code
stringlengths
1
13.8M
`ensembleItime` <- function (x) { UseMethod("ensembleItime") }
context("Testing Bounds") test_that("Significance level of bounds", { data("darfur") model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur) out <- ovb_bounds(model, treatment = "directlyharmed", benchmark_covariates = "female") plot.env$treatment <- NULL expect_error(add_bound_to_contour(out)) expect_error(add_bound_to_contour(model = model, benchmark_covariates = "female")) out.g <- ovb_bounds(model, treatment = "directlyharmed", benchmark_covariates = list(female = "female")) out2 <- structure(list(bound_label = "1x female", r2dz.x = 0.00916428667504862, r2yz.dx = 0.12464092303637, treatment = "directlyharmed", adjusted_estimate = 0.0752202712144491, adjusted_se = 0.0218733277437572, adjusted_t = 3.43890386024675, adjusted_lower_CI = 0.0322829657274445, adjusted_upper_CI = 0.118157576701454), row.names = c(NA, -1L), class = c("ovb_bounds","data.frame")) expect_equivalent(out, out2) expect_equivalent(out2, out.g) out <- ovb_bounds(model, treatment = "directlyharmed", benchmark_covariates = "female", alpha = 0.2) out2 <- structure(list(bound_label = "1x female", r2dz.x = 0.00916428667504862, r2yz.dx = 0.12464092303637, treatment = "directlyharmed", adjusted_estimate = 0.0752202712144491, adjusted_se = 0.0218733277437572, adjusted_t = 3.43890386024675, adjusted_lower_CI = 0.0471648038348768, adjusted_upper_CI = 0.103275738594021), row.names = c(NA, -1L), class = c("ovb_bounds", "data.frame")) expect_equivalent(out, out2) out <- ovb_bounds(model, treatment = "directlyharmed", benchmark_covariates = "female", alpha = 1) expect_equal(out$adjusted_estimate, out$adjusted_lower_CI) expect_equal(out$adjusted_estimate, out$adjusted_upper_CI) }) test_that("Bounds error", { expect_error(ovb_partial_r2_bound.numeric(r2dxj.x = "a", r2yxj.dx = .2)) expect_error(ovb_partial_r2_bound.numeric(r2dxj.x = .1, r2yxj.dx = 2)) expect_warning(ovb_partial_r2_bound.numeric(r2dxj.x = .1, r2yxj.dx = 1)) expect_error(ovb_partial_r2_bound.numeric(r2dxj.x = 1, r2yxj.dx = .1)) data("darfur") model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur) expect_error(ovb_partial_r2_bound.lm(model = model, treatment = 2, benchmark_covariates = "female")) expect_error(ovb_partial_r2_bound.lm(model = model, treatment = "directlyharmed", benchmark_covariates = 2)) expect_error(ovb_partial_r2_bound.lm(model = model, treatment = c("a","b"), benchmark_covariates = 2)) expect_error(ovb_partial_r2_bound.lm(model = model, treatment = "directlyharmed", benchmark_covariates = list(1))) expect_error(ovb_partial_r2_bound.lm(model = model, treatment = "directlyharmed", benchmark_covariates = list(a = 1, c= "a"))) }) test_that("Bounds warning", { model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur) b1 <- ovb_bounds(model, treatment = "directlyharmed", benchmark_covariates = "female") ovb_contour_plot(model, treatment = "female") expect_warning(add_bound_to_contour(b1)) expect_warning(add_bound_to_contour(model = model, treatment = "directlyharmed", benchmark_covariates = "female")) b1 <- ovb_bounds(model, treatment = "directlyharmed", benchmark_covariates = "female") ovb_contour_plot(model, treatment = "female", sensitivity.of = "t-value") expect_warning(add_bound_to_contour(b1)) b2 <- ovb_partial_r2_bound(.1, .1) add_bound_to_contour(b2) }) test_that("Group benchmarks", { model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur) check1 <- ovb_contour_plot(model = model, treatment = "directlyharmed", benchmark_covariates = list(`fem+past` = c("female", "pastvoted"))) out <- sensemakr(model = model, treatment = "directlyharmed", benchmark_covariates = list(`fem+past` = c("female", "pastvoted"))) check2 <- plot(out) expect_equal(check1, check2) }) test_that("Group benchmarks - simulations", { rm(list = ls()) set.seed(10) n <- 1e3 z1 <- resid_maker(n, rep(1, n)) z2 <- resid_maker(n, z1) x1 <- resid_maker(n, cbind(z1, z2)) x2 <- resid_maker(n, cbind(z1, z2, x1)) d <- 2*x1 + 1*x2 + 2*z1 + 1*z2 + resid_maker(n, cbind(z1, z2, x1, x2))*5 y <- 2*x1 + 1*x2 + 2*z1 + 1*z2 + resid_maker(n, cbind(z1, z2, x1, x2, d))*5 model <- lm(y ~ d + x1 + x2) r2yx <- group_partial_r2(lm(y ~ d + x1 + x2), covariates = c("x1", "x2")) r2yz <- group_partial_r2(lm(y ~ d + z1 + z2), covariates = c("z1", "z2")) ky <- r2yz/r2yx r2dz <- group_partial_r2(lm(d ~ z1 + z2), covariates = c("z1", "z2")) r2dx <- group_partial_r2(lm(d ~ x1 + x2), covariates = c("x1", "x2")) kd <- r2dz/r2dx out <- sensemakr(model = model, treatment = "d", benchmark_covariates = list(X = c("x1", "x2")), kd =kd, ky= ky) expect_equivalent(out$bounds$adjusted_estimate, 0) rm(list = ls()) rcoef <- function() runif(1, -2, 2) n <- 1e3 z1 <- resid_maker(n, rep(1, n)) z2 <- resid_maker(n, z1) x1 <- resid_maker(n, cbind(z1, z2)) x2 <- resid_maker(n, cbind(z1, z2, x1)) d <- rcoef()*x1 + rcoef()*x2 + rcoef()*z1 + rcoef()*z2 + resid_maker(n, cbind(z1, z2, x1, x2))*5 y <- rcoef()*x1 + rcoef()*x2 + rcoef()*z1 + rcoef()*z2 + resid_maker(n, cbind(z1, z2, x1, x2, d))*5 model <- lm(y ~ d + x1 + x2) r2yx <- group_partial_r2(lm(y ~ d + x1 + x2), covariates = c("x1", "x2")) r2yz <- group_partial_r2(lm(y ~ d + z1 + z2), covariates = c("z1", "z2")) ky <- r2yz/r2yx r2dz <- group_partial_r2(lm(d ~ z1 + z2), covariates = c("z1", "z2")) r2dx <- group_partial_r2(lm(d ~ x1 + x2), covariates = c("x1", "x2")) kd <- r2dz/r2dx out <- sensemakr(model = model, treatment = "d", benchmark_covariates = list(X = c("x1", "x2")), kd =kd, ky= ky) full.model <- lm(y ~ d + x1 + x2 + z1 + z2) true_r2yz.dx <- group_partial_r2(full.model, covariates = c("z1", "z2")) full.model.d <-lm(d ~ x1 + x2 + z1 + z2) true_r2dz.x <- group_partial_r2(full.model.d, covariates = c("z1", "z2")) expect_equal(out$bounds$r2dz.x, true_r2dz.x) expect_true(out$bounds$r2yz.dx > true_r2yz.dx) }) test_that("Factor treatment and factor benchmarks",{ data(mtcars) mtcars$cyl <- as.factor(mtcars$cyl) mtcars$gear <- as.factor(mtcars$gear) model <- lm(mpg ~ cyl + gear, data = mtcars) sens <- sensemakr(model, treatment = "cyl6", benchmark_covariates = list(gear = c("gear4", "gear5"))) sens coef.summ <- coef(summary(model)) t.value <- coef.summ["cyl6", "t value"] rv <- robustness_value(t.value, model$df.residual) rv.check <- sens$sensitivity_stats$rv_q expect_equal(rv, rv.check) r2y <- group_partial_r2(model, covariates = c("gear4", "gear5")) mtcars <- cbind(mtcars, model.matrix(~cyl + gear + 0, data = mtcars)) treat.model <- lm(cyl6 ~ cyl8 + gear4 + gear5, data= mtcars) r2d <- group_partial_r2(treat.model, covariates = c("gear4", "gear5")) bounds <- sensemakr:::ovb_partial_r2_bound.numeric(r2dxj.x = r2d, r2yxj.dx = r2y) bounds.check <- sens$bounds expect_equal(bounds$r2dz.x, bounds.check$r2dz.x) expect_equal(bounds$r2yz.dx, bounds.check$r2yz.dx) adj.est<- adjusted_estimate(model, treatment = "cyl6", r2dz.x = bounds$r2dz.x, r2yz.dx = bounds$r2yz.dx) expect_equivalent(adj.est, bounds.check$adjusted_estimate) })
if (!isGeneric("safs")) { setGeneric("safs") } setMethod("safs", signature(x = "Speclib"), definition = function(x, y, cutoff = .95, returnData = TRUE, na.rm = FALSE, ...) { y_missing <- missing(y) if (y_missing) { y <- .getResponseVar(x, advice = c("safs", "setResponse", "This is only required if you do not specify 'y'.")) } useSIAsPredicants <- !is.na(.getPredicantVar(x, stopifmissing = FALSE))[1] x_dat <- as.data.frame(spectra(x)) if (is.finite(cutoff)) { x_dat <- x_dat[, -findCorrelation(cor(x_dat), cutoff)] x_dat <- as.data.frame(x_dat) } spec_nam <- names(x_dat) if (useSIAsPredicants) { addVar <- .getPredicantVar(x) if (na.rm) { valid_data <- apply(addVar, 2, function(x) all(is.finite(x))) if (any(!valid_data)) { cat(paste("Remove following variables because at least one sample is not finite:\n")) print(names(addVar)[!valid_data]) addVar <- addVar[,valid_data] } } x_dat <- cbind(x_dat, addVar) if (nlevels(as.factor(names(x_dat))) != ncol(x_dat)) { print(names(x_dat)) stop("Names in predictor data.frame not unique") } } dots <- list(...) res <- if (!any(names(dots) == "safsControl")) safs(x_dat, y, safsControl = safsControl(functions = rfSA), ...) else safs(x_dat, y, ...) if (!returnData) return(res) pred <- res$optVariables x <- x[,sapply(spec_nam, FUN = function(x, pred) any(pred == x), pred), usagehistory = FALSE] if (useSIAsPredicants) { warning(paste("SI data.frame will only contain relevant variables", if (y_missing) " and the response variable", ".", sep = "")) if (y_missing) pred <- c(pred, names(SI(x))[.getCaretParameter(x, "response")]) cols_keep <- sapply(names(SI(x)), FUN = function(x, pred) any(pred == x), pred) if (sum(cols_keep) > 0) { if (sum(cols_keep) == 1) { tmp <- as.data.frame(matrix(SI(x)[,cols_keep], ncol = 1)) names(tmp) <- names(SI(x))[cols_keep] } else { tmp <- SI(x)[,sapply(names(SI(x)), FUN = function(x, pred) any(pred == x), pred)] } SI(x) <- tmp } x <- .updateCaretParameters(x, c("response", "predictor")) } x <- .setCaretParameter(x, "safs_result", res) usagehistory(x) <- "Supervised feature selection using simulated annealing" return(x) }) setMethod("safs", signature(x = "Nri"), definition = function(x, y, cutoff = .95, returnData = TRUE, na.rm = FALSE, ...) { y_missing <- missing(y) if (y_missing) { y <- .getResponseVar(x, advice = c("safs", "setResponse", "This is only required if you do not specify 'y'.")) } useSIAsPredicants <- !is.na(.getPredicantVar(x, stopifmissing = FALSE))[1] nri_vals_all <- as.data.frame(x) if (is.finite(cutoff)) { nri_vals <- nri_vals_all[, -findCorrelation(cor(nri_vals_all), cutoff)] } else { nri_vals <- nri_vals_all } nri_vals <- as.data.frame(nri_vals) if (useSIAsPredicants) { addVar <- .getPredicantVar(x) if (na.rm) { valid_data <- apply(addVar, 2, function(x) all(is.finite(x))) if (any(!valid_data)) { cat(paste("Remove following variables because at least one sample is not finite:\n")) print(names(addVar)[!valid_data]) addVar <- addVar[,valid_data] } } nri_vals <- cbind(nri_vals, addVar) if (nlevels(as.factor(names(nri_vals))) != ncol(nri_vals)) { print(names(nri_vals)) stop("Names in predictor data.frame not unique") } } dots <- list(...) res <- if (!any(names(dots) == "safsControl")) safs(nri_vals, y, safsControl = safsControl(functions = rfSA), ...) else safs(nri_vals, y, ...) if (!returnData) return(res) pred <- res$optVariables is.pred.col <- sapply(names(nri_vals_all), FUN = function(x, pred) any(pred == x), pred) values <- numeric(length = length(x@nri@values)) values[] <- NA incr <- length(x@nri@values)/nrow(nri_vals) for (i in 1:ncol(nri_vals_all)) { if (is.pred.col[i]) { index <- seq(i, length(values), incr) values[index] <- nri_vals_all[,i] } } x@nri <- distMat3D(values, ncol = ncol(x@nri), nlyr = nrow(nri_vals)) if (useSIAsPredicants) { warning(paste("SI data.frame will only contain relevant variables", if (y_missing) " and the response variable", ".", sep = "")) if (y_missing) pred <- c(pred, names(SI(x))[.getCaretParameter(x, "response")]) cols_keep <- sapply(names(SI(x)), FUN = function(x, pred) any(pred == x), pred) if (sum(cols_keep) > 0) { if (sum(cols_keep) == 1) { tmp <- as.data.frame(matrix(SI(x)[,cols_keep], ncol = 1)) names(tmp) <- names(SI(x))[cols_keep] } else { tmp <- SI(x)[,sapply(names(SI(x)), FUN = function(x, pred) any(pred == x), pred)] } SI(x) <- tmp } x <- .updateCaretParameters(x, c("response", "predictor")) } return(.setCaretParameter(x, "safs_result", res)) }) setMethod("safs", signature(x = "Specfeat"), definition = function(x, y, cutoff = .95, returnData = TRUE, na.rm = FALSE, ...) { x <- .as.speclib.specfeat(x, na.rm = na.rm) if (missing(y)) { return(safs(x, cutoff = cutoff, returnData = returnData, na.rm = na.rm, ...)) } else { return(safs(x, y, cutoff = cutoff, returnData = returnData, na.rm = na.rm, ...)) } }) get_safs <- function(x) .getCaretParameter(x, "safs_result")
summary.radf_obj <- function(object, cv = NULL, ...) { cv <- cv %||% retrieve_crit(object) assert_class(cv, "radf_cv") assert_match(object, cv) ret <- summary_radf(cv, object, ...) ret %>% add_attr( minw = get_minw(object), lag = get_lag(object), method = get_method(cv), iter = get_iter(cv) ) %>% add_class("sm_radf") } summary_radf <- function(cv, ...){ UseMethod("summary_radf") } summary_radf.sb_cv <- function(cv, object, ...) { ret <- list() ret[["panel"]] <- tidy_join(object, cv, panel = TRUE) %>% pivot_wider(names_from = sig, values_from = crit) %>% select(-id) ret } summary_radf.mc_cv <- summary_radf.wb_cv <- function(cv, object, ...) { ret <- list() snames <- series_names(object) sm <- tidy_join(object, cv) %>% pivot_wider(names_from = sig, values_from = crit) for (nms in snames) { ret[[nms]] <- filter(sm, id == nms) %>% select(-id) } ret } print.sm_radf <- function(x, ...) { iter_char <- if (is_mc(x)) "nrep" else "nboot" cat_line() cat_rule( left = glue("Summary (minw = {get_minw(x)}, lag = {get_lag(x)})"), right = glue("{get_method(x)} ({iter_char} = {get_iter(x)})") ) cat_line() print.listof(x, ...) }
catminat<-function(species_list,TRAITS,catminat_df,similar=FALSE){ res<-new("results") if(is.null(TRAITS)){ res@results<-NULL }else{ if(similar){ DF<-lapply(species_list,function(x){ catminat_df[grep(x,catminat_df$species_name),c("species_name",TRAITS)] } ) DF<-ldply(DF) }else{ DF<-catminat_df[catminat_df$species_name%in%species_list,c("species_name",TRAITS)] } DF<-unique(DF) row.names(DF)<-DF$species_name DF<-DF[,TRAITS,drop=FALSE] res@results<-DF } stringa<-"Julve, P., 1998 ff. - Baseflor. Index botanique, \303\251cologique et chorologique de la flore de France. Version : 26 November 2014 . http://perso.wanadoo.fr/philippe.julve/catminat.htm" Encoding(stringa)<-"unicode" res@bibliography<-stringa return(res) }
qphi <- function(p, M, k0, k1, s=2, onesided=FALSE){ lower = -1 upper = 10 maxnumIter = 500 numIter = 1 p_cal_lower = suppressWarnings(pphi(lower, M, k0, k1, s, onesided)) p_cal_upper = suppressWarnings(pphi(upper, M, k0, k1, s, onesided)) while((p_cal_lower-p)*(p_cal_upper-p)>0 && numIter < maxnumIter){ if(p_cal_lower>p){ lower = lower*1.1 p_cal_lower = suppressWarnings(pphi(lower, M, k0, k1, s, onesided)) } if(p_cal_upper < p){ upper = upper*1.1 p_cal_upper = suppressWarnings(pphi(upper, M, k0, k1, s, onesided)) } numIter = numIter + 1 } q = mean(c(lower,upper)) p_cal = suppressWarnings(pphi(q, M, k0, k1, s, onesided)) error = (p_cal-p)/p numIter = 1 while(abs(error) > 1e-5 && numIter < maxnumIter){ if(error > 0){ upper = q q = mean(c(lower,upper)) p_cal = suppressWarnings(pphi(q, M, k0, k1, s, onesided)) error = (p_cal-p)/p }else{ lower = q q = mean(c(lower,upper)) p_cal = suppressWarnings(pphi(q, M, k0, k1, s, onesided)) error = (p_cal-p)/p } numIter = numIter + 1 } if(numIter < maxnumIter){ return(q) }else{ return("Bisection fails, choose another lower or upper bound to try again") } }
print.FHtestrcp <- function (x, digits = max(options()$digits - 4, 3), ...) { saveopt <- options(digits = digits) on.exit(options(saveopt)) if (!inherits(x, "FHtestrcp")) stop("Object is not of class FHtestrcp") cat("\n") writeLines(x$information) cat("\n") cat(x$data.name, sep = "\n") cat("\n") otmp <- x$obs etmp <- x$exp temp <- cbind(x$n, x$diff) dimnames(temp) <- list(names(x$n), c("N", "O-E")) print(temp) if (length(grep("exact", x$information)) == 1) { cat("\nStatistic= ", format(round(x$statistic, 1)), ", p-value= ", format(signif(x$pvalue, digits)), "\n", sep = "") } else if (substr(x$information, 2, 2) == "K") { cat("\nChisq= ", format(round(x$statistic, 1)), " on ", length(x$n) - 1, " degrees of freedom, p-value= ", format(signif(x$pvalue, digits)), "\n", sep = "") } else cat("\nStatistic Z= ", format(round(x$statistic, 1)), ", p-value= ", format(signif(x$pvalue, digits)), "\n", sep = "") if (length(grep("Monte", x$information)) == 1) cat(format(100 * attr(x$p.conf.int, "conf.level")), "percent confidence interval on p-value: ", format(c(x$p.conf.int[1], x$p.conf.int[2])), "\n") cat(x$alt.phrase, sep = "\n") cat("\n") invisible(x) }
plot.demonoid <- function(x, BurnIn=0, Data=NULL, PDF=FALSE, Parms=NULL, FileName = paste0("laplacesDemon-plot_", format(Sys.time(), "%Y-%m-%d_%T"), ".pdf"), ...) { if(missing(x)) stop("The x argument is required.") if(is.null(Data)) stop("The Data argument is NULL.") if(BurnIn >= nrow(x$Posterior1)) BurnIn <- 0 Stat.at <- BurnIn + 1 if(is.null(Parms)) {Posterior <- x$Posterior1} else { Parms <- sub("\\[","\\\\[",Parms) Parms <- sub("\\]","\\\\]",Parms) Parms <- sub("\\.","\\\\.",Parms) if(length(grep(Parms[1], colnames(x$Posterior1))) == 0) stop("Parameter in Parms does not exist.") keepcols <- grep(Parms[1], colnames(x$Posterior1)) if(length(Parms) > 1) { for (i in 2:length(Parms)) { if(length(grep(Parms[i], colnames(x$Posterior1))) == 0) stop("Parameter in Parms does not exist.") keepcols <- c(keepcols, grep(Parms[i], colnames(x$Posterior1)))}} Posterior <- as.matrix(x$Posterior1[,keepcols]) colnames(Posterior) <- colnames(x$Posterior1)[keepcols]} if(PDF == TRUE) { pdf(FileName) par(mfrow=c(3,3)) } else {par(mfrow=c(3,3), ask=TRUE)} for (j in 1:ncol(Posterior)) { plot(Stat.at:x$Thinned.Samples, Posterior[Stat.at:x$Thinned.Samples,j], type="l", xlab="Thinned Samples", ylab="Value", main=colnames(Posterior)[j]) panel.smooth(Stat.at:x$Thinned.Samples, Posterior[Stat.at:x$Thinned.Samples,j], pch="") plot(density(Posterior[Stat.at:x$Thinned.Samples,j]), xlab="Value", main=colnames(Posterior)[j]) polygon(density(Posterior[Stat.at:x$Thinned.Samples,j]), col="black", border="black") abline(v=0, col="red", lty=2) if(!is.constant(Posterior[Stat.at:x$Thinned.Samples,j])) { z <- acf(Posterior[Stat.at:x$Thinned.Samples,j], plot=FALSE) se <- 1/sqrt(length(Posterior[Stat.at:x$Thinned.Samples,j])) plot(z$lag, z$acf, ylim=c(min(z$acf,-2*se),1), type="h", main=colnames(Posterior)[j], xlab="Lag", ylab="Correlation") abline(h=(2*se), col="red", lty=2) abline(h=(-2*se), col="red", lty=2) } else {plot(0,0, main=paste(colnames(Posterior)[j], "is a constant."))} } plot(Stat.at:length(x$Deviance), x$Deviance[Stat.at:length(x$Deviance)], type="l", xlab="Thinned Samples", ylab="Value", main="Deviance") panel.smooth(Stat.at:length(x$Deviance), x$Deviance[Stat.at:length(x$Deviance)], pch="") plot(density(x$Deviance[Stat.at:length(x$Deviance)]), xlab="Value", main="Deviance") polygon(density(x$Deviance[Stat.at:length(x$Deviance)]), col="black", border="black") abline(v=0, col="red", lty=2) if(!is.constant(x$Deviance[Stat.at:length(x$Deviance)])) { z <- acf(x$Deviance[Stat.at:length(x$Deviance)], plot=FALSE) se <- 1/sqrt(length(x$Deviance[Stat.at:length(x$Deviance)])) plot(z$lag, z$acf, ylim=c(min(z$acf,-2*se),1), type="h", main="Deviance", xlab="Lag", ylab="Correlation") abline(h=(2*se), col="red", lty=2) abline(h=(-2*se), col="red", lty=2) } else {plot(0,0, main="Deviance is a constant.")} if(is.vector(x$Monitor)) {J <- 1; nn <- length(x$Monitor)} else if(is.matrix(x$Monitor)) { J <- ncol(x$Monitor); nn <- nrow(x$Monitor)} for (j in 1:J) { plot(Stat.at:nn, x$Monitor[Stat.at:nn,j], type="l", xlab="Thinned Samples", ylab="Value", main=Data[["mon.names"]][j]) panel.smooth(Stat.at:nn, x$Monitor[Stat.at:nn,j], pch="") plot(density(x$Monitor[Stat.at:nn,j]), xlab="Value", main=Data[["mon.names"]][j]) polygon(density(x$Monitor[Stat.at:nn,j]), col="black", border="black") abline(v=0, col="red", lty=2) if(!is.constant(x$Monitor[Stat.at:nn,j])) { z <- acf(x$Monitor[Stat.at:nn,j], plot=FALSE) se <- 1/sqrt(length(x$Monitor[Stat.at:nn,j])) plot(z$lag, z$acf, ylim=c(min(z$acf,-2*se),1), type="h", main=Data[["mon.names"]][j], xlab="Lag", ylab="Correlation") abline(h=(2*se), col="red", lty=2) abline(h=(-2*se), col="red", lty=2) } else {plot(0,0, main=paste(Data[["mon.names"]][j], "is a constant."))} } if(nrow(x$CovarDHis) > 1) { if(x$Algorithm %in% c("Adaptive Hamiltonian Monte Carlo", "Hamiltonian Monte Carlo with Dual-Averaging", "No-U-Turn Sampler")) { plot(x$CovarDHis[,1], type="l", xlab="Adaptations", main="Step-Size", ylab=expression(epsilon))} else { if(x$Algorithm %in% c("Oblique Hyperrectangle Slice Sampler", "Univariate Eigenvector Slice Sampler")) title <- "Eigenvectors" else if(x$Algorithm %in% c("Metropolis-Adjusted Langevin Algorithm")) title <- "Lambda" else if(x$Algorithm %in% c("Componentwise Hit-And-Run Metropolis", "Hit-And-Run Metropolis")) title <- "Proposal Distance" else if(x$Algorithm %in% c("Adaptive Griddy-Gibbs", "Adaptive Metropolis-within-Gibbs", "Sequential Adaptive Metropolis-within-Gibbs", "Updating Sequential Adaptive Metropolis-within-Gibbs")) title <- "Proposal S.D." else if(x$Algorithm %in% c("Differential Evolution Markov Chain")) title <- "Z" else if(x$Algorithm %in% c("Adaptive Factor Slice Sampler", "Refractive Sampler")) title <- "Step-Size" else title <- "Proposal Variance" Diff <- abs(diff(x$CovarDHis)) adaptchange <- matrix(NA, nrow(Diff), 3) for (i in 1:nrow(Diff)) { adaptchange[i,1:3] <- as.vector(quantile(Diff[i,], probs=c(0.025, 0.500, 0.975)))} plot(1:nrow(Diff), adaptchange[,2], ylim=c(min(adaptchange), max(adaptchange)), type="l", col="red", xlab="Adaptations", ylab="Absolute Difference", main=title, sub="Median=Red, Interval=Transparent Red") polygon(c(1:nrow(Diff),rev(1:nrow(Diff))), c(adaptchange[,1], rev(adaptchange[,3])), col=rgb(255, 0, 0, 50, maxColorValue=255), border=FALSE) lines(adaptchange[,2], col="red")} } if(PDF == TRUE) dev.off() }
library(testthat) library(ARTool) context("artlm.con") test_that("artlm.con matches with art.con",{ data(Higgins1990Table5, package = "ARTool") m = art(DryMatter ~ Moisture*Fertilizer, data=Higgins1990Table5) expect_equal( summary(art.con(m, "Moisture")), summary(contrast(emmeans(artlm.con(m, "Moisture"), ~ Moisture), method="pairwise")) ) expect_equal( summary(art.con(m, "Moisture:Fertilizer")), summary(contrast(emmeans(artlm.con(m, "Moisture:Fertilizer"), ~ MoistureFertilizer), method="pairwise")) ) m = art(DryMatter ~ Moisture*Fertilizer + (1|Tray), data=Higgins1990Table5) expect_equal( summary(art.con(m, "Moisture")), summary(contrast(emmeans(artlm.con(m, "Moisture"), ~ Moisture), method="pairwise")) ) expect_equal( summary(art.con(m, "Moisture:Fertilizer")), summary(contrast(emmeans(artlm.con(m, "Moisture:Fertilizer"), ~ MoistureFertilizer), method="pairwise")) ) m = art(DryMatter ~ Moisture*Fertilizer + (1|Tray), data = tibble::as_tibble(Higgins1990Table5)) expect_equal( summary(art.con(m, "Moisture")), summary(contrast(emmeans(artlm.con(m, "Moisture"), ~ Moisture), method="pairwise")) ) data(ElkinAB, package = "ARTool") m = art(Y ~ A*B + Error(S), data=ElkinAB) expect_equal( summary(art.con(m, "A")), summary(contrast(emmeans(artlm.con(m, "A"), ~ A), method="pairwise")) ) expect_equal( summary(art.con(m, "A:B")), summary(contrast(emmeans(artlm.con(m, "A:B"), ~ AB), method="pairwise")) ) }) test_that("artlm.con matches with artlm in single-factor case",{ m = art(DryMatter ~ Moisture*Fertilizer, data=Higgins1990Table5) expect_equal( summary(contrast(emmeans(artlm.con(m, "Moisture"), ~ Moisture), method="pairwise")), summary(contrast(emmeans(artlm(m, "Moisture"), ~ Moisture), method="pairwise")) ) m = art(DryMatter ~ Moisture*Fertilizer + (1|Tray), data=Higgins1990Table5) expect_equal( summary(contrast(emmeans(artlm.con(m, "Moisture"), ~ Moisture), method="pairwise")), summary(contrast(emmeans(artlm(m, "Moisture"), ~ Moisture), method="pairwise")) ) m = art(DryMatter ~ Moisture*Fertilizer + Error(Tray), data=Higgins1990Table5) expect_equal( summary(contrast(emmeans(artlm.con(m, "Moisture"), ~ Moisture), method="pairwise")), summary(contrast(emmeans(artlm(m, "Moisture"), ~ Moisture), method="pairwise")) ) })
ms_simplify <- function(input, keep = 0.05, method = NULL, weighting = 0.7, keep_shapes = FALSE, no_repair = FALSE, snap = TRUE, explode = FALSE, force_FC = TRUE, drop_null_geometries = TRUE, snap_interval = NULL, sys = FALSE, sys_mem = 8) { UseMethod("ms_simplify") } ms_simplify.character <- function(input, keep = 0.05, method = NULL, weighting = 0.7, keep_shapes = FALSE, no_repair = FALSE, snap = TRUE, explode = FALSE, force_FC = TRUE, drop_null_geometries = TRUE, snap_interval = NULL, sys = FALSE, sys_mem = 8) { input <- check_character_input(input) ms_simplify_json(input = input, keep = keep, method = method, weighting = weighting, keep_shapes = keep_shapes, no_repair = no_repair, snap = snap, explode = explode, force_FC = force_FC, drop_null_geometries = drop_null_geometries, snap_interval = snap_interval, sys = sys, sys_mem = sys_mem) } ms_simplify.geo_json <- function(input, keep = 0.05, method = NULL, weighting = 0.7, keep_shapes = FALSE, no_repair = FALSE, snap = TRUE, explode = FALSE, force_FC = TRUE, drop_null_geometries = TRUE, snap_interval = NULL, sys = FALSE, sys_mem = 8) { ms_simplify_json(input = input, keep = keep, method = method, weighting = weighting, keep_shapes = keep_shapes, no_repair = no_repair, snap = snap, explode = explode, force_FC = force_FC, drop_null_geometries = drop_null_geometries, snap_interval = snap_interval, sys = sys, sys_mem = sys_mem) } ms_simplify.geo_list <- function(input, keep = 0.05, method = NULL, weighting = 0.7, keep_shapes = FALSE, no_repair = FALSE, snap = TRUE, explode = FALSE, force_FC = TRUE, drop_null_geometries = TRUE, snap_interval = NULL, sys = FALSE, sys_mem = 8) { geojson <- geo_list_to_json(input) ret <- ms_simplify_json(input = geojson, keep = keep, method = method, weighting = weighting, keep_shapes = keep_shapes, no_repair = no_repair, snap = snap, explode = explode, force_FC = force_FC, drop_null_geometries = drop_null_geometries, snap_interval = snap_interval, sys = sys, sys_mem = sys_mem) geojsonio::geojson_list(ret) } ms_simplify.SpatialPolygons <- function(input, keep = 0.05, method = NULL, weighting = 0.7, keep_shapes = FALSE, no_repair = FALSE, snap = TRUE, explode = FALSE, force_FC = TRUE, drop_null_geometries = TRUE, snap_interval = NULL, sys = FALSE, sys_mem = 8) { if (!is(input, "Spatial")) stop("input must be a spatial object") call <- make_simplify_call(keep = keep, method = method, weighting = weighting, keep_shapes = keep_shapes, no_repair = no_repair, snap = snap, explode = explode, drop_null_geometries = !keep_shapes, snap_interval = snap_interval) ms_sp(input, call, sys = sys, sys_mem = sys_mem) } ms_simplify.SpatialLines <- ms_simplify.SpatialPolygons ms_simplify.sf <- function(input, keep = 0.05, method = NULL, weighting = 0.7, keep_shapes = FALSE, no_repair = FALSE, snap = TRUE, explode = FALSE, force_FC = TRUE, drop_null_geometries = TRUE, snap_interval = NULL, sys = FALSE, sys_mem = 8) { if (!all(sf::st_geometry_type(input) %in% c("LINESTRING", "MULTILINESTRING", "POLYGON", "MULTIPOLYGON"))) { stop("ms_simplify can only operate on (multi)polygons and (multi)linestrings", call. = FALSE) } call <- make_simplify_call(keep = keep, method = method, weighting = weighting, keep_shapes = keep_shapes, no_repair = no_repair, snap = snap, explode = explode, drop_null_geometries = !keep_shapes, snap_interval = snap_interval) ms_sf(input, call, sys = sys, sys_mem = sys_mem) } ms_simplify.sfc <- ms_simplify.sf ms_simplify_json <- function(input, keep, method, weighting, keep_shapes, no_repair, snap, explode, force_FC, drop_null_geometries, snap_interval, sys, sys_mem) { call <- make_simplify_call(keep = keep, method = method, weighting = weighting, keep_shapes = keep_shapes, no_repair = no_repair, snap = snap, explode = explode, drop_null_geometries = drop_null_geometries, snap_interval = snap_interval) ret <- apply_mapshaper_commands(data = input, command = call, force_FC = force_FC, sys = sys, sys_mem = sys_mem) ret } make_simplify_call <- function(keep, method, weighting, keep_shapes, no_repair, snap, explode, drop_null_geometries, snap_interval) { if (keep > 1 || keep <= 0) stop("keep must be > 0 and <= 1") if (!is.null(snap_interval)) { if (!is.numeric(snap_interval)) stop("snap_interval must be a numeric") if (snap_interval < 0) stop("snap_interval must be >= 0") } if (is.null(method)) { method <- "" } else if (method == "vis") { method <- "visvalingam" } else if (!method == "dp") { stop("method should be one of 'vis', 'dp', or NULL (to use the default weighted Visvalingam method)") } if (!is.numeric(weighting)) stop("weighting needs to be numeric.") if (explode) explode <- "-explode" else explode <- NULL if (snap && !is.null(snap_interval)) snap_interval <- paste0("snap-interval=", snap_interval) if (snap) snap <- "snap" else snap <- NULL if (keep_shapes) keep_shapes <- "keep-shapes" else keep_shapes <- NULL if (no_repair) no_repair <- "no-repair" else no_repair <- NULL if (drop_null_geometries) drop_null <- "-filter remove-empty" else drop_null <- NULL call <- list(explode, snap, snap_interval, "-simplify", keep = format(keep, scientific = FALSE), method, weighting = paste0("weighting=",format(weighting, scientific = FALSE)), keep_shapes, no_repair, drop_null) call } ms_de_unit <- function(input) { input_columns_units <- vapply(input, inherits, "units", FUN.VALUE = logical(1)) if(any(input_columns_units)) { units_column_names <- names(input_columns_units)[input_columns_units] msg <- paste0("Coercing these 'units' columns to class numeric: ", paste(units_column_names, collapse = ", ")) warning(msg) for(i in units_column_names) { input[[i]] <- as.numeric(input[[i]]) } } input }
randomSubsets <- function(n, h, nsamp = 500) replicate(nsamp, sample.int(n, h)) hyperplaneSubsets <- function(x, y, h, nsamp = 500) { d <- dim(x) x <- addIntercept(x) subsets <- randomSubsets(d[1], d[2], nsamp) subsets <- apply(subsets, 2, function(i, x) { xi <- x[i, , drop=FALSE] theta <- try(hyperplane(xi), silent=TRUE) while(inherits(theta, "try-error") && length(i) < d[1]) { ind <- (seq_len(d[1]))[-i] new <- if(length(ind) > 1) sample(ind, 1) else ind i <- c(i, new) xi <- rbind(xi, x[new,]) theta <- try(hyperplane(xi), silent=TRUE) } if(inherits(theta, "try-error")) { sample.int(d[1], h) } else { residuals <- y - x %*% theta findSmallest(abs(residuals), h) } }, x) } sparseSubsets <- function(x, y, lambda, h, nsamp = 500, normalize = TRUE, intercept = TRUE, eps = .Machine$double.eps, use.Gram = TRUE) { n <- length(y) subsets <- randomSubsets(n, 3, nsamp) subsets <- .Call("R_sparseSubsets", R_x=x, R_y=y, R_lambda=lambda, R_h=h, R_subsets=subsets, R_normalize=normalize, R_intercept=intercept, R_eps=eps, R_useGram=use.Gram, PACKAGE = "robustHD") }
NULL get.zmq.ldflags <- function(arch = '', package = "pbdZMQ"){ if(arch == "/i386" || arch == "/x64"){ file.name <- paste("./libs", arch, "/", sep = "") dir.path <- tools::file_path_as_absolute( system.file(file.name, package = package)) zmq.ldflags <- paste("-L\"", dir.path, "\" -lzmq", sep = "") } else{ file.name <- paste("./etc", arch, "/Makeconf", sep = "") file.path <- tools::file_path_as_absolute( system.file(file.name, package = package)) ret <- scan(file.path, what = character(), sep = "\n", quiet = TRUE) arg <- "SYSTEM_ZMQ_LIBDIR" id <- grep(paste("^", arg, " = ", sep = ""), ret) sys.zmq.ld <- gsub(paste("^", arg, " = (.*)", sep = ""), "\\1", ret[id[1]]) arg <- "EXTERNAL_ZMQ_LDFLAGS" id <- grep(paste("^", arg, " = ", sep = ""), ret) ext.zmq.ld <- gsub(paste("^", arg, " = (.*)", sep = ""), "\\1", ret[id[1]]) arg <- "ENABLE_INTERNAL_ZMQ" id <- grep(paste("^", arg, " = ", sep = ""), ret) en.int.zmq <- gsub(paste("^", arg, " = (.*)", sep = ""), "\\1", ret[id[1]]) if((sys.zmq.ld == "" && ext.zmq.ld == "") || en.int.zmq == "yes"){ file.name <- paste("./libs", arch, "/", sep = "") dir.path <- tools::file_path_as_absolute( system.file(file.name, package = package)) if(Sys.info()[['sysname']] == "Darwin"){ lib.osx <- list.files(dir.path, pattern = "libzmq\\.(.*)\\.dylib") i.ver <- gsub("libzmq\\.(.*)\\.dylib", "\\1", lib.osx) i.ver <- max(as.integer(i.ver)) zmq.ldflags <- paste("-L\"", dir.path, "\" -lzmq.", i.ver, sep = "") } else{ zmq.ldflags <- paste("-L\"", dir.path, "\" -lzmq", sep = "") } } else{ arg <- "ZMQ_LDFLAGS" id <- grep(paste("^", arg, " = ", sep = ""), ret) zmq.ldflags <- gsub(paste("^", arg, " = (.*)", sep = ""), "\\1", ret[id[1]]) } } cat(zmq.ldflags) invisible(zmq.ldflags) } get.zmq.cppflags <- function(arch = '', package = "pbdZMQ"){ if(arch == "/i386" || arch == "/x64"){ file.name <- paste("./zmq", arch, "/include", sep = "") dir.path <- tools::file_path_as_absolute( system.file(file.name, package = package)) zmq.cppflags <- paste("-I\"", dir.path, "\"", sep = "") } else{ file.name <- paste("./etc", arch, "/Makeconf", sep = "") file.path <- tools::file_path_as_absolute( system.file(file.name, package = package)) ret <- scan(file.path, what = character(), sep = "\n", quiet = TRUE) arg <- "SYSTEM_ZMQ_INCLUDEDIR" id <- grep(paste("^", arg, " = ", sep = ""), ret) sys.zmq.inc <- gsub(paste("^", arg, " = (.*)", sep = ""), "\\1", ret[id[1]]) arg <- "EXTERNAL_ZMQ_INCLUDE" id <- grep(paste("^", arg, " = ", sep = ""), ret) ext.zmq.inc <- gsub(paste("^", arg, " = (.*)", sep = ""), "\\1", ret[id[1]]) arg <- "ENABLE_INTERNAL_ZMQ" id <- grep(paste("^", arg, " = ", sep = ""), ret) en.int.zmq <- gsub(paste("^", arg, " = (.*)", sep = ""), "\\1", ret[id[1]]) if((sys.zmq.inc == "" && ext.zmq.inc == "") || en.int.zmq == "yes"){ file.name <- paste("./zmq", arch, "/include/", sep = "") dir.path <- tools::file_path_as_absolute( system.file(file.name, package = package)) zmq.cppflags <- paste("-I\"", dir.path, "\"", sep = "") } else{ arg <- "ZMQ_INCLUDE" id <- grep(paste("^", arg, " = ", sep = ""), ret) zmq.cppflags <- gsub(paste("^", arg, " = (.*)", sep = ""), "\\1", ret[id[1]]) } arg <- "GET_SYSTEM_ZMQ_430" id <- grep(paste("^", arg, " = ", sep = ""), ret) sys.zmq.430 <- gsub(paste("^", arg, " = (.*)", sep = ""), "\\1", ret[id[1]]) chk.zmq.h.430 <- "no" if(sys.zmq.430 == "no"){ path.zmq.h <- gsub("^-I(.*)$", "\\1", zmq.cppflags) path.zmq.h <- gsub("^\\\"(.*)\\\"$", "\\1", path.zmq.h) f.zmq.h <- paste(path.zmq.h, "/zmq.h", sep = "") ret.zmq.h <- scan(f.zmq.h, what = character(), sep = "\n", quiet = TRUE) id.major <- grep("^ id.minor <- grep("^ v.major <- gsub("^ ret.zmq.h[id.major]) v.minor <- gsub("^ ret.zmq.h[id.minor]) if(v.major >=4 && v.minor >= 3){ chk.zmq.h.430 <- "yes" } } if((sys.zmq.430 == "yes" && en.int.zmq != "yes") || chk.zmq.h.430 == "yes"){ zmq.cppflags <- paste(zmq.cppflags, " -DENABLE_DRAFTS=ON", sep = "") } } cat(zmq.cppflags) invisible(zmq.cppflags) } test.load.zmq <- function(arch = '', package = "pbdZMQ"){ file.name <- paste("./libs", arch, "/", sep = "") dir.path <- tools::file_path_as_absolute( system.file(file.name, package = package)) files <- c("libzmq.so", "libzmq.so.dSYM", "libzmq.dylib", "libzmq.4.dylib", "libzmq.5.dylib", "libzmq.dll") for(i.file in files){ fn <- paste(dir.path, "/", i.file, sep = "") if(file.exists(fn)){ ret <- try(dyn.load(fn, local = FALSE), silent = TRUE) print(ret) cat("\n") } } invisible(NULL) } get.pbdZMQ.ldflags <- function(arch = '', package = "pbdZMQ"){ file.name <- paste("./libs", arch, "/", sep = "") dir.path <- tools::file_path_as_absolute( system.file(file.name, package = package)) if(arch == "/i386" || arch == "/x64"){ pbdZMQ.ldflags <- paste(dir.path, "/pbdZMQ.dll", sep = "") } else{ pbdZMQ.ldflags <- paste(dir.path, "/pbdZMQ.so", sep = "") } cat(pbdZMQ.ldflags) invisible(pbdZMQ.ldflags) }
