code
stringlengths
1
13.8M
tolIntNormN <- function (half.width, sigma.hat = 1, coverage = 0.95, cov.type = "content", conf.level = 0.95, method = "wald.wolfowitz", round.up = TRUE, n.max = 5000, tol = 1e-07, maxiter = 1000) { cov.type <- match.arg(cov.type, c("content", "expectation")) method <- match.arg(method, c("exact", "wald.wolfowitz")) if (method != "wald.wolfowitz") stop("Currently only method='wald.wolfowitz' is allowed.") if (!is.vector(half.width, mode = "numeric") || !all(is.finite(half.width)) || any(half.width <= .Machine$double.eps)) stop(paste("'half.width' must be a numeric vector", "with all positive elements", "and no Missing (NA), Infinite(-Inf, Inf),", "or Undefined (Nan) values.")) if (!is.vector(sigma.hat, mode = "numeric") || !all(is.finite(sigma.hat)) || any(sigma.hat < .Machine$double.eps)) stop(paste("'sigma.hat' must be a numeric vector", "with all positive elements", "and no Missing (NA), Infinite(-Inf, Inf),", "or Undefined (Nan) values.")) if (!is.vector(coverage, mode = "numeric") || !all(is.finite(coverage)) || any(coverage <= .Machine$double.eps) || any(coverage >= 1 - .Machine$double.eps)) stop(paste("'coverage' must be a numeric vector", "with all elements between 0 and 1", "and no Missing (NA), Infinite(-Inf, Inf),", "or Undefined (Nan) values.")) if (!is.vector(n.max, mode = "numeric") || length(n.max) != 1 || !is.finite(n.max) || n.max != trunc(n.max) || n.max < 2) stop("'n.max' must be a positive integer greater than 1") if (!is.vector(maxiter, mode = "numeric") || length(maxiter) != 1 || !is.finite(maxiter) || maxiter != trunc(maxiter) || maxiter < 2) stop("'maxiter' must be a positive integer greater than 1") if (cov.type == "content") { if (!is.vector(conf.level, mode = "numeric") || !all(is.finite(conf.level)) || any(conf.level <= .Machine$double.eps) || any(conf.level >= 1 - .Machine$double.eps)) stop(paste("'conf.level' must be a numeric vector", "with all elements between 0 and 1", "and no Missing (NA), Infinite(-Inf, Inf),", "or Undefined (Nan) values.")) arg.mat <- cbind.no.warn(half.width = as.vector(half.width), sigma.hat = as.vector(sigma.hat), coverage = as.vector(coverage), conf.level = as.vector(conf.level)) for (i in c("half.width", "sigma.hat", "coverage", "conf.level")) assign(i, arg.mat[, i]) N <- length(half.width) n.vec <- numeric(N) fcn.for.root <- function(n, hw, sigma.hat, coverage, conf.level, method) { hw - tolIntNormHalfWidth(n = n, sigma.hat = sigma.hat, coverage = coverage, cov.type = "content", conf.level = conf.level, method = method) } hw.2 <- tolIntNormHalfWidth(n = 2, sigma.hat = sigma.hat, coverage = coverage, cov.type = "content", conf.level = conf.level, method = method) hw.n.max <- tolIntNormHalfWidth(n = n.max, sigma.hat = sigma.hat, coverage = coverage, cov.type = "content", conf.level = conf.level, method = method) for (i in 1:N) { hw.i <- half.width[i] hw.2.i <- hw.2[i] hw.n.max.i <- hw.n.max[i] if (hw.2.i <= hw.i) { n.vec[i] <- 2 } else { if (hw.n.max.i > hw.i) { n.vec[i] <- NA warning(paste("Value of 'half.width' is too small", "for element", i, ". Try increasing the value of 'n.max'.", sep = "")) } else { sigma.hat.i <- sigma.hat[i] coverage.i <- coverage[i] conf.level.i <- conf.level[i] n.vec[i] <- uniroot(fcn.for.root, lower = 2, upper = n.max, f.lower = hw.i - hw.2.i, f.upper = hw.i - hw.n.max.i, hw = hw.i, sigma.hat = sigma.hat.i, coverage = coverage.i, conf.level = conf.level.i, method = method, tol = tol, maxiter = maxiter)$root } } } if (round.up) n.vec <- ceiling(n.vec) ret.val <- n.vec names(ret.val) <- NULL } else { ret.val <- predIntNormN(half.width = half.width, k = 1, n.mean = 1, sigma.hat = sigma.hat, conf.level = coverage, round.up = round.up, n.max = n.max, tol = tol, maxiter = maxiter) } ret.val }
cmaRs.mosek_optimization <- function (i, numBF, sqrtz, Tm, l, alpha, z, L, t, BasisFunctions, n, D, y) { cqo1 <- list(sense = "min") cqo1$c <- rbind(1, matrix(0, nrow <- 2 * numBF + n + 2, ncol <- 1)) cqo1$A <- Matrix(D, sparse = TRUE) blc <- c(t(y), matrix(0, nrow <- 1, ncol <- numBF)) buc <- c(t(y), matrix(0, nrow <- 1, ncol <- numBF)) cqo1$bc <- rbind (blc, buc) ppp <- c(0) for (j in 2:(2 * numBF + n + 2)) { ppp <- c(ppp, -Inf) } qqq <- c(Inf) for (j in 2 : (2 * numBF + n + 2)) { qqq <- c(qqq, Inf) } blx <- c(ppp, sqrtz[i]) bux <- c(qqq, sqrtz[i]) cqo1$bx <- rbind (blx, bux) numcones <- 2 cqo1$cones <- matrix (list (), nrow <- 2, ncol <- numcones) rownames(cqo1$cones) <- c("type", "sub") concones1 <- c(1, (numBF+3) : (numBF + n + 2)) cqo1$cones[ ,1] <- list ("QUAD", concones1) concones2 <- c((2 * numBF + n + 3), (numBF + n + 3) : (2 * numBF + n + 2)) cqo1$cones [ ,2] <- list ("QUAD", concones2) r <- mosek(cqo1) ans <- r$sol$itr$xx Theta <- ans[2 : (numBF + 2)] Tm <- rbind(Tm, Theta) l <- length(which((abs(Theta) > 0.001))) - 1 alpha <- c(alpha, l) m <- BasisFunctions %*% Theta z <- c(z, sqrt(t((y - m)) %*% (y - m))) zz <- t(z) a <- L %*% Theta t <- c(t, sqrt(t(a) %*% a)) tt <- t(t) return(list(Theta = Theta, m = m, t = t, z = z, BasisFunctions = BasisFunctions)) }
generateSpFromFun <- function(raster.stack, parameters, rescale = TRUE, formula = NULL, species.type = "multiplicative", rescale.each.response = TRUE, plot = FALSE) { message("Generating virtual species environmental suitability...\n") approach <- "response" if(!(is(raster.stack, "Raster"))) { stop("raster.stack must be a raster stack object") } if(any(is.na(maxValue(raster.stack)))) { raster.stack <- setMinMax(raster.stack) } n.l <- nlayers(raster.stack) if(n.l != length(parameters)) {stop("Provide as many layers in raster.stack as functions on parameters")} if(any(!(names(parameters) %in% names(raster.stack)) | !(names(raster.stack) %in% names(parameters)))) {stop("Layer names and names of parameters must be identical")} for (i in 1:length(parameters)) { if(any(!(c("fun", "args") %in% names(parameters[[i]])))) {stop("The structure of parameters does not seem correct. Please provide function and arguments for variable '", names(parameters)[i], "'. See help(generateSpFromFun) for more details.", sep = "")} test <- tryCatch(match.fun(parameters[[i]]$fun), error = function(c) "error") if(!inherits(test, "function")) { stop(paste("The function ", parameters[[i]]$fun, " does not exist, please verify spelling.", sep = "")) } if(any(!(names(parameters[[i]]$args) %in% names(formals(fun = test))))) { stop(paste("Arguments of variable '", names(parameters)[i], "' (", paste(names(parameters[[i]]$args), collapse = ", "), ") do not match arguments of the associated function\n List of possible arguments for this function: ", paste(names(formals(fun = test)), collapse = ", "), sep = "")) } rm(test) } if(rescale.each.response) { message(" - The response to each variable was rescaled between 0 and 1. To disable, set argument rescale.each.response = FALSE\n") } if(rescale) { message(" - The final environmental suitability was rescaled between 0 and 1. To disable, set argument rescale = FALSE\n") } suitab.raster <- stack(sapply(names(raster.stack), FUN = function(y) { calc(raster.stack[[y]], fun = function(x) { do.call(match.fun(parameters[[y]]$fun), args = c(list(x), parameters[[y]]$args)) } ) })) for (var in names(raster.stack)) { parameters[[var]]$min <- raster.stack[[var]]@data@min parameters[[var]]$max <- raster.stack[[var]]@data@max } if(rescale.each.response) { suitab.raster <- stack(sapply(names(suitab.raster), function(y) { (suitab.raster[[y]] - suitab.raster[[y]]@data@min) / (suitab.raster[[y]]@data@max - suitab.raster[[y]]@data@min) })) } if(is.null(formula)) { if(species.type == "multiplicative") { formula <- paste(names(suitab.raster), collapse = " * ") suitab.raster <- raster::overlay(suitab.raster, fun = prod) } else if (species.type == "additive") { formula <- paste(names(suitab.raster), collapse = " + ") suitab.raster <- raster::overlay(suitab.raster, fun = sum) } else stop("If you do not provide a formula, please choose either species.type = 'additive' or 'multiplicative'") } else { if(any(!(all.vars(reformulate(formula)) %in% names(suitab.raster)))) { stop("Please verify that the variable names in your formula are correctly spelled") } else if(any(!(names(suitab.raster) %in% all.vars(reformulate(formula))))) { stop("Please verify that your formula contains all the variables of your input raster stack") } else { custom.fun <- NULL eval(parse(text = paste("custom.fun <- function(", paste(names(suitab.raster), collapse = ", "), ") {", formula, "}" ))) suitab.raster <- raster::overlay(suitab.raster, fun = custom.fun) print(formula) } } if(rescale) { suitab.raster <- (suitab.raster - suitab.raster@data@min) / (suitab.raster@data@max - suitab.raster@data@min) } results <- list(approach = approach, details = list(variables = names(parameters), formula = formula, rescale.each.response = rescale.each.response, rescale = rescale, parameters = parameters), suitab.raster = suitab.raster ) if(plot) { plot(results$suitab.raster, main = "Environmental suitability of the virtual species") } class(results) <- append("virtualspecies", class(results)) return(results) }
ui.dispColor <- function() { tabItem( tabName = "dispColor", fluidRow( box( title = "Color/Format Options", status = "primary", solidHeader = TRUE, width = 12, plotOutput("plotDisplay") ), column(12, actionButton("display_redraw", "Redraw display")) ) ) } ui.dispSp <- function() { tabItem( tabName = "dispSp", fluidRow( box( title = "Species Information", status = "primary", solidHeader = TRUE, width = 12, radioButtons("sp_type", "Select species codes to display", choices = list("Mammals" = 1, "Turtles" = 2, "All" = 3)), textOutput("sp_message"), conditionalPanel(condition = "input.sp_type == 1", dataTableOutput("sp1")), conditionalPanel(condition = "input.sp_type == 2", dataTableOutput("sp2")), conditionalPanel(condition = "input.sp_type == 3", dataTableOutput("sp3")) ) ) ) } ui.dispManual <- function() { tabItem( tabName = "dispManual", tags$h5("The height of the manual window is controlled by the 'Map height' input in the sidebar. ", "If the manual opens in a separate window, you can click 'Open in Browser' to display manual in-app"), uiOutput("manual_out") ) }
SDMXSchema <- function(xmlObj, namespaces) { new("SDMXSchema", version = version.SDMXSchema(xmlObj, namespaces)); } version.SDMXSchema <- function(xmlObj, namespaces){ schemaVersion <- NULL for(i in 1:nrow(namespaces)){ parsed <- strsplit(namespaces$uri[i],"/")[[1]]; if(tolower(parsed[3]) == "www.sdmx.org"){ schemaVersion <- gsub("_",".",substr(parsed[substr(parsed,0,1)=="v"],2,nchar(parsed,"w"))); break; } } return(schemaVersion); }
data(NouraguesHD) data(KarnatakaForest) HDmodel <- modelHD(D = NouraguesHD$D, H = NouraguesHD$H, method = "log2") KarnatakaWD <- suppressMessages(getWoodDensity(KarnatakaForest$genus, KarnatakaForest$species, stand = KarnatakaForest$plotId )) filt <- KarnatakaForest$plotId %in% c("BSP20", "BSP14") resultMC <- AGBmonteCarlo( D = KarnatakaForest$D[filt], WD = KarnatakaWD$meanWD[filt], errWD = KarnatakaWD$sdWD[filt], HDmodel = HDmodel ) plot <- KarnatakaForest$plotId[ filt ] context("summary by plot") test_that("summary by plot", { sum <- summaryByPlot(resultMC$AGB_simu, plot) expect_equal(sum, summaryByPlot(resultMC, plot)) expect_is(sum, "data.frame") expect_equal(nrow(sum), length(unique(plot))) expect_equal(ncol(sum), 4) expect_equal(colnames(sum), c("plot", "AGB", "Cred_2.5", "Cred_97.5")) plot[ sample(1:length(plot), 100) ] <- NA expect_failure(expect_equal(sum, summaryByPlot(resultMC$AGB_simu, plot))) }) test_that("summary by plot with the vector", { H <- predictHeight(D = KarnatakaForest$D[filt], model = HDmodel) resultAGB <- computeAGB(D = KarnatakaForest$D[filt], WD = KarnatakaWD$meanWD[filt], H = H) sum <- summaryByPlot(resultAGB, plot) expect_is(sum, "data.frame") expect_length(unique(plot), nrow(sum)) expect_equal(ncol(sum), 2) plot[ sample(1:length(plot), 100) ] <- NA expect_failure(expect_equal(sum, summaryByPlot(resultAGB, plot))) expect_equal(nrow(summaryByPlot(resultAGB, plot)), length(unique(plot)) - 1) }) test_that("summary by plot error", { expect_error( summaryByPlot(resultMC$AGB_simu, plot[1:10]), "vector" ) expect_error( summaryByPlot(as.data.frame(resultMC$AGB_simu), plot), "matrix" ) })
survDabrowska = function(X, Y, deltaX, deltaY){ data = data.frame(X = X, Y = Y, deltaX = deltaX, deltaY = deltaY) if(any(!c("X", "Y", "deltaX", "deltaY") %in% names(data))) stop("data.frame data has to contain the following variables: X, Y, deltaX, deltaY") if(nrow(data)<2) stop("Not enough data") X = data[,"X"] Y = data[,"Y"] deltaX = data[,"deltaX"] deltaY = data[,"deltaY"] if(any(X<=0) | any(Y<=0)) stop("'X' and 'Y' should be positive.") Sx = myOwnKM(time = X, delta = data[,"deltaX"]) Sy = myOwnKM(time = Y, delta = data[,"deltaY"]) SxUnique = unique(Sx[order(Sx$time), c("time", "KM")]) SyUnique = unique(Sy[order(Sy$time), c("time", "KM")]) nX = nY = length(X) uniqueTimeX = unique(unlist(X)) uniqueTimeY = unique(unlist(Y)) numXTimes = length(uniqueTimeX) numYTimes = length(uniqueTimeY) Lam = matrix(NA, nrow=numXTimes, ncol=numYTimes) LamX = matrix(NA, nrow=numXTimes, ncol=numYTimes) LamY = matrix(NA, nrow=numXTimes, ncol=numYTimes) XEventMatr = matrix(NA, nrow=numXTimes, ncol=nX) YEventMatr = matrix(NA, nrow=numYTimes, ncol=nY) XAtRiskMatr = matrix(NA, nrow=numXTimes, ncol=nX) YAtRiskMatr = matrix(NA, nrow=numYTimes, ncol=nY) for(i in 1:nX){ XAtRiskMatr[,i] = (X[i] >= uniqueTimeX) YAtRiskMatr[,i] = (Y[i] >= uniqueTimeY) XEventMatr[,i] = (X[i] == uniqueTimeX)*deltaX[i] YEventMatr[,i] = (Y[i] == uniqueTimeY)*deltaY[i] } atRiskMatr = XAtRiskMatr %*% t(YAtRiskMatr) M11 = XEventMatr %*% t(YEventMatr) M10 = XEventMatr %*% t(YAtRiskMatr) M01 = XAtRiskMatr %*% t(YEventMatr) Lam = M11/atRiskMatr LamX = M10 /atRiskMatr LamY = M01 /atRiskMatr bigL = (LamX*LamY - Lam)/((1 - LamX)*(1 - LamY)) indicesX = data.frame(rowNames = uniqueTimeX, rowIndex = 1:length(uniqueTimeX)) indicesY = data.frame(colNames = uniqueTimeY, colIndex = 1:length(uniqueTimeY)) indicesX = indicesX[order(uniqueTimeX), ] indicesY = indicesY[order(uniqueTimeY), ] DabrowskaEstNew = matrix(NA, nrow=numXTimes+1, ncol=numYTimes+1) DabrowskaEstNew[1, 1] = 1 DabrowskaEstNew[2:nrow(DabrowskaEstNew), 1] = SxUnique["KM"][,1] DabrowskaEstNew[1, 2:ncol(DabrowskaEstNew)] = SyUnique["KM"][,1] colnames(DabrowskaEstNew) = c("0", indicesY$colNames) rownames(DabrowskaEstNew) = c("0", indicesX$rowNames) DabrowskaCDF = 1 - DabrowskaEstNew subBigLNonMiss = 1 - bigL subBigLNonMiss[is.na(subBigLNonMiss)] = 1 rowInd = indicesX$rowIndex colInd = indicesY$colIndex for (i in 1:numXTimes){ for (j in 1:numYTimes){ DabrowskaEstNew[i+1, j+1] = (DabrowskaEstNew[i, j+1] * DabrowskaEstNew[i+1, j] / DabrowskaEstNew[i, j]) * subBigLNonMiss[rowInd[i], colInd[j]] } } DabrowskaEstNew[is.na(DabrowskaEstNew)] = 0 DabrowskaCDF = 1 + DabrowskaEstNew - matrix(DabrowskaEstNew[1, ], nrow = nrow(DabrowskaEstNew), ncol = ncol(DabrowskaEstNew), byrow = TRUE) - matrix(DabrowskaEstNew[, 1], nrow = nrow(DabrowskaEstNew), ncol = ncol(DabrowskaEstNew)) DabrowskaCDF[1, ] = 1 - DabrowskaEstNew[1, ] DabrowskaCDF[ ,1] = 1 - DabrowskaEstNew[ ,1] list(DabrowskaEst = DabrowskaEstNew, DabrowskaCDF = DabrowskaCDF) }
grid_arrange_shared_legend <- function(plots, ncol = length(plots), nrow = 1, position = c("bottom", "right")) { position <- match.arg(position) g <- ggplot2::ggplotGrob(plots[[1]] + ggplot2::theme(legend.position = position))$grobs gb <- sapply(g, function(x) x$name) == "guide-box" if (!all(!gb)) { legend <- g[[which(sapply(g, function(x) x$name) == "guide-box")]] lheight <- sum(legend$height) lwidth <- sum(legend$width) } gl <- lapply(plots, function(x) x + ggplot2::theme(legend.position="none")) if (!all(!gb)) gl <- c(gl, ncol = ncol, nrow = nrow) if (!all(!gb)) { if (position == "bottom") { hei <- grid::unit.c(grid::unit(1, "npc") - lheight, lheight) combined <- gridExtra::arrangeGrob(do.call(gridExtra::arrangeGrob, gl), legend, ncol = 1, heights = hei) } else if (position == "right") { wid <- grid::unit.c(grid::unit(1, "npc") - lwidth, lwidth) combined <- gridExtra::arrangeGrob(do.call(gridExtra::arrangeGrob, gl), legend, ncol = 2, widths = wid) } } else { if (length(gl) == 2) { combined <- gridExtra::grid.arrange(gl[[1]], gl[[2]], ncol = 2, nrow = 1) } else { combined <- gridExtra::arrangeGrob(do.call(gridExtra::arrangeGrob, gl), ncol = 1, nrow = 1) } } grid::grid.newpage() grid::grid.draw(combined) invisible(combined) }
set.seed(1234) test_that("non-confounder functions work", { counts <- ipi %>% metaconfoundr() %>% count_non_confounders() expect_length(counts, 2) expect_named(counts, c("study", "n_non_confounders")) expect_equal(nrow(counts), dplyr::n_distinct(metaconfoundr(ipi)$study)) p11 <- ipi %>% metaconfoundr() %>% plot_non_confounders() p12 <- ipi %>% metaconfoundr() %>% plot_non_confounders(size = 3, geom = ggplot2::geom_point) vdiffr::expect_doppelganger("Non confounder count: bar", p11) vdiffr::expect_doppelganger("Non confounder count: point", p12) })
.isMassObjectList <- function(x) { if (!is.list(x)) { return(FALSE) } length(x) && all(unname(vapply(x, .isMassObject, logical(1L)))) } .stopIfNotIsMassObjectList <- function(x) { if (!.isMassObjectList(x)) { parentCall <- deparse(sys.call(-1L)) stop(parentCall, " : ", sQuote(deparse(substitute(x))), " is no list of MALDIquant::AbstractMassObject objects!", call.=FALSE) } TRUE } isMassSpectrumList <- function(x) { if (!is.list(x)) { return(FALSE) } length(x) && all(unname(vapply(x, isMassSpectrum, logical(1L)))) } .stopIfNotIsMassSpectrumList <- function(x) { if (!isMassSpectrumList(x)) { parentCall <- deparse(sys.call(-1L)) stop(parentCall, " : ", sQuote(deparse(substitute(x))), " is no list of MALDIquant::MassSpectrum objects!", call.=FALSE) } TRUE } isMassPeaksList <- function(x) { if (!is.list(x)) { return(FALSE) } length(x) && all(unname(vapply(x, isMassPeaks, logical(1L)))) } .stopIfNotIsMassPeaksList <- function(x) { if (!isMassPeaksList(x)) { parentCall <- deparse(sys.call(-1L)) stop(parentCall, " : ", sQuote(deparse(substitute(x))), " is no list of MALDIquant::MassPeaks objects!", call.=FALSE) } TRUE }
function(x, y, z) { 3 + 1 }
summary.PA_result <- function(object,...){ cat("\nContaining the estimated attachment function. \n"); cat("Number of bins:", object$g,"\n"); cat("Estimated attachment exponent:", object$alpha, "\n"); if (object$ci[1] == "N") { cat("No possible confidence interval for the estimated attachment exponent.\n"); } else cat("Attachment exponent ","\u00B1", " 2 s.d.", ": (", object$ci[1], ",", object$ci[2],")\n",sep = ""); }
.prepare.fs.interaction <- function(x, data = NULL, label = "", n = 100, xlab = NULL, ylab = NULL, main = NULL, ylim = NULL, xlim = NULL, ...) { if (x$dim > 1){ stop("no method for base smooth dim > 1") } raw <- data[x$base$term][[1]] if (is.null(xlim)){ xlim <- range(raw) } xx <- seq(xlim[1], xlim[2], length = n) nf <- length(x$flev) fac <- rep(x$flev, rep(n, nf)) dat <- data.frame(as.factor(fac), xx) names(dat) <- c(x$fterm, x$base$term) X <- PredictMat(x, dat) xlabel <- if (is.null(xlab)) x$base$term else xlab ylabel <- if (is.null(ylab)) label else ylab return(list( X = X, scale = TRUE, se = FALSE, raw = raw, xlim = xlim, ylim = ylim, xlab = xlabel, ylab = ylabel, main = main, x = xx, n = n, nf = nf )) }
info <- function(...) { dots <- list(...) if(length(dots) == 0) {stop ("You need to pass a corpus object or a transcript object to this function.")} x <- NULL t <- NULL if (class(dots[[1]])=="corpus") { x <- dots[[1]] } else if (class(dots[[1]])=="transcript" ) { t <- dots[[1]] } else { stop ("You need to pass a corpus object or a transcript object to this function. ") } if (!is.null(x)) { transcripts <- data.frame( transcript.name =character(), length.sec =double(), length.formatted =character(), tier.count =integer(), annotations.count =integer(), words.org.count =integer(), words.norm.count =integer(), path =character(), file.encoding =character(), import.result =character(), load.message =character(), media.path.count =integer(), modification.systime =character(), stringsAsFactors =FALSE ) if (length(x@transcripts)>0) { for (i in 1:length(x@transcripts)) { content.org <- x@transcripts[[i]]@annotations$content words.org.count <- lapply(content.org, FUN=stringr::str_count, pattern=options()$act.wordCountRegEx) words.org.count <- sum(unlist(words.org.count)) content.norm <- x@transcripts[[i]]@annotations$content.norm words.norm.count <- lapply(content.norm, FUN=stringr::str_count, pattern=options()$act.wordCountRegEx) words.norm.count <- sum(unlist(words.norm.count)) myRow <- data.frame( transcript.name = x@transcripts[[i]]@name, length.sec = as.double(x@transcripts[[i]]@length.sec), length.formatted = helper_format_time(x@transcripts[[i]]@length.sec), tier.count = as.integer(nrow(x@transcripts[[i]]@tiers)), annotations.count = nrow(x@transcripts[[i]]@annotations), words.org.count = words.org.count, words.norm.count = words.norm.count, path = x@transcripts[[i]]@file.path, file.encoding = x@transcripts[[i]]@file.encoding, import.result = x@transcripts[[i]]@import.result, load.message = x@transcripts[[i]]@load.message, media.path.count = length(x@transcripts[[i]]@media.path), modification.systime = as.character(x@transcripts[[i]]@modification.systime), stringsAsFactors = FALSE ) transcripts[nrow(transcripts)+1,] <- myRow } } rownames(transcripts) <- transcripts$transcript.name temp <- act::tiers_all(x) name.unique <- unique(temp$name) temp2 <- data.frame(tier.name =character(), tier.count =integer(), transcript.count =integer(), transcript.names =character(), annotations.count =integer(), words.org.count =integer(), words.norm.count =integer(), interval.tier.count =integer(), interval.transcript.count =integer(), interval.transcript.names =character(), interval.annotations.count =integer(), interval.words.org.count =integer(), interval.words.norm.count =integer(), text.tier.count =integer(), text.transcript.count =integer(), text.transcript.names =character(), text.annotations.count =integer(), text.tiers.words.org.count =integer(), text.tiers.words.norm.count =integer(), stringsAsFactors = FALSE) if (length(name.unique)>0) { for (i in 1:length(name.unique)) { tiers.current <- temp[which(temp$name==name.unique[i]),] tiers.current.interval <- temp[which(temp$name==name.unique[i] & temp$type=="IntervalTier"),] tiers.current.text <- temp[which(temp$name==name.unique[i] & temp$type=="TextTier"),] myRow <- data.frame( tier.name = name.unique[i], tier.count = nrow(tiers.current), transcript.count = length(unique(tiers.current$transcript.name)), transcript.names = paste(unique(tiers.current$transcript.name), sep="|", collapse="|"), annotations.count = sum(tiers.current$annotations.count), words.org.count = sum(tiers.current$words.org.count), words.norm.count = sum(tiers.current$words.norm.count), interval.tier.count = nrow(tiers.current.interval), interval.transcript.count = length(unique(tiers.current.interval$transcript.name)), interval.transcript.names = paste(unique(tiers.current.interval$transcript.name), sep="|", collapse="|"), interval.annotations.count = sum(tiers.current.interval$annotations.count), interval.words.org.count = sum(tiers.current.interval$words.org.count), interval.words.norm.count = sum(tiers.current.interval$words.norm.count), text.tier.count = nrow(tiers.current.text), text.transcript.count = length(unique(tiers.current.text$transcript.name)), text.transcript.names = paste(unique(tiers.current.text$transcript.name), sep="|", collapse="|"), text.annotations.count = sum(tiers.current.text$annotations.count), text.tiers.words.org.count = sum(tiers.current.text$words.org.count), text.tiers.words.norm.count = sum(tiers.current.text$words.norm.count), stringsAsFactors = FALSE ) temp2[nrow(temp2)+1,] <- myRow } temp2 <- temp2[order(temp2$tier.name),] } rownames(temp2) <- temp2$tier.name info <- list(transcripts=transcripts, tiers=temp2) return(info) } if (!is.null(t)) { tier.names <- t@tiers$name tier.count <- nrow(t@tiers) tiers.detailed <- t@tiers for (i in 1:nrow(tiers.detailed)) { ids <- which(t@annotations$tier.name==tiers.detailed$name[i]) tiers.detailed$annotations.count[i] <- length(ids) words.org.count <- lapply(t@annotations$content[ids], FUN=stringr::str_count, pattern=options()$act.wordCountRegEx) tiers.detailed$words.org.count[i] <- sum(unlist(words.org.count)) words.norm.count <- lapply(t@annotations$content.norm[ids], FUN=stringr::str_count, pattern=options()$act.wordCountRegEx) tiers.detailed$words.norm.count[i] <- sum(unlist(words.norm.count)) } annotations.count <- sum(nrow(t@annotations)) words.org.count <- lapply(t@annotations$content, FUN=stringr::str_count, pattern=options()$act.wordCountRegEx) words.org.count <- sum(unlist(words.org.count)) words.norm.count <- lapply(t@annotations$content.norm, FUN=stringr::str_count, pattern=options()$act.wordCountRegEx) words.norm.count <- sum(unlist(words.norm.count)) info <- list(length.formatted = helper_format_time([email protected]), length.sec = [email protected], words.org.count = words.org.count, words.norm.count = words.norm.count, annotations.count = annotations.count, tier.count = tier.count, tier.names = tier.names, tiers.detailed = tiers.detailed ) return(info) } }
pcrboot <- function( object, type = c("boot", "jack"), B = 100, njack = 1, plot = TRUE, do.eff = TRUE, conf = 0.95, verbose = TRUE, ...) { type <- match.arg(type) if (class(object)[1] != "pcrfit") stop("Use only with objects of class 'pcrfit'!") fetchDATA <- fetchData(object) DATA <- fetchDATA$data PRED.pos <- fetchDATA$pred.pos RESP.pos <- fetchDATA$resp.pos PRED.name <- fetchDATA$pred.name fitted1 <- fitted(object) resid1 <- residuals(object) modLIST <- vector("list", length = B) effLIST <- vector("list", length = B) NR <- nrow(DATA) noCONV <- 0 for (i in 1:B) { newDATA <- DATA if (verbose) { counter(i) flush.console() } if (type == "boot") newDATA[, RESP.pos] <- fitted1 + sample(scale(resid1, scale = FALSE), replace = TRUE) else { sampleVec <- sample(1:NR, njack) newDATA <- newDATA[-sampleVec, ] } newMODEL <- try(pcrfit(data = newDATA, cyc = 1, fluo = 2, model = object$MODEL, verbose = FALSE), silent = TRUE) if (inherits(newMODEL, "try-error")) { noCONV <- noCONV + 1 next } if (plot) plot(newMODEL, ...) modLIST[[i]] <- list(coef = coef(newMODEL), sigma = summary(newMODEL)$sigma, rss = sum(residuals(newMODEL)^2), dfb = abs(coef(newMODEL) - coef(object))/(summary(object)$parameters[, 2]), gof = pcrGOF(newMODEL)) if (do.eff) { EFF <- try(efficiency(newMODEL, plot = FALSE, ...)[c(1, 7:18)], silent = TRUE) if (inherits(EFF, "try-error")) effLIST[[i]] <- NA else effLIST[[i]] <- EFF } } cat("\n\n") if (verbose) cat("fitting converged in ", 100 - (noCONV/B), "% of iterations.\n\n", sep = "") COEF <- t(sapply(modLIST, function(z) z$coef)) RSE <- sapply(modLIST, function(z) z$sigma) RSS <- sapply(modLIST, function(z) z$rss) GOF <- t(sapply(modLIST, function(z) unlist(z$gof))) effDAT <- t(sapply(effLIST, function(z) unlist(z))) statLIST <- list(coef = COEF, rmse = RSE, rss = RSS, gof = GOF, eff = effDAT) confLIST <- lapply(statLIST, function(x) t(apply(as.data.frame(x), 2, function(y) quantile(y, c((1 - conf)/2, 1 - (1 - conf)/2), na.rm = TRUE)))) if (plot) { ndata <- sum(rapply(statLIST, function(x) ncol(x))) par(mfrow = c(6, 5)) par(mar = c(1, 2, 2, 1)) for (i in 1:length(statLIST)) { temp <- as.data.frame(statLIST[[i]]) if (is.vector(statLIST[[i]])) colnames(temp) <- names(statLIST)[i] for (j in 1:ncol(temp)) { if (all(is.na(temp[, j]))) next COL <- switch(names(statLIST)[i], coef = 2, gof = 3, eff = 4) boxplot(temp[, j], main = colnames(temp)[j], col.main = COL, outline = FALSE, ...) abline(h = confLIST[[i]][j, ], col = 2, ...) } } } return(list(ITER = statLIST, CONF = confLIST)) }
