.value', 'p.fdr', 'tau2', 'n.studies', 'Q', 'pval.het')] colnames(pooledResults) <- c("effectSize", "effectSizeStandardError", "effectSizePval", "effectSizeFDR", "tauSquared", "numStudies", "cochranesQ", "heterogeneityPval") output.Fisher <- output.Fisher[,c('F.stat.up', 'F.pval.up', 'F.Qval.up', 'F.stat.down', 'F.pval.down', 'F.Qval.down')] colnames(output.Fisher) <- c("fisherStatUp", "fisherPvalUp", "fisherFDRUp", "fisherStatDown", "fisherPvalDown", "fisherFDRDown") pooledResults <- merge(pooledResults,output.Fisher,by=0) row.names(pooledResults) <- pooledResults$Row.names pooledResults$Row.names <- NULL pooledResults <- pooledResults[order(pooledResults$effectSizeFDR,pooledResults$effectSizePval),] analysisDescription <- "MetaAnalysis: Random Effects Model" return(list(datasetEffectSizes = datasetEffectSizes, datasetEffectSizeStandardErrors = datasetEffectSizeStandardErrors, pooledResults = pooledResults, analysisDescription = analysisDescription)) } .originalDataNameChecker <- function(metaObject){ return(all(make.names(names(metaObject$originalData)) == names(metaObject$originalData))) } .originalDataNameConverter <- function(metaObject){ if(.originalDataNameChecker(metaObject) == FALSE){ old_names <- names(metaObject$originalData) new_names <- make.names(old_names) for(i in 1:length(metaObject$originalData)){ if(is.null(metaObject$originalData[[i]]$formattedName) | metaObject$originalData[[i]]$formattedName =="") { metaObject$originalData[[i]]$formattedName <- old_names[i] } } names(metaObject$originalData) <- new_names } return(metaObject) } .filterMetaRun <- function(metaAnalysis, effectSizeThresh = 0, effectFDRSizeThresh = 0.05, fisherFDRThresh = 0.05, numberStudiesThresh = 1, heterogeneityPvalThresh = 0.05){ final_results <- metaAnalysis$pooledResults final_results <- final_results[which(abs(final_results$effectSize) >= effectSizeThresh), ] final_results <- final_results[which(final_results$effectSizeFDR <= effectFDRSizeThresh), ] final_results <- final_results[which(final_results$numStudies >= numberStudiesThresh), ] if(heterogeneityPvalThresh > 0){ final_results <- final_results[which(final_results$heterogeneityPval >= heterogeneityPvalThresh),] } posGeneNames <- row.names(final_results[intersect(which(final_results$fisherFDRUp <= fisherFDRThresh),which(final_results$effectSize > 0)),]) negGeneNames <- row.names(final_results[intersect(which(final_results$fisherFDRDown <= fisherFDRThresh),which(final_results$effectSize < 0)),]) final_list <- list(posGeneNames = posGeneNames, negGeneNames = negGeneNames, effectSizeThresh = effectSizeThresh, FDRThresh = effectFDRSizeThresh, numberStudiesThresh = numberStudiesThresh, heterogeneityPvalThresh = heterogeneityPvalThresh) return(final_list) } .plotESdistribution <- function(metaObject){ es_plot <- ggplot(reshape2::melt(metaObject$metaAnalysis$datasetEffectSizes, varnames=c("Gene", "Study")), aes_string(x = "value", colour = "Study")) + geom_density(size = 1.1) + theme_bw() + scale_color_discrete(name = 'Dataset') return(es_plot) }
snapread <- function(file){ data = file(file,'rb') block=readBin(data,'integer',n=1) Npart=readBin(data,'integer',n=6) Massarr=readBin(data,'numeric',n=6,size=8) Time=readBin(data,'numeric',n=1,size=8) z=readBin(data,'numeric',n=1,size=8) FlagSfr=readBin(data,'integer',n=1) FlagFeedback=readBin(data,'integer',n=1) Nall=readBin(data,'integer',n=6) FlagCooling=readBin(data,'integer',n=1) NumFiles=readBin(data,'integer',n=1) BoxSize=readBin(data,'numeric',n=1,size=8) OmegaM=readBin(data,'numeric',n=1,size=8) OmegaL=readBin(data,'numeric',n=1,size=8) h=readBin(data,'numeric',n=1,size=8) FlagAge=readBin(data,'integer',n=1) FlagMetals=readBin(data,'integer',n=1) NallHW=readBin(data,'integer',n=6) flag_entr_ics=readBin(data,'integer',n=1) readBin(data,'integer',n=256-241) block=readBin(data,'integer',n=1) block=readBin(data,'integer',n=1) posall=readBin(data,'numeric',n=block/4,size=4) block=readBin(data,'integer',n=1) block=readBin(data,'integer',n=1) velall=readBin(data,'numeric',n=block/4,size=4) block=readBin(data,'integer',n=1) block=readBin(data,'integer',n=1) ID=readBin(data,'integer',n=block/4) block=readBin(data,'integer',n=1) block=readBin(data,'integer',n=1) if(length(block)>0){ Mass=readBin(data,'numeric',n=block/4,size=4) }else{ counter=1 Mass=rep(NA,sum(Npart)) whichmass=which(Npart>0) for(i in 1:length(whichmass)){ N=Npart[whichmass[i]] Mass[ID>=counter & ID<=counter+N]=Massarr[whichmass[i]] counter=counter+N } } block=readBin(data,'integer',n=1) extra=0 extramat={} while(length(block)>0){ block=readBin(data,'integer',n=1) if(length(block)>0){ extramat=cbind(extramat,readBin(data,'numeric',n=block/4,size=4)) block=readBin(data,'integer',n=1) extra=extra+1 } } close(data) extract=((1:sum(Npart))*3)-2 part=data.frame(ID=ID,x=posall[extract],y=posall[extract+1],z=posall[extract+2],vx=velall[extract],vy=velall[extract+1],vz=velall[extract+2],Mass=Mass) return(list(part=part,head=list(Npart = Npart, Massarr= Massarr, Time= Time, z= z, FlagSfr= FlagSfr, FlagFeedback= FlagFeedback, Nall= Nall, FlagCooling= FlagCooling, NumFiles= NumFiles, BoxSize= BoxSize, OmegaM= OmegaM, OmegaL= OmegaL,h=h, FlagAge= FlagAge, FlagMetals= FlagMetals, NallHW= NallHW,flag_entr_ics=flag_entr_ics),extra=extra,extramat=extramat))}
context("AppenderFileRotating") setup({ td <- file.path(tempdir(), "lgr") assign("td", td, parent.env(environment())) dir.create(td, recursive = TRUE) }) teardown({ unlink(td, recursive = TRUE) }) assert_supported_rotor_version <- function(){ if (packageVersion("rotor") < "0.3.0") skip("rotor < 0.3.0 is no longer supported") } test_that("AppenderFileRotating: works as expected", { if (!is_zipcmd_available()) skip("Test requires a workings system zip command") assert_supported_rotor_version() tf <- file.path(td, "test.log") app <- AppenderFileRotating$new(file = tf, size = "1tb") lg <- lgr::get_logger("test")$ set_propagate(FALSE)$ set_appenders(app) on.exit({ lg$config(NULL) file.remove(tf) app$prune(0) }) expect_identical(app, lg$appenders[[1]]) lg$fatal("test973") expect_true(file.exists(app$file)) expect_length(readLines(app$file), 1) expect_match(readLines(app$file), "test973") app$rotate(force = TRUE) expect_gt(lg$appenders[[1]]$backups[1, ]$size, 0L) expect_identical(nrow(lg$appenders[[1]]$backups), 1L) expect_length(readLines(app$file), 0) expect_match(readLines(app$backups$path[[1]]), "test973") app$rotate(force = TRUE) expect_equal(app$backups[1, ]$size, 0) expect_identical(nrow(lg$appenders[[1]]$backups), 2L) lg$fatal("test987") lg$appenders[[1]]$set_compression(TRUE) lg$appenders[[1]]$rotate(force = TRUE) expect_identical(lg$appenders[[1]]$backups$ext, c("log.zip", "log", "log")) expect_identical(lg$appenders[[1]]$backups$sfx, as.character(1:3)) con <- unz(app$backups$path[[1]], filename = "test.log") on.exit(close(con), add = TRUE) expect_match(readLines(con), "test987") expect_identical(nrow(app$prune(0)$backups), 0L) }) test_that("AppenderFileRotating: works with different backup_dir", { if (!is_zipcmd_available()) skip("Test requires a workings system zip command") assert_supported_rotor_version() tf <- file.path(td, "test.log") bu_dir <- file.path(td, "backups") expect_error( app <- AppenderFileRotating$new(file = tf, backup_dir = bu_dir), class = "DirDoesNotExistError" ) dir.create(bu_dir) app <- AppenderFileRotating$new( file = tf, backup_dir = bu_dir, size = 10 ) lg <- get_logger("test")$ set_propagate(FALSE)$ add_appender(app) on.exit({ app$prune(0) lg$config(NULL) unlink(c(tf, bu_dir), recursive = TRUE) }) lg$info(paste(LETTERS, collapse = "-")) app$set_compression(TRUE) lg$info(paste(letters, collapse = "-")) expect_equal(file.size(tf), 0) expect_equal(list.files(bu_dir), basename(app$backups$path)) expect_setequal(app$backups$ext, c("log.zip", "log")) expect_match(app$backups$path[[1]], "lgr/backups") expect_match(app$backups$path[[2]], "lgr/backups") con <- unz(app$backups$path[[1]], filename = "test.log") on.exit(close(con), add = TRUE) expect_match(readLines(con), "a-b-.*-y-z") expect_match(readLines(app$backups$path[[2]]), "A-B-.*-Y-Z") file.remove(app$backups$path) }) test_that("AppenderFileRotating: `size` argument works as expected", { assert_supported_rotor_version() tf <- file.path(td, "test.log") app <- AppenderFileRotating$new(file = tf)$set_size(-1) saveRDS(iris, app$file) on.exit({ unlink(tf) app$prune(0) }) app$set_size("3 KiB") app$rotate() expect_identical(nrow(app$backups), 0L) app$set_size("0.5 KiB") app$rotate() expect_identical(nrow(app$backups), 1L) expect_gt(app$backups$size[[1]], 10) expect_equal(file.size(app$file), 0) }) test_that("AppenderFileRotatingDate: works as expected", { if (!is_zipcmd_available()) skip("Test requires a workings system zip command") assert_supported_rotor_version() tf <- file.path(td, "test.log") app <- AppenderFileRotatingDate$new(file = tf, size = "1tb") lg <- lgr::get_logger("test")$ set_propagate(FALSE)$ set_appenders(app) on.exit({ lg$config(NULL) file.remove(tf) app$prune(0) }) expect_identical(app, lg$appenders[[1]]) lg$fatal("test341") expect_true(file.exists(app$file)) expect_length(readLines(app$file), 1) expect_match(readLines(app$file), "test341") expect_identical(nrow(app$backups), 0L) app$set_size(-1)$set_age("1 day") app$rotate(now = as.Date("2019-01-01"), force = TRUE) expect_identical(nrow(app$backups), 1L) expect_gt(lg$appenders[[1]]$backups[1, ]$size, 0L) expect_length(readLines(app$file), 0) expect_match(app$backups$path[[1]], "2019-01-01") expect_match(readLines(app$backups$path[[1]]), "test341") app$rotate(now = "2019-01-02") expect_identical(nrow(app$backups), 2L) expect_equal(app$backups[1, ]$size, 0) expect_match(app$backups$path[[1]], "2019-01-02") app$set_age("10000 years") lg$fatal("test938") app$set_age("1 day") lg$appenders[[1]]$set_compression(TRUE) lg$appenders[[1]]$rotate(now = as.Date("2019-01-03")) expect_identical(nrow(app$backups), 3L) expect_identical(app$backups$ext, c("log.zip", "log", "log")) expect_identical(lg$appenders[[1]]$backups$sfx, c("2019-01-03", "2019-01-02", "2019-01-01")) con <- unz(app$backups$path[[1]], filename = "test.log") on.exit(close(con), add = TRUE) expect_match(readLines(con), "test938") expect_identical(nrow(app$prune(0)$backups), 0L) }) test_that("AppenderFileRotatingDate: works with different backup_dir", { if (!is_zipcmd_available()) skip("Test requires a workings system zip command") assert_supported_rotor_version() tf <- file.path(td, "test.log") bu_dir <- file.path(td, "backups") expect_error( app <- AppenderFileRotatingDate$new(file = tf, backup_dir = bu_dir) ) dir.create(bu_dir) app <- AppenderFileRotatingDate$new( file = tf, backup_dir = bu_dir, size = 100 ) lg <- get_logger("test")$set_propagate(FALSE) lg$add_appender(app) on.exit({ app$prune(0) unlink(c(tf, bu_dir), recursive = TRUE) lg$config(NULL) }) app$set_age(-1)$set_size(-1) lg$info(paste(LETTERS)) app$set_compression(TRUE) lg$info(paste(LETTERS)) expect_equal(file.size(tf), 0) expect_equal(list.files(bu_dir), basename(app$backups$path)) expect_setequal(app$backups$ext, c("log.zip", "log")) file.remove(app$backups$path) }) test_that("AppenderFileRotatingDate: `size` and `age` arguments work as expected", { assert_supported_rotor_version() tf <- file.path(td, "test.log") app <- AppenderFileRotatingDate$new(file = tf)$set_age(-1) saveRDS(iris, app$file) on.exit({ unlink(tf) app$prune(0) }) app$set_size("3 KiB") app$rotate() expect_identical(nrow(app$backups), 0L) app$set_size("0.5 KiB") app$rotate(now = "2999-01-01") expect_identical(nrow(app$backups), 1L) app$set_size(-1) app$set_age("1 day") app$rotate(now = "2999-01-01") expect_identical(nrow(app$backups), 1L) app$rotate(now = "2999-01-02") expect_identical(nrow(app$backups), 2L) }) test_that("AppenderFileRotatingTime: works as expected", { if (!is_zipcmd_available()) skip("Test requires a workings system zip command") assert_supported_rotor_version() tf <- file.path(td, "test.log") app <- AppenderFileRotatingTime$new(file = tf) lg <- lgr::get_logger("test")$ set_propagate(FALSE)$ set_appenders(app) on.exit({ app$prune(0) lg$config(NULL) unlink(tf) }) lg$fatal("test") app$set_size(-1) app$set_age(-1) app$rotate(now = "2999-01-03--12-01") expect_gt(app$backups[1, ]$size, 0) expect_match(app$backups[1, ]$path, "2999-01-03--12-01-00") lg$appenders[[1]]$rotate(now = "2999-01-03--12-02") expect_equal(lg$appenders[[1]]$backups[1, ]$size, 0) expect_match(app$backups[1, ]$path, "2999-01-03--12-02-00") lg$appenders[[1]]$set_compression(TRUE) lg$appenders[[1]]$rotate(now = "2999-01-03--12-03") expect_identical(lg$appenders[[1]]$backups$ext, c("log.zip", "log", "log")) expect_match(app$backups[1, ]$path, "2999-01-03--12-03-00.log.zip") app$prune(0) expect_identical(nrow(app$backups), 0L) lg$config(NULL) }) test_that("AppenderFileRotatingTime: works with different backup_dir", { if (!is_zipcmd_available()) skip("Test requires a workings system zip command") assert_supported_rotor_version() tf <- file.path(td, "test.log") bu_dir <- file.path(td, "backups") expect_error( app <- AppenderFileRotatingTime$new(file = tf, backup_dir = bu_dir) ) dir.create(bu_dir) app <- AppenderFileRotatingTime$new( file = tf, backup_dir = bu_dir, size = 100, age = -1 ) lg <- get_logger("test")$ set_propagate(FALSE)$ add_appender(app) on.exit({ app$prune(0) unlink(c(tf, bu_dir), recursive = TRUE) lg$config(NULL) }) lg$info(paste(LETTERS)) app$set_compression(TRUE) Sys.sleep(1) lg$info(paste(LETTERS)) expect_equal(file.size(tf), 0) expect_equal(rev(list.files(bu_dir)), basename(app$backups$path)) expect_equal(app$backups$ext, c("log.zip", "log")) file.remove(app$backups$path) }) test_that("AppenderFileRotatingTime: `size` and `age` arguments work as expected", { tf <- file.path(td, "test.log") app <- AppenderFileRotatingTime$new(file = tf)$set_age(-1) saveRDS(iris, app$file) on.exit({ unlink(tf) app$prune(0) }) app$set_size(file.size(tf) + 2) app$rotate() expect_identical(nrow(app$backups), 0L) app$set_size(file.size(tf) / 2) app$rotate(now = "2999-01-01") expect_identical(nrow(app$backups), 1L) app$set_size(-1) app$set_age("1 day") app$rotate(now = "2999-01-01") expect_identical(nrow(app$backups), 1L) app$rotate(now = "2999-01-02") expect_identical(nrow(app$backups), 2L) }) test_that("AppenderFileRotatingTime: `size` and `age` arguments work as expected tf <- file.path(td, "test.log") log_dir <- file.path(td, "backups") dir.create(log_dir) app <- AppenderFileRotatingTime$new( file = tf, layout = LayoutJson$new(), age = -1, size = "0.5 kb", max_backups = 5, backup_dir = log_dir, overwrite = FALSE, compression = FALSE, threshold = "info" ) on.exit({ unlink(tf) unlink(log_dir, recursive = TRUE) app$prune(0) }) lg <- get_logger("test_issue_39")$ set_propagate(FALSE)$ set_appenders(list(rotating = app)) for (i in 1:100){ lg$info("test") if (nrow(lg$appenders$rotating$backups) >= 1) break } expect_identical(nrow(lg$appenders$rotating$backups), 1L) expect_length(list.files(log_dir), 1) })
"%w/o%" <- function( x, y ) x[ !x %in% y ]
source("ESEUR_config.r") plot_layout(2, 1) pal_col=rainbow(2) depth=read.csv(paste0(ESEUR_dir, "sourcecode/pani-depth.csv.xz"), as.is=TRUE) depth=subset(depth, (num > 0) & (bound > 0)) cbench=subset(depth, project == "cBench") CU=subset(depth, project == "coreutils") fit_expo=function(df) { plot(df$num, df$bound, log="y", col=pal_col[2], xlab="Basic block depth", ylab="Loops\n") cb_mod=glm(log(bound) ~ num, data=df, subset=(num > 2)) summary(cb_mod) pred=predict(cb_mod) lines(df$num[3:25], exp(pred), col=pal_col[1]) return(cb_mod) } cb_mod=fit_expo(cbench[1:25, ]) fit_power=function(df) { plot(df$num, df$bound, log="xy", col=pal_col[2], xlab="Basic block depth", ylab="Loops\n") cb_mod=glm(log(bound) ~ log(num), data=df, subset=(num < 11)) summary(cb_mod) pred=predict(cb_mod) lines(df$num[1:10], exp(pred), col=pal_col[1]) return(cb_mod) } cb_mod=fit_power(cbench[1:25, ])
d = suppressWarnings(subOrigData(taxon = "Homo sapiens", dataset = 10, mask = naMap)) test_that("suOrigData works",{ expect_equal(class(d), "subOrigData") expect_is(d$data, "SpatialPointsDataFrame") expect_error(suppressWarnings(subOrigData(taxon = "Turdus philomelos", mask = naMap))) expect_error(subOrigData(taxon = "Turdus philomelos", marker = "d14C")) expect_warning(subOrigData(taxon = "Serin serin", age_code = c("juvenile", "newborn"), ref_scale = NULL)) expect_warning(subOrigData(taxon = c("Serin serin", "Vanellus malabaricus"), ref_scale = NULL)) expect_warning(subOrigData(group = c("Indigenous human", "Badgers"), ref_scale = NULL)) expect_warning(subOrigData(dataset = c(8, "Ma 2020"), ref_scale = NULL)) expect_warning(subOrigData(dataset = c(8, 100), ref_scale = NULL)) }) d_hasNA = d d_hasNA$data$d2H[1] = NA d_diffProj = d d_diffProj$data = suppressWarnings(spTransform(d$data, "+init=epsg:28992")) d_usr_bad = d$data d_usr_good = d_usr_bad d_usr_good@data = data.frame(d$data$d2H, d$data$d2H.sd) d_noCRS = d crs(d_noCRS$data) = NA d2h_lrNA_noCRS = d2h_lrNA crs(d2h_lrNA_noCRS) = NA mask_diffProj = suppressWarnings(spTransform(naMap, "+init=epsg:28992")) mask_noCRS = naMap crs(mask_noCRS) = NA tempVals = getValues(d2h_lrNA) tempVals[is.nan(tempVals)] = 9999 d2h_lrNA_with9999 = setValues(d2h_lrNA, tempVals) s1 = states[states$STATE_ABBR == "UT",] d2h_lrNA_na = mask(d2h_lrNA, s1) r = suppressWarnings(calRaster(known = d, isoscape = d2h_lrNA_with9999, NA.value = 9999, interpMethod = 1, genplot = FALSE, mask = naMap)) test_that("calRaster works",{ expect_is(r, "rescale") expect_is(suppressWarnings(calRaster(known = d_usr_good, isoscape = d2h_lrNA, genplot = FALSE)), "rescale") expect_output(suppressWarnings(calRaster(known = d, isoscape = d2h_lrNA, outDir = tempdir()))) expect_equal(nlayers(r$isoscape.rescale), 2) expect_error(calRaster(known = d$data$d2H, isoscape = d2h_lrNA)) expect_error(suppressWarnings(calRaster(known = d, isoscape = d2h_lrNA, outDir = 2))) expect_error(suppressWarnings(calRaster(known = d, isoscape = d2h_lrNA, interpMethod = 3))) expect_error(suppressWarnings(calRaster(known = d, isoscape = d2h_lrNA, genplot = 2))) expect_error(calRaster(known = d, isoscape = d2h_lrNA_noCRS)) expect_error(calRaster(known = d, isoscape = d2h_lrNA$mean)) expect_error(calRaster(known = d_usr_bad, isoscape = d2h_lrNA)) expect_error(suppressWarnings(calRaster(known = d, isoscape = d2h_lrNA, mask = mask_noCRS))) expect_error(suppressWarnings(calRaster(known = d, isoscape = d2h_lrNA, mask = d))) expect_error(suppressWarnings(calRaster(known = d_noCRS, isoscape = d2h_lrNA))) expect_error(suppressWarnings(calRaster(known = d_hasNA, isoscape = d2h_lrNA, ignore.NA = FALSE))) expect_error(suppressWarnings(calRaster(known = d, isoscape = d2h_lrNA_na, ignore.NA = FALSE))) expect_message(suppressWarnings(calRaster(known = d_diffProj, isoscape = d2h_lrNA))) expect_warning(calRaster(known = d, isoscape = d2h_lrNA, mask = mask_diffProj)) expect_warning(calRaster(known = d, isoscape = d2h_lrNA_na)) }) id = c("A", "B", "C", "D") d2H = c(-110, -90, -105, -102) un = data.frame(id,d2H) asn = suppressWarnings(pdRaster(r, unknown = un, mask = naMap)) j = jointP(asn) test_that("jointP works",{ expect_equal(cellStats(j, sum), 1) expect_is(j, "RasterLayer") expect_error(jointP(d)) }) u = unionP(asn) test_that("unionP works",{ expect_is(u, "RasterLayer") expect_error(unionP(d2H)) }) s1 = states[states$STATE_ABBR == "UT",] s2 = states[states$STATE_ABBR == "NM",] s12 = rbind(s1, s2) o1 = suppressWarnings(oddsRatio(asn, s12)) pp1 = c(-112,40) pp2 = c(-105,33) pp12 = SpatialPoints(coords = rbind(pp1,pp2), proj4string=CRS("+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0")) o2 = suppressWarnings(oddsRatio(asn, pp12)) o3 = suppressWarnings(oddsRatio(asn, pp12[1])) o4 = suppressWarnings(oddsRatio(asn$A, pp12)) o5 = suppressWarnings(oddsRatio(asn$A, s12)) s12_diffProj = suppressWarnings(spTransform(s12, CRS("+init=epsg:28992"))) pp12_diffProj = suppressWarnings(spTransform(pp12, CRS("+init=epsg:28992"))) pp12_noCRS = pp12 crs(pp12_noCRS) = NA s12_noCRS = s12 crs(s12_noCRS) = NA pp121 = SpatialPoints(coords = rbind(pp1, pp2, pp3 = pp1), proj4string=CRS("+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0")) test_that("oddsRatio works",{ expect_is(o1, "list") expect_is(o2, "list") expect_is(o3, "data.frame") expect_is(o4, "list") expect_is(o5, "list") expect_error(oddsRatio(naMap,s12)) expect_error(oddsRatio(asn, data.frame(30.6, 50.5))) expect_error(oddsRatio(asn, s12_noCRS)) expect_error(suppressWarnings(oddsRatio(asn, pp121))) expect_error(oddsRatio(asn, s1)) expect_error(oddsRatio(asn, pp12_noCRS)) expect_message(suppressWarnings(oddsRatio(asn, s12_diffProj))) expect_message(suppressWarnings(oddsRatio(asn, pp12_diffProj))) }) q1 = qtlRaster(asn, threshold = 0.1, thresholdType = "area", outDir = tempdir()) q2 = qtlRaster(asn, threshold = 0.1, thresholdType = "prob", genplot = FALSE) q3 = qtlRaster(asn, threshold = 0, genplot = FALSE) test_that("qtlRaster works",{ expect_is(q1, "RasterStack") expect_equal(nlayers(q1), 4) expect_equal(nlayers(q2), 4) expect_equal(nlayers(q3), 4) expect_error(qtlRaster(asn, threshold = "a")) expect_error(qtlRaster(asn, threshold = 10)) expect_error(qtlRaster(asn, threshold = "a"), thresholdType = "probability") expect_error(qtlRaster(asn, threshold = 0.1, genplot = "A")) expect_error(qtlRaster(asn, threshold = 0.1, outDir = 1)) })
.writeHdrENVI <- function(r) { hdrfile <- filename(r) extension(hdrfile) <- ".hdr" thefile <- file(hdrfile, "w") cat("ENVI\n", file = thefile) cat("samples = ", ncol(r), "\n", file = thefile) cat("lines = ", nrow(r), "\n", file = thefile) cat("bands = ", r@file@nbands, "\n", file = thefile) cat("header offset = 0\n", file = thefile) cat("file type = ENVI Standard\n", file = thefile) dsize <- dataSize(r@file@datanotation) if (.shortDataType(r@file@datanotation) == 'INT') { if (dsize == 1) { dtype <- 1 } else if (dsize == 2) { dtype <- 2 } else if (dsize == 4) { dtype <- 3 } else if (dsize == 8) { dtype <- 14 } else { stop('what?') } } else { if (dsize == 4) { dtype <- 4 } else if (dsize == 8) { dtype <- 5 } else { stop('what?') } } cat("data type = ", dtype, "\n", file = thefile) cat("data ignore value=", .nodatavalue(r), "\n", file = thefile, sep='') cat("interleave = ", r@file@bandorder, "\n", file = thefile) cat("sensor type = \n", file = thefile) btorder <- as.integer(r@file@byteorder != 'little') cat("byte order = ", btorder, "\n",file = thefile) if (couldBeLonLat(r)) { cat("map info = {Geographic Lat/Lon, 1, 1,", xmin(r),", ", ymax(r),", ", xres(r),", ", yres(r), "}\n", file = thefile) } else { cat("map info = {projection, 1, 1,", xmin(r),", ", ymax(r),", ", xres(r),", ", yres(r), "}\n", file = thefile) } if (.requireRgdal(FALSE)) { cat("coordinate system string = {", wkt(r), "}\n", file = thefile, sep="") } else { cat("projection info =", proj4string(r), "\n", file = thefile) } cat("z plot range = {", minValue(r),", ", maxValue(r), "}\n", file = thefile) cat("band names = {", paste(names(r),collapse=","), "}", "\n", file = thefile) close(thefile) }
types.withsamplesize <- c('c', 'np', 'p', 'u') types.multicolumn <- c('R', 'S', 'xbar') gettext("Phase I...", domain="R-RcmdrPlugin.UCA") gettext("Phase I (multiple columns)...", domain="R-RcmdrPlugin.UCA") gettext("Phase II (multiple columns)...", domain="R-RcmdrPlugin.UCA") gettext("Phase II from data (multiple columns)...", domain="R-RcmdrPlugin.UCA") gettext("Phase II from parameters (multiple columns)...", domain="R-RcmdrPlugin.UCA") .qccMenu <- function(dialogtitle, graphtitle, x1title = "", n1title = "", x2title = "", n2title = "", type, phase = c('1', '2', 'p'), help, recall, reset, apply) { phase = match.arg(phase) initializeDialog(title = dialogtitle) if (phase == 'p') { centerVar <- tclVar("") dataFrame <- tkframe(top) centerEntry <- tkentry(dataFrame, width="8", textvariable=centerVar) if (type %in% types.multicolumn) { stddevVar <- tclVar("") stddevEntry <- tkentry(top, width="8", textvariable=stddevVar) } } x1Box <- variableListBox(top, Numeric(), selectmode=ifelse(type %in% types.multicolumn, "single", "multiple"), initialSelection=NULL, title = x1title) n1Box <- variableListBox(top, Numeric(), selectmode="single", initialSelection=NULL, title = n1title) subsetBox(subset.expression = gettextRcmdr("<all valid cases>")) if (phase == '2' || phase == 'p') { x2Box <- variableListBox(top, Numeric(), selectmode=ifelse(type %in% types.multicolumn, "single", "multiple"), initialSelection=NULL, title = x2title) n2Box <- variableListBox(top, Numeric(), selectmode="single", initialSelection=NULL, title = n2title) subset2Box(subset.expression = gettextRcmdr("<all valid cases>")) plotall <- tclVar() renumber <- tclVar() optionsFrame <- tkframe(top) plotallcheckBox <- ttkcheckbutton(optionsFrame, variable = plotall) renumbercheckBox <- ttkcheckbutton(optionsFrame, variable = renumber) } onOK <- function() { if (phase == '2' || phase == 'p') { plotall <- (tclvalue(plotall) == "1") renumber <- (tclvalue(renumber) == "1") } else { plotall <- FALSE renumber <- FALSE } if (phase == 'p') { center <- as.numeric(tclvalue(centerVar)) if (is.na(center)) { errorCondition(recall = recall, message=gettext("No valid numeric value has been provided for the center parameter", domain="R-RcmdrPlugin.UCA")) return() } if (type %in% types.multicolumn) { stddev <- as.numeric(tclvalue(stddevVar)) } } x1 <- getSelection(x1Box) if (length(x1) == 0) { errorCondition(recall = recall, message=gettext("No data variable was selected (Phase I)", domain="R-RcmdrPlugin.UCA")) return() } if (length(x1) == 1 && type %in% types.multicolumn) { errorCondition(recall=recall, message=gettext("Select at least two variables (Phase I)", domain="R-RcmdrPlugin.UCA")) return() } if (type %in% types.withsamplesize) { n1 <- getSelection(n1Box) if (length(n1) == 0) { errorCondition(recall = recall, message=gettext("No sample size variable was selected (Phase I)", domain="R-RcmdrPlugin.UCA")) return() } } subset <- trim.blanks(tclvalue(subsetVariable)) if (phase == '2' || phase == 'p') { x2 <- getSelection(x2Box) if (length(x2) == 0) { errorCondition(recall = recall, message=gettext("No data variable was selected (Phase II)", domain="R-RcmdrPlugin.UCA")) return() } if (length(x2) == 1 && type %in% types.multicolumn) { errorCondition(recall=recall, message=gettext("Select at least two variables (Phase II)", domain="R-RcmdrPlugin.UCA")) return() } if (type %in% types.withsamplesize) { n2 <- getSelection(n2Box) if (length(n2) == 0) { errorCondition(recall = recall, message=gettext("No sample size variable was selected (Phase II)", domain="R-RcmdrPlugin.UCA")) return() } } subset2 <- trim.blanks(tclvalue(subset2Variable)) } closeDialog() if (phase == '1' || plotall) { graphtitle <- paste0(graphtitle, ' ', ifelse(type %in% types.multicolumn, paste0('(', paste(x1, collapse = ','), ')'), x1)) if ((subset != gettextRcmdr("<all valid cases>")) && (subset != "")) graphtitle <- paste0(graphtitle, '[', subset, ifelse(type %in% types.multicolumn, ', ', ''), ']') } if (phase == '2' || phase == 'p') { if (plotall) graphtitle <- paste0(graphtitle, ' ', gettext('and', domain = "R-RcmdrPlugin.UCA")) graphtitle <- paste0(graphtitle, ' ', ifelse(type %in% types.multicolumn, paste0('(', paste(x2, collapse = ','), ')'), x2)) if ((subset2 != gettextRcmdr("<all valid cases>")) && (subset2 != "")) graphtitle <- paste0(graphtitle, '[', subset2, ifelse(type %in% types.multicolumn, ', ', ''), ']') } if (phase == 'p') { graphtitle <- paste0(graphtitle, '\\n', gettext('with Center', domain = "R-RcmdrPlugin.UCA"), ' ', center) } if (phase == 'p' && type %in% types.multicolumn && !is.na(stddev)) { graphtitle <- paste0(graphtitle, ' ', gettext('and StdDev', domain = "R-RcmdrPlugin.UCA"), ' ', stddev) } command <- paste0("with(", ActiveDataSet(), ", qcc(data = ") command <- paste0(command, ifelse(type %in% types.multicolumn, paste0('cbind(', paste(x1, collapse = ','), ')'), x1)) if ((subset != gettextRcmdr("<all valid cases>")) && (subset != "")) command <- paste0(command, '[', subset, ifelse(type %in% types.multicolumn, ', ', ''), ']') if (type %in% types.withsamplesize) { command <- paste0(command, ", sizes = ", n1) if ((subset != gettextRcmdr("<all valid cases>")) && (subset != "")) { command <- paste0(command, '[', subset, ']') } } if (phase == '2' || phase == 'p') { command <- paste0(command, ", newdata = ") command <- paste0(command, ifelse(type %in% types.multicolumn, paste0('cbind(', paste(x2, collapse = ','), ')'), x2)) if ((subset2 != gettextRcmdr("<all valid cases>")) && (subset2 != "")) command <- paste0(command, '[', subset2, ifelse(type %in% types.multicolumn, ', ', ''), ']') if (type %in% types.withsamplesize) { command <- paste0(command, ", newsizes = ", n2) if ((subset2 != gettextRcmdr("<all valid cases>")) && (subset2 != "")) { command <- paste0(command, '[', subset2, ']') } } } command <- paste0(command, ", type = \"", type, "\"") if (phase == 'p') command <- paste0(command, ", center = ", center) if (phase == 'p' && type %in% types.multicolumn && !is.na(stddev)) { command <- paste0(command, ", std.dev =", stddev) } command <- paste0(command, ", title = \"", graphtitle, "\"") if (phase == '2' || phase == 'p') { if (!plotall) command <- paste0(command, ", chart.all = ", plotall) if (renumber) { lx2 <- paste0("with(", ActiveDataSet()) if (type %in% types.multicolumn) { lx2 <- paste0(lx2, ", nrow(") } else { lx2 <- paste0(lx2, ", length(") } lx2 <- paste0(lx2, ifelse(type %in% types.multicolumn, paste0('cbind(', paste(x2, collapse = ','), ')'), x2)) if ((subset2 != gettextRcmdr("<all valid cases>")) && (subset2 != "")) lx2 <- paste0(lx2, '[', subset2, ifelse(type %in% types.multicolumn, ', ', ''), ']') lx2 <- paste0(lx2, "))") lx2 <- eval(parse(text = lx2)) command <- paste0(command, ", newlabel = 1:", lx2) } } command <- paste0(command, "))") doItAndPrint(command) tkdestroy(top) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject = help, reset = reset, apply = apply) deltarow <- 0 if (phase == 'p') { tkgrid(tklabel(dataFrame, text = paste0(gettext("Center", domain="R-RcmdrPlugin.UCA"), " ")), centerEntry, sticky = "w") deltarow <- 1 if (type %in% types.multicolumn) { tkgrid(tklabel(dataFrame, text = gettext("Standard Deviation", domain="R-RcmdrPlugin.UCA")), stddevEntry, sticky = "w") deltarow <- deltarow + 1 } tkgrid(dataFrame, sticky = "w") } tkgrid(getFrame(x1Box), sticky = "w") if (type %in% types.withsamplesize) { tkgrid(getFrame(n1Box), sticky = "w", row = 0 + deltarow, column = 1) } tkgrid(subsetFrame, sticky = "w") if (phase == '2' || phase == 'p') { tkgrid(getFrame(x2Box), sticky = "w") if (type %in% types.withsamplesize) { tkgrid(getFrame(n2Box), sticky = "w", row = 2 + deltarow, column = 1) } tkgrid(subset2Frame, sticky = "w") tkgrid(plotallcheckBox, tklabel(optionsFrame, text = gettext("Plot all data", domain="R-RcmdrPlugin.UCA")), sticky = "w") tkgrid(renumbercheckBox, tklabel(optionsFrame, text = gettext("Renumber 2nd phase data", domain="R-RcmdrPlugin.UCA")), sticky = "w") tkgrid(optionsFrame, sticky = "w") } tkgrid(buttonsFrame, sticky="w", columnspan = 2) dialogSuffix() } cchart1Menu <- function() { gettext("Counts", domain="R-RcmdrPlugin.UCA") gettext("c-chart (rate)...", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("c-chart (rate)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("c-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconformities", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sizes", domain="R-RcmdrPlugin.UCA"), type = "c", phase = '1', help = "c-chart", recall = cchart1Menu, reset = "cchart1Menu", apply = "cchart1Menu") } cchart2Menu <- function() { gettext("Counts", domain="R-RcmdrPlugin.UCA") gettext("c-chart (rate)...", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("c-chart (rate) from data", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("c-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconformities (Phase I)", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sizes (Phase I)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Nonconformities (Phase II)", domain="R-RcmdrPlugin.UCA"), n2title = gettext("Sizes (Phase II)", domain="R-RcmdrPlugin.UCA"), type = "c", phase = "2", help = "c-chart", recall = cchart2Menu, reset = "cchart2Menu", apply = "cchart2Menu") } cchartpMenu <- function() { gettext("Counts", domain="R-RcmdrPlugin.UCA") gettext("c-chart (rate)...", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("c-chart (rate) from parameter", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("c-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconformities (Phase I)", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sizes (Phase I)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Nonconformities (Phase II)", domain="R-RcmdrPlugin.UCA"), n2title = gettext("Sizes (Phase II)", domain="R-RcmdrPlugin.UCA"), type = "c", phase = "p", help = "c-chart", recall = cchartpMenu, reset = "cchartpMenu", apply = "cchartpMenu") } npchart1Menu <- function() { gettext("Attributes", domain="R-RcmdrPlugin.UCA") gettext("np-chart (count)", domain="R-RcmdrPlugin.UCA") gettext("np-chart (Phase I)...", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("np-chart", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("np-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconforming units", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sample size", domain="R-RcmdrPlugin.UCA"), type = "np", phase = "1", help = "np-chart", recall = npchart1Menu, reset = "npchart1Menu", apply = "npchart1Menu") } npchart2Menu <- function() { .qccMenu( dialogtitle = gettext("np-chart phase II from data", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("np-chart phase II\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconforming units (Phase I)", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sample size (Phase I)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Nonconforming units (Phase II)", domain="R-RcmdrPlugin.UCA"), n2title = gettext("Sample size (Phase II)", domain="R-RcmdrPlugin.UCA"), type = "np", phase = "2", help = "np-chart", recall = npchart2Menu, reset = "npchart2Menu", apply = "npchart2Menu") } npchartpMenu <- function() { .qccMenu( dialogtitle = gettext("np-chart phase II from parameter", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("np-chart phase II\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconforming units (Phase I)", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sample size (Phase I)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Nonconforming units (Phase II)", domain="R-RcmdrPlugin.UCA"), n2title = gettext("Sample size (Phase II)", domain="R-RcmdrPlugin.UCA"), type = "np", phase = "p", help = "np-chart", recall = npchartpMenu, reset = "npchartpMenu", apply = "npchartpMenu") } paretochartMenu <- function() { gettext("Quality Control", domain="R-RcmdrPlugin.UCA") initializeDialog(title=gettext("Pareto chart", domain="R-RcmdrPlugin.UCA")) variablesBox <- variableListBox(top, Factors(), selectmode="single", initialSelection=NULL, title=gettextRcmdr("Variable")) onOK <- function() { x <- getSelection(variablesBox) if (length(x) == 0) { errorCondition(recall=paretochartMenu, message=gettextRcmdr("No variable was selected.")) return() } closeDialog() doItAndPrint(paste("with(", ActiveDataSet(), ", paretochart(", x, "))", sep = "")) tkdestroy(top) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="paretochart", reset = "paretochartMenu", apply = "paretochartMenu") tkgrid(getFrame(variablesBox), sticky="nw") tkgrid(buttonsFrame, sticky="w") dialogSuffix(rows=6, columns=1) } pchart1Menu <- function() { gettext("Attributes", domain="R-RcmdrPlugin.UCA") gettext("p-chart (proportion)", domain="R-RcmdrPlugin.UCA") gettext("Phase I...", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("p-chart", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("p-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconforming units", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sample size", domain="R-RcmdrPlugin.UCA"), type = "p", phase = "1", help = "p-chart", recall = pchart1Menu, reset = "pchart1Menu", apply = "pchart1Menu") } pchart2Menu <- function() { gettext("Phase II from data...", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("p-chart phase II from data", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("p-chart phase II\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconforming units (Phase I)", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sample size (Phase I)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Nonconforming units (Phase II)", domain="R-RcmdrPlugin.UCA"), n2title = gettext("Sample size (Phase II)", domain="R-RcmdrPlugin.UCA"), type = "p", phase = "2", help = "p-chart", recall = pchart2Menu, reset = "pchart2Menu", apply = "pchart2Menu") } pchartpMenu <- function() { gettext("Phase II from parameter...", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("p-chart phase II from parameter", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("p-chart phase II\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconforming units (Phase I)", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sample size (Phase I)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Nonconforming units (Phase II)", domain="R-RcmdrPlugin.UCA"), n2title = gettext("Sample size (Phase II)", domain="R-RcmdrPlugin.UCA"), type = "p", phase = "p", help = "p-chart", recall = pchartpMenu, reset = "pchartpMenu", apply = "pchartpMenu") } R1mcMenu <- function() { gettext("Range", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("R-chart phase I (multiple columns)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("R-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Measurements (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), type = "R", phase = "1", help = "R-chart", recall = R1mcMenu, reset = "R1mcMenu", apply = "R1mcMenu") } R2mcMenu <- function() { .qccMenu( dialogtitle = gettext("R-chart phase II from data (multiple columns)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("R-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Measurements phase I from data (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Measurements phase II from data (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), type = "R", phase = "2", help = "R-chart", recall = R2mcMenu, reset = "R2mcMenu", apply = "R2mcMenu") } RpmcMenu <- function() { .qccMenu( dialogtitle = gettext("R-chart phase II from parameters (multiple columns)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("R-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Measurements phase I from parameters (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Measurements phase II from parameters (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), type = "R", phase = "p", help = "R-chart", recall = RpmcMenu, reset = "RpmcMenu", apply = "RpmcMenu") } S1mcMenu <- function() { .qccMenu( dialogtitle = gettext("S-chart (multiple columns)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("S-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Measurements (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), type = "S", phase = "1", help = "S-chart", recall = S1mcMenu, reset = "S1mcMenu", apply = "S1mcMenu") } S2mcMenu <- function() { .qccMenu( dialogtitle = gettext("S-chart phase II from data (multiple columns)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("S-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Measurements phase I (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Measurements phase II (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), type = "S", phase = "2", help = "S-chart", recall = S2mcMenu, reset = "S2mcMenu", apply = "S2mcMenu") } SpmcMenu <- function() { .qccMenu( dialogtitle = gettext("S-chart phase II from parameters (multiple columns)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("S-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Measurements phase I (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Measurements phase II (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), type = "S", phase = "p", help = "S-chart", recall = SpmcMenu, reset = "SpmcMenu", apply = "SpmcMenu") } uchart1Menu <- function() { gettext("Counts", domain="R-RcmdrPlugin.UCA") gettext("u-chart (average rate)...", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("u-chart (average rate)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("u-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconformities", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sizes", domain="R-RcmdrPlugin.UCA"), type = "u", phase = "1", help = "u-chart", recall = uchart1Menu, reset = "uchart1Menu", apply = "uchart1Menu") } uchart2Menu <- function() { gettext("Counts", domain="R-RcmdrPlugin.UCA") gettext("u-chart (average rate)...", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("u-chart phase II from data", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("u-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconformities (Phase I)", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sizes (Phase I)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Nonconformities (Phase II)", domain="R-RcmdrPlugin.UCA"), n2title = gettext("Sizes (Phase II)", domain="R-RcmdrPlugin.UCA"), type = "u", phase = "2", help = "u-chart", recall = uchart2Menu, reset = "uchart2Menu", apply = "uchart2Menu") } uchartpMenu <- function() { gettext("Counts", domain="R-RcmdrPlugin.UCA") gettext("u-chart (average rate)...", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("u-chart phase II from parameter", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("u-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Nonconformities (Phase I)", domain="R-RcmdrPlugin.UCA"), n1title = gettext("Sizes (Phase I)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Nonconformities (Phase II)", domain="R-RcmdrPlugin.UCA"), n2title = gettext("Sizes (Phase II)", domain="R-RcmdrPlugin.UCA"), type = "u", phase = "p", help = "u-chart", recall = uchartpMenu, reset = "uchartpMenu", apply = "uchartpMenu") } xbarone1Menu <- function() { gettext("Continuous", domain="R-RcmdrPlugin.UCA") gettext("One-at-time data", domain="R-RcmdrPlugin.UCA") .qccMenu( dialogtitle = gettext("One-at-time data", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Measurements", domain="R-RcmdrPlugin.UCA"), type = "xbar.one", help = "xbar.one-chart", recall = xbarone1Menu, reset = "xbarone1Menu", apply = "xbarone1Menu") } xbar1mcMenu <- function() { .qccMenu( dialogtitle = gettext("xbar-chart (multiple columns)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("xbar-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Measurements (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), type = "xbar", phase = "1", help = "xbar-chart", recall = xbar1mcMenu, reset = "xbar1mcMenu", apply = "xbar1mcMenu") } xbar2mcMenu <- function() { .qccMenu( dialogtitle = gettext("xbar-chart phase II from data (multiple columns)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("xbar-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Measurements phase I (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Measurements phase II (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), type = "xbar", phase = "2", help = "xbar-chart", recall = xbar2mcMenu, reset = "xbar2mcMenu", apply = "xbar2mcMenu") } xbarpmcMenu <- function() { .qccMenu( dialogtitle = gettext("xbar-chart phase II from parameters (multiple columns)", domain="R-RcmdrPlugin.UCA"), graphtitle = gettext("xbar-chart\\nfor", domain="R-RcmdrPlugin.UCA"), x1title = gettext("Measurements phase I (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), x2title = gettext("Measurements phase II (pick two variables or more)", domain="R-RcmdrPlugin.UCA"), type = "xbar", phase = "p", help = "xbar-chart", recall = xbarpmcMenu, reset = "xbarpmcMenu", apply = "xbarpmcMenu") }
use_aos_refresh <- function(){ htmltools::tagList( html_dependencies_aos(), htmltools::tags$script( sprintf( "$(document).ready(function(){ AOS.refresh(); });", options ) ) ) } use_aos_refresh_hard <- function(){ htmltools::tagList( html_dependencies_aos(), htmltools::tags$script( sprintf( "$(document).ready(function(){ AOS.refreshHard(); });", options ) ) ) }
mphineq.fit <- function(y, Z, ZF=Z, h.fct=0,derht.fct=0,d.fct=0,derdt.fct=0, L.fct=0,derLt.fct=0,X=NULL,formula=NULL,names=NULL,lev=NULL,E=NULL, maxiter=100,step=1, norm.diff.conv=1e-5,norm.score.conv=1e-5, y.eps=0,chscore.criterion=2, m.initial=y,mup=1) { start.time <- proc.time()[3] version <- "mphineq.fit, version 1.0.1, 5/10/06" Zlist<-cocadise(Z,formula=formula,lev=lev,names=names) if(is.null(X)){X<-0} inv <- ginv y<-as.matrix(y) lenh<-0 if ((missing(h.fct))&(sum(abs(X)) != 0)) { if(is.null(E)){U <- create.U(X)} else{U<-t(E)} if (sum(abs(U)) == 0) {h.fct <- 0} else { h.fct <- function(m) { t(U)%*%L.fct(m) } } } else { U <- "Not created within the program." } if ((is.function(derht.fct)==FALSE)&(sum(abs(X)) != 0)&(is.function(derLt.fct)==TRUE)) { U <- create.U(X) if (sum(abs(U)) == 0) {derht.fct <- 0} else { derht.fct <- function(m) { derLt.fct(m)%*%U } } } if ((is.function(h.fct)==TRUE)||(is.function(d.fct)==TRUE)||(class(formula) =="formula")) { lenm <- length(y); m <- as.matrix(c(m.initial)) + y.eps m[m==0] <- 0.01 p<-m*c(1/Z%*%t(Z)%*%m) xi <- Zlist$IMAT%*%log(m) if ((is.function(d.fct)==FALSE)&(is.function(h.fct)==FALSE)) { p <- as.matrix(exp(Zlist$DMAT%*%xi)) p<-(p/sum(p)) m<-p*c(Z%*%t(Z)%*%y) } if (is.function(h.fct)==TRUE){ h <- hobs <- h.fct(m) lenh <- length(h) if (is.function(derht.fct)==FALSE) { H <- num.deriv.fct(h.fct,m) } else { H <- derht.fct(m) } HtDHinvobs <- inv(t(H)%*%(H*c(m))) } if (is.function(d.fct)==TRUE) { d <- dhobs <- d.fct(m) lend <- length(d) if (is.function(derdt.fct)==FALSE) { DH <- num.deriv.fct(d.fct,m) } else { DH <- derdt.fct(m) } } lam <- matrix("NA",lenh,1) Dm <- diag(c(m+1e-08))-((ZF*c(m))%*%t(ZF*c(p))) if (!is.matrix(Dm)) {return ("unable to reach convergence")} norm.score <- 999999 theta<-xi iter <- 0 step.iter <- 0 norm.diff <- 10 while ( ((norm.diff > norm.diff.conv)||(norm.score > norm.score.conv)) &(iter< maxiter)) { qpmatr<-t(Zlist$DMAT)%*%Dm%*%Zlist$DMAT if ((is.function(d.fct)==TRUE)&(is.function(h.fct)==TRUE)) { Amat<-cbind(t(Zlist$DMAT)%*%Dm%*%H,t(Zlist$DMAT)%*%Dm%*%DH) bvec<-rbind(-h,-d ) } else { if (is.function(h.fct)==TRUE){ Amat<- t(Zlist$DMAT)%*%Dm%*%H bvec<- -h } if (is.function(d.fct)==TRUE) { Amat<-t(Zlist$DMAT)%*%Dm%*%DH bvec<- -d } if ((is.function(d.fct)==FALSE)&(is.function(h.fct)==FALSE)) { Amat<-matrix(0,nrow(qpmatr),1) bvec<-0 } } if (any(is.null(qpmatr))||any(is.na(qpmatr))) { print("matrix in quadratic programming not positive def.") return("matrix in quadratic programming not positive def.")} As<- solve.QP(qpmatr,t(Zlist$DMAT)%*%(y-m), Amat, bvec, meq=lenh, factorized=FALSE) if(is.null(As)){ print("Error in solve.QP") break} ff.fct<-function(steptemp){ theta.temp <- theta + steptemp*matrix(As$solution) p <- as.matrix(exp(Zlist$DMAT%*%theta.temp)) p<-p*c(1/Z%*%t(Z)%*%p) m<-p*c(Z%*%t(Z)%*%y) if (is.function(h.fct)==FALSE) { h<-0} else{ h <- h.fct(m) } if (is.function(d.fct)==FALSE) { dd<-100 } else { dd <- d.fct(m) } norm.score.temp <- as.matrix(2/sum(y)*sum(y[y>0]*(log(y[y>0])-log(m[y>0]))))+ mup*sum(abs(h)) -mup*sum(pmin(dd,dd*0)) norm.score.temp } stepco<-optimize(ff.fct, c(step*0.5^5, step), tol = 0.0001) step.temp<-stepco$minimum step.iter<-step.temp theta.temp <- theta + step.temp*matrix(As$solution) norm.diff <- sqrt(sum((theta-theta.temp)*(theta-theta.temp))) p <- as.matrix(exp(Zlist$DMAT%*%theta.temp)) p<-p*c(1/Z%*%t(Z)%*%p) m<-p*c(Z%*%t(Z)%*%y) if (is.function(h.fct)==FALSE) { h<-0} else{ h <- h.fct(m) if (is.function(derht.fct)==FALSE) { H <- num.deriv.fct(h.fct,m) } else { H <- derht.fct(m) } } if (is.function(d.fct)==FALSE) { d<-100 } else { d <- d.fct(m) } Dm <- diag(c(m+1e-08))-((ZF*c(m))%*%t(ZF*c(p))) if (!is.matrix(Dm)) {return ("unable to reach convergence")} norm.score <- sum(abs(h))-sum(pmin(d,d*0)) theta <- theta.temp iter <- iter + 1 if(chscore.criterion==0){ } } } satflag<-dim(Zlist$DMAT)[1]-dim(Zlist$DMAT)[2] if ((is.function(h.fct)==TRUE)||( (class(formula)=="formula")&(satflag >1 ) )){ if ((is.function(h.fct)==FALSE)&(class(formula)=="formula")){ M<-cbind(Zlist$DMAT,matrix(1,nrow(Zlist$DMAT) )) H<-create.U(M) H<-diag(1/c(m))%*%H hobs<-t(H)%*%log(m) lenh <- length(hobs) lam <- matrix("NA",lenh,1) HtDHinvobs <- inv(t(H)%*%(H*c(m))) } if ((is.function(h.fct)==TRUE)&(class(formula)=="formula")){ M<-cbind(Zlist$DMAT,matrix(1,nrow(Zlist$DMAT) )) H2<-create.U(M) H2<-diag(1/c(m))%*%H2 H<-cbind(H,H2) hobs<-t(H)%*%log(m) lenh <- length(hobs) lam <- matrix("NA",lenh,1) lenh<-lenh-dim(H2)[2] HtDHinvobs <- inv(t(H)%*%(H*c(m))) } HtDHinv <- inv(t(H)%*%(H*c(m))) HHtDHinv <- H%*%HtDHinv p <- m*c(1/Z%*%t(Z)%*%y) resid <- y-m covresid <- (H*c(m))%*%HtDHinv%*%t(H*c(m)) covm.unadj <- covm <- Dm - covresid if (sum(ZF) != 0) { covm <- covm.unadj - ((ZF*c(m))%*%t(ZF*c(m)))*c(1/Z%*%t(Z)%*%y) } covp <- t(t((covm.unadj-((Z*c(m))%*%t(Z*c(m)))*c(1/Z%*%t(Z)%*%y))* c(1/Z%*%t(Z)%*%y))* c(1/Z%*%t(Z)%*%y)) dcovresid <- diag(covresid) dcovresid[abs(dcovresid)<1e-8] <- 0 adjresid <- resid adjresid[dcovresid > 0] <- resid[dcovresid>0]/sqrt(dcovresid[dcovresid>0]) presid <- resid/sqrt(m) covlam <- HtDHinv Gsq <- as.matrix(2*sum(y[y>0]*(log(y[y>0])-log(m[y>0])))) Xsq <- as.matrix(t(y-m)%*%((y-m)*c(1/m))) if(is.function(d.fct)==FALSE){ Wsq <- as.matrix(t(hobs)%*%HtDHinvobs%*%hobs)} else {Wsq<-as.matrix("NA")} beta <- "NA" covbeta <- "NA" covL <- "NA" L <- "NA" Lobs <- "NA" Lresid <- "NA" if (sum(abs(X)) != 0) { L <- L.fct(m) Lobs <- L.fct(y+y.eps) if (is.function(derLt.fct)==FALSE) { derLt <- num.deriv.fct(L.fct,m) } else { derLt <- derLt.fct(m) } PX <- inv(t(X)%*%X)%*%t(X) beta <- PX%*%L covL <- t(derLt)%*%covm%*%derLt covbeta <- PX%*%covL%*%t(PX) Lres <- Lobs - L covLres <- t(derLt)%*%covresid%*%derLt dcovLres <- diag(covLres) dcovLres[abs(dcovLres)<1e-8] <- 0 Lresid <- Lres Lresid[dcovLres > 0] <- Lres[dcovLres>0]/sqrt(dcovLres[dcovLres>0]) lbeta <- ll <- c() for (i in 1:length(beta)) { lbeta <- c(lbeta,paste("beta",i,sep="")) } for (i in 1:length(L)) { ll <- c(ll,paste("link",i,sep="")) } dimnames(beta) <- list(lbeta,"BETA") if(!is.null(colnames(X))){dimnames(beta) <- list(colnames(X),"BETA")} dimnames(covbeta) <- list(lbeta,lbeta) dimnames(L) <- list(ll,"ML LINK") dimnames(Lobs) <- list(ll,"OBS LINK") dimnames(covL) <- list(ll,ll) dimnames(Lresid) <- list(ll,"LINK RESID") } } else { lenh <- 0 lenm <- length(y) if(is.function( d.fct)==FALSE){ m <- as.matrix(c(m.initial))+y.eps m[m==0] <- 0.01 xi <- log(m) Dm <- diag(c(m)) Dminv <- diag(c(1/m)) s <- y-m norm.score <- sqrt(sum(s*s)) theta <- xi lentheta <- length(theta) iter <- 0 norm.diff <- 10 while ( ((norm.diff > norm.diff.conv)||(norm.score > norm.score.conv)) &(iter< maxiter)) { A <- Dminv thetanew <- theta + step*(s*c(1/m)) norm.diff <- sqrt(sum((theta-thetanew)*(theta-thetanew))) theta <- thetanew m <- exp(theta) Dm <- diag(c(m)) Dminv <- diag(c(1/m)) s <- y-m norm.score <- sqrt(sum(s*s)) iter <- iter + 1 } } p <- m*c(1/Z%*%t(Z)%*%y) resid <- 0*y covm.unadj <- covm <- Dm covresid <- 0*covm if (sum(ZF) != 0) { covm <- covm.unadj - ((ZF*c(m))%*%t(ZF*c(m)))*c(1/Z%*%t(Z)%*%y) } covp <- t(t((covm.unadj-((Z*c(m))%*%t(Z*c(m)))*c(1/Z%*%t(Z)%*%y))* c(1/Z%*%t(Z)%*%y))* c(1/Z%*%t(Z)%*%y)) adjresid <- 0*y presid <- 0*y covlam <- as.matrix(0); lam <- as.matrix(0) Gsq <- as.matrix(2*sum(y[y>0]*(log(y[y>0])-log(m[y>0])))) Xsq <- as.matrix(t(y-m)%*%((y-m)*c(1/m))) if(is.function(d.fct)==FALSE){ Wsq <- as.matrix(0) } else {Wsq<-as.matrix("NA")} beta <- "NA" covbeta <- "NA" covL <- "NA" L <- "NA" Lresid <- "NA" Lobs <- "NA" if (sum(abs(X)) != 0) { L <- L.fct(m) Lobs <- L.fct(y) if (is.function(derLt.fct)==FALSE) { derLt <- num.deriv.fct(L.fct,m) } else { derLt <- derLt.fct(m) } PX <- inv(t(X)%*%X)%*%t(X) beta <- PX%*%L covL <- t(derLt)%*%covm%*%derLt Lresid <- 0*L covbeta <- PX%*%covL%*%t(PX) lbeta <- ll <- c() for (i in 1:length(beta)) { lbeta <- c(lbeta,paste("beta",i,sep="")) } for (i in 1:length(L)) { ll <- c(ll,paste("link",i,sep="")) } dimnames(beta) <- list(lbeta,"BETA") if(!is.null(colnames(X))){dimnames(beta) <- list(colnames(X),"BETA")} dimnames(covbeta) <- list(lbeta,lbeta) dimnames(Lobs) <- list(ll,"OBS LINK") dimnames(L) <- list(ll,"ML LINK") dimnames(covL) <- list(ll,ll) dimnames(Lresid) <- list(ll,"LINK RESID") } } lm <- ly <- lp <- lbeta <- lr <- lar <- lpr <- ll <- llam <- c() if(is.null(rownames(y))){ for (i in 1:lenm) { lm <- c(lm,paste("m",i,sep="")) ly <- c(ly,paste("y",i,sep="")) lp <- c(lp,paste("p",i,sep="")) lr <- c(lr,paste("r",i,sep="")) lar <- c(lar,paste("adj.r",i,sep="")) lpr <- c(lpr,paste("pearson.r",i,sep="")) } } else{ly<-c( paste("y(",rownames(y),")")) lm<- c( paste("m(",rownames(y),")")) lp <-c( paste("p(",rownames(y),")")) lr<- c(paste("r(",rownames(y),")")) lar<-c(paste("a.r(",rownames(y),")")) lpr<-c(paste("p.r(",rownames(y),")"))} for (i in 1:length(lam)) { llam <- c(llam,paste("lambda",i,sep="")) } dimnames(y) <- list(ly,"OBS") dimnames(m) <- list(lm,"FV") dimnames(p) <- list(lp,"PROB") dimnames(resid) <- list(lr,"RAW RESIDS") dimnames(presid) <- list(lpr,"PEARSON RESIDS") dimnames(adjresid) <- list(lar, "ADJUSTED RESIDS") dimnames(lam) <- list(llam,"LAGRANGE MULT") dimnames(covm) <- list(lm,lm) dimnames(covp) <- list(lp,lp) dimnames(covresid) <- list(lr,lr) dimnames(covlam) <- list(llam,llam) dimnames(Xsq) <- list("","PEARSON SCORE STATISTIC") dimnames(Gsq) <- list("","LIKELIHOOD RATIO STATISTIC") dimnames(Wsq) <- list("","GENERALIZED wALD STATISTIC") if (is.function(derht.fct)==FALSE) {derht.fct <- "Numerical derivatives used."} if (is.function(derLt.fct)==FALSE) {derLt.fct <- "Numerical derivatives used."} lenh<-lenh*(is.function(h.fct)==TRUE) modlist<-list(y=y,m=m,covm=covm,p=p,covp=covp, lambda=lam,covlambda=covlam, resid=resid,presid=presid,adjresid=adjresid,covresid=covresid, Gsq=Gsq,Xsq=Xsq,Wsq=Wsq,df=lenh, beta=beta,covbeta=covbeta, Lobs=Lobs, L=L,covL=covL,Lresid=Lresid, iter=iter, norm.diff=norm.diff,norm.score=norm.score, h.fct=h.fct,derht.fct=derht.fct,L.fct=L.fct,derLt.fct=derLt.fct, d.fct=d.fct,derdt.fct=derdt.fct, X=X,U=U,Z=Z,ZF=ZF,Zlist=Zlist,version=version) class(modlist)="mphfit" modlist }
print.simexaft <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\nSIMEX-Variables: ") cat(x$SIMEXvariable, sep = ", ") cat("\nNumber of Simulations: ", paste(x$B), "\n\n", sep = "") if (length(coef(x))) { cat("Coefficients:\n") print.default(format(coef(x), digits = digits), print.gap = 2, quote = FALSE) } else cat("No coefficients\n") cat("\n") }
.download_data_zone <- function(criterion, pollutant, zone, start_date, end_date) { url <- paste0("http://www.aire.cdmx.gob.mx/", "estadisticas-consultas/consultas/resultado_consulta.php") fd <- list( diai = day(start_date), mesi = month(start_date), anoi = year(start_date), diaf = day(end_date), mesf = month(end_date), anof = year(end_date), Q = criterion, inter = "", consulta = "Consulta" ) pollutant_tmp <- rep("on", length(pollutant)) names(pollutant_tmp) <- pollutant fd <- append(fd, pollutant_tmp) zones_tmp <- rep("on", length(zone)) names(zones_tmp) <- zone fd <- append(fd, zones_tmp) result <- POST(url, add_headers("user-agent" = "https://github.com/diegovalle/aire.zmvm"), body = fd, encode = "form") if (http_error(result)) stop(sprintf("The request to <%s> failed [%s]", url, status_code(result) ), call. = FALSE) if (http_type(result) != "text/html") stop(paste0(url, " did not return text/html", call. = FALSE)) poll_table <- read_html(content(result, "text")) df <- html_table(html_nodes(poll_table, "table")[[1]], header = TRUE) df } get_zone_imeca <- function(criterion, pollutant, zone, start_date, end_date, showWarnings = TRUE, show_messages = TRUE) { if (!missing("showWarnings")) warning(paste0("`showWarnings` argument deprecated. Use the function ", "`suppressWarnings` instead."), call. = FALSE) if (missing(pollutant)) stop("You need to specify a pollutant", call. = FALSE) if (missing(zone)) stop("You need to specify a zona", call. = FALSE) if (missing(criterion)) stop("You need to specify a start date", call. = FALSE) if (missing(end_date)) stop("You need to specify an end_date (YYYY-MM-DD)", call. = FALSE) if (!is.Date(end_date)) stop("end_ate should be a date in YYYY-MM-DD format", call. = FALSE) if (missing(start_date)) stop("You need to specify a start_date (YYYY-MM-DD)", call. = FALSE) if (!is.Date(start_date)) stop("start_date should be a string in YYYY-MM-DD format", call. = FALSE) if (start_date < "2008-01-01") stop(paste0("start_date should be after 2008-01-01, but you can visit", " http://www.aire.cdmx.gob.mx/", "default.php?opc=%27aKBhnmI=%27&opcion=aw==", " to download data going back to 1992"), call. = FALSE) criterion <- toupper(criterion) for (i in seq_len(length(pollutant))) if (!(identical("O3", pollutant[i]) || identical("NO2", pollutant[i]) || identical("SO2", pollutant[i]) || identical("CO", pollutant[i]) || identical("PM10", pollutant[i]) || identical("TC", pollutant[i]))) stop("Invalid pollutant value", call. = FALSE) pollutant <- unique(pollutant) for (i in seq_len(length(zone))) if (!(identical("NO", zone[i]) || identical("NE", zone[i]) || identical("CE", zone[i]) || identical("SO", zone[i]) || identical("SE", zone[i]) || identical("TZ", zone[i]) )) stop("zone should be one of 'NO', 'NE', 'CE', 'SO', 'SE', or 'TZ'", call. = FALSE) zone <- unique(zone) if (!(identical("HORARIOS", criterion) || identical("MAXIMOS", criterion))) stop("criterion should be 'HORARIOS' or 'MAXIMOS'", call. = FALSE) criterion <- tolower(criterion) if (length(base::intersect(pollutant, c("O3", "PM10"))) > 0 && show_messages) message(paste0("Starting October 28, 2014 the IMECA", " values for O3 and PM10 are computed using", " NOM-020-SSA1-2014 and", " NOM-025-SSA1-2014")) if (start_date >= "2017-01-01" && show_messages) message(paste0("Sometime in 2015-2017 the stations", " ACO, AJU, INN, MON, and MPA were excluded from the", " index")) tryCatch({ df <- .download_data_zone(criterion, pollutant, zone, start_date, end_date) names(df) <- df[1, ] names(df)[1] <- "date" names(df) <- str_replace_all(names(df), "\\s", "") df <- df[2:nrow(df), ] if (criterion != tolower("HORARIOS")) { df <- df %>% gather(zone_pollutant, value, -date) %>% separate(zone_pollutant, c("zone", "pollutant"), sep = 2) } else { names(df)[2] <- "hour" df <- df %>% gather(zone_pollutant, value, -date, -hour) %>% separate(zone_pollutant, c("zone", "pollutant"), sep = 2) } df[which(df$value == ""), "value"] <- NA df[which(df$value == "M"), "value"] <- NA df$value <- as.numeric(df$value) df$date <- as.Date(df$date) df$unit <- "IMECA" if (criterion != tolower("HORARIOS")) { as.data.frame(df[, c("date", "zone", "pollutant", "unit", "value")]) } else { as.data.frame(df[, c("date", "hour", "zone", "pollutant", "unit", "value")]) } }, error = function(cond) { message("An error occurred downloading data from www.aire.cdmx.gob.mx:") message(cond) return(NULL) } ) }
library("MAPA") library("parallel") library("thief") library("pbmcapply") ncore = detectCores()-4 set.seed(12345) perd = "QUARTERLY" h.fc = 8 freq = 4 load("mydata.full.ts.rda") forx.b = function(x, h.fc, frequency = freq) { lambda = BoxCox.lambda(na.contiguous(x), method = "guerrero",lower = 0, upper = 1) x.bc = BoxCox(x, lambda) mapa.bc = InvBoxCox(mapa(x.bc, fh = h.fc, outplot = 0)$outfor, lambda = lambda) thief.bc.ets = InvBoxCox(thief(x.bc,h=h.fc,usemodel ="ets")$mean, lambda = lambda) thief.bc.arm = InvBoxCox(thief(x.bc,h = h.fc,usemodel ="arima")$mean, lambda = lambda) return(cbind(mapa.bc = as.vector(mapa.bc), thief.ets = as.vector(thief.bc.ets), thief.arm = as.vector(thief.bc.arm))) } system.time(for.M4.mapa<- pbmclapply(mydata.full.ts, forx.b, h.fc = h.fc, frequency = freq, mc.cores = ncore)) save(for.M4.mapa, file = paste0("M4_mapa_", perd, "_srihari.rda"))
train <- data.frame(ClaimID = c(1,2,3), RearEnd = c(TRUE, FALSE, TRUE), Fraud = c(TRUE, FALSE, TRUE)) train library(rpart) mytree <- rpart(Fraud ~ RearEnd, data = train, method = "class") mytree mytree <- rpart(Fraud ~ RearEnd, data = train, method = "class", minsplit = 2, minbucket = 1) mytree library(rattle) library(rpart.plot) library(RColorBrewer) fancyRpartPlot(mytree) mytree <- rpart(Fraud ~ RearEnd, data = train, method = "class", parms = list(split = 'information'), minsplit = 2, minbucket = 1) mytree train <- data.frame(ClaimID = c(1,2,3), RearEnd = c(TRUE, FALSE, TRUE), Fraud = c(TRUE, FALSE, FALSE)) train mytree <- rpart(Fraud ~ RearEnd, data = train, method = "class", minsplit = 2, minbucket = 1) mytree rpart.plot(mytree) mytree <- rpart(Fraud ~ RearEnd, data = train, method = "class", minsplit = 2, minbucket = 1, cp=-1) fancyRpartPlot(mytree) train mytree <- rpart(Fraud ~ RearEnd, data = train, method = "class", minsplit = 2, minbucket = 1, weights = c(.4, .4, .2)) mytree fancyRpartPlot(mytree) train <- data.frame(ClaimID = c(1,2,3,4,5,6,7), RearEnd = c(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE), Whiplash = c(TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE),Fraud = c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE)) train mytree <- rpart(Fraud ~ RearEnd + Whiplash, data = train, method = "class", maxdepth = 1, minsplit = 2, minbucket = 1) mytree fancyRpartPlot(mytree) lossmatrix <- matrix(c(0,1,3,0), byrow=TRUE, nrow=2) lossmatrix mytree <- rpart(Fraud ~ RearEnd + Whiplash, data = train, method = "class", maxdepth = 1, minsplit = 2, minbucket = 1,parms = list(loss = lossmatrix)) fancyRpartPlot(mytree) train <- data.frame(ClaimID = c(1,2,3,4,5,6,7,8,9,10),RearEnd = c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE), Whiplash = c(TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE), Activity = factor(c("active", "very active", "very active", "inactive", "very inactive", "inactive", "very inactive", "active", "active", "very active"),levels=c("very inactive", "inactive", "active", "very active"), ordered=TRUE),Fraud = c(FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE)) train mytree <- rpart(Fraud ~ RearEnd + Whiplash + Activity, data = train, method = "class", minsplit = 2, minbucket = 1, cp=-1) fancyRpartPlot(mytree) mytree$variable.importance printcp(mytree) mytree <- prune(mytree, cp=.21) fancyRpartPlot(mytree) test <- data.frame(ClaimID = c(1,2,3,4,5,6,7,8,9,10),RearEnd = c(FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE), Whiplash = c(FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE), Activity = factor(c("inactive", "very active", "very active", "inactive", "very inactive", "inactive", "very inactive", "active", "active", "very active"),levels=c("very inactive", "inactive", "active", "very active"), ordered=TRUE)) test test$FraudClass <- predict(mytree, newdata = test, type="class") test$FraudProb <- round(predict(mytree, newdata = test, type="prob"),2) test
kgvar <- function(y, centers, iter.max = 10, conf.level = 0.95) UseMethod("kgvar") kgvar.default <- function(y, centers, iter.max = 10, conf.level = 0.95) { if(length(centers) > 1){k <- length(centers)} if(length(centers) == 1){k <- centers} N <- dim(y)[2] T <- dim(y)[1] h <- 0.1 p <- conf.level K <- floor((0.4258597) * T / (log(T))) GRID <- seq(0.05, 1, length = 50) I <- 1:T HILL <- numeric(N) G <- function(x) ((15 / 16) * (1 - x^2)^2) * (x <= 1) * (-1 <= x) a <- numeric(N) for(l in 1:N) { y.ord <- sort(y[, l]) U <- y.ord[T - K] HILL[l] <- (1 / K) * sum(log(y.ord[(T - K + 1):T]) - log(y.ord[T - K])) SCEDASIS <- function(s) (1 / (K * h)) * sum((y[, l] > y.ord[T - K]) * G((s - (I / T)) / h)) SS <- numeric(T) for(j in 1:T) SS[j] <- (SCEDASIS(j / T))^(1 / HILL[l]) a[l] <- (U * (K)^(HILL[l])) / (sum(SS))^(HILL[l]) } Varf <- function(s, l) { y.ord <- sort(y[, l]) log((a[l]/((1-p)^(HILL[l])))*(1 / (K * h)) * sum((y[, l] > y.ord[T - K]) * G((s - (I / T)) / h))) } if(length(centers) > 1){Ik = centers} if(length(centers) == 1){Ik <- sort(sample(seq(1, N, 1), k))} mus <- function(s, j) Varf(s, Ik[j]) M <- matrix(0, nrow = iter.max, ncol = N) sintegral <- function (x, fx, n.pts = max(256, length(x))) { if (class(fx) == "function") fx = fx(x) n.x = length(x) if (n.x != length(fx)) stop("Unequal input vector lengths") ap = approx(x, fx, n = 2 * n.pts + 1) h = diff(ap$x)[1] integral = h * (ap$y[2 * (1:n.pts) - 1] + 4 * ap$y[2 * (1:n.pts)] + ap$y[2 * (1:n.pts) + 1])/3 results = list(value = sum(integral), cdf = list(x = ap$x[2 * (1:n.pts)], y = cumsum(integral))) class(results) = "sintegral" return(results) } cat(format("\nRendering\n")) cat(format("=========\n")) cat(1, "\n") clasification <- numeric(N) for(i in 1:N) { dist <- numeric(k) for(j in 1:k) { V<-function(x) (Varf(x, i) - mus(x, j))^2 dist[j] <- sintegral(GRID, Vectorize(V))$value } clasification[i] <- which.min(dist) } mus.new <- function(s, j) { aux.1 <- c() for(i in 1:N) aux.1[i] <- Varf(s, i) * (1 * (clasification == j))[i] sum(aux.1) / sum(1 * (clasification == j)) } M[1, ] <- clasification for(z in 2:iter.max) { cat(format(z), "\n") for(i in 1:N) { dist <- numeric(k) for(j in 1:k) { V.new<-function(s) (Varf(s, i) - mus.new(s, j))^2 dist[j] <- sintegral(GRID, Vectorize(V.new))$value } clasification[i] <- which.min(dist) } mus.new <- function(s, j) { aux.1 <- c() for(i in 1:N) aux.1[i] <- Varf(s, i) * (1 * (clasification == j))[i] sum(aux.1) / sum(1 * (clasification == j)) } M[z, ] <- clasification if(prod(1 * (M[z, ] == M[(z - 1), ])) == 1) break } outputs <- list(Y = y, n.clust = k, scale.param = a, conf.level = conf.level, hill = HILL, var.new = mus.new, clusters = M[z - 1,]) class(outputs) <- "kgvar" return(outputs) } plot.kgvar <- function(x, c.c = FALSE, xlab = "w", ylab = "Value-at-risk function", ...) { N <- dim(x$Y)[2] T <- dim(x$Y)[1] h <- 0.1 a <- x$scale.param p <- x$conf.level HILL <- x$hill K <- floor((0.4258597) * T / (log(T))) grid <- seq(0, 1, length = 100) Varf <- function(s, l) { y.ord <- sort(x$Y[, l]) I <- 1:T (a[l]/((1-p)^(HILL[l])))*(1 / (K * h)) * sum((x$Y[, l] > y.ord[T - K]) * G((s - (I / T)) / h)) } G <- function(x) ((15 / 16) * (1 - x^2)^2) * (x <= 1) * (-1 <= x) s1 <- lapply(grid, Varf, 1) plot(grid, s1, type = 'l', xlab = xlab, ylab = ylab, col = 'gray', ...) for(i in 1:N) { s <- as.numeric(lapply(grid,Varf,i)) lines(grid, s, type = 'l', lwd = 8, col = 'gray') } Newvar2 <- function(s,j){exp(x$var.new(s,j))} if(c.c) { for(j in 1:x$n.clust){ y <- lapply(grid, Newvar2, j) lines(grid, y, type = 'l', lwd = 8, col = "blue", lty = 6) } } }
knitr::opts_chunk$set( warning = FALSE, message = FALSE, fig.height = 5, fig.width = 5 ) options(digits=4) par(mar=c(3,3,1,1)+.1) set.seed(1) library(SimDesign) Design <- createDesign(N = c(10,20,30)) Generate <- function(condition, fixed_objects = NULL) { ret <- with(condition, rnorm(N)) ret } Analyse <- function(condition, dat, fixed_objects = NULL) { whc <- sample(c(0,1,2,3), 1, prob = c(.7, .20, .05, .05)) if(whc == 0){ ret <- mean(dat) } else if(whc == 1){ ret <- t.test() } else if(whc == 2){ ret <- t.test('invalid') } else if(whc == 3){ stop('Manual error thrown') } if(sample(c(TRUE, FALSE), 1, prob = c(.1, .9))) warning('This warning happens rarely') if(sample(c(TRUE, FALSE), 1, prob = c(.5, .5))) warning('This warning happens much more often') ret } Summarise <- function(condition, results, fixed_objects = NULL) { ret <- c(bias = bias(results, 0)) ret } set.seed(1) result <- runSimulation(Design, replications = 100, generate=Generate, analyse=Analyse, summarise=Summarise) print(result) SimExtract(result, what = 'errors') seeds <- SimExtract(result, what = 'error_seeds') head(seeds[,1:3])
read_table_nm <- function( file = NULL, skip = NULL, header = NULL, rm_duplicates = FALSE, nonmem_tab = TRUE) { if(is.null(file)) { stop('Argument \"file\" required.') } if(!any(file.exists(file))) { stop('No file not found.') } else { file <- file[file.exists(file)] } if(nonmem_tab) { if(is.null(skip) & is.null(header)) { test <- readLines(file[1], n = 3) skip <- ifelse(grepl('TABLE NO', test[1]), 1, 0) header <- ifelse(grepl('[a-zA-Z]', test[2]), TRUE, FALSE) } tab_file <- do.call('cbind', lapply(file, readr::read_table, skip = skip, col_names = header)) tab_file <- as.data.frame(apply(tab_file, MARGIN = 2, FUN = as.numeric)) tab_file <- na.omit(tab_file) if(header) { colnames(tab_file)[grepl('\n',colnames(tab_file))] <- gsub('\n.+', '', colnames(tab_file)[grepl('\n', colnames(tab_file))]) } } else { skip <- max(grep('TABLE NO', readLines(file[1]))) tab_file <- do.call('cbind', lapply(file, read.table, skip = skip, header = FALSE, fill = TRUE, as.is = TRUE)) colnames(tab_file) <- tab_file[1, ] tab_file <- suppressWarnings(as.data.frame(apply(tab_file[-1, ], 2, as.numeric))) } if(rm_duplicates) { tab_file <- tab_file[, !duplicated(colnames(tab_file))] } return(tab_file) }
