code
stringlengths
1
13.8M
ssd_hp <- function(x, ...) { UseMethod("ssd_hp") } .ssd_hp_fitdist <- function(x, conc, ci, level, nboot, parallel, ncpus) { chk_vector(conc) chk_numeric(conc) chk_number(level) chk_range(level) args <- as.list(x$estimate) args$q <- conc dist <- x$distname what <- paste0("p", dist) est <- do.call(what, args) if (!ci) { na <- rep(NA_real_, length(conc)) return(as_tibble(data.frame( conc = conc, est = est * 100, se = na, lcl = na, ucl = na, dist = rep(dist, length(conc)), wt = rep(1, length(conc)), stringsAsFactors = FALSE ))) } samples <- boot(x, nboot = nboot, parallel = parallel, ncpus = ncpus) cis <- cis(samples, p = TRUE, level = level, x = conc) as_tibble(data.frame( conc = conc, est = est * 100, se = cis$se * 100, lcl = cis$lcl * 100, ucl = cis$ucl * 100, dist = dist, wt = 1, stringsAsFactors = FALSE )) } .ssd_hp_fitdists <- function(x, conc, ci, level, nboot, parallel, ncpus, average) { if (!length(x) || !length(conc)) { no <- numeric(0) return(as_tibble(data.frame( conc = no, est = no, se = no, lcl = no, ucl = no, dist = character(0), wt = numeric(0), stringsAsFactors = FALSE ))) } weight <- .ssd_gof_fitdists(x)$weight hp <- lapply(x, ssd_hp, conc = conc, ci = ci, level = level, nboot = nboot, parallel = parallel, ncpus = ncpus ) if (!average) { hp <- mapply(function(x, y) {x$wt <- y; x}, hp, weight, USE.NAMES = FALSE, SIMPLIFY = FALSE) hp <- do.call("rbind", hp) row.names(hp) <- NULL return(as_tibble(hp)) } hp <- lapply(hp, function(x) x[1:5]) hp <- lapply(hp, as.matrix) hp <- Reduce(function(x, y) { abind(x, y, along = 3) }, hp) suppressMessages(hp <- apply(hp, c(1, 2), weighted.mean, w = weight)) hp <- as.data.frame(hp) hp$conc <- conc hp$dist <- "average" hp$wt <- 1 as_tibble(hp) } ssd_hp.fitdist <- function(x, conc, ci = FALSE, level = 0.95, nboot = 1000, parallel = NULL, ncpus = 1, ...) { chk_unused(...) .ssd_hp_fitdist(x, conc, ci = ci, level = level, nboot = nboot, parallel = parallel, ncpus = ncpus ) } ssd_hp.fitdistcens <- function(x, conc, ci = FALSE, level = 0.95, nboot = 1000, parallel = NULL, ncpus = 1, ...) { chk_unused(...) .ssd_hp_fitdist(x, conc, ci = ci, level = level, nboot = nboot, parallel = parallel, ncpus = ncpus ) } ssd_hp.fitdists <- function(x, conc, ci = FALSE, level = 0.95, nboot = 1000, parallel = NULL, ncpus = 1, average = TRUE, ic = "aicc", ...) { chk_unused(...) if(!missing(ic)) { deprecate_warn("0.3.6", "ssdtools::ssd_hp(ic = )", details = "AICc is used for model averaging unless the data are censored in which case AIC is used.") } .ssd_hp_fitdists(x, conc, ci = ci, level = level, nboot = nboot, parallel = parallel, ncpus = ncpus, average = average ) } ssd_hp.fitdistscens <- function(x, conc, ci = FALSE, level = 0.95, nboot = 1000, parallel = NULL, ncpus = 1, average = TRUE, ic = "aic", ...) { chk_unused(...) if(!missing(ic)) { deprecate_warn("0.3.6", "ssdtools::ssd_hp(ic = )", details = "AICc is used for model averaging unless the data are censored in which case AIC is used.") } .ssd_hp_fitdists(x, conc, ci = ci, level = level, nboot = nboot, parallel = parallel, ncpus = ncpus, average = average ) }
dltCoefficientRMSError <- function(p, coor.2d){ dlt_reconstruct <- dltReconstruct(matrix(p, nrow=11, ncol=dim(coor.2d)[3]), coor.2d) mean(dlt_reconstruct$rmse) }
test_that("binCI() messages",{ expect_error(binCI(-1,10),"must be non-negative") expect_error(binCI(1,-10),"must be non-negative") expect_error(binCI(11,10),"must not be greater than") expect_error(binCI("a",10),"must be whole numbers") expect_error(binCI(1,"a"),"must be whole numbers") expect_error(binCI(c(-1,2),10),"must be non-negative") expect_error(binCI(1,c(-1,10)),"must be non-negative") expect_error(binCI(1.1,10),"must be whole numbers") expect_error(binCI(1,10.1),"must be whole numbers") expect_error(binCI(c(1,1.1),10),"must be whole numbers") expect_error(binCI(1,c(9.1,10)),"must be whole numbers") expect_error(binCI(c(1,10),5),"must not be greater than") expect_error(binCI(c(1,10),c(5,9)),"must not be greater than") expect_error(binCI(6,c(5,9)),"must not be greater than") expect_error(binCI(6,10,type="derek"),"should be one of") expect_error(binCI(6,10,conf.level=0),"must be between 0 and 1") expect_error(binCI(6,10,conf.level=1),"must be between 0 and 1") expect_error(binCI(6,10,conf.level="R"),"must be numeric") expect_warning(binCI(6:9,10),"Can't use multiple 'type's with multiple 'x's") expect_error(binCI(data.frame(d=6:9),10),"'x' must be a single or vector") expect_error(binCI(2,data.frame(d=6:9)),"'n' must be a single or vector") }) test_that("hyperCI() messages",{ expect_error(hyperCI(-1,10,5),"must all be non-negative") expect_error(hyperCI(1,-10,5),"must all be non-negative") expect_error(hyperCI(1,10,-5),"must all be non-negative") expect_error(hyperCI(1,10,5),"'m' must be less than 'M'") expect_error(hyperCI(15,5,10),"'m' must be less than 'n'") expect_error(hyperCI("a",10,5),"must all be whole numbers") expect_error(hyperCI(15,"a",5),"must all be whole numbers") expect_error(hyperCI(15,10,"a"),"must all be whole numbers") expect_error(hyperCI(20.1,10,5),"must be a whole number") expect_error(hyperCI(15,10.1,5),"must be a whole number") expect_error(hyperCI(15,10,5.1),"must be a whole number") expect_error(hyperCI(c(15,15),10,5),"be a single value") expect_error(hyperCI(15,c(10,10),5),"be a single value") expect_error(hyperCI(15,10,c(5,5)),"be a single value") expect_error(hyperCI(c(15,15),c(10,10),c(5,5)),"be a single value") expect_error(hyperCI(15,10,5,conf.level=0),"must be between 0 and 1") expect_error(hyperCI(15,10,5,conf.level=1),"must be between 0 and 1") expect_error(hyperCI(15,10,5,conf.level="R"),"must be numeric") }) test_that("poiCI() messages",{ expect_error(poiCI(6,type="derek"),"should be one of") expect_error(poiCI(-1),"must be non-negative") expect_error(poiCI(c(-1,1:3)),"must be non-negative") expect_error(poiCI("a"),"must be a whole number") expect_error(poiCI(1.1),"must be a whole number") expect_error(poiCI(6,conf.level=0),"must be between 0 and 1") expect_error(poiCI(6,conf.level=1),"must be between 0 and 1") expect_error(poiCI(6,conf.level="R"),"must be numeric") expect_warning(poiCI(6:9),"Can't use multiple 'type's with multiple 'x's") expect_error(poiCI(data.frame(d=6:9)),"'x' must be a single or vector") }) test_that("binCI() output types",{ res <- binCI(7,10) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),3) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) expect_equal(rownames(res),c("Exact","Wilson","Asymptotic")) res <- binCI(c(3,7),10,type="wilson") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- binCI(c(3,7),10,type="exact") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- binCI(c(3,7),10,type="asymptotic") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- binCI(7,10,verbose=TRUE) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),3) expect_equal(ncol(res),5) expect_equal(colnames(res),c("x","n","proportion","95% LCI","95% UCI")) expect_equal(rownames(res),c("Exact","Wilson","Asymptotic")) res <- binCI(c(3,7),10,type="wilson",verbose=TRUE) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),5) expect_equal(colnames(res),c("x","n","proportion","95% LCI","95% UCI")) res <- binCI(c(3,7),10,type="exact",verbose=TRUE) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),5) expect_equal(colnames(res),c("x","n","proportion","95% LCI","95% UCI")) res <- binCI(c(3,7),10,type="asymptotic",verbose=TRUE) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),5) expect_equal(colnames(res),c("x","n","proportion","95% LCI","95% UCI")) }) test_that("hyperCI() output types",{ res <- hyperCI(20,20,10) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),1) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) }) test_that("poiCI() output types",{ res <- poiCI(10) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),4) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) expect_equal(rownames(res),c("Exact","Daly","Byar","Asymptotic")) res <- poiCI(10,type="exact") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),1) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- poiCI(10,type="daly") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),1) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- poiCI(10,type="byar") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),1) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- poiCI(10,type="asymptotic") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),1) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- poiCI(10,type=c("exact","daly")) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) expect_equal(rownames(res),c("Exact","Daly")) res <- poiCI(10,type="exact",verbose=TRUE) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),1) expect_equal(ncol(res),3) expect_equal(colnames(res),c("x","95% LCI","95% UCI")) expect_equal(rownames(res),"Exact") res <- poiCI(10,type=c("exact","daly"),verbose=TRUE) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),3) expect_equal(colnames(res),c("x","95% LCI","95% UCI")) expect_equal(rownames(res),c("Exact","Daly")) res <- poiCI(10:11,type="exact") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- poiCI(10:11,type="daly") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- poiCI(10:11,type="byar") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- poiCI(10:11,type="asymptotic") expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),2) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) res <- poiCI(0) expect_is(res,"matrix") expect_true(is.numeric(res)) expect_equal(nrow(res),4) expect_equal(ncol(res),2) expect_equal(colnames(res),c("95% LCI","95% UCI")) expect_equal(rownames(res),c("Exact","Daly","Byar","Asymptotic")) }) test_that("binCI() compared to epitools functions",{ res <- binCI(7,10,verbose=TRUE) res[,4:5] <- round(res[,4:5],7) resepi <- matrix(c(7,10,0.7,0.3475471,0.9332605, 7,10,0.7,0.3967781,0.8922087, 7,10,0.7,0.4159742,0.9840258),nrow=3,byrow=TRUE) rownames(resepi) <- c("Exact","Wilson","Asymptotic") colnames(resepi) <- c("x","n","proportion","lower","upper") expect_equivalent(res,resepi) res <- binCI(5:7,10,type="wilson",verbose=TRUE) res[,4:5] <- round(res[,4:5],7) resepi <- matrix(c(5,10,0.5,0.2365931,0.7634069, 6,10,0.6,0.3126738,0.8318197, 7,10,0.7,0.3967781,0.8922087),nrow=3,byrow=TRUE) colnames(resepi) <- c("x","n","proportion","lower","upper") expect_equivalent(res,resepi) }) test_that("poiCI() compared to epitools functions",{ res <- poiCI(10,verbose=TRUE) res[,2] <- round(res[,2],6) res[,3] <- round(res[,3],5) resepi <- matrix(c(10,4.795389,18.39036, 10,4.795389,18.39036, 10,5.133753,17.74048, 10,3.802050,16.19795),nrow=4,byrow=TRUE) rownames(resepi) <- c("Exact","Daly","Byar","Asymptotic") colnames(resepi) <- c("x","lower","upper") expect_equivalent(res,resepi) res <- poiCI(5:7,type="exact",verbose=TRUE) res[,2] <- round(res[,2],6) res[,3] <- round(res[,3],5) resepi <- matrix(c(5,1.623486,11.66832, 6,2.201891,13.05948, 7,2.814358,14.42268),nrow=3,byrow=TRUE) colnames(resepi) <- c("x","lower","upper") expect_equivalent(res,resepi) })
plot.kma <- function(x, type = "data", number_of_displayed_points = 50, ...) { if (type == "data") plot_data(x, number_of_displayed_points) else if (type == "warping") plot_warping(x, number_of_displayed_points) else stop("Unsupported type of display for kma objects.") } plot_data <- function(obj, type = "data", number_of_displayed_points = 50) { n <- dim(obj$y)[1] d <- dim(obj$y)[2] p <- dim(obj$y)[3] original_grids <- 1:p %>% purrr::map(~ obj$x[, .x, drop = FALSE]) %>% purrr::set_names(paste0("P", 1:p)) %>% as_tibble() %>% dplyr::mutate(curve_id = 1:dplyr::n()) %>% tidyr::pivot_longer( cols = -.data$curve_id, names_to = "point_id", values_to = "grid" ) %>% dplyr::mutate(type = "Original Curves") warped_grids <- 1:p %>% purrr::map(~ obj$x_final[, .x, drop = FALSE]) %>% purrr::set_names(paste0("P", 1:p)) %>% as_tibble() %>% dplyr::mutate(curve_id = 1:dplyr::n()) %>% tidyr::pivot_longer( cols = -.data$curve_id, names_to = "point_id", values_to = "grid" ) %>% dplyr::mutate(type = "Aligned Curves") original_values <- 1:p %>% purrr::map(~ { df <- matrix(obj$y[, , .x], ncol = d) colnames(df) <- paste("Dimension", 1:d) as_tibble(df) %>% dplyr::mutate(curve_id = 1:dplyr::n()) }) %>% purrr::set_names(paste0("P", 1:p)) %>% dplyr::bind_rows(.id = "point_id") %>% tidyr::pivot_longer( cols = dplyr::starts_with("Dim"), names_to = "dimension_id", values_to = "value" ) center_grids <- 1:p %>% purrr::map(~ obj$x_centers_final[, .x, drop = FALSE]) %>% purrr::set_names(paste0("P", 1:p)) %>% as_tibble() %>% dplyr::mutate(curve_id = 1:dplyr::n()) %>% tidyr::pivot_longer( cols = -.data$curve_id, names_to = "point_id", values_to = "grid" ) %>% dplyr::mutate(type = "Aligned Curves") center_values <- 1:p %>% purrr::map(~ { df <- matrix(obj$y_centers_final[, , .x], ncol = d) colnames(df) <- paste("Dimension", 1:d) as_tibble(df) %>% dplyr::mutate(curve_id = 1:dplyr::n()) }) %>% purrr::set_names(paste0("P", 1:p)) %>% dplyr::bind_rows(.id = "point_id") %>% tidyr::pivot_longer( cols = dplyr::starts_with("Dim"), names_to = "dimension_id", values_to = "value" ) number_of_displayed_points <- min(number_of_displayed_points, p) df <- dplyr::bind_rows( original_values %>% dplyr::left_join(original_grids, by = c("point_id", "curve_id")), original_values %>% dplyr::left_join(warped_grids, by = c("point_id", "curve_id")) ) %>% dplyr::mutate(type = factor(.data$type, c("Original Curves", "Aligned Curves"))) %>% dplyr::left_join(tibble( curve_id = 1:n, membership = as.factor(obj$labels) ), by = "curve_id") %>% dplyr::group_by(.data$curve_id, .data$dimension_id, .data$type) %>% dplyr::slice(seq( from = 1, to = dplyr::n(), by = round((dplyr::n() - 1) / number_of_displayed_points) )) %>% dplyr::ungroup() df_mean <- center_values %>% dplyr::left_join(center_grids, by = c("point_id", "curve_id")) %>% dplyr::mutate( membership = as.factor(.data$curve_id), type = factor(.data$type, c("Original Curves", "Aligned Curves")) ) %>% dplyr::group_by(.data$curve_id, .data$dimension_id, .data$type) %>% dplyr::slice(seq( from = 1, to = dplyr::n(), by = round((dplyr::n() - 1) / number_of_displayed_points) )) %>% dplyr::ungroup() df %>% ggplot(aes(.data$grid, .data$value, group = .data$curve_id, color = .data$membership)) + geom_line(alpha = 0.3) + geom_line(data = df_mean, size = 1.5) + facet_wrap(vars(.data$type, .data$dimension_id), nrow = 2, scales = "free") + theme_bw() + theme(legend.position = "top") + labs( title = "Functional Data", subtitle = paste("Class of warping functions:", toupper(obj$warping_method)), x = "Grid", y = "Values", color = "Group membership" ) } plot_warping <- function(obj, number_of_displayed_points = 50) { if (obj$warping_method == "affine") df <- data_affine(obj, number_of_displayed_points) else if (obj$warping_method == "dilation") df <- data_dilation(obj, number_of_displayed_points) else if (obj$warping_method == "shift") df <- data_shift(obj, number_of_displayed_points) else stop("Unsupported warping family for display.") df %>% tidyr::unnest(cols = .data$x:.data$y) %>% ggplot(aes(.data$x, .data$y, color = .data$membership, group = .data$id)) + geom_line() + theme_bw() + theme(legend.position = "top") + labs( title = "Estimated Warping Functions", subtitle = paste("Class of warping functions:", toupper(obj$warping_method)), x = "Original grids", y = "Warped grids", color = "Group membership" ) } data_affine <- function(obj, number_of_displayed_points = 50) { obj$parameters %>% `colnames<-`(c("slope", "intercept")) %>% as_tibble() %>% dplyr::mutate( x = purrr::map2( .x = .data$slope, .y = .data$intercept, .f = ~ seq(0, 1, length.out = number_of_displayed_points) ), y = purrr::map2( .x = .data$slope, .y = .data$intercept, .f = ~ .x * seq(0, 1, length.out = number_of_displayed_points) + .y ), id = 1:dplyr::n(), membership = as.factor(obj$labels) ) } data_dilation <- function(obj, number_of_displayed_points = 50) { obj$parameters %>% `colnames<-`("slope") %>% as_tibble() %>% dplyr::mutate( x = purrr::map( .x = .data$slope, .f = ~ seq(0, 1, length.out = number_of_displayed_points) ), y = purrr::map( .x = .data$slope, .f = ~ .x * seq(0, 1, length.out = number_of_displayed_points) ), id = 1:dplyr::n(), membership = as.factor(obj$labels) ) } data_shift <- function(obj, number_of_displayed_points = 50) { obj$parameters %>% `colnames<-`("intercept") %>% as_tibble() %>% dplyr::mutate( x = purrr::map( .x = .data$intercept, .f = ~ seq(0, 1, length.out = number_of_displayed_points) ), y = purrr::map( .x = .data$intercept, .f = ~ seq(0, 1, length.out = number_of_displayed_points) + .x ), id = 1:dplyr::n(), membership = as.factor(obj$labels) ) }
plot.interactionfor <- function(x, numpairsquant=2, numpairsqual=2, ...) { if(is.null(x$eim.univ) & is.null(x$eim.quant) & is.null(x$eim.qual)) { cat("Nothing to plot, because the 'interactionfor' object does not feature EIM values.", "\n") } else { ps <- list() count <- 1 if (!is.null(x$eim.univ)) { datatempuniv <- data.frame(eimuniv=x$eim.univ.sorted) ps[[count]] <- ggplot(data=datatempuniv, aes(x=1:nrow(datatempuniv), y=.data$eimuniv)) + theme_bw() + geom_point() + labs(x="Index of variable", y="univariable EIM values") + ggplot2::ggtitle("univariable effects") + scale_x_continuous(breaks= scales::pretty_breaks()) count <- count+1 } if (!is.null(x$eim.quant)) { datatempquant <- data.frame(eimquant=x$eim.quant.sorted) ps[[count]] <- ggplot(data=datatempquant, aes(x=1:nrow(datatempquant), y=.data$eimquant)) + theme_bw() + geom_point() + labs(x="Index of variable pair", y="quantitative EIM values") + ggplot2::ggtitle("quantitative interaction effects") + scale_x_continuous(breaks= scales::pretty_breaks()) count <- count+1 } if (!is.null(x$eim.qual)) { datatempqual <- data.frame(eimqual=x$eim.qual.sorted) ps[[count]] <- ggplot(data=datatempqual, aes(x=1:nrow(datatempqual), y=.data$eimqual)) + theme_bw() + geom_point() + labs(x="Index of variable pair", y="qualitative EIM values") + ggplot2::ggtitle("qualitative interaction effects") + scale_x_continuous(breaks= scales::pretty_breaks()) count <- count+1 } p <- ggarrange(plotlist=ps, nrow=length(ps), ncol = 1) p <- annotate_figure(p, top = text_grob(ifelse(length(ps)==1, "Distribution of EIM values", "Distributions of EIM values"), face = "bold", size = 18)) print(p) if (!is.null(x$eim.quant)) { ps <- plotEffects(intobj=x, type="quant", numpairs=numpairsquant, plotit=FALSE) if(length(ps)==1) { readline(prompt="Press [enter] for next plot.") p <- annotate_figure(ps[[1]], top = text_grob("Pairs with top quantitative EIM values", face = "bold", size = 18)) print(p) } else { for(i in seq(along=ps)) { readline(prompt="Press [enter] for next plot.") p <- annotate_figure(ps[[i]], top = text_grob(paste("Pairs with top quantitative EIM values - ", as.roman(i), sep=""), face = "bold", size = 18)) print(p) } } } if (!is.null(x$eim.qual)) { ps <- plotEffects(intobj=x, type="qual", numpairs=numpairsqual, plotit=FALSE) if(length(ps)==1) { readline(prompt="Press [enter] for next plot.") p <- annotate_figure(ps[[1]], top = text_grob("Pairs with top qualitative EIM values", face = "bold", size = 18)) print(p) } else { for(i in seq(along=ps)) { readline(prompt="Press [enter] for next plot.") p <- annotate_figure(ps[[i]], top = text_grob(paste("Pairs with top qualitative EIM values - ", as.roman(i), sep=""), face = "bold", size = 18)) print(p) } } } } }
.onLoad <- function(...) { fabletools::register_feature(feat_stl, c("stl", "trend", "seasonal", "decomposition")) fabletools::register_feature(feat_acf, c("acf", "autocorrelation")) fabletools::register_feature(feat_pacf, c("pacf", "autocorrelation")) fabletools::register_feature(feat_intermittent, c("intermittent")) fabletools::register_feature(guerrero, c("optimisation", "boxcox")) fabletools::register_feature(unitroot_kpss, c("test", "unitroot")) fabletools::register_feature(unitroot_pp, c("test", "unitroot")) fabletools::register_feature(unitroot_ndiffs, c("test", "unitroot")) fabletools::register_feature(unitroot_nsdiffs, c("test", "seasonal", "unitroot")) fabletools::register_feature(box_pierce, c("test", "portmanteau")) fabletools::register_feature(ljung_box, c("test", "portmanteau")) fabletools::register_feature(var_tiled_var, c("lumpiness", "tile")) fabletools::register_feature(var_tiled_mean, c("stability", "tile")) fabletools::register_feature(shift_level_max, c("roll", "slide")) fabletools::register_feature(shift_var_max, c("roll", "slide")) fabletools::register_feature(shift_kl_max, c("roll", "slide")) fabletools::register_feature(feat_spectral, c("spectral")) fabletools::register_feature(n_crossing_points, "count") fabletools::register_feature(n_flat_spots, c("count", "rle")) fabletools::register_feature(coef_hurst, c("coefficients")) fabletools::register_feature(stat_arch_lm, c("test")) invisible() } register_s3_method <- function(pkg, generic, class, fun = NULL) { stopifnot(is.character(pkg), length(pkg) == 1) stopifnot(is.character(generic), length(generic) == 1) stopifnot(is.character(class), length(class) == 1) if (is.null(fun)) { fun <- get(paste0(generic, ".", class), envir = parent.frame()) } else { stopifnot(is.function(fun)) } if (pkg %in% loadedNamespaces()) { registerS3method(generic, class, fun, envir = asNamespace(pkg)) } setHook( packageEvent(pkg, "onLoad"), function(...) { registerS3method(generic, class, fun, envir = asNamespace(pkg)) } ) }
FEL_spectrum <- function(w.length, k = photobiology::FEL.BN.9101.165, fill = NA_real_) { pws <- (length(k[["kb"]]) - 1):0 fill.selector <- w.length < 250 | w.length > 900 if (is.null(fill)) { w.length <- w.length[!fill.selector] fill.selector <- rep(FALSE, length(w.length)) indexes <- seq_along(w.length) } else { indexes <- which(w.length >= 250 & w.length <= 900) } s.e.irrad <- numeric(length(w.length)) for (i in indexes) { s.e.irrad[i] <- sum((k[["kb"]] * w.length[i]^pws) * k[["kc"]] / ((w.length[i] * 1e-9)^5 * (exp(0.014388 / (w.length[i] * 1e-9) / k[["TK"]]) - 1))) } s.e.irrad[fill.selector] <- fill out.data <- source_spct(w.length, s.e.irrad) comment(out.data) <- paste("Fitted spectrum for:", comment(k)) return(out.data * 1e4) }
DHARMa.ecdf <- function (x) { x <- sort(x) n <- length(x) if (n < 1) stop(paste("DHARMa.ecdf - length vector < 1", x)) vals <- unique(x) rval <- approxfun(vals, cumsum(tabulate(match(x, vals)))/ (n +1), method = "linear", yleft = 0, yright = 1, ties = "ordered") class(rval) <- c("ecdf", "stepfun", class(rval)) assign("nobs", n, envir = environment(rval)) attr(rval, "call") <- sys.call() rval } getQuantile <- function(simulations, observed, integerResponse, method = c("PIT", "traditional"), rotation = NULL){ method = match.arg(method) n = length(observed) if (nrow(simulations) != n) stop("DHARMa::getquantile: wrong dimension of simulations") nSim = ncol(simulations) if(method == "traditional"){ if(!is.null(rotation)) stop("rotation can only be used with PIT residuals") if(integerResponse == F){ if(any(duplicated(observed))) message("Model family was recognized or set as continuous, but duplicate values were detected in the response. Consider if you are fitting an appropriate model.") values = as.vector(simulations)[duplicated(as.vector(simulations))] if(length(values) > 0){ if (all(values%%1==0)){ integerResponse = T message("Model family was recognized or set as continuous, but duplicate values were detected in the simulation - changing to integer residuals (see ?simulateResiduals for details)") } else { message("Duplicate non-integer values found in the simulation. If this is because you are fitting a non-inter valued discrete response model, note that DHARMa does not perform appropriate randomization for such cases.") } } } scaledResiduals = rep(NA, n) for (i in 1:n){ if(integerResponse == T){ scaledResiduals[i] <- DHARMa.ecdf(simulations[i,] + runif(nSim, -0.5, 0.5))(observed[i] + runif(1, -0.5, 0.5)) }else{ scaledResiduals[i] <- DHARMa.ecdf(simulations[i,])(observed[i]) } } } else { if(!is.null(rotation)){ if(is.character(rotation) && rotation == "estimated"){ covar = Matrix::nearPD(cov(t(simulations)))$mat L = t(as.matrix(Matrix::chol(covar))) } else if(is.matrix(rotation)) L <- t(chol(rotation)) else stop("DHARMa::getQuantile - wrong argument to rotation parameter") observed <- solve(L, observed) simulations = apply(simulations, 2, function(a) solve(L, a)) } scaledResiduals = rep(NA, n) for (i in 1:n){ minSim <- mean(simulations[i,] < observed[i]) maxSim <- mean(simulations[i,] <= observed[i]) if (minSim == maxSim) scaledResiduals[i] = minSim else scaledResiduals[i] = runif(1, minSim, maxSim) } } return(scaledResiduals) } checkDots <- function(name, default, ...) { args <- list(...) if(!name %in% names(args)) { return(default) } else { return(args[[name]]) } } securityAssertion <- function(context = "Not provided", stop = F){ generalMessage = "Message from DHARMa: During the execution of a DHARMa function, some unexpected conditions occurred. Even if you didn't get an error, your results may not be reliable. Please check with the help if you use the functions as intended. If you think that the error is not on your side, I would be grateful if you could report the problem at https://github.com/florianhartig/DHARMa/issues \n\n Context:" if (stop == F) warning(paste(generalMessage, context)) else stop(paste(generalMessage, context)) }
library(rjson); Tuple = setRefClass("Tuple", fields = list( id="character", comp="character", stream="character", task="character", input="list", output="vector", anchors="vector" )); Tuple$methods( parse = function(json=character) { t = fromJSON(json); .self$id=as.character(t$id); .self$comp=as.character(t$comp); .self$stream=as.character(t$stream); .self$task=as.character(t$task); .self$input=t$tuple; .self$output=vector(mode="character"); .self$anchors=vector(mode="character"); .self; } ); Storm = setRefClass("Storm", fields = list( tuple = "Tuple", setup = "list", lambda="function" ) ); Storm$methods( initialize = function() { .self$lambda = function(s) { s$log(c("skipping tuple id='",s$tuple$id,"'")); }; .self; } ); Storm$methods( run = function() { buf = ""; x.stdin = file("stdin"); open(x.stdin); cat(paste('{"pid": ',Sys.getpid(),'}',"\nend\n",sep="")); cat('{"command": "emit", "anchors": [], "tuple": ["bolt initializing"]}\nend\n'); while (TRUE) { rl = as.character(readLines(con=x.stdin,n=1,warn=FALSE)); if (length(rl) == 0) { close(x.stdin); break; } if (rl == "end" || rl == "END") { .self$process_json(buf); buf = ""; } else { buf = paste(buf,rl,"\n",sep=""); } } } ); Storm$methods( process_json = function(json=character) { t = NULL; if (is.list(json)) { t = fromJSON(unlist(json)); } else { t = fromJSON(json); } if (is.list(t)) { if (!is.null(t$tuple)) { .self$process_tuple(json); } else if (!is.null(t$pidDir)) { .self$setup = t; .self$process_setup(t); } else { } } } ); Storm$methods( process_tuple = function(json=character) { tt = Tuple$new(); tt$parse(json); .self$tuple = tt; .self$lambda(.self); } ); Storm$methods( process_setup = function(json=character) { file.create(paste(json$pidDir,"/",Sys.getpid(),sep="")) } ); Storm$methods( log = function(msg=character) { cat(c( '{', '"command": "log",', '"msg": "',msg,'"', '}\n', 'end\n' ),sep=""); } ); Storm$methods( ack = function(tuple=Tuple) { cat(c( '{\n', '\t"command": "ack",\n', '\t"id": "',tuple$id,'"\n', '}\n', 'end\n' ),sep=""); } ); Storm$methods( fail = function(tuple=Tuple) { cat(c( '{', '"command": "fail",', '"id": "',tuple$id,'"', '}\n', 'end\n' ),sep="") } ); Storm$methods( emit = function(tuple=Tuple) { t.prefix="["; t.suffix="]"; a.prefix="["; a.suffix="]"; cat(c( '{', '"command": "emit", ', '"anchors": ',a.prefix,toJSON(tuple$id),a.suffix,', ', '"tuple": ',toJSON(tuple$output), '}\n', 'end\n' ),sep=""); } );
systemnoise <- function(dim, nscan, type=c("gaussian","rician"), sigma, vee=1, template, verbose=TRUE){ if(length(dim)>3){ stop("Image space with more than three dimensions is not supported.") } if(missing(type)){ type="gaussian" } if(type=="gaussian"){ noise <- array(rnorm(prod(dim)*nscan, 0, sigma), dim=c(dim,nscan)) }else{ if(type=="rician"){ noise <- array(rrice(prod(dim)*nscan, vee=vee, sigma=sigma), dim=c(dim,nscan)) } else { stop("Specified type of system noise is unknown. Type should be gaussian or rician.") } } if(!missing(template)){ if(length(dim(template))>3){ stop("Template should be a 2D or 3D array.") } template.time <- array(rep(template,nscan), dim=c(dim,nscan)) ix <- which(template.time!=0) noise[-ix] <- 0 } return(noise) }