if(getRversion() >= "2.15.1") utils::globalVariables(c(".", "X.weights.", "ks_diff", "ks.test")) interplot.lmerMod <- function(m, var1, var2, plot = TRUE, steps = NULL, ci = .95, adjCI = FALSE,hist = FALSE, var2_dt = NA, predPro = FALSE, var2_vals = NULL, point = FALSE, sims = 5000,xmin = NA, xmax = NA, ercolor = NA, esize = 0.5, ralpha = 0.5, rfill = "grey70", stats_cp = "none", txt_caption = NULL, facet_labs = NULL, ...) { m.class <- class(m) if(predPro == TRUE) stop("Predicted probability is estimated only for general linear models.") m.sims <- arm::sim(m, sims) factor_v1 <- factor_v2 <- FALSE if (is.factor(eval(parse(text = paste0("m@frame$", var1)))) & is.factor(eval(parse(text = paste0("m@frame$", var2))))) stop("The function does not support interactions between two factors.") if (is.factor(eval(parse(text = paste0("m@frame$", var1))))) { var1_bk <- var1 var1 <- paste0(var1, levels(eval(parse(text = paste0("m@frame$", var1))))) factor_v1 <- TRUE ifelse(var1 == var2, var12 <- paste0("I(", var1, "^2)"), var12 <- paste0(var2, ":", var1)[-1]) for (i in seq(var12)) { if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) var12[i] <- paste0(var1, ":", var2)[-1][i] if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) stop(paste("Model does not include the interaction of", var1, "and", var2, ".")) } } else if (is.factor(eval(parse(text = paste0("m@frame$", var2))))) { var2_bk <- var2 var2 <- paste0(var2, levels(eval(parse(text = paste0("m@frame$", var2))))) factor_v2 <- TRUE ifelse(var1 == var2, var12 <- paste0("I(", var1, "^2)"), var12 <- paste0(var2, ":", var1)[-1]) for (i in seq(var12)) { if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) var12[i] <- paste0(var1, ":", var2)[-1][i] if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) stop(paste("Model does not include the interaction of", var1, "and", var2, ".")) } } else { ifelse(var1 == var2, var12 <- paste0("I(", var1, "^2)"), var12 <- paste0(var2, ":", var1)) for (i in seq(var12)) { if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) var12[i] <- paste0(var1, ":", var2)[i] if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) stop(paste("Model does not include the interaction of", var1, "and", var2, ".")) } } if (factor_v2) { xmin <- 0 xmax <- 1 steps <- 2 } else { if (is.na(xmin)) xmin <- min(m@frame[var2], na.rm = T) if (is.na(xmax)) xmax <- max(m@frame[var2], na.rm = T) if (is.null(steps)) { steps <- eval(parse(text = paste0("length(unique(na.omit(m@frame$", var2, ")))"))) } if (steps > 100) steps <- 100 } coef <- data.frame(fake = seq(xmin, xmax, length.out = steps), coef1 = NA, ub = NA, lb = NA) coef_df <- data.frame(fake = numeric(0), coef1 = numeric(0), ub = numeric(0), lb = numeric(0), model = character(0)) if (factor_v1) { for (j in 1:(length(levels(eval(parse(text = paste0("m@frame$", var1_bk))))) - 1)) { for (i in 1:steps) { coef$coef1[i] <- mean(m.sims@fixef[, match(var1[j + 1], unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))]) coef$ub[i] <- quantile(m.sims@fixef[, match(var1[j + 1], unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))], (1 - ci) / 2) coef$lb[i] <- quantile(m.sims@fixef[, match(var1[j + 1], unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))], 1 - (1 - ci) / 2) } if (plot == TRUE) { coef$value <- var1[j + 1] coef_df <- rbind(coef_df, coef) if (hist == TRUE) { if (is.na(var2_dt)) { var2_dt <- eval(parse(text = paste0("m@frame$", var2))) } else { var2_dt <- var2_dt } } } else { names(coef) <- c(var2, "coef", "ub", "lb") return(coef) } } if (is.null(facet_labs)) facet_labs <- unique(coef_df$value) coef_df$value <- factor(coef_df$value, labels = facet_labs) interplot.plot(m = coef_df, hist = hist, var2_dt = var2_dt, point = point, ercolor = ercolor, esize = esize, ralpha = ralpha, rfill = rfill, ci_diff = ci_diff, ks_diff = ks_diff, stats_cp = stats_cp, txt_caption = txt_caption, ...) + facet_grid(. ~ value) } else if (factor_v2) { for (j in 1:(length(levels(eval(parse(text = paste0("m@frame$", var2_bk))))) - 1)) { for (i in 1:steps) { coef$coef1[i] <- mean(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))]) coef$ub[i] <- quantile(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))], (1 - ci) / 2) coef$lb[i] <- quantile(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))], 1 - (1 - ci) / 2) } if (plot == TRUE) { coef$value <- var2[j + 1] coef_df <- rbind(coef_df, coef) if (hist == TRUE) { if (is.na(var2_dt)) { var2_dt <- eval(parse(text = paste0("m@frame$", var2))) } else { var2_dt <- var2_dt } } } else { names(coef) <- c(var2, "coef", "ub", "lb") return(coef) } } if (is.null(facet_labs)) facet_labs <- unique(coef_df$value) coef_df$value <- factor(coef_df$value, labels = facet_labs) interplot.plot(m = coef_df, hist = hist, var2_dt = var2_dt, point = point, ercolor = ercolor, esize = esize, ralpha = ralpha, rfill = rfill, ci_diff = ci_diff, ks_diff = ks_diff, stats_cp = stats_cp, txt_caption = txt_caption, ...) + facet_grid(. ~ value) } else { multiplier <- if (var1 == var2) 2 else 1 for (i in 1:steps) { coef$coef1[i] <- mean(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + multiplier * coef$fake[i] * m.sims@fixef[, match(var12, unlist(dimnames(m@pp$X)[2]))]) coef$ub[i] <- quantile(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + multiplier * coef$fake[i] * m.sims@fixef[, match(var12, unlist(dimnames(m@pp$X)[2]))], (1 - ci) / 2) coef$lb[i] <- quantile(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + multiplier * coef$fake[i] * m.sims@fixef[, match(var12, unlist(dimnames(m@pp$X)[2]))], 1 - (1 - ci) / 2) } multiplier <- if (var1 == var2) 2 else 1 min_sim <- m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + multiplier * xmin * m.sims@fixef[, match(var12, unlist(dimnames(m@pp$X)[2]))] max_sim <- m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + multiplier * xmax * m.sims@fixef[, match(var12, unlist(dimnames(m@pp$X)[2]))] diff <- max_sim - min_sim ci_diff <- c( quantile(diff, (1 - ci) / 2), quantile(diff, 1 - (1 - ci) / 2) ) if (plot == TRUE) { if (hist == TRUE) { if (is.na(var2_dt)) { var2_dt <- eval(parse(text = paste0("m@frame$", var2))) } else { var2_dt <- var2_dt } } interplot.plot(m = coef, hist = hist, var2_dt = var2_dt, point = point, ercolor = ercolor, esize = esize, ralpha = ralpha, rfill = rfill, ci_diff = ci_diff, ks_diff = ks_diff, stats_cp = stats_cp, txt_caption = txt_caption, ...) } else { names(coef) <- c(var2, "coef", "ub", "lb") return(coef) } } } interplot.glmerMod <- function(m, var1, var2, plot = TRUE, steps = NULL, ci = .95, adjCI = FALSE, hist = FALSE, var2_dt = NA, predPro = FALSE, var2_vals = NULL, point = FALSE, sims = 5000, xmin = NA, xmax = NA, ercolor = NA, esize = 0.5, ralpha = 0.5, rfill = "grey70", stats_cp = "none", txt_caption = NULL, facet_labs = NULL, ...) { m.class <- class(m) m.sims <- arm::sim(m, sims) factor_v1 <- factor_v2 <- FALSE if (is.factor(eval(parse(text = paste0("m@frame$", var1)))) & is.factor(eval(parse(text = paste0("m@frame$", var2))))) stop("The function does not support interactions between two factors.") if (is.factor(eval(parse(text = paste0("m@frame$", var1))))) { var1_bk <- var1 var1 <- paste0(var1, levels(eval(parse(text = paste0("m@frame$", var1))))) factor_v1 <- TRUE ifelse(var1 == var2, var12 <- paste0("I(", var1, "^2)"), var12 <- paste0(var2, ":", var1)[-1]) for (i in seq(var12)) { if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) var12[i] <- paste0(var1, ":", var2)[-1][i] if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) stop(paste("Model does not include the interaction of", var1, "and", var2, ".")) } } else if (is.factor(eval(parse(text = paste0("m@frame$", var2))))) { var2_bk <- var2 var2 <- paste0(var2, levels(eval(parse(text = paste0("m@frame$", var2))))) factor_v2 <- TRUE ifelse(var1 == var2, var12 <- paste0("I(", var1, "^2)"), var12 <- paste0(var2, ":", var1)[-1]) for (i in seq(var12)) { if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) var12[i] <- paste0(var1, ":", var2)[-1][i] if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) stop(paste("Model does not include the interaction of", var1, "and", var2, ".")) } } else { ifelse(var1 == var2, var12 <- paste0("I(", var1, "^2)"), var12 <- paste0(var2, ":", var1)) for (i in seq(var12)) { if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) var12[i] <- paste0(var1, ":", var2)[i] if (!var12[i] %in% unlist(dimnames(m@pp$X)[2])) stop(paste("Model does not include the interaction of", var1, "and", var2, ".")) } } if (factor_v2) { xmin <- 0 xmax <- 1 steps <- 2 } else { if (is.na(xmin)) xmin <- min(m@frame[var2], na.rm = T) if (is.na(xmax)) xmax <- max(m@frame[var2], na.rm = T) if (is.null(steps)) { steps <- eval(parse(text = paste0("length(unique(na.omit(m@frame$", var2, ")))"))) } if (steps > 100) steps <- 100 } coef <- data.frame(fake = seq(xmin, xmax, length.out = steps), coef1 = NA, ub = NA, lb = NA) coef_df <- data.frame(fake = numeric(0), coef1 = numeric(0), ub = numeric(0), lb = numeric(0), model = character(0)) if (factor_v1) { if(predPro == TRUE) stop("The current version does not support estimating predicted probabilities for factor base terms.") for (j in 1:(length(levels(eval(parse(text = paste0("m@frame$", var1_bk))))) - 1)) { for (i in 1:steps) { coef$coef1[i] <- mean(m.sims@fixef[, match(var1[j + 1], unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))]) coef$ub[i] <- quantile(m.sims@fixef[, match(var1[j + 1], unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))], (1 - ci) / 2) coef$lb[i] <- quantile(m.sims@fixef[, match(var1[j + 1], unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))], 1 - (1 - ci) / 2) } if (plot == TRUE) { coef$value <- var1[j + 1] coef_df <- rbind(coef_df, coef) if (hist == TRUE) { if (is.na(var2_dt)) { var2_dt <- eval(parse(text = paste0("m@frame$", var2))) } else { var2_dt <- var2_dt } } } else { names(coef) <- c(var2, "coef", "ub", "lb") return(coef) } } if (is.null(facet_labs)) facet_labs <- unique(coef_df$value) coef_df$value <- factor(coef_df$value, labels = facet_labs) interplot.plot(m = coef_df, hist = hist, steps = steps, var2_dt = var2_dt, point = point, ercolor = ercolor, esize = esize, ralpha = ralpha, rfill = rfill, stats_cp = "none", txt_caption = NULL, ...) + facet_grid(. ~ value) } else if (factor_v2) { if(predPro == TRUE) stop("The current version does not support estimating predicted probabilities for factor base terms.") for (j in 1:(length(levels(eval(parse(text = paste0("m@frame$", var2_bk))))) - 1)) { for (i in 1:steps) { coef$coef1[i] <- mean(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))]) coef$ub[i] <- quantile(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))], (1 - ci) / 2) coef$lb[i] <- quantile(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + coef$fake[i] * m.sims@fixef[, match(var12[j], unlist(dimnames(m@pp$X)[2]))], 1 - (1 - ci) / 2) } if (plot == TRUE) { coef$value <- var2[j + 1] coef_df <- rbind(coef_df, coef) if (hist == TRUE) { if (is.na(var2_dt)) { var2_dt <- eval(parse(text = paste0("m@frame$", var2))) } else { var2_dt <- var2_dt } } } else { names(coef) <- c(var2, "coef", "ub", "lb") return(coef) } } if (is.null(facet_labs)) facet_labs <- unique(coef_df$value) coef_df$value <- factor(coef_df$value, labels = facet_labs) interplot.plot(m = coef_df, steps = steps, hist = hist, var2_dt = var2_dt, point = point, ercolor = ercolor, esize = esize, ralpha = ralpha, rfill = rfill, stats_cp = "none", txt_caption = NULL, ...) + facet_grid(. ~ value) } else { if(predPro == TRUE){ if(is.null(var2_vals)) stop("The predicted probabilities cannot be estimated without defining 'var2_vals'.") df <- data.frame(m$model) df[[names(m@flist)]] <- NULL if(sum(grep("X.weights.", names(df))) != 0) df <- select(df, -X.weights.) df_temp <- select(df, 1) df <- df[-1] %>% map(function(var){ if(is.factor(var)){ model.matrix(~ var - 1)[, -1] %>% as.data.frame() }else{ as.numeric(var) } }) for(i in seq(df)){ if(!is.data.frame(df[[i]])){ namesUpdate <- c(names(df_temp), names(df)[[i]]) df_temp <- cbind(df_temp, df[[i]]) names(df_temp) <- namesUpdate }else{ df_temp <- cbind(df_temp, df[[i]]) } } df <- df_temp names(df)[1] <- "(Intercept)" df$`(Intercept)` <- 1 if(var1 == var2){ names(df) <- sub("I\\.(.*)\\.2\\.", "I\\(\\1\\^2\\)", names(df)) } iv_medians <- summarize_all(df, funs(median(., na.rm = TRUE))) fake_data <- iv_medians[rep(1:nrow(iv_medians), each=steps*length(var2_vals)), ] fake_data[[var1]] <- with(df, rep(seq(min(get(var1)), max(get(var1)), length.out=steps), steps=length(var2_vals))) fake_data[[var2]] <- rep(var2_vals, each=steps) fake_data[[var12]] <- fake_data[[var1]] * fake_data[[var2]] pp <- rowMeans(plogis(data.matrix(fake_data) %*% t(data.matrix(m.sims@fixef)))) row_quantiles <- function (x, probs) { naValue <- NA storage.mode(naValue) <- storage.mode(x) nrow <- nrow(x) q <- matrix(naValue, nrow = nrow, ncol = length(probs)) if (nrow > 0L) { t <- quantile(x[1L, ], probs = probs) colnames(q) <- names(t) q[1L, ] <- t if (nrow >= 2L) { for (rr in 2:nrow) { q[rr, ] <- quantile(x[rr, ], probs = probs) } } } else { t <- quantile(0, probs = probs) colnames(q) <- names(t) } q <- drop(q) q } pp_bounds <- row_quantiles(plogis(data.matrix(fake_data) %*% t(data.matrix(m.sims@fixef))), prob = c((1 - ci)/2, 1 - (1 - ci)/2)) pp <- cbind(pp, pp_bounds) pp <- pp*100 colnames(pp) <- c("coef1", "lb", "ub") pp <- cbind(fake_data[, c(var1, var2)], pp) pp[,var2] <- as.factor(pp[,var2]) names(pp)[1] <- "fake" names(pp)[2] <- "value" coef <- pp } else { multiplier <- if (var1 == var2) 2 else 1 for (i in 1:steps) { coef$coef1[i] <- mean(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + multiplier * coef$fake[i] * m.sims@fixef[, match(var12, unlist(dimnames(m@pp$X)[2]))]) coef$ub[i] <- quantile(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + multiplier * coef$fake[i] * m.sims@fixef[, match(var12, unlist(dimnames(m@pp$X)[2]))], (1 - ci) / 2) coef$lb[i] <- quantile(m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + multiplier * coef$fake[i] * m.sims@fixef[, match(var12, unlist(dimnames(m@pp$X)[2]))], 1 - (1 - ci) / 2) } } multiplier <- if (var1 == var2) 2 else 1 min_sim <- m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + multiplier * xmin * m.sims@fixef[, match(var12, unlist(dimnames(m@pp$X)[2]))] max_sim <- m.sims@fixef[, match(var1, unlist(dimnames(m@pp$X)[2]))] + multiplier * xmax * m.sims@fixef[, match(var12, unlist(dimnames(m@pp$X)[2]))] diff <- max_sim - min_sim ci_diff <- c( quantile(diff, (1 - ci) / 2), quantile(diff, 1 - (1 - ci) / 2) ) if (plot == TRUE) { if (hist == TRUE) { if (is.na(var2_dt)) { var2_dt <- eval(parse(text = paste0("m@frame$", var2))) } else { var2_dt <- var2_dt } } interplot.plot(m = coef, steps = steps, hist = hist, predPro = predPro, var2_vals = var2_vals, var2_dt = var2_dt, point = point, ercolor = ercolor, esize = esize, ralpha = ralpha, rfill = rfill, stats_cp = "none", txt_caption = NULL, ...) } else { if(predPro == TRUE){ names(coef) <- c(var2, paste0("values_in_", var1), "coef", "ub", "lb") } else { names(coef) <- c(var2, "coef", "ub", "lb") } return(coef) } } }
get_example_filenames <- function( folder_name = get_default_pureseqtm_folder() ) { pureseqtmr::check_pureseqtm_installation(folder_name) pureseqtm_folder <- file.path(folder_name, "PureseqTM_Package") testthat::expect_true(dir.exists(pureseqtm_folder)) pureseqtm_examples_folder <- file.path(pureseqtm_folder, "example") testthat::expect_true(dir.exists(pureseqtm_examples_folder)) list.files( pureseqtm_examples_folder, full.names = TRUE ) }
verifyFunctionReturnTypesDefinition <- function(object_o_1, requiresFullInstrumentation_b_1 = TRUE) { buildReturnValue <- function(validity_b, intent_s, msg_s) { list(validity = validity_b, check = ifelse(requiresFullInstrumentation_b_1, 'full instrumentation check', 'partial instrumentation check'), class = getObjectClassNames(object_o_1)$classname, intent = intent_s, message = msg_s) } mef <- function(x_s) strBracket(strJoin(x_s)) verifyFormat <- function(sof_l) { brv <- function(validity_b, msg_s) { buildReturnValue(validity_b, 'function return types information format', msg_s) } if (!sof_l$frt) return(brv(FALSE, paste('no parameter', frtcn, 'definition in class'))) fn <- sof_l$instrumented_fn if (!data.table::is.data.table(fn)) return(brv(FALSE, paste('parameter', frtcn, 'wrongly instrumented in class. Must be a data.table'))) expected_column_names <- c('function_name', 'return_value') if (length(setdiff(expected_column_names, colnames(fn))) != 0) return(brv(FALSE, paste('wrong column name, got', mef(colnames(fn)), 'expected were', mef(expected_column_names)))) brv(TRUE, 'verified correct') } verifyContent <- function(sof_l) { brv <- function(validity_b, msg_s) { buildReturnValue(validity_b, 'function return types information content', msg_s) } fn <- sof_l$instrumented_fn if (length(unique(fn$function_name)) != length(fn$function_name)) return(brv(FALSE, 'unicity issue with declared function names')) ofn <- getObjectFunctionNames(object_o_1) sd <- setdiff(fn$function_name, ofn) if (length(sd) != 0) return(brv(FALSE, paste('unknown function name:', strJoin(strBracket(sd))))) sd <- setdiff(ofn, fn$function_name) if (requiresFullInstrumentation_b_1 && length(sd) != 0) return(brv(FALSE, paste('missing function declarations:', strJoin(strBracket(sd))))) rv <- unique(fn$return_value) cv <- sapply(rv, function(e) { FunctionParameterName(e)$isSemanticName() }, simplify = FALSE) if (any(cv == FALSE)) { w <- which(cv == FALSE) return(brv(FALSE, paste('wrong return value declaration', strBracket(rv[w])))) } brv(TRUE, 'verified correct') } sof <- retrieveSupportedObjectInformation(object_o_1) frtcn <- strBracket(defineFunctionReturnTypesParameterName()) rv <- verifyFormat(sof) if (!rv$validity) return(buildReturnValue(FALSE, paste(frtcn, 'format verification'), paste('failure', rv$intent, rv$message))) rv <- verifyContent(sof) if (!rv$validity) return(buildReturnValue(FALSE, paste(frtcn, 'content verification'), paste('failure', rv$intent, rv$message))) buildReturnValue(TRUE, 'naming and instrumentation format and content seems good', 'success') }
library(testthat) library(mrgsolve) library(dplyr) Sys.setenv(R_TESTS="") options("mrgsolve_mread_quiet"=TRUE) context("test-mread") test_that("ETA(n) in $ODE is error", { code <- '$OMEGA 1\n$ODE double a = ETA(1);' expect_error(mcode("test-mread-eta", code, compile = FALSE)) }) test_that("Warning with no $CMT or $INIT", { code <- '$OMEGA 1\n$ODE double a = 2;' expect_warning(mcode("test-mread-cmt", code,quiet=FALSE,compile=FALSE)) }) test_that("read in rmd file", { mod <- mread("popex.Rmd", modlib(), compile = FALSE) expect_is(mod, "mrgmod") }) test_that("ERROR is alias for TABLE", { code <- "$ERROR double x=2;" expect_is(mcode("error-is-table", code), "mrgmod") })
SDMXStructureType <- function(xmlObj, namespaces, resource){ new("SDMXStructureType", SDMXType(xmlObj), subtype = type.SDMXStructureType(xmlObj, namespaces, resource)); } type.SDMXStructureType <- function(xmlObj, namespaces, resource){ sdmxVersion <- version.SDMXSchema(xmlObj, namespaces) VERSION.21 <- sdmxVersion == "2.1" messageNsString <- "message" if(isRegistryInterfaceEnvelope(xmlObj, FALSE)) messageNsString <- "registry" messageNs <- findNamespace(namespaces, messageNsString) strNs <- findNamespace(namespaces, "structure") strType <- NULL if(VERSION.21){ if(length(strNs)>0){ dsXML <- getNodeSet(xmlObj, "//ns:DataStructures", namespaces = strNs) ccXML <- getNodeSet(xmlObj, "//ns:Concepts", namespaces = strNs) clXML <- getNodeSet(xmlObj, "//ns:Codelists", namespaces = strNs) if(length(dsXML)>0 & any(length(ccXML)>0,length(clXML)>0)){ strType <- "DataStructureDefinitionsType" }else{ structuresXML <- getNodeSet(xmlObj, "//ns:Structures", namespaces = messageNs) strType <- paste(xmlName(xmlChildren(structuresXML[[1]])[[1]]), "Type", sep="") } } }else{ if(length(messageNs)>0){ flowXML <- getNodeSet(xmlObj, "//ns:Dataflows", namespaces = messageNs) dsXML <- getNodeSet(xmlObj, "//ns:KeyFamilies", namespaces = messageNs) ccXML <- getNodeSet(xmlObj, "//ns:Concepts", namespaces = messageNs) clXML <- getNodeSet(xmlObj, "//ns:CodeLists", namespaces = messageNs) if(all(c(length(dsXML)>0, length(ccXML)>0, length(clXML)>0))){ strType <- "DataStructureDefinitionsType" }else{ if(length(ccXML)>0) return("ConceptsType") if(length(clXML)>0) return("CodelistsType") if(length(flowXML)>0) return("DataflowsType") if(length(dsXML)>0){ if(is.null(resource)){ strType <- "DataStructuresType" }else{ strType <- switch(resource, "dataflow" = "DataflowsType", "datastructure" = "DataStructuresType") } } } } } return(strType) } if (!isGeneric("getStructureType")) setGeneric("getStructureType", function(obj) standardGeneric("getStructureType")); setMethod(f = "getStructureType", signature = "SDMXStructureType", function(obj){ return(obj@subtype) })
aul<-function (formula, d, data = NULL, na.action, ...) { d <- as.matrix(d) d1 <- d[1L] aules <- function(formula, d1, data = NULL, na.action) { cal <- match.call(expand.dots = FALSE) mat <- match(c("formula", "data", "na.action"), names(cal)) cal <- cal[c(1L, mat)] cal[[1L]] <- as.name("model.frame") cal <- eval(cal) y <- model.response(cal) md <- attr(cal, "terms") x <- model.matrix(md, cal, contrasts) s <- t(x) %*% x xin <- solve(s) bb <- xin %*% t(x) %*% y I <- diag(NCOL(x)) fd <- solve(s + I) %*% (s + d1 * I) bal <- (I - (1 - d1)^2 * solve(s + I) %*% solve(s + I)) %*% bb colnames(bal) <- c("Estimate") ev <- (t(y) %*% y - t(bb) %*% t(x) %*% y)/(NROW(x) - NCOL(x)) ev <- diag(ev) dbd <- ev * (I + (1 - d1) * solve(s + I)) %*% fd %*% xin %*% fd %*% (I + (1 - d1) * solve(s + I)) Standard_error <- sqrt(diag(abs(dbd))) dbt <- t(bal) dbd <- ev * (I + (1 - d1) * solve(s + I)) %*% fd %*% xin %*% fd %*% (I + (1 - d1) * solve(s + I)) sdbd_inv <- (sqrt(diag(abs(dbd))))^-1 sdbd_inv_mat <- diag(sdbd_inv) if (NCOL(dbt) == 1L) tbd <- dbt * sdbd_inv else tbd <- dbt %*% sdbd_inv_mat hggh <- t(tbd) bibet <- -(1 - d1)^2 * solve(s + I) %*% solve(s + I) %*% bb bibets <- bibet %*% t(bibet) mse <- dbd + bibets mse1 <- sum(diag(mse)) mse1 <- round(mse1, digits = 4L) names(mse1) <- c("MSE") tst <- t(2L * pt(-abs(tbd), df <- (NROW(x) - NCOL(x)))) colnames(tst) <- c("p_value") colnames(hggh) <- c("t_statistic") ans1 <- cbind(bal, Standard_error, hggh, tst) ans <- round(ans1, digits = 4L) anw <- list(`*****Almost Unbiased Liu Estimator*****` = ans, `*****Mean square error value*****` = mse1) return(anw) } npt <- aules(formula, d1, data, na.action) plotaul <- function(formula, d, data = NULL, na.action, ...) { i <- 0 arr <- 0 for (i in 1:NROW(d)) { if (d[i] < 0L) d[i] <- 0L else d[i] <- d[i] if (d[i] > 1L) d[i] <- 1L else d[i] <- d[i] aulm <- function(formula, d, data, na.action, ...) { cal <- match.call(expand.dots = FALSE) mat <- match(c("formula", "data", "na.action"), names(cal)) cal <- cal[c(1L, mat)] cal[[1L]] <- as.name("model.frame") cal <- eval(cal) y <- model.response(cal) md <- attr(cal, "terms") x <- model.matrix(md, cal, contrasts) s <- t(x) %*% x xin <- solve(s) bb <- xin %*% t(x) %*% y I <- diag(NCOL(x)) fd <- solve(s + I) %*% (s + d * I) bal <- (I - (1 - d)^2 * solve(s + I) %*% solve(s + I)) %*% bb ev <- (t(y) %*% y - t(bb) %*% t(x) %*% y)/(NROW(x) - NCOL(x)) ev <- diag(ev) dbd <- ev * (I + (1 - d) * solve(s + I)) %*% fd %*% xin %*% fd %*% (I + (1 - d) * solve(s + I)) bibet <- -(1 - d)^2 * solve(s + I) %*% solve(s + I) %*% bb bibets <- bibet %*% t(bibet) mse <- dbd + bibets mse1 <- sum(diag(mse)) return(mse1) } arr[i] <- aulm(formula, d[i], data, na.action) } MSE <- arr parameter <- d pvl <- cbind(parameter, MSE) colnames(pvl) <- c("Parameter", "MSE") sval <- pvl return(sval) } paul <- plotaul(formula, d, data, na.action) if (nrow(d) > 1L) val <- paul else val <- npt val }
expected <- eval(parse(text="c(-1, -0.5, 0, 0.5, 1)")); test(id=0, code={ argv <- eval(parse(text="list(c(-1, -0.5, 0, 0.5, 1))")); do.call(`invisible`, argv); }, o=expected);
est <- function (f, est_matrix, n_sample, l1_matrix, l2_matrix, cutp0, cutp1){ if (nrow(l1_matrix) == 1 & nrow(l2_matrix) == 1){ est_samples_cutp0 <- array(0, dim = c(nrow(l2_matrix), n_sample)) est_samples_cutp1 <- array(0, dim = c(nrow(l2_matrix), n_sample)) est_samples <- array(0, dim = c(nrow(l2_matrix), n_sample)) if (sum(cutp0 != cutp1) == 0){ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[, , n_s] %*% t(l2_matrix) est_samples[, n_s] <- 1 - f(temp) } }else if(sum(cutp1 != 0) == 0){ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[, , n_s] %*% t(l2_matrix) - cutp0[n_s] est_samples[, n_s] <- f(temp) } }else{ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[, , n_s] %*% t(l2_matrix) est_samples_cutp0[, n_s] <- temp - cutp0[n_s] est_samples_cutp1[, n_s] <- temp - cutp1[n_s] est_samples[, n_s] <- f(est_samples_cutp0[, n_s]) - f(est_samples_cutp1[, n_s]) } } }else if (nrow(l1_matrix) == 1 & nrow(l2_matrix) > 1){ est_samples_cutp0 <- array(0, dim = c(nrow(l2_matrix), n_sample)) est_samples_cutp1 <- array(0, dim = c(nrow(l2_matrix), n_sample)) est_samples <- array(0, dim = c(nrow(l2_matrix), n_sample)) if (sum(cutp0 != cutp1) == 0){ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[, colnames(l2_matrix), n_s] %*% t(l2_matrix) est_samples[, n_s] <- 1 - f(temp) } }else if(sum(cutp1 != 0) == 0){ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[, colnames(l2_matrix), n_s] %*% t(l2_matrix) - cutp0[n_s] est_samples[, n_s] <- f(temp) } }else{ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[, colnames(l2_matrix), n_s] %*% t(l2_matrix) est_samples_cutp0[, n_s] <- temp - cutp0[n_s] est_samples_cutp1[, n_s] <- temp - cutp1[n_s] est_samples[, n_s] <- f(est_samples_cutp0[, n_s]) - f(est_samples_cutp1[, n_s]) } } }else if (nrow(l2_matrix) == 1 & nrow(l1_matrix) > 1){ est_samples_cutp0 <- array(0, dim = c(nrow(l1_matrix), n_sample)) est_samples_cutp1 <- array(0, dim = c(nrow(l1_matrix), n_sample)) est_samples <- array(0, dim = c(nrow(l1_matrix), n_sample)) if (sum(cutp0 != cutp1) == 0){ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[colnames(l1_matrix), , n_s] %*% t(l2_matrix) est_samples[, n_s] <- 1 - f(temp) } }else if(sum(cutp1 != 0) == 0){ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[colnames(l1_matrix), , n_s] %*% t(l2_matrix) - cutp0[n_s] est_samples[, n_s] <- f(temp) } }else{ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[colnames(l1_matrix), , n_s] %*% t(l2_matrix) est_samples_cutp0[, n_s] <- temp - cutp0[n_s] est_samples_cutp1[, n_s] <- temp - cutp1[n_s] est_samples[, n_s] <- f(est_samples_cutp0[, n_s]) - f(est_samples_cutp1[, n_s]) } } }else{ est_samples_cutp0 <- array(0, dim = c(nrow(l1_matrix), nrow(l2_matrix), n_sample)) est_samples_cutp1 <- array(0, dim = c(nrow(l1_matrix), nrow(l2_matrix), n_sample)) est_samples <- array(0, dim = c(nrow(l1_matrix), nrow(l2_matrix), n_sample)) if (sum(cutp0 != cutp1) == 0){ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[colnames(l1_matrix), colnames(l2_matrix), n_s] %*% t(l2_matrix) est_samples[,, n_s] <- 1 - f(temp) } }else if(sum(cutp1 != 0) == 0){ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[colnames(l1_matrix), colnames(l2_matrix), n_s] %*% t(l2_matrix) - cutp0[n_s] est_samples[,, n_s] <- f(temp) } }else{ for (n_s in 1:n_sample){ temp <- l1_matrix %*% est_matrix[colnames(l1_matrix), colnames(l2_matrix),n_s] %*% t(l2_matrix) est_samples_cutp0[,, n_s] <- temp - cutp0[n_s] est_samples_cutp1[,, n_s] <- temp - cutp1[n_s] est_samples[,, n_s] <- f(est_samples_cutp0[,, n_s]) - f(est_samples_cutp1[,, n_s]) } } } return(est_samples) }
NULL setClass('lcMethodFlexmix', contains = 'lcMethod') lcMethodFlexmix = function( formula, formula.mb = ~ 1, time = getOption('latrend.time'), id = getOption('latrend.id'), nClusters = 2, ... ) { mc = match.call.all() mc$Class = 'lcMethodFlexmix' do.call(new, as.list(mc)) } setMethod('getArgumentDefaults', signature('lcMethodFlexmix'), function(object) { c( formals(lcMethodFlexmix), formals(flexmix::flexmix), callNextMethod() ) }) setMethod('getArgumentExclusions', signature('lcMethodFlexmix'), function(object) { union( callNextMethod(), c('data', 'concomitant', 'k') ) }) setMethod('getName', signature('lcMethodFlexmix'), function(object) 'flexmix') setMethod('getShortName', signature('lcMethodFlexmix'), function(object) 'flx') setMethod('preFit', signature('lcMethodFlexmix'), function(method, data, envir, verbose, ...) { e = new.env() f = formula(method) %>% dropRE() e$formula = paste(deparse(f), '|', idVariable(method)) %>% as.formula if (isArgDefined(method, 'model')) { e$model = method$model } cat(verbose, sprintf('\tformula: %s', deparse(e$formula)), level = verboseLevels$finest) if (hasCovariates(method$formula.mb)) { e$concomitant = flexmix::FLXPmultinom(formula = method$formula.mb) } else { e$concomitant = flexmix::FLXPconstant() } return(e) }) setMethod('fit', signature('lcMethodFlexmix'), function(method, data, envir, verbose, ...) { args = as.list(method, args = flexmix::flexmix) args$data = data args$formula = envir$formula args$model = envir$model args$concomitant = envir$formula.mb args$k = method$nClusters if (is.null(args$model)) { args$model = NULL } flexmodel = do.call(flexmix::flexmix, args) if (flexmodel@k < method$nClusters) { warning('flexmix returned a result with fewer components than was specified for nClusters') } new( 'lcModelFlexmix', method = method, data = data, model = flexmodel, clusterNames = make.clusterNames(flexmodel@k) ) })