if (.Platform$OS.type == "windows") { PATH = paste0(getwd(), path.expand("\\term_matrix_file.csv")) PATH_txt = paste0(getwd(), path.expand("\\term_matrix_file.txt")) } if (.Platform$OS.type == "unix") { PATH = paste0(getwd(), path.expand("/term_matrix_file.csv")) PATH_txt = paste0(getwd(), path.expand("/term_matrix_file.txt")) } docs = as.vector(read.csv(PATH, header = FALSE, stringsAsFactors = F)[, 1]) context('term matrix class') while(T) { testthat::test_that("in case that the 'triplet_data' method is called before the 'Term_Matrix' method is run, it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$triplet_data() ) }) testthat::test_that("the 'triplet_data' method returns a list of length four", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) out = init$triplet_data() cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( length(out) == 4 && inherits(out, "list") ) }) testthat::test_that("in case that the 'global_term_weights' method is called before the 'Term_Matrix' method is run, it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$global_term_weights() ) }) testthat::test_that("in case that the 'document_term_matrix' parameter is set to FALSE, it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = FALSE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$global_term_weights() ) }) testthat::test_that("the 'global_term_weights' method returns a list of length two", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) out = init$global_term_weights() cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( length(out) == 2 && inherits(out, "list") ) }) testthat::test_that("in case that both vector_data and file_data are NULL it returns an error", { cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( sparse_term_matrix$new(vector_data = NULL, file_data = NULL, document_term_matrix = TRUE) ) }) testthat::test_that("in case that both vector_data and file_data are not NULL it returns an error", { cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( sparse_term_matrix$new(vector_data = docs, file_data = PATH, document_term_matrix = TRUE) ) }) testthat::test_that("in case that the vector_data parameter is not a vector of documents it returns an error", { cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( sparse_term_matrix$new(vector_data = list(), file_data = NULL, document_term_matrix = TRUE) ) }) testthat::test_that("in case that the file_data parameter is not a valid path to a file it returns an error", { cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( sparse_term_matrix$new(vector_data = NULL, file_data = "/invalid/path", document_term_matrix = TRUE) ) }) testthat::test_that("in case that the document_term_matrix parameter is not logical it returns an error", { cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = 'TRUE') ) }) testthat::test_that("in case that the sort_terms parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = 'FALSE', to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the to_lower parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = 'FALSE', to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the to_upper parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = 'FALSE', utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the utf_locale parameter is not a character string it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = NULL, remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the remove_char parameter is not a character string it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = NULL, remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the remove_punctuation_string parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = 'FALSE', remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the remove_punctuation_vector parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = 'FALSE', remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the remove_numbers parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = 'FALSE', trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the trim_token parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = 'FALSE', split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the split_string parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = 'FALSE', split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the split_separator parameter is not a character string it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = NULL, remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the remove_stopwords parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = NULL, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the language parameter is not one of the available it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "INVALID", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the min_num_char parameter is less than 1 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 0, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the max_num_char parameter is less than the min_num_char it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = -Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the stemmer parameter is not one of the available it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = 'NULL', min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the min_n_gram parameter is less than 1 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 0, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the max_n_gram parameter is less than 1 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 0, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the min_n_gram is greater than the max_n_gram parameter it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 3, max_n_gram = 2, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the skip_n_gram parameter is less than 1 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 0, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the skip_distance parameter is less than 0 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = -1, n_gram_delimiter = " ", print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the n_gram_delimiter parameter is not a character string it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = NULL, print_every_rows = 1000, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the print_every_rows parameter is less than 1 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 0, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the normalize parameter is not one of c(l1, l2) it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = 'NULL', tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the tf_idf parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = 'FALSE', threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the threads parameter is less than 1 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 0, verbose = FALSE) ) }) testthat::test_that("in case that the verbose parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix(sort_terms = FALSE, to_lower = FALSE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = FALSE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = 'FALSE') ) }) testthat::test_that("in case that either the to_lower or the to_upper parameter is TRUE and the language is other than english then a warning will be printed to the console", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_warning( init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "greek", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the data is a vector of documents and the document_term_matrix parameter is TRUE it returns a sparse document_term_matrix with the correct number of rows (documents)", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = TRUE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res, "dgCMatrix") && nrow(res) == length(docs) ) }) testthat::test_that("in case that the data is a vector of documents AND the document_term_matrix parameter is TRUE AND a user defined list of stopwords is given, it returns a sparse document_term_matrix with the correct number of rows (documents)", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = c("a", "this", "is"), language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res, "dgCMatrix") && nrow(res) == length(docs) ) }) testthat::test_that("in case that the data is a vector of documents and the document_term_matrix parameter is FALSE it returns a sparse term_document_matrix with the correct number of columns (documents)", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = FALSE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res, "dgCMatrix") && ncol(res) == length(docs) ) }) testthat::test_that("in case that the data input is a path to a file and the document_term_matrix parameter is TRUE it returns a sparse document_term_matrix with the correct number of rows (documents)", { init = sparse_term_matrix$new(vector_data = NULL, file_data = PATH_txt, document_term_matrix = TRUE) res = suppressWarnings(init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE)) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res, "dgCMatrix") && nrow(res) == length(docs) ) }) testthat::test_that("in case that the data input is a path to a file and the document_term_matrix parameter is FALSE it returns a sparse term_document_matrix with the correct number of columns (documents)", { init = sparse_term_matrix$new(vector_data = NULL, file_data = PATH_txt, document_term_matrix = FALSE) res = suppressWarnings(init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE)) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res, "dgCMatrix") && ncol(res) == length(docs) ) }) testthat::test_that("in case that the Term_Matrix method is not run in first place it returns an error", { init1 = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init1$Term_Matrix_Adjust(sparsity_thresh = 1.0) ) }) testthat::test_that("in case that sparsity_thresh is not numeric it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix_Adjust(sparsity_thresh = NULL) ) }) testthat::test_that("in case that sparsity_thresh is less than or equal to 0.0 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix_Adjust(sparsity_thresh = 0.0) ) }) testthat::test_that("in case that sparsity_thresh is greater than 1.0 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix_Adjust(sparsity_thresh = 1.00001) ) }) testthat::test_that("in case that sparsity_thresh gives an empty matrix it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$Term_Matrix_Adjust(sparsity_thresh = 0.1) ) }) testthat::test_that("it returns a reduced sparse matrix in case that the sparsity_thresh is less than 1.0 and the document_term_matrix parameter is TRUE", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) res_sp = init$Term_Matrix_Adjust(sparsity_thresh = 0.8) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res, "dgCMatrix") && inherits(res_sp, "dgCMatrix") && ncol(res) > ncol(res_sp) ) }) testthat::test_that("it returns a reduced sparse matrix in case that the sparsity_thresh is less than 1.0 and the document_term_matrix parameter is FALSE", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = FALSE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) res_sp = init$Term_Matrix_Adjust(sparsity_thresh = 0.8) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res, "dgCMatrix") && inherits(res_sp, "dgCMatrix") && nrow(res) > nrow(res_sp) ) }) testthat::test_that("in case that the Term_Matrix method is not run in first place it returns an error", { init1 = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init1$term_associations(Terms = c("the"), keep_terms = 10, verbose = FALSE) ) }) testthat::test_that("in case that Terms is not a character vector it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$term_associations(Terms = NULL, keep_terms = 10, verbose = FALSE) ) }) testthat::test_that("in case that Terms is a character vector with length less than 1 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$term_associations(Terms = character(0), keep_terms = 10, verbose = FALSE) ) }) testthat::test_that("in case that keep_terms is not a numeric value it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$term_associations(Terms = c("the", "and"), keep_terms = list(), verbose = FALSE) ) }) testthat::test_that("in case that keep_terms is a numeric value less than 1 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$term_associations(Terms = c("the", "and"), keep_terms = 0, verbose = FALSE) ) }) testthat::test_that("in case that the verbose parameter is not a boolean it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$term_associations(Terms = c("the", "and"), keep_terms = NULL, verbose = 'FALSE') ) }) testthat::test_that("it returns the correct output in case of a single term", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) target_term = "is" single_out = init$term_associations(Terms = target_term, keep_terms = NULL, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(single_out, c("data.table","data.frame")) && nrow(single_out) == ncol(res) - 1 && ncol(single_out) == 2 && sum(colnames(single_out) %in% c('term', 'correlation')) == 2 && !target_term %in% single_out$term ) }) testthat::test_that("it returns the correct output in case of a single term ( if term-document-matrix is TRUE )", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = FALSE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) target_term = "is" single_out = init$term_associations(Terms = target_term, keep_terms = NULL, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(single_out, c("data.table","data.frame")) && nrow(single_out) == nrow(res) - 1 && ncol(single_out) == 2 && sum(colnames(single_out) %in% c('term', 'correlation')) == 2 && !target_term %in% single_out$term ) }) testthat::test_that("it returns the correct output in case that the Term_Matrix_Adjust method is called first", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = FALSE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) res1 = init$Term_Matrix_Adjust(sparsity_thresh = 0.85) target_term = "of" single_out = init$term_associations(Terms = target_term, keep_terms = NULL, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(single_out, c("data.table","data.frame")) && nrow(single_out) == nrow(res1) - 1 && ncol(single_out) == 2 && sum(colnames(single_out) %in% c('term', 'correlation')) == 2 && !target_term %in% single_out$term ) }) testthat::test_that("it returns the correct output in case of a multiple terms", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) tmp_terms = c("is", "a") mult_out = init$term_associations(Terms = tmp_terms, keep_terms = NULL, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( sum(unlist(lapply(1:length(mult_out), function(x) inherits(mult_out[[x]], c("data.table","data.frame")) && nrow(mult_out[[x]]) == ncol(res) - 1 && ncol(mult_out[[x]]) == 2 && sum(colnames(mult_out[[x]]) %in% c('term', 'correlation')) == 2 && !tmp_terms[x] %in% mult_out[[x]]$term))) == length(tmp_terms) ) }) testthat::test_that("it returns the correct output in case of a multiple terms ( if term-document-matrix is FALSE )", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = FALSE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) tmp_terms = c("is", "a") mult_out = init$term_associations(Terms = tmp_terms, keep_terms = NULL, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( sum(unlist(lapply(1:length(mult_out), function(x) inherits(mult_out[[x]], c("data.table","data.frame")) && nrow(mult_out[[x]]) == nrow(res) - 1 && ncol(mult_out[[x]]) == 2 && sum(colnames(mult_out[[x]]) %in% c('term', 'correlation')) == 2 && !tmp_terms[x] %in% mult_out[[x]]$term))) == length(tmp_terms) ) }) testthat::test_that("in case that the Term_Matrix method is not run in first place it returns an error", { init1 = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init1$most_frequent_terms(keep_terms = NULL, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the keep_terms parameter is not a numeric value it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$most_frequent_terms(keep_terms = 'NULL', threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the keep_terms parameter is less than 1 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$most_frequent_terms(keep_terms = 0, threads = 1, verbose = FALSE) ) }) testthat::test_that("in case that the threads parameter is less than 1 it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$most_frequent_terms(keep_terms = 1, threads = 0, verbose = FALSE) ) }) testthat::test_that("in case that the verbose parameter is not logical it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$most_frequent_terms(keep_terms = 1, threads = 1, verbose = 'FALSE') ) }) testthat::test_that("in case that either the normalize parameter is not NULL or the tf_idf parameter is TRUE it returns an error", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = T, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( init$most_frequent_terms(keep_terms = 1, threads = 1, verbose = FALSE) ) }) testthat::test_that("it returns the correct output if the keep_terms parameter is NULL", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) res_freq = init$most_frequent_terms(keep_terms = NULL, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res_freq, c("data.table","data.frame")) && nrow(res_freq) == ncol(res) && ncol(res_freq) == 2 && sum(colnames(res_freq) %in% c('term', 'frequency')) == 2 ) }) testthat::test_that("it returns the correct output if the keep_terms parameter is a numeric value", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) tmp_keep = 5 res_freq = init$most_frequent_terms(keep_terms = tmp_keep, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res_freq, c("data.table","data.frame")) && nrow(res_freq) == tmp_keep && ncol(res_freq) == 2 && sum(colnames(res_freq) %in% c('term', 'frequency')) == 2 ) }) testthat::test_that("it returns the correct output if the Term_Matrix_Adjust method is called first", { init = sparse_term_matrix$new(vector_data = docs, file_data = NULL, document_term_matrix = TRUE) res = init$Term_Matrix(sort_terms = FALSE, to_lower = TRUE, to_upper = FALSE, utf_locale = "", remove_char = "", remove_punctuation_string = FALSE, remove_punctuation_vector = FALSE, remove_numbers = FALSE, trim_token = FALSE, split_string = TRUE, split_separator = " \r\n\t.,;:()?!//", remove_stopwords = FALSE, language = "english", min_num_char = 1, max_num_char = Inf, stemmer = NULL, min_n_gram = 1, max_n_gram = 1, skip_n_gram = 1, skip_distance = 0, n_gram_delimiter = " ", print_every_rows = 100, normalize = NULL, tf_idf = FALSE, threads = 1, verbose = FALSE) res1 = init$Term_Matrix_Adjust(sparsity_thresh = 0.85) res_freq = init$most_frequent_terms(keep_terms = NULL, threads = 1, verbose = FALSE) cat("test-term_matrix_triplet_data_global_term_weights.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res_freq, c("data.table","data.frame")) && nrow(res_freq) == ncol(res1) && ncol(res_freq) == 2 && sum(colnames(res_freq) %in% c('term', 'frequency')) == 2 ) }) break }
set.seed(123) n <- 20 cgnp_pair <- sample_correlated_gnp_pair(n=n, corr=0.8, p=0.5) A <- cgnp_pair$graph1 B <- igraph::induced_subgraph(cgnp_pair$graph2, 1:10) sim_rect <- matrix(runif(10 * n), n) sim_sq <- pad(sim_rect, 0, n - 10) gm(A, B, start = "bari", sim = sim_rect, method = "indefinite") gm(A, B, start = "bari", sim = sim_sq, method = "indefinite") gm(A, B, start = "bari", seeds = 1:3, sim = sim_sq, method = "indefinite") gm(A, B, start = "bari", sim = NULL, method = "indefinite") test_that( "error on wrong rectangular dim", { expect_error({ sim_bad <- matrix(runif(10 * n - 10), n - 10) gm(A, B, start = "bari", sim = sim_bad, method = "indefinite") }, "Non square similarity matrices.*") } ) test_that( "error on wrong square dim", { expect_error({ sim_bad <- matrix(runif(10 * 10), 10) gm(A, B, start = "bari", sim = sim_bad, method = "indefinite") }, "Square similarity matrices.*") } )
wClassNoPunct <- function(wclass, lang, abs=NULL){ word.tags <- kRp.POS.tags(lang, list.classes=TRUE, tags="words") wclass.num <- summary(as.factor(wclass)) wclass.nopunct <- names(wclass.num)[names(wclass.num) %in% word.tags] wclass.punct <- names(wclass.num)[!names(wclass.num) %in% word.tags] wclass.nopunct.num <- wclass.num[wclass.nopunct] wclass.punct.num <- wclass.num[wclass.punct] wclass.nopunct.num <- wclass.nopunct.num[order(wclass.nopunct.num, decreasing=TRUE)] if(is.null(abs)){ wclass.nopunct.num <- rbind(wclass.nopunct.num, 100 * wclass.nopunct.num / sum(wclass.nopunct.num)) rownames(wclass.nopunct.num) <- c("num", "pct") } else { wclass.nopunct.num <- rbind(wclass.nopunct.num, 100 * wclass.nopunct.num / sum(wclass.nopunct.num), 100 * wclass.nopunct.num / abs) rownames(wclass.nopunct.num) <- c("num", "pct", "pct.abs") } wclass.nopunct.num <- t(wclass.nopunct.num) if(length(wclass.punct) != 0){ if(ncol(wclass.nopunct.num) > 2){ wclass.nopunct.num <- rbind(wclass.nopunct.num, cbind(wclass.punct.num, NA, NA)) } else { wclass.nopunct.num <- rbind(wclass.nopunct.num, cbind(wclass.punct.num, NA)) } } else {} return(wclass.nopunct.num) } setMethod("summary", signature(object="kRp.text"), function(object, index=NA, feature=NULL, flat=FALSE){ if(identical(feature, "freq")){ stopifnot(hasFeature(object, "freq")) summary.table <- t(data.frame( sentences=describe(object)[["sentences"]], avg.sentence.length=describe(object)[["avg.sentc.length"]], words=describe(object)[["words"]], avg.word.length=describe(object)[["avg.word.length"]], all.characters=describe(object)[["all.chars"]], letters=describe(object)[["letters"]][["all"]], lemmata=describe(object)[["lemmata"]], questions=describe(object)[["questions"]], exclamations=describe(object)[["exclam"]], semicolon=describe(object)[["semicolon"]], colon=describe(object)[["colon"]], stringsAsFactors=FALSE)) colnames(summary.table) <- "freq" return(summary.table) } else if(identical(feature, "lex_div")){ stopifnot(hasFeature(object, "lex_div")) object_lexdiv <- corpusLexDiv(object) if(length(object_lexdiv) > 1){ summary.table <- t(as.data.frame( lapply( object_lexdiv, summary, flat=TRUE ) )) } else { summary.table <- summary(object_lexdiv[[1]], flat=flat) } return(summary.table) } else if(identical(feature, "readability")){ stopifnot(hasFeature(object, "readability")) object_rdb <- corpusReadability(object) if(length(object_rdb) > 1){ summary.table <- t(as.data.frame( lapply( object_rdb, summary, flat=TRUE ) )) } else { summary.table <- summary(object_rdb[[1]], flat=flat) } return(summary.table) } else { Row.names <- NULL desc <- describe(object) lang <- language(object) tokens <- taggedText(object) wclass.nopunct.num <- wClassNoPunct(wclass=tokens[["wclass"]], lang=lang) if(hasFeature(object, "diff")){ wclass.orig.order <- order(order(rownames(wclass.nopunct.num))) if(isTRUE(is.na(index))){ wclass.index <- !tokens[["equal"]] } else if(is.character(index)){ if(length(index) > 1){ stop(simpleError(paste0("If \"index\" is character, it must be a single value!"))) } else {} diffObj <- diffText(object) if(index %in% colnames(diffObj[["transfmt.equal"]])){ indexPosition <- which(colnames(diffObj[["transfmt.equal"]]) %in% index) if(length(indexPosition) > 1){ warning(paste0("Index \"", index,"\" found multiple times, using last occurrence only!"), call.=FALSE) indexPosition <- max(indexPosition) } else {} } else { stop(simpleError(paste0("Transformation data \"", index,"\" not found in object!"))) } wclass.index <- !diffObj[["transfmt.equal"]][[indexPosition]] } else { wclass.index <- index } wclass.nopunct.num.transfmt <- wClassNoPunct(wclass=tokens[wclass.index,"wclass"], lang=lang, abs=desc[["words"]]) colnames(wclass.nopunct.num.transfmt) <- c("num.transfmt", "pct.transfmt", "pct.transfmt.abs") wclass.nopunct.num <- merge(wclass.nopunct.num, wclass.nopunct.num.transfmt, all=TRUE, by='row.names', sort=FALSE, suffixes=c("", ".transfmt")) rownames(wclass.nopunct.num) <- wclass.nopunct.num[["Row.names"]] wclass.nopunct.num <- subset(wclass.nopunct.num, select=-Row.names) wclass.nopunct.num <- wclass.nopunct.num[order(rownames(wclass.nopunct.num))[wclass.orig.order],] wclass.nopunct.num[["pct.transfmt.wclass"]] <- wclass.nopunct.num[["num.transfmt"]] * 100 / wclass.nopunct.num[["num"]] wclass.nopunct.num[is.nan(wclass.nopunct.num[["pct.transfmt.wclass"]]), "pct.transfmt.wclass"] <- 0 } else {} cat( "\n Sentences: ", desc[["sentences"]], "\n", " Words: ", desc[["words"]], " (", round(desc[["avg.sentc.length"]], digits=2), " per sentence)\n", " Letters: ", desc[["letters"]][["all"]], " (", round(desc[["avg.word.length"]], digits=2), " per word)\n\n Word class distribution:\n\n", sep="") return(wclass.nopunct.num) } })
gen.example <- function(){ set.seed(1) n <- 600 bmi <- stats::rchisq(n, df = 6) bmi <- round(16 + (40-16)/(max(bmi)-min(bmi)) * (bmi-min(bmi)), digits = 1) age <- stats::rnorm(n) age <- round(40 + (80-40)/(max(age)-min(age)) * (age-min(age)), digits = 0) breastfeed <- sample(c('yes', 'no'), n, TRUE, c(.85, .15)) parity <- sample(0:5, n, TRUE, c(.05, 0.15, 0.45, 0.3, 0.03, 0.02)) p53 <- sample(1:3, n, TRUE, c(.3, .3, .4)) subtype <- sample(c('A', 'B', 'C'), n, TRUE, c(.65, .2, .15)) dat <- data.frame(subj.id = paste0('SID-',1:n), density = 0, bmi, age, breastfeed, parity, p53, subtype, stringsAsFactors = FALSE) mm <- model.matrix(density~I(age >= 50 & age < 60) + I(age >= 60) + as.factor(breastfeed) + I(parity > 0) + I(p53 !=1)*I(subtype != 'A'), data=dat) para <- c(1, 0.1, 0.2, -0.1, -0.3, 0.05, 0., 0.15) dat$density <- exp(as.vector(mm %*% para) + stats::rnorm(n, sd = sqrt(0.05))) int <- dat[1:200, ] ext1 <- dat[201:400, c('subj.id', 'density', 'age', 'parity', 'subtype')] ext2 <- dat[201:300, c('subj.id', 'density', 'age', 'breastfeed', 'subtype')] ext3 <- dat[301:600, c('subj.id', 'density', 'p53', 'subtype')] int$age_50to59 <- I(int$age >= 50 & int$age < 60)+1-1 int$age_gt60 <- I(int$age >= 60)+1-1 formula <- as.formula(log(density) ~ age_50to59 + age_gt60 + breastfeed + parity + as.factor(p53)*I(subtype=='A')) fit0 <- glm(formula, data = int, family = 'gaussian') fit1 <- glm(log(density) ~ I(age < 60) + I(parity > 0) + subtype, data = ext1, family = 'gaussian') fit2 <- glm(log(density) ~ I(age >= 70) + breastfeed + subtype, data = ext2, family = 'gaussian') fit31 <- glm(log(density) ~ as.factor(p53), data = ext3, family = 'gaussian') fit32 <- glm(log(density) ~ subtype, data = ext3, family = 'gaussian') summary(fit0) summary(fit1) summary(fit2) cbind(colnames(mm), para) model <- list() model[[1]] <- list(formula='log(density) ~ I(age >= 70) + breastfeed + subtype', info=data.frame(var = names(coef(fit2))[2:4], bet = coef(fit2)[2:4])) model[[2]] <- list(formula='log(density) ~ subtype', info=data.frame(var = names(coef(fit32))[-1], bet = coef(fit32)[-1])) n1 <- nrow(ext1) n2 <- nrow(ext2) n3 <- nrow(ext3) n0 <- length(intersect(ext1$subj.id, ext3$subj.id)) nsample <- matrix(c(n1, n0, n0, n3), 2, 2) form <- formula dat <- int lt <- list(form = form, dat = dat, model = model, nsample = nsample) lt }
require("DiceKriging") require("testthat") set.seed(1) test_that.km <- function(model, trend.coef=NULL, covariance.sd2=NULL, covariance.range.val=NULL, covariance.nugget=NULL, covariance.eta=NULL, precision=1e-4) { if (!is.null(trend.coef)) test_that(desc = "Check kriging trend", expect_true(max(abs(([email protected] - trend.coef)/trend.coef)) < precision)) if (!is.null(covariance.sd2)) test_that(desc = "Check kriging variance", expect_true(abs(model@covariance@sd2 - covariance.sd2)/covariance.sd2 < precision)) if (!is.null(covariance.range.val)) test_that(desc = "Check kriging range", expect_true(max(abs((model@[email protected] - covariance.range.val)/covariance.range.val)) < precision)) if (!is.null(covariance.nugget)) test_that(desc = "Check kriging nugget", expect_true(max(abs((model@covariance@nugget - covariance.nugget)/covariance.nugget)) < precision)) if (!is.null(covariance.eta)) test_that(desc = "Check kriging scaling", expect_true(max(abs((model@covariance@eta - covariance.eta)/covariance.eta)) < precision)) } context("Checking km examples: 2D example - Branin-Hoo function") d <- 2; n <- 16 design.fact <- expand.grid(x1=seq(0,1,length=4), x2=seq(0,1,length=4)) y <- apply(design.fact, 1, branin) m1 <- km(design=design.fact, response=y, control=list(trace=FALSE)) test_that.km(m1,trend.coef = 306.5783,covariance.sd2 = 145556.6,covariance.range.val = c(0.8254355,2.0000000)) m2 <- km(~.^2, design=design.fact, response=y, control=list(trace=FALSE)) test_that.km(m2, trend.coef = c(579.5111, -402.8916, -362.0008, 431.2314), covariance.sd2 = 87350.78, covariance.range.val = c(0.7917705,2.0000000)) m1.loo = leaveOneOut.km(m1,type="UK") m1.loo.test = list(mean = c(286.993256592263, 61.1933200186092, 13.3103372396603, 6.71932528464657, 165.248905907798, 19.0053295402084, 27.2225325208522, 7.83789496814171, 59.1350192499509, 36.8594545864432, 90.067237851829, 54.0537533395973, 27.9241365199806, 97.621906142958, 202.264052547859, 153.096609124748), sd = c(10.772546332554, 5.74056179816984, 5.74056179817999, 10.7725463324928, 4.30907401785216, 2.300089162552, 2.30008916257098, 4.30907401785217, 4.30907401784204,2.30008916257098, 2.30008916257098, 4.30907401783865, 10.7725463325132, 5.74056179815971, 5.74056179814956, 10.7725463325064)) test_that(desc="Test leaveOneOut",expect_that(max(abs(m1.loo.test$mean-m1.loo$mean))<1e-6, is_true())) test_that(desc="Test leaveOneOut",expect_that(max(abs(m1.loo.test$sd-m1.loo$sd))<1e-6, is_true())) m2.loo = leaveOneOut.km(m2,type="UK") m2.loo.test = list(mean = c(295.42310365247, 58.7310677087344, 15.7232029614909, 0.759894555079001, 162.564378157371, 19.7760351639429, 26.4708895401928, 9.63275693530611, 61.6951516883825, 36.1471579561365, 90.7566139900235, 52.5073354395038, 20.6033936837633, 99.6133571193964, 200.349297345504, 157.171599505827), sd = c(9.40690817620207, 4.88889794440375, 4.8888979444158, 9.40690817630557, 3.66940746999634, 1.9439593480655, 1.9439593480619, 3.66940747003794, 3.66940746999794, 1.94395934805049, 1.94395934807647, 3.66940747003195, 9.40690817621748, 4.88889794440019, 4.88889794440971, 9.40690817632347)) test_that(desc="Test leaveOneOut",expect_that(max(abs(m2.loo.test$mean-m2.loo$mean))<1e-6, is_true())) test_that(desc="Test leaveOneOut",expect_that(max(abs(m2.loo.test$sd-m2.loo$sd))<1e-6, is_true())) context("Checking km examples results: 1D example with penalized MLE") n <- 6; d <- 1 x <- seq(from=0, to=10, length=n) y <- sin(x) t <- seq(0,10, length=100) epsilon <- 1e-3 model <- km(formula<- ~1, design=data.frame(x=x), response=data.frame(y=y), covtype="gauss", penalty=list(fun="SCAD", value=3), nugget=epsilon, control=list(trace=FALSE)) test_that.km(model, trend.coef = -0.5586176, covariance.sd2 = 3.35796, covariance.range.val = 2.417813, covariance.nugget = 0.001) p <- predict(model, data.frame(x=t), "UK", bias.correct=TRUE) p.test = list(mean = c(-3.33066907387547e-16, 0.103668583556765, 0.204106764415468, 0.301735270357276, 0.395756768311479, 0.485384515282419, 0.569851151220041, 0.648417561574452, 0.720381694694425, 0.785087216109229, 0.841931880366164, 0.890375501555915, 0.929947405986085, 0.960253254668741, 0.980981129345181, 0.991906783620992, 0.992897970333583, 0.983917767397483, 0.965026836913487, 0.936384566102604, 0.898249053426139, 0.850975918849646, 0.795015933354937, 0.73091147924265, 0.659291869232534, 0.580867568592383, 0.496423380244189, 0.406810667751401, 0.312938705039622, 0.215765254418146, 0.116286485745949, 0.0155263592432038, -0.0854743976639361, -0.185669583082299, -0.284018942575723, -0.379499577893206, -0.471117200190948, -0.557917087546549, -0.638994610661276, -0.713505196652745, -0.780673608644263, -0.83980242832094, -0.890279639583468, -0.931585223704922, -0.963296689783487, -0.985093478570262, -0.996760192713487, -0.998188621869706, -0.989378546759103, -0.970437321859351, -0.941578251818738, -0.903117791614111, -0.855471614783334, -0.799149607542319, -0.73474985908724, -0.662951729736852, -0.584508088662155, -0.500236821676946, -0.411011716841405, -0.317752841402879, -0.221416527826267, -0.122985089336235, -0.0234563865111159, 0.0761666339406344, 0.174886308980496, 0.271720421685087, 0.365712045055562, 0.455938961810148, 0.541522561823235, 0.621636126948619, 0.69551242194443, 0.76245051997177, 0.821821801531807, 0.873075076596748, 0.915740790936399, 0.9494342891014, 0.97385811805448, 0.988803366903467, 0.994150049448424, 0.989866547180333, 0.976008140836365, 0.952714668511005, 0.920207357536033, 0.878784885778434, 0.828818735577156, 0.770747910172976, 0.705073088118135, 0.632350295735319, 0.553184181193531, 0.468220976160377, 0.378141232269578, 0.283652419816319, 0.185481475183269, 0.0843673815421025, -0.0189461355818289, -0.123717720189388, -0.229215232199558, -0.334722260961891, -0.439544244726991, -0.544021110889371), sd = c(1.37722860163619e-16, 0.055938047354605, 0.0717239075944272, 0.0885333491721034, 0.103479571632164, 0.11558566074085, 0.124535231655531, 0.130284178908033, 0.132926953513156, 0.132643474051053, 0.129675361680544, 0.124314691041382, 0.116899579170262, 0.107815385655198, 0.0975029505547555, 0.086477898723425, 0.0753678296196528, 0.0649731906768246, 0.0563321548096111, 0.0506662341718909, 0.0489421469571659, 0.0511448312539402, 0.0561923009414814, 0.0626840730368677, 0.0694846347505854, 0.075822706651813, 0.0812033992665197, 0.0853179155081378, 0.0879856320787734, 0.0891211458796282, 0.0887162707338793, 0.0868307797971652, 0.0835888470871021, 0.0791801846304929, 0.073866202141622, 0.067992148964746, 0.0620049698687374, 0.056469588561222, 0.052056108560131, 0.0494397154112441, 0.0490738072493008, 0.0509543226071206, 0.0546149617347237, 0.0593642281895726, 0.064524637090391, 0.0695406284760611, 0.0739914572527713, 0.077571596936056, 0.0800691406401005, 0.0813503165577205, 0.0813503165577172, 0.0800691406401005, 0.0775715969360595, 0.0739914572527677, 0.0695406284760611, 0.064524637090391, 0.059364228189577, 0.0546149617347237, 0.050954322607131, 0.0490738072493116, 0.0494397154112548, 0.0520561085601361, 0.0564695885612173, 0.0620049698687245, 0.067992148964746, 0.0738662021416293, 0.0791801846304862, 0.0835888470871022, 0.0868307797971652, 0.0887162707338762, 0.0891211458796311, 0.0879856320787612, 0.0853179155081378, 0.0812033992665066, 0.07582270665182, 0.0694846347505701, 0.0626840730368719, 0.0561923009414766, 0.0511448312539402, 0.0489421469571659, 0.0506662341718909, 0.0563321548096158, 0.0649731906768328, 0.0753678296196563, 0.0864778987234313, 0.097502950554761, 0.107815385655201, 0.116899579170262, 0.12431469104138, 0.129675361680544, 0.132643474051059, 0.13292695351316, 0.130284178908038, 0.124535231655527, 0.115585660740852, 0.103479571632161, 0.0885333491720974, 0.071723907594431, 0.055938047354605, 0)) test_that(desc="Test predict",expect_equal(p$mean,p.test$mean)) test_that(desc="Test predict",expect_equal(p$sd,p.test$sd)) context("Checking km examples results: 1D