code
stringlengths 1
13.8M
|
---|
drake_context("lock")
test_with_dir("lock_environment()", {
skip_on_cran()
skip_if_not_installed("tibble")
scenario <- get_testing_scenario()
e <- eval(parse(text = scenario$envir))
jobs <- scenario$jobs
parallelism <- scenario$parallelism
caching <- scenario$caching
plan <- drake_plan(
x = try(
assign("a", 1L, envir = parent.env(drake_envir("targets"))),
silent = TRUE
)
)
make(
plan,
envir = e,
jobs = jobs,
parallelism = parallelism,
caching = caching,
lock_envir = TRUE,
verbose = 1L,
session_info = FALSE
)
expect_true(inherits(readd(x), "try-error"))
e$a <- 123
e$plan$four <- "five"
plan <- drake_plan(
x = assign("a", 1, envir = drake_envir("targets"))
)
make(
plan,
envir = e,
jobs = jobs,
parallelism = parallelism,
caching = caching,
lock_envir = FALSE,
verbose = 0L,
session_info = FALSE
)
expect_true("x" %in% cached())
expect_equal(readd(x), 1L)
})
test_with_dir("Try to modify a locked environment", {
skip_on_cran()
e <- new.env()
lock_environment(e)
plan <- drake_plan(x = {
e$a <- 1
2
})
expect_error(
make(plan, session_info = FALSE, cache = storr::storr_environment()),
regexp = "Self-invalidation"
)
})
test_with_dir("unlock_environment()", {
skip_on_cran()
expect_error(
unlock_environment(NULL),
regexp = "use of NULL environment is defunct"
)
expect_error(
unlock_environment("x"),
regexp = "not an environment"
)
e <- new.env(parent = emptyenv())
e$y <- 1
expect_false(environmentIsLocked(e))
assign(x = ".x", value = "x", envir = e)
expect_equal(get(x = ".x", envir = e), "x")
lock_environment(e)
msg1 <- "cannot change value of locked binding"
msg2 <- "cannot add bindings to a locked environment"
expect_true(environmentIsLocked(e))
assign(x = ".x", value = "y", envir = e)
expect_equal(get(x = ".x", envir = e), "y")
expect_error(assign(x = "y", value = "y", envir = e), regexp = msg1)
expect_error(assign(x = "a", value = "x", envir = e), regexp = msg2)
expect_error(assign(x = "b", value = "y", envir = e), regexp = msg2)
unlock_environment(e)
assign(x = ".x", value = "1", envir = e)
assign(x = "y", value = "2", envir = e)
assign(x = "a", value = "x", envir = e)
expect_equal(get(x = ".x", envir = e), "1")
expect_equal(get(x = "y", envir = e), "2")
expect_equal(get(x = "a", envir = e), "x")
expect_false(environmentIsLocked(e))
unlock_environment(e)
assign(x = "b", value = "y", envir = e)
expect_equal(get(x = "b", envir = e), "y")
expect_false(environmentIsLocked(e))
}) |
.packageName <- "mbrdr"
mbrdr <- function(formula, data, subset, na.action=na.fail, weights, ...){
mf <- match.call(expand.dots=FALSE)
mf$na.action <- na.action
mf$... <- NULL
mf[[1]] <- as.name("model.frame")
mf <- eval(mf, sys.frame(sys.parent()))
mt <- attr(mf,"terms")
Y <- model.extract(mf,"response")
if (dim(Y)[2]<2)
stop("The responses must be multivariate !")
X <- model.matrix(mt, mf)
y.name <- if(is.matrix(Y)) colnames(Y) else
as.character(attr(mt, "variables")[2])
int <- match("(Intercept)", dimnames(X)[[2]], nomatch=0)
if (int > 0) X <- X[, -int, drop=FALSE]
weights <- mf$"(weights)"
if(is.null(weights)){
weights <- rep(1,dim(X)[1])} else
{
if(any(weights<0))stop("Negative weights")
pos.weights <- weights > 1.e-30
weights <- weights[pos.weights]
weights <- dim(X)[1]*weights/sum(weights)
X <- X[pos.weights,]
Y <- if(is.matrix(Y)) Y[pos.weights,] else Y[pos.weights]}
ans <- mbrdr.compute(Y, X, weights=weights,...)
ans$call <- match.call()
ans$y.name <- y.name
ans
}
mbrdr.compute <- function(y, x, weights, method="upfrr",...){
if (NROW(y) != nrow(x))
stop("The response and predictors have differing number of observations")
classname<- c(method)
genclassname<-"mbrdr"
sweights <- sqrt(weights)
ans <- list(y=y, x=x, weights=weights,method=method,cases=NROW(y))
class(ans) <- c(classname,genclassname)
ans <- mbrdr.fit(object=ans, ...)
class(ans) <- c(classname,genclassname)
ans
}
mbrdr.x <- function(object) {object$x}
mbrdr.wts <- function(object) {object$weights}
mbrdr.y.name <- function(object) {object$y.name}
mbrdr.fit <- function(object, numdir=4,...) UseMethod("mbrdr.fit")
mbrdr.fit.default <-function(object, numdir=4,...){
M <-mbrdr.M(object, ...)
evalues <- M$evalues
evectors <- as.matrix(M$M)
numdir <- min( M$numdir, dim(evectors)[2] )
stats <- M$stats
if (is.null(M$fx)) {fx <- NULL}
else{ fx <- M$fx}
names <- colnames(mbrdr.y(object))[1:dim(evectors)[1]]
dimnames(evectors)<-
list(names, paste("Dir", 1:NCOL(evectors), sep=""))
aa<-c( object, list(evectors=evectors, evalues=evalues, stats=stats, fx=fx, numdir=numdir))
class(aa) <- class(object)
return(aa)
}
mbrdr.M <- function(object, ...){UseMethod("mbrdr.M")}
mbrdr.y <- function(object) {UseMethod("mbrdr.y")}
mbrdr.y.default <- function(object){object$y}
mbrdr.test <- function(object, nd){ UseMethod("mbrdr.test")}
mbrdr.test.default <-function(object, nd) {NULL}
mbrdr.M.yc <- function(object, num.d=NULL, ...) {
y <- mbrdr.y(object)
x <- mbrdr.x(object)
n <- dim(y)[1]
r <- dim(y)[2]
if (is.null(num.d) ) num.d <- (r-1)
sigmay=cov(y)
sigmax=cov(x)
Sigmahat = solve(sigmay) %*% cov(y,x) %*% solve(sigmax)
eg_S<- eigen(Sigmahat%*%t(Sigmahat)); ev_S <- eg_S$vectors
evectors <- as.matrix(ev_S[,1:num.d])
evalues <- eg_S$values[1:num.d]
cumsum.evalues <- rev(cumsum(rev(evalues)))
ans <- list(M=evectors, stats=n*cumsum.evalues, evalues=evalues, numdir=num.d)
return(ans)
}
mbrdr.M.prr <- function(object, num.d=NULL,...) {
y <- mbrdr.y(object)
n <- dim(y)[1]
r <- dim(y)[2]
if (is.null(num.d) ) num.d <- (r-1)
Sigmahat = cov(y)
eg_S<- eigen(Sigmahat); ev_S <- eg_S$vectors
evectors <- as.matrix(ev_S[,1:num.d])
evalues <- eg_S$values[1:num.d]
cumsum.evalues <- rev(cumsum(rev(evalues)))
ans <- list(M=evectors, stats=n*cumsum.evalues, evalues=evalues, numdir=num.d)
return(ans)
}
mbrdr.M.pfrr <- function(object, num.d=NULL, fx.choice=NULL, nclust=NULL, fx=NULL,...) {
lik <- function(h, S, S_res, n) {
p <- dim(as.matrix(h))[1]; d <- dim(as.matrix(h))[2]
h <- eigen(h %*% t(h))$vectors[, 1:d]
h0 <- eigen(h %*% t(h))$vectors[, (d+1):p]
lik <- (-n/2)*log( det( t(h0) %*% S %*% h0 ) ) + (-n/2)*log( det( t(h) %*% S_res %*% h ) )
return(lik)}
seq.dir <- function(cand_mat, d=1, S, S_res, n){
h <- h1 <- NULL
r <- dim(cand_mat)[2]
f.lik <- -(n/2)*log(det(S_res))
for (i in 1:d){
l.lik <- NULL
for(j in 1:r){
l.lik[j] <- lik(cbind(h1, cand_mat[,j]), S, S_res, n)
}
stat <- 2*(f.lik - l.lik)
sel <- which(stat >= 0 ); l.lik <- l.lik[sel]; stat <- stat[sel]
cand_mat <- cand_mat[, sel]
h <- cbind(h,cand_mat[,which.max(l.lik)])
h1 <- h
cand_mat <- cand_mat[, -(which.max(l.lik))]
r <- length(sel)-1
}
out <- list(dir=h, loglik=max(l.lik), stat=min(stat) )
return(out)}
y <- mbrdr.y(object)
x <- mbrdr.x(object)
n <- dim(y)[1]
r <- dim(y)[2]
if (is.null(num.d) ) num.d <- (r-1)
num.f <- {if(is.null(fx.choice)) 1 else fx.choice}
h <- {if(is.null(nclust)) 5 else nclust}
if(num.f>4 & is.null(fx)) stop("fx.choice must be less than or equal to 4. If you want to other candidates for fx, use the fx option") else {
if(!is.null(fx)) fx<-fx else fx <- choose.fx(x, fx.choice=num.f, nclust=h)}
Sigmas<-SIGMAS(y, fx)
Sigmahat <- Sigmas$Sigmahat
Sigmahat_fit<-Sigmas$Sigmahat_fit
Sigmahat_res<-Sigmas$Sigmahat_res
eg_S<- eigen(Sigmahat); ev_S <- eg_S$vectors
eg_fit <- eigen(Sigmahat_fit); ev_fit <- eg_fit$vectors
eg_res <- eigen(Sigmahat_res); ev_res <- eg_res$vectors
cand <- cbind(ev_fit, ev_S, ev_res)
logliks <- NULL
for (i in 1:num.d ){
logliks[i] <- seq.dir(cand, d=i, S=Sigmahat, S_res=Sigmahat_res, n=n)$loglik
}
evectors <- seq.dir(cand, d=num.d, S=Sigmahat, S_res=Sigmahat_res, n=n)$dir
evectors <- qr.Q( qr(evectors) )
evalues <- c((-(n/2)*log(det(Sigmahat))), logliks)
full.loglik <- (-(n/2)*log(det(Sigmahat_res)))
stat <- 2*(full.loglik - evalues )
ans <- list(M=evectors, stats=stat, evalues=evalues, fx=fx, numdir=num.d)
return(ans)
}
mbrdr.test.pfrr <-function(object, nd) {
stat <- object$stats
y <- mbrdr.y(object)
fx <- object$fx
r <- dim(y)[2]; q<- dim(fx)[2]
st<-df<-pv<-0
nt <- nd
for (i in 0:nt-1)
{st[i+1]<-stat[i+1]
df[i+1]<-(r-i)*q
pv[i+1]<-1-pchisq(st[i+1],df[i+1])
}
z<-data.frame(cbind(st,df, round(pv,4)))
rr<-paste(0:(nt-1),"D vs >= ",1:nt,"D",sep="")
dimnames(z)<-list(rr,c("Stat","df","p-value"))
z
}
mbrdr.M.upfrr <- function(object, num.d=NULL, fx.choice=NULL, fx=NULL, nclust=NULL, epsilon=1e-7,...) {
upfrr = function(Y, d=d, fx=fx, epsilon=1e-7,...){
n <- dim(Y)[1]
r <- dim(Y)[2]
q <- dim(fx)[2]
muhat <- array(colMeans(Y),dim=c(1,r))
Y.centered <- as.matrix(Y-array(rep(1,times=n),dim=c(n,1))%*%muhat );
Sigmas<-SIGMAS(Y, fx); Sigmahat <- Sigmas$Sigmahat;
Sigmahat_fit<-Sigmas$Sigmahat_fit;Sigmahat_res<-Sigmas$Sigmahat_res;
sqrt_Sigmahat_res<-matpower(Sigmahat_res,0.5); Inv_Sqrt_Sigmahat_res<-solve(sqrt_Sigmahat_res);
lf_matrix <- Inv_Sqrt_Sigmahat_res%*% Sigmahat_fit %*% Inv_Sqrt_Sigmahat_res;
Vd<-eigen(lf_matrix, symmetric=TRUE)$vectors[, 1:d];
Gammahat<-(sqrt_Sigmahat_res)%*%Vd%*%solve( matpower( (t(Vd)%*%Sigmahat_res%*%Vd), 0.5) ) ;
Khat<-diag(0, r);
if ( d<min(r,q) ) {diag(Khat)[(d+1):min(r,q)]<- eigen(lf_matrix, symmetric=TRUE)$values[(d+1):min(r,q)] };
if ((r<d) | (r <d)) stop("d needs to be less than min(r, q)");
Vhat<-eigen(lf_matrix, symmetric=TRUE)$vectors;
Deltahat<-Sigmahat_res + sqrt_Sigmahat_res %*% Vhat %*% Khat %*% t(Vhat) %*% sqrt_Sigmahat_res;
Betahat <- solve(t(Gammahat)%*%solve(Deltahat)%*%Gammahat)%*%t(Gammahat) %*% solve(Deltahat)%*% t(Y.centered) %*% fx%*% solve(t(fx)%*%fx)
Rhat <- t(Gammahat)%*% solve(Deltahat)%*%t(Y.centered);
temp0<- -(n*r/2)*(1 + log(2*pi) );
temp1<- -(n/2)*sum( log( eigen(Sigmahat_res, symmetric=TRUE)$values) );
temp2<-0;
if ( d<min(r,q) ) {
temp2<- -(n/2)*sum( log( 1+ eigen(lf_matrix, symmetric=TRUE)$values[(d+1):min(r,q)] ) );
}
loglik=temp0 + temp1 + temp2;
return(list(Gammahat=Gammahat, loglik=loglik, muhat=muhat, Betahat=Betahat, Deltahat=Deltahat, Rhat=Rhat))
}
y <- mbrdr.y(object)
x <- mbrdr.x(object)
n <- dim(y)[1]
r <- dim(y)[2]
if (is.null(num.d) ) num.d <- (r-1)
num.f <- {if(is.null(fx.choice)) 1 else fx.choice}
h <- {if(is.null(nclust)) 5 else nclust}
if(num.f>4 & is.null(fx)) stop("fx.choice must be less than or equal to 4. If you want to other candidates for fx, use the fx option") else {
if(!is.null(fx)) fx<-fx else fx <- choose.fx(x, fx.choice=num.f, nclust=h)}
logliks <- NULL
Gammahats <- list(NULL)
for (i in 1:num.d) {
temp.fit <- upfrr(y, d=i, fx=fx)
logliks[i] <- temp.fit$loglik
Gammahats[[i]] <- temp.fit$Gammahat
}
d0.loglik <- upfrr(y, d=0, fx=fx)$loglik
full.loglik <- upfrr(y, d=r, fx=fx)$loglik
logliks <- c(d0.loglik, logliks)
stat <- 2*(full.loglik - logliks)
ans <- list(M=Gammahats[[num.d]], stats=stat, evalues=logliks, Gammahats=Gammahats, fx=fx, numdir=num.d)
return(ans)
}
mbrdr.test.upfrr <-function(object, nd) {
stat <- object$stats
y <- mbrdr.y(object)
fx <- object$fx
r <- dim(y)[2]; q<- dim(fx)[2]
st<-df<-pv<-0
nt <- nd
for (i in 0:nt-1)
{st[i+1]<-stat[i+1]
df[i+1]<-(r-i)*(q-i)
pv[i+1]<-1-pchisq(st[i+1],df[i+1])
}
z<-data.frame(cbind(st,df, round(pv,4)))
rr<-paste(0:(nt-1),"D vs >= ",1:nt,"D",sep="")
dimnames(z)<-list(rr,c("Stat","df","p-value"))
z
}
"print.mbrdr" <-
function(x, digits = max(3, getOption("digits") - 3), ...)
{
cat("\nCall:\n",deparse(x$call),"\n\n",sep="")
cat("Eigenvectors:\n")
evectors<-as.matrix(x$evectors)
print.default(evectors)
stats <- t(as.matrix(round(x$stats,4)))
nt <- length(x$stats)
rr <- paste("H0: d=", 0:(nt-1),sep="")
colnames(stats)<-rr
rownames(stats) <- c("")
cat("Statistics:\n")
print(stats)
cat("\n")
invisible(x)
}
"summary.mbrdr" <- function (object, ...){
z <- object
ans <- z[c("call")]
nd <- z$numdir
stats <- t(as.matrix(round(z$stats,4)))
nt <- length(z$stats)
rr <- paste("H0: d=", 0:(nt-1),sep="")
colnames(stats)<-rr
rownames(stats) <- c("")
ans$evectors <- z$evectors[,1:nd]
ans$method <- z$method
ans$weights <- mbrdr.wts(z)
sw <- sqrt(ans$weights)
y <- z$y
ans$n <- z$cases
ans$test <- mbrdr.test(z, nt)
ans$stats <- stats
class(ans) <- "summary.mbrdr"
ans
}
"print.summary.mbrdr" <- function (x, digits = max(3, getOption("digits") - 3), ...)
{
cat("\nCall:\n")
cat(paste(deparse(x$call), sep="\n", collapse = "\n"), "\n\n", sep="")
cat("Method:\n")
cat(paste(x$method, ", n = ", x$n,sep=""))
if(diff(range(x$weights)) > 0)
cat(", using weights.\n") else cat(".\n")
cat("\n")
cat("\nEigenvectors:\n")
print(x$evectors, digits=digits)
cat("\n")
cat("\nStatistics:\n")
print(x$stats,digits=digits)
cat("\n")
if (!is.null(x$test)){
cat("\nAsymp. Chi-square tests for dimension:\n")
print(as.matrix(x$test),digits=digits)}
invisible(x)
}
choose.fx = function(X, fx.choice=1, nclust=5){
CategoricalBasis<-function(y){
nobs=length(y); bin.y<-unique(sort(y));
r<- length(unique(sort(y)))-1; fy<-array(rep(0), c(r, nobs));
ny<-array(rep(0), c(r, 1));
for (i in 1:r){ fy[i,]<-sapply(y, function(x) (x==bin.y[i]) ) }
return(fy);
}
if (fx.choice==1) {fx = scale(X)}
if (fx.choice==2) {fx = cbind(scale(X), scale(X^2))}
if (fx.choice==3) {fx = cbind(scale(X), scale(exp(X)))}
if (fx.choice==4) {slice = kmeans(X, nclust)$clust; fx=t(CategoricalBasis(slice))}
if (fx.choice >4) {fx= NULL}
return(fx)
}
SIGMAS = function(Y, fx)
{
if (!is.vector(Y)) {
nobs <- dim(Y)[1]; npred <- dim(Y)[2];
mu <- array(colMeans(Y),dim=c(1,npred));
}
if (is.vector(Y)){
nobs <- length(Y); npred <- 1 ; Y<-array(Y, dim=c(nobs,1));
mu <- array(mean(Y),dim=c(1,npred));
}
r <- dim(fx)[2];
X.centered <- as.matrix( Y-array(rep(1,times=nobs),dim=c(nobs,1))%*%mu ) ;
Sigmahat <- 1/nobs*t(X.centered)%*%X.centered;
P_F <- fx%*%solve(t(fx)%*%fx)%*%t(fx);
Sigmahat_fit <- 1/nobs*t(X.centered)%*%P_F%*%X.centered; rm(P_F)
Sigmahat_res<-Sigmahat-Sigmahat_fit;
return(list(Sigmahat_fit=Sigmahat_fit, Sigmahat=Sigmahat, Sigmahat_res=Sigmahat_res));
}
matpower <-function(M,pow)
{
if (!is.matrix(M)) stop("The argument is not a matrix")
if ((dim(M)[1]==1) & (dim(M)[2]==1)) return( as.matrix(M^pow) );
svdM<-svd(M); return(svdM$u %*% diag(c(svdM$d)^pow) %*% t(svdM$v));
} |
context("[validate] NICE TSD2 program 2b")
test_that("The summaries match", {
result <- replicate.example("dietfat.fe", dietfat, likelihood="poisson", link="log", linearModel="fixed")
compare.summaries(result$s1, result$s2)
}) |
ypbpSurv <- function(time, z, par, tau, degree,
baseline=c("hazard", "odds")){
baseline <- match.arg(baseline)
q <- length(z)
base <- bp(time, degree, tau)
psi <- par[1:q]
phi <- par[(q+1):(2*q)]
gamma <- par[(2*q+1):(2*q+degree)]
theta_S <- exp( as.numeric(z%*%psi) )
theta_L <- exp( as.numeric(z%*%phi) )
if(baseline=="hazard"){
Ht0 <- as.numeric(base$B%*%gamma) + as.numeric(time>tau)*(time-tau)*degree*gamma[degree]/tau
St0 <- exp(-Ht0)
Ft0 <- 1-St0
St <- exp( -theta_L*(log(theta_L*St0 + theta_S*Ft0)-(as.numeric(z%*%phi) - Ht0) ) )
}else{
ratio <- exp( as.numeric(z%*%psi) - as.numeric(z%*%phi) )
Rt0 <- as.numeric(base$B%*%gamma) + as.numeric(time>tau)*(time-tau)*degree*gamma[degree]/tau
St <- exp(-theta_L*log(1 + ratio*Rt0))
}
return(St)
}
ypbpSurv2 <- function(time, z, x, par, tau, degree,
baseline=c("hazard", "odds")){
baseline <- match.arg(baseline)
q <- length(z)
p <- length(x)
base <- bp(time, degree, tau)
psi <- par[1:q]
phi <- par[(q+1):(2*q)]
beta <- par[(2*q+1):(2*q+p)]
gamma <- par[(2*q+p+1):(2*q+p+degree)]
theta_S <- exp( as.numeric(z%*%psi) )
theta_L <- exp( as.numeric(z%*%phi) )
theta_C <- exp( as.numeric(x%*%beta) )
ratio <- exp( as.numeric(z%*%psi) - as.numeric(z%*%phi) )
if(baseline=="hazard"){
Ht0 <- as.numeric(base$B%*%gamma) + as.numeric(time>tau)*(time-tau)*degree*gamma[degree]/tau
St0 <- exp(-Ht0)
Ft0 <- 1-St0
St <- exp( -theta_L*theta_C*(log(theta_L*St0 + theta_S*Ft0)-(as.numeric(z%*%phi) - Ht0) ) )
}else{
St <- exp(-theta_L*theta_C*log(1 + ratio*Rt0))
Rt0 <- as.numeric(base$B%*%gamma) + as.numeric(time>tau)*(time-tau)*degree*gamma[degree]/tau
}
return(St)
}
survfit.ypbp <- function(formula, newdata, ...){
object <- formula
mf <- object$mf
labels <- names(mf)[-1]
baseline <- object$baseline
time <- sort( stats::model.response(mf)[,1])
status <- sort( stats::model.response(mf)[,2])
data <- data.frame(cbind(time, status, mf[,-1]))
names(data) <- c("time", "status", names(mf)[-1])
degree <- object$degree
tau <- object$tau
labels <- match.arg(names(newdata), labels, several.ok = TRUE)
formula <- object$formula
Z <- as.matrix(stats::model.matrix(formula, data = newdata, rhs = 1)[,-1])
X <- suppressWarnings(try( as.matrix(stats::model.matrix(formula, data = newdata, rhs = 2)[,-1]), TRUE))
St <- list()
if(object$approach=="mle"){
par <- object$fit$par
if(object$p==0){
for(i in 1:nrow(newdata)){
St[[i]] <- ypbpSurv(time, Z[i, ], par, tau, degree, baseline)
}
}else{
for(i in 1:nrow(newdata)){
St[[i]] <- ypbpSurv2(time, Z[i, ], X[i, ], par, tau, degree, baseline)
}
}
}else{
samp <- rstan::extract(object$fit)
if(object$p==0){
par <- cbind(samp$psi, samp$phi, samp$gamma)
for(i in 1:nrow(newdata)){
aux <- apply(par, 1, ypbpSurv, time=time, z=Z[i,], tau=tau, degree=degree, baseline=baseline)
St[[i]] <- apply(aux, 1, mean)
}
}else{
par <- cbind(samp$psi, samp$phi, samp$beta, samp$gamma)
for(i in 1:nrow(newdata)){
aux <- apply(par, 1, ypbpSurv, time=time, z=Z[i,], x=X[i, ], tau=tau, degree=degree, baseline=baseline)
St[[i]] <- apply(aux, 1, mean)
}
}
}
out <- list(time = time, surv = St)
class(out) <- "survfit.ypbp"
return(out)
}
ypbpCrossSurv <- function(z1, z2, par, tau0, tau, degree, baseline){
diff_St <- function(time, z1, z2, par, tau, degree, baseline){
St1 <- ypbpSurv(time=time, z=z1, par=par, tau=tau, degree=degree, baseline=baseline)
St2 <- ypbpSurv(time=time, z=z2, par=par, tau=tau, degree=degree, baseline=baseline)
return(St1-St2)
}
I <- c(tau0, 1.5*tau)
t <- try(stats::uniroot(diff_St, interval=I, z1=z1, z2=z2, par=par, tau=tau, degree=degree, baseline=baseline)$root, TRUE)
if(class(t)=="try-error")
{
return(NA)
}else{
return(t)
}
}
ypbpCrossSurv2 <- function(z1, z2, x, par, tau0, tau, degree, baseline){
diff_St <- function(time, z1, z2, x, par, tau, degree, baseline){
St1 <- ypbpSurv2(time=time, z=z1, x=x, par=par, tau=tau, degree=degree, baseline=baseline)
St2 <- ypbpSurv2(time=time, z=z2, x=x, par=par, tau=tau, degree=degree, baseline=baseline)
return(St1-St2)
}
I <- c(tau0, 1.5*tau)
t <- try(stats::uniroot(diff_St, interval=I, z1=z1, z2=z2, x=x, par=par, tau=tau, degree=degree, baseline=baseline)$root, TRUE)
if(class(t)=="try-error")
{
return(NA)
}else{
return(t)
}
}
crossTime <- function(object, ...) UseMethod("crossTime")
crossTime.ypbp <- function(object, newdata1, newdata2,
conf.level=0.95, nboot=4000, ...){
q <-object$q
p <-object$p
mf <- object$mf
labels <- names(mf)[-1]
baseline <- object$baseline
time <- stats::model.response(mf)[,1]
status <- stats::model.response(mf)[,2]
o <- order(time)
data <- data.frame(cbind(time, status, mf[,-1]))[o,]
names(data) <- c("time", "status", labels)
tau0 <- min(time)
degree <- object$degree
tau <- object$tau
labels <- match.arg(names(newdata1), names(newdata2), several.ok=TRUE)
labels <- match.arg(names(mf)[-1], names(newdata1), several.ok=TRUE)
z1 <- matrix(stats::model.matrix(object$formula, data = newdata1, rhs = 1)[,-1], ncol=q)
z2 <- matrix(stats::model.matrix(object$formula, data = newdata2, rhs = 1)[,-1], ncol=q)
if(p>0){
x <- matrix(stats::model.matrix(object$formula, data = newdata2, rhs = 2)[,-1], ncol=p)
}
I <- c(tau0, 1.5*tau)
alpha <- 1 - conf.level
prob <- c(alpha/2, 1-alpha/2)
if(object$approach=="mle"){
t <- c()
par <- object$fit$par
for(i in 1:nrow(newdata1)){
if(p==0){
t[i] <- ypbpCrossSurv(z1=z1[i,], z2=z2[i,], par=par, tau0, tau, degree=degree, baseline=baseline)
}else{
t[i] <- ypbpCrossSurv2(z1=z1[i,], z2=z2[i,], x=x[i,], par=par, tau0, tau, degree=degree, baseline=baseline)
}
}
par <- with(object, ypbpBoot(formula=formula, data=data, n_int=n_int,
rho=rho, tau=tau, nboot=nboot, prob=prob))
ci <- matrix(nrow=nrow(newdata1), ncol=2)
if(object$p==0){
for(i in 1:nrow(newdata1)){
aux <- apply(par, 1, ypbpCrossSurv, z1=z1[i,], z2=z2[i,], tau0, tau, degree=degree, baseline=baseline)
ci[i,] <- stats::quantile(aux, probs=prob, na.rm=TRUE)
}
}else{
for(i in 1:nrow(newdata1)){
aux <- apply(par, 1, ypbpCrossSurv2, z1=z1[i,], z2=z2[i,], x=x[i,], tau0, tau, degree=degree, baseline=baseline)
ci[i,] <- stats::quantile(aux, probs=prob, na.rm=TRUE)
}
}
t <- data.frame(cbind(t, ci))
names(t) <- c("Est.", paste(100*prob, "%", sep=""))
}else{
t <- matrix(nrow=nrow(newdata1), ncol=3)
samp <- rstan::extract(object$fit)
if(object$p==0){
par <- cbind(samp$psi, samp$phi, samp$gamma)
for(i in 1:nrow(newdata1)){
aux <- apply(par, 1, ypbpCrossSurv, z1=z1[i,], z2=z2[i,], tau0, tau, degree=degree, baseline=baseline)
ci <- stats::quantile(aux, probs=prob, na.rm=TRUE)
t[i,] <- c(mean(aux, na.rm=TRUE), ci)
}
}else{
par <- cbind(samp$psi, samp$phi, samp$beta, samp$gamma)
for(i in 1:nrow(newdata1)){
aux <- apply(par, 1, ypbpCrossSurv2, z1=z1[i,], z2=z2[i,], x=x[i,], tau0, tau, degree=degree, baseline=baseline)
ci <- stats::quantile(aux, probs=prob, na.rm=TRUE)
t[i,] <- c(mean(aux, na.rm=TRUE), ci)
}
}
t <- as.data.frame(t)
names(t) <- c("Est.", names(ci) )
}
return(t)
} |
context("Bounding box using ru_rcpp")
normal_box <- function(d, sigma = diag(d), rotate = TRUE, r = 1 / 2) {
sigma <- as.matrix(sigma)
if (rotate & d > 1) {
l_mat <- t(chol(solve(sigma)))
l_mat <- l_mat / det(l_mat) ^ (1/d)
sigma <- t(l_mat) %*% sigma %*% l_mat
}
val <- sqrt((r * d + 1) / r)
ar <- 1
bplus <- val * exp(-1 /2) * sqrt(diag(sigma))
bminus <- -bplus
box <- c(ar, bminus, bplus)
adj_mat <- t(sqrt(diag(sigma)) * stats::cov2cor(sigma))
vals <- rbind(rep(0, d), -val * adj_mat, val * adj_mat)
colnames(vals) <- paste("vals", 1:d, sep="")
conv <- rep(0, 2 * d + 1)
box <- cbind(box, vals, conv)
bs <- paste(paste("b", 1:d, sep=""),rep(c("minus", "plus"), each=d), sep="")
rownames(box) <- c("a", bs)
return(box)
}
my_tol <- 1e-5
ptr_N01 <- create_xptr("logdN01")
x1a <- ru_rcpp(logf = ptr_N01, d = 1, n = 1, init = 0)
test_that("N(0,1)", {
testthat::expect_equal(x1a$box, normal_box(d = 1), tolerance = my_tol)
})
ptr_mvn <- create_xptr("logdmvnorm")
sigma <- 2
covmat <- matrix(sigma, 1, 1)
x1b <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 1, n = 1, init = 0)
test_that("N(0,2)", {
testthat::expect_equal(x1b$box, normal_box(d = 1, sigma = 2),
tolerance = my_tol)
})
ptr_bvn <- create_xptr("logdnorm2")
rho <- 0
x2ai <- ru_rcpp(logf = ptr_bvn, rho = rho, d = 2, n = 1, init = c(0, 0),
rotate = TRUE)
test_that("BVN, rotation", {
testthat::expect_equal(x2ai$box, normal_box(d = 2), tolerance = my_tol)
})
x2aii <- ru_rcpp(logf = ptr_bvn, rho = rho, d = 2, n = 1, init = c(0, 0),
rotate = FALSE)
test_that("BVN, no rotation", {
testthat::expect_equal(x2aii$box, normal_box(d = 2), tolerance = my_tol)
})
ptr_mvn <- create_xptr("logdmvnorm")
rho <- 0.9
covmat <- matrix(c(1, rho, rho, 1), 2, 2)
x2bi <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 2, n = 1, init = c(0, 0),
rotate = FALSE)
test_that("BVN, rho = 0.9, no rotation", {
testthat::expect_equal(x2bi$box, normal_box(d = 2, sigma = covmat,
rotate = FALSE),
tolerance = my_tol)
})
x2bii <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 2, n = 1, init = c(0, 0),
rotate = TRUE)
test_that("BVN, rho = 0.9, rotation", {
testthat::expect_equal(x2bii$box, normal_box(d = 2, sigma = covmat,
rotate = TRUE),
tolerance = my_tol)
})
covmat <- matrix(c(10, 3, 3, 2), 2, 2)
x2ci <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 2, n = 1, init = c(0, 0),
rotate = FALSE)
test_that("BVN, general Sigma, no rotation", {
testthat::expect_equal(x2ci$box, normal_box(d = 2, sigma = covmat,
rotate = FALSE),
tolerance = my_tol)
})
x2cii <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 2, n = 1, init = c(0, 0),
rotate = TRUE)
test_that("BVN, general Sigma, rotation", {
testthat::expect_equal(x2cii$box, normal_box(d = 2, sigma = covmat,
rotate = TRUE),
tolerance = my_tol)
})
covmat <- matrix(c(10, -3, -3, 2), 2, 2)
x2di <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 2, n = 1, init = c(0, 0),
rotate = FALSE, mean = c(1, 2))
test_that("BVN, non-zero mu, general Sigma, no rotation", {
testthat::expect_equal(x2di$box, normal_box(d = 2, sigma = covmat,
rotate = FALSE),
tolerance = my_tol)
})
x2dii <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 2, n = 1, init = c(0, 0),
rotate = TRUE, mean = c(1, 2))
test_that("BVN, non-zero mu, general Sigma, rotation", {
testthat::expect_equal(x2dii$box, normal_box(d = 2, sigma = covmat,
rotate = TRUE),
tolerance = my_tol)
})
covmat <- matrix(rho, 3, 3) + diag(1 - rho, 3)
x3ai <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 3, n = 1,
init = c(0, 0, 0), rotate = FALSE)
test_that("TVN, rho = 0.9, no rotation", {
testthat::expect_equal(x3ai$box, normal_box(d = 3, sigma = covmat,
rotate = FALSE),
tolerance = my_tol)
})
x3aii <- ru_rcpp(logf = ptr_mvn, sigma = covmat, d = 3, n = 1,
init = c(0, 0, 0), rotate = TRUE)
test_that("TVN, rho = 0.9, rotation", {
testthat::expect_equal(x3aii$box, normal_box(d = 3, sigma = covmat,
rotate = TRUE),
tolerance = my_tol)
})
lambda <- 0
ptr_lnorm <- create_xptr("logdlnorm")
mu <- 0
sigma <- 1
lambda <- 0
x <- ru_rcpp(logf = ptr_lnorm, mu = mu, sigma = sigma, d = 1, n = 1,
lower = 0, init = 0.1, trans = "BC", lambda = lambda)
test_that("Log-normal", {
testthat::expect_equal(x$box, normal_box(d = 1), tolerance = my_tol)
})
gamma_box <- function(shape = 1, rate = 1, r = 1 / 2) {
if (shape < 1) {
stop("A ratio-of-uniforms bounding box cannot be found when shape < 1")
}
x_mode <- (shape - 1) / rate
x_max <- stats::dgamma(x_mode, shape = shape, rate = rate)
ar <- 1
a_quad <- rate * r / (r + 1)
b_quad <- -(1 + r * (shape - 1) / (r + 1) - a_quad * x_mode)
c_quad <- -x_mode
b_vals <- Re(polyroot(c(c_quad, b_quad, a_quad)))
vals1 <- c(0, b_vals)
b_fun <- function(x) {
x * (stats::dgamma(x + x_mode, shape = shape) / x_max) ^ (r / (r + 1))
}
box <- c(ar, b_fun(b_vals))
conv <- rep(0, 3)
box <- cbind(box, vals1, conv)
bs <- paste(paste("b", 1, sep=""),rep(c("minus", "plus"), each=1), sep="")
rownames(box) <- c("a", bs)
return(box)
}
ptr_gam <- create_xptr("logdgamma")
alpha <- 1
x1 <- suppressWarnings(ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = 1,
lower = 0, init = alpha))
test_that("Gamma(1, 1)", {
testthat::expect_equal(x1$box, gamma_box(shape = 1), tolerance = my_tol)
})
alpha <- 10
x2 <- ru_rcpp(logf = ptr_gam, alpha = alpha, d = 1, n = 1,
lower = 0, init = alpha)
test_that("Gamma(10, 1)", {
testthat::expect_equal(x2$box, gamma_box(shape = 10), tolerance = my_tol)
}) |
make.X <- function(df, num.groups, groups){
if (any(class(df)=="spec_tbl_df")){df <- as.data.frame(df)}
xrow <- dim(df)[1]
x.s <- numeric()
for (i in 1:num.groups){
x.s[i] <- length(groups[[i]])
}
xcol <- sum(x.s)
X <- matrix(0, nrow=xrow, ncol=xcol)
counter <-1
for (j in 1:num.groups){
for (k in 1:x.s[j]){
x <- groups[[j]][k]
X[, counter] <- df[, x]
counter <- counter + 1
}
counter <- counter
}
colnames(X) <- unlist(groups)
return(X)
} |
bar_plot <- function(df_plot, x, y, fill, label, xlb = "", ylb = "",
ttl = "", sttl = "", lgnd = NULL, rotate = FALSE,
col_palette = NULL, ylim_range = NULL){
plt <- df_plot %>%
ggplot(aes_string(x = x, y = y, fill = fill, label = label)) +
geom_bar(stat = "identity") +
labs(x = xlb, y = ylb, title = ttl, subtitle = sttl) +
scale_fill_manual(values = user_colours(nrow(df_plot), col_palette))
if(is.null(lgnd)){
plt <- plt + guides(fill = FALSE)
} else {
plt <- plt + scale_fill_discrete(name = lgnd)
}
if(!is.null(ylim_range)){
plt <- plt + ylim(ylim_range)
}
if(rotate){
plt <- plt + theme(axis.text.x = element_text(angle = 45, hjust = 1))
}
return(plt)
} |
NULL
snowball_cancel_cluster <- function(ClusterId) {
op <- new_operation(
name = "CancelCluster",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$cancel_cluster_input(ClusterId = ClusterId)
output <- .snowball$cancel_cluster_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$cancel_cluster <- snowball_cancel_cluster
snowball_cancel_job <- function(JobId) {
op <- new_operation(
name = "CancelJob",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$cancel_job_input(JobId = JobId)
output <- .snowball$cancel_job_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$cancel_job <- snowball_cancel_job
snowball_create_address <- function(Address) {
op <- new_operation(
name = "CreateAddress",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$create_address_input(Address = Address)
output <- .snowball$create_address_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$create_address <- snowball_create_address
snowball_create_cluster <- function(JobType, Resources, Description = NULL, AddressId, KmsKeyARN = NULL, RoleARN, SnowballType = NULL, ShippingOption, Notification = NULL, ForwardingAddressId = NULL, TaxDocuments = NULL) {
op <- new_operation(
name = "CreateCluster",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$create_cluster_input(JobType = JobType, Resources = Resources, Description = Description, AddressId = AddressId, KmsKeyARN = KmsKeyARN, RoleARN = RoleARN, SnowballType = SnowballType, ShippingOption = ShippingOption, Notification = Notification, ForwardingAddressId = ForwardingAddressId, TaxDocuments = TaxDocuments)
output <- .snowball$create_cluster_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$create_cluster <- snowball_create_cluster
snowball_create_job <- function(JobType = NULL, Resources = NULL, Description = NULL, AddressId = NULL, KmsKeyARN = NULL, RoleARN = NULL, SnowballCapacityPreference = NULL, ShippingOption = NULL, Notification = NULL, ClusterId = NULL, SnowballType = NULL, ForwardingAddressId = NULL, TaxDocuments = NULL, DeviceConfiguration = NULL) {
op <- new_operation(
name = "CreateJob",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$create_job_input(JobType = JobType, Resources = Resources, Description = Description, AddressId = AddressId, KmsKeyARN = KmsKeyARN, RoleARN = RoleARN, SnowballCapacityPreference = SnowballCapacityPreference, ShippingOption = ShippingOption, Notification = Notification, ClusterId = ClusterId, SnowballType = SnowballType, ForwardingAddressId = ForwardingAddressId, TaxDocuments = TaxDocuments, DeviceConfiguration = DeviceConfiguration)
output <- .snowball$create_job_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$create_job <- snowball_create_job
snowball_create_return_shipping_label <- function(JobId, ShippingOption = NULL) {
op <- new_operation(
name = "CreateReturnShippingLabel",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$create_return_shipping_label_input(JobId = JobId, ShippingOption = ShippingOption)
output <- .snowball$create_return_shipping_label_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$create_return_shipping_label <- snowball_create_return_shipping_label
snowball_describe_address <- function(AddressId) {
op <- new_operation(
name = "DescribeAddress",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$describe_address_input(AddressId = AddressId)
output <- .snowball$describe_address_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$describe_address <- snowball_describe_address
snowball_describe_addresses <- function(MaxResults = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeAddresses",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$describe_addresses_input(MaxResults = MaxResults, NextToken = NextToken)
output <- .snowball$describe_addresses_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$describe_addresses <- snowball_describe_addresses
snowball_describe_cluster <- function(ClusterId) {
op <- new_operation(
name = "DescribeCluster",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$describe_cluster_input(ClusterId = ClusterId)
output <- .snowball$describe_cluster_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$describe_cluster <- snowball_describe_cluster
snowball_describe_job <- function(JobId) {
op <- new_operation(
name = "DescribeJob",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$describe_job_input(JobId = JobId)
output <- .snowball$describe_job_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$describe_job <- snowball_describe_job
snowball_describe_return_shipping_label <- function(JobId = NULL) {
op <- new_operation(
name = "DescribeReturnShippingLabel",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$describe_return_shipping_label_input(JobId = JobId)
output <- .snowball$describe_return_shipping_label_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$describe_return_shipping_label <- snowball_describe_return_shipping_label
snowball_get_job_manifest <- function(JobId) {
op <- new_operation(
name = "GetJobManifest",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$get_job_manifest_input(JobId = JobId)
output <- .snowball$get_job_manifest_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$get_job_manifest <- snowball_get_job_manifest
snowball_get_job_unlock_code <- function(JobId) {
op <- new_operation(
name = "GetJobUnlockCode",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$get_job_unlock_code_input(JobId = JobId)
output <- .snowball$get_job_unlock_code_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$get_job_unlock_code <- snowball_get_job_unlock_code
snowball_get_snowball_usage <- function() {
op <- new_operation(
name = "GetSnowballUsage",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$get_snowball_usage_input()
output <- .snowball$get_snowball_usage_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$get_snowball_usage <- snowball_get_snowball_usage
snowball_get_software_updates <- function(JobId) {
op <- new_operation(
name = "GetSoftwareUpdates",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$get_software_updates_input(JobId = JobId)
output <- .snowball$get_software_updates_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$get_software_updates <- snowball_get_software_updates
snowball_list_cluster_jobs <- function(ClusterId, MaxResults = NULL, NextToken = NULL) {
op <- new_operation(
name = "ListClusterJobs",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$list_cluster_jobs_input(ClusterId = ClusterId, MaxResults = MaxResults, NextToken = NextToken)
output <- .snowball$list_cluster_jobs_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$list_cluster_jobs <- snowball_list_cluster_jobs
snowball_list_clusters <- function(MaxResults = NULL, NextToken = NULL) {
op <- new_operation(
name = "ListClusters",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$list_clusters_input(MaxResults = MaxResults, NextToken = NextToken)
output <- .snowball$list_clusters_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$list_clusters <- snowball_list_clusters
snowball_list_compatible_images <- function(MaxResults = NULL, NextToken = NULL) {
op <- new_operation(
name = "ListCompatibleImages",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$list_compatible_images_input(MaxResults = MaxResults, NextToken = NextToken)
output <- .snowball$list_compatible_images_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$list_compatible_images <- snowball_list_compatible_images
snowball_list_jobs <- function(MaxResults = NULL, NextToken = NULL) {
op <- new_operation(
name = "ListJobs",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$list_jobs_input(MaxResults = MaxResults, NextToken = NextToken)
output <- .snowball$list_jobs_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$list_jobs <- snowball_list_jobs
snowball_update_cluster <- function(ClusterId, RoleARN = NULL, Description = NULL, Resources = NULL, AddressId = NULL, ShippingOption = NULL, Notification = NULL, ForwardingAddressId = NULL) {
op <- new_operation(
name = "UpdateCluster",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$update_cluster_input(ClusterId = ClusterId, RoleARN = RoleARN, Description = Description, Resources = Resources, AddressId = AddressId, ShippingOption = ShippingOption, Notification = Notification, ForwardingAddressId = ForwardingAddressId)
output <- .snowball$update_cluster_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$update_cluster <- snowball_update_cluster
snowball_update_job <- function(JobId, RoleARN = NULL, Notification = NULL, Resources = NULL, AddressId = NULL, ShippingOption = NULL, Description = NULL, SnowballCapacityPreference = NULL, ForwardingAddressId = NULL) {
op <- new_operation(
name = "UpdateJob",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$update_job_input(JobId = JobId, RoleARN = RoleARN, Notification = Notification, Resources = Resources, AddressId = AddressId, ShippingOption = ShippingOption, Description = Description, SnowballCapacityPreference = SnowballCapacityPreference, ForwardingAddressId = ForwardingAddressId)
output <- .snowball$update_job_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$update_job <- snowball_update_job
snowball_update_job_shipment_state <- function(JobId, ShipmentState) {
op <- new_operation(
name = "UpdateJobShipmentState",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .snowball$update_job_shipment_state_input(JobId = JobId, ShipmentState = ShipmentState)
output <- .snowball$update_job_shipment_state_output()
config <- get_config()
svc <- .snowball$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.snowball$operations$update_job_shipment_state <- snowball_update_job_shipment_state |
niter=100
fit=LSM(Y=School9network, senderCov=School9NodeCov, receiverCov=School9NodeCov, edgeCov=School9EdgeCov, niter=niter)
random.fit = HLSMrandomEF(Y = ps.advice.mat, senderCov = ps.node.df, receiverCov=ps.node.df, edgeCov=ps.edge.df, dd = 2,niter = niter)
summary(random.fit)
names(random.fit)
fixed.fit = HLSMfixedEF(Y = ps.advice.mat, senderCov = ps.node.df, receiverCov=ps.node.df, edgeCov=ps.edge.df, dd = 2,niter = niter)
summary(fixed.fit)
names(fixed.fit) |
"getDiffThetaCl" <-
function(th, thetaClasslist, mod) {
modeldiff <- mod@modeldiffs
modellist <- mod@modellist
parorder <- mod@parorderdiff
parorderchange <- mod@parorderchange
pcnt <- 1
if(length(modeldiff$change)!=0)
thetaClasslist <- getDiffThetaClChange(th, parorderchange,
modellist, thetaClasslist, modeldiff$change)
if(length(modeldiff$free)!=0 || length(modeldiff$add) != 0)
for(diff in append(modeldiff$free, modeldiff$add)){
partmp <- th[parorder[[pcnt]]$ind]
removepar <- parorder[[pcnt]]$rm
pcnt <- pcnt + 1
if(diff$what %in% modellist[[diff$dataset[1]]]@positivepar)
partmp <- exp(partmp)
for(fx in removepar){
if(fx %in% modellist[[diff$dataset]]@fvecind[[diff$what]])
partmp <- append(partmp,
unlist(slot(modellist[[diff$dataset]],
diff$what))[fx], after=(fx-1))
else
partmp <- append(partmp, 0, after=(fx-1))
}
if(length(diff$ind) == 2)
for (d in diff$dataset)
slot(thetaClasslist[[d]],
diff$what)[[diff$ind[1]]][diff$ind[2]] <- partmp
if(length(diff$ind) == 1)
for (d in diff$dataset)
slot(thetaClasslist[[d]],
diff$what)[diff$ind] <- partmp
}
if(length(modeldiff$remove)!=0)
for(diff in modeldiff$remove){
if(length(diff$ind) == 2)
for (d in diff$dataset)
slot(thetaClasslist[[d]],
diff$what)[[diff$ind[1]]][- diff$ind[2]]
if(length(diff$ind) == 1)
for (d in diff$dataset)
slot(thetaClasslist[[d]],
diff$what)[-diff$ind]
}
if(length(modeldiff$rel)!=0)
for(diff in modeldiff$rel){
ds1 <- diff$dataset1
ds2 <- diff$dataset2
if(length(diff$rel) == 0 || diff$rel == "lin"){
if( length(diff$fix) !=0)
thscal <- diff$start
else
thscal <- th[parorder[[pcnt]]$ind]
pcnt <- pcnt+1
if(length(diff$ind1)==1 && length(diff$ind2)==1){
for(i in 1:length(ds1)){
slot(thetaClasslist[[ds1[i]]],
diff$what1)[diff$ind1] <- slot(thetaClasslist[[ds2[i]]],
diff$what2)[diff$ind2] * thscal[1] + thscal[2]
}
}
if(length(diff$ind1)==1 && length(diff$ind2)==2){
for(i in 1:length(ds1))
slot(thetaClasslist[[ds1[i]]],
diff$what1)[diff$ind1] <-
slot(thetaClasslist[[ds2[i]]],
diff$what2)[[diff$ind2[1]]][diff$ind2[2]] * thscal[1] + thscal[2]
}
if(length(diff$ind1)==2 && length(diff$ind2)==1){
for(i in 1:length(ds1))
slot(thetaClasslist[[ds1[i]]],
diff$what1)[[diff$ind1[1]]][diff$ind1[2]] <-
slot(thetaClasslist[[ds2[i]]],
diff$what2)[diff$ind2] * thscal[1] + thscal[2]
}
if(length(diff$ind1)==2 && length(diff$ind2)==2){
for(i in 1:length(ds1))
slot(thetaClasslist[[ds1[i]]],
diff$what1)[[diff$ind1[1]]][diff$ind1[2]] <-
slot(thetaClasslist[[ds2[i]]],
diff$what2)[[diff$ind2[1]]][diff$ind2[2]] *
thscal[1] + thscal[2]
}
}
}
if(length(modeldiff$dscal) != 0) {
for(i in 1:length(modeldiff$dscal)) {
parvec <- getPar(modellist[[modeldiff$dscal[[i]]$to]],
parorder[[pcnt]], th, thetaClasslist[[i]])
pcnt <- pcnt + 1
slot(thetaClasslist[[modeldiff$dscal[[i]]$to]],
"drel") <- parvec
}
}
thetaClasslist
} |
get_ndx_scores <-
function(weights, geno, names) {
scored = as.vector(weights != 0)
geno2 = subset(geno, scored == TRUE)
col = match(geno2,names)
u = as.vector(na.omit(unique(col)))
return (sort(u))
} |
require(NPBayesImputeCat)
data('NYexample')
model <- CreateModel(X,MCZ,50,200000,0.25,0.25,8888)
model$Run(100,1000,100)
result <- model$snapshot
IX <- GetDataFrame(result$ImputedX,X)
View(IX) |
shorten.to.string <-
function(line, token)
{
if (FALSE) {
ans <- regexpr(strsplit("token", ",", fixed = TRUE)[[1L]][1L],
line, fixed = TRUE)
if (ans == -1L) line
else substr(line, 1L, ans + attr(ans, "match.length") - 1L)
}
else {
substr(line, 1L, 1L)
}
}
write.etags <-
function(src,
tokens, startlines, lines, nchars,
...,
shorten.lines = c("token", "simple", "none"))
{
shorten.lines <- match.arg(shorten.lines)
offsets <- (cumsum(nchars + 1L) - (nchars + 1L))[startlines]
lines <-
switch(shorten.lines,
none = lines,
simple = sapply(strsplit(lines, "function", fixed = TRUE), "[", 1),
token = mapply(shorten.to.string, lines, tokens))
tag.lines <-
paste(sprintf("%s\x7f%s\x01%d,%d",
lines, tokens, startlines,
as.integer(offsets)),
collapse = "\n")
tagsize <- nchar(tag.lines, type = "bytes") + 1L
cat("\x0c\n", src, ",", tagsize, "\n", tag.lines, "\n", sep = "", ...)