theme_update <- function(...) { theme_set(theme_get() + theme(...)) } theme_replace <- function(...) { theme_set(theme_get() %+replace% theme(...)) } is.theme <- function(x) inherits(x, "theme") print.theme <- function(x, ...) utils::str(x) theme <- function(..., complete = FALSE, validate = TRUE) { elements <- list(...) if (!is.null(elements$axis.ticks.margin)) { warning("`axis.ticks.margin` is deprecated. Please set `margin` property ", " of `axis.text` instead", call. = FALSE) elements$axis.ticks.margin <- NULL } if (validate) { mapply(validate_element, elements, names(elements)) } structure(elements, class = c("theme", "gganimint"), complete = complete, validate = validate) } plot_theme <- function(x) { defaults(x$theme, theme_get()) } .theme <- (function() { theme <- theme_gray() list( get = function() theme, set = function(new) { missing <- setdiff(names(theme_gray()), names(new)) if (length(missing) > 0) { warning("New theme missing the following elements: ", paste(missing, collapse = ", "), call. = FALSE) } old <- theme theme <<- new invisible(old) } ) })() theme_get <- .theme$get theme_set <- .theme$set "%+replace%" <- function(e1, e2) { if (!is.theme(e1) || !is.theme(e2)) { stop("%+replace% requires two theme objects", call. = FALSE) } e1[names(e2)] <- e2 e1 } add_theme <- function(t1, t2, t2name) { if (!is.theme(t2)) { stop("Don't know how to add ", t2name, " to a theme object", call. = FALSE) } for (item in names(t2)) { x <- t1[[item]] y <- t2[[item]] if (is.null(x) || inherits(x, "element_blank")) { x <- y } else if (is.null(y) || is.character(y) || is.numeric(y) || is.logical(y) || inherits(y, "element_blank")) { x <- y } else { idx <- !vapply(y, is.null, logical(1)) idx <- names(idx[idx]) x[idx] <- y[idx] } t1[item] <- list(x) } attr(t1, "complete") <- attr(t1, "complete") || attr(t2, "complete") t1 } update_theme <- function(oldtheme, newtheme) { if (attr(newtheme, "complete")) return(newtheme) newitems <- !names(newtheme) %in% names(oldtheme) newitem_names <- names(newtheme)[newitems] oldtheme[newitem_names] <- theme_get()[newitem_names] old.validate <- isTRUE(attr(oldtheme, "validate")) new.validate <- isTRUE(attr(newtheme, "validate")) oldtheme <- do.call(theme, c(oldtheme, complete = isTRUE(attr(oldtheme, "complete")), validate = old.validate & new.validate)) oldtheme + newtheme } calc_element <- function(element, theme, verbose = FALSE) { if (verbose) message(element, " --> ", appendLF = FALSE) if (inherits(theme[[element]], "element_blank")) { if (verbose) message("element_blank (no inheritance)") return(theme[[element]]) } if (!is.null(theme[[element]]) && !inherits(theme[[element]], .element_tree[[element]]$class)) { stop(element, " should have class ", .element_tree[[element]]$class) } pnames <- .element_tree[[element]]$inherit if (is.null(pnames)) { nullprops <- vapply(theme[[element]], is.null, logical(1)) if (any(nullprops)) { stop("Theme element '", element, "' has NULL property: ", paste(names(nullprops)[nullprops], collapse = ", ")) } if (verbose) message("nothing (top level)") return(theme[[element]]) } if (verbose) message(paste(pnames, collapse = ", ")) parents <- lapply(pnames, calc_element, theme, verbose) Reduce(combine_elements, parents, theme[[element]]) } combine_elements <- function(e1, e2) { if (is.null(e2)) return(e1) if (is.null(e1) || inherits(e2, "element_blank")) return(e2) n <- vapply(e1[names(e2)], is.null, logical(1)) e1[n] <- e2[n] if (is.rel(e1$size)) { e1$size <- e2$size * unclass(e1$size) } e1 }
step_num2factor <- function(recipe, ..., role = NA, transform = function(x) x, trained = FALSE, levels, ordered = FALSE, skip = FALSE, id = rand_id("num2factor")) { if (!is_tune(ordered) & !is_varying(ordered)) { if (!is.logical(ordered) || length(ordered) != 1) rlang::abort("`ordered` should be a single logical variable") } if (rlang::is_missing(levels) || !is.character(levels)) { rlang::abort("Please provide a character vector of appropriate length for `levels`.") } add_step( recipe, step_num2factor_new( terms = ellipse_check(...), role = role, transform = transform, trained = trained, levels = levels, ordered = ordered, skip = skip, id = id ) ) } step_num2factor_new <- function(terms, role, transform, trained, levels, ordered, skip, id) { step( subclass = "num2factor", terms = terms, role = role, transform = transform, trained = trained, levels = levels, ordered = ordered, skip = skip, id = id ) } get_ord_lvls_num <- function(x, foo) sort(unique(as.character(foo(x)))) prep.step_num2factor <- function(x, training, info = NULL, ...) { col_names <- recipes_eval_select(x$terms, training, info) check_type(training[, col_names]) res <- lapply(training[, col_names], get_ord_lvls_num, foo = x$transform) res <- c(res, ..levels = list(x$levels)) ord <- rep(x$ordered, length(col_names)) names(ord) <- col_names step_num2factor_new( terms = x$terms, role = x$role, transform = x$transform, trained = TRUE, levels = res, ordered = ord, skip = x$skip, id = x$id ) } make_factor_num <- function(x, lvl, ord, foo) { y <- foo(x) if (!is.integer(y)) { y <- as.integer(y) } factor(lvl[y], levels = lvl, ordered = ord) } bake.step_num2factor <- function(object, new_data, ...) { col_names <- names(object$ordered) lvls <- object$levels[names(object$levels) == "..levels"] object$levels <- object$levels[names(object$levels) != "..levels"] new_data[, col_names] <- map_df(new_data[, col_names], make_factor_num, lvl = lvls[[1]], ord = object$ordered[1], foo = object$transform) if (!is_tibble(new_data)) new_data <- as_tibble(new_data) new_data } print.step_num2factor <- function(x, width = max(20, options()$width - 30), ...) { cat("Factor variables from ") printer(names(x$ordered), x$terms, x$trained, width = width) invisible(x) } tidy.step_num2factor <- function(x, ...) { term_names <- sel2char(x$terms) p <- length(term_names) if (is_trained(x)) { res <- tibble(terms = term_names, ordered = rep(x$ordered, p)) } else { res <- tibble(terms = term_names, ordered = rep(x$ordered, p)) } res$id <- x$id res }
expect_inherits(availability(example_isolates), "data.frame")
ISOAbstractLogicalConsistency <- R6Class("ISOAbstractLogicalConsistency", inherit = ISODataQualityAbstractElement, private = list( xmlElement = "AbstractDQ_LogicalConsistency", xmlNamespacePrefix = "GMD" ), public = list() ) ISOTopologicalConsistency <- R6Class("ISOTopologicalConsistency", inherit = ISOAbstractLogicalConsistency, private = list( xmlElement = "DQ_TopologicalConsistency", xmlNamespacePrefix = "GMD" ), public = list() ) ISOFormatConsistency <- R6Class("ISOFormatConsistency", inherit = ISOAbstractLogicalConsistency, private = list( xmlElement = "DQ_FormatConsistency", xmlNamespacePrefix = "GMD" ), public = list() ) ISODomainConsistency <- R6Class("ISODomainConsistency", inherit = ISOAbstractLogicalConsistency, private = list( xmlElement = "DQ_DomainConsistency", xmlNamespacePrefix = "GMD" ), public = list() ) ISOConceptualConsistency <- R6Class("ISOConceptualConsistency", inherit = ISOAbstractLogicalConsistency, private = list( xmlElement = "DQ_ConceptualConsistency", xmlNamespacePrefix = "GMD" ), public = list() )
anyLib <- function(pkg, force = FALSE, autoUpdate = TRUE, lib = .libPaths()[1], loadLib = .libPaths(), source = FALSE){ opkg <- sub("_[0-9][.][0-9][.][0-9].tar.gz$", "", sapply(pkg, function(y) lapply(strsplit(y, "/"), function(x) x[length(x)]))) if (inherits(pkg, "character")) { pkg <- as.list(pkg) } else if (!inherits(pkg, "list")) { stop("pkg has to be a package name or a list of packages names") } if (any(source) == TRUE) { lapply(pkg[source], function(p){ utils::chooseCRANmirror(graphics = FALSE, 1) utils::install.packages(p, repos = NULL, type = "source", dependencies = TRUE, lib = lib) }) } pkg <- pkg[!source] if (length(pkg) > 0) { is.github <- sapply(pkg, function(p) !identical(grep("/", p), integer(0))) githubP <- pkg[is.github] notGithubP <- pkg[!is.github] is.installedGithubP <- sapply(githubP, function(p){ mAndP <- strsplit(unlist(p), "/")[[1]] mAndP[2] %in% utils::installed.packages(lib.loc = loadLib)[, "Package"] }) new.pkg <- notGithubP[!(notGithubP %in% utils::installed.packages( lib.loc = loadLib)[, "Package"])] if (force == TRUE) new.pkg <- notGithubP if (length(new.pkg)) { for (p in new.pkg) { utils::chooseCRANmirror(graphics = FALSE, 1) base::suppressWarnings(utils::install.packages( p, dependencies = TRUE, lib = lib)) } } new.pkg <- notGithubP[!(notGithubP %in% utils::installed.packages( lib.loc = loadLib)[, "Package"])] if (force == TRUE) { new.pkg <- pkg[!sapply(notGithubP, function(p) length(grep( p, utils::available.packages()[,1])))] } if (length(new.pkg)) { try(BiocManager::install(unlist(new.pkg), ask = FALSE, update = autoUpdate, lib = lib)) } if (force == FALSE) { for (p in githubP[!is.installedGithubP]) try(withr::with_libpaths(new = lib, devtools::install_github(p))) } else if (force == TRUE) { for (p in githubP) try(withr::with_libpaths(new = lib, devtools::install_github(p, force = force))) } if (!identical(githubP, list())) { pkg[is.github] <- sapply(strsplit(unlist( pkg[is.github]), "/"), function(x) x[[2]]) } } sapply(opkg, require, character.only = TRUE, lib.loc = loadLib) }
library(signs) x <- seq(-1, 1) test_that( "the basics work", { expect_equal( signs(x, accuracy = 1), c("\u22121", "0", "1") ) expect_equal( signs(x, accuracy = 1, scale = 1, format = scales::percent), c("\u22121%", "0%", "1%") ) expect_equal( signs(x, accuracy = 1, add_plusses = TRUE), c("\u22121", "0", "+1") ) expect_equal( signs(x, accuracy = 1, label_at_zero = "blank"), c("\u22121", "", "1") ) expect_equal( signs(x, accuracy = 1, label_at_zero = "symbol"), c("\u22121", "\u00b10", "1") ) expect_equal( signs(x, accuracy = .1, scale = .1, trim_leading_zeros = TRUE), c("\u2212.1", ".0", ".1") ) } ) test_that( "errors work", { expect_error( signs(as.character(x)), "`x` should be a numeric vector." ) expect_error( signs(x, format = "goobers"), cat( "`format` should be a function that returns a character vector,", "such as `scales::number` or `as.character`.", "Consider setting a default with", "`options(signs.format = your_function)`." ) ) expect_error( signs(x, format = exp), cat( "`format` should be a function that returns a character vector,", "such as `scales::number` or `as.character`.", "Consider setting a default with", "`options(signs.format = your_function)`." ) ) expect_error( signs(x, add_plusses = "TRUE"), "`add_plusses` should be a logical vector of length 1." ) expect_error( signs(x, add_plusses = c(TRUE, FALSE)), "`add_plusses` should be a logical vector of length 1." ) expect_error( signs(x, trim_leading_zeros = "TRUE"), "`trim_leading_zeros` should be a logical vector of length 1." ) expect_error( signs(x, trim_leading_zeros = c(TRUE, FALSE)), "`trim_leading_zeros` should be a logical vector of length 1." ) expect_error( signs(x, label_at_zero = TRUE), "`label_at_zero` should be either 'none', 'blank', or 'symbol'." ) expect_error( signs(x, label_at_zero = c("none", "blank")), "`label_at_zero` should be either 'none', 'blank', or 'symbol'." ) expect_error( signs(x, label_at_zero = "goober"), "`label_at_zero` should be either 'none', 'blank', or 'symbol'." ) } ) test_that( "formatted as zero counts as zero", { expect_equal( signs(x, accuracy = 1, scale = .1, label_at_zero = "none"), c("0", "0", "0") ) expect_equal( signs(x, accuracy = 1, scale = .1, label_at_zero = "blank"), c("", "", "") ) expect_equal( signs(x, accuracy = 1, scale = .1, label_at_zero = "symbol"), c("\u00b10", "\u00b10", "\u00b10") ) } ) test_that( "scientific notation works", { expect_equal( signs(x, accuracy = 1, scale = 1e-3, format = scales::scientific), c("\u22121e\u221203", "0e+00", "1e\u221203") ) expect_equal( signs( x, accuracy = 1, scale = 1e+3, format = scales::scientific, add_plusses = TRUE ), c("\u22121e+03", "0e+00", "+1e+03") ) } ) test_that( "janky scientific notation works", { expect_equal( signs(x, accuracy = 1, suffix = "e+03", label_at_zero = "none"), c("\u22121e+03", "0e+03", "1e+03") ) expect_equal( signs(x, accuracy = 1, suffix = "e+03", label_at_zero = "blank"), c("\u22121e+03", "", "1e+03") ) expect_equal( signs(x, accuracy = 1, suffix = "e+03", label_at_zero = "symbol"), c("\u22121e+03", "\u00b10e+03", "1e+03") ) } )
library(quanteda) context("double reinert classification") mini_corpus <- head(data_corpus_inaugural, n = 2) mini_corpus <- split_segments(mini_corpus, 5) dtm <- dfm(tokens(mini_corpus, remove_punct = TRUE), tolower = TRUE) dtm <- dfm_remove(dtm, stopwords("en")) dtm <- dfm_wordstem(dtm, language = "english") dtm <- dfm_trim(dtm, min_termfreq = 3) res1 <- rainette(dtm, k = 5, min_segment_size = 2, min_split_members = 3) res2 <- rainette(dtm, k = 5, min_segment_size = 3, min_split_members = 3) res12 <- rainette2(dtm, max_k = 5, min_segment_size1 = 2, min_segment_size2 = 3, min_members = 3) res <- rainette2(res1, res2, min_members = 2) test_that("compute_chi2 is ok", { tab <- matrix(c(45, 121 - 45, 257 - 45, 1213 - 121 - 257 +45), nrow = 2) expect_equal(rainette:::compute_chi2(45, 121, 257, 1213), chisq.test(tab)$statistic) tab <- matrix(c(0, 12, 25, 121 - 12 - 25), nrow = 2) expect_equal(rainette:::compute_chi2(0, 12, 25, 121), suppressWarnings(-chisq.test(tab)$statistic)) }) test_that("get_groups is ok", { expect_equal(dim(rainette:::get_groups(res1)), c(316, 4)) expect_equal(substr(rainette:::get_groups(res1)[[2]],3,3), as.character(res1$uce_groups[[2]])) expect_equal(substr(rainette:::get_groups(res1)[[2]],1,2), rep("2.", length(res1$group))) }) test_that("classes_crosstab is ok", { g1 <- tibble(c(1,1,2,2), c(1,1,2,3)) g2 <- tibble(c(1,2,1,2), c(3,1,2,1)) colnames(g1) <- 1:2 colnames(g2) <- 1:2 n_tot <- 4 tab <- rainette:::classes_crosstab(g1, g2, n_tot) expect_equal(nrow(tab), 25) expect_equal(colnames(tab), c("g1", "g2", "n_both", "n1", "n2", "level1", "level2", "chi2")) tmp <- tab %>% dplyr::filter(level1 == 2, level2 == 2, g1 == 2, g2 == 2) expect_equal(tmp$n_both, 1) expect_equal(tmp$n1, 1) expect_equal(tmp$n2, 1) expect_equal(tmp$chi2, unname(rainette:::compute_chi2(tmp$n_both, tmp$n1, tmp$n2, n_tot))) }) test_that("filter_crosstab is ok", { g1 <- tibble(c(1,1,1,1,2), c(1,1,2,3,3)) g2 <- tibble(c(1,1,1,1,2), c(3,1,3,1,2)) colnames(g1) <- 1:2 colnames(g2) <- 1:2 n_tot <- 5 tab <- rainette:::classes_crosstab(g1, g2, n_tot) ftab <- rainette:::filter_crosstab(tab, g1, g2, min_members = 2, min_chi2 = 0.5) expect_equal(nrow(ftab), 1) expect_equal(ftab$g1, 1) expect_equal(ftab$g2, 1) expect_equal(ftab$n_both, 4) expect_equal(ftab$interclass, "1x1") expect_equal(ftab$chi2, suppressWarnings(unname(chisq.test(matrix(c(4,0,0,1), nrow=2))$statistic))) expect_equal(ftab$members, list(1:4)) }) test_that("cross_sizes is ok", { tab <- tibble(interclass = c("1.1x1.1", "1.2x1.1", "2.1x2.2", "2.1x1.1"), members = list(c(1,2,3), c(4,5,6), c(1,2), 5)) sizes <- rainette:::cross_sizes(tab) expect_equal(sizes, structure(c(1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1), .Dim = c(4L, 4L), .Dimnames = list(c("1.1x1.1", "1.2x1.1", "2.1x2.2", "2.1x1.1" ), c("1.1x1.1", "1.2x1.1", "2.1x2.2", "2.1x1.1")))) }) test_that("next_partitions is ok", { tab <- tibble(interclass = c("1.1x1.1", "1.2x1.1", "2.1x2.2", "2.1x1.1"), members = list(c(1,2,3), c(4,5,6), c(1,2), 7)) sizes <- rainette:::cross_sizes(tab) partitions <- list(colnames(sizes)) partitions[[2]] <- rainette:::next_partitions(partitions, sizes) expect_equal(partitions[[2]], list(c("1.1x1.1", "1.2x1.1"), c("1.1x1.1", "2.1x1.1"), c("1.2x1.1", "2.1x2.2"), c("1.2x1.1", "2.1x1.1"), c("2.1x2.2", "2.1x1.1"))) partitions[[3]] <- rainette:::next_partitions(partitions, sizes) expect_equal(partitions[[3]], list(c("1.1x1.1", "1.2x1.1", "2.1x1.1"), c("1.2x1.1", "2.1x2.2", "2.1x1.1"))) expect_equal(rainette:::next_partitions(partitions, sizes), NULL) }) test_that("get_optimal_partitions is ok", { valid <- tibble(interclass = c("1x1", "2x2", "3x3", "4x4"), n_both = c(3, 3, 2, 1), chi2 = c(4, 5, 10, 4), members = list(c(1,2,3), c(4,5,6), c(1,2), 7), stringsAsFactors = FALSE) partitions <- list( list(c("1x1", "2x2"), c("2x2", "3x3"), c("1x1", "4x4")), list(c("1x1", "2x2", "4x4"))) n_tot <- 7 res <- rainette:::get_optimal_partitions(partitions, valid, n_tot) tmp <- res[res$k == 2,] expect_equal(tmp$clusters, list(c("1x1", "2x2"), c("2x2","3x3"))) expect_equal(tmp$chi2, c(9, 15)) expect_equal(tmp$n, c(6, 5)) expect_equal(tmp$groups, list(c(1,1,1,2,2,2,NA),c(2,2,NA,1,1,1,NA))) tmp <- res[res$k == 3,] expect_equal(tmp$clusters, list(c("1x1", "2x2", "4x4"))) expect_equal(tmp$chi2, 13) expect_equal(tmp$n, 7) expect_equal(tmp$groups, list(c(1,1,1,2,2,2,3))) }) test_that("rainette2 gives the same result on dtm and on two clustering results", { expect_equal(res[,c("k", "chi2", "n")], res12[,c("k", "chi2", "n")]) expect_equal(res$groups, res12$groups) expect_equal(res$clusters, res12$clusters) }) test_that("rainette2 is ok when stopping before max_k", { res1 <- rainette(dtm, k = 4, min_segment_size = 2, min_split_members = 30) res2 <- rainette(dtm, k = 4, min_segment_size = 3, min_split_members = 30) expect_message(res <- rainette2(res1, res2, max_k = 4, min_members = 50), "^! No more partitions found, stopping at k=2") expect_equal(max(res$k), 2) })
ver_order <- function(x) { version_components <- strsplit(x, "[^\\w]+", perl = TRUE) Reduce( function(list_order, position) { nth_components <- vapply( version_components[list_order], `[`, FUN.VALUE = character(1), position ) empty_components_indices <- which(is.na(nth_components)) other_components_indices <- which(!is.na(nth_components)) nth_components <- nth_components[other_components_indices] initial_number_match <- regexpr("^\\d+", nth_components) initial_number <- as.numeric( substring(nth_components, 1, attr( initial_number_match, "match.length", exact = TRUE) ) ) additional_code <- substring(nth_components, 1 + attr( initial_number_match, "match.length", exact = TRUE) ) code_order <- order(additional_code, na.last = TRUE) list_order[ c(empty_components_indices, other_components_indices[code_order][order(initial_number[code_order], na.last = TRUE)]) ] }, rev(seq_len(max(lengths(version_components)))), init = seq_along(version_components) ) } ver_sort <- function(x) { x[ver_order(x)] }
expected <- eval(parse(text="NULL")); test(id=0, code={ argv <- eval(parse(text="list(\"Error in as.POSIXlt.character(x, tz, ...) : \\n character string is not in a standard unambiguous format\\n\")")); .Internal(seterrmessage(argv[[1]])); }, o=expected);
TaxonOut <- function(name, lBound = 0.0, hBound = 1.0E100, takeOut, writeTrees = T) { opar <-par(no.readonly=TRUE) on.exit(par(opar)) inFileName <- paste0(name, '.xml') inFile <- readLines(inFileName) versionLine <- readLines(inFileName,n=1) ver <- grepl(pattern = 'version=\"1.0', x = versionLine) ver2 <- grepl(pattern = 'version=\"2.', x = versionLine) ver1 = F if (ver == T & ver2 == F) {ver1 = T} if (ver1 == T) { endTaxaLine <- grep(pattern = "</taxa>", x = inFile, value = F) taxaLine <- grep(pattern = "<taxon id=", x = inFile, value = T) taxaLinePosition <- grep(pattern="<taxon id=", x = inFile, value = F) taxaLine <- unlist(strsplit(taxaLine, "\"")) taxa <- taxaLine[c (F, T, F)] numberTaxa <- length(taxa) if (length(taxa) == 0) {stop( "No date info found, check BEAST input files")} if (is.numeric(takeOut) == F) { valueTakeOut <- match(takeOut, taxa) if (is.na (valueTakeOut)) {stop("Taxon name not found, check spelling")} takeOut <- valueTakeOut } if (numberTaxa < takeOut) {stop("Error in taxon number")} matchFileName <- grep(pattern = "fileName", x = inFile, value = T) matchFileNamePosition <- grep(pattern = "fileName", x = inFile, value = F) newFile <- inFile taxon <- taxa[takeOut] add1 <- grep(pattern = "</taxa>", x = newFile, value = F) newFile [add1] <- paste0("\t</taxa>\n\n","\t<taxa id=\"leave_out\">\n", "\t\t<taxon idref=\"",taxon,"\"/>\n\t</taxa>") add2 <- grep(pattern = "</treeModel>", x = newFile, value = F) newFile [add2] <- paste0( "\n\t\t<!-- START Tip date sampling\t\t\t\t\t\t\t\t\t\t\t--> \n\t\t<leafHeight taxon=\"",taxon,"\">\n\t\t\t<parameter id=\"age(", taxon,")\"/>\n\t\t</leafHeight> \n\t\t<!-- END Tip date sampling\t\t\t\t\t\t\t\t\t\t\t\t--> \n\t</treeModel>","\n\n\t<!-- Taxon Sets\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t--> \t<tmrcaStatistic id=\"tmrca(leave_out)\" includeStem=\"false\"> \t\t<mrca>\n\t\t\t<taxa idref=\"leave_out\"/>\n\t\t</mrca> \t\t<treeModel idref=\"treeModel\"/>\n\t</tmrcaStatistic>") add34 <- grep(pattern = "</operators>", x = newFile, value = F) newFile [add34] <- paste0( "\t\t<scaleOperator scaleFactor=\"0.9\" weight=\"1\"> \t\t\t<parameter idref=\"age(",taxon,")\"/>\n\t\t</scaleOperator> \t</operators>") add5 <- grep(pattern = "<prior id=\"prior\">", x = newFile, value = F) newFile [add5] <- paste0( "\t\t\t<prior id=\"prior\"> \t\t\t<uniformPrior lower=\"", lBound, "\" upper=\"",hBound,"\"> \t\t\t\t\t<parameter idref=\"age(",taxon, ")\"/>\n\t\t\t\t</uniformPrior>") add6 <- grep(pattern = "<log id=\"fileLog\"", x = newFile, value = F) keep6 <- newFile[add6 + 1] newFile [add6 + 1] <- paste0( "\n\t\t\t<parameter idref=\"age(",taxon,")\"/>\n",keep6) log = paste0("\\.log") matchLog <- grep(pattern = log, x = newFile, value = T) matchLogPosition <- grep(pattern = log, x = newFile, value = F) logRep <- paste0("\\.Taxon", takeOut, log) if (length(matchLogPosition) != 0) { newFile [matchLogPosition] <- gsub(log, logRep, matchLog)} trees = paste0("\\.trees") matchTrees <- grep(pattern = trees, x = newFile, value = T) matchTreesPosition <- grep(pattern = trees, x = newFile, value = F) treesRep <- paste0("\\.Taxon", takeOut, trees) if (length(matchTreesPosition) != 0) { newFile [matchTreesPosition] <- gsub(trees, treesRep, matchTrees)} csv = paste0("\\.csv") matchCsv <- grep(pattern = csv, x = newFile, value = T) matchCsvPosition <- grep(pattern = csv, x = newFile, value = F) csvRep <- paste0("\\.Taxon", takeOut, csv) if (length(matchCsvPosition) != 0) { newFile [matchCsvPosition] <- gsub(csv, csvRep, matchCsv)} ops = paste0("\\.ops") matchOps <- grep(pattern = ops, x = newFile, value = T) matchOpsPosition <- grep(pattern = ops, x = newFile, value = F) opsRep <- paste0("\\.Taxon", takeOut, ops) if (length(matchOpsPosition) != 0) { newFile [matchOpsPosition] <- gsub(ops, opsRep, matchOps)} if (writeTrees == F) { logA <- grep(pattern = "<logTree id=", x = newFile, value = T) logAn <- grep(pattern = "<logTree id=", x = newFile, value = F) newFile [logAn] <- paste0("\t\t<!-- \n", logA) logB <- grep(pattern = "</logTree>", x = newFile, value = T) logBn <- grep(pattern = "</logTree>", x = newFile, value = F) newFile [logBn] <- paste0(logB, "\n", " \t\t -->") } out <- paste0(name, ".Taxon.", takeOut, ".xml") cat (newFile, file = out, sep = "\n") cat ("Taxon", takeOut, "processed \n") } if (ver2 == T) { linearDates=F numberTaxa <- length(grep('taxon=', inFile)) line <- grep(pattern = 'traitname=\"date|traitname=\'date', x = inFile) linearDates <- grepl(pattern = 'value=', inFile[line]) if (linearDates == T) { dateLine <- inFile[line] step1 <- gsub('\">','',strsplit(dateLine, 'value=\"')[[1]][2]) step2 <- unlist(strsplit(step1, ",")) numberDates <- length(step2) date <- unlist(strsplit(step2, "=")) dateHap <- date[c(T, F)] dateHap <- dateHap[1: numberDates] dateValues <- date[c(F, T)] dateValues <- gsub(",$", "", dateValues) if (is.numeric(takeOut) == F) { valueTakeOut <- match(takeOut, dateHap) if (is.na (valueTakeOut)) {stop("Taxon name not found, check spelling")} takeOut <- valueTakeOut } if (numberTaxa < takeOut) {stop("Error in taxon number")} dateValues <- gsub(",$", "", dateValues) newFile <- inFile taxon <- dateHap[takeOut] lineTrees <- grep(pattern ="@Tree.t:", x = newFile) lineTree <- tail(lineTrees, 1) treeLine <- newFile[lineTree] treePart <- tail(unlist(strsplit(treeLine, "@Tree.t:")), 1) treeName <- head(unlist(strsplit(treePart, "\"")), 1) addLine1 <- grep(pattern = "</prior>", x = newFile) add1 <- tail(addLine1, n = 1) temp1 <- newFile[add1] newFile [add1] <- paste0(temp1,"\n","\t\t\t<distribution id=", "\"LOOCV.prior\" spec=\"beast.math.", "distributions.MRCAPrior\"", " tree=\"@Tree.t:", treeName, "\">\n","\t\t\t\t<taxonset id=\"", "LOOCV\" spec=\"TaxonSet\">\n","\t\t\t\t\t", "<taxon id=\"", taxon,"\" spec=\"Taxon\"/>\n", "\t\t\t\t</taxonset>\n", "\t\t\t\t<Uniform id=\"Uniform.", "01\" name=\"distr\" upper=\"Infinity\"/>\n", "\t\t\t</distribution>") addLine2 <- grep(pattern = "</operator>", x = newFile) add2 <- tail(addLine2, n = 1) temp2 <- newFile[add2] newFile [add2] <- paste0(temp2,"\n\n","\t<operator id=\"TipDatesRandom", "Walker\" windowSize=\"1\" spec=\"TipDatesRandomWalker", "\" taxonset=\"@LOOCV\" tree=\"@Tree.t:", treeName,"\" weight=\"1.0\"/>") add6 <- grep(pattern = "<logger id=\"tracelog\" ", x = newFile, value = F) keep6 <- newFile[add6] newFile [add6] <- paste0(keep6,"\n\t\t<log idref=\"LOOCV.prior\"/>") log = paste0("\\.log") matchLog <- grep(pattern = log, x = newFile, value = T) matchLogPosition <- grep(pattern = log, x = newFile, value = F) logRep <- paste0("\\.Taxon", takeOut, log) if (length(matchLogPosition) != 0) { newFile [matchLogPosition] <- gsub(log, logRep, matchLog)} trees = paste0("\\.trees") matchTrees <- grep(pattern = trees, x = newFile, value = T) matchTreesPosition <- grep(pattern = trees, x = newFile, value = F) treesRep <- paste0("\\.Taxon", takeOut, trees) if (length(matchTreesPosition) != 0) { newFile [matchTreesPosition] <- gsub(trees, treesRep, matchTrees)} if (writeTrees == F) { logA <- grep(pattern = "\\.trees", x = newFile, value = T) logAn <- grep(pattern = "\\.trees", x = newFile, value = F) newFile [logAn] <- paste0("\t<!-- \n ", logA) ctr <- 0 repeat { ctr <- ctr + 1 ctr2 <- 0 ctr2 <- logAn + ctr temp <- grep(pattern = "</logger>", newFile[ctr2], value = F) temp <- length(temp) if (temp != 0) break if (ctr == 100) stop("Error, check files, no tree block found") } newFile [ctr2] <- paste0("\t</logger>", "\n", "\t-->") } out <- paste0(name, ".Taxon", takeOut, ".xml") cat (newFile, file = out, sep = "\n") cat ("Taxon", takeOut, "processed \n") } if (linearDates == F) { numberTaxa <- length(grep("taxon=", inFile)) line <- grep(pattern = "traitname=\"date|traitname=\'date", x = inFile) line <- line + 1 if (length(line) == 0) {stop( "No date info found, check BEAST input file")} datePositions = c() repeat { if (length(grep("value=", inFile[line])) > 0) line <- line + 1 if (length(grep("alignment", inFile[line])) > 0) break if (length(grep("=", inFile[line])) > 0) { datePositions <- c(datePositions, line)} line <- line + 1 } numberDates <- length(datePositions) dateLines <- inFile[datePositions] dateLines <- trimws(dateLines) date <- unlist(strsplit(dateLines, "=")) dateHap <- date[c(T, F)] dateHap <- dateHap[1: numberDates] dateValues <- date[c(F, T)] lastLine <- length(grep("<taxa", dateValues)) if (is.numeric(takeOut) == F) { valueTakeOut <- match(takeOut, dateHap) if (is.na (valueTakeOut)) {stop("Taxon name not found, check spelling")} takeOut <- valueTakeOut } if (numberTaxa < takeOut) {stop("Error in taxon number")} if (lastLine == 1){ lastDate <- tail(dateValues, 2) lastDate <- unlist(strsplit(lastDate, " ")) lastDate <- head(lastDate, 1) dateValues <- head(dateValues, numberTaxa-1) dateValues <- c(dateValues, lastDate) } dateValues <- gsub(",$", "", dateValues) newFile <- inFile taxon <- dateHap[takeOut] lineTrees <- grep(pattern ="@Tree.t:", x = newFile) lineTree <- tail(lineTrees, 1) treeLine <- newFile[lineTree] treePart <- tail(unlist(strsplit(treeLine, "@Tree.t:")), 1) treeName <- head(unlist(strsplit(treePart, "\"")), 1) addLine1 <- grep(pattern = "</prior>", x = newFile) add1 <- tail(addLine1, n = 1) temp1 <- newFile[add1] newFile [add1] <- paste0(temp1,"\n","\t\t\t<distribution id=", "\"LOOCV.prior\" spec=\"beast.math.", "distributions.MRCAPrior\"", " tree=\"@Tree.t:", treeName, "\">\n","\t\t\t\t<taxonset id=\"", "LOOCV\" spec=\"TaxonSet\">\n","\t\t\t\t\t", "<taxon id=\"", taxon,"\" spec=\"Taxon\"/>\n", "\t\t\t\t</taxonset>\n", "\t\t\t\t<Uniform id=\"Uniform.", "01\" name=\"distr\" upper=\"Infinity\"/>\n", "\t\t\t</distribution>") addLine2 <- grep(pattern = "</operator>", x = newFile) add2 <- tail(addLine2, n = 1) temp2 <- newFile[add2] newFile [add2] <- paste0(temp2,"\n\n","\t<operator id=\"TipDatesRandom", "Walker\" windowSize=\"1\" spec=\"TipDatesRandomWalker", "\" taxonset=\"@LOOCV\" tree=\"@Tree.t:", treeName,"\" weight=\"1.0\"/>") add6 <- grep(pattern = "<logger id=\"tracelog\" ", x = newFile, value = F) keep6 <- newFile[add6] newFile [add6] <- paste0(keep6,"\n\t\t<log idref=\"LOOCV.prior\"/>") log = paste0("\\.log") matchLog <- grep(pattern = log, x = newFile, value = T) matchLogPosition <- grep(pattern = log, x = newFile, value = F) logRep <- paste0("\\.Taxon", takeOut, log) if (length(matchLogPosition) != 0) { newFile [matchLogPosition] <- gsub(log, logRep, matchLog)} trees = paste0("\\.trees") matchTrees <- grep(pattern = trees, x = newFile, value = T) matchTreesPosition <- grep(pattern = trees, x = newFile, value = F) treesRep <- paste0("\\.Taxon", takeOut, trees) if (length(matchTreesPosition) != 0) { newFile [matchTreesPosition] <- gsub(trees, treesRep, matchTrees)} if (writeTrees == F) { logA <- grep(pattern = "\\.trees", x = newFile, value = T) logAn <- grep(pattern = "\\.trees", x = newFile, value = F) newFile [logAn] <- paste0("\t<!-- \n ", logA) ctr <- 0 repeat { ctr <- ctr + 1 ctr2 <- 0 ctr2 <- logAn + ctr temp <- grep(pattern = "</logger>", newFile[ctr2], value = F) temp <- length(temp) if (temp != 0) break if (ctr == 100) stop("Error, check files, no tree block found") } newFile [ctr2] <- paste0("\t</logger>", "\n", "\t-->") } out <- paste0(name, ".Taxon", takeOut, ".xml") cat (newFile, file = out, sep = "\n") cat ("Taxon", takeOut, "processed \n") } } if (ver1 == F & ver2 == F) {stop("Error, check BEAST input file -version not recognized")} }
"setValues" <- function(nodeLabel, values) { nodeLabel <- as.character(nodeLabel) nodeSize <- .OpenBUGS(c("BugsRobjects.SetVariable", "BugsRobjects.GetSize"), c("CharArray","Integer"), c(nodeLabel,NA))[[2]] if(nodeSize == -1) stop(nodeLabel, " is not a node in BUGS model") numChains <- getNumChains() if(length(values) != nodeSize*numChains) stop("length(values) does not correspond to the node size and number of chains") .OpenBUGS(c("BugsRobjects.SetVariable", "BugsRobjects.SetValues"), c("CharArray","RealArray"), list(nodeLabel,as.double(values)))[[2]] invisible() }
.arg.filter <- function(new.args, FUN=NULL, ...) { dots <- list(...) ans <- c(dots, new.args[!names(new.args) %in% names(dots)]) if(!is.null(FUN)) { ans <- ans[names(ans) %in% names(formals(FUN))] } return(ans) }
"sokolova2021" "ecorelevance"
setMethod("getvcov", signature(object = "bild"), function (object) { cov<-object@covariance cnames <- rownames(cov) r1<-nrow(cov) c1<-ncol(cov) if(all(is.na(match(cnames, "omega"))) ) { cov } else if (!all(is.na(match(cnames, "omega")))) { cov.aux<-cov[1:(r1-1),1:(c1-1)] cov.aux } } )