pcf.cross.3D<- function(X,Y,Z,X2,Y2,Z2,psz=25,width=1,intensity=NULL,intensity2=NULL,parallel=FALSE,bw=0.01) { actualwidth=width width=1.1*width N<-length(X) N2<-length(X2) width.psz<-floor(width*psz)+1 x<-round(X*psz,0)+width.psz+1 y<-round(Y*psz,0)+width.psz+1 z<-round(Z*psz,0)+width.psz+1 x2<-round(X2*psz,0)+width.psz+1 y2<-round(Y2*psz,0)+width.psz+1 z2<-round(Z2*psz,0)+width.psz+1 ID<-1:N ID2<-1:N2 ID.matrix<-ID.matrix2<-array(NA,c(round(max(c(X,X2))*psz,0)+(2*width.psz+1),round(max(c(Y,Y2))*psz,0)+(2*width.psz+1),round(max(c(Z,Z2))*psz,0)+(2*width.psz+1))) if (!is.null(intensity)) { intensity.mx<-array(0,dim(ID.matrix)) intensity.mx[width.psz+(1:dim(intensity)[1]),width.psz+(1:dim(intensity)[2]),width.psz+(1:dim(intensity)[3])]<-intensity intensity<-TRUE } if (!is.null(intensity2)) { intensity.mx2<-array(0,dim(ID.matrix2)) intensity.mx2[width.psz+(1:dim(intensity2)[1]),width.psz+(1:dim(intensity2)[2]),width.psz+(1:dim(intensity2)[3])]<-intensity2 intensity2<-TRUE } for (i in 1:N) { ID.matrix[x[i],y[i],z[i]]<-ID[i] } for (i in 1:N2) { ID.matrix2[x2[i],y2[i],z2[i]]<-ID2[i] } dist<-0:width.psz extractneighbour<-function(i) { res<-NULL int<-NULL neighbours<-ID.matrix2[x[i]+dist,y[i]+dist,z[i]+dist] neighbours<-as.vector(neighbours) neighbours<-neighbours[!is.na(neighbours)] neighbours<-neighbours[neighbours!=i] for (j in neighbours) { res<-c(res,sqrt(sum((c(X[i],Y[i],Z[i])-c(X2[j],Y2[j],Z2[j]))^2))) if (!is.null(intensity))int<-c(int,intensity.mx[x[i],y[i],z[i]]*intensity.mx2[x2[j],y2[j],z2[j]]) } return(rbind(res,int)) } if(parallel)dist<-mclapply(1:N,extractneighbour) if(!parallel)dist<-lapply(1:N,extractneighbour) dist<-unlist(dist) if(!is.null(intensity)) { weight<-dist[seq(2,length(dist),by=2)] dist<-dist[seq(1,length(dist),by=2)] weight<-weight[dist<=width] dist<-dist[dist<=width] } else { dist<-dist[dist<=width] weight<-rep(1,length(dist)) } breaks=seq(0,width,length=100) dr<-width/100 counts<-rep(0,99) for (i in 1:99) { single<-1/weight[dist>breaks[i]&dist<=breaks[i+1]] single[single==Inf]<-0 counts[i]<-sum(single) } counts<-counts/N/4/pi/dr/(seq(0,width,length=100)[-100])/(seq(0,width,length=100)[-100]) breaks<-0.5*(breaks[2:100]+breaks[1:99]) dist<-rep(0,99) for (i in 2:99) { dist0<-rep(0,99) for (j in 2:99) dist0[j]<-dnorm(breaks[i],breaks[j],bw) dist<-dist+counts[i]*(dist0/sum(dist0)) } dist<-dist[breaks<=actualwidth] breaks<-breaks[breaks<=actualwidth] return(list("x"=breaks,"y"=dist)) }
gff2fasta <- function(gff.table, genome){ genome %>% mutate(Header = word(.data$Header, 1, 1)) %>% rename(Seqid = .data$Header, Gseq = .data$Sequence) %>% right_join(gff.table, by = "Seqid") %>% mutate(Sequence = str_sub(.data$Gseq, .data$Start, .data$End)) %>% mutate(Sequence = if_else(.data$Strand == "+", .data$Sequence, reverseComplement(.data$Sequence))) %>% mutate(Header = str_c("Seqid=", .data$Seqid, ";Start=", .data$Start, ";End=", .data$End, ";Strand=", .data$Strand)) %>% select(.data$Header, .data$Sequence) %>% return() } readGFF <- function(in.file){ fil <- file(normalizePath(in.file), open = "rt") lines <- readLines(fil) close(fil) fasta.idx <- grep(" cn <- c("Seqid", "Source", "Type", "Start", "End", "Score", "Strand", "Phase", "Attributes") if(length(lines) > 1){ if(length(fasta.idx) > 0){ lns1 <- lines[1:fasta.idx] M <- str_split(lns1[!grepl("^ if(ncol(M) != 9 ) stop("Table must have 9 tab-separated columns, this one has", ncol(M)) colnames(M) <- cn as_tibble(M) %>% mutate_at(c("Start", "End", "Score", "Phase"), as.numeric) -> gff.table lns2 <- lines[(fasta.idx+1):length(lines)] idx <- c(grep("^>", lns2), length(lns2) + 1) fsa <- tibble(Header = gsub("^>", "", lns2[idx[1:(length(idx)-1)]]), Sequence = sapply(1:(length(idx)-1), function(ii){ str_c(lns2[(idx[ii]+1):(idx[ii+1]-1)], collapse = "") })) attr(gff.table, "FASTA") <- fsa } else { M <- str_split(lines[!grepl("^ if(ncol(M) != 9 ) stop("Table must have 9 tab-separated columns, this one has", ncol(M)) colnames(M) <- cn as_tibble(M) %>% mutate(Score = if_else(.data$Score == ".", NA_character_, .data$Score)) %>% mutate(Phase = if_else(.data$Phase == ".", NA_character_, .data$Phase)) %>% mutate_at(c("Start", "End", "Score", "Phase"), as.numeric) -> gff.table } } else { gff.table <- tibble("Seqid" = character(0), "Source" = character(0), "Type" = character(0), "Start" = numeric(0), "End" = numeric(0), "Score" = numeric(0), "Strand" = character(0), "Phase" = numeric(0), "Attributes" = character(0)) } return(gff.table) } writeGFF <- function(gff.table, out.file){ line1 <- c(" sapply(1:nrow(gff.table), function(i){str_c(gff.table[i,], collapse = "\t")}) %>% str_replace_all("\tNA\t", "\t.\t") %>% str_replace_all("\tNA$", "\t.") -> lines out.file <- file.path(normalizePath(dirname(out.file)), basename(out.file)) writeLines(c(line1, lines), con = out.file) return(NULL) }
bigstatsr_is_installed <- function() { requireNamespace("bigstatsr", quietly = TRUE, warn.conflicts = FALSE) } bigstatsr_scores <- function(X, ncol, center = TRUE, ret_extra = FALSE, ncores = 1, verbose = FALSE) { res <- bigstatsr::big_randomSVD( X = bigstatsr::as_FBM(X), fun.scaling = bigstatsr::big_scale(center = center, scale = FALSE), k = ncol, ncores = ncores ) if (verbose) { totalvar <- sum(apply(X, 2, stats::var)) lambda <- sum((res$d^2) / (nrow(X) - 1)) varex <- lambda / totalvar tsmessage( "PCA: ", ncol, " components explained ", formatC(varex * 100), "% variance" ) } scores <- stats::predict(res) if (ret_extra) { list( scores = scores, rotation = res$v, center = res$center ) } else { scores } }
GenericClass <- R6Class("GenericClass", public = list( object_generator = NULL, attached = list(), initialize = function(object_generator = NULL, ...) { if (!is.null(object_generator)) { self$object_generator <- object_generator } else { self$object_generator <- eval(parse(text = class(self)[1])) } }, new_clone = function(...) { return(self$object_generator$new(object_generator = self$object_generator, ...)) } ), private = list( ) )
.time.timeSeries <- function(x, ...) { if (length(x@positions)>0) timeDate(x@positions, zone = "GMT", FinCenter = x@FinCenter) else seq.int(NROW(x)) } setMethod("time", "timeSeries", function(x, ...) .time.timeSeries(x, ...)) time.timeSeries <- function(x, ...) .time.timeSeries(x, ...) `time<-` <- function(x, value) { UseMethod("time<-") } `time<-.timeSeries` <- function(x, value) { rownames(x) <- value x } getTime <- function(x) { time(x) } "setTime<-" <- function(x, value) { time(x) <- value x } seriesPositions <- function(object) { .Deprecated(new = "time", package = "timeSeries") time(object) } "newPositions<-" <- function(object, value) { .Deprecated(new = "time<-", package = "timeSeries") rownames(object) <- value object }
library("mvtnorm") set.seed(1234) n <- 100 p <- 25 beta <- rep.int(c(1, 0), c(5, p-5)) sigma <- 0.5 epsilon <- 0.1 Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p)) x <- rmvnorm(n, sigma=Sigma) e <- rnorm(n) i <- 1:ceiling(epsilon*n) e[i] <- e[i] + 5 y <- c(x %*% beta + sigma * e) x[i,] <- x[i,] + 5 fitRlars <- rlars(x, y, sMax = 10) head(fortify(fitRlars)) fitSparseLTS <- sparseLTS(x, y, lambda = 0.05, mode = "fraction") head(fortify(fitSparseLTS)) head(fortify(fitSparseLTS, fit = "both"))
r0 <- function(p0, lambda, delta, N=NULL, eps=sqrt(.Machine$double.eps)){ q <- p <- p0 j = 0 u = runif(1) while(u > q){ j = j + 1 p = p * lambda * ((j+1)^delta) / j^(delta+1) q = q + p } return(j) } TAU <- function(pars) tau(lambda=pars[1], delta=pars[2], N=NULL, eps=sqrt(.Machine$double.eps) ) R0 <- function(pars) r0(p0=pars[1], lambda=pars[2], delta=pars[3], N=NULL, eps=sqrt(.Machine$double.eps)) rtouch <- function(n, lambda, delta, N=NULL, eps=sqrt(.Machine$double.eps)){ if(length(lambda) == 1 & length(delta) == 1){ stopifnot(lambda >= 0) p0 <- 1/tau(lambda,delta, N, eps) x <- replicate(n, r0(p0, lambda, delta, N, eps)) }else{ stopifnot(all(lambda >= 0)) lam <- rep(lambda, length=n) del <- rep(delta, length=n) pars <- cbind(lam,del) p0 <- 1/apply(pars, 1, FUN=TAU) x <- apply(cbind(p0,pars), 1, FUN=R0) } return(x) }
pwd_ui <- function(id, tag_img = NULL, status = "primary", lan = NULL) { ns <- NS(id) if(is.null(lan)){ lan <- use_language() } tagList( singleton(tags$head( tags$link(href="shinymanager/styles-auth.css", rel="stylesheet"), tags$script(src = "shinymanager/bindEnter.js") )), tags$div( id = ns("pwd-mod"), class = "panel-auth", tags$br(), tags$div(style = "height: 70px;"), tags$br(), fluidRow( column( width = 4, offset = 4, tags$div( class = paste0("panel panel-", status), tags$div( class = "panel-body", tags$div( style = "text-align: center;", if (!is.null(tag_img)) tag_img, tags$h3(lan$get("Please change your password")) ), tags$br(), passwordInput( inputId = ns("pwd_one"), label = lan$get("New password:"), width = "100%" ), passwordInput( inputId = ns("pwd_two"), label = lan$get("Confirm password:"), width = "100%" ), tags$span( class = "help-block", icon("info-circle"), lan$get("Password must contain at least one number, one lowercase, one uppercase and must be at least length 6.") ), tags$br(), tags$div( id = ns("container-btn-update"), actionButton( inputId = ns("update_pwd"), label = lan$get("Update new password"), width = "100%", class = paste0("btn-", status) ), tags$br(), tags$br() ), tags$script( sprintf("bindEnter('%s');", ns("")) ), tags$div(id = ns("result_pwd")) ) ) ) ) ) ) } pwd_server <- function(input, output, session, user, update_pwd, validate_pwd = NULL, use_token = FALSE, lan = NULL) { if(!is.reactive(lan)){ if(is.null(lan)){ lan <- reactive(use_language()) } else { lan <- reactive(lan) } } if (is.null(validate_pwd)) { validate_pwd <- getFromNamespace("validate_pwd", "shinymanager") } ns <- session$ns jns <- function(x) { paste0(" } password <- reactiveValues(result = FALSE, user = NULL, relog = NULL) observeEvent(input$update_pwd, { password$relog <- NULL removeUI(selector = jns("msg_pwd")) if (!identical(input$pwd_one, input$pwd_two)) { insertUI( selector = jns("result_pwd"), ui = tags$div( id = ns("msg_pwd"), class = "alert alert-danger", icon("exclamation-triangle"), lan()$get("The two passwords are different") ) ) } else { if (!isTRUE(validate_pwd(input$pwd_one))) { insertUI( selector = jns("result_pwd"), ui = tags$div( id = ns("msg_pwd"), class = "alert alert-danger", icon("exclamation-triangle"), lan()$get("Password does not respect safety requirements") ) ) } else { res_pwd <- update_pwd(user$user, input$pwd_one) if (isTRUE(res_pwd$result)) { password$result <- TRUE password$user <- user$user removeUI(selector = jns("container-btn-update")) insertUI( selector = jns("result_pwd"), ui = tags$div( id = ns("msg_pwd"), tags$div( class = "alert alert-success", icon("check"), lan()$get("Password successfully updated! Please re-login") ), actionButton( inputId = ns("relog"), label = lan()$get("Login"), width = "100%" ) ) ) } else { insertUI( selector = jns("result_pwd"), ui = tags$div( id = ns("msg_pwd"), class = "alert alert-danger", icon("exclamation-triangle"), lan()$get("Failed to update password") ) ) } } } }, ignoreInit = TRUE) observeEvent(input$relog, { if (isTRUE(use_token)) { token <- getToken(session = session) .tok$remove(token) resetQueryString(session = session) session$reload() } password$relog <- input$relog }, ignoreInit = TRUE) return(password) }
orthonorm <- function (p) { V <- matrix(0, nrow = p, ncol = p - 1) for (i in 1:(p - 1)) { V[1:i, i] <- 1/i V[i + 1, i] <- (-1) V[, i] <- V[, i] * sqrt(i/(i + 1)) } return(V = V) }
aggregateForBarplot <- function(v) { outF <- data.frame(table(v)) names(outF) <- c("x", "y") outF }
runoptDirect <- function(expName = "obkpara20201017", rkiwerte = babsim.hospital::rkidata, icuwerte = babsim.hospital::icudata, region = 5374, TrainFieldStartDate = NULL, TrainSimStartDate = NULL, TestFieldStartDate = NULL, TestSimStartDate = NULL, Overlap = 7, verbosity = 0, seed = 123, direct = FALSE, repeats = 1, funEvals = 35, funEvalsFactor = 0, size = 30, simrepeats = 2, subset = 32, parallel = FALSE, percCores = NULL, icu = TRUE, icuWeights = 1, testRepeats = 3, resourceNames = c("intensiveBed", "intensiveBedVentilation"), resourceEval = c("intensiveBed", "intensiveBedVentilation"), spotEvalsParallel = FALSE, tryOnTestSet = TRUE) { messageDateRange("Date range for cases", rkiwerte$Refdatum) messageDateRange("Date range for resources", icuwerte$daten_stand) result.df <- data.frame(x = NULL, y = NULL) reslist <- list() regionIcuwerte <- getRegionIcu( data = icuwerte, region = region ) fieldData <- getIcuBeds(regionIcuwerte) fieldData <- fieldData[which(fieldData$Day >= as.Date(TrainFieldStartDate)), ] regionRkiwerte <- getRegionRki( data = rkiwerte, region = region ) simData <- getRkiData(regionRkiwerte) simData <- simData[which(simData$Day >= as.Date(TrainSimStartDate)), ] TrainSimStartDate <- min(simData$Day) EndDate <- min( max(as.Date(simData$Day)), max(as.Date(fieldData$Day)) ) fieldData <- fieldData[which(fieldData$Day <= EndDate), ] simData <- simData[which(simData$Day <= EndDate), ] simData$time <- simData$time - min(simData$time) rownames(fieldData) <- NULL rownames(simData) <- NULL if (tryOnTestSet) { TrainEndDate <- as.Date(TestFieldStartDate) + Overlap } else { TrainEndDate <- as.Date(EndDate) } TrainSimData <- simData[which(simData$Day <= TrainEndDate), ] TrainFieldData <- fieldData[which(fieldData$Day <= TrainEndDate), ] syncedEndTrainDate <- min(max(TrainSimData$Day), max(TrainFieldData$Day)) TrainSimData <- simData[which(simData$Day <= syncedEndTrainDate), ] TrainFieldData <- fieldData[which(fieldData$Day <= syncedEndTrainDate), ] trainData <- list( simData = TrainSimData, fieldData = TrainFieldData ) messagef( "Training: Simulation date range: %s - %s", min(trainData$simData$Day), max(trainData$simData$Day) ) messagef( "Training: Field date range: %s - %s", min(trainData$fieldData$Day), max(trainData$fieldData$Day) ) SIM_EQ_FIELD_TRAINDATA <- (min(as.Date(trainData$simData$Day)) == as.Date(TrainSimStartDate)) if (SIM_EQ_FIELD_TRAINDATA == FALSE) { stop(sprintf( "babsim.hospital::runoptDirect: Check TrainSimStartDate. Expected %s, got %s.", TrainSimStartDate, min(trainData$simData$Day) )) } SIM_EQ_FIELD_TRAINDATA <- (min(as.Date(trainData$fieldData$Day)) == as.Date(TrainFieldStartDate)) if (SIM_EQ_FIELD_TRAINDATA == FALSE) { stop(sprintf( "babsim.hospital::runoptDirect: Check TrainFieldStartDate. Expected %s, got %s.", TrainFieldStartDate, min(trainData$fieldData$Day) )) } SIM_EQ_FIELD_TRAINDATA <- (max(as.Date(trainData$simData$Day)) == max(as.Date(trainData$fieldData$Day))) if (SIM_EQ_FIELD_TRAINDATA == FALSE) { stop("babsim.hospital::runoptDirect: Check trainData: sim and field End data do not agree.") } FILENAME <- paste0("results/", expName, ".RData") runSpotRepeat <- function(i) { if (spotEvalsParallel) { requireNamespace("babsim.hospital") requireNamespace("SPOT") } messagef("Repeat %i conf <- babsimToolsConf() trainConf <- getConfFromData( simData = trainData$simData, fieldData = trainData$fieldData, conf = conf ) trainConf$verbosity <- verbosity trainConf$parallel <- parallel trainConf$simRepeats <- simrepeats trainConf$ICU <- icu trainConf$ResourceNames <- resourceNames trainConf$ResourceEval <- resourceEval trainConf$percCores <- percCores trainConf$logLevel <- 0 trainConf$w2 <- icuWeights trainConf$seed <- seed + i messagef("trainConfSim: %s - %s", trainConf$simulationDates$StartDate, trainConf$simulationDates$EndDate) messagef("trainConfField: %s - %s", trainConf$fieldDates$StartDate, trainConf$fieldDates$EndDate) SIM_EQ_FIELD_TRAINCONF <- (min(as.Date(trainConf$simulationDates$StartDate)) == as.Date(TrainSimStartDate)) & (min(as.Date(trainConf$fieldDates$StartDate)) == as.Date(TrainFieldStartDate)) & (max(as.Date(trainConf$simulationDates$EndDate)) == max(as.Date(trainConf$fieldDates$EndDate))) if (SIM_EQ_FIELD_TRAINCONF == FALSE) { stop("babsim.hospital::runoptDirect: Check trainConf.") } set.seed(trainConf$seed) funEvals <- funEvals + (i - 1) * funEvalsFactor x0 <- getStartParameter(region = region) if(is.null(nrow(x0))){ x0 <- matrix(x0, nrow = 1) } if (nrow(x0) > 20) { x0 <- x0[1:20, ] messagef("Warning cutting some x0 parameters as there are too many") } bounds <- getBounds() a <- bounds$lower b <- bounds$upper conf <- trainConf if (conf$verbosity > 1000) { messagef("conf before spot optimization is started") printConf(conf) } data <- trainData g <- function(x) { return( rbind( a[1] - x[1], x[1] - b[1], a[2] - x[2], x[2] - b[2], a[3] - x[3], x[3] - b[3], a[4] - x[4], x[4] - b[4], a[5] - x[5], x[5] - b[5], a[6] - x[6], x[6] - b[6], a[7] - x[7], x[7] - b[7], a[8] - x[8], x[8] - b[8], a[9] - x[9], x[9] - b[9], a[10] - x[10], x[10] - b[10], a[11] - x[11], x[11] - b[11], a[12] - x[12], x[12] - b[12], a[13] - x[13], x[13] - b[13], a[14] - x[14], x[14] - b[14], a[15] - x[15], x[15] - b[15], a[16] - x[16], x[16] - b[16], a[17] - x[17], x[17] - b[17], a[18] - x[18], x[18] - b[18], a[19] - x[19], x[19] - b[19], a[20] - x[20], x[20] - b[20], a[21] - x[21], x[21] - b[21], a[22] - x[22], x[22] - b[22], a[23] - x[23], x[23] - b[23], a[24] - x[24], x[24] - b[24], a[25] - x[25], x[25] - b[25], a[26] - x[26], x[26] - b[26], a[27] - x[27], x[27] - b[27], x[15] + x[16] - 1, x[17] + x[18] + x[19] - 1, x[20] + x[21] - 1, x[23] + x[29] - 1 ) ) } assign( expName, spot( x = as.matrix(x0), fun = funWrapOptimizeSim, lower = a, upper = b, control = list( funEvals = funEvals, noise = TRUE, direct = direct, designControl = list( size = size, retries = 1000 ), optimizer = optimNLOPTR, optimizerControl = list( opts = list(algorithm = "NLOPT_GN_ISRES"), eval_g_ineq = g ), model = buildKriging, plots = FALSE, progress = TRUE, subsetSelect = selectN, subsetControl = list(N = subset) ), conf, data ) ) res <- get(expName) x <- as.matrix(res$xbest, 1, ) if (tryOnTestSet) { messagef("Starting test evaluation:") messagef(" testPara <- mapXToPara(x) testPara <- checkSimPara(testPara) testFieldData <- fieldData[which(fieldData$Day >= as.Date(TestFieldStartDate)), ] rownames(testFieldData) <- NULL testSimData <- simData[which(simData$Day >= as.Date(TestSimStartDate)), ] TestSimStartDate <- min(testSimData$Day) testSimData <- testSimData[as.Date(testSimData$Day) <= max(as.Date(testFieldData$Day)), ] testFieldData <- testFieldData[as.Date(testFieldData$Day) <= max(as.Date(testSimData$Day)), ] syncedEndTestDate <- min(max(testSimData$Day), max(testFieldData$Day)) testSimData <- testSimData[which(testSimData$Day <= syncedEndTestDate), ] TestFieldData <- fieldData[which(fieldData$Day <= syncedEndTestDate), ] testSimData$time <- testSimData$time - min(testSimData$time) rownames(testSimData) <- NULL testData <- list( simData = testSimData, fieldData = testFieldData ) messagef("testDataSim: %s - %s", min(testData$simData$Day), max(testData$simData$Day)) messagef("testDataField: %s - %s", min(testData$fieldData$Day), max(testData$fieldData$Day)) SIM_EQ_FIELD_TESTDATA <- (min(as.Date(testData$simData$Day)) == as.Date(TestSimStartDate)) if (SIM_EQ_FIELD_TESTDATA == FALSE) { print(as.Date(TestSimStartDate)) stop("babsim.hospital::runoptDirect: Check testData: TestSimStartDate.") } SIM_EQ_FIELD_TESTDATA <- (min(as.Date(testData$fieldData$Day)) == as.Date(TestFieldStartDate)) if (SIM_EQ_FIELD_TESTDATA == FALSE) { print(as.Date(TestFieldStartDate)) stop("babsim.hospital::runoptDirect: Check testData: TestFieldStartDate.") } SIM_EQ_FIELD_TESTDATA <- (max(as.Date(testData$simData$Day)) == max(as.Date(testData$fieldData$Day))) if (SIM_EQ_FIELD_TESTDATA == FALSE) { stop("babsim.hospital::runoptDirect: Check testData: sim and field data End date differ!") } conf <- babsimToolsConf() testConf <- getConfFromData( simData = testSimData, fieldData = testFieldData, conf = conf ) testConf$verbosity <- verbosity testConf$parallel <- parallel testConf$simRepeats <- simrepeats testConf$ICU <- icu testConf$ResourceNames <- resourceNames testConf$ResourceEval <- resourceEval testConf$percCores <- percCores testConf$logLevel <- 0 testConf$w2 <- icuWeights testConf$seed <- seed + i + 1 set.seed(testConf$seed) messagef("testConfSim: %s - %s", testConf$simulationDates$StartDate, testConf$simulationDates$EndDate) messagef("testConfField: %s - %s", testConf$fieldDates$StartDate, testConf$fieldDates$EndDate) SIM_EQ_FIELD_TESTCONF <- ((testConf$simulationDates$StartDate != testConf$fieldDates$StartDate) & (testConf$simulationDates$EndDate != testConf$fieldDates$EndDate)) SIM_EQ_FIELD_TESTCONF <- (min(as.Date(testConf$simulationDates$StartDate)) == as.Date(TestSimStartDate)) & (min(as.Date(testConf$fieldDates$StartDate)) == as.Date(TestFieldStartDate)) & (max(as.Date(testConf$simulationDates$EndDate)) == max(as.Date(testConf$fieldDates$EndDate))) if (SIM_EQ_FIELD_TESTCONF == FALSE) { stop("babsim.hospital::runoptDirect: Check testConf.") } testErr <- 0 for (j in 1:testRepeats) { testConf$seed <- seed + i + 1 + j set.seed(testConf$seed) envs <- modelResultHospital( para = testPara, conf = testConf, data = testData ) testConf$verbosity <- 101 err <- getError(envs, conf = testConf) messagef("Single test error: %f", err) testErr <- testErr + err } testErr <- testErr / testRepeats messagef("testErr: %f", testErr) messagef("babsim.hospital version: %s", utils::packageVersion("babsim.hospital")) return(list( res = res, best = data.frame(y = testErr, x = x) )) } else { return(list( res = res, best = data.frame(y = res$ybest, x = res$xbest) )) } } messagef("Starting optimization loop:") messagef(" if (!spotEvalsParallel) { for (i in 1:repeats) { y <- runSpotRepeat(i) reslist[[length(reslist) + 1]] <- y$res result.df <- rbind(result.df, y$best) FILENAMETMP <- paste0("results/", expName, i, ".RData") message("FILENAMETMP = '%s'", FILENAMETMP) save(result.df, file = FILENAMETMP) } } else { if (parallel == TRUE) { results <- parallel::mclapply(X = 1:repeats, FUN = runSpotRepeat, mc.cores = parallel::detectCores() / (percCores * 32)) } else { results <- parallel::mclapply(X = 1:repeats, FUN = runSpotRepeat, mc.cores = parallel::detectCores()) } getBest <- function(result.list) { result.list$best } getRes <- function(result.list) { result.list$res } bestResults <- lapply(results, getBest) reslist <- lapply(results, getRes) result.df <- dplyr::bind_rows(bestResults) } messagef("Saving results to '%s'.", FILENAME) save(result.df, file = FILENAME) return(list( best.df = result.df, reslist = reslist )) }
by_2sd <- function(df, dataset) { if (!"by_2sd" %in% names(df)) { sdX2 <- df$term %>% as.list() %>% lapply(function(x) { if(any(grep(":", x)) && !x %in% names(dataset)) { first <- gsub(":.*", "", x) second <- gsub(".*:", "", x) dataset[[paste0(first,":",second)]] <- dataset[[first]]*dataset[[second]] } unmatched <- !x %in% names(dataset) dx <- dataset[[x]] dich <- (unmatched || stats::na.omit(unique(dx)) %>% sort() %>% identical(c(0,1))) if (dich) 1 else 2*stats::sd(dataset[[x]], na.rm=TRUE) }) %>% unlist() df$estimate <- df$estimate * sdX2 df$std.error <- df$std.error * sdX2 if ("conf.high" %in% names(df)) { df$conf.high <- df$conf.high * sdX2 df$conf.low <- df$conf.low * sdX2 } df$by_2sd <- TRUE } return(df) }
anm.ExpDesign.tck<-function(){ tclRequire("BWidget") local({ have_ttk <- as.character(tcl("info", "tclversion")) >= "8.5" if(have_ttk) { tkbutton <- ttkbutton tkcheckbutton <- ttkcheckbutton tkentry <- ttkentry tkframe <- ttkframe tklabel <- ttklabel tkradiobutton <- ttkradiobutton } tclServiceMode(FALSE) dialog.sd <- function(){ tt <- tktoplevel() tkwm.title(tt,"Experimental designs") Proc<-tclVar("all") int.entry <- tkentry(tt, textvariable=Int, width = 10) iter.entry<-tkentry(tt, textvariable=Iter, width = 10) done <- tclVar(0) reset <- function() { tclvalue(Int)<-"0.5" tclvalue(Iter)<-"30" } reset.but <- tkbutton(tt, text="Reset", command=reset) submit.but <- tkbutton(tt, text="Submit",command=function()tclvalue(done)<-1) build <- function() { interval <-tclvalue(Int) iter <-tclvalue(Iter) Proc <-tclvalue(Proc) substitute(anm.ExpDesign(method = Proc, interval=as.numeric(interval),iter=as.numeric(iter))) } tkgrid(tklabel(tt,text="Experimental designs"),columnspan=2) tkgrid(tklabel(tt,text="")) tkgrid(tklabel(tt, text="Design"),columnspan=2) proc <- c("all","CRD","factorial2by2","factorial2by2by2","nested","RCBD","RIBD","split","split.split", "SPRB","strip","split.block","strip.split","latin","pairs") comboBox <- tkwidget(tt,"ComboBox", editable=FALSE, values=proc, textvariable = Proc, width = 15) tkgrid(comboBox,columnspan=2) tkgrid(tklabel(tt,text="Anim. int."),int.entry) tkgrid(tklabel(tt,text="Iterations "), iter.entry) tkgrid(tklabel(tt,text="")) tkgrid(submit.but, reset.but, sticky="w") tkbind(tt, "<Destroy>", function()tclvalue(done)<-2) tkwait.variable(done) if(tclvalue(done)=="2") stop("aborted") tkdestroy(tt) cmd <- build() eval.parent(cmd) invisible(tclServiceMode(TRUE)) } Iter<-tclVar("30") Int<-tclVar("0.5") dialog.sd() }) }
maxFreq <- function(trimmed, header, verbose){ if(verbose==1) print("Building consensus sequence...") maxFreqSequence<- vector("list", length(trimmed[1,])) for(i in 1:length(trimmed[1,])) { maxInCol<-names(which(table(trimmed[,i])==max(table(trimmed[,i])))) if (length(maxInCol)==1){ maxFreqSequence[[i]]<-c(maxFreqSequence[[i]], names(which(table(trimmed[,i])==max(table(trimmed[,i]))))) } else{ maxFreqSequence[[i]]<-c(maxFreqSequence[[i]], "X") } } maxFreq<-as.data.frame(lapply(maxFreqSequence, suppressBrackets)) names(maxFreq)<-header options(stringsAsFactors=FALSE) maxFreq }
single.beta <- function(X, y, maxcomp = NULL) { if (missing(X) | missing(y)) stop("Please specify both x and y") if (is.null(maxcomp)) maxcomp <- min(nrow(X) - 1L, ncol(X)) plsdf <- as.data.frame(cbind(X, "y" = y)) plsr.cvfit <- pls::plsr( y ~ X, data = plsdf, ncomp = maxcomp, scale = TRUE, method = "simpls", validation = "LOO" ) opt.cv <- which.min(pls::RMSEP(plsr.cvfit)[["val"]][2L, 1L, -1L]) rmse.cv <- min(pls::RMSEP(plsr.cvfit)[["val"]][2L, 1L, -1L]) plsr.fit <- pls::plsr( y ~ X, data = plsdf, ncomp = opt.cv, scale = TRUE, method = "simpls", validation = "none" ) beta1 <- matrix(coef(plsr.fit), ncol = 1L) simplsfit <- simpls.fit(X, y, opt.cv) beta <- coef(simplsfit, ncomp = opt.cv, intercept = FALSE) beta.simpls <- matrix(simplsfit$coefficients[, , opt.cv], ncol = 1L) obj <- list( "beta" = beta1, "opt.cv" = opt.cv, "rmse.cv" = rmse.cv, "beta.simpls" = beta.simpls ) obj }
setClass("multimap", contains = "unordered_map") multimap <- function(key.class = c("character", "numeric", "integer")) { key.class <- match.arg(key.class) key.class <- match.arg(key.class) map <- switch( key.class, "character" = methods::new(multimap_s), "numeric" = methods::new(multimap_d), "integer" = methods::new(multimap_i), stop("Error defining key class") ) methods::new("multimap", .key.class = key.class, .map = map ) } .erase.multimap <- function(obj, key, value) { .check.key.class(obj, key) if (length(key) != length(value)) { stop("dimensions of keys and values do not match") } [email protected]$remove_with_value(key, value) obj } setMethod( "erase", signature = signature(obj = "multimap", key = "vector", value = "vector"), function(obj, key, value) { if (length(key) == 1) { value <- list(value) } else if (length(key) == length(value) && is.vector(value)) { value <- as.list(value) } .erase.multimap(obj, key, value) } ) setMethod( "erase", signature = signature(obj = "multimap", key = "vector", value = "list"), function(obj, key, value) { if (length(key) == 1) value <- list(value) .erase.multimap(obj, key, value) } ) setMethod( "erase", signature = signature(obj = "multimap", key = "vector", value = "ANY"), function(obj, key, value) { .erase.multimap(obj, key, list(value)) } )
isSupported <- function(v) { suppClasses <- c("character", "factor", "labelled", "haven_labelled", "numeric", "integer", "logical", "Date") vClasses <- class(v) out <- list(problem = FALSE, message = "", problemValues = NULL) if (any(vClasses %in% suppClasses)) { return(checkResult(out)) } out$problem <- TRUE out$message <- paste("The variable has class", vClasses[1], "which is not supported by dataMaid.") checkResult(out) } isSupported <- checkFunction(isSupported, "Check if the variable class is supported by dataMaid.", allClasses())