}
expr2token <-
function(x,
ok = c("<-", "=", "<<-", "assign",
"setGeneric", "setGroupGeneric", "setMethod",
"setClass", "setClassUnion"),
extended = TRUE)
{
id <- ""
value <-
if ((length(x) > 1L) &&
(length(token <- as.character(x[[2L]])) == 1L) &&
(length(id <- as.character(x[[1L]])) == 1L) &&
(id %in% ok)) token
else
character(0L)
if (extended && identical(id, "setMethod"))
{
sig <- tryCatch(eval(x[[3L]]), error = identity)
if (!inherits(sig, "error") && is.character(sig))
value <- paste(c(value, sig), collapse=",")
}
value
}
rtags.file <-
function(src, ofile = "", append = FALSE,
write.fun = write.etags)
{
elist <- parse(src, srcfile = srcfile(src))
if (length(elist) == 0) return(invisible())
lines <- readLines(src)
tokens <- lapply(elist, expr2token)
startlines <- sapply(attr(elist, "srcref"), "[", 1L)
if (length(tokens) != length(startlines))
stop("length mismatch: bug in code!", domain = NA)
keep <- lengths(tokens) == 1L
if (!any(keep)) return(invisible())
tokens <- unlist(tokens[keep])
startlines <- startlines[keep]
write.fun(src = src,
tokens = tokens,
startlines = startlines,
lines = lines[startlines],
nchars = nchar(lines, type = "bytes"),
file = ofile, append = append)
}
rtags <-
function(path = ".", pattern = "\\.[RrSs]$",
recursive = FALSE,
src = list.files(path = path,
pattern = pattern,
full.names = TRUE,
recursive = recursive),
keep.re = NULL,
ofile = "", append = FALSE,
verbose = getOption("verbose"))
{
if (nzchar(ofile) && !append) {
if (!file.create(ofile, showWarnings = FALSE))
stop(gettextf("Could not create file %s, aborting", ofile),
domain = NA)
}
if (!missing(keep.re))
src <- grep(keep.re, src, value = TRUE)
for (s in src)
{
if (verbose) message(gettextf("Processing file %s", s), domain = NA)
tryCatch(
rtags.file(s, ofile = ofile, append = TRUE),
error = function(e) NULL)
}
invisible()
} |
print.flexCPH <-
function (x, digits = max(4, getOption("digits") - 4), ...) {
cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "")
print(lapply(x$coefficients, round, digits = digits))
cat("\nlog-Lik:", x$logLik, "\n\n")
invisible(x)
} |
computeCost <- function(X, y, theta) {
m <- length(y)
J <- 0
dif <- X %*% theta - y
J <- (t(dif) %*% dif) / (2 * m)
J
} |
as.character.formula <- function(x, ...) {
form <- paste( deparse(x), collapse=" " )
form <- gsub( "\\s+", " ", form, perl=FALSE )
return(form)
} |
NULL
length.blockmatrix <- function (x) {
return(length(x$value))
} |
NULL
setMethod("length", signature=c(x="TreeHarp"),
function(x) {
return(length(x@adjList))
})
setMethod("show",
signature(object = "TreeHarp"),
function (object)
{
cat(object@repr, "\n")
return(invisible(NULL))
}
)
setMethod("names", signature=c(x="TreeHarp"),
function(x) {
return(names(x@adjList))
})
setGeneric("get_parent_id", function(x, node_num) standardGeneric("get_parent_id"),
signature = "x"
)
setMethod("get_parent_id", signature=c(x="TreeHarp"),
function(x, node_num) {
get_parent_id2(x@adjList, node_num)
})
setMethod("get_parent_id", signature=c(x="list"),
function(x, node_num) {
get_parent_id2(x, node_num)
})
setGeneric("get_child_ids", function(x, node_num) standardGeneric("get_child_ids"),
signature = "x"
)
setMethod("get_child_ids", signature=c(x="TreeHarp"),
function(x, node_num) {
get_child_ids2(x@adjList, node_num)
})
setMethod("get_child_ids", signature=c(x="list"),
function(x, node_num) {
get_child_ids2(x, node_num)
})
setGeneric("get_adj_list", function(x, ...) standardGeneric("get_adj_list"),
signature = "x"
)
setMethod("get_adj_list", signature=c(x="TreeHarp"),
function(x, ...) {
return(x@adjList)
})
setGeneric("get_node_types", function(x, ...) standardGeneric("get_node_types"),
signature = "x"
)
setMethod("get_node_types", signature=c(x="TreeHarp"),
function(x, ...) {
return(x@nodeTypes)
})
setMethod("plot", signature=c("TreeHarp"),
function(x, y, ...){
ig <- igraph::graph_from_adj_list(get_adj_list(x), mode="all",
duplicate=FALSE)
ll <- names(x@adjList)
igraph::plot.igraph(ig,
layout=igraph::layout_as_tree(ig, root=1),
vertex.label=ll, ...)
}) |
lmrob <-
function(formula, data, subset, weights, na.action, method = 'MM',
model = TRUE, x = !control$compute.rd, y = FALSE,
singular.ok = TRUE, contrasts = NULL, offset = NULL,
control = NULL, init = NULL, ...)
{
if (miss.ctrl <- missing(control))
control <- if (missing(method))
lmrob.control(...) else lmrob.control(method = method, ...)
else if (length(list(...)))
warning("arguments .. in ",
sub(")$", "", sub("^list\\(", "", deparse(list(...), control = c()))),
" are disregarded.\n",
" Maybe use lmrob(*, control=lmrob.control(....) with all these.")
ret.x <- x
ret.y <- y
cl <- match.call()
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "weights", "na.action", "offset"),
names(mf), 0)
mf <- mf[c(1, m)]
mf$drop.unused.levels <- TRUE
mf[[1]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
mt <- attr(mf, "terms")
y <- model.response(mf, "numeric")
w <- as.vector(model.weights(mf))
if(!is.null(w) && !is.numeric(w))
stop("'weights' must be a numeric vector")
offset <- as.vector(model.offset(mf))
if(!is.null(offset) && length(offset) != NROW(y))
stop(gettextf("number of offsets is %d, should equal %d (number of observations)",
length(offset), NROW(y)), domain = NA)
if (!miss.ctrl && !missing(method) && method != control$method) {
warning("The 'method' argument is different from 'control$method'\n",
"Using the former, method = ", method)
control$method <- method
}
if (is.empty.model(mt)) {
x <- NULL
singular.fit <- FALSE
z <- list(coefficients = if(is.matrix(y)) matrix(NA_real_, 0, ncol(y))
else numeric(),
residuals = y, scale = NA, fitted.values = 0 * y,
cov = matrix(NA_real_,0,0), weights = w, rank = 0,
df.residual = if(!is.null(w)) sum(w != 0) else NROW(y),
converged = TRUE, iter = 0)
if(!is.null(offset)) {
z$fitted.values <- offset
z$residuals <- y - offset
z$offset <- offset
}
}
else {
x <- model.matrix(mt, mf, contrasts)
contrasts <- attr(x, "contrasts")
assign <- attr(x, "assign")
p <- ncol(x)
if(!is.null(offset))
y <- y - offset
if (!is.null(w)) {
ny <- NCOL(y)
n <- nrow(x)
if (NROW(y) != n | length(w) != n)
stop("incompatible dimensions")
if (any(w < 0 | is.na(w)))
stop("missing or negative weights not allowed")
zero.weights <- any(w == 0)
if (zero.weights) {
save.r <- y
save.w <- w
save.f <- y
ok <- w != 0
nok <- !ok
w <- w[ok]
x0 <- x[nok, , drop = FALSE]
x <- x[ ok, , drop = FALSE]
n <- nrow(x)
y0 <- if (ny > 1L) y[nok, , drop = FALSE] else y[nok]
y <- if (ny > 1L) y[ ok, , drop = FALSE] else y[ok]
attr(mf, "zero.weights") <- which(nok)
}
wts <- sqrt(w)
save.y <- y
x <- wts * x
y <- wts * y
}
if(getRversion() >= "3.1.0") {
z0 <- .lm.fit(x, y, tol = control$solve.tol)
piv <- z0$pivot
} else {
z0 <- lm.fit(x, y, tol = control$solve.tol)
piv <- z0$qr$pivot
}
rankQR <- z0$rank
singular.fit <- rankQR < p
if (rankQR > 0) {
if (singular.fit) {
if (!singular.ok) stop("singular fit encountered")
pivot <- piv
p1 <- pivot[seq_len(rankQR)]
p2 <- pivot[(rankQR+1):p]
dn <- dimnames(x)
x <- x[,p1]
attr(x, "assign") <- assign[p1]
}
if (is.function(control$eps.x))
control$eps.x <- control$eps.x(max(abs(x)))
if (!is.null(ini <- init)) {
if (is.character(init)) {
init <- switch(init,
"M-S" = lmrob.M.S(x, y, control, mf=mf),
"S" = lmrob.S (x, y, control),
stop('init must be "S", "M-S", function or list'))
if(ini == "M-S") {
ini <- init$control$method
}
} else if (is.function(init)) {
init <- init(x=x, y=y, control=control, mf=mf)
} else if (is.list(init)) {
if (singular.fit) {
init$coef <- na.omit(init$coef)
if (length(init$coef) != ncol(x))
stop("Length of initial coefficients vector does not match rank of singular design matrix x")
}
} else stop("unknown init argument")
stopifnot(is.numeric(init$coef), is.numeric(init$scale))
if (control$method == "MM" || substr(control$method, 1, 1) == "S")
control$method <- substring(control$method, 2)
if (class(init)[1] != "lmrob.S" && control$cov == '.vcov.avar1')
control$cov <- ".vcov.w"
}
z <- lmrob.fit(x, y, control, init=init)
if(is.character(ini) && !grepl(paste0("^", ini), control$method))
control$method <- paste0(ini, control$method)
if (singular.fit) {
coef <- numeric(p)
coef[p2] <- NA
coef[p1] <- z$coefficients
names(coef) <- dn[[2L]]
z$coefficients <- coef
d.p <- p-rankQR
n <- NROW(y)
z$qr[c("qr","qraux","pivot")] <-
list(matrix(c(z$qr$qr, rep.int(0, d.p*n)), n, p,
dimnames = list(dn[[1L]], dn[[2L]][piv])),
c(z$qr$qraux, rep.int(0, d.p)),
piv)
}
} else {
z <- list(coefficients = if (is.matrix(y)) matrix(NA_real_,p,ncol(y))
else rep.int(NA_real_, p),
residuals = y, scale = NA, fitted.values = 0 * y,
cov = matrix(NA_real_,0,0), rweights = rep.int(NA_real_, NROW(y)),
weights = w, rank = 0, df.residual = NROW(y),
converged = TRUE, iter = 0, control=control)
if (is.matrix(y)) colnames(z$coefficients) <- colnames(x)
else names(z$coefficients) <- colnames(x)
if(!is.null(offset)) z$residuals <- y - offset
}
if (!is.null(w)) {
z$residuals <- z$residuals/wts
z$fitted.values <- save.y - z$residuals
z$weights <- w
if (zero.weights) {
coef <- z$coefficients
coef[is.na(coef)] <- 0
f0 <- x0 %*% coef
if (ny > 1) {
save.r[ok, ] <- z$residuals
save.r[nok, ] <- y0 - f0
save.f[ok, ] <- z$fitted.values
save.f[nok, ] <- f0
}
else {
save.r[ok] <- z$residuals
save.r[nok] <- y0 - f0
save.f[ok] <- z$fitted.values
save.f[nok] <- f0
}
z$residuals <- save.r
z$fitted.values <- save.f
z$weights <- save.w
rw <- z$rweights
z$rweights <- rep.int(0, length(save.w))
z$rweights[ok] <- rw
}
}
}
if(!is.null(offset))
z$fitted.values <- z$fitted.values + offset
z$na.action <- attr(mf, "na.action")
z$offset <- offset
z$contrasts <- contrasts
z$xlevels <- .getXlevels(mt, mf)
z$call <- cl
z$terms <- mt
z$assign <- assign
if(control$compute.rd && !is.null(x))
z$MD <- robMD(x, attr(mt, "intercept"), wqr=z$qr)
if (model)
z$model <- mf
if (ret.x)
z$x <- if (singular.fit || (!is.null(w) && zero.weights))
model.matrix(mt, mf, contrasts) else x
if (ret.y)
z$y <- if (!is.null(w)) model.response(mf, "numeric") else y
class(z) <- "lmrob"
z
}
if(getRversion() < "3.1.0") globalVariables(".lm.fit")
chk.s <- function(...) {
if(length(list(...)))
warning("arguments ",
sub(")$", '', sub("^list\\(", '', deparse(list(...), control=c()))),
" are disregarded in\n ", deparse(sys.call(-1), control=c()),
call. = FALSE)
}
robMD <- function(x, intercept, wqr, ...) {
if(intercept == 1) x <- x[, -1, drop=FALSE]
if(ncol(x) >= 1) {
rob <- tryCatch(covMcd(x, ...),
warning = function(w) structure("covMcd produced a warning",
class="try-error", condition = w),
error = function(e) structure("covMcd failed with an error",
class="try-error", condition = e))
if (inherits(rob, "try-error")) {
warning("Failed to compute robust Mahalanobis distances, reverting to robust leverages.")
.lmrob.hat(wqr = wqr)
}
else
sqrt( mahalanobis(x, rob$center, rob$cov) )
}
}
alias.lmrob <- function(object, ...) {
if (is.null(x <- object[["x"]]))
x <- model.matrix(object)
weights <- weights(object)
if (!is.null(weights) && diff(range(weights)))
x <- x * sqrt(weights)
object$qr <- qr(x)
class(object) <- "lm"
alias(object)
}
case.names.lmrob <- function(object, full = FALSE, ...)
{
w <- weights(object)
dn <- names(residuals(object))
if(full || is.null(w)) dn else dn[w!=0]
}
confint.lmrob <- confint.lm
dummy.coef.lmrob <- dummy.coef.lm
family.lmrob <- function(object, ...) gaussian()
kappa.lmrob <- function(z, ...) kappa.qr(z$qr, ...)
qrLmr <- function(x) {
if(!is.list(r <- x$qr))
stop("lmrob object does not have a proper 'qr' component. Rank zero?")
r
}
labels.lmrob <- function(object, ...) {
tl <- attr(object$terms, "term.labels")
asgn <- object$assign[qrLmr(object)$pivot[seq_len(object$rank)]]
tl[unique(asgn)]
}
model.matrix.lmrob <- model.matrix.lm
nobs.lmrob <- function(object, ...)
if (!is.null(w <- object$weights)) sum(w != 0) else NROW(object$residuals)
if(FALSE)
predict.lmrob <- function (object, newdata = NULL, scale = NULL, ...)
{
class(object) <- c(class(object), "lm")
object$qr <- qr(sqrt(object$rweights) * object$x)
predict.lm(object, newdata = newdata, scale = object$s, ...)
}
print.summary.lmrob <-
function (x, digits = max(3, getOption("digits") - 3),
symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"),
showAlgo = TRUE, ...)
{
cat("\nCall:\n",
paste(deparse(x$call, width.cutoff=72), sep = "\n", collapse = "\n"),
"\n", sep = "")
control <- lmrob.control.minimal(x$control)
cat(" \\--> method = \"", control$method, '"\n', sep = "")
resid <- x$residuals
df <- x$df
rdf <- df[2L]
cat(if (!is.null(x$weights) && diff(range(x$weights))) "Weighted ",
"Residuals:\n", sep = "")
if (rdf > 5L) {
nam <- c("Min", "1Q", "Median", "3Q", "Max")
rq <-
if (NCOL(resid) > 1)
structure(apply(t(resid), 1, quantile),
dimnames = list(nam, dimnames(resid)[[2]]))
else setNames(quantile(resid), nam)
print(rq, digits = digits, ...)
}
else print(resid, digits = digits, ...)
if( length(x$aliased) ) {
if( !(x$converged) ) {
if (x$scale == 0) {
cat("\nExact fit detected\n\nCoefficients:\n")
} else {
cat("\nAlgorithm did not converge\n")
if (control$method == "S")
cat("\nCoefficients of the *initial* S-estimator:\n")
else
cat(sprintf("\nCoefficients of the %s-estimator:\n",
control$method))
}
printCoefmat(x$coef, digits = digits, signif.stars = signif.stars,
...)
} else {
if (nsingular <- df[3L] - df[1L])
cat("\nCoefficients: (", nsingular,
" not defined because of singularities)\n", sep = "")
else cat("\nCoefficients:\n")
coefs <- x$coefficients
if(!is.null(aliased <- x$aliased) && any(aliased)) {
cn <- names(aliased)
coefs <- matrix(NA, length(aliased), 4, dimnames=list(cn, colnames(coefs)))
coefs[!aliased, ] <- x$coefficients
}
printCoefmat(coefs, digits = digits, signif.stars = signif.stars,
na.print="NA", ...)
cat("\nRobust residual standard error:",
format(signif(x$scale, digits)),"\n")
if(nzchar(mess <- naprint(x$na.action)))
cat(" (",mess,")\n", sep = "")
if(!is.null(x$r.squared) && x$df[1] != attr(x$terms, "intercept")) {
cat("Multiple R-squared: ", formatC(x$r.squared, digits = digits))
cat(",\tAdjusted R-squared: ", formatC(x$adj.r.squared, digits = digits),
"\n")
}
correl <- x$correlation
if (!is.null(correl)) {
p <- NCOL(correl)
if (p > 1) {
cat("\nCorrelation of Coefficients:\n")
if (is.logical(symbolic.cor) && symbolic.cor) {
print(symnum(correl), abbr.colnames = NULL)
}
else { correl <- format(round(correl, 2), nsmall = 2,
digits = digits)
correl[!lower.tri(correl)] <- ""
print(correl[-1, -p, drop = FALSE], quote = FALSE)
}
}
}
cat("Convergence in", x$iter, "IRWLS iterations\n")
}
cat("\n")
if (!is.null(rw <- x$rweights)) {
if (any(zero.w <- x$weights == 0))
rw <- rw[!zero.w]
eps.outlier <- if (is.function(EO <- control$eps.outlier))
EO(nobs(x)) else EO
summarizeRobWeights(rw, digits = digits, eps = eps.outlier, ...)
}
} else cat("\nNo Coefficients\n")
if (showAlgo && !is.null(control))
printControl(control, digits = digits, drop. = "method")
invisible(x)
}
print.lmrob <- function(x, digits = max(3, getOption("digits") - 3), ...)
{
cat("\nCall:\n", cl <- deparse(x$call, width.cutoff=72), "\n", sep = "")
control <- lmrob.control.minimal(x$control)
if(!any(grepl("method *= *['\"]", cl)))
cat(" \\--> method = \"", control$method, '"\n', sep = "") else cat("\n")
if(length((cf <- coef(x)))) {
if( x$converged )
cat("Coefficients:\n")
else {
if (x$scale == 0) {
cat("Exact fit detected\n\nCoefficients:\n")
} else {
cat("Algorithm did not converge\n\n")
if (control$method == "S")
cat("Coefficients of the *initial* S-estimator:\n")
else
cat(sprintf("Coefficients of the %s-estimator:\n",
control$method))
}
}
print(format(cf, digits = digits), print.gap = 2, quote = FALSE)
} else cat("No coefficients\n")
cat("\n")
invisible(x)
}
print.lmrob.S <- function(x, digits = max(3, getOption("digits") - 3),
showAlgo = TRUE, ...)
{
cat("S-estimator lmrob.S():\n")
if(length((cf <- coef(x)))) {
if (x$converged)
cat("Coefficients:\n")
else if (x$scale == 0)
cat("Exact fit detected\n\nCoefficients:\n")
else
cat("Algorithm did not converge\n\n")
print(format(cf, digits = digits), print.gap = 2, quote = FALSE)
} else cat("No coefficients\n")
cat("scale = ",format(x$scale, digits=digits), "; ",
if(x$converged)"converged" else "did NOT converge",
" in ", x$k.iter, " refinement steps\n")
if (showAlgo && !is.null(x$control))
printControl(x$control, digits = digits, drop. = "method")
invisible(x)
}
qr.lmrob <- function (x, ...) {
if (is.null(r <- x$qr))
stop("lmrob object does not have a proper 'qr' component. Rank must be zero")
r
}
residuals.lmrob <- function(object, ...) residuals.lm(object, ...)
residuals.lmrob.S <- function(obj) obj$residuals
summary.lmrob <- function(object, correlation = FALSE, symbolic.cor = FALSE, ...)
{
if (is.null(object$terms))
stop("invalid 'lmrob' object: no terms component")
p <- object$rank
df <- object$df.residual
sigma <- object[["scale"]]
aliased <- is.na(coef(object))
cf.nms <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)")
if (p > 0) {
n <- p + df
p1 <- seq_len(p)
se <- sqrt(if(length(object$cov) == 1L) object$cov else diag(object$cov))
est <- object$coefficients[object$qr$pivot[p1]]
tval <- est/se
ans <- object[c("call", "terms", "residuals", "scale", "rweights", "na.action",
"converged", "iter", "control")]
if (!is.null(ans$weights))
ans$residuals <- ans$residuals * sqrt(object$weights)
ans$df <- c(p, df, NCOL(object$qr$qr))
ans$coefficients <-
if( ans$converged)
cbind(est, se, tval, 2 * pt(abs(tval), df, lower.tail = FALSE))
else
cbind(est, if(sigma <= 0) 0 else NA, NA, NA)
dimnames(ans$coefficients) <- list(names(est), cf.nms)
if (p != attr(ans$terms, "intercept")) {
df.int <- if (attr(ans$terms, "intercept")) 1L else 0L
resid <- object$residuals
pred <- object$fitted.values
resp <- if (is.null(object[["y"]])) pred + resid else object$y
wgt <- object$rweights
ctrl <- object$control
c.psi <- ctrl$tuning.psi
psi <- ctrl$psi
correc <-
if (psi == 'ggw') {
if (isTRUE(all.equal(c.psi, c(-.5, 1.0, 0.95, NA)))) 1.121708
else if (isTRUE(all.equal(c.psi, c(-.5, 1.5, 0.95, NA)))) 1.163192
else if (isTRUE(all.equal(c.psi, c(-.5, 1.0, 0.85, NA)))) 1.33517
else if (isTRUE(all.equal(c.psi, c(-.5, 1.5, 0.85, NA)))) 1.395828
else lmrob.E(wgt(r), ctrl) / lmrob.E(r*psi(r), ctrl)
} else if (any(psi == .Mpsi.R.names) &&
isTRUE(all.equal(c.psi, .Mpsi.tuning.default(psi)))) {
switch(psi,
bisquare = 1.207617,
welsh = 1.224617,
optimal = 1.068939,
hampel = 1.166891,
lqq = 1.159232,
stop('unsupported psi function -- should not happen'))
} else lmrob.E(wgt(r), ctrl) / lmrob.E(r*psi(r), ctrl)
resp.mean <- if (df.int == 1L) sum(wgt * resp)/sum(wgt) else 0
yMy <- sum(wgt * (resp - resp.mean)^2)
rMr <- sum(wgt * resid^2)
ans$r.squared <- r2correc <- (yMy - rMr) / (yMy + rMr * (correc - 1))
ans$adj.r.squared <- 1 - (1 - r2correc) * ((n - df.int) / df)
} else ans$r.squared <- ans$adj.r.squared <- 0
ans$cov <- object$cov
if(length(object$cov) > 1L)
dimnames(ans$cov) <- dimnames(ans$coefficients)[c(1,1)]
if (correlation) {
ans$correlation <- ans$cov / outer(se, se)
ans$symbolic.cor <- symbolic.cor
}
} else {
ans <- object
ans$df <- c(0L, df, length(aliased))
ans$coefficients <- matrix(ans$coefficients[0L], 0L, 4L, dimnames = list(NULL, cf.nms))
ans$r.squared <- ans$adj.r.squared <- 0
ans$cov <- object$cov
}
ans$aliased <- aliased
ans$sigma <- sigma
if (is.function(ans$control$eps.outlier))
ans$control$eps.outlier <- ans$control$eps.outlier(nobs(object))
if (is.function(ans$control$eps.x))
ans$control$eps.x <-
if(!is.null(o.x <- object[['x']]))
ans$control$eps.x(max(abs(o.x)))
structure(ans,
class = "summary.lmrob")
}
variable.names.lmrob <- function(object, full = FALSE, ...)
{
if(full) dimnames(qrLmr(object)$qr)[[2L]]
else if(object$rank) dimnames(qrLmr(object)$qr)[[2L]][seq_len(object$rank)]
else character()
}
vcov.lmrob <- function (object, cov = object$control$cov, complete = TRUE, ...) {
if(!is.null(object$cov) && (missing(cov) ||
identical(cov, object$control$cov)))
.vcov.aliased(aliased = is.na(coef(object)), object$cov,
complete= if(is.na(complete)) FALSE else complete)
else {
lf.cov <- if (!is.function(cov)) get(cov, mode = "function") else cov
lf.cov(object, complete=complete, ...)
}
}
sigma.lmrob <- function(object, ...) object$scale
weights.lmrob <- function(object, type = c("prior", "robustness"), ...) {
type <- match.arg(type)
res <- if (type == "prior") {
if (is.null(object[["weights"]]) && identical(parent.frame(), .GlobalEnv))
warning("No weights defined for this object. Use type=\"robustness\" argument to get robustness weights.")
object[["weights"]]
} else object[["rweights"]]
if (is.null(object$na.action))
res
else naresid(object$na.action, res)
}
printControl <-
function(ctrl, digits = getOption("digits"),
str.names = "seed", drop. = character(0),
header = "Algorithmic parameters:",
...)
{
PR <- function(LST, ...) if(length(LST)) print(unlist(LST), ...)
cat(header,"\n")
is.str <- (nc <- names(ctrl)) %in% str.names
do. <- !is.str & !(nc %in% drop.)
is.ch <- vapply(ctrl, is.character, NA)
real.ctrl <- vapply(ctrl, function(x)
length(x) > 0 && is.numeric(x) && any(x %% 1 != 0), NA)
PR(ctrl[do. & real.ctrl], digits = digits, ...)
PR(ctrl[do. & !is.ch & !real.ctrl], ...)
PR(ctrl[do. & is.ch], ...)
if(any(is.str))
for(n in nc[is.str]) {
cat(n,":")
str(ctrl[[n]], vec.len = 2)
}
}
summarizeRobWeights <-
function(w, digits = getOption("digits"), header = "Robustness weights:",
eps = 0.1 / length(w), eps1 = 1e-3, ...)
{
stopifnot(is.numeric(w))
cat(header,"\n")
cat0 <- function(...) cat('', ...)
n <- length(w)
if(n <= 10) print(w, digits = digits, ...)
else {
n1 <- sum(w1 <- abs(w - 1) < eps1)
n0 <- sum(w0 <- abs(w) < eps)
if(any(w0 & w1))
warning("weights should not be both close to 0 and close to 1!\n",
"You should use different 'eps' and/or 'eps1'")
if(n0 > 0 || n1 > 0) {
if(n0 > 0) {
formE <- function(e) formatC(e, digits = max(2, digits-3), width=1)
i0 <- which(w0)
maxw <- max(w[w0])
c3 <- paste0("with |weight| ",
if(maxw == 0) "= 0" else paste("<=", formE(maxw)),
" ( < ", formE(eps), ");")
cat0(if(n0 > 1) {
cc <- sprintf("%d observations c(%s)",
n0, strwrap(paste(i0, collapse=",")))
c2 <- " are outliers"
paste0(cc,
if(nchar(cc)+ nchar(c2)+ nchar(c3) > getOption("width"))
"\n ", c2)
} else
sprintf("observation %d is an outlier", i0),
c3, "\n")
}
if(n1 > 0)
cat0(ngettext(n1, "one weight is",
sprintf("%s%d weights are",
if(n1 == n)"All " else '', n1)), "~= 1.")
n.rem <- n - n0 - n1
if(n.rem <= 0) {
if(n1 > 0) cat("\n")
return(invisible())
}
cat0("The remaining",
ngettext(n.rem, "one", sprintf("%d ones", n.rem)), "are")
if(is.null(names(w)))
names(w) <- as.character(seq(along = w))
w <- w[!w1 & !w0]
if(n.rem <= 10) {
cat("\n")
print(w, digits = digits, ...)
return(invisible())
}
else cat(" summarized as\n")
}
print(summary(w, digits = digits), digits = digits, ...)
}
} |
library(recipes)
library(caret)
library(testthat)
context('updating objects')
diff_coef <- function(x, y) {
x_nm <- names(x$fit$finalModel$coefficients)
y_nm <- names(y$fit$finalModel$coefficients)
delta <- c(setdiff(x_nm, y_nm), setdiff(y_nm, x_nm))
length(delta) > 0
}
set.seed(3545)
dat <- SLC14_1(100)
y_ind <- which(names(dat) == "y")
test_that("train updating", {
ctrl <- trainControl(method = "cv")
lm_obj_form <- train(y ~ Var01 + Var02, data = dat, method = "lm", trControl = ctrl)
lm_obj_form_2 <- update(lm_obj_form, list(intercept = FALSE))
expect_equal(length(lm_obj_form_2$finalModel$coefficients), 2)
rec <- recipe(y ~ Var01 + Var02, data = dat) %>%
step_mutate(Var01 = Var01/2)
lm_obj_rec <- train(rec, data = dat, method = "lm", trControl = ctrl)
lm_obj_rec_2 <- update(lm_obj_rec, list(intercept = FALSE))
expect_equal(length(lm_obj_rec_2$finalModel$coefficients), 2)
})
test_that("safs updating", {
ctrl <- safsControl(functions = caretSA, method = "cv", number = 3)
set.seed(3997)
sa_xy <-
safs(x = dat[, -y_ind],
y = dat$y,
safsControl = ctrl,
iters = 2,
differences = FALSE,
method = "lm",
trControl = trainControl(method = "cv")
)
new_iter <- ifelse(sa_xy$optIter == 1, 2, 1)
sa_xy_2 <- update(sa_xy, iter = new_iter, x = dat[, -y_ind], y = dat$y)
expect_true(diff_coef(sa_xy, sa_xy_2))
expect_error(update(sa_xy, iter = new_iter))
rec <- recipe(y ~ ., data = dat) %>%
step_mutate(Var01 = Var01/2)
set.seed(3997)
sa_rec <-
safs(rec,
data = dat,
safsControl = ctrl,
iters = 2,
differences = FALSE,
method = "lm",
trControl = trainControl(method = "cv")
)
new_iter <- ifelse(sa_rec$optIter == 1, 2, 1)
sa_rec_2 <- update(sa_rec, iter = new_iter)
expect_true(diff_coef(sa_rec, sa_rec_2))
sa_rec$recipe$template <- NULL
expect_error(update(sa_rec, iter = new_iter))
})
test_that("gafs updating", {
ctrl <- gafsControl(functions = caretGA, method = "cv", number = 3)
set.seed(3997)
ga_xy <-
gafs(x = dat[, -y_ind],
y = dat$y,
gafsControl = ctrl,
popSize = 4,
iters = 2,
differences = FALSE,
method = "lm",
trControl = trainControl(method = "cv")
)
new_iter <- ifelse(ga_xy$optIter == 1, 2, 1)
ga_xy_2 <- update(ga_xy, iter = new_iter, x = dat[, -y_ind], y = dat$y)
expect_true(diff_coef(ga_xy, ga_xy_2))
expect_error(update(ga_xy, iter = new_iter))
rec <- recipe(y ~ ., data = dat) %>%
step_mutate(Var01 = Var01/2)
set.seed(3997)
ga_rec <-
gafs(rec,
data = dat,
gafsControl = ctrl,
popSize = 4,
iters = 2,
differences = FALSE,
method = "lm",
trControl = trainControl(method = "cv")
)
new_iter <- ifelse(ga_rec$optIter == 1, 2, 1)
ga_rec_2 <- update(ga_rec, iter = new_iter)
expect_true(diff_coef(ga_rec, ga_rec_2))
ga_rec$recipe$template <- NULL
expect_error(update(ga_rec, iter = new_iter))
})
test_that("rfe updating", {
ctrl <- rfeControl(functions = caretFuncs, method = "cv", number = 3)
set.seed(3997)
rfe_xy <-
rfe(x = dat[, -y_ind],
y = dat$y,
rfeControl = ctrl,
sizes = 1:5,
method = "lm",
trControl = trainControl(method = "none")
)
rfe_xy_2 <- expect_warning(update(rfe_xy, size = 5, x = dat[, -y_ind], y = dat$y))
expect_equal(length(rfe_xy_2$fit$finalModel$coefficients), 6)
expect_error(update(rfe_xy, size = 5))
rec <- recipe(y ~ ., data = dat) %>%
step_mutate(Var01 = Var01/2)
set.seed(3997)
rfe_rec <-
rfe(rec,
data = dat,
rfeControl = ctrl,
sizes = 1:5,
method = "lm",
trControl = trainControl(method = "none")
)
expect_warning(rfe_rec_2 <- update(rfe_rec, size = 5))
expect_equal(length(rfe_rec_2$fit$finalModel$coefficients), 6)
rfe_rec$recipe$template <- NULL
expect_error(update(rfe_rec, size = 5))
}) |
library(survival)
pfit2 <- coxph(Surv(time, status > 0) ~ trt + log(bili) +
log(protime) + age + platelet + sex, data = pbc)
esurv <- survexp(~ trt, ratetable = pfit2, data = pbc)
temp <- pbc
temp$sex2 <- factor(as.numeric(pbc$sex), levels=2:0,
labels=c("f", "m", "unknown"))
esurv2 <- survexp(~ trt, ratetable = pfit2, data = temp,
rmap=list(sex=sex2))
all.equal(unclass(esurv)[-1], unclass(esurv2)[-1])
Datedate <- function(x) {
offset <- as.numeric(as.Date("1970-01-01") - as.Date("1960-01-01"))
y <- as.numeric(x) + offset
class(y) <- "date"
y
}
as.data.frame.date <- as.data.frame.vector
n <- nrow(lung)
tdata <- data.frame(age=lung$age + (1:n)/365.25,
sex = c('male', 'female')[lung$sex],
ph.ecog = lung$ph.ecog,
time = lung$time*3,
status = lung$status,
entry = as.Date("1940/01/01") + (n:1)*50)
tdata$entry2 <- as.POSIXct(tdata$entry)
tdata$entry3 <- Datedate(tdata$entry)
p1 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=survexp.us,
rmap= list(age=age*365.25, sex=sex, year=entry))
p2 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=survexp.us,
rmap= list(age=age*365.25, sex=sex, year=entry2))
p3 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=survexp.us,
rmap= list(age=age*365.25, sex=sex, year=entry3))
all.equal(p1$expected, p2$expected)
all.equal(p1$expected, p3$expected)
trate <- survexp.us
attr(trate, 'type') <- c(2,1,3)
p4 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=trate,
rmap= list(age=age*365.25, sex=sex, year=entry))
p5 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=trate,
rmap= list(age=age*365.25, sex=sex, year=entry2))
p6 <- pyears(Surv(time, status) ~ ph.ecog, data=tdata, ratetable=trate,
rmap= list(age=age*365.25, sex=sex, year=entry3))
all.equal(p4$expected, p5$expected)
all.equal(p5$expected, p6$expected) |
rescale.parafac2 <-
function(x, mode="A", newscale=1, absorb="C", ...){
mode <- mode[1]
absorb <- absorb[1]
if(mode==absorb) stop("Inputs 'mode' and 'absorb' must be different.")
if(is.null(x$D)){
if(!any(mode==c("A","B","C"))) stop("Incorrect input for 'mode'. Must set to 'A', 'B', or 'C' for 3-way Parafac2.")
if(!any(absorb==c("A","B","C"))) stop("Incorrect input for 'absorb'. Must set to 'A', 'B', or 'C' for 3-way Parafac2.")
} else {
if(!any(mode==c("A","B","C","D"))) stop("Incorrect input for 'mode'. Must set to 'A', 'B', 'C', or 'D' for 4-way Parafac2.")
if(!any(absorb==c("A","B","C","D"))) stop("Incorrect input for 'absorb'. Must set to 'A', 'B', 'C', or 'D' for 4-way Parafac2.")
}
nfac <- ncol(x$B)
if(length(newscale)!=nfac) newscale <- rep(newscale[1],nfac)
if(any(newscale <= 0)) stop("Input 'newscale' must contain positive values.")
if(mode=="A"){
Ascale <- sqrt(diag(x$Phi) / mean(sapply(x$A,nrow)))
if(any(Ascale == 0)) Ascale[Ascale == 0] <- 1
svec <- newscale/Ascale
if(nfac==1L) { Smat <- matrix(svec) } else { Smat <- diag(svec) }
for(k in 1:length(x$A)) x$A[[k]] <- x$A[[k]] %*% Smat
x$Phi <- Smat %*% x$Phi %*% Smat
if(nfac==1L) { Smat <- matrix(1/svec) } else { Smat <- diag(1/svec) }
if(absorb=="B") {
x$B <- x$B %*% Smat
} else if(absorb=="C"){
x$C <- x$C %*% Smat
} else {
x$D <- x$D %*% Smat
}
return(x)
} else if(mode=="B"){
Bscale <- sqrt(colMeans(x$B^2))
if(any(Bscale == 0)) Bscale[Bscale == 0] <- 1
svec <- newscale/Bscale
if(nfac==1L) { Smat <- matrix(svec) } else { Smat <- diag(svec) }
x$B <- x$B %*% Smat
if(nfac==1L) { Smat <- matrix(1/svec) } else { Smat <- diag(1/svec) }
if(absorb=="A") {
for(k in 1:length(x$A)) x$A[[k]] <- x$A[[k]] %*% Smat
x$Phi <- Smat %*% x$Phi %*% Smat
} else if(absorb=="C"){
x$C <- x$C %*% Smat
} else {
x$D <- x$D %*% Smat
}
return(x)
} else if(mode=="C"){
Cscale <- sqrt(colMeans(x$C^2))
if(any(Cscale == 0)) Cscale[Cscale == 0] <- 1
svec <- newscale/Cscale
if(nfac==1L) { Smat <- matrix(svec) } else { Smat <- diag(svec) }
x$C <- x$C %*% Smat
if(nfac==1L) { Smat <- matrix(1/svec) } else { Smat <- diag(1/svec) }
if(absorb=="A") {
for(k in 1:length(x$A)) x$A[[k]] <- x$A[[k]] %*% Smat
x$Phi <- Smat %*% x$Phi %*% Smat
} else if(absorb=="B"){
x$B <- x$B %*% Smat
} else {
x$D <- x$D %*% Smat
}
return(x)
} else if(mode=="D"){
Dscale <- sqrt(colMeans(x$D^2))
if(any(Dscale == 0)) Dscale[Dscale == 0] <- 1
svec <- newscale/Dscale
if(nfac==1L) { Smat <- matrix(svec) } else { Smat <- diag(svec) }
x$D <- x$D %*% Smat
if(nfac==1L) { Smat <- matrix(1/svec) } else { Smat <- diag(1/svec) }
if(absorb=="A") {
for(k in 1:length(x$A)) x$A[[k]] <- x$A[[k]] %*% Smat
x$Phi <- Smat %*% x$Phi %*% Smat
} else if(absorb=="B"){
x$B <- x$B %*% Smat
} else {
x$C <- x$C %*% Smat
}
return(x)
}
} |
test.naOmitMatrix =
function()
{
x = as.timeSeries(data(LPP2005REC))[1:20, 1:4]
colnames(x) = abbreviate(colnames(x), 6)
x[1, 1] = NA
x[3:4, 2] = NA
x[18:20, 4] = NA
show(x)
timeSeries:::.naOmitMatrix(as.matrix(x))
timeSeries:::.naOmitMatrix(as.matrix(x), "s")
timeSeries:::.naOmitMatrix(as.matrix(x), "z")
timeSeries:::.naOmitMatrix(as.matrix(x), "ir")
timeSeries:::.naOmitMatrix(as.matrix(x), "iz")
timeSeries:::.naOmitMatrix(as.matrix(x), "ie")
return()
}
test.na.omit =
function()
{
x = as.timeSeries(data(LPP2005REC))[1:20, 1:4]
colnames(x) = abbreviate(colnames(x), 6)
x[1, 1] = NA
x[3:4, 2] = NA
x[18:20, 4] = NA
show(x)
na.omit(x)
na.omit(x, "s")
na.omit(x, "z")
na.omit(x, "ir")
na.omit(x, "iz")
na.omit(x, "ie")
return()
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(goodpractice)
check_simple_tf <- make_check(
description = "TRUE and FALSE is used, not T and F",
gp = "avoid 'T' and 'F', use 'TRUE' and 'FALSE' instead.",
check = function(state) {
length(tools::checkTnF(dir = state$path)) == 0
}
)
pkg_path <- system.file("bad1", package = "goodpractice")
gp(pkg_path, checks = c("simple_tf", "truefalse_not_tf"),
extra_checks = list(simple_tf = check_simple_tf))
desc_fun <- function(path, quiet) {
desc::description$new(path)
}
prep_desc <- make_prep(name = "desc", func = desc_fun)
check_url <- make_check(
description = "URL field in DESCRIPTION",
preps = "desc",
gp = "have a URL field in DESCRIPTION",
check = function(state) state$desc$has_fields("URL")
)
check_bugreports <- make_check(
description = "BugReports in DESCRIPTION",
preps = "desc",
gp = "add a BugReports field to DESCRIPTION",
check = function(state) state$desc$has_fields('BugReports')
)
gp(pkg_path, checks = c("url", "bugreports"),
extra_preps = list("desc" = prep_desc),
extra_checks = list("url" = check_url, "bugreports" = check_bugreports)) |
R_rc_double_index <- function(w, Sigma, b = NA, r = w*(Sigma %*% w)) {
N <- length(w)
return(2*(N*sum(r^2) - sum(r)^2))
}
R_grad_rc_double_index <- function(w, Sigma, b = NA, Sigma_w = Sigma %*% w, r = w*Sigma_w) {
N <- length(w)
v <- 4*(N*r - sum(r))
return(as.vector(Sigma %*% (w*v) + Sigma_w*v))
}
g_rc_double_index <- function(w, Sigma, b = NA, r = w*(Sigma %*% w)) {
N <- length(w)
return(rep(r, times = N) - rep(r, each = N))
}
A_rc_double_index <- function(w, Sigma, b = NA, Sigma_w = Sigma %*% w) {
N <- length(w)
Sigma_w <- as.vector(Sigma_w)
Ut <- diag(Sigma_w) + Sigma*w
return(matrix(rep(t(Ut), N), ncol = N, byrow = TRUE) - matrix(rep(Ut, each = N), ncol = N))
}
R_rc_over_b_double_index <- function(w, Sigma, b, r = w*(Sigma %*% w)) {
N <- length(w)
rb <- r/b
return(2*(N*sum(rb^2) - sum(rb)^2))
}
R_grad_rc_over_b_double_index <- function(w, Sigma, b, Sigma_w = Sigma %*% w, r = w*Sigma_w) {
N <- length(w)
rb <- r/b
v <- 4*(N*rb - sum(rb))/b
return(as.vector(Sigma %*% (w*v) + Sigma_w*v))
}
g_rc_over_b_double_index <- function(w, Sigma, b, r = w*(Sigma %*% w)) {
N <- length(w)
rb <- r/b
return(rep(rb, times = N) - rep(rb, each = N))
}
A_rc_over_b_double_index <- function(w, Sigma, b, Sigma_w = Sigma %*% w) {
N <- length(w)
Sigma_w <- as.vector(Sigma_w)
Ut <- diag(Sigma_w) + Sigma*w
Utb <- Ut / b
return(matrix(rep(t(Utb), N), ncol = N, byrow = TRUE) - matrix(rep(Utb, each = N), ncol = N))
}
g_rc_over_var_vs_b <- function(w, Sigma, b, r = w*(Sigma %*% w)) {
return(as.vector(r/sum(r) - b))
}
R_rc_over_var_vs_b <- function(w, Sigma, b, r = w*(Sigma %*% w)) {
return(sum((g_rc_over_var_vs_b(w, Sigma, b, r = r))^2))
}
R_grad_rc_over_var_vs_b <- function(w, Sigma, b, Sigma_w = Sigma %*% w, r = w*Sigma_w) {
sum_r <- sum(r)
r_sumr_b <- r/sum_r - b
v <- (2/sum_r)*(r_sumr_b - sum(r_sumr_b*r)/sum_r)
return(as.vector(Sigma %*% (w*v) + Sigma_w*v))
}
A_rc_over_var_vs_b <- function(w, Sigma, b = NA, Sigma_w = Sigma %*% w, r = w*Sigma_w) {
sum_r <- sum(r)
Sigma_w <- as.vector(Sigma_w)
r <- as.vector(r)
Ut <- diag(Sigma_w) + Sigma*w
return(Ut/sum_r - 2/(sum_r^2) * r %o% Sigma_w)
}
g_rc_over_var <- function(w, Sigma, b = NA, r = w*(Sigma %*% w)) {
return(as.vector(r/sum(r)))
}
R_rc_over_var <- function(w, Sigma, b = NA, r = w*(Sigma %*% w)) {
return(sum((g_rc_over_var(w, Sigma, r = r))^2))
}
R_grad_rc_over_var <- function(w, Sigma, b, Sigma_w = Sigma %*% w, r = w*Sigma_w) {
sum_r <- sum(r)
r_sumr <- r/sum_r
v <- (2/sum_r)*(r_sumr - sum(r_sumr^2))
return(as.vector(Sigma %*% (w*v) + Sigma_w*v))
}
A_rc_over_var <- A_rc_over_var_vs_b
g_rc_over_sd_vs_b_times_sd <- function(w, Sigma, b, r = w*(Sigma %*% w)) {
sqrt_sum_r <- sqrt(sum(r))
return(r/sqrt_sum_r - b*sqrt_sum_r)
}
R_rc_over_sd_vs_b_times_sd <- function(w, Sigma, b, r = w*(Sigma %*% w)) {
return(sum((g_rc_over_sd_vs_b_times_sd(w, Sigma, b, r = r))^2))
}
R_grad_rc_over_sd_vs_b_times_sd <- function(w, Sigma, b, Sigma_w = Sigma %*% w, r = w*Sigma_w) {
sum_r <- sum(r)
r_sumr_b <- r/sum_r - b
v <- 2*r_sumr_b - sum(r_sumr_b^2)
return(as.vector(Sigma %*% (w*v) + Sigma_w*v))
}
A_rc_over_sd_vs_b_times_sd <- function(w, Sigma, b, Sigma_w = Sigma %*% w, r = w*Sigma_w) {
sum_r <- sum(r)
Sigma_w <- as.vector(Sigma_w)
r <- as.vector(r)
Ut <- diag(Sigma_w) + Sigma * w
return((Ut - (r/sum_r + b) %o% Sigma_w) / sqrt(sum_r))
}
g_rc_vs_b_times_var <- function(w, Sigma, b, r = w*(Sigma %*% w)) {
return(as.vector(r - b*sum(r)))
}
R_rc_vs_b_times_var <- function(w, Sigma, b, r = w*(Sigma %*% w)) {
return(sum((g_rc_vs_b_times_var(w, Sigma, b, r = r))^2))
}
R_grad_rc_vs_b_times_var <- function(w, Sigma, b, Sigma_w = Sigma %*% w, r = w*Sigma_w) {
sum_r <- sum(r)
v <- 2*(r - b*sum_r - sum(b*r) + sum(b^2)*sum_r)
return(as.vector(Sigma %*% (w*v) + Sigma_w*v))
}
A_rc_vs_b_times_var <- function(w, Sigma, b, Sigma_w = Sigma %*% w, r = w*Sigma_w) {
Sigma_w <- as.vector(Sigma_w)
Ut <- diag(Sigma_w) + Sigma * w
return(Ut - 2 * b %o% Sigma_w)
}
R_rc_vs_theta <- function(wtheta, Sigma, b = NA, r = NA) {
return(sum(g_rc_vs_theta(wtheta, Sigma)^2))
}
R_grad_rc_vs_theta <- function(wtheta, Sigma, b = NA) {
N <- length(wtheta)-1
w <- wtheta[1:N]
theta <- wtheta[N+1]
Sigma_w <- as.vector(Sigma %*% w)
r <- as.vector(w*Sigma_w)
v <- 2*(r - theta)
return(c(as.vector(Sigma %*% (w*v) + Sigma_w*v), -sum(v)))
}
g_rc_vs_theta <- function(wtheta, Sigma, b = NA, r = NA) {
N <- length(wtheta)-1
theta <- wtheta[N+1]
w <- wtheta[1:N]
r <- as.vector(w*(Sigma %*% w))
return(as.vector(r - theta))
}
A_rc_vs_theta <- function(wtheta, Sigma, b = NA, Sigma_w = NA) {
N <- length(wtheta)-1
w <- wtheta[1:N]
Sigma_w <- as.vector(Sigma %*% w)
Ut <- diag(Sigma_w) + Sigma * w
return(cbind(Ut, -1))
}
R_rc_over_b_vs_theta <- function(wtheta, Sigma, b, r = NA) {
return(sum(g_rc_over_b_vs_theta(wtheta, Sigma, b)^2))
}
R_grad_rc_over_b_vs_theta <- function(wtheta, Sigma, b) {
N <- length(wtheta)-1
w <- wtheta[1:N]
theta <- wtheta[N+1]
Sigma_w <- as.vector(Sigma %*% w)
r <- as.vector(w*Sigma_w)
v <- 2*(r/b - theta)
vb <- v/b
return(c(as.vector(Sigma %*% (w*vb) + Sigma_w*vb), -sum(v)))
}
g_rc_over_b_vs_theta <- function(wtheta, Sigma, b, r = NA) {
N <- length(wtheta)-1
theta <- wtheta[N+1]
w <- wtheta[1:N]
r <- as.vector(w*(Sigma %*% w))
return(as.vector(r/b - theta))
}
A_rc_over_b_vs_theta <- function(wtheta, Sigma, b, Sigma_w = NA) {
N <- length(wtheta)-1
w <- wtheta[1:N]
Sigma_w <- as.vector(Sigma %*% w)
Ut <- diag(Sigma_w) + Sigma * w
return(cbind(Ut/b, -1))
} |
context("Testing get_entity()")
description <- paste0("test_get_entity_",
openssl::sha1(x = as.character(Sys.time())))
endpoint <- Sys.getenv("FDP_endpoint")
entity_url <- post_data("object", list(description = description),
endpoint = endpoint)
test_that("entity returns as a named list", {
expect_silent(get_entity(entity_url))
expect_true(is.list(get_entity(entity_url)))
expect_true(all(c("url", "last_updated") %in%
names(get_entity(entity_url))))
})
test_that("invalid table produces and error", {
expect_error(get_entity("unknown", entity_id))
})
test_that("invalid entity_id produces and error", {
expect_error(get_entity("object", "NotANumber"))
expect_error(get_entity("object", list(something = "something")))
expect_error(get_entity("object", NaN))
expect_error(get_entity("object", Inf))
expect_error(get_entity("object", -Inf))
}) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
importedExample <-
preregr::import_from_html("https://r-packages.gitlab.io/preregr/articles/specifying_prereg_content.html");
importedExample;
lightenColor <- function(x,
amount = .4) {
x <- 255 - col2rgb(x);
x <- amount * x;
x <- 255 - x;
x <- rgb(t(x), maxColorValue=255);
return(x);
}
Okabe_Ito <- c("
"
"
orange <- Okabe_Ito[1];
lightBlue <- Okabe_Ito[2];
green <- Okabe_Ito[3]
yellow <- Okabe_Ito[4]
darkBlue <- Okabe_Ito[5];
red <- Okabe_Ito[6];
pink <- Okabe_Ito[7];
orange_l <- lightenColor(orange);
lightBlue_l <- lightenColor(lightBlue);
green_l <- lightenColor(green);
yellow_l <- lightenColor(yellow);
darkBlue_l <- lightenColor(darkBlue);
red_l <- lightenColor(red);
pink_l <- lightenColor(pink);
orangeBg <- lightenColor(orange, amount=.05);
greenBg <- lightenColor(green, amount=.05);
oldKableViewOption <- getOption("kableExtra_view_html", NULL);
options(kableExtra_view_html = FALSE);
oldSilentOption <- preregr::opts$get("silent");
preregr::opts$set(silent = TRUE);
knitr::opts_chunk$set(echo = FALSE, comment="");
if (!exists('headingLevel') || !is.numeric(headingLevel) || (length(headingLevel) != 1)) {
headingLevel <- 0;
}
if (is.null(section)) {
sectionsToShow <- x$form$sections$section_id;
} else {
sectionsToShow <-
intersect(
x$form$sections$section_id,
section
);
}
preregr::heading(
x$form$metadata[x$form$metadata$field == "title", "content"],
idSlug("preregr-prereg-spec"),
headingLevel=headingLevel
);
for (section in sectionsToShow) {
preregr::heading(
"Section: ",
x$form$sections[
x$form$sections$section_id==section,
"section_label"
],
idSlug("preregr-prereg-spec"),
headingLevel=headingLevel + 1
);
item_ids <- x$form$items$item_id[x$form$items$section_id == section];
item_labels <- x$form$items$item_label[x$form$items$section_id == section];
names(item_labels) <- item_ids;
for (currentItemId in item_ids) {
cat0("<div class=\"preregr preregr-item-spec ");
if (x$specs[[currentItemId]] == x$config$initialText) {
cat0("preregr-unspecified\">\n");
} else {
cat0("preregr-specified\">\n");
}
cat0("<div class=\"preregr-item-heading\">\n");
cat0("<div class=\"preregr-item-label\">",
item_labels[currentItemId],
"</div>\n");
cat0("<div class=\"preregr-item-id\">",
currentItemId,
"</div>\n");
cat0("</div>\n");
cat0("<div class=\"preregr-item-spec-text\">",
ifelse(!is.null(x$specs[[currentItemId]]$text) &&
!is.na(x$specs[[currentItemId]]$text) &&
nchar(x$specs[[currentItemId]]$text) > 0,
x$specs[[currentItemId]]$text,
" "),
"</div>\n");
cat0("</div>\n");
}
}
preregr::opts$set(silent = oldSilentOption);
if (!is.null(oldKableViewOption)) {
options(kableExtra_view_html = oldKableViewOption);
}
preregrJSON <-
preregr::prereg_spec_to_json(x);
preregrJSON <-
gsub("'",
"&
preregrJSON
);
slug <- paste0("preregr-data-", preregr::randomSlug());
preregr::prereg_knit_item_content(
importedExample,
section="metadata"
);
freshPrereg <-
preregr::prereg_initialize(
importedExample
);
freshPrereg; |
SISDemogStoch <- function(pars, init, end.time) {
init2 <- NULL
init2 <- init
equations <- function(pars, init, time.step) {
with(as.list(pars), {
rate1 <- beta * (N - init) * init / N
rate2 <- gamma * init
r1 <- runif(1)
r2 <- runif(1)
step <- -log(r2) / (rate1 + rate2)
if (r1 < (rate1 / (rate1 + rate2))) {
init <- init + 1
} else {
init <- init - 1
}
return(c(step, init))
})
}
lop <- 1
output <- time.step <- 0
output.tmp <- c(0, 0)
while (time.step[lop] < end.time & init > 0) {
output.tmp <- equations(pars, init, output.tmp[1])
lop <- lop + 1
time.step <- c(time.step, (time.step[lop - 1] + output.tmp[1]))
output <- c(output, init)
lop <- lop + 1
time.step <- c(time.step, (time.step[lop - 1]))
output <- c(output, output.tmp[2])
init <- output.tmp[2]
}
return(list(pars = pars,
init = init2,
time = end.time,
results = data.frame(time = time.step, Y = output)))
} |
PS3_RNA<- function(seqs,binaryType="numBin",label=c(),outFormat="mat",outputFileDist="")
{
if(length(seqs)==1&&file.exists(seqs)){
seqs<-fa.read(seqs,alphabet="rna")
seqs_Lab<-alphabetCheck(seqs,alphabet = "rna",label)
seqs<-seqs_Lab[[1]]
label<-seqs_Lab[[2]]
}
else if(is.vector(seqs)){
seqs<-sapply(seqs,toupper)
seqs_Lab<-alphabetCheck(seqs,alphabet = "rna",label)
seqs<-seqs_Lab[[1]]
label<-seqs_Lab[[2]]
}
else {
stop("ERROR: Input sequence is not in the correct format. It should be a FASTA file or a string vector.")