sNorm <- function (N, b0, s) { return (rnorm(n = N, mean = b0, sd = s)) } sBinom <- function (N, p) { return (rbinom(n = N, size = 1, prob = p)) } sMulti <- function (N, q) { return (sample(x = 0:2, size = N, replace = TRUE, prob = c((1 - q)^2, 2 * q * (1 - q), q^2))) } cNorm <- function (N, parentData, b0, b1, s) { if (length(parentData) != length(b1)) { stop ('parentData and b1 must have the same number of elements') } mParents <- length(parentData) lmFormula <- vector(length = mParents + 1) lmFormula[[1]] <- '~ b0' for (e in 1:mParents) { lmFormula[[e + 1]] <- paste0('b1[[', e, ']] * parentData[[', e, ']]') } means <- eval(as.formula(paste(lmFormula, collapse = ' + '))[[2]]) return (rnorm(n = N, mean = means, sd = s)) } cBinom <- function (N, parentData, b0, b1) { if (length(parentData) != length(b1)) { stop ('parentData and b1 must have the same number of elements') } mParents <- length(parentData) lmFormula <- vector(length = mParents + 1) lmFormula[[1]] <- '~ b0' for (e in 1:mParents) { lmFormula[[e + 1]] <- paste0('b1[[', e, ']] * parentData[[', e, ']]') } linearModel <- eval(as.formula(paste(lmFormula, collapse = ' + '))[[2]]) probs <- 1 / (1 + exp(-linearModel)) return (rbinom(n = N, size = 1, prob = probs)) } cMulti <- function (N, parentData, b0, b1, q) { if (length(parentData) != length(b1)) { stop ('parentData and b1 must have the same number of elements') } mParents <- length(parentData) lmFormula <- vector(length = mParents + 1) lmFormula[[1]] <- '~ b0' for (e in 1:mParents) { lmFormula[[e + 1]] <- paste0('b1[[', e, ']] * parentData[[', e, ']]') } means <- eval(as.formula(paste(lmFormula, collapse = ' + '))[[2]]) normalRV <- rnorm(n = N, mean = means, sd = 1) lowerCutoff <- qnorm(q^2, 0, 1) upperCutoff <- qnorm((1 - q)^2, 0, 1, lower.tail = FALSE) U <- rep(NA, length = N) U[normalRV < lowerCutoff] <- 0 U[normalRV > upperCutoff] <- 2 U[is.na(U)] <- 1 return (U) }
PAR <- function(std = "Plant") { if (std %in% c("Plant", "McCree")) { new_waveband(400, 700, wb.name = "PAR") } else { warning("'std' = '", std, "' not implemented.") NA } }
writeTIF<- function (img, file, bps = attributes(img)$bits.per.sample, twod=FALSE, reduce=TRUE, attr = attributes(img), compression="none") { if (is.null(bps)) if (!is.null(attr$bits.per.sample)) bps <- attr$bits.per.sample if (is.null(bps)) bps <- 16L imglist <- list() if (length(dim(img)) == 3) { Z <- dim(img)[3] if(twod) for (i in 1:Z) imglist[[i]] <- img[, , i]/max(1,max(img[, , i])) if(!twod) { maxi<-max(1,max(img)) for (i in 1:Z) imglist[[i]] <- img[, , i]/maxi } } if (length(dim(img)) == 4) { C <- dim(img)[3] Z <- dim(img)[4] k <- 0 maxi <- 1:C for (j in 1:C) { maxi[j] <- max(1,max(img[, , j, ], na.rm = TRUE)) img[,,j,]<-img[,,j,]/maxi[j] } for (i in 1:Z){ k <- k + 1 imglist[[k]] <- img[, , , i] } } Z <- length(imglist) ati <- attributes(img) ati$dim <- dim(imglist[[1]]) for (i in 1:Z) attributes(imglist[[i]]) <- ati writeTIFF(what = imglist, where = file, reduce = reduce, bits.per.sample = bps, compression=compression) }
egyptian_complete <- function(a, b, show = TRUE) { stopifnot(isNatural(a), isNatural(b), length(a) == 1, length(b) == 1) if (a >= b) stop("Rational number 'a/b' must be smaller than 1.") g <- GCD(a, b) if (g > 1) { warning("Arguments 'a', 'b' have a common divisor > 1.") a <- a/g; b <- b/g } a0 <- a; b0 <- b noex <- 0 lb1 <- max(1 + div(b, a), 1) ub1 <- div(3*b, a) for (x1 in lb1:ub1) { a1 <- a*x1 - b; b1 <- b*x1 g <- GCD(a1, b1) a1 <- a1/g; b1 <- b1/g if (b1 == x1) next if (a1 == 1) { if (show) cat("1/", x1, " + ", "1/", b1, "\n", sep = "") noex <- noex + 1 } else { lb2 <- max(1 + div(b1, a1), x1) ub2 <- div(2*b1, a1) for (x2 in lb2:ub2) { a2 <- a1*x2 - b1; b2 <- b1*x2 g <- GCD(a2, b2) a2 <- a2/g; b2 <- b2/g if (x1 == x2 || b2 == x2) next if (a2 == 1) { if (show) cat("1/", x1, " + ", "1/", x2, " + ", "1/", b2, "\n", sep = "") noex <- noex + 1 } } } } invisible(noex) } egyptian_methods <- function(a, b) { stopifnot(isNatural(a), isNatural(b), length(a) == 1, length(b) == 1) if (a >= b) stop("Rational number 'a/b' must be smaller than 1.") g <- GCD(a, b) if (g > 1) { warning("Arguments 'a', 'b' have a common divisor > 1.") a <- a/g; b <- b/g } a0 <- a; b0 <- b print_eg <- function(a, b, f) { cat(a, "/", b, " = ", sep="") cat("1/", f[1], sep="") for (i in 2:length(f)) { cat(" + 1/", f[i], sep = "") } } if (a == 1) { f <- c(b+1, b*(b+1)) print_eg(a, b, f) cat(" (Egyptian fraction)\n") stop("Argument 'a' shall be an integer > 1.") } if (a == 2) { if (isPrime(b) && b < 12) { f <- c(b, b+1, b*(b+1)) print_eg(a, b, f) cat(" (Rhind Papyros)\n") } else if (isPrime(b)) { f <- b * c(1, 2, 3, 6) print_eg(a, b, f) cat(" (Rhind Papyros)\n") } else { fctrs <- primeFactors(b) if (length(fctrs) == 2 && all(isPrime(fctrs))) { f <- (fctrs[1] + 1)/2 * c(1, fctrs[1]) * fctrs[2] print_eg(a, b, f) cat(" (Rhind Papyros)\n") } } } res <- c() while (a > 1) { s <- div(b, a) r <- mod(b, a) res <- c(res, s+1) a <- a - r b <- b*(s+1) g <- GCD(a, b) if (g != 1) {a <- a/g; b <- b/g} } res <- c(res, b) print_eg(a0, b0, res) cat(" (Fibonacci-Sylvester)\n") a <- a0; b <- b0 res <- c() while (a > 1) { p <- modinv(a, b) res <- c(res, p*b) a <- (p*a - 1)/b b <- p g <- GCD(a, b) if (g != 1) {a <- a/g; b <- b/g} } res <- rev(c(res, b)) print_eg(a0, b0, res) cat(" (Golomb-Farey)\n") }
FilterAUC = R6Class("FilterAUC", inherit = Filter, public = list( initialize = function() { super$initialize( id = "auc", task_type = "classif", task_properties = "twoclass", feature_types = c("integer", "numeric"), packages = "mlr3measures", man = "mlr3filters::mlr_filters_auc" ) } ), private = list( .calculate = function(task, nfeat) { y = task$truth() == task$positive x = task$data(cols = task$feature_names) score = map_dbl(x, function(x) { keep = !is.na(x) auc(y[keep], x[keep]) }) abs(0.5 - score) } ) ) mlr_filters$add("auc", FilterAUC) auc = function(truth, prob) { n_pos = sum(truth) n_neg = length(truth) - n_pos if (n_pos == 0L || n_neg == 0L) { return(0.5) } r = rank(prob, ties.method = "average") (sum(r[truth]) - n_pos * (n_pos + 1L) / 2L) / (n_pos * n_neg) }
.onLoad <- function(libname, pkgname) { .jpackage(pkgname, lib.loc = libname) }
"boot.relimp.default.intern" <- function (object, x = NULL, ..., b = 1000, type = "lmg", rank = TRUE, diff = TRUE, rela = FALSE, always = NULL, groups = NULL, groupnames = NULL, fixed = FALSE, weights = NULL, design = NULL, WW = NULL, ynam=NULL, ngroups=NULL) { y <- object xcall <- x if (is.null(x) && ncol(y) == nrow(y)) stop("Bootstrapping cannot be based on a (square) covariance matrix.") hilf <- calc.relimp.default.intern(object,x=x,type=type,rank=rank,diff=diff, rela=rela,always=always,groups=groups,groupnames=groupnames, weights=weights,design=design,WW=WW,ynam=ynam,test=TRUE,ngroups=ngroups) groupdocu <- hilf@groupdocu alwaysnam <- hilf@alwaysnam namen <- hilf@namen daten <- hilf@daten daten <- as.data.frame(daten) y <- daten[,1] x <- daten[,-1] names <- colnames(daten) p <- ncol(daten)-1 wt <- hilf@wt nobs <- hilf@nobs n <- nobs always <- hilf@always if (length(groupdocu)>0) {groups <- groupdocu[[2]];groupnames <- groupdocu[[1]]} rm(hilf) if (!is.logical(fixed)) stop("fixed must be a logical") if (fixed & !(is.null(weights) & is.null(design))) stop("weights or a survey design cannot be applied together with fixed=TRUE.") if (is.null(names)) names <- c("y", paste("X",1:p,sep="")) alltype <- alltype() ausgabe <- new("relimplmboot") ausgabe@type <- alltype[which(alltype %in% type)] ausgabe@nobs <- nobs ausgabe@nboot <- b ausgabe@rank <- rank ausgabe@diff <- diff ausgabe@rela <- rela ausgabe@always <- always ausgabe@alwaysnam <- alwaysnam ausgabe@fixed <- fixed ausgabe@namen <- names ausgabe@call <- sys.call(1) if (!is.null(groups)) ausgabe@groupdocu <- groupdocu if (!fixed) { if (is.null(design)) booterg <- boot(cbind(wt,daten), calcrelimp.forboot, b, type = type, diff = diff, rank = rank, rela = rela, always = always, groups=groups, groupnames=groupnames, WW=WW, ngroups=ngroups) else { booterg <- boot(cbind(wt,daten), calcrelimp.forboot, 1, type = type, diff = diff, rank = rank, rela = rela, always = always, groups=groups, groupnames=groupnames, WW=WW, ngroups=ngroups) desrep <- as.svrepdesign(design, type="bootstrap", replicates=b) hilf <- withReplicates(desrep, function(wt, dat){calcrelimp.forsurvey(wt, dat[,colnames(daten)], b=b, type=type, rela=rela, diff=diff, rank=rank, groups=groups, groupnames=groupnames, WW=WW, ngroups=ngroups)}, return.replicates=TRUE) booterg$t <- hilf$replicates booterg$R <- b booterg$strata <- as.matrix(design$strata) ausgabe@vcov <- attr(hilf$theta,"var") attr(hilf$theta,"var") <- NULL booterg$t0 <- hilf$theta } booterg$data <- booterg$data[,-1] ausgabe@wt <- wt ausgabe@boot <- booterg } else { linmod <- lm(data.frame(daten),qr=FALSE,model=FALSE) e <- linmod$residuals fit <- linmod$fitted.values booterg <- boot(data.frame(x,fit=fit,e=e), calcrelimp.forboot.fixed, b, type = type, diff = diff, rank = rank, rela = rela, always = always, groups=groups, groupnames=groupnames, WW=WW, ngroups=ngroups) booterg$data <- daten slot(ausgabe,"boot") <- booterg } return(ausgabe) }
is_ngram <- function(x) { if(!is.character(x)) return(FALSE) sngram <- strsplit(x, "_")[[1]] if(!(length(sngram) %in% c(2, 3))) return(FALSE) pos_inf <- ifelse(length(sngram) == 3, TRUE, FALSE) if(pos_inf) if(is.na(suppressWarnings(as.numeric(sngram[[1]]))) || as.numeric(sngram[[1]]) < 1) return(FALSE) seq <- strsplit(sngram[1 + pos_inf], ".", fixed = TRUE)[[1]] dists <- strsplit(sngram[2 + pos_inf], ".", fixed = TRUE)[[1]] if(length(seq) > 1) { if(length(dists) != (length(seq) - 1)) return(FALSE) } else { if(length(dists) != 1) return(FALSE) } TRUE }
mscorev <- function (ymat, inner = 0, trim = 2.5, qu = 0.5, TonT = FALSE) { ymat <- as.matrix(ymat) n <- dim(ymat)[1] m <- dim(ymat)[2] out <- matrix(NA, n, m) one <- rep(1, m - 1) difs <- array(NA, c(n, m, m - 1)) for (j in 1:m) { difs[, j, ] <- outer(as.vector(unlist(ymat[, j])), one, "*") - ymat[, -j] } ms <- as.vector(difs) if ((trim < Inf) | (inner > 0)) { hqu <- as.numeric(quantile(abs(ms), qu, na.rm = TRUE)) if (hqu > 0) { ms <- ms/hqu if ((trim < Inf) & (inner < trim)) { ab <- pmin(1, pmax(0, (abs(ms) - inner))/(trim - inner)) } else if ((trim < Inf) & (inner == trim)) { ab <- 1 * (abs(ms) > inner) } else { ab <- pmax(0, abs(ms) - inner) } ms <- sign(ms) * ab } else { warning("Error: Scale factor is zero. Increase lambda.") } } ms <- array(ms, c(n, m, m - 1)) ms <- apply(ms, c(1, 2), sum, na.rm = TRUE) ms[is.na(ymat)] <- NA colnames(ms) <- colnames(ymat) ni <- apply(!is.na(ymat), 1, sum) use <- (ni >= 2) & (!is.na(ms[, 1])) ms <- ms[use, ] ni <- ni[use] if (TonT) { ms <- (ms/outer(ni - 1, rep(1, m), "*"))/(dim(ms)[1]) } else { ms <- ms/outer(ni, rep(1, m), "*") } ms }
dr_shell <- function (dates, name = "", N = 10000, CI = 0.95, make.plot = FALSE) { if (is.vector(dates) != TRUE || length(dates) != 3) stop("Check dates supplied to the function") else if (typeof(N) != "double" || length(N) != 1 || N <= 0 || N%%1 != 0) stop("N must be a positive integer") else if (typeof(CI) != "double" || length(CI) != 1 || CI <= 0 || CI >= 1) stop ("CI must be a number between 0 and 1") else { me <- new.env() data(marine13, package = "Bchron", envir = me) prm1 <- me$marine13[which.min(abs(me$marine13[, 1] - (1950 - dates[1]))), 2] prm2 <- me$marine13[which.min(abs(me$marine13[, 1] - (1950 - dates[1]))), 3] model <- rnorm(N, prm1, prm2) c14 <- rnorm(N, dates[2], dates[3]) delta <- c14 - model out_list <- list(mean = mean(delta), median = median (delta), sd = sd(delta), quantile = quantile(delta, c((1 - CI)/2, 1 - (1 - CI)/2)), p.value = ks.test(delta,"pnorm", mean(delta), sd(delta))$p.value, delta = delta) if (make.plot == FALSE) return(out_list) else { hist(delta, freq = FALSE, ylim = c(0, max(c(density(delta)$y, dnorm(seq(min(delta), max(delta), length = 500), mean(delta), sd(delta))))), main = name, xlab = "Delta R, years") lines(seq(min(delta), max(delta), length = 500), dnorm(seq(min(delta), max(delta), length = 500), mean(delta), sd(delta)), col = "red") return(out_list) } } }
collar.bls=function(S,K1,K2,r,t,sd,plot=FALSE){ all=list(S,K1,K2,r,t,sd,plot) if(any(lapply(all,is.null)==T)) stop("Cannot input any variables as NULL.") if(any(lapply(all,length) != 1)==T) stop("All variables must be of length 1.") num2=list(S,K1,K2,r,t,sd) na.num2=num2[which(lapply(num2,is.na)==F)] if(any(lapply(na.num2,is.numeric)==F)) stop("S K1, K2, r, t, and sd must be numeric.") if(any(lapply(all,is.na)==T)) stop("Cannot input any variables as NA.") NA.Neg=array(c(r,S,K1,K2,t,sd)) if(any(NA.Neg<=0)) stop("All numeric variables must be positive.") if(any(NA.Neg==Inf)) stop("Cannot input any variables as infinite.") stopifnot(is.logical(plot)) if(K1>=K2) stop("K1 must be less than K2.") if(K2<=S | K1>=S) stop("K2 must be > S and K1 must be < S") d1 = (log(S/K1)+(r+sd^2/2)*t)/(sd*sqrt(t)) d2 = d1 - sd * sqrt(t) putP = K1*exp(-r*t) * pnorm(-d2) - S*pnorm(-d1) d1 = (log(S/K2)+(r+sd^2/2)*t)/(sd*sqrt(t)) d2 = d1 - sd * sqrt(t) callP = S*pnorm(d1) - K2*exp(-r*t)*pnorm(d2) stock=unique(round(seq(0,K1,length.out=6))) stock=c(stock,round(seq(K1,K2,length.out=4))) stock=c(stock,round(seq(K2,K2+K1,length.out=6))) stock=unique(stock) stock2=unique(round(c(seq(0,K1,length.out=6),seq(K2,K2+K1,length.out=6)))) payoff=rep(0,length(stock)) profit=rep(0,length(stock)) for(i in 1:length(stock)){ if(stock[i]<=K1) payoff[i]=K1-stock[i] if(stock[i]>=K2) payoff[i]=K2-stock[i] if(stock[i]<K2 & stock[i]>K1) payoff[i]=0 profit[i]=payoff[i]+(callP-putP)*exp(r*t) } if(plot==T){ plot(stock,profit,type="l",xlab="Stock Price",main="Collar\nPayoff and Profit",ylab="$", ylim=c(min(profit,payoff),max(profit,payoff)),xaxt='n',yaxt='n',col="steelblue",lwd=2) lines(stock,payoff,lty=2,lwd=2,col="firebrick") abline(h=0,lty=2,col="gray") y=round(seq(min(payoff,profit),max(payoff,profit),length.out=8)) axis(2,at=y,labels=y,las=2) axis(1,at=if(K2-K1<7) stock2[-which(stock2==K2)] else stock2,las=2) legend("bottomleft",c("Profit","Payoff"),lty=c(1,2),col=c("steelblue","firebrick"),lwd=c(2,2)) } out1=data.frame(stock,payoff,profit) names(out1)=c("Stock Price","Payoff","Profit") out2=matrix(c(putP,callP,putP-callP),nrow=3) rownames(out2)=c("Put (K1)","Call (K2)","Net Cost") colnames(out2)=c("Premiums") out=list(Payoff=out1,Premiums=out2) return(out) }
Chacko_test_1xc <- function(n, printresults=TRUE) { c0 <- length(n) N <- sum(n) nt <- n t0 <- rep(1, c0) m <- c0 notordered <- 1 while (notordered == 1) { for (i in 1:(m - 1)) { if (nt[i] > nt[i + 1]) { nt[i] <- (nt[i] + nt[i + 1]) / 2 t0[i] <- t0[i] + 1 m <- m - 1 nt[(i + 1):m] <- nt[(i + 2):(m + 1)] break } } if (i == m - 1) { notordered = 0 } } T0 <- 0 for (i in 1:m) { T0 <- T0 + t0[i] * ((nt[i] - N / c0) ^ 2) } T0 <- T0 * c0 / N df <- m - 1 P <- 1 - pchisq(T0, df) if (printresults) { print( sprintf( 'The Chacko test: P = %7.5f, T = %5.3f (df = %i)', P, T0, df ) , quote=FALSE ) } res <- data.frame(P=P, T=T0, df=df) invisible(res) }
rapport.read <- function(fp, ...) { if (missing(fp)) stop('Template file pointer not provided!') stopifnot(is.character(fp)) l <- length(fp) if (l == 1) { if (grepl('^(ftp|http(s)?)://.+$', fp)) { if (download.file(fp, tmp.fp <- tempfile(), method = 'wget') != 0) stop('Remote template file not found!') file <- tmp.fp } else { if (!grepl('.+\\.rapport$', fp, ignore.case = TRUE)) fp <- c(fp, sprintf('%s.rapport', fp)) fp <- c(fp, unlist(lapply(fp, function(file) file.path(getOption('rapport.paths'), file))), system.file('templates', fp, package = 'rapport')) fp <- fp[file.exists(fp)] if (length(fp) == 0) stop('Template file not found!') if (length(fp) > 1) { fp <- fp[1] warning(sprintf('Multiple templates found with given name, using: %s', fp)) } } txt <- readLines(fp, warn = FALSE, encoding = 'UTF-8') } else if (l > 1) { txt <- fp } else { stop('Template file pointer error :O') } check.tpl(txt, ...) return(txt) } tpl.find <- rapport.read rapport.tangle <- function(fp, file = "", show.inline.chunks = FALSE) { b <- rapport.body(rapport.read(fp)) re.block.open <- "^<%=?$" re.block.close <- "^%>$" re.inline.open <- "<%=?" re.inline.close <- "%>" ind.block.open <- grep(re.block.open, b) ind.block.close <- grep(re.block.close, b) ind.inline.open <- grep(re.inline.open, b) ind.inline.close <- grep(re.inline.close, b) if (show.inline.chunks) { if (length(ind.inline.open) != length(ind.inline.close)) stop("unmatched chunk tag(s)") } else { if (length(ind.block.open) != length(ind.block.close)) stop("unmatched block chunk tag(s)") } block.ind <- mapply(seq, from = ind.block.open, to = ind.block.close) if (show.inline.chunks) chunk.ind <- mapply(seq, from = ind.inline.open, to = ind.inline.close) else chunk.ind <- block.ind chunk.ind <- lapply(chunk.ind, function(x) { attr(x, "chunk.type") <- "block" x }) if (show.inline.chunks) { chunk.ind[!chunk.ind %in% block.ind] <- lapply(chunk.ind[!chunk.ind %in% block.ind], function(x) { attr(x, "chunk.type") <- "inline" x }) } out <- c() res <- lapply(chunk.ind, function(x) { cc <- b[x] ct <- attr(x, "chunk.type") if (ct == "block") { cc <- trim.space(paste0(cc[2:(length(cc) - 1)], collapse = "\n")) out <<- c(out, " out <<- c(out, " out <<- c(out, " out <<- c(out, "", cc, "") } else { cc <- trim.space(vgsub("(<%=?|%>)", "", str_extract_all(cc, "<%=?[^%>]+%>")[[1]])) sapply(cc, function(x) { out <<- c(out, " out <<- c(out, " out <<- c(out, " out <<- c(out, "", x, "") }) } attr(cc, "chunk.type") <- ct cc }) out <- paste0(out, collapse = "\n") cat(out, file = file) invisible(res) } tpl.tangle <- rapport.tangle rapport.header <- function(fp, open.tag = get.tags('header.open'), close.tag = get.tags('header.close'), ...) { txt <- rapport.read(fp) hopen.ind <- grep(open.tag, txt, ...)[1] hclose.ind <- grep(close.tag, txt, ...)[1] hsection <- txt[(hopen.ind + 1):(hclose.ind - 1)] return(hsection) } tpl.header <- rapport.header rapport.body <- function(fp, htag = get.tags('header.close'), ...) { txt <- rapport.read(fp, ...) h.end <- grep(htag, txt, ...) b <- txt[(h.end + 1):length(txt)] structure(b, class = 'rapport.body') } tpl.body <- rapport.body rapport.info <- function(fp, meta = TRUE, inputs = TRUE) { txt <- rapport.read(fp) if (!meta & !inputs) stop('Either "meta" or "inputs" should be set to TRUE') res <- list() if (meta) res$meta <- rapport.meta(txt) if (inputs) res$inputs <- rapport.inputs(txt) class(res) <- 'rapport.info' return(res) } tpl.info <- rapport.info rapport.meta <- function(fp, fields = NULL, use.header = FALSE, trim.white = TRUE) { header <- rapport.read(fp) if (!use.header) header <- rapport.header(header) h <- tryCatch({ y <- yaml.load( string = paste0(header, collapse = "\n"), handlers = list( 'bool if (grepl('^(y|yes|true|on)$', x, ignore.case = TRUE)) x else TRUE }, 'bool if (grepl('^(n|no|false|off)$', x, ignore.case = TRUE)) x else FALSE }) ) y$meta }, error = function(e) { if (isTRUE(trim.white)) header <- trim.space(header) fld <- list( list(title = 'Title' , regex = '.+', field.length = 500), list(title = 'Author' , regex = '.+', field.length = 100), list(title = 'Description' , regex = '.+', short = 'desc'), list(title = 'Email' , regex = '[[:alnum:]\\._%\\+-]+@[[:alnum:]\\.-]+\\.[[:alpha:]]{2,4}', mandatory = FALSE, short = 'email'), list(title = 'Packages' , regex = '[[:alnum:]\\.]+((, ?[[:alnum:]+\\.]+)+)?', mandatory = FALSE), list(title = 'Example' , regex = '.+', mandatory = FALSE) ) if (!is.null(fields)) { fld.title <- sapply(fld, function(x) x$title) fields.title <- sapply(fields, function(x) x$title) fld <- c(fld, fields) if (any(fld %in% fields.title)) { stopf("Duplicate metadata fields: %s", p(intersect(fld.title, fields.title), "\"")) } } inputs.ind <- grep("^(.+\\|){3}.+$", header) spaces.ind <- grep("^([:space:]+|)$", header) rm.ind <- c(inputs.ind, spaces.ind) if (length(rm.ind) > 0) header <- header[-rm.ind] h <- sapply(fld, function(x) { m <- grep(sprintf("^%s:", x$title), header) x$x <- header[m] do.call(extract.meta, x) }) if (!is.null(h$packages)) if (is.string(h$packages)) h$packages <- strsplit(h$packages, " *, *")[[1]] if (!is.null(h$example)) { ind.start <- grep('^Example:', header) ind <- adj.rle(grep("^[\t ]*rapport\\(.+\\)([\t ]* ind <- ind[!ind %in% ind.start] h$example <- c(h$example, header[ind]) } h <- append(h, list(description = h$desc), after = 2) h$desc <- NULL h }) if (!is.null(h$dataRequired)) { h$dataRequired <- NULL warning('"dataRequired" field is deprecated. You should remove it from the template.') } meta.fields <- c('title', 'description', 'author', 'email', 'packages', 'example') meta.required <- c('title', 'description', 'author') meta.names <- names(h) if (!all(meta.required %in% meta.names)) stopf('Required metadata fields missing: %s', p(meta.required, wrap = "\"")) unsupported.meta <- meta.names[!meta.names %in% meta.fields] if (length(unsupported.meta)) warningf('Unsupported metadata field(s) found: %s', p(unsupported.meta, wrap = "\"")) structure(h, class = 'rapport.meta') } tpl.meta <- rapport.meta rapport.inputs <- function(fp, use.header = FALSE) { header <- rapport.read(fp) if (!use.header) header <- rapport.header(header) inputs <- tryCatch( yaml.load( string = paste0(header, collapse = "\n"), handlers = list( 'bool if (grepl('^(y|yes|true|on)$', x, ignore.case = TRUE)) x else TRUE }, 'bool if (grepl('^(n|no|false|off)$', x, ignore.case = TRUE)) x else FALSE }) ), error = function(e) e) if (inherits(inputs, 'error')) { inputs.ind <- grep("^(.+\\|){3}.+$", header) if (length(inputs.ind) == 0) return (structure(NULL, class = 'rapport.inputs')) inputs.raw <- lapply(strsplit(header[inputs.ind], '|', fixed = TRUE), function(x) trim.space(x)) if (!all(sapply(inputs.raw, length) == 4)) stop('input definition error: missing fields') inputs <- lapply(inputs.raw, function(x) { i.name <- guess.input.name(x[1]) i.label <- guess.input.label(x[3]) i.desc <- guess.input.description(x[4]) i.type <- guess.old.input.type(x[2]) if (is.empty(i.label)) warningf('missing label for input "%s"', i.name) if (is.empty(i.desc)) warningf('missing description for input "%s"', i.name) c( name = i.name, label = i.label, description = i.desc, i.type ) }) warning("Oh, no! This template has outdated input definition! You can update it by running `rapport.renew`.") } else { inputs <- lapply(inputs$inputs, guess.input) } nms <- sapply(inputs, function(x) x$name) dupes <- duplicated(nms) if (any(dupes)) stopf('template contains duplicate input names: %s', p(nms[dupes], wrap = "\"")) structure(inputs, class = 'rapport.inputs') } tpl.inputs <- rapport.inputs rapport.example <- function(fp, index = NULL, env = .GlobalEnv) { examples <- rapport.meta(fp)$example n.examples <- 1:length(examples) examples.len <- length(examples) if (is.null(examples)) { message('Provided template does not have any examples.') invisible(NULL) } if (examples.len > 1) { if (is.null(index)) { opts <- c(n.examples) catn('Enter example ID from the list below:') catn(sprintf('\n(%s)\t%s', opts, c(examples))) catn('(a)\tRun all examples') catn() i <- readline('Template ID> ') index <- unique(strsplit(gsub(' +', '', i), ',')[[1]]) } } else { index <- 1 } if (length(index) == 0 || tolower(index) == 'q') return(invisible(NULL)) if (length(index) == 1 && tolower(index) %in% c('a', 'all')) index <- n.examples old.index <- index if (!any(index %in% n.examples)) stopf('Invalid template ID found in: ', paste(setdiff(index, n.examples), collapse = ', ')) suppressWarnings(index <- as.integer(index)) if (any(is.na(index))) stopf('Invalid template ID found in: "%s"', paste(old.index, collapse = ', ')) if (length(index) > 1) return(lapply(examples[index], function(x) eval(parse(text = x), envir = env))) else eval(parse(text = examples[index]), envir = env) } tpl.example <- rapport.example rapport.rerun <- function(tpl) { if (!inherits(tpl, 'rapport')) stop("You haven't provided a rapport template") cl <- tpl$call dt <- tpl$data if (is.null(cl) || is.null(dt)) stop("Provided rapport object doesn't have included call and/or data, therefore not reproducible") cl <- as.list(cl) cl$data <- dt do.call(rapport, cl) } tpl.rerun <- rapport.rerun rapport <- function(fp, data = NULL, ..., env = .GlobalEnv, reproducible = FALSE, header.levels.offset = 0, graph.output = evalsOptions('graph.output'), file.name = getOption('rapport.file.name'), file.path = getOption('rapport.file.path'), graph.width = evalsOptions('width'), graph.height = evalsOptions('height'), graph.res = evalsOptions('res'), graph.hi.res = evalsOptions('hi.res'), graph.replay = evalsOptions('rapport.graph.recordplot')) { timer <- proc.time() txt <- rapport.read(fp) h <- rapport.info(txt) meta <- h$meta inputs <- h$inputs inputs.names <- sapply(inputs, function(x) x$name) b <- rapport.body(txt) e <- new.env(parent = env) e$Pandoc.brew <- Pandoc.brew i <- list(...) i.names <- names(i) data.required <- any(sapply(inputs, function(x) !x$standalone)) || (!is.null(data) && !identical(data, '')) oldpkgs <- .packages() pkgs <- meta$packages file.path <- gsub('\\', '/', file.path, fixed = TRUE) if (!is.null(pkgs)) { pk <- suppressWarnings(suppressMessages(sapply(pkgs, require, character.only = TRUE, quietly = TRUE))) on.exit(sapply(setdiff(.packages(), oldpkgs), function(pkg) try( detach(paste('package', pkg, sep = ':'), character.only = TRUE), silent = TRUE))) nopkg <- pk == FALSE if (any(nopkg)) stop(sprintf('Following packages are required by the template, but were not loaded: %s', p(names(pk[nopkg]), wrap = '"')), call. = NULL) } assign('rapport.inputs', inputs, envir = e) assign('rapport.template', meta, envir = e) if (length(inputs) == 0) { if (data.required) { if (is.null(data)) stop('"data" argument is required by the template') else { assign('rp.data', data, envir = e) assign('rapport.data', data, envir = e) } } } else { input.required <- sapply(inputs, function(x) structure(x$required, .Names = x$name)) input.names <- names(input.required) if (!all(input.names[input.required] %in% names(i)) && any(sapply(inputs, function(x) is.empty(x$value) & !identical(x$value, FALSE) & is.empty(i[[x$name]]) & x$required))) { stopf("missing required input for %s", p(setdiff(input.names[input.required], names(i)), '"')) } if (data.required) { if(is.null(data)) stop('"data" not provided, but is required') if (!inherits(data, c('data.frame', 'rp.data'))) stop('"data" should be a "data.frame" object') data.names <- names(data) assign('rp.data', data, envir = e) assign('rapport.data', data, envir = e) } lapply(inputs, function(x) { input.name <- x$name input.class <- x$class input.length <- x$length input.value <- x$value user.input <- i[[input.name]] if (isTRUE(x$matchable)) { v <- if (is.null(user.input)) x$value else as.character(user.input) matchable.err.msg <- sprintf('provided value `%s` not found in option list for matchable input "%s"', p(v, wrap = '"'), input.name) if (x$allow_multiple) { v.ind <- v %in% x$options if (!any(v.ind)) stop(matchable.err.msg) val <- v[v.ind] } else { if (!all(as.numeric(table(v)) == 1)) warning('multiple occurances found in provided value') val <- x$options[x$options %in% v] if (!length(val)) stop(matchable.err.msg) } if (input.class == 'factor') val <- as.factor(val) } else { if (x$standalone) { val <- if (is.null(user.input)) unlist(input.value) else user.input val.length <- length(val) } else { if (!all(user.input %in% data.names)) stopf('provided data.frame does not contain column(s) named: %s', p(setdiff(user.input, data.names), '"')) val <- e$rapport.data[user.input] if (!length(val)) val <- NULL val.length <- length(val) } } check.input.value.class(val, input.class, input.name) check.input.value(x, val, 'length') if (!is.null(user.input)) { if (!x$standalone && length(user.input) == 1) val <- val[, 1] if (!is.null(input.class)) switch(input.class, character = { check.input.value(x, val, 'nchar') if (!is.null(x$regexp)) { if (!all(grepl(x$regexp, val))) stopf('%s input "%s" value is not matched with provided regular expression "%s"', input.name, val, x$regexp) } }, factor = { check.input.value(x, val, 'nlevels') }, integer = , numeric = { if (!is.null(x$limit)) { if (is.variable(val)) check.input.value(x, val, 'limit') else { if (!all(sapply(val, function(i) i > x$limit$min)) && all(sapply(val, function(i) i < x$limit$max))) stopf('all values in %s input "%s" should fall between %s and %s', x$class, x$name, x$limit$min, x$limit$max) } } }) if (is.recursive(val)) { for (t in names(val)) { if (label(val[, t]) == 't') val[, t] <- structure(val[, t], label = t, name = t) else val[, t] <- structure(val[, t], name = t) } } else { if (label(val) == 'val') val <- structure(val, label = user.input, name = user.input) else val <- structure(val, name = user.input) } } input.exists <- (!input.name %in% i.names && !x$required && x$standalone && length(val)) || input.name %in% i.names || !x$standalone || length(val) if (input.exists) { assign(input.name, val, envir = e) assign(sprintf('%s.iname', input.name), input.name, envir = e) assign(sprintf('%s.ilen', input.name), length(user.input), envir = e) assign(sprintf('%s.ilabel', input.name), x$label, envir = e) assign(sprintf('%s.idesc', input.name), x$description, envir = e) assign(sprintf('%s.name', input.name), user.input, envir = e) assign(sprintf('%s.len', input.name), length(val), envir = e) } if (is.data.frame(val)) assign(sprintf('%s.label', input.name), sapply(val, label), envir = e) else if (is.atomic(val)) assign(sprintf('%s.label', input.name), label(val), envir = e) else stopf('"%s" is not a "data.frame" or an atomic vector', input.name) }) } if (grepl('%T', file.name)) file.name <- gsub('%T', gsub('\\\\|/|:|\\.', '-', fp), file.name, fixed = TRUE) file.name <- gsub('--', '-', file.name, fixed = TRUE) if (grepl('%N', file.name)) { if (length(strsplit(sprintf('placeholder%splaceholder', file.name), '%N')[[1]]) > 2) stop('File name contains more then 1 "%N"!') similar.files <- list.files(file.path(file.path, 'plots'), pattern = sprintf('^%s\\.(jpeg|tiff|png|svg|bmp)$', gsub('%t', '[a-z0-9]*', gsub('%N|%n|%i', '[[:digit:]]*', file.name)))) if (length(similar.files) > 0) { similar.files <- sub('\\.(jpeg|tiff|png|svg|bmp)$', '', similar.files) rep <- gsub('%t|%n|%i', '[a-z0-9]*', strsplit(basename(file.name), '%N')[[1]]) `%N` <- max(as.numeric(gsub(paste(rep, collapse = '|'), '', similar.files))) + 1 } else `%N` <- 1 file.name <- gsub('%N', `%N`, file.name, fixed = TRUE) } opts.bak <- options() wd.bak <- getwd() setwd(file.path) evalsOptions('graph.name', file.name) assign('.rapport.body', paste(b, collapse = '\n'), envir = e) assign('.graph.name', file.name, envir = e) assign('.graph.dir', evalsOptions('graph.dir'), envir = e) assign('.graph.hi.res', graph.hi.res, envir = e) if (grepl("w|W", .Platform$OS.type)) assign('.tmpout', 'NUL', envir = e) else assign('.tmpout', '/dev/null', envir = e) report <- tryCatch(eval(parse(text = 'Pandoc.brew(text = .rapport.body, graph.name = .graph.name, graph.dir = .graph.dir, graph.hi.res = .graph.hi.res, output = .tmpout)'), envir = e), error = function(e) e) options(opts.bak) setwd(wd.bak) if (inherits(report, 'error')) stop(report$message) report <- unlist(lapply(report, function(x) { robj <- x$robject rout <- robj$result xtype <- x$type if (xtype == 'block') { if (any(robj$type == 'rapport')) return(rout$report) if (all(is.list(rout))) if (all(sapply(rout, class) == 'rapport')) return(unlist(lapply(rout, function(x) x$report), recursive = FALSE)) } return(list(x)) }), recursive = FALSE) report <- lapply(report, function(x) { if (x$type == "heading") { x$level <- x$level + header.levels.offset return(x) } else return(x) }) res <- list( meta = meta, inputs = inputs, report = report, call = match.call(), time = as.numeric(proc.time() - timer)[3], file.name = file.path(file.path, file.name) ) if (isTRUE(reproducible)) { res$data <- data } class(res) <- 'rapport' return(res) }
