code
stringlengths 1
13.8M
|
---|
LTRCART <- function(formula, data, weights=NULL, subset = NULL, no.SE = 0, control = rpart::rpart.control(cp = 0.001)){
if(missing(data)){
y <- eval(formula[[2]])
predictors <- formula[[3]]
if (!inherits(y, "Surv") | length(as.list(formula[[2]]))!=4){
stop(" Response must be a 'survival' object with 'Surv(time1, time2, event)' ")
}
Status <- y[,3L]
Times <- y[,2L]
unique.times <- sort(unique(Times[Status == 1]))
temp <- survival::coxph(y ~ 1)
cumhaz.table <- survival::basehaz(temp)
if(sum(is.infinite(cumhaz.table$hazard))!=0){
cumhaz.table <- cumhaz.table[cumhaz.table$hazard != Inf,]
}
cumhaz.table2 <- cumhaz.table[cumhaz.table$time %in% unique.times,]
cumhaz.times <- c(0, cumhaz.table2$time[-length(cumhaz.table2$time)], max(Times))
cumhaz <- c(0, cumhaz.table2$hazard)
Start.cumhaz <- stats::approx(cumhaz.times, cumhaz, y[,1L])$y
End.cumhaz <- stats::approx(cumhaz.times, cumhaz, y[,2L])$y
Newtime <- End.cumhaz - Start.cumhaz
Formula = formula(paste(c( paste("cbind(Newtime,","Status)",sep = ""), predictors), collapse = "~"))
Fit.tree <- rpart::rpart(formula = Formula, method = "poisson", weights = weights, subset = subset, control = control)
if( length(unique(Fit.tree$where))!=1 ){
cventry <- which.min(Fit.tree$cptable[, "xerror"])
if(no.SE == 0){
cpcv <- Fit.tree$cptable[cventry, "CP"]
Fit.tree <- rpart::prune(Fit.tree,cp=cpcv)
}else{
xerrorcv <- Fit.tree$cptable[cventry, "xerror"]
sexerrorcv <- xerrorcv + Fit.tree$cptable[cventry,"xstd"] * no.SE
cpcvse <- Fit.tree$cptable[which.max(Fit.tree$cptable[, "xerror"] <= sexerrorcv), "CP"]
Fit.tree <- rpart::prune(Fit.tree, cp = cpcvse)
}
}
return(Fit.tree)
}else{
Data <- data
Response <- formula[[2]]
predictors <- formula[[3]]
if(length(as.list(Response))!=4){
stop(" Response must be a 'survival' object with 'Surv(time1, time2, event)' ")
}
y.names <- c(as.character(as.list(Response)[[2]]),as.character(as.list(Response)[[3]]),as.character(as.list(Response)[[4]]))
y.IDs <- match(y.names, names(Data))
y <- survival::Surv(Data[,y.IDs[1]],Data[,y.IDs[2]],Data[,y.IDs[3]])
Status <- y[,3L]
Times <- y[,2L]
unique.times <- sort(unique(Times[Status == 1]))
temp <- survival::coxph(y ~ 1)
cumhaz.table <- survival::basehaz(temp)
if(sum(is.infinite(cumhaz.table$hazard))!=0){
cumhaz.table <- cumhaz.table[cumhaz.table$hazard != Inf,]
}
cumhaz.table2 <- cumhaz.table[cumhaz.table$time %in% unique.times,]
cumhaz.times <- c(0, cumhaz.table2$time[-length(cumhaz.table2$time)], max(Times))
cumhaz <- c(0, cumhaz.table2$hazard)
Start.cumhaz <- stats::approx(cumhaz.times, cumhaz, y[,1L])$y
End.cumhaz <- stats::approx(cumhaz.times, cumhaz, y[,2L])$y
Data$Newtime <- End.cumhaz - Start.cumhaz
Formula = formula(paste(c( paste("cbind(Newtime,",y.names[3],")",sep = ""), predictors), collapse = "~"))
DATA = Data[,-y.IDs[1:2]]
Fit.tree <- rpart::rpart(formula = Formula, data = DATA, method = "poisson", weights = weights, subset = subset, control = control)
if( length(unique(Fit.tree$where))!=1 ){
cventry <- which.min(Fit.tree$cptable[, "xerror"])
if(no.SE == 0){
cpcv <- Fit.tree$cptable[cventry, "CP"]
Fit.tree <- rpart::prune(Fit.tree,cp=cpcv)
}else{
xerrorcv <- Fit.tree$cptable[cventry, "xerror"]
sexerrorcv <- xerrorcv + Fit.tree$cptable[cventry,"xstd"] * no.SE
cpcvse <- Fit.tree$cptable[which.max(Fit.tree$cptable[, "xerror"] <= sexerrorcv), "CP"]
Fit.tree <- rpart::prune(Fit.tree, cp = cpcvse)
}
}
return(Fit.tree)
}
} |
CAM <-function(x){
if (class(x) == "mdf"){
y <- x$MUDFOLD_INFO$second_step$CAM
class(y) <- "cam.mdf"
return(y)
}else{
J <- colnames(x)
K <- ncol(x)
CADJ.mat<-matrix(0,nrow=K,ncol=K,dimnames=list(J,J))
for (i in 1:K) for(j in 1:K) CADJ.mat[i,j] <- sum(x[,i]*x[,j]) / sum(x[,j])
diag(CADJ.mat) <- NA
class(CADJ.mat) <- "cam.mdf"
return(CADJ.mat)
}
} |
context("fixed_species")
library(dplyr)
testdata <- data.frame("1" = c(0,0,0,1,0,0),
"2" = c(0,0,1,0,0,0),
"3" = c(1,0,0,0,1,0),
"4" = c(0,0,1,0,0,1),
"5" = c(1,1,1,1,1,0))
partial_solution <- data.frame("1" = c(0,0,0,0,0,0),
"2" = c(0,0,0,0,0,0),
"3" = c(0,0,0,0,0,0),
"4" = c(0,0,0,0,0,0),
"5" = c(1,1,1,1,1,1)) %>% as.matrix()
fixed_species <- data.frame("1" = c(1,1,1,1,1,1),
"2" = c(0,0,1,0,0,0),
"3" = c(1,0,0,0,1,0),
"4" = c(0,0,1,0,0,1),
"5" = c(1,1,1,1,1,1)) %>% as.matrix()
alpha_list_test <- testdata %>% summarise_all(sum) %>% as.numeric()
total_gamma_test <- testdata %>% filter_all(any_vars(sum(.) != 0)) %>% nrow()
target_matrix_test <- testdata %>% as.matrix() %>% spectre:::calculate_solution_commonness_rcpp()
res_sim <- run_optimization_min_conf(alpha_list = alpha_list_test,
total_gamma = total_gamma_test,
target = target_matrix_test,
fixed_species = fixed_species,
partial_solution = partial_solution,
max_iterations = 200,
verbose = FALSE)
resultdata <- res_sim$optimized_grid %>% as.data.frame()
alpha_list_result <- resultdata %>% summarise_all(sum) %>% as.numeric()
total_gamma_result <- resultdata %>% filter_all(any_vars(sum(.) != 0)) %>% nrow()
target_matrix_result <- spectre:::calculate_solution_commonness_rcpp(res_sim$optimized_grid)
resultdata <- resultdata %>% as.matrix()
expect_equal(alpha_list_result[5], 6L)
expect_equal(alpha_list_result[1], 0L)
expect_equal(total_gamma_test, total_gamma_result)
expect_true(resultdata[1,3] == 0L)
expect_true(resultdata[3,2] == 0L)
expect_true(resultdata[3,4] == 0L)
expect_true(resultdata[5,3] == 0L)
expect_true(resultdata[6,4] == 0L)
expect_setequal(resultdata[1:6,5], rep(1L, times = 6)) |
"pwrFDR" <-
function(effect.size, n.sample, r.1, alpha, delta=NULL, groups=2, N.tests,
average.power, tp.power, lambda, type=c("paired","balanced","unbalanced"),
grpj.per.grp1=NULL, FDP.control.method=c("BHFDR","BHCLT","Romano","Auto","both"),
method=c("FixedPoint", "simulation"), n.sim=1000, temp.file,
control=list(tol=1e-8, max.iter=c(1000,20), distopt=1, CS=list(NULL), sim.level=2,
low.power.stop=TRUE, FDP.meth.thresh=FDP.cntl.mth.thrsh.def, verb=FALSE,
ast.le.a=TRUE))
{
.call. <- m <- match.call()
pfx <- as.character(m[[1]])
frmls <- names(formals(pwrFDR))
sppld <- names(m)[-1]
m <- evald.call <- args.def.err.chk(m, sppld, frmls)
err.msg <- attr(m, "err.msg")
if(!is.null(err.msg)) stop(err.msg)
m[[1]] <- as.name(pfx %,% "." %,% pwrfdrmthd.sfx[m$method])
m$method <- m$temp.file <- NULL
args.full <- evald.call
args.full[[1]] <- as.name("list")
args.full <- eval(args.full)
args.full$call <- evald.call
out <- eval(m)
class(out) <- "pwr"
attr(out, "arg.vals") <- args.full
out$call <- .call.
out
}
"pwrFDR.grid" <-
function(effect.size, n.sample, r.1, alpha, delta, groups, N.tests, average.power,
tp.power, lambda, type, grpj.per.grp1, FDP.control.method, control)
{
.call. <- m <- fd <- match.call()
pfx <- as.character(m[[1]])
frmls <- names(formals(pwrFDR.grid))
sppld <- names(m)[-1]
n.sppld <- length(sppld)
is.msng <- !(frmls %in% sppld)
names(is.msng) <- frmls
msng.nms <- names(is.msng)[is.msng]
eval.env <- sys.parent
for (k in 1:n.sppld)
{
m[[sppld[k]]] <- eval(m[[sppld[k]]], eval.env())
fd[[sppld[k]]] <- length(m[[sppld[k]]])
}
is.pwr <- (!is.msng["average.power"]) || (!is.msng["tp.power"])
nera <- c("n.sample", "effect.size", "r.1", "alpha")
pwr.spcfd <- !is.msng["average.power"]||!is.msng["tp.power"]
use.L.pwr <- !is.msng["tp.power"]
pwr.nm <- c("average.power", "tp.power")[1+use.L.pwr]
msng.nera <- nera[which(is.msng[nera])]
fd[[1]] <- as.name("factorial.design")
fd <- as.data.frame(eval(fd))
n.conds <- nrow(fd)
pwrFDR.call <- as.call(expression(pwrFDR))
names(fd) <- sppld
rslts <- list()
cnds <- NULL
for(j in 1:n.conds)
{
cnds.j <- NULL
for(k in 1:n.sppld)
{
cnds.j <- c(cnds.j, m[[sppld[k]]][fd[j,k]])
pwrFDR.call[[sppld[k]]] <- m[[sppld[k]]][fd[j,k]]
}
cnds <- rbind(cnds, cnds.j)
rslts[[j]] <- try(eval(pwrFDR.call, eval.env()), silent=TRUE)
}
dimnames(cnds)[[1]] <- NULL
cnds <- as.data.frame(cnds)
names(cnds) <- sppld
list(conditions=cnds, results=rslts)
}
"pwrFDR.FP" <-
function(effect.size, n.sample, r.1, alpha, delta, groups, N.tests,
average.power, tp.power, lambda, type, grpj.per.grp1,
FDP.control.method, method, n.sim, temp.file, control)
{
.call. <- m.sv <- m <- match.call()
ee <- function(x)exp(exp(x))-1
ll <- function(x)log(log(1 + x))
ijumps <- FALSE
Auto <- ""
is.msng <- control$is.msng
pfx <- as.character(m[[1]])
is.N <- !is.msng["N.tests"]
pwr.spcfd <- !is.msng["average.power"]||!is.msng["tp.power"]
if(!pwr.spcfd)
{
m[[1]] <- as.name(as.character(m[[1]]) %,% ".1X")
m$average.power <- m$tp.power <- NULL
out <- eval(m)
}
if(pwr.spcfd)
{
use.L.pwr <- !is.msng["tp.power"]
pwr.nm <- c("average.power", "tp.power")[1+use.L.pwr]
msng.nera <- nera[which(is.msng[nera])]
psi.inv <- list(n.sample=ee, effect.size=ee, r.1=logit.inv.r, alpha=logit.inv.r)[[msng.nera]]
psi <- list(n.sample=ll, effect.size=ll, r.1=logit, alpha=logit)[[msng.nera]]
OBJ <-
function(x, m, misc, p=c(2, 1.25))
{
rslt.call <- m
rslt.call[[1]] <- as.name(pfx %,% ".1X")
rslt.call[[misc$msng.nera]] <- misc$psi.inv(x)
rslt.call$average.power <- rslt.call$tp.power <- NULL
rslt <- suppressWarnings(eval(rslt.call))
if(!use.L.pwr)
{
pwr <- rslt$pwr <- rslt$average.power
pwr. <- max(min(pwr, 1-1e-16),1e-16)
out <- out.n <- ((logit(pwr.) - logit(average.power))^p[1])^(1/p[2])
}
if(use.L.pwr)
{
pwr <- rslt$pwr <- rslt$tp.power
pwr. <- min(max(pwr, 1e-16), 1-1e-16)
out <- out.n <- ((logit(pwr.) - logit(tp.power))^p[1])^(1/p[2])
}
attr(out, "detail") <- rslt
if(control$verb>0)
cat(sprintf("(obj, %s, %s)=(%g, %g, %g)\n", misc$msng.nera, misc$pwr.nm, out, misc$psi.inv(x), pwr.))
if(control$verb>0 && is.na(out)) browser()
out
}
idistopt <- control$distopt
is.pos <- (dists$minv[[1+idistopt]]==0)
if(use.L.pwr) pwr <- tp.power
if(!use.L.pwr) pwr <- average.power
l.nera <- c(n.sample=5, effect.size=0.01, r.1=0.00001, alpha=0.00001)
u.nera <- c(n.sample=Inf, effect.size=2, r.1=0.99999, alpha=0.99999)
l.x <- psi(l.nera[msng.nera])
u.x <- psi(u.nera[msng.nera])
if(msng.nera=="n.sample")
{
grps <- groups
r.0 <- 1 - r.1
alpha.0 <- r.0*alpha
if(use.L.pwr) pwr <- tp.power
if(!use.L.pwr) pwr <- average.power
gma <- r.1*pwr/(1-alpha.0)
ftest.ss <- f.power(power=pwr, groups=grps, effect.size=effect.size, e.I=gma*alpha)
u.x <- psi(10*ftest.ss$n.sample)
done <- FALSE
while(!done)
{
obj.ux <-OBJ(u.x,m=m.sv, misc=list(msng.nera=msng.nera, pwr.nm=pwr.nm, psi.inv=psi.inv), p=c(1,1))
done <- !is.na(obj.ux)
if(!done) u.x <- psi(psi.inv(u.x) -1)
}
lu.k <- c(l.x, u.x)
err <- 1
x <- u.x
iter <- 0
while(err > 1e-3)
{
while(err > 1e-3 && iter < 20)
{
obj <- OBJ(x, m=m.sv, misc=list(msng.nera=msng.nera, pwr.nm=pwr.nm, psi.inv=psi.inv), p=c(1,1))
pos <- obj > 0
err <- abs(obj)
if(control$verb > 0) cat(sprintf("n: %d, x: %g, lu.k[1]: %g, lu.k[2]: %g, obj: %g, err: %g\n",
ceiling(psi.inv(x)), x, lu.k[1], lu.k[2], obj, err))
lu.k <- pos*c(lu.k[1], x) + (1-pos)*c(x, lu.k[2])
x <- mean(lu.k)
iter <- iter + 1
}
if(err > 1e-3)
{
lu.k <- lu.k <- c(l.x, u.x)
if(m.sv$FDP.control.method %in% c("BHCLT","Auto")) m.sv$FDP.control.method <- Auto <- "Romano"
ijumps <- TRUE
iter <- 0
}
}
ans <- list(objective=obj)
y <- ceiling(psi.inv(x))
}
if(msng.nera!="n.sample")
{
ans <- optimize(f=OBJ, lower=l.x, upper=u.x, m=m.sv, tol=.Machine$double.eps^0.35,
misc=list(msng.nera=msng.nera, pwr.nm=pwr.nm, psi.inv=psi.inv))
obj <- ans$objective
if(abs(obj)>1e-3) stop("No Solution, " %,% msng.nera %,% " too close to " %,%
l.nera[msng.nera] %,% " or " %,% u.nera[msng.nera] %,% " and " %,%
pwr.nm %,% " is " %,% signif(attr(obj,"detail")$pwr,3))
y <- psi.inv(ans$minimum)
}
assign(msng.nera, y)
nii.sample <- n.sample
if(groups>=2 && type==3) nii.sample <- n.sample*grpj.per.grp1
.DF. <- eval(DF[type])
.NCP. <- eval(NCP[type])
pars0 <- eval(dists$pars0[[1+idistopt]])
pars1 <- eval(dists$pars1[[1+idistopt]])
r.0 <- 1 - r.1
alpha.0 <- r.0*alpha
gma <- r.1*ans$average.power/(1-alpha.0)
c.g <- dists$qdist[[1+idistopt]](1 - gma*alpha/2^(!is.pos), pars0)
eIII <- dists$pdist[[1+idistopt]](-c.g, pars1)
dtl <- attr(ans$objective, "detail")
dtl$pwr <- NULL
out <- numeric(0)
out[msng.nera] <- get(msng.nera)
if(ijumps) dtl$Auto <- Auto
out <- c(out, dtl)
}
out
}
"pwrFDR.FP.1X" <-
function(effect.size, n.sample, r.1, alpha, delta, groups, N.tests,
average.power, tp.power, lambda, type, grpj.per.grp1,
FDP.control.method, method, n.sim, temp.file, control)
{
.call. <- m <- m.sv <- match.call()
is.msng <- control$is.msng
ast.le.a <- control$ast.le.a
if(is.msng["alpha"]) .call.$delta <- m$delta <- m.sv$delta <- m$alpha
is.N <- !missing(N.tests)
idistopt <- control$distopt
nii.sample <- n.sample
if(groups>=2 && type==3) nii.sample <- n.sample*grpj.per.grp1
.DF. <- eval(DF[type])
.NCP. <- eval(NCP[type])
pars0 <- eval(dists$pars0[[1+idistopt]])
pars1 <- eval(dists$pars1[[1+idistopt]])
is.pos <- (dists$minv[[1+idistopt]]==0)
Auto <- se.by.a <- gma.Ntsts <- NULL
n <- n.sample
r.0 <- 1 - r.1
alpha.0 <- r.0*alpha
alpha.st <- NULL
do.tp.power <- !missing(lambda)
if(FDP.control.method == "Auto")
{
m.fxd.pt <- m
m.fxd.pt[[1]] <- as.name("CDF.Pval.ua.eq.u")
m.fxd.pt$N.tests <- m.fxd.pt$lambda <- m.fxd.pt$FDP.control.method <- m.fxd.pt$delta <- NULL
gma <- eval(m.fxd.pt, sys.parent())$gamma
se.VoR <- (r.0*alpha*(1-r.0*alpha*gma)/(N.tests*gma))^0.5
FDP.meth.thresh <- control$FDP.meth.thresh
se.by.a <- se.VoR/alpha
do.bhfdr <- (se.by.a < FDP.meth.thresh[1])
do.bhclt <- ((se.by.a >= FDP.meth.thresh[1]) && (N.tests >= FDP.meth.thresh[2]))
do.romano <- !do.bhfdr && !do.bhclt
mthd.chc <- 1*do.romano + 2*do.bhclt + 3*do.bhfdr
FDP.control.method <- c("Romano", "BHCLT", "BHFDR")[mthd.chc]
Auto <- FDP.control.method
}
if(FDP.control.method == "BHFDR")
{
m.fxd.pt <- m
m.fxd.pt[[1]] <- as.name("CDF.Pval.ua.eq.u")
m.fxd.pt$N.tests <- m.fxd.pt$lambda <- m.fxd.pt$FDP.control.method <- m.fxd.pt$delta <- NULL
gma <- gma.st <- eval(m.fxd.pt, sys.parent())$gamma
c.g <- qdist(1 - gma*alpha/2^(!is.pos), pars0)
G1.pr <- r.1*(ddist(c.g, pars1) +
(!is.pos)*ddist(-c.g, pars1))/(ddist(c.g, pars0) + (!is.pos)*ddist(-c.g, pars0))
G.pr <- r.0 + G1.pr
average.power <- pi.1 <- 1 - pdist(c.g, pars1) + (!is.pos) * pdist(-c.g, pars1)
sigma.rtm.VoR <- (r.0*alpha*(1-r.0*alpha*gma)/gma)^0.5
tau2 <- gma*(1-gma)/(1-alpha*G.pr)^2
v.W1 <- r.1*pi.1 - r.1^2*pi.1^2
c.W0.W1 <- - r.0*alpha*gma*r.1*pi.1
v.top <- v.W1 + alpha^2*G1.pr^2*tau2 + 2*alpha*G1.pr*(v.W1 + c.W0.W1)/
(1-alpha*G.pr)
v.bot <- r.0*r.1
c.top.bot <- r.0*r.1*(pi.1 + alpha*G1.pr/(1-alpha*G.pr)*(pi.1 - alpha*gma))
sigma.rtm.ToM <- (v.top - 2*pi.1*c.top.bot + pi.1^2*v.bot)^0.5/r.1
}
if(FDP.control.method == "BHCLT")
{
m.cntlfdp <- m
m.cntlfdp[[1]] <- as.name("controlFDP")
m.cntlfdp$lambda <- m.cntlfdp$FDP.control.method <- NULL
alpha.st <- eval(m.cntlfdp, sys.parent())$alpha.star
if(ast.le.a) alpha.st <- min(alpha.st, alpha)
if(is.na(alpha.st)) FDP.control.method <- Auto <- "Romano"
if(!is.na(alpha.st))
{
m.fxd.pt <- m
m.fxd.pt[[1]] <- as.name("CDF.Pval.ua.eq.u")
m.fxd.pt$N.tests <- m.fxd.pt$lambda <- m.fxd.pt$FDP.control.method <- m.fxd.pt$delta <- NULL
m.fxd.pt$alpha <- alpha.st
gma <- gma.st <- eval(m.fxd.pt, sys.parent())$gamma
c.g <- qdist(1 - gma.st*alpha.st/2^(!is.pos), pars0)
G1.pr <- r.1*(ddist(c.g, pars1) +
(!is.pos)*ddist(-c.g, pars1))/(ddist(c.g, pars0) + (!is.pos)*ddist(-c.g, pars0))
G.pr <- r.0 + G1.pr
average.power <- pi.1 <- 1 - pdist(c.g, pars1) + (!is.pos) * pdist(-c.g, pars1)
sigma.rtm.VoR <- (r.0*alpha.st*(1-r.0*gma.st*alpha.st)/gma.st)^0.5
tau2 <- gma.st*(1-gma.st)/(1-alpha.st*G.pr)^2
v.W1 <- r.1*pi.1 - r.1^2*pi.1^2
c.W0.W1 <- - r.0*alpha.st*gma.st*r.1*pi.1
v.top <- v.W1 + alpha.st^2*G1.pr^2*tau2 + 2*alpha.st*G1.pr*(v.W1 + c.W0.W1)/
(1-alpha.st*G.pr)
v.bot <- r.0*r.1
c.top.bot <- r.0*r.1*(pi.1 + alpha.st*G1.pr/(1-alpha.st*G.pr)*(pi.1 - alpha.st*gma.st))
sigma.rtm.ToM <- (v.top - 2*pi.1*c.top.bot + pi.1^2*v.bot)^0.5/r.1
}
}
if(FDP.control.method == "Romano")
{
m.fxd.pt <- m
m.fxd.pt[[1]] <- as.name("CDF.Pval.ar.eq.u")
m.fxd.pt$N.tests <- m.fxd.pt$lambda <- m.fxd.pt$FDP.control.method <- NULL
gma <- gma.R <- eval(m.fxd.pt, sys.parent())$gamma
psi. <- gma.R*delta/(1-(1-delta)*gma.R)
psi.pr <- delta/(1-(1-delta)*gma.R)^2
u <- psi.*alpha
c.g <- qdist(1 - u/2^(!is.pos), pars0)
G1.pr <- r.1*(ddist(c.g, pars1) +
(!is.pos)*ddist(-c.g, pars1))/(ddist(c.g, pars0) + (!is.pos)*ddist(-c.g, pars0))
G.pr <- r.0 + G1.pr
average.power <- pi.1 <- 1 - pdist(c.g, pars1) + (!is.pos)*pdist(-c.g, pars1)
tau2 <- gma.R*(1-gma.R)/(1-alpha*psi.pr*G.pr)^2
sigma.rtm.VoR <-
((1+r.0*alpha*(psi.pr-psi./gma.R)/(1-alpha*psi.pr*G.pr))^2*r.0*alpha*psi.*(1-r.0*alpha*psi.)
+(r.0*alpha*(psi.pr-psi./gma.R)/(1-alpha*psi.pr*G.pr))^2*r.1*pi.1*(1-r.1*pi.1)
-2*(1+r.0*alpha*(psi.pr-psi./gma.R)/(1-alpha*psi.pr*G.pr))*
(r.0*alpha*(psi.pr-psi./gma.R)/(1-alpha*psi.pr*G.pr))*r.0*alpha*psi.*r.1*pi.1)^0.5/gma.R
v.W1 <- r.1*pi.1 - r.1^2*pi.1^2
c.W0.W1 <- - r.0*alpha*psi.*r.1*pi.1
v.top <- v.W1 + alpha^2*psi.pr^2*G1.pr^2*tau2 + 2*alpha*psi.pr*G1.pr*(v.W1 + c.W0.W1)/
(1-alpha*psi.pr*G.pr)
v.bot <- r.0*r.1
c.top.bot <- r.0*r.1*(pi.1 + alpha*psi.pr*G1.pr/(1-alpha*psi.pr*G.pr)*(pi.1 - alpha*psi.))
sigma.rtm.ToM <- (v.top - 2*pi.1*c.top.bot + pi.1^2*v.bot)^0.5/r.1
}
eIII <- dists$pdist[[1+idistopt]](-c.g, pars1)
out <- list(average.power = average.power, c.g = c.g, gamma = gma, err.III=eIII)
if(!is.N)
{
out$sigma.rtm.Rom <- max(tau2^0.5, 1e-10)
out$sigma.rtm.VoR <- max(sigma.rtm.VoR, 1e-10)
out$sigma.rtm.ToM <- max(sigma.rtm.ToM, 1e-10)
}
if(is.N)
{
out$se.Rom <- max((tau2/N.tests)^0.5, 1e-10)
out$se.VoR <- max(sigma.rtm.VoR/N.tests^0.5, 1e-10)
out$se.ToM <- max(sigma.rtm.ToM/N.tests^0.5, 1e-10)
}
if(!is.null(Auto)) out$Auto <- Auto
if(!is.null(alpha.st)&&!is.na(alpha.st)) out$alpha.star <- alpha.st
if(do.tp.power)
{
se.ToM <- sigma.rtm.ToM/N.tests^0.5
tp.power <- pnorm((average.power - lambda)/se.ToM)
L.eq <- average.power - se.ToM * qnorm(average.power)
out$tp.power <- tp.power
out$L.eq <- L.eq
}
attr(out, "pars") <- rbind(pars0=pars0,pars1=pars1)
out
}
"pwrFDR.sim" <-
function(groups, effect.size, n.sample, r.1, alpha, N.tests, control, lambda,
FDP.control.method, type, grpj.per.grp1, n.sim=1000, delta)
{
.call. <- m <- match.call()
m.FP.1X <- m
m.FP.1X$n.sim <- NULL
m.FP.1X$do.Romano <- NULL
m.FP.1X[[1]] <- as.name("pwrFDR.FP.1X")
m.FP.1X$FDP.control.method <- "BHFDR"
rslt.FP.1X <- eval(m.FP.1X, sys.parent())
low.power.stop <- control$low.power.stop
if(is.null(control$low.power.stop)) low.power.stop <- TRUE
if(rslt.FP.1X$average.power < 0.50 && low.power.stop)
stop("You don't want to run a simulation on a set of inputs with average power < 0.50")
verb <- control$verb
idistopt <- control$distopt
ast.le.a <- control$ast.le.a
nii.sample <- n.sample
if(groups>=2 && type==3) nii.sample <- n.sample*grpj.per.grp1
.DF. <- eval(DF[type])
.NCP. <- eval(NCP[type])
pars0 <- eval(dists$pars0[[1+idistopt]])
pars1 <- eval(dists$pars1[[1+idistopt]])
is.pos <- (dists$minv[[1+idistopt]]==0)
nsim <- n.sim
do.tp.power <- !missing(lambda)
alpha.st <- alpha
BHCLT.lvl <- control$sim.level*(FDP.control.method=="BHCLT" || FDP.control.method=="both")
Rmno <- (FDP.control.method=="Romano" || FDP.control.method=="both")
if(BHCLT.lvl>=1)
{
m.cntlFDP <- m
m.cntlFDP$n.sim <- m.cntlFDP$lambda <- m.cntlFDP$FDP.control.method <-
m.cntlFDP$do.Romano <- NULL
m.cntlFDP[[1]] <- as.name("controlFDP")
alpha.st <- eval(m.cntlFDP, sys.parent())$alpha.star
alpha.st <- ifelse(!is.na(alpha.st), alpha.st, -1)
if(ast.le.a) alpha.st <- min(alpha.st, alpha)
BHCLT.lvl <- ifelse(alpha.st > 0, BHCLT.lvl, 0)
}
is.CS <- !is.null(control$CS[[1]])
if(!is.CS)
{
if(verb)
{
cat(sprintf("nsim=%d, alpha=%g, N.tests=%d, r.1=%g, n.sample=%d, effect.size=%g\n",
nsim, alpha, N.tests, r.1, n.sample, effect.size))
}
rslt <- .C("pwrFDRsim",
nsim = as.integer(nsim),
alpha = as.double(alpha),
BHCLT = as.integer(BHCLT.lvl),
do.Rmno = as.integer(Rmno),
alpha.star = as.double(alpha.st),
Ng = as.integer(N.tests),
r1 = as.double(r.1),
n = as.integer(n.sample),
theta = as.double(effect.size),
distopt = as.integer(control$distopt),
groups = as.double(groups),
delta = as.double(delta),
verb = as.integer(verb),
M1 = integer(nsim),
R = integer(nsim),
T = integer(nsim),
R.st = integer(nsim),
T.st = integer(nsim),
p0.ht = double(nsim),
R.R = integer(nsim),
T.R = integer(nsim),
X.i = double(N.tests),
M.i = integer(1),
PACKAGE = "pwrFDR")
}
if(is.CS)
{
CS <- control$CS
bad <- is.null(CS$rho)||is.null(CS$n.WC)
if(!bad)
{
rho <- control$CS$rho
n.WC <- control$CS$n.WC
bad <- (rho <= -1 || rho >= 1 || n.WC <= 0)
if(!bad) bad <- (N.tests %% n.WC) != 0
if(bad) stop("list argument 'control' must contain a component, 'CS', of type list, " %,%
"with components 'rho' and 'n.WC', which must satisfy -1 < rho < 1 " %,%
"and 'n.WC' divides 'N.tests' evenly")
}
if(verb)
{
cat(sprintf("nsim=%d, alpha=%g, N.tests=%d, r.1=%g, n.sample=%d, effect.size=%g, rho=%g, n.WC=%d\n",
nsim, alpha, N.tests, r.1, n.sample, effect.size, rho, n.WC))
}
rslt <- .C("pwrFDRsimCS",
nsim = as.integer(nsim),
alpha = as.double(alpha),
BHCLT = as.integer(BHCLT.lvl),
do.Rmno = as.integer(Rmno),
alpha.star = as.double(alpha.st),
Ng = as.integer(N.tests),
r1 = as.double(r.1),
n = as.integer(n.sample),
theta = as.double(effect.size),
rho = as.double(rho),
n.WC = as.integer(n.WC),
delta = as.double(delta),
pverb = as.integer(verb),
M1 = integer(nsim),
R = integer(nsim),
T = integer(nsim),
R.st = integer(nsim),
T.st = integer(nsim),
p0.ht = double(nsim),
R.R = integer(nsim),
T.R = integer(nsim),
X.i = double(N.tests),
M.i = integer(1),
PACKAGE = "pwrFDR")
}
reps <- data.frame(M1=rslt$M1, R=rslt$R, T=rslt$T)
average.power <- with(reps, mean(T %over% M1))
gamma <- with(reps, mean(R)/N.tests)
se.Rom <- with(reps, var(R/N.tests)^0.5)
se.VoR <- with(reps, var((R - T) %over% R)^0.5)
se.ToM <- with(reps, var(T %over% M1)^0.5)
out <- list(average.power=average.power, gamma=gamma,
se.Rom=se.Rom, se.VoR=se.VoR, se.ToM=se.ToM)
if(do.tp.power)
{
tp.power <- with(reps, mean(T %over% M1 >= lambda))
out$tp.power <- tp.power
}
se.VoR.st <- se.ToM.st <- se.VoR.st.ht <- se.ToM.st.ht <- se.VoR.R <-
se.ToM.R <- NULL
if(BHCLT.lvl >= 1)
{
reps <- cbind(reps, R.st=rslt$R.st, T.st=rslt$T.st)
average.power.st <- with(reps, mean(T.st %over% M1))
P.st <- with(reps, mean((R.st - T.st) %over% R.st > alpha))
se.Rom.st <- with(reps, var(R.st/N.tests)^0.5)
se.VoR.st <- with(reps, var((R.st - T.st) %over% R.st)^0.5)
se.ToM.st <- with(reps, var(T.st %over% M1)^0.5)
gamma.st <- with(reps, mean(R.st)/N.tests)
out <- c(out, average.power.st=average.power.st, gamma.st=gamma.st,
se.Rom.st=se.Rom.st, se.VoR.st=se.VoR.st, se.ToM.st=se.ToM.st,
alpha.star=alpha.st)
if(do.tp.power)
{
tp.power.st <- with(reps, mean(T.st %over% M1 >= lambda))
out$tp.power.st <- tp.power.st
}
}
if(BHCLT.lvl == 2)
{
reps <- cbind(reps, p0.ht=pmin(rslt$p0.ht,1))
out <- c(out, p0.ht.avg=mean(rslt$p0.ht), sd.p0.ht=var(rslt$p0.ht)^0.5)
}
if(Rmno)
{
reps <- cbind(reps, R.R=rslt$R.R, T.R=rslt$T.R)
average.power.R <- with(reps, mean(T.R %over% M1))
P.R <- with(reps, mean((R.R - T.R) %over% R.R > alpha))
se.Rom.R <- with(reps, var(R.R/N.tests)^0.5)
se.VoR.R <- with(reps, var((R.R - T.R) %over% R.R)^0.5)
se.ToM.R <- with(reps, var(T.R %over% M1)^0.5)
gamma.R <- with(reps, mean(R.R)/N.tests)
out <- c(out, average.power.R=average.power.R, gamma.R=gamma.R,
se.Rom.R=se.Rom.R, se.VoR.R=se.VoR.R, se.ToM.R=se.ToM.R)
if(do.tp.power)
{
tp.power.R <- with(reps, mean(T.R %over% M1 >= lambda))
out$tp.power.R <- tp.power.R
}
}
dtl <- list(reps=reps)
X.i <- rslt$X.i
M.i <- rslt$M.i
rep.i <- cbind(X=X.i, xi=c(rep(1, M.i), rep(0, N.tests - M.i)))
rep.i <- as.data.frame(cbind(rep.i, pval=2^(!is.pos)*(1-dists$pdist[[1+idistopt]](abs(X.i), pars0))))
rep.i <- rep.i[order(rep.i$pval), ]
rep.i$BHFDRcrit <- alpha*(1:N.tests)/N.tests
rep.i$Rmnocrit <- (floor(alpha*(1:N.tests)) + 1)*alpha/(N.tests + floor(alpha*(1:N.tests)) + 1 -(1:N.tests))
dtl$X <- rep.i
attr(out, "detail") <- dtl
attr(out, "pars") <- rbind(pars0=pars0,pars1=pars1)
out$call <- .call.
class(out) <- "pwr"
out
}
"criterion" <-
function(alpha, delta, N.tests, FDP.control.method=c("BHFDR","Romano"))
{
.call. <- m <- match.call()
frmls <- names(formals(criterion))
sppld <- names(m)[-1]
is.msng <- !(frmls %in% sppld)
names(is.msng) <- frmls
err.msng <- any(c("alpha", "N.tests", "FDP.control.method") %in% names(is.msng[is.msng]))
if(err.msng) stop("Arguments 'alpha', 'N.tests' and 'FDP.control.method' are required")
if(is.msng["delta"]) delta <- alpha
errs <- list(alpha=(alpha <= 0 || alpha >= 1),
delta=(delta <= 0 || delta >= 1),
N.tests=(!is.int(N.tests) || N.tests <= 0),
FDP.control.method=!(FDP.control.method %in% c("BHFDR", "Romano")))
msgs <- list(alpha="Argument, 'alpha' must be between 0 and 1\n",
delta="Argument, 'delta' must be between 0 and 1\n",
N.tests="Argument, 'N.tests' must be integral and positive\n",
FDP.control.method="Argument, 'FDP.control.method' must be either 'BHFDR' or 'Romano'\n")
err <- any(unlist(errs))
msg <- paste(msgs[names(which(unlist(errs)))], collapse="")
if(err) stop(msg)
ii <- 1:m$N.tests
if(FDP.control.method=="BHFDR") crit <- m$alpha*ii/m$N.tests
if(FDP.control.method=="Romano") crit <- (floor(delta*ii) + 1)*alpha/(N.tests + floor(delta*ii) + 1 - ii)
crit
}
"es.ROC" <-
function(FPR0, FPR1=NULL, TPR0, TPR1=NULL, b=NULL)
{
m <- match.call()
fn.nm <- as.character(m[[1]])
is.FPR1 <- !missing(FPR1)
is.TPR1 <- !missing(TPR1)
if(!is.FPR1&!is.TPR1) stop("You must specify exactly one of the arguments 'FPR1' and 'TPR1'")
if(is.TPR1) fn.nm <- fn.nm %,% ".fxFPR"
if(is.FPR1) fn.nm <- fn.nm %,% ".fxTPR"
m[[1]] <- as.name(fn.nm)
eval(m)
}
"cc.ROC" <-
function(FPR0, FPR1=NULL, TPR0, TPR1=NULL, b=NULL)
{
m <- match.call()
fn.nm <- as.character(m[[1]])
is.FPR1 <- !missing(FPR1)
is.TPR1 <- !missing(TPR1)
if(!is.FPR1&!is.TPR1) stop("You must specify exactly one of the arguments 'FPR1' and 'TPR1'")
if(is.TPR1) fn.nm <- fn.nm %,% ".fxFPR"
if(is.FPR1) fn.nm <- fn.nm %,% ".fxTPR"
m[[1]] <- as.name(fn.nm)
eval(m)
}
"es.ROC.fxTPR" <-
function(FPR0, FPR1, TPR0, b=NULL)
{
if(missing(b)) b <- 1
v.tpr0 <- TPR0*(1-TPR0)
v.fpr1 <- FPR1*(1-FPR1)
r <- b*dnorm(qnorm(1-TPR0))/dnorm(qnorm(1-FPR1))
k <- (v.fpr1/v.tpr0)^0.5/r
nu <- (FPR1-FPR0)/(v.fpr1 + r^2/k*v.tpr0)^0.5
abs(nu)
}
"cc.ROC.fxTPR" <-
function(FPR0, FPR1, TPR0, b=NULL)
{
if(missing(b)) b <- 1
v.tpr0 <- TPR0*(1-TPR0)
v.fpr1 <- FPR1*(1-FPR1)
r <- b*dnorm(qnorm(1-TPR0))/dnorm(qnorm(1-FPR1))
k <- (v.fpr1/v.tpr0)^0.5/r
k
}
"es.ROC.fxFPR" <-
function(FPR0, TPR0, TPR1, b=NULL)
{
if(missing(b)) b <- 1
v.fpr0 <- FPR0*(1-FPR0)
v.tpr1 <- TPR1*(1-TPR1)
r <- b*dnorm(qnorm(TPR1))/dnorm(qnorm(FPR0))
k <- (v.tpr1/v.fpr0)^0.5/r
nu <- (TPR1-TPR0)/(v.tpr1 + k*r^2*v.fpr0)^0.5
abs(nu)
}
"cc.ROC.fxFPR" <-
function(FPR0, TPR0, TPR1, b=NULL)
{
if(missing(b)) b <- 1
v.fpr0 <- FPR0*(1-FPR0)
v.tpr1 <- TPR1*(1-TPR1)
r <- b*dnorm(qnorm(TPR1))/dnorm(qnorm(FPR0))
k <- (v.tpr1/v.fpr0)^0.5/r
k
}
"CDF.Pval" <-
function(u, effect.size, n.sample, r.1, groups=2, type="balanced", grpj.per.grp1=1, control)
{
.call. <- m <- match.call()
pfx <- as.character(m[[1]])
frmls <- names(formals(CDF.Pval))
sppld <- names(m)[-1]
m <- evald.call <- args.def.err.chk(m, sppld, frmls, other.rules=FALSE)
err.msg <- attr(m, "err.msg")
if(!is.null(err.msg)) stop(err.msg)
u <- m$u
groups <- m$groups
r.1 <- m$r.1
effect.size <- m$effect.size
n.sample <- m$n.sample
type <- m$type
grpj.per.grp1 <- m$grpj.per.grp1
control <- m$control
nii.sample <- n.sample
if(groups>=2 && type==3) nii.sample <- n.sample*grpj.per.grp1
idistopt <- control$distopt
.DF. <- eval(DF[type])
.NCP. <- eval(NCP[type])
pars0 <- eval(dists$pars0[[1+idistopt]])
pars1 <- eval(dists$pars1[[1+idistopt]])
u <- abs(u)
is.pos <- (dists$minv[[1+idistopt]]==0)
c.g <- dists$qdist[[1+idistopt]](1-u/2^(!is.pos), pars0)
ans <- (1-r.1)*u + r.1*(1-dists$pdist[[1+idistopt]](c.g, pars1) + (!is.pos)*dists$pdist[[1+idistopt]](-c.g, pars1))
df <- as.data.frame(list(u=u, CDF.Pval=ans))
out <- list(CDF.Pval=df, call=.call.)
attr(out, "pars") <- rbind(pars0=pars0,pars1=pars1)
class(out) <- "cdf"
out
}
"CDF.Pval.HA" <-
function(u, effect.size, n.sample, r.1, groups=2, type="balanced", grpj.per.grp1=1, control)
{
.call. <- m <- match.call()
pfx <- as.character(m[[1]])
frmls <- names(formals(CDF.Pval.HA))
sppld <- names(m)[-1]
m <- evald.call <- args.def.err.chk(m, sppld, frmls, other.rules=FALSE)
err.msg <- attr(m, "err.msg")
if(!is.null(err.msg)) stop(err.msg)
u <- m$u
groups <- m$groups
r.1 <- m$r.1
effect.size <- m$effect.size
n.sample <- m$n.sample
type <- m$type
grpj.per.grp1 <- m$grpj.per.grp1
control <- m$control
nii.sample <- n.sample
if(groups>=2 && type==3) nii.sample <- n.sample*grpj.per.grp1
idistopt <- control$distopt
.DF. <- eval(DF[type])
.NCP. <- eval(NCP[type])
pars0 <- eval(dists$pars0[[1+idistopt]])
pars1 <- eval(dists$pars1[[1+idistopt]])
u <- abs(u)
is.pos <- (dists$minv[[1+idistopt]]==0)
c.g <- dists$qdist[[1+idistopt]](1-u/2^(!is.pos), pars0)
ans <- 1-dists$pdist[[1+idistopt]](c.g, pars1) + (!is.pos)*dists$pdist[[1+idistopt]](-c.g, pars1)
df <- as.data.frame(list(u=u, CDF.Pval.HA=ans))
out <- list(CDF.Pval.HA=df, call=.call.)
attr(out, "pars") <- rbind(pars0=pars0,pars1=pars1)
class(out) <- "cdf"
out
}
"CDF.Pval.ua.eq.u" <-
function(effect.size, n.sample, r.1, alpha, groups, type, grpj.per.grp1, control)
{
calling.env <- sys.parent()
eval.env <- ifelse(calling.env==0, topenv, sys.parent)
m <- .call. <- match.call()
n.args <- length(m)-1
arg.nms <- names(m)[-1]
is.rqd <- all(nera %in% arg.nms)
if(!is.rqd) stop(list.a(nera, "Arguments ", " are required by CDF.Pval.ua.eq.u"))
if(missing(groups)) m$groups <- 2
if(missing(type)) m$type <- 2
if(missing(grpj.per.grp1)) m$grpj.per.grp1 <- 1
if(missing(control)) m$control <- list(distopt=1, tol=1e-8)
alpha <- eval(m$alpha, eval.env())
groups <- eval(m$groups, eval.env())
r.1 <- eval(m$r.1, eval.env())
effect.size <- eval(m$effect.size, eval.env())
n.sample <- eval(m$n.sample, eval.env())
type <- eval(m$type, eval.env())
grpj.per.grp1 <- eval(m$grpj.per.grp1, eval.env())
control <- eval(m$control, eval.env())
idistopt <- control$distopt
nii.sample <- n.sample
if(groups>=2 && type==3) nii.sample <- n.sample*grpj.per.grp1
.DF. <- eval(DF[type])
.NCP. <- eval(NCP[type])
pars0 <- eval(dists$pars0[[1+idistopt]])
pars1 <- eval(dists$pars1[[1+idistopt]])
is.pos <- (dists$minv[[1+idistopt]]==0)
conv <- is.na(alpha)
gma.old <- r.1
gma.new <- 1
while(!conv)
{
u <- gma.old*alpha
c.g <- dists$qdist[[1+idistopt]](1-u/2^(!is.pos), pars0)
gma.new <- (1-r.1)*u + r.1*(1-dists$pdist[[1+idistopt]](c.g, pars1) +
(!is.pos)*dists$pdist[[1+idistopt]](-c.g, pars1))
obj <- abs(gma.new-gma.old)
conv <- (obj < control$tol)
gma.old <- gma.new
}
gamma <- gma.new
out <- list(gamma=gamma, call=.call.)
attr(out, "pars") <- rbind(pars0=pars0,pars1=pars1)
class(out) <- "cdf"
out
}
"CDF.Pval.ar.eq.u" <-
function(effect.size, n.sample, r.1, alpha, delta, groups, type, grpj.per.grp1, control)
{
calling.env <- sys.parent()
eval.env <- ifelse(calling.env==0, topenv, sys.parent)
m <- .call. <- match.call()
n.args <- length(m)-1
arg.nms <- names(m)[-1]
is.rqd <- all(nera %in% arg.nms)
if(!is.rqd) stop(list.a(nera, "Arguments ", " are required by CDF.Pval.ua.eq.u"))
if(missing(groups)) m$groups <- 2
if(missing(delta)) m$delta <- alpha
if(missing(type)) m$type <- 2
if(missing(grpj.per.grp1)) m$grpj.per.grp1 <- 1
if(missing(control)) m$control <- list(distopt=1, tol=1e-8)
alpha <- eval(m$alpha, eval.env())
delta <- eval(m$delta, eval.env())
groups <- eval(m$groups, eval.env())
r.1 <- eval(m$r.1, eval.env())
effect.size <- eval(m$effect.size, eval.env())
n.sample <- eval(m$n.sample, eval.env())
type <- eval(m$type, eval.env())
grpj.per.grp1 <- eval(m$grpj.per.grp1, eval.env())
control <- eval(m$control, eval.env())
idistopt <- control$distopt
nii.sample <- n.sample
if(groups>=2 && type==3) nii.sample <- n.sample*grpj.per.grp1
.DF. <- eval(DF[type])
.NCP. <- eval(NCP[type])
pars0 <- eval(dists$pars0[[1+idistopt]])
pars1 <- eval(dists$pars1[[1+idistopt]])
is.pos <- (dists$minv[[1+idistopt]]==0)
conv <- is.na(alpha)
gma.old <- r.1
gma.new <- 1
psi <- function(gma,a)gma*a/(1-(1-a)*gma)
while(!conv)
{
u <- psi(gma.old, delta)*alpha
c.g <- dists$qdist[[1+idistopt]](1-u/2^(!is.pos), pars0)
gma.new <- (1-r.1)*u + r.1*(1-dists$pdist[[1+idistopt]](c.g, pars1) +
(!is.pos)*dists$pdist[[1+idistopt]](-c.g, pars1))
obj <- abs(gma.new-gma.old)
conv <- (obj < control$tol)
gma.old <- gma.new
}
gamma <- gma.new
out <- list(gamma=gamma, call=.call.)
attr(out, "pars") <- rbind(pars0=pars0,pars1=pars1)
class(out) <- "cdf"
out
}
"sd.rtm.Rom" <-
function(object)
{
fn.nm <- as.character(object$call[[1]])
frml.vals <- formals(get(fn.nm))
frmls <- names(frml.vals)
sppld <- names(object$call)[-1]
is.msng <- !(frmls %in% sppld)
names(is.msng) <- frmls
if(is.msng["method"]) object$call$method <- "FixedPoint"
method <- match.arg(object$call$method, eval(frml.vals$method))
sfx <- NULL
if(method=="simulation")
{
fdpsfx <- c(`BHFDR`="",`BHCLT`=".st", `Romano`=".R")
if(is.msng["FDP.control.method"]) object$call$FDP.control.method <- "BHFDR"
sfx <- fdpsfx[object$call$FDP.control.method]
}
if(!is.msng["N.tests"]) ans <- object[["se.Rom" %,% sfx]]*eval(object$call$N.tests)^0.5
if(is.msng["N.tests"]) ans <- object[["sigma.rtm.Rom" %,% sfx]]
ans
}
"sd.rtm.VoR" <-
function(object)
{
fn.nm <- as.character(object$call[[1]])
frml.vals <- formals(get(fn.nm))
frmls <- names(frml.vals)
sppld <- names(object$call)[-1]
is.msng <- !(frmls %in% sppld)
names(is.msng) <- frmls
if(is.msng["method"]) object$call$method <- "FixedPoint"
method <- match.arg(object$call$method, eval(frml.vals$method))
sfx <- NULL
if(method=="simulation")
{
fdpsfx <- c(`BHFDR`="",`BHCLT`=".st", `Romano`=".R")
if(is.msng["FDP.control.method"]) object$call$FDP.control.method <- "BHFDR"
sfx <- fdpsfx[object$call$FDP.control.method]
}
if(!is.msng["N.tests"]) ans <- object[["se.VoR" %,% sfx]]*eval(object$call$N.tests)^0.5
if(is.msng["N.tests"]) ans <- object[["sigma.rtm.VoR" %,% sfx]]
ans
}
"sd.rtm.ToM" <-
function(object)
{
fn.nm <- as.character(object$call[[1]])
frml.vals <- formals(get(fn.nm))
frmls <- names(frml.vals)
sppld <- names(object$call)[-1]
is.msng <- !(frmls %in% sppld)
names(is.msng) <- frmls
if(is.msng["method"]) object$call$method <- "FixedPoint"
method <- match.arg(object$call$method, eval(frml.vals$method))
sfx <- NULL
if(method=="simulation")
{
fdpsfx <- c(`BHFDR`="",`BHCLT`=".st", `Romano`=".R")
if(is.msng["FDP.control.method"]) object$call$FDP.control.method <- "BHFDR"
sfx <- fdpsfx[object$call$FDP.control.method]
}
if(!is.msng["N.tests"]) ans <- object[["se.ToM" %,% sfx]]*eval(object$call$N.tests)^0.5
if(is.msng["N.tests"]) ans <- object[["sigma.rtm.ToM" %,% sfx]]
ans
}
"controlFDP" <-
function(effect.size, n.sample, r.1, alpha, delta, groups=2, N.tests,
type, grpj.per.grp1, control, formula, data)
{
calling.env <- sys.parent()
eval.env <- ifelse(calling.env==0, topenv, sys.parent)
m <- .call. <- match.call()
m.sv <- m
n.args <- length(m)-1
arg.nms <- names(m)[-1]
is.form <- !missing(formula)
if(is.form)
{
m[[1]] <- as.name("controlFDP.formula")
dfa <- c("data","formula","alpha")
is.rqd <- all(dfa %in% arg.nms)
if(!is.rqd) stop(list.a(dfa, "Aguments ", " are required by the formula " %,%
"'controlFDP' method "))
if(missing(delta)) m$delta <- alpha
if(missing(control)) m$control <- list(distopt=1, verb=0, tol=1e-8)
}
if(!is.form)
{
m[[1]] <- as.name("controlFDP.theoret")
is.rqd <- all(Nnera %in% arg.nms)
if(!is.rqd) stop(list.a(Nnera, "Arguments ", " are required by the asymptotic " %,%
"'controlFDP' method"))
if(missing(delta)) m$delta <- alpha
if(missing(groups)) m$groups <- 2
if(missing(type)) m$type <- 2
if(missing(grpj.per.grp1)) m$grpj.per.grp1 <- 1
if(missing(control)) m$control <- list(distopt=1, verb=0, tol=1e-8)
}
out <- eval(m)
out$call <- .call.
class(out) <- "vvv"
out
}
"controlFDP.formula" <-
function(effect.size, n.sample, r.1, alpha, delta, groups=2, N.tests,
type, grpj.per.grp1, control, formula, data)
{
.call. <- m <- match.call()
calling.env <- sys.parent()
eval.env <- ifelse(calling.env==0, topenv, sys.parent)
mf <- as.call(expression(model.frame))
mf$groups <- mf$effect.size <- mf$n.sample <- mf$r.1 <- mf$N.tests <- mf$control <- mf$delta <- NULL
mf$formula <- formula
mf$data <- data
mf <- eval(mf, eval.env())
pval <- model.extract(mf, "response")
N.tests <- length(pval)
pvalgthlf <- 1*(pval > 0.5)
r.0 <- 2*mean(pvalgthlf)
r.1 <- 1-r.0
conv <- neg <- FALSE
msg <- NULL
ast.old <- alpha
a.star <- gma.st <- obj <- sqrt.v <- P.star <- NA
while(!(conv||neg))
{
gma <- max(which(pval <= (1:N.tests)/N.tests*ast.old))/N.tests
v <- r.0*ast.old*(1-r.0*ast.old*gma)/(N.tests*gma)
ast.new <- (delta - v^0.5*qnorm(1-alpha))/r.0
neg <- ast.new < 0
if(control$verb>1) cat(sprintf("ast.new=%f\n", ast.new))
obj <- abs(ast.new-ast.old)
conv <- (obj < 1e-4*alpha)
ast.old <- ast.new
}
if(neg)
{
a.star <- gma.st <- obj <- sqrt.v <- P.star <- NA
msg <- "Solution not attainable."
}
if(!neg)
{
a.star <- ast.new
gma.st <- max(which(pval <= (1:N.tests)/N.tests*ast.old))/N.tests
v <- r.0*a.star*(1-r.0*a.star*gma.st)/(N.tests*gma.st)
sqrt.v <- v^0.5
P.star <- 1-pnorm((delta - r.0*a.star)/sqrt.v)
}
out <- list(alpha.star = a.star, gamma=gma.st, obj = obj, se.FDF=sqrt.v, P.star = P.star)
if(!is.null(msg)) out$note <- msg
out
}
"controlFDP.theoret" <-
function(effect.size, n.sample, r.1, alpha, delta, groups=2, N.tests,
type, grpj.per.grp1, control, formula, data)
{
.call. <- m <- match.call()
calling.env <- sys.parent()
eval.env <- ifelse(calling.env==0, topenv, sys.parent)
ast.old <- alpha
conv <- neg <- FALSE
msg <- NULL
a.star <- gma.st <- obj <- sqrt.v <- P.star <- NA
gma.call <- match.call()
gma.call[[1]] <- as.name("CDF.Pval.ua.eq.u")
gma.call$formula <- gma.call$data <- gma.call$N.tests <- gma.call$delta <- NULL
gma0 <- eval(gma.call)
r.0 <- 1-r.1
while(!(conv || neg))
{
gma.st <- update(gma0, alpha=ast.old)$gamma
v <- r.0*ast.old*(1-r.0*ast.old*gma.st)/(N.tests*gma.st)
ast.new <- (delta - v^0.5*qnorm(1 - alpha))/r.0
neg <- ast.new < 0
if(control$verb>1) cat(sprintf("ast.new=%f\n", ast.new))
obj <- abs(ast.new-ast.old)
conv <- (obj < 1e-4*alpha)
ast.old <- ast.new
}
if(neg)
{
a.star <- gma.st <- obj <- sqrt.v <- P.star <- NA
msg <- "Solution not attainable."
}
if(!neg)
{
a.star <- ast.new
gma.st <- update(gma0, alpha=a.star)$gamma
v <- r.0*a.star*(1-r.0*a.star*gma.st)/(N.tests*gma.st)
sqrt.v <- v^0.5
P.star <- 1-pnorm((delta - r.0*a.star)/sqrt.v)
}
out <- list(alpha.star = a.star, gamma=gma.st, obj = obj, se.FDF=sqrt.v, P.star = P.star)
if(!is.null(msg)) out$note <- msg
out
}
"cCDF.Rom" <-
function(u, effect.size, n.sample, r.1, alpha, delta, groups=2, N.tests,
type=c("paired","balanced","unbalanced"), grpj.per.grp1=NULL, FDP.control.method="BHFDR",
control=list(tol=1e-8, max.iter=c(1000,20), distopt=1, CS=list(NULL), sim.level=2,
low.power.stop=TRUE, FDP.meth.thresh=FDP.cntl.mth.thrsh.def, verb=FALSE))
{
m <- .call. <- match.call()
m[[1]] <- as.name("pwrFDR")
m$u <- NULL
avgpwr <- eval(m, sys.parent())
gma <- avgpwr$gamma
sdrtmRom <- sd.rtm.Rom(avgpwr)
ans <- 1-pnorm(N.tests^0.5*(u - gma)/sdrtmRom)
df <- as.data.frame(list(u=u, cCDF.Rom=ans))
out <- list(cCDF.Rom=df, call=.call.)
class(out) <- "cdf"
out
}
"cCDF.ToM" <-
function(u, effect.size, n.sample, r.1, alpha, delta, groups=2, N.tests,
type=c("paired","balanced","unbalanced"), grpj.per.grp1=NULL, FDP.control.method="BHFDR",
control=list(tol=1e-8, max.iter=c(1000,20), distopt=1, CS=list(NULL), sim.level=2,
low.power.stop=TRUE, FDP.meth.thresh=FDP.cntl.mth.thrsh.def, verb=FALSE))
{
m <- .call. <- match.call()
m[[1]] <- as.name("pwrFDR")
m$u <- NULL
avgpwr <- eval(m, sys.parent())
pi <- avgpwr$average.power
sdrtmToM <- sd.rtm.ToM(avgpwr)
ans <- 1-pnorm(N.tests^0.5*(u - pi)/sdrtmToM)
df <- as.data.frame(list(lambda=u, cCDF.ToM=ans))
out <- list(cCDF.ToM=df, call=.call.)
class(out) <- "cdf"
out
}
"cCDF.VoR" <-
function(u, effect.size, n.sample, r.1, alpha, delta, groups=2, N.tests,
type=c("paired","balanced","unbalanced"), grpj.per.grp1=NULL, FDP.control.method="BHFDR",
control=list(tol=1e-8, max.iter=c(1000,20), distopt=1, CS=list(NULL), sim.level=2,
low.power.stop=TRUE, FDP.meth.thresh=FDP.cntl.mth.thrsh.def, verb=FALSE))
{
m <- .call. <- match.call()
m[[1]] <- as.name("pwrFDR")
m$u <- NULL
avgpwr <- eval(m, sys.parent())
sdrtmVoR <- sd.rtm.VoR(avgpwr)
r.0 <- 1-r.1
do.bhclt <- do.R <- FALSE
if(FDP.control.method=="BHCLT") do.bhclt <- TRUE
if(FDP.control.method=="Romano") do.R <- TRUE
if(FDP.control.method=="Auto")
{
if(avgpwr$Auto=="BHCLT") do.bhclt <- TRUE
if(avgpwr$Auto=="Romano") do.R <- TRUE
}
alpha. <- alpha
psi.o.gma <- 1
if((do.bhclt || do.R) && missing(delta)) delta <- attr(avgpwr, "arg.vals")$delta
if(do.bhclt) alpha. <- avgpwr$alpha.star
if(do.R)
{
psi <- function(gma,a)gma*a/(1-(1-a)*gma)
gma <- avgpwr$gamma
.psi. <- psi(gma, delta)
psi.o.gma <- .psi./gma
}
ans <- 1-pnorm(N.tests^0.5*(u - r.0*psi.o.gma*alpha.)/sdrtmVoR)
df <- as.data.frame(list(delta=u, cCDF.VoR=ans))
out <- list(cCDF.VoR=df, call=.call.)
class(out) <- "cdf"
out
}
"detail" <-
function(obj)
{
attr(obj, "detail")
}
"%,%" <- function(x,y)paste(x,y,sep="")
"DX" <- function(x)c(x[1],diff(x))
"ddist" <-
function(x, pars)
{
idistopt <- pars[1]
dists$ddist[[1+idistopt]](x, pars)
}
"pdist" <-
function(x, pars)
{
idistopt <- pars[1]
dists$pdist[[1+idistopt]](x, pars)
}
"qdist" <-
function(x, pars)
{
idistopt <- pars[1]
dists$qdist[[1+idistopt]](x, pars)
}
"gentempfilenm" <-
function(prfx="temp", sfx=".txt")
{
alphanum <- c(letters, toupper(letters), 0:9)
n <- length(alphanum)
prfx %,% paste(alphanum[sample(n, 5)], collapse="") %,% sfx
}
"print.pwr" <-
function (x, ...)
{
y <- x
cat("Call:\n")
print(x$call)
class(x) <- NULL
x$call <- NULL
x <- as.data.frame(x)
dimnames(x)[[1]] <- " "
out <- t(format(x))
print(out, quote=FALSE)
invisible(x)
}
"print.vvv" <-
function (x, ...)
{
y <- x
cat("Call:\n")
print(x$call)
class(x) <- NULL
x$call <- NULL
x <- as.data.frame(x)
dimnames(x)[[1]] <- " "
print(x)
invisible(x)
}
"print.cdf" <-
function(x, ...)
{
y <- x
cat("Call:\n")
print(x$call)
class(x) <- NULL
x$call <- NULL
print(x[[1]])
invisible(x)
}
"is.int" <-
function(x)
{
abs(x - floor(x)) < 1e-10
}
`+.pwr` <-
function(x,y)
{
xpwr <- x
ypwr <- y
if(is(x,"pwr")) xpwr <- ifelse(!is.null(x$call$lambda), x$tp.power, x$average.power)
if(is(y,"pwr")) ypwr <- ifelse(!is.null(y$call$lambda), y$tp.power, y$average.power)
xpwr + ypwr
}
`-.pwr` <-
function(x,y)
{
xpwr <- x
ypwr <- y
if(is(x,"pwr")) xpwr <- ifelse(!is.null(x$call$lambda), x$tp.power, x$average.power)
if(is(y,"pwr")) ypwr <- ifelse(!is.null(y$call$lambda), y$tp.power, y$average.power)
xpwr - ypwr
}
`*.pwr` <-
function(x,y)
{
xpwr <- x
ypwr <- y
if(is(x,"pwr")) xpwr <- ifelse(!is.null(x$call$lambda), x$tp.power, x$average.power)
if(is(y,"pwr")) ypwr <- ifelse(!is.null(y$call$lambda), y$tp.power, y$average.power)
xpwr * ypwr
}
`/.pwr` <-
function(x,y)
{
xpwr <- x
ypwr <- y
if(is(x,"pwr")) xpwr <- ifelse(!is.null(x$call$lambda), x$tp.power, x$average.power)
if(is(y,"pwr")) ypwr <- ifelse(!is.null(y$call$lambda), y$tp.power, y$average.power)
xpwr / ypwr
}
`^.pwr` <-
function(x,y)
{
xpwr <- x
ypwr <- y
if(is(x,"pwr")) xpwr <- ifelse(!is.null(x$call$lambda), x$tp.power, x$average.power)
if(is(y,"pwr")) ypwr <- ifelse(!is.null(y$call$lambda), y$tp.power, y$average.power)
xpwr ^ ypwr
}
exp.pwr <- function(x) exp(ifelse(!is.null(x$call$lambda), x$tp.power, x$average.power))
log.pwr <- function(x, base)log(ifelse(!is.null(x$call$lambda), x$tp.power, x$average.power), base)
logit.inv.r <- function(x)binomial("logit")$linkinv(max(min(x, 1e8), -1e8))
logitInv.default <- binomial("logit")$linkinv
logit.default <- binomial("logit")$linkfun
logit <- function(mu)UseMethod("logit")
logitInv <- function(eta)UseMethod("logitInv")
logit.pwr <- function(mu)logit.default(ifelse(!is.null(mu$call$lambda), mu$tp.power, mu$average.power))
logitInv.pwr <- function(eta)logitInv.default(ifelse(!is.null(eta$call$lambda), eta$tp.power, eta$average.power))
arg.vals <- function(object)attr(object, "arg.vals")
"%over%" <-
function(x,y)
{
dx <- dim(x)
dy <- dim(y)
bad <- any(dx!=dy) && dx[1]!=length(y)
if(bad) stop("Incompatable dimensions")
ans <- 0*x
bad <- c(which(y==0),which(is.na(y)))
if(length(bad)>0) ans[-bad] <- x[-bad]/y[-bad]
if(length(bad)==0) ans <- x/y
structure(ans, dim=dx)
}
"f.power" <-
function(n.sample, groups, effect.size, e.I, power)
{
no.n <- missing(n.sample)
no.g <- missing(groups)
no.e <- missing(effect.size)
no.p <- missing(power)
if(no.g || no.e) stop("Arguements 'groups' and 'effect.size' are required")
bad <- (no.n && no.p) || (!no.n && !no.p)
if(bad) stop("You must specify _either_ 'n.sample' or 'power'")
do.p <- no.p
do.ss <- no.n
if(do.ss)
{
pwr <- power
OBJ <-
function(x, groups, effect.size, e.I, power)
{
n.sample <- exp(x)
ncp <- n.sample*effect.size^2/2
df1 <- groups - 1
df2 <- groups*(n.sample-1)
Fcrit <- qf(1-e.I, df1=df1, df2=df2)
((pwr - (1-pf(Fcrit, ncp=ncp, df1=df1, df2=df2)))^2)^(1/1.25)
}
norm.ss <- 2*(qnorm(power) + qnorm(1-e.I))^2/effect.size^2
l <- log(1/10*norm.ss)
u <- log(10*norm.ss)
opt <- optimize(f=OBJ, lower=l, upper=u, groups=groups, effect.size=effect.size, e.I=e.I, power=power)
n.sample <- round(exp(opt$minimum))
obj <- opt$objective
}
if(do.p)
{
obj <- 0
ncp <- n.sample*effect.size^2/2
df1 <- groups - 1
df2 <- groups*(n.sample-1)
Fcrit <- qf(1-e.I, df1=df1, df2=df2)
pwr <- 1-pf(Fcrit, ncp=ncp, df1=df1, df2=df2)
}
ncp <- n.sample*effect.size^2/2
df1 <- groups - 1
df2 <- groups*(n.sample-1)
Fcrit <- qf(1-e.I, df1=df1, df2=df2)
out <- list(power=pwr, n.sample=n.sample, Fcrit=Fcrit, ncp=ncp, df1=df1, df2=df2, objective=obj)
as.data.frame(out)
}
power.bonferroni <-
function(alpha, effect.size, n.pergroup, x, prior.HA, N.tests, groups=2, method=c("a","s"), n.sim=1000)
{
bad <- missing(alpha) || missing(effect.size) || missing(n.pergroup) || missing(x) ||
missing(prior.HA) || missing(N.tests)
if(bad) stop("Arguments 'alpha', 'effect.size', 'n.pergroup', 'x', 'prior.HA', 'N.tests' are required")
theta <- effect.size
if(missing(method)) method <- "a"
if(missing(groups)) groups <- 2
if(groups<2) stop("groups must be 2 or larger")
if(theta<=0) stop("Effect size must be positive")
if(missing(n.sim) && method=="s") n.sim <- 1000
m <- N.tests
n <- n.pergroup
r <- prior.HA
d <- groups
mu <- theta*(n/2)^0.5
ncp <- mu^2
if(method=="a")
{
if(d==2) p <- 1-pnorm(qnorm(1-alpha/(2*m))-mu)
if(d>2) p <- f.power(n.sample=n, groups=d, effect.size=theta, e.I=alpha/(2*m))$power
s <- 0
for(k in x:m)
s <- s + choose(m,k)*r^k*(1-r)^(m-k)*(1-pbinom(x-1, prob=p, size=k))
ans <- s
}
if(method=="s")
{
s <- 0
cMs <- list(mean, colMeans)[[1 + 1*(d>2)]]
for(ii in 1:n.sim)
{
rej <- 0
for(k in 1:m)
{
xi <- 1*(runif(1)<=r)
X <- matrix(rnorm(n*(d-1), mean=xi*theta, sd=1), n, d-1)
X0 <- rnorm(n, mean=0, sd=1)
if(d==2) rej <- rej + 1*xi*(n^0.5*(mean(X) - mean(X0))/(var(c(X)) + var(X0))^0.5>qnorm(1-alpha/(2*m)))
if(d>2)
{
SST <- (n*d-1)*var(c(X,X0))
SSW <- sum((n-1)*apply(cbind(X,X0), 2, var))
FF <- ((SST-SSW)/(d-1))/(SSW/(d*(n-1)))
rej <- rej + 1*xi*(FF>qf(1-alpha/(2*m), df1=d-1, df2=d*(n-1)))
}
}
s <- s + 1*(rej>=x)
}
ans <- s/n.sim
}
ans
}
"view.presentation" <-
function()
{
n <- grep("pdf", names(options()))
system(options()[[n]] %,% " $R_HOME/library/pwrFDR/doc/2021-01-25-NWU-Biostat-Talk.pdf 2> /dev/null &")
}
"factorial.design" <-
function(...)
{
m <- match.call()
cc <- m
cc[[1]] <- as.name("c")
arg.vals <- eval(cc, sys.parent())
n.args <- length(arg.vals)
n.l <- 0
n.r <- n.args-1
fwd.cpd <- c(1, cumprod(arg.vals))
rev.cpd <- c(cumprod(arg.vals[n.args:2])[(n.args-1):1],1)
"%,%" <- paste0
main.call <- as.call(expression(cbind))
for(k in 1:n.args)
{
arg.k <- eval(m[[1+k]], sys.parent())
rep.call <- as.call(expression(rep))
rep.call$x <- 1:arg.k
if(n.l>0) rep.call$times <- fwd.cpd[k]
if(n.r>0) rep.call$each <- rev.cpd[k]
main.call[["x" %,% k]] <- rep.call
n.l <- n.l + 1
n.r <- n.r - 1
}
eval(main.call)
}
"nna" <-
function(x)
{
par.env.nms <- ls.str(, envir=parent.frame())
m <- match.call()
vnm <- as.character(m[[2]])
exts <- vnm %in% par.env.nms
n <- length(get(par.env.nms[1], envir=parent.frame()))
ans <- rep(NA, n)
if(exts) ans <- get(vnm, envir=parent.frame())
ans
}
is.formula <- function(x)class(x)=="formula"
"if.na.x" <- function(x, x0=FALSE)
{
d.x <- dim(x)
x. <- c(as.matrix(x))
y <- rep(x0, length(x.))
y[!is.na(x.)] <- x.[!is.na(x.)]
structure(y, dim=d.x)
}
if.y.z <-
function(x, y=0,z=1)
{
ans <- x
ans[x==y] <- z
ans
}
if.0.rm <- function(x)x[x!=0]
pwrfdrmthd.sfx <- c(`FixedPoint`="FP", `simulation`="sim")
pwrfdrmthd.vals <- names(pwrfdrmthd.sfx)
FDP.cntl.mth.thrsh.def <- c(0.10, 50)
FDP.mthd.vals <- c("BHFDR","BHCLT","Romano","Auto","both")
type.vals <- c("paired", "balanced", "unbalanced")
"is.int" <- function(x)(floor(x)==x)
"cma.and" <- function(s){n.s <- length(s); c(rep(", ", n.s-2), " and ", "")}
"cma.or" <- function(s){n.s <- length(s); c(rep(", ", n.s-2), " or ", "")}
"list.a" <-
function(lst, pfx=NULL, sfx=NULL)
pfx %,% paste(c(t(cbind("\'" %,% lst %,% "\'", cma.and(lst)))), collapse="") %,% sfx
"list.o" <-
function(lst, pfx=NULL, sfx=NULL)
pfx %,% paste(c(t(cbind("\'" %,% lst %,% "\'", cma.or(lst)))), collapse="") %,% sfx
nera <- c("n.sample", "effect.size", "r.1", "alpha")
Nnera <- c(nera, "N.tests")
dNnera <- c("data", "formula", "alpha")
default <- list(u=function(...)seq(from=0,to=1,len=100),
alpha=function(...)NA,
groups=function(...)2,
control=function(groups=groups, alpha=alpha)
switch(1*(groups<=2)+2*(groups>2),
list(tol=1e-8, max.iter=c(1000,20), distopt=1, CS=list(NULL),
sim.level=2, FDP.meth.thresh=FDP.cntl.mth.thrsh.def,
verb=FALSE, low.power.stop=TRUE, ast.le.a=TRUE),
list(tol=1e-8, max.iter=c(1000,20), distopt=2, CS=list(NULL),
sim.level=2, FDP.meth.thresh=FDP.cntl.mth.thrsh.def,
verb=FALSE, low.power.stop=TRUE, ast.le.a=TRUE)),
type=function(groups=groups,alpha=alpha)
c("paired","balanced")[min(max(floor(eval(groups)),1),2)],
grpj.per.grp1=function(...)1,
method=function(...)"FixedPoint",
delta=function(groups=groups, alpha=alpha)alpha)
valid.arg.dict <- list(u=function(x)all(x>=0&x<=1),
groups=function(x)is.int(x)&(x>0),
effect.size=function(x)(x>0),
n.sample=function(x)is.int(x)&(x>0),
r.1=function(x)(x>0&x<1),
alpha=function(x){if(is.na(x)) x <- -1; (x>0 & x < 1)},
N.tests=function(x)is.int(x)&(x>0),
average.power=function(x)(x>0.5&x<1),
tp.power=function(x)(x>0.5&x<1),
lambda=function(x)(x>0&x<1),
FDP.control.method=function(x, vals=FDP.mthd.vals)
{
fdp.mthd <- try(match.arg(x, vals))
class(fdp.mthd)!="try-error"
},
method=function(x, vals=pwrfdrmthd.vals)
{
mthd <- try(match.arg(x, vals))
class(mthd)!="try-error"
},
type=function(x, vals=type.vals)
{
ty <- try(match.arg(x, vals))
class(ty)!="try-error"
},
grpj.per.grp1=function(x, vals=1)TRUE,
n.sim=function(x)is.int(x)&(x>0),
delta=function(x)(x>0&x<1),
tempfile=function(x)is.character(x)&length(x)==1)
"valid.arg.msg" <-
function(x, vrbl)
{
msg <-
switch(vrbl,
u=ifelse(!x, "All components of 'u' must be between 0 and 1 inclusive\n", NA),
groups=ifelse(!x, "Argument 'groups' must be integral and > 0\n", NA),
effect.size=ifelse(!x, "Argument 'effect.size' must be > 0\n", NA),
n.sample=ifelse(!x, "Argument 'n.sample' must be integral and > 0\n", NA),
r.1=ifelse(!x, "Argument 'r.1' must be between 0 and 1\n", NA),
alpha=ifelse(!x, "Argument 'alpha' must be between 0 and 1\n", NA),
N.tests=ifelse(!x, "Argument 'N.tests' must be integral and > 0\n", NA),
average.power=ifelse(!x,"Argument 'average.power' must be between 1/2 and 1\n",NA),
tp.power=ifelse(!x, "Argument 'tp.power' must be between 1/2 and 1\n", NA),
lambda=ifelse(!x, "Argument 'lambda' must be between 1/2 and 1\n", NA),
FDP.control.method=ifelse(!x, list.o(FDP.mthd.vals,
"Argument 'FDP.control.method' must be " %,%
"set to one of the values \n"), NA),
method=ifelse(!x, list.o(pwrfdrmthd.vals,
"Argument 'method' must be set to one " %,%
"of the values \n"), NA),
n.sim=ifelse(!x, "Argument 'n.sim' must be integral and > 0\n", NA),
type=ifelse(!x, "Argument 'type' must be 'paired', 'balanced' or 'unbalanced'\n", NA),
grpj.per.grp1=ifelse(!x, "this gets checked in other rules", NA),
delta=ifelse(!x, "Argument 'delta' must be between 0 and 1\n", NA),
tempfile=ifelse(!x, "Argument 'tempfile' must be a character string\n", NA))
if(is.na(msg)) msg <- NULL
msg
}
other.rules <-
function(sppld, frmls, m)
{
is.msng <- !(frmls %in% sppld)
names(is.msng) <- frmls
no.n.sample <- is.msng["n.sample"]
is.pwr <- (!is.msng["average.power"]) || (!is.msng["tp.power"])
pwr.nera.chk <- (!is.pwr && all(!is.msng[nera])) || (is.pwr && (sum(is.msng[nera])==1))
fdp.needs.N <- c("Auto", "BHCLT","Romano")
msg.1 <- msg.2 <- msg.3 <- msg.4 <- msg.5 <- msg.6 <- msg.7 <- msg.8 <- msg.9 <- msg.10 <- msg.11 <- NULL
if(!pwr.nera.chk)
{
msg.1 <- list.o(nera,"When neither 'average.power' or 'tp.power' is specified, " %,%
"you must specify each of the arguemtns,", "\n")
msg.1 <- msg.1 %,% list.o(nera, "If 'average.power' or 'tp.power' is specified, " %,%
"then all but one of arguemtns.", "must be specified")
}
if(!is.msng["tp.power"] && is.msng["lambda"])
msg.2 <-"Specification of argument 'tp.power' requires specification of argument 'lambda' "%,%
"tp.power = P(TPP > lambda)\n"
if(is.pwr && m$method=="simulation")
msg.3 <- "Sample size calculation not implemented in 'simulation' method.\n"
if((m$FDP.control.method %in% fdp.needs.N || m$method=="simulation" || !is.msng["lambda"]
|| !is.msng["tp.power"])&&is.msng["N.tests"])
msg.4 <- "Argument, 'N.tests' is required for the simulation method, for computing " %,%
"tp.power, and for the " %,%
list.a(fdp.needs.N, "", " FDP.control.method's\n")
if(m$FDP.control.method=="both" && m$method=="FixedPoint")
msg.5 <- "FDP.control.method 'both' is for the simulation method only\n"
if(m$FDP.control.method=="Auto" && m$method=="simulation")
msg.6 <- "FDP.control.method 'Auto' is for the FixedPoint method only\n"
if(m$type=="balanced" && !is.msng["grpj.per.grp1"])
msg.7 <- "If 'type' is 'balanced' then argument 'grpj.per.grp1' must be unspecified"
if(m$type=="unbalanced" && (is.msng["grpj.per.grp1"] || m$grpj.per.grp1 <= 0))
msg.8 <- "If 'type' is 'unbalanced' then argument 'grpj.per.grp1' must be supplied and > 0"
if(m$groups==1 && !is.msng["type"])
msg.9 <- "When argument, 'groups' is 1, then argument 'type' must be unspecified\n"
if(m$groups>=2 && m$type=="unbalanced" && length(m$grpj.per.grp1)!=(m$groups-1))
msg.10 <- "If 'groups'>=2 and 'type'=='unbalanced' then 'grpj.per.grp1' must be of length groups - 1"
if(m$groups>=3 && !(m$type %in% c("balanced", "unbalanced")))
msg.11 <- "If 'groups>=3' then 'type' must be balanced or unbalanced"
msg <- c(msg.1, msg.2, msg.3, msg.4, msg.5, msg.6, msg.7, msg.8, msg.9, msg.10, msg.11)
msg
}
"args.def.err.chk" <-
function(m, sppld, frmls, other.rules=TRUE, eval.env)
{
if(missing(eval.env))
{
calling.env <- sys.parent()
eval.env <- ifelse(calling.env==0, topenv, sys.parent)
}
n.sppld <- length(sppld)
is.msng <- !(frmls %in% sppld)
names(is.msng) <- frmls
msng.nms <- names(is.msng)[is.msng]
fill.in.default.arg.nms <- match.arg(msng.nms, names(default), several.ok=TRUE)
for(v in fill.in.default.arg.nms) m[[v]] <- default[[v]](m$groups, m$alpha)
for(k in 1:n.sppld) m[[sppld[k]]] <- eval(m[[sppld[k]]], eval.env())
if(!("control" %in% msng.nms) && ("control" %in% frmls))
{
pfdr.cntl.call <- as.call(expression(pwrFDR.control))
pfdr.cntl.call$groups <- m$groups
pfdr.cntl.call$alpha <- m$alpha
nms.cntl <- names(m$control)
n.c <- length(m$control)
for(k in 1:n.c) pfdr.cntl.call[[nms.cntl[k]]] <- m$control[[nms.cntl[k]]]
m[["control"]] <- eval(pfdr.cntl.call)
}
err.msg <- NULL
chk.valid.arg.nms <- match.arg(sppld, names(valid.arg.dict), several.ok=TRUE)
for(v in chk.valid.arg.nms)
err.msg <- c(err.msg, valid.arg.msg(valid.arg.dict[[v]](m[[v]]), v))
m[["method"]] <- match.arg(m$method, pwrfdrmthd.vals)
m[["FDP.control.method"]] <- match.arg(m$FDP.control.method, FDP.mthd.vals)
if(m$method!="simulation") m$n.sim <- NULL
if(other.rules) err.msg <- c(err.msg, other.rules(sppld, frmls, m))
m$type <- list(`paired`=1, `balanced`=2, `unbalanced`=3)[[m$type]]
m[["control"]]$is.msng <- is.msng
attr(m, "err.msg") <- err.msg
m
}
"pwrFDR.control" <-
function(tol, max.iter, distopt, CS, sim.level, FDP.meth.thresh, verb, low.power.stop, ast.le.a, groups, alpha)
{
calling.env <- sys.parent()
eval.env <- ifelse(calling.env==0, topenv, sys.parent)
m <- match.call()
m$groups <- m$alpha <- NULL
frmls <- names(formals(pwrFDR.control))
frmls <- frmls[-which(frmls=="groups")]
frmls <- frmls[-which(frmls=="alpha")]
sppld <- names(m)[-1]
n.sppld <- length(sppld)
is.msng <- !(frmls %in% sppld)
names(is.msng) <- frmls
msng.nms <- names(is.msng)[is.msng]
default.pwrFDR.cntl <- default$control(groups=groups, alpha=alpha)
fill.in.default.arg.nms <- match.arg(msng.nms, names(default.pwrFDR.cntl), several.ok=TRUE)
for(v in fill.in.default.arg.nms) m[[v]] <- default.pwrFDR.cntl[[v]]
for(k in 1:n.sppld) m[[sppld[k]]] <- eval(m[[sppld[k]]], eval.env())
m[[1]] <- as.name("list")
eval(m, eval.env())
}
DF <- c(expression(n.sample-1),
expression(groups*(n.sample-1)),
expression((1/n.sample + sum(1/nii.sample))^2/(1/(n.sample^2*(n.sample-1)) + sum(1/(nii.sample^2*(nii.sample-1))))))
NCP <- c(expression(n.sample^0.5*effect.size),
expression((n.sample/groups)^0.5*effect.size),
expression(((n.sample-1)/(1 + sum((n.sample-1)/(nii.sample-1))))^0.5*effect.size))
"dists" <-
as.data.frame(rbind(c(
pars0=as.call(expression(c, 0, ncp=0, sd=1)),
pars1=as.call(expression(c, 0, ncp=.NCP., sd=1)),
minv=-Inf,
ddist=function(x, par) dnorm(x, mean=par[2], sd=par[3]),
pdist=function(x, par) pnorm(x, mean=par[2], sd=par[3]),
qdist=function(x, par) qnorm(x, mean=par[2], sd=par[3])),
c(
pars0=as.call(expression(c,1,ncp=0, ndf=.DF.)),
pars1=as.call(expression(c,1,ncp=.NCP., ndf=.DF.)),
minv=-Inf,
ddist=function(x, par) dt(x, ncp=par[2], df=par[3]),
pdist=function(x, par) pt(x, ncp=par[2], df=par[3]),
qdist=function(x, par) qt(x, ncp=par[2], df=par[3])),
c(
pars0=as.call(expression(c,2,ncp=0, ndf1=groups-1, ndf2=.DF.)),
pars1=as.call(expression(c,2,ncp=.NCP.^2, ndf1=groups-1, ndf2=.DF.)),
minv=0,
ddist=function(x, par) df(x, ncp=par[2], df1=par[3], df2=par[4]),
pdist=function(x, par) pf(x, ncp=par[2], df1=par[3], df2=par[4]),
qdist=function(x, par) qf(x, ncp=par[2], df1=par[3], df2=par[4]))))
.onAttach <- function(libname, pkgname)
{
options(stringsAsFactors=FALSE)
ver <- read.dcf(file=system.file("DESCRIPTION", package=pkgname), fields="Version")
msg <- paste(pkgname, ver) %,% "\n\n" %,% "Type ?pwrFDR"
msg <- msg %,% "\n" %,% " or view.presentation()"
packageStartupMessage(msg)
} |
library(sf)
library(sp)
mtq <- st_read(system.file("gpkg/mtq.gpkg", package="cartography"), quiet = TRUE)
expect_silent(choroLayer(mtq, var="MED", method = "q6"))
expect_silent(choroLayer(spdf=as(mtq, "Spatial"), var="MED"))
mtq$MED[1:3] <- NA
expect_silent(choroLayer(x=getPencilLayer(mtq,100), var="MED")) |
test_that("TunerAsha works", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 16, tags = "budget"))
)
test_tuner_successive_halving(n = 16, eta = 2, learner)
})
test_that("TunerAsha works with r_max > n", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 17, tags = "budget"))
)
test_tuner_successive_halving(n = 16, eta = 2, learner)
})
test_that("TunerAsha works with r_max < n", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 15, tags = "budget"))
)
test_tuner_successive_halving(n = 16, eta = 2, learner)
})
test_that("repeating successive halving works", {
learner = lrn("classif.debug",
x = to_tune(),
iter = to_tune(p_int(1, 16, tags = "budget"))
)
instance = tune(
method = "successive_halving",
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
repeats = TRUE,
term_evals = 62)
expect_equal(nrow(instance$archive$data), 62)
instance = tune(
method = "successive_halving",
task = tsk("pima"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
repeats = FALSE)
expect_equal(nrow(instance$archive$data), 31)
}) |
nlscontour=function (x, param1 = 1, param2 = 2, range1 = NULL, range2 = NULL,
npoints = 100, filled = FALSE,colored=FALSE)
{
pars <- x$m$getPars()
cat("Parameters inherited from nls :\n")
print(pars)
A <- summary(x)
stderrpars <- A$parameters[, 2]
cat("Standard error on parameters :\n")
print(stderrpars)
if (is.null(range1))
range1 <- c(pars[param1] - 4 * stderrpars[param1], pars[param1] +
4 * stderrpars[param1])
if (is.null(range2))
range2 <- c(pars[param2] - 4 * stderrpars[param2], pars[param2] +
4 * stderrpars[param2])
cat("parameter 1 - name : ", names(stderrpars[param1]), "central value : ",
pars[param1], " range : ", range1, " \n")
cat("parameter 2 - name : ", names(stderrpars[param2]), "central value : ",
pars[param2], " range : ", range2, " \n")
np <- round(sqrt(npoints))
dx <- (range1[2] - range1[1])/(np - 1)
dy <- (range2[2] - range2[1])/(np - 1)
ax <- seq(range1[1], range1[2], dx)
by <- seq(range2[1], range2[2], dy)
grid <- matrix(0, np, np)
valpar <- pars
for (i in 1:np) for (j in 1:np) {
valpar[param1] <- ax[i]
valpar[param2] <- by[j]
nlm <- nlsModel(formula(x), data = eval(x$data), start = valpar)
az <- sum(nlm$resid()^2)
grid[i, j] <- az
}
paletta <- colors()[seq(153, 254, 10)]
if (filled) {
if(colored) filled.contour(ax, by, as.matrix(grid),col = rainbow(20), nlevels = 20,
plot.axes={axis(1);axis(2);points(pars[param1],pars[param2],pch=20);abline(pars[param2],0);abline(v=pars[param1])})
else
filled.contour(ax, by, as.matrix(grid), col = paletta, nlevels = 20,
plot.axes={axis(1);axis(2);points(pars[param1],pars[param2],pch=20,col="white");abline(pars[param2],0);abline(v=pars[param1])})
}
else {
par(pty = "m")
contour(ax, by, grid, nlevels = 25)
abline(v = pars[param1])
abline(pars[param2], 0)
}
title(paste("Sum of squares - parameters :", as.character(names(valpar[param1])),
",", as.character(names(valpar[param2]))))
gr <- NULL
gr$x <- ax
gr$y <- by
gr$grid <- as.data.frame(grid)
class(gr) <- "nlsgrid"
invisible(gr)
} |
test_that("resample works with weights", {
task = makeClassifTask(data = iris, target = "Species", weights = as.integer(iris$Species))
res = resample(task = task, learner = "classif.rpart", resampling = makeResampleDesc("CV", iters = 2))
expect_s3_class(res$pred, "ResamplePrediction")
}) |
hard_thres <- function(a,lam){
ind <- (abs(a)<lam)
a[ind] <- 0
out <- a
return(out)
} |
pop_iita<-function(imp, ce, lg, items, dataset = NULL, A = NULL, v){
if(v != 1 && v != 2 && v !=3){
stop("IITA version must be specified")
}
if(is.null(dataset) == FALSE && is.null(A) == FALSE){
stop("Either the dataset or the selection set can be specified")
}
p_pop<-vector(length = items)
b_pop<-matrix(0,ncol = items, nrow = items)
bs_pop_alt<-matrix(0,ncol = items, nrow = items)
bs_pop_neu<-matrix(0,ncol = items, nrow = items)
bs_pop_num<-matrix(0,ncol = items, nrow = items)
error_pop_theo<-matrix(ncol = items, nrow = items)
pop_matrix<-matrix(0,nrow = 2^items, ncol = items+1)
for(i in 1:items){
pop_matrix[,i]<-c(rep(0, 2^(items-i)), rep(1, 2^(items-i)))
}
R_2<-matrix(1, ncol = items, nrow = items)
for(i in 1:items){
for(j in 1:items){
if(!is.element(set(tuple(i,j)), imp) && i != j){R_2[j,i]<-0}
}
}
base<-list()
for(i in 1:items){
tmp<-vector()
for(j in 1:items){
if(R_2[i,j] == 1){tmp<-c(tmp, j)}
}
base[[i]]<-sort(tmp)
}
base_list<-list()
for(i in 1:items){
base_list[[i]]<-set()
for(j in 1:length(base[[i]]))
base_list[[i]]<-set_union(base_list[[i]], set(base[[i]][j]))
}
G<-list()
G[[1]]<-set(set())
G[[2]]<-set()
for(i in 1:length(base[[1]])){G[[2]]<-set_union(G[[2]], base[[1]][i])}
G[[2]]<-set(set(), G[[2]])
for(i in 2:items){
H<-set(set())
for(j in G[[i]]){
check<-0
if(set_is_subset(base_list[[i]], j) == FALSE){
for(d in 1:i){
if(set_is_subset(base_list[[d]], set(j, base_list[[i]])) == TRUE){
if(set_is_subset(base_list[[d]], j)){
H<-set_union(H,set(set_union(j,base_list[[i]])))
}
}
if(set_is_subset(base_list[[d]], set(j, base_list[[i]])) == FALSE){
H<-set_union(H,set(set_union(j,base_list[[i]])))
}
}
}
}
G[[i+1]]<-set_union(G[[i]], H)
}
P<-matrix(0, ncol = items, nrow = length(G[[items+1]]))
i<-1
for(k in (G[[items+1]])){
for(j in 1:items){
if(is.element(j, k)){P[i,j]<-1}
}
i<-i+1
}
r_pop<-matrix(1, ncol = length(G[[items+1]]), nrow = 2^items)
for(i in 1:2^items){
for(j in 1:(length(G[[items+1]]))){
for(k in 1:items){
if(pop_matrix[i,k] == 0 && P[j,k] == 1){r_pop[i,j]<-r_pop[i,j] * ce}
if(pop_matrix[i,k] == 1 && P[j,k] == 1){r_pop[i,j]<-r_pop[i,j] * (1-ce)}
if(pop_matrix[i,k] == 1 && P[j,k] == 0){r_pop[i,j]<-r_pop[i,j] * lg}
if(pop_matrix[i,k] == 0 && P[j,k] == 0){r_pop[i,j]<-r_pop[i,j] * (1-lg)}
}
pop_matrix[i,items+1]<-pop_matrix[i,items+1] + r_pop[i,j]/length(G[[items+1]])
}
}
for(i in 1:items){
p_pop[i]<-sum(pop_matrix[pop_matrix[,i] == 1,items+1 ])
for(j in 1:items){
tmp1<-which(pop_matrix[,i] == 0)
tmp2<-which(pop_matrix[,j] == 1)
if(i != j){b_pop[i,j]<-sum(pop_matrix[c(tmp1,tmp2)[duplicated(c(tmp1, tmp2))] ,items+1])}
}
}
if(is.null(dataset) && is.null(A)){
S<-list()
A<-list()
M<-list()
S[[1]]<-set()
A[[1]]<-set()
M[[1]]<-set()
elements<-sort(b_pop)[!duplicated(sort(b_pop))]
elements<-elements[2:(length(elements))]
k<-2
for(elem in elements){
S[[k]]<-set()
A[[k]]<-set()
M[[k]]<-set()
for(i in 1:items){
for(j in 1:items){
if(b_pop[i,j] <= elem && i !=j && is.element(set(tuple(i,j)), A[[k-1]]) == FALSE){S[[k]]<-set_union(S[[k]], set(tuple(i,j)))}
}
}
if(set_is_empty(S[[k]])){A[[k]]<-A[[k-1]]}
if(set_is_empty(S[[k]]) == FALSE){
M[[k]]<-S[[k]]
brake_test<-1
while(brake_test != 0){
brake<-M[[k]]
for(i in M[[k]]){
for(h in 1:items){
if(h != as.integer(i)[1] && h != as.integer(i)[2] && is.element(set(tuple(as.integer(i)[2],h)), set_union(A[[k-1]], M[[k]])) == TRUE && is.element(set(tuple(as.integer(i)[1],h)), set_union(A[[k-1]], M[[k]])) == FALSE){M[[k]]<-set_intersection(M[[k]], set_symdiff(M[[k]],set(i)))}
if(h != as.integer(i)[1] && h != as.integer(i)[2] && is.element(set(tuple(h,as.integer(i)[1])), set_union(A[[k-1]], M[[k]])) == TRUE && is.element(set(tuple(h,as.integer(i)[2])), set_union(A[[k-1]], M[[k]])) == FALSE){M[[k]]<-set_intersection(M[[k]], set_symdiff(M[[k]],set(i)))}
}
}
if(brake == M[[k]]){brake_test<-0}
}
A[[k]]<-set_union(A[[k-1]], (M[[k]]))
}
k<-k+1
}
A<-A[(!duplicated(A))]
A<-A[!set_is_empty(A)]
}else{
if(is.null(dataset) == FALSE){
A<-ind_gen(ob_counter(dataset))
}
}
error_pop<-vector(length = (length(A)))
error_pop_num<-vector(length = (length(A)))
for(i in 1:items){
error_pop_theo[,i]<-b_pop[,i] / p_pop[i]
}
if(v == 3 | v == 2){
all_imp<-set()
for(i in 1:(items-1)){
for(j in (i+1):items){
all_imp<-set_union(all_imp, set(tuple(i,j), tuple(j,i)))
}
}
for(k in 1:length(A)){
for(i in A[[k]]){
error_pop[k]<-error_pop[k] + ((b_pop[as.integer(i[1]), as.integer(i[2])]) / sum(p_pop[as.integer(i[2])]))
}
if(set_is_empty(A[[k]])){error_pop[k]<-NA}
if(set_is_empty(A[[k]]) == FALSE) {error_pop[k]<-error_pop[k] / length(A[[k]])}
}
}
if(v == 1){
for(k in 1:length(A)){
x<-rep(0,4)
for(i in 1:items){
for(j in 1:items){
if(is.element(set(tuple(i,j)), A[[k]]) == TRUE && i != j){
x[2]<-x[2]-2*b_pop[i,j] * p_pop[j]
x[4]<-x[4]+2 * p_pop[j]^2
}
if(is.element(set(tuple(i,j)), A[[k]]) == FALSE && is.element(set(tuple(j,i)), A[[k]]) == TRUE && i != j){
x[1]<-x[1]-2*b_pop[i,j]*p_pop[i] + 2 * p_pop[i] * p_pop[j] - 2 * p_pop[i]^2
x[3]<-x[3]+2*p_pop[i]^2
}
}
}
error_pop_num[k]<- -(x[1] + x[2]) / (x[3] + x[4])
}
}
if(v == 3){
diff_value_pop_alt<-vector(length = length(A))
for(k in 1:length(A)){
for(i in 1:items){
for(j in 1:items){
if(is.element(set(tuple(i,j)), A[[k]]) == TRUE && i != j){bs_pop_alt[i,j]<-error_pop[k] * p_pop[j]}
if(is.element(set(tuple(i,j)), A[[k]]) == FALSE && i != j){bs_pop_alt[i,j]<-(1-p_pop[i]) * p_pop[j] * (1-error_pop[k])}
}
}
if(set_is_empty(A[[k]])){diff_value_pop_alt[k]<-NA}
if(set_is_empty(A[[k]]) == FALSE) {diff_value_pop_alt[k]<-sum((b_pop - bs_pop_alt)^2) / (items^2 - items)}
}
obj<-list(pop.diff = diff_value_pop_alt, pop.matrix = pop_matrix, error.pop = error_pop, selection.set = A, v = v)
class(obj)<-"popiita"
return(obj)
}
if(v == 2){
diff_value_pop_neu<-vector(length = length(A))
for(k in 1:length(A)){
for(i in 1:items){
for(j in 1:items){
if(is.element(set(tuple(i,j)), A[[k]]) == TRUE && i != j){bs_pop_neu[i,j]<-error_pop[k] * p_pop[j]}
if(is.element(set(tuple(i,j)), A[[k]]) == FALSE && is.element(set(tuple(j,i)), A[[k]]) == FALSE && i != j){bs_pop_neu[i,j]<-(1-p_pop[i]) * p_pop[j]}
if(is.element(set(tuple(i,j)), A[[k]]) == FALSE && is.element(set(tuple(j,i)), A[[k]]) == TRUE && i != j){bs_pop_neu[i,j]<-p_pop[j] - p_pop[i] + p_pop[i] * error_pop[k]}
}
}
if(set_is_empty(A[[k]])){diff_value_pop_neu[k]<-NA}
if(set_is_empty(A[[k]]) == FALSE) {diff_value_pop_neu[k]<-sum((b_pop - bs_pop_neu)^2) / (items^2 - items)}
}
obj<-list(pop.diff = diff_value_pop_neu, pop.matrix = pop_matrix, error.pop = error_pop, selection.set = A, v = v)
class(obj)<-"popiita"
return(obj)
}
if(v == 1){
diff_value_pop_num<-vector(length = length(A))
for(k in 1:length(A)){
for(i in 1:items){
for(j in 1:items){
if(is.element(set(tuple(i,j)), A[[k]]) == TRUE && i != j){bs_pop_num[i,j]<-error_pop_num[k] * p_pop[j]}
if(is.element(set(tuple(i,j)), A[[k]]) == FALSE && is.element(set(tuple(j,i)), A[[k]]) == FALSE && i != j){bs_pop_num[i,j]<-(1-p_pop[i]) * p_pop[j]}
if(is.element(set(tuple(i,j)), A[[k]]) == FALSE && is.element(set(tuple(j,i)), A[[k]]) == TRUE && i != j){bs_pop_num[i,j]<-p_pop[j] - p_pop[i] + p_pop[i] * error_pop_num[k]}
}
}
if(set_is_empty(A[[k]])){diff_value_pop_num[k]<-NA}
if(set_is_empty(A[[k]]) == FALSE) {diff_value_pop_num[k]<-sum((b_pop - bs_pop_num)^2) / (items^2 - items)}
}
obj<-list(pop.diff = diff_value_pop_num, pop.matrix = pop_matrix, error.pop = error_pop_num, selection.set = A, v = v)
class(obj)<-"popiita"
return(obj)
}
} |
get_question <- function(do, q){
if(exists(do)){
if(utils::hasName(get(do), q)){
message(labelled::var_label(get(q, get(do))))
}
else{
message("Warning: Variable is not in dataset")
}
}
else{
message("Warning: Data object does not exist")
}
} |
.aggData <- function(cnames, data, gather, FUN){
cnames <- cnames[cnames %in% colnames(data)]
if(length(cnames) == 0)return( list(data = numeric(0)) )
FAC <- F
df <- data[,cnames]
if(FUN == 'factor'){
FAC <- T
tf <- fnames <- character(0)
df <- numeric(0)
for(j in 1:length(cnames)){
kf <- as.character(data[,cnames[j]])
tf <- cbind(tf, kf)
fnames <- append(fnames,list(sort(unique(kf))))
df <- cbind(df, match(kf,fnames[[j]]) )
}
colnames(df) <- cnames
FUN <- 'max'
}
tmp <- aggregate(df, by=gather, FUN=FUN)
ord <- do.call(order,list(tmp[,names(gather)]))
colnames(tmp)[-c(1:length(gather))] <- cnames
if(FAC){
for(j in 1:length(cnames)){
kf <- fnames[[j]][tmp[,cnames[j]]]
tmp[,cnames[j]] <- as.factor(kf)
}
}
list(ord = ord, data = tmp[ord,])
}
.setLoHi <- function(plist, pmat, xnames, ynames){
pnames <- names(plist)
wx <- which(pnames %in% xnames)
for(k in wx)pmat[pnames[k],] <- plist[[k]]
wy <- which(pnames %in% ynames)
for(k in wy)pmat[,pnames[k]] <- plist[[k]]
comb <- grep('_',pnames)
for(k in comb){
ck <- unlist( strsplit(pnames[k],'_') )
ik <- 1; jk <- 2
wx <- which(xnames == ck[ik])
if(length(wx) == 0){
ik <- 2; jk <- 1
wx <- which(xnames == ck[ik])
}
wy <- which(ynames == ck[jk])
pmat[wx,wy] <- plist[[comb[k]]]
}
pmat
}
.myBoxPlot <- function(mat, tnam, snames, specColor, label, LEG=F){
ord <- order(colMeans(mat),decreasing=F)
mat <- mat[,ord]
tnam <- tnam[ord]
bb <- specColor[ match(tnam, snames) ]
ry <- quantile(mat, c(.01, .99))
ymin <- quantile(mat, .01) - diff(ry)*.15
ymax <- quantile(mat, .99) + diff(ry)*.7
bx <- .getColor(bb,.4)
tmp <- .boxplotQuant( mat, xaxt='n',outline=F,ylim=c(ymin,ymax),
col=bx, border=bb, lty=1)
abline(h=0,lwd=2,col='grey',lty=2)
dy <- .05*diff(par()$yaxp[1:2])
cext <- .fitText2Fig(tnam,fraction=1)
text((1:length(ord)) - .1,dy + tmp$stats[5,],tnam,srt=70,pos=4,
col=bb, cex=cext)
pl <- par('usr')
xtext <- pl[1]
ytext <- pl[3] + diff(pl[3:4])*.85
.plotLabel(label,location='topleft', cex=1.0)
lg <- unique(names(bb))
if(!is.null(lg) & LEG){
colb <- bb[lg]
legend('bottomright',legend=lg,text.col=colb,bty='n')
}
}
.splitNames <- function(nameVec, snames=NULL, split='_'){
vnam <- matrix( unlist( strsplit(nameVec,split) ),ncol=2,byrow=T)
if(is.null(snames))return( list(vnam = vnam, xnam = NULL) )
ix <- 1
nc <- 2
y1 <- which(vnam[,1] %in% snames)
y2 <- which(vnam[,2] %in% snames)
if(length(y1) > length(y2))ix <- 2
if(ix == 2)nc <- 1
xnam <- vnam[,ix]
vnam <- vnam[,nc]
list(vnam = vnam, xnam = xnam)
}
.updateBetaMet <- function(X, Y, B, lo, hi, loc, REDUCT, sig=NULL,
sinv=NULL, sp=.01 ){
bnew <- B
mnow <- X%*%B
bnew[loc] <- .tnorm(nrow(loc),lo[loc],hi[loc],B[loc],sp)
mnew <- X%*%bnew
if(REDUCT){
pnow <- colSums( dnorm(Y,mnow,sqrt(sig),log=T) )
pnew <- colSums( dnorm(Y,mnew,sqrt(sig),log=T) )
z <- which( runif(length(pnow),0,1) < exp(pnew - pnow) )
if(length(z) > 0)B[,z] <- bnew[,z]
}else{
pnow <- sum( .dMVN(Y,mnow,sinv=sinv,log=T) )
pnew <- sum( .dMVN(Y,mnew,sinv=sinv,log=T) )
z <- runif(1,0,1) < exp(pnew - pnow)
if(z)B <- bnew
}
B
}
.getPattern <- function(mat, wloc){
mat <- mat*0 + NA
mat[ wloc ] <- 0
rows <- numeric(0)
pattern <- numeric(0)
aa <- mat*0
aa[wloc] <- 1
U <- nrow(mat)
SS <- ncol(mat)
cc <- 1:U
wk <- which( rowSums(abs(mat+1), na.rm=T) == 0 )
if(length(wk) > 0){
aa[cc[wk],] <- NA
cc <- cc[-wk]
}
if(length(cc) == 0)return( list(rows = rows, pattern = pattern) )
for(k in 1:U){
if(length(cc) == 0)break
ak <- aa[drop=F,cc,]
ac <- matrix(ak[1,],nrow(ak),ncol(ak),byrow=T)
ac[is.na(ac)] <- 0
am <- ak - ac
w1 <- which( duplicated(am) & rowSums(am,na.rm=T) == 0 )
w1 <- c(1,w1)
cw <- cc[w1]
rr <- matrix( cw, 1 )
pp <- matrix( which(aa[rr[1],] != 0), 1)
if(length(pp) == 0)pp <- matrix(1:SS,1)
aa[cw,] <- NA
cc <- cc[-w1]
if( length(rows) == 0 ){
rows <- rr
pattern <- pp
next
} else {
if( ncol(rr) == ncol(rows) )rows <- rbind(rows,rr)
if( ncol(rr) > ncol(rows) ){
rk <- matrix(NA,nrow(rows),ncol(rr))
rk[,1:ncol(rows)] <- rows
rows <- rbind(rk,rr)
}
if( ncol(rows) > ncol(rr) ){
rj <- matrix(NA,1,ncol(rows))
rj[1:length(rr)] <- rr
rows <- rbind(rows,rj)
}
if( ncol(pp) == ncol(pattern) )pattern <- rbind(pattern,pp)
if( ncol(pp) > ncol(pattern) ){
rk <- matrix(NA,nrow(pattern),ncol(pp))
rk[,1:ncol(pattern)] <- pattern
pattern <- rbind(rk,pp)
}
if( ncol(pattern) > ncol(pp) ){
rj <- matrix(NA,1,ncol(pattern))
rj[1:length(pp)] <- pp
pattern <- rbind(pattern,rj)
}
}
if(length(cc) == 0)break
}
list(rows = rows, pattern = pattern)
}
.alphaPrior <- function(ww, tindex, ap, notOther){
S <- ncol(ww)
lo <- ap$lo
hi <- ap$hi
al <- (lo + hi)/2
al[ lo == hi ] <- NA
tmp <- .getURowCol( mat = al, notOther )
uindex <- tmp$uindex
Amat <- tmp$Amat
wA <- tmp$wA
aindex <- tmp$aindex
loA <- hiA <- Amat
loA[ wA ] <- lo[ aindex[,c('toW','fromW')] ]
hiA[ wA ] <- hi[ aindex[,c('toW','fromW')] ]
list(Amat = Amat, loAmat = loA, hiAmat = hiA,
wA = wA, uindex = uindex, aindex = aindex)
}
.betaPrior <- function(beta, notOther, loBeta, hiBeta){
BPRIOR <- F
loB <- hiB <- NULL
bg <- beta
wB <- which(!is.na(t(loBeta[,notOther])) &
t(loBeta[,notOther] != hiBeta[,notOther]), arr.ind=T)[,c(2,1)]
colnames(wB) <- c('row','col')
bg <- bg*0
bg[ wB ] <- -999
zB <- which(is.na(bg) | bg != -999)
bg <- (loBeta + hiBeta)/2
bg[ is.nan(bg) ] <- 0
loB <- loBeta[,notOther]
hiB <- hiBeta[,notOther]
list(beta = bg, loB = loB, hiB = hiB, wB = wB, zB = zB, BPRIOR = BPRIOR)
}
.rhoPrior <- function(lprior, w, x, tindex, xnames,
snames, other, notOther, timeZero = NULL){
loRho <- lprior$lo
hiRho <- lprior$hi
rho <- (loRho + hiRho)/2
if(length(other) > 0)loRho[,other] <- hiRho[,other] <- NA
lkeep <- which(!is.na(loRho))
M <- nrow(rho)
rownames(rho)[1] <- 'intercept'
S <- ncol(rho)
SS <- length(notOther)
n <- nrow(x)
wz <- w
gindex <- kronecker(diag(S),rep(1,M))
gindex <- gindex[lkeep,]
wg <- which(gindex == 1,arr.ind=T)
wc <- matrix(rep(1:M,S*M),S*M,S)[lkeep,]
rowG <- wc[wg]
gindex <- cbind(rowG,wg)
tmp <- as.vector( t(outer(colnames(rho)[notOther],
rownames(rho),paste,sep='_') ) )
rownames(gindex) <- tmp[lkeep]