}
lenSeqs<-sapply(seqs,nchar)
numSeqs=length(seqs)
dict=1:64
names(dict)=nameKmer(k=3,type="rna")
nuc<-names(dict)
if(outFormat=="mat"){
if(length(unique(lenSeqs))>1){
stop("ERROR: All sequences should have the same length in 'mat' mode. For sequences with different lengths, please use 'txt' for outFormat parameter")
}
lenSeq<-lenSeqs[1]
if(binaryType=="strBin"){
binary<-rep(strrep(0,64),64)
names(binary)=names(dict)
for(i in 1:length(dict))
{
pos<-dict[i]
substr(binary[i],pos,pos)<-"1"
}
featureMatrix<-matrix("",nrow = numSeqs, ncol = (lenSeq-2))
for(n in 1:numSeqs){
seq<-seqs[n]
seqChars<-unlist(strsplit(seq,split = ""))
temp<-seqChars[1:(lenSeq-2)]
temp2<-seqChars[2:(lenSeq-1)]
temp3<-seqChars[3:lenSeq]
Trimer<-paste(temp,temp2,temp3,sep = "")
vect<-unlist(binary[Trimer])
featureMatrix[n,]<-vect
}
colnames(featureMatrix)<-paste("pos",1:(lenSeq-2),sep = "")
} else if(binaryType=="logicBin"){
featureMatrix<-matrix(FALSE,nrow = numSeqs, ncol = ((lenSeq-2)*64))
rng<-(0:(lenSeq-3))*64
for(n in 1:numSeqs){
seq<-seqs[n]
seqChars<-unlist(strsplit(seq,split = ""))
temp<-seqChars[1:(lenSeq-2)]
temp2<-seqChars[2:(lenSeq-1)]
temp3<-seqChars[3:lenSeq]
Trimer<-paste(temp,temp2,temp3,sep = "")
pos1<-as.numeric(dict[Trimer])
pos1<-rng+pos1
featureMatrix[n,pos1]<-TRUE
}
colnames(featureMatrix)<-paste("pos:",rep(1:(lenSeq-2),each=64),"-",rep(nuc,(lenSeq-2)))
} else if(binaryType=="numBin"){
featureMatrix<-matrix(0,nrow = numSeqs, ncol = ((lenSeq-2)*64))
rng<-(0:(lenSeq-3))*64
for(n in 1:numSeqs){
seq<-seqs[n]
seqChars<-unlist(strsplit(seq,split = ""))
temp<-seqChars[1:(lenSeq-2)]
temp2<-seqChars[2:(lenSeq-1)]
temp3<-seqChars[3:lenSeq]
Trimer<-paste(temp,temp2,temp3,sep = "")
pos1<-as.numeric(dict[Trimer])
pos1<-rng+pos1
featureMatrix[n,pos1]<-1
}
colnames(featureMatrix)<-paste("pos:",rep(1:(lenSeq-2),each=64),"-",rep(nuc,(lenSeq-2)))
} else{
stop("ERROR! Choose one of 'strBin', 'logicBin', or 'numBin' for binaryFormat")
}
if(length(label)==numSeqs){
featureMatrix<-as.data.frame(featureMatrix)
featureMatrix<-cbind(featureMatrix,label)
}
row.names(featureMatrix)<-names(seqs)
return(featureMatrix)
}
else if(outFormat=="txt"){
vect<-vector()
nameSeq<-names(seqs)
binary<-rep(strrep(0,64),64)
names(binary)=nuc
for(i in 1:length(dict))
{
pos<-dict[i]
substr(binary[i],pos,pos)<-"1"
}
for(n in 1:numSeqs){
seq<-seqs[n]
seqChars<-unlist(strsplit(seq,split = ""))
temp<-seqChars[1:(lenSeq-2)]
temp2<-seqChars[2:(lenSeq-1)]
temp3<-seqChars[3:lenSeq]
Trimer<-paste(temp,temp2,temp3,sep = "")
temp<-c(nameSeq[n],binary[Trimer])
temp<-paste(temp,collapse = "\t")
write(temp,outputFileDist,append = TRUE)
}
}
else{
stop("ERROR: outFormat should be 'mat' or 'txt' ")
}
} |
knitr::opts_chunk$set(
collapse = TRUE
)
library(easylabel)
knitr::include_graphics("scatter1.png")
knitr::include_graphics("plotly_output.png")
knitr::include_graphics("scatter3.png")
knitr::include_graphics("bubble.png")
knitr::include_graphics("plot1.png")
head(volc1)
head(volc2)
knitr::include_graphics("MAplot1.png")
knitr::include_graphics("table1.png")
knitr::include_graphics("plot7.png")
knitr::include_graphics("plot3.png")
knitr::include_graphics("plot4.png")
knitr::include_graphics("plot5.png")
knitr::include_graphics("MAplot2.png")
knitr::include_graphics(c("labdir_horiz.png", "labdir_vert.png"))
knitr::include_graphics("rect_red_outline.png")
knitr::include_graphics("rect_invert.png")
knitr::include_graphics("match1.png")
knitr::include_graphics("match2.png")
knitr::include_graphics("manhattan.png")
knitr::include_graphics("locus.png") |
tTestN <-
function (delta.over.sigma, alpha = 0.05, power = 0.95, sample.type = ifelse(!is.null(n2),
"two.sample", "one.sample"), alternative = "two.sided", approx = FALSE,
n2 = NULL, round.up = TRUE, n.max = 5000, tol = 1e-07, maxiter = 1000)
{
sample.type <- match.arg(sample.type, c("one.sample", "two.sample"))
alternative <- match.arg(alternative, c("two.sided", "less",
"greater"))
if (!is.vector(delta.over.sigma, mode = "numeric") || !is.vector(alpha,
mode = "numeric") || !is.vector(power, mode = "numeric"))
stop("'delta.over.sigma', 'alpha', and 'power' must be numeric vectors.")
if (!all(is.finite(delta.over.sigma)) || !all(is.finite(alpha)) ||
!all(is.finite(power)))
stop(paste("Missing (NA), Infinite (Inf, -Inf), and",
"Undefined (Nan) values are not allowed in", "'delta.over.sigma', 'alpha', or 'power'"))
if (any(abs(delta.over.sigma) <= 0))
stop("All values of 'delta.over.sigma' must be non-zero")
if (any(alpha <= 0) || any(alpha >= 1))
stop("All values of 'alpha' must be greater than 0 and less than 1")
if (any(power <= alpha) || any(power >= 1))
stop(paste("All values of 'power' must be greater than or equal to",
"the corresponding elements of 'alpha' and less than 1"))
if (alternative == "greater" && any(delta.over.sigma <= 0))
stop("When alternative='greater', all values of 'delta.over.sigma' must be positive.")
if (alternative == "less" && any(delta.over.sigma >= 0))
stop("When alternative='less', all values of 'delta.over.sigma' must be negative.")
if (!is.vector(n.max, mode = "numeric") || length(n.max) !=
1 || !is.finite(n.max) || n.max != trunc(n.max) || n.max <
2)
stop("'n.max' must be a positive integer greater than 1")
if (!is.vector(maxiter, mode = "numeric") || length(maxiter) !=
1 || !is.finite(maxiter) || maxiter != trunc(maxiter) ||
maxiter < 2)
stop("'maxiter' must be a positive integer greater than 1")
if (n2.constrained <- sample.type == "two.sample" && !is.null(n2)) {
if (!is.vector(n2, mode = "numeric"))
stop("'n2' must be a numeric vector")
if (!all(is.finite(n2)))
stop(paste("Missing (NA), Infinite (Inf, -Inf), and",
"Undefined (Nan) values are not allowed in 'n2'"))
if (any(n2 != trunc(n2)) || any(n2 < 2))
stop("All values of 'n2' must be positive integers larger than 1")
arg.mat <- cbind.no.warn(power = as.vector(power), delta.over.sigma = as.vector(delta.over.sigma),
alpha = as.vector(alpha), n2 = as.vector(n2))
N <- nrow(arg.mat)
n.vec <- numeric(N)
for (i in c("power", "delta.over.sigma", "alpha", "n2")) assign(i,
arg.mat[, i])
}
else {
arg.mat <- cbind.no.warn(power = as.vector(power), delta.over.sigma = as.vector(delta.over.sigma),
alpha = as.vector(alpha))
N <- nrow(arg.mat)
n.vec <- numeric(N)
for (i in c("power", "delta.over.sigma", "alpha")) assign(i,
arg.mat[, i])
}
type.fac <- ifelse(sample.type == "two.sample", 2, 1)
alt.fac <- ifelse(alternative == "two.sided", 2, 1)
sod2 <- 1/delta.over.sigma^2
fcn.for.root <- function(n, power, delta.over.sigma, alpha,
sample.type, alternative, approx) {
power - tTestPower(n.or.n1 = n, delta.over.sigma = delta.over.sigma,
alpha = alpha, sample.type = sample.type, alternative = alternative,
approx = approx)
}
power.2 <- tTestPower(n.or.n1 = 2, delta.over.sigma = delta.over.sigma,
alpha = alpha, sample.type = sample.type, alternative = alternative,
approx = approx)
power.n.max <- tTestPower(n.or.n1 = n.max, delta.over.sigma = delta.over.sigma,
alpha = alpha, sample.type = sample.type, alternative = alternative,
approx = approx)
for (i in 1:N) {
power.i <- power[i]
power.2.i <- power.2[i]
if (power.2.i >= power.i)
n.vec[i] <- 2
else {
power.n.max.i <- power.n.max[i]
if (power.n.max.i < power.i) {
n.vec[i] <- NA
warning(paste("Error in search algorithm for element ",
i, ". Try increasing the argument 'n.max'",
sep = ""))
}
else {
delta.over.sigma.i <- delta.over.sigma[i]
alpha.i <- alpha[i]
n.vec[i] <- uniroot(fcn.for.root, lower = 2,
upper = n.max, f.lower = power.i - power.2.i,
f.upper = power.i - power.n.max.i, power = power.i,
delta.over.sigma = delta.over.sigma.i, alpha = alpha.i,
sample.type = sample.type, alternative = alternative,
approx = approx, tol = tol, maxiter = maxiter)$root
}
}
}
if (n2.constrained) {
n1 <- (n.vec * n2)/(2 * n2 - n.vec)
if (any(index <- !is.finite(n1) | n1 < 0)) {
n1[index] <- NA
warning(paste("One or more constrained values of 'n2' is(are)",
"too small given the associated values of", "'power', 'delta.over.sigma', and 'alpha'"))
}
names(n1) <- names(n2) <- NULL
if (round.up)
n1 <- ceiling(n1)
ret.val <- list(n1 = n1, n2 = n2)
}
else {
if (round.up)
n.vec <- ceiling(n.vec)
ret.val <- n.vec
}
ret.val
} |
ungroup_data <- function(X,effX){
effX = as.matrix(effX)
g = ncol(effX)
bloc = matrix(0,nrow=1,ncol=g)
i = 1
ma = 0
s = ncol(X)
while (i <= nrow(X)){
bloc = abs(effX[i,])
if ((i < nrow(X))&&(sum(X[i+1,]==X[i,])==s)){
bloc = bloc + abs(effX[i+1,])
i = i + 1
}
ma = ma + max(bloc)
i = i + 1
}
effY = matrix(nrow=ma,ncol=g)
Y = matrix(0,nrow=ma,ncol=ncol(X))
comp_init = 1
comp_fin = 1
i = 1
while (i <= nrow(X)){
i0 = i
for (gr in 1:g){
comp = comp_init
i = i0
e = effX[i,gr]
for (j in 1:abs(e)){
Y[comp,] = X[i,]
effY[comp,gr] = sign(e)
comp=comp+1
}
if ((i < nrow(X))&&(sum(X[i+1,]==X[i,])==s)){
i = i0 + 1
e = effX[i,gr]
for (j in 1:abs(e)){
Y[comp,] = X[i,]
effY[comp,gr] = sign(e)
comp = comp + 1
}
}
comp_fin = max(comp_fin,comp)
}
comp_init = comp_fin
i = i + 1
}
return(cbind(Y,effY))
} |
matchEnsembleMembers.ensembleMOSnormal <-
function(fit, ensembleData)
{
if (!is.null(dim(fit$B))) {
fitMems <- dimnames(fit$B)[[1]]
}
else {
fitMems <- names(fit$B)
}
ensMems <- ensembleMemberLabels(ensembleData)
if (!is.null(fitMems) && !is.null(ensMems)
&& length(fitMems) > length(ensMems))
stop("model fit has more ensemble members than ensemble data")
WARN <- rep(FALSE,3)
WARN[1] <- is.null(fitMems) && !is.null(ensMems)
WARN[2] <- !is.null(fitMems) && is.null(ensMems)
WARN[3] <- is.null(fitMems) && is.null(ensMems)
if (any(WARN) && length(fitMems) != length(ensMems))
stop("model fit and ensemble data differ in ensemble size")
if (any(WARN))
warning("cannot check correspondence between model fit and ensemble data members")
M <- match(fitMems, ensMems, nomatch = 0)
if (any(!M)) stop("ensembleData is missing a member used in fit")
M
} |
CombineCaseControlC <-
function(cases, controls) {
cases = sort(cases)
controls = sort(controls)
combCC = .Call(C_CombineSortedVectorC, as.numeric(cases), as.numeric(controls))
combL = .Call(C_FindUniqueInSortedArrayC, as.numeric(combCC))
combZX = .Call(C_CombineToUniqueValueC, as.numeric(cases), as.numeric(controls), as.numeric(combL))
combZ = as.numeric(combZX[,1])
combX = as.numeric(combZX[,2])
return(list(combX=combX, combZ=combZ, combL=combL))
} |
genmf <- function(mf.type, mf.params) {
FUN <- match.fun(mf.type)
FUN(mf.params)
}
evalmftype <- function(x, mf.type, mf.params) {
MF <- genmf(mf.type, mf.params)
sapply(c(MF), function(F) F(x))
}
evalmf <- function(...) {
params <- list(...)
params.len <- length(params)
x <- params[[1]]
if (params.len == 3) {
MF <- genmf(mf.type = params[[2]], mf.params = params[[3]])
} else if (params.len == 2) {
MF <- params[[2]]
} else if (params.len == 6 || params.len == 7) {
return(evalmf.ns(...))
}
else {
stop("incorrect parameters")
}
sapply(c(MF), function(F) F(x))
}
evalmf.ns <- function(...) {
params <- list(...)
params.len <- length(params)
x <- params[[1]]
if (params.len == 7) {
MF <- genmf(mf.type = params[[2]], mf.params = params[[3]])
} else if (params.len == 6) {
MF <- params[[2]]
} else {
stop("incorrect number of parameters")
}
idx <- params.len - 3
fuzzification.method <- paste0(params[[idx]], '.fuzzification')
fuzzification.params <- params[[idx + 1]]
X <- sapply(x, x.fuzzification, f = fuzzification.method, m = fuzzification.params)
firing.method <- params[[idx + 2]]
x.range <- params[[idx + 3]]
tmp <- unlist(strsplit(firing.method, "\\."))
if (length(tmp) == 3 && tmp[1] == 'tnorm' && tmp[3] == 'max') {
tnorm.operator <- tmp[2]
result <- sapply(X, fuzzy.firing, operator = tnorm.operator, ante.mf = MF, lower = x.range[1], upper = x.range[2])
} else if (tmp[1] == 'tnorm' && tmp[3] == 'defuzz') {
tnorm.operator <- tmp[2]
defuzz.type <- tmp[4]
result <- sapply(X, fuzzy.firing.defuzz, operator = tnorm.operator, ante.mf = MF, lower = x.range[1], upper = x.range[2], defuzz.type)
} else if (tmp[1] == 'similarity') {
similarity.type <- tmp[2]
fuzzy.firing.fun <- match.fun(paste0('fuzzy.firing.similarity.', similarity.type))
result <- sapply(X, fuzzy.firing.fun, ante.mf = MF, lower = x.range[1], upper = x.range[2])
} else {
stop(paste0("firing.method '", firing.method, "' is not supported"))
}
if (length(result) > 1) {
result <- as.matrix(result)
}
result
}
gbellmf <- function(mf.params) {
if (length(mf.params) != 3 && length(mf.params) != 4) {
stop("improper parameters for generalised bell membership function")
}
a <- mf.params[1]
b <- mf.params[2]
c <- mf.params[3]
if (length(mf.params) == 4) {
h <- mf.params[4]
} else {
h <- 1
}
gbellmf <- function(x) {
h / (1 + (((x - c) / a)^2)^b)
}
}
gbell.fuzzification <- function(x, mf.params) {
if (length(mf.params) != 2 && length(mf.params) != 3) {
stop("improper parameters for gbellmf fuzzification")
}
mf.params <- append(mf.params, x, 2)
genmf('gbellmf', mf.params)
}
it2gbellmf <- function(mf.params) {
if (length(mf.params) != 4 && length(mf.params) != 6) {
stop("improper parameters for generalised bell membership function")
}
a.lower <- mf.params[1]
a.upper <- mf.params[2]
b <- mf.params[3]
c <- mf.params[4]
if (length(mf.params) == 6) {
h.lower <- mf.params[5]
h.upper <- mf.params[6]
} else {
h.lower <- 1
h.upper <- 1
}
it2gbellmf.lower <- function(x) {
h.lower / (1 + (((x - c) / a.lower)^2)^b)
}
it2gbellmf.upper <- function(x) {
h.upper / (1 + (((x - c) / a.upper)^2)^b)
}
it2gbellmf <- c(it2gbellmf.lower, it2gbellmf.upper)
}
it2gbell.fuzzification <- function(x, mf.params) {
if (length(mf.params) != 3 && length(mf.params) != 5) {
stop("improper parameters for it2gbellmf fuzzification")
}
mf.params <- append(mf.params, x, 3)
genmf('it2gbellmf', mf.params)
}
singletonmf <- function(mf.params) {
if (length(mf.params) != 1 && length(mf.params) != 2) {
stop("improper parameters for singleton membership function")
}
x.prime <- mf.params[1]
if (length(mf.params) == 2) {
h <- mf.params[2]
} else {
h <- 1
}
singletonmf <- function(x) {
ifelse(x == x.prime, h, 0)
}
}
singleton.fuzzification <- function(x, mf.params = NULL) {
if (!is.null(mf.params) && length(mf.params) != 1) {
stop("improper parameters for singleton fuzzification")
}
mf.params <- c(x, mf.params)
genmf('singletonmf', mf.params)
}
linearmf <- function(mf.params) {
if (length(mf.params) < 2) {
stop("improper parameters for linear membership function")
}
linearmf <- function(x) {
x %*% mf.params
}
}
gaussmf <- function(mf.params) {
sig <- mf.params[1]
c <- mf.params[2]
if (length(mf.params) == 3) {
h <- mf.params[3]
} else {
h <- 1
}
gaussmf <- function(x) {
exp(-(x - c)^2 / (2 * sig^2)) * h
}
}
gauss.fuzzification <- function(x, mf.params) {
if (length(mf.params) != 1 && length(mf.params) != 2) {
stop("improper parameters for gaussmf fuzzification")
}
mf.params <- append(mf.params, x, 1)
genmf('gaussmf', mf.params)
}
it2gaussmf <- function(mf.params) {
if (length(mf.params) != 4 && length(mf.params) != 6) {
stop("improper parameters for it2gaussmf membership function")
}
sig.lower <- mf.params[1]
c.lower <- mf.params[2]
sig.upper <- mf.params[3]
c.upper <- mf.params[4]
if (length(mf.params) == 6) {
h.lower <- mf.params[5]
h.upper <- mf.params[6]
} else {
h.lower <- 1
h.upper <- 1
}
it2gaussmf.lower <- function(x) {
exp(-(x - c.lower)^2 / (2 * sig.lower^2)) * h.lower
}
it2gaussmf.upper <- function(x) {
exp(-(x - c.upper)^2 / (2 * sig.upper^2)) * h.upper
}
it2gaussmf <- c(it2gaussmf.lower, it2gaussmf.upper)
}
trapmf <- function(mf.params) {
a <- mf.params[1]
b <- mf.params[2]
c <- mf.params[3]
d <- mf.params[4]
if (length(mf.params) == 5) {
h <- mf.params[5]
} else {
h <- 1
}
trapmf <- function(x) {
y <- pmax(pmin((x - a) / (b - a), h, (d - x) / (d - c)), 0)
y[is.na(y)] = h; y
}
}
it2trapmf <- function(x, mf.params) {
if (length(mf.params) != 8 && length(mf.params) != 10) {
stop("improper parameters for it2gaussmf membership function")
}
a.lower <- mf.params[1]
b.lower <- mf.params[2]
c.lower <- mf.params[3]
d.lower <- mf.params[4]
a.upper <- mf.params[5]
b.upper <- mf.params[6]
c.upper <- mf.params[7]
d.upper <- mf.params[8]
if (length(mf.params) == 10) {
h.lower <- mf.params[9]
h.upper <- mf.params[10]
} else {
h.lower <- 1
h.upper <- 1
}
it2trapmf.lower <- function(x) {
y <- pmax(pmin((x - a.lower) / (b.lower - a.lower), h.lower, (d.lower - x) / (d.lower - c.lower)), 0)
y[is.na(y)] = h.lower; y
}
it2trapmf.upper <- function(x) {
y <- pmax(pmin((x - a.upper) / (b.upper - a.upper), h.upper, (d.upper - x) / (d.upper - c.upper)), 0)
y[is.na(y)] = h.upper; y
}
it2trapmf <- c(it2trapmf.lower, it2trapmf.upper)
}
trimf <- function(mf.params) {
a <- mf.params[1]
b <- mf.params[2]
c <- mf.params[3]
if (length(mf.params) == 4) {
h <- mf.params[4]
} else {
h <- 1
}
trimf <- function(x) {
y <- h * pmax(pmin((x - a) / (b - a), (c - x) / (c - b)), 0)
y[is.na(y)] = h; y
}
}
it2trimf <- function(mf.params) {
a.lower <- mf.params[1]
b.lower <- mf.params[2]
c.lower <- mf.params[3]
a.upper <- mf.params[4]
b.upper <- mf.params[5]
c.upper <- mf.params[6]
if (length(mf.params) == 8) {
h.lower <- mf.params[7]
h.upper <- mf.params[8]
} else {
h.lower <- 1
h.upper <- 1
}
it2trimf.lower <- function(x) {
y <- h.lower * pmax(pmin((x - a.lower) / (b.lower - a.lower), (c.lower - x) / (c.lower - b.lower)), 0)
y[is.na(y)] = h.lower; y
}
it2trimf.upper <- function(x) {
y <- h.upper * pmax(pmin((x - a.upper) / (b.upper - a.upper), (c.upper - x) / (c.upper - b.upper)), 0)
y[is.na(y)] = h.upper; y
}
it2trimf <- c(it2trimf.lower, it2trimf.upper)
}
tri.fuzzification <- function(x, mf.params) {
if (length(mf.params) != 2 && length(mf.params) != 3) {
stop("improper parameters for trimf fuzzification")
}
mf.params <- append(mf.params, x, 1)
genmf('trimf', mf.params)
} |
RISE_C <- function(train, test, Q=1, S=2){
alg <- RKEEL::R6_RISE_C$new()
alg$setParameters(train, test, Q, S)
return (alg)
}
R6_RISE_C <- R6::R6Class("R6_RISE_C",
inherit = ClassificationAlgorithm,
public = list(
Q = 1,
S = 2,
setParameters = function(train, test, Q=1, S=2){
super$setParameters(train, test)
self$Q <- Q
self$S <- S
}
),
private = list(
jarName = "RISE.jar",
algorithmName = "RISE-C",
algorithmString = "RISE",
getParametersText = function(){
text <- ""
text <- paste0(text, "Q = ", self$Q, "\n")
text <- paste0(text, "S = ", self$S, "\n")
return(text)
}
)
) |
context("Comprehensive Test for Binary Dataset Creation")
test_that("running dataset test", {
skip_on_cran()
dd <- aif360::aif_dataset(
data_path = system.file("extdata", "data.csv", package="aif360"),
favor_label=0,
unfavor_label=1,
unprivileged_protected_attribute=0,
privileged_protected_attribute=1,
target_column="income",
protected_attribute="sex")
expect_equal(dd$favorable_label, 0)
expect_equal(dd$unfavorable_label, 1)
}) |
"parse.formula.mnl" <- function(formula, data, baseline=NULL,
intercept=TRUE){
mt <- terms(formula, data=data)
if(missing(data)) data <- sys.frame(sys.parent())
mf <- match.call(expand.dots = FALSE)
mf$intercept <- mf$baseline <- NULL
mf$drop.unused.levels <- TRUE
mf[[1]] <- as.name("model.frame")
mf <- eval(mf, sys.frame(sys.parent()))
if (!intercept){
attributes(mt)$intercept <- 0
}
Y <- as.matrix(model.response(mf, "numeric"))
if (ncol(Y)==1){
Y <- factor(Y)
number.choices <- length(unique(Y))
choice.names <- sort(unique(Y))
Ymat <- matrix(NA, length(Y), number.choices)
colnames(Ymat) <- choice.names
for (i in 1:(number.choices)){
Ymat[,i] <- as.numeric(Y==choice.names[i])
}
}
else{
number.choices <- ncol(Y)
Ytemp <- Y
Ytemp[Y== -999] <- NA
if ( min(unique(array(Y)) %in% c(-999,0,1))==0 ||
min(apply(Ytemp, 1, sum, na.rm=TRUE) == rep(1, nrow(Y)))==0){
stop("Y is a matrix but it is not composed of 0/1/-999 values\n and/or rows do not sum to 1\n")
}
Ymat <- Y
choice.names <- colnames(Y)
}
colnames(Ymat) <- choice.names
rownames(Ymat) <- 1:nrow(Ymat)
X <- if (!is.empty.model(mt)) model.matrix(mt, mf)
X <- as.matrix(X)
xvars <- dimnames(X)[[2]]
xobs <- dimnames(X)[[1]]
if (is.null(baseline)){
baseline <- choice.names[1]
}
if (! baseline %in% choice.names){
stop("'baseline' not consistent with observed choice levels in y\n")
}
choicevar.indic <- rep(FALSE, length(xvars))
choicevar.indic[grep("^choicevar\\(", xvars)] <- TRUE
if (sum(choicevar.indic) > 0){
cvarname1.vec <- rep(NA, sum(choicevar.indic))
cvarname2.vec <- rep(NA, sum(choicevar.indic))
counter <- 0
for (i in 1:length(xvars)){
if (choicevar.indic[i]){
counter <- counter + 1
vn2 <- strsplit(xvars[i], ",")
vn3 <- strsplit(vn2[[1]], "\\(")
vn4 <- strsplit(vn3[[3]], "=")
cvarname1 <- vn3[[2]][1]
cvarname1 <- strsplit(cvarname1, "\"")[[1]]
cvarname1 <- cvarname1[length(cvarname1)]
cvarname2 <- vn4[[1]][length(vn4[[1]])]
cvarname2 <- strsplit(cvarname2, "\"")[[1]][2]
if (! cvarname2 %in% choice.names){
stop("choicelevel that was set in choicevar() not consistent with\n observed choice levels in y")
}
cvarname1.vec[counter] <- cvarname1
cvarname2.vec[counter] <- cvarname2
xvars[i] <- paste(cvarname1, cvarname2, sep=".")
}
}
X.cho <- X[, choicevar.indic]
X.cho.mat <- matrix(NA, length(choice.names)*nrow(X),
length(unique(cvarname1.vec)))
rownames(X.cho.mat) <- rep(rownames(X), rep(length(choice.names), nrow(X)))
rownames(X.cho.mat) <- paste(rownames(X.cho.mat), choice.names, sep=".")
colnames(X.cho.mat) <- unique(cvarname1.vec)
choice.names.n <- rep(choice.names, nrow(X))
for (j in 1:length(unique(cvarname1.vec))){
for (i in 1:length(cvarname2.vec)){
if (colnames(X.cho.mat)[j] == cvarname1.vec[i]){
X.cho.mat[choice.names.n==cvarname2.vec[i], j] <-
X.cho[,i]
}
}
}
}
xvars.ind.mat <- rep(xvars[!choicevar.indic],
rep(length(choice.names),
sum(!choicevar.indic)))
xvars.ind.mat <- paste(xvars.ind.mat, choice.names, sep=".")
if (sum(!choicevar.indic) > 0){
X.ind.mat <- X[,!choicevar.indic] %x% diag(length(choice.names))
colnames(X.ind.mat) <- xvars.ind.mat
rownames(X.ind.mat) <- rep(rownames(X), rep(length(choice.names), nrow(X)))
rownames(X.ind.mat) <- paste(rownames(X.ind.mat), choice.names, sep=".")
ivarname1 <- strsplit(xvars.ind.mat, "\\.")
ivar.keep.indic <- rep(NA, ncol(X.ind.mat))
for (i in 1:ncol(X.ind.mat)){
ivar.keep.indic[i] <- ivarname1[[i]][length(ivarname1[[i]])] != baseline
}
X.ind.mat <- X.ind.mat[,ivar.keep.indic]
}
if (sum(choicevar.indic) > 0 & sum(!choicevar.indic) > 0){
X <- cbind(X.cho.mat, X.ind.mat)
}
else if (sum(!choicevar.indic) > 0){
X <- X.ind.mat
}
else if (sum(choicevar.indic) > 0){
X <- X.cho.mat
}
else {
stop("X matrix appears to have neither choice-specific nor individual-specific variables.\n")
}
xvars <- colnames(X)
xobs <- rownames(X)
return(list(Ymat, X, xvars, xobs, number.choices))
}
"choicevar" <- function(var, varname, choicelevel){
junk1 <- varname
junk2 <- choicelevel
return(var)
}
"mnl.logpost.noNA" <- function(beta, new.Y, X, b0, B0){
nobs <- length(new.Y)
ncat <- nrow(X) / nobs
Xb <- X %*% beta
Xb <- matrix(Xb, byrow=TRUE, ncol=ncat)
indices <- cbind(1:nobs, new.Y)
Xb.reform <- Xb[indices]
eXb <- exp(Xb)
z <- rep(1, ncat)
denom <- log(eXb %*% z)
log.prior <- 0.5 * t(beta - b0) %*% B0 %*% (beta - b0)
return(sum(Xb.reform - denom) + log.prior)
}
"mnl.logpost.NA" <- function(beta, Y, X, b0, B0){
k <- ncol(X)
numer <- exp(X %*% beta)
numer[Y== -999] <- NA
numer.mat <- matrix(numer, nrow(Y), ncol(Y), byrow=TRUE)
denom <- apply(numer.mat, 1, sum, na.rm=TRUE)
choice.probs <- numer.mat / denom
Yna <- Y
Yna[Y == -999] <- NA
log.like.mat <- log(choice.probs) * Yna
log.like <- sum(apply(log.like.mat, 1, sum, na.rm=TRUE))
log.prior <- 0.5 * t(beta - b0) %*% B0 %*% (beta - b0)
return(log.like + log.prior)
}
"MCMCmnl" <-
function(formula, baseline=NULL, data=NULL,
burnin = 1000, mcmc = 10000, thin=1,
mcmc.method = c("IndMH", "RWM", "slice"),
tune = 1.0, tdf=6, verbose = 0, seed = NA,
beta.start = NA, b0 = 0, B0 = 0, ...) {
check.offset(list(...))
check.mcmc.parameters(burnin, mcmc, thin)
if (tdf <= 0){
stop("degrees of freedom for multivariate-t proposal must be positive.\n Respecify tdf and try again.\n")
}
seeds <- form.seeds(seed)
lecuyer <- seeds[[1]]
seed.array <- seeds[[2]]
lecuyer.stream <- seeds[[3]]
holder <- parse.formula.mnl(formula=formula, baseline=baseline,
data=data)
Y <- holder[[1]]
if (is.null(baseline)){
if (max(Y[,1] == -999) == 1){
stop("Baseline choice not available in all choicesets.\n Respecify baseline category and try again.\n")
}
}
else{
if (max(Y[,baseline] == -999) == 1){
stop("Baseline choice not available in all choicesets.\n Respecify baseline category and try again.\n")
}
}
X <- holder[[2]]
xnames <- holder[[3]]
xobs <- holder[[4]]
number.choices <- holder[[5]]
K <- ncol(X)
tune <- vector.tune(tune, K)
mvn.prior <- form.mvn.prior(b0, B0, K)
b0 <- mvn.prior[[1]]
B0 <- mvn.prior[[2]]
beta.init <- rep(0, K)
cat("Calculating MLEs and large sample var-cov matrix.\n")
cat("This may take a moment...\n")
if (max(is.na(Y))){
optim.out <- optim(beta.init, mnl.logpost.NA, method="BFGS",
control=list(fnscale=-1),
hessian=TRUE, Y=Y, X=X, b0=b0, B0=B0)
}
else{
new.Y <- apply(Y==1, 1, which)
optim.out <- optim(beta.init, mnl.logpost.noNA, method="BFGS",
control=list(fnscale=-1),
hessian=TRUE, new.Y=new.Y, X=X, b0=b0, B0=B0)
}
cat("Inverting Hessian to get large sample var-cov matrix.\n")
V <- chol2inv(chol(-1*optim.out$hessian))
beta.mode <- matrix(optim.out$par, K, 1)
if (is.na(beta.start) || is.null(beta.start)){
beta.start <- matrix(optim.out$par, K, 1)
}
else if(is.null(dim(beta.start))) {
beta.start <- matrix(beta.start, K, 1)
}
else if (length(beta.start != K)){
stop("beta.start not of appropriate dimension\n")
}
sample <- matrix(data=0, mcmc/thin, dim(X)[2] )
posterior <- NULL
if (mcmc.method=="RWM"){
auto.Scythe.call(output.object="posterior", cc.fun.name="MCMCmnlMH",
sample.nonconst=sample, Y=Y, X=X,
burnin=as.integer(burnin),
mcmc=as.integer(mcmc), thin=as.integer(thin),
tune=tune, lecuyer=as.integer(lecuyer),
seedarray=as.integer(seed.array),
lecuyerstream=as.integer(lecuyer.stream),
verbose=as.integer(verbose),
betastart=beta.start, betamode=beta.mode,
b0=b0, B0=B0,
V=V, RW=as.integer(1), tdf=as.double(tdf))
output <- form.mcmc.object(posterior, names=xnames,
title="MCMCmnl Posterior Sample")
}
else if (mcmc.method=="IndMH"){
auto.Scythe.call(output.object="posterior", cc.fun.name="MCMCmnlMH",
sample.nonconst=sample, Y=Y, X=X,
burnin=as.integer(burnin),
mcmc=as.integer(mcmc), thin=as.integer(thin),
tune=tune, lecuyer=as.integer(lecuyer),
seedarray=as.integer(seed.array),
lecuyerstream=as.integer(lecuyer.stream),
verbose=as.integer(verbose),
betastart=beta.start, betamode=beta.mode,
b0=b0, B0=B0,
V=V, RW=as.integer(0), tdf=as.double(tdf))
output <- form.mcmc.object(posterior, names=xnames,
title="MCMCmnl Posterior Sample")
}
else if (mcmc.method=="slice"){
auto.Scythe.call(output.object="posterior", cc.fun.name="MCMCmnlslice",
sample.nonconst=sample, Y=Y, X=X,
burnin=as.integer(burnin),
mcmc=as.integer(mcmc), thin=as.integer(thin),
lecuyer=as.integer(lecuyer),
seedarray=as.integer(seed.array),
lecuyerstream=as.integer(lecuyer.stream),
verbose=as.integer(verbose), betastart=beta.start,
b0=b0, B0=B0, V=V)
output <- form.mcmc.object(posterior, names=xnames,
title="MCMCmnl Posterior Sample")
}
return(output)
} |
base.class.R6 <- R6Class("palm",
public = list(
n.patterns = NULL,
lims = NULL,
lims.list = NULL,
vol = NULL,
vol.list = NULL,
dim = NULL,
dim.list = NULL,
classes = NULL,
initialize = function(lims.list, classes, ...){
self$lims.list <- lims.list
self$vol.list <- lapply(self$lims.list,
function(x) prod(apply(x, 1, diff)))
self$dim.list <- lapply(self$lims.list,
function(x) nrow(x))
self$n.patterns <- length(lims.list)
self$classes <- classes
},
setup.pattern = function(pattern){
if (pattern > self$n.patterns){
stop("Pattern index exceeds the number of patterns")
}
self$lims <- self$lims.list[[pattern]]
self$vol <- self$vol.list[[pattern]]
self$dim <- self$dim.list[[pattern]]
},
simulate = function(pars = self$par.fitted){
out <- vector(mode = "list", length = self$n.patterns)
for (i in 1:self$n.patterns){
self$setup.pattern(i)
out[[i]] <- self$simulate.pattern(pars)
}
if (self$n.patterns == 1){
out <- out[[1]]
}
out
},
simulate.pattern = function(pars){},
trim.points = function(points, output.indices = FALSE){
in.window <- rep(TRUE, nrow(points))
for (i in 1:self$dim){
in.window <- in.window & (self$lims[i, 1] <= points[, i] & self$lims[i, 2] >= points[, i])
}
if (output.indices){
out <- which(in.window)
} else {
out <- points[in.window, , drop = FALSE]
}
out
}
))
set.CLASSNAME.class <- function(class, class.env){
assign("CLASSNAME.inherit", class, envir = class.env)
R6Class("palm_CLASSNAME",
inherit = class.env$CLASSNAME.inherit,
public = list(
))
}
set.fit.class <- function(class, class.env){
assign("fit.inherit", class, envir = class.env)
R6Class("palm_fit",
inherit = class.env$fit.inherit,
public = list(
points.list = NULL,
points = NULL,
n.points = NULL,
n.points.list = NULL,
contrasts = NULL,
contrasts.list = NULL,
n.contrasts = NULL,
n.contrasts.list = NULL,
contrast.pairs = NULL,
contrast.pairs.list = NULL,
R = NULL,
boots = NULL,
trace = NULL,
conv.code = NULL,
converged = NULL,
n.par = NULL,
set.start = NULL,
set.bounds = NULL,
par.names = NULL,
fixed.names = NULL,
par.names.link = NULL,
par.start = NULL,
par.start.link = NULL,
par.fixed = NULL,
par.fixed.link = NULL,
par.links = NULL,
par.invlinks = NULL,
par.fitted = NULL,
par.fitted.link = NULL,
par.lower = NULL,
par.lower.link = NULL,
par.upper = NULL,
par.upper.link = NULL,
pi.multiplier = NULL,
initialize = function(points.list, R, trace, start, bounds, ...){
super$initialize(...)
self$points.list <- points.list
if (length(self$points.list) != length(self$lims.list)){
stop("The list 'points' must have the same number of components as 'lims'.")
}
self$R <- R
self$n.points.list <- lapply(points.list, nrow)
self$contrasts.list <- list()
self$contrast.pairs.list <- list()
self$n.contrasts.list <- list()
for (i in 1:self$n.patterns){
self$get.contrasts(i)
}
self$setup.pattern(1)
self$trace <- trace
self$set.start <- start
self$set.bounds <- bounds
self$get.pars()
self$n.par <- length(self$par.start)
self$par.start.link <- self$link.pars(self$par.start)
self$get.link.bounds()
},
setup.pattern = function(pattern, do.contrasts = TRUE){
super$setup.pattern(pattern)
self$points <- self$points.list[[pattern]]
self$n.points <- self$n.points.list[[pattern]]
if (do.contrasts){
self$contrast.pairs <- self$contrast.pairs.list[[pattern]]
self$contrasts <- self$contrasts.list[[pattern]]
self$n.contrasts <- self$n.contrasts.list[[pattern]]
}
},
get.contrasts = function(pattern){
self$n.contrasts.list[[pattern]] <- length(self$contrasts.list[[pattern]])
},
get.pars = function(){
self$fetch.pars()
},
fetch.pars = function(){
},
add.pars = function(name, link.name = NULL, link, invlink = NULL,
start, lower, upper){
self$par.names <- c(self$par.names, name)
if (identical(link, log)){
full.link <- function(pars) log(pars[name])
if (is.null(link.name)){
link.name <- paste("log", name, sep = ".")