NULL aes <- function(x, y, ...) { exprs <- enquos(x = x, y = y, ..., .ignore_empty = "all") aes <- new_aes(exprs, env = parent.frame()) rename_aes(aes) } new_aesthetic <- function(x, env = globalenv()) { if (is_quosure(x)) { if (!quo_is_symbolic(x)) { x <- quo_get_expr(x) } return(x) } if (is_symbolic(x)) { x <- new_quosure(x, env = env) return(x) } x } new_aes <- function(x, env = globalenv()) { if (!is.list(x)) { abort("`x` must be a list") } x <- lapply(x, new_aesthetic, env = env) structure(x, class = "uneval") } print.uneval <- function(x, ...) { cat("Aesthetic mapping: \n") if (length(x) == 0) { cat("<empty>\n") } else { values <- vapply(x, quo_label, character(1)) bullets <- paste0("* ", format(paste0("`", names(x), "`")), " -> ", values, "\n") cat(bullets, sep = "") } invisible(x) } "[.uneval" <- function(x, i, ...) { new_aes(NextMethod()) } "[[<-.uneval" <- function(x, i, value) { new_aes(NextMethod()) } "$<-.uneval" <- function(x, i, value) { x <- unclass(x) x[[i]] <- value new_aes(x) } "[<-.uneval" <- function(x, i, value) { new_aes(NextMethod()) } standardise_aes_names <- function(x) { x <- sub("color", "colour", x, fixed = TRUE) revalue(x, ggplot_global$base_to_ggplot) } rename_aes <- function(x) { names(x) <- standardise_aes_names(names(x)) duplicated_names <- names(x)[duplicated(names(x))] if (length(duplicated_names) > 0L) { duplicated_message <- paste0(unique(duplicated_names), collapse = ", ") warn(glue("Duplicated aesthetics after name standardisation: {duplicated_message}")) } x } substitute_aes <- function(x) { x <- lapply(x, function(aesthetic) { as_quosure(standardise_aes_symbols(quo_get_expr(aesthetic)), env = environment(aesthetic)) }) class(x) <- "uneval" x } standardise_aes_symbols <- function(x) { if (is.symbol(x)) { name <- standardise_aes_names(as_string(x)) return(sym(name)) } if (!is.call(x)) { return(x) } x[-1] <- lapply(x[-1], standardise_aes_symbols) x } aes_to_scale <- function(var) { var[var %in% c("x", "xmin", "xmax", "xend", "xintercept")] <- "x" var[var %in% c("y", "ymin", "ymax", "yend", "yintercept")] <- "y" var } is_position_aes <- function(vars) { aes_to_scale(vars) %in% c("x", "y") } aes_ <- function(x, y, ...) { mapping <- list(...) if (!missing(x)) mapping["x"] <- list(x) if (!missing(y)) mapping["y"] <- list(y) caller_env <- parent.frame() as_quosure_aes <- function(x) { if (is.formula(x) && length(x) == 2) { as_quosure(x) } else if (is.call(x) || is.name(x) || is.atomic(x)) { new_aesthetic(x, caller_env) } else { abort("Aesthetic must be a one-sided formula, call, name, or constant.") } } mapping <- lapply(mapping, as_quosure_aes) structure(rename_aes(mapping), class = "uneval") } aes_string <- function(x, y, ...) { mapping <- list(...) if (!missing(x)) mapping["x"] <- list(x) if (!missing(y)) mapping["y"] <- list(y) caller_env <- parent.frame() mapping <- lapply(mapping, function(x) { if (is.character(x)) { x <- parse_expr(x) } new_aesthetic(x, env = caller_env) }) structure(rename_aes(mapping), class = "uneval") } aes_q <- aes_ aes_all <- function(vars) { names(vars) <- vars vars <- rename_aes(vars) structure( lapply(vars, function(x) new_quosure(as.name(x), emptyenv())), class = "uneval" ) } aes_auto <- function(data = NULL, ...) { warn("aes_auto() is deprecated") if (is.null(data)) { abort("aes_auto requires data.frame or names of data.frame.") } else if (is.data.frame(data)) { vars <- names(data) } else { vars <- data } vars <- intersect(ggplot_global$all_aesthetics, vars) names(vars) <- vars aes <- lapply(vars, function(x) parse(text = x)[[1]]) if (length(match.call()) > 2) { args <- as.list(match.call()[-1]) aes <- c(aes, args[names(args) != "data"]) } structure(rename_aes(aes), class = "uneval") } mapped_aesthetics <- function(x) { if (is.null(x)) { return(NULL) } is_null <- vapply(x, is.null, logical(1)) names(x)[!is_null] } warn_for_aes_extract_usage <- function(mapping, data) { lapply(mapping, function(quosure) { warn_for_aes_extract_usage_expr(get_expr(quosure), data, get_env(quosure)) }) } warn_for_aes_extract_usage_expr <- function(x, data, env = emptyenv()) { if (is_call(x, "[[") || is_call(x, "$")) { if (extract_target_is_likely_data(x, data, env)) { good_usage <- alternative_aes_extract_usage(x) warn(glue("Use of `{format(x)}` is discouraged. Use `{good_usage}` instead.")) } } else if (is.call(x)) { lapply(x, warn_for_aes_extract_usage_expr, data, env) } } alternative_aes_extract_usage <- function(x) { if (is_call(x, "[[")) { good_call <- call2("[[", quote(.data), x[[3]]) format(good_call) } else if (is_call(x, "$")) { as.character(x[[3]]) } else { abort(glue("Don't know how to get alternative usage for `{format(x)}`")) } } extract_target_is_likely_data <- function(x, data, env) { if (!is.name(x[[2]])) { return(FALSE) } tryCatch({ data_eval <- eval_tidy(x[[2]], data, env) identical(data_eval, data) }, error = function(err) FALSE) }
.BIN_AR_param <- list( support = 0.1, confidence = 0.8, maxlen = 3, sort_measure = "confidence", sort_decreasing = TRUE, apriori_control = list(), verbose = FALSE ) BIN_AR <- function(data, parameter = NULL) { p <- getParameters(.BIN_AR_param, parameter) p$apriori_control$verbose <- p$verbose data <- data@data rule_base <- suppressWarnings( apriori(data, parameter=list(support=p$support, confidence=p$confidence, minlen=2, maxlen=p$maxlen), control=p$apriori_control) ) if(p$sort_measure == "cxs") quality(rule_base) <- cbind(quality(rule_base), cxs = quality(rule_base)$confidence * quality(rule_base)$support) if(!p$sort_measure %in% names(quality(rule_base))) quality(rule_base) <- cbind(quality(rule_base), interestMeasure(rule_base, method = p$sort_measure, transactions = data)) rule_base <- sort(rule_base, by = p$sort_measure, decreasing=p$sort_decreasing) if(p$verbose) cat("\nRule base size:", length(rule_base), "rules.\n") if(length(rule_base)<1) warning("Rule base does not contain any rules. Decrease support and/or confidence!") model <- c(list( description = "AR: rule base", rule_base = rule_base ), p ) predict <- function(model, newdata, n=10, data=NULL, type = c("topNList", "ratings", "ratingMatrix"), ...) { type <- match.arg(type) if(is.numeric(newdata)) { if(is.null(data) || !is(data, "ratingMatrix")) stop("If newdata is a user id then data needes to be the training dataset.") newdata <- data[newdata,, drop=FALSE] } n <- as.integer(n) sort_measure <- model$sort_measure m <- is.subset(lhs(model$rule_base), newdata@data) reclist <- list() for(i in 1:nrow(newdata)) { recom <- head(unique(unlist( LIST(rhs(sort(model$rule_base[m[,i]], by=sort_measure)), decode=FALSE))), n) reclist[[i]] <- if(!is.null(recom)) recom else integer(0) } names(reclist) <- rownames(newdata) reclist <- new("topNList", items = reclist, itemLabels = colnames(newdata), n = n) if(type == "ratings" || type == "ratingMatrix") return(as(as(reclist, "matrix"), "realRatingMatrix")) return(reclist) } new("Recommender", method = "AR", dataType = "binaryRatingMatrix", ntrain = nrow(data), model = model, predict = predict) } recommenderRegistry$set_entry( method="AR", dataType = "binaryRatingMatrix", fun=BIN_AR, description="Recommender based on association rules.", parameters=.BIN_AR_param )
context("cluster sampling") for (limit in 1:10) { for (try in 1:10) { classes <- sample(1:limit, 100, replace = T) samp <- classes[sample_classes(classes, max(try, limit))] test_that("cluster sampling produces equal sampling", { expect_true(loosely_balanced(samp)) }) } } vec <- c(1, 2, rep(3, 97)) test_that("classes with one instance are sampled correctly", { samp <- vec[sample_classes(vec, 30)] expect_true(loosely_balanced(samp)) }) vec <- 1:10 test_that("case where classes must be dropped trims output", { samp <- vec[sample_classes(vec, 7)] expect_true(loosely_balanced(samp)) })
test_that("test game: constructor", { set.seed(1) g <- Game$new(19, 3, TRUE) df <- g$getPurseDF() true_df <- data.frame(Player = paste(rep("Player", 3), 0:2), Coins = rep(0, 3)) expect_equal(df, true_df) df <- g$getCamelDF() true_df <- data.frame(Color = c("Green", "White", "Yellow", "Orange", "Blue"), Space = c(1, 2, 2, 3, 1), Height = c(1, 1, 2, 1, 2)) expect_equal(df, true_df) expect_equal(g$getRanking(), c("Orange", "Yellow", "White", "Blue", "Green")) df <- g$getLegBetDF() true_df <- data.frame(Color = c("Green", "White", "Yellow", "Orange", "Blue"), Value = rep(5,5), nBets = rep(3, 5)) expect_equal(df, true_df) }) test_that("test game: takeTurnMove", { set.seed(1) g <- Game$new(19, 3, TRUE) g$takeTurnMove() df <- g$getPurseDF() true_df <- data.frame(Player = paste(rep("Player", 3), 0:2), Coins = c(1, 0, 0)) df <- g$getCamelDF() true_df <- data.frame(Color = c("Green", "White", "Yellow", "Orange", "Blue"), Space = c(1, 2, 2, 3, 4), Height = c(1, 1, 2, 1, 1)) expect_equal(df, true_df) }) test_that("test game: takeTurnLegBet", { set.seed(1) g <- Game$new(19, 3, TRUE) g$takeTurnLegBet("Blue") df <- g$getLegBetDF() true_df <- data.frame(Color = c("Green", "White", "Yellow", "Orange", "Blue"), Value = c(rep(5,4), 3), nBets = c(rep(3,4), 2)) expect_equal(df, true_df) }) test_that("test game: evaluateBets", { set.seed(1) g <- Game$new(19, 3, TRUE) g$takeTurnLegBet("Orange") g$takeTurnLegBet("Orange") expect_equal(g$getNMadeLegBets(), 2) g$evaluateLegBets() df <- g$getPurseDF() true_df <- data.frame(Player = paste(rep("Player", 3), 0:2), Coins = c(8, 0, 0)) expect_equal(df, true_df) }) test_that("test game: can play more than one leg", { g <- Game$new(19, 3, TRUE) g$takeTurnMove() g$takeTurnMove() g$takeTurnMove() g$takeTurnMove() g$takeTurnMove() g$takeTurnMove() expect_equal(TRUE, TRUE) }) test_that("test game: game ends", { x <- system.time({ for(i in 1:10){ g <- Game$new(19, 3, FALSE) while(!g$checkIsGameOver()){ g$takeTurnMove() g$getCamelDF() } } }) print(x) expect_equal(TRUE, TRUE) }) test_that("test game: place overall winner", { g <- Game$new(19, 3, TRUE) g$takeTurnPlaceOverallWinner("Blue") expect_equal(g$getNOverallWinnersPlaced(), 1) }) test_that("test game: place overall loser", { g <- Game$new(19, 3, TRUE) g$takeTurnPlaceOverallLoser("Blue") expect_equal(g$getNOverallLosersPlaced(), 1) }) test_that("test game: evaluate overall bets", { set.seed(1) g <- Game$new(19, 3, TRUE) g$takeTurnPlaceOverallWinner("Orange") g$takeTurnPlaceOverallWinner("Blue") g$takeTurnPlaceOverallLoser("Green") g$getRanking() g$evaluateOverallBets() true_df <- data.frame(Player = paste(rep("Player", 3), 0:2), Coins = c(8, -1, 8)) expect_equal(g$getPurseDF(), true_df) })
beran <- function(x, t, d, dataset, x0, h, local = TRUE, testimate = NULL, conflevel = 0L, cvbootpars = if (conflevel == 0 && !missing(h)) NULL else controlpars()) { dfr <- if (missing(dataset)) na.omit(data.frame(x, t, d)) else na.omit(dataset[, c(deparse(substitute(x)), deparse(substitute(t)), deparse(substitute(d)))]) names(dfr) <- c("x", "t", "d") dfr$x <- as.numeric(dfr$x) dfr$t <- as.numeric(dfr$t) dfr$d <- as.integer(dfr$d) nrow <- dim(dfr)[1] ordx0 <- order(x0) x0 <- as.numeric(x0[ordx0]) lx0 <- length(x0) if (missing(h)) { sm <- cvbootpars$hsmooth h <- if (sm > 1) berancv(x, t, d, dfr, x0, cvbootpars)$hsmooth else berancv(x, t, d, dfr, x0, cvbootpars)$h } else { if (local) { if (lx0 != length(h)) stop("When 'local = TRUE', 'x0' and 'h' must have the same length") h <- as.numeric(h[ordx0]) } else { h <- as.numeric(h) } } lh <- length(h) dfr <- dfr[order(dfr$t, 1 - dfr$d),] if (conflevel < 0 | conflevel > 1) stop("'conflevel' must be a number between 0 and 1") ltestimate <- length(testimate) if (!is.null(testimate)) { if (conflevel == 0) warning("When 'testimate' is not NULL don't use the survival estimates for plotting") else stop("For plotting confidence bands 'testimate' must be NULL") testimate <- as.numeric(testimate) } S <- .Call("berannp0", dfr$t, dfr$x, dfr$d, nrow, x0, lx0, h, lh, local, testimate, ltestimate, PACKAGE = "npcure") if (local) { names(S) <- paste("x", as.character(round(x0, 8)), sep = "") } else { names(S) <- paste("h", as.character(round(h, 8)), sep = "") for (i in 1:lh) { if (lx0 == 1) S[[i]] <- list(S[[i]]) names(S[[i]]) <- paste("x", as.character(round(x0, 8)), sep = "") } } if (conflevel > 0) { B <- cvbootpars$B fpilot <- cvbootpars$fpilot if (is.null(fpilot)) { pilot <- hpilot(dfr$x, dfr$x, cvbootpars$nnfrac) } else pilot <- do.call(fpilot, c(list(x0 = dfr$x), cvbootpars$dots)) probcurepilot <- as.numeric(probcure(x, t, d, dfr, dfr$x, pilot)$q) band <- .Call("berannp0confband", dfr$t, dfr$x, dfr$d, nrow, x0, lx0, h, lh, pilot, probcurepilot, 1 - (1 - conflevel)/2, B, S, local, PACKAGE = "npcure") if (local) { names(band) <- paste("x", as.character(round(x0, 8)), sep = "") for (i in 1:lx0) { names(band[[i]]) <- c("lower", "upper") } } else { names(band) <- paste("h", as.character(round(h, 8)), sep = "") for (i in 1:lh) { names(band[[i]]) <- paste("x", as.character(round(x0, 8)), sep = "") for (j in 1:lx0) { names(band[[i]][[j]]) <- c("lower", "upper") } } } structure(list(type = "survival", local = local, h = h, x0 = x0, testim = dfr$t, S = S, conf = band, conflevel = conflevel), class = "npcure") } else { structure(list(type = "survival", local = local, h = h, x0 = x0, testim = if (is.null(testimate)) dfr$t else testimate, S = S), class = "npcure") } }
library(e1071) duration = faithful$eruptions plot(density(duration)) e1071::skewness(duration) function
data('mtcars') mcor <-cor(mtcars) round(mcor,digits=2) library(xtable) print(xtable(mcor), type='html', comment=F) library(corrplot) corrplot(mcor) library(igraph) gd <-graph(c(1,2, 2,3, 2,4, 1,4, 5,5, 3,6)) plot(gd) gu <-graph(c(1,2, 2,3, 2,4, 1,4, 5,5, 3,6),directed=FALSE) plot(gu,vertex.label=NA)
partitionsNumber <- function(phylo, npart){ if (!is.rooted(phylo)) stop("The tree must be rooted !") if (is.binary(phylo)){ update.partitionsNumber <- update.partitionsNumber.bin } else { if (!requireNamespace("combinat", quietly = TRUE)) { stop("Pakage 'combinat' needed for function partitionsNumber to work on a non-binary tree. Please install it before running the function again.", call. = FALSE) } update.partitionsNumber <- update.partitionsNumber.gen } phy <- reorder(phylo,"postorder") ntaxa <- length(phy$tip.label) nbrCompatiblePartitions <- init.partitionsNumber(phy,npart) nbrCompatiblePartitions <- recursionUp(phy, nbrCompatiblePartitions, update.partitionsNumber) attr(nbrCompatiblePartitions, "ntaxa") <- ntaxa attr(nbrCompatiblePartitions, "npart") <- npart class(nbrCompatiblePartitions) <- "partitionsNumber" return(nbrCompatiblePartitions) } print.partitionsNumber <- function(x, ...){ cat(paste0("\nNumber of models with ", attr(x, "npart") - 1, " shifts: ", extract(x), ".\n\n")) } extract.partitionsNumber <- function(x, node = attr(x, "ntaxa") + 1, npart = attr(x, "npart"), marked = FALSE, ...){ if (marked) return(x[node, attr(x, "npart") + npart]) return(x[node,npart]) } init.partitionsNumber <- function(phy,npart){ ntaxa <- length(phy$tip.label) nbrCompatiblePartitions <- matrix(NA, nrow = 1 + nrow(phy$edge), ncol = 2*npart) nbrCompatiblePartitions[1:ntaxa, ] <- 0 nbrCompatiblePartitions[1:ntaxa, 1] <- rep(1,ntaxa) nbrCompatiblePartitions[1:ntaxa, npart + 1] <- rep(1,ntaxa) return(nbrCompatiblePartitions) } update.partitionsNumber.bin <- function(daughtersParams, ...){ npart <- dim(daughtersParams)[2]%/%2 if (npart == 1) return( c(1,1) ) nbrComp <- rep(NA, npart) nbrMarkedComp <- rep(NA, npart) nbrComp[1] <- 1; nbrMarkedComp[1] <- 1 left_nbrComp <- daughtersParams[1, 1:npart] right_nbrComp <- daughtersParams[2, 1:npart] left_nbrMarkedComp <- daughtersParams[1, (npart+1):(2*npart)] right_nbrMarkedComp <- daughtersParams[2, (npart+1):(2*npart)] for (k in 2:npart){ nbrComp[k] <- sum( left_nbrComp[1:(k-1)] * rev(right_nbrComp[1:(k-1)]) ) + sum( left_nbrMarkedComp[1:k] * rev(right_nbrMarkedComp[1:k]) ) nbrMarkedComp[k] <- sum( left_nbrComp[1:(k-1)] * rev(right_nbrMarkedComp[1:(k-1)]) ) + sum( right_nbrComp[1:(k-1)] * rev(left_nbrMarkedComp[1:(k-1)]) ) + sum( left_nbrMarkedComp[1:k] * rev(right_nbrMarkedComp[1:k]) ) } nbrAdm <- c(nbrComp, nbrMarkedComp) return(nbrAdm) } update.partitionsNumber.gen <- function(daughtersParams, ...){ npart <- dim(daughtersParams)[2]%/%2 if (npart == 1) return( c(1,1) ) nbrComp <- rep(NA, npart) nbrMarkedComp <- rep(NA, npart) nbrComp[1] <- 1; nbrMarkedComp[1] <- 1 N_daughters <- daughtersParams[, 1:npart] A_daughters <- daughtersParams[, (npart+1):(2*npart)] p <- dim(N_daughters)[1] for (K in 2:npart){ N <- N_daughters[,1:K] A <- A_daughters[,1:K] nbrComp[K] <- sum.simplex(N, K, p) + sum.partitions(A, N, K, p, 2) nbrMarkedComp[K] <- sum.partitions(A, N, K, p, 1) } nbrAdm <- c(nbrComp, nbrMarkedComp) return(nbrAdm) } prod.index <- function(X,Id){ if (0 %in% Id) return(0) return(prod(diag(X[,Id]))) } sum.simplex <- function (NN, K, p) { return(sum(combinat::xsimplex(p, K, fun = prod.index, simplify = TRUE, X = NN))) } sum.prod.comb <- function(I, A, N, K, p){ KK <- K + length(I) - 1 AN <- matrix(NA, nrow = p, ncol = K) AN[I, ] <- A[I, ] AN[-I, ] <- N[-I, ] return(sum.simplex(AN, KK, p)) } sum.partitions.cardFixed <- function(A, N, K, p, cardI){ return(sum(combinat::combn(p, cardI, fun = sum.prod.comb, simplify = TRUE, A = A, N = N, K = K, p = p))) } sum.partitions <- function(A, N, K, p, m) { return(sum(sapply(m:p, function(x) sum.partitions.cardFixed(A, N, K, p, x)))) } complexity_break_point <- function(n){ return(floor((10 * n - 13 - sqrt(20 * n^2 - 20 * n + 9)) / 10) + 1) }
PlotDistribution <- function(PhyloExpressionSet, legendName = "PS", as.ratio = FALSE, use.only.map = FALSE, xlab = NULL, ylab = NULL) { PhyloExpressionSet <- as.data.frame(PhyloExpressionSet) PlotSelectedAgeDistr(ExpressionSet = PhyloExpressionSet, gene.set = PhyloExpressionSet[ , 2], legendName = legendName, as.ratio = as.ratio, use.only.map = use.only.map, xlab = xlab, ylab = ylab) }
rdistq_fit <- function(distribution, n, percentiles=c(0.05,0.5,0.95), quantiles, relativeTolerance=0.05, tolConv=0.001, fit.weights=rep(1,length(percentiles)), verbosity=1){ if (!requireNamespace("rriskDistributions", quietly = TRUE)) stop("Package \"rriskDistributions\" needed. Please install it, e.g. from http://cran.r-project.org/src/contrib/Archive/rriskDistributions/", call. = FALSE) if(distribution=="triang"){ requiredPackage<-"mc2d" if( !requireNamespace(requiredPackage, quietly = TRUE) ) stop("Package \"",requiredPackage,"\" needed for option distribution=", distribution, ". Please install it.", call. = FALSE) else if( !paste("package",requiredPackage, sep=":") %in% search() ) attachNamespace(requiredPackage) } if(distribution=="gompertz"){ requiredPackage<-"eha" if( !requireNamespace(requiredPackage, quietly = TRUE) ) stop("Package \"",requiredPackage,"\" needed for option distribution=", distribution, ". Please install it.", call. = FALSE) else if( !paste("package",requiredPackage, sep=":") %in% search() ) attachNamespace(requiredPackage) } if(distribution=="pert"){ requiredPackage<-"mc2d" if( !requireNamespace(requiredPackage, quietly = TRUE) ) stop("Package \"",requiredPackage,"\" needed for option distribution=", distribution, ". Please install it.", call. = FALSE) else if( !paste("package",requiredPackage, sep=":") %in% search() ) attachNamespace(requiredPackage) } if(distribution=="tnorm"){ requiredPackage<-"msm" if( !requireNamespace(requiredPackage, quietly = TRUE) ) stop("Package \"",requiredPackage,"\" needed for option distribution=", distribution, ". Please install it.", call. = FALSE) else if( !paste("package",requiredPackage, sep=":") %in% search() ) attachNamespace(requiredPackage) } if ( length(percentiles) != length(quantiles) ) stop("length(percentiles) != length(quantiles)" ) if( any( any(percentiles < 0) || any(percentiles > 1) ) ) stop( "All elements of \"percentiles\" must lie between 0 and 1!") capture.output(dists<-try(rriskDistributions::rriskFitdist.perc(p=percentiles, q=quantiles, show.output=TRUE, tolConv=tolConv, fit.weights=fit.weights)), file=if(verbosity>1) stdout() else NULL) if( inherits(dists, "try-error") ) stop(dists$message) if(length(dists)==1 && is.na(dists)) stop("No distribution could be fitted at absolute convergence tolerance tolConv=", tolConv, ".") possible_dists<-colnames(dists$results[,3:ncol(dists$results)])[which(!is.na(dists$results[1,3:ncol(dists$results)]))] if( match(distribution, possible_dists, nomatch=0) ){ if(distribution=="norm") x<-rnorm(n=n, mean=dists$results[1,"norm"], sd=dists$results[2,"norm"]) else if(distribution=="beta") x<-rbeta(n=n, shape1=dists$results[1,"beta"], shape2=dists$results[2,"beta"]) else if(distribution=="cauchy") x<-rcauchy(n=n, location=dists$results[1,"cauchy"], scale=dists$results[2,"cauchy"]) else if(distribution=="logis") x<-rlogis(n=n, location=dists$results[1,"logis"], scale=dists$results[2,"logis"]) else if(distribution=="t") x<-rt(n=n, df=dists$results[1,"t"]) else if(distribution=="chisq") x<-rchisq(n=n, df=dists$results[1,"chisq"]) else if(distribution=="chisqnc") x<-rchisq(n=n, df=dists$results[1,"chisqnc"], ncp=dists$results[2,"chisqnc"]) else if(distribution=="exp") x<-rexp(n=n, rate=dists$results[1,"exp"]) else if(distribution=="f") x<-rf(n=n, df1=dists$results[1,"f"], df2=dists$results[2,"f"]) else if(distribution=="gamma") x<-rgamma(n=n, shape=dists$results[1,"gamma"], rate=dists$results[2,"gamma"]) else if(distribution=="lnorm") x<-rlnorm(n=n, meanlog=dists$results[1,"lnorm"], sdlog=dists$results[2,"lnorm"]) else if(distribution=="unif") { x<-runif(n=n, min=dists$results[1,"unif"], max=dists$results[2,"unif"]) } else if(distribution=="weibull") x<-rweibull(n=n, shape=dists$results[1,"weibull"], scale=dists$results[2,"weibull"]) else if(distribution=="triang") x<-mc2d::rtriang(n=n, min=dists$results[1,"triang"], mode=dists$results[2,"triang"], max=dists$results[3,"triang"]) else if(distribution=="gompertz") x<-eha::rgompertz(n=n, shape=dists$results[1,"gompertz"], scale=dists$results[2,"gompertz"]) else if(distribution=="pert"){ x<-mc2d::rpert(n=n, min=dists$results[1,"pert"], mode=dists$results[2,"pert"], max=dists$results[3,"pert"], shape=dists$results[4,"pert"]) } else if(distribution=="tnorm") { x<-msm::rtnorm(n=n, mean=dists$results[1,"tnorm"], sd=dists$results[2,"tnorm"], lower=dists$results[3,"tnorm"], upper=dists$results[4,"tnorm"]) } else stop("\"", distribution, "\" is not a valid distribution type.") } else { stop("\"", distribution, "\" distribution could not be fitted. One of the following should work:", paste(possible_dists,collapse=", ")) } quantiles_calc <- quantile(x=x, probs=percentiles) percentiles_calc<-vapply(X=quantiles, FUN.VALUE=percentiles[[1]], FUN=function(x_) length(x[x<=x_])/n ) for( j in seq(along=quantiles) ){ scale <- if( abs(quantiles[[j]]) > 0 ) abs(quantiles[[j]]) else NULL if( !isTRUE( msg<-all.equal(quantiles[[j]], quantiles_calc[[j]], scale=scale, tolerance=relativeTolerance) ) ){ warning("Fitted value of ", 100*percentiles[[j]], "%-quantile: ", quantiles_calc[[j]], "\n ", "Target value of ", 100*percentiles[[j]], "%-quantile: ", quantiles[[j]], "\n ", "Fitted cumulative probability at value ", quantiles[[j]], " : ", percentiles_calc[[j]], "\n ", "Target cumulative probability at value ", quantiles[[j]], " : ", percentiles[[j]], "\n ", msg) } } x }
test_that("Whether coordinate transformation works", { cartesian <- data.table(X = c(0, 0, 0, 0, 0, 0, 0, 0), Y = c(0, 0, 1, 1, 1, -1, -1, -1), Z = c(0, 10, 0, 5, 10, 0, 5, 10)) anchor <- c(0, 0, 0) to_test <- round(cartesian_to_polar(cartesian, anchor), 4) polar <- data.table(zenith = c(NaN, 0, 90, 11.3099, 5.7106, 90.0000, 11.3099, 5.7106), azimuth = c(0, 0, 90, 90, 90, 270, 270, 270), distance = c(0.0000, 10.0000, 1.0000, 5.0990, 10.0499, 1.0000, 5.0990, 10.0499)) expect_equal(to_test, polar, info = "Transformation") })
context("recordTable") library(camtrapR) data(camtraps) data(recordTableSample) camtraps_setup_blank <- camtraps camtraps_retrieval_blank <- camtraps camtraps_setup_blank$Setup_date[1] <- "" camtraps_retrieval_blank$Retrieval_date[1] <- "" recordTableSample_datetime_blank <- recordTableSample recordTableSample_datetime_blank$DateTimeOriginal[1] <- "" camtraps_setup_NA <- camtraps_setup_blank camtraps_retrieval_NA <- camtraps_retrieval_blank recordTableSample_datetime_NA <- recordTableSample_datetime_blank camtraps_setup_NA$Setup_date[1] <- NA camtraps_retrieval_NA$Retrieval_date[1] <- NA recordTableSample_datetime_NA$DateTimeOriginal[1] <- NA test_that("errors about blank values in Date/Time are correct", { expect_error(surveyReport (recordTable = recordTableSample, CTtable = camtraps_setup_blank, speciesCol = "Species", stationCol = "Station", setupCol = "Setup_date", retrievalCol = "Retrieval_date", CTDateFormat = "%d/%m/%Y"), "there are blank values in CTtable[, setupCol]", fixed = TRUE) expect_error(surveyReport (recordTable = recordTableSample, CTtable = camtraps_retrieval_blank, speciesCol = "Species", stationCol = "Station", setupCol = "Setup_date", retrievalCol = "Retrieval_date", CTDateFormat = "%d/%m/%Y"), "there are blank values in CTtable[, retrievalCol]", fixed = TRUE) expect_error(surveyReport (recordTable = recordTableSample_datetime_blank, CTtable = camtraps, speciesCol = "Species", stationCol = "Station", setupCol = "Setup_date", retrievalCol = "Retrieval_date", CTDateFormat = "%d/%m/%Y"), "there are blank values in recordTable[, recordDateTimeCol]", fixed = TRUE) }) test_that("errors about NAs in Date/Time are correct", { expect_error(surveyReport (recordTable = recordTableSample, CTtable = camtraps_setup_NA, speciesCol = "Species", stationCol = "Station", setupCol = "Setup_date", retrievalCol = "Retrieval_date", CTDateFormat = "%d/%m/%Y"), "there are NAs in CTtable[, setupCol]", fixed = TRUE) expect_error(surveyReport (recordTable = recordTableSample, CTtable = camtraps_retrieval_NA, speciesCol = "Species", stationCol = "Station", setupCol = "Setup_date", retrievalCol = "Retrieval_date", CTDateFormat = "%d/%m/%Y"), "there are NAs in CTtable[, retrievalCol]", fixed = TRUE) expect_error(surveyReport (recordTable = recordTableSample_datetime_NA, CTtable = camtraps, speciesCol = "Species", stationCol = "Station", setupCol = "Setup_date", retrievalCol = "Retrieval_date", CTDateFormat = "%d/%m/%Y"), "there are NAs in recordTable[, recordDateTimeCol]", fixed = TRUE) }) test_that("errors about all NAs in Date/Time are correct", { expect_error(surveyReport (recordTable = recordTableSample, CTtable = camtraps, speciesCol = "Species", stationCol = "Station", setupCol = "Setup_date", retrievalCol = "Retrieval_date", CTDateFormat = "%d-%m-%Y"), "Cannot read date format in CTtable[, setupCol]. Output is all NA. expected: %d-%m-%Y actual: 02/04/2009", fixed = TRUE) expect_error(surveyReport (recordTable = recordTableSample, CTtable = camtraps, speciesCol = "Species", stationCol = "Station", setupCol = "Setup_date", retrievalCol = "Retrieval_date", CTDateFormat = "%d/%m/%Y", recordDateTimeFormat = "%Y/%m/%d %H:%M:%S"), "Cannot read datetime format in recordTable[, recordDateTimeCol]. Output is all NA. expected: %Y/%m/%d %H:%M:%S actual: 2009-04-21 00:40:00", fixed = TRUE) })