plot.IP <- plot.IP <- function (x, ..., N = NULL, clutch = 1, result = "data") { p3p <- list(...) result <- tolower(result) if (is.list(x)) { if (!(identical(x$ML, list())) | !(identical(x$MH, list()))) { if (!(identical(x$MH, list()))) { data <- x$MH$parametersMCMC$control$data pari <- c(as.parameters(x$MH), x$MH$parametersMCMC$control$fixed.parameters) } else { data <- x$ML$data pari <- c(x$ML$par, x$ML$fixed.parameters) } meanIP <- log(abs(pari["meanIP"])) sdIP <- abs(pari["sdIP"]) minIP <- abs(pari["minIP"]) DeltameanIP <- pari["DeltameanIP"] pAbort <- invlogit(-pari["pAbort"]) meanAbort <- log(abs(pari["meanAbort"])) sdAbort <- abs(pari["sdAbort"]) pCapture <- invlogit(-pari["pCapture"]) meanECF <- log(abs(pari["meanECF"])) sdECF <- abs(pari["sdECF"]) ECF <- abs(pari[substr(names(pari), 1, 3) == "ECF"]) Nnull <- is.null(N) if (Nnull) { N <- pari["N"] if (is.na(N)) N <- 1e+06 } if (!is.na(meanECF)) { CFx <- floor(rlnorm(N, meanlog = meanECF, sdlog = sdECF)) + 1 CFx <- as.data.frame(table(CFx), stringsAsFactors = FALSE) CFx[, "CFx"] <- as.numeric(CFx[, "CFx"]) ECF <- data.frame(ECF = 1:max(CFx[, "CFx"]), Freq = 0) ECF[CFx[, "CFx"], "Freq"] <- CFx[, "Freq"]/sum(CFx[, "Freq"]) } else { ECF["ECF.1"] <- 1 ECF <- ECF[order(as.numeric(gsub("ECF\\.", "", names(ECF))))] ECF <- ECF/sum(ECF) ECF <- data.frame(ECF = 1:length(ECF), Freq = ECF) } if ((result == "model") | (result == "data&model") | (result == "reverseecf")) { if (!is.null(x$model) & (Nnull)) { model <- x$model } else { model <- IPModel(pari) } reverseECF <- model$reverseECF model <- model$cumuld } else { model <- NULL reverseECF <- NULL } di <- floor(rlnorm(N, meanlog = log(exp(meanIP) + (clutch - 1) * ifelse(is.na(DeltameanIP), 0, DeltameanIP)), sdlog = sdIP)) di <- di[di >= minIP] di <- as.data.frame(table(di), stringsAsFactors = FALSE) di[, "di"] <- as.numeric(di[, "di"]) IP <- data.frame(IP = 1:max(di[, "di"]), Freq = 0) IP[di[, "di"], "Freq"] <- di[, "Freq"]/sum(di[, "Freq"]) di <- floor(rlnorm(N, meanlog = meanAbort, sdlog = sdAbort)) di <- as.data.frame(table(di), stringsAsFactors = FALSE) di[, "di"] <- as.numeric(di[, "di"]) Abort <- data.frame(Abort = 0:(max(di[, "di"])), Freq = 0) Abort[di[, "di"] + 1, "Freq"] <- di[, "Freq"]/sum(di[, "Freq"]) } else { data <- x$cumuld reverseECF <- x$reverseECF } } else { pari <- NULL data <- x reverseECF <- NULL } if (is.matrix(data)) { data <- colSums(data) } if (result == "data") { do.call(plot, modifyList(list(x = (1:length(data)) - 1, y = data, type = "h", bty = "n", las = 1, xlab = "Days after first observation", ylab = "Number of observations"), p3p)) } if (result == "model") { do.call(plot, modifyList(list(x = as.numeric(names(model)), y = model, type = "h", bty = "n", las = 1, xlab = "Days after first observation", ylab = "Number of observations"), p3p)) } if (result == "ecf") { do.call(plot, modifyList(list(x = ECF$ECF, y = ECF$Freq, type = "h", bty = "n", las = 1, xlab = "Estimated Clutch Frequency", ylab = "Proportion", xaxt = "n"), p3p)) axis(1, 1:(ScalePreviousPlot()$xlim["end"]), cex.axis = 0.8) } if (result == "data&model") { xl <- max(c(as.numeric(names(model)), length(data) - 1)) if (!is.null(p3p$xlim)) xl <- p3p$xlim[2] do.call(plot, modifyList(list(x = (1:length(data)) - 1, y = data, type = "h", bty = "n", las = 1, ylim = c(-max(c(data, model * sum(data))), +max(c(data, model * sum(data)))), xlim = c(0, xl), xaxt = "n", xlab = "Days after first observation", ylab = "Number of observations"), p3p)) par(new = TRUE) do.call(plot, modifyList(list(x = as.numeric(names(model)), y = -model * sum(data), type = "h", bty = "n", ylim = c(-max(c(data, model * sum(data))), +max(c(data, model * sum(data)))), xlim = c(0, xl), axes = FALSE, xlab = "", ylab = "", xaxt = "n"), p3p)) axis(1, 0:(ScalePreviousPlot()$xlim["end"]), cex.axis = 0.8) text(xl, max(c(data, model * sum(data)))/2, labels = "Observations", pos = 2) text(xl, -max(c(data, model * sum(data)))/2, labels = "Model", pos = 2) } if (result == "ip") { do.call(plot, modifyList(list(x = IP$IP, y = IP$Freq, type = "h", bty = "n", las = 1, xlab = "Internesting Period", ylab = "Proportion", xaxt = "n"), p3p)) axis(1, 1:(ScalePreviousPlot()$xlim["end"]), cex.axis = 0.8) } if (result == "abort") { do.call(plot, modifyList(list(x = Abort$Abort, y = Abort$Freq, type = "h", bty = "n", las = 1, xlab = "Number of days between two tentatives", ylab = "Proportion", xaxt = "n"), p3p)) axis(1, 0:(ScalePreviousPlot()$xlim["end"]), cex.axis = 0.8) } if ((result == "reverseecf") & (!is.null(reverseECF))) { cmrev <- reverseECF maxx <- 1 maxy <- 1 for (col in 1:ncol(cmrev)) { maxx <- ifelse(test = (sum(cmrev[, col]) != 0), col, maxx) maxy <- max(which(cmrev[, col] != 0), maxy) cmrev[, col] <- cumsum(cmrev[, col]) } if (is.null(p3p$col)) { color <- rainbow(maxy) } else { color <- p3p$col if (length(color) != maxy) { p3p$col <- color[floor(length(color) * (1:maxy)/(maxy))] } } par(mar = c(4, 4, 2, 6) + 0.4) par(xpd=FALSE) do.call(plot, modifyList(list(x = 0:(ncol(reverseECF) - 1), y = reverseECF[1, ], bty = "n", ylim = c(0, 1), xlim = c(0, maxx - 1), las = 1, type = "n", xlab = "Days after first observation", ylab = "Cumulative proportion"), p3p)) polygon(x = c(0:(ncol(reverseECF) - 1), (ncol(reverseECF) - 1):0), y = c(rep(0, ncol(reverseECF)), rev(cmrev[1, ])), col = color[1], border = NA) for (i in 2:maxy) { polygon(x = c(0:(ncol(reverseECF) - 1), (ncol(reverseECF) - 1):0), y = c(cmrev[i - 1, ], rev(cmrev[i, ])), col = color[i], border = NA) } par(xpd = TRUE) maxx <- ScalePreviousPlot()$xlim[2] dx <- maxx/10 for (ecf in 1:maxy) { y <- 0.1 + (ecf - 1) * 0.9/(maxy) dy <- 0.1 + (ecf - 1 + 0.8) * 0.9/(maxy) polygon(x = c(maxx + dx, (maxx + dx)*1.05, (maxx + dx)*1.05, maxx + dx), y = c(y, y, dy, dy), col = color[ecf], border = NA) text(x = (maxx + dx)*1.07, y = mean(c(y, dy)), labels = (ecf - 1)) } text((maxx + dx)*1.025, y = 1*1.05, labels = "Clutch") } }
ksample.gauss <- function( dat1, dat2, K=5 ){ dat1 = t(t(dat1)-apply(dat1,2,mean)); dat2 = t(t(dat2)-apply(dat2,2,mean)); n1 = nrow(dat1); n2 = nrow(dat2); N = n1+n2; cov1= (n1-1)/n1*cov(dat1); cov2= (n2-1)/n2*cov(dat2); covP= n1/N*cov1 + n2/N*cov2; eigP= eigen(covP); if(K==0){ eig1 = eigen(cov1); eig2 = eigen(cov2); pfc_scores = rep(0,min(n1,n2)); for(K in 2:min(n1,n2)){ vec = eigP$vectors[,1:K]; prj1 = ksg_projData( dat1, vec ); prj2 = ksg_projData( dat2, vec ); gof = sum((prj1-dat1)^2) + sum((prj2-dat2)^2); ip1 = (prj1 %*% eig1$vectors)^2/eig1$values; ip2 = (prj2 %*% eig2$vectors)^2/eig2$values; pen = 2*( sum(eig1$values)*sum(ip1)/n1 + sum(eig2$values)*sum(ip2)/n2 ); pfc_scores[K] = gof + pen; } pfc_scores[1] = max(pfc_scores); K = which.min(pfc_scores); } vec = eigP$vectors[,1:K]; ev1 = t(vec) %*% cov1 %*% vec/n1; ev2 = t(vec) %*% cov2 %*% vec/n2; denom = n1*diag( ev1 ) + n2*diag( ev2 ); mat = t((ev1-ev2)^2/denom)/denom; tstat = (n1*n2*N)/2*sum(mat); dof = K*(K+1)/2; return( pchisq(tstat,dof,lower.tail=FALSE) ); } ksg_projData <- function( dat, vec ){ return( (dat %*% vec) %*% t(vec) ); } ksample.vstab <- function( dat1, dat2, K=5 ){ dat1 = t(t(dat1)-apply(dat1,2,mean)); dat2 = t(t(dat2)-apply(dat2,2,mean)); n1 = nrow(dat1); n2 = nrow(dat2); N = n1+n2; cov1= (n1-1)/n1*cov(dat1); cov2= (n2-1)/n2*cov(dat2); covP= n1/N*cov1 + n2/N*cov2; eigP= eigen(covP); if(K==0){ cumEig = cumsum(eigP$values)/sum(eigP$values); K = which(cumEig>0.9)[1]; } vec = eigP$vectors[,1:K]; ev1 = t(vec) %*% cov1 %*% vec/n1; ev2 = t(vec) %*% cov2 %*% vec/n2; tstat1= sum( (log(diag(ev1))-log(diag(ev2)))^2,na.rm=TRUE )/2 dprod1= sqrt(outer(diag(ev1),diag(ev1))); dprod2= sqrt(outer(diag(ev2),diag(ev2))); tstat2= (( log((dprod1+ev1)/(dprod1-ev1)) - log((dprod2+ev2)/(dprod2-ev2)) )/2)^2; tstat2= sum( tstat2*upper.tri(tstat2),na.rm=TRUE ); tstat = n1*n2/N*(tstat1+tstat2); dof = K*(K+1)/2; return( pchisq(tstat,dof,lower.tail=FALSE) ); }
timestamp <- Sys.time() library(caret) library(plyr) library(recipes) library(dplyr) model <- "awnb" set.seed(2) training <- LPH07_1(100, factors = TRUE, class = TRUE) testing <- LPH07_1(100, factors = TRUE, class = TRUE) trainX <- training[, -ncol(training)] trainY <- training$Class rec_cls <- recipe(Class ~ ., data = training) %>% step_center(all_predictors()) %>% step_scale(all_predictors()) cctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all", classProbs = TRUE, summaryFunction = twoClassSummary) cctrl2 <- trainControl(method = "LOOCV", classProbs = TRUE, summaryFunction = twoClassSummary) cctrl3 <- trainControl(method = "none", classProbs = TRUE, summaryFunction = twoClassSummary) cctrlR <- trainControl(method = "cv", number = 3, returnResamp = "all", search = "random") set.seed(849) test_class_cv_model <- train(trainX, trainY, method = "awnb", trControl = cctrl1, metric = "ROC") test_class_pred <- predict(test_class_cv_model, testing[, -ncol(testing)]) test_class_prob <- predict(test_class_cv_model, testing[, -ncol(testing)], type = "prob") set.seed(849) test_class_rand <- train(trainX, trainY, method = "awnb", trControl = cctrlR, tuneLength = 4) set.seed(849) test_class_loo_model <- train(trainX, trainY, method = "awnb", trControl = cctrl2, metric = "ROC") set.seed(849) test_class_none_model <- train(trainX, trainY, method = "awnb", trControl = cctrl3, tuneGrid = test_class_cv_model$bestTune, metric = "ROC") test_class_none_pred <- predict(test_class_none_model, testing[, -ncol(testing)]) test_class_none_prob <- predict(test_class_none_model, testing[, -ncol(testing)], type = "prob") test_levels <- levels(test_class_cv_model) if(!all(levels(trainY) %in% test_levels)) cat("wrong levels") test_class_predictors1 <- predictors(test_class_cv_model) test_class_imp <- varImp(test_class_cv_model) tests <- grep("test_", ls(), fixed = TRUE, value = TRUE) sInfo <- sessionInfo() timestamp_end <- Sys.time() save(list = c(tests, "sInfo", "timestamp", "timestamp_end"), file = file.path(getwd(), paste(model, ".RData", sep = ""))) if(!interactive()) q("no")
plot.fanc <- function (x, Window.Height=500, type=NULL, df.method="active", ...){ if(nchar(system.file(package="ellipse")) == 0){ msg <- paste0("The package 'ellipse' is required to plot ", "the solution path.\n", "Do you want to install 'ellipse' now? (y/n)") answer <- readline(msg) if(answer=="y"){ install.packages("ellipse") if (nchar(system.file(package="ellipse")) == 0) stop('The package "ellipse" was not able to be installed') } else { stop("The plot was terminated.") } } requireNamespace("ellipse", quietly=TRUE) if(nchar(system.file(package="tcltk")) == 0){ answer <- readline("The package 'tcltk' is required to plot the solution path. \nDo you want to install 'tcltk' now? (y/n)") if(answer=="y"){ install.packages("tcltk") if (nchar(system.file(package="tcltk")) == 0) stop('The package "tcltk" was not able to be installed') }else{ stop("The plot was terminated.") } } requireNamespace("tcltk", quietly=TRUE) fig.type <- "" if (identical(type, "path") || (is.null(type) && dim(x$loadings[[1]][[1]])[1] < 50)) { if(dim(x$loadings[[1]][[1]])[1] > 100) { msg <- paste0("The number of variables must be less than or", "equal to 100 to plot the solution path.") stop(msg) } if(Window.Height<250 || Window.Height>2000) { stop("'Window.Height' must be in [250,2000].") } fig.type <- "path" } else if (identical(type, "heatmap") || (is.null(type) && dim(x$x)[2] >= 50)) { fig.type <- "heatmap" } else { stop("Only 'path' and 'heatmap' are available for 'type'") } L <- x$loadings lambdas <- x$rho gammas <- x$gamma if(df.method=="reparametrization"){ GFIs <- x$GFI AGFIs <- x$AGFI CFIs <- x$CFI RMSEAs <- x$RMSEA SRMRs <- x$SRMR AICs <- x$AIC BICs <- x$BIC CAICs <- x$CAIC EBICs <- x$EBIC } if(df.method=="active"){ GFIs <- x$GFI AGFIs <- x$AGFI_dfnonzero CFIs <- x$CFI_dfnonzero RMSEAs <- x$RMSEA_dfnonzero SRMRs <- x$SRMR AICs <- x$AIC_dfnonzero BICs <- x$BIC_dfnonzero CAICs <- x$CAIC_dfnonzero EBICs <- x$EBIC_dfnonzero } info.fanc <- list("Rad.Ellipse"=50, "Len.Rec"=50, "Window.Height"=Window.Height, "N.var"=NULL, "N.fac"=NULL, "N.lambda"=NULL, "L"=NULL, "lambdas"=NULL, "num.lambda"=1, "num.gamma"=1,"num.GFI"=1) info.fanc$lambda.current <- lambdas[1,1] info.fanc$gamma.current <- gammas[1] info.fanc$GFI.current <- GFIs[1] info.fanc$AGFI.current <- AGFIs[1] info.fanc$CFI.current <- CFIs[1] info.fanc$RMSEA.current <- RMSEAs[1] info.fanc$SRMR.current <- SRMRs[1] info.fanc$AIC.current <- AICs[1] info.fanc$BIC.current <- BICs[1] info.fanc$CAIC.current <- CAICs[1] info.fanc$EBIC.current <- EBICs[1] info.fanc$L <- L info.fanc$lambdas <- lambdas info.fanc$gammas <- gammas info.fanc$num.lambda <- 1 info.fanc$num.gamma <- 1 info.fanc$GFIs <- GFIs info.fanc$AGFIs <- AGFIs info.fanc$CFIs <- CFIs info.fanc$RMSEAs <- RMSEAs info.fanc$SRMRs <- SRMRs info.fanc$AICs <- AICs info.fanc$BICs <- BICs info.fanc$CAICs <- CAICs info.fanc$EBICs <- EBICs info.fanc$N.var <- dim(info.fanc$L[[1]][[1]])[1] info.fanc$N.fac <- dim(info.fanc$L[[1]][[1]])[2] info.fanc$N.lambda <- length(info.fanc$L[[1]]) info.fanc$N.gamma <- length(info.fanc$L) info.fanc$Window.Width <- max(((info.fanc$N.var+1) * info.fanc$Len.Rec + (info.fanc$N.var+2) * info.fanc$Len.Rec / 2), ((info.fanc$N.fac) * 1.5 * info.fanc$Rad.Ellipse),650) n.col <- 256 col.red <- rgb(red=1, green = (0:n.col)/n.col, blue = (0:n.col)/n.col, names = paste("red", 0:n.col, sep = ".")) col.black <- rgb(red=(0:n.col)/n.col, green = (0:n.col)/n.col, blue = (0:n.col)/n.col, names = paste("black", 0:n.col, sep = ".")) col.all <- c(col.red,rev(col.black)) max.col <- 0 for(i in 1:length(x$loadings)){ for(j in 1:length(x$loadings[[1]])){ max.col <- max(max.col,max(abs(x$loadings[[i]][[j]]))) } } isPDF <- FALSE PDFFileName <- "" pngFileName <- "" uniqFilename <- function(suffix) { nlen <- 17 st <- strtoi(charToRaw('a'), 16) fin <- strtoi(charToRaw('z'), 16) fname <- "" while (TRUE) { xraw <- as.raw(floor(runif(nlen, st, fin+1))) fname <- paste(rawToChar(xraw), '.',suffix,sep='',collapse='') if (!file.exists(fname)) { break } } return(fname) } minFontSize <- 10 wscale <- 1.2 win.dpi <- 72 apprFontSize <- function( width, nlen, dpi=win.dpi ) { width0 <- floor(width * wscale) pts <- floor( 72*width0/(nlen*dpi) ) len <- nlen if (pts<minFontSize) { len <- floor( 72*width0/(minFontSize*dpi) ) pts <- minFontSize } return( c(pts, len) ) } cbExposeLabelLambda <- function () { text <- sprintf ("rho : %.6f", info.fanc$lambda.current) tcltk::tkconfigure(fr3.label, text=text, font=fontSmall) } cbExposeLabelGFI <- function () { text <- sprintf("%5s: %5.3f", "GFI", info.fanc$GFI.current) tcltk::tkconfigure(fr1.gfi, text=text, font=fontSmall) } cbExposeLabelAGFI <- function () { text <- sprintf("%5s: %5.3f", "AGFI", info.fanc$AGFI.current) tcltk::tkconfigure(fr1.agfi, text=text, font=fontSmall) } cbExposeLabelCFI <- function () { text <- sprintf("%5s: %5.3f", "CFI", info.fanc$CFI.current) tcltk::tkconfigure(fr1.cfi, text=text, font=fontSmall) } cbExposeLabelRMSEA <- function () { text <- sprintf("%5s: %5.3f", "RMSEA", info.fanc$RMSEA.current) tcltk::tkconfigure(fr1.rmsea, text=text, font=fontSmall) } cbExposeLabelSRMR <- function () { text <- sprintf("%5s: %5.3f", "SRMR", info.fanc$SRMR.current) tcltk::tkconfigure(fr1.srmr, text=text, font=fontSmall) } cbExposeLabelAIC <- function () { text <- sprintf("%5s: %.4f", "AIC", info.fanc$AIC.current) tcltk::tkconfigure(fr2.aic, text=text, font=fontSmall) } cbExposeLabelBIC <- function () { text <- sprintf("%5s: %.4f", "BIC", info.fanc$BIC.current) tcltk::tkconfigure(fr2.bic, text=text, font=fontSmall) } cbExposeLabelCAIC <- function () { text <- sprintf("%5s: %.4f", "CAIC", info.fanc$CAIC.current) tcltk::tkconfigure(fr2.caic, text=text, font=fontSmall) } cbExposeLabelEBIC <- function () { text <- sprintf("%5s: %.4f", "EBIC", info.fanc$EBIC.current) tcltk::tkconfigure(fr2.ebic, text=text, font=fontSmall) } cbExposeLabelGamma <- function () { text <- sprintf ("gam : %f", info.fanc$gamma.current) tcltk::tkconfigure(fr4.label, text=text, font=fontSmall) } onClickLoadings <- function () { print(info.fanc$L[[info.fanc$num.gamma]][[info.fanc$num.lambda]]) } onClickPDF <- function() { filename <- tcltk::tclvalue(tcltk::tkgetSaveFile()) if (nchar(filename)>0) { isPDF <<- TRUE PDFFileName <<- filename cbExposeCanvas() isPDF <<- FALSE } } onClickOut <- function() { lambda.current <- info.fanc$lambda.current gamma.current <- info.fanc$gamma.current print(out(x, rho=lambda.current, gamma=gamma.current, df.method=df.method)) } cbExposePath <- function () { maxStrLen <- 6 orgFontSize <- par("ps") N.var <- info.fanc$N.var N.fac <- info.fanc$N.fac Window.Width <- as.numeric(tcltk::tkwinfo("width", canvas)) Window.Height <- as.numeric(tcltk::tkwinfo("height", canvas)) scale.x <- Window.Width / info.fanc$Window.Width scale.y <- Window.Height / info.fanc$Window.Height Rad.Ellipse.x <- info.fanc$Rad.Ellipse * scale.x * 2 Rad.Ellipse.y <- info.fanc$Rad.Ellipse * scale.y Len.Rec.x <- info.fanc$Len.Rec * scale.x Len.Rec.y <- info.fanc$Len.Rec * scale.y Sep.Ellipse <- info.fanc$Rad.Ellipse * scale.x / 2 Step.Ellipse <- Rad.Ellipse.x + Sep.Ellipse Sep.Rec <- Len.Rec.x/2 Step.Rec <- Len.Rec.x + Sep.Rec len <- 1 + floor(log10(N.fac)) fontParams1 <- apprFontSize(Rad.Ellipse.x, len) if (length(colnames(x$x)) == 0 ) { len <- 1 + floor(log10(N.var)) + 1 fontParams2 <- apprFontSize(Len.Rec.x, len) } else { len <- max(nchar(colnames(x$x))) if ( len > maxStrLen ) { len <- maxStrLen+2 } fontParams2 <- apprFontSize(Len.Rec.x, len) } fontSize <- min(c(fontParams1[1], fontParams2[1])) strLen <- fontParams2[2] if (strLen > maxStrLen) { strLen <- maxStrLen } HN.var <- N.var / 2 HN.fac <- N.fac / 2 par(plt=c(0,1,0,1)) par(mai=c(0, 0, 0, 0)) par(mar=c(0, 0, 0, 0)) par(omd=c(0, 1, 0, 1)) par(oma=c(0, 0, 0, 0)) par(omi=c(0, 0, 0, 0)) par(xpd=NA) dev.off() if ( isPDF == TRUE ) { aspect <- Window.Width / Window.Height if ( aspect > 1.417 ) { paper.Width <- 8.5 paper.Height <- 8.5 / aspect } else { paper.Height <- 6 paper.Width <- 6 * aspect } winWidthInch <- Window.Width / win.dpi printScale.x <- paper.Width / winWidthInch printFontSize <- floor(fontSize*printScale.x) print(sprintf("printFontSize=%d", printFontSize)) pdf(file=PDFFileName, width=paper.Width, height=paper.Height, family="Courier" ) } else { pngFileName <- uniqFilename('png') png(filename=pngFileName, width=Window.Width, height=Window.Height) } plot(NULL, NULL, xlim=c(0,Window.Width), ylim=c(Window.Height,0), axes=FALSE, ann=FALSE) Rem.N.fac <- N.fac %% 2 LineWidth <- 2 x0 <- Window.Width / 2 y0 <- 0.1 * Window.Height y1 <- y0 - Rad.Ellipse.y / 2 y2 <- y0 + Rad.Ellipse.y / 2 offset.num <- 1 Offset.Ellipse <- Sep.Ellipse / 2 NN.fac <- HN.fac rad <- seq(-pi, pi, length=40) if (Rem.N.fac != 0) { offset.num <- 2 Offset.Ellipse <- Rad.Ellipse.x/2 + Sep.Ellipse NN.fac <- floor(HN.fac) } if (Rem.N.fac != 0) { x1 <- x0 - Rad.Ellipse.x/2 x2 <- x0 + Rad.Ellipse.x/2 lines(cos(rad)*Rad.Ellipse.x/2+x0, sin(rad)*Rad.Ellipse.y/2+y0, lwd=LineWidth ) if (isPDF == TRUE) { par(ps=printFontSize) } else { par(ps=fontSize) } text <- sprintf ("f%d", NN.fac + 1) x1 <- x0 text(x1, y0, labels=text) par(ps=orgFontSize) } if (NN.fac>0) { for (i in 1:NN.fac) { ii <- i - 1 x1 <- x0 + Offset.Ellipse + ii*Step.Ellipse x2 <- x1 + Rad.Ellipse.x xc <- (x1+x2)/2 lines(cos(rad)*Rad.Ellipse.x/2+xc, sin(rad)*Rad.Ellipse.y/2+y0, lwd=LineWidth) x2 <- x0 - Offset.Ellipse - ii*Step.Ellipse x1 <- x2 - Rad.Ellipse.x xc <- (x1+x2)/2 lines(cos(rad)*Rad.Ellipse.x/2+xc, sin(rad)*Rad.Ellipse.y/2+y0, lwd=LineWidth) if (isPDF == TRUE) { par(ps=printFontSize) } else { par(ps=fontSize) } text <- sprintf ("f%d", NN.fac + offset.num + ii) x1 <- x0 + (Offset.Ellipse+Rad.Ellipse.x/2) + ii*Step.Ellipse text(x1, y0, labels=text, ps=fontSize) text <- sprintf ("f%d", NN.fac - ii) x1 <- x0 - (Offset.Ellipse+Rad.Ellipse.x/2) - ii*Step.Ellipse text(x1, y0, labels=text, ps=fontSize) par(ps=orgFontSize) } } Rem.N.var <- N.var %% 2 LineWidth <- 2 y0 <- 0.9 * Window.Height y1 <- y0 - Len.Rec.y / 2 y2 <- y0 + Len.Rec.y / 2 Offset.Rec <- Sep.Rec / 2 offset.num <- 1 NN.var <- HN.var if (Rem.N.var != 0) { Offset.Rec <- Len.Rec.x/2 + Sep.Rec offset.num <- 2 NN.var <- floor(HN.var) } if (Rem.N.var != 0) { x1 <- x0 - Len.Rec.x/2 x2 <- x0 + Len.Rec.x/2 rect(x1, y1, x2, y2, lwd=LineWidth) if ( length(colnames(x$x)) == 0 ) { text <- sprintf ("x%d", NN.var + 1) } else { text <- colnames(x$x)[NN.var + 1] if (nchar(text) > maxStrLen ) { text <- paste0(substring(text, 1, strLen), "..") } } if (isPDF == TRUE) { par(ps=printFontSize) } else { par(ps=fontSize) } x1 <- x0 text(x1, y0, labels=text) par(ps=orgFontSize) } if (NN.var>0) { for (i in 1:NN.var) { ii <- i - 1 x1 <- x0 + Offset.Rec + ii*(3/2*Len.Rec.x) x2 <- x1 + Len.Rec.x rect(x1, y1, x2, y2, lwd=LineWidth) x2 <- x0 - Offset.Rec - ii*(3/2*Len.Rec.x) x1 <- x2 - Len.Rec.x rect(x1, y1, x2, y2, lwd=LineWidth) if ( length(colnames(x$x)) == 0 ) { text1 <- sprintf ("x%d", NN.var + offset.num + ii) text2 <- sprintf ("x%d", NN.var - ii) } else { text1 <- colnames(x$x)[NN.var + offset.num + ii] text2 <- colnames(x$x)[NN.var - ii] if (nchar(text1) > strLen ) { text1 <- paste0(substring(text1, 1, strLen), "..") } if (nchar(text2) > strLen ) { text2 <- paste0(substring(text2, 1, strLen), "..") } } if (isPDF == TRUE) { par(ps=printFontSize) } else { par(ps=fontSize) } x1 <- x0 + (Offset.Rec+Len.Rec.x/2) + ii*(3/2*Len.Rec.x) text(x1, y0, labels=text1) x1 <- x0 - (Offset.Rec+Len.Rec.x/2) - ii*(3/2*Len.Rec.x) text(x1, y0, labels=text2) par(ps=orgFontSize) } } x0 <- Window.Width / 2 y2 <- 0.1*Window.Height + Rad.Ellipse.y/2 y1 <- 0.9*Window.Height - Len.Rec.y/2 x0.fac <- x0-(Sep.Ellipse+Rad.Ellipse.x)/2-Step.Ellipse*(NN.fac-1) x0.var <- x0 - (Sep.Rec+Len.Rec.x)/2 - Step.Rec*(NN.var-1) cur.lambda <- info.fanc$num.lambda cur.gamma <- info.fanc$num.gamma if (Rem.N.fac != 0) { x0.fac <- x0-(Sep.Ellipse+Rad.Ellipse.x)-Step.Ellipse*(NN.fac-1) } if (Rem.N.var != 0 ) { x0.var <- x0 - (Sep.Rec+Len.Rec.x) - Step.Rec*(NN.var-1) } for (i in 1:N.var) { ii <- i - 1 x1 <- x0.var + ii*Step.Rec for (j in 1:N.fac) { jj <- j - 1 x2 <- x0.fac + jj*Step.Ellipse val <- info.fanc$L[[cur.gamma]][[cur.lambda]][i, j] lw0 <- abs((val * 10)) LineWidth <- 0 if (lw0 > 0.05 && lw0<1.5 ) { LineWidth <- 1 } else if (lw0 >=1.5) { LineWidth <- as.integer( lw0 + 0.5 ) } color <- "black" if (info.fanc$L[[cur.gamma]][[cur.lambda]][i, j] < 0) { color <- "red" } if (LineWidth > 0) { lines(c(x1, x2), c(y1, y2), col=color, lwd=LineWidth) } } } dev.off() graphics.off() if ( isPDF == FALSE ) { image1 <- tcltk::tclVar() tcltk::tkimage.create("photo", image1, file=pngFileName) tcltk::tkdelete(canvas, tag="all") tcltk::tkcreate(canvas, "image",0,0,image=image1,anchor="nw") file.remove(pngFileName) } } cbExposeHeatmap <- function() { loadings <- info.fanc$L[[info.fanc$num.gamma]][[info.fanc$num.lambda]] loadings <- as.matrix(loadings) loadings <- t(loadings) loadings <- fliplr.fanc(loadings) Window.Width <- as.numeric(tcltk::tkwinfo("width", canvas)) Window.Height <- as.numeric(tcltk::tkwinfo("height", canvas)) if ( isPDF == FALSE ) { pngFileName <- uniqFilename('png') png(pngFileName, width=Window.Width, height=Window.Height) } else { pdf(file=PDFFileName, width=6, height=6) } image(loadings, col=col.all, zlim=c(-max.col, max.col), xlab="factors", ylab="variables") dev.off() if ( isPDF == FALSE ) { image1 <- tcltk::tclVar() tcltk::tkimage.create("photo", image1, file=pngFileName) tcltk::tkdelete(canvas, tag="all") tcltk::tkcreate(canvas, "image", 0, 0, image=image1, anchor="nw" ) file.remove(pngFileName) } } cbExposeCanvas <- function() { if ( fig.type == "path" ) { cbExposePath() } else { cbExposeHeatmap() } } onChangeParam <- function (...) { value <- as.numeric(tcltk::tclvalue(LambdaValue)) num.lambda <- value + 1 if (num.lambda < 1 ) { num.lambda <- 1 } value <- as.numeric(tcltk::tclvalue(GammaValue)) num.gamma <- value + 1 if (num.gamma < 1) { num.gamma <- 1 } info.fanc$num.lambda <<- num.lambda info.fanc$num.gamma <<- num.gamma info.fanc$lambda.current<<-info.fanc$lambdas[num.lambda, num.gamma] info.fanc$gamma.current<<-info.fanc$gammas[num.gamma] info.fanc$GFI.current <<- info.fanc$GFIs[num.lambda, num.gamma] info.fanc$AGFI.current <<- info.fanc$AGFIs[num.lambda, num.gamma] info.fanc$CFI.current <<- info.fanc$CFIs[num.lambda, num.gamma] info.fanc$RMSEA.current <<- info.fanc$RMSEAs[num.lambda, num.gamma] info.fanc$SRMR.current <<- info.fanc$SRMRs[num.lambda, num.gamma] info.fanc$AIC.current <<- info.fanc$AICs[num.lambda, num.gamma] info.fanc$BIC.current <<- info.fanc$BICs[num.lambda, num.gamma] info.fanc$CAIC.current <<- info.fanc$CAICs[num.lambda, num.gamma] info.fanc$EBIC.current <<- info.fanc$EBICs[num.lambda, num.gamma] cbExposeCanvas() cbExposeLabelLambda() cbExposeLabelGFI() cbExposeLabelAGFI() cbExposeLabelCFI() cbExposeLabelRMSEA() cbExposeLabelSRMR() cbExposeLabelAIC() cbExposeLabelBIC() cbExposeLabelCAIC() cbExposeLabelEBIC() cbExposeLabelGamma() } onClickOverview <- function() { cbExposeSubPath <- function() { N.var <- info.fanc$N.var N.fac <- info.fanc$N.fac window.width<-as.numeric(tcltk::tkwinfo("width", subCanvas)) window.height<-as.numeric(tcltk::tkwinfo("height",subCanvas)) canvas.height <- window.height/ndiv.lambda canvas.width <- window.width/ndiv.gamma scale.x <- canvas.width / info.fanc$Window.Width scale.y <- canvas.height / info.fanc$Window.Height Rad.Ellipse.x <- info.fanc$Rad.Ellipse * scale.x * 2 Rad.Ellipse.y <- info.fanc$Rad.Ellipse * scale.y Len.Rec.x <- info.fanc$Len.Rec * scale.x Len.Rec.y <- info.fanc$Len.Rec * scale.y Sep.Ellipse <- info.fanc$Rad.Ellipse * scale.x / 2 Step.Ellipse <- Rad.Ellipse.x + Sep.Ellipse Sep.Rec <- Len.Rec.x/2 Step.Rec <- Len.Rec.x + Sep.Rec HN.var <- N.var / 2 HN.fac <- N.fac / 2 tcltk::tkdelete(subCanvas, tag="all") for (i in 1:(ndiv.lambda-1)) { yy <- i * canvas.height tcltk::tkcreate(subCanvas, "line", 0, yy, window.width, yy, width=2, fill=" } for (i in 1:(ndiv.gamma-1)) { xx <- i * canvas.width tcltk::tkcreate(subCanvas, "line", xx, 0, xx, window.height, width=2, fill=" } Rem.N.fac <- N.fac %% 2 Rem.N.var <- N.var %% 2 NN.fac <- HN.fac if (Rem.N.fac != 0) { NN.fac <- floor(HN.fac) } NN.var <- HN.var if (Rem.N.var != 0) { NN.var <- floor(HN.var) } LineWidth <- 1 for ( i in 1:ndiv.gamma ) { x0 <- (i-1)*canvas.width + canvas.width/2 for ( j in 1:ndiv.lambda ) { y0 <- (j-1)*canvas.height + 0.2 * canvas.height y1 <- y0 - Rad.Ellipse.y / 2 y2 <- y0 + Rad.Ellipse.y / 2 Offset.Ellipse <- Sep.Ellipse / 2 offset.num <- 1 if (Rem.N.fac != 0) { offset.num <- 2 Offset.Ellipse <- Rad.Ellipse.x/2 + Sep.Ellipse } if (Rem.N.fac != 0) { x1 <- x0 - Rad.Ellipse.x/2 x2 <- x0 + Rad.Ellipse.x/2 tcltk::tkcreate(subCanvas, "oval", x1, y1, x2, y2, width=LineWidth) text <- sprintf ("f%d", NN.fac + 1) x1 <- x0 tcltk::tkcreate(subCanvas, "text", x1, y0, text=text, anchor="center", font=fontTiny) } if (NN.fac>0) { for (ii in 1:NN.fac) { iii <- ii - 1 x1 <- x0 + Offset.Ellipse + iii*Step.Ellipse x2 <- x1 + Rad.Ellipse.x tcltk::tkcreate(subCanvas, "oval", x1, y1, x2, y2, width=LineWidth) x2 <- x0 - Offset.Ellipse - iii*Step.Ellipse x1 <- x2 - Rad.Ellipse.x tcltk::tkcreate(subCanvas, "oval", x1, y1, x2, y2, width=LineWidth) text <- sprintf ("f%d", NN.fac + offset.num + iii) x1 <- x0 + (Offset.Ellipse+Rad.Ellipse.x/2) + iii*Step.Ellipse tcltk::tkcreate(subCanvas, "text", x1, y0, text=text, anchor="center", font=fontTiny) text <- sprintf ("f%d", NN.fac - iii) x1 <- x0 - (Offset.Ellipse+Rad.Ellipse.x/2) - iii*Step.Ellipse tcltk::tkcreate(subCanvas, "text", x1, y0, text=text, anchor="center", font=fontTiny) } } } } LineWidth <- 1 for ( i in 1:ndiv.gamma ) { x0 <- (i-1)*canvas.width + canvas.width/2 for ( j in 1:ndiv.lambda ) { y0 <- (j-1)*canvas.height + 0.9 * canvas.height y1 <- y0 - Len.Rec.y / 2 y2 <- y0 + Len.Rec.y / 2 Offset.Rec <- Sep.Rec / 2 offset.num <- 1 if (Rem.N.var != 0) { Offset.Rec <- Len.Rec.x/2 + Sep.Rec offset.num <- 2 } if (Rem.N.var != 0) { x1 <- x0 - Len.Rec.x/2 x2 <- x0 + Len.Rec.x/2 tcltk::tkcreate(subCanvas, "rectangle", x1, y1, x2, y2, width=LineWidth) text <- sprintf ("x%d", NN.var + 1) x1 <- x0 tcltk::tkcreate(subCanvas, "text", x1, y0, text=text, anchor="center", font=fontTiny) } if (NN.var>0) { for (ii in 1:NN.var) { iii <- ii - 1 x1 <- x0 + Offset.Rec + iii*Step.Rec x2 <- x1 + Len.Rec.x tcltk::tkcreate(subCanvas, "rectangle", x1, y1, x2, y2, width=LineWidth) x2 <- x0 - Offset.Rec - iii*Step.Rec x1 <- x2 - Len.Rec.x tcltk::tkcreate(subCanvas, "rectangle", x1, y1, x2, y2, width=LineWidth) text <- sprintf ("x%d", NN.var + offset.num + iii) x1 <- x0 + Offset.Rec+Len.Rec.x/2 + iii*Step.Rec tcltk::tkcreate(subCanvas, "text", x1, y0, text=text, anchor="center", font=fontTiny) text <- sprintf ("x%d", NN.var - iii) x1 <- x0 - Offset.Rec - iii*Step.Rec - Len.Rec.x/2 tcltk::tkcreate(subCanvas, "text", x1, y0, text=text, anchor="center", font=fontTiny) } } } } for ( i in 1:ndiv.gamma ) { x0 <- (i-1)*canvas.width + canvas.width/2 for ( j in 1:ndiv.lambda ) { y2 <- (j-1)*canvas.height + 0.2*canvas.height + Rad.Ellipse.y/2 y1 <- (j-1)*canvas.height + 0.9*canvas.height - Len.Rec.y/2 x0.fac <- x0 - Step.Ellipse/2 - Step.Ellipse*(NN.fac-1) x0.var <- x0 - Step.Rec/2 - Step.Rec*(NN.var-1) cur.lambda <- lambda.list[j] cur.gamma <- gamma.list[i] if (Rem.N.fac != 0) { x0.fac <- x0 - Step.Ellipse*NN.fac } if (Rem.N.var != 0 ) { x0.var <- x0 - Step.Rec*NN.var } for (ii in 1:N.var) { x1 <- x0.var + (ii-1)*Step.Rec for (jj in 1:N.fac) { x2 <- x0.fac + (jj-1)*Step.Ellipse val<-info.fanc$L[[cur.gamma]][[cur.lambda]][ii, jj] color <- "black" if (val < 0) { color <- "red" } LineWidth <- abs(val * 5) if (LineWidth > 0.025) { tcltk::tkcreate(subCanvas, "line", x1, y1, x2, y2, fill=color, width=LineWidth) } } } } } for ( i in 1:ndiv.gamma ) { x0 <- (i-1)*canvas.width + canvas.width/2 for ( j in 1:ndiv.lambda ) { y0 <- (j-1)*canvas.height + 0.05*canvas.height cur.lambda <- lambda.list[j] cur.gamma <- gamma.list[i] lambda <- info.fanc$lambdas[cur.lambda, cur.gamma] gamma <- info.fanc$gammas[cur.gamma] text <- sprintf("lambda= %.3f gamma= %.3f", lambda, gamma) tcltk::tkcreate(subCanvas, "text", x0, y0, text=text, anchor="center", font=fontTiny ) } } } cbExposeSubHeatmap <- function() { N.var <- info.fanc$N.var N.fac <- info.fanc$N.fac window.width<-as.numeric(tcltk::tkwinfo("width", subCanvas)) window.height<-as.numeric(tcltk::tkwinfo("height",subCanvas)) canvas.height <- window.height/ndiv.lambda canvas.width <- window.width/ndiv.gamma tcltk::tkdelete(subCanvas, tag="all") for (i in 1:ndiv.gamma) { cur.gamma <- gamma.list[i] x.pos <- canvas.width * (i-1) gamma <- info.fanc$gammas[cur.gamma] for (j in 1:ndiv.lambda) { cur.lambda <- lambda.list[j] y.pos <- canvas.height * (j-1) lambda <- info.fanc$lambdas[cur.lambda, cur.gamma] loadings <- info.fanc$L[[cur.gamma]][[cur.lambda]] loadings <- as.matrix(loadings) loadings <- t(loadings) loadings <- fliplr.fanc(loadings) text <- sprintf("lambda= %.3f gamma= %.3f", lambda, gamma) tmpFile <- uniqFilename('png') png(tmpFile, width=canvas.width, height=canvas.height) image(loadings, col=col.all, main=text, zlim=c(-max.col, max.col), xlab="factors", ylab="variables") dev.off() image1 <- tcltk::tclVar() tcltk::tkimage.create("photo", image1, file=tmpFile) tcltk::tkcreate(subCanvas, "image", x.pos, y.pos, image=image1, anchor="nw" ) file.remove(tmpFile) } } } cbExposeSubCanvas <- function() { if ( fig.type == "path" ) { cbExposeSubPath() } else { cbExposeSubHeatmap() } } onClickDiv <- function() { if (ndiv.lambda == 5) { ndiv.lambda <<- 4 ndiv.gamma <<- 4 tcltk::tkconfigure(subFrm.div, text="5x5") tcltk::tktitle(subWin) <- "Overview (4x4)" } else { ndiv.lambda <<- 5 ndiv.gamma <<- 5 tcltk::tkconfigure(subFrm.div, text="4x4") tcltk::tktitle(subWin) <- "Overview (5x5)" } if (ndiv.lambda > N.lambda) { ndiv.lambda <<- N.lambda } if (ndiv.gamma > N.gamma) { ndiv.gamma <<- N.gamma } cbExposeSubCanvas() } N.lambda <- info.fanc$N.lambda N.gamma <- info.fanc$N.gamma ndiv.lambda <- 5 ndiv.gamma <- 5 if (N.lambda < ndiv.lambda) { ndiv.lambda <- N.lambda } if (N.gamma < ndiv.gamma) { ndiv.gamma <- N.gamma } lambda.list <- vector(length=ndiv.lambda) gamma.list <- vector(length=ndiv.gamma) if (ndiv.lambda == 1) { lambda.list[1] <- 1 } else { d.lambda <- (N.lambda-1) / (ndiv.lambda-1) for (i in 1:ndiv.lambda) { lambda.list[i] <- 1 + as.integer((i-1)*d.lambda+0.1) } } if (ndiv.gamma == 1) { gamma.list[1] <- 1 } else { d.gamma <- (N.gamma-1) / (ndiv.gamma-1) for (i in 1:ndiv.gamma) { gamma.list[i] <- 1 + as.integer((i-1)*d.gamma+0.1) } } subWin <- tcltk::tktoplevel() title <- sprintf("Overview (%dx%d)", ndiv.lambda, ndiv.gamma) tcltk::tktitle(subWin) <- title subCanvas <- tcltk::tkcanvas(subWin, background=" tcltk::tkpack(subCanvas, expand=TRUE, fill="both") tcltk::tkbind(subCanvas, "<Configure>", cbExposeSubCanvas) subFrm <- tcltk::tkframe(subWin) subFrm.close <- tcltk::tkbutton(subFrm, text="Close", width=Text.Width, padx=10, command=function() tcltk::tkdestroy(subWin)) subFrm.div <- tcltk::tkbutton(subFrm, text="4x4", width=Text.Width, padx=10, command=onClickDiv) tcltk::tkpack(subFrm.close, side="right") tcltk::tkpack(subFrm.div, side="right") tcltk::tkpack(subFrm, side="right") tcltk::tkwm.geometry(subWin, "1200x850") } lambdas <- info.fanc$lambdas gammas <- info.fanc$gammas N.lambda <- info.fanc$N.lambda N.gamma <- info.fanc$N.gamma Min.lambda <- 0 Max.lambda <- N.lambda - 1 Step.lambda <- 1 Min.gamma <- 0 Max.gamma <- N.gamma - 1 Step.gamma <- 1 LambdaValue <- tcltk::tclVar(sprintf("f", Min.lambda)) GammaValue <- tcltk::tclVar(sprintf("f", Min.gamma)) Items <- c() fontNormal <- tcltk::tkfont.create( family="Courier New", size=14) fontSmall <- tcltk::tkfont.create( family="Courier New", size=10) fontTiny <- tcltk::tkfont.create( family="Courier New", size=8) Window.Width <- sprintf("%d", info.fanc$Window.Width) Window.Height0 <- sprintf("%d", info.fanc$Window.Height + 200) Text.Width <- "16" top <- tcltk::tktoplevel(width=Window.Width, height=Window.Height0) canvas <- tcltk::tkcanvas(top, background=" tcltk::tkpack(canvas, expand=TRUE, fill="both") tcltk::tkbind(canvas, "<Configure>", cbExposeCanvas) frmAll <- tcltk::tkframe(top, width=Window.Width) fr1 <- tcltk::tkframe(frmAll, width=Window.Width) fr1.gfi <- tcltk::tklabel(fr1, width=Text.Width, anchor="w", text="") fr1.agfi <- tcltk::tklabel(fr1, width=Text.Width, anchor="w", text="") fr1.cfi <- tcltk::tklabel(fr1, width=Text.Width, anchor="w", text="") fr1.rmsea <- tcltk::tklabel(fr1, width=Text.Width, anchor="w", text="") fr1.srmr <- tcltk::tklabel(fr1, width=Text.Width, anchor="w", text="") tcltk::tkpack(fr1.gfi, side="left") tcltk::tkpack(fr1.agfi, side="left") tcltk::tkpack(fr1.cfi, side="left") tcltk::tkpack(fr1.rmsea, side="left") tcltk::tkpack(fr1.srmr, side="left") tcltk::tkpack(fr1) fr2 <- tcltk::tkframe(frmAll, width=Window.Width) fr2.aic <- tcltk::tklabel(fr2, width=Text.Width, anchor="w", text="" ) fr2.bic <- tcltk::tklabel(fr2, width=Text.Width, anchor="w", text="" ) fr2.caic <- tcltk::tklabel(fr2, width=Text.Width, anchor="w", text="" ) fr2.ebic <- tcltk::tklabel(fr2, width=Text.Width, anchor="w", text="" ) fr2.dum <- tcltk::tklabel(fr2, width=Text.Width, anchor="w", text="" ) tcltk::tkpack(fr2.aic, side="left") tcltk::tkpack(fr2.bic, side="left") tcltk::tkpack(fr2.caic, side="left") tcltk::tkpack(fr2.ebic, side="left") tcltk::tkpack(fr2.dum, side="left") tcltk::tkpack(fr2) fr3 <- tcltk::tkframe(frmAll, width=Window.Width) fr3.label <- tcltk::tklabel(fr3, width=Text.Width, anchor="w", text="") fr3.scale <- tcltk::tkscale(fr3, length=250, from=Min.lambda, to=Max.lambda, resolution=Step.lambda, variable=LambdaValue, orient="horizontal", showvalue=0, command=onChangeParam ) tcltk::tkpack(fr3.label, side="left") tcltk::tkpack(fr3.scale, side="left") tcltk::tkpack(fr3) fr4 <- tcltk::tkframe(frmAll, width=Window.Width) fr4.label <- tcltk::tklabel(fr4, width=Text.Width, anchor="w", text="") fr4.scale <- tcltk::tkscale(fr4, length=250, from=Min.gamma, to=Max.gamma, resolution=Step.gamma, variable=GammaValue, orient="horizontal", showvalue=0, command=onChangeParam ) tcltk::tkpack(fr4.label, side="left") tcltk::tkpack(fr4.scale, side="left") tcltk::tkpack(fr4) fr5 <- tcltk::tkframe(frmAll, width=Window.Width) fr5.overview <- tcltk::tkbutton(fr5, text="Overview", width=Text.Width, padx=10, command=onClickOverview) fr5.loadings <- tcltk::tkbutton(fr5, text="Output loadings", width=Text.Width, padx=10, command=onClickLoadings) fr5.out <- tcltk::tkbutton(fr5, text="Output params", width=Text.Width, padx=10, command=onClickOut) fr5.pdf <- tcltk::tkbutton(fr5, text="PDF", width=Text.Width, padx=20, command=onClickPDF) tcltk::tkpack(fr5.loadings, side="right") tcltk::tkpack(fr5.overview, side="right") tcltk::tkpack(fr5.out, side="right") tcltk::tkpack(fr5.pdf, side="right") tcltk::tkpack(fr5, side="right") tcltk::tkpack(frmAll, fill="x") tcltk::tkwm.geometry(top, "900x650") if(x$type == "MC"){ tcltk::tktitle(top) <- "Factor analysis with MC+" } else if (x$type == "prenet" ) { tcltk::tktitle(top) <- "Factor analysis with prenet" } } fliplr.fanc <- function(x){ m <- ncol(x) x[,m:1] }
hillshader <- function( elevation, shader = "ray_shade", filename = NULL, ... ) { dots <- list(...) mat <- raster_to_matrix(elevation) shades <- lapply( shader, function(shd) { shader_fun <- switch ( shd, "ray_shade" = rayshader::ray_shade, "lamb_shade" = rayshader::lamb_shade, "ambient_shade" = rayshader::ambient_shade, stop("Wrong shader option", call. = FALSE) ) args_shader <- dots args_shader$heightmap <- mat args_shader <- .subset_args(fun = shader_fun, args = args_shader) res_shd <- do.call(shader_fun, args_shader) res_shd }) res <- shades[[1]] if (length(shades) > 1) { for(i in 2:length(shades)) { args_shadow <- dots args_shadow$hillshade <- res args_shadow$shadowmap <- shades[[i]] args_shadow <- .subset_args(fun = add_shadow_2d, args = args_shadow) res <- do.call( add_shadow_2d, args_shadow ) } } if (!is.null(filename)) { args_write_raster <- dots args_write_raster$hillshade <- res args_write_raster$elevation <- elevation args_write_raster$filename <- filename do.call(write_raster, args_write_raster) return(invisible(NULL)) } else { rast <- matrix_to_raster(res, raster = elevation) return(rast) } }
NULL NULL methods::setGeneric( "add_relative_targets", signature = methods::signature("x", "targets"), function(x, targets) standardGeneric("add_relative_targets")) methods::setMethod( "add_relative_targets", methods::signature("ProjectProblem", "numeric"), function(x, targets) { assertthat::assert_that( inherits(x, "ProjectProblem"), length(targets) %in% c(1, number_of_features(x)), is.numeric(targets), assertthat::noNA(targets), min(targets) >= 0, max(targets) <= 1) add_manual_targets(x, tibble::tibble(feature = x$feature_names(), type = "relative", sense = ">=", target = targets)) }) methods::setMethod( "add_relative_targets", methods::signature("ProjectProblem", "character"), function(x, targets) { assertthat::assert_that( inherits(x, "ProjectProblem"), assertthat::is.string(targets), assertthat::noNA(targets), assertthat::has_name(x$data$features, targets), is.numeric(x$data$features[[targets]]), assertthat::noNA(x$data$features[[targets]]), min(x$data$features[[targets]]) >= 0, max(x$data$features[[targets]]) <= 1) add_relative_targets(x, x$data$features[[targets]]) })
rename <- function(x, replace, warn_missing = TRUE, warn_duplicated = TRUE ) { names(x) <- revalue(names(x), replace, warn_missing = warn_missing) duplicated_names <- names(x)[duplicated(names(x))] if (warn_duplicated && (length(duplicated_names) > 0L)) { duplicated_names_message <- paste0("`", duplicated_names, "`", collapse=", ") warning("The plyr::rename operation has created duplicates for the ", "following name(s): (", duplicated_names_message, ")", call. = FALSE) } x }
expected <- eval(parse(text="c(2.0943951023932, 2.11184839491314, 2.12930168743308, 2.14675497995302, 2.16420827247297, 2.18166156499291, 2.19911485751286, 2.2165681500328, 2.23402144255274, 2.25147473507268, 2.26892802759263, 2.28638132011257, 2.30383461263251, 2.32128790515246, 2.3387411976724, 2.35619449019234, 2.37364778271229, 2.39110107523223, 2.40855436775217, 2.42600766027212, 2.44346095279206, 2.460914245312, 2.47836753783195, 2.49582083035189, 2.51327412287183, 2.53072741539178, 2.54818070791172, 2.56563400043166, 2.58308729295161, 2.60054058547155, 2.61799387799149)")); test(id=0, code={ argv <- eval(parse(text="list(from = 2.0943951023932, to = 2.61799387799149, by = 0.0174532925199433)")); do.call(`seq.int`, argv); }, o=expected);
timmaCategoryWeighted1 <- function(profile_data, sens, loo = TRUE, class) { drug_number <- nrow(as.matrix(profile_data)) target_number <- ncol(as.matrix(profile_data)) profile_data <- matrix(profile_data, nrow = drug_number, ncol = target_number) prof <- unique(profile_data) dec_prof <- apply(prof, 1, function(x) strtoi(paste(x, collapse = ""), base = class)) dec <- apply(profile_data, 1, function(x) strtoi(paste(x, collapse = ""), base = class)) col_num <- length(dec_prof) identical_idx <- sapply(dec, function(x) which(dec_prof == x)) IM_d <- array(NA, dim = c(drug_number, col_num)) IM_subset <- array(Inf, dim = c(drug_number, col_num)) IM_subw <- array(0, dim = c(drug_number, col_num)) IM_superset <- array(-Inf, dim = c(drug_number, col_num)) IM_supw <- array(0, dim = c(drug_number, col_num)) for (i in 1:drug_number) { IM_d[i, identical_idx[i]] <- 1 * sens[i] bin_set <- getBinary1(profile_data[i, ], profile_data) if (length(bin_set$subset) != 0) { subset_index <- dec_prof %in% dec[bin_set$subset] IM_subset[i, subset_index] <- sens[i] for (each in which(subset_index == TRUE)) { IM_subw[i, each] <- bin_set$subw[which(dec[bin_set$subset] == dec_prof[each])[1]] } } if (length(bin_set$superset) != 0) { superset_index <- dec_prof %in% dec[bin_set$superset] IM_superset[i, superset_index] <- sens[i] for (each in which(superset_index == TRUE)) { IM_supw[i, each] <- bin_set$supw[which(dec[bin_set$superset] == dec_prof[each])[1]] } } } M_d <- colMeans(IM_d, na.rm = TRUE) maxval <- maxcpp1(IM_superset, drug_number, col_num) minval <- mincpp1(IM_subset, drug_number, col_num) min_subset <- minval$min min_index <- minval$min_idx max_superset <- maxval$max max_index <- maxval$max_idx cell <- is.nan(M_d) & is.finite(max_superset) cell <- which(cell == TRUE) if (length(cell) != 0) { for (i in cell) { drug_sub_cell <- !is.infinite(IM_superset[, i]) index <- max_index[i] dec_maxsens <- identical_idx[index] supersets_small <- IM_subset[, dec_maxsens] < max_superset[i] common_cell <- which(drug_sub_cell & supersets_small) if (length(common_cell) != 0) { total <- sum(1/IM_supw[common_cell, i]) + 1/IM_supw[index, i] max_superset[i] <- 1/IM_supw[index, i]/total * sens[index] + sum(1/IM_supw[common_cell, i]/total * sens[common_cell]) } } } cell2 <- is.nan(M_d) & is.finite(min_subset) cell2 <- which(cell2 == TRUE) if (length(cell2) != 0) { for (i in cell2) { drug_sub_cell <- !is.infinite(IM_subset[, i]) index <- min_index[i] dec_minsens <- identical_idx[index] subsets_small <- IM_superset[, dec_minsens] > min_subset[i] if (length(subsets_small) == 0) { common_cell2 <- vector("numeric") } else { common_cell2 <- which(drug_sub_cell & subsets_small) } if (length(common_cell2) != 0) { total <- sum(1/IM_subw[common_cell, i]) + 1/IM_subw[index, i] min_subset[i] <- 1/IM_subw[index, i]/total * sens[index] + sum(1/IM_subw[common_cell, i]/total * sens[common_cell]) } } } M <- M_d M[cell] <- (max_superset[cell] + 1)/2 M[cell2] <- (min_subset[cell2] + 0)/2 average_index <- intersect(cell, cell2) M[average_index] <- (max_superset[average_index] + min_subset[average_index])/2 error_predict <- rep(NA, drug_number) pred <- rep(NA, drug_number) if (loo == FALSE) { pred <- M[identical_idx] error_predict <- abs(pred - sens) } else { for (i in 1:drug_number) { dim_IMd <- c(drug_number - 1, col_num) IM_d_loo <- array(IM_d[-i, ], dim = dim_IMd) IM_subset_loo <- array(IM_subset[-i, ], dim = dim_IMd) IM_subw_loo <- array(IM_subw[-i, ], dim = dim_IMd) IM_superset_loo <- array(IM_superset[-i, ], dim = dim_IMd) IM_supw_loo <- array(IM_supw[-i, ], dim = dim_IMd) sens_loo <- sens[-i] drug_idx_loo <- identical_idx[-i] M_d_loo <- M_d M_d_loo[identical_idx[i]] <- mean(IM_d_loo[, identical_idx[i]], na.rm = TRUE) M_loo <- M_d_loo maxval <- maxcpp1(IM_superset_loo, drug_number - 1, col_num) minval <- mincpp1(IM_subset_loo, drug_number - 1, col_num) min_subset_loo <- minval$min min_index_loo <- minval$min_idx max_superset_loo <- maxval$max max_index_loo <- maxval$max_idx cell <- is.nan(M_d_loo) & is.finite(max_superset_loo) cell <- which(cell == TRUE) cell2 <- is.nan(M_d_loo) & is.finite(min_subset_loo) cell2 <- which(cell2 == TRUE) j_max <- which(cell == identical_idx[i]) j_min <- which(cell2 == identical_idx[i]) if (length(j_max) != 0 && length(j_min) == 0) { cell_index <- cell[j_max] drug_sub_cell <- !is.infinite(IM_superset_loo[, cell_index]) index <- max_index_loo[cell_index] dec_maxsens <- drug_idx_loo[index] supersets_small <- IM_subset_loo[, dec_maxsens] < max_superset_loo[cell_index] common_cell <- which(drug_sub_cell & supersets_small) if (length(common_cell) != 0) { total <- sum(1/IM_supw_loo[common_cell, cell_index]) + 1/IM_supw_loo[index, cell_index] max_superset_loo[cell_index] <- 1/IM_supw_loo[index, cell_index]/total * sens_loo[index] + sum(1/IM_supw_loo[common_cell, cell_index]/total * sens_loo[common_cell]) } pred[i] <- (max_superset_loo[identical_idx[i]] + 1)/2 error_predict[i] <- abs(pred[i] - sens[i]) } else if (length(j_max) == 0 && length(j_min) != 0) { cell2_index <- cell2[j_min] drug_sub_cell <- !is.infinite(IM_subset_loo[, cell2_index]) index <- min_index_loo[cell2_index] dec_minsens <- drug_idx_loo[index] supersets_small <- IM_superset_loo[, dec_minsens] > min_subset_loo[cell2_index] common_cell <- which(drug_sub_cell & supersets_small) if (length(common_cell) != 0) { total <- sum(1/IM_subw_loo[common_cell, cell2_index]) + 1/IM_subw_loo[index, cell2_index] min_subset_loo[cell2_index] <- 1/IM_subw_loo[index, cell2_index]/total * sens_loo[index] + sum(1/IM_subw_loo[common_cell, cell2_index]/total * sens_loo[common_cell]) } pred[i] <- (min_subset_loo[identical_idx[i]] + 0)/2 error_predict[i] <- abs(pred[i] - sens[i]) } else if (length(j_max) != 0 && length(j_min) != 0) { cell_index <- cell[j_max] drug_sub_cell <- !is.infinite(IM_superset_loo[, cell_index]) index <- max_index_loo[cell_index] dec_maxsens <- drug_idx_loo[index] supersets_small <- IM_subset_loo[, dec_maxsens] < max_superset_loo[cell_index] common_cell <- which(drug_sub_cell & supersets_small) if (length(common_cell) != 0) { total <- sum(1/IM_supw_loo[common_cell, cell_index]) + 1/IM_supw_loo[index, cell_index] max_superset_loo[cell_index] <- 1/IM_supw_loo[index, cell_index]/total * sens_loo[index] + sum(1/IM_supw_loo[common_cell, cell_index]/total * sens_loo[common_cell]) } cell2_index <- cell2[j_min] drug_sub_cell <- !is.infinite(IM_subset_loo[, cell2_index]) index <- min_index_loo[cell2_index] dec_minsens <- drug_idx_loo[index] supersets_small <- IM_superset_loo[, dec_minsens] > min_subset_loo[cell2_index] common_cell <- which(drug_sub_cell & supersets_small) if (length(common_cell) != 0) { total <- sum(1/IM_subw_loo[common_cell, cell2_index]) + 1/IM_subw_loo[index, cell2_index] min_subset_loo[cell2_index] <- 1/IM_subw_loo[index, cell2_index]/total * sens_loo[index] + sum(1/IM_subw_loo[common_cell, cell2_index]/total * sens_loo[common_cell]) } pred[i] <- (max_superset_loo[identical_idx[i]] + min_subset_loo[identical_idx[i]])/2 error_predict[i] <- abs(pred[i] - sens[i]) } else { pred[i] <- M_loo[identical_idx[i]] error_predict[i] <- abs(pred[i] - sens[i]) } } } return(list(dummy = M, error = error_predict, prediction = pred)) }
structure(list(url = "http://www.colourlovers.com/api/palettes/new?format=xml&hex=0000FF&numResults=5", status_code = 200L, headers = structure(list(date = "Tue, 30 Apr 2019 17:10:15 GMT", server = "Apache/2.2.22 (Ubuntu)", connection = "Close", vary = "Accept-Encoding", `content-encoding` = "gzip", `content-length` = "865", `content-type` = "text/xml; charset=utf-8"), class = c("insensitive", "list")), all_headers = list(list(status = 200L, version = "HTTP/1.1", headers = structure(list(date = "Tue, 30 Apr 2019 17:10:15 GMT", server = "Apache/2.2.22 (Ubuntu)", connection = "Close", vary = "Accept-Encoding", `content-encoding` = "gzip", `content-length` = "865", `content-type` = "text/xml; charset=utf-8"), class = c("insensitive", "list")))), cookies = structure(list(domain = logical(0), flag = logical(0), path = logical(0), secure = logical(0), expiration = structure(numeric(0), class = c("POSIXct", "POSIXt")), name = logical(0), value = logical(0)), row.names = integer(0), class = "data.frame"), content = charToRaw("<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n<palettes numResults=\"5\" totalResults=\"1000\">\n\t<palette>\n\t\t<id>4630210</id>\n\t\t<title><![CDATA[Space Explorers!]]></title>\n\t\t<userName><![CDATA[MischieffMayhem]]></userName>\n\t\t<numViews>111</numViews>\n\t\t<numVotes>0</numVotes>\n\t\t<numComments>0</numComments>\n\t\t<numHearts>0</numHearts>\n\t\t<rank>0</rank>\n\t\t<dateCreated>2019-02-14 00:51:01</dateCreated>\n\t\t<colors>\n\t\t\t<hex>FBB03B</hex>\n\t\t\t<hex>29ABE2</hex>\n\t\t\t<hex>0000FF</hex>\n\t\t\t<hex>FDE061</hex>\n\t\t\t<hex>FF0000</hex>\n\t\t</colors>\n\t\t<description><![CDATA[]]></description>\n\t\t<url><![CDATA[http://www.colourlovers.com/palette/4630210/Space_Explorers!]]></url>\n\t\t<imageUrl><![CDATA[http://www.colourlovers.com/paletteImg/FBB03B/29ABE2/0000FF/FDE061/FF0000/Space_Explorers!.png]]></imageUrl>\n\t\t<badgeUrl><![CDATA[http://www.colourlovers.com/images/badges/p/4630/4630210_Space_Explorers!.png]]></badgeUrl>\n\t\t<apiUrl>http://www.colourlovers.com/api/palette/4630210</apiUrl>\n\t</palette>\n\t<palette>\n\t\t<id>4604928</id>\n\t\t<title><![CDATA[NMS]]></title>\n\t\t<userName><![CDATA[AnythingButOrdinary]]></userName>\n\t\t<numViews>76</numViews>\n\t\t<numVotes>1</numVotes>\n\t\t<numComments>0</numComments>\n\t\t<numHearts>0</numHearts>\n\t\t<rank>0</rank>\n\t\t<dateCreated>2018-10-22 13:52:57</dateCreated>\n\t\t<colors>\n\t\t\t<hex>CC99FF</hex>\n\t\t\t<hex>9973FF</hex>\n\t\t\t<hex>664DFF</hex>\n\t\t\t<hex>3326FF</hex>\n\t\t\t<hex>0000FF</hex>\n\t\t</colors>\n\t\t<description><![CDATA[]]></description>\n\t\t<url><![CDATA[http://www.colourlovers.com/palette/4604928/NMS]]></url>\n\t\t<imageUrl><![CDATA[http://www.colourlovers.com/paletteImg/CC99FF/9973FF/664DFF/3326FF/0000FF/NMS.png]]></imageUrl>\n\t\t<badgeUrl><![CDATA[http://www.colourlovers.com/images/badges/p/4604/4604928_NMS.png]]></badgeUrl>\n\t\t<apiUrl>http://www.colourlovers.com/api/palette/4604928</apiUrl>\n\t</palette>\n\t<palette>\n\t\t<id>4604200</id>\n\t\t<title><![CDATA[Primary Design]]></title>\n\t\t<userName><![CDATA[Bubbletripper]]></userName>\n\t\t<numViews>21</numViews>\n\t\t<numVotes>0</numVotes>\n\t\t<numComments>0</numComments>\n\t\t<numHearts>0</numHearts>\n\t\t<rank>0</rank>\n\t\t<dateCreated>2018-10-19 12:33:16</dateCreated>\n\t\t<colors>\n\t\t\t<hex>8A9B3F</hex>\n\t\t\t<hex>0000FF</hex>\n\t\t\t<hex>FF00FF</hex>\n\t\t\t<hex>01FFFF</hex>\n\t\t\t<hex>A0996F</hex>\n\t\t</colors>\n\t\t<description><![CDATA[]]></description>\n\t\t<url><![CDATA[http://www.colourlovers.com/palette/4604200/Primary_Design]]></url>\n\t\t<imageUrl><![CDATA[http://www.colourlovers.com/paletteImg/8A9B3F/0000FF/FF00FF/01FFFF/A0996F/Primary_Design.png]]></imageUrl>\n\t\t<badgeUrl><![CDATA[http://www.colourlovers.com/images/badges/p/4604/4604200_Primary_Design.png]]></badgeUrl>\n\t\t<apiUrl>http://www.colourlovers.com/api/palette/4604200</apiUrl>\n\t</palette>\n\t<palette>\n\t\t<id>4604196</id>\n\t\t<title><![CDATA[Primary Mark]]></title>\n\t\t<userName><![CDATA[Bubbletripper]]></userName>\n\t\t<numViews>35</numViews>\n\t\t<numVotes>1</numVotes>\n\t\t<numComments>0</numComments>\n\t\t<numHearts>0</numHearts>\n\t\t<rank>0</rank>\n\t\t<dateCreated>2018-10-19 12:28:01</dateCreated>\n\t\t<colors>\n\t\t\t<hex>0000FF</hex>\n\t\t\t<hex>2D4A05</hex>\n\t\t\t<hex>F1DE92</hex>\n\t\t\t<hex>FFFF01</hex>\n\t\t\t<hex>FBFBFA</hex>\n\t\t</colors>\n\t\t<description><![CDATA[]]></description>\n\t\t<url><![CDATA[http://www.colourlovers.com/palette/4604196/Primary_Mark]]></url>\n\t\t<imageUrl><![CDATA[http://www.colourlovers.com/paletteImg/0000FF/2D4A05/F1DE92/FFFF01/FBFBFA/Primary_Mark.png]]></imageUrl>\n\t\t<badgeUrl><![CDATA[http://www.colourlovers.com/images/badges/p/4604/4604196_Primary_Mark.png]]></badgeUrl>\n\t\t<apiUrl>http://www.colourlovers.com/api/palette/4604196</apiUrl>\n\t</palette>\n\t<palette>\n\t\t<id>4604191</id>\n\t\t<title><![CDATA[Primary Clarity]]></title>\n\t\t<userName><![CDATA[Bubbletripper]]></userName>\n\t\t<numViews>11</numViews>\n\t\t<numVotes>1</numVotes>\n\t\t<numComments>0</numComments>\n\t\t<numHearts>0</numHearts>\n\t\t<rank>0</rank>\n\t\t<dateCreated>2018-10-19 12:18:39</dateCreated>\n\t\t<colors>\n\t\t\t<hex>8F8664</hex>\n\t\t\t<hex>EBAC75</hex>\n\t\t\t<hex>FFFF01</hex>\n\t\t\t<hex>0000FF</hex>\n\t\t\t<hex>EA17BB</hex>\n\t\t</colors>\n\t\t<description><![CDATA[]]></description>\n\t\t<url><![CDATA[http://www.colourlovers.com/palette/4604191/Primary_Clarity]]></url>\n\t\t<imageUrl><![CDATA[http://www.colourlovers.com/paletteImg/8F8664/EBAC75/FFFF01/0000FF/EA17BB/Primary_Clarity.png]]></imageUrl>\n\t\t<badgeUrl><![CDATA[http://www.colourlovers.com/images/badges/p/4604/4604191_Primary_Clarity.png]]></badgeUrl>\n\t\t<apiUrl>http://www.colourlovers.com/api/palette/4604191</apiUrl>\n\t</palette>\n</palettes>"), date = structure(1556644215, class = c("POSIXct", "POSIXt" ), tzone = "GMT"), times = c(redirect = 0, namelookup = 0.000035, connect = 0.12279, pretransfer = 0.122869, starttransfer = 0.261654, total = 0.261787)), class = "response")
plot.UPCM <- function(x, sig = 0.05, KIfactor = 0.9, xlim, ylim, ...){ quant <- qnorm(1-sig/2) if(is.na(x$xi[1])|is.na(x$alpha[1])){ stop("Plotting is only possible if covariates are used (both for the location and heterogeneity effect (i.e. if argument X is specified)!") } xi <- x$xi xi.KI <- cbind(xi-quant*x$se.xi,xi+quant*x$se.xi) xi <- xi alpha <- x$alpha alpha.KI <- exp(cbind(alpha-quant*x$se.alpha,alpha+quant*x$se.alpha)) alpha <- exp(alpha) if(missing(ylim)){ ylim <- range(c(1,alpha.KI)) } if(missing(xlim)){ xlim <- range(c(0,xi.KI)) } plot(xi,alpha,pch=16,xlim=xlim,ylim=ylim, xlab=expression(xi),ylab=expression(exp(alpha)),...) p.X <- length(xi) label.x <- label.y <- c() for(i in 1:p.X){ x <- c(xi.KI[i,1],xi.KI[i,1]+(xi[i]-xi.KI[i,1])*(KIfactor),xi[i],xi[i]+(xi[i]-xi.KI[i,1])*(1-KIfactor), xi.KI[i,2],xi[i]+(xi[i]-xi.KI[i,1])*(1-KIfactor),xi[i],xi.KI[i,1]+(xi[i]-xi.KI[i,1])*(KIfactor), xi.KI[i,1]) y <- c(alpha[i],alpha.KI[i,1]+(alpha[i]-alpha.KI[i,1])*(KIfactor),alpha.KI[i,1],alpha.KI[i,1]+(alpha[i]-alpha.KI[i,1])*(KIfactor),alpha[i], alpha[i]+(alpha[i]-alpha.KI[i,1])*(1-KIfactor),alpha.KI[i,2],alpha[i]+(alpha[i]-alpha.KI[i,1])*(1-KIfactor),alpha[i]) polygon(x,y,col=grey(0.9)) label.x <- c(label.x,x[6]) label.y <- c(label.y,y[6]) } points(xi,alpha,pch=16) abline(h=1,lty=2,lwd=2,col="gray") abline(v=0,lty=2,lwd=2,col="gray") text(label.x,label.y,labels=names(xi),adj=c(-0.1,-0.1)) }