}
if (is.null(invlink)){
full.invlink <- function(pars) exp(pars[link.name])
}
} else if (identical(link, logit)){
full.link <- function(pars) link(pars[name])
if (is.null(link.name)){
link.name <- paste("logit", name, sep = ".")
}
if (is.null(invlink)){
full.invlink <- function(pars) invlogit(pars[link.name])
}
} else {
if (is.null(link.name)){
stop("Please provide link name.")
}
if (is.null(invlink)){
stop("Please provide inverse link function.")
}
full.link <- link
full.invlink <- invlink
}
self$par.links <- c(self$par.links, full.link)
names(self$par.links) <- self$par.names
self$par.invlinks <- c(self$par.invlinks, full.invlink)
names(self$par.invlinks) <- self$par.names
self$par.names.link <- c(self$par.names.link, link.name)
if (any(name == names(self$set.start))){
start <- self$set.start[name]
}
if (any(name == names(self$set.bounds))){
lower <- self$set.bounds[[name]][1]
upper <- self$set.bounds[[name]][2]
}
self$par.upper <- c(self$par.upper, upper)
names(self$par.upper) <- self$par.names
self$par.lower <- c(self$par.lower, lower)
if (start >= upper){
start <- lower + 0.9*(upper - lower)
} else if (start <= lower){
start <- lower + 0.9*(upper - lower)
}
self$par.start <- c(self$par.start, start)
names(self$par.start) <- self$par.names
names(self$par.lower) <- self$par.names
},
get.link.bounds = function(){
self$par.lower.link <- self$link.pars(self$par.lower)
self$par.upper.link <- self$link.pars(self$par.upper)
},
link.pars = function(pars){
out <- numeric(self$n.par)
for (i in 1:self$n.par){
out[i] <- self$par.links[[i]](pars)
}
names(out) <- self$par.names.link
out
},
invlink.pars = function(pars){
out <- numeric(self$n.par)
for (i in 1:self$n.par){
out[i] <- self$par.invlinks[[i]](pars)
}
names(out) <- self$par.names
out
},
obj.fun = function(link.pars, fixed.link.pars = NULL,
est.names = NULL, fixed.names = NULL){
combined.pars <- c(link.pars, fixed.link.pars)
names(combined.pars) <- c(est.names, fixed.names)
link.pars <- combined.pars[self$par.names.link]
pars <- self$invlink.pars(link.pars)
obj.fun.components <- numeric(self$n.patterns)
for (i in 1:self$n.patterns){
self$setup.pattern(i)
obj.fun.components[i] <- self$neg.log.palm.likelihood(pars)
}
out <- sum(obj.fun.components)
ll <- -out
if (self$trace){
for (i in 1:self$n.par){
cat(self$par.names[i], ": ", sep = "")
cat(pars[i], ", ", sep = "")
}
cat("Log-lik: ", ll, "\n", sep = "")
}
out
},
palm.intensity = function(r, pars){},
sum.log.intensities = function(pars){
sum(log(self$pi.multiplier*self$palm.intensity(self$contrasts, pars)))
},
palm.likelihood.integral = function(pars){
f <- function(r, pars){
self$palm.intensity(r, pars)*Sd(r, self$dim)
}
-self$pi.multiplier*integrate(f, lower = 0, upper = self$R, pars = pars)$value
},
log.palm.likelihood = function(pars){
self$sum.log.intensities(pars) + self$palm.likelihood.integral(pars)
},
neg.log.palm.likelihood = function(pars){
-self$log.palm.likelihood(pars)
},
palm.optimise = function(){},
palm.not.optimise = function(){
self$converged <- FALSE
self$par.fitted.link <- rep(NA, self$n.par)
names(self$par.fitted.link) <- self$par.names.link
self$par.fitted <- rep(NA, self$n.par)
self$conv.code <- 5
},
fit = function(){
if (self$n.contrasts <= 1){
warning("Not enough observed points to compute parameter estimates.")
self$palm.not.optimise()
} else {
self$palm.optimise()
}
},
boot = function(N, prog = TRUE){
boots <- matrix(0, nrow = N, ncol = self$n.par)
if (prog){
pb <- txtProgressBar(min = 0, max = N, style = 3)
}
for (i in 1:N){
zero.points <- TRUE
while (zero.points){
sim.obj <- self$simulate()
if (self$n.patterns > 1){
sim.obj$points <- lapply(sim.obj, function(x) x$points)
sim.obj$sibling.list <- lapply(sim.obj, function(x) x$sibling.list)
zero.points <- sum(sapply(sim.obj$points, nrow)) == 0
} else {
zero.points <- nrow(sim.obj$points) == 0
}
}
obj.boot <- create.obj(classes = self$classes, points = sim.obj$points, lims = self$lims,
R = self$R, child.list = self$child.list,
sibling.list = sim.obj$sibling.list, trace = FALSE,
start = self$par.fitted, bounds = self$bounds)
obj.boot$fit()
if (obj.boot$converged){
boots[i, ] <- obj.boot$par.fitted
} else {
boots[i, ] <- rep(NA, self$n.par)
}
if (prog){
setTxtProgressBar(pb, i)
}
}
cat("\n")
self$boots <- boots
colnames(self$boots) <- self$par.names
},
plot = function(xlim = NULL, ylim = NULL, show.empirical = TRUE, breaks = 50, ...){
if (show.empirical){
emp <- self$empirical(xlim, breaks)
}
if (is.null(xlim)){
xlim <- self$get.xlim()
}
xx <- seq(xlim[1], xlim[2], length.out = 1000)
yy <- self$palm.intensity(xx, self$par.fitted)
if (is.null(ylim)){
if (show.empirical){
ylim <- c(0, max(c(emp$y, yy)))
} else {
ylim <- c(0, max(yy))
}
}
par(xaxs = "i")
plot(xx, yy, xlab = "", ylab = "", xlim = range(xx), ylim = ylim, type = "n", ...)
title(xlab = "r", ylab = "Palm intensity")
lines(xx, yy)
if (show.empirical){
lines(emp$x, emp$y, lty = "dashed")
}
},
get.xlim = function(){
c(0, self$R)
},
empirical = function(xlim = NULL, breaks = 50){
if (is.null(xlim)){
xlim <- self$get.xlim()
}
dists <- pbc_distances(self$points, self$lims)
midpoints <- seq(0, xlim[2], length.out = breaks)
midpoints <- midpoints[-length(midpoints)]
h <- diff(midpoints[c(1, 2)])
midpoints[1] <- midpoints[1] + h/2
intensities <- numeric(length(midpoints))
for (i in 1:length(midpoints)){
halfwidth <- ifelse(i == 1, 0.25*h, 0.5*h)
n.interval <- sum(dists <= (midpoints[i] + halfwidth)) -
sum(dists <= (midpoints[i] - halfwidth))
area <- Vd(midpoints[i] + halfwidth, self$dim) - Vd(midpoints[i] - halfwidth, self$dim)
intensities[i] <- n.interval/(self$pi.multiplier*area)
}
list(x = midpoints, y = intensities)
}
))
}
set.bobyqa.class <- function(class, class.env){
assign("bobyqa.inherit", class, envir = class.env)
R6Class("palm_bobyqa",
inherit = class.env$bobyqa.inherit,
public = list(
palm.optimise = function(){
out <- try(bobyqa(self$par.start.link, self$obj.fun,
lower = self$par.lower.link, upper = self$par.upper.link,
fixed.link.pars = self$par.fixed.link,
est.names = self$par.names.link,
fixed.names = self$fixed.names.link,
control = list(maxfun = 2000, npt = 2*self$n.par + 1)), silent = TRUE)
if (class(out)[1] == "try-error"){
self$palm.not.optimise()
} else {
if (out$ierr > 0){
warning("Failed convergence.")
self$converged <- FALSE
} else {
self$converged <- TRUE
}
self$par.fitted.link <- out$par
names(self$par.fitted.link) <- self$par.names.link
self$par.fitted <- self$invlink.pars(self$par.fitted.link)
self$conv.code <- out$ierr
}
}
))
}
set.nlminb.class <- function(class, class.env){
assign("nlminb.inherit", class, envir = class.env)
R6Class("palm_nlminb",
inherit = class.env$nlminb.inherit,
public = list(
palm.optimise = function(){
out <- nlminb(self$par.start.link, self$obj.fun,
fixed.link.pars = self$par.fixed.link,
est.names = self$par.names.link, fixed.names = self$fixed.names.link,
control = list(eval.max = 2000, iter.max = 1500),
lower = self$par.lower.link, upper = self$par.upper.link)
if (out$convergence > 1){
warning("Failed convergence.")
self$converged <- FALSE
} else {
self$converged <- TRUE
}
self$par.fitted.link <- out$par
names(self$par.fitted.link) <- self$par.names.link
self$par.fitted <- self$invlink.pars(self$par.fitted.link)
self$conv.code <- out$convergence
}
))
}
set.pbc.class <- function(class, class.env){
assign("pbc.inherit", class, envir = class.env)
R6Class("palm_pbc",
inherit = class.env$pbc.inherit,
public = list(
setup.pattern = function(pattern, do.contrasts = TRUE){
super$setup.pattern(pattern, do.contrasts)
self$pi.multiplier <- self$n.points/2
},
get.contrasts = function(pattern){
self$setup.pattern(pattern, do.contrasts = FALSE)
contrast.pairs <- matrix(0, nrow = (self$n.points^2 - self$n.points)/2, ncol = 2)
k <- 1
if (self$n.points > 1){
for (i in 1:(self$n.points - 1)){
for (j in (i + 1):self$n.points){
contrast.pairs[k, ] <- c(i, j)
k <- k + 1
}
}
contrasts <- pbc_distances(points = self$points, lims = self$lims)
self$contrast.pairs.list[[pattern]] <- contrast.pairs[contrasts <= self$R, ]
self$contrasts.list[[pattern]] <- contrasts[contrasts <= self$R]
} else {
self$contrast.pairs.list[[pattern]] <- contrast.pairs
self$contrasts[[pattern]] <- numeric(0)
}
super$get.contrasts(pattern)
}
))
}
set.buffer.class <- function(class, class.env){
assign("buffer.inherit", class, envir = class.env)
R6Class("palm_buffer",
inherit = class.env$buffer.inherit,
public = list(
setup.pattern = function(pattern, do.contrasts = TRUE){
super$setup.pattern(pattern, do.contrasts)
self$pi.multiplier <- self$n.points
},
get.contrasts = function(pattern){
self$setup.pattern(pattern, do.contrasts = FALSE)
buffer.keep <- buffer_keep(points = self$points, lims = self$lims,
R = self$R)
contrasts <- as.vector(as.matrix(dist(self$points))[buffer.keep])
contrast.pairs.1 <- matrix(rep(1:self$n.points, self$n.points), nrow = self$n.points)
contrast.pairs.2 <- matrix(rep(1:self$n.points, self$n.points), nrow = self$n.points, byrow = TRUE)
contrast.pairs.1 <- as.vector(contrast.pairs.1[buffer.keep])
contrast.pairs.2 <- as.vector(contrast.pairs.2[buffer.keep])
contrast.pairs <- cbind(contrast.pairs.1, contrast.pairs.2)
self$contrasts.list[[pattern]] <- contrasts[contrasts <= self$R]
self$contrast.pairs.list[[pattern]] <- contrast.pairs[contrasts <= self$R, ]
super$get.contrasts(pattern)
}
))
}
set.ns.class <- function(class, class.env){
assign("ns.inherit", class, envir = class.env)
R6Class("palm_ns",
inherit = class.env$ns.inherit,
public = list(
child.list = NULL,
fetch.pars = function(){
super$fetch.pars()
link <- function(pars){
log(pars["D"]*self$child.expectation(pars))
}
invlink <- function(pars, out){
exp(pars["log.Dc"])/self$child.expectation(out)
}
self$add.pars(name = "D", link.name = "log.Dc", link = link, invlink = invlink,
start = sqrt(self$n.points/self$vol), lower = 0, upper = Inf)
},
invlink.pars = function(pars){
out <- numeric(self$n.par)
names(out) <- self$par.names
which.D <- which(self$par.names == "D")
for (i in (1:self$n.par)[-which.D]){
out[i] <- self$par.invlinks[[i]](pars)
}
out[which.D] <- self$par.invlinks[[which.D]](pars, out)
out
},
simulate.pattern = function(pars = self$par.fitted){
parent.locs <- self$get.parents(pars)
n.parents <- nrow(parent.locs)
sim.n.children <- self$simulate.n.children(n.parents, pars)
n.children <- sim.n.children$n.children
sibling.list <- sim.n.children$sibling.list
child.locs <- matrix(0, nrow = sum(n.children), ncol = self$dim)
j <- 0
for (i in seq_along(n.children)){
if (n.children[i] > 0){
child.locs[(j + 1):(j + n.children[i]), ] <-
self$simulate.children(n.children[i], parent.locs[i, ], pars)
j <- j + n.children[i]
}
}
parent.ids <- rep(seq_along(n.children), times = n.children)
trimmed <- self$trim.points(child.locs, output.indices = TRUE)
list(points = child.locs[trimmed, , drop = FALSE],
parents = parent.locs,
parent.ids = parent.ids[trimmed],
child.ys = sim.n.children$child.ys[trimmed],
sibling.list = self$trim.siblings(sibling.list, trimmed))
},
trim.siblings = function(sibling.list, trimmed){
sibling.list
},
get.parents = function(pars){
expected.parents <- pars["D"]*self$vol
n.parents <- rpois(1, expected.parents)
parent.locs <- matrix(0, nrow = n.parents, ncol = self$dim)
for (i in 1:self$dim){
parent.locs[, i] <- runif(n.parents, self$lims[i, 1], self$lims[i, 2])
}
parent.locs
},
palm.intensity = function(r, pars){
self$sibling.pi(r, pars) + self$nonsibling.pi(pars)
},
child.expectation = function(pars){},
child.variance = function(pars){},
sibling.expectation = function(pars){
(self$child.variance(pars) + self$child.expectation(pars)^2)/self$child.expectation(pars) - 1
},
fq = function(r, pars){},
Fq = function(r, pars){},
fq.over.s = function(r, pars){
self$fq(r, pars)/Sd(r, dim)
},
nonsibling.pi = function(pars){
pars["D"]*self$child.expectation(pars)
},
sibling.pi = function(r, pars){
self$sibling.expectation(pars)*self$fq.over.s(r, pars)
}
))
}
set.sibling.class <- function(class, class.env){
assign("sibling.inherit", class, envir = class.env)
R6Class("palm_sibling",
inherit = class.env$sibling.inherit,
public = list(
siblings = NULL,
siblings.list = NULL,
sibling.list = NULL,
sibling.mat = NULL,
sibling.alpha = NULL,
sibling.beta = NULL,
initialize = function(sibling.list, ...){
self$sibling.list <- sibling.list
super$initialize(...)
self$siblings.list <- list()
for (i in 1:self$n.patterns){
self$get.siblings(i)
}
},
setup.pattern = function(pattern, do.contrasts = TRUE, do.siblings = TRUE){
super$setup.pattern(pattern, do.contrasts)
self$sibling.mat <- self$sibling.list[[pattern]]$sibling.mat
self$sibling.alpha <- self$sibling.list[[pattern]]$alpha
self$sibling.beta <- self$sibling.list[[pattern]]$beta
if (do.siblings){
self$siblings <- self$siblings.list[[pattern]]
}
},
get.siblings = function(pattern){
self$setup.pattern(pattern, do.siblings = FALSE)
siblings <- numeric(self$n.contrasts)
for (i in 1:self$n.contrasts){
pair <- self$contrast.pairs[i, ]
siblings[i] <- self$sibling.mat[pair[1], pair[2]]
}
siblings <- as.numeric(siblings)
siblings[is.na(siblings)] <- 2
self$siblings.list[[pattern]] <- siblings
},
sum.log.intensities = function(pars){
all.palm.intensities <- numeric(self$n.contrasts)
all.palm.intensities[self$siblings == 0] <-
self$sibling.beta*self$nonsibling.pi(pars)
all.palm.intensities[self$siblings == 1] <-
self$sibling.alpha*
self$sibling.pi(self$contrasts[self$siblings == 1], pars)
all.palm.intensities[self$siblings == 2] <-
(1 - self$sibling.beta)*self$nonsibling.pi(pars) +
(1 - self$sibling.alpha)*
self$sibling.pi(self$contrasts[self$siblings == 2], pars)
sum(log(self$n.points*all.palm.intensities))
}
))
}
set.poischild.class <- function(class, class.env){
assign("poischild.inherit", class, envir = class.env)
R6Class("palm_poischild",
inherit = class.env$poischild.inherit,
public = list(
fetch.pars = function(){
super$fetch.pars()
self$add.pars(name = "lambda", link = log, start = sqrt(self$n.points/self$vol),
lower = 0, upper = self$n.points)
},
simulate.n.children = function(n, pars){
list(n.children = rpois(n, pars["lambda"]))
},
child.expectation = function(pars){
pars["lambda"]
},
child.variance = function(pars){
pars["lambda"]
}
))
}
set.binomchild.class <- function(class, class.env){
assign("binomchild.inherit", class, envir = class.env)
R6Class("palm_binomchild",
inherit = class.env$binomchild.inherit,
public = list(
binom.size = NULL,
initialize = function(child.list, ...){
self$child.list <- child.list
self$binom.size <- child.list$size
super$initialize(...)
},
fetch.pars = function(){
super$fetch.pars()
p.start <- sqrt(self$n.points/self$vol)/self$binom.size
p.start <- ifelse(p.start > 1, 0.9, p.start)
p.start <- ifelse(p.start < 0, 0.1, p.start)
self$add.pars(name = "p", link = logit, start = p.start, lower = 0, upper = 1)
},
simulate.n.children = function(n, pars){
list(n.children = rbinom(n, self$binom.size, pars["p"]))
},
child.expectation = function(pars){
self$binom.size*pars["p"]
},
child.variance = function(pars){
self$binom.size*pars["p"]*(1 - pars["p"])
}
))
}
set.twocamerachild.class <- function(class, class.env){
assign("twocamerachild.inherit", class, envir = class.env)
R6Class("palm_twocamerachild",
inherit = class.env$twocamerachild.inherit,
public = list(
twocamera.w = NULL,
twocamera.b = NULL,
twocamera.l = NULL,
twocamera.tau = NULL,
initialize = function(child.list, ...){
self$child.list <- child.list
self$twocamera.w <- child.list$twocamera.w
self$twocamera.b <- child.list$twocamera.b
self$twocamera.l <- child.list$twocamera.l
self$twocamera.tau <- child.list$twocamera.tau
super$initialize(...)
self$setup.pattern(1)
if (self$dim != 1){
stop("Analysis of two-camera surveys is only implemented for one-dimensional processes.")
}
},
fetch.pars = function(){
super$fetch.pars()
self$add.pars(name = "kappa", link = log, start = 0.1*self$twocamera.tau, lower = 0,
upper = self$twocamera.tau)
},
simulate.pattern = function(pars = self$par.fitted){
if (any(names(pars) == "D.2D")){
which.D <- which(names(pars) == "D.2D")
pars[which.D] <- 2*pars[which.D]*self$twocamera.b
names(pars)[which.D] <- "D"
}
super$simulate.pattern(pars)
},
simulate.n.children = function(n, pars){
probs <- twocamera.probs(self$twocamera.l, self$twocamera.tau, self$twocamera.w,
self$twocamera.b, pars["kappa"], pars["sigma"])
parent.ys <- runif(n, -self$twocamera.b, self$twocamera.b)
child.ys <- matrix(nrow = n, ncol = 2)
for (i in 1:n){
child.ys[i, ] <- rnorm(2, parent.ys[i], pars["sigma"])
}
camera1.in <- ifelse(child.ys[, 1] < self$twocamera.w & child.ys[, 1] > -self$twocamera.w,
TRUE, FALSE)
camera2.in <- ifelse(child.ys[, 2] < self$twocamera.w & child.ys[, 2] > -self$twocamera.w,
TRUE, FALSE)
camera1.up <- sample(c(TRUE, FALSE), n, replace = TRUE, prob = c(probs$p.up, probs$p.down))
camera2.up <- logical(n)
for (i in 1:n){
p.up <- ifelse(camera1.up[i], 1 - probs$p.down.up, probs$p.up.down)
camera2.up[i] <- sample(c(TRUE, FALSE), 1, prob = c(p.up, 1 - p.up))
}
camera1.det <- camera1.in & camera1.up
camera2.det <- camera2.in & camera2.up
child.ys <- t(child.ys)[t(cbind(camera1.det, camera2.det))]
n.children <- camera1.det + camera2.det
cameras <- numeric(sum(n.children))
j <- 1
for (i in 1:n){
if (n.children[i] > 0){
cameras[j:(j + n.children[i] - 1)] <- c(1[camera1.det[i]], 2[camera2.det[i]])
}
j <- j + n.children[i]
}
sibling.list <- siblings.twocamera(cameras)
sibling.list$cameras <- cameras
list(n.children = n.children, sibling.list = sibling.list, child.ys = child.ys)
},
trim.siblings = function(sibling.list, trimmed){
sibling.list$sibling.mat <- sibling.list$sibling.mat[trimmed, trimmed, drop = FALSE]
sibling.list$cameras <- sibling.list$cameras[trimmed]
super$trim.siblings(sibling.list, trimmed)
},
child.expectation = function(pars){
probs <- twocamera.probs(self$twocamera.l, self$twocamera.tau, self$twocamera.w,
self$twocamera.b, pars["kappa"], pars["sigma"])
2*probs$p.10/(probs$p.10 + probs$p.01)
},
child.variance = function(pars){
probs <- twocamera.probs(self$twocamera.l, self$twocamera.tau, self$twocamera.w,
self$twocamera.b, pars["kappa"], pars["sigma"])
2*probs$p.10*probs$p.01*(2 - probs$p.10 - probs$p.01)/(probs$p.10 + probs$p.01)^2
}
))
}
set.thomas.class <- function(class, class.env){
assign("thomas.inherit", class, envir = class.env)
R6Class("palm_thomas",
inherit = class.env$thomas.inherit,
public = list(
fetch.pars = function(){
super$fetch.pars()
self$add.pars(name = "sigma", link = log, start = 0.1*self$R, lower = 0,
upper = self$R)
},
simulate.children = function(n, parent.loc, pars){
rmvnorm(n, parent.loc, pars["sigma"]^2*diag(self$dim))
},
palm.likelihood.integral = function(pars){
-self$pi.multiplier*(pars["D"]*self$child.expectation(pars)*Vd(self$R, self$dim) +
self$sibling.expectation(pars)*self$Fq(self$R, pars))
},
fq = function(r, pars){
2^(1 - self$dim/2)*r^(self$dim - 1)*exp(-r^2/(4*pars["sigma"]^2))/
((pars["sigma"]*sqrt(2))^self$dim*gamma(self$dim/2))
},
Fq = function(r, pars){
pgamma(r^2/(4*pars["sigma"]^2), self$dim/2)
},
fq.over.s = function(r, pars){
exp(-r^2/(4*pars["sigma"]^2))/((2*pars["sigma"])^self$dim*pi^(self$dim/2))
},
get.xlim = function(){
c(0, min(self$R, 10*self$par.fitted["sigma"]))
}
))
}
set.matern.class <- function(class, class.env){
assign("matern.inherit", class, envir = class.env)
R6Class("palm_matern",
inherit = class.env$matern.inherit,
public = list(
fetch.pars = function(){
super$fetch.pars()
self$add.pars(name = "tau", link = log, start = 0.1*self$R, lower = 0, upper = self$R)
},
simulate.children = function(n, parent.loc, pars){
out <- matrix(0, nrow = n, ncol = self$dim)
for (i in 1:n){
keep <- FALSE
while (!keep){
proposal <- runif(self$dim, -pars["tau"], pars["tau"])
if (sqrt(sum(proposal^2)) <= pars["tau"]){
proposal <- proposal + parent.loc
out[i, ] <- proposal
keep <- TRUE
}
}
}
out
},
fq = function(r, pars){
ifelse(r > 2*pars["tau"], 0,
2*self$dim*r^(self$dim - 1)*(pars["tau"]*hyperg_2F1(0.5, 0.5 - self$dim/2, 1.5, 1) -
r/2*hyperg_2F1(0.5, 0.5 - self$dim/2, 1.5, r^2/(4*pars["tau"]^2)))/
(beta(self$dim/2 + 0.5, 0.5)*pars["tau"]^(self$dim + 1)))
},
Fq = function(r, pars){
alpha <- r^2/(4*pars["tau"]^2)
r^2/pars["tau"]^2*(1 - pbeta(alpha, 0.5, self$dim/2 + 0.5)) +
2^self$dim*incomplete.beta(alpha, self$dim/2 + 0.5, self$dim/2 + 0.5)/
beta(0.5, self$dim/2 + 0.5)
},
fq.over.s = function(r, pars){
ifelse(r > 2*pars["tau"], 0,
2*(pars["tau"]*hyperg_2F1(0.5, 0.5 - self$dim/2, 1.5, 1) -
r/2*hyperg_2F1(0.5, 0.5 - self$dim/2, 1.5, r^2/(4*pars["tau"]^2)))*gamma(self$dim/2 + 1)/
(beta(self$dim/2 + 0.5, 0.5)*pars["tau"]^(self$dim + 1)*pi^(self$dim/2)))
},
get.xlim = function(){
c(0, min(self$R, 10*self$par.fitted["tau"]))
}
))
}
set.void.class <- function(class, class.env){
assign("void.inherit", class, envir = class.env)
R6Class("palm_void",
inherit = class.env$void.inherit,
public = list(
fetch.pars = function(){
super$fetch.pars()
self$add.pars(name = "Dp", link = log, start = 10/self$vol, lower = 0, upper = Inf)
self$add.pars(name = "Dc", link = log, start = self$n.points/self$vol, lower = 0, upper = Inf)
},
simulate.pattern = function(pars = self$par.fitted){
expected.children <- pars["Dc"]*self$vol
n.children <- rpois(1, expected.children)
child.locs <- matrix(0, nrow = n.children, ncol = self$dim)
for (i in 1:self$dim){
child.locs[, i] <- runif(n.children, self$lims[i, 1], self$lims[i, 2])
}
parent.locs <- self$get.parents(pars)
list(points = self$delete.points(child.locs, parent.locs, pars), parents = parent.locs)
},
get.parents = function(pars){
expected.parents <- pars["Dp"]*self$vol
n.parents <- rpois(1, expected.parents)
parent.locs <- matrix(0, nrow = n.parents, ncol = self$dim)
for (i in 1:self$dim){
parent.locs[, i] <- runif(n.parents, self$lims[i, 1], self$lims[i, 2])
}
parent.locs
},
palm.intensity = function(r, pars){
pars["Dc"]*self$prob.safe(r, pars)
}
))
}
set.totaldeletion.class <- function(class, class.env){
assign("totaldeletion.inherit", class, envir = class.env)
R6Class("palm_totaldeletion",
inherit = class.env$totaldeletion.inherit,
public = list(
fetch.pars = function(){
super$fetch.pars()
self$add.pars(name = "tau", link = log, start = 0.1*self$R, lower = 0, upper = self$R)
},
prob.safe = function(r, pars){
exp(-pars["Dp"]*Vd(pars["tau"], self$dim)*(1 - pbeta(1 - (r/(2*pars["tau"])), (self$dim + 1)/2, 0.5)))
},
delete.points = function(child.locs, parent.locs, pars){
dists <- euc_distances(child.locs[, 1], child.locs[, 2], parent.locs[, 1], parent.locs[, 2])
child.locs[apply(dists, 1, min) > pars["tau"], ]
},
get.xlim = function(){
c(0, min(self$R, 10*self$par.fitted["tau"]))
}
))
}
set.giveparent.class <- function(class, class.env){
assign("giveparent.inherit", class, envir = class.env)
R6Class("palm_giveparent",
inherit = class.env$giveparent.inherit,
public = list(
parent.locs = NULL,
initialize = function(parent.locs, ...){
self$parent.locs <- parent.locs
super$initialize(...)
},
get.parents = function(pars){
if (!(ncol(self$parent.locs) == self$dim)){
stop("Incorrection dimensions of parent locations.")
}
self$parent.locs
}
))
}
create.obj <- function(classes, points, lims, R, child.list, parent.locs, sibling.list, trace, start, bounds){
class <- base.class.R6
n.classes <- length(classes)
class.env <- new.env()
for (i in 1:n.classes){
set.class <- get(paste("set", classes[i], "class", sep = "."))
class <- set.class(class, class.env)
}
if (any(classes == "twocamerachild") & !any(classes == "thomas")){
stop("Analysis of two-camera surveys is only implemented for Thomas processes.")
}
if (!is.null(points) & !(is.matrix(points) | is.list(points))){
stop("The argument 'points' must be a matrix, or a list of matrices.")
}
if (is.matrix(points)){
points <- list(points)
sibling.list <- list(sibling.list)
}
if (is.matrix(lims)){
lims <- list(lims)
}
class$new(points.list = points, lims.list = lims, R = R,
child.list = child.list, parent.locs = parent.locs,
sibling.list = sibling.list, trace = trace,
classes = classes, start = start, bounds = bounds)
}
super <- NULL
self <- NULL |
saveWPX<-function(twpx, destdir="." )
{
RDATES = rangedatetime(twpx)
if(RDATES$max$yr == 0 & RDATES$min$yr == 0)
{
return()
}
fout1 = filedatetime(RDATES$min, 0)
fout2 = paste(fout1,"RDATA", sep="." )
fout3 = paste(destdir, fout2, sep="/")
save(file=fout2, twpx)
invisible(fout2)
} |
freqs <- function(df, ..., wt = NULL,
rel = FALSE,
results = TRUE,
variable_name = NA,
plot = FALSE, rm.na = FALSE,
title = NA, subtitle = NA,
top = 20, abc = FALSE,
save = FALSE, subdir = NA) {
vars <- quos(...)
weight <- enquo(wt)
if (is.vector(df)) {
values <- df <- data.frame(values = df)
vars <- quos(values)
}
df <- as.data.frame(df)
if (length(vars) == 0) {
output <- freqs_df(df, plot = plot, save = save, subdir = subdir)
return(output)
}
output <- df %>%
group_by(!!!vars) %>%
tally(wt = !!weight) %>%
arrange(desc(.data$n)) %>%
{
if (!rel) ungroup(.) else .
} %>%
mutate(p = round(100 * .data$n / sum(.data$n), 2))
if (abc) {
output <- output %>%
arrange(!!!vars, desc(n)) %>%
mutate(order = row_number())
} else {
output <- output %>%
arrange(desc(.data$n)) %>%
mutate(order = row_number())
}
output <- mutate(output, pcum = cumsum(.data$p))
if (!plot && !save) {
if (results) {
return(output)
} else {
invisible(return())
}
}
if (ncol(output) - 4 >= 4) {
stop(
paste(
"Sorry, but trying to plot more than 3 features is as complex as it sounds.",
"You should try another method to understand your analysis!"
)
)
}
obs_total <- sum(output$n)
obs <- sprintf("Total Obs.: %s", formatNum(obs_total, 0))
weight_text <- ifelse((as_label(weight) != "NULL"),
sprintf("(weighted by %s)", as_label(weight)), ""
)
values <- unique(output[, length(vars)])
if (nrow(values) > top) {
if (!is.na(top)) {
output <- output %>%
arrange(desc(.data$n)) %>%
slice(1:top)
message(
sprintf(
"Slicing the top %s (out of %s) values; use 'top' parameter to overrule.",
top, nrow(values)
)
)
note <- sprintf("[%s most frequent]", top)
obs <- sprintf("Obs.: %s (out of %s)", formatNum(sum(output$n), 0), formatNum(obs_total, 0))
}
} else {
note <- ""
}
if (abc) note <- gsub("most frequent", "A-Z sorted values", note)
reorder_within <- function(x, by, within, fun = mean, sep = "___", ...) {
new_x <- paste(x, within, sep = sep)
stats::reorder(new_x, by, FUN = fun)
}
scale_x_reordered <- function(..., sep = "___") {
reg <- paste0(sep, ".+$")
ggplot2::scale_x_discrete(labels = function(x) gsub(reg, "", x), ...)
}
plot <- ungroup(output)
if (rm.na) plot <- plot[complete.cases(plot), ]
plot$labels <- paste0(formatNum(plot$n, decimals = 0), " (", signif(plot$p, 4), "%)")
plot$label_colours <- ifelse(plot$p > mean(range(plot$p)) * 0.9, "TRUE", "FALSE")
lim <- 0.35
plot$label_hjust <- ifelse(
plot$n < min(plot$n) + diff(range(plot$n)) * lim, -0.1, 1.05
)
plot$label_colours <- ifelse(
plot$label_colours == "TRUE" & plot$label_hjust < lim, "FALSE", plot$label_colours
)
variable <- colnames(plot)[1]
if (ncol(output) - 3 == 2) {
type <- 1
colnames(plot)[1] <- "names"
p <- ggplot(plot, aes(
x = reorder(.data$names, -.data$order),
y = .data$n, label = .data$labels, fill = .data$p
))
}
else if (ncol(output) - 3 == 3) {
type <- 2
facet_name <- colnames(plot)[2]
colnames(plot)[1] <- "facet"
colnames(plot)[2] <- "names"
plot$facet <- suppressWarnings(replacefactor(plot$facet, NA, "NA"))
p <- plot %>%
ggplot(aes(
x = reorder_within(.data$names, -.data$order, .data$facet),
y = .data$n, label = .data$labels, fill = .data$p
)) +
scale_x_reordered()
}
else if (ncol(output) - 3 == 4) {
type <- 3
facet_name1 <- colnames(plot)[2]
facet_name2 <- colnames(plot)[3]
colnames(plot)[1] <- "facet2"
colnames(plot)[2] <- "facet1"
colnames(plot)[3] <- "names"
plot$facet2 <- suppressWarnings(replacefactor(plot$facet2, NA, "NA"))
plot$facet1 <- suppressWarnings(replacefactor(plot$facet1, NA, "NA"))
p <- plot %>%
ggplot(aes(
x = reorder_within(.data$names, .data$n, .data$facet2),
y = .data$n, label = .data$labels, fill = .data$p
)) +
scale_x_reordered()
}
p <- p + geom_col(alpha = 0.95, width = 0.8, colour = "transparent") +
geom_text(aes(hjust = .data$label_hjust, colour = .data$label_colours), size = 2.8) +
coord_flip() + guides(colour = "none") +
labs(
x = NULL, y = NULL, fill = NULL,
title = ifelse(is.na(title), paste("Frequencies and Percentages"), title),
subtitle = ifelse(is.na(subtitle),
paste(
"Variable:", ifelse(!is.na(variable_name), variable_name, variable),
note, weight_text
),
subtitle
), caption = obs
) +
scale_fill_gradient(low = "lightskyblue2", high = "navy") +
theme_lares(pal = 4, which = "c", legend = "none", grid = "Xx") +
scale_y_comma(position = "right", expand = c(0, 0), limits = c(0, 1.03 * max(output$n)))
if (type == 2) {
p <- p +
facet_grid(as.character(.data$facet) ~ ., scales = "free", space = "free") +
labs(
subtitle = ifelse(is.na(subtitle),
paste("Variables:", facet_name, "grouped by", variable, "\n", note, weight_text),
subtitle
),
caption = obs
)
}
else if (type >= 3) {
if (length(unique(facet_name2)) > 3) {
p <- freqs_plot(df, ..., top = top, rm.na = rm.na, title = title, subtitle = subtitle)
return(p)
}
p <- p + facet_grid(as.character(.data$facet2) ~ as.character(.data$facet1), scales = "free") +
labs(
title = ifelse(is.na(title), "Frequencies and Percentages:", title),
subtitle = ifelse(is.na(subtitle),
paste(
"Variables:", facet_name2, "grouped by", facet_name1, "[x] and",
variable, "[y]", "\n", note, weight_text
),
subtitle
),
caption = obs
)
}
if (save) export_plot(p, "viz_freqs", vars, subdir = subdir)
return(p)
}
freqs_df <- function(df,
max = 0.9, min = 0.0, novar = TRUE,
plot = FALSE, top = 30,
quiet = FALSE,
save = FALSE,
subdir = NA) {
if (is.vector(df)) {
temp <- data.frame(values = df)
ret <- freqs(temp, .data$values)
return(ret)
}
df <- df[!unlist(lapply(df, is.list))]
names <- lapply(df, function(x) length(unique(x)))
unique <- as.data.frame(names)
colnames(unique) <- names(names)
which <- rownames(t(-sort(unique)))
no <- names(unique)[unique > nrow(df) * max]
if (length(no) > 0) {
if (!quiet) {
message(paste(
length(no), "variables with more than", max,
"variance exluded:", vector2text(no)
))
}
which <- which[!which %in% no]
}
if (novar) {
no <- zerovar(df)
if (length(no) > 0) {
if (!quiet) {
message(paste(
length(no), "variables with no variance exluded:",
vector2text(no)
))
}
which <- which[!which %in% no]
}
}
if (length(which) > top) {
no <- which[(top + 1):length(which)]
if (!quiet) {
message(paste(
"Using the", top, "variables with less distinct categories.",
length(no), "variables excluded:", vector2text(no)
))
}
which <- which[1:top]
}
if (length(which) > 0) {
for (i in seq_along(which)) {
if (i == 1) out <- NULL
iter <- which[i]
counter <- table(df[iter], useNA = "ifany")
res <- data.frame(
value = names(counter),
count = as.vector(counter),
col = iter
) %>%
arrange(desc(.data$count))
out <- rbind(out, res)
}
out <- out %>%
mutate(p = round(100 * .data$count / nrow(df), 2)) %>%
mutate(value = ifelse(.data$p > min * 100, as.character(.data$value), "(HF)")) %>%
group_by(.data$col, .data$value) %>%
summarise(p = sum(.data$p), count = sum(.data$count)) %>%
arrange(desc(.data$count)) %>%
ungroup()
} else {
warning("No relevant information to display regarding your data.frame!")
return(invisible(NULL))
}
if (plot) {
out <- out %>%
mutate(value = ifelse(is.na(.data$value), "NA", as.character(.data$value))) %>%
mutate(col = factor(.data$col, levels = which)) %>%
mutate(label = ifelse(.data$p > 8, as.character(.data$value), "")) %>%
group_by(.data$col) %>%
mutate(alpha = log(.data$count)) %>%
mutate(alpha = as.numeric(ifelse(.data$value == "NA", 0, .data$alpha))) %>%
mutate(alpha = as.numeric(ifelse(is.infinite(.data$alpha), 0, .data$alpha)))
p <- ggplot(out, aes(
x = .data$col, y = .data$count, fill = .data$col,
label = .data$label, colour = .data$col
)) +
geom_col(aes(alpha = .data$alpha),
position = "fill",
colour = "80000000", width = 0.95, size = 0.1
) +
geom_text(position = position_fill(vjust = .5), size = 3) +
coord_flip() +
labs(x = NULL, y = NULL, title = "Overall Values Frequencies") +
scale_y_percent(expand = c(0, 0)) +
guides(fill = "none", colour = "none", alpha = "none") +
theme_lares(pal = 1) +
theme(
panel.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
) +
geom_hline(
yintercept = c(0.25, 0.5, 0.75), linetype = "dashed",
color = "black", size = 0.5, alpha = 0.3
)
if (save) export_plot(p, "viz_freqs_df", subdir = subdir)
return(p)
} else {
out <- select(out, .data$col, .data$value, .data$count, .data$p) %>%
rename(n = .data$count, variable = .data$col) %>%
group_by(.data$variable) %>%
mutate(pcum = round(cumsum(.data$p), 2))
return(out)
}
}
freqs_plot <- function(df, ..., top = 10, rm.na = FALSE, abc = FALSE,
title = NA, subtitle = NA) {
vars <- quos(...)
if (length(vars) == 0) {
return(freqs(df))
}
aux <- df %>%
freqs(!!!vars, rm.na = rm.na) %>%
mutate_if(is.factor, as.character) %>%
mutate_at(seq_along(vars), as.character) %>%
mutate(order = ifelse(.data$order > top, "...", .data$order))
if ("..." %in% aux$order) {
message(paste(
"Showing", top, "most frequent values. Tail of",
nrow(aux) - top,
"other values grouped into one"
))
}
for (i in 1:(ncol(aux) - 4)) {
aux[, i][aux$order == "...", ] <- "Tail"
}
aux <- aux %>%
group_by(!!!vars, .data$order) %>%
summarise_all(sum) %>%
ungroup()
vars_names <- colnames(aux)[1:(ncol(aux) - 4)]
labels <- aux %>%
mutate_all(as.character) %>%
tidyr::gather("name", "value", 1:(ncol(aux) - 4)) %>%
mutate(label = sprintf("%s: %s", .data$name, .data$value)) %>%
mutate(
n = as.integer(.data$n),
pcum = as.numeric(.data$pcum),
p = as.numeric(.data$p)
) %>%
ungroup() %>%
arrange(desc(.data$pcum))
if (is.na(title)) {
title <- "Absolute Frequencies"
}
if (is.na(subtitle)) {
subtitle <- paste("Grouped by", vector2text(vars_names, quotes = FALSE))
}
mg <- 5
p1 <- aux %>%
mutate(aux = ifelse(.data$order == "...", "grey", "black")) %>%
mutate(order = paste0(.data$order, "\n", signif(as.numeric(.data$p), 2), "%")) %>%
ggplot(aes(x = reorder(.data$order, .data$pcum), y = .data$n, label = .data$p)) +
geom_col(aes(fill = .data$aux)) +
scale_fill_manual(values = c("black", "grey55")) +
labs(x = NULL, y = NULL, title = title, subtitle = subtitle) +
scale_y_comma() +
guides(fill = "none") +
theme_lares() +
theme(plot.margin = margin(mg, mg, 0, mg))
p2 <- labels %>%
{
if (abc) mutate(., n = -rank(.data$label)) else .
} %>%
mutate(label = ifelse(.data$order == "...", " Mixed Tail", .data$label)) %>%
ggplot(aes(
x = reorder(.data$order, .data$pcum),
y = reorder(.data$label, .data$n),
group = .data$pcum
)) +
geom_point(size = 4) +
labs(
x = NULL, y = NULL,
caption = paste("Total observations:", formatNum(nrow(df), 0))
) +
guides(colour = "none") +
theme_lares(which = "XY") +
theme(
axis.text.x = element_blank(),
plot.margin = margin(0, mg, mg, mg)
)
if (length(vars) > 1) {
p2 <- p2 + geom_path()
}
p <- (p1 / p2)
attr(p, "data") <- aux
attr(p, "labels") <- labels
return(p)
}
freqs_list <- function(df,
var = NULL,
wt = NULL, fx = "mean",
rm.na = FALSE,
min_elements = 1,
limit = 10,
limit_x = NA,
limit_y = NA,
tail = TRUE,
size = 10,
unique = TRUE,
abc = FALSE,
title = "",
plot = TRUE) {
dff <- df
var_str <- as_label(enquo(var))
if (var_str != "NULL") {
check_opts(var_str, colnames(df))
colnames(df)[colnames(df) == var_str] <- "which"
} else {
duos <- data.frame(
count = unlist(lapply(df, function(x) length(unique(x))))
) %>%
filter(.data$count == 2)
if (nrow(duos) == 0) {
stop("Please, define a valid 'var' column or make sure to have binary/logical columns.")
}
duos <- rownames(duos)
message(paste(">>> Binary columns detected:", v2t(duos)))
which <- unlist(sapply(df[, duos], function(x) x == 1))
result <- NULL
for (i in seq_len(nrow(df[, duos]))) {
result <- c(result, v2t(colnames(df[, duos])[which[i, ]], quotes = FALSE))
}
df$which <- result
}
wt_str <- as_label(enquo(wt))
if (wt_str == "NULL") wt_str <- NULL
if (length(wt_str) > 0) {
if (wt_str %in% colnames(df)) {
colnames(df)[colnames(df) == wt_str] <- "wt"
weights <- as.numeric(df$wt)
} else {
stop(sprintf("'%s' is not a valid weight column", wt_str))
}
} else {
weights <- 0
}
if (is.list(df$which)) {
df$which <- unlist(lapply(df$which, function(x) paste(x, collapse = ",")))
}
if (!any(grepl(",", df$which))) {
stop(paste(
"Your inputs may not be valid: no valid binary columns OR",
"'var' does NOT contain commas nor is a list vector."
))
}
if (unique) {
values <- strsplit(unlist(df$which), ",")
values <- lapply(values, sort)
values <- unlist(lapply(values, function(x) paste(x, collapse = ",")))
} else {
values <- df$which
}
vals <- data.frame(var = values, wt = weights) %>%
filter(.data$var != "") %>%
{
if (rm.na) filter(., !is.na(.data$wt)) else .
} %>%
group_by(.data$var) %>%
summarise(
n = n(),
wt = ifelse(
fx == "mean", mean(.data$wt, na.rm = TRUE),
ifelse(fx == "sum", sum(.data$wt, na.rm = TRUE), 1)
),
.groups = "drop"
) %>%
arrange(desc(.data$n)) %>%
mutate(p = 100 * .data$n / sum(.data$n), order = row_number()) %>%
data.frame() %>%
ohe_commas(var) %>%
as_tibble(.name_repair = "unique") %>%
mutate(combs = rowSums(.[unlist(lapply(., is.logical))], na.rm = TRUE)) %>%
filter(.data$combs >= min_elements) %>%
select(-.data$combs)
if (limit == 0) limit <- nrow(df)
if (is.na(limit_x)) limit_x <- nrow(vals)
if (is.na(limit_y)) limit_y <- nrow(vals)
elements <- vals %>%
tidyr::gather(.) %>%
mutate(n = rep(vals$n, ncol(vals))) %>%
mutate(wt = rep(vals$wt, ncol(vals))) %>%
filter(.data$value == TRUE) %>%
group_by(.data$key) %>%
summarise(
n = sum(.data$n),
wt = ifelse(
fx == "mean", mean(.data$wt, na.rm = TRUE),
ifelse(fx == "sum", sum(.data$wt, na.rm = TRUE), 1)
),
.groups = "drop"
) %>%
{
if (abc) arrange(., .data$key) else arrange(., desc(.data$n))
} %>%
mutate(p = 100 * .data$n / nrow(df), order = row_number()) %>%
mutate(key = as.factor(.data$key)) %>%
mutate(label = sprintf("%s (%s)", .data$key, formatNum(.data$p, 0, pos = "%"))) %>%
mutate(label = ifelse(.data$order > min(limit, limit_y), "...", .data$label)) %>%
mutate(label = as.factor(.data$label))
tgthr <- vals %>%
select(contains("var_")) %>%
tidyr::gather("var") %>%
mutate(var = factor(.data$var, levels = rev(elements$key))) %>%
group_by(.data$var) %>%
mutate(id = row_number(), order = row_number()) %>%
mutate(label = sprintf("
filter(.data$value == TRUE) %>%
mutate(label = ifelse(.data$id > min(limit, limit_x), "...", .data$label)) %>%
ungroup() %>%
mutate(var = ifelse(
as.character(.data$var) %in% as.character(elements$key[elements$label != "..."]),
as.character(.data$var), "..."
)) %>%
mutate(var = factor(.data$var, levels = rev(c(as.character(elements$key), "..."))))
caption <- sprintf(
"Observations: %s | Elements: %s",
formatNum(sum(vals$n), 0),
formatNum(sum(elements$n), 0)
)
if (min_elements > 1) {
caption <- v2t(c(caption, sprintf(
"Excluding combinations with less than %s elements", min_elements
)),
quotes = FALSE, sep = "\n"
)
}
if (!tail) caption <- paste(caption, "Tail combinations suppressed from plot", sep = "\n")
p1 <- tgthr %>%
ggplot(aes(
x = reorder(.data$label, .data$order),
y = var, group = .data$label
)) +
geom_point(size = 3.5) +
geom_path() +
theme_lares(size = size, mg = -1, grid = "XY") +
labs(x = "Combination rank", y = NULL, caption = caption) +
theme(
axis.text.y = element_blank(),
plot.margin = margin(0, 0, 0, 0)
) +
scale_x_discrete(position = "top")
p2 <- elements %>%
mutate(label = gsub("var_", "", .data$label)) %>%
ggplot(aes(
x = reorder(.data$label, -.data$order),
y = -.data$n, fill = .data$wt
)) +
coord_flip() +
geom_col() +
labs(y = "Element Size", x = NULL) +
theme_lares(size = size, mg = -1, grid = "X") +
theme(plot.margin = margin(0, 0, 0, 0)) +
scale_y_continuous(
position = "right",
labels = function(x) formatNum(abs(x), 0)
) +
guides(fill = "none")
p3 <- vals %>%
mutate(var = ifelse(row_number() > min(limit, limit_x), "...", .data$var)) %>%
{
if (!tail) mutate(., n = ifelse(.data$var == "...", 1e-8, .data$n)) else .