synth.peak.error <- function(base=0.07,base.time=6, rise.time=5, rise.factor, rise.factor2, recession.const=0.2, length.out=240, rez.time=length.out-base.time-rise.time, err1.factor=c(1.2,1.4,1.6), err2.factor = c(0.01,0.02,0.04), err3.factor=c(2,4,8), err4.factor = c(9,18,27), err5.factor = c(0.1,0.2,0.4),err6.factor =c(1.5,2,3), err9.factor=c(2,3,4.5)){ n.errors <- 9 n.levels <- 6 peaks<-array(dim=c(2,n.errors,n.levels, length.out)) ref.peak <- synth.peak(base=base, base.time=base.time, rise.time=rise.time, rise.factor=rise.factor, recession.const=recession.const, length.out=length.out, rez.time=rez.time) j=1 for(factor in err1.factor){ peaks[1,1,4-j,]<-synth.peak(rise.factor=factor*rise.factor, base=base, base.time=base.time, rise.time=rise.time, recession.const=recession.const, length.out=length.out, rez.time=rez.time) if(factor>=rise.factor){ warning("In error type 1, factor larger than rise.factor. Adjusting for underestimation") factor=0.95*rise.factor } peaks[1,1,3+j,]<-synth.peak(rise.factor=1/factor*rise.factor, base=base, base.time=base.time, rise.time=rise.time, recession.const=recession.const, length.out=length.out, rez.time=rez.time) peaks[2,1,4-j,]<- ref.peak peaks[2,1,3+j,]<- ref.peak j=j+1 } j=1 for(factor in err2.factor){ if(factor >= base){ warning("In peak type 2. err2.factor larger than base flow. Adjusting factor to avoid unexpected results") factor <- 0.95 * base } peak.hight.from.base <- base*(rise.factor - 1) rise.factor.adj <- 1+peak.hight.from.base / (base+factor) peaks[1,2,4-j,] <- synth.peak(base=base+factor, base.time=base.time, rise.time=rise.time, rise.factor=rise.factor.adj, recession.const=recession.const, length.out=length.out, rez.time=rez.time) rise.factor.adj <- 1+peak.hight.from.base / (base-factor) peaks[1,2,3+j,]<-synth.peak(base=base-factor, base.time=base.time, rise.time=rise.time, rise.factor=rise.factor.adj, recession.const=recession.const, length.out=length.out, rez.time=rez.time) peaks[2,2,4-j,]<- ref.peak peaks[2,2,3+j,]<- ref.peak j=j+1 } j=1 for(factor in err3.factor){ peaks[1,3,4-j,]<-synth.peak(base=base, base.time=base.time, rise.time=rise.time, rise.factor=rise.factor, recession.const=recession.const/factor, length.out=length.out, rez.time=rez.time) peaks[1,3,3+j,]<-synth.peak(base=base, base.time=base.time, rise.time=rise.time, rise.factor=rise.factor, recession.const=recession.const*factor, length.out=length.out, rez.time=rez.time) if(diff(peaks[1,3,3+j,c(length.out-1, length.out)])==0){ warning("In peak type 3: very fast recession. Consider reducing err3.factor") } peaks[2,3,4-j,]<- ref.peak peaks[2,3,3+j,]<- ref.peak j=j+1 } j=1 for(factor in err4.factor ){ peaks[1,4,4-j,]<-synth.peak(base=base, base.time=base.time+factor, rise.time=rise.time, rise.factor=rise.factor, recession.const=recession.const, length.out=length.out) peaks[1,4,3+j,]<-synth.peak(base=base, base.time=base.time-factor, rise.time=rise.time, rise.factor=rise.factor, recession.const=recession.const, length.out=length.out) peaks[2,4,4-j,]<- ref.peak peaks[2,4,3+j,]<- ref.peak j=j+1 } plot.max=max(ref.peak)*2 to_opt<-function(par,factor){ test.peak <-synth.peak(base=base, base.time=base.time, rise.time=rise.time, rise.factor=factor*rise.factor, recession.const=par, length.out=length.out, rez.time=rez.time) return(abs(sum(test.peak)-sum(ref.peak))) } j=1 for(factor in err5.factor){ r.opt<-optim(c(recession.const), to_opt, method="L-BFGS-B", lower=c(0), factor=(1+3*factor)) k_rez<-r.opt$par peaks[1,5,4-j,]<-synth.peak(base=base, base.time=base.time, rise.time=rise.time, rise.factor=(1+3*factor)*rise.factor, recession.const=k_rez, length.out=length.out, rez.time=rez.time) r.opt<-optim(c(0.2), to_opt, method="L-BFGS-B", lower=c(0), factor=1/(1+factor)) k_rez<-r.opt$par peaks[1,5,3+j,]<-synth.peak(base=base, base.time=base.time, rise.time=rise.time, rise.factor=1/(1+factor)*rise.factor, recession.const=k_rez, length.out=length.out, rez.time=rez.time) peaks[2,5,4-j,]<- ref.peak peaks[2,5,3+j,]<- ref.peak j=j+1 } print("Check if peak volumes are correct for 'volume-optimized' peaks:") print(paste("Volume for reference peak: ", sum(ref.peak))) print("Volumes for error peaks:") print(rowSums(peaks[1,5,,])) j=1 for(factor in err6.factor){ time.change=round(rise.time*factor,0) peaks[1,6,4-j,]<-synth.peak(base=base, base.time=base.time-time.change, rise.time=rise.time+time.change, rise.factor=rise.factor, recession.const=recession.const/factor, length.out=length.out, rez.time=rez.time) time.change=round(rise.time/factor,0) peaks[1,6,3+j,]<-synth.peak(base=base, base.time=base.time+time.change, rise.time=rise.time-time.change, rise.factor=rise.factor, recession.const=recession.const*factor, length.out=length.out, rez.time=rez.time) peaks[2,6,4-j,]<- ref.peak peaks[2,6,3+j,]<- ref.peak j=j+1 } recession.const2=0.1*recession.const base2=0.77*base ref.peak4<- synth.peak(base=base2, base.time=-0.5, rise.time=0, rise.factor=rise.factor2, recession.const=recession.const2, length.out=length.out) for(j in 1:6){ peaks[1,7,j,]<-peaks[1,2,j,] peaks[2,7,j,]<- ref.peak4 } j=1 for(factor in err9.factor){ peaks[1,9,4-j,]<- synth.peak(base=base2, base.time=-0.5, rise.time=0, rise.factor=rise.factor2+0.1*factor, recession.const=recession.const2/factor, length.out=length.out) if(0.1*factor +1 >= rise.factor2){ warning("In peak type 9. (0.1*factor) >= rise.factor2 - 1. Adjusting factor to avoid unexpected results for underestimation") factor = 9.5 * (rise.factor2-1) } peaks[1,9,3+j,]<- synth.peak(base=base2, base.time=-0.5, rise.time=0, rise.factor=rise.factor2-0.1*factor, recession.const=recession.const2*factor, length.out=length.out) peaks[2,9,4-j,]<- ref.peak4 peaks[2,9,3+j,]<- ref.peak4 j=j+1 } for(j in 1:6){ peaks[1,8,j,]<- peaks[1,9,j,] peaks[2,8,j,]<- ref.peak } return(peaks) }
rtbs <- function(n,lambda=1,xi=1,beta=1,x=NULL,dist=dist.error("norm")) { if(is.character(dist)) dist=dist.error(dist) aux <- .test.tbs(lambda,xi,beta,x,type="r",n=n) return(.rtbs(n,lambda,xi,aux$beta,aux$x,dist)) } .rtbs <- function(n,lambda=1,xi=1,beta=1,x=NULL,dist=dist.error("norm")) { aux2 <- c(x%*%beta) erro <- dist$r(n,xi) out <- exp(.g.lambda.inv(.g.lambda(aux2,lambda) + erro,lambda)) out <- ifelse(out == 0,10e-100,out) return(out) }
context("finalfit function no metrics no keep") library(finalfit) test_that("finalfit.lm with metrics gives data.frame", { expect_is(finalfit(colon_s, "nodes", "age.factor"), "data.frame") }) test_that("finalfit.lmer with metrics gives data.frame", { expect_is(finalfit(colon_s, "nodes", "age.factor", random_effect="hospital"), "data.frame") }) test_that("finalfit.glm with metrics gives data.frame", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor"), "data.frame") }) test_that("finalfit mixed with metrics gives data.frame", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor", random_effect="hospital"), "data.frame") }) test_that("finalfit.coxph gives dataframe", { expect_is(finalfit(colon_s, "Surv(time, status)", "age.factor"), "data.frame") }) test_that("finalfit.glm with ff_remove_ref gives data.frame", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor", add_dependent_label = FALSE) %>% ff_remove_ref(), "data.frame") }) context("finalfit function no metrics keep models") library(finalfit) test_that("finalfit.lm with metrics gives data.frame", { expect_is(finalfit(colon_s, "nodes", "age.factor", keep_models=TRUE), "data.frame") }) test_that("finalfit.lm with metrics gives data.frame", { expect_is(finalfit(colon_s, "nodes", "age.factor", "age.factor", keep_models=TRUE), "data.frame") }) test_that("finalfit.lmer with metrics gives data.frame", { expect_is(finalfit(colon_s, "nodes", "age.factor", random_effect="hospital", keep_models=TRUE), "data.frame") }) test_that("finalfit.lmer with metrics gives data.frame", { expect_is(finalfit(colon_s, "nodes", "age.factor", "age.factor", random_effect="hospital", keep_models=TRUE), "data.frame") }) test_that("finalfit.glm with metrics gives data.frame", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor", keep_models=TRUE), "data.frame") }) test_that("finalfit mixed with metrics gives data.frame", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor", random_effect="hospital", keep_models=TRUE), "data.frame") }) test_that("finalfit.glm with metrics gives data.frame", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor", "age.factor", keep_models=TRUE), "data.frame") }) test_that("finalfit mixed with metrics gives data.frame", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor", "age.factor", random_effect="hospital", keep_models=TRUE), "data.frame") }) test_that("finalfit.coxph gives dataframe", { expect_is(finalfit(colon_s, "Surv(time, status)", "age.factor", keep_models=TRUE), "data.frame") }) test_that("finalfit.coxph gives dataframe", { expect_is(finalfit(colon_s, "Surv(time, status)", "age.factor", "age.factor", keep_models=TRUE), "data.frame") }) context("finalfit function no metrics no keep") library(finalfit) test_that("finalfit.lm with metrics gives list", { expect_is(finalfit(colon_s, "nodes", "age.factor", metrics=TRUE), "list") }) test_that("finalfit.lmer with metrics gives list", { expect_is(finalfit(colon_s, "nodes", "age.factor", random_effect="hospital", metrics=TRUE), "list") }) test_that("finalfit.glm with metrics gives list", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor", metrics=TRUE), "list") }) test_that("finalfit mixed with metrics gives list", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor", random_effect="hospital", metrics=TRUE), "list") }) test_that("finalfit.coxph gives dataframe", { expect_is(finalfit(colon_s, "Surv(time, status)", "age.factor", metrics=TRUE), "list") }) context("finalfit function metrics keep models") library(finalfit) test_that("finalfit.lm with metrics gives list", { expect_is(finalfit(colon_s, "nodes", "age.factor", keep_models=TRUE, metrics=TRUE), "list") }) test_that("finalfit.lmer with metrics gives list", { expect_is(finalfit(colon_s, "nodes", "age.factor", random_effect="hospital", keep_models=TRUE, metrics=TRUE), "list") }) test_that("finalfit.glm with metrics gives list", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor", keep_models=TRUE, metrics=TRUE), "list") }) test_that("finalfit mixed with metrics gives list", { expect_is(finalfit(colon_s, "mort_5yr", "age.factor", random_effect="hospital", keep_models=TRUE, metrics=TRUE), "list") }) test_that("finalfit.coxph gives dataframe", { expect_is(finalfit(colon_s, "Surv(time, status)", "age.factor", keep_models=TRUE, metrics=TRUE), "list") }) context("summary_factorlist function") library(finalfit) test_that("summary_factorlist gives dataframe", { expect_is(summary_factorlist(colon_s, "age", c("age.factor", "nodes"), column=TRUE, total_col = TRUE, p=TRUE), "data.frame") }) test_that("summary_factorlist gives dataframe", { colon_s$one = 1 colon_s$one = factor(colon_s$one) expect_is(summary_factorlist(colon_s, "one", c("age.factor", "nodes"), column=TRUE, total_col = TRUE), "data.frame") }) test_that("summary_factorlist gives dataframe", { expect_is(summary_factorlist(colon_s, "mort_5yr", c("age.factor", "nodes"), column=TRUE, total_col = TRUE, p=TRUE), "data.frame") }) test_that("summary_factorlist gives dataframe", { expect_is(summary_factorlist(colon_s, "rx", c("age.factor", "nodes"), column=TRUE, total_col = TRUE, p=TRUE), "data.frame") }) test_that("summary_factorlist gives dataframe", { expect_is(summary_factorlist(colon_s, "extent.factor", c("age.factor", "nodes"), column=TRUE, total_col = TRUE, p=TRUE), "data.frame") }) test_that("summary_factorlist gives dataframe", { colon_s$age5 = cut(colon_s$age, breaks=5) expect_is(summary_factorlist(colon_s, "age5", c("age.factor", "nodes"), column=TRUE, total_col = TRUE, p=TRUE), "data.frame") }) context("summary_factorlist function with geometric mean") library(finalfit) test_that("summary_factorlist gives dataframe", { expect_is(summary_factorlist(colon_s, "extent.factor", c("age.factor", "age"), cont="geometric"), "data.frame") }) context("summary_factorlist function with median and dep label") library(finalfit) test_that("summary_factorlist gives dataframe", { expect_is(summary_factorlist(colon_s, "age", c("age.factor", "nodes"), cont="median", add_dependent_label=TRUE, fit_id=TRUE), "data.frame") }) test_that("summary_factorlist gives dataframe", { colon_s$one = 1 colon_s$one = factor(colon_s$one) expect_is(summary_factorlist(colon_s, "one", c("age.factor", "nodes"), cont="median", add_dependent_label=TRUE, fit_id=TRUE), "data.frame") }) test_that("summary_factorlist gives dataframe", { expect_is(summary_factorlist(colon_s, "mort_5yr", c("age.factor", "nodes"), cont="median", add_dependent_label=TRUE, fit_id=TRUE), "data.frame") }) test_that("summary_factorlist gives dataframe", { expect_is(summary_factorlist(colon_s, "rx", c("age.factor", "nodes"), cont="median", add_dependent_label=TRUE, fit_id=TRUE), "data.frame") }) test_that("summary_factorlist gives dataframe", { expect_is(summary_factorlist(colon_s, "extent.factor", c("age.factor", "nodes"), cont="median", add_dependent_label=TRUE, fit_id=TRUE), "data.frame") }) test_that("summary_factorlist gives dataframe", { colon_s$age5 = cut(colon_s$age, breaks=5) expect_is(summary_factorlist(colon_s, "age5", c("age.factor", "nodes"), cont="median", add_dependent_label=TRUE, fit_id=TRUE), "data.frame") }) context("summary_factorlist function with survival") library(finalfit) test_that("summary_factorlist with survival dataframe", { expect_is(summary_factorlist(colon_s, "Surv(time, status)", "age.factor"), "data.frame") }) context("summary_factorlist warnings") library(finalfit) test_that("summary_factorlist warnings", { expect_error(summary_factorlist(1)) expect_error(summary_factorlist(colon_s, "rx")) }) context("summary_factorlist cont_cut") library(finalfit) test_that("summary_factorlist convert factor", { expect_equal(summary_factorlist(colon_s, "mort_5yr", "sex") %>% dim() %>% sum(), 6) }) test_that("summary_factorlist don't convert factor", { expect_equal(summary_factorlist(colon_s, "mort_5yr", "sex", cont_cut=0) %>% dim() %>% sum(), 5) }) context("finalfit_permute") library(finalfit) test_that("finalfit_permute gives a list", { expect_is(ff_permute( colon_s, "nodes", c("age.factor"), c("obstruct.factor", "perfor.factor"), multiple_tables = TRUE, base_on_top = TRUE ), "list") }) test_that("finalfit_permute gives a list", { expect_is(ff_permute( colon_s, "nodes", c("age.factor"), c("obstruct.factor", "perfor.factor"), multiple_tables = TRUE, base_on_top = FALSE ), "list") }) test_that("finalfit_permute gives a list", { expect_is(ff_permute( colon_s, "nodes", c("age.factor"), c("obstruct.factor", "perfor.factor"), multiple_tables = FALSE, base_on_top = FALSE ), "data.frame") }) test_that("finalfit_permute gives a list", { expect_is(ff_permute( colon_s, "nodes", c("age.factor"), c("obstruct.factor", "perfor.factor"), multiple_tables = FALSE, base_on_top = TRUE ), "data.frame") }) test_that("finalfit_permute gives a list", { expect_is(ff_permute( colon_s, "nodes", c("age.factor"), c("obstruct.factor", "perfor.factor"), multiple_tables = TRUE, include_base_model = FALSE, include_full_model = FALSE ), "list") }) test_that("finalfit_permute gives a list", { expect_is(ff_permute( colon_s, "nodes", c("age.factor"), c("obstruct.factor", "perfor.factor"), multiple_tables = FALSE, include_base_model = FALSE, include_full_model = FALSE ), "data.frame") })
calc.a <- function(y, mu, sf) { n <- length(y) if (length(mu) == 1) { mu <- rep(mu, n) } if (length(sf) == 1) { sf <- rep(sf, n) } a.vec <- optimize(calc.loglik.a, interval = c(0, var(y/sf)/mean(y/sf)^2), y = y, mu = mu, sf = sf) a <- a.vec$minimum a.loglik <- a.vec$objective min.a <- -calc.loglik.a(1e-05, y, mu, sf) mle.a <- -calc.loglik.a(a, y, mu, sf) max.a <- -calc.loglik.a(var(y/sf)/mean(y/sf)^2, y, mu, sf) if (mle.a - min.a < 0.5) { if (mle.a-max.a > 10) { a.max <- uniroot(function(x) calc.loglik.a(x, y, mu, sf) + mle.a - 10, c(1e-05, var(y/sf)/mean(y/sf)^2))$root } else { a.max <- var(y/sf)/mean(y/sf)^2 } samp <- (exp((exp(ppoints(100))-1)/2)-1)*a.max loglik <- mapply(calc.loglik.a, a = samp, MoreArgs = list(y = y, mu = mu, sf = sf)) loglik2 <- exp(-loglik-min(-loglik)) loglik3 <- loglik2/sum(loglik2) a <- mean(sample(samp, 10000, replace = TRUE, prob = loglik3)) a.loglik <- calc.loglik.a(a, y, mu, sf) } return(c(1/a, a.loglik)) } calc.b <- function(y, mu, sf) { n <- length(y) if (length(mu) == 1) { mu <- rep(mu, n) } if (length(sf) == 1) { sf <- rep(sf, n) } if (sum(mu) == 0) { return(c(0, 0)) } b.vec <- optimize(calc.loglik.b, interval = c(0, var(y/sf)/mean(y/sf)), y = y, mu = mu, sf = sf) b <- b.vec$minimum b.loglik <- b.vec$objective min.b <- -calc.loglik.b(1e-05, y, mu, sf) mle.b <- -calc.loglik.b(b, y, mu, sf) max.b <- -calc.loglik.b(var(y/sf)/mean(y/sf), y, mu, sf) if (mle.b - min.b < 0.5) { if (mle.b-max.b > 10) { b.max <- uniroot(function(x) calc.loglik.b(x, y, mu, sf) + mle.b - 10, c(1e-05, var(y/sf)/mean(y/sf)))$root } else { b.max <- var(y/sf)/mean(y/sf) } samp <- (exp((exp(ppoints(100))-1)/2)-1)*b.max loglik <- mapply(calc.loglik.b, b = samp, MoreArgs = list(y = y, mu = mu, sf = sf)) loglik2 <- exp(-loglik-min(-loglik)) loglik3 <- loglik2/sum(loglik2) b <- mean(sample(samp, 10000, replace = TRUE, prob = loglik3)) b.loglik <- calc.loglik.b(b, y, mu, sf) } return(c(1/b, b.loglik)) } calc.k <- function(y, mu, sf) { n <- length(y) if (length(mu) == 1) { mu <- rep(mu, n) } if (length(sf) == 1) { sf <- rep(sf, n) } k.vec <- optimize(calc.loglik.k, interval = c(0, var(y/sf)), y = y, mu = mu, sf = sf) k <- k.vec$minimum k.loglik <- k.vec$objective min.k <- -calc.loglik.k(1e-05, y, mu, sf) mle.k <- -calc.loglik.k(k, y, mu, sf) max.k <- -calc.loglik.k(var(y/sf), y, mu, sf) if (mle.k - min.k < 0.5) { if (mle.k-max.k > 10) { k.max <- uniroot(function(x) calc.loglik.k(x, y, mu, sf) + mle.k - 10, c(1e-05, var(y/sf)))$root } else { k.max <- var(y/sf) } samp <- (exp((exp(ppoints(100))-1)/2)-1)*k.max loglik <- mapply(calc.loglik.k, k = samp, MoreArgs = list(y = y, mu = mu, sf = sf)) loglik2 <- exp(-loglik-min(-loglik)) loglik3 <- loglik2/sum(loglik2) k <- mean(sample(samp, 10000, replace = TRUE, prob = loglik3)) k.loglik <- calc.loglik.k(k, y, mu, sf) } return(c(k, k.loglik)) }
is_integer <- function(x) { is.numeric(x) && x %% 1 == 0 } is_count <- function(x) { is_integer(x) && x > 0 } is_date <- function(x) { class(x) == "Date" }
clear_legend <- function( map_id, layer_id ) { invoke_method( map_id, "md_clear_legend", layer_id ); } mapdeck_legend <- function(legend_elements) UseMethod("mapdeck_legend") mapdeck_legend.mapdeck_legend <- function( legend_elements ) jsonify::to_json(legend_elements) mapdeck_legend.default <- function( legend_elements ) { stop("mapdeck - mapdeck_legend will only work on objects created with legend_element") } legend_element <- function( variables, colours, colour_type = c("fill", "stroke"), variable_type = c("category", "gradient"), title = "", css = "" ) { if( length( colours ) != length( variables ) ) { stop("mapdeck - colours and variables should be the same length") } colour_type <- legend_colour_type( colour_type ) l <- list( colour = colours , variable = variables , colourType = colour_type , type = variable_type , title = title , css = css ) l <- list( l ) names(l) <- colour_type attr(l, "class") <- c("mapdeck_legend", attr(l, "class")) return(l) } legend_colour_type <- function( colour_type ) { switch( colour_type , "fill" = "fill_colour" , "stroke" = "stroke_colour" ) } aggregation_legend <- function( legend, legend_options ) { if( is.null( legend_options ) ) { legend_options <- list( css = "" , title = "value" , digits = 2 ) } if( is.null( legend_options[["css"]] ) ) { legend_options[["css"]] <- "" } if( is.null( legend_options[["title"]] ) ) { legend_options[["title"]] <- "value" } if( is.null( legend_options[["digits"]] ) ) { legend_options[["digits"]] <- 2 } legend <- list( legend = legend , css = legend_options[["css"]] , title = legend_options[["title"]] , digits = legend_options[["digits"]] ) return( legend ) }
semMatrixAlgebra <- function(object, algebra, group, simplify = TRUE, model, endoOnly = FALSE) { call <- paste(deparse(substitute(object)), collapse = "") if (grepl("\\+",call)) { args <- unlist(strsplit(call,split="\\+")) obs <- lapply(args,function(x)semPlotModel(eval(parse(text=x)))) object <- obs[[1]] for (i in 2:length(obs)) object <- object + obs[[i]] } if ("lisrel"%in%class(object)) object <- object$matrices if (!"semMatrixModel"%in%class(object)) { if (missing(model)) { if (any(grepl("(LY)|(TE)|(PS)|(BE)|(LX)|(TD)|(PH)|(GA)|(TY)|(TX)|(AL)|(KA)",deparse(substitute(algebra))))) { model <- "lisrel" message("model set to 'lisrel'") } else if (any(grepl("(Lambda)|(Nu)|(Theta)|(Kappa)|(Alpha)|(Beta)|(Gamma)|(Psi)",deparse(substitute(algebra))))) { model <- "mplus" message("model set to 'mplus'") } else if (any(grepl("A|S|F",deparse(substitute(algebra))))) { model <- "ram" message("model set to 'ram'") } else stop("'model' could not be detected") } object <- modelMatrices(object,model,endoOnly = endoOnly) } stopifnot("semMatrixModel"%in%class(object)) if (missing(group)) group <- seq_len(max(sapply(object,length))) Mats <- lapply(object,lapply,'[[','est') Res <- list() for (i in seq_along(group)) { GroupMats <- lapply(Mats,'[[',i) Res[[i]] <- eval(substitute(algebra), GroupMats) } if (simplify) if (length(Res)==1) Res <- Res[[1]] return(Res) }
max_threshold_diffcov <- function(sample1, sample2, sig_mat1, sig_mat2){ n1 <- dim(sample1)[1]; n2 <- dim(sample2)[1]; p <- dim(sample1)[2] a_f <- sqrt(2*log(log(p))) b_f <- 2*log(log(p)) + 0.5*log(log(log(p))) - 0.5*log(4*3.1416/(1 - 0.05)^2) eta <- 0.05 diag1 <- diag(sig_mat1) diag1[diag1 <= 10^(-10)] <- 10^(-10) diag2 <- diag(sig_mat2) diag2[diag2 <= 10^(-10)] <- 10^(-10) T_orig <- (colMeans(sample1) - colMeans(sample2))^2/(diag1/n1 + diag2/n2) s_level <- T_orig[sign(T_orig) >= 0.01 & T_orig <= 2*(1 - eta)*log(p)] s_m <- matrix(s_level, length(s_level), p, byrow = F) T_m <- matrix((T_orig-1), length(s_level), p, byrow = T) T_m[sign(T_m + 1 - s_m) == -1] <- 0 thr <- rowSums(T_m) mean_thr <- 2*sqrt(s_level)*dnorm(sqrt(s_level))*p sd_thr <- sqrt(p*(2*((sqrt(s_level))^3 + sqrt(s_level))*dnorm(sqrt(s_level)) + 4 - 4*pnorm(sqrt(s_level))) - mean_thr^2/p) max_threshold <- max((thr-mean_thr)/sd_thr)*a_f - b_f return(max_threshold) }
plotGAM <- function(gamFit, smooth.cov , groupCovs = NULL, orderedAsFactor = T, rawOrFitted = F, plotCI = T) { if (missing(gamFit)) { stop("gamFit is missing")} if (missing(smooth.cov)) { stop("smooth.cov is missing")} if (class(smooth.cov) != "character") { stop("smooth.cov must be a character")} if (class(groupCovs) != "character" & (!is.null(groupCovs))) { stop("groupCovs must be a character")} if (!(rawOrFitted == F | rawOrFitted == "raw" | rawOrFitted == "fitted")) { stop("Wrong input for rawOrFitted") } fit <- fitted <- group <- se.fit <- NULL if (base::class(gamFit)[1] != "gam") { stop("gamFit is not a object of type gam") } if (base::is.null(groupCovs)) { gam <- gamFit temp.data <- gam$model old.formula <- gam$formula old.covariates <- base::as.character(old.formula)[3] old.covariates <- base::gsub(" ", "", old.covariates) main.smooth <- base::paste0("s(", smooth.cov) interaction.smooth <- base::paste0("s(", smooth.cov, ",by=") if (!base::grepl(pattern = main.smooth, old.covariates, fixed=T)) { base::stop("smooth.cov is not included in formula for original model fit") } if (base::grepl(pattern = interaction.smooth, old.covariates, fixed=T)) { base::stop("smooth.cov has an interaction term in original model fit, pass groupCovs as an argument") } plot.df = base::data.frame( x = base::seq(min(temp.data[smooth.cov]), max(temp.data[smooth.cov]), length.out=200)) base::names(plot.df) <- smooth.cov for (i in base::names(temp.data)[-1]) { if (i != smooth.cov) { if (base::any(base::class(temp.data[i][,1])[1] == c("numeric", "integer","boolean"))) { plot.df[, base::dim(plot.df)[2] + 1] <- base::mean(temp.data[i][,1]) base::names(plot.df)[base::dim(plot.df)[2]] <- i } else if (base::any(base::class(temp.data[i][,1])[1] == c("character", "factor","ordered"))) { plot.df[, base::dim(plot.df)[2] + 1] <- temp.data[i][1,1] base::names(plot.df)[base::dim(plot.df)[2]] <- i } else { stop(base::paste("Unrecognized data type for",i,"please refit cluster model with different datatype")) } } } for (i in 1:dim(plot.df)[2]) { if (class(plot.df[,i])[1] == "ordered" | class(plot.df[,i])[1] == "factor") { warning("There are one or more factors in the model fit, please consider plotting by group since plot might be unprecise") } } plot.df = base::cbind(plot.df, base::as.data.frame(mgcv::predict.gam(gam, plot.df, se.fit = TRUE))) if (plotCI) { plot <- (ggplot2::ggplot(data=plot.df, ggplot2::aes(x=plot.df[,1])) + ggplot2::geom_line(ggplot2::aes(y=fit), size=1) + ggplot2::geom_ribbon(data=plot.df, ggplot2::aes(ymax = fit+1.96*se.fit, ymin = fit-1.96*se.fit, linetype=NA), alpha = .2) + ggplot2::ggtitle(base::paste0(base::as.character(old.formula)[2], " vs. s(",smooth.cov,")")) + ggplot2::ylab(base::paste0("Predicted ", base::as.character(old.formula)[2])) + ggplot2::xlab(base::paste0("s(",smooth.cov,")")) + ggplot2::theme_bw()) } else { plot <- (ggplot2::ggplot(data=plot.df, ggplot2::aes(x=plot.df[,1])) + ggplot2::geom_line(ggplot2::aes(y=fit), size=1) + ggplot2::ggtitle(base::paste0(base::as.character(old.formula)[2], " vs. s(",smooth.cov,")")) + ggplot2::ylab(base::paste0("Predicted ", base::as.character(old.formula)[2])) + ggplot2::xlab(base::paste0("s(",smooth.cov,")")) + ggplot2::theme_bw()) } if (rawOrFitted == "raw") { plot <- plot + ggplot2::geom_point(data = temp.data, ggplot2::aes(x=purrr::as_vector(temp.data[smooth.cov]), y=temp.data[,1])) base::return(plot) } else if (rawOrFitted == "fitted") { temp.data$fitted <- gam$fitted.values plot <- plot + ggplot2::geom_point(data = temp.data, ggplot2::aes(x=purrr::as_vector(temp.data[smooth.cov]), y=fitted)) base::return(plot) } else { base::return(plot) } } else if (base::is.character(groupCovs)) { gam <- gamFit temp.data <- gam$model old.formula <- gam$formula old.covariates <- base::as.character(old.formula)[3] old.covariates <- base::gsub(" ", "", old.covariates) main.smooth <- base::paste0("s(", smooth.cov) interaction.smooth <- base::paste0("s(", smooth.cov, ",by=") if(regexpr(groupCovs, as.character(old.covariates))[1] == 1) { old.covariates <- paste0("+", old.covariates) } main.group <- base::paste0("+", groupCovs) if (!base::grepl(pattern = main.group, old.covariates, fixed=T)) { base::stop("Error groupCovs is not included as a main effect in original model, include in original fit") } temp.fm <- strsplit(old.covariates, split='+', fixed = T)[[1]] for (i in 1:length(temp.fm)) { if (grepl(main.smooth, temp.fm[i], fixed=T)) { temp.term <- strsplit(temp.fm[i], split=',', fixed = T)[[1]] if (length(temp.term) > 1) { for (j in 2:length(temp.term)) { if (grepl('=',temp.term[j])) { if(grepl('by',temp.term[j])) { order <- 1:length(temp.term) order <- setdiff(order, j) if (all(order == 1)) { order <- c(1,2) temp.term <- temp.term[order] } else { order <- c(order, NA) order <- order[c(1, length(order), 2:(length(order) - 1))] order[2] <- j temp.term <- temp.term[order] temp.term <- gsub(pattern=")", replacement = "", x = temp.term) temp.term[length(temp.term)]<- paste0(temp.term[length(temp.term)], ")") } } } else { base::stop("spline containing smooth.cov has more than one variable, refit with only one") } } } temp.fm[i] <- toString(temp.term) } } old.covariates <- paste0(temp.fm, collapse="+") old.covariates <- base::gsub(" ", "", old.covariates) if (!base::grepl(pattern = main.smooth, old.covariates, fixed=T) & base::class(temp.data[groupCovs][,1])[1] == "ordered") { base::stop("smooth.cov is not included in formula for original model fit, model might be incorrectly parametrized") } else if (!base::grepl(pattern = interaction.smooth, old.covariates, fixed=T)) { base::warning("smooth.cov has no interaction term in original model fit") foo <- base::seq(min(temp.data[smooth.cov]), max(temp.data[smooth.cov]), length.out=200) plot.df = base::data.frame( x = rep(foo, nlevels(as.factor(temp.data[groupCovs][,1])))) base::names(plot.df) <- smooth.cov plot.df$temp <- rep(levels(as.factor(temp.data[groupCovs][,1])), each = 200) base::names(plot.df)[2] <- groupCovs for (i in base::names(temp.data)[-1]) { if (!(i == smooth.cov | i == groupCovs)) { if (base::any(base::class(temp.data[i][,1])[1] == c("numeric", "integer","boolean"))) { plot.df[, base::dim(plot.df)[2] + 1] <- base::mean(temp.data[i][,1]) base::names(plot.df)[base::dim(plot.df)[2]] <- i } else if (base::any(base::class(temp.data[i][,1])[1] == c("character", "factor","ordered"))) { plot.df[, base::dim(plot.df)[2] + 1] <- temp.data[i][1,1] base::names(plot.df)[base::dim(plot.df)[2]] <- i } else { stop(base::paste("Unrecognized data type for",i,"please refit cluster model with different datatype")) } } } plot.df = base::cbind(plot.df, base::as.data.frame(mgcv::predict.gam(gam, plot.df, se.fit = TRUE))) plot.df$group <- plot.df[,2] if (plotCI) { plot <- (ggplot2::ggplot(data=plot.df, ggplot2::aes(x=plot.df[,1])) + ggplot2::geom_line(ggplot2::aes(y=fit, col=factor(group)), size=1) + ggplot2::geom_ribbon(data=plot.df, ggplot2::aes(ymax = fit+1.96*se.fit, ymin = fit-1.96*se.fit, col=factor(group), linetype=NA), alpha = .2) + ggplot2::ggtitle(base::paste0(base::as.character(old.formula)[2], " vs. s(",smooth.cov,")")) + ggplot2::ylab(base::paste0("Predicted ", base::as.character(old.formula)[2])) + ggplot2::xlab(base::paste0("s(",smooth.cov,")")) + ggplot2::scale_colour_discrete(name = groupCovs) + ggplot2::theme_bw()) } else { plot <- (ggplot2::ggplot(data=plot.df, ggplot2::aes(x=plot.df[,1])) + ggplot2::geom_line(ggplot2::aes(y=fit, col=factor(group)), size=1) + ggplot2::ggtitle(base::paste0(base::as.character(old.formula)[2], " vs. s(",smooth.cov,")")) + ggplot2::ylab(base::paste0("Predicted ", base::as.character(old.formula)[2])) + ggplot2::xlab(base::paste0("s(",smooth.cov,")")) + ggplot2::scale_colour_discrete(name = groupCovs) + ggplot2::theme_bw()) } if (rawOrFitted == "raw") { plot <- plot + ggplot2::geom_point(data = temp.data, ggplot2::aes(x=purrr::as_vector(temp.data[smooth.cov]), y=temp.data[,1], col=temp.data[groupCovs][,1])) base::return(plot) } else if (rawOrFitted == "fitted") { temp.data$fitted <- gam$fitted.values plot <- plot + ggplot2::geom_point(data = temp.data, ggplot2::aes(x=purrr::as_vector(temp.data[smooth.cov]), y=fitted, col=temp.data[groupCovs][,1])) base::return(plot) } else { base::return(plot) } } else { main.group <- base::paste0("+", groupCovs) if (!base::grepl(pattern = main.group, old.covariates, fixed=T)) { base::stop("groupCovs is not included as main effect in original model, please include in original fit") } if (base::class(temp.data[groupCovs][,1])[1] == "ordered" & orderedAsFactor) { base::warning("groupCovs is an ordered variable in original fit, reffiting model with groupCovs as a factor") temp.data[groupCovs] <- as.factor(as.character(temp.data[groupCovs][,1])) textCall <- gam$call temp.fm.updated <- strsplit(old.covariates, split='+', fixed = T)[[1]] index.Main <- setdiff(grep(pattern = main.smooth, x = temp.fm.updated, fixed = T), grep(pattern = interaction.smooth, x = temp.fm.updated, fixed = T)) temp.fm.updated <- temp.fm[-index.Main] updatedCovs <- paste0(temp.fm.updated, collapse="+") updatedCovs <- base::gsub(" ", "", updatedCovs) updatedformula <- stats::as.formula(paste(old.formula[2], old.formula[1], updatedCovs)) new.data <- temp.data gam <- stats::update(gam, formula = updatedformula, data = new.data) } temp.data <- gam$model old.formula <- gam$formula old.covariates <- base::as.character(old.formula)[3] old.covariates <- base::gsub(" ", "", old.covariates) main.smooth <- base::paste0("s(", smooth.cov, ")") interaction.smooth <- base::paste0("s(", smooth.cov, ",by=") foo <- base::seq(min(temp.data[smooth.cov]), max(temp.data[smooth.cov]), length.out=200) plot.df = base::data.frame( x = rep(foo, nlevels(temp.data[groupCovs][,1]))) base::names(plot.df) <- smooth.cov plot.df$temp <- rep(levels(temp.data[groupCovs][,1]), each = 200) base::names(plot.df)[2] <- groupCovs for (i in base::names(temp.data)[-1]) { if (!(i == smooth.cov | i == groupCovs)) { if (base::any(base::class(temp.data[i][,1])[1] == c("numeric", "integer","boolean"))) { plot.df[, base::dim(plot.df)[2] + 1] <- base::mean(temp.data[i][,1]) base::names(plot.df)[base::dim(plot.df)[2]] <- i } else if (base::any(base::class(temp.data[i][,1])[1] == c("character", "factor","ordered"))) { plot.df[, base::dim(plot.df)[2] + 1] <- temp.data[i][1,1] base::names(plot.df)[base::dim(plot.df)[2]] <- i } else { stop(base::paste("Unrecognized data type for",i,"please refit cluster model with different datatype")) } } } plot.df = base::cbind(plot.df, base::as.data.frame(mgcv::predict.gam(gam, plot.df, se.fit = TRUE))) plot.df$group <- plot.df[,2] if (plotCI) { plot <- (ggplot2::ggplot(data=plot.df, ggplot2::aes(x=plot.df[,1])) + ggplot2::geom_line(ggplot2::aes(y=fit, col=factor(group)), size=1) + ggplot2::geom_ribbon(data=plot.df, ggplot2::aes(ymax = fit+1.96*se.fit, ymin = fit-1.96*se.fit, col=factor(group), linetype=NA), alpha = .2) + ggplot2::ggtitle(base::paste0(base::as.character(old.formula)[2], " vs. s(",smooth.cov,")")) + ggplot2::ylab(base::paste0("Predicted ", base::as.character(old.formula)[2])) + ggplot2::xlab(base::paste0("s(",smooth.cov,")")) + ggplot2::scale_colour_discrete(name = groupCovs) + ggplot2::theme_bw()) } else { plot <- (ggplot2::ggplot(data=plot.df, ggplot2::aes(x=plot.df[,1])) + ggplot2::geom_line(ggplot2::aes(y=fit, col=factor(group)), size=1) + ggplot2::ggtitle(base::paste0(base::as.character(old.formula)[2], " vs. s(",smooth.cov,")")) + ggplot2::ylab(base::paste0("Predicted ", base::as.character(old.formula)[2])) + ggplot2::xlab(base::paste0("s(",smooth.cov,")")) + ggplot2::scale_colour_discrete(name = groupCovs) + ggplot2::theme_bw()) } if (rawOrFitted == "raw") { plot <- plot + ggplot2::geom_point(data = temp.data, ggplot2::aes(x= purrr::as_vector(temp.data[smooth.cov]), y=temp.data[,1], col=temp.data[groupCovs][,1])) base::return(plot) } else if (rawOrFitted == "fitted") { temp.data$fitted <- gam$fitted.values plot <- plot + ggplot2::geom_point(data = temp.data, ggplot2::aes(x= purrr::as_vector(temp.data[smooth.cov]), y=fitted, col=temp.data[groupCovs][,1])) base::return(plot) } else { base::return(plot) } } } else { stop("groupCovs is not a character or null please correct") } }