colX <- match(rownames(rho),colnames(x))
colX <- colX[rowG]
gindex <- cbind(colX, gindex)
colnames(gindex)[3:4] <- c('rowL','colW')
nV <- nrow(gindex)
Vmat <- matrix(0,n,nV)
wz[wz < 0] <- 0
Vmat[tindex[,2],] <- wz[tindex[,1], gindex[,'colW']]*x[tindex[,2], gindex[,'colX']]
Vmat[timeZero,] <- wz[timeZero, gindex[,'colW']]*x[timeZero, gindex[,'colX']]
Rmat <- matrix(NA,nV,S)
rownames(Rmat) <- rownames(gindex)
loRmat <- hiRmat <- Rmat[,notOther]
Rmat[ gindex[,c('rowL','colW')] ] <- rho[ gindex[,c('rowG','colW')] ]
lo <- hi <- Rmat*0
lo[ gindex[,c('rowL','colW')] ] <- loRho[ gindex[,c('rowG','colW')] ]
hi[ gindex[,c('rowL','colW')] ] <- hiRho[ gindex[,c('rowG','colW')] ]
Rmat[ is.nan(Rmat) ] <- 0
wL <- which(!is.na(Rmat[,notOther]),arr.ind=T)
lo[is.na(lo)] <- 0
hi[is.na(hi)] <- 0
list(Rmat = Rmat, loRmat = lo[,notOther], hiRmat = hi[,notOther], wL = wL,
gindex = gindex, Vmat = Vmat)
}
.plotXbyY <- function(xdata, yy, ee, vname, xlim=range(xdata[,vname],na.rm=T)){
plotj <- as.character(xdata[,'plot'])
sitej <- .splitNames(plotj)$vnam[,1]
sitea <- sort(unique(sitej))
years <- sort(unique(xdata[,'year']))
nyr <- length(years)
labs <- rep(1:12,nyr)
week <- (1:(nyr*12))*30
midYr <- (1:(nyr*2))*365/2
S <- ncol(yy)
ynames <- colnames(yy)
mfrow <- .getPlotLayout(S)
xaxt <- 's'
if(vname == 'JD'){
xaxt <- 'n'
xlim <- c(130,365*nyr)
}
par(mfrow=mfrow,bty='n',mar=c(4,4,1,1))
for(s in 1:S){
ys <- yy[,s]/ee[,s]
plot(NULL,xlim=xlim,ylim=range(ys,na.rm=T),xlab=' ',ylab='count/14 day/m2',
xaxt=xaxt)
if(vname == 'JD'){
abline(v=midYr,col='grey',lty=2)
axis(1,at=week,labels=labs)
}
for(k in 1:length(sitea)){
for(j in 1:nyr){
wk <- which(sitej == sitea[k] & xdata[,'year'] == years[j])
if(length(wk) == 0)next
lines((j-1)*365 + xdata[wk,vname],ys[wk])
}
}
title(ynames[s])
}
}
.pasteCols <- function(mm){
tmp <- apply(mm,1,paste0,collapse='-')
names(tmp) <- NULL
tmp
}
.getURowCol <- function(mat, notOther){
rownames(mat) <- colnames(mat) <- NULL
S <- ncol(mat)
ww <- which(is.finite(t(mat)),arr.ind=T)
ww <- ww[,c(2,1)]
colnames(ww) <- c('toW','fromW')
wnames <- .pasteCols(ww)
ar <- matrix(0,S,S)
ar[ww] <- 1
ar[ww[,c(2,1)]] <- 1
wa <- which(ar == 1,arr.ind=T)
wa <- wa[wa[,2] >= wa[,1],]
wa <- wa[order(wa[,1],wa[,2]),]
uindex <- wa
un <- .pasteCols(wa)
nu <- .pasteCols(wa[,c(2,1)])
arow <- match(wnames,un)
vrow <- match(wnames,nu)
aindex <- ww
arow[is.na(arow)] <- vrow[is.na(arow)]
rownames(ww) <- un[arow]
wA <- cbind(arow,ww[,1])
colnames(wA) <- c('rowA','toW')
Amat <- matrix(NA,nrow(uindex),S)
Amat[wA] <- mat[ aindex[,c('toW','fromW')] ]
rownames(Amat) <- un
rownames(uindex) <- un
wnot <- which( aindex[,1] %in% notOther & aindex[,2] %in% notOther )
wA <- wA[wnot,]
aindex <- aindex[wnot,]
list(uindex = uindex, Amat = Amat, wA = wA, aindex = aindex)
}
.invertCondKronecker <- function(sinv1, sinv2, cindex){
ns1 <- nrow(sinv1)
ns2 <- nrow(sinv2)
n <- ns1*ns2
i1 <- c(1:n)[cindex]
i0 <- c(1:n)[-cindex]
ck <- kronecker(sinv1,sinv2)
sk <- solveRcpp( .invertSigma(ck[i1,i1],REDUCT=F ) )
sinverse <- ck[i0,i0] - ck[i0,i1]%*%sk%*%ck[i1,i0]
sinverse
}
gjamFillMissingTimes <- function(xdata, ydata, edata, groupCol, timeCol,
groupVars = groupCol,
FILLMEANS = FALSE, typeNames = NULL,
missingEffort = .1){
if(is.null(colnames(xdata)))stop('xdata must have column names')
if(is.null(colnames(ydata)))stop('ydata must have column names')
if(FILLMEANS & is.null(typeNames)){
stop(" if FILLMEANS then provide typeNames as single value (e.g., 'DA') or vector for each column of ydata")
}
if(is.character(xdata[,timeCol])){
stop( paste('the time index xdata$',timeCol, ' must be numeric', sep='') )
}
if(!is.null(groupVars))groupVars <- groupVars[ groupVars %in% colnames(xdata) ]
wna <- which( is.na(edata) | edata == 0, arr.ind=T )
if(length(wna) > 0){
nna <- nrow(wna)
pna <- signif( nna/length(as.vector(edata)) )
me <- apply(edata, 2, quantile, .5, na.rm=T )
mm <- me[ wna[,2] ]
mm[ mm == 0 ] <- missingEffort
edata[wna] <- mm*missingEffort
print( paste( nna, ' missing values (', pna, '%) in edata', sep='') )
}
ord <- order(xdata[,groupCol], xdata[,timeCol])
xdata <- xdata[ord, ]
ydata <- ydata[ord, ]
edata <- edata[ord, ]
groupIndex <- xdata[,groupCol]
if(is.factor(groupIndex))groupIndex <- as.character(groupIndex)
allGroups <- sort(unique(groupIndex))
groupIndex <- match(groupIndex,allGroups)
ngroups <- length(allGroups)
allTimes <- sort(unique(xdata[,timeCol]))
allTimes <- min(xdata[,timeCol], na.rm=T):max(xdata[,timeCol], na.rm=T)
timeIndex <- match(xdata[,timeCol],allTimes)
xdata <- cbind(groupIndex,timeIndex,xdata)
timeZero <- numeric(0)
tord <- order(groupIndex, timeIndex, decreasing=F)
xtmp <- xdata[tord,]
ytmp <- as.matrix( ydata[tord,] )
etmp <- as.matrix( edata[tord,] )
timeIndex <- xtmp[,'timeIndex']
groupIndex <- xtmp[,'groupIndex']
notFactor <- !sapply(xtmp,is.factor)
notChar <- !sapply(xtmp,is.character)
notFactor <- which(notFactor & notChar)
insert <- 0
xtmp <- cbind(insert, xtmp)
x1 <- xtmp[drop=F, 1, ]
y1 <- as.matrix( ytmp[drop=F, 1, ] ) + NA
e1 <- as.matrix( etmp[drop=F, 1, ] )*0
for(m in 1:ncol(x1))x1[,m] <- NA
x1[,'insert'] <- 1
xnew <- ynew <- enew <- numeric(0)
for(j in 1:ngroups){
wj <- which(xtmp$groupIndex == j)
mj <- range(xtmp[wj,timeCol], na.rm=T)
nr <- diff(mj) + 2
jt <- (mj[1]-1):mj[2]
tt <- c(1:nr) - 1
xj <- x1
if(!is.null(groupVars)){
groupVars <- groupVars[ groupVars %in% colnames(xtmp) ]
if(length(groupVars) > 0)xj[,groupVars] <- xtmp[wj[1],groupVars]
}
xj <- xj[rep(1, nr),]
xj[,timeCol] <- jt
xj[,'timeIndex'] <- tt
mm <- match(xtmp[wj,timeCol], xj[,timeCol])
xj[mm,] <- xtmp[wj,]
xj[,'timeIndex'] <- tt
xj[,'groupIndex'] <- j
xj[mm,'insert'] <- 0
yj <- y1[rep(1, nr),]
yj[mm,] <- ytmp[wj,]
ej <- e1[rep(1, nr),]
ej[mm,] <- etmp[wj,]
xnew <- rbind(xnew, xj)
ynew <- rbind(ynew, yj)
enew <- rbind(enew, ej)
}
rn <- columnPaste(xnew[,'groupIndex'],xnew[,'timeIndex'])
rownames(xnew) <- rownames(ynew) <- rownames(enew) <- rn
timeZero <- which(xnew[,'timeIndex'] == 0)
timeLast <- timeZero[-1] - 1
timeLast <- c(timeLast,nrow(xnew))
colnames(xnew)[colnames(xnew) == 'groupIndex'] <- 'groups'
colnames(xnew)[colnames(xnew) == 'timeIndex'] <- 'times'
noEffort <- which(rowSums(etmp,na.rm=T) == 0)
noEffort <- noEffort[!noEffort %in% timeZero]
rowInserts <- which(xnew[,'insert'] == 1)
ymiss <- which( is.na(ynew), arr.ind=T )
if(FILLMEANS){
if(length(typeNames) == 1)typeNames <- rep(typeNames, ncol(ynew))
sl <- rep(colnames(ynew), each = nrow(ynew))
gl <- rep(xnew[,'groups'], nrow(ynew))
ym <- tapply(ynew, list(group = rep(xnew[,'groups'], ncol(ynew)),
species = sl),
mean, na.rm=T)
if(!is.matrix(ym)){
ym <- t( as.matrix(ym) )
rownames(ym) <- xnew[1,'groups']
}
ym <- ym[drop=FALSE,,colnames(ynew)]
rym <- round( ym[drop=FALSE, ,typeNames %in% c('DA','PA','CC')] )
ym[,typeNames %in% c('DA','PA','CC')] <- rym
rr <- match( xnew[ ymiss[,1],'groups'], rownames(ym) )
cc <- match( colnames(ynew)[ymiss[,2]], colnames(ym) )
ynew[ ymiss ] <- ym[ cbind(rr, cc) ]
ynew[timeZero, ] <- ynew[timeZero + 1, ]
ynew[ ymiss ] <- ynew[ ymiss ]*missingEffort
ynew[,typeNames %in% c('DA','PA','CC')] <- round( ynew[,typeNames %in% c('DA','PA','CC')] )
sl <- rep(colnames(ynew), each = nrow(ynew))
enew <- enew[,colnames(ynew)]
em <- enew
em[ em == 0 ] <- NA
em <- tapply(as.vector(em), list(group = rep(xnew[,'groups'], ncol(enew)),
species = sl),
mean, na.rm=T)
if(!is.matrix(em)){
em <- t( as.matrix(em) )
rownames(em) <- xnew[1,'groups']
}
em <- em*missingEffort
enew[ ymiss ] <- em[ cbind(rr, cc) ]
}
timeList <- list(times = timeCol, groups = groupCol,
timeZero = timeZero, timeLast = timeLast,
rowInserts = rowInserts, noEffort = noEffort)
list(xdata = xnew, ydata = as.matrix(ynew), edata = enew,
timeList = timeList)
}
.traitTables <- function(specs, traitTab, groups, types='CA', fill=T){
wi <- which( !duplicated(groups[,1]) )
groups <- groups[wi,]
traitTab <- traitTab[wi,]
for(j in 2:ncol(specs)){
specs[,j] <- .cleanNames(as.character(specs[,j]))
groups[,j] <- .cleanNames(as.character(groups[,j]))
}
ng <- ncol(groups)
ns <- nrow(specs)
nt <- ncol(traitTab)
stt <- matrix(0,ns,nt)
i <- match(specs[,1],groups[,1])
wi <- which(is.finite(i))
stt[wi,] <- as.matrix( traitTab[i[wi],] )
rownames(stt) <- specs[,1]
colnames(stt) <- colnames(traitTab)
tabList <- list(stt)
for(k in 2:ng){
sk0 <- tabList[[k-1]]
kn <- rownames(sk0)
allk <- unique(specs[,k])
ii <- match(specs[,k],allk)
i <- rep( ii, nt )
j <- rep( 1:nt, each=ns)
nall <- length(allk)
mm <- matrix(0,nall,nt)
sk0[sk0 == 0] <- NA
stk <- .byGJAM(as.vector(sk0), i, j, mm,mm, fun='mean')
colnames(stk) <- colnames(traitTab)
rownames(stk) <- allk
stk <- stk[specs[,k],]
stk[is.finite(sk0)] <- sk0[is.finite(sk0)]
tabList <- append(tabList, list(stk))
}
traitMeans <- colMeans(traitTab,na.rm=T)
if(fill){
ww <- which(tabList[[ng]] == 0, arr.ind=T)
if(length(ww) > 0){
tabList[[ng]][ww] <- traitMeans[ww[,2]]
}
}
list(traitMeans = traitMeans, traitList = tabList,
specs = specs)
}
.combineFacLevels <- function(xfactor,fname=NULL, aname = 'reference',
vminF=1){
tmp <- as.character(xfactor)
tmp[tmp %in% fname] <- aname
tab <- table(tmp)
wm <- names(tab)[tab < vminF]
tmp[tmp %in% wm] <- aname
as.factor(tmp)
}
.getColor <- function(col,trans){
tmp <- col2rgb(col)
rgb(tmp[1,], tmp[2,], tmp[3,], maxColorValue = 255,
alpha = 255*trans, names = paste(col,trans,sep='_'))
}
.figure1 <- function(){
sig <- .9
mu <- 3.1
offset <- -2
par(mfrow=c(1,2),bty='n',mar=c(6,5,3,.1))
part <- c(0,2,3.3,4.9,6.6)
w <- seq(-1,7,length=500)
dw <- dnorm(w,mu,sig)
dp <- dw[ findInterval(part,w) ]
pw <- pnorm(part,mu,sig)
pw[-1] <- diff(pw)
plot(w,2*dw - .5,type='l',ylim=c(-.5,4),yaxt='n',
ylab= expression(paste(italic(y),'|(',italic(w),', ',bold(p),')',sep='')),
xlab= expression(paste(italic(w),'|(',bold(x)[i],', ',bold(beta),
', ',bold(Sigma),')',sep='')),
xlim=c(offset,7), lwd=2)
axis(2, at = c(0:5))
db <- .15
int <- 4
polygon( c(w,rev(w)), 2*c(dw,w*0) - .5, col='grey', lwd=2)
lines(c(-1,part[1]),c(0,0),lwd=2)
for(j in 1:(length(part))){
lines( part[j:(j+1)],c(j,j), lwd=3)
ww <- which(w >= part[j] & w <= part[j+1])
if(j == 3){
w1 <- ww[1]
w2 <- max(ww)
suppressWarnings(
arrows( mean(w[ww]), 2*max(dw[ww]) - .4, mean(w[ww]),
j - .4, angle=20,lwd=3, col = 'grey', length=.2)
)
suppressWarnings(
arrows( w[w1] - .5 , j , -.7, j , angle= 20,
lwd = 3, col='grey', length=.2)
)
text( c(w[w1], w[w2]),c(3.3,3.3),
expression(italic(p)[4], italic(p)[5]))
text( w[w2] + .3,.6,expression( italic(w)[italic(is)] ))
text( 0,3.5,expression( italic(y)[italic(is)] ))
}
coll <- 'white'
if(j == int)coll <- 'grey'
rect( offset, j - 1 - db, 2*pw[j] + offset, j - 1 + db,
col=coll, border='black', lwd=2)
}
ww <- which(w >= part[int - 1] & w <= part[int])
abline(h = -.5, lwd = 2)
title('a) Data generation',adj=0, font.main = 1, font.lab =1)
plot(w,2*dw - .5,type='l',ylim=c(-.5,4), yaxt='n',
ylab= expression(italic(y)),
xlab= expression(paste(italic(w),'|(',italic(y),', ',bold(p),')',sep='')),
xlim=c(offset,7), lwd=2,col='grey')
axis(2, at = c(0:5))
lines(c(-1,part[1]),c(0,0),lwd=2)
abline(h=-.5, lwd=2, col='grey')
for(j in 1:(length(part))){
lines( part[j:(j+1)],c(j,j), lwd=3)
lines(part[c(j,j)],2*c(0,dp[j])-.5, col='grey')
coll <- 'white'
if(j -- int)coll <- 'grey'
if(j == int){
rect( offset, j - 1 - db, 2*pw[j] + offset, j - 1 + db,
col='black', border='black')
}
}
ww <- which(w >= part[int - 1] & w <= part[int])
polygon( w[c(ww,rev(ww))], 2*c(dw[ww],ww*0) - .5, col='grey', lwd=2)
suppressWarnings(
arrows( mean(w[ww]), int - 1.3,mean(w[ww]), 2*max(dw) - .5,
angle=20,lwd=3, col = 'grey', length=.2)
)
suppressWarnings(
arrows( -.5, int - 1, min(w[ww]) - .4, int - 1, angle= 20,
lwd = 3, col='grey', length=.2)
)
title('b) Inference',adj=0, font.main = 1, font.lab = 1)
}
.add2matrix <- function(values,xmat=NULL){
if(is.null(xmat)){
n <- length(values)
cc <- sort(unique(values))
xmat <- matrix(0,n,length(cc),dimnames = list(1:n,cc))
xmat[ cbind( c(1:n),match(values,cc)) ] <- 1
return(xmat)
}
n <- nrow(xmat)
if(length(values) != n)stop('vector length must equal rows in xmat')
all <- sort( unique( c(values,as.numeric(colnames(xmat))) ))
nc <- length(all)
xnew <- matrix(0,n,nc,dimnames = list(1:n,all))
xnew[,colnames(xmat)] <- xmat
xnew[ cbind(c(1:n),match(values,all)) ] <- xnew[ cbind(c(1:n),match(values,all)) ] + 1
xnew
}
.appendMatrix <- function(m1,m2,fill=NA,SORT=F,asNumbers=F){
if(length(m1) == 0){
if(is.matrix(m2)){
m3 <- m2
} else {
m3 <- matrix(m2,nrow=1)
}
if( !is.null(names(m2)) )colnames(m3) <- names(m2)
return(m3)
}
if(length(m2) == 0){
if(!is.matrix(m1))m1 <- matrix(m1,nrow=1)
return(m1)
}
if( is.vector(m1) | (length(m1) > 0 & !is.matrix(m1)) ){
nn <- names(m1)
if(is.null(nn))warning('cannot append matrix without names')
m1 <- matrix(m1,1)
colnames(m1) <- nn
}
if( is.vector(m2) | (length(m2) > 0 & !is.matrix(m2)) ){
nn <- names(m2)
if(is.null(nn))warning('cannot append matrix without names')
m2 <- matrix(m2,1)
colnames(m2) <- nn
}
c1 <- colnames(m1)
c2 <- colnames(m2)
r1 <- rownames(m1)
r2 <- rownames(m2)
n1 <- nrow(m1)
n2 <- nrow(m2)
allc <- unique( c(c1,c2) )
if(SORT & !asNumbers)allc <- sort(allc)
if(SORT & asNumbers){
ac <- as.numeric(allc)
allc <- as.character( sort(ac) )
}
nr <- n1 + n2
nc <- length(allc)
if(is.null(r1))r1 <- paste('r',c(1:n1),sep='-')
if(is.null(r2))r2 <- paste('r',c((n1+1):nr),sep='-')
new <- c(r1,r2)
mat1 <- match(c1,allc)
mat2 <- match(c2,allc)
out <- matrix(fill,nr,nc)
colnames(out) <- allc
rownames(out) <- new
out[1:n1,mat1] <- m1
out[(n1+1):nr,mat2] <- m2
out
}
.byIndex <- function(xx,INDICES,FUN,coerce=F,...){
nl <- length(INDICES)
tmp <- unlist(by( as.vector(xx),INDICES,FUN,...) )
nd <- dim(tmp)
tmp <- array(tmp,dim=nd, dimnames=dimnames(tmp))
tmp[is.na(tmp)] <- 0
if(!coerce)return(tmp)
dname <- dimnames(tmp)
mk <- rep(0,length(nd))
for(k in 1:length(nd))mk[k] <- max(as.numeric(dimnames(tmp)[[k]]))
wk <- which(mk > nd)
if(length(wk) > 0){
tnew <- array(0,dim=mk)
if(length(dim(tnew)) == 1)tnew <- matrix(tnew,dim(tnew),1)
for(k in wk){
newk <- c(1:mk[k])
mat <- match(dimnames(tmp)[[k]],newk)
if(k == 1){
tnew[mat,] <- tmp
rownames(tnew) <- 1:nrow(tnew)
}
if(k == 2){
tnew[,mat] <- tmp
colnames(tnew) <- c(1:ncol(tnew))
}
tmp <- tnew
}
}
tmp
}
.chains2density <- function(chainMat,labs=NULL,reverseM=F,varName=NULL,
cut=0){
chNames <- colnames(chainMat)
if(!is.null(varName)){
wc <- grep(varName,colnames(chainMat),fixed=T)
if(length(wc) == 0)stop('varName not found in colnames(chainMat)')
ww <- grep('_',colnames(chainMat),fixed=T)
if(length(ww) > 0){
tmp <- .splitNames(colnames(chainMat))$vnam
wc <- which(tmp[,2] == varName)
if(length(wc) == 0)wc <- which(tmp[,1] == varName)
}
chainMat <- chainMat[,wc]
if(!is.matrix(chainMat))chainMat <- matrix(chainMat,ncol=1)
colnames(chainMat) <- chNames[wc]
}
nj <- ncol(chainMat)
nd <- 512
clab <- colnames(chainMat)
if(is.null(labs) & !is.null(clab))labs <- clab
if(is.null(labs) & is.null(clab)) labs <- paste('v',c(1:nj),sep='-')
xt <- yt <- matrix(NA,nj,nd)
rownames(xt) <- rownames(yt) <- labs
xrange <- signif(range(chainMat),2)
for(j in 1:nj){
xj <- chainMat[,j]
tmp <- density(xj,n = nd, cut=cut, na.rm=T)
xt[j,] <- tmp$x
yt[j,] <- tmp$y
}
yymax <- max(yt,na.rm=T)
if(reverseM){
xt <- -t( apply(xt,1,rev) )
yt <- t( apply(yt,1,rev) )
}
list(x = xt, y = yt, xrange = xrange, ymax = yymax, chainMat = chainMat)
}
.checkDesign <- function( x, intName='intercept', xflag=':',
isFactor = character(0) ){
p <- ncol(x)
if(ncol(x) < 3){
return( list(VIF = 0, correlation = 1, rank = 2, p = 2, isFactor=isFactor) )
}
if(is.null(colnames(x))){
colnames(x) <- paste('x',c(1:p),sep='_')
}
xrange <- apply(x,2,range,na.rm=T)
wi <- which(xrange[1,] == 1 & xrange[2,] == 1)
if(length(wi) > 0)colnames(x)[wi] <- 'intercept'
wx <- grep(xflag,colnames(x))
wi <- which(colnames(x) == 'intercept')
wi <- unique(c(wi,wx))
xname <- colnames(x)
wmiss <- which(is.na(x),arr.ind=T)
if(length(wmiss) > 0){
rowTab <- table( table(wmiss[,1]) )
colTab <- table(wmiss[,2])
}
VIF <- rep(NA,p)
names(VIF) <- xname
GETF <- F
if(length(isFactor) > 0)GETF <- T
for(k in 1:p){
if(xname[k] %in% wi)next
notk <- xname[xname != xname[k] & !xname %in% xname[wi]]
ykk <- x[,xname[k]]
xkk <- x[,notk,drop=F]
wna <- which(is.na(ykk) | is.na(rowSums(xkk)))
if(length(wna) > 0){
ykk <- ykk[-wna]
xkk <- xkk[-wna,]
}
ttt <- suppressWarnings( lm(ykk ~ xkk) )
tkk <- suppressWarnings( summary(ttt)$adj.r.squared )
VIF[k] <- 1/(1 - tkk)
xu <- sort( unique(x[,k]) )
tmp <- identical(c(0,1),xu)
if(GETF)if(tmp)isFactor <- c(isFactor,xname[k])
}
VIF <- VIF[-wi]
corx <- cor(x[,-wi], use="complete.obs")
if(length(wna) == 0){
rankx <- qr(x)$rank
} else {
rankx <- qr(x[-wna,])$rank
}
corx[upper.tri(corx,diag=T)] <- NA
findex <- rep(0,p)
findex[xname %in% isFactor] <- 1
designTable <- list('table' = rbind( round(VIF,2),findex[-wi],round(corx,2)) )
rownames(designTable$table) <- c('VIF','factor',xname[-wi])
designTable$table <- designTable$table[-3,]
if(p == rankx)designTable$rank <- paste('full rank:',rankx,'= ncol(x)')
if(p < rankx) designTable$rank <- paste('not full rank:',rankx,'< ncol(x)')
list(VIF = round(VIF,2), correlation = round(corx,2), rank = rankx, p = p,
isFactor = isFactor, designTable = designTable)
}
.fitText2Fig <- function(xx, width=T, fraction=1, cex.max=1){
px <- par('pin')[1]
py <- par('pin')[2]
cl <- max( strwidth(xx, units='inches') )
ch <- strheight(xx, units='inches')[1]*length(xx)
if(width){
xf <- fraction*px/cl
yf <- fraction*py/ch
} else {
xf <- fraction*px/ch
yf <- fraction*py/cl
}
cexx <- min(c(xf,yf))
if(cexx > cex.max)cexx <- cex.max
cexx
}
.cov2Dist <- function(sigma){
n <- nrow(sigma)
matrix(diag(sigma),n,n) + matrix(diag(sigma),n,n,byrow=T) - 2*sigma
}
.distanceMatrix <- function(mat, DIST=F){
if(isSymmetric(mat)){
if( all(diag(mat) == 1) ){
mmm1 <- mat
if(DIST)mmm1 <- .cov2Dist(mat)
} else {
if(DIST){
mmm1 <- .cov2Dist( mat )
} else {
mmm1 <- cor(mat)
}
}
} else {
if(DIST){
mmm1 <- .cov2Dist( cov(mat) )
} else {
mmm1 <- cor(mat)
}
}
mmm1
}
.reorderMatrix <- function(mat, DIST, opt=NULL){
mmm <- .distanceMatrix(mat, DIST)
imm <- .distanceMatrix(t(mat), DIST)
if(is.null(opt)){
clist <- list(PLOT=F, DIST = DIST)
}else{
clist <- opt
clist$PLOT <- T
}
h1 <- .clusterPlot( imm, opt = clist)
rord <- h1$corder
h2 <- .clusterPlot( mmm, opt = clist )
cord <- h2$corder
list(rowOrder = rord, colOrder = cord, rowTree = h1, colTree = h2)
}
.clustMat <- function(mat, SYM){
mrow <- mat
DIST <- T
if(SYM){
if(all(diag(mrow) == 1)){
DIST <- F
mrow <- cor(mat)
if(nrow(mrow) != nrow(mat))mrow <- cor(t(mat))
}else{
mrow <- .cov2Dist(cov(mat))
if(nrow(mrow) != nrow(mat))mrow <- .cov2Dist(cov(t(mat)))
}
}else{
mrow <- .cov2Dist(cov(mat))
if(nrow(mrow) != nrow(mat))mrow <- .cov2Dist(cov(t(mat)))
}
list(cmat = mrow, DIST = DIST)
}
.clusterWithGrid <- function(mat1, mat2=NULL, opt, expand=1){
leftClus <- rightClus <-
topClus1 <- topClus2 <- leftLab <-
rightLab <- topLab1 <- topLab2 <- lower1 <- diag1 <- lower2 <-
diag2 <- SYM1 <- SYM2 <- sameOrder <- FALSE
colOrder1 <- colOrder2 <- rowOrder <- colCode1 <- colCode2 <- rowCode <-
slim1 <- slim2 <- horiz1 <- horiz2 <- vert1 <- vert2 <- NULL
mainLeft <- main1 <- main2 <- ' '
DIST1 <- DIST2 <- T
ncluster <- 4
for(k in 1:length(opt))assign( names(opt)[k], opt[[k]] )
if(isSymmetric(mat1))SYM1 <- T
doneLeft <- done1 <- done2 <- F
nr <- nrow(mat1)
nc1 <- ncol(mat1)
nc2 <- 0
twoMat <- F
if(!is.null(mat2)){
if( min(dim(mat2)) < 2 )return()
if(isSymmetric(mat2))SYM2 <- T
twoMat <- T
nc2 <- ncol(mat2)
if(nrow(mat2) != nr)stop('matrices must have same no. rows')
}
cwide <- .15
mg <- .08
lg <- rg <- tg <- mg
gg <- .24
if(leftLab) lg <- gg
if(topLab1 | topLab2) tg <- gg
if(rightLab)rg <- gg
xwide <- mg
if(leftLab) xwide <- c(xwide,lg)
if(leftClus)xwide <- c(xwide,cwide)
xg <- .8
if(twoMat){
xg <- expand*xg*nc1/(nc1+nc2)
xg <- c(xg,1 - xg)
}
xwide <- c(xwide,xg)
if(rightClus)xwide <- c(xwide,cwide)
if(rightLab) xwide <- c(xwide,rg)
xwide <- c(xwide,mg)
xloc <- cumsum(xwide)/sum(xwide)
ywide <- c(mg,.8)
if(topClus1 | topClus2)ywide <- c(ywide,cwide)
if(topLab1 | topLab2) ywide <- c(ywide,tg)
ywide <- c(ywide,mg)
yloc <- cumsum(ywide)/sum(ywide)
if(is.null(rowCode)) rowCode <- rep('black',nr)
if(is.null(colCode1))colCode1 <- rep('black',nc1)
if(is.null(colCode2))colCode2 <- rep('black',nc2)
tmp <- .clustMat(mat1, SYM1)
m1Row <- tmp$cmat
DIST1 <- tmp$DIST
tmp <- .clustMat(t(mat1), SYM1)
m1Col <- tmp$cmat
if(is.null(rowOrder)){
if(nrow(m1Row) != nrow(mat1))m1Row <- cor(t(mat1))
if(ncluster > nrow(m1Row)/2)ncluster <- 2
copt <- list( PLOT=F, DIST = DIST1, ncluster=ncluster )
tmp <- .clusterPlot( m1Row, copt)
clus <- tmp$clusterIndex
cord <- tmp$corder
rowClust <- clus[cord]
rowOrder <- cord
}
if(is.null(colOrder1)){
if(SYM1){
colOrder1 <- rowOrder
colClust1 <- rowClust
}else{
copt <- list( PLOT=F, DIST = DIST1, ncluster=ncluster )
tmp <- .clusterPlot( m1Col, copt)
clus <- tmp$clusterIndex
cord <- tmp$corder
colClust1 <- clus[cord]
colOrder1 <- cord
}
}
if(twoMat){
tmp <- .clustMat(t(mat2), SYM2)
m2Col <- tmp$cmat
DIST2 <- tmp$DIST
if(is.null(colOrder2)){
if(sameOrder){
colOrder2 <- rowOrder
m2Col <- t(mat2)
}else{
copt <- list( PLOT=F, DIST = DIST2 )
tmp <- .clusterPlot( m2Col, copt)
if(is.null(tmp)){
colOrder2 <- 1:nrow(m2Col)
}else{
clus <- tmp$clusterIndex
cord <- tmp$corder
colClust2 <- clus[cord]
colOrder2 <- cord
}
}
}
}
rowLabs <- rownames(mat1)[rowOrder]
NEW <- add <- F
xi <- 0:1
yi <- 1:2
if(leftLab){
xi <- xi + 1
par(plt=c(xloc[xi],yloc[yi]),bty='n', new=NEW)
plot(NULL,col='white',xlim=c(0,1),ylim=c(0,nr),
xaxt='n',yaxt='n',xlab='',ylab='')
xl <- rep(1,nr)
yl <- c(1:nr)*nr/diff(par('usr')[3:4])
cex <- .fitText2Fig(rowLabs,fraction=.96)
text( xl,yl, rowLabs ,pos=2,cex=cex,
col = rowCode[rowOrder])
NEW <- add <- T
mtext(mainLeft,2)
doneLeft <- T
}
if(leftClus){
xi <- xi + 1
par(plt=c(xloc[xi],yloc[yi]),bty='n', new=NEW)
copt <- list( main=' ',cex=.2, colCode=rowCode, ncluster=ncluster,
LABELS = F, horiz=T, noaxis=T, DIST=DIST1 )
tmp <- .clusterPlot( m1Row, copt)
clus <- tmp$clusterIndex
cord <- tmp$corder
rowClust <- clus[cord]
NEW <- add <- T
if(!doneLeft)mtext(mainLeft,2)
doneLeft <- T
}
xi <- xi + 1
yz <- yi
if(topClus1){
yz <- yz + 1
par(plt=c(xloc[xi],yloc[yz]),bty='n',new=NEW)
copt <- list( main=' ', colCode=colCode1, DIST = DIST1,
LABELS = F, horiz=F, noaxis=T, add=T )
tmp <- .clusterPlot( m1Col ,copt)
NEW <- add <- T
if(!topLab1){
mtext(main1,3)
done1 <- T
}
}
par(plt=c(xloc[xi],yloc[yi]), bty='n', new=NEW)
mai <- mat1
diag(mai) <- NA
if(is.null(slim1))slim1 = quantile(mai,c(.01,.99), na.rm=T)
slim1 <- signif(slim1,2)
tmp <- .colorSequence(slim1)
scale <- tmp$scale
colseq <- tmp$colseq
ww <- as.matrix(expand.grid(c(1:nr),c(1:nc1)))
mt <- mat1[rev(rowOrder),colOrder1]
win <- which(ww[,1] >= ww[,2])
mask <- lower.tri(mt,diag=!diag1)
mask <- apply(mask,2,rev)
if(lower1){
if(min(scale) > 0 | max(scale) < 0){mt[mask] <- mean(scale)
}else{ mt[mask] <- 0 }
}
icol <- findInterval(mt[ww],scale,all.inside=T)
coli <- colseq[icol]
xlim=c(range(ww[,2])); xlim[2] <- xlim[2] + 1
ylim=c(range(ww[,1])); ylim[2] <- ylim[2] + 1
sides <- cbind( rep(1,nrow(ww)), rep(1,nrow(ww)) )
plot(NULL,cex=.1,xlab=' ',ylab=' ', col='white',
xaxt='n',yaxt='n', xlim=xlim, ylim=ylim)
symbols(ww[,2] + .5,nr - ww[,1] + 1 + .5,rectangles=sides,
fg=coli,bg=coli,inches=F, xlab=' ',ylab=' ',
xaxt='n',yaxt='n', add=T)
if(!is.null(horiz1)){
cut <- which(diff(rowClust) != 0) + 1
ncc <- length(cut)
for(i in 1:ncc){
lines(c(0,cut[i]-2),cut[c(i,i)],lty=2)
}
text(rep(1,ncc),cut,2:(ncc+1),pos=3)
}
if(!is.null(vert1)){
cut <- which(diff(colClust1) != 0) + .5
ncc <- length(cut)
for(i in 1:ncc){
lines(cut[c(i,i)],c(cut[i]+2,nc1),lty=2)
}
text(cut,rep(nc1,ncc),2:(ncc+1),pos=4)
}
NEW <- add <- T
if(!doneLeft)mtext(mainLeft,2)
doneLeft <- T
if(topLab1){
yz <- yz + 1
par(plt=c(xloc[xi], yloc[yz]),bty='n', new=NEW)
plot(c(0,0),c(0,0),col='white',xlim=c(1,nc1) ,ylim=c(0,1),
xaxt='n',yaxt='n',xlab='',ylab='')
yl <- rep(0,nc1)
xl <- .99*c(1:nc1)*(nc1-1)/diff(par('usr')[1:2])
cex <- .fitText2Fig(colnames(m1Col),
width=F, fraction=.95)
text( xl - .1,yl,colnames(m1Col)[colOrder1],pos=4,cex=cex,srt=90,
col=colCode1[colOrder1])
}
if(!done1)mtext(main1,3)
par(plt=c(xloc[xi],c(.3*yloc[yi[1]],yloc[yi[1]])), bty='n', new=NEW)
lx1 <- .3
lx2 <- .7
lx <- seq(lx1,lx2,length=length(scale))
wx <- diff(lx)[1]
ly <- lx*0 + .3*yloc[yi[1]]
rx <- cbind(lx*0 + wx, ly*0 + .7*diff(yloc[yi]))
symbols(lx,ly,rectangles=rx,fg=colseq,bg=colseq,xaxt='n',yaxt='n',
xlab='',ylab='',xlim=c(0,1),ylim=c(0,yloc[yi[1]]))
text(lx[1],ly[1],slim1[1],pos=2, cex=.9)
text(lx[length(lx)],ly[1],slim1[2],pos=4, cex=.9)
if(twoMat){
xi <- xi + 1
yz <- yi
if( topClus2 ){
yz <- yz + 1
par(plt=c(xloc[xi],yloc[yz]),bty='n',new=NEW)
copt <- list( main=' ', LABELS = F,
colCode=colCode2, horiz=F,
noaxis=T, add=T, DIST=DIST2 )
ttt <- .clusterPlot( m2Col, copt)
if(!topLab2){
mtext(main2,3)
done2 <- T
}
}
par(plt=c(xloc[xi],yloc[yi]), bty='n', new=T)
if(is.null(slim2))slim2 = quantile(mat2,c(.01,.99))
slim2 <- signif(slim2,1)
tmp <- .colorSequence(slim2)
scale <- tmp$scale
colseq <- tmp$colseq
ww <- as.matrix(expand.grid(c(1:nr),c(1:nc2)))
mt <- mat2[rev(rowOrder),colOrder2]
if(lower2){
mask <- lower.tri(mt,diag=!diag1)
mask <- apply(mask,2,rev)
mt[mask] <- 0
if(min(scale) > 0 | max(scale) < 0){
mt[mask] <- mean(scale)
}else{ mt[mask] <- 0 }
}
icol <- findInterval(mt[ww],scale,all.inside=T)
coli <- colseq[icol]
xlim=c(range(ww[,2])); xlim[2] <- xlim[2] + 1
ylim=c(range(ww[,1])); ylim[2] <- ylim[2] + 1
sides <- cbind( rep(1,nrow(ww)), rep(1,nrow(ww)) )
plot(0,0,cex=.1,xlab=' ',ylab=' ',
col='white',xaxt='n',yaxt='n', xlim=xlim, ylim=ylim)
symbols(ww[,2] + .5,nr - ww[,1] + 1 + .5, rectangles=sides,
fg=coli, bg=coli, inches=F, xlab=' ',ylab=' ',
xaxt='n', yaxt='n', add=T)
if(!is.null(horiz2)){
cut <- which(diff(rowClust) != 0) + 1
ncc <- length(cut)
for(i in 1:ncc){
xmm <- c(0,cut[i]-2)
if(!lower2)xmm[2] <- nc2 + 1
lines(xmm,cut[c(i,i)],lty=2)
}
if(lower2) text(rep(1,ncc),cut,2:(ncc+1),pos=3)
if(!lower2)text(rep(nc2+1,ncc),cut,2:(ncc+1),pos=3)
}
if(!is.null(vert2)){
cut <- which(diff(vert2[colOrder2]) != 0) + .5
ncc <- length(cut)
for(i in 1:ncc){
lines(cut[c(i,i)],c(cut[i]+2,nc1),lty=2)
}
text(cut,rep(nc1,ncc),2:(ncc+1),pos=4)
}
if(topLab2){
yz <- yz + 1
par(plt=c(xloc[xi],yloc[yz]),bty='n', new=NEW)
plot(c(0,0),c(0,0),col='white',xlim=c(1,nc2),ylim=c(0,1),
xaxt='n',yaxt='n',xlab='',ylab='')
yl <- rep(0,nc2)
xl <- c(1:nc2)*(nc2-1)/diff(par('usr')[1:2])
if(xl[1] < 1)xl[1] <- 1.2
cex <- .fitText2Fig(colnames(m2Col),width=F, fraction=.95)
text( xl - .05,yl,colnames(m2Col)[colOrder2],pos=4,cex=cex,srt=90,
col=colCode2[colOrder2])
}
if(!done2)mtext(main2,3)
}
par(plt=c(xloc[xi],c(.3*yloc[yi[1]],yloc[yi[1]])), bty='n', new=NEW)
lx1 <- .3
lx2 <- .7
lx <- seq(lx1,lx2,length=length(scale))
wx <- diff(lx)[1]
ly <- lx*0 + .3*yloc[yi[1]]
rx <- cbind(lx*0 + wx, ly*0 + .7*diff(yloc[yi]))
symbols(lx,ly,rectangles=rx,fg=colseq,bg=colseq,xaxt='n',yaxt='n',
xlab='',ylab='',xlim=c(0,1),ylim=c(0,yloc[yi[1]]))
text(lx[1],ly[1],slim2[1],pos=2, cex=.9)
text(lx[length(lx)],ly[1],slim2[2],pos=4, cex=.9)
if(rightClus){
xi <- xi + 1
par(plt=c(xloc[xi], yloc[yi]), bty='n', mgp=c(3,1,0), new=NEW)
mmm <- .distanceMatrix(t(mat2), DIST1)
copt <- list( main=' ',cex=.2, REV=T,
LABELS = F,horiz=T, noaxis=T )
tmp <- .clusterPlot( mmm , copt)
}
if(rightLab){
xi <- xi + 1
par(plt=c(xloc[xi],yloc[yi]),bty='n', new=NEW)
plot(c(0,0),c(0,0),col='white',xlim=range(c(0,1)),ylim=c(0,nr),
xaxt='n',yaxt='n',xlab='',ylab='')
xl <- rep(0,nr)
yl <- c(1:nr)*nr/diff(par('usr')[3:4])
cex <- .fitText2Fig(rownames(m1Row),fraction=.8)
text( xl,yl,rev( rownames(m1Row) ),pos=4,cex=cex,
col=rev(rowCode[rowOrder]))
}
}
.clusterPlot <- function(dmat, opt = NULL){
main <- xlab <- ' '
method <- 'complete'
cex <- 1; ncluster <- 2; textSize <- 1
add <- REV <- reverse <- noaxis <- DIST <- F
xlim <- colCode <- NULL
horiz <- LABELS <- PLOT <- T
for(k in 1:length(opt))assign( names(opt)[k], opt[[k]] )
getTreeLabs <- function ( tree ){
getL <- function(tree_node) {
if(is.leaf(tree_node))
attr(tree_node, 'label')
}
unlist( dendrapply(tree, getL) )
}
nr <- nrow(dmat)
nn <- nrow(dmat)
if( min(c(nr,nn) ) < 3)return()
if(DIST){
if(!isSymmetric(dmat))dmat <- dist(dmat)
diss <- as.dist( dmat )
}else{
diss <- as.dist(.cov2Dist(dmat))
}
htree <- hclust(diss,method)
ctmp <- cutree(htree,k=1:ncluster)
wclus <- ctmp[,ncluster]
clusterCol <- NULL
clusterIndex <- ctmp[, ncluster, drop=F]
clusterList <- character(0)
notLab <- F
if(is.null(colCode)){
colF <- colorRampPalette(c('black','blue','orange','brown','red'))
mycols <- colF(ncluster)
notLab <- T
colCode <- mycols[ctmp[,ncluster]]
names(colCode) <- rownames(ctmp)
}
col.lab <- colCode
if(!LABELS)col.lab <- rep('white',length(colCode))
colLab <- function(n) {
if(is.leaf(n)) {
a <- attributes(n)
attr(n, "nodePar") <- c(a$nodePar,
list(col = col.lab[n[1]],
lab.col = col.lab[n[1]]))
}
n
}
tdendro <- as.dendrogram(htree)
if(reverse)tdendro <- rev(tdendro)
dL <- dendrapply(tdendro,colLab)
tlab <- getTreeLabs(tdendro)
corder <- match(tlab,colnames(dmat))
names(corder) <- colnames(dmat)[corder]
nodePar <- list(cex = .1, lab.cex=textSize)
leafLab <- "textlike"
nodePar$leaflab <- leafLab
if(!PLOT){
return( invisible(list( clusterList = clusterList, colCode = colCode,
clusterIndex = clusterIndex,
corder = corder) ) )
}
if(horiz){
if(is.null(xlim))xlim <- c(attr(dL,'height'),0)
if(REV)xlim <- rev(xlim)
}
axes <- T
if(noaxis)axes <- F
new <- F
if(add)new <- T
tmp <- plot( dL,nodePar=nodePar, horiz=horiz, xlim=xlim,
axes = axes)
if(!LABELS & !notLab){
col <- colCode[corder]
pvar <- par('usr')
wi <- abs(diff(pvar[1:2])/10)
hi <- abs(diff(pvar[3:4])/10)
if(horiz){
xx <- rep(pvar[2],nn)
yy <- 1:nn
rec <- cbind( rep(wi,nn), rep(1,nn) )
symbols(xx,yy,rectangles=rec,fg=col, bg=col, inches=F, add=T)
} else {
xx <- 1:nn
yy <- rep(pvar[3],nn)
rec <- cbind( rep(1,nn), rep(hi,nn) )
symbols(xx,yy,rectangles=rec,fg=col, bg=col, inches=F, add=T)
}
}
title(main)
invisible(list( clusterList = clusterList, colCode = colCode,
clusterIndex = clusterIndex,
corder = corder) )
}
.colorLegend <- function(xx,yy,ytick=NULL,
scale=seq(yy[1],yy[2],length=length(cols)),
cols,labside='right', text.col=NULL,
bg=NULL,endLabels=NULL){
nn <- length(scale)
ys <- seq(yy[1],yy[2],length=nn)
for(j in 1:(length(scale)-1)){
rect(xx[1],ys[j],xx[2],ys[j+1],col=cols[j],border=NA)
}
if(!is.null(bg))rect(xx[1],yy[1],xx[2],yy[2],border=bg,lwd=3)
if(!is.null(ytick)){
ys <- diff(yy)/diff(range(ytick))*ytick
yt <- ys - min(ys) + yy[1]
for(j in 1:length(yt)){
lines(xx,yt[c(j,j)])
}
}
if(!is.null(endLabels)){
cx <- cols[c(1,nn)]
if(!is.null(text.col))cx <- text.col
if(!is.null(text.col))cx <- text.col
if(labside == 'right')text(diff(xx)+c(xx[2],xx[2]),yy,endLabels,col=cx)
if(labside == 'left')text(c(xx[1],xx[1]),yy,endLabels,pos=2,col=cx)
}
}
.capFirstLetter <- function(xx) {
s <- unlist(strsplit(xx, " "))
s <- paste(toupper(substring(s, 1, 1)), substring(s, 2),
sep = "", collapse = " ")
unlist(strsplit(s, " "))
}
.lowerFirstLetter <- function(xx){
s <- unlist(strsplit(xx, " "))
s <- paste(tolower(substring(s, 1, 1)), substring(s, 2),
sep = "", collapse = " ")
unlist(strsplit(s, " "))
}
.colorSequence <- function(slim, colorGrad=NULL, ncol=200){
if(is.null(colorGrad)){
colorSeq <- c('darkblue','darkblue','blue',
'green','white',
'yellow','red','brown','brown')
colorSeq <- rev( c('
'
'
'
colorGrad <- colorRampPalette(colorSeq)
}
colseq <- colorGrad(ncol)
if(slim[1] < 0 & slim[2] > 0){
dp <- slim[2] - 0
dm <- 0 - slim[1]
ncol <- 200
colseq <- colorGrad(ncol)
if(dp < dm)colseq <- colseq[101 + c(-100:round(dp/dm*100))]
if(dp > dm)colseq <- colseq[ round((1 - dm/dp)*100):200 ]
ncol <- length(colseq)
}
scale <- seq(slim[1],slim[2],length.out=ncol)
list(colseq = colseq, scale = scale )
}
.corPlot <- function(cmat, slim=NULL,PDIAG=F,plotScale=1,
makeColor=NULL,textSize=NULL,
textCol = rep('black',nrow(cmat)),
CORLINES=T,tri='lower',colorGrad = NULL,
cex=1, SPECLABS = T, squarePlot = T,LEGEND = T,
widex=5.5,widey=6.5,add=F,new=T){
if(is.null(slim))slim = quantile(cmat,c(.01,.99))
slim <- signif(slim,1)
if(tri == 'upper')cmat[lower.tri(cmat)] <- 0
if(tri == 'lower')cmat[upper.tri(cmat)] <- 0
dy <- nrow(cmat)
dx <- ncol(cmat)
d <- dx
xtext <- rep(c(1,100),dx/2)
if(length(xtext) < d)xtext <- c(xtext,1)
if(d < 20)xtext <- xtext*0 + 1
xtext <- xtext*0 + 1
if(!is.null(colorGrad)){
ncol <- 200
colseq <- colorGrad(ncol)
scale <- seq(slim[1],slim[2],length.out=ncol)
} else {
tmp <- .colorSequence(slim, colorGrad)
scale <- tmp$scale
colseq <- tmp$colseq
}
ww <- as.matrix(expand.grid(c(1:dy),c(1:dx)))
if(tri == 'upper'){
ww <- ww[ww[,1] <= ww[,2],]
ww <- ww[order(ww[,1]),]
}
if(tri == 'lower'){
ww <- ww[ww[,1] >= ww[,2],]
ww <- ww[order(ww[,1]),]
}
icol <- findInterval(cmat[ww],scale,all.inside=T)
coli <- colseq[icol]
if(PDIAG)coli[ww[,1] == ww[,2]] <- 'white'
ss <- max(c(dx,dy))/5/plotScale
if(squarePlot).mapSetup(c(0,dx),c(0,dy),scale=ss,
widex=widex,widey=widey)
if(squarePlot){
symbols(ww[,2],dy - ww[,1] + 1,squares=rep(1,nrow(ww)),
xlim=c(0,dx+4),ylim=c(0,dy+4),
fg=coli,bg=coli,inches=F,xlab=' ',ylab=' ',xaxt='n',yaxt='n',
add=add)
} else {
sides <- cbind( rep(1,nrow(ww)), rep(1,nrow(ww)) )
symbols(ww[,2],dy - ww[,1] + 1,rectangles=sides,
xlim=c(0,dx+4),ylim=c(0,dy+4),
fg=coli,bg=coli,inches=F,xlab=' ',ylab=' ',xaxt='n',yaxt='n',
add=add)
}
if(!is.null(makeColor)){
for(k in 1:length(makeColor)){
mm <- makeColor[[k]]
if(length(mm) == 0)next
if(tri == 'upper')mm <- mm[mm[,1] <= mm[,2],]
if(tri == 'lower')mm <- mm[mm[,1] >= mm[,2],]
ss <- matrix(0,dy,dx)
ss[mm] <- 1
wk <- which(ss[ww] == 1)
ccc <- names(makeColor)[[k]]
symbols(ww[wk,2],dy - ww[wk,1]+1,squares=rep(1,length(wk)),
fg=ccc,bg=ccc,inches=F,xaxt='n',yaxt='n',add=T)
}
}
ncolor <- length(unique(textCol))
ll <- 1/d + 1
if(tri == 'lower'){
for(kk in 1:d){
kb <- kk - .5
ke <- d - kk + .5
if(CORLINES){
if(kk <= d)lines(c(kb,kb),c(0,ke),col='grey',lwd=1.5)
if(kk > 1){
lines( c(.5,kb),c(ke,ke),col='grey',lwd=1.5)
lines(c(kb,kb+.5),c(ke,ke+.5),col='grey',lwd=1.5)
}
}
if(!SPECLABS & ncolor > 1){
xp <- c(kb, kb, kb + ll + .5, kb + ll + 1.5, kb + 1)
yp <- c(ke, ke + 1, ke + ll + 1.5, ke + ll + .5, ke)
polygon(xp, yp, border = textCol[kk], col = textCol[kk])
}
}
}
rect(0,-1,d+1,.5,col='white',border=NA)
if(is.null(textSize))textSize <- exp(-.02*ncol(cmat))
labels <- rev(rownames(cmat))
if(!SPECLABS)labels <- F
if(tri == 'lower' & SPECLABS)text( c(d:1)+.1*xtext, c(1:d)+.5,
rev(colnames(cmat)),pos=4,srt=45,
col = rev(textCol), cex=textSize)
if(tri == 'both'){
labels <- rev(rownames(cmat))
par(las = 1)
.yaxisHorizLabs( labels, at=c(1:length(labels)), xshift=.05,
col = textCol, pos=2)
par(las = 0)
if(SPECLABS){
text( c(dx:1)-.1*xtext, xtext*0+dy+.8, rev(colnames(cmat)),
pos=4, srt=55, col = rev(textCol), cex=textSize)
} else {
sides <- cbind( rep(1,dx),rep(1/dy,dx) )
symbols(1:dx,rep(1+dy,dx),rectangles=sides,
fg=textCol,bg=textCol,
add=T)
}
}
labside <- 'left'
wk <- which(scale >= slim[1] & scale <= slim[2])
px <- par('usr')
xs <- .01*diff(px[1:2])
midx <- .95*mean( c(dx,px[2]) )
yx <- c(1*dy - .25*dy, 1*dy )
if(LEGEND).colorLegend(c(midx-xs,midx+xs),yx,ytick=c(slim[1],0,slim[2]),
scale[wk],cols=colseq[wk],labside=labside,
endLabels=range(slim),text.col='black')
}
.cor2Cov <- function(sigvec,cormat){
n <- nrow(cormat)
d <- length(sigvec)
if(d == 1)sigvec <- rep( sigvec, n )
s <- matrix(sigvec,n,n)
cormat*sqrt(s*t(s))
}
.cov2Cor <- function(covmat, covInv = NULL){
d <- nrow(covmat)
di <- diag(covmat)
s <- matrix(di,d,d)
cc <- covmat/sqrt(s*t(s))
if(!is.null(covInv)){
dc <- diag(sqrt(di))
ci <- dc%*%covInv%*%dc
return(ci)
}
cc
}
.cov2Dist <- function(sigma){
n <- nrow(sigma)
matrix(diag(sigma),n,n) + matrix(diag(sigma),n,n,byrow=T) - 2*sigma
}
.dMVN <- function(xx,mu,smat=NULL,sinv=NULL,log=F){
if( !is.matrix(xx) )xx <- matrix(xx,1)
if( !is.matrix(mu) )mu <- matrix(mu,1)
if(length(smat) > 0){
tmp <- try( dmvnormRcpp(xx, mu, smat, logd=log),silent=T )
if( !inherits(tmp,'try-error') )return(tmp)
}
ss <- xx - mu
k <- ncol(xx)
if( !is.null(sinv) ){
logdet <- log( det(sinv) )
z <- rowSums( ss %*% sinv * ss)
dens <- as.vector((-k/2) * log(2 * pi) + 0.5 * logdet -
0.5 * z)
if (log == FALSE)
dens <- exp(dens)
return(dens)
}
}
.directIndirectCoeffs <- function( snames, xvector, chains, MEAN = T,
factorList = NULL, keepNames, omitY,
sdScaleY = F, sdScaleX, standX,
otherpar = NULL, REDUCT = F, ng, burnin,
nsim = 50){
if(is.matrix(xvector))
stop('xvector must be a row vector with variable names')
xnames <- names(xvector)
N <- otherpar$N
r <- otherpar$r
bchain <- chains$bgibbs
schain <- chains$sgibbs
sigErrGibbs <- kchain <- NULL
if(REDUCT){
kchain <- chains$kgibbs
sigErrGibbs <- chains$sigErrGibbs
}
ns <- nsim
simIndex <- sample(burnin:ng,ns,replace=T)
if(sdScaleY){
tmp <- .expandSigmaChains(snames, sgibbs = schain, otherpar = otherpar,
simIndex = simIndex, sigErrGibbs, kchain,
REDUCT, CHAINSONLY=F, verbose = FALSE)
if(REDUCT)kchain <- kchain[simIndex,]
schain <- schain[simIndex,]
sigErrGibbs <- sigErrGibbs[simIndex]
} else {
bchain <- bchain[simIndex,]
schain <- schain[simIndex,]
}
if(length(factorList) > 0){
factorNames <- factorList
for(j in 1:length(factorList)){
tmp <- matrix( unlist(strsplit(factorList[[j]],names(factorList)[j])),
ncol=2,byrow=T)[,2]
tmp[nchar(tmp) == 0] <- paste(names(factorList)[j],c(1:length(tmp)),
sep='')
factorNames[[j]] <- tmp
}
}
S <- S1 <- length(snames)
sindex <- c(1:S)
knames <- snames
nc <- nrow(bchain)
gs <- 1:nrow(bchain)
if(length(omitY) > 0){
wob <- grep(paste(omitY,collapse="|"),colnames(bchain))
bchain[,wob] <- 0
sindex <- sindex[!snames %in% omitY]
knames <- snames[sindex]
S1 <- length(knames)
}
nspec <- length(snames)
ww <- grep(':',xnames)
main <- xnames
if(length(ww) > 0)main <- xnames[-ww]
main <- main[main != 'intercept']
int <- unique( unlist( strsplit(xnames[ww],':') ) )
mainEffect <- matrix(NA,nspec,length(main))
colnames(mainEffect) <- main
rownames(mainEffect) <- snames
intEffect <- dirEffect <- indEffectTo <- mainEffect
mainSd <- dirSd <- intSd <- indSdTo <- mainEffect
maxg <- length(main)*length(sindex)*length(gs)
pbar <- txtProgressBar(min=1,max=maxg,style=1)
ig <- 0
for(j in 1:length(main)){
ttt <- .interactionsFromGibbs(mainx=main[j], bchain=bchain,
specs=snames, xmnames=names(xvector),
xx=xvector, omitY = omitY, sdScaleX=F,
standX)
maine <- ttt$main
inter <- ttt$inter
indirTo <- maine*0
direct <- maine + inter
if(MEAN){
dmain <- colMeans(maine)
inte <- colMeans(inter)
dir <- colMeans(direct)
} else {
dmain <- apply(maine,2,median)
inte <- apply(inter,2,median)
dir <- apply(direct,2,median)
}
mainEffect[sindex,j] <- dmain
intEffect[sindex,j] <- inte
dirEffect[sindex,j] <- dir
mainSd[sindex,j] <- apply(maine,2,sd)
intSd[sindex,j] <- apply(inter,2,sd)
dirSd[sindex,j] <- apply(direct,2,sd)
for(g in gs){
if(REDUCT){
Z <- matrix(schain[g,],N,r)
ss <- .expandSigma(sigErrGibbs[g], S, Z = Z, kchain[g,],
REDUCT = T)[sindex,sindex]
if(sdScaleY)cc <- .cov2Cor(ss)
} else {
ss <- .expandSigma(schain[g,], S = S, REDUCT = F)[sindex,sindex]
if(sdScaleY)cc <- .cov2Cor(ss)
}
for(s in 1:length(sindex)){
if(REDUCT){
si <- invWbyRcpp(sigErrGibbs[g], Z[kchain[g,sindex[-s]],])
if(sdScaleY){
dc <- diag(sqrt(diag(ss)))[-s,-s]
ci <- dc%*%si%*%dc
}
} else {
si <- solveRcpp(ss[-s,-s])
if(sdScaleY)ci <- solveRcpp(cc[-s,-s])
}
if(!sdScaleY){
sonk <- ss[drop=F,s,-s]
e2 <- sonk%*%si%*%direct[g,-s]
} else {
sonk <- cc[drop=F,s,-s]
e2 <- sonk%*%ci%*%direct[g,-s]
}
indirTo[g,s] <- e2
ig <- ig + 1
setTxtProgressBar(pbar,ig)
}
}
if(MEAN){
indirectTo <- colMeans(indirTo[gs,])
} else {
indirectTo <- apply(indirTo[gs,],2,median)
}
indEffectTo[sindex,j] <- indirectTo
indSdTo[sindex,j] <- apply(indirTo[gs,],2,sd)
}
if(!is.null(keepNames)){
wk <- which(rownames(mainEffect) %in% keepNames)
mainEffect <- mainEffect[wk,]
intEffect <- intEffect[wk,]
dirEffect <- dirEffect[wk,]
indEffectTo <- indEffectTo[wk,]
mainSd <- mainSd[wk,]
dirSd <- dirSd[wk,]
indSdTo <- indSdTo[wk,]
}
list(mainEffect = mainEffect, intEffect = intEffect, dirEffect = dirEffect,
indEffectTo = indEffectTo, mainSd = mainSd, dirSd = dirSd,
intSd = intSd, indSdTo = indSdTo)
}
.interactionsFromGibbs <- function(mainx,bchain,specs,xmnames=names(xx),
xx=colMeans(xx), omitY=NULL, sdScaleX,
standX){
if(length(omitY) > 0){
wob <- numeric(0)
for(k in 1:length(omitY)){
wob <- c(wob, grep(omitY[k],colnames(bchain)))
}
bchain[,wob] <- 0
specs <- specs[!specs %in% omitY]
}
ww <- grep(':',xmnames)
int <- unique( unlist( strsplit(xmnames[ww],':') ) )
int <- int[int != mainx]
xj <- paste(mainx,specs,sep='_')
wj <- which(colnames(bchain) %in% xj)
if(length(wj) == 0){
xj <- paste(specs,mainx,sep='_')
wj <- which(colnames(bchain) %in% xj)
}
maine <- bchain[,xj]
inter <- maine*0
m1 <- paste(mainx,':',sep='')
m2 <- paste(':',mainx,sep='')
i1 <- grep( m1,xmnames )
i2 <- grep( m2,xmnames )
if(sdScaleX)maine <- maine*standX[mainx,'xsd']
if( length(i1) > 0 ){
ww <- match(unlist( strsplit(xmnames[i1],m1) ),xmnames)
ox <- xmnames[ww[is.finite(ww)]]
for(kk in 1:length(i1)){
xi <- paste(xmnames[i1[kk]],specs,sep='_')
wi <- which(colnames(bchain) %in% xi)
if(length(wi) == 0){
xi <- paste(specs,xmnames[i1[kk]],sep='_')
wi <- which(colnames(bchain) %in% xi)
}
xik <- xx[ox[kk]]
bik <- bchain[,xi]
if(sdScaleX){
xik <- (xik - standX[ox[kk],'xmean'])/standX[ox[kk],'xsd']
bik <- bik*standX[mainx,'xsd']*standX[ox[kk],'xsd']
}
inter <- inter + bik*xik
}
}
if( length(i2) > 0 ){
ww <- match(unlist( strsplit(xmnames[i2],m2) ),xmnames)
ox <- xmnames[ww[is.finite(ww)]]
for(kk in 1:length(i2)){
xi <- paste(xmnames[i2[kk]],specs,sep='_')
wi <- which(colnames(bchain) %in% xi)
if(length(wi) == 0){
xi <- paste(specs,xmnames[i2[kk]],sep='_')
wi <- which(colnames(bchain) %in% xi)
}
xik <- xx[ox[kk]]
bik <- bchain[,xi]
if(sdScaleX){
xik <- (xik - standX[ox[kk],'xmean'])/standX[ox[kk],'xsd']
bik <- bik*standX[mainx,'xsd']*standX[ox[kk],'xsd']
}
inter <- inter + bik*xik
}
}
list(main = maine, inter = inter)
}
.stackedBoxPlot <- function( stackList, stackSd=character(0),
ylim=NULL,sortBy = NULL, barnames=NULL,
col=rep(NULL,length(stackList)),
border=rep(NA,length(stackList)),
decreasing=T, nsd=1.96, cex=1,
legend=NULL, scaleLegend=.1){
nn <- length(stackList)
ord <- c(1:length(stackList[[1]]))
nx <- length(ord)
xx <- 0:(nx-1)
if(is.null(ylim)){
ymax <- ymin <- 0
for(j in 1:nn){
ymax <- ymax + max( c(0,stackList[[j]]),na.rm=T )
ymin <- ymin + min( c(0,stackList[[j]]),na.rm=T )
}
ylim <- c(ymin,ymax)
yscale <- diff(ylim,na.rm=T)*.4
ylim[1] <- ylim[1] - yscale
ylim[2] <- ylim[2] + yscale
}
if(!is.null(sortBy)){
if(length(sortBy) > 1){
ord <- sortBy
} else {
ord <- order( stackList[[sortBy]], decreasing = decreasing)
}
if(!is.null(barnames))barnames <- barnames[ord]
}
dy <- diff(ylim)
xlim <- c(0,1.2*length(ord))
add <- F
offset <- offsetPos <- offsetNeg <- rep(0,length(stackList[[1]]))
if(is.null(col))col <- c(1:nn)
for(j in 1:nn){
xj <- stackList[[j]][ord]
names(xj) <- NULL
wp <- which(xj > 0)
wn <- which(xj < 0)
offset[wp] <- offsetPos[wp]
offset[wn] <- offsetNeg[wn]
hj <- xj
barplot(height= hj,offset=offset,xlim=xlim,ylim=ylim,
col=col[j],border=border[j],add=add)
ww <- grep(names(stackList)[j],names(stackSd))
if(length(ww) > 0){
xz <- xx + .5
xz <- xz*1.2
tall <- nsd*stackSd[[ww]]
y1 <- hj + offset + tall
y2 <- hj + offset - tall
for(i in 1:length(ord)){
lines(xz[c(i,i)],c(y1[i],y2[i]),lwd=6,col='white')
lines(c(xz[i]-.1,xz[i]+.1),y1[c(i,i)],lwd=6,col='white')
lines(c(xz[i]-.1,xz[i]+.1),y2[c(i,i)],lwd=6,col='white')
lines(xz[c(i,i)],c(y1[i],y2[i]),lwd=2,col=col[j])
lines(c(xz[i]-.1,xz[i]+.1),y1[c(i,i)],lwd=2,col=col[j])
lines(c(xz[i]-.1,xz[i]+.1),y2[c(i,i)],lwd=2,col=col[j])
}
}
if(j == 1)add <- T
offsetPos[wp] <- offsetPos[wp] + hj[wp]
offsetNeg[wn] <- offsetNeg[wn] + hj[wn]
if(j == nn & !is.null(barnames)){
xall <- par('usr')[1:2]
xtic <- c(1:nx)*(diff(xall) - 1)/nx - .8
yy <- offsetPos + .2*dy
pos <- yy*0 + 1
wl <- which(abs(offsetNeg) < abs(offsetPos))
yy[wl] <- offsetNeg[wl] - .2*dy
pos[wl] <- 4
text(xtic,yy,barnames,srt=90.,pos=pos,cex=cex)
}
}
if(!is.null(legend)){
dy <- diff(ylim)*scaleLegend
dx <- 1.2
x1 <- length(ord)*.02 + 1
y1 <- ylim[1]
pos <- 4
if(legend == 'topright'){
x1 <- length(ord)
y1 <- ylim[2]
dy <- -dy
dx <- -dx
pos <- 2
}
if(legend == 'topleft'){
y1 <- ylim[2]
dy <- -dy
}
if(legend == 'bottomright'){
x1 <- length(ord)
dx <- -dx
pos <- 2
}
for(j in 1:length(stackList)){
y2 <- y1 + dy
rect(x1,y1,x1 + 1,y2,col=col[j],border=border[j])
y1 <- y2
colj <- col[j]
if(colj == 'white')colj <- border[j]
text(x1 + dx,y1 - dy/2,names(stackList)[[j]],col=colj,pos=pos,cex=cex)
}
}
invisible( ord )
}
.getScoreNorm <- function(x,mu,xvar){
- ( (x - mu)^2)/xvar - log(xvar)
}
.gjamBaselineHist <- function(y1, bins = NULL, ylim = NULL,
htFraction = .5, nclass=20){
y1 <- y1[ is.finite(y1) ]
y1[y1 < min(bins)] <- min(bins)
y1[y1 > max(bins)] <- max(bins)
if(!is.null(bins)){
hh <- hist(y1,breaks=bins,plot=F)
} else {
hh <- hist(y1,nclass=nclass,plot=F)
}
xvals <- rep(hh$breaks,each=2)
yvals <- rep(hh$density,each=2)
nb <- length(hh$breaks)
yvals <- c( 0, yvals, 0)
xy <- rbind(xvals, yvals)
minx <- min(xvals)
maxx <- max(xvals)
miny <- min(yvals)
dy <- diff( range(yvals) )
xy[2,] <- miny + .3*xy[2,]*dy/max(xy[2,])
xy[1,xy[1,] < minx] <- minx
xy[2,xy[2,] < miny] <- miny
if(!is.null(ylim)){
dy <- diff(ylim)
sc <- htFraction*dy/max(xy[2,])
xy[2,] <- ylim[1] + (xy[2,] - ylim[1])*sc
}
xy
}
.gjamCensorSetup <- function(y,w,z,plo,phi,wm,censorMat){
nc <- ncol(censorMat)
br <- numeric(0)
nk <- length(wm)
n <- nrow(y)
zk <- y[,wm]*0
blast <- -Inf
for(j in 1:nc){
valuej <- censorMat[1,j]
bj <- censorMat[2:3,j]
names(bj) <- paste('c-',names(bj),j,sep='')
if(j > 1){
if(censorMat[2,j] < censorMat[3,j-1] )
stop('censor intervals must be unique')
if(bj[1] == br[length(br)])bj <- bj[2]
}
br <- c(br,bj)
nb <- length(br)
zk[ y[,wm] > blast & y[,wm] < bj[1] ] <- nb - 2
zk[ y[,wm] == valuej ] <- nb - 1
blast <- br[length(br)]
}
if(nc == 1){
zk[zk == 0] <- 2
br <- c(br,Inf)
}
zk[zk == 0] <- 1
br <- matrix(br,nk,length(br),byrow=T)
censk <- which(y[,wm] %in% censorMat[1,])
z[,wm] <- zk
tmp <- .gjamGetCuts(z,wm)
cutLo <- tmp$cutLo
cutHi <- tmp$cutHi
plo[,wm] <- br[cutLo]
phi[,wm] <- br[cutHi]
ww <- which(plo[,wm,drop=F] == -Inf,arr.ind=T)
if(length(ww) > 0){
if(length(wm) == 1){
mm <- w[,wm]
}else{
mm <- apply(w[,wm],2,max)
}
plo[,wm][ww] <- -10*mm[ww[,2]]
}
tmp <- .tnorm(nk*n,plo[,wm],phi[,wm],w[,wm],1)
w[,wm][censk] <- tmp[censk]
imat <- w*0
imat[,wm][censk] <- 1
censValue <- which(imat == 1)
list(w = w, z = z, cutLo = cutLo, cutHi = cutHi, plo = plo, phi = phi,
censValue = censValue, breakMat = br)
}
.gjamCuts2theta <- function(tg,ss){
if(length(ss) == 1)return(tg/sqrt(ss))
nc <- ncol(tg)
sr <- nrow(ss)
tg/matrix( sqrt(diag(ss)),sr,nc)
}
.gjamGetCuts <- function(zz,wk){
nk <- length(wk)
n <- nrow(zz)
cutLo <- cbind( rep(1:nk,each=n), as.vector(zz[,wk]) )
cutHi <- cbind( rep(1:nk,each=n), as.vector(zz[,wk]) + 1 )
list(cutLo = cutLo, cutHi = cutHi)
}
.gjamGetTypes <- function(typeNames=NULL){
TYPES <- c('CON','PA','CA','DA','CAT','FC','CC','OC')
FULL <- c('continuous','presenceAbsence','contAbun','discAbun',
'categorical','fracComp','countComp','ordinal')
LABS <- c('Continuous','Presence-absence','Continuous abundance',
'Discrete abundance', 'Categorical','Fractional composition',
'Count composition','Ordinal')
if(is.null(typeNames)){
names(FULL) <- TYPES
return( list(typeCols = NULL, TYPES = TYPES, typeFull = FULL,
labels = LABS ) )
}
S <- length(typeNames)
typeCols <- match(typeNames,TYPES)
ww <- which(is.na(typeCols))
if(length(ww) > 0)stop( paste('type code error',typeNames[ww],sep=' ') )
list(typeCols = typeCols, TYPES = TYPES, typeFull = FULL[typeCols],
typeNames = typeNames, labels = LABS[typeCols])
}
.gjamHoldoutSetup <- function(holdoutIndex,holdoutN,n){
if(length(holdoutIndex) > 0)holdoutN <- length(holdoutIndex)
if(holdoutN > (n/5))stop('too many holdouts')
inSamples <- c(1:n)
if(holdoutN > 0){
if(length(holdoutIndex) == 0)holdoutIndex <- sort( sample(n,holdoutN) )
inSamples <- inSamples[-holdoutIndex]
}
nIn <- length(inSamples)
list(holdoutIndex = holdoutIndex, holdoutN = holdoutN,
inSamples = inSamples, nIn = nIn)
}
.gjamMissingValues <- function(x, y, factorList, typeNames, verbose = FALSE){
n <- nrow(x)
xnames <- colnames(x)
xmiss <- which(!is.finite(x),arr.ind=T)
nmiss <- nrow(xmiss)
missX <- missX2 <- xprior <- yprior <- numeric(0)
xbound <- apply(x,2,range,na.rm=T)
if(nmiss > 0){
xmean <- colMeans(x,na.rm=T)
x[xmiss] <- xmean[xmiss[,2]]
xprior <- x[xmiss]
nmiss <- nrow(xmiss)
fmiss <- signif(100*nmiss/length(x[,-1]),2)
if(verbose)
cat( paste('\n', nmiss,' values (',fmiss,'%) missing in X imputed\n'), sep='' )
missX <- missX2 <- rep(0,nmiss)
}
tmp <- gjamTrimY(y,minObs=0,OTHER=F)
wzo <- which(tmp$nobs == 0)
if(length(wzo) > 0){
stop( ' remove from ydata types never present:',
paste0(names(wzo),collapse=', '))
}
fobs <- tmp$nobs/n
wlo <- which(fobs < .01)
if(length(wlo) > 0){
flo <- paste0(names(fobs)[wlo],collapse=', ')
if(verbose)
cat(paste('\nPresent in < 1% of obs:',flo,'\n') )
}
ymiss <- which(!is.finite(y),arr.ind=T)
mmiss <- nrow(ymiss)
missY <- missY2 <- numeric(0)
if(mmiss > 0){
ymean <- colMeans(y,na.rm=T)
y[ymiss] <- ymean[ymiss[,2]]
yprior <- jitter(y[ymiss])
fmiss <- round(100*mmiss/length(y),1)
mmiss <- nrow(ymiss)
missY <- missY2 <- rep(0,mmiss)
if(verbose)
cat( paste('\n', mmiss,' values (',fmiss,'%) missing in Y imputed'), sep='' )
}
disTypes <- c('DA','CC','OC')
wdd <- which(disTypes %in% typeNames)
if(length(wdd) > 0){
www <- which( typeNames[ymiss[,2]] %in% disTypes )
yprior[www] <- floor(yprior[www])
}
if(nmiss > 0){
x[xmiss] <- xprior
if(length(factorList) > 0){
for(k in 1:length(factorList)){
wm <- which(xnames[ xmiss[,2] ] == factorList[[k]][1])
if(length(wm) == 0)next
wk <- sample(length(factorList[[k]]),length(wm),replace=T)
xtmp <- x[xmiss[wm,1],factorList[[k]],drop=F]*0
xtmp[ cbind(1:nrow(xtmp),wk) ] <- 1
x[xmiss[wm,1],factorList[[k]]] <- xtmp
}
}
}
if(mmiss > 0)y[ymiss] <- yprior
list(xmiss = xmiss, xbound = xbound, missX = missX, missX2 = missX2,
ymiss = ymiss, missY = missY, xprior = xprior, yprior = yprior,
x = x, y = y)
}
.gjamPlotPars <- function(type='CA',y1,yp,censm=NULL){
if(!is.matrix(y1))y1 <- matrix(y1)
if(!is.matrix(yp))yp <- matrix(yp)
n <- nrow(y1)
nk <- ncol(y1)
nbin <- NULL
nPerBin <- max( c(10,n*nk/15) )
breaks <- NULL
xlimit <- range(y1,na.rm=T)
ylimit <- range(yp,na.rm=T)
wide <- NULL
MEDIAN <- T
LOG <- F
yss <- quantile(as.vector(y1),.5, na.rm=T)/mean(y1,na.rm=T)
if(type == 'CA'){
wpos <- length( which(y1 > 0) )
nPerBin <- max( c(10,wpos/15) )
}
if(type %in% c('PA', 'CAT')){
breaks <- c(-.05,.05,.95,1.05)
wide <- rep(.08,4)
nPerBin <- NULL
ylimit <- c(0,1)
xlimit <- c(-.1,1.1)
}
if(type == 'OC'){
breaks <- seq(min(y1,na.rm=T)-.5,max(y1,na.rm=T) + .5,by=1)
wide <- 1/max(y1)
nPerBin <- NULL
ylimit <- range(yp,na.rm=T)
xlimit <- c( min(floor(y1),na.rm=T), max(ceiling(y1),na.rm=T) )
}
if(type == 'DA')MEDIAN <- F
if(type %in% c('DA','CA')){
if(yss < .8){
xlimit <- range(y1,na.rm=T)
xlimit[2] <- xlimit[2] + 1
LOG <- T
}
}
if(type %in% c('FC','CC')){
MEDIAN <- F
nPerBin <- round( n*nk/50,0 )
}
if(type == 'CC'){
xlimit[2] <- xlimit[2] + 1
if(yss < 1){
LOG <- T
xlimit[1] <- ylimit[1] <- 1
}
}
if( !is.null(censm) ){
cc <- censm$partition
breaks <- NULL
nPerBin <- n*nk/15
xlimit <- range(y1,na.rm=T)
ylimit <- quantile(yp,c(.01,.99),na.rm=T)
if(ncol(cc) > 1){
cm <- unique( as.vector(cc[-1,]) )
breaks <- cm[is.finite(cm)]
nbin <- nPerBin <- NULL
uncens <- cbind(cc[3,-ncol(cc)],cc[2,-1])
wu <- which( uncens[,1] != uncens[,2] )
for(m in wu){
sm <- seq(uncens[m,1],uncens[m,2],length=round(10/length(wu),0))
if(type == 'DA') sm <- c(uncens[m,1]:uncens[m,2])
breaks <- c(breaks,sm)
}
if(max(cc[1,]) < Inf){
breaks <- c(breaks, seq(max(breaks),(max(y1,na.rm=T)+1),length=12) )
} else {
breaks <- c(breaks,max(y1,na.rm=T) + 1)
}
breaks <- sort( unique(breaks) )
}
}
if(LOG){
xlimit[1] <- ylimit[1] <- quantile(y1[y1 > 0],.001, na.rm=T)
w0 <- which(y1 == 0)
y1[w0] <- ylimit[1]
w0 <- which(yp == 0)
yp[w0] <- ylimit[1]
ylimit[2] <- max(yp,na.rm=T)
}
list( y1 = y1, yp = yp, nbin=nbin, nPerBin=nPerBin,
xlimit=xlimit,ylimit=ylimit,breaks=breaks,wide=wide,LOG=LOG,
POINTS=F,MEDIAN=MEDIAN )
}
.gjamPredictTraits <- function(w,specByTrait,traitTypes){
M <- nrow(specByTrait)
tn <- rownames(specByTrait)
ww <- w
ww[ww < 0] <- 0
ww%*%t(specByTrait)
}
.initW <- function(tw, x, yy, minw = -ncol(yy), cat=F){
X <- x
X[,-1] <- jitter(X[,-1],factor=1)
XX <- crossprod(X)
IXX <- solveRcpp(XX)
for(j in 1:50){
bb <- IXX%*%crossprod(X,tw)
muw <- X%*%bb
tw[yy == 0] <- muw[yy == 0]
tw[yy == 0 & tw > 0] <- 0
}
tw[tw < minw] <- minw
tw
}
.gjamSetup <- function(typeNames, x, y, breakList=NULL, holdoutN, holdoutIndex,
censor=NULL, effort=NULL, maxBreaks=1000 ){
Q <- ncol(x)
n <- nrow(y)
S <- ncol(y)
effMat <- effort$values
tmp <- .gjamGetTypes(typeNames)
typeFull <- tmp$typeFull
typeCols <- tmp$typeCols
allTypes <- unique(typeCols)
cuts <- cutLo <- cutHi <- numeric(0)
minOrd <- maxOrd <- breakMat <- numeric(0)
ordShift <- NULL
ordCols <- which(typeNames == 'OC')
disCols <- which(typeNames == 'DA')
compCols <- which(typeNames == 'CC')
corCols <- which(typeNames %in% c('PA','OC','CAT'))
catCols <- which(typeNames == c('CAT'))
CCgroups <- attr(typeNames,'CCgroups')
if(length(CCgroups) == 0)CCgroups <- rep(0,S)
ngroup <- max(CCgroups)
FCgroups <- attr(typeNames,'FCgroups')
if(length(FCgroups) == 0)FCgroups <- rep(0,S)
fgroup <- max(FCgroups)
CATgroups <- attr(typeNames,'CATgroups')
if(length(CATgroups) == 0)CATgroups <- rep(0,S)
cgroup <- max(CATgroups)
wo <- grep('others',colnames(y))
if(length(wo) > 0){
colnames(y)[wo] <- .replaceString(colnames(y)[wo],'others','other')
}
other <- grep('other',colnames(y))
colnames(y) <- .cleanNames(colnames(y))
w <- y
if( !is.null(effort) )w <- w/effort$values
maxy <- apply(w,2,max,na.rm=T)
miny <- apply(w,2,min,na.rm=T)
miny[miny > -maxy] <- -maxy[miny > -maxy]
maxy[maxy < 0] <- -maxy[maxy < 0]
maxy <- matrix(maxy, n, S, byrow=T)
z <- w*0
z[y == 0] <- 1
z[y > 0] <- 2
plo <- phi <- y*0
plo[z == 1] <- -maxy[z == 1]/2
phi[z == 2] <- 2*maxy[z == 2]
censorCON <- censorCA <- censorDA <- numeric(0)
sampleW <- y*0
sampleW[is.na(sampleW)] <- 1
for(k in allTypes){
wk <- which(typeCols == k)
nk <- length(wk)
if( typeFull[wk[1]] == 'presenceAbsence' ){
sampleW[,wk] <- 1
plo[,wk][z[,wk] == 1] <- -3
phi[,wk][z[,wk] == 2] <- 3
w[,wk] <- .tnorm(nk*n,plo[,wk],phi[,wk],0,1)
br <- c(-3,0,3)
br <- matrix(br,nk,length(br),byrow=T)
colnames(br) <- as.character(c(1:ncol(br)))
rownames(br) <- paste('PA',wk,sep='-')
rownames(br) <- paste(colnames(y)[wk],rownames(br),sep='_')
breakMat <- .appendMatrix(breakMat,br,SORT=T,asNumbers=T)
}
if( typeFull[wk[1]] == 'continuous' ){
sampleW[,wk] <- 0
z[,wk] <- 1
plo[,wk] <- -2*maxy[,wk]
phi[,wk] <- 2*maxy[,wk]
if( !is.null(censor) & 'CON' %in% names(censor) ){
wc <- which(names(censor) == 'CON')
bc <- censorCON <- numeric(0)
for(m in wc){
wm <- censor[[m]]$columns
cp <- censor[[m]]$partition
for(ii in 1:ncol(cp)){
wmm <- which( y[,wm] == cp[1,ii] | (y[,wm] > cp[2,ii] & y[,wm] < cp[3,ii]) )
mmm <- cp[2,ii]
if(mmm == -Inf)mmm <- cp[3,ii] - 10
censor[[m]]$partition[2,ii] <- mmm
plo[,wm][wmm] <- mmm
phi[,wm][wmm] <- cp[3,ii]
}
tmp <- .gjamCensorSetup(y,w,z,plo,phi,wm,censorMat=
censor[[m]]$partition)
z[,wm] <- tmp$z[,wm]
censorCON <- c(censorCON,tmp$censValue)
bt <- tmp$breakMat
colnames(bt) <- as.character(c(1:ncol(bt)))
rownames(bt) <- paste('CA',wm,sep='-')
bc <- .appendMatrix(bc,bt,SORT=T,asNumbers=T)
}
}
br <- c(-Inf,-Inf,Inf)
br <- matrix(br,nk,length(br),byrow=T)
colnames(br) <- as.character(c(1:ncol(br)))
rownames(br) <- paste('CON',wk,sep='-')
rownames(br) <- paste(colnames(y)[wk],rownames(br),sep='_')
breakMat <- .appendMatrix(breakMat,br,SORT=T,asNumbers=T)
}
if( typeFull[wk[1]] == 'contAbun' ){
phi[,wk] <- 2*maxy[,wk]
plo[,wk] <- -phi[,wk]/4
wy1 <- which(y[,wk] > 0)
w[,wk][wy1] <- y[,wk][wy1]
wy0 <- which(y[,wk] == 0)
phi[,wk][wy0] <- 0
w[,wk] <- .initW(w[,wk], x, y[,wk], minw = -max(y[,wk],na.rm=T)*5)
w[,wk][wy1] <- y[,wk][wy1]
br <- c(-Inf,0,Inf)
br <- matrix(br,nk,length(br),byrow=T)
colnames(br) <- as.character(c(1:ncol(br)))
rownames(br) <- paste('CA',wk,sep='-')
sampleW[,wk][y[,wk] == 0] <- 1
if( !is.null(censor) & 'CA' %in% names(censor) ){
wc <- which(names(censor) == 'CA')
bc <- censorCA <- numeric(0)
for(m in wc){
wm <- censor[[m]]$columns
cp <- censor[[m]]$partition
for(ii in 1:ncol(cp)){
wmm <- which(y[,wm] == cp[1,ii] | (y[,wm] > cp[2,ii] & y[,wm] < cp[3,ii]) )
plo[,wm][wmm] <- cp[2,ii]
phi[,wm][wmm] <- cp[3,ii]
}
tmp <- .gjamCensorSetup(y,w,z,plo,phi,wm,censorMat=
censor[[m]]$partition)
z[,wm] <- tmp$z[,wm]
censorCA <- c(censorCA,tmp$censValue)
bt <- tmp$breakMat
colnames(bt) <- as.character(c(1:ncol(bt)))
rownames(bt) <- paste('CA',wm,sep='-')
bc <- .appendMatrix(bc,bt,SORT=T,asNumbers=T)
}
mm <- match(rownames(bc),rownames(br))
if(is.na(min(mm)))stop('error in censor list, check for conflicts')
bb <- br[-mm,]
tmp <- .appendMatrix(bc,bb,SORT=T,asNumbers=T)
o <- as.numeric( matrix( unlist(strsplit(rownames(tmp),'-')),
ncol=2,byrow=T)[,2] )
br <- tmp[drop=F,order(o),]
}
rownames(br) <- paste(colnames(y)[wk],rownames(br),sep='_')
breakMat <- .appendMatrix(breakMat,br,SORT=T,asNumbers=T)
}
if( typeFull[wk[1]] == 'discAbun' ){
plo[,wk] <- (y[,wk] - .5)/effMat[,wk]
plo[,wk][y[,wk] == 0] <- -.5*maxy[,wk][y[,wk] == 0]
phi[,wk] <- (y[,wk] + .5)/effMat[,wk]
sampleW[,wk] <- 1
disCols <- wk
z[,wk] <- y[,wk] + 1
w[,wk] <- .tnorm(nk*n,plo[,wk],phi[,wk],w[,wk],1)
n <- nrow(y)
S <- ncol(y)
mx <- max(y[,wk]) - 1
if(mx > maxBreaks){
mx <- maxBreaks
cat( paste('\nNote: large values of y/effort, max set to', mx ) )
}
br <- c( -Inf, seq(0, mx), Inf)
br <- matrix(br,nk,length(br),byrow=T)
colnames(br) <- as.character(c(1:ncol(br)))
rownames(br) <- paste('DA',wk,sep='-')
if( !is.null(censor) & 'DA' %in% names(censor) ){
wc <- which(names(censor) == 'DA')
bc <- censorDA <- numeric(0)
for(m in wc){
wm <- censor[[m]]$columns
tmp <- .gjamCensorSetup(y,w,z,plo,phi,wm,
censorMat=censor[[m]]$partition)
w[,wm] <- tmp$w[,wm]
z[,wm] <- tmp$z[,wm]
plo[,wm] <- tmp$plo[,wm]
phi[,wm] <- tmp$phi[,wm]
censorDA <- c(censorDA,tmp$censValue)
bt <- tmp$breakMat
colnames(bt) <- as.character(c(1:ncol(bt)))
rownames(bt) <- paste('DA',wm,sep='-')
bc <- .appendMatrix(bc,bt,SORT=T,asNumbers=T)
}
mm <- match(rownames(bc),rownames(br))
bb <- br[-mm,]
tmp <- .appendMatrix(bc,bb,SORT=T,asNumbers=T)
o <- as.numeric( matrix( unlist(strsplit(rownames(tmp),'-')),
ncol=2,byrow=T)[,2] )
br <- tmp[order(o),]
}
rownames(br) <- paste(colnames(y)[wk],rownames(br),sep='_')
breakMat <- .appendMatrix(breakMat,br,SORT=T,asNumbers=T)
}
if( typeFull[wk[1]] == 'fracComp' ){
wss <- which(y[,wk] == 0 | y[,wk] == 1)
sampleW[,wk][wss] <- 1
for(i in 1:fgroup){
if(fgroup == 1){
wki <- wk
} else {
wki <- which(typeCols == k & FCgroups == i)
}
nki <- length(wki)
yki <- y[,wki]
lo <- plo[,wki]
hi <- phi[,wki]
lo[lo < -200/S] <- -200/S
hi[hi > 3] <- 3
plo[,wki] <- lo
phi[,wki] <- hi
w[,wki] <- .initW(w[,wki], x, yki, minw = -200/S)
}
br <- c(-1,0,1)
br <- matrix(br,nk,length(br),byrow=T)
colnames(br) <- as.character(c(1:ncol(br)))
rownames(br) <- paste('FC',wk,sep='-')
rownames(br) <- paste(colnames(y)[wk],rownames(br),sep='_')
breakMat <- .appendMatrix(breakMat,br,SORT=T,asNumbers=T)
}
if( typeFull[wk[1]] %in% c('countComp','categorical')){
sampleW[,wk] <- 1
ntt <- ngroup
if(typeFull[wk[1]] == 'categorical')ntt <- cgroup
for(i in 1:ntt){
if(ntt == 1){
wki <- wk
} else {
wki <- which( typeCols == k )
wki <- wki[ CCgroups[wki] == i | CATgroups[wki] == i ]
}
nki <- length(wki)
yki <- y[,wki]
if( wki[1] %in% catCols ){
lo <- hi <- yki*0
lo[yki == 0] <- -100
hi[yki == 0] <- 0
hi[yki == 1] <- 100
mu <- yki*0
mu[lo == 0] <- 20
mu[hi == 0] <- -20
} else {
ee <- rowSums(yki) + 1
lo <- (yki - .5)/ee
hi <- (yki + .5)/ee
lo[lo < 0] <- -20/S
mu <- yki/ee
}
z[,wki] <- yki + 1
plo[,wki] <- lo
phi[,wki] <- hi
tmp <- matrix( .tnorm(nki*n,as.vector(lo),as.vector(hi), as.vector(mu), sig=5),n,nki )
tt <- tmp
if( !wki[1] %in% catCols ){
tt[tt < 0] <- 0
tsum <- rowSums(tt)
tt <- sweep(tt,1,tsum,'/')
tt[tmp < 0] <- tmp[tmp < 0]
}
w[,wki] <- tt
}
br <- c(-1,0,1)
br <- matrix(br,nk,length(br),byrow=T)
colnames(br) <- as.character(c(1:ncol(br)))
rownames(br) <- paste('CC',wk,sep='-')
rownames(br) <- paste(colnames(y)[wk],rownames(br),sep='_')
breakMat <- .appendMatrix(breakMat,br,SORT=T,asNumbers=T)
}
if( typeFull[wk[1]] == 'ordinal' ){
miny <- ordShift <- apply(y[,wk,drop=F],2,min)
y[,wk] <- y[,wk] - matrix(miny,n,nk,byrow=T)
nc <- apply(y[,wk,drop=F],2,max)
sampleW[,wk] <- 1
ii <- list(spec = as.vector(matrix(c(1:nk),n,nk,byrow=T)),
ss = as.vector(y[,wk,drop=F]))
ctmp <- tapply(as.vector(y[,wk,drop=F])*0+1,ii,sum)
ccol <- range( as.numeric(colnames(ctmp)) )
ccol <- ccol[1]:ccol[2]
ct <- matrix(0, nrow(ctmp), length(ccol),
dimnames = list(rownames(ctmp), ccol) )
ct[rownames(ctmp),colnames(ctmp)] <- ctmp
ct[ is.na(ct) ] <- 0
ctmp <- ct
ncc <- nc + 1
if(max(ncc) > ncol(ctmp))ncc <- nc
maxOne <- which(ctmp[ cbind(1:nk,ncc) ] == 1)
if(length(maxOne) > 0){
for(m in 1:length(maxOne)){
mc <- wk[maxOne[m]]
y[y[,mc] == nc[maxOne[m]],mc] <- nc[maxOne[m]] - 1
}
nc <- apply(y[,wk,drop=F],2,max)
}
ncut <- max(y[,wk,drop=F])
crow <- c(0:ncut)
cuts <- t( matrix(crow,(ncut+1),nk) )
cuts[ cbind((1:nk),nc+1) ] <- Inf
call <- t( apply(cuts,1,cumsum) )
cuts[call == Inf] <- Inf
cuts <- cbind(-Inf,cuts)
if(!is.matrix(cuts))cuts <- matrix(cuts,1)
tmp <- .gjamGetCuts(y + 1,wk)
cutLo <- tmp$cutLo
cutHi <- tmp$cutHi
ss <- seq(0,(nk-1)*n,by=n)
wh <- as.vector( outer(holdoutIndex,ss,'+') )
c1 <- cutLo
if(length(wh) > 0)c1 <- cutLo[-wh,]
otab <- .byIndex(c1[,1]*0 + 1,INDICES=list('i'=c1[,1],
'j'=c1[,2]),sum,coerce=T)
oo <- cbind(0,t( apply(otab,1,cumsum) ))
wo <- which(oo == 0,arr.ind=T)
wo[,2] <- as.numeric(colnames(otab))[wo[,2]]
minOrd <- .byIndex(wo[,2],wo[,1],max)
oo <- cbind(0,t( apply( t(apply(otab,1,rev)),1,cumsum) ))
wo <- which(oo == 0,arr.ind=T)
maxOrd <- ncut - .byIndex(wo[,2],wo[,1],max) + 2
plo[,wk] <- cuts[cutLo]
phi[,wk] <- cuts[cutHi]
z[,wk] <- y[,wk] + 1
w[,wk] <- matrix( .tnorm(nk*n,plo[,wk],phi[,wk],y[,wk],1),n,nk )
colnames(cuts) <- c(1:ncol(cuts))
rownames(cuts) <- paste('OC',wk,sep='-')
rownames(cuts) <- paste(colnames(y)[wk],rownames(cuts),sep='_')
breakMat <- .appendMatrix(breakMat,cuts,SORT=T,asNumbers=T)
}
}
sord <- .splitNames(rownames(breakMat))$vnam[,1]
yord <- match(colnames(y),sord)
breakMat <- breakMat[yord,]
sampleW[censorCON] <- 1
sampleW[censorCA] <- 1
sampleW[censorDA] <- 1
wCols <- which(colSums(sampleW) > 0)
wRows <- which(rowSums(sampleW) > 0)
attr(sampleW,'type') <- 'cols'
attr(sampleW,'index') <- wCols
if( sum(sampleW) == 0)attr(sampleW,'type') <- 'none'
if( sum(sampleW) > 0 & (length(wRows) < length(wCols)) ){
attr(sampleW,'type') <- 'rows'
attr(sampleW,'index') <- wRows
}
ii <- list(spec = as.vector(matrix(c(1:S),n,S,byrow=T)),
discrete_class = as.vector(z))
classBySpec <- .byIndex(as.vector(z)*0+1,ii,sum)
rownames(classBySpec) <- colnames(y)
ncc <- min(20,ncol(classBySpec))
nrr <- min(20,nrow(classBySpec))
list(w = w, z = z, y = y, other = other, cuts = cuts,
cutLo = cutLo, cutHi = cutHi, ordShift = ordShift,
plo = plo, phi = phi, ordCols=ordCols, disCols = disCols,
compCols = compCols, corCols = corCols,
classBySpec = classBySpec, breakMat = breakMat,
minOrd = minOrd, maxOrd = maxOrd, sampleW = sampleW,
censorCA = censorCA, censorDA = censorDA, censorCON = censorCON )
}
.gjamTrueVest <- function( pchains, true, typeCode, allTypes, xlim=NULL, ylim=NULL,
label=NULL, colors=NULL, add=F, legend=T){
ntypes <- length(allTypes)
if(is.null(ylim))ylim <- quantile(pchains, c(.025, .975), na.rm=T)
if(is.null(xlim))xlim <- range(true,na.rm=T)
if( !is.matrix(pchains) ){
pchains <- matrix(pchains,ncol=1)
bCoeffTable <- c(mean(pchains),sd(pchains),quantile(pchains,c(.025,.975)),true)
bCoeffTable <- matrix(bCoeffTable,1)
} else {
bCoeffTable <- .chain2tab( pchains, colnames(true), rownames(true) )
}
if(is.null(colors)){
colors <- 1
if(ntypes > 1)colors <- typeCode
}
if(length(colors) == 1) colors <- rep(colors,ntypes)
if(is.matrix(true)){
tlabs <- outer(rownames(true), colnames(true), paste, sep='_')
mm <- match(tlabs, colnames(pchains))
wn <- which( !is.finite(mm) )
if(length(wn) > 0){
tlabs <- t( outer(colnames(true), rownames(true), paste, sep='_') )
mm <- match(tlabs, colnames(pchains))
wn <- which( !is.finite(mm) )
}
tvec <- as.vector(true)
names(tvec) <- as.vector(tlabs)
tvec <- tvec[ match( colnames(pchains), names(tvec) ) ]
}else{
tvec <- true
}
.predVsObs(tvec, p=pchains, xlab='true', xlim=xlim, ylim=ylim, ylab='estimated',
colors=colors,add=add)
if(ntypes > 1 & legend)legend('topleft',allTypes,text.col=colors,bty='n')
if(!is.null(label)).plotLabel(label,above=T)
invisible( bCoeffTable )
}
.conditionalMVN <- function( xx, mu, sigma, cdex, p=ncol(mu) ){
if(ncol(xx) != ncol(sigma))stop('ncol(xx) != ncol(sigma)')
if(ncol(mu) != ncol(sigma))stop('ncol(mu) != ncol(sigma)')
if(max(cdex) > ncol(mu))stop('max(cdex) > ncol(mu)')
ci <- (1:p)[-cdex]
new <- c(ci, cdex)
cnew <- match(cdex, new)
pnew <- 1:(p - length(cnew))
condMVNRcpp(cnew-1, pnew-1, xx[,new, drop=F], mu[,new, drop=F], sigma[new,new])
}
.byGJAM <- function(x, i, j, summat=matrix(0,max(i),max(j)),
totmat=summat, fun='mean'){
nn <- length(x)
if( nn != length(i) | nn != length(j) )
stop('vectors unequal in byFunctionRcpp')
if( nrow(summat) < max(i) | ncol(summat) < max(j) )
stop('matrix too small')
ww <- which(is.na(x))
if(length(ww) > 0){
x <- x[-ww]
i <- i[-ww]
j <- j[-ww]
}
frommat <- cbind(i,j,x)
nr <- nrow(frommat)
maxmat <- summat*0 - Inf
minmat <- summat*0 + Inf
tmp <- byRcpp(nr, frommat, totmat, summat, minmat, maxmat)
if(fun == 'sum')return(tmp$sum)
if(fun == 'mean'){
mu <- tmp$sum/tmp$total
mu[is.na(mu)] <- 0
return(mu)
}
if(fun == 'min'){
return( tmp$min )
}
tmp$max
}
.tnormMVNmatrix <- function(avec, muvec, smat,
lo=matrix(-1000,nrow(muvec),ncol(muvec)),
hi=matrix(1000,nrow(muvec),ncol(muvec)),
whichSample = c(1:nrow(smat)) ){
lo[lo < -1000] <- -1000
hi[hi > 1000] <- 1000
if(max(whichSample) > length(muvec))
stop('whichSample outside length(muvec)')
r <- avec
a <- trMVNmatrixRcpp(avec, muvec, smat, lo, hi, whichSample,
idxALL = c(0:(nrow(smat)-1)) )
r[,whichSample] <- a[,whichSample]
r
}
.whichFactor <- function(dframe){
if(!is.data.frame(dframe))return(character(0))
tmp <- model.frame(data = dframe)
ym <- attr( attributes(tmp)$terms, 'dataClasses' )
which(ym == 'factor')
}
.xpredSetup <- function(Y, xx, bgg, isNonLinX, factorObject, intMat, standMatSd, standMatMu,
notOther, notStandard ){
isFactor <- factorObject$isFactor
factorList <- factorObject$factorList
linFactor <- numeric(0)
Q <- ncol(xx)
if(Q == 1){
return( list(linFactor = linFactor, xpred = xx, px = 1,
lox = 1, hix = 1) )
}
xpred <- xx
n <- nrow(xx)
xpnames <- colnames(xx)
SO <- length(notOther)
px <- 1:Q
if(length(isNonLinX) > 0)px <- px[-isNonLinX]
px <- px[!xpnames[px] %in% isFactor]
px <- px[px != 1]
ii <- grep(':',xpnames,fixed=T)
i2 <- grep('^2',xpnames,fixed=T)
qx <- c( 1, ii, i2)
qx <- c(1:Q)[-qx]
bx <- solveRcpp( crossprod(xx[,qx,drop=F]) )%*%crossprod(xx[,qx,drop=F], Y[,notOther])
cx <- crossprod(t(bx))
if(length(cx) == 1){
cx <- 1/(cx*1.01)
} else {
diag(cx) <- .0000001 + diag(cx)
cx <- solve(cx)
}
xk <- (Y[,notOther] - matrix(bgg[1,notOther],n,SO,byrow=T))%*%t(bx)%*%cx
colnames(xk) <- xpnames[qx]
scol <- colnames(xk)[!colnames(xk) %in% notStandard]
xk[,scol] <- sweep(xk[,scol,drop=F],2,colMeans(xk[,scol,drop=F]),'-')
xk[,scol] <- sweep(xk[,scol,drop=F],2,apply(xk[,scol,drop=F],2,sd),'/')
xpred[,qx] <- xk
xmu <- apply(xx, 2, sd)
xse <- apply(xx, 2, sd)
propx <- xse/10
lo <- xmu - 3*xse
hi <- xmu + 3*xse
xl <- matrix( lo, nrow(xpred), ncol(xpred), byrow=T)
xh <- matrix( hi, nrow(xpred), ncol(xpred), byrow=T)
xpred[xpred < xl] <- xl[xpred < xl]
xpred[xpred > xh] <- xh[xpred > xh]
xpred[!is.finite(xpred)] <- 0
rm(xl, xh)
if(length(intMat) > 0){
for(k in 1:nrow(intMat)){
xpred[,intMat[k,1]] <- xpred[,intMat[k,2]]*xpred[,intMat[k,3]]
}
}
if(length(isFactor) > 0){
xpred[,isFactor] <- 0
for(k in 1:length(factorList)){
kf <- lf <- factorList[[k]]
if( !is.null(isNonLinX) ){
xin <- xpnames[isNonLinX]
lf <- kf[!kf %in% xin]
}
if(length(lf) == 0)next
lf <- match(lf,xpnames)
ww <- which(is.finite(lf))
wt <- colSums(xx[,c(1,lf)])
wt <- wt/sum(wt)
sk <- sample(c(1,lf),n, replace=T, prob=wt)
xpred[ cbind(c(1:n),sk) ] <- 1
if(length(ww) == 0)next
lf <- c(1,lf)
linFactor <- append(linFactor, list(lf))
names(linFactor)[length(linFactor)] <- names(factorList)[k]
}
}
lox <- apply(xx,2 ,min)
hix <- apply(xx,2, max)
lox[isFactor] <- -3
hix[isFactor] <- 3
if(length(intMat) > 0){
lox[intMat[,1]] <- -3
hix[intMat[,1]] <- 3
}
if( length(notStandard) > 0 ){
ws <- which(notStandard %in% xpnames)
if(length(ws) == 0){
notStandard <- NULL
} else {
notStandard <- notStandard[ws]
lox[notStandard] <- standMatMu[notStandard,1] - 3*standMatSd[notStandard,1]
hix[notStandard] <- standMatMu[notStandard,1] + 3*standMatSd[notStandard,1]
}
}
list(linFactor = linFactor, xpred = xpred, px = px,
propx = propx, lox = lox, hix = hix)
}
.blockDiag <- function(mat1,mat2){
if(length(mat1) == 0)return(mat2)
namesc <- c(colnames(mat1),colnames(mat2))
namesr <- c(rownames(mat1),rownames(mat2))
nr1 <- nrow(mat1)
nr2 <- nrow(mat2)
nc1 <- ncol(mat1)
nc2 <- ncol(mat2)
nr <- nr1 + nr2
nc <- nc1 + nc2
new <- matrix(0,nr,nc)
new[ 1:nr1, 1:nc1 ] <- mat1
new[ (nr1+1):nr, (nc1+1):nc ] <- mat2
colnames(new) <- namesc
rownames(new) <- namesr
new
}
.getContrasts <- function(facK, fnames){
ff <- paste(facK,fnames,sep='')
Q <- length(fnames)
cc <- diag(Q)
cc[1,] <- -1
dd <- cc
dd[1] <- 1
cc[,1] <- 1
colnames(cc) <- colnames(dd) <- c('intercept',ff[-1])
rownames(cc) <- rownames(dd) <- fnames
L <- t( solve(cc) )
rownames(cc) <- rownames(L) <- rownames(dd) <- ff
list(C = cc, D = dd, L = L)
}
.getUnstandX <- function(formula, x, standRows, xmu, xsd, factorColumns = NULL ){
if(length(standRows) == 0)return( list( xu = x, S2U = diag( ncol(x)) ) )
xu <- x
xu[,standRows] <- t( xmu[standRows] +
t(x[,standRows,drop=F])*xsd[standRows] )
if( !is.null(factorColumns) ){
xu <- data.frame( xu, factorColumns )
}
xu <- model.matrix(formula, data.frame(xu), drop.unused.levels = FALSE )
colnames(xu)[1] <- 'intercept'
s2u <- solve( crossprod(xu) )%*%crossprod(xu, x)
s2u[ abs(s2u) < 1e-14 ] <- 0
list(xu = xu, S2U = s2u)
}
.getStandX <- function(formula, xu, standRows, xmu=NULL, xsd=NULL){
if( length(standRows) == 0 )return( list(xstand = xu, xmu = xmu, xsd = xsd,
U2S = diag(ncol(xu)) ) )
xu <- as.data.frame( xu )
inCols <- colnames(xu)
ifact <- which( sapply(data.frame(xu), is.factor) )
if( length(ifact) > 0 ){
xtmp <- xu[, -ifact, drop = F]
}
if( is.null(xmu) )xmu <- colMeans(xu[,standRows, drop=F], na.rm=T)
if( is.null(xsd) )xsd <- apply(xu[,standRows, drop=F], 2, sd, na.rm=T)
xs <- xu
wna <- which( sapply(xu, is.na), arr.ind=T )
wni <- which(wna[,2] %in% ifact)
if( length(wni) > 0 ){
stop('cannot have NA in factor levels')
}
if( nrow(wna) > 0 ){
wmu <- sapply( xu, mean, na.rm=T )
wnaCol <- colnames(xu)[wna[,2]]
xs[ wna ] <- wmu[ wna[,2] ]
xu[ wna ] <- wmu[ wna[,2] ]
}
sc <- standRows
if( !is.character(sc) )sc <- names( standRows )
xs[, sc] <- t( ( t( xs[, sc, drop = F] ) - xmu[sc] )/xsd[sc] )
xs <- model.matrix(formula, data.frame(xs) )
colnames(xs)[1] <- 'intercept'
xd <- model.matrix(formula, data.frame(xu) )
colnames(xd)[1] <- 'intercept'
bigSD <- apply(xs, 2, range)
wk <- which( abs(bigSD) > 20, arr.ind=T )
if( length(wk) > 0){
b <- paste0( colnames(bigSD)[wk[,2]], collapse=', ' )
cat( paste('\nNote: Values in x more than 20 SDs from the mean of fitted data: ',b, sep='' ) )
FLAG <- T
}
if( nrow(wna) > 0 ){
wna[,2] <- match( wnaCol, colnames(xs) )
xs[ wna ] <- NA
}
if( length(ifact) > 0 ){
xtmp[,standRows] <- xs[,standRows]
xs <- xu
xs[,standRows] <- xtmp[,standRows]
}
if( identical(colnames(xd), colnames(xs) ) & length(ifact) == 0 ){
ssx <- try( solve( crossprod( xs ) ), T )
if( inherits( ssx,'try-error') ){
u2s <- diag( ncol(xs) )
}else{
u2s <- ssx%*%crossprod(xs,xd)
u2s[ abs(u2s) < 1e-12 ] <- 0
}
}else{
u2s <- diag( ncol(xs) )
}
list(xstand = xs, xmu = xmu, xsd = xsd, U2S = u2s)
}
.getHoldLoHi <- function(yh, wh, pl, ph, eff, ymax, typeNames, cutg, ordCols){
allTypes <- unique(typeNames)
for(k in 1:length(allTypes)){
tk <- allTypes[k]
wk <- which(typeNames == tk)
if(tk == 'CON')next
if(tk == 'PA'){
pl[,wk][yh[,wk] == 0] <- -10
pl[,wk][yh[,wk] == 1] <- 0
ph[,wk][yh[,wk] == 0] <- 0
ph[,wk][yh[,wk] == 1] <- 10
}
if(tk == 'CA'){
ym <- max(ymax[wk])
pl[,wk][yh[,wk] == 0] <- -5*ym
pl[,wk][yh[,wk] > 0] <- 0
ph[,wk][yh[,wk] == 0] <- 0
ph[,wk][yh[,wk] > 0] <- 5*ym
}
if(tk == 'DA'){
ym <- max(ymax[wk])
ee <- 1
if(!is.null(eff))ee <- eff[,wk]
pl[,wk] <- (yh[,wk] - .5)/ee
ph[,wk] <- (yh[,wk] + .5)/ee
pl[,wk][yh[,wk] == 0] <- -5*ym
pl[,wk][yh[,wk] == ym] <- 5*ym
}
if(tk == 'FC'){
pl[,wk][yh[,wk] == 0] <- -5
pl[,wk][yh[,wk] > 0] <- 0
pl[,wk][yh[,wk] > 1] <- 1
ph[,wk][yh[,wk] == 0] <- 0
ph[,wk][yh[,wk] > 0] <- 1
ph[,wk][yh[,wk] == 1] <- 5
}
if(tk == 'CC'){
ym <- rowSums(yh[,wk,drop=F])
ee <- matrix(ym,nrow(yh),length(wk))
pl[,wk] <- (yh[,wk] - .5)/ee
ph[,wk] <- (yh[,wk] + .5)/ee
pl[,wk][yh[,wk] == 0] <- -5
pl[,wk][yh[,wk] == ee] <- 5
}
}
list(pl = pl, ph = ph)
}
.setupReduct <- function(modelList, S, Q, n){
REDUCT <- F
N <- r <- rl <- NULL
reductList <- modelList$reductList
if( !is.null(reductList) ){
N <- floor( min( c(reductList$N, S/2) ) )
r <- min( c(reductList$r, .7*N) )
rl <- list(N = N, r = ceiling(r) )
return( rl )
}
if(n < 2*S | S > 200){
N <- round( S/3 )
if(N > 25)N <- 25
if(N < 4)N <- 4
r <- ceiling( N/2 )
rl <- list(r = r, N = N, alpha.DP = S)
warning( 'dimension reduction' )
}
rl
}
.getTimeIndex <- function(timeList, other, notOther, xdata, x, xl, y, w,
termB, termR, termA ){
Q <- ncol(x)
n <- nrow(x)
xnames <- colnames(x)
snames <- colnames(y)
loBeta <- hiBeta <- alphaPrior <- Rmat <- Rpattern <- wL <- gindex <-
Vmat <- Rrows <- loRmat <- hiRmat <- Arows <- Amat <- Apattern <- wA <-
Umat <- uindex <- loAmat <- hiAmat <- aindex <- Brows <- bg <- Bpattern <-
wB <- loB <- hiB <- zB <- zA <- zR <- NULL
timeZero <- timeList$timeZero
timeLast <- timeList$timeLast
if(length(timeZero) != length(timeLast))
stop('timeZero and timeLast different lengths')
times <- timeList$times
if(is.null(times))
stop(' column name "times" needed for time-series model' )
timeZero <- which(xdata[,'times'] == 0)
if(length(timeZero) == 0)stop(' must have time zero in xdata[,time] ')
timeLast <- timeZero - 1
timeLast <- timeLast[-1]
timeLast <- c(timeLast,nrow(xdata))
w2 <- which(timeLast - timeZero < 2)
if(length(w2) > 0)
stop('some sequences have only 2 time intervals, need at least 3')
ix <- 1:n
t1 <- ix[-timeZero]
t0 <- t1 - 1
t2 <- t1 + 1
tindex <- cbind(t0,t1,t2)
S <- ncol(y)
ns <- length(timeZero)
nt <- nrow(tindex)
i1 <- i2 <- numeric(0)
for(k in 1:ns){
tl <- timeLast[k]
sk <- timeZero[k]
wk <- which(tindex[,1] >= sk & tindex[,2] <= tl)
k1 <- wk[ seq(1, length(wk), by = 2) ]
k2 <- k1 + 1
k2 <- k2[ k2 <= nt ]
k2 <- k2[ tindex[k2,2] <= tl ]
i1 <- c(i1, k1)
i2 <- c(i2, k2)
}
maxTime <- max(xdata$times)
inSamples <- tindex[,2]
if(termB){
if('betaPrior' %in% names(timeList)){
loBeta <- timeList$betaPrior$lo
hiBeta <- timeList$betaPrior$hi
beta <- (loBeta + hiBeta)/2
beta[ is.nan(beta) | beta == -Inf | beta == Inf ] <- 0
loBeta[is.na(beta)] <- hiBeta[is.na(beta)] <- 0
beta[is.na(beta)] <- 0
} else{
beta <- matrix(0,Q,S)
rownames(beta) <- colnames(x)
BPRIOR <- F
}
tmp <- .betaPrior(beta, notOther, loBeta, hiBeta)
bg <- tmp$beta; loB <- tmp$loB; hiB <- tmp$hiB
wB <- tmp$wB; zB <- tmp$zB; BPRIOR <- tmp$BPRIOR
bg[is.nan(bg) | bg == -Inf | bg == Inf] <- 0
tmp <- .getPattern(bg[,notOther], wB)