set_phantoms <- function(partable, ov.names, lv.names, ov.names.x, lv.names.x, ov.cp, lv.cp, lv.x.wish, ngroups) { partable <- lavMatrixRepresentation(partable, add.attributes = TRUE) defpar <- which(partable$op == ":=") if(length(defpar) > 0){ partable$mat[defpar] <- "def" partable$row[defpar] <- 1:length(defpar) partable$col[defpar] <- 1 partable$group[defpar] <- 1 } if(is.na(match("prior", names(partable)))) partable$prior <- rep("", length(partable$id)) if(lv.x.wish){ covpars <- which(partable$op == "~~" & partable$lhs != partable$rhs & partable$group == 1 & !(partable$lhs %in% ov.names.x & partable$free == 0) & !(partable$lhs %in% lv.names.x)) } else { if(lv.cp == "srs"){ covpars <- which(partable$op == "~~" & partable$lhs != partable$rhs & partable$group == 1 & !(partable$lhs %in% ov.names.x & partable$free == 0)) } if(lv.cp == "fa"){ covpars <- which(partable$op == "~~" & partable$lhs != partable$rhs & partable$group == 1 & !(partable$lhs %in% ov.names.x & partable$free == 0) & !(partable$lhs %in% lv.names & partable$free == 0)) } } blkrow <- rep(NA, length(partable$id)) facovs <- NULL if(length(covpars) > 0){ nmvcovs <- sum(partable$lhs[covpars] %in% ov.names) nlvcovs <- length(covpars) - nmvcovs patts <- attributes(partable) for(k in 1:ngroups){ if(!("lambda" %in% patts$mmNames[[k]]) & nmvcovs > 0){ lcolstart <- 0 attributes(partable)$mmNames[[k]] <- c(patts$mmNames[[k]], "lambda") attributes(partable)$mmRows[[k]] <- c(patts$mmRows[[k]], lambda=length(ov.names)) attributes(partable)$mmCols[[k]] <- c(patts$mmCols[[k]], lambda=nmvcovs) } else { lcolstart <- patts$mmCols[[k]]["lambda"] attributes(partable)$mmCols[[k]]["lambda"] <- patts$mmCols[[k]]["lambda"] + nmvcovs } if(!("beta" %in% patts$mmNames[[k]]) & nlvcovs > 0){ bcolstart <- 0 attributes(partable)$mmNames[[k]] <- c(patts$mmNames[[k]], "beta") attributes(partable)$mmRows[[k]] <- c(patts$mmRows[[k]], beta= nlvcovs) attributes(partable)$mmCols[[k]] <- c(patts$mmCols[[k]], beta=nlvcovs) } else { bcolstart <- patts$mmCols[[k]]["beta"] attributes(partable)$mmRows[[k]]["beta"] <- patts$mmRows[[k]]["beta"] + nlvcovs attributes(partable)$mmCols[[k]]["beta"] <- patts$mmCols[[k]]["beta"] + nlvcovs } if(!("psi" %in% patts$mmNames[[k]])){ psicolstart <- 0 attributes(partable)$mmNames[[k]] <- c(patts$mmNames[[k]], "psi") attributes(partable)$mmRows[[k]] <- c(patts$mmRows[[k]], psi=length(covpars)) attributes(partable)$mmCols[[k]] <- c(patts$mmCols[[k]], psi=length(covpars)) } else { psicolstart <- patts$mmCols[[k]]["psi"] attributes(partable)$mmRows[[k]]["psi"] <- patts$mmRows[[k]]["psi"] + length(covpars) attributes(partable)$mmCols[[k]]["psi"] <- patts$mmCols[[k]]["psi"] + length(covpars) } } cprm <- NULL ridx <- 1:length(covpars) for(k in 1:ngroups){ tlcs <- lcolstart tbcs <- bcolstart tpcs <- psicolstart for(i in 1:length(covpars)){ covparg <- which(partable$op == "~~" & partable$lhs == partable$lhs[covpars[i]] & partable$rhs == partable$rhs[covpars[i]] & partable$group == k) eq.const <- FALSE grp.idx <- k eq.idx <- which(partable$op == "==" & partable$rhs == partable$plabel[covparg]) if(length(eq.idx) > 0){ eq.const <- TRUE full.idx <- which(partable$plabel == partable$lhs[eq.idx]) old.idx <- which(partable$lhs[covpars] == partable$lhs[full.idx[1]] & partable$rhs[covpars] == partable$rhs[full.idx[1]]) old.ridx <- ridx[old.idx] grp.idx <- partable$group[full.idx[1]] } tmprows <- nrow(partable) + 1:3 phname <- paste(".phant", i, sep="") partable <- rbind(partable, blkrow, blkrow, blkrow) partable$group[tmprows] <- partable$block[tmprows] <- k partable$rhs[tmprows[1]] <- partable$lhs[covpars[i]] partable$rhs[tmprows[2]] <- partable$rhs[covpars[i]] if(partable$lhs[covpars[i]] %in% ov.names){ partable$lhs[tmprows[1]] <- phname partable$op[tmprows[1]] <- "=~" partable$rhs[tmprows[1]] <- partable$lhs[covpars[i]] partable$mat[tmprows[1]] <- "lambda" partable$row[tmprows[1]] <- match(partable$lhs[covpars[i]], patts$mmDimNames[[k]]$lambda[[1]]) tlcs <- tlcs + 1 partable$col[tmprows[1]] <- tlcs v1var <- which(partable$lhs == partable$lhs[covpars[i]] & partable$rhs == partable$lhs[covpars[i]] & partable$group == k & partable$op == "~~") tmpv1 <- paste(partable$mat[v1var], "[", partable$row[v1var], ",", partable$col[v1var], ",", k, "]", sep="") if(eq.const){ oldr <- match(partable$lhs[full.idx], patts$mmDimNames[[k]]$lambda[[1]]) oldv1 <- paste(partable$mat[v1var], "[", oldr , ",", oldr, ",", grp.idx, "]", sep="") } ctype <- "ov" } else { partable$lhs[tmprows[1]] <- partable$lhs[covpars[i]] partable$op[tmprows[1]] <- "~" partable$rhs[tmprows[1]] <- phname partable$mat[tmprows[1]] <- "beta" tbcs <- tbcs + 1 partable$row[tmprows[1]] <- tbcs partable$col[tmprows[1]] <- match(partable$lhs[covpars[i]], patts$mmDimNames[[k]]$psi[[1]]) tmpv1 <- paste("psi[", partable$col[tmprows[1]], ",", partable$col[tmprows[1]], ",", k, "]", sep="") if(eq.const){ oldr <- match(partable$lhs[full.idx], patts$mmDimNames[[k]]$psi[[1]]) oldv1 <- paste("psi[", oldr, ",", oldr, ",", grp.idx, "]", sep="") } ctype <- "lv" } if(partable$rhs[covpars[i]] %in% ov.names){ partable$lhs[tmprows[2]] <- phname partable$op[tmprows[2]] <- "=~" partable$rhs[tmprows[2]] <- partable$rhs[covpars[i]] partable$mat[tmprows[2]] <- "lambda" partable$row[tmprows[2]] <- match(partable$rhs[covpars[i]], patts$mmDimNames[[k]]$lambda[[1]]) tlcs <- tlcs + 1 partable$col[tmprows[2]] <- tlcs v2var <- which(partable$lhs == partable$rhs[covpars[i]] & partable$rhs == partable$rhs[covpars[i]] & partable$group == k & partable$op == "~~") tmpv2 <- paste(partable$mat[v2var], "[", partable$row[v2var], ",", partable$col[v2var], ",", k, "]", sep="") if(eq.const){ oldr <- match(partable$rhs[full.idx], patts$mmDimNames[[k]]$lambda[[1]]) oldv2 <- paste(partable$mat[v2var], "[", oldr, ",", oldr, ",", grp.idx, "]", sep="") } } else { partable$lhs[tmprows[2]] <- partable$rhs[covpars[i]] partable$op[tmprows[2]] <- "~" partable$rhs[tmprows[2]] <- phname partable$mat[tmprows[2]] <- "beta" tbcs <- tbcs + 1 partable$row[tmprows[2]] <- tbcs partable$col[tmprows[2]] <- match(partable$rhs[covpars[i]], patts$mmDimNames[[k]]$psi[[1]]) tmpv2 <- paste("psi[", partable$col[tmprows[2]], ",", partable$col[tmprows[2]], ",", k, "]", sep="") if(eq.const){ oldr <- match(partable$lhs[full.idx], patts$mmDimNames[[k]]$psi[[1]]) oldv2 <- paste("psi[", oldr, ",", oldr, ",", grp.idx, "]", sep="") } } partable$prior[tmprows[1:3]] <- "" tpcs <- tpcs + 1 if((ctype == "ov" & ov.cp == "srs") | (ctype == "lv" & lv.cp == "srs")){ rhomat <- "rho" if(partable$mat[covpars[i]] == "psi") rhomat <- "lvrho" rhoind <- paste(partable$row[covpars[i]], ",", partable$col[covpars[i]], sep="") partable$free[tmprows[1:3]] <- 0L partable$exo[tmprows[1:3]] <- 0L partable$ustart[tmprows[1]] <- paste("sqrt(abs(", rhomat, "[", rhoind, ",", k, "])*", tmpv1, ")", sep="") partable$ustart[tmprows[2]] <- paste("(-1 + 2*step(", rhomat, "[", rhoind, ",", k, "]))*sqrt(abs(", rhomat, "[", rhoind, ",", k, "])*", tmpv2, ")", sep="") partable$ustart[tmprows[3]] <- 1 partable$mat[tmprows[3]] <- "psi" partable$row[tmprows[3]] <- partable$col[tmprows[3]] <- tpcs partable$id[covparg] <- paste(rhomat, "[", rhoind, ",", k, "]", sep="") partable$plabel[tmprows] <- paste(".p", tmprows, ".", sep="") partable$lhs[tmprows[3]] <- partable$rhs[tmprows[3]] <- phname partable$op[tmprows[3]] <- "~~" } else { partable$mat[tmprows[3]] <- "psi" partable$row[tmprows[3]] <- partable$col[tmprows[3]] <- tpcs if(partable$free[covparg] == 0){ if(partable$ustart[covparg] != 0) stop("blavaan ERROR: Cannot fix covariances to nonzero values under fa priors.\n") partable$free[tmprows[1:3]] <- 0 partable$ustart[tmprows[3]] <- 1 partable$ustart[tmprows[1:2]] <- 0 partable$exo[tmprows[1:3]] <- 0 } else { partable$plabel[tmprows[3]] <- partable$plabel[covparg] partable$free[tmprows[3]] <- partable$free[covparg] partable$exo[tmprows[1:3]] <- 0 partable$plabel[tmprows[1:2]] <- paste(".p", tmprows[1:2], ".", sep="") partable$free[tmprows[1:2]] <- tmprows[1:2] } cprm <- c(cprm, covparg) partable$lhs[tmprows[3]] <- partable$rhs[tmprows[3]] <- phname partable$op[tmprows[3]] <- "~~" } if(eq.const){ partable$free[tmprows[1:2]] <- tmprows[1:2] old.labels <- which(partable$op %in% c("=~", "~") & partable$group == grp.idx & (grepl(paste(".phant", old.ridx, sep=""), partable$lhs) | grepl(paste(".phant", old.ridx, sep=""), partable$rhs))) partable <- rbind(partable, blkrow, blkrow) nr <- nrow(partable) partable$lhs[(nr-1):nr] <- partable$plabel[old.labels[1:2]] partable$op[(nr-1):nr] <- "==" partable$rhs[(nr-1):nr] <- partable$plabel[tmprows[1:2]] partable$mat[(nr-1):nr] <- "" partable$user[(nr-1):nr] <- 2 partable$free[(nr-1):nr] <- 0 partable$group[(nr-1):nr] <- 0 partable$exo[(nr-1):nr] <- 0 if((ctype == "ov" & ov.cp == "fa") | (ctype == "lv" & lv.cp == "fa")){ old.label <- which(partable$op == "~~" & partable$group == grp.idx & grepl(paste(".phant", old.ridx, sep=""), partable$lhs)) partable <- rbind(partable, blkrow) nr <- nrow(partable) partable$lhs[nr] <- partable$plabel[old.label] partable$op[nr] <- "==" partable$rhs[nr] <- partable$plabel[tmprows[3]] partable$mat[(nr-1):nr] <- "" partable$user[nr] <- 2 partable$free[nr] <- 0 partable$group[nr] <- 0 partable$exo[nr] <- 0 } } } } if(!is.null(cprm)){ facovs <- partable[cprm,] partable <- partable[-cprm,] } } covpars <- which(partable$op == "~~" & partable$lhs != partable$rhs & partable$group == 1 & partable$lhs %in% ov.names.x & partable$free == 0) if(length(covpars) > 0) partable <- partable[-covpars,] if(any(is.na(partable$exo))) partable$exo[is.na(partable$exo)] <- 0 parnums <- rep(NA, nrow(partable)) parrows <- which(!(partable$op == "==")) parnums[parrows] <- 1:length(parrows) partable$parnums <- parnums list(partable = partable, facovs = facovs) } set_mv0 <- function(partable, ov.names, ngroups) { mv0 <- which(partable$op == "~~" & partable$lhs %in% ov.names & partable$rhs == partable$lhs & partable$group == 1 & partable$free == 0 & partable$ustart == 0) if(length(mv0) > 0){ ovn <- partable$lhs[mv0] for(i in 1:length(ovn)){ for(j in 1:ngroups){ mvloc <- which(partable$op == "~~" & partable$lhs == ovn[i] & partable$rhs == partable$lhs & partable$group == j & partable$free == 0 & partable$ustart == 0) lvloc <- which(partable$op == "=~" & partable$rhs == ovn[i] & partable$group == j) lvreg <- which(partable$op == "~" & partable$lhs == ovn[i] & partable$group == j) lvcov <- which(partable$op == "~~" & (partable$lhs %in% partable$lhs[lvloc] | partable$rhs %in% partable$lhs[lvloc]) & partable$lhs != partable$rhs) if(length(lvloc) + length(lvreg) + length(lvcov) > 1){ if(length(mvloc) > 1){ stop("blavaan ERROR: Problem with ov variances fixed to 0.") } partable$ustart[mvloc] <- .001 message(paste("blavaan NOTE: The variance of variable", ovn[i], "in group", j, "has been fixed to .001 instead of 0 (necessary for conditional model specification).\n")) } else { lvname <- partable$lhs[lvloc] lvvar <- which(partable$lhs == lvname & partable$rhs == lvname & partable$op == "~~" & partable$group == j) tmpfree <- partable$free[lvvar] tmpustart <- partable$ustart[lvvar] tmpplabel <- partable$plabel[lvvar] tmpstart <- partable$start[lvvar] partable$free[lvvar] <- partable$free[mvloc] partable$ustart[lvvar] <- partable$ustart[mvloc] partable$plabel[lvvar] <- partable$plabel[mvloc] partable$start[lvvar] <- partable$start[mvloc] partable$free[mvloc] <- tmpfree partable$ustart[mvloc] <- tmpustart partable$plabel[mvloc] <- tmpplabel partable$start[mvloc] <- tmpstart } } } } partable } set_phanvars <- function(partable, ov.names, lv.names, ov.cp, lv.cp, ngroups){ vnames <- c(ov.names, lv.names) for(i in 1:length(vnames)){ for(k in 1:ngroups){ if(vnames[i] %in% ov.names){ phanlvs <- which(partable$rhs == vnames[i] & grepl(".phant", partable$lhs) & partable$op == "=~" & partable$group == k) } else { phanlvs <- which(partable$lhs == vnames[i] & grepl(".phant", partable$rhs) & partable$op == "~" & partable$group == k) } if(length(phanlvs) > 0){ vvar <- which(partable$lhs == vnames[i] & partable$lhs == partable$rhs & partable$op == "~~" & partable$group == k) if(ov.cp == "srs"){ eqconst <- paste(partable$mat[vvar], "[", partable$row[vvar], ",", partable$col[vvar], ",", k, "]", sep="") for(j in 1:length(phanlvs)){ eqconst <- paste(eqconst, " - (", partable$ustart[phanlvs[j]], ")^2", sep="") } partable <- rbind(partable, partable[vvar,]) partable$parnums[nrow(partable)] <- max(partable$parnums, na.rm=TRUE) + 1 partable$mat[vvar] <- paste(partable$mat[vvar], "star", sep="") } else { eqconst <- paste(partable$mat[vvar], "star[", partable$row[vvar], ",", partable$col[vvar], ",", k, "]", sep="") for(j in 1:length(phanlvs)){ if(vnames[i] %in% ov.names){ phname <- partable$lhs[phanlvs[j]] } else { phname <- partable$rhs[phanlvs[j]] } phanvar <- which(partable$lhs == phname & partable$lhs == partable$rhs & partable$op == "~~" & partable$group == k) eqconst <- paste(eqconst, " + (", partable$mat[phanlvs[j]], "[", partable$row[phanlvs[j]], ",", partable$col[phanlvs[j]], ",", k, "]^2*", partable$mat[phanvar], "[", partable$row[phanvar], ",", partable$col[phanvar], ",", k, "])", sep="") } partable <- rbind(partable, partable[vvar,]) partable$mat[nrow(partable)] <- paste(partable$mat[vvar], "star", sep="") partable$parnums[nrow(partable)] <- max(partable$parnums, na.rm=TRUE) + 1 } partable$free[vvar] <- 0 partable$label[vvar] <- "" partable$ustart[vvar] <- eqconst } } } partable }
pgfDneymantypec <- function(s,params) { require(hypergeo) k<-s[abs(s)>1] if (length(k)>0) warning("At least one element of the vector s are out of interval [-1,1]") if (length(params)<2) stop("At least one value in params is missing") if (length(params)>2) stop("The length of params is 2") theta<-params[1] lambda<-params[2] if (theta<=0) stop ("Parameter theta must be positive") if (lambda<=0) stop ("Parameter lambda must be positive") theta*lambda/3*genhypergeo(2,4,theta*(s-1))*pgfneymantypec(s,params) }
library(hamcrest) expected <- c(0x1.91013f1343ccap+8 + 0x0p+0i, 0x1.16d6ca178b7c2p+6 + 0x1.36a739f0aa691p+6i, 0x1.514dd0ba2f76ap+7 + -0x1.9db2b19e2b2cp+1i, 0x1.6632b2287fc46p+8 + -0x1.04c7f85576aa8p+7i, -0x1.39953dda298ap+5 + 0x1.b92d15d6ae60fp+4i, 0x1.f2f6e60cf04a3p+7 + 0x1.67d18306ae31dp+7i, 0x1.207e4ae677667p+7 + -0x1.07d9d33a8b352p+3i, 0x1.267b111085d4p+7 + 0x1.3239ad99106edp+6i, 0x1.600a2a745e36cp+3 + 0x1.9b0ffeeb363e1p+5i, 0x1.5e883d75cbd5p+7 + -0x1.c679f290e2c93p+5i, 0x1.04ca7736d495ap+5 + 0x1.7bbbfec2d0cc3p+6i, 0x1.e03335739dcd3p+7 + -0x1.0315e4a239b81p+7i, 0x1.04aca4fa15343p+8 + 0x1.2af391aace15bp+2i, 0x1.72a9281ee5abap+4 + 0x1.f94509927a30cp+6i, 0x1.30a970ad68fc2p+6 + -0x1.0e7a3519d97fep+6i, 0x1.fa2913f6f971ep+6 + 0x1.d1e41cdabc4bbp+6i, -0x1.71c6081a1d6d6p+7 + -0x1.d50d80c69f0dp+6i, 0x1.3b3261e276d37p+7 + -0x1.5d0f93dea3366p+7i, 0x1.05dc785581b9fp+7 + -0x1.afbc2947a230cp+4i, 0x1.ae6c983f98445p+7 + 0x1.4d41908b6d158p+5i, -0x1.d2fa1428fa922p+7 + -0x1.1e92b80e99ecap+7i, 0x1.c9c4cacc6decdp+5 + 0x1.7f0b382c463dp+3i, -0x1.f37cc2637d4b8p+4 + 0x1.7e206930f9507p+6i, -0x1.16c5b9301eb2ep+6 + -0x1.876a3d71ff5c6p+5i, -0x1.cd467328a272ap+4 + -0x1.19814f4af7c36p+7i, 0x1.94a41e018252ep+7 + -0x1.bcc98bc3e2522p+5i, 0x1.033d865ecc562p+7 + 0x1.27c73cb6db575p+6i, -0x1.654aa9ca0e43p+5 + 0x1.3bbaf02e71b3ep+7i, 0x1.41aa19c7e14a3p+6 + -0x1.46aa1ff3dfc8p+7i, -0x1.949581eaadcdfp+6 + 0x1.659810984138ep+5i, -0x1.91365a760c7e8p+3 + 0x1.eb0a7d20ea5f7p+5i, 0x1.083c8861cdd56p+7 + 0x1.2d0ae50f6bac2p+7i, -0x1.f66afec592aap+0 + 0x1.702afc1381327p+5i, 0x1.5c0480775b583p+4 + 0x1.a0f88c5e1cd7ap+6i, 0x1.60e8fa1d6298p-2 + 0x1.0ac74e101b8f2p+7i, 0x1.7fce232ccfb02p+4 + 0x1.424bb70e489cfp+6i, -0x1.315b75f4340ap+3 + 0x1.08ad4b7623c6p+7i, 0x1.03a0ada7ae33p+4 + 0x1.41e2634374806p+5i, -0x1.8bc643cbda5p+3 + 0x1.6d30328cc768ep+6i, -0x1.d26a0be7ec7f1p+6 + -0x1.0ed1bb406897p+2i, 0x1.5643f6696503dp+5 + 0x1.906b20227ca7bp+6i, -0x1.a3c981f88d685p+6 + -0x1.e1efa99f810f4p+3i, -0x1.0d2df4c7afd3fp+2 + 0x1.18970ec351344p+5i, -0x1.3822469996b72p+5 + -0x1.5f5b720a93716p+6i, -0x1.80d2fae0e5c5ap+6 + 0x1.2ac10f51a0c77p+6i, -0x1.06f9d12c36902p+5 + 0x1.6fc1522bfe6afp+6i, -0x1.098cba9da73c4p+6 + -0x1.3ae20aa44d434p+6i, 0x1.724b4dee89a0cp+3 + -0x1.d1be076c0c984p+2i, -0x1.8681738191a6cp+5 + 0x1.7aa92d9018c69p+6i, -0x1.ecb09741b1a2p-1 + 0x1.221ca9b7d6467p+6i, 0x1.8ee45253f9904p+2 + -0x1.4f5ab42cba312p+6i, 0x1.13e6a70bee486p+4 + 0x1.6d95c844d2794p+5i, -0x1.ebb89bdd0757ap+3 + 0x1.3192dfbbdfc27p+6i, -0x1.a7701ab0ca8acp+4 + -0x1.14403d502a51ap+3i, -0x1.139ec16eab422p+5 + 0x1.2e129245f45fap+7i, -0x1.a2f4eb92719cp+5 + 0x1.3cbb3a790981ep+3i, 0x1.cb609c88c112ap+5 + -0x1.33e2c11988961p+6i, 0x1.8ce48aec82414p+3 + 0x1.5d770b22f430dp+5i, -0x1.c98eab73f6a41p+4 + 0x1.554bca55bef7p+6i, 0x1.2f3c932f29a98p+1 + -0x1.6cc6df5d3c69p+3i, 0x1.88ae0c5a2d50cp+5 + 0x1.2ca1dbab6d3abp+5i, 0x1.00341129108cdp+6 + 0x1.f84782be2b1ddp+5i, -0x1.2e193da55708bp+6 + 0x1.c2ba2f046f78p-2i, 0x1.6ece586ce1a4p+4 + -0x1.3ab7e34a3bbaep+6i, 0x1.a987723d5366dp+5 + 0x1.1083edce2bc9cp+3i, 0x1.a20dff0259023p+5 + 0x1.d31f8c938601fp+5i, 0x1.131140f3ac2aep+5 + -0x1.4c954a87225b4p+2i, 0x1.74dec1e036565p+4 + -0x1.bf542aebab1ecp+4i, -0x1.d4ff320026c33p+5 + 0x1.71539d7de33b4p+3i, -0x1.e143abac97944p+5 + -0x1.9a9e9f7e99d6cp+4i, 0x1.7825328636fp+0 + 0x1.82fbb06ab11d6p+5i, 0x1.821c96841b705p+2 + -0x1.cd174812298dep+5i, -0x1.c47572dd8312fp+5 + 0x1.222f73959f7c7p+4i, 0x1.457daa36a2727p+4 + 0x1.ce0abe2a563cp+2i, -0x1.3df07d3d83edbp+6 + 0x1.d918ec921bb8bp+5i, 0x1.f28fb881edffdp+4 + -0x1.6f8b330119ebp+4i, 0x1.eca243efedccp+3 + -0x1.6a32e166edc28p+4i, -0x1.571fedf70cfe4p+3 + 0x1.f302a8dd82ed5p+4i, 0x1.56f323a55f2cp+2 + -0x1.581eb5da6a292p+4i, 0x1.20e2a4c336c92p+5 + 0x1.44c32570db58cp+4i, 0x1.1b7bc980667ap+5 + 0x1.be5240d3b1926p+3i, -0x1.91904e3207bf8p+2 + 0x1.774356cf742eep+3i, 0x1.851d90b61ef3cp+2 + 0x1.0e79f2076ff5cp+6i, -0x1.8d896e0867834p+3 + 0x1.0fec5341655aap+5i, -0x1.00441c7031095p+5 + 0x1.7044357d816d8p-1i, -0x1.2f6124e51f37p+4 + 0x1.6a80e5e771ec4p+5i, -0x1.d6fbf6e5e3684p+4 + -0x1.73ac0dabe9fbcp+5i, -0x1.500c69d597e4cp+5 + 0x1.0ab91cbc95ffbp+4i, 0x1.39700fae27b1p+6 + -0x1.0633ba2df2facp+2i, -0x1.5bd34583008d6p+5 + 0x1.4f5a39357a17ap+4i, 0x1.77688be34b48p+2 + -0x1.498b6f315247p+1i, 0x1.16c4f4ebb936ep+4 + 0x1.69f2e75a74358p+4i, 0x1.6d6033c425281p+6 + -0x1.08bb43ea0816p+1i, -0x1.06e0fb2227a51p+6 + -0x1.64401c2ba13ep+4i, -0x1.ae9d5792de6p+1 + -0x1.a7f14ea1c8b32p+6i, 0x1.4857b8fecec1cp+4 + 0x1.5533bb012bf26p+4i, 0x1.525c9a249f3fp+5 + 0x1.3e123726609c7p+5i, -0x1.3fade4635dea1p+5 + 0x1.1773f612be4d3p+6i, 0x1.5521934a78d5p+4 + 0x1.e6c9957439facp+2i, -0x1.58477f325072cp+1 + 0x1.ae9cb5ede056bp+3i, 0x1.8cbc1931b2456p+5 + 0x1.99e09760ae0cdp+5i, 0x1.d438a032e3b9p+0 + -0x1.3944353a9f4d3p+6i, 0x1.c7e2790d4586p+1 + -0x1.b592146e8eac4p+5i, -0x1.d197f0e03055ep+5 + -0x1.ac384dbcffe0cp+3i, 0x1.f62b64e352313p+5 + 0x1.dc3650101f6b6p+2i, -0x1.c722aa3e7b193p+5 + 0x1.520f74936f0dcp+4i, -0x1.912a5b56fd698p+1 + -0x1.3c6c9ef99e20dp+4i, -0x1.cffe52554c9d4p+4 + -0x1.b7d2c69661fd4p+5i, 0x1.5d769e27ef727p+5 + 0x1.b468744526036p+4i, 0x1.14892f43e0185p+5 + 0x1.9c0aca26c67e8p+0i, 0x1.1de4b2aa6962cp+3 + -0x1.64630d8abaa4p-1i, -0x1.df19dbfa53713p+4 + -0x1.b8651f7d05382p+5i, 0x1.34001f9b02f9cp+5 + 0x1.af40c8691f20ap+4i, -0x1.855d398de0224p+4 + 0x1.d52878b094358p+4i, 0x1.00195111a4aa7p+5 + 0x1.690fa1e34527cp+2i, -0x1.22533d8312128p+4 + -0x1.b37be758cabp+2i, 0x1.1ff3b519495a1p+6 + 0x1.68f5a66142ca6p+5i, 0x1.30e4e3ff4429ap+5 + 0x1.35087e3be844fp+4i, 0x1.ba71eaa70c72ep+5 + 0x1.a338e086aafb2p+5i, 0x1.1ccc9bb762d79p+6 + 0x1.18f2289060894p+6i, 0x1.4a4b10cd83b92p+4 + -0x1.61052796ef845p+5i, 0x1.7e2b9a72bd4b5p+5 + 0x1.022dd3abf3616p+6i, 0x1.c9567405c9cacp+5 + 0x1.6658eb6d9fe1ep+6i, -0x1.55db4fdeb01f9p+6 + -0x1.164b21965d7d2p+5i, 0x1.0bd87ea392732p+4 + -0x1.22859c16c81a4p+2i, 0x1.c03f2dd7ccc28p+5 + 0x1.15f399de90418p+5i, -0x1.b900819d58255p+5 + -0x1.9b3838bdb9a4p+2i, -0x1.2b25808249b4p+0 + 0x1.f576ecaa2c178p+5i, -0x1.400c9e6220efdp+4 + -0x1.b08faae4290f8p+4i, 0x1.043ca3c271f62p+5 + -0x1.5661291f41adp+4i, 0x1.673f1278ab395p+6 + 0x1.8fc2aa52efc78p+6i, 0x1.381ba8c23d936p+6 + 0x1.a5afe11ca2356p+5i, -0x1.4be20b7339bc9p+5 + -0x1.5b1737107011ap+7i, 0x1.2b2b633982cb1p+7 + -0x1.b9140d8584185p+6i, 0x1.1e98defdca44ap+5 + 0x1.f27bb7a9333a9p+5i, -0x1.466e231c94022p+6 + 0x1.bc37929312448p+4i, 0x1.099fe6e43bc3ap+5 + -0x1.292124aac7ca4p+7i, 0x1.9278291d40fa8p+4 + 0x1.27f71ed126ee6p+4i, -0x1.3b0e9a75142a8p+2 + 0x1.352dfedff2e64p+6i, 0x1.d57678cb93e58p+1 + 0x1.248f71d92d55cp+6i, 0x1.a525a535c9f6fp+6 + -0x1.2c0164eb8bd49p+7i, 0x1.2f1384ff3a716p+3 + 0x1.a8eca8670a0a4p+2i, -0x1.d89ccb7531d13p+6 + -0x1.6e45ddf348806p+6i, -0x1.b926736c77d04p+3 + 0x1.9e2450b4ad6acp+5i, 0x1.154a311ef519p+5 + 0x1.ee29250e6eaf4p+5i, -0x1.fb41d0f6e8969p+4 + -0x1.34d0e7f2c9b6p+4i, -0x1.94fabe84e87d7p+6 + -0x1.52d798f4432f8p+6i, 0x1.904763f8f2b3ep+3 + 0x1.836b113e400bp+5i, 0x1.5d7853336319ep+6 + 0x1.a5a495343124cp+4i, -0x1.9d90fb72d14a8p+4 + 0x1.54049024c34bep+5i, -0x1.e036b1c1c0222p+3 + -0x1.354b9350696eep+6i, -0x1.d31b177a31cep+2 + 0x1.ac5e436b91d0bp+6i, -0x1.841b31002dc98p+2 + 0x1.0cab5c8c7d4c1p+5i, 0x1.063687f2e523cp+5 + 0x1.cf1c90ff3d58cp+6i, -0x1.6ae967a6567fep+4 + 0x1.d73b2aec80228p+3i, -0x1.2dd3fc52d2e8cp+6 + 0x1.0805d3d63d55cp+7i, 0x1.0cbde255bb91p+5 + 0x1.9eafd2ff4c9fdp+4i, -0x1.2241c7d2ed9acp+5 + 0x1.2e5be5df653ep+7i, -0x1.7c1e22843ebfcp+3 + 0x1.02ef441f6dde4p+7i, -0x1.01ad62051ff43p+5 + 0x1.e3b8080acf964p+3i, -0x1.1975f22ef2ccap+6 + 0x1.41f3d602b92c1p+6i, -0x1.4835cfba4d8cap+4 + 0x1.127c6f146c2b1p+8i, -0x1.ff081baa8f008p+6 + 0x1.0810c35d761cdp+4i, 0x1.3d71f62bb62bbp+4 + 0x1.6abdfc4792ad9p+6i, -0x1.b98340b6910eap+5 + 0x1.3299800114babp+6i, -0x1.2e40d0357a9cbp+6 + 0x1.292a7cdfc78cp-1i, -0x1.2211981a873e6p+7 + 0x1.216ab12e86221p+8i, -0x1.ea878f9b8aa4ep+6 + -0x1.b5811a660a5a5p+7i, 0x1.06905332d8718p+7 + 0x1.936307e4bbd4fp+5i, 0x1.093340cbc9fbdp+7 + 0x1.9c4ab16e33439p+7i, -0x1.51545051d6b3p+4 + 0x1.bb755943cb9d4p+7i, -0x1.673d83ed43078p+5 + -0x1.2639c7c28e6f1p+7i, 0x1.1425a3ba473bp+8 + 0x1.068b75fc7d8f8p+6i, -0x1.b900f50803dfcp+6 + 0x1.16f943bded84fp+8i, -0x1.3b8d5f552ab4ep+7 + -0x1.d7aaee9900e32p+5i, 0x1.58020a1963778p+8 + -0x1.a8d8b9e0a0227p+7i, 0x1.1d4bcaf1e33b5p+7 + 0x1.0aae93147cff4p+8i, 0x1.82224ce493a9cp+3 + 0x1.245376145c93ap+8i, -0x1.65b3eba8bee0ap+7 + 0x1.d4d0d74a6bcebp+6i, 0x1.bb5ad52552facp+7 + -0x1.502b36696878p+7i, 0x1.1b79a583b387ep+6 + 0x1.e2a2d8e7f3db6p+7i, -0x1.36e962d6aa901p+7 + -0x1.cff001cf3c099p+6i, 0x1.b12eb23e6e99ep+5 + 0x1.891ff6c8088fcp+3i, 0x1.22e667ac490dp+8 + -0x1.71a5b51efd0bap+3i, 0x1.37e51cedeff0dp+3 + 0x1.7d8660aead164p+4i, -0x1.92505c920459cp+6 + -0x1.4e8f52614d024p+5i, -0x1.183f6d6265869p+7 + -0x1.a334d9f340006p+3i, 0x1.23bef971cbeeap+7 + -0x1.83a0840432e48p+4i, -0x1.b42a0cfd66413p+4 + -0x1.25edce810ad76p+6i, 0x1.52e7f5f7500d8p+6 + 0x1.3e947be939ab2p+3i, -0x1.0cabfb06c2078p+7 + -0x1.ababb3e989cd8p+4i, 0x1.1c855252b05ccp+7 + 0x1.bdee7ffffe724p+3i, -0x1.7e12ed8e261a2p+5 + 0x1.56bd17543030cp+3i, 0x1.3e08ceff60b99p+5 + -0x1.4808e592422c5p+6i, -0x1.c76aa047fc7f9p+5 + 0x1.6989c8cb8fb82p+3i, -0x1.14961daf39c88p+4 + -0x1.ea6bf5b39cc24p+6i, -0x1.195025998ecd8p+2 + 0x1.9ce00d2768746p+4i, -0x1.384a3576cb2b4p+6 + -0x1.558a4603be24p+7i, -0x1.9e05c03e2b87cp+3 + 0x1.b29284ef7a48ap+4i, -0x1.a1988353dfe1dp+5 + -0x1.2c34f8cae02fap+7i, -0x1.dd2c3373e22a6p+5 + 0x1.634b16be5dd8ap+5i, 0x1.b035651169d7ap+6 + -0x1.5eee55cec4934p+2i, -0x1.9fd0d799df5c2p+6 + -0x1.1cd3f7e3c8244p+5i, 0x1.3c62e04a4734cp+5 + -0x1.701e644d2f30cp+4i, 0x1.c01e2ff61229p+1 + 0x1.b8c3660440c6ep+5i, 0x1.366c409640bf4p+6 + -0x1.4e4a75a1d324p+7i, -0x1.88a9206755ce8p+6 + 0x1.f4ad656b1cfc4p+6i, 0x1.0f5424c8a7d94p+7 + -0x1.a3841c9346f5ap+6i, -0x1.141f525d2b5d2p+5 + -0x1.9292cfe323bep+5i, -0x1.45552d839c0d2p+6 + -0x1.6fbdc8cce34f9p+6i, -0x1.de9329f28e7cfp+6 + 0x1.5e954ecb6af71p+5i, 0x1.938b2357b30fep+4 + 0x1.cb2bb791c6188p+3i, 0x1.1b6b2284c403cp+2 + 0x1.b56f4aa8f0e7ep+5i, 0x1.82b0afa08cdbfp+1 + -0x1.2a55c62ede713p+6i, -0x1.cb20eedb2e19ep+5 + -0x1.96cf249f9983ep+6i, 0x1.11f5a59b8ee58p+6 + 0x1.9cd43d9f4461p+1i, -0x1.21e4eae9aaefdp+7 + 0x1.de4cd9362ebb7p+5i, 0x1.6de27e138d8d5p+5 + -0x1.ef98d8ae21f26p+6i, -0x1.a8d83a0aefaf2p+6 + -0x1.073fa0cd7c9cep+4i, -0x1.bc61c70723566p+6 + 0x1.61a13aee40acbp+5i, -0x1.13a4c5eb0a3dap+6 + 0x1.ce19cfb30e6d6p+6i, 0x1.daa1e10ae114fp+6 + -0x1.627d314e939e7p+6i, -0x1.e4f07b3ce25fcp+6 + -0x1.8651920b661bap+5i, -0x1.2495288b58c44p+4 + 0x1.e88deff6308a6p+5i, -0x1.e2537f08283cap+5 + -0x1.48ccb8c668788p+4i, -0x1.925af3323d707p+4 + -0x1.05b9ad3a75a5ep+6i, -0x1.353e33c1f009ap+6 + 0x1.1977c4aedd1fap+3i, 0x1.0e532361f3d3ap+5 + -0x1.08b071f26b455p+6i, -0x1.6c16a6f1ca34fp+5 + -0x1.0d394c82ac99p+5i, 0x1.f2923972d8f45p+5 + -0x1.eec324803f57ep+2i, 0x1.a25cc09a6b0c8p+5 + -0x1.7b68ab2d84159p+5i, 0x1.dfeab9ea587aep+6 + 0x1.f968ab4b10a94p+4i, 0x1.8fb06ace800dep+6 + -0x1.f3f7e69cf9e3dp+5i, 0x1.da886331d09ep+5 + -0x1.697aa76e6588fp+2i, 0x1.56a154050acccp+7 + -0x1p-48i, 0x1.da886331d09d6p+5 + 0x1.697aa76e658f6p+2i, 0x1.8fb06ace800d9p+6 + 0x1.f3f7e69cf9e42p+5i, 0x1.dfeab9ea587a8p+6 + -0x1.f968ab4b10a86p+4i, 0x1.a25cc09a6b0bap+5 + 0x1.7b68ab2d84158p+5i, 0x1.f2923972d8f38p+5 + 0x1.eec324803f61ap+2i, -0x1.6c16a6f1ca351p+5 + 0x1.0d394c82ac99p+5i, 0x1.0e532361f3d34p+5 + 0x1.08b071f26b459p+6i, -0x1.353e33c1f009cp+6 + -0x1.1977c4aedd1bcp+3i, -0x1.925af3323d6fap+4 + 0x1.05b9ad3a75a5cp+6i, -0x1.e2537f08283d2p+5 + 0x1.48ccb8c6687cp+4i, -0x1.2495288b58c4ep+4 + -0x1.e88deff6308aap+5i, -0x1.e4f07b3ce25f4p+6 + 0x1.8651920b661c2p+5i, 0x1.daa1e10ae114ep+6 + 0x1.627d314e939eap+6i, -0x1.13a4c5eb0a3dep+6 + -0x1.ce19cfb30e6c8p+6i, -0x1.bc61c70723564p+6 + -0x1.61a13aee40adp+5i, -0x1.a8d83a0aefaep+6 + 0x1.073fa0cd7c9e4p+4i, 0x1.6de27e138d8cbp+5 + 0x1.ef98d8ae21f29p+6i, -0x1.21e4eae9aaefdp+7 + -0x1.de4cd9362ebb2p+5i, 0x1.11f5a59b8ee62p+6 + -0x1.9cd43d9f44616p+1i, -0x1.cb20eedb2e192p+5 + 0x1.96cf249f99841p+6i, 0x1.82b0afa08cda4p+1 + 0x1.2a55c62ede714p+6i, 0x1.1b6b2284c3fbcp+2 + -0x1.b56f4aa8f0e76p+5i, 0x1.938b2357b3104p+4 + -0x1.cb2bb791c61a7p+3i, -0x1.de9329f28e7cap+6 + -0x1.5e954ecb6af62p+5i, -0x1.45552d839c0cep+6 + 0x1.6fbdc8cce34fdp+6i, -0x1.141f525d2b5cdp+5 + 0x1.9292cfe323be7p+5i, 0x1.0f5424c8a7d94p+7 + 0x1.a3841c9346f5bp+6i, -0x1.88a9206755ce5p+6 + -0x1.f4ad656b1cfc2p+6i, 0x1.366c409640bf8p+6 + 0x1.4e4a75a1d323cp+7i, 0x1.c01e2ff61223p+1 + -0x1.b8c3660440c6cp+5i, 0x1.3c62e04a4734ep+5 + 0x1.701e644d2f318p+4i, -0x1.9fd0d799df5c1p+6 + 0x1.1cd3f7e3c823ep+5i, 0x1.b035651169d7ap+6 + 0x1.5eee55cec48ep+2i, -0x1.dd2c3373e22b2p+5 + -0x1.634b16be5dd8ap+5i, -0x1.a1988353dfe16p+5 + 0x1.2c34f8cae02fap+7i, -0x1.9e05c03e2b896p+3 + -0x1.b29284ef7a489p+4i, -0x1.384a3576cb2b1p+6 + 0x1.558a4603be24p+7i, -0x1.195025998ed1p+2 + -0x1.9ce00d276872ep+4i, -0x1.14961daf39c7ep+4 + 0x1.ea6bf5b39cc24p+6i, -0x1.c76aa047fc807p+5 + -0x1.6989c8cb8fb58p+3i, 0x1.3e08ceff60b96p+5 + 0x1.4808e592422c1p+6i, -0x1.7e12ed8e261a4p+5 + -0x1.56bd1754303p+3i, 0x1.1c855252b05cep+7 + -0x1.bdee7ffffe718p+3i, -0x1.0cabfb06c207ap+7 + 0x1.ababb3e989cfp+4i, 0x1.52e7f5f7500dap+6 + -0x1.3e947be939acp+3i, -0x1.b42a0cfd66402p+4 + 0x1.25edce810ad76p+6i, 0x1.23bef971cbee8p+7 + 0x1.83a0840432e4p+4i, -0x1.183f6d626586bp+7 + 0x1.a334d9f34002p+3i, -0x1.92505c92045a1p+6 + 0x1.4e8f52614d02ap+5i, 0x1.37e51cedeff4p+3 + -0x1.7d8660aead174p+4i, 0x1.22e667ac490d1p+8 + 0x1.71a5b51efd0b8p+3i, 0x1.b12eb23e6e998p+5 + -0x1.891ff6c80892p+3i, -0x1.36e962d6aa901p+7 + 0x1.cff001cf3c09ap+6i, 0x1.1b79a583b387ap+6 + -0x1.e2a2d8e7f3dbap+7i, 0x1.bb5ad52552fb1p+7 + 0x1.502b366968781p+7i, -0x1.65b3eba8bee0ep+7 + -0x1.d4d0d74a6bce3p+6i, 0x1.82224ce493a9p+3 + -0x1.245376145c93cp+8i, 0x1.1d4bcaf1e33b6p+7 + -0x1.0aae93147cff8p+8i, 0x1.58020a196377ap+8 + 0x1.a8d8b9e0a0226p+7i, -0x1.3b8d5f552ab51p+7 + 0x1.d7aaee9900e3dp+5i, -0x1.b900f50803e09p+6 + -0x1.16f943bded85p+8i, 0x1.1425a3ba473b4p+8 + -0x1.068b75fc7d901p+6i, -0x1.673d83ed4306ep+5 + 0x1.2639c7c28e6f2p+7i, -0x1.51545051d6b5p+4 + -0x1.bb755943cb9d8p+7i, 0x1.093340cbc9fbep+7 + -0x1.9c4ab16e3343dp+7i, 0x1.06905332d871ap+7 + -0x1.936307e4bbd4fp+5i, -0x1.ea878f9b8aa54p+6 + 0x1.b5811a660a5abp+7i, -0x1.2211981a873e8p+7 + -0x1.216ab12e86224p+8i, -0x1.2e40d0357a9cbp+6 + -0x1.292a7cdfc75p-1i, -0x1.b98340b6910efp+5 + -0x1.3299800114baap+6i, 0x1.3d71f62bb62a6p+4 + -0x1.6abdfc4792ae3p+6i, -0x1.ff081baa8f00fp+6 + -0x1.0810c35d761d1p+4i, -0x1.4835cfba4d8ep+4 + -0x1.127c6f146c2b4p+8i, -0x1.1975f22ef2cccp+6 + -0x1.41f3d602b92c2p+6i, -0x1.01ad62051ff5p+5 + -0x1.e3b8080acf97p+3i, -0x1.7c1e22843ec18p+3 + -0x1.02ef441f6dde8p+7i, -0x1.2241c7d2ed9bcp+5 + -0x1.2e5be5df653e3p+7i, 0x1.0cbde255bb91p+5 + -0x1.9eafd2ff4c9fdp+4i, -0x1.2dd3fc52d2e84p+6 + -0x1.0805d3d63d556p+7i, -0x1.6ae967a6567eap+4 + -0x1.d73b2aec801fp+3i, 0x1.063687f2e5237p+5 + -0x1.cf1c90ff3d588p+6i, -0x1.841b31002dcc8p+2 + -0x1.0cab5c8c7d4b4p+5i, -0x1.d31b177a31cf7p+2 + -0x1.ac5e436b91d01p+6i, -0x1.e036b1c1c024p+3 + 0x1.354b9350696ebp+6i, -0x1.9d90fb72d14a3p+4 + -0x1.54049024c34b2p+5i, 0x1.5d78533363199p+6 + -0x1.a5a495343125fp+4i, 0x1.904763f8f2b08p+3 + -0x1.836b113e400bp+5i, -0x1.94fabe84e87d4p+6 + 0x1.52d798f4432f8p+6i, -0x1.fb41d0f6e8968p+4 + 0x1.34d0e7f2c9b58p+4i, 0x1.154a311ef5184p+5 + -0x1.ee29250e6eaefp+5i, -0x1.b926736c77cfp+3 + -0x1.9e2450b4ad6a4p+5i, -0x1.d89ccb7531d1p+6 + 0x1.6e45ddf348808p+6i, 0x1.2f1384ff3a6e6p+3 + -0x1.a8eca8670a1p+2i, 0x1.a525a535c9f6ep+6 + 0x1.2c0164eb8bd46p+7i, 0x1.d57678cb93e1p+1 + -0x1.248f71d92d555p+6i, -0x1.3b0e9a751433p+2 + -0x1.352dfedff2e63p+6i, 0x1.9278291d40fap+4 + -0x1.27f71ed126efp+4i, 0x1.099fe6e43bc44p+5 + 0x1.292124aac7ca7p+7i, -0x1.466e231c94024p+6 + -0x1.bc3792931244p+4i, 0x1.1e98defdca44p+5 + -0x1.f27bb7a9333a2p+5i, 0x1.2b2b633982cb4p+7 + 0x1.b9140d8584184p+6i, -0x1.4be20b7339bc5p+5 + 0x1.5b1737107011ap+7i, 0x1.381ba8c23d93p+6 + -0x1.a5afe11ca235ep+5i, 0x1.673f1278ab391p+6 + -0x1.8fc2aa52efc7ap+6i, 0x1.043ca3c271f6cp+5 + 0x1.5661291f41acdp+4i, -0x1.400c9e6220f02p+4 + 0x1.b08faae4290e8p+4i, -0x1.2b25808249aap+0 + -0x1.f576ecaa2c174p+5i, -0x1.b900819d58255p+5 + 0x1.9b3838bdb9a4cp+2i, 0x1.c03f2dd7ccc2dp+5 + -0x1.15f399de9041ep+5i, 0x1.0bd87ea392731p+4 + 0x1.22859c16c8178p+2i, -0x1.55db4fdeb01f6p+6 + 0x1.164b21965d7d4p+5i, 0x1.c9567405c9ca4p+5 + -0x1.6658eb6d9fe2p+6i, 0x1.7e2b9a72bd4b5p+5 + -0x1.022dd3abf3616p+6i, 0x1.4a4b10cd83b9p+4 + 0x1.61052796ef843p+5i, 0x1.1ccc9bb762d78p+6 + -0x1.18f2289060893p+6i, 0x1.ba71eaa70c72dp+5 + -0x1.a338e086aafacp+5i, 0x1.30e4e3ff44298p+5 + -0x1.35087e3be845p+4i, 0x1.1ff3b519495a2p+6 + -0x1.68f5a66142cafp+5i, -0x1.22533d8312122p+4 + 0x1.b37be758cab5p+2i, 0x1.00195111a4aa6p+5 + -0x1.690fa1e34526p+2i, -0x1.855d398de0236p+4 + -0x1.d52878b094348p+4i, 0x1.34001f9b02f98p+5 + -0x1.af40c8691f1f9p+4i, -0x1.df19dbfa53708p+4 + 0x1.b8651f7d05384p+5i, 0x1.1de4b2aa6963p+3 + 0x1.64630d8abaaep-1i, 0x1.14892f43e0184p+5 + -0x1.9c0aca26c6758p+0i, 0x1.5d769e27ef727p+5 + -0x1.b46874452603cp+4i, -0x1.cffe52554c9e2p+4 + 0x1.b7d2c69661fd2p+5i, -0x1.912a5b56fd6dp+1 + 0x1.3c6c9ef99e20ap+4i, -0x1.c722aa3e7b186p+5 + -0x1.520f74936f0d6p+4i, 0x1.f62b64e35231p+5 + -0x1.dc3650101f6cp+2i, -0x1.d197f0e030569p+5 + 0x1.ac384dbcffe18p+3i, 0x1.c7e2790d4586p+1 + 0x1.b592146e8eabbp+5i, 0x1.d438a032e3cd8p+0 + 0x1.3944353a9f4d4p+6i, 0x1.8cbc1931b2454p+5 + -0x1.99e09760ae0ccp+5i, -0x1.58477f32507bbp+1 + -0x1.ae9cb5ede05ap+3i, 0x1.5521934a78d65p+4 + -0x1.e6c9957439ffp+2i, -0x1.3fade4635dea9p+5 + -0x1.1773f612be4d2p+6i, 0x1.525c9a249f3e4p+5 + -0x1.3e123726609c9p+5i, 0x1.4857b8fecebf6p+4 + -0x1.5533bb012bf4p+4i, -0x1.ae9d5792de54p+1 + 0x1.a7f14ea1c8b2ep+6i, -0x1.06e0fb2227a56p+6 + 0x1.64401c2ba13f2p+4i, 0x1.6d6033c42528p+6 + 0x1.08bb43ea0813p+1i, 0x1.16c4f4ebb936cp+4 + -0x1.69f2e75a74344p+4i, 0x1.77688be34b3d8p+2 + 0x1.498b6f3152478p+1i, -0x1.5bd34583008e7p+5 + -0x1.4f5a39357a18bp+4i, 0x1.39700fae27b13p+6 + 0x1.0633ba2df301ap+2i, -0x1.500c69d597e5ap+5 + -0x1.0ab91cbc95ffap+4i, -0x1.d6fbf6e5e3693p+4 + 0x1.73ac0dabe9fc6p+5i, -0x1.2f6124e51f377p+4 + -0x1.6a80e5e771ec1p+5i, -0x1.00441c703109dp+5 + -0x1.7044357d8158p-1i, -0x1.8d896e0867874p+3 + -0x1.0fec53416559ep+5i, 0x1.851d90b61ef6p+2 + -0x1.0e79f2076ff6p+6i, -0x1.91904e3207cdp+2 + -0x1.774356cf742e8p+3i, 0x1.1b7bc98066797p+5 + -0x1.be5240d3b192cp+3i, 0x1.20e2a4c336c94p+5 + -0x1.44c32570db58cp+4i, 0x1.56f323a55f2ep+2 + 0x1.581eb5da6a293p+4i, -0x1.571fedf70cfdap+3 + -0x1.f302a8dd82eep+4i, 0x1.eca243efedccp+3 + 0x1.6a32e166edc29p+4i, 0x1.f28fb881ee006p+4 + 0x1.6f8b330119e88p+4i, -0x1.3df07d3d83ed5p+6 + -0x1.d918ec921bb84p+5i, 0x1.457daa36a2721p+4 + -0x1.ce0abe2a563b6p+2i, -0x1.c47572dd8312fp+5 + -0x1.222f73959f7c4p+4i, 0x1.821c96841b72ap+2 + 0x1.cd174812298d5p+5i, 0x1.7825328636f2p+0 + -0x1.82fbb06ab11d3p+5i, -0x1.e143abac9793bp+5 + 0x1.9a9e9f7e99d5ep+4i, -0x1.d4ff320026c3cp+5 + -0x1.71539d7de3383p+3i, 0x1.74dec1e036566p+4 + 0x1.bf542aebab1cfp+4i, 0x1.131140f3ac2acp+5 + 0x1.4c954a8722594p+2i, 0x1.a20dff0259025p+5 + -0x1.d31f8c938601bp+5i, 0x1.a987723d5365dp+5 + -0x1.1083edce2bc9cp+3i, 0x1.6ece586ce1a46p+4 + 0x1.3ab7e34a3bbabp+6i, -0x1.2e193da55708ep+6 + -0x1.c2ba2f046ef6p-2i, 0x1.00341129108c8p+6 + -0x1.f84782be2b1dep+5i, 0x1.88ae0c5a2d504p+5 + -0x1.2ca1dbab6d3b4p+5i, 0x1.2f3c932f29b7p+1 + 0x1.6cc6df5d3c676p+3i, -0x1.c98eab73f6a4p+4 + -0x1.554bca55bef63p+6i, 0x1.8ce48aec82415p+3 + -0x1.5d770b22f4309p+5i, 0x1.cb609c88c112p+5 + 0x1.33e2c11988957p+6i, -0x1.a2f4eb92719b2p+5 + -0x1.3cbb3a79097f1p+3i, -0x1.139ec16eab42fp+5 + -0x1.2e129245f45f6p+7i, -0x1.a7701ab0ca8a9p+4 + 0x1.14403d502a52p+3i, -0x1.ebb89bdd07584p+3 + -0x1.3192dfbbdfc26p+6i, 0x1.13e6a70bee49p+4 + -0x1.6d95c844d2792p+5i, 0x1.8ee45253f98ep+2 + 0x1.4f5ab42cba30cp+6i, -0x1.ecb09741b1c4p-1 + -0x1.221ca9b7d6469p+6i, -0x1.8681738191a6fp+5 + -0x1.7aa92d9018c6ap+6i, 0x1.724b4dee89a12p+3 + 0x1.d1be076c0c95bp+2i, -0x1.098cba9da73bfp+6 + 0x1.3ae20aa44d435p+6i, -0x1.06f9d12c36904p+5 + -0x1.6fc1522bfe6aep+6i, -0x1.80d2fae0e5c59p+6 + -0x1.2ac10f51a0c79p+6i, -0x1.3822469996b64p+5 + 0x1.5f5b720a93718p+6i, -0x1.0d2df4c7afd4cp+2 + -0x1.18970ec351348p+5i, -0x1.a3c981f88d683p+6 + 0x1.e1efa99f810f8p+3i, 0x1.5643f66965034p+5 + -0x1.906b20227ca7cp+6i, -0x1.d26a0be7ec7eep+6 + 0x1.0ed1bb4068968p+2i, -0x1.8bc643cbda524p+3 + -0x1.6d30328cc7693p+6i, 0x1.03a0ada7ae334p+4 + -0x1.41e2634374802p+5i, -0x1.315b75f4340b6p+3 + -0x1.08ad4b7623c61p+7i, 0x1.7fce232ccfb12p+4 + -0x1.424bb70e489d2p+6i, 0x1.60e8fa1d627p-2 + -0x1.0ac74e101b8f2p+7i, 0x1.5c0480775b58ap+4 + -0x1.a0f88c5e1cd79p+6i, -0x1.f66afec5929e8p+0 + -0x1.702afc1381324p+5i, 0x1.083c8861cdd54p+7 + -0x1.2d0ae50f6bac2p+7i, -0x1.91365a760c7f4p+3 + -0x1.eb0a7d20ea5fcp+5i, -0x1.949581eaadce3p+6 + -0x1.659810984138p+5i, 0x1.41aa19c7e14aap+6 + 0x1.46aa1ff3dfc82p+7i, -0x1.654aa9ca0e42ap+5 + -0x1.3bbaf02e71b4p+7i, 0x1.033d865ecc564p+7 + -0x1.27c73cb6db57bp+6i, 0x1.94a41e0182531p+7 + 0x1.bcc98bc3e251bp+5i, -0x1.cd467328a272p+4 + 0x1.19814f4af7c36p+7i, -0x1.16c5b9301eb2ep+6 + 0x1.876a3d71ff5d1p+5i, -0x1.f37cc2637d4c4p+4 + -0x1.7e206930f9509p+6i, 0x1.c9c4cacc6decep+5 + -0x1.7f0b382c4641p+3i, -0x1.d2fa1428fa922p+7 + 0x1.1e92b80e99ecbp+7i, 0x1.ae6c983f98448p+7 + -0x1.4d41908b6d158p+5i, 0x1.05dc785581b9fp+7 + 0x1.afbc2947a22fep+4i, 0x1.3b3261e276d37p+7 + 0x1.5d0f93dea3366p+7i, -0x1.71c6081a1d6d4p+7 + 0x1.d50d80c69f0dbp+6i, 0x1.fa2913f6f971fp+6 + -0x1.d1e41cdabc4bfp+6i, 0x1.30a970ad68fc1p+6 + 0x1.0e7a3519d97fbp+6i, 0x1.72a9281ee5aacp+4 + -0x1.f94509927a30ep+6i, 0x1.04aca4fa15345p+8 + -0x1.2af391aace1ap+2i, 0x1.e03335739dcdap+7 + 0x1.0315e4a239b85p+7i, 0x1.04ca7736d495bp+5 + -0x1.7bbbfec2d0cc8p+6i, 0x1.5e883d75cbd56p+7 + 0x1.c679f290e2c9p+5i, 0x1.600a2a745e36cp+3 + -0x1.9b0ffeeb363e7p+5i, 0x1.267b111085d42p+7 + -0x1.3239ad99106efp+6i, 0x1.207e4ae67766ap+7 + 0x1.07d9d33a8b352p+3i, 0x1.f2f6e60cf04a8p+7 + -0x1.67d18306ae325p+7i, -0x1.39953dda29897p+5 + -0x1.b92d15d6ae612p+4i, 0x1.6632b2287fc4ap+8 + 0x1.04c7f85576aa9p+7i, 0x1.514dd0ba2f77p+7 + 0x1.9db2b19e2b2ap+1i, 0x1.16d6ca178b7c2p+6 + -0x1.36a739f0aa698p+6i ) assertThat(stats:::fft(z=c(11.5322877347435, -0.0536614882909153, 8.10388429405067, 7.12388541217765, 0.634648654879482, 20.6833254842938, -0.209293452834741, 8.1834025852561, 21.7096048994268, -8.66744108958155, 11.3413447309357, 6.25957684569318, -4.04847768085968, 0.00669891179891191, 3.69273001961162, -0.324271630661781, 3.53811102919027, -7.99149334008458, -0.0102746159410632, -7.9084025084199, -4.53227802531144, -3.1695145523155, -0.864185075878322, -0.398000959481147, 3.03058780827192, 0.147094061760344, -1.29472877344459, 0.174294262007368, 1.50616668651532, 1.03254251754203, -0.373638003965538, 0.0266208434309929, 2.48043908368853, -2.50526412432748, 0.30690547474626, 0.349642739530974, 6.72975734560601, 2.8890842505495, 1.67781475634695, 5.02189702333893, -1.66055109785237, 1.16228724804414, 0.230913971772941, 0.0835513315335332, 3.02573807301983, -9.61285442877846, 3.42426082420763, 1.66855831536857, -1.05259726864905, -2.8587199950412, 2.27652604048087, 3.37370877425695, 0.626715969904431, 2.02680689688908, -0.106173931047774, 4.05964071110835, -0.429723534569165, 9.9623455881932, -1.04430990664505, -2.05892006945102, 0.932154475075483, 4.04395653845625, -4.97944044996944, -2.41748837370433, -0.44895603075282, -4.02834963633426, 0.620322975096342, -1.15058491287586, 0.826950398158126, -2.50567395281835, 0.699821800321542, 2.11211178878044, 2.04735307386135, -2.92785006289004, 2.10292525623853, 3.45883850396476, -0.671545458899436, 5.84239075792953, 0.563010253568881, 1.50358413790881, 0.00602773681692171, 0.408266963803238, -1.25956219870405, -0.732088282589892, 1.81543586186064, 0.724049036972522, 3.1735719491931, 1.45844201665592, -2.20565622153703, -0.611422913809857, -1.92370917377262, 1.09614589550477, -0.00457882050876997, 1.58603052554574, -0.771296666845567, 1.10790473433538, -13.4072858820316, 2.62229137656914, -4.92504625020915, -4.11482057721809, 4.78439406922046, 0.604538269265267, 4.75259203132082, -2.26347513843737, 7.38556723168493, -4.5031573891696, -3.34030944887638, 6.36007798002467, -2.20637032158137, -18.197837172008, 3.27253991179982, -8.32283891053862, -3.09246137527566, -0.857308361913176, -8.59847976133741, 0.193193723881243, -10.6078310513925, 2.73605756847678, -3.4690116511855, -4.0922938043148, 0.835042235655886, 4.58113606623019, -3.48612959994298, 3.88319495087222, 0.694612040388423, 0.80151350556459, 1.21608936226856, -0.146830520602753, -1.97523798214778, -3.8032912376745, -1.32066476942786, -3.1469052447554, 0.330968529506233, 2.50219654284036, -0.00534679693188097, 2.06770977641846, 1.2770416282903, -4.56652819369173, 1.18070542411989, -8.45910028112526, 0.500313327202124, -9.890134984691, 3.80427381285811, -3.28410753671459, -0.0928863710767388, -1.13586531490098, 0.00142177069221664, -1.6368331330302, -1.27560914922195, 4.5942060362111, -0.136144647655544, 6.64978435728382, 0.620741030357076, 11.1940268663154, 6.38863824971662, -0.0968271769604799, -1.75142016892662, -2.12272925858779, 0.808778833106189, -3.27410938305493, -1.87926977392442, 3.90793437249278, -0.129364676797616, 6.67327962079714, -1.23241389955717, 10.3340692183342, 4.49995204228895, -0.0175684929204964, 10.0198421874161, 8.9142567170814, 0.965828250129739, 4.47214627709161, 11.3760856208011, -3.83374614632753, 9.39467171249471, -0.211894601421547, 5.6260991382355, 7.39370308616533, -2.19703219902215, 0.477785795263814, 6.69342208489987, 0.271087280818287, -0.08866407563, -0.892298925717517, -0.0655739925678449, 1.70824976848388, 9.74434779116223, 0.047059087305297, 6.66327852556352, -0.733242516998134, -0.862763720321917, 0.532230208135849, 1.81853492867694, 0.073173918632501, -0.0120313235998422, -0.709822172742577, -0.0365218393879865, 2.20173709326303, 7.15838705301316, 1.71593352824277, 6.80902593716949, 0.631154474802138, -2.30222003886426, -0.131440818992655, -1.81093283688568, 0.816657557136837, 0.315036696486329, 1.49153540674174, 4.77648470027498, -5.35524597943366, 3.69216544938606, -4.70986387995559, -0.0298074745418237, -3.42418611047606, -2.07909868468986, 0.86132764239749, -3.45611867803019, 4.08717401387356, 5.13942988746377, 2.71707924098775, 11.7389555330178, -3.52763050590055, 6.70057260091543, -1.21245743036517, -0.0471250902662232, 7.31049337751672, -2.92928208577723, -15.7076983395274, 0.63733823895768, -3.06253651103384, -9.95912511629547, 6.82287854428249, -19.4024635601163, 6.95878639659263, -13.8216141163645, 2.7120340145206, -7.77407462095592, -13.513178075734, 10.2223216488225, -4.22180518657962, -0.616630024282006, 0.0969658155583185, 0.739868492840877, -0.736455002272661, 4.02197590170101, 3.20195481765355, -0.21625823668785, 3.23374230114808, -1.82251152690908, -4.55969152782826, 5.46420594309378, -1.72396052139612, 0.248221910480828, 0.290997787609224, 0.160378112098767, 1.30565173508994, 2.11405227228869, -1.25371061658579, -0.322274215846882, 0.771284123778419, -5.82916249789895, -4.7688594054108, 1.09757683227523, -10.7753363770895, 0.679683351531881, 8.71092738239496, -4.24896710613194, 16.9944227083797, 3.49396472360447, 7.38168846440029, 16.0501687217935, -2.82853241537599, 13.7623602185726, -1.13934151045584, -0.33303108290957, 10.6095112893565, 1.21280563244208, -3.26703517084193, 5.42566343048067, 1.90615443758752, -3.76929098760009, 4.7571522247348, -4.56749632060659, 3.48505186522957, 2.38634564614694, 0.720134853083301, 0.0173349424500548, -2.46683586012268, -0.264854638050591, -1.68672652680576, -3.62579119964558, 0.191410234483265, -3.33100322243884, -1.23832654965653, -1.51271513527201, -3.21004788668115, -0.677638617308621, -6.76458871937203, -0.0595937932771723, 0.905273755826399, -0.665348283295009, 4.26156394787796, 8.13053719457733, 0.706617892077626, 5.34922822655341, 0.390024021340803, 4.10094350953699, 8.54431214167078, -0.428658532924323, 5.80977874906543, 7.95416262868259, 3.96409184859711, 1.0270509303756, 11.4978449522953, 5.69071149278792, 1.71245082553867, 5.33664978404515, -0.232282926333662, 7.77512020618274, 5.97247960628241, 0.671851241883722, 11.2576322982288, -0.493627408568823, -19.8105786010346, 6.19139526090894, -9.67081923341575, -7.31550578449565, 2.4158941512503, -4.20661615110722, 3.25330587170611, -0.48893765610774, -5.33816556417316, 4.89329913232602, -11.0745355673873, 0.745658812763246, 21.4225369306003, -11.5373050729955, 17.3690479458296, 13.5338453597935, -5.80352036607883, 16.9292340489376, 0.687513189357384, 1.05372199155113, 8.89073380712435, -11.7747491177948, 11.1662011727824, 2.36590450521909, -24.6147805310095, 13.4682057889952, -10.8297221948164, -6.74435215918939, 14.2990024988825, -7.80399898169954, -0.930435016741878, 0.321488406672147, -6.857038098823, 13.2451606534375, -2.66148710976401, -1.23417272603375, 16.3591694745706, 7.08590128328528, 1.33646705573818, -0.56311276188225, 2.54820325921967, -1.96480359504391, -4.25723853098776, -0.0776726504030251, -0.64344874994151, -2.35581150968545, 0.299289630671684, 1.35468917177273, -2.56823906954974, -2.81906400531936, 0.109353810080396, 0.579503978626958, -0.707899159556581, 2.64445110496137, 2.13806939588322, -1.224278628552, 0.805978534861034, 0.376984163413155, -1.91911667244579, -1.38425250749227, -0.809550458408014, -5.64389046017235, -0.350469584338703, 1.59190247258925, -3.23875262389022, 7.47336910432749, 2.02559416181311, 4.28660730624579, 8.26458185653524, -1.24119303458942, 7.25599872181589, 7.73800445477148, 2.14204589483061, 10.6125479452692, -3.11047296991716, -1.29762985706114, 2.53438555626821, -9.81060993607349, -2.38711547928007, -4.51756875842113, -8.15520205797756, 1.87215005977658, -7.00271473838324, -9.66316630274651, -4.98723055840333, -10.3346181113708, 3.21058150666009, -1.67116244708664, -2.59609868860278, 2.817272347566, -1.80390285834556, 0.189320448742696, 2.53318240441112, -1.10418529151376, 0.475894571767647, 0.121382902515877, -0.150468000171074, 1.26655888970022, 2.36460134108056, -1.08876139639527, -1.05586258793118, 1.4416293351108, -0.0746955861959464, 0.437292873611172, 0.966824603061367, 1.19967406239761, 0.27987994117392, 0.0727495646706561, 0.0547790151715594, 1.88603632419523, 3.81703430837322, -1.22688536881049, -1.95158226953404, 2.67542807961795, -0.485318359658868, 8.73316813799053, -1.2626836337253, 4.38927324061488, -0.635253885794933, -6.50838946636762, -0.798736937734671, 4.42660261545315, -10.5105661136931, 0.956252645260474, -0.375614736453113, 2.32387372105472, 3.78487569254801, 8.39347536421347, 0.429269311717134, 16.6988816716912, -1.0277607447264, 4.97280286849382, 3.15259355009544, 3.40220551135325, -5.79235899059601, 0.890912184254578, -0.316440269791223, 2.07638491989382, 3.40063013920156, 11.7890976851689, 0.65194608903028, 22.6051490917594, 14.548240757248, 6.7024158797134, 19.992901935073)) , identicalTo( expected, tol = 1e-6 ) )
setClass("cgOneFactorFit", representation(olsfit="olsfit", rrfit="rrfit", aftfit="aftfit", uvfit="uvfit", settings="list")) setMethod("fit", "cgOneFactorData", fit.cgOneFactorData <- function(data, type="rr", ...) { dots <- list(...) validDotsArgs(dots, names=c("maxIter","sandaft")) rr <- aft <- uv <- FALSE aftfit <- rrfit <- uvfit <- "No fit was requested." if([email protected]) { type <- "aft" } else if(missing(type)) { type <- "rr" } type <- validFitType(type) maxIter <- if(is.null(dots$maxIter)) 100 else dots$maxIter validNumeric(maxIter, positive=TRUE, integer=TRUE) if(type=="rr") { rr <- TRUE } else if(type=="aft") { aft <- TRUE } else if(type=="uv") { uv <- TRUE } dfru <- data@dfru settings <- data@settings endptscale <- settings$endptscale grpnames <- settings$grpnames oldop <- options(contrasts=c("contr.treatment", "contr.poly")) on.exit(oldop, add=TRUE) validAft(type, dfru) olsfit <- if(endptscale=="log") { lm(log(endpt) ~ -1 + grpf, data=dfru) } else { lm(endpt ~ -1 + grpf, data=dfru) } olsfit$dfru <- dfru names(olsfit$coef) <- grpnames if(rr) { rrfit <- if(endptscale=="log") { try(rlm(log(endpt) ~ -1 + grpf, data=dfru, method="MM", maxit=maxIter, ...)) } else { try(rlm(endpt ~ -1 + grpf, data=dfru, method="MM", maxit=maxIter, ...)) } if(class(rrfit)[1]!="try-error") { rrfit$dfru <- dfru names(rrfit$coef) <- grpnames class(rrfit) <- "rlm" } else { warning(cgMessage("The Resistant & Robust (rr) fit did not", "converge in the specified number of", "iterations. You may want to try again with an", "increased value for the maxIter argument.", warning=TRUE)) rrfit <- "The fit did not converge in the specified number of iterations." } } else if(aft) { if(!is.null(sandaft <- dots$sandaft)) { validBoolean(sandaft) } else { sandaft <- TRUE } thesurvobject <- with(dfru, if(endptscale=="log") { survival::Surv(time=log(endpt1), time2=log(endpt2), event=status, type="interval") } else { survival::Surv(time=endpt1, time2=endpt2, event=status, type="interval") }) aftfit <- try(survreg(thesurvobject ~ -1 + grpf, data=dfru, dist="gaussian", maxiter=maxIter)) if(class(aftfit)[1]!="try-error") { aftfit$dfru <- dfru aftfit$Surv <- thesurvobject aftfit$maxIter <- maxIter names(aftfit$coef) <- grpnames aftfit$sandaft <- sandaft if(sandaft) { aftfit$naive.var <- aftfit$var aftfit$var <- crossprod(resid(aftfit, "dfbeta")) } } else { warning(cgMessage("The Accelerated Failure Time (aft) fit did not", "converge in the specified number of", "iterations. You may want to try again with an", "increased value for the maxIter argument.", warning=TRUE)) aftfit <- paste("The AFT fit did not converge in the specified", "number of iterations.") } } else if(uv) { uvfit <- if(endptscale=="log") { gls(log(endpt) ~ -1 + grpf, data=dfru, weights=varIdent(form = ~ 1 | grpf)) } else { gls(endpt ~ -1 + grpf, data=dfru, weights=varIdent(form = ~ 1 | grpf)) } uvfit$dfru <- dfru names(uvfit$coef) <- grpnames } returnObj <- new("cgOneFactorFit", olsfit=olsfit, rrfit=rrfit, aftfit=aftfit, uvfit=uvfit, settings=settings) returnObj }) setMethod("print", "cgOneFactorFit", print.cgOneFactorFit <- function(x, title=NULL, endptname=NULL,...) { dots <- list(...) validDotsArgs(dots, names="model") modelarg <- getDotsArgName(dots, "model") if(!is.na(modelarg)) { model <- eval(parse(text=paste("dots$", modelarg, sep=""))) model <- validArgMatch(model, choices=c("both", "olsonly","rronly")) } else { model <- "both" } olsfit <- x@olsfit rrfit <- x@rrfit aftfit <- x@aftfit uvfit <- x@uvfit settings <- x@settings ols <- rr <- uv <- aft <- FALSE if(class(aftfit)[1]=="survreg") { aft <- TRUE validArgModel(...) } else if(class(uvfit)[1]=="gls") { uv <- TRUE validArgModel(...) } if(class(rrfit)[1]=="rlm" && model!="olsonly" && !aft && !uv) { rr <- TRUE } if(class(olsfit)[1]=="lm" && (model!="rronly") && !aft && !uv) { ols <- TRUE if(!rr) model <- "olsonly" } if(is.null(title)) { title <- paste("Fitted Models of", settings$analysisname) } else { validCharacter(title) } if(is.null(endptname)) { endptname <- settings$endptname if(!is.character(endptname)) { endptname <- "" } } else { validCharacter(endptname) } cat(title,"\n") if(endptname!="") { cat(paste("Endpoint:", endptname, "\n")) } if(ols) { cat("\nClassical Least Squares Model Fit\n") print(olsfit, ...) } if(rr) { cat("\nResistant & Robust Model Fit\n\n") print(rrfit, ...) cat("\nEstimated Standard Deviation from rlm is", signif(summary(rrfit)$stddev, 4), "\n\n") } if(aft) { cat("\nAccelerated Failure Time Model Fit\n") print(aftfit, ...) } if(uv) { cat("\nUnequal Variances Model Fit\n") print(uvfit, ...) } invisible() } ) setMethod("show", "cgOneFactorFit", function(object) print(object)) setMethod("showObj", "cgOneFactorFit", showObj.cgOneFactorFit <- function(object) showDefault(object)) setMethod("summary", "cgOneFactorFit", summary.cgOneFactorFit <- function(object, title=NULL, endptname=NULL, ...) { dots <- list(...) validDotsArgs(dots, names="model") modelarg <- getDotsArgName(dots, "model") if(!is.na(modelarg)) { model <- eval(parse(text=paste("dots$", modelarg, sep=""))) model <- validArgMatch(model, choices=c("both", "olsonly","rronly")) } else { model <- "both" } olsfit <- object@olsfit rrfit <- object@rrfit aftfit <- object@aftfit uvfit <- object@uvfit settings <- object@settings ols <- rr <- uv <- aft <- FALSE if(class(aftfit)[1]=="survreg") { aft <- TRUE validArgModel(...) } else if(class(uvfit)[1]=="gls") { uv <- TRUE validArgModel(...) } if(class(rrfit)[1]=="rlm" && model!="olsonly" && !aft && !uv) { rr <- TRUE } if(class(olsfit)[1]=="lm" && (model!="rronly") && !aft && !uv) { ols <- TRUE if(!rr) model <- "olsonly" } if(is.null(title)) { title <- paste("Fitted Model Summaries of", settings$analysisname) } else { validCharacter(title) } if(is.null(endptname)) { endptname <- settings$endptname if(!is.character(endptname)) { endptname <- "" } } else { validCharacter(endptname) } cat(title,"\n") if(endptname!="") { cat(paste("Endpoint:", endptname, "\n")) } if(ols) { cat("\nClassical Least Squares Model Fit Summary\n") print(summary(olsfit, ...)) } if(rr) { cat("\nResistant & Robust Model Fit Summary\n") print(summary(rrfit, ...)) cat("\nEstimated Standard Deviation from rlm is", signif(summary(rrfit)$stddev, 4), "\n\n") } if(aft) { cat("\nAccelerated Failure Time Model Fit Summary\n") print(summary(aftfit, ...)) } if(uv) { cat("\nUnequal Variances Model Fit Summary\n") print(summary(uvfit, ...)) } invisible() } ) validAft <- function(type, dfru) { if(type=="aft" && ncol(dfru)!=5) { stop(cgMessage("An accelerated failure time (AFT) model", "cannot be fit as requested (type=\"aft\")", "since the data frame does not seem to have", "a censored status column or the required format.", seeHelpFile("CGOneFactorFit"))) } return(TRUE) } validFitType <- function(type) { x <- try(match.arg(type, c("ols","rr","aft","uv"))) if(class(x)=="try-error") { stop(cgMessage("The type argument needs to evaluate to one", "of: \"ols\", \"rr\", \"aft\", \"uv\".", seeHelpFile("CGOneFactorFit"))) } else return(x) }
jc.probs <- function(x, y1, y2, y3 = NULL, newdata, type = "joint", cond = 0, intervals = FALSE, n.sim = 100, prob.lev = 0.05, min.pr = 1e-323, max.pr = 1, cumul = "no"){ if(x$VC$Model == "ROY") stop("This function is not designed for the type of model chosen for modelling. Get in touch for more info.") is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol cont1par <- x$VC$m1d cont2par <- c(x$VC$m2,x$VC$m2d) cont3par <- x$VC$m3 bin.link <- x$VC$bl if(x$VC$Cont == "YES" && x$surv == TRUE && x$margins[1] %in% c(cont2par,cont3par) && x$margins[2] %in% c(cont2par,cont3par)) stop("This function is currently not suitable for survival models with\nparametric margins. Consider using semiparametric margins instead. ") if(x$VC$Cont == "YES" && x$surv == TRUE && x$margins[1] %in% bin.link && x$margins[2] %in% bin.link) y1 <- y2 <- 1 if(x$VC$Cont == "YES" && x$surv == TRUE && x$margins[1] %in% c(cont2par,cont3par) && x$margins[2] %in% bin.link ) y2 <- 1 if(x$univar.gamlss == TRUE) stop("This function is not suitable for univariate models.") if(missing(y1)) stop("You must provide a value for y1.") if(missing(y2)) stop("You must provide a value for y2.") if(x$triv == TRUE && missing(y3)) stop("You must provide a binary value for y3.") if(!(type %in% c("joint","independence"))) stop("Error in parameter type value. It should be one of: joint, independence.") if(!(cond %in% c(0,1,2, 3))) stop("Error in parameter cond value. It should be one of: 0, 1, 2 or 3 (for the trivariate model).") if( type %in% c("independence") && x$VC$gamlssfit == FALSE && is.null(x$VC$K1)) stop("You need to re-fit the model and set gamlssfit = TRUE to obtain probabilities under independence.") if(x$margins[1] %in% c(x$VC$m1d, x$VC$m2d) && (!is.wholenumber(y1) || y1 < 0)) stop("The value for y1 must be discrete and positive.") if(x$margins[2] %in% c(x$VC$m1d, x$VC$m2d) && (!is.wholenumber(y2) || y2 < 0)) stop("The value for y2 must be discrete and positive.") if( x$VC$Cont == "NO" && !(x$margins[2] %in% bin.link) && !(y1 %in% c(0,1)) && is.null(x$VC$K1) ) stop("The value for y1 must be either 0 or 1.") if( x$VC$Cont == "NO" && !(x$margins[2] %in% bin.link) && !is.null(x$VC$K1) && !(y1 %in% seq.int(1, x$VC$K1))) stop(paste(paste("The value for y1 must be an integer between 1 and", x$VC$K1, "")), ".") if( x$VC$Cont == "NO" && x$margins[2] %in% bin.link){ if( !(y1 %in% c(0,1)) || !(y2 %in% c(0,1)) ) stop("The value for y1 and/or y2 must be either 0 or 1.") } if(x$triv == FALSE) {if(!missing(newdata) && x$BivD %in% x$BivD2) stop("Prediction for models based on mixed copulae and a new dataset is not feasible.")} if(x$triv == TRUE){ if( !(y1 %in% c(0,1)) ) stop("The value for y1 must be either 0 or 1.") if( !(y2 %in% c(0,1)) ) stop("The value for y2 must be either 0 or 1.") if( !(y3 %in% c(0,1)) ) stop("The value for y3 must be either 0 or 1.") } if(x$triv == FALSE){ if(x$VC$Cont == "YES" && x$surv == FALSE ) rr <- jc.probs1(x, y1, y2, newdata, type, cond, intervals, n.sim, prob.lev, cont1par, cont2par, cont3par, bin.link, min.pr, max.pr, cumul) if(x$VC$Cont == "NO" && !(x$margins[2] %in% bin.link) ){ if( is.null(x$VC$K1)) rr <- jc.probs2(x, y1, y2, newdata, type, cond, intervals, n.sim, prob.lev, cont1par, cont2par, cont3par, bin.link, min.pr, max.pr) if(!is.null(x$VC$K1)) { if( type %in% c("joint") && x$VC$ind.ord == "TRUE") stop("You need to provide the fitted joint model as input to obtain predictive probabilities.") if( type %in% c("independence") && x$VC$ind.ord != "TRUE") stop("You need to provide the fitted independence model as input to obtain probabilities under independence.") rr <- jc.probs7(x, y1, y2, newdata, type, cond, intervals, n.sim, prob.lev, cont1par, cont2par, cont3par, bin.link, min.pr, max.pr) } } if(x$VC$Cont == "NO" && x$margins[2] %in% bin.link) rr <- jc.probs3(x, y1, y2, newdata, type, cond, intervals, n.sim, prob.lev, cont1par, cont2par, cont3par, bin.link, min.pr, max.pr) if(x$VC$Cont == "YES" && x$surv == TRUE && x$margins[1] %in% bin.link && x$margins[2] %in% bin.link ) rr <- jc.probs4(x, y1, y2, newdata, type, cond, intervals, n.sim, prob.lev, cont1par, cont2par, cont3par, bin.link, min.pr, max.pr) if(x$VC$Cont == "YES" && x$surv == TRUE && x$margins[1] %in% c(cont2par,cont3par) && x$margins[2] %in% bin.link ) rr <- jc.probs5(x, y1, y2, newdata, type, cond, intervals, n.sim, prob.lev, cont1par, cont2par, cont3par, bin.link, min.pr, max.pr) } if(x$triv == TRUE) rr <- jc.probs6(x, y1, y2, y3, newdata, type, cond, intervals, n.sim, prob.lev, cont1par, cont2par, cont3par, bin.link, min.pr, max.pr) p12s <- rr$p12s p12 <- rr$p12 p1 <- rr$p1 p2 <- rr$p2 if(x$triv == TRUE){ p3 <- rr$p3 theta12 <- rr$theta12 theta13 <- rr$theta13 theta23 <- rr$theta23 theta12s <- rr$theta12s theta13s <- rr$theta13s theta23s <- rr$theta23s } if(intervals == TRUE){ CIp12 <- rowQuantiles(p12s, probs = c(prob.lev/2,1-prob.lev/2), na.rm = TRUE) if(x$triv == TRUE){ if(type == "joint"){ CItheta12 <- rowQuantiles(theta12s, probs = c(prob.lev/2,1-prob.lev/2), na.rm = TRUE) CItheta13 <- rowQuantiles(theta13s, probs = c(prob.lev/2,1-prob.lev/2), na.rm = TRUE) CItheta23 <- rowQuantiles(theta23s, probs = c(prob.lev/2,1-prob.lev/2), na.rm = TRUE) }else{ CItheta12 <- CItheta13 <- CItheta23 <- cbind(0, 0) } } if(x$triv == FALSE){ if(length(p12) > 1) {res <- data.frame(p12, CIp12, p1, p2); names(res)[2:3] <- names(quantile(c(1,1), probs = c(prob.lev/2,1-prob.lev/2)))} if(length(p12) == 1) {res <- data.frame(t(c(p12, CIp12, p1, p2))); names(res) <- c("p12",names(quantile(c(1,1), probs = c(prob.lev/2,1-prob.lev/2))),"p1","p2")} } if(x$triv == TRUE){ if(length(p12) > 1){ p123 <- p12 CIp123 <- CIp12 res <- data.frame(p123, CIp123, p1, p2, p3, theta12, theta13, theta23, CItheta12, CItheta13, CItheta23 ) names(res)[c(2:3, 10:15)] <- c(rep(names(quantile(c(1,1), probs = c(prob.lev/2,1-prob.lev/2))),4)) } if(length(p12) == 1) {res <- data.frame(t(c(p12, CIp12, p1, p2, p3, theta12, theta13, theta23, CItheta12, CItheta13, CItheta23))) names(res) <- c("p123",names(quantile(c(1,1), probs = c(prob.lev/2,1-prob.lev/2))),"p1","p2","p3", "theta12", "theta13", "theta23", c(rep(names(quantile(c(1,1), probs = c(prob.lev/2,1-prob.lev/2))),3)) ) } rm(p12, CIp12) } }else{ if(x$triv == FALSE) res <- data.frame(p12, p1, p2) if(x$triv == TRUE) {p123 <- p12; res <- data.frame(p123, p1, p2, p3, theta12, theta13, theta23)} } res.n <- names(res) if(x$triv == FALSE && !is.null(rr$tau) && !is.null(rr$CIkt)){ if(is.null(dim(rr$CIkt))) {CItauLB <- rr$CIkt[1]; CItauUB <- rr$CIkt[2]} if(!is.null(dim(rr$CIkt))) {CItauLB <- rr$CIkt[,1]; CItauUB <- rr$CIkt[,2]} res <- data.frame(res, tau = rr$tau, CItauLB = CItauLB, CItauUB = CItauUB ) names(res)[1 : length(res.n)] <- res.n } if(x$triv == FALSE && !is.null(rr$tau) && is.null(rr$CIkt)) res <- data.frame(res, tau = rr$tau ) return(res) }