example with known trend and known or unknown covariance parameters") x <- c(0, 0.4, 0.6, 0.8, 1); y <- c(-0.3, 0, -0.8, 0.5, 0.9) theta <- 0.01; sigma <- 3; trend <- c(-1,2) model <- km(~x, design=data.frame(x=x), response=data.frame(y=y), covtype="matern5_2", coef.trend=trend, coef.cov=theta, coef.var=sigma^2, control=list(trace=FALSE)) t <- seq(from=0, to=1, by=0.005) p <- predict(model, newdata=data.frame(x=t), type="SK") p.test=list(mean = c(-0.3, -0.409945600307312, -0.613204123817726, -0.771785710062141, -0.862937846603047, -0.905542849815739, -0.920593604659762, -0.921829914451626, -0.916656040817311, -0.908661891267655, -0.899474346347788, -0.889796659403621, -0.879922358335064, -0.869970682858201, -0.859989036423894, -0.8499959345099, -0.839998503637175, -0.829999452876737, -0.819999801133533, -0.809999928100776, -0.799999974130126, -0.789999990732495, -0.779999996693293, -0.769999998824458, -0.759999999583497, -0.749999999852888, -0.739999999948188, -0.729999999981801, -0.719999999993623, -0.709999999997771, -0.699999999999222, -0.689999999999729, -0.679999999999906, -0.669999999999967, -0.659999999999989, -0.649999999999996, -0.639999999999999, -0.63, -0.62, -0.61, -0.6, -0.59, -0.58, -0.57, -0.56, -0.549999999999999, -0.539999999999997, -0.529999999999991, -0.519999999999973, -0.509999999999923, -0.499999999999778, -0.489999999999363, -0.479999999998178, -0.4699999999948, -0.459999999985197, -0.449999999957968, -0.439999999880999, -0.429999999664131, -0.419999999055227, -0.409999997352141, -0.399999992608608, -0.389999979457365, -0.37999994318101, -0.369999843679068, -0.359999572467764, -0.3499988384314, -0.339996867549684, -0.329991623673772, -0.319977816667161, -0.309941902686749, -0.299849813242225, -0.28961768321933, -0.27904458309066, -0.267665689843322, -0.254455315617075, -0.237297957090211, -0.212267956172299, -0.17336734573204, -0.115201178233636, -0.044270171516375, 0, -0.024270171516375, -0.0752011782336362, -0.113367345732041, -0.132267956172301, -0.137297957090217, -0.134455315617091, -0.127665689843368, -0.119044583090795, -0.109617683219717, -0.099849813243336, -0.0899419026899333, -0.0799778166762707, -0.0699916236997703, -0.0599968676237009, -0.04999883864156, -0.0399995730627685, -0.0299998453584138, -0.019999947904877, -0.00999999269665746, -2.95655697764231e-08, 0.00999989993468188, 0.0199997168498212, 0.0299992187312075, 0.0399978624578226, 0.0499941921990326, 0.0599843377632238, 0.069958118374058, 0.0798890833376284, 0.0897095134343814, 0.0992490662113485, 0.108088416096727, 0.115222915453328, 0.118328449216618, 0.112276578085377, 0.0864897854510566, 0.0213397808614965, -0.113163271339799, -0.34399410883182, -0.638649142418125, -0.8, -0.618649142418125, -0.30399410883182, -0.0531632713397988, 0.101339780861496, 0.186489785451056, 0.232276578085373, 0.258328449216605, 0.275222915453288, 0.288088416096611, 0.299249066211015, 0.309709513433426, 0.319889083334896, 0.329958118366258, 0.339984337741019, 0.349994192135985, 0.359997862279321, 0.369999218227404, 0.379999715432661, 0.389999895962894, 0.399999959347342, 0.409999976489389, 0.419999966866637, 0.429999920160188, 0.439999785638878, 0.44999941900554, 0.459998433700825, 0.469995811810887, 0.479988908324471, 0.48997095134019, 0.499924906620002, 0.509808841609278, 0.519522291545196, 0.528832844921614, 0.537227657808521, 0.5436489785451, 0.546133978086148, 0.541683672866019, 0.527600589116818, 0.507135085758187, 0.5, 0.527135085758188, 0.567600589116818, 0.60168367286602, 0.62613397808615, 0.643648978545105, 0.657227657808536, 0.668832844921656, 0.679522291545317, 0.689808841609626, 0.699924906621001, 0.709970951343056, 0.71998890833267, 0.729995811834286, 0.73999843376744, 0.749999419194684, 0.759999786174382, 0.769999921671599, 0.779999971118118, 0.789999988404753, 0.799999992608608, 0.809999988404753, 0.819999971118118, 0.829999921671599, 0.839999786174382, 0.849999419194684, 0.85999843376744, 0.869995811834286, 0.87998890833267, 0.889970951343056, 0.899924906621002, 0.909808841609626, 0.919522291545317, 0.928832844921656, 0.937227657808536, 0.943648978545105, 0.946133978086149, 0.94168367286602, 0.927600589116818, 0.907135085758187, 0.9), sd = c(0, 1.6793050315316, 2.55516566296315, 2.87721515634081, 2.97102004245279, 2.99394356557226, 2.99884689620796, 2.99979565539401, 2.99996576899956, 2.99999451876546, 2.99999915414755, 2.99999987342633, 2.99999998154624, 2.99999999736889, 2.99999999963204, 2.9999999999494, 2.99999999999315, 2.99999999999908, 2.99999999999988, 2.99999999999998, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2.99999999999998, 2.99999999999988, 2.99999999999908, 2.99999999999315, 2.9999999999494, 2.99999999963204, 2.99999999736889, 2.99999998154624, 2.99999987342633, 2.99999915414755, 2.99999451876546, 2.99996576899956, 2.99979565539401, 2.99884689620796, 2.99394356557226, 2.97102004245279, 2.87721515634081, 2.55516566296315, 1.6793050315316, 0, 1.6793050315316, 2.55516566296315, 2.87721515634081, 2.97102004245279, 2.99394356557226, 2.99884689620796, 2.99979565539401, 2.99996576899956, 2.99999451876546, 2.99999915414755, 2.99999987342633, 2.99999998154624, 2.99999999736889, 2.99999999963204, 2.9999999999494, 2.99999999999315, 2.99999999999908, 2.99999999999988, 2.99999999999998, 3, 2.99999999999998, 2.99999999999988, 2.99999999999908, 2.99999999999315, 2.9999999999494, 2.99999999963204, 2.99999999736889, 2.99999998154624, 2.99999987342633, 2.99999915414755, 2.99999451876546, 2.99996576899956, 2.99979565539401, 2.99884689620796, 2.99394356557226, 2.97102004245279, 2.87721515634081, 2.55516566296315, 1.6793050315316, 0, 1.6793050315316, 2.55516566296315, 2.87721515634081, 2.97102004245279, 2.99394356557226, 2.99884689620796, 2.99979565539401, 2.99996576899956, 2.99999451876546, 2.99999915414755, 2.99999987342633, 2.99999998154624, 2.99999999736889, 2.99999999963204, 2.9999999999494, 2.99999999999315, 2.99999999999908, 2.99999999999988, 2.99999999999998, 3, 2.99999999999998, 2.99999999999988, 2.99999999999908, 2.99999999999315, 2.9999999999494, 2.99999999963204, 2.99999999736889, 2.99999998154624, 2.99999987342633, 2.99999915414755, 2.99999451876546, 2.99996576899956, 2.99979565539401, 2.99884689620796, 2.99394356557226, 2.97102004245279, 2.87721515634081, 2.55516566296315, 1.6793050315316, 0, 1.6793050315316, 2.55516566296315, 2.87721515634081, 2.97102004245279, 2.99394356557226, 2.99884689620796, 2.99979565539401, 2.99996576899956, 2.99999451876546, 2.99999915414755, 2.99999987342633, 2.99999998154624, 2.99999999736889, 2.99999999963204, 2.9999999999494, 2.99999999999315, 2.99999999999908, 2.99999999999988, 2.99999999999998, 3, 2.99999999999998, 2.99999999999988, 2.99999999999908, 2.99999999999315, 2.9999999999494, 2.99999999963204, 2.99999999736889, 2.99999998154624, 2.99999987342633, 2.99999915414755, 2.99999451876546, 2.99996576899956, 2.99979565539401, 2.99884689620796, 2.99394356557226, 2.97102004245279, 2.87721515634081, 2.55516566296315, 1.6793050315316, 0)) test_that(desc="Test predict",expect_equal(p$mean,p.test$mean)) test_that(desc="Test predict",expect_equal(p$sd,p.test$sd)) context("Checking km examples results: Kriging with noisy observations (heterogeneous noise variance)") fundet <- function(x){ return((sin(10*x)/(1+x)+2*cos(5*x)*x^3+0.841)/1.6) } level <- 0.5; epsilon <- 0.1 theta <- 1/sqrt(30); p <- 2; n <- 10 x <- seq(0,1, length=n) MC_numbers <- c(10,50,50,290,25,75,300,10,40,150) noise.var <- 3/MC_numbers y <- fundet(x) + noise.var*rnorm(length(x)) model <- km(y~1, design=data.frame(x=x), response=data.frame(y=y), covtype="gauss", coef.trend=0, coef.cov=theta, coef.var=1, noise.var=noise.var, control=list(trace=FALSE)) t <- seq(0,1,by=0.01) p <- predict.km(model, newdata=data.frame(x=t), type="SK") p.test = list(mean=c(0.539334747148277, 0.586647044674522, 0.633654722392378, 0.679929639445603, 0.725032146520035, 0.76851701239259, 0.809939706096152, 0.848862926253087, 0.884863259581319, 0.917537843577757, 0.946510904204198, 0.971440038235026, 0.992022111884504, 1.00799865243506, 1.01916061776519, 1.02535243976294, 1.02647525135751, 1.02248922297386, 1.01341495221093, 0.999333869999283, 0.980387646904218, 0.956776604070301, 0.9287571540107, 0.896638316492772, 0.860777373649944, 0.821574745689538, 0.779468183753871, 0.734926389283163, 0.688442179356868, 0.640525324773073, 0.59169519196919, 0.542473321284192, 0.493376072589807, 0.444907465129216, 0.397552331718294, 0.351769898564123, 0.307987891159104, 0.266597254366536, 0.227947561289564, 0.19234317117567, 0.16004018180712, 0.131244206895013, 0.106108994229466, 0.0847358860015263, 0.067174109021187, 0.0534218696840629, 0.0434282166177865, 0.0370956230593633, 0.0342832312338992, 0.0348106923531448, 0.0384625283391518, 0.04499293500192, 0.0541309411535644, 0.0655858340206116, 0.0790527583232632, 0.0942183945394055, 0.110766621187819, 0.128384066487297, 0.146765456523336, 0.1656186701334, 0.184669415155653, 0.203665446515514, 0.222380253873431, 0.24061615522411, 0.258206742887227, 0.275018639686927, 0.290952535661456, 0.305943489205345, 0.319960490905191, 0.333005303219061, 0.345110604257797, 0.356337478906972, 0.366772315006854, 0.376523175895532, 0.385715732926623, 0.394488852219889, 0.402989938540434, 0.411370145522012, 0.419779565200525, 0.428362510821178, 0.437253005021073, 0.446570580747562, 0.456416494719598, 0.46687044303276, 0.477987855893409, 0.489797833769091, 0.502301770857379, 0.51547269415915, 0.52925532809377, 0.543566876039111, 0.558298491954252, 0.573317397873672, 0.588469587048248, 0.603583038305923, 0.618471355209542, 0.632937734124466, 0.64677915861476, 0.659790713814218, 0.671769913623502, 0.682520935728924, 0.691858664392208), sd=c(0.377029458451379, 0.353477635741769, 0.331048780750455, 0.309901789954737, 0.290194209894752, 0.272078140711739, 0.255693335726301, 0.241156971388702, 0.228550243358871, 0.217903121026768, 0.209180023038072, 0.202270201518728, 0.196986396115609, 0.193073449055664, 0.190225693933524, 0.188109475678877, 0.186386324483874, 0.184733202947482, 0.182858030705805, 0.180510369041955, 0.17748818331955, 0.173641976171823, 0.168877543352864, 0.163158408232265, 0.156508809270597, 0.149018011275447, 0.140846648943365, 0.132235611420845, 0.123517178517844, 0.11512572777864, 0.107599737842161, 0.101557254845469, 0.0976194088289012, 0.0962714353566698, 0.0977066069260894, 0.101752687919136, 0.107939608904669, 0.115653145670172, 0.124274628914087, 0.133258903590641, 0.142159563724345, 0.150626545790194, 0.158394033615692, 0.165267084194709, 0.171109726773692, 0.175834882207011, 0.179395709724203, 0.181777922609756, 0.18299276787915, 0.183070560424202, 0.18205483806674, 0.179997341432579, 0.176954116156102, 0.172983084635437, 0.168143445517905, 0.162497243795756, 0.156113433919499, 0.149074759545596, 0.141487817200238, 0.133496739715259, 0.125300892938463, 0.117176389739067, 0.109499017316081, 0.102760375180372, 0.0975580180680758, 0.0945294254198149, 0.094211568198508, 0.0968685832496973, 0.102397003846006, 0.110380425208506, 0.12023962124095, 0.131371888401085, 0.143228876118868, 0.155342329216061, 0.167323289645481, 0.178852522758449, 0.189670189557165, 0.199567202683516, 0.20837840113671, 0.215977000068187, 0.22226973231672, 0.22719226116034, 0.230704645851273, 0.232786831193859, 0.233434297578214, 0.232654148383716, 0.230462031132744, 0.226880394359816, 0.221938688196329, 0.21567625058695, 0.208148830747982, 0.199440062098813, 0.189679808332715, 0.179072247643501, 0.167937686154268, 0.156772333879503, 0.146325713173994, 0.137675771860785, 0.132232680285778, 0.13154331895153, 0.136834814016462)) test_that(desc="Test predict",expect_equal(p$mean,p.test$mean)) test_that(desc="Test predict",expect_equal(p$sd,p.test$sd)) context("Checking km examples results: Kriging with non-linear scaling on Xiong et al.'s function") f11_xiong <- function(x){ return( sin(30*(x - 0.9)^4)*cos(2*(x - 0.9)) + (x - 0.9)/2) } t <- seq(0,1,,300) f <- f11_xiong(t) doe <- data.frame(x=seq(0,1,,20)) resp <- f11_xiong(doe) knots <- list( c(0,0.5,1) ) m <- km(design=doe, response=resp, scaling=TRUE, gr=TRUE, knots=knots, covtype="matern5_2", coef.var=1, coef.trend=0, control=list(trace=FALSE)) test_that.km(m, covariance.eta = c(17.6113829, 2.4169448,0.8873958), precision=1e-4) p <- predict(m, data.frame(x=t), "UK", bias.correct=TRUE) p.test = list(mean=c(-0.6181866493757, -0.619384327994964, -0.617544523595288, -0.612923071362958, -0.605845139548477, -0.596671063973597, -0.5857719188513, -0.573512506951456, -0.560239960336162, -0.546276545346517, -0.531915583696315, -0.517419652595045, -0.503020424530901, -0.48891966269035, -0.475291009762516, -0.462282303092248, -0.450018223374948, -0.438603069295669, -0.42812274959666, -0.418645515567079, -0.410222490091608, -0.402888224309673, -0.396661205967063, -0.391544260046136, -0.387524798637093, -0.384574889326519, -0.382651120532267, -0.381694248922229, -0.381628618885048, -0.382361347422901, -0.383781270163437, -0.385757645719527, -0.388138619983493, -0.390750112138151, -0.39339879496282, -0.395878591204417, -0.397976974292908, -0.399480772708841, -0.400181725829701, -0.399882006665258, -0.39839989913914, -0.395575795258101, -0.39127865957273, -0.3854130938907, -0.377927123515424, -0.368820816728299, -0.358155841284965, -0.346066054910513, -0.33276910000895, -0.318572838493337, -0.303859639167353, -0.289060874908515, -0.274635057702686, -0.261049657449351, -0.24876576473141, -0.238224905538517, -0.229837438656032, -0.223972068333405, -0.220946089591973, -0.221016054175952, -0.224368604223206, -0.231111270339583, -0.24126307264834, -0.254744799000975, -0.271369340122068, -0.290841799346952, -0.312780978672547, -0.336744665077429, -0.362250734912443, -0.388794612006908, -0.415863768733658, -0.44294984162595, -0.46955883415162, -0.495219795913324, -0.519492297338891, -0.541972959729411, -0.562301250572315, -0.58016471181062, -0.595303753045532, -0.607516110964843, -0.616660528928325, -0.622654732051651, -0.625466489130159, -0.62510481364984, -0.621612795849773, -0.615061819013151, -0.605546931866299, -0.593183182715417, -0.578102749616398, -0.560452725215194, -0.54039343557363, -0.518097189866798, -0.493747372773389, -0.467537804093884, -0.439672300960193, -0.410364383850582, -0.379836606390905, -0.348317278525024, -0.316035481422044, -0.283216733342154, -0.250079473593566, -0.216832238706492, -0.18367142428487, -0.150779543024492, -0.118323903822031, -0.0864556491104871, -0.0553090978625722, -0.025001350370222, 0.00436788182654946, 0.0327162514325693, 0.0599785818530151, 0.0861065136495609, 0.111067500215288, 0.134842073141954, 0.157420631276143, 0.17880074278872, 0.198984948559774, 0.217978999387435, 0.235790468125003, 0.252427685264059, 0.267898952858084, 0.282211997182547, 0.295373625258048, 0.3073895544446, 0.318264387829763, 0.328001711173836, 0.336604289799667, 0.34407438300404, 0.350414777597394, 0.355630963113317, 0.359733138904088, 0.362737619456597, 0.364667717790052, 0.365554190300026, 0.365435316966647, 0.364356682516446, 0.36237071675713, 0.35953604575857, 0.355916699693483, 0.351581217897373, 0.346601686947497, 0.341052743241555, 0.335010567551571, 0.328551867513987, 0.321752661075919, 0.314686950737844, 0.307425655285841, 0.300035827577346, 0.292580112854382, 0.285116407162208, 0.27766204250694, 0.270041862952395, 0.262242107025742, 0.254283613101952, 0.246187224420236, 0.237973694135407, 0.22966359627162, 0.22127724230822, 0.212834603129049, 0.204355235204216, 0.195858207012237, 0.187362026833072, 0.178884575211622, 0.17044304226518, 0.162053869619148, 0.153732696771108, 0.145494311686322, 0.137352605442916, 0.129320530751226, 0.121410064183481, 0.113632171952961, 0.105996779097326, 0.0985127419209676, 0.0911878235616712, 0.084028673156181, 0.0770408295665373, 0.0702287931929301, 0.0635961260874189, 0.0571455481314747, 0.0508790277534277, 0.0447978674345578, 0.0389027842294168, 0.0331939855252174, 0.0276712402481287, 0.0223339457174205, 0.0171811903426216, 0.012211812341782, 0.00742445466112723, 0.00281761625927527, -0.00161030008117329, -0.00586094412986754, -0.00993599177390887, -0.0138371466425015, -0.0175661490456186, -0.0211247843624052, -0.0245148907297168, -0.0277383660603413, -0.0307971744181088, -0.0336933517779194, -0.0364290111936353, -0.0390063474041107, -0.0414276408938766, -0.043695261437668, -0.0458116711464816, -0.0477794270378376, -0.0496011831495988, -0.0512796917672645, -0.0528178004990926, -0.0542184449995801, -0.0554846412842739, -0.0566194783879771, -0.0576261113543447, -0.0585077545441052, -0.0592676752434355, -0.0599091875622562, -0.0604356466079271, -0.0608504429197739, -0.0611569971574735, -0.0613587550243052, -0.0614591824230813, -0.0614617608275543, -0.0613699828459608, -0.0611873466596634, -0.0609173445435782, -0.0605634478750595, -0.0601290929642404, -0.0596176680799324, -0.0590325016143571, -0.0583768513313831, -0.0576538946484541, -0.0568667199002712, -0.056018318538126, -0.0551115782169636, -0.0541492767282164, -0.053134076733538, -0.0520685212602773, -0.0509550299185329, -0.0497958959771331, -0.0485932893203502, -0.0473492739893414, -0.0460658305532157, -0.0447448768083503, -0.0433882866015425, -0.0419979068691594, -0.0405755729807539, -0.0391231224764197, -0.037642407279874, -0.0361353044671106, -0.0346037256676119, -0.0330496251735891, -0.0314750068279022, -0.029881929758972, -0.0282725130298932, -0.0266489379356994, -0.0250134308116316, -0.0233682159255298, -0.0217154651520595, -0.0200572529111883, -0.0183955162365097, -0.0167320196916362, -0.0150683248582279, -0.0134057641334375, -0.0117454185846687, -0.0100880996189366, -0.00843433422987598, -0.00678435360090385, -0.00513808484810206, -0.00349514569129573, -0.00185484187708767, -0.00021617168983519, 0.00142213417059717, 0.00306154084187579, 0.00470363940656769, 0.00635008412999384, 0.00800253644346121, 0.0096626152789829, 0.0113318533696893, 0.0130116591535249, 0.0147032839285056, 0.0164077939210321, 0.01812604694847, 0.0198586733609143, 0.0216060609695321, 0.0233683436753124, 0.0251453936053517, 0.026936821616966, 0.0287420016740626, 0.0305601077090647, 0.0323901483514226, 0.0342309984794159, 0.0360814277847514, 0.0379401265308031, 0.039805728677887, 0.0416768325421688, 0.0435520191471147, 0.0454298684185662, 0.0473089733708269, 0.0491879524196559, 0.0510654599590658, 0.052940195323104 ), sd=c(5.40521927259871e-09, 0.0278955268448099, 0.0527585896172703, 0.0739907998166573, 0.0911593329653399, 0.103979113019168, 0.112298629160489, 0.116088760303684, 0.115434249987665, 0.110527531524034, 0.101664573762998, 0.0892423550839467, 0.0737575014939018, 0.0558055602221966, 0.0360803469228653, 0.0153728564251457, 0.00543056383264634, 0.0253804824448798, 0.0436243232213521, 0.0594847396849461, 0.0724484332714464, 0.0821529857215723, 0.0883749441803885, 0.0910191504001311, 0.090109354682045, 0.0857800864787522, 0.0782696560953018, 0.0679140679135962, 0.0551415471531945, 0.0404673284002107, 0.0244883430773698, 0.00787751923542965, 0.00862301047745113, 0.0242523811374775, 0.0383578795645493, 0.0504259263091857, 0.060073235236072, 0.0670380051926555, 0.0711714614319289, 0.0724298026008374, 0.0708666151632932, 0.0666257608974258, 0.0599346743115707, 0.0510979442963852, 0.0404910063063968, 0.0285537455708464, 0.0157838237623598, 0.00272962748301085, 0.0100194860268291, 0.0218917845732854, 0.0324154436456769, 0.041226072210972, 0.0480604358327453, 0.0527500887865998, 0.0552149089868492, 0.0554566080881815, 0.0535522815305141, 0.0496480244197844, 0.0439525957426021, 0.036731076282206, 0.0282984402728045, 0.0190129534423633, 0.00926933292299627, 0.000508314633666543, 0.00987887094446615, 0.0184394549981615, 0.025868805193392, 0.0319263863521959, 0.0364476944644532, 0.0393392568502533, 0.0405733622311219, 0.0401825961301444, 0.0382542477369581, 0.0349246297860518, 0.0303733273987832, 0.0248173713629215, 0.0185053195971253, 0.0117112320949676, 0.00472854851496484, 0.00213608466720373, 0.00857703536284724, 0.0143320779778923, 0.01920010213466, 0.0230382212933763, 0.0257579258195494, 0.0273209044938779, 0.027734593873248, 0.0270475309664019, 0.0253445760290491, 0.0227420566204376, 0.0193828688312309, 0.0154315601428472, 0.0110694129370792, 0.00648955128236172, 0.00189211244663229, 0.00252062580429939, 0.00655821986761304, 0.0100680349620087, 0.0129397490195468, 0.0151023575824548, 0.0165208562061587, 0.0171926877066967, 0.0171440201894679, 0.0164259252930565, 0.0151105180215727, 0.0132871086353029, 0.0110584070205879, 0.00853681248148238, 0.00584081822587245, 0.0030915617872107, 0.000409564033737249, 0.00208876593896904, 0.00430216449017573, 0.00615645492601835, 0.00760391452504312, 0.00862060533720077, 0.00920357645564576, 0.00936798525194681, 0.00914419573867131, 0.00857490906518254, 0.00771237319010031, 0.00661571005253904, 0.00534839078003959, 0.00397588338780098, 0.00256349360766343, 0.00117441883154567, 0.000131960472590607, 0.00130221158917693, 0.00229518025109844, 0.00308525654371616, 0.00366061098970859, 0.00402110530459799, 0.00417623390728292, 0.00414313350870577, 0.00394469727146971, 0.00360782388655352, 0.00316182448568462, 0.00263700322359383, 0.00206342123657317, 0.00146984871518563, 0.000882906106068735, 0.000326393111302364, 0.00017919945124684, 0.000617502861537928, 0.000978176647015097, 0.00125681052512315, 0.00145375833407683, 0.00157304170827566, 0.00162136080526537, 0.00160722109959803, 0.00153974554393112, 0.00142436837949148, 0.00126633761399362, 0.00107215305790654, 0.000849243596628756, 0.000605830445054434, 0.000350781121539972, 9.34557230022058e-05, 0.000156461894606401, 0.000389530359206717, 0.000597578015332369, 0.000773965170886398, 0.000913601489404074, 0.00101294403454977, 0.00106997595903501, 0.00108416608705489, 0.00105641026773893, 0.000988955608436533, 0.000885308725116187, 0.00075012910692986, 0.000589108661666367, 0.000408838589325305, 0.000216665045473663, 2.05358786258385e-05, 0.000171195663440373, 0.00035049470042588, 0.000510462170714594, 0.00064547147590016, 0.000751196250130842, 0.00082461791854646, 0.000864013024818227, 0.000868921373466751, 0.000840096400322934, 0.000779439245878901, 0.000689917932191898, 0.000575472935835753, 0.000440910388231675, 0.000291784190593147, 0.00013426865201414, 2.49759352367094e-05, 0.000179029580407467, 0.000321463534618553, 0.000446854479379327, 0.000550845208077309, 0.000630162898882065, 0.000682619492371508, 0.000707094717834278, 0.00070350298582261, 0.000672745558617544, 0.000616649392677178, 0.000537893952064388, 0.000439927185715771, 0.000326871812311767, 0.000203423136934822, 7.47399457217233e-05, 5.36703955013989e-05, 0.000176223765368053, 0.000287924529942511, 0.000384636393809221, 0.000463108413248862, 0.000520981923362827, 0.00055678272003298, 0.000569899274228118, 0.000560548166050523, 0.0005297280036614, 0.000479163051962901, 0.00041123769638931, 0.000328922784868723, 0.000235694860014172, 0.000135449388533949, 3.24094344400267e-05, 6.89750596878059e-05, 0.000164340771316577, 0.000249916380224616, 0.000322641253834587, 0.000380175530727422, 0.000420898010528653, 0.000443892364955128, 0.000448922521742606, 0.00043639830101167, 0.000407332408300389, 0.000363289826996956, 0.000306330563905879, 0.000238946643657319, 0.000163994227643533, 8.46218434857493e-05, 4.19605289148908e-06, 7.37936649095409e-05, 0.000146060736710977, 0.000209846922736215, 0.000262963820935719, 0.000303793912147134, 0.000331282275677673, 0.000344919445923973, 0.000344716229990787, 0.000331171444458688, 0.000305233497624261, 0.000268256691983734, 0.000221953047406635, 0.000168340390248118, 0.000109687473029649, 4.84569757950173e-05, 1.27524710410294e-05, 7.13034155784107e-05, 0.000124811915473892, 0.000171320676715324, 0.00020930911251436, 0.000237689136521643, 0.000255794183156826, 0.000263361980089882, 0.00026051181346646, 0.000247717087779459, 0.000225773936214625, 0.000195766598363813, 0.000159030220130916, 0.000117111705794583, 7.17292720886261e-05, 2.47314354002609e-05, 2.19442339162618e-05, 6.63678680666483e-05, 0.000106831375282275, 0.000141922537176468, 0.000170527257494718, 0.000191826601721701, 0.000205289795982779, 0.000210663613661126, 0.000207958686742575, 0.000197433290365047, 0.00017957513853237, 0.000155081669579709, 0.000124839293810563, 8.99020365281582e-05, 5.14700095128775e-05, 1.08682044601612e-05, 3.04760387232468e-05, 7.11069314639068e-05, 0.000109651244740311, 0.000144843205375932, 0.000175529086439696, 0.000200670149077007, 0.000219344018510228, 0.000230744672357331, 0.000234181207482184, 0.000229075585637918, 0.000214959535503335, 0.000191470767953811, 0.000158348663688514, 0.000115429547853075, 6.26416716073123e-05, 5.4052192726006e-09)) test_that(desc="Test predict",expect_that(max(abs(p$mean-p.test$mean))<1e-6, is_true())) test_that(desc="Test predict",expect_that(max(abs(p$sd-p.test$sd))<1e-6, is_true()))
data_dir <- file.path("..", "testdata") tempfile_nc <- function() { tempfile_helper("daymin_") } file_out <- tempfile_nc() daymin("SIS", file.path(data_dir, "ex_dayx.nc"), file_out) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) expected_data <- c(250,251,250,251,252,250,251, 252,250,251,252,250,251,250, 250,251,250,250,251,250,250, 251,250,250,251,250,251,252, 250,251,252,250,251,252,250, 251,250,250,251,250,250,251, 250,250,251,250,250,251,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,251,250,250,251,250, 250,251,250,251,252,250,251, 252,250,251,250,250,251,250, 250,251,250,250,251,250,250, 251,250,250,251,250,251,252, 250,251,252,250,251,250,250, 251,250,250,251,250,250,251) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual, expected) }) test_that("variable attributes are correct", { actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "missing_value")$value expect_equal(actual, 0) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "cmsaf_info")$value expect_equal(actual, "cmsafops::daymin for variable SIS") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149028, 149040, 149064))) }) nc_close(file) file_out <- tempfile_nc() daymin("SIS", file.path(data_dir, "ex_dayx.nc"), file_out, nc34 = 4) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) expected_data <- c(250,251,250,251,252,250,251, 252,250,251,252,250,251,250, 250,251,250,250,251,250,250, 251,250,250,251,250,251,252, 250,251,252,250,251,252,250, 251,250,250,251,250,250,251, 250,250,251,250,250,251,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,251,250,250,251,250, 250,251,250,251,252,250,251, 252,250,251,250,250,251,250, 250,251,250,250,251,250,250, 251,250,250,251,250,251,252, 250,251,252,250,251,250,250, 251,250,250,251,250,250,251) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual, expected) }) test_that("variable attributes are correct", { actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "missing_value")$value expect_equal(actual, 0) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149028, 149040, 149064))) }) nc_close(file) file_out <- tempfile_nc() test_that("error is thrown if ncdf version is wrong", { expect_error( daymin("SIS", file.path(data_dir, "ex_dayx.nc"), file_out, nc34 = 7), "nc version must be in c(3, 4), but was 7", fixed = TRUE ) }) file_out <- tempfile_nc() test_that("ncdf version NULL throws an error", { expect_error( daymin("SIS", file.path(data_dir, "ex_dayx.nc"), file_out, nc34 = NULL), "nc_version must not be NULL" ) }) file_out <- tempfile_nc() test_that("warning is shown if var does not exist", { expect_warning(daymin("notExist", file.path(data_dir, "ex_dayx.nc"), file_out), "Variable 'notExist' not found. Variable 'SIS' will be used instead.") }) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) expected_data <- c(250,251,250,251,252,250,251, 252,250,251,252,250,251,250, 250,251,250,250,251,250,250, 251,250,250,251,250,251,252, 250,251,252,250,251,252,250, 251,250,250,251,250,250,251, 250,250,251,250,250,251,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,251,250,250,251,250, 250,251,250,251,252,250,251, 252,250,251,250,250,251,250, 250,251,250,250,251,250,250, 251,250,250,251,250,251,252, 250,251,252,250,251,250,250, 251,250,250,251,250,250,251) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual, expected) }) test_that("variable attributes are correct", { actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "missing_value")$value expect_equal(actual, 0) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149028, 149040, 149064))) }) nc_close(file) file_out <- tempfile_nc() test_that("error is thrown if variable is NULL", { expect_error( daymin(NULL, file.path(data_dir, "ex_dayx.nc"), file_out), "variable must not be NULL" ) }) file_out <- tempfile_nc() test_that("warning is shown if var is empty", { expect_warning(daymin("", file.path(data_dir, "ex_dayx.nc"), file_out), "Variable '' not found. Variable 'SIS' will be used instead.") }) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) expected_data <- c(250,251,250,251,252,250,251, 252,250,251,252,250,251,250, 250,251,250,250,251,250,250, 251,250,250,251,250,251,252, 250,251,252,250,251,252,250, 251,250,250,251,250,250,251, 250,250,251,250,250,251,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,251,250,250,251,250, 250,251,250,251,252,250,251, 252,250,251,250,250,251,250, 250,251,250,250,251,250,250, 251,250,250,251,250,251,252, 250,251,252,250,251,250,250, 251,250,250,251,250,250,251) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual, expected) }) test_that("variable attributes are correct", { actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "missing_value")$value expect_equal(actual, 0) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149028, 149040, 149064))) }) nc_close(file) file_out <- tempfile_nc() test_that("error is thrown if input file does not exist", { expect_error( daymin("SIS", file.path(data_dir, "xemaple1.nc"), file_out), "Input file does not exist") }) file_out <- tempfile_nc() test_that("error is thrown if input filename is empty", { expect_error( daymin("SIS", "", file_out), "Input file does not exist") }) file_out <- tempfile_nc() test_that("error is thrown if input filename is NULL", { expect_error( daymin("SIS", NULL, file_out), "Input filepath must be of length one and not NULL" ) }) file_out <- tempfile_nc() cat("test\n", file = file_out) test_that("error is thrown if output file already exists", { expect_error( daymin("SIS", file.path(data_dir, "ex_dayx.nc"), file_out), paste0("File '", file_out, "' already exists. Specify 'overwrite = TRUE' if you want to overwrite it."), fixed = TRUE ) expect_equal(readLines(con = file_out), "test") }) file_out <- tempfile_nc() cat("test\n", file = file_out) test_that("no error is thrown if overwrite = TRUE", { expect_error( daymin("SIS", file.path(data_dir, "ex_dayx.nc"), file_out, overwrite = TRUE ), NA ) }) file <- nc_open(file_out) test_that("data is correct", { actual <- ncvar_get(file) expected_data <- c(250,251,250,251,252,250,251, 252,250,251,252,250,251,250, 250,251,250,250,251,250,250, 251,250,250,251,250,251,252, 250,251,252,250,251,252,250, 251,250,250,251,250,250,251, 250,250,251,250,250,251,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,250,250,250,250,250, 250,250,251,250,250,251,250, 250,251,250,251,252,250,251, 252,250,251,250,250,251,250, 250,251,250,250,251,250,250, 251,250,250,251,250,251,252, 250,251,252,250,251,250,250, 251,250,250,251,250,250,251) expected <- array(expected_data, dim = c(7, 7, 3)) expect_equivalent(actual, expected) }) test_that("variable attributes are correct", { actual <- ncatt_get(file, "SIS", "units")$value expect_equal(actual, "W m-2") actual <- ncatt_get(file, "SIS", "_FillValue")$value expect_equal(actual, -999) actual <- ncatt_get(file, "SIS", "standard_name")$value expect_equal(actual, "SIS_standard") actual <- ncatt_get(file, "SIS", "long_name")$value expect_equal(actual, "Surface Incoming Shortwave Radiation") actual <- ncatt_get(file, "SIS", "missing_value")$value expect_equal(actual, 0) }) test_that("attributes are correct", { actual <- ncatt_get(file, "lon", "units")$value expect_equal(actual, "degrees_east") actual <- ncatt_get(file, "lon", "long_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "standard_name")$value expect_equal(actual, "longitude") actual <- ncatt_get(file, "lon", "axis")$value expect_equal(actual, "X") actual <- ncatt_get(file, "lat", "units")$value expect_equal(actual, "degrees_north") actual <- ncatt_get(file, "lat", "long_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "standard_name")$value expect_equal(actual, "latitude") actual <- ncatt_get(file, "lat", "axis")$value expect_equal(actual, "Y") actual <- ncatt_get(file, "time", "units")$value expect_equal(actual, "hours since 1983-01-01 00:00:00") actual <- ncatt_get(file, "time", "long_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "standard_name")$value expect_equal(actual, "time") actual <- ncatt_get(file, "time", "calendar")$value expect_equal(actual, "standard") global_attr <- ncatt_get(file, 0) expect_equal(length(global_attr), 1) actual <- names(global_attr[1]) expect_equal(actual, "Info") actual <- global_attr[[1]] expect_equal(actual, "Created with the CM SAF R Toolbox.") }) test_that("coordinates are correct", { actual <- ncvar_get(file, "lon") expect_identical(actual, array(seq(5, 8, 0.5))) actual <- ncvar_get(file, "lat") expect_identical(actual, array(seq(45, 48, 0.5))) actual <- ncvar_get(file, "time") expect_equal(actual, array(c(149028, 149040, 149064))) }) nc_close(file)
sample.df <- function (df, size, replace=FALSE, sort=FALSE, prob=NULL) { if(!is(df, "data.frame")) stop("first argument must be a data frame") N <- nrow(df) if (!missing(prob)) { if (length(prob) != N) stop("prob= argument must provide weigths for all rows of the data frame") } idx.sample <- sample.int(N, size, replace=replace, prob=prob) if (sort) idx.sample <- sort(idx.sample) df[idx.sample, , drop=FALSE] }