Brows <- tmp$rows
Bpattern <- tmp$pattern
bg[!is.finite(bg)] <- 0
}
if(termA){
if( 'alphaPrior' %in% names(timeList) ){
loAlpha <- timeList$alphaPrior$lo
hiAlpha <- timeList$alphaPrior$hi
loAlpha[is.na(loAlpha) | is.na(hiAlpha)] <- hiAlpha[is.na(loAlpha) | is.na(hiAlpha)] <- 0
} else{
alpha <- diag(NA,S)
diag(alpha) <- -1
}
tmp <- .alphaPrior(w, tindex, ap = timeList$alphaPrior, notOther)
Amat <- tmp$Amat; loAmat <- tmp$loAmat; hiAmat <- tmp$hiAmat
wA <- tmp$wA;
uindex <- tmp$uindex; aindex <- tmp$aindex
U <- nrow(Amat)
Umat <- matrix(0,n,U)
wz <- w
wz[wz < 0] <- 0
Umat <- wz[,uindex[,1]]*wz[,uindex[,2]]
tmp <- .getPattern(loAmat, wA)
Arows <- tmp$rows
Apattern <- uindex
Apattern[ Apattern[,2] == Apattern[,1], 2] <- NA
Amat[!is.finite(Amat)] <- 0
zA <- which(Amat == 0)
wrow <- max(wA[,1])
wcol <- max(wA[,2])
Apattern <- Apattern[ Apattern[,1] %in% c(1:wrow),]
Apattern <- Apattern[ !Apattern[,1] > wcol,]
Apattern[Apattern %in% other] <- NA
Apattern <- Apattern[1:wrow,]
}
if(termR){
if('rhoPrior' %in% names(timeList)){
lprior <- timeList$rhoPrior
lprior$lo[ is.na(lprior$lo) | is.na(lprior$hi) ] <- 0
lprior$hi[ is.na(lprior$lo) | is.na(lprior$hi) ] <- 0
} else{
lprior <- timeList$betaPrior
}
xlnames <- colnames(xl)
tmp <- .rhoPrior(lprior, w, xl, tindex, xlnames,
snames, other, notOther, timeZero)
Rmat <- tmp$Rmat; loRmat <- tmp$loRmat; hiRmat <- tmp$hiRmat
wL <- tmp$wL; gindex <- tmp$gindex; Vmat <- tmp$Vmat
zR <- which( is.na(Rmat) )
ltmp <- matrix(NA,nrow(Rmat),length(notOther))
ltmp[wL] <- 1
tmp <- .getPattern(ltmp, wL)
Rrows <- tmp$rows
Rpattern <- tmp$pattern
Rmat[!is.finite(Rmat)] <- 0
}
list(Rmat = Rmat, Rpattern = Rpattern, wL = wL, gindex = gindex,
Vmat = Vmat, Rrows = Rrows, loRmat = loRmat, hiRmat = hiRmat,
Arows = Arows, Amat = Amat, Apattern = Apattern, wA = wA,
Umat = Umat, uindex = uindex,loAmat = loAmat, hiAmat = hiAmat,
aindex = aindex, Brows = Brows, bg = bg, Bpattern = Bpattern, wB = wB,
loB = loB, hiB = hiB, zB = zB, zA = zA, zR = zR, timeZero = timeZero,
timeLast = timeLast, maxTime = maxTime, inSamples = inSamples,
tindex = tindex, i1 = i1, i2 = i2)
}
.checkYfactor <- function(ydata, typeNames){
yordNames <- NULL
wf <- which( sapply(ydata,is.factor) )
if( length(wf) > 0 ){
if(!all(typeNames[wf] == 'CAT'))
stop('factors in ydata must be CAT data')
}
wc <- which( typeNames == 'CAT' )
wc <- which( !wc %in% wf )
if(length(wc) > 0){
ydata <- data.frame(ydata)
for(k in wc){
ydata[,k] <- as.factor(ydata[,k])
}
}
list(ydata = ydata, yordNames = yordNames)
}
.buildEffort <- function(y, effort, typeNames, verbose){
S <- length(typeNames)
effMat <- y*0 + 1
effMat[is.na(effMat)] <- 1
if( is.null(effort) ){
effort <- list(columns = 1:S, values = effMat)
} else {
if( is.list(effort$values) ){
effort$values <- as.matrix(effort$values)
}
if( !is.matrix(effort$values) ){
if(length(effort$values) == ncol(y)){
byrow <- T
warning('effort$values applied to columns')
}else{
byrow <- F
if(verbose)cat('\neffort$values applied to rows\n')
}
effMat <- matrix( effort$values, nrow(y), ncol(y), byrow = byrow)
rownames(effMat) <- rownames(y)
colnames(effMat) <- colnames(y)
}
effMat[,effort$columns] <- effort$values
effort$values <- as.matrix( effMat )
if(!is.null(colnames(effort$values)))colnames(effMat) <- .cleanNames(colnames(effMat))
}
effort$columns <- 1:S
effMat <- as.matrix(effMat)
we <- which(effort$values == 0 | is.na(effort$values))
if(length(we) > 0){
effort$values[we] <- 1
if( any(c('DA','CC') %in% typeNames) )
warning('missing or zero values in effort')
}
effMat[,!typeNames == 'DA'] <- 1
effMat[effMat == 0] <- 1
effort <- list(columns = effort$columns, values = effMat)
effort
}
.setupFactors <- function(xdata, xnames, factorObject){
factorList <- factorObject$factorList
contrast <- factorObject$contrast
Q <- length(xnames)
if(Q == 1){
return( list(dCont = matrix(1)) )
}
q1 <- Q - 1
fnames <- xnames
findex <- character(0)
nfact <- length(factorList)
if(nfact > 0){
findex <- sort( unique( unlist(factorList) ) )
fnames <- fnames[!fnames %in% findex]
}
tmp <- diag(length(fnames))
rownames(tmp) <- colnames(tmp) <- fnames
if(length(tmp) < 2){
eCont <- frow <- intercept <- numeric(0)
} else {
eCont <- tmp[drop=F,-1,]
frow <- rep(0,nrow(eCont))
intercept <- rep(0,nrow(eCont))
}
dCont <- lCont <- eCont
if(nfact > 0){
for(k in 1:nfact){
cm <- contrast[[k]]
colnames(cm) <- factorList[[k]]
rownames(cm) <- paste(names(factorList)[[k]],rownames(cm),sep='')
facK <- names(factorList)[[k]]
wx <- match(facK,colnames(xdata))
fnames <- as.character( levels(xdata[[wx]]) )
mm <- .getContrasts(facK, fnames)
D <- mm$D
L <- mm$L
C <- mm$C
if(length(eCont) > 1){
eCont <- .blockDiag(eCont,cm)
dCont <- .blockDiag(dCont,D[,-1,drop=F])
lCont <- .blockDiag(lCont,L[,-1,drop=F])
ec <- nrow(lCont)
bc <- ec - nrow(L) + 1
lCont[bc:ec,1] <- L[,1]
dCont[bc,1] <- -1
} else {
eCont <- cbind(0,cm)
colnames(eCont)[1] <- 'intercept'
dCont <- D
lCont <- L
}
nr2 <- nrow(cm)
nc2 <- ncol(cm)
intercept <- c(intercept,rep(1,nr2))
frow <- c(frow,rep(k,nr2))
}
eCont[,1] <- intercept
}
eCont <- eCont[drop=F,,xnames]
dCont <- t(dCont[drop=F,,xnames])
dCont[1,] <- abs(dCont[1,])
lCont <- lCont[drop=F,,xnames]
q1 <- nrow(eCont)
fnames <- rownames(eCont)
facList2 <- factorList
if(nfact > 0){
for(j in 1:nfact){
wj <- which(names(xdata) == names(factorList)[j])
facList2[[j]] <- levels(xdata[[wj]])
}
}
fmat <- matrix(0,q1,q1)
colnames(fmat) <- rownames(fmat) <- fnames
findex <- match(findex,xnames)
list(factorList = factorList, facList2 = facList2, fmat = fmat, fnames = fnames,
q1 = q1, lCont = lCont, dCont = dCont, eCont = eCont, findex = findex)
}
gjamSensitivity <- function(output, group=NULL, nsim=100, PERSPECIES = TRUE){
REDUCT <- FALSE
standRows <- output$inputs$standRows
factorBeta <- output$inputs$factorBeta
notOther <- output$inputs$notOther
standMatSd <- output$inputs$standMatSd
notStandard <- output$modelList$notStandard
ng <- output$modelList$ng
burnin <- output$modelList$burnin
x <- output$inputs$xStand
y <- output$inputs$y
beta <- output$parameters$betaMu
snames <- colnames(y)
xnames <- colnames(x)
Q <- length(xnames)
S <- length(snames)
S1 <- length(notOther)
bgibbs <- output$chains$bgibbs
sgibbs <- output$chains$sgibbs
if('kgibbs' %in% names(output$chains)){
REDUCT <- T
kgibbs <- output$chains$kgibbs
sigErrGibbs <- output$chains$sigErrGibbs
N <- output$modelList$reductList$N
r <- output$modelList$reductList$r
}
jj <- sample(burnin:ng,nsim,replace=T)
i <- 1
ns <- S
if( !is.null(group) )ns <- length(group)
for(j in jj){
bg <- matrix(bgibbs[j,],Q,S)
rownames(bg) <- xnames
colnames(bg) <- snames
if(!REDUCT){
sg <- .expandSigma(sgibbs[j,], S = S, REDUCT = F)
si <- solveRcpp( sg )
} else {
Z <- matrix(sgibbs[j,],N,r)
sg <- .expandSigma(sigErrGibbs[j], S, Z = Z, kgibbs[j,], REDUCT = T)
si <- invWbyRcpp(sigErrGibbs[j], Z[kgibbs[j,],])
}
tmp <- .contrastCoeff(beta=bg[,notOther],
notStand = notStandard[notStandard %in% xnames],
sigma = sg[notOther,notOther],
sinv = si[notOther,notOther],
stand = standMatSd, factorObject=factorBeta,
conditional = group)
if(i == 1){
fmat <- matrix(0,nsim,ncol(tmp$sens))
}
fsens <- diag(tmp$sens)
if(PERSPECIES)fsens <- fsens/ns
fmat[i,] <- fsens
i <- i + 1
}
colnames(fmat) <- colnames(tmp$sens)
fmat
}
.factorCoeffs2Zero <- function(factorObject, snames, priorObject){
zero <- numeric(0)
for(k in 1:factorObject$nfact){
wk <- grep('_',factorObject$missFacSpec[[k]])
if(length(wk) > 0){
sx <- .splitNames(factorObject$missFacSpec[[k]])$vnam
ij <- cbind(match(sx[,2],rownames(priorObject$lo)),match(sx[,1],snames))
zero <- rbind(zero,ij)
}
}
zero
}
.cleanDims <- function(mat){
colnames(mat) <- .cleanNames( colnames(mat) )
rownames(mat) <- .cleanNames( rownames(mat) )
mat
}
.cleanTimePriors <- function(form, prior, xdata){
formTerms <- unlist( strsplit( as.character(form), '+', fixed=T) )
formTerms <- .replaceString( formTerms[ !formTerms == '~' ], ' ', '')
xn <- colnames( model.matrix(form, xdata) )
xn[1] <- 'intercept'
rownames(prior$lo) <- .cleanNames(rownames(prior$lo))
rownames(prior$hi) <- .cleanNames(rownames(prior$hi))
plo <- matrix(-Inf, length(xn), ncol(prior$lo))
rownames(plo) <- xn
colnames(plo) <- colnames(prior$lo)
phi <- -plo
prior$lo <- prior$lo[ drop=F, rownames(prior$lo) %in% rownames(plo),]
prior$hi <- prior$hi[ drop=F, rownames(prior$hi) %in% rownames(phi),]
plo[rownames(prior$lo),] <- prior$lo
phi[rownames(prior$hi),] <- prior$hi
attr(prior$lo, "formula") <- form
attr(prior$hi, "formula") <- form
prior$lo <- .cleanDims(prior$lo)
prior$hi <- .cleanDims(prior$hi)
list( prior = prior, formTerms = formTerms, xnames = xn)
}
.gjam <- function(formula, xdata, ydata, modelList, verbose = FALSE){
holdoutN <- 0
holdoutIndex <- numeric(0)
breakList <- modelSummary <- reductList <- traitList <- NULL
specByTrait <- traitTypes <- notStandard <- NULL
censor <- censorCA <- censorDA <- CCgroups <- FCgroups <- intMat <- NULL
N <- r <- otherpar <- pg <- NULL
facNames <- character(0)
groupRandEff <- NULL
x <- y <- y0 <- effort <- NULL
ng <- 2000
burnin <- 500
BPRIOR <- LPRIOR <- REDUCT <- TRAITS <- FULL <- FALSE
termB <- termR <- termA <- FALSE
PREDICTX <- TRUE
rhoPrior <- betaPrior <- alphaPrior <- NULL
RANDOM <- FALSE
TIME <- FALSE
timeList <- timeZero <- timeLast <- timeIndex <- groupIndex <-
rowInserts <- Rmat <- Amat <- beta <- NULL
formulaBeta <- NULL
xl <- NULL
ematAlpha <- .5
alpha.DP <- ncol( ydata )
xdata <- as.data.frame( xdata )
colnames(ydata) <- .cleanNames( colnames(ydata) )
colnames(xdata) <- .cleanNames( colnames(xdata) )
wf <- which(sapply(xdata, is.factor))
if(length(wf) > 0){
for(j in wf){
jt <- as.character(xdata[,j])
jt <- .cleanNames( jt )
xdata[,j] <- as.factor(jt)
}
}
if(alpha.DP == 1)
stop('this is a multivariate model: at least 2 columns needed in ydata')
for(k in 1:length(modelList))assign( names(modelList)[k], modelList[[k]] )
if('CCgroups' %in% names(modelList))attr(typeNames,'CCgroups') <- CCgroups
if('FCgroups' %in% names(modelList))attr(typeNames,'FCgroups') <- FCgroups
if('CATgroups' %in% names(modelList))attr(typeNames,'CATgroups') <- CATgroups
if(missing(xdata)) xdata <- environment(formula)
formTerms <- unlist( strsplit( as.character(formula), '+', fixed=T) )
formTerms <- .replaceString( formTerms[ !formTerms == '~' ], ' ', '')
ft <- c( grep('_', formTerms), grep('-', formTerms) )
if(length(ft) > 0)stop( " reserved characters '_' or '-' in formula variables, rename" )
if( is.null(timeList) ){
termB <- TRUE
if( !is.null(betaPrior) ) BPRIOR <- TRUE
}else{
if(verbose)cat('\nFitted as a time series model\n')
wterms <- character(0)
ww <- which( sapply( timeList, is.null ) )
if(length(ww) > 0)timeList <- timeList[ -ww ]
for(k in 1:length(timeList))assign( names(timeList)[k], timeList[[k]] )
if( "betaPrior" %in% names(timeList) ){
tb <- .cleanTimePriors(formulaBeta, timeList$betaPrior, xdata)
timeList$betaPrior <- tb$prior
formTerms <- tb$formTerms
xnames <- tb$xnames
wterms <- 'beta'
termB <- TRUE
if( all(timeList$betaPrior$lo == -Inf) &
all(timeList$betaPrior$hi == Inf) ){
betaPrior <- NULL
BPRIOR <- FALSE
}else{
BPRIOR <- TRUE
}
}
if( "rhoPrior" %in% names(timeList) ){
formulaRho <- timeList$formulaRho
tb <- .cleanTimePriors(formulaRho, timeList$rhoPrior, xdata)
timeList$rhoPrior <- tb$prior
formTerms <- unique( c(formTerms, tb$formTerms) )
xlnames <- tb$xnames
wterms <- c( wterms, 'rho')
termR <- TRUE
LPRIOR <- TRUE
}
if( "alphaPrior" %in% names(timeList) ){
timeList$alphaPrior$lo <- .cleanDims(timeList$alphaPrior$lo)
timeList$alphaPrior$hi <- .cleanDims(timeList$alphaPrior$hi)
wterms <- c( wterms, 'alpha')
termA <- TRUE
APRIOR <- TRUE
}
if(verbose)cat( paste('\nTime series terms are ', paste0( wterms, collapse = ', ' ), '.\n', sep='') )
formula <- as.formula( paste( '~', paste0(formTerms, collapse = '+') ) )
TIME <- T
holdoutN <- 0
holdoutIndex <- numeric(0)
}
if( is.character(formula) )formula <- as.formula(formula)
if( !is.null(traitList) ){
TRAITS <- T
for(k in 1:length(traitList))assign( names(traitList)[k], traitList[[k]] )
stt <- .replaceString(colnames(specByTrait),'_','')
colnames(specByTrait) <- stt
colnames(plotByTrait) <- stt
colnames(traitList$specByTrait) <- stt
colnames(traitList$plotByTrait) <- stt
modelList$traitList <- traitList
if(verbose)cat('\nFitted as a trait model\n')
}
if(burnin >= ng) stop( 'burnin must be < no. MCMC steps, ng' )
if('censor' %in% names(modelList)){
for(k in 1:length(censor)){
if( nrow(censor[[k]]$partition) != 3 )
stop('censor matrix: 3 rows for value, lo, hi')
rownames(censor[[k]]$partition) <- c('value','lo','hi')
}
}
S <- ncol(ydata)
if(length(typeNames) == 1)typeNames <- rep(typeNames,S)
if(length(typeNames) != S)
stop('typeNames must be one value or no. columns in y')
tmp <- .checkYfactor(ydata, typeNames)
ydata <- tmp$ydata; yordNames <- tmp$yordNames
if(TRAITS){
if(!all( typeNames %in% c('CC','FC') ) )
stop('trait prediction requires composition data (CC or FC)')
if(nrow(plotByTrait) != nrow(ydata))
stop('nrow(plotByTrait) must equal nrow(ydata)')
if(ncol(plotByTrait) != length(traitTypes))
stop('ncol(plotByTrait) must equal length(traitTypes)')
if(ncol(plotByTrait) != length(traitTypes))
stop('ncol(plotByTrait) must equal length(traitTypes)')
ii <- identical(rownames(specByTrait),colnames(ydata))
if(!ii){
ww <- match(colnames(ydata),rownames(specByTrait) )
if( is.finite(min(ww)) ){
specByTrait <- specByTrait[ww,]
} else {
stop( 'rownames(specByTrait) must match colnames(ydata)' )
}
}
if(typeNames[1] == 'CC'){
ytmp <- round(ydata,0)
ytmp[ytmp == 0 & ydata > 0] <- 1
ydata <- ytmp
rm(ytmp)
}
}
tmp <- .buildYdata(ydata, typeNames)
y <- as.matrix( tmp$y )
ydataNames <- tmp$ydataNames
typeNames <- tmp$typeNames
CCgroups <- tmp$CCgroups
FCgroups <- tmp$FCgroups
CATgroups <- tmp$CATgroups
if(TRAITS) rownames(specByTrait) <- colnames(y)
S <- ncol(y)
n <- nrow(y)
if(verbose){
cat("\nObservations and responses:\n")
print(c(n, S))
}
tmp <- .buildEffort(y, effort, typeNames, verbose)
effort <- tmp
effMat <- effort$values
modelList$effort <- effort
y2e <- y/effMat
y2e <- y2e[y2e > 0 ]
re <- floor( diff( range(log10(y2e),na.rm=T) ) )
if(re > 3 & verbose)
cat(paste('\nNote: y/effort > ', re, ' orders of magnitude--consider units near 1\n',sep='') )
tmp <- .gjamGetTypes(typeNames)
typeCols <- tmp$typeCols
typeFull <- tmp$typeFull
typeCode <- tmp$TYPES[typeCols]
allTypes <- sort(unique(typeCols))
standard <- colnames(xdata)[!colnames(xdata) %in% notStandard]
standard <- standard[ standard != 'intercept' ]
tmp <- .gjamXY(formula, xdata, y, typeNames, notStandard, verbose = verbose)
x <- tmp$x; y <- tmp$y; snames <- tmp$snames
xnames <- tmp$xnames
interBeta <- tmp$interaction
factorBeta <- tmp$factorAll
designTable <- tmp$designTable
xscale <- tmp$xscale
predXcols <- tmp$predXcols
standMatSd <- tmp$standMatSd
standMatMu <- tmp$standMatMu
xdataNames <- tmp$xdataNames
standRows <- tmp$standRows
factorRho <- interRho <- NULL
xlnames <- character(0)
if( termB & TIME ){
tmp <- .gjamXY(formulaBeta, xdata, y, typeNames, notStandard)
xnames <- tmp$xnames
interBeta <- tmp$interaction
factorBeta <- tmp$factorAll
designTable <- list(beta = tmp$designTable)
standMatSdB <- tmp$standMatSd
standMatMuB <- tmp$standMatMu
standRowsB <- tmp$standRows
notStandardB <- tmp$notStandard
}
if( termR ){
tmp <- .gjamXY(formulaRho, xdata, y, typeNames, notStandard)
xl <- tmp$x
xlnames <- tmp$xnames
interRho <- tmp$interaction
factorRho <- tmp$factorAll
designTable <- append( designTable, list(rho = tmp$designTable) )
standMatSdL <- tmp$standMatSd
standMatMuL <- tmp$standMatMu
standRowsL <- tmp$standRows
notStandardL <- tmp$notStandard[tmp$notStandard %in% xlnames]
rho <- matrix(0, ncol(xl), ncol(y))
rownames(rho) <- colnames(xl)
colnames(rho) <- colnames(y)
}
modelList$formula <- formula
modelList$notStandard <- notStandard
Q <- ncol(x)
tmp <- .gjamMissingValues(x, y, factorBeta$factorList, typeNames, verbose)
xmiss <- tmp$xmiss; xbound <- tmp$xbound;
ymiss <- tmp$ymiss; missY <- tmp$missY
xprior <- tmp$xprior; yprior <- tmp$yprior
nmiss <- nrow(xmiss); mmiss <- nrow(ymiss)
x <- tmp$x; y <- tmp$y
if( termR ){
tmp <- .gjamMissingValues(xl, y, factorRho$factorList, typeNames)
xlmiss <- tmp$xmiss; xlbound <- tmp$xbound;
xlprior <- tmp$xprior
nlmiss <- nrow(xmiss)
xl <- tmp$x
}
tmp <- .gjamHoldoutSetup(holdoutIndex, holdoutN, n)
holdoutIndex <- tmp$holdoutIndex; holdoutN <- tmp$holdoutN
inSamples <- tmp$inSamples; nIn <- tmp$nIn
tmp <- .gjamSetup(typeNames, x, y, breakList, holdoutN, holdoutIndex,
censor=censor, effort=effort)
w <- tmp$w; z <- tmp$z; y <- tmp$y; other <- tmp$other; cuts <- tmp$cuts
cutLo <- tmp$cutLo; cutHi <- tmp$cutHi; plo <- tmp$plo; phi <- tmp$phi
ordCols <- tmp$ordCols; disCols <- tmp$disCols; compCols <- tmp$compCols
conCols <- which(typeNames == 'CON')
classBySpec <- tmp$classBySpec; breakMat <- tmp$breakMat
minOrd <- tmp$minOrd; maxOrd <- tmp$maxOrd; censorCA <- tmp$censorCA
censorDA <- tmp$censorDA; censorCON <- tmp$censorCON;
ncut <- ncol(cuts); corCols <- tmp$corCols
catCols <- which(attr(typeNames,'CATgroups') > 0)
sampleW <- tmp$sampleW
ordShift <- tmp$ordShift
sampleW[censorCA] <- 1
sampleW[censorDA] <- 1
sampleW[censorCON] <- 1
sampleWhold <- tgHold <- NULL
wHold <- NULL
wmax <- 1.5*apply(y/effMat,2,max,na.rm=T)
pmin <- -abs(wmax)
if(mmiss > 0){
phi[ ymiss ] <- wmax[ ymiss[,2] ]
plo[ ymiss ] <- pmin[ ymiss[,2] ]
sampleW[ ymiss ] <- 1
}
ploHold <- phiHold <- NULL
if( holdoutN > 0 ){
sampleWhold <- sampleW[holdoutIndex,]
sampleW[holdoutIndex,] <- 1
tgHold <- cuts
wHold <- w[drop=F,holdoutIndex,]
ploHold <- plo[drop=F,holdoutIndex,]
phiHold <- phi[drop=F,holdoutIndex,]
}
byCol <- byRow <- F
if(attr(sampleW,'type') == 'cols')byCol <- T
if(attr(sampleW,'type') == 'rows')byRow <- T
indexW <- attr(sampleW,'index')
notCorCols <- c(1:S)
if(length(corCols) > 0)notCorCols <- notCorCols[-corCols]
Q <- ncol(x)
sigmaDf <- nIn - Q + S - 1
sg <- diag(.1,S)
SO <- S
notOther <- c(1:S)
sgOther <- NULL
if(length(other) > 0){
notOther <- notOther[!notOther %in% other]
SO <- length(notOther)
sg[other,] <- sg[,other] <- 0
sgOther <- matrix( cbind(other,other),ncol=2 )
sg[sgOther] <- .1
}
loB <- hiB <- NULL
beta <- bg <- matrix(0, Q, S)
rownames(beta) <- colnames(x)
wB <- which(bg == 0, arr.ind=T)
if( BPRIOR ){
loB <- betaPrior$lo
hiB <- betaPrior$hi
if( ncol(loB) != ncol(y) |
ncol(hiB) != ncol(y))stop('betaPrior$lo or betaPrior$hi do not match ydata columns')
xrange <- max( abs(range(x)) )
loB['intercept', loB['intercept',] < -10*xrange] <- -10*xrange
hiB['intercept', hiB['intercept',] > 10*xrange] <- 10*xrange
if(length(standRows) > 0){
btmp <- loB[standRows,]
btmp[ which(btmp < -5) ] <- -5
loB[standRows, ] <- btmp
btmp <- hiB[standRows,]
btmp[ btmp > 5 ] <- 5
hiB[standRows, ] <- btmp
}
bg <- (loB + hiB)/2
bg[is.nan(bg)] <- 0
tmp <- .betaPrior(bg, notOther, loB, hiB)
bg <- tmp$beta; loB <- tmp$loB; hiB <- tmp$hiB
wB <- tmp$wB; zB <- tmp$zB
bg[is.nan(bg) | bg == Inf | bg == -Inf] <- 0
tmp <- .getPattern(bg[,notOther], wB)
Brows <- tmp$rows
Bpattern <- tmp$pattern
bg[!is.finite(bg)] <- 0
zeroBeta <- .factorCoeffs2Zero(factorBeta, snames, betaPrior)
}
zeroRho <- NULL
if( TIME ){
wB <- wL <- wA <- numeric(0)
mua <- mub <- mug <- muw <- w*0
Umat <- Vmat <- Rmat <- Amat <- NULL
Brows <- Rrows <- Arows <- Bpattern <- Rpattern <- Apattern <- NULL
tmp <- .getTimeIndex(timeList, other, notOther, xdata, x, xl, y, w,
termB, termR, termA)
if(termA){
Amat <- tmp$Amat; Apattern <- tmp$Apattern; wA <- tmp$wA; zA = tmp$zA;
Umat <- tmp$Umat; uindex <- tmp$uindex; Arows <- tmp$Arows
loAmat <- tmp$loAmat; hiAmat <- tmp$hiAmat; aindex <- tmp$aindex
Unew <- Umat
}
if(termR & LPRIOR){
Rmat <- tmp$Rmat; Rpattern <- tmp$Rpattern; wL <- tmp$wL; zR = tmp$zR;
Vmat <- tmp$Vmat; Rrows <- tmp$Rrows; gindex <- tmp$gindex
loRmat <- tmp$loRmat; hiRmat <- tmp$hiRmat
zeroRho <- .factorCoeffs2Zero(factorRho, snames, rhoPrior)
timeList$rhoPrior$hi[zeroRho] <- rhoPrior$hi[zeroRho] <- 0
Vnew <- Vmat
standMatSdRmat <- Rmat*0
notStandardRmat <- numeric(0)
if(length(standRowsL) > 0){
csl <- paste('_',names(standRowsL),sep='')
for(j in 1:length(csl)){
wj <- grep(csl[j],rownames(Rmat))
standMatSdRmat[wj,] <- standMatSdL[standRowsL[j],]
notStandardRmat <- c(notStandardRmat,wj)
}
}
}
if(termB){
Brows <- tmp$Brows; bg <- tmp$bg; Bpattern <- tmp$Bpattern
wB <- tmp$wB; zB <- tmp$zB; loB <- tmp$loB; hiB <- tmp$hiB
if(BPRIOR)timeList$betaPrior$hi[zeroBeta] <- betaPrior$hi[zeroBeta] <- 0
}
timeZero <- tmp$timeZero; timeLast <- tmp$timeLast
maxTime <- tmp$maxTime; inSamples <- tmp$inSamples
tindex <- tmp$tindex; sindex <- tmp$sindex; i1 <- tmp$i1; i2 <- tmp$i2
if(!REDUCT ){
if(length(wA) > 300)modelList$reductList <- list(N = 8, r = 5)
}
bigx <- numeric(0)
if(termB){
bigx <- x[tindex[,2],xnames]
nb <- nrow(bg)
}
if(termR){
bigx <- cbind(bigx, Vmat[tindex[,2],])
nr <- nrow(Rmat)
}
if(termA){
bigx <- cbind(bigx, Umat[tindex[,2],])
na <- nrow(Amat)
}
bigc <- crossprod(bigx)
diag(bigc) <- diag(bigc)*1.00001
bigi <- try( solve(bigc), silent = TRUE )
if(inherits(bigi,'try-error'))bigi <- ginv(bigc)
Y <- w[tindex[,2],notOther] - w[tindex[,1],notOther]
init <- bigi%*%crossprod(bigx, Y)
if(termB){
binit <- init[1:nb,]
init <- init[-c(1:nb),]
binit[binit < loB] <- loB[binit < loB]
binit[binit > hiB] <- hiB[binit > hiB]
ones <- binit*0
ones[ wB ] <- 1
bg[ 1:length(bg) ] <- as.vector( binit*ones )
}
if(termR){
rinit <- init[1:nr,]
init <- init[-c(1:nr),]
rinit[rinit < loRmat] <- loRmat[rinit < loRmat]
rinit[rinit > hiRmat] <- hiRmat[rinit > hiRmat]
ones <- rinit*0
ones[ wL ] <- 1
Rmat[1:length(Rmat)] <- as.vector( rinit*ones )
}
if(termA){
ainit <- init
loA <- loAmat
loA[ !is.finite(loA) ] <- 0
hiA <- hiAmat
hiA[ !is.finite(hiA) ] <- 0
ainit[ainit < loA] <- loA[ainit < loA]
ainit[ainit > hiA] <- hiA[ainit > hiA]
ones <- ainit*0
ones[ wA ] <- 1
Amat[1:length(Amat)] <- as.vector( ainit*ones )
}
rm(bigx, bigc, bigi, init)
}
reductList <- .setupReduct(modelList, S, Q, n)
if(is.null(reductList)){
REDUCT <- FALSE
}else{
N <- reductList$N; r <- reductList$r
REDUCT <- T
}
if(byCol){
inw <- intersect( colnames(y)[indexW], colnames(y)[notOther] )
indexW <- match(inw,colnames(y)[notOther])
}
updateBeta <- .betaWrapper(REDUCT, TIME, notOther, betaLim=max(wmax)/2)
inSamp <- inSamples
.param.fn <- .paramWrapper(REDUCT, inSamp, SS=length(notOther))
sigmaerror <- .1
otherpar <- list(S = S, Q = Q, sigmaerror = sigmaerror,
Z = NA, K =rep(1,S), sigmaDf = sigmaDf)
sigErrGibbs <- rndEff <- NULL
yp <- y
wmax <- ymax <- apply(y,2,max)
wmax <- wmax/effMat
if(REDUCT){
cat( paste('\nDimension reduced from',S,'X',S,'to',N,'X',r,'in Sigma\n') )
otherpar$N <- N; otherpar$r <- r; otherpar$sigmaerror <- 0.1
otherpar$Z <- rmvnormRcpp(N, rep(0,r), 1/S*diag(r))
otherpar$D <- .riwish(df = (2 + r + N),
S = (crossprod(otherpar$Z) +
2*2*diag(rgamma(r,shape=1,rate=0.001))))
otherpar$K <- sample(1:N,length(notOther),replace=T)
otherpar$alpha.DP <- alpha.DP
otherpar$pvec <- .sampleP(N=N, avec=rep(alpha.DP/N,(N-1)),
bvec=((N-1):1)*alpha.DP/N, K=otherpar$K)
kgibbs <- matrix(1,ng,S)
sgibbs <- matrix(0,ng, N*r)
nnames <- paste('N',1:N,sep='-')
rnames <- paste('r',1:r,sep='-')
colnames(sgibbs) <- .multivarChainNames(nnames,rnames)
sigErrGibbs <- rep(0,ng)
rndEff <- w*0
} else {
Kindex <- which(as.vector(lower.tri(diag(S),diag=T)))
nK <- length(Kindex)
sgibbs <- matrix(0,ng,nK)
colnames(sgibbs) <- .multivarChainNames(snames,snames)[Kindex]
rndEff <- 0
}
out <- .param.fn( x[,xnames,drop=F], beta = bg[,notOther,drop=F],
Y = w[,notOther], otherpar )
sg[notOther,notOther] <- out$sg
sinv <- solveRcpp(sg[notOther,notOther])
otherpar <- out$otherpar
muw <- w
if( !TIME ){
Y <- w[inSamp,notOther]
sig <- sg[notOther,notOther]
if(REDUCT){
Y <- Y - rndEff[inSamp,notOther]
sig <- sigmaerror
}
bg[,notOther] <- updateBeta(X = x[inSamp,], Y, sig,
beta = bg[,notOther], BPRIOR, loB, hiB)
muw <- x%*%bg
sg[other,] <- sg[,other] <- 0
diag(sg)[other] <- .1
}else{
mub <- mua <- mug <- 0
xr <- rndEff
if(termR){
mug <- Vmat%*%Rmat
xr <- xr + mug
}
if(termA){
mua <- Umat%*%Amat
xr <- xr + mua
}
Y <- w - xr
Y[tindex[,1],] <- Y[tindex[,2],] - w[tindex[,1],]
if(REDUCT){
sig <- sigmaerror
}else{
sig <- sg[notOther,notOther]
}
if(termB){
bg[,notOther] <- updateBeta(X = x[tindex[,1],xnames], Y = Y[tindex[,1],notOther],
sig = sig, beta = bg[,notOther],
PRIOR = BPRIOR,
lo = loB[,notOther], hi = hiB[,notOther],
rows=Brows, pattern=Bpattern, sinv = sinv, wF = wB)
mub <- x[,xnames]%*%bg
}
colnames(bg) <- snames
muw <- mub + mug + mua
wpropTime <- .001 + .1*abs(w)
}
rownames(sg) <- colnames(sg) <- snames
rownames(bg) <- xnames
cutg <- tg <- numeric(0)
if('OC' %in% typeCode){
tg <- cutg <- cuts
cnames <- paste('C',1:ncut,sep='-')
nor <- length(ordCols)
cgibbs <- matrix(0,ng,(ncut-3)*nor)
colnames(cgibbs) <- as.vector( outer(snames[ordCols],
cnames[-c(1,2,ncut)],paste,sep='_') )
tmp <- .gjamGetCuts(y+1,ordCols)
cutLo <- tmp$cutLo
cutHi <- tmp$cutHi
plo[,ordCols] <- tg[cutLo]
phi[,ordCols] <- tg[cutHi]
lastOrd <- ncol(tg)
}
tmp <- .gjamGetTypes(typeNames)
typeFull <- tmp$typeFull
typeCols <- tmp$typeCols
allTypes <- unique(typeCols)
Y <- w
LOHI <- F
if(!LOHI & holdoutN > 0){
minlo <- apply(plo,2,min)
minlo[minlo > 0] <- 0
maxhi <- apply(phi,2,max)
}
if( 'random' %in% names(modelList)) RANDOM <- TRUE
if(!TIME){
.updateW <- .wWrapper(REDUCT, RANDOM, S, effMat, corCols, notCorCols, typeNames,
typeFull, typeCols,
allTypes, holdoutN, holdoutIndex, censor,
censorCA, censorDA, censorCON, notOther, sampleW,
byRow, byCol,
indexW, ploHold, phiHold, sampleWhold, inSamp)
}else{
.updateW <- .wWrapperTime(sampleW, y, timeZero, timeLast, i1, i2, tindex, gindex,
uindex, notOther, n, S, REDUCT, RANDOM, TIME,
termB, termR, termA, corCols)
Y <- w
Y[ tindex[,1],] <- Y[ tindex[,2],] - w[ tindex[,1],]
if(termA) Y <- Y - mua
if(termR) Y <- Y - mug
if(RANDOM)Y <- Y - rndEff
}
ycount <- rowSums(y)
if('CC' %in% typeCode)ycount <- rowSums(y[,compCols])
bgg <- bg
if( TIME & termR){
tmp <- colnames( model.matrix(formula, xdata) )
bgg <- matrix( 0, length(tmp), S)
rownames(bgg) <- tmp
colnames(bgg) <- snames
rownames(bgg)[1] <- 'intercept'
}
tmp <- .xpredSetup(Y, x, bgg, isNonLinX = interBeta$isNonLinX,
factorObject = factorBeta,
intMat = factorBeta$intMat,
standMatSd = standMatSd, standMatMu = standMatMu,
notOther, notStandard )
factorBeta$linFactor <- tmp$linFactor; xpred <- tmp$xpred; px <- tmp$px
lox <- tmp$lox; hix <- tmp$hix
propx <- tmp$propx
priorXIV <- diag(1e-5,ncol(x))
priorX <- colMeans(x)
priorX[abs(priorX) < 1e-10] <- 0
linFactor <- NULL
if( RANDOM ){
rname <- modelList$random
randGroupTab <- table( as.character(xdata[,rname]) )
wss <- names(randGroupTab[randGroupTab <= 2])
if(length(wss) > 0){
cat('\nNote: one or more random groups with one observations\n')
}
randGroups <- names( randGroupTab )
G <- length(randGroups)
groupIndex <- match(as.character(xdata[,rname]),randGroups)
rmm <- matrix(groupIndex,length(groupIndex), S)
smm <- matrix(1:S, length(groupIndex), S, byrow=T)
randGroupIndex <- cbind( as.vector(smm), as.vector(rmm) )
colnames(randGroupIndex) <- c('species','group')
xdata[,rname] <- as.factor(xdata[,rname])
alphaRandGroup <- matrix(0, S, G)
rownames(alphaRandGroup) <- snames
colnames(alphaRandGroup) <- randGroups
Cmat <- var(w[,notOther]/2)
Cmat <- Cmat + diag(.1*diag(Cmat))
Cprior <- Cmat
CImat <- solve(Cprior)
Ckeep <- diag(S)
alphaRanSums <- alphaRanSums2 <- alphaRandGroup*0
groupRandEff <- w*0
Aindex <- which(as.vector(lower.tri(diag(S),diag=T)))
nK <- length(Aindex)
alphaVarGibbs <- matrix(0,ng,nK)
colnames(alphaVarGibbs) <- .multivarChainNames(snames,snames)[Aindex]
if(verbose)cat( paste('\nRandom groups:', randGroups, '\n', sep = '') )
if(verbose){
rpp <- paste0( randGroups, collapse = ', ')
cat( paste('\nRandom groups: ', rpp, '\n', sep = '') )
}
}
Qall <- Q - 1
linFactor <- numeric(0)
lf <- factorBeta$linFactor
xnAll <- unique( c(xnames, xlnames) )
if( length(lf) > 0 ){
for(k in 1:length(lf)){
kf <- match(xnAll[lf[[k]]],colnames(xpred))
linFactor <- append(linFactor,list(kf))
names(linFactor)[length(linFactor)] <- names(factorBeta$linFactor)[k]
}
}
if( termB & TIME ){
tmp <- .xpredSetup(Y, x, bg, isNonLinX = interBeta$isNonLinX,
factorObject = factorBeta,
intMat = factorBeta$intMat,
standMatSd = standMatSdB, standMatMu = standMatMuB,
notOther, notStandardB )
factorBeta$linFactor <- tmp$linFactor
linFactorBeta <- numeric(0)
lf <- factorBeta$linFactor
if( length(lf) > 0 ){
for(k in 1:length(lf)){
kf <- match(xnames[lf[[k]]],colnames(xpred))
linFactorBeta <- append(linFactorBeta,list(kf))
names(linFactorBeta)[length(linFactorBeta)] <- names(factorBeta$linFactor)[k]
}
}
}
if( termR ){
rho[ rho %in% c(-Inf, Inf) ] <- 0
tmp <- .xpredSetup(Y, xx = xl, bgg = rho,
isNonLinX = interRho$isNonLinX,
factorObject = factorRho,
intMat = interRho$intMat,
standMatSd = standMatSdL,
standMatMu = standMatMuL,
notOther, notStandard = notStandardL )
factorRho$linFactor <- tmp$linFactor
linFactorRho <- numeric(0)
lf <- factorRho$linFactor
if( length(lf) > 0 ){
for(k in 1:length(lf)){
kf <- match(xlnames[lf[[k]]],colnames(xpred))
linFactorRho <- append(linFactorRho,list(kf))
names(linFactorRho)[length(linFactorRho)] <- names(factorRho$linFactor)[k]
}
}
}
if( termB ){
tmp <- .setupFactors(xdata, xnames, factorBeta)
ff <- factorBeta[names(factorBeta) != 'factorList']
factorBeta <- append(ff,tmp)
}
if( termR ){
tmp <- .setupFactors(xdata, xlnames, factorRho)
ff <- factorRho[names(factorRho) != 'factorList']
factorRho <- append(ff,tmp)
}
richness <- richFull <- NULL
RICHNESS <- F
inRichness <- which(!typeNames %in% c('CON','CAT','OC'))
inRichness <- inRichness[!inRichness %in% other]
if(length(inRichness) > 2)RICHNESS <- T
wrich <- y*0
wrich[,inRichness] <- 1
wrich[ymiss] <- 0
ess <- matrix(0,S,S)
colnames(ess) <- rownames(ess) <- snames
loESS <- hiESS <- lmESS <- hmESS <- ess
esens1 <- esens2 <- rep(0, S)
fmat <- factorBeta$fmat
fnames <- rownames( factorBeta$lCont )
if( termB & !TIME ){
facNames <- names(factorBeta$factorList)
fl <- character(0)
for(k in 1:length(facNames)){
kk <- which( startsWith( rownames(factorBeta$lCont), facNames[k] ) )
fc <- rownames( factorBeta$lCont )[kk]
fl <- c(fl, fc)
}
}
if( termB & TIME ){
fmat <- factorBeta$fmat
fnames <- rownames( factorBeta$lCont )
facNames <- names(factorBeta$factorList)
if(!is.null(facNames)){
fl <- character(0)
for(k in 1:length(facNames)){
kk <- which( startsWith( rownames(factorBeta$lCont), facNames[k] ) )
fc <- rownames( factorBeta$lCont )[kk]
fl <- c(fl, fc)
}
attr(bg, 'factors') <- facNames
attr(bg, 'factorLevels') <- fl
}
}
if( termR ){
facNames <- names(factorRho$factorList)
if(!is.null(facNames)){
fl <- character(0)
for(k in 1:length(facNames)){
kk <- which( startsWith( rownames(factorRho$lCont), facNames[k] ) )
fc <- rownames( factorRho$lCont )[kk]
fl <- c(fl, fc)
}
attr(Rmat, 'factors') <- facNames
attr(Rmat, 'factorLevels') <- fl
attr(Rmat, 'formula') <- formulaRho
factorRho$LCONT <- rep(TRUE, factorRho$nfact)
flnames <- rownames( factorRho$lCont )
}
essL <- ess*0
lsens1 <- lsens2 <- rep(0, S)
RmatU <- Rmat
}
if( termA ){
essA <- ess*0
asens1 <- asens2 <- rep(0, S)
}
presence <- w*0
covx <- cov(x)
predx <- predx2 <- xpred*0
yerror <- ypred <- ypred2 <- wpred <- wpred2 <- ymissPred <- ymissPred2 <- y*0
sumDev <- 0
sMean <- sg*0
ntot <- 0
if(nmiss > 0){
xmissSum <- xmissSum2 <- rep(0,nmiss)
}
predxl <- numeric(0)
if(TIME & termR)predxl <- predxl2 <- xl*0
q2 <- length(fnames)
if(TRAITS){
specTrait <- specByTrait[colnames(y),]
tnames <- colnames(specTrait)
M <- ncol(specTrait)
specTrait <- t(specTrait)
tpred <- tpred2 <- matrix(0,n,M)
missTrait <- which(is.na(specTrait),arr.ind=T)
if(length(missTrait) > 0){
traitMeans <- rowMeans(specTrait,na.rm=T)
specTrait[missTrait] <- traitMeans[missTrait[,2]]
warning( paste('no. missing trait values:',nrow(missTrait)) )
}
bTraitGibbs <- matrix(0,ng,M*Q)
colnames(bTraitGibbs) <- .multivarChainNames(xnames,tnames)
bTraitFacGibbs <- matrix(0,ng,q2*M)
colnames(bTraitFacGibbs) <- .multivarChainNames(fnames,tnames)
mgibbs <- matrix(0,ng,M*M)
colnames(mgibbs) <- .multivarChainNames(tnames,tnames)
}
if( termB ){
bgibbsUn <- NULL
fbnames <- colnames( factorBeta$dCont )
bf <- .multivarChainNames( fbnames, snames[notOther] )
bFacGibbs <- matrix(0, ng, length(bf))
colnames(bFacGibbs) <- bf
bf <- .multivarChainNames(xnames, snames, keep = wB)
bgibbs <- matrix(0, ng, length(bf) )
colnames(bgibbs) <- bf
if( length(standRows) > 0 ){
bgibbsUn <- bgibbs
}
fSensGibbs <- matrix( 0, ng, length(fbnames) )
colnames(fSensGibbs) <- fbnames
covE <- cov( x[,xnames]%*%factorBeta$dCont[xnames,fbnames] )
}
if( TIME ){
yy <- y*0
yy[rowInserts,] <- 1
ymiss <- which(yy == 1, arr.ind=T)
rm(yy)
mmiss <- length(ymiss)
if(termR){
covL <- cov( xl%*%factorRho$dCont )
nL <- nrow(wL)
lgibbs <- matrix(0, ng, nL)
colnames(lgibbs) <- rownames(wL)
lgibbsUn <- lgibbs
spL <- rep(.01, nL)
}
if(termA){
nA <- nrow(wA)
wnames <- apply(wA, 1, paste0, collapse='-')
alphaGibbs <- matrix(0, ng, nA)
colnames(alphaGibbs) <- wnames
spA <- rep(.001, nA)
}
ni <- length(i1)
g1 <- 1
gcheck <- c(50, 100, 200, 400, 800)
tinyg <- 1e-6
}
pbar <- txtProgressBar(min=1,max=ng,style=1)
xf <- NULL
if(length(facNames) > 0){
xf <- xdata[, facNames, drop=F]
}
tmp <- .getUnstandX(formula, x, standRows, standMatMu[,1], standMatSd[,1],
factorColumns = xf )
S2U <- tmp$S2U
xUnstand <- tmp$xu
if( Q == 1 )PREDICTX <- FALSE
if(TIME & termB){
tmp <- .getUnstandX(formula, x[,xnames], standRowsB, standMatMuB[,1],standMatSdB[,1],
factorColumns = xf )
S2U <- tmp$S2U
}
if(termR){
facNamesRho <- attr(Rmat, 'factors')
xf <- NULL
if(length(facNames) > 0){
xf <- xdata[, facNamesRho, drop=F]
}
tmp <- .getUnstandX( formulaRho, xl, standRowsL, standMatMuL[,1], standMatSdL[,1],
factorColumns = xf )
S2UL <- tmp$S2U
xlUnstand <- tmp$xu
}
if(REDUCT)rndTot <- rndTot2 <- w*0
notPA <- which(!typeNames == 'PA' & !typeNames == 'CON')
if(length(y) < 10000 | FULL) FULL <- T
if(FULL){
ygibbs <- matrix(0,ng,length(y))
}
if(RICHNESS){
ypredPres <- ypredPres2 <- ypredPresN <- y*0
shannon <- rep(0,n)
}
varExp <- varTot <- varExpMean <- varExpRand <- rep( 0, length(notOther) )
sdg <- .1
for(g in 1:ng){
if( REDUCT ){
Y <- w[,notOther]
if(RANDOM)Y <- Y - groupRandEff[,notOther]
if(TIME){
Y <- Y - mua[,notOther] - mug[,notOther]
Y[tindex[,2],] <- Y[tindex[,2],] - w[tindex[,1],notOther]
}
tmp <- .param.fn(X = x[,xnames], beta = bg[,notOther], Y = Y, otherpar)
sg[notOther,notOther] <- tmp$sg
otherpar <- tmp$otherpar
rndEff[inSamples,notOther] <- tmp$rndEff
sigmaerror <- otherpar$sigmaerror
kgibbs[g,notOther] <- otherpar$K
sgibbs[g,] <- as.vector(otherpar$Z)
sigErrGibbs[g] <- sigmaerror
sg[sgOther] <- .1*sigmaerror
sinv <- .invertSigma(sg[notOther,notOther],sigmaerror,otherpar,REDUCT)
sdg <- sqrt(sigmaerror)
if( !TIME ){
Y <- w[inSamp,notOther] - rndEff[inSamp,notOther]
if(RANDOM)Y <- Y - groupRandEff[inSamp,notOther]
bg[,notOther] <- updateBeta(X = x[inSamp,xnames], Y,
sig = sigmaerror, beta = bg[,notOther],
PRIOR = BPRIOR, lo=loB[,notOther], hi=hiB[,notOther])
muw[inSamp,] <- x[inSamp,]%*%bg
} else {
mua <- mug <- w*0
if(termA)mua <- Umat%*%Amat
if(termR)mug <- Vmat%*%Rmat
Y <- w[,notOther] - mua[,notOther] - mug[,notOther] - rndEff[,notOther]
Y[tindex[,2],] <- Y[tindex[,2],] - w[tindex[,1],notOther]
if(RANDOM)Y <- Y - groupRandEff[,notOther]
bg[,notOther] <- updateBeta(X = x[tindex[,2],xnames], Y = Y[tindex[,2],],
sig = sigmaerror, beta = bg[,notOther],
PRIOR = BPRIOR,
rows = Brows, pattern = Bpattern,
lo=loB[,notOther], hi=hiB[,notOther],
wF = wB)
mub <- x[,xnames]%*%bg
Y <- (w - mub - mua - rndEff)[,notOther]
if(RANDOM)Y <- Y - groupRandEff[,notOther]
Y[tindex[,2],] <- Y[tindex[,2],] - w[tindex[,1],notOther]
Rmat[,notOther] <- updateBeta(X = Vmat[tindex[,2],],
Y = Y[tindex[,2],], sig=sigmaerror,
beta = Rmat[,notOther], PRIOR = LPRIOR,
rows = Rrows, pattern = Rpattern,
lo=loRmat, hi=hiRmat, wF = wL )
mug <- Vmat%*%Rmat
Y <- (w - mub - mug - rndEff)[,notOther]
if(RANDOM)Y <- Y - groupRandEff[,notOther]
Y[tindex[,2],] <- Y[tindex[,2],] - w[tindex[,1],notOther]
Amat[,notOther] <- updateBeta(X = Umat[tindex[,2],], Y = Y[tindex[,2],], sig = sigmaerror,
rows = Arows, pattern = Apattern,
beta = Amat[,notOther], PRIOR = TRUE,
lo = loAmat[,notOther], hi = hiAmat[,notOther], wF = wA )
mua <- Umat%*%Amat
muw <- mub + mug + mua + rndEff
}
} else {
if( !TIME ){
Y <- w[inSamp,notOther]
if(RANDOM)Y <- Y - groupRandEff[inSamp,notOther]
bg[,notOther] <- updateBeta(X = x[inSamp,], Y, sig = sg[notOther,notOther],
beta = bg[,notOther], BPRIOR, lo=loB, hi=hiB)
muw[inSamp,] <- x[inSamp,]%*%bg
}else{
muw <- mub <- mua <- mug <- w*0
if(termR)mug <- Vmat%*%Rmat
if(termA)mua <- Umat%*%Amat
if(termB){
Y <- w[,notOther]
Y[tindex[,1],] <- w[tindex[,2],] - w[tindex[,1],notOther]
if(termA) Y <- Y - mua[,notOther]
if(termR) Y <- Y - mug[,notOther]
if(RANDOM)Y <- Y - groupRandEff[,notOther]
bg[,notOther] <- updateBeta(X = x[tindex[,1],xnames], Y = Y[tindex[,1],],
sig = sg[notOther,notOther], beta = bg[,notOther],
PRIOR = BPRIOR,
rows = Brows, pattern = Bpattern,
lo=loB[,notOther], hi=hiB[,notOther], sinv = sinv, wF = wB)
mub[tindex[,1],] <- x[tindex[,1],xnames]%*%bg
mub[timeLast,] <- x[drop=F, timeLast,xnames]%*%bg
muw <- muw + mub
}
if(termR){
Y <- w[,notOther]
Y[tindex[,1],] <- Y[tindex[,2],] - w[tindex[,1],notOther]
if(termA) Y <- Y - mua[,notOther]
if(termB) Y <- Y - mub[,notOther]
if(RANDOM)Y <- Y - groupRandEff[,notOther]
Rmat[,notOther] <- updateBeta(X = Vmat[tindex[,1],], Y = Y[tindex[,1],notOther],
sig=sg[notOther,notOther],
beta = Rmat[,notOther],
PRIOR = LPRIOR,
rows = Rrows, pattern = Rpattern,
lo = loRmat, hi = hiRmat, sinv = sinv, wF = wL)
mug[tindex[,1],] <- Vmat[tindex[,1],]%*%Rmat
mug[timeLast,] <- Vmat[drop=F, timeLast,]%*%Rmat
muw <- muw + mug
}
if(termA){
Y <- w[,notOther]
Y[tindex[,1],] <- Y[tindex[,2],] - w[tindex[,1],]
if(termR) Y <- Y - mug[,notOther]
if(termB) Y <- Y - mub[,notOther]
if(RANDOM)Y <- Y - groupRandEff[,notOther]
Amat[,notOther] <- updateBeta(X = Umat[tindex[,1],], Y = Y[tindex[,1],],
sig=sg[notOther,notOther],
beta = Amat[,notOther], PRIOR = TRUE,
lo=loAmat[,notOther], hi=hiAmat[,notOther],
rows = Arows, pattern = Apattern, sinv = sinv, wF = wA)
mua[tindex[,1],] <- Umat[tindex[,1],]%*%Amat
mua[timeLast,] <- Umat[drop=F, timeLast,]%*%Amat
muw[,notOther] <- muw[,notOther] + mua[,notOther]
}
}
if( TIME | BPRIOR ){
W <- w
if(TIME){
W[tindex[,1],] <- W[tindex[,2],] - w[tindex[,1],]
SS <- crossprod(W[tindex[,1],notOther] - muw[tindex[,1],notOther])
}else{
SS <- crossprod(W[,notOther] - muw[,notOther])
}
SI <- solveRcpp(SS)
}else{
Y <- w[inSamp,notOther]
if(RANDOM)Y <- Y - groupRandEff[inSamp,notOther]
XIXXX <- x[inSamp,]%*%solveRcpp( crossprod(x[inSamp,]) )%*%t(x[inSamp,] )
XUV <- t(Y)%*%XIXXX%*%Y
SI <- solve( crossprod(Y) - XUV )
}
sinv <- .rwish(sigmaDf, SI)
sg[notOther,notOther] <- solveRcpp(sinv)
sgibbs[g,] <- sg[Kindex]
}
if(termB)alphaB <- .sqrtMatrix(bg, sg, DIVIDE=T)
if( 'OC' %in% typeCode ){
tg <- .updateTheta(w,tg,cutLo,cutHi,ordCols,
holdoutN,holdoutIndex,minOrd,maxOrd)
if(TIME){
cutg <- tg
}else{
cutg <- .gjamCuts2theta(tg,ss = sg[ordCols,ordCols])
}
breakMat[ordCols,1:lastOrd] <- cutg
cgibbs[g,] <- as.vector( cutg[,-c(1,2,ncut)] )
plo[,ordCols] <- cutg[cutLo]
phi[,ordCols] <- cutg[cutHi]
}
if(RANDOM){
cw <- w - muw
if( TIME ){
cw[tindex[,1],] <- w[tindex[,2],] - w[tindex[,1],] - muw[tindex[,2],]
}
if(REDUCT){
cw <- cw - rndEff
v <- 1/sigmaerror*.byGJAM(as.vector(cw), randGroupIndex[,1],
randGroupIndex[,2], alphaRandGroup*0,
fun='sum')[notOther,]
sinv <- diag(1/sigmaerror, SO)
}else{
v <- .byGJAM(as.vector(cw), randGroupIndex[,1],
randGroupIndex[,2], alphaRandGroup*0, fun='sum')[notOther,]
v <- sinv%*%v
}
alphaRandGroup[notOther,] <- randEffRcpp(v, randGroupTab, sinv, CImat)
if(length(other) > 0)alphaRandGroup[other,] <- 0
if(g < 10){
alphaRandGroup[notOther,] <-
sweep( alphaRandGroup[notOther,], 2,
colMeans(alphaRandGroup[notOther,]), '-')
}
SS <- crossprod(t(alphaRandGroup[notOther,]))
SS <- S*SS + Cmat
testv <- try( chol(SS) ,T)
if( inherits(testv,'try-error') ){
tiny <- .01*diag(SS)
SS <- SS + diag(diag(SS + tiny))
}
Ckeep[notOther,notOther] <- .riwish( df = S*G + 1, SS )
CImat <- solveRcpp(Ckeep[notOther,notOther])
alphaVarGibbs[g,] <- Ckeep[Aindex]
groupRandEff <- t(alphaRandGroup)[groupIndex,]
}
if(TIME){
tmp <- .updateW(w, plo, phi, wpropTime, xl, yp, Rmat, Amat, rndEff, groupRandEff,
sdg, muw, mub, Umat, Vmat, sinv)
w <- tmp$w; muw <- tmp$muw; yp <- tmp$yp; Umat <- tmp$Umat; Vmat <- tmp$Vmat
groups <- NULL
for(k in allTypes){
wk <- which(typeCols == k)
nk <- length(wk)
wo <- which(wk %in% notOther)
wu <- which(typeCols[notOther] == k)
wp <- w[, wk, drop=F]
yp <- yp[, wk, drop=F]
yy <- y[,wk,drop=F]
if(typeFull[wk[1]] == 'countComp')groups <- CCgroups
if(typeFull[wk[1]] == 'fracComp')groups <- FCgroups
if(typeFull[wk[1]] == 'categorical')groups <- CATgroups
glist <- list(wo = wo, type = typeFull[wk[1]], yy = yy,
wq = wp, yq = yp, cutg = cutg,
censor = censor, censorCA = censorCA,
censorDA = censorDA, censorCON = censorCON,
eff = effMat[,wk,drop=F], groups = groups,
k = k, typeCols = typeCols, notOther = notOther,
wk = wk, sampW = sampleW[,wk])
tmp <- .gjamWLoopTypes( glist )
w[,wk] <- tmp[[1]]
yp[,wk] <- tmp[[2]]
}
if( ncol(x) > 1 ){
ww <- w
ww[ww < 0] <- 0
xtmp <- xpred
xtmp[,-1] <- .tnorm(n*Qall, -3, 3, xpred[,-1], .1)
if( length(linFactor) > 0 ){
for(k in 1:length(linFactor)){
mm <- linFactor[[k]]
wcol <- sample(mm,n,replace=T)
xtmp[,mm[-1]] <- 0
xtmp[ cbind(1:n, wcol) ] <- 1
}
}
if(length(intMat) > 0){
xtmp[,intMat[,1]] <- xtmp[,intMat[,2]]*xtmp[,intMat[,3]]
}
muNow <- muNew <- w*0 + rndEff
if(termB){
muNow[,notOther] <- muNow[,notOther] + xpred[,xnames]%*%bg[,notOther]
muNew[,notOther] <- muNew[,notOther] + xtmp[,xnames]%*%bg[,notOther]
}
if(termA){
mua <- Umat%*%Amat
muNow[,notOther] <- muNow[,notOther] + mua[,notOther]
muNew[,notOther] <- muNew[,notOther] + mua[,notOther]
}
if(termR){
Vnow <- Vnew <- Vmat
Vnow[tindex[,1],] <- ww[drop = FALSE,tindex[,1],gindex[,'colW']]*
xpred[drop = FALSE,tindex[,1],xlnames][drop = FALSE,,gindex[,'rowG']]
mugNow <- Vnow%*%Rmat
muNow[,notOther] <- muNow[,notOther] + mugNow[,notOther]
Vnew[tindex[,1],] <- ww[drop = FALSE,tindex[,1],gindex[,'colW']]*
xtmp[drop = FALSE,tindex[,1],xlnames][drop = FALSE,,gindex[,'rowG']]
mugNew <- Vnew%*%Rmat
muNew[,notOther] <- muNew[,notOther] + mugNew[,notOther]
}
ww <- w
ww[tindex[,1],] <- ww[tindex[,2],] - ww[tindex[,1],]
ww[timeZero,] <- ww[timeZero+1,]
ww[timeLast,] <- ww[timeLast-1,]
if(REDUCT){
pnow <- dnorm(ww[,notOther],muNow[,notOther],sdg,log=T)
pnew <- dnorm(ww[,notOther],muNew[,notOther],sdg,log=T)
a1 <- exp( rowSums(pnew - pnow) )
}else{
pnow <- .dMVN(ww[,notOther],muNow[,notOther],smat=sg,log=T)
pnew <- .dMVN(ww[,notOther],muNew[,notOther],smat=sg,log=T)
a1 <- exp(pnew - pnow)
}
z <- runif(length(a1),0,1)
za <- which(z < a1)
if(length(za) > 0){
xpred[za,] <- xtmp[za,]
}
if(termR){
if(nlmiss > 0)xl[xlmiss] <- xpred[,colnames(xl)][xlmiss]
}
if(nmiss > 0){
x[xmiss] <- xpred[xmiss]
xf <- NULL
if(length(facNames) > 0){
xf <- xdata[, facNames, drop=F]
}
tmp <- .getUnstandX(formula, x, standRows, standMatMu[,1], standMatSd[,1],
factorColumns = xf )
S2U <- tmp$S2U
XX <- crossprod(x)
IXX <- solveRcpp(XX)
}
}
}else{
tmp <- .updateW( rows=1:n, x, w, y, bg, sg, alpha=alphaB,
cutg, plo, phi, rndEff, groupRandEff,
sigmaerror, wHold )
w <- tmp$w
yp <- tmp$yp
wHold <- tmp$wHold
Y <- w[,notOther]
if(holdoutN > 0) Y[holdoutIndex,] <- wHold[,notOther]
if(RANDOM)Y <- Y - groupRandEff[,notOther]
if(nmiss > 0){
x[xmiss] <- .imputX_MVN(x,Y,bg[,notOther],xmiss,sinv,xprior=xprior,
xbound=xbound)[xmiss]
if( length(standRows) > 0 ){
xf <- NULL
if(length(facNames) > 0){
xf <- xdata[, facNames, drop=F]
}
tmp <- .getUnstandX( formula, x, standRows, standMatMu[,1], standMatSd[,1],
factorColumns = xf )
S2U <- tmp$S2U
XX <- crossprod(x)
IXX <- solveRcpp(XX)
}
}
if( PREDICTX & length(predXcols) > 0 ){
if( length(interBeta$isNonLinX) > 0 ){
xpred <- .predictY2X_nonLinear(xpred, yy=Y, bb=bg[,notOther],
ss=sg[notOther,notOther],
priorIV = priorXIV, priorX=priorX,
factorObject = factorBeta, interObject = interBeta,
lox, hix, propx)$x
}
if( length(px) > 0 ){
wn <- which(!is.finite(xpred),arr.ind=T)
if(length(wn) > 0){
tmp <- matrix(priorX,Q,nrow(wn))
xpred[wn[,1],] <- t(tmp)
}
xpred[,px] <- .predictY2X_linear(xpred, yy=Y, bb=bg[,notOther],
ss=sg[notOther,notOther], sinv = sinv,
priorIV = priorXIV,
priorX=priorX, predCols=px,
REDUCT=REDUCT, lox, hix, propx)[,px]
wn <- which(!is.finite(xpred),arr.ind=T)
if(length(wn) > 0){
tmp <- matrix(priorX,Q,nrow(wn))
xpred[wn[,1],] <- t(tmp)
}
}
if( length(factorBeta$linFactor) > 0 ){
xtmp <- xpred
xtmp[,factorBeta$findex] <-
.predictY2X_linear(xpred, yy=Y,
bb=bg[,notOther],
ss=sg[notOther,notOther], sinv = sinv,
priorIV = priorXIV,
priorX=priorX,predCols=factorBeta$findex,
REDUCT=REDUCT, lox, hix, propx)[,factorBeta$findex]
for(k in 1:length(factorBeta$linFactor)){
mm <- factorBeta$linFactor[[k]]
tmp <- xtmp[,mm]
tmp[,1] <- 0
ix <- apply(tmp,1,which.max)
tmp <- tmp*0
tmp[ cbind(1:n,ix) ] <- 1
tmp <- tmp[,-1,drop=F]
xpred[,mm[-1]] <- tmp
}
}
xpred[,1] <- 1
}
}
setTxtProgressBar(pbar,g)
if(termR){
rho[ gindex[,c('rowG','colW')]] <- Rmat[wL]
lgibbs[g,] <- Rmat[wL]
rhoU <- Rmat
}
if(termA)alphaGibbs[g,] <- Amat[wA]
if(termB)bgibbs[g,] <- bg[wB]
if( length(standRows) > 0 ){
if(termB){
bgU <- S2U%*%bg
bgibbsUn[g,] <- bgU[wB]
}
}
if( TIME ){
if(termR & length(standRowsL) > 0){
if(ncol(xl) > 1){
Vunst <- Vmat
wz <- w
wz[wz < 0] <- 0
vww <- wz[drop = FALSE,tindex[,1],gindex[,'colW']]*
xlUnstand[drop = FALSE,tindex[,1],xlnames][drop = FALSE,,gindex[,'rowG']]
Vunst[tindex[,1],] <- vww
Y <- w[,notOther]
Y[tindex[,1],] <- Y[tindex[,2],] - w[tindex[,1],]
if(termA) Y <- Y - mua[,notOther]
if(termB) Y <- Y - mub[,notOther]
if(RANDOM)Y <- Y - groupRandEff[,notOther]
sig <- sigmaerror
if(!REDUCT) sig <- sg[notOther,notOther]
RmatU[,notOther] <- updateBeta(X = Vunst[tindex[,1],],
Y = Y[tindex[,1],notOther], sig = sig,
beta = RmatU[,notOther],
PRIOR = LPRIOR,
rows = Rrows, pattern = Rpattern,
lo = loRmat, hi = hiRmat, sinv = sinv, wF = wL)
lgibbsUn[g,] <- RmatU[wL]
}
}
}
if( TRAITS ){
Atrait <- bg%*%t(specTrait[,colnames(yp)])
Strait <- specTrait[,colnames(yp)]%*%sg%*%t(specTrait[,colnames(yp)])
bTraitGibbs[g,] <- Atrait
mgibbs[g,] <- Strait
minv <- ginv(Strait)
tmp <- .contrastCoeff(beta=Atrait,
notStand = notStandard[notStandard %in% xnames],
sigma = Strait, sinv = minv,
stand = standMatSd, factorObject=factorBeta )
tagg <- tmp$ag
bTraitFacGibbs[g,] <- tagg
}
if( termB ){
nst <- notStandard[notStandard %in% xnames]
stm <- standMatSd
if(TIME){
nst <- notStandardB[notStandard %in% xnames]
stm <- standMatSdB
}
tmp <- .contrastCoeff(beta=bg[,notOther],
notStand = nst,
sigma = sg[notOther,notOther], sinv = sinv,
stand = stm, factorObject=factorBeta )
agg <- tmp$ag
beg <- tmp$eg
fsens <- tmp$sens
fsens[ fsens < 1e-12 ] <- 0
fSensGibbs[g,] <- sqrt(diag(fsens))[fbnames]
bFacGibbs[g,] <- agg
}
if(FULL)ygibbs[g,] <- as.vector(yp)
if(g > burnin){
ntot <- ntot + 1
ypred <- ypred + yp
ypred2 <- ypred2 + yp^2
mpr <- x[inSamp,]%*%bg[,notOther]
wpr <- matrix( colMeans( w[inSamp, notOther] ), length(inSamp), length(notOther),
byrow = T )
vtot <- diag( var(w[inSamp,notOther]) )
mtot <- diag( var(mpr))
rss <- diag( crossprod( w[inSamp,notOther] - mpr ) )
tss <- diag( crossprod( w[inSamp,notOther] - wpr ) )
vexp <- 1 - rss/tss
varExp <- varExp + vexp
varTot <- varTot + vtot
varExpMean <- varExpMean + mtot/vtot
if(RANDOM){
itot <- diag(var(groupRandEff[inSamp,notOther]))
varExpRand <- varExpRand + itot/vtot
}
tmp <- .dMVN(w[,notOther], muw[,notOther], sg[notOther,notOther], log=T)
sumDev <- sumDev - 2*sum(tmp)
yerror <- yerror + (yp - y)^2
if(termB)fmat <- fmat + fsens
sMean <- sMean + sg
wpred <- wpred + w
wpred2 <- wpred2 + w^2
if(RICHNESS){
yy <- yp
if('PA' %in% typeNames){
wpa <- which(typeNames[inRichness] == 'PA')
yy[,inRichness[wpa]] <- round(yp[,inRichness[wpa]])
}
if(length(notPA) > 0){
w0 <- which(yy[,notPA] <= 0)
w1 <- which(yy[,notPA] > 0)
yy[,notPA][w0] <- 0
yy[,notPA][w1] <- 1
}
shan <- sweep(yp[,inRichness], 1, rowSums(yp[,inRichness]), '/')
shan[shan == 0] <- NA
shan <- -rowSums(shan*log(shan),na.rm=T)
shannon <- shannon + shan
wpp <- which(yy > 0)
ypredPres[wpp] <- ypredPres[wpp] + yp[wpp]
ypredPres2[wpp] <- ypredPres2[wpp] + yp[wpp]^2
ypredPresN[wpp] <- ypredPresN[wpp] + 1
presence[,inRichness] <- presence[,inRichness] + yy[,inRichness]
ones <- round(rowSums(yy[,inRichness]))
more <- round(rowSums(yy[,inRichness]*wrich[,inRichness,drop=F]))
richFull <- .add2matrix(ones,richFull)
richness <- .add2matrix(more,richness)
}
if(RANDOM){
alphaRanSums <- alphaRanSums + alphaRandGroup
alphaRanSums2 <- alphaRanSums2 + alphaRandGroup^2
}
if(mmiss > 0){
ymissPred[ymiss] <- ymissPred[ymiss] + y[ymiss]
ymissPred2[ymiss] <- ymissPred2[ymiss] + y[ymiss]^2
}
if(nmiss > 0){
xmissSum <- xmissSum + x[xmiss]
xmissSum2 <- xmissSum2 + x[xmiss]^2
}
if(PREDICTX & length(predXcols) > 0){
predx <- predx + xpred
predx2 <- predx2 + xpred^2
}
wa0 <- numeric(0)
if( !TIME | (TIME & termB) ){
ag <- agg
cx <- t(ag)%*%covE%*%ag
ess[notOther,notOther] <- ess[notOther,notOther] + cx
esd <- sqrt(diag(cx))
esens1[notOther] <- esens1[notOther] + esd
esens2[notOther] <- esens2[notOther] + esd^2
}
if( termR){
if(ncol(xl) > 1 ){
covL <- cov(Vmat)
cp <- t(Rmat[,notOther,drop=F])%*%covL%*%Rmat[,notOther,drop=F]
essL[notOther,notOther] <- essL[notOther,notOther] + cp
lsd <- sqrt(diag(cp))
lsens1[notOther] <- lsens1[notOther] + lsd
lsens2[notOther] <- lsens2[notOther] + lsd^2
}
}
if(termA){
covw <- cov(Umat)
ca <- t(Amat[,notOther])%*%covw%*%Amat[,notOther]
essA[notOther,notOther] <- essA[notOther,notOther] + ca
asd <- sqrt(diag(ca))
asens1[notOther] <- asens1[notOther] + asd
asens2[notOther] <- asens2[notOther] + asd^2
}
loESS[ ess < 0 ] <- loESS[ ess < 0 ] + 1
hiESS[ ess > 0 ] <- hiESS[ ess > 0 ] + 1
eii <- ginv(ess[notOther,notOther])
lmESS[notOther,notOther][ eii < 0 ] <- lmESS[notOther,notOther][ eii < 0 ] + 1
hmESS[notOther,notOther][ eii > 0 ] <- hmESS[notOther,notOther][ eii > 0 ] + 1
if(REDUCT){
rndTot <- rndTot + rndEff
rndTot2 <- rndTot2 + rndEff^2
}
if(TRAITS){
yw <- sweep(yp,1,rowSums(yp),'/')
yw[yw <= 0] <- 0
yw[is.na(yw)] <- 0
Ttrait <- .gjamPredictTraits(yw,specTrait[,colnames(yp)], traitTypes)
tpred <- tpred + Ttrait
tpred2 <- tpred2 + Ttrait^2
}
}
}
otherpar$S <- S
otherpar$Q <- Q
otherpar$snames <- snames
otherpar$xnames <- xnames
presence <- presence/ntot
if(RICHNESS){
missRows <- sort(unique(ymiss[,1]))
richNonMiss <- richness/ntot
yr <- as.matrix(ydata[,inRichness])
yr[yr > 0] <- 1
yr <- rowSums(yr,na.rm=T)
vv <- matrix(as.numeric(colnames(richNonMiss)),n,
ncol(richNonMiss),byrow=T)
rmu <- rowSums( vv * richNonMiss )/rowSums(richNonMiss)
rsd <- sqrt( rowSums( vv^2 * richNonMiss )/rowSums(richNonMiss) - rmu^2)
vv <- matrix(as.numeric(colnames(richFull)),n,ncol(richFull),byrow=T)
rfull <- rowSums( vv * richFull )/rowSums(richFull)
rfull[missRows] <- NA
rmu <- rowSums(presence)
shan <- sweep(y[,inRichness], 1, rowSums(y[,inRichness]), '/')
shan[shan == 0] <- NA
shanObs <- -rowSums(shan*log(shan),na.rm=T)
richness <- cbind(yr, rmu, rsd, rfull, shanObs, shannon/ntot )
colnames(richness) <- c('obs','predMu','predSd','predNotMissing',
'H_obs', 'H_pred')
if(TIME)richness[timeZero,] <- NA
ypredPresMu <- ypredPres/ypredPresN
ypredPresMu[ypredPresN == 0] <- 0
yvv <- ypredPres2/ypredPresN - ypredPresMu^2
yvv[ !is.finite(yvv) | yvv <= 0 ] <- 0
ypredPresSe <- sqrt(yvv)
}
if('OC' %in% typeNames){
ordMatShift <- matrix(ordShift,n,length(ordCols),byrow=T)
onames <- snames[ordCols]
wb <- match(paste(onames,'intercept',sep='_'), colnames(bgibbs))
bgibbs[,wb] <- bgibbs[,wb] + matrix(ordShift,ng,length(ordCols),byrow=T)
if( !is.null(bgibbsUn)){
bgibbsUn[,wb] <- bgibbsUn[,wb] + matrix(ordShift,ng,length(ordCols),byrow=T)
}
y[,ordCols] <- y[,ordCols] + ordMatShift
}
if(mmiss > 0){
ymissPred[ymiss] <- ymissPred[ymiss]/ntot
yd <- ymissPred2[ymiss]/ntot - ymissPred[ymiss]^2
yd[!is.finite(yd)| yd < 0] <- 0
ymissPred2[ymiss] <- sqrt(yd)
if('OC' %in% typeNames){
ymissPred[,ordCols] <- ymissPred[,ordCols] + ordMatShift
}
}
rmspeBySpec <- sqrt( colSums(yerror)/ntot/n )
rmspeAll <- sqrt( sum(yerror)/ntot/n/S )
sMean <- sMean/ntot
varExp <- varExp/ntot
varTot <- varTot/ntot
varMu <- varExpMean/ntot
varRn <- varExpRand/ntot
varMod <- varMu + varRn
if(termB){
tmp <- .chain2tab(bgibbs[burnin:ng,], snames, xnames, wF = wB)
betaStandXmu <- tmp$mu
betaStandXse <- tmp$se
betaStandXTable <- tmp$tab
tmp <- .chain2tab(bFacGibbs[burnin:ng,], snames[notOther], rownames(agg))
betaStandXWmu <- tmp$mu
betaStandXWse <- tmp$se
betaStandXWTable <- tmp$tab
if(!is.null(loB)){
blo <- as.vector( t(loB) )
bhi <- as.vector( t(hiB) )
names(blo) <- names(bhi) <- bf
bprior <- cbind(blo[rownames(betaStandXTable)],
bhi[rownames(betaStandXTable)])
colnames(bprior) <- c('priorLo','priorHi')
betaStandXTable <- cbind(betaStandXTable[,1:4], bprior)
}
if( length(standRows) > 0 ){
tmp <- .chain2tab(bgibbsUn[burnin:ng,], snames, xnames, wF = wB)
betaMu <- tmp$mu
betaSe <- tmp$se
betaTable <- tmp$tab
}else{
betaMu <- betaStandXmu
betaSe <- betaStandXse
betaTable <- betaStandXTable
betaWMu <- betaStandXWmu
betaWSe <- betaStandXWse
betaWTable <- betaStandXWTable
betaStandXmu <- betaStandXse <- betaStandXTable <- NULL
betaStandXWmu <- betaStandXWse <- betaStandXWTable <- NULL
}
tmp <- .chain2tab(fSensGibbs[burnin:ng,,drop=F])
sensTable <- tmp$tab[,1:4]
}
if(TIME){
if(termR){
RmatStandXmu <- RmatStandXse <- Rmat*0
rhoMu <- rhoSe <- rhoTable <- NULL
loL <- loRmat[wL]
hiL <- hiRmat[wL]
tmp <- .chain2tab(lgibbs[drop = FALSE, burnin:ng,],
snames[notOther], xlnames, sigfig = 4)
rhoStandXmu <- tmp$mu
rhoStandXse <- tmp$se
rhoStandXTable <- data.frame( rownames(tmp$tab), tmp$tab[,1:4],
stringsAsFactors = F)
rlo <- loRmat[wL]
rhi <- hiRmat[wL]
rprior <- cbind(rlo, rhi)
rownames(rprior) <- rownames(wL)
colnames(rprior) <- c('priorLo','priorHi')
rhoStandXTable <- cbind( rhoStandXTable[,1:5],
rprior[ rownames(rhoStandXTable), ])
rhoStandXTable[,1] <- .replaceString( rhoStandXTable[,1], '_', ', ')
ss <- 'rho_{to, from}'
colnames(rhoStandXTable)[1] <- ss
rhoStandXTable <- rhoStandXTable[!rhoStandXmu == 0 & !rhoStandXse == 0, ]
rownames(rhoStandXTable) <- NULL
tmp <- .chain2tab(lgibbs[drop = FALSE, burnin:ng,],
colnames(Rmat), rownames(Rmat), sigfig = 4)
RmatStandXmu[ wL ] <- tmp$tab[,'Estimate']
RmatStandXse[ wL ] <- tmp$tab[,'SE']
if( ncol(xl) > 1 ){
Rmu <- Rmat*0
tmp <- .chain2tab(lgibbsUn[drop = FALSE, burnin:ng,],
snames[notOther], xlnames, sigfig = 4)
rhoMu <- tmp$mu
rhoSe <- tmp$se
rhoTable <- data.frame( rownames(tmp$tab), tmp$tab[,1:4],
stringsAsFactors = F)
rhoTable[,1] <- .replaceString( rhoTable[,1], '_', ', ')
ss <- 'rho_{to, from}'
colnames(rhoTable)[1] <- ss
rownames(rhoTable) <- NULL
rhoTable <- rhoTable[!rhoMu == 0 & !rhoSe == 0, ]
}else{
lgibbsUn <- lgibbs
rhoMu <- rhoStandXmu
rhoSe <- rhoStandXse
rhoTable <- rhoStandXTable
}
}
if(termA){
ss <- matrix( as.numeric( columnSplit( colnames(alphaGibbs), '-' )), ncol = 2)
ss <- matrix( snames[aindex[,c('toW','fromW')]], ncol=2)
st <- columnPaste( ss[,1], ss[,2], ', ' )
tmp <- .chain2tab(alphaGibbs[drop = FALSE, burnin:ng,],
ss[,1], ss[,2], sigfig = 4)
alphaTable <- data.frame( st, tmp$tab[, 1:4],
stringsAsFactors = F )
alo <- loAmat[wA]
ahi <- hiAmat[wA]
aprior <- cbind(alo, ahi)
colnames(aprior) <- c('priorLo','priorHi')
alphaTable <- cbind( alphaTable[,1:5], aprior)
colnames(alphaTable)[1] <- 'alpha_{to, from}'
loA <- matrix(0,S,S)
rownames(loA) <- colnames(loA) <- snames
hiA <- alphaMu <- alphaSe <- loA
tmp1 <- colMeans(alphaGibbs[burnin:ng,])
tmp2 <- apply(alphaGibbs[burnin:ng,],2,sd)
alphaMu[ aindex[,c('toW','fromW')] ] <- tmp1
alphaSe[ aindex[,c('toW','fromW')] ] <- tmp2
loA[ aindex[,c('toW','fromW')] ] <- loAmat[wA]
hiA[ aindex[,c('toW','fromW')] ] <- hiAmat[wA]
Amu <- Ase <- Amat*0
Amu[wA] <- tmp1
Ase[wA] <- tmp2
}
}
yMu <- ypred/ntot
if('CA' %in% typeNames){
ytmp <- yMu[,'CA' %in% typeNames]
ytmp[ ytmp < 0 ] <- 0
yMu[,'CA' %in% typeNames] <- ytmp
}
y22 <- ypred2/ntot - yMu^2
y22[y22 < 0] <- 0
ySd <- sqrt(y22)
cMu <- cuts
cSe <- numeric(0)
wMu <- wpred/ntot
wpp <- pmax(0,wpred2/ntot - wMu^2)
wSd <- sqrt(wpp)
if('OC' %in% typeNames){
yMu[,ordCols] <- yMu[,ordCols] + ordMatShift
wMu[,ordCols] <- wMu[,ordCols] + ordMatShift
}
meanDev <- sumDev/ntot
beta <- betaStandXmu
if( is.null(beta) )beta <- betaMu
beta[ is.na(beta) ] <- 0
if(!TIME){
muw <- x%*%beta[,notOther]
tmp <- .dMVN(wMu[,notOther], muw,
sMean[notOther,notOther], log=T)
pd <- meanDev - 2*sum(tmp )
DIC <- pd + meanDev
}
yscore <- colSums( .getScoreNorm(y[,notOther],yMu[,notOther],
ySd[,notOther]^2),na.rm=T )
xscore <- xpredMu <- xpredSd <- NULL
standX <- xmissMu <- xmissSe <- NULL
if(RANDOM){
ns <- 500
simIndex <- sample(burnin:ng,ns,replace=T)
tmp <- .expandSigmaChains(snames, alphaVarGibbs, otherpar, simIndex=simIndex,
sigErrGibbs, kgibbs, REDUCT=F, CHAINSONLY=F)
alphaRandGroupVarMu <- tmp$sMu
alphaRandGroupVarSe <- tmp$sSe
alphaRandByGroup <- alphaRanSums/ntot
a2 <- alphaRanSums2/ntot - alphaRandByGroup^2
a2[ a2 < 0 ] <- 0
alphaRandByGroupSe <- sqrt(a2)
}
if(PREDICTX){
xpredMu <- predx/ntot
xpredSd <- predx2/ntot - xpredMu^2
xpredSd[xpredSd < 0] <- 0
xpredSd <- sqrt(xpredSd)
if(!TIME){
xrow <- standRows
xmu <- standMatMu[,1]
xsd <- standMatSd[,1]
}else{
if(termB | termR){
xrow <- numeric(0)
if(termB){xrow <- standRows}
if(termR){
xrow <- c( xrow, standRowsL )
ww <- !duplicated(names(xrow))
xrow <- names(xrow)[ww]
xmu <- xsd <- numeric(0)
if(termB){
xmu <- standMatMu[xrow,1]
xsd <- standMatSd[xrow,1]
}
if(termR){
ww <- which(!rownames(standMatMuL) %in% names(xrow) )
ww <- ww[ ww != 1 ]
if(length(ww) > 0){
xmu <- c(xmu, standMatMuL[ww,1])
xsd <- c(xsd,standMatSdL[ww,1])
}
}
}
}
}
if( ncol(x) > 1 ){
xf <- NULL
if(length(facNames) > 0){
xf <- xdata[, facNames, drop=F]
}
xpredMu <- .getUnstandX(formula, x = xpredMu, xrow, xmu = xmu, xsd = xsd,
factorColumns = xf )$xu
xpredSd[,xrow] <- xpredSd[,xrow]*matrix( xsd[xrow], n, length(xrow), byrow=T )
}
if(Q == 2)xscore <- mean( .getScoreNorm(x[,2],
xpredMu[,2],xpredSd[,2]^2) )
if(Q > 2)xscore <- colMeans(.getScoreNorm(x[,-1],
xpredMu[,-1],xpredSd[,-1]^2) )
if(TIME){
wz <- muw <- wMu
wz[wz < 0] <- 0
if(termB){
muw <- x[,rownames(beta)]%*%beta[,notOther]
}
if(termR){
Vmat[tindex[,2],] <- wz[tindex[,2],
gindex[,'colW']]*xl[tindex[,2], gindex[,'colX']]
Vmat[timeZero,] <- wz[timeZero,
gindex[,'colW']]*xl[timeZero, gindex[,'colX']]
Rmat[ gindex[,c('rowL','colW')] ] <- RmatStandXmu[ gindex[,c('rowG','colW')] ]
muw <- muw + Vmat%*%Rmat[,notOther]
}
if(termA){
Umat <- wz[,uindex[,1]]*wz[,uindex[,2]]
Amat[ wA ] <- alphaMu[ aindex[,c('toW','fromW')] ]
muw <- muw + Umat%*%Amat[,notOther]
}
}
}
tmp <- .dMVN(wMu[,notOther],muw, sMean[notOther,notOther], log=T )
pd <- meanDev - 2*sum(tmp )
DIC <- pd + meanDev
if(termB){
if(nmiss > 0){
xmissMu <- xmissSum/ntot
xmissSe <- sqrt( xmissSum2/ntot - xmissMu^2 )
}
}
if(length(standRows) > 0){
standX <- cbind(standMatMu[,1],standMatSd[,1])
colnames(standX) <- c('xmean','xsd')
rownames(standX) <- rownames(standMatSd)
}
ns <- 200
simIndex <- sample(burnin:ng,ns,replace=T)
tmp <- .expandSigmaChains(snames, sgibbs, otherpar, simIndex=simIndex,
sigErrGibbs, kgibbs, REDUCT, CHAINSONLY=F, verbose)
corMu <- tmp$rMu; corSe <- tmp$rSe
sigMu <- tmp$sMu; sigSe <- tmp$sSe
whichZero <- which(loESS/ntot < ematAlpha &
hiESS/ntot < ematAlpha,arr.ind=T)
whConZero <- which(lmESS/ntot < ematAlpha &
hmESS/ntot < ematAlpha,arr.ind=T)
if( !TIME | (TIME & termB) ){
ematrix <- ess/ntot
fmatrix <- fmat/ntot
sensBetaMu <- esens1/ntot
sensBetaSe <- sqrt( esens2/ntot - sensBetaMu^2 )
sensBeta <- cbind( sensBetaMu, sensBetaSe )
colnames(sensBeta) <- c('Estimate', 'SE')
rownames(sensBeta) <- colnames(y)
}
if(termR){
if(ncol(xl) > 1){
ematrixL <- essL/ntot
sensRhoMu <- lsens1/ntot
sensRhoSe <- sqrt( lsens2/ntot - sensRhoMu^2 )
sensRho <- cbind( sensRhoMu, sensRhoSe )
colnames(sensRho) <- c('Estimate', 'SE')
rownames(sensRho) <- colnames(y)
}
}
if(termA){
ematrixA <- essA/ntot
sensAlphaMu <- asens1/ntot
sensAlphaSe <- sqrt( asens2/ntot - sensAlphaMu^2 )
sensAlpha <- cbind( sensAlphaMu, sensAlphaSe )
colnames(sensAlpha) <- c('Estimate', 'SE')
rownames(sensAlpha) <- colnames(y)
}
tMu <- tSd <- tMuOrd <- btMu <- btSe <- stMu <- stSe <- numeric(0)
if(TRAITS){
tMu <- tpred/ntot
tSd <- sqrt(tpred2/ntot - tMu^2)
wo <- which(traitTypes == 'OC')
M <- ncol(tMu)
if(length(wo) > 0){
tMuOrd <- tMu*0
for(j in wo)tMuOrd[,j] <- round(tMu[,j],0) - 1
tMuOrd <- tMuOrd[,wo]
}
tmp <- .chain2tab(bTraitGibbs[burnin:ng,], tnames, xnames)
betaTraitXMu <- tmp$mu
betaTraitXTable <- tmp$tab
tmp <- .chain2tab(mgibbs[burnin:ng,], tnames, tnames)
varTraitMu <- tmp$mu
varTraitTable <- tmp$tab
tmp <- .chain2tab(bTraitFacGibbs[burnin:ng,], tnames, rownames(tagg) )
betaTraitXWmu <- tmp$mu
betaTraitXWTable <- tmp$tab
}
if('OC' %in% typeNames){
nk <- length(ordCols)
nc <- ncut - 3
os <- rep(ordShift,nc)
cgibbs <- cgibbs + matrix(os,ng,length(os),byrow=T)
tmp <- .processPars(cgibbs)$summary
cMu <- matrix(tmp[,'estimate'],nk,nc)
cSe <- matrix(tmp[,'se'],nk,ncut-3)
cMu <- cbind(ordShift,cMu)
cSe <- cbind(0,cSe)
colnames(cMu) <- colnames(cSe) <- cnames[-c(1,ncut)]
rownames(cMu) <- rownames(cSe) <- snames[ordCols]
breakMat[ordCols,c(2:(2+(ncol(cMu))-1))] <- cMu
}
if('PA' %in% typeNames){
zMu <- yMu
zSd <- ySd
}
varContribution <- signif(rbind(varTot, varMu, varExp, varRn, varMod), 3)
rownames(varContribution) <- c('total variance', 'mean fraction','R2',
'RE fraction', 'mean + RE fraction')
if(!RANDOM)varContribution <- varContribution[1:3,]
if(length(reductList) == 0)reductList <- list(N = 0, r = 0)
reductList$otherpar <- otherpar
modelList$effort <- effort; modelList$formula <- formula
modelList$typeNames <- typeNames; modelList$censor <- censor
modelList$effort <- effort; modelList$holdoutIndex <- holdoutIndex
modelList$REDUCT <- REDUCT; modelList$TRAITS <- TRAITS
modelList$ematAlpha <- ematAlpha; modelList$traitList <- traitList
modelList$reductList <- reductList; modelList$ng <- ng
modelList$burnin <- burnin
inputs <- list(xdata = xdata, xStand = x, xUnstand = xUnstand,
xnames = xnames, effMat = effMat,
y = y, notOther = notOther, other = other, breakMat = breakMat,
classBySpec = classBySpec, RANDOM = RANDOM)
missing <- list(xmiss = xmiss, xmissMu = xmissMu, xmissSe = xmissSe,
ymiss = ymiss, ymissMu = ymissPred, ymissSe = ymissPred2)
parameters <- list(corMu = corMu, corSe = corSe,
sigMu = sigMu, sigSe = sigSe,
whichZero = whichZero, whConZero = whConZero,
wMu = wMu, wSd = wSd)
prediction <- list(presence = presence, xpredMu = xpredMu, xpredSd = xpredSd,
ypredMu = yMu, ypredSd = ySd, richness = richness)
chains <- list(sgibbs = sgibbs)
fit <- list(DIC = DIC, yscore = yscore, xscore = xscore, rmspeAll = rmspeAll,
rmspeBySpec = rmspeBySpec,
fractionExplained = varContribution )
parXS <- 'standardized for X'
parXU <- 'unstandardized for X'
parWS <- 'correlation scale for W'
parWU <- 'variance scale for W'
parXF <- 'centered factors'
parSep <- ', '
getDescription <- function( nlist, words ){
out <- numeric(0)
nm <- character(0)
for(k in 1:length(nlist)){
vk <- get( nlist[k] )
if(is.null(vk))next
attr( vk, 'description') <- words
out <- append( out, list(assign( nlist[k], vk )) )
nm <- c( nm, nlist[k])
}
names(out) <- nm
out
}
if( !TIME | (TIME & termB) ){
nlist <- c( 'ematrix', 'fmatrix' )
words <- paste( parXS, parWS, parXF, sep=parSep)
tlist <- getDescription( nlist, words )
for( k in 1:length(tlist) ) assign( names(tlist)[k], get( names(tlist[k]) ) )
parameters <- c(parameters, list(ematrix = ematrix, fmatrix = fmatrix,
sensBeta = sensBeta))
}
if(termB){
nlist <- c('betaMu', 'betaSe', 'betaTable', 'bgibbsUn' )
words <- paste( parXU, parWU, sep=parSep)
tlist <- getDescription( nlist, words )
for( k in 1:length(tlist) ) assign( names(tlist)[k], get( names(tlist[k]) ) )
nlist <- c('betaStandXmu', 'betaStandXTable', 'bgibbs')
words <- paste( parXU, parWU, sep=parSep )
tlist <- getDescription( nlist, words )
for( k in 1:length(tlist) ) assign( names(tlist)[k], get( names(tlist[k]) ) )
nlist <- c('betaStandXWmu', 'betaStandXWTable', 'sensTable', 'fSensGibbs',
'bFacGibbs' )
words <- paste( parXS, parWS, parXF, sep = parSep)
tlist <- getDescription( nlist, words )
for( k in 1:length(tlist) ) assign( names(tlist)[k], get( names(tlist[k]) ) )
attr(sensBeta, 'description') <- parXS
inputs <- c(inputs, list(standMatSd = standMatSd, standRows = standRows, standX = standX,
notOther = notOther, other = other, designTable = designTable,
factorBeta = factorBeta, interBeta = interBeta,
linFactor = linFactor, intMat = intMat) )
chains <- c(chains, list(bgibbs = bgibbs, bgibbsUn = bgibbsUn,
fSensGibbs = fSensGibbs, bFacGibbs = bFacGibbs) )
parameters <- c(parameters, list(betaMu = betaMu, betaSe = betaSe, betaTable = betaTable,
betaStandXmu = betaStandXmu,
betaStandXTable = betaStandXTable,
betaStandXWmu = betaStandXWmu,
betaStandXWTable = betaStandXWTable,
sensTable = sensTable))
}
if(FULL)chains <- append(chains, list(ygibbs = ygibbs))
if(RANDOM){
parameters <- append(parameters,
list( randGroupVarMu = alphaRandGroupVarMu,
randGroupVarSe = alphaRandGroupVarSe,
randByGroupMu = alphaRandByGroup,
randByGroupSe = alphaRandByGroupSe,
groupIndex = groupIndex) )
}
if(RICHNESS){
prediction <- append(prediction,
list(yPresentMu = ypredPresMu, yPresentSe = ypredPresSe))
}
if(REDUCT) {
rndEffMu <- rndTot/ntot
rndEffSe <- sqrt( rndTot2/ntot - rndEffMu^2)
parameters <- append( parameters, list(rndEffMu = rndEffMu, rndEffSe = rndEffSe) )
chains <- append( chains, list(kgibbs = kgibbs, sigErrGibbs = sigErrGibbs) )
}
if('OC' %in% typeNames){
parameters <- c(parameters,list(cutMu = cMu, cutSe = cSe))
chains <- c(chains,list(cgibbs = cgibbs))
modelList <- c(modelList,list(yordNames = yordNames))
}
if(TRAITS){
parameters <- c(parameters,
list(betaTraitXMu = betaTraitXMu,
betaTraitXTable = betaTraitXTable,
varTraitMu = varTraitMu,
varTraitTable = varTraitTable,
betaTraitXWmu = betaTraitXWmu,
betaTraitXWTable = betaTraitXWTable))
prediction <- c(prediction, list(tMuOrd = tMuOrd, tMu = tMu, tSe = tSd))
chains <- append( chains,list(bTraitGibbs = bTraitGibbs,
bTraitFacGibbs = bTraitFacGibbs,
mgibbs = mgibbs) )
}
if(TIME){
inputs <- c(inputs, list(timeList = timeList))
if(termB){
parameters <- c(parameters, list(wB = wB, tindex = tindex))
}
if(termR){
nlist <- c('lgibbs', 'rhoStandXmu', 'rhoStandXse', 'rhoStandXTable')
tlist <- getDescription( nlist, words = parXS )
for( k in 1:length(tlist) ) assign( names(tlist)[k], get( names(tlist[k]) ) )
nlist <- c('lgibbsUn', 'rhoMu', 'rhoSe', 'rhoTable')
tlist <- getDescription( nlist, words = parXU )
for( k in 1:length(tlist) ) assign( names(tlist)[k], get( names(tlist[k]) ) )
inputs <- c(inputs, list(xlnames = xlnames, xRho = xl, interRho = interRho,
factorRho = factorRho))
chains <- c(chains, list(lgibbs = lgibbs, lgibbsUn = lgibbsUn))
parameters <- c(parameters,
list(gindex = gindex, rhoMu = rhoMu, rhoSe = rhoSe,
rhoStandXmu = rhoStandXmu, rhoStandXse = rhoStandXse,
rhoTable = rhoTable,
rhoStandXTable = rhoStandXTable,
RmatStandXmu = RmatStandXmu, RmatStandXse = RmatStandXse,
rhoLo = loL, rhoHi = hiL, wL = wL))
if(ncol(xl) > 1){
attr(ematrixL, 'description') <- attr(sensRho, 'description') <- parXS
parameters <- c(parameters,
list(ematrixL = ematrixL, sensRho = sensRho))
}
}
if(termA){
chains <- c(chains, list(alphaGibbs = alphaGibbs))
parameters <- c(parameters, list(alphaTable = alphaTable,
alphaMu = signif(alphaMu, 4),
alphaSe = signif(alphaSe, 4),
Amu = signif(Amu, 4),
Ase = signif(Ase, 4),
alphaLo = loA, alphaHi = hiA,
aindex = aindex, wA = wA, uindex = uindex,
ematrixA = ematrixA, sensAlpha = sensAlpha,
alphaEigen = eigen(alphaMu)$values))
}
}
chains <- chains[ sort( names(chains) )]
fit <- fit[ sort( names(fit) )]
inputs <- inputs[ sort( names(inputs) )]
missing <- missing[ sort( names(missing) )]
modelList <- modelList[ sort( names(modelList) )]
parameters <- parameters[ sort( names(parameters) )]
prediction <- prediction[ sort( names(prediction) )]
all <- list(chains = chains, fit = fit, inputs = inputs, missing = missing,
modelList = modelList, parameters = parameters,
prediction = prediction)
all$call <- match.call()
all <- all[ sort(names(all)) ]
class(all) <- "gjam"
all
}
designFull <- function( form, xdata ){
n <- nrow(xdata)
tmp <- model.frame( form, xdata)
terms <- attributes( tmp )$terms
xnames <- attr( terms, 'term.labels' )
facts <- which( attr( terms,'dataClasses' ) == 'factor' )
ints <- grep(':', xnames)
xfull <- numeric(0)
for(k in 1:ncol(tmp)){
if( !k %in% facts){
x <- matrix( tmp[,k], ncol = 1)
colnames(x) <- colnames(tmp)[k]
xfull <- cbind(xfull, x)
next
}
levs <- levels(tmp[,k])
xk <- matrix(0, n, length(levs))
colnames(xk) <- paste(names(facts)[k], levs, sep='')
mm <- match( as.character(tmp[,k]), levs )
xk[ cbind(1:n, mm) ] <- 1
xfull <- cbind(xfull, xk)
}
csum <- colSums(abs(xfull), na.rm=T)
xfull <- xfull[,csum > 0]
if(length(ints) > 0){
interactions <- numeric(0)
for(k in ints){
xi <- columnSplit( xnames[k], ':' )
x1 <- which( startsWith(colnames(xfull), xi[1] ) )
x2 <- which( startsWith(colnames(xfull), xi[2] ) )
cnames <- outer( colnames(xfull)[x1], colnames(xfull)[x2], paste, sep=':' )
xint <- matrix(0, n, length(cnames))
colnames(xint) <- cnames
for(i in x1){
for(j in x2){
ij <- paste( colnames(xfull)[i], colnames(xfull)[j], sep=':')
xint[,ij] <- xfull[,i] * xfull[,j]
}
}
interactions <- cbind(interactions, xint)
}
xfull <- cbind(xfull, interactions)
}
csum <- colSums(abs(xfull), na.rm=T)
xfull <- xfull[,csum > 0]
}
.contrastCoeff <- function(beta, sigma, sinv, notStand, stand, factorObject,
conditional=NULL){
SO <- ncol(beta)
agg <- .sqrtMatrix(beta,sigma,DIVIDE=T)
if(factorObject$nfact > 0){
agg <- factorObject$lCont%*%agg
for(k in 1:factorObject$nfact){
f2 <- factorObject$facList2[[k]]
fk <- paste(names(factorObject$facList2)[k],f2,sep='')
amu <- colMeans(agg[drop=F,fk,])
nl <- length(fk)
agg[fk,] <- agg[fk,] - matrix(amu,nl,SO,byrow=T)
egg <- agg
}
} else {
agg <- agg[drop=F,-1,]
egg <- agg
}
if(is.null(conditional)){
sens <- egg%*%sinv%*%t(egg)
}else{
con <- which(colnames(beta) %in% conditional)
if( length(con) == 0 )stop( 'group must be in colnames(ydata)' )
nc <- c(1:SO)[-con]
sg <- sigma[con,con] -
sigma[con,nc]%*%solve(sigma[nc,nc])%*%sigma[nc,con]
sens <- egg[,con]%*%solve(sg)%*%t(egg[,con])
}
list(ag = agg, eg = egg, sens = sens)
}
.chain2tab <- function(chain, snames = NULL, xnn = NULL, wF = NULL, sigfig = 3){
mu <- colMeans(chain)
SE <- apply(chain,2,sd)
CI <- apply(chain,2,quantile,c(.025,.975))
splus <- rep('', length=length(SE))
splus[CI[1,] > 0 | CI[2,] < 0] <- '*'
tab <- cbind( mu, SE, t(CI))
tab <- signif(tab, sigfig)
colnames(tab) <- c('Estimate','SE','CI_025','CI_975')
tab <- as.data.frame(tab)
tab$sig95 <- splus
attr(tab, 'note') <- '* indicates that zero is outside the 95% CI'
mmat <- smat <- NULL
if(!is.null(snames)){
Q <- length(xnn)
S <- length(snames)
mmat <- matrix(NA, Q, S)
colnames(mmat) <- snames
rownames(mmat) <- xnn
smat <- mmat
if(is.null(wF)){
wF <- 1:length(mmat)
}
mmat[ wF ] <- signif(mu, sigfig)
smat[ wF ] <- signif(SE, sigfig)
ww <- which(rowSums(mmat, na.rm=T) != 0)
mmat <- mmat[drop = FALSE, ww,]
smat <- smat[drop = FALSE, ww,]
}
list(mu = mmat, se = smat, tab = tab)
}
summary.gjam <- function(object,...){
TRAITS <- F
bb <- sens <- NULL
termB <- termR <- termA <- F
if('betaMu' %in% names(object$parameters)){
termB <- T
beta <- object$parameters$betaMu
}
n <- nrow(object$inputs$y)
S <- ncol(object$inputs$y)
Q <- ncol(object$inputs$xStand)
notOther <- object$inputs$notOther
other <- object$inputs$other
ng <- object$modelList$ng
burnin <- object$modelList$burnin
if("betaTraitTable" %in% names(object$parameters))TRAITS <- T
if('fSensGibbs' %in% names(object$chains)){
sens <- .chain2tab(object$chains$fSensGibbs[burnin:ng,])$tab[,1:4]
cat("\nSensitivity by predictor variables f:\n")
print( sens )
}
RMSPE <- object$fit$rmspeBySpec
imputed <- rep(0,S)
missingx <- rep(0,Q)
if(length(object$missing$xmiss) > 0){
xtab <- table(object$missing$xmiss[,2])
missingx[ as.numeric(names(xtab)) ] <- xtab
}
if(length(object$missing$ymiss) > 0){
xtab <- table(object$missing$ymiss[,2])
imputed[ as.numeric(names(xtab)) ] <- xtab
}
if(termB){
RMSPE <- RMSPE[notOther]
bb <- t( signif(rbind(beta[,notOther], RMSPE),3) )
cat("\nCoefficient matrix B:\n")
print( t(bb) )
cat("\nCoefficient matrix B:\n")
print(object$parameters$betaTable)
cat("\nLast column indicates if 95% posterior distribution contains zero.\n")
if( !is.null(object$parameters$betaStandXtable) ){
cat("\nCoefficient matrix B, standardized for X:\n")
print(object$parameters$betaStandXtable)
cat("\nLast column indicates if 95% posterior distribution contains zero.\n")
}
if( !is.null(object$parameters$betaStandXWtable) ){
cat("\nCoefficient matrix B, standardized for X and W:\n")
print(object$parameters$betaStandXWtable)
cat("\nLast column indicates if 95% posterior distribution contains zero.\n")
}
cat("\nVariance contributions from model mean and random effects:\n")
print( object$fit$fractionExplained )
}
if(TRAITS){
cat("\nCoefficient matrix for traits:\n")
print(object$parameters$betaTraitTable)
cat("\nLast column indicates if 95% posterior distribution contains zero.\n")
cat("\nCoefficient matrix for traits, standardized for X and W:\n")
print(object$parameters$betaTraitXWTable)
cat("\nLast column indicates if 95% posterior distribution contains zero.\n")
}
if( length(object$modelSummary$missFacSpec) > 0 ){
cat("\nMissing factor combinations:\n")
print(object$modelSummary$missFacSpec)
}
dt <- object$inputs$designTable
if(!is.null(dt)){
cat("\n Design Table: VIF and correlations\n")
print(dt)
}
words <- .summaryWords(object)
cat("\n",words)
res <- list(DIC=object$fit$DIC)
if(!is.null(sens))res$sensitivity <- sens
if(!is.null(bb))res$Coefficients <- bb
class(res) <- "summary.gjam"
invisible(res)
}
.summaryWords <- function(object){
Q <- ncol(object$inputs$xStand)
n <- nrow(object$inputs$y)
S <- ncol(object$inputs$y)
other <- object$inputs$other
notOther <- object$inputs$notOther
nxmiss <- nrow( object$missing$xmiss )
nymiss <- nrow( object$missing$ymiss )
nholdout <- length(object$modelList$holdoutIndex)
types <- unique(object$modelList$typeNames)
if(length(types) == 1)types <- rep(types,S)
ef <- ""
if( 'DA' %in% types ){
wd <- which(types == 'DA')
rf <- object$modelList$effort$values[,wd]
gf <- signif( range(rf), 2)
wr <- signif( range(object$inputs$y[,wd]/rf), 3)
if(gf[1] == gf[2]){
ab <- paste(" DA effort is ",gf[1]," for all observations. ",sep="")
}else{
ab <- paste(" DA effort ranges from ", gf[1], " to ", gf[2],".",sep="")
}
ef <- paste(ab, " DA counts per effort (W) ranges from ",
wr[1], " to ", wr[2], ".",sep="")
}
if( 'CC' %in% types ){
wd <- which(types == 'CC')
rr <- round( range(object$inputs$y[,wd]) )
ef <- paste(ef, " CC count range is (", rr[1],", ", rr[2], ").", sep="")
}
oc <- ""
if(length(other) > 0){
oc <- paste(" 'other' class detected in ydata, '",
colnames(object$inputs$y)[other], " column ",
"', not fitted. ",sep='')
}
ty <- paste0( unique(types), collapse=", ")
words <- paste("Sample contains n = ", n, " observations on S = ",
S, " response variables. Data types (typeNames) include ", ty,
".", ef, oc, " There are ", nxmiss,
" missing values in X and ", nymiss,
" missing values in Y. The RMSPE is ",
signif(object$fit$rmspeAll,3),
", and the DIC is ",round(object$fit$DIC),".", sep="")
dr <- ""
if(object$modelList$REDUCT){
nr <- object$chains$kgibbs
nd <- t( apply(nr,1,duplicated) )
nr[!nd] <- 0
nr[nr > 0] <- 1
nk <- rowSums(1 - nr)
nk <- max(nk[object$modelList$burnin:object$modelList$ng])
dr <- paste(" Dimension reduction was implemented with N = ",nk,
" and r = ",object$modelList$reductList$r,".",
sep="")
}
ho <- ""
if(nholdout > 0)ho <- paste(" Held out were",nholdout,"observations.")