} %>%
ggplot(aes(
x = reorder(.data$var, .data$order),
y = .data$n, fill = .data$wt
)) +
geom_col() +
theme_lares(size = size, mg = -1, grid = "Y") +
scale_y_continuous(labels = function(x) formatNum(abs(x), 0)) +
labs(
x = NULL, y = "Combination Size",
fill = if (length(wt_str) > 0) {
paste(str_to_title(fx), wt_str, sep = "\n")
} else {
NULL
}
) +
theme(
axis.text.x = element_blank(),
plot.margin = margin(0, 0, 0, 0)
) +
scale_fill_continuous(guide = guide_colourbar(direction = "horizontal"))
if (length(wt_str) == 0) p3 <- p3 + guides(fill = "none")
layout <- "
ABBB
CBBB
DEEE
DEEE"
p <- noPlot(title, size = 3.5) + p3 + guide_area() +
p2 + p1 + plot_layout(design = layout) +
plot_layout(guides = "collect")
if (plot) plot(p)
elements <- mutate(elements, key = gsub("var_", "", .data$key)) %>%
rename("element" = .data$key) %>%
select(-.data$label)
vals <- mutate(vals, var = gsub("var_", "", .data$var)) %>%
rename("combination" = .data$var)
colnames(vals) <- gsub("var_", "", colnames(vals))
results <- list(
plot = p,
data = rename(df, "combination" = "which"),
elements = elements,
combinations = vals
)
return(invisible(results))
} |
Bass_spatial_main<-function(userpath,forcings){
cat('Bass bioenergetic individual model spatialized\n')
cat(" \n")
out_pre<-Bass_spatial_pre(userpath,forcings)
sst=forcings[[2]]
times=out_pre[[6]]
ti=times[1]
tf=times[2]
Dates=as.Date(out_pre[[7]],"%d/%m/%Y")
weight<-data.frame(matrix(0,ncol(sst),nrow=tf))
actual_ingestion<-data.frame(matrix(0,ncol(sst),nrow=tf))
potential_ingestion<-data.frame(matrix(0,ncol(sst),nrow=tf))
faeces_P<-data.frame(matrix(0,ncol(sst),nrow=tf))
faeces_L<-data.frame(matrix(0,ncol(sst),nrow=tf))
faeces_C<-data.frame(matrix(0,ncol(sst),nrow=tf))
waste_P<-data.frame(matrix(0,ncol(sst),nrow=tf))
waste_L<-data.frame(matrix(0,ncol(sst),nrow=tf))
waste_C<-data.frame(matrix(0,ncol(sst),nrow=tf))
Tfun_A<-data.frame(matrix(0,ncol(sst),nrow=tf))
Tfun_C<-data.frame(matrix(0,ncol(sst),nrow=tf))
anabolism<-data.frame(matrix(0,ncol(sst),nrow=tf))
catabolism<-data.frame(matrix(0,ncol(sst),nrow=tf))
NH4<-data.frame(matrix(0,ncol(sst),nrow=tf))
O2<-data.frame(matrix(0,ncol(sst),nrow=tf))
days_commercial<-matrix(0,ncol(sst),nrow=1)
pb <- txtProgressBar(min = 0, max = ncol(sst), style = 3)
for (i in 1:ncol(sst)) {
forcings[[2]] = sst[1:tf,i]
output<- Bass_spatial_loop(userpath, forcings)
temp=output[[1]]
weight[ti:tf,i]=temp
temp=output[[2]]
faeces_P[ti:tf,i]=temp[,1]
faeces_L[ti:tf,i]=temp[,2]
faeces_C[ti:tf,i]=temp[,3]
temp=output[[3]]
waste_P[ti:tf,i]=temp[,1]
waste_L[ti:tf,i]=temp[,2]
waste_C[ti:tf,i]=temp[,3]
temp=output[[4]]
potential_ingestion[ti:tf,i]=temp
temp=output[[5]]
actual_ingestion[ti:tf,i]=temp
temp=output[[6]]
Tfun_A[ti:tf,i]=temp[,1]
Tfun_C[ti:tf,i]=temp[,2]
temp=output[[7]]
anabolism[ti:tf,i]=temp[,1]
catabolism[ti:tf,i]=temp[,2]
temp=output[[8]]
NH4[ti:tf,i]=temp
temp=output[[9]]
O2[ti:tf,i]=temp
temp=output[[10]]
days_commercial[i]=temp
setTxtProgressBar(pb, i)
}
close(pb)
weight<-weight[-(1:(ti-1)),]
actual_ingestion<-actual_ingestion[-(1:(ti-1)),]
potential_ingestion<-potential_ingestion[-(1:(ti-1)),]
faeces_P<-faeces_P[-(1:(ti-1)),]
faeces_L<-faeces_L[-(1:(ti-1)),]
faeces_C<-faeces_C[-(1:(ti-1)),]
waste_P<-waste_P[-(1:(ti-1)),]
waste_L<-waste_L[-(1:(ti-1)),]
waste_C<-waste_C[-(1:(ti-1)),]
Tfun_A<-Tfun_A[-(1:(ti-1)),]
Tfun_C<-Tfun_C[-(1:(ti-1)),]
anabolism<-anabolism[-(1:(ti-1)),]
catabolism<-catabolism[-(1:(ti-1)),]
NH4<-NH4[-(1:(ti-1)),]
O2<-O2[-(1:(ti-1)),]
write.table(weight,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/weight.csv"),sep=',')
write.table(potential_ingestion,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/potential_ingestion.csv"),sep=',')
write.table(actual_ingestion,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/actual_ingestion.csv"),sep=',')
write.table(faeces_P,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/faeces_production_Proteins.csv"),sep=',')
write.table(faeces_L,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/faeces_production_Lipids.csv"),sep=',')
write.table(faeces_C,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/faeces_production_Carbohydrates.csv"),sep=',')
write.table(waste_P,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/wasted_feed_Proteins.csv"),sep=',')
write.table(waste_L,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/wasted_feed_Lipids.csv"),sep=',')
write.table(waste_C,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/wasted_Carbohydrates.csv"),sep=',')
write.table(Tfun_A,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/temperature_response_anabolism.csv"),sep=',')
write.table(Tfun_C,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/temperature_response_catabolism.csv"),sep=',')
write.table(anabolism,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/anabolic_rate.csv"),sep=',')
write.table(catabolism,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/catabolic_rate.csv"),sep=',')
write.table(NH4,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/NH4_release.csv"),sep=',')
write.table(O2,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/O2_consumption.csv"),sep=',')
write.table(days_commercial,paste0(userpath,"/Bass_spatial/Outputs/Out_csv/days_to_commercial_size.csv"),sep=',')
coord <- read.csv(paste0(userpath,"/Bass_spatial/Inputs/Spatial forcings//coordinates.csv"))
coord <- coord[,-(1)]
weight_map<-as.data.frame(cbind(t(coord),t(weight)))
potential_ingestion_map<-as.data.frame(cbind(t(coord),t(potential_ingestion)))
actual_ingestion_map<-as.data.frame(cbind(t(coord),t(actual_ingestion)))
faeces_P_map<-as.data.frame(cbind(t(coord),t(faeces_P)))
faeces_L_map<-as.data.frame(cbind(t(coord),t(faeces_L)))
faeces_C_map<-as.data.frame(cbind(t(coord),t(faeces_C)))
waste_P_map<-as.data.frame(cbind(t(coord),t(waste_P)))
waste_L_map<-as.data.frame(cbind(t(coord),t(waste_L)))
waste_C_map<-as.data.frame(cbind(t(coord),t(waste_C)))
Tfun_A_map<-as.data.frame(cbind(t(coord),t(Tfun_A)))
Tfun_C_map<-as.data.frame(cbind(t(coord),t(Tfun_C)))
anabolism_map<-as.data.frame(cbind(t(coord),t(anabolism)))
catabolism_map<-as.data.frame(cbind(t(coord),t(catabolism)))
NH4_map<-as.data.frame(cbind(t(coord),t(NH4)))
O2_map<-as.data.frame(cbind(t(coord),t(O2)))
days_commercial_map<-as.data.frame(cbind(t(coord),t(days_commercial)))
sp::coordinates(weight_map) <- ~V1+V2
sp::proj4string(weight_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(weight_map) = TRUE
weight_brick <- raster::brick(weight_map)
weight_brick <- raster::setZ(weight_brick, as.Date(Dates[1])+ 0:(tf-ti))
raster::writeRaster(weight_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/weight.nc"), format="CDF", varname="weight", varunit= "g",
longname="Weight of Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(potential_ingestion_map) <- ~V1+V2
sp::proj4string(potential_ingestion_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(potential_ingestion_map) = TRUE
potential_ingestion_brick <- brick(potential_ingestion_map)
potential_ingestion_brick <- setZ(potential_ingestion_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(potential_ingestion_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/potential_ingestion.nc"), format="CDF", varname="potential ingestion", varunit= "g/d",
longname="Potential ingestion of Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(actual_ingestion_map) <- ~V1+V2
sp::proj4string(actual_ingestion_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(actual_ingestion_map) = TRUE
actual_ingestion_brick <- brick(actual_ingestion_map)
actual_ingestion_brick <- setZ(actual_ingestion_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(actual_ingestion_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/actual_ingestion.nc"), format="CDF", varname="actual ingestion", varunit= "g/d",
longname="actual ingestion of Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(faeces_C_map) <- ~V1+V2
sp::proj4string(faeces_C_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(faeces_C_map) = TRUE
faeces_C_brick <- brick(faeces_C_map)
faeces_C_brick <- setZ(faeces_C_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(faeces_C_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/faeces_carbohydrates.nc"), format="CDF", varname="faeces carbohydrates", varunit= "g/d",
longname="Carbohydrate in faeces produced by Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(faeces_P_map) <- ~V1+V2
sp::proj4string(faeces_P_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(faeces_P_map) = TRUE
faeces_P_brick <- brick(faeces_P_map)
faeces_P_brick <- setZ(faeces_P_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(faeces_P_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/faeces_proteins.nc"), format="CDF", varname="faeces proteins", varunit= "g/d",
longname="Proteins in faeces produced by Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(faeces_L_map) <- ~V1+V2
sp::proj4string(faeces_L_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(faeces_L_map) = TRUE
faeces_L_brick <- brick(faeces_L_map)
faeces_L_brick <- setZ(faeces_L_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(faeces_L_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/faeces_lipids.nc"), format="CDF", varname="faeces lipids", varunit= "g/d",
longname="Lipids in faeces produced by Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(waste_C_map) <- ~V1+V2
sp::proj4string(waste_C_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(waste_C_map) = TRUE
waste_C_brick <- brick(waste_C_map)
waste_C_brick <- setZ(waste_C_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(waste_C_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/wasted_feed_carbohydrates.nc"), format="CDF", varname="wasted carbohydrates", varunit= "g/d",
longname="Carbohydrates wasted feed by Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(waste_L_map) <- ~V1+V2
sp::proj4string(waste_L_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(waste_L_map) = TRUE
waste_L_brick <- brick(waste_L_map)
waste_L_brick <- setZ(waste_L_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(waste_L_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/wasted_feed_lipids.nc"), format="CDF", varname="wasted lipids", varunit= "g/d",
longname="Lipids wasted feed by Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(waste_P_map) <- ~V1+V2
sp::proj4string(waste_P_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(waste_P_map) = TRUE
waste_P_brick <- brick(waste_P_map)
waste_P_brick <- setZ(waste_P_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(waste_P_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/wasted_feed_proteins.nc"), format="CDF", varname="wasted proteins", varunit= "g/d",
longname="Proteins wasted by Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(Tfun_A_map) <- ~V1+V2
sp::proj4string(Tfun_A_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(Tfun_A_map) = TRUE
Tfun_A_brick <- brick(Tfun_A_map)
Tfun_A_brick <- setZ(Tfun_A_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(Tfun_A_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/temperature_response_A.nc"), format="CDF", varname="Temperature response anabolism", varunit= "-",
longname="temperature response function for anabolism of Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(Tfun_C_map) <- ~V1+V2
sp::proj4string(Tfun_C_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(Tfun_C_map) = TRUE
Tfun_C_brick <- brick(Tfun_C_map)
Tfun_C_brick <- setZ(Tfun_C_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(Tfun_C_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/temperature_response_C.nc"), format="CDF", varname="Temperature response catabolism", varunit= "-",
longname="temperature response function for catabolism of Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(anabolism_map) <- ~V1+V2
sp::proj4string(anabolism_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(anabolism_map) = TRUE
anabolism_brick <- brick(anabolism_map)
anabolism_brick <- setZ(anabolism_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(anabolism_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/anabolic_rate.nc"), format="CDF", varname="Anabolic rate", varunit= "J/d",
longname="anabolic rate for catabolism of Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(catabolism_map) <- ~V1+V2
sp::proj4string(catabolism_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(catabolism_map) = TRUE
catabolism_brick <- brick(catabolism_map)
catabolism_brick <- setZ(catabolism_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(catabolism_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/catabolic_rate.nc"), format="CDF", varname="Catabolic rate", varunit= "J/d",
longname="catabolic rate for catabolism of Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(NH4_map) <- ~V1+V2
sp::proj4string(NH4_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(NH4_map) = TRUE
NH4_brick <- brick(NH4_map)
NH4_brick <- setZ(NH4_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(NH4_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/NH4_release.nc"), format="CDF", varname="NH4 release", varunit= "gN",
longname="Ammonia released by Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(O2_map) <- ~V1+V2
sp::proj4string(O2_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(O2_map) = TRUE
O2_brick <- brick(O2_map)
O2_brick <- setZ(O2_brick, as.Date(Dates[1])+ 0:(tf-ti))
writeRaster(O2_brick, paste0(userpath,"/Bass_spatial/Outputs/Out_nc/O2_consumption.nc"), format="CDF", varname="O2 consumption", varunit= "g",
longname="Oxygen consumed by Dicentrarchus labrax estimated through the R RAC package developed by Baldan et al",
zname="time",
zunit="day", overwrite=T)
sp::coordinates(days_commercial_map) <- ~V1+V2
sp::proj4string(days_commercial_map)=sp::CRS(("+proj=longlat +datum=WGS84"))
sp::gridded(days_commercial_map) = TRUE
days_commercial_raster = raster::raster(days_commercial_map)
raster::projection(days_commercial_raster) = sp::CRS("+proj=longlat +datum=WGS84")
writeRaster(days_commercial_raster,paste0(userpath,"/Bass_spatial/Outputs/Out_asc/days_to_commercial_size.asc"),format="ascii",overwrite=TRUE)
} |
pipeline <- function(...) {
if(missing(...)) return(invisible(NULL))
dots <- match.call(expand.dots = FALSE)$...
if(length(dots) == 1L) {
dots <- .subset2(dots, 1L)
if(class(dots) == "{") dots <- .subset(dots, -1L)
else return(eval(dots, envir = parent.frame()))
}
expr <- Reduce(function(pl, p) as.call(list(pipe_op, pl, p)), dots)
eval(expr, envir = parent.frame())
} |
fitcml <- function(mt_ind, nrlist, x_mt, rtot, W, ngroups, gind, x_mtlist, NAstruc, g_NA, st.err, etaStart, gby){
cml <- function(eta){
beta <- as.vector(W %*% eta)
beta.list <- split(beta,gind)
beta.list1 <- beta.list
betaNA <- mapply(function(x,y) {rbind(x,y)},beta.list1,NAstruc,SIMPLIFY=FALSE)
Lg <- lapply(betaNA, function(betaNAmat) {
beta.vec <- betaNAmat[1,]
Lg.NA <- apply(matrix(betaNAmat[-1,],ncol=length(beta.vec)),1, function(NAvec) {
beta_list <- as.list(split(beta.vec[NAvec==1],mt_ind[1:(length(beta.vec[NAvec==1]))]))
parlist <- lapply(beta_list,exp)
g_iter <- NULL
K <- length(parlist)
for (t in 1:(K-1)) {
if (t==1) {
gterm <- c(1,parlist[[t]])
}else
{
gterm <- g_iter
g_iter <- NULL
}
parvek <- c(1,parlist[[t+1]])
h <- length(parvek)
mt <- length(gterm)
rtot1 <- h+mt-1
gtermvek <- rep(c(gterm,rep(0,h)),h)
gtermvek <- gtermvek[-((length(gtermvek)-h+1):length(gtermvek))]
gmat <- matrix(gtermvek,nrow=rtot1,ncol=h)
emat <- matrix(rep(parvek,rep(rtot1,h)),ncol=h,nrow=rtot1)
gmat_new <- gmat*emat
g_iter <- rowSums(gmat_new)
}
Lg.NA <- as.vector(g_iter[2:(rtot+1)])
return(Lg.NA)
})
})
L1 <- sum(mapply(function(x,z) {
x[!is.na(z)]%*%na.exclude(z)
},nrlist,lapply(Lg,log)))
L2 <- sum(mapply("%*%",x_mtlist,beta.list1))
L1-L2
}
eta <- etaStart
if(!exists("fitctrl")) fitctrl <- "nlm"
if(fitctrl == "nlm"){
suppressWarnings(
fit <- nlm(cml, eta, hessian = st.err, iterlim = 5000L)
)
} else if(fitctrl == "optim"){
suppressWarnings(
fit <- optim(eta, cml, method = "BFGS", hessian = TRUE, control = list(maxit = 5000L))
)
fit$counts<-fit$counts[1]
names(fit)<-c("estimate","minimum","iterations","code","message","hessian")
} else stop("optimizer misspecified in fitctrl\n")
fit
} |
pool_mi <- function( qhat, u=NULL, se=NULL, dfcom=1E7, method="smallsample" )
{
CALL <- match.call()
eps <- 1E-100
m <- length(qhat)
k <- length(qhat[[1]] )
if ( ! is.null(se) ){
u <- list(1:m)
for (ii in 1:m){
u[[ii]] <- diag( se[[ii]]^2 )
}
}
q1 <- qhat[[1]]
names1 <- names(q1)
qhat <- unlist(qhat)
qhat <- matrix( qhat, nrow=m, ncol=k, byrow=TRUE )
qbar <- colMeans(qhat)
u0 <- u
u <- array( 0, dim=c(m,k,k) )
for (ii in 1:m){
u[ii,,] <- u0[[ii]]
}
ubar <- apply( u, c(2, 3), mean )
e <- qhat - matrix(qbar, nrow=m, ncol=k, byrow=TRUE)
b <- ( t(e) %*% e )/(m - 1 + eps )
t <- ubar + (1 + 1/m) * b
r <- (1 + 1/m) * diag(b/ubar)
lambda <- (1 + 1/m) * diag(b/t)
df <- mice_df(m, lambda, dfcom, method)
fmi <- (r + 2/(df + 3))/(r + 1)
names(lambda) <- names1
names(fmi) <- names1
names(df) <- names1
names(r) <- names1
names(qbar) <- names1
rownames(t) <- colnames(t) <- names1
tval <- qbar / sqrt( diag(t) )
pval <- 2 * stats::pt( - abs(tval), df=df )
names(tval) <- names(pval) <- names1
res <- list( nmis=NA, m=m, qhat=qhat, u=u, qbar=qbar,
ubar=ubar, b=b, t=t, r=r, dfcom=dfcom, df=df,
fmi=fmi, lambda=lambda, tval=tval, pval=pval,
qhat_names=names1, call=CALL)
class(res) <- "pool_mi"
return(res)
}
mice_df <- function (m, lambda, dfcom, method)
{
eps <- 1E-4
lambda[lambda < eps ] <- eps
dfold <- (m - 1 + eps )/lambda^2
dfobs <- (dfcom + 1)/(dfcom + 3) * dfcom * (1 - lambda)
df <- dfold * dfobs/(dfold + dfobs)
if (method !="smallsample"){
df <- dfold
}
return(df)
}
summary.pool_mi <-function(object, alpha=0.05, ...)
{
cat("Multiple imputation results:\nCall: ")
print(object$call)
out <- data.frame( results=object$qbar, se=sqrt(diag( object$t)) )
crit <- stats::qt(alpha/2,object$df, lower.tail=FALSE)
out$t <- object$tval
out$p <- object$pval
out$"(lower"<- out$results-crit*out$se
out$"upper)"<- out$results+crit*out$se
out$"missInfo" <- paste0(round(100*object$fmi,1), " %")
print(out, ...)
}
coef.pool_mi <- function(object, ...)
{
return(object$qbar)
}
vcov.pool_mi <- function(object, ...)
{
return(object$t)
} |
NULL
render_email <- function(input,
envir = parent.frame(),
quiet = TRUE,
output_options = list(),
render_options = list()) {
output_file <- tempfile(pattern = "email", fileext = ".html")
on.exit(unlink(output_file), add = TRUE)
output_options$self_contained <- TRUE
do.call(rmarkdown::render, c(
list(
input = input,
output_file = output_file,
envir = envir,
output_options = output_options,
quiet = quiet
),
render_options
))
email_obj <- cid_images(output_file)
email_obj
}
render_connect_email <- function(input,
connect_footer = TRUE,
envir = parent.frame(),
quiet = TRUE,
output_options = list(),
render_options = list()) {
if (is.null(output_options$connect_footer)) {
output_options$connect_footer <- connect_footer
}
render_email(input, envir, quiet, output_options, render_options)
} |
get.my.logPosteriorAllPred <- function(model.Phi){
if(!any(model.Phi[1] %in% .CF.CT$model.Phi)){
stop("model.Phi is not found.")
}
ret <- eval(parse(text = paste("my.logPosteriorAllPred.",
model.Phi[1], sep = "")))
assign("my.logPosteriorAllPred", ret, envir = .cubfitsEnv)
ret
}
my.logPosteriorAllPred.lognormal <- function(phi, y, n, b, p.Curr,
reu13.df = NULL){
nu.Phi <- p.Curr[1]
sigma.Phi <- p.Curr[2]
ret <- .cubfitsEnv$my.logdmultinomCodAllR(b, phi, y, n, reu13.df = reu13.df) +
dlnorm(phi, nu.Phi, sigma.Phi, log = TRUE)
ret
}
my.logPosteriorAllPred.logmixture <- function(phi, y, n, b, p.Curr,
reu13.df = NULL){
paramlog <- p.Curr
ret <- .cubfitsEnv$my.logdmultinomCodAllR(b, phi, y, n, reu13.df = reu13.df) +
dlmixnorm(log(phi), paramlog, log = TRUE)
ret
} |
groupBycoord <- function (data, x=1, k=3, which="rows", cex.labls=0.75){
categ=NULL
res <- CA(data, graph=FALSE)
ifelse(which=="rows",
dtf <- data.frame(categ=row.names(res$row$coord), coord.x=res$row$coord[,x]),
dtf <- data.frame(categ=row.names(res$col$coord), coord.x=res$col$coord[,x]))
dtf <- dtf[order(dtf$coord.x),]
Jclassif <- classInt::classIntervals(dtf$coord.x, k, style = "jenks")
GoFtest <- jenks.tests(Jclassif)
dtf$group <- as.factor(cut(dtf$coord.x, unique(Jclassif$brks), labels=FALSE, include.lowest=TRUE))
dotchart2(dtf$coord.x,
labels=dtf$categ,
groups=as.factor(paste0("group ", dtf$group)),
lty=2,
cex.labels=cex.labls,
xlab=paste0("coordinate on the ", x, " dim."),
main=paste0(ifelse(which=="rows", "Row", "Column"), " categories clustered into ", k, " groups (Jenks' natural breaks on the coord. of the selected dim.)"),
cex.main=0.90,
sub=paste0("Goodness of Fit: ", round(GoFtest[2],2)),
cex.sub=0.7)
colnames(dtf)[2] <- paste0("coord.", x,".Dim")
return(subset(dtf, , -c(categ)))
} |
geometaLogger <- R6Class("geometaLogger",
private = list(
logger = function(type, text){
cat(sprintf("[geometa][%s] %s \n", type, text))
}
),
public = list(
INFO = function(text){private$logger("INFO", text)},
WARN = function(text){private$logger("WARN", text)},
ERROR = function(text){private$logger("ERROR", text)},
initialize = function(){}
)
) |
d13C.to.diffCaCi<- function(d13C, year, elevation, temp, frac = 0) {
d13C.plant <- d13C
d13C.atm <- CO2data[which(CO2data$yr == year),3]
Ca <- CO2data[which(CO2data$yr == year),2]
a <- 4.4
b <- 28
d <- frac
D13C <- ((d13C.atm - (d13C.plant - d))/(1 + ((d13C.plant - d)/1000)))
f <- 12
P0 <- 101325
Base.temp <- 298.15
ALR <- 0.0065
Grav <- 9.80665
R <- 8.3145
MWair <- 0.028963
Patm <- P0*(1.0 - ALR*elevation/Base.temp)^(Grav*MWair/(R*ALR))
deltaHa <- 37830
Temp.C <- temp
Gammastar25 <- 4.332
Gammastar <- Gammastar25*Patm/P0*exp(1)^((deltaHa*((Temp.C+273.15)-298.15))/(R*(Temp.C+273.15)*298.15))
pCa <- (1.0e-6)*Ca*Patm
Ci <- ((D13C-a+f*(Gammastar/pCa))/(b-a))*Ca
diffCaCi <- Ca - Ci
return(diffCaCi)
} |
NULL
ggdensity <- function(data, x, y = "..density..", combine = FALSE, merge = FALSE,
color = "black", fill = NA, palette = NULL,
size = NULL, linetype = "solid", alpha = 0.5,
title = NULL, xlab = NULL, ylab = NULL,
facet.by = NULL, panel.labs = NULL, short.panel.labs = TRUE,
add = c("none", "mean", "median"),
add.params = list(linetype = "dashed"),
rug = FALSE,
label = NULL, font.label = list(size = 11, color = "black"),
label.select = NULL, repel = FALSE, label.rectangle = FALSE,
ggtheme = theme_pubr(),
...){
.opts <- list(
combine = combine, merge = merge,
color = color, fill = fill, palette = palette,
linetype = linetype, size = size, alpha = alpha,
title = title, xlab = xlab, ylab = ylab,
facet.by = facet.by, panel.labs = panel.labs, short.panel.labs = short.panel.labs,
add = add, add.params = add.params, rug = rug,
label = label, font.label = font.label, label.select = label.select,
repel = repel, label.rectangle = label.rectangle, ggtheme = ggtheme, ...)
if(!missing(data)) .opts$data <- data
if(!missing(x)) .opts$x <- x
if(!missing(y)) .opts$y <- y
.user.opts <- as.list(match.call(expand.dots = TRUE))
.user.opts[[1]] <- NULL
for(opt.name in names(.opts)){
if(is.null(.user.opts[[opt.name]]))
.opts[[opt.name]] <- NULL
}
.opts$fun <- ggdensity_core
if(missing(ggtheme) & (!is.null(facet.by) | combine))
.opts$ggtheme <- theme_pubr(border = TRUE)
if(missing(y)) .opts$y <- y
if(missing(add.params)) .opts$add.params <- add.params
p <- do.call(.plotter, .opts)
if(.is_list(p) & length(p) == 1) p <- p[[1]]
return(p)
}
ggdensity_core <- function(data, x, y = "..density..",
color = "black", fill = NA, palette = NULL,
size = NULL, linetype = "solid", alpha = 0.5,
title = NULL, xlab = NULL, ylab = NULL,
add = c("none", "mean", "median"),
add.params = list(linetype = "dashed"),
rug = FALSE,
facet.by = NULL,
ggtheme = theme_classic(),
...)
{
grouping.vars <- grp <- c(color, fill, linetype, size, alpha, facet.by) %>%
unique() %>%
intersect(colnames(data))
add <- match.arg(add)
add.params <- .check_add.params(add, add.params, error.plot = "", data, color, fill, ...)
if(is.null(add.params$size)) add.params$size <- size
if(is.null(add.params$linetype)) add.params$linetype <- linetype
p <- ggplot(data, create_aes(list(x = x, y = y)))
p <- p +
geom_exec(geom_density, data = data,
color = color, fill = fill, size = size,
linetype = linetype, alpha = alpha, ...)
if(add %in% c("mean", "median")){
p <- p %>% .add_center_line(add = add, grouping.vars = grouping.vars, color = add.params$color,
linetype = add.params$linetype, size = add.params$size)
}
if(rug) {
grps <- c(color, fill, linetype, size, alpha) %>%
unique() %>% intersect(colnames(data))
alpha <- ifelse(.is_empty(grps), 1, alpha)
.args <- geom_exec(NULL, data = data,
color = color, sides = "b", alpha = alpha)
mapping <- .args$mapping
mapping[["y"]] <- 0
option <- .args$option
option[["mapping"]] <- create_aes(mapping)
p <- p + do.call(geom_rug, option)
}
p <- ggpar(p, palette = palette, ggtheme = ggtheme,
title = title, xlab = xlab, ylab = ylab,...)
p
} |
getzstart = function(Q, mu, x, r, N) {
v0_tilde = c(r, sqrt(1 - x[2:N]))
v0_bar = v0_tilde - sum(mu * v0_tilde)/sum(mu)
v0 = v0_bar/sqrt(sum(v0_bar^2 * mu))
zstart = sum(v0_bar * (-Q %*% v0_tilde) * mu)/sum(v0_bar^2 * mu)
return(zstart)
}
eff.ini.seceig.general = function(Q, z0 = NULL, c1 = 1000, digit.thresh = 6) {
if (sum(rowSums(Q) > 1e-10) > 0)
stop("Input matrix Q should be a conservative matrix!")
N = dim(Q)[1]
Q1 = Q
Q1[N, N] = c1 * Q[N, N]
q1 = 1/diag(Q1)
P = diag(q1, N) %*% Q1 + diag(1, N)
if (z0 == "fixed") {
lambda0Q1 = -eff.ini.maxeig.general(Q1, digit.thresh = digit.thresh, xi = 1)$z
}
x = rep(NA, N)
x[1] = 1
x[2:N] = solve(diag(1, N - 1) - P[-1, -1], P[2:N, 1])
mu = rep(1, N)
mu[2:N] = solve(t(Q)[-N, -1], -t(Q)[1:(N - 1), 1])
z0func = function(r) {
return(getzstart(Q, mu, x, r, N))
}
ropt = optim(0.9, z0func, method = c("L-BFGS-B"), lower = 0, upper = 1)$par
v0_tilde = c(ropt, sqrt(1 - x[2:N]))
v0_bar = v0_tilde - sum(mu * v0_tilde)/sum(mu)
v0 = v0_bar/sqrt(sum(v0_bar^2 * mu))
zstart = switch(z0, fixed = lambda0Q1[length(lambda0Q1)], Auto = sum(v0_bar *
(-Q %*% v0_tilde) * mu)/sum(v0_bar^2 * mu))
ray = ray.quot.seceig.general(Q = Q, mu = mu, v0_tilde = v0_bar, zstart = zstart, digit.thresh = digit.thresh)
return(list(z = unlist(ray$z), v = ray$v, iter = ray$iter))
} |
test3sr <- function(X,freq,verbose=TRUE,rounding=3){
n = dim(X)[1]
K = dim(X)[2]
result = data.frame(component = rep(NA,K-2),stat = rep(NA,K-2), p_val = rep(NA,K-2), signed_test = rep(NA,K-2), test_perf = rep(FALSE,K-2))
it3 = 2:(K-1)
before = rep(0,n)
after = apply(X,1,sum) - X[,1]
i = 0
for (j in it3){
U = c(0,0,0,'None')
i = i+1
result[i,1] = j
before = before + X[,j-1]
after = after - X[,j]
select = X[,j] & (!((after == 0) & (freq < 0)))
ind = which(select)
nj = length(ind)
if (nj > 0){
newORold = matrix(0,nrow = nj,ncol = 2)
recORnev = newORold
freqj = freq[ind]
afreqj = abs(freqj)
newORold[,1] = (before[ind]>0)*afreqj
newORold[,2] = (before[ind]==0)*afreqj
recORnev[,1] = (after[ind]!=0)
recORnev[,2] = (after[ind]==0)
cont_tab = t(newORold) %*% recORnev
ML = apply(cont_tab,1,sum)
MC = apply(cont_tab,2,sum)
df = all(ML!=0) & all(MC!=0)
if (df == TRUE) U = ind_test_22(cont_tab,2)
}
result[i,2] = U[1]
result[i,3] = U[2]
result[i,4] = U[3]
result[i,5] = U[4]
}
stat = sum(as.numeric(result[,2]))
stat = round(stat,rounding)
dof = sum(result$test_perf != 'None')
pval = 1 - stats::pchisq(stat,dof)
pval = round(pval,rounding)
tot_signed = round(sum(as.numeric(result$signed_test))/sqrt(length(result$signed_test)),rounding)
if (verbose==TRUE) return(list(test3sr=c(stat=stat,df=dof,p_val=pval,sign_test = tot_signed),details=result))
if (verbose==FALSE) return(list(test3sr=c(stat=stat,df=dof,p_val=pval,sign_test = tot_signed)))
} |
plotDecisionBoundary <-
function (theta, X, y, axLables = c("Exam 1 score","Exam 2 score"), legLabels =
c('Admitted', 'Not admitted')) {
plotData(X[,2:3], y,axLables,legLabels)
if (dim(X)[2] <= 3)
{
plot_x <- cbind(min(X[,2] - 2), max(X[,2] + 2))
plot_y <- -1 / theta[3] * (theta[2] * plot_x + theta[1])
lines(plot_x, plot_y, col = "blue")
}
else
{
u <- seq(-1,1.5, length.out = 50)
v <- seq(-1,1.5, length.out = 50)
z <- matrix(0, length(u), length(v))
for (i in 1:length(u))
for (j in 1:length(v))
z[i,j] <- mapFeature(u[i], v[j]) %*% theta
contour(
u, v, z, xlab = 'Microchip Test 1', ylab = 'Microchip Test 2',
levels = 0,
lwd = 2, add = TRUE, drawlabels = FALSE, col = "green"
)
mtext(paste("lambda = ",lambda), 3)
}
} |
tmpdir <- tempdir()
if (.Platform$OS.type == "windows") tmpdir <- normalizePath(tmpdir, winslash = "/")
registry_tmp <- file.path(tmpdir, "registry")
data_dir_tmp <- file.path(tmpdir, "data_dir")
if (!file.exists(registry_tmp)){
dir.create (registry_tmp)
} else {
file.remove(list.files(registry_tmp, full.names = TRUE))
}
if (!file.exists(data_dir_tmp)) dir.create(data_dir_tmp)
regdir_envvar <- Sys.getenv("CORPUS_REGISTRY")
Sys.setenv(CORPUS_REGISTRY = registry_tmp)
library(cwbtools)
library(data.table)
teidir <- system.file(package = "cwbtools", "xml", "UNGA")
teifiles <- list.files(teidir, full.names = TRUE)
list.files(teidir)
unga_data_dir_tmp <- file.path(data_dir_tmp, "unga")
if (!file.exists(unga_data_dir_tmp)) dir.create(unga_data_dir_tmp)
file.remove(list.files(unga_data_dir_tmp, full.names = TRUE))
UNGA <- CorpusData$new()
UNGA
metadata <- c(
lp = "//legislativePeriod", session = "//titleStmt/sessionNo",
date = "//publicationStmt/date", url = "//sourceDesc/url",
src = "//sourceDesc/filetype"
)
UNGA$import_xml(filenames = teifiles, meta = metadata)
UNGA
to_keep <- which(is.na(UNGA$metadata[["speaker"]]))
UNGA$chunktable <- UNGA$chunktable[to_keep]
UNGA$metadata <- UNGA$metadata[to_keep][, speaker := NULL]
setnames(UNGA$metadata, old = c("sp_who", "sp_state", "sp_role"), new = c("who", "state", "role"))
UNGA$tokenize(lowercase = FALSE, strip_punct = FALSE)
UNGA
UNGA$tokenstream
s_attrs <- c("id", "who", "state", "role", "lp", "session", "date")
UNGA$encode(
registry_dir = registry_tmp, data_dir = unga_data_dir_tmp,
corpus = "UNGA", encoding = "utf8", method = "R",
p_attributes = "word", s_attributes = character(),
compress = FALSE
)
RcppCWB::cqp_initialize()
id_peace <- RcppCWB::cl_str2id(
corpus = "UNGA", p_attribute = "word",
str = "peace", registry = registry_tmp
)
cpos_peace <- RcppCWB::cl_id2cpos(
corpus = "UNGA", p_attribute = "word",
id = id_peace, registry = registry_tmp
)
tab <- data.frame(
i = unlist(lapply(1:length(cpos_peace), function(x) rep(x, times = 11))),
cpos = unlist(lapply(cpos_peace, function(x) (x - 5):(x + 5)))
)
tab[["id"]] <- RcppCWB::cl_cpos2id(
corpus = "UNGA", p_attribute = "word",
cpos = tab[["cpos"]], registry = registry_tmp
)
tab[["str"]] <- RcppCWB::cl_id2str(
corpus = "UNGA", p_attribute = "word",
id = tab[["id"]], registry = registry_tmp
)
peace_context <- split(tab[["str"]], as.factor(tab[["i"]]))
peace_context <- unname(sapply(peace_context, function(x) paste(x, collapse = " ")))
head(peace_context)
austen_data_dir_tmp <- file.path(data_dir_tmp, "austen")
if (!file.exists(austen_data_dir_tmp)) dir.create(austen_data_dir_tmp)
file.remove(list.files(austen_data_dir_tmp, full.names = TRUE))
Austen <- CorpusData$new()
books <- janeaustenr::austen_books()
tbl <- tidytext::unnest_tokens(books, word, text, to_lower = FALSE)
Austen$tokenstream <- as.data.table(tbl)
Austen$tokenstream[, stem := SnowballC::wordStem(tbl[["word"]], language = "english")]
Austen$tokenstream[, cpos := 0L:(nrow(tbl) - 1L)]
cpos_max_min <- function(x) list(cpos_left = min(x[["cpos"]]), cpos_right = max(x[["cpos"]]))
Austen$metadata <- Austen$tokenstream[, cpos_max_min(.SD), by = book]
Austen$metadata[, book := as.character(book)]
setcolorder(Austen$metadata, c("cpos_left", "cpos_right", "book"))
Austen$tokenstream[, book := NULL]
setcolorder(Austen$tokenstream, c("cpos", "word", "stem"))
Austen$tokenstream
Austen$encode(
corpus = "AUSTEN", encoding = "utf8",
p_attributes = c("word", "stem"), s_attributes = "book",
registry_dir = registry_tmp, data_dir = austen_data_dir_tmp,
method = "R", compress = FALSE
)
RcppCWB::cqp_reset_registry(registry = registry_tmp)
corpus <- "AUSTEN"
token <- "pride"
p_attr <- "word"
id <- RcppCWB::cl_str2id(corpus = corpus, p_attribute = p_attr, str = token, registry = registry_tmp)
cpos <- RcppCWB::cl_id2cpos(corpus = corpus, p_attribute = p_attr, id = id, registry = registry_tmp)
count <- length(cpos)
count
library(tm)
reut21578 <- system.file("texts", "crude", package = "tm")
reuters.tm <- VCorpus(DirSource(reut21578), list(reader = readReut21578XMLasPlain))
library(tidytext)
reuters.tbl <- tidy(reuters.tm)
reuters.tbl
reuters.tbl[["topics_cat"]] <- sapply(
reuters.tbl[["topics_cat"]],
function(x) paste(x, collapse = "|")
)
reuters.tbl[["places"]] <- sapply(
reuters.tbl[["places"]],
function(x) paste(x, collapse = "|")
)
Reuters <- CorpusData$new()
reuters_data_dir_tmp <- file.path(data_dir_tmp, "reuters")
if (!file.exists(reuters_data_dir_tmp)) dir.create(reuters_data_dir_tmp)
file.remove(list.files(reuters_data_dir_tmp, full.names = TRUE))
Reuters$chunktable <- data.table(reuters.tbl[, c("id", "text")])
Reuters$metadata <- data.table(reuters.tbl[,c("id", "topics_cat", "places")])
Reuters
Reuters$tokenize()
Reuters$tokenstream
Reuters$encode(
corpus = "REUTERS", encoding = "utf8",
p_attributes = "word", s_attributes = c("topics_cat", "places"),
registry_dir = registry_tmp,
data_dir = data_dir_tmp,
method = "R", compress = FALSE
)
RcppCWB::cqp_reset_registry(registry = registry_tmp)
id <- RcppCWB::cl_str2id(corpus = "REUTERS", p_attribute = "word", str = "oil", registry = registry_tmp)
cpos <- RcppCWB::cl_id2cpos(corpus = "REUTERS", p_attribute = "word", id = id, registry = registry_tmp)
count <- length(cpos)
count
unlink(registry_tmp, recursive = TRUE)
unlink(data_dir_tmp, recursive = TRUE)
Sys.setenv(CORPUS_REGISTRY = regdir_envvar) |
NIblcontrib<-function(obj,lambda,X,nobj,ENV)
{
naidx<-1-as.numeric(obj$notnaidx)
ncat<-ENV$ncat
R<-matrix(rep(naidx,ncat^ENV$ncomp),nrow=ncat^ENV$ncomp,byrow=T)
XX<-X
if (ENV$MISmod=="obj"){
if (ENV$MISalpha){
RBstar<-R %*%abs(pcdesign(nobj))
XX<-cbind(X,RBstar[,ENV$Malph])
}
if (ENV$MISbeta){
YRBstar<-do.call(cbind,lapply(1:(nobj),function(i) RBstar[,i]*ENV$Y[,i]))
XX<-cbind(X,RBstar[,ENV$Malph],YRBstar[,ENV$Mbeta])
}
}
if (ENV$MISmod=="comp"){
if (ENV$MISalpha)
XX<-cbind(X,R[,ENV$Malph])
if (ENV$MISbeta){
YR<-ENV$Y[,ENV$Mbeta] * R[,ENV$Mbeta]
XX<-cbind(X,R[,ENV$Malph],YR)
}
}
if (ENV$MIScommon) {
r<-sum(naidx)
XX<-cbind(X,r)
}
if(ENV$undec) XX<-cbind(XX,ENV$U)
if(ENV$ia) XX<-cbind(XX,ENV$XI)
patt.all <- exp(XX %*% lambda)
patt<-tapply(patt.all,obj$s,sum)
patt<-patt/ENV$nrm.all
ll<-sum(obj$counts*log(patt))
p.cnts<-obj$counts/sum(obj$counts)
fl<-sum(log(p.cnts[p.cnts>0])*obj$counts[obj$counts>0])
RET<-list(ll=ll,fl=fl)
RET
} |
solve_unipoly <- function(mpoly, real_only = FALSE) {
mpoly <- reorder(mpoly)
degs <- vapply(mpoly, function(term) {
if(length(term) == 1) return(0L)
term[[1]]
}, double(1))
coefs <- sapply(mpoly, `[[`, "coef")
coef_vec <- rep(0L, degs[1]+1)
names(coef_vec) <- 0:degs[1]
for(k in 1:length(mpoly)) coef_vec[as.character(degs[k])] <- coefs[k]
solns <- polyroot(coef_vec)
if (real_only) {
is.real <- function(x) Im(x) == 0
solns <- Re(Filter(is.real, solns))
}
solns
} |
plot.simsurvdata <- function(x, ...) {
n <- x$sample.size
if (n <= 25) obs.plot <- x$sample.size else obs.plot <- 25
yindex <- matrix(rep(seq_len(obs.plot), 2), ncol = 2, byrow = FALSE)
tindex <- matrix(c(rep(0, obs.plot), x$survdata$time[1:obs.plot]),
ncol = 2, byrow = FALSE)
graphics::plot(tindex[1, ], yindex[1, ], type ="l",
ylim = c(0, obs.plot + 10),
xlim = c(0, max(x$survdata$time[1:obs.plot])), ylab = "",
xlab = "time")
if(x$survdata$delta[1:obs.plot][1] == 1) {
graphics::lines(tindex[1, 2], yindex[1,2], type ="p", pch = 19)
} else {
graphics::lines(tindex[1, 2], yindex[1,2], type ="p", pch = 4, lwd = 2)
}
if (obs.plot > 1) {
for (i in 2:obs.plot) {
graphics::lines(tindex[i, ], yindex[i, ], type = "l")
if(x$survdata$delta[1:obs.plot][i] == 1) {
graphics::lines(tindex[i, 2], yindex[i, 2], type ="p", pch = 19)
} else {
graphics::lines(tindex[i, 2], yindex[i,2], type ="p", pch = 4, lwd = 2)
}
}
}
graphics::legend("topright", c("Right censored", "Event occured"),
lty = c("blank", "blank"), pch = c(4, 19), lwd = c(2, 1), bty = "n")
} |
dbHasCompleted_MariaDBResult <- function(res, ...) {
result_has_completed(res@ptr)
}
setMethod("dbHasCompleted", "MariaDBResult", dbHasCompleted_MariaDBResult) |
normTail <-
function(m=0, s=1, L=NULL, U=NULL, M=NULL, df=1000, curveColor=1, border=1, col='
if(is.null(xlim)[1]){
xlim <- m + c(-1,1)*3.5*s
}
temp <- diff(range(xlim))
x <- seq(xlim[1] - temp/4, xlim[2] + temp/4, length.out=detail)
y <- dt((x-m)/s, df)/s
if(is.null(ylim)[1]){
ylim <- range(c(0,y))
}
plot(x, y, type='l', xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, axes=FALSE, col=curveColor, ...)
if(!is.null(L[1])){
these <- (x <= L)
X <- c(x[these][1], x[these], rev(x[these])[1])
Y <- c(0, y[these], 0)
polygon(X, Y, border=border, col=col)
}
if(!is.null(U[1])){
these <- (x >= U)
X <- c(x[these][1], x[these], rev(x[these])[1])
Y <- c(0, y[these], 0)
polygon(X, Y, border=border, col=col)
}
if(all(!is.null(M[1:2]))){
these <- (x >= M[1] & x <= M[2])
X <- c(x[these][1], x[these], rev(x[these])[1])
Y <- c(0, y[these], 0)
polygon(X, Y, border=border, col=col)
}
if(axes == 1 || axes > 2){
if(xLab[1]=='symbol'){
xAt <- m + (-3:3)*s
xLab <- expression(mu-3*sigma, mu-2*sigma,
mu-sigma, mu, mu+sigma,
mu+2*sigma, mu+3*sigma)
} else if(xLab[1] != 'number'){
stop('Argument "xLab" not recognized.\n')
} else {
temp <- seq(xAxisIncr, max(abs(xlim-m))/s, xAxisIncr)*s
xAt <- m + c(-temp, 0, temp)
xLab <- round(xAt, digits=digits)
}
}
if(axes > 2){
axis(1, at=xAt, labels=xLab, cex.axis=cex.axis)
buildAxis(2, c(y,0), n=3, nMax=3, cex.axis=cex.axis)
} else if(axes > 1){
buildAxis(2, c(y,0), n=3, nMax=3, cex.axis=cex.axis)
} else if(axes > 0){
axis(1, at=xAt, labels=xLab, cex.axis=cex.axis)
}
abline(h=0)
}
chiTail <-
function(U=NULL, df = 10, curveColor=1, border=1, col="
temp <- diff(range(xlim))
x <- seq(xlim[1] - temp/4, xlim[2] + temp/4, length.out=detail)
y <- dchisq(x, df)
ylim <- range(c(0,y))
plot(x, y, type='l', xlim=xlim, ylim=ylim, axes=FALSE, col=curveColor, xlab = "", ylab = "")
these <- (x >= U)
X <- c(x[these][1], x[these], rev(x[these])[1])
Y <- c(0, y[these], 0)
polygon(X, Y, border=border, col=col)
abline(h=0)
axis(1, at = c(0,U), label = c(NA,round(U,4)))
}
FTail <-
function(U=NULL, df_n=100, df_d = 100, curveColor=1, border=1, col="
if(U <= 5){xlim <- c(0,5)}
if(U > 5){xlim <- c(0,U+0.01*U)}
temp <- diff(range(xlim))
x <- seq(xlim[1] - temp/4, xlim[2] + temp/4, length.out=detail)
y <- df(x, df_n, df_d)
ylim <- range(c(0,y))
plot(x, y, type='l', xlim=xlim, ylim=ylim, axes=FALSE, col=curveColor, xlab = "", ylab = "")
these <- (x >= U)
X <- c(x[these][1], x[these], rev(x[these])[1])
Y <- c(0, y[these], 0)
polygon(X, Y, border=border, col=col)
abline(h=0)
axis(1, at = c(0,U), label = c(NA,round(U,4)))
} |
`calc.foldrange` <-
function(n,lower,upper,conf.level=.95){
alpha<-1-conf.level
s.t<- (sqrt(n)*(log10(upper)-log10(lower)))/(2*qt(1-alpha/2,n-1))
s.z<-(sqrt(n)*(log10(upper)-log10(lower)))/(2*qnorm(1-alpha/2))
range.t<- 10^(( qnorm(1-alpha/2) - qnorm(alpha/2) )*s.t )
range.z<- 10^(( qnorm(1-alpha/2) - qnorm(alpha/2) )*s.z )
col.names<-c("n",paste("lower",100*conf.level,"% cl"),
paste("upper",100*conf.level,"% cl"),
"standard deviation (log10 scale) by t",
"standard deviation (log10 scale) by Z",
paste(100*conf.level,"% fold-range, s estimated by t"),
paste(100*conf.level,"% fold-range, s estimated by Z"))
out<-data.frame(n=n,lower=lower,upper=upper,s.byt=s.t,s.byz=s.z,
foldrange.byt=range.t,foldrange.byz=range.z)
out
} |
simpleMH <- function(f, inits, theta.cov, max.iter, coda = FALSE, ...) {
theta_samples <- matrix(NA_real_, nrow = max.iter, ncol = length(inits))
log_p <- rep_len(NA_real_, max.iter)
theta_now <- inits
p_theta <- f(theta_now, ...)
p_samples <- rep(0, max.iter)
p_theta_now <- p_theta
log_p[1] <- p_theta_now
theta_samples[1, ] <- theta_now
for (m in 2:max.iter) {
theta_new <- rmvnorm(n = 1, mean = theta_now, sigma = theta.cov)
names(theta_new) <- names(inits)
p_theta <- f(theta_new, ...)
p_theta_new <- p_theta
p_samples[m] <- p_theta_new
a <- exp(p_theta_new - p_theta_now)
z <- runif(1)
if (isTRUE(z < a)) {
theta_now <- theta_new
p_theta_now <- p_theta_new
}
theta_samples[m, ] <- theta_now
log_p[m] <- p_theta_now
}
if (is.null(names(inits))) {
colnames(theta_samples) <- paste0("para_", seq_along(inits))
} else {
colnames(theta_samples) <- names(inits)
}
res <- list(samples = theta_samples, log.p = log_p)
if (coda) {
if (!requireNamespace("coda", quietly = TRUE)) {
stop(
"Package 'coda' needed for to create coda objects. ",
"Please install it or use `coda = TRUE`.",
call. = FALSE
)
}
res$samples <- coda::as.mcmc(res$samples)
}
return(res)
} |
power.t.test <-
function(n=NULL, delta=NULL, sd=1, sig.level=0.05, power=NULL,
type=c("two.sample", "one.sample", "paired"),
alternative=c("two.sided", "one.sided"), strict=FALSE,
tol = .Machine$double.eps^0.25)
{
if ( sum(sapply(list(n, delta, sd, power, sig.level), is.null)) != 1 )
stop("exactly one of 'n', 'delta', 'sd', 'power', and 'sig.level' must be NULL")
if(!is.null(sig.level) && !is.numeric(sig.level) ||
any(0 > sig.level | sig.level > 1))
stop("'sig.level' must be numeric in [0, 1]")
type <- match.arg(type)
alternative <- match.arg(alternative)
tsample <- switch(type, one.sample = 1, two.sample = 2, paired = 1)
force(tsample)
tside <- switch(alternative, one.sided = 1, two.sided = 2)
if (tside == 2 && !is.null(delta)) delta <- abs(delta)
p.body <-
if (strict && tside == 2)
quote({
nu <- (n - 1) * tsample
qu <- qt(sig.level/tside, nu, lower.tail = FALSE)
pt( qu, nu, ncp = sqrt(n/tsample) * delta/sd, lower.tail = FALSE) +
pt(-qu, nu, ncp = sqrt(n/tsample) * delta/sd, lower.tail = TRUE)
})
else
quote({nu <- (n - 1) * tsample
pt(qt(sig.level/tside, nu, lower.tail = FALSE),
nu, ncp = sqrt(n/tsample) * delta/sd, lower.tail = FALSE)})
if (is.null(power))
power <- eval(p.body)
else if (is.null(n))
n <- uniroot(function(n) eval(p.body) - power,
c(2, 1e7), tol=tol, extendInt = "upX")$root
else if (is.null(sd))
sd <- uniroot(function(sd) eval(p.body) - power,
delta * c(1e-7, 1e+7), tol=tol, extendInt = "downX")$root
else if (is.null(delta))
delta <- uniroot(function(delta) eval(p.body) - power,
sd * c(1e-7, 1e+7), tol=tol, extendInt = "upX")$root
else if (is.null(sig.level))
sig.level <- uniroot(function(sig.level) eval(p.body) - power,
c(1e-10, 1-1e-10), tol=tol, extendInt = "yes")$root
else
stop("internal error", domain = NA)
NOTE <- switch(type,
paired = "n is number of *pairs*, sd is std.dev. of *differences* within pairs",
two.sample = "n is number in *each* group", NULL)
METHOD <- paste(switch(type,
one.sample = "One-sample",
two.sample = "Two-sample",
paired = "Paired"),
"t test power calculation")
structure(list(n=n, delta=delta, sd=sd,
sig.level=sig.level, power=power,
alternative=alternative, note=NOTE, method=METHOD),
class="power.htest")
}
power.prop.test <-
function(n=NULL, p1=NULL, p2=NULL, sig.level=0.05, power=NULL,
alternative=c("two.sided", "one.sided"), strict=FALSE,
tol = .Machine$double.eps^0.25)
{
if ( sum(sapply(list(n, p1, p2, power, sig.level), is.null)) != 1 )
stop("exactly one of 'n', 'p1', 'p2', 'power', and 'sig.level' must be NULL")
if(!is.null(sig.level) && !is.numeric(sig.level) ||
any(0 > sig.level | sig.level > 1))
stop("'sig.level' must be numeric in [0, 1]")
alternative <- match.arg(alternative)
tside <- switch(alternative, one.sided = 1, two.sided = 2)
p.body <-
if (strict && tside == 2)
quote({
qu <- qnorm(sig.level/tside, lower.tail = FALSE)
d <- abs(p1 - p2)
q1 <- 1 - p1
q2 <- 1 - p2
pbar <- (p1 + p2)/2
qbar <- 1 - pbar
v1 <- p1 * q1
v2 <- p2 * q2
vbar <- pbar * qbar
pnorm((sqrt(n)*d - qu * sqrt(2 * vbar) ) / sqrt(v1 + v2)) +
pnorm((sqrt(n)*d + qu * sqrt(2 * vbar) ) / sqrt(v1 + v2),
lower.tail=FALSE)
})
else
quote(pnorm((sqrt(n) * abs(p1 - p2)
- (qnorm(sig.level/tside, lower.tail = FALSE)
* sqrt((p1 + p2) * (1 - (p1 + p2)/2))))
/ sqrt(p1 * (1 - p1) + p2 * (1 - p2))))
if (is.null(power))
power <- eval(p.body)
else if (is.null(n))
n <- uniroot(function(n) eval(p.body) - power,
c(1,1e7), tol=tol, extendInt = "upX")$root
else if (is.null(p1)) {
p1 <- uniroot(function(p1) eval(p.body) - power,
c(0,p2), tol=tol, extendInt = "yes")$root
if(p1 < 0) warning("No p1 in in [0, p2] can be found to achieve the desired power")
}
else if (is.null(p2)) {
p2 <- uniroot(function(p2) eval(p.body) - power,
c(p1,1), tol=tol, extendInt = "yes")$root
if(p2 > 1) warning("No p2 in in [p1, 1] can be found to achieve the desired power")
}
else if (is.null(sig.level)) {
sig.level <- uniroot(function(sig.level) eval(p.body) - power,
c(1e-10, 1-1e-10), tol=tol, extendInt = "upX")$root
if(sig.level < 0 || sig.level > 1)
warning("No significance level [0, 1] can be found to achieve the desired power")
}
else
stop("internal error", domain = NA)
structure(list(n=n, p1=p1, p2=p2,
sig.level=sig.level, power=power,
alternative=alternative,
note = "n is number in *each* group",
method = "Two-sample comparison of proportions power calculation"),
class="power.htest")
}
print.power.htest <- function(x, digits = getOption("digits"), ...)