epGraphs <- function(res,x_axis=1,y_axis=2,epPlotInfo=NULL,DESIGN=NULL,fi.col=NULL,fi.pch=NULL,fj.col=NULL,fj.pch=NULL,col.offset=NULL,constraints=NULL,xlab=NULL,ylab=NULL,main=NULL,contributionPlots=TRUE,correlationPlotter=TRUE,graphs=TRUE){ pca.types <- c('epPCA','epMDS','epGPCA') ca.types <- c('epCA','epMCA') if(class(res)[1] == "expoOutput"){ if(length(res)==2){ epPlotInfo <- res$Plotting.Data } res <- res$ExPosition.Data } if(!(class(res)[1] %in% c(pca.types,ca.types))){ stop("Unknown ExPosition class. Plotting has stopped.") } if(!is.null(epPlotInfo) && (class(epPlotInfo)[1] != "epGraphs")){ stop("Unknown epPlotInfo class. Plotting has stopped.") } if(!is.null(epPlotInfo)){ if( !(nrow(res$fi)==nrow(epPlotInfo$fi.col)) ){ print('$fi Dimension mismatch. epPlotInfo will be reset.') epPlotInfo <- list(fi.col=NULL,fi.pch=NULL,fj.col=NULL,fj.pch=NULL,constraints=NULL) } if( (!(class(res)[1]=='epMDS')) && !(nrow(res$fj)==nrow(epPlotInfo$fj.col)) ){ print('$fj Dimension mismatch. epPlotInfo will be reset.') epPlotInfo <- list(fi.col=NULL,fi.pch=NULL,fj.col=NULL,fj.pch=NULL,constraints=NULL) } }else{ epPlotInfo <- list(fi.col=NULL,fi.pch=NULL,fj.col=NULL,fj.pch=NULL,constraints=NULL) } if(is.null(main)){ main <- deparse(substitute(res)) } if(length(unlist(strsplit(main,"")))>40){ main <- "Results" } if(is.null(xlab)){ xlab <- paste("Component ",x_axis," variance: ", round(res$t[x_axis],3), "%",sep="") } if(is.null(ylab)){ ylab <- paste("Component ",y_axis," variance: ", round(res$t[y_axis],3), "%",sep="") } if( (!is.null(col.offset)) && is.numeric(col.offset)){ if(col.offset > 1){ col.offset <- col.offset / as.numeric(paste(c(1,rep(0,nchar(as.character(col.offset)))),collapse="")) } } if(length(fi.col)==1){ fi.col <- as.matrix(rep(fi.col,nrow(res$fi))) }else if(is.null(fi.col) && !is.null(DESIGN)){ fi.col <- createColorVectorsByDesign(DESIGN,offset=col.offset)$oc }else if(is.null(fi.col) && !is.null(epPlotInfo$fi.col)){ fi.col <- epPlotInfo$fi.col } if(is.null(fi.col)){ fi.col <- createColorVectorsByDesign(matrix(1,nrow(res$fi),1),offset=col.offset)$oc } if(nrow(fi.col)!=nrow(res$fi)){ print('Incorrect fi.col. Creating default colors.') fi.col <- createColorVectorsByDesign(matrix(1,nrow(res$fi),1),offset=col.offset)$oc } if(length(fi.pch)==1){ fi.pch <- as.matrix(rep(fi.pch,nrow(res$fi))) }else if(is.null(fi.pch) && !is.null(epPlotInfo$fi.pch)){ fi.pch <- epPlotInfo$fi.pch } if(is.null(fi.pch)){ fi.pch <- as.matrix(rep(21,nrow(res$fi))) } if(nrow(fi.pch)!=nrow(res$fi)){ print('Incorrect fi.pch. Creating default pch.') fi.pch <- as.matrix(rep(21,nrow(res$fi))) } if(class(res)[1]!='epMDS'){ if(length(fj.col)==1){ fj.col <- as.matrix(rep(fj.col,nrow(res$fj))) }else if(is.null(fj.col) && !is.null(epPlotInfo$fj.col)){ fj.col <- epPlotInfo$fj.col } if(is.null(fj.col)){ fj.col <- createColorVectorsByDesign(matrix(1,nrow(res$fj),1),hsv=FALSE)$oc } if(nrow(fj.col)!=nrow(res$fj)){ print('Incorrect fj.col. Creating default colors.') fj.col <- createColorVectorsByDesign(matrix(1,nrow(res$fj),1),hsv=FALSE)$oc } if(length(fj.pch)==1){ fj.pch <- as.matrix(rep(fj.pch,nrow(res$fj))) }else if(is.null(fj.pch) && !is.null(epPlotInfo$fj.pch)){ fj.pch <- epPlotInfo$fj.pch } if(is.null(fj.pch)){ fj.pch <- as.matrix(rep(21,nrow(res$fj))) } if(nrow(fj.pch)!=nrow(res$fj)){ print('Incorrect fj.pch. Creating default pch.') fj.pch <- as.matrix(rep(21,nrow(res$fj))) } } if(is.null(constraints) && !is.null(epPlotInfo$constraints)){ constraints <- epPlotInfo$constraints } constraints <- calculateConstraints(results=res,x_axis=x_axis,y_axis=y_axis,constraints=constraints) if(graphs){ fi.plot.info <- prettyPlot(res$fi,x_axis=x_axis,y_axis=y_axis,col=fi.col,axes=TRUE,xlab=xlab,ylab=ylab,main=main,constraints=constraints,pch=fi.pch,contributionCircles=TRUE,contributions=res$ci,dev.new=TRUE) if(!(class(res)[1]=='epMDS')){ fj.plot.info <- prettyPlot(res$fj,x_axis=x_axis,y_axis=y_axis,col=fj.col,axes=TRUE,xlab=xlab,ylab=ylab,main=main,constraints=constraints,pch=fj.pch,contributionCircles=TRUE,contributions=res$cj,dev.new=TRUE) } if(contributionPlots){ contributionBars(res$fi,res$ci,x_axis=x_axis,y_axis=y_axis,main=main,col=fi.plot.info$col) if(!(class(res)[1]=='epMDS')){ contributionBars(res$fj,res$cj,x_axis=x_axis,y_axis=y_axis,main=main,col=fj.plot.info$col) } } if(correlationPlotter && class(res)[1]%in%pca.types){ if(class(res)[1]=='epMDS'){ correlationPlotter(res$X,res$fi,col=fi.col,pch=fi.pch,x_axis=x_axis,y_axis=y_axis,xlab=xlab,ylab=ylab,main=main) }else{ correlationPlotter(res$X,res$fi,col=fj.col,pch=fj.pch,x_axis=x_axis,y_axis=y_axis,xlab=xlab,ylab=ylab,main=main) } } } if(class(res)[1]=='epMDS'){ epPlotInfo <- list(fi.col=fi.col,fi.pch=fi.pch,fj.col=fi.col,fj.pch=fi.pch,constraints=constraints) }else{ epPlotInfo <- list(fi.col=fi.col,fi.pch=fi.pch,fj.col=fj.col,fj.pch=fj.pch,constraints=constraints) } class(epPlotInfo) <- c("epGraphs", "list") return(epPlotInfo) }
context("replacement costs") test_that("maximum obj", { skip_on_cran() skip_if_not(any_solvers_installed()) projects <- tibble::tibble(name = c("P1", "P2", "P3", "P4"), success = c(0.95, 0.96, 0.94, 1.00), F1 = c(0.91, 0.00, 0.80, 0.10), F2 = c(0.00, 0.92, 0.80, 0.10), F3 = c(0.00, 0.00, 0.00, 0.10), A1 = c(TRUE, FALSE, FALSE, FALSE), A2 = c(FALSE, TRUE, FALSE, FALSE), A3 = c(FALSE, FALSE, TRUE, FALSE), A4 = c(FALSE, FALSE, FALSE, TRUE)) actions <- tibble::tibble(name = c("A1", "A2", "A3", "A4"), cost = c(0.10, 0.10, 0.15, 0)) features <- tibble::tibble(name = c("F1", "F2", "F3")) p <- problem(projects, actions, features, "name", "success", "name", "cost", "name", FALSE) %>% add_max_richness_objective(budget = 0.26) %>% add_binary_decisions() s <- data.frame(A1 = 1, A2 = 0, A3 = 1, A4 = 1) r <- replacement_costs(p, s) expect_is(r, "tbl_df") expect_equal(nrow(r), 4) expect_equal(r$name, p$action_names()) expect_equal(r$cost, c(0.25, NA_real_, 0.2, Inf)) expect_equal(r$obj, c((0.94 * 0.8) + (0.96 * 0.92) + (1.0 * 0.1), NA_real_, (0.91 * 0.95) + (0.96 * 0.92) + (1.0 * 0.1), Inf)) expect_equal(r$rep_cost, ((0.91 * 0.95) + (0.94 * 0.8) + (1.0 * 0.1)) - r$obj) }) test_that("minimum obj", { skip_on_cran() skip_if_not(any_solvers_installed()) projects <- tibble::tibble(name = c("P1", "P2", "P3", "P4"), success = c(0.95, 0.96, 0.94, 1.00), F1 = c(0.91, 0.00, 0.80, 0.10), F2 = c(0.00, 0.92, 0.80, 0.10), F3 = c(0.00, 0.00, 0.00, 0.10), A1 = c(TRUE, FALSE, FALSE, FALSE), A2 = c(FALSE, TRUE, FALSE, FALSE), A3 = c(FALSE, FALSE, TRUE, FALSE), A4 = c(FALSE, FALSE, FALSE, TRUE)) actions <- tibble::tibble(name = c("A1", "A2", "A3", "A4"), cost = c(0.10, 0.10, 0.15, 0)) features <- tibble::tibble(name = c("F1", "F2", "F3"), target = c(0.2, 0.2, 0.05)) p <- problem(projects, actions, features, "name", "success", "name", "cost", "name", FALSE) %>% add_min_set_objective() %>% add_absolute_targets("target") %>% add_binary_decisions() s <- data.frame(A1 = 1, A2 = 0, A3 = 1, A4 = 1) r <- replacement_costs(p, s) expect_is(r, "tbl_df") expect_equal(nrow(r), 4) expect_equal(r$name, p$action_names()) expect_equal(r$cost, c(0.15, NA_real_, 0.2, Inf)) expect_equal(r$obj, c(0.15, NA_real_, 0.2, Inf)) expect_equal(r$rep_cost, r$obj - 0.25) }) test_that("invalid arguments", { data(sim_projects, sim_actions, sim_features) p <- problem(sim_projects, sim_actions, sim_features, "name", "success", "name", "cost", "name", FALSE) %>% add_max_richness_objective(0.16) %>% add_binary_decisions() solution <- as.data.frame(matrix(rep(1, p$number_of_actions()), nrow = 1, dimnames = list(NULL, p$action_names()))) if (identical(Sys.getenv("NOT_CRAN"), "true")) expect_is(replacement_costs(p, solution), "tbl_df") expect_error({ replacement_costs( problem(sim_projects, sim_actions, sim_features, "name", "success", "name", "cost", "name"), solution) }) expect_error({ replacement_costs(p, as.matrix(solution)) }) expect_error({ s <- solution s[[1]] <- NA_real_ replacement_costs(p, s) }) expect_error({ s <- solution s[[1]] <- "a" replacement_costs(p, s) }) expect_error({ s <- solution replacement_costs(p, solution[, -1, drop = FALSE]) }) expect_error({ replacement_costs(p, solution, NA_integer_) }) expect_error({ replacement_costs(p, solution, "a") }) expect_error({ replacement_costs(p, solution, TRUE) }) })
get_variables <- function(subjectId, level = NULL, year = NULL, sort = c("id","-id","subjectId", "-subjectId"), lang = c("pl","en"), ...) { if (!is.character(subjectId)) { stop("subjectId has to be string value.") } if (nchar_length(subjectId) == 0 || is.null(subjectId)) { stop("subjectId cannot be empty.") } dir <- "variables" sort <- match.arg(sort) lang <- match.arg(lang) filters <- list("subject-Id" = subjectId, year = year, level = level, sort = sort, lang = lang) df <- page_download(dir, id = "", filters, ...) df }
set.model.functions <- function(model) { d.sum.of.mixtures <- NULL backtransform.par <- NULL stochprof.results <- NULL transform.par <- NULL calculate.ci <- NULL d.sum.of.types <- NULL draw.parameters <- NULL get.range <- NULL penalty.constraint <- NULL r.sum.of.mixtures <- NULL stochprof.search <- NULL mix.d.sum.of.mixtures <- NULL rm(d.sum.of.mixtures) rm(backtransform.par) rm(stochprof.results) rm(transform.par) rm(calculate.ci) rm(d.sum.of.types) rm(draw.parameters) rm(get.range) rm(penalty.constraint) rm(r.sum.of.mixtures) rm(stochprof.search) rm(mix.d.sum.of.mixtures) if (model=="LN-LN") { backtransform.par <<- backtransform.par.LNLN calculate.ci <<- calculate.ci.LNLN d.sum.of.mixtures <<- d.sum.of.mixtures.LNLN mix.d.sum.of.mixtures <<- mix.d.sum.of.mixtures.LNLN d.sum.of.types <<- d.sum.of.types.LNLN draw.parameters <<- draw.parameters.LNLN get.range <<- get.range.LNLN penalty.constraint <<- penalty.constraint.LNLN r.sum.of.mixtures <<- r.sum.of.mixtures.LNLN stochprof.results <<- stochprof.results.LNLN stochprof.search <<- stochprof.search.LNLN transform.par <<- transform.par.LNLN mix.d.sum.of.mixtures <<- mix.d.sum.of.mixtures.LNLN } else if (model=="rLN-LN") { backtransform.par <<- backtransform.par.rLNLN calculate.ci <<- calculate.ci.rLNLN d.sum.of.mixtures <<- d.sum.of.mixtures.rLNLN mix.d.sum.of.mixtures <<- mix.d.sum.of.mixtures.rLNLN d.sum.of.types <<- d.sum.of.types.rLNLN draw.parameters <<- draw.parameters.rLNLN get.range <<- get.range.rLNLN penalty.constraint <<- penalty.constraint.rLNLN r.sum.of.mixtures <<- r.sum.of.mixtures.rLNLN stochprof.results <<- stochprof.results.rLNLN stochprof.search <<- stochprof.search.rLNLN transform.par <<- transform.par.rLNLN mix.d.sum.of.mixtures <<- mix.d.sum.of.mixtures.rLNLN } else if (model=="EXP-LN") { backtransform.par <<- backtransform.par.EXPLN calculate.ci <<- calculate.ci.EXPLN d.sum.of.mixtures <<- d.sum.of.mixtures.EXPLN mix.d.sum.of.mixtures <<- mix.d.sum.of.mixtures.EXPLN draw.parameters <<- draw.parameters.EXPLN get.range <<- get.range.EXPLN penalty.constraint <<- penalty.constraint.EXPLN r.sum.of.mixtures <<- r.sum.of.mixtures.EXPLN stochprof.results <<- stochprof.results.EXPLN stochprof.search <<- stochprof.search.EXPLN transform.par <<- transform.par.EXPLN mix.d.sum.of.mixtures <<- mix.d.sum.of.mixtures.EXPLN } }
NonCumHaz<-function(x, t=NA, plot=FALSE){ if(!(any(class(x)=="survfit")||is.numeric(x))) {warning("x needs to be a numeric vector or a survfit-object!")} if(is.na(t) && plot && (!any(class(x)=="survfit"))) {warning("plot can not be produced, because time referrence is missing!")} if(is.numeric(x)){ output<-numeric(length(x)) for (i in 1:(length(x)-1)) output[i] <- x[1+i]-x[i] if(plot) {o1<-plot(output[1:(length(output)-1)]~t[1:(length(output)-1)], xlab="Time", ylab="Hazard", type ="l")} } if(any(class(x)=="survfit")){ my.cumhaz<-x$cumhaz my.cumhaz<-c(0,my.cumhaz) my.hazard<-c() for (i in 1:(length(my.cumhaz)-1)) my.hazard[i] <- my.cumhaz[1+i]-my.cumhaz[i] if(plot) {o1<-plot(my.hazard[1:(length(my.hazard)-1)]~x$time[1:(length(my.hazard)-1)], xlab="Time", ylab="Hazard", type ="l")} output<-my.hazard } return(output) }
print.degross = function(x,...){ print(x$degross.data) cat("\nFitted moments of order 1 to 4:\n") print(x$M.j[,1:4]) temp = with(x,round(c(edf=edf,aic=aic,bic=bic,log.evidence=log.evidence),1)) cat("\nGlobal fit statistics:\n") print(temp) }
tar_load <- function( names, branches = NULL, meta = tar_meta(targets_only = TRUE, store = store), strict = TRUE, silent = FALSE, envir = parent.frame(), store = targets::tar_config_get("store") ) { force(meta) force(envir) names <- tar_tidyselect_eval(rlang::enquo(names), meta$name) tar_load_raw( names = names, branches = branches, meta = meta, strict = strict, silent = silent, envir = envir, store = store ) }
errorcorr <- function(dataset, indnr, x, y, f, xterms, yterms, nrterms, z, zterms, v, vterms) { if (indnr == 2) { procdata <- preprocess_data(indnr, x, y) xv <- procdata$allX yv <- procdata$allY chx <- procdata$tiChX chy <- procdata$tiChY for (i in 1:length(xv)) { Yprime <- f(rbind(xv[i], yv[i])) IncPredX <- Yprime[1] IncPredY <- Yprime[2] } errorX <- chx - IncPredX errorY <- chy - IncPredY errorXtmp <- errorX errorYtmp <- errorY errorX <- (errorXtmp - mean(errorXtmp, na.rm=TRUE))/sd(errorXtmp, na.rm=TRUE) errorY <- (errorYtmp - mean(errorYtmp, na.rm=TRUE))/sd(errorYtmp, na.rm=TRUE) covmat <- matrix(c(mean(errorX*errorX, na.rm=TRUE), mean(errorX*errorY, na.rm=TRUE), mean(errorY*errorX, na.rm=TRUE), mean(errorY*errorY, na.rm=TRUE)), nrow=2, byrow=TRUE) covmattmp <- covmat covmat <- solve(covmattmp) print(covmat) invx <- xv^(-1) invy <- yv^(-1) idx1 = which(is.infinite(invx)) idx2 = which(is.infinite(invy)) invx[idx1] <- NA invy[idx2] <- NA input <- cbind(rep(1, length(xv)), invx, invy, xv, yv, invx*invy, xv*invy, yv*invx, xv*yv, xv^2, invx^2, yv^2, invy^2, xv^3, yv^3, invx^3, invy^3) Xterms <- input Yterms <- input Xterms <- Xterms[, xterms] Yterms <- Yterms[, yterms] chmatr <- c(chx, chy) allincmatr <- chmatr xtkron <- matrix(c(covmat[1, 1]*t(Xterms), covmat[1, 2]*t(Xterms), covmat[2, 1]*t(Yterms), covmat[2, 2]*t(Yterms)), nrow=nrterms, byrow=TRUE) xtkronx <- matrix(c(covmat[1, 1]*t(Xterms)%*%Xterms, covmat[1, 2]*t(Xterms)%*%Yterms, covmat[2, 1]*t(Yterms)%*%Xterms, covmat[2, 2]*t(Yterms)%*%Yterms), nrow=nrterms, ncol=nrterms, byrow=TRUE) betapred <- ginv(xtkronx)%*%xtkron%*%allincmatr print(betapred) } if (indnr == 3) { procdata <- preprocess_data(indnr, x, y, z) xv <- procdata$allX yv <- procdata$allY zv <- procdata$allZ chx <- procdata$tiChX chy <- procdata$tiChY chz <- procdata$tiChZ for (i in 1:length(xv)) { Yprime <- f(rbind(xv[i], yv[i], zv[i])) IncPredX <- Yprime[1] IncPredY <- Yprime[2] IncPredZ <- Yprime[3] } errorX <- chx - IncPredX errorY <- chy - IncPredY errorZ <- chz - IncPredZ errorXtmp <- errorX errorYtmp <- errorY errorZtmp <- errorZ errorX <- (errorXtmp - mean(errorXtmp, na.rm=TRUE))/sd(errorXtmp, na.rm=TRUE) errorY <- (errorYtmp - mean(errorYtmp, na.rm=TRUE))/sd(errorYtmp, na.rm=TRUE) errorZ <- (errorZtmp - mean(errorZtmp, na.rm=TRUE))/sd(errorZtmp, na.rm=TRUE) covmat <- matrix(c(mean(errorX*errorX, na.rm=TRUE), mean(errorX*errorY, na.rm=TRUE), mean(errorX*errorZ, na.rm=TRUE), mean(errorY*errorX, na.rm=TRUE), mean(errorY*errorY, na.rm=TRUE), mean(errorY*errorZ, na.rm=TRUE), mean(errorZ*errorX, na.rm=TRUE), mean(errorZ*errorY, na.rm=TRUE), mean(errorZ*errorZ, na.rm=TRUE)), nrow=3, byrow=TRUE) covmattmp <- covmat covmat <- solve(covmat) print(covmat) invx <- xv^(-1) invy <- yv^(-1) invz <- yv^(-1) idx1 = which(is.infinite(invx)) idx2 = which(is.infinite(invy)) idx3 = which(is.infinite(invz)) invx[idx1] <- NA invy[idx2] <- NA invz[idx3] <- NA input <- cbind(rep(1, length(xv)), invx, invy, invz, xv, yv, zv, invx*invy, invy*invz, invx*invz, xv*yv, yv*zv, xv*zv, xv*invy, yv*invx, xv*invz, zv*invx, yv*invz, zv*invy, xv*invy*invz, yv*invx*invz, zv*invx*invy, xv*yv*invz, yv*zv*invx, xv*zv*invy, xv*yv*zv, invx*invy*invz, xv^2, invx^2, yv^2, invy^2, zv^2, invz^2, xv^3, yv^3, zv^3, invx^3, invy^3, invz^3) Xterms <- input Yterms <- input Zterms <- input Xterms <- Xterms[, xterms] Yterms <- Yterms[, yterms] Zterms <- Zterms[, zterms] chmatr <- c(chx, chy, chz) allincmatr <- chmatr xtkron <- matrix(c(covmat[1, 1]*t(Xterms), covmat[1, 2]*t(Xterms), covmat[1, 3]*t(Xterms), covmat[2, 1]*t(Yterms), covmat[2, 2]*t(Yterms), covmat[2, 3]*t(Yterms), covmat[3, 1]*t(Zterms), covmat[3, 2]*t(Zterms), covmat[3, 3]*t(Zterms)), nrow=nrterms, byrow=TRUE) xtkronx <- matrix(c(covmat[1, 1]*t(Xterms)%*%Xterms, covmat[1, 2]*t(Xterms)%*%Yterms, covmat[1, 3]*t(Xterms)%*%Zterms, covmat[2, 1]*t(Yterms)%*%Xterms, covmat[2, 2]*t(Yterms)%*%Yterms, covmat[2, 3]*t(Yterms)%*%Zterms, covmat[3, 1]*t(Zterms)%*%Xterms, covmat[3, 2]*t(Zterms)%*%Yterms, covmat[3, 3]*t(Zterms)%*%Zterms), nrow=nrterms, ncol=nrterms, byrow=TRUE) betapred <- ginv(xtkronx)%*%xtkron%*%allincmatr print(betapred) } if (indnr == 4) { procdata <- preprocess_data(indnr, x, y, z, v) xv <- procdata$allX yv <- procdata$allY zv <- procdata$allZ vv <- procdata$allV chx <- procdata$tiChX chy <- procdata$tiChY chz <- procdata$tiChZ chv <- procdata$tiChV for (i in 1:length(xv)) { Yprime <- f(rbind(xv[i], yv[i], zv[i], vv[i])) IncPredX <- Yprime[1] IncPredY <- Yprime[2] IncPredZ <- Yprime[3] IncPredV <- Yprime[4] } errorX <- chx - IncPredX errorY <- chy - IncPredY errorZ <- chz - IncPredZ errorV <- chv - IncPredV errorXtmp <- errorX errorYtmp <- errorY errorZtmp <- errorZ errorVtmp <- errorV errorX <- (errorXtmp - mean(errorXtmp, na.rm=TRUE))/sd(errorXtmp, na.rm=TRUE) errorY <- (errorYtmp - mean(errorYtmp, na.rm=TRUE))/sd(errorYtmp, na.rm=TRUE) errorZ <- (errorZtmp - mean(errorZtmp, na.rm=TRUE))/sd(errorZtmp, na.rm=TRUE) errorV <- (errorVtmp - mean(errorVtmp, na.rm=TRUE))/sd(errorVtmp, na.rm=TRUE) covmat <- matrix(c(mean(errorX*errorX, na.rm=TRUE), mean(errorX*errorY, na.rm=TRUE), mean(errorX*errorZ, na.rm=TRUE), mean(errorX*errorV, na.rm=TRUE), mean(errorY*errorX, na.rm=TRUE), mean(errorY*errorY, na.rm=TRUE), mean(errorY*errorZ, na.rm=TRUE), mean(errorY*errorV, na.rm=TRUE), mean(errorZ*errorX, na.rm=TRUE), mean(errorZ*errorY, na.rm=TRUE), mean(errorZ*errorZ, na.rm=TRUE), mean(errorZ*errorV, na.rm=TRUE), mean(errorV*errorX, na.rm=TRUE), mean(errorV*errorY, na.rm=TRUE), mean(errorV*errorZ, na.rm=TRUE), mean(errorV*errorV, na.rm=TRUE)), nrow=4, byrow=TRUE) covmattmp <- covmat covmat <- solve(covmat) print(covmat) invx <- xv^(-1) invy <- yv^(-1) invz <- yv^(-1) invv <- vv^(-1) idx1 = which(is.infinite(invx)) idx2 = which(is.infinite(invy)) idx3 = which(is.infinite(invz)) idx4 = which(is.infinite(invv)) invx[idx1] <- NA invy[idx2] <- NA invz[idx3] <- NA invv[idx4] <- NA input <- cbind(rep(1, length(xv)), invx, invy, invz, invv, xv, yv, zv, vv, invx*invy, invy*invz, invx*invz, invx*invv, invy*invv, invz*invv, xv*yv, yv*zv, xv*zv, xv*vv, yv*vv, zv*vv, xv*invy, yv*invx, xv*invz, zv*invx, yv*invz, zv*invy, xv*invv, vv*invx, yv*invv, vv*invy, zv*invv, vv*invz, xv*invy*invz, yv*invx*invz, zv*invx*invy, vv*invx*invy, vv*invx*invz, vv*invy*invz, xv*invy*invv, xv*invz*invv, yv*invx*invv, yv*invz*invv, zv*invx*invv, zv*invy*invv, xv*yv*invz, yv*zv*invx, zv*xv*invy, xv*yv*invv, yv*zv*invv, zv*xv*invv, xv*vv*invz, yv*vv*invz, yv*vv*invx, zv*vv*invx, vv*xv*invy, vv*zv*invy, xv*yv*zv, xv*yv*vv, xv*vv*zv, vv*yv*zv, invx*invy*invz, invx*invy*invv, invx*invv*invz, invv*invy*invz, xv*invv*invy*invz, yv*invx*invv*invz, zv*invx*invy*invv, vv*invx*invy*invz, xv*yv*zv*invv, xv*yv*vv*invz, xv*vv*zv*invy, vv*yv*zv*invx, xv*yv*invv*invz, xv*zv*invv*invy, xv*vv*invy*invz, yv*zv*invv*invx, yv*vv*invz*invx, zv*vv*invx*invy, invx*invy*invz*invv, xv*yv*zv*vv, xv^2, invx^2, yv^2, invy^2, zv^2, invz^2, vv^2, invv^2, xv^3, yv^3, zv^3, vv^3, invx^3, invy^3, invz^3, invv^3) Xterms <- input Yterms <- input Zterms <- input Vterms <- input Xterms <- Xterms[, xterms] Yterms <- Yterms[, yterms] Zterms <- Zterms[, zterms] Vterms <- Vterms[, vterms] chmatr <-c(chx, chy, chz, chv) allincmatr <- chmatr xtkron <- matrix(c(covmat[1, 1]*t(Xterms), covmat[1, 2]*t(Xterms), covmat[1, 3]*t(Xterms), covmat[1, 4]*t(Xterms), covmat[2, 1]*t(Yterms), covmat[2, 2]*t(Yterms), covmat[2, 3]*t(Yterms), covmat[2, 4]*t(Yterms), covmat[3, 1]*t(Zterms), covmat[3, 2]*t(Zterms), covmat[3, 3]*t(Zterms), covmat[3, 4]*t(Zterms), covmat[4, 1]*t(Vterms), covmat[4, 2]*t(Vterms), covmat[4, 3]*t(Vterms), covmat[4, 4]*t(Vterms)), nrow=nrterms, byrow=TRUE) xtkronx <- matrix(c(covmat[1, 1]*t(Xterms)%*%Xterms, covmat[1, 2]*t(Xterms)%*%Yterms, covmat[1, 3]*t(Xterms)%*%Zterms, covmat[1, 4]*t(Xterms)%*%Vterms, covmat[2, 1]*t(Yterms)%*%Xterms, covmat[2, 2]*t(Yterms)%*%Yterms, covmat[2, 3]*t(Yterms)%*%Zterms, covmat[2, 4]*t(Yterms)%*%Vterms, covmat[3, 1]*t(Zterms)%*%Xterms, covmat[3, 2]*t(Zterms)%*%Yterms, covmat[3, 3]*t(Zterms)%*%Zterms, covmat[3, 4]*t(Zterms)%*%Vterms, covmat[4, 1]*t(Vterms)%*%Xterms, covmat[4, 2]*t(Vterms)%*%Yterms, covmat[4, 3]*t(Vterms)%*%Zterms, covmat[4, 4]*t(Vterms)%*%Vterms), nrow=nrterms, ncol=nrterms, byrow=TRUE) betapred <- ginv(xtkronx)%*%xtkron%*%allincmatr print(betapred) } }
download_distribute <- function(files, repositories=list("/p/projects/rd3mod/inputdata/output"=NULL), modelfolder=".", additionalDelete=NULL, debug=FALSE) { cdir <- getwd() setwd(modelfolder) on.exit(setwd(cdir)) file2destination <- getfiledestinations() message("Delete old data in input folders ... ") delete_olddata(file2destination) if(!is.null(additionalDelete)) delete_olddata(additionalDelete) message("done!\n") filemap <- download_unpack(input=files, targetdir="input", repositories=repositories, debug=debug) low_res <- get_info("input/info.txt","^\\* Output ?resolution:",": ") copy_input(x=file2destination, sourcepath="input", suffix=low_res, move=!debug) return(filemap) }
grnn.partial <- function(net, i, plot = TRUE) { if (class(net) != "General Regression Neural Net") stop("net needs to be a GRNN.", call. = F) if (i > ncol(net$x)) stop("the selected variable is out of bound.", call. = F) if (!(plot %in% c(T, F))) stop("the plot input is not correct.", call. = F) xname <- colnames(net$x)[i] xi <- sort(unique(net$x[, i])) partial <- function(x_i) { x <- net$x x[, i] <- rep(x_i, length(net$y)) return(data.frame(x = x_i, p = mean(grnn.predict(net, x)))) } cls <- parallel::makeCluster(min(length(xi), parallel::detectCores() - 1), type = "PSOCK") obj <- c("net", "grnn.fit", "grnn.predone", "grnn.predict") parallel::clusterExport(cls, obj, envir = environment()) rst <- Reduce(rbind, parallel::parLapply(cls, xi, partial)) parallel::stopCluster(cls) if (plot == T) { plot(rst[, 1], rst[, 2], type = "b", lty = 4, lwd = 3, ylab = '', xlab = xname, main = "Partial Dependence", pch = 16, cex = 1.5, col = "royalblue", cex.main = 1, cex.lab = 1, yaxt = 'n') rug(rst[, 1], col = 'green4', ticksize = 0.03, lwd = 3) } else { return(rst) } }
xDewma.arl <- function(l, c, delta, zr=0, hs=0, sided="one", limits="fix", mode="Gan", m=NULL, q=1, r=40, with0=FALSE) { if (l<=0 || l>1) stop("l has to be between 0 and 1") if (c<=0) stop("c has to be positive") if (zr>c & sided=="one") stop("wrong reflexion border") if ( (sided=="two" & abs(hs)>c) | (sided=="one" & (hs<zr | hs>c)) ) stop("wrong headstart") if (r<4) stop("r is too small") ctyp <- pmatch(sided, c("one", "two")) - 1 if (is.na(ctyp)) stop("invalid ewma type") ltyp <- -1 + pmatch(limits, c("fix","vacl","fir","both","Steiner","Knoth","fink","fixW","fixC")) if (is.na(ltyp)) stop("invalid limits type") cmode <- pmatch(mode, c("Gan", "Knoth", "Waldmann")) - 1 if (is.na(cmode)) stop("invalid algorithm mode") if ( is.null(m) ) { m <- 0 } else { if ( m<1 ) stop("m is too small") } q <- round(q) if (q<1) stop("wrong change point position (q)") arl <- .C("xDewma_arl",as.integer(ctyp),as.double(l), as.double(c),as.double(zr),as.double(hs), as.double(delta),as.integer(ltyp),as.integer(m),as.integer(r), as.integer(with0),as.integer(cmode),as.integer(q), ans=double(length=1),PACKAGE="spc")$ans names(arl) <- "arl" return (arl) }
retistruct.cli <- function(dataset, cpu.time.limit=Inf, outputdir=NA, device="pdf", ...) { status <- 0 setTimeLimit(cpu=cpu.time.limit) syst <- system.time(out <- tryCatch(retistruct.cli.process(dataset, outputdir=outputdir, device=device, ...), error=function(e) {return(e)})) mess <- "Success" if (inherits(out, "error")) { mess <- as.character(out) if (grepl("reached CPU time limit", mess)) { status <- 1 } else { status <- 2 } } return(list(status=status, time=syst["user.self"], mess=mess)) } retistruct.cli.process <- function(dataset, outputdir=NA, device="pdf" ) { warn.opt <- getOption("warn") options(warn=1) r <- retistruct.read.dataset(dataset) r <- retistruct.read.markup(r) r <- retistruct.reconstruct(r) retistruct.save.recdata(r) if (!is.na(outputdir)) { message("Producing figures") retistruct.cli.figure(dataset, outputdir, device=device) } message("Exporting to matlab") retistruct.export.matlab(r) options(warn=warn.opt) } retistruct.cli.basepath <- function(dataset) { basepath <- gsub("\\./", "", dataset) basepath <- gsub("/", "_", basepath) basepath <- gsub(" ", "_", basepath) return(basepath) } retistruct.cli.figure <- function(dataset, outputdir, device="pdf", width=6, height=6, res=100) { suppressMessages(r <- retistruct.read.recdata(list(dataset=dataset), check=FALSE)) units <- NULL if (device!="pdf") { height <- height*res width <- width*res } suffix <- paste(".", device, sep="") dev <- switch(device, pdf=grDevices::pdf, png=grDevices::png, jpeg=grDevices::jpeg, tiff=grDevices::tiff) if (is.null(dev)) { stop(paste("Device", device, "is not supported")) } if (!is.null(r)) { basepath <- retistruct.cli.basepath(dataset) dev(file=file.path(outputdir, paste(basepath, "-flat", suffix, sep="")), width=width, height=height) par(mar=c(1, 1, 1, 1)) flatplot(r, axt="n", datapoints=TRUE, landmarks=TRUE, markup=FALSE, stitch=TRUE, grid=TRUE, mesh=FALSE, strain=FALSE) title(dataset) dev.off() dev(file=file.path(outputdir, paste(basepath, "-polar-kde", suffix, sep="")), width=width, height=height) par(mar=c(2, 2, 2, 2)) projection(r, datapoint.contours=TRUE, grouped.contours=FALSE) title(paste("KDE:", dataset)) if (!is.null(r$EOD)) { polartext(paste("OD displacement:", format(r$EOD, digits=3, nsmall=2), "deg")) } dev.off() dev(file=file.path(outputdir, paste(basepath, "-polar-kr", suffix, sep="")), width=width, height=height) par(mar=c(2, 2, 2, 2)) projection(r, datapoint.contours=FALSE, grouped.contours=TRUE) title(paste("KR:", dataset)) if (!is.null(r$EOD)) { polartext(paste("OD displacement:", format(r$EOD, digits=3, nsmall=2), "deg")) } dev.off() dev(file=file.path(outputdir, paste(basepath, "-strain", suffix, sep="")), width=width, height=height) par(mar=c(1, 1, 1, 1)) flatplot(r, axt="n", datapoints=FALSE, landmarks=FALSE, markup=FALSE, stitch=FALSE, grid=FALSE, mesh=FALSE, strain=TRUE) title(dataset) dev.off() dev(file=file.path(outputdir, paste(basepath, "-strain-lvsL", suffix, sep="")), width=width, height=height) par(mar=c(3.0, 3.0, 1.5, 0.5)) par(mgp=c(1.5, 0.5, 0)) par(tcl=-0.3) lvsLplot(r) title(dataset) dev.off() } }
design.info.design <- function(){ command <- paste("design.info(",ActiveDataSet(),")") doItAndPrint(command) }
calcSeCox <- function(object, times, nTimes, type, diag, Lambda0, object.n, object.time, object.eXb, object.strata, nStrata, new.n, new.eXb, new.LPdata, new.strata, new.survival, nVar.lp, export, store.iid){ if(is.iidCox(object)){ store.iid <- object$iid$store.iid iid.object <- selectJump(object$iid, times = times, type = type) }else{ iid.object <- iidCox(object, tau.hazard = times, store.iid = store.iid, return.object = FALSE) } if(diag){ nTimes <- 1 } new.strata <- as.numeric(new.strata) Lambda0$strata <- as.numeric(Lambda0$strata) if("hazard" %in% type){Lambda0$hazard <- lapply(1:nStrata,function(s){Lambda0$hazard[Lambda0$strata==s][Lambda0$oorder.times]})} if("cumhazard" %in% type || "survival" %in% type){Lambda0$cumhazard <- lapply(1:nStrata,function(s){Lambda0$cumhazard[Lambda0$strata==s][Lambda0$oorder.times]})} if(is.null(attr(export,"factor"))){ rm.list <- TRUE factor <- list(matrix(1, nrow = new.n, ncol = nTimes)) }else{ rm.list <- FALSE factor <- attr(export, "factor") } out <- list() if("se" %in% export){ if("cumhazard" %in% type){out$cumhazard.se <- matrix(NA, nrow = new.n, ncol = nTimes)} if("survival" %in% type){out$survival.se <- matrix(NA, nrow = new.n, ncol = nTimes)} } if("iid" %in% export){ if("hazard" %in% type){out$hazard.iid <- array(NA, dim = c(object.n, nTimes, new.n))} if("cumhazard" %in% type){out$cumhazard.iid <- array(NA, dim = c(object.n, nTimes, new.n))} if("survival" %in% type){out$survival.iid <- array(NA, dim = c(object.n, nTimes, new.n))} } if("average.iid" %in% export){ if("cumhazard" %in% type){out$cumhazard.average.iid <- matrix(0, nrow = object.n, ncol = nTimes)} if("survival" %in% type){out$survival.average.iid <- matrix(0, nrow = object.n, ncol = nTimes)} } if(store.iid[[1]] == "minimal"){ resCpp <- calcSeMinimalCox_cpp(seqTau = times, newSurvival = if("survival" %in% type){new.survival}else{new.survival <- matrix(NA)}, hazard0 = if("hazard" %in% type){Lambda0$hazard}else{list(NA)}, cumhazard0 = if("cumhazard" %in% type || "survival" %in% type){Lambda0$cumhazard}else{list(NA)}, newX = new.LPdata, neweXb = new.eXb, IFbeta = iid.object$IFbeta, Ehazard0 = iid.object$calcIFhazard$Elambda0, cumEhazard0 = iid.object$calcIFhazard$cumElambda0, hazard_iS0 = iid.object$calcIFhazard$lambda0_iS0, cumhazard_iS0 = iid.object$calcIFhazard$cumLambda0_iS0, delta_iS0 = iid.object$calcIFhazard$delta_iS0, sample_eXb = iid.object$calcIFhazard$eXb, sample_time = iid.object$obstime, indexJumpSample_time = lapply(iid.object$calcIFhazard$time1, function(iTime){prodlim::sindex(jump.times = iTime, eval.times = iid.object$obstime)-1}), jump_time = iid.object$calcIFhazard$time1, indexJumpTau = lapply(iid.object$calcIFhazard$time1, function(iTime){prodlim::sindex(jump.times = iTime, eval.times = times)-1}), lastSampleTime = iid.object$etime.max, newdata_index = lapply(1:nStrata, function(iS){which(new.strata == iS)-1}), factor = factor, nTau = nTimes, nNewObs = new.n, nSample = object.n, nStrata = nStrata, p = nVar.lp, diag = diag, exportSE = "se" %in% export, exportIF = "iid" %in% export, exportIFmean = "average.iid" %in% export, exportHazard = "hazard" %in% type, exportCumhazard = "cumhazard" %in% type, exportSurvival = "survival" %in% type, debug = 0) if("iid" %in% export){ if("hazard" %in% type){out$hazard.iid <- aperm(resCpp$IF_hazard, perm = c(1,3,2))} if("cumhazard" %in% type){out$cumhazard.iid <- aperm(resCpp$IF_cumhazard, perm = c(1,3,2))} if("survival" %in% type){out$survival.iid <- aperm(resCpp$IF_survival, perm = c(1,3,2))} } if("se" %in% export){ if("cumhazard" %in% type){out$cumhazard.se <- resCpp$SE_cumhazard} if("survival" %in% type){out$survival.se <- resCpp$SE_survival} } if("average.iid" %in% export){ if(rm.list){ if("hazard" %in% type){out$hazard.average.iid <- matrix(resCpp$IFmean_hazard[[1]], nrow = object.n, ncol = nTimes)} if("cumhazard" %in% type){out$cumhazard.average.iid <- matrix(resCpp$IFmean_cumhazard[[1]], nrow = object.n, ncol = nTimes)} if("survival" %in% type){out$survival.average.iid <- matrix(resCpp$IFmean_survival[[1]], nrow = object.n, ncol = nTimes)} }else{ if("hazard" %in% type){out$hazard.average.iid <- lapply(resCpp$IFmean_hazard, function(iVec){matrix(iVec, nrow = object.n, ncol = nTimes)})} if("cumhazard" %in% type){out$cumhazard.average.iid <- lapply(resCpp$IFmean_cumhazard, function(iVec){matrix(iVec, nrow = object.n, ncol = nTimes)})} if("survival" %in% type){out$survival.average.iid <- lapply(resCpp$IFmean_survival, function(iVec){matrix(iVec, nrow = object.n, ncol = nTimes)})} } } }else if("iid" %in% export || "se" %in% export){ if(nVar.lp>0){ X_IFbeta_mat <- tcrossprod(iid.object$IFbeta, new.LPdata) } if( diag || (nVar.lp==0) ){ for(iStrata in 1:nStrata){ indexStrata <- which(new.strata==iStrata) if(length(indexStrata)==0){next} iPrevalence <- length(indexStrata)/new.n if("hazard" %in% type){ if (diag) { if(nVar.lp==0){ iIFhazard <- iid.object$IFhazard[[iStrata]][,indexStrata,drop=FALSE] }else{ iIFhazard <- rowMultiply_cpp(iid.object$IFhazard[[iStrata]][,indexStrata,drop=FALSE] + rowMultiply_cpp(X_IFbeta_mat[,indexStrata,drop=FALSE], scale = Lambda0$hazard[[iStrata]][indexStrata]), scale = new.eXb[indexStrata]) } }else{ iIFhazard <- iid.object$IFhazard[[iStrata]] tiIFhazard <- t(iIFhazard) } } if("cumhazard" %in% type || "survival" %in% type){ if (diag) { if(nVar.lp==0){ iIFcumhazard <- iid.object$IFcumhazard[[iStrata]][,indexStrata,drop=FALSE] }else{ iIFcumhazard <- rowMultiply_cpp(iid.object$IFcumhazard[[iStrata]][,indexStrata,drop=FALSE] + rowMultiply_cpp(X_IFbeta_mat[,indexStrata,drop=FALSE], scale = Lambda0$cumhazard[[iStrata]][indexStrata]), scale = new.eXb[indexStrata]) } if("survival" %in% type && ("iid" %in% export || "average.iid" %in% export)){ iIFsurvival <- rowMultiply_cpp(-iIFcumhazard, scale = new.survival[indexStrata,]) } }else{ iIFcumhazard <- iid.object$IFcumhazard[[iStrata]] tiIFcumhazard <- t(iIFcumhazard) if("survival" %in% type && ("iid" %in% export || "average.iid" %in% export)){ iIFsurvival <- rowMultiply_cpp(-iIFcumhazard, scale = new.survival[indexStrata[1],]) tiIFsurvival <- t(iIFsurvival) } } } if(diag){ if("iid" %in% export){ if("hazard" %in% type){out$hazard.iid[,1,indexStrata] <- iIFhazard} if("cumhazard" %in% type){out$cumhazard.iid[,1,indexStrata] <- iIFcumhazard} if("survival" %in% type){out$survival.iid[,1,indexStrata] <- iIFsurvival} } if("se" %in% export){ iSEcumhazard <- sqrt(colSums(iIFcumhazard^2)) if("cumhazard" %in% type){out$cumhazard.se[indexStrata,1] <- iSEcumhazard} if("survival" %in% type){out$survival.se[indexStrata,1] <- iSEcumhazard * new.survival[indexStrata,1]} } if("average.iid" %in% export){ if("hazard" %in% type){out$hazard.average.iid[,1] <- out$hazard.average.iid[,1] + rowSums(iIFhazard)/new.n} if("cumhazard" %in% type){out$cumhazard.average.iid[,1] <- out$cumhazard.average.iid[,1] + rowSums(iIFcumhazard)/new.n} if("survival" %in% type){out$survival.average.iid[,1] <- out$survival.average.iid[,1] + rowSums(iIFsurvival)/new.n} } }else{ if("se" %in% export){ iSEcumhazard <- sqrt(colSums(iIFcumhazard^2)) if("survival" %in% type){ iSEsurvival <- iSEcumhazard * new.survival[indexStrata[1],] } } for(iObs in indexStrata){ if("iid" %in% export){ if("hazard" %in% type){out$hazard.iid[,,iObs] <- iIFhazard} if("cumhazard" %in% type){out$cumhazard.iid[,,iObs] <- iIFcumhazard} if("survival" %in% type){out$survival.iid[,,iObs] <- iIFsurvival} } if("se" %in% export){ if("cumhazard" %in% type){out$cumhazard.se[iObs,] <- iSEcumhazard} if("survival" %in% type){out$survival.se[iObs,] <- iSEsurvival} } } if("average.iid" %in% export){ if("hazard" %in% type){out$hazard.average.iid <- out$hazard.average.iid + iIFhazard * iPrevalence} if("cumhazard" %in% type){out$cumhazard.average.iid <- out$cumhazard.average.iid + iIFcumhazard * iPrevalence} if("survival" %in% type){out$survival.average.iid <- out$survival.average.iid + iIFsurvival * iPrevalence} } } } }else{ for(iObs in 1:new.n){ iObs.strata <- new.strata[iObs] if("hazard" %in% type){ iIFhazard <- (new.eXb[iObs] * (iid.object$IFhazard[[iObs.strata]] + crossprod(t(X_IFbeta_mat[,iObs,drop=FALSE]),Lambda0$hazard[[iObs.strata]]))) } if("cumhazard" %in% type || "survival" %in% type){ iIFcumhazard <- new.eXb[iObs] * (iid.object$IFcumhazard[[iObs.strata]] + crossprod(t(X_IFbeta_mat[,iObs,drop=FALSE]), Lambda0$cumhazard[[iObs.strata]])) } if("survival" %in% type && ("iid" %in% export || "average.iid" %in% export)){ iIFsurvival <- rowMultiply_cpp(-iIFcumhazard, scale = new.survival[iObs,]) } if("iid" %in% export){ if("hazard" %in% type){out$hazard.iid[,,iObs] <- iIFhazard} if("cumhazard" %in% type){out$cumhazard.iid[,,iObs] <- iIFcumhazard} if("survival" %in% type){out$survival.iid[,,iObs] <- iIFsurvival} } if("se" %in% export){ iSEcumhazard <- sqrt(colSums(iIFcumhazard^2)) if("cumhazard" %in% type){out$cumhazard.se[iObs,] <- iSEcumhazard} if("survival" %in% type){out$survival.se[iObs,] <- iSEcumhazard * new.survival[iObs,,drop=FALSE]} } if("average.iid" %in% export){ if("hazard" %in% type){out$hazard.average.iid <- out$hazard.average.iid + iIFhazard/new.n} if("cumhazard" %in% type){out$cumhazard.average.iid <- out$cumhazard.average.iid + iIFcumhazard/new.n} if("survival" %in% type){out$survival.average.iid <- out$survival.average.iid + iIFsurvival/new.n} } } } }else if("average.iid" %in% export){ new.Ustrata <- sort(unique(new.strata)) new.nStrata <- length(new.Ustrata) new.indexStrata <- lapply(new.Ustrata, function(iStrata){ which(new.strata==iStrata) - 1 }) new.prevStrata <- sapply(new.indexStrata, length)/new.n attr(new.LPdata,"levels") <- NULL if(is.null(new.survival)){ new.survival <- matrix() } if("hazard" %in% type){ outRcpp.hazard <- calcAIFsurv_cpp(ls_IFcumhazard = iid.object$IFhazard[new.Ustrata], IFbeta = iid.object$IFbeta, cumhazard0 = Lambda0$hazard[new.Ustrata], survival = matrix(0), eXb = new.eXb, X = new.LPdata, prevStrata = new.prevStrata, ls_indexStrata = new.indexStrata, factor = factor, nTimes = nTimes, nObs = object.n, nStrata = new.nStrata, nVar = nVar.lp, diag = diag, exportCumHazard = TRUE, exportSurvival = FALSE) } if(("cumhazard" %in% type) || ("survival" %in% type)){ outRcpp.cumhazard <- calcAIFsurv_cpp(ls_IFcumhazard = iid.object$IFcumhazard[new.Ustrata], IFbeta = iid.object$IFbeta, cumhazard0 = Lambda0$cumhazard[new.Ustrata], survival = new.survival, eXb = new.eXb, X = new.LPdata, prevStrata = new.prevStrata, ls_indexStrata = new.indexStrata, factor = factor, nTimes = nTimes, nObs = object.n, nStrata = new.nStrata, nVar = nVar.lp, diag = diag, exportCumHazard = ("cumhazard" %in% type), exportSurvival = ("survival" %in% type)) } if("hazard" %in% type){ if(rm.list){ out$hazard.average.iid <- matrix(outRcpp.hazard[[1]][[1]], nrow = object.n, ncol = nTimes) }else{ out$hazard.average.iid <- lapply(outRcpp.hazard[[1]], function(iMat){matrix(iMat, nrow = object.n, ncol = nTimes)}) } } if("cumhazard" %in% type){ if(rm.list){ out$cumhazard.average.iid <- matrix(outRcpp.cumhazard[[1]][[1]], nrow = object.n, ncol = nTimes) }else{ out$cumhazard.average.iid <- lapply(outRcpp.cumhazard[[1]], function(iMat){matrix(iMat, nrow = object.n, ncol = nTimes)}) } } if("survival" %in% type){ if(rm.list){ out$survival.average.iid <- matrix(outRcpp.cumhazard[[2]][[1]], nrow = object.n, ncol = nTimes) }else{ out$survival.average.iid <- lapply(outRcpp.cumhazard[[2]], function(iMat){matrix(iMat, nrow = object.n, ncol = nTimes)}) } } } return(out) } selectJump <- function(IF, times, type){ if(any(times<0)){warning("selectJump may not handle correctly negative times")} nStrata <- length(IF$time) for(iStrata in 1:nStrata){ if(IF$store.iid == "minimal"){ isJump <- times %in% IF$time[[iStrata]] indexJump <- prodlim::sindex(jump.times = c(0,IF$time[[iStrata]]), eval.times = times) if(NROW(IF$calcIFhazard$Elambda0[[iStrata]])>0){ IF$calcIFhazard$Elambda0[[iStrata]] <- rowMultiply_cpp(cbind(0,IF$calcIFhazard$Elambda0[[iStrata]])[,indexJump,drop=FALSE], scale = isJump) }else{ IF$calcIFhazard$Elambda0[[iStrata]] <- matrix(NA, nrow = 0, ncol = length(isJump)) } if(NROW(IF$calcIFhazard$cumElambda0[[iStrata]])>0){ IF$calcIFhazard$cumElambda0[[iStrata]] <- cbind(0,IF$calcIFhazard$cumElambda0[[iStrata]])[,indexJump,drop=FALSE] }else{ IF$calcIFhazard$cumElambda0[[iStrata]] <- matrix(NA, nrow = 0, ncol = length(isJump)) } IF$calcIFhazard$lambda0_iS0[[iStrata]] <- IF$calcIFhazard$lambda0_iS0[[iStrata]] * (IF$calcIFhazard$time1[[iStrata]] <= max(times)) IF$calcIFhazard$cumLambda0_iS0[[iStrata]] <- IF$calcIFhazard$cumLambda0_iS0[[iStrata]] * (IF$calcIFhazard$time1[[iStrata]] <= max(times)) }else{ if("hazard" %in% type){ match.times <- match(times, table = IF$time[[iStrata]]) match.times[is.na(match.times)] <- 0 if(any(times > IF$etime.max[[iStrata]])){ match.times[times > IF$etime.max[[iStrata]]] <- NA } IF$IFhazard[[iStrata]] <- subsetIndex(IF$IFhazard[[iStrata]], index = match.times, default = 0, col = TRUE) } if("cumhazard" %in% type || "survival" %in% type){ indexJump <- prodlim::sindex(jump.times = IF$time[[iStrata]], eval.times = times) if(any(times > IF$etime.max[[iStrata]])){ indexJump[times > IF$etime.max[[iStrata]]] <- NA } IF$IFcumhazard[[iStrata]] <- subsetIndex(IF$IFcumhazard[[iStrata]], index = indexJump, default = 0, col = TRUE) } } IF$time[[iStrata]] <- times } return(IF) }