comp <- paste(" Computation involved ", object$modelList$ng,
" Gibbs steps, with a burnin of ", object$modelList$burnin,
".",dr,ho,sep='')
paste(words, comp)
}
print.gjam <- function(x, ...){
summary.gjam(x)
}
.getSigTable <- function(chain, SS, QQ, xn, sn){
bci <- apply(chain,2,quantile,c(.025,.975))
tmp <- .between(rep(0,SS*QQ),bci[1,],bci[2,],OUT=T)
ii <- rep(' ',SS*QQ)
ii[tmp[bci[1,tmp] < 0]] <- '-'
ii[tmp[bci[2,tmp] > 0]] <- '+'
bTab <- data.frame( matrix(ii,QQ,SS) )
colnames(bTab) <- sn
rownames(bTab) <- xn
data.frame( t(bTab) )
}
.getPlotLayout <- function(np){
if(np == 1)return( c(1,1) )
if(np == 2)return( c(1,2) )
if(np == 3)return( c(1,3) )
if(np <= 4)return( c(2,2) )
if(np <= 6)return( c(2,3) )
if(np <= 9)return( c(3,3) )
if(np <= 12)return( c(3,4) )
if(np <= 16)return( c(4,4) )
if(np <= 20)return( c(4,5) )
if(np <= 25)return( c(5,5) )
if(np <= 25)return( c(5,6) )
return( c(6,6) )
}
sqrtSeq <- function( xx, nbin = 15){
maxval <- max(xx, na.rm = T)
minval <- min(xx, na.rm = T)
by <- 2
if(maxval >= 5) by <- 10
if(maxval >= 10) by <- 20
if(maxval >= 20) by <- 100
if(maxval >= 30) by <- 200
if(maxval >= 50) by <- 500
if(maxval >= 70) by <- 1000
if(maxval >= 100) by <- 2000
if(maxval >= 200) by <- 10000
if(maxval >= 500) by <- 50000
if(maxval >= 700) by <- 100000
if(maxval >= 1000)by <- 200000
if(maxval >= 1500)by <- 400000
labs <- seq(0, maxval^2, by = by)
while(length(labs) < nbin){
labs <- seq(minval^2, maxval^2, by = by)
by <- by/2
}
while(length(labs) > (nbin + 2)){
labs <- seq(minval^2, maxval^2, by = by)
by <- 1.2*by
}
at <- sqrt(labs)
labs <- signif(labs, 2)
list(at = at, labs = labs)
}
.plotObsPred <- function(xx, yy, opt = NULL, col='darkgreen', points = F, add = F){
atx <- aty <- breaks <- NULL
xlabel <- 'Observed'
ylabel <- 'Predicted'
trans <- .8
xlimit <- range(xx, na.rm=T)
ylimit <- range(yy, na.rm=T)
if(!is.null(opt))for(k in 1:length(opt))assign( names(opt)[k], opt[[k]] )
if( is.na(col) )col <- 'darkgreen'
ww <- which(is.finite(xx) & is.finite(yy))
xx <- xx[ww]
yy <- yy[ww]
if( !add ){
if( !points ){
plot(NA, xlim = xlimit, xlab = xlabel, ylab = ylabel, ylim = ylimit)
}else{
plot(xx, yy, col = .getColor( col, trans), cex = .3,
xlim = xlimit, xlab = xlabel, ylab = ylabel, ylim = ylimit,
xaxt = 'n',yaxt = 'n')
}
}
if( is.null(atx) )atx <- breaks
if( is.null(atx) ){
tmp <- .bins4data( xx )
atx <- breaks <- tmp$bins
}
bins <- atx
if( length(atx) < 8 )bins <- breaks <- .bins4data( xx )$bins
nbin <- length(bins)
xb <- findInterval(xx, bins, all.inside = TRUE)
tt <- table(xb)
kbin <- as.numeric(names(tt))
xf <- (tt/sum(tt))^.5
xf[ xf < .002 ] <- .002
xs <- xf^.2
wide <- diff(bins)/2
wide[ wide > 2*min(wide) ] <- 2*min(wide)
wide <- c( wide, wide[ length(wide) ] )
db <- 1
for(k in kbin){
qk <- which(xb == k)
q <- quantile(yy[qk],c(.5,.025,.158,.841,.975),na.rm=T)
if(!is.finite(q[1]))next
if(q[2] == q[5])next
if(k > 1)db <- bins[k] - bins[k-1]
if(k < nbin){
if(bins[k] > 0 & bins[k+1] > 0){
xp <- sqrt( bins[k]*bins[k+1] )
}else{
xp <- mean( bins[k:(k+1)] )
}
}else{
xp <- bins[k] + db/2
}
rwide <- wide[k]
xtrans <- xs[ as.character(k) ]
ftrans <- xf[ as.character(k) ]
suppressWarnings(
arrows(xp, q[2], xp, q[5], lwd=2, angle=90, code=3, col=.getColor(col,xtrans),
length=.02)
)
lines(c(xp-.5*rwide,xp+.5*rwide),q[c(1,1)],lwd=2,
col=.getColor(col,sqrt(ftrans)))
rect(xp-.4*rwide,q[3],xp+.4*rwide,q[4], border = .getColor(col,xtrans),
col=.getColor(col,ftrans))
}
}
sqrtSeq <- function(maxval, nbin = 10){
by <- signif(maxval^1.7, 1)
labs <- seq(0, maxval^2, by = by)
while(length(labs) < nbin){
by <- .5*by
labs <- seq(0, maxval^2, by = by)
}
at <- sqrt(labs)
labs <- signif(labs, 2)
ww <- which(!duplicated(labs))
labs <- labs[ww]
at <- at[ww]
list(at = at, labs = labs)
}
.getBinSqrt <- function(xx, yy, nbin = 10 ){
yy[ yy < 0 ] <- 0
sxx <- suppressWarnings( sqrt(xx) )
syy <- suppressWarnings( sqrt(yy) )
tx <- sqrtSeq( maxval = max(sxx, na.rm=T), nbin )
ty <- sqrtSeq( maxval = max(syy, na.rm=T), nbin )
atx <- tx$at
lax <- tx$labs
xtick <- atx
xlab <- lax
ix <- findInterval(sxx, atx, all.inside = T)
ix <- table(ix)
px <- ix/sum(ix)
if( max(px) > .3 ){
qx <- quantile(sxx[sxx != 0], seq(0, 1, length.out = nbin), na.rm=T )
ux <- unique(qx)
rx <- length(ux)/length(qx)
nb <- ceiling( nbin/rx )
qx <- quantile(sxx[sxx != 0], seq(0, 1, length.out = nb), na.rm=T )
atx <- unique(qx)
lax <- round( atx^2 )
atx <- c(0, atx)
lax <- c(0, lax)
wx <- which( !duplicated(lax) )
atx <- atx[wx]
lax <- lax[wx]
}
aty <- ty$at
if(length(atx) == 1)atx <- range(xtick)
list(xlim = range(tx$at, na.rm=T), ylim = range(aty, na.rm=T),
atx = atx, labx = lax, xtick = atx,
aty = aty, laby = ty$labs)
}
.shadeInterval <- function(xvalues,loHi,col='grey',PLOT = TRUE, add = TRUE,
xlab=' ',ylab=' ', xlim = NULL, ylim = NULL,
LOG = FALSE, trans = .5){
tmp <- smooth.na(xvalues,loHi)
xvalues <- tmp[,1]
loHi <- tmp[,-1]
xbound <- c(xvalues,rev(xvalues))
ybound <- c(loHi[,1],rev(loHi[,2]))
if(is.null(ylim))ylim <- range(as.numeric(loHi))
if(is.null(xlim))xlim <- range(xvalues)
if(!add){
if(!LOG)plot(NULL, xlim = xlim, ylim=ylim,
xlab=xlab, ylab=ylab)
if(LOG)suppressWarnings( plot(NULL, xlim = xlim, ylim=ylim,
xlab=xlab, ylab=ylab, log='y') )
}
if(PLOT)polygon(xbound,ybound, border=NA,col=.getColor(col, trans))
invisible(cbind(xbound,ybound))
}
smooth.na <- function(x,y){
if(!is.matrix(y))y <- matrix(y,ncol=1)
wy <- which(!is.finite(y),arr.ind = TRUE)
if(length(wy) == 0)return(cbind(x,y))
wy <- unique(wy[,1])
ynew <- y[-wy,]
xnew <- x[-wy]
cbind(xnew,ynew)
}
.getBin <- function(xx, yy, minbin = 5, length = 15){
xi <- xr <- seq(min(xx, na.rm=T), max(xx, na.rm=T), length = length)
xc <- findInterval(xx, xi, all.inside = T)
tab <- table(xc)
while( tab[1] < (minbin/2) ){
xi <- xi[-1]
xc <- findInterval(xx, xi, all.inside = T)
tab <- table(xc)
}
nt <- length(tab)
nx <- length(xi)
while( tab[nt] < (minbin/2) ){
xi <- xi[-nx]
xc <- findInterval(xx, xi, all.inside = T)
tab <- table(xc)
nx <- length(xi)
nt <- length(tab)
}
while(min(tab) < minbin){
length <- length - 1
xi <- seq(min(xi, na.rm=T), max(xi, na.rm=T), length = length)
xc <- findInterval(xx, xi, all.inside = T)
tab <- table(xc)
nx <- length(xi)
nt <- length(tab)
}
xi[1] <- xr[1]
xi[nx] <- xr[length(xr)]
xmids <- (xi[1:(nx-1)] + xi[2:nx])/2
list(xseq = xi, xmids = xmids, xbin = xc)
}
.gjamPlot <- function(output, plotPars, verbose = FALSE){
FACNAMES <- TRUE
PLOTALLY <- TRAITS <- GRIDPLOTS <- SAVEPLOTS <-
REDUCT <- TV <- SPECLABS <- SMALLPLOTS <- F
PREDICTX <- BETAGRID <- PLOTY <- PLOTX <-
CORLINES <- SIGONLY <- CHAINS <- RANDOM <- T
omitSpec <- trueValues <- censor <- otherpar <- ng <- NULL
traitList <- specByTrait <- typeNames <- classBySpec <-
x <- y <- burnin <- richness <- betaTraitMu <-
corSpec <- cutMu <- ypredMu <- DIC <- yscore <- missingIndex <-
xpredMu <- plotByTrait <- tMu <- tMuOrd <- traitTypes <-
isFactor <- betaMu <- betaMuUn <- corMu <- modelSummary <-
randByGroup <- randGroupVarMu <- NULL
unstandardX <- NULL
specColor <- NULL
ematAlpha <- alphaEigen <- .5
ematrix <- ematrixL <- ematrixA <- eComs <- NULL
ymiss <- eCont <- modelList <- timeList <- timeZero <- NULL
random <- NULL
kgibbs <- NULL
chains <- inputs <- parameters <- prediction <- reductList <-
bgibbs <- sgibbs <- sigErrGibbs <- factorBeta <- gsens <-
bFacGibbs <- alphaGibbs <- times <- alphaMu <- rhoMu <-
factorBetaList <- factorRho <- rhoMuUn <- notOther <- other <- NULL
xStand <- wL <- wA <- xUnstand <- sensAlpha <- sensRho <-
sensBeta <- rhoStandXmu <- evecs <- NULL
holdoutN <- 0
TIME <- termB <- termR <- termA <- FALSE
cex <- 1
holdoutIndex <- numeric(0)
clusterIndex <- clusterOrder <- numeric(0)
xlnames <- character(0)
ncluster <- min(c(4,ncol(y)))
outFolder <- 'gjamOutput'
outfile <- character(0)
width <- height <- 3
oma <- c(1,1,0,0)
mar <- c(1,1,1,0)
tcl <- -0.1
mgp <- c(0,0,0)
traitColor <- textCol <- 'black'
for(k in 1:length(output))assign( names(output)[k], output[[k]] )
for(k in 1:length(chains))assign( names(chains)[k], chains[[k]] )
for(k in 1:length(fit))assign( names(fit)[k], fit[[k]] )
for(k in 1:length(inputs))assign( names(inputs)[k], inputs[[k]] )
for(k in 1:length(missing))assign( names(missing)[k], missing[[k]] )
for(k in 1:length(modelList))assign( names(modelList)[k], modelList[[k]] )
for(k in 1:length(parameters))assign( names(parameters)[k], parameters[[k]] )
for(k in 1:length(prediction))assign( names(prediction)[k], prediction[[k]] )
for(k in 1:length(reductList))assign( names(reductList)[k], reductList[[k]] )
if('bgibbs' %in% names(chains)) termB <- TRUE
if('lgibbs' %in% names(chains)) termR <- TRUE
if('alphaGibbs' %in% names(chains))termA <- TRUE
x <- xStand
rm(xStand)
if(!is.null(plotPars))for(k in 1:length(plotPars))assign( names(plotPars)[k], plotPars[[k]] )
if( !is.null(traitList) ){
TRAITS <- T
for(k in 1:length(traitList))assign( names(traitList)[k], traitList[[k]] )
}
if( 'trueValues' %in% names(plotPars) ){
TV <- T
for(k in 1:length(trueValues))assign( names(trueValues)[k], trueValues[[k]] )
if(termB){
matchTrue <- match(colnames(betaMu),colnames(beta))
beta <- beta[,matchTrue]
}
if(termR){
matchTrue <- match(colnames(rhoMu),colnames(rho))
rho <- rho[,matchTrue]
}
if('sigma' %in% names(trueValues)){
sigma <- sigma[matchTrue,matchTrue]
}
if('corSpec' %in% names(trueValues)){
corSpec <- corSpec[matchTrue,matchTrue]
}
}
if(!is.null(timeList)){
for(k in 1:length(timeList))assign( names(timeList)[k], timeList[[k]] )
ypredMu[timeZero,] <- NA
TIME <- T
}
if(length(xpredMu) == 0)PREDICTX <- F
if(!PREDICTX)PLOTX <- F
if(!is.null(random)){
RANDOM <- T
}
oma <- c(0,0,0,0)
mar <- c(4,4,2,1)
tcl <- -0.5
mgp <- c(3,1,0)
if(SAVEPLOTS){
ff <- file.exists(outFolder)
if(!ff)dir.create(outFolder)
}
chainNames <- names(chains)
allTypes <- unique(typeNames)
ntypes <- length(allTypes)
typeCode <- match(typeNames,allTypes)
specs <- rownames(classBySpec)
Q <- ncol(x)
nhold <- length(holdoutIndex)
ncut <- ncol(classBySpec) + 1
S <- ncol(y)
n <- nrow(y)
snames <- colnames(y)
xnames <- colnames(x)
gindex <- burnin:ng
if(S < 20)SPECLABS <- T
if(S > 10)CORLINES <- F
if(S < 4){
if(GRIDPLOTS)message('no GRIDPLOTS if S < 4')
GRIDPLOTS <- F
}
cvec <- c('
'
colF <- colorRampPalette( cvec, space = "Lab" )
if(is.null(specColor))specColor <- colF(S)
if(is.numeric(specColor))specColor <- colF(S)[ specColor ]
names(specColor) <- .cleanNames(names(specColor))
if(length(specColor) == 1)specColor <- rep(specColor, S)
boxCol <- .getColor(specColor,.4)
omit <- c(which(colnames(y) %in% omitSpec),other)
notOmit <- 1:S
SO <- length(notOther)
if(length(omit) > 0)notOmit <- notOmit[-omit]
SM <- length(notOmit)
snames <- colnames(y)
xnames <- colnames(x)
xSd <- 0
if(Q > 1)xSd <- sqrt( diag(cov(x)) )
HOLD <- F
if(holdoutN > 0)HOLD <- T
if( !TRAITS & !is.null(richness) ){
cvr <- sd( richness[,'obs'], na.rm=T)/mean( richness[,'obs'], na.rm=T)
if(cvr > .5){
if(TIME)richness[timeZero,] <- NA
w1 <- which(richness[,1] > 0)
if(HOLD)w1 <- w1[!w1 %in% holdoutIndex]
xlimit <- range(richness[w1,1])
if(diff(xlimit) > 0){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'richness.pdf') )
par(mfrow=c(1,2), bty='n', omi=c(.3,.3,0,0), mar=c(3,2,2,1),
tcl= tcl, mgp=mgp)
xc <- c('obs','H_obs')
yc <- c('predMu','H_pred')
for(k in 1:2){
kx <- richness[w1,xc[k]]
ky <- richness[w1,yc[k]]
if(k == 2){
kx <- exp(kx)
ky <- exp(ky)
}
ylimit <- range(ky)
rr <- range(kx,na.rm=T)
bins <- seq(rr[1] - .5, ceiling(rr[2] + .5), by=1)
nbin <- length(bins)
rh <- hist(kx,bins,plot=F)
xy <- rbind(c(bins[1],bins,bins[nbin]),c(0,rh$density,0,0))
xy <- .gjamBaselineHist(kx,bins=bins)
xy[2,] <- ylimit[1] + .3*xy[2,]*diff(ylimit)/max(xy[2,])
plot(xy[1,],xy[2,],col='tan',type='s',lwd=2, ylim=ylimit,
xlab=' ',ylab='')
polygon(xy[1,],xy[2,],border='brown',col='tan')
if(HOLD){
xhold <- richness[holdoutIndex,xc[k]]
yhold <- richness[holdoutIndex,yc[k]]
if(k == 2){
xhold <- exp(xhold)
yhold <- exp(yhold)
}
points(xhold,yhold, col='brown', cex=.3)
}
opt <- list( xlabel='Observed', ylabel='Predicted', col='darkgreen',
atx = bins)
.plotObsPred( xx = kx, yy = ky, add=T, opt = opt)
abline(0,1,lty=2, lwd=2, col='grey')
if(k == 1){
.plotLabel('a) Richness (no. present)',cex=1.2,above=T)
}else{
.plotLabel('b) Diversity (H)',cex=1.2,above=T)
}
}
mtext(side=1, 'Observed', outer=T, line=0)
mtext(side=2, 'Predicted', outer=T, line=0)
if(!SAVEPLOTS){
readline('no. species, effective species -- return to continue ')
} else {
dev.off( )
}
}
}
}
ns <- min( c(ng - burnin, 1000) )
simIndex <- sample(nrow(sgibbs),ns,replace=T)
simIndex <- sort(simIndex)
burn <- burnin/ng*1000
tmp <- .expandSigmaChains(snames, sgibbs, otherpar, simIndex,
sigErrGibbs, kgibbs, REDUCT, CHAINSONLY=F, verbose)
corMu <- tmp$rMu; corSe <- tmp$rSe; sigMu <- tmp$sMu; sigSe <- tmp$sSe
sgibbsShort <- tmp$chainList$schain
rgibbsShort <- tmp$chainList$cchain
if(REDUCT){
kgibbsShort <- tmp$chainList$kchain
otherpar <- output$modelList$reductList$otherpar
}
if(REDUCT){
sigmaerror <- mean(sigErrGibbs)
sinv <- .invertSigma(sigMu,sigmaerror,otherpar,REDUCT)
} else {
sinv <- solveRcpp(sigMu[notOther,notOther])
}
omitBC <- keepBC <- NULL
if(termB){
bgibbsShort <- bgibbs[simIndex,]
betaLab <- expression( paste('Coefficient matrix ',hat(bold(B)) ))
tmp <- .omitChainCol(bgibbs,'other')
omitBC <- tmp$omit
keepBC <- tmp$keep
}
if(termR){
rhoLab <- expression( paste('Growth matrix ',hat(bold(Rho)) ))
}
if(termA){
alphaLab <- expression( paste('interaction matrix ',hat(bold(Alpha)) ))
}
SO <- length(notOther)
fMat <- output$parameters$fmatrix
if( 'factorBeta' %in% names(inputs) & !FACNAMES ){
fcnames <- names( inputs$factorBeta$factorList )
if(length(fcnames) > 0){
for(m in 1:length(fcnames)){
colnames(fMat) <- .replaceString( colnames( fMat ), fcnames[m], '' )
rownames(fMat) <- .replaceString( rownames( fMat ), fcnames[m], '' )
}
}
}
corLab <- expression( paste('Correlation matrix ',hat(bold(R)) ))
cutLab <- expression( paste('Partition matrix ',hat(bold(plain(P))) ))
AA <- F
if(!SMALLPLOTS)AA <- T
if( TV ){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'trueVsPars.pdf') )
npl <- length(trueValues[names(trueValues) != 'w'])
if(TIME)npl <- length(trueValues[!names(trueValues) %in% c('sigma','w')])
if('OC' %in% typeNames)npl <- npl + 1
mfrow <- .getPlotLayout(npl)
par(mfrow=mfrow,bty='n', oma=oma, mar=mar, tcl= tcl, mgp=mgp)
if( termB ){
beta <- trueValues$beta
sc <- beta*0
sc[ keepBC ] <- 1
sc <- specColor[ which(sc == 1, arr.ind=T)[,2] ]
if( length(beta) < 100 ){
.gjamTrueVest( pchains = chains$bgibbs[burnin:ng,],
true = beta,
typeCode, allTypes, colors = sc, label = betaLab)
} else {
opt <- list(xlabel='true',
ylabel='estimate', nPerBin=length(beta)/10,
fill='lightblue', box.col=sc, POINTS=T, MEDIAN=F, add=F)
.plotObsPred(beta[,notOther],betaMu[,notOther], opt = opt)
abline(0,1,lty=2)
}
}
if( 'rho' %in% names(trueValues) ){
rho <- trueValues$rho
cols <- colF(S)
if(length(rho) < 100){
lgibbs <- chains$lgibbs
gi <- grep('intercept', colnames(lgibbs))
xlim <- range(rho)
ylim <- range(lgibbs)
hline <- F
.gjamTrueVest(lgibbs[burnin:ng,],true=rho[ wL ], xlim = xlim, ylim = ylim,
typeCode, allTypes, colors=cols[wL[,2]], label = rhoLab)
abline( h = 0, lty=2)
} else {
opt <- list(xlabel='true',
ylabel='estimate', nPerBin=length(rho)/10,
fill='lightblue',box.col = cols[wL[,2]],POINTS=T,MEDIAN=F,add=F)
.plotObsPred(rho[wL],rhoMu[wL],opt = opt)
abline(0,1,lty=2)
}
}
if('alpha' %in% names(trueValues)){
alpha <- trueValues$alpha
aindex <- parameters$aindex
aTrue <- alpha[ aindex[,c('toW','fromW')] ]
if(length(alpha) < 100){
.gjamTrueVest(chains$alphaGibbs[burnin:ng,],true=aTrue,
typeCode,allTypes,colors = cols[wA[,2]] ,label = alphaLab)
} else {
opt <- list(xlabel='true',
ylabel='estimate', nPerBin=length(alpha)/10,
fill='lightblue',box.col=cols,POINTS=T,MEDIAN=F,add=F)
.plotObsPred(alpha[,notOther],alphaMu[,notOther],opt = opt)
abline(0,1,lty=2)
}
abline( h = 0, lty=2 )
}
if( 'corSpec' %in% names(trueValues) ){
cols <- colF(2^ntypes)
corTrue <- corSpec
diag(corTrue) <- NA
if(length(other) > 0){
corTrue[other,] <- NA
corTrue[,other] <- NA
}
cindex <- which(lower.tri(corSpec,diag=T))
pindex <- which(lower.tri(corSpec,diag=T),arr.ind=T)
if(!is.matrix(pindex)){
pindex <- matrix(pindex,1)
}
rindex <- which(is.finite(corTrue[cindex]))
cindex <- cindex[rindex]
pindex <- pindex[drop=F,rindex,]
cols <- colF(ntypes + ntypes*(ntypes-1)/2)
rg <- rgibbsShort
rg[rg == 1] <- NA
xlim <- range(c(-.1,.1,corTrue[cindex]),na.rm=T)
ylim <- range(c(-.1,.1,rg),na.rm=T)
add <- F
m <- 1
combNames <- character(0)
combCols <- numeric(0)
box <- F
for(k in 1:length(allTypes)){
wk <- which(typeNames == allTypes[k])
wk <- wk[wk %in% notOther]
wp <- which(pindex[,1] %in% wk & pindex[,2] %in% wk)
if( length(wp) == 1 ){
combNames <- c(combNames,allTypes[k])
yci <- quantile( rgibbsShort[,rindex[wp]] ,c(.5,.025,.975))
xmu <- corSpec[matrix(pindex[wp,],1)]
if(!add){
plot(xmu,yci[1],xlim=xlim,ylim=ylim,
pch=3,col=cols[m], xlab='true',ylab='')
add <- T
} else {
points(xmu,yci[1],pch=3,col=cols[m])
}
lines( c(xmu,xmu),yci[2:3],col=cols[m],lwd=2)
}
if(length(wp) > 1){
if( length(wp) < 100 ){
.gjamTrueVest(rgibbsShort[,rindex[wp]],true=corSpec[cindex[wp]],
typeCode,allTypes,label=corLab,xlim=xlim,ylim=ylim,
colors=cols[m],legend=F,add=add)
} else {
box <- T
opt <- list(xlabel='true',
ylabel='estimate', fill='lightblue',
nPerBin=length(wp)/20, box.col=cols[m], POINTS=T,
MEDIAN=F, add=add, atx = c(-1, 0, 1), aty = c(-1, 0, 1))
.plotObsPred(corSpec[cindex[wp]], corMu[cindex[wp]], opt = opt)
if(!add)abline(0,1,lty=2)
}
add <- T
combNames <- c(combNames,allTypes[k])
combCols <- c(combCols,cols[m])
m <- m + 1
}
if(k < length(allTypes)){
for( j in (k+1):length(allTypes) ){
wj <- which(typeNames == allTypes[j])
wj <- wj[wj %in% notOther]
wp <- which(pindex[,1] %in% wk & pindex[,2] %in% wj)
if(length(wp) == 0){
wp <- which(pindex[,2] %in% wk & pindex[,1] %in% wj)
}
if(length(wp) == 0)next
if(length(wp) == 1){
yci <- quantile( rgibbsShort[,rindex[wp]] ,c(.5,.025,.975))
xmu <- corTrue[cindex[wp]]
if(!add){
plot(xmu,yci[1],xlim=xlim,ylim=ylim,
pch=3,col=cols[m])
} else {
points(xmu,yci[1],pch=3,col=cols[m])
}
lines( c(xmu,xmu),yci[2:3],col=cols[m],lwd=2)
} else {
if(!box){
.gjamTrueVest(rgibbsShort[,rindex[wp]],
true=corTrue[cindex[wp]],
typeCode,allTypes,add=add,colors=cols[m],
legend=F, xlim=c(-.9,.9), ylim=c(-.9,.9))
} else {
opt <- list(nPerBin=length(wp)/10,
box.col=cols[m], fill='white',POINTS=T,
MEDIAN=F,add=add)
.plotObsPred(corSpec[cindex[wp]],corTrue[cindex[wp]],
opt = opt)
}
}
m <- m + 1
mnames <- paste(allTypes[k],allTypes[j],sep='-')
combNames <- c(combNames,mnames)
combCols <- c(combCols,rep(cols[m],length(mnames)))
add <- T
}
}
}
legend('topleft',combNames,text.col=cols,bty='n',ncol=3,cex=.7)
}
if('OC' %in% allTypes & 'cuts' %in% names(trueValues)){
ctmp <- cutMu
wc <- c(1:ncol( ctmp )) + 1
ctrue <- cuts[,wc]
wf <- which(is.finite(ctrue*ctmp)[,-1])
cutTable <- .gjamTrueVest(chains$cgibbs[burnin:ng,wf],true=ctrue[,-1][wf],
typeCode,allTypes,colors='black',
label=cutLab,legend=F, add=F)
}
if(!SAVEPLOTS){
readline('simulated beta, corSpec vs betaMu, corMu (95%) -- return to continue')
} else {
dev.off()
}
}
if('OC' %in% typeNames){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'partition.pdf') )
par( mfrow=c(1,1), bty='n', oma=oma, mar=mar, tcl= tcl, mgp=mgp )
wk <- which(typeNames == 'OC')
nk <- length(wk)
cgibbs <- output$chains$cgibbs
onames <- snames[wk]
vnames <- sort(unique(.splitNames(colnames(cgibbs))$vnam[,1]))
cgibbs[!is.finite(cgibbs)] <- NA
cc <- colSums(abs(cgibbs),na.rm=T)
cg <- cgibbs[,cc > 0]
if('cuts' %in% names(trueValues))rownames(cuts) <- rownames(cutMu)
c1 <- names(cc)[cc > 0]
colc <- colF(ncol(cutMu))
nk <- length(vnames)
plot(0,0,xlim=c(0,max(cg,na.rm=T)),ylim=c(1,1+nk),cex=.1,
xlab='Unit variance scale',
ylab=' ',yaxt='n')
.yaxisHorizLabs(vnames,at=c(1:nk))
for(k in 1:length(vnames)){
x1 <- 0
ym <- .5
wcg <- grep(vnames[k],colnames(cg))
if(length(wcg) == 0)next
tmp <- .chains2density(cg,varName=vnames[k], cut=2.5)
xt <- tmp$x
yt <- tmp$y
yt <- .5*yt/max(yt)
yt <- yt + k
for(j in 1:nrow(xt)){
if('cuts' %in% names(trueValues)){
lines( rep(cuts[vnames[k],j+2],2),c(k,k+1),lty=2,col=colc[j],lwd=3)
}
xj <- c(xt[j,],xt[j,ncol(xt)],xt[j,1])
yj <- c(yt[j,],k,k)
x2 <- which.max(yj)
xm <- .2*x1 + .8*xj[x2]
polygon(xj, yj, border=colc[j], col=.getColor(colc[j], .4), lwd=2)
if(k == length(vnames)) text(xm,ym+k,j,col=colc[j])
x1 <- xj[x2]
}
}
.plotLabel('Partition by species',above=T)
if(!SAVEPLOTS){
readline('cuts vs cutMu -- return to continue')
} else {
dev.off()
}
}
rmspeAll <- sqrt( mean( (y[,notOther] - ypredMu[,notOther])^2,na.rm=T ) )
eBySpec <- sqrt( colMeans( (y[,notOther]/rowSums(y[,notOther]) -
ypredMu[,notOther]/rowSums(ypredMu[,notOther],
na.rm=T))^2 ) )
ordFit <- order(eBySpec)
score <- mean(yscore)
fit <- signif( c(DIC,score,rmspeAll), 5)
names(fit) <- c('DIC','score','rmspe')
if( PLOTY ){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'yPred.pdf') )
npp <- 0
for(k in 1:length(allTypes)){
wk <- which(typeCode == k)
if( length(censor) > 0 ){
ncc <- 0
if( typeNames[wk[1]] %in% names(censor) ){
wm <- which(names(censor) == typeNames[wk[1]])
wnot <- wk
for(m in wm){
wnot <- wnot[!wnot %in% censor[[m]]$columns]
npp <- npp + 1
}
if(length(wnot) > 0)npp <- npp + 1
} else {
ncc <- ncc + 1
}
} else {
ncc <- 1
}
npp <- npp + ncc
}
mfrow <- .getPlotLayout(npp)
par( mfrow=mfrow, bty='n', omi=c(.3,.3,0,0), mar=c(3,4,2,1),
tcl= tcl, mgp = mgp )
ylab <- ' '
mk <- 0
ypred <- ypredMu
yobs <- y
ypred[ymiss] <- yobs[ymiss] <- NA
if(TIME)ypred[timeZero,] <- NA
for(k in 1:length(allTypes)){
wk <- which(typeCode == k)
wk <- wk[wk %in% notOther]
wkm <- wk
nk <- nkm <- length(wk)
censm <- NULL
wm <- wall <- 1
CENS <- F
add <- F
if( length(censor) > 0 ){
if( typeNames[wk[1]] %in% names(censor) ){
CENS <- T
wm <- which(names(censor) == typeNames[wk[1]])
wall <- wm
wnot <- wk
for(m in wm){
wnot <- wnot[!wnot %in% censor[[m]]$columns]
}
if(length(wnot) > 0)wall <- c(wall,max(wall) + 1)
}
}
for(m in wall){
if(CENS){
if(m %in% wm){
censm <- censor[[m]]
wkm <- censor[[m]]$columns
} else {
censm <- NULL
wkm <- wnot
}
nkm <- length(wkm)
}
mk <- mk + 1
y1 <- yobs[,wkm,drop=F]
yp <- ypred[,wkm,drop=F]
ww <- which(is.finite(y1) & is.finite(yp) & y1 >= 0 & yp >= 0)
sxx <- suppressWarnings( sqrt(y1[ww]) )
syy <- suppressWarnings( sqrt(yp[ww]) )
opt <- .getBinSqrt(y1, yp, nbin = 8 )
if( !typeNames[wk[1]] %in% c('PA','CAT') ){
if(typeNames[wk[1]] == 'FC'){
at <- ceiling( 10*max(y1, na.rm=T) )/10
opt$xtick <- opt$ytick <- opt$atx <- opt$aty <- seq(0, at, by = .1)
opt$labx <- opt$laby <- opt$atx
opt$xlim <- opt$ylim <- c(0, at)
sxx <- y1[ww]
syy <- yp[ww]
}
xy <- .gjamBaselineHist( y1 = sxx, bins = opt$atx, ylim = opt$ylim,
nclass=length(opt$atx) )
plot(xy[1,], xy[2,], col='tan', type='s', lwd=2, xlim=opt$xlim,
ylim = opt$ylim, xlab='', ylab='', xaxt='n', yaxt='n')
polygon(xy[1,],xy[2,],border='tan',col='wheat')
axis(1, at = opt$xtick, labels = opt$labx)
axis(2, at = opt$aty, labels = opt$laby, las=2)
opt <- append(opt, list( xlabel='Observed', ylabel='Predicted', col='darkgreen') )
tmp <- .plotObsPred( xx = sxx, yy = syy, add=T, opt = opt)
abline(0, 1, lty=2, lwd = 2, col = 'grey')
} else {
y11 <- mean(y1,na.rm=T)
y00 <- 1 - y11
x11 <- c(-.07,-.07,.07,.07,.93,.93,1.07,1.07,-.07)
y11 <- c(0,y00,y00,0,0,y11,y11,0,0)
atx <- min(y1):max(y1)
aty <- atx
xlim <- range( atx + c(-1,1)*.2 )
plot(NULL,col='tan',type='s',lwd=2, xlim= xlim + 1,ylim=range(aty),
xlab='Observed',ylab='', xaxt='n',yaxt='n')
axis(1, at = atx + 1, labels = atx )
axis(2, at = aty, labels = atx )
polygon(x11 + 1,y11,border='tan',col='wheat')
stats <- tapply( as.vector(yp), as.vector(y1), quantile, pnorm(c(-1.96,-1,0,1,1.96)) )
stats <- matrix( unlist(stats), ncol = 2 )
tmp <- .boxplotQuant( yp ~ y1, stats = stats, xaxt='n', yaxt = 'n', outline=F,
border='darkgreen', whiskcol='darkgreen',
boxfill= .getColor('darkgreen', .6),
pars = list(boxwex = 0.1, ylim=range(aty)), lty=1,
add = T)
abline(-1, 1, lty=2, lwd = 2, col = 'grey')
}
add <- T
if(nhold > 0){
y1h <- y[holdoutIndex,wkm,drop=F]
yph <- ypredMu[holdoutIndex,wkm,drop=F]
points(y1h,yph,col='brown',
pch=21, bg='green',cex=.3)
}
tf <- .gjamGetTypes(typeNames[wk[1]])$labels
tf <- paste(letters[mk],tf, sep=') ')
.plotLabel(tf,'topleft',above=AA)
}
}
mtext('Observed', side=1, outer=T)
mtext('Predicted', side=2, outer=T)
if(!SAVEPLOTS){
readline('obs y vs predicted y -- return to continue ')
} else {
dev.off()
}
}
nfact <- 0
factorList <- contrast <- numeric(0)
if( termB ){
nfact <- factorBeta$nfact
factorList <- contrast <- numeric(0)
if(!is.null(nfact)){
factorList <- factorBeta$factorList
contrast <- factorBeta$contrast
}
}
if( termR ){
if(factorRho$nfact > 0){
factorRho$factorList <- factorRho$factorList[ !factorRho$factorList %in% factorList ]
nfact <- nfact + length( factorRho$factorList )
factorList <- append(factorList, factorRho$factorList)
contrast <- append(contrast, factorRho$contrast)
}
}
if( PLOTX & PREDICTX & length(xpredMu) > 0 ){
noX <- character(0)
colorGrad <- colorRampPalette(c('white','brown','black'))
iy <- c(1:n)
if(!is.null(timeZero))iy <- iy[-timeZero]
if( nfact > 0 ){
nn <- length(unlist(factorList))
mmat <- matrix(0,nn,nn)
mnames <- rep('bogus',nn)
samples <- rep(0,nn)
ib <- 1
par(mfrow=c(1,1),bty='n')
mm <- max(nfact,2)
useCols <- colorRampPalette(c('brown','orange','darkblue'))(mm)
textCol <- character(0)
for(kk in 1:nfact){
gname <- names( factorList )[[kk]]
fnames <- factorList[[kk]]
nx <- length(fnames)
if(nx < 1)next
ie <- ib + nx - 1
noX <- c(noX,fnames)
cont <- contrast[[kk]]
refClass <- names(which( rowSums( cont ) == 0) )
hnames <- substring(fnames, nchar(gname) + 1)
knames <- c(paste(gname,'Ref',sep=''),fnames)
if(TIME){
xtrue <- x[iy,fnames,drop=F]
}else{
xtrue <- xUnstand[iy,fnames,drop=F]
}
nx <- ncol(xtrue)
xpred <- xpredMu[iy,fnames,drop=F]
cmat <- matrix(0,nx,nx)
colnames(cmat) <- hnames
rownames(cmat) <- rev(hnames)
for(j in 1:nx){
wj <- which(xtrue[,j] == 1)
cmat[,j] <- rev( colSums(xpred[drop=F,wj,],na.rm=T)/length(wj) )
}
nb <- nn - ib + 1
ne <- nn - ie + 1
samples[ib:ie] <- colSums(xtrue)/n
mmat[ne:nb,ib:ie] <- cmat
mnames[ib:ie] <- hnames
textCol <- c(textCol,rep(useCols[kk],nx))
ib <- ie + 1
}
colnames(mmat) <- mnames
rownames(mmat) <- rev(mnames)
if(length(mmat) == 1){
mc <- c(mmat[1], 1 - mmat[1])
mmat <- cbind(rev(mc),mc)
rownames(mmat) <- colnames(mmat) <- factorBeta$facList2[[1]]
}
graphics.off()
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'xPredFactors.pdf' ) )
par(mfrow=c(1,1),bty='n')
slim <- 1.3*c(0,max(mmat))
if(slim[2] > 1)slim[2] <- 1
.corPlot(mmat,slim=slim,plotScale=.8, textCol = textCol,
PDIAG=F,CORLINES=T, tri='both',
SPECLABS = T, colorGrad = colorGrad,
textSize=1, new=F)
if(nx > 1){
mloc <- par('usr')
text(mean(mloc[1:2]),mloc[3] + .03*diff(mloc[3:4]),'Observed')
mtext('Predicted',side=4)
}
if(!SAVEPLOTS){
readline('x inverse prediction, factors -- return to continue ')
} else {
dev.off()
}
}
noplot <- c(1,grep(':',xnames),grep('^2',xnames,fixed=T))
vnames <- xnames[-noplot]
vnames <- vnames[!vnames %in% noX]
if( length(vnames) > 0 ){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'xPred.pdf') )
ylab <- ''
xlab <- ''
mfrow <- .getPlotLayout( length(vnames) )
par( mfrow=mfrow, bty='n', omi=c(.3,.3,0,0), mar=c(3,2,2,1),
tcl= tcl, mgp=mgp )
missX <- missingIndex
xmaxX <- apply(x,2,max,na.rm=T)
k <- 0
b <- 0
for(j in 2:Q){
if(!xnames[j] %in% vnames)next
k <- k + 1
b <- b + 1
if(b == mfrow[2])b <- 0
x1 <- xUnstand[iy,j]
x2 <- xpredMu[iy,j]
type <- 'CON'
if(length(inputs$factorBeta$factorList) > 0){
for(kk in 1:length(inputs$factorBeta$factorList)){
if( xnames[j] %in% inputs$factorBeta$factorList[[kk]] )type <- 'PA'
if(all(x[,j] %in% c(0,1)))type <- 'PA'
}
}
if(nhold > 0){
x1 <- x1[-holdoutIndex]
x2 <- x2[-holdoutIndex]
y1 <- y1[-holdoutIndex,,drop=F]
yp <- yp[-holdoutIndex,,drop=F]
}
xlim <- range(x1, na.rm=T)
bins <- seq(xlim[1], xlim[2], length=12)
ylim <- range(x2, na.rm=T)
if(length(bins) > 0){
breaks <- bins
nPerBin <- NULL
}
ncc <- max( c(100,max(x1, na.rm=T)/20) )
xy <- .gjamBaselineHist(x1, bins=bins, nclass=ncc)
xy[2,] <- ylim[1] + .3*xy[2,]*diff(ylim)/max(xy[2,])
plot(xy[1,], xy[2,], col='tan', type='s', lwd=2, xlim=xlim, ylim=ylim,
xlab=' ', ylab=ylab)
polygon(xy[1,],xy[2,],border='tan',col='wheat')
abline(0,1,lty=2,lwd=3,col='grey')
add <- T
if(nhold > 0){
points(x[holdoutIndex,j],xpredMu[holdoutIndex,j],col='brown',
pch=21, bg='blue',cex=.4)
}
opt <- list(log=F, xlabel='Observed', atx = bins, ylabel='Predicted', col='darkgreen',
ylim=ylim, xlim = xlim, add=T)
tmp <- .plotObsPred(x1, x2, opt = opt)
if(nhold > 0)points(x[holdoutIndex,j],xpredMu[holdoutIndex,j],
col='brown',cex=.3)
abline(0, 1, col='grey', lty=2, lwd=2)
abline(h = mean(x1, na.rm=T), col='grey', lty=2, lwd=2)
if(length(missX) > 0){
ww <- which(missX[,2] == j)
if(length(ww) > 0){
wz <- missX[ww,]
if(!is.matrix(wz))wz <- matrix(wz,1)
points(jitter(ww*0+xmaxX[j]),xpredMu[wz],cex=.6,col='blue')
}
}
.plotLabel(paste(letters[j-1],xnames[j],sep=') '), above=AA)
}
mtext('Observed',side=1, outer=T)
mtext('Predicted',side=2,outer=T)
if(!SAVEPLOTS){
readline('x inverse prediction, covariates -- return to continue ')
} else {
dev.off()
}
}
}
if( PLOTALLY ){
yy <- y[,notOther]
np <- ncol(yy)
npage <- 1
o <- 1:np
if(np > 16){
npage <- ceiling(np/16)
np <- 16
}
mfrow <- .getPlotLayout(np)
k <- 0
add <- F
o <- 1:np
o <- o[o <= 16]
if(length(other) > 0)o <- o[!o %in% other]
for(p in 1:npage){
file <- paste('yPredBySpec_',p,'.pdf',sep='')
if(SAVEPLOTS)pdf( file=.outFile(outFolder,file) )
npp <- ncol(yy) - k
if(npp > np)npp <- np
mfrow <- .getPlotLayout(np)
par(mfrow=mfrow, bty='n', omi=c(.3,.3,0,0), mar=c(3,3,2,1),
tcl= tcl, mgp=mgp)
for(j in o){
censm <- NULL
if( length(censor) > 0 ){
if( typeNames[j] %in% names(censor) ){
wjc <- which(names(censor) == typeNames[j])
if(j %in% censor[[wjc]]$columns)censm <- censor[[wjc]]
}
}
if(j > ncol(yy))next
y1 <- yy[,j]
y1[ y1 < 0 ] <- 0
yp <- ypredMu[,j]
if( min(y1) == max(y1) | var(yp, na.rm=T) == 0)next
sxx <- sqrt(y1)
syy <- sqrt(yp)
opt <- .getBinSqrt(y1, yp, nbin = 10 )
if( !typeNames[wk[1]] %in% c('PA','CAT') ){
xy <- .gjamBaselineHist( sxx, bins = opt$atx, ylim = opt$ylim,
nclass=length(opt$atx) )
plot(xy[1,], xy[2,], col='tan', type='s', lwd=2, xlim=opt$xlim,
ylim = opt$ylim, xlab='', ylab='', xaxt='n', yaxt='n')
polygon(xy[1,],xy[2,], border = specColor[j], col = boxCol[j])
axis(1, at = opt$atx, labels = opt$labx)
axis(2, at = opt$aty, labels = opt$laby, las=2)
opt <- append(opt, list( xlabel='Observed', ylabel='Predicted',
col = specColor[j]) )
tmp <- .plotObsPred( xx = sxx, yy = syy, add=T, opt = opt)
abline(0, 1, lty=2, col='grey')
} else {
y11 <- mean(y1,na.rm=T)
y00 <- 1 - y11
x11 <- c(-.07,-.07,.07,.07,.93,.93,1.07,1.07,-.07)
y11 <- c(0,y00,y00,0,0,y11,y11,0,0)
atx <- min(y1):max(y1)
aty <- atx
xlim <- atx + c(-1,1)*.2
plot(NULL,col='tan',type='s',lwd=2, xlim= xlim + 1,ylim=range(aty),
xlab='Observed',ylab='', xaxt='n',yaxt='n')
axis(1, at = atx + 1, labels = atx )
axis(2, at = aty, labels = atx )
polygon(x11 + 1,y11, border = specColor[j], col = boxCol[j])
stats <- tapply( as.vector(yp), as.vector(y1), quantile, pnorm(c(-1.96,-1,0,1,1.96)) )
stats <- matrix( unlist(stats), ncol = 2 )
tmp <- .boxplotQuant( yp ~ y1, stats = stats, xaxt='n', yaxt = 'n', outline=F,
border=specColor[j], whiskcol=specColor[j],
boxfill= boxCol[j],
pars = list(boxwex = 0.1, ylim=range(aty)), lty=1,
add = T)
abline(-1, 1, lty=2, lwd = 2, col = 'grey')
}
k <- k + 1
if(k > 26)k <- 1
lab <- paste(letters[k],') ',colnames(y)[j],' - ',
typeNames[j], sep='')
.plotLabel( lab,above=T )
abline(h = mean(yp),lty=2, col='grey')
}
mtext('Observed', 1, outer=T)
mtext('Predicted', 2, outer=T)
if(!SAVEPLOTS){
readline('y prediction -- return to continue ')
} else {
dev.off()
}
o <- o + 16
o <- o[o <= S]
}
}
if(TRAITS){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'traitPred.pdf') )
tt <- grep('other',colnames(plotByTrait))
if(length(tt) > 0)colnames(plotByTrait)[tt] <- colnames(specByTrait)[tt]
traitTypes <- traitList$traitTypes
ctrait <- traitTypes
if( !is.null( attr(ctrait, 'CCgroups') ) )ctrait <- paste(ctrait, attr(ctrait, 'CCgroups'), sep='_')
if( !is.null( attr(ctrait, 'FCgroups') ) )ctrait <- paste(ctrait, attr(ctrait, 'FCgroups'), sep='_')
atr <- unique(ctrait)
tcols <- colF( length(atr) )
traitColor <- tcols[ match(ctrait, atr) ]
yy <- plotByTrait
o <- 1:ncol(yy)
if(ncol(yy) > 16){
rmspe <- sqrt( colSums( (plotByTrait - tMu)^2 )/n )
o <- order(rmspe)[1:16]
yy <- plotByTrait[,o]
}
mfrow <- .getPlotLayout(length(o))
par(mfrow=mfrow, bty='n', oma=oma, mar=c(3,3,1,1), tcl= tcl, mgp=mgp)
k <- 0
for(j in o){
add <- F
jname <- colnames(tMu)[j]
k <- k + 1
td <- plotByTrait[,jname]
tjj <- tMu[,j]
wj <- which(colnames(tMu) == jname)
tmp <- .gjamPlotPars(type=traitTypes[j],td,tjj)
y1 <- tmp$y1; yp <- tmp$yp; nbin <- tmp$nbin; nPerBin <- tmp$nPerBin
vlines <- tmp$vlines; xlimit <- tmp$xlimit; ylimit <- tmp$ylimit
breaks <- tmp$breaks; wide <- tmp$wide; LOG <- tmp$LOG; POINTS <- F
MEDIAN <- tmp$MEDIAN
if(nhold > 0){
add <- T
log <- ''
if(LOG)log <- 'xy'
plot(td[holdoutIndex],tjj[holdoutIndex],xlab=' ',ylab=ylab,
xlim=xlimit,ylim=ylimit,col='grey',pch=21,bg='brown',cex=.4,log=log)
}
opt <- list( xlabel=' ',ylabel=ylab,nbin=nbin,
nPerBin=nPerBin,
xlimit=xlimit,ylimit=ylimit,breaks=breaks,
wide=wide,LOG=LOG,
fill='grey',
col = traitColor[j],
POINTS=F,MEDIAN=MEDIAN,add=add )
tmp <- .plotObsPred(td, tjj, opt = opt)
abline(0,1,lty=2)
abline(h=mean(td,na.rm=T),lty=2)
.plotLabel( paste(letters[k],') ',.traitLabel(jname),sep=''),above=AA )
}
if(!SAVEPLOTS){
readline('predictive trait distributions -- return to continue ')
} else {
dev.off()
}
}
if( 'fSensGibbs' %in% names(chains) ){
nfact <- factorBeta$nfact
if(!is.matrix(fSensGibbs)){
fSensGibbs <- matrix(fSensGibbs)
colnames(fSensGibbs) <- xnames[-1]
}
if( 'factorBeta' %in% names(inputs) & !FACNAMES ){
fcnames <- names( inputs$factorBeta$factorList )
if(length(fcnames) > 0){
for(m in 1:length(fcnames)){
colnames(fSensGibbs) <- .replaceString( colnames( fSensGibbs ), fcnames[m], '' )
}
}
}
if( ncol(fSensGibbs) > 1){
wc <- c(1:ncol(fSensGibbs))
wx <- grep(':',colnames(fSensGibbs))
wx <- c(wx, grep('^2',colnames(fSensGibbs), fixed=T) )
if(length(wx) > 0)wc <- wc[-wx]
wx <- grep('intercept',colnames(fSensGibbs))
if(length(wx) > 0)wc <- wc[-wx]
wc <- c(1:ncol(fSensGibbs))
tmp <- apply(fSensGibbs,2,range)
wx <- which(tmp[1,] == tmp[2,] | tmp[2,] < 1e-12)
if(length(wx) > 0)wc <- wc[-wx]
if(length(wc) > 0){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'sensitivity.pdf') )
xx <- fSensGibbs[,wc,drop=F]
tcol <- rep('black',ncol(xx))
names(tcol) <- colnames(xx)
if(nfact > 0){
mm <- max(nfact,2)
useCols <- colorRampPalette(c('brown','orange','darkblue'))(mm)
for(i in 1:nfact){
im <- which(colnames(xx) %in% rownames(factorBeta$contrast[[i]]))
tcol[im] <- useCols[i]
}
}
par(mfrow=c(1,1),bty='n', oma=oma, mar=mar, tcl= tcl, mgp=mgp)
if(TIME)par(mfrow=c(1,2),bty='n', oma=oma, mar=mar, tcl= tcl, mgp=mgp)
ord <- order( colMeans(xx) )
ylim <- c( quantile(xx,.002), 5*quantile(xx,.99))
tmp <- .boxplotQuant( xx[,ord, drop=F], yaxt='n',outline=F,
border=tcol[ord], whiskcol=tcol[ord],
boxfill=.getColor(tcol[ord],.4),
horizontal = TRUE,
pars = list(boxwex = 0.5, ylim=ylim), lty=1, log='x')
sensLab <- expression( paste('Sensitivity ',hat(bold(F)) ))
mtext(sensLab,side=1,line=3)
dy <- .05*diff(par()$yaxp[1:2])
text(dy + tmp$stats[5,],1:length(wc), tmp$names, pos=4,col=tcol[ord], cex=.8)
}
if(!SAVEPLOTS){
readline('sensitivity over full model -- return to continue ')
} else {
dev.off()
}
}
}
if(termB){
fnames <- rownames(factorBeta$eCont)
tmp <- .splitNames(colnames(bgibbs),snames=colnames(y))
vnames <- unique(tmp$vnam)
xnam <- unique(tmp$xnam[tmp$xnam != 'intercept'])
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'betaChains.pdf') )
if(CHAINS & termB){
cseq <- 1:nrow(bgibbs)
if(length(cseq) > 1000)cseq <- seq(1,length(cseq),length=1000)
mfrow <- .getPlotLayout(length(xnam))
par(mfrow=mfrow, bty='n', oma=oma, mar=c(2,2,1,1), tcl= tcl, mgp=mgp)
flist <- factorBeta$factorList
if(length(flist) > 0){
flist <- sort(unique(unlist(flist)))
}
for(k in 1:length(xnam)){
tname <- xnam[k]
tmp <- .chains2density(bgibbs[cseq,],varName=tname, cut=3)
xt <- tmp$x
yt <- tmp$y
chainMat <- tmp$chainMat
if(ncol(chainMat) > 20)chainMat <- chainMat[,sample(ncol(chainMat),20)]
cols <- colF(nrow(xt))
snamek <- .splitNames(colnames(chainMat),colnames(y))$vnam
nn <- nrow(chainMat)
jk <- 1:ncol(chainMat)
if(length(jk) > 20)jk <- sample(jk,20)
plot(0,0,xlim=c(0,(1.4*nn)),ylim=range(chainMat[,jk]),
xlab=' ',ylab=' ',cex=.01)
for(j in jk){
lines(chainMat[,j],col=cols[j])
if(ncol(chainMat) < 15)text(nn,chainMat[nn,j],snamek[j],col=cols[j],pos=4)
abline(v=burn,lty=2)
if(k == 1 & j == 1).plotLabel( paste(burnin,":",ng),
location='topright' )
}
.plotLabel(label=paste(letters[k],') ',tname,sep=''),
location='topleft',above=T)
abline(h=0,lwd=4,col='white')
abline(h=0,lty=2)
if(ncol(chainMat) >= 15) text(nn,mean(par('usr')[3:4]),
paste(ncol(chainMat),'spp'),pos=4)
}
if(!SAVEPLOTS){
readline('beta coefficient thinned chains -- return to continue ')
} else {
dev.off()
}
}
}
if(CHAINS){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'corChains.pdf') )
par(mfrow=c(2,2), bty='n', oma=oma, mar=mar, tcl= tcl, mgp=mgp)
w0 <- 1:ncol(sgibbs)
if(REDUCT){
same <- .sameByColumn(kgibbs)
w0 <- order(same[lower.tri(same,diag=T)])
} else {
w0 <- sample(max(w0),80,replace=T)
}
ww <- 1:20
for(jj in 1:4){
ssj <- w0[ww]
ssj <- ssj[is.finite(ssj)]
if(length(ssj) == 0)break
if(max(ssj) > max(w0))break
ww <- ww + 20
tmp <- .chains2density(rgibbsShort[,ssj])
xt <- tmp$x
yt <- tmp$y
chainMat <- tmp$chainMat
cols <- colF(nrow(xt))
stk <- .splitNames(colnames(chainMat))$vnam
ws <- which(stk[,1] == stk[,2])
if(length(ws) > 0){
stk <- stk[-ws,]
chainMat <- chainMat[,-ws]
}
rr <- range(chainMat)
if(!is.finite(rr[1]) | !is.finite(rr[2]))next
if(is.matrix(chainMat)){
snamek <- stk[,1]
nn <- nrow(chainMat)
plot(0,0,xlim=c(0,(1.4*nn)),ylim=range(chainMat),xlab=' ',ylab=' ',cex=.01)
jk <- 1:ncol(chainMat)
if(length(jk) > 20)jk <- sample(jk,20)
for(j in jk){
lines(chainMat[,j],col=cols[j])
if(ncol(chainMat) < 15)text(nn,chainMat[nn,j],snamek[j],col=cols[j],pos=4)
}
if(jj == 1).plotLabel( paste(burnin,":",ng),location='topright' )
abline(h=0,lwd=4,col='white')
abline(h=0,lty=2)
abline(v=burn,lty=2)
if(ncol(chainMat) >= 15) text(nn,mean(par('usr')[3:4]),
paste(ncol(chainMat),'spp'),pos=4)
}
}
if(!SAVEPLOTS){
readline('correlation thinned chains -- return to continue ')
} else {
dev.off()
}
}
if(TIME & CHAINS){
if(termR){
cseq <- 1:nrow(lgibbs)
if(nrow(lgibbs) > 1000)cseq <- seq(1,length(cseq),length=1000)
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'rhoChains.pdf') )
tmp <- .splitNames(colnames(lgibbs),colnames(y))
vnames <- unique(tmp$vnam)
xnam <- unique(tmp$xnam)
mfrow <- .getPlotLayout(length(xnam))
par(mfrow=mfrow, bty='n', oma=oma, mar=c(2,2,1,1), tcl= tcl, mgp=mgp)
for(k in 1:length(xnam)){
tname <- xnam[k]
tmp <- .chains2density(lgibbs[cseq,],varName=tname, cut=3)
xt <- tmp$x
yt <- tmp$y
chainMat <- tmp$chainMat
if(ncol(chainMat) > 20)chainMat <- chainMat[,sample(ncol(chainMat),20)]
cols <- colF(nrow(xt))
snamek <- .splitNames(colnames(chainMat),colnames(y))$vnam
nn <- nrow(chainMat)
jk <- 1:ncol(chainMat)
if(length(jk) > 20)jk <- sample(jk,20)
plot(0,0,xlim=c(0,(1.4*nn)),ylim=range(chainMat[,jk]),
xlab=' ',ylab=' ',cex=.01)
for(j in jk){
lines(chainMat[,j],col=cols[j])
if(ncol(chainMat) < 15)text(nn,chainMat[nn,j],snamek[j],col=cols[j],pos=4)
if(k == 1 & j == 1).plotLabel( paste(burnin,":",ng),
location='topright' )
}
if(k == 1)tname <- character(0)
lab <- paste('rho',tname)
.plotLabel(label=paste(letters[k],') ',lab,sep=''),location='topleft',above=T)
abline(h=0,lwd=4,col='white')
abline(h=0,lty=2)
if(ncol(chainMat) >= 15) text(nn,mean(par('usr')[3:4]),
paste(ncol(chainMat),'spp'),pos=4)
abline(v=burn,lty=2)
}
if(!SAVEPLOTS){
readline('rho coefficient chains -- return to continue ')
} else {
dev.off()
}
}
if(termA){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'alphaChains.pdf') )
cseq <- 1:nrow(alphaGibbs)
if(length(cseq) > 1000)cseq <- seq(1,length(cseq),length=1000)
kp <- min(c( 4, floor(S/4) ) )
ka <- c(1:S)
if(kp > 0){
np <- min(c(S,4))
mfrow <- .getPlotLayout(np)
par(mfrow=mfrow, bty='n', oma=oma, mar=c(2,2,1,1), tcl= tcl, mgp=mgp)
for(k in 1:np){
wc <- sample(ka,kp)
ka <- ka[!ka %in% wc]
tmp <- .chains2density(alphaGibbs[drop=F, cseq,wc], cut=3)
xt <- tmp$x
yt <- tmp$y
chainMat <- tmp$chainMat
cols <- colF(nrow(xt))
snamek <- .splitNames(colnames(chainMat),colnames(y))$vnam
nn <- nrow(chainMat)
jk <- 1:ncol(chainMat)
if(length(jk) > 20)jk <- sample(jk,20)
plot(0,0,xlim=c(0,(1.4*nn)),ylim=range(chainMat[,jk]),
xlab=' ',ylab=' ',cex=.01)
for(j in jk){
lines(chainMat[,j],col=cols[j])
if(ncol(chainMat) < 15)text(nn,chainMat[nn,j],snamek[j],
col=cols[j],pos=4)
if(k == 1 & j == 1).plotLabel( paste(burnin,":",ng),
location='topright' ) }
abline(h=0,lwd=4,col='white')
abline(h=0,lty=2)
abline(v=burn,lty=2)
if(ncol(chainMat) >= 15) text(nn,mean(par('usr')[3:4]),
paste(ncol(chainMat),'spp'),pos=4)
}
if(!SAVEPLOTS){
readline('example alpha coefficient chains -- return to continue ')
} else {
dev.off()
}
}
}
}
if(termB){
bfSig <- bFacGibbs
if(length(bfSig) > 0){
tmp <- .splitNames(colnames(bfSig), snames)
vnam <- tmp$vnam
xnam <- tmp$xnam
fnames <- unique( xnam )
xpNames <- .replaceString(fnames,':','X')
xpNames <- .replaceString(xpNames,'I(','')
xpNames <- .replaceString(xpNames,')','')
xpNames <- .replaceString(xpNames,'^2','2')
xpNames <- .replaceString(xpNames,'*','TIMES')
brange <- apply(bfSig,2,range)
for(j in 1:length(fnames)){
wc <- which(xnam == fnames[j] & brange[2,] > brange[1,])
if(length(wc) < 2)next
plab <- paste('beta_',xpNames[j],'.pdf',sep='')
if(SAVEPLOTS)pdf( file=.outFile(outFolder,plab) )
par(mfrow=c(1,1),bty='n', oma=oma, mar=mar, tcl= tcl, mgp=mgp)
.myBoxPlot( mat = bfSig[,wc], tnam = vnam[ wc ], snames = snames,
specColor, label=fnames[j], LEG=F)
mtext(side=2,'Coefficient', line=2)
if( !is.null(names(specColor)) ){
lf <- sort( unique(names(specColor)) )
cc <- specColor[lf]
legend('bottomright',names(cc), text.col = cc, bty='n')
}
if(!SAVEPLOTS){
readline('beta standardized for W/X, 95% posterior -- return to continue ')
} else {
dev.off()
}
}
if(length(fnames) > 1){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'betaAll.pdf') )
npp <- length(which(table(match(xnam,fnames)) > 1))
mfrow <- .getPlotLayout(npp)
par( mfrow=mfrow, bty='n', omi=c(.3,.5,0,0),
mar=c(1,1,1,1), tcl= tcl )
k <- 0
for(j in 1:length(fnames)){
wc <- which(xnam == fnames[j])
if(length(wc) < 2)next
k <- k + 1
.myBoxPlot( mat = bfSig[,wc], tnam = vnam[ wc ], snames = snames,
specColor, label=' ', LEG=F)
.plotLabel(fnames[j],'bottomleft')
}
mtext(side=2,'Coefficient value',outer=T, line=1)
if(!SAVEPLOTS){
readline('95% posterior -- return to continue ')
} else {
dev.off()
}
}
}
}
if( termR ){
lgibbs <- chains$lgibbs
tmp <- .splitNames(colnames(chains$lgibbs), snames)
vnam <- tmp$vnam
xnam <- tmp$xnam
gnames <- unique(xnam)
k <- 0
for(j in 1:length(gnames)){
wc <- which(xnam == gnames[j])
if(length(wc) < 2)next
k <- k + 1
plab <- paste('rho_',gnames[j],'.pdf',sep='')
if(j == 1){
glab <- 'rho'
}else{
glab <- paste('rho:',gnames[j])
}
if(SAVEPLOTS)pdf( file=.outFile(outFolder,plab) )
par(mfrow=c(1,1),bty='n', oma=oma, mar=mar, tcl= tcl, mgp=mgp)
.myBoxPlot( mat = lgibbs[,wc], tnam = vnam[ wc ], snames = snames,
specColor, label=glab)
if(!SAVEPLOTS){
readline('95% posterior -- return to continue ')
} else {
dev.off()
}
}
if(length(gnames) > 1){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'rhoAll.pdf') )
npp <- length(which(table(match(xnam,gnames)) > 1))
mfrow <- .getPlotLayout(npp)
par( mfrow=mfrow, bty='n', oma=oma, mar=c(2,2,1,1), tcl= tcl, mgp=mgp )
k <- 0
for(j in 1:length(gnames)){
wc <- which(xnam == gnames[j])
if(length(wc) < 2)next
k <- k + 1
if(j == 1){
glab <- 'rho'
}else{
glab <- paste('rho:',gnames[j])
}
.myBoxPlot( mat = lgibbs[,wc], tnam = vnam[ wc ], snames = snames,
specColor, label=glab)
}
if(!SAVEPLOTS){
readline('95% posterior -- return to continue ')
} else {
dev.off()
}
}
}
if(TRAITS){
M <- nrow(specByTrait)
bt <- chains$bTraitFacGibbs
wi <- grep( ':', colnames(bt) )
if(length(wi) > 0)bt <- bt[,-wi]
vnam <- columnSplit( colnames(bt), '_')
mnames <- colnames(specByTrait)
xnam <- vnam[,2]
vnam <- vnam[,1]
if(length(traitColor) == 1)traitColor <- rep(traitColor, M)
tboxCol <- .getColor(traitColor,.4)
traitSd <- apply(plotByTrait,2,sd,na.rm=T)
for(j in 2:length(xnames)){
wc <- which(xnam == xnames[j])
if(length(wc) < 2)next
mt <- match( names(traitSd), vnam[wc] )
mx <- which( names(xSd) == xnames[j] )
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'traits.pdf') )
par(mfrow=c(1,1),bty='n', oma=oma, mar=mar, tcl= tcl, mgp=mgp)
tsd <- matrix(traitSd[mt], nrow(bt), length(mt), byrow=T)
mat <- bt[,wc]*xSd[mx]/tsd
vn <- .splitNames(colnames(mat))$vnam[,1]
.myBoxPlot( mat, tnam = vn, snames = mnames,
traitColor, label='', LEG=F )
.plotLabel(xnames[j],location='bottomright')
if(!SAVEPLOTS){
readline('traits, standardized for X/W, 95% posterior -- return to continue ')
} else {
dev.off()
}
}
}
covx <- cov(x)
covy <- cov(y[,notOmit])
wo <- which(whichZero[,1] %in% other | whichZero[,2] %in% other)
if(length(wo) > 0)whichZero <- whichZero[-wo,]
wo <- which(whConZero[,1] %in% other | whConZero[,2] %in% other)
if(length(wo) > 0)whConZero <- whConZero[-wo,]
nsim <- 500
if(S > 50)nsim <- 100
if(S > 100)nsim <- 20
if( !TIME | (TIME & termB) ){
tmp <- eigen( ematrix[notOther,notOther] )
eVecs <- tmp$vectors
eValues <- tmp$values
rownames(eVecs) <- snames[notOther]
}
if(TIME){
sensMu <- sensSe <- numeric(0)
acol <- colF(3)
names(acol) <- c('movement','DI growth','DD growth')
scol <- character(0)
if('sensBeta' %in% names(parameters)){
sensMu <- cbind(sensMu, sensBeta[,1])
sensSe <- cbind(sensSe, sensBeta[,1])
colnames(sensMu)[ncol(sensMu)] <- colnames(sensSe)[ncol(sensMu)] <- 'beta'
scol <- c(scol, acol[1])
}
if('sensRho' %in% names(parameters)){
sensMu <- cbind(sensMu, sensRho[,1])
sensSe <- cbind(sensSe, sensRho[,1])
colnames(sensMu)[ncol(sensMu)] <- colnames(sensSe)[ncol(sensMu)] <- 'rho'
scol <- c(scol, acol[2])
}
if('sensAlpha' %in% names(parameters)){
sensMu <- cbind(sensMu, sensAlpha[,1])
sensSe <- cbind(sensSe, sensAlpha[,1])
colnames(sensMu)[ncol(sensMu)] <- colnames(sensSe)[ncol(sensMu)] <- 'alpha'
scol <- c(scol, acol[3])
}
if(length(sensMu) > 0){
osens <- order( colMeans(sensMu), decreasing=T )
sensMu <- sensMu[,osens,drop = FALSE]
sensSe <- sensSe[,osens,drop = FALSE]
scol <- scol[ osens ]
nc <- ncol(sensMu)
sensMu <- sensMu[drop = FALSE, notOther,]
sensSe <- sensSe[drop = FALSE, notOther,]
ord <- order(sensMu[,1], decreasing = T)
graphics.off()
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'varianceComponents.pdf') )
mfrow <- c(1,1)
if(nc > 1)mfrow <- c(2,1)
par( mfrow = mfrow, bty = 'n', mar = c(3,4,1,2) )
if(nc > 1){
sigma <- sqrt( diag( sigMu )[notOther] )
sens <- cbind(sensMu, sigma)
sprop <- sweep( sens, 1, rowSums(sens), '/')
ord <- order(sprop[,1], decreasing = T)
smu <- t(sprop[ord,])
smu <- smu[drop=F, 1:(nrow(smu)-1),]
smax <- max( colSums(smu) )
tmp <- barplot( smu, beside = F, col = .getColor(scol, .4), border = scol, xaxt = 'n',
ylim = c(0, smax), ylab = 'Proportion of total SD' )
text( tmp - .2*diff(tmp)[1], .04, colnames(smu), srt = 90, pos = 4, cex=.9)
}
smu <- t(sensMu[drop=F, ord,])
sse <- t(sensSe[drop=F, ord,])
tmp <- barplot( smu, beside = T, col = .getColor(scol, .4), border = scol, xaxt = 'n',
ylim = 1*c(0, max(smu + sse)), ylab = 'Std deviation scale' )
for(j in 1:nc){
suppressWarnings(
arrows( tmp[j,], smu[j,], tmp[j,], smu[j,] + sse[j,],
col = scol[j], lwd=2, angle=90, code=3, length=.04)
)
}
if(nc == 1)text( tmp[1,], 1.05*apply(smu + sse, 2, max), colnames(smu), srt = 75, pos = 4,
cex = .9)
legend('topright', names(scol), text.col = scol, bty='n')
if(!SAVEPLOTS){
readline('contributions to dynamics -- return to continue ')
} else {
dev.off()
}
}
if( !is.null(alphaEigen)){
graphics.off()
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'alphaEigenValues.pdf') )
par( mfrow = c(1,1), bty = 'n')
if(!is.complex(alphaEigen)){
plot( alphaEigen, alphaEigen*0 , pch=15, xlim = c(-1, 1), ylim = c(-1, 1),
xlab = 'Real', ylab = 'Imaginary')
}else{
plot(alphaEigen, pch=15 )
}
abline(h = 0, lty=2, lwd = 2, col = 'grey')
abline(v = 0, lty=2, lwd = 2, col = 'grey')
xs <- seq(-1, 1, length=100)
ys <- sqrt(1 - xs^2)
lines(xs, ys, lwd=2, lty=2, col = 'grey')
lines(xs, -ys, lwd=2, lty=2, col = 'grey')
if(!SAVEPLOTS){
readline('eigenvalues of alpha -- return to continue ')
} else {
dev.off()
}
}
}
if( !GRIDPLOTS ){
clusterIndex <- NULL
clusterOrder <- NULL
if( S >= 8 & !is.null(ematrix) ){
opt <- list( ncluster=ncluster, PLOT=F, DIST=F )
clusterDat <- .clusterPlot( ematrix , opt)
colCode <- clusterDat$colCode
cord <- rev(clusterDat$corder)
dord <- notOther[!notOther %in% omit][cord]
clusterIndex <- clusterDat$clusterIndex
clusterOrder <- clusterDat$corder
}
invisible( return( list(fit = fit,
ematrix = ematrix, clusterIndex = clusterIndex,
clusterOrder = clusterOrder) ) )
}
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'clusterDataE.pdf') )
mag <- mar
mag[4] <- max(mar[4],6)
par(mfrow=c(1,2), cex=.7, oma=oma, mar=mag, tcl= tcl, mgp=mgp)
LABELS <- T
if(S > 100 | !SPECLABS)LABELS <- F
dcor <- .cov2Cor(covy)
dcor[is.na(dcor)] <- 0
opt <- list( main='',cex=.2,ncluster=ncluster,
colCode=specColor[notOmit], textSize=.4,
LABELS = LABELS, DIST=F )
tmp <- .clusterPlot( dcor, opt)
colCode <- tmp$colCode
clusterIndex <- tmp$clusterIndex
clusterOrder <- tmp$corder
.plotLabel('a) Data correlation',above=T, cex=1.7)
if( !is.null(ematrix) ){
emm <- ematrix[notOther,notOther]
emm <- .cov2Cor(emm)
tmp <- .clustMat(emm, SYM = T)
ecor <- tmp$cmat
opt <- list( main='',cex=.2, ncluster=ncluster,
colCode=specColor[notOmit], textSize=.5,
LABELS = LABELS, DIST=F)
tmp <- .clusterPlot( ecor , opt )
.plotLabel('b) E correlation',above=T, cex=1.7)
clusterIndex <- cbind( clusterIndex, tmp$clusterIndex )
clusterOrder <- cbind( clusterOrder, tmp$corder )
rownames(clusterIndex) <- rownames(clusterOrder) <- snames[notOmit]
colnames(clusterIndex) <- colnames(clusterOrder) <- c('data','E')
}
if(!SAVEPLOTS){
readline('Data and E responses to X -- return to continue ')
} else {
dev.off()
}
if(!is.null(ematrix)){
imat <- output$inputs$y
imat[imat > 0] <- 1
iord <- colSums(imat)
etab <- table(clusterIndex[,'E'])
eComs <- matrix(NA,ncluster, max(etab))
ename <- rep( character(0), max(etab) )
egroup <- clusterIndex[,'E']
for(j in 1:ncluster){
wj <- which(clusterIndex[,'E'] == j)
jname <- rownames(clusterIndex)[wj]
jname <- jname[order(iord[jname],decreasing=T)]
eComs[j,1:length(jname)] <- jname
mm <- min( c(3,length(jname)) )
jj <- substr(jname[1:mm],1,6)
ename[j] <- paste0(jj,collapse='_')
}
rownames(eComs) <- ename
eComs <- t(eComs)
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'ordination.pdf') )
clusNames <- eComs[1,]
lambda <- eValues/sum(eValues)
cl <- cumsum(lambda)
cbord <- .getColor(specColor[notOther],.4)
cfill <- .getColor(specColor[notOther],.4)
par(mfcol=c(2,2), bty='n', cex = cex, mar=c(4,4,1,1))
p1 <- paste('Axis I (',round(100*lambda[1],0),'%)',sep='')
p2 <- paste('Axis II (',round(100*lambda[2],0),'%)',sep='')
p3 <- paste('Axis III (',round(100*lambda[3],0),'%)',sep='')
xlim <- range(eVecs[,1])
plot(eVecs[,1],eVecs[,2],cex=1,col=cbord, bg = cfill, pch=16,
xlab=p1, ylab = p2)
abline(h=0,col=.getColor('black',.1),lwd=2,lty=2)
abline(v=0,col=.getColor('black',.1),lwd=2,lty=2)
text(eVecs[clusNames,1],eVecs[clusNames,2],substr(clusNames,1,7))
plot(eVecs[,1],eVecs[,3],cex=1,col=cbord, bg = cfill, pch=16,
xlab=p1, ylab = p3)
abline(h=0,col=.getColor('black',.1),lwd=2,lty=2)
abline(v=0,col=.getColor('black',.1),lwd=2,lty=2)
text(eVecs[clusNames,1],eVecs[clusNames,3],substr(clusNames,1,7))
plot(eVecs[,2],eVecs[,3],cex=1,col=cbord, bg = cfill, pch=16,
xlab=p2, ylab = p3)
abline(h=0,col=.getColor('black',.1),lwd=2,lty=2)
abline(v=0,col=.getColor('black',.1),lwd=2,lty=2)
text(eVecs[clusNames,2],eVecs[clusNames,3],substr(clusNames,1,7))
plot(cl,type='s',xlab='Rank',ylab='Proportion of variance',xlim=c(.9,S),
ylim=c(0,1),log='x')
lines(c(.9,1),c(0,cl[1]),lwd=2,type='s')
for(j in 1:length(lambda))lines(c(j,j),c(0,cl[j]),col='grey')
lines(cl,lwd=2,type='s')
abline(h=1,lwd=2,col=.getColor('grey',.5),lty=2)
if(!SAVEPLOTS){
readline('ordination of E matrix -- return to continue ')
} else {
dev.off()
}
}
if(REDUCT){
graphics.off()
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'dimRed.pdf') )
mk <- .modalValuesInArray(kgibbs,2)[notOmit]
NK <- table( table(mk) )
mk <- length(NK)
r <- otherpar$r
par(bty='n')
scale <- SO/3
if(SMALLPLOTS)scale <- 10*scale
.mapSetup(c(1,SO),c(1,SO),scale=scale)
xl <- SO/15
yl <- SO/8
en <- SO*(SO+1)/2
plot(0,0,xlim=c(0,SO+xl),ylim=c(0,SO+xl),cex=.01,xaxt='n',yaxt='n',
xlab=' ',ylab=' ')
rect(xl,yl,SO+xl,SO+yl,col='wheat',border='wheat',lty=2,lwd=2)
polygon(c(xl,SO+xl,xl),c(yl,yl,SO+yl),col='blue',border='darkblue')
rect(0,yl/10,r,mk+yl/10,col='blue',border='wheat', lwd=2)
text(xl+SO/4,yl+SO/3,bquote(Sigma == .(en)), col='wheat', cex=1.4 )
text(r, yl/20*(mk + 1),
paste('Z (',mk,' x ',r,' = ',mk*r,')',sep=''),col='blue',
cex=1.,pos=4)
.plotLabel('Dimensions','topright')
if(!SAVEPLOTS){
readline('reduction from sigma to Z -- return to continue ')
} else {
dev.off()
}
}
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'clusterGridR.pdf') )
par(mfrow=c(1,1),bty='n',cex=1, oma=oma, mar=mag, tcl= tcl, mgp=mgp)
colnames(corMu) <- rownames(corMu) <- colnames(y)
psize <- .62
if(SMALLPLOTS)psize <- psize/2
par(plt=c(.03,.15,.1,.9), bty='n', new=F)
opt <- list( main=' ',cex=.2, ncluster=ncluster,
colCode=specColor[notOmit], textSize=.5,
LABELS = F, DIST=F )
tmp <- .clusterPlot( corMu[notOmit,notOmit] , opt)
colCode <- tmp$colCode
corder <- rev(tmp$corder)
rOrder <- snames[notOmit[corder]]
clusterIndex <- cbind( clusterIndex, tmp$clusterIndex )
clusterOrder <- cbind( clusterOrder, tmp$corder )
ncc <- ncol(clusterIndex)
colnames(clusterIndex)[ncc] <- colnames(clusterOrder)[ncc] <- 'R'
if(LABELS){
par(plt=c(.15,.33,.1,.9), bty='n', new=T)
plot(c(0,0),c(0,0),col='white',xlim=range(c(0,1)),ylim=c(0,SO),
xaxt='n',yaxt='n',xlab='',ylab='')
xl <- rep(.5,SO)
yl <- c(1:SO) + par('usr')[3] - .75
cex <- .fitText2Fig(rOrder,fraction=1.2)
text( xl,yl,rev(rOrder),pos=3,cex=cex, col=rev(colCode[corder]))
}
tmp <- .invMatZero(sgibbs,nsim=nrow(sgibbs),snames=snames,
knames=rOrder,index=NULL, COMPRESS=T,
REDUCT=REDUCT,
sigErrGibbs = output$chains$sigErrGibbs,
kgibbs = output$chains$kgibbs,
otherpar = otherpar, alpha=ematAlpha)
marIn <- tmp$inMarMat
conIn <- tmp$inConMat
wm <- which(marIn[,1] %in% omit | marIn[,2] %in% omit)
if(length(wm) > 0)marIn <- marIn[-wm,]
wm <- which(conIn[,1] %in% omit | conIn[,2] %in% omit)
if(length(wm) > 0)conIn <- conIn[-wm,]
sigCor <- c(nrow(marIn),nrow(conIn))/SM/(SM - 1)
sigCor <- round(100*sigCor,0)
names(sigCor) <- c('n_marIn','n_conIn')
mor <- notOmit[corder]
crr <- corMu[mor,mor]
marIn[,1] <- match(marIn[,1],mor)
marIn[,2] <- match(marIn[,2],mor)
conIn[,1] <- match(conIn[,1],mor)
conIn[,2] <- match(conIn[,2],mor)
makeCR <- list('white' = conIn,'grey' = marIn)
if(!is.null(specColor))textCol = colCode[mor]
par(plt=c(.33, .33 + psize,.1,.9), bty='n', new=T)
slim <- quantile(crr[lower.tri(crr)],c(.05,.95))
SPECLABS <- F
if(S < 30)SPECLABS <- T
.corPlot(crr, slim=slim, makeColor=makeCR,plotScale=.99,
PDIAG=T,CORLINES=CORLINES, textCol = colCode[corder],
SPECLABS = SPECLABS, squarePlot = F,
textSize=1, widex = width, widey = height, new=T, add=F)
ll <- paste(c('Cond Ind (white) = ', 'Cond & Marg Ind (grey) = '),
sigCor,c('%','%'),sep='')
legend('topright',ll,bty='n',cex=.8)
.plotLabel(expression( paste(hat(bold(R)),'structure' )),above=T, cex=.9)
if(!SAVEPLOTS){
readline('posterior correlation for model -- return to continue ')
} else {
dev.off()
}
fBetaMu <- output$parameters$betaStandXWmu
if( 'factorBeta' %in% names(inputs) & !FACNAMES){
fcnames <- names( inputs$factorBeta$factorList )
for(m in 1:length(fcnames)){
colnames(fBetaMu) <- .replaceString( colnames( fBetaMu ), fcnames[m], '' )
}
}
if(Q > 4 & !is.null(fMat)){
main1 <- expression( paste('Sensitivity ',hat(F)))
main2 <- expression( paste('Responses ',hat(B)))
ws <- which( rowSums(fMat) == 0)
if(length(ws) > 0){
not0 <- c(1:nrow(fMat))[-ws]
fMat <- fMat[drop=F,not0,not0]
rn <- intersect( rownames(fMat), rownames(fBetaMu) )
fMat <- fMat[drop=F,rn,rn]
fBetaMu <- fBetaMu[rn,]
}
mat1 <- fMat
mat2 <- fBetaMu
expand <- ncol(mat1)/ncol(mat2)
expand <- max(c(1.,expand))
expand <- min( c(1.5, expand) )
if(nrow(fMat) > 3){
graphics.off()
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'gridF_B.pdf') )
opt <- list(mainLeft=main1, main1=main1, main2 = main2,
leftClus=T, topClus2=T, rightLab=F, topLab1=T,
topLab2 = T, leftLab=T, ncluster = ncluster,
colCode2 = specColor[notOther], lower1 = T, diag1 = T,
lower2 = F)
tr <- try(
.clusterWithGrid(mat1, mat2, expand=expand, opt), TRUE
)
if( inherits(tr,'try-error') ){
.clusterWithGrid(mat1, mat2, expand=1, opt)
}
if(!SAVEPLOTS){
readline('F & beta structure -- return to continue ')
} else {
dev.off()
}
}
}
graphics.off()
if(!is.null(ematrix)){
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'clusterGridE.pdf') )
mat1 <- .cov2Cor( ematrix[notOther,notOther] )
main1 <- expression(paste('Species ',hat(E)))
opt <- list(mainLeft=main1, leftClus=T, leftLab=T,
colCode1 = specColor[notOther], rowCode = specColor[notOther],
topLab1=T,ncluster = ncluster,
lower1 = T, diag1 = F,horiz1=clusterIndex[,'E'])
.clusterWithGrid(mat1, mat2=NULL, expand=1, opt)
if(!SAVEPLOTS){
readline('E: model-based response to X -- return to continue ')
} else {
dev.off()
}
graphics.off()
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'gridR_E.pdf') )
dcor <- .cov2Cor(covy)
dcor[is.na(dcor)] <- 0
mat1 <- dcor
mat2 <- .cov2Cor( ematrix[notOther,notOther] )
main1 <- expression(paste('Ordered by error ',hat(R)))
main2 <- expression(paste('Response ',hat(E)))
opt <- list(mainLeft='Species', main1=main1, main2 = main2,
leftClus=T, leftLab=T, rowCode = specColor[notOther],
topLab1 = T, topLab2 = T,rightLab=F,ncluster = ncluster,
lower1 = T, diag1 = F,lower2 = T, diag2 = T)
.clusterWithGrid(mat1, mat2, expand=1, opt)
if(!SAVEPLOTS){
readline('comparison R vs E -- return to continue ')
} else {
dev.off()
}
graphics.off()
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'gridY_E.pdf') )
ytmp <- jitter(y[,mor],1e-10)
cory <- cor(ytmp)
mat1 <- cory
mat2 <- ematrix[notOther,notOther]
main1 <- 'Ordered by data, cor(Y)'
main2 <- expression(paste('Response ',hat(E)))
topLab1 <- topLab2 <- F
if(S < 30)topLab1 <- topLab2 <- T
opt <- list(mainLeft='Species', main1=main1, main2 = main2,
leftClus=T, leftLab=T, lower1 = T, diag1 = F, rowCode = specColor[notOther],
topLab1 = topLab1, topLab2 = topLab2,ncluster = ncluster,
lower2 = T, diag2 = T, sameOrder = T)
.clusterWithGrid(mat1, mat2=mat2, expand=1, opt )
if(!SAVEPLOTS){
readline('raw data vs E -- return to continue ')
} else {
dev.off()
}
}
if(is.null(output$parameters$betaStandXWmu)){
BETAGRID <- FALSE
}else{
if( nrow(output$parameters$betaStandXWmu) > 2 &
ncol(output$parameters$betaStandXWmu) > 1)BETAGRID <- TRUE
}
if( BETAGRID ){
graphics.off()
mat1 <- .cov2Cor( output$parameters$ematrix[notOther,notOther] )
mat2 <- t(output$parameters$betaStandXWmu)
if( 'factorBeta' %in% names(inputs) & !FACNAMES){
fcnames <- names( inputs$factorBeta$factorList )
for(m in 1:length(fcnames)){
colnames(mat2) <- .replaceString( colnames( mat2 ), fcnames[m], '' )
rownames(mat2) <- .replaceString( rownames( mat2 ), fcnames[m], '' )
}
}
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'clusterGridB.pdf') )
main1 <- expression(paste('Species ',hat(E)))
main2 <- expression(paste(hat(B),' by predictor'))
topLab1 <- F
if(S < 30)topLab1 <- T
ee <- ncol(mat1)/ncol(mat2)
ee <- max(c(ee,.8))
ee <- min(c(ee, 1.2))
opt <- list(mainLeft=main1, main1=main1, main2 = main2,
topClus1=T, topClus2=T, topLab1 = topLab1, topLab2=T,
leftLab=T,lower1 = T, diag1 = F, ncluster = ncluster,
colCode1 = specColor[notOther], rowCode = specColor[notOther],
vert1=clusterIndex[,'E'], horiz2=clusterIndex[,'E'])
.clusterWithGrid(mat1, mat2, expand=ee, opt)
if(!SAVEPLOTS){
readline('beta ordered by response to X -- return to continue ')
} else {
dev.off()
}
if(RANDOM){
graphics.off()
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'randGroups.pdf') )
G <- ncol(randByGroup)
mat1 <- randGroupVarMu[notOther,notOther]
mat1 <- .cov2Cor(mat1)
diag(mat1) <- 0
mat2 <- randByGroup[notOther,]
main1 <- expression(paste('Species '))
main2 <- expression('Group')
topLab1 <- F
if(S < 30)topLab1 <- T
ee <- ncol(mat1)/ncol(mat2)
ee <- max(c(ee,1))
ee <- min(c(ee, 1.2))
opt <- list(mainLeft=main1, main1=main1, main2 = main2,leftClus=T,
topClus1=F, topClus2=T, topLab1 = topLab1, topLab2=T,
leftLab=T, lower1 = T, diag1 = F,
colCode1 = specColor[notOther])
.clusterWithGrid(mat1, mat2, expand=ee, opt)
if(!SAVEPLOTS){
readline('random groups correlation, coeffs -- return to continue ')
} else {
dev.off()
}
}
if(TIME){
graphics.off()
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'clusterTime.pdf') )
mat1 <- alphaMu[notOther,notOther]
lam <- rhoStandXmu[,notOther]
mat2 <- t(lam)
colnames(mat2)[1] <- 'rho'
main1 <- expression(paste(hat(alpha),' from'))
side1 <- expression(paste(hat(alpha),' to'))
main2 <- expression(hat(rho))
mat1[is.na(mat1)] <- 0
mat2[is.na(mat2)] <- 0
topLab1 <- F
if(S < 30)topLab1 <- T
ee <- ncol(mat1)/(ncol(mat1) + ncol(mat2) )
slim1 <- range(mat1)
if(slim1[2] == 0)slim1[2] <- .0001
opt <- list(mainLeft=side1, main1=main1, main2 = main2,
ncluster = ncluster,
topClus1=F, topClus2=F, topLab1 = topLab1,
topLab2=T,
leftLab = T, rowCode = specColor[notOther],
rowOrder = c(1:S)[notOther], colOrder1 = c(1:S)[notOther],
colOrder2 = 1:ncol(mat2), slim1 = slim1,
colCode1 = specColor[notOther], lower1 = F, diag1 = F)
.clusterWithGrid(mat1, mat2, expand=ee, opt)
if(!SAVEPLOTS){
readline('alpha, rho -- return to continue ')
} else {
dev.off()
}
graphics.off()
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'clusterGridRho.pdf') )
mat1 <- ematrix[notOther,notOther]
main1 <- expression(paste('Species ',hat(E)))
main2 <- expression(paste(hat(Rho),' by predictor'))
topLab1 <- F
if(S < 40)topLab1 <- T
ee <- max(ee,.05)
opt <- list(mainLeft=main1, main1=main1, main2 = main2,
colOrder2 = 1:ncol(mat2), ncluster = ncluster,
topClus1=T, topClus2=T, topLab1 = topLab1, topLab2=T,
colCode1 = specColor[notOther], lower1 = T, diag1 = F)
.clusterWithGrid(mat1, mat2, expand=ee, opt)
if(!SAVEPLOTS){
readline('Ematrix and rho -- return to continue ')
} else {
dev.off()
}
}
if(TRAITS){
betaTraitXMu <- output$parameters$betaTraitXWmu
if(nrow(betaTraitXMu) > 3){
bb <- betaTraitXMu[-1,]
ord <- order(colSums(abs(bb)),decreasing=T)
bb <- bb[,ord]
bl <- bb[,ord]
bh <- bb[,ord]
ror <- order(rowSums(abs(bb)),decreasing=T)
bb <- bb[ror,]
bl <- bl[ror,]
bh <- bh[ror,]
white <- which(bl < 0 & bh > 0,arr.ind=T)
makeColor <- list('white' = white )
if(SAVEPLOTS)pdf( file=.outFile(outFolder,'gridTraitB.pdf') )
plotScale <- max(c(10,c(S,Q)/10))
par(mfrow=c(1,1), bty='n', oma=c(1,1,1,1),
mar=c(5,4,4,2), tcl= tcl, mgp=mgp)
ht <- nrow(bb)/ncol(bb)*width
opt <- list(mainLeft='', main1='', main2 = '',
topClus1=T, topClus2=T, topLab1 = T, topLab2=F,
leftClus=T,
leftLab=T, ncluster = ncluster,
colCode1 = traitColor)
.clusterWithGrid(mat1=betaTraitXMu[-1,], mat2=NULL, expand=1, opt)
if(!SAVEPLOTS){
readline('trait beta -- return to continue ')
} else {
dev.off()
}
}
}
}
all <- list(fit = fit, ematrix = ematrix,
eComs = eComs, ncluster = ncluster,
clusterIndex = clusterIndex, clusterOrder = clusterOrder,
eVecs = eVecs, eValues = eValues)
all <- all[ order(names(all)) ]
invisible(all)
}
.gjamPrediction <- function(output, newdata, y2plot, PLOT, ylim, FULL,
verbose = FALSE){
if( is.null(newdata) ){
if(PLOT){
y1 <- output$inputs$y
y2 <- output$prediction$ypredMu
if(!is.null(y2plot)){
y1 <- y1[,y2plot]
y2 <- y2[,y2plot]
}
tmp <- .bins4data(y1)
breaks <- tmp$breaks
bins <- tmp$bins
nbin <- tmp$nbin
if(length(bins) > 0){
breaks <- bins
nPerBin <- NULL
}
opt <- list(nPerBin = NULL, breaks=breaks, ylimit = range(y2, na.rm=T),
fill='lightblue', box.col='darkblue', POINTS=F)
.plotObsPred(y1, y2, opt = opt)
abline(0,1,lwd=4,col='white')
abline(0,1,lwd=2,col='grey',lty=2)
}
return( list( ypredMu = output$modelSummary$ypredMu,
ypredSe = output$modelSummary$ypredSd ) )
}
xdata <- xnew <- ydataCond <- interBeta <- groupRandEff <- NULL
tiny <- 1e-10
effMat <- wHold <- phiHold <- ploHold <- sampleWhold <- NULL
STAND <- COND <- RANDOM <- NEWX <- XCOND <- FALSE
cindex <- NULL
groupRandEff <- 0
TRAITS <- SAMEY <- FALSE
effortSource <- 'output'
ng <- output$modelList$ng
burnin <- output$modelList$burnin
randByGroupMu <- output$parameters$randByGroupMu
randByGroupSe <- output$parameters$randByGroupSe
groupIndex <- output$parameters$groupIndex
rndEffMu <- output$parameters$rndEffMu
rndEffSe <- output$parameters$rndEffSe
ngroup <- ncol(randByGroupMu)
if(!is.null(randByGroupMu))RANDOM <- TRUE
Q <- length(output$inputs$xnames)
n <- nrow(output$inputs$y)
y <- yp <- output$inputs$y
x <- output$inputs$xStand
S <- SO <- S1 <- ncol(y)
xnames <- colnames(x)
ynames <- colnames(y)
notOther <- output$inputs$notOther
other <- output$inputs$other
SO <- length(notOther)
otherpar <- output$modelList$reductList$otherpar
censor <- output$modelList$censor
xdata <- output$inputs$xdata
notStandard <- output$modelList$notStandard
nsim <- 500
if( 'nsim' %in% names(newdata))nsim <- newdata$nsim
if( 'xdata' %in% names(newdata))NEWX <- T
if( 'ydataCond' %in% names(newdata))COND <- T
if( 'xdata' %in% names(newdata) & 'ydataCond' %in% names(newdata) )XCOND <- T
if( 'SAMEY' %in% names(newdata) )SAMEY <- newdata$SAMEY
if( 'TRAITS' %in% names(output$modelList) )TRAITS <- output$modelList$TRAITS
effort <- output$modelList$effort
effMat <- effort$values
inSamp <- 1:n
REDUCT <- output$modelList$REDUCT
SAMEX <- F
sigmaerror <- NULL
if(REDUCT){
otherpar <- output$modelList$reductList$otherpar
N <- otherpar$N
r <- otherpar$r
rndEff <- y*0
sigmaerror <- otherpar$sigmaerror
if( !NEWX )SAMEX <- T
if(COND)stop('conditional prediction not currently implemented with dimension reduction' )
}
cuts <- output$parameters$cutMu
if(!is.null(cuts))cuts <- cbind(-Inf,0,cuts,Inf)
nfact <- output$inputs$factorBeta$nfact
isFactor <- output$inputs$factorBeta$isFactor
factorList <- output$inputs$factorBeta$factorList
contrasts <- output$inputs$factorBeta$contrast
formula <- output$modelList$formula
xscale <- output$inputs$standX
if(is.matrix(xscale)) xscale <- t(xscale)
facNames <- names(factorList)
facLevels <- unlist( factorList )
typeNames <- output$modelList$typeNames
tmp <- .gjamGetTypes(typeNames)
typeFull <- tmp$typeFull
typeCols <- tmp$typeCols
allTypes <- unique(typeCols)
typeCode <- tmp$TYPES[typeCols]
FCgroups <- attr(typeNames,'FCgroups')
CCgroups <- attr(typeNames,'CCgroups')
CATgroups <- attr(typeNames,'CATgroups')
condCols <- numeric(0)
corCols <- which( typeNames %in% c('PA','OC','CAT') )
notCorCols <- 1:S
standRows <- output$inputs$standRows
standMatSd <- output$inputs$standMatSd
standX <- output$inputs$standX
standRows <- standRows[ !names(standRows) %in% facLevels ]
standMatSd <- standMatSd[ !names(standMatSd) %in% facLevels ]
standX <- standX[ drop=F, !rownames(standX) %in% facLevels, ]
xmu <- standX[,1]
xsd <- standX[,2]
intMat <- interBeta$intMat
nx <- n <- nrow(x)
if( NEWX ){
xnew <- newdata$xdata
nx <- n <- nrow(xnew)
colnames(xnew) <- .cleanNames(colnames(xnew))
wna <- which(is.na(xnew),arr.ind=T)
if(length(wna) > 0)
stop('cannot have NA in prediction grid newdata$xdata')
}
ymaxData <- apply( output$inputs$y, 2, max )
if( NEWX & RANDOM ){
rname <- output$modelList$random
randGroupTab <- table( as.character(xnew[,rname]) )
wss <- names(randGroupTab[randGroupTab <= 2])
if(length(wss) > 0){
cat('\nNote: one or more random groups with one observations\n')
}
fnow <- names( which( sapply( output$inputs$xdata, is.factor ) ) )
fnew <- names( which( sapply( xnew, is.factor ) ) )
fnow <- fnow[ fnow %in% colnames(xnew) ]
ww <- which( !fnow %in% fnew )
if(length(ww) > 0)for(k in ww){ xnew[,fnow[k]] <- as.factor( xnew[,fnow[k]] ) }
if( identical( output$inputs$xdata, xnew ) ){
SAMEX <- T
if(verbose)cat( paste('\nPredict same X, use any fitted random effects\n', sep = '') )
}else{
if(verbose)cat( paste('\nPredict different X, marginalize any fitted random effects\n', sep = '') )
}
}
if( !NEWX & RANDOM & verbose ){
SAMEX <- T
cat( paste('\nPredict same X, use any fitted random effects\n', sep = '') )
}
if( NEWX | XCOND ){
holdoutN <- nx
holdoutIndex <- 1:nx
if( 'effort' %in% names(newdata) ){
if( is.null(newdata$effort$columns) )newdata$effort$columns <- 1:S
effort <- newdata$effort
if( is.matrix( effort$values) ){
effMat <- effort$values
}else{
effMat <- matrix( 1, nx, S )
effMat[,effort$columns] <- effort$values
}
effortSource <- 'newdata'
}else{
effMat <- matrix(1, nx, S)
effortSource <- 'ones'
print( 'no effort provided in newdata')
if( all( !c('CON','CA','CC','FC') %in% typeNames) )print( 'assumed equal to 1')
}
if(REDUCT){
if(SAMEY){
cat("\nUsing fitted RE from dimension reduction\n")
}else{
cat("\nRandom effects generated by dimension reduction are marginalized")
cat(" here, unlike in function gjam where they are used directly for")
cat(" prediction. With dimension reduction, predictions here will be")
cat(" noisier than from gjam\n")
}
}
effort <- list(columns = c(1:S), values = effMat)
ydataCond <- NULL
if( nfact > 0 ){
for(j in 1:nfact){
nf <- names(factorList)[j]
wf <- which(names(xnew) == nf)
wo <- which(names(output$xnew) == nf)