{
cat("\n ", x$method, "\n\n")
note <- x$note
x[c("method", "note")] <- NULL
cat(paste(format(names(x), width = 15L, justify = "right"),
format(x, digits=digits), sep = " = "), sep = "\n")
if(!is.null(note)) cat("\n", "NOTE: ", note, "\n\n", sep = "") else cat("\n")
invisible(x)
} |
resample_idx <- readRDS(test_path("data/test_autoplot.rds"))
two_class_resamples <- dplyr::bind_rows(
lapply(resample_idx, function(idx) two_class_example[idx,]),
.id = "Resample"
) %>%
dplyr::group_by(Resample)
hpc_cv2 <- dplyr::filter(hpc_cv, Resample %in% c("Fold06", "Fold07", "Fold08", "Fold09", "Fold10")) %>%
dplyr::as_tibble() %>%
dplyr::group_by(Resample) %>%
dplyr::arrange(as.character(obs)) %>%
dplyr::ungroup()
test_that("ROC Curve - two class", {
res <- roc_curve(two_class_example, truth, Class1)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(1 - res$specificity, .plot_data$data[[1]]$x)
expect_equal(res$sensitivity, .plot_data$data[[1]]$y)
expect_equal(.plot_data$data[[2]]$intercept, 0)
expect_equal(.plot_data$data[[2]]$slope, 1)
})
test_that("ROC Curve - two class, with resamples", {
res <- roc_curve(two_class_resamples, truth, Class1)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(1 - res$specificity, .plot_data$data[[1]]$x)
expect_equal(res$sensitivity, .plot_data$data[[1]]$y)
expect_equal(length(unique(.plot_data$data[[1]]$colour)), 10)
})
test_that("ROC Curve - multi class", {
res <- roc_curve(hpc_cv2, obs, VF:L)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
expect_true(".level" %in% colnames(res))
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(nrow(.plot_data$data[[2]]), 4)
})
test_that("ROC Curve - multi class, with resamples", {
res <- roc_curve(dplyr::group_by(hpc_cv2, Resample), obs, VF:L)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
expect_true(".level" %in% colnames(res))
expect_true("Resample" %in% colnames(res))
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(nrow(.plot_data$data[[2]]), 4)
})
test_that("PR Curve - two class", {
res <- pr_curve(two_class_example, truth, Class1)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(res$recall, .plot_data$data[[1]]$x)
expect_equal(res$precision, .plot_data$data[[1]]$y)
})
test_that("PR Curve - two class, with resamples", {
res <- pr_curve(two_class_resamples, truth, Class1)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(res$recall, .plot_data$data[[1]]$x)
expect_equal(res$precision, .plot_data$data[[1]]$y)
expect_equal(length(unique(.plot_data$data[[1]]$colour)), 10)
})
test_that("PR Curve - multi class", {
res <- pr_curve(hpc_cv2, obs, VF:L)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
expect_true(".level" %in% colnames(res))
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(length(unique(.plot_data$data[[1]]$PANEL)), 4)
})
test_that("PR Curve - multi class, with resamples", {
res <- pr_curve(dplyr::group_by(hpc_cv2, Resample), obs, VF:L)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
expect_true(".level" %in% colnames(res))
expect_true("Resample" %in% colnames(res))
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(length(unique(.plot_data$data[[1]]$PANEL)), 4)
expect_equal(length(unique(.plot_data$data[[1]]$colour)), 5)
})
test_that("Gain Curve - two class", {
res <- gain_curve(two_class_example, truth, Class1)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(res$.percent_tested, .plot_data$data[[2]]$x)
expect_equal(res$.percent_found, .plot_data$data[[2]]$y)
expect_equal(.plot_data$data[[1]]$x[2], 51.6)
})
test_that("Gain Curve - two class, with resamples", {
res <- gain_curve(two_class_resamples, truth, Class1)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(res$.percent_tested, .plot_data$data[[2]]$x)
expect_equal(res$.percent_found, .plot_data$data[[2]]$y)
expect_equal(length(unique(.plot_data$data[[2]]$colour)), 10)
expect_equal(.plot_data$data[[1]]$x[2], 43 + 2/3)
})
test_that("Gain Curve - multi class", {
res <- gain_curve(hpc_cv2, obs, VF:L)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
expect_true(".level" %in% colnames(res))
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(length(unique(.plot_data$data[[2]]$PANEL)), 4)
corners <- c(2, 5, 8, 11)
corner_vals <- c(31.0623556581986, 5.94688221709007, 11.9515011547344, 51.0392609699769)
expect_equal(.plot_data$data[[1]]$x[corners], corner_vals)
})
test_that("Gain Curve - multi class, with resamples", {
res <- gain_curve(dplyr::group_by(hpc_cv2, Resample), obs, VF:L)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
expect_true(".level" %in% colnames(res))
expect_true("Resample" %in% colnames(res))
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(length(unique(.plot_data$data[[2]]$PANEL)), 4)
expect_equal(length(unique(.plot_data$data[[2]]$colour)), 5)
corners <- c(2, 5, 8, 11)
corner_vals <- c(30.9248554913295, 5.78034682080925, 11.8155619596542, 50.8620689655172)
expect_equal(.plot_data$data[[1]]$x[corners], corner_vals)
})
test_that("Lift Curve - two class", {
res <- lift_curve(two_class_example, truth, Class1)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
res <- res[-1,]
expect_equal(nrow(.plot_data$data[[1]]), 500)
expect_equal(res$.percent_tested, .plot_data$data[[1]]$x)
expect_equal(res$.lift, .plot_data$data[[1]]$y)
expect_equal(.plot_data$data[[2]]$x, c(0, 100))
})
test_that("Lift Curve - two class, with resamples", {
res <- lift_curve(two_class_resamples, truth, Class1)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(nrow(.plot_data$data[[1]]), nrow(res) - 10)
res <- dplyr::filter(res, .n_events != 0)
expect_equal(res$.percent_tested, .plot_data$data[[1]]$x)
expect_equal(res$.lift, .plot_data$data[[1]]$y)
expect_equal(length(unique(.plot_data$data[[1]]$colour)), 10)
})
test_that("Lift Curve - multi class", {
res <- lift_curve(hpc_cv2, obs, VF:L)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
expect_true(".level" %in% colnames(res))
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(length(unique(.plot_data$data[[1]]$PANEL)), 4)
})
test_that("Lift Curve - multi class, with resamples", {
res <- lift_curve(dplyr::group_by(hpc_cv2, Resample), obs, VF:L)
expect_error(.plot <- ggplot2::autoplot(res), NA)
expect_s3_class(.plot, "gg")
expect_true(".level" %in% colnames(res))
expect_true("Resample" %in% colnames(res))
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(length(unique(.plot_data$data[[1]]$PANEL)), 4)
expect_equal(length(unique(.plot_data$data[[1]]$colour)), 5)
})
test_that("Confusion Matrix - type argument", {
res <- conf_mat(two_class_example, truth, predicted)
expect_error(.plot <- ggplot2::autoplot(res, type = "wrong"), "type")
})
test_that("Confusion Matrix - two class - heatmap", {
res <- conf_mat(two_class_example, truth, predicted)
expect_error(.plot <- ggplot2::autoplot(res, type = "heatmap"), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(nrow(.plot_data$data[[1]]), length(res$table))
})
test_that("Confusion Matrix - multi class - heatmap", {
res <- hpc_cv %>%
dplyr::filter(Resample == "Fold01") %>%
conf_mat(obs, pred)
expect_error(.plot <- ggplot2::autoplot(res, type = "heatmap"), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(nrow(.plot_data$data[[1]]), length(res$table))
expect_equal(rlang::expr_label(.plot$mapping[["x"]]), "`~Truth`")
expect_equal(rlang::expr_label(.plot$mapping[["y"]]), "`~Prediction`")
expect_equal(rlang::expr_label(.plot$mapping[["fill"]]), "`~Freq`")
})
test_that("Confusion Matrix - heatmap - can use non-standard labels (
df <- dplyr::filter(hpc_cv, Resample == "Fold01")
res1 <- conf_mat(df, obs, pred, dnn = c("Pred", "True"))
expect_error(p1 <- ggplot2::autoplot(res1, type = "heatmap"), NA)
expect_identical(p1$labels$x, "True")
expect_identical(p1$labels$y, "Pred")
res2 <- conf_mat(df, obs, pred, dnn = NULL)
expect_error(p2 <- ggplot2::autoplot(res2, type = "heatmap"), NA)
expect_identical(p2$labels$x, "Truth")
expect_identical(p2$labels$y, "Prediction")
})
test_that("Confusion Matrix - mosaic - can use non-standard labels (
df <- dplyr::filter(hpc_cv, Resample == "Fold01")
res1 <- conf_mat(df, obs, pred, dnn = c("Pred", "True"))
expect_error(p1 <- ggplot2::autoplot(res1, type = "mosaic"), NA)
expect_identical(p1$labels$x, "True")
expect_identical(p1$labels$y, "Pred")
res2 <- conf_mat(df, obs, pred, dnn = NULL)
expect_error(p2 <- ggplot2::autoplot(res2, type = "mosaic"), NA)
expect_identical(p2$labels$x, "Truth")
expect_identical(p2$labels$y, "Prediction")
})
test_that("Confusion Matrix - two class - mosaic", {
res <- conf_mat(two_class_example, truth, predicted)
expect_error(.plot <- ggplot2::autoplot(res, type = "mosaic"), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(nrow(.plot_data$data[[1]]), length(res$table))
})
test_that("Confusion Matrix - multi class - mosaic", {
res <- hpc_cv %>%
dplyr::filter(Resample == "Fold01") %>%
conf_mat(obs, pred)
expect_error(.plot <- ggplot2::autoplot(res, type = "mosaic"), NA)
expect_s3_class(.plot, "gg")
.plot_data <- ggplot2::ggplot_build(.plot)
expect_equal(nrow(.plot_data$data[[1]]), length(res$table))
}) |
lav_uvord_fit <- function(y = NULL,
X = NULL,
wt = rep(1, length(y)),
lower = -Inf,
upper = +Inf,
optim.method = "nlminb",
logistic = FALSE,
control = list(),
output = "list") {
if(!is.integer(y)) {
y <- as.integer(y)
}
if(!min(y, na.rm = TRUE) == 1L) {
y <- as.integer(ordered(y))
}
if(is.null(wt)) {
wt = rep(1, length(y))
} else {
if(length(y) != length(wt)) {
stop("lavaan ERROR: length y is not the same as length wt")
}
if(any(wt < 0)) {
stop("lavaan ERROR: all weights should be positive")
}
}
minObjective <- lav_uvord_min_objective
minGradient <- lav_uvord_min_gradient
minHessian <- lav_uvord_min_hessian
if(optim.method == "nlminb" || optim.method == "nlminb2") {
} else if(optim.method == "nlminb0") {
minGradient <- minHessian <- NULL
} else if(optim.method == "nlminb1") {
minHessian <- NULL
}
cache <- lav_uvord_init_cache(y = y, X = X, wt = wt, logistic = logistic)
control.nlminb <- list(eval.max = 20000L, iter.max = 10000L,
trace = 0L, abs.tol=(.Machine$double.eps * 10))
control.nlminb <- modifyList(control.nlminb, control)
optim <- nlminb(start = cache$theta, objective = minObjective,
gradient = minGradient, hessian = minHessian,
control = control.nlminb, lower = lower, upper = upper,
cache = cache)
if(output == "cache") {
return(cache)
}
out <- list(theta = optim$par,
nexo = cache$nexo,
nth = cache$nth,
th.idx = seq_len(cache$nth),
slope.idx = seq_len(length(optim$par))[-seq_len(cache$nth)],
missing.idx = cache$missing.idx,
y = cache$y,
wt = cache$wt,
Y1 = cache$Y1,
Y2 = cache$Y2,
z1 = cache$z1,
z2 = cache$z2,
X = cache$X)
}
lav_uvord_th <- function(y = NULL, wt = NULL) {
y.freq <- tabulate(y)
y.ncat <- length(y.freq)
if(is.null(wt)) {
y.prop <- y.freq/sum(y.freq)
} else {
y.freq <- numeric(y.ncat)
for(cat in seq_len(y.ncat)) {
y.freq[cat] <- sum(wt[y == cat], na.rm = TRUE)
}
y.prop <- y.freq/sum(y.freq)
}
qnorm(cumsum(y.prop[-length(y.prop)]))
}
lav_uvord_init_cache <- function(y = NULL,
X = NULL,
wt = rep(1, length(y)),
logistic = FALSE,
parent = parent.frame()) {
nobs <- length(y)
y.ncat <- length(tabulate(y))
nth <- y.ncat - 1L
if(is.null(X)) {
nexo <- 0L
} else {
X <- unname(X); nexo <- ncol(X)
}
if(is.null(wt)) {
N <- nobs
} else {
N <- sum(wt)
}
y.freq <- numeric(y.ncat)
for(cat in seq_len(y.ncat)) {
y.freq[cat] <- sum(wt[y == cat], na.rm = TRUE)
}
y.prop <- y.freq/sum(y.freq)
missing.idx <- which(is.na(y))
if(any(is.na(y)) || (!is.null(X) && any(is.na(X)) )) {
lav_crossprod <- lav_matrix_crossprod
} else {
lav_crossprod <- base::crossprod
}
if(logistic) {
pfun <- plogis
dfun <- dlogis
gfun <- function (x) {
out <- numeric(length(x))
out[ is.na(x) ] <- NA
x.ok <- which(abs(x) < 200)
e <- exp(-x[x.ok])
e1 <- 1 + e; e2 <- e1 * e1; e4 <- e2 * e2
out[x.ok] <- -e/e2 + e*(2 * (e*e1))/e4
out
}
} else {
pfun <- pnorm
dfun <- dnorm
gfun <- function(x) { -x * dnorm(x) }
}
o1 <- ifelse(y == nth + 1, 100, 0)
o2 <- ifelse(y == 1, -100, 0)
Y1 <- matrix(1:nth, nobs, nth, byrow = TRUE) == y
Y2 <- matrix(1:nth, nobs, nth, byrow = TRUE) == (y - 1L)
if(nexo == 0L) {
if(logistic) {
th.start <- qlogis(cumsum(y.prop[-length(y.prop)]))
} else {
th.start <- qnorm(cumsum(y.prop[-length(y.prop)]))
}
} else if(nth == 1L && nexo > 0L) {
th.start <- 0
} else {
if(logistic) {
th.start <- qlogis((1:nth) / (nth + 1) )
} else {
th.start <- qnorm((1:nth) / (nth + 1) )
}
}
beta.start <- rep(0, nexo)
theta <- c( th.start, beta.start )
out <- list2env(list(y = y, X = X, wt = wt, o1 = o1, o2 = o2,
missing.idx = missing.idx, N = N,
pfun = pfun, dfun = dfun, gfun = gfun,
lav_crossprod = lav_crossprod,
nth = nth, nobs = nobs, y.ncat = y.ncat, nexo = nexo,
Y1 = Y1, Y2 = Y2,
theta = theta),
parent = parent)
out
}
lav_uvord_loglik <- function(y = NULL,
X = NULL,
wt = rep(1, length(y)),
logistic = FALSE,
cache = NULL) {
if(is.null(cache)) {
cache <- lav_uvord_fit(y = y, X = X, wt = wt,
logistic = logistic, output = "cache")
}
lav_uvord_loglik_cache(cache = cache)
}
lav_uvord_loglik_cache <- function(cache = NULL) {
with(cache, {
th <- theta[1:nth]; TH <- c(0, th, 0); beta <- theta[-c(1:nth)]
if(nexo > 0L) {
eta <- drop(X %*% beta)
z1 <- TH[y+1L] - eta + o1
z2 <- TH[y ] - eta + o2
} else {
z1 <- TH[y+1L] + o1
z2 <- TH[y ] + o2
}
pi.i <- pfun(z1) - pfun(z2)
large.idx <- which(z2 > 1)
if(length(large.idx) > 0L) {
pi.i[large.idx] <- ( pfun(z2[large.idx], lower.tail = FALSE) -
pfun(z1[large.idx], lower.tail = FALSE) )
}
loglik <- sum( wt * log(pi.i), na.rm = TRUE)
return( loglik )
})
}
lav_uvord_scores <- function(y = NULL,
X = NULL,
wt = rep(1, length(y)),
use.weights = TRUE,
logistic = FALSE,
cache = NULL) {
if(is.null(cache)) {
cache <- lav_uvord_fit(y = y, X = X, wt = wt,
logistic = logistic, output = "cache")
}
SC <- lav_uvord_scores_cache(cache = cache)
if(!is.null(wt) && use.weights) {
SC <- SC * wt
}
SC
}
lav_uvord_scores_cache <- function(cache = NULL) {
with(cache, {
dldpi <- 1 / pi.i
p1 <- dfun(z1); p2 <- dfun(z2)
scores.th <- dldpi * (Y1*p1 - Y2*p2)
if(nexo > 0L) {
scores.beta <- dldpi * (-X) * (p1 - p2)
return( cbind(scores.th, scores.beta, deparse.level = 0) )
} else {
return( scores.th )
}
})
}
lav_uvord_gradient_cache <- function(cache = NULL) {
with(cache, {
wtp <- wt / pi.i
p1 <- dfun(z1); p2 <- dfun(z2)
dxa <- Y1*p1 - Y2*p2
scores.th <- wtp * dxa
if(nexo > 0L) {
dxb <- X * (p1 - p2)
scores.beta <- wtp * (-dxb)
return( colSums(cbind(scores.th, scores.beta, deparse.level = 0),
na.rm = TRUE) )
} else {
return( colSums(scores.th, na.rm = TRUE) )
}
})
}
lav_uvord_hessian <- function(y = NULL,
X = NULL,
wt = rep(1, length(y)),
logistic = FALSE,
cache = NULL) {
if(is.null(cache)) {
cache <- lav_uvord_fit(y = y, X = X, wt = wt,
logistic = logistic, output = "cache")
}
tmp <- lav_uvord_loglik_cache(cache = cache)
tmp <- lav_uvord_gradient_cache(cache = cache)
lav_uvord_hessian_cache(cache = cache)
}
lav_uvord_hessian_cache <- function(cache = NULL) {
with(cache, {
wtp2 <- wt/(pi.i * pi.i)
g1w <- gfun(z1) * wtp
g2w <- gfun(z2) * wtp
Y1gw <- Y1 * g1w
Y2gw <- Y2 * g2w
dx2.tau <- ( lav_crossprod(Y1gw, Y1) - lav_crossprod(Y2gw, Y2) -
lav_crossprod(dxa, dxa * wtp2) )
if(nexo == 0L) {
return( dx2.tau )
}
dxb2 <- dxb * wtp2
dx2.beta <- ( lav_crossprod(X * g1w, X) - lav_crossprod(X * g2w, X) -
lav_crossprod(dxb, dxb2) )
dx.taubeta <- ( -lav_crossprod(Y1gw, X) + lav_crossprod(Y2gw, X) +
lav_crossprod(dxa, dxb2) )
Hessian <- rbind( cbind( dx2.tau, dx.taubeta, deparse.level = 0),
cbind( t(dx.taubeta), dx2.beta, deparse.level = 0),
deparse.level = 0 )
return( Hessian )
})
}
lav_uvord_min_objective <- function(x, cache = NULL) {
if(cache$nth > 1L && x[1] > x[2]) {
return(+Inf)
}
if(cache$nth > 2L && x[2] > x[3]) {
return(+Inf)
}
if(cache$nth > 3L && x[3] > x[4]) {
return(+Inf)
}
cache$theta <- x
-1 * lav_uvord_loglik_cache(cache = cache)/cache$N
}
lav_uvord_min_gradient <- function(x, cache = NULL) {
if(!all(x == cache$theta)) {
cache$theta <- x
tmp <- lav_uvord_loglik_cache(cache = cache)
}
-1 * lav_uvord_gradient_cache(cache = cache)/cache$N
}
lav_uvord_min_hessian <- function(x, cache = NULL) {
if(!all(x == cache$theta)) {
cache$theta <- x
tmp <- lav_uvord_loglik_cache(cache = cache)
tmp <- lav_uvord_gradient_cache(cache = cache)
}
-1 * lav_uvord_hessian_cache(cache = cache)/cache$N
}
lav_uvord_update_fit <- function(fit.y = NULL, th.new = NULL, sl.new = NULL) {
if(is.null(th.new) && is.null(sl.new)) {
return(fit.y)
}
if(!is.null(th.new)) {
fit.y$theta[fit.y$th.idx] <- th.new
}
if(!is.null(sl.new)) {
fit.y$theta[fit.y$slope.idx] <- sl.new
}
nth <- length(fit.y$th.idx)
o1 <- ifelse(fit.y$y == nth + 1, 100, 0)
o2 <- ifelse(fit.y$y == 1, -100, 0)
theta <- fit.y$theta
th <- theta[1:nth]; TH <- c(0, th, 0); beta <- theta[-c(1:nth)]
y <- fit.y$y; X <- fit.y$X
if(length(fit.y$slope.idx) > 0L) {
eta <- drop(X %*% beta)
fit.y$z1 <- TH[y+1L] - eta + o1
fit.y$z2 <- TH[y ] - eta + o2
} else {
fit.y$z1 <- TH[y+1L] + o1
fit.y$z2 <- TH[y ] + o2
}
fit.y
} |
test_that("entropy works", {
.act <- ds_entropy(de_county, starts_with('pop_'))
.exp <- c(0.638090971561592, 0.638090971561592, 0.638090971561592)
expect_equal(.act, .exp, tolerance = 1e-6)
})
test_that("entropy .name works", {
.act <- ds_entropy(de_county, starts_with('pop_'), .name = 'special_name')
expect_true('special_name' %in% names(.act))
})
test_that("entropy .comp works", {
.act <- ds_entropy(de_county, starts_with('pop_'), .comp = TRUE)
.exp <- c(0.116761244988572, 0.399314289368122, 0.122015437204899)
expect_equal(.act, .exp, tolerance = 1e-6)
}) |
github_api_org_members = function(org) {
arg_is_chr_scalar(org)
ghclass_api_v3_req(
endpoint = "GET /orgs/:org/members",
org = org
)
}
org_members = function(org, filter = NULL, exclude = FALSE,
include_admins = TRUE) {
arg_is_chr_scalar(org)
arg_is_chr_scalar(filter, allow_null = TRUE)
res = purrr::safely(github_api_org_members)(org)
members = purrr::map_chr(result(res), "login")
if (!include_admins)
members = setdiff(members, org_admins(org))
filter_results(members, filter, exclude)
} |
bonferroni.dataProcessed <-
function(x) {
r <- length(x$yh)
t <- 2:r
g <- dim(x$Phl)[2]
s <- dim(x$Qhlk)[3]
g_names <- colnames(x$Phl)
nhl <- x$Phl
nhl[t, ] <- NA
nhl[t, ] <- x$Phl[t, ] - x$Phl[t - 1, ]
nh <- rowSums(nhl)
nl <- colSums(nhl)
N <- sum(nl)
fl <- nl / N
ol <- apply(nhl, 2, function (l) min(which(l > 0)))
pl_h <- x$Phl / rowSums(x$Phl)
wllh <- array(sapply(1:r, function(h) outer(fl, pl_h[h, ])), c(g, g, r))
dimnames(wllh) <- list(l1 = g_names, l2 = g_names, h = 1:r)
Shlk <- x$Qhlk
Shlk[t, , ] <- NA
Shlk[t, , ] <- x$Qhlk[t, , ] - x$Qhlk[t-1, , ]
tmp <- Minfhlk <- x$Qhlk
tmp[] <- Minfhlk[] <- NA
for (k in 1:s) {
for (h in 1:r) {
for (l in 1:g) {
tmp[h, l, k] <- x$Qhlk[h, l, k] / x$Phl[h, l]
Minfhlk[h, l, k] <- ifelse(
is.nan(tmp[h, l, k]) == TRUE,
Shlk[ol[l], l, k] / nhl[ol[l], l],
tmp[h, l, k]
)
}
}
}
Minfhl <- apply(Minfhlk, c(1, 2), sum)
MY <- sum(Minfhl[r, ] %*% x$Phl[r, ]) / sum(x$Phl[r, ])
Mlk <- array(Minfhlk[r, , ], c(g, s))
dimnames(Mlk) <- dimnames(Minfhlk)[-1]
tmp <- array(
sapply(1:s,
function(k)
sapply(1:r,
function(h) outer(Mlk[, k], Minfhlk[h, , k], "-") / MY
)
),
c(g, g, r, s)
)
Vllhk <- array(
sapply(1:s,
function(k) tmp[, , , k] * wllh),
c(g, g, r, s)
)
dimnames(Vllhk) <- list(
l1 = g_names,
l2 = g_names,
h = 1:r,
k = dimnames(x$Qhlk)[[3]]
)
rm(tmp)
res <- list(
index = "Bonferroni",
decomposition = Vllhk,
dataProcessed = x
)
class(res) <- "decomposition"
return(res)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(ampir)
my_protein_df <- read_faa(system.file("extdata/little_test.fasta", package = "ampir"))
display_df <- my_protein_df
display_df$seq_aa <- paste(substring(display_df$seq_aa,1,45),"...",sep="")
knitr::kable(display_df)
my_prediction <- predict_amps(my_protein_df, model = "precursor")
my_prediction$seq_aa <- paste(substring(my_prediction$seq_aa,1,45),"...",sep="")
knitr::kable(my_prediction, digits = 3)
my_predicted_amps <- my_protein_df[my_prediction$prob_AMP > 0.8,]
my_predicted_amps$seq_aa <- paste(substring(my_predicted_amps$seq_aa,1,45),"...",sep="")
knitr::kable(my_predicted_amps)
df_to_faa(my_predicted_amps, tempfile("my_predicted_amps.fasta", tempdir())) |
sel.score.rank<- function(data, bmat, genotype){
b<- matrix(bmat, ncol = 1)
mean.df<- function(data, genotype){
odr<- unique(genotype)
geno<- list(factor(genotype, ordered(odr)))
mean<- aggregate(data, geno, mean)
matrix<- as.matrix(mean[,-1])
return(matrix)
}
df<- mean.df(data, genotype)
odr<- unique(genotype)
sel.score<- df %*% b
rank<- as.numeric(rank(as.vector(-sel.score)))
rank.df<- data.frame("Genotype" = odr,
"Selection score" = sel.score,
"Rank" = rank)
return(rank.df)
} |
context("Testing time series metadata retrieval and checks")
test_that("ki_timeseries_list throws error when no hub specified", {
skip_if_net_down()
skip_if_exp_down()
expect_error(ki_timeseries_list(hub = "", station_id = "12345"))
})
test_that("ki_timeseries_list throws error if provided hub in not reachable", {
skip_if_net_down()
skip_if_exp_down()
expect_error(ki_timeseries_list(hub = "https://xxxx", ts_name = "A*"))
})
test_that("ki_timeseries_list throws error when no station_id, group_id or ts_name provided", {
skip_if_net_down()
skip_if_exp_down()
expect_error(ki_timeseries_list(hub = example_hub))
expect_error(ki_timeseries_list(hub = example_hub, station_id = ""))
expect_error(ki_timeseries_list(hub = example_hub, ts_name = ""))
expect_error(ki_timeseries_list(hub = example_hub, group_id = ""))
})
test_that("ki_timeseries_list accepts station_id for retrieving metadata", {
skip_if_net_down()
skip_if_exp_down()
ts_meta <- ki_timeseries_list(hub = example_hub, station_id = test_stn_id)
expect_type(ts_meta, "list")
})
test_that("ki_timeseries_list accepts ts_name for retrieving metadata", {
skip_if_net_down()
skip_if_exp_down()
ts_meta <- ki_timeseries_list(hub = example_hub, ts_name = "Vel*")
expect_type(ts_meta, "list")
})
test_that("ki_timeseries_list accepts group_id for retrieving metadata", {
skip_if_net_down()
skip_if_exp_down()
ts_meta <- ki_timeseries_list(hub = example_hub, group_id = test_ts_group_id)
expect_type(ts_meta, "list")
})
test_that("ki_timeseries_list returns coverage columns by default", {
skip_if_net_down()
skip_if_exp_down()
ts_meta <- ki_timeseries_list(hub = example_hub, station_id = test_stn_id)
expect(
sum(c("from", "to") %in% names(ts_meta)) == 2,
failure_message = "Timeseries metadata doesn't contain expected columns"
)
})
test_that("ki_timeseries_list allows for turning coverage off increase query speed", {
skip_if_net_down()
skip_if_exp_down()
ts_meta <- ki_timeseries_list(hub = example_hub, station_id = test_stn_id, coverage = FALSE)
expect(
sum(c("from", "to") %in% names(ts_meta)) == 0,
failure_message = "Timeseries metadata doesn't contain expected columns"
)
})
test_that("ki_timeseries_list allows for custom return fields (vector or string)", {
skip_if_net_down()
skip_if_exp_down()
cust_ret_str <- "station_name,ts_name,ts_id"
cust_ret_v <- c("station_name", "ts_name", "ts_id")
fake_ret_str <- "metadatathatdoesntactuallyexist"
stn_cust_retr <- ki_timeseries_list(
hub = example_hub,
station_id = test_stn_id,
return_fields = cust_ret_str
)
stn_cust_retr2 <- ki_timeseries_list(
hub = example_hub,
station_id = test_stn_id,
return_fields = cust_ret_v
)
expect_type(stn_cust_retr, "list")
expect_type(stn_cust_retr2, "list")
expect_equal(stn_cust_retr, stn_cust_retr2)
expect_error(
ki_timeseries_list(
hub = example_hub,
station_id = test_stn_id,
return_fields = fake_ret_str
)
)
}) |
CNs <-
function(X){
X = as.matrix(X)
if (dim(X)[2] == 2){
salida = CN(X)
} else {
nc1 = CN(X[,-1])
nc2 = CN(X)
incremento = ((nc2-nc1)/nc2)*100
salida = list(nc1, nc2, incremento)
names(salida) = c("Condition Number without intercept", "Condition Number with intercept", "Increase (in percentage)")
}
return(salida)
} |
.fowa.stat <-
function(x,phi,um){
folk.ward=data.frame(matrix(ncol=0,nrow=9))
for (b in 1:dim(x)[2])
{y=x[b]
sum.sieve=sum(y)
class.weight=(y*100)/sum.sieve
cum.sum=cumsum(class.weight)[,1]
if (min(cum.sum)>5)
{
fowa=data.frame(rep(0,9))
row.names(fowa)=c("Sediment","Mean.fw.um","Sd.fw.um","Skewness.fw.um","Kurtosis.fw.um","Mean.fw.phi","Sd.fw.phi","Skewness.fw.phi","Kurtosis.fw.phi")
names(fowa)=names(x)[b]
}
if (min(cum.sum)<5)
{
mat.D=.percentile(x[,b],phi,um)
mean.phi=(mat.D[6,1]+mat.D[4,1]+mat.D[2,1])/3
mean.mm=(exp(log(mat.D[6,2])+log(mat.D[4,2])+log(mat.D[2,2])/3))/1000
sd.phi=-(((mat.D[2,1]-mat.D[6,1])/4)+((mat.D[1,1]-mat.D[7,1])/6.6))
sd.mm=exp(((log(mat.D[2,2])-log(mat.D[6,2]))/4)+((log(mat.D[1,2])-log(mat.D[7,2]))/6.6))
skewness.phi=-(((mat.D[6,1]+mat.D[2,1]-(2*mat.D[4,1]))/(2*(mat.D[2,1]-mat.D[6,1])))+ ((mat.D[7,1]+mat.D[1,1]-(2*mat.D[4,1]))/(2*(mat.D[1,1]-mat.D[7,1]))))
skewness.mm=-skewness.phi
kurtosis.phi=(mat.D[1,1]-mat.D[7,1])/(2.44*(mat.D[3,1]-mat.D[5,1]))
kurtosis.mm=kurtosis.phi
if (mean.phi<=-5) mean.descript="Very Coarse Gravel"
if (mean.phi>-5 & mean.phi<=-4) mean.descript="Coarse Gravel"
if (mean.phi>-4 & mean.phi<=-3) mean.descript="Medium Gravel"
if (mean.phi>-3 & mean.phi<=-2) mean.descript="Fine Gravel"
if (mean.phi>-2 & mean.phi<=-1) mean.descript="Very Fine Gravel"
if (mean.phi>-1 & mean.phi<=0) mean.descript="Very Coarse Sand"
if (mean.phi>0 & mean.phi<=1) mean.descript="Coarse Sand"
if (mean.phi>1 & mean.phi<=2) mean.descript="Medium Sand"
if (mean.phi>2 & mean.phi<=3) mean.descript="Fine Sand"
if (mean.phi>3 & mean.phi<=4) mean.descript="Very Fine Sand"
if (mean.phi>4 & mean.phi<=5) mean.descript="Very Coarse Silt"
if (mean.phi>5 & mean.phi<=6) mean.descript="Coarse Silt"
if (mean.phi>6 & mean.phi<=7) mean.descript="Medium Silt"
if (mean.phi>7 & mean.phi<=8) mean.descript="Fine Silt"
if (mean.phi>8 & mean.phi<=9) mean.descript="Very Fine Silt"
if (mean.phi>8) mean.descript="Clay"
if (sd.phi<0.35) sorting="Very Well Sorted"
if (sd.phi>=0.35 & sd.phi<0.5) sorting="Well Sorted"
if (sd.phi>=0.5 & sd.phi<0.7) sorting="Moderately Well Sorted"
if (sd.phi>=0.7 & sd.phi<1) sorting="Moderately Sorted"
if (sd.phi>=1 & sd.phi<2) sorting="Poorly Sorted"
if (sd.phi>=2 & sd.phi<4) sorting="Very Poorly Sorted"
if (sd.phi>=4) sorting="Extremely Poorly Sorted"
if (skewness.phi>=0.3) skewness.descript="Very Fine Skewed"
if (skewness.phi<0.3 & skewness.phi>=0.1) skewness.descript="Fine Skewed"
if (skewness.phi<0.1 & skewness.phi>-0.1) skewness.descript="Symmetrical"
if (skewness.phi<=-0.1 & skewness.phi>-0.3) skewness.descript="Coarse Skewed"
if (skewness.phi<=-0.3) skewness.descript="Very Coarse Skewed"
if (kurtosis.phi<0.67) kurtosis.descript="Very Platykurtic"
if (kurtosis.phi>=0.67 & kurtosis.phi<0.9) kurtosis.descript="Platykurtic"
if (kurtosis.phi>=0.9 & kurtosis.phi<=1.11) kurtosis.descript="Mesokurtic"
if (kurtosis.phi>1.11 & kurtosis.phi<=1.5) kurtosis.descript="Leptokurtic"
if (kurtosis.phi>1.5 & kurtosis.phi<=3) kurtosis.descript="Very Leptokurtic"
if (kurtosis.phi>3) kurtosis.descript="Extremely Leptokurtic"
.sedim.descript=paste(mean.descript,sorting,skewness.descript,kurtosis.descript,sep=",")
result.fw.phi=data.frame(c(round(mean.phi,3),round(sd.phi,3),round(skewness.phi,3),round(kurtosis.phi,3)))
names(result.fw.phi)=names(x)[b]
result.fw.mm=data.frame(c(round(mean.mm,3),round(sd.mm,3),round(skewness.mm,3),round(kurtosis.mm,3)))
names(result.fw.mm)=names(x)[b]
fowa=data.frame(rbind(.sedim.descript,result.fw.mm,result.fw.phi))
row.names(fowa)=c("Sediment","Mean.fw.um","Sd.fw.um","Skewness.fw.um","Kurtosis.fw.um","Mean.fw.phi","Sd.fw.phi","Skewness.fw.phi","Kurtosis.fw.phi")
names(fowa)=names(x)[b]
}
folk.ward=cbind(folk.ward,fowa)
}
folk.ward
}
.G2Sd_web <-
function(){
runApp(appDir=paste0(.libPaths()[1],"/G2Sd/extdata"))
}
.grancompat <-
function(x)
{
x <- as.data.frame(x)
n.sieve <- nrow(x)
n.sample <- ncol(x)
if (!is.data.frame(x))
stop("dataframe expected.")
if (any(x < 0))
stop("negative entries in dataframe.")