suppressPackageStartupMessages(library("argparse")) parser = ArgumentParser() parser$add_argument("--infercnv_obj", help="infercnv_obj file", required=TRUE, nargs=1) args = parser$parse_args() library(infercnv) library(tidyverse) library(futile.logger) infercnv_obj_file = args$infercnv_obj infercnv_obj = readRDS(infercnv_obj_file) expr_vals <- [email protected] sd_trend_info = infercnv:::.i3HMM_get_sd_trend_by_num_cells_fit(infercnv_obj) mu = sd_trend_info$mu sigma = sd_trend_info$sigma sds = c() ngenes = nrow(expr_vals) tumor_samples = infercnv_obj@observation_grouped_cell_indices print(tumor_samples) num_tumor_samples = length(tumor_samples) print(num_tumor_samples) mean_vals_df = NULL; z_p_val = 0.05 num_cells_to_empirical_sd = list() nrounds=100 ncells_partitions = seq (1,100,5) for (ncells in ncells_partitions) { means = c() message(sprintf("num cells: %g", ncells)) cells_counted = 0; for(i in 1:nrounds) { rand.gene = sample(1:ngenes, size=1) rand.sample = sample(1:num_tumor_samples, size=1) vals = sample(expr_vals[rand.gene, tumor_samples[[rand.sample]] ], size=ncells, replace=T) m_val = mean(vals) means = c(means, m_val) cells_counted = cells_counted + length(vals) } means.sd = sd(means) means.mean = mean(means) num_cells_to_empirical_sd[[ ncells ]] = means.sd df = data.frame(num_cells=ncells, vals=means) message(sprintf("plotting ncells distribution: %g", ncells)) data.want = df p = data.want %>% ggplot(aes(vals, fill=num_cells)) + geom_density(alpha=0.3) + ggtitle(sprintf("num_cells: %g", ncells)) p = p + stat_function(fun=dnorm, color='black', args=list('mean'=means.mean,'sd'=means.sd)) alpha=0.05 ks_delta = infercnv:::get_HoneyBADGER_setGexpDev(gexp.sd=sd_trend_info$sigma, k_cells=ncells, alpha=alpha, plot=T) left_mean = means.mean - ks_delta message("left_mean: ", left_mean) p = p + stat_function(fun=dnorm, color='blue', args=list('mean'=left_mean,'sd'=means.sd)) right_mean = means.mean + ks_delta message("right_mean: ", right_mean) p = p + stat_function(fun=dnorm, color='blue', args=list('mean'=right_mean,'sd'=means.sd)) plot(p) }
mle.getPtDist=function(p1.optBS,ptID,p2.optBS,ptID2,data_mx,ranks,p1, thresholdDiff,adj_mat) { if (length(p1.optBS)!=length(p2.optBS)){ return("Error: Pt1 Subset different size from Pt2.")} if (is.null(ranks)) {return("Error: Must specify ranks")} G = vector(mode="list", length=nrow(data_mx)) names(G) = rownames(data_mx) res.p1 = mle.getEncodingLength(p1.optBS, NULL, ptID, G) res.p2 = mle.getEncodingLength(p2.optBS, NULL, ptID, G) dirSim = stat.getDirSim(ptID, ptID2, length(p1.optBS), data_mx) p1.e=p2.e=p12.e=c() bits_fixed=log2(choose(length(G),1)) for (k in seq_len(length(p1.optBS))) { p1.e[k]=res.p1[which.max(res.p1[seq_len(k),"d.score"]),"IS.alt"]+ bits_fixed*(k-which.max(res.p1[seq_len(k),"d.score"])) p2.e[k]=res.p2[which.max(res.p2[seq_len(k),"d.score"]),"IS.alt"]+ bits_fixed*(k-which.max(res.p2[seq_len(k),"d.score"])) p1.sig.nodes_cpy=names(sort(abs(data_mx[,ptID]), decreasing=TRUE)[seq_len(length(p1.optBS))]) p2.sig.nodes_cpy=names(sort(abs(data_mx[,ptID2]), decreasing=TRUE)[seq_len(length(p2.optBS))]) p1.sig.nodes_k = names(which(p1.optBS[[k]]==1)) p2.sig.nodes_k = names(which(p2.optBS[[k]]==1)) while (length(p1.sig.nodes_k)<k) { p1.sig.nodes_k = unique(c(p1.sig.nodes_k, p1.sig.nodes_cpy[1])) p1.sig.nodes_cpy = p1.sig.nodes_cpy[-1] } while (length(p2.sig.nodes_k)<k) { p2.sig.nodes_k = unique(c(p2.sig.nodes_k, p2.sig.nodes_cpy[1])) p2.sig.nodes_cpy = p2.sig.nodes_cpy[-1] } p12.sig.nodes_k=vapply(unique(c(p1.sig.nodes_k, p2.sig.nodes_k)), trimws, character(1)) p12.optBS = mle.getPtBSbyK(p12.sig.nodes_k, ranks) res = mle.getEncodingLength(p12.optBS, NULL, NULL, G) p12.e[k] = res[which.max(res[,"d.score"]), "IS.alt"] + log2(choose(length(G), 1))*(length(p12.sig.nodes_k)- which.max(res[,"d.score"])) } ncd=(p12.e-apply(cbind(p1.e,p2.e),1,min))/apply(cbind(p1.e,p2.e),1,max) ncd[which(ncd<0)]=0 return(list(p1.e=p1.e, p2.e=p2.e, p12.e=p12.e, dirSim=dirSim, NCD=ncd)) }
'dse15c'
brm_multiple <- function(formula, data, family = gaussian(), prior = NULL, data2 = NULL, autocor = NULL, cov_ranef = NULL, sample_prior = c("no", "yes", "only"), sparse = NULL, knots = NULL, stanvars = NULL, stan_funs = NULL, silent = 1, recompile = FALSE, combine = TRUE, fit = NA, seed = NA, file = NULL, file_refit = "never", ...) { combine <- as_one_logical(combine) file_refit <- match.arg(file_refit, file_refit_options()) if (!is.null(file)) { if (file_refit == "on_change") { stop2("file_refit = 'on_change' is not supported for brm_multiple yet.") } if (!combine) { stop2("Cannot use 'file' if 'combine' is FALSE.") } if (file_refit != "always") { fits <- read_brmsfit(file) if (!is.null(fits)) { return(fits) } } } silent <- validate_silent(silent) recompile <- as_one_logical(recompile) data_name <- substitute_name(data) if (inherits(data, "mids")) { require_package("mice", version = "3.0.0") data <- lapply(seq_len(data$m), mice::complete, data = data) } else if (!is_data_list(data)) { stop2("'data' must be a list of data.frames.") } if (!is.null(data2)) { if (!is_data2_list(data2)) { stop2("'data2' must be a list of named lists.") } if (length(data2) != length(data)) { stop2("'data2' must have the same length as 'data'.") } } if (is.brmsfit(fit)) { class(fit) <- setdiff(class(fit), "brmsfit_multiple") } else { args <- nlist( formula, data = data[[1]], family, prior, data2 = data2[[1]], autocor, cov_ranef, sample_prior, sparse, knots, stanvars, stan_funs, silent, seed, ... ) args$chains <- 0 if (silent < 2) { message("Compiling the C++ model") } fit <- suppressMessages(do_call(brm, args)) } dots <- list(...) if (isTRUE(dots$chains == 0) || isTRUE(dots$iter == 0)) { class(fit) <- c("brmsfit_multiple", class(fit)) return(fit) } fits <- futures <- rhats <- vector("list", length(data)) for (i in seq_along(data)) { futures[[i]] <- future::future( update(fit, newdata = data[[i]], data2 = data2[[i]], recompile = recompile, silent = silent, ...), packages = "brms", seed = TRUE ) } for (i in seq_along(data)) { if (silent < 2) { message("Fitting imputed model ", i) } fits[[i]] <- future::value(futures[[i]]) rhats[[i]] <- data.frame(as.list(rhat(fits[[i]]))) if (any(rhats[[i]] > 1.1, na.rm = TRUE)) { warning2("Imputed model ", i, " did not converge.") } } if (combine) { fits <- combine_models(mlist = fits, check_data = FALSE) attr(fits$data, "data_name") <- data_name fits$rhats <- do_call(rbind, rhats) class(fits) <- c("brmsfit_multiple", class(fits)) } if (!is.null(file)) { fits <- write_brmsfit(fits, file) } fits } combine_models <- function(..., mlist = NULL, check_data = TRUE) { models <- c(list(...), mlist) check_data <- as_one_logical(check_data) if (!length(models)) { stop2("No models supplied to 'combine_models'.") } for (i in seq_along(models)) { if (!is.brmsfit(models[[i]])) { stop2("Model ", i, " is no 'brmsfit' object.") } models[[i]] <- restructure(models[[i]]) } ref_formula <- formula(models[[1]]) ref_pars <- variables(models[[1]]) ref_mf <- model.frame(models[[1]]) for (i in seq_along(models)[-1]) { if (!is_equal(formula(models[[i]]), ref_formula)) { stop2("Models 1 and ", i, " have different formulas.") } if (!is_equal(variables(models[[i]]), ref_pars)) { stop2("Models 1 and ", i, " have different parameters.") } if (check_data && !is_equal(model.frame(models[[i]]), ref_mf)) { stop2( "Models 1 and ", i, " have different data. ", "Set 'check_data' to FALSE to turn off checking of the data." ) } } sflist <- lapply(models, "[[", "fit") models[[1]]$fit <- rstan::sflist2stanfit(sflist) models[[1]] } is_data_list <- function(x) { is.list(x) && is.vector(x) } is_data2_list <- function(x) { is.list(x) && all(ulapply(x, function(y) is.list(y) && is_named(y))) } warn_brmsfit_multiple <- function(x, newdata = NULL) { if (is.brmsfit_multiple(x) && is.null(newdata)) { warning2( "Using only the first imputed data set. Please interpret the results ", "with caution until a more principled approach has been implemented." ) } invisible(x) }
NULL ModeFilter <- function(x, ...) { UseMethod("ModeFilter") } ModeFilter.formula <- function(formula, data, ...) { if(!is.data.frame(data)){ stop("data argument must be a data.frame") } modFrame <- model.frame(formula,data) attr(modFrame,"terms") <- NULL ret <- ModeFilter.default(x=modFrame,...,classColumn = 1) ret$call <- match.call(expand.dots = TRUE) ret$call[[1]] <- as.name("ModeFilter") cleanData <- data if(!is.null(ret$repIdx)){ cleanData[ret$repIdx,which(colnames(cleanData)==colnames(modFrame)[1])] <- ret$repLab } ret$cleanData <- cleanData[setdiff(1:nrow(cleanData),ret$remIdx),] return(ret) } ModeFilter.default <- function(x, type = "classical", noiseAction = "repair", epsilon = 0.05, maxIter = 100, alpha = 1, beta = 1, classColumn = ncol(x), ...) { if(!is.data.frame(x)){ stop("data argument must be a data.frame") } if(!classColumn%in%(1:ncol(x))){ stop("class column out of range") } if(!is.factor(x[,classColumn])){ stop("class column of data must be a factor") } if(!type%in%c("classical","iterative","weighted")){ stop("the argument 'type' must be set to 'classical', 'iterative' or 'weighted'") } if(!noiseAction%in%c("repair","remove")){ stop("the argument 'noiseAction' must be set to 'repair' or 'remove'") } if(epsilon>1 | epsilon<0){ stop("argument 'epsilon' must range between 0 and 1") } similarity <- sapply(1:nrow(x),function(i){c(rep(NA,i-1), sapply(i:nrow(x),function(j){exp(-alpha*distt(x[i,-classColumn],x[j,-classColumn])^2)}))}) for(i in 1:(nrow(x)-1)){ for(j in (i+1):nrow(x)){ similarity[i,j] <- similarity[j,i] } } labels <- levels(x[,classColumn]) if(type=="classical"){ newClass <- sapply(1:nrow(x),function(i){ sumsPerClass <- sapply(labels,function(label){ sum(similarity[x[,classColumn]==label,i])+exp(-beta)*sum(similarity[x[,classColumn]!=label,i]) }) labels[nnet::which.is.max(sumsPerClass)] }) } if(type=="iterative"){ currentClass <- as.character(x[,classColumn]) k <- 1 convergenceRate <- 1.1 while(k <= maxIter & convergenceRate > epsilon){ oldClass <- currentClass currentClass <- sapply(1:nrow(x),function(i){ sumsPerClass <- sapply(labels,function(label){ sum(similarity[currentClass==label,i])+exp(-beta)*sum(similarity[currentClass!=label,i]) }) labels[nnet::which.is.max(sumsPerClass)] }) k <- k+1 convergenceRate <- sum(currentClass!=oldClass)/length(currentClass) } newClass <- currentClass } if(type=="weighted"){ weights <- sapply(1:nrow(x),function(i){ (sum(similarity[i,x[,classColumn]==x[i,classColumn]])+exp(-beta)*sum(similarity[i,x[,classColumn]!=x[i,classColumn]]))/sum(similarity[i,]) }) newClass <- sapply(1:nrow(x),function(i){ sumsPerClass <- sapply(labels,function(label){ indexEq <- x[,classColumn]==label sum(similarity[indexEq,i]*weights[indexEq])+exp(-beta)*sum(similarity[!indexEq,i]*weights[!indexEq]) }) labels[nnet::which.is.max(sumsPerClass)] }) } if(noiseAction=="remove"){ remIdx <- which(newClass!=x[,classColumn]) repIdx <- NULL repLab <- NULL cleanData <- x[setdiff(1:nrow(x),remIdx),] } if(noiseAction=="repair"){ remIdx <- NULL repIdx <- which(newClass!=x[,classColumn]) repLab <- factor(newClass[repIdx], levels = labels) cleanData <- x cleanData[,classColumn] <- newClass } parameters <- list(type = type, noiseAction = noiseAction, maxIter = maxIter, alpha = alpha, beta = beta) call <- match.call() call[[1]] <- as.name("ModeFilter") ret <- list(cleanData = cleanData, remIdx = remIdx, repIdx=repIdx, repLab=repLab, parameters=parameters, call = call, extraInf = NULL ) class(ret) <- "filter" return(ret) }
VAR.Rmat <- function(p,k,restrict,type="const") { info = restrict[,1:3,drop=F] if(type=="none") add <- 0 if(type=="const") add <- 1 if(type=="const+trend") add <-2 M = p*(k^2)+add*k - nrow(info) Rmat = diag(M); rmat = matrix(0,nrow=p*(k^2)+add*k) mat1 <- rep(1:k,k) mat2 <- rep(1:k,each=k) mat3 <- rep(1:p,each=k^2) position <- cbind(mat3,mat1,mat2) tem1=numeric() for (i in 1:nrow(position)){ for (j in 1:nrow(info)){ tem = prod(as.numeric(position[i,] == info[j,])) if (tem == 1) tem1=c(tem1,i)}} for(i in 1:length(tem1)){ index = tem1[i] if(index == 1) Rmat <- rbind(matrix(0,ncol=M),Rmat) else{ if(index <= nrow(Rmat)) Rmat <- rbind(Rmat[1:(index-1),,drop=F],matrix(0,ncol=M),Rmat[index:nrow(Rmat),,drop=F]) if(index > nrow(Rmat)) Rmat <- rbind(Rmat,matrix(0,ncol=M)) } } if(ncol(restrict) == 4) rmat[tem1,] = restrict[,4] index1 = rowSums(Rmat) index2 = 1 Cmat=matrix(0,nrow=nrow(restrict),ncol=p*k^2+add*k) for (i in 1:length(index1)) if (index1[i] == 0) {Cmat[index2,i] = 1; index2=index2+1} cmat = matrix(0,nrow=nrow(restrict)) if(ncol(restrict) == 4) cmat = matrix(restrict[,4]) return(list(Rmat=Rmat,rvec=rmat,Cmat=Cmat,cvec=cmat)) }
loess.psa<-function(response, treatment = NULL, propensity = NULL, family = "gaussian", span = .7, degree=1, minsize=5, xlim=c(0,1), colors = c('dark blue','dark green','blue','dark green'), legend.xy = "topleft", legend = NULL, int = 10, lines = TRUE, strata.lines = TRUE, rg = TRUE, xlab="Estimated Propensity Scores", ylab="Response", pch = c(16,1), ...){ if(is.vector(response)){ rtp<-data.frame(response,treatment,propensity)}else{ rtp<-as.data.frame(response) dimnames(rtp)[2]<-list(c("response","treatment","propensity"))} if(is.null(treatment)){treatment<-response[,2]} sut<-sort(unique(treatment)) response<-rtp[,1] treatment<-rtp[,2] propensity<-rtp[,3] loess.0<-loess(rtp$r~rtp$p, subset = treatment == sut[1], family = family, span = span, degree=degree) loess.1<-loess(rtp$r~rtp$p, subset = treatment == sut[2], family = family, span = span, degree=degree) plot(rtp$p,rtp$r,type="n",xlim=range(rtp$p),xlab=xlab,ylab=ylab) points(rtp$p[treatment==sut[1]],rtp$r[treatment==sut[1]],col=colors[1],pch = pch[1], ... ) points(rtp$p[treatment==sut[2]],rtp$r[treatment==sut[2]],col=colors[2],pch = pch[2], ...) li<-length(int) if(strata.lines){int2 <- int if(li == 1){int2 <- quantile(propensity, seq(0, 1, 1/int)) li <- length(int2) } for(i in 1:li){abline(v = int2[i], lwd = .5, lty = 3, col = "dark grey")} } n0<-length(rtp$p[treatment==sut[1]]) n1<-length(rtp$p[treatment==sut[2]]) rtp.p.0<-rtp$p[treatment==sut[1]] rtp.p.1<-rtp$p[treatment==sut[2]] if(lines){ord.0<-order(rtp.p.0) ord.1<-order(rtp.p.1) lines(rtp.p.0[ord.0],loess.0$f[ord.0],cex=.6,col=colors[3], lwd = 1.5, lty = 1) lines(rtp.p.1[ord.1],loess.1$f[ord.1],col=colors[4], lwd = 1.5, lty = 2)} else{points(rtp$p[treatment==sut[1]],loess.0$f,pch=3,cex=.6,col=colors[3]) points(rtp$p[treatment==sut[2]],loess.1$f,pch=4,cex=.6,col=colors[4])} if(is.null(legend)){legend<-sut} legend(x = legend.xy, y = NULL, legend = legend, fill = colors[1:2], bty = "n") if(rg){ rug(rtp$p[treatment==sut[1]], ticksize=.02, side=1, col=colors[1]) rug(rtp$r[treatment==sut[1]], ticksize=.02, side=2, col=colors[1]) rug(rtp$p[treatment==sut[2]], ticksize=.02, side=3, col=colors[2]) rug(rtp$r[treatment==sut[2]], ticksize=.02, side=4, col=colors[2]) box() } ed <- length(int) if(ed==1){prop.labels<-as.numeric(cut(propensity, quantile(propensity, seq(0, 1, 1/int)), include.lowest = TRUE, labels = FALSE)); nint<-int; dp<-0} if(ed>1){ if(int[1]==0 & int[ed]==1){subints<-int; nint<-ed-1; dp<-0} if(int[1] >0 & int[ed]==1){subints<-c(0,int); nint<-ed; dp<-1} if(int[1]==0 & int[ed] <1){subints<-c(int,1); nint<-ed; dp<-2} if(int[1] >0 & int[ed] <1){subints<-c(0,int,1); nint<-ed+1; dp<-3} prop.labels<-as.numeric(cut(propensity,breaks=subints,include.lowest = TRUE, labels = FALSE)) } table.plt<-table(prop.labels,treatment) ttable.plt<-table.plt[,1]*table.plt[,2] flag.0<-1 for(i in 1:nint){flag.0<-flag.0*ttable.plt[i]} if(flag.0 == 0) print("Warning: Some strata-treatment levels have no cases. Redefine 'int'.") o<-order(treatment) prop.labels<-prop.labels[o] resp.o<-response[o] ncontrol<-table(treatment)[1] ntreat<-table(treatment)[2] means.0<-tapply(loess.0$fitted,prop.labels[1:ncontrol],mean) var.0<-tapply(resp.o[1:ncontrol],prop.labels[1:ncontrol],var) ncp1<-ncontrol+1 ncpnt<-ncontrol+ntreat means.1<-tapply(loess.1$fitted,prop.labels[ncp1:ncpnt],mean) var.1<-tapply(resp.o[ncp1:ncpnt],prop.labels[ncp1:ncpnt],var) diff.means<-means.1-means.0 counts.0<-table(prop.labels[1:ncontrol]) counts.1<-table(prop.labels[(ncontrol+1):(ncontrol+ntreat)]) indicator.0<-NULL indicator.1<-NULL for(i in 1:nint)if(as.logical(counts.0[i]< minsize)){indicator.0<-c(indicator.0,0)}else{indicator.0<-c(indicator.0,1)} for(i in 1:nint)if(as.logical(counts.1[i]< minsize)){indicator.1<-c(indicator.1,0)}else{indicator.1<-c(indicator.1,1)} wts<-(counts.0+counts.1)*indicator.0*indicator.1 mash<-cbind(var.0,var.1,counts.0,counts.1,indicator.0,indicator.1) mash<-na.omit(mash) sum.wtd.var<-(mash[,1]/mash[,3] + mash[,2]/mash[,4])*mash[,5]*mash[,6] nused.int<-sum(indicator.0*indicator.1) out.table<-cbind(counts.0,counts.1,means.0,means.1,diff.means) colnames(out.table)<-c(paste("counts.",sut[1],sep=""), paste("counts.",sut[2],sep=""), paste("means.",sut[1],sep=""), paste("means.",sut[2],sep=""), "diff.means") if(dp==0){dee <- sum((wts*diff.means),na.rm=TRUE)/sum(wts) sd.wt <- ((sum(sum.wtd.var))^.5)/nused.int} if(dp==1){dee <- sum((wts[-1]*diff.means[-1]),na.rm=TRUE)/sum(wts[-1]) sd.wt <- ((sum(sum.wtd.var[-1]))^.5)/nused.int out.table<-out.table[-1,] rownames(out.table)<-1:(nint-1)} if(dp==2){dee <- sum((wts[-nint]*diff.means[-nint]),na.rm=TRUE)/sum(wts[-nint]) sd.wt <- ((sum(sum.wtd.var[-nint]))^.5)/nused.int out.table <- out.table[-nint,] rownames(out.table)<-1:(nint-1)} if(dp==3){dee <- sum((wts[-c(1,nint)]*diff.means[-c(1,nint)]),na.rm=TRUE)/sum(wts[-c(1,nint)]) sd.wt <- ((sum(sum.wtd.var[-c(1,nint)]))^.5)/nused.int out.table<-out.table[-c(1,nint),] rownames(out.table)<-1:(nint-2)} int.test<-c(5,10,15) effect.test<-c(1,1,dee) res<-cbind(int.test,effect.test) it<-1 if(ed == 1) it<-int[1] if(it == 15){ indx<-0 for(i in c(5,10)){ indx<-indx+1 prop.labels<-as.numeric(cut(propensity, quantile(propensity, seq(0, 1, 1/i)), include.lowest = TRUE, labels = FALSE)) nint<-i o<-order(treatment) prop.labels<-prop.labels[o] resp.o<-response[o] ncontrol<-table(treatment)[1] ntreat<-table(treatment)[2] means.0<-tapply(loess.0$fitted,prop.labels[1:ncontrol],mean) ncp1<-ncontrol+1 ncpnt<-ncontrol+ntreat means.1<-tapply(loess.1$fitted,prop.labels[ncp1:ncpnt],mean) difff.means<-means.1-means.0 counts.0<-table(prop.labels[1:ncontrol]) counts.1<-table(prop.labels[(ncontrol+1):(ncontrol+ntreat)]) indicator.0<-NULL indicator.1<-NULL for(i in 1:nint)if(as.logical(counts.0[i]< minsize)){indicator.0<-c(indicator.0,0)}else{indicator.0<-c(indicator.0,1)} for(i in 1:nint)if(as.logical(counts.1[i]< minsize)){indicator.1<-c(indicator.1,0)}else{indicator.1<-c(indicator.1,1)} wtts<-(counts.0+counts.1)*indicator.0*indicator.1 res[indx,2] <- sum((wtts*difff.means),na.rm=TRUE)/sum(wtts) } flag<-FALSE err<-.05*(sd(response)) if(abs(res[1,2]-res[2,2]) > err) flag<-TRUE if(abs(res[1,2]-res[3,2]) > err) flag<-TRUE if(abs(res[2,2]-res[3,2]) > err) flag<-TRUE if(flag) print("Warning: Effect size estimate unstable with changes in number of strata") if(flag) print(res) } CI95<-c(dee-2*sd.wt,dee+2*sd.wt) out<-list(dee, sd.wt, CI95, out.table) names(out)<-c("ATE", "se.wtd", "CI95", "summary.strata") return(out) }
bhl_gettitleitems <- function(...) { .Defunct(new = "bhl_gettitlemetadata", package = "rbhl", msg = "see ?bhl_gettitlemetadata") }
summary_tamaan_3pl_loclca <- function(object) { cat("*******************************\n") cat("Cluster locations\n") tam_round_data_frame_print(obji=object$locs, digits=3) summary_tamaan_3pl_lcaprobs(object=object) summary_tamaan_3pl_class_item_average(object=object) }
shift.up <- function( A, rows = 1, fill = 0 ) { if ( !is.matrix( A ) ) { stop( "argument A is not a matrix" ) } if ( !is.numeric( A ) ) { stop( "argument A is not a numeric matrix" ) } if ( rows != trunc( rows ) ) stop( "Arguments rows is not an integer" ) if ( rows < 0 ) stop( "Argument rows is not positive" ) if ( !is.numeric( fill ) ) stop( "Argument fill is not numeric" ) if ( rows > 0 ) return( shift.up( rbind( A[2:nrow(A),], rep( fill, ncol(A) ) ), rows - 1, fill ) ) return( A ) }
exportAsGDAL <- function(grid, shift, resolution, directory=getwd(), filename="grid.tif", drivername="GTiff"){ requireNamespace("rgdal") direc <- unlist(strsplit(directory,"")) if (direc[length(direc)] != "/"){ direc <- c(direc, "/") } directory <- "" for (i in 1:length(direc)){ directory <- paste(directory,direc[i], sep="") } dimension <- dim(grid) values <- lat <- long <- vector(mode="numeric", length=dimension[1]*dimension[2]) count <- 1 for (m in 1:dimension[1]){ for ( n in 1:dimension[2]){ values[count] <- grid[m,n] long[count] <- shift[1] + resolution*(m-1) lat[count] <- shift[2] + resolution*(n-1) count <- count + 1 } } result <- data.frame(values=values) points <- sp::SpatialPoints(data.frame(long=long, lat=lat), proj4string=sp::CRS("+proj=longlat +datum=WGS84")) result.spatial <- sp::SpatialPixelsDataFrame(points, result) result.gdal <- as(result.spatial, "SpatialGridDataFrame") rgdal::writeGDAL(result.gdal, fname=paste(directory,filename, sep=""), drivername=drivername) }
sffs <- function(profile_data, sens, sp = 1, max_k = 2, loo = TRUE, class = 2, averaging = "one.sided", weighted = FALSE, verbosity = FALSE) { if (averaging == "one.sided") { if(class == 2){ return(sffsBinary(profile_data, sens, sp, max_k, loo, verbosity)) } else if(class > 2 && weighted == FALSE){ return(sffsCategory(profile_data, sens, sp, max_k, loo, class, verbosity)) }else{ return(sffsCategoryWeighted(profile_data, sens, sp, max_k, loo, class, verbosity)) } } else if (averaging == "two.sided") { if(class == 2){ return(sffsBinary1(profile_data, sens, sp, max_k, loo, verbosity)) } else if(class > 2 && weighted == FALSE ){ return(sffsCategory1(profile_data, sens, sp, max_k, loo, class, verbosity)) }else{ return(sffsCategoryWeighted1(profile_data, sens, sp, max_k, loo, class, verbosity)) } } }
get.box <- function(bathy,x1,x2,y1,y2,width,locator=FALSE,ratio=FALSE,...) { if (class(bathy) != "bathy") stop("The matrix provided is not of class bathy") if (width<=0) stop("Width must be a positive number") if (!locator & (missing(x1)|missing(x2)|missing(y1)|missing(y2))) stop("You need to either use locator=TRUE or specify values for x1, x2, y1 and y2") as.numeric(rownames(bathy)) -> lon as.numeric(colnames(bathy)) -> lat if (locator) { pts <- locator(n=2,type="o",...) if (length(pts$x) == 1) stop("Please choose two points from the map") x1 <- pts$x[1] x2 <- pts$x[2] y1 <- pts$y[1] y2 <- pts$y[2] } alpha <- -atan((x2-x1)/(y2-y1)) p1.x <- x1 + cos(alpha)*width/2 p2.x <- x2 + cos(alpha)*width/2 p3.x <- x2 - cos(alpha)*width/2 p4.x <- x1 - cos(alpha)*width/2 p1.y <- y1 + sin(alpha)*width/2 p2.y <- y2 + sin(alpha)*width/2 p3.y <- y2 - sin(alpha)*width/2 p4.y <- y1 - sin(alpha)*width/2 which.min(abs(lon-p1.x)) -> p1x which.min(abs(lat-p1.y)) -> p1y which.min(abs(lon-p4.x)) -> p4x which.min(abs(lat-p4.y)) -> p4y which.min(abs(lon-p2.x)) -> p2x which.min(abs(lat-p2.y)) -> p2y which.min(abs(lon-p3.x)) -> p3x which.min(abs(lat-p3.y)) -> p3y if (p1x==p4x | p1y==p4y) { coord1 <- matrix(as.vector(bathy[p1x:p4x, p1y:p4y]),ncol=length(p1y:p4y),nrow=length(p1x:p4x),dimnames=list(lon[p1x:p4x],lat[p1y:p4y])) coord1 <- cbind(as.numeric(dimnames(coord1)[[1]]),as.numeric(dimnames(coord1)[[2]])) } else { coord1 <- diag.bathy(bathy[p1x:p4x,p1y:p4y],coord=TRUE) } if (p2x==p3x | p2y==p3y) { coord2 <- matrix(as.vector(bathy[p2x:p3x, p2y:p3y]),ncol=length(p2y:p3y),nrow=length(p2x:p3x),dimnames=list(lon[p2x:p3x],lat[p2y:p3y])) coord2 <- cbind(as.numeric(dimnames(coord2)[[1]]),as.numeric(dimnames(coord2)[[2]])) } else { coord2 <- diag.bathy(bathy[p2x:p3x,p2y:p3y],coord=TRUE) } n1 <- nrow(coord1) n2 <- nrow(coord2) if (n1<n2) coord2 <- coord2[1:nrow(coord1),] if (n1>n2) coord1 <- coord1[1:nrow(coord2),] tr <- cbind(coord1,coord2) out <- apply(tr,1,function(x) get.transect(x1=x[1],x2=x[3],y1=x[2],y2=x[4],mat=bathy,distance=TRUE)) di <- round(out[[1]][,3],2) prof <- sapply(out,function(x) x[,4]) if (is.list(prof)) { nr <- sapply(prof,length) prof <- sapply(prof, function(x) x<-x[1:min(nr)]) } rownames(prof) <- round(di[1:nrow(prof)]) colnames(prof) <- round(seq(from=-width/2,to=width/2,len=min(n1,n2)),2) deg2km <- function(x1, y1, x2, y2) { x1 <- x1*pi/180 y1 <- y1*pi/180 x2 <- x2*pi/180 y2 <- y2*pi/180 dx <- x2-x1 dy <- y2-y1 fo <- sin(dy/2)^2 + cos(y1) * cos(y2) * sin(dx/2)^2 fos <- 2 * asin(min(1,sqrt(fo))) return(6371 * fos) } d <- max(as.numeric(rownames(prof))) pmax <- -min(prof)/1000 w <- deg2km(p1.x,p1.y,p4.x,p4.y) ratios <- round(c(w/d,pmax/d),3) if (!locator) lines(c(x1,x2),c(y1,y2),type="o",...) lines(c(p1.x,p2.x,p3.x,p4.x,p1.x),c(p1.y,p2.y,p3.y,p4.y,p1.y),...) if (ratio) return(list(depth=prof,ratios=ratios)) else return(prof) }
library(testthat) library(gghighlight) test_check("gghighlight")
print.ORci <- function(x, ...) { attr(x, "conf.level") <- NULL attr(x, "class") <- NULL print(x, ...) }
ISOAbstractThematicAccuracy <- R6Class("ISOAbstractThematicAccuracy", inherit = ISODataQualityAbstractElement, private = list( xmlElement = "AbstractDQ_ThematicAccuracy", xmlNamespacePrefix = "GMD" ), public = list() ) ISOQuantitativeAttributeAccuracy <- R6Class("ISOQuantitativeAttributeAccuracy", inherit = ISOAbstractThematicAccuracy, private = list( xmlElement = "DQ_QuantitativeAttributeAccuracy", xmlNamespacePrefix = "GMD" ), public = list() ) ISONonQuantitativeAttributeAccuracy <- R6Class("ISONonQuantitativeAttributeAccuracy", inherit = ISOAbstractThematicAccuracy, private = list( xmlElement = "DQ_NonQuantitativeAttributeAccuracy", xmlNamespacePrefix = "GMD" ), public = list() ) ISOThematicClassificationCorrectness <- R6Class("ISOThematicClassificationCorrectness", inherit = ISOAbstractTemporalAccuracy, private = list( xmlElement = "DQ_ThematicClassificationCorrectness", xmlNamespacePrefix = "GMD" ), public = list() )
library(gemma2) context("Testing calc_sigma") readr::read_tsv(system.file("extdata", "mouse100.pheno.txt", package = "gemma2"), col_names = FALSE) -> pheno phe16 <- as.matrix(pheno[, c(1, 6)]) as.matrix(readr::read_tsv(system.file("extdata", "mouse100.cXX.txt", package = "gemma2"), col_names = FALSE)[, 1:100]) -> kinship eigen2(kinship) -> eout eout$values -> eval eout$vectors -> U V_g <- diag(c(1.91352, 0.530827)) V_e <- diag(c(0.320028, 0.561589)) X <- t(rep(1, 100)) %*% U ep_out <- eigen_proc(V_g, V_e) ep_out[[1]] -> logdet_Ve ep_out[[2]] -> UltVeh ep_out[[3]] -> UltVehi ep_out[[4]] -> D_l cq_out <- calc_qi(eval, D_l, X) cq_out[[1]] -> Qi co_out <- calc_omega(eval, D_l) co_out[[1]] -> OmegaU co_out[[2]] -> OmegaE calc_sigma(eval, D_l, X, OmegaU, OmegaE, UltVeh, Qi) -> cs_out cs_out[[1]] -> Sigma_ee cs_out[[2]] -> Sigma_uu test_that("Results of gemma2 equal those of GEMMA v 0.97", { expect_equal(Sigma_ee, diag(c(18.559, 12.3672)), tolerance = 0.0001) expect_equal(Sigma_uu, diag(c(82.2973, 41.9238)), tolerance = 0.0001) })
NULL tidy.ml_model_multilayer_perceptron_classification <- function(x, ...) { num_layers <- length(x$model$layers) weight_param <- NULL weight_param <- purrr::map_dbl(seq_len(num_layers - 1), function(e) { (x$model$layers[e] + 1) * x$model$layers[e + 1] }) weight_param <- c(0, cumsum(weight_param)) weight_matrix <- list() weight_matrix <- purrr::map(seq_len(length(weight_param) - 1), function(e) { matrix(x$model$weights[(weight_param[e] + 1):weight_param[e + 1]], nrow = x$model$layers[e] + 1, ncol = x$model$layers[e + 1], byrow = TRUE ) }) layers <- purrr::map_chr(seq_len(num_layers - 1), function(e) { paste0("layer_", e) }) dplyr::tibble(layers, weight_matrix) } augment.ml_model_multilayer_perceptron_classification <- function(x, newdata = NULL, ...) { broom_augment_supervised(x, newdata = newdata) } glance.ml_model_multilayer_perceptron_classification <- function(x, ...) { num_layers <- length(x$model$layers) input <- x$model$layers[1] output <- x$model$layers[num_layers] hidden <- x$model$layers[c(-1, -num_layers)] names(hidden) <- purrr::map_chr(1:(num_layers - 2), function(e) { paste0("hidden_", e, "_units") }) c( input_units = input, hidden, output_units = output ) %>% as.list() %>% dplyr::as_tibble() }
expected <- eval(parse(text="c(9223372036853727232, 1152921504606322688, 144115188075593728, 18014398509350912, 2251799813619712, 281474976677888, 35184372072448, 4398046502912, 549755809792, 68719474688.0001, 8589933568.00012, 1073741312.00024, 134217472.000488, 16777088.0009765, 2097088.00195271, 262112.00390339, 32752.0077931403, 4088.01549822222, 508.030458722825, 62.0579095299303, 7.10126282473794, 0.647385390948634, 0.0298849244167557, 0.000248025715892034, 4.59473369343568e-08, 3.20995645613222e-15, 2.68891929680868e-29, 2.94813344459608e-57, 5.271814156706e-113, 2.44544336199516e-224, 0)")); test(id=0, code={ argv <- eval(parse(text="list(c(9.5367431640625e-07, 1.9073486328125e-06, 3.814697265625e-06, 7.62939453125e-06, 1.52587890625e-05, 3.0517578125e-05, 6.103515625e-05, 0.0001220703125, 0.000244140625, 0.00048828125, 0.0009765625, 0.001953125, 0.00390625, 0.0078125, 0.015625, 0.03125, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024), 3, 1)")); .Internal(besselK(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
ledoit_wolf <- function(Y, ...){ if (!requireNamespace("nlshrink", quietly = TRUE)) { stop("Please install the '", "nlshrink", "' package.") } Sigma <- nlshrink::linshrink_cov(as.matrix(Y)) R <- cov2cor(Sigma) Rinv <- solve(R) return(Rinv) }
td <- data.frame( lettres = letters[1:10], values = 1:10, stringsAsFactors = FALSE ) correct <- structure( c( "Length:10 ", "Class :character ", "Mode :character ", NA, NA, NA, "Min. : 1.00 ", "1st Qu.: 3.25 ", "Median : 5.50 ", "Mean : 5.50 ", "3rd Qu.: 7.75 ", "Max. :10.00 " ), .Dim = c(6L, 2L), .Dimnames = list(c("", "", "", "", "", ""), c(" lettres", " values")), class = "table" ) actual <- summary(td) expect_identical(actual, correct)
library(shiny) attach(readRDS("data.rds")) lapply(`_packages`, library, character.only = TRUE) if (exists("_before")) { `_before`() } if (!exists("_server")) { `_server` <- function(input, output, session) {} } shinyApp(`_ui`, `_server`, enableBookmarking = `_bookmark`)