wc <- which(names(contrasts) == names(factorList)[j])
cc <- contrasts[[wc]]
xnew[[wf]] <- factor( xnew[[wf]], levels = rownames(cc) )
attr(xnew[[wf]],'contrasts') <- cc
}
}
yp <- matrix(0,nx,S)
colnames(yp) <- ynames
standMatSd <- output$inputs$standX[,'xsd']
standMatMu <- output$inputs$standX[,'xmean']
intMat <- output$inputs$intMat
standMatSd <- standMatSd[ !names(standMatSd) %in% facLevels ]
standMatMu <- standMatMu[ !names(standMatMu) %in% facLevels ]
ig <- grep(':', names(standRows))
if(length(ig) > 0){
standRows <- standRows[-ig]
standMatMu <- standMatMu[ names(standRows) ]
standMatSd <- standMatSd[ names(standRows) ]
}
tmp <- .getStandX(formula, xu = xnew, standRows, xmu = standMatMu,
xsd = standMatSd )
xnew <- tmp$xstand
u2s <- tmp$U2S
tmp <- .gjamXY(formula, xnew, yp, typeNames,
notStandard = names(xnew), checkX = F, xscale = xscale,
verbose)
x <- tmp$x
beta <- output$parameters$betaStandXmu
if( is.null(beta) ){
beta <- output$parameters$betaMu
STAND <- FALSE
}
w <- x%*%beta
if( length(corCols) > 0 ){
sg <- output$parameters$sigMu
alpha <- .sqrtMatrix( bg, sg, DIVIDE = T )
w[,corCols] <- x%*%alpha[,corCols]
}
yp <- w*effMat
wca <- which(typeNames == 'CA')
if(length(wca) > 0){
yp[,wca][yp[,wca] < 0] <- 0
}
wda <- which(typeNames == 'DA')
if(length(wda) > 0){
yp[,wda] <- round(yp[,wda],0)
yp[,wda][yp[,wda] < 0] <- 0
}
ordCols <- which(typeNames == 'OC')
if(length(ordCols) > 0){
tmp <- .gjamGetCuts(yp + 1, ordCols)
cutLo <- tmp$cutLo
cutHi <- tmp$cutHi
for(k in ordCols){
yp[,k] <- findInterval(yp[,k],cuts[k,]) - 1
}
}
if( length(FCgroups) > 0 ){
ntt <- max(FCgroups)
for(i in 1:ntt){
wk <- which( FCgroups == i )
wo <- which(wk %in% notOther)
yp[,wk] <- .gjamCompW2Y(yp[,wk,drop=F], notOther=wo)$ww
}
}
if( length(CCgroups) > 0 ){
if(verbose)cat( '\nFor CC data total effort (count) is taken as 10000' )
ysum <- rep(10000,n)
ntt <- max(CCgroups)
y <- output$inputs$y
wFromY <- sweep( y, 1, rowSums(y, na.rm=T), '/')
wFromY[ !is.finite(wFromY) ] <- 0
wmax <- apply( wFromY, 2, max )
wmat <- matrix( wmax, n, S, byrow = T )
yp <- sweep( wmat, 1, rowSums(wmat, na.rm=T), '/')
yp <- round( yp*10000 )
}
tmp <- .gjamSetup(typeNames, x, y = yp, breakList=NULL, holdoutN=NULL,
holdoutIndex=NULL, censor=NULL, effort=effort)
w <- tmp$w; z <- tmp$z; yp <- tmp$y; other <- tmp$other
plo <- tmp$plo; phi <- tmp$phi
ordCols <- tmp$ordCols; disCols <- tmp$disCols; compCols <- tmp$compCols
minOrd <- tmp$minOrd; maxOrd <- tmp$maxOrd; censorCA <- tmp$censorCA
censorDA <- tmp$censorDA; censorCON <- tmp$censorCON; ncut <- ncol(cuts)
corCols <- tmp$corCols
if(length(corCols) > 0)notCorCols <- notCorCols[-corCols]
catCols <- which(attr(typeNames,'CATgroups') > 0)
sampleW <- tmp$sampleW*0 + 1
byCol <- byRow <- F
if(attr(sampleW,'type') == 'cols')byCol <- T
if(attr(sampleW,'type') == 'rows')byRow <- T
indexW <- attr(sampleW,'index')
inSamp <- 1:n
byCol <- byRow <- F
if(attr(sampleW,'type') == 'cols')byCol <- T
if(attr(sampleW,'type') == 'rows')byRow <- T
indexW <- attr(sampleW,'index')
cdex <- c(1:S)
}
if( RANDOM ){
avm <- output$parameters$randGroupVarMu
avs <- output$parameters$randGroupVarSe
lt <- lower.tri(avm, diag = T)
wrand <- which(lt, arr.ind=T)
avg <- matrix(0, S, S)
}
if( COND | XCOND ){
ydataCond <- newdata$ydataCond
if( !is.data.frame(ydataCond) & !is.matrix(ydataCond) )stop( 'ydataCond must be a matrix with column names to match ydata' )
if(is.data.frame(ydataCond))ydataCond <- as.matrix(ydataCond)
colnames(ydataCond) <- .cleanNames(colnames(ydataCond))
condNames <- colnames(ydataCond)
if('other' %in% condNames){
condNames <- condNames[condNames != 'other']
ydataCond <- ydataCond[,condNames]
}
if( !XCOND )yp <- y
condCols <- match(condNames, colnames(yp))
yp[,condCols] <- as.matrix( ydataCond )
condW <- condCols[ typeNames[condCols] %in% c('CA','DA','PA','OC','CC') ]
condCA <- condCols[ typeNames[condCols] == 'CA' ]
cdex <- c(1:S)[-condCols]
}
tmp <- .gjamSetup(typeNames, x, yp, breakList=NULL, holdoutN=NULL,
holdoutIndex=NULL,censor=NULL, effort=effort)
w <- tmp$w; z <- tmp$z; yp <- tmp$y; other <- tmp$other
plo <- tmp$plo; phi <- tmp$phi
ordCols <- tmp$ordCols; disCols <- tmp$disCols; compCols <- tmp$compCols
minOrd <- tmp$minOrd; maxOrd <- tmp$maxOrd; censorCA <- tmp$censorCA
cuts <- tmp$cuts
censorDA <- tmp$censorDA; censorCON <- tmp$censorCON; ncut <- ncol(cuts)
corCols <- tmp$corCols
if(length(corCols) > 0)notCorCols <- notCorCols[-corCols]
catCols <- which(attr(typeNames,'CATgroups') > 0)
sampleW <- tmp$sampleW
sampleW[,-condCols] <- 1
if( XCOND ){
effort <- tmp$effort
print( 'with new xdata, effort assumed equal to 1' )
}else{
if( any( c('DA') %in% typeNames &
!'effort' %in% names(newdata) ) )print( 'original effort used for prediction' )
}
standRows <- output$inputs$standRows
standMatSd <- output$inputs$standX[,'xsd']
standMatMu <- output$inputs$standX[,'xmean']
byCol <- byRow <- F
if(attr(sampleW,'type') == 'cols')byCol <- T
if(attr(sampleW,'type') == 'rows')byRow <- T
indexW <- attr(sampleW,'index')
yz <- y
if( XCOND )yz <- yp
if(length(other) > 0)cdex <- cdex[!cdex %in% other]
S1 <- length(cdex)
yg <- yp
if(length(yp) < 10000 | FULL) FULL <- T
if(FULL){
ygibbs <- wgibbs <- matrix(0,nsim,length(yp))
}
pmax <- apply(output$inputs$y/output$modelList$effort$values,2,max)
CCsums <- CCmax <- numeric(0)
if( !is.null(CCgroups) ){
ncc <- max(CCgroups)
for(j in 1:ncc){
wjk <- which(CCgroups == j)
rs <- rowSums( output$inputs$y[,wjk] )
ms <- output$inputs$y[,wjk]/rs
ms <- apply(ms, 2, max, na.rm = T)
CCmax <- append(CCmax, list( ms ) )
CCsums <- append(CCsums, list( rs ) )
pmax[ wjk ] <- ms
}
}
pmax[ pmax < .1 & typeNames %in% c('DA','CA','PA','OC') ] <- .1
ptmp <- 2*matrix(pmax,n,S,byrow=T)
ptmp[,ordCols] <- length(ordCols) + 10
ptmp[,compCols] <- 1.2*ptmp[,compCols]
ptmp[,compCols][ptmp[,compCols] > 1] <- 1
ptmp[,catCols] <- 10
if( COND ){
ncc <- sort(unique( c(condCols, other) ))
ploCond <- -ptmp[,-ncc, drop = F]/2
phiCond <- ptmp[,-ncc, drop = F]
colnames(ploCond) <- colnames(phiCond) <- colnames(y)[-ncc]
holdoutN <- 0
holdoutIndex <- NULL
ploHold <- phiHold <- NULL
}
if( !COND & !XCOND & !SAMEX ){
holdoutN <- n
holdoutIndex <- c(1:n)
plo <- -ptmp*.5
phi <- ptmp
ploHold <- -ptmp*.5
phiHold <- ptmp
}
if( SAMEY ){
holdoutN <- 0
}
RD <- F
if( (REDUCT & SAMEX) | SAMEY) RD <- T
.updateW <- .wWrapper(REDUCT = RD, RANDOM, S, effMat, corCols, notCorCols, typeNames,
typeFull, typeCols,
allTypes, holdoutN, holdoutIndex, censor,
censorCA, censorDA, censorCON, notOther, sampleW,
byRow, byCol,
indexW, ploHold, phiHold, sampleWhold, inSamp)
ypred <- matrix(0,n,S)
colnames(ypred) <- ynames
ypred2 <- wcred <- wcred2 <- ypred
if(TRAITS){
specByTrait <- output$modelList$traitList$specByTrait
specTrait <- specByTrait[colnames(y),]
tnames <- colnames(specTrait)
M <- ncol(specTrait)
specTrait <- t(specTrait)
traitTypes <- output$modelList$traitList$traitTypes
tpred <- matrix(0, n, M)
colnames(tpred) <- rownames(specTrait)
tpred2 <- tpred
}
gvals <- sample(burnin:ng,nsim,replace=T)
pbar <- txtProgressBar(min=1,max=nsim,style=1)
ig <- 0
corColC <- cdex[cdex %in% corCols]
corColW <- which(cdex %in% corCols)
ddex <- which(notOther %in% cdex)
kdex <- c(1:S)[-ddex]
pdex <- ddex[ typeNames[ddex] %in% c('CON','CA') ]
cutg <- cuts
ncut <- ncol(cutg)
ccols <- which(typeNames != 'CON')
kg <- 1
rndEff <- 0
prPresent <- w*0
emat <- matrix(0,S,S)
colnames(emat) <- rownames(emat) <- ynames
lo <- hi <- lm <- hm <- ess <- emat
eCont <- output$inputs$factorBeta$eCont
dCont <- output$inputs$factorBeta$dCont
lCont <- output$inputs$factorBeta$lCont
covE <- cov( x%*%dCont )
frow <- NULL
if(nfact > 0){
frow <- rep(0,Q)
for(j in 1:nfact){
frow[ match(factorList[[j]], xnames) ] <- j
}
}
q1 <- nrow(eCont)
fnames <- rownames(eCont)
facList2 <- factorList
if(nfact > 0){
for(j in 1:nfact){
wj <- which(names(xnew) == names(factorList)[j])
facList2[[j]] <- levels(xnew[[wj]])
}
}
notPA <- which(!typeNames == 'PA' & !typeNames == 'CON')
notPA <- notPA[ !notPA %in% condCols ]
tiny <- 1e-5
sampW <- 1 + w*0
rows <- 1:nrow(w)
for(g in gvals){
bg <- matrix( output$chains$bgibbs[g,], Q, S )
muw <- x%*%bg
if( REDUCT ){
sigmaerror <- output$chains$sigErrGibbs[g]
if( RD ){
rndEff <- rndEffMu + matrix( rnorm( n*S, 0, rndEffSe ), n, S )
sg <- diag(sigmaerror, S)
}else{
rndEff <- 0
Z <- matrix(output$chains$sgibbs[g,],N,r)
K <- output$chains$kgibbs[g,]
sg <- .expandSigma(sigmaerror, S, Z = Z, K, REDUCT = T)
}
if( COND ){
Z <- matrix(output$chains$sgibbs[g,],N,r)
K <- output$chains$kgibbs[g,]
sgcond <- .expandSigma(sigmaerror, S, Z = Z, K, REDUCT = T)
}
} else {
sg <- .expandSigma(output$chains$sgibbs[g,], S = S, REDUCT = F)
}
if( RANDOM ){
if( SAMEX ){
randByGroup <- rnorm( length(randByGroupMu), randByGroupMu, randByGroupSe )
groupRandEff <- t( matrix( randByGroup, S, ngroup ) )[groupIndex,]
}else{
avg[ wrand ] <- rnorm(nrow(wrand), avm[wrand], avs[wrand])
avg[ wrand[,c(2,1)] ] <- avg[ wrand ]
groupRandEff <- .rMVN(ngroup, 0, avg)[groupIndex,]
}
}
alpha <- .sqrtMatrix(bg,sg,DIVIDE=T)
agg <- .sqrtMatrix(bg[,notOther],sg[notOther,notOther],DIVIDE=T)
if(nfact > 0){
agg <- lCont%*%agg
for(k in 1:nfact){
fk <- factorList[[k]]
mua <- colMeans(agg[drop=F,fk,])
nl <- length(fk)
agg[fk,] <- agg[fk,] - matrix(mua,nl,SO,byrow=T)
}
} else {
agg <- agg[drop=F,-1,]
}
egg <- lCont%*%bg[,notOther]
if( 'OC' %in% typeCode ){
cutg[,3:(ncut-1)] <- matrix( output$chains$cgibbs[g,], length(ordCols))
tmp <- .gjamGetCuts(yg + 1,ordCols)
cutLo <- tmp$cutLo
cutHi <- tmp$cutHi
plo[,ordCols] <- cutg[cutLo]
phi[,ordCols] <- cutg[cutHi]
}
tmp <- .updateW( rows=1:n, x, w, y = yp, bg, sg, alpha, cutg, plo, phi,
rndEff=rndEff, groupRandEff, sigmaerror, wHold )
w <- tmp$w
yg <- tmp$yp
if( COND | XCOND ){
if( length(ddex) > 0 ){
gre <- groupRandEff
if(length(gre) > 1)gre <- groupRandEff[,notOther]
tmp <- .conditionalMVN(w[,notOther],
muw[,notOther] + gre,
sg[notOther,notOther],
cdex = ddex)
muc <- tmp$mu
sgp <- tmp$vr
wd <- which( ddex %in% corCols )
if( length(wd) > 0 ){
css <- .cov2Cor(sg)
mus <- x%*%alpha
wws <- .sqrtMatrix(w, sg, DIVIDE = T)
tmp <- .conditionalMVN(wws, mus + groupRandEff, css, cdex = ddex, S)
muk <- tmp$mu
sgk <- tmp$vr
muc[,wd] <- muk
sgp[wd,wd] <- sgk
}
if( length(ddex) == 1 ){
wex <- matrix( .tnorm(n, ploCond, phiCond, muc, sqrt(sgp[1])) )
} else {
lo <- ploCond
hi <- phiCond
avec <- muc
avec[ muc < lo ] <- lo[ muc < lo ]
avec[ muc > hi ] <- hi[ muc > hi ]
wex <- .tnormMVNmatrix( avec = avec, muvec = muc, smat = sgp,
lo=lo, hi=hi)
}
yPredict <- yg
yPredict[,ddex] <- wex
groups <- NULL
z <- w
z[,ddex] <- wex
for(k in allTypes){
wk <- which(typeCols == k)
nk <- length(wk)
wo <- which(wk %in% notOther)
wu <- which(typeCols[notOther] == k)
wp <- z[, wk, drop=F]
yq <- yPredict[, wk, drop=F]
if(typeFull[wk[1]] == 'countComp')groups <- CCgroups
if(typeFull[wk[1]] == 'fracComp')groups <- FCgroups
if(typeFull[wk[1]] == 'categorical')groups <- CATgroups
glist <- list(wo = wo, type = typeFull[wk[1]], yy = y[,wk,drop=F],
wq = wp, yq = yq, cutg = cutg,
censor = censor, censorCA = censorCA,
censorDA = censorDA, censorCON = censorCON,
eff = effMat[,wk,drop=F], groups = groups,
k = k, typeCols = typeCols, notOther = notOther,
wk = wk, sampW = sampleW[,wk])
tmp <- .gjamWLoopTypes( glist )
yPredict[,wk] <- tmp[[2]]
}
}
yg[,ddex] <- yPredict[,ddex]
muw[,pdex] <- muc
yg[,condCols] <- as.matrix( ydataCond )
}
if( length(ccols) > 0 ){
mmm <- muw[,ccols]
mmm[mmm < 0] <- 0
muw[,ccols] <- mmm
}
yy <- yg
if('PA' %in% typeNames){
wpa <- which(typeNames == 'PA')
yy[,wpa] <- round(yg[,wpa])
}
if(length(notPA) > 0){
w0 <- which(yy[,notPA] <= 0)
w1 <- which(yy[,notPA] > 0)
yy[,notPA][w0] <- 0
yy[,notPA][w1] <- 1
}
prPresent <- prPresent + yy
ig <- ig + 1
setTxtProgressBar(pbar,ig)
ypred <- ypred + yg
ypred2 <- ypred2 + yg^2
wcred <- wcred + muw
wcred2 <- wcred2 + muw^2
ess[notOther,notOther] <- .cov2Cor( t(agg)%*%covE%*%agg )
emat[notOther,notOther] <- emat[notOther,notOther] + ess[notOther,notOther]
if(FULL){
ygibbs[kg,] <- as.vector(yg)
wgibbs[kg,] <- as.vector(muw)
}
if(TRAITS){
yw <- yg
yw[yw <= 0] <- 0
yw[is.na(yw)] <- 0
yw <- sweep(yw,1,rowSums(yw),'/')
Ttrait <- .gjamPredictTraits(yw,specTrait, traitTypes)
tpred <- tpred + Ttrait
tpred2 <- tpred2 + Ttrait^2
}
kg <- kg + 1
}
prPresent <- prPresent/nsim
ematrix <- emat/nsim
xf <- NULL
if(length(facNames) > 0){
xf <- xdata[, facNames, drop=F]
}
xunstand <- try( .getUnstandX( formula, x, standRows, xmu, xsd,
factorColumns = xf ), T )
if( inherits(xunstand,'try-error') ){
xunstand <- NULL
cat( '\nNote: prediction x is not full rank' )
}else{
xunstand <- xunstand$xu
}
yMu <- ypred/nsim
res <- ypred2/(nsim - 1) - yMu^2
res[res < tiny] <- tiny
yPe <- sqrt(res)
wMu <- wcred/nsim
res <- wcred2/(nsim - 1) - wMu^2
res[res < tiny] <- tiny
wSe <- sqrt(res)
colnames(yMu) <- colnames(yPe) <- colnames(wMu) <-
colnames(wSe) <- ynames
sdList <- list( yMu = yMu, yPe = yPe, wMu = wMu, wSe = wSe )
if(TRAITS){
tMu <- tpred/nsim
res <- tpred2/(nsim - 1) - tMu^2
res[res < tiny] <- tiny
tSe <- sqrt(res)
sdList$tMu <- tMu
sdList$tSe <- tSe
}
piList <- NULL
if(FULL){
wLo <- matrix( apply(wgibbs,2,quantile,.05), n, S )
wHi <- matrix( apply(wgibbs,2,quantile,.95), n, S )
yLo <- matrix( apply(ygibbs,2,quantile,.05), n, S )
yHi <- matrix( apply(ygibbs,2,quantile,.95), n, S )
colnames(wLo) <- colnames(wHi) <- colnames(yLo) <-
colnames(yHi) <- ynames
piList <- list( wLo = wLo, wHi = wHi, yLo = yLo, yHi = yHi )
}
if(PLOT){
oma <- c(0,0,0,0)
mar <- c(4,4,2,1)
tcl <- -0.5
mgp <- c(3,1,0)
par(oma = oma, mar = mar, tcl = tcl, mgp = mgp, bty='n')
wy <- which(colnames(y) %in% y2plot & c(1:S) %in% notOther)
t2plot <- typeNames[wy]
allTypes <- unique(t2plot)
mfrow <- .getPlotLayout(length(allTypes) + 1)
par(mfrow=mfrow, bty='n', mar=c(1,2,3,1) )
k <- 0
add <- F
for(j in 1:length(allTypes)){
wk <- which(typeNames == allTypes[j] & c(1:S) %in% notOther)
ws <- colnames(y)[wk]
wm <- which(colnames(yMu) %in% colnames(y)[wk])
wk <- match(colnames(yMu)[wm],colnames(y))
y1 <- y[,wk]
if(min(y1) == max(y1))next
y2 <- yMu[,wm]
tmp <- .gjamPlotPars(type=allTypes[j],y1,y2)
y1 <- tmp$y1; yp <- tmp$yp; nbin <- tmp$nbin; nPerBin <- tmp$nPerBin
vlines <- tmp$vlines; xlimit <- tmp$xlimit; ylimit <- tmp$ylimit
breaks <- tmp$breaks; wide <- tmp$wide; LOG <- tmp$LOG; POINTS <- F
MEDIAN <- tmp$MEDIAN
log <- ''
if(LOG)log <- 'xy'
if(LOG){
wn <- which(y1 > 0 & yp > 0)
y1 <- y1[wn]
yp <- yp[wn]
}
tmp <- .bins4data(y1,nPerBin=nPerBin,breaks=breaks,LOG=LOG)
breaks <- tmp$breaks
bins <- tmp$bins
nbin <- tmp$nbin
if( !allTypes[j] %in% c('PA','CAT') ){
ncc <- max( c(100,max(y1)/20) )
xy <- .gjamBaselineHist(y1,bins=bins,nclass=ncc)
xy[2,] <- ylimit[1] + .8*xy[2,]*diff(ylimit)/max(xy[2,])
plot(xy[1,],xy[2,],col='tan',type='s',lwd=2,xlim=xlimit,ylim=ylimit,
xlab='Observed',ylab='Predicted')
polygon(xy[1,],xy[2,],border='tan',col='wheat')
} else {
y11 <- mean(y1)
y00 <- 1 - y11
x11 <- c(-.07,-.07,.07,.07,.93,.93,1.07,1.07,-.07)
y11 <- c(0,y00,y00,0,0,y11,y11,0,0)
plot(x11,y11,col='tan',type='s',lwd=2,xlim=xlimit,ylim=ylimit,
xlab='Observed',ylab='Predicted')
polygon(x11,y11,border='tan',col='wheat')
}
abline(0,1,lty=2,lwd=3,col='brown')
abline(h = mean(y1),lty=2,lwd=3,col='tan')
add <- T
opt <- list(xlabel='Observed',ylabel='Predicted',nbin=nbin,
nPerBin=nPerBin, xlimit=xlimit,ylimit=ylimit,
breaks=breaks, wide=wide, LOG=LOG, fill='lightblue',
box.col='darkblue',POINTS=F, MEDIAN=MEDIAN, add=add)
.plotObsPred(y1, y2, opt = opt)
tt <- allTypes[j]
if(length(ws) == 1)tt <- paste(ws,tt,sep='-')
lab <- paste(letters[j],') ',tt, sep='')
.plotLabel( lab,above=T )
}
yp <- colMeans(yMu)
wy <- match(colnames(yMu),colnames(y))
opt <- list(xlabel='Observed', xlimit=NULL, ylimit=NULL,
breaks=breaks, wide=wide, LOG=LOG, fill='lightblue',
box.col='darkblue', POINTS=T, ptcol='darkblue')
.plotObsPred( colMeans(y[,wy]),yp, opt = opt)
abline(0, 1,lty=2,lwd=3,col='brown')
abline(h = mean(y1),lty=2,lwd=3,col='tan')
.plotLabel( paste(letters[j+1],') By Species',sep=''),above=T )
}
xb <- xunstand
if(is.null(xb))xb <- x
bk <- list( x = xb, sdList = sdList, piList = piList, prPresent = prPresent,
ematrix = ematrix, effortSource = effortSource)
if(FULL)bk <- append( bk, list(ychains = ygibbs) )
bk
}
.updateBetaTime <- function(X, Y, sig, rows, pattern, lo=NULL, hi=NULL){
SS <- ncol(Y)
B <- t(lo)*0
tiny <- 1e-5
QX <- ncol(X)
XX <- crossprod(X)
omega <- sig*solveRcpp(XX)
muB <- t(omega%*%crossprod((1/sig)*X, Y))
for(k in 1:nrow(rows)){
krow <- rows[k,]
krow <- krow[is.finite(krow)]
notk <- c(1:QX)[-krow]
if(length(notk) == 1){
M1 <- omega[krow,notk, drop=F]/omega[notk,notk]
}else{
OI <- try( solveRcpp(omega[notk,notk]), T)
if( inherits(OI,'try-error') ){
OI <- diag(1/diag(omega[notk,notk]))
}
M1 <- omega[krow,notk, drop=F]%*%OI
}
pk <- pattern[k,]
pk <- pk[is.finite(pk)]
muk <- muB[pk, krow, drop=F] - muB[pk,notk]%*%t(M1)
Mk <- omega[krow,krow] - M1%*%omega[notk,krow]
if(is.null(lo)){
if(length(Mk) == 1){
B[pk,krow] <- rnorm(length(pk),muk,sqrt(Mk))
}else{
B[pk,krow] <- .rMVN( length(pk), rep(0,length(krow)), Mk) + muk
}
} else {
if(length(Mk) == 1){
B[pk,krow] <- .tnorm(length(pk),lo[krow,pk],hi[krow,pk],muk,sqrt(Mk))
} else {
ll <- t(lo)[pk,krow,drop=F]
hh <- t(hi)[pk,krow,drop=F]
test <- try( .tnormMVNmatrix( avec=muk, muvec=muk, smat=Mk,
lo=ll, hi=hh), T)
if( inherits(test,'try-error') ){
mm <- diag(Mk)
mm[mm < tiny] <- tiny
test <- .tnorm(length(ll),ll,hh,muk,sqrt(mm))
}
B[pk,krow] <- test
}
}
}
t(B)
}
.updateTheta <- function(w,tg,cutLo,cutHi,ordCols,holdoutN,
holdoutIndex,minOrd,maxOrd){
word <- w[,ordCols,drop=F]
ncut <- ncol(tg)
nr <- nrow(tg)
nc <- ncut - 1
n <- nrow(w)
nk <- length(ordCols)
tiny <- 1e-5
summat <- matrix(0, nr, ncut)
c1 <- cutLo[,1]
c2 <- cutLo[,2]
c3 <- cutHi[,1]
c4 <- cutHi[,2]
if(holdoutN > 0){
word <- word[-holdoutIndex,]
ss <- seq(0,(nk-1)*n,by=n)
wh <- as.vector( outer(holdoutIndex,ss,'+') )
c1 <- c1[-wh]
c2 <- c2[-wh]
c3 <- c3[-wh]
c4 <- c4[-wh]
}
cmin <- .byGJAM(as.vector(word),c1,c2, summat=summat, fun='min')
cmax <- .byGJAM(as.vector(word),c1,c2, summat=summat, fun='max')
cmin <- cbind(cmin, Inf)
cmax <- cbind(cmax, -Inf)
maxw <- 2*max(w, na.rm=T)
cmin[,2] <- cmax[,1] <- 0
cmin[ cbind(1:nr,maxOrd+1) ] <- cmax[ cbind(1:nr,maxOrd) ] + .1
cmax[ cbind(1:nr,maxOrd+1) ] <- cmin[ cbind(1:nr,maxOrd+1) ] + .1
icol <- 2:ncut
clo <- cmax[drop=F,,1:(ncut-1)]
chi <- cmin[drop=F,,icol]
rowMax <- apply(cmax, 1, max, na.rm=T)
ni <- ncol(clo)
for(i in 2:ni){
wi <- which( !is.finite(clo[,i]))
if(length(wi) > 0)clo[wi,i] <- chi[wi,i-1] + tiny
wi <- which( clo[,i] < chi[,i-1])
if(length(wi) > 0)clo[wi,i] <- clo[wi,i-1] + tiny
wi <- which(!is.finite(chi[,i]) & maxOrd == i)
if(length(wi) > 0)chi[wi,i] <- maxw
wi <- which(!is.finite(chi[,i]) & maxOrd > i)
if(length(wi) > 0){
chi[wi,i] <- clo[wi,i] + tiny
}
wi <- which(chi[,i] < clo[,i])
if(length(wi) > 0)chi[wi,i] <- clo[wi,i] + tiny
}
wi <- which(is.nan(tg),arr.ind=T)
if(length(wi) > 0)tg[wi] <- clo[wi] + tiny
cmu <- tg[drop=F,,icol]
ww <- which(is.finite(cmu))
tg[,icol][ww] <- .tnorm(length(ww), clo[ww], chi[ww], cmu[ww], .1)
tg[,1] <- -10
tg
}
.censorValues <- function(censor,y,yp){
mm <- length(censor)
if(mm == 0)return(yp)
if(mm > 0){
for(m in 1:mm){
wc <- censor[[m]]$columns
nc <- ncol( censor[[m]]$partition )
ym <- yp[,wc,drop=F]
cp <- censor[[m]]$partition
for(k in 1:nc){
wlo <- which( ym > cp[2,k] & ym < cp[3,k])
ym[wlo] <- cp[1,k]
}
yp[,wc] <- ym
}
}
yp
}
.gjamWLoopTypes <- function( glist ){
wo <- type <- yy <- wq <- yq <- cutg <- censor <-
censorCA <- censorDA <- censorCON <- eff <- groups <- k <-
typeCols <- notOther <- wk <- sampW <- NULL
for(k in 1:length(glist))assign( names(glist)[k], glist[[k]] )
if( type == 'continuous' ){
return( list(wq, yq) )
}
nk <- ncol(wq)
wkk <- c(1:nk)
n <- nrow(wq)
if( type == 'ordinal' ){
w2y <- wq
for(s in 1:nk){
yq[,s] <- findInterval(yq[,s],cutg[s,]) - 1
}
return( list(wq, yq) )
}
if( type == 'presenceAbsence' ){
yq <- pnorm(yq)
return( list(wq, yq) )
}
if( type == 'contAbun' ){
yq[yq < 0] <- 0
return( list(wq,yq) )
}
if( type == 'discAbun' ){
yq <- yq*eff
yq[yq < 0] <- 0
if( length(censorDA) > 0 ) yq[-censorDA] <- yq[-censorDA]
return( list( wq, yq) )
}
if( type == 'categorical' ){
ntt <- max( groups )
w2y <- yq
for(i in 1:ntt){
if(ntt == 1){
wki <- wkk
} else {
wki <- which( groups == i )
}
nki <- length(wki)
wko <- wki
wmax <- apply( yq[,wko],1, which.max)
yq[,wki] <- 0
yq[,wki][ cbind(1:n,wmax) ] <- 1
wmax <- apply( wq[,wko],1, which.max)
w2y[,wki] <- 0
w2y[,wki][ cbind(1:n,wmax) ] <- 1
}
return( list(wq, w2y) )
}
if( type == 'countComp' ){
ntt <- max( groups )
ww <- wq
yq[yq < 0] <- 0
for(i in 1:ntt){
if(ntt == 1){
wki <- wkk
} else {
wki <- which( groups == i )
}
io <- which(wki %in% wo)
wc <- .gjamCompW2Y(ww[,wki,drop=F], notOther=io)$ww
ww[,wki][wq[,wki] > 0] <- wc[wq[,wki] > 0]
yq[,wki] <- .gjamCompW2Y(yq[,wki,drop=F],notOther=io)$ww
ysum <- rowSums(yy[,wki,drop=F])
yq[,wki] <- round( sweep(yq[,wki,drop=F],1,ysum,'*'), 0)
}
return( list(ww,yq) )
}
ntt <- max( groups )
wy <- which(yq > 0)
wq[wy] <- yq[wy]
yq[yq < 0] <- 0
for(i in 1:ntt){
if(ntt == 1){
wki <- wkk
} else {
wki <- which(groups == i)
}
io <- which(wki %in% wo)
yq[,wki] <- .gjamCompW2Y(yq[,wki,drop=F],notOther=io)$ww
}
list(wq, yq)
}
.gjamWcatLoop <- function(y, ws, mus, sgs, notOther, plo, phi, groups,
REDUCT = F){
ntt <- max( groups )
n <- nrow(y)
for(i in 1:ntt){
wki <- which(groups == i)
nki <- length(wki)
wko <- wki[wki %in% notOther]
w0 <- apply( ws[,wko]*(1 - y[,wko]),1, max)
w1 <- apply( ws[,wko]*y[,wko],1, max)
w0[w0 < 0] <- 0
si <- sample(wko)
for(s in si){
y1 <- which(y[,s] == 1)
plo[-y1,s] <- -500
phi[y1,s] <- 500
plo[y1,s] <- w0[y1]
phi[-y1,s] <- w1[-y1]
if(REDUCT){
ws[,s] <- .tnorm(n,plo[,s],phi[,s],mus[,s],sqrt(sgs[s]))
} else {
sm <- which(notOther == s)
tmp <- .conditionalMVN(ws[,notOther], mus[,notOther],
sgs, sm)
mue <- tmp$mu
vr <- max(tmp$vr,1e-8)
ws[,s] <- .tnorm(n,plo[,s],phi[,s],mue,sqrt(vr))
}
w1[y1] <- ws[y1,s]
w0[-y1] <- apply( ws[-y1,wki]*(1 - y[-y1,wki]),1, max)
}
}
list(w = ws, plo = plo, phi = phi)
}
.gjamWcatLoop2 <- function(y, ws, mus, sgs, notOther, plo, phi, groups,
REDUCT = F){
ntt <- max( groups )
n <- nrow(y)
for(i in 1:ntt){
wki <- which(groups == i)
nki <- length(wki)
wko <- wki[wki %in% notOther]
w1 <- apply( ws[,wko]*y[,wko],1, max)
so <- match(wko,notOther)
for(s in wko){
y1 <- which(y[,s] == 1)
sm <- which(notOther == s)
sn <- so[so != sm]
qs <- wko[wko != s]
if(REDUCT){
ws[y1,s] <- .tnorm(length(y1),plo[y1,s],phi[y1,s],
mus[y1,s],sqrt(sgs[s]))
} else {
tmp <- .conditionalMVN(ws[y1,notOther], mus[y1,notOther], sgs, sm)
mue <- tmp$mu
vr <- max(tmp$vr,1e-8)
ws[y1,s] <- .tnorm(length(y1),plo[y1,s],phi[y1,s],mue,sqrt(vr))
}
w1[y1] <- ws[y1,s]
phi[y1,wki] <- w1[y1]
phi[y1,s] <- 500
if(REDUCT){
tmp <- .tnorm(length(y1)*length(qs),plo[y1,qs],phi[y1,qs],
mus[y1,qs],sqrt(sgs[s]))
} else {
tmp <- .tnormMVNmatrix(ws[y1,notOther],mus[y1,notOther],
smat=sgs, plo[y1,notOther],
hi=phi[y1,notOther],
whichSample=so)[,sn,drop=F]
}
ws[y1,qs] <- tmp
if(length(sn) > 0)tmp <- apply( tmp, 1, max )
tmp[tmp < 0] <- 0
plo[y1,s] <- tmp
}
s <- wki[!wki %in% wko]
y1 <- which(y[,s] == 1)
tmp <- .tnormMVNmatrix(ws[y1,notOther],mus[y1,notOther],
smat=sgs, plo[y1,notOther],
hi=phi[y1,notOther],
whichSample=so)
ws[y1,wko] <- tmp[,so]
}
list(w = ws, plo = plo, phi = phi)
}
.gjamWLoop <- function( llist ){
ws <- mus <- sgs <- wkk <- lo <- hi <- sampW <- indexW <- NULL
byCol <- T
byRow <- F
llist <- for(k in 1:length(llist))assign( names(llist)[k], llist[[k]] )
n <- nrow(lo)
tiny <- .00001
if(byCol){
iss <- wkk[wkk %in% indexW]
for(s in iss){
rs <- which(sampW[,s] > 0)
ls <- lo[drop=F,rs,s]
hs <- hi[drop=F,rs,s]
tmp <- .conditionalMVN( ws[drop=F,rs,], mus[drop=F, rs,], sgs, cdex = s)
mu <- tmp$mu
vr <- max(tmp$vr,tiny)
tmp <- .tnorm(length(rs),ls,hs,mu,sqrt(vr))
wl <- which(tmp == ls)
if(length(wl) > 0) tmp[wl] <- ls[wl] + tiny*(ls[wl])
wl <- which(tmp == hs)
if(length(wl) > 0) tmp[wl] <- hs[wl] - (1 - tiny)*hs[wl]
ws[rs,s] <- tmp
}
return(ws)
}
for(i in indexW){
rs <- which(sampW[i,] > 0)
rs <- rs[rs %in% wkk]
ws[i,rs] <- .tnormMVNmatrix(ws[drop=F,i,], mus[drop=F,i,],
smat=sgs, lo[drop=F,i,], hi[drop=F,i,],
whichSample=rs)[,rs]
}
ws
}
.setContrasts <- function(xx){
levs <- attr(xx,'levels')
nl <- length(levs)
ml <- nl - 1
ref <- levs[1]
intType <- attr(xx,'intType')
if(is.null(intType))intType <- 'ref'
wr <- which(levs == ref)
cj <- matrix(-1/nl,ml,ml)
diag(cj) <- ml/nl
rownames(cj) <- levs[-wr]
colnames(cj) <- levs[-wr]
rj <- rep(-1/nl,ml)
cj <- rbind(rj,cj)
rownames(cj)[1] <- ref
levs <- as.character(levs)
cj <- cj[drop=F,levs,]
if(intType == 'ref'){
cj[cj > 0] <- 1
cj[cj < 0] <- 0
}
list(levs = levs, cont = cj)
}
.gjamXY <- function(formula, xdata, y, typeNames, notStandard,
checkX = T, xscale = NULL, verbose = F){
n <- nrow(xdata)
S <- ncol(y)
snames <- colnames(y)
facNames <- character(0)
factorList <- contrast <- NULL
colnames(xdata) <- .cleanNames(colnames(xdata))
NOX <- T
xmean <- 1
xdataNames <- original <- colnames(xdata)
if( !is.null(notStandard) )notStandard <- .cleanNames(notStandard)
form <- attr( terms(formula), 'term.labels' )
xdata0 <- xdata
if( length(form) > 0 ){
NOX <- F
form <- .cleanNames(form)
form <- paste0(form,collapse=' + ')
formula <- as.formula( paste('~',form) )
t1 <- attr( terms(formula), 'term.labels' )
wi <- grep('I(',t1,fixed=T)
if(length(wi) > 0)t1 <- t1[-wi]
wi <- grep(':',t1,fixed=T)
if(length(wi) > 0)t1 <- t1[-wi]
xdata0 <- xdata[,t1, drop=F]
xnames <- colnames(xdata0)
fs <- which( sapply( xdata0, is.character ) )
if(length(fs) > 0)stop( paste( names(fs), 'is a character, change to factor?',
sep=' ') )
standX <- !sapply(xdata0,is.factor)
facNames <- names(standX)[!standX]
standX <- names(standX)[standX]
standX <- standX[!standX %in% notStandard]
tmp <- .getStandX( formula, xu = xdata0, standRows = standX )
xdata0 <- tmp$xstand
xmean <- tmp$xmu
xsd <- tmp$xsd
xscale <- rbind(xmean,xsd)
factorList <- contrast <- vector('list',length = length(facNames))
names(factorList) <- facNames
if(length(facNames) > 0){
for(j in 1:length(facNames)){
wj <- which(names(xdata0) == facNames[j])
xf <- as.character(xdata0[[wj]])
cj <- attr(xdata0[[wj]],'contrasts')
contrast[[j]] <- cj
tt <- .setContrasts(xdata0[[wj]])$cont
factorList[[j]] <- paste(facNames[j],colnames(tt),sep='')
if(!is.null(cj))next
contrast[[j]] <- tt
attr(xdata0[[wj]],'contrasts') <- tt
}
names(contrast) <- facNames
}
}
tmp <- model.frame(formula, data = as.data.frame(xdata0), na.action=NULL)
x <- model.matrix(formula, data=tmp)
colnames(x)[1] <- 'intercept'
xnames <- colnames(x)
snames <- colnames(y)
Q <- ncol(x)
predXcols <- 2:Q
isFactor <- character(0)
if(Q < 2) checkX <- FALSE
notStandard <- notStandard[ notStandard %in% colnames(x) ]
facBySpec <- missFacSpec <- NULL
VIF <- isNonLinX <- designTable <- NULL
isInt <- intMat <- numeric(0)
if( !NOX ){
if( length(facNames) > 0 ){
iy <- y*0
iy[y > 0] <- 1
facBySpec <- numeric(0)
missFacSpec <- character(0)
for(j in 1:length(facNames)){
ij <- which( colnames(x) %in% factorList[[j]] )
ij <- xnames[ij]
isFactor <- c(isFactor,ij)
if(verbose){
print(paste('observations in factor',facNames[j]))
print(colSums(x, na.rm=T)[ij])
}
fs <- matrix(NA,S,length(factorList[[j]]))
colnames(fs) <- factorList[[j]]
rownames(fs) <- snames
for(k in 1:length(ij)){
xi <- ij[k]
fs[,k] <- colSums( matrix(x[,xi],n,S)*iy, na.rm=T )
}
ms <- 'none missing'
missFS <- which(fs == 0,arr.ind=T)
if(length(missFS) > 0){
ms <- paste(rownames(missFS),ij[missFS[,2]],sep='_')
}
facBySpec <- append(facBySpec,list(fs))
missFacSpec <- append(missFacSpec,list(ms))
}
names(facBySpec) <- names(missFacSpec) <- facNames
}
if( checkX ){
checkInt <- range(x[,1])
if(checkInt[1] != 1 | checkInt[2] != 1)
stop( paste('x[,1] must be intercept (ones)') )
tmp <- .checkDesign(x)
if(tmp$rank < tmp$p)stop( 'x not full rank' )
VIF <- tmp$VIF
designTable <- tmp$designTable$table
wx <- grep('^2',colnames(x),fixed=T)
if(length(wx) > 0){
mm <- unique(unlist(strsplit(colnames(x)[wx],'^2)',fixed=T)))
mm <- .replaceString(mm,'I(','')
mm <- match(mm,colnames(x))
mat <- cbind(wx,mm,mm)
colnames(mat) <- c('int','main1','main2')
intMat <- mat
isInt <- wx
isNonLinX <- sort(unique( c(isNonLinX,mm,isInt)))
}
wx <- grep(':',colnames(x))
if(length(wx) > 0){
mm <- matrix(unlist(strsplit(colnames(x)[wx],':')),ncol=2,byrow=T)
mat <- matrix( match(mm,colnames(x)), ncol=2)
mat <- cbind(wx,mat)
colnames(mat) <- c('int','main1','main2')
wx <- c( which(colnames(x) %in% mm),wx )
isInt <- sort(c(isInt,wx))
intMat <- rbind(intMat,mat)
}
if(!is.null(isInt))isNonLinX <- sort(unique( c(isNonLinX,isInt)))
}
}
standMatSd <- matrix(1,Q,1)
rownames(standMatSd) <- xnames
standMatMu <- standMatSd - 1
xss <- colnames(xscale)
if(length(xss) > 0){
standMatMu[xss,] <- xscale['xmean',xss]
standMatSd[xss,] <- xscale['xsd',xss]
}
if( length(intMat) > 0 ){
for(j in 1:nrow(intMat)){
im <- intMat[j,]
s1 <- s2 <- 1
if( xnames[im[2]] %in% colnames(xscale) )s1 <- xscale['xsd',xnames[im[2]]]
if( xnames[im[3]] %in% colnames(xscale) )s2 <- xscale['xsd',xnames[im[3]]]
standMatSd[im[1],] <- s1*s2
}
}
standRows <- which(standMatSd[,1] != 1 | standMatMu[,1] != 0)
standRows <- standRows[!names(standRows) %in% notStandard]
colnames(y) <- .cleanNames(colnames(y))
tiny <- 1 + 1e-10
if('FC' %in% typeNames){
groups <- attr(typeNames,'FCgroups')
if(is.null(groups)){
groups <- rep(0,S)
groups[typeNames == 'FC'] <- 1
attr(typeNames,'FCgroups') <- groups
}
ngg <- max(groups)
for(kk in 1:ngg){
wf <- which(groups == kk)
if(length(wf) == 0)stop( 'FC data must have > 1 column' )
ww <- which(y[,wf] < 0)
if(length(ww) > 0)stop( 'FC values cannot be < 0' )
wr <- rowSums(y[,wf],na.rm=T)
vv <- unique(wr)
ww <- which(vv != 0 & vv > 1.01)
if(length(ww) > 0){
wx <- which(wr %in% vv)
ii <- paste0(wx, collapse=', ')
stop( paste('FC data must sum to zero (all absent) or one, check obs:',ii))
}
}
}
if('CC' %in% typeNames){
wf <- which(typeNames == 'CC')
if(length(wf) < 2)stop( 'CC data must have > 1 column' )
}
if(is.null(snames))snames <- paste('S',1:S,sep='-')
if(is.null(xnames))xnames <- paste('x',1:Q,sep='-')
snames <- sub('_','-',snames)
xnames <- sub('_','-',xnames)
colnames(y) <- snames
colnames(x) <- xnames
if(length(isNonLinX) == 0)isNonLinX <- NULL
if(length(notStandard) == 0)notStandard <- NULL
if( !is.null(notStandard) ){
ns <- notStandard[ notStandard %in% colnames(x) ]
for(k in 1:length(ns)){
wk <- grep(ns[k],colnames(x))
ns <- c(ns,colnames(x)[wk])
}
notStandard <- sort( unique(ns) )
}
factorAll <- list(nfact = length(factorList), factorList = factorList,
isFactor = isFactor, contrast = contrast,
facBySpec = facBySpec, missFacSpec = missFacSpec,
facNames = facNames)
interaction <- list(isInt = isInt, intMat = intMat, isNonLinX = isNonLinX)
list(x = x, y = y, snames = snames, xnames = xnames, predXcols = predXcols,
interaction = interaction,factorAll = factorAll,
xdata = xdata, designTable = designTable, xmean = xmean, xscale = xscale,
standMatMu = standMatMu, standMatSd = standMatSd, standRows = standRows,
notStandard = notStandard, xdataNames = xdataNames, formula = formula)
}
.gjamCompW2Y <- function(ww,notOther=c(1:(ncol(ww)-1))){
pg <- .995
n <- nrow(ww)
ww[ ww < 0 ] <- 0
W <- rowSums(ww[,notOther,drop=F])
wh <- which(W > pg)
other <- c(1:ncol(ww))[-notOther]
if(length(wh) > 0){
contract <- (1 - (1 - pg)^(W[wh]/pg))/W[wh]
ww[wh,] <- ww[wh,]*contract
}
ww[,other] <- 1 - rowSums(ww[,notOther,drop=F])
list(pg = pg, ww = ww )
}
.imputX_MVN <- function(xx,yy,beta,xmiss,sinv,xprior=0,xbound=NULL,priorWT=1){
wcol <- unique(xmiss[,2])
S <- nrow(sinv)
Q <- nrow(beta)
if(is.null(xbound))xbound <- apply(xx,2,range,na.rm=T)
for(j in wcol){
wx <- which(xmiss[,2] == j)
wj <- xmiss[drop=F,wx,]
wr <- wj[,1]
xp <- xprior[wx]
bj <- matrix(beta[j,],1)
bn <- matrix(beta[-j,],Q - 1)
xn <- xx[drop=F,wr,-j]
z <- yy[drop=F,wr,] - xn%*%bn
datwt <- bj%*%sinv%*%t(bj)
V <- 1/( datwt + priorWT*datwt )
v <- z %*%sinv%*%t(bj) + xp*priorWT
xx[wj] <- .tnorm(length(wr),xbound[1,j],xbound[2,j],v%*%V,sqrt(V))
}
xx
}
.interp <- function(y,INCREASING=F,minVal=-Inf,maxVal=Inf,defaultValue=NULL,
tinySlope=NULL){
if(is.null(defaultValue))defaultValue <- NA
tiny <- .00001
if(!is.null(tinySlope))tiny <- tinySlope
y[y < minVal] <- minVal
y[y > maxVal] <- maxVal
n <- length(y)
wi <- which(is.finite(y))
if(length(wi) == 0)return(rep(defaultValue,n))
if(length(wi) == 1)ss <- tiny
xx <- c(1:n)
z <- y
if(wi[1] != 1) wi <- c(1,wi)
if(max(wi) < n)wi <- c(wi,n)
ss <- diff(z[wi])/diff(xx[wi])
ss[is.na(ss)] <- 0
if(length(ss) > 1){
if(length(ss) > 2)ss[1] <- ss[2]
ss[length(ss)] <- ss[length(ss)-1]
}
if(INCREASING)ss[ss < tiny] <- tiny
if(is.na(y[1])) z[1] <- z[wi[2]] - xx[wi[2]]*ss[1]
if(z[1] < minVal)z[1] <- minVal
if(z[1] > maxVal)z[1] <- maxVal
for(k in 2:length(wi)){
ki <- c(wi[k-1]:wi[k])
yk <- z[wi[k-1]] + (xx[ki] - xx[wi[k-1]])*ss[k-1]
yk[yk < minVal] <- minVal
yk[yk > maxVal] <- maxVal
z[ki] <- yk
}
z
}
.interpRows <- function(x,startIndex=rep(1,nrow(x)),endIndex=rep(ncol(x),nrow(x)),
INCREASING=F,minVal=-Inf,maxVal=Inf,
defaultValue=NULL,tinySlope=.001){
nn <- nrow(x)
p <- ncol(x)
xx <- c(1:p)
if(length(minVal) == 1)minVal <- rep(minVal,nn)
if(length(maxVal) == 1)maxVal <- rep(maxVal,nn)
ni <- rep(NA,nn)
flag <- numeric(0)
z <- x
for(i in 1:nn){
if(startIndex[i] == endIndex[i]){
z[i,-startIndex[i]] <- NA
next
}
z[i,startIndex[i]:endIndex[i]] <- .interp(x[i,startIndex[i]:endIndex[i]],
INCREASING,minVal[i],maxVal[i],
defaultValue,tinySlope)
}
z
}
.invertSigma <- function(sigma,sigmaerror=NULL,otherpar=NULL, REDUCT){
if(REDUCT){
sinv <- invWbyRcpp(sigmaerror, otherpar$Z[otherpar$K,])
} else {
testv <- try( chol(sigma) ,T)
if( inherits(testv,'try-error') ){
tiny <- .1*diag(sigma)
sigma <- sigma + diag(diag(sigma + tiny))
testv <- try(chol(sigma),T)
}
sinv <- chol2inv(testv)
}
sinv
}
.invMatZero <- function(sgibbs,nsim=2000,snames,knames,index=NULL,
COMPRESS = F, REDUCT=F,
sigErrGibbs = NULL, kgibbs = NULL,
otherpar = NULL, alpha = .95){
S <- length(snames)
if(is.null(index))index <- c(1:nrow(sgibbs))
simIndex <- sample(index,nsim,replace=T)
if(!REDUCT){
if(COMPRESS){
tmp <- .expandSigmaChains(snames, sgibbs, otherpar,
simIndex, sigErrGibbs, kgibbs,
REDUCT=REDUCT, CHAINSONLY=T)$chainList$schain
sgibbs <- tmp
}
S1 <- sqrt(ncol(sgibbs))
} else {
N <- otherpar$N
r <- otherpar$r
S1 <- S
SS <- matrix(0,S1,S1)
}
SK <- length(knames)
sindex <- match(knames,snames)
mm <- matrix(0,SK,SK)
rownames(mm) <- colnames(mm) <- knames
hiSS <- loSS <- hiSI <- loSI <- mm
for(j in simIndex){
if(!REDUCT){
ss <- matrix(sgibbs[j,],S1,S1)
si <- chol2inv(chol( ss ) )
} else {
Z <- matrix(sgibbs[j,],N,r)
ss <- .expandSigma(sigErrGibbs[j], S1, Z = Z, kgibbs[j,], REDUCT = T)
si <- invWbyRcpp(sigErrGibbs[j], Z[kgibbs[j,],])
}
ss <- ss[sindex,sindex]
si <- si[sindex,sindex]
hiSS[ss > 0] <- hiSS[ss > 0] + 1/nsim
loSS[ss < 0] <- loSS[ss < 0] + 1/nsim
hiSI[si > 0] <- hiSI[si > 0] + 1/nsim
loSI[si < 0] <- loSI[si < 0] + 1/nsim
}
loMar <- which(loSS > alpha)
hiMar <- which(hiSS > alpha)
inMar <- which(loSS < alpha & hiSS < alpha)
loCon <- which(loSI > alpha)
hiCon <- which(hiSI > alpha)
inCon <- which(loSI < alpha & hiSI < alpha)
inMarMat <- which(loSS < alpha & hiSS < alpha,arr.ind=T)
inConMat <- which(loSI < alpha & hiSI < alpha,arr.ind=T)
list( inMarMat = inMarMat, inConMat = inConMat )
}
.mapSetup <- function(xlim,ylim,scale=NULL,widex=10.5,widey=6.5){
if(is.null(scale))scale <- 1
px <- diff(xlim)/scale
py <- diff(ylim)/scale
if(px > widex){
dx <- widex/px
px <- widex
py <- py*dx
}
if(py > widey){
dx <- widey/py
py <- widey
px <- px*dx
}
par(pin=c(px,py))
invisible( c(px,py) )
}
.sameByColumn <- function(mat,fraction=F){
nc <- ncol(mat)
sameMat <- matrix(0,nc,nc)
for(j in 2:nc){
for(k in 1:(j - 1)){
wj <- which(mat[,j] == mat[,k])
sameMat[j,k] <- length(wj)
}
}
fraction <- sameMat/nrow(mat)
fraction[upper.tri(fraction, diag=T)] <- NA
fraction
}
.modalValuesInArray <- function(mat,idim = 1){
as.numeric( apply(mat,idim,
function(x) names(which.max(table(x)))) )
}
.multivarChainNames <- function(rowNames,colNames, keep = NULL){
tmat <- t(outer(colNames,rowNames,paste,sep='_'))
if(!is.null(keep))tmat <- tmat[ keep ]
as.vector( tmat )
}
.rMVN <- function (nn, mu, sigma = NULL, sinv = NULL){
if(!is.null(sigma)){
m <- ncol(sigma)
}else if(!is.null(sinv)){
m <- ncol(sinv)
}else{
stop( '.rMNV requires either sigma or sinv' )
}
if(length(mu) > 1){
if( !is.matrix(mu) ) mu <- matrix( mu, nn, length(mu) )
if( ncol(mu) == 1 & nn == 1 ) mu <- t(mu)
if( length(mu) == m & nn > 1) mu <- matrix( mu, nn, length(mu), byrow=T )
}
if(is.null(sinv)){
vv <- try(svd(sigma),T)
if( inherits(vv,'try-error') ){
ev <- eigen(sigma, symmetric = TRUE)
rr <- t(ev$vectors %*% (t(ev$vectors) * sqrt(ev$values)))
} else {
rr <- vv$v %*% (t(vv$u) * sqrt(vv$d))
}
}else{
L <- chol(sinv)
rr <- backsolve(t(L), diag(m), upper.tri = F)
}
ps <- matrix(rnorm(nn * m), nn) %*% rr
ps + mu
}
.omitChainCol <- function(cmat,omitCols){
keep <- c(1:ncol(cmat))
ocol <- numeric(0)
for(j in 1:length(omitCols)){
ocol <- c(ocol,grep(omitCols[j],colnames(cmat)))
}
if(length(ocol) > 0)keep <- keep[-ocol]
list(keep = keep, omit = ocol)
}
.outFile <- function(outFolder=character(0),file){
paste(outFolder,file,sep='/')
}
.plotLabel <- function(label,location='topleft',cex=1.3,font=1,
above=F,below=F,bg=NULL){
if(above){
adj <- 0
if(location == 'topright')adj=1
title(label,adj=adj, font.main = font, font.lab =font)
return()
}
if(below){
adj <- 0
if(location == 'bottomright')adj=1
mtext(label,side=1,adj=adj, outer=F,font.main = font, font.lab =font,cex=cex)
return()
}
if(is.null(bg)){
tmp <- legend(location,legend=' ',bty='n')
} else {
tmp <- legend(location,legend=label,bg=bg,border=bg,text.col=bg,bty='o')
}
xt <- tmp$rect$left
yt <- tmp$text$y
pos <- 4
tmp <- grep('right',location)
if(length(tmp) > 0)pos <- 2
XX <- par()$xlog
YY <- par()$ylog
if(XX)xt <- 10^xt
if(YY)yt <- 10^yt
text(xt,yt,label,cex=cex,font=font,pos=pos)
}
.bins4data <- function(obs, nPerBin=NULL, breaks=NULL, nbin=NULL, LOG=F, POS=T){
if(!is.null(nPerBin)){
mb <- 20
if(length(obs)/nPerBin > mb)nperBin <- length(obs)/mb
}
if( is.null(breaks) ){
if( is.null(nbin) )nbin <- 20
br <- range(obs[is.finite(obs)],na.rm=T)
bins <- seq(br[1],br[2],length=nbin)
if(LOG){
yy <- obs[obs > 0]
oo <- min( yy,na.rm=T )
ybin <- seq(log10(oo),log10(max(yy, na.rm=T)),length=20)
bins <- 10^c(log10(.1*oo),ybin)
bins <- unique(bins)
nbin <- length(bins)
nPerBin <- NULL
}
if( !is.null(nPerBin) ){
nbb <- nPerBin/length(obs)
if(nbb < .05)nbb <- .05
nbb <- seq(0,1,by=nbb)
if(max(nbb) < 1)nbb <- c(nbb,1)
oo <- obs
if(POS)oo <- obs[obs > 0]
bins <- quantile(oo,nbb,na.rm=T)
bins <- c(min(oo,na.rm=T),bins)
bins <- sort(unique(bins))
db <- diff(bins)
qo <- quantile(obs,c(.1,.9),na.rm=T)
wb <- which( db/diff(range(qo)) < .02)
wb <- wb[wb != 1]
if(length(wb) > 0)bins <- bins[-wb]
nbin <- length(bins)
}
} else {
bins <- breaks
nbin <- length(bins)
}
list(breaks = breaks, bins = bins, nbin = nbin)
}
.predictY2X_linear <- function(xpred,yy,bb,ss,sinv=NULL,
priorIV = diag(1e-10,ncol(xpred)),
priorX = matrix(0,ncol(xpred)),
predCols = c(2:ncol(xpred)),REDUCT, lox, hix, propx){
prX <- priorX[predCols]
if(!is.matrix(prX))prX <- matrix(prX)
nn <- nrow(yy)
notPred <- c(1:ncol(xpred))[-predCols]
bp <- matrix(bb[drop=F,predCols,],length(predCols))
if(length(notPred) > 0){
bn <- matrix(bb[notPred,],length(notPred))
yy <- yy - xpred[,notPred]%*%bn
}
pp <- length(predCols)
if(is.null(sinv))sinv <- chol2inv(chol(ss))
bs <- bp%*%sinv
V <- chol2inv(chol( bs%*%t(bp) + priorIV[predCols,predCols] ) )
v <- yy%*%t(bs) + matrix( priorIV[predCols,predCols] %*% prX,nn,pp,byrow=T)
mu <- v%*%V
qq <- ncol(mu)
if(qq > 1){
xpred[,predCols] <- .tnormMVNmatrix(avec=xpred[,predCols, drop=F],muvec=mu,smat=V,
lo=matrix(lox[predCols],nn,qq,byrow=T),
hi=matrix(hix[predCols],nn,qq,byrow=T))
} else {
xpred[,predCols] <- .tnorm(nn,lox[predCols],hix[predCols], mu,sqrt(V))
}
xpred
}
.predictY2X_nonLinear <- function(xx,yy,bb,ss,
priorIV = diag(1e-10,ncol(xx)),
priorX=matrix(0,ncol(xx)),
factorObject, interObject, lox, hix, propx){
predCols <- interObject$isNonLinX
isInt <- interObject$isInt
intMat <- interObject$intMat
isFactor <- factorObject$isFactor
factorList <- factorObject$factorList
contrast <- factorObject$contrast
iFcol <- NULL
priorX <- priorX[predCols]
if(!is.matrix(priorX))priorX <- matrix(priorX)
nn <- nrow(yy)
intercept <- xx[,1]
xnew <- xx
xv <- as.vector(xx[,predCols])
nv <- length(xv)
lo <- rep(lox[predCols],each=nn)
hi <- rep(hix[predCols],each=nn)
sx <- rep(propx[predCols],each=nn)/10
xnew[,predCols] <- .tnorm(nv,lo,hi,xv,sx)
if(length(isFactor) > 0){
np <- length(factorList)
for(k in 1:np){
nf <- length(factorList[[k]]) + 1
tm <- contrast[[k]][sample(nf,nn,replace=T),]
xnew[,factorList[[k]]] <- tm
}
iFcol <- match(isFactor,colnames(xx))
}
if(length(intMat) > 0){
xnew[,intMat[,1]] <- xnew[,intMat[,2]]*xnew[,intMat[,3]]
}
mux <- matrix( priorX, nn, length(priorX), byrow=T )
pnow <- .dMVN(yy,xx%*%bb,smat=ss,log=T) +
.dMVN(xx[,predCols,drop=F], mux, priorIV[drop=F, predCols,predCols] )
pnew <- .dMVN(yy,xnew%*%bb,smat=ss,log=T)+
.dMVN(xnew[,predCols,drop=F], mux, priorIV[drop=F, predCols,predCols] )
a <- exp(pnew - pnow)
z <- runif(nn,0,1)
wa <- which(z < a)
xx[wa,] <- xnew[wa,]
list(x = xx, accept = length(wa))
}
.predVsObs <- function(true,p,xlim=range(true),ylim=range(p,na.rm=T),xlab=' ',
ylab=' ', colors=rep(1,length(true)),lwd=2,add=F){
if(!is.matrix(p))p <- matrix(p,ncol=1)
if(length(colors) == 1)colors <- rep(colors, length(true))
nn <- length(true)
y <- apply(p, 2, quantile, c(.5,.025,.975))
ys <- apply(p, 2, quantile, pnorm( c(-1, 1) ) )
if(!add)plot(true,y[1,],xlim=xlim,ylim=ylim,xlab=xlab,
ylab=ylab,col=colors,pch=3,lwd=lwd)
points(true,y[1,],col=colors,pch=3,lwd=lwd)
for(j in 1:nn)lines( c(true[j],true[j]), y[2:3,j], col=colors[j],lwd=lwd/2)
for(j in 1:nn)lines( c(true[j],true[j]), ys[1:2,j], col=colors[j],lwd=2*lwd)
abline(0,1,lty=2)
invisible(y)
}
.processPars <- function(xgb,xtrue=numeric(0),CPLOT=F,DPLOT=F,
sigOnly = F,burnin=1,xlimits = NULL){
if(!is.matrix(xgb))xgb <- matrix(xgb,ncol=1)
if(is.null(colnames(xgb)))colnames(xgb) <- paste('V',c(1:ncol(xgb)),sep='-')
NOPARS <- F
if(sigOnly){
wi <- grep('intercept',colnames(xgb))
btmp <- xgb
if(length(wi) > 0){
btmp <- xgb[,-wi]
if(length(xtrue) > 0)xtrue <- xtrue[-wi]
}
wq <- apply(btmp,2,quantile,c(.025,.975),na.rm=T)
wq <- which(wq[1,] < 0 & wq[2,] > 0)
if(length(wq) == ncol(btmp))NOPARS <- T
if(NOPARS) warning('no significant pars to plot')
if(length(wq) > 0 & !NOPARS){
xgb <- btmp[,-wq]
if(length(xtrue) > 0)xtrue <- xtrue[-wq]
}
}
if(!is.matrix(xgb))xgb <- as.matrix(xgb)
if(burnin > 1){
if(burnin > (nrow(xgb) + 100))stop("burnin too large")
xgb <- xgb[-c(1:burnin),]
}
if(!is.matrix(xgb))xgb <- as.matrix(xgb)
nc <- ncol(xgb)
nf <- round(sqrt(nc),0)
out <- t(rbind(apply(xgb,2,mean,na.rm=T),apply(xgb,2,sd,na.rm=T),
apply(xgb,2,quantile,c(.025,.975),na.rm=T)))
if(!is.null(colnames(xgb)))rownames(out) <- colnames(xgb)
colnames(out) <- c('estimate','se','0.025','0.975')
if(length(xtrue) > 0){
out <- cbind(out,xtrue)
colnames(out) <- c('estimate','se','0.025','0.975','true value')
}
if(CPLOT | DPLOT)par(mfrow=c((nf+1),nf),mar=c(4,2,2,2))
if(CPLOT & DPLOT)par(mfrow=c((nf+1),nc),mar=c(4,2,2,2))
if(CPLOT & !NOPARS){
for(j in 1:nc){
plot(xgb[,j],type='l')
abline(h=out[j,],lty=2)
if(length(xtrue) > 0)abline(h=xtrue[j],col='red')
abline(h = 0, col='grey',lwd=2)
title(colnames(xgb)[j])
}
}
xlims <- xlimits
if(DPLOT & !NOPARS){
for(j in 1:nc){
xj <- density(xgb[,j])
if(is.null(xlimits))xlims <- range(xj$x)
plot(xj$x,xj$y,type='l',xlim=xlims)
abline(v=out[j,],lty=2)
if(length(xtrue) > 0)abline(v=xtrue[j],col='red')
title(colnames(xgb)[j])
}
}
list(summary = signif(out,4))
}
.replaceString <- function(xx,now='_',new=' '){
ww <- grep(now,xx,fixed=T)
if(length(ww) == 0)return(xx)
for(k in ww){
s <- unlist( strsplit(xx[k],now,fixed=T) )
ss <- s[1]
if(length(s) == 1)ss <- paste( ss,new,sep='')
if(length(s) > 1)for(kk in 2:length(s)) ss <- paste( ss,s[kk],sep=new)
xx[k] <- ss
}
xx
}
.cleanNames <- function(xx){
xx <- .replaceString(xx,'-','')
xx <- .replaceString(xx,'_','')
xx <- .replaceString(xx,' ','')
xx <- .replaceString(xx,"'",'')
xx
}
.buildYdata <- function(ydata, ytypes){
S <- ncol(ydata)
wd <- which(duplicated(colnames(ydata)))
if(length(wd) > 0){
warning('duplicated colummn names in ydata')
for(k in 1:length(wd)){
dname <- colnames(ydata)[wd[k]]
wk <- which(colnames(ydata) == dname)
colnames(ydata)[wk] <- paste(dname,1:length(wk),sep='')
}
}
original <- colnames(ydata)
colnames(ydata) <- .cleanNames(colnames(ydata))
new <- colnames(ydata)
ydataNames <- rbind(original,new)
CCgroups <- attr(ytypes,'CCgroups')
FCgroups <- attr(ytypes,'FCgroups')
CATgroups <- attr(ytypes,'CATgroups')
ngroup <- 0
ccg <- CCgroups
fcg <- FCgroups
y <- numeric(0)
snames <- colnames(ydata)
nc <- ncol(ydata)
wfact <- .whichFactor(ydata)
nfact <- length(wfact)
wnot <- c(1:nc)
if(nfact > 0)wnot <- wnot[-wfact]
ntypes <- character(0)
if(length(wnot) > 0){
if(is.null(ccg)) ccg <- rep(0,length(wnot))
if(is.null(fcg)) fcg <- rep(0,length(wnot))
snames <- snames[wnot]
ntypes <- ytypes[wnot]
y <- ydata[,wnot,drop=F]
wcomp <- grep('CC',ytypes[wnot])
ncomp <- length(wcomp)
if(ncomp > 0){
if( max(ccg[wnot[wcomp]]) == 0 )ccg[wnot[wcomp]] <- 1
goo <- grep('other',snames[wcomp])
if( length(goo) == 0 )snames[wcomp[ncomp]] <-
paste(snames[wcomp[ncomp]],'other',sep='')
}
wcomp <- grep('FC',ytypes[wnot])
ncomp <- length(wcomp)
if(ncomp > 0){
if( max(fcg[wnot[wcomp]]) == 0)fcg[wnot[wcomp]] <- 1
goo <- grep('other',snames[wcomp])
if(length(goo) == 0)snames[wcomp[ncomp]] <-
paste(snames[wcomp[ncomp]],'other',sep='')
}
}
if(nfact > 0){
ngroup <- 0
ycat <- cag <- numeric(0)
if(length(ccg) > 0)cag <- ccg*0
for(j in 1:nfact){
ngroup <- ngroup + 1
conj <- contrasts(ydata[,wfact[j]],contrasts=F)
cj <- colnames(conj)
yj <- conj[ydata[,wfact[j]],]
colnames(yj) <- paste(colnames(ydata)[wfact[j]],cj,sep='')
w11 <- which(colSums(yj) > 0)
yj <- yj[,w11]
cj <- cj[w11]
goo <- grep('other',colnames(yj))
if(length(goo) == 0){
colnames(yj)[ncol(yj)] <- paste(colnames(ydata)[wfact[j]],'other',sep='')
cj[ncol(yj)] <- colnames(yj)[ncol(yj)]
}
ycat <- cbind(ycat, yj)
cag <- c(cag,rep(ngroup,length(cj)))
fcg <- c(fcg,rep(0,length(cj)))
ccg <- c(ccg,rep(0,length(cj)))
ntypes <- c(ntypes,rep('CAT',length(cj)))
}
rownames(ycat) <- NULL
n1 <- ncol(y) + 1
n2 <- ncol(ycat)
y <- cbind(y,ycat)
attr(ntypes,'CATgroups') <- cag
}
if(max(ccg) > 0)attr(ntypes,'CCgroups') <- ccg
if(max(fcg) > 0)attr(ntypes,'FCgroups') <- fcg
list(y = as.matrix(y), CCgroups = ccg, FCgroups = fcg,
CATgroups = attr(ntypes,'CATgroups'), typeNames = ntypes,
ydataNames = ydataNames)
}
.setUpSim <- function(n, S, Q, x, typeNames){
if(length(typeNames) == 1)typeNames <- rep(typeNames,S)
notOther <- c(1:S)
snames <- character(0)
tnames <- character(0)
sN <- S
catCols <- NULL
ngroup <- fgroup <- cgroup <- 1
GROUPS <- F
CCgroups <- FCgroups <- CATgroups <- numeric(0)
s <- 0
wcc <- which(!typeNames %in% c('CC','FC','CAT'))
ncc <- length(wcc)
if(ncc > 0){
snames <- paste('S',c(1:ncc),sep='')
CCgroups <- FCgroups <- CATgroups <- rep(0,ncc)
tnames <- typeNames[wcc]
s <- ncc
}
wcc <- which(typeNames == 'CC')
ncc <- length(wcc)
if(ncc > 0){
ss <- c( (s+1):(s+ncc))
CCgroups <- c(CCgroups,rep(1,ncc))
FCgroups <- c(FCgroups,rep(0,ncc))
tnames <- c(tnames,rep('CC',ncc))
snn <- paste('S',ss,sep='')
snn[ncc] <- paste(snn[ncc],'other',sep='')
snames <- c(snames, snn)
ngroup <- 1
s <- max(ss)
}
wcc <- which(typeNames == 'FC')
ncc <- length(wcc)
if(ncc > 0){
ss <- c( (s+1):(s+ncc))
FCgroups <- c(FCgroups,rep(1,ncc))
CCgroups <- c(CCgroups,rep(0,ncc))
tnames <- c(tnames,rep('FC',ncc))
snn <- paste('S',ss,sep='')
snn[ncc] <- paste(snn[ncc],'other',sep='')
snames <- c(snames, snn)
fgroup <- 1
s <- max(ss)
}
CATgroups <- CCgroups*0
if( 'CAT' %in% typeNames ){
wk <- which(typeNames == 'CAT')
ncomp <- length(wk)
ncat <- sample(3:4,ncomp,replace=T)
nall <- sum(ncat)
ntot <- s + nall
CATgroups <- rep(0,s)
js <- s
for(j in 1:ncomp){
js <- js + 1
sseq <- (s+1):(s + ncat[j])
cj <- paste('S',js,letters[1:ncat[j]],sep='')
cj[ncat[j]] <- paste('S',js,'other',sep='')
snames <- c(snames,cj)
CATgroups <- c(CATgroups,rep(j,ncat[j]))
tnames <- c(tnames,rep('CAT',ncat[j]))
s <- max(sseq)
}
CCgroups <- c(CCgroups,rep(0,sum(ncat)))
FCgroups <- c(FCgroups,rep(0,sum(ncat)))
catCols <- which(CATgroups > 0)
cgroup <- ncomp
}
sN <- length(tnames)
oo <- grep('other',snames)
notOther <- c(1:sN)[-oo]
tmp <- .gjamGetTypes(tnames)
typeCols <- tmp$typeCols
typeFull <- tmp$typeFull
typeCode <- tmp$TYPES[typeCols]
allTypes <- sort(unique(typeCols))
typeNames <- tmp$typeNames
if(is.null(x)){
x <- matrix( rnorm(n*Q,.1), n, Q)
x[,1] <- 1
}
beta <- matrix(0, Q, sN)
ss <- diag(.01,sN)
colnames(beta) <- colnames(ss) <- rownames(ss) <- snames
wkeep <- numeric(0)
cnames <- tnames <- character(0)
for(k in allTypes){
wk <- which(typeCols == k)
nk <- length(wk)
if( typeFull[wk[1]] == 'presenceAbsence' ){
diag(ss)[wk] <- 1
beta[,wk] <- runif(Q*nk,-.8,.8)
wkeep <- c(wkeep,wk)
tnames <- c(tnames,typeNames[wk])
cnames <- c(cnames,colnames(beta)[wk])
}
if(typeFull[wk[1]] %in% c('continuous','contAbun')){
diag(ss)[wk] <- .4
beta[,wk] <- runif(Q*nk,-.5,2)
wkeep <- c(wkeep,wk)
tnames <- c(tnames,typeNames[wk])
cnames <- c(cnames,colnames(beta)[wk])
}
if(typeFull[wk[1]] == 'discAbun'){
diag(ss)[wk] <- .5
beta[,wk] <- runif(Q*nk,-1,1)
wkeep <- c(wkeep,wk)
tnames <- c(tnames,typeNames[wk])
cnames <- c(cnames,colnames(beta)[wk])
}
if(typeFull[wk[1]] == 'ordinal'){
diag(ss)[wk] <- 1
beta[,wk] <- runif(Q*nk,-.4,2)
wkeep <- c(wkeep,wk)
tnames <- c(tnames,typeNames[wk])
cnames <- c(cnames,colnames(beta)[wk])
}
if( typeFull[wk[1]] %in% c('fracComp','countComp','categorical') ){
if(length(wk) < 2)stop('composition data must have at least 2 columns')
ntt <- cgroup
if( typeFull[wk[1]] == 'fracComp' ){
ntt <- fgroup
attr(tnames,'FCgroups') <- FCgroups
}
if( typeFull[wk[1]] == 'countComp' ){
ntt <- ngroup
attr(tnames,'CCgroups') <- CCgroups
}
if( typeFull[wk[1]] == 'categorical' ){
attr(tnames,'CATgroups') <- CATgroups
}
for(i in 1:ntt){
if(ntt == 1){
wki <- wk
} else {
if( typeFull[wk[1]] == 'countComp' )wki <-
which(typeCols == k & CCgroups == i)
if( typeFull[wk[1]] == 'fracComp' )wki <-
which(typeCols == k & FCgroups == i)
if( typeFull[wk[1]] == 'categorical' )wki <-
which(typeCols == k & CATgroups == i)
}
nki <- length(wki)
if( typeFull[wk[1]] == 'categorical' ){
bb <- matrix( rnorm(Q*nki,0,.5), Q,nki)
bb[1,] <- bb[1,]*0
for(kk in 1:5){
mu <- x%*%bb
w <- mu
cols <- apply(w,1,which.max)
mindex <- cbind( c(1:n),cols )
wmax <- w[mindex]
ww <- which(wmax < 0)
nw <- length(ww)
if(nw > 0) w[mindex[ww,]] <- .tnorm(nw,0,10,mu[mindex[ww,]],1)
bb <- solveRcpp(crossprod(x))%*%crossprod(x,w)
}
keep <- as.numeric( names(table(cols)) )
wkeep <- c(wkeep,wki[keep])
tnames <- c(tnames,rep('CAT',length(keep)))
bbb <- colnames(beta)[wki[keep]]
if(length(keep) < nki){
bbb <- substr(bbb,1,2)
labs <- c(letters[1:(length(bbb) - 1)],'other')
bbb <- paste(bbb,labs,sep='')
}
cnames <- c(cnames,bbb)
beta[,wki] <- bb
diag(ss)[wk] <- 1
} else {
bb <- matrix( rnorm(Q*nki,0,1/nki), Q, nki)
bb[1,] <- bb[1,]*0
w <- x%*%bb
for(m in 1:3){
w1 <- w
w1[w < 0] <- 0
w2 <- sweep(w1,1,rowSums(w1),'/')
w[w >= 0] <- w2[w >= 0]
bb <- solveRcpp(crossprod(x))%*%crossprod(x,w)
w <- x%*%bb
}
wkeep <- c(wkeep,wki)
tnames <- c(tnames,typeNames[wki])
cnames <- c(cnames,colnames(beta)[wki])
diag(ss)[wk] <- .1/nk^2.5
beta[,wki] <- bb
}
}
}
}
S <- length(wkeep)
beta <- beta[,wkeep]
sigma <- ss[wkeep,wkeep]
colnames(beta) <- colnames(sigma) <- rownames(sigma) <- cnames
CCgroups <- CCgroups[wkeep]
FCgroups <- FCgroups[wkeep]
CATgroups <- CATgroups[wkeep]
snames <- cnames
other <- numeric(0)
notOther <- c(1:S)
other <- grep('other',snames)
if(length(other) > 0)notOther <- notOther[-other]
list(beta = beta, x = x, sigma = sigma, CCgroups = CCgroups,
FCgroups = FCgroups, CATgroups = CATgroups, typeNames = tnames,
other = other, notOther = notOther, snames = snames)
}
.between <- function(x,lo,hi,ILO = T, IHI = T, OUT=F){
if(length(x) == 0) return( numeric(0) )
if(OUT)return( which(x < lo | x > hi) )
if(!ILO & !IHI ) return( which(x > lo & x < hi) )
if(!ILO & IHI ) return( which(x > lo & x <= hi) )
if( ILO & !IHI ) return( which(x >= lo & x < hi) )
if( ILO & IHI ) return( which(x >= lo & x <= hi) )
}
.simData <- function( n, S, Q, x, typeNames, nmiss, effort ){
if(length(typeNames) == 1)typeNames <- rep(typeNames,S)
typeNotCat <- typeNames
cgrep <- grep('CAT',typeNames)
if(length(cgrep) > 0){
ycat <- vector( mode = 'list', length=length(cgrep) )
names(ycat) <- paste('CAT',1:length(cgrep),sep='_')
}
cuts <- numeric(0)
tmp <- .setUpSim(n, S, Q, x, typeNames)
beta <- tmp$beta
x <- tmp$x
sig <- tmp$sigma
snames <- colnames(beta)
typeNames <- tmp$typeNames
other <- tmp$other
notOther <- tmp$notOther
CCgroups <- tmp$CCgroups
FCgroups <- tmp$FCgroups
CATgroups <- tmp$CATgroups
tmp <- .gjamGetTypes(typeNames)
typeCols <- tmp$typeCols
typeFull <- tmp$typeFull
typeCode <- tmp$TYPES[typeCols]
allTypes <- sort(unique(typeCols))
S <- length(typeNames)
xnames <- paste('x',1:Q,sep='')
SS <- matrix(1,S,S)
SS[lower.tri(SS)] <- runif(S*(S - 1)/2,-.98,.98)
SS[upper.tri(SS)] <- SS[lower.tri(SS)]
SS <- cor( .rMVN(S+5,0,SS) )
SS <- .cor2Cov(diag(sig),SS)
sigma <- .rwish(S+2,SS)/(S + 2)
corCols <- which(typeNames %in% c('PA','OC','CAT'))
if(length(corCols) > 0){
corSpec <- .cov2Cor(sigma)
sigma[corCols,corCols] <- corSpec[corCols,corCols]
}
beta[,other] <- 0
mu <- w <- matrix(0,n,S)
mu[,notOther] <- x%*%beta[,notOther]
w[,notOther] <- mu[,notOther] + .rMVN(n,0,sigma[notOther,notOther])
colnames(w) <- snames
y <- w
z <- w*0
z[w <= 0] <- 1
z[w > 0] <- 2
for(k in allTypes){
wk <- which(typeCols == k)
nk <- length(wk)
if( typeFull[wk[1]] %in% c('fracComp','countComp','categorical') ){
if( typeFull[wk[1]] == 'fracComp' )
groups <- attr(typeNames,'FCgroups') <- FCgroups
if( typeFull[wk[1]] == 'countComp' )
groups <- attr(typeNames,'CCgroups') <- CCgroups
if( typeFull[wk[1]] == 'categorical' )
groups <- attr(typeNames,'CATgroups') <- CATgroups
ntt <- max(c(1,groups))
for(i in 1:ntt){
if(ntt == 1){
wki <- wk
} else {
wki <- which(typeCols == k & groups == i)
}
nki <- length(wki)
if( typeFull[wk[1]] == 'categorical' ){
wko <- wki[1:(nki-1)]
wcol <- apply(w[,wko],1,which.max)
w0 <- which( w[,wko][ cbind( c(1:n),wcol ) ] < 0 )
if(length(w0) > 0)wcol[w0] <- nki
wtab <- tabulate(wcol)
if(length(wtab) < nki){
ww <- rep(0,nki)
ww[1:length(wtab)] <- wtab
wtab <- ww
}
if(min(wtab) < 5){
wlo <- which(wtab < 5)
for(s in 1:length(wlo)){
wro <- sample(n,5)
wcol[wro] <- wlo[s]
tmp <- w[wro,wki]
if(wlo[s] == nki){
tmp[tmp > -.01] <- -.01
tmp[,nki] <- .1
} else {
mm <- pmax(0,apply(tmp,1,max))
tmp[,wlo[s]] <- mm + .1
}
w[wro,wki] <- tmp
}
}
mindex <- cbind(1:n,wcol)
vv <- colnames(w)[wki[wcol]]
mm <- nchar(vv)
vv <- substr(vv,3,mm)
ycat[[i]] <- vv
yk <- w[,wki]*0
yk[ mindex ] <- 1
y[,wki] <- yk
z[,wki] <- yk + 1
} else {
noto <- c(1:nki)[-grep('other',snames[wki])]
ww <- w[,wki]
for(j in 1:5){
w0 <- which(ww < 0)
ww[w0] <- 0
yk <- .gjamCompW2Y(ww,notOther=noto)$ww
yplus <- which(yk > 0)
yminu <- which(yk < 0)
ww[yplus] <- yk[yplus]
bb <- solveRcpp(crossprod(x))%*%crossprod(x,ww)
muk <- x%*%bb
ww <- muk + .rMVN(n,0,sigma)[,wki]
}
zk <- ww*0 + 1
zk[w0] <- 0
w[,wki] <- ww
beta[,wki] <- bb
if(typeFull[wk[1]] == 'fracComp'){
y[,wki] <- yk
z[,wki] <- zk
}
if( typeFull[wk[1]] == 'countComp' ){
mm <- S*20
a <- 4
b <- mm/a
ee <- rpois(n,rgamma(n,shape=a,scale=b))
yy <- sweep(yk,1,ee,'*')
ww <- ceiling(yy)
ww[ww < 0] <- 0
y[,wki] <- ww
z[,wki] <- ww + 1
}
}
}
}
if( typeFull[wk[1]] != 'continuous' ) y[,wk][y[,wk] < 0] <- 0
if( typeFull[wk[1]] == 'presenceAbsence' ){
y[,wk] <- z[,wk] - 1
}
if( typeFull[wk[1]] == 'discAbun' ){
wk <- which(typeNames == 'DA')
if( !is.null(effort) ){
we <- wk[wk %in% effort$columns]
y[,we] <- round( w[,we]*effort$values )
} else {
w0 <- round(w[,wk,drop=F],0)
y[,wk] <- w0
}
y[,wk][y[,wk] < 0] <- 0
z[,wk] <- y[,wk] + 1
}
if( typeFull[wk[1]] == 'ordinal' ){
yy <- w[,wk,drop=F]
ncut <- 8
maxw <- floor(max(yy))
cuts <- t( matrix( c(-Inf, seq(0,(maxw-1),length=(ncut-2)) ,Inf),
ncut,nk) )
rownames(cuts) <- snames[wk]
for(j in 1:nk){
z[,wk[j]] <- findInterval(yy[,j],cuts[j,])
}
y[,wk] <- z[,wk] - 1
}
}
noMore <- F
if( 'categorical' %in% typeFull & noMore){
wss <- w*0
wss[,notOther] <- .sqrtMatrix(w[,notOther],sigma[notOther,notOther],
DIVIDE=T)
css <- .cov2Cor(sigma[notOther,notOther])
alpha <- .sqrtMatrix(beta,sigma, DIVIDE=T)
muss <- x%*%alpha
wk <- which(typeNames == 'CAT')
wo <- which(wk %in% notOther)
plo <- w*0 - 5
phi <- w*0 + 5
phi[y == 0] <- 0
plo[y == 1] <- w[y == 1]
IXX <- solveRcpp(crossprod(x))
for(k in 1:25){
tmp <- .gjamWcatLoop2(y, ws = wss, mus = muss, sgs = css,
notOther, plo, phi, groups = CATgroups)
wss[,wk] <- tmp$w[,wk]
plo <- tmp$plo
phi <- tmp$phi
beta[,wo] <- IXX%*%crossprod(x,wss[,wo])
muss[,wo] <- x%*%beta[,wo]
}
w[,wo] <- wss[,wo]
}
beta <- solveRcpp(crossprod(x))%*%crossprod(x,w)
if( 'discAbun' %in% typeFull ){
}
sigma[notOther,notOther] <- var(w[,notOther] - x%*%beta[,notOther])
sigma[other,] <- sigma[,other] <- 0
diag(sigma)[other] <- diag(sig)[other]
ydata <- data.frame(y)
typeFrame <- typeNames
if('CAT' %in% typeNames){
wcat <- grep('CAT',typeNames)
wnot <- c(1:S)[-wcat]
nss <- length(wnot) + 1
ncc <- length(wnot) + length(ycat)
names(ycat) <- paste('S',nss:ncc,sep='')
ydata <- as.data.frame(ycat)
if(length(wnot) > 0)ydata <- cbind(y[,wnot,drop=F],ydata)
typeFrame <- c(typeNames[wnot], rep('CAT',length(ycat)))
}
if(nmiss > 0){
x[ sample(length(x),nmiss) ] <- NA
x[,1] <- 1
wmiss <- which(is.na(x),arr.ind=T)
nmiss <- nrow(wmiss)
}
xnames[1] <- 'intercept'
colnames(y) <- snames
colnames(beta) <- rownames(sigma) <- colnames(sigma) <- snames
colnames(x) <- rownames(beta) <- xnames
form <- as.formula( paste('~ ',paste(colnames(x)[-1],collapse='+' )) )
list(formula = form, xdata = data.frame(x), ydata = ydata,
y = y, w = w, typeNames = typeFrame, typeY = typeNames, effort = effort,
trueValues = list(beta = beta, sigma = sigma,
corSpec = .cov2Cor(sigma), cuts = cuts))
}
.tnorm <- function(n,lo,hi,mu,sig){
tiny <- 10e-6
if(length(lo) == 1 & length(mu) > 1)lo <- rep(lo,length(mu))
if(length(hi) == 1 & length(mu) > 1)hi <- rep(hi,length(mu))
q1 <- pnorm(lo,mu,sig)
q2 <- pnorm(hi,mu,sig)
z <- runif(n,q1,q2)
z <- qnorm(z,mu,sig)
z[z == Inf] <- lo[z == Inf] + tiny
z[z == -Inf] <- hi[z == -Inf] - tiny
z
}
.traitLabel <- function(tname){
tname <- .replaceString(tname,now='soilFactor',new='')
tname[tname == 'gmPerSeed'] <- 'Seed mass'
tname[tname == 'gmPerCm'] <- 'Wood dens'
tname[tname == 'woodSG'] <- 'Wood dens (green)'
tname[tname == 'maxHt'] <- 'Max ht'
tname[tname == 'leafN'] <- 'leaf [N]'
tname[tname == 'leafP'] <- 'leaf [P]'
tname[tname == "other"] <- 'Deciduous'
tname[tname == "broaddeciduous"] <- 'Deciduous'
tname[tname == "broadevergreen"] <- 'BL evergrn'
tname[tname == "needleevergreen"] <- 'NL evergrn'
tname[tname == "dioecious"] <- 'Dioecious'
tname[tname == "u1"] <- 'Slope'
tname[tname == "u2"] <- 'Aspect 1'
tname[tname == "u3"] <- 'Aspect 2'
tname[tname == "ringPorous"] <- 'RP xylem'
tname[tname == "temp"] <- 'Winter temperature'
tname[tname == "stdage"] <- 'Stand age'
for(j in length(tname)){
tname[j] <- paste(toupper(substring(tname[j], 1, 1)), substring(tname[j], 2),sep = "", collapse = " ")
}
tname
}
.updateWishartNoPrior <- function(xx,yy,df,beta=NULL,IXX=NULL,WX=NULL,WIX=NULL,
TRYPRIOR=F){
S <- ncol(yy)
index <- 0
XX <- crossprod(xx)
IXX <- solveRcpp(XX)
D <- diag(1,nrow(xx)) - xx%*%IXX%*%t(xx)
SS <- t(yy)%*%D%*%yy
testv <- try(chol(SS),T)
if( inherits(testv,'try-error') ){
tiny <- 1e-8
SS[SS < tiny] <- tiny
message('warning: updateWishartNoPrior')
SS <- crossprod(yy - xx%*%beta) + diag(diag(SS)*.001)
SS <- SS + diag(diag(SS)*.1)
testv <- try(chol(SS),T)
index <- 1
}
SI <- chol2inv(testv)
z <- matrix(rnorm(df*S),df,S)%*%chol(SI)
sinv <- crossprod(z)
sigma <- solveRcpp(sinv)
list( sigma = sigma, sinv = sinv, indicator = index )
}
.sqrtMatrix <- function(xmat,sigma,DIVIDE=T){
if(DIVIDE){
if(length(sigma) == 1)return(xmat/sqrt(sigma))
return( xmat%*%diag(1/sqrt(diag(sigma))) )
}
if(length(sigma) == 1)return(xmat*sqrt(sigma))
xmat%*%diag(sqrt(diag(sigma)) )
}
.yaxisHorizLabs <- function( labels, at=c(1:length(labels)), xshift=.05,
col = 'black', pos=NULL){
text(par('usr')[3] - xshift*par('usr')[4] - par('usr')[3], y=at,
labels, xpd=T, pos = pos, col=col)
}
.sampleP <- function(N, avec, bvec, K){
a <- avec + vapply(1:(N-1), function(k)sum(K == k), 0)
b <- bvec + vapply(1:(N-1), function(k)sum(K > k), 0)
V <- rbeta((N - 1), a, b)
p <- vector("numeric",length=N)
p[1] <- V[1]
for(l in 2:(N - 1))p[l] <- prod(1 - V[1:(l - 1)])*V[l]
p[N] <- prod(1 - V)
p
}
.getPars <- function( X, N, r, Y, B, D, Z, sigmaerror, K, pvec,
alpha.DP, inSamples,...){
p <- ncol(X)
S <- ncol(Y)
nn <- length(inSamples)
covR <- solveRcpp( (1/sigmaerror)*crossprod(Z[K,]) + diag(r) )
z1 <- crossprod( Z[K,]/sigmaerror,t(Y[inSamples,] - X[inSamples,]%*%t(B)) )
RR <- rmvnormRcpp(nn, mu = rep(0,r), sigma = covR ) + t(crossprod( covR,z1))
rndEff <- RR%*%t(Z[K,])
res <- sum((Y[inSamples,] - X[inSamples,]%*%t(B) - rndEff )^2)
sigmaerror <- 1/rgamma(1,shape=(S*nn + 1)/2, rate=res/2)
avec <- 1/rgamma(r, shape = ( 2 + r )/2,
rate = ((1/1000000) + 2*diag(solveRcpp(D)) ) )
D <- .riwish(df = (2 + r + N - 1), S = (crossprod(Z) + 2*2*diag(1/avec)))
Z <- fnZRcpp(kk=K, Yk=Y[inSamples,], Xk=X[inSamples,], Dk=D, Bk=B,
Wk=RR, sigmasqk=sigmaerror, Nz=N)
pmat <- getPmatKRcpp(pveck = pvec,Yk = Y[inSamples,], Zk = Z,
Xk = X[inSamples,], Bk = B, Wk = RR,
sigmasqk = sigmaerror)
K <- unlist( apply(pmat, 1, function(px)sample(1:N, size=1, prob=px)) )
pvec <- .sampleP(N = N, avec = rep(alpha.DP/N,(N-1)),
bvec = ((N-1):1)*alpha.DP/N, K = K)
list(A = Z[K,], D = D, Z = Z, K = K, pvec = pvec,
sigmaerror = sigmaerror, rndEff = rndEff)
}
.wWrapperTime <- function(sampleW, y, timeZero, timeLast, i1, i2, tindex, gindex, uindex,
notOther, n, S, REDUCT, RANDOM, TIME, termB, termR, termA, corCols){
function(w, plo, phi, wpropTime, xl, yp, Rmat, Amat, rndEff, groupRandEff, sdg, muw, mub,
Umat, Vmat, sinv){
if(RANDOM)muw <- muw + groupRandEff
W <- matrix( .tnorm( n*S,plo,phi,w,wpropTime ),n,S )
W[sampleW == 0] <- y[sampleW == 0]
ii <- i1
ni <- length(ii)
yp <- yp*0
for(im in 1:2){
w[sampleW == 0] <- y[sampleW == 0]
if(im == 2)ii <- i2
i00 <- tindex[ii,1]
i11 <- tindex[ii,2]
i22 <- tindex[ii,3]
t00 <- which(i00 %in% timeZero)
w0 <- which(!i22 %in% c(timeLast+1) )
i00 <- i00[w0]
i11 <- i11[w0]
i22 <- i22[w0]
ww <- W[i11,]
w0 <- ww
w0[ ww < 0 ] <- 0
muStar <- muw[i11,]*0
if(termB)muStar <- muStar + mub[i11,]
if(termR){
mugStar <- (w0[,gindex[,'colW']]*xl[i11,gindex[,'rowG']])%*%Rmat
muStar <- muStar + mugStar
}
if(termA){
muaStar <- (w0[,uindex[,1]]*w0[,uindex[,2]] )%*%Amat
muStar[,notOther] <- muStar[,notOther] + muaStar[,notOther]
}
if(RANDOM)muStar <- muStar + groupRandEff[i11,]
if(REDUCT)muStar <- muStar + rndEff[i11,]
dw <- w*0
dw[ i00, ] <- w[ i11, ] - w[ i00 , ]
dw[ i11, ] <- w[ i22, ] - w[ i11 , ]
dw[ timeZero,] <- dw[timeZero+1, ]
dW <- W*0
dW[ i00, ] <- W[ i11, ] - w[ i00 , ]
dW[ i11, ] <- w[ i22, ] - W[ i11 , ]
dW[ timeZero,] <- dW[timeZero+1, ]
if(REDUCT){
pnow <- dnorm( dw[ i00, ], muw[i00,],sdg,log=T) +
dnorm( dw[ i11, ], muw[i11,],sdg,log=T)
pnew <- dnorm(dW[ i00, ], muw[i00,],sdg,log=T) +
dnorm(dW[ i11, ], muStar,sdg,log=T)
za <- which( runif(length(pnow),0,1) < exp(pnew - pnow) )
if(length(za) > 0){
w[i11,][za] <- W[i11,][za]
ww <- w[i11,]
ww[ww < 0] <- 0
muw[i11,][za] <- muStar[za]
Umat[i11,] <- ww[,uindex[,1]]*ww[,uindex[,2]]
Vmat[i11,] <- ww[,gindex[,'colW']]*xl[i11,gindex[,'rowG']]
}
}else{
pnow <- .dMVN(dw[ i00, ], muw[i00,], sinv=sinv, log=T) +
.dMVN(dw[ i11, ], muw[i11,], sinv=sinv,log=T)
pnew <- .dMVN(dW[ i00, ], muw[i00,], sinv=sinv, log=T) +
.dMVN(dW[ i11, ], muStar, sinv=sinv, log=T)
za <- which( runif(length(pnow),0,1) < exp(pnew - pnow) )
if(length(za) > 0){
w[i11[za],] <- W[i11[za],]
ww <- w[i11,]
w0 <- ww
w0[ ww < 0 ] <- 0
muw[i11[za],] <- muStar[za,]
if(termA)Umat[i11,] <- w0[,uindex[,1]]*w0[,uindex[,2]]
if(termR)Vmat[i11,] <- w0[,gindex[,'colW']]*xl[i11,gindex[,'rowG']]
}
}
W[i11,] <- w[i11,]
}
nz <- length(timeLast)
W <- matrix( .tnorm(nz*S, plo[timeLast,], phi[timeLast,], w[timeLast,],
wpropTime[timeLast,]), nz, S)
z1 <- w[ timeLast , ] - w[ timeLast - 1 , ]
Z1 <- W - w[timeLast - 1,]
if(REDUCT){
pnow <- dnorm( z1, muw[timeLast-1,], sdg, log=T)
pnew <- dnorm( Z1, muw[timeLast-1,], sdg, log=T)
za <- which( runif(length(pnow),0,1) < exp(pnew - pnow) )
if(length(za) > 0){
w[timeLast,][za] <- W[za]
}
}else{
pnow <- .dMVN( z1, muw[timeLast-1,], sinv=sinv,log=T)
pnew <- .dMVN( Z1, muw[timeLast-1,], sinv=sinv,log=T)
za <- which( runif(length(pnow),0,1) < exp(pnew - pnow) )
if(length(za) > 0){
w[timeLast[za],] <- W[za,]
}
}
nz <- length(timeZero)
W <- matrix( .tnorm(nz*S, plo[timeZero,], phi[timeZero,], w[timeZero,],
wpropTime[timeZero,]), nz, S)
ww <- W[drop=FALSE, ,]
w0 <- ww
w0[ ww < 0 ] <- 0
muStar <- ww*0
if(termB)muStar <- muStar + mub[timeZero,]
if(termR){
mugStar <- (w0[drop=FALSE, ,gindex[,'colW']]*xl[timeZero,gindex[,'rowG']])%*%Rmat
muStar <- muStar + mugStar
}
if(termA){
muaStar <- (w0[drop=FALSE, ,uindex[,1]]*w0[,uindex[,2]] )%*%Amat
muStar[,notOther] <- muStar[,notOther] + muaStar[,notOther]
}
z1 <- w[timeZero+1,notOther] - w[timeZero,notOther]
Z1 <- w[timeZero+1,notOther] - W[,notOther]
if(RANDOM)muStar <- muStar + groupRandEff[timeZero,]
if(REDUCT){
muStar <- muStar + rndEff[timeZero,]
pnow <- dnorm( z1, muw[timeZero,notOther], sdg, log=T)
pnew <- dnorm( Z1, muStar[,notOther], sdg, log=T)
if(length(corCols) > 0){
pnow[,corCols] <- dnorm( z1[,corCols], muw[timeZero,corCols], 1, log=T)
pnew[,corCols] <- dnorm( Z1[,corCols], muStar[,corCols], 1, log=T)
}
za <- which( runif(length(pnow),0,1) < exp(pnew - pnow) )
if(length(za) > 0){
w[timeZero,][za] <- W[za]
ww <- w[drop=FALSE, timeZero,]
w0 <- ww
w0[ ww < 0 ] <- 0
muw[timeZero,][za] <- muStar[za]
Umat[timeZero,] <- w0[drop=FALSE, ,uindex[,1]]*w0[drop=FALSE, ,uindex[,2]]
Vmat[timeZero,] <- w0[drop=FALSE, ,gindex[,'colW']]*xl[timeZero,gindex[,'colX']]
}
}else{
pnow <- .dMVN( z1, muw[timeZero,notOther], sinv=sinv,log=T)
pnew <- .dMVN( Z1, muStar[,notOther], sinv=sinv,log=T)
za <- which( runif(length(pnow),0,1) < exp(pnew - pnow) )
if(length(za) > 0){
w[timeZero[za],] <- W[za,]
ww <- w[drop=FALSE,timeZero,]
w0 <- ww
w0[ ww < 0 ] <- 0
muw[timeZero[za],] <- muStar[za,]
if(termA)Umat[timeZero,] <- w0[,uindex[,1]]*w0[,uindex[,2]]
if(termR)Vmat[timeZero,] <- w0[,gindex[,'colW']]*xl[timeZero,gindex[,'rowG']]
}
}
mu <- muw[,notOther]
mu[tindex[,2],] <- w[tindex[,1],notOther] + muw[tindex[,1],]
mu[timeZero,] <- w[timeZero,notOther]
if(REDUCT){
yp <- matrix(rnorm(n*S,mu,sdg),n,S)
}else{
yp[,notOther] <- .rMVN(n, mu, sinv = sinv[notOther,notOther])
}
list(Umat = Umat, Vmat = Vmat, w = w, muw = muw, yp = yp)
}
}
.wWrapper <- function(REDUCT, RANDOM, S, effMat, corCols, notCorCols, typeNames,
typeFull, typeCols,
allTypes, holdoutN, holdoutIndex, censor,
censorCA, censorDA, censorCON, notOther, sampleW,
byRow, byCol,
indexW, ploHold, phiHold, sampleWhold, inSamp){
if(REDUCT){
function(rows, x, w, y, bg, sg, alpha, cutg, plo, phi,
rndEff, groupRandEff, sigmaerror, wHold){
n <- nrow(y)
w0 <- which(sampleW == 1)
SC <- ncol(y)
scol <- c(1:S)
sigvec <- rep(sigmaerror,S)
if(holdoutN > 0){
wHold <- w[drop=F,holdoutIndex,]
}
yPredict <- w*0
SN <- length(notCorCols)
if( length(notCorCols) > 0 ){
mue <- x%*%bg
if(RANDOM)mue <- mue + groupRandEff
muf <- mue + rndEff
w[w0] <- .tnorm(length(w0), plo[w0], phi[w0], muf[w0], sqrt(sigmaerror))
w[-w0] <- y[-w0]
if(holdoutN < n){
yPredict[,notCorCols] <- rnorm(n*SN, muf[,notCorCols], sqrt(sigmaerror))
}
if( holdoutN > 0 ){
if(holdoutN < n){
wHold[,notCorCols] <-
matrix( .tnorm(holdoutN*SN, as.vector(ploHold[,notCorCols]),
as.vector(phiHold[,notCorCols]),
as.vector(muf[drop=F,holdoutIndex,notCorCols] ),
sqrt(sigmaerror)),holdoutN,SN)
}
w[holdoutIndex,notOther] <- yPredict[holdoutIndex,notOther] <-
.rMVN(holdoutN,mue[holdoutIndex,notOther],
sg[notOther,notOther])
}
}
if( length(corCols) > 0 ){
css <- sg*0
css[notOther,notOther] <- .cov2Cor(sg[notOther,notOther])
muo <- x%*%alpha
if(RANDOM)muo <- muo + groupRandEff
if(holdoutN < n){
mur <- muo
if(length(rndEff) > 1)mur <- mur + .sqrtMatrix(rndEff,sg,DIVIDE=T)
SC <- length(corCols)
w[,corCols] <- matrix( .tnorm(n*SC, as.vector(t(plo[,corCols])),
as.vector(t(phi[,corCols])),
as.vector(t(mur[,corCols])),1),
n,SC, byrow=T)
yPredict[,corCols] <- rnorm(n*SC,mur[,corCols],1)
}
if(holdoutN > 0){
if(holdoutN < n){
wHold[,corCols] <- matrix( .tnorm(holdoutN*SC,
as.vector(ploHold[,corCols]),
as.vector(phiHold[,corCols]),
as.vector(t(mur[holdoutIndex,corCols])),
1),holdoutN,SC)
}
w[holdoutIndex,corCols] <- yPredict[holdoutIndex,corCols] <-
rmvnormRcpp(holdoutN,rep(0,length(corCols)),
css[corCols,corCols]) + muo
}
}
if( !is.null(sampleW) )w[sampleW == 0] <- y[sampleW == 0]
if( holdoutN > 0 ){
wHold[sampleWhold == 0] <- y[holdoutIndex,][sampleWhold == 0]
}
FCgroups <- attr(typeNames,'FCgroups')
CCgroups <- attr(typeNames,'CCgroups')
CATgroups <- attr(typeNames,'CATgroups')
for(k in allTypes){
wk <- which(typeCols == k)
wo <- which(wk %in% notOther)
nk <- length(wk)
wu <- which(typeCols[notOther] == k)
wp <- w[, wk, drop=F]
yp <- yPredict[, wk, drop=F]
groups <- NULL
if(typeFull[wk[1]] == 'countComp') groups <- CCgroups[wk]
if(typeFull[wk[1]] == 'fracComp') groups <- FCgroups[wk]
if( typeFull[wk[1]] == 'categorical' ){
groups <- CATgroups[wk]
if(holdoutN < n){
tmp <- .gjamWcatLoop2(y, ws = wp, mus = muf, sgs = sigvec,
notOther = notOther, plo, phi,
groups = CATgroups, REDUCT=T)
wp[,wo] <- tmp$w[,wo]
plo <- tmp$plo
phi <- tmp$phi
}
if(holdoutN > 0){
ws <- w[, wk, drop=F]
ws[holdoutIndex,] <- wHold[, wk, drop=F]