if (any(x > 300))
warning("Some high values are present.", call. = FALSE,immediate.=TRUE)
return(x)
}
.index.sedim <-
function(x,phi,um){
x=as.data.frame(x)
INDEX=data.frame(matrix(ncol=0,nrow=9))
for (b in 1:dim(x)[2])
{
mat.D=.percentile(x[,b],phi,um)
index=data.frame(matrix(ncol=1,nrow=9))
row.names(index)=c("D10(um)","D50(um)","D90(um)","D90/D10","D90-D10","D75/D25","D75-D25","Trask(So)","Krumbein(Qd)")
names(index)=names(x)[b]
index[1,1]=round(mat.D["10",2],3)
index[2,1]=round(mat.D["50",2],3)
index[3,1]=round(mat.D["90",2],3)
index[4,1]=round(mat.D["90",2]/mat.D["10",2],3)
index[5,1]=round(mat.D["90",2]-mat.D["10",2],3)
index[6,1]=round(mat.D["75",2]/mat.D["25",2],3)
index[7,1]=round(mat.D["75",2]-mat.D["25",2],3)
index[8,1]=round(sqrt(mat.D["25",2]/mat.D["75",2]),3)
index[9,1]=round((mat.D["25",1]-mat.D["75",1])/2,3)
INDEX=cbind(INDEX,index)
}
return(INDEX)
}
.mgrep <-
function(mpattern,x,FUN="grep")
{
select=NULL
for (i in 1:length(mpattern))
{
if (FUN=="grep")
values=grep(mpattern[i],x)
if (FUN=="which")
values=which(x==mpattern[i])
select=c(select,values)
}
return(sort(select))
}
.mode.sedim <-
function(x,um){
x=as.data.frame(x)
sum.sieve=apply(x,2,sum)
MODE=data.frame(matrix(ncol=0,nrow=5))
for (b in 1:dim(x)[2])
{
class.weight=(x[,b]*100)/sum.sieve[b]
tab.mod=cbind(um,class.weight)
if (pmatch(0,um)!=0) tab.mod=tab.mod[-pmatch(0,um),]
plot(tab.mod[,1],tab.mod[,2],type="b",lwd=3,xlab="Particule size (microns)",ylab="Pourcentage (%)",xaxt="n",log="x")
a=identify(tab.mod,plot=FALSE,n=4)
mod=data.frame(tab.mod[a,1])
names(mod)=names(x)[b]
row.names(mod)=tab.mod[a,1]
if (dim(mod)[1]==1) mod.descript="1 Mode" else mod.descript=paste(dim(mod)[1],"Modes")
MODE.sedim=data.frame(matrix(ncol=1,nrow=4))
for (i in 1:dim(mod)[1])
MODE.sedim[i,]=mod[i,]
MODE.sedim=rbind(mod.descript,MODE.sedim)
names(MODE.sedim)=names(x)[b]
row.names(MODE.sedim)[1]="Nb Mode"
MODE.sedim
MODE=cbind(MODE,MODE.sedim)
}
return(MODE)
}
.moment.arith <-
function(x,um){
x=as.data.frame(x)
sum.sieve=apply(x,2,sum)
arith=data.frame(matrix(ncol=0,nrow=4))
for (b in 1:dim(x)[2])
{
class.weight=(x[b]*100)/sum.sieve[b]
mid.point=rep(0,(length(um)))
for(i in 2:length(um))
{
mid.point[i]=(um[i]+um[i-1])/2
}
fm=class.weight*mid.point
mean.arith=apply(fm,2,sum)/100
fmM2=class.weight*(mid.point-mean.arith)^2
sd.arith=sqrt(apply(fmM2,2,sum)/100)
fmM3=class.weight*(mid.point-mean.arith)^3
skewness.arith=apply(fmM3,2,sum)/(100*sd.arith^3)
fmM4=class.weight*(mid.point-mean.arith)^4
kurtosis.arith=apply(fmM4,2,sum)/(100*sd.arith^4)
moment.arit=data.frame(rbind(round(mean.arith,3),round(sd.arith,3),round(skewness.arith,3),round(kurtosis.arith,3)))
colnames(moment.arit)=colnames(x)[b]
arith=cbind(arith,moment.arit)
rownames(arith)=c("mean.arith.um","sd.arith.um","skewness.arith.um","kurtosis.arith.um")
}
return(arith)
}
.moment.geom <-
function(x,phi){
x=as.data.frame(x)
sum.sieve=apply(x,2,sum)
geom=data.frame(matrix(ncol=0,nrow=4))
for (b in 1:dim(x)[2])
{
class.weight=(x[b]*100)/sum.sieve[b]
mid.point=rep(0,(length(phi)))
for(i in 2:length(phi))
{
mid.point[i]=(phi[i]+phi[i-1])/2
}
logm=log10(2^(-mid.point)*1000)
flogm=class.weight*logm
mean.geom=10^(apply(flogm,2,sum)/100)
fmM2=class.weight*(logm-log10(mean.geom))^2
sd.geom=10^(sqrt(apply(fmM2,2,sum)/100))
fmM3=class.weight*(logm-log10(mean.geom))^3
skewness.geom=(apply(fmM3,2,sum)/(100*log10(sd.geom)^3))
fmM4=class.weight*(logm-log10(mean.geom))^4
kurtosis.geom=(apply(fmM4,2,sum)/(100*log10(sd.geom)^4))
kurtosis3.geom=kurtosis.geom
moment.geo=as.data.frame(rbind(round(mean.geom,3),round(sd.geom,3),round(skewness.geom,3),round(kurtosis.geom,3)))
names(moment.geo)=names(x)[b]
geom=cbind(geom,moment.geo)
rownames(geom)=c("mean.geom.um","sd.geom.um","skewness.geom.um","kurtosis.geom.um")
}
return(geom)
}
.northarrow <-
function(loc,size,bearing=0,cols,letter_dist=1,cex=1,...) {
if(missing(loc)) stop("loc is missing")
if(missing(size)) stop("size is missing")
if(missing(cols)) cols <- rep(c("white","black"),8)
radii <- rep(size/c(1,4,2,4),4)
x <- radii[(0:15)+1]*cos((0:15)*pi/8+bearing)+loc[1]
y <- radii[(0:15)+1]*sin((0:15)*pi/8+bearing)+loc[2]
for (i in 1:15) {
x1 <- c(x[i],x[i+1],loc[1])
y1 <- c(y[i],y[i+1],loc[2])
polygon(x1,y1,col=cols[i])
}
polygon(c(x[16],x[1],loc[1]),c(y[16],y[1],loc[2]),col=cols[16])
b <- c("E","N","W","S")
for (i in 0:3) text((size+letter_dist*par("cxy")[1])*cos(bearing+i*pi/2)+loc[1],
(size+letter_dist*par("cxy")[2])*sin(bearing+i*pi/2)+loc[2],b[i+1],
cex=cex)
}
.percentile <-
function(x,phi,um){
x=as.numeric(x)
sum.sieve=sum(x)
class.weight=(x*100)/sum.sieve
cum.sum=as.numeric(cumsum(class.weight))
D=c(5,16,25,50,75,84,95,10,90)
minimum.cumsum <- min(cum.sum)
if (any(D< minimum.cumsum))
{
warning(paste0(paste0("D",D[D< minimum.cumsum],collapse=", ")," can't be calculated"), call. = FALSE,immediate.=TRUE)
class.weight.PHI=cbind(cum.sum,all$phi,all$um)
mat.D=data.frame(matrix(ncol=2,nrow=9))
row.names(mat.D)=D
names(mat.D)=c("Phi","um")
nbclass <- which(D> minimum.cumsum,arr.ind=TRUE)
}
if (all(D> minimum.cumsum))
{
class.weight.PHI=cbind(cum.sum,phi,um)
mat.D=data.frame(matrix(ncol=2,nrow=9))
row.names(mat.D)=D
names(mat.D)=c("Phi","um")
nbclass <- 1:9
}
for (i in nbclass)
{
greaterpercent=subset(class.weight.PHI,class.weight.PHI[,1]>D[i])
greaterphi=subset(greaterpercent,greaterpercent[,1]==min(greaterpercent[,1]),select=-1)
greaterphi=as.numeric(subset(greaterphi,greaterphi[,2]==max(greaterphi[,2]),select=1))
greaterpercent=min(greaterpercent[,1])
lesspercent=subset(class.weight.PHI,class.weight.PHI[,1]<D[i])
lessphi=subset(lesspercent,lesspercent[,1]==max(lesspercent[,1]),select=-1)
lessphi=as.numeric(subset(lessphi,lessphi[,2]==min(lessphi[,2]),select=1))
lesspercent=max(lesspercent[,1])
ifelse (dim(subset(class.weight.PHI,class.weight.PHI[,1]==D[i]))[1]==0,
{ratio1=(D[i]-lesspercent)/(greaterpercent-lesspercent)
ratio2=(greaterphi-lessphi)*ratio1
phi=lessphi+ratio2
um=1/(2^phi)*1000},
{phi=as.numeric(subset(class.weight.PHI,class.weight.PHI[,1]==D[i],2))
um=as.numeric(subset(class.weight.PHI,class.weight.PHI[,1]==D[i],3))*1000})
result=c(phi,um)
mat.D[i,]=result
}
return(mat.D)
}
.sedim.descript <-
function(x,um){
um=as.numeric(um)
x=as.data.frame(x)
sum.sieve=apply(x,2,sum)
sediment=data.frame(matrix(ncol=0,nrow=13))
for (b in 1:dim(x)[2])
{
class.weight=(x[,b])*100/sum.sieve[b]
class.weight.um=cbind(class.weight,um)
seuil.sedim=c(63000,31500,2^c(4:-3)*1000,63,40,NA)
class.sedim=c("boulder","vcgravel","cgravel","mgravel","fgravel","vfgravel","vcsand","csand","msand","fsand","vfsand","vcsilt","silt")
sedim=data.frame(cbind(seuil.sedim,class.sedim),stringsAsFactors = FALSE)
sedim[,1]=as.numeric(sedim[,1])
result=data.frame(matrix(nrow=dim(sedim)[1],ncol=dim(sedim)[1]))
result[,1]=sedim[,1]
names(result)=c("Sedim","Pourcentage")
sedim.result=0
sedim.percent=subset(class.weight.um,class.weight.um[,2]>=sedim[1,1])
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[1,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[1,1] & class.weight.um[,2]>=(sedim[2,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[2,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[2,1] & class.weight.um[,2]>=(sedim[3,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[3,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[3,1] & class.weight.um[,2]>=(sedim[4,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[4,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[4,1] & class.weight.um[,2]>=(sedim[5,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[5,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[5,1] & class.weight.um[,2]>=(sedim[6,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[6,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[6,1] & class.weight.um[,2]>=(sedim[7,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[7,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[7,1] & class.weight.um[,2]>=(sedim[8,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[8,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[8,1] & class.weight.um[,2]>=(sedim[9,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[9,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[9,1] & class.weight.um[,2]>=(sedim[10,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[10,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[10,1] & class.weight.um[,2]>=(sedim[11,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[11,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[11,1] & class.weight.um[,2]>=(sedim[12,1]))
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[12,1]=sedim.result
sedim.percent=subset(class.weight.um,class.weight.um[,2]<sedim[12,1])
sedim.result=sum(as.numeric(sedim.percent[,1]))
result[13,1]=sedim.result
result=data.frame(result[,1])
names(result)=names(x)[b]
row.names(result)=class.sedim
sediment=cbind(sediment,round(result,3))
}
return(sediment)
}
.texture.sedim <-
function(x,um){
um=as.numeric(um)
x=as.data.frame(x)
sum.sieve=apply(x,2,sum)
Texture=data.frame(matrix(ncol=0,nrow=5))
for (b in 1:dim(x)[2])
{
class.weight=(x[,b]*100)/sum.sieve[b]
class.weight.um=cbind(class.weight,um)
class.weight.um[,1] <- as.numeric(as.character(class.weight.um[,1]))
class.weight.um[,2] <- as.numeric(as.character(class.weight.um[,2]))
seuil.texture=c(63000,2000,63,0)
class.texture=c("Boulder","Gravel","Sand","mud")
texture=data.frame(cbind(seuil.texture,class.texture),stringsAsFactors = FALSE)
texture[,1]=as.numeric(texture[,1])
result=data.frame(matrix(nrow=dim(texture)[1],ncol=dim(texture)[2]))
result[,1]=texture[,2]
names(result)=c("Texture","Pourcentage")
texture.result=0
texture.percent=subset(class.weight.um,class.weight.um[,2]>=texture[1,1])
texture.result=sum(texture.percent[,1])
result[1,2]=texture.result
texture.percent=subset(class.weight.um,class.weight.um[,2]<texture[1,1] & class.weight.um[,2]>=(texture[2,1]))
texture.result=sum(texture.percent[,1])
result[2,2]=texture.result
texture.percent=subset(class.weight.um,class.weight.um[,2]<texture[2,1] & class.weight.um[,2]>=(texture[3,1]))
texture.result=sum(texture.percent[,1])
result[3,2]=texture.result
texture.percent=subset(class.weight.um,class.weight.um[,2]<(texture[3,1]))
texture.result=sum(texture.percent[,1])
result[4,2]=texture.result
mud=round(result[4,2],3)
gravel=round(result[2,2],3)
sand=round(result[3,2],3)
{if (mud==0 & sand==0) mudsand=0
if (mud==0 & sand>0) mudsand=10
if (sand==0 & mud>0) mudsand=0.01
if (sand>0 & mud>0) mudsand=sand/mud}
if (mudsand>=9){
if (gravel>80) texture="Gravel"
if (gravel>30 & gravel<=80) texture="Sandy Gravel"
if (gravel>5 & gravel<=30) texture="Gravelly Sand"
if (gravel>0 & gravel<=5) texture="Slightly Gravelly Sand"
if (gravel==0) texture="Sand"}
if (mudsand>=1 & mudsand<9){
if (gravel>80) texture="Gravel"
if (gravel>30 & gravel<=80) texture="Muddy Sandy Gravel"
if (gravel>5 & gravel<=30) texture="Gravelly Muddy Sand"
if (gravel>0 & gravel<=5) texture="Slightly Gravelly Muddy Sand"
if (gravel==0) texture="Muddy Sand"}
if (mudsand>=(1/9) & mudsand<1){
if (gravel>80) texture="Gravel"
if (gravel>30 & gravel<=80) texture="Muddy Gravel"
if (gravel>5 & gravel<=30) texture=" Gravelly Mud"
if (gravel>0 & gravel<=5) texture="Slightly Gravelly Sandy Mud"
if (gravel==0) texture="Sandy Mud"}
if (mudsand<(1/9)){
if (gravel>80) texture="Gravel"
if (gravel>30 & gravel<=80) texture="Muddy Gravel"
if (gravel>5 & gravel<=30) texture=" Gravelly Mud"
if (gravel>0 & gravel<=5) texture="Slightly Gravelly Mud"
if (gravel==0) texture="Mud"}
row.names(result)=result[,1]
name.texture=row.names(result)
result=data.frame(result[,2])
texture.sedim=data.frame(rbind(texture,round(result,3)))
row.names(texture.sedim)=c("Texture",name.texture)
names(texture.sedim)=names(x)[b]
texture.sedim
Texture=cbind(Texture,texture.sedim)
}
return(Texture)
} |
variableType <- function(v, ...) {
vClass <- oClass(v)[1]
summaryResult(list(feature="Variable type", result = vClass, value = vClass))
}
variableType <- summaryFunction(variableType, "Data class of variable", allClasses()) |
DfFroc2Lroc <- function(dataset)
{
I <- length(dataset$ratings$NL[,1,1,1])
J <- length(dataset$ratings$NL[1,,1,1])
K <- length(dataset$ratings$NL[1,1,,1])
K2 <- length(dataset$ratings$LL[1,1,,1])
K1 <- K - K2
NL <- apply(dataset$ratings$NL, c(1, 2, 3), max)
dim(NL) <- c(dim(NL), 1)
LL <- dataset$ratings$LL
lowestRating <- min(min(NL[is.finite(NL)]), min(LL[is.finite(LL)]))
NL[,,1:K1,1][!is.finite(NL[,,1:K1,1])] <- lowestRating - 10
LL <- array(lowestRating - 10, dim = c(I,J,K2,1))
LL_IL <- array(lowestRating - 10, dim = c(I,J,K2,1))
LL1 <- dataset$ratings$LL
for (i in 1:I) {
for (j in 1:J) {
for (k in 1:K2) {
maxLL <- max(LL1[i,j,k,])
maxNL <- NL[i,j,k+K1,1]
if (maxLL > maxNL)
{
LL[i,j,k,1] <- maxLL
}
else {
LL_IL[i,j,k,1] <- maxNL
}
NL[i,j,k+K1,1] <- -Inf
}
}
}
perCase <- array(1, dim = c(K2))
IDs <- array(1, dim = c(K2,1))
weights <- array(1, dim = c(K2,1))
weights[,1] <- 1
fileName <- paste0("DfFroc2Lroc(", dataset$descriptions$fileName, ")")
name <- dataset$descriptions$name
design <- "FCTRL"
truthTableStr <- NA
type <- "LROC"
modalityID <- dataset$descriptions$modalityID
readerID <- dataset$descriptions$readerID
return(convert2dataset(NL, LL, LL_IL,
perCase, IDs, weights,
fileName, type, name, truthTableStr, design,
modalityID, readerID))
} |
excl.missing <-
function(mat, phyno)
{
mat = mat[!is.na(phyno$surv),]
phyno$censor = phyno$censor[!is.na(phyno$surv)]
phyno$surv = phyno$surv[!is.na(phyno$surv)]
return(list(mat = mat, phyno = phyno))
} |
filterFeatures = function(task, method = "randomForestSRC_importance",
fval = NULL, perc = NULL, abs = NULL, threshold = NULL, fun = NULL,
fun.args = NULL, mandatory.feat = NULL, select.method = NULL,
base.methods = NULL, cache = FALSE, ...) {
assertClass(task, "SupervisedTask")
if (!is.null(fun)) {
assertFunction(fun)
}
assertChoice(method, choices = append(ls(.FilterRegister),
ls(.FilterEnsembleRegister)))
if (method %in% ls(.FilterEnsembleRegister) && !is.null(base.methods)) {
if (length(base.methods) == 1) {
warningf("You only passed one base filter method to an ensemble filter. Please use at least two base filter methods to have a voting effect.")
}
method = list(method, base.methods)
}
select = checkFilterArguments(perc, abs, threshold, fun)
p = getTaskNFeats(task)
nselect = switch(select,
perc = round(perc * p),
abs = min(abs, p),
threshold = p,
fun = p
)
if (is.null(fval)) {
if (!isFALSE(cache)) {
requirePackages("memoise", why = "caching of filter features",
default.method = "load")
if (is.character(cache)) {
assertString(cache)
if (!dir.exists(cache)) {
dir.create(cache, recursive = TRUE)
}
cache.dir = cache
} else {
assertFlag(cache)
if (!dir.exists(rappdirs::user_cache_dir("mlr", "mlr-org"))) {
dir.create(rappdirs::user_cache_dir("mlr", "mlr-org"))
}
cache.dir = rappdirs::user_cache_dir("mlr", "mlr-org")
}
cache.dir = memoise::cache_filesystem(cache.dir)
generate.fv.data = memoise::memoise(generateFilterValuesData,
cache = cache.dir)
} else {
generate.fv.data = generateFilterValuesData
}
fval = generate.fv.data(task = task, method = method,
nselect = getTaskNFeats(task), ...)$data
} else {
assertClass(fval, "FilterValues")
if (!is.null(fval$method)) {
colnames(fval$data)[which(colnames(fval$data) == "val")] = fval$method
method = fval$method
fval = fval$data[, c(1, 3, 2)]
} else {
methods = unique(fval$data$method)
if (length(methods) > 1) {
assert(method %in% methods)
} else {
method = methods
fval = fval$data
}
}
}
if (all(is.na(fval$value))) {
stopf("Filter method returned all NA values!")
}
if (!is.null(mandatory.feat)) {
assertCharacter(mandatory.feat)
if (!all(mandatory.feat %in% fval$name)) {
stop("At least one mandatory feature was not found in the task.")
}
if (select != "threshold" && select != "fun" &&
nselect < length(mandatory.feat)) {
stop("The number of features to be filtered cannot be smaller than the number of mandatory features.")
}
fval[fval$name %in% mandatory.feat, "value"] = Inf
}
if (select == "threshold") {
nselect = sum(fval[["value"]] >= threshold, na.rm = TRUE)
} else if (select == "fun") {
nselect = do.call(fun, args = c(list("values" = fval[with(fval,
order(filter, -value)), ][["value"]]), fun.args))
}
if (length(levels(as.factor(fval$filter))) >= 2) {
if (is.null(select.method) && !method[[1]] %in% ls(.FilterEnsembleRegister)) {
stopf("You supplied multiple filters. Please choose which should be used for the final subsetting of the features.")
}
if (is.null(select.method)) {
fval = fval[filter == method[[1]], ]
} else {
assertSubset(select.method, choices = unique(fval$filter))
fval = fval[fval$filter == select.method, ]
}
}
if (nselect > 0L) {
features = fval[with(fval, order(filter, -value)), ]
features = features[1:nselect, ][1:nselect]$name
} else {
features = NULL
}
allfeats = getTaskFeatureNames(task)
j = match(features, allfeats)
features = allfeats[sort(j)]
subsetTask(task, features = features)
}
checkFilterArguments = function(perc, abs, threshold, fun) {
sum.null = sum(!is.null(perc), !is.null(abs), !is.null(threshold), !is.null(fun))
if (sum.null == 0L) {
stop("At least one of 'perc', 'abs', 'threshold' or 'fun' must be not NULL")
}
if (sum.null >= 2L) {
stop("Arguments 'perc', 'abs', 'threshold' and 'fun' are mutually exclusive")
}
if (!is.null(perc)) {
assertNumber(perc, lower = 0, upper = 1)
return("perc")
}
if (!is.null(abs)) {
assertCount(abs)
return("abs")
}
if (!is.null(threshold)) {
assertNumber(threshold)
return("threshold")
}
if (!is.null(fun)) {
assertFunction(fun)
return("fun")
}
} |
test_that("can reorder columns", {
dt <- lazy_dt(data.frame(x = 1:3, y = 1), "DT")
expect_equal(
dt %>% step_colorder(c("y", "x")) %>% show_query(),
expr(setcolorder(copy(DT), !!c("y", "x")))
)
expect_named(
dt %>% step_colorder(c("y", "x")) %>% collect(),
c("y", "x")
)
expect_equal(
dt %>% step_colorder(c(2L, 1L)) %>% show_query(),
expr(setcolorder(copy(DT), !!c(2L, 1L)))
)
expect_named(
dt %>% step_colorder(c(2L, 1L)) %>% collect(),
c("y", "x")
)
})
test_that("can handle duplicate column names", {
dt <- lazy_dt(data.table(x = 3, x = 2, y = 1), "DT")
expect_snapshot_error(dt %>% step_colorder(c("y", "x")))
expect_equal(
dt %>% step_colorder(c(3L, 2L)) %>% show_query(),
expr(setcolorder(copy(DT), !!c(3L, 2L)))
)
expect_equal(
dt %>% step_colorder(c(3L, 2L)) %>% as.data.table(),
data.table(y = 1, x = 2, x = 3)
)
})
test_that("checks col_order", {
dt <- lazy_dt(data.frame(x = 1:3, y = 1), "DT")
expect_snapshot_error(dt %>% step_colorder(c("y", "y")))
expect_snapshot_error(dt %>% step_colorder(c(1L, 1L)))
})
test_that("works for empty input", {
dt <- lazy_dt(data.frame(x = 1), "DT")
expect_equal(dt %>% step_colorder(character()), dt)
expect_equal(dt %>% step_colorder(integer()), dt)
})
test_that("doesn't add step if not necessary", {
dt <- lazy_dt(data.frame(x = 1, y = 2), "DT")
expect_equal(dt %>% step_colorder(c("x", "y")), dt)
expect_equal(dt %>% step_colorder("x"), dt)
expect_equal(dt %>% step_colorder(1:2), dt)
expect_equal(dt %>% step_colorder(1L), dt)
}) |
f1=function(x,y,u){u-(u-x)/y }
f2=function(x,y,l){l+(x-l)/y }
fLB= function (x1,y1,x0,y0,l,u){
ifelse(y1>0, max(l,f1(x1,y1,u)),l)-ifelse(y0>0,min(u,f2(x0,y0,l)),u)
}
fUB= function (x1,y1,x0,y0,l,u){
ifelse(y1>0, min(u,f2(x1,y1,l)),u)-ifelse(y0>0,max(l,f1(x0,y0,u)),l)
}
CalC= function (x,hat.LB,hat.UB,sigma.LB,sigma.UB,alpha){
pnorm(x+(hat.UB-hat.LB)/max(sigma.LB,sigma.UB))-pnorm(-x)-(1-alpha)
} |
reqManagedAccts <- function(twsconn) {
if( !is.twsConnection(twsconn))
stop('invalid twsConnection')
VERSION <- "1"
writeBin(c(.twsOutgoingMSG$REQ_MANAGED_ACCTS,
VERSION),
twsconn[[1]])
}
requestFA <- function(twsconn, faDataType) {
if( !is.twsConnection(twsconn))
stop('invalid twsConnection')
VERSION <- "1"
writeBin(c(.twsOutgoingMSG$REQ_FA,
VERSION,
as.character(faDataType)),
twsconn[[1]])
}
replaceFA <- function(twsconn, faDataType, xml) {
if( !is.twsConnection(twsconn))
stop('invalid twsConnection')
VERSION <- "1"
writeBin( c(.twsOutgoingMSG$REPLACE_FA,
VERSION,
as.character(faDataType),
as.character(xml)),
twsconn[[1]])
} |
LoadBeatVector <- function(HRVData, beatPositions, scale = 1,
datetime = "1/1/1900 0:0:0"){
VerboseMessage(HRVData$Verbose, "Loading beats positions")
dir = getwd()
on.exit(setwd(dir))
VerboseMessage(HRVData$Verbose, paste("Scale:", scale))
beatsaux = beatPositions
beatPositions = beatsaux[!duplicated(beatsaux)]
if (length(beatsaux) != length(beatPositions)) {
warning(paste("Removed", length(beatsaux) - length(beatPositions),
"duplicated beat positions"))
}
datetimeaux = strptime(datetime, "%d/%m/%Y %H:%M:%S")
if (is.na(datetimeaux)) {
stop("Date/time format is dd/mm/yyyy HH:MM:SS")
}
VerboseMessage(HRVData$Verbose,
paste("Date: ", sprintf("%02d", datetimeaux$mday), "/",
sprintf("%02d", 1 + datetimeaux$mon), "/", 1900 +
datetimeaux$year, sep = ""))
VerboseMessage(HRVData$Verbose,
paste("Time: ", sprintf("%02d", datetimeaux$hour), ":",
sprintf("%02d", datetimeaux$min), ":",
sprintf("%02d", datetimeaux$sec), sep = ""))
HRVData$datetime = datetimeaux
HRVData$Beat = data.frame(Time = beatPositions * scale)
VerboseMessage(HRVData$Verbose,
paste("Number of beats:", length(HRVData$Beat$Time)))
return(HRVData)
} |
`minbinder` <-
function(psm, cls.draw=NULL, method=c("avg","comp","draws","laugreen","all"), max.k=NULL, include.lg=FALSE, start.cl=NULL, tol=0.001){
if(any(psm !=t(psm)) | any(psm >1) | any(psm < 0) | sum(diag(psm)) != nrow(psm) ){
stop("psm must be a symmetric matrix with entries between 0 and 1 and 1's on the diagonals")}
method <- match.arg(method, choices=method)
if(method %in% c("draws","all") & is.null(cls.draw)) stop("cls.draw must be provided if method=''draws''")
if(method == "avg" | method == "all"){
if(is.null(max.k)) max.k <- ceiling(dim(psm)[1]/4)
hclust.avg <- hclust(as.dist(1-psm), method="average")
cls.avg <- t(apply(matrix(1:max.k),1,function(x) cutree(hclust.avg,k=x)))
binder.avg <- binder(cls.avg,psm)
val.avg <- min(binder.avg)
cl.avg <- cls.avg[which.min(binder.avg),]
if(method== "avg") return(list(cl=cl.avg, value=val.avg, method="avg"))
}
if(method == "comp" | method == "all"){
if(is.null(max.k)) max.k <- ceiling(dim(psm)[1]/4)
hclust.comp <- hclust(as.dist(1-psm), method="complete")
cls.comp <- t(apply(matrix(1:max.k),1,function(x) cutree(hclust.comp,k=x)))
binder.comp <- binder(cls.comp,psm)
val.comp <- min(binder.comp)
cl.comp <- cls.comp[which.min(binder.comp),]
if(method== "comp") return(list(cl=cl.comp, value=val.comp, method="comp"))
}
if(method == "draws" | method == "all"){
compIpi <- function(cl){
mat <- cltoSim(cl)*psm
sum(mat[lower.tri(mat)])
}
n <- ncol(psm)
no2 <- choose(n,2)
sumpij <- sum(psm[lower.tri(psm)])
sumIij <- apply(cls.draw,1, function(x) sum(choose(table(x),2)))
sumIpi <- apply(cls.draw,1, compIpi)
binder.draws <- sumIij - 2*sumIpi + sumpij
val.draws <- min(binder.draws)
cl.draw <- cls.draw[which.min(binder.draws),]
names(cl.draw) <- NULL
if(method== "draws") return(list(cl=cl.draw, value=val.draws, method="draws"))
}
if(method == "laugreen" | (method == "all" & include.lg)){
res.lg <- laugreen(psm, start.cl=start.cl, tol=tol)
if(method=="laugreen") return(res.lg)
}
vals <- c(val.avg, val.comp, val.draws)
cls <- rbind(cl.avg,cl.comp,cl.draw)
if(include.lg){
vals <- c(vals,res.lg$value)
cls <- rbind(cls,res.lg$cl)
}
cls <- rbind(cls[which.min(vals),], cls)
vals <- c(min(vals), vals)
if(include.lg){ rownames(cls) <- names(vals) <- c("best","avg","comp","draws","laugreen")
} else rownames(cls) <- names(vals) <- c("best","avg","comp","draws")
colnames(cls) <- NULL
res <- list(cl=cls, value=vals)
if(include.lg) return(c(res,list(iter.lg=res.lg$iter.lg)))
res
} |
theme_paleo <- function(...) {
ggplot2::theme_bw(...) +
ggplot2::theme(strip.background = ggplot2::element_blank())
}
rotated_facet_labels <- function(angle = 45, direction = "x", remove_label_background = TRUE) {
stopifnot(
all(direction %in% c("x", "y")),
is.numeric(angle), length(angle) == 1, angle >= -90, angle <= 90,
is.logical(remove_label_background), length(remove_label_background) == 1
)
structure(
list(
angle = angle,
direction = direction,
remove_label_background = remove_label_background
),
class = "rotate_facet_label_spec"
)
}
ggplot_add.rotate_facet_label_spec <- function(object, plot, object_name) {
plot$facet <- modify_facet_clip(plot$facet, remove_clip = object$direction)
facet_switch <- plot$facet$params$switch %||% plot$facet$params$strip.position %||% "none"
strip_position_x <- if(facet_switch %in% c("x", "both", "bottom")) "bottom" else "top"
strip_position_y <- if(facet_switch %in% c("y", "both", "left")) "left" else "right"
theme_mods <- ggplot2::theme()
if("x" %in% object$direction) {
theme_mods <- theme_mods +
theme_modify_paleo(
rotate_labels_x = object$angle,
remove_label_background_x = object$remove_label_background,
strip_position_x = strip_position_x
)
}
if("y" %in% object$direction) {
theme_mods <- theme_mods +
theme_modify_paleo(
rotate_labels_y = object$angle,
remove_label_background_y = object$remove_label_background,
strip_position_y = strip_position_y
)
}
plot + theme_mods
}
rotated_axis_labels <- function(angle = 90, direction = "x") {
stopifnot(
all(direction %in% c("x", "y")),
is.numeric(angle), length(angle) == 1
)
theme_mods <- ggplot2::theme()
if("x" %in% direction) {
theme_mods <- theme_mods +
theme_modify_paleo(rotate_axis_labels_x = angle)
}
if("y" %in% direction) {
theme_mods <- theme_mods +
theme_modify_paleo(rotate_axis_labels_y = angle)
}
theme_mods
}
theme_modify_paleo <- function(rotate_labels_x = NULL, rotate_labels_y = NULL, remove_label_background_x = FALSE,
remove_label_background_y = FALSE, rotate_axis_labels_x = NULL,
rotate_axis_labels_y = NULL, pad_right_inches = NULL,
strip_position_x = c("top", "bottom"), strip_position_y = c("left", "right")) {
strip_position_x <- match.arg(strip_position_x)
strip_position_y <- match.arg(strip_position_y)
theme_elements <- list(
strip.text.x.top = if(!is.null(rotate_labels_x) && strip_position_x == "top") {
ggplot2::element_text(
angle = rotate_labels_x,
hjust = if(rotate_labels_x > 0) 0 else if(rotate_labels_x < 0) 1 else 0.5,
vjust = if(abs(rotate_labels_x) == 90) 0.5 else if(rotate_labels_x > 0) 0 else if(rotate_labels_x < 0) 1.1 else 0.5
)
},
strip.text.x.bottom = if(!is.null(rotate_labels_x) && strip_position_x == "bottom") {
ggplot2::element_text(
angle = rotate_labels_x,
hjust = if(rotate_labels_x > 0) 1 else if(rotate_labels_x < 0) 0 else 0.5,
vjust = if(abs(rotate_labels_x) == 90) 0.5 else if(rotate_labels_x > 0) 1 else if(rotate_labels_x < 0) 0 else 0.5
)
},
strip.text.y.right = if(!is.null(rotate_labels_y) && strip_position_y == "right") {
ggplot2::element_text(
angle = rotate_labels_y,
hjust = if(abs(rotate_labels_y) == 90) 0.5 else 0,
vjust = if(rotate_labels_y == 0) 0.5 else 0
)
},
strip.text.y.left = if(!is.null(rotate_labels_y) && strip_position_y == "left") {
ggplot2::element_text(
angle = rotate_labels_y,
hjust = if(abs(rotate_labels_y %% 180) == 90) 0.5 else 1,
vjust = if(rotate_labels_y %% 180 == 0) 0.5 else 1
)
},
axis.text.x.bottom = if(!is.null(rotate_axis_labels_x)) ggplot2::element_text(
angle = rotate_axis_labels_x,
hjust = if(rotate_axis_labels_x > 0) 1 else if(rotate_axis_labels_x < 0) 0 else 0.5,
vjust = if(abs(rotate_axis_labels_x) == 90) 0.5 else if(abs(rotate_axis_labels_x) != 0) 1 else 0.5
),
axis.text.y.left = if(!is.null(rotate_axis_labels_y)) ggplot2::element_text(
angle = rotate_axis_labels_y,
hjust = if(abs(rotate_axis_labels_y) == 90) 0.5 else 1,
vjust = if(rotate_axis_labels_y == 0) 0.5 else 1
),
axis.text.x.top = if(!is.null(rotate_axis_labels_x)) ggplot2::element_text(
angle = rotate_axis_labels_x,
hjust = if(rotate_axis_labels_x > 0) 0 else if(rotate_axis_labels_x < 0) 1 else 0.5,
vjust = if(abs(rotate_axis_labels_x) == 90) 0.5 else if(abs(rotate_axis_labels_x) != 0) 0 else 0.5
),
axis.text.y.right = if(!is.null(rotate_axis_labels_y)) ggplot2::element_text(
angle = rotate_axis_labels_y,
hjust = if(abs(rotate_axis_labels_y) == 90) 0.5 else 0,
vjust = if(rotate_axis_labels_y == 0) 0.5 else 0
),
strip.background.x = if(remove_label_background_x) ggplot2::element_blank(),
strip.background.y = if(remove_label_background_y) ggplot2::element_blank(),
plot.margin = if(!is.null(pad_right_inches)) grid::unit(c(0, pad_right_inches, 0, 0), "inches")
)
do.call(ggplot2::theme, theme_elements[!vapply(theme_elements, is.null, logical(1))])
}
modify_facet_clip <- function(facet_super_obj, remove_clip = NULL) {
if(!(inherits(facet_super_obj, "FacetGrid") || inherits(facet_super_obj, "FacetWrap"))) {
stop(
"The current facet is not a facet_grid() or facet_wrap(). Rotate the labels after setting the facet!",
call. = FALSE
)
}
stopifnot(
all(remove_clip %in% c("x", "y", "b", "l", "r", "t"))
)
ggplot2::ggproto(
NULL,
facet_super_obj,
draw_panels = function(self, panels, layout, x_scales, y_scales, ranges, coord, data, theme, params) {
panel_table <- ggplot2::ggproto_parent(facet_super_obj, self)$draw_panels(
panels, layout, x_scales, y_scales, ranges, coord, data, theme, params
)
if("x" %in% remove_clip) {
panel_table <- set_clip(panel_table, "strip-t", "off")
panel_table <- set_clip(panel_table, "strip-b", "off")
}
if("y" %in% remove_clip) {
panel_table <- set_clip(panel_table, "strip-l", "off")
panel_table <- set_clip(panel_table, "strip-r", "off")
}
if("b" %in% remove_clip) {
panel_table <- set_clip(panel_table, "strip-b", "off")
}
if("r" %in% remove_clip) {
panel_table <- set_clip(panel_table, "strip-r", "off")
}
if("t" %in% remove_clip) {
panel_table <- set_clip(panel_table, "strip-t", "off")
}
if("l" %in% remove_clip) {
panel_table <- set_clip(panel_table, "strip-l", "off")
}
panel_table
}
)
}
set_clip <- function(panel_table, regex, value) {
for(i in which(grepl(regex, panel_table$layout$name))){
panel_table$grobs[[i]]$layout$clip <- value
}
panel_table
} |
`%^%`=function(x, y) {
paste0(x, y)
}
`%notin%`=function(x, vector) {
match(x, vector, nomatch=0) == 0
}
`%allin%`=function(x, vector) {
all(x %in% vector)
}
`%anyin%`=function(x, vector) {
any(x %in% vector)
}
`%nonein%`=function(x, vector) {
!any(x %in% vector)
}
`%partin%`=function(pattern, vector) {
any(grepl(pattern, vector, perl=TRUE))
}
pkg_depend=function(pkgs, excludes=NULL) {
default.pkgs=c("base", "boot", "class",
"cluster", "codetools", "compiler",
"datasets", "foreign", "graphics",
"grDevices", "grid", "KernSmooth",
"lattice", "MASS", "Matrix",
"methods", "mgcv", "nlme",
"nnet", "parallel", "rpart",
"spatial", "splines", "stats",
"stats4", "survival", "tcltk",
"tools", "translations", "utils")
exclude.pkgs=default.pkgs
for(ex in excludes)
exclude.pkgs=union(exclude.pkgs, unlist(tools::package_dependencies(ex, recursive=TRUE)))
for(pkg in pkgs)
pkgs=union(pkgs, unlist(tools::package_dependencies(pkg, recursive=TRUE)))
return(sort(setdiff(pkgs, exclude.pkgs)))
}
pkg_install_suggested=function(by) {
if(missing(by)) {
pkgs.suggests="
rstudioapi, devtools, pacman,
tidyverse, ggstatsplot, jmv,
dplyr, tidyr, stringr, forcats, data.table,
rio, haven, foreign, readxl, openxlsx, clipr,
tibble, plyr, glue, crayon,
emmeans, effectsize, performance,
pwr, simr, MASS, sampling, careless,
irr, correlation, corpcor, corrplot,
afex, car, psych, lmtest, nnet,
lme4, lmerTest, multilevel, r2mlm, MuMIn,
metafor, meta, metaSEM, metapower,
mediation, interactions, JSmediation,
lavaan, lavaanPlot, semPlot, processR,
jtools, reghelper, summarytools, texreg,
sjstats, sjPlot, apaTables,
forecast, vars, pls, plm, AER,
TOSTER, BEST, BayesFactor, brms,
mlr, caret, party, randomForest, e1071, varImp,
downloader, rvest, RCurl, RSelenium, mailR, jiebaR,
ggplot2, ggtext, cowplot, see,
ggrepel, ggeffects, ggsignif, ggridges, ggthemes,
ggbreak, ggplotify, ggExtra, GGally, wordcloud2,
patchwork, showtext"
cat("\n")
Print(pkgs.suggests)
cat("\n")
yesno=utils::menu(title="All these packages would be installed. Do you want to install them?",
choices=c("Yes", "No"))
if(yesno==1) {
pkgs.suggests=pkgs.suggests %>%
str_remove_all("\\s") %>%
str_split(",", simplify=TRUE) %>%
as.character()
} else {
return(invisible())
}
} else {
pkgs.suggests=pacman::p_depends(by, character.only=TRUE, local=TRUE)$Suggests
}
pkgs.installed=pacman::p_library()
pkgs.need.install=base::setdiff(pkgs.suggests, pkgs.installed)
if(length(pkgs.need.install)>0) {
utils::install.packages(pkgs.need.install)
} else {
if(missing(by))
Print("<<green Done!>>")
else
Print("<<green All packages suggested by `{by}` have been installed!>>")
}
}
Print=function(...) {
tryCatch({
output=glue::glue(..., .transformer=sprintf_transformer, .envir=parent.frame())
output_color=glue::glue_col( gsub("<<", "{", gsub(">>", "}", output)) )
print(output_color)
}, error=function(e) {
warning(e)
print(...)
})
}
Glue=function(...) {
output=glue::glue(..., .transformer=sprintf_transformer, .envir=parent.frame())
output_color=glue::glue_col( gsub("<<", "{", gsub(">>", "}", output)) )
return(output_color)
}
sprintf_transformer=function(text, envir) {
text=glue::glue(text, .envir=envir)
m=regexpr(":.+$", text)
if(m!=-1) {
format=substring(regmatches(text, m), 2)
regmatches(text, m)=""
res=eval(parse(text=text, keep.source=FALSE), envir)
do.call(sprintf, list(glue("%{format}f"), res))
} else {
eval(parse(text=text, keep.source=FALSE), envir)
}
}
Run=function(..., silent=FALSE) {
text=glue::glue(..., .sep="\n", .envir=parent.frame())
if(silent) {
suppressWarnings({
eval(parse(text=text), envir=parent.frame())
})
} else {
eval(parse(text=text), envir=parent.frame())
}
invisible(text)
}
rep_char=function(char, rep.times) {
paste(rep(char, times=rep.times), collapse="")
}
capitalize=function(string) {
capped=grep("^[A-Z]", string, invert = TRUE)
substr(string[capped], 1, 1)=toupper(substr(string[capped], 1, 1))
return(string)
}
print_table=function(x, digits=3, nsmalls=digits,
row.names=TRUE,
col.names=TRUE,
title="", note="", append="",
line=TRUE,
file=NULL,
file.align.head="auto",
file.align.text="auto") {
if(!inherits(x, c("matrix", "data.frame", "data.table"))) {
coef.table=coef(summary(x))
if(!is.null(coef.table)) x=coef.table
}
x=as.data.frame(x)
sig=NULL
if(length(nsmalls)==1) nsmalls=rep(nsmalls, length(x))
for(j in 1:length(x)) {
if(inherits(x[,j], "factor"))
x[,j]=as.character(x[,j])
if(grepl("Pr\\(|pval|p.value|<i>p</i>", names(x)[j])) {
sig=formatF(sig.trans(x[,j]), 0)
if(grepl("<i>p</i>", names(x)[j])==FALSE)
names(x)[j]="p"
x[,j]=p.trans(x[,j])
} else {
x[,j]=formatF(x[,j], nsmalls[j])
}
if(grepl("^S\\.E\\.$|^Std\\. Error$|^se$|^SE$|^BootSE$", names(x)[j])) {
x[,j]=paste0("(", x[,j], ")")
x[grepl("\\d", x[,j])==FALSE, j]=""
if(grepl("S\\.E\\.", names(x)[j])==FALSE) names(x)[j]="S.E."
}
if(grepl("^S\\.D\\.$|^Std\\. Deviation$", names(x)[j])) {
x[,j]=paste0("(", x[,j], ")")
x[grepl("\\d", x[,j])==FALSE, j]=""
if(grepl("S\\.D\\.", names(x)[j])==FALSE) names(x)[j]="S.D."
}
names(x)[j]=gsub(" value$|val$", "", names(x)[j])
}
if(is.null(sig)==FALSE & "sig" %notin% names(x)) {
p.pos=which(names(x) %in% c("p", "<i>p</i>"))
nvars=length(names(x))
if(p.pos<nvars)
x=cbind(x[1:p.pos], ` `=sig, x[(p.pos+1):nvars])
else
x=cbind(x, ` `=sig)
x$` `=as.character(x$` `)
}
if(class(row.names)=="character") {
row.names(x)=row.names
row.names=TRUE
}
if(class(col.names)=="character") {
names(x)=col.names
col.names=TRUE
}
linechar=ifelse(line, "\u2500", "-")
title.length=nchar(names(x), type="width")
vars.length=c()
for(j in 1:length(x)) vars.length[j]=max(nchar(x[,j], type="width"))
n.lines=apply(rbind(title.length, vars.length), 2, max)+2
n.lines.rn=max(nchar(row.names(x), type="width"))+2
if(row.names)
table.line=rep_char(linechar, sum(n.lines)+n.lines.rn)
else
table.line=rep_char(linechar, sum(n.lines))
if(is.null(file)) {
if(title!="") Print(title)
Print(table.line)
if(row.names)
cat(rep_char(" ", n.lines.rn))
for(j in 1:length(x)) {
name.j=names(x)[j]
cat(rep_char(" ", n.lines[j]-nchar(name.j, type="width")) %^% name.j)
}
cat("\n")
Print(table.line)
for(i in 1:nrow(x)) {
if(row.names) {
row.name.i=row.names(x)[i]
cat(row.name.i %^% rep_char(" ", n.lines.rn-nchar(row.name.i, type="width")))
}
for(j in 1:length(x)) {
x.ij=ifelse(is.na(x[i,j]) | grepl("NA$", x[i,j]), "", x[i,j])
cat(rep_char(" ", n.lines[j]-nchar(x.ij, type="width")) %^% x.ij)
}
cat("\n")
}
Print(table.line)
if(note!="") Print(note)
}
if(row.names) {
x=cbind(rn=row.names(x), x)
names(x)[1]=""
}
if(!is.null(file)) {
html=df_to_html(x, title=title, note=note, append=append,
file=file,
align.head=file.align.head,
align.text=file.align.text)
} else {
html=NULL
}
invisible(list(df=x, html=html))
}
df_to_html=function(df, title="", note="", append="",
file=NULL,
align.head="auto",
align.text="auto") {
if(!is.null(file)) {
if(file=="NOPRINT") {
file=NULL
} else {
file=str_replace(file, "\\.docx$", ".doc")
if(str_detect(file, "\\.doc$")==FALSE)
file=paste0(file, ".doc")
}
}
TITLE=title
TNOTE=note
APPEND=append
if(length(align.head)==1) {
if(align.head=="auto")
align.head=c("left", rep("right", times=ncol(df)-1))
else
align.head=rep(align.head, times=ncol(df))
}
if(length(align.text)==1) {
if(align.text=="auto")
align.text=c("left", rep("right", times=ncol(df)-1))
else
align.text=rep(align.text, times=ncol(df))
}
df=as.data.frame(df)
for(j in 1:ncol(df)) {
df[[j]]="<td align='" %^% align.text[j] %^% "'>" %^%
str_trim(str_replace_all(df[[j]], "^\\s*-{1}", "\u2013")) %^% "</td>"
}
THEAD="<tr> " %^%
paste("<th align='" %^%
align.head %^%
"'>" %^% names(df) %^% "</th>",
collapse=" ") %^% " </tr>"
TBODY="<tr> " %^%
paste(apply(df, 1, function(...) paste(..., collapse=" ")),
collapse=" </tr>\n<tr> ") %^% " </tr>"
TBODY=TBODY %>%
str_replace_all(">\\s*NA\\s*<", "><") %>%
str_replace_all("\\s+</td>", "</td>") %>%
str_replace_all("\\[\\s+", "[") %>%
str_replace_all("\\,\\s+", ", ") %>%
str_replace_all("<\\.001", "< .001")
TABLE=paste0("
<table>
<thead>
", THEAD, "
</thead>
<tbody>
", TBODY, "
</tbody>
</table>
")
HTML=paste0("<!DOCTYPE html>
<html>
<head>
<meta charset='utf-8'>
<title></title>
<style>
", ifelse(
grepl("\\.doc$", file),
"body, pre {font-size: 10.5pt; font-family: Times New Roman;}",
""
), "
p {margin: 0px;}
table {border-collapse: collapse; border-spacing: 0px; color:
border-top: 2px solid
table thead th {border-bottom: 1px solid
table th, table td {padding-left: 5px; padding-right: 5px; height: 19px;}
</style>
</head>
<body>
<p>", TITLE, "</p>", TABLE, "<p>", TNOTE, "</p>", APPEND, "
</body>
</html>")
if(!is.null(file)) {
if(file!="NOPRINT") {
f=file(file, "w", encoding="UTF-8")
cat(HTML, file=f)
close(f)
Print("<<green \u221a>> Table saved to <<bold \"{paste0(getwd(), '/', file)}\">>")
cat("\n")
}
}
invisible(list(HTML=HTML, TABLE=TABLE))
}
formatN=function(x, mark=",") {
format(x, big.mark=mark)
}
formatF=function(x, digits=3, nsmall=digits) {
if(inherits(x, "character")) {
xf=sprintf(paste0("%-", max(nchar(x), na.rm=TRUE), "s"), x)
} else {
x=sprintf(paste0("%.", nsmall, "f"), x)
xf=sprintf(paste0("%", max(nchar(x), na.rm=TRUE), "s"), x)
}
return(xf)
}
RGB=function(r, g, b, alpha) {
grDevices::rgb(r/255, g/255, b/255, alpha)
}
dtime=function(t0, unit="secs", digits=0, nsmall=digits) {
dt=difftime(Sys.time(), t0, units=unit)
format(dt, digits=1, nsmall=nsmall)
}
set.wd=function(path=NULL, ask=FALSE) {
is.windows=ifelse(Sys.info()[["sysname"]]=="Windows", TRUE, FALSE)
if(is.null(path)) {
tryCatch({
if(ask) {
if(is.windows)
path=iconv(rstudioapi::selectDirectory(), from="UTF-8", to="GBK")
else
path=rstudioapi::selectDirectory()
} else {
path=dirname(rstudioapi::getSourceEditorContext()$path)
}
}, error=function(e) {
message("Your RStudio version is: ", rstudioapi::getVersion(), "\n")
message("Please update RStudio to the latest version:\n",
"https://rstudio.com/products/rstudio/download/preview/\n")
})
}
if(length(path)>0) {
Run("setwd(\"{path}\")")
Print("<<green \u221a>> Set working directory to <<bold \"{getwd()}\">>")
}
invisible(path)
}
set_wd=set.wd
file_ext=function(filename) {
filename=str_trim(filename)
pos=regexpr("\\.([[:alnum:]]+)$", filename)
ifelse(pos>-1L, tolower(substring(filename, pos+1L)), "")
}
import=function(file,
sheet=NULL, range=NULL,
encoding=NULL, header="auto",
setclass=as, as="data.frame") {
if(missing(file)) {
file="clipboard"
fmt="clipboard"
} else {
if(file.exists(file)==FALSE)
stop("No such file. Did you forget adding the path or file extension?", call.=FALSE)
fmt=file_ext(file)
}
if(fmt=="") {
stop("File has no extension.", call.=FALSE)
} else if(fmt=="clipboard") {
if(header=="auto") header=TRUE
x=clipr::read_clip()
if(is.null(x) | (is.character(x) & length(x)==1 & x[1]==""))
stop("The system clipboard is empty. You may first copy something.", call.=FALSE)
else
data=clipr::read_clip_tbl(x=x, header=header)
} else if(fmt %in% c("rds")) {
data=readRDS(file=file)
} else if(fmt %in% c("rda", "rdata")) {
envir=new.env()
load(file=file, envir=envir)
if(length(ls(envir))>1)
warning("Rdata file contains multiple objects. Returning the first object.", call.=TRUE)
data=get(ls(envir)[1], envir)
} else if(fmt %in% c("txt", "csv", "csv2", "tsv", "psv")) {
if(is.null(encoding)) encoding="unknown"
data=data.table::fread(input=file,
sep="auto",
encoding=encoding,
header=header)
} else if(fmt %in% c("xls", "xlsx")) {
if(header=="auto") header=TRUE
data=readxl::read_excel(path=file,
sheet=sheet,
range=range,
col_names=header)
} else if(fmt %in% c("sav")) {
try({
error=TRUE
data=foreign::read.spss(
file=file,
reencode=ifelse(is.null(encoding), NA, encoding),
to.data.frame=TRUE,
use.value.labels=FALSE)
error=FALSE
}, silent=TRUE)
if(error) {
message("[Retry] Using `haven::read_sav()` to import the data...")
data=haven::read_sav(file=file, encoding=encoding)
}
} else if(fmt %in% c("dta")) {
try({
error=TRUE
data=foreign::read.dta(file=file, convert.factors=FALSE)
error=FALSE
}, silent=TRUE)
if(error) {
message("[Retry] Using `haven::read_dta()` to import the data...")
data=haven::read_dta(file=file, encoding=encoding)
}
} else {
data=rio::import(file=file)
}
if(is.data.frame(data))
Print("<<green \u221a>> Successfully imported: {nrow(data)} obs. of {ncol(data)} variables")
else
Print("<<green \u221a>> Successfully imported: {length(data)} values of class `{class(data)[1]}`")
if(is.null(setclass) | fmt %in% c("rds", "rda", "rdata")) {
return(data)
} else if(setclass %in% c("data.frame", "df", "DF")) {
return(base::as.data.frame(data))
} else if(setclass %in% c("data.table", "dt", "DT")) {
return(data.table::as.data.table(data))
} else if(setclass %in% c("tibble", "tbl_df", "tbl")) {
return(tibble::as_tibble(data))
} else {
return(data)
}
}
export=function(x, file, sheet=NULL,
encoding=NULL, header="auto",
overwrite=TRUE) {
if(missing(file)) {
file="clipboard"
fmt="clipboard"
} else {
if(file.exists(file)==TRUE) {
if(overwrite)
message("Overwrite file \"", file, "\" ...")
else
stop("File \"", file, "\" existed!", call.=FALSE)
}
fmt=file_ext(file)
}
if(fmt=="") {
stop("File has no extension.", call.=FALSE)
} else if(fmt=="clipboard") {
if(header=="auto") header=TRUE
suppressWarnings({
clipr::write_clip(content=x, sep="\t",
row.names=FALSE,
col.names=header)
})
} else if(fmt %in% c("rds")) {
saveRDS(object=x, file=file)
} else if(fmt %in% c("rda", "rdata")) {
if(is.data.frame(x)) {
save(x, file=file)
} else if(is.list(x)) {
if(inherits(x, "list")==FALSE) x=list(x)
if(is.null(names(x)))
names(x)=paste0("List", 1:length(x))
envir=as.environment(x)
save(list=names(x), file=file, envir=envir)
} else if(is.environment(x)) {
save(list=ls(x), file=file, envir=x)
} else if(is.character(x)) {
save(list=x, file=file)
} else {
stop("`x` must be a data.frame, list, or environment.", call.=FALSE)
}
} else if(fmt %in% c("txt", "csv", "csv2", "tsv", "psv")) {
sep=switch(fmt,
txt="\t",
csv=",",
csv2=";",
tsv="\t",
psv="|")
dec=ifelse(fmt=="csv2", ",", ".")
if(header=="auto") header=TRUE
if(is.null(encoding)) {
data.table::fwrite(x=x, file=file,
sep=sep, dec=dec,
row.names=FALSE,
col.names=header)
} else {
utils::write.table(x=x, file=file,
sep=sep, dec=dec,
row.names=FALSE,
col.names=header,
quote=FALSE, na="",
fileEncoding=encoding)
}
} else if(fmt %in% c("xls", "xlsx")) {
if(inherits(x, "list")==FALSE) x=list(x)
if(header=="auto") header=TRUE
if(is.null(sheet)) {
if(is.null(names(x)))
names(x)=paste0("Sheet", 1:length(x))
openxlsx::write.xlsx(x=x, file=file,
overwrite=overwrite,
rowNames=FALSE,
colNames=header)
} else {
sheet=as.character(sheet)
if(length(x)==length(sheet)) {
n=length(x)
if(file.exists(file)) {
wb=openxlsx::loadWorkbook(file=file)
sheets=openxlsx::getSheetNames(file=file)
for(i in 1:n) {
if(sheet[i] %in% sheets)
openxlsx::removeWorksheet(wb, sheet=sheet[i])
openxlsx::addWorksheet(wb, sheetName=sheet[i])
openxlsx::writeData(wb, sheet=sheet[i], x=x[[i]],
rowNames=FALSE,
colNames=header)
}
openxlsx::saveWorkbook(wb, file=file, overwrite=TRUE)
} else {
names(x)=sheet
openxlsx::write.xlsx(x=x, file=file,
overwrite=overwrite,
rowNames=FALSE,
colNames=header)
}
} else {
stop("Length of sheet should be equal to length of x!", call.=FALSE)
}
}
} else if(fmt %in% c("sav")) {
x=restore_labelled(x)
haven::write_sav(data=x, path=file)
} else if(fmt %in% c("dta")) {
x=restore_labelled(x)
haven::write_dta(data=x, path=file)
} else {
rio::export(x=x, file=file)
}
if(fmt=="clipboard")
Print("<<green \u221a>> Successfully paste to clipboard")
else
Print("<<green \u221a>> Successfully saved to <<bold \"{paste0(getwd(), '/', file)}\">>")
}
restore_labelled=function(x) {
x[]=lapply(x, function(v) {
if(is.factor(v)) {
haven::labelled(
x=as.numeric(v),
labels=stats::setNames(seq_along(levels(v)), levels(v)),
label=attr(v, "label", exact=TRUE))
} else if(!is.null(attr(v, "labels", exact=TRUE)) | !is.null(attr(v, "label", exact=TRUE))) {
haven::labelled(
x=v,
labels=attr(v, "labels", exact=TRUE),
label=attr(v, "label", exact=TRUE))
} else {
v
}
})
x
}
LOOKUP=function(data, vars,
data.ref, vars.ref,
vars.lookup,
return=c("new.data", "new.var", "new.value")) {
by=vars.ref
names(by)=vars
data.ref=as.data.frame(data.ref)
data.new=left_join(data,
data.ref[c(vars.ref, vars.lookup)],
by=by)
if(nrow(data.new)>nrow(data))
warning("More than one values are matched!", call.=TRUE)
if(length(return)==3) return="new.data"
if(return=="new.value" & length(vars.lookup)>=2) return="new.var"
if(return=="new.data") {
return(data.new)
} else if(return=="new.var") {
return(data.new[vars.lookup])
} else if(return=="new.value") {
return(data.new[[vars.lookup]])
}
} |
seriate_dist_spectral <- function(x, control = NULL) {
.get_parameters(control, NULL)
W <- 1 / (1 + as.matrix(x))
D <- diag(rowSums(W))
L <- D - W
q <- eigen(L)
fiedler <- q$vectors[, ncol(W) - 1L]
o <- order(fiedler)
names(o) <- names(x)[o]
o
}
seriate_dist_spectral_norm <- function(x, control = NULL) {
.get_parameters(control, NULL)
W <- 1 / (1 + as.matrix(x))
D_sqrt <- diag(rowSums(1 / W ^ .5))
L <- D_sqrt %*% W %*% D_sqrt
z <- eigen(L)$vectors
q <- D_sqrt %*% z
largest_ev <- q[, 2L]
o <- order(largest_ev)
names(o) <- names(x)[o]
o
}
set_seriation_method(
"dist",
"Spectral",
seriate_dist_spectral,
"Spectral seriation (Ding and He 2004) uses a relaxation to minimize the 2-Sum Problem (Barnard, Pothen, and Simon 1993). It uses the order of the Fiedler vector of the similarity matrix's Laplacian."