context("aglm-input") library(aglm) createX <- function(nobs, nvar_int, nvar_numeric, nvar_ordered, nvar_factor, seed=12345) { set.seed(seed) nobs <- nobs nvar <- nvar_int + nvar_numeric + nvar_ordered + nvar_factor data <- list() if (nvar_int > 0) for (i in 1:nvar_int) data[[paste0("Int", i)]] <- sample(1:10, size=nobs, replace=TRUE) if (nvar_numeric > 0) for (i in 1:nvar_numeric) data[[paste0("Num", i)]] <- rnorm(nobs) if (nvar_ordered > 0) for (i in 1:nvar_ordered) data[[paste0("Ord", i)]] <- ordered(sample(1:5, size=nobs, replace=TRUE)) if (nvar_factor > 0) for (i in 1:nvar_factor) data[[paste0("Fac", i)]] <- factor(sample(c("A", "B", "C"), nobs, replace=TRUE)) return(data.frame(data)) } test_that("Check returned values of newInput() for each input type", { x <- newInput(createX(10, 1, 1, 1, 1)) expect_equal(x@vars_info[[1]]$id, 1) expect_equal(x@vars_info[[1]]$data_column_idx, 1) expect_equal(x@vars_info[[1]]$type, "quan") expect_equal(x@vars_info[[1]]$use_linear, TRUE) expect_equal(x@vars_info[[1]]$use_UD, FALSE) expect_equal(x@vars_info[[1]]$use_OD, TRUE) expect_true(!is.null(x@vars_info[[1]]$OD_info)) expect_true(is.null(x@vars_info[[1]]$UD_info)) expect_equal(x@vars_info[[2]]$id, 2) expect_equal(x@vars_info[[2]]$data_column_idx, 2) expect_equal(x@vars_info[[2]]$type, "quan") expect_equal(x@vars_info[[2]]$use_linear, TRUE) expect_equal(x@vars_info[[2]]$use_UD, FALSE) expect_equal(x@vars_info[[2]]$use_OD, TRUE) expect_true(!is.null(x@vars_info[[2]]$OD_info)) expect_true(is.null(x@vars_info[[2]]$UD_info)) expect_equal(x@vars_info[[3]]$id, 3) expect_equal(x@vars_info[[3]]$data_column_idx, 3) expect_equal(x@vars_info[[3]]$type, "qual") expect_equal(x@vars_info[[3]]$use_linear, FALSE) expect_equal(x@vars_info[[3]]$use_UD, TRUE) expect_equal(x@vars_info[[3]]$use_OD, TRUE) expect_true(!is.null(x@vars_info[[3]]$UD_info)) expect_true(!is.null(x@vars_info[[3]]$OD_info)) expect_equal(x@vars_info[[4]]$id, 4) expect_equal(x@vars_info[[4]]$data_column_idx, 4) expect_equal(x@vars_info[[4]]$type, "qual") expect_equal(x@vars_info[[4]]$use_linear, FALSE) expect_equal(x@vars_info[[4]]$use_UD, TRUE) expect_equal(x@vars_info[[4]]$use_OD, FALSE) expect_true(!is.null(x@vars_info[[4]]$UD_info)) expect_true(is.null(x@vars_info[[4]]$OD_info)) }) test_that("Check add_xxx flags of newInput()", { x <- newInput(createX(10, 1, 1, 1, 1), add_interaction_columns=FALSE) expect_equal(length(x@vars_info), 4) x <- newInput(createX(10, 1, 1, 1, 1), add_linear_columns=FALSE, add_interaction_columns=FALSE) expect_true(all(sapply(x@vars_info, function(var) {!var$use_linear}))) x <- newInput(createX(10, 1, 1, 1, 1), add_OD_columns_of_qualitatives=FALSE, add_interaction_columns=FALSE) expect_true(all(sapply(x@vars_info, function(var) {var$type=="quan" | !var$use_OD}))) }) test_that("Check bins_list of newInput()", { bins_list <- list(c(0, 1, 2)) x <- newInput(createX(10, 0, 5, 0, 0), bins_list=bins_list) expect_equal(x@vars_info[[1]]$OD_info$breaks, bins_list[[1]]) bins_names <- list(3) x <- newInput(createX(10, 0, 5, 0, 0), bins_list=bins_list, bins_names=bins_names) expect_equal(x@vars_info[[3]]$OD_info$breaks, bins_list[[1]]) bins_names <- list("Num5") x <- newInput(createX(10, 0, 5, 0, 0), bins_list=bins_list, bins_names=bins_names) }) test_that("Check return values of getDesignMatrix()", { x_int <- newInput(createX(10, 1, 0, 0, 0), add_interaction_columns=FALSE) mat_int <- getDesignMatrix(x_int) expect_equal(mat_int[,1], x_int@data[,1]) expect_equal(dim(mat_int), c(10, dim(getODummyMatForOneVec(mat_int[,1])$dummy_mat)[2] + 1)) x_num <- newInput(createX(10, 0, 1, 0, 0), add_interaction_columns=FALSE) mat_num <- getDesignMatrix(x_num) expect_equal(mat_num[,1], x_num@data[,1]) expect_equal(dim(mat_num), c(10, dim(getODummyMatForOneVec(mat_num[,1])$dummy_mat)[2] + 1)) x_ord <- newInput(createX(10, 0, 0, 1, 0), add_interaction_columns=FALSE) mat_ord <- getDesignMatrix(x_ord) expect_equal(dim(mat_ord), c(10, dim(getODummyMatForOneVec(x_ord@data[,1])$dummy_mat)[2] + dim(getUDummyMatForOneVec(x_ord@data[,1], drop_last=FALSE)$dummy_mat)[2])) x_fac <- newInput(createX(10, 0, 0, 0, 1), add_interaction_columns=FALSE) mat_fac <- getDesignMatrix(x_fac) expect_equal(dim(mat_fac), c(10, dim(getUDummyMatForOneVec(x_fac@data[,1], drop_last=FALSE)$dummy_mat)[2])) x_all <- newInput(data.frame(x_int@data, x_num@data, x_ord@data, x_fac@data), add_interaction_columns=FALSE) mat_all <- getDesignMatrix(x_all) expect_equal(mat_all, cbind(mat_int, mat_num, mat_ord, mat_fac)) x_inter <- newInput(data.frame(x_int@data, x_fac@data), add_interaction_columns=TRUE) mat_inter <- getDesignMatrix(x_inter) a <- dim(mat_int)[2] + dim(mat_fac)[2] b <- dim(x_int@data)[2] + dim(mat_fac)[2] expect_equal(dim(mat_inter), c(10, a + b * (b - 1) / 2)) })
LEAPFrOG<-function(data,p,Nudge=0.001,NonLinCon=TRUE){ P<-dim(as.matrix(p))[2] if(P<2) return(print("Error: LEORAH requires 2 or more reference populations")) if(length(data)!=dim(as.matrix(p))[1]) return("Error: Number of SNPs in data and reference frequencies is not the same") if(!(is.numeric(Nudge))) Nudge=0.001 if(!(Nudge>0)) Nudge=0.001 options(warn=-1) data2=data[!is.na(data)] p2=p[!is.na(data),] data2=data2[rowSums(p2)<P] p2=p2[rowSums(p2)<P,] data2=data2[rowSums(p2)>0] p2=p2[rowSums(p2)>0,] q2=1-p2 nSNP=length(data2) A <<- matrix( nrow=2*nSNP, ncol=P ) for (j in 1:P) { A[1:nSNP,j]<-(data2==0)*q2[,j] + (data2==1)*2*p2[,j] + (data2==2)*p2[,j] A[(nSNP+1):(2*nSNP),j] <- (data2==0)*q2[,j] + (data2==1)*q2[,j] + (data2==2)*p2[,j] } Ab<<-matrix(nrow=2*nSNP,ncol=P) Ab[,P]=A[,P] for (j in 1:(P-1)) { Ab[,j] <- A[,j]-A[,P] } B<<-matrix( nrow=2*nSNP, ncol=P ) for (j in 1:P) { B[1:nSNP,j]<-(data2==0)*-1*p2[,j] +(data2==2)*-1*p2[,j]+(data2==1)*2*p2[,j] B[(nSNP+1):(2*nSNP),j]<-p2[,j] } Bb<<-matrix(nrow=2*nSNP,ncol=P-1) for (j in 1:(P-1)){ Bb[,j] <- B[,P]-B[,j] } fadmix <- function(m) { D=m[P:length(m)] m=m[1:(P-1)] Ivec=m*(m<=0.5)+(1-m)*(m>0.5) BK=as.matrix(0-Bb)%*%as.vector(2*D*Ivec) BK=BK+(as.matrix(Bb)%*%as.vector(Ivec)) AK=Ab%*%as.vector(c(m,1)) -sum(log(BK[1:nSNP]*BK[(nSNP+1):(nSNP*2)]+AK[1:nSNP]*AK[(nSNP+1):(nSNP*2)])) } gadmix <- function(m){ D=m[P:length(m)] m=m[1:(P-1)] Ivec=m*(m<=0.5)+(1-m)*(m>0.5) AK=Ab%*%as.vector(c(m,1)) A1=A[1:nSNP,] A2=A[(nSNP+1):(2*nSNP),] B1=B[1:nSNP,] B2=B[(nSNP+1):(2*nSNP),] BK=as.matrix(0-Bb)%*%as.vector(2*D*Ivec) BK=BK+(as.matrix(Bb)%*%as.vector(Ivec)) denom=BK[1:nSNP]*BK[(nSNP+1):(nSNP*2)]+AK[1:nSNP]*AK[(nSNP+1):(2*nSNP)] grads=matrix(nrow=P-1,ncol=2) for(j in 1:(P-1)){ BKnoJ=as.matrix(0-Bb[,-j])%*%as.vector(2*D[-j]*Ivec[-j]) BKnoJ=BKnoJ+(as.matrix(Bb[,-j])%*%as.vector(Ivec[-j])) BKJ=as.matrix(0-Bb[,j])%*%as.vector(2*D[j]) BKJ=BKJ+as.matrix(Bb[,j]) AKnoJ=as.matrix(Ab[,-c(j,P)])%*%as.vector(m[-j]) grads[j,2]=-sum((2*(Ivec[j]^2)*(4*D[j]*B1[,j]*B2[,j]-4*D[j]*B1[,j]*B2[,P]-2*B1[,j]*B2[,j]+2*B1[,j]*B2[,P]+2*B1[,P]*B2[,j]-2*B1[,P]*B2[,P]-4*D[j]*B1[,P]*B2[,j]+4*D[j]*B1[,P]*B2[,P])+2*Ivec[j]*((B1[,j]-B1[,P])*BKnoJ[(nSNP+1):(2*nSNP)]+(B2[,j]-B2[,P])*BKnoJ[1:nSNP]))/denom) grads[j,1]=-sum((AKnoJ[1:nSNP]*(A2[,j]-A2[,P])+ AKnoJ[(nSNP+1):(2*nSNP)]*(A1[,j]-A1[,P])+A1[,P]*A2[,j]+A1[,j]*A2[,P]+2*(m[j]*A1[,P]*A2[,P]+m[j]*A1[,j]*A2[,j]-A1[,P]*A2[,P]-m[j]*A1[,j]*A2[,P]-m[j]*A1[,P]*A2[,j])+((m[j]<=0.5)-(m[j]>0.5))*(2*((m[j]<=0.5)-(m[j]>0.5))*m[j]*BKJ[1:nSNP]*BKJ[(nSNP+1):(2*nSNP)]+BKJ[(nSNP+1):(2*nSNP)]*BKnoJ[1:nSNP]+2*(m[j]>0.5)*BKJ[1:nSNP]*BKJ[(nSNP+1):(2*nSNP)]+BKJ[1:nSNP]*BKnoJ[(nSNP+1):(2*nSNP)]))/denom) } as.vector(grads) } if(!NonLinCon){ ui = rbind( diag(P-1),-diag(P-1),rep(-1,P-1)) ui=cbind(ui,matrix(rep(0,(2*(P-1)+1)*(P-1)),nrow=2*(P-1)+1,ncol=P-1)) ui=rbind(ui,cbind(matrix(rep(0,(P-1)*(P-1)),ncol=P-1,nrow=P-1),diag(P-1))) ui=rbind(ui,cbind(matrix(rep(0,(P-1)*(P-1)),ncol=P-1,nrow=P-1),-diag(P-1))) ci = c( rep(0,P-1),rep(-1,P),0.5,rep(0,P-2),rep(-1,P-1)) COres <- constrOptim2(theta=c(rep((1/P),P-1),0.5+Nudge,rep(0.5,P-2)),f=fadmix,grad=gadmix, ui=ui, ci=ci,hessian=TRUE) }else{ hadmix<-function(m){ D=m[P:length(m)] m=m[1:(P-1)] mins=vector(length=(2*P)-2);maxs=mins mins[1:(P-1)]=m mins[P]=D[1]-0.5 if(P>2){mins[(P+1):length(mins)]=D[2:(P-1)]} maxs[1:(P-1)]=1-m maxs[P:length(mins)]=1-D maxs2=c(1-sum(m),0.5-(sum(D[m<=0.5]*m[m<=0.5])+sum(D[m>0.5]*(1-m[m>0.5]))+sum(m[m>0.5]-0.5)),0.5-(sum((1-D[m<=0.5])*m[m<=0.5])+sum((1-D[m>0.5])*(1-m[m>0.5]))+sum(m[m>0.5]-0.5))) c(mins,maxs,maxs2) } COres <- auglag(par=c(rep((1/P),P-1),0.5+Nudge,rep(0.5,P-2)),fn=fadmix,gr=gadmix,hin=hadmix) } P1=vector(length=P-1);P2=P1 mest=unlist(COres$par)[1:(P-1)] Dest=unlist(COres$par)[P:(2*(P-1))] P1[mest<=0.5]=2*mest[mest<=0.5]*Dest[mest<=0.5] P2[mest<=0.5]=2*mest[mest<=0.5]*(1-Dest[mest<=0.5]) P1[mest>0.5]=2*(1-mest[mest>0.5])*Dest[mest>0.5]+2*(mest[mest>0.5]-0.5) P2[mest>0.5]=2*(1-mest[mest>0.5])*(1-Dest[mest>0.5])+2*(mest[mest>0.5]-0.5) options(warn=0) mest=list(m=c(mest,1-sum(mest)));Dest=list(D=c(Dest,1-sum(Dest))) se=sqrt(diag(ginv(COres$hessian))) P1=list(P1=c(P1,1-sum(P1)));P2=list(P2=c(P2,1-sum(P2))) return(c(mest,Dest,list(mse=se[1:(P-1)]),list(Dse=se[P:(2*(P-1))]),P1,P2,COres[2:3])) } LEAPFrOG_plot<-function(Results,PopNames,SampNames=NULL){ oldpar=par(mfrow=c(1,3),omi=c(0.9,0,0,0)) P=dim(Results)[2] barplot(Results[1,,],space=0,names.arg=SampNames,las=2,ylim=c(0,1), col=2:(P+2),main="Admixture in observed individuals") barplot(Results[2,,],space=0,names.arg=SampNames,las=2,ylim=c(0,1), col=2:(P+2),main="Admixture in parents 'A'") barplot(Results[3,,],space=0,names.arg=SampNames,las=2,ylim=c(0,1), col=2:(P+2),main="Admixture in parents 'B'") par(xpd=NA) legend(x=0,y=-0.25,legend=PopNames,col=2:(P+2),pch=15,cex=1.25) par(oldpar) } LEAPFrOG_EM<-function(data,p,chr,alpha=1e-6){ P=dim(p)[2] data2=data[rowSums(!is.na(data))==2,] p2=p[rowSums(!is.na(data))==2,] data2=data2[rowSums(p2)<P,] p2=p2[rowSums(p2)<P,] data2=data2[rowSums(p2)>0,] p2=p2[rowSums(p2)>0,] q2=1-p2 nSNP=dim(data2)[1] nChr<-nlevels(as.factor(chr)) nSNP2<<-vector(length=nChr);y<<-c(1,rep(0.5,nChr-1)) for(c in 1:nChr) nSNP2[c]=sum(chr==c) write.table(paste("from mpmath import *\nimport sys\nstem = '",getwd(),"/EMPAtemp.txt'\nf = open(stem, 'r')\nvals=[]\nline = str\nwhile line:\n\tline = f.readline()\n\tif line:\n\t\tvals.append(float(line))\nmp.dps=1000\nanswer=exp(vals[0]-log(exp(vals[1])+exp(vals[2])))\nFILE = open('EMPAtemp2.txt','w')\nFILE.write(str(answer)+' ')\n",sep=""),quote=FALSE,row.names=FALSE,col.names=FALSE,file="EMPA.py") A1<<-array(dim=c(max(nSNP2),P,nChr)) A2<<-A1 for(c in 1:nChr){ for (j in 1:P) { A1[1:nSNP2[c],j,c]<-(data2[chr==c,1]==0)*q2[chr==c,j]+ (data2[chr==c,1]==1)*p2[chr==c,j] A2[1:nSNP2[c],j,c]<-(data2[chr==c,2]==0)*q2[chr==c,j]+ (data2[chr==c,2]==1)*p2[chr==c,j] } for (j in 1:(P-1)) { A1[1:nSNP2[c],j,c] <- A1[1:nSNP2[c],j,c]-A1[1:nSNP2[c],P,c] A2[1:nSNP2[c],j,c] <- A2[1:nSNP2[c],j,c]-A2[1:nSNP2[c],P,c] } } i=1 repeat{ if(i>1){ for(c in 2:nChr){ l1=sum(log((A1[1:nSNP2[c],,c]%*%as.matrix(c(u1,1)))* (A2[1:nSNP2[c],,c]%*%as.matrix(c(u2,1))))) l0a=l1 l0b=sum(log((A1[1:nSNP2[c],,c]%*%as.matrix(c(u2,1)))* (A2[1:nSNP2[c],,c]%*%as.matrix(c(u1,1))))) write.table(c(l1,l0a,l0b),file="EMPAtemp.txt",quote=FALSE,row.names=FALSE,col.names=FALSE) system("python EMPA.py",wait=TRUE) y[c]<-as.numeric(scan("EMPAtemp2.txt",what=numeric(0),quiet=TRUE)) } } l2<-function(m){ u1=m[1:(P-1)] u2=m[P:(2*(P-1))] l=vector(length=nChr) for(c in 1:nChr){ l[c]=sum(log(y[c]*(A1[1:nSNP2[c],,c]%*%as.matrix(c(u1,1)))*(A2[1:nSNP2[c],,c]%*%as.matrix(c(u2,1)))+(1-y[c])*(A1[1:nSNP2[c],,c]%*%as.matrix(c(u2,1)))*(A2[1:nSNP2[c],,c]%*%as.matrix(c(u1,1))))) } -sum(l) } derivs<-function(m){ u1=m[1:(P-1)] u2=m[P:(2*(P-1))] grad1=matrix(ncol=P-1,nrow=nChr);grad2=grad1 for(c in 1:nChr){ for(j in 1:(P-1)){ grad1[c,j]=sum((y[c]*A1[1:nSNP2[c],j,c]*(A2[1:nSNP2[c],,c]%*%as.matrix(c(u2,1)))+(1-y[c])*A2[1:nSNP2[c],j,c]*(A1[1:nSNP2[c],,c]%*%as.matrix(c(u2,1))))/ (y[c]*(A1[1:nSNP2[c],,c]%*%as.matrix(c(u1,1)))*(A2[1:nSNP2[c],,c]%*%as.matrix(c(u2,1)))+(1-y[c])*(A1[1:nSNP2[c],,c]%*%as.matrix(c(u2,1)))*(A2[1:nSNP2[c],,c]%*%as.matrix(c(u1,1))))) grad2[c,j]=sum(((1-y[c])*A1[1:nSNP2[c],j,c]*(A2[1:nSNP2[c],,c]%*%as.matrix(c(u1,1)))+y[c]*A2[1:nSNP2[c],j,c]*(A1[1:nSNP2[c],,c]%*%as.matrix(c(u1,1))))/ (y[c]*(A1[1:nSNP2[c],,c]%*%as.matrix(c(u1,1)))*(A2[1:nSNP2[c],,c]%*%as.matrix(c(u2,1)))+(1-y[c])*(A1[1:nSNP2[c],,c]%*%as.matrix(c(u2,1)))*(A2[1:nSNP2[c],,c]%*%as.matrix(c(u1,1))))) } } -c(colSums(grad1),colSums(grad2)) } ui = rbind( diag(2*(P-1)),-diag(2*(P-1)),c(rep(-1,P-1), rep(0,P-1)),c(rep(0,P-1), rep(-1,P-1))) ci = c(rep(0,2*(P-1)),rep(-1,2*(P))) if(i>1) oldu=c(u1,u2) z1=constrOptim(theta=rep(1/P,2*(P-1)),f=l2,grad=derivs,ui=ui,ci=ci,hessian=TRUE) u1=z1$par[1:(P-1)];u2=z1$par[P:(2*(P-1))] if(i>1){ change=sum(abs(c(u1,u2)-oldu)) print(paste("Iteration=",i,"::Change=",change,sep="")) if(change<alpha) break } i=i+1 } errs=sqrt(diag(solve(z1$hessian))) u1=c(u1,1-sum(u1));u2=c(u2,1-sum(u2)) return(list(m=rowMeans(cbind(u1,u2)),P1=u1,P2=u2,P1se=errs[1:(P-1)],P2se=errs[P:(2*(P-1))],iterations=i,value=z1$value)) } BEAPFrOG<-function(data,p,nchains=1,iterations=1000,alpha=0.05,prior=1,burn=2000,SampSizes){ P<-dim(as.matrix(p))[2] if(P<2) return(print("Error: LEORAH requires 2 or more reference populations")) if(length(data)!=dim(as.matrix(p))[1]) return("Error: Number of SNPs in data and reference frequencies is not the same") data2=data[!is.na(data)] p2=p[!is.na(data),] data2=data2[rowSums(p2)<P] p2=p2[rowSums(p2)<P,] data2=data2[rowSums(p2)>0] p2=p2[rowSums(p2)>0,] nSNP=length(data2) fadmix="model {\nfor (i in 1:N){\nG[i]~dcat(probs[i,])\np1[i]<-sum(m1[1:(J-1)]*p[i,1:(J-1)])+(1-sum(m1[1:(J-1)]))*p[i,J]\np2[i]<-sum(m2[1:(J-1)]*p[i,1:(J-1)])+(1-sum(m2[1:(J-1)]))*p[i,J]\nprobs[i,1]<-(1-p1[i])*(1-p2[i])\nprobs[i,2]<-p1[i]*(1-p2[i])+p2[i]*(1-p1[i])\nprobs[i,3]<-p1[i]*p2[i]\nfor(j in 1:J){\np[i,j]~dnorm(pE[i,j],pT[i,j])T(0,1)\n}\n}\nfor(x in 1:J){\nalpha[x]<-prior\n}\nm1~ddirch(alpha)\nm2~ddirch(alpha)\n}\n" write(fadmix,file="BEAPFrOG.bug") tau=matrix(ncol=P,nrow=nSNP) for(j in 1:P){ tau[,j]=(2*SampSizes[j])/(p2[,j]*(1-p2[,j])) } JagsModel <- jags.model('BEAPFrOG.bug',data = list('G'=data2+1,'N'=nSNP,'J'=P,'pE'=p2,'pT'=tau,'prior'=prior),n.chains = nchains,n.adapt = burn) z1=coda.samples(JagsModel,c('m1','m2'),iterations) cred.intervals=matrix(nrow=2*P,ncol=2) modes=vector(length=2*P) z2=as.matrix(z1[[1]]) flip=z2[,1]<0.5 p2flip=z2[flip,(P+1):(2*P)] z2[flip,(P+1):(2*P)]=z2[flip,1:P] z2[flip,1:P]=p2flip for(i in 1:(2*P)){ chains=z2[,i] chains=sort(chains) chains=round(chains,digits=2) modes[i]=as.numeric(names(sort(table(chains),decreasing=TRUE))[1]) IntSize=round(length(chains)*(1-alpha)) interval=chains[c(1,IntSize)] min=interval[2]-interval[1] minPos=1 for(x in 2:(length(chains)-IntSize+1)){ interval=chains[c(x,(x-1)+IntSize)] width=interval[2]-interval[1] if(width<min){min=width;minPos=x} } cred.intervals[i,]=chains[c(minPos,(minPos-1)+IntSize)] } P1i=cred.intervals[1:P,] P2i=cred.intervals[(P+1):(2*P),] colnames(P1i)=c("Lower_Interval","Upper_Interval") colnames(P2i)=c("Lower_Interval","Upper_Interval") return(list(P1est=modes[1:P],P2est=modes[(P+1):(2*P)],P1interval=P1i,P2interval=P2i,Monitor=z1)) } constrOptim2 <- function (theta, f, grad, ui, ci, mu = 1e-04, control = list(), method = if (is.null(grad)) "Nelder-Mead" else "BFGS", outer.iterations = 100, outer.eps = 1e-05, hessian=FALSE, ...) { if (!is.null(control$fnscale) && control$fnscale < 0) mu <- -mu R <- function(theta, theta.old, ...) { ui.theta <- ui %*% theta gi <- ui.theta - ci if (any(gi < 0)) return(NaN) gi.old <- ui %*% theta.old - ci bar <- sum(gi.old * log(gi) - ui.theta) if (!is.finite(bar)) bar <- -Inf f(theta, ...) - mu * bar } dR <- function(theta, theta.old, ...) { ui.theta <- ui %*% theta gi <- drop(ui.theta - ci) gi.old <- drop(ui %*% theta.old - ci) dbar <- colSums(ui * gi.old/gi - ui) grad(theta, ...) - mu * dbar } if (any(ui %*% theta - ci <= 0)) stop("initial value not feasible") obj <- f(theta, ...) r <- R(theta, theta, ...) for (i in 1L:outer.iterations) { obj.old <- obj r.old <- r theta.old <- theta fun <- function(theta, ...) { R(theta, theta.old, ...) } gradient <- function(theta, ...) { dR(theta, theta.old, ...) } a <- optim(theta.old, fun, gradient, control = control, method = method, hessian=hessian, ...) r <- a$value if (is.finite(r) && is.finite(r.old) && abs(r - r.old)/(outer.eps + abs(r - r.old)) < outer.eps) break theta <- a$par obj <- f(theta, ...) if (obj > obj.old * sign(mu)) break } if (i == outer.iterations) { a$convergence <- 7 a$message <- "Barrier algorithm ran out of iterations and did not converge" } if (mu > 0 && obj > obj.old) { a$convergence <- 11 a$message <- paste("Objective function increased at outer iteration", i) } if (mu < 0 && obj < obj.old) { a$convergence <- 11 a$message <- paste("Objective function decreased at outer iteration", i) } a$outer.iterations <- i a$barrier.value <- a$value a$value <- f(a$par, ...) a$barrier.value <- a$barrier.value - a$value a }
print.MFAmix<-function (x, ...) { res.mfa <- x if (!inherits(res.mfa, "MFAmix")) stop("non convenient data") cat("**Results of the Multiple Factor Analysis for mixed data (MFAmix)**\n") cat("The analysis was performed on", nrow(res.mfa$global.pca$rec$X.quanti), "individuals, described by", ncol(res.mfa$global.pca$rec$X), "variables\n") cat("*Results are available in the following objects :\n\n") res <- matrix("",13,2) colnames(res) <- c("name", "description") res[1, ] <- c("$eig", "eigenvalues") res[2, ] <- c("$eig.separate", "eigenvalues of the separate analyses") res[3, ] <- c("$separate.analyses", "separate analyses for each group of variables") res[4, ] <- c("$groups", "results for all the groups") res[5, ] <- c("$partial.axes", "results for the partial axes") res[6, ] <- c("$ind", "results for the individuals") res[7, ] <- c("$ind.partial", "results for the partial individuals") res[8, ] <- c("$quanti", "results for the quantitative variables") res[9, ] <- c("$levels", "results for the levels of the qualitative variables") res[10, ] <- c("$quali", "results for the qualitative variables") res[11,] <- c("$sqload", "squared loadings") res[12, ] <- c("$listvar.group", "list of variables in each group") res[13, ] <- c("$global.pca", "results for the global PCA") if (!(is.null(x$sqload.sup))) { sup <- matrix("",6,2) sup[1,] <- c("$quanti.sup", "results for the supp. quant. variables") sup[2,] <- c("$levels.sup", "results for the levels of the supp. qual? variables") sup[3,] <- c("$sqload.sup", "squared loadings of the supp? variables") sup[4,] <- c("$partial.axes.sup", "results for the partial axes of supp. groups") sup[5,] <- c("$listvar.group", "list of variables in supp. groups") sup[6,] <- c("$group.sup", "coordinates of supp. groups") res <- rbind(res,sup) } utils::write.table(res,row.names = FALSE) }
flow.frac <- function (A, nodes) { diag(A) <- 0 eig <- eigen(A)$values[1] n <- ncol(A) A[nodes,] <- 0 A[,nodes] <- 0 eye <- matrix(0,nrow=n,ncol=n) diag(eye) <- 1 res <- det(eye - 1/eig*A) return(res) }
release <- function(pkg = ".", check = FALSE, args = NULL) { pkg <- as.package(pkg) cran_version <- cran_pkg_version(pkg$package) new_pkg <- is.null(cran_version) if (yesno("Have you checked for spelling errors (with `spell_check()`)?")) { return(invisible()) } if (check) { cat_rule( left = "Building and checking", right = pkg$package, line = 2 ) check(pkg, cran = TRUE, remote = TRUE, manual = TRUE, build_args = args, run_dont_test = TRUE ) } if (yesno("Have you run `R CMD check` locally?")) { return(invisible()) } release_checks(pkg) if (yesno("Were devtool's checks successful?")) { return(invisible()) } if (!new_pkg) { show_cran_check <- TRUE cran_details <- NULL end_sentence <- " ?" if (requireNamespace("foghorn", quietly = TRUE)) { show_cran_check <- has_cran_results(pkg$package) cran_details <- foghorn::cran_details(pkg = pkg$package) } if (show_cran_check) { if (!is.null(cran_details)) { end_sentence <- "\n shown above?" cat_rule(paste0("Details of the CRAN check results for ", pkg$package)) summary(cran_details) cat_rule() } cran_url <- paste0( cran_mirror(), "/web/checks/check_results_", pkg$package, ".html" ) if (yesno( "Have you fixed all existing problems at \n", cran_url, end_sentence )) { return(invisible()) } } } if (yesno("Have you checked on R-hub (with `check_rhub()`)?")) { return(invisible()) } if (yesno("Have you checked on win-builder (with `check_win_devel()`)?")) { return(invisible()) } deps <- if (new_pkg) 0 else length(revdep(pkg$package)) if (deps > 0) { msg <- paste0( "Have you checked the ", deps, " reverse dependencies ", "(with the revdepcheck package)?" ) if (yesno(msg)) { return(invisible()) } } questions <- c( "Have you updated `NEWS.md` file?", "Have you updated `DESCRIPTION`?", "Have you updated `cran-comments.md?`", if (file_exists("codemeta.json")) "Have you updated codemeta.json with codemetar::write_codemeta()?", find_release_questions(pkg) ) for (question in questions) { if (yesno(question)) return(invisible()) } if (uses_git(pkg$path)) { git_checks(pkg) if (yesno("Were Git checks successful?")) { return(invisible()) } } submit_cran(pkg, args = args) invisible(TRUE) } has_cran_results <- function(pkg) { cran_res <- foghorn::cran_results( pkg = pkg, show = c("error", "fail", "warn", "note") ) sum(cran_res[, -1]) > 0 } find_release_questions <- function(pkg = ".") { pkg <- as.package(pkg) q_fun <- pkgload::ns_env(pkg$package)$release_questions if (is.null(q_fun)) { character() } else { q_fun() } } yesno <- function(...) { yeses <- c("Yes", "Definitely", "For sure", "Yup", "Yeah", "Of course", "Absolutely") nos <- c("No way", "Not yet", "I forget", "No", "Nope", "Uhhhh... Maybe?") cat(paste0(..., collapse = "")) qs <- c(sample(yeses, 1), sample(nos, 2)) rand <- sample(length(qs)) utils::menu(qs[rand]) != which(rand == 1) } email <- function(address, subject, body) { url <- paste( "mailto:", utils::URLencode(address), "?subject=", utils::URLencode(subject), "&body=", utils::URLencode(body), sep = "" ) tryCatch({ utils::browseURL(url, browser = email_browser()) }, error = function(e) { cli::cli_alert_danger("Sending failed with error: {e$message}") cat("To: ", address, "\n", sep = "") cat("Subject: ", subject, "\n", sep = "") cat("\n") cat(body, "\n", sep = "") } ) invisible(TRUE) } email_browser <- function() { if (!identical(.Platform$GUI, "RStudio")) { return(getOption("browser")) } if (.Platform$OS.type == "windows") { return(NULL) } browser <- Sys.which(c("xdg-open", "open")) browser[nchar(browser) > 0][[1]] } maintainer <- function(pkg = ".") { pkg <- as.package(pkg) authors <- pkg$`authors@r` if (!is.null(authors)) { people <- eval(parse(text = authors)) if (is.character(people)) { maintainer <- utils::as.person(people) } else { maintainer <- Find(function(x) "cre" %in% x$role, people) } } else { maintainer <- pkg$maintainer if (is.null(maintainer)) { stop("No maintainer defined in package.", call. = FALSE) } maintainer <- utils::as.person(maintainer) } list( name = paste(maintainer$given, maintainer$family), email = maintainer$email ) } cran_comments <- function(pkg = ".") { pkg <- as.package(pkg) path <- path(pkg$path, "cran-comments.md") if (!file_exists(path)) { warning("Can't find cran-comments.md.\n", "This file gives CRAN volunteers comments about the submission,\n", "Create it with use_cran_comments().\n", call. = FALSE ) return(character()) } paste0(readLines(path, warn = FALSE), collapse = "\n") } cran_submission_url <- "https://xmpalantir.wu.ac.at/cransubmit/index2.php" submit_cran <- function(pkg = ".", args = NULL) { if (yesno("Is your email address ", maintainer(pkg)$email, "?")) { return(invisible()) } pkg <- as.package(pkg) built_path <- build_cran(pkg, args = args) if (yesno("Ready to submit ", pkg$package, " (", pkg$version, ") to CRAN?")) { return(invisible()) } upload_cran(pkg, built_path) usethis::with_project(pkg$path, flag_release(pkg) ) } build_cran <- function(pkg, args) { cli::cli_alert_info("Building") built_path <- pkgbuild::build(pkg$path, tempdir(), manual = TRUE, args = args) cli::cli_alert_info("Submitting file: {built_path}") size <- format(as.object_size(file_info(built_path)$size), units = "auto") cli::cli_alert_info("File size: {size}") built_path } extract_cran_msg <- function(msg) { msg <- gsub("CRAN package Submission|Submit package to CRAN", "", msg) msg <- gsub("<[^>]+>", "", msg) msg <- gsub("\t+", "", msg) msg <- gsub("\n+", "\n", msg) msg } upload_cran <- function(pkg, built_path) { pkg <- as.package(pkg) maint <- maintainer(pkg) comments <- cran_comments(pkg) cli::cli_alert_info("Uploading package & comments") body <- list( pkg_id = "", name = maint$name, email = maint$email, uploaded_file = httr::upload_file(built_path, "application/x-gzip"), comment = comments, upload = "Upload package" ) r <- httr::POST(cran_submission_url, body = body) if (httr::status_code(r) == 404) { msg <- "" try({ r2 <- httr::GET(sub("index2", "index", cran_submission_url)) msg <- extract_cran_msg(httr::content(r2, "text")) }) stop("Submission failed:", msg, call. = FALSE) } httr::stop_for_status(r) new_url <- httr::parse_url(r$url) cli::cli_alert_info("Confirming submission") body <- list( pkg_id = new_url$query$pkg_id, name = maint$name, email = maint$email, policy_check = "1/", submit = "Submit package" ) r <- httr::POST(cran_submission_url, body = body) httr::stop_for_status(r) new_url <- httr::parse_url(r$url) if (new_url$query$submit == "1") { cli::cli_alert_success("Package submission successful") cli::cli_alert_info("Check your email for confirmation link.") } else { stop("Package failed to upload.", call. = FALSE) } invisible(TRUE) } as.object_size <- function(x) structure(x, class = "object_size") flag_release <- function(pkg = ".") { pkg <- as.package(pkg) if (!uses_git(pkg$path)) { return(invisible()) } cli::cli_alert_warning("Don't forget to tag this release once accepted by CRAN") withr::with_dir(pkg$path, { sha <- system2("git", c("rev-parse", "HEAD"), stdout = TRUE) }) dat <- list( Version = pkg$version, Date = format(Sys.time(), tz = "UTC", usetz = TRUE), SHA = sha ) write.dcf(dat, file = path(pkg$path, "CRAN-SUBMISSION")) usethis::use_build_ignore("CRAN-SUBMISSION") } cran_mirror <- function(repos = getOption("repos")) { repos[repos == "@CRAN@"] <- "https://cloud.r-project.org" if (is.null(names(repos))) { names(repos) <- "CRAN" } repos[["CRAN"]] } cran_pkg_version <- function(package, available = available.packages()) { idx <- available[, "Package"] == package if (any(idx)) { as.package_version(available[package, "Version"]) } else { NULL } }
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL, fg_fun=function(x,a,bpop,b,bocc){ parameters=c(CL=bpop[1]*exp(b[1]), V=bpop[2]*exp(b[2]), KA=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1]) return(parameters) }, fError_fun=feps.add.prop, bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), notfixed_bpop=c(1,1,1,0), d=c(CL=0.07, V=0.02, KA=0.6), sigma=c(0.01,0.25), xt=list(c(1,2,3),c(4,5,20,120)), groupsize=50, minxt=0.01, maxxt=120, a=70, mina=0.01, maxa=100) plot_model_prediction(poped.db) evaluate_design(poped.db)$rse optimize_n_rse(poped.db, bpop_idx=1, need_rse=10)
sampleSize.rand = function(power = 0.8, p1 = 0.5, p0 = 0.5, s1, s0, s.tau = 0, tau, alpha = 0.05){ V = (1/p1)*s1^2 + (1/p0)*s0^2 - s.tau^2 V.tilde = (1/p1)*s1^2 + (1/p0)*s0^2 z.alpha = qnorm(1 - alpha/2) z.gamma = qnorm(1-power) N = ((z.alpha*sqrt(V.tilde) - z.gamma*sqrt(V) )/tau)^2 return(N) }
powerShape <- function(x, alpha, center = NULL, normalization = c("det", "trace", "one"), maxiter = 1e4, eps = 1e-6) { if (any(is.na(x))) { stop("Missing values found. Use powerShapeNA()") } fctCall <- match.call() powerfct <- powerFunction(alpha) scatterNormFct <- normalizationFunction(normalization) try( { if (is.null(center)) { res <- mestimator_mean_cov(x, powerfct, scatterNormFct, maxiter, eps) } else { xCentered <- sweep(x, 2, center) zeroEntry <- rowSums(xCentered) == 0 if (any(zeroEntry)) { xCentered <- xCentered[!zeroEntry, ] z <- sum(zeroEntry) if (z==1) { message("Found ", z, " observation coinciding with given center.") } else { message("Found ", z, " observations coinciding with given center.") } } res <- mestimator_cov(xCentered, powerfct, scatterNormFct, maxiter, eps) res$mu <- center } res$alpha <- alpha res$call <- fctCall if (alpha == 1) { res$scale <- NA } return(res) } ) }
context("Test date reference functions") test_that("dref___m() returns date reference within a month", { expect_equal(dref_fdom("2020-02-14"), as.Date("2020-02-01")) expect_equal(dref_fwdom("2020-02-14"), as.Date("2020-02-03")) expect_equal(dref_ldom("2020-02-14"), as.Date("2020-02-29")) expect_equal(dref_lwdom("2020-02-14"), as.Date("2020-02-28")) }) test_that("dref___q() returns date reference within a quarter", { expect_equal(dref_fdoq("2022-10-14"), as.Date("2022-10-01")) expect_equal(dref_fwdoq("2022-10-14"), as.Date("2022-10-03")) expect_equal(dref_ldoq("2022-10-14"), as.Date("2022-12-31")) expect_equal(dref_lwdoq("2022-10-14"), as.Date("2022-12-30")) }) test_that("dref___y() returns date reference within a year", { expect_equal(dref_fdoy("2022-02-14"), as.Date("2022-01-01")) expect_equal(dref_fwdoy("2022-02-14"), as.Date("2022-01-03")) expect_equal(dref_ldoy("2022-02-14"), as.Date("2022-12-31")) expect_equal(dref_lwdoy("2022-02-14"), as.Date("2022-12-30")) }) test_that("dref_mtd() returns month-to-date", { expect_equal(dref_mtd("2020-09-21"), as.Date("2020-08-31")) expect_equal(dref_mtd("2020-03-08"), as.Date("2020-02-29")) expect_equal(dref_mtd("2020-01-20"), as.Date("2019-12-31")) }) test_that("dref_qtd() returns quarter-to-date", { expect_equal(dref_qtd("2020-09-21"), as.Date("2020-06-30")) expect_equal(dref_qtd("2020-06-30"), as.Date("2020-03-31")) expect_equal(dref_qtd("2020-03-08"), as.Date("2019-12-31")) }) test_that("dref_ytd() returns year-to-date", { expect_equal(dref_ytd("2020-09-21"), as.Date("2019-12-31")) expect_equal(dref_ytd("2020-06-30"), as.Date("2019-12-31")) expect_equal(dref_ytd("2019-12-31"), as.Date("2018-12-31")) })
.Random.seed <- c(403L, 32L, -166095596L, 2013772730L, -744665595L, -501977121L, 825886310L, 2138288624L, 1528258323L, 771743921L, 276112224L, 1235218686L, 1744208009L, -720777285L, 641907082L, -533624724L, 550431215L, -136764891L, -1746995492L, 1055157426L, 488595373L, 1761313639L, -2041184114L, -1829593752L, -37667477L, 1135972105L, -324378216L, -1030494010L, -677397983L, 1510965939L, -2120429534L, 748210708L, -1569190249L, -1802444659L, 1294816676L, 1203722122L, 1055314933L, 1652660815L, -511435434L, -1176020992L, -2059466429L, -631782175L, -1601954224L, -968850770L, 85001817L, 1215123051L, 1793516506L, -2030553956L, 1287839391L, -886180619L, -863586932L, -253726622L, 1924030525L, -1485874505L, -533348002L, 71526552L, -484035589L, -762773095L, -229490136L, 904213206L, 1170945873L, 284555779L, -2003276398L, -1557464284L, 1812864487L, 2061695549L, 930616500L, -123301094L, 458831973L, -379391745L, 1346208134L, 488634128L, 1095979955L, -724725679L, 1837310976L, -325180194L, -2129062103L, -1497945381L, 1284686314L, -128620148L, -708555057L, -1302072699L, -960689860L, -898108398L, 823483149L, -1562605497L, -1706399186L, 309220232L, 514784907L, -1246547863L, -718988232L, 45051110L, 223450241L, -800013293L, -804023358L, 1305726068L, -1583136137L, 1541348205L, -2100323324L, 377788202L, 1306944661L, 1831867183L, 444547638L, -297871776L, 1204978851L, -1299148863L, 532908976L, -923701554L, 1854491705L, 752800331L, -533592070L, -1185807620L, 918980415L, -7329771L, -1300522196L, 445444098L, 7396061L, -1543142953L, 948948158L, -462534920L, 1149433051L, 2121230137L, 1421480584L, 1495922230L, -2100844943L, -1224977245L, -69935630L, -1895682748L, 1848741383L, 1522265053L, 1739326676L, 406608890L, 586033989L, 1852567455L, 1684792614L, 1998859696L, 1809081939L, 1138041201L, -339343200L, -1671137218L, -1330245815L, -778455557L, 1371912650L, 1695758124L, -1679767761L, -788773403L, -580204388L, -444498702L, 1472935277L, 1087910567L, 427629774L, 1144795688L, -1032936917L, -955135927L, -1870055080L, 1781694470L, -137489951L, 1046338419L, -1923747870L, -824498348L, -966710697L, -876484019L, 538660324L, 212838346L, 1596516917L, -72322929L, -1491308138L, -705041088L, 400138243L, 324313633L, 1743168784L, 221702894L, -1979525479L, -1362700501L, 512463386L, 1301377244L, 1063382239L, 1196235445L, -1340797876L, 1420169378L, -409776131L, -2098287369L, 1698814494L, -1720929064L, 954198075L, -887893543L, -900544664L, -555005290L, 1284387857L, 2073781699L, 89958866L, 872128612L, -520790105L, 931737853L, -1539988236L, -423328806L, 1006073637L, -1255522753L, 1300096454L, 394199632L, -1811079565L, -1155378543L, -1466791232L, -350753634L, 2009677929L, -1540146021L, 487028138L, 1519334860L, 481327247L, 167786693L, 703756412L, 1600599250L, -389280691L, 2060893447L, -960585490L, -2133741112L, -1305831733L, 778315561L, -1382125704L, 2136118438L, -1029556543L, -1132179629L, 1812868098L, -1255614156L, 713241271L, -229585235L, -736731196L, 209545194L, -650434475L, 1933958352L, 30071612L, 1568073620L, -530141310L, -499681856L, 712475196L, -1126876784L, 1179859490L, -1838486264L, 1751693964L, -1296148708L, -1458425710L, -1295818368L, -637484524L, -1652628696L, -1264458182L, 1663031760L, 2038584684L, -742558796L, 1386716178L, 395153888L, -1182014516L, 513093856L, 1820387362L, 1586044200L, -1787808244L, 470065980L, 330290162L, 1918254832L, 1457605188L, 74411608L, -292940998L, -846622224L, 36748988L, -1952113388L, 1855610562L, 659038304L, -2140887172L, 1579113424L, -355443422L, 547661480L, -1277129844L, -958808900L, 1055582002L, -2072284608L, -258369356L, -1143567800L, -2087551558L, 1361506832L, -1207984404L, -375657132L, -1014205166L, 1002502560L, 156393164L, 921716320L, -1322912830L, 1736262440L, 1146387372L, -907112644L, 398884210L, 2013654832L, -1314015964L, -162931912L, 1598226138L, -1472593008L, -2064819460L, -1450781804L, -1893658558L, -21716736L, 1248941116L, -1655306928L, -1279041374L, -1901208248L, -412927220L, 1278444252L, -422428334L, -1230217088L, -88961964L, 1291582440L, -1892281094L, 1061732176L, -1059123412L, -246629004L, -587997294L, 1215757408L, 1462211980L, -2038199456L, -289135134L, 332587944L, 1734762700L, -1751122948L, -277999182L, 584064496L, 791887812L, 1989730648L, 1359328634L, 567066544L, 1940493756L, -2077465516L, 331810754L, -1884342240L, -124860228L, -441461168L, -1902219294L, -5932952L, -1857298356L, -710720260L, 1033869298L, 515017984L, -1266813580L, -649254904L, -803736646L, 2060641744L, 1050783724L, -1084584556L, -1823925806L, -1516928672L, -1822332084L, -1750599392L, 137410434L, -1262745880L, 184471788L, 1825716284L, -1162711182L, 761065072L, -51356636L, -310405320L, 296551578L, -999324976L, 1164167356L, -927996268L, 1680510594L, -1811584832L, 1645240124L, -444596080L, 1099318818L, 848645128L, -169857780L, 633568412L, -1220640238L, -1586850944L, 498521620L, 680871464L, -1017303750L, 1460745680L, -1638375316L, -2127661772L, 127845010L, -1639733408L, 1064394572L, 1133821920L, -1121784926L, 506477480L, 464853388L, 187520188L, 1890607474L, 344826096L, -1963139004L, 2138025304L, -429841862L, -2055835792L, 1419828284L, -1886938348L, -1180781118L, 1523656416L, -216108164L, -965750064L, 1643914402L, -660256728L, 288397580L, 1810179004L, -354052814L, -617410112L, 1394922036L, -1782028344L, 77829306L, 944781712L, 461251052L, 1702202964L, -372978542L, -462406880L, -1180945972L, -1113076256L, -642851134L, 2032009256L, -731042132L, -1318473540L, 372389362L, -1517507280L, 1947686052L, 739267256L, 676137306L, 1569436048L, -1196671108L, -890849004L, -1813938366L, -1327063296L, 1120576444L, 1888619344L, -789024990L, 1090667848L, -855964148L, -973950884L, -680372014L, -2051947008L, 340003156L, -489425432L, 180057082L, -722027312L, 1798416684L, 480564980L, 1557419410L, 1628356704L, -332020468L, 713118432L, 1068348770L, 968108712L, 2133660236L, 1028156796L, -1450659534L, -139117456L, -1668996284L, -1007502888L, -2036495238L, 981769776L, 65680060L, 15280980L, 224856445L, -2069262486L, 1023187464L, 411934385L, -796657373L, -1579128284L, -449412910L, -631359193L, -1847102607L, -695402058L, -1125320364L, 692959205L, -1030700561L, 1367632168L, -1895923322L, 685149619L, 1673744661L, -1931844750L, -911716416L, -131571671L, 950615195L, 1781168492L, 361378170L, -1995750737L, 1764612537L, 1023755214L, 366115612L, -394014067L, 340908791L, -251326976L, 615000158L, 329630507L, -1714941907L, -1764607846L, -1946735528L, -1475560511L, 1431000179L, 1960312212L, 176784418L, 905605943L, 1782011393L, 112293638L, -1636938940L, -1123844491L, -1686568993L, 2017022776L, -1772620522L, 420612387L, 1541780197L, 661347074L, -1326108304L, 27056409L, 861575435L, -1955988996L, 249598506L, 2091287135L, 713155049L, -149951746L, -146996500L, -1784491459L, 1791357447L, 170866160L, -1418898034L, -965620805L, -754367075L, 1431251786L, -1266782360L, 1223524689L, -1004121533L, -1036789948L, -840672270L, 646828487L, -313686127L, 1148538646L, 324311924L, 1147134469L, -910462385L, 1736945224L, 343805926L, 1921614099L, 663465589L, 351216722L, -527307104L, 1521126281L, 696276923L, -1422682100L, -1383893606L, 208958735L, 91388761L, -517904914L, -1030758276L, 2091721965L, 1653732247L, -898257824L, 1396952638L, -1453447413L, 1791532429L, -2132236614L, -666483464L, -811642207L, -1937755565L, 455101812L, -112336126L, 79496087L, -1889819295L, 35268006L, -596682844L, -332803499L, 912827135L, 374482840L, -1712002890L, 1297726787L, 1060445317L, -597039838L, -1625936368L, 795938233L, -1064300949L, 917225820L, -902006646L, -838963073L, -492789303L, -1015422370L, 1646967052L, 1057242333L, 881179111L, 1911300624L, -546783442L, -116423717L, -441477955L, -1039595990L, -1690453304L, -899506191L, -56176285L, -1372389020L, -1202559854L, -1407264409L, 737033009L, 1221443702L, 277977492L, 540868005L, -67995985L, -234909848L, 14525254L, 18993907L, 1680657493L, 545341490L, -1769554432L, -1859768599L, -3101349L, -2113478740L, 471393210L, 609934703L, 1221392121L, -829214834L, 1876290140L, -1837438771L, 610269239L, 1280205504L, 812373406L, 102061675L, -435859987L, -1824924582L, -1629820136L, 907628673L, 2003576371L, 1344379988L, -935249822L, -1864732937L, -1840815807L, 1782338438L)