if(holdoutN < n)wHold[,wo] <- .gjamWcatLoop2(y, ws, mus = muf,
sgs = sigvec,
notOther = notOther, ploHold, phiHold,
groups = CATgroups, REDUCT=T)
}
}
glist <- list(wo = wo, type = typeFull[wk[1]], yy = y[,wk,drop=F],
wq = wp, yq = yp, cutg = cutg, censor = censor,
censorCA = censorCA, censorDA = censorDA, censorCON = censorCON,
eff = effMat[rows,wk,drop=F],groups = groups, k = k,
typeCols = typeCols, notOther = notOther, wk = wk,
sampW = sampleW[,wk])
if( holdoutN < n ){
tmp <- .gjamWLoopTypes( glist )
w[,wk] <- tmp[[1]]
yPredict[inSamp,wk] <- tmp[[2]][inSamp,]
}
if( holdoutN > 0 ){
glist$wq <- wHold[,wk,drop=F]
glist$yq <- yPredict[holdoutIndex, wk, drop=F]
glist$yy <- y[holdoutIndex,wk,drop=F]
glist$eff <- effMat[holdoutIndex, wk, drop=F]
glist$sampW <- sampleW[,wk]
tmp <- .gjamWLoopTypes( glist )
if(holdoutN < n)wHold[,wk] <- tmp[[1]]
yPredict[holdoutIndex,wk] <- tmp[[2]]
}
yPredict[,wk] <- .censorValues(censor,y,yPredict)[,wk]
}
if(!is.null(sampleW))w[sampleW[rows,] == 0] <- y[sampleW[rows,] == 0]
if(holdoutN > 0){
wHold[sampleWhold == 0] <- y[holdoutIndex,][sampleWhold == 0]
}
list(w = w, wHold = wHold, yp = yPredict, plo = plo, phi = phi )
}
} else {
function(rows, x, w, y, bg, sg, alpha, cutg, plo, phi,
rndEff = NULL, groupRandEff, sigmaerror = NULL, wHold){
n <- nrow(y)
sampW <- sampleW[rows,notOther]
w[sampleW[rows,] == 0] <- y[sampleW[rows,] == 0]
if(holdoutN > 0){
wHold[sampleWhold == 0] <- y[holdoutIndex,][sampleWhold == 0]
}
yPredict <- w*0
muw <- x%*%bg
if( length(notCorCols) > 0 ){
if(RANDOM)muw <- muw + groupRandEff
yPredict[,notOther] <- rmvnormRcpp(n,rep(0,length(notOther)),
sg[notOther,notOther]) + muw[,notOther]
}
if( length(corCols) > 0 ){
wss <- w*0
css <- .cov2Cor(sg[notOther,notOther])
muss <- x%*%alpha
if(RANDOM)muss <- muss + groupRandEff
ypred <- yPredict
ypred[,notOther] <- rmvnormRcpp(n,rep(0,length(notOther)),css) +
muss[,notOther]
yPredict[,corCols] <- ypred[,corCols]
}
FCgroups <- attr(typeNames,'FCgroups')
CCgroups <- attr(typeNames,'CCgroups')
CATgroups <- attr(typeNames,'CATgroups')
for(k in allTypes){
wk <- which(typeCols == k)
nk <- length(wk)
wo <- which(wk %in% notOther)
wu <- which(typeCols[notOther] == k)
wp <- w[, wk, drop=F]
yq <- yPredict[, wk, drop=F]
if( typeFull[wk[1]] %in% c('presenceAbsence','ordinal') ) {
wss[,notOther] <- .sqrtMatrix(w[,notOther],sg[notOther,notOther],
DIVIDE=T)
llist <- list(ws = wss[,notOther], mus = muss[,notOther],
sgs = css, wkk = wu,
lo = plo[,notOther], hi = phi[,notOther],
sampW = sampW, indexW = indexW)
wp[,wo] <- .gjamWLoop( llist )[,wu]
if( holdoutN > 0 ){
if( holdoutN < n ){
llist <- list(ws = wss[drop=F,holdoutIndex,notOther],
mus = muss[drop=F,holdoutIndex,notOther],
sgs = css, wkk = wu,
lo = ploHold[drop=F,,notOther],
hi = phiHold[drop=F,,notOther],
sampW = sampleWhold[,notOther], indexW=wo)
wHold[,wo] <- .gjamWLoop( llist )[,wu]
}
wp[holdoutIndex,wo] <- yq[holdoutIndex,wo]
}
}
if( typeFull[wk[1]] == 'categorical' ){
wss[,notOther] <- .sqrtMatrix(w[,notOther],sg[notOther,notOther],
DIVIDE=T)
if(holdoutN > 0)yy[holdoutIndex,] <- yq[holdoutIndex,]
tmp <- .gjamWcatLoop2(yy, ws = wss, mus = muss, sgs = css,
notOther, plo, phi, groups = CATgroups)
wp <- tmp$w[,wk]
plo <- tmp$plo
phi <- tmp$phi
if(holdoutN > 0){
if(holdoutN < n){
wHold[,wk] <- .gjamWcatLoop2(yq[drop=F,holdoutIndex,],
wss[drop=F,holdoutIndex,],
muss[drop=F,holdoutIndex,], sgs = css,
notOther, ploHold, phiHold,
groups = CATgroups)$w[,wk]
}
wp[holdoutIndex,wo] <- yq[holdoutIndex,wo]
}
}
if( !typeFull[wk[1]] %in% c('presenceAbsence','ordinal','categorical') ){
llist <- list(ws = w[,notOther], mus = muw[,notOther],
sgs = sg[notOther,notOther], wkk = wu,
lo = plo[,notOther], hi = phi[,notOther],sampW = sampW,
indexW = indexW, byCol= byCol, byRow = byRow)
wp[,wo] <- .gjamWLoop( llist )[,wu]
if(holdoutN > 0){
if(holdoutN < n){
llist <- list(ws = w[drop=F,holdoutIndex,notOther],
mus = muw[drop=F,holdoutIndex,notOther],
sgs = sg[notOther,notOther], wkk = wu,
lo = ploHold[drop=F,,notOther],
hi = phiHold[drop=F,,notOther],
sampW = sampleWhold[,notOther], indexW = wo,
byCol = byCol, byRow = byRow)
wHold[,wo] <- .gjamWLoop( llist )[,wu]
if( typeFull[wk[1]] != "countComp")wp[holdoutIndex,wo] <- yq[holdoutIndex,wo]
}
}
}
groups <- NULL
if(typeFull[wk[1]] == 'countComp') groups <- CCgroups[wk]
if(typeFull[wk[1]] == 'fracComp') groups <- FCgroups[wk]
if(typeFull[wk[1]] == 'categorical')groups <- CATgroups[wk]
glist <- list(wo = wo, type = typeFull[wk[1]], yy = y[,wk,drop=F],
wq = wp, yq = yq, cutg = cutg, censor = censor,
censorCA = censorCA, censorDA = censorDA,
censorCON = censorCON,
eff = effMat[rows,wk,drop=F], groups = groups, k = k,
typeCols = typeCols, notOther = notOther, wk = wk,
sampW = sampleW[,wk])
tmp <- .gjamWLoopTypes( glist )
w[,wk] <- tmp[[1]]
yPredict[,wk] <- tmp[[2]]
yPredict[,wk] <- .censorValues(censor, y, yPredict)[,wk]
}
if(!is.null(sampleW))w[sampleW[rows,] == 0] <- y[sampleW[rows,] == 0]
list(w = w, wHold = wHold, yp = yPredict, plo = plo, phi = phi )
}
}
}
.binaryScore <- function(p, x){
a <- mean((x - p)^2)
b <- -mean( x*log(p) + (1 - x)*log(1 - p))
list(brierScore = a, logScore = b)
}
.betaWrapper <- function(REDUCT, TIME, notOther, betaLim=50){
if(REDUCT){
function(X, Y, sig, beta, PRIOR, lo, hi, rows=NULL, pattern=NULL, ...){
SS <- ncol(Y)
w0 <- which(colSums(X) == 0)
if(length(w0) > 0){
X <- X[,-w0]
beta <- beta[-w0,]
rows[rows %in% w0] <- NA
}
tiny <- 1e-5
XX <- crossprod(X)
diag(XX) <- diag(XX)*(1 + tiny)
IXX <- try( solve(XX), T )
if( inherits(IXX,'try-error') ){
diag(XX) <- diag(XX) + 1.001*diag(XX)
IXX <- solve(XX)
}
omega <- sig*IXX
muB <- t(omega%*%crossprod((1/sig)*X, Y))
if( !PRIOR ){
B <- rmvnormRcpp( SS, rep(0,nrow(omega)), omega) + muB
ws <- which(abs(B) > betaLim, arr.ind=T)
if(length(ws) > 0){
ws <- unique(ws[,1])
bs <- B[drop=F,ws,]
B[ws,] <- .tnormMVNmatrix(avec = bs, muvec = muB[drop=F,ws,],
smat = omega, lo = bs*0 - betaLim,
hi = bs*0 + betaLim)
}
return(t(B))
}
if(!TIME){
tmp <- .tnormMVNmatrix( avec = t(beta), muvec = muB,
smat = omega, lo = t(lo),
hi = t(hi) )
return( t(tmp) )
}
B <- t(beta)
QX <- ncol(X)
for(k in 1:nrow(pattern)){
krow <- rows[k,]
krow <- krow[is.finite(krow)]
notk <- c(1:QX)[-krow]
if(length(notk) == 1){
M1 <- omega[krow,notk, drop=F]/omega[notk,notk]
}else{
OI <- try( solve(omega[notk,notk]), T)
if( inherits(OI,'try-error') ){
OI <- diag(1/diag(omega[notk,notk]))
}
M1 <- omega[krow,notk, drop=F]%*%OI
}
pk <- pattern[k,]
pk <- pk[is.finite(pk)]
muk <- muB[pk, krow, drop=F] - muB[pk,notk]%*%t(M1)
Mk <- omega[krow,krow] - M1%*%omega[notk,krow]
if(length(Mk) == 1){
B[pk,krow] <- .tnorm(length(pk),lo[krow,pk],hi[krow,pk],muk,sqrt(Mk))
} else {
ll <- t(lo)[pk,krow,drop=F]
hh <- t(hi)[pk,krow,drop=F]
test <- try( .tnormMVNmatrix( avec=muk, muvec=muk, smat=Mk,
lo=ll, hi=hh), T)
if( inherits(test,'try-error') ){
mm <- diag(Mk)
mm[mm < tiny] <- tiny
test <- .tnorm(length(ll),ll,hh,muk,sqrt(mm))
}
B[pk,krow] <- test
}
}
return( t(B) )
}
}else{
function(X, Y, sig, beta, PRIOR, lo, hi, rows = NULL, pattern = NULL,
sinv = NULL, wF, ...){
if( !PRIOR ){
XX <- crossprod(X)
IXX <- chol2inv(chol( XX ) )
WX <- crossprod(X,Y)
WIX <- IXX%*%WX
bg <- matrix( .rMVN(1,as.vector(WIX),
kronecker(sig, IXX)),nrow(IXX),ncol(WIX) )
return(bg)
}
wc <- which(!is.na(lo) & lo < hi)
wp <- c(1:length(lo))[-wc]
XX <- crossprod(X)
IXX <- chol2inv(chol( XX ) )
WX <- crossprod(X,Y)
MU <- IXX%*%WX
MM <- kronecker(sig,IXX)
if( length(wp) > 0 ){
smat <- MM
WIX <- MU
if( length(wp) > length(wc) ){
if(is.null(sinv))sinv <- solveRcpp(sig)
CC <- kronecker( sinv, XX)
MM <- solveRcpp(CC[wc,wc])
IM <- CC[wp,wp] - CC[wp,wc]%*%MM%*%CC[wc,wp]
MU <- t( WIX[wc] - smat[wc,wp]%*%IM%*%WIX[wp] )
}else{
M1 <- smat[wc,wp]%*%solve(smat[wp,wp])
MU <- t( WIX[wc] - M1%*%WIX[wp] )
MM <- smat[wc,wc] - M1%*%smat[wp,wc]
}
}
beta[wc] <- .tnormMVNmatrix(avec = matrix(beta[wc],1), muvec = matrix(MU,1),
smat = MM, lo = matrix(lo[wc],1),
hi = matrix(hi[wc],1))
return(beta)
}
}
}
.paramWrapper <- function(REDUCT, inSamples,SS){
if(REDUCT){
function( X, beta, Y, otherpar ){
N <- otherpar$N
r <- otherpar$r
D <- otherpar$D
Z <- otherpar$Z
sigmaerror <- otherpar$sigmaerror
K <- otherpar$K
pvec <- otherpar$pvec
alpha.DP <- otherpar$alpha.DP
tmp <- .getPars(X = X, N = N, r = r, Y = Y, B = t(beta),
D = D, Z = Z, sigmaerror = sigmaerror,
K = K, pvec = pvec, alpha.DP = alpha.DP,
inSamples = inSamples, SELECT = F)
sg <- with(tmp, .expandSigma(sigma = tmp$sigmaerror, SS, Z = tmp$Z,
K = tmp$K, REDUCT=T))
otherpar <- list(A = tmp$A, N = N, r = r, D = tmp$D, Z = tmp$Z,
sigmaerror = tmp$sigmaerror,
pvec = tmp$pvec, K = tmp$K, alpha.DP = alpha.DP)
return(list(sg = sg, rndEff = tmp$rndEff, otherpar = otherpar))
}
} else {
function(x, beta,Y,otherpar){
sigmaDf <- otherpar$sigmaDf
XX <- crossprod(x[inSamples,])
IXX <- solveRcpp(XX)
WX <- crossprod(x[inSamples,], Y[inSamples,])
WIX <- IXX%*%WX
sg <- .updateWishartNoPrior( x[drop=F,inSamples,], Y[inSamples,], sigmaDf,
beta = beta, IXX = IXX, WX = WX, WIX = WIX,
TRYPRIOR = T)$sigma
otherpar=list(Z = NA, K = NA, sigmaDf = sigmaDf)
return(list(sg = sg, otherpar = otherpar))
}
}
}
.rwish <- function(df,SS){
z <- matrix(rnorm(df*nrow(SS)),df,nrow(SS))%*%chol(SS)
crossprod(z)
}
.riwish <- function(df,S){
solveRcpp(.rwish(df,solveRcpp(S)))
}
.expandSigmaChains <- function(snames, sgibbs, otherpar,
simIndex = sample(nrow(sgibbs),50,replace=T),
sigErrGibbs, kgibbs=NULL,
REDUCT=F, CHAINSONLY=F, verbose){
tiny <- 1e-8
S <- otherpar$S
K <- otherpar$K
N <- otherpar$N
r <- otherpar$r
if(length(simIndex) > 1000)simIndex <- sample(simIndex,1000)
ns <- length(simIndex)
xnames <- otherpar$xnames
if( CHAINSONLY & !REDUCT ){
imat <- matrix(1:(S*S),S,S)
jmat <- matrix(1:(S*S),S,S,byrow=T)
tmp <- matrix(NA,nrow(sgibbs),S*S)
sindex <- imat[lower.tri(imat,diag=T)]
tmp[,sindex] <- sgibbs
sindex <- jmat[lower.tri(imat,diag=T)]
tmp[,sindex] <- sgibbs
sMu <- matrix( colMeans(tmp),S,S)
sSe <- matrix( apply(tmp,2,sd),S,S)
chainList <- list(cchain = NULL, schain = tmp, kchain = NULL)
return( list(chainList = chainList, rMu = NULL, rSe = NULL,
sMu = sMu, sSe = sSe) )
}
other <- grep('other',snames)
notOther <- c(1:S)
if(length(other) > 0)notOther <- notOther[-other]
Kindex <- which(lower.tri( diag(S),diag=T ) )
kchain <- NULL
schain <- cchain <- matrix(0,ns,length(Kindex))
colnames(schain) <- colnames(cchain) <- .multivarChainNames(snames,snames)[Kindex]
if( REDUCT ){
kchain <- matrix(0, ns, ncol(kgibbs))
if( verbose )cat('\nexpanding covariance chains\n')
}
snames <- otherpar$snames
s1 <- diag(S)*0
s2 <- r1 <- r2 <- s1
pbar <- txtProgressBar(min=1,max=ns,style=1)
sinvPlus <- sinvMinus <- matrix(0,S,S)
k <- 1
for(j in simIndex){
if(REDUCT){
Z <- matrix(sgibbs[j,],N,r)
ss <- .expandSigma(sigErrGibbs[j], S, Z = Z, kgibbs[j,], REDUCT = TRUE)
si <- invWbyRcpp(sigErrGibbs[j], Z[kgibbs[j,],])
cc <- .cov2Cor(ss)
dc <- diag(sqrt(diag(ss)))
ci <- dc%*%si%*%dc
} else {
ss <- .expandSigma(sgibbs[j,], S = S, REDUCT = FALSE)
si <- ci <- diag(1,S)
si[notOther,notOther] <- solveRcpp(ss[notOther,notOther])
cc <- .cov2Cor(ss)
ci[notOther,notOther] <- solveRcpp(cc[notOther,notOther])
}
s1 <- s1 + ss
s2 <- s2 + ss^2
r1 <- r1 + cc
r2 <- r2 + cc^2
schain[k,] <- ss[Kindex]
cchain[k,] <- cc[Kindex]
if(REDUCT)kchain[k,] <- kgibbs[j,]
sinvPlus[si > 0] <- sinvPlus[si > 0] + 1
sinvMinus[si < 0] <- sinvMinus[si < 0] + 1
setTxtProgressBar(pbar,k)
k <- k + 1
}
diag(sinvPlus) <- diag(sinvMinus) <- 0
sigInvPos <- which(sinvPlus > .95*length(simIndex),arr.ind=T)
sigInvNeg <- which(sinvMinus > .95*length(simIndex),arr.ind=T)
ssi <- sort( unique(c( sigInvPos[,1], sigInvNeg[,1]) ) )
sMu <- s1/ns
vv <- s2/ns - sMu^2
vv[vv < tiny] <- tiny
sSe <- sqrt( vv )
rMu <- r1/ns
vv <- r2/ns - rMu^2
vv[vv < tiny] <- tiny
rSe <- sqrt( vv )
rownames(sMu) <- colnames(sMu) <- snames
rownames(sSe) <- colnames(rSe) <- snames
colnames(cchain) <- colnames(schain)
chainList <- list(cchain = cchain, schain = schain, kchain = kchain)
list(chainList = chainList, rMu = rMu, rSe = rSe,
sMu = sMu, sSe = sSe)
}
.expandSigma <- function(sigma, S, Z = NULL, K = NULL, REDUCT = F){
if(REDUCT) return( sigma*diag(S) + tcrossprod(Z[K,]) )
ss <- diag(S)
ss[lower.tri(ss,diag=T)] <- sigma
ss[upper.tri(ss)] <- t(ss)[upper.tri(ss)]
ss
}
.ordTraitsFromWts <- function(yWt,ordTraits){
if(!is.matrix(ordTraits))ordTraits <- matrix(ordTraits)
n <- nrow(yWt)
s <- ncol(yWt)
ii <- rep(c(1:n),s)
omat <- matrix(NA,n,ncol(ordTraits))
for(j in 1:ncol(ordTraits)){
PLUS <- F
oj <- ordTraits[,j]
if(min(oj) < 0)stop('ordinal scores cannot be < 0')
if(min(oj) == 0){
PLUS <- T
oj <- oj + 1
}
rj <- range(oj, na.rm=T)
mm <- matrix(0, n, rj[2] )
jj <- as.vector( matrix(oj, n, s, byrow=T) )
tmp <- .byGJAM(as.vector(yWt),ii,jj,mm,mm,fun='sum')
w0 <- which( apply(tmp,1,sum) == 0)
m1 <- apply(tmp,1,which.max)
m1 <- (rj[1]:rj[2])[m1]
if(PLUS)m1 <- m1 - 1
omat[,j] <- m1
if(length(w0) > 0)omat[w0,j] <- 0
}
colnames(omat) <- colnames(ordTraits)
omat
}
.incidence2Grid <- function(specs, lonLat, nx = NULL, ny = NULL, dx = NULL,
dy = NULL, predGrid = NULL, effortOnly=TRUE){
ngrid <- length(predGrid)
mapx <- range(lonLat[,1])
mapy <- range(lonLat[,2])
specs <- as.character(specs)
ynames <- sort(unique(specs))
nspec <- length(ynames)
jj <- match(specs,ynames)
if(ngrid == 0){
if(!is.null(dx)){
xseq <- seq(mapx[1], mapx[2], by = dx)
yseq <- seq(mapy[1], mapy[2], by = dy)
} else {
xseq <- seq(mapx[1], mapx[2], length = nx)
yseq <- seq(mapy[1], mapy[2], length = ny)
}
predGrid <- as.matrix( expand.grid(lon = xseq, lat = yseq) )
ngrid <- nrow(predGrid)
}
ii <- RANN::nn2(predGrid, lonLat, k = 1 )$nn.idx
mm <- matrix(0, ngrid, nspec )
gridBySpec <- .byGJAM(ii*0 + 1, ii, jj, mm, mm, fun='sum')
colnames(gridBySpec) <- ynames
effort <- rowSums(gridBySpec)
if(effortOnly){
wk <- which(effort > 0)
effort <- effort[wk]
gridBySpec <- gridBySpec[wk,]
predGrid <- predGrid[wk,]
}
list(gridBySpec = gridBySpec, predGrid = predGrid)
}
.spec2Trait <- function(pbys, sbyt, tTypes){
n <- nrow(pbys)
S <- ncol(pbys)
M <- ncol(sbyt)
ttt <- numeric(0)
y2t <- match(colnames(pbys),rownames(sbyt))
y2tf <- which(is.finite(y2t))
t2y <- match(rownames(sbyt),colnames(pbys))
t2yf <- which(is.finite(t2y))
if(is.data.frame(pbys))pbys <- as.matrix(pbys)
ywt <- sweep(pbys,1,rowSums(pbys,na.rm=T),'/')
ywt[is.na(ywt)] <- 0
newTypes <- character(0)
tmat <- ttt <- numeric(0)
wf <- which( !tTypes %in% c('OC','CAT') )
if(length(wf) > 0){
newTypes <- tTypes[wf]
ttt <- sbyt[ y2t, wf, drop=F]
tmat <- ywt%*%as.matrix( sbyt[y2t, wf, drop=F] )
}
ordNames <- which(tTypes == 'OC')
if(length(ordNames) > 0){
ordTraits <- as.matrix( round(sbyt[y2t[y2tf],ordNames],0) )
ordCols <- .ordTraitsFromWts(ywt,ordTraits)
if(is.null(colnames(ordCols)))colnames(ordCols) <- colnames(ordTraits) <-
colnames(sbyt)[ordNames]
ttt <- cbind(ttt, ordTraits )
tmat <- cbind(tmat,ordCols)
newTypes <- c(newTypes,tTypes[ordNames])
}
censor <- NULL
mcol <- ncol(tmat)
if(is.null(mcol))mcol <- 0
xx <- numeric(0)
FCgroups <- rep(0,mcol)
wf <- numeric(0)
for(j in 1:ncol(sbyt))if(is.factor(sbyt[,j]))wf <- c(wf,j)
wf <- union(wf,which(tTypes %in% 'CAT'))
if(length(wf) > 0){
xx <- sbyt[,wf,drop=F]
xc <- numeric(0)
kg <- 0
for(kk in 1:length(wf)){
xkk <- xx[,kk]
xtab <- table(xkk)
if(length(xtab) == 1){
stop( paste('CAT trait _',names(xx)[kk],
'_ has only 1 level, need at least 2',sep='') )
}
xtab <- xtab[order(xtab)]
xkk <- relevel(xkk,ref=names(xtab)[1])
cont <- contrasts(xkk,contrasts = F)
xk <- cont[xkk,,drop=F]
tmp <- ywt[,t2y]%*%xk[t2y,]
if(ncol(tmp) == 2){
mc <- mcol + 1
ktype <- 'CA'
tmp <- tmp[,1,drop=F]
gk <- 0
tc <- gjamCensorY( values = c(0,1),
intervals = cbind( c(-Inf,0), c(1,Inf) ),
y = tmp)
ttt <- cbind(ttt,xk[,1,drop=F])
if(is.null(censor)){
censor <- c(censor, tc$censor)
censor$CA$columns <- mc
} else {
censor$CA$columns <- c(censor$CA$columns,mc)
}
} else {
mc <- ncol(tmp)
cname <- colnames(tmp)
cname[1] <- 'other'
cname <- paste(colnames(xx)[kk],cname,sep='')
colnames(tmp) <- colnames(xk) <- cname
ttt <- cbind(ttt,xk)
ktype <- rep('FC',ncol(tmp))
kg <- kg + 1
gk <- rep(kg,mc)
}
mcol <- mcol + ncol(tmp)
FCgroups <- c(FCgroups,gk)
xc <- cbind(xc,tmp)
newTypes <- c(newTypes,ktype)
}
tmat <- cbind(tmat,xc)
}
colnames(tmat) <- colnames(ttt)
attr(newTypes,'FCgroups') <- FCgroups
list(plotByCWM = tmat, traitTypes = newTypes, censor = censor,
specByTrait = ttt)
}
.boxplotQuant <- function( xx, ..., boxfill=NULL ){
pars <- list(...)
tmp <- boxplot( xx, ..., plot=F)
if(!'stats' %in% names(pars)){
ss <- apply( xx, 2, quantile, pnorm(c(-1.96,-1,0,1,1.96)) )
tmp$stats <- ss
}else{
tmp$stats <- pars$stats
}
if( 'col' %in% names(pars) )boxfill <- pars$col
bxp( tmp, ..., boxfill = boxfill )
tmp
}
.gjamOrd <- function( output, SPECLABS, col, cex, PLOT, method ){
ematrix <- output$parameters$ematrix
ematAlpha <- output$modelList$ematAlpha
whConZero <- output$fit$whConZero
whichZero <- output$fit$whichZero
y <- output$inputs$y
S <- SO <- ncol(y)
snames <- colnames(y)
if(is.null(col))col <- rep('black',S)
other <- output$inputs$other
notOther <- output$inputs$notOther
SO <- length(notOther)
plab <- c('Axis I', 'Axis II', 'Axis III')
if (method == 'NMDS') {
tmp <- isoMDS(.cov2Dist(ematrix[notOther,notOther]), k = 3)
eVecs <- tmp$points
colnames(eVecs) <- paste('NMDS',c(1:3),sep = '_')
eValues <- lambda <- cl <- NULL
} else {
tmp <- eigen(ematrix[notOther,notOther])
eVecs <- tmp$vectors
eValues <- tmp$values
lambda <- eValues/sum(eValues)
cl <- cumsum(lambda)
clab <- paste(' (',round(100*lambda,0),'%)',sep='')
plab <- paste(plab, clab, sep='')
}
rownames(eVecs) <- snames[notOther]
if(!PLOT) return( list(eVecs = eVecs, eValues = eValues) )
cbord <- .getColor(col[notOther],.6)
par(mfcol=c(2,2), bty='n', cex = cex, mar=c(4,4,1,1))
plot(eVecs[,1],eVecs[,2],cex=1,col=cbord, bg = cbord, pch=16,
xlab=plab[1], ylab = plab[2])
abline(h=0,col=.getColor('black',.3),lwd=2,lty=2)
abline(v=0,col=.getColor('black',.3),lwd=2,lty=2)
if(length(SPECLABS) > 0){
mmm <- match(SPECLABS,rownames(eVecs))
text(eVecs[mmm,2],eVecs[mmm,3],SPECLABS,col=cbord[notOther][mmm])
}
plot(eVecs[,1],eVecs[,3],cex=1,col=cbord, bg = cbord, pch=16,
xlab=plab[1], ylab = plab[3])
abline(h=0,col=.getColor('black',.3),lwd=2,lty=2)
abline(v=0,col=.getColor('black',.3),lwd=2,lty=2)
if(length(SPECLABS) > 0){
mmm <- match(SPECLABS,rownames(eVecs))
text(eVecs[mmm,2],eVecs[mmm,3],SPECLABS,col=cbord[notOther][mmm])
}
plot(eVecs[,2],eVecs[,3],cex=1,col=cbord, bg = cbord, pch=16,
xlab=plab[2], ylab = plab[3])
abline(h=0,col=.getColor('black',.3),lwd=2,lty=2)
abline(v=0,col=.getColor('black',.3),lwd=2,lty=2)
if(length(SPECLABS) > 0){
mmm <- match(SPECLABS,rownames(eVecs))
text(eVecs[mmm,2],eVecs[mmm,3],SPECLABS,col=cbord[notOther][mmm])
}
if(method == 'PCA'){
plot(cl,type='s',xlab='Rank',ylab='Proportion of variance',xlim=c(.9,S),
ylim=c(0,1),log='x',lwd=2)
lines(c(.9,1),c(0,cl[1]),lwd=2,type='s')
for(j in 1:length(lambda))lines(c(j,j),c(0,cl[j]),col='grey')
lines(cl,lwd=2,type='s')
abline(h=1,lwd=2,col=.getColor('grey',.5),lty=2)
}
list(eVecs = eVecs, eValues = eValues)
}
columnSplit <- function(vec, sep='_', ASFACTOR = F, ASNUMERIC=F,
LASTONLY=F){
vec <- as.character(vec)
nc <- length( strsplit(vec[1], sep)[[1]] )
mat <- matrix( unlist( strsplit(vec, sep) ), ncol=nc, byrow=T )
if(LASTONLY & ncol(mat) > 2){
rnn <- mat[,1]
for(k in 2:(ncol(mat)-1)){
rnn <- columnPaste(rnn,mat[,k])
}
mat <- cbind(rnn,mat[,ncol(mat)])
}
if(ASNUMERIC){
mat <- matrix( as.numeric(mat), ncol=nc )
}
if(ASFACTOR){
mat <- data.frame(mat)
}
mat
}
columnPaste <- function(c1, c2, sep='-', NOSPACE = FALSE){
c1 <- as.character(c1)
c2 <- as.character(c2)
if(NOSPACE){
c1 <- .replaceString(c1, ' ', '')
c2 <- .replaceString(c2, ' ', '')
}
c12 <- apply( cbind(c1, c2) , 1, paste0, collapse=sep)
c12
} |
setGeneric("masking", function(r, m, RGB = c(1,0,0))
standardGeneric("masking"))
.masking <- function(red, green, blue, m, RGB) {
red[!m] <- RGB[1]
green[!m] <- RGB[2]
blue[!m] <- RGB[3]
stack(red, green, blue)
}
setMethod("masking",
signature(r = "RasterLayer"),
function (r, m, RGB) {
.check_if_r_was_normalized(r)
compareRaster(r, m)
red = green = blue <- r
.masking(red, green, blue, m, RGB)
}
)
setMethod("masking",
signature(r = "RasterStackBrick"),
function (r, m, RGB) {
.check_if_r_was_normalized(r)
stopifnot(raster::nlayers(r) == 3)
red <- raster::subset(r, 1)
green <- raster::subset(r, 2)
blue <- raster::subset(r, 3)
.masking(red, green, blue, m, RGB)
}
) |
memory_beta <- function(endpoint){
x <- .mb_portals
if(endpoint == "portals") return(x)
ep <- strsplit(endpoint, "/")[[1]]
if(ep[1] %in% x$id){
d <- mb_category_pages(ep[1], x$url[x$id == ep[1]],
c(".category-page__members", ".category-page__pagination"))
} else {
stop("Invalid endpoint: portal ID.", call. = FALSE)
}
if(length(ep) == 1) return(d)
mb_select(d, ep[-1], ep[1])
}
mb_article <- function(url, content_format = c("xml", "character"),
content_nodes = c("h2", "h3", "h4", "p", "b", "ul", "dl", "table"), browse = FALSE){
content_format <- match.arg(content_format)
url <- mb_base_add(url)
tryCatch(
x <- xml2::read_html(url),
error = function(e) stop("Article not found.", call. = FALSE)
)
title <- rvest::html_node(x, ".page-header__title") %>% mb_text()
cats <- mb_article_categories(x)
x <- rvest::html_nodes(x, ".WikiaArticle >
aside <- mb_article_aside(x)
content <- x[which(rvest::html_name(x) %in% content_nodes & !grepl("<aside.*aside>", x))]
if(content_format == "character") content <- gsub("\\[edit.*", "", mb_text(content))
if(browse) utils::browseURL(url)
dplyr::tibble(title = title, content = list(content), metadata = list(aside), categories = list(cats))
}
mb_search <- function(text, browse = FALSE){
url <- paste0(mb_base_add("Special:Search?query="), gsub("\\s+", "+", text))
x <- xml2::read_html(url) %>% rvest::html_node(".unified-search__results")
x <- rvest::html_nodes(x, "li article") %>% mb_text() %>% strsplit("(\n|\t)+")
if(browse) utils::browseURL(url)
dplyr::tibble(title = sapply(x, "[", 1), text = sapply(x, "[", 2), url = sapply(x, "[", 3))
}
mb_image <- function(url, file, keep = FALSE){
url <- gsub(",", "%2C", url)
file0 <- gsub("^File:|,", "", url)
url2 <- xml2::read_html(mb_base_add(url)) %>%
rvest::html_nodes("a img") %>%
rvest::html_attr("src")
url2 <- url2[grepl("^http", url2)]
idx <- grep(file0, url2)
if(!length(idx)) stop("Source file not accessible.", call. = FALSE)
url2 <- url2[idx[1]]
url2 <- gsub("latest/scale-to-width-down/\\d+\\?", "latest?", url2)
if(missing(file)) file <- gsub(" ", "_", file0)
file <- gsub("jpeg$", "jpg", file)
downloader::download(url2, destfile = file, quiet = TRUE, mode = "wb")
x <- jpeg::readJPEG(file)
if(!keep) unlink(file, recursive = TRUE, force = TRUE)
asp <- dim(x)[1] / dim(x)[2]
x <- grid::rasterGrob(x, interpolate = TRUE)
ggplot2::ggplot(geom = "blank") +
ggplot2::annotation_custom(x, xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf) +
ggplot2::theme(aspect.ratio = asp)
} |
post.pred <-
function(z,fun=NULL)
{
x.n.new <- sapply(as.list(1:z$iter),function(g) distr(z$input$n,z$input$dist,z$sims[g,],'r'))
if(!is.null(fun)) return(apply(x.n.new,2,fun))
else return(x.n.new)
} |
L1prop <- function(x, n, p.hypoth, pLset = 0.05) {
L <- function(p, x, n) {
p^x * (1 - p)^(n - x)
}
lL <- function(p, x, n) {
x * log(p) + (n - x) * log(1 - p)
}
nL <- function(p, x, n) {
(p^x * (1 - p)^(n - x))/((x/n)^x * (1 - (x/n))^(n -
x))
}
cat("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
cat(" Likelihood analysis of one sample Binomial data\n")
cat("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n")
p <- x/n
pies <- seq(0, 1, 0.001)
nLpies <- nL(pies, x, n)
inint <- pies[nLpies > pLset]
low <- min(inint)
high <- max(inint)
Lratio <- L(p.hypoth, x, n)/L(x/n, x, n)
pval <- 1 - pchisq(-2 * log(Lratio), 1)
cat("Likelihood ratio for hypothesized prob.:",
round(Lratio, 3), "\n", "with approximate p-value for these data:",
round(pval, 3), "\n")
plot(pies, nLpies, type = "l", ylab = "Normed likelihood",
xlab = expression(hat(pi)))
segments(low, 0, high, 0, lwd = 5)
title(paste("Normed likelihood and", deparse(substitute(pLset)),
"% likelihood interval"))
abline(v = p.hypoth, col = "red")
cat("MLE of p for these data:", round(x/n, 3),
"\n")
cat(pLset, "% likelihood interval: [", low, ",",
high, "]\n")
} |
.noharm.tanaka <- function( noharmout1 ){
i1 <- grep( "Tanaka", noharmout1 )
tanaka <- as.numeric( strsplit( paste(noharmout1[i1]), split="=" )[[1]][2] )
return(tanaka)
}
.noharm.rmsr <- function( noharmout1 ){
i1 <- grep( "Root mean square of residuals", noharmout1 )
RMSR <- as.numeric( strsplit( paste(noharmout1[i1]), split="=" )[[1]][2] )
return(RMSR)
}
.noharm.itemlevel <- function( noharmout1, itemlevel.type, I=I,dat=dat){
i1 <- grep( itemlevel.type, noharmout1 )
VV <- floor(I/9)+1 * ( I/9 !=floor( I/9) )
uniquevar <- noharmout1[ seq( i1+5, i1 + 5 + 4*(VV-1), 4 ) ]
uniquevar <- uniquevar[ substring( uniquevar, 1, 1 )==" " ]
uniquevar <- paste( uniquevar, collapse=" " )
uniquevar <- strsplit( uniquevar, split=" " )[[1]]
uniquevar <- as.numeric( paste( uniquevar[ uniquevar !="" ] ) )
uniquevar <- uniquevar[1:I]
names(uniquevar) <- colnames(dat)
return( uniquevar )
}
.noharm.loadings <- function( noharmout1, type1, type2, dimensions=dimensions, I=I, dat=dat){
i1 <- grep( type1, noharmout1 )[1]
i2 <- grep( type2, noharmout1 )[1]
rows <- seq( i1+2, i2-4 )
if ( ( dimensions==1 ) & ( type1=="Factor Loadings" ) ){
rows <- seq(i1+2, i2-6 )
}
r1 <- intersect( which( noharmout1=="" ), rows )
VV <- length(r1)/2
r2 <- stats::aggregate( r1, list(rep( 1:VV, each=2 )), mean )
colnames(r2) <- c("index", "index.row" )
index.m <- data.frame( r2, "begin"=r2[,2] + 2,
"end"=c( r2[,2][-1] - 2, i2-4 ) )
if ( dimensions==1 & type1=="Factor Loadings"){
index.m$end <- i2 - 6
}
loading.matrix <- matrix(0,I,dimensions)
rownames(loading.matrix) <- colnames(dat)
colnames(loading.matrix) <- paste( "F", 1:dimensions, sep="")
for (vv in 1:VV){
ind.vv.col <- noharmout1[ index.m$index.row[vv] ]
ind.vv.col <- strsplit( ind.vv.col, split=" " )[[1]]
ind.vv.col <- as.numeric( ind.vv.col[ ind.vv.col !="" ] )
ind.vv <- seq( index.m$begin[vv], index.m$end[vv] )
loading.vv <- noharmout1[ ind.vv ]
loading.vv <- sapply( loading.vv, FUN=function(ll){
ll1 <- strsplit( paste(ll), split=" " )[[1]]
as.numeric( ll1[ ll1 !=ll1[1] ] )
} )
loading.vv <- as.matrix( loading.vv )
ind.vv.row <- as.vector( loading.vv[1,] )
loading.vv <- loading.vv[-1,]
loading.matrix[ ind.vv.row, ind.vv.col ] <- t(loading.vv)
}
return( loading.matrix )
}
.noharm.correlations <- function( noharmout1,
type1="Factor Correlations",
type2="Residual Matrix",
dimensions=dimensions, dat=dat ){
i1 <- grep( type1, noharmout1 )[1]
i2 <- grep( type2, noharmout1 )[1]
rows <- seq( i1+2, i2-4 )
r1 <- intersect( which( noharmout1=="" ), rows )
VV <- length(r1)/2
r2 <- stats::aggregate( r1, list(rep( 1:VV, each=2 )), mean )
colnames(r2) <- c("index", "index.row" )
index.m <- data.frame( r2, "begin"=r2[,2] + 2,
"end"=c( r2[,2][-1] - 2, i2-4 ) )
correlation.matrix <- matrix(NA,dimensions,dimensions)
rownames(correlation.matrix) <- colnames(correlation.matrix) <- paste( "F", 1:dimensions, sep="")
for (vv in 1:VV){
ind.vv.col <- noharmout1[ index.m$index.row[vv] ]
ind.vv.col <- strsplit( ind.vv.col, split=" " )[[1]]
ind.vv.col <- as.numeric( ind.vv.col[ ind.vv.col !="" ] )
ind.vv <- seq( index.m$begin[vv], index.m$end[vv] )
correlation.vv <- noharmout1[ ind.vv ]
correlation.vv <- sapply( correlation.vv, FUN=function(ll){
ll1 <- strsplit( paste(ll), split=" " )[[1]]
as.vector( as.numeric( ll1[ ll1 !="" ] ))
} )
if ( is.list( correlation.vv ) ){
ind.vv.row <- as.vector(unlist( lapply( correlation.vv, FUN=function(ll){ ll[1] } ) ))
correlation.vv <- lapply( correlation.vv, FUN=function(ll){ ll[-1] } )
} else {
correlation.vv <- as.vector( correlation.vv )
ind.vv.row <- correlation.vv[1]
correlation.vv <- as.list( correlation.vv[-1] )
}
RVV <- length(correlation.vv)
for (rvv in 1:RVV){
correlation.vv.rvv <- correlation.vv[[rvv]]
i1.rvv <- ind.vv.row[rvv]
i2.rvv <- ind.vv.col[ seq( 1, length(correlation.vv.rvv)) ]
correlation.matrix[ i2.rvv, i1.rvv ] <- correlation.matrix[ i1.rvv, i2.rvv ] <- correlation.vv.rvv
}
}
correlation.matrix
}
.noharm.residuals <- function(noharmout1, I=I, dat=dat ){
i1 <- grep( "Residual Matrix", noharmout1 )
i2 <- grep( "Sum of squares of residuals", noharmout1 )
rows <- seq( i1+2, i2-4 )
r1 <- intersect( which( noharmout1=="" ), rows )
VV <- length(r1)/2
r2 <- stats::aggregate( r1, list(rep( 1:VV, each=2 )), mean )
colnames(r2) <- c("index", "index.row" )
index.m <- data.frame( r2, "begin"=r2[,2] + 2,
"end"=c( r2[,2][-1] - 2, i2-3 ) )
resid.matrix <- matrix(0,I,I)
rownames(resid.matrix) <- colnames(resid.matrix) <- colnames(dat)
for (vv in 1:VV){
ind.vv.col <- noharmout1[ index.m$index.row[vv] ]
ind.vv.col <- strsplit( ind.vv.col, split=" " )[[1]]
ind.vv.col <- as.numeric( ind.vv.col[ ind.vv.col !="" ] )
ind.vv <- seq( index.m$begin[vv], index.m$end[vv] )
resid.vv <- noharmout1[ ind.vv ]
resid.vv <- sapply( resid.vv, FUN=function(ll){
ll1 <- strsplit( paste(ll), split=" " )[[1]]
as.numeric( ll1[ ll1 !="" ] )
} )
if (is.list( resid.vv)){
gh1 <- lapply( resid.vv, FUN=function(ll){ length(ll) } )
ind1 <- which (gh1==0)
if ( length(ind1) > 0 ){
for (ii in ind1 ){ resid.vv[[ii]] <- NULL }
}
ind.vv.row <- as.vector(unlist( lapply( resid.vv, FUN=function(ll){ ll[1] } ) ))
resid.vv <- lapply( resid.vv, FUN=function(ll){ ll[-1] } )
} else {
resid.vv <- as.vector(resid.vv)
ind.vv.row <- resid.vv[1]
resid.vv <- as.list( resid.vv[-1] )
}
RVV <- length(resid.vv)
for (rvv in 1:RVV){
resid.vv.rvv <- resid.vv[[rvv]]
i1.rvv <- ind.vv.row[rvv]
i2.rvv <- ind.vv.col[ seq( 1, length(resid.vv.rvv)) ]
resid.matrix[ i2.rvv, i1.rvv ] <- resid.matrix[ i1.rvv, i2.rvv ] <- resid.vv.rvv
}
}
return( resid.matrix )
} |
GraphLimits=function(infile)
{
maxlat=max(infile$Latitude)
minlat=min(infile$Latitude)
maxlong=max(infile$Longitude)
minlong=min(infile$Longitude)
ratio=cos((maxlat+minlat)/2/360*2*pi)
if(((maxlong-minlong)*ratio) > (maxlat-minlat))
{
miny=minlat-((maxlong-minlong)*ratio)/2-0.025*(maxlong-minlong)*ratio;
maxy=maxlat+((maxlong-minlong)*ratio)/2+0.025*(maxlong-minlong)*ratio;
minx=minlong-0.025*(maxlong-minlong);
maxx=maxlong+0.025*(maxlong-minlong);
}else{
miny=minlat-0.025*(maxlat-minlat);
maxy=maxlat+0.025*(maxlat-minlat);
minx=minlong-((maxlat-minlat)-((maxlong-minlong)*ratio))/2-0.025*(maxlat-minlat)/ratio;
maxx=maxlong+((maxlat-minlat)-((maxlong-minlong)*ratio))/2-0.025*(maxlat-minlat)/ratio;
}
return=list(miny=miny,maxy=maxy,minx=minx,maxx=maxx)
} |
.getPutVals <- function(obj, field, n, mask) {
if (mask) {
return( data.frame(v=rep(1, length=n)) )
} else if (missing(field)) {
if (.hasSlot(obj, 'data')) {
putvals <- obj@data
cn <- validNames(c('ID', colnames(putvals)))
cn[1] <- 'ID'
putvals <- data.frame(ID=1:nrow(putvals), putvals)
colnames(putvals) <- cn
} else {
putvals <- data.frame(v=as.integer(1:n))
}
return(putvals)
} else if (isTRUE (is.na(field))) {
return( data.frame(v=rep(NA, n)) )
} else if (is.character(field) ) {
if (.hasSlot(obj, 'data')) {
nms <- names(obj)
if (length(field) <= length(nms)) {
m <- match(field, nms)
if (!all(is.na(m))) {
m <- stats::na.omit(m)
return(obj@data[, m, drop=FALSE])
}
}
}
}
if (NROW(field) == n) {
if (is.null(nrow(field))) {
return(data.frame(field, stringsAsFactors=FALSE))
} else {
return(field)
}
}
if (is.numeric(field)) {
putvals <- rep(field, length.out=n)
return(data.frame(field=putvals))
}
stop('invalid value for field')
}
.intersectSegments <- function(x1, y1, x2, y2, x3, y3, x4, y4) {
denom <- ((y4 - y3) * (x2 - x1)) - ((x4 - x3) * (y2 - y1))
ua_num <- ((x4 - x3) *(y1 - y3)) - ((y4 - y3) * (x1 - x3))
ub_num <- ((x2 - x1) *(y1 - y3)) - ((y2 - y1) * (x1 - x3))
if ( denom == 0 ) {
if (ua_num == 0 & ub_num == 0) {
xmin <- max(x1, x3)
if (xmin==x1) {ymin <- y1} else {ymin <- y3}
xmax <- min(x2, x4)
if (xmax==x2) {ymax <- y2} else {ymax <- y4}
return(rbind(c(xmin, ymin),
c(xmax, ymax)))
}
} else {
ua <- round(ua_num / denom, 12)
ub <- round(ub_num / denom, 12)
if ((ua >= 0 & ua <= 1) & (ub >= 0 & ub <= 1) ) {
x <- x1 + ua * (x2 - x1)
y <- y1 + ua * (y2 - y1)
return(c(x, y))
}
}
return(c(NA, NA))
}
.intersectLinePolygon <- function(line, poly) {
resxy <- matrix(NA, ncol=2, nrow=0)
miny <- min(line[,2])
maxy <- max(line[,2])
xyxy <- cbind(poly, rbind(poly[-1,], poly[1,]))
xyxy <- subset(xyxy, !( (xyxy[,2] > maxy & xyxy[,4] > maxy ) | (xyxy[,2] < miny & xyxy[,4] < miny)) )
if (nrow(xyxy) == 0) {
return(resxy)
}
for (i in 1:nrow(xyxy)) {
xy <- .intersectSegments(xyxy[i,1], xyxy[i,2], xyxy[i,3], xyxy[i,4], line[1,1], line[1,2], line[2,1], line[2,2] )
if (!is.na(xy[1])) {
resxy <- rbind(resxy, xy)
}
}
return((resxy))
}
.polygonsToRaster <- function(p, rstr, field, fun='last', background=NA, mask=FALSE, update=FALSE, updateValue="all", getCover=FALSE, filename="", silent=TRUE, faster=TRUE, ...) {
npol <- length(p@polygons)
pvals <- .getPutVals(p, field, npol, mask)
putvals <- pvals[,1]
if (ncol(pvals) > 1) {
rstr@data@isfactor <- TRUE
rstr@data@attributes <- list(pvals)
if (!is.character(fun)) {
stop('when rasterizing multiple fields you must use "fun=first" or "fun=last"')
} else if (!(fun %in% c('first', 'last'))) {
stop('when rasterizing multiple fields you must use "fun=first" or "fun=last"')
}
}
if (getCover) {
nc <- ncell(rstr)
fctr <- ifelse(nc < 5, 100, ifelse(nc < 17, 20, 10))
rstr <- disaggregate(raster(rstr), fctr)
r <- .fasterize(p, rstr, rep(1, npol), background=0, datatype="INT1U")
return( aggregate(r, fctr, mean, na.rm=TRUE, filename=filename, ...) )
}
if (is.character(fun) && (ncol(pvals) == 1) && faster) {
if (fun == "last") {
if (mask || update) {
if (mask && update) stop("either use 'mask' OR 'update'")
background = NA
r <- .fasterize(p, rstr, pvals[,1], background)
if (! hasValues(r)) {
if (mask) {
warning('there are no values to mask')
} else {
warning('there are no values to update')
}
return(r)
}
if (mask) {
r <- mask(rstr, r)
} else {
if (updateValue[1]=="all") {
r <- cover(r, rstr)
} else if (updateValue[1]=="NA") {
r <- cover(rstr, r, ...)
} else if (updateValue[1]=="!NA") {
r <- mask(cover(r, rstr), rstr, ...)
} else {
s <- stack(r, rstr)
r <- overlay(rstr, r, fun=function(x,y){ i = (x %in% updateValue & !is.na(y)); x[i] <- y[i]; x }, ... )
}
}
return(r)
} else {
return( .fasterize(p, rstr, pvals[,1], background, filename, ...) )
}
}
}
leftColFromX <- function ( object, x ) {
colnr <- (x - xmin(object)) / xres(object)
i <- colnr %% 1 == 0
colnr[!i] <- trunc(colnr[!i]) + 1
colnr[colnr <= 0] <- 1
colnr
}
rightColFromX <- function ( object, x ) {
colnr <- trunc((x - xmin(object)) / xres(object)) + 1
colnr[ colnr > ncol(object) ] <- object@ncols
colnr
}
if (! inherits(p, 'SpatialPolygons') ) {
stop('The first argument should be an object of the "SpatialPolygons*" lineage')
}
filename <- trim(filename)
if (!canProcessInMemory(rstr, 3) && filename == '') {
filename <- rasterTmpFile()
}
if (mask & update) {
stop('use either "mask" OR "update"')
} else if (mask) {
oldraster <- rstr
} else if (update) {
oldraster <- rstr
if (!is.numeric(updateValue)) {
if (is.na(updateValue)) {
updateValue <- 'NA'
} else if (!(updateValue == 'NA' | updateValue == '!NA' | updateValue == 'all')) {
stop('updateValue should be either "all", "NA", "!NA"')
}
}
}
rstr <- raster(rstr)
if (!is.na(projection(p))) {
projection(rstr) <-.getCRS(p)
}
spbb <- sp::bbox(p)
rsbb <- bbox(rstr)
if (spbb[1,1] >= rsbb[1,2] | spbb[1,2] <= rsbb[1,1] | spbb[2,1] >= rsbb[2,2] | spbb[2,2] <= rsbb[2,1]) {
return( init(rstr, function(x) NA) )
}
npol <- length(p@polygons)
pvals <- .getPutVals(p, field, npol, mask)
putvals <- pvals[,1]
if (ncol(pvals) > 1) {
rstr@data@isfactor <- TRUE
rstr@data@attributes <- list(pvals)
if (!is.character(fun)) {
stop('when rasterizing multiple values you must use "fun=first" or "fun=last"')
} else if (!(fun %in% c('first', 'last'))) {
stop('when rasterizing multiple values you must use "fun=first" or "fun=last"')
}
}
if (is.character(fun)) {
if (fun=='first') {
fun <- function(x, ...){ stats::na.omit(x)[1] }
} else if (fun=='last') {
fun <- function(x, ...){ rev(stats::na.omit(x))[1] }
} else if (fun == 'count') {
fun <- function(x, ...){ sum(!is.na(x)) }
field <- 1
}
}
polinfo <- data.frame(matrix(NA, nrow=npol * 2, ncol=6))
colnames(polinfo) <- c('part', 'miny', 'maxy', 'value', 'hole', 'object')
addpol <- polinfo[rep(1, 500), ]
rownames(addpol) <- NULL
pollist <- list()
cnt <- 0
for (i in 1:npol) {
nsubpol <- length(p@polygons[[i]]@Polygons)
for (j in 1:nsubpol) {
cnt <- cnt + 1
if (cnt > dim(polinfo)[1]) {
polinfo <- rbind(polinfo, addpol)
}
polinfo[cnt, 1] <- cnt
polinfo[cnt, 2] <- min(p@polygons[[i]]@Polygons[[j]]@coords[,2])
polinfo[cnt, 3] <- max(p@polygons[[i]]@Polygons[[j]]@coords[,2])
polinfo[cnt, 4] <- putvals[i]
if ( p@polygons[[i]]@Polygons[[j]]@hole ) {
polinfo[cnt, 5] <- 1
} else {
polinfo[cnt, 5] <- 0
}
polinfo[cnt, 6] <- i
pollist[[cnt]] <- p@polygons[[i]]@Polygons[[j]]
}
}
if (! silent) {
message('Found ', npol, ' region(s) and ', cnt, ' polygon(s)')
}
polinfo <- subset(polinfo, polinfo[,1] <= cnt, drop=FALSE)
lxmin <- min(spbb[1,1], rsbb[1,1]) - xres(rstr)
lxmax <- max(spbb[1,2], rsbb[1,2]) + xres(rstr)
adj <- 0.5 * xres(rstr)
if (filename == "") {
v <- matrix(NA, ncol=nrow(rstr), nrow=ncol(rstr))
} else {
rstr <- writeStart(rstr, filename=filename, ...)
}
rxmn <- xmin(rstr)
rxmx <- xmax(rstr)
rv1 <- rep(NA, ncol(rstr))
holes1 <- rep(0, ncol(rstr))
pb <- pbCreate(nrow(rstr), label='rasterize', ...)
for (r in 1:nrow(rstr)) {
vals <- NULL
holes <- holes1
ly <- yFromRow(rstr, r)
myline <- rbind(c(lxmin,ly), c(lxmax,ly))
subpol <- subset(polinfo, !(polinfo[,2] > ly | polinfo[,3] < ly), drop=FALSE)
if (length(subpol[,1]) > 0) {
updateHoles <- FALSE
lastpolnr <- subpol[1,6]
rvtmp <- rv1
for (i in 1:nrow(subpol)) {
if (i == nrow(subpol)) {
updateHoles <- TRUE
} else if (subpol[i+1,6] > lastpolnr) {
updateHoles <- TRUE
lastpolnr <- subpol[i+1,6]
}
mypoly <- pollist[[subpol[i,1]]]
intersection <- .intersectLinePolygon(myline, mypoly@coords)
x <- sort(intersection[,1])
if (length(x) > 0) {
if ((nrow(intersection) %% 2 == 1) || ( sum(x[-length(x)] == x[-1]) > 0 )) {
spPnts <- sp::SpatialPoints(xyFromCell(rstr, cellFromRowCol(rstr, rep(r, ncol(rstr)), 1:ncol(rstr))))
spPol <- sp::SpatialPolygons(list(sp::Polygons(list(mypoly), 1)))
over <- sp::over(spPnts, spPol)
if ( subpol[i, 5] == 1 ) {
holes[!is.na(over)] <- holes[!is.na(over)] - 1
} else {
rvtmp[!is.na(over)] <- subpol[i,4]
holes[!is.na(over)] <- holes[!is.na(over)] + 1
}
} else {
for (k in 1:round(nrow(intersection)/2)) {
l <- (k * 2) - 1
x1 <- x[l]
x2 <- x[l+1]
x1a <- x1 + adj
x2a <- x2 - adj
if (x1a > rxmx) { next }
if (x2a < rxmn) { next }
x1a <- min(rxmx, max(rxmn, x1a))
x2a <- min(rxmx, max(rxmn, x2a))
col1 <- leftColFromX(rstr, x1a)
col2 <- rightColFromX(rstr, x2a)
if (col1 > col2) {
spPnts <- sp::SpatialPoints(xyFromCell(rstr, cellFromRowCol(rstr, rep(r, ncol(rstr)), 1:ncol(rstr))))
spPol <- sp::SpatialPolygons(list(sp::Polygons(list(mypoly), 1)))
over <- sp::over(spPnts, spPol)
if ( subpol[i, 5] == 1 ) {
holes[!is.na(over)] <- holes[!is.na(over)] - 1
} else {
rvtmp[!is.na(over)] <- subpol[i,4]
holes[!is.na(over)] <- holes[!is.na(over)] + 1
}
next
}
if ( subpol[i, 5] == 1 ) {
holes[col1:col2] <- holes[col1:col2] - 1
} else {
rvtmp[col1:col2] <- subpol[i,4]
holes[col1:col2] <- holes[col1:col2] + 1
}
}
}
}
if (updateHoles) {
updateHoles <- FALSE
rvtmp[holes < 1] <- NA
vals <- cbind(vals, rvtmp)
rvtmp <- rv1
holes <- holes1
}
}
}
rrv <- rv1
if (!is.null(vals)) {
u <- which(rowSums(is.na(vals)) < ncol(vals))
if (length(u) > 0) {
if (mask) {
rrv[u] <- 1
} else {
rrv[u] <- apply(vals[u, ,drop=FALSE], 1, fun, na.rm=TRUE)
}
}
}
if (mask) {
oldvals <- getValues(oldraster, r)
ind <- which(is.na(rrv))
oldvals[ind] <- NA
rrv <- oldvals
} else if (update) {
oldvals <- getValues(oldraster, r)
if (is.numeric(updateValue)) {
ind <- which(oldvals == updateValue & !is.na(rrv))
} else if (updateValue == "all") {
ind <- which(!is.na(rrv))
} else if (updateValue == "NA") {
ind <- which(is.na(oldvals))
} else { "!NA"
ind <- which(!is.na(oldvals) & !is.na(rrv))
}
oldvals[ind] <- rrv[ind]
rrv <- oldvals
} else {
rrv[is.na(rrv)] <- background
}
if (filename == "") {
v[,r] <- rrv
} else {
rstr <- writeValues(rstr, rrv, r)
}
pbStep(pb, r)
}
pbClose(pb)
if (filename == "") {
rstr <- setValues(rstr, as.vector(v))
} else {
rstr <- writeStop(rstr)
}
return(rstr)
}
.Old_polygoncover <- function(rstr, filename, polinfo, lxmin, lxmax, pollist, ...) {
polinfo[, 4] <- 1
bigraster <- raster(rstr)
rxmn <- xmin(bigraster)
rxmx <- xmax(bigraster)
f <- 10
adj <- 0.5 * xres(bigraster)/f
nc <- ncol(bigraster) * f
rv1 <- rep(0, nc)
holes1 <- rep(0, nc)
prj <-.getCRS(bigraster)
hr <- 0.5 * yres(bigraster)
vv <- matrix(ncol=f, nrow=nc)
if (filename == "") {
v <- matrix(NA, ncol=nrow(bigraster), nrow=ncol(bigraster))
} else {
bigraster <- writeStart(bigraster, filename=filename, ...)
}
pb <- pbCreate(nrow(bigraster), label='rasterize', ...)
for (rr in 1:nrow(bigraster)) {
y <- yFromRow(bigraster, rr)
yn <- y - hr
yx <- y + hr
rstr <- raster(xmn=rxmn, xmx=rxmx, ymn=yn, ymx=yx, ncols=nc, nrows=f, crs=prj)
subpol <- subset(polinfo, !(polinfo[,2] > yx | polinfo[,3] < yn), drop=FALSE)
for (r in 1:f) {
rv <- rv1
ly <- yFromRow(rstr, r)
myline <- rbind(c(lxmin,ly), c(lxmax,ly))
holes <- holes1
if (length(subpol[,1]) > 0) {
updateHoles <- FALSE
lastpolnr <- subpol[1,6]
rvtmp <- rv1
for (i in 1:length(subpol[,1])) {
if (i == length(subpol[,1])) {
updateHoles <- TRUE
} else if (subpol[i+1,6] > lastpolnr) {
updateHoles <- TRUE
lastpolnr <- subpol[i+1,6]
}
mypoly <- pollist[[subpol[i,1]]]
intersection <- .intersectLinePolygon(myline, mypoly@coords)
x <- sort(intersection[,1])
if (length(x) > 0) {
if ( sum(x[-length(x)] == x[-1]) > 0 ) {
spPnts <- sp::SpatialPoints(xyFromCell(rstr, cellFromRowCol(rstr, rep(r, ncol(rstr)), 1:ncol(rstr))))
spPol <- sp::SpatialPolygons(list(sp::Polygons(list(mypoly), 1)))
over <- sp::over(spPnts, spPol)
if ( subpol[i, 5] == 1 ) {
holes[!is.na(over)] <- holes[!is.na(over)] - 1
} else {
rvtmp[!is.na(over)] <- subpol[i,4]
holes[!is.na(over)] <- holes[!is.na(over)] + 1
}
} else {
for (k in 1:round(nrow(intersection)/2)) {
l <- (k * 2) - 1
x1 <- x[l]
x2 <- x[l+1]
if (x1 > rxmx) { next }
if (x2 < rxmn) { next }
x1a <- x1 + adj
x2a <- x2 - adj
x1a <- min(rxmx, max(rxmn, x1a))
x2a <- min(rxmx, max(rxmn, x2a))
col1 <- colFromX(rstr, x1a)
col2 <- colFromX(rstr, x2a)
if (col1 > col2) { next }
if ( subpol[i, 5] == 1 ) {
holes[col1:col2] <- holes[col1:col2] - 1
} else {
rvtmp[col1:col2] <- subpol[i,4]
holes[col1:col2] <- holes[col1:col2] + 1
}
}
}
if (updateHoles) {
holes <- holes < 1
rvtmp[holes] <- 0
holes <- holes1
updateHoles <- FALSE
rv <- pmax(rv, rvtmp)
}
}
}
}
vv[,r] <- rv
}
av <- colSums( matrix( rowSums(vv), nrow=f) )
if (filename == "") {
v[,rr] <- av
} else {
bigraster <- writeValues(bigraster, av, rr)
}
pbStep(pb, rr)
}
pbClose(pb)
if (filename == "") {
bigraster <- setValues(bigraster, as.vector(v))
} else {
bigraster <- writeStop(bigraster)
}
return(bigraster)
}
.polygonsToRaster2 <- function(p, raster, field=0, filename="", ...) {
filename <- trim(filename)
raster <- raster(raster)
spbb <- sp::bbox(p)
rsbb <- bbox(raster)
if (spbb[1,1] > rsbb[1,2] | spbb[2,1] > rsbb[2,2]) {
stop('polygon and raster have no overlapping areas')
}
if (class(p) == 'SpatialPolygons' | field == 0) {
putvals <- 1:length(p@polygons)
} else {
putvals <- as.vector(p@data[,field])
if (class(putvals) == 'character') {
stop('selected field is charater type')
}
}
if (filename == "") {
v <- vector(length=0)
} else {
raster <- writeStart(raster, filename=filename, ...)
}
rowcol <- cbind(0, 1:ncol(raster))
firstrow <- rowFromY(raster, spbb[2,2])
lastrow <- rowFromY(raster, spbb[2,1])
for (r in 1:nrow(raster)) {
if (r < firstrow | r > lastrow) {
vals <- rep(NA, times=ncol(raster))
} else {
rowcol[,1] <- r
sppoints <- xyFromCell(raster, cellFromRowCol(raster, rowcol[,1], rowcol[,2]), TRUE)
over <- sp::over(sppoints, p)
vals <- putvals[over]
}
if (filename == "") {
v <- c(v, vals)
} else {
raster <- writeValues(raster, vals)
}
}
if (filename == "") {
raster <- setValues(raster, v)
} else {
raster <- writeStop(raster)
}
return(raster)
} |
test_that("complete_terms 1 iteration", {
mcmc <- as_mcmc(nlist(beta = matrix(1:4, nrow = 2)))
expect_identical(complete_terms(mcmc), mcmc)
mcmc[, "beta[2,2]"] <- NA
expect_identical(complete_terms(mcmc), mcmc)
mcmc2 <- mcmc
mcmc2 <- mcmc2[, -4,drop = FALSE]
expect_identical(complete_terms(mcmc2), mcmc)
})
test_that("complete_terms 2 iterations", {
mcmc <- as_mcmc(nlists(nlist(beta = matrix(1:4, nrow = 2)),
nlist(beta = matrix(1:4, nrow = 2))))
expect_identical(complete_terms(mcmc), mcmc)
mcmc[, "beta[2,2]"] <- NA
expect_identical(complete_terms(mcmc), mcmc)
mcmc2 <- mcmc
mcmc2 <- mcmc2[, -4]
expect_identical(complete_terms(mcmc2), mcmc)
})
test_that("complete_terms mcmc 1 digit", {
mcmc <- as_mcmc(nlists(nlist(x = 1), nlist(x = 2)))
colnames(mcmc) <- "1"
expect_warning(complete_terms(mcmc))
}) |
as_httr_req <- function(entry, quiet=TRUE) {
req <- entry$request
req$headers <- purrr::map(req$headers, "value") %>%
setNames(map_chr(req$headers, "name"))
ml <- getOption("deparse.max.lines")
options(deparse.max.lines=10000)
template <- "httr::VERB(verb = '%s', url = '%s' %s%s%s%s%s%s)"
hdrs <- enc <- bdy <- ckies <- auth <- verbos <- cfg <- ""
if (length(req$headers) > 0) {
ct_idx <- which(grepl("content-type", names(req$headers), ignore.case=TRUE))
if (length(ct_idx) > 0) {
ct <- req$headers[[ct_idx]]
req$headers[[ct_idx]] <- NULL
if (stringi::stri_detect_regex(ct, "multipart")) {
enc <- ", encode = 'multipart'"
} else if (stringi::stri_detect_regex(ct, "form")) {
enc <- ", encode = 'form'"
} else if (stringi::stri_detect_regex(ct, "json")) {
enc <- ", encode = 'json'"
} else {
enc <- ""
}
}
hdrs <- paste0(capture.output(dput(req$headers, control=NULL)),
collapse="")
hdrs <- sub("^list", ", httr::add_headers", hdrs)
}
if (length(req$data) > 0) {
bdy_bits <- paste0(capture.output(dput(parse_query(req$data), control=NULL)),
collapse="")
bdy <- sprintf(", body = %s", bdy_bits)
}
if (length(req$url_parts$username) > 0) {
auth <- sprintf(", httr::authenticate(user='%s', password='%s')",
req$url_parts$username, req$url_parts$password)
}
if (length(req$verbose) > 0) {
verbos <- ", httr::verbose()"
}
if (length(req$cookies) > 0) {
ckies <- paste0(capture.output(dput(req$cookies, control=NULL)),
collapse="")
ckies <- sub("^list", ", httr::set_cookies", ckies)
}
REQ_URL <- req$url
out <- sprintf(template, toupper(req$method), REQ_URL, auth, verbos, hdrs, ckies, bdy, enc)
fil <- tempfile(fileext=".R")
on.exit(unlink(fil))
formatR::tidy_source(text=out, width.cutoff=30, indent=4, file=fil)
tmp <- paste0(readLines(fil), collapse="\n")
if (!quiet) cat(tmp, "\n")
f <- function() {}
formals(f) <- NULL
environment(f) <- parent.frame()
body(f) <- as.expression(parse(text=tmp))
options(deparse.max.lines=ml)
return(f)
} |
regmixEM.loc=function (y, x, lambda = NULL, beta = NULL, sigma = NULL, k = 2,
addintercept = TRUE, kern.l = c("Gaussian", "Beta", "Triangle",
"Cosinus", "Optcosinus"), epsilon = 1e-08, maxit = 10000,
kernl.g = 0, kernl.h = 1, verb = FALSE)
{
diff <- 1
iter <- 0
x.1 <- cbind(1, x)
n <- length(y)
kern.l <- match.arg(kern.l)
out.EM <- regmixEM.lambda(y, x, lambda = lambda, beta = beta,
sigma = sigma, k = k, epsilon = epsilon, maxit = maxit)
ll = out.EM$loglik
restarts <- 0
while (diff > epsilon && iter < maxit) {
old.l.x = out.EM$lambda
old.loglik = out.EM$loglik
l.x = matrix(nrow = n, ncol = (k - 1))
for (i in 1:(k - 1)) {
l.x[, i] <- c((cbind(rep(1,n),0)*t(apply(matrix(x, ncol = 1), 1, lambda,
z = out.EM$post[, i], xi = x, kernel = kern.l,
g = kernl.g, h = kernl.h)))[,1])
l.x[,i]=apply(cbind(l.x[,i]),1,max,0)
l.x[,i]=apply(cbind(l.x[,i]),1,min,1)
}
l.x <- cbind(l.x, 1 - apply(l.x, 1, sum))
out.EM.loc <- regmixEM.lambda(y, x, beta = out.EM$beta,
sigma = out.EM$sigma, lambda = l.x, k = k)
loglik.loc <- out.EM.loc$loglik
out.EM.old <- regmixEM.lambda(y, x, beta = out.EM$beta,
sigma = out.EM$sigma, lambda = old.l.x, k = k)
loglik.old <- out.EM.old$loglik
if (loglik.loc > old.loglik) {
out.EM <- out.EM.loc
}
else out.EM <- out.EM.old
loglik.chosen <- out.EM$loglik
ll <- c(ll, loglik.chosen)
diff <- loglik.chosen - old.loglik
if (diff < 0) {
cat("Generating new starting values...", "\n")
out.EM <- regmixEM.lambda(y, x, lambda = lambda,
beta = beta, sigma = sigma, k = k, epsilon = epsilon,
maxit = maxit)
restarts <- restarts + 1
if (restarts > 15)
stop("Too many tries!")
iter <- 0
diff <- 1
}
else {
iter <- iter + 1
if (verb) {
cat("iteration=", iter, "diff=", diff, "log-likelihood",
loglik.chosen, "\n")
}
}
}
if (iter == maxit) {
cat("WARNING! NOT CONVERGENT!", "\n")
}
cat("number of overall iterations=", iter, "\n")
a = list(x = x, y = y, lambda.x = out.EM$lambda, beta = out.EM$beta,
sigma = out.EM$sigma, loglik = loglik.chosen, posterior = out.EM$post,
all.loglik = ll, restarts = restarts, ft = "regmixEM.loc")
class(a) = "mixEM"
a
} |
MPSep_consumerrisk <- function(n, cvec, pivec, Rvec){
sum1 <- rep(NA, length(1:dim(pivec)[1]))
sum2 <- rep(NA, length(1:dim(pivec)[1]))
for(i in 1:dim(pivec)[1]){
sum2[i] <- MPSep_core(n, cvec, pivec[i,])
sum1[i] <- sum2[i] * MP_Indicator(pivec[i,], Rvec)
}
return(1 - (sum(sum1) / sum(sum2)))
} |
app <- setRefClass(
'HelloWorld',
methods = list(
call = function(env){
list(
status=200,
headers = list(
'Content-Type' = 'text/html'
),
body = paste('<h1>Hello World!</h1>')
)
}
)
)$new() |
require(bvpSolve)
Troesch <- function (t, y, pars) {
list( c(y[2], mu*sinh(mu*y[1])) )
}
mu <- 5
x <- seq(0, 1, len = 12)
Sol <- bvptwp(yini = c(y = 0, dy = NA), yend = c(1, NA),
x = x, fun = Troesch)
plot(Sol) |
caffPlot <- function(caffConcTimeData, log = FALSE){
caffConcTime <- caffConcTimeData
p <- ggplot(caffConcTime, aes(x=Time, y=Conc)) +
xlab("Time (hour)") + ylab("Concentration (mg/L)") +
scale_x_continuous(breaks = seq(from = 0, to = 24, by = 4)) +
geom_line(aes(group = Subject, colour = Conc)) +
stat_summary(fun.y = "mean", colour = "
geom_hline(yintercept = 80, colour="red") +
geom_hline(yintercept = 40, colour="blue") +
geom_hline(yintercept = 10, colour="green") + theme_linedraw()
if (log == TRUE) p <- p + scale_y_log10()
return(p)
}
caffPlotMulti <- function(caffConcTimeMultiData, log = FALSE){
caffConcTimeMulti <- caffConcTimeMultiData
p <- ggplot(caffConcTimeMulti, aes(x=Time, y=Conc)) +
xlab("Time (hour)") + ylab("Concentration (mg/L)") +
scale_x_continuous(breaks = seq(0, 96, 12)) +
geom_line(aes(group = Subject, colour = Conc)) +
stat_summary(fun.y = "mean", colour = "
geom_hline(yintercept = 80, colour="red") +
geom_hline(yintercept = 40, colour="blue") +
geom_hline(yintercept = 10, colour="green") + theme_linedraw()
if (log == TRUE) p <- p + scale_y_log10()
return(p)
} |
plot.competing.risk.rfsrc <- function (x, plots.one.page = FALSE, ...) {
if (is.null(x)) {
stop("object x is empty!")
}
if (sum(inherits(x, c("rfsrc", "grow"), TRUE) == c(1, 2)) != 2 &
sum(inherits(x, c("rfsrc", "predict"), TRUE) == c(1, 2)) != 2) {
stop("This function only works for objects of class `(rfsrc, grow)' or '(rfsrc, predict)'.")
}
if (x$family != "surv-CR") {
stop("this function only supports competing risk settings")
}
matPlot <- function(matx, ylab = "", legend = "", pos = 1) {
m <- dim(cbind(matx))[2]
if (m > 1) legend <- paste(legend, 1:m, " ")
matplot(x$time.interest, matx, xlab = "Time", ylab = ylab, type = "l",
col = (1:m), lty = 1, lwd = 3)
legend(c("topright", "bottomright")[pos], legend = legend, col = (1:m), lty = 1, lwd = 3)
}
opar <- par(no.readonly = TRUE)
on.exit(par(opar))
if (plots.one.page) par(mfrow = c(1,1)) else par(mfrow = c(2,2))
if (!is.null(x$chf.oob)) {
cschf <- apply(x$chf.oob, c(2, 3), mean, na.rm = TRUE)
cif <- apply(x$cif.oob, c(2, 3), mean, na.rm = TRUE)
}
else {
cschf <- apply(x$chf, c(2, 3), mean, na.rm = TRUE)
cif <- apply(x$cif, c(2, 3), mean, na.rm = TRUE)
}
cpc <- do.call(cbind, lapply(1:ncol(cif), function(j) {
cif[, j] / (1 - rowSums(cif[, -j, drop = FALSE]))
}))
matPlot(cschf, "Cause-Specific CHF", "CSCHF", pos = 2)
matPlot(100 * cif, "Probability (%)", "CIF", 2)
matPlot(100 * cpc, "Probability (%)", "CPC", 2)
}
plot.competing.risk <- plot.competing.risk.rfsrc |
locate_footcite_punctuation <- function(parsed_doc = NULL, singular = TRUE, tex_lines = NULL) {
if (is.null(parsed_doc)) {
parsed_doc <- parse_tex(tex_lines)
}
chars <- .subset2(parsed_doc, "char")
v_match <- function(needle, haystack, nomatch = 0L, singular = TRUE) {
sieved <- which(haystack == needle[1L])
for (i in seq.int(1L, length(needle) - 1L)) {
sieved <- sieved[haystack[sieved + i] == needle[i + 1L]]
}
if (singular) {
sieved <- sieved[haystack[sieved + i + 1L] != "s"]
}
sieved
}
if (singular) {
footcite_starts <- v_match(strsplit("\\footcite", split = "", fixed = TRUE)[[1L]], chars)
} else {
footcite_starts <- v_match(strsplit("\\footcites", split = "", fixed = TRUE)[[1L]], chars)
}
L <-
lapply(footcite_starts, function(i) {
j <- i + 9L
s <- chars[j]
TeX_group <- 0L
opt_TeX_group <- 0L
while (OR(s != "}" || TeX_group || opt_TeX_group,
if (singular) {
FALSE
} else {
OR(chars[j + 1L] == "{",
chars[j + 1L] == "[")
})) {
if (opt_TeX_group) {
switch(s,
"{" = {
TeX_group <- TeX_group + 1L
},
"}" = {
TeX_group <- TeX_group - 1L
},
"[" = {
opt_TeX_group <- opt_TeX_group + 1L
},
"]" = {
opt_TeX_group <- opt_TeX_group - 1L
})
} else {
switch(s,
"[" = {
opt_TeX_group <- opt_TeX_group + 1L
},
"]" = {
opt_TeX_group <- opt_TeX_group - 1L
})
}
j <- j + 1L
s <- chars[j]
}
for (k in 1:200) {
if (k > 1L && chars[j + k] == "-") {
return(NULL)
}
if (k == 1L && chars[j + k] %fin% punctuation) {
break
}
if (grepl("\\s", chars[j + k])) {
next
}
return(NULL)
}
list(start = i, char_no = j + k)
})
bound <- rbindlist(L)
setattr(bound, "sorted", "char_no")
column <- NULL
parsed_doc[bound, on = "char_no"][column > 1L]
} |
cfReadBrewTemplate = function(template.file) {
assertFileExists(template.file, "r")
tmpl = readLines(template.file)
if (length(tmpl) == 0L)
stopf("Error reading template '%s' or empty template", template.file)
collapse(tmpl, "\n")
}
cfBrewTemplate = function(conf, template, rscript, extension) {
assertEnvironment(conf)
assertString(template)
assertString(rscript)
assertString(extension)
if (conf$debug) {
outfile = sub("\\.R$", sprintf(".%s", extension), rscript)
} else {
outfile = tempfile("template")
}
pf = parent.frame()
old = getOption("show.error.messages")
on.exit(options(show.error.messages = old))
options(show.error.messages = FALSE)
z = suppressAll(try(brew(text = template, output = outfile, envir = pf), silent = TRUE))
if (is.error(z))
stopf("Error brewing template: %s", as.character(z))
waitForFiles(outfile, conf$fs.timeout)
return(outfile)
}
cfHandleUnknownSubmitError = function(cmd, exit.code, output) {
assertString(cmd)
exit.code = asInt(exit.code)
assertCharacter(output, any.missing = FALSE)
msg = sprintf("%s produced exit code %i; output %s",
cmd, exit.code, collapse(output, sep = "\n"))
makeSubmitJobResult(status = 101L, batch.job.id = NA_character_, msg = msg)
}
cfKillBatchJob = function(cmd, batch.job.id, max.tries = 3L) {
assertString(cmd)
assertString(batch.job.id)
max.tries = asCount(max.tries)
assertCount(max.tries)
for (tmp in seq_len(max.tries)) {
res = runOSCommandLinux(cmd, batch.job.id, stop.on.exit.code = FALSE)
if (res$exit.code == 0L)
return()
Sys.sleep(1)
}
stopf("Really tried to kill job, but could not do it. batch job id is %s.\nMessage: %s",
batch.job.id, collapse(res$output, sep = "\n"))
} |
register_class("tsibble", "tbl_ts")
ts_tsibble_dts <- function(x) {
stopifnot(requireNamespace("tsibble"))
cid <- dts_cname(x)$id
ctime <- dts_cname(x)$time
x <- dts_rm(x)
if (length(cid) > 0){
z <- tsibble::as_tsibble(x, key = !! cid, index = !! ctime)
} else {
z <- tsibble::as_tsibble(x, index = !! ctime)
}
z
}
ts_dts.tbl_ts <- function(x) {
stopifnot(requireNamespace("tsibble"))
z <- as.data.table(x)
cid <- tsibble::key_vars(x)
measures <- tsibble::measured_vars(x)
ctime <- setdiff(names(z), c(measures, cid))
setnames(z, ctime, "time")
if (class(z$time)[1] %in% c("yearmonth", "yearquarter", "yearweek")) {
z$time <- as.Date(z$time)
}
is.non.num <- vapply(z[, measures, with = FALSE], is.numeric, TRUE)
measures.non.num <- measures[!is.non.num]
if (length(measures.non.num) > 0) {
message(
"Ignoring non-numeric measure vars (",
paste(measures.non.num, collapse = ", "),
")."
)
z[, (measures.non.num) := NULL]
}
cvalue <- setdiff(names(z), c("time", cid))
if (inherits(z$time, "Date")) {
z$time <- as.Date(z$time)
}
if (inherits(z$time, "POSIXct")) {
z$time <- as.POSIXct(z$time)
}
if (length(cvalue) > 1) {
z <- melt(
z, id.vars = c(cid, "time"), measure.vars = cvalue, variable.name = "id"
)
cvalue <- "value"
}
setcolorder(z, c(setdiff(names(z), c("time", cvalue)), "time", cvalue))
setnames(z, "time", ctime)
ts_dts(z)
}
ts_tsibble <- function(x) {
stopifnot(ts_boxable(x))
if (relevant_class(x) == "tsibble") return(x)
ts_tsibble_dts(ts_dts(x))
} |
orcid_bio <- function(orcid, format = "application/json", ...) {
stats::setNames(
lapply(orcid, orcid_prof_helper, path = "biography", ctype = format, ...),
orcid
)
} |
.trapz <-
function(x,y){
n <- length(x)
return(sum((y[1:(n-1)]+y[2:n])/2*(x[2:n]-x[1:(n-1)])))
}
.intersection_onecolumn <-
function(alpha, SSN1, SSN2, nrow_S1, nrow_S2, Ncol, .quantile_intersection){
SP_inters <- .quantile_intersection(vec1 = SSN1, vec2 = SSN2, a = alpha/2, b = 1 - alpha/2, n = nrow_S1)
vol_intersect <- (SP_inters[6])
vol_B <- (SP_inters[3])
r <- 1
if (min(SP_inters[4] == SP_inters[1]) == 0 | min(SP_inters[5] == SP_inters[2]) == 0){
if (vol_intersect < vol_B) {r <- vol_intersect/vol_B}
if (vol_B == 0) {r <- 0}
}
return(r)
}
.intersection_severalcol <-
function(alpha,SSN1,SSN2,nrow_S1,nrow_S2,Ncol, .quantile_intersection){
SP_inters<-mapply(.quantile_intersection, vec1 = SSN1, vec2 = SSN2, MoreArgs = list(a=((1-(1-alpha)^(1/ncol(SSN1)))/2), b=(1-(1-(1-alpha)^(1/ncol(SSN1)))/2),n=nrow_S1))
product<-prod(SP_inters[6,])
vol_intersect<-c(product,mean(SP_inters[6,]),product^{1/length(SP_inters[6,])})
product<-prod(SP_inters[3,])
vol_B<-c(product,mean(SP_inters[3,]),product^{1/length(SP_inters[3,])})
r<-c(1,1,1)
if(min(SP_inters[4,]==SP_inters[1,])==0 | min(SP_inters[5,]==SP_inters[2,])==0){
r[vol_intersect<vol_B]<-vol_intersect[vol_intersect<vol_B]/vol_B[vol_intersect<vol_B]
r[vol_B==0]<-0
}
return(r)
}
.portionAinB_coordinates_full <-
function(S1,S2,steps=101 ){
nt<-ncol(S1)
integral_coord<-rep(0,length=nt)
portionAinB_function<-function(x1,x2,steps){
r<-.portionAinB_full_onecolumn(data.frame(v1=x1) ,data.frame(v1=x2),steps=steps )
return(r$integral_approx)
}
portionAinB_function2<-function(x1,x2,steps){
r<-.portionAinB_full_onecolumn(data.frame(v1=x1) ,data.frame(v1=x2),steps=steps )
return(r$overlap)
}
integral_coord<-mapply(portionAinB_function, x1=S1, x2=S2, MoreArgs =list(steps=steps))
plot_data_overlap<-mapply(portionAinB_function2, x1=S1, x2=S2, MoreArgs =list(steps=steps))
alpha_grid<-seq(0,1,length=steps)[1:(steps-1)]
erg<-list(alpha_grid=alpha_grid,integral_coord=integral_coord,plot_data_overlap=plot_data_overlap)
return(erg)
}
.portionAinB_coordinates_full_dim1 <-
function(S1,S2,steps=101 ){
nt<-1
integral_coord<-rep(0,length=nt)
r<-.portionAinB_full_onecolumn(data.frame(v1=S1) ,data.frame(v1=S2),steps=steps )
integral_coord<-r$integral_approx
plot_data_overlap<-r$overlap
alpha_grid<-seq(0,1,length=steps)[1:(steps-1)]
erg<-list(alpha_grid=alpha_grid,integral_coord=integral_coord,plot_data_overlap=plot_data_overlap)
return(erg)
}
.portionAinB_full_onecolumn <-
function (S1, S2, steps = 101) {
S <- rbind(S1, S2)
Ncol <- ncol(S1)
alpha_grid <- seq(0, 1, length = steps)
Spans <- data.frame(trait_nr = 1:Ncol, min = min(S, na.rm = TRUE), max = max(S, na.rm = TRUE))
ab <- Spans$max - Spans$min
SSN <- (S - Spans$min)/(ab)
SSN[, ab == 0] <- 0.5
nrow_S1 <- nrow(S1)
nrow_S2 <- nrow(S2)
z <- mapply(.intersection_onecolumn, alpha = alpha_grid, MoreArgs = list(SSN1 = SSN[1:nrow_S1, ], SSN2 = SSN[(nrow_S1 + 1):(nrow_S1 + nrow_S2), ], nrow_S1 = nrow_S1, nrow_S2 = nrow_S2, Ncol = Ncol, .quantile_intersection = .quantile_intersection))
integral_approx <- c(prod = .trapz(alpha_grid, z))
erg <- list(alpha_grid = alpha_grid, overlap = z, integral_approx = integral_approx)
return(erg)
}
.portionAinB2_full <-
function(S1,S2,steps=101,alpha_grid){
steps0<-steps
alpha_grid0<-alpha_grid
.portionAinB2_full_severalcol(S1,S2,steps=steps0,alpha_grid=alpha_grid0)
}
.portionAinB2_full_dim1 <-
function(S1,S2,steps=101,alpha_grid){
steps0<-steps
alpha_grid0<-alpha_grid
.portionAinB2_full_severalcol_dim1(S1,S2,steps=steps0,alpha_grid=alpha_grid0)
}
.portionAinB2_full_severalcol_dim1 <-
function(S1,S2,steps=101,alpha_grid=seq(0,1,length=steps)[1:(steps-1)]){
S<-c(S1,S2)
alpha_grid<-seq(0,1,length=steps)
Ncol<-1
ab<-max(S)-min(S)
SSN<-t((t(S)-min(S))/(ab))
SSN[,ab==0]<-0.5
SSN<-as.data.frame(SSN)
nrow_S1<-length(S1)
nrow_S2<-length(S2)
z<-mapply(.intersection_onecolumn, alpha = alpha_grid, MoreArgs = list(SSN1=SSN[1:nrow_S1,], SSN2=SSN[(nrow_S1+1):(nrow_S1+nrow_S2),],nrow_S1=nrow_S1,nrow_S2=nrow_S2,Ncol=Ncol,.quantile_intersection=.quantile_intersection))
integral_approx<-c(prod=.trapz(seq(0,1,length=steps), z),mean=.trapz(seq(0,1,length=steps),z),gmean=.trapz(seq(0,1,length=steps),z))
plot_data_prod<-z
erg<-list(alpha_grid=seq(0,1,length=steps)[1:(steps-1)],overlap=z,integral_approx=integral_approx,plot_data_prod=plot_data_prod)
return(erg)
}
.portionAinB2_full_severalcol <-
function(S1,S2,steps=101,alpha_grid=seq(0,1,length=steps)[1:(steps-1)]){
S<-rbind(S1,S2)
alpha_grid<-seq(0,1,length=steps)
Ncol<-ncol(S1)
Spans<-data.frame(trait_nr=1:Ncol,min=matrix(mapply(min, S, MoreArgs = list(na.rm = TRUE))),max=matrix(mapply(max, S, MoreArgs = list(na.rm = TRUE))))
ab<-Spans$max-Spans$min
SSN<-t((t(S)-Spans$min)/(ab))
SSN[,ab==0]<-0.5
SSN<-as.data.frame(SSN)
nrow_S1<-nrow(S1)
nrow_S2<-nrow(S2)
z<-mapply(.intersection_severalcol, alpha = alpha_grid, MoreArgs = list(SSN1=SSN[1:nrow_S1,], SSN2=SSN[(nrow_S1+1):(nrow_S1+nrow_S2),],nrow_S1=nrow_S1,nrow_S2=nrow_S2,Ncol=Ncol,.quantile_intersection=.quantile_intersection))
integral_approx<-c(prod=.trapz(seq(0,1,length=steps), z[1,]),mean=.trapz(seq(0,1,length=steps),z[2,]),gmean=.trapz(seq(0,1,length=steps),z[3,]))
plot_data_prod<-z[1,]
erg<-list(alpha_grid=seq(0,1,length=steps)[1:(steps-1)],overlap=z,integral_approx=integral_approx,plot_data_prod=plot_data_prod)
return(erg)
}
.quantile_intersection <-
function(vec1,vec2,a,b,n){
x<-c( quantile(vec1, probs = c(a,b), na.rm = TRUE), quantile(vec2, probs = c(a,b), na.rm = TRUE) )
x<-c(x,x[4]-x[3])
x[5]<-ifelse(x[5]<=0,0,x[5])
r<-c(max(x[c(1,3)]),min(x[c(2,4)]))
r<-c(x[3:5],r,r[2]-r[1])
r[6]<-ifelse(r[6]<=0,0,r[6])
return(r)
}
.volume_onecol <-
function(alpha,SSN1){
SP1<-quantile(SSN1,probs=c(alpha/2,1-alpha/2),na.rm = TRUE)
vol<-(SP1[2]-SP1[1])
return(vol)
}
.volume_severalcol <-
function(alpha,SSN1){
alpha<-(1-(1-alpha)^(1/ncol(SSN1)))
a<-alpha/2
b<-1-alpha/2
SP1<-mapply(quantile, SSN1, MoreArgs = list(probs=c(a,b),na.rm=TRUE))
product<-prod(SP1[2,]-SP1[1,])
vol<-c(prod=product,mean=mean(SP1[2,]-SP1[1,]),gmean=product^{1/length(SP1[2,]-SP1[1,])})
return(vol)
}
.volumeA_coordinates_full_dim1 <-
function(S1,S2,steps=101 ){
nt<-1
names(S2)<-"v1"
r<-.volumeA_full_onecol(data.frame(v1=S1), data.frame(v1=S2), steps=steps)
integral_coord<-r$integral_approx
plot_volume<-r$volume
alpha_grid<-seq(0,1,length=steps)
erg<-list(alpha_grid=alpha_grid,integral_coord=integral_coord,plot_volume=plot_volume)
return(erg)
}
.volumeA_coordinates_full <-
function(S1,S2,steps=101 ){
nt<-ncol(S1)
volumeA_function<-function(x1,x2,steps){
r<-.volumeA_full_onecol(data.frame(v1=x1) ,data.frame(v1=x2),steps=steps )
return(r$integral_approx)
}
volumeA_function2<-function(x1,x2,steps){
r<-.volumeA_full_onecol(data.frame(v1=x1) ,data.frame(v1=x2),steps=steps )
return(r$volume)
}
integral_coord<-mapply(volumeA_function, x1=S1, x2=S2, MoreArgs =list(steps=steps))
plot_volume<-mapply(volumeA_function2, x1=S1, x2=S2, MoreArgs =list(steps=steps))
alpha_grid<-seq(0,1,length=steps)
erg<-list(alpha_grid=alpha_grid,integral_coord=integral_coord,plot_volume=plot_volume)
return(erg)
}
.volumeA_full_onecol <-
function(S1,S2,steps=101){
S<-rbind(S1,S2)
Ncol<-ncol(S1)
alpha_grid<-seq(0,1,length=steps)
Spans<-data.frame(trait_nr=1:Ncol,min=min(S,na.rm = TRUE),max=max(S,na.rm = TRUE))
ab<-Spans$max-Spans$min
SSN<-(S-Spans$min)/(ab)
SSN[,ab==0]<-0.5
z<-mapply(.volume_onecol, alpha = alpha_grid, MoreArgs = list(SSN1=SSN[1:nrow(S1),]))
z<-1/(1-alpha_grid[-length(alpha_grid)])*z[-length(alpha_grid)]
z <- ifelse(z <= 1, z, 1)
integral_approx<-c(prod=.trapz(alpha_grid[-length(alpha_grid)], z))
erg<-list(alpha_grid=alpha_grid,volume=z,integral_approx=integral_approx)
return(erg)
}
.volumeA2_full <-
function(S1,S2,steps=101,alpha_grid=seq(0,1,length=steps)){
steps0<-steps
alpha0_grid<-alpha_grid
.volumeA2_full_severalcol(S1,S2,steps=steps0,alpha_grid=alpha0_grid )
}
.volumeA2_full_dim1 <-
function(S1,S2,steps=101,alpha_grid=seq(0,1,length=steps)){
steps0<-steps
alpha0_grid<-alpha_grid
.volumeA2_full_severalcol_dim1(S1,S2,steps=steps0,alpha_grid=alpha0_grid )
}
.volumeA2_full_severalcol_dim1 <-
function(S1,S2,steps=101,alpha_grid=seq(0,1,length=steps)){
S<-c(S1,S2)
Ncol<-1
ab<-max(S)-min(S)
SSN<-t((t(S)-min(S))/(ab))
SSN[,ab==0]<-0.5
SSN<-as.data.frame(SSN)
z<-mapply(.volume_onecol, alpha = alpha_grid, MoreArgs = list(SSN1=SSN))
z<-rbind(1/(1-alpha_grid[-length(alpha_grid)])*z[-length(alpha_grid)])
z <- ifelse(z <= 1, z, 1)
integral_approx<-c(prod=.trapz(alpha_grid[-length(alpha_grid)], z),mean=.trapz(alpha_grid[-length(alpha_grid)],z),gmean=.trapz(alpha_grid[-length(alpha_grid)],z))
plot_data_prod<-z
erg<-list(alpha_grid=seq(0,1,length=steps),volume=z,integral_approx=integral_approx,plot_data_prod=plot_data_prod)
return(erg)
}
.volumeA2_full_severalcol <-
function(S1,S2,steps=101,alpha_grid=seq(0,1,length=steps)){
S<-rbind(S1,S2)
Ncol<-ncol(S1)
Spans<-data.frame(trait_nr=1:Ncol,min=matrix(mapply(min, S, MoreArgs = list(na.rm = TRUE))),max=matrix(mapply(max, S, MoreArgs = list(na.rm = TRUE))))
ab<-Spans$max-Spans$min
SSN<-t((t(S)-Spans$min)/(ab))
SSN[,ab==0]<-0.5
SSN<-as.data.frame(SSN)
z<-mapply(.volume_severalcol, alpha = alpha_grid, MoreArgs = list(SSN1=SSN[1:nrow(S1),]))
z<-rbind(1/(1-alpha_grid[-length(alpha_grid)])*z[1,][-length(alpha_grid)],1/(1-alpha_grid[-length(alpha_grid)])*z[2,][-length(alpha_grid)],1/(1-alpha_grid[-length(alpha_grid)])*z[3,][-length(alpha_grid)])
z <- ifelse(z <= 1, z, 1)
integral_approx<-c(prod=.trapz(alpha_grid[-length(alpha_grid)], z[1,]),mean=.trapz(alpha_grid[-length(alpha_grid)],z[2,]),gmean=.trapz(alpha_grid[-length(alpha_grid)],z[3,]))
plot_data_prod<-z[1,]
erg<-list(alpha_grid=seq(0,1,length=steps),volume=z,integral_approx=integral_approx,plot_data_prod=plot_data_prod)
return(erg)
}
.trpca <- function(data, va){
PCA <- prcomp(data[,-1])
vars <- apply(PCA$x, 2, var)
prop <- cumsum(vars / sum(vars))
k <- which(prop >= va)[1]
k <- ifelse(k==1, 2, k)
data1 <- data.frame(data[,1], PCA$x[,1:k])
colnames(data1)[1] <- "Species"
return(data1)
}
.getVarianceEstimate <-function(x,y){
x_smallerM = x[1:round(length(x)/2 + 0.1)]
x_greaterM = x[round(length(x)/2+1.1):length(x)]
n = as.numeric(length(x))
k = as.numeric(length(x_smallerM))
x_smallerM_ranks = rank(x_smallerM)
x_greaterM_ranks = rank(x_greaterM)
y_smallerM = y[1:round(length(y)/2 +0.1)]
y_greaterM = y[round(length(y)/2+1.1):length(y)]
m = as.numeric(length(y))
l = as.numeric(length(y_smallerM))
y_smallerM_ranks = rank(y_smallerM)
y_greaterM_ranks = rank(y_greaterM)
xy_smallerM_ranks = rank(c(x_smallerM,y_smallerM))[1:k]
yx_smallerM_ranks = rank(c(y_smallerM,x_smallerM))[1:l]
xy_greaterM_ranks = rank(c(x_greaterM,y_greaterM))[1:(n-k)]
yx_greaterM_ranks = rank(c(y_greaterM,x_greaterM))[1:(m-l)]
s2_X1 = 1/(l^2*(k-1)) * sum((xy_smallerM_ranks - x_smallerM_ranks - mean(xy_smallerM_ranks) + (k+1)/2)^2)
s2_X2 = 1/((m-l)^2*(n-k-1)) * sum((xy_greaterM_ranks - x_greaterM_ranks - mean(xy_greaterM_ranks) + (n-k+1)/2)^2)
s2_Y1 = 1/(k^2*(l-1)) * sum((yx_smallerM_ranks - y_smallerM_ranks - mean(yx_smallerM_ranks) + (l+1)/2)^2)
s2_Y2 = 1/((n-k)^2*(m-l-1)) * sum((yx_greaterM_ranks - y_greaterM_ranks - mean(yx_greaterM_ranks) + (m-l+1)/2)^2)
s2_2 = (l+k)*(s2_X1/k + s2_Y1/l) + (n+m-l-k)*(s2_X2/(n-k) + s2_Y2/(m-l))
return(s2_2)
}
.getRankedSingleOverlapIndex <- function(x,y){
x_length = as.numeric(length(x))
if(round(x_length/2)==x_length/2){
k=x_length/2
}else{
k=(x_length+1)/2
}
y_length = as.numeric(length(y))
x = sort(x)
xy_ranks = rank(c(x,y))
x_rank = xy_ranks[1:x_length]
y_rank = xy_ranks[(x_length+1):(x_length+y_length)]
rank_gtm = sum(x_rank[(k+1) : x_length])
rank_stm = sum(x_rank[1:k])
K= sum(rank(x)[1:k])
c = 2/((x_length)*(y_length)) * ( - x_length*(x_length+1) + K*4)
overlap_ranked = 2*(rank_gtm - rank_stm)/((x_length)*(y_length)) + c/2
return(overlap_ranked)
}
.geo.mean <- function (x){
n<-length(x)
mittelwert<-prod(x)^(1/n)
return (mittelwert)
} |
setGeneric("moduleMetadata", function(sim, module, path = getOption("spades.modulePath", NULL),
defineModuleListItems = c(
"name", "description", "keywords", "childModules", "authors",
"version", "spatialExtent", "timeframe", "timeunit", "citation",
"documentation", "reqdPkgs", "parameters", "inputObjects", "outputObjects"
)) {
standardGeneric("moduleMetadata")
})
setMethod(
"moduleMetadata",
signature = c(sim = "missing", module = "character", path = "character"),
definition = function(module, path, defineModuleListItems) {
filename <- paste(path, "/", module, "/", module, ".R", sep = "")
if (!file.exists(filename)) {
stop(paste(filename, "does not exist. This was created by putting",
"modulePath with the module name as a folder and filename. ",
"Please correct the modulePath or module name in",
"the simInit() call."))