print.nonp<-function(x, digits = getOption("digits"), prefix = "\t\t",...){ cat("\n") theme<-strwrap(x$method, prefix = prefix) if(!is.null(x$score)){ if(x$score %in% c("pearson", "spearman", "kendall")) theme<-c(theme,paste("with",x$score,"measurement")) else theme<-c(theme,paste("using",x$score,"scoring")) } cat(theme,"\n") out <- character() if (!is.null(x$stat)) out <- c(out, paste(names(x$stat), "=", format(x$stat, digits = max(1L, digits - 2L)))) if (!is.null(x$pval)) { fp <- paste(format.pval(x$pval, digits = max(1L, digits - 3L))) if(!is.null(attr(x$pval,"type"))){ if(attr(x$pval,"type")%in%c("W","R","S")) out <- c(out,paste(names(x$pval),switch(attr(x$pval,"type"),"W"="without replacement","S"="without replacement","R"="with replacement"),paste("method to calculate :\n\t",if(!is.null(attr(x$pval,"df"))){paste("df = ",attr(x$pval,"df"),",")}, "p-value = ",sep=""), if (startsWith(fp, "<")) fp else paste(fp))) else out <- c(out,paste(attr(x$pval,"type"),names(x$pval),paste("method to calculate :\n\t", if(!is.null(attr(x$pval,"df"))){paste("df = ",attr(x$pval,"df"),",")},"p-value = ",sep=""),if (startsWith(fp, "<")) fp else paste (fp))) } else out <- c(out,paste(names(x$pval),paste("method to calculate :\n\t", if(!is.null(attr(x$pval,"df"))){paste("df = ",attr(x$pval,"df"),",")}, "p-value = ",sep=""), if (startsWith(fp, "<")) fp else paste(fp))) } cat(paste(out, collapse = "\n"),sep = "\n") if (is.null(x$alternative)) { cat("alternative hypothesis: \n\t") alt.char <- switch(attr(x$null.value,"direction"), two.sided = "not equal to", less = "less than", greater = "greater than") cat(x$null.value[1], " is ", alt.char, " ", x$null.value[2], "\n", sep = "") } else if(is.null(x$null.value)) cat("alternative hypothesis: \n\t",x$alternative, "\n", sep = "") if (!is.null(x$conf.int)) { cat(format(100 * attr(x$conf.int, "conf.level")), "% confidence interval of p-value :\n\t", paste("[",format(x$conf.int[1], digits = digits-3L), ",",format(x$conf.int[2], digits = digits-3L), "]",collapse = " "), "\n", sep = "") } if(!is.null(x$addition)) cat("\n",x$addition) if(!is.null(x$alternative) & !is.null(x$null.value)){warning("Alternative and null.value both exist, so output from null.value disabled.")} cat("\n") invisible(x) } plot.emcdf<-function(x,...){ data<-x x<-data$sample n=length(x) max_x <- max(x) min_x <- min(x) rangex <- max_x - min_x start <- min_x - rangex/n final <- max_x + rangex/n x1=c(start, sort(x), final) y1=c(0, data$empirical.cdf, 1) lower_plot <- c(0,data$lower,1) upper_plot <- c(0,data$upper,1) plot(x1,y1, type='S', xlab='Cycles', ylab='Probability', main='Empirical Distribution',...) lines(x1, upper_plot, lty=2,type='S', col='red') lines(x1, lower_plot, lty=2,type='S', col='blue') legend("bottomright", lty=c(1,2,2), col=c('black', 'red', 'blue'), c('EM-CDF', 'Upper', 'Lower'), cex=0.8) }
context("Test bart_ewmv") library(hBayesDM) test_that("Test bart_ewmv", { skip_on_cran() expect_output(bart_ewmv( data = "example", niter = 10, nwarmup = 5, nchain = 1, ncore = 1)) })
get_user_timeline <- function(x, start_tweets, end_tweets, bearer_token = get_bearer(), n = 100, file = NULL, data_path = NULL, export_query = TRUE, bind_tweets = TRUE, page_n = 100, verbose = TRUE, ...) { if (missing(start_tweets)) { stop("Start time must be specified.") } if (missing(end_tweets)) { stop("End time must be specified.") } check_data_path(data_path = data_path, file = file, bind_tweets = bind_tweets, verbose = verbose) params <- list( "max_results" = page_n, "start_time" = start_tweets, "end_time" = end_tweets, "tweet.fields" = "attachments,author_id,context_annotations,conversation_id,created_at,entities,geo,id,in_reply_to_user_id,lang,public_metrics,possibly_sensitive,referenced_tweets,source,text,withheld", "user.fields" = "created_at,description,entities,id,location,name,pinned_tweet_id,profile_image_url,protected,public_metrics,url,username,verified,withheld", "expansions" = "author_id,entities.mentions.username,geo.place_id,in_reply_to_user_id,referenced_tweets.id,referenced_tweets.id.author_id", "place.fields" = "contained_within,country,country_code,full_name,geo,id,name,place_type" ) new_df <- data.frame() for(user in x){ .vcat(verbose, "user: ", user, "\n") endpoint_url <- paste0("https://api.twitter.com/2/users/", user, "/tweets") new_rows <- get_tweets(params = params, endpoint_url = endpoint_url, page_token_name = "pagination_token", n = n, file = file, bearer_token = bearer_token, export_query = export_query, data_path = data_path, bind_tweets = bind_tweets, verbose = verbose) new_df <- dplyr::bind_rows(new_df, new_rows) } new_df }
MSR <- function(level){ x <- NULL if(level==1){ x1 <- github.cssegisanddata.covid19(state = "Montserrat", level = 2) x2 <- ourworldindata.org(id = "MSR") x <- full_join(x1, x2, by = "date") } return(x) }
nonparasccs <- function(indiv, astart, aend, aevent, adrug, aedrug, kn1=12, kn2=12, sp1=NULL, sp2=NULL, data){ indiv <- eval(substitute(indiv), data, parent.frame()) astart <- eval(substitute(astart), data, parent.frame()) aend <- eval(substitute(aend), data, parent.frame()) aevent <- eval(substitute(aevent), data, parent.frame()) adrug <- eval(substitute(adrug), data, parent.frame()) aedrug <- eval(substitute(aedrug), data, parent.frame()) fdata <- data.frame("indiv"=indiv, "startob"=astart, "endob"=aend, "st_risk"=adrug, "end_risk"=aedrug, "eventday"=aevent) fdata$st_risk <- pmax(fdata$startob, fdata$st_risk) fdata$st_risk <- pmin(fdata$endob, fdata$st_risk) fdata$end_risk <- pmax(fdata$startob, fdata$end_risk) fdata$end_risk <- pmin(fdata$endob, fdata$end_risk) fdata$st_risk <- ifelse(is.na(fdata$st_risk), fdata$endob, fdata$st_risk) fdata$end_risk <- ifelse(is.na(fdata$end_risk), fdata$endob, fdata$end_risk) fdata$end_risk <- pmin(fdata$endob, fdata$end_risk) fdata$expostatus <- ifelse(fdata$eventday < fdata$st_risk | fdata$eventday > fdata$end_risk | fdata$st_risk==fdata$endob, 0, 1) fdata$timesinceex <- fdata$eventday - fdata$st_risk fdata$timesinceex <- ifelse(fdata$timesinceex < 0, 0, fdata$timesinceex) fdata$timesinceex <- ifelse(fdata$timesinceex > (fdata$end_risk - fdata$st_risk), max(fdata$end_risk - fdata$st_risk), fdata$timesinceex) knots1 <- seq(min(fdata$startob), max(fdata$endob)+0.0005, length=kn1) data4 <- data.frame(fdata) data4$timesincevac <- data4$eventday - data4$st_risk data4$risklen <- data4$end_risk - data4$st_risk data4$expostatus <- ifelse(data4$timesincevac < 0 | data4$timesincevac > data4$risklen, 0, 1) timesincevacwithinexpo <- data4$timesincevac[data4$expostatus==1] timesincevacwithinexpo<- c(timesincevacwithinexpo, 0, max(data4$risklen)+0.00001) knots1ex <- seq(min(timesincevacwithinexpo), max(timesincevacwithinexpo), length=kn2) Maevent = dmsplinedesign(fdata$eventday, knots1, 4, 0) Maendrisk = dmsplinedesign(fdata$end_risk, knots1, 4, 0) Mastrisk = dmsplinedesign(fdata$st_risk, knots1, 4, 0) Mad1endrisk = dmsplinedesign(fdata$end_risk, knots1, 4, 1) Mad1strisk = dmsplinedesign(fdata$st_risk, knots1, 4, 1) Mad2endrisk = dmsplinedesign(fdata$end_risk, knots1, 4, 2) Mad2strisk = dmsplinedesign(fdata$st_risk, knots1, 4, 2) Mad3endrisk = dmsplinedesign(fdata$end_risk, knots1, 4, 3) Mad3strisk = dmsplinedesign(fdata$st_risk, knots1, 4, 3) Iastrisk = ispline(fdata$st_risk, knots1, 4) Iastartobs = ispline(fdata$startob, knots1, 4) Iaendobs = ispline(fdata$endob, knots1, 4) Iaendrisk = ispline(fdata$end_risk, knots1, 4) Mexeventsinceex = dmsplinedesign(fdata$timesinceex, knots1ex, 4, 0) Iexendrisk = ispline(fdata$end_risk-fdata$st_risk, knots1ex, 4) Iexstrisk = ispline(fdata$st_risk-fdata$st_risk, knots1ex, 4) I1exendrisk = integrateIspline(fdata$end_risk-fdata$st_risk, knots1ex, 4, 1) I1exstrisk = integrateIspline(fdata$st_risk-fdata$st_risk, knots1ex, 4, 1) I2exendrisk = integrateIspline(fdata$end_risk-fdata$st_risk, knots1ex, 4, 2) I2exstrisk = integrateIspline(fdata$st_risk-fdata$st_risk, knots1ex, 4, 2) I3exendrisk = integrateIspline(fdata$end_risk-fdata$st_risk, knots1ex, 4, 3) I3exstrisk = integrateIspline(fdata$st_risk-fdata$st_risk, knots1ex, 4, 3) basisobj_age <- create.bspline.basis(knots1,kn1+2) penaltymatrixage <- bsplinepen(basisobj_age) basisobj_exposure <- create.bspline.basis(knots1ex,kn2+2) penaltymatrix <- bsplinepen(basisobj_exposure) neg.LLnex <- function(p, lambda1) { -(sum(rowsum(log(Maevent[, 1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2), fdata$indiv)) -(sum(rowsum(log((Iaendobs%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2) - (Iastartobs%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2) ), fdata$indiv))) -(lambda1)*(t(c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)%*%penaltymatrixage%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2) ) } llex <- function(p) { -(sum(rowsum(log(Maevent[, 1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2), fdata$indiv)) -(sum(rowsum(log((Iaendobs%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2) - (Iastartobs%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2) ), fdata$indiv))) ) } cv1 <- function(lambda1) { p0 <- c(rep(1/(kn1+1), kn1+1)) outopt1 <- optim(p0, neg.LLnex, lambda1=lambda1, gr = NULL, method = c("BFGS"), hessian = TRUE) par <- outopt1$par hes <- outopt1$hessian cvs <- llex(par) + sum(diag(pseudoinverse(-hes[1:(kn1+1), 1:(kn1+1)])%*%(-hes[1:(kn1+1), 1:(kn1+1)] + ((lambda1*(8*penaltymatrixage*((c(par[1:(ceiling((kn1+2+1)/2))], 1, par[((ceiling((kn1+2+1)/2))+1):(kn1+1)]))%*%t(c(par[1:(ceiling((kn1+2+1)/2))], 1, par[((ceiling((kn1+2+1)/2))+1):(kn1+1)]))) + 4*(diag(as.vector(penaltymatrixage%*%(c(par[1:(ceiling((kn1+2+1)/2))], 1, par[((ceiling((kn1+2+1)/2))+1):(kn1+1)]))^2)))))[-((ceiling((kn1+2+1)/2))+1),-((ceiling((kn1+2+1)/2))+1)])))) return(cvs) } if (is.null(sp1)) { smpar1 <- optim(0.00001, cv1, method=c("Brent"), lower = 0.00001, upper = 150000000, control = list(reltol=1e-2)) } else { smpar1<-list("par"= sp1, "value"=cv1(sp1)) } neg.LLna <- function(p, lambda) { -(sum(rowsum(log(rep(1, nrow(fdata))), fdata$indiv)) + sum(rowsum(fdata$expostatus*(log(Mexeventsinceex%*%p[1:length(p)]^2)), fdata$indiv)) -(sum(rowsum(log((fdata$st_risk - fdata$startob) + ((Iexendrisk%*%p[1:length(p)]^2) - (Iexstrisk%*%p[1:length(p)]^2)) + (fdata$endob - fdata$end_risk)), fdata$indiv))) -(lambda)*(t(p[1:length(p)]^2)%*%penaltymatrix%*%p[1:length(p)]^2) ) } ll <- function(p) { -(sum(rowsum(log(rep(1, nrow(fdata))), fdata$indiv)) + sum(rowsum(fdata$expostatus*(log(Mexeventsinceex%*%p[1:length(p)]^2)), fdata$indiv)) -(sum(rowsum(log((fdata$st_risk - fdata$startob) + ((Iexendrisk%*%p[1:length(p)]^2) - (Iexstrisk%*%p[1:length(p)]^2)) + (fdata$endob - fdata$end_risk)), fdata$indiv))) ) } cv <- function(lambda) { p0 <- c(rep(1/(kn2+2), kn2+2)) outopt <- optim(p0, neg.LLna, lambda=lambda, gr = NULL, method = c("BFGS"), hessian = TRUE) cvs <- ll(outopt$par) + sum(diag((pseudoinverse(-outopt$hessian))%*%(-outopt$hessian + lambda*((8*penaltymatrix*(outopt$par%*%t(outopt$par)) ) + (4*(diag(as.vector(penaltymatrix%*%outopt$par^2))))) ))) return(cvs) } if (is.null(sp2)) { smpar <- optim(15, cv, method=c("Brent"), lower = 0.00001, upper = 1500, control = list(reltol=1e-2)) } else { smpar<-list("par"= sp2, "value"=cv(sp2)) } neg.LL <- function(p, lambda1, lambda) { -(sum(rowsum(log(Maevent[, 1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2), fdata$indiv)) + sum(rowsum(fdata$expostatus*(log(Mexeventsinceex%*%p[(kn1+2):length(p)]^2)), fdata$indiv)) -(sum(rowsum(log(Iastrisk%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2 - (Iastartobs%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2) + ((Maendrisk[,1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)*(Iexendrisk%*%p[(kn1+2):length(p)]^2) - (Mastrisk[,1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)*(Iexstrisk%*%p[(kn1+2):length(p)]^2)) - ((Mad1endrisk[,1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)*(I1exendrisk%*%p[(kn1+2):length(p)]^2) - (Mad1strisk[,1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)*(I1exstrisk%*%p[(kn1+2):length(p)]^2)) + ((Mad2endrisk[,1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)*(I2exendrisk%*%p[(kn1+2):length(p)]^2) - (Mad2strisk[,1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)*(I2exstrisk%*%p[(kn1+2):length(p)]^2)) - ((Mad3endrisk[,1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)*(I3exendrisk%*%p[(kn1+2):length(p)]^2) - (Mad3strisk[,1:(kn1+2)]%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)*(I3exstrisk%*%p[(kn1+2):length(p)]^2)) + (Iaendobs%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2 - Iaendrisk%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)), fdata$indiv))) -(lambda1)*(t(c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2)%*%penaltymatrixage%*%c(p[1:(ceiling((kn1+2+1)/2))], 1, p[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2) -(lambda)*(t(p[(kn1+2):length(p)]^2)%*%penaltymatrix%*%p[(kn1+2):length(p)]^2) ) } p0f1 <- c(rep(1/(kn1+1), kn1+1)) outoptf1 <- optim(p0f1, neg.LLnex, lambda1=smpar1$par, gr = NULL, method = c("BFGS"), hessian = TRUE) p0f2 <- c(rep(1/(kn2+2), kn2+2)) outoptf2 <- optim(p0f2, neg.LLna, lambda=smpar$par, gr = NULL, method = c("BFGS"), hessian = TRUE) p0f <- c(outoptf1$par, outoptf2$par) out <- optim(p0f, neg.LL, lambda1=smpar1$par, lambda=smpar$par, gr = NULL, method = c("BFGS"), hessian = TRUE) timesinceex <- seq(0, max(fdata$timesinceex)) M <- dmsplinedesign(timesinceex, knots1ex, 4, 0) betas <- out$par[(kn1+2):length(out$par)] var_cov_beta <- pseudoinverse((1/2)*(out$hessian))[(kn1+2):length(out$par), (kn1+2):length(out$par)] var_cov_betasq <- (2*diag(betas))%*%var_cov_beta%*%(2*t(diag(betas))) variance <- rep(0, length(timesinceex)) for (i in 1:length(timesinceex)) { variance[i] <- t(M[i,])%*%var_cov_betasq%*%M[i,] } sderror <- sqrt(variance) estimates <- (M%*%out$par[(kn1+2):length(out$par)]^2) agessss <- seq(min(astart), max(aend)) Msplineageeffect <- dmsplinedesign(agessss, knots1, 4, 0) ageriesti <- Msplineageeffect%*%(c(out$par[1:(ceiling((kn1+2+1)/2))], 1, out$par[((ceiling((kn1+2+1)/2))+1):(kn1+1)])^2) nonparaSCCSoutput <- list("exposure" = estimates, "age"=ageriesti/ageriesti[1], "ageaxis"=agessss, "timesinceexpo"=timesinceex, "se"=sderror, "lambda1"=smpar1$par, "cv1"=smpar1$value, "lambda2"=smpar$par, "cv2"=smpar$value) class(nonparaSCCSoutput) <- "nonparasccs" return(nonparaSCCSoutput) }
context("nhl_games") testthat::test_that( "nhl_games_content has correct names", { testthat::skip_if_offline(host = "nhl.com") testthat::skip_if(skipRemoteTests) res <- nhl_games_content(2017010001)[[1L]] testthat::expect_true(all(is.element( c("copyright", "link", "editorial", "media", "highlights"), names(res) ))) } ) testthat::test_that( "nhl_games_feed has correct names", { testthat::skip_if_offline(host = "nhl.com") testthat::skip_if(skipRemoteTests) res <- nhl_games_feed(2017010001)[[1L]] testthat::expect_true(all(is.element( c("copyright", "gamePk", "link", "metaData", "gameData", "liveData"), names(res) ))) } ) testthat::test_that( "nhl_games_boxscore has correct names", { testthat::skip_if_offline(host = "nhl.com") testthat::skip_if(skipRemoteTests) res <- nhl_games_boxscore(2017010001)[[1L]] testthat::expect_true(all(is.element( c("copyright", "teams", "officials"), names(res) ))) } ) testthat::test_that( "nhl_games_linescore has correct names", { testthat::skip_if_offline(host = "nhl.com") testthat::skip_if(skipRemoteTests) res <- nhl_games_linescore(2017010001)[[1L]] testthat::expect_true(all(is.element( c( "copyright", "currentPeriod", "currentPeriodOrdinal", "currentPeriodTimeRemaining", "periods", "shootoutInfo", "teams", "powerPlayStrength", "hasShootout", "intermissionInfo", "powerPlayInfo" ), names(res) ))) } )
batchconvertjack <- function(ndigit=3, rm.loci) { filelist=list.files(pattern='[.gen]$') nbfiles=length(filelist) for (t in 1 :nbfiles) { convertjack(filelist[t],ndigit,rm.loci) } arlfilelist=gsub(pattern='[.]gen', replacement='_jack.arp',filelist) write.table(arlfilelist, file='batchjack.arb', quote=F, row.names=F, col.names=F, sep='\r') }
NULL setClass(Class="SummaryForecastData", representation=representation( summaryData="matrix" ), prototype=prototype( summaryData=matrix(NA, nrow=0, ncol=0) ), ) setMethod( f="summary", signature="FDatFitLogit", definition=function(object, period="calibration", fitStatistics=c("brier", "auc", "perCorrect", "pre"), threshold=.5, baseModel=0, showCoefs=TRUE, ...){ out <- compareModels(object, .period=period, .fitStatistics=fitStatistics, .threshold=threshold, .baseModel=baseModel)@fitStatistics if(showCoefs){ coefs <- data.matrix(as.data.frame(t(plyr::aaply(object@modelParams, 1:2, function(x) {mean(x, na.rm=TRUE)})))) coefs <- rbind(c(NA,NA), coefs) out <- cbind(coefs, out) } W <- object@modelWeights W <- c(NA, W) out <- cbind(W, out) rownames(out) <- c("EBMA", object@modelNames) new("SummaryForecastData", summaryData=out) } ) setMethod( f="summary", signature="FDatFitNormal", definition=function(object, period="calibration", fitStatistics=c("rmse", "mae"), threshold=.5, baseModel=0, showCoefs=TRUE, ...){ out <- compareModels(object, .period=period, .fitStatistics=fitStatistics, .threshold=threshold, .baseModel=baseModel)@fitStatistics if(showCoefs){ coefs <- data.matrix(as.data.frame(t(plyr::aaply(object@modelParams, 1:2, function(x) {mean(x, na.rm=TRUE)})))) coefs <- rbind(c(NA,NA), coefs) out <- cbind(coefs, out) } W <- object@modelWeights W <- c(NA, W) out <- cbind(W, out) rownames(out) <- c("EBMA", object@modelNames) new("SummaryForecastData", summaryData=out) } ) setMethod( f="plot", signature="FDatFitLogit", definition=function(x, period="calibration", subset=1, mainLabel="", xLab="", yLab="", cols=1, ...){ nDraw=1 numModels <- length(x@modelWeights)+1 modelNames <- c("EBMA", x@modelNames) if(period=="calibration"){ .pred <- x@predCalibration; .actual <- x@outcomeCalibration } else{ .pred <- x@predTest; .actual <- x@outcomeTest } par(mgp=c(1, 0, 0), lend = 2, mar=c(1,0,1,0), mfrow=c(numModels, 1)) for (i in 1:numModels){ .miss <- is.na(.pred[,i, nDraw]) separationplot::separationplot(pred=as.vector(.pred[!.miss,i, nDraw]), actual=as.vector(.actual[!.miss]), heading=modelNames[i], newplot=F) } } ) setMethod( f="plot", signature="FDatFitNormal", definition=function(x, period="calibration", subset=1, mainLabel=paste("Observation", subset), xLab="Outcome", yLab="Posterior Probability", cols=2:(length(x@modelNames)+1), ... ) { if(x@method == "EM"){ thisDraw=1 if(period=="calibration"){ .nMod <- length(x@modelNames) .pred <- matrix(x@predCalibration[subset,,thisDraw], ncol=.nMod+1); colnames(.pred) <- c("EBMA", x@modelNames) .actual <- x@outcomeCalibration[subset] } else{ .nMod <- length(x@modelNames) .pred <- matrix(x@predTest[subset,,thisDraw], ncol=.nMod+1); colnames(.pred) <- c("EBMA", x@modelNames) .actual <- x@outcomeTest } .sd <- sqrt(x@variance) if (length(subset)>1){ for (j in 1:nrow(.pred)){ .means <- .pred[j,x@modelNames] .miss <- is.na(.means) .nModThis <- sum(!.miss) .means <- .means[!.miss] .xMin <- min(.means)-2.5*.sd; .xMax <- max(.means)+2.5*.sd .xAxis <- seq(.xMin, .xMax, by=.01); .yAxis <- matrix(NA, .nModThis, length(.xAxis)) W <- x@modelWeights[!.miss] for(i in 1:.nModThis){ .yAxis[i,] <- dnorm(.xAxis, mean=.means[i], sd=.sd)*W[i] } .totals <- colSums(.yAxis) plot(NULL, xlim=c(.xMin, .xMax), ylim=c(0,max(.totals)), main=mainLabel[j], xlab=xLab, ylab=yLab) for(i in 1:.nModThis){lines(.xAxis, .yAxis[i,], type="l", lty=2, col=cols[i])} lines(.xAxis, colSums(.yAxis), lwd=2) rug(.means); rug(.pred[j,"EBMA"], lwd=3) abline(v=.actual[j], lty=3) } } else { .means <- .pred[,x@modelNames] .miss <- is.na(.means) .nModThis <- sum(!.miss) .means <- .means[!.miss] .xMin <- min(.means)-2.5*.sd .xMax <- max(.means)+2.5*.sd .xAxis <- seq(.xMin, .xMax, by=.01) .yAxis <- matrix(NA, .nModThis, length(.xAxis)) W <- x@modelWeights[!.miss] for(i in 1:.nModThis){.yAxis[i,] <- dnorm(.xAxis, mean=.means[i], sd=.sd)*W[i]} .totals <- colSums(.yAxis) plot(NULL, xlim=c(.xMin, .xMax), ylim=c(0,max(.totals)), main=mainLabel, xlab=xLab, ylab=yLab) for(i in 1:.nModThis){lines(.xAxis, .yAxis[i,], type="l", lty=2, col=cols[i])} lines(.xAxis, colSums(.yAxis)) rug(.means); rug(.pred[,"EBMA"], lwd=3) abline(v=.actual, lty=3) } } if(x@method == "gibbs"){ thisDraw <- 1 if(period=="calibration"){ .nMod <- length(x@modelNames)-1 .pred <- matrix(x@predCalibration[subset,-which(colnames(x@predCalibration)=="EBMA"),thisDraw], ncol=.nMod+1); colnames(.pred) <- c(x@modelNames) .actual <- x@outcomeCalibration[subset] .posteriorW <- x@posteriorWeights } else{ .nMod <- length(x@modelNames)-1 .pred <- matrix(x@predTest[subset,-which(colnames(x@predCalibration)=="EBMA"),thisDraw], ncol=.nMod+1); colnames(.pred) <- c(x@modelNames) .actual <- x@outcomeTest .posteriorW <- x@posteriorWeights } .sd <- sqrt(x@variance) if (length(subset)>1){ for (j in 1:nrow(.pred)){ .means <- .pred[j,x@modelNames] .miss <- is.na(.means) .nModThis <- sum(!.miss) .means <- .means[!.miss] .xMin <- min(.means)-2.5*.sd; .xMax <- max(.means)+2.5*.sd .yAxis <- matrix(NA, .nModThis, 1000) .maxima <- rep(NA, .nModThis) W <- x@modelWeights[!.miss] for(i in 1:.nModThis){ .yAxis[i,] <- rnorm(1000, mean=.means[i], sd=.sd) .maxima[i] <- max(density(.yAxis[i,])$y) } .posteriorPred <- apply(.yAxis,2, FUN = function(x){.posteriorW%*%as.matrix(x)}) if(x@predType == "posteriorMedian"){.posteriorSummary <- median(.posteriorPred)} if(x@predType == "posteriorMean"){.posteriorSummary <- mean(.posteriorPred)} plot(NULL, xlim=c(.xMin, .xMax), ylim=c(0,max(c(density(.posteriorPred)$y,.maxima))), main=mainLabel[j], xlab=xLab, ylab=yLab) for(i in 1:.nModThis){lines(density(.yAxis[i,]), type="l", lty=2, col=cols[i])} lines(density(.posteriorPred), lwd=2) rug(.means); rug(.posteriorSummary, lwd=3) abline(v=.actual[j], lty=3) } } else { .means <- .pred[,x@modelNames] .miss <- is.na(.means) .nModThis <- sum(!.miss) .means <- .means[!.miss] .xMin <- min(.means)-2.5*.sd .xMax <- max(.means)+2.5*.sd .yAxis <- matrix(NA, .nModThis, 1000) .maxima <- rep(NA, .nModThis) W <- x@modelWeights[!.miss] for(i in 1:.nModThis){ .yAxis[i,] <- rnorm(1000, mean=.means[i], sd=.sd) .maxima[i] <- max(density(.yAxis[i,])$y) } .posteriorPred <- apply(.yAxis,2, FUN = function(x){.posteriorW%*%as.matrix(x)}) if(x@predType == "posteriorMedian"){.posteriorSummary <- median(.posteriorPred)} if(x@predType == "posteriorMean"){.posteriorSummary <- mean(.posteriorPred)} plot(NULL, xlim=c(.xMin, .xMax), ylim=c(0,max(c(density(.posteriorPred)$y,.maxima))), main=mainLabel, xlab=xLab, ylab=yLab) for(i in 1:.nModThis){lines(density(.yAxis[i,]), type="l", lty=2, col=cols[i])} lines(density(.posteriorPred), lwd=2) rug(.means); rug(.posteriorSummary, lwd=3) abline(v=.actual, lty=3) } } } )
VLF.count.pos <- function(freq, p,seqlength){ count <- mat.or.vec(nr = 1, nc = seqlength) for(i in 1:seqlength){ count[i] = length(which(freq[,i] < p)) } return(count) }
HAC.simrep <- function(HACSObject) { assign("N", HACSObject$N, envir = envr) assign("Hstar", HACSObject$Hstar, envir = envr) assign("probs", HACSObject$probs, envir = envr) assign("perms", HACSObject$perms, envir = envr) assign("p", HACSObject$p, envir = envr) assign("conf.level", HACSObject$conf.level, envir = envr) assign("subset.haps", HACSObject$subset.haps, envir = envr) assign("prop.haps", HACSObject$prop.haps, envir = envr) assign("subset.seqs", HACSObject$subset.seqs, envir = envr) assign("prop.seqs", HACSObject$prop.seqs, envir = envr) assign("input.seqs", HACSObject$input.seqs, envir = envr) assign("progress", HACSObject$progress, envir = envr) assign("num.iters", HACSObject$num.iters, envir = envr) assign("filename", HACSObject$filename, envir = envr) assign("ptm", proc.time(), envir = envr) assign("iters", 1, envir = envr) df <- data.frame(matrix(ncol = 6, nrow = 0)) x <- c( "Mean number of haplotypes sampled", "Mean number of haplotypes not sampled", "Proportion of haplotypes sampled", "Proportion of haplotypes not sampled", "Mean value of N*", "Mean number of specimens not sampled" ) colnames(df) <- x cat("\n Simulating haplotype accumulation...") df <- HAC.sim( N = envr$N, Hstar = envr$Hstar, probs = envr$probs, perms = envr$perms, p = envr$p, subset.haps = envr$subset.haps, prop.haps = envr$prop.haps, subset.seqs = envr$subset.seqs, prop.seqs = envr$prop.seqs, input.seqs = envr$input.seqs, conf.level = envr$conf.level, progress = envr$progress, num.iters = envr$num.iters, df = df ) amt <- proc.time() - envr$ptm if (envr$progress == TRUE) { if (envr$R < envr$p) { cat("\n \n \n Desired level of haplotype recovery has not yet been reached \n") } else { cat( "\n \n \n Desired level of haplotype recovery has been reached \n \n \n ---------- Finished. ---------- \n The initial guess for sampling sufficiency was N = ", paste0(envr$N), "individuals", "\n \n The algorithm converged after", envr$iters, "iterations and took", amt[3], "s", "\n \n The estimate of sampling sufficiency for p =", paste0(envr$p * 100, "%"), "haplotype recovery is N* = ", envr$Nstar - envr$X, "individuals \n (", paste0(envr$conf.level * 100, "%"), "CI:", paste(envr$low, envr$high, sep = "-"), ")", "\n \n The number of additional specimens required to be sampled for p =", paste0(envr$p * 100, "%"), "haplotype recovery is \n N* - N = ", envr$Nstar - envr$X - envr$N, "individuals \n \n -------------------------------" ) } } if (is.null(envr$num.iters)) { while (envr$R < envr$p) { df <- HAC.sim( N = ceiling(envr$Nstar), Hstar = envr$Hstar, probs = envr$probs, perms = envr$perms, p = envr$p, subset.haps = envr$subset.haps, prop.haps = envr$prop.haps, subset.seqs = envr$subset.seqs, prop.seqs = envr$prop.seqs, conf.level = envr$conf.level, num.iters = envr$num.iters, progress = envr$progress, df = df ) assign("iters", envr$iters + 1, envr) amt <- proc.time() - envr$ptm if (envr$progress == TRUE) { if (envr$R < envr$p) { cat("\n \n \n Desired level of haplotype recovery has not yet been reached \n") } else { cat( "\n \n \n Desired level of haplotype recovery has been reached \n \n \n ---------- Finished. ---------- \n The initial guess for sampling sufficiency was N = ", paste0(envr$N), "individuals", "\n \n The algorithm converged after", envr$iters, "iterations and took", amt[3], "s", "\n \n The estimate of sampling sufficiency for p =", paste0(envr$p * 100, "%"), "haplotype recovery is N* = ", envr$Nstar - envr$X, "individuals \n (", paste0(envr$conf.level * 100, "%"), "CI:", paste(envr$low, envr$high, sep = "-"), ")", "\n \n The number of additional specimens required to be sampled for p =", paste0(envr$p * 100, "%"), "haplotype recovery is \n N* - N = ", envr$Nstar - envr$X - envr$N, "individuals \n \n -------------------------------" ) } } } } message("\n \n Type envr$ to extract simulation parameters of interest (see documentation for details)") if (!is.null(envr$filename)) { write.csv(df, file = paste0(tempdir(), "/", get("filename", envir = envr), ".csv")) } }