mgpr <- function(Data, m=NULL, meanModel=0, mu=NULL){ N <- length(Data$input) X <- as.matrix(unlist(Data$input)) ns <- sapply(Data$input, length) idx <- c(unlist(sapply(1:N, function(i) rep(i, ns[i])))) response <- Reduce('rbind', Data$response) Q <- 1 nrep <- ncol(response) n <- nrow(response) Y.original <- response X.original <- X idx.original <- idx n.original <- n if(!is.null(mu)){ if(!length(mu)==n){ stop("'mu' defined by the user must have the same length as the response variable.") } mu <- matrix(rep(mu, nrep), ncol=nrep, byrow=F) meanModel <- 'userDefined' } if(meanModel==0) { mu <- 0 mu <- matrix(mu, nrow=n, ncol=nrep, byrow=F) } if(meanModel==1) { responseNew <- NULL mu <- NULL for(j in 1:N){ mean_j <- mean(response[idx==j,]) nj <- nrow(response[idx==j,,drop=F]) mean_j <- matrix( rep(mean_j, nj*nrep), nrow=nj, byrow=F) response_j <- response[idx==j,,drop=F] - mean_j responseNew <- rbind(responseNew, response_j) mu <- rbind(mu, mean_j) } response <- responseNew } if(meanModel=='t') { meanLinearModel <- list() responseNew <- NULL mu <- NULL for(j in 1:N){ trend <- data.frame(yyy=c(response[idx==j,]), xxx=rep(c(X[idx==j,]), nrep)) meanLinearModel_j <- lm(yyy~xxx, data=trend) meanLinearModel[[j]] <- meanLinearModel_j response_j <- matrix(resid(meanLinearModel_j), nrow=nrow(response[idx==j,,drop=F]), byrow=F) mean_j <- matrix(fitted(meanLinearModel_j), nrow=nrow(response[idx==j,,drop=F]), byrow=F) responseNew <- rbind(responseNew, response_j) mu <- rbind(mu, mean_j) } response <- responseNew }else{ meanLinearModel <- NULL } if(meanModel=='avg') { if(nrep<3){ stop('Mean function can only be the average across replications when there are more than two replications.') } mu <- apply(response, 1, mean) mu <- matrix(rep(mu, nrep), ncol=nrep, byrow=F) response <- response - mu } mean.original <- mu idxSubset <- NULL if(!is.null(m)){ if(m>n){stop("m cannot be bigger than n.")} idxSubset <- sort(sample(x=1:n, size=m, replace=F)) response <- response[idxSubset,,drop=F] X <- X[idxSubset,,drop=F] idx <- idx[idxSubset] mu <- mu[idxSubset,,drop=F] n <- nrow(response) } lowerlimits <- c(rep(-50, N), rep(log(1e-3), N+2*N*Q), log(1e-8)) upperlimits <- c(rep(50, N), rep(log(3000), N+2*N*Q), log(3)) nCand <- 100 candidates <- matrix(0, nCand, 2*N + 2*N*Q + 1) for(iCand in 1:nCand){ nu0s <- sample(c(-1,1), size=N, replace=T)*rep(runif(1, min=-2,max=2), N) nu1s <- log(abs(nu0s)*5) a0s <- runif(N, min=log(1.1), max=log(30)) a1s <- runif(N, min=log(1.1), max=log(30)) sigm <- runif(1, min=log(1e-2), max=log(0.1)) candidates[iCand,] <- c(nu0s, nu1s, rep(c(a0s,a1s), Q), sigm) } resCand <- apply(candidates, 1, function(x) LogLikCGP(x, response, X, idx)) hp_init_log <- candidates[which.min(resCand),] res <- nlminb(start=hp_init_log, objective=LogLikCGP, gradient=NULL, hessian=NULL, control=list(eval.max=1000, iter.max=1000, rel.tol=1e-8, x.tol=1e-8, xf.tol=1e-8), lower=lowerlimits, upper=upperlimits, response=response, X=X, idx=idx) hp_opt <- res$par K <- mgpCovMat(Data=Data, hp=hp_opt) invK <- chol2inv(chol(K)) varEpsilon <- exp(hp_opt[length(hp_opt)])^2 fitted <- (K-diag(varEpsilon, n.original))%*%invK%*%Y.original + mean.original fitted.var <- varEpsilon*rowSums((K-diag(varEpsilon, n.original))*t(invK)) result <- list('hyper'=hp_opt, 'fitted.mean'=fitted, 'fitted.sd'=sqrt(fitted.var), 'N'=N, 'X'=X.original, 'Y'=Y.original, 'idx'=idx.original, 'Cov'=K, 'mu'=mean.original[,1], 'meanModel'=meanModel, 'meanLinearModel'=meanLinearModel) class(result)='mgpr' return(result) } mgprPredict <- function(train, DataObs=NULL, DataNew, noiseFreePred=F, meanModel=NULL, mu=0){ if(class(train)!='mgpr'){ stop("Argument 'train' must be an object of class 'mgpr'.") }else{ hyper <- train$hyper X <- train$X Y <- train$Y N <- train$N idx <- train$idx Cov <- train$Cov mu <- train$mu meanModel <- train$meanModel meanLinearModel <- train$meanLinearModel } if(!is.null(DataObs)){ N <- length(DataObs$input) X <- as.matrix(unlist(DataObs$input)) if(!is.matrix(DataObs$response[[1]])){ DataObs$response <- lapply(DataObs$response, as.matrix) } } X.new <- as.matrix(unlist(DataNew$input)) ns.new <- sapply(DataNew$input, length) idx.new <- c(unlist(sapply(1:N, function(i) rep(i, ns.new[i])))) ns <- sapply(DataObs$input, length) nsTest <- sapply(DataNew$input, length) idx <- c(unlist(sapply(1:N, function(i) rep(i, ns[i])))) Y <- Reduce('rbind', DataObs$response) nrep <- ncol(Y) if(meanModel==0){ meanList <- list() for(j in 1:N){ meanList[[j]] <- rep(0, ns[j]) } meanY <- do.call(cbind, replicate(nrep, unlist(meanList), simplify=FALSE)) } if(meanModel=='t'){ meanList <- list() for(j in 1:N){ newtrend <- data.frame(xxx=DataObs$input[[j]]) meanList[[j]] <- predict(meanLinearModel[[j]], newdata=newtrend) } meanY <- do.call(cbind, replicate(nrep, unlist(meanList), simplify=FALSE)) } Y <- Y - meanY hp <- TransfToNatScaleCGP(hyper, N) Q <- 1 va0s <- hp[1:N] va1s <- hp[(N+1):(2*N)] AparsMat <- matrix(hp[seq(2*N+1, by=1, length.out=2*N*Q)], ncol=2*Q, byrow=T) A0s <- A1s <- list() if(Q==1){ for(j in 1:N){ A0s[[j]] <- as.matrix(AparsMat[j,1:Q]) A1s[[j]] <- as.matrix(AparsMat[j,(Q+1):(2*Q)]) } }else{ for(j in 1:N){ A0s[[j]] <- diag(AparsMat[j,1:Q]) A1s[[j]] <- diag(AparsMat[j,(Q+1):(2*Q)]) } } sig <- hp[length(hp)] Psi <- KCGP(X=X, idx=idx, va0s=va0s, va1s=va1s, A0s=A0s, A1s=A1s, sig=sig) Knm <- KCGPnm(X=X, Xp = X.new, idx=idx, idx_new = idx.new, va0s=va0s, va1s=va1s, A0s=A0s, A1s=A1s, sig=0) Kstar <- KCGP(X=X.new, idx=idx.new, va0s=va0s, va1s=va1s, A0s=A0s, A1s=A1s, sig=sig) invPsi <- chol2inv(chol(Psi)) QR <- invPsi%*%Y if(meanModel==0){ meanList <- list() for(j in 1:N){ meanList[[j]] <- rep(0, nsTest[j]) } mu <- do.call(cbind, replicate(nrep, unlist(meanList), simplify=FALSE)) } if(meanModel=='t'){ meanList <- list() for(j in 1:N){ newtrend <- data.frame(xxx=DataNew$input[[j]]) meanList[[j]] <- predict(meanLinearModel[[j]], newdata=newtrend) } mu <- do.call(cbind, replicate(nrep, unlist(meanList), simplify=FALSE)) } pred.mu. <- t(Knm)%*%QR + mu if(noiseFreePred){ sigma2 <- diag(Kstar)-diag(t(Knm)%*%invPsi%*%Knm) - sig^2 }else{ sigma2 <- diag(Kstar)-diag(t(Knm)%*%invPsi%*%Knm) } pred.sd. <- sqrt(sigma2) pred.mean <- list() pred.sd <- list() for(j in 1:N){ pred.mean[[j]] <- pred.mu.[idx.new==j,,drop=F] pred.sd[[j]] <- pred.sd.[idx.new==j] } result=c(list('pred.mean'=pred.mean, 'pred.sd'=pred.sd, 'noiseFreePred'=noiseFreePred)) class(result)='mgpr' return(result) } mgpCovMat <- function(Data, hp){ N <- length(Data$input) X <- as.matrix(unlist(Data$input)) ns <- sapply(Data$input, length) idx <- c(unlist(sapply(1:N, function(i) rep(i, ns[i])))) hp <- TransfToNatScaleCGP(hp, N) Q <- 1 va0s <- hp[1:N] va1s <- hp[(N+1):(2*N)] AparsMat <- matrix(hp[seq(2*N+1, by=1, length.out=2*N*Q)], ncol=2*Q, byrow=T) A0s <- A1s <- list() if(Q==1){ for(j in 1:N){ A0s[[j]] <- as.matrix(AparsMat[j,1:Q]) A1s[[j]] <- as.matrix(AparsMat[j,(Q+1):(2*Q)]) } }else{ for(j in 1:N){ A0s[[j]] <- diag(AparsMat[j,1:Q]) A1s[[j]] <- diag(AparsMat[j,(Q+1):(2*Q)]) } } sig <- hp[length(hp)] K <- KCGP(X=X, idx=idx, va0s=va0s, va1s=va1s, A0s=A0s, A1s=A1s, sig=sig) return(K) } TransfToNatScaleCGP <- function(hp, N){ hp[(N+1):length(hp)] <- exp(hp[(N+1):length(hp)]) return(hp) } LogLikCGP <- function(hp, response, X, idx){ Q <- 1 N <- length(unique(idx)) hp <- TransfToNatScaleCGP(hp, N) va0s <- hp[1:N] va1s <- hp[(N+1):(2*N)] AparsMat <- matrix(hp[seq(2*N+1, by=1, length.out=2*N*Q)], ncol=2*Q, byrow=T) A0s <- A1s <- list() if(Q==1){ for(j in 1:N){ A0s[[j]] <- as.matrix(AparsMat[j,1:Q]) A1s[[j]] <- as.matrix(AparsMat[j,(Q+1):(2*Q)]) } }else{ for(j in 1:N){ A0s[[j]] <- diag(AparsMat[j,1:Q]) A1s[[j]] <- diag(AparsMat[j,(Q+1):(2*Q)]) } } sig <- hp[length(hp)] K <- KCGP(X=X, idx=idx, va0s=va0s, va1s=va1s, A0s=A0s, A1s=A1s, sig=sig) G <- chol(K) logdetK <- 2*sum(log(diag(G))) yt.invK.y <- t(response)%*%chol2inv(G)%*%response n <- nrow(response) nrep <- ncol(response) if(nrep==1){ fX <- 0.5*logdetK + 0.5*yt.invK.y + 0.5*n*log(2*pi) }else{ fX <- nrep*0.5*logdetK + 0.5*sum(diag( yt.invK.y )) + nrep*0.5*n*log(2*pi) } fX <- as.numeric(fX) return(fX) } plot.mgpr <- function(x, DataObs, DataNew, realisation, alpha=0.05, ylim=NULL, mfrow=NULL, cex=2, mar=c(4.5,7.1,0.2,0.8), oma=c(0,0,0,0), cex.lab=2, cex.axis=1.5, ...){ old <- par(mar=mar, oma=oma, cex.lab=cex.lab, cex.axis=cex.axis) z <- stats::qnorm(1-alpha/2) if(!is.matrix(DataObs$response[[1]])){ DataObs$response <- lapply(DataObs$response, as.matrix) } predCGP <- mgprPredict(train=x, DataObs=DataObs, DataNew=DataNew) N <- length(predCGP$pred.mean) if(is.null(mfrow)){ if(N<4){ par(mfrow=c(1,N)) } }else{ par(mfrow=mfrow) } for(variable in 1:N){ predMean <- predCGP$pred.mean[[variable]][,realisation] upper <- predMean+z*predCGP$pred.sd[[variable]] lower <- predMean-z*predCGP$pred.sd[[variable]] if(is.null(ylim)){ ylim_i <- range(c(lower, upper)) }else{ ylim_i <- ylim[[variable]] } xlim_i <- range(DataObs$input[[variable]], DataNew$input[[variable]]) plot(DataObs$input[[variable]], DataObs$response[[variable]][,realisation], type="p", xlab="t", ylab=bquote(x[.(variable)]), ylim=ylim_i, xlim=xlim_i, pch=19, cex=cex, cex.axis=cex.axis, cex.lab=cex.lab, ...) lines(DataNew$input[[variable]], predMean, col="blue", lwd=2) polygon(x=c(DataNew$input[[variable]], rev(DataNew$input[[variable]])), y=c(upper, rev(lower)), col=rgb(127,127,127,120, maxColorValue=255), border=NA) } par(mfrow=c(1,1)) par(old) } plotmgpCovFun <- function(type="Cov", output, outputp, Data, hp, idx, ylim=NULL, xlim=NULL, mar=c(4.5,5.1,2.2,0.8), oma=c(0,0,0,0), cex.lab=1.5, cex.axis=1, cex.main=1.5){ old <- par(mar=mar, oma=oma, cex.lab=cex.lab, cex.axis=cex.axis, cex.main=cex.main) Psi <- mgpCovMat(Data=Data, hp=hp) if(type=="Cor"){ Psi <- cov2cor(Psi) } toPlot <- Psi[idx==output, idx==outputp][,1] tp0 <- Data$input[[outputp]][1] if(!is.null(ylim)){ ylim <- range(toPlot) } plot(Data$input[[output]] - tp0, toPlot, ylim=ylim, xlim=xlim, type="l", xlab=bquote("t-("*.(tp0)*")"), ylab=bquote(.(type)*"["*X[.(output)]*"(t),"~ X[.(outputp)]*"("*.(tp0)*")]")) par(old) }
rm(list=ls()) graphics.off() options(show.error.locations = TRUE) if("ubiquity" %in% rownames(installed.packages())){require(ubiquity)} else {source(file.path("library", "r_general", "ubiquity.R")) } cfg = build_system(system_file="system-mab_pk.txt", output_directory = file.path(".", "output"), temporary_directory = file.path(".", "transient")) cfg = system_load_data(cfg, dsname = "PKDATA", data_file = "pk_all_md.csv") my_NCA_opts = list(max.aucinf.pext = 10, min.hl.r.squared = .9) cfg = system_nca_run(cfg, dsname = "PKDATA", dscale = 1e6, dsfilter = list(ID = c(1:5, 25:30, 45:50)), NCA_options = my_NCA_opts, analysis_name = "pk_multiple_dose", dsmap = list(TIME = "TIME_HR", NTIME = "NTIME_HR", CONC = "C_ng_ml", DOSE = "DOSE", ROUTE = "ROUTE", ID = "ID", DOSENUM = "DOSENUM", EXTRAP = "EXTRAP"), dsinc = c("ROUTE")) NCA_results = system_fetch_nca(cfg, analysis_name = "pk_multiple_dose") library(tidyr) NCA_sum = NCA_results[["NCA_summary"]] NCA_cols = system_fetch_nca_columns(cfg, analysis_name = "pk_multiple_dose") NCA_results = system_fetch_nca(cfg, analysis_name = "pk_multiple_dose") cfg = system_rpt_read_template(cfg, template="Word") NCA_sum = NCA_sum %>% dplyr::filter(Dose == 30) %>% dplyr::mutate(cmax_dose= cmax/Dose) %>% tidyr::pivot_wider( id_cols = c("ID", "Dose_Number"), names_from = Dose_Number, values_from = c(auclast, cmax, cmax_dose, half.life)) %>% dplyr::mutate(AR_6_1 = auclast_6/auclast_1) NCA_summary = system_nca_summary(cfg, analysis_name = "pk_multiple_dose", params_include = c( "ID", "Dose_Number", "cmax", "tmax", "half.life", "auclast", "ROUTE"), params_header = list(cmax = c( "<label>", "(ng/ml)"), ROUTE=c("route")), label_format = "md", ds_wrangle = "NCA_sum = NCA_sum %>% dplyr::filter(Dose == 30)", summary_stats = list("<MEAN> (<STD>)" = c("auclast", "half.life"), "<MEDIAN>" = c("tmax")), summary_labels = list(MEAN = "Mean (<ff:symbol>m</ff>)", STD = "Std Dev (<ff:symbol>s</ff>)", N = "N~obs~", MEDIAN = "Median", SE = "Std Err."), summary_location = "ID") ds_wrangle_str = 'NCA_sum = NCA_sum %>% dplyr::filter(Dose == 30) %>% dplyr::mutate(cmax_dose= cmax/Dose) %>% tidyr::pivot_wider( id_cols = c("ID", "Dose_Number"), names_from = Dose_Number, values_from = c(auclast, cmax, cmax_dose, half.life)) %>% dplyr::mutate(AR_6_1 = auclast_6/auclast_1)' NCA_summary_wide = system_nca_summary(cfg, analysis_name = "pk_multiple_dose", params_include = c("ID", "auclast_1", "cmax_1", "cmax_dose_1", "half.life_1", "auclast_6", "cmax_6", "cmax_dose_6", "half.life_6", "AR_6_1"), params_header = list("ID" = c("ID", "ID"), "auclast_1" = c("Day 1", "AUC last", "hr-ng/ml" ), "cmax_1" = c("", "Cmax", "ng/ml" ), "cmax_dose_1" = c("", "Cmax/Dose", "ng/ml/(mg/kg)" ), "half.life_1" = c("", "Halflife", "hr" ), "auclast_6" = c("Day 6", "AUC last", "hr-ng/ml" ), "cmax_6" = c("", "Cmax", "ng/ml" ), "cmax_dose_6" = c("", "Cmax/Dose", "ng/ml/(mg/kg)" ), "half.life_6" = c("", "Halflife", "hr" ), "AR_6_1" = c("Day 1/Day 6", "AR")), ds_wrangle = ds_wrangle_str, summary_stats = list("<MEAN>" = c("auclast_1", "auclast_6"), "(<STD>)" = c("auclast_1", "auclast_6")), summary_labels = list(MEAN = "Mean", STD = "Std Dev", N = "N obs", MEDIAN = "Median", SE = "Std Err."), summary_location = "ID") cfg = system_rpt_read_template(cfg, template="PowerPoint") cfg = system_rpt_add_slide(cfg, template = "content_text", elements = list( title = list(content = "NCA of Multiple Dose PK", type = "text"), content_body = list(content = NCA_summary[["nca_summary_ft"]], type = "flextable_object"))) cfg = system_rpt_nca(cfg=cfg, analysis_name="pk_multiple_dose") system_rpt_save_report(cfg=cfg, output_file=file.path("output","pk_multiple_dose-report.pptx")) cfg = system_rpt_read_template(cfg, template="Word") cfg = system_rpt_add_doc_content(cfg=cfg, type = "flextable_object", content = list(caption = "Summary table of NCA outputs", ft = NCA_summary[["nca_summary_ft"]])) cfg = system_rpt_add_doc_content(cfg=cfg, type = "flextable_object", content = list(caption = "Transformed NCA output", ft = NCA_summary_wide[["nca_summary_ft"]])) cfg = system_rpt_nca(cfg=cfg, analysis_name="pk_multiple_dose") system_rpt_save_report(cfg=cfg, output_file=file.path("output","pk_multiple_dose-report.docx"))
context("simplify_conditional") test_that("non-relaxing clause works", { rules <- validator( r1 = if (x > 1) y > 3 , r2 = y < 2 ) rules_s <- simplify_conditional(rules) exprs <- to_exprs(rules) exprs_s <- to_exprs(rules_s) expect_equal(exprs_s$r1, quote(x <= 1)) expect_equal(exprs_s$r2, quote(y < 2)) }) test_that("non-relaxing clause works (pure categorical)", { rules <- validator( r1 = B %in% c("b1", "b2") , r2 = if (A == "a") B == "b1" , r3 = B == "b2" ) rules_s <- simplify_conditional(rules) exprs_s <- to_exprs(rules_s) expect_equal(exprs_s$r2, quote(A != "a")) }) test_that("non-constraining clause works", { rules <- validator( r1 = if (x > 0) y > 0 , r2 = if (x < 1) y > 1 ) rules_s <- simplify_conditional(rules) exprs <- to_exprs(rules) exprs_s <- to_exprs(rules_s) expect_equal(length(rules_s), 2) expect_equal(exprs_s[[1]], quote(y > 0)) expect_equal(exprs_s[[2]], quote(if (x < 1) y > 1)) }) test_that("non-constraining clause works (pure categorical)", { rules <- validator( dB = B %in% c("b1", "b2") , dA = A %in% c("a1", "a2", "a3") , r1 = if (B == "b1") A %in% c("a1", "a2") , r2 = if (B == "b2") A %in% c("a2") ) rules_s <- simplify_conditional(rules) exprs <- to_exprs(rules_s) exprs_s <- to_exprs(rules_s) expect_equal(length(rules_s), 4) expect_equal(exprs_s$r1, quote(A %in% c("a1", "a2"))) expect_equal(exprs_s$r2, exprs$r2) expect_equal(exprs_s$dA, exprs$dA) expect_equal(exprs_s$dB, exprs$dB) }) test_that("equality constraints work", { rules <- validator( if (z == 0) y == 0 , z == 0 ) rules_s <- simplify_conditional(rules) exprs <- to_exprs(rules) exprs_s <- to_exprs(rules_s) expect_equal(exprs_s[[1]], quote(y == 0)) expect_equal(exprs_s[[2]], quote(z == 0)) }) test_that("equality constraints work (pure categorical)", { rules <- validator( dA = A %in% c("a1", "a2") , dB = B %in% c('b1', 'b2') , r1 = if (A == "a1") B == "b1" , r2 = A == "a1" ) rules_s <- simplify_conditional(rules) exprs <- to_exprs(rules) exprs_s <- to_exprs(rules_s) expect_equal(exprs_s$r1, quote(B == "b1")) expect_equal(exprs_s$r2, exprs$r2) expect_equal(exprs_s$dA, exprs$dA) expect_equal(exprs_s$dB, exprs$dB) }) test_that("a more complex if statement also works", { rules <- validator( r1 = if (income > 0 & tvstar != TRUE) age >= 16 , r2 = age < 12 ) rules_s <- simplify_conditional(rules) exprs <- to_exprs(rules) exprs_s <- to_exprs(rules_s) expect_equal(exprs_s$r1, quote(if (income > 0) tvstar == TRUE)) expect_equal(exprs_s$r2, exprs$r2) rules <- validator( r1 = if (income > 0) age >= 16 | tvstar == TRUE , r2 = age < 12 ) rules_s <- simplify_conditional(rules) exprs <- to_exprs(rules) exprs_s <- to_exprs(rules_s) expect_equal(exprs_s$r1, quote(if (income > 0) tvstar == TRUE)) expect_equal(exprs_s$r2, exprs$r2) })
prettyScree <- function(eigs,retain.col="mediumorchid4",dismiss.col="gray",perc.exp=1.0,n.comps=NULL,broken.stick=TRUE,kaiser=TRUE,main=""){ add.alpha <- function(col, alpha=1){ apply(sapply(col, col2rgb)/255, 2, function(x) rgb(x[1], x[2], x[3], alpha=alpha)) } eig.length <- length(eigs) mean.eig <- mean(eigs) eigs.round <- round(eigs,digits=3) exp.var <- eigs/sum(eigs)*100 exp.var.round <- round(exp.var,digits=2) if(is.null(n.comps)){ n.comps <- eig.length } if(n.comps > eig.length || n.comps < 1){ n.comps <- eig.length } perc.exp.comps <- cumsum(exp.var) < (perc.exp * 100) perc.exp.comps[head(which(!(perc.exp.comps)),n=1)] <- TRUE keep.n.comps <- rep(FALSE,eig.length) keep.n.comps[1:n.comps] <- rep(TRUE,length(1:n.comps)) comps.tests <- rbind(perc.exp.comps,keep.n.comps) if(broken.stick){ broken.stick.distribution <- unlist(lapply(X=1:eig.length,FUN=function(x,n){return(tail((cumsum(1/x:n))/n,n=1))},n=eig.length)) * 100 broken.stick.comps <- exp.var > broken.stick.distribution broken.stick.comps[head(which(!broken.stick.comps),n=1):eig.length] <- rep(FALSE,length(head(which(!broken.stick.comps),n=1):eig.length)) comps.tests <- rbind(comps.tests,broken.stick.comps) } if(kaiser){ kaiser.mean.comps <- eigs > mean.eig comps.tests <- rbind(comps.tests,kaiser.mean.comps) } comp.sums <- colSums(comps.tests) alpha.map <- 1/abs((comp.sums-(nrow(comps.tests)+1))) color.map <- rep(retain.col,eig.length) for(i in 1:eig.length){color.map[i] <- add.alpha(color.map[i],alpha.map[i])} color.map[which(comp.sums==0)] <- rep(dismiss.col,sum(comp.sums==0)) dev.new() par(mar=c(5, 5, 4, 5) + 0.1) these.sizes <- ((log(exp.var) + abs(min(log(exp.var))))/max(log(exp.var) + abs(min(log(exp.var))))+0.1) * 3 plot(exp.var,axes=FALSE,ylab="",xlab="Components",type="l",main=main,ylim=c(-1,max(exp.var))) points(exp.var,cex= these.sizes,pch=20,col=dismiss.col) points(exp.var,cex= these.sizes,pch=21,bg=color.map) box() axis(2,at= exp.var,labels=eigs.round,las=2,lwd=3,cex.axis=.65) mtext("Eigenvalues",2,line=4) axis(4,at= exp.var,labels=paste(exp.var.round,"%",sep=""),las=2,lwd=3,cex.axis=.65) mtext("Explained Variance",4,line=4) axis(1,at=1:length(exp.var),lwd=3) return(comps.tests) }
library(ggplot2) library(ShinyItemAnalysis) data(GMAT, package = "difNLR") data <- GMAT[, 1:20] score <- rowSums(data) criterion <- GMAT[, "criterion"] hist(criterion) criterionD <- round(criterion) hist(criterionD) size <- as.factor(criterionD) levels(size) <- table(as.factor(criterionD)) size <- as.numeric(paste(sizeD)) df <- data.frame(score, criterionD, size) ggplot(df, aes(y = score, x = as.factor(criterionD), fill = as.factor(criterionD))) + geom_boxplot() + geom_jitter(shape = 16, position = position_jitter(0.2)) + scale_fill_brewer(palette = "Blues") + xlab("Criterion group") + ylab("Total score") + coord_flip() + theme_app() ggplot(df, aes(x = score, y = criterion)) + geom_point() + ylab("Criterion variable") + xlab("Total score") + geom_smooth( method = lm, se = FALSE, color = "red" ) + theme_app() cor.test(criterion, score, method = "pearson", exact = FALSE)
mmiGEE<-function(object,data, trace = FALSE){ if(!inherits(object, "GEE")) stop("Input model is not of class 'GEE'") family<-object$family formula<-object$formula coord<-object$coord scale.fix<-object$scale.fix corstr<-object$corstr cluster<-object$cluster moran.params<-object$moran.params if(!scale.fix){ scale.fix<-TRUE message("Scale parameter is now fixed") } X<-stats::model.matrix(formula,data) if(dimnames(X)[[2]][1]!="(Intercept)") { formula <- stats::update(formula, ~ . + 1) X<-stats::model.matrix(formula,data) } nvar<-dim(X)[2] varnames<-dimnames(X)[[2]][-1] p<-dim(X)[2]-1 pset <- rje::powerSetMat(p) ip <- dim(pset)[1] t <- stats::terms(formula) coef.vec<-matrix(NA,ip,nvar) df<-rep(NA,ip) Qlik<-rep(NA,ip) QIC<-rep(NA,ip) for (i in 1:ip) { if(sum(pset[i,])!=0 & sum(pset[i,])!=p){ t1 <- stats::drop.terms(t,which(pset[i,]==0), keep.response = TRUE) formula1<- stats::reformulate(attr(t1, "term.labels"), formula[[2]]) formulae<-formula1 } if(sum(pset[i,])==p) formulae<-formula if(sum(pset[i,])==0) formulae<-stats::as.formula(paste(formula[[2]],"~1")) m0<-suppressWarnings({ GEE(formulae,family,data,coord,corstr=corstr, cluster=cluster,moran.params=moran.params, scale.fix=scale.fix) }) kv<-c(1,which(pset[i,]==1)+1) coef.vec[i,kv]<-m0$b Xe<-stats::model.matrix(formulae,data) nvare<-dim(Xe)[2] K<-nvare if(family=="gaussian") K<-K+1 df[i]<-K Qlik[i]<-m0$QLik QIC[i]<-m0$QIC } result<-cbind(round(coef.vec,5),df,round(Qlik,3),round(QIC,1)) delta<-QIC-min(QIC) weight<-exp(-delta/2)/sum(exp(-delta/2)) result<-cbind(result,round(delta,2),round(weight,3)) ord<-order(delta) res<-result[ord,] dimnames(res)[[1]]<-ord dimnames(res)[[2]]<-c("(Int)",varnames, "df","QLik","QIC","delta","weight") if(trace) { cat("\n","Model selection table:","\n","\n") print(res,na.print = "") } nrowA<-dim(res)[1] ncolA<-dim(res)[2] nvar<-dim(res)[2]-6 leg<-dimnames(res)[[2]][2:(nvar+1)] A<-matrix(NA,nrowA,ncolA) A<-res ip<-dim(A)[1] WeightSums<-rep(NA,nvar) for(kvar in 2:(nvar+1)){ for (i in 1: ip){ if(!is.na(A[i,kvar])) A[i,kvar]<-A[i,(nvar+6)] } } B<-A[1:ip,2:(nvar+1)] WeightSums<-colSums(B,na.rm=TRUE) names(WeightSums)<-leg if(trace){ cat("\n","---","\n","Relative variable importance:","\n","\n") print(WeightSums) } fit<-list(result=res,rvi=WeightSums) fit }
fit_MRMC_versionTWO<- function( dataList, DrawFROCcurve = TRUE, DrawCFPCTP=TRUE, version = 2, mesh.for.drawing.curve=10000, significantLevel = 0.7, cha = 1, war = floor(ite/5), ite = 10000, dig = 5, see = 1234569) { viewdata(dataList ) if(version == 2 ){ scr <- system.file("extdata", "Model_Hiera_versionTWO.stan", package="BayesianFROC") }else{ if(version == 3 ){ scr <- system.file("extdata", "Model_Hiera_versionTHREE.stan", package="BayesianFROC") } else{ print("version is allowed only two choice; 2 or 3") }} data <-metadata_to_fit_MRMC(dataList) m<-data$m ;S<-data$S; NL<-data$NL;c<-data$c;q<-data$q; h<-data$h; f<-data$f; hh<-data$hh; hhN<-data$hhN; ff<-data$ff;ffN<-data$ffN; harray<-data$harray; farray<-data$farray; hharray<-data$hharray; ffarray<-data$ffarray; hharrayN<-data$hharrayN; ffarrayN<-data$ffarrayN; C<-as.integer(data$C) M<-as.integer(data$M) N<-as.integer(data$N) Q<-as.integer(data$Q) ll<- stats::rchisq(mesh.for.drawing.curve, 1) lll<- 0.99+stats::rchisq(mesh.for.drawing.curve, 1) l<-append(ll,lll) x<-list(x=l,mesh=mesh.for.drawing.curve) ext.data <- c( data,x ) rstan_options(auto_write = TRUE) fit <- stan(file=scr, model_name=scr, data=ext.data, verbose = TRUE, seed=see, chains=cha, warmup=war, iter=ite, control = list(adapt_delta = 0.9999999, max_treedepth = 15) ) convergence <- ConfirmConvergence(fit) if(convergence ==FALSE){message("\n* So, model has no mean, we have to finish a calculation !!\n") return(fit)} if(convergence ==TRUE){message("\n* We continue the procedure, since model cannot be said not converged.\n")} message("---------- Useage of the return value------------------------- \n") message("\n * Using this return value which is S4 class generated by rstan::stan and another function in this package, you can draw FROC and AFROC curves. \n") message("\n * Using this return value, you can apply functions in the package rstan, e.g., rstan::traceplot(). \n") message("\n----------------------------------------- \n") message(" \n* Now, curve are drawing ... \n") if( DrawFROCcurve == TRUE|| DrawCFPCTP==TRUE){grDevices::dev.new()} if( !( DrawFROCcurve == TRUE|| DrawCFPCTP==TRUE) ){message("\n* We do not draw anything according to your input.\n")} MCMC=(ite-war)*cha x<- 1-exp(-l) EAP_a <- rstan::get_posterior_mean(fit,par=c("a")) EAP_a <- apply(EAP_a, 1, mean) EAP_b <- rstan::get_posterior_mean(fit,par=c("b")) EAP_b <- apply(EAP_b, 1, mean) y<- array(0, dim=c(length(l), M)) for(md in 1:M){ y[ ,md]<-1-stats::pnorm(EAP_b[md] *stats::qnorm(exp(-l ))-EAP_a[md] ) } graphics::par(bg= "gray12", fg="gray", col.lab="bisque2" , col.axis="bisque2" , col.main="bisque2" , cex.lab=1.5, cex.axis=1.3 ); Colour1 <- array(0, dim=c( 20)) Colour2 <- array(0, dim=c( M)) Colour1[1]<-"antiquewhite1" Colour1[2]<-"brown1" Colour1[3]<-"dodgerblue1" Colour1[4]<-"orange2" Colour1[5]<-"yellowgreen" Colour1[6]<-"khaki1" Colour1[7]<-"darkorange4" Colour1[8]<-"slateblue4" for (cc in 9:20) { Colour1[cc] <- as.character(cc); }; upper_x <-max(ffarrayN) upper_y <- max(hharrayN) lower_y <- min(hharrayN) if(DrawFROCcurve==TRUE){ message("* Process of drawing FROC curve \n") for(md in 1:M){ cat("|") graphics::par(new = TRUE); plot( l,y[,md], col =Colour1[md], bg="gray", fg="gray", xlab = 'mean of false positives per nodule', ylab = 'cumulative hit per nodule', cex= 0.1, xlim = c(0,upper_x ), ylim = c(lower_y,upper_y) ); message(paste("", ceiling(round(md/M,2)*100/2 +50),"% \n")) } } if(DrawCFPCTP==TRUE){ for(md in 1:M){for(qd in 1:Q){ if( !M ==1){ graphics::par(new=T);plot( ffarrayN[,md,qd],hharrayN[,md,qd], xlim = c(0,upper_x ), ylim = c(lower_y,upper_y), bg="gray", fg="gray", col =Colour1[md], pch =paste(md), cex=1, xlab = '', ylab = '' ,main = 'Each number of Scatter plots denotes modality ID' ) } if( M ==1){ graphics::par(new=T);plot( ffarrayN[,md,qd],hharrayN[,md,qd], xlim = c(0,upper_x ), ylim = c(lower_y,upper_y), bg="gray", fg="gray", col =Colour1[qd], pch =paste(qd), cex=1, xlab = '', ylab = '' ,main = 'Each number of Scatter plots denotes reader ID' ) } } } } a<-rstan::extract(fit)$a b<-rstan::extract(fit)$b yyy.pre <- array(0, dim=c(length(l),MCMC, M)) var.yy <- array(0, dim=c(length(l), M)) message("\n* Process for calculation of y coordinates of FROC curve\n") cat("/") sss <-0 Divisor <-100 if(length(l)<100){ Divisor <- 1 } for (ld in 1:length(l)) { if(ld %% round(length(l)/Divisor)==0){ sss <- sss +1 if(sss%%10==0){ message("/ [", sss,"% ] \n")} if(!sss==100){cat("/")} } yyy.pre[ld,,]<- 1 - stats::pnorm( b *stats::qnorm(exp(-l[ld])) -a ) } yyy <- aperm( yyy.pre, c(2,1,3)) var.yy <- apply(yyy, c(2,3), stats::var) y.lower <- y - var.yy y.hight <- y + var.yy for (md in 1:M) { graphics::par(new = TRUE);plot(l,y.lower[,md], cex= 0.05 , col = grDevices::gray(0.4), xlim = c(0,upper_x ), ylim = c(lower_y,upper_y), xlab = '', ylab = '' ) graphics::par(new = TRUE);plot(l,y.hight[,md], cex= 0.05 , col = grDevices::gray(0.4), xlim = c(0,upper_x ), ylim = c(lower_y,upper_y), xlab = '', ylab = '' ) } fit.new.class <- methods::as(fit,"stanfitExtended") fit.new.class@metadata <-data fit.new.class@dataList <-dataList fit.new.class@studyDesign <- "MRMC" fit.new.class@ModifiedPoisson <- TRUE if(M==1){message("\n* The modality comparison procedure is omitted, since your data has only one modality.\n")} if(!M==1){ summarize_MRMC(fit.new.class) } rstan::check_hmc_diagnostics( fit ) invisible(fit.new.class) } Credible_Interval_for_curve <-function(dataList, StanS4class.fit_MRMC_versionTWO, mesh.for.drawing.curve=10000, upper_x=upper_x, upper_y=upper_y, lower_y=lower_y ){ message("\n Please wait... for credible curves... \n") fit <- StanS4class.fit_MRMC_versionTWO if(missing(upper_x)||missing(lower_y)||missing(upper_y)){ data <- metadata_to_fit_MRMC(dataList) hharrayN<-data$hharrayN; ffarrayN<-data$ffarrayN; upper_x <-max(ffarrayN) upper_y <- max(hharrayN) lower_y <- min(hharrayN) } M <-dataList$M Q <-dataList$Q ll <- stats::rchisq(mesh.for.drawing.curve, 1) lll<- 0.99+stats::rchisq(mesh.for.drawing.curve, 1) l<-append(ll,lll) war <- fit@sim$warmup cha <- fit@sim$chains ite <- fit@sim$iter MCMC=(ite-war)*cha a<-rstan::extract(fit)$a b<-rstan::extract(fit)$b yyy <- array(0, dim=c(MCMC,length(l), M)) var.yy <- array(0, dim=c(length(l), M)) for (md in 1:M) { for (ld in 1:length(l)) { yyy[,ld,md]<- 1 - stats::pnorm( b[,md] *stats::qnorm(exp(-l[ld])) -a[,md] ) var.yy[ld,md] <-stats::var(yyy[,ld,md]) } } y <- array(0, dim=c(length(l), M)) y.lower <- array(0, dim=c(length(l), M)) y.hight <- array(0, dim=c(length(l), M)) EAP_a <- array(0, dim=c( M)) EAP_b <- array(0, dim=c( M)) for(md in 1:M){ EAP_a[md] <- 0 EAP_b[md] <- 0 s<-0 t<-0 for(mc in 1:MCMC){ s<- EAP_a[md] EAP_a[md] <- s+ a[mc,md] t<- EAP_b[md] EAP_b[md] <- t+ b[mc,md] } EAP_a[md] <-EAP_a[md] /MCMC EAP_b[md] <-EAP_b[md] /MCMC } for(md in 1:M){ for(ld in 1:length(l)){ y[ld,md]<-1-stats::pnorm(EAP_b[md] *stats::qnorm(exp(-l[ld]))-EAP_a[md] ) y.lower[ld,md] <- y[ld,md] - var.yy[ld,md] y.hight[ld,md] <- y[ld,md] + var.yy[ld,md] }} for (md in 1:M) { graphics::par(new = TRUE);plot(l,y.lower[,md], cex= 0.1 , col = grDevices::gray(0.8), xlim = c(0,upper_x ), ylim = c(lower_y,upper_y), xlab = '', ylab = '' ) graphics::par(new = TRUE);plot(l,y.hight[,md], cex= 0.1 , col = grDevices::gray(0.8), xlim = c(0,upper_x ), ylim = c(lower_y,upper_y), xlab = '', ylab = '' ) } }
eList_Ch <- Choptank_eList info_stale_Ch <- getInfo(eList_Ch) daily_stale_Ch <- getDaily(eList_Ch) sample_stale_Ch <- getSample(eList_Ch) surfaces_stale_Ch <- getSurfaces(eList_Ch) info_orig_Ch <- info_stale_Ch[, 1:(which(names(info_stale_Ch) == "bottomLogQ") - 1)] daily_orig_Ch <- daily_stale_Ch[, 1:(which(names(daily_stale_Ch) == "Q30") - 1)] sample_orig_Ch <- sample_stale_Ch[, c("Date","ConcLow", "ConcHigh", "Uncen", "ConcAve", "Julian","Month","Day","DecYear","MonthSeq", "SinDY","CosDY")] surfaces_orig_Ch <- NA eList_orig_Ch <- mergeReport(info_orig_Ch, daily_orig_Ch, sample_orig_Ch, surfaces_orig_Ch, verbose = FALSE) sample_orig_Ch <- getSample(eList_orig_Ch) eList_Ar <- Arkansas_eList info_stale_Ar <- getInfo(eList_Ar) daily_stale_Ar <- getDaily(eList_Ar) sample_stale_Ar <- getSample(eList_Ar) surfaces_stale_Ar <- getSurfaces(eList_Ar) info_orig_Ar <- info_stale_Ar[, 1:(which(names(info_stale_Ar) == "bottomLogQ") - 1)] daily_orig_Ar <- daily_stale_Ar[, 1:(which(names(daily_stale_Ar) == "Q30") - 1)] sample_orig_Ar <- sample_stale_Ar[, 1:(which(names(sample_stale_Ar) == "yHat") - 1)] surfaces_orig_Ar <- NA eList_orig_Ar <- mergeReport(info_orig_Ar, daily_orig_Ar, sample_orig_Ar, surfaces_orig_Ar, verbose = FALSE)
context("NA_explicit_") test_that("multiplication works", { exists("NA_explicit_") ->.; expect_true(.) NA_explicit_ ->.; expect_is(., 'character') })
sharks_to_sim_update_EKF_interp_joint <- function(env_obj) { for (s in env_obj$sharks_to_sim) { z <- env_obj$lambda_matrix[,env_obj$i, s] prev_region <- env_obj$Xpart_history[env_obj$i-1, "region",,s] prev_z <- env_obj$Xpart_history[env_obj$i-1, "lambda",,s] tis <- env_obj$Xpart_history[env_obj$i-1 , "time_in_state",, s] newV <- env_obj$Xpart_history[env_obj$i, c("log_speed","turn_rad"),,s] access_mu_alpha <- access_mu_beta <- cbind(env_obj$state_names[z], "alpha", "mu", env_obj$pnames, s) access_mu_beta[,2] <- "beta" access_V_alpha <- access_mu_alpha access_V_beta <- access_mu_beta access_V_alpha[,3] <- "V" access_V_beta[,3] <- "V" mua0 <- env_obj$mu[access_mu_alpha] mub0 <- env_obj$mu[access_mu_beta] Va0 <- env_obj$mu[access_V_alpha] Vb0 <- env_obj$mu[access_V_beta] env_obj$mu[access_V_alpha] <- 1/(1 + 1/Va0) env_obj$mu[access_V_beta] <- 1/(1 + 1/Vb0) env_obj$mu[access_mu_alpha] <- ((1/Va0)*mua0 + newV["log_speed",]*1) * env_obj$mu[access_V_alpha] theta_vals <- sapply(newV[ "turn_rad", ], function(ff) ff + env_obj$wn_seq) beta_weights <- sapply(1:env_obj$npart, function(pp) keep_finite(dnorm(x=theta_vals[,pp], mean=env_obj$logv_angle_mu_draw[pp,"turn",z[ pp ],s], sd=sqrt(env_obj$tau_draw[pp,z[ pp ],s])))) beta_weights <- apply(beta_weights, 2, function(pp) pp/sum(pp)) wtd_x <- colSums(keep_finite(theta_vals * beta_weights)) wtd_x2 <- colSums(keep_finite(keep_finite(theta_vals^2) * beta_weights)) env_obj$mu[access_mu_beta] <- normalize_angle(((1/Vb0)*mub0 + wtd_x*1) * env_obj$mu[access_V_beta]) access_igamma <- cbind(1:env_obj$npart, 2*z) env_obj$tau_pars[,,s][ access_igamma ] <- env_obj$tau_pars[,,s][ access_igamma ] + 0.5*((mub0^2)/Vb0 + wtd_x2 - (env_obj$mu[access_mu_beta]^2)/env_obj$mu[access_V_beta]) env_obj$sigma_pars[,,s][ access_igamma ] <- env_obj$sigma_pars[,,s][ access_igamma ] + 0.5*((mua0^2)/Va0 + newV["log_speed",]^2 - (env_obj$mu[access_mu_alpha]^2)/env_obj$mu[access_V_alpha]) access_igamma2 <- cbind(1:env_obj$npart, 2*z - 1) env_obj$sigma_pars[,,s][ access_igamma2 ] <- env_obj$sigma_pars[,,s][ access_igamma2 ] + 0.5 env_obj$tau_pars[,,s][ access_igamma2 ] <- env_obj$tau_pars[,,s][ access_igamma2 ] + 0.5 env_obj$tau_pars[,,s][ access_igamma ] <- pmin(env_obj$tau_pars[,,s][ access_igamma ], 50 * (env_obj$tau_pars[,,s][ access_igamma2 ] - 1) / env_obj$mu[access_V_beta]) env_obj$sigma_pars[,,s][ access_igamma ] <- pmin(env_obj$sigma_pars[,,s][ access_igamma ], 500 * (env_obj$sigma_pars[,,s][ access_igamma2 ] - 1) / env_obj$mu[access_V_alpha]) for (p in 1:env_obj$npart) { err_tmp <- keep_finite(t(env_obj$mk_actual_history[env_obj$i, c("X","Y"),p,s]) - env_obj$Xpart_history[env_obj$i,c("X","Y"),p,s]) env_obj$SSquare_particle[,,p,s] <- keep_finite(env_obj$SSquare_particle[,,p,s] + keep_finite(t(err_tmp)%*%err_tmp)) env_obj$Particle_errvar[[ s ]][[ p ]]$sig <- keep_finite(as.matrix(Matrix::nearPD(keep_finite(env_obj$Particle_errvar0 + env_obj$SSquare_particle[,,p,s]), ensureSymmetry=TRUE)$mat)) env_obj$Particle_errvar[[ s ]][[ p ]]$dof <- env_obj$Particle_errvar[[ s ]][[ p ]]$dof + 1 if (env_obj$nstates > 1) { trans_tmp <- paste(env_obj$lambda_matrix[p, (env_obj$i-1):env_obj$i, s], collapse="") lookup_tmp <- cbind(prev_region[ p ], match(trans_tmp, env_obj$trans_names)) env_obj$transition_mat[[ s ]][[ p ]]$counts[ lookup_tmp ] <- env_obj$transition_mat[[ s ]][[ p ]]$counts[ lookup_tmp ] + 1 if (env_obj$time_dep_trans & (trans_tmp %in% c("12","21"))) { env_obj$transition_mat[[ s ]][[ p ]]$dirichlet_pars[ prev_region, prev_z[ p ]] <- (env_obj$transition_mat[[ s ]][[ p ]]$dirichlet_pars[ prev_region, prev_z[ p ]]*tis[ p ] + 1)/tis[ p ] } else { env_obj$transition_mat[[ s ]][[ p ]]$dirichlet_pars[ lookup_tmp ] <- env_obj$region_alphas[ lookup_tmp ] + env_obj$transition_mat[[ s ]][[ p ]]$counts[ lookup_tmp ] for (k in 1:env_obj$nstates) { env_obj$transition_mat[[ s ]][[ p ]]$mat[[ prev_region[ p ] ]][ k, ] <- MCMCpack::rdirichlet(n=1, alpha=env_obj$transition_mat[[ s ]][[ p ]]$dirichlet_pars[ prev_region[ p ], c(2*k -1, 2*k) ]) } } } } } invisible(NULL) }