}
metadata <- lapply(defineModuleListItems, function(xx) {
pmp <- .parseModulePartial(filename = file.path(path, module, paste0(module, ".R")),
defineModuleElement = xx)
out2 <- suppressMessages(try(eval(pmp), silent = TRUE))
if (is(out2, "try-error")) {
inner2 <- lapply(pmp, function(yyy) {
out4 <- try(eval(yyy), silent = TRUE)
if (is(out4, "try-error")) {
yyy <- lapply(yyy, function(yyyyy) {
out5 <- try(eval(yyyyy), silent = TRUE)
if (is(out5, "try-error")) yyyyy <- deparse(yyyyy)
return(yyyyy)
})
}
if (is.list(yyy)) yyy <- as.call(yyy)
return(yyy)
})
out2 <- as.call(inner2)
}
aa <- capture.output(type = "message", {bb <- eval(out2)})
return(bb)
})
names(metadata) <- defineModuleListItems
metadata <- rmExtraSpacesEOLList(metadata)
return(metadata)
})
setMethod(
"moduleMetadata",
signature = c(sim = "missing", module = "character", path = "missing"),
definition = function(module, defineModuleListItems) {
moduleMetadata(module = module, path = getOption("spades.modulePath"),
defineModuleListItems = defineModuleListItems)
})
setMethod(
"moduleMetadata",
signature = c(sim = "ANY", module = "ANY", path = "ANY"),
definition = function(sim, module, path, defineModuleListItems) {
if (is.character(sim)) {
message("Assuming sim is a module name")
if (missing(path)) {
metadataList <- moduleMetadata(module = sim, defineModuleListItems = defineModuleListItems)
} else {
metadataList <- moduleMetadata(module = sim, path = path, defineModuleListItems = defineModuleListItems)
}
} else {
if (!missing(path)) message("path not used with sim provided")
if (missing(module)) {
module <- unlist(modules(sim))
}
numModules <- length(module)
metadata <- sim@depends@dependencies[module]
sn <- slotNames(".moduleDeps")
names(sn) <- sn
metadataList <- lapply(metadata, function(mod) {
lapply(sn, function(element) {
slot(mod, name = element)
})
})
metadataList <- lapply(metadataList, function(moduleMetadata) {
rmExtraSpacesEOLList(moduleMetadata)
})
if (numModules == 1)
metadataList <- metadataList[[module]]
}
return(metadataList)
})
setGeneric("moduleVersion", function(module, path, sim, envir = NULL) {
standardGeneric("moduleVersion")
})
setMethod(
"moduleVersion",
signature = c(module = "character", path = "character", sim = "missing", envir = "ANY"),
definition = function(module, path, envir) {
v <- .parseModulePartial(filename = file.path(path, module, paste0(module, ".R")),
defineModuleElement = "version", envir = envir)
if (is.null(names(v))) {
as.numeric_version(v)
} else {
as.numeric_version(v[[module]])
}
})
setMethod(
"moduleVersion",
signature = c(module = "character", path = "missing", sim = "missing", envir = "ANY"),
definition = function(module, envir) {
moduleVersion(module = module, path = getOption("spades.modulePath"), envir = envir)
})
setMethod(
"moduleVersion",
signature = c(module = "character", path = "missing", sim = "simList", envir = "ANY"),
definition = function(module, sim, envir) {
v <- .parseModulePartial(sim = sim, modules = list(module),
defineModuleElement = "version", envir = envir) %>%
`[[`(module)
if (is.null(names(v))) {
as.numeric_version(v)
} else {
as.numeric_version(v[[module]])
}
})
setGeneric("moduleParams", function(module, path) {
standardGeneric("moduleParams")
})
setMethod(
"moduleParams",
signature = c(module = "character", path = "character"),
definition = function(module, path) {
md <- suppressWarnings(moduleMetadata(module = module, path = path))
md[["parameters"]][["paramDesc"]] <- rmExtraSpacesEOL(md[["parameters"]][["paramDesc"]])
md[["parameters"]]
})
setGeneric("moduleInputs", function(module, path) {
standardGeneric("moduleInputs")
})
setMethod(
"moduleInputs",
signature = c(module = "character", path = "character"),
definition = function(module, path) {
md <- suppressWarnings(moduleMetadata(module = module, path = path))
md[["inputObjects"]][["desc"]] <- rmExtraSpacesEOL(md[["inputObjects"]][["desc"]])
md[["inputObjects"]]
})
setGeneric("moduleOutputs", function(module, path) {
standardGeneric("moduleOutputs")
})
setMethod(
"moduleOutputs",
signature = c(module = "character", path = "character"),
definition = function(module, path) {
md <- suppressWarnings(moduleMetadata(module = module, path = path))
md[["outputObjects"]][["desc"]] <- rmExtraSpacesEOL(md[["outputObjects"]][["desc"]])
md[["outputObjects"]]
})
rmExtraSpacesEOL <- function(x) gsub(" +|[ *\n]+", " ", x)
rmExtraSpacesEOLList <- function(xx) {
toRmESEOL <- grepl(c("parameters|inputObjects|outputObjects"), names(xx))
xx[toRmESEOL] <- lapply(xx[toRmESEOL], function(elem) {
if (any(grepl("desc", tolower(names(elem))))) {
whCol <- grep("desc", tolower(names(elem)))
elem[[whCol]] <- rmExtraSpacesEOL(elem[[whCol]])
elem
} else {
elem
}
})
xx
}
rmExtraSpacesEOLCollapse <- function(lis, useOnlyUnnamed = TRUE) {
if (isTRUE(useOnlyUnnamed))
if (!is.null(names(lis))) {
lis <- lis[!nzchar(names(lis))]
}
lis <- unlist(lis)
lis <- paste(lis, collapse = "")
lis <- rmExtraSpacesEOL(lis)
} |
layout_tbl_graph_dendrogram <- function(graph, circular = FALSE, offset = pi / 2, height = NULL, length = NULL, repel = FALSE, ratio = 1, direction = 'out') {
height <- enquo(height)
length <- enquo(length)
reverse_dir <- if (direction == 'out') 'in' else 'out'
if (quo_is_null(height)) {
if (quo_is_null(length)) {
height <- NA
} else {
length <- eval_tidy(length, .E())
full_lengths <- distances(graph, to = node_is_root(), weights = length, mode = reverse_dir)
full_lengths[is.infinite(full_lengths)] <- 0
height <- unname(apply(full_lengths, 1, max))
height <- abs(height - max(height))
}
} else {
height <- eval_tidy(height, .N())
}
nodes <- new_data_frame(list(
x = rep(NA_real_, gorder(graph)),
y = height,
leaf = degree(graph, mode = direction) == 0
))
if (all(is.na(nodes$y))) {
nodes$y <- vapply(seq_len(gorder(graph)), function(i) {
max(bfs(graph, i, direction, unreachable = FALSE, order = FALSE, dist = TRUE)$dist, na.rm = TRUE)
}, numeric(1))
}
if (repel) {
pad <- min(nodes$y[nodes$y != 0]) / 2
} else {
pad <- 0
}
startnode <- which(degree(graph, mode = reverse_dir) == 0)
if (length(startnode) < 1) stop('No root nodes in graph')
recurse_layout <- function(gr, node, layout, direction, offset = 0) {
children <- as.numeric(neighbors(gr, node, direction))
if (length(children) == 0) {
layout$x[node] <- offset
layout
} else {
children_missing <- children[is.na(layout$x[children])]
for (i in children_missing) {
layout <- recurse_layout(gr, i, layout, direction, offset)
offset <- if (repel) {
max(layout$x[layout$leaf], na.rm = TRUE) + (layout$y[node] + pad) * ratio
} else {
max(layout$x[layout$leaf], na.rm = TRUE) + 1 + pad
}
}
layout$x[node] <- mean(range(layout$x[children]))
layout
}
}
offset <- 0
for (i in startnode) {
nodes <- recurse_layout(graph, i, nodes, direction = direction, offset)
offset <- max(nodes$x[nodes$leaf], na.rm = TRUE) + 1
}
graph <- add_direction(graph, nodes)
if (circular) {
radial <- radial_trans(
r.range = rev(range(nodes$y)),
a.range = range(nodes$x),
offset = offset
)
coords <- radial$transform(nodes$y, nodes$x)
nodes$x <- coords$x
nodes$y <- coords$y
}
extra_data <- as_tibble(graph, active = 'nodes')
warn_dropped_vars(nodes, extra_data)
nodes <- cbind(nodes, extra_data[, !names(extra_data) %in% names(nodes), drop = FALSE])
nodes$circular <- circular
attr(nodes, 'graph') <- graph
nodes
} |
basepkgs = installed.packages(priority="base")[, "Package"]
switchDeps = c(basepkgs, "switchr", "RCurl", "bitops", "BiocInstaller", "BiocManager", "RJSONIO")
switchrDontUnload = function(value, add=TRUE) {
if(missing(value)){
if(is.null(switchrOpts$dontunload))
switchrOpts$dontunload = switchDeps
switchrOpts$dontunload
} else {
value = .dodepsourselves(value, incl_pkgs = TRUE)
if(add)
value = unique(c(switchrDontUnload(), value))
switchrOpts$dontunload = value
}
}
.dodepsourselves = function(pkg, av = available.packages(contrib.url(defaultRepos())), incl_pkgs = TRUE) {
if(nrow(av) == 0)
av = installed.packages()
deps = .innerdodeps(pkg, av)
done = pkg
remaining = deps
while(length(remaining) > 0) {
d = remaining[1]
newdeps = .innerdodeps(d, av, done = done)
done = c(done, d)
deps = c(deps, newdeps)
remaining = unique(c(remaining[-1], newdeps))
}
if(incl_pkgs)
deps = unique(c(pkg, deps))
deps
}
.innerdodeps = function(pkg, av, done = character() ) {
deps = av[pkg, c("Depends", "Imports")]
deps = unlist(as.vector(deps))
deps = deps[!is.na(deps)]
if(length(deps) >0) {
deps = unlist(strsplit(deps, "[[:space:]]*,[[:space:]]*"))
deps = gsub("[[:space:]]*([\\._[:alnum:]]*).*", "\\1", deps)
deps = deps[deps!= "R"]
deps = unique(deps)
deps = deps[!deps %in% c(done, basepkgs)]
}
deps
}
switchrNoUnload = function(value) {
if(missing(value)){
if(is.null(switchrOpts$noflush))
switchrOpts$noflush = FALSE
switchrOpts$noflush
} else {
if(is.na(value))
value = FALSE
if(!is(value, "logical"))
stop("The no unload option must be a logical value")
switchrOpts$noflush = value
}
}
flushSession = function(dontunload = switchrDontUnload()) {
atched = names(sessionInfo()$otherPkgs)
if(is.null(atched))
atched = character()
sapply(atched[!atched %in% dontunload], function(x) {
pkg = paste("package", x, sep=":")
detach(pkg, character.only = TRUE)
})
lded = rev(names(sessionInfo()$loadedOnly))
lded = lded[!lded %in% dontunload]
lded2 = lded
cnt = 1
while(length(lded) && cnt < 1000) {
sapply(lded, function(x) {
res = tryCatch(unloadNamespace(getNamespace(x)), error = function(e) e)
if(!is(res, "error")) {
}
})
lded = rev(names(sessionInfo()$loadedOnly))
lded = lded[!lded %in% dontunload]
cnt = cnt +1
}
if(cnt == 1000)
warning("Unable to unload all namespaces")
pkgs = unique(c(atched, lded2))
pkgs = pkgs[! pkgs %in% dontunload]
sapply(pkgs, function(x) {
dll = getLoadedDLLs()[[x]]
if(!is.null(dll))
tryCatch(library.dynam.unload(x, dirname(dirname(dll[["path"]]))), error = function(e) NULL)
})
NULL
} |
COPY_biglasso <- function(X, y.train, ind.train, covar.train,
family = c("gaussian", "binomial"),
alpha = 1,
lambda.min = `if`(nrow(X) > ncol(X), .001, .01),
nlambda = 100, lambda.log.scale = TRUE,
lambda, eps = 1e-7, max.iter = 1000,
dfmax = p + 1,
penalty.factor = NULL,
warn = TRUE,
verbose = FALSE) {
family <- match.arg(family)
lambda.min <- max(lambda.min, 1e-6)
n <- length(ind.train)
if (is.null(covar.train)) covar.train <- matrix(0, n, 0)
assert_lengths(y.train, ind.train, rows_along(covar.train))
p <- ncol(X) + ncol(covar.train)
if (is.null(penalty.factor)) penalty.factor <- rep(1, p)
if (p != length(penalty.factor))
stop("'penalty.factor' has an incompatible length.")
if (alpha == 1) {
penalty <- "lasso"
} else if (alpha < 1 && alpha > 1e-6) {
penalty <- "enet"
} else {
stop("alpha must be between 1e-6 and 1 for elastic net penalty.")
}
if (nlambda < 2) stop("nlambda must be at least 2")
if (any(is.na(y.train)))
stop(paste("Missing data (NA's) detected. Take actions",
"(e.g., removing cases, removing features, imputation)",
"to eliminate missing data before fitting the model."))
if (class(y.train) != "numeric")
tryCatch(y.train <- as.numeric(y.train), error = function(e)
stop("y.train must numeric or able to be coerced to numeric"))
if (family == "binomial") {
yy <- transform_levels(y.train)
} else if (family == "gaussian") {
yy <- y.train - mean(y.train)
} else {
stop("Current version only supports Gaussian or Binominal response!")
}
if (missing(lambda)) {
user.lambda <- FALSE
lambda <- rep(0, nlambda);
} else {
nlambda <- length(lambda)
user.lambda <- TRUE
}
if (verbose) printf("\nStart biglasso: %s\n", format(Sys.time()))
if (family == "gaussian") {
res <- COPY_cdfit_gaussian_hsr(X, yy, ind.train, covar.train,
lambda, nlambda, lambda.log.scale,
lambda.min, alpha,
user.lambda | any(penalty.factor == 0),
eps, max.iter, penalty.factor,
dfmax, verbose)
a <- rep(mean(y.train), nlambda)
b <- Matrix(res[[1]], sparse = TRUE)
center <- res[[2]]
scale <- res[[3]]
lambda <- res[[4]]
loss <- res[[5]]
iter <- res[[6]]
rejections <- res[[7]]
col.idx <- res[[8]]
} else if (family == "binomial") {
res <- COPY_cdfit_binomial_hsr(X, yy, ind.train, covar.train,
lambda, nlambda, lambda.log.scale,
lambda.min, alpha,
user.lambda | any(penalty.factor == 0),
eps, max.iter, penalty.factor,
dfmax, warn, verbose)
a <- res[[1]]
b <- Matrix(res[[2]], sparse = TRUE)
center <- res[[3]]
scale <- res[[4]]
lambda <- res[[5]]
loss <- res[[6]]
iter <- res[[7]]
rejections <- res[[8]]
col.idx <- res[[9]]
} else {
stop("Current version only supports Gaussian or Binominal response!")
}
if (verbose) printf("\nEnd biglasso: %s\n", format(Sys.time()))
col.idx <- col.idx + 1
ind <- !is.na(iter)
a <- a[ind]
b <- b[, ind, drop = FALSE]
iter <- iter[ind]
lambda <- lambda[ind]
loss <- loss[ind]
if (warn & any(iter == max.iter))
warning("Algorithm failed to converge for some values of lambda")
beta <- Matrix(0, nrow = p, ncol = length(lambda), sparse = TRUE)
bb <- b / scale[col.idx]
beta[col.idx, ] <- bb
aa <- a - as.numeric(crossprod(center[col.idx], bb))
names(aa) <- colnames(beta) <- round(lambda, digits = 4)
structure(list(
intercept = aa,
beta = beta,
iter = iter,
lambda = lambda,
penalty = penalty,
family = family,
alpha = alpha,
loss = loss,
penalty.factor = penalty.factor,
n = n,
p = p,
center = center,
scale = scale,
y = yy,
col.idx = col.idx,
rejections = rejections
), class = "big_sp")
}
big_spLinReg <- function(X, y.train, ind.train = rows_along(X),
covar.train = NULL, ...) {
check_args()
COPY_biglasso(X, y.train, ind.train, covar.train, family = "gaussian", ...)
}
big_spLogReg <- function(X, y01.train, ind.train = rows_along(X),
covar.train = NULL, ...) {
check_args()
COPY_biglasso(X, y01.train, ind.train, covar.train, family = "binomial", ...)
} |
aggregate_positions <- function(tau_x, type = "sum") {
if (!inherits(tau_x, "Matrix") & !is.matrix(tau_x)) {
stop("tau_x must be a matrix")
}
if (type == "sum") {
return(rowSums(tau_x))
} else if (type == "prod") {
return(apply(tau_x, 1, prod))
} else if (type == "mean") {
return(rowMeans(tau_x))
} else if (type == "max") {
return(apply(tau_x, 1, max))
} else if (type == "min") {
return(apply(tau_x, 1, min))
} else if (type == "invsum") {
return(rowSums(tau_x)^-1)
} else if (type == "self") {
diag(tau_x)
} else {
stop(paste("type =", type, "is not supported. See function details for options."))
}
} |
GetPermanentTraffic <- function(reportsuite.ids) {
request.body <- c()
request.body$rsid_list <- reportsuite.ids
request.body$locale <- unbox(AdobeAnalytics$SC.Credentials$locale)
request.body$elementDataEncoding <- unbox("utf8")
response <- ApiRequest(body=toJSON(request.body),func.name="ReportSuite.GetPermanentTraffic")
if(length(response$permanent_traffic[[1]]) == 0) {
return(print("Permanent Traffic Not Enabled For This Report Suite"))
}
accumulator <- data.frame()
permanent_traffic_list <- response$permanent_traffic
response$permanent_traffic <- NULL
for(i in 1:nrow(response)){
permanent_traffic_df <- as.data.frame(permanent_traffic_list[[i]])
if(nrow(permanent_traffic_df) == 0){
temp <- response[i,]
} else {
temp <- cbind(response[i,], permanent_traffic_df, row.names = NULL)
}
accumulator <- rbind.fill(accumulator, temp)
}
return(accumulator)
} |
readALSLAS = function(files, select = "*", filter = "")
{
do_no_read_lascluster(files)
las <- readLAS(files, select, filter)
las@index <- LIDRALSINDEX
return(las)
}
readTLSLAS = function(files, select = "*", filter = "")
{
do_no_read_lascluster(files)
las <- readLAS(files, select, filter)
las@index <- LIDRTLSINDEX
return(las)
}
readUAVLAS = function(files, select = "*", filter = "")
{
do_no_read_lascluster(files)
las <- readLAS(files, select, filter)
las@index <- LIDRUAVINDEX
return(las)
}
readDAPLAS = function(files, select = "*", filter = "")
{
do_no_read_lascluster(files)
las <- readLAS(files, select, filter)
las@index <- LIDRDAPINDEX
return(las)
}
readMSLAS = function(files1, files2, files3, select = "*", filter = "")
{
if (missing(files2) && missing(files3))
{
las <- readLAS(files1, select, filter)
las@index <- LIDRMLSINDEX
return(las)
}
las <- readLAS(c(files1, files2, files3), select, filter)
if (!"ScannerChannel" %in% names(las@data))
{
tmp <- readLAS(files1, "", filter)
n1 <- npoints(tmp)
tmp <- readLAS(files2, "", filter)
n2 <- npoints(tmp)
las@data[["ScannerChannel"]] <- 1L
las@data[["ScannerChannel"]][(n1+1):(n1+n2)] <- 2L
las@data[["ScannerChannel"]][(n1+n2+1):npoints(las)] <- 3L
las@header@PHB[["Point Data Format ID"]] <- 6L
las@header@PHB[["Version Minor"]] <- 4L
message("Multispectral data read from point format < 6 with no ScannerChannel attribute. The LAS object has been upgraded to LAS 1.4 prf 6 with a ScannerChannel.")
}
else
{
n <- fast_countequal(las@data[["ScannerChannel"]], 0L)
if (n > 0 && n < npoints(las))
warning("Some points have a ScannerChannel of 0 meaning they come from single source sensor.", call. = FALSE)
if (n == npoints(las)) {
tmp <- readLAS(files1, "", filter)
n1 <- npoints(tmp)
tmp <- readLAS(files2, "", filter)
n2 <- npoints(tmp)
las@data[["ScannerChannel"]] <- 1L
las@data[["ScannerChannel"]][(n1+1):(n1+n2)] <- 2L
las@data[["ScannerChannel"]][(n1+n2+1):npoints(las)] <- 3L
message("ScannerChannel was not populated. The ScannerChannel of the LAS object has been automatically populated.")
}
}
las@index <- LIDRMLSINDEX
return(las)
}
do_no_read_lascluster = function(x)
{
if (is(x, "LAScluster"))
stop("Use readLAS() to read a LAScluster object not one of readXXXLAS(). A LAScluster object already contains metadata about the point cloud type.", call. = FALSE)
} |
library(checkargs)
context("isNumberOrNanOrInfScalarOrNull")
test_that("isNumberOrNanOrInfScalarOrNull works for all arguments", {
expect_identical(isNumberOrNanOrInfScalarOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNumberOrNanOrInfScalarOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNumberOrNanOrInfScalarOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNumberOrNanOrInfScalarOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNumberOrNanOrInfScalarOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNumberOrNanOrInfScalarOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNumberOrNanOrInfScalarOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
}) |
bfastpp<- function(data, order = 3,
lag = NULL, slag = NULL, na.action = na.omit,
stl = c("none", "trend", "seasonal", "both"),
decomp = c("stl", "stlplus"), sbins = 1)
{
decomp <- match.arg(decomp)
stl <- match.arg(stl)
if (stl != "none" && decomp == "stlplus" && !requireNamespace("stlplus", quietly = TRUE))
stop("Please install the stlplus package or set decomp = 'stl' or stl = 'none'.")
if(!is.ts(data)) data <- as.ts(data)
stl <- match.arg(stl)
if(stl != "none") {
stl_adjust <- function(x) {
x_stl <- if (decomp=="stlplus") {
stlplus::stlplus(x, s.window = "periodic")$data
} else {
stats::stl(x, s.window = "periodic")$time.series
}
switch(stl,
"trend" = x - x_stl[, "trend"],
"seasonal" = x - x_stl[, "seasonal"],
"both" = x - x_stl[, "trend"] - x_stl[, "seasonal"])
}
if(NCOL(data) > 1L) {
for(i in 1:NCOL(data)) data[,i] <- stl_adjust(data[,i])
} else {
data <- stl_adjust(data)
}
}
if(NCOL(data) > 1L) {
x <- coredata(data)[, -1L]
y <- data[, 1L]
} else {
x <- NULL
y <- data
}
rval <- data.frame(
time = as.numeric(time(y)),
response = y,
trend = 1:NROW(y),
season = cut(cycle(y), if (sbins > 1) sbins else frequency(y)*sbins, ordered_result = TRUE)
)
freq <- frequency(y)
order <- min(freq, order)
harmon <- outer(2 * pi * as.vector(time(y)), 1:order)
harmon <- cbind(apply(harmon, 2, cos), apply(harmon, 2, sin))
colnames(harmon) <- if(order == 1) {
c("cos", "sin")
} else {
c(paste("cos", 1:order, sep = ""), paste("sin", 1:order, sep = ""))
}
if((2 * order) == freq) harmon <- harmon[, -(2 * order)]
rval$harmon <- harmon
nalag <- function(x, k) c(rep(NA, k), head(x, -k))
if(!is.null(lag)) {
rval$lag <- sapply(lag, function(k) nalag(as.vector(y), k))
colnames(rval$lag) <- lag
}
if(!is.null(slag)) {
rval$slag <- sapply(slag * freq, function(k) nalag(as.vector(y), k))
colnames(rval$slag) <- slag
}
rval$xreg <- x
rval <- na.action(rval)
return(rval)
} |
calc_kel_single_tdm <- function (
dose = 1000,
V = 50,
t = 10,
dv = 10,
tau = 12,
t_inf = 1,
kel_init = 0.1,
n_iter = 25
) {
t_next_dose <- tau - (t %% tau)
kel <- kel_init
for(i in 1:n_iter) {
cpeak <- clinPK::pk_1cmt_inf_cmax_ss(
dose = dose, CL = kel * V, V = V, tau = tau, t_inf = t_inf
)
cpred <- clinPK::pk_1cmt_inf_ss(
t = t,
dose = dose, CL = kel * V, V = V, tau = tau, t_inf = t_inf)
kel <- (cpred$dv/dv) * kel
}
return(kel)
} |
setClass("SDMXCodelists",
contains = "SDMX",
representation(
codelists = "list"
),
prototype = list(),
validity = function(object){
return(TRUE);
}
) |
fluidRow(
column(
width = 3,
radioButtons(
"sampler_warmup",
label = h5("Warmup"),
choices = list(Omit = "omit", Include = "include"),
inline = TRUE
)
),
column(
width = 4,
radioButtons(
"sampler_report",
label = h5("Statistic"),
choices = list(
Mean = "average",
SD = "sd",
Max = "maximum",
Min = "minimum"
),
inline = TRUE
)
),
column(
width = 2,
numericInput(
"sampler_digits",
label = h5("Decimals"),
value = 4,
min = 0,
max = 10,
step = 1
)
)
) |
expected <- c(3L, 0L, 0L, 3L, 0L, 0L)
test(id=8, code={
argv <- structure(list(x = complex(real=Inf, imaginary=Inf)), .Names = "x")
do.call('format.info', argv);
}, o = expected);
|
calculate_score <- function(string,
keywords,
case = FALSE) {
if(case == FALSE) {
score <- stringr::str_match_all(stringr::str_to_lower(string),
stringr::str_to_lower(keywords)) %>%
purrr::flatten() %>%
length()
} else if (case == TRUE) {
score <- stringr::str_match_all(string, keywords) %>%
purrr::flatten() %>%
length()
}
return(score)
} |
predict.tvgarch <- function (object, n.ahead = 10, newxtv = NULL,
newxreg = NULL, newindex = NULL, n.sim = 5000,
as.zoo = TRUE, verbose = FALSE, ...)
{
n <- length(object$y)
if (!is.null(object$order.g) && object$order.g[1] != 0) {
coefs.h <- as.numeric(coef.tvgarch(object = object, spec = "garch"))
}
if (is.null(object$order.g) || object$order.g[1] == 0) {
coefs.h <- as.numeric(coef.tvgarch(object = object, spec = "sigma2"))
}
interceptCoef <- coefs.h[1]
archCoef <- coefs.h[(1+1):(1+object$order.h[2])]
if (object$order.h[1] != 0) {
garchCoef <- coefs.h[(1+object$order.h[2]+1):(1+sum(object$order.h[1:2]))]
}
if (object$order.h[1] == 0) garchCoef <- NULL
if (object$order.h[3] != 0) {
asymCoef <-
coefs.h[(1+sum(object$order.h[1:2])+1):(1+sum(object$order.h))]
}
if (object$order.h[3] == 0) asymCoef <- NULL
if (!is.null(object$xreg)) xregCoef <- coefs.h[-(1:(1+sum(object$order.h)))]
if (is.null(object$xreg)) xregCoef <- NULL
backcast.values <- list()
if (max(object$order.h) > 0) {
backcast.values$innovations <- tail(as.numeric(object$residuals),
n = max(object$order.h))
backcast.values$z2 <- backcast.values$innovations^2
backcast.values$Ineg <- as.numeric(backcast.values$innovations < 0)
backcast.values$sigma2 <- tail(as.numeric(object$h),
n = max(object$order.h))
if (!is.null(object$xreg)) {
backcast.values$xreg <- tail(as.numeric(object$xreg%*%xregCoef),
n = max(object$order.h))
}
}
xreg <- NULL
if (!is.null(object$xreg)) {
if ((NROW(newxreg) != n.ahead)) {
stop("NROW(newxreg) is unequal to n.ahead")
}
xreg <- cbind(newxreg) %*% xregCoef
}
etahat <- coredata(object$residuals)
draws <- runif(n.ahead*n.sim, min = 0.5+1e-09,
max = length(etahat)+0.5-1e-09)
draws <- round(draws, digits = 0)
innovations <- matrix(etahat[draws], n.ahead, n.sim)
predictions.h <- matrix(NA, n.ahead, n.sim)
for (i in 1:n.sim) {
predictions.h[,i] <- garchxSim(n = n.ahead, intercept = interceptCoef,
arch = archCoef, garch = garchCoef,
asym = asymCoef, xreg = xreg,
innovations = innovations[,i],
backcast.values = backcast.values,
verbose = TRUE, as.zoo = FALSE)[,"sigma2"]
}
if (!is.null(object$order.g) && object$order.g[1] != 0) {
coefs.g <- as.numeric(coef.tvgarch(object = object, spec = "tv"))
if (!is.null(newxtv)) {
if ((NROW(newxtv) != n.ahead)) {
stop("NROW(newxtv) is unequal to n.ahead")
}
newxtv <- as.matrix(newxtv)
predictions.g <- tvObj(par.g = coefs.g, fixed.par.g = NULL,
xtv = newxtv, opt = object$opt,
order.g = object$order.g, fixed.h = NULL,
y = NULL, iter0 = TRUE, flag = 2)
}
if (is.null(newxtv)) predictions.g <- rep(coefs.g[1], n.ahead)
result <- as.matrix(rowMeans(predictions.h)*predictions.g)
if (verbose == TRUE) {
result <- cbind(result, as.vector(predictions.g), predictions.h)
colnames(result) <- c("p_sigma2", "p_g", paste("p_h",
1:NCOL(predictions.h),
sep = "_"))
}
}
if (is.null(object$order.g) || object$order.g[1] == 0) {
result <- as.matrix(rowMeans(predictions.h))
if (verbose == TRUE) {
result <- cbind(result, predictions.h)
colnames(result) <- c("p_sigma2", paste("p_h", 1:NCOL(predictions.h),
sep = "_"))
}
}
if (is.null(newindex)) {
newindex <- 1:n.ahead
}
if (as.zoo == TRUE) {
result <- zoo(result, order.by = newindex)
}
return(result)
} |
stat_summarise <- function(mapping = NULL, data = NULL, geom = "bar", position = "identity",
..., fun = NULL, args = list(), show.legend = NA,
inherit.aes = TRUE){
layer(geom = geom, stat = StatSummarise, data = data, mapping = mapping, position = position,
params = list(fun = fun, args = args, ...), inherit.aes = inherit.aes,
show.legend = show.legend)
}
stat_summarize <- stat_summarise
StatSummarise <- ggplot2::ggproto("StatSummarise",
Stat,
required_aes = c("domain"),
compute_panel = function(self, data, scales, domain = NULL,
fun = NULL, args = list()) {
if (empty(data)) return(new_data_frame())
if(is.null(fun)) {
warn("fun is NULL, using length as default")
fun <- length
}
groups <- split(data, data$group)
stats <- lapply(groups, function(group){
self$compute_group(data = group, fun = fun, args = args)
})
rbind_dfs(stats)
},
compute_group = function(self, data, scales, fun = NULL, args = args){
call_f <- function(fun = fun, x) {
if (is.null(fun)) return(NA_real_)
fun <- as_function(fun)
do.call(fun, c(list(quote(x)), args))
}
data <- unique(transform(data, summarise = call_f(fun, domain), domain = NULL))
data[['summarize']] <- data[['summarise']]
data
},
compute_layer = function(self, data, params, layout) {
check_required_aesthetics(
self$required_aes,
c(names(data), names(params)),
snake_class(self)
)
required_aes <- intersect(
names(data),
unlist(strsplit(self$required_aes, "|", fixed = TRUE))
)
data <- remove_missing(data, params$na.rm,
c(required_aes, self$non_missing_aes),
snake_class(self),
finite = FALSE
)
params <- params[intersect(names(params), self$parameters())]
args <- c(list(data = quote(data), scales = quote(scales)), params)
dapply(data, "PANEL", function(data) {
scales <- layout$get_scales(data$PANEL[1])
tryCatch(do.call(self$compute_panel, args), error = function(e) {
warn(glue("Computation failed in `{snake_class(self)}()`:\n{e$message}"))
new_data_frame()
})
})
})
StatSummarize <- ggplot2::ggproto("StatSummarize",
Stat,
required_aes = c("domain"),
compute_panel = function(self, data, scales, domain = NULL,
fun = NULL, args = list()) {
if (empty(data)) return(new_data_frame())
if(is.null(fun)) {
warn("fun is NULL, using length as default")
fun <- length
}
groups <- split(data, data$group)
stats <- lapply(groups, function(group){
self$compute_group(data = group, fun = fun, args = args)
})
rbind_dfs(stats)
},
compute_group = function(self, data, scales, fun = NULL, args = args){
call_f <- function(fun = fun, x) {
if (is.null(fun)) return(NA_real_)
fun <- as_function(fun)
do.call(fun, c(list(quote(x)), args))
}
data <- unique(transform(data, summarise = call_f(fun, domain), domain = NULL))
data[['summarize']] <- data[['summarise']]
data
},
compute_layer = function(self, data, params, layout) {
check_required_aesthetics(
self$required_aes,
c(names(data), names(params)),
snake_class(self)
)
required_aes <- intersect(
names(data),
unlist(strsplit(self$required_aes, "|", fixed = TRUE))
)
data <- remove_missing(data, params$na.rm,
c(required_aes, self$non_missing_aes),
snake_class(self),
finite = FALSE
)
params <- params[intersect(names(params), self$parameters())]
args <- c(list(data = quote(data), scales = quote(scales)), params)
dapply(data, "PANEL", function(data) {
scales <- layout$get_scales(data$PANEL[1])
tryCatch(do.call(self$compute_panel, args), error = function(e) {
warn(glue("Computation failed in `{snake_class(self)}()`:\n{e$message}"))
new_data_frame()
})
})
}) |
testthat::context("SlideDeck")
testthat::test_that("Testing the introduction presentation", {
fname <- system.file("Introduction.plain", package = "REPLesentR", mustWork = TRUE)
file.copy(fname, tfname <- tempfile(fileext = ".plain"))
rawText <- Read()$auto(tfname, quiet = TRUE)
slideDeck <- SlideDeck()$new(rawText)
testthat::expect_true(length(slideDeck) == 10)
lapply(slideDeck, function(slide) {
testthat::expect_true(all(c("content", "format", "number") %in% names(slide)))
})
}) |
simfam <-
function(N.fam, design="pop", variation="none", interaction=FALSE, depend=NULL,
base.dist="Weibull", frailty.dist=NULL, base.parms, vbeta,
allelefreq=c(0.02, 0.2), dominant.m=TRUE, dominant.s=TRUE, mrate=0, hr=0,
probandage=c(45, 2), agemin = 20, agemax = 100)
{
if(!is.element(variation, c("none", "frailty", "secondgene"))) stop("Unrecognized variation; variation should be one of none, frailty, or secondgene")
if(agemin > 70) warning("agemin should be less than 70.")
if(agemin >= agemax) stop("agemax should be greater than agemin.")
if(!is.element(base.dist, c("Weibull", "loglogistic", "Gompertz", "lognormal", "logBurr")))
stop("Unrecognized base.dist; base.dist should be one of \"Weibull\", \"loglogistic\", \"Gompertz\", \"lognormal\", or \"logBurr\". ")
if(variation=="frailty"){
if(!any(frailty.dist==c("lognormal", "gamma"))) stop("Unrecognized frailty distribution; frailty.dist should be either \"gamma\" or \"lognormal\". ")
if(is.null(depend)) stop("depend should be specified.")
if(depend <= 0) stop("depend should be > 0")
}
else{
if(any(frailty.dist==c("lognormal", "gamma")) ) stop("Variation should be specified as variation = \"frailty\".")
if(!is.null(frailty.dist) ) stop("frailty.dist should be specified only with variation=\"frailty\" ")
if(!is.null(depend)) stop("depend should be specified only with variation=\"frailty\" ")
}
if(!is.element(design, c("pop","pop+","cli","cli+","twostage"))) stop("Unrecognized design; should be one of pop, pop+, cli, cli+ or twostage")
nvbeta = 2+(variation=="secondgene")+interaction
if(length(vbeta) != nvbeta) stop(paste("vbeta should be a vector of length", nvbeta))
if(base.dist=="logBurr" & length(base.parms)!=3) stop("parms should be a vector of length 3")
else if(base.dist!="logBurr" & length(base.parms)!=2) stop("parms should be a vector of length 2")
if(design=="pop") {affectnum=1; m.carrier=0}
if(design=="pop+"){affectnum=1; m.carrier=1}
if(design=="cli") {affectnum=3; m.carrier=0}
if(design=="cli+"){affectnum=3; m.carrier=1}
if(design=="twostage"){
affectnum = 2
m.carrier = 0
if(hr==0) stop("Please specify the sampling rate of high risk families (0 < hr < 1)")
else if(hr>1 | hr <0) stop("hr should be between 0 and 1 (0 < hr < 1)")
}
dat <- data.frame(familyDesign(n=N.fam, affectnum=affectnum, m.carrier=m.carrier,
base.dist=base.dist, frailty.dist=frailty.dist,
dominant.m=dominant.m, dominant.s=dominant.s, interaction=interaction, depend=depend, vbeta=vbeta,
parms=base.parms, variation=variation, allelefreq=allelefreq,
mrate=mrate, probandage=probandage, agemin=agemin, agemax=agemax))
if(hr==0) dat$weight <- 1
else {
if(design!="twostage") stop ("hr can be used only with twostage design" )
en.hr <- round(hr*N.fam)
en.lr <- N.fam - en.hr
datp <- dat[dat$proband==1,]
n.hr <- sum(datp$naff>2)
fam.id <- datp$famID
lfam.id <- fam.id[datp$naff<3]
hfam.id <- fam.id[datp$naff>2]
if(length(lfam.id) < en.lr) id <- lfam.id
else id <- sample(lfam.id, en.lr, replace=FALSE)
n.more <- ifelse(en.hr < n.hr, 0, en.hr-n.hr)
dat1 <- dat[is.element(dat$famID, c(id, hfam.id)), ]
dat2 <- data.frame(familyDesign(n=n.more, affectnum=3, m.carrier=m.carrier,
base.dist=base.dist, frailty.dist=frailty.dist,
dominant.m=dominant.m, dominant.s=dominant.s, interaction=interaction, depend=depend, vbeta=vbeta,
parms=base.parms, variation=variation, allelefreq=allelefreq,
mrate=mrate, probandage=probandage, agemin=agemin, agemax=agemax))
dat <- rbind(dat1, dat2)
samrate <- en.lr/(N.fam-n.hr)/(en.hr/n.hr)
dat$weight <- ifelse(dat$naff>2, 1, samrate)
}
class(dat)<-c("simfam","data.frame")
attr(dat, "design") <- design
attr(dat, "variation") <- variation
attr(dat, "interaction") <- interaction
attr(dat, "frailty.dist") <- frailty.dist
attr(dat, "base.dist") <- base.dist
attr(dat, "base.parms") <- base.parms
attr(dat, "vbeta") <- vbeta
attr(dat, "n.fam") <- N.fam
attr(dat, "agemin") <- agemin
return(dat)
} |
library(xts)
library(qrmtools)
library(qrmdata)
data(SP500)
data(VIX)
plot(SP500)
plot(VIX)
X1 <- returns(SP500)['1990-01-01/']
X2 <- returns(VIX/100, method = "diff")['1990-01-01/']
X. <- merge(X1, X2)
any(is.na(X.))
X <- as.matrix(na.fill(X., fill = "extend"))
colnames(X) <- c("SP500", "VIX")
plot(X)
T <- 1
K <- 100
S <- 100
r <- 0.03
sigma <- 0.25
Delta.t <- 1/250
V.t0 <- Black_Scholes(0, S = S, r = r, sigma = sigma, K = K, T = T, type = "call")
V.t1 <- Black_Scholes(Delta.t, S = exp(log(S) + X[,"SP500"]),
r = r,
sigma = exp(log(sigma) + X[,"VIX"]),
K = K, T = T, type = "call")
L <- -(V.t1 - V.t0)
hist(L, probability = TRUE); box()
(Greeks <- Black_Scholes_Greeks(0, S = S, r = r, sigma = sigma, K = K, T = T))
L.Delta <- -(Greeks[["delta"]] * X[,"SP500"] * S +
Greeks[["theta"]] * Delta.t +
Greeks[["vega"]] * X[,"VIX"] * sigma)
plot(L, L.Delta)
abline(0, 1, col = "royalblue3")
L.Delta.Gamma <- L.Delta - 0.5 * (Greeks[["gamma"]] * (X[,"SP500"] * S)^2 +
2 * Greeks[["vanna"]] * X[,"SP500"] * X[,"VIX"] * S * sigma +
Greeks[["vomma"]] * (X[,"VIX"] * sigma)^2)
plot(L, L.Delta.Gamma)
abline(0, 1, col = "royalblue3")
S <- 70
V.t0 <- Black_Scholes(0, S = S, r = r, sigma = sigma, K = K, T = T, type = "call")
V.t1 <- Black_Scholes(Delta.t, S = exp(log(S) + X[,"SP500"]),
r = r,
sigma = exp(log(sigma) + X[,"VIX"]),
K = K, T = T, type = "call")
L <- -(V.t1 - V.t0)
(Greeks <- Black_Scholes_Greeks(0, S = S, r = r, sigma = sigma, K = K, T = T))
L.Delta <- -(Greeks[["delta"]] * X[,"SP500"] * S +
Greeks[["theta"]] * Delta.t +
Greeks[["vega"]] * X[,"VIX"] * sigma)
plot(L, L.Delta)
abline(0, 1, col = "royalblue3")
L.Delta.Gamma <- L.Delta - 0.5 * (Greeks[["gamma"]] * (X[,"SP500"] * S)^2 +
2 * Greeks[["vanna"]] * X[,"SP500"] * X[,"VIX"] * S * sigma +
Greeks[["vomma"]] * (X[,"VIX"] * sigma)^2)
plot(L, L.Delta.Gamma)
abline(0, 1, col = "royalblue3")
t <- 0
T <- 1
K <- 100
S <- 110
r <- 0.02
sigma <- 0.2
delta.S <- 0.05
delta.sig <- 0.02
Delta.t <- 1/250
Delta.rho <- 0.001
(Greeks <- Black_Scholes_Greeks(0, S = S, r = r, sigma = sigma, K = K, T = T))
V.t0 <- S * Greeks[["delta"]] - Black_Scholes(t, S = S, r = r, sigma = sigma, K = K, T = T)
S.new <- exp(log(S) + delta.S)
V.t1 <- S.new * Greeks[["delta"]] - Black_Scholes(t + Delta.t, S = S.new, r = r,
sigma = sigma + delta.sig, K = K, T = T)
L <- -(V.t1 - V.t0)
delta.term <- Greeks[["delta"]] * S * delta.S
vega.term <- Greeks[["vega"]] * delta.sig
theta.term <- Greeks[["theta"]] * Delta.t
rho.term <- Greeks[["rho"]] * Delta.rho
(L.Delta <- theta.term + vega.term)
gamma.term <- 0.5 * Greeks[["gamma"]] * S^2 * delta.S^2
vanna.term <- Greeks[["vanna"]] * S * delta.S * delta.sig
vomma.term <- 0.5 * Greeks[["vomma"]] * delta.sig^2
L.Delta + gamma.term
L.Delta + vanna.term
(L.Delta.Gamma <- L.Delta + gamma.term + vanna.term + vomma.term)
c(L, L.Delta, L.Delta.Gamma)
abs(L - L.Delta)/abs(L)
abs(L - L.Delta.Gamma)/abs(L) |
context("partitioning")
test_that("sdf_repartition works", {
iris_tbl <- testthat_tbl("iris")
expect_equal(
iris_tbl %>%
sdf_repartition(4L) %>%
sdf_num_partitions(),
4L
)
})
test_that("sdf_reparition: partitioning by column works", {
test_requires_version("2.0.0", "partitioning by column requires spark 2.0+")
iris_tbl <- testthat_tbl("iris")
if (is_testing_databricks_connect()) {
plan_type <- "analyzed"
} else {
plan_type <- "optimizedPlan"
}
expect_true(
any(grepl(
"RepartitionByExpression \\[Species, Petal_Width\\]",
iris_tbl %>%
sdf_repartition(partition_by = c("Species", "Petal_Width")) %>%
sdf_query_plan(plan_type) %>%
gsub("
))
)
expect_true(
any(grepl(
"RepartitionByExpression \\[Species, Petal_Width\\], 5",
iris_tbl %>%
sdf_repartition(5L, partition_by = c("Species", "Petal_Width")) %>%
sdf_query_plan(plan_type) %>%
gsub("
))
)
})
test_that("'sdf_partition' -- 'partitions' argument should take numeric (
test_requires_version("2.0.0", "partitioning by column requires spark 2.0+")
iris_tbl <- testthat_tbl("iris")
expect_equal(
iris_tbl %>%
sdf_repartition(6, partition_by = "Species") %>%
sdf_num_partitions(),
6
)
})
test_that("'sdf_coalesce' works as expected", {
iris_tbl <- testthat_tbl("iris")
expect_equal(
iris_tbl %>%
sdf_repartition(5) %>%
sdf_coalesce(1) %>%
sdf_num_partitions(),
1
)
}) |
setpath.wrapper <-
function(d1,d2,pathwaygenes,pathwaynames,M=1,transform=NULL,minalpha=NULL,normalize=TRUE,pvalue="chisq",npermutations=10000)
{
K = length(pathwaynames)
results = matrix(NA,K,2*(M+1)+2)
dimnames(results)[[1]] = pathwaynames
dimnames(results)[[2]] = c("n.genes",paste("alpha.0",1:M,sep="."),"T.0",paste("alpha.0",1:M,sep="."),"T.0","pval")
if(!identical(dimnames(d1)[[2]],dimnames(d2)[[2]]))
{
stop("d1 and d2 have different feature (column) names.")
}
for(k in 1:K)
{
missinggenes = setdiff(pathwaygenes[[k]],dimnames(d1)[[2]])
if(length(missinggenes)>0)
{
warning(c("The following pathway genes are missing from the dataset:",missinggenes))
pathwaygenes[[k]] = intersect(pathwaygenes[[k]],dimnames(d1)[[2]])
}
temp = setpath(d1[,pathwaygenes[[k]]],d2[,pathwaygenes[[k]]],M=M,transform=transform,verbose=TRUE,minalpha=minalpha,normalize=normalize,pvalue=pvalue,npermutations=npermutations)
results[k,] = c(length(pathwaygenes[[k]]),temp$stats[,1],temp$stats[,2],temp$pval)
}
return(results)
} |
NULL
`<.bignum_vctr` <- function(e1, e2) {
vec_compare_bignum(e1, e2) < 0
}
`>.bignum_vctr` <- function(e1, e2) {
vec_compare_bignum(e1, e2) > 0
}
`<=.bignum_vctr` <- function(e1, e2) {
vec_compare_bignum(e1, e2) <= 0
}
`>=.bignum_vctr` <- function(e1, e2) {
vec_compare_bignum(e1, e2) >= 0
}
vec_proxy_compare.bignum_vctr <- function(x, ...) {
stop_unsupported(x, "vec_proxy_compare")
}
vec_compare_bignum <- function(x, y, na_equal = FALSE) {
vec_assert(x)
vec_assert(y)
vec_assert(na_equal, ptype = logical(), size = 1L)
args <- vec_recycle_common(x, y)
if ((is_biginteger(x) && is.double(y)) || (is_biginteger(y) && is.double(x))) {
args <- allow_lossy_cast(vec_cast_common(!!!args, .to = new_bigfloat()))
} else {
args <- vec_cast_common(!!!args)
}
vec_compare_bignum2(args[[1]], args[[2]], na_equal)
}
vec_compare_bignum2 <- function(x, y, na_equal = FALSE) {
UseMethod("vec_compare_bignum2")
}
vec_compare_bignum2.default <- function(x, y, na_equal = FALSE) {
stop_unsupported(x, "vec_compare_bignum2")
}
vec_compare_bignum2.bignum_biginteger <- function(x, y, na_equal = FALSE) {
c_biginteger_compare(x, y, na_equal)
}
vec_proxy_order.bignum_biginteger <- function(x, ...) {
c_biginteger_rank(x)
}
vec_compare_bignum2.bignum_bigfloat <- function(x, y, na_equal = FALSE) {
c_bigfloat_compare(x, y, na_equal)
}
vec_proxy_order.bignum_bigfloat <- function(x, ...) {
c_bigfloat_rank(x)
} |
"or.midp" <-
function(x, conf.level = 0.95, byrow = TRUE, interval = c(0, 1000)){
if(is.vector(x)){
if(!is.numeric(x)){stop("vector must be numeric")}
if(length(x)!=4){stop("vector must be of length 4")}
x <- matrix(x, 2, 2, byrow = byrow)
}
if(is.matrix(x)){
if(!is.numeric(x)){stop("matrix must be numeric")}
if(nrow(x)!=2 || ncol(x)!=2){stop("must be 2 x 2 matrix")}
a1 <- x[1,1]; a0 <- x[1,2]; b1 <- x[2,1]; b0 <- x[2,2]
} else {stop("must be numeric vector of length=4 or 2x2 numeric matrix")}
mue <- function(a1, a0, b1, b0, or){
mm <- matrix(c(a1,a0,b1,b0),2,2, byrow=TRUE)
fisher.test(mm, or=or, alternative="l")$p-fisher.test(x=x, or=or,
alternative="g")$p
}
midp <- function(a1, a0, b1, b0, or = 1){
mm <- matrix(c(a1,a0,b1,b0),2,2, byrow=TRUE)
lteqtoa1 <- fisher.test(mm,or=or,alternative="l")$p.val
gteqtoa1 <- fisher.test(mm,or=or,alternative="g")$p.val
0.5*(lteqtoa1-gteqtoa1+1)
}
alpha <- 1 - conf.level
EST <- uniroot(function(or){
mue(a1, a0, b1, b0, or)
}, interval = interval)$root
LCL <- uniroot(function(or){
1-midp(a1, a0, b1, b0, or)-alpha/2
}, interval = interval)$root
UCL <- 1/uniroot(function(or){
midp(a1, a0, b1, b0, or=1/or)-alpha/2
}, interval = interval)$root
rr <- list(x = x,
estimate = EST,
conf.int = c(LCL, UCL),
conf.level = conf.level)
attr(rr, "method") <- "median-unbiased estimate & mid-p exact CI"
return(rr)
} |
tblHvrules <- function(x)
{
stopifnot(inherits(x, "tblBlocks"))
nblk <- NROW(x)
hvrules <- data.frame("id"=character(0), "direction"=character(0),
"block"=character(0), "side"=character(0),
"adjacent_blocks"=character(0),
"arow1"=numeric(0), "arow2"=numeric(0),
"acol1"=numeric(0), "acol2"=numeric(0),
"enabled"=logical(0), stringsAsFactors=FALSE)
if (nblk > 0) {
adj <- adjacent_blocks(x)
x$block <- x$id
h1 <- within(x, { direction <- "hrule"; side <- "top"
a <- arow1 - 0.5; arow1 <- a; arow2 <- a })
h1$adjacent_blocks <- vapply(adj[, "top"], paste, character(1),
collapse=";", USE.NAMES=FALSE)
h2 <- within(x, { direction <- "hrule"; side <- "bottom"
a <- arow2 + 0.5; arow1 <- a; arow2 <- a })
h2$adjacent_blocks <- vapply(adj[, "bottom"], paste, character(1),
collapse=";", USE.NAMES=FALSE)
v1 <- within(x, { direction <- "vrule"; side <- "left"
a <- acol1 - 0.5; acol1 <- a; acol2 <- a })
v1$adjacent_blocks <- vapply(adj[, "left"], paste, character(1),
collapse=";", USE.NAMES=FALSE)
v2 <- within(x, { direction <- "vrule"; side <- "right"
a <- acol2 + 0.5; acol1 <- a; acol2 <- a })
v2$adjacent_blocks <- vapply(adj[, "right"], paste, character(1),
collapse=";", USE.NAMES=FALSE)
hv <- rbind(h1, h2, v1, v2)
hv$id <- with(hv, paste(block, side, sep="_"))
hv$adjacent_blocks <- trimws(hv$adjacent_blocks)
hv$enabled <- rep(FALSE, nrow(hv))
hvrules <- hv[order(hv$direction, hv$block, hv$side),
names(hvrules), drop=FALSE]
}
row.names(hvrules) <- hvrules$id
class(hvrules) <- c("tblHvrules", "data.frame")
hvrules
} |
vertmean <- function(depth, vari, level, top, bot, vol, total = FALSE) {
idepth <- which(depth >= top & depth <= bot)
ndepth <- c(depth[idepth])
nvari <- c(vari[idepth])
mdepth <- c(top, (ndepth[-1] + ndepth[-length(ndepth)])/2, bot)
nvol <- vol(mdepth, level)
dvol <- abs(diff(nvol))
ret <- sum(nvari * dvol)
if (total)
return(ret)
else
return(ret / sum(dvol))
} |
bidiagpls.fit <- function (X, Y, ncomp, ...)
{
Y <- as.matrix(Y)
dnX <- dimnames(X)[[2]]
dnY <- dimnames(Y)
nobj <- dim(X)[1]
npred <- dim(X)[2]
nresp <- dim(Y)[2]
Xmeans <- colMeans(X)
X <- X - rep(Xmeans, each = nobj)
Ymean <- mean(Y)
Y <- Y - Ymean
A <- ncomp
W <- matrix(0, ncol(X), A)
TT <- matrix(0, nrow = nrow(X), ncol = A)
D2 <- matrix(0, nrow = ncol(X), ncol = A)
iD2 <- matrix(0, nrow = ncol(X), ncol = A)
iB <- matrix(0, ncol(X), A)
iPreds <- matrix(0, nrow(X), A)
iResids <- matrix(0, nrow(X), A)
tQ <- matrix(0, nrow = A, ncol = 1)
out <- NULL
W[, 1] <- crossprod(X, Y)
W[, 1] <- W[, 1]/sqrt(c(crossprod(W[, 1])))
TT[, 1] <- X %*% W[, 1]
D2[1, 1] <- sqrt(c(crossprod(TT[, 1])))
TT[, 1] <- TT[, 1]/D2[1, 1]
iD2[1, 1] <- 1/D2[1, 1]
q1 <- crossprod(TT[, 1], Y)
tQ[1, ] <- q1
if (A == 1) {
out <- list(W, D2[1, 1], TT, iD2[1, 1], tQ)
}
else if (A > 1) {
for (a in 2:A) {
W[, a] <- crossprod(X, TT[, a - 1]) - D2[a - 1, a -
1] * W[, a - 1]
W[, a] <- W[, a] - W[, 1:(a - 1)] %*% crossprod(W[,
1:(a - 1)], W[, a])
D2[a - 1, a] <- -sqrt(c(crossprod(W[, a])))
W[, a] <- W[, a]/D2[a - 1, a]
TT[, a] <- (X %*% W[, a]) - D2[a - 1, a] * TT[, a -
1]
TT[, a] <- TT[, a] - TT[, 1:(a - 1)] %*% crossprod(TT[,
1:(a - 1)], TT[, a])
D2[a, a] <- sqrt(c(crossprod(TT[, a])))
TT[, a] <- TT[, a]/D2[a, a]
iD2[a, a] <- 1/D2[a, a]
iD2[1:(a - 1), a] <- iD2[1:(a - 1), a - 1] * (-D2[a -
1, a]/D2[a, a])
q1 <- crossprod(TT[, a], Y)
tQ[a, ] <- q1
out <- list(W, D2[1:A, 1:A], TT, iD2[1:A, 1:A], tQ)
}
}
W <- out[[1]]
D2 <- as.matrix(out[[2]])
TT <- out[[3]]
iD2 <- as.matrix(out[[4]])
tQ <- as.matrix(out[[5]])
P <- crossprod(X, TT)
D2.b <- D2
diag(D2.b)[diag(D2.b) < .Machine$double.eps^0.5] <- 1
for (a in 1:A) {
P[, a] <- P[, a]/D2.b[a, a]
}
R <- W %*% iD2
if (A == 1) {
iB[, 1] <- W[, 1] * iD2[1, 1] * tQ[1, 1]
out.iB <- iB
}
else {
for (a in 2:A) {
iB[, 1] <- W[, 1] * iD2[1, 1] * tQ[1, 1]
iB[, a] <- R[, 1:a] %*% tQ[1:a, 1]
out.iB <- iB
}
}
Betas <- R %*% tQ
fitted.pre <- X %*% Betas
fitted <- fitted.pre + Ymean
Yactual <- Y + Ymean
Xdata <- as.data.frame(X)
yloadings <- as.matrix(c(tQ)/diag(D2))
if (A == 1) {
iPreds[, 1] <- X %*% W[, 1] * iD2[1, 1] * tQ[1, 1] +
Ymean
out.iPreds <- iPreds
}
else {
for (a in 2:A) {
iPreds[, 1] <- X %*% W[, 1] * iD2[1, 1] * tQ[1, 1] +
Ymean
iPreds[, a] <- X %*% R[, 1:a] %*% tQ[1:a, 1] + Ymean
out.iPreds <- iPreds
}
}
if (A == 1) {
iResids[, 1] <- Y - (X %*% out.iB[, 1])
out.iResids <- iResids
}
else {
for (a in 2:A) {
iResids[, 1] <- Y - (X %*% out.iB[, 1])
iResids[, a] <- Y - (X %*% out.iB)[, a]
out.iResids <- iResids
}
}
colnames(out.iB) <- paste("ncomp", 1:A, sep = ".")
colnames(out.iPreds) <- paste("ncomp", 1:A, sep = ".")
colnames(out.iResids) <- paste("ncomp", 1:A, sep = ".")
colnames(R) <- paste("ncomp", 1:A, sep = ".")
class(TT) <- "scores"
class(P) <- class(q1) <- class(yloadings) <- "loadings"
class(W) <- "weights"
class(out.iPreds) <- "predict"
class(out.iB) <- "coefficients"
class(Xmeans) <- "vector"
row.names(P) <- dnX
row.names(W) <- dnX
row.names(out.iB) <- dnX
row.names(Betas) <- dnX
if (A == 1) {
scores <- TT * (diag(D2))
}
else {
scores <- TT %*% diag(diag(D2))
}
Outs <- list(loadings = P, weights = W, D2 = D2, iD2 = iD2,
Ymean = Ymean, Xmeans = Xmeans, coefficients = out.iB,
y.loadings = yloadings, scores = scores, R = R, Y = Y,
Yactual = Yactual, fitted = fitted, residuals = out.iResids,
Xdata = Xdata, iPreds = out.iPreds, y.loadings2 = tQ)
} |
export_table <- function(x,
sep = " | ",
header = "-",
empty_line = NULL,
digits = 2,
protect_integers = TRUE,
missing = "",
width = NULL,
format = NULL,
title = NULL,
caption = title,
subtitle = NULL,
footer = NULL,
align = NULL,
group_by = NULL,
zap_small = FALSE,
table_width = NULL,
verbose = TRUE) {
if (is.null(format)) {
format <- "text"
}
if (format == "md") {
format <- "markdown"
}
if (is.null(x) || (is.data.frame(x) && nrow(x) == 0) || .is_empty_object(x)) {
if (isTRUE(verbose)) {
message(paste0("Can't export table to ", format, ", data frame is empty."))
}
return(NULL)
}
if (identical(format, "html") && !is.data.frame(x) && is.list(x)) {
x <- do.call(rbind, lapply(x, function(i) {
attr_name <- .check_caption_attr_name(i)
i$Component <- attr(i, attr_name)[1]
i
}))
}
indent_groups <- attributes(x)$indent_groups
indent_rows <- attributes(x)$indent_rows
if (is.data.frame(x)) {
if (!is.null(title)) {
caption <- title
}
if (is.null(caption)) {
attr_name <- .check_caption_attr_name(x)
caption <- attributes(x)[[attr_name]]
}
if (is.null(subtitle)) {
subtitle <- attributes(x)$table_subtitle
}
if (is.null(footer)) {
footer <- attributes(x)$table_footer
}
out <- .export_table(
x = x,
sep = sep,
header = header,
digits = digits,
protect_integers = protect_integers,
missing = missing,
width = width,
format = format,
caption = caption,
subtitle = subtitle,
footer = footer,
align = align,
group_by = group_by,
zap_small = zap_small,
empty_line = empty_line,
indent_groups = indent_groups,
indent_rows = indent_rows,
table_width = table_width
)
} else if (is.list(x)) {
l <- .compact_list(x)
tmp <- lapply(1:length(l), function(element) {
i <- l[[element]]
t_footer <- attributes(i)$table_footer
if (element == length(l) && is.null(attributes(i)$table_footer) && !is.null(footer) && !is.list(footer)) {
t_footer <- footer
}
if (is.null(t_footer) && !is.null(footer) && is.list(footer) && length(footer) == length(l)) {
t_footer <- footer[[element]]
}
attr_name <- .check_caption_attr_name(i)
if (!is.null(title) && is.null(caption)) {
caption <- title
}
t_title <- attributes(i)[[attr_name]]
if (element == 1 && is.null(attributes(i)[[attr_name]]) && !is.null(caption) && !is.list(caption)) {
t_title <- caption
}
if (is.null(t_title) && !is.null(caption) && is.list(caption) && length(caption) == length(l)) {
t_title <- caption[[element]]
}
.export_table(
x = i,
sep = sep,
header = header,
digits = digits,
protect_integers = protect_integers,
missing = missing,
width = width,
format = format,
caption = t_title,
subtitle = attributes(i)$table_subtitle,
footer = t_footer,
align = align,
group_by = group_by,
zap_small = zap_small,
empty_line = empty_line,
indent_groups = indent_groups,
indent_rows = indent_rows,
table_width = table_width
)
})
out <- c()
if (format == "text") {
for (i in 1:length(tmp)) {
out <- paste0(out, tmp[[i]], "\n")
}
out <- substr(out, 1, nchar(out) - 1)
} else if (format == "markdown") {
for (i in 1:length(tmp)) {
out <- c(out, tmp[[i]], "")
}
out <- out[1:(length(out) - 1)]
}
} else {
return(NULL)
}
if (format == "markdown") {
attr(out, "format") <- "pipe"
class(out) <- c("knitr_kable", "character")
} else if (format == "text") {
class(out) <- c("insight_table", class(out))
}
out
}
.check_caption_attr_name <- function(x) {
attr_name <- "table_caption"
if (is.null(attr(x, attr_name, exact = TRUE)) && !is.null(attr(x, "table_title", exact = TRUE))) {
attr_name <- "table_title"
}
attr_name
}
.export_table <- function(x,
sep = " | ",
header = "-",
digits = 2,
protect_integers = TRUE,
missing = "",
width = NULL,
format = NULL,
caption = NULL,
subtitle = NULL,
footer = NULL,
align = NULL,
group_by = NULL,
zap_small = FALSE,
empty_line = NULL,
indent_groups = NULL,
indent_rows = NULL,
table_width = NULL) {
df <- as.data.frame(x)
if (is.null(width) || length(width) == 1) {
col_width <- width
} else {
col_width <- NULL
}
col_names <- names(df)
df <- as.data.frame(sapply(df, function(i) {
if (is.numeric(i)) {
format_value(i,
digits = digits, protect_integers = protect_integers,
missing = missing, width = col_width, zap_small = zap_small
)
} else {
i
}
}, simplify = FALSE), stringsAsFactors = FALSE)
df <- as.data.frame(sapply(df, as.character, simplify = FALSE), stringsAsFactors = FALSE)
names(df) <- col_names
df[is.na(df)] <- as.character(missing)
if (identical(format, "html")) {
out <- .format_html_table(
df,
caption = caption,
subtitle = subtitle,
footer = footer,
align = align,
group_by = group_by,
indent_groups = indent_groups,
indent_rows = indent_rows
)
} else {
df <- rbind(colnames(df), df)
aligned <- format(df, justify = "right")
col_align <- rep("right", ncol(df))
first_row <- as.character(aligned[1, ])
for (i in 1:length(first_row)) {
aligned[1, i] <- format(trimws(first_row[i]), width = nchar(first_row[i]), justify = "right")
}
final <- as.matrix(aligned)
if (!is.numeric(x[, 1])) {
final[, 1] <- format(trimws(final[, 1]), justify = "left")
col_align[1] <- "left"
}
if (format == "text") {
out <- .format_basic_table(
final,
header,
sep,
caption = caption,
subtitle = subtitle,
footer = footer,
align = align,
empty_line = empty_line,
indent_groups = indent_groups,
indent_rows = indent_rows,
col_names = col_names,
col_width = width,
col_align = col_align,
table_width = table_width
)
} else if (format == "markdown") {
out <- .format_markdown_table(
final,
x,
caption = caption,
subtitle = subtitle,
footer = footer,
align = align,
indent_groups = indent_groups,
indent_rows = indent_rows
)
}
}
out
}
.format_basic_table <- function(final,
header,
sep,
caption = NULL,
subtitle = NULL,
footer = NULL,
align = NULL,
empty_line = NULL,
indent_groups = NULL,
indent_rows = NULL,
col_names = NULL,
col_width = NULL,
col_align = NULL,
table_width = NULL) {
if (!is.null(align) && length(align) == 1) {
for (i in 1:ncol(final)) {
align_char <- ""
if (align %in% c("left", "right", "center", "firstleft")) {
align_char <- ""
} else {
align_char <- substr(align, i, i)
}
if (align == "left" || (align == "firstleft" && i == 1) || align_char == "l") {
final[, i] <- format(trimws(final[, i]), justify = "left")
col_align[i] <- "left"
} else if (align == "right" || align_char == "r") {
final[, i] <- format(trimws(final[, i]), justify = "right")
col_align[i] <- "right"
} else {
final[, i] <- format(trimws(final[, i]), justify = "centre")
col_align[i] <- "centre"
}
}
}
if (!is.null(indent_groups) && any(grepl(indent_groups, final[, 1], fixed = TRUE))) {
final <- .indent_groups(final, indent_groups)
} else if (!is.null(indent_rows) && any(grepl("
final <- .indent_rows(final, indent_rows)
}
if (!is.null(col_width) && length(col_width) > 1 && !is.null(names(col_width))) {
matching_columns <- stats::na.omit(match(names(col_width), col_names))
if (length(matching_columns)) {
for (i in matching_columns) {
w <- as.vector(col_width[col_names[i]])
final[, i] <- format(trimws(final[, i]), width = w, justify = col_align[i])
}
}
}
final2 <- NULL
final3 <- NULL
if (identical(table_width, "auto") || (!is.null(table_width) && is.numeric(table_width))) {
if (is.numeric(table_width)) {
line_width <- table_width
} else {
line_width <- options()$width
}
row_width <- nchar(paste0(final[1, ], collapse = sep))
if (row_width > line_width) {
i <- 1
while (nchar(paste0(final[1, 1:i], collapse = sep)) < line_width) {
i <- i + 1
}
if (i > 2 && i < ncol(final)) {
final2 <- final[, c(1, i:ncol(final))]
final <- final[, 1:(i - 1)]
}
}
row_width <- nchar(paste0(final2[1, ], collapse = sep))
if (row_width > line_width) {
i <- 1
while (nchar(paste0(final2[1, 1:i], collapse = sep)) < line_width) {
i <- i + 1
}
if (i > 2 && i < ncol(final2)) {
final3 <- final2[, c(1, i:ncol(final2))]
final2 <- final2[, 1:(i - 1)]
}
}
}
rows <- .table_parts(c(), final, header, sep, empty_line)
if (!is.null(final2)) {
rows <- .table_parts(paste0(rows, "\n"), final2, header, sep, empty_line)
}
if (!is.null(final3)) {
rows <- .table_parts(paste0(rows, "\n"), final3, header, sep, empty_line)
}
if (!is.null(caption) && caption[1] != "") {
if (length(caption) == 2 && .is_valid_colour(caption[2])) {
caption <- .colour(caption[2], caption[1])
}
if (!is.null(subtitle)) {
if (length(subtitle) == 2 && .is_valid_colour(subtitle[2])) {
subtitle <- .colour(subtitle[2], subtitle[1])
}
} else {
subtitle <- ""
}
title_line <- .trim(paste0(caption[1], " ", subtitle[1]))
title_line <- gsub(" ", " ", title_line, fixed = TRUE)
rows <- paste0(title_line, "\n\n", rows)
}
if (!is.null(footer)) {
if (is.list(footer)) {
for (i in footer) {
rows <- .paste_footers(i, rows)
}
} else {
rows <- .paste_footers(footer, rows)
}
}
rows
}
.table_parts <- function(rows, final, header, sep, empty_line) {
for (row in 1:nrow(final)) {
final_row <- paste0(final[row, ], collapse = sep)
if (!is.null(empty_line) && all(nchar(trimws(final[row, ])) == 0)) {
rows <- paste0(rows, paste0(rep_len(empty_line, nchar(final_row)), collapse = ""), sep = "\n")
} else {
rows <- paste0(rows, final_row, sep = "\n")
}
if (row == 1) {
if (!is.null(header)) {
rows <- paste0(rows, paste0(rep_len(header, nchar(final_row)), collapse = ""), sep = "\n")
}
}
}
rows
}
print.insight_table <- function(x, ...) {
cat(x)
invisible(x)
}
.paste_footers <- function(footer, rows) {
if (.is_empty_string(footer)) {
return(rows)
}
if (length(footer) == 2 && .is_valid_colour(footer[2])) {
footer <- .colour(footer[2], footer[1])
}
paste0(rows, footer[1])
}
.indent_groups <- function(final, indent_groups) {
whitespace <- sprintf("%*s", nchar(indent_groups), " ")
grps <- grep(indent_groups, final[, 1], fixed = TRUE)
grp_rows <- seq(grps[1], nrow(final))
grp_rows <- grp_rows[!grp_rows %in% grps]
final[grp_rows, 1] <- paste0(whitespace, final[grp_rows, 1])
final[, 1] <- gsub(indent_groups, "", final[, 1], fixed = TRUE)
final[, 1] <- trimws(final[, 1], which = "right")
final[, 1] <- format(final[, 1], justify = "left", width = max(nchar(final[, 1])))
final
}
.indent_rows <- function(final, indent_rows, whitespace = " ") {
grp_rows <- indent_rows + 1
final[grp_rows, 1] <- paste0(whitespace, final[grp_rows, 1])
non_grp_rows <- 1:nrow(final)
non_grp_rows <- non_grp_rows[!non_grp_rows %in% grp_rows]
final[non_grp_rows, 1] <- paste0(final[non_grp_rows, 1], whitespace)
grps <- grep("
final[, 1] <- gsub("
final[grps, 1] <- format(final[grps, 1], justify = "left", width = max(nchar(final[, 1])))
final
}
.indent_rows_html <- function(final, indent_rows, whitespace = "") {
grp_rows <- indent_rows + 1
final[grp_rows, 1] <- paste0(whitespace, final[grp_rows, 1])
non_grp_rows <- 1:nrow(final)
non_grp_rows <- non_grp_rows[!non_grp_rows %in% grp_rows]
final[, 1] <- gsub("
final
}
.format_markdown_table <- function(final,
x,
caption = NULL,
subtitle = NULL,
footer = NULL,
align = NULL,
indent_groups = NULL,
indent_rows = NULL) {
column_width <- nchar(final[1, ])
n_columns <- ncol(final)
first_row_leftalign <- (!is.null(align) && align == "firstleft")
header <- "|"
if (!is.null(indent_rows) || !is.null(indent_groups)) {
column_width[1] <- column_width[1] + 2
}
for (i in 1:n_columns) {
line <- paste0(rep_len("-", column_width[i]), collapse = "")
align_char <- ""
if (!is.null(align)) {
if (align %in% c("left", "right", "center", "firstleft")) {
align_char <- ""
} else {
align_char <- substr(align, i, i)
}
}
if (is.null(align)) {
if (grepl("^\\s", final[2, i])) {
line <- paste0(line, ":")
final[, i] <- format(final[, i], width = column_width[i] + 1, justify = "right")
} else {
line <- paste0(":", line)
final[, i] <- format(final[, i], width = column_width[i] + 1, justify = "left")
}
} else if (align == "left" || (first_row_leftalign && i == 1) || align_char == "l") {
line <- paste0(":", line)
final[, i] <- format(final[, i], width = column_width[i] + 1, justify = "left")
} else if (align == "right" || align_char == "r") {
line <- paste0(line, ":")
final[, i] <- format(final[, i], width = column_width[i] + 1, justify = "right")
} else {
line <- paste0(":", line, ":")
final[, i] <- format(final[, i], width = column_width[i] + 2, justify = "centre")
}
header <- paste0(header, line, "|")
}
if (!is.null(indent_groups) && any(grepl(indent_groups, final[, 1], fixed = TRUE))) {
final <- .indent_groups(final, indent_groups)
} else if (!is.null(indent_rows) && any(grepl("
final <- .indent_rows(final, indent_rows)
}
rows <- c()
for (row in 1:nrow(final)) {
final_row <- paste0("|", paste0(final[row, ], collapse = "|"), "|", collapse = "")
rows <- c(rows, final_row)
if (row == 1) {
rows <- c(rows, header)
}
}
if (!is.null(caption)) {
if (!is.null(subtitle)) {
caption[1] <- paste0(caption[1], " ", subtitle[1])
}
rows <- c(paste0("Table: ", .trim(caption[1])), "", rows)
}
if (!is.null(footer)) {
if (is.list(footer)) {
for (i in footer) {
if (!.is_empty_string(i)) {
rows <- c(rows, i[1])
}
}
} else if (!.is_empty_string(footer)) {
rows <- c(rows, footer[1])
}
}
rows
}
.format_html_table <- function(final,
caption = NULL,
subtitle = NULL,
footer = NULL,
align = "center",
group_by = NULL,
indent_groups = NULL,
indent_rows = NULL) {
check_if_installed("gt")
if (is.null(align)) {
align <- "firstleft"
}
group_by_columns <- c(intersect(c("Group", "Response", "Effects", "Component"), names(final)), group_by)
if (!length(group_by_columns)) {
group_by_columns <- NULL
} else {
for (i in group_by_columns) {
if (.n_unique(final[[i]]) <= 1) {
final[[i]] <- NULL
}
}
}
if (!is.null(indent_rows) && any(grepl("
final <- .indent_rows_html(final, indent_rows)
}
tab <- gt::gt(final, groupname_col = group_by_columns)
header <- gt::tab_header(tab, title = caption, subtitle = subtitle)
footer <- gt::tab_source_note(header, source_note = footer)
out <- gt::cols_align(footer, align = "center")
if (!is.null(out[["_boxhead"]]) && !is.null(out[["_boxhead"]]$column_align)) {
if (align == "firstleft") {
out[["_boxhead"]]$column_align[1] <- "left"
} else {
col_align <- c()
for (i in 1:nchar(align)) {
col_align <- c(col_align, switch(substr(align, i, i),
"l" = "left",
"r" = "right",
"center"
))
}
out[["_boxhead"]]$column_align <- col_align
}
}
out
} |
NULL
methods::setMethod("cutpoints", methods::signature(object = "glmdisc"), function(object) {
cutpoints <- list()
for (j in which(object@parameters$types_data == "factor")) {
cutpoints[[j]] <- apply(prop.table([email protected]$bestLinkFunction[[j]], 2), 2, which.max)
}
for (j in which(object@parameters$types_data == "numeric")) {
data_disc <- data.frame(disc = [email protected][, j], cont = [email protected][, j], stringsAsFactors = TRUE)
cut1 <- stats::aggregate(cont ~ disc, data = data_disc, min)
cut2 <- stats::aggregate(cont ~ disc, data = data_disc, max)
cut1 <- cut1[order(cut1$cont), ]
cut2 <- cut2[order(cut2$cont), ]
cut1 <- cut1[-1, ]
cut2 <- cut2[-nrow(cut2), ]
cutpoints[[j]] <- rowMeans(cbind(cut1$cont, cut2$cont))
}
names(cutpoints) <- colnames([email protected])[-ncol([email protected])]
return(cutpoints)
}) |
context("Test results of cs_per() function")
cs.per_result1 <- cs_per(x = seq(0, 1, by = 0.001), knots = 5)
cs.per_result2 <- cs_per(seq(0, 1, by = 0.001), knots = 8)
set.seed(12345)
cs.per_result3 <- cs_per(runif(1000), knots = 5)
test_that("cs.per_result1 is as expected", {
expect_equal_to_reference(cs.per_result1, file = "cs.per_result1.rds")
})
test_that("cs.per_result2 is as expected", {
expect_equal_to_reference(cs.per_result2, file = "cs.per_result2.rds")
})
test_that("cs.per_result3 is as expected", {
expect_equal_to_reference(cs.per_result3, file = "cs.per_result3.rds")
}) |
tar_test("create tar_resources_aws object", {
x <- resources_aws_init(bucket = "bucket_name")
expect_silent(resources_validate(x))
})
tar_test("prohibit empty tar_resources_aws object", {
x <- resources_aws_init(bucket = "", prefix = NULL)
expect_error(resources_validate(x), class = "tar_condition_validate")
})
tar_test("print tar_resources_aws object", {
x <- resources_aws_init(bucket = "bucket_name")
out <- utils::capture.output(print(x))
expect_true(any(grepl("tar_resources_aws", out)))
}) |
linequad <- function(X, Y, ..., eps=NULL, nd=1000, random=FALSE) {
epsgiven <- !is.null(eps)
if(is.lpp(X)) {
coo <- coords(X)
mapXY <- coo$seg
tp <- coo$tp
Xproj <- as.ppp(X)
if(!missing(Y) && !is.null(Y))
warning("Argument Y ignored when X is an lpp object")
Y <- as.psp(X)
} else if(is.ppp(X)) {
stopifnot(is.psp(Y))
v <- project2segment(X, Y)
Xproj <- v$Xproj
mapXY <- v$mapXY
tp <- v$tp
} else stop("X should be an object of class lpp or ppp")
ismulti <- is.multitype(X)
if(is.marked(X) && !ismulti)
stop("Not implemented for marked patterns")
if(ismulti) {
marx <- marks(X)
flev <- factor(levels(marx))
}
win <- as.owin(Y)
len <- lengths_psp(Y)
nseg <- length(len)
if(is.null(eps)) {
stopifnot(is.numeric(nd) && length(nd) == 1L & is.finite(nd) && nd > 0)
eps <- sum(len)/nd
} else
stopifnot(is.numeric(eps) && length(eps) == 1L && is.finite(eps) && eps > 0)
if(is.lpp(X) && spatstat.options('Clinequad')) {
L <- as.linnet(X)
W <- Frame(L)
V <- vertices(L)
nV <- npoints(V)
coordsV <- coords(V)
coordsX <- coords(X)
nX <- npoints(X)
ooX <- order(coordsX$seg)
ndumeach <- ceiling(len/eps) + 1L
ndummax <- sum(ndumeach)
maxdataperseg <- max(table(factor(coordsX$seg, levels=1:nsegments(L))))
maxscratch <- max(ndumeach) + maxdataperseg
if(!ismulti) {
if(!random) {
z <- .C(SL_Clinequad,
ns = as.integer(nseg),
from = as.integer(L$from-1L),
to = as.integer(L$to-1L),
nv = as.integer(nV),
xv = as.double(coordsV$x),
yv = as.double(coordsV$y),
eps = as.double(eps),
ndat = as.integer(nX),
sdat = as.integer(coordsX$seg[ooX]-1L),
tdat = as.double(coordsX$tp[ooX]),
wdat = as.double(numeric(nX)),
ndum = as.integer(integer(1L)),
xdum = as.double(numeric(ndummax)),
ydum = as.double(numeric(ndummax)),
sdum = as.integer(integer(ndummax)),
tdum = as.double(numeric(ndummax)),
wdum = as.double(numeric(ndummax)),
maxscratch = as.integer(maxscratch),
PACKAGE="spatstat.linnet")
} else {
z <- .C(SL_ClineRquad,
ns = as.integer(nseg),
from = as.integer(L$from-1L),
to = as.integer(L$to-1L),
nv = as.integer(nV),
xv = as.double(coordsV$x),
yv = as.double(coordsV$y),
eps = as.double(eps),
ndat = as.integer(nX),
sdat = as.integer(coordsX$seg[ooX]-1L),
tdat = as.double(coordsX$tp[ooX]),
wdat = as.double(numeric(nX)),
ndum = as.integer(integer(1L)),
xdum = as.double(numeric(ndummax)),
ydum = as.double(numeric(ndummax)),
sdum = as.integer(integer(ndummax)),
tdum = as.double(numeric(ndummax)),
wdum = as.double(numeric(ndummax)),
maxscratch = as.integer(maxscratch),
PACKAGE="spatstat.linnet")
}
seqdum <- seq_len(z$ndum)
dum <- with(z, ppp(xdum[seqdum], ydum[seqdum], window=W, check=FALSE))
wdum <- z$wdum[seqdum]
wdat <- numeric(nX)
wdat[ooX] <- z$wdat
dat <- as.ppp(X)
} else {
ntypes <- length(flev)
ndummax <- ntypes * (ndummax + nX)
maxscratch <- ntypes * maxscratch
if(!random) {
z <- .C(SL_ClineMquad,
ns = as.integer(nseg),
from = as.integer(L$from-1L),
to = as.integer(L$to-1L),
nv = as.integer(nV),
xv = as.double(coordsV$x),
yv = as.double(coordsV$y),
eps = as.double(eps),
ntypes = as.integer(ntypes),
ndat = as.integer(nX),
xdat = as.double(coordsX$x),
ydat = as.double(coordsX$y),
mdat = as.integer(as.integer(marx)-1L),
sdat = as.integer(coordsX$seg[ooX]-1L),
tdat = as.double(coordsX$tp[ooX]),
wdat = as.double(numeric(nX)),
ndum = as.integer(integer(1L)),
xdum = as.double(numeric(ndummax)),
ydum = as.double(numeric(ndummax)),
mdum = as.integer(integer(ndummax)),
sdum = as.integer(integer(ndummax)),
tdum = as.double(numeric(ndummax)),
wdum = as.double(numeric(ndummax)),
maxscratch = as.integer(maxscratch),
PACKAGE="spatstat.linnet")
} else {
z <- .C(SL_ClineRMquad,
ns = as.integer(nseg),
from = as.integer(L$from-1L),
to = as.integer(L$to-1L),
nv = as.integer(nV),
xv = as.double(coordsV$x),
yv = as.double(coordsV$y),
eps = as.double(eps),
ntypes = as.integer(ntypes),
ndat = as.integer(nX),
xdat = as.double(coordsX$x),
ydat = as.double(coordsX$y),
mdat = as.integer(as.integer(marx)-1L),
sdat = as.integer(coordsX$seg[ooX]-1L),
tdat = as.double(coordsX$tp[ooX]),
wdat = as.double(numeric(nX)),
ndum = as.integer(integer(1L)),
xdum = as.double(numeric(ndummax)),
ydum = as.double(numeric(ndummax)),
mdum = as.integer(integer(ndummax)),
sdum = as.integer(integer(ndummax)),
tdum = as.double(numeric(ndummax)),
wdum = as.double(numeric(ndummax)),
maxscratch = as.integer(maxscratch),
PACKAGE="spatstat.linnet")
}
seqdum <- seq_len(z$ndum)
marques <- factor(z$mdum[seqdum] + 1L, labels=flev)
dum <- with(z, ppp(xdum[seqdum], ydum[seqdum], marks=marques,
window=W, check=FALSE))
wdum <- z$wdum[seqdum]
wdat <- numeric(nX)
wdat[ooX] <- z$wdat
dat <- as.ppp(X)
}
} else {
dat <- dum <- ppp(numeric(0), numeric(0), window=win)
wdat <- wdum <- numeric(0)
if(ismulti)
marks(dat) <- marks(dum) <- marx[integer(0)]
YY <- as.data.frame(Y)
for(i in 1:nseg) {
leni <- len[i]
nwhole <- floor(leni/eps)
if(leni/eps - nwhole < 0.5 && nwhole > 2)
nwhole <- nwhole - 1
rump <- (leni - nwhole * eps)/2
brks <- c(0, rump + (0:nwhole) * eps, leni)
nbrks <- length(brks)
sdum <- (brks[-1L] + brks[-nbrks])/2
x <- with(YY, x0[i] + (sdum/leni) * (x1[i]-x0[i]))
y <- with(YY, y0[i] + (sdum/leni) * (y1[i]-y0[i]))
newdum <- list(x=x, y=y)
ndum <- length(sdum)
IDdum <- 1:ndum
relevant <- (mapXY == i)
newdat <- Xproj[relevant]
sdat <- leni * tp[relevant]
IDdat <- findInterval(sdat, brks,
rightmost.closed=TRUE, all.inside=TRUE)
w <- countingweights(id=c(IDdum, IDdat), areas=diff(brks))
wnewdum <- w[1:ndum]
wnewdat <- w[-(1:ndum)]
if(!ismulti) {
dat <- superimpose(dat, newdat, W=win, check=FALSE)
dum <- superimpose(dum, newdum, W=win, check=FALSE)
wdat <- c(wdat, wnewdat)
wdum <- c(wdum, wnewdum)
} else {
marks(newdat) <- marx[relevant]
dat <- superimpose(dat, newdat, W=win, check=FALSE)
wdat <- c(wdat, wnewdat)
newdum <- as.ppp(newdum, W=win, check=FALSE)
for(k in seq_len(length(flev))) {
le <- flev[k]
avoid <- (marks(newdat) != le)
dum <- superimpose(dum,
newdum %mark% le,
newdat[avoid] %mark% le,
W=win, check=FALSE)
wdum <- c(wdum, wnewdum, wnewdat[avoid])
}
}
}
}
dmethod <- paste("Equally spaced along each segment at spacing eps =",
signif(eps, 4),
summary(unitname(X))$plural)
if(!epsgiven)
dmethod <- paste0(dmethod, "\nOriginal parameter nd = ", nd)
wmethod <- "Counting weights based on segment length"
param <- list(dummy = list(method=dmethod),
weight = list(method=wmethod))
Qout <- quad(dat, dum, c(wdat, wdum), param=param)
attr(Qout, "lines") <- Y
return(Qout)
} |
test_that("check slide selection", {
x <- read_pptx()
x <- add_slide(x, "Title and Content", "Office Theme")
x <- ph_with(x, "Hello world 1", location = ph_location_type(type = "body"))
x <- add_slide(x, "Title and Content", "Office Theme")
x <- ph_with(x, "Hello world 2", location = ph_location_type(type = "body"))
x <- add_slide(x, "Title and Content", "Office Theme")
x <- ph_with(x, "Hello world 3", location = ph_location_type(type = "body"))
x <- on_slide(x, index = 1)
sm <- slide_summary(x)
expect_equal(sm[1,]$text, "Hello world 1")
x <- on_slide(x, index = 2)
sm <- slide_summary(x)
expect_equal(sm[1, ]$text, "Hello world 2")
x <- on_slide(x, index = 3)
sm <- slide_summary(x)
expect_equal(sm[1, ]$text, "Hello world 3")
})
test_that("check errors", {
x <- read_pptx()
expect_error(slide_summary(x), "presentation contains no slide")
expect_error(remove_slide(x), "presentation contains no slide to delete")
expect_error(on_slide(x, index = 1), "presentation contains no slide")
x <- add_slide(x, "Title and Content", "Office Theme")
x <- ph_with(x, "Hello world", location = ph_location_type(type = "body"))
x <- ph_with(x, "my title", location = ph_location_type(type = "title"))
x <- add_slide(x, "Title and Content", "Office Theme")
x <- ph_with(x, "Hello world", location = ph_location_type(type = "body"))
x <- ph_with(x, "my title 2", location = ph_location_type(type = "title"))
expect_error(on_slide(x, index = 3), "unvalid index 3")
expect_error(remove_slide(x, index = 3), "unvalid index 3")
expect_error(slide_summary(x, index = 3), "unvalid index 3")
})
test_that("get shape id", {
doc <- read_pptx()
doc <- add_slide(doc, "Title and Content", "Office Theme")
doc <- ph_with(doc, "hello", location = ph_location_type(type = "body"))
expect_equal(officer:::get_shape_id(doc, type = "body", id = 1), "2")
expect_equal(officer:::get_shape_id(doc, ph_label = "Content Placeholder 2", id = 1), "2")
expect_error(officer:::get_shape_id(doc, type = "body", id = 4) )
})
unlink("*.pptx") |
.packageName<-"argosfilter"
internal.angles<-function(lat, lon)
{
bn<-bearingTrack(lat,lon)
bn[1:10]
bn<-c(bn,0)
bp2<-bearingTrack(rev(lat),rev(lon))
bp<-rev(bp2)
bp<-c(0,bp)
bp[1:10]
ang<-numeric(length(lat))
for (i in 2:(length(lat)-1)) {
if (lat[i]==lat[i+1]&lon[i]==lon[i+1] | lat[i]==lat[i-1]&lon[i]==lon[i-1]) ang[i]<-180 else {
ang[i]<-abs(bp[i]-bn[i])
if (ang[i]>180) ang[i]<-(360-ang[i]) else ang[i]<-ang[i]
}
}
ang[1:10]
ang
} |
data_template <- function(x = NULL,
read_fun = "read.csv",
read_args = NULL) {
if(is.null(x)) {
x <- data.frame(
matrix(rep("", 100),
ncol = 10,
nrow = 10,
dimnames = list(1:10,
paste0("V", 1:10))),
stringsAsFactors = FALSE,
check.names = FALSE
)
} else if(is.null(dim(x))) {
if(is.numeric(x)) {
x <- rep(x, length.out = 2)
x <- data.frame(
structure(
rep(list(rep("", x[1])), x[2]),
names = paste0("V", seq_len(x[2]))
),
stringsAsFactors = FALSE,
check.names = FALSE
)
} else if(is.character(x)) {
if(length(x) == 1 & nzchar(file_ext(x[1]))) {
x <- do.call(
read_fun,
c(
list(x),
read_args
)
)
} else {
x <- data.frame(
structure(
rep(list(""), length(x)),
names = x
),
stringsAsFactors = FALSE
)
}
}
}
if(is.null(rownames(x))) {
rownames(x) <- seq_len(nrow(x))
}
return(x)
}
data_format <- function(data,
data_class = NULL,
col_factor = FALSE) {
if(!is.null(data)) {
if(!nzchar(trimws(colnames(data)[1]))) {
new_row_names <- data[, 1]
ind <- which(is.na(new_row_names))
if(length(ind) > 0) {
new_row_names[ind] <- rev(
seq(
nrow(data),
nrow(data) - length(ind) + 1,
-1
)
)
}
if (length(unique(new_row_names)) != length(new_row_names)) {
message("Storing non-unique row names in the first column of data.")
colnames(data)[1] <- "rownames"
} else {
rownames(data) <- new_row_names
data <- data[, -1, drop = FALSE]
}
} else {
}
if("matrix" %in% data_class) {
data <- as.matrix(data)
} else {
for (z in colnames(data)) {
data[, z] <- type.convert(data[, z], as.is = !col_factor)
}
}
}
return(data)
}
data_bind_cols <- function(data = NULL,
col_bind = NULL) {
if(!is.null(data)) {
if (!is.null(col_bind)) {
if (is.null(dim(col_bind))) {
if (class(col_bind) == "list") {
if (is.null(names(col_bind))) {
names(col_bind) <- paste0("V", length(col_bind))
}
ind <- which(!unlist(lapply(col_bind, length)) == nrow(data))
if (length(ind) > 0) {
for (z in ind) {
col_bind[[z]] <- rep(col_bind[[z]], nrow(data))
}
}
col_bind <- do.call("cbind", col_bind)
} else {
col_bind <- matrix(rep("", nrow(data) * length(col_bind)),
ncol = length(col_bind),
dimnames = list(
rownames(data),
col_bind
)
)
}
}
data <- cbind(
data,
col_bind[1:nrow(data), , drop = FALSE]
)
}
}
return(data)
}
data_bind_rows <- function(data = NULL,
row_bind = NULL) {
if(!is.null(data)) {
if (!is.null(row_bind)) {
if (is.null(dim(row_bind))) {
if (class(row_bind) == "list") {
ind <- which(!unlist(lapply(row_bind, length)) == ncol(data))
if (length(ind) > 0) {
for (z in ind) {
row_bind[[z]] <- rep(row_bind[[z]], ncol(data))
}
}
row_bind <- do.call("rbind", row_bind)
} else {
row_bind <- matrix(rep("", ncol(data) * length(row_bind)),
nrow = length(row_bind),
dimnames = list(
row_bind,
colnames(data)
)
)
}
}
data <- rbind(data, row_bind[, 1:ncol(data)])
}
}
return(data)
} |
"fevd.svecest" <-
function(x, n.ahead=10, ...){
if(!(class(x)=="svecest")){
stop("\nPlease provide an object of class 'svecest', generated by 'SVEC()'.\n")
}
n.ahead <- abs(as.integer(n.ahead))
ifelse(is.null(x$call$r), r <- 1, r <- x$call$r)
varlevel <- vec2var(x$var, r = r)
K <- varlevel$K
p <- varlevel$p
ynames <- colnames(varlevel$datamat[, 1 : K])
msey <- .fecovsvec(x, n.ahead = n.ahead, K = K)
Phi <- Phi(x, nstep = n.ahead)
mse <- matrix(NA, nrow = n.ahead, ncol = K)
Omega <- array(0, dim = c(n.ahead, K, K))
for(i in 1 : n.ahead){
mse[i, ] <- diag(msey[, , i])
temp <- matrix(0, K, K)
for(j in 1 : i){
temp <- temp + Phi[ , , j]^2
}
temp <- temp / mse[i, ]
for(j in 1 : K){
Omega[i, ,j] <- temp[j, ]
}
}
result <- list()
for(i in 1 : K){
result[[i]] <- matrix(Omega[, , i], nrow = n.ahead, ncol = K)
colnames(result[[i]]) <- ynames
}
names(result) <- ynames
class(result) <- "varfevd"
return(result)
} |
mkM2U <- function(df,
vN,
low,
high,
delta,
alpha=2,
...) {
ii <- df[[vN]]
if (missing(low)) low <- min(df$time)
if (missing(high)) high <- max(df$time)
if (missing(delta)) {
iii <- sort(diff(sort(unique(ii))))
delta <- min(iii[iii>=diff(range(iii))/1000])
rm(iii)
}
iiD <- c(min(df[[vN]])-.Machine$double.eps,
max(df[[vN]])+.Machine$double.eps)
iiRef <- ii[low <= df$time & df$time <= high]
rm(df,ii,low,high)
iiB <- seq(iiD[1],iiD[2]+delta,delta)
iiH <- as.data.frame(hist(iiRef,breaks=iiB,plot=FALSE)[c("mids","counts")])
names(iiH) <- c("x","counts")
riiD <- range(iiH$x)+delta*c(-1,1)/2
ii.fit <- ssden(~x, data=iiH,
domain=data.frame(x=riiD),
weights=iiH$counts,alpha=alpha,
...
)
rm(iiH,iiB,iiRef,iiD)
mn <- min(ii.fit$domain)
mx <- max(ii.fit$domain)
Z <- integrate(function(x) dssden(ii.fit,x),mn,mx,subdivisions=1000)$value
dFct <- function(x) {
result <- numeric(length(x))
good <- mn <= x & x <= mx
if (any(good)) result[good] <- dssden(ii.fit,x[good])/Z
result
}
Q <- seq(mn,mx,len=101)
P <- numeric(101)
for (i in 2:101) P[i] <- P[i-1] + integrate(dFct,Q[i-1],Q[i])$value
result <- function(q,...) {
order.q <- rank(q)
p <- q <- sort(q)
q.dup <- duplicated(q)
p[q <= mn] <- 0
p[q >= mx] <- 1
kk <- (1:length(q))[q > mn & q < mx]
p.dup <- 0
for (i in kk) {
if (q.dup[i]) {
p[i] <- p.dup
next
}
idx <- findInterval(q[i],Q)
lwr <- Q[idx]
if (q[i]-lwr < 1e-5) {
p[i] <- P[idx]+(P[idx+1]-P[idx])/(Q[idx+1]-lwr)*(q[i]-lwr)
} else {
p[i] <- integrate(dFct,
lower = lwr, upper = q[i],
...)$value + P[idx]
p.dup <- p[i]
}
}
p[order.q]
}
qFct <- function(p,...) {
q <- p <- sort(p)
p.dup <- duplicated(p)
q[p<=0] <- mn
q[p>=1] <- mx
kk <- (1:length(p))[p > 0 & p < 1]
for (i in kk) {
if (p.dup[i]) {
q[i] <- q[i-1]
} else {
idx <- findInterval(p[i],P)
if (identical(p[i],P[idx])) {
q[i] <- Q[idx]
} else {
q[i] <- uniroot(function(x) result(x) - p[i],Q[idx:(idx+1)],...)$root
}
}
}
q
}
attr(result,"qFct") <- qFct
attr(result,"dFct") <- dFct
attr(result,"range") <- riiD
attr(result,"call") <- match.call()
result
}
mkAR <- function(df,
low,
high,
max.order,
selfName="lN.1",
...