expected_val <- function (model, sig2, alpha = NULL, psi = NULL, time_span = c(0, 10), quantile = FALSE, plot = FALSE, labels = TRUE, bm_col = "darkgoldenrod1", ou_col = "firebrick2", da_col = "navy", exval_lwd = 5, ylim = NULL,...) { if(model %in% c("BM_null", "OU_null", "DA_null", "DA_OU", "DA_BM", "OU_BM")==FALSE) { stop("Spell check: you've entered a model that doesn't match the models accepted by this function") } if (length(time_span) == 1) { time <- time_span } if (length(time_span) > 2) { time <- time_span } if (length(time_span) == 2) { time = seq(0, time_span[2], (time_span[2]/10000)) } if(model == "BM_null") { V <- sig2 * time * 2 u = rep(0, length(time)) exdiv <- ((2 * V)/pi)^0.5 } if(model == "OU_null") { V <- (sig2/(alpha)) * (1 - exp(-2 * alpha * time)) u = rep(0, length(time)) exdiv <- ((2 * V)/pi)^0.5 } if(model == "DA_null") { V <- (sig2/(alpha)) * (1 - exp(-2 * alpha * time)) u <- psi * (1 - exp(-alpha * time)) exdiv <- sqrt((2 * V)/pi) * exp(-(u^2)/(2 * V)) + u * (2 * pnorm((u/sqrt(2 * V)) * sqrt(2)) - 1) } if(model == "DA_OU") { V = V2 = (sig2/(alpha)) * (1 - exp(-2 * alpha * time)) u = rep(0, length(time)) u2 = psi * (1 - exp(-alpha * time)) exdiv <- ((2 * V)/pi)^0.5 exdiv2 <- sqrt((2 * V2)/pi) * exp(-(u2^2)/(2 * V2)) + u2 * (2 * pnorm((u2/sqrt(2 * V2)) * sqrt(2)) - 1) } if(model == "DA_BM") { V <- sig2 * time * 2 u <- rep(0, length(time)) exdiv <- ((2 * V)/pi)^0.5 V2 <- (sig2/(alpha)) * (1 - exp(-2 * alpha * time)) u2 <- psi * (1 - exp(-alpha * time)) exdiv2 <- sqrt((2 * V2)/pi) * exp(-(u2^2)/(2 * V2)) + u2 * (2 * pnorm((u2/sqrt(2 * V2)) * sqrt(2)) - 1) } if(model == "OU_BM") { V <- sig2 * time * 2 u = u2 = rep(0, length(time)) V2 <- (sig2/(alpha)) * (1 - exp(-2 * alpha * time)) exdiv <- ((2 * V)/pi)^0.5 exdiv2 <- ((2 * V2)/pi)^0.5 } if (quantile == TRUE) { qs = c(0.025, seq(0.1, 0.9, 0.1), 0.975) quantiles = lapply(qs, FUN = truncnorm::qtruncnorm, a = 0, mean = u, sd = sqrt(V)) res <- matrix(NA, length(time), 13) colnames(res) <- c("time", "Expectation", "q025", "q10","q20", "q30", "q40", "q50", "q60", "q70", "q80", "q90", "q975") res[, 1] <- time res[, 2] <- exdiv for (i in 3:13) res[, i] = quantiles[[i - 2]] if(model %in% c("DA_OU", "DA_BM", "OU_BM")) { quantiles2 = lapply(qs, FUN = truncnorm::qtruncnorm, a = 0, mean = u2, sd = sqrt(V2)) res2 = res[,-1] colnames(res2) = paste("model2_", colnames(res)[-1], sep="") res2[,1] <- exdiv2 for (i in 2:12) res2[, i] = quantiles2[[i - 1]] res = cbind(res, res2) } } else { res <- matrix(NA, length(time), 2) colnames(res) <- c("time", "Expected_Abs_Diff") res[, 1] <- time res[, 2] <- exdiv if(model %in% c("DA_OU", "DA_BM", "OU_BM")) { res = cbind(res, exdiv2) colnames(res)[3] = "Expected_Abs_Diff_model2" } } if (plot == TRUE) { if (quantile == TRUE) { x = length(quantiles) time.plot = c(time, sort(time, decreasing=T)) y.m1 <- c(res[,"q025"], sort(res[,"q975"], decreasing=T)) if(model %in% c("DA_OU", "DA_BM", "OU_BM")) { y.m2 <- c(res[,"model2_q025"], sort(res[,"model2_q975"], decreasing=T)) if(is.null(ylim)) ylim=c(0, max(c(quantiles[[x]],quantiles2[[x]]),na.rm=TRUE)*1.2) if(model=="DA_OU") { plot(res[,"model2_Expectation"] ~ time, type="l", ann=FALSE, col=da_col, lwd=exval_lwd, ylim=ylim, ...) lines(res[,"Expectation"] ~ time, lty=1, col=ou_col, lwd=exval_lwd) polygon(time.plot, y.m2, col = adjustcolor(da_col, alpha.f=0.2), border = NA) polygon(time.plot, y.m1, col = adjustcolor(ou_col, alpha.f=0.2), border = NA) } if(model=="OU_BM") { plot(res[,"Expectation"] ~ time, type="l", ann=FALSE, col=bm_col, lwd=exval_lwd, ylim=ylim, ...) lines(res[,"model2_Expectation"] ~ time, lty=1, col=ou_col, lwd=exval_lwd) polygon(time.plot, y.m2, col = adjustcolor(ou_col, alpha.f=0.2), border = NA) polygon(time.plot, y.m1, col = adjustcolor(bm_col, alpha.f=0.2), border = NA) } if(model=="DA_BM") { if(max(quantiles[[x]], na.rm=T) > max(quantiles2[[x]], na.rm=T)) { plot(res[,"Expectation"] ~ time, type="l", ann=FALSE, col=bm_col, lwd=exval_lwd, ylim=ylim, ...) lines(res[,"model2_Expectation"] ~ time, lty=1, col=da_col, lwd=exval_lwd) } else { plot(res[,"model2_Expectation"] ~ time, type="l", ann=FALSE, col=da_col, lwd=exval_lwd, ylim=ylim, ...) lines(res[,"Expectation"] ~ time, lty=1, col=bm_col, lwd=exval_lwd) } polygon(time.plot, y.m1, col = adjustcolor(bm_col, alpha.f=0.2), border = NA) polygon(time.plot, y.m2, col = adjustcolor(da_col, alpha.f=0.2), border = NA) } } else { if(is.null(ylim)) ylim=c(0, max(quantiles[[x]],na.rm=TRUE)*1.2) if(model=="BM_null") { plot(exdiv ~ time, type="l", ann=FALSE, col=bm_col, lwd=exval_lwd, ylim=ylim, ...) polygon(time.plot, y.m1, col = adjustcolor(bm_col, alpha.f=0.2), border = NA) } if(model=="OU_null") { plot(exdiv ~ time, type="l", ann=FALSE, col=ou_col, lwd=exval_lwd, ylim=ylim, ...) polygon(time.plot, y.m1, col = adjustcolor(ou_col, alpha.f=0.2), border = NA) } if(model=="DA_null") { plot(exdiv ~ time, type="l", ann=FALSE, col=da_col, lwd=exval_lwd, ylim=ylim, ...) polygon(time.plot, y.m1, col = adjustcolor(da_col, alpha.f=0.2), border = NA) } } } if (quantile == FALSE) { if(model %in% c("DA_OU", "OU_BM", "DA_BM")) { if(is.null(ylim)) ylim=c(0, max(c(exdiv,exdiv2),na.rm=TRUE)*1.2) } else { if(is.null(ylim)) ylim=c(0, max(exdiv,na.rm=TRUE)*1.2) } if(model=="DA_OU") { plot(exdiv2 ~ time, type="l", ann=FALSE, col=da_col, lwd=exval_lwd, ylim=ylim, ...) lines(exdiv ~ time, col=ou_col, lty=1, lwd=exval_lwd) } if(model=="OU_BM") { plot(exdiv ~ time, type="l", ann=FALSE, col=bm_col, lwd=exval_lwd, ylim=ylim, ...) lines(exdiv2 ~ time, col=ou_col, lty=1, lwd=exval_lwd) } if(model=="DA_BM") { if(max(exdiv,na.rm=TRUE) > max(exdiv2, na.rm=TRUE)) { plot(exdiv ~ time, type="l", ann=FALSE, col=bm_col, lwd=exval_lwd, ylim=ylim, ...) lines(exdiv2 ~ time, col=da_col, lty=1, lwd=exval_lwd) } else { plot(exdiv2 ~ time, type="l", ann=FALSE, col=da_col, lwd=exval_lwd, ylim=ylim, ...) lines(exdiv ~ time, col=bm_col, lty=1, lwd=exval_lwd) } } if(model=="DA_null") plot(exdiv ~ time, type="l", ann=FALSE, col=da_col, lwd=exval_lwd, ylim=ylim, ...) if(model=='OU_null') plot(exdiv ~ time, type="l", ann=FALSE, col=ou_col, lwd=exval_lwd, ylim=ylim, ...) if(model=="BM_null") plot(exdiv ~ time, type="l", ann=FALSE, col=bm_col, lwd=exval_lwd, ylim=ylim, ...) } if (labels == TRUE) { title(xlab = "Age of Lineage Pair") title(ylab = "Trait Divergence") } } return(res) }
speech = readLines("your/path/to/HOF/speeches/1939GeorgeHermanRuth.txt") library(tm) myCorpus = Corpus(VectorSource(speech)) myCorpus = tm_map(myCorpus, removePunctuation) dtm = DocumentTermMatrix(myCorpus) sum(dtm) speechLength = data.frame(speech=character(0), words=numeric(0)) speechFiles = list.files(path="your/path/to/HOF/speeches/") for(speechFile in speechFiles){ speech = readLines(paste("your/path/to/HOF/speeches/", speechFile, sep="")) myCorpus = Corpus(VectorSource(speech)) myCorpus = tm_map(myCorpus, removePunctuation) dtm = DocumentTermMatrix(myCorpus) speechLine = data.frame(speech = speechFile, words=sum(dtm)) speechLength = rbind(speechLength, speechLine) } speechLength$year = as.numeric(substr(speechLength$speech, 1, 4)) library(ggplot2) ggplot(data=speechLength, aes(x=year, y=words)) + geom_point() + geom_smooth() speech = readLines("your/path/to/HOF/speeches/1971LeroyRobertPaige.txt") myCorpus = Corpus(VectorSource(speech)) myCorpus = tm_map(myCorpus, tolower) myCorpus = tm_map(myCorpus, removePunctuation) myCorpus = tm_map(myCorpus, removeNumbers) myCorpus = tm_map(myCorpus, removeWords, stopwords("english")) library(wordcloud) set.seed(1234) wordcloud(myCorpus, min.freq = 3, rot.per=0, scale=c(3,.3))
pdf("fig1.pdf", width=7, height=7) ptplot(1:3 + 2:3 ~ strata(sex)/(age + trt) + ns(ht/wt, df=4) / common + shared) dev.off()
context("Lowpass Test") p <- maxample("pop") test_that("lowpass performs proper calculations", { dat20 <- new("magpie", .Data = structure(c(959.55885559599, 1482.98153190583, 1016.10215637913, 1498.22710355891, 1124.07386946257, 1526.47912463378, 1274.05397151945, 1564.06542027954, 1453.69856012463, 1607.07162185219, 1649.34145568655, 1652.33305222601, 1847.51308354974, 1697.82128947219, 2036.2117975872, 1742.39786194564, 2205.87893781679, 1785.24256306564, 2350.05785703802, 1825.37093631359, 2465.68152576388, 1861.51245252909, 2552.91053574485, 1892.35240763826, 2614.49349387643, 1916.92025740035, 2654.7374190261, 1934.85056911315, 2678.291126338, 1946.35308978183, 2688.9922783188, 1951.91585988556), .Dim = c(2L, 16L, 1L), .Dimnames = list(i = c("AFR", "CPA"), t = c("y1995", "y2005", "y2015", "y2025", "y2035", "y2045", "y2055", "y2065", "y2075", "y2085", "y2095", "y2105", "y2115", "y2125", "y2135", "y2145"), scenario = "A2"))) expect_equivalent(lowpass(p[1:2, , 1], i = 20), dat20) expect_identical(lowpass(p[1:2, 1:5, ]), lowpass(p[1:2, c(5, 3, 1, 2, 4), ])) expect_warning(lowpass(p, fix = "start"), "does modify the total sum") expect_error(lowpass(p, fix = "blablub"), "not available") expect_identical(lowpass(p, i = 0), p) expect_identical(lowpass(c(5, 3, 21, 8)), c(4.5, 8, 13.25, 11.25)) expect_identical(lowpass(c(5, 3, 21, 8), altFilter = 1:2), c(4.5, 9, 13.25, 11.25)) expect_identical(as.vector(lowpass(setYears(as.magpie(c(5, 3, 21, 8), temporal = 1), 1:4), altFilter = 1:2)), lowpass(c(5, 3, 21, 8), altFilter = 1:2)) })
slim.lq.ladm.scr.btr <- function(Y, X, q, lambda, nlambda, n, d, maxdf, rho, max.ite, prec, intercept, verbose) { if(verbose==TRUE) cat("LQ norm regrelarized regression (q =", q, ") with screening.\n") XY = crossprod(X,Y) beta = matrix(0,nrow=d,ncol=nlambda) ite.int = rep(0,nlambda) ite.int1 = rep(0,nlambda) ite.int2 = rep(0,nlambda) if(intercept) { intcep=1 }else{ intcep=0 } if(d>n){ if(n<=3){ num.scr1 = n num.scr2 = n }else{ num.scr1 = ceiling(n/log(n)) num.scr2 = n-1 } }else{ if(d<=3){ num.scr1 = d num.scr2 = d }else{ num.scr1 = ceiling(sqrt(d)) num.scr2 = ceiling(d/log(d)) } } order0 = order(XY,decreasing = TRUE) idx.scr = order0; num.scr = length(idx.scr) idx.scr1 = order0[1:num.scr1] idx.scr2 = order0[1:num.scr2] X1 = X[,idx.scr] XX = crossprod(X1) gamma = max(colSums(abs(XX))) str=.C("slim_lq_ladm_scr_btr", as.double(Y), as.double(X), as.double(XX), as.double(beta), as.integer(n), as.integer(d), as.double(rho), as.integer(ite.int), as.integer(ite.int1), as.integer(ite.int2), as.integer(num.scr1), as.integer(num.scr2), as.integer(idx.scr), as.integer(idx.scr1), as.integer(idx.scr2), as.double(gamma), as.double(lambda), as.integer(nlambda), as.integer(max.ite), as.double(prec), as.integer(intcep), as.double(q), PACKAGE="flare") beta.list = vector("list", nlambda) for(i in 1:nlambda){ beta.i = unlist(str[4])[((i-1)*d+1):(i*d)] beta.list[[i]] = beta.i } ite.int = unlist(str[8]) ite.int1 = unlist(str[9]) ite.int2 = unlist(str[10]) ite = list() ite[[1]] = ite.int1 ite[[2]] = ite.int2 ite[[3]] = ite.int return(list(beta=beta.list, ite=ite)) }
context('mirtTwo') test_that('poly', { modp1 <- mirt(Science, 1, verbose=FALSE) expect_is(modp1, 'SingleGroupClass') expect_equal(extract.mirt(modp1, 'df'), 239) cfs <- as.numeric(do.call(c, coef(modp1))) expect_equal(cfs, c(1.041, 4.864, 2.64, -1.466, 1.226, 2.924, 0.901, -2.266, 2.296, 5.238, 2.216, -1.965, 1.095, 3.348, 0.992, -1.688, 0, 1), tolerance = 1e-2) C2 <- M2(modp1, type = 'C2') expect_equal(C2$M2, 19.17929, tolerance=1e-4) expect_equal(C2$p, 6.84337e-05, tolerance=1e-4) modp2 <- mirt(Science, 1, 'sequential', verbose=FALSE) expect_is(modp2, 'SingleGroupClass') expect_equal(extract.mirt(modp2, 'df'), 239) cfs <- as.numeric(do.call(c, coef(modp2))) expect_equal(cfs, c(0.997414,4.831609,2.750703,-1.365844,1.067633,2.815793,1.104466,-1.87485,2.132679,5.021663,2.223683,-1.784284,0.9942698,3.287169,1.12849,-1.308458,0,1), tolerance = 1e-2) expect_equal(logLik(modp2), -1609.768, tolerance = 1e-4) modLouis <- mirt(Science, 1, SE=T, SE.type='Louis', verbose=FALSE) expect_is(modp1, 'SingleGroupClass') cfs <- as.numeric(do.call(c, coef(modLouis, printSE=TRUE))) expect_equal(cfs, c(1.04236, 0.18838, 4.86544, 0.49088, 2.64044, 0.22267, -1.46621, 0.15868, 1.22569, 0.18189, 2.924, 0.23928, 0.90115, 0.14289, -2.26661, 0.20308, 2.29058, 0.48269, 5.22988, 0.72817, 2.21201, 0.3564, -1.96222, 0.32209, 1.09557, 0.18336, 3.34845, 0.27659, 0.9919, 0.14053, -1.68846, 0.16864, 0, NA, 1, NA), tolerance = 1e-3) expect_equal(modLouis@OptimInfo$condnum, 98.26492, tolerance = 1e-2) modsandwich <- mirt(Science, 1, SE=T, SE.type='sandwich.Louis', verbose=FALSE) expect_is(modsandwich, 'SingleGroupClass') cfs <- as.numeric(do.call(c, coef(modsandwich, printSE=TRUE))) expect_equal(cfs, c(1.04236, 0.23843, 4.86544, 0.46794, 2.64044, 0.24659, -1.46621, 0.17162, 1.22569, 0.1922, 2.924, 0.24655, 0.90115, 0.14592, -2.26661, 0.19899, 2.29058, 0.52026, 5.22988, 0.80736, 2.21201, 0.373, -1.96222, 0.33683, 1.09557, 0.22701, 3.34845, 0.29203, 0.9919, 0.14491, -1.68846, 0.18015, 0, NA, 1, NA), tolerance = 1e-3) expect_equal(extract.mirt(modsandwich, 'condnum'), 141.5391, tolerance = 1e-2) modsandwich <- mirt(Science, 1, SE=T, SE.type='sandwich', verbose=FALSE) expect_is(modsandwich, 'SingleGroupClass') cfs <- as.numeric(do.call(c, coef(modsandwich, printSE=TRUE))) expect_equal(cfs, c(1.04236, 0.23843, 4.86544, 0.46794, 2.64044, 0.24659, -1.46621, 0.17162, 1.22569, 0.1922, 2.924, 0.24655, 0.90115, 0.14592, -2.26661, 0.19899, 2.29058, 0.52026, 5.22988, 0.80736, 2.21201, 0.373, -1.96222, 0.33683, 1.09557, 0.22701, 3.34845, 0.29203, 0.9919, 0.14491, -1.68846, 0.18015, 0, NA, 1, NA), tolerance = 1e-3) expect_equal(extract.mirt(modsandwich, 'condnum'), 141.5346, tolerance = 1e-2) modOakes <- mirt(Science, 1, SE=T, SE.type='Oakes', verbose=FALSE) expect_equal(modOakes@OptimInfo$condnum, 97.8644, tolerance = 1e-4) modp1 <- mirt(Science, 1, verbose=FALSE) expect_is(modp1, 'SingleGroupClass') expect_equal(extract.mirt(modp1, 'df'), 239) cfs <- as.numeric(do.call(c, coef(modp1))) expect_equal(cfs, c(1.041, 4.864, 2.64, -1.466, 1.226, 2.924, 0.901, -2.266, 2.296, 5.238, 2.216, -1.965, 1.095, 3.348, 0.992, -1.688, 0, 1), tolerance = 1e-2) vals <- mirt(Science, 1, large = 'return', verbose=FALSE) modp1 <- mirt(Science, 1, large = vals, verbose=FALSE) expect_is(modp1, 'SingleGroupClass') cfs <- as.numeric(do.call(c, coef(modp1))) expect_equal(cfs, c(1.041, 4.864, 2.64, -1.466, 1.226, 2.924, 0.901, -2.266, 2.296, 5.238, 2.216, -1.965, 1.095, 3.348, 0.992, -1.688, 0, 1), tolerance = 1e-2) modp1 <- mirt(Science, 1, SE=TRUE, SE.type = 'SEM', verbose=FALSE) expect_is(modp1, 'SingleGroupClass') expect_equal(extract.mirt(modp1, 'condnum'), 108.8042, tolerance = 1e-2) cfs <- as.numeric(do.call(c, coef(modp1))) expect_equal(cfs, c(1.041, 0.656, 1.425, 4.863, 3.849, 5.876, 2.639, 2.196, 3.083, -1.466, -1.782, -1.149, 1.226, 0.887, 1.565, 2.924, 2.45, 3.398, 0.901, 0.614, 1.188, -2.266, -2.639, -1.894, 2.3, 1.325, 3.275, 5.244, 3.804, 6.685, 2.218, 1.488, 2.949, -1.967, -2.605, -1.329, 1.094, 0.727, 1.461, 3.347, 2.801, 3.893, 0.991, 0.717, 1.266, -1.688, -2.018, -1.357, 0, NA, NA, 1, NA, NA), tolerance = 1e-2) modp2 <- mirt(Science, 2, verbose=FALSE) expect_is(modp2, 'SingleGroupClass') expect_equal(modp2@Fit$df, 236) cfs <- as.numeric(do.call(c, coef(modp2, verbose=FALSE))) expect_equal(abs(cfs), abs(c(-1.3278,0.1081,5.1934,2.8583,-1.5996,-0.8762,1.8783,3.7248,1.1598,-2.9225,-1.4614,1.1639,4.6495,1.951,-1.7322,-1.7397,0,4.0053,1.2008,-2.0548,0,0,1,0,1)), tolerance = 1e-2) modp3 <- mirt(Science, 1, constrain = list(c(1,5)), parprior = list(c(4,'norm',0,1)), verbose=FALSE) expect_is(modp3, 'SingleGroupClass') cfs <- as.numeric(do.call(c, coef(modp3, verbose = FALSE))) expect_true(mirt:::closeEnough(cfs - c(1.134,4.964,2.711,-1.473,1.134,2.865,0.882,-2.205,2.211,5.136,2.171,-1.91,1.129,3.383,1.006,-1.7,0,1), -1e-2, 1e-2)) newmodel <- mirt.model('F = 1-4 CONSTRAIN = (1-2,a1) PRIOR = (1, d1, norm, 4, 1)') modp3 <- mirt(Science, newmodel, verbose=FALSE) expect_is(modp3, 'SingleGroupClass') cfs <- as.numeric(do.call(c, coef(modp3, verbose = FALSE))) expect_true(mirt:::closeEnough(cfs - c(1.132,4.795,2.677,-1.507,1.132,2.856,0.874,-2.211,2.216,5.127,2.16,-1.927,1.128,3.374,0.999,-1.707,0,1), -1e-2, 1e-2)) modOakes <- mirt(Science, newmodel, SE=T, SE.type='Oakes', verbose=FALSE) expect_equal(modOakes@OptimInfo$condnum, 106.0775, tolerance = 1e-4) modp4 <- mirt(Science, 1, itemtype = c(rep('graded',3), 'nominal'), verbose=FALSE) expect_is(modp4, 'SingleGroupClass') cfs <- as.numeric(do.call(c, coef(modp4, verbose = FALSE))) expect_equal(cfs, c(1.0408, 4.862, 2.6387, -1.4664, 1.2063, 2.9083, 0.8958, -2.254, 2.3376, 5.2972, 2.2404, -1.9886, 0.7986, 0, 1.0782, 1.7756, 3, 0, 2.1964, 2.9637, 1.6742, 0, 1), tolerance = 1e-2) modp5 <- mirt(Science, 1, itemtype = c(rep('graded',3), 'gpcm'), SE = TRUE, SE.type = 'SEM', verbose=FALSE) expect_is(modp5, 'SingleGroupClass') cfs <- as.numeric(do.call(c, coef(modp5, verbose = FALSE))) expect_equal(cfs, c(1.057,0.659,1.454,4.876,3.908,5.844,2.65,2.206,3.093,-1.472,-1.799,-1.146,1.219,0.865,1.573,2.918,2.444,3.391,0.9,0.615,1.185,-2.263,-2.662,-1.864,2.254,1.244,3.265,5.177,3.606,6.747,2.19,1.395,2.985,-1.942,-2.587,-1.298,0.771,0.441,1.1,0,NA,NA,1,NA,NA,2,NA,NA,3,NA,NA,0,NA,NA,2.16,1.537,2.782,2.973,2.276,3.671,1.767,1.128,2.407,0,NA,NA,1,NA,NA), tolerance = 1e-2) modp6 <- mirt(Science, 1, dentype="empiricalhist", verbose = FALSE, TOL=1e-3) expect_is(modp6, 'SingleGroupClass') cfs <- as.numeric(do.call(c, coef(modp6, verbose = FALSE))) expect_equal(cfs, c(0.856,5.072,2.639,-1.35,1.095,2.951,0.968,-2.181,2.601,5.541,2.634,-1.752,0.988,3.443,1.058,-1.595,0,1), tolerance = 1e-2) fm0 <- fscores(modp1, method='EAP', response.pattern = c(1,2,3,4), full.scores=FALSE) expect_equal(as.numeric(fm0[,c('F1','SE_F1')]), c(-0.3494903, 0.6004922), tolerance=1e-4) fm1 <- fscores(modp1, verbose = FALSE, full.scores=FALSE) expect_is(fm1, 'matrix') expect_true(mirt:::closeEnough(fm1[1:6,'F1'] - c(-2.7488324, -1.4190140, -0.7154329, -0.4453752, -2.5438490, -1.2481072), -1e-2, 1e-2)) fm1b <- fscores(modp1, verbose = FALSE, full.scores=TRUE) expect_equal(cor(fm1b, rowSums(Science))[1], .969, tolerance = .02) fm2 <- fscores(modp2, rotate = 'oblimin', verbose = FALSE, full.scores=FALSE) expect_is(fm2, 'matrix') expect_true(mirt:::closeEnough(abs(as.numeric(fm2[1:6,c('F1','F2')])) - c(2.5966,1.8668,0.6578,1.1597,2.4204,0.7001,2.412,0.8689,0.0258,0.2609,2.3376,1.4844), -1e-2, 1e-2)) fm3 <- fscores(modp3, rotate = 'oblimin', full.scores = TRUE, verbose = FALSE) expect_is(fm3, 'matrix') fm4 <- fscores(modp4, verbose = FALSE, full.scores=FALSE) expect_is(fm4, 'matrix') expect_true(mirt:::closeEnough(fm4[1:6,'F1'] - c(-2.7320802, -1.4459303, -0.7910009, -0.5438761, -2.5310045, -1.1434060), -1e-2, 1e-2)) fm5 <- fscores(modp5, verbose = FALSE, full.scores=FALSE) expect_is(fm5, 'matrix') expect_true(mirt:::closeEnough(fm5[1:6,'F1'] - c(-2.7249561, -1.4446593, -0.7364399, -0.5627047, -2.5174376, -1.1732461), -1e-2, 1e-2)) resmat <- residuals(modp3, type = 'Q3', Theta = fm3[,'F'], verbose = FALSE) expect_equal(as.numeric(resmat), c(1,-0.209,-0.283,0.057,-0.209,1,-0.149,-0.235,-0.283,-0.149,1,-0.33,0.057,-0.235,-0.33,1), tolerance=1e-2) resmatLD <- residuals(modp3, type = 'LD', verbose = FALSE) expect_equal(as.numeric(resmatLD), c(NA,23.88453,12.78836,22.16431,-0.1425131,NA,10.44856,22.30602,-0.1042807,0.09425936,NA,17.52566,0.1372851,-0.1377233,-0.1220769,NA), tolerance=1e-2) resmatG2 <- residuals(modp3, type = 'LDG2', verbose = FALSE) expect_equal(as.numeric(resmatG2), c(NA,21.11214,10.52294,19.91545,-0.1339869,NA,10.25686,17.55354,-0.09459427,0.0933907,NA,18.39732,0.1301342,-0.122174,-0.1250759,NA), tolerance=1e-2) cof1 <- coef(modp1) expect_is(cof1, 'list') cof2 <- coef(modp2, verbose = FALSE) expect_is(cof2, 'list') IP1 <- itemplot(modp1, 1) IP2 <- itemplot(modp2, 1) expect_is(IP1, 'trellis') expect_is(IP2, 'trellis') fit <- suppressMessages(itemfit(modp2, c('S_X2', 'Zh'))) expect_equal(fit$Zh, c(1.413226, 2.455924, 4.125340, 3.887814), tolerance=1e-4) expect_equal(fit$S_X2, c(3.941804,10.58528,6.913239,10.11068), tolerance=1e-4) fs <- fscores(modp1, method = 'WLE', verbose=FALSE, full.scores=FALSE) expect_equal(as.numeric(fs[1:3, 5:6]), c(-5.7024116, -2.1162737, -1.1386969, 1.5797286, 0.6321478, 0.6544024), tolerance = 1e-4) if(FALSE){ rm(list=ls()) set.seed(1234) a <- matrix(rep(1, 10)) d <- matrix(c(1,0.5,-.5,-1), 10, 4, byrow = TRUE) cc <- seq(-1, 1, length.out=10) data <- simdata(a, d + cc, 2000, itemtype = rep('graded',10)) sv <- mirt(data, 1, itemtype = 'grsm', pars = 'values', verbose=FALSE) sv[,'value'] <- c(as.vector(t(cbind(a,d,cc))),0,1) save(data, sv, file = 'tests/tests/testdata/rst.rds') } load('testdata/rst.rds') grsm <- mirt(data, 1, itemtype = 'grsm', pars = sv, calcNull= FALSE, verbose=FALSE, TOL=1e-5) rsm <- mirt(data, 1, itemtype = 'rsm', calcNull= FALSE, verbose=FALSE, TOL = 1e-3) expect_is(grsm, 'SingleGroupClass') expect_is(rsm, 'SingleGroupClass') cfs <- as.numeric(do.call(c, coef(grsm, verbose = FALSE))) expect_equal(cfs, c(0.958,1,0.491,-0.543,-1.034,-1,0.986,1,0.491,-0.543,-1.034,-0.765,0.993,1,0.491,-0.543,-1.034,-0.543,1.026,1,0.491,-0.543,-1.034,-0.272,0.994,1,0.491,-0.543,-1.034,-0.104,0.986,1,0.491,-0.543,-1.034,0.18,0.956,1,0.491,-0.543,-1.034,0.405,1.039,1,0.491,-0.543,-1.034,0.579,0.963,1,0.491,-0.543,-1.034,0.879,0.946,1,0.491,-0.543,-1.034,1.137,0,1), tolerance = 1e-2) cfs <- as.numeric(do.call(c, coef(rsm, verbose = FALSE))) expect_equal(cfs, c(1,1.3931,-0.479,1.2474,-0.7059,0,1,1.3931,-0.479,1.2474,-0.7059,0.0779,1,1.3931,-0.479,1.2474,-0.7059,0.164,1,1.3931,-0.479,1.2474,-0.7059,0.2547,1,1.3931,-0.479,1.2474,-0.7059,0.321,1,1.3931,-0.479,1.2474,-0.7059,0.4254,1,1.3931,-0.479,1.2474,-0.7059,0.504,1,1.3931,-0.479,1.2474,-0.7059,0.5722,1,1.3931,-0.479,1.2474,-0.7059,0.6694,1,1.3931,-0.479,1.2474,-0.7059,0.7629,0,0.134), tolerance = 1e-2) expect_equal(extract.mirt(rsm, 'df'), 9765610) expect_equal(extract.mirt(grsm, 'df'), 9765601) graded <- mirt(data, 1, verbose = FALSE) gM2 <- M2(graded, calcNull=TRUE) expect_equal(gM2$M2, 16.68317, tolerance = 1e-4) expect_equal(gM2$df, 5) expect_equal(gM2$CFI, .9723554, tolerance = 1e-4) expect_equal(gM2$SRMSR, 0.01984457, tolerance = 1e-4) Theta <- matrix(seq(-4,4,.01)) x <- extract.item(modp1, 1) iinfo <- iteminfo(x, Theta) expect_is(iinfo, 'numeric') iinfo <- iteminfo(x, Theta, total.info=FALSE) expect_is(iinfo, 'matrix') tinfo <- testinfo(modp1, Theta) expect_is(tinfo, 'numeric') ER <- fscores(modp2, returnER = TRUE) expect_equal(as.numeric(ER), c(0.4882546, 0.5099054), tolerance=1e-4) suppressWarnings(ER2 <- fscores(modp2, returnER = TRUE, mean = c(-1, 1), cov = matrix(c(1.5,1,1,2), 2))) expect_equal(as.numeric(ER2), c(0.3905138, 0.4797115), tolerance=1e-4) })
print.ufRisk <- function(x, ...) { if (attr(x, "function") == "trafftest") { cat(" ", fill = TRUE) cat(" cat(" cat(" cat(" ", fill = TRUE) cat(" df <- data.frame(Zone = c("Green zone:", "Yellow zone:", "Red zone:"), Probability = c("p < 95%", "95% <= p < 99.99%", "p >= 99.99%")) print.data.frame(df, row.names = FALSE, quote = FALSE, right = FALSE) cat(" ", fill = TRUE) pot.vals = c(x[["pot_VaR.v"]], x[["pot_VaR.e"]], round(x[["br.sum"]], 4)) p.vals <- c(x[["p_VaR.v"]], x[["p_VaR.e"]], x[["p_ES"]]) WAD <- round(x[["WAD"]], 4) result <- rep(NA, times = 3) result[p.vals < 0.95] <- "Green zone" result[p.vals >= 0.95 & p.vals < 0.9999] <- "Yellow zone" result[p.vals >= 0.9999] <- "Red zone" p.vals <- round(p.vals, 4) cat(paste0(" cat(" Number of violations:", pot.vals[1], fill = TRUE) cat(" p = ", p.vals[[1]], ": ", result[[1]], fill = TRUE, sep = "") cat(" ", fill = TRUE) cat(paste0(" cat(" Number of violations:", pot.vals[2], fill = TRUE) cat(" p = ", p.vals[[2]], ": ", result[[2]], fill = TRUE, sep = "") cat(" ", fill = TRUE) cat(paste0(" cat(" Number of weighted violations:", pot.vals[3], fill = TRUE) cat(" p = ", p.vals[[3]], ": ", result[[3]], fill = TRUE, sep = "") cat(" ", fill = TRUE) cat(" cat(" WAD = ", WAD, fill = TRUE, sep = "") } if (attr(x, "function") == "covtest") { cat(" ", fill = TRUE) cat(" cat(" cat(" cat(" ", fill = TRUE) cat(" cat(" ", fill = TRUE) cat("H0: w = ", x$p, sep = "", fill = TRUE) cat("p_[uc] = ", round(x$p.uc, 4), sep = "", fill = TRUE) cat(" ", fill = TRUE) cat(" cat(" ", fill = TRUE) cat("H0: w_[00] = w[10]", sep = "", fill = TRUE) cat("p_[ind] = ", round(x$p.ind, 4), sep = "", fill = TRUE) cat(" ", fill = TRUE) cat(" cat(" ", fill = TRUE) cat("H0: w_[00] = w_[10] = ", x$p, sep = "", fill = TRUE) cat("p_[cc] = ", round(x$p.cc, 4), sep = "", fill = TRUE) } }
are_equal_mcmcs <- function( mcmc_1, mcmc_2 ) { beautier::check_mcmc(mcmc_1) beautier::check_mcmc(mcmc_2) mcmc_1$chain_length == mcmc_2$chain_length && mcmc_1$store_every == mcmc_2$store_every && mcmc_1$pre_burnin == mcmc_2$pre_burnin && mcmc_1$n_init_attempts == mcmc_2$n_init_attempts && mcmc_1$sample_from_prior == mcmc_2$sample_from_prior && beautier::are_equal_tracelogs(mcmc_1$tracelog, mcmc_2$tracelog) && beautier::are_equal_screenlogs(mcmc_1$screenlog, mcmc_2$screenlog) && beautier::are_equal_treelogs(mcmc_1$treelog, mcmc_2$treelog) }
library(network) set.seed(1702) data("flo") data("emon") net <- network.initialize(5) net nmat <- matrix(rbinom(25, 1, 0.5), nr = 5, nc = 5) net <- network(nmat, loops = TRUE) net summary(net) all(nmat == net[,]) net <- as.network(nmat, loops = TRUE) all(nmat == net[,]) nflo <- network(flo, directed = FALSE) nflo nflo[9,] nflo[9,1] nflo[9,4] is.adjacent(nflo, 9, 1) is.adjacent(nflo, 9, 4) network.size(nflo) network.edgecount(nflo) network.density(nflo) has.loops(nflo) is.bipartite(nflo) is.directed(nflo) is.hyper(nflo) is.multiplex(nflo) as.sociomatrix(nflo) all(nflo[,]==as.sociomatrix(nflo)) all(as.matrix(nflo)==as.sociomatrix(nflo)) as.matrix(nflo,matrix.type="edgelist") net <- network.initialize(5,loops=TRUE) net[nmat>0] <- 1 all(nmat==net[,]) net[,] <- 0 net[,] <- nmat all(nmat==net[,]) net[,] <- 0 for(i in 1:5) for(j in 1:5) if(nmat[i,j]) net[i,j] <- 1 all(nmat==net[,]) net[,] <- 0 add.edges(net,row(nmat)[nmat>0],col(nmat)[nmat>0]) all(nmat==net[,]) net[,] <- as.numeric(nmat[,]) all(nmat==net[,]) net<-network.initialize(5) add.edge(net,2,3) net[,] add.edges(net,c(3,5),c(4,4)) net[,] net[,2]<-1 net[,] delete.vertices(net,4) net[,] add.vertices(net,2) net[,] get.edges(net,1) get.edges(net,2,neighborhood="in") get.edges(net,1,alter=2) get.edgeIDs(net,1) get.edgeIDs(net,2,neighborhood="in") get.edgeIDs(net,1,alter=2) get.neighborhood(net,1) get.neighborhood(net,2,type="in") net[2,3]<-0 net[2,3]==0 delete.edges(net,get.edgeIDs(net,2,neighborhood="in")) net[,] net <- network.initialize(5) set.network.attribute(net, "boo", 1:10) net %n% "hoo" <- letters[1:7] list.network.attributes(net) get.network.attribute(net,"boo") net %n% "hoo" delete.network.attribute(net,"boo") list.network.attributes(net) set.vertex.attribute(net,"boo",1:5) net %v% "hoo" <- letters[1:5] list.vertex.attributes(net) get.vertex.attribute(net,"boo") net %v% "hoo" delete.vertex.attribute(net,"boo") list.vertex.attributes(net) net <- network(nmat) set.edge.attribute(net,"boo",sum(nmat):1) set.edge.value(net,"hoo",matrix(1:25,5,5)) net %e% "woo" <- matrix(rnorm(25),5,5) net[,,names.eval="zoo"] <- nmat*6 list.edge.attributes(net) get.edge.attribute(get.edges(net,1),"boo") get.edge.value(net,"hoo") net %e% "woo" as.sociomatrix(net,"zoo") delete.edge.attribute(net,"boo") list.edge.attributes(net) MtSHloc<-emon$MtStHelens%v%"Location" MtSHimat<-cbind(MtSHloc%in%c("L","B"),MtSHloc%in%c("NL","B")) MtSHbyloc<-network(MtSHimat,matrix="incidence",hyper=TRUE,directed=FALSE, loops=TRUE) MtSHbyloc%v%"vertex.names"<-emon$MtStHelens%v%"vertex.names" MtSHbyloc plot(nflo, displaylabels = TRUE, boxed.labels = FALSE) plot(nflo, displaylabels = TRUE, mode = "circle") op<-par(no.readonly=TRUE) par(mfcol=c(1,2),mar=c(1,1,1,1),cex=0.5) plot(nflo, displaylabels = TRUE,boxed.labels = TRUE) plot(nflo, displaylabels = TRUE, mode = "circle") par(op) plot(emon$MtSi) plot(emon$MtSi) library(sna) network.layout.degree <- function(d, layout.par){ id <- degree(d, cmode = "indegree") od <- degree(d, cmode = "outdegree") cbind(id, od) } plot(emon$MtStHelens, mode = "degree", displaylabels = TRUE, boxed.labels = FALSE, suppress.axes = FALSE, label.cex = 0.5, xlab = "Indegree", ylab = "Outdegree", label.col = 3) plot(emon$MtStHelens, mode = "degree", displaylabels = TRUE, boxed.labels = FALSE, suppress.axes = FALSE, label.cex = 0.5, xlab = "Indegree", ylab = "Outdegree", label.col = 3) plot(MtSHbyloc, displaylabels = TRUE, label = c(network.vertex.names(MtSHbyloc), "Local", "Non-Local"), boxed.labels = FALSE, label.cex = rep(c(0.5, 1), times = c(27, 2)), label.col = rep(c(3, 4), times = c(27, 2)), vertex.col = rep(c(2, 5), times = c(27, 2))) plot(MtSHbyloc, displaylabels = TRUE, label = c(network.vertex.names(MtSHbyloc), "Local", "Non-Local"), boxed.labels = FALSE, label.cex = rep(c(0.5, 1), times = c(27, 2)), label.col = rep(c(3, 4), times = c(27, 2)), vertex.col = rep(c(2, 5), times = c(27, 2))) rnbernexp <- function(n, nv, p = 0.5, onset.hazard = 1, termination.hazard = 1){ nets <- list() for(i in 1:n) nets[[i]] <- .Call("rnbernexp_R", network.initialize(nv, directed = FALSE), p, onset.hazard, termination.hazard, PACKAGE = "networkapi.example") if(i > 1) nets else nets[[1]] }
reviewr_datatable <- function(.data, dom = 'ftip', column_filter = 'top', search_term = '') { DT::datatable(data = .data, extensions = list('Scroller' = NULL), options = list(dom = dom, scrollX = TRUE, deferRender = TRUE, scrollY = '600px', scroller = TRUE, searchHighlight = TRUE, search = list(regex = TRUE, caseInsensitive = TRUE, search = search_term) ), rownames = F, selection = 'single', escape = F, filter = column_filter, class = 'cell-border strip hover' ) } NULL navigation_message <- function(id) { ns <- NS(id) tagList( uiOutput(ns('nav_message')) ) } all_patient_search_dt <- function(id) { ns <- NS(id) tagList( DT::dataTableOutput(ns('all_patient_search_dt')) %>% withSpinner() , uiOutput(ns('data_model_message')) ) } chart_review_subject_info <- function(id) { ns <- NS(id) tagList( uiOutput(ns('subject_info')) %>% withSpinner(type = 7, proxy.height = 100, size = .5) ) } chart_review_navigation <- function(id) { ns <- NS(id) arrowed <- paste0( "$(document).on('keydown', function(event){", " var key = event.which;", " if(event.metaKey && event.altKey && key === 188){", " Shiny.setInputValue('",id,"-arrowLeft', true, {priority: 'event'});", " } else if(event.metaKey && event.altKey && key === 190){", " Shiny.setInputValue('",id,"-arrowRight', true, {priority: 'event'});", " }", "});" ) tagList( tags$head(tags$script(HTML(arrowed))), div(id = ns('jump_no_abstraction_div'), selectizeInput(inputId = ns('subject_id'), width = '100%', label = 'Jump to Subject ID:', choices = NULL, selected = NULL, options = list(create = FALSE, placeholder = '<empty>' ) ) ), shinyjs::hidden( div(id = ns('jump_abstraction_div'), pickerInput(inputId = ns('subject_id_2'), label = 'Jump to Subject ID:', choices = NULL, selected = NULL, choicesOpt = list(content = NULL), options = pickerOptions(title = '<empty>', virtualScroll = TRUE ) ) ) ), fluidRow( actionButton(inputId = ns('prev_subject'), label = '<-- Previous', width = '120px'), actionButton(inputId = ns('next_subject'), label = 'Next -->', width = '120px'), style = 'display:flex;justify-content:center;flex-wrap:wrap;' ) ) } navigation_server <- function(id, database_vars, data_model_vars, abstract_vars, parent_session) { moduleServer( id, function(input, output, session) { ns <- session$ns navigation_vars <- reactiveValues( dt_proxy = NULL, all_patients = NULL, all_patients_max_rows = NULL, row_ids = NULL, subject_ids = NULL, selected_row = 0, message = HTML('Please complete Setup to connect to a patient database.') ) output$nav_message <- renderUI({ navigation_vars$message }) subject_vars <- reactiveValues( selected_subject_id = NULL, selected_subject_status = NULL ) observeEvent(data_model_vars$table_functions, ignoreNULL = F, ignoreInit = T, { if(is.null(data_model_vars$table_functions) == TRUE) { message('Resetting patient navigation.') navigation_vars$dt_proxy <- NULL navigation_vars$all_patients <- NULL navigation_vars$all_patients_max_rows = NULL navigation_vars$row_ids = NULL navigation_vars$subject_ids = NULL navigation_vars$selected_row = 0 navigation_vars$message = HTML('Please complete Setup to connect to a patient database.') updateSelectizeInput(session = session, inputId = 'subject_id', choices = navigation_vars$subject_ids, server = T ) updatePickerInput(session = session, inputId = 'subject_id_2', choices = navigation_vars$subject_ids ) subject_vars$selected_subject_info <- NULL subject_vars$selected_subject_id = NULL } else { message('Retrieving "all patients" table...') navigation_vars$dt_proxy <- DT::dataTableProxy(outputId = ns('all_patient_search_dt'), session = parent_session) all_patients_args <- list(table_map = data_model_vars$table_map, db_connection = database_vars()$db_con ) navigation_vars$all_patients <- rlang::exec(data_model_vars$all_patients_table %>% pull('function_name'), !!!all_patients_args ) navigation_vars$all_patients_max_rows <- nrow(navigation_vars$all_patients) navigation_vars$row_ids <- navigation_vars$all_patients %>% mutate(row_id = row_number()) %>% pull(.data$row_id) navigation_vars$subject_ids <- setNames(navigation_vars$row_ids, navigation_vars$all_patients$ID) updateSelectizeInput(session = session, inputId = 'subject_id', choices = navigation_vars$subject_ids, server = T ) navigation_vars$message <- HTML('To select a patient, please click the desired Subject ID from the table below:') message('Complete') } }) output$all_patient_search_dt <- DT::renderDataTable({ if(is.null(navigation_vars$all_patients)) { dplyr::tibble(.rows = 0) %>% reviewr_datatable() } else if (abstract_vars()$is_configured == 'yes') { navigation_vars$all_patients %>% left_join(abstract_vars()$all_review_status) %>% dplyr::mutate_at(vars(dplyr::last_col(1), dplyr::last_col()), tidyr::replace_na, '<em>Review Not Started</em>') %>% rename('Subject ID' = .data$ID) %>% reviewr_datatable() %>% formatStyle('Subject ID', color = ' cursor = 'pointer', textAlign = 'left' ) } else { navigation_vars$all_patients %>% rename('Subject ID' = .data$ID) %>% reviewr_datatable() %>% formatStyle('Subject ID', color = ' cursor = 'pointer', textAlign = 'left' ) } }) observeEvent(input$all_patient_search_dt_rows_all, { req(input$all_patient_search_dt_rows_all) if(navigation_vars$selected_row == 0){ navigation_vars$selected_row <- 1 } DT::selectRows(navigation_vars$dt_proxy, navigation_vars$selected_row) }) output$data_model_message <- renderText({ req(database_vars()$is_connected == 'yes') data_model_vars$message }) observeEvent(abstract_vars()$previous_selected_instrument_complete_val, ignoreInit = T, { if (abstract_vars()$previous_selected_instrument_complete_val %>% rlang::is_empty() == T ) { subject_vars$selected_subject_status <- NULL } else { subject_vars$selected_subject_status <- if(abstract_vars()$previous_selected_instrument_complete_val == 0) { img(src = 'www/status_incomplete.png', style='width: 20px') } else if(abstract_vars()$previous_selected_instrument_complete_val == 1) { img(src = 'www/status_unverified.png', style='width: 20px') } else if(abstract_vars()$previous_selected_instrument_complete_val == 2) { img(src = 'www/status_complete.png', style='width: 20px') } else {return(NULL)} } }) output$subject_info <- renderUI({ if(is.null(subject_vars$selected_subject_info)) { tagList( HTML('Please complete Setup to connect to a patient database.') ) } else if (abstract_vars()$is_configured == 'yes') { tagList( div(h3(glue::glue('Subject ID: {subject_vars$selected_subject_id}'), style='padding:0px;' ), style='display:inline-block;vertical-align:middle' ), div(subject_vars$selected_subject_status, style='display:inline-block;vertical-align:middle' ), div(renderTable(subject_vars$selected_subject_info %>% left_join(abstract_vars()$all_review_status) %>% select(-dplyr::last_col() ) %>% dplyr::mutate_at(vars(dplyr::last_col()), tidyr::replace_na, '<em>Review Not Started</em>') %>% mutate_all(as.character) %>% select(-.data$ID), width = '100%', align = 'l', digits = 0, sanitize.text.function=identity ), style='height:115px; overflow-y: scroll; scrollbar-width: thin;' ) ) } else { tagList( div(h3(glue::glue('Subject ID: {subject_vars$selected_subject_id}'), style='padding:0px;' ), style='display:inline-block;vertical-align:middle' ), renderTable(subject_vars$selected_subject_info %>% mutate_all(as.character) %>% select(-.data$ID), width = '100%', align = 'l', digits = 0 ) ) } }) observeEvent(input$all_patient_search_dt_rows_selected, { req(input$all_patient_search_dt_rows_selected != navigation_vars$selected_row) navigation_vars$selected_row <- input$all_patient_search_dt_rows_selected }) observeEvent(input$all_patient_search_dt_cell_clicked, { req(input$all_patient_search_dt_cell_clicked$value, input$all_patient_search_dt_cell_clicked$col == 0) updateTabItems(parent_session, 'main_tabs', selected = 'chart_review') }) observeEvent(navigation_vars$selected_row, { req(navigation_vars$all_patients) updateSelectizeInput(session = session, inputId = 'subject_id', choices = navigation_vars$subject_ids, selected = navigation_vars$selected_row, server = T) if(abstract_vars()$is_configured == 'yes'){ updatePickerInput(session = session, inputId = 'subject_id_2', choices = navigation_vars$subject_ids, selected = navigation_vars$selected_row, choicesOpt = list(content = navigation_vars$individual_review_status %>% unite(col = 'picker_html', sep = '<br>') %>% pull(.data$picker_html) ) ) } subject_vars$selected_subject_info <- navigation_vars$all_patients %>% slice(navigation_vars$selected_row) subject_vars$selected_subject_id <- subject_vars$selected_subject_info %>% pull(.data$ID) DT::selectRows(navigation_vars$dt_proxy, navigation_vars$selected_row) Sys.sleep(2) shinyjs::enable('prev_subject') shinyjs::enable('next_subject') shinyjs::enable('subject_id') shinyjs::enable('subject_id_2') shinyjs::enable('all_patient_search_dt_rows_selected') }) observeEvent(input$prev_subject, { shinyjs::disable('prev_subject') shinyjs::disable('next_subject') shinyjs::disable('subject_id') shinyjs::disable('all_patient_search_dt_rows_selected') temp <- navigation_vars$selected_row - 1 if(temp < 1) { navigation_vars$selected_row <- navigation_vars$all_patients_max_rows } else { navigation_vars$selected_row <- temp } }) observeEvent(input$arrowLeft, { req(navigation_vars$all_patients) shinyjs::disable('prev_subject') shinyjs::disable('next_subject') shinyjs::disable('subject_id') shinyjs::disable('all_patient_search_dt_rows_selected') temp <- navigation_vars$selected_row - 1 if(temp < 1) { navigation_vars$selected_row <- navigation_vars$all_patients_max_rows } else { navigation_vars$selected_row <- temp } }) observeEvent(input$next_subject, { shinyjs::disable('prev_subject') shinyjs::disable('next_subject') shinyjs::disable('subject_id') shinyjs::disable('all_patient_search_dt_rows_selected') temp <- navigation_vars$selected_row + 1 if(temp > navigation_vars$all_patients_max_rows) { navigation_vars$selected_row <- 1 } else { navigation_vars$selected_row <- temp } }) observeEvent(input$arrowRight, { req(navigation_vars$all_patients) shinyjs::disable('prev_subject') shinyjs::disable('next_subject') shinyjs::disable('subject_id') shinyjs::disable('all_patient_search_dt_rows_selected') temp <- navigation_vars$selected_row + 1 if(temp > navigation_vars$all_patients_max_rows) { navigation_vars$selected_row <- 1 } else { navigation_vars$selected_row <- temp } }) observeEvent(input$subject_id, ignoreInit = T, { req(input$subject_id != '') if(as.integer(input$subject_id) != navigation_vars$selected_row) { shinyjs::disable('prev_subject') shinyjs::disable('next_subject') shinyjs::disable('subject_id') shinyjs::disable('all_patient_search_dt_rows_selected') navigation_vars$selected_row <- as.integer(input$subject_id) } }) observeEvent(input$subject_id_2, ignoreInit = T, { req(input$subject_id_2 != '') if(as.integer(input$subject_id_2) != navigation_vars$selected_row) { shinyjs::disable('prev_subject') shinyjs::disable('next_subject') shinyjs::disable('subject_id_2') shinyjs::disable('all_patient_search_dt_rows_selected') navigation_vars$selected_row <- as.integer(input$subject_id_2) } }) observeEvent(abstract_vars()$is_configured, { if(abstract_vars()$is_configured == 'yes') { shinyjs::hide(id = 'jump_no_abstraction_div') shinyjs::show(id = 'jump_abstraction_div') } else if (abstract_vars()$is_configured == 'no') { shinyjs::hide(id = 'jump_abstraction_div') shinyjs::show(id = 'jump_no_abstraction_div') } }) observeEvent(c(navigation_vars$all_patients, abstract_vars()$all_review_status), { req(navigation_vars$all_patients, abstract_vars()$all_review_status) navigation_vars$individual_review_status <- navigation_vars$all_patients %>% left_join(abstract_vars()$all_review_status) %>% select(c(.data$ID, 'Review Status' = dplyr::last_col())) %>% dplyr::mutate_at(vars(dplyr::last_col()), tidyr::replace_na, '<em>Review Not Started</em>') updatePickerInput(session = session, inputId = 'subject_id_2', choices = navigation_vars$subject_ids, selected = navigation_vars$selected_row, choicesOpt = list(content = navigation_vars$individual_review_status %>% unite(col = 'picker_html', sep = '<br>') %>% pull(.data$picker_html) ) ) }) return(subject_vars) } ) }
dropSubsets.unordered <- function(subcascades=NULL, sets = NULL, neighborhood = 'direct', type = 'any') { if(is.null(subcascades)) return(NULL) if(!inherits(subcascades, 'Subcascades')) stop(errorStrings('subcascades')) if(is.null(sets)) return(subcascades) if(is.numeric(sets) & is.vector(sets)) sets <- list(sets) if(!is.list(sets)) { stop(errorStrings('sets.classes')) }else{ if(!all(sapply(sets, function(x){is.numeric(x)&is.vector(x)}))) stop(errorStrings('sets.classes')) } if(!(neighborhood %in% c('direct','indirect'))) stop(errorStrings('neighborhood')) if(!(type %in% c('all','any'))) stop(errorStrings('type')) subcascades <- subcascades[sapply(subcascades, function(x){!is.null(x)})] if(length(subcascades)==0) return(NULL) sizes.subcascades <- sapply(names(subcascades), function(x){as.numeric(strsplit(x,'.', fixed =TRUE)[[1]][2])}) sizes.sets <- sapply(sets, function(x){length(x)}) change <- switch( neighborhood, 'indirect' = sizes.subcascades <= max(sizes.sets), 'direct' = sizes.subcascades <= max(sizes.sets)) sets <- sapply(sets, function(x){paste(x,collapse = '>')}) sets <- unique(sets) nms.sub <-names(subcascades) subcascades <- lapply(1:length(subcascades), function(i){ casc <- subcascades[[i]] if(change[i]) { nms <- sapply(rownames(casc), function(x){ x <- strsplit(x,'>')[[1]] numCl <- length(x) paste(rep(paste('(',paste(x,collapse = '|'),'){1}',sep = ''), numCl), collapse = '>',sep = '') }) nms <- switch( neighborhood, 'indirect' = paste('^([[:digit:]]+>)*',gsub('>', '(>[[:digit:]]+)*>',nms),'(>[[:digit:]]+)*$', sep = ''), 'direct' = paste('^([[:digit:]]+>)*',nms,'(>[[:digit:]]+)*$', sep = '')) if(type == 'any') { keep <- !sapply(nms, function(exp){any(regexpr(pattern = exp, text = sets)>0)}) }else{ keep <- !sapply(nms, function(exp){all(regexpr(pattern = exp, text = sets)>0)}) } if(sum(keep)==0) { return(NULL) }else{ casc[keep,,drop=FALSE] } }else{ casc } }) names(subcascades) <- nms.sub subcascades <- subcascades[sapply(subcascades, function(x){!is.null(x)})] if(length(subcascades)==0) { return(NULL) }else{ class(subcascades) <- 'Subcascades' return(subcascades) } }
knitr::opts_knit$set(root.dir = ".") knitr::opts_chunk$set(collapse = TRUE, warning = TRUE) set.seed(445) library("experDesign") library("experDesign") metadata <- expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50), sex = c("Male","Female")) head(metadata, 15) size_data <- nrow(metadata) size_batch <- 24 (batches <- optimum_batches(size_data, size_batch)) (size <- optimum_subset(size_data, batches)) sizes_batches(size_data, size, batches) d <- design(metadata, size_batch) batch_names(d) r <- replicates(metadata, size_batch, 5) lengths(r) r s <- spatial(r, metadata, rows = LETTERS[1:6], columns = 1:4) head(s) report <- inspect(r, metadata) report2 <- inspect(s, report, index_name = "position") head(report2) n <- 99 samples <- 100 unbalanced <- data.frame(Classroom = rep(c("A", "B"), each = samples/2), Sex = c(rep("M", n), rep("F", samples-n)), Age = rnorm(samples, mean = 25, sd = 3)) table(unbalanced)[, , 1:5] i <- design(unbalanced, 15) rowMeans(evaluate_index(i, unbalanced)["entropy", , ]) evaluate_orig(unbalanced)["entropy", ] apply(evaluate_index(i, unbalanced)["entropy", , ], 1, sd) data(survey, package = "MASS") head(survey) samples <- extreme_cases(survey, size = 10) survey[samples, ] sessionInfo()
g.conv.actlog = function(qwindow, qwindow_dateformat="%d-%m-%Y") { time2numeric = function(x) { x = unlist(x) c2t = function(x2) { tmp = as.numeric(unlist(strsplit(as.character(x2),":"))) hourinday = tmp[1] + (tmp[2]/60) return(hourinday) } out = as.numeric(sapply(x,c2t)) return(out) } extract_names = function(x) { tmp = names(unlist(x)) tmp2 = gsub(pattern = "[.].*|_|-",replacement = "",x = tmp) return(tmp2) } actlog = read.csv(file = qwindow) actlog = actlog[which(actlog[,1] != ""),] actlog_vec = unlist(actlog) datecols = grep(pattern = "date|Date|DATE", x = colnames(actlog), value = FALSE) if (length(datecols) > 0) { exampledates = unlist(actlog[,datecols]) exampledates = exampledates[which(!is.na(exampledates))] } else { exampledates = c() } actlog_vec = sapply(actlog_vec, function(x) !all(is.na(as.Date(as.character(x),format=qwindow_dateformat)))) Ndates = length(which(actlog_vec == TRUE)) dim(actlog_vec) = c(nrow(actlog),ncol(actlog)) qwindow = data.frame(ID = rep(0,Ndates), date = rep("",Ndates)) qwindow$qwindow_times = qwindow$qwindow_values = qwindow$qwindow_numes = c() cnt = 1 for (i in 1:nrow(actlog)) { datei = which(actlog_vec[i,] == TRUE) Ndays = length(datei) if (Ndays > 0) { qwindow$ID[cnt:(cnt+Ndays-1)] = rep(actlog[i,1],Ndays) qwindow$date[cnt:(cnt+Ndays-1)] = as.character(as.Date(as.character(actlog[i,datei]),format=qwindow_dateformat)) datei = c(datei,max(which(actlog[i,] != "")) + 1) for (j in 1:(length(datei)-1)) { k = cnt+j-1 if ((datei[j+1] - datei[j]) >= 2) { qwindow$qwindow_times[k] = list(actlog[i,(datei[j]+1):(datei[j+1]-1)]) qwindow$qwindow_values[k] = list(time2numeric(qwindow$qwindow_times[k])) qwindow$qwindow_names[k] = list(extract_names(qwindow$qwindow_times[k])) unlisted_qv = unlist(qwindow$qwindow_values[k]) unlisted_qt = unlist(qwindow$qwindow_times[k]) unlisted_qn = unlist(qwindow$qwindow_names[k]) if (length(which(is.na(unlisted_qv) == FALSE)) > 0) { if (min(unlisted_qv, na.rm = TRUE) > 0) { qwindow$qwindow_values[k] = list(c(0, unlisted_qv)) qwindow$qwindow_times[k] = list(c("00:00", unlisted_qt)) qwindow$qwindow_names[k] = list(c("daystart", unlisted_qn)) } if (max(unlisted_qv, na.rm = TRUE) < 24) { qwindow$qwindow_values[k] = list(c(unlist(qwindow$qwindow_values[k]), 24)) qwindow$qwindow_times[k] = list(c(unlist(qwindow$qwindow_times[k]), "24:00")) qwindow$qwindow_names[k] = list(c(unlist(qwindow$qwindow_names[k]),"dayend")) } } } else { qwindow$qwindow_values[k] = list("") qwindow$qwindow_names[k] = list("") qwindow$qwindow_times[k] = list("") } } cnt = cnt + Ndays } } if (is.na(as.Date(qwindow$date[1],format="%y-%m-%d")) == FALSE) { qwindow$date = as.Date(qwindow$date,format="%y-%m-%d") } else { qwindow$date = as.Date(qwindow$date) } if (is.na(qwindow$date[1]) == TRUE | class(qwindow$date[1]) != "Date") { if (length(exampledates) > 0) { warning(paste0("\n Date not recognised in activity diary. We expect format ", qwindow_dateformat, " but we see ", paste0(head(exampledates), collapse=" "), ". You need to update the qwindow_dateformat argument, and check", " that dates are in a consistent format.")) } else { warning("\n Date not recognised in activity diary") } } return(qwindow) }
modEvAmethods <- function(fun) { if (fun %in% c("threshMeasures", "multModEv")) { thresh.measures <- c("CCR", "Misclass", "Sensitivity", "Specificity", "Omission", "Commission", "Precision", "Recall", "PPP", "NPP", "UPR", "OPR", "PPI", "PAI", "kappa", "TSS", "NMI", "F1score", "OddsRatio") if (fun == "threshMeasures") return(thresh.measures) else if (fun == "multModEv") { bin.measures <- c("HL", "HL.p", "RMSE") return (c("Prevalence", "AUC", "MeanPrecision", "AUCPR", thresh.measures, bin.measures, "Miller.int", "Miller.slope")) } } else if (fun == "getBins") return(c("round.prob", "prob.bins", "size.bins", "n.bins", "quantiles")) else if (fun == "optiThresh") return(c("each", "preval", "0.5", "maxKappa", "minSensSpecDiff", "maxSensSpecSum", "maxTSS")) }
capture_requests <- function(expr, simplify = TRUE) { start_capturing(simplify) on.exit(stop_capturing()) eval.parent(expr) } start_capturing <- function(simplify = TRUE) { req_tracer <- substitute( { redactor <- get_current_redactor() if (exists("mock_resp") && !is.null(mock_resp)) { resp <- mock_resp } if (!exists("resp") || inherits(resp, "error")) { warning( "Request errored; no captured response file saved", call. = FALSE ) } else { save_response( redactor(resp), file = build_mock_url(redactor(req)), simplify = simplify ) } }, list(simplify = simplify) ) trace_httr2("req_perform", exit = req_tracer) invisible(.mockPaths()) } save_response <- function(response, file, simplify = TRUE) { dst_file <- file.path(.mockPaths()[1], file) mkdir_p(dst_file) ct <- resp_content_type(response) status <- resp_status(response) if (simplify && status == 200 && ct %in% names(CONTENT_TYPE_TO_EXT)) { cont <- resp_body_string(response) if (ct == "application/json") { cont <- prettify(cont) } dst_file <- paste(dst_file, CONTENT_TYPE_TO_EXT[[ct]], sep = ".") cat_wb(cont, file = dst_file) } else if (simplify && status == 204) { dst_file <- paste0(dst_file, ".204") cat_wb("", file = dst_file) } else { dst_file <- paste0(dst_file, ".R") file <- paste0(file, ".R") text_types <- c( "application/json", "application/x-www-form-urlencoded", "application/xml", "text/csv", "text/html", "text/plain", "text/tab-separated-values", "text/xml" ) if (is.raw(response$body) && ct %in% text_types && length(response$body)) { cont <- resp_body_string(response) response$body <- substitute(charToRaw(cont)) } else if (inherits(response$body, c("httr2_path", "httr_path"))) { downloaded_file <- paste0(dst_file, "-FILE") file.copy(response$body, downloaded_file) file <- paste0(file, "-FILE") response$body <- substitute(structure(find_mock_file(file), class = c("httr2_path", "httr_path") )) } f <- file(dst_file, "wb", encoding = "UTF-8") on.exit(close(f)) dput(response, file = f) } verbose_message("Writing ", normalizePath(dst_file)) return(dst_file) } stop_capturing <- function() { untrace_httr2("req_perform") invisible() } mkdir_p <- function(filename) { dir.create(dirname(filename), showWarnings = FALSE, recursive = TRUE) } cat_wb <- function(x, file, ...) { f <- file(file, "wb", encoding = "UTF-8") on.exit(close(f)) cat(enc2utf8(x), file = f, ...) } verbose_message <- function(...) { if (isTRUE(getOption("httptest2.verbose", FALSE))) { message(...) } }
codonToAAthree <- function(codon){ if(grepl('TCA', codon, ignore.case = TRUE)){return('Ser')} else if(grepl('TCC', codon, ignore.case = TRUE)){return('Ser')} else if(grepl('TCG', codon, ignore.case = TRUE)){return('Ser')} else if(grepl('TCT', codon, ignore.case = TRUE)){return('Ser')} else if(grepl('TTC', codon, ignore.case = TRUE)){return('Phe')} else if(grepl('TTT', codon, ignore.case = TRUE)){return('Phe')} else if(grepl('TTA', codon, ignore.case = TRUE)){return('Leu')} else if(grepl('TTG', codon, ignore.case = TRUE)){return('Leu')} else if(grepl('TAC', codon, ignore.case = TRUE)){return('Tyr')} else if(grepl('TAT', codon, ignore.case = TRUE)){return('Tyr')} else if(grepl('TAA', codon, ignore.case = TRUE)){return('Stop')} else if(grepl('TAG', codon, ignore.case = TRUE)){return('Stop')} else if(grepl('TGC', codon, ignore.case = TRUE)){return('Cys')} else if(grepl('TGT', codon, ignore.case = TRUE)){return('Cys')} else if(grepl('TGA', codon, ignore.case = TRUE)){return('Stop')} else if(grepl('TGG', codon, ignore.case = TRUE)){return('Trp')} else if(grepl('CTA', codon, ignore.case = TRUE)){return('Leu')} else if(grepl('CTC', codon, ignore.case = TRUE)){return('Leu')} else if(grepl('CTG', codon, ignore.case = TRUE)){return('Leu')} else if(grepl('CTT', codon, ignore.case = TRUE)){return('Leu')} else if(grepl('CCA', codon, ignore.case = TRUE)){return('Pro')} else if(grepl('CCC', codon, ignore.case = TRUE)){return('Pro')} else if(grepl('CCG', codon, ignore.case = TRUE)){return('Pro')} else if(grepl('CCT', codon, ignore.case = TRUE)){return('Pro')} else if(grepl('CAC', codon, ignore.case = TRUE)){return('His')} else if(grepl('CAT', codon, ignore.case = TRUE)){return('His')} else if(grepl('CAA', codon, ignore.case = TRUE)){return('Gln')} else if(grepl('CAG', codon, ignore.case = TRUE)){return('Gln')} else if(grepl('CGA', codon, ignore.case = TRUE)){return('Arg')} else if(grepl('CGC', codon, ignore.case = TRUE)){return('Arg')} else if(grepl('CGG', codon, ignore.case = TRUE)){return('Arg')} else if(grepl('CGT', codon, ignore.case = TRUE)){return('Arg')} else if(grepl('ATA', codon, ignore.case = TRUE)){return('Ile')} else if(grepl('ATC', codon, ignore.case = TRUE)){return('Ile')} else if(grepl('ATT', codon, ignore.case = TRUE)){return('Ile')} else if(grepl('ATG', codon, ignore.case = TRUE)){return('Met')} else if(grepl('ACA', codon, ignore.case = TRUE)){return('Thr')} else if(grepl('ACC', codon, ignore.case = TRUE)){return('Thr')} else if(grepl('ACG', codon, ignore.case = TRUE)){return('Thr')} else if(grepl('ACT', codon, ignore.case = TRUE)){return('Thr')} else if(grepl('AAC', codon, ignore.case = TRUE)){return('Asn')} else if(grepl('AAT', codon, ignore.case = TRUE)){return('Asn')} else if(grepl('AAA', codon, ignore.case = TRUE)){return('Lys')} else if(grepl('AAG', codon, ignore.case = TRUE)){return('Lys')} else if(grepl('AGC', codon, ignore.case = TRUE)){return('Ser')} else if(grepl('AGT', codon, ignore.case = TRUE)){return('Ser')} else if(grepl('AGA', codon, ignore.case = TRUE)){return('Arg')} else if(grepl('AGG', codon, ignore.case = TRUE)){return('Arg')} else if(grepl('GTA', codon, ignore.case = TRUE)){return('Val')} else if(grepl('GTC', codon, ignore.case = TRUE)){return('Val')} else if(grepl('GTG', codon, ignore.case = TRUE)){return('Val')} else if(grepl('GTT', codon, ignore.case = TRUE)){return('Val')} else if(grepl('GCA', codon, ignore.case = TRUE)){return('Ala')} else if(grepl('GCC', codon, ignore.case = TRUE)){return('Ala')} else if(grepl('GCG', codon, ignore.case = TRUE)){return('Ala')} else if(grepl('GCT', codon, ignore.case = TRUE)){return('Ala')} else if(grepl('GAC', codon, ignore.case = TRUE)){return('Asp')} else if(grepl('GAT', codon, ignore.case = TRUE)){return('Asp')} else if(grepl('GAA', codon, ignore.case = TRUE)){return('Glu')} else if(grepl('GAG', codon, ignore.case = TRUE)){return('Glu')} else if(grepl('GGA', codon, ignore.case = TRUE)){return('Gly')} else if(grepl('GGC', codon, ignore.case = TRUE)){return('Gly')} else if(grepl('GGG', codon, ignore.case = TRUE)){return('Gly')} else if(grepl('GGT', codon, ignore.case = TRUE)){return('Gly')} else {stop(paste("Bad code: ", codon, ". code should only contains three of 'A','T','G','C'",sep=""))} }
LDAKPC <- function(x,y, n.pc,usekernel = FALSE, fL = 0,kernel.name = "rbfdot", kpar=list(0.001), kernel="gaussian",threshold = 1e-5,...){ LDAKPC <- list() class(LDAKPC) <- "Linear Discriminant Analysis of Kernel principle components" LDAKPC.train <- kernlab::kpca(~.,data=x,kernel = kernel.name, kpar = kpar, th = threshold,...) if (is.null(n.pc)){ LDAKPC.rotation.train <- as.data.frame(LDAKPC.train@rotated) } else { LDAKPC.rotation.train <- as.data.frame(LDAKPC.train@rotated[,1:n.pc])} lda.rotation.train <- MASS::lda(LDAKPC.rotation.train,y,CV=FALSE,...) LDs <- as.matrix(LDAKPC.rotation.train) %*% as.matrix(lda.rotation.train$scaling) labels <- as.factor(y) LDAKPC$kpca<- LDAKPC.train LDAKPC$kpc=LDAKPC.rotation.train LDAKPC$LDAKPC<- lda.rotation.train LDAKPC$LDs <- LDs LDAKPC$label <- labels LDAKPC$n.pc=n.pc return(LDAKPC) } predict.LDAKPC <- function(object,prior=NULL, testData,...){ n.pc=object$n.pc if(is.null(prior)==TRUE){ prior=object$LDAKPC$prior } predict.kpca <- kernlab::predict(object = object$kpca, testData)[,1:n.pc] predicted_LDs <- predict.kpca %*% as.matrix(object$LDAKPC$scaling) predict.lda <- function(object, newdata, prior = object$prior, dimen, method = c("plug-in", "predictive", "debiased"), ...) { if(!inherits(object, "lda")) stop("object not of class \"lda\"") if(!is.null(Terms <- object$terms)) { Terms <- delete.response(Terms) if(missing(newdata)) newdata <- model.frame(object) else { newdata <- model.frame(Terms, newdata, na.action=na.pass, xlev = object$xlevels) if (!is.null(cl <- attr(Terms, "dataClasses"))) .checkMFClasses(cl, newdata) } x <- model.matrix(Terms, newdata, contrasts = object$contrasts) xint <- match("(Intercept)", colnames(x), nomatch = 0L) if(xint > 0L) x <- x[, -xint, drop = FALSE] } else { if(missing(newdata)) { if(!is.null(sub <- object$call$subset)) newdata <- eval.parent(parse(text = paste(deparse(object$call$x, backtick = TRUE), "[", deparse(sub, backtick = TRUE),",]"))) else newdata <- eval.parent(object$call$x) if(!is.null(nas <- object$call$na.action)) newdata <- eval(call(nas, newdata)) } if(is.null(dim(newdata))) dim(newdata) <- c(1L, length(newdata)) x <- as.matrix(newdata) } if(ncol(x) != ncol(object$means)) stop("wrong number of variables") if(length(colnames(x)) > 0L && any(colnames(x) != dimnames(object$means)[[2L]])) warning("variable names in 'newdata' do not match those in 'object'") ng <- length(object$prior) if(!missing(prior)) { if(any(prior < 0) || round(sum(prior), 5) != 1) stop("invalid 'prior'") if(length(prior) != ng) stop("'prior' is of incorrect length") } means <- colSums(prior*object$means) scaling <- object$scaling x <- scale(x, center = means, scale = FALSE) %*% scaling dm <- scale(object$means, center = means, scale = FALSE) %*% scaling method <- match.arg(method) dimen <- if(missing(dimen)) length(object$svd) else min(dimen, length(object$svd)) N <- object$N if(method == "plug-in") { dm <- dm[, 1L:dimen, drop = FALSE] dist <- matrix(0.5 * rowSums(dm^2) - log(prior), nrow(x), length(prior), byrow = TRUE) - x[, 1L:dimen, drop=FALSE] %*% t(dm) dist <- exp( -(dist - apply(dist, 1L, min, na.rm=TRUE))) } else if (method == "debiased") { dm <- dm[, 1L:dimen, drop=FALSE] dist <- matrix(0.5 * rowSums(dm^2), nrow(x), ng, byrow = TRUE) - x[, 1L:dimen, drop=FALSE] %*% t(dm) dist <- (N - ng - dimen - 1)/(N - ng) * dist - matrix(log(prior) - dimen/object$counts , nrow(x), ng, byrow=TRUE) dist <- exp( -(dist - apply(dist, 1L, min, na.rm=TRUE))) } else { dist <- matrix(0, nrow = nrow(x), ncol = ng) p <- ncol(object$means) X <- x * sqrt(N/(N-ng)) for(i in 1L:ng) { nk <- object$counts[i] dev <- scale(X, center = dm[i, ], scale = FALSE) dev <- 1 + rowSums(dev^2) * nk/(N*(nk+1)) dist[, i] <- prior[i] * (nk/(nk+1))^(p/2) * dev^(-(N - ng + 1)/2) } } posterior <- dist / drop(dist %*% rep(1, ng)) nm <- names(object$prior) cl <- factor(nm[max.col(posterior)], levels = object$lev) dimnames(posterior) <- list(rownames(x), nm) list(class = cl, posterior = posterior, x = x[, 1L:dimen, drop = FALSE]) } predict.LDAKPC <- predict.lda(object$LDAKPC,prior, newdata = predict.kpca) return(list(predicted_LDs=predicted_LDs,predict.LDAKPC=predict.LDAKPC)) }
context("Chained creation and traversion") createDom <- function() { doc <- Document$new() doc$setRootElement(Element$new(name="class")) root <- doc$getRootElement() e1 <- Element$new(name="student") e1$setAttribute(name="rollno", value="393") e1c1 <- Element$new(name="firstname") e1c1$setText("Dinkar") e1$addContent(e1c1) e1c2 <- Element$new(name="lastname")$setText("Kad") e1$addContent(e1c2) e1$addContent(Element$new(name="nickname")$setText("dinkar")) e1$addContent(Element$new(name="marks")$setText("85")) root$addContent(e1) root$addContent(Element$new(name="student")$setAttribute(name="rollno",value="493") $addContent(Element$new(name="firstname")$setText("Vaneet")) $addContent(Element$new(name="lastname")$setText("Gupta")) $addContent(Element$new(name="nickname")$setText("vinni")) $addContent(Element$new(name="marks")$setText("95")) ) return(doc) } test_that("Chained creation and traversion works", { document <- createDom() rootName <- document$getRootElement()$getName() expect_equal(info="Root element from document", rootName, "class") expect_equal(capture_output(print(paste("Root element :", rootName))), "[1] \"Root element : class\""); classElement <- document$getRootElement(); studentList <- classElement$getChildren(); expect_equal(info="Number of elements", length(classElement$getContent()), 2) expect_equal(info="Number of children are", length(studentList), 2) printp <- function(...) { print(paste(...)) } output <- capture.output({ for (student in studentList) { print("-------------------------") printp("Current Element :", student$getName()) printp("Student roll no : ", student$getAttribute("rollno") ) printp("First Name : ", student$getChild("firstname")$getText()) printp("Last Name : ", student$getChild("lastname")$getText()) printp("Nick Name : ", student$getChild("nickname")$getText()) printp("Marks : ", student$getChild("marks")$getText()) } }) expect <- c( '[1] "-------------------------"', '[1] "Current Element : student"', '[1] "Student roll no : 393"', '[1] "First Name : Dinkar"', '[1] "Last Name : Kad"', '[1] "Nick Name : dinkar"', '[1] "Marks : 85"', '[1] "-------------------------"', '[1] "Current Element : student"', '[1] "Student roll no : 493"', '[1] "First Name : Vaneet"', '[1] "Last Name : Gupta"', '[1] "Nick Name : vinni"', '[1] "Marks : 95"' ) expect_equal(output, expect) })
context("Validate elements") test_that("validate_elements returns TRUE when valid", { X <- data.frame(E306 = as.integer(c(0, 1011, 9999, 9998, 4500)), E347 = c("0001", "A998", "1987", "1980", "2020"), stringsAsFactors = FALSE) expect_true(all(validate_elements(X))) }) test_that("validate_elements returns FALSE when invalid", { X <- data.frame(E306 = as.integer(c(0, 1011, 999, 9998))) expect_false(all(validate_elements(X, .progress_cat = TRUE))) }) test_that("prop_elements and count_elements", { X <- data.table(E319 = c("X1200", "X999", "99999", "A9998"), E327 = c(1L, 3L, 31L, 33L), E339 = c(-1, -2, -3, -4), E355 = c(1L, 1L, 1L, 5L)) expected_prop <- c(0.75, 1, 0, 1) names(expected_prop) <- names(X) expect_identical(prop_elements_valid(X), expected_prop) expected_count <- c(1, 0, 4, 0) names(expected_count) <- names(X) expect_equal(count_elements_invalid(X), expected_count) }) test_that("Element E493 prepared as expected", { expect_identical(heims_data_dict$E493$ad_hoc_prepare(as.integer(c(c(0, 10e3), c(seq.int(2, 11) * 10e3 + 2002), c(20004, 30017)))), as.integer(c(c(0, 10e3), c(seq.int(2, 11) * 10e3 + 2002), 29999, 39999))) }) test_that("DOB less than current year", { skip("Not yet implemented") skip_if_not(file.exists("~/Students/cache/enrol_2005_2015.fst")) library(fst) library(data.table) enrols <- setDT(read.fst("~/Students/cache/enrol_2005_2015.fst")) rename_heims(enrols) enrols[, .(DOB, Ref_year)] %>% .[, DOB := as.Date()] }) test_that("Valid elements for TER return TRUE or FALSE as expected", { x <- c(31L, 29L) y <- heims_data_dict$E369$ad_hoc_prepare(x) expect_true(heims_data_dict$E369$valid(y[1])) expect_true(heims_data_dict$E369$mark_missing(y[2])) })
plot.pda.fd = function(x, whichdim=1,npts=501,...) { if (!inherits(x, "pda.fd")) stop("First argument is not of class pda.fd.") rangval = x$resfdlist[[1]]$basis$rangeval m = length(x$resfdlist) tfine = seq(rangval[1],rangval[2],length.out=npts) whichdim=unique(sort(whichdim)) bwtlist = x$bwtlist if(m == 1){ d = length(bwtlist) if(whichdim == 3){ par(mfrow=c(d,1)) for(i in 1:d){ titlestr = paste('Coefficient for Derivative',i-1) plot(bwtlist[[i]]$fd,main=titlestr,...) } } else{ betamat = matrix(0,npts,d) legendstr = c() for(i in 1:d){ betamat[,i] = eval.fd(tfine,bwtlist[[i]]$fd) legendstr = c(legendstr,paste('Deriv',i)) } xlabstr = names(bwtlist[[1]]$fd$fdnames)[[1]] ylabstr = names(bwtlist[[1]]$fd$fdnames)[[3]] matplot(tfine,betamat,type='l',lty=c(1:d),xlab=xlabstr,ylab=ylabstr,...) legend(x='topleft',legend=legendstr,lty=c(1:d),...) } } else{ d = length(bwtlist[[1]][[1]]) xlabstr = names(bwtlist[[1]][[1]][[1]]$fd$fdnames)[[1]] ylabstr = names(bwtlist[[1]][[1]][[1]]$fd$fdnames)[[3]] betamat = array(0,c(npts,m,m,d)) legendstr = array('',c(m,m,d)) for(i in 1:m){ for(j in 1:m){ for(k in 1:d){ betamat[,i,j,k] = eval.fd(tfine,bwtlist[[i]][[j]][[k]]$fd) legendstr[i,j,k] = paste('var',i,'eq',j,'deriv',k) } } } if(length(whichdim)==1){ if(whichdim==1){ par(mfrow=c(m,1)) for(i in 1:m){ tbetamat = matrix(betamat[,i,,],npts,m*d,byrow=FALSE) tlegendstr = as.vector(legendstr[i,,]) matplot(tfine,tbetamat,type='l',lty=c(1:(d*m)),col=c(1:(d*m)),xlab=xlabstr,ylab=ylabstr,...) legend(x='topleft',legend=tlegendstr,lty=c(1:(d*m)),col=c(1:(d*m)),...) } } if(whichdim==2){ par(mfrow=c(m,1)) for(j in 1:m){ tbetamat = matrix(betamat[,,j,],npts,m*d,byrow=FALSE) tlegendstr = as.vector(legendstr[,j,]) matplot(tfine,tbetamat,type='l',lty=c(1:(d*m)),col=c(1:(d*m)),xlab=xlabstr,ylab=ylabstr,...) legend(x='topleft',legend=tlegendstr,lty=c(1:(d*m)),col=c(1:(d*m)),...) } } if(whichdim==3){ par(mfrow=c(d,1)) for(k in 1:d){ tbetamat = matrix(betamat[,,,k],npts,m*m,byrow=FALSE) tlegendstr = as.vector(legendstr[,,k]) matplot(tfine,tbetamat,type='l',lty=c(1:(m*m)),col=c(1:(m*m)),xlab=xlabstr,ylab=ylabstr,...) legend(x='topleft',legend=tlegendstr,lty=c(1:(m*m)),col=c(1:(m*m)),...) } } } else if(length(whichdim)==2){ if(whichdim[1]==1){ if(whichdim[2]==2){ par(mfrow=c(m,m)) for(i in 1:m){ for(j in 1:m){ matplot(tfine,betamat[,i,j,],type='l',lty=c(1:d),col=c(1:d),xlab=xlabstr,ylab=ylabstr,...) legend(x='topleft',legend=legendstr[i,j,],lty=c(1:d),col=c(1:d),...) } } } if(whichdim[2]==3){ par(mfrow=c(m,d)) for(i in 1:m){ for(k in 1:d){ matplot(tfine,betamat[,i,,k],type='l',lty=c(1:m),col=c(1:m),xlab=xlabstr,ylab=ylabstr,...) legend(x='topleft',legend=legendstr[i,,k],lty=c(1:m),col=c(1:m),...) } } } } else{ par(mfrow=c(m,d)) for(j in 1:m){ for(k in 1:d){ matplot(tfine,betamat[,,j,k],type='l',lty=c(1:m),col=c(1:m),xlab=xlabstr,ylab=ylabstr,...) legend(x='topleft',legend=legendstr[,j,k],lty=c(1:m),col=c(1:m),...) } } } } else{ for(j in 1:m){ dev.new() par(mfrow=c(m,d)) for(i in 1:m){ for(k in 1:d){ plot(bwtlist[[i]][[j]][[k]]$fd,main=legendstr[i,j,k],...) } } } } } }
exptol.int <- function (x, alpha = 0.05, P = 0.99, side = 1, type.2 = FALSE) { if (side != 1 && side != 2) { stop(paste("Must specify a one-sided or two-sided procedure!", "\n")) } if (side == 2) alpha <- alpha/2 n <- length(x) l.hat <- mean(x) if (type.2) { mx <- max(x) r <- n - sum(x == mx) } else r <- n if (side == 2) { lower <- 2 * r * l.hat * log(2/(1 + P))/qchisq(1 - alpha, df = 2 * r) upper <- 2 * r * l.hat * log(2/(1 - P))/qchisq(alpha, df = 2 * r) alpha <- 2 * alpha } else { lower <- 2 * r * l.hat * log(1/P)/qchisq(1 - alpha, df = 2 * r) upper <- 2 * r * l.hat * log(1/(1 - P))/qchisq(alpha, df = 2 * r) } temp <- data.frame(cbind(alpha, P, l.hat, lower, upper)) if (side == 2) { colnames(temp) <- c("alpha", "P", "lambda.hat", "2-sided.lower", "2-sided.upper") } else { colnames(temp) <- c("alpha", "P", "lambda.hat", "1-sided.lower", "1-sided.upper") } temp }
skewness.GB2 <- function(b,a,p,q){ skewnessGB2<-rep(NA,length(b)) for(j in 1:length(b)){ fmGB2<- km.GB2(b[j],a[j],p[j],q[j],k=1) smGB2<- km.GB2(b[j],a[j],p[j],q[j],k=2) tmGB2<- km.GB2(b[j],a[j],p[j],q[j],k=3) if(-a[j]*p[j]<3&a[j]*q[j]>3){ skewnessGB2[j] <- (tmGB2-3*fmGB2*(smGB2-fmGB2^2)-fmGB2^3)/(smGB2-fmGB2^2)^(3/2) } else print(paste("-ap=",-a[j]*p[j],"and aq=",a[j]*q[j])) } return(skewnessGB2) }
test_that("vec_restore() returns a tune_results subclass if `x` retains tune_results structure", { for (x in helper_tune_results) { expect_identical(vec_restore(x, x), x) expect_s3_class_tune_results(vec_restore(x, x)) } }) test_that("vec_restore() returns bare tibble if `x` loses tune_results structure", { for (x in helper_tune_results) { col <- x[1] row <- x[0,] expect_s3_class_bare_tibble(vec_restore(col, x)) expect_s3_class_bare_tibble(vec_restore(row, x)) } }) test_that("vec_ptype2() is working", { for (x in helper_tune_results) { tbl <- tibble::tibble(x = 1) df <- data.frame(x = 1) expect_identical(vec_ptype2(x, x), vec_ptype2(new_bare_tibble(x), new_bare_tibble(x))) expect_identical(vec_ptype2(x, tbl), vec_ptype2(new_bare_tibble(x), tbl)) expect_identical(vec_ptype2(tbl, x), vec_ptype2(tbl, new_bare_tibble(x))) expect_identical(vec_ptype2(x, df), vec_ptype2(new_bare_tibble(x), df)) expect_identical(vec_ptype2(df, x), vec_ptype2(df, new_bare_tibble(x))) } }) test_that("vec_cast() is working", { for (x in helper_tune_results) { tbl <- new_bare_tibble(x) df <- as.data.frame(tbl) expect_error(vec_cast(x, x), class = "vctrs_error_incompatible_type") expect_identical(vec_cast(x, tbl), tbl) expect_error(vec_cast(tbl, x), class = "vctrs_error_incompatible_type") expect_identical(vec_cast(x, df), df) expect_error(vec_cast(df, x), class = "vctrs_error_incompatible_type") } }) test_that("vec_ptype() returns a bare tibble", { for (x in helper_tune_results) { expect_identical(vec_ptype(x), vec_ptype(new_bare_tibble(x))) expect_s3_class_bare_tibble(vec_ptype(x)) } }) test_that("vec_slice() generally returns a bare tibble", { for (x in helper_tune_results) { expect_identical(vec_slice(x, 0), vec_slice(new_bare_tibble(x), 0)) expect_s3_class_bare_tibble(vec_slice(x, 0)) } }) test_that("vec_slice() can return a tune_results if all rows are selected", { for (x in helper_tune_results) { expect_identical(vec_slice(x, TRUE), x) expect_s3_class_tune_results(vec_slice(x, TRUE)) } }) test_that("vec_c() returns a bare tibble", { for (x in helper_tune_results) { tbl <- new_bare_tibble(x) expect_identical(vec_c(x), vec_c(tbl)) expect_identical(vec_c(x, x), vec_c(tbl, tbl)) expect_identical(vec_c(x, tbl), vec_c(tbl, tbl)) expect_s3_class_bare_tibble(vec_c(x)) expect_s3_class_bare_tibble(vec_c(x, x)) } }) test_that("vec_rbind() returns a bare tibble", { for (x in helper_tune_results) { tbl <- new_bare_tibble(x) expect_identical(vec_rbind(x), vec_rbind(tbl)) expect_identical(vec_rbind(x, x), vec_rbind(tbl, tbl)) expect_identical(vec_rbind(x, tbl), vec_rbind(tbl, tbl)) expect_s3_class_bare_tibble(vec_rbind(x)) expect_s3_class_bare_tibble(vec_cbind(x, x)) } }) test_that("vec_cbind() returns a bare tibble", { for (x in helper_tune_results) { tbl <- new_bare_tibble(x) expect_identical(vec_cbind(x), vec_cbind(tbl)) expect_identical(vec_cbind(x, x), vec_cbind(tbl, tbl)) expect_identical(vec_cbind(x, tbl), vec_cbind(tbl, tbl)) expect_s3_class_bare_tibble(vec_cbind(x)) expect_s3_class_bare_tibble(vec_cbind(x, x)) } })