sb_create_project <- function(path, ...) { params <- list(...) dir.create(path = path, showWarnings = FALSE, recursive = TRUE) from <- system.file(params$scaffold_type, package = "shinybones") ll <- list.files(path = from, full.names = TRUE) file.copy(from = ll, to = path, overwrite = TRUE, recursive = TRUE) }
context("Least Squares Classifier") data(testdata) test_that("Scale invariance",{ g1 <- LeastSquaresClassifier(testdata$X,testdata$y) t_scale <- scaleMatrix(testdata$X) Xs <- predict(t_scale,testdata$X) g2 <- LeastSquaresClassifier(Xs,testdata$y) g3 <- LeastSquaresClassifier(testdata$X,testdata$y,x_center = TRUE, scale=TRUE) expect_equal(loss(g1, testdata$X_test, testdata$y_test), loss(g2, predict(t_scale,testdata$X_test), testdata$y_test) ) expect_equal(loss(g1, testdata$X_test, testdata$y_test), loss(g3, testdata$X_test, testdata$y_test) ) }) test_that("Formula and matrix formulation give same results", { g_matrix <- LeastSquaresClassifier(testdata$X,testdata$y) g_model <- LeastSquaresClassifier(testdata$modelform, testdata$D) expect_that(1-mean(predict(g_matrix,testdata$X_test)==testdata$y_test), is_equivalent_to(1-mean(predict(g_model,testdata$D_test)==testdata$D_test[,testdata$classname]))) expect_that(loss(g_matrix, testdata$X_test, testdata$y_test),is_equivalent_to(loss(g_model, testdata$D_test))) expect_that(g_matrix@classnames,is_equivalent_to(g_model@classnames)) }) test_that("Expected Results on simple benchmark dataset",{ t_matrix <- LeastSquaresClassifier(testdata$X,testdata$y) expect_equivalent(t_matrix@theta, matrix(c(0.50115100,0.05052317,-0.29484188),3)) }) test_that("Multiclass gives an output",{ dmat<-model.matrix(Species~.-1,iris[1:150,]) tvec<-droplevels(iris$Species[1:150]) set.seed(42) problem<-split_dataset_ssl(dmat,tvec,frac_train=0.5,frac_ssl=0.0) expect_equal(length(levels(predict(LeastSquaresClassifier(problem$X,problem$y),problem$X_test))),3) expect_equal(length(predict(LeastSquaresClassifier(problem$X,problem$y),problem$X_test)),75) }) test_that("PCA does not change the decision values",{ g_norm <- LeastSquaresClassifier(testdata$X,testdata$y) Xpc <- princomp(testdata$X)$scores g_pc <- LeastSquaresClassifier(Xpc,testdata$y) expect_equal(decisionvalues(g_norm,testdata$X), decisionvalues(g_pc,Xpc)) })
create_message <- function(recipient, body, ...){ out <- imgurPOST('conversations/', body = list(recipient = recipient, body = body), ...) structure(out, class = 'imgur_basic') }
ikcirt.fun.mss.lambda <- function(jj, iimss, jjmss, rndTrys, mxHatLambda, penalty, usetruesigma ) { valgp <- rndTrys[jj] mxHatLambda[iimss, jjmss] <- valgp mxStHE <- get("mxStHE") mxDelta <- get("mxDelta") hatMu <- get("hatMu") mxHatLSE <- mxHatLambda %*% mxStHE hatZstar <- mxDelta %*% ( hatMu + mxHatLSE ) if(penalty == "L2" | penalty == "L2c") { if(!usetruesigma) { mxSlot <- get("mxSlot") mxHatEta <- get("mxHatEta") covStochastic <- get("covStochastic") mxHatDLS <- mxDelta %*% mxHatLambda %*% mxSlot useSysCov <- mxHatDLS %*% var(mxHatEta) %*% t(mxHatDLS) + covStochastic } else { mxSigma <- get("mxSigma") useSysCov <- mxSigma } } if(penalty == "logit") { covStochastic <- get("covStochastic") Y <- get("Y") xlambda.shrink <- get("xlambda.shrink") xbool.lambdaShrinkLL <- get("xbool.lambdaShrinkLL") if(xbool.lambdaShrinkLL) { xshrinkTerm <- xlambda.shrink * mean( diag(mxHatLambda %*% t(mxHatLambda)) ) } else { xshrinkTerm <- xlambda.shrink * mean( diag(mxHatLambda)^2 ) } hatWstar <- hatZstar / sqrt(diag(covStochastic)) hatY <- matrix( pnorm( hatWstar ), nrow(hatWstar), ncol(hatWstar) ) our.cost <- - mean( Y * log(hatY) + (1-Y) * log(1-hatY), na.rm=TRUE ) + xshrinkTerm ; our.cost } if(penalty == "L2") { Z <- get("Z") hatWstar <- hatZstar / sqrt(diag(useSysCov)) our.cost <- sqrt( mean( (Z - hatWstar)^2, na.rm=TRUE ) ) ; our.cost } if(penalty == "L2c") { varZ <- get("varZ") Zconv <- get("Zconv") hatWstar <- varZ %*% hatZstar / sqrt(diag(useSysCov)) our.cost <- sqrt( mean( (Zconv - hatWstar)^2, na.rm=TRUE ) ) ; our.cost } if(penalty == "miscat") { Y <- get("Y") our.cost <- 1 - sum( (hatZstar > 0 & Y == 1) | (hatZstar <= 0 & Y == 0) , na.rm=TRUE ) / sum(!is.na(Y)) ; our.cost } return(our.cost) }
perceptron <- function(input_model=NA, labels=NA, max_iterations=NA, test=NA, training=NA, verbose=FALSE) { IO_RestoreSettings("Perceptron") if (!identical(input_model, NA)) { IO_SetParamPerceptronModelPtr("input_model", input_model) } if (!identical(labels, NA)) { IO_SetParamURow("labels", to_matrix(labels)) } if (!identical(max_iterations, NA)) { IO_SetParamInt("max_iterations", max_iterations) } if (!identical(test, NA)) { IO_SetParamMat("test", to_matrix(test)) } if (!identical(training, NA)) { IO_SetParamMat("training", to_matrix(training)) } if (verbose) { IO_EnableVerbose() } else { IO_DisableVerbose() } IO_SetPassed("output") IO_SetPassed("output_model") IO_SetPassed("predictions") perceptron_mlpackMain() output_model <- IO_GetParamPerceptronModelPtr("output_model") attr(output_model, "type") <- "PerceptronModel" out <- list( "output" = IO_GetParamURow("output"), "output_model" = output_model, "predictions" = IO_GetParamURow("predictions") ) IO_ClearSettings() return(out) }
test_that("get_reps_senate produces the correct manipulated datasets", { skip_if_offline() skip_on_cran() reps_senate <- AustralianPoliticians::get_reps_senate("reps_senate") expect_true(exists("reps_senate")) reps <- AustralianPoliticians::get_reps_senate("reps") expect_true(exists("reps")) senate <- AustralianPoliticians::get_reps_senate("senate") expect_true(exists("senate")) }) test_that("get_reps_seante produces an error code if given an incorrect argument",{ expect_error(AustralianPoliticians::get_reps_senate("all")) })
context("run: library support") test_that_odin("abs", { gen <- odin({ deriv(y) <- 0 initial(y) <- 0 output(a) <- abs(t) }) tt <- seq(-5, 5, length.out = 101) expect_equal(gen$new()$run(tt)[, "a"], abs(tt)) }) test_that_odin("log", { gen <- odin({ deriv(y) <- 0 initial(y) <- 0 output(a) <- log(t) output(b) <- log(t, 2) output(c) <- log(t, 10) }) tt <- seq(0.0001, 5, length.out = 101) yy <- gen$new()$run(tt) expect_equal(yy[, "a"], log(tt)) expect_equal(yy[, "b"], log2(tt)) expect_equal(yy[, "c"], log10(tt)) }) test_that_odin("pow", { gen <- odin({ deriv(y) <- 0 initial(y) <- 0 output(a) <- min(t, t^2 - 2, -t) output(b) <- max(t, t^2 - 2, -t) }) tt <- seq(0.0001, 5, length.out = 101) yy <- gen$new()$run(tt) expect_equal(yy[, "a"], pmin(tt, tt^2 - 2, -tt)) expect_equal(yy[, "b"], pmax(tt, tt^2 - 2, -tt)) }) test_that_odin("%%", { gen <- odin({ deriv(y) <- 0 initial(y) <- 0 s <- sin(1) q <- 1.0 output(s1) <- t %% s output(s2) <- -t %% s output(s3) <- t %% -s output(s4) <- -t %% -s output(q1) <- t %% q output(q2) <- -t %% q output(q3) <- t %% -q output(q4) <- -t %% -q }) tt <- seq(-5, 5, length.out = 101) mod <- gen$new() res <- mod$run(tt) s <- sin(1) q <- 1.0 expect_equal(res[, "s1"], tt %% s) expect_equal(res[, "s2"], -tt %% s) expect_equal(res[, "s3"], tt %% -s) expect_equal(res[, "s4"], -tt %% -s) expect_equal(res[, "q1"], tt %% q) expect_equal(res[, "q2"], -tt %% q) expect_equal(res[, "q3"], tt %% -q) expect_equal(res[, "q4"], -tt %% -q) }) test_that_odin("%/%", { gen <- odin({ deriv(y) <- 0 initial(y) <- 0 s <- sin(1) q <- 1.0 output(s1) <- t %/% s output(s2) <- -t %/% s output(s3) <- t %/% -s output(s4) <- -t %/% -s output(q1) <- t %/% q output(q2) <- -t %/% q output(q3) <- t %/% -q output(q4) <- -t %/% -q }) tt <- seq(-5, 5, length.out = 101) mod <- gen$new() res <- mod$run(tt) s <- sin(1) q <- 1.0 expect_equal(res[, "s1"], tt %/% s) expect_equal(res[, "s2"], -tt %/% s) expect_equal(res[, "s3"], tt %/% -s) expect_equal(res[, "s4"], -tt %/% -s) expect_equal(res[, "q1"], tt %/% q) expect_equal(res[, "q2"], -tt %/% q) expect_equal(res[, "q3"], tt %/% -q) expect_equal(res[, "q4"], -tt %/% -q) }) test_that_odin("2-arg round", { gen <- odin({ deriv(x) <- 1 initial(x) <- 1 output(y) <- TRUE output(z) <- TRUE n <- user(0) y <- round(t, n) z <- round(t) }) mod0 <- gen$new(n = 0) mod1 <- gen$new(n = 1) mod2 <- gen$new(n = 2) tt <- seq(0, 1, length.out = 101) yy0 <- mod0$run(tt) yy1 <- mod1$run(tt) yy2 <- mod2$run(tt) expect_equal(yy0[, "z"], round(tt)) expect_equal(yy1[, "z"], round(tt)) expect_equal(yy2[, "z"], round(tt)) expect_equal(yy0[, "y"], round(tt, 0)) expect_equal(yy1[, "y"], round(tt, 1)) expect_equal(yy2[, "y"], round(tt, 2)) }) test_that_odin("multivariate hypergeometric", { gen <- odin({ x0[] <- user() dim(x0) <- user() n <- user() nk <- length(x0) tmp[] <- rmhyper(n, x0) dim(tmp) <- nk output(tmp) <- TRUE initial(x[]) <- 0 update(x[]) <- tmp[i] dim(x) <- nk }) k <- c(6, 10, 15, 3, 0, 4) n <- 20 mod <- gen$new(x0 = k, n = n) set.seed(1) res <- mod$run(0:10) set.seed(1) cmp <- t(replicate(10, rmhyper(n, k))) yy <- mod$transform_variables(res) expect_equal(yy$x[-1L, ], cmp) expect_equal(yy$tmp[-11L, ], yy$x[-1L, ]) }) test_that_odin("multivariate hypergeometric - integer input", { gen <- odin({ x0[] <- user() dim(x0) <- user(integer = TRUE) n <- user(integer = TRUE) nk <- length(x0) tot <- sum(x0) tmp[] <- rmhyper(tot, x0) tmp2[] <- rmhyper(n, tmp) initial(x[]) <- 0 update(x[]) <- tmp[i] initial(y[]) <- 0 update(y[]) <- tmp2[i] dim(tmp) <- nk dim(tmp2) <- nk dim(x) <- nk dim(y) <- nk }) k <- c(6, 10, 15, 3, 0, 4) n <- 20 mod <- gen$new(x0 = k, n = n) set.seed(1) res <- mod$run(0:10) set.seed(1) cmp <- t(replicate(10, rmhyper(n, k))) yy <- mod$transform_variables(res) expect_equal(yy$x[-1L, ], matrix(k, 10, 6, TRUE)) expect_equal(yy$y[-1L, ], cmp) }) test_that_odin("Throw an error if requesting more elements than possible", { gen <- odin({ b[] <- user() n <- user() initial(x[]) <- 0 update(x[]) <- x[i] + b[i] y[] <- rmhyper(n, x) output(y) <- TRUE dim(x) <- 3 dim(b) <- 3 dim(y) <- 3 }) b <- c(10, 15, 9) n <- 10 mod <- gen$new(b = b, n = n) expect_error(mod$run(step = 2), "Requesting too many elements in rmhyper (10 from 0)", fixed = TRUE) }) test_that_odin("Can use as.numeric", { gen <- odin({ a <- user(integer = TRUE) b <- as.numeric(a) initial(x) <- 0 update(x) <- x + b }) mod <- gen$new(a = 5L) y <- mod$run(0:10) expect_equal(y[, "x"], seq(0, 50, by = 5)) })
neglog <- function(object) { trafo <- "neglog" woparam(object = object, trafo = trafo) }
tex.catwitherror <- function(x, dx, digits=1, with.dollar=TRUE, with.cdot=TRUE, ...) { if(missing(x) || length(x) == 0) { stop("x must be a numeric vector with length > 0") } if(length(x) == 2){ dx <- x[2] x <- x[1] have.error <- TRUE }else if(!missing(dx)){ have.error <- TRUE }else{ have.error <- FALSE } if(!have.error){ tmp <- formatC(x, digits=digits, ...) } else if(is.numeric(dx) && dx == 0){ tmp <- formatC(x, digits=digits, ...) if(grepl("e", tmp, fixed=TRUE)){ tmp <- sub("e", "(0)e", tmp) }else{ tmp <- paste0(tmp, "(0)") } } else{ if(requireNamespace('errors')){ tmp <- format(errors::set_errors(x, dx), digits=digits, ...) }else{ warning("The `errors`-package is not installed. The output of `tex.catwitherror` might not be as you want it.") tmp <- formatC(x, digits=digits, ...) tmp <- paste0(tmp, " +- ", formatC(dx, digits=digits, ...)) } } if(with.cdot){ if(grepl("e", tmp, fixed=TRUE)){ tmp <- sub("e", "\\\\cdot 10^{", tmp) tmp <- paste0(tmp, "}") } tmp <- sub("+-", "\\\\pm", tmp, fixed=TRUE) } if (with.dollar) { tmp <- paste0("$", tmp, "$") } return (tmp) } escapeLatexSpecials <- function(x) { x <- gsub("\\", "$\\backslash$", x, fixed = TRUE) x <- gsub(" x <- gsub("$", "\\$", x, fixed=TRUE) x <- gsub("%", "\\%", x, fixed=TRUE) x <- gsub("&", "\\&", x, fixed=TRUE) x <- gsub("~", "\\~", x, fixed=TRUE) x <- gsub("_", "\\_", x, fixed=TRUE) x <- gsub("^", "\\^", x, fixed=TRUE) x <- gsub(">", "$>$", x, fixed=TRUE) x <- gsub("<", "$<$", x, fixed=TRUE) return(x) }
pack <- function(cells, types = data_type, name = "value", drop_types = TRUE, drop_type_cols = TRUE) { types <- rlang::ensym(types) name <- rlang::ensym(name) type_colnames <- format(unique(dplyr::pull(cells, !!types)), justify = "none", trim = TRUE ) missing_types <- setdiff(type_colnames, colnames(cells)) new_cols <- rep_len(NA, length(missing_types)) names(new_cols) <- missing_types cells <- dplyr::mutate( cells, !!!new_cols, !!types := format(!!types, justify = "none", trim = TRUE ) ) type_values <- unique(dplyr::pull(cells, !!types)) patterns <- map( type_values, ~ rlang::expr(!!types == !!.x ~ as.list(!!rlang::ensym(.x))) ) out <- dplyr::mutate(cells, !!name := dplyr::case_when(!!!patterns)) names(out[[rlang::expr_text(name)]]) <- dplyr::pull(cells, !!types) if (drop_types && rlang::expr_text(types) != rlang::expr_text(name)) { out <- dplyr::select(out, -!!types) } if (drop_type_cols) { type_colnames <- setdiff(type_colnames, rlang::expr_text(name)) out <- dplyr::select(out, -dplyr::one_of(type_colnames)) } out } unpack <- function(cells, values = value, name = "data_type", drop_packed = TRUE) { values <- rlang::ensym(values) name <- rlang::ensym(name) types <- names(dplyr::pull(cells, !!values)) type_names <- format(unique(types), justify = "none", trim = TRUE) assignments <- purrr::map( type_names, ~ rlang::expr(ifelse(types == !!.x, !!values, !!list(NULL) )) ) names(assignments) <- type_names out <- dplyr::mutate(cells, !!name := types, !!!assignments) %>% dplyr::mutate_at(type_names, concatenate, combine_factors = FALSE, fill_factor_na = FALSE ) first_colnames <- setdiff(colnames(out), type_names) last_colnames <- sort(type_names) out <- dplyr::select(out, first_colnames, last_colnames) if (drop_packed) out <- dplyr::select(out, -!!values) out }
setMethodS3("getOutputIdentifier", "QuantileNormalization", function(this, ..., verbose=FALSE) { verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } verbose && enter(verbose, "Calculating the output identifier") verbose && enter(verbose, "Retrieving the identifier for input data set") ds <- getInputDataSet(this) inputId <- getIdentifier(ds) verbose && exit(verbose) verbose && enter(verbose, "Calculating the identifier for parameters") paramId <- this$.paramId params <- getParameters(this) params$.targetDistribution <- attr(params$.targetDistribution, "identifier") paramId <- getChecksum(list(params)) this$.paramId <- paramId verbose && exit(verbose) verbose && enter(verbose, "Calculating the joint identifier") id <- getChecksum(list(inputId, paramId)) verbose && exit(verbose) verbose && exit(verbose) id }, private=TRUE)
options(width = 150,tibble.print_max=50) library(quickReg) library(ggplot2) library(rlang) library(dplyr) data(diabetes) head(diabetes) display_1<-display_table(data=diabetes,variables=c("age","smoking","education"),group="CFHrs2230199") display_1 display_2<-display_table_group(data=diabetes,variables=c("age","smoking"),group="CFHrs2230199",super_group = "sex") display_2 display_3<-display_table_group(data=diabetes,variables=c("age","smoking"),group="CFHrs2230199",super_group = c("sex","education")) display_3 display_4<-display_table_group(data=diabetes,variables=c("age","smoking"),group="CFHrs2230199",super_group = c("sex","education"),group_combine = TRUE) display_4 reg_1<-reg_x(data = diabetes, y = 5, factors = c(1, 3, 4), model = 'glm') reg_1 reg_2<-reg_x(data = diabetes, x = c(3:4, 6), y ="diabetes",time=2,factors = c(1, 3, 4), model = 'coxph') reg_2 reg_3<-reg_x(data = diabetes, x = c("sex","age"), y ="diabetes" ,cov=c("CFBrs641153","CFHrs2230199"), factors ="sex", model = 'glm',cov_show = TRUE) reg_3 reg_4<-reg_y(data = diabetes, x = c("sex","age","CFHrs1061170"), y =c("systolic","diastolic","BMI") ,cov=c("CFBrs641153","CFHrs2230199"), factors ="sex", model = 'lm') reg_4 reg_5<-reg(data = diabetes, x = c("age","CFHrs1061170"), y =c("systolic","diastolic") ,cov=c("CFBrs641153","CFHrs2230199"), model = 'lm',group="sex") reg_5 reg_6<-reg(data = diabetes, x = c("age","CFHrs1061170"), y =c("systolic","diastolic") ,cov=c("CFBrs641153","CFHrs2230199"), model = 'lm',group=c("sex","smoking")) reg_6 reg_7<-reg(data = diabetes, x = c("age","CFHrs1061170"), y =c("systolic","diastolic") ,cov=c("CFBrs641153","CFHrs2230199"), model = 'lm',group=c("sex","smoking"),group_combine = TRUE) reg_7 plot(reg_1) plot(reg_1,limits=c(NA,3)) plot(reg_1,limits=c(NA,3), sort ="alphabetical") plot(reg_4) plot(reg_5)+facet_grid(sex~y) library(ggplot2);library(ggthemes) plot(reg_1,limits=c(0.5,2))+ labs(list(title = "Regression Model", x = "variables"))+ theme_classic() %+replace% theme(legend.position ="none",axis.text.x=element_text(angle=45,size=rel(1.5)))
newstart_allowance <- function(fortnightly_income = 0, annual_income = 0, has_partner = FALSE, partner_pensioner = FALSE, n_dependants = 0, nine_months = FALSE, isjspceoalfofcoahodeoc = FALSE, principal_carer = FALSE, fortnightly_partner_income = 0, annual_partner_income = 0, age = 22, fy.year = "2015-16", assets_value = 0, homeowner = FALSE, lower = 102, upper = 252, taper_lower = 0.5, taper_upper = 0.6, taper_principal_carer = 0.4, per = c("year", "fortnight")) { if (!identical(fy.year, "2015-16")) { stop('`fy.year` can only take value "2015-16" for now') } prohibit_vector_recycling(fortnightly_income, annual_income, has_partner, partner_pensioner, n_dependants, nine_months, isjspceoalfofcoahodeoc, principal_carer, fortnightly_partner_income, annual_partner_income, age, fy.year, assets_value, homeowner, lower, upper, taper_lower, taper_upper, taper_principal_carer) input <- data.table(fortnightly_income = as.double(fortnightly_income), annual_income = as.double(annual_income), has_partner, partner_pensioner, n_dependants, nine_months, isjspceoalfofcoahodeoc, principal_carer, fortnightly_partner_income, annual_partner_income, age, fy.year, assets_value, homeowner, lower, upper, taper_lower, taper_upper, taper_principal_carer) if (input[, any(!has_partner & partner_pensioner)]) { stop('check conflicting values for `has_partner` and `partner_pensioner`') } if (input[, any(annual_partner_income > 0 & !has_partner)]) { stop('check conflicting values for `has_partner` and `annual_partner_income`') } if (input[, any(fortnightly_partner_income > 0 & !has_partner)]) { stop('check conflicting values for `has_partner` and `fortnightly_partner_income`') } input[, fortnightly_income := if_else(annual_income > 0 & fortnightly_income == 0, annual_income / 26, fortnightly_income)] input[, fortnightly_partner_income := if_else(annual_partner_income > 0 & fortnightly_partner_income == 0, annual_partner_income / 26, fortnightly_partner_income)] input[, annual_income := if_else(fortnightly_income > 0 & annual_income == 0, fortnightly_income * 26, annual_income)] input[, annual_partner_income := if_else(fortnightly_partner_income > 0 & annual_partner_income == 0, fortnightly_partner_income * 26, annual_partner_income)] if(!input[, isTRUE(all.equal(annual_income, 26 * fortnightly_income, tol = 1e-04))]){ stop('input for `annual_income` is not 26 times larger than `fortnightly_income`') } if(!input[, isTRUE(all.equal(annual_partner_income, 26 * fortnightly_partner_income, tol = 1e-04))]){ stop('input for `annual_partner_income` is not 26 times larger than `fortnightly_partner_income`') } max_rate_March_2016 <- NULL input[, max_rate_March_2016 := if_else(isjspceoalfofcoahodeoc, 737.10, if_else(has_partner, 476.4, if_else(and(age >= 60, nine_months), 570.80, if_else(n_dependants > 0, 570.80, 527.60))))] eligible <- NULL input[, eligible := 22 <= age & age < 65] max_income_March_2016 <- NULL input[, max_income_March_2016 := if_else(isjspceoalfofcoahodeoc, 1974.75, if_else(has_partner, 934.74, if_else(and(age > 60, nine_months), 1104.50, if_else(n_dependants == 0, 1021, if_else(principal_carer, 1552.75, 1094.17)))))] input[(partner_pensioner), fortnightly_income := (fortnightly_partner_income + fortnightly_income) / 2] income_reduction <- NULL input %>% .[, income_reduction := 0] %>% .[fortnightly_income > lower, income_reduction := if_else(principal_carer, if_else(fortnightly_income < max_income_March_2016, taper_principal_carer * (fortnightly_income - lower), max_rate_March_2016), if_else(fortnightly_income < upper, taper_lower * (fortnightly_income - lower), if_else(fortnightly_income < max_income_March_2016, taper_lower * (fortnightly_income - lower) + (taper_upper - taper_lower) * (fortnightly_income - upper), max_rate_March_2016)))] asset_threshold <- NULL input[, asset_threshold := if_else(has_partner, if_else(homeowner, assets_value < 286500, assets_value < 433000), if_else(homeowner, assets_value < 202000, assets_value < 348500))] partner_income_reduction <- NULL input %>% .[, partner_income_reduction := and(has_partner, (fortnightly_partner_income > max_income_March_2016) & !partner_pensioner) * taper_upper * (fortnightly_partner_income - ceiling((max_rate_March_2016 - (upper - lower) * taper_lower + upper * taper_upper) / taper_upper))] fortnightly_rate <- NULL input[, fortnightly_rate := and(eligible, asset_threshold) * pmax0(max_rate_March_2016 - income_reduction - partner_income_reduction)] ans <- input[, fortnightly_rate * 26] ans / validate_per(per, missing(per)) }
context("Check plot() function") source("objects_for_tests.R") test_that("plotMeasure", { expect_is(plot(measure), "gg") }) test_that("plotMeasure2", { expect_is(plot(measure, color = NULL), "gg") }) test_that("plotMeasure3", { expect_is(plot(measure, measure_lm2, color = "_label_model_"), 'gg') }) test_that("plotMeasure4", { expect_is(plot(measure, variables = c("floor", "surface")), "gg") }) test_that("plotMessage5", { expect_is(plot(measure, variables = c("floor", "surface"), type = "lines"), "gg") }) test_that("plotMessage5", { expect_is(plot(measure_lm2, measure, color = "_label_model_", type = "bars"), "gg") }) test_that("plotMessage6", { expect_error(plot(measure_lm2, measure, color = "_label_model_", type = "line")) }) test_that("plotMeasure7", { expect_error(plot(measure, variables = c("district", "m2.price"))) }) test_that("plotLabel", { expect_error(plot(measure, measure_lm, color = "_label_model_")) }) test_that("plotLabel2", { expect_error(plot(measure, color = "_label_model_")) }) test_that("plotMessage", { expect_message(plot(measure, measure_lm), "Measure will be plotted only for the first observation.") }) test_that("plotMessage2", { expect_message(plot(measure, measure_lm), "Measure will be plotted only for the first observation.") }) measure_lm3 <- measure_lm2 measure_lm3$`_label_model_` <- " " measure_2 <- measure measure_2$`_label_model_` <- " " test_that("plotMessage3", { expect_message(plot(measure_2, measure_lm3, color = "_label_method_"), "Measure will be plotted only for the first observation. Add different labels for each method.") }) test_that("plotMessage4", { expect_message(plot(measure_2, measure_lm3, color = "_label_model_"), "Measure will be plotted only for the first observation. Add different labels for each model.") }) test_that("plotMessage5", { expect_is(plot(measure_2, color = "_label_method_"), 'gg') }) p_cp <- plot(measure) test_that("titlePlot", { expect_equal(p_cp$labels$title, "Local variable importance") }) p_cp1 <- plot(measure_lm2, measure, color = "_label_model_", type = "lines") test_that("titlePlot2", { expect_equal(p_cp1$labels$title, "Local variable importance") }) test_that("subtitlePlot", { expect_equal(p_cp$labels$subtitle, "absolute_deviation = TRUE, point = TRUE, density = TRUE") }) test_that("subtitlePlot2", { expect_equal(as.character(p_cp1$labels$subtitle), "absolute_deviation = TRUE, point = TRUE, density = TRUE") }) test_that("plotGlobalMeasure", { expect_is(plot(measure_pdp), 'gg') }) test_that("plotGlobalMeasure2", { expect_is(plot(measure_pdp, type = "lines"), 'gg') }) test_that("plotGlobalMeasure3", { expect_is(plot(measure_pdp, type = "bars"), 'gg') }) test_that("plotGlobalMeasure4", { expect_is(plot(measure_pdp, variables = c("surface", "floor")), 'gg') }) test_that("plotGlobalMeasure5", { expect_is(plot(measure_pdp, measure_pdp_lm, variables = c("surface", "floor")), 'gg') }) test_that("plotGlobalMeasure6", { expect_error(plot(measure_pdp, type = "scatter")) }) measure_pdp2 <- measure_pdp measure_pdp2$`_label_model_` <- "" measure_pdp_lm2 <- measure_pdp_lm measure_pdp_lm2$`_label_model_` <- "" test_that("plotGlobalMeasure7", { expect_message(plot(measure_pdp2, measure_pdp_lm2), "Measure will be plotted only for the first observation. Add different labels for each model.") }) test_that("plotGlobalMeasure8", { expect_error(plot(measure_pdp, variables = c("district", "m2.price"))) }) test_that("plotGlobalMeasure9", { expect_is(plot(measure_pdp, measure_pdp_lm, variables = c("surface", "floor"), type = "lines"), 'gg') }) p_pdp <- plot(measure_pdp) test_that("titlePlotGlobal", { expect_equal(p_pdp$labels$title, "Variable importance") }) test_that("labsPlotGlobal", { expect_equal(p_pdp$labels$y, "Measure") })
"pargev" <- function(lmom,checklmom=TRUE,...) { para <- rep(NA,3) names(para) <- c("xi","alpha","kappa") SMALL <- 1e-5; EPS <- 1e-6; MAXIT <- 20; EU <- 0.57721566; DL2 <- 0.69314718; DL3 <- 1.0986123 A0 <- 0.28377530; A1 <- -1.21096399; A2 <- -2.50728214 A3 <- -1.13455566; A4 <- -0.07138022 B1 <- 2.06189696; B2 <- 1.31912239; B3 <- 0.25077104 C1 <- 1.59921491; C2 <- -0.48832213; C3 <- 0.01573152 D1 <- -0.64363929; D2 <- 0.08985247 if(length(lmom$L1) == 0) { lmom <- lmorph(lmom) } if(checklmom & ! are.lmom.valid(lmom)) { warning("L-moments are invalid") return() } T3 <- lmom$TAU3 if(T3 > 0) { Z <- 1-T3 G <- (-1+Z*(C1+Z*(C2+Z*C3)))/(1+Z*(D1+Z*D2)) if(abs(G) < SMALL) { para[3] <- 0 para[2] <- lmom$L2/DL2 para[1] <- lmom$L1-EU*para[2] return(list(type = 'gev', para = para)) } } else { G <- (A0+T3*(A1+T3*(A2+T3*(A3+T3*A4))))/(1+T3*(B1+T3*(B2+T3*B3))) if(T3 >= -0.80) { } else { if(T3 <= -0.97) G <- 1-log(1+T3)/DL2 T0 <- (T3+3)*0.5 CONVERGE <- FALSE for(it in seq(1,MAXIT)) { X2 <- 2^-G X3 <- 3^-G XX2 <- 1-X2 XX3 <- 1-X3 T <- XX3/XX2 DERIV <- (XX2*X3*DL3-XX3*X2*DL2)/(XX2*XX2) GOLD <- G G <- G-(T-T0)/DERIV if(abs(G-GOLD) <= EPS*G) CONVERGE <- TRUE } if(CONVERGE == FALSE) { warning("Noconvergence---results might be unreliable") } } } para[3] <- G GAM <- exp(lgamma(1+G)) para[2] <- lmom$L2*G/(GAM*(1-2**(-G))) para[1] <- lmom$L1 - para[2]*(1-GAM)/G return(list(type = 'gev', para = para, source="pargev")) }
transform_coord <- function(x = NULL, lon = NULL, lat = NULL, new.names = "auto", proj.in = 4326, proj.out = NULL, verbose = FALSE, bind = FALSE, na = "ignore") { if(length(new.names) == 1) { if(new.names == "auto") { if(is.null(x)) { new.names <- c("lon", "lat") } else if(bind) { new.names <- c("lon.proj", "lat.proj") } else { new.names <- guess_coordinate_columns(x) } } } if(is.null(proj.out) & !sf::st_is_longlat(proj.in)) stop("proj.in has to be decimal degrees when proj.out = NULL.") if(!is.null(proj.out)) { error_test <- quiet(try(match.arg(proj.out, shapefile_list("all")$name), silent = TRUE)) if(class(error_test) != "try-error") { proj.out <- sf::st_crs(shapefile_list(proj.out)$crs) } } if(is.null(proj.in)) { if(is.null(x)) stop("a spatial object as x is required when proj.in = NULL") if("sf" %in% class(x)) { proj.in <- sf::st_crs(x) } else if("sp" %in% class(x)) { proj.in <- raster::crs(x) } else stop("a spatial object of class sf or sp as x is required when proj.in = NULL") } if(!is.null(x) & (is.null(lon) | is.null(lat))) { tmp <- guess_coordinate_columns(x) lon <- unname(tmp[names(tmp) == "lon"]) lat <- unname(tmp[names(tmp) == "lat"]) if(verbose) { message(paste0("Used ", lon, " and ", lat, " as input coordinate column names in x")) } } if(is.null(x) & (!is.numeric(lon) | !is.numeric(lat))) { stop("Define either x or lon and lat as numeric vectors") } if(is.null(x) & (is.numeric(lon) | is.numeric(lat))) { if(length(lon) != length(lat)) stop("lat and lon must be of equal length") y <- data.frame(lon = lon, lat = lat) lon <- "lon"; lat <- "lat" y$id <- 1:nrow(y) } if(!is.null(x)) { if(!is.data.frame(x)) stop("x must be a data frame") oldrownames <- rownames(x) suppressWarnings(rownames(x) <- 1:nrow(x)) if("data.table" %in% class(x)) { y <- x[, c(lon, lat), with = FALSE] } else { y <- x[c(lon, lat)] } y$id <- 1:nrow(y) } if(na == "ignore") { z <- y[eval(is.na(y[[lon]]) | is.na(y[[lat]])),] y <- y[eval(!(is.na(y[[lon]]) | is.na(y[[lat]]))),] } else if(na == "remove") { y <- y[eval(!is.na(y[[lon]]) | !is.na(y[[lat]])),] y <- y[eval(!is.na(y[[lon]]) | !is.na(y[[lat]])),] message("Removed rows that contained missing coordinates.") } else { if(any(c(eval(is.na(y[[lon]])), is.na(y[[lat]])))) { stop("lon or lat coordinates contain missing values. Adjust the na argument or take care of the NAs.") } } if(is.null(proj.out)) { limits <- c(range(y[[lon]]), range(y[[lat]])) shapefile.def <- define_shapefiles(limits) proj.out <- sf::st_crs(shapefile_list(shapefile.def$shapefile.name)$crs) } if("crs" != class(proj.in)) { error_test <- quiet(try(sf::st_crs(proj.in), silent = TRUE)) if(class(error_test) == "try-error") { stop("Failed to convert the argument proj.in to sf::st_crs object in the transform_coord function. This is likely a bug. If so, please file a bug report on GitHub.") } else { proj.in <- error_test } } if("crs" != class(proj.out)) { error_test <- quiet(try(sf::st_crs(proj.out), silent = TRUE)) if(class(error_test) == "try-error") { stop("Failed to convert the argument proj.out to sf::st_crs object in the transform_coord function. This is likely a bug. If so, please file a bug report on GitHub.") } else { proj.out <- error_test } } y <- cbind( stats::setNames( data.frame(sf::sf_project(from = proj.in, to = proj.out, y[,1:2])), c(lon, lat)), id = y$id) if(na == "ignore" & nrow(z) > 0) { y <- rbind(y, z) rownames(y) <- y$id y <- y[order(y$id), !colnames(y) %in% "id"] } else { y <- y[, !colnames(y) %in% "id"] } if(!is.null(new.names)) { if(any(length(new.names) != 2, !is.character(new.names))) { stop("new.names must be a character vector with length of 2") } colnames(y) <- new.names } if(verbose) { if("input" %in% names(proj.in)) { proj.in.msg <- proj.in$input } else { proj.in.msg <- proj.in } if("input" %in% names(proj.out)) { proj.out.msg <- proj.out$input } else { proj.out.msg <- proj.out } message(paste("projection transformed from", proj.in.msg, "to", proj.out.msg)) } if(!sf::st_is_longlat(proj.in) & sf::st_is_longlat(proj.out)) { tmp <- colnames(x) colnames(x) <- colnames(y) colnames(y) <- tmp } if(bind) { out <- cbind(x, y) } else { out <- y } if(exists("oldrownames")) { rownames(out) <- oldrownames out <- out } else { out <- out } attributes(out)$proj.in <- proj.in attributes(out)$proj.out <- proj.out out }
context("qtestr") expect_succ_all = function(x, rules) { xn = deparse(substitute(x)) expect_true(qtestr(x, rules), info = sprintf("rules: %s", paste0(rules, collapse=",")), label = xn) expect_identical(qassertr(x, rules), x, info = sprintf("rules: %s", paste0(rules, collapse=",")), label = xn) expect_expectation_successful(qexpectr(x, rules), info = sprintf("rules: %s", paste0(rules, collapse=",")), label = xn) } expect_fail_all = function(x, rules, pattern = NULL) { xn = deparse(substitute(x)) expect_false(qtestr(x, rules), info = sprintf("rules: %s", paste0(rules, collapse=",")), label = xn) expect_error(qassertr(x, rules), regexp = pattern, info = sprintf("rules: %s", paste0(rules, collapse=",")), label = xn) expect_expectation_failed(qexpectr(x, rules), info = sprintf("rules: %s", paste0(rules, collapse=",")), label = xn) } test_that("qassertr / qtestr", { x = list(a = 1:10, b = rnorm(10)) expect_succ_all(x, "n+") expect_succ_all(x, "n10") expect_succ_all(x, "n>=1") expect_fail_all(x, "i+") expect_fail_all(x, "l") x = list(a = NULL, b = 10) expect_succ_all(x, "*") expect_fail_all(x, "0") expect_fail_all(x, "n") x = list(a = NULL, b = NULL) expect_succ_all(x, "0") expect_fail_all(x, "0+") x = list() expect_succ_all(x, "n+") expect_succ_all(x, "0+") x = list(1, 2) expect_fail_all(x, "S1", pattern = "string") x = list(1:10, NULL) expect_succ_all(x, c("v", "l", "0")) rules = c("v", "l") expect_fail_all(x, c("v", "l"), pattern = "One of") expect_succ_all(iris, c("f", "n")) expect_fail_all(iris, c("s", "n"), pattern = "One of") x = NULL expect_error(qassertr(x, "x"), "list or data.frame") expect_error(qtestr(x, "x"), "list or data.frame") }) test_that("qtestr / depth", { x = list(letters, 1:10, list(letters, 2:3, runif(10))) rules = c("v", "l") expect_true(qtestr(x, rules, depth = 1L)) expect_true(qtestr(x, rules, depth = 2L)) expect_true(qtestr(x, rules, depth = 3L)) x[[3]][[2]] = iris expect_true(qtestr(x, rules, depth = 1L)) expect_true(qtestr(x, c(rules, "d"), depth = 1L)) expect_false(qtestr(x, rules, depth = 2L)) expect_false(qtestr(x, rules, depth = 3L)) })
expected <- eval(parse(text="c(1, 53, 1)")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(49.9, 52.3, 49.4, 51.1, 49.4, 47.9, 49.8, 50.9, 49.3, 51.9, 50.8, 49.6, 49.3, 50.6, 48.4, 50.7, 50.9, 50.6, 51.5, 52.8, 51.8, 51.1, 49.8, 50.2, 50.4, 51.6, 51.8, 50.9, 48.8, 51.7, 51, 50.6, 51.7, 51.5, 52.1, 51.3, 51, 54, 51.4, 52.7, 53.1, 54.6, 52, 52, 50.9, 52.6, 50.2, 52.6, 51.6, 51.9, 50.5, 50.9, 51.7), .Tsp = c(1, 53, 1)), \"tsp\")")); do.call(`attr`, argv); }, o=expected);
vanderMonde <- function (x, order, ...){ if (nargs () > 2) stop ('Unknown arguments: ', names (c (...))) outer (x, 0 : order, `^`) } setGeneric ("vanderMonde") setMethod ("vanderMonde", signature = signature (x = "hyperSpec"), function (x, order, ..., normalize.wl = normalize01){ validObject (x) wl <- normalize.wl (x@wavelength) x <- decomposition (x, t (vanderMonde (wl, order)), scores = FALSE, ...) x$.vdm.order <- 0 : order x }) .test (vanderMonde) <- function (){ context ("vanderMonde") test_that("vector against manual calculation",{ expect_equal (vanderMonde (c (1 : 3, 5), 2), matrix (c (1, 1, 1, 1, 1, 2, 3, 5, 1, 4, 9, 25), nrow = 4) ) }) test_that("default method doesn't provide normalization",{ expect_error (vanderMonde (1, 0, normalize.wl = normalize01)) }) test_that ("hyperSpec objects", { expect_true (chk.hy (vanderMonde (flu, 0))) expect_true (validObject (vanderMonde (flu, 0))) tmp <- vanderMonde (paracetamol, 3, normalize.wl = I) dimnames (tmp$spc) <- NULL expect_equal (tmp [[]], t (vanderMonde (wl (paracetamol), 3))) tmp <- vanderMonde (paracetamol, 3, normalize.wl = normalize01) dimnames (tmp$spc) <- NULL expect_equal (tmp[[]], t (vanderMonde (normalize01 (wl (paracetamol)), 3))) }) }
CH.sel <- function(data, min.nc, max.nc, method){ alls <- lapply(min.nc:max.nc, CH, data = data, method = method) res <- sapply(alls, function(i){ i[["CH"]] }, simplify = TRUE, USE.NAMES = TRUE) MAX <- max(res) K <- (min.nc:max.nc)[which(res == MAX)[1]] names(res) <- paste("k =", min.nc:max.nc) return(list(Best.nc = K, CritCF.val = res, Best.partition = alls[[which(res == MAX)[1]]][["Partition"]] ) ) } CH <- function(data, k, method, Seed = 1){ if (!is.null(Seed)) {set.seed(Seed)} if (method == "kmed"){ kmed <- suppressWarnings(Gmedian::kGmedian(X = data, ncenters = k)) Classif <- kmed$cluster[, 1] } if (method == "kproto"){ kprot <- clustMixType::kproto(x = data, k = k, keep.data = FALSE, verbose = FALSE) Classif <- kprot$cluster } Crit <- clusterCrit::intCriteria( traj = as.matrix(data[, sapply(data, is.numeric)]), part = as.integer(Classif), crit = "Calinski_Harabasz" ) return(list(CH = Crit[[1]], Partition = Classif)) }