)
set_seriation_method(
"dist",
"Spectral_norm",
seriate_dist_spectral_norm,
"Spectral seriation (Ding and He 2004) uses a relaxation to minimize the 2-Sum Problem (Barnard, Pothen, and Simon 1993). It uses the order of the Fiedler vector of the similarity matrix's normalized Laplacian."
) |
set <- function(dend, ...) {
UseMethod("set")
}
set.dendrogram <-
function(dend,
what = c(
"labels",
"labels_colors",
"labels_cex",
"labels_to_character",
"leaves_pch",
"leaves_cex",
"leaves_col",
"nodes_pch",
"nodes_cex",
"nodes_col",
"hang_leaves",
"rank_branches",
"branches_k_color",
"branches_k_lty",
"branches_col",
"branches_lwd",
"branches_lty",
"by_labels_branches_col",
"by_labels_branches_lwd",
"by_labels_branches_lty",
"by_lists_branches_col",
"by_lists_branches_lwd",
"by_lists_branches_lty",
"highlight_branches_col",
"highlight_branches_lwd",
"clear_branches",
"clear_leaves"
),
value,
order_value = FALSE,
...) {
if (missing(what)) {
if (dendextend_options("warn")) warning("'what' is missing, returning the dendrogram as is")
return(dend)
}
if (order_value) value <- value[order.dendrogram(dend)]
what <- match.arg(what)
dend <- switch(what,
labels = `labels<-.dendrogram`(dend, value = value, ...),
labels_colors = color_labels(dend, col = value, ...),
labels_cex = assign_values_to_leaves_nodePar(dend, value, "lab.cex", ...),
labels_to_character = set(dend, what = "labels", value = as.character(labels(dend)), ...),
leaves_pch = assign_values_to_leaves_nodePar(dend, value, "pch", ...),
leaves_cex = assign_values_to_leaves_nodePar(dend, value, "cex", ...),
leaves_col = assign_values_to_leaves_nodePar(dend, value, "col", ...),
nodes_pch = assign_values_to_nodes_nodePar(dend, value, "pch", ...),
nodes_cex = assign_values_to_nodes_nodePar(dend, value, "cex", ...),
nodes_col = assign_values_to_nodes_nodePar(dend, value, "col", ...),
hang_leaves = hang.dendrogram(dend, hang = ifelse(missing(value), .1, value), ...),
rank_branches = rank_branches(dend, ...),
branches_k_color = color_branches(dend, col = value, ...),
branches_k_lty = lty_branches(dend, lty = value, ...),
branches_col = assign_values_to_branches_edgePar(dend, value = value, edgePar = "col", ...),
branches_lwd = assign_values_to_branches_edgePar(dend, value = value, edgePar = "lwd", ...),
branches_lty = assign_values_to_branches_edgePar(dend, value = value, edgePar = "lty", ...),
by_labels_branches_col = branches_attr_by_labels(dend, labels = value, attr = "col", ...),
by_labels_branches_lwd = branches_attr_by_labels(dend, labels = value, attr = "lwd", ...),
by_labels_branches_lty = branches_attr_by_labels(dend, labels = value, attr = "lty", ...),
by_lists_branches_col = branches_attr_by_lists(dend, lists = value, attr = "col", ...),
by_lists_branches_lwd = branches_attr_by_lists(dend, lists = value, attr = "lwd", ...),
by_lists_branches_lty = branches_attr_by_lists(dend, lists = value, attr = "lty", ...),
highlight_branches_col = highlight_branches_col(dend, values = value, ...),
highlight_branches_lwd = highlight_branches_lwd(dend, values = value, ...),
clear_branches = remove_branches_edgePar(dend, ...),
clear_leaves = remove_leaves_nodePar(dend, ...)
)
dend
}
set.dendlist <- function(dend, ..., which) {
if (missing(which)) which <- 1:length(dend)
for (i in which) {
dend[[i]] <- set(dend[[i]], ...)
}
dend
}
set.data.table <- function(...) {
warning("set function has been overridden from data.table - which means that data.table's set() is now slower. You may solve this by using the prefix 'data.table::'' in your for loop.")
data.table::set(...)
} |
g.triESS <- function(params, respvec, VC, TIn){
mean1 <- TIn$theta12 * TIn$mar1
mean2 <- TIn$theta13 * TIn$mar1
mean3 <- TIn$theta12 * TIn$mar2
mean4 <- TIn$theta23 * TIn$mar2
mean5 <- TIn$theta13 * TIn$mar3
mean6 <- TIn$theta23 * TIn$mar3
var1 <- 1 - TIn$theta12^2
var2 <- 1 - TIn$theta13^2
var3 <- 1 - TIn$theta23^2
cov1 <- TIn$theta23 - TIn$theta12 * TIn$theta13
cov2 <- TIn$theta13 - TIn$theta12 * TIn$theta23
cov3 <- TIn$theta12 - TIn$theta13 * TIn$theta23
cov1 <- mmf(cov1, max.pr = VC$max.pr)
cov2 <- mmf(cov2, max.pr = VC$max.pr)
cov3 <- mmf(cov3, max.pr = VC$max.pr)
d.1 <- dnorm(TIn$mar1)
d.2 <- dnorm(TIn$mar2)
d.3 <- dnorm(TIn$mar3)
p.1.11 <- mm(pbinorm( TIn$mar2, TIn$mar3, mean1 = mean1[VC$inde], mean2 = mean2[VC$inde], var1 = var1, var2 = var2, cov12 = cov1), min.pr = VC$min.pr, max.pr = VC$max.pr )
p.1.10 <- mm(pbinorm( TIn$mar2, -TIn$mar3, mean1 = mean1[VC$inde], mean2 = -mean2[VC$inde], var1 = var1, var2 = var2, cov12 = -cov1), min.pr = VC$min.pr, max.pr = VC$max.pr )
p.1.00 <- mm(pbinorm(-TIn$mar2, -TIn$mar3, mean1 = -mean1[VC$inde], mean2 = -mean2[VC$inde], var1 = var1, var2 = var2, cov12 = cov1), min.pr = VC$min.pr, max.pr = VC$max.pr )
p.1.01 <- mm(pbinorm(-TIn$mar2, TIn$mar3, mean1 = -mean1[VC$inde], mean2 = mean2[VC$inde], var1 = var1, var2 = var2, cov12 = -cov1), min.pr = VC$min.pr, max.pr = VC$max.pr )
p.2.11 <- mm(pbinorm( TIn$mar1[VC$inde], TIn$mar3, mean1 = mean3, mean2 = mean4, var1 = var1, var2 = var3, cov12 = cov2) , min.pr = VC$min.pr, max.pr = VC$max.pr)
p.2.10 <- mm(pbinorm( TIn$mar1[VC$inde], -TIn$mar3, mean1 = mean3, mean2 = -mean4, var1 = var1, var2 = var3, cov12 = -cov2) , min.pr = VC$min.pr, max.pr = VC$max.pr)
p.3.11 <- mm(pbinorm( TIn$mar1[VC$inde], TIn$mar2, mean1 = mean5, mean2 = mean6, var1 = var2, var2 = var3, cov12 = cov3) , min.pr = VC$min.pr, max.pr = VC$max.pr)
p.3.10 <- mm(pbinorm( TIn$mar1[VC$inde], -TIn$mar2, mean1 = mean5, mean2 = -mean6, var1 = var2, var2 = var3, cov12 = -cov3) , min.pr = VC$min.pr, max.pr = VC$max.pr)
dmar1 <- probm(TIn$eta1, VC$margins[1], only.pr = FALSE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)$d.n
dmar2 <- probm(TIn$eta2, VC$margins[2], only.pr = FALSE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)$d.n
dmar3 <- probm(TIn$eta3, VC$margins[3], only.pr = FALSE, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr)$d.n
dF1.de1 <- (1/d.1) * dmar1
dF2.de2 <- (1/d.2) * dmar2
dF3.de3 <- (1/d.3) * dmar3
dl.dF1.1 <- - respvec$cy1/TIn$p0 * d.1
dl.dF1.1[VC$inde] <- respvec$y1.y2.y3/TIn$p111 * d.1[VC$inde] * p.1.11 +
respvec$y1.y2.cy3/TIn$p110 * d.1[VC$inde] * p.1.10 +
respvec$y1.cy2.cy3/TIn$p100 * d.1[VC$inde] * p.1.00 +
respvec$y1.cy2.y3/TIn$p101 * d.1[VC$inde] * p.1.01
dl.dF1 <- dl.dF1.1
dl.de1 <- dl.dF1 * dF1.de1
dl.dF2 <- respvec$y1.y2.y3/TIn$p111 * d.2 * p.2.11 +
respvec$y1.y2.cy3/TIn$p110 * d.2 * p.2.10 -
respvec$y1.cy2.cy3/TIn$p100 * d.2 * p.2.10 -
respvec$y1.cy2.y3/TIn$p101 * d.2 * p.2.11
dl.de2 <- dl.dF2 * dF2.de2
dl.dF3 <- respvec$y1.y2.y3/TIn$p111 * d.3 * p.3.11 -
respvec$y1.y2.cy3/TIn$p110 * d.3 * p.3.11 -
respvec$y1.cy2.cy3/TIn$p100 * d.3 * p.3.10 +
respvec$y1.cy2.y3/TIn$p101 * d.3 * p.3.10
dl.de3 <- dl.dF3 * dF3.de3
mean.12 <- ( TIn$mar1[VC$inde] * (TIn$theta13 - TIn$theta12 * TIn$theta23) + TIn$mar2 * (TIn$theta23 - TIn$theta12 * TIn$theta13) )/( 1 - TIn$theta12^2 )
mean.13 <- ( TIn$mar1[VC$inde] * (TIn$theta12 - TIn$theta13 * TIn$theta23) + TIn$mar3 * (TIn$theta23 - TIn$theta12 * TIn$theta13) )/( 1 - TIn$theta13^2 )
mean.23 <- ( TIn$mar2 * (TIn$theta12 - TIn$theta13 * TIn$theta23) + TIn$mar3 * (TIn$theta13 - TIn$theta12 * TIn$theta23) )/( 1 - TIn$theta23^2 )
deno <- 1 - TIn$theta12^2 - TIn$theta13^2 - TIn$theta23^2 + 2 * TIn$theta12 * TIn$theta13 * TIn$theta23
sd.12 <- sqrt( deno / ( 1 - TIn$theta12^2 ) )
sd.13 <- sqrt( deno / ( 1 - TIn$theta13^2 ) )
sd.23 <- sqrt( deno / ( 1 - TIn$theta23^2 ) )
p12.g <- mm( pnorm( (TIn$mar3 - mean.12)/sd.12) , min.pr = VC$min.pr, max.pr = VC$max.pr)
p13.g <- mm( pnorm( (TIn$mar2 - mean.13)/sd.13) , min.pr = VC$min.pr, max.pr = VC$max.pr)
p23.g <- mm( pnorm( (TIn$mar1[VC$inde] - mean.23)/sd.23) , min.pr = VC$min.pr, max.pr = VC$max.pr)
p12.g.c <- mm(1 - p12.g, min.pr = VC$min.pr, max.pr = VC$max.pr)
p13.g.c <- mm(1 - p13.g, min.pr = VC$min.pr, max.pr = VC$max.pr)
p23.g.c <- mm(1 - p23.g, min.pr = VC$min.pr, max.pr = VC$max.pr)
d11.12 <- dbinorm( TIn$mar1[VC$inde], TIn$mar2, cov12 = TIn$theta12)
d11.13 <- dbinorm( TIn$mar1[VC$inde], TIn$mar3, cov12 = TIn$theta13)
d11.23 <- dbinorm( TIn$mar2 , TIn$mar3, cov12 = TIn$theta23)
dl.dtheta12 <- respvec$y1.y2.y3/TIn$p111 * d11.12 * p12.g +
respvec$y1.y2.cy3/TIn$p110 * d11.12 * p12.g.c -
respvec$y1.cy2.cy3/TIn$p100 * d11.12 * p12.g.c -
respvec$y1.cy2.y3/TIn$p101 * d11.12 * p12.g
dl.dtheta13 <- respvec$y1.y2.y3/TIn$p111 * d11.13 * p13.g -
respvec$y1.y2.cy3/TIn$p110 * d11.13 * p13.g -
respvec$y1.cy2.cy3/TIn$p100 * d11.13 * p13.g.c +
respvec$y1.cy2.y3/TIn$p101 * d11.13 * p13.g.c
dl.dtheta23 <- respvec$y1.y2.y3/TIn$p111 * d11.23 * p23.g -
respvec$y1.y2.cy3/TIn$p110 * d11.23 * p23.g +
respvec$y1.cy2.cy3/TIn$p100 * d11.23 * p23.g -
respvec$y1.cy2.y3/TIn$p101 * d11.23 * p23.g
if(VC$Chol == FALSE){
dtheta12.dtheta12.st <- 4 * exp( 2 * TIn$theta12.st )/( exp(2 * TIn$theta12.st) + 1 )^2
dtheta13.dtheta13.st <- 4 * exp( 2 * TIn$theta13.st )/( exp(2 * TIn$theta13.st) + 1 )^2
dtheta23.dtheta23.st <- 4 * exp( 2 * TIn$theta23.st )/( exp(2 * TIn$theta23.st) + 1 )^2
dl.dtheta12.st <- dl.dtheta12 * dtheta12.dtheta12.st
dl.dtheta13.st <- dl.dtheta13 * dtheta13.dtheta13.st
dl.dtheta23.st <- dl.dtheta23 * dtheta23.dtheta23.st
}
if(VC$Chol == TRUE){
dl.dtheta <- matrix(c ( dl.dtheta12,
dl.dtheta13,
dl.dtheta23), length(which(VC$inde==TRUE)), 3)
dth12.dth12.st <- 1/(1 + TIn$theta12.st^2)^(3/2)
dth12.dth13.st <- 0
dth12.dth23.st <- 0
dth13.dth12.st <- 0
dth13.dth13.st <- (1 + TIn$theta23.st^2)/(1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2)
dth13.dth23.st <- - (TIn$theta13.st * TIn$theta23.st)/(1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2)
dth23.dth12.st <- TIn$theta13.st/sqrt((1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)) - (TIn$theta12.st * (TIn$theta12.st * TIn$theta13.st + TIn$theta23.st))/((1 + TIn$theta12.st^2)^(3/2) * sqrt(1 + TIn$theta13.st^2 + TIn$theta23.st^2))
dth23.dth13.st <- TIn$theta12.st/sqrt((1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)) - (TIn$theta13.st * (TIn$theta12.st * TIn$theta13.st + TIn$theta23.st))/(sqrt(1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2))
dth23.dth23.st <- 1/sqrt((1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)) - (TIn$theta23.st * (TIn$theta12.st * TIn$theta13.st + TIn$theta23.st))/(sqrt(1 + TIn$theta12.st^2) * (1 + TIn$theta13.st^2 + TIn$theta23.st^2)^(3/2))
dtheta.theta.st <- matrix( c( dth12.dth12.st, dth13.dth12.st, dth23.dth12.st,
dth12.dth13.st, dth13.dth13.st, dth23.dth13.st,
dth12.dth23.st, dth13.dth23.st, dth23.dth23.st ), 3 , 3)
dl.dtheta.st <- dl.dtheta %*% dtheta.theta.st
dl.dtheta12.st <- dl.dtheta.st[, 1]
dl.dtheta13.st <- dl.dtheta.st[, 2]
dl.dtheta23.st <- dl.dtheta.st[, 3]
}
GTRIVec <- list(p12.g = p12.g, p13.g = p13.g, p23.g = p23.g,
p12.g.c = p12.g.c, p13.g.c = p13.g.c,
d.1 = d.1, d.2 = d.2, d.3 = d.3,
dmar1 = dmar1, dmar2 = dmar2, dmar3 = dmar3,
d11.12 = d11.12, d11.13 = d11.13, d11.23 = d11.23,
p.1.11 = p.1.11, p.1.10 = p.1.10, p.1.00 = p.1.00, p.1.01 = p.1.01,
p.2.11 = p.2.11, p.2.10 = p.2.10,
p.3.11 = p.3.11, p.3.10 = p.3.10,
dF1.de1 = dF1.de1, dF2.de2 = dF2.de2, dF3.de3 = dF3.de3,
dl.dF1 = dl.dF1, dl.dF2 = dl.dF2, dl.dF3 = dl.dF3,
dl.de1 = VC$weights*dl.de1, dl.de2 = VC$weights[VC$inde]*dl.de2, dl.de3 = VC$weights[VC$inde]*dl.de3,
dl.dtheta12.st = VC$weights[VC$inde]*dl.dtheta12.st, dl.dtheta13.st = VC$weights[VC$inde]*dl.dtheta13.st,
dl.dtheta23.st = VC$weights[VC$inde]*dl.dtheta23.st,
mean.12 = mean.12,
mean.13 = mean.13,
mean.23 = mean.23,
sd.12 =sd.12,
sd.13 =sd.13,
sd.23 =sd.23,
dl.dtheta12 =dl.dtheta12, dl.dtheta13 = dl.dtheta13, dl.dtheta23 = dl.dtheta23)
GTRIVec
} |
library(liteq)
library(DBI)
require(tidyverse)
require(jsonlite)
queues_db <- "~/Downloads/queuesdb"
q <- ensure_queue("jobs", db = queues_db)
urls <- paste0("https://news.ycombinator.com/news?p=", 1)
map(urls, partial(publish, q = q, title = "get_links"))
result_db <- src_sqlite(path = "~/Downloads/resultdb", create = TRUE)
result_tbl <- tibble(
id = integer(),
title = character(),
points = integer(),
comments = integer(),
html_title = character(),
url = character(),
timestamp = integer()) %>%
copy_to(result_db, ., "hackernews", indexes = list(id_idx = "id"))
parse_hackernews_row <- function(row){
tibble(
id = row[[1]] %>% html_attr("id") %>% as.integer,
title = row[[1]] %>% html_node(".storylink") %>% html_text,
points = row[[2]] %>% html_node(".score") %>% html_text %>% parse_number,
comments = row[[2]] %>% html_node("a+ a") %>% html_text %>% parse_number(na = c("", "NA", "discuss")),
html_title = character(1),
url = row[[1]] %>% html_node(".storylink") %>% html_attr("href"),
timestamp = as.integer(Sys.time())
)
}
scrape_hackernews <- function(url){
doc <- read_html(url)
doc %>% html_node(".itemlist") %>% html_nodes("tr") %>%
.[-c(length(.):(length(.)-1))] %>%
{split(., rep(seq(length(.)/3), each = 3))} %>%
map_df(parse_hackernews_row)
}
flawed_scraper <- function(url){
read_html(url) %>% html_node("title") %>% html_text
}
do_job <- function(msg, db, q){
if(msg$title == "get_links"){
out <- scrape_hackernews(msg$message)
messages <- build_messages(out[, c("id", "url")])
map(unlist(messages), partial(publish, q = q, title = "get_title"))
dbWriteTable(db$con, "hackernews", out, append = TRUE)
}
if(msg$title == "get_title"){
message <- fromJSON(msg$message)
out <- flawed_scraper(message$url)
sql <- sprintf("UPDATE hackernews SET html_title='%s' WHERE id=%d", out, message$id)
dbExecute(db$con, sql)
}
}
build_messages <- function(dat){
by_row(dat, ~toJSON(as.list(.), auto_unbox = TRUE))$.out
}
msg <- try_consume(q)
while(!is.null(msg)){
cat(msg$id, msg$title, "\n")
tryCatch({do_job(msg, result_db, q); ack(msg)}, error = function(e) nack(msg))
msg <- try_consume(q)
}
failed_messages <- list_failed_messages(q)
result_without_html_table <- result_tbl %>% filter(html_title == "") %>% collect
nrow(failed_messages) == nrow(result_without_html_table) |
faMAP <- function(R, max.fac = 8, Print=TRUE, Plot=TRUE, ...) {
nvars <- nrow(R)
ULU <- eigen(R)
eigval <- ULU$values
eigvect = ULU$vectors
I <- diag(nvars)
loadings = eigvect %*% diag(sqrt(eigval))
fm4 <- fm <- rep(0,max.fac)
fm[1] <- sum(R^2 - I)/(nvars*(nvars-1))
fm4[1] <- sum(R^4 - I)/(nvars*(nvars-1))
for(m in 1:(max.fac-1)){
biga <- loadings[,1:m]
partcov = R - (biga %*% t(biga))
d <- diag ( (1 / sqrt(diag(partcov))))
pr <- d %*% partcov %*% d
fm[m+1] <- (sum(pr^2)-nvars)/(nvars*(nvars-1))
fm4[m+1] <- (sum(pr^4)-nvars)/(nvars*(nvars-1))
}
minfm.loc <- which.min(fm)
minfm4.loc <- which.min(fm4)
if(Print){
cat("\nVelicer's Minimum Average Partial (MAP) Test\n\n")
cat("The smallest average squared partial correlation is: ",
round(min(fm),3),"\n")
cat("The smallest average 4rth power partial correlation is: ",
round(min(fm4),3),"\n\n")
cat("The Number of Components According to the Original (1976) MAP Test is = ", minfm.loc,"\n")
cat("The Number of Components According to the Revised (2000) MAP Test is = ",minfm4.loc)
}
PlotAvgSq <- NULL
m1 <- c("Original MAP (Avg squared partial r)", paste("\nNumber of Components = ", minfm.loc, sep=""))
if(Plot){
plot(1:max.fac,fm,type="b",
main=m1,
xlab="Dimensions",
ylab="Avg squared partial r",
xlim=c(1,max.fac),
...)
PlotAvgSq <- recordPlot()
m1 <- c("Revised MAP (Avg 4th partial r):\n",
paste("\nNumber of Components = ",
minfm4.loc, sep=""))
plot(1:max.fac,fm4,type="b",
main=m1,
xlab="Dimensions",
ylab="Avg 4th partial r",
...)
PlotAvg4th <- recordPlot()
}
invisible(list(MAP = minfm.loc,
MAP4 = minfm4.loc,
fm = fm,
fm4 = fm4,
PlotAvgSq = PlotAvgSq,
PlotAvg4th = PlotAvg4th))
} |
.pkgglobalenv <- new.env(parent=emptyenv())
ndvar <- function(n)
{
if(!exists("mc.control", envir=.pkgglobalenv))
assign("mc.control",list(nsv=1001,nsu=101),envir=.pkgglobalenv )
x <- get("mc.control", envir=.pkgglobalenv)
if(!is.list(x) || is.null(x$nsv) || is.null(x$nsu))
assign("mc.control",list(nsv=1001,nsu=101),envir=.pkgglobalenv )
if(!missing(n)){
if (n > 0) x$nsv <- ceiling(n)
else stop("Invalid n")
assign("mc.control",x, envir=.pkgglobalenv)}
return(x$nsv)}
ndunc <- function(n)
{
if(!exists("mc.control", envir=.pkgglobalenv))
assign("mc.control",list(nsv=1001,nsu=101),envir=.pkgglobalenv )
x <- get("mc.control", envir=.pkgglobalenv)
if(!is.list(x) || is.null(x$nsv) || is.null(x$nsu))
assign("mc.control",list(nsv=1001,nsu=101),envir=.pkgglobalenv )
if(!missing(n)){
if (n > 0) x$nsu <- ceiling(n)
else stop("Invalid n")
assign("mc.control",x, envir=.pkgglobalenv)}
return(x$nsu)} |
library(RSSL)
library(ggplot2)
library(dplyr)
set.seed(1)
df_circles <- generateTwoCircles(400,noise=0.1) %>%
add_missinglabels_mar(Class~.,0.99)
df_circles %>%
ggplot(aes(x=X1,y=X2,color=Class)) +
geom_point() +
coord_equal()
class_grf <- GRFClassifier(Class~.,df_circles,
adjacency="heat",
adjacency_sigma = 0.1)
df_circles %>%
filter(is.na(Class)) %>%
mutate(Responsibility=responsibilities(class_grf)[,1]) %>%
ggplot(aes(x=X1,y=X2,color=Responsibility)) +
geom_point() +
coord_equal()
df_para <- generateParallelPlanes()
df_para$Class <- NA
df_para$Class[1] <- "a"
df_para$Class[101] <- "b"
df_para$Class[201] <- "c"
df_para$Class <- factor(df_para$Class)
df_para %>%
ggplot(aes(x=x,y=y,color=Class)) +
geom_point() +
coord_equal()
class_grf <- GRFClassifier(Class~.,df_para)
df_para %>%
filter(is.na(Class)) %>%
mutate(Assignment=factor(apply(responsibilities(class_grf),1,which.max))) %>%
ggplot(aes(x=x,y=y,color=Assignment)) +
geom_point() |
layout_tbl_graph_treemap <- function(graph, algorithm = 'split', weight = NULL, circular = FALSE, sort.by = NULL, direction = 'out', height = 1, width = 1) {
weight <- enquo(weight)
weight <- eval_tidy(weight, .N())
sort.by <- enquo(sort.by)
sort.by <- eval_tidy(sort.by)
hierarchy <- tree_to_hierarchy(graph, direction, sort.by, weight)
layout <- switch(
algorithm,
split = splitTreemap(hierarchy$parent, hierarchy$order, hierarchy$weight, width, height),
stop('Unknown algorithm')
)[-1, ]
layout <- new_data_frame(list(
x = layout[, 1] + layout[, 3] / 2,
y = layout[, 2] + layout[, 4] / 2,
width = layout[, 3],
height = layout[, 4],
circular = FALSE,
leaf = degree(graph, mode = direction) == 0,
depth = node_depth(graph, mode = direction)
))
extra_data <- as_tibble(graph, active = 'nodes')
warn_dropped_vars(layout, extra_data)
layout <- cbind(layout, extra_data[, !names(extra_data) %in% names(layout), drop = FALSE])
layout
} |
dcsd.mcmc.list <-
function(object, ...)
{
ncl <- nclones(object)
if (is.null(ncl))
ncl <- 1
mcmcapply(object, sd, ...) * sqrt(ncl)
} |
test_that("throws when number of events exceed total observations", {
te <- c(2, 2)
tt <- c(1, 1)
ce <- c(3, 3)
ct <- c(0, 0)
expect_error(rema(te, tt, ce, ct),
" may not exceed the respective element in ")
}) |
"uneqvar" |
removeSource = function (fn) {
recurse <- function(part) {
if (is.name(part))
return(part)
attr(part, "srcref") <- NULL
attr(part, "wholeSrcref") <- NULL
attr(part, "srcfile") <- NULL
if (is.language(part) && is.recursive(part)) {
for (i in seq_along(part)) part[i] <- list(recurse(part[[i]]))
}
part
}
if (is.function(fn)) {
if (!is.primitive(fn)) {
attr(fn, "srcref") <- NULL
attr(body(fn), "wholeSrcref") <- NULL
attr(body(fn), "srcfile") <- NULL
body(fn) <- recurse(body(fn))
}
fn
} else if (is.language(fn)) {
recurse(fn)
} else {
stop("argument is not a function or language object:", typeof(fn))
}
} |
agePyramidPlot <- function(males, females, ageLabels, mcol, fcol, laxlab,
raxlab, gap, currentDate) {
pyramid.plot(lx = males, rx = females, labels = ageLabels,
main = stri_c("Total on ",
year(currentDate), "-",
month(currentDate, label = TRUE), "-",
day(currentDate),
": ", sum(c(males, females))),
top.labels = c(
stri_c("Male = ", sum(males)),
"Age",
stri_c("Female = ", sum(females))),
lxcol = mcol, rxcol = fcol,
laxlab = laxlab,
raxlab = raxlab,
gap = gap,
unit = "Number of Animals",
show.values = TRUE, ndig = 0)
} |
context("drawManifolds")
on.exit(unlink('Rplots.pdf'))
example5.flowField <- flowField(phaseR::example5, xlim = c(-3, 3),
ylim = c(-3, 3), points = 19, add = FALSE)
ex5.pars <- list(y0 = c(0, 0), tend = 100)
ex5.out <- do.call(drawManifolds, c(deriv=phaseR::example5, ex5.pars))
test_that("behavior equal to reference behavior", {
expect_equal_to_reference(ex5.out[c("dx","dy")], "test-drawManifolds_ref-ex5.rds")
})
test_that("alternative formulation equal to reference behavior", {
ex5.alt <- function(t, state, parameters) {
with(as.list(c(state, parameters)), {
dx = 2*x + y
dy = 2*x -y
list(c(dx, dy))
})
}
ex5.alt.out <- do.call(drawManifolds, c(deriv=ex5.alt, ex5.pars))
expect_equal(ex5.alt.out[c("dx","dy")], ex5.out[c("dx","dy")])
}) |
utility.endnode.classcounts.create <- function(name.node,
name.attrib,
u.max.inc,
names.u.max.inc = list(),
exceed.next = TRUE,
utility = TRUE,
required = FALSE,
col = "black",
shift.levels = 0)
{
check.ok <- T
n <- length(name.attrib)
if ( length(u.max.inc) != n )
{
cat("*** Warning: Number of elements of u.max.inc not equal to number of elements of name.attrib:",
length(u.max.inc),n,"\n")
check.ok <- F
}
for ( i in 1:n )
{
if ( !is.vector(u.max.inc[[i]]) )
{
cat("*** Warning: Eelements of u.max.inc must be vectors","\n")
check.ok <- F
}
}
if ( length(names.u.max.inc) != 0 & length(names.u.max.inc) != n )
{
cat("*** Warning: Number of elements of names.u.max.inc not equal to zero or to the number of elements of name.attrib:",
length(names.u.max.inc),n,"\n")
check.ok <- F
}
if ( ! check.ok )
{
cat("*** Warning: node \"",name.node,"\" could not be constructed","\n",
sep="")
return(NA)
}
node <- list()
node$name <- name.node
node$description <- "utility/value class counts end node"
node$type <- "endnode"
node$attrib <- name.attrib
node$u.max.inc <- u.max.inc
for ( i in 1:n )
{
l <- length(node$u.max.inc[[i]])
if ( l < n+2-i ) node$u.max.inc[[i]] <- c(node$u.max.inc[[i]],rep(0,n+2-i-l))
if ( l > n+2-i ) node$u.max.inc[[i]] <- node$u.max.inc[[i]][1:(n+2-i)]
}
if ( length(node$names.u.max.inc) == n )
{
for ( i in 1:n )
{
l <- length(node$names.u.max.inc[[i]])
if ( l < n+2-i ) node$names.u.max.inc[[i]] <- c(node$names.u.max.inc[[i]],rep(NA,n+2-i-l))
if ( l > n+2-i ) node$names.u.max.inc[[i]] <- node$names.u.max.inc[[i]][1:(n+2-i)]
}
}
node$names.u.max.inc <- names.u.max.inc
node$exceed.next <- exceed.next
node$required <- required
node$utility <- utility
node$col <- col
node$shift.levels <- shift.levels
class(node) <- "utility.endnode.classcounts"
return(node)
}
updatepar.utility.endnode.classcounts <- function(x,par=NA,...)
{
node <- x
n <- length(node$attrib)
if ( length(names(par)) == 0 ) return(node)
if ( length(node$names.u.max.inc) != n ) return(node)
for ( i in 1:length(node$attrib) )
{
for ( j in 1:(n+2-i) )
{
if ( ! is.na(node$names.u.max.inc[[i]][j]) )
{
ind <- which(node$names.u.max.inc[[i]][j] == names(par) )
if ( length(ind) > 1 )
{
warning("Node \"",node$name,"\": multiple occurrences of parameter",
names(par)[ind[1]])
ind <- ind[1]
}
if ( length(ind) == 1 )
{
node$u.max.inc[[i]][j] <- par[ind]
}
}
}
}
return(n)
}
evaluate.utility.endnode.classcounts <- function(x,
attrib,
par = NA,
...)
{
node <- x
n <- length(node$attrib)
node <- updatepar(node,par)
if ( is.data.frame(attrib) | is.matrix(attrib) )
{
ind <- match(node$attrib,colnames(attrib))
if ( sum(ifelse(is.na(ind),1,0)) > 0 )
{
warning("Node \"",node$name,"\": attribute(s) \"",
paste(node$attrib[is.na(ind)],collapse=","),"\" not found",sep="")
return(rep(NA,nrow(attrib)))
}
a <- attrib[,ind]
}
else
{
if ( ! is.vector(attrib) )
{
warning("Node \"",node$name,"\": unknown format of attribute(s) \"",node$attrib,"\"",sep="")
return(NA)
}
if ( length(names(attrib)) == 0 )
{
if ( length(attrib) == 2 )
a <- as.matrix(attrib,nrow=1)
}
else
{
ind <- match(node$attrib,names(attrib))
if ( sum(ifelse(is.na(ind),1,0)) > 0 )
{
warning("Node \"",node$name,"\": attribute(s) \"",
paste(node$attrib[is.na(ind)],collapse=","),"\" not found",sep="")
return(rep(NA,nrow(attrib)))
}
a <- as.matrix(attrib[ind],nrow=1)
}
}
u <- rep(NA,nrow(a))
for ( k in 1:nrow(a) )
{
att <- as.numeric(a[k,])
i <- match(TRUE,att>0)
if ( is.na(i) )
{
if ( sum(!is.na(att)) > 0 ) u[k] <- 0
}
else
{
u[k] <- node$u.max.inc[[i]][1]
u[k] <- u[k] + (att[i]-1)*node$u.max.inc[[i]][2]
if ( i < n )
{
for ( j in 1:(n-i) ) u[k] <- u[k] + att[i+j]*node$u.max.inc[[i]][2+j]
}
u[k] <- min(1,u[k])
if ( i > 1 & !node$exceed.next )
{
u[k] <- min(node$u.max.inc[[i-1]][1],u[k])
}
}
}
return(u)
}
print.utility.endnode.classcounts <- function(x,...)
{
cat(paste(rep("-",50),collapse=""),"\n")
summary(x,...)
cat(paste(rep("-",50),collapse=""),"\n")
}
summary.utility.endnode.classcounts <- function(object,...)
{
node <- object
cat(node$name,"\n")
cat(paste(rep("-",nchar(node$name)),collapse=""),"\n")
cat(node$description,"\n")
cat("attribute(s): ",paste(node$attrib,collapse=","),"\n")
funtype <- "utility"; if ( !node$utility ) funtype <- "value"
cat("function type: ",funtype,"\n")
cat("required: ",node$required,"\n")
cat("basic level, multiplicity increments","\n")
for ( i in 1:length(node$attrib) )
{
cat(paste(node$u.max.inc[[i]],collapse=", "),"\n")
}
}
plot.utility.endnode.classcounts <-
function(x,
par = NA,
col = utility.calc.colors(),
gridlines = c(0.2,0.4,0.6,0.8),
main = "",
cex.main = 1,
...)
{
node <- x
space <- 0.2
n <- updatepar(node,par)
title <- main; if ( nchar(title) == 0 ) title <- n$name
funtype <- "utility"; if ( !n$utility ) funtype <- "value"
n.attrib <- length(n$attrib)
u.max.inc <- matrix(0,nrow=n.attrib+1,ncol=n.attrib)
colnames(u.max.inc) <- n$attrib
for ( i in 1:n.attrib ) u.max.inc[1:(n.attrib+2-i),i] <- node$u.max.inc[[i]]
print(u.max.inc)
barplot(u.max.inc,main=title,ylab=paste(funtype,"(base + inc)"),
cex.main=cex.main,xlim=c(0,n.attrib*(1+space)),ylim=c(0,1),
space=space,beside=FALSE,xaxs="i",yaxs="i")
max.val <- 0.995*rep(1,n.attrib)
if ( !n$exceed.next ) max.val <- c(0.995,u.max.inc[1,1:(n.attrib-1)])
for ( i in 1:n.attrib )
{
lines(space+(i-1)*(1+space)+0.5+c(-0.5,0.5),max.val[i]*c(1,1),col="red",lwd=2)
}
} |
patternbar<-function(data,x, y, group=NULL, xlab='', ylab='', label.size=3.5,vjust=-1,hjust=-1,
pattern.type, pattern.line.size=rep(5, ifelse(is.null(group), length(x), length(unique(group)))),
pattern.color=rep('black', ifelse(is.null(group), length(x), length(unique(group)))),
background.color=rep('white', ifelse(is.null(group), length(x), length(unique(group)))),
frame.color=rep('black', ifelse(is.null(group), length(x), length(unique(group)))),frame.size=1,
pixel=20, density=rep(7, ifelse(is.null(group), length(x), length(unique(group)))),
legend.type='h', legend.h=6, legend.x.pos=1.1, legend.y.pos=0.49, legend.w=0.2, legend.pixel=20, bar.width=0.9){
location<-gsub('\\','/',tempdir(), fixed=T)
if(is.null(group)){
bplot <- ggplot(data, aes(x, y)) + geom_bar(stat="identity", width = bar.width)+geom_text(aes(label=y))
gdata<-ggplot_build(bplot)$data[[1]]
gdata<-gdata[order(gdata$group),]
boxmatrix<-list()
picdata<-list()
picdf<-list()
xmax<-max(gdata[, c('xmax')])
xmin<-min(gdata[, c('xmin')])
ymax<-max(gdata[, c('ymax')])
ymin<-min(gdata[, c('ymin')])
for (i in 1:dim(gdata)[1]){
boxmatrix[[i]]<-matrix(c(gdata[i,"xmin"], 0,
gdata[i,"xmax"], 0,
gdata[i,"xmax"], gdata[i,"ymax"],
gdata[i,"xmin"], gdata[i,"ymax"],
gdata[i,"xmin"], 0),
nrow=5,
ncol=2, byrow=T)
suppressWarnings(pattern(type=pattern.type[i], density=density[i], color=pattern.color[i], pattern.line.size=pattern.line.size[i], background.color=background.color[i], pixel=pixel, res=pixel))
if (sub( "_.*", "", pattern.type[i])=='Unicode'){
picdata[[i]]<-imagetodf2(readPNG(paste(location,'/','Unicode',".png", sep='')), boxmatrix[[i]],left =xmin, right = xmax ,bottom = ymin,top =ymax)
}else{
picdata[[i]]<-imagetodf2(readPNG(paste(location,'/',pattern.type[i],".png", sep='')), boxmatrix[[i]],left =xmin, right = xmax ,bottom = ymin,top =ymax)
}
picdata[[i]] <- filter(picdata[[i]], pos==1)
}
ldata<-ggplot_build(bplot)$data[[2]]
g<- ggplot()+ mapply(function(i) geom_tile(data = picdata[[i]], aes(x = X, y = Y, fill = rgb(r,g, b,a))),1:dim(gdata)[1])+scale_fill_identity()+geom_rect(aes(xmin=gdata[,"xmin"],xmax=gdata[,"xmax"],ymin=0,ymax=gdata[,"ymax"]), color=frame.color,size=frame.size, fill=NA)
g+ theme_bw()+xlab(xlab)+ylab(ylab)+ scale_x_continuous(breaks=seq(1:length(levels(x))), labels=levels(x))+geom_text(data=ldata, aes(x, y, label=label), vjust=vjust,hjust=hjust, size=label.size)
}else{
bplot <- ggplot(data, aes(x, y, fill=group)) + geom_bar(stat="identity", position=position_dodge(), width = bar.width) +geom_text(aes(label=y),position=position_dodge(width=0.9))
gdata<-ggplot_build(bplot)$data[[1]]
gdata<-gdata[order(gdata$group),]
boxmatrix<-list()
picdata<-list()
picdf<-list()
xmax<-max(gdata[, c('xmax')])
xmin<-min(gdata[, c('xmin')])
ymax<-max(gdata[, c('ymax')])
ymin<-min(gdata[, c('ymin')])
pattern.type2<-rep(pattern.type, time=length(unique(x)))
background.color2<-rep(background.color,time=length(unique(x)))
pattern.color2<-rep(pattern.color,time=length(unique(x)))
density2<-rep(density,time=length(unique(x)))
pattern.line.size2<-rep(pattern.line.size,time=length(unique(x)))
for (i in 1:dim(gdata)[1]){
boxmatrix[[i]]<-matrix(c(gdata[i,"xmin"], 0,
gdata[i,"xmax"], 0,
gdata[i,"xmax"], gdata[i,"ymax"],
gdata[i,"xmin"], gdata[i,"ymax"],
gdata[i,"xmin"], 0),
nrow=5,
ncol=2, byrow=T)
suppressWarnings(pattern(type=pattern.type2[i], density=density2[i], color=pattern.color2[i], pattern.line.size=pattern.line.size2[i], background.color=background.color2[i], pixel=pixel, res=pixel))
if (sub( "_.*", "", pattern.type2[i])=='Unicode'){
picdata[[i]]<-imagetodf2(readPNG(paste(location,'/','Unicode',".png", sep='')), boxmatrix[[i]],left =xmin, right = xmax ,bottom = ymin,top =ymax)
}else{
picdata[[i]]<-imagetodf2(readPNG(paste(location,'/',pattern.type2[i],".png", sep='')), boxmatrix[[i]],left =xmin, right = xmax ,bottom = ymin,top =ymax)
}
picdata[[i]] <- filter(picdata[[i]], pos==1)
}
legendbox<-list()
legenddata<-list()
if(legend.type=='v'){
legend.y<-seq(from =ymax+(0.1+0.05*legend.h)*ymax, to = ymax+0.1*ymax, length.out=length(pattern.type)+1)
legend.x<-seq(from = xmin, to = xmin+ 0.5*(gdata[1,"xmax"]-xmin), length.out=2)
legend.frame.xmin<-vector(mode="numeric", length=length(pattern.type))
legend.frame.xmax<-vector(mode="numeric", length=length(pattern.type))
legend.frame.ymin<-vector(mode="numeric", length=length(pattern.type))
legend.frame.ymax<-vector(mode="numeric", length=length(pattern.type))
for (i in 1:length(pattern.type)){
legendbox[[i]]<-matrix(c(legend.x[1], legend.y[i],
legend.x[2], legend.y[i],
legend.x[2],legend.y[i+1],
legend.x[1],legend.y[i+1],
legend.x[1],legend.y[i]),
nrow=5,
ncol=2, byrow=T)
suppressWarnings(pattern(type=pattern.type[i], density=0.6*density[i], color=pattern.color[i], pattern.line.size=pattern.line.size[i], background.color=background.color[i], pixel=legend.pixel, res=legend.pixel))
if (sub( "_.*", "", pattern.type[i])=='Unicode'){
legenddata[[i]]<-imagetodf2(readPNG(paste(location,'/','Unicode',".png", sep='')), legendbox[[i]],left =legendbox[[i]][1, 1], right = legendbox[[i]][2, 1] ,bottom = legendbox[[i]][1, 2],top =legendbox[[i]][3, 2])
}else{
legenddata[[i]]<-imagetodf2(readPNG(paste(location,'/',pattern.type[i],".png", sep='')), legendbox[[i]],left =legendbox[[i]][1, 1], right = legendbox[[i]][2, 1] ,bottom = legendbox[[i]][1, 2],top =legendbox[[i]][3, 2])
}
legend.frame.xmin[i]<-legend.x[1]
legend.frame.xmax[i]<-legend.x[2]
legend.frame.ymax[i]<-legend.y[i]
legend.frame.ymin[i]<-legend.y[i+1]
}
legend.label.y<-legend.y.pos*(legend.frame.ymin+legend.frame.ymax)
legend.label.x<-legend.x.pos*legend.w
}
if(legend.type=='h'){
legend.y<-c(ymax+0.1*ymax, ymax+(0.1+0.01*legend.h)*ymax)
legend.x.s<-seq(from =xmin, to =0.67* xmax, length.out=length(pattern.type))
legend.frame.xmin<-vector(mode="numeric", length=length(pattern.type))
legend.frame.xmax<-vector(mode="numeric", length=length(pattern.type))
legend.frame.ymin<-vector(mode="numeric", length=length(pattern.type))
legend.frame.ymax<-vector(mode="numeric", length=length(pattern.type))
for (i in 1:length(pattern.type)){
legendbox[[i]]<-matrix(c(legend.x.s[i], legend.y[1],
legend.x.s[i]+legend.w, legend.y[1],
legend.x.s[i]+legend.w,legend.y[2],
legend.x.s[i],legend.y[2],
legend.x.s[i],legend.y[1]),
nrow=5,
ncol=2, byrow=T)
suppressWarnings(pattern(type=pattern.type[i], density=0.6*density[i], color=pattern.color[i], pattern.line.size=pattern.line.size[i], background.color=background.color[i], pixel=legend.pixel, res=legend.pixel))
if (sub( "_.*", "", pattern.type[i])=='Unicode'){
legenddata[[i]]<-imagetodf2(readPNG(paste(location,'/','Unicode',".png", sep='')), legendbox[[i]],left =legendbox[[i]][1, 1], right = legendbox[[i]][2, 1] ,bottom = legendbox[[i]][1, 2],top =legendbox[[i]][3, 2])
}else{
legenddata[[i]]<-imagetodf2(readPNG(paste(location,'/',pattern.type[i],".png", sep='')), legendbox[[i]],left =legendbox[[i]][1, 1], right = legendbox[[i]][2, 1] ,bottom = legendbox[[i]][1, 2],top =legendbox[[i]][3, 2])
}
legend.frame.xmin[i]<-legendbox[[i]][1,1]
legend.frame.xmax[i]<-legendbox[[i]][2,1]
legend.frame.ymax[i]<-legendbox[[i]][3,2]
legend.frame.ymin[i]<-legendbox[[i]][1,2]
}
legend.label.y<-(legend.frame.ymin+legend.frame.ymax)*legend.y.pos
legend.label.x<-legend.x.s+legend.x.pos*legend.w
}
ldata<-ggplot_build(bplot)$data[[2]]
X<-Y<-r<-g<-b<-a<-pos<-label<-NULL
g<- ggplot()+ mapply(function(i) geom_tile(data = picdata[[i]], aes(x = X, y = Y, fill = rgb(r,g, b,a))),1:dim(gdata)[1])+scale_fill_identity()+geom_rect(aes(xmin=gdata[,"xmin"],xmax=gdata[,"xmax"],ymin=0,ymax=gdata[,"ymax"]), color=frame.color,size=frame.size, fill=NA)
g<-g+ theme_bw()+xlab(xlab)+ylab(ylab)+ scale_x_continuous(breaks=seq(1:length(levels(x))), labels=levels(x))+geom_text(data=ldata, aes(x, y, label=label), vjust=vjust,hjust=hjust, size=label.size)
g+ mapply(function(i) geom_tile(data = legenddata[[i]], aes(x = X, y = Y, fill = rgb(r,g, b,a))),1:length(pattern.type))+geom_rect(aes(xmin=legend.frame.xmin,xmax=legend.frame.xmax,ymin=legend.frame.ymin,ymax=legend.frame.ymax), color=frame.color,size=frame.size, fill=NA)+geom_text(aes(x=legend.label.x, y=legend.label.y, label=levels(group)), hjust=0, vjust=0, size=label.size)
}
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.