rec.ev.sim <- function(n, foltime, dist.ev, anc.ev, beta0.ev, dist.cens=rep("weibull",length(beta0.cens)), anc.cens, beta0.cens, z=NULL, beta=NA, x=NA, lambda=NA, max.ep=Inf, priskb=0, max.old=0) { if (length(anc.ev) != length(beta0.ev)) stop("Wrong number of parameters") if (length(anc.cens) != length(beta0.cens)) stop("Wrong number of parameters") if (length(anc.ev) != length(dist.ev)) stop("Wrong number of parameters") if (priskb > 1 || priskb < 0) stop("Wrong proportion of left-censured individuals") if (max.old < 0) stop("Wrong maximum time before follow-up") if (!is.na(x) && is.na(beta)) stop("Wrong specification of covariables!") if (is.na(x) && !is.na(beta)) stop("Wrong specification of covariables") if (!is.null(z) && !all(lapply(z, function(x) x[1]) %in% c("unif","weibull","invgauss", "gamma","exp"))) stop("Wrong specification of z") if (!is.null(z) && any(lapply(z, function(x) length(x)) != 3)) { if(any(lapply(z[lapply(z, function(x) length(x)) != 3], function(x) length(x)) != 2)) stop("Wrong specification of z") if(any(lapply(z[lapply(z, function(x) length(x)) != 3], function(x) length(x)) == 2)) { for (i in 1:length(z[lapply(z, function(x) length(x)) == 2])) { if (z[lapply(z, function(x) length(x)) == 2][[i]][1] != "exp") stop("Wrong specification of z") } } } if(!is.null(z) && any(lapply(z, function(x) x[1]) == "unif")) { for (i in 1:length(z[lapply(z, function(x) x[1]) == "unif"])) { if (as.numeric(z[lapply(z, function(x) x[1]) == "unif"][[i]][2])-as.numeric(z[lapply(z, function(x) x[1]) == "unif"][[i]][3]) >= 0) stop("Wrong specification of z") if (as.numeric(z[lapply(z, function(x) x[1]) == "unif"][[i]][2]) < 0) stop("Wrong specification of z") } } sim.data <- list() eff <- vector() un.ncens <- runif(n, 0, foltime) un.cens <- runif(n, -max.old, 0) ncens <- as.integer(priskb*n) nncens <- as.integer(n - ncens) max.time <- max(foltime, max.old) eff[1] <- 0 if (nncens != 0) { for (i in 1:nncens) { if (!is.na(x[1])) { for (k in 1:length(x)) { if (x[[k]][1] == "unif") eff[k] <- runif(1,as.numeric(x[[k]][2]),as.numeric(x[[k]][3])) if (x[[k]][1] == "normal") eff[k] <- rnorm(1,as.numeric(x[[k]][2]),as.numeric(x[[k]][3])) if (x[[k]][1] == "bern") eff[k] <- rbinom(1,1,as.numeric(x[[k]][2])) } } sim.data[[i]] <- rec.ev.ncens.sim(foltime, anc.ev, beta0.ev, anc.cens, beta0.cens, z, beta, eff, lambda, dist.ev, dist.cens, max.ep, un.ncens[i], i, max.time) } } if (ncens != 0) { i <- nncens + 1 repeat { if (!is.na(x[1])) { for (k in 1:length(x)) { if (x[[k]][1] == "unif") eff[k] <- runif(1,as.numeric(x[[k]][2]),as.numeric(x[[k]][3])) if (x[[k]][1] == "normal") eff[k] <- rnorm(1,as.numeric(x[[k]][2]),as.numeric(x[[k]][3])) if (x[[k]][1] == "bern") eff[k] <- rbinom(1,1,as.numeric(x[[k]][2])) } } sim.data[[i]] <- rec.ev.cens.sim(foltime, anc.ev, beta0.ev, anc.cens, beta0.cens, z, beta, eff, lambda, dist.ev, dist.cens, max.ep, un.cens[i],i, max.time) if (dim(sim.data[[i]])[1] != 0) { i <- i + 1 } if (i == n + 1) break } } sim.data <- do.call(rbind, sim.data) class(sim.data) <- c("rec.ev.data.sim", "data.frame") attr(sim.data, "n") <- n attr(sim.data, "foltime") <- foltime attr(sim.data, "ndist") <- length(dist.ev) return(sim.data) }
build_spm12_first_level_spec = function( scans = NULL, outdir = NULL, units = c("scans", "secs"), slice_timed = TRUE, nslices = NULL, ref_slice = NULL, tr, condition_mat = NULL, condition_list = NULL, regressor_mat = NULL, regressor_list = NULL, hpf = 128, time_deriv = FALSE, disp_deriv = FALSE, interactions = FALSE, global_norm = c("None", "Scaling"), mthresh = 0.8, mask = NULL, correlation = c("AR(1)", "none", "FAST"), n_time_points = NULL, verbose = TRUE, overwrite = TRUE, ... ) { if (is.null(outdir)) { outdir = tempfile() dir.create(outdir, showWarnings = FALSE) } spm_mat = file.path(outdir, "SPM.mat") if (file.exists(spm_mat)) { if (!overwrite) { stop(paste0( "SPM.mat exists in outdir specified, but ", "overwrite = FALSE") ) } else { file.remove(spm_mat) } } units = match.arg(units) units = convert_to_matlab(units) if (!is.null(scans)) { if (slice_timed) { if (is.null(nslices) || is.null(ref_slice)) { msg = paste0( "If the data is slice-time corrected, nslices and ", "ref_slice must be specified!") stop(msg) } } else { if (is.null(nslices)) { nslices = 16 } if (is.null(ref_slice)) { nslices = 8 } } scans = filename_check(scans) if (is.null(n_time_points)) { time_points = ntime_points(scans) if (verbose) { message(" } n_time_points = length(time_points) } else { time_points = seq(n_time_points) } filename = paste0(scans, ",", time_points) filename = rvec_to_matlabcell( filename, transpose = FALSE, sep = "\n") } time_deriv = as.numeric(time_deriv) disp_deriv = as.numeric(disp_deriv) derivatives = c(time_deriv, disp_deriv) class(derivatives) = "rowvec" derivatives = convert_to_matlab(derivatives) interactions = as.logical(interactions) interactions = as.integer(interactions) + 1L correlation = match.arg(correlation) correlation = convert_to_matlab(correlation) global_norm = match.arg(global_norm) global_norm = convert_to_matlab(global_norm) if (!is.null(mask)) { mask = filename_check(mask) class(mask) = "cell" mask = rvec_to_matlabcell(mask, sep = "") } else { mask = rvec_to_matlabcell("", sep = "") } if ( (is.null(condition_mat) && is.null(condition_list)) || (!is.null(condition_mat) && !is.null(condition_list)) ) { msg = paste0("Either condition_mat or condition_list", " must be specified, but not both!") stop(msg) } if ( (is.null(regressor_mat) && is.null(regressor_list)) || (!is.null(regressor_mat) && !is.null(regressor_list)) ) { msg = paste0("Either regressor_mat or regressor_list", " must be specified, but not both!") stop(msg) } sess = list( scans = filename ) if (!is.null(condition_mat)) { condition_mat = normalizePath(condition_mat) class(condition_mat) = "cell" condition_mat = convert_to_matlab(condition_mat, sep = "") sess$cond = paste0("struct('name', {}, 'onset', {},", " 'duration', {}, ", "'tmod', {}, 'pmod', {}, ", "'orth', {});") sess$multi = condition_mat } else { condition_list = spm12_condition_list(condition_list) names(condition_list) = paste0("cond", names(condition_list)) sess = c(sess, condition_list) sess$multi = "{''}" } if (!is.null(regressor_mat)) { regressor_mat = normalizePath(regressor_mat) class(regressor_mat) = "cell" regressor_mat = convert_to_matlab(regressor_mat, sep = "") sess$regress = paste0("struct('name', {}, 'val', {});") sess$multi_reg = regressor_mat } else { regressor_list = spm12_regressor_list( regressor_list, n_time_points = n_time_points) names(regressor_list) = paste0("regress", names(regressor_list)) sess = c(sess, regressor_list) sess$multi_reg = "{''}" } xoutdir = outdir class(outdir) = "cell" outdir = convert_to_matlab(outdir) sess$hpf = hpf spm = list( stats = list( fmri_spec = list( dir = outdir, timing = list( units = units, RT = tr, fmri_t = nslices, fmri_t0 = ref_slice ), sess = sess, fact = "struct('name', {}, 'levels', {})", bases = list( hrf = list( derivs = derivatives ) ), volt = interactions, global = global_norm, mthresh = mthresh, mask = mask, cvi = correlation ) ) ) spm = list(spm = spm) class(spm) = "matlabbatch" script = matlabbatch_to_script(spm, ...) L = list( spm = spm, script = script) L$outfile = L$spm_mat = spm_mat L$outdir = xoutdir return(L) } spm12_first_level_spec = function( ..., outdir = NULL, add_spm_dir = TRUE, spmdir = spm_dir(verbose = verbose, install_dir = install_dir), clean = TRUE, verbose = TRUE, overwrite = TRUE, install_dir = NULL ){ install_spm12(verbose = verbose, install_dir = install_dir) L = build_spm12_first_level_spec( outdir = outdir, verbose = verbose, ...) outdir = L$outdir spm = L$spm if (verbose) { message(" } res = run_matlabbatch( spm, add_spm_dir = add_spm_dir, clean = clean, verbose = verbose, spmdir = spmdir) if (res != 0) { warning("Result was not zero!") } L$result = res return(L) }
summarymcmc<-function(output, name='MCMC'){ summary = list(name=name, estimates = output$means, estimates_of_functional = output$functionalmeans, acceptance_rate = output$acceptrate, time_elapsed=output$runtime, phase_length=output$sumchain) return(summary) }
group.STDERR <- function(x,data) { return(group.UCL(x,data,FUN=STDERR)) }
pull_modeltime_residuals <- function(object) { UseMethod("pull_modeltime_residuals") } pull_modeltime_residuals.model_fit <- function(object) { if (is_modeltime_model(object)) { ret <- object$fit$data %>% tibble::as_tibble() } else { ret <- NA } return(ret) } pull_modeltime_residuals.workflow <- function(object) { if (is_modeltime_model(object)) { ret <- object$fit$fit$fit$data %>% tibble::as_tibble() } else { ret <- NA } return(ret) }
vm2_mle <- function(data, model = c("vmsin", "vmcos"), ...) { model <- model[1] dots <- list(...) data <- data.matrix(data) call <- match.call() if (is.null(dots$method)) { dots$method <- "L-BFGS-B" } method <- dots$method if (model == "vmsin") { lpd_grad_model_indep_1comp <- function(par_vec_lscale) { par_vec <- c(exp(par_vec_lscale[1:2]), par_vec_lscale[3:5]) lpd_grad <- matrix(NA, 6, 1) lpd_grad <- signif( suppressWarnings(grad_llik_vmsin_C(data, par_vec))* c(par_vec[1:2], rep(1, 4)), 8 ) list(lpr = (lpd_grad[6]), grad = lpd_grad[1:5]) } start_par_gen <- start_par_vmsin hessian_fn <- function(par_vec) { numDeriv::hessian( func = function(par_vec) { -grad_llik_vmsin_C(data, par_vec)[6] }, x = par_vec ) } } else if (model == "vmcos") { ell <- dots[c("qrnd_grid", "n_qrnd")] if (!is.null(ell$qrnd)) { qrnd_grid <- ell$qrnd dim_qrnd <- dim(qrnd_grid) if (!is.matrix(qrnd_grid) | is.null(dim_qrnd) | dim_qrnd[2] != 2) stop("qrnd_grid must be a two column matrix") n_qrnd <- dim_qrnd[1] } else if (!is.null(ell$n_qrnd)){ n_qrnd <- round(ell$n_qrnd) if (n_qrnd < 1) stop("n_qrnd must be a positive integer") qrnd_grid <- sobol(n_qrnd, 2, FALSE) } else { n_qrnd <- 1e4 qrnd_grid <- sobol(n_qrnd, 2, FALSE) } lpd_grad_model_indep_1comp <- function(par_vec_lscale) { par_vec <- c(exp(par_vec_lscale[1:2]), par_vec_lscale[3:5]) lpd_grad <- matrix(NA, 6, 1) lpd_grad[] <- signif( suppressWarnings(grad_llik_vmcos_C(data, par_vec, qrnd_grid)) * c(par_vec[1:2], rep(1, 4)), 8 ) list(lpr = (lpd_grad[6]), grad = lpd_grad[1:5]) } start_par_gen <- start_par_vmcos hessian_fn <- function(par_vec) { numDeriv::hessian( func = function(par_vec) { -grad_llik_vmcos_C(data, par_vec, qrnd_grid)[6] }, x = par_vec ) } } else if (model == "indep") { lpd_grad_model_indep_1comp <- function(par_vec_lscale) { par_vec <- c(exp(par_vec_lscale[1:2]), 0, par_vec_lscale[4:5]) lpd_grad_parts <- lapply( 1:2, function(j) { signif( suppressWarnings(grad_llik_univm_C(data[, j], par_vec[c(j, 3+j)]))* c(par_vec[j], 1, 1), 8 ) } ) lpr <- sum(sapply(lpd_grad_parts, "[", 3)) grad <- rep(0, 5) for (j in 1:2) { grad[c(j, 3+j)] <- lpd_grad_parts[[j]][1:2] } list(lpr = lpr, grad = grad) } start_par_gen <- function(dat) { pars_by_dim <- lapply(1:2, function(j) start_par_vm(dat[, j])) pars <- numeric(5) for (j in 1:2) { pars[c(j, 3+j)] <- pars_by_dim[[j]][1:2] } pars } hessian_fn <- function(par_vec) { numDeriv::hessian( func = function(par_vec) { -sum( sapply( 1:2, function(j) grad_llik_univm_C(data[, j], par_vec[c(j, 3+j)])[3] ) ) }, x = par_vec ) } } start <- start_par_gen(data) names(start) <- c("log_kappa1", "log_kappa2", "kappa3", "mu1", "mu2") start_lscale <- start start_lscale[c("log_kappa1", "log_kappa2")] <- log(start[c("log_kappa1", "log_kappa2")]) opt <- optim( par = start_lscale, fn = function(par_lscale) { -lpd_grad_model_indep_1comp(par_lscale)$lpr }, gr = function(par_lscale) { -lpd_grad_model_indep_1comp(par_lscale)$grad }, lower = c(rep(-Inf, 3), 0, 0), upper = c(rep(Inf, 3), 2*pi, 2*pi), method = method ) est_par <- opt$par names(est_par)[1:2] <- c("kappa1", "kappa2") est_par[c("kappa1", "kappa2")] <- exp(est_par[c("kappa1", "kappa2")]) hess <- hessian_fn(par_vec = est_par) dimnames(hess) <- list(names(est_par), names(est_par)) if (model == "indep") { vcov <- matrix(0, 5, 5) dimnames(vcov) <- dimnames(hess) vcov[-3, -3] <- solve(hess[-3, -3]) } else { vcov <- solve(hess) } res <- methods::new( "mle", call = call, coef = est_par, fullcoef = unlist(est_par), vcov = vcov, min = opt$value, details = opt, minuslogl = function(kappa1, kappa2, kappa3, mu1, mu2) { par_lscale <- c(log(kappa1), log(kappa2), kappa3, mu1, mu2) -lpd_grad_model_indep_1comp(par_lscale)$lpr }, nobs = nrow(data), method = method ) res }
files <- system("ls *.xml", intern=TRUE) print("testing parsing only") parses <- sapply(files, function(x){ out <- try(xmlParse(x)) if(is(out, "try-error")) out <- x else { free(out) out = "success" } out }) fails <- parses[parses!="success"] works <- files[parses == "success"] writeLines(fails, "unparseable.txt") print("testing parsing only") treebase <- sapply(works, function(x){ print(x) tree <- try(nexml_read(x, "nexml")) if(is(tree, "try-error")) out = "read failed:" else { tree <- try(as(tree, "phylo")) if(is(tree, "try-error")) out = "conversion failed:" else out = "success" } rm(tree) out }) save(list=ls(), file = "RNeXML_test_results.rda") table(treebase)
estimateSd <- function(y, method=c("Hall", "von Neumann")){ method <- match.arg(method) if (method=="von Neumann"){ y <- stats::na.omit(y) dy <- diff(y) Sd <- stats::mad(dy)/sqrt(2) } else if (method=="Hall") { Y <- as.matrix(y) n <- nrow(Y) wei <- c(0.1942, 0.2809, 0.3832, -0.8582) Y1 <- Y[-c(n-2, n-1, n),, drop=FALSE]*wei[1] Y2 <- Y[-c(1, n-1, n),, drop=FALSE]*wei[2] Y3 <- Y[-c(1, 2, n),, drop=FALSE]*wei[3] Y4 <- Y[-c(1, 2, 3),, drop=FALSE]*wei[4] Sd <- sqrt(colMeans((Y1+Y2+Y3+Y4)^2, na.rm=TRUE)) } return (Sd) }
processAncStates <- function(path, state_labels = NULL, labels_as_numbers = FALSE, missing_to_NA = TRUE) { tree <- readTrees(path) t <- tree[[1]][[1]] include_start_states <- FALSE if ("anc_state_1" %in% names(t@data)) { } else if ("start_state_1" %in% names(t@data) && "end_state_1" %in% names(t@data)) { include_start_states <- TRUE } else { stop( "tree file does not contain expected state labels: [\'anc_state\'] or [\'start_state\' and \'end_state\']" ) } t <- .assign_state_labels(t, state_labels, include_start_states, labels_as_numbers, missing_to_NA) t <- .set_pp_factor_range(t, include_start_states) return(t) }
library(fredr) knitr::opts_chunk$set( fig.width = 7, fig.height = 5, eval = fredr_has_key(), collapse = TRUE, comment = " ) library(fredr) fredr_releases() fredr_releases_dates() fredr_releases_dates( sort_order = "asc", order_by = "release_id" ) fredr_release(release_id = 11L) fredr_release_dates(release_id = 11L) fredr_release_series(release_id = 10L) fredr_release_series( release_id = 10L, filter_variable = "frequency", filter_value = "Monthly", order_by = "popularity", sort_order = "desc", limit = 10L ) fredr_release_tags( release_id = 10L, tag_group_id = "geo", order_by = "popularity", sort_order = "desc" ) fredr_release_related_tags( release_id = 10L, tag_names = "bls", tag_group_id = "freq", exclude_tag_names = "annual", order_by = "popularity", sort_order = "desc" ) fredr_release_sources(release_id = 10L) cpi_tbl <- fredr_release_tables(release_id = 10L) cpi_tbl library(dplyr) library(tibble) cpi_tbl %>% slice(2) %>% deframe() fredr_release_tables( release_id = 10L, element_id = 36712L )
message("\nTesting get_patient_info") test_that("Structure of patients value", { skip_on_cran() patients_tcga <- get_patient_info("TCGA-BRCA") expect_equal(length(patients_tcga), 3) expect_equal(ncol(patients_tcga$patients), 6) expect_true(nrow(patients_tcga$patients) > 50) expect_true(length(patients_tcga$content) > 50) expect_equal(class(patients_tcga$response), "response") }) test_that("Number of all patients", { skip_on_cran() patients_all <- get_patient_info() expect_true(nrow(patients_all$patients) > 5000) expect_true("TCGA-OL-A6VO" %in% patients_all$patients$patient_id) expect_true("TCGA-OL-A6VO" %in% patients_all$patients$patient_name) expect_true("F" %in% patients_all$patients$patient_sex) expect_true("TCGA-BRCA" %in% patients_all$patients$collection) }) test_that("Number of BRCA patients", { skip_on_cran() patients_tcga <- get_patient_info("TCGA-BRCA") expect_true(nrow(patients_tcga$patients) > 50) expect_true("TCGA-OL-A6VO" %in% patients_tcga$patients$patient_id) }) test_that("Individual BRCA patient", { skip_on_cran() patients_all <- get_patient_info() pid <- "TCGA-OL-A6VO" one_patient <- patients_all$patients[which(patients_all$patients$patient_id == pid), ] expect_identical(pid, as.character(one_patient[1, "patient_name"])) expect_identical("F", as.character(one_patient[1, "patient_sex"])) expect_identical("TCGA-BRCA", as.character(one_patient[1, "collection"])) expect_equal(NA, one_patient[1, "patient_dob"]) expect_equal(NA, one_patient[1, "patient_ethnic_group"]) }) test_that("Invalid collection name", { skip_on_cran() expect_warning(patients <- get_patient_info("fake collection")) suppressWarnings(patients <- get_patient_info("fake collection")) expect_equal(length(patients$content), 0) })
context("char_class") test_that( "char_class wraps in class token", { expected <- as.regex("[abc]") actual <- char_class("a", "b", "c") expect_equal(actual, expected) } ) context("negated_char_class") test_that( "negated_char_class wraps in class token with ^", { expected <- as.regex("[^abc]") actual <- negated_char_class("a", "b", "c") expect_equal(actual, expected) } )
cv_linear2ph <- function (Y_unval=NULL, Y=NULL, X_unval=NULL, X=NULL, Z=NULL, Bspline=NULL, data=NULL, nfolds=5, MAX_ITER=2000, TOL=1E-4, verbose=FALSE) { storage.mode(MAX_ITER) = "integer" storage.mode(TOL) = "double" storage.mode(nfolds) = "integer" if (missing(data)) { stop("No dataset is provided!") } if (missing(Y_unval)) { stop("The error-prone response Y_unval is not specified!") } else { vars_ph1 = Y_unval } if (missing(X_unval)) { stop("The error-prone covariates X_unval is not specified!") } else { vars_ph1 = c(vars_ph1, X_unval) } if (missing(Bspline)) { stop("The B-spline basis is not specified!") } else { vars_ph1 = c(vars_ph1, Bspline) } if (missing(Y)) { stop("The accurately measured response Y is not specified!") } if (missing(X)) { stop("The validated covariates in the second-phase are not specified!") } if (length(X_unval) != length(X)) { stop("The number of columns in X_unval and X is different!") } if (!missing(Z)) { vars_ph1 = c(vars_ph1, Z) } id_exclude = c() for (var in vars_ph1) { id_exclude = union(id_exclude, which(is.na(data[,var]))) } if (verbose) { print(paste("There are", nrow(data), "observations in the dataset.")) print(paste(length(id_exclude), "observations are excluded due to missing Y_unval, X_unval, or Z.")) } if (length(id_exclude) > 0) { data = data[-id_exclude,] } n = nrow(data) if (verbose) { print(paste("There are", n, "observations in the analysis.")) } id_phase1 = which(is.na(data[,Y])) for (var in X) { id_phase1 = union(id_phase1, which(is.na(data[,var]))) } if (verbose) { print(paste("There are", n-length(id_phase1), "observations validated in the second phase.")) } if (nfolds >= 3) { if (verbose) { print(paste0(nfolds, "-folds cross-validation will be performed.")) } } else { stop("nfolds needs to be greater than or equal to 3!") } Y_unval_vec = c(as.vector(data[-id_phase1,Y_unval]), as.vector(data[id_phase1,Y_unval])) storage.mode(Y_unval_vec) = "double" X_unval_mat = rbind(as.matrix(data[-id_phase1,X_unval]), as.matrix(data[id_phase1,X_unval])) storage.mode(X_unval_mat) = "double" Bspline_mat = rbind(as.matrix(data[-id_phase1,Bspline]), as.matrix(data[id_phase1,Bspline])) storage.mode(Bspline_mat) = "double" Y_vec = as.vector(data[-id_phase1,Y]) storage.mode(Y_vec) = "double" X_mat = as.matrix(data[-id_phase1,X]) storage.mode(X_mat) = "double" if (!is.null(Z)) { Z_mat = rbind(as.matrix(data[-id_phase1,Z]), as.matrix(data[id_phase1,Z])) storage.mode(Z_mat) = "double" } if (is.null(Z)) { Z_mat = rep(1., n) } else { Z_mat = cbind(1, Z_mat) } idx_fold = c(sample(1:nfolds, size = length(Y_vec), replace = TRUE), sample(1:nfolds, size = length(id_phase1), replace = TRUE)) pred_loglik = rep(NA, nfolds) converge = rep(NA, nfolds) for (fold in 1:nfolds) { Train = as.numeric(idx_fold != fold) res = .TwoPhase_MLE0_MEXY_CV_loglik(Y_unval_vec, X_unval_mat, Y_vec, X_mat, Z_mat, Bspline_mat, MAX_ITER, TOL, Train) pred_loglik[fold] = res$pred_loglike converge[fold] = !res$flag_nonconvergence if (pred_loglik[fold] == -999.) { pred_loglik[fold] = NA } } avg_pred_loglik = mean(pred_loglik, na.rm = TRUE) res_final = list(avg_pred_loglik=avg_pred_loglik, pred_loglik=pred_loglik, converge=converge) res_final }
library(bayesAB) context('dists') dummyDist <- plotDist('norm', 'Normal', c('mu', 'sd')) dummyDist2 <- plotDist('norm', 'Normal', c('mu', 'sd')) test_that("Failures based on inputs", { expect_error(dinvgamma(5, -1, 5), "Shape or scale parameter negative") }) test_that("Closure madness", { expect_equal(dummyDist, dummyDist2) expect_identical(environment(dummyDist)$distArgs, environment(dummyDist2)$distArgs) expect_equal(environment(dummyDist)$name, 'Normal') expect_equal(formals(dummyDist), as.pairlist(alist(mu =, sd =))) }) test_that("Success", { expect_equal(plotPoisson(1)$labels$y, 'PDF') expect_equal(plotPareto(1, 1)$labels$y, 'PDF') expect_equal(plotNormal(1, 1)$labels$y, 'PDF') expect_equal(plotGamma(1, 1)$labels$y, 'PDF') expect_equal(plotBeta(1, 1)$labels$y, 'PDF') expect_equal(plotInvGamma(1, 1)$labels$y, 'PDF') expect_equal(plotLogNormal(1, 1)$labels$y, 'PDF') expect_equal(qinvgamma(1 - (.Machine$double.eps) / 2, 2, 2), Inf) expect_equal(dpareto(c(0, 1, 2), 1, 1), c(0, 0, .25)) expect_equal(dpareto(c(5, 15), 20, 3), c(0, 0)) expect_equal(max(plotNormalInvGamma(3, 100, 51, 216)$data$sig_sq), qgamma(.99, 51, 216) * 100) expect_equal(plotNormalInvGamma(3, 1, 1, 1)$labels$y, 'sig_sq') })
wrap <- function(f, pre, post, envir = parent.frame()) { fmls <- formals(f) called_fmls <- stats::setNames(lapply(names(fmls), as.symbol), names(fmls)) f_call <- as.call(c(substitute(f), called_fmls)) pre <- substitute(pre) post <- substitute(post) fun <- eval(bquote(function(args) { .(pre) .retval <- .(f_call) .(post) }, as.environment(list(f_call = f_call, pre = pre, post = post)))) formals(fun) <- fmls environment(fun) <- envir fun }
library(httpcache) options(width=120) system.time(a <- GET("https://httpbin.org/get")) system.time(b <- GET("https://httpbin.org/get")) identical(a, b) clearCache() startLog() a <- GET("http://httpbin.org/get") b <- GET("http://httpbin.org/get") library(httptest)
NULL methods::setGeneric("fast_extract", signature = methods::signature("x", "y"), function(x, y, ...) standardGeneric("fast_extract")) methods::setMethod( "fast_extract", signature(x = "Raster", y = "SpatialPolygons"), function(x, y, fun = "mean", ...) { fast_extract(x, sf::st_as_sf(y), fun, ...) }) methods::setMethod( "fast_extract", signature(x = "Raster", y = "SpatialPoints"), function(x, y, fun = "mean", ...) { fast_extract(x, sf::st_as_sf(y), fun, ...) }) methods::setMethod( "fast_extract", signature(x = "Raster", y = "SpatialLines"), function(x, y, fun = "mean", ...) { fast_extract(x, sf::st_as_sf(y), fun, ...) }) methods::setMethod( "fast_extract", signature(x = "Raster", y = "sfc"), function(x, y, fun = "mean", ...) { fast_extract(x, sf::st_sf(y), fun, ...) }) methods::setMethod( "fast_extract", signature(x = "Raster", y = "sf"), function(x, y, fun = "mean", ...) { assertthat::assert_that( inherits(x, "Raster"), inherits(y, "sf"), assertthat::is.string(fun), sf::st_crs(x@crs) == sf::st_crs(y), intersecting_extents(x, y)) assertthat::assert_that(all(!geometry_classes(y) %in% c("GEOMETRYCOLLECTION", "MULTIPOINT"))) assertthat::assert_that(fun %in% c("mean", "sum")) if (identical(fun, "mean")) fun2 <- mean if (identical(fun, "sum")) fun2 <- sum sf::st_crs(y) <- sf::st_crs(NA_character_) x@crs <- sp::CRS(NA_character_) geomc <- geometry_classes(y) out <- matrix(NA_real_, nrow = nrow(y), ncol = raster::nlayers(x)) point_idx <- grepl("POINT", geomc, fixed = TRUE) if (any(point_idx)) { out[point_idx, ] <- as.matrix(raster::extract( x = x, y = y[point_idx, ], fun = fun2, df = TRUE, na.rm = FALSE)[, -1, drop = FALSE]) } line_idx <- grepl("LINE", geomc, fixed = TRUE) if (any(line_idx)) { out[line_idx, ] <- as.matrix(raster::extract( x = x, y = y[line_idx, ], fun = fun2, df = TRUE, na.rm = FALSE)[, -1, drop = FALSE]) } poly_idx <- grepl("POLYGON", geomc, fixed = TRUE) if (any(poly_idx)) { if (raster::canProcessInMemory(x, n = 1, verbose = FALSE)) { out[poly_idx, ] <- rcpp_summarize_exactextractr(exactextractr::exact_extract( x, y[poly_idx, ], fun = NULL, progress = FALSE), nrow = sum(poly_idx), ncol = raster::nlayers(x), fun = fun) } else { out[poly_idx, ] <- as.matrix(exactextractr::exact_extract(x, y[poly_idx, ], fun = fun, progress = TRUE)) } } out[abs(out) < 1e-10] <- 0 out } )
library(sf) library(dplyr) old_quiet <- getOption("quiet", default=0) NZ_buffer30 <- hm_get_test("buffer") test_that("Using s2", { expect_true(sf_use_s2()) }) test_that("Grid creation", { options("quiet" = 0) rg <- make_route_grid(NZ_buffer30, "NZ lat-long at 500km", target_km = 500, classify = TRUE, lat_min = -49, lat_max = -32, long_min = 162, long_max = 182) expect_equal(rg@name, "NZ lat-long at 500km") expect_known_value(subset(rg@points, select = -xy), "known/NZ_500km_grid_points") expect_known_value(subset(rg@lattice, select = -geometry), "known/NZ_500km_grid_lattice") }) test_that("Grid creation messaging", { options("quiet" = 1) expect_message(make_route_grid(NZ_buffer30, "NZ lat-long at 300km", target_km = 300, classify = TRUE, lat_min = -49, lat_max = -32, long_min = 162, long_max = 182), "(lattice)|(Classified)|(Calculated)") }) options("quiet" = old_quiet)
.packageName <- 'sindyr' finite_difference = function(x, S) { n = length(x) fdx <- vector(length = n) fdx[1] = (x[2]-x[1])/S for (i in 3:(n-1)) { fdx[i-2] = (x[i] - x[i-2]) / (2*S) } fdx[n] = (x[n] - x[n - 1]) / S return(fdx) }
df_raw <- data.frame(a = 1:2, b = 2:3) varLabels_raw <- data.frame(varName = c("a", "b"), varLabel = c("variable a", "variable b"), stringsAsFactors = FALSE) valLabels_raw <- data.frame(varName = c("a", "a", "b", "b"), value = c(1, 2, 2, 3), valLabel = c("one", "two", "very", "few"), missings = rep("valid", 4), stringsAsFactors = FALSE) test_that("Checks for import_raw", { iris$Species <- as.factor(iris$Species) expect_error(import_raw(df = iris), "At least one of the variables in df is a factor. All meta information on value level has to be stored in valLabels.") varLabels_raw_fac <- data.frame(varName = c("a", "b"), varLabel = c("variable a", "variable b"), stringsAsFactors = TRUE) expect_error(import_raw(df = df_raw, varLabels = varLabels_raw_fac), "One of the variables in varLabels is a factor.") valLabels_raw <- data.frame(varName = c("a", "a", "b", "b"), value = c(1, 2, 2, 3), valLabel = c("one", "two", "very", "few"), missings = rep("valid", 4)) expect_error(import_raw(df = df_raw, varLabels = varLabels_raw_fac, valLabels = valLabels_raw), "One of the variables in varLabels is a factor.") expect_error(import_raw(df = df_raw, mtcars), "varLabels needs to contain the variables 'varName' and 'varLabel'.") expect_error(import_raw(df = df_raw, varLabels_raw, mtcars), "valLabels needs to contain the variables 'varName', 'value', 'valLabel' and 'missings'.") varLabels_raw_nam <- data.frame(varName = c("a", "d"), varLabel = c("variable a", "variable b"), stringsAsFactors = FALSE) expect_error(import_raw(df = df_raw, varLabels = varLabels_raw_nam), "The following variables are not in the data df: d") valLabels_raw_nam <- data.frame(varName = c("a", "d"), value = c(1, 2, 2, 3), valLabel = c("one", "two", "very", "few"), missings = rep("valid", 4), stringsAsFactors = FALSE) expect_error(import_raw(df = df_raw, varLabels = varLabels_raw, valLabels = valLabels_raw_nam), "The following variables are not in the data df: d") varLabels_raw_dup <- data.frame(varName = c("a", "b", "a"), varLabel = c("variable a", "variable b", NA), stringsAsFactors = FALSE) expect_error(import_raw(df = df_raw, varLabels = varLabels_raw_dup), "The following variables have duplicated rows in varLabels: a") valLabels_raw_miss <- data.frame(varName = c("a", "a", "b", "b"), value = c(1, 2, 2, 3), valLabel = c("one", "two", "very", "few"), missings = rep("vali", 4), stringsAsFactors = FALSE) expect_error(import_raw(df = df_raw, varLabels = varLabels_raw, valLabels = valLabels_raw_miss), "All values in column 'missings' of valLabels must be either 'valid' or 'miss'.") }) test_that("import_raw", { out1 <- import_raw(df = df_raw, varLabels = varLabels_raw) expect_equal(out1$dat, df_raw) expect_equal(out1$labels$varLabel, c("variable a", "variable b")) out <- import_raw(df = df_raw, varLabels = varLabels_raw, valLabels = valLabels_raw) expect_equal(out$dat, df_raw) expect_equal(out$labels$varLabel, c(rep("variable a", 2), rep("variable b", 2))) expect_equal(out$labels$labeled, rep("yes", 4)) df <- data.frame(ID = 1:4, sex = c(0, 0, 1, 1), forename = c("Tim", "Bill", "Ann", "Chris"), stringsAsFactors = FALSE) varLabels <- data.frame(varName = c("ID", "sex", "forename"), varLabel = c("Person Identifier", "Sex as self reported", "forename provided by teacher"), stringsAsFactors = FALSE) valLabels <- data.frame(varName = rep("sex", 3), value = c(0, 1, -99), valLabel = c("male", "female", "missing - omission"), missings = c("valid", "valid", "miss"), stringsAsFactors = FALSE) out2 <- import_raw(df = df, varLabels = varLabels, valLabels = valLabels) expect_equal(out2$labels$value, c(NA, -99, 0, 1, NA)) expect_equal(out2$labels$valLabel, c(NA, "missing - omission", "male", "female", NA)) expect_equal(out2$labels$labeled, c("no", "yes", "yes", "yes", "no")) }) test_that("import_raw with tibbles", { out1 <- import_raw(df = df_raw, varLabels = varLabels_raw, valLabels = valLabels_raw) df_raw <- tibble::as_tibble(df_raw) varLabels_raw <- tibble::as_tibble(varLabels_raw) valLabels_raw <- tibble::as_tibble(valLabels_raw) out2 <- import_raw(df = df_raw, varLabels = varLabels_raw, valLabels = valLabels_raw) expect_equal(out1, out2) })
"airy_Ai" <- function(x, mode=0, give=FALSE, strict=TRUE){ x.vec <- as.vector(x) attr <- attributes(x) jj <- .C("airy_Ai_e", as.double(x.vec), as.integer(length(x.vec)), as.integer(mode), val=as.double(x.vec), err=as.double(x.vec), status=as.integer(0*x.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_Bi" <- function(x, mode=0, give=FALSE, strict=TRUE){ x.vec <- as.vector(x) attr <- attributes(x) jj <- .C("airy_Bi_e", as.double(x.vec), as.integer(length(x.vec)), as.integer(mode), val=as.double(x.vec), err=as.double(x.vec), status=as.integer(0*x.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_Ai_scaled" <- function(x, mode=0, give=FALSE, strict=TRUE){ x.vec <- as.vector(x) attr <- attributes(x) jj <- .C("airy_Ai_scaled_e", as.double(x.vec), as.integer(length(x.vec)), as.integer(mode), val=as.double(x.vec), err=as.double(x.vec), status=as.integer(0*x.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_Bi_scaled" <- function(x, mode=0, give=FALSE, strict=TRUE){ x.vec <- as.vector(x) attr <- attributes(x) jj <- .C("airy_Bi_scaled_e", as.double(x.vec), as.integer(length(x.vec)), as.integer(mode), val=as.double(x.vec), err=as.double(x.vec), status=as.integer(0*x.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_Ai_deriv" <- function(x, mode=0, give=FALSE, strict=TRUE){ x.vec <- as.vector(x) attr <- attributes(x) jj <- .C("airy_Ai_deriv_e", as.double(x.vec), as.integer(length(x.vec)), as.integer(mode), val=as.double(x.vec), err=as.double(x.vec), status=as.integer(0*x.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_Bi_deriv" <- function(x, mode=0, give=FALSE, strict=TRUE){ x.vec <- as.vector(x) attr <- attributes(x) jj <- .C("airy_Bi_deriv_e", as.double(x.vec), as.integer(length(x.vec)), as.integer(mode), val=as.double(x.vec), err=as.double(x.vec), status=as.integer(0*x.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_Ai_deriv_scaled" <- function(x, mode=0, give=FALSE, strict=TRUE){ x.vec <- as.vector(x) attr <- attributes(x) jj <- .C("airy_Ai_deriv_scaled_e", as.double(x.vec), as.integer(length(x.vec)), as.integer(mode), val=as.double(x.vec), err=as.double(x.vec), status=as.integer(0*x.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_Bi_deriv_scaled" <- function(x, mode=0, give=FALSE, strict=TRUE){ x.vec <- as.vector(x) attr <- attributes(x) jj <- .C("airy_Bi_deriv_scaled_e", as.double(x.vec), as.integer(length(x.vec)), as.integer(mode), val=as.double(x.vec), err=as.double(x.vec), status=as.integer(0*x.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_zero_Ai" <- function(n, give=FALSE, strict=TRUE){ n.vec <- as.vector(pmax(n,1)) attr <- attributes(n) jj <- .C("airy_zero_Ai_e", as.integer(n.vec), as.integer(length(n.vec)), val=as.double(n.vec), err=as.double(n.vec), status=as.integer(n.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } val[n<1] <- NA if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_zero_Bi" <- function(n, give=FALSE, strict=TRUE){ n.vec <- as.vector(pmax(n,1)) attr <- attributes(n) jj <- .C("airy_zero_Bi_e", as.integer(n.vec), as.integer(length(n.vec)), val=as.double(n.vec), err=as.double(n.vec), status=as.integer(n.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } val[n<1] <- NA if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_zero_Ai_deriv" <- function(n, give=FALSE, strict=TRUE){ n.vec <- as.vector(pmax(n,1)) attr <- attributes(n) jj <- .C("airy_zero_Ai_deriv_e", as.integer(n.vec), as.integer(length(n.vec)), val=as.double(n.vec), err=as.double(n.vec), status=as.integer(n.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } val[n<1] <- NA if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } } "airy_zero_Bi_deriv" <- function(n, give=FALSE, strict=TRUE){ n.vec <- as.vector(pmax(n,1)) attr <- attributes(n) jj <- .C("airy_zero_Bi_deriv_e", as.integer(n.vec), as.integer(length(n.vec)), val=as.double(n.vec), err=as.double(n.vec), status=as.integer(n.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } val[n<1] <- NA if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } }
toXML2_images = function(images, verbose = FALSE, display_progress = TRUE, title_progress = "") { assert(verbose, alw = c(TRUE, FALSE)) if(verbose) message("creating images node") assert(images, cla = "IFC_images") bgm = grep("^bgmean", names(images)) bgs = grep("^bgstd", names(images)) satc = grep("^satcount", names(images)) satp = grep("^satpercent", names(images)) lapply(1:nrow(images), FUN=function(i) { xml_new_node(name = "SO", attrs = c("id" = num_to_string(images[i, "id"]), "imgIFD" = num_to_string(images[i, "imgIFD"]), "mskIFD" = num_to_string(images[i, "mskIFD"]), "spIFD" = num_to_string(images[i, "spIFD"]), "w" = num_to_string(images[i, "w"]), "l" = num_to_string(images[i, "l"]), "fs" = num_to_string(images[i, "fs"]), "cl" = num_to_string(images[i, "cl"]), "ct" = num_to_string(images[i, "ct"]), "objCenterX" = num_to_string(images[i, "objCenterX"]), "objCenterY" = num_to_string(images[i, "objCenterY"]), "bgmean" = paste0(num_to_string(unlist(images[i, bgm])), collapse = "|"), "bgstd" = paste0(num_to_string(unlist(images[i, bgs])), collapse = "|"), "satcount" = paste0(num_to_string(unlist(images[i, satc])), collapse = "|"), "satpercent" = paste0(num_to_string(unlist(images[i, satp])), collapse = "|"))) }) }