blwts <- function(xmat, y, robdis2 = mycov.rob(as.matrix(xmat), method = "mcd")$robdis2, percent = 0.95, k = 2, intest = myltsreg(xmat, y)$coef) { xmat = as.matrix(xmat) y = as.matrix(y) n = dim(xmat)[1] p = dim(xmat)[2] cut1 = qchisq(percent, 1) cutp = qchisq(percent, p) resids = y - intest[1] - xmat %*% as.matrix(intest[2:(p + 1)]) sigma = mad(resids) ind1 = as.numeric(abs(resids) > sigma * sqrt(cut1)) ind2 = as.numeric(robdis2 > cutp) tmp = (cutp/robdis2)^(k/2) h = 1 - (ind1 * ind2 * (1 - tmp)) tmp2 = pairup(h) ans = tmp2[, 1] * tmp2[, 2] ans } cellmntest <- function(y, levels, amat = cbind(rep(1, max(levels) - 1), -1 * diag(max(levels) - 1)), delta = 0.8, param = 2, print.tbl = T) { amat = rbind(amat) xcell = cellmnxy(levels) p = length(xcell[1, ]) xmat = xcell[, 2:p] amat = amat[, 2:p] ans = suppressWarnings(droptest(xmat, y, amat, delta, param, print.tbl)) ans$full$coef = ans$full$coef + c(0, rep(ans$full$coef[1], p - 1)) invisible(ans) } cellmnxy <- function(levels) { k = max(levels) n = length(levels) cellmnxy = matrix(rep(0, n * k), ncol = k) for (i in 1:k) { cellmnxy[, i][levels == i] = 1 } cellmnxy } centerx <- function(x) { x = as.matrix(x) n = length(x[, 1]) one = matrix(rep(1, n), ncol = 1) x - (one %*% t(one)/n) %*% x } diffwls <- function(x, y, delta = 0.8, param = 2, conf = 0.95) { x = as.matrix(centerx(x)) n = length(x[, 1]) p = length(x[1, ]) tempw = wwest(x, y, "WIL", print.tbl = F) residw = tempw$tmp1$residuals tempvc = varcov.gr(centerx(x), tempw$tmp1$weights, tempw$tmp1$residuals) vcw = as.matrix(tempvc$varcov) templs = lsfit(x, y) diff = tempw$tmp1$coef - templs$coef vcwint = vcw[1, 1] pp1 = length(x[1, ]) + 1 vcwbeta = vcw[2:pp1, 2:pp1] tdbeta = t(diff) %*% solve(vcw) %*% diff tdint = diff[1]^2/vcwint bmtd = (4 * pp1^2)/n xmat = cbind(rep(1, n), x) diffc = xmat %*% diff[1:pp1] diffvc = xmat %*% vcw %*% t(xmat) cd = diffc/(sqrt(diag(diffvc))) bmcd = 2 * sqrt(pp1/n) se = sqrt(diag(vcw)) list(tdbeta = tdbeta, tdint = tdint, bmtd = bmtd, cfit = cd, bmcd = bmcd, est = c("WIL", "LS"), betaw = tempw$tmp1$coef, betals = templs$coef, vcw = vcw, tau = tempvc$tau, taus = tempvc$tau1, se = se) } droptest <- function(xmat, y, amat, delta = 0.8, param = 2, print.tbl = T) { xmat = as.matrix(xmat) amat = rbind(amat) p = length(xmat[1, ]) pp1 = p + 1 n = length(xmat[, 1]) q = length(amat[, 1]) if (p != dim(amat)[2]) stop("droptest: The number of columns in amat and xmat are different.") full = wwfit(xmat, y) dfull = wildisp(full$residuals) tauhat = wilcoxontau(full$residuals, p, delta, param) if (q < p) { xuse = xmat ause = amat xred = redmod(xuse, ause) red = wwfit(xred, y) dred = wildisp(red$residuals) rd = dred - dfull mrd = rd/q fr = mrd/(tauhat/2) } else { warning("droptest: H_0: beta=0 is being tested since q>=p.", call. = F) q = p dred = wildisp(y) rd = dred - dfull mrd = rd/q fr = mrd/(tauhat/2) } df2 = n - p - 1 ts2 = tauhat/2 pval = 1 - pf(fr, q, df2) if (print.tbl) { cnames = c("RD", "DF", "MRD", "TS", "PVAL") rnames = c("H0", "Error") ans = cbind(c(rd, NA), c(q, df2), c(mrd, ts2), c(fr, NA), c(pval, NA)) ans = round(ans, 4) dimnames(ans) = list(rnames, cnames) cat("\n") prmatrix(ans, na.print = "") cat("\n") } invisible(list(full = full, dred = dred, dfull = dfull, tauhat = tauhat, q = q, fr = fr, pval = pval)) } fitdiag <- function(x, y, est = c("WIL", "GR"), delta = 0.8, param = 2, conf = 0.95) { x = as.matrix(centerx(x)) n = dim(x)[1] p = dim(x)[2] tempw = wwest(x, y, "WIL", print.tbl = F) residw = tempw$tmp1$residuals tempvc = varcov.gr(centerx(x), tempw$tmp1$weights, tempw$tmp1$residuals) vcw = as.matrix(tempvc$varcov) tempgr = NULL temphbr = NULL templs = NULL if (any("WIL" == est) & any("GR" == est)) { tempgr = wwest(x, y, "GR", print.tbl = F) diff = tempw$tmp1$coef - tempgr$tmp1$coef } if (any("WIL" == est) & any("HBR" == est)) { temphbr = wwest(x, y, "HBR", print.tbl = F) diff = tempw$tmp1$coef - temphbr$tmp1$coef } if (any("GR" == est) & any("HBR" == est)) { tempgr = wwest(x, y, "GR", print.tbl = F) temphbr = wwest(x, y, "HBR", print.tbl = F) diff = tempgr$tmp1$coef - temphbr$tmp1$coef } if (any("WIL" == est) & any("LS" == est)) { templs = lsfit(x, y) diff = tempw$tmp1$coef - templs$coef } if (any("GR" == est) & any("LS" == est)) { tempgr = wwest(x, y, "GR", print.tbl = F) templs = lsfit(x, y) diff = tempgr$tmp1$coef - templs$coef } if (any("HBR" == est) & any("LS" == est)) { temphbr = wwest(x, y, "HBR", print.tbl = F) templs = lsfit(x, y) diff = temphbr$tmp1$coef - templs$coef } tdbeta = t(cbind(diff)) %*% solve(vcw) %*% cbind(diff) bmtd = (4 * (p + 1)^2)/n xmat = cbind(rep(1, n), x) diffc = xmat %*% diff diffvc = xmat %*% vcw %*% t(xmat) cfit = diffc/(sqrt(diag(diffvc))) bmcf = 2 * sqrt((p + 1)/n) se = sqrt(diag(vcw)) list(tdbeta = c(tdbeta), bmtd = bmtd, cfit = c(cfit), bmcf = bmcf, est = est, betaw = tempw$tmp1$coef, betagr = tempgr$tmp1$coef, betahbr = temphbr$tmp1$coef, betals = templs$coef, vcw = vcw, tau = tempvc$tau, taus = tempvc$tau1, se = se) } grwts <- function(xmat, robdis2 = mycov.rob(as.matrix(xmat), method = "mcd")$robdis2, percent = 0.95, k = 2) { xmat = as.matrix(xmat) n = dim(xmat)[1] p = dim(xmat)[2] cut = qchisq(percent, p) h = pmin(1, ((cut/robdis2)^(k/2))) tmp = pairup(h) ans = tmp[, 1] * tmp[, 2] ans } hbrwts <- function(xmat, y, robdis2 = mycov.rob(as.matrix(xmat), method = "mcd")$robdis2, percent = 0.95, intest = myltsreg(xmat, y)$coef) { xmat = as.matrix(xmat) y = as.matrix(y) n = dim(xmat)[1] p = dim(xmat)[2] cut = qchisq(percent, p) resids = y - intest[1] - xmat %*% as.matrix(intest[2:(p + 1)]) sigma = mad(resids) m = psi(cut/robdis2) a = resids/(sigma * m) c = (median(a) + 3 * mad(a))^2 h = sqrt(c)/a tmp = pairup(h) ans = psi(abs(tmp[, 1] * tmp[, 2])) ans } mycov.rob <- function(x, cor = FALSE, quantile.used = floor((n + p + 1)/2), method = c("mve", "mcd", "classical"), nsamp = "best") { if (v1.9.0()) { if (!any(search() == "package:MASS")) stop("mycov.rob: The 'MASS' package is not loaded.") PACK = "MASS" } else { if (!any(search() == "package:lqs")) stop("mycov.rob: The 'lqs' package is not loaded.") PACK = "lqs" } method <- match.arg(method) x <- as.matrix(x) xcopy = x if (any(is.na(x)) || any(is.infinite(x))) stop("mycov.rob: missing or infinite values are not allowed") n <- nrow(x) p <- ncol(x) if (n < p + 1) stop(paste("mycov.rob: At least", p + 1, "cases are needed")) if (method == "classical") { center = colMeans(x) cov = var(x) robdis2 = mymahalanobis(xcopy, center, cov) ans <- list(center = colMeans(x), cov = var(x), robdis2 = robdis2) } else { if (quantile.used < p + 1) stop(paste("mycov.rob: quantile must be at least", p + 1)) divisor <- apply(x, 2, IQR) if (any(divisor == 0)) stop("mycov.rob: at least one column has IQR 0") x <- x/rep(divisor, rep(n, p)) qn <- quantile.used ps <- p + 1 nexact <- choose(n, ps) if (is.character(nsamp) && nsamp == "best") nsamp <- if (nexact < 5000) "exact" else "sample" if (is.numeric(nsamp) && nsamp > nexact) { warning(paste("only", nexact, "sets, so all sets will be tried")) nsamp <- "exact" } samp <- nsamp != "exact" if (samp) { if (nsamp == "sample") nsamp <- min(500 * ps, 3000) } else nsamp <- nexact if (exists(".Random.seed", envir = .GlobalEnv)) { save.seed <- .Random.seed on.exit(assign(".Random.seed", save.seed, envir = .GlobalEnv)) } set.seed(123) z$sing <- paste(z$sing, "singular samples of size", ps, "out of", nsamp) crit <- z$crit + 2 * sum(log(divisor)) + if (method == "mcd") -p * log(qn - 1) else 0 best <- seq(n)[z$bestone != 0] if (!length(best)) stop("mycov.rob: x is probably collinear") means <- colMeans(x[best, , drop = FALSE]) rcov <- var(x[best, , drop = FALSE]) * (1 + 15/(n - p))^2 dist <- mymahalanobis(x, means, rcov) cut <- qchisq(0.975, p) * quantile(dist, qn/n)/qchisq(qn/n, p) center = colMeans(x[dist < cut, , drop = FALSE]) * divisor cov <- divisor * var(x[dist < cut, , drop = FALSE]) * rep(divisor, rep(p, p)) robdis2 = mymahalanobis(xcopy, center, cov) attr(cov, "names") <- NULL ans <- list(center = center, cov = cov, robdis2 = robdis2, msg = z$sing, crit = crit, best = best) } if (cor) { sd <- sqrt(diag(ans$cov)) ans <- c(ans, list(cor = (ans$cov/sd)/rep(sd, rep(p, p)))) } ans$n.obs <- n ans } mylmsreg <- function(xmat, y) { if (v1.9.0()) { if (!any(search() == "package:MASS")) stop("mycov.rob: The 'MASS' package is not loaded.") } else { if (!any(search() == "package:lqs")) stop("mycov.rob: The 'lqs' package is not loaded.") } xmat = as.matrix(xmat) if (exists(".Random.seed", envir = .GlobalEnv)) { save.seed <- .Random.seed on.exit(assign(".Random.seed", save.seed, envir = .GlobalEnv)) } set.seed(123) tmp = lmsreg(xmat, y, intercept = T) ans = list(coefficients = tmp$coefficients, residuals = tmp$residuals) ans } myltsreg <- function(xmat, y) { if (v1.9.0()) { if (!any(search() == "package:MASS")) stop("mycov.rob: The 'MASS' package is not loaded.") } else { if (!any(search() == "package:lqs")) stop("mycov.rob: The 'lqs' package is not loaded.") } xmat = as.matrix(xmat) if (exists(".Random.seed", envir = .GlobalEnv)) { save.seed <- .Random.seed on.exit(assign(".Random.seed", save.seed, envir = .GlobalEnv)) } set.seed(123) tmp = ltsreg(xmat, y, intercept = T) ans = list(coefficients = tmp$coefficients, residuals = tmp$residuals) ans } mymahalanobis <- function(x, center, cov, inverted = FALSE, tol.inv = 1e-17) { x <- if (is.vector(x)) matrix(x, nrow = length(x)) else as.matrix(x) x <- sweep(x, 2, center) if (!inverted) cov <- ginv(cov, tol = tol.inv) retval <- rowSums((x %*% cov) * x) names(retval) <- rownames(x) retval } pairup.ww <- function(x, type = "less") { x = as.matrix(x) n = dim(x)[1] i = rep(1:n, rep(n, n)) j = rep(1:n, n) c1 = apply(x, 2, function(y) { rep(y, rep(length(y), length(y))) }) c2 = apply(x, 2, function(y) { rep(y, length(y)) }) ans = cbind(c1, c2) ans = switch(type, less = ans[(i < j), ], leq = ans[i <= j, ], neq = ans) ans } plotfitdiag <- function(result) { n = length(result$cfit) main1 = paste("CFITS for", result$est[1], "and", result$est[2]) main2 = paste("TDBETA:", round(result$tdbeta, 2), "Benchmark:", round(result$bmtd, 2)) plot(c(1, n), c(min(result$cfit, -1 * result$bmcf), max(result$cfit, result$bmcf)), type = "n", main = paste(main1, "\n", main2), xlab = "CASE", ylab = "CFIT") points(1:n, result$cfit) abline(h = c(-1 * result$bmcf, result$bmcf)) } psi <- function(x) { x[x == -Inf] = -100 x[x == Inf] = 100 ans = -1 * (x <= -1) + x * (-1 < x & x < 1) + 1 * (x >= 1) ans } pwcomp <- function(y, levels, delta = 0.8, param = 2) { p <- max(levels) m <- pairup(1:p) rnames <- NULL pval <- NULL for (i in 1:dim(m)[1]) { a <- rep(0, p) a[m[i, 1]] <- 1 a[m[i, 2]] <- -1 rnames[i] <- paste("G", m[i, 1], "-", "G", m[i, 2], sep = "") pval[i] <- cellmntest(y, levels, a, delta = delta, param = param, print.tbl = F)$pval } pval <- cbind(round(pval, 4)) dimnames(pval) <- list(rnames, "PVAL") pval } redmod <- function(xmat, amat) { xmat = as.matrix(xmat) amat = rbind(amat) q <- length(amat[, 1]) p <- length(xmat[1, ]) temp <- qr(t(amat)) if (temp$rank != q) stop("redmod: The hypothesis matrix is not full row rank.") else { zed <- qr.qty(temp, t(xmat)) redmod <- rbind(zed[(q + 1):p, ]) } t(redmod) } regrtest <- function(xmat, y, delta = 0.8, param = 2, print.tbl = T) { xmat = as.matrix(xmat) p = dim(xmat)[2] ans = suppressWarnings(droptest(xmat, y, diag(rep(1, p)), delta, param, print.tbl)) invisible(ans) } stanresid <- function(x, y, delta = 0.8, param = 2, conf = 0.95) { xc = as.matrix(centerx(x)) n = length(y) p = length(xc[1, ]) pp1 = p + 1 tempw = wwest(x, y, "WIL", print.tbl = F) resid = tempw$tmp1$residuals hc = diag(xc %*% solve(t(xc) %*% xc) %*% t(xc)) tau = wilcoxontau(resid, p, delta = 0.8, param = 2) taus = taustar(resid, p, conf = 0.95) deltas = sum(abs(resid))/(n - pp1) delta = wildisp(resid)/(n - pp1) sig = mad(resid) k1 = (taus^2/sig^2) * (((2 * deltas)/taus) - 1) k2 = (tau^2/sig^2) * (((2 * delta)/tau) - 1) s1 = sig^2 * (1 - (k1/n) - k2 * hc) s2 = s1 s2[s1 <= 0] = sig^2 * (1 - (1/n) - hc[s1 <= 0]) ind = rep(0, n) ind[s1 <= 0] = 1 stanresid = resid/sqrt(s2) list(stanr = stanresid, ind = ind, rawresids = resid, betaw = tempw$tmp1$coef, tau = tau, taustar = taus) } studres.gr <- function(x, bmat, res, delta = 0.8, center = T) { x = as.matrix(x) if (center) { x = apply(x, 2, function(x) { x - mean(x) }) } bmat = as.matrix(bmat) res = as.vector(res) n = dim(x)[1] p = dim(x)[2] diag(bmat) = rep(0, n) w = -1 * bmat diag(w) = bmat %*% as.matrix(rep(1, n)) w = (1/n) * w Kw = x %*% solve(t(x) %*% w %*% x) %*% t(x) %*% w H = x %*% solve(t(x) %*% x) %*% t(x) I = diag(n) J = matrix(1/n, n, n) sigma2 = (mad(res))^2 tau1 = taustar(res, p) tau = wilcoxontau(res, p, delta) delta.s = (n/(n - p - 1)) * mean(abs(res)) K3 = 2 * tau1 * delta.s - (tau1)^2 tmp = pairup(res, "neq") xi = mean(tmp[, 1] * sign(tmp[, 1] - tmp[, 2])) K4 = sqrt(12) * tau * xi delta5 = mean(sign(tmp[, 1]) * sign(tmp[, 1] - tmp[, 2])) K5 = sqrt(12) * tau * tau1 * delta5 v = sigma2 * I - K3 * J - (K4 * I - K5 * J) %*% t(Kw) + (tau^2) * Kw %*% t(Kw) diag(v)[diag(v) <= 0] = sigma2 * diag(I - (1/n + H))[diag(v) <= 0] as.vector(res/sqrt(diag(v))) } studres.hbr <- function(x, bmat, res, delta = 0.8, center = T) { x = as.matrix(x) if (center) { x = apply(x, 2, function(x) { x - mean(x) }) } bmat = as.matrix(bmat) res = as.vector(res) n = dim(x)[1] p = dim(x)[2] sigma2 = (mad(res))^2 tau1 = taustar(res, p) tau = wilcoxontau(res, p, delta) K1 = (n/(n - p - 1)) * mean(abs(res)) K2 = 2 * mean((rank(res)/(n + 1) - 0.5) * res) H = x %*% solve(t(x) %*% x) %*% t(x) I = diag(n) J = matrix(1/n, n, n) diag(bmat) = rep(0, n) w = -1 * bmat diag(w) = bmat %*% as.matrix(rep(1, n)) w = (1/(sqrt(12) * tau)) * w cmat = (1/n^2) * t(x) %*% w %*% x cinv = solve(cmat) u = (1/n) * (bmat - diag(c(bmat %*% cbind(rep(1, n))))) %*% x u = u * (1 - 2 * rank(res)/n) vmat = var(u) v = sigma2 * I + tau1^2 * J + (1/4) * x %*% ((1/n^2) * cinv) %*% vmat %*% ((1/n^2) * cinv) %*% t(x) - 2 * tau1 * K1 * J - sqrt(12) * tau * K2 * (w %*% x %*% ((1/n^2) * cinv) %*% t(x) + x %*% ((1/n^2) * cinv) %*% t(x) %*% w) diag(v)[diag(v) <= 0] = sigma2 * diag(I - (1/n + H))[diag(v) <= 0] as.vector(res/sqrt(diag(v))) } taustar <- function(resid, p, conf = 0.95) { n = length(resid) zc = qnorm((1 + conf)/2) c1 = (n/2) - ((sqrt(n) * zc)/2) - 0.5 ic1 = floor(c1) if (ic1 < 0) { ic1 = 0 } z = sort(resid) l = z[ic1 + 1] u = z[n - ic1] df = sqrt(n)/sqrt(n - p - 1) taustar = df * ((sqrt(n) * (u - l))/(2 * zc)) taustar } theilwts <- function(xmat) { xmat = as.matrix(xmat) p = dim(xmat)[2] xpairs = pairup(xmat) xi = xpairs[, 1:p] xj = xpairs[, (p + 1):(2 * p)] diff = as.matrix(xi - xj) ans = apply(diff, 1, function(y) { sqrt(sum(y * y)) }) ans = 1/ans ans[ans == Inf] = 0 ans } v1.9.0 <- function() { major = version$major minor = version$minor n = as.numeric(paste(major, minor, sep = "")) n >= 19 } varcov.gr <- function(x, bmat, res, delta = 0.8) { x = as.matrix(x) xbar = as.matrix(apply(x, 2, mean)) bmat = as.matrix(bmat) res = as.vector(res) n = dim(x)[1] p = dim(x)[2] diag(bmat) = rep(0, n) w = -1 * bmat diag(w) = bmat %*% as.matrix(rep(1, n)) w = (1/n) * w cmat = (1/n) * t(x) %*% w %*% x cinv = ginv(cmat) vmat = (1/n) * t(x) %*% w %*% w %*% x tau = wilcoxontau(res, p, delta) tau1 = taustar(res, p) varcov22 = (tau^2/n) * cinv %*% vmat %*% cinv varcov12 = -1 * (t(xbar)) %*% varcov22 varcov11 = (tau1^2/n) + (t(xbar)) %*% varcov22 %*% xbar varcov = cbind(rbind(varcov11, t(varcov12)), rbind(varcov12, varcov22)) attr(varcov, "names") = NULL ans = list(varcov = varcov, tau1 = tau1, tau = tau, wmat = w, cmat = cmat, vmat = vmat) ans } varcov.hbr <- function(x, bmat, res, delta = 0.8) { x = as.matrix(x) xbar = as.matrix(apply(x, 2, mean)) bmat = as.matrix(bmat) res = as.vector(res) n = dim(x)[1] p = dim(x)[2] tau = wilcoxontau(res, p, delta) tau1 = taustar(res, p) diag(bmat) = rep(0, n) w = -1 * bmat diag(w) = bmat %*% as.matrix(rep(1, n)) w = (1/(sqrt(12) * tau)) * w cmat = (1/n^2) * t(x) %*% w %*% x cinv = solve(cmat) u = (1/n) * (bmat - diag(c(bmat %*% cbind(rep(1, n))))) %*% x u = u * (1 - 2 * rank(res)/n) vmat = var(u) varcov22 = (1/(4 * n)) * cinv %*% vmat %*% cinv varcov12 = -1 * (t(xbar)) %*% varcov22 varcov11 = (tau1^2/n) + (t(xbar)) %*% varcov22 %*% xbar varcov = cbind(rbind(varcov11, t(varcov12)), rbind(varcov12, varcov22)) attr(varcov, "names") = NULL ans = list(varcov = varcov, tau1 = tau1, tau = tau, wmat = w, cmat = cmat, vmat = vmat) ans } wald <- function(est, varcov, amat, true, n) { true = as.matrix(true) est = as.matrix(est) amat = as.matrix(amat) p = dim(est)[1] - 1 q = dim(amat)[1] temp1 = as.matrix(amat %*% est - true) temp2 = as.matrix(amat %*% varcov %*% t(amat)) T2 = t(temp1) %*% solve(temp2) %*% temp1 T2 = T2/q pvalue = 1 - pf(T2, q, n - p - 1) c(T2, pvalue) } wilcoxonpseudo <- function(x, y, delta = 0.8, param = 2) { x = as.matrix(x) n = length(x[, 1]) p = length(x[1, ]) one = matrix(rep(1, n), ncol = 1) x = x - (one %*% t(one)/n) %*% x tempw = wwest(x, y, "WIL") residw = tempw$tmp1$residuals fitw = y - residw arr = order(residw) jr = rep(0, n) for (i in 1:n) { jr[arr[i]] = i } sc = sqrt(12) * ((jr/(n + 1)) - 0.5) zeta = sqrt((n - p - 1)/sum(sc^2)) tau = wilcoxontau(residw, p, delta, param) wilcoxonpseudo = fitw + tau * zeta * sc wilcoxonpseudo } wilcoxontau.ww <- function(resd, p, delta = if ((length(resd)/p) > 5) 0.8 else 0.95, param = 2) { eps <- 1e-06 n <- length(resd) temp <- pairup(resd, type="less") dresd <- sort(abs(temp[, 1] - temp[, 2])) dresd = dresd[(p + 1):choose(n, 2)] tdeltan <- quantile(dresd, delta)/sqrt(n) w <- rep(0, length(dresd)) w[dresd <= tdeltan] <- 1 cn <- 2/(n * (n - 1)) scores = sqrt(12) * ((1:n)/(n + 1) - 0.5) mn = mean(scores) con = sqrt(sum((scores - mn)^2)/(n + 1)) scores = (scores - mn)/con dn = scores[n] - scores[1] wilcoxontau <- sqrt(n/(n - p - 1)) * ((2 * tdeltan)/(dn * sum(w) * cn)) w <- rep(0, n) stan <- (resd - median(resd))/mad(resd) w[abs(stan) < param] <- 1 hubcor <- sum(w)/n if (hubcor < eps) { hubcor <- eps } fincor <- 1 + (((p + 1)/n) * ((1 - hubcor)/hubcor)) wilcoxontau <- fincor * wilcoxontau names(wilcoxontau) <- NULL wilcoxontau } wildisp <- function(resid) { n = length(resid) sresid = sort(resid) scores = sqrt(12) * ((1:n)/(n + 1) - 0.5) mn = mean(scores) con = sqrt(sum((scores - mn)^2)/(n + 1)) scores = (scores - mn)/con sum(scores * sresid) } wilwts <- function(xmat) { xmat = as.matrix(xmat) n = dim(xmat)[1] ans = rep(1, n * (n - 1)/2) ans } wts <- function(xmat, y, type = "WIL", percent = 0.95, k = 2, robdis2 = if (type != "WIL") mycov.rob(as.matrix(xmat), method = "mcd")$robdis2 else NULL, intest = if (type == "HBR" | type == "BL") myltsreg(xmat, y)$coef else NULL) { xmat = as.matrix(xmat) y = as.matrix(y) switch(type, WIL = wilwts(xmat), THEIL = theilwts(xmat), GR = grwts(xmat, robdis2, percent, k), HBR = hbrwts(xmat, y, robdis2, percent, intest), BL = blwts(xmat, y, robdis2, percent, k, intest), stop("wts: TYPE should be WIL, THEIL, GR, HBR or BL")) } wwest <- function(x, y, bij = "WIL", center = F, print.tbl = T) { if (is.character(bij)) { type = bij bij = switch(bij, WIL = wilwts(x), THEIL = theilwts(x), GR = grwts(x), HBR = hbrwts(x, y), BL = blwts(x, y), stop("wwest: The weight type should be WIL, THEIL, GR, HBR, or BL")) } else { type = "GR" } tmp1 = wwfit(x, y, bij, center) n = length(y) p = length(tmp1$coef) - 1 ans = cbind(tmp1$coef) tmp2 = switch(type, WIL = varcov.gr(x, tmp1$weights, tmp1$residuals), THEIL = varcov.gr(x, tmp1$weights, tmp1$residuals), GR = varcov.gr(x, tmp1$weights, tmp1$residuals), HBR = varcov.hbr(x, tmp1$weights, tmp1$residuals), BL = varcov.hbr(x, tmp1$weights, tmp1$residuals)) bb <- diag(tmp2$varcov) bb[bb < 0] <- 0 ans = cbind(ans, sqrt(bb)) ans = cbind(ans, ans[, 1]/ans[, 2]) ans = cbind(ans, 2 * pt(abs(ans[, 3]), n - p - 1, lower.tail = FALSE)) ans = round(ans, 4) dimnames(ans) = list(paste("BETA", 0:p, sep = ""), c("EST", "SE", "TVAL", "PVAL")) if (print.tbl) { tmp3 = wald(tmp1$coef, tmp2$varcov, amat = cbind(rep(0, p), diag(p)), true = rep(0, p), n = n) BETA = "" for (i in 1:p) { BETA = paste(BETA, "BETA", i, "=", sep = "") } cat("\n") cat(paste("Wald Test of H0: ", BETA, "0\n", sep = "")) cat(paste("TS:", round(tmp3[1], 4), "PVAL:", round(tmp3[2], 4), "\n")) cat("\n") if (type == "WIL") { tmp4 = regrtest(x, y, print.tbl = F) cat(paste("Drop Test of H0: ", BETA, "0\n", sep = "")) cat(paste("TS:", round(tmp4$fr, 4), "PVAL:", round(tmp4$pval, 4), "\n")) cat("\n") } prmatrix(ans, na.print = "") repeat { cat("\n") cat("Would you like to see residual plots (y/n)?", "\n") yn = as.character(readline()) if (yn == "y" | yn == "Y" | yn == "yes") { studres = switch(type, WIL = studres.gr(x, tmp1$weights, tmp1$residuals), THEIL = studres.gr(x, tmp1$weights, tmp1$residuals), GR = studres.gr(x, tmp1$weights, tmp1$residuals), HBR = studres.hbr(x, tmp1$weights, tmp1$residuals), BL = studres.hbr(x, tmp1$weights, tmp1$residuals)) yhat = y - tmp1$residuals par(mfrow = c(2, 2)) plot(yhat, tmp1$residuals, xlab = "Fit", ylab = "Residual", main = "Residuals vs. Fits") hist(tmp1$residuals, freq = FALSE, main = "Histogram of Residuals", xlab = "Residual") plot(studres, xlab = "Case", ylab = "Studentized Residual", main = "Case Plot of\nStudentized Residuals") abline(h = c(-2, 2)) qqnorm(tmp1$residuals, main = "Normal Q-Q Plot of Residuals") qqline(tmp1$residuals) break } if (yn == "n" | yn == "N" | yn == "no") break } } invisible(list(tmp1 = tmp1, tmp2 = tmp2, ans = ans)) } wwfit <- function(x, y, bij = wilwts(as.matrix(x)), center = F) { x = as.matrix(x) n = dim(x)[1] p = dim(x)[2] if (center) { xbar = apply(x, 2, mean) x = apply(x, 2, function(x) { x - mean(x) }) } ypairs = pairup.ww(y) yi = ypairs[, 1] yj = ypairs[, 2] xpairs = pairup.ww(x) xi = xpairs[, 1:p] xj = xpairs[, (p + 1):(2 * p)] newy = bij * (yi - yj) newx = bij * (xi - xj) if (((n * (n - 1)/2) < 5000) & (p < 20)) tmp = rq.fit.br(newx, newy, tau = 0.5, ci = F) else tmp = rq.fit.fnb(cbind(newx), cbind(newy), tau = 0.5) est = tmp$coefficients int = median(y - (x %*% as.matrix(est))) resid = as.vector(y - int - (x %*% as.matrix(est))) if (center) { int = int - (t(as.matrix(est)) %*% as.matrix(xbar)) } wts = matrix(0, n, n) index = pairup(1:n) wts[index] = bij wts[index[, 2:1]] = bij ans = list(coefficients = c(int, est), residuals = resid, weights = wts) ans }
mestimator_mean_cov <- function(x, tol=1e-6, ...) { UseMethod("mestimator_mean_cov") } mestimator_mean_cov.default <- function(x, ...) { stop("No implementation for object of provided class. Please supply a data matrix of observations.") } mestimator_mean_cov.data.frame <- function(x, ...) { mestimator_mean_cov(as.matrix(x), ...) } mestimator_mean_cov.matrix <- function(x, powerfct, normalization, maxiter=1e4, tol=1e-6, ...) { if (tol <= 0 || maxiter <= 0) { stop("Nonpositive arguments maxiter or tol.") } if (any(is.na(x))) { return(mestimator_mean_cov.naBlocks(naBlocks(x), powerfct, normalization, maxiter, tol, ...)) } x_nonCentered <- x centerAndKeepNonzeroObs <- function(mu) { x <- sweep(x_nonCentered, 2, mu) zeroObservation <- rowSums(x) == 0 if (any(zeroObservation)) { x <- x[!zeroObservation,, drop=FALSE] message("Remove observation at center") } return(x) } i <- 0 dist <- 2*tol n <- nrow(x_nonCentered) p <- ncol(x_nonCentered) mu <- numeric(p) S0 <- diag(p) while (i < maxiter && dist > tol) { x <- centerAndKeepNonzeroObs(mu) n <- nrow(x) xi <- rowSums(x * t(solve(S0, t(x)))) try(w <- powerfct(xi, p = p)) S <- (crossprod(x, w$w*x))/n mu2 <- colMeans(sweep(x, 1, w$v, "*")) dist <- max(norm(S-S0, "M"), max(abs(mu2))) S0 <- S mu <- mu+mu2 i <- i+1 } if (i >= maxiter) { warning(paste("No convergence in", i, "steps.")) } shape <- normalization(S0) res <- list(S=shape$S, scale=shape$scale, mu=mu, alpha=NULL, iterations=i, naBlocks=NULL) class(res) <- "shapeNA" return(res) } mestimator_mean_cov.naBlocks <- function(x, powerfct, normalization, maxiter, tol, ...) { if (tol <= 0 || maxiter <= 0) { stop("Nonpositive arguments maxiter or tol.") } y_nonCentered <- x$data centerAndKeepNonzeroObs <- function(mu) { x <- sweep(y_nonCentered, 2, mu) zeroObservation <- rowSums(x, na.rm = TRUE) == 0 if (any(zeroObservation)) { x <- x[!zeroObservation,, drop=FALSE] message("Remove observation at center") } return(x) } i <- 0 dist <- 2*tol n <- nrow(y_nonCentered) p <- ncol(y_nonCentered) covAndMeanOfSubset <- function(x, S, varCount, n) { Sinv <- solve(S) if (!isSymmetric(Sinv)) { Sinv <- (Sinv + t(Sinv))/2 } rootS <- matroot(Sinv) xi <- rowSums((x%*%Sinv)* x) try( w <- powerfct(xi, p, varCount) ) a <- (crossprod(x, w$w*x)) b <- sweep(x%*%rootS, 1, w$v, FUN = "*") return(list(S=Sinv %*% a %*% Sinv - n * Sinv, mu=colSums(b))) } S0 <- diag(p) blockIdx <- x$N blockPattern <- x$P mu <- numeric(p) while (i < maxiter && dist > tol) { y <- centerAndKeepNonzeroObs(mu) n <- nrow(y) rows <- 1:blockIdx[1] tryCatch( a <- covAndMeanOfSubset( y[rows, , drop = FALSE], S0, n=length(rows), varCount=p) , error = function(e) { message(paste("Iteration", i)) message(e) stop("Matrix not positive definite") } ) a_Sigma <- a$S a_mu <- a$mu for (j in 2:length(blockIdx)) { rows <- (blockIdx[j-1]+1):blockIdx[j] cols <- asBinaryVector(blockPattern[j], p) tryCatch( a <- covAndMeanOfSubset( y[rows, cols, drop = FALSE], S0[cols, cols], n=length(rows), varCount=sum(cols)) , error = function(e) { message(paste("Iteration", i, "block", j)) message(e) stop("Matrix not positive definite") } ) a_Sigma[cols, cols] <- a_Sigma[cols, cols] + a$S a_mu[cols] <- a_mu[cols] + a$mu } a_Sigma <- S0 %*% (a_Sigma/n) %*% S0 a_mu <- (a_mu %*% matroot(S0))/n dist <- max(norm(a_Sigma, "M"), max(abs(a_mu))) S0 <- S0 + a_Sigma mu <- mu + a_mu i <- i+1 } if (i >= maxiter) { warning(paste("No convergence in", i, "steps.")) } ogOrder <- order(x$permutation) S0 <- S0[ogOrder, ogOrder] mu <- mu[ogOrder] shape <- normalization(S0) res <- list(S=shape$S, scale=shape$scale, mu=mu, alpha=NULL, iterations=i, naBlocks=x) class(res) <- "shapeNA" return(res) }
NULL setClass( Class="MixmodXmlCheck", representation=representation( xmlFile = "character", xmlType = "character" ) ) setMethod( f="initialize", signature=c("MixmodXmlCheck"), definition=function(.Object, xmlFile){ .Object@xmlFile <- xmlFile .Object@xmlType <- "unknown" return(.Object) } ) mixmodXmlCheck <- function(...){ return(new("MixmodXmlCheck", ...)) } mixmodXmlLoad <- function(xmlFile, numFormat="humanReadable"){ xmlIn <- mixmodXmlInput(xmlFile, numFormat=numFormat, conversionOnly=TRUE) xem <- new("MixmodXmlCheck", xmlFile) .Call("xMain", xem, PACKAGE="Rmixmod") if(xem@xmlType == "clustering"){ return(mixmodCluster(xmlIn=xmlIn)) } if(xem@xmlType == "learn"){ return(mixmodLearn(xmlIn=xmlIn)) } if(xem@xmlType == "predict"){ return(mixmodPredict(xmlIn=xmlIn)) } }
range_prop <- function(x, name) { if (is.null(x)) return(list()) if (is.character(x)) { return(named_list(name, x)) } assert_that(is.numeric(x), length(x) <= 2) n_miss <- sum(is.na(x)) if (n_miss == 0) { named_list(name, x) } else if (n_miss == 1) { if (is.na(x[1])) { named_list(paste0(name, "Max"), x[2]) } else { named_list(paste0(name, "Min"), x[1]) } } else if (n_miss == 2) { list() } } named_list <- function(names, ...) { stats::setNames(list(...), names) } propname_to_scale <- function(prop) { simplify <- c( "x2" = "x", "width" = "x", "y2" = "y", "height" = "y", "fillOpacity" = "opacity", "strokeOpacity" = "opacity", "innerRadius" = "radius", "outerRadius" = "radius", "startAngle" = "angle", "endAngle" = "angle" ) matches <- match(prop, names(simplify)) prop[!is.na(matches)] <- simplify[prop[!is.na(matches)]] prop } scaletype_to_vega_scaletype <- function(type) { unname(c( "numeric" = "quantitative", "ordinal" = "ordinal", "nominal" = "ordinal", "logical" = "ordinal", "datetime" = "time" )[type]) }
fitted.GNARfit <- function(object,...){ stopifnot(is.GNARfit(object)) dotarg <- list(...) if(length(dotarg)!=0){ if(!is.null(names(dotarg))){ warning("... not used here, input(s) ", paste(names(dotarg), collapse=", "), " ignored") }else{ warning("... not used here, input(s) ", paste(dotarg, collapse=", "), " ignored") } } return(residToMat(object, nnodes=object$frbic$nnodes)$fit) }
summary.fechner <- function(object, level = 2, ...){ if (mode(level) != "numeric") stop("level must be number") if (!is.finite(level)) stop("level must be finite, i.e., not be NA, NaN, Inf, or -Inf") if (as.integer(level) != level) stop("level must be integer") if (level < 2) stop("level must be greater than or equal to 2") if (attr(object, which = "computation", exact = TRUE) == "short"){ G <- object$overall.Fechnerian.distances S <- object$S.index number.links <- object$graph.lengths.of.geodesic.loops } else if (attr(object, which = "computation", exact = TRUE) == "long"){ G <- object$overall.Fechnerian.distances.1 S <- object$S.index number.links <- object$graph.lengths.of.geodesic.loops.1 } else stop("object attribute computation must have value \"short\" or \"long\"") pairs <- (number.links[upper.tri(number.links)] >= level) if (!any(pairs)) stop(paste("summary is not possible: there are no (off-diagonal) pairs of stimuli with geodesic loops containing at least ", level, " links", sep = "")) G.level <- G[upper.tri(G)][pairs] S.level <- S[upper.tri(S)][pairs] correlation <- cor(S.level, G.level) if (is.na(correlation)) correlation <- "Pearson's correlation coefficient is not defined" C.index <- ((2 * sum((S.level - G.level)^2)) / (sum((S.level)^2) + sum((G.level)^2))) stimuli.pairs <- paste(rownames(S)[row(S)[upper.tri(S)][pairs]], ".", colnames(S)[col(S)[upper.tri(S)][pairs]], sep = "") comparison.pairs <- data.frame(stimuli.pairs = stimuli.pairs, S.index = S.level, Fechnerian.distance.G = G.level, stringsAsFactors = FALSE) results <- list(pairs.used.for.comparison = comparison.pairs, Pearson.correlation = correlation, C.index = C.index, comparison.level = level) class(results) <- "summary.fechner" return(results) }
"df2"
plot.ensembleBMAgamma <- function(x, ensembleData, dates=NULL, ask=TRUE, ...) { par(ask = ask) powfun <- function(x,power) x^power powinv <- function(x,power) x^(1/power) weps <- 1.e-4 matchITandFH(x,ensembleData) exchangeable <- x$exchangeable ensembleData <- ensembleData[,matchEnsembleMembers(x,ensembleData)] M <- !dataNA(ensembleData) if (!all(M)) ensembleData <- ensembleData[M,] fitDates <- modelDates(x) M <- matchDates( fitDates, ensembleValidDates(ensembleData), dates) if (!all(M$ens)) ensembleData <- ensembleData[M$ens,] if (!all(M$fit)) x <- x[fitDates[M$fit]] dates <- modelDates(x) Dates <- ensembleValidDates(ensembleData) obs <- dataVerifObs(ensembleData) nObs <- length(obs) if (nObs == 0) obs <- rep(NA,nrow(ensembleData)) nForecasts <- ensembleSize(ensembleData) ensembleData <- ensembleForecasts(ensembleData) obs <- powfun( obs, power = x$power) l <- 0 for (d in dates) { l <- l + 1 WEIGHTS <- x$weights[,d] if (all(Wmiss <- is.na(WEIGHTS))) next I <- which(as.logical(match(Dates, d, nomatch = 0))) for (i in I) { f <- ensembleData[i,] M <- is.na(f) | Wmiss VAR <- (x$varCoefs[1,d] + x$varCoefs[2,d]*f)^2 fTrans <- sapply(f, powfun, power = x$power) MEAN <- apply(rbind(1, fTrans) * x$biasCoefs[,d], 2, sum) W <- WEIGHTS if (any(M)) { W <- W + weps W <- W[!M]/sum(W[!M]) } plotBMAgamma( WEIGHTS = W, MEAN = MEAN[!M], VAR = VAR[!M], obs = obs[i], exchangeable = exchangeable, power = x$power) } } invisible() }
context("Cashflows") test_that("Cashflow for a bullet loan", { l <- loan(rate = 0.1, maturity = 4, amt = 1, type = "bullet", grace_int = 0, grace_amort = 0) expect_that(l$cf, equals(c(0.1, 0.1, 0.1, 1.1))) }) test_that("Cashflow for a german loan", { l <- loan(rate = 0.1, maturity = 4, amt = 1, type = "german", grace_int = 0, grace_amort = 0) expect_that(l$cf, equals(0.25 + c(1, 0.75, 0.5, 0.25) * 0.1)) }) test_that("Cashflow for a french loan", { l <- loan(rate = 0.1, maturity = 4, amt = 1, type = "french", grace_int = 0, grace_amort = 0) pmt <- 1 / sum (1 / (rep_len(1 + 0.1, 4) ^ (1:4))) expect_that(l$cf, equals(rep_len(pmt, 4))) })
make_activity_fn <- function(..., detector_daily_duration=24){ if (!requireNamespace("activity", quietly = TRUE)){ stop("Package 'activity' not installed!") } call <- sys.call(sys.parent()) detector_daily_duration <- eval(substitute(call)$detector_daily_duration, envir=parent.frame(n=1)) call$detector_daily_duration <- NULL args <- as.list(match.call(activity::fitact, call=call, expand.dots=TRUE)) args[[1]] <- NULL args$reps <- 1 args$show <- FALSE for(i in seq(1, length(args))){ args[[i]] <- eval(args[[i]], envir=parent.frame(n=1)) } function(){ unname(do.call(activity::fitact, args)@act[3])/(detector_daily_duration/24) } }
get_bearer <- function() { bearer_token <- Sys.getenv('TWITTER_BEARER') if (identical(bearer_token, "")) { stop("Please set envvar TWITTER_BEARER or supply your bearer token in every call. See ?get_bearer for more information.", call. = FALSE) } return(bearer_token) }
images2matrix <- function( imgs, mask = NULL){ if (!is.null(mask)) { mask = img_data(mask) check_mask_fail(mask, allow.array = TRUE) } imgs <- lapply(imgs, img_data) if (!same_dims(imgs)) { stop("Not all images have the same dimensions!") } if (!is.null(mask)) { if (!same_dims(imgs[[1]], mask)) { stop("Mask is not the same dimensions as the images!") } } if (!is.null(mask)) { mask = which(mask %in% 1) imgs = lapply(imgs, function(x){ x[mask] }) } imgs <- do.call(cbind, imgs) return(imgs) }
done <- function(msg){ packageStartupMessage(crayon::green(cli::symbol$tick), " ", msg) } not_done <- function(msg){ packageStartupMessage(crayon::red(cli::symbol$cross), " ", msg) } congrats <- function(msg){ packageStartupMessage(crayon::yellow(cli::symbol$star), " ", msg) } info <- function(msg){ packageStartupMessage(crayon::blue(cli::symbol$bullet), " ", msg) } red_message <- function(msg) { message(crayon::red(cli::symbol$cross), " ", msg) } green_message <- function(msg){ message(crayon::green(cli::symbol$tick), " ", msg) }