HKMrhsfun <- function(blk,At,par,X,Z,rp,Rd,sigmu,hRd=NULL,dX=NULL,dZ=NULL){ ff <- matrix(list(),nrow(blk),1) m <- length(rp) if(!is.null(hRd)){ corrector <- 1 }else{ corrector <- 0 hRd <- matrix(0,m,1) } hEinvRc <- matrix(0,m,1) EinvRc <- matrix(list(), nrow(blk),1) rhsfree <- c() for(p in 1:nrow(blk)){ n <- sum(blk[[p,2]]) if(blk[[p,1]] == "l"){ if(is.list(sigmu)){ EinvRc[[p,1]] <- sigmu[[p]]/Z[[p]] - X[[p]] }else{ EinvRc[[p,1]] <- sigmu/Z[[p,1]] - X[[p,1]] } Rq <- Matrix(0,n,1, sparse=TRUE) if(corrector & base::norm(par$parbarrier[[p,1]], type="2") == 0){ Rq <- dX[[p,1]] * dZ[[p,1]]/Z[[p,1]] }else{ tmp <- par$dd[[p,1]] * Rd[[p,1]] tmp2 <- mexMatvec(At[[p]],tmp,1) hRd <- hRd + tmp2 } EinvRc[[p,1]] <- EinvRc[[p,1]] - Rq tmp2 <- mexMatvec(At[[p,1]], EinvRc[[p]],1) hEinvRc <- hEinvRc + tmp2 }else if(blk[[p,1]] == "q"){ if(is.list(sigmu)){ EinvRc[[p]] <- qops(blk,p,sigmu[[p]], par$Zinv[[p]],3) - X[[p]] }else{ EinvRc[[p]] <- sigmu * par$Zinv[[p]] - X[[p]] } Rq <- Matrix(0,n,1,sparse=TRUE) if(corrector & base::norm(par$parbarrier[[p]], type="2") == 0){ ff[[p]] <- qops(blk,p,1/par$gamz[[p]], as.matrix(Z[[p]]),3) hdx <- qops(blk,p,par$gamz[[p]], as.matrix(ff[[p]]),5,as.matrix(dX[[p]])) hdz <- qops(blk,p,par$gamz[[p]],as.matrix(ff[[p]]),6,as.matrix(dZ[[p]])) hdxdz <- Arrow(blk,p,hdx,hdz) Rq <- qops(blk,p,par$gamz[[p]],as.matrix(ff[[p]]),6,hdxdz) }else{ tmp <- par$dd[[p]] * Rd[[p]] + qops(blk,p,qops(blk,p, as.matrix(Rd[[p]]), par$Zinv[[p]],1),as.matrix(X[[p]]),3) + qops(blk,p,qops(blk,p, as.matrix(Rd[[p]]), as.matrix(X[[p]]),1),as.matrix(par$Zinv[[p]]),3) tmp2 <- mexMatvec(At[[p,1]], tmp,1) hRd <- hRd + tmp2 } EinvRc[[p]] <- EinvRc[[p]] - Rq tmp2 <- mexMatvec(At[[p,1]], EinvRc[[p]],1) hEinvRc <- hEinvRc + tmp2 }else if(blk[[p,1]] == "s"){ if(is.list(sigmu)){ sigmuvec <- mexexpand(as.matrix(blk[[p,2]]),sigmu[[p,1]]) EinvRc[[p]] <- par$Zinv[[p,1]] %*% diag(sigmuvec,n,n) - X[[p,1]] }else{ EinvRc[[p]] <- sigmu*par$Zinv[[p]] - X[[p]] } Rq <- Matrix(0,n,n, sparse=TRUE) if(corrector & base::norm(par$parbarrier[[p]], type="2") == 0){ Rq <- Prod3(blk,p,dX[[p]], dZ[[p]], par$Zinv[[p]],0) Rq <- 0.5*(Rq + t(Rq)) }else{ tmp <- Prod3(blk,p,X[[p]], Rd[[p]], par$Zinv[[p]],0,par$nzlistAy[[p]]) tmp <- 0.5*(tmp + t(tmp)) tmp2 <- AXfun(matrix(blk[p,],nrow=1),matrix(At[p,],nrow=1), par$permA[p,,drop=FALSE],matrix(list(tmp), nrow=1)) hRd <- hRd + tmp2 } EinvRc[[p]] <- EinvRc[[p]] - Rq EinvRctmp <- EinvRc EinvRctmp[[p]] <- as.matrix(EinvRctmp[[p]]) tmp2 <- AXfun(matrix(blk[p,],nrow=1),matrix(At[p,],nrow=1),par$permA[p,,drop=FALSE],matrix(EinvRctmp[p], nrow=1)) hEinvRc <- hEinvRc + tmp2 }else if(blk[[p,1]] == "u"){ rhsfree <- rbind(rhsfree, Rd[[p]]) } } rhs <- rp + hRd - hEinvRc rhs <- rbind(rhs,rhsfree) return(list(rhs=rhs, EinvRc = EinvRc, hRd = hRd)) }
context("trajectory") on.exit(unlink('Rplots.pdf')) ex1.pars <- list(y0 = 0, add = F, tlim = c(0,5), system="one.dim") ex1.out <- do.call(trajectory, c(deriv=phaseR::example1, ex1.pars)) ex1b.pars <- list(y0 = c(0, 1, 3), add = F, tlim = c(0,5), system="one.dim") ex1b.out <- do.call(trajectory, c(deriv=phaseR::example1, ex1b.pars)) ex10.pars <- list(y0 = c(2, 5), add = F, tlim = c(0,5)) ex10.out <- do.call(trajectory, c(deriv=phaseR::example10, ex10.pars)) ex10b.pars <- list(y0 = t(matrix(c(2, 5, -2, 4, 0, 3), nrow = 2)), add = F, tlim = c(0,5), xlim = c(-5,5)) ex10b.out <- do.call(trajectory, c(deriv=phaseR::example10, ex10b.pars)) test_that("behavior equal to reference behavior", { expect_equal_to_reference(ex1.out["y"], "test-trajectory_ref-ex1.rds") expect_equal_to_reference(ex1b.out["y"], "test-trajectory_ref-ex1b.rds") expect_equal_to_reference(ex10.out[c("x","y")], "test-trajectory_ref-ex10.rds") expect_equal_to_reference(ex10b.out[c("x","y")], "test-trajectory_ref-ex10b.rds") }) test_that("alternative formulation equal to reference behavior", { ex1.alt <- function(t, state, parameters) { with(as.list(c(state, parameters)), { dA = 4 - A^2 list(c(dA)) }) } ex1.alt.out <- do.call(trajectory, c(list(deriv=ex1.alt, state.names = c("A")), ex1.pars)) expect_equal(ex1.alt.out["dy"], ex1.out["dy"]) ex1b.alt.out <- do.call(trajectory, c(list(deriv=ex1.alt, state.names = c("A")), ex1b.pars)) expect_equal(ex1b.alt.out["dy"], ex1b.out["dy"]) ex10.alt <- function(t, state, parameters) { with(as.list(c(state, parameters)), { dI = -I + I^3 dN = -2 * N list(c(dI, dN)) }) } ex10.alt.out <- do.call(trajectory, c(list(deriv=ex10.alt, state.names = c("I", "N")), ex10.pars)) expect_equal(ex10.alt.out[c("dx","dy")], ex10.out[c("dx","dy")]) ex10b.alt.out <- do.call(trajectory, c(list(deriv=ex10.alt, state.names = c("I", "N")), ex10b.pars)) expect_equal(ex10b.alt.out[c("dx","dy")], ex10b.out[c("dx","dy")]) })
context("paxes tests") test <- FALSE if (test) { setwd("~") pdf("test-paxes.pdf") data(narccap) pimage(lon, lat, tasmax[, , 1], proj = "mercator", axes = FALSE) paxes("mercator", xlim = range(lon), ylim = range(lat), col = "grey", axis.args = list(col.axis = "blue", xat = c(-160, -100, -90, -80, -20))) title("blue axis with unique x spacing, grey lines") dev.off() }
bootLassoOLS <- function(x, y, B = 500, type.boot = "residual", alpha = 0.05, OLS = TRUE, cv.method = "cv", nfolds = 10, foldid, cv.OLS = TRUE, tau = 0, parallel = FALSE, standardize = TRUE, intercept = TRUE, parallel.boot = FALSE, ncores.boot = 1, ...){ x <- as.matrix(x) y <- as.numeric(y) n <- dim(x)[1] p <- dim(x)[2] if ((type.boot != "residual") & (type.boot != "paired")) { stop("type.boot should take value of 'residual' or 'paired'.") } selectset <- rep(0, p) Beta.Lasso <- rep(0, p) Beta.LassoOLS <- rep(0, p) globalfit <- glmnet(x, y, standardize = standardize, intercept = intercept, ...) lambda <- globalfit$lambda cvfit <- escv.glmnet(x, y, lambda = lambda, nfolds = nfolds, tau = tau, cv.OLS = cv.OLS, parallel = parallel, standardize = standardize, intercept = intercept, ...) if (cv.method == "cv") { lambda.opt <- cvfit$lambda.cv } if (cv.method == "escv") { lambda.opt <- cvfit$lambda.escv } if (cv.method == "cv1se") { lambda.opt <- cvfit$lambda.cv1se } fitlasso <- predict(globalfit, type = "coefficients", s = lambda.opt) fit.value <- predict(globalfit, newx = x, s = lambda.opt) betalasso <- fitlasso[-1] Beta.Lasso <- betalasso Beta.LassoOLS <- betalasso selectvar <- betalasso != 0 if (OLS & sum(selectvar) > 0) { mls.obj <- mls(x[, selectvar, drop = FALSE], y, tau = tau, standardize = standardize, intercept = intercept) Beta.LassoOLS[selectvar] <- mls.obj$beta fit.value <- mypredict(mls.obj, newx = x[, selectvar, drop = FALSE]) } if (type.boot == "residual") { fit <- fit.value residual <- y - fit residual_center <- residual - mean(residual) Beta.boot.Lasso <- matrix(0, nrow = B, ncol = p) Beta.boot.LassoOLS <- matrix(0, nrow = B, ncol = p) out <- list() if (!parallel.boot) { for (i in 1:B) { out[[i]] <- list() resam <- sample(1:n, n, replace = TRUE) ystar <- fit + residual_center[resam] boot.obj <- Lasso(x = x, y = ystar, lambda = lambda.opt, standardize = standardize, intercept = intercept, ...) out[[i]][[1]] <- boot.obj$beta if (OLS) { boot.obj <- LassoOLS(x = x, y = ystar, lambda = lambda.opt, standardize = standardize, intercept = intercept, ...) } out[[i]][[2]] <- boot.obj$beta } } else { resams <- matrix(sample(1:n, n*B, replace = TRUE), nrow = n) out <- foreach(i = 1:B) %dopar% { resam <- resams[, i] ystar <- fit + residual_center[resam] boot.obj <- Lasso(x = x, y = ystar, lambda = lambda.opt, standardize = standardize, intercept = intercept, ...) beta1 <- boot.obj$beta if (OLS) { boot.obj <- LassoOLS(x = x, y = ystar, lambda = lambda.opt, standardize = standardize, intercept = intercept, ...) } beta2 <- boot.obj$beta list(beta1 = beta1, beta2 = beta2) } } for (i in 1:B) { Beta.boot.Lasso[i,] <- out[[i]][[1]] Beta.boot.LassoOLS[i,] <- out[[i]][[2]] out[[i]] <- 0 } out <- NULL interval.Lasso <- ci(Beta.Lasso, Beta.boot.Lasso, alpha = alpha, type = "basic") interval.LassoOLS <- ci(Beta.LassoOLS, Beta.boot.LassoOLS, alpha = alpha, type = "basic") } if (type.boot == "paired") { Beta.boot.Lasso <- matrix(0, nrow = B, ncol = p) Beta.boot.LassoOLS <- matrix(0, nrow = B, ncol = p) out <- list() if (!parallel.boot) { for (i in 1:B) { out[[i]] <- list() resam <- sample(1:n, n, replace = TRUE) rx <- x[resam,] ry <- y[resam] boot.obj <- Lasso(x = rx, y = ry, lambda = lambda.opt, standardize = standardize, intercept = intercept, ...) out[[i]][[1]] <- boot.obj$beta if (OLS) { boot.obj <- LassoOLS(x = rx, y = ry, lambda = lambda.opt, standardize = standardize, intercept = intercept, ...) } out[[i]][[2]] <- boot.obj$beta } } else { resams <- matrix(sample(1:n, n*B, replace = TRUE), nrow = n) out <- foreach(i = 1:B) %dopar% { resam <- resams[, i] rx <- x[resam, ] ry <- y[resam] boot.obj <- Lasso(x = rx, y = ry, lambda = lambda.opt, standardize = standardize, intercept = intercept, ...) beta1 <- boot.obj$beta if (OLS) { boot.obj <- LassoOLS(x = rx, y = ry, lambda = lambda.opt, standardize = standardize, intercept = intercept, ...) } beta2 <- boot.obj$beta list(beta1 = beta1, beta2 = beta2) } } for (i in 1:B) { Beta.boot.Lasso[i,] <- out[[i]][[1]] Beta.boot.LassoOLS[i,] <- out[[i]][[2]] out[[i]] <- 0 } out <- NULL interval.Lasso <- ci(Beta.Lasso, Beta.boot.Lasso, alpha = alpha, type = "quantile") interval.LassoOLS <- ci(Beta.LassoOLS, Beta.boot.LassoOLS, alpha = alpha, type = "quantile") } object <- list(lambda.opt = lambda.opt, Beta.Lasso = Beta.Lasso, Beta.LassoOLS = Beta.LassoOLS, interval.Lasso = interval.Lasso, interval.LassoOLS = interval.LassoOLS) object }
test_that('IEEE floating point, Fortran bind(C)', { expect_equal(.C(glinvtestfloatIEEE01_, -Inf, NaN, NAOK=T)[[2]], 0.0) expect_equal(.C(glinvtestfloatIEEE01_, Inf, NaN, NAOK=T)[[2]], Inf) }) test_that('IEEE floating point, .Call(), Rmath.h', { expect_equal(.Call(glinvtestfloatIEEE02, -Inf), 0.0) expect_equal(.Call(glinvtestfloatIEEE02, Inf), Inf) }) test_that('IEEE floating point, .C(), Rmath.h', { expect_equal(.C(glinvtestfloatIEEE03, -Inf, NaN, NAOK=T)[[2]], 0.0) expect_equal(.C(glinvtestfloatIEEE03, Inf, NaN, NAOK=T)[[2]], Inf) })
test_that( desc = "long_to_wide_converter works - spread true", code = { set.seed(123) df1 <- long_to_wide_converter( data = iris_long, x = condition, y = value ) set.seed(123) df2 <- long_to_wide_converter( data = mtcars, x = am, y = wt, paired = FALSE ) set.seed(123) df3 <- long_to_wide_converter( data = bugs_long, x = condition, y = desire, paired = TRUE ) set.seed(123) df4 <- long_to_wide_converter( data = ggplot2::msleep, x = vore, y = brainwt, paired = FALSE ) set.seed(123) expect_snapshot(list(df1, df2, df3, df4)) } ) test_that( desc = "long_to_wide_converter works - spread false", code = { set.seed(123) df1 <- long_to_wide_converter( data = iris_long, x = condition, y = value, spread = FALSE ) set.seed(123) df2 <- long_to_wide_converter( data = mtcars, x = am, y = wt, paired = FALSE, spread = FALSE ) set.seed(123) df3 <- long_to_wide_converter( data = bugs_long, x = condition, y = desire, paired = TRUE, spread = FALSE ) set.seed(123) df4 <- long_to_wide_converter( data = ggplot2::msleep, x = vore, y = brainwt, paired = FALSE, spread = FALSE ) set.seed(123) expect_snapshot(list(df1, df2, df3, df4)) } ) test_that( desc = "with rowid - without NA", code = { df <- structure(list( score = c(90, 90, 72.5, 45), condition = structure(c(1L, 2L, 2L, 1L), .Label = c("4", "5"), class = "factor"), id = c(1L, 2L, 1L, 2L) ), row.names = c(NA, -4L), class = c("tbl_df", "tbl", "data.frame") ) df1 <- arrange(df, id) expect_equal( long_to_wide_converter(df1, condition, score), long_to_wide_converter(df, condition, score, id) ) expect_equal( long_to_wide_converter(df1, condition, score, spread = FALSE) %>% arrange(rowid), long_to_wide_converter(df, condition, score, id, spread = FALSE) %>% arrange(rowid) ) } ) test_that( desc = "with rowid - with NA", code = { df <- bugs_long df1 <- arrange(bugs_long, subject) expect_equal( long_to_wide_converter(df1, condition, desire) %>% select(-rowid), long_to_wide_converter(df, condition, desire, subject) %>% select(-rowid) ) expect_equal( long_to_wide_converter(df1, condition, desire, spread = FALSE) %>% select(-rowid), long_to_wide_converter(df, condition, desire, subject, spread = FALSE) %>% select(-rowid) ) } )
"ab"
geojson_atomize <- function(x, combine = TRUE) UseMethod("geojson_atomize") geojson_atomize.default <- function(x, combine = TRUE) { stop("no 'geojson_atomize' method for ", class(x)) } geojson_atomize.geo_json <- function(x, combine = TRUE) { geojson_atomize(unclass(x), combine = combine) } geojson_atomize.character <- function(x, combine = TRUE) { if (!jsonlite::validate(x)) stop("'x' not valid JSON") geojson_atomize(structure(x, class = "json"), combine = combine) } geojson_atomize.json <- function(x, combine = TRUE) { type <- stripjqr(jqr::jq(unclass(x), ".type")) keys <- stripjqr(jqr::jq(unclass(x), "keys[]")) if (type %in% c('Point', 'MultiPoint', 'Polygon', 'MultiPolygon', 'LineString', 'MultiLineString')) { tmp <- jqr::jq(unclass(x), '{ "type": "Feature", "geometry": . }') } else { if ("features" %in% keys) { tmp <- jqr::jq(unclass(x), ".features[]") } if ("geometries" %in% keys) { tmp <- jqr::jq(unclass(x), ".geometries[]") } } structure(if (combine) jqr::combine(tmp) else tmp, class = "json") } geojson_atomize.geo_list <- function(x, combine = TRUE) { if (x$type %in% c('Point', 'MultiPoint', 'Polygon', 'MultiPolygon', 'LineString', 'MultiLineString')) { list(type = "Feature", geometry = c(x)) } else { if ("features" %in% names(x)) return(x$features) if ("geometries" %in% names(x)) return(x$geometries) } } stripjqr <- function(x) gsub('\\"', "", unclass(x))
valueEst <- function (d1, d2, Y, A1, A2){ ind = (A1==d1)*(A2==d2); num = sum (Y*ind); denom = sum (ind); value = num/denom; indPosPos = (A1==1)*(A2==1); indPosNeg = (A1==1)*(A2==-1); indNegPos = (A1==-1)*(A2==1); indNegNeg = (A1==-1)*(A2==-1); valPosPos = sum (Y*indPosPos)/sum (indPosPos); valPosNeg = sum (Y*indPosNeg)/sum (indPosNeg); valNegPos = sum (Y*indNegPos)/sum (indNegPos); valNegNeg = sum (Y*indNegNeg)/sum (indNegNeg); list ("value"=value, "valPosPos"=valPosPos, "valPosNeg"=valPosNeg, "valNegPos"=valNegPos, "valNegNeg"=valNegNeg); }
randwalk <- function (A, B, reps = 20, steps = 10, iter = 10000, cores) { if(missing(cores)) {cores <- parallel::detectCores() - 1 }else{cores <- cores} nameA <- as.character(substitute(A)) nameB <- as.character(substitute(B)) if("$" %in% unlist(strsplit(nameA, split = ""))) { nameA <- unlist(strsplit(nameA, split = "\\$")) nameA <- nameA[length(nameA)] } if("$" %in% unlist(strsplit(nameB, split = ""))) { nameB <- unlist(strsplit(nameB, split = "\\$")) nameB <- nameB[length(nameB)] } nA <- ncol(A) nB <- ncol(B) start <- steps A <- binarize(A) B <- binarize(B) diag(A) <- 0 diag(B) <- 0 TA <- matrix(0,nrow=nA,ncol=nA) TB <- matrix(0,nrow=nB,ncol=nB) degA <- colSums(A) degB <- colSums(B) for(i in 1:nA) for(j in 1:nA) {TA[i,j] <- A[i,j]/degA[i]} for(i in 1:nB) for(j in 1:nB) {TB[i,j] <- B[i,j]/degB[i]} DA <- distance(A) DB <- distance(B) rw <- function(steps, nA, nB, TA, TB, DA, DB) { sim <- numeric(length = 2) sim5 <- sim uniq <- sim results <- vector("numeric",17) vnA <- numeric(length = steps) vnB <- vnA visit <- matrix(NA, nrow = 2, ncol = steps) permA <- sample(nA, 1) permB <- sample(nB, 1) startingNodeA <- permA startingNodeB <- permB vnA[1] <- permA vnB[1] <- permB for(k in 2:steps) { cdfA <- cumsum(TA[startingNodeA,]) cdfB <- cumsum(TB[startingNodeB,]) x <- runif(1) nA <- which(cdfA > x)[1] nB <- which(cdfB > x)[1] vnA[k] <- nA vnB[k] <- nB startingNodeA <- nA startingNodeB <- nB } uA <- unique(vnA) uB <- unique(vnB) a <- uA[length(uA)] b <- uB[length(uB)] simA <- exp(-DA[vnA[1],a]) simB <- exp(-DB[vnB[1],b]) s5ind <- 5 su <- min(c(length(uA),length(uB))) if(s5ind > su) {s5ind <- su} g5ind <- 5 if(g5ind > s5ind) {g5ind <- s5ind} simA5 <- exp(-DA[vnA[1],uA[s5ind]]) simB5 <- exp(-DB[vnB[1],uB[s5ind]]) visit[1,] <- vnA visit[2,] <- vnB sim[1] <- simA sim5[1] <- simA5 uniq[1] <- length(uA) sim[2] <- simB sim5[2] <- simB5 uniq[2] <- length(uB) res <- list() res$sim <- sim res$sim5 <- sim5 res$uniq <- uniq res$visit <- visit return(res) } steps <- seq(start, reps*10 , 10) step.list <- list() for(i in 1:length(steps)) {step.list[[i]] <- as.list(rep(steps[i], iter))} pb.res <- vector("list", length = length(steps)) cl <- parallel::makeCluster(cores) parallel::clusterExport(cl = cl, varlist = c("rw", "steps", "step.list", "nA", "nB", "reps", "TA", "TB", "DA", "DB", "pb.res"), envir = environment()) message("Computing random walks...") for(i in 1:length(steps)) { message(paste("Repetition ", i, " of ", reps, " (", steps[i], " steps)", sep = "")) pb.res[[i]] <- pbapply::pblapply(step.list[[i]], function(x){rw(x, nA, nB, TA, TB, DA, DB)}) } parallel::stopCluster(cl) results <- matrix(NA, nrow = reps, ncol = 17) colnames(results) <- c("Steps", paste("M.uniq",nameA,sep="."), paste("SD.uniq",nameA,sep="."), paste("M.sim",nameA,sep="."), paste("SD.sim",nameA,sep="."), paste("M.sim5",nameA,sep="."), paste("SD.sim5",nameA,sep="."), paste("M.uniq",nameB,sep="."), paste("SD.uniq",nameB,sep="."), paste("M.sim",nameB,sep="."), paste("SD.sim",nameB,sep="."), paste("M.sim5",nameB,sep="."), paste("SD.sim5",nameB,sep="."), "pu", "ps", "ps5", "g5ind") for(i in 1:reps) { sim <- t(sapply( lapply(pb.res[[i]], function(x) { x$sim }), rbind )) sim5 <- t(sapply( lapply(pb.res[[i]], function(x) { x$sim5 }), rbind )) uniq <- t(sapply( lapply(pb.res[[i]], function(x) { x$uniq }), rbind )) pu <- suppressWarnings(wilcox.test(uniq[,1],uniq[,2])$p.value) ps <- suppressWarnings(wilcox.test(sim[,1],sim[,2])$p.value) ps5 <- suppressWarnings(wilcox.test(sim5[,1],sim5[,2])$p.value) results[i,1] <- steps[i] results[i,2] <- mean(uniq[,1]) results[i,3] <- sd(uniq[,1]) results[i,4] <- mean(sim[,1]) results[i,5] <- sd(sim[,1]) results[i,6] <- mean(sim5[,1]) results[i,7] <- sd(sim5[,1]) results[i,8] <- mean(uniq[,2]) results[i,9] <- sd(uniq[,2]) results[i,10] <- mean(sim[,2]) results[i,11] <- sd(sim[,2]) results[i,12] <- mean(sim5[,2]) results[i,13] <- sd(sim5[,2]) results[i,14] <- pu results[i,15] <- ps results[i,16] <- ps5 results[i,17] <- 5 } dir.pu <- ifelse(results[,"pu"] < .05, ifelse(results[,2] > results[,8], paste(nameA, ">", nameB), paste(nameB, ">", nameA)), "n.s.") dir.ps <- ifelse(results[,"ps"] < .05, ifelse(results[,4] > results[,10], paste(nameA, ">", nameB), paste(nameB, ">", nameA)), "n.s.") dir.ps5 <- ifelse(results[,"ps5"] < .05, ifelse(results[,6] > results[,12], paste(nameA, ">", nameB), paste(nameB, ">", nameA)), "n.s.") short.results <- round(results[,c("Steps","pu","ps","ps5")], 3) short.results <- ifelse(short.results < .001, "< .001", short.results) short.results <- cbind(short.results[,1:2], dir.pu, short.results[,3], dir.ps, short.results[,4], dir.ps5) colnames(short.results) <- c("Steps", "Unique Nodes (p-value)", "Direction", "Similarity (p-value)", "Direction", "5-step Similarlity (p-value)", "Direction") short.results <- as.data.frame(short.results) res <- list() res$long <- results res$short <- short.results return(res) }
discretize_link <- function(link, df, m_start) { n <- nrow(df) d <- ncol(df) types_data <- sapply(df[1, ], class) continu_complete_case <- !is.na(df) if (sum(!(types_data %in% c("numeric", "factor"))) > 0) { stop(simpleError("Unsupported data types. Columns of predictors must be numeric or factor.")) } emap <- array(0, c(n, d)) if (d > 1) { for (j in (1:d)) { if (types_data[j] == "numeric") { if (sum(is.na(link[[j]])) == 0) { t <- predict(link[[j]], newdata = data.frame(x = df[continu_complete_case[, j], j], stringsAsFactors = TRUE), type = "probs") if (is.vector(t)) { t <- cbind(1 - t, t) colnames(t) <- c("1", "2") } if (sum(!continu_complete_case[, j]) > 0) { t_bis <- matrix(NA, nrow = nrow(df), ncol = ncol(t) + 1) t_bis[continu_complete_case[, j], 1:ncol(t)] <- t t_bis[continu_complete_case[, j], ncol(t) + 1] <- 0 t_bis[!continu_complete_case[, j], ] <- t(matrix(c(rep(0, ncol(t)), 1), nrow = ncol(t) + 1, ncol = sum(!continu_complete_case[, j]))) colnames(t_bis) <- c(colnames(t), m_start + 1) t <- t_bis } } else { t <- matrix(1, nrow = n, ncol = 1) colnames(t) <- "1" } } else { if (!is.null(link[[j]])) { t <- prop.table.robust(t(sapply(df[, j], function(row) link[[j]][, row])), 1) } else { t <- matrix(1, nrow = n, ncol = 1) colnames(t) <- "1" } } emap[, j] <- unlist(apply(t, 1, function(p) names(which.max(p)))) } } else if (types_data == "numeric") { t <- predict(link[[1]], newdata = data.frame(x = df, stringsAsFactors = TRUE), type = "probs") emap[, 1] <- apply(t, 1, function(p) names(which.max(p))) } else { t <- prop.table(t(apply(df, 1, function(row) link[[1]][, row])), 1) emap[, 1] <- apply(t, 1, function(p) names(which.max(p))) } return(emap) }
"mymvlm" <- function(x,y,ilms=.dFvGet()$ilm,iopt=.dFvGet()$ipt,intch=.dFvGet()$ich,nrep, tolv=.dFvGet()$tlv,tolm=.dFvGet()$tlm,tau=.dFvGet()$tua,iseed=.dFvGet()$isd) { if (missing(x)) messagena("x") if (missing(y)) messagena("y") n <- length(y) np <- ncol(x) nq <- np+1 ncov <- np*(np+1)/2 mdx <- nrow(x) mdw <- (np+6)*np+2*n+2 mdi <- 3*np+1 if (missing(nrep)) nrep <- integer(1) ierr <- integer(1) xvol <- single(1) xmin <- single(1) cov <- single(ncov) t <- single(np) theta <- single(nq) rs <- single(n) d <- single(n) itv <- integer(nq) itm <- integer(nq) work <- single(mdw) iwork <- integer(mdi) f.res <- .Fortran("mymvlmz", x=to.single(x), y=to.single(y), n=to.integer(n), np=to.integer(np), nq=to.integer(nq), ncov=to.integer(ncov), mdx=to.integer(mdx), mdw=to.integer(mdw), mdi=to.integer(mdi), ilms=to.integer(ilms), iopt=to.integer(iopt), intch=to.integer(intch), nrep=to.integer(nrep), tolv=to.single(tolv), tolm=to.single(tolm), tau=to.single(tau), iseed=to.integer(iseed), ierr=to.integer(ierr), xvol=to.single(xvol), xmin=to.single(xmin), cov=to.single(cov), t=to.single(t), theta=to.single(theta), rs=to.single(rs), d=to.single(d), itv=to.integer(itv), itm=to.integer(itm), work=to.single(work), iwork=to.integer(iwork)) list(nrep=f.res$nrep,ierr=f.res$ierr,xvol=f.res$xvol,xmin=f.res$xmin, cov=f.res$cov,t=f.res$t,theta=f.res$theta,rs=f.res$rs,d=f.res$d, itv=f.res$itv,itm=f.res$itm,iseed=f.res$iseed) }
gc.survival<-function(coxph.obj, data, group, times, failures, max.time, effect="ATE", iterations=1000, n.cluster=1){ if(coxph.obj$call[1] != "coxph()"){ stop("The argument \"coxph.obj\" needs to be a coxph object") } if(length(unlist(strsplit(as.character(coxph.obj$formula[2]), ","))) != 2){ stop("The argument \"coxph.obj\" needs to be a proportional hazard model")} form <- coxph.obj$formula if(!is.data.frame(data) & !is.matrix(data)){ stop("The argument \"data\" needs to be a data.frame or a matrix") } if(!is.character(group) & !is.numeric(group)){ stop("The argument \"group\" needs to be scalar or a character string") } if(length(grep("$", form, fixed = TRUE)) > 0 | length(grep("[", form, fixed = TRUE)) > 0){ stop("Incorrect formula specified in the argument \"coxph.obj\": don't use the syntax data$var or data[,var]") } if(!is.character(times)){ if(is.numeric(times)){ times <- colnames(data)[times] }else{ stop("The argument \"times\" needs to be scalar or a character string") } } mod <- unique(data[,group]) if(length(mod) != 2 | ((mod[1] != 0 & mod[2] != 1) & (mod[1] != 1 & mod[2] != 0))){ stop("Two modalities encoded 0 (for non-treated/non-exposed patients) and 1 (for treated/exposed patients) are required in the argument \"group\" ") } mod <- unique(data[,failures]) if(length(mod) != 2 | ((mod[1] != 0 & mod[2] != 1) & (mod[1] != 1 & mod[2] != 0))){ stop("Two modalities encoded 0 (for censored patients) and 1 (for uncensored patients) are required in the argument \"failures\" ") } if(is.na(match(effect,c("ATT","ATU","ATE"))) | length(effect)!=1){ stop("Incorrect modality specified in the argument \"effect\": only one option among \"ATE\", \"ATT\" or \"ATU\" are possible") } if(length(names(coxph.obj$coef)) < 2){ stop("Incorrect formula specified in the argument \"coxph.obj\": at least 2 covariables, including exposure, are requiered") } if(is.na(match(group,names(coxph.obj$coef))) & is.na(match(names(data)[group],names(coxph.obj$coef)))){ stop("Incorrect formula specified in the argument \"coxph.obj\": exposure is requiered") } if(max.time > max(data[,times], na.rm=T) | max.time < min(data[,times], na.rm=T)){ stop("The argument \"max.time\" needs to be a number includes between the min and the max of the vector \"times\" ") } if(!is.null(attr(coxph.obj$terms,"specials")$strata) | !is.null(attr(coxph.obj$terms,"specials")$tt) | !is.null(attr(coxph.obj$terms,"specials")$cluster)){ stop("Incorrect argument in the argument \"coxph.obj\": time-transform functions, stratification and clustering are not implemented") } ties <- coxph.obj$method explp <-function(coxph.obj, newdata){ return( exp(predict(coxph.obj, newdata, type="lp") + sum(setNames(coxph.obj$means, names(coef(coxph.obj)))*coef(coxph.obj))) ) } if(effect=="ATE"){ ttt <- which(data[,group] %in% c(0,1)) }else if(effect=="ATT"){ ttt <- which(data[,group] == 1) }else ttt <- which(data[,group] == 0 ) d1 <- d0 <- d <- data[ttt,] d1[,group] <- 1 d0[,group] <- 0 b <- basehaz(coxph.obj, centered=FALSE) H0.multi <- b$hazard[b$time %in% sort(unique(d[d[,failures]==1,times]))] T.multi <- b$time[b$time %in% sort(unique(d[d[,failures]==1,times]))] D1 <- data.frame( S = colMeans(exp(explp(coxph.obj,d1) %o% -H0.multi )), T = T.multi) D0 <- data.frame( S = colMeans(exp(explp(coxph.obj,d0) %o% -H0.multi )), T = T.multi) D1$h <- differentiation(x=D1$T, fx=-1*log(D1$S)) D0$h <- differentiation(x=D0$T, fx=-1*log(D0$S)) logHR <- log(mean(D1$h/D0$h)) table.surv <- data.frame( times=D1$T, survival=c(D1$S,D0$S), n.risk=c( sapply(D1$T, function(temps) { sum(d[d[,group]==1,times] >= temps)} ), sapply(D0$T, function(temps) { sum(d[d[,group]==0,times] >= temps)})), variable=c( rep(1,dim(D1)[1]), rep(0,dim(D0)[1])) ) RMST1 <- rmst(D1$T, D1$S, max.time) RMST0 <- rmst(D0$T, D0$S, max.time) logHR.s <- RMST1.s <- RMST0.s <- rep(-99, iterations) if(n.cluster==1){ if(effect=="ATE"){ for(i in 1:iterations){ data.b <- data[sample(1:nrow(data), size=nrow(data), replace = TRUE),] cox.s <- coxph(form, data=data.b, ties=ties, x=TRUE, y=TRUE) sfit <- survfit(cox.s, data=data.b, se.fit=FALSE) .d1 <- .d0 <- data.b .d1[,group] <- 1 .d0[,group] <- 0 .H0.multi <- sfit$cumhaz[sfit$n.event>0] * exp(-sum(cox.s$means * coef(cox.s))) .T.multi <- sfit$time[sfit$n.event>0] .D1 <- data.frame( S = colMeans(exp(explp(cox.s,.d1) %o% -.H0.multi )), T = .T.multi) .D0 <- data.frame( S = colMeans(exp(explp(cox.s,.d0) %o% -.H0.multi )), T = .T.multi) logHR.s[i] <- log( mean( differentiation(x=.D1$T, fx=-1*log(.D1$S)) / differentiation(x=.D0$T, fx=-1*log(.D0$S))) ) RMST1.s[i] <- rmst(.D1$T, .D1$S, max.time) RMST0.s[i] <- rmst(.D0$T, .D0$S, max.time) } }else{ if(effect=="ATT"){ for(i in 1:iterations){ data.b <- data[sample(1:nrow(data), size=nrow(data), replace = TRUE),] cox.s <- coxph(form, data=data.b, ties=ties, x=TRUE, y=TRUE) sfit <- survfit(cox.s, data=data.b, se.fit=FALSE) .d1 <- .d0 <- data.b[data.b[,group] == 1,] .d1[,group] <- 1 .d0[,group] <- 0 .H0.multi <- sfit$cumhaz[sfit$n.event>0] * exp(-sum(cox.s$means * coef(cox.s))) .T.multi <- sfit$time[sfit$n.event>0] .D1 <- data.frame( S = colMeans(exp(explp(cox.s,.d1) %o% -.H0.multi )), T = .T.multi) .D0 <- data.frame( S = colMeans(exp(explp(cox.s,.d0) %o% -.H0.multi )), T = .T.multi) logHR.s[i] <- log( mean( differentiation(x=.D1$T, fx=-1*log(.D1$S)) / differentiation(x=.D0$T, fx=-1*log(.D0$S))) ) RMST1.s[i] <- rmst(.D1$T, .D1$S, max.time) RMST0.s[i] <- rmst(.D0$T, .D0$S, max.time) } }else{ for(i in 1:iterations){ data.b <- data[sample(1:nrow(data), size=nrow(data), replace = TRUE),] cox.s <- coxph(form, data=data.b, ties=ties, x=TRUE, y=TRUE) sfit <- survfit(cox.s, data=data.b, se.fit=FALSE) .d1 <- .d0 <- data.b[data.b[,group] == 0,] .d1[,group] <- 1 .d0[,group] <- 0 .H0.multi <- sfit$cumhaz[sfit$n.event>0] * exp(-sum(cox.s$means * coef(cox.s))) .T.multi <- sfit$time[sfit$n.event>0] .D1 <- data.frame( S = colMeans(exp(explp(cox.s,.d1) %o% -.H0.multi )), T = .T.multi) .D0 <- data.frame( S = colMeans(exp(explp(cox.s,.d0) %o% -.H0.multi )), T = .T.multi) logHR.s[i] <- log( mean( differentiation(x=.D1$T, fx=-1*log(.D1$S)) / differentiation(x=.D0$T, fx=-1*log(.D0$S))) ) RMST1.s[i] <- rmst(.D1$T, .D1$S, max.time) RMST0.s[i] <- rmst(.D0$T, .D0$S, max.time) } } } } if(n.cluster>1){ if(effect=="ATE"){ simul <- function(){ data.b <- data[sample(1:nrow(data), size=nrow(data), replace = TRUE),] cox.s <- coxph(form, data=data.b, ties=ties, x=TRUE, y=TRUE) sfit <- survfit(cox.s, data=data.b, se.fit=FALSE) .d1 <- .d0 <- data.b .d1[,group] <- 1 .d0[,group] <- 0 .H0.multi <- sfit$cumhaz[sfit$n.event>0] * exp(-sum(cox.s$means * coef(cox.s))) .T.multi <- sfit$time[sfit$n.event>0] .D1 <- data.frame( S = colMeans(exp(explp(cox.s,.d1) %o% -.H0.multi )), T = .T.multi) .D0 <- data.frame( S = colMeans(exp(explp(cox.s,.d0) %o% -.H0.multi )), T = .T.multi) return(c(logHR.s = log(mean(differentiation(x=.D1$T, fx=-1*log(.D1$S))/differentiation(x=.D0$T, fx=-1*log(.D0$S)))), RMST1.s = rmst(.D1$T, .D1$S, max.time), RMST0.s = rmst(.D0$T, .D0$S, max.time))) } }else{ if(effect=="ATT"){ simul <- function(){ data.b <- data[sample(1:nrow(data), size=nrow(data), replace = TRUE),] cox.s <- coxph(form, data=data.b, ties=ties, x=TRUE, y=TRUE) sfit <- survfit(cox.s, data=data.b, se.fit=FALSE) .d1 <- .d0 <- data.b[data.b[,group] == 1,] .d1[,group] <- 1 .d0[,group] <- 0 .H0.multi <- sfit$cumhaz[sfit$n.event>0] * exp(-sum(cox.s$means * coef(cox.s))) .T.multi <- sfit$time[sfit$n.event>0] .D1 <- data.frame( S = colMeans(exp(explp(cox.s,.d1) %o% -.H0.multi )), T = .T.multi) .D0 <- data.frame( S = colMeans(exp(explp(cox.s,.d0) %o% -.H0.multi )), T = .T.multi) return(c(logHR.s = log(mean(differentiation(x=.D1$T, fx=-1*log(.D1$S))/differentiation(x=.D0$T, fx=-1*log(.D0$S)))), RMST1.s = rmst(.D1$T, .D1$S, max.time), RMST0.s = rmst(.D0$T, .D0$S, max.time))) } }else{ simul <- function(){ data.b <- data[sample(1:nrow(data), size=nrow(data), replace = TRUE),] cox.s <- coxph(form, data=data.b, ties=ties, x=TRUE, y=TRUE) sfit <- survfit(cox.s, data=data.b, se.fit=FALSE) .d1 <- .d0 <- data.b[data.b[,group] == 0,] .d1[,group] <- 1 .d0[,group] <- 0 .H0.multi <- sfit$cumhaz[sfit$n.event>0] * exp(-sum(cox.s$means * coef(cox.s))) .T.multi <- sfit$time[sfit$n.event>0] .D1 <- data.frame( S = colMeans(exp(explp(cox.s,.d1) %o% -.H0.multi )), T = .T.multi) .D0 <- data.frame( S = colMeans(exp(explp(cox.s,.d0) %o% -.H0.multi )), T = .T.multi) return(c(logHR.s = log(mean(differentiation(x=.D1$T, fx=-1*log(.D1$S))/differentiation(x=.D0$T, fx=-1*log(.D0$S)))), RMST1.s = rmst(.D1$T, .D1$S, max.time), RMST0.s = rmst(.D0$T, .D0$S, max.time))) } } } if(.Platform[[1]] == "windows"){ cl <- makeCluster(n.cluster, type="PSOCK") }else{ cl <- makeCluster(n.cluster, type="FORK") } registerDoParallel(cl) clusterEvalQ(cl, {library(splines); library(survival)}) res <- NULL res <- foreach(i = 1:iterations, .combine=rbind, .inorder=TRUE) %dopar% {simul()} registerDoSEQ() stopCluster(cl) logHR.s <- as.numeric(res[,"logHR.s"]) RMST1.s <- as.numeric(res[,"RMST1.s"]) RMST0.s <- as.numeric(res[,"RMST0.s"]) } se.logHR <- sd(logHR.s, na.rm=TRUE) pv <- function(x){ ztest <- mean(x)/sd(x) return(ifelse(ztest<0,2*pnorm(ztest),2*(1-pnorm(ztest)))) } p.value.HR <- pv(logHR.s) if(p.value.HR==0){ p.value.HR <- "<0.001" } ci.low.logHR <- quantile(logHR.s, probs=c(0.025), na.rm=T) ci.upp.logHR <- quantile(logHR.s, probs=c(0.975), na.rm=T) ci.low.RMST1 <- quantile(RMST1.s, probs=c(0.025), na.rm=T) ci.upp.RMST1 <- quantile(RMST1.s, probs=c(0.975), na.rm=T) ci.low.RMST0 <- quantile(RMST0.s, probs=c(0.025), na.rm=T) ci.upp.RMST0 <- quantile(RMST0.s, probs=c(0.975), na.rm=T) delta.s <- RMST1.s - RMST0.s se.delta <- sd(delta.s, na.rm=TRUE) p.value.delta <- pv(delta.s) if(p.value.delta==0){ p.value.delta <- "<0.001" } ci.low.delta <- quantile(delta.s, probs=c(0.025), na.rm=T) ci.upp.delta <- quantile(delta.s, probs=c(0.975), na.rm=T) .obj <- list( table.surv=table.surv, effect=effect, max.time=data.frame(max.time=max.time), RMST0=data.frame(estimate=RMST0, ci.lower=ci.low.RMST0, ci.upper=ci.upp.RMST0), RMST1=data.frame(estimate=RMST1, ci.lower=ci.low.RMST1, ci.upper=ci.upp.RMST1), delta=data.frame(estimate=RMST1-RMST0, std.error = se.delta, ci.lower=ci.low.delta, ci.upper=ci.upp.delta, p.value=p.value.delta), logHR=data.frame(estimate=logHR, std.error = se.logHR, ci.lower=ci.low.logHR, ci.upper=ci.upp.logHR, p.value=p.value.HR) ) class(.obj) <- "survrisca" return(.obj) }