) {
if (missing(low)) low <- min(df$time) - .Machine$double.eps
if (missing(high)) high <- max(df$time) + .Machine$double.eps
vNames <- paste("i",1:max.order,sep="")
vNames2 <- paste("i",1:max.order,"t",sep="")
for (i in 1:max.order) df[[vNames[i]]] <- isi(df,lag=i)
df <- df[complete.cases(df),]
m2uL <- mkM2U(df,selfName,low,high,...)
m2uI <- mkM2U(df,"i1",low,high,...)
df <- within(df, est <- m2uL(lN.1))
for (i in 1:max.order) df[[vNames2[i]]] <- m2uI(df[[vNames[i]]])
for (i in 1:max.order) df[[vNames[i]]] <- NULL
fmla <- as.formula(paste("event ~ est+", paste(vNames2, collapse= "+")))
attr(df,"fmla") <- fmla
attr(df,"m2uL") <- m2uL
attr(df,"m2uI") <- m2uI
attr(df,"call") <- match.call()
df
}
changeScale <- function(obj,
xFct,
yFct
) {
if (!inherits(obj,"quickPredict")) stop("obj should be a quickPredict object.")
if (missing(xFct)) xFct <- function(x) x
if (missing(yFct)) yFct <- function(y) y
est.mean <- obj$est.mean
if (!is.null(obj$est.sd)) {
est.sd <- obj$est.sd
} else {
est.sd <- NULL
}
theCall <- match.call()
theCall[["obj"]] <- obj$call
xx <- xFct(obj$xx)
n <- length(xx)
equal2min <- sum(abs(xx-min(xx)) <= .Machine$double.eps)
equal2max <- sum(abs(xx-max(xx)) <= .Machine$double.eps)
goodX <- !logical(n)
if (equal2min > 1) goodX[1:(equal2min-1)] <- FALSE
if (equal2max > 1) goodX[(n-equal2max+2):n] <- FALSE
est.mean <- est.mean[goodX,]
if (!is.null(est.sd)) est.sd <- est.sd[goodX,]
xx <- xx[goodX]
goodX <- !duplicated(xx)
xx <- xx[goodX]
est.mean <- est.mean[goodX,]
if (!is.null(est.sd)) est.sd <- est.sd[goodX,]
yy <- yFct(obj$yy)
equal2min <- sum(abs(yy-min(yy)) <= .Machine$double.eps)
equal2max <- sum(abs(yy-max(yy)) <= .Machine$double.eps)
goodY <- !logical(n)
if (equal2min > 1) goodY[1:(equal2min-1)] <- FALSE
if (equal2max > 1) goodY[(n-equal2max+2):n] <- FALSE
est.mean <- est.mean[,goodY]
if (!is.null(est.sd)) est.sd <- est.sd[,goodY]
yy <- yy[goodY]
goodY <- !duplicated(yy)
yy <- yy[goodY]
est.mean <- est.mean[,goodY]
if (!is.null(est.sd)) est.sd <- est.sd[,goodY]
result <- list(xx=xx,
yy=yy,
call=theCall,
include=obj$include,
est.mean=est.mean,
est.sd=est.sd)
class(result) <- "quickPredict"
result
} |
setClass("AffineTransformation",
representation(),
contains = "Cartesian2DCoordinateTransformation",
validity = function(object) {
if (length(object@parameters) == 0){
if (nrow(object@controlPoints) < 3)
stop("At least 3 control points (rows in the data.frame 'controlPoints') are required for the affine transformation")
}
else if (length(object@parameters) != 6){
stop("Affine transformations require 6 parameters!")
}
return(TRUE)
}
) |
"UserGS" |
model.frame.dyn <- function (formula, data = NULL, ...)
{
if (!inherits(formula, "formula")) {
if (nargs() == 1) return(NextMethod("model.frame", formula))
return(NextMethod("model.frame", formula, data = data, ...))
}
class(formula) <- "formula"
if (is.null(data)) data <- parent.frame()
env <- environment(formula)
.Class <- if (is.environment(data) || is.list(data))
class(eval(as.list(formula)[[2]], data, env))
else class(data)
mf <- NextMethod("model.frame", formula, data = data, ...)
attr(mf, ".Class") <- .Class
predvars <- attr(attr(mf, "terms"), "predvars")
attr(mf, "series") <- eval(predvars, as.list(data), env)
for(i in seq(mf))
if (!inherits(mf[[i]], "factor"))
mf[[i]] <- coredata(mf[[i]])
mf
}
model.frame.zooreg <- model.frame.ts <- model.frame.irts <- model.frame.its <-
model.frame.zoo <- function (formula, data = NULL, ...)
{
if (is.environment(data))
formula <- terms(formula, data = data)
else {
data <- as.list(data)
data1 <- as.data.frame(lapply(data, "[", 1))
names(data1) <- names(data)
formula <- terms(formula, data = data1)
}
cl <- attr(formula, "variables")
cl[[1]] <- as.name("merge.zoo")
cl$retclass <- "data.frame"
cl$retclass <- "list"
cl$all <- TRUE
attr(formula, "predvars") <- as.call(cl)
NextMethod("model.frame", formula, data = data, ...)
}
model.matrix.dyn <- function(object, ...) {
model.matrix(terms(object), model.frame(object), ...)
} |
rxodeTest({
if (requireNamespace("units", quietly = TRUE)) {
context("tad family of functions with odes")
library(units)
test_that("tad family works with ode", {
mod1 <- RxODE({
KA <- 2.94E-01
CL <- 1.86E+01
V2 <- 4.02E+01
Q <- 1.05E+01
V3 <- 2.97E+02
Kin <- 1
Kout <- 1
EC50 <- 200
C2 <- centr / V2
C3 <- peri / V3
d / dt(depot) <- -KA * depot
d / dt(centr) <- KA * depot - CL * C2 - Q * C2 + Q * C3
d / dt(peri) <- Q * C2 - Q * C3
d / dt(eff) <- Kin - Kout * (1 - C2 / (EC50 + C2)) * eff
tad <- tad()
dosen <- dosenum()
tl <- tlast()
tafd <- tafd()
tfirst <- tfirst()
tl <- tlast()
tadd <- tad(depot)
tfirstd <- tfirst(depot)
tlastd <- tlast(depot)
tafdd <- tafd(depot)
tadp <- tad(peri)
tafdp <- tafd(peri)
tfirstp <- tfirst(peri)
tlastp <- tlast(peri)
})
ev <- et(amountUnits = "mg", timeUnits = "hours") %>%
et(time = 1, amt = 10000, addl = 9, ii = 12, cmt = "depot") %>%
et(time = 120, amt = 2000, addl = 4, ii = 14, cmt = "depot") %>%
et(time = 122, amt = 2000, addl = 4, ii = 14, cmt = "peri") %>%
et(0, 240, by = 3)
r1 <- rxSolve(mod1, ev, addDosing = TRUE)
expect_equal(r1$dosen, c(
0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4,
4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 12, 13,
13, 14, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 17, 17, 18, 18,
18, 18, 18, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
))
expect_equal(
r1$tad,
c(
NA, 0, 2, 5, 8, 11, 0, 2, 5, 8, 11, 0, 2, 5, 8, 11, 0, 2, 5,
8, 11, 0, 2, 5, 8, 11, 0, 2, 5, 8, 11, 0, 2, 5, 8, 11, 0, 2,
5, 8, 11, 0, 2, 5, 8, 11, 0, 2, 5, 8, 0, 0, 0, 1, 4, 7, 10, 0,
1, 0, 2, 5, 8, 11, 0, 0, 0, 3, 6, 9, 0, 0, 0, 1, 4, 7, 10, 0,
1, 0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44,
47, 50, 53, 56, 59, 62
)
)
expect_equal(r1$tafd, c(
NA, 0, 2, 5, 8, 11, 12, 14, 17, 20, 23, 24, 26, 29, 32, 35,
36, 38, 41, 44, 47, 48, 50, 53, 56, 59, 60, 62, 65, 68, 71, 72,
74, 77, 80, 83, 84, 86, 89, 92, 95, 96, 98, 101, 104, 107, 108,
110, 113, 116, 119, 119, 121, 122, 125, 128, 131, 133, 134, 135,
137, 140, 143, 146, 147, 149, 149, 152, 155, 158, 161, 161, 163,
164, 167, 170, 173, 175, 176, 177, 179, 182, 185, 188, 191, 194,
197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233,
236, 239
))
expect_equal(
r1$tadd,
c(
NA, 0, 2, 5, 8, 11, 0, 2, 5, 8, 11, 0, 2, 5, 8, 11, 0, 2, 5,
8, 11, 0, 2, 5, 8, 11, 0, 2, 5, 8, 11, 0, 2, 5, 8, 11, 0, 2,
5, 8, 11, 0, 2, 5, 8, 11, 0, 2, 5, 8, 0, 0, 2, 3, 6, 9, 12, 0,
1, 2, 4, 7, 10, 13, 0, 2, 2, 5, 8, 11, 0, 0, 2, 3, 6, 9, 12,
0, 1, 2, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43,
46, 49, 52, 55, 58, 61, 64
)
)
expect_equal(r1$tafdd, c(
NA, 0, 2, 5, 8, 11, 12, 14, 17, 20, 23, 24, 26, 29, 32, 35,
36, 38, 41, 44, 47, 48, 50, 53, 56, 59, 60, 62, 65, 68, 71, 72,
74, 77, 80, 83, 84, 86, 89, 92, 95, 96, 98, 101, 104, 107, 108,
110, 113, 116, 119, 119, 121, 122, 125, 128, 131, 133, 134, 135,
137, 140, 143, 146, 147, 149, 149, 152, 155, 158, 161, 161, 163,
164, 167, 170, 173, 175, 176, 177, 179, 182, 185, 188, 191, 194,
197, 200, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 233,
236, 239
))
expect_equal(
r1$tadp,
c(
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 0, 1, 4, 7, 10, 12, 13, 0, 2, 5, 8, 11, 12,
0, 0, 3, 6, 9, 12, 12, 0, 1, 4, 7, 10, 12, 13, 0, 2, 5, 8, 11,
14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59,
62
)
)
expect_equal(r1$tfirst[1], NA_real_)
expect_true(all(r1$tfirst[-1] == 1))
expect_equal(
r1$tl,
c(
NA, 1, 1, 1, 1, 1, 13, 13, 13, 13, 13, 25, 25, 25, 25, 25,
37, 37, 37, 37, 37, 49, 49, 49, 49, 49, 61, 61, 61, 61, 61, 73,
73, 73, 73, 73, 85, 85, 85, 85, 85, 97, 97, 97, 97, 97, 109,
109, 109, 109, 120, 120, 122, 122, 122, 122, 122, 134, 134, 136,
136, 136, 136, 136, 148, 150, 150, 150, 150, 150, 162, 162, 164,
164, 164, 164, 164, 176, 176, 178, 178, 178, 178, 178, 178, 178,
178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178,
178, 178
)
)
expect_equal(
r1$tfirstd,
c(
NA, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
)
)
expect_equal(
r1$tlastd,
c(
NA, 1, 1, 1, 1, 1, 13, 13, 13, 13, 13, 25, 25, 25, 25, 25,
37, 37, 37, 37, 37, 49, 49, 49, 49, 49, 61, 61, 61, 61, 61, 73,
73, 73, 73, 73, 85, 85, 85, 85, 85, 97, 97, 97, 97, 97, 109,
109, 109, 109, 120, 120, 120, 120, 120, 120, 120, 134, 134, 134,
134, 134, 134, 134, 148, 148, 148, 148, 148, 148, 162, 162, 162,
162, 162, 162, 162, 176, 176, 176, 176, 176, 176, 176, 176, 176,
176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176, 176,
176, 176
)
)
expect_equal(
r1$tlastp,
c(
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 122, 122, 122, 122, 122, 122, 122, 136, 136,
136, 136, 136, 136, 150, 150, 150, 150, 150, 150, 150, 164, 164,
164, 164, 164, 164, 164, 178, 178, 178, 178, 178, 178, 178, 178,
178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178, 178,
178
)
)
expect_equal(
r1$tfirstp,
c(
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, 122, 122, 122, 122, 122, 122, 122, 122, 122,
122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
122
)
)
})
test_that("test parsing of ode", {
expect_error(RxODE({
KA <- 2.94E-01
CL <- 1.86E+01
V2 <- 4.02E+01
Q <- 1.05E+01
V3 <- 2.97E+02
Kin <- 1
Kout <- 1
EC50 <- 200
C2 <- centr / V2
C3 <- peri / V3
f <- tad(eff)
d / dt(depot) <- -KA * depot
d / dt(centr) <- KA * depot - CL * C2 - Q * C2 + Q * C3
d / dt(peri) <- Q * C2 - Q * C3
d / dt(eff) <- Kin - Kout * (1 - C2 / (EC50 + C2)) * eff
}))
.rxWithOptions(list(RxODE.syntax.require.ode.first = FALSE), {
expect_error(RxODE({
KA <- 2.94E-01
CL <- 1.86E+01
V2 <- 4.02E+01
Q <- 1.05E+01
V3 <- 2.97E+02
Kin <- 1
Kout <- 1
EC50 <- 200
C2 <- centr / V2
C3 <- peri / V3
f <- tad(eff)
d / dt(depot) <- -KA * depot
d / dt(centr) <- KA * depot - CL * C2 - Q * C2 + Q * C3
d / dt(peri) <- Q * C2 - Q * C3
d / dt(eff) <- Kin - Kout * (1 - C2 / (EC50 + C2)) * eff
}), NA)
})
})
context("tad family of functions with linCmt()")
test_that("lincmt solution tad family", {
sol.1c.ka <- RxODE({
KA <- 2
V <- 20
CL <- 25
C2 <- linCmt(V, CL, KA)
tad <- tad()
tafd <- tafd()
tadd <- tad(depot)
tafdd <- tafd(depot)
tadc <- tad(central)
tafdc <- tafd(central)
})
et <- eventTable() %>%
add.dosing(dose = 3, nbr.doses = 6, dosing.interval = 8) %>%
add.dosing(
dose = 6, nbr.doses = 6, dosing.interval = 8,
start.time = 2, dosing.to = "central"
) %>%
add.sampling(seq(0, 48, length.out = 200))
s1 <- rxSolve(sol.1c.ka, et)
sol.1c.ka <- RxODE({
KA <- 2
V <- 20
CL <- 25
C2 <- linCmt(V, CL, KA)
tad <- tad()
tafd <- tafd()
tadc <- tad(central)
tafdc <- tafd(central)
})
s2 <- rxSolve(sol.1c.ka, et)
expect_equal(s2$tad, s1$tad)
expect_equal(s2$tafd, s1$tafd)
expect_equal(s2$tadc, s1$tadc)
expect_equal(s2$tafdc, s1$tafdc)
expect_error(RxODE({
V <- 20
CL <- 25
C2 <- linCmt(V, CL)
tad <- tad()
tafd <- tafd()
tadd <- tad(depot)
tafdd <- tafd(depot)
tadc <- tad(central)
tafdc <- tafd(central)
}))
one.cmt <- RxODE({
V <- 20
CL <- 25
C2 <- linCmt(V, CL)
tad <- tad()
tafd <- tafd()
tadc <- tad(central)
tafdc <- tafd(central)
})
et <- eventTable() %>%
add.dosing(dose = 3, nbr.doses = 6, dosing.interval = 8) %>%
add.sampling(seq(0, 48, length.out = 200))
s <- rxSolve(one.cmt, et)
expect_equal(s$tad, s$tadc)
expect_equal(s$tafd, s$tafdc)
})
context("tad family of functions with linCmt()/ode mix")
test_that("ode mixed", {
mod3 <- RxODE({
KA <- 2.94E-01
CL <- 1.86E+01
V2 <- 4.02E+01
Q <- 1.05E+01
V3 <- 2.97E+02
Kin0 <- 1
Kout <- 1
EC50 <- 200
C2 <- linCmt()
Tz <- 8
amp <- 0.1
eff(0) <- 1
Kin <- Kin0 + amp * cos(2 * pi * (ctime - Tz) / 24)
d / dt(eff) <- Kin - Kout * (1 - C2 / (EC50 + C2)) * eff
tadd <- tad(depot)
tad <- tad()
tade <- tad(eff)
})
ev <- eventTable(amount.units = "mg", time.units = "hours") %>%
add.dosing(dose = 10000, nbr.doses = 1, dosing.to = 1) %>%
add.sampling(seq(0, 48, length.out = 100))
ev$ctime <- (ev$time + set_units(8, hr)) %% 24
x <- rxSolve(mod3, ev)
expect_equal(x$tad, x$tadd)
expect_true(all(is.na(x$tade)))
ev <- eventTable(amount.units = "mg", time.units = "hours") %>%
add.dosing(dose = 10000, nbr.doses = 1, dosing.to = 1) %>%
add.dosing(dose = -1, start.time = 6, nbr.doses = 1, dosing.to = 3) %>%
add.sampling(seq(0, 48, length.out = 20))
ev$ctime <- (ev$time + set_units(8, hr)) %% 24
x <- rxSolve(mod3, ev, addDosing = TRUE)
expect_false(isTRUE(all.equal(x$tad, x$tadd)))
expect_false(isTRUE(all.equal(x$tad, x$tade)))
})
}
}) |
options(width=60) |
xpose.write <-
function(object,
file = "xpose.ini"
) {
prefs <- matrix(1:150, ncol=2)
prefs[1,] <- c("Miss", object@Prefs@Miss)
prefs[2,] <- c("Cat.levels", object@[email protected])
prefs[3,] <- c("DV.Cat.levels", object@[email protected])
prefs[4,] <- c("type", object@[email protected]$type)
prefs[5,] <- c("cex", object@[email protected]$cex)
prefs[6,] <- c("lty", object@[email protected]$lty)
prefs[7,] <- c("lwd", object@[email protected]$lwd)
prefs[8,] <- c("col", object@[email protected]$col)
prefs[9,] <- c("pch", object@[email protected]$pch)
prefs[10,] <- c("grid", object@[email protected]$grid)
prefs[11,] <- c("aspect", object@[email protected]$aspect)
prefs[12,] <- c("byordfun", object@[email protected]$byordfun)
prefs[13,] <- c("shingnum", object@[email protected]$shingnum)
prefs[14,] <- c("shingol", object@[email protected]$shingol)
prefs[15,] <- c("ablcol", object@[email protected]$ablcol)
prefs[16,] <- c("abllty", object@[email protected]$abllty)
prefs[17,] <- c("abllwd", object@[email protected]$abllwd)
prefs[18,] <- c("lmcol", object@[email protected]$lmcol)
prefs[19,] <- c("lmlty", object@[email protected]$lmlty)
prefs[20,] <- c("lmlwd", object@[email protected]$lmlwd)
prefs[21,] <- c("smooth", object@[email protected]$smooth)
prefs[22,] <- c("smcol", object@[email protected]$sucol)
prefs[23,] <- c("smlty", object@[email protected]$sulty)
prefs[24,] <- c("smlwd", object@[email protected]$sulwd)
prefs[25,] <- c("smspan", object@[email protected]$suspan)
prefs[26,] <- c("smdegr", object@[email protected]$sudegr)
prefs[27,] <- c("sucol", object@[email protected]$sucol)
prefs[28,] <- c("sulty", object@[email protected]$sulty)
prefs[29,] <- c("sulwd", object@[email protected]$sulwd)
prefs[30,] <- c("suspan", object@[email protected]$suspan)
prefs[31,] <- c("sudegr", object@[email protected]$sudegr)
prefs[32,] <- c("ids", object@[email protected]$ids)
prefs[33,] <- c("idsext", object@[email protected]$idsext)
prefs[34,] <- c("idscex", object@[email protected]$idscex)
prefs[35,] <- c("idsdir", object@[email protected]$idsdir)
prefs[36,] <- c("dilfrac", object@[email protected]$dilfrac)
prefs[37,] <- c("dilci", object@[email protected]$dilci)
prefs[38,] <- c("PIuplty", object@[email protected]$PIuplty)
prefs[39,] <- c("PIdolty", object@[email protected]$PIdolty)
prefs[40,] <- c("PImelty", object@[email protected]$PImelty)
prefs[41,] <- c("PIuptyp", object@[email protected]$PIuptyp)
prefs[42,] <- c("PIdotyp", object@[email protected]$PIdotyp)
prefs[43,] <- c("PImetyp", object@[email protected]$PImetyp)
prefs[44,] <- c("PIupcol", object@[email protected]$PIupcol)
prefs[45,] <- c("PIdocol", object@[email protected]$PIdocol)
prefs[46,] <- c("PImecol", object@[email protected]$PImecol)
prefs[47,] <- c("PIuplwd", object@[email protected]$PIuplwd)
prefs[48,] <- c("PIdolwd", object@[email protected]$PIdolwd)
prefs[49,] <- c("PImelwd", object@[email protected]$PImelwd)
prefs[50,] <- c("PIuplimit", object@[email protected]$PIlimits[2])
prefs[51,] <- c("PIdolimit", object@[email protected]$PIlimits[1])
prefs[52,] <- c("PIarcol", object@[email protected]$PImelwd)
prefs[53,] <- c("bwhoriz", object@[email protected]$bwhoriz)
prefs[54,] <- c("bwratio", object@[email protected]$bwratio)
prefs[55,] <- c("bwvarwid", object@[email protected]$bwvarwid)
prefs[56,] <- c("bwdotpch", object@[email protected]$bwdotpch)
prefs[57,] <- c("bwdotcol", object@[email protected]$bwdotcol)
prefs[58,] <- c("bwdotcex", object@[email protected]$bwdotcex)
prefs[59,] <- c("bwrecfill", object@[email protected]$bwrecfill)
prefs[60,] <- c("bwreccol", object@[email protected]$bwreccol)
prefs[61,] <- c("bwreclty", object@[email protected]$bwreclty)
prefs[62,] <- c("bwreclwd", object@[email protected]$bwreclwd)
prefs[63,] <- c("bwumbcol", object@[email protected]$bwumbcol)
prefs[64,] <- c("bwumblty", object@[email protected]$bwumblty)
prefs[65,] <- c("bwumblwd", object@[email protected]$bwumblwd)
prefs[66,] <- c("bwoutpch", object@[email protected]$bwoutpch)
prefs[67,] <- c("bwoutcol", object@[email protected]$bwoutcol)
prefs[68,] <- c("bwoutcex", object@[email protected]$bwoutcex)
prefs[69,] <- c("hiborder", object@[email protected]$hiborder)
prefs[70,] <- c("hicol", object@[email protected]$hicol)
prefs[71,] <- c("hilty", object@[email protected]$hilty)
prefs[72,] <- c("hilwd", object@[email protected]$hilwd)
prefs[73,] <- c("hidcol", object@[email protected]$hidcol)
prefs[74,] <- c("hidlty", object@[email protected]$hidlty)
prefs[75,] <- c("hidlwd", object@[email protected]$hidlwd)
for (i in 1:nrow(prefs)) {
if (prefs[i,1] == prefs[i,2]) {
prefs[i,2] = "NULL"
}
}
write.table(prefs, file = file, sep = "\t", col.names = FALSE, row.names=FALSE,
quote=FALSE)
} |
semPlotModel.regsem <- semPlotModel.regsemplot <- function(object,...){
object1 <- object$lav.model@ParTable
object2 <- object$lav.model@Model@dimNames
varnames <- unique(c(object1$lhs, object1$rhs))
mannames <- object2[[1]][1]
names(mannames) <- 'manifest'
'%!in%' <- function(x,y)!('%in%'(x,y))
namelist <- strsplit(names(object$out$pars)," ")
inout <- data.frame(1,2)
for(i in 1:length(namelist)){
inout[i,1] <- namelist[[i]][1]
inout[i,2] <- namelist[[i]][3]
}
int <- data.frame(1,2)
for(i in 1:length(object1$lhs)){
int[i,1] <- ifelse(object1$op[i]=="~"|object1$op[i]=="~1",object1$rhs[i],object1$lhs[i])
int[i,2] <- ifelse(object1$op[i]=="~"|object1$op[i]=="~1",object1$lhs[i],object1$rhs[i])
}
pinout <- with(inout, paste0(X1, X2))
pint <- with(int, paste0(X1, X2))
counter <- 0
for(i in 1:length(pint)){
if(pint[i] %!in% pinout){
object1$regest[i] <- 1
counter <- counter + 1
} else {
object1$regest[i] <- object$out$pars[i - counter]
}
}
semModel <- new("semPlotModel")
semModel@Pars <- data.frame(
label = rep("", length(object1$id)),
lhs = ifelse(object1$op=="~"|object1$op=="~1",object1$rhs,object1$lhs),
edge = "--",
rhs = ifelse(object1$op=="~"|object1$op=="~1",object1$lhs,object1$rhs),
est = object1$regest,
std = NA,
group = object1$group,
fixed = object1$free == 0,
par = object1$free,
stringsAsFactors=FALSE)
row.names(semModel@Pars) <- 1:length(object1$id)
semModel@Pars$edge[object1$op=="~~"] <- "<->"
semModel@Pars$edge[object1$op=="~*~"] <- "<->"
semModel@Pars$edge[object1$op=="~"] <- "~>"
semModel@Pars$edge[object1$op=="=~"] <- "->"
semModel@Pars$edge[object1$op=="~1"] <- "int"
semModel@Pars$edge[grepl("\\|",object1$op)] <- "|"
semModel@Pars <- semModel@Pars[!object$op%in%c(':=','<','>','==','|','<', '>'),]
semModel@Vars <- data.frame(
name = varnames,
manifest = varnames[1:length(varnames)] %in% mannames$manifest[1:length(mannames$manifest)],
exogenous = NA,
stringsAsFactors = FALSE
)
semModel@Thresholds <- data.frame()
semModel@ObsCovs <- list()
semModel@ImpCovs <- list()
semModel@Computed <- FALSE
semModel@Original <- list(object)
return(semModel)
} |
makeWFG8Function = function(n.objectives, k, l) {
assertInt(n.objectives, lower = 2L)
force(n.objectives)
if (missing(k)) {
if (n.objectives == 2L) {
k = 4L
} else {
k = 2L * (n.objectives - 1L)
}
}
assertInt(k, lower = n.objectives - 1L)
assertTRUE(k %% (n.objectives - 1L) == 0L)
force(k)
if (missing(l)) {
l = 20L
}
assertInt(l, lower = 1L)
force(l)
dimensions = k + l
fn = function(x) {
assertNumeric(x, len = k + l, any.missing = FALSE, all.missing = FALSE)
return(mof_WFG_8(z = x, M = n.objectives, k = k))
}
makeMultiObjectiveFunction(
name = "WFG8 function",
id = sprintf("WFG8-%id-%io", dimensions, n.objectives),
description = "WFG8 function",
fn = fn,
par.set = makeNumericParamSet(
len = dimensions,
id = "x",
lower = rep(0, dimensions),
upper = 2L * seq_len(dimensions),
vector = TRUE
),
minimize = rep(TRUE, n.objectives),
n.objectives = n.objectives
)
}
class(makeWFG8Function) = c("function", "smoof_generator")
attr(makeWFG8Function, "name") = c("WFG8")
attr(makeWFG8Function, "type") = c("multi-objective")
attr(makeWFG8Function, "tags") = c("multi-objective") |
difLRT<-function (Data, group, focal.name, alpha = 0.05, purify = FALSE,
nrIter = 10, p.adjust.method=NULL,save.output = FALSE, output = c("out", "default"))
{
internalLRT <- function() {
if (length(group) == 1) {
if (is.numeric(group)) {
gr <- Data[, group]
DATA <- Data[, (1:ncol(Data)) != group]
colnames(DATA) <- colnames(Data)[(1:ncol(Data)) !=
group]
}
else {
gr <- Data[, colnames(Data) == group]
DATA <- Data[, colnames(Data) != group]
colnames(DATA) <- colnames(Data)[colnames(Data) !=
group]
}
}
else {
gr <- group
DATA <- Data
}
Group <- rep(0, nrow(DATA))
Group[gr == focal.name] <- 1
if (!purify) {
STATS <- LRT(DATA, Group)
PVAL<-1-pchisq(STATS,1)
if (max(STATS) <= qchisq(1 - alpha, 1))
DIFitems <- "No DIF item detected"
else DIFitems <- (1:ncol(DATA))[STATS > qchisq(1 -
alpha, 1)]
RES <- list(LRT = STATS, p.value=PVAL,alpha = alpha, thr = qchisq(1 -
alpha, 1), DIFitems = DIFitems, p.adjust.method = p.adjust.method,
adjusted.p = NULL,purification = purify,
names = colnames(DATA), save.output = save.output,
output = output)
}
else {
nrPur <- 0
noLoop <- FALSE
stats1 <- LRT(DATA, Group)
if (max(stats1) <= qchisq(1 - alpha, 1)) {
DIFitems <- "No DIF item detected"
noLoop <- TRUE
}
else {
dif <- (1:ncol(DATA))[stats1 > qchisq(1 - alpha,
1)]
nodif <- NULL
for (i in 1:ncol(DATA)) {
if (sum(i == dif) == 0)
nodif <- c(nodif, i)
}
repeat {
if (nrPur >= nrIter)
break
else {
nrPur <- nrPur + 1
dat <- DATA[, nodif]
stats2 <- LRT(dat, Group)
stats1[nodif] <- stats2
if (max(stats2) <= qchisq(1 - alpha, 1)) {
noLoop <- TRUE
break
}
else {
ind2 <- (1:ncol(dat))[stats2 > qchisq(1 -
alpha, 1)]
noind2 <- (1:ncol(dat))[stats2 <= qchisq(1 -
alpha, 1)]
dif <- c(dif, nodif[ind2])
nodif <- nodif[noind2]
}
}
}
DIFitems <- (1:ncol(DATA))[stats1 > qchisq(1 -
alpha, 1)]
}
PVAL<-1-pchisq(stats1,1)
RES <- list(LRT = stats1, p.value=PVAL,alpha = alpha, thr = qchisq(1 -
alpha, 1), DIFitems = DIFitems, p.adjust.method = p.adjust.method,
adjusted.p = NULL, purification = purify,
nrPur = nrPur, convergence = noLoop, names = colnames(DATA),
save.output = save.output, output = output)
}
if (!is.null(p.adjust.method)) {
pval <- 1 - pchisq(RES$LRT, 1)
RES$adjusted.p <- p.adjust(pval, method = p.adjust.method)
if (min(RES$adjusted.p, na.rm = TRUE) > alpha)
RES$DIFitems <- "No DIF item detected"
else RES$DIFitems <- which(RES$adjusted.p < alpha)
}
class(RES) <- "LRT"
return(RES)
}
resToReturn <- internalLRT()
if (save.output) {
if (output[2] == "default")
wd <- paste(getwd(), "/", sep = "")
else wd <- output[2]
fileName <- paste(wd, output[1], ".txt", sep = "")
capture.output(resToReturn, file = fileName)
}
return(resToReturn)
}
plot.LRT<-function(x,pch=8,number=TRUE,col="red", save.plot=FALSE,save.options=c("plot","default","pdf"),...)
{
internalLRT<-function(){
res <- x
if (!number) {
plot(res$LRT,xlab="Item",ylab="Likelihood Ratio statistic",ylim=c(0,max(c(res$LRT,res$thr)+1)),pch=pch,main="Likelihood Ratio Test")
points(res$DIFitems,res$MH[res$DIFitems],pch=pch,col=col)
}
else {
plot(res$LRT,xlab="Item",ylab="Likelihood Ratio statistic",ylim=c(0,max(c(res$LRT,res$thr)+1)),col="white",main="Likelihood Ratio Test")
text(1:length(res$LRT),res$LRT,1:length(res$LRT))
if (!is.character(res$DIFitems)) text(res$DIFitems,res$LRT[res$DIFitems],res$DIFitems,col=col)
}
abline(h=res$thr)
}
internalLRT()
if (save.plot){
plotype<-NULL
if (save.options[3]=="pdf") plotype<-1
if (save.options[3]=="jpeg") plotype<-2
if (is.null(plotype)) cat("Invalid plot type (should be either 'pdf' or 'jpeg').","\n","The plot was not captured!","\n")
else {
if (save.options[2]=="default") wd<-paste(getwd(),"/",sep="")
else wd<-save.options[2]
fileName<-paste(wd,save.options[1],switch(plotype,'1'=".pdf",'2'=".jpg"),sep="")
if (plotype==1){
{
pdf(file=fileName)
internalLRT()
}
dev.off()
}
if (plotype==2){
{
jpeg(filename=fileName)
internalLRT()
}
dev.off()
}
cat("The plot was captured and saved into","\n"," '",fileName,"'","\n","\n",sep="")
}
}
else cat("The plot was not captured!","\n",sep="")
}
print.LRT<-function (x, ...)
{
res <- x
cat("\n")
cat("Detection of Differential Item Functioning using Likelihood Ratio Test",
"\n")
if (res$purification)
pur <- "with "
else pur <- "without "
cat(pur, "item purification", "\n", "\n", sep = "")
if (res$purification) {
if (res$nrPur <= 1)
word <- " iteration"
else word <- " iterations"
if (!res$convergence) {
cat("WARNING: no item purification convergence after ",
res$nrPur, word, "\n", sep = "")
cat("WARNING: following results based on the last iteration of the purification",
"\n", "\n")
}
else cat("Convergence reached after ", res$nrPur, word,
"\n", "\n", sep = "")
}
if (is.null(res$p.adjust.method))
cat("No p-value adjustment for multiple comparisons",
"\n", "\n")
else {
pAdjMeth <- switch(res$p.adjust.method, bonferroni = "Bonferroni",
holm = "Holm", hochberg = "Hochberg", hommel = "Hommel",
BH = "Benjamini-Hochberg", BY = "Benjamini-Yekutieli")
cat("Multiple comparisons made with", pAdjMeth, "adjustement of p-values",
"\n", "\n")
}
cat("Likelihood Ratio statistic:", "\n", "\n")
pval <- round(1 - pchisq(res$LRT, 1), 4)
if (is.null(res$p.adjust.method)) symb <- symnum(pval, c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***",
"**", "*", ".", ""))
else symb <- symnum(res$adjusted.p, c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***",
"**", "*", ".", ""))
m1 <- cbind(round(res$LRT, 4), pval)
if (!is.null(res$p.adjust.method)) m1<-cbind(m1,round(res$adjusted.p,4))
m1 <- noquote(cbind(format(m1, justify = "right"), symb))
if (!is.null(res$names))
rownames(m1) <- res$names
else {
rn <- NULL
for (i in 1:nrow(m1)) rn[i] <- paste("Item", i, sep = "")
rownames(m1) <- rn
}
con <- c("Stat.", "P-value")
if (!is.null(res$p.adjust.method))
con <- c(con, "Adj. P", "")
else con <- c(con, "")
colnames(m1) <- con
print(m1)
cat("\n")
cat("Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ",
"\n")
cat("\n", "Detection threshold: ", round(res$thr, 4), " (significance level: ",
res$alpha, ")", "\n", "\n", sep = "")
if (is.character(res$DIFitems) == TRUE)
cat("Items detected as DIF items:", res$DIFitems, "\n",
"\n")
else {
cat("Items detected as DIF items:", "\n")
m2 <- cbind(rownames(m1)[res$DIFitems])
rownames(m2) <- rep("", nrow(m2))
colnames(m2) <- ""
print(m2, quote = FALSE)
cat("\n")
}
if (!x$save.output)
cat("Output was not captured!", "\n")
else {
if (x$output[2] == "default")
wd <- paste(getwd(), "/", sep = "")
else wd <- x$output[2]
fileName <- paste(wd, x$output[1], ".txt", sep = "")
cat("Output was captured and saved into file", "\n",
" '", fileName, "'", "\n", "\n", sep = "")
}
} |
expected <- eval(parse(text="c(\"0\", \"25\", \"50\", \"75\", \"100\")"));
test(id=0, code={
argv <- eval(parse(text="list(c(0, 25, 50, 75, 100), \"double\", 1, 7L, \"fg\", \"\", c(16L, 15L, 15L, 15L, 15L))"));
.Internal(`formatC`(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]], argv[[7]]));
}, o=expected); |
taxfac <- function(lookup) {
output <- matrix(ncol = ncol(lookup), nrow = nrow(lookup))
for (i in seq_len(ncol(lookup)))
output[, i] <- as.numeric(as.factor(as.character(lookup[, i])))
row.names(output) <- lookup[, 1]
colnames(output) <- colnames(lookup)
output - 1
} |
makeOperator = function(
operator,
supported = getAvailableRepresentations()) {
assertFunction(operator)
assertSubset(supported, choices = getAvailableRepresentations(), empty.ok = FALSE)
operator = setAttribute(operator, "supported", supported)
operator = addClasses(operator, c("ecr_operator"))
return(operator)
}
isEcrOperator = function(obj) {
return(inherits(obj, "ecr_operator"))
}
print.ecr_operator = function(x, ...) {
catf("ECR2 OPERATOR:")
catf("Supported representations: %s", collapse(getSupportedRepresentations(x)))
}
print.ecr_recombinator = function(x, ...) {
print.ecr_operator(x)
catf("Number of returned children: %i", attr(x, "n.parents"))
}
print.ecr_selector = function(x, ...) {
print.ecr_operator(x)
catf("Supported
}
getSupportedRepresentations = function(operator) {
UseMethod("getSupportedRepresentations")
}
getSupportedRepresentations.ecr_operator = function(operator) {
attr(operator, "supported")
}
is.supported = function(operator, representation) {
UseMethod("is.supported")
}
is.supported.ecr_operator = function(operator, representation) {
return (representation %in% getSupportedRepresentations(operator))
} |
utility.gen <- function(object, data, ...) UseMethod("utility.gen")
utility.gen.default <- function(object, ...)
stop("No compare method associated with class ", class(object), call. = FALSE)
utility.gen.data.frame <- utility.gen.list <-
function(object, data,
not.synthesised = NULL, cont.na = NULL,
method = "cart", maxorder = 1,
k.syn = FALSE, tree.method = "rpart",
max.params = 400, print.stats = c("pMSE", "S_pMSE"),
resamp.method = NULL, nperms = 50, cp = 1e-3,
minbucket = 5, mincriterion = 0, vars = NULL,
aggregate = FALSE, maxit = 200, ngroups = NULL,
print.flag = TRUE, print.every = 10,
digits = 6, print.zscores = FALSE, zthresh = 1.6,
print.ind.results = FALSE,
print.variable.importance = FALSE, ...)
{
if (is.null(data)) stop("Requires parameter 'data' to give name of the real data.\n\n", call. = FALSE)
if (is.null(object)) stop("Requires parameter 'object' to give name of the synthetic data.\n\n", call. = FALSE)
if (is.list(object) & !is.data.frame(object)) m <- length(object)
else if (is.data.frame(object)) m <- 1
else stop("object must be a data frame or a list of data frames.\n", call. = FALSE)
cna <- cont.na
cont.na <- as.list(rep(NA, length(data)))
names(cont.na) <- names(data)
if (!is.null(cna)) {
if (!is.list(cna) | any(names(cna) == "") | is.null(names(cna)))
stop("Argument 'cont.na' must be a named list with names of selected variables.", call. = FALSE)
if (any(!names(cna) %in% names(data))) stop("Names of the list cont.na must be variables in data.\n", call. = FALSE)
for (i in 1:length(cna)) {
j <- (1:length(data))[names(cna)[i] == names(data)]
cont.na[[j]] <- unique(c(NA,cna[[i]]))
}
}
syn.method = rep("ok", length(data))
if (!is.null(not.synthesised)) {
if (!is.null(not.synthesised) && !all(not.synthesised %in% names(data))) stop("not.synthesised must be names of variables in data.\n", call. = FALSE)
syn.method[names(data) %in% not.synthesised] <- ""
}
object <- list(syn = object, m = m, strata.syn = NULL, method = syn.method, cont.na = cont.na)
class(object ) <- "synds"
res <- utility.gen.synds(object = object, data = data,
method = method, maxorder = maxorder,
k.syn = k.syn, tree.method = tree.method,
max.params = max.params, print.stats = print.stats,
resamp.method = resamp.method, nperms = nperms, cp = cp,
minbucket = minbucket, mincriterion = mincriterion,
vars = vars, aggregate = aggregate, maxit = maxit,
ngroups = ngroups, print.flag = print.flag,
print.every = print.every, digits = digits,
print.zscores = print.zscores, zthresh = zthresh,
print.ind.results = print.ind.results,
print.variable.importance = print.variable.importance)
res$call <- match.call()
return(res)
}
utility.gen.synds <- function(object, data,
method = "cart", maxorder = 1,
k.syn = FALSE, tree.method = "rpart",
max.params = 400, print.stats = c("pMSE", "S_pMSE"),
resamp.method = NULL, nperms = 50, cp = 1e-3,
minbucket = 5, mincriterion = 0, vars = NULL,
aggregate = FALSE, maxit = 200, ngroups = NULL,
print.flag = TRUE, print.every = 10,
digits = 6, print.zscores = FALSE,
zthresh = 1.6, print.ind.results = FALSE,
print.variable.importance = FALSE, ...)
{
m <- object$m
if (is.null(method) || length(method) != 1 || is.na(match(method, c("cart", "logit"))))
stop("Invalid 'method' type - must be either 'logit' or 'cart'.\n", call. = FALSE)
if (is.null(print.stats) || any(is.na(match(print.stats, c("pMSE", "SPECKS", "PO50", "U", "S_pMSE", "S_SPECKS", "S_PO50", "S_U", "all")))))
stop("Invalid 'print.stats'. Can only include 'pMSE', 'SPECKS', 'PO50', 'U', 'S_pMSE', 'S_SPECKS', 'S_PO50', 'S_U'.\nAternatively it can be set to 'all'.\n", call. = FALSE)
if (!is.null(resamp.method) && is.na(match(resamp.method, c("perm", "pairs", "none"))))
stop("Invalid 'resamp.method' type - must be NULL, 'perm', 'pairs' or 'none'.\n", call. = FALSE)
if (aggregate == TRUE & method != "logit") stop("Aggregation only works for 'logit' method.\n", call. = FALSE)
if (is.null(data)) stop("Requires parameter 'data' to give name of the real data.\n", call. = FALSE)
if (!class(object) == "synds") stop("Object must have class 'synds'.\n", call. = FALSE)
if (k.syn & !is.null(resamp.method) && resamp.method == "pairs") stop('\nresamp.method = "pairs" will give the wrong answer when k.syn is TRUE.\n', call. = FALSE)
if (is.null(tree.method) || length(tree.method) != 1 || is.na(match(tree.method, c("rpart", "ctree"))))
stop("Invalid 'tree.method' - must be either 'rpart' or 'ctree'.\n", call. = FALSE)
if (!(is.null(vars))) {
if (is.numeric(vars)){
if (!(all(vars %in% 1:length(data)))) stop("Column indices of 'vars' must be in 1 to length(data).\n", call. = FALSE)
} else if (!(all(vars %in% names(data)))) stop("Some 'vars' specified not in data.\n", call. = FALSE)
data <- data[, vars, drop = FALSE]
if (m == 1) {
if (!all(vars %in% names(object$syn))) stop("Some 'vars' specified not in synthetic data.\n", call. = FALSE)
else object$syn <- object$syn[, vars, drop = FALSE ]
} else {
if (!all(vars %in% names(object$syn[[1]]))) stop("Some 'vars' specified not in synthetic data.\n", call. = FALSE)
else object$syn <- lapply(object$syn, "[", vars)
}
} else {
if (m == 1) vars <- names(object$syn) else vars <- names(object$syn[[1]])
if (!all(vars %in% names(data))) stop("Some variables in synthetic data not in original data.\n", call. = FALSE)
else data <- data[, vars]
}
if (!is.null(object$strata.syn)) {
cna <- object$cont.na[1,]
syn.method <- object$method[1,]
} else {
cna <- object$cont.na
syn.method <- object$method
}
cna <- cna[names(cna) %in% vars]
for ( i in 1:length(cna)) {
nm <- names(cna)[i]
vals <- unique(cna[[i]][!is.na(cna[[i]])])
if (length(vals) > 0){
for (j in 1:length(vals))
n_cna <- sum(vals[j] == data[,nm] & !is.na(data[,nm]))
if (n_cna == 0) stop("\nValue ", vals[j], " identified as denoting a special or missing in cont.na for ",nm, " is not in data.\n",sep = "", call. = FALSE)
else if (n_cna < 10 & print.flag) cat ("\nWarning: Only ",n_cna ," record(s) in data with value ",vals[j]," identified as denoting a missing value in cont.na for ",nm, "\n\n", sep = "")
}
}
incomplete <- FALSE
nsynthd <- length(vars)
unsyn.vars <- names(syn.method)[syn.method == ""]
if (any(vars %in% unsyn.vars) & !is.null(unsyn.vars)) {
notunsyn <- vars[!vars %in% unsyn.vars]
if (!all(unsyn.vars %in% vars)) stop("Unsynthesised variables must be a subset of variables contributing to the utility measure.\n", call. = FALSE)
if ( all(vars %in% unsyn.vars)) stop("Utility measure impossible if all in vars are unsynthesised.\n", call. = FALSE)
incomplete <- TRUE
}
if (is.null(resamp.method)) {
if ("S_SPECKS" %in% print.stats || "S_PO50" %in% print.stats || "S_U" %in% print.stats || incomplete) {
resamp.method <- "pairs"
cat('Resampling method set to "pairs" because S_SPECKS or S_PO50 or S_U in print.stats or incomplete = TRUE.\n')
} else if (method == "cart") resamp.method <- "perm"
} else {
if (incomplete & resamp.method == "perm")
stop('Incomplete synthesis requires resamp.method = "pairs".\n', call. = FALSE)
if (any(c("S_SPECKS", "S_PO50", "S_U") %in% print.stats) & resamp.method == "perm")
stop('Stat SPECKS, PO50, and U requires resamp.method = "pairs" to get S_SPECKS, S_PO50, and S_U respectively.\n', call. = FALSE)
if (resamp.method == "pairs" & m == 1)
stop('resamp.method = "pairs" needs a synthesis with m > 1, m = 10 suggested.\n', call. = FALSE)
}
leneq1 <- function(x) length(table(as.numeric(x[!is.na(x)]), useNA = "ifany")) %in% (0:1)
dchar <- sapply(data,is.character)
if (any(dchar == TRUE)) for ( i in 1:dim(data)[2]) if (dchar[i] == TRUE) data[,i] <- factor(data[,i])
dout <- sapply(data,leneq1)
if (m == 1) sout <- sapply(object$syn,leneq1)
else sout <- sapply(object$syn[[1]],leneq1)
dout <- dout & sout
if (any(dout == TRUE) & print.flag) {
cat("Some columns with single values or all missing values in original and synthetic\nexcluded from utility comparisons (excluded variables: ",
paste(names(data)[dout], collapse = ", "), ").\n", sep = "")
data <- data[,!dout]
if (m == 1) object$syn <- object$syn[, !dout, drop = FALSE]
else object$syn <- lapply(object$syn, "[", !dout)
}
numvars <- (1:dim(data)[2])[sapply(data, is.numeric)]
names(numvars) <- names(data)[numvars]
data0 <- data
if (!is.null(ngroups)) {
for (i in numvars) {
if (m == 1) {
groups <- group_num(data[,i], object$syn[,i], object$syn[,i],
ngroups, cont.na = cna, ...)
data[,i] <- groups[[1]]
object$syn[,i] <- groups[[2]]
} else {
syn0 <- c(sapply(object$syn, '[[', i))
for (j in 1:m) {
groups <- group_num(data0[,i], object$syn[[j]][,i], syn0,
ngroups, cont.na = cna[[i]], ...)
data[,i] <- groups[[1]]
object$syn[[j]][,i] <- groups[[2]]
}
}
}
}
catvars <- (1:dim(data)[2])[sapply(data, is.factor)]
for (i in catvars) {
data[,i] <- factor(data[,i])
if (m == 1) object$syn[,i] <- factor(object$syn[,i])
else for (j in 1:m) object$syn[[j]][,i] <- factor(object$syn[[j]][,i])
if (any(is.na(data[,i]))) {
data[,i] <- addNA(data[,i])
if (m == 1) object$syn[,i] <- addNA(object$syn[,i])
else for (j in 1:m) object$syn[[j]][,i] <- addNA(object$syn[[j]][,i])
}
}
for (i in numvars) {
if (anyNA(data[,i]) & is.null(ngroups)) {
newname <- paste(names(data)[i], "NA", sep = "_")
data <- data.frame(data, 1*(is.na(data[,i])))
names(data)[length(data)] <- newname
data[is.na(data[,i]), i] <- 0
if (m == 1) {
object$syn <- data.frame(object$syn, 1*(is.na(object$syn[,i])))
names(object$syn)[length(object$syn)] <- newname
object$syn[is.na(object$syn[,i]), i] <- 0
} else {
for (j in 1:m) {
object$syn[[j]] <- data.frame(object$syn[[j]], 1*(is.na(object$syn[[j]][,i])))
names(object$syn[[j]])[length(object$syn[[j]])] <- newname
object$syn[[j]][is.na(object$syn[[j]][,i]),i] <- 0
}
}
}
if (any(!is.na(cna[[i]])) & is.null(ngroups)) {
cna[[i]] <- cna[[i]][!is.na(cna[[i]])]
for (j in 1:length(cna[[i]])) {
newname <- paste(names(data)[i], "cna",j, sep = "_")
data <- data.frame(data, 1*(data[,i] == cna[[i]][j]))
data[data[,i] == cna[[i]][j], i] <- 0
names(data)[length(data)] <- newname
}
if (m == 1) {
for (j in 1:length(cna[[i]])) {
newname <- paste(names(object$syn)[i], "cna",j, sep = "_")
object$syn <- data.frame(object$syn, 1*(object$syn[,i] == cna[[i]][j]))
object$syn[object$syn[,i] == cna[[i]][j], i] <- 0
names(object$syn)[length(object$syn)] <- newname
}
} else {
for (k in 1:m) {
for (j in 1:length(cna[[i]])) {
newname <- paste(names(object$syn[[k]])[i], "cna",j, sep = "_")
object$syn[[k]] <- data.frame(object$syn[[k]], 1*(object$syn[[k]][,i] == cna[[i]][j]))
object$syn[[k]][object$syn[[k]][,i] == cna[[i]][j], i] <- 0
names(object$syn[[k]])[length(object$syn[[k]])] <- newname
}
}
}
}
}
propcalcs <- function(syndata, data) {
n1 <- dim(data)[1]
n2 <- dim(syndata)[1]
N <- n1 + n2
cc <- n2 / N
if (k.syn) cc <- 0.5
df.prop <- rbind(syndata, data)
df.prop <- data.frame(df.prop, t = c(rep(1,n2), rep(0,n1)))
catvars <- (1:(dim(df.prop)[2]))[sapply(df.prop,is.factor)]
for (i in catvars) {
if (any(table(df.prop[,i]) == 0)) {
df.prop[,i] <- as.factor(as.character(df.prop[,i]))
if (print.flag) cat("Empty levels of factor(s) for variable ", names(df.prop)[i]," removed.\n" )
}
}
if (aggregate == TRUE) {
aggdat <- aggregate(df.prop[,1], by = df.prop, FUN = length)
wt <- aggdat$x
aggdat <- aggdat[, -dim(aggdat)[2]]
}
if (method == "logit" ) {
if (maxorder >= dim(data)[2])
stop("maxorder cannot be greater or equal to the number of variables.\n", call. = FALSE)
levs <- sapply(data, function(x) length(levels(x)))
levs[levs == 0] <- 2
tt1 <- apply(combn(length(levs), 1), 2, function(x) {prod(levs[x] - 1)})
if (maxorder == 0) nparams <- 1 + sum(tt1)
else {
tt2 <- apply(combn(length(levs), 2), 2, function(x) {prod(levs[x] - 1)})
if (maxorder == 1) nparams <- 1 + sum(tt1) + sum(tt2)
else {
tt3 <- apply(combn(length(levs), 3), 2, function(x) {prod(levs[x] - 1)})
if (maxorder == 2) nparams <- 1 + sum(tt1) + sum(tt2) + sum(tt3)
else {
tt4 <- apply(combn(length(levs), 4), 2, function(x) {prod(levs[x] - 1)})
if (maxorder == 3) nparams <- 1 + sum(tt1) + sum(tt2) + sum(tt3) + sum(tt4)
else {
tt5 <- apply(combn(length(levs), 5), 2, function(x) {prod(levs[x] - 1)})
if (maxorder == 4) nparams <- 1 + sum(tt1) + sum(tt2) + sum(tt3) + sum(tt4) + sum(tt5)
}
}
}
}
if (nparams > max.params) stop("You will be fitting a large model with ", nparams,
" parameters that may take a long time and fail to converge.
Have you selected variables with vars?
You can try again, if you really want to, by increasing max.params.\n", sep = "", call. = FALSE)
else if (nparams > dim(data)[[1]]/5) cat("You will be fitting a large model with ", nparams,
" parameters and only ", dim(data)[[1]], " records
that may take a long time and fail to converge.
Have you selected variables with vars?\n")
if (maxorder >= 1) logit.int <- as.formula(paste("t ~ .^", maxorder + 1))
else logit.int <- as.formula(paste("t ~ ."))
if (aggregate == TRUE) fit <- glm(logit.int, data = aggdat, family = "binomial",
control = list(maxit = maxit), weights = wt)
else fit <- suppressWarnings(glm(logit.int, data = df.prop, family = "binomial",
control = list(maxit = maxit)))
score <- predict(fit, type = "response")
if (incomplete == FALSE) km1 <- length(fit$coefficients[!is.na(fit$coefficients)]) - 1
else {
namescoef <- names(fit$coefficients)
coefOK <- rep(FALSE, length(namescoef))
for (nn in notunsyn) coefOK[grepl(nn, namescoef)] <- TRUE
km1 <- sum(coefOK & print.flag)
if (m == 1 || (m > 1 & j == 1)) cat("Expectation of utility uses only coefficients involving synthesised variables: ",
km1, " from ", length(fit$coefficients) - 1, "\n", sep = "")
}
if (k.syn) km1 <- km1 + 1
if (aggregate == TRUE) {
pMSE <- (sum(wt*(score - cc)^2, na.rm = T)) / N
KSt <- suppressWarnings(ks.test(rep(score[aggdat$t == 1], wt[aggdat$t == 1]),
rep(score[aggdat$t == 0], wt[aggdat$t == 0])))
SPECKS <- KSt$statistic
PO50 <- sum(wt[(score > 0.5 & df.prop$t == 1) | ( score <= 0.5 & df.prop$t == 0)])/N*100 - 50
U <- suppressWarnings(wilcox.test(rep(score[aggdat$t == 1], wt[aggdat$t == 1]),
rep(score[aggdat$t == 0], wt[aggdat$t == 0]))$statistic)
} else {
pMSE <- (sum((score - cc)^2, na.rm = T)) / N
KSt <- suppressWarnings(ks.test(score[df.prop$t == 1], score[df.prop$t == 0]))
SPECKS <- KSt$statistic
PO50 <- sum((score > 0.5 & df.prop$t == 1) | ( score <= 0.5 & df.prop$t == 0))/N*100 - 50
U <- suppressWarnings(wilcox.test(score[df.prop$t == 1], score[df.prop$t == 0])$statistic)
}
pMSEExp <- km1 * (1 - cc)^2 * cc / N
S_pMSE <- pMSE / pMSEExp
fit$data <- NULL
} else if (method == "cart") {
km1 <- NA
if (tree.method == "rpart") {
fit <- rpart(t ~ ., data = df.prop, method = 'class',
control = rpart.control(cp = cp, minbucket = minbucket))
score <- predict(fit)[, 2]
} else if (tree.method == "ctree") {
fit <- ctree(t ~ ., data = df.prop,
controls = ctree_control(mincriterion = mincriterion, minbucket = minbucket))
score <- predict(fit)
}
pMSE <- sum((score - cc)^2, na.rm = T) / N
KSt <- suppressWarnings(ks.test(score[df.prop$t == 1], score[df.prop$t == 0]))
SPECKS <- KSt$statistic
PO50 <- sum((score > 0.5 & df.prop$t == 1) | ( score <= 0.5 & df.prop$t == 0))/N*100 - 50
U <- suppressWarnings(wilcox.test(score[df.prop$t == 1], score[df.prop$t == 0])$statistic)
}
if (!is.null(resamp.method) && resamp.method == "none") S_pMSE <- NA
else if (!is.null(resamp.method) && resamp.method == "perm") {
S_pMSE <- rep(NA, m)
simpMSE <- rep(0, nperms)
if (m == 1) j <- 1
if (j == 1 & print.flag) {
if (print.every == 0 | print.every >= nperms) cat("Running ", nperms, " permutations to get NULL utilities.", sep = "")
else cat("Running ", nperms, " permutations to get NULL utilities and printing every ", print.every, "th.", sep = "")
}
if (print.flag) cat("\nsynthesis ", j, " ", sep = "")
for (i in 1:nperms) {
if (print.every > 0 & nperms > print.every & floor(i/print.every) == i/print.every & print.flag) cat(i, " ", sep = "")
pdata <- df.prop
if (!k.syn) pdata$t <- sample(pdata$t)
else pdata$t <- rbinom(N, 1, 0.5)
if (method == "cart") {
if (tree.method == "rpart") {
sfit <- rpart(t ~ ., data = pdata, method = 'class', control = rpart.control(cp = cp, minbucket = minbucket))
score <- predict(sfit)[,2]
} else if (tree.method == "ctree") {
sfit <- ctree(t ~ ., data = pdata,
controls = ctree_control(mincriterion = mincriterion, minbucket = minbucket))
score <- predict(sfit)
}
simpMSE[i] <- (sum((score - cc)^2, na.rm = T)) / N / 2
} else if (method == "logit") {
if (maxorder >= 1) logit.int <- as.formula(paste("t ~ .^", maxorder + 1))
else logit.int <- as.formula(paste("t ~ ."))
if (aggregate == TRUE) {
aggdat1 <- aggregate(pdata[,1], by = pdata, FUN = length)
wt <- aggdat1$x
aggdat1 <- aggdat1[, -dim(aggdat1)[2]]
sfit <- glm(logit.int, data = aggdat1, family = "binomial",
control = list(maxit = maxit), weights = wt)
} else sfit <- glm(logit.int, data = pdata, family = "binomial",
control = list(maxit = maxit))
if (sfit$converged == FALSE & print.flag) cat("Warning: Logistic model did not converge in ",
maxit, " iterations.\nYou could try increasing parameter 'maxit'.\n", sep = "")
score <- predict(sfit, type = "response")
if (aggregate == TRUE) {
simpMSE[i] <- sum(wt*(score - cc)^2, na.rm = T) / N / 2
} else {
simpMSE[i] <- sum((score - cc)^2, na.rm = T) / N / 2
}
}
}
nnosplits <- c(sum(simpMSE < 1e-8), length(simpMSE))
S_pMSE <- pMSE/mean(simpMSE)
}
if (!is.null(resamp.method) && resamp.method == "pairs")
res.ind <- list(pMSE = pMSE, SPECKS = SPECKS, PO50 = PO50, U = U,
S_pMSE= NA, S_SPECKS = NA, S_PO50 = NA, S_U = NA,
fit = fit, nnosplits = NA, df = NA)
else if (!is.null(resamp.method) && resamp.method == "perm")
res.ind <- list(pMSE = pMSE, SPECKS = SPECKS, PO50 = PO50,U = U,
S_pMSE= S_pMSE, S_SPECKS = NA, S_PO50 = NA, S_U = NA,
fit = fit, nnosplits = nnosplits, df = NA)
else res.ind <- list(pMSE = pMSE, SPECKS = SPECKS, PO50 = PO50, U =U,
S_pMSE = S_pMSE, S_SPECKS = NA, S_PO50 = NA, S_U = NA,
fit = fit, nnosplits = NA, df = km1)
return(res.ind)
}
n1 <- nrow(data)
if (m == 1) {
n2 <- nrow(object$syn)
res.ind <- propcalcs(object$syn, data)
res <- list(call = match.call(), m = m, method = method, tree.method = tree.method,
resamp.method = resamp.method, maxorder = maxorder, vars = vars,
k.syn = k.syn, aggregate = aggregate, maxit = maxit,
ngroups = ngroups, mincriterion = mincriterion,
nperms = nperms, df = res.ind$df, incomplete = incomplete,
pMSE = res.ind$pMSE, S_pMSE = res.ind$S_pMSE,
S_SPECKS = res.ind$S_SPECKS, S_PO50 = res.ind$S_PO50,S_U = res.ind$S_U,
SPECKS = res.ind$SPECKS, PO50 = res.ind$PO50, U = res.ind$U,
print.stats = print.stats,
fit = res.ind$fit, nnosplits = res.ind$nnosplits,
digits = digits, print.ind.results = print.ind.results,
print.zscores = print.zscores, zthresh = zthresh,
print.variable.importance = print.variable.importance)
} else {
n2 <- nrow(object$syn[[1]])
pMSE <- SPECKS <- PO50 <- U <- S_pMSE <- S_SPECKS <- S_PO50 <- S_U <- rep(NA, m)
fit <- nnosplits <- as.list(1:m)
if (!is.null(resamp.method) && !(resamp.method == "none") && resamp.method == "pairs") {
kk <- 0
simpMSE <- simKS <- simPO50 <- simU <- rep(NA, m*(m - 1)/2)
}
for (j in 1:m) {
res.ind <- propcalcs(object$syn[[j]], data)
pMSE[j] <- res.ind$pMSE
SPECKS[j] <- res.ind$SPECKS
PO50[j] <- res.ind$PO50
U[j] <- res.ind$U
fit[[j]] <- res.ind$fit
if (resamp.method == "none" || (method == "logit" & (is.null(resamp.method)))) {
if (j == 1 & print.flag) cat("Fitting syntheses: ")
if (print.flag) {
cat(j, " ", sep = "")
if (res.ind$fit$converged == FALSE) cat("Convergence failed.\n")
}
if (j == m ) cat("\n")
S_pMSE[j] <- res.ind$S_pMSE
}
if (!is.null(resamp.method) && resamp.method == "pairs") {
if (j == 1 & print.flag) {
if (print.every == 0 | m*(m - 1)/2 <= print.every) cat("Simulating NULL pMSE from ", m*(m - 1)/2, " pair(s).", sep = "")
else cat("Simulating NULL pMSE from ", m*(m - 1)/2, " pairs, printing every ", print.every, "th:\n", sep = "")
if (m*(m - 1)/2 < 6 ) cat("\nNumber of pairs too low, we suggest increasing number of syntheses (m).\n")
}
if (j < m) {
for (jj in (j + 1):(m)) {
kk <- kk + 1
if (print.every > 0 & print.every < m*(m - 1)/2 & floor(kk/print.every) == kk/print.every & print.flag) cat(kk," ",sep = "")
simvals <- propcalcs(object$syn[[j]], object$syn[[jj]])
simpMSE[kk] <- simvals$pMSE
simKS[kk] <- simvals$SPECKS
simPO50[kk] <- simvals$SPECKS
simU[kk] <- simvals$U
}
}
nnosplits<- c(sum(simpMSE < 1e-8), length(simpMSE))
for (j in 1:m) {
S_pMSE[j] <- pMSE[j] *2 /mean(simpMSE)
S_SPECKS[j] <- SPECKS[j] *2 /mean(simKS)
S_PO50[j] <- PO50[j] *2 /mean(simPO50)
S_U[j] <- U[j] *2 /mean(simU)
}
} else {
nnosplits[[j]] <- res.ind$nnosplits
S_pMSE[j] <- res.ind$S_pMSE
S_SPECKS[j] <- res.ind$S_SPECKS
S_PO50[j] <- res.ind$S_PO50
S_U[j] <- res.ind$S_U
}
}
res <- list(call = match.call(), m = m, method = method, tree.method = tree.method,
resamp.method = resamp.method, maxorder = maxorder, vars = vars,
k.syn = k.syn, aggregate = aggregate, maxit = maxit,
ngroups = ngroups, mincriterion = mincriterion,
nperms = nperms, df = res.ind$df, incomplete = incomplete,
pMSE = pMSE, S_pMSE = S_pMSE,
S_SPECKS = S_SPECKS, S_PO50 = S_PO50, S_U = S_U,
SPECKS = SPECKS, PO50 = PO50, U = U,
print.stats = print.stats,
fit = fit, nnosplits = nnosplits,
digits = digits, print.ind.results = print.ind.results,
print.zscores = print.zscores, zthresh = zthresh,
print.variable.importance = print.variable.importance)
}
class(res) <- "utility.gen"
res$call <- match.call()
return(res)
}
utility.tab <- function(object, data, ...) UseMethod("utility.tab")
utility.tab.default <- function(object, ...)
stop("No compare method associated with class ", class(object), call. = FALSE)
utility.tab.data.frame <- utility.tab.list <-
function(object, data, vars = NULL, cont.na = NULL,
ngroups = 5, useNA = TRUE, max.table = 1e6,
print.tables = length(vars) < 4,
print.stats = c("pMSE", "S_pMSE", "df"),
print.zdiff = FALSE, print.flag = TRUE,
digits = 4, k.syn = FALSE, ...)
{
if (is.null(data)) stop("Requires parameter 'data' to give name of the real data.\n", call. = FALSE)
if (is.null(object)) stop("Requires parameter 'object' to give name of the synthetic data.\n", call. = FALSE)
if (is.list(object) & !is.data.frame(object)) m <- length(object)
else if (is.data.frame(object)) m <- 1
else stop("object must be a data frame or a list of data frames.\n", call. = FALSE)
cna <- cont.na
cont.na <- as.list(rep(NA, length(data)))
names(cont.na) <- names(data)
if (!is.null(cna)) {
if (!is.list(cna) | any(names(cna) == "") | is.null(names(cna)))
stop("Argument 'cont.na' must be a named list with names of selected variables.", call. = FALSE)
if (any(!names(cna) %in% names(data))) stop("Names of the list cont.na must be variables in data.\n", call. = FALSE)
for (i in 1:length(cna)) {
j <- (1:length(data))[names(cna)[i] == names(data)]
cont.na[[j]] <- unique(c(NA,cna[[i]]))
}
}
object <- list(syn = object, m = m, cont.na = cont.na)
class(object ) <- "synds"
res <- utility.tab.synds(object = object, data = data, vars = vars,
ngroups = ngroups, useNA = useNA,
print.tables = print.tables,
print.stats = print.stats,
print.zdiff = print.zdiff,
print.flag = print.flag,
digits = digits, k.syn = k.syn, ...)
return(res)
}
utility.tab.synds <- function(object, data, vars = NULL, ngroups = 5,
useNA = TRUE, max.table = 1e6,
print.tables = length(vars) < 4,
print.stats = c("pMSE", "S_pMSE", "df"),
print.zdiff = FALSE, print.flag = TRUE,
digits = 4, k.syn = FALSE, ...)
{
vars <- unique(vars)
if (is.null(data))
stop("Requires parameter 'data' to give name of the real data.\n", call. = FALSE)
if (!is.data.frame(data))
stop("Data must have class 'data.frame'.\n", call. = FALSE)
if (!class(object) == "synds")
stop("Object must have class 'synds'.\n", call. = FALSE)
if (is.null(vars)) stop("You need to set variables with vars parameter.\n", call. = FALSE) else if
(!(all(vars %in% names(data)))) stop("Unrecognized variable(s) in vars parameter: ",
paste(vars[!(vars %in% names(data))], collapse = ", "), call. = FALSE)
if (!all(print.stats %in% c("VW", "FT", "JSD", "SPECKS", "WMabsDD", "U", "G", "pMSE", "PO50", "MabsDD", "dBhatt","S_VW", "S_FT", "S_JSD", "S_WMabsDD", "S_G", "S_pMSE", "df", "dfG", "all")))
stop('print.stats must be set to "all" or selected from "VW", "FT", "JSD", "SPECKS", "WMabsDD", "U", "G", "pMSE", "PO50", "MabsDD", "dBhatt", "S_VW", "S_FT", "S_JSD", "S_WMabsDD", "S_G", "S_pMSE", "df" or "dfG".\n', call. = FALSE)
data <- data[, vars, drop = FALSE]
nvars <- ncol(data)
data.orig <- data
if (!is.null(object$strata.syn)) {
cna <- object$cont.na[1, ]
} else {
cna <- object$cont.na
}
cna <- cna[vars]
m <- object$m
if (m == 1) syndata <- list(object$syn) else syndata <- object$syn
syndata <- lapply(syndata, '[', vars)
pMSE <- S_pMSE <- df <- dfG <- VW <- S_VW <- FT <- S_FT <- G <- S_G <-
JSD <- U <- S_JSD <- MabsDD <- WMabsDD <- S_WMabsDD <- SPECKS <-
dBhatt <- PO50 <- nempty <- vector("numeric", m)
tab.syn <- tab.obs <- tab.zdiff <- vector("list", m)
syn.mvar <- vector("list", nvars)
for (j in 1:nvars) {
if (is.numeric(syndata[[1]][, j])) syn.mvar[[j]] <- c(sapply(syndata, '[[', j))
}
for (i in 1:m) {
data <- data.orig
for (j in 1:nvars) {
if (is.numeric(data[, j])) {
grpd <- group_num(data[, j], syndata[[i]][, j], syn.mvar[[j]],
n = ngroups, cont.na = cna[[j]], ...)
data[, j] <- grpd[[1]]; syndata[[i]][, j] <- grpd[[2]]
} else if (is.character(data[, j])) {
data[, j] <- factor(data[, j])
syndata[[i]][, j] <- factor(syndata[[i]][, j],
levels = levels(data[, j]))
}
if (any(is.na(data[, j])) & useNA) {
data[, j] <- addNA(data[, j])
syndata[[i]][, j] <- addNA(syndata[[i]][, j])
}
}
table.size <- prod(sapply(data, function(x) length(levels(x))))
if (table.size > max.table)
stop("Table size ", round(table.size), " exceeds max.table limit of ", round(max.table),".",
"\nYou could try increasing max.table but memory problems are likely.\n", call. = FALSE)
else if (i == 1 & table.size > dim(data)[1]/2 & print.flag) cat("Warning: You are creating tables with ", table.size,
" cells from ", dim(data)[1], " observations.\nResults from sparse tables may be unreliable.\n", sep = "")
if (useNA){
tab.obs[[i]] <- table(data, useNA = "ifany", deparse.level = 0)
tab.syn[[i]] <- table(syndata[[i]], useNA = "ifany", deparse.level = 0)
} else {
tab.obs[[i]] <- table(data, useNA = "no", deparse.level = 0)
tab.syn[[i]] <- table(syndata[[i]], useNA = "no", deparse.level = 0)
}
nempty[i] <- sum(tab.obs[[i]] + tab.syn[[i]] == 0)
td <- tab.obs[[i]][tab.obs[[i]] + tab.syn[[i]] > 0]
ts <- tab.syn[[i]][tab.obs[[i]] + tab.syn[[i]] > 0]
totcells <- length(td)
if (!k.syn) df[i] <- totcells - 1 else df[i] <- totcells
cc <- sum(ts) / sum(ts + td)
N <- sum(ts + td)
sumos <- ts + td
expect <- sumos * cc
diff <- ts - td * cc / (1 - cc)
VW[i] <- sum(diff^2 / expect)
FT[i] <- 4*sum((ts^(0.5) - (cc / (1 - cc) * td)^(0.5))^2)
S_FT[i] <- FT[i] / df[i]
S_VW[i] <- S_pMSE[i] <- VW[i] / df[i]
pMSE[i] <- VW[i] * cc * (1 - cc)^2 / N
tab.zdiff[[i]] <- suppressWarnings((tab.syn[[i]] - tab.obs[[i]] * cc/(1-cc)) /
sqrt((tab.syn[[i]] + tab.obs[[i]]) * cc))
ptabd <- td / sum(td)
ptabs <- ts / sum(ts)
phalf <- (ptabd + ptabs) *0.5
JSD[i] <- sum((ptabd * log2(ptabd/phalf))[ptabd > 0])/2 +
sum((ptabs * log2(ptabs/phalf))[ptabs > 0])/2
S_JSD[i] <- JSD[i]*2*N/df[i]/log(2)
sok <- ts[ts > 1e-8 & td > 1e-8]
dok <- td[ts > 1e-8 & td > 1e-8]
if (!k.syn) dfG[i] <- length(dok) - 1 else dfG[i] <- length(dok)
G[i] <- 2 *sum(sok*log(sok/sum(sok)/dok*sum(dok)))
S_G[i] <- G[i] / dfG[i]
score <- ts / (ts + td)
kst <- suppressWarnings(ks.test(rep(score, ts), rep(score, td)))
SPECKS[i] <- kst$statistic
Ut <- suppressWarnings(wilcox.test(rep(score, ts), rep(score, td)))
U[i] <- Ut$statistic
predsyn <- (ptabs > ptabd)
PO50[i] <- (sum(ts[predsyn]) + sum(td[!predsyn])) / (sum(ts) + sum(td)) * 100 - 50
MabsDD[i] <- sum(abs(diff))/sum(ts)
WMabsDD[i] <- sum(abs(diff)/sqrt(expect))/sqrt(2/pi)
S_WMabsDD[i] <- WMabsDD[i]/df[i]
dBhatt[i] <- sqrt(1 - sum(sqrt(ptabd*ptabs)))
}
tab.obs <- tab.obs[[1]]
if (m == 1) {
tab.syn <- tab.syn[[1]]
tab.zdiff <- tab.zdiff[[1]]
}
res <- list(m = m,
VW = VW,
FT = FT,
JSD = JSD,
SPECKS = SPECKS,
WMabsDD = WMabsDD,
U = U,
G = G,
pMSE = pMSE,
PO50 = PO50,
MabsDD = MabsDD,
dBhatt = dBhatt,
S_VW = S_VW,
S_FT = S_FT,
S_JSD = S_JSD,
S_WMabsDD = S_WMabsDD,
S_G = S_G,
S_pMSE = S_pMSE,
df = df,
dfG = dfG,
nempty = unlist(nempty),
tab.obs = tab.obs,
tab.syn = tab.syn,
tab.zdiff = tab.zdiff,
digits = digits,
print.stats = print.stats,
print.zdiff = print.zdiff,
print.tables = print.tables,
n = sum(object$n),
k.syn = k.syn)
class(res) <- "utility.tab"
return(res)
}
group_num <- function(x1, x2, xsyn, n = 5, style = "quantile", cont.na = NA, ...) {
if (!is.numeric(x1) | !is.numeric(x2) | !is.numeric(xsyn))
stop("x1, x2, and xsyn must be numeric.\n", call. = FALSE)
x1nm <- x1[!(x1 %in% cont.na) & !is.na(x1)]
x2nm <- x2[!(x2 %in% cont.na) & !is.na(x2)]
xsynnm <- xsyn[!(xsyn %in% cont.na) & !is.na(xsyn)]
my_breaks <- unique(suppressWarnings(classIntervals(c(x1nm, xsynnm),
n = n, style = style, ...))$brks)
my_levels <- c(levels(cut(x1nm, breaks = my_breaks,
dig.lab = 8, right = FALSE, include.lowest = TRUE)),
cont.na[!is.na(cont.na)])
x1[!(x1 %in% cont.na) & !is.na(x1)] <- as.character(cut(x1nm,
breaks = my_breaks, dig.lab = 8, right = FALSE, include.lowest = TRUE))
x2[!(x2 %in% cont.na) & !is.na(x2)] <- as.character(cut(x2nm,
breaks = my_breaks, dig.lab = 8, right = FALSE, include.lowest = TRUE))
x1 <- factor(x1, levels = my_levels)
x2 <- factor(x2, levels = my_levels)
return(list(x1,x2))
} |
getBestShiftConfiguration <- function(x, expectedNumberOfShifts , threshold = 5){
if (inherits(x, 'bammdata')) {
x <- credibleShiftSet(x, expectedNumberOfShifts, threshold, set.limit = 0.95);
} else if (inherits(x, 'credibleshiftset')) {
} else {
stop("Argument x must be of class bammdata or credibleshiftset\n");
}
class(x) <- 'bammdata';
subb <- subsetEventData(x, index = x$indices[[1]]);
coreshifts <- c((length(x$tip.label) + 1), x$coreshifts);
coreshifts <- intersect(subb$eventData[[1]]$node, coreshifts);
for (i in 1:length(subb$eventData)) {
if (i == 1) {
ff <- subb$eventData[[i]];
}
ff <- rbind(ff, subb$eventData[[i]]);
}
xn <- numeric(length(coreshifts));
xc <- character(length(coreshifts));
if (x$type == 'diversification') {
dff <- data.frame(generation = xn, leftchild=xc, rightchild=xc, abstime=xn, lambdainit=xn, lambdashift=xn, muinit = xn, mushift = xn, stringsAsFactors=F);
for (i in 1:length(coreshifts)) {
if (coreshifts[i] <= length(x$tip.label)) {
dset <- c(x$tip.label[coreshifts[i]], NA)
}else{
tmp <- extract.clade(as.phylo(x), node= coreshifts[i]);
dset <- tmp$tip.label[c(1, length(tmp$tip.label))];
}
tmp2 <- ff[ff$node == coreshifts[i], ];
dff$leftchild[i] <- dset[1];
dff$rightchild[i] <- dset[2];
dff$abstime[i] <- mean(tmp2$time);
dff$lambdainit[i] <- mean(tmp2$lam1);
dff$lambdashift[i] <- mean(tmp2$lam2);
dff$muinit[i] <- mean(tmp2$mu1);
dff$mushift[i] <- mean(tmp2$mu2);
}
best_ed <- getEventData(as.phylo(x), eventdata=dff);
} else if (x$type == 'trait') {
dff <- data.frame(generation = xn, leftchild=xc, rightchild=xc, abstime=xn, betainit=xn, betashift=xn, stringsAsFactors=F);
for (i in 1:length(coreshifts)) {
if (coreshifts[i] <= length(x$tip.label)) {
dset <- c(x$tip.label[coreshifts[i]], NA)
} else {
tmp <- extract.clade(as.phylo(x), node= coreshifts[i]);
dset <- tmp$tip.label[c(1, length(tmp$tip.label))];
}
tmp2 <- ff[ff$node == coreshifts[i], ];
dff$leftchild[i] <- dset[1];
dff$rightchild[i] <- dset[2];
dff$abstime[i] <- mean(tmp2$time);
dff$betainit[i] <- mean(tmp2$lam1);
dff$betashift[i] <- mean(tmp2$lam2);
}
best_ed <- getEventData(as.phylo(x), eventdata=dff, type = 'trait');
} else {
stop("error in getBestShiftConfiguration; invalid type");
}
return(best_ed);
} |
library(geobr)
library(magrittr)
library(sf)
library(dplyr)
library(data.table)
library(mapview)
library(sfheaders)
library(furrr)
library(future)
library(pbapply)
source("./prep_data/prep_functions.R")
update <- 2010
destdir <- paste0("./neighborhood/", update)
dir.create(destdir, recursive =T)
tracts <- geobr::read_census_tract(code_tract = 'all', year= update, simplified = F)
head(tracts)
tracts <- use_encoding_utf8(tracts)
tracts <- st_cast(tracts, to="MULTIPOLYGON")
future::plan(future::multiprocess)
nei <- subset(tracts, !is.na(name_neighborhood))
all_muni_part1 <- unique(nei$code_muni)
temp_list1 <- furrr::future_map(.x = all_muni_part1, .progress = TRUE,
.f = function(X){dissolve_polygons( mysf = subset(nei, code_muni== X),
group_column = 'code_neighborhood')}
)
part_1_neighborhood <- do.call('rbind', temp_list1)
temp_nei <- select(nei, code_muni, name_muni,
name_neighborhood,
code_neighborhood,
code_subdistrict,
name_subdistrict,
code_district,
name_district
)
temp_nei$geom <- NULL
temp_nei <- unique(temp_nei)
part_1_neighborhood_final <- left_join(part_1_neighborhood, temp_nei)
part_1_neighborhood_final$reference_geom <- 'neighborhood'
part_1_neighborhood_final %<>%
group_by(code_muni) %>%
mutate(count=n()) %>%
ungroup()
table(part_1_neighborhood_final$count)
part_1_neighborhood_final <- subset(part_1_neighborhood_final, count > 1)
part_1_neighborhood_final$count <- NULL
df_subdistrict <- subset(tracts, is.na(name_neighborhood) & !is.na(name_subdistrict))
df_subdistrict <- subset(df_subdistrict, !(code_muni %in% all_muni_part1))
all_muni_part <- unique(df_subdistrict$code_muni)
temp_list2 <- furrr::future_map(.x = all_muni_part2, .progress = TRUE,
.f = function(X){dissolve_polygons( mysf = subset(df_subdistrict, code_muni== X),
group_column = 'code_subdistrict')}
)
part_2_subdistrict <- do.call('rbind', temp_list2)
temp_subdistrict <- select(df_subdistrict, code_muni, name_muni,
code_subdistrict,
name_subdistrict,
code_district,
name_district
)
temp_subdistrict$geom <- NULL
temp_subdistrict <- unique(temp_subdistrict)
part_2_subdistrict_final <- left_join(part_2_subdistrict, temp_subdistrict)
part_2_subdistrict_final$reference_geom <- 'subdistrict'
part_2_subdistrict_final %<>%
group_by(code_muni) %>%
mutate(count=n()) %>%
ungroup()
table(part_2_subdistrict_final$count)
part_2_subdistrict_final <- subset(part_2_subdistrict_final, count > 5)
part_2_subdistrict_final$count <- NULL
df_district <- subset(tracts, is.na(name_neighborhood) & is.na(name_subdistrict) & !is.na(name_district))
df_district <- subset(df_district, !(code_muni %in% all_muni_part1))
df_district <- subset(df_district, !(code_muni %in% all_muni_part2))
all_muni_part3 <- unique(df_district$code_muni)
temp_list3 <- furrr::future_map(.x = all_muni_part3, .progress = TRUE,
.f = function(X){dissolve_polygons( mysf = subset(df_district, code_muni== X),
group_column = 'code_district')}
)
part_3_district <- do.call('rbind', temp_list3)
temp_district <- select(df_district, code_muni, name_muni,
code_district,
name_district
)
temp_district$geom <- NULL
temp_district <- unique(temp_district)
part_3_district_final <- left_join(part_3_district, temp_district)
part_3_district_final$reference_geom <- 'district'
part_3_district_final %<>%
group_by(code_muni) %>%
mutate(count=n()) %>%
ungroup()
table(part_3_district_final$count)
part_3_district_final <- subset(part_3_district_final, count > 15)
part_3_district_final$count <- NULL
intersect(part_1_neighborhood_final$code_muni, part_2_subdistrict_final$code_muni)
intersect(part_1_neighborhood_final$code_muni, part_3_district_final$code_muni)
intersect(part_3_district_final$code_muni, part_2_subdistrict_final$code_muni)
names(part_1_neighborhood_final)
names(part_2_subdistrict_final)
names(part_3_district_final)
ncol(part_1_neighborhood_final)
ncol(part_2_subdistrict_final)
ncol(part_3_district_final)
part_2_subdistrict_final$name_neighborhood <- NA
part_2_subdistrict_final$code_neighborhood <- NA
part_3_district_final$name_neighborhood <- NA
part_3_district_final$code_neighborhood <- NA
part_3_district_final$code_subdistrict <- NA
part_3_district_final$name_subdistrict <- NA
setcolorder(part_1_neighborhood_final, c("code_muni", "name_muni",
"name_neighborhood", "code_neighborhood",
"code_subdistrict", "name_subdistrict",
"code_district", "name_district",
"reference_geom", "geometry"))
setcolorder(part_2_subdistrict_final, c("code_muni", "name_muni",
"name_neighborhood", "code_neighborhood",
"code_subdistrict", "name_subdistrict",
"code_district", "name_district",
"reference_geom", "geometry"))
setcolorder(part_3_district_final, c("code_muni", "name_muni",
"name_neighborhood", "code_neighborhood",
"code_subdistrict", "name_subdistrict",
"code_district", "name_district",
"reference_geom", "geometry"))
brazil <- rbind(part_1_neighborhood_final, part_2_subdistrict_final, part_3_district_final)
head(brazil)
nrow(brazil)
brazil <- add_state_info(brazil)
setcolorder(brazil, c("code_muni", "name_muni",
"name_neighborhood", "code_neighborhood",
"code_subdistrict", "name_subdistrict",
"code_district", "name_district",
"code_state", "abbrev_state",
"reference_geom", "geometry"))
head(brazil)
brazil %<>%
group_by(code_muni) %>%
mutate(count=n()) %>%
ungroup()
table(brazil$count)
brazil <- subset(brazil, count > 1)
brazil$count <- NULL
brazil <- harmonize_projection(brazil)
brazil <- to_multipolygon(brazil)
brazil_simp <- simplify_temp_sf(brazil, tolerance=10)
as.numeric(object.size(brazil_simp)) / as.numeric(object.size(brazil))
sf::st_write(brazil, dsn= paste0(destdir, "/neighborhoods_", update, ".gpkg"))
sf::st_write(brazil_simp, dsn= paste0(destdir, "/neighborhoods_", update,"_simplified", ".gpkg")) |
new_record_update <- function(dimension, old, new) {
update <- list(dimension = dimension,
old = old,
new = new)
structure(update,
class = "record_update")
} |
library(ump)
ns <- seq(10, 40, 10)
alphas <- ps <- seq(0, 1, 0.025)
epsilon <- 1e-9
for (n in ns) {
x <- seq(0, n)
save <- array(NA, c(length(x), length(ps), length(alphas)))
for (p in ps) {
for (alpha in alphas) {
px <- dbinom(x, n, p)
phix <- umpu.binom(x, n, p, alpha)
save[ , ps == p, alphas == alpha] <- phix
foo <- sum(phix * px)
bar <- sum(x * phix * px)
if (p == 0 & alpha > 0 & alpha < 1) {
fred <- phix[1:2] == alpha
sally <- phix[- (1:2)] == 1
if ((! all(fred)) | (! all(sally)))
cat("n =", n, ": p =", p, ": alpha =", alpha,
": fred =", fred, ": sally =", sally, "\n")
} else if (p == 1 & alpha > 0 & alpha < 1) {
fred <- rev(phix)[1:2] == alpha
sally <- rev(phix)[- (1:2)] == 1
if ((! all(fred)) | (! all(sally)))
cat("n =", n, ": p =", p, ": alpha =", alpha,
": fred =", fred, ": sally =", sally, "\n")
} else {
if (abs(foo - alpha) > epsilon)
cat("n =", n, ": p =", p, ": alpha =", alpha,
": foo =", foo, "\n")
if (abs(bar - n * p * alpha) > epsilon)
cat("n =", n, ": p =", p, ": alpha =", alpha,
": bar =", bar,
": n * p * alpha =", n * p * alpha, "\n")
}
}
}
xs <- seq(0, n)
for (x in xs)
for (p in ps) {
phix <- umpu.binom(x, n, p, alphas)
phix.too <- save[xs == x, ps == p, ]
if (! all.equal(phix, phix.too))
cat("oopsie!\n")
}
for (x in xs)
for (alpha in alphas) {
phix <- umpu.binom(x, n, ps, alpha)
phix.too <- save[xs == x, , alphas == alpha]
if (! all.equal(phix, phix.too))
cat("oopsie!\n")
}
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
Sys.setenv("TESTTHAT" = "true")
options(pins.quiet = FALSE)
library(pins)
board <- board_temp()
mtcars <- tibble::as_tibble(mtcars)
board %>% pin_write(mtcars, "mtcars")
board %>% pin_read("mtcars")
board %>% pin_meta("mtcars")
board %>% pin_write(mtcars,
description = "Data extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).",
metadata = list(
source = "Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37, 391–411."
)
)
board %>% pin_meta("mtcars")
board2 <- board_temp(versioned = TRUE)
board2 %>% pin_write(1:5, name = "x", type = "rds")
board2 %>% pin_write(2:6, name = "x", type = "rds")
board2 %>% pin_write(3:7, name = "x", type = "rds")
board2 %>% pin_versions("x")
board2 %>% pin_read("x")
paths <- file.path(tempdir(), c("mtcars.csv", "alphabet.txt"))
write.csv(mtcars, paths[[1]])
writeLines(letters, paths[[2]])
board %>% pin_upload(paths, "example")
board %>% pin_download("example")
board %>% pin_read("example")
board %>% pin_download("mtcars")
my_data <- board_url(c(
"penguins" = "https://raw.githubusercontent.com/allisonhorst/palmerpenguins/master/inst/extdata/penguins_raw.csv"
))
my_data %>%
pin_download("penguins") %>%
read.csv(check.names = FALSE) %>%
tibble::as_tibble() |
context("assert_that")
test_that("assert_that handles long false assertions gracefully", {
expect_error(
assert_that(isTRUE(10 + sqrt(25) + sum(1:10) + sqrt(25) + sum(11:20) + sqrt(25) + sum(21:30) + sqrt(25) + sum(31:40) + sqrt(25) + sum(41:50))),
"^isTRUE\\(.* [.]{3} is not TRUE$"
)
})
test_that("assert_that handles has_name failures with multiple missing names", {
x <- list(a = TRUE, b = "hello")
expect_error(
assert_that(has_name(x, c("a", "f", "g"))),
regexp = "x does not have all of these name"
)
}) |
puchwein <- function(X,
pc = 0.95,
k = 0.2,
min.sel = 5,
details = FALSE,
.center = TRUE,
.scale = FALSE) {
if (ncol(X) < 2) {
stop("X should have at least 2 columns")
}
if (min.sel >= nrow(X)) {
stop("min.sel should be lower than nrow(X)")
}
if (!is.data.frame(X)) {
X <- as.data.frame(X)
}
pca <- prcomp(X, center = .center, scale = .scale)
if (pc < 1) {
pvar <- pca$sdev^2 / sum(pca$sdev^2)
pcsum <- cumsum(pvar) < pc
if (any(pcsum)) {
pc <- max(which(pcsum)) + 1
} else {
pc <- 1
}
}
X <- sweep(pca$x[, 1:pc, drop = FALSE], 2, pca$sdev[1:pc], "/")
H <- fastDistV(X, colMeans(X), "euclid")
lsel <- list()
x <- data.frame(ID = 1:nrow(X), H)
ord <- order(H, decreasing = TRUE)
d <- fastDist(X, X, "euclid")[ord, ord]
x <- x[ord, ]
d.ini <- k * max((ncol(X) - 2), 1)
m <- 1
repeat {
Dm <- m * d.ini
minD <- d[1, ] <= Dm
sel <- x$ID[1]
for (i in 1:nrow(x)) {
if (!i %in% which(minD)) {
sel <- c(sel, x$ID[i])
minD <- minD | d[i, ] <= Dm
}
}
lsel[[m]] <- sel
if (length(sel) <= min.sel) {
break
}
m <- m + 1
}
lsel[[length(lsel)]] <- NULL
left <- sapply(lsel, length)
sel <- nrow(x) - left
x.mat <- as.matrix(X)
L <- diag(x.mat %*% solve(t(x.mat) %*% x.mat) %*% t(x.mat))
oL <- sapply(lsel, function(x) sum(L[x]))
tL <- (sum(L) / length(L)) * left
res2 <- data.frame(loop = 1:(m - 1), removed = sel, obs = oL, theor = tL, diff = oL - tL)
loop.optimal <- which.max(oL - tL)
model <- lsel[[loop.optimal]]
if (details) {
return(list(model = model, test = (1:nrow(X))[-model], pc = X, loop.optimal = loop.optimal, leverage = res2, details = lsel))
} else {
return(list(model = model, test = (1:nrow(X))[-model], pc = X, loop.optimal = loop.optimal, leverage = res2))
}
} |
metric.degree.max <- function(g) {
if (!is.list(g)) stop("Parameter 'g' must be a list",call. = FALSE)
max(lengths(g))
} |
EMI_2d <- function(x, model, type = "UK", critcontrol = NULL, paretoFront = NULL, r = 0){
if(is.null(paretoFront)){
observations <- Reduce(cbind, lapply(model, slot, "y"))
paretoFront <- t(nondominated_points(t(observations)))
}
if (is.unsorted(paretoFront[,1])){
paretoFront <- paretoFront[order(paretoFront[,1]),]
}
if(checkPredict(x, model, type = type, distance = critcontrol$distance, threshold = critcontrol$threshold)){
return(-1)
}
tmp <- data.frame(t(x))
colnames(tmp) <- colnames(model[[1]]@X)
pred <- predict_kms(model, newdata=tmp, type=type, checkNames = FALSE, light.return = TRUE, cov.compute = FALSE)
y <- as.numeric(pred$mean)
s <- as.numeric(pred$sd)
res <- sum(apply(expand.grid(1:2, 1:nrow(paretoFront)), 1, EMI_ij, paretoFront = paretoFront, y = y, s = s, r = r))
if(is.nan(res)) return(-1)
return(res)
}
EMI_ij <- function(ij, paretoFront, y, s, r){
return(Int1(ij[1], ij[2], paretoFront, y, s, r) + Int2(ij[1], ij[2], paretoFront, y, s, r) + Int3(ij[1], ij[2], paretoFront, y, s, r))
}
k_S <- function(a){
if(a == 1){
return(2)
}
if(a == 2){
return(1)
}
}
h_S <- function(i, j){
if(i == 1){
return(j - 1);
}
if(i == 2){
return(j + 1);
}
}
d_S <- function(i, j, P, y){
if(i == 1 & j == (nrow(P)+1)){
return(Inf)
}
if(i == 2 & j == 0){
return(Inf)
}
return(P[j,i] - y[i])
}
u_S <- function(i, j, P, y, s){
pnorm(d_S(i, j, P, y)/s[i])
}
v_S <- function(i, j, P, y, s, r){
if(j == 0){
return(Inf)
}
if(j ==(nrow(P)+1)){
return(Inf)
}
return(y[i]/s[i]^2 + (P[j,2] - d_S(k_S(i), j, P, y) + r * s[k_S(i)] * y[i] / s[i]) / sqrt((1-r^2)*s[k_S(i)]^2))
}
q_S <- function(i, j, P, y, s, r){
(1 - r^2) * s[k_S(i)]^2 * s[i]^2 / (s[i]^2 + s[k_S(i)]^2 - 2 * r * s[i] * s[k_S(i)])
}
Int1 <- function(i, j, P, y, s, r){
return(
s[i] * dnorm(d_S(i,j, P, y) / s[i]) * (
pnorm((-d_S(k_S(i), j, P, y) + r * s[k_S(i)] * d_S(i,j, P, y) / s[i]) / sqrt((1 - r^2) * s[k_S(i)]^2))
- pnorm((-d_S(k_S(i), h_S(i, j), P, y) + r * s[k_S(i)] * d_S(i,j, P, y) / s[i]) / sqrt((1 - r^2) * s[k_S(i)]^2))
)
)
}
Int2 <- function(i, j, P, y, s, r){
aa <- q_S(i, j, P, y, s, r)
a1 <- sqrt(aa) * (s[i] - s[k_S(i)] * r) / sqrt(2 * pi * (1 - r^2) * s[k_S(i)]^2)
a2 <- exp(-1/2 * (y[i]^2 / s[i]^2 + (P[j,i] - d_S(k_S(i), j, P, y) + r * s[k_S(i)] * y[i] / s[i])^2 / sqrt(1 - r^2) * s[k_S(i)]^2)) * exp(1/2 * aa * v_S(i, j, P, y, s, r)^2) * pnorm((P[j,i] - aa * v_S(i, j, P, y, s, r)) / sqrt(aa))
a3 <- exp(-1/2 * (y[i]^2 / s[i]^2 + (P[j,i] - d_S(k_S(i), h_S(i,j), P, y) + r * s[k_S(i)] * y[i] / s[i])^2 / sqrt(1-r^2)*s[k_S(i)]^2)) * exp(1/2 * aa * v_S(i, h_S(i, j), P, y, s, r)^2) * pnorm((P[j,i] - aa * v_S(i, h_S(i,j), P, y, s, r)) / sqrt(aa))
if(is.nan(a2))
a2 <- 0
if(is.nan(a3)){
a3 <- 0
}
return(a1 * (a2 - a3))
}
ftmp1 <- function(w, i, j, P, y, s, r){
return(
pnorm((d_S(i, j, P, y) - d_S(k_S(i), j, P, y) + (s[k_S(i)]*r - s[i])*qnorm(w))/sqrt((1-r^2)*s[k_S(i)]^2))
)
}
ftmp2 <- function(w, i, j, P, y, s, r){
return(
pnorm((d_S(i, j, P, y) - d_S(k_S(i), h_S(i, j), P, y) + (s[k_S(i)]*r - s[i])*qnorm(w))/sqrt((1-r^2)*s[k_S(i)]^2))
)
}
Int3 <- function(i, j, P, y, s, r){
a1 <- d_S(i, j, P, y)
b1 <- u_S(i, j, P, y, s)
if(b1 < 1e-5){
return(0)
}
a2 <- integrate(ftmp1, 0, b1, i=i, j=j, P=P, y=y, s=s, r=r, stop.on.error = FALSE)$value
a3 <- integrate(ftmp2, 0, b1, i=i, j=j, P=P, y=y,s=s, r=r, stop.on.error = FALSE)$value
return(a1 * (a2 - a3))
} |
ji_fisher <- function(x) {
x <- unlist(strsplit(x, ""))
x <- purrr::map_chr(x, get_emoji)
structure(
paste0(x, collapse = ""),
class = "emoji")
}
get_emoji <- function(x) {
emojis <- emo::fisher_lst[[tolower(x)]]
if (length(emojis) == 0L) {
return(x)
}
sample(emojis, 1)
}
"fisher_lst"
print.fisher_alphabet <- function(x, ...){
letters <- names(x)
emojis <- map_chr( x, paste, collapse = " ")
writeLines( paste( letters, " : ", emojis) )
invisible(x)
} |
`PLTpicks` <-
function(picks, labs=NA, cols=NA)
{
if(missing(labs)) { labs = rep(NA, length(picks)) }
if(missing(cols)) { cols = rep(NA, length(picks)) }
u=par("usr")
pyt=u[4]-0.05*(u[4]-u[3])
if(length(cols)<length(picks)) {cols = rep( cols[1],length(picks)) }
if(length(labs)<length(picks)) {labs = rep( labs[1],length(picks)) }
for(i in 1:length(picks))
{
if(!is.na(cols[i]))
{
col=cols[i]
}
else
{
col = 1
}
abline(v=picks[i], col=col, lty=3)
if(!is.na(labs[i])) { text( picks[i], pyt, labs[i], adj=0, col=col) }
}
} |
logisticbyx <- function (distance, x, models, beta, point){
xlist <- as.list(x)
xlist$distance <- distance
xmat <- expand.grid(xlist)
if(!point){
return(g0(beta, setcov(xmat, models$g0model)))
}else{
return(g0(beta, setcov(xmat, models$g0model))*2*distance)
}
} |
shiny::tabPanel(
title = "Update nodes/edges data",
fluidRow(
column(
width = 4,
actionButton("goUpdate", "Update data"),
actionButton("goRemove", "Remove data")
),
column(
width = 8,
visNetworkOutput("network_proxy_update", height = "400px")
)
),
verbatimTextOutput("code_proxy_update")
) |
library(miRetrieve)
library(testthat)
set.seed(42)
toy_df <- data.frame("miRNA_" = sample(c("miR-24", "miR-25", "miR-26"),
size = 20,
replace = TRUE),
"PMID" = seq(1:20))
subset_df <- subset_mir(toy_df,
mir.retain = "miR-24",
col.mir = miRNA_)
test_that("Tests subsetting data.frames for miRNAs", {
expect_equal(nrow(subset_df), 9)
})
subset_df_abs <- subset_mir_threshold(toy_df,
col.mir = miRNA_,
threshold = 9)
subset_df_rel <- subset_mir_threshold(toy_df,
col.mir = miRNA_,
threshold = 0.3)
test_that("Tests subsetting data.frames for a miRNA threshold", {
expect_equal(nrow(subset_df_abs), 9)
expect_equal(nrow(subset_df_rel), 15)
}) |
context("test-gapDer")
test_that("gapDer works", {
nirdata <- data("NIRsoil")
X_gapDer <- gapDer(NIRsoil$spc, m = 1, w = 3)
expect_is(X_gapDer, "matrix")
expect_true(round(max(abs(X_gapDer[1, ])), 5) == 0.00517)
}) |
add_pwa_deps <- function(tag) {
pwa_deps <- htmlDependency(
name = "pwa-utils",
version = packageVersion("shinyMobile"),
src = c(file = "shinyMobile-0.9.1"),
head = "<link rel=\"manifest\" href=\"manifest.webmanifest\" />
<link rel=\"icon\" type=\"image/png\" href=\"icons/icon-144.png\" sizes=\"144x144\" />
<link rel=\"apple-touch-icon\" href=\"icons/apple-touch-icon.png\" />
<link rel=\"icon\" href=\"icons/favicon.png\"/>
",
package = "shinyMobile",
)
tagList(tag, pwa_deps)
} |
skip_on_cran()
test_that("modify_column_alignment() works", {
expect_error(
lm(age ~ marker + grade, trial) %>%
tbl_regression() %>%
modify_column_alignment(columns = everything(), align = "left"),
NA
)
}) |
NULL
read_CensoEscolar <- function(ft,i,harmonize_varnames=F,root_path=NULL, file = NULL, vars_subset = NULL, nrows = -1L, source_file_mark = F){
if (harmonize_varnames==T) {
var_translator <- read_var_translator('CensoEscolar','escola')
read_data("CensoEscolar", ft, i, var_translator = var_translator, root_path = root_path, file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
} else {
read_data(dataset = "CensoEscolar",ft, i,root_path = root_path, file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
}
}
read_CensoEducacaoSuperior<- function(ft,i,root_path=NULL, file = NULL, vars_subset = NULL, nrows = -1L, source_file_mark = F){
metadata <- read_metadata('CensoEducacaoSuperior')
data<-read_data(dataset = "CensoEducacaoSuperior",ft, i,root_path = root_path, file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
return(data)
}
read_ENEM<- function(ft,i,root_path=NULL, file = NULL, vars_subset = NULL, nrows = -1L, source_file_mark = F){
metadata <- read_metadata('ENEM')
data<-read_data(dataset = "ENEM",ft, i,root_path = root_path, file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
return(data)
}
read_CENSO<- function(ft,i,root_path = NULL, file = NULL, vars_subset = NULL, UF = NULL, nrows = -1L, source_file_mark = F){
metadata <- read_metadata('CENSO')
if(is.null(file)){
if(!is.null(UF)){
UF <- paste0("(",paste(UF, collapse = "|"),")")
metadata[, grep("^ft_", names(metadata))] <-
lapply(metadata[, grep("^ft_", names(metadata))],
function(x) gsub(x = x, pattern = "&", replacement = paste0("&",UF,"/")))
}
}
data<-read_data(dataset = "CENSO", ft = ft, metadata = metadata, i = i, root_path = root_path,file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
return(data)
}
read_RAIS<- function(ft, i,root_path = NULL,file = NULL, vars_subset = NULL,UF = NULL, nrows = -1L, source_file_mark = F){
metadata <- read_metadata('RAIS')
if(!is.null(UF)){
UF <- paste0("(",paste(UF, collapse = "|"),")")
metadata$ft_vinculos <- metadata$ft_vinculos %>%
gsub(pattern = "[A-Z]{2}", replacement = UF, fixed = TRUE)}
data <- read_data(dataset = "RAIS",ft = ft, i = i, metadata = metadata, root_path = root_path,file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
return(data)
}
read_CAGED<- function(ft,i,root_path = NULL,file = NULL, vars_subset = NULL, nrows = -1L, source_file_mark = F){
data<- read_data(dataset = "CAGED",ft = ft, i = i, root_path = root_path, file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
return(data)
}
read_PNAD<- function(ft,i,root_path=NULL,file = NULL, vars_subset = NULL, nrows = -1L, source_file_mark = F){
data<-read_data(dataset = "PNAD", ft, i, root_path = root_path, file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
return(data)
}
read_PME <- function(ft,i, root_path = NULL,file = NULL, vars_subset = NULL, nrows = -1L, source_file_mark = F){
if(!is.character(i)|!grepl(pattern = "^[0-9]{4}-[0-9]{2}m$", x = i)){
stop(paste0("The argument 'i' must be a character in the format 2014-01m."))
}
data<- read_data(dataset = "PME", ft = ft,i = i, root_path = root_path, file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
return(data)
}
read_POF <- function(ft,i, root_path = NULL,file = NULL, vars_subset = NULL, nrows = -1L, source_file_mark = F){
if(i %in% c(1987,1995,1997)){
metadata <- read_metadata("POF")
data_path <- paste(c(root_path, metadata[metadata$period == i, "path"], metadata[metadata$period == i, "data_folder"], ""), collapse = "/")
uf<-list.files(data_path)
tudo<-NULL
for(j in uf){
dados <- readLines(paste0(data_path,j))
tudo <-c(tudo,dados)
}
casas <- substr(dados,1,2)
out <- split( dados , f = casas )
invisible(
lapply(seq_along(out), function(i)
write.table(out[[i]],paste0(data_path,names(out)[[i]],".txt"),quote = FALSE,row.names = FALSE, col.names = FALSE)
)
)
invisible(file.remove(paste0(data_path,names(out),".txt")))
}
data <- read_data(dataset= "POF", ft = ft,i = i, root_path = root_path,file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
return(data)
}
read_PNADcontinua<- function(ft,i,root_path=NULL,file = NULL, vars_subset = NULL, nrows = -1L, source_file_mark = F){
data<-read_data(dataset = "PnadContinua",ft, i,root_path = root_path, file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
return(data)
}
read_PNS<- function(ft,i,root_path=NULL,file = NULL, vars_subset = NULL, nrows = -1L, source_file_mark = F){
data<-read_data(dataset = "PNS",ft, i,root_path = root_path, file = file, vars_subset = vars_subset, nrows = nrows, source_file_mark = source_file_mark)
return(data)
} |
outogk<-function(x,sigmamu=taulc,v=gkcov,op=TRUE,SEED=FALSE,
beta=max(c(.95,min(c(.99,1/nrow(x)+.94)))),n.iter=1,plotit=TRUE,...){
if(!is.matrix(x))stop("x should be a matrix")
x<-elimna(x)
if(!op){
temp<-ogk.pairwise(x,sigmamu=sigmamu,v=v,beta=beta,n.iter=n.iter,...)
vals<-hard.rejection(temp$distances,p=ncol(x),beta=beta,...)
flag<-(vals==1)
vals<-c(1:nrow(x))
outid<-vals[!flag]
keep<-vals[flag]
if(is.matrix(x)){
if(ncol(x)==2 && plotit){
plot(x[,1],x[,2],xlab="X", ylab="Y",type="n")
points(x[flag,1],x[flag,2])
if(sum(!flag)>0)points(x[!flag,1],x[!flag,2],pch="o")
}}}
if(op){
temp<-out(x,cov.fun=ogk,beta=beta,plotit=plotit,SEED=SEED)
outid<-temp$out.id
keep<-temp$keep
}
list(out.id=outid,keep=keep,distances=temp$dis)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.