setGeneric( "is_extension", function(object){ standardGeneric("is_extension") } ) setMethod( "is_extension", "FieldDescriptor", function(object){ .Call( "FieldDescriptor__is_extension", object@pointer, PACKAGE = "RProtoBuf" ) }) setMethod( "number", "FieldDescriptor", function(object){ .Call( "FieldDescriptor__number", object@pointer, PACKAGE = "RProtoBuf" ) } ) TYPE_DOUBLE <- 1L TYPE_FLOAT <- 2L TYPE_INT64 <- 3L TYPE_UINT64 <- 4L TYPE_INT32 <- 5L TYPE_FIXED64 <- 6L TYPE_FIXED32 <- 7L TYPE_BOOL <- 8L TYPE_STRING <- 9L TYPE_GROUP <- 10L TYPE_MESSAGE <- 11L TYPE_BYTES <- 12L TYPE_UINT32 <- 13L TYPE_ENUM <- 14L TYPE_SFIXED32 <- 15L TYPE_SFIXED64 <- 16L TYPE_SINT32 <- 17L TYPE_SINT64 <- 18L .TYPES <- sapply(ls( pattern="^TYPE_" ), function(x) get(x)) setGeneric( "type", function(object, as.string = FALSE){ standardGeneric( "type" ) } ) setMethod( "type", "FieldDescriptor", function(object, as.string = FALSE){ type <- .Call( "FieldDescriptor__type", object@pointer, PACKAGE = "RProtoBuf" ) if( as.string ) { names(which(.TYPES == type)) } else { type } } ) CPPTYPE_INT32 <- 1L CPPTYPE_INT64 <- 2L CPPTYPE_UINT32 <- 3L CPPTYPE_UINT64 <- 4L CPPTYPE_DOUBLE <- 5L CPPTYPE_FLOAT <- 6L CPPTYPE_BOOL <- 7L CPPTYPE_ENUM <- 8L CPPTYPE_STRING <- 9L CPPTYPE_MESSAGE <- 10L .CPPTYPES <- sapply(ls( pattern="^CPPTYPE_" ), function(x) get(x)) setGeneric( "cpp_type", function(object, as.string = FALSE ){ standardGeneric( "cpp_type" ) } ) setMethod( "cpp_type", "FieldDescriptor", function(object, as.string = FALSE){ cpptype <- .Call( "FieldDescriptor__cpp_type", object@pointer, PACKAGE = "RProtoBuf" ) if( as.string ) { names(which(.CPPTYPES == cpptype)) } else { cpptype } } ) LABEL_OPTIONAL <- 1L LABEL_REQUIRED <- 2L LABEL_REPEATED <- 3L .LABELS <- sapply(ls( pattern="^LABEL_" ), function(x) get(x)) setGeneric( "label", function(object, as.string = FALSE ){ standardGeneric( "label" ) } ) setMethod( "label", "FieldDescriptor", function(object, as.string = FALSE){ lab <- .Call( "FieldDescriptor__label", object@pointer, PACKAGE = "RProtoBuf" ) if( as.string ) { names(which(.LABELS == lab)) } else { lab } } ) setGeneric( "is_repeated", function(object ){ standardGeneric( "is_repeated" ) } ) setMethod( "is_repeated", "FieldDescriptor", function(object){ .Call( "FieldDescriptor__is_repeated", object@pointer, PACKAGE = "RProtoBuf" ) } ) setGeneric( "is_optional", function(object){ standardGeneric( "is_optional" ) } ) setMethod( "is_optional", "FieldDescriptor", function(object){ .Call( "FieldDescriptor__is_optional", object@pointer, PACKAGE = "RProtoBuf" ) } ) setGeneric( "is_required", function(object ){ standardGeneric( "is_required" ) } ) setMethod( "is_required", "FieldDescriptor", function(object){ .Call( "FieldDescriptor__is_required", object@pointer, PACKAGE = "RProtoBuf" ) } ) setGeneric( "has_default_value", function(object ){ standardGeneric( "has_default_value" ) } ) setMethod( "has_default_value", "FieldDescriptor", function(object){ .Call( "FieldDescriptor__has_default_value", object@pointer, PACKAGE = "RProtoBuf" ) } ) setGeneric( "default_value", function(object ){ standardGeneric( "default_value" ) } ) setMethod( "default_value", "FieldDescriptor", function(object){ .Call( "FieldDescriptor__default_value", object@pointer, PACKAGE = "RProtoBuf" ) } ) setGeneric( "message_type", function(object ){ standardGeneric( "message_type" ) } ) setMethod( "message_type", "FieldDescriptor", function(object){ .Call( "FieldDescriptor__message_type", object@pointer, PACKAGE = "RProtoBuf" ) } ) setMethod( "enum_type", c( object = "FieldDescriptor", index = "missing", name = "missing"), function(object){ .Call( "FieldDescriptor__enum_type", object@pointer, PACKAGE = "RProtoBuf" ) } )
context("shapes") test_that("show_shapes works", { x <- 1:10 expect_eqNe(show_shapes(x), x) }) test_that("show_linetypes works", { x <- 1:5 expect_eqNe(show_linetypes(x), x) }) test_that("show_linetypes works with labels = FALSE", { x <- 1:5 expect_eqNe(show_linetypes(x, labels = FALSE), x) })
print.power <- function(x, digits = 3, latex.output = FALSE, template = 1, ...) { class(x) <- paste("power", template, sep = "") print(x, digits, latex.output, ...) }
varLmoments <- function (x, matrix=TRUE) { y <- sort(x) n <- length(y) nn <- rep(n-1, n) pp <- seq(0, n-1) p1 <- pp/nn p2 <- p1*(pp-1)/(nn-1) p3 <- p2*(pp-2)/(nn-2) b0 <- sum(y)/n b1 <- sum(p1*y)/n b2 <- sum(p2*y)/n b3 <- sum(p3*y)/n l1 <- b0 l2 <- 2*b1 - b0 l3 <- 6*b2 - 6*b1 + b0 l4 <- 20*b3 - 30*b2 + 12*b1 - b0 tau <- l2/l1 tau3 <- l3/l2 tau4 <- l4/l2 Y1 <- y %*% t(rep(1,n)) Y <- Y1*t(Y1) Q <- seq(1,n) %*% t(rep(1,n)) P <- t(Q) varb0 <- b0^2 - 1/n/(n-1) *2* sum(Y*lower.tri(Y)) W11 <- 1/n/(n-1)/(n-2)/(n-3) *2*((P-1)*(Q-3)) V11 <- W11*lower.tri(W11)*Y varb1 <- b1^2 - sum(V11) W10 <- 1/n/(n-1)/(n-2)*((Q-2)+(P-1)) V10 <- W10*lower.tri(W10)*Y covb0b1 <- b0*b1-sum(V10) W20 <- 1/n/(n-1)/(n-2)/(n-3) * ((Q-2)*(Q-3)+(P-1)*(P-2)) V20 <- W20*lower.tri(W20)*Y covb0b2 <- b0*b2-sum(V20) W21 <- 1/n/(n-1)/(n-2)/(n-3)/(n-4)*((P-1)*(Q-3)*(Q-4)+(P-1)*(P-2)*(Q-4)) V21 <- W21*lower.tri(W21)*Y covb1b2 <- b1*b2-sum(V21) W22 <- 1/n/(n-1)/(n-2)/(n-3)/(n-4)/(n-5)*2*((P-1)*(P-2)*(Q-4)*(Q-5)) V22 <- W22*lower.tri(W22)*Y varb2 <- b2*b2-sum(V22) W30 <- 1/n/(n-1)/(n-2)/(n-3)/(n-4) * ((Q-2)*(Q-3)*(Q-4)+(P-1)*(P-2)*(P-3)) V30 <- W30*lower.tri(W30)*Y covb0b3 <- b0*b3-sum(V30) W31 <- 1/n/(n-1)/(n-2)/(n-3)/(n-4)/(n-5)*((P-1)*(Q-3)*(Q-4)*(Q-5)+(P-1)*(P-2)*(P-3)*(Q-5)) V31 <- W31*lower.tri(W31)*Y covb1b3 <- b1*b3-sum(V31) W32 <- 1/n/(n-1)/(n-2)/(n-3)/(n-4)/(n-5)/(n-6)*((P-1)*(P-2)*(P-3)*(Q-5)*(Q-6)+(P-1)*(P-2)*(Q-4)*(Q-5)*(Q-6)) V32 <- W32*lower.tri(W32)*Y covb2b3 <- b2*b3-sum(V32) W33 <- 1/n/(n-1)/(n-2)/(n-3)/(n-4)/(n-5)/(n-6)/(n-7)*2*((P-1)*(P-2)*(P-3)*(Q-5)*(Q-6)*(Q-7)) V33 <- W33*lower.tri(W33)*Y varb3 <- b3*b3-sum(V33) if (n > 7) { T <- matrix(c(varb0,covb0b1,covb0b2,covb0b3, covb0b1,varb1,covb1b2,covb1b3, covb0b2,covb1b2,varb2,covb2b3, covb0b3,covb1b3,covb2b3,varb3),nrow=4,ncol=4,byrow=TRUE) C <- matrix(c(1,0,0,0, -1,2,0,0, 1,-6,6,0, -1,12,-30,20),nrow=4,ncol=4,byrow=TRUE) varL <- C %*% T %*% t(C) dimnames(varL) <- list(c("l1","l2","l3","l4"),c("l1","l2","l3","l4")) if (matrix==FALSE) { varl1 <- varL[1,1] varl2 <- varL[2,2] varl3 <- varL[3,3] varl4 <- varL[4,4] covl1l2 <- varL[1,2] covl2l3 <- varL[2,3] covl2l4 <- varL[2,4] varlcv <- tau^2*(varl1/l1^2+varl2/l2^2-2*covl1l2/l1/l2) varlca <- tau3^2*(varl2/l2^2+varl3/l3^2-2*covl2l3/l2/l3) varlkur <- tau4^2*(varl2/l2^2+varl4/l4^2-2*covl2l4/l2/l4) varL <- c(varl1,varl2,varl3,varl4,varlcv,varlca,varlkur) names(varL) <- c("var.l1","var.l2","var.l3","var.l4","var.lcv","var.lca","var.lkur") } } else if (n > 5) { T <- matrix(c(varb0,covb0b1,covb0b2, covb0b1,varb1,covb1b2, covb0b2,covb1b2,varb2),nrow=3,ncol=3,byrow=TRUE) C <- matrix(c(1,0,0, -1,2,0, 1,-6,6),nrow=3,ncol=3,byrow=TRUE) varL <- C %*% T %*% t(C) dimnames(varL) <- list(c("l1","l2","l3"),c("l1","l2","l3")) if (matrix==FALSE) { varl1 <- varL[1,1] varl2 <- varL[2,2] varl3 <- varL[3,3] covl1l2 <- varL[1,2] covl2l3 <- varL[2,3] varlcv <- tau^2*(varl1/l1^2+varl2/l2^2-2*covl1l2/l1/l2) varlca <- tau3^2*(varl2/l2^2+varl3/l3^2-2*covl2l3/l2/l3) varL <- c(varl1,varl2,varl3,varlcv,varlca) names(varL) <- c("var.l1","var.l2","var.l3","var.lcv","var.lca") } } else if (n > 3) { T <- matrix(c(varb0,covb0b1, covb0b1,varb1),nrow=2,ncol=2,byrow=TRUE) C <- matrix(c(1,0, -1,2),nrow=2,ncol=2,byrow=TRUE) varL <- C %*% T %*% t(C) dimnames(varL) <- list(c("l1","l2"),c("l1","l2")) if (matrix==FALSE) { varl1 <- varL[1,1] varl2 <- varL[2,2] covl1l2 <- varL[1,2] varlcv <- tau^2*(varl1/l1^2+varl2/l2^2-2*covl1l2/l1/l2) varL <- c(varl1,varl2,varlcv) names(varL) <- c("var.l1","var.l2","var.lcv") } } else { varL <- varb0 names(varL) <- "var.l1" } return(varL) } varLCV <- function (x) { y <- sort(x) n <- length(y) nn <- rep(n-1, n) pp <- seq(0, n-1) p1 <- pp/nn b0 <- sum(y)/n b1 <- sum(p1*y)/n l1 <- b0 l2 <- 2*b1 - b0 tau <- l2/l1 Y1 <- y %*% t(rep(1,n)) Y <- Y1*t(Y1) Q <- seq(1,n) %*% t(rep(1,n)) P <- t(Q) varb0 <- b0^2 - 1/n/(n-1) *2* sum(Y*lower.tri(Y)) W11 <- 1/n/(n-1)/(n-2)/(n-3) *2*((P-1)*(Q-3)) V11 <- W11*lower.tri(W11)*Y varb1 <- b1^2 - sum(V11) W10 <- 1/n/(n-1)/(n-2)*((Q-2)+(P-1)) V10 <- W10*lower.tri(W10)*Y covb0b1 <- b0*b1-sum(V10) T <- matrix(c(varb0,covb0b1, covb0b1,varb1),nrow=2,ncol=2,byrow=TRUE) C <- matrix(c(1,0, -1,2),nrow=2,ncol=2,byrow=TRUE) varL <- C %*% T %*% t(C) varl1 <- varL[1,1] varl2 <- varL[2,2] covl1l2 <- varL[1,2] varlcv <- tau^2*(varl1/l1^2+varl2/l2^2-2*covl1l2/l1/l2) names(varlcv) <- "var.lcv" return(varlcv) } varLCA <- function (x) { y <- sort(x) n <- length(y) nn <- rep(n-1, n) pp <- seq(0, n-1) p1 <- pp/nn p2 <- p1*(pp-1)/(nn-1) b0 <- sum(y)/n b1 <- sum(p1*y)/n b2 <- sum(p2*y)/n l1 <- b0 l2 <- 2*b1 - b0 l3 <- 6*b2 - 6*b1 + b0 tau <- l2/l1 tau3 <- l3/l2 Y1 <- y %*% t(rep(1,n)) Y <- Y1*t(Y1) Q <- seq(1,n) %*% t(rep(1,n)) P <- t(Q) varb0 <- b0^2 - 1/n/(n-1) *2* sum(Y*lower.tri(Y)) W11 <- 1/n/(n-1)/(n-2)/(n-3) *2*((P-1)*(Q-3)) V11 <- W11*lower.tri(W11)*Y varb1 <- b1^2 - sum(V11) W10 <- 1/n/(n-1)/(n-2)*((Q-2)+(P-1)) V10 <- W10*lower.tri(W10)*Y covb0b1 <- b0*b1-sum(V10) W20 <- 1/n/(n-1)/(n-2)/(n-3) * ((Q-2)*(Q-3)+(P-1)*(P-2)) V20 <- W20*lower.tri(W20)*Y covb0b2 <- b0*b2-sum(V20) W21 <- 1/n/(n-1)/(n-2)/(n-3)/(n-4)*((P-1)*(Q-3)*(Q-4)+(P-1)*(P-2)*(Q-4)) V21 <- W21*lower.tri(W21)*Y covb1b2 <- b1*b2-sum(V21) W22 <- 1/n/(n-1)/(n-2)/(n-3)/(n-4)/(n-5)*2*((P-1)*(P-2)*(Q-4)*(Q-5)) V22 <- W22*lower.tri(W22)*Y varb2 <- b2*b2-sum(V22) T <- matrix(c(varb0,covb0b1,covb0b2, covb0b1,varb1,covb1b2, covb0b2,covb1b2,varb2),nrow=3,ncol=3,byrow=TRUE) C <- matrix(c(1,0,0, -1,2,0, 1,-6,6),nrow=3,ncol=3,byrow=TRUE) varL <- C %*% T %*% t(C) varl2 <- varL[2,2] varl3 <- varL[3,3] covl2l3 <- varL[2,3] varlca <- tau3^2*(varl2/l2^2+varl3/l3^2-2*covl2l3/l2/l3) names(varlca) <- "var.lca" return(varlca) } varLkur <- function (x) { L <- Lmoments(x) l2 <- L[2] l4 <- L[5]*L[2] tau4 <- L[5] varL <- varLmoments(x) varl2 <- varL[2,2] varl4 <- varL[4,4] covl2l4 <- varL[2,4] varlkur <- tau4^2*(varl2/l2^2+varl4/l4^2-2*covl2l4/l2/l4) names(varlkur) <- "var.lkur" return(varlkur) }
cush00<-function(m,ordinal,shelter){ tt0<-proc.time() freq<-tabulate(ordinal,nbins=m); n<-length(ordinal); aver<-mean(ordinal); fc<-freq[shelter]/n deltaest<-max(0.01,(m*fc-1)/(m-1)) esdelta<-sqrt((1-deltaest)*(1+(m-1)*deltaest)/(n*(m-1))) varmat<-esdelta^2 wald<-deltaest/esdelta loglik<-loglikcush00(m,ordinal,deltaest,shelter) AICCUSH<- -2*loglik+2 BICCUSH<- -2*loglik+log(n) llunif<- -n*log(m); csisb<-(m-aver)/(m-1); llsb<-loglikcub00(m,freq,1,csisb) nonzero<-which(freq!=0) logsat<- -n*log(n)+sum((freq[nonzero])*log(freq[nonzero])) devian<-2*(logsat-loglik) LRT<-2*(loglik-llunif) theorpr<-deltaest*ifelse(seq(1,m)==shelter,1,0)+(1-deltaest)/m pearson<-((freq-n*theorpr))/sqrt(n*theorpr) X2<-sum(pearson^2) relares<-(freq/n-theorpr)/theorpr diss00<-dissim(theorpr,freq/n) FF2<-1-diss00 LL2<-1/(1+mean((freq/(n*theorpr)-1)^2)) II2<-(loglik-llunif)/(logsat-llunif) stampa<-cbind(1:m,freq/n,theorpr,pearson,relares) durata<-proc.time()-tt0; durata<-durata[1]; results<-list('estimates'=deltaest, 'loglik'=loglik, 'varmat'=varmat,'BIC'= BICCUSH,'time'=durata) }
unsys.station.test <- function(x, M=2000, sig.lev=.05, max.scale=NULL, m=NULL, B=200, eps=5, use.all=FALSE, do.parallel=0){ T <- length(x) if(is.null(max.scale)) max.scale <- round(log(log(T, 2), 2)) if(is.null(m)) m <- round(sqrt(T)) if(do.parallel > 0){ cl <- parallel::makeCluster(do.parallel); doParallel::registerDoParallel(cl) } `%mydo%` <- ifelse(do.parallel > 0, `%dopar%`, `%do%`) top.cand0 <- bottom.cand0 <- NULL y.mat <- matrix(0, ncol=max.scale, nrow=T) for(k in 1:max.scale){ y.mat[, k] <- y <- func_coef(x, -k)^2 ref <- sort(y, decreasing=TRUE, index.return=TRUE) top.cand0 <- c(top.cand0, setdiff(ref$ix[1:(eps + 2*2^k)], c(1:(2^k), (T-2^k+1):T))[1:eps]) bottom.cand0 <- c(bottom.cand0, setdiff(ref$ix[T:(T-eps-2*2^k+1)], c(1:(2^k), (T-2^k+1):T))[1:eps]) } top.cand <- base::sample(top.cand0, M, replace=TRUE); bottom.cand <- base::sample(bottom.cand0, M, replace=TRUE) fr <- funcRes(y.mat, M, m, rep(1/T, T), top.cand, bottom.cand, apply(y.mat, 2, mean)) ind <- which((!duplicated(fr$res[, 5])) & fr$res[, 5] > 0) if(use.all) ref <- ind else{ ref <- ind[sort(fr$res[ind, 4+max.scale+1], decreasing=TRUE, index.return=TRUE)$ix[1:(10*M)]] } se.mat <- fr$res[ref, 1:4] I <- length(ind); R <- length(ref) arx <- stats::ar(x, order.max=log(T), method='yw') coef <- arx$ar ep <- arx$resid[!is.na(arx$resid)]; sig <- stats::mad(ep) ep <- ep[abs(ep-stats::median(ep)) < sig*stats::qt(1-.005, 10)] ep <- ep-mean(ep) if(length(coef)==0) boot.x <- matrix(base::sample(ep, B*T, replace=TRUE), ncol=B) else boot.x <- funcSimX(coef, matrix(base::sample(ep, (T+length(coef))*B, replace=TRUE), ncol=B)) b <- 0 null.stat <- foreach::foreach(b=iterators::iter(1:B), .combine=rbind, .packages=c('Rcpp', 'RcppArmadillo', 'unsystation')) %mydo% { bx <- boot.x[, b] by.mat <- matrix(0, ncol=max.scale, nrow=T) for(k in 1:max.scale){ by.mat[, k] <- func_coef(bx, -k)^2 } tmp <- funcResVar(by.mat, se.mat, apply(by.mat, 2, mean)) c(tmp) } stat <- abs(fr$res[ref, 4+1:max.scale])/funcApplyVar(null.stat, max.scale, R) k <- which.max(apply(stat, 1, max)) intervals <- fr$res[ref[k], 1:4] test.stat <- max(stat[k,]) test.criterion <- stats::qnorm(1-sig.lev/2/I/max.scale) test.res <- test.stat > test.criterion if(do.parallel > 0) parallel::stopCluster(cl) return(list(intervals=intervals, test.stat=test.stat, test.criterion=test.criterion, test.res=test.res)) }
context("Load File") library(activPAL) test_that("file_loading", { file_data <- activPAL:::pre.process.events.file(paste(system.file("extdata", "", package = "activPAL"),"/Test_Events.csv",sep="")) expect_equal(nrow(file_data), 179) expect_equal(length(which(is.na(file_data$time))), 0) expect_equal(sum(file_data$steps), 2006) expect_equal(sum(file_data$interval), 86400) })
"psi" <- function(flag, var1, var2, S=35, T=20, Patm=1, P=0, Pt=0, Sit=0, pHscale="T", kf="x", k1k2="x", ks="d", eos="eos80", long=1.e20, lat=1.e20){ Sit[is.na(Sit)] <- 0 Pt[is.na(Pt)] <- 0 buf <- buffer(flag=flag, var1=var1, var2=var2, S=S, T=T, Patm=Patm, P=P, Pt=Pt, Sit=Sit, pHscale=pHscale, kf=kf, k1k2=k1k2, ks=ks, eos=eos, long=long, lat=lat) psi <- -buf$PiC/buf$PiD out <- psi attr(out,"unit") <- "mol CO2/mol CaCO3" return(out) }
ga_unsampled <- function(accountId, webPropertyId, profileId, unsampledReportId){ url <- "https://www.googleapis.com/analytics/v3/management/" unsampled <- gar_api_generator(url, "GET", path_args = list( accounts = accountId, webproperties = webPropertyId, profiles = profileId, unsampledReports = unsampledReportId ), data_parse_function = function(x) x) unsampled() } ga_unsampled_list <- function(accountId, webPropertyId, profileId){ url <- "https://www.googleapis.com/analytics/v3/management/" unsampled <- gar_api_generator(url, "GET", path_args = list( accounts = accountId, webproperties = webPropertyId, profiles = profileId, unsampledReports = "" ), data_parse_function = parse_unsampled_list) pages <- gar_api_page(unsampled, page_f = get_attr_nextLink) Reduce(bind_rows, pages) } parse_unsampled_list <- function(x){ o <- x %>% management_api_parsing("analytics if(is.null(o)){ return(data.frame()) } o } ga_unsampled_download <- function(reportTitle, accountId, webPropertyId, profileId, downloadFile=TRUE){ drive_scope <- "https://www.googleapis.com/auth/drive" if (!(drive_scope %in% options()$googleAuthR.scopes.selected)) { stop( sprintf("The %s scope is missing. Please set option and try again.", drive_scope), call. = FALSE ) } unsamps <- ga_unsampled_list( accountId = accountId, webPropertyId = webPropertyId, profileId = profileId ) report <- unsamps[unsamps$title == reportTitle, ] if (nrow(report) == 0) { stop("Report title not found. Please enter a valid title. Remember it is case-sensitive", call. = FALSE ) } if (nrow(report) > 1) { myMessage(sprintf("WARNING: There are multiple reports with the same title of %s. Choosing the most recently created.", reportTitle), level = 3 ) report <- report[report$created == max(report$created), ] } if (report$status != "COMPLETED") { stop(sprintf("The unsampled report has not COMPLETED. It is currently %s. Please try again at a later time.", report$status), call. = FALSE ) } if (length(report$downloadType) == 0) { stop( 'No download related fields found (downloadType and driveDownloadDetails). Was expecting "GOOGLE_DRIVE" downloadType.', call. = FALSE ) } if (report$downloadType != "GOOGLE_DRIVE") { stop( "Only Google Drive download links are currently supported. Contact your Analytics 360 account manager if you would like to change the download location of your unsampled reports.", call. = FALSE ) } url <- sprintf( "https://www.googleapis.com/drive/v2/files/%s", toString(report$driveDownloadDetails) ) document <- gar_api_generator(url, "GET")() download_link <- document[["content"]][["selfLink"]] if (isTRUE(downloadFile)) { filename <- sprintf("%s.csv", toString(report$title)) r <- GET( download_link, query = list(alt = "media"), add_headers(Authorization = document[["request"]][["headers"]][["Authorization"]]), write_disk(filename, overwrite = TRUE), progress() ) stop_for_status(r) myMessage(sprintf("%s successfully downloaded!", filename), level = 3 ) out <- filename } else { r <- GET( download_link, query = list(alt = "media"), add_headers(Authorization = document[["request"]][["headers"]][["Authorization"]]) ) stop_for_status(r) out <- content(r) } out }
object_from_call <- function(call, env, block, file) { if (is.character(call)) { if (identical(call, "_PACKAGE")) { parser_package(call, env, block, file) } else { parser_data(call, env, file) } } else if (is.call(call)) { call <- call_standardise(call, env) name <- deparse(call[[1]]) switch(name, "=" = , "<-" = , "<<-" = parser_assignment(call, env, block), "delayedAssign" = parser_delayedAssign(call, env, block), "::" = parser_import(call, env, block), "methods::setClass" = , "setClass" = parser_setClass(call, env, block), "methods::setClassUnion" = , "setClassUnion" = parser_setClassUnion(call, env, block), "methods::setRefClass" = , "setRefClass" = parser_setRefClass(call, env, block), "methods::setGeneric" = , "setGeneric" = parser_setGeneric(call, env, block), "methods::setMethod" = , "setMethod" = parser_setMethod(call, env, block), "methods::setReplaceMethod" = , "setReplaceMethod" = parser_setReplaceMethod(call, env, block), "R.methodsS3::setMethodS3" = , "setMethodS3" = parser_setMethodS3(call, env, block), "R.oo::setConstructorS3" = , "setConstructorS3" = parser_setConstructorS3(call, env, block), NULL ) } else { NULL } } object_from_name <- function(name, env, block) { value <- get(name, env) if (inherits(value, "R6ClassGenerator")) { type <- "r6class" } else if (methods::is(value, "refObjectGenerator")) { value <- methods::getClass(as.character(value@className), where = env) type <- "rcclass" } else if (methods::is(value, "classGeneratorFunction")) { value <- methods::getClass(as.character(value@className), where = env) type <- "s4class" } else if (methods::is(value, "MethodDefinition")) { [email protected] <- extract_method_fun([email protected]) type <- "s4method" } else if (methods::is(value, "standardGeneric")) { type <- "s4generic" } else if (is.function(value)) { method <- block_get_tag_value(block, "method") value <- add_s3_metadata(value, name, env, method) if (inherits(value, "s3generic")) { type <- "s3generic" } else if (inherits(value, "s3method")) { type <- "s3method" } else { type <- "function" } } else { type <- "data" } object(value, name, type) } parser_data <- function(call, env, block) { if (isNamespace(env)) { value <- getExportedValue(call, ns = asNamespace(env)) } else { value <- get(call, envir = env) } object(value, call, type = "data") } parser_package <- function(call, env, block, file) { pkg_path <- dirname(dirname(file)) desc <- read.description(file.path(pkg_path, "DESCRIPTION")) value <- list( desc = desc, path = pkg_path ) object(value, call, type = "package") } parser_assignment <- function(call, env, block) { name <- as.character(call[[2]]) if (length(name) > 1) { return() } if (!exists(name, env)) { return() } object_from_name(name, env, block) } parser_delayedAssign <- function(call, env, block) { name <- as.character(call$x) object_from_name(name, env, block) } parser_setClass <- function(call, env, block) { name <- as.character(call$Class) value <- methods::getClass(name, where = env) object(value, NULL, "s4class") } parser_setClassUnion <- function(call, env, block) { name <- as.character(call$name) value <- methods::getClass(name, where = env) object(value, NULL, "s4class") } parser_setRefClass <- function(call, env, block) { name <- as.character(call$Class) value <- methods::getClass(name, where = env) object(value, NULL, "rcclass") } parser_setGeneric <- function(call, env, block) { name <- as.character(call$name) value <- methods::getGeneric(name, where = env) object(value, NULL, "s4generic") } parser_setMethod <- function(call, env, block) { name <- as.character(call$f) value <- methods::getMethod(name, eval(call$signature), where = env) [email protected] <- extract_method_fun([email protected]) object(value, NULL, "s4method") } parser_setReplaceMethod <- function(call, env, block) { name <- paste0(as.character(call$f), "<-") value <- methods::getMethod(name, eval(call[[3]]), where = env) [email protected] <- extract_method_fun([email protected]) object(value, NULL, "s4method") } parser_import <- function(call, env, block) { pkg <- as.character(call[[2]]) fun <- as.character(call[[3]]) object(list(pkg = pkg, fun = fun), alias = fun, type = "import") } parser_setMethodS3 <- function(call, env, block) { method <- as.character(call[[2]]) class <- as.character(call[[3]]) name <- paste(method, class, sep = ".") method <- block_get_tag_value(block, "method") value <- add_s3_metadata(get(name, env), name, env, method) object(value, name, "s3method") } parser_setConstructorS3 <- function(call, env, block) { name <- as.character(call[[2]]) object(get(name, env), name, "function") } add_s3_metadata <- function(val, name, env, override = NULL) { if (!is.null(override)) { return(s3_method(val, override)) } if (is_s3_generic(name, env)) { class(val) <- c("s3generic", "function") return(val) } method <- find_generic(name, env) if (is.null(method)) { val } else { s3_method(val, method) } } extract_method_fun <- function(fun) { method_body <- body(fun) if (!is_call(method_body, "{")) return(fun) if (length(method_body) < 2) return(fun) first_line <- method_body[[2]] if (!is_call(first_line, name = "<-", n = 2)) return(fun) if (!identical(first_line[[2]], quote(`.local`))) return(fun) local_fun <- eval(first_line[[3]]) if (!is.function(local_fun)) return(fun) local_fun } object <- function(value, alias, type) { structure( list( alias = alias, value = value, methods = if (type == "rcclass") rc_methods(value), topic = object_topic(value, alias, type) ), class = c(type, "object") ) } format.object <- function(x, ...) { c( paste0("<", class(x)[1], "> ", x$name), paste0(" $topic ", x$topic), if (!is.null(x$alias)) paste0(" $alias ", x$alias) ) } print.object <- function(x, ...) { cat_line(format(x, ...)) } object_topic <- function(value, alias, type) { switch(type, s4method = paste0(value@generic, ",", paste0(value@defined, collapse = ","), "-method"), s4class = paste0(value@className, "-class"), s4generic = value@generic, rcclass = paste0(value@className, "-class"), r6class = alias, rcmethod = value@name, s3generic = alias, s3method = alias, import = alias, `function` = alias, package = alias, data = alias, stop("Unsupported type '", type, "'", call. = FALSE) ) } call_to_object <- function(code, env = pkg_env(), file = NULL) { code <- enexpr(code) eval(code, envir = env) if (is_call(code, "{")) { call <- code[[length(code)]] } else { call <- code } object_from_call(call, env, block = NULL, file = file) }
library(devtools) library(repmis) fgithub <- "https://raw.github.com/alanarnholt/Data/master/" AGGRESSION <- repmis::source_data(paste(fgithub, "AGGRESSION.csv", sep = ""), stringsAsFactors = TRUE) use_data(AGGRESSION, AGGRESSION, overwrite = TRUE) APPLE <- repmis::source_data(paste(fgithub, "APPLE.csv", sep = ""), stringsAsFactors = TRUE) use_data(APPLE, APPLE, overwrite = TRUE) APTSIZE <- repmis::source_data(paste(fgithub, "APTSIZE.csv", sep = ""), stringsAsFactors = TRUE) use_data(APTSIZE, APTSIZE, overwrite = TRUE) BABERUTH <- repmis::source_data(paste(fgithub, "BABERUTH.csv", sep = ""), stringsAsFactors = TRUE) use_data(BABERUTH, BABERUTH, overwrite = TRUE) BAC <- repmis::source_data(paste(fgithub, "BAC.csv", sep = ""), stringsAsFactors = TRUE) use_data(BAC, BAC, overwrite = TRUE) BATTERY <- repmis::source_data(paste(fgithub, "BATTERY.csv", sep = ""), stringsAsFactors = TRUE) use_data(BATTERY, BATTERY, overwrite = TRUE) BIOMASS <- repmis::source_data(paste(fgithub, "BIOMASS.csv", sep = ""), stringsAsFactors = TRUE) use_data(BIOMASS, BIOMASS, overwrite = TRUE) BODYFAT <- repmis::source_data(paste(fgithub, "BODYFAT.csv", sep = ""), stringsAsFactors = TRUE) use_data(BODYFAT, BODYFAT, overwrite = TRUE) CALCULUS <- repmis::source_data(paste(fgithub, "CALCULUS.csv", sep = ""), stringsAsFactors = TRUE) use_data(CALCULUS, CALCULUS, overwrite = TRUE) CARS2004 <- repmis::source_data(paste(fgithub, "CARS2004EU.csv", sep = ""), stringsAsFactors = TRUE) use_data(CARS2004, CARS2004, overwrite = TRUE) CHIPS <- repmis::source_data(paste(fgithub, "CHIPS.csv", sep = ""), stringsAsFactors = TRUE) use_data(CHIPS, CHIPS, overwrite = TRUE) CIRCUIT <- repmis::source_data(paste(fgithub, "CIRCUITDESIGNS.csv", sep = ""), stringsAsFactors = TRUE) use_data(CIRCUIT, CIRCUIT, overwrite = TRUE) COSAMA <- repmis::source_data(paste(fgithub, "COSAMA.csv", sep = ""), stringsAsFactors = TRUE) use_data(COSAMA, COSAMA, overwrite = TRUE) COWS <- repmis::source_data(paste(fgithub, "COWS.csv", sep = ""), stringsAsFactors = TRUE) use_data(COWS, COWS, overwrite = TRUE) DEPEND <- repmis::source_data(paste(fgithub, "DEPEND.csv", sep = ""), stringsAsFactors = TRUE) use_data(DEPEND, DEPEND, overwrite = TRUE) DROSOPHILA <- repmis::source_data(paste(fgithub, "DROSOPHILA.csv", sep = ""), stringsAsFactors = TRUE) use_data(DROSOPHILA, DROSOPHILA, overwrite = TRUE) ENGINEER <- repmis::source_data(paste(fgithub, "ENGINEER.csv", sep = ""), stringsAsFactors = TRUE) use_data(ENGINEER, ENGINEER, overwrite = TRUE) EPIDURAL <- repmis::source_data(paste(fgithub, "EPIDURAL.csv", sep = ""), stringsAsFactors = TRUE) use_data(EPIDURAL, EPIDURAL, overwrite = TRUE) EPIDURALF <- repmis::source_data(paste(fgithub, "EPIDURALF.csv", sep = ""), stringsAsFactors = TRUE) use_data(EPIDURALF, EPIDURALF, overwrite = TRUE) EURD <- repmis::source_data(paste(fgithub, "EURD.csv", sep = ""), stringsAsFactors = TRUE) use_data(EURD, EURD, overwrite = TRUE) FAGUS <- repmis::source_data(paste(fgithub, "FAGUS.csv", sep = ""), stringsAsFactors = TRUE) use_data(FAGUS, FAGUS, overwrite = TRUE) FCD <- repmis::source_data(paste(fgithub, "FCD.csv", sep = ""), stringsAsFactors = TRUE) use_data(FCD, FCD, overwrite = TRUE) FERTILIZE <- repmis::source_data(paste(fgithub, "FERTILIZE.csv", sep = ""), stringsAsFactors = TRUE) use_data(FERTILIZE, FERTILIZE, overwrite = TRUE) FOOD <- repmis::source_data(paste(fgithub, "FOOD.csv", sep = ""), stringsAsFactors = TRUE) use_data(FOOD, FOOD, overwrite = TRUE) FORMULA1 <- repmis::source_data(paste(fgithub, "FORMULA1.csv", sep = ""), stringsAsFactors = TRUE) use_data(FORMULA1, FORMULA1, overwrite = TRUE) GD <- repmis::source_data(paste(fgithub, "GD.csv", sep = ""), stringsAsFactors = TRUE) use_data(GD, GD, overwrite = TRUE) GLUCOSE <- repmis::source_data(paste(fgithub, "GLUCOSE.csv", sep = ""), stringsAsFactors = TRUE) use_data(GLUCOSE, GLUCOSE, overwrite = TRUE) GRADES <- repmis::source_data(paste(fgithub, "GRADES.csv", sep = ""), stringsAsFactors = TRUE) use_data(GRADES, GRADES, overwrite = TRUE) GROCERY <- repmis::source_data(paste(fgithub, "GROCERY.csv", sep = ""), stringsAsFactors = TRUE) use_data(GROCERY, GROCERY, overwrite = TRUE) HARDWATER <- repmis::source_data(paste(fgithub, "HARDWATER.csv", sep = ""), stringsAsFactors = TRUE) use_data(HARDWATER, HARDWATER, overwrite = TRUE) HOUSE <- repmis::source_data(paste(fgithub, "HOUSE.csv", sep = ""), stringsAsFactors = TRUE) use_data(HOUSE, HOUSE, overwrite = TRUE) HSWRESTLER <- repmis::source_data(paste(fgithub, "HSWRESTLER.csv", sep = ""), stringsAsFactors = TRUE) use_data(HSWRESTLER, HSWRESTLER, overwrite = TRUE) HUBBLE <- repmis::source_data(paste(fgithub, "HUBBLE.csv", sep = ""), stringsAsFactors = TRUE) use_data(HUBBLE, HUBBLE, overwrite = TRUE) INSURQUOTES <- repmis::source_data(paste(fgithub, "INSURQUOTES.csv", sep = ""), stringsAsFactors = TRUE) use_data(INSURQUOTES, INSURQUOTES, overwrite = TRUE) JANKA <- repmis::source_data(paste(fgithub, "JANKA.csv", sep = ""), stringsAsFactors = TRUE) use_data(JANKA, JANKA, overwrite = TRUE) KINDER <- repmis::source_data(paste(fgithub, "KINDER.csv", sep = ""), stringsAsFactors = TRUE) use_data(KINDER, KINDER, overwrite = TRUE) LEDDIODE <- repmis::source_data(paste(fgithub, "LEDDIODE.csv", sep = ""), stringsAsFactors = TRUE) use_data(LEDDIODE, LEDDIODE, overwrite = TRUE) LOSTR <- repmis::source_data(paste(fgithub, "LOSTR.csv", sep = ""), stringsAsFactors = TRUE) use_data(LOSTR, LOSTR, overwrite = TRUE) MILKCARTON <- repmis::source_data(paste(fgithub, "MILKCARTON.csv", sep = ""), stringsAsFactors = TRUE) use_data(MILKCARTON, MILKCARTON, overwrite = TRUE) NC2010DMG <- repmis::source_data(paste(fgithub, "NC2010DMG.csv", sep = ""), stringsAsFactors = TRUE) use_data(NC2010DMG, NC2010DMG, overwrite = TRUE) PAMTEMP <- repmis::source_data(paste(fgithub, "PAMTEMP.csv", sep = ""), stringsAsFactors = TRUE) use_data(PAMTEMP, PAMTEMP, overwrite = TRUE) PHENYL <- repmis::source_data(paste(fgithub, "PHENYL.csv", sep = ""), stringsAsFactors = TRUE) use_data(PHENYL, PHENYL, overwrite = TRUE) PHONE <- repmis::source_data(paste(fgithub, "PHONE.csv", sep = ""), stringsAsFactors = TRUE) use_data(PHONE, PHONE, overwrite = TRUE) RAT <- repmis::source_data(paste(fgithub, "RAT.csv", sep = ""), stringsAsFactors = TRUE) use_data(RAT, RAT, overwrite = TRUE) RATBP <- repmis::source_data(paste(fgithub, "RATBP.csv", sep = ""), stringsAsFactors = TRUE) use_data(RATBP, RATBP, overwrite = TRUE) REFRIGERATOR <- repmis::source_data(paste(fgithub, "REFRIGERATOR.csv", sep = ""), stringsAsFactors = TRUE) use_data(REFRIGERATOR, REFRIGERATOR, overwrite = TRUE) ROACHEGGS <- repmis::source_data(paste(fgithub, "ROACHEGGS.csv", sep = ""), stringsAsFactors = TRUE) use_data(ROACHEGGS, ROACHEGGS, overwrite = TRUE) SALINITY <- repmis::source_data(paste(fgithub, "SALINITY.csv", sep = ""), stringsAsFactors = TRUE) use_data(SALINITY, SALINITY, overwrite = TRUE) SATFRUIT <- repmis::source_data(paste(fgithub, "SATFRUIT.csv", sep = ""), stringsAsFactors = TRUE) use_data(SATFRUIT, SATFRUIT, overwrite = TRUE) SBIQ <- repmis::source_data(paste(fgithub, "SBIQ.csv", sep = ""), stringsAsFactors = TRUE) use_data(SBIQ, SBIQ, overwrite = TRUE) SCHIZO <- repmis::source_data(paste(fgithub, "SCHIZO.csv", sep = ""), stringsAsFactors = TRUE) use_data(SCHIZO, SCHIZO, overwrite = TRUE) SCORE <- repmis::source_data(paste(fgithub, "SCORE.csv", sep = ""), stringsAsFactors = TRUE) use_data(SCORE, SCORE, overwrite = TRUE) SDS4 <- repmis::source_data(paste(fgithub, "SDS4.csv", sep = ""), stringsAsFactors = TRUE) use_data(SDS4, SDS4, overwrite = TRUE) SIMDATAST <- repmis::source_data(paste(fgithub, "SIMDATAST.csv", sep = ""), stringsAsFactors = TRUE) use_data(SIMDATAST, SIMDATAST, overwrite = TRUE) SIMDATAXT <- repmis::source_data(paste(fgithub, "SIMDATAXT.csv", sep = ""), stringsAsFactors = TRUE) use_data(SIMDATAXT, SIMDATAXT, overwrite = TRUE) SOCCER <- repmis::source_data(paste(fgithub, "SOCCER.csv", sep = ""), stringsAsFactors = TRUE) use_data(SOCCER, SOCCER, overwrite = TRUE) STATTEMPS <- repmis::source_data(paste(fgithub, "STATTEMPS.csv", sep = ""), stringsAsFactors = TRUE) use_data(STATTEMPS, STATTEMPS, overwrite = TRUE) STSCHOOL <- repmis::source_data(paste(fgithub, "STSCHOOL.csv", sep = ""), stringsAsFactors = TRUE) use_data(STSCHOOL, STSCHOOL, overwrite = TRUE) SUNDIG <- repmis::source_data(paste(fgithub, "SUNDIG.csv", sep = ""), stringsAsFactors = TRUE) use_data(SUNDIG, SUNDIG, overwrite = TRUE) SUNFLOWER <- repmis::source_data(paste(fgithub, "SUNFLOWER.csv", sep = ""), stringsAsFactors = TRUE) use_data(SUNFLOWER, SUNFLOWER, overwrite = TRUE) SURFACESPAIN <- repmis::source_data(paste(fgithub, "SURFACESPAIN.csv", sep = ""), stringsAsFactors = TRUE) use_data(SURFACESPAIN, SURFACESPAIN, overwrite = TRUE) SWIMTIMES <- repmis::source_data(paste(fgithub, "SWIMTIMES.csv", sep = ""), stringsAsFactors = TRUE) use_data(SWIMTIMES, SWIMTIMES, overwrite = TRUE) TENNIS <- repmis::source_data(paste(fgithub, "TENNIS.csv", sep = ""), stringsAsFactors = TRUE) use_data(TENNIS, TENNIS, overwrite = TRUE) TESTSCORES <- repmis::source_data(paste(fgithub, "TESTSCORES.csv", sep = ""), stringsAsFactors = TRUE) use_data(TESTSCORES, TESTSCORES, overwrite = TRUE) TIRE <- repmis::source_data(paste(fgithub, "TIRE.csv", sep = ""), stringsAsFactors = TRUE) use_data(TIRE, TIRE, overwrite = TRUE) TIREWEAR <- repmis::source_data(paste(fgithub, "TIREWEAR.csv", sep = ""), stringsAsFactors = TRUE) use_data(TIREWEAR, TIREWEAR, overwrite = TRUE) TITANIC3 <- repmis::source_data(paste(fgithub, "TITANIC3.csv", sep = ""), stringsAsFactors = TRUE) use_data(TITANIC3, TITANIC3, overwrite = TRUE) TOE <- repmis::source_data(paste(fgithub, "TOE.csv", sep = ""), stringsAsFactors = TRUE) use_data(TOE, TOE, overwrite = TRUE) TOP20 <- repmis::source_data(paste(fgithub, "TOP20.csv", sep = ""), stringsAsFactors = TRUE) use_data(TOP20, TOP20, overwrite = TRUE) URLADDRESS <- repmis::source_data(paste(fgithub, "URLADDRESS.csv", sep = ""), stringsAsFactors = TRUE) use_data(URLADDRESS, URLADDRESS, overwrite = TRUE) VIT2005 <- repmis::source_data(paste(fgithub, "VIT2005.csv", sep = ""), stringsAsFactors = TRUE) use_data(VIT2005, VIT2005, overwrite = TRUE) WAIT <- repmis::source_data(paste(fgithub, "WAIT.csv", sep = ""), stringsAsFactors = TRUE) use_data(WAIT, WAIT, overwrite = TRUE) WASHER <- repmis::source_data(paste(fgithub, "WASHER.csv", sep = ""), stringsAsFactors = TRUE) use_data(WASHER, WASHER, overwrite = TRUE) WATER <- repmis::source_data(paste(fgithub, "WATER.csv", sep = ""), stringsAsFactors = TRUE) use_data(WATER, WATER, overwrite = TRUE) WCST <- repmis::source_data(paste(fgithub, "WCST.csv", sep = ""), stringsAsFactors = TRUE) use_data(WCST, WCST, overwrite = TRUE) WEIGHTGAIN <- repmis::source_data(paste(fgithub, "WEIGHTGAIN.csv", sep = ""), stringsAsFactors = TRUE) use_data(WEIGHTGAIN, WEIGHTGAIN, overwrite = TRUE) WHEATSPAIN <- repmis::source_data(paste(fgithub, "WHEATSPAIN.csv", sep = ""), stringsAsFactors = TRUE) use_data(WHEATSPAIN, WHEATSPAIN, overwrite = TRUE) WHEATUSA2004 <- repmis::source_data(paste(fgithub, "WHEATUSA2004.csv", sep = ""), stringsAsFactors = TRUE) use_data(WHEATUSA2004, WHEATUSA2004, overwrite = TRUE) WOOL <- repmis::source_data(paste(fgithub, "WOOL.csv", sep = ""), stringsAsFactors = TRUE) use_data(WOOL, WOOL, overwrite = TRUE)
get.viewExtent <- function(data) { bounds <- st_bbox(data) center.lon <- bounds$xmin + (bounds$xmax - bounds$xmin)/2 center.lat <- bounds$ymin + (bounds$ymax - bounds$ymin)/2 zoom.lon <- log(180/abs(center.lon - bounds$xmin))/log(2) zoom.lat <- log(90/abs(center.lat - bounds$ymin))/log(2) center <- c(center.lon, center.lat) zoom <- mean(zoom.lon, zoom.lat) return ( list(center, zoom) ) } dataLoader <- function() { modalDialog( selectInput( inputId = "filetype", label = 'Load Data', choices = c( `Select a file type` = '', c( "GPKG", "GeoJSON", "ESRI Shapefile", "CSV" ) ) ), conditionalPanel( condition = "input.filetype == 'CSV'", span('Please specify the longitude and latitude column names to read from.'), textInput( inputId = "x", label = "longitute column name" ), textInput( inputId = "y", label = "latidude column name" ) ), conditionalPanel( condition = "input.filetype == 'ESRI Shapefile'", span('You must select and upload ALL shapefile required files (.shp, .shx, .dbf, etc.'), ), footer = tagList( div(style="display:inline", fluidRow( column( width = 4, modalButton(label = "Cancel") ), column( width = 8, conditionalPanel( condition = "input.filetype != '' && input.filetype != 'CSV' || input.filetype == 'CSV' && input.x != '' && input.y != ''", uiOutput(outputId = "dynUpload") ) ) ) ) ), size = 's' ) } getData <- function(filetype, upload, x, y) { if (filetype == "ESRI Shapefile") { esri.files <- upload tempdirname <- dirname(esri.files$datapath[1]) for (i in seq_len(nrow(esri.files))) { file.rename( esri.files$datapath[i], paste0(tempdirname, "/", esri.files$name[i]) ) } shapefile <- paste( tempdirname, esri.files$name[grep(pattern = "*.shp$", esri.files$name)], sep = "/" ) data <- st_read(shapefile) %>% st_transform(4326) name <- esri.files$name[grep(pattern = "*.shp$", esri.files$name)] } else if (filetype == "CSV") { data <- st_read( upload$datapath, options=c( paste0("X_POSSIBLE_NAMES=", x), paste0("Y_POSSIBLE_NAMES=", y) ) ) name <- upload$name } else { data <- sf::st_read(upload$datapath) %>% st_transform(4326) name <- upload$name } num_row <- nrow(data) varnames <- data %>% st_drop_geometry() %>% colnames() dummy <- 1:num_row data <- data %>% cbind(dummy) return(list(data = data, name = name, vars = varnames)) } calc.dMat <- function(data) { dp.locat <- sf::st_centroid(data) %>% sf::st_coordinates() dMat <- geodist::geodist(dp.locat, measure = "cheap") return(dMat) }