library("zoo") library("tseries") online <- FALSE options(prompt = "R> ") Sys.setenv(TZ = "GMT") suppressWarnings(RNGversion("3.5.0")) inrusd <- read.zoo(system.file("doc", "demo1.txt", package = "zoo"), sep = "|", format="%d %b %Y") tmp <- read.table(system.file("doc", "demo2.txt", package = "zoo"), sep = ",") z <- zoo(tmp[, 3:4], as.Date(as.character(tmp[, 2]), format="%d %b %Y")) colnames(z) <- c("Nifty", "Junior") time(z) start(z) end(inrusd) plain <- coredata(z) str(plain) m <- merge(inrusd, z, all = FALSE) m <- merge(inrusd, z) merge(inrusd, lag(inrusd, -1)) plot(m) plot(m[, 2:3], plot.type = "single", col = c("red", "blue"), lwd = 2) window(z, start = as.Date("2005-02-15"), end = as.Date("2005-02-28")) m[as.Date("2005-03-10")] interpolated <- na.approx(m) m <- na.locf(m) m prices2returns <- function(x) 100*diff(log(x)) r <- prices2returns(m) rollapply(r, 10, sd) prices2returns(aggregate(m, as.yearmon, tail, 1)) nextfri <- function(x) 7 * ceiling(as.numeric(x-5+4) / 7) + as.Date(5-4) prices2returns(aggregate(na.locf(m), nextfri, tail, 1)) zsec <- structure(1:10, index = structure(c(1234760403.968, 1234760403.969, 1234760403.969, 1234760405.029, 1234760405.029, 1234760405.03, 1234760405.03, 1234760405.072, 1234760405.073, 1234760405.073 ), class = c("POSIXt", "POSIXct"), tzone = ""), class = "zoo") to4sec <- function(x) as.POSIXct(4*ceiling(as.numeric(x)/4), origin = "1970-01-01") aggregate(zsec, to4sec, tail, 1) tmp <- zsec st <- start(tmp) Epoch <- st - as.numeric(st) time(tmp) <- as.integer(time(tmp) + 1e-7) + Epoch ix <- !duplicated(time(tmp), fromLast = TRUE) merge(tmp[ix], zoo(, seq(start(tmp), end(tmp), "sec"))) intraday.discretise <- function(b, Nsec) { st <- start(b) time(b) <- Nsec * as.integer(time(b)+1e-7) %/% Nsec + st - as.numeric(st) ix <- !duplicated(time(b), fromLast = TRUE) merge(b[ix], zoo(, seq(start(b), end(b), paste(Nsec, "sec")))) } intraday.discretise(zsec, 1) library("tseries") if(online) { sunw <- get.hist.quote(instrument = "SUNW", start = "2004-01-01", end = "2004-12-31") sunw2 <- get.hist.quote(instrument = "SUNW", start = "2004-01-01", end = "2004-12-31", compression = "m", quote = "Close") eur.usd <- get.hist.quote(instrument = "EUR/USD", provider = "oanda", start = "2004-01-01", end = "2004-12-31") save(sunw, sunw2, eur.usd, file = "sunw.rda") } else { load(system.file("doc", "sunw.rda", package = "zoo")) } time(sunw2) <- as.yearmon(time(sunw2)) sunw3 <- aggregate(sunw[, "Close"], as.yearmon, tail, 1) r <- prices2returns(sunw3) is.weekend <- function(x) ((as.numeric(x)-2) %% 7) < 2 eur.usd <- eur.usd[!is.weekend(time(eur.usd))] is.weekend <- function(x) { x <- as.POSIXlt(x) x$wday > 5 | x$wday < 1 } date1 <- seq(as.Date("2001-01-01"), as.Date("2002-12-1"), by = "day") len1 <- length(date1) set.seed(1) data1 <- zoo(rnorm(len1), date1) data1q.mean <- aggregate(data1, as.yearqtr, mean) data1q.sd <- aggregate(data1, as.yearqtr, sd) head(cbind(mean = data1q.mean, sd = data1q.sd), main = "Quarterly") nexttue <- function(x) 7 * ceiling(as.numeric(x - 2 + 4)/7) + as.Date(2 - 4) data1w <- cbind( mean = aggregate(data1, nexttue, mean), sd = aggregate(data1, nexttue, sd) ) head(data1w) FUNs <- c(mean, sd) ag <- function(z, by, FUNs) { f <- function(f) aggregate(z, by, f) do.call(cbind, sapply(FUNs, f, simplify = FALSE)) } data1q <- ag(data1, as.yearqtr, c("mean", "sd")) data1w <- ag(data1, nexttue, c("mean", "sd")) head(data1q) head(data1w)
rsubbins <- function(bEdges, bCounts, m=NULL, eps1 = 0.25, eps2 = 0.75, depth = 3, tailShape = c("onebin", "pareto", "exponential"), nTail=16, numIterations=20, pIndex=1.160964, tbRatio=0.8) { L <- length(bCounts) if(!(is.na(bEdges[L]) | is.infinite(bEdges[L]))) warning("Top bin is bounded. Expect inaccurate results.\n") if(is.null(m)) { warning("No mean provided: expect inaccurate results.\n") m <- sum(0.5*(c(bEdges[1:(L-1)],2.0*bEdges[L-1])+c(0, bEdges[1:(L-1)]))*bCounts/sum(bCounts)) } tailShape <- match.arg(tailShape) if(tailShape == "onebin") rsubbinsNotail(bEdges, bCounts, m, eps1, eps2, depth) else rsubbinsTail(bEdges, bCounts, m, eps1, eps2, depth, tailShape, nTail, numIterations, pIndex, tbRatio) } rsubbinsTail <- function(bEdges, bCounts, m, eps1, eps2, depth, tailShape = c("pareto", "exponential"), nTail, numIterations, pIndex, tbRatio) { tailShape <- match.arg(tailShape) eps3 <- (1 - eps2) / 2 L <- length(bCounts) tot <- sum(bCounts) e <- c(0,bEdges[1:(L-1)],numeric(nTail)) shrinkFactor <- 1 shrinkMultiplier <- 0.995 tailCount <- bCounts[L] bbtot <- tot-tailCount bbMean <- sum((e[2:(L)]+e[1:(L-1)])*bCounts[1:(L-1)])/(2*bbtot) while(m<bbMean) { e <- e*shrinkMultiplier bbMean <- sum((e[2:(L)]+e[1:(L-1)])*bCounts[1:(L-1)])/(2*bbtot) shrinkFactor <- shrinkFactor*shrinkMultiplier } if(tailCount>0) { L <- L+nTail-1 tailArea <- tailCount/tot bAreas <- c(bCounts/tot, numeric(nTail-1)) tbWidth <- e[L-nTail+1]-e[L-nTail] h <- bAreas[L-nTail]/tbWidth if(tailShape=="pareto") tailUnscaled <- (1:nTail)^(-1-pIndex) else tailUnscaled <- tbRatio^(1:nTail) bAreas[(L-nTail+1):(L)] <- tailUnscaled/sum(tailUnscaled)*tailArea repeat { e[(L-nTail+2):(L+1)] <- e[L-nTail+1]+(1:(nTail))*tbWidth bMean <- sum((e[2:(L+1)]+e[1:L])*bAreas)/2 if(bMean>m) break tbWidth <- tbWidth*2 } l <- 0 r <- tbWidth for(i in 1:numIterations) { tbWidth <- (l+r)/2 e[(L-nTail+2):(L+1)] <- e[L-nTail+1]+(1:(nTail))*tbWidth bMean <- sum((e[2:(L+1)]+e[1:L])*bAreas)/2 if (bMean<m) l <- tbWidth else r <- tbWidth } } else { L <- L-1 bAreas <- bCounts[1:L]/tot e <- e[1:(L+1)] } binAreas <- bAreas binHeights <- c(0, binAreas/(e[2:(L+1)]-e[1:L]), 0) binEdges <- e for(i in 1:depth){ L <- length(binEdges) binDiffs <- binHeights[2:(L + 1)] - binHeights[1:L] newbinHeights <- 1:(3 * (L - 1)) binWidths <- binEdges[2:L] - binEdges[1:(L-1)] binEdges2 <- binEdges[1:(L - 1)] + binWidths * eps3 binEdges3 <- binEdges[2:L] - binWidths * eps3 binEdges <- sort(c(binEdges, binEdges2, binEdges3), decreasing = FALSE) for(j in 1:(L-1)) { new_middlebin_height <- (((binDiffs[j] - binDiffs[(j + 1)]) * eps1 * eps3) / eps2) + binHeights[j + 1] if(new_middlebin_height>0) { newbinHeights[(3 * j - 2)] <- binHeights[j + 1] - binDiffs[j] * eps1 newbinHeights[(3 * j)] <- binHeights[(j + 1)] + binDiffs[(j + 1)] * eps1 newbinHeights[(3 * j - 1)] <- new_middlebin_height } else { newbinHeights[(3*j-2)] <- binHeights[(j+1)] newbinHeights[(3*j)] <- binHeights[(j+1)] newbinHeights[(3*j-1)] <- binHeights[(j+1)] } } binHeights <- c(0, newbinHeights, 0) } L <- length(binEdges) binWidths <- binEdges[2:L] - binEdges[1:(L-1)] binAreas <- binWidths * binHeights[2:L] cAreas <- vapply(1:length(binAreas), function(x){sum(binAreas[1:x])}, numeric(1)) rsubCDF <- approxfun(binEdges, c(0, cAreas), yleft=0, yright=1, rule=2) rsubPDF <- stepfun(binEdges, binHeights) return(list(rsubPDF=rsubPDF, rsubCDF=rsubCDF, E=binEdges[L], shrinkFactor=shrinkFactor)) } rsubbinsNotail <- function(bEdges, bCounts, m, eps1, eps2, depth) { eps3 <- (1 - eps2) / 2 L <- length(bCounts) tot <- sum(bCounts) p <- c(1,1-vapply(1:(L-1), function(x){sum(bCounts[1:x])}, numeric(1))/tot) e <- c(0,bEdges[1:(L-1)],0) A <- 0.5*sum((e[2:L]-e[1:(L-1)])*(p[2:L]+p[1:(L-1)])) shrinkFactor <- 1 shrinkMultiplier <- 0.995 while(m<A) { e <- e*shrinkMultiplier A <- 0.5*sum((e[2:L]-e[1:(L-1)])*(p[2:L]+p[1:(L-1)])) shrinkFactor <- shrinkFactor*shrinkMultiplier } E <- ifelse(p[L]>0, bEdges[L-1]+2*(m-A)/p[L], bEdges[L-1]*1.001) e[L+1] <- E binAreas <- bCounts/tot binHeights <- c(0, binAreas/(e[2:(L+1)]-e[1:L]), 0) binEdges <- e for(i in 1:depth){ L <- length(binEdges) binDiffs <- binHeights[2:(L + 1)] - binHeights[1:L] newbinHeights <- 1:(3 * (L - 1)) binWidths <- binEdges[2:L] - binEdges[1:(L-1)] binEdges2 <- binEdges[1:(L - 1)] + binWidths * eps3 binEdges3 <- binEdges[2:L] - binWidths * eps3 binEdges <- sort(c(binEdges, binEdges2, binEdges3), decreasing = FALSE) for(j in 1:(L-1)) { new_middlebin_height <- (((binDiffs[j] - binDiffs[(j + 1)]) * eps1 * eps3) / eps2) + binHeights[j + 1] if(new_middlebin_height>0) { newbinHeights[(3 * j - 2)] <- binHeights[j + 1] - binDiffs[j] * eps1 newbinHeights[(3 * j)] <- binHeights[(j + 1)] + binDiffs[(j + 1)] * eps1 newbinHeights[(3 * j - 1)] <- new_middlebin_height } else { newbinHeights[(3*j-2)] <- binHeights[(j+1)] newbinHeights[(3*j)] <- binHeights[(j+1)] newbinHeights[(3*j-1)] <- binHeights[(j+1)] } } binHeights <- c(0, newbinHeights, 0) } L <- length(binEdges) binWidths <- binEdges[2:L] - binEdges[1:(L-1)] binAreas <- binWidths * binHeights[2:L] cAreas <- vapply(1:length(binAreas), function(x){sum(binAreas[1:x])}, numeric(1)) rsubCDF <- approxfun(binEdges, c(0, cAreas), yleft=0, yright=1, rule=2) rsubPDF <- stepfun(binEdges, binHeights) return(list(rsubPDF=rsubPDF, rsubCDF=rsubCDF, E=E, shrinkFactor=shrinkFactor)) }
invwishrnd <- function(n,lambda){ p<-ncol(lambda) S<-try(solve(wishrnd(n = n, Sigma = solve(lambda))), silent=TRUE) if(inherits(S, "try-error")){ S=solve(wishrnd(n = n, Sigma = solve((lambda+diag(p))))) } return(S) }
expected <- eval(parse(text="NA_complex_")); test(id=0, code={ argv <- eval(parse(text="list(0L, NA_real_, NA_real_)")); .Internal(complex(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
library(git2r) sessionInfo() path <- tempfile(pattern = "git2r-") dir.create(path) repo <- init(path, branch = "main") config(repo, user.name = "Author", user.email = "[email protected]") writeLines(c("First line in file 1.", "Second line in file 1."), file.path(path, "example-1.txt")) add(repo, "example-1.txt") commit(repo, "First commit message") writeLines(c("First line in file 2.", "Second line in file 2."), file.path(path, "example-2.txt")) add(repo, "example-2.txt") commit(repo, "Second commit message") checkout(repo, "fix", create = TRUE) writeLines(c("line First in file 1.", "Second line in file 1."), file.path(path, "example-1.txt")) add(repo, "example-1.txt") commit(repo, "Third commit message") checkout(repo, "main") writeLines(c("First line in file 2.", "line Second in file 2."), file.path(path, "example-2.txt")) add(repo, "example-2.txt") commit(repo, "Fourth commit message") tools::assertError(merge(repo)) m <- merge(repo, "fix", TRUE, default_signature(repo)) stopifnot(identical(format(m), "Merge")) m <- merge(repo, "fix", TRUE, default_signature(repo)) stopifnot(identical(format(m), "Already up-to-date")) stopifnot(identical(sapply(commits(repo), function(x) length(parents(x))), c(2L, 1L, 1L, 1L, 0L))) stopifnot(is_merge(last_commit(repo))) summary(last_commit(repo)) stopifnot(!file.exists(file.path(path, ".git", "MERGE_HEAD"))) unlink(path, recursive = TRUE)
multiClusterPeaks <- structure(function (peaks ){ stopifnot(is.data.frame(peaks)) stopifnot(is.numeric(peaks$chromStart)) stopifnot(is.numeric(peaks$chromEnd)) stopifnot(nrow(peaks) > 0) peaks <- data.frame(peaks)[order(peaks$chromStart), ] with(peaks, stopifnot(chromStart < chromEnd)) sample.vec <- if(is.character(peaks$sample.id)){ factor(peaks$sample.id) }else if(is.factor(peaks$sample.id) || is.integer(peaks$sample.id)){ peaks$sample.id }else stop("sample.id column must be character, factor, or integer") res <- .C( "multiClusterPeaks_interface", as.integer(peaks$chromStart), as.integer(peaks$chromEnd), cluster=as.integer(peaks$chromEnd), as.integer(nrow(peaks)), PACKAGE="PeakSegJoint") peaks$cluster <- res$cluster peaks }, ex=function(){ library(PeakSegJoint) data(chr7.peaks, envir=environment()) library(ggplot2) ggplot()+ geom_segment(aes( chromStart/1e3, sample.id, xend=chromEnd/1e3, yend=sample.id), data=chr7.peaks) clustered <- multiClusterPeaks(chr7.peaks) clustered.list <- split(clustered, clustered$cluster) clusters.list <- list() for(cluster.name in names(clustered.list)){ clusters.list[[cluster.name]] <- with( clustered.list[[cluster.name]], data.frame( cluster=cluster[1], clusterStart=as.integer(median(chromStart)), clusterEnd=as.integer(median(chromEnd)))) } clusters <- do.call(rbind, clusters.list) ggplot()+ geom_segment(aes( chromStart/1e3, sample.id, color=factor(cluster), xend=chromEnd/1e3, yend=sample.id), data=clustered)+ geom_segment(aes( clusterStart/1e3, "clusters", color=factor(cluster), xend=clusterEnd/1e3, yend="clusters"), data=clusters) })
test_that("calcEscore_value", { item_1 <- new("item_1PL", difficulty = 0.5) item_2 <- new("item_2PL", slope = 1.5, difficulty = 0.5) item_3 <- new("item_3PL", slope = 1.0, difficulty = 0.5, guessing = 0.2) item_4 <- new("item_PC", threshold = c(-1, 0, 1), ncat = 4) item_5 <- new("item_GPC", slope = 1.2, threshold = c(-0.8, -1.0, 0.5), ncat = 4) item_6 <- new("item_GR", slope = 0.9, category = c(-1, 0, 1), ncat = 4) theta_vec <- seq(-3, 3, 1) tol <- 1e-06 expect_equal( log(prod(calcEscore(item_1, theta_vec))), -9.53851, tolerance = tol) expect_equal( log(prod(calcEscore(item_2, theta_vec))), -13.02588, tolerance = tol) expect_equal( log(prod(calcEscore(item_3, theta_vec))), -5.173527, tolerance = tol) expect_equal( log(prod(calcEscore(item_4, theta_vec))), -0.1421625, tolerance = tol) expect_equal( log(prod(calcEscore(item_5, theta_vec))), 0.03717596, tolerance = tol) expect_equal( log(prod(calcEscore(item_6, theta_vec))), 0.8290602, tolerance = tol) expect_equal( mean(log(unlist(calcEscore(itempool_science, theta_vec)))), 6.375118, tolerance = tol) expect_equal( mean(log(unlist(calcEscore(itempool_reading, theta_vec)))), 4.890361, tolerance = tol) expect_equal( mean(log(unlist(calcEscore(itempool_fatigue, theta_vec)))), 3.690174, tolerance = tol) expect_equal( mean(log(unlist(calcEscore(itempool_bayes, theta_vec)))), 5.139598, tolerance = tol) })
vcov.elm <- function(object, complete = TRUE, ...) { return(vcov.summary.elm(summary(object, ...), complete = complete)) }
flash_clean_relay_events <- function(df, wide_format_relay) { if (wide_format_relay == FALSE) { df <- df %>% data.frame() %>% dplyr::select(-dplyr::matches("X\\.\\d+")) %>% dplyr::mutate(Time = stringr::str_remove(Time, "(?<!D)[Q|q]")) %>% dplyr::mutate(dplyr::across( dplyr::matches("[0-9]"), ~ stringr::str_remove(.x, " ?\\[(.*)\\]") )) varying_cols <- names(df)[grep("(^X\\d)|(^Lap)|(^L\\d)", names(df))] if (length(varying_cols) > 0) { df <- flash_pivot_longer(df, varying = varying_cols) } } else { df <- df %>% dplyr::select(-dplyr::matches("X\\.\\d+")) %>% flash_col_names() %>% dplyr::mutate(dplyr::across( dplyr::matches("Split_"), ~ stringr::str_remove(.x, " ?\\[(.*)\\]") )) } clean_relay_data <- df %>% dplyr::mutate(Time = stringr::str_remove(Time, "(?<!D)[Q|q]")) %>% dplyr::rename("Result" = "Time") %>% dplyr::mutate( Tiebreaker = dplyr::case_when( stringr::str_detect(Result, "\\(\\d{1,2}\\.\\d{3}\\)") == TRUE ~ stringr::str_extract(Result, "\\d{1,2}\\.\\d{3}"), TRUE ~ "NA" ) ) %>% dplyr::mutate(Result = stringr::str_remove(Result, "\\(\\d{1,2}\\.\\d{3}\\)")) %>% dplyr::mutate(Result = stringr::str_remove(Result, "\\\n[:upper:]{1,2}")) %>% dplyr::na_if("NA") %>% dplyr::mutate(dplyr::across(where(is.character), stringr::str_trim)) return(clean_relay_data) } relay_events <- flash_clean_relay_events
.solveNLP.demo <- function() { dataSet <- data("LPP2005REC", package="timeSeries", envir=environment()) LPP2005REC <- get(dataSet, envir=environment()) nAssets <- 6 data <- 100 * LPP2005REC[, 1:nAssets] mu <- colMeans(data) Sigma <- cov(data) start <- rep(1, nAssets)/nAssets objective <- function(x) { 0.5 * (x %*% Sigma %*% x)[[1]] } lower <- rep(0, nAssets) upper <- rep(1, nAssets) mat <- rbind( budget = rep(1, times=nAssets), returns = colMeans(data)) matLower <- c( budget = 1, return = mean(data)) matUpper <- matLower linCons <- list(mat, matLower, matUpper) control <- list() ans <- rdonlp2NLP(start, objective, lower, upper, linCons) ans ans <- rsolnpNLP(start, objective, lower, upper, linCons) ans ans <- rnlminb2NLP(start, objective, lower, upper, linCons) ans }
provide <- function(...) { `if`(!exists("..module..", parent.frame(), inherits = FALSE), stop("Only use provide() in a module.")) obj_names <- as.character(match.call(expand.dots = FALSE)$...) existing_obj_names <- get("..provide..", envir = parent.frame()) obj_names <- unique(c(existing_obj_names, obj_names)) assign("..provide..", unique(obj_names, existing_obj_names), envir = parent.frame()) invisible(NULL) } refer <- function(..., include = c(), exclude = c(), prefix = "", sep = "."){ `if`(!exists("..module..", parent.frame(), inherits = FALSE), stop("Only use provide() in a module.")) private <- parent.frame() dots <- as.character(match.call(expand.dots = FALSE)$...) sources <- lapply(dots, get, envir = parent.frame()) names(sources) <- dots lapply(sources, `attr<-`, "refer_include", include) lapply(sources, `attr<-`, "refer_exclude", exclude) `if`(deparse(substitute(prefix)) == ".", mapply(`attr<-`, x = sources, which = list("refer_prefix"), value = dots), lapply(sources, `attr<-`, "refer_prefix", prefix)) lapply(sources, `attr<-`, "refer_sep", sep) assign("..refer..", c(get("..refer..", envir = parent.frame()), sources), parent.frame()) if (length(sources) != 0){ `if`(length(unique(private$..refer..)) < length(private$..refer..), stop("refer() a module at most once.")) source_obj_name_list <- lapply(sources, ls, all.names = TRUE) source_include_list <- lapply(sources, attr, which = "refer_include") source_exclude_list <- lapply(sources, attr, which = "refer_exclude") source_prefix_list <- lapply(sources, attr, which = "refer_prefix") source_sep_list <- lapply(sources, attr, which = "refer_sep") source_obj_name_list <- mapply(function(src_obj, src_incl, src_excl){ res <- src_obj res <- `if`(is.null(src_incl), res, intersect(res, src_incl)) res <- `if`(is.null(src_excl), res, setdiff(res, src_excl)) res }, src_obj = source_obj_name_list, src_incl = source_include_list, src_excl = source_exclude_list, SIMPLIFY = FALSE) source_obj_name_list2 <- mapply( function(prefix, obj_name, sep){ `if`(nchar(prefix) >= 1, paste(prefix, obj_name, sep = sep), obj_name) }, prefix = source_prefix_list, obj_name = source_obj_name_list, sep = source_sep_list, SIMPLIFY = FALSE) intersect_w_others <- function(x, i){ mapply(intersect, x[-i], x[i], SIMPLIFY = FALSE) } source_conflict_name_list <- if (length(source_obj_name_list2) > 1){ res <- lapply(seq_along(source_obj_name_list2), function(i) { intersect_w_others(x = source_obj_name_list2, i = i)}) names(res) <- names(source_obj_name_list2) res } else { list() } `if`(length(unique(unlist(source_conflict_name_list))) > 0, stop(paste0("name conflict among sources: ", paste(unique(unlist(source_conflict_name_list)), collapse = ", ")))) target_obj_name_list <- ls(private, all.names = TRUE) conflict_name_list <- lapply(source_obj_name_list2, intersect, y = target_obj_name_list) `if`(length(unlist(conflict_name_list)) > 0, stop(paste0("name conflict: ", paste(c(conflict_name_list), collapse = ", ")))) for (i in 1:length(sources)) { mapply(assign, x = source_obj_name_list2[[i]], value = mget(source_obj_name_list[[i]], sources[[i]]), envir = list(private), SIMPLIFY = FALSE ) } } invisible() } require <- function(package){ `if`(!exists("..module..", parent.frame(), inherits = FALSE), stop("Only use mod::require() in a module.")) package <- substitute(package) package <- `if`(is.character(package),package,deparse(package)) `if`(system.file("", package = package) == "", stop(paste(package, "is not an installed package"))) private <- parent.frame() existing_pkg_names <- get("..require..", envir = private) pkg_names <- c(existing_pkg_names, package) assign("..require..", pkg_names, private) pkg_ns <- asNamespace(package) import_list <- unique(names(pkg_ns$.__NAMESPACE__.$imports))[-1] temp_envir <- new.env() if (length(import_list) > 0) { for (i in 2:length(import_list)) { mapply(assign, x = ls(asNamespace(import_list[i])), value = mget(x = ls(asNamespace(import_list[i])), envir = asNamespace(import_list[i])), envir = list(temp_envir)) } } else { } mapply(assign, x = ls(pkg_ns), value = mget(x = ls(pkg_ns), envir = pkg_ns), envir = list(temp_envir)) mapply(assign, x = ls(temp_envir), value = mget(x = ls(temp_envir), envir = temp_envir), envir = list(private$..link..)) invisible() } name <- function(name){ `if`(!exists("..module..", parent.frame(), inherits = FALSE), stop("Only use mod::name() in a module.")) name <- as.character(substitute(name)) private <- parent.frame() assign("..name..", name, envir = private) invisible(name) }
"Brumbaugh"
setClass(Class = "DDF.Analysis", representation(dsmodel = "formula", criteria = "character", truncation = "numeric", binned.data = "logical", cutpoints = "numeric", analysis.strata = "data.frame", ddf.result = "list", "VIRTUAL")) setMethod( f="initialize", signature="DDF.Analysis", definition=function(.Object, dsmodel = call(), criteria = "AIC", analysis.strata = data.frame(), truncation = 50, binned.data = FALSE, cutpoints = numeric(0)){ if(criteria %in% c("aic", "AIC", "bic", "BIC", "AICc")){ }else{ warning("This selection criteria is not currently supported (please select from 'AIC', 'BIC' or 'AICc'), the simulation is automatically changing it to AIC for this call", call. = FALSE, immediate. = TRUE) criteria = "AIC" } .Object@dsmodel <- dsmodel .Object@criteria <- criteria .Object@truncation <- truncation [email protected] <- binned.data .Object@cutpoints <- cutpoints [email protected] <- analysis.strata [email protected]$design.id <- as.character([email protected]$design.id) [email protected]$analysis.id <- as.character([email protected]$analysis.id) validObject(.Object) return(.Object) } ) setValidity("DDF.Analysis", function(object){ return(TRUE) } ) setMethod( f="run.analysis", signature=c("DDF.Analysis","DDF.Data"), definition=function(object, data, dht = FALSE, point = FALSE, warnings = list()){ dist.data <- [email protected] dist.data <- dist.data[!is.na(dist.data),] if(is.null(dist.data$detected)){ dist.data$detected <- rep(1, nrow(dist.data)) } if([email protected]){ dist.data <- dist.data[dist.data$distance <= max(object@cutpoints),] dist.data <- create.bins(dist.data, cutpoints = object@cutpoints) if(point){ fit.model <- paste("ddf(dsmodel = ~", as.character(object@dsmodel)[2] ,", data = dist.data, method = 'ds', meta.data = list(width = ", max(object@cutpoints), ", point = TRUE, binned = TRUE, breaks = ", object@cutpoints ,"), control = list(silent = TRUE))", sep = "") }else{ fit.model <- paste("ddf(dsmodel = ~", as.character(object@dsmodel)[2] ,", data = dist.data, method = 'ds', meta.data = list(width = ", max(object@cutpoints), ", binned = TRUE, breaks = ", object@cutpoints ,"), control = list(silent = TRUE))", sep = "") } }else{ if(length(object@truncation) == 0){ if(point){ model.fit <- paste("ddf(dsmodel = ~", as.character(object@dsmodel)[2] ,", data = dist.data, method = 'ds', meta.data = list(point = TRUE), control = list(silent = TRUE))", sep = "") }else{ model.fit <- paste("ddf(dsmodel = ~", as.character(object@dsmodel)[2] ,", data = dist.data, method = 'ds', control = list(silent = TRUE))", sep = "") } }else{ if(point){ model.fit <- paste("ddf(dsmodel = ~", as.character(object@dsmodel)[2] ,", data = dist.data, method = 'ds', meta.data = list(point = TRUE, width = ", object@truncation,"), control = list(silent = TRUE))", sep = "") }else{ model.fit <- paste("ddf(dsmodel = ~", as.character(object@dsmodel)[2] ,", data = dist.data, method = 'ds', meta.data = list(width = ", object@truncation,"), control = list(silent = TRUE))", sep = "") } } } W <- NULL ddf.result <- withCallingHandlers(tryCatch(eval(parse(text = model.fit)), error=function(e)e), warning=function(w){W <<- w; invokeRestart("muffleWarning")}) if(any(class(ddf.result) == "error")){ warnings <- message.handler(warnings, paste("Error: ", ddf.result$message, " (Model call: ", as.character(object@dsmodel)[2], ")", sep = "")) ddf.result <- NA }else if(ddf.result$ds$converge != 0){ ddf.result <- NA warnings <- message.handler(warnings, paste("The following model failed to converge: ", object@dsmodel, sep = "")) }else if(any(predict(ddf.result)$fitted < 0)){ ddf.result <- NA warnings <- message.handler(warnings, "Negative predictions, excluding these results") } if(!is.null(W)){ warnings <- message.handler(warnings, paste(W, " (Model call: ", as.character(object@dsmodel)[2], ")", sep = "")) } return(list(ddf.result = ddf.result, warnings = warnings)) } )
test_that("Running Python scripts can be interrupted", { skip_on_cran() skip("interrupt test failing, needs fixing") time <- import("time", convert = TRUE) system(paste("sleep 1 && kill -s INT", Sys.getpid()), wait = FALSE) before <- Sys.time() interrupted <- tryCatch(time$sleep(5), interrupt = identity) after <- Sys.time() expect_s3_class(interrupted, "interrupt") diff <- difftime(after, before, units = "secs") expect_true(diff < 2) })
gen.arch.wge=function(n,alpha0,alpha, plot='TRUE',sn=0) { if (sn > 0) {set.seed(sn)} q=length(alpha) spin=1000 ntot=n+spin+q eps<-rnorm(ntot, mean=0, sd=1); sig2 <- rep(1, ntot) asq=rep(0,ntot) qp1=q+1 for (t in q) { sig2[t]=1 } for(t in qp1:ntot) { sig2[t]<-alpha0 for (i in 1:q) {sig2[t]=sig2[t]+alpha[i]*asq[t-i]^2} asq[t]=eps[t]*(sig2[t])^.5} spinq=spin+q spinq1=spinq+1 real=asq[spinq1:ntot] if(plot== 'TRUE') {plot(real,type='l',xlab='')} return(real) }
scatterMatrix <- ufs::scatterMatrix;
structure(list(`Study ID` = c(1, 2, 3, 4, 5), `First Name` = c("Nutmeg", "Tumtum", "Marcus", "Trudy", "John Lee"), `Last Name` = c("Nutmouse", "Nutmouse", "Wood", "DAG", "Walker"), `Street, City, State, ZIP` = c("14 Rose Cottage St.\nKenning UK, 323232", "14 Rose Cottage Blvd.\nKenning UK 34243", "243 Hill St.\nGuthrie OK 73402", "342 Elm\nDuncanville TX, 75116", "Hotel Suite\nNew Orleans LA, 70115" ), `Phone number` = c("(405) 321-1111", "(405) 321-2222", "(405) 321-3333", "(405) 321-4444", "(405) 321-5555"), `E-mail` = c("[email protected]", "[email protected]", "[email protected]", "[email protected]", "[email protected]" ), `Date of birth` = structure(c(12294, 12121, -13051, -6269, -5375), class = "Date"), `Age (years)` = c(11, 11, 80, 61, 59 ), Gender = c(0, 1, 1, 0, 1), `Complete?` = c(2, 2, 2, 2, 2), `Height (cm)` = c(7, 6, 180, 165, 193.04), `Weight (kilograms)` = c(1, 1, 80, 54, 104), BMI = c(204.1, 277.8, 24.7, 19.8, 27.9), Comments = c("Character in a book, with some guessing", "A mouse character from a good book", "completely made up", "This record doesn't have a DAG assigned\n\nSo call up Trudy on the telephone\nSend her a letter in the mail", "Had a hand for trouble and a eye for cash\n\nHe had a gold watch chain and a black mustache" ), Mugshot = c("mugshot-1.jpg", "mugshot-2.jpg", "mugshot-3.jpg", "mugshot-4.jpg", "mugshot-5.jpg"), `Complete?_1` = c(1, 0, 2, 2, 0), `Race (Select all that apply) (choice=American Indian/Alaska Native)` = c(0, 0, 0, 0, 1), `Race (Select all that apply) (choice=Asian)` = c(0, 0, 0, 1, 0), `Race (Select all that apply) (choice=Native Hawaiian or Other Pacific Islander)` = c(0, 1, 0, 0, 0), `Race (Select all that apply) (choice=Black or African American)` = c(0, 0, 1, 0, 0), `Race (Select all that apply) (choice=White)` = c(1, 1, 1, 1, 0), `Race (Select all that apply) (choice=Unknown / Not Reported)` = c(0, 0, 0, 0, 1), Ethnicity = c(1, 1, 0, 1, 2), `Are interpreter services requested?` = c(0, 0, 1, NA, 0), `Complete?_2` = c(2, 0, 2, 2, 2)), row.names = c(NA, -5L), class = "data.frame")
tar_test("tar_toggle() interactive globals", { skip_if_not_installed("knitr") options <- knitr::opts_chunk$get() options$code <- "x <- tar_toggle(1L + 1L, NULL)" options$echo <- FALSE options$engine <- "targets" options$label <- "test" options$results <- "hide" options$tar_globals <- TRUE options$tar_interactive <- TRUE tar_engine_knitr(options) expect_equal(tar_option_get("envir")$x, 2L) }) tar_test("tar_toggle() interactive targets", { skip_if_not_installed("knitr") options <- knitr::opts_chunk$get() options$code <- "tar_toggle(1L + 2L)" options$echo <- FALSE options$engine <- "targets" options$label <- "test" options$results <- "hide" options$tar_simple <- TRUE options$tar_globals <- FALSE options$tar_interactive <- TRUE tar_engine_knitr(options) expect_equal(tar_option_get("envir")$test, 3L) }) tar_test("tar_toggle() noninteractive", { skip_if_not_installed("knitr") tar_runtime$set_interactive(FALSE) on.exit(tar_runtime$unset_interactive()) expect_equal(tar_toggle(1L, 2L), 2L) })
xyplot(births ~ date, data = Births78)