fit_hbd_psr_on_best_grid_size = function( tree, oldest_age = NULL, age0 = 0, grid_sizes = c(1,10), uniform_grid = FALSE, criterion = "AIC", exhaustive = TRUE, min_PSR = 0, max_PSR = +Inf, guess_PSR = NULL, fixed_PSR = NULL, splines_degree = 1, condition = "auto", relative_dt = 1e-3, Ntrials = 1, Nbootstraps = 0, Ntrials_per_bootstrap = NULL, Nthreads = 1, max_model_runtime = NULL, fit_control = list(), verbose = FALSE, verbose_prefix = ""){ if(verbose) cat(sprintf("%sChecking input parameters..\n",verbose_prefix)) root_age = get_tree_span(tree)$max_distance if(is.null(oldest_age)) oldest_age = root_age if(!is.null(guess_PSR)){ if(class(guess_PSR) != "function"){ if(length(guess_PSR)!=1){ return(list(success=FALSE, error="Expecting either exactly one guess_PSR, or NULL, or a function handle")) }else{ guess_PSR_value = guess_PSR guess_PSR = function(ages){ rep(guess_PSR_value, length(ages)) } } } }else{ guess_PSR = function(ages){ rep(NA, length(ages)) } } if(!is.null(fixed_PSR)){ if(class(fixed_PSR) != "function"){ if(length(fixed_PSR)!=1){ return(list(success=FALSE, error="Expecting either exactly one fixed_PSR, or NULL, or a function handle")) }else{ fixed_PSR_value = fixed_PSR fixed_PSR = function(ages){ rep(fixed_PSR_value, length(ages)) } } } }else{ fixed_PSR = function(ages){ rep(NA, length(ages)) } } if(length(min_PSR)!=1) return(list(success=FALSE, error=sprintf("Expecting exactly one min_PSR; instead, received %d",length(min_PSR)))) if(length(max_PSR)!=1) return(list(success=FALSE, error=sprintf("Expecting exactly one max_PSR; instead, received %d",length(max_PSR)))) if(!(criterion %in% c("AIC", "BIC"))) return(list(success=FALSE, error=sprintf("Invalid model selection criterion '%s'. Expected 'AIC' or 'BIC'",criterion))) Nmodels = length(grid_sizes) if(!uniform_grid){ LTT = count_lineages_through_time(tree=tree, Ntimes = max(100,10*max(grid_sizes)), regular_grid = TRUE, ultrametric=TRUE) LTT$ages = root_age - LTT$times } if(exhaustive){ model_order = seq_len(Nmodels) }else{ model_order = order(grid_sizes) } if(verbose) cat(sprintf("%sFitting models with %s%d different grid sizes..\n",verbose_prefix,(if(exhaustive) "" else "up to "),Nmodels)) AICs = rep(NA, times=Nmodels) BICs = rep(NA, times=Nmodels) best_fit = NULL for(m in model_order){ Ngrid = grid_sizes[m] if(uniform_grid || (Ngrid==1)){ age_grid = seq(from=age0, to=oldest_age, length.out=Ngrid) }else{ age_grid = get_inhomogeneous_grid_1D(Xstart = age0, Xend = oldest_age, Ngrid = Ngrid, densityX = rev(LTT$ages), densityY=sqrt(rev(LTT$lineages)), extrapolate=TRUE) } if(verbose) cat(sprintf("%s Fitting model with grid size %d..\n",verbose_prefix,Ngrid)) fit = fit_hbd_psr_on_grid( tree = tree, oldest_age = oldest_age, age0 = age0, age_grid = age_grid, min_PSR = min_PSR, max_PSR = max_PSR, guess_PSR = guess_PSR(age_grid), fixed_PSR = fixed_PSR(age_grid), splines_degree = splines_degree, condition = condition, relative_dt = relative_dt, Ntrials = Ntrials, Nbootstraps = 0, Nthreads = Nthreads, max_model_runtime = max_model_runtime, fit_control = fit_control, verbose = FALSE, diagnostics = FALSE, verbose_prefix = paste0(verbose_prefix," ")) if(!fit$success) return(list(success=FALSE, error=sprintf("Fitting model with grid size %d failed: %s",Ngrid,fit$error))) criterion_value = fit[[criterion]] if(is.null(best_fit)){ best_fit = fit worsened = FALSE }else if(criterion_value<best_fit[[criterion]]){ best_fit = fit worsened = FALSE }else{ worsened = TRUE } AICs[m] = fit$AIC BICs[m] = fit$BIC if(verbose) cat(sprintf("%s --> %s=%.10g. Best grid size so far: %d\n",verbose_prefix,criterion,criterion_value,length(best_fit$age_grid))) if((!exhaustive) && worsened) break; } if((Nbootstraps>0) && (!is.null(best_fit))){ if(verbose) cat(sprintf("%s Performing boostraps for best model, with grid size %d..\n",verbose_prefix,length(best_fit$age_grid))) best_fit = fit_hbd_psr_on_grid( tree = tree, oldest_age = oldest_age, age0 = age0, age_grid = best_fit$age_grid, min_PSR = min_PSR, max_PSR = max_PSR, guess_PSR = guess_PSR(best_fit$age_grid), fixed_PSR = fixed_PSR(best_fit$age_grid), splines_degree = splines_degree, condition = condition, relative_dt = relative_dt, Ntrials = Ntrials, Nbootstraps = Nbootstraps, Ntrials_per_bootstrap = Ntrials_per_bootstrap, Nthreads = Nthreads, max_model_runtime = max_model_runtime, fit_control = fit_control, verbose = FALSE, diagnostics = FALSE, verbose_prefix = paste0(verbose_prefix," ")) } return(list(success = (if(is.null(best_fit)) FALSE else best_fit$success), best_fit = best_fit, grid_sizes = grid_sizes, AICs = AICs, BICs = BICs)) }
context("generate") test_that ("errors", { expect_error (ms_generate_map (), paste0 ("Please provide a 'mapname' \\(with ", "optional path\\) for the maps")) }) test_that("generate", { expect_silent (x <- readRDS ("../x.Rds")) x@crs@projargs <- .sph_merc() expect_error (x <- ms_generate_map (raster_brick = x), paste0 ("Please provide a 'mapname' ", "\\(with optional path\\)")) mapname <- file.path (tempdir (), "map") expect_message (x2 <- ms_generate_map (mapname = mapname, raster_brick = x), "Successfully generated") expect_true (identical (x, x2)) }) test_that("convert bbox", { expect_error (bbc <- convert_bbox (1:5), "bbox must have four elements") expect_silent (bbc <- convert_bbox (1:4)) expect_is (bbc, "matrix") expect_equal (nrow (bbc), 2) expect_equal (ncol (bbc), 2) }) test_that("slippy bbox", { bb <- convert_bbox (1:4) expect_silent (s <- slippy_bbox (bb)) expect_is (s, "list") expect_identical (names (s), c ("tile_bbox", "user_points")) expect_is (s$tile_bbox, "numeric") expect_equal (length (s$tile_bbox), 4) expect_is (s$user_points, "matrix") }) test_that("url_to_cache", { query_string <- paste0 ("https://api.mapbox.com/v4/mapbox.light/", "{zoom}/{x}/{y}.jpg?access_token=", "123456789") expect_silent (outfile <- url_to_cache (query_string)) expect_is (outfile, "character") expect_false (file.exists (outfile)) expect_false (dir.exists (outfile)) }) test_that("raster_brick", { f <- system.file ("extdata", "omaha.png", package = "mapscanner") expect_silent (rb <- raster_brick (f)) expect_is (rb, "RasterBrick") }) test_that ("spherical_mercator", { expect_silent (x <- spherical_mercator ()) expect_is (x, "tbl") expect_equal (nrow (x), 1) expect_equal (ncol (x), 5) expect_identical (names (x), c ("provider", "maxextent", "A", "B", "crs")) })
library(testthat) library(gradethis) test_check("gradethis")
map.soa.sbm <- function(xdata, ydata, date, rts = "crs", orientation = "n", sg = "ssm", cv = "convex", mk = "dmu"){ if(is.na(match(rts, c("crs", "vrs", "irs", "drs")))) stop('rts must be "crs", "vrs", "irs", or "drs".') if(is.na(match(orientation, c("n", "i", "o")))) stop('orientation must be "n", "i", or "o".') if(is.na(match(sg, c("ssm", "max", "min")))) stop('sg must be "ssm", "max", or "min".') if(is.na(match(mk, c("dmu", "eff")))) stop('mk must be either "dmu" or "eff".') if(is.na(match(cv, c("convex", "fdh")))) stop('cv must be "convex" or "fdh".') xdata <- as.matrix(xdata) ydata <- as.matrix(ydata) date <- if(!is.null(date)) as.matrix(date) n <- nrow(xdata) m <- ncol(xdata) s <- ncol(ydata) rts <- ifelse(cv == "fdh", "vrs", rts) o <- matrix(c(1:n), ncol = 1) ud <- sort(unique(date)) l <- length(ud) x <- xdata[order(date),, drop = F] y <- ydata[order(date),, drop = F] d <- date [order(date),, drop = F] o <- o [order(date),, drop = F] map.soa <- matrix(NA, n, l, dimnames = list(NULL, ud)) for(i in ud){ sbm.t <- dm.sbm(subset(x, d <= i), subset(y, d <= i), rts, orientation, 0, sg, subset(d, d <= i), cv) id.soa <- which(round(sbm.t$eff, 8) == 1 & rowSums(cbind(round(sbm.t$xslack, 8), round(sbm.t$yslack, 8))) == 0) if(mk == "dmu"){ if(i == ud[1]){ map.soa[1:length(id.soa), 1] <- o[id.soa] }else{ p <- which(ud == i) for(k in 1:length(id.soa)){ id.preb <- which(map.soa[, p - 1] == o[id.soa[k],]) if(length(id.preb) > 0){ map.soa[id.preb, p] <- o[id.soa[k],] }else{ map.soa[sum(rowSums(map.soa, na.rm = T) > 0) + 1, p] <- o[id.soa[k],] } } } }else{ gsoa <- if(i == ud[1]) id.soa else union(gsoa, id.soa) map.soa[1:length(gsoa), which(ud == i)] <- sbm.t$eff[gsoa,] } } map.soa <- map.soa[1:max(which(!is.na(map.soa[, l]))),] rownames(map.soa) <- if(mk == "dmu") unique(na.omit(c(map.soa))) else c(o[gsoa,]) print(map.soa) }
htmlEmbed <- function(children=NULL, id=NULL, n_clicks=NULL, n_clicks_timestamp=NULL, key=NULL, role=NULL, height=NULL, src=NULL, type=NULL, width=NULL, accessKey=NULL, className=NULL, contentEditable=NULL, contextMenu=NULL, dir=NULL, draggable=NULL, hidden=NULL, lang=NULL, spellCheck=NULL, style=NULL, tabIndex=NULL, title=NULL, loading_state=NULL, ...) { wildcard_names = names(dash_assert_valid_wildcards(attrib = list('data', 'aria'), ...)) props <- list(children=children, id=id, n_clicks=n_clicks, n_clicks_timestamp=n_clicks_timestamp, key=key, role=role, height=height, src=src, type=type, width=width, accessKey=accessKey, className=className, contentEditable=contentEditable, contextMenu=contextMenu, dir=dir, draggable=draggable, hidden=hidden, lang=lang, spellCheck=spellCheck, style=style, tabIndex=tabIndex, title=title, loading_state=loading_state, ...) if (length(props) > 0) { props <- props[!vapply(props, is.null, logical(1))] } component <- list( props = props, type = 'Embed', namespace = 'dash_html_components', propNames = c('children', 'id', 'n_clicks', 'n_clicks_timestamp', 'key', 'role', 'height', 'src', 'type', 'width', 'accessKey', 'className', 'contentEditable', 'contextMenu', 'dir', 'draggable', 'hidden', 'lang', 'spellCheck', 'style', 'tabIndex', 'title', 'loading_state', wildcard_names), package = 'dashHtmlComponents' ) structure(component, class = c('dash_component', 'list')) }
tabPanel('Bivariate Analysis', value = 'tab_bivar', icon = icon('cubes'), navlistPanel(id = 'navlist_bivar', well = FALSE, widths = c(2, 10), source('ui/ui_woe_iv.R', local = TRUE)[[1]], source('ui/ui_woe_iv_stats.R', local = TRUE)[[1]], source('ui/ui_segment_dist.R', local = TRUE)[[1]], source('ui/ui_2way_segment.R', local = TRUE)[[1]], source('ui/ui_bivar_analysis.R', local = TRUE)[[1]] ) )
spatial_migrate <- function( data, d_stations, d_map, snr, v, dt, normalise = TRUE, silent = FALSE ) { if(is.matrix(data) == FALSE) { if(class(data)[1] == "list") { dt <- try(data[[1]]$meta$dt) if(class(dt)[1] == "try-error") { stop("Signal object seems to contain no eseis objects!") } data <- do.call(rbind, lapply(X = data, FUN = function(data) { data$signal })) } else { stop("Input signals must be more than one!") } } if(is.matrix(d_stations) == FALSE) { stop("Station distance matrix must be symmetric matrix!") } if(nrow(d_stations) != ncol(d_stations)) { stop("Station distance matrix must be symmetric matrix!") } if(is.list(d_map) == FALSE) { stop("Distance maps must be list objects with SpatialGridDataFrames!") } if(class(d_map[[1]])[1] != "SpatialGridDataFrame") { stop("Distance maps must be list objects with SpatialGridDataFrames!") } if(normalise == TRUE & missing(snr) == TRUE) { if(silent == FALSE) { print("No snr given. Will be calculated from signals") } snr_flag = TRUE } else { snr_flag <- FALSE } s_min <- matrixStats::rowMins(data, na.rm = TRUE) s_max <- matrixStats::rowMaxs(data, na.rm = TRUE) s_mean <- matrixStats::rowMeans2(data, na.rm = TRUE) if(snr_flag == TRUE) { s_snr <- s_max / s_mean } else { s_snr <- rep(1, nrow(data)) } data <- (data - s_min) / (s_max - s_min) duration <- ncol(data) * dt pairs <- combn(x = nrow(data), m = 2) pairs <- as.list(as.data.frame((pairs))) maps <- lapply(X = pairs, FUN = function(pairs, data, duration, dt, d_stations, v, s_max, s_snr, d_map) { cc = acf(x = cbind(data[pairs[1],], data[pairs[2],]), lag.max = duration * 1 / dt, plot = FALSE) lags <- c(rev(cc$lag[-1, 2, 1]), cc$lag[, 1, 2]) * dt cors <- c(rev(cc$acf[-1, 2, 1]), cc$acf[, 1, 2]) lag_lim <- ceiling(d_stations[pairs[1], pairs[2]] / v) lag_ok <-lags >= -lag_lim & lags <= lag_lim lags <- lags[lag_ok] cors <- cors[lag_ok] if(normalise == TRUE) { norm <- ((s_snr[pairs[1]] + s_snr[pairs[2]]) / 2) / mean(s_snr) } else { norm <- 1 } t_max <- lags[cors == max(cors)] lag_model <- (raster::raster(d_map[[pairs[1]]]) - raster::raster(d_map[[pairs[2]]])) / v lag_empiric <- d_stations[pairs[1], pairs[2]] / v cors_map <- exp(-0.5 * (((lag_model - t_max) / lag_empiric)^2)) * norm return(cors_map@data@values) }, data, duration, dt, d_stations, v, s_max, s_snr, d_map) maps_values <- do.call(rbind, maps) map_out <- raster::raster(d_map[[1]]) map_out@data@values <- matrixStats::colMeans2(x = maps_values) return(map_out) }
utils::globalVariables(c("x", "y")) .onLoad <- function(libname, pkgname) { make_discrim_linear_MASS() make_discrim_linear_mda() make_discrim_linear_sda() make_discrim_linear_sparsediscrim() make_discrim_quad_MASS() make_discrim_quad_sparsediscrim() make_discrim_regularized() make_discrim_flexible() make_naive_Bayes_klaR() make_naive_Bayes_naivebayes() }
context("coherence") N = 500 tokens = word_tokenizer(tolower(movie_review$review[1:N])) it = itoken(tokens, progressbar = FALSE) v = create_vocabulary(it) v = prune_vocabulary(v, term_count_min = 5, doc_proportion_max = 0.2) dtm = create_dtm(it, vocab_vectorizer(v)) n_topics = 100 n_top_terms = 10 lda_model = text2vec::LDA$new(n_topics = n_topics) fitted = lda_model$fit_transform(dtm) top_terms = lda_model$get_top_words(n = n_top_terms, topic_number = 1L:n_topics) topic_word_distribution = lda_model$topic_word_distribution test_that("coherence, general functionality", { tcm_intrinsic = Matrix::crossprod(sign(dtm)) coherence_res = coherence(x = top_terms ,tcm = tcm_intrinsic, n_doc_tcm = nrow(dtm)) expect_true(inherits(coherence_res, "matrix")) expect_equal(typeof(coherence_res), "double") expect_true(setequal(colnames(coherence_res), c("mean_logratio", "mean_pmi", "mean_npmi", "mean_difference", "mean_npmi_cosim", "mean_npmi_cosim2"))) expect_equal(nrow(coherence_res), n_topics) coherence_res_adapted_smooth = coherence(x = top_terms ,tcm = tcm_intrinsic, n_doc_tcm = nrow(dtm), smooth = .01) expect_false(sum(as.vector(coherence_res)) == sum(as.vector(coherence_res_adapted_smooth))) tcm_err = tcm_intrinsic[1:2,1:2] tcm_err[1,2] = 0 tcm_err[2,1] = 0 expect_warning({coherence_err = coherence(x = top_terms, tcm = tcm_err, n_doc_tcm = nrow(dtm))}) expect_true(all(is.na(coherence_err))) rownames(tcm_err) <- rev(rownames(tcm_err)) expect_error(coherence(x = top_terms, tcm = tcm_err, n_doc_tcm = nrow(dtm))) }) test_that("coherence, vectorized vs. mapply loop calculation of PMI", { tcm = matrix(rbind(c(40, 1, 2, 3), c(1, 30, 4, 5), c(2, 4,20, 6), c(3, 5, 6,10)), ncol = 4) idxs = 1:ncol(tcm) idxs_combis = t(combn(idxs,2, FUN = function(x) sort(x, decreasing = TRUE))) pmi = mapply(function(x,y) {log2((tcm[x,y]) + 1e-12) - log2(tcm[x,x]) - log2(tcm[y,y])} ,idxs_combis[,1], idxs_combis[,2]) res = as.matrix(tcm[idxs, idxs]) res[upper.tri(res)] = res[upper.tri(res)] + 1e-12 d = diag(res) res = res/d res = res %*% diag(1 / d) res = res[upper.tri(res)] pmi_vect = log2(res) expect_equal(sort(pmi), sort(pmi_vect)) tcm = Matrix::crossprod(dtm) for (i in 1:10) { set.seed(i) idxs = sample(1:ncol(tcm), 4) idxs_combis = t(combn(idxs,2, FUN = function(x) sort(x, decreasing = TRUE))) pmi = mapply(function(x,y) {log2((tcm[x,y]) + 1e-12) - log2(tcm[x,x]) - log2(tcm[y,y])} ,idxs_combis[,1], idxs_combis[,2]) res = as.matrix(tcm[idxs, idxs]) res[upper.tri(res)] = res[upper.tri(res)] + 1e-12 d = diag(res) res = res/d res = res %*% diag(1 / d) res = res[upper.tri(res)] pmi_vect = log2(res) expect_equal(sort(pmi), sort(pmi_vect)) } }) test_that("coherence, results of text2vec vs other packages", { CalcProbCoherence <- function(phi, dtm, M = 5){ if( ! is.numeric(phi) ){ stop("phi must be a numeric matrix whose rows index topics and columns\n", " index terms or phi must be a numeric vector whose entries index terms.") } if( ! is.matrix(dtm) && ! inherits(dtm, 'Matrix')){ stop("dtm must be a matrix. This can be a standard R dense matrix or a\n", " matrix of class dgCMatrix, dgTMatrix, dgRMatrix, or dgeMatrix") } if( ! is.numeric(M) | M < 1){ stop("M must be an integer in 1:ncol(phi) or 1:length(phi)") } if(length(M) != 1){ warning("M is a vector when scalar is expected. Taking only the first value") M <- M[ 1 ] } if(floor(M) != M){ warning("M is expected to be an integer. floor(M) is being used.") M <- floor(M) } if( is.null(colnames(dtm))){ stop("dtm must have colnames") } if( ! is.matrix(phi) ){ if(sum(names(phi)[ 1:M ] %in% colnames(dtm)) != length(1:M)){ stop("names(phi)[ 1:M ] are not in colnames(dtm)") } }else if(sum(colnames(phi)[ 1:M ] %in% colnames(dtm)) != length(1:M)){ stop("colnames(phi)[ 1:M ] are not in colnames(dtm)") } pcoh <- function(topic, dtm, M){ terms <- names(topic)[order(topic, decreasing = TRUE)][1:M] dtm.t <- dtm[, terms] dtm.t[dtm.t > 0] <- 1 count.mat <- Matrix::t(dtm.t) %*% dtm.t num.docs <- nrow(dtm) p.mat <- count.mat/num.docs result <- sapply(1:(ncol(count.mat) - 1), function(x) { p.mat[x, (x + 1):ncol(p.mat)]/p.mat[x, x] - Matrix::diag(p.mat)[(x + 1):ncol(p.mat)] }) mean(unlist(result), na.rm = TRUE) } if( ! is.matrix(phi) ){ return(pcoh(topic = phi, dtm = dtm, M = M)) } apply(phi, 1, function(x){ pcoh(topic = x, dtm = dtm, M = M) }) } semCoh1beta_adapted <- function(mat, M, beta) { top.words <- apply(beta, 1, order, decreasing=TRUE)[1:M,] wordlist <- unique(as.vector(top.words)) mat <- mat[,wordlist] mat = sign(mat) cross <- tcrossprod(t(mat)) temp <- match(as.vector(top.words),wordlist) labels <- split(temp, rep(1:nrow(beta), each=M)) sem <- function(ml,cross) { m <- ml[1]; l <- ml[2] log(1e-12 + cross[m,l]) - log(cross[l,l]) } result <- vector(length=nrow(beta)) for(k in 1:nrow(beta)) { grid <- expand.grid(labels[[k]],labels[[k]]) colnames(grid) <- c("m", "l") grid <- grid[grid$m > grid$l,] calc <- apply(grid,1,sem,cross) result[k] <- sum(calc) result[k] <- mean(calc, na.rm = TRUE) } return(result) } tcm_intrinsic = Matrix::crossprod(sign(dtm)) coherence_text2vec = coherence(x = top_terms ,tcm = tcm_intrinsic, n_doc_tcm = nrow(dtm) ,metrics = c("mean_difference", "mean_logratio")) logratio_stm_adapted = semCoh1beta_adapted(mat = dtm, M = n_top_terms, beta = topic_word_distribution) mean_difference_textmineR = CalcProbCoherence(phi = topic_word_distribution, dtm = as.matrix(dtm), M = n_top_terms) compare = cbind(coherence_text2vec, mean_difference_textmineR, logratio_stm_adapted) expect_equal(sort(compare[,"mean_logratio"]), sort(compare[,"logratio_stm_adapted"])) expect_equal(sort(compare[,"mean_difference"]), sort(compare[,"mean_difference_textmineR"])) })
color_loon <- function() { function(x) { if (!as.numeric(tcl('::loon::listfns::isColor', x))) { x <- tcl('::loon::listfns::mapColor', x) } hex12 <- as.character(tcl('::loon::listfns::toHexcolor', x)) hex12tohex6(hex12) } } loon_palette <- function(n) { if (length(n) != 1 && !is.numeric(n)) stop("argument n needs to be numeric and of length 1") as.character( .Tcl(paste( '::loon::hcl::hue_mem_pal', n, '{*}$::loon::Options(colors-palette-hcl)' )) ) } hex12tohex6 <- function(x) { col1 <- paste0( " col2 <- paste0( " if (!identical(col1, col2)) { warning(paste("conversion of 12 digit hexadecimal color representation to", "a 6 digit hexadecimal representation lost information.")) } col1 } as_hex6color <- function(color) { if(length(color) > 0){ col <- vapply(color, function(x) { if (x == "") "" else l_hexcolor(x) }, character(1)) col <- suppressWarnings(hex12tohex6(col)) col[color == ""] <- NA col } else { NA } } l_colorName <- function(color, error = TRUE, precise = FALSE) { color.id <- function(x, error = TRUE, precise = FALSE, env = environment()) { invalid.color <- c() colors <- vapply(x, function(color) { tryCatch( expr = { color <- as_hex6color(color) c2 <- grDevices::col2rgb(color) coltab <- grDevices::col2rgb(colors()) cdist <- apply(coltab, 2, function(z) sum((z - c2)^2)) if(precise) { if(min(cdist) == 0) colors()[which(cdist == min(cdist))][1] else color } else { colors()[which(cdist == min(cdist))][1] } }, error = function(e) { assign("invalid.color", c(invalid.color, color), envir = env) return(color) } ) }, character(1)) if(error && length(invalid.color) > 0) { stop("The input " , paste(invalid.color, collapse = ", "), " are not valid color names", call. = FALSE) } colors } uniColor <- unique(color) colorName <- color.id(uniColor, error = error, precise = precise) len <- length(colorName) for(i in seq(len)) { color[color == uniColor[i]] <- colorName[i] } color } l_hexcolor <- function(color) { as.character(tcl('::loon::listfns::toHexcolor', color)) } l_colRemoveAlpha <- function (col) { if(missing(col)) stop("Please provide a vector of colours.") rgb(t(col2rgb(col)), maxColorValue = 255) } l_setColorList <- function(colors) { tcl('::loon::setColorList', 'custom', colors) invisible() } l_getColorList <- function() { as.character(tcl('::loon::getColorList')) } l_setColorList_ColorBrewer <- function(palette=c("Set1", "Set2", "Set3", "Pastel1", "Pastel2", "Paired", "Dark2", "Accent")) { palette <- match.arg(palette) tcl('::loon::setColorList', 'ColorBrewer', palette) invisible() } l_setColorList_hcl <- function(chroma=56, luminance=51, hue_start=231) { tcl('::loon::setColorList', 'hcl', chroma, luminance, hue_start) invisible() } l_setColorList_ggplot2 <- function() { tcl('::loon::setColorList', 'ggplot2') invisible() } l_setColorList_baseR <- function() { tcl('::loon::setColorList', 'baseR') invisible() } l_setColorList_loon <- function() { tcl('::loon::setColorList', 'loon') invisible() }
source("ESEUR_config.r") library("compositions") pal_col=rainbow(3) hcl_col=rainbow_hcl(3) pt_col=rainbow(2) est=read.csv(paste0(ESEUR_dir, "projects/EstimationStudy.csv.xz"), as.is=TRUE) est=subset(est, !is.na(Design_Phase)) phase=acomp(est, parts=c("Design_Phase", "Code_Phase", "Test_Phase")) plot(phase, col=pt_col[1], labels="", mp=NULL) ternaryAxis(side=-1:-3, at=seq(0.25, 0.75, 0.25), labels="", pos=c(0.5,0.5,0.5), col.axis=hcl_col, col.lab=pal_col, small=TRUE, aspanel=TRUE, Xlab="Design", Ylab="Code", Zlab="Test") est$Test_Sched=est$Systest_Sched+est$Acctest_Sched est=subset(est, !is.na(Design_Sched)) sched=acomp(est, parts=c("Design_Sched", "Code_Sched", "Test_Sched")) plot(sched, col=pt_col[2], labels="", mp=NULL, add=TRUE)
datacounts <- function(response, id, repeated, ncategories) { response <- as.numeric(factor(response)) data <- data.frame(cbind(response, id, repeated)) data <- stats::reshape(data, v.names = "response", idvar = "id", timevar = "repeated", direction = "wide" ) data <- data[, -1] data[is.na(data)] <- 0 ntimes <- ncol(data) notimepairs <- choose(ntimes, 2) counts <- rep.int(0, notimepairs * (ncategories^2)) x <- rep(1:ncategories, each = notimepairs * ncategories) y <- rep.int(rep(1:ncategories, each = notimepairs), ncategories) tp <- rep.int(1:notimepairs, ncategories^2) ind_1 <- 1 for (categ1 in 1:ncategories) { for (categ2 in 1:ncategories) { for (ind_2 in 1:(ntimes - 1)) { for (ind_3 in (ind_2 + 1):ntimes) { counts[ind_1] <- sum( (data[, ind_2] == categ1) & (data[, ind_3] == categ2) ) ind_1 <- ind_1 + 1 } } } } data <- data.frame(cbind(counts, x, y, tp)) data } fitmm <- function(data, marpars, homogeneous, restricted, add) { LORstr <- marpars$LORstr LORem <- marpars$LORem fmla <- marpars$fmla ncategories <- max(data$x) timepairs <- max(data$tp) if (any(data$counts == 0)) { data$counts <- data$counts + add } LORterm <- matrix(0, timepairs, ncategories^2) if (LORstr == "uniform" | LORstr == "category.exch") { suppressWarnings(fitted.mod <- gnm::gnm(fmla, family = poisson, data = data, verbose = FALSE, model = FALSE )) if (is.null(fitted.mod)) { stop("gnm did not converge algorithm") } coefint <- as.vector(coef(fitted.mod)[gnm::pickCoef(fitted.mod, "x:y")]) if (LORem == "2way") { coefint <- mean(coefint) } LORterm <- matrix(coefint, timepairs, ncategories^2) LORterm <- t(apply( LORterm, 1, function(x) exp(x * tcrossprod(1:ncategories)) )) } if (LORstr == "time.exch") { data$x <- factor(data$x) data$y <- factor(data$y) if (is.null(restricted)) { if (LORem == "3way") { if (homogeneous) { suppressWarnings(fitted.mod <- gnm::gnm(fmla, family = poisson, data = data, verbose = FALSE, model = FALSE )) if (is.null(fitted.mod)) { stop("gnm did not converge algorithm") } coefint <- as.vector(coef(fitted.mod)[gnm::pickCoef( fitted.mod, "MultHomog" )]) coefint <- c(tcrossprod(coefint)) } else { suppressWarnings(fitted.mod <- gnm::gnm(fmla, family = poisson, data = data, verbose = FALSE, model = FALSE )) if (is.null(fitted.mod)) { stop("gnm did not converge algorithm") } coefint <- as.vector(coef(fitted.mod)[gnm::pickCoef( fitted.mod, "Mult" )]) coefint <- c(tcrossprod( coefint[-c(1:ncategories)], coefint[1:ncategories] )) } LORterm <- exp(matrix(coefint, nrow = timepairs, ncol = ncategories^2, TRUE )) } else { LORterm2 <- LORterm for (i in 1:timepairs) { datamar <- data[data$tp == i, ] suppressWarnings(fitted.mod <- gnm::gnm(fmla, family = poisson, data = datamar, verbose = FALSE, model = FALSE )) if (homogeneous) { coefint <- as.vector(coef(fitted.mod)[gnm::pickCoef( fitted.mod, "MultHomog" )]) coefint <- c(tcrossprod(coefint)) } else { coefint <- as.vector(coef(fitted.mod)[gnm::pickCoef( fitted.mod, "Mult" )]) coefint <- c(tcrossprod( coefint[1:ncategories], coefint[-c(1:ncategories)] )) } LORterm2[i, ] <- coefint } LORterm2 <- colMeans(LORterm2) LORterm <- exp(matrix( LORterm2, timepairs, ncategories^2, TRUE )) } } else { if (LORem == "3way") { if (homogeneous) { coefint <- RRChomog(fmla, data, ncategories) } else { coefint <- RRCheter(fmla, data, ncategories) } LORterm <- exp(matrix(coefint, nrow = timepairs, ncol = ncategories^2, TRUE )) } else { LORterm2 <- LORterm for (i in 1:timepairs) { datamar <- data[data$tp == i, ] if (homogeneous) { coefint <- RRChomog(fmla, datamar, ncategories) } else { coefint <- RRCheter(fmla, datamar, ncategories) } LORterm2[i, ] <- coefint } LORterm2 <- colMeans(LORterm2) LORterm <- exp(matrix( LORterm2, timepairs, ncategories^2, TRUE )) } } } if (LORstr == "RC") { data$x <- factor(data$x) data$y <- factor(data$y) for (i in 1:timepairs) { datamar <- data[data$tp == i, ] suppressWarnings(fitted.mod <- gnm::gnm(fmla, family = poisson, data = datamar, verbose = FALSE, model = FALSE )) if (is.null(restricted)) { if (homogeneous) { coefint <- as.vector(coef(fitted.mod)[gnm::pickCoef( fitted.mod, "MultHomog" )]) coefint <- c(tcrossprod(coefint)) } else { coefint <- as.vector(coef(fitted.mod)[gnm::pickCoef( fitted.mod, "Mult" )]) coefint <- c(tcrossprod( coefint[1:ncategories], coefint[-c(1:ncategories)] )) } } else { coefint <- if (homogeneous) { RRChomog(fmla, datamar, ncategories) } else { RRCheter(fmla, datamar, ncategories) } } LORterm[i, ] <- exp(coefint) } } LORterm <- prop.table(LORterm, 1) LORterm } mmpar <- function(LORem, LORstr, timepairs, homogeneous) { if (timepairs == 1) { LORem <- "2way" LORstr <- switch(LORstr, category.exch = "uniform", RC = "time.exch", uniform = "uniform", time.exch = "time.exch" ) if (LORstr == "uniform") { fmla <- counts ~ factor(x) + factor(y) + x:y } if (LORstr == "time.exch") { fmla <- if (homogeneous) { counts ~ x + y + MultHomog(x, y) } else { counts ~ x + y + Mult(x, y) } } } else if (LORem == "2way") { if (LORstr == "uniform") { fmla <- counts ~ (factor(x) + factor(y)) * factor(tp) + factor(tp):x:y } if (LORstr == "time.exch" | LORstr == "RC") { fmla <- if (homogeneous) { counts ~ x + y + MultHomog(x, y) } else { counts ~ x + y + Mult(x, y) } } } else { if (LORstr == "category.exch") { fmla <- counts ~ (factor(x) + factor(y)) * factor(tp) + factor(tp):x:y } if (LORstr == "uniform") { fmla <- counts ~ (factor(x) + factor(y)) * factor(tp) + x:y } if (LORstr == "time.exch") { fmla <- if (homogeneous) { counts ~ (x + y) * factor(tp) + MultHomog(x, y) } else { counts ~ (x + y) * factor(tp) + Mult(x, y) } } } list(LORem = LORem, LORstr = LORstr, fmla = fmla) } RCconstrains <- function(ncategories, homogeneous) { ncategories1 <- ncategories - 1 nodf <- helpvec <- rep.int(0, ncategories1) for (i in 1:(ncategories1 - 1)) { helpmat <- t(combn(c(1:ncategories1), i)) for (j in seq_len(nrow(helpmat))) { helpvec <- rep.int(0, ncategories1) helpvec[helpmat[j, ]] <- 1 nodf <- rbind(nodf, helpvec) } } nodf <- unique(nodf) n1 <- nrow(nodf) parscores <- matrix(1:ncategories, nrow = n1, ncol = ncategories, byrow = TRUE ) for (j in 1:ncategories1) { parscores[nodf[, j] == 1, j + 1] <- parscores[nodf[, j] == 1, j] } parscores <- t(apply(parscores, 1, function(x) as.numeric(factor(x)))) ans <- list(parscores = parscores, nodf = as.numeric(rowSums(nodf))) if (!homogeneous) { Homogeneous <- ans n1 <- length(Homogeneous$nodf) parscores <- cbind( apply(Homogeneous$parscores, 2, function(x) rep.int(x, n1)), apply(Homogeneous$parscores, 2, function(x) rep(x, each = n1)) ) nodf <- rep(Homogeneous$nodf, each = n1) + rep.int( Homogeneous$nodf, n1 ) orderedindices <- order(nodf) ans <- list( parscores = parscores[orderedindices, ], nodf = nodf[orderedindices] ) } ans } RRCheter <- function(fmla, data, ncategories) { Consmat <- RCconstrains(ncategories, FALSE) dev <- stop.constrains <- Inf datax <- factor(data$x) datay <- factor(data$y) maxcategory <- nlevels(datax) noglm <- length(Consmat$nodf[Consmat$nodf < 2 * (maxcategory - 2)]) fmla <- update(fmla, ~ . - Mult(x, y) + Mult(z1, z2)) for (i in 1:noglm) { data$z1 <- datax data$z2 <- datay levels(data$z1) <- pickcoefindz1 <- Consmat$parscores[i, 1:maxcategory] levels(data$z2) <- pickcoefindz2 <- Consmat$parscores[i, - (1:maxcategory)] RRCmod <- suppressWarnings(gnm::gnm(fmla, data = data, family = poisson, verbose = FALSE, model = FALSE )) if (!is.null(RRCmod)) { if (deviance(RRCmod) < dev & RRCmod$conv) { scores <- as.numeric(coef(RRCmod)[pickCoef(RRCmod, "Mult")]) pickcoefind <- unique(pickcoefindz1) scoresmu <- scores[pickcoefind][pickcoefindz1] mu <- normscores(scoresmu) if (all(diff(mu) >= 0) | all(diff(mu) <= 0)) { scoresnu <- scores[-pickcoefind][pickcoefindz2] nu <- normscores(scoresnu) if (all(diff(nu) >= 0) | all(diff(nu) <= 0)) { dev <- deviance(RRCmod) stop.constrains <- Consmat$nodf[i] LORterm <- c(tcrossprod(scoresmu, scoresnu)) } } } } if (stop.constrains < Consmat$nodf[i + 1]) { break } } if (!is.finite(dev)) { fmla <- update(fmla, ~ . - Mult(z1, z2) + x1:x2) for (i in (noglm + 1):length(Consmat$nodf)) { datax1 <- datax datay1 <- datay levels(datax1) <- pickcoefindz1 <- Consmat$parscores[i, 1:maxcategory] levels(datay1) <- pickcoefindz2 <- Consmat$parscores[i, - (1:maxcategory)] data$x1 <- as.numeric(datax1) data$x2 <- as.numeric(datay1) RRCmod <- suppressWarnings(glm(fmla, data = data, family = poisson)) if (deviance(RRCmod) < dev & RRCmod$conv) { LORterm <- c(tcrossprod(pickcoefindz1, pickcoefindz2) * as.numeric(RRCmod$coef["x1:x2"])) } } } if (!is.finite(dev)) { LORterm <- rep(0, nlevels(datax)^2) } LORterm } RRChomog <- function(fmla, data, ncategories) { Consmat <- RCconstrains(ncategories, TRUE) datax <- factor(data$x) datay <- factor(data$y) dev <- stop.constrains <- Inf noglm <- length(Consmat$nodf[Consmat$nodf < (nlevels(datax) - 2)]) fmla <- update(fmla, ~ . - MultHomog(x, y) + MultHomog(z1, z2)) for (i in 1:noglm) { data$z1 <- datax data$z2 <- datay levels(data$z1) <- levels(data$z2) <- pickcoefind <- Consmat$parscores[i, ] suppressWarnings(RRCmod <- gnm::gnm(fmla, family = poisson, data = data, verbose = FALSE, model = FALSE )) if (!is.null(RRCmod)) { if (deviance(RRCmod) < dev & RRCmod$conv) { pickcoef <- gnm::pickCoef(RRCmod, "MultHomog(.,.)") scores <- as.numeric(coef(RRCmod)[pickcoef])[pickcoefind] mu <- normscores(scores) if (all(diff(mu) >= 0) | all(diff(mu) <= 0)) { dev <- deviance(RRCmod) LORterm <- c(tcrossprod(scores)) if (Consmat$nodf[i] < Consmat$nodf[i + 1]) { break } } } } if (stop.constrains < Consmat$nodf[i + 1]) { break } } if (!is.finite(dev)) { fmla <- update(fmla, ~ . - MultHomog(z1, z2) + x1:x2) data$x1 <- as.numeric(datax1) data$x2 <- as.numeric(datay1) for (i in (noglm + 1):length(Consmat$nodf)) datax1 <- datax datay1 <- datay levels(datax1) <- levels(datay1) <- pickcoefind <- Consmat$parscores[i, ] RRCmod <- suppressWarnings(glm(fmla, data = data, family = poisson, verbose = FALSE, model = FALSE )) if (deviance(RRCmod) < dev & RRCmod$conv) { LORterm <- c(tcrossprod(pickcoefind) * as.numeric(RRCmod$coef["x1:x2"])) } } if (!is.finite(dev)) { LORterm <- rep(0, nlevels(datax)^2) } LORterm }
Falco_GP_C <- function(train, test, population_size=200, max_generations=200, max_deriv_size=20, rec_prob=0.8, mut_prob=0.1, copy_prob=0.01, alpha=0.9, seed=-1){ alg <- RKEEL::R6_Falco_GP_C$new() alg$setParameters(train, test, population_size, max_generations, max_deriv_size, rec_prob, mut_prob, copy_prob, alpha, seed) return (alg) } R6_Falco_GP_C <- R6::R6Class("R6_Falco_GP_C", inherit = ClassificationAlgorithm, public = list( population_size = 200, max_generations = 200, max_deriv_size = 20, rec_prob = 0.8, mut_prob = 0.1, copy_prob = 0.01, alpha = 0.9, seed = -1, setParameters = function(train, test, population_size=200, max_generations=200, max_deriv_size=20, rec_prob=0.8, mut_prob=0.1, copy_prob=0.01, alpha=0.9, seed=-1){ super$setParameters(train, test) stopText <- "" if((hasMissingValues(train)) || (hasMissingValues(test))){ stopText <- paste0(stopText, "Dataset has missing values and the algorithm does not accept it.\n") } if(stopText != ""){ stop(stopText) } self$population_size <- population_size self$max_generations <- max_generations self$max_deriv_size <- max_deriv_size self$rec_prob <- rec_prob self$mut_prob <- mut_prob self$copy_prob <- copy_prob self$alpha <- alpha if(seed == -1) { self$seed <- sample(1:1000000, 1) } else { self$seed <- seed } } ), private = list( jarName = "Falco_GP.jar", algorithmName = "Falco_GP-C", algorithmString = "Falco_GP", getParametersText = function(){ text <- "" text <- paste0(text, "seed = ", self$seed, "\n") text <- paste0(text, "population-size = ", self$population_size, "\n") text <- paste0(text, "max-generations = ", self$max_generations, "\n") text <- paste0(text, "max-deriv-size = ", self$max_deriv_size, "\n") text <- paste0(text, "rec-prob = ", self$rec_prob, "\n") text <- paste0(text, "mut-prob = ", self$mut_prob, "\n") text <- paste0(text, "copy-prob = ", self$copy_prob, "\n") text <- paste0(text, "alpha = ", self$alpha, "\n") return(text) } ) )