getbetterint <- function (int) { int = as.factor(int) ilocate_comma = stringr::str_locate(levels(int), ",") start <- as.numeric( substr( levels(int), 2,ilocate_comma - 1 ) ) end <- as.numeric( substr( levels(int), ilocate_comma + 1, nchar( levels(int) ) - 1 ) ) levels(int) <- paste0( formatC( start, big.mark = ",", format = "f", drop0trailing = TRUE ) , "-", formatC( end, big.mark = ",", format = "f", drop0trailing = TRUE ) ) return(int) }
NULL createTD <- function(data, genotype = NULL, trial = NULL, loc = NULL, year = NULL, repId = NULL, subBlock = NULL, plotId = NULL, rowCoord = NULL, colCoord = NULL, rowId = rowCoord, colId = colCoord, checkId = NULL, trLocation = NULL, trDate = NULL, trDesign = NULL, trLat = NULL, trLong = NULL, trPlWidth = NULL, trPlLength = NULL) { dataName <- deparse(substitute(data)) if (length(dataName) > 1) { dataName <- "dat" } if (missing(data) || !is.data.frame(data)) { stop("data has to be a data.frame.\n") } data <- as.data.frame(data) cols <- colnames(data) for (param in c(genotype, trial, loc, year, repId, subBlock, plotId, rowId, colId, rowCoord, colCoord, checkId)) { if (!is.null(param) && (!is.character(param) || length(param) > 1 || !hasName(data, param))) { stop(deparse(param), " has to be NULL or a column in data.\n") } } checkTDMeta(trPlWidth = trPlWidth, trPlLength = trPlLength) renameCols <- c("genotype", "trial", "loc", "year", "repId", "plotId", "subBlock", "rowId", "colId", "rowCoord", "colCoord", "checkId") renameFrom <- as.character(sapply(X = renameCols, FUN = function(x) { get(x) })) renamed <- data.frame(orig = renameFrom[renameFrom != "NULL"], new = renameCols[renameFrom != "NULL"], stringsAsFactors = FALSE) dupCols <- which(duplicated(renameFrom) & renameFrom != "NULL") for (dupCol in dupCols) { tempName <- paste0(".temp", dupCol) data[tempName] <- data[, colnames(data) == renameFrom[dupCol]] cols[length(cols) + 1] <- tempName renameFrom[dupCol] <- tempName } for (i in 1:length(renameCols)) { cols[cols == renameFrom[i]] <- renameCols[i] } dupCols <- cols[duplicated(cols)] if (length(dupCols) > 0) { stop("The following columns already exist in the input data:\n", paste(dupCols, collapse = ","), "\n", "Renaming another column to one of these is impossible.\n") } colnames(data) <- cols factorCols <- c("genotype", "trial", "loc", "year", "repId", "subBlock", "plotId", "rowId", "colId", "checkId") for (factorCol in factorCols) { if (hasName(data, factorCol) && !is.factor(data[[factorCol]])) { data[cols == factorCol] <- as.factor(data[, cols == factorCol]) } } if (all(hasName(data, c("trial", "plotId")))) { data$plotId <- interaction(data$trial, data$plotId, sep = "_") } numCols <- c("rowCoord", "colCoord") for (numCol in numCols) { if (hasName(data, numCol) && !is.numeric(data[cols == numCol])) { data[cols == numCol] <- as.numeric(data[, cols == numCol]) } } if (all(hasName(data, c("rowCoord", "colCoord")))) { data <- data[order(data[["rowCoord"]], data[["colCoord"]]), ] if (hasName(data, "trial")) { rowColTab <- table(data[["trial"]], data[["rowCoord"]], data[["colCoord"]]) if (any(rowColTab > 1)) { warning("Combinations of row and column coordinates should be unique ", "within trials.\n") } } else { rowColTab <- table(data[["rowCoord"]], data[["colCoord"]]) if (any(rowColTab > 1)) { warning("Combinations of row and column coordinates should be unique.\n") } } } if (hasName(data, "trial")) { listData <- split(x = data, f = data[["trial"]], drop = TRUE) } else { listData <- setNames(list(data), dataName) } meta <- c("trLocation", "trPlWidth", "trPlLength") metaVals <- sapply(X = meta, FUN = function(m) { if (!is.null(get(m))) { metaVal <- rep(x = get(m), length.out = length(listData)) if (is.null(names(metaVal)) || !all(hasName(listData, names(metaVal)))) { names(metaVal) <- names(listData) } return(metaVal) } else { NULL } }, simplify = FALSE) for (tr in names(listData)) { for (m in meta) { attr(x = listData[[tr]], which = m) <- unname(metaVals[[m]][tr]) } if (is.null(trLocation)) { if (hasName(x = listData[[tr]], name = "loc") && length(unique(listData[[tr]][["loc"]])) == 1) { attr(x = listData[[tr]], which = "trLocation") <- as.character(listData[[tr]][["loc"]][1]) } else { attr(x = listData[[tr]], which = "trLocation") <- tr } } trLatDat <- trLat if (!is.null(trLat) && hasName(x = listData[[tr]], name = trLat)) { trLatDat <- unique(listData[[tr]][[trLat]]) if (!length(trLatDat) == 1) { stop("trLat not unique for ", tr, ".\n") } } trLongDat <- trLong if (!is.null(trLong) && hasName(x = listData[[tr]], name = trLong)) { trLongDat <- unique(listData[[tr]][[trLong]]) if (!length(trLongDat) == 1) { stop("trLong not unique for ", tr, ".\n") } } chkLatLong(trLatDat, trLongDat) attr(x = listData[[tr]], which = "trLat") <- trLatDat attr(x = listData[[tr]], which = "trLong") <- trLongDat trDateDat <- trDate if (!is.null(trDate) && hasName(x = listData[[tr]], name = trDate)) { trDateDat <- unique(listData[[tr]][[trDate]]) if (!length(trDateDat) == 1) { stop("trDate not unique for ", tr, ".\n") } } attr(x = listData[[tr]], which = "trDate") <- trDateDat trDesignDat <- trDesign if (!is.null(trDesign) && hasName(x = listData[[tr]], name = trDesign)) { trDesignDat <- unique(listData[[tr]][[trDesign]]) if (!length(trDesignDat) == 1) { stop("trDesign not unique for ", tr, ".\n") } } chkDesign(trDesignDat) attr(x = listData[[tr]], which = "trDesign") <- trDesignDat attr(x = listData[[tr]], which = "renamedCols") <- if (nrow(renamed) > 0) renamed else NULL } TD <- structure(listData, class = c("TD", "list")) return(TD) } addTD <- function(TD, data, genotype = NULL, trial = NULL, loc = NULL, year = NULL, repId = NULL, subBlock = NULL, plotId = NULL, rowCoord = NULL, colCoord = NULL, rowId = rowCoord, colId = colCoord, checkId = NULL, trLocation = NULL, trDate = NULL, trDesign = NULL, trLat = NULL, trLong = NULL, trPlWidth = NULL, trPlLength = NULL) { TDNw <- createTD(data = data, genotype = genotype, trial = trial, loc = loc, year = year, repId = repId, subBlock = subBlock, plotId = plotId, rowCoord = rowCoord, colCoord = colCoord, rowId = rowId, colId = colId, checkId = checkId, trLocation = trLocation, trDate = trDate, trDesign = trDesign, trLat = trLat, trLong = trLong, trPlWidth = trPlWidth, trPlLength = trPlLength) dupTrials <- names(TDNw)[names(TDNw) %in% names(TD)] if (length(dupTrials) > 0) { warning("The following trials already existed in TD and will be added ", "again: ", paste(dupTrials, collapse = ", "), ".\n", call. = FALSE) } TDTot <- c(TD, TDNw) class(TDTot) <- c("TD", "list") return(TDTot) } dropTD <- function(TD, rmTrials) { naTrials <- rmTrials[!rmTrials %in% names(TD)] if (length(naTrials) > 0) { warning("The following trials are not in TD: ", paste(naTrials, collapse = ", "), ".\n", call. = FALSE) } leftTrials <- names(TD)[!names(TD) %in% rmTrials] if (length(leftTrials) == 0) { warning("All trials have been removed from TD.\n", call. = FALSE) } return(TD[!names(TD) %in% rmTrials]) } summary.TD <- function(object, ..., trial = names(object), traits, groupBy = NULL, what = if (!is.null(groupBy)) { c("nObs", "mean", "sd") } else { c("nObs", "nMiss", "mean", "median", "min", "max", "firstQ", "thirdQ", "var") }) { allStat <- data.frame(stat = c("nVals", "nObs", "nMiss", "mean", "median", "min","max", "range", "firstQ", "thirdQ", "sd", "seMean", "var", "seVar", "CV", "sum", "sumSq", "uncorSumSq", "skew", "seSkew", "kurt", "seKurt"), name = c("Number of values", "Number of observations", "Number of missing values", "Mean", "Median", "Min", "Max", "Range", "First quantile", "Third quantile", "Standard deviation", "Standard error of mean", "Variance", "Standard error of variance", "Coefficient of variation", "Sum of values", "Sum of squares", "Uncorrected sum of squares", "Skewness", "Standard Error of Skewness", "Kurtosis", "Standard Error of Kurtosis"), stringsAsFactors = FALSE) if (!is.character(trial) || length(trial) > 1 || !hasName(x = object, name = trial)) { stop("trial should be a single character string in ", deparse(substitute(object)), ".\n") } trDat <- object[[trial]] if (!is.character(traits) || !all(hasName(x = trDat, name = traits))) { stop("All traits should be columns in trial.\n") } if (!is.null(groupBy) && (!is.character(groupBy) || length(groupBy) > 1 || !hasName(x = trDat, name = groupBy))) { stop("groupBy should be a single character string indicating ", "a column in trial") } if (what[[1]] == "all") { what <- allStat[["stat"]] } if (!is.character(what) || all(!what %in% allStat[["stat"]])) { stop("At least one statistic should be chosen.\n") } whichStat <- which(allStat[["stat"]] %in% what) what <- allStat[whichStat, "stat"] if (!is.null(groupBy)) { groups <- unique(trDat[[groupBy]]) } else { trDat[[".tot"]] <- 1 groupBy <- ".tot" groups <- 1 } stats <- array(dim = c(length(what), length(traits), length(groups)), dimnames = list(what, traits, groups)) for (i in seq_along(traits)) { for (j in seq_along(groups)) { trDatGr <- trDat[trDat[[groupBy]] == groups[j], traits[i]] if ("nVals" %in% what) { stats["nVals", i, j] <- length(trDatGr) } if ("nObs" %in% what) { stats["nObs", i, j] <- length(na.omit(trDatGr)) } if ("nMiss" %in% what) { stats["nMiss", i, j] <- sum(is.na(trDatGr)) } if ("mean" %in% what) { stats["mean", i, j] <- mean(trDatGr, na.rm = TRUE) } if ("median" %in% what) { stats["median", i, j] <- median(trDatGr, na.rm = TRUE) } if ("min" %in% what) { stats["min", i, j] <- min(trDatGr, na.rm = TRUE) } if ("max" %in% what) { stats["max", i, j] <- max(trDatGr, na.rm = TRUE) } if ("range" %in% what) { stats["range", i, j] <- diff(range(trDatGr, na.rm = TRUE)) } if ("firstQ" %in% what) { stats["firstQ", i, j] <- quantile(trDatGr, prob = .25, na.rm = TRUE) } if ("thirdQ" %in% what) { stats["thirdQ", i, j] <- quantile(trDatGr, prob = .75, na.rm = TRUE) } if ("sd" %in% what) { stats["sd", i, j] <- sd(trDatGr, na.rm = TRUE) } if ("seMean" %in% what) { stats["seMean", i, j] <- sd(trDatGr, na.rm = TRUE) / sqrt(length(na.omit(trDatGr))) } if ("var" %in% what) { stats["var", i, j] <- var(trDatGr, na.rm = TRUE) } if ("seVar" %in% what) { stats["seVar", i, j] <- seVar(trDatGr, na.rm = TRUE) } if ("CV" %in% what) { stats["CV", i, j] <- 100 * sd(trDatGr, na.rm = TRUE) / mean(trDatGr, na.rm = TRUE) } if ("sum" %in% what) { stats["sum", i, j] <- sum(trDatGr, na.rm = TRUE) } if ("sumSq" %in% what) { stats["sumSq", i, j] <- sum((na.omit(trDatGr) - mean(trDatGr, na.rm = TRUE)) ^ 2) } if ("uncorSumSq" %in% what) { stats["uncorSumSq", i, j] <- sum(trDatGr ^ 2, na.rm = TRUE) } if ("skew" %in% what) { stats["skew", i, j] <- skewness(trDatGr, na.rm = TRUE) } if ("seSkew" %in% what) { stats["seSkew", i, j] <- seSkewness(length(na.omit(trDatGr))) } if ("kurt" %in% what) { stats["kurt", i, j] <- kurtosis(trDatGr, na.rm = TRUE) } if ("seKurt" %in% what) { stats["seKurt", i, j] <- seKurtosis(length(na.omit(trDatGr))) } } } rownames(stats) <- allStat[whichStat, "name"] attr(x = stats, which = "whichStat") <- whichStat return(structure(stats, class = c("summary.TD", "array"), trial = trial, group = if (groupBy != ".tot") groupBy else NULL)) } print.summary.TD <- function(x, ...) { whichStat <- attr(x, "whichStat") groupBy <- attr(x, "group") decimals <- c(rep(x = 1, times = 3), rep(x = 2, times = 7), rep(x = 3, times = 5), rep(x = 2, times = 3), rep(x = 3, times = 4))[whichStat] xPrint <- x for (i in seq_along(decimals)) { xPrint[i, , ] <- format(x[i, , ], digits = decimals[i], nsmall = decimals[i]) } for (i in 1:ncol(xPrint)) { trait <- colnames(xPrint)[i] cat(paste("\nSummary statistics for", trait, "in", attr(x, "trial"), if (!is.null(groupBy)) paste("grouped by", groupBy), "\n\n")) if (dim(xPrint)[3] > 1) { xPrintM <- matrix(nrow = nrow(xPrint), ncol = dim(xPrint)[3]) for (j in 1:nrow(xPrint)) { xPrintM[j, ] <- xPrint[j, i, ] } dimnames(xPrintM) <- list(rownames(xPrint), dimnames(xPrint)[[3]]) print(xPrintM, quote = FALSE, right = TRUE) } else { xPrintM <- as.matrix(xPrint[, i , 1]) dimnames(xPrintM) <- list(rownames(xPrint), trait) print(xPrintM, quote = FALSE, right = TRUE) } } cat("\n") } plot.TD <- function(x, ..., plotType = c("layout", "map", "box", "cor", "scatter"), trials = names(x), traits = NULL, title = NULL, output = TRUE) { trials <- chkTrials(trials, x) plotType <- match.arg(plotType) chkChar(title, len = 1) dotArgs <- list(...) x <- dropTD(x, names(x)[!names(x) %in% trials]) if (plotType == "layout") { p <- layoutPlot(x = x, trials = trials, traits = traits, title = title, output = output, ...) } else if (plotType == "map") { p <- mapPlot(x = x, title = title, output = output, ...) } else if (plotType == "box") { p <- boxPlot(x = x, trials = trials, traits = traits, title = title, output = output, ...) } else if (plotType == "cor") { p <- corPlot(x = x, trials = trials, traits = traits, title = title, output = output, ...) } else if (plotType == "scatter") { p <- scatterPlot(x = x, trials = trials, traits = traits, title = title, output = output, ...) } invisible(p) } getMeta <- function(TD) { if (missing(TD) || !inherits(TD, "TD")) { stop("TD should be an object of class TD.\n") } metaVars <- c("trLocation", "trDate", "trDesign", "trLat", "trLong", "trPlWidth", "trPlLength") meta <- as.data.frame(matrix(nrow = length(TD), ncol = length(metaVars), dimnames = list(names(TD), metaVars))) for (mv in metaVars) { meta[mv] <- sapply(X = TD, FUN = function(tr) { mvTr <- attr(tr, which = mv) if (!is.null(mvTr)) { return(mvTr) } else { return(NA) } }) } class(meta$trDate) <- "Date" return(meta) } setMeta <- function(TD, meta) { if (missing(TD) || !inherits(TD, "TD")) { stop("TD should be an object of class TD.\n") } if (missing(meta) || !inherits(meta, "data.frame")) { stop("meta should be a data.frame.\n") } naTr <- rownames(meta)[!rownames(meta) %in% names(TD)] if (length(naTr) > 0) { warning("The following trials in meta are not in TD: ", paste(naTr, collapse = ", "), ".\n", call. = FALSE) } metaVars <- c("trLocation", "trDate", "trDesign", "trLat", "trLong", "trPlWidth", "trPlLength") for (tr in rownames(meta)[rownames(meta) %in% names(TD)]) { for (mv in metaVars) { mvTr <- meta[tr, mv] if (!is.na(mvTr)) { chk <- try(do.call(what = checkTDMeta, args = setNames(list(mvTr), mv)), silent = TRUE) if (inherits(chk, "try-error")) { stop("\nError for ", tr, ":\n", substring(text = chk, first = 9)) } attr(TD[[tr]], which = mv) <- mvTr } } } return(TD) } `[.TD` <- function(x, i, ...) { r <- NextMethod("[") attr(r, "class") <- attr(x, "class") return(r) } c.TD <- function(...) { args <- list(...) args <- lapply(X = args, FUN = unclass) argNames <- unique(unlist(lapply(X = args, FUN = names))) r <- do.call("c", args) r <- lapply(X = r, FUN = function(trial) { trial[["trial"]] <- factor(trial[["trial"]], levels = argNames) return(trial) }) class(r) <- c("TD", "list") return(r) } checkTDMeta <- function(trLocation = NULL, trDate = NULL, trDesign = NULL, trLat = NULL, trLong = NULL, trPlWidth = NULL, trPlLength = NULL) { chkDesign(trDesign) chkLatLong(trLat, trLong) if (!is.null(trPlWidth) && (!is.numeric(trPlWidth) || any(trPlWidth < 0))) { stop("trPlWidth should be a positive numerical vector.\n", call. = FALSE) } if (!is.null(trPlLength) && (!is.numeric(trPlLength) || any(trPlLength < 0))) { stop("trPlLength should be a positive numerical vector.\n", call. = FALSE) } } chkDesign <- function(design) { match.arg(design, choices = c("none", "ibd", "res.ibd", "rcbd", "rowcol", "res.rowcol"), several.ok = TRUE) } chkLatLong <- function(lat, long) { if (!is.null(lat) && !is.na(lat) && (!is.numeric(lat) || any(abs(lat) > 90))) { stop("lat should be a numerical vector with values between -90 and 90.\n", call. = FALSE) } if (!is.null(long) && !is.na(long) && (!is.numeric(long) || any(abs(long) > 180))) { stop("long should be a numerical vector with values between -180 and 180.\n", call. = FALSE) } if (!is.null(lat) && !is.na(lat) && !is.null(long) && !is.na(long)) { locLen <- max(length(lat), length(long)) loc <- maps::map.where(x = rep(x = long, length.out = locLen), y = rep(x = lat, length.out = locLen)) if (length(loc) > 0 && anyNA(loc)) { warning("Values for latitude and longitude should all match a known ", "land location.\n", call. = FALSE) } } }
Inf.Array.calc1 <- function(p, Se, Sp, group.sz, alpha = 2, a, trace = TRUE, print.time = TRUE, ...) { start.time <- proc.time() I <- group.sz N <- I^2 if (length(p) == 1) { p.vec <- expectOrderBeta(p = p, alpha = alpha, size = N, ...) } else if (length(p) > 1) { p.vec <- sort(p) alpha <- NA } p.ga <- informativeArrayProb(prob.vec = p.vec, nr = I, nc = I, method = "gd") save.info <- Array.Measures(p = p.ga, se = Se, sp = Sp) ET <- save.info$ET all.ind.testerror <- data.frame("p" = as.numeric(t(p.ga)), "pse.vec" = as.numeric(t(save.info$PSe)), "psp.vec" = as.numeric(t(save.info$PSp)), "pppv.vec" = as.numeric(t(save.info$PPV)), "pnpv.vec" = as.numeric(t(save.info$NPV))) ind.testerror <- get.unique.index(all.ind.testerror[a,], which(colnames(all.ind.testerror) == "psp.vec"), rowlabel = a)[,-1] colnames(ind.testerror) <- c("PSe", "PSP", "PPPV", "PNPV", "individuals") PSe.mat <- save.info$PSe PSp.mat <- save.info$PSp PSe <- sum(p.ga * PSe.mat) / sum(p.ga) PSp <- sum((1 - p.ga) * (PSp.mat)) / sum(1 - p.ga) PPPV <- sum(p.ga * PSe.mat) / sum(p.ga * PSe.mat + (1 - p.ga) * (1 - PSp.mat)) PNPV <- sum((1 - p.ga) * PSp.mat) / sum((1 - p.ga) * PSp.mat + p.ga * (1 - PSe.mat)) save.it <- c(alpha, I, N, ET, ET/N, PSe, PSp, PPPV, PNPV) acc.ET <- matrix(data = save.it[6:9], nrow = 1, ncol = 4, dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV"))) Se.display <- matrix(data = Se, nrow = 1, ncol = 2, dimnames = list(NULL, "Test" = c("Row/Column", "Individual"))) Sp.display <- matrix(data = Sp, nrow = 1, ncol = 2, dimnames = list(NULL, "Test" = c("Row/Column", "Individual"))) if (print.time) { time.it(start.time) } list("algorithm" = "Informative array testing without master pooling", "prob" = list(p), "alpha" = alpha, "Se" = Se.display, "Sp" = Sp.display, "Config" = list("Array.dim" = save.it[2], "Array.sz" = save.it[3]), "p.mat" = p.ga, "ET" = save.it[4], "value" = save.it[5], "Accuracy" = list("Individual" = ind.testerror, "Overall" = acc.ET)) }
design_ccd <- function(j, k) { MinStarPoints <- matrix(NA, nrow = 1, ncol = k) MaxStarPoints <- matrix(NA, nrow = 1, ncol = k) CentrePoints <- matrix(NA, nrow = 1, ncol = k) AlphaPoints <- matrix(NA, nrow = 1, ncol = k) MinusLambdaPoints <- matrix(NA, nrow = 1, ncol = k) PlusLambdaPoints <- matrix(NA, nrow = 1, ncol = k) for (i in 1:k) { prompt1 <- paste("What is the smallest value of factor ", i, "? ", sep = "") prompt2 <- paste("What is the greatest value of factor ", i, "? ", sep = "") minval <- readline(prompt1) maxval <- readline(prompt2) MinStarPoints[1, i] <- as.numeric(minval) MaxStarPoints[1, i] <- as.numeric(maxval) CentrePoints[1, i] <- (MinStarPoints[1, i] + MaxStarPoints[1, i]) / 2 AlphaPoints[1, i] <- abs(MaxStarPoints[1, i] - MinStarPoints[1, i]) / (2 * 2^(k / 4)) PlusLambdaPoints[1, i] <- CentrePoints[1, i] + AlphaPoints[1, i] MinusLambdaPoints[1, i] <- CentrePoints[1, i] - AlphaPoints[1, i] } FactorialDesign <- MinusLambdaPoints for (i in 1:k) { FactorialDesign2 <- FactorialDesign FactorialDesign <- rbind(FactorialDesign, FactorialDesign2) FactorialDesign[(2^(i - 1) + 1): 2^i, i] <- PlusLambdaPoints[1, i] } headings <- c("Replication") for (i in 1: k) { headings <- c(headings, paste("Factor", i, sep = "")) } ones <- matrix(1, nrow = 2^k, ncol = 1) ones <- as.data.frame(ones) FactorialDesign <- cbind(ones, FactorialDesign) colnames(FactorialDesign) <- headings AxialDesign <- matrix(NA, nrow = (2 * k), ncol = k) for (i in 1:k) { AxialDesign1 <- CentrePoints AxialDesign1[1, i] <- MinStarPoints[1, i] AxialDesign2 <- CentrePoints AxialDesign2[1, i] <- MaxStarPoints[1, i] AxialDesign[(2 * i - 1), 1: k] <- AxialDesign1 AxialDesign[(2 * i), 1: k] <- AxialDesign2 } AxialOnes <- matrix(1, ncol = 1, nrow = 2*k) AxialOnes <- as.data.frame(AxialOnes) AxialDesign <- cbind(AxialOnes, AxialDesign) colnames(AxialDesign) <- headings CentreDesign <- as.data.frame(cbind(j, CentrePoints)) colnames(CentreDesign) <- headings CentreRows <- CentrePoints for (i in 1:j) { row2 <- CentrePoints CentreRows <- rbind(CentreRows, row2) } CentreRows <- CentreRows[-nrow(CentreRows),] CentreRows<- as.data.frame(cbind(1, CentreRows)) colnames(CentreRows) <- headings X <- as.matrix(rbind(FactorialDesign[1:nrow(FactorialDesign), 1:3], AxialDesign[1:nrow(AxialDesign), 1:3], CentreRows[1:nrow(CentreRows), 1:3])) X <- cbind(X, matrix(NA, nrow(X), 3)) for (i in 1:nrow(X)) { X[i, 4] <- X[i, 2]^2 X[i, 5] <- X[i, 3]^2 X[i, 6] <- X[i, 2] * X[i, 3] } BIGX <- matrix(NA, 1, 6) for (i in seq(min(X[1:nrow(X), 2]), max(X[1:nrow(X), 2]), 0.1)) { newrow <- matrix(NA, 1, 6) for (o in seq(min(X[1:nrow(X), 3]), max(X[1:nrow(X), 3]), 0.1)) { newrow[1, 1] <- 1 newrow[1, 2] <- i newrow[1, 3] <- o newrow[1, 4] <- i * i newrow[1, 5] <- o * o newrow[1, 6] <- i * o BIGX <- rbind(BIGX, newrow) } } BIGX <- BIGX[2:nrow(BIGX), 1:6] Factor1 <- BIGX[1:nrow(BIGX), 2] Factor2 <- BIGX[1:nrow(BIGX), 3] A <- solve(crossprod(X)) Predicted_Variance <- matrix(NA, nrow(BIGX), 1) for (i in 1:nrow(BIGX)) { b <- BIGX[i, 1:6] Predicted_Variance[i, 1] <- t(b) %*% A %*% b } if (k == '2') { ForPlot <- as.data.frame(cbind(Factor1, Factor2, Predicted_Variance)) colnames(ForPlot) <- c("Factor1", "Factor2", "Predicted_Variance") p <- plotly::plot_ly(ForPlot, x = ~Factor1, y = ~Factor2, z = ~Predicted_Variance, type = "contour", colorscale = "Portland", contours = list( showlabels = TRUE), line = list(smoothing = 0) ) print(p) } list(Factorial.Points = FactorialDesign, Axial.Points = AxialDesign, Central.Point = CentreDesign) }
do.anmm <- function(X, label, ndim=2, preprocess=c("null","center","scale","cscale","decorrelate","whiten"), No=ceiling(nrow(X)/10), Ne=ceiling(nrow(X)/10)){ aux.typecheck(X) n = nrow(X) p = ncol(X) label = check_label(label, n) ulabel = unique(label) for (i in 1:length(ulabel)){ if (sum(label==ulabel[i])==1){ stop("* do.anmm : no degerate class of size 1 is allowed.") } } if (any(is.na(label))||(any(is.infinite(label)))){ stop("* Supervised Learning : any element of 'label' as NA or Inf will simply be considered as a class, not missing entries.") } ndim = as.integer(ndim) if (!check_ndim(ndim,p)){ stop("* do.anmm : 'ndim' is a positive integer in [1, } algpreprocess = match.arg(preprocess) vecNo = anmm_nbdstructure(No, n, 1) vecNe = anmm_nbdstructure(Ne, n, 2) tmplist = aux.preprocess.hidden(X,type=algpreprocess,algtype="linear") trfinfo = tmplist$info pX = tmplist$pX D = as.matrix(dist(pX, method="euclidean")) listNo = anmm_find_No(D, label, vecNo) listNe = anmm_find_Ne(D, label, vecNe) S = anmm_computeSC(pX, listNe) C = anmm_computeSC(pX, listNo) eigSC = RSpectra::eigs_sym(S-C, ndim, which="LA") projection = matrix(eigSC$vectors, nrow=p) projection = aux.adjprojection(projection) result = list() result$Y = pX%*%projection result$trfinfo = trfinfo result$projection = projection return(result) } anmm_nbdstructure <- function(sizevec, n, Ntype){ tmp = as.vector(round(sizevec)) if (length(tmp)==1){ nbdvec = rep(tmp, n) } else if (length(tmp)==n){ nbdvec = tmp } else { if (Ntype==1){ stop("* do.anmm : homogeneous neighborhood input is invalid.") } else { stop("* do.anmm : heterogeneous neighborhood input is invalid.") } } if ((any(nbdvec<1))||(any(nbdvec>n))){ if (Ntype==1){ stop("* do.anmm : range of values from No is invalid.") } else { stop("* do.anmm : range of values from Ne is invalid.") } } return(nbdvec) } anmm_find_No <- function(matD, label, vecNo){ n = length(label) if (nrow(matD)!=n){stop("* do.anmm : I don't know why it stopped 1.")} output = list() numNo = rep(0,n) for (i in 1:n){ clabel = which(label==label[i]) nclabel = sum(label==label[i]) nselect = round(min(nclabel, vecNo[i])) numNo[i]= nselect tgtdist = matD[i,clabel] smindex = which(order(tgtdist)<=(nselect+1)) tgtlabel = setdiff(clabel[smindex], round(i)) output[[i]] = tgtlabel } return(output) } anmm_find_Ne <- function(matD, label, vecNe){ n = length(label) if (nrow(matD)!=n){stop("* do.anmm : I don't know why it stopped 2.")} output = list() numNe = rep(0,n) for (i in 1:n){ clabel = which(label!=label[i]) nclabel = length(clabel) nselect = round(min(nclabel, vecNe[i])) numNe[i]= nselect tgtdist = matD[i,clabel] smindex = which(order(tgtdist)<=(nselect+1)) tgtlabel= setdiff(clabel[smindex], round(i)) output[[i]] = tgtlabel } return(output) } anmm_computeSC <- function(X, memlist){ n = nrow(X) p = ncol(X) S = array(0, c(p,p)) for (i in 1:n){ xi = as.vector(X[i,]) tgtvecs = memlist[[i]] tgtsize = length(tgtvecs) Stmp = array(0,c(p,p)) for (k in 1:tgtsize){ xk = as.vector(X[tgtvecs[k],]) xdiff= xi-xk Stmp = Stmp + outer(xdiff,xdiff) } Stmp = Stmp/tgtsize S = S + Stmp } return(S) }
ubSMOTE <- function(X,Y,perc.over=200,k=5,perc.under=200,verbose=TRUE){ if(!is.factor(Y)) stop("Y has to be a factor") if(is.vector(X)) stop("X cannot be a vector") data<-cbind(X,Y) id.1 <- which(Y == 1) time<-system.time({ newExs <- ubSmoteExs(data[id.1,],"Y",perc.over,k) }) row.has.na<-function(X) return(apply(X,1,function(x){any(is.na(x))})) row.is.na<-row.has.na(newExs) if(any(row.is.na)) { newExs<-newExs[!row.is.na, ] colnames(newExs)<-colnames(data) cat("WARNING: NAs generated by SMOTE removed \n") } selMaj <- sample((1:NROW(data))[-id.1], as.integer((perc.under/100)*nrow(newExs)), replace=T) newdataset <- rbind(data[selMaj,],data[id.1,],newExs) newdataset<-newdataset[sample(1:NROW(newdataset)), ] X<-newdataset[ ,-ncol(newdataset)] Y<-newdataset[ ,ncol(newdataset)] return(list(X=X,Y=Y)) }
check_family <- function(family, ...){ if (is.character(family)) family <- get(family, mode = "function", envir = parent.frame()) if (is.function(family)) family <- family() if (is.null(family$family)) { print(family) stop("'family' not recognized") } if(family$family == "gaussian"){ family$logLik <- function(y, n, mu, wt, dev){ nobs <- length(y) 0.5 * (sum(log(wt)) - nobs * (log(dev/nobs * 2 * pi) + 1)) } family$canpar <- function(mu){ mu } family$cumulant <- function(mu){ mu^2/2 } } else if(family$family == "binomial"){ family$logLik <- function(y, n, mu, wt, dev){ m <- if (any(n > 1)) n else wt ifelse(m > 0, (wt/m), 0) * dbinom(round(m * y), round(m), mu, log = TRUE) } family$canpar <- function(mu){ log(mu / (1 - mu)) } family$cumulant <- function(mu){ -log(1 - mu) } } else if(family$family == "poisson"){ family$logLik <- function(y, n, mu, wt, dev){ dpois(y, mu, log = TRUE) * wt } family$canpar <- function(mu){ log(mu) } family$cumulant <- function(mu){ mu } } else if(family$family == "Gamma"){ family$logLik <- function(y, n, mu, wt, dev){ disp <- dev / sum(wt) dgamma(y, 1/disp, scale = mu * disp, log = TRUE) * wt } family$canpar <- function(mu){ -1/mu } family$cumulant <- function(mu){ log(mu) } } else if(family$family == "inverse.gaussian"){ family$logLik <- function(y, n, mu, wt, dev){ disp <- dev / sum(wt) -(1/2) * wt * (log(disp * 2 * pi) + 1 + 3 * log(y)) } family$canpar <- function(mu){ -1/mu^2 } family$cumulant <- function(mu){ -2/mu } } else if(!family$family == "NegBin"){ stop("'family' not recognized") } family }
context("Targets") test_that("Targets return their output on build", { cleanup() m <- remake("remake.yml") store <- m$store t <- m$targets[["data.csv"]] expect_equal(target_build(t, store), "data.csv") remake_remove_target(m, "data.csv") expect_equal(remake_update(m, "data.csv"), "data.csv") expect_equal(remake_update(m, "data.csv"), "data.csv") remake_remove_target(m, "data.csv") expect_equal(remake_make(m, "data.csv"), "data.csv") expect_equal(remake_make(m, "data.csv"), "data.csv") t <- m$targets[["processed"]] expect_is(target_build(t, store), "data.frame") remake_remove_target(m, "processed") expect_is(remake_update(m, "processed"), "data.frame") expect_is(remake_update(m, "processed"), "data.frame") remake_remove_target(m, "processed") expect_is(remake_make(m, "processed"), "data.frame") expect_is(remake_make(m, "processed"), "data.frame") t <- m$targets[["all"]] expect_null(target_build(t, store)) expect_error(remake_remove_target(m, "all"), "Not something that can be deleted") expect_null(remake_update(m, "all")) expect_null(remake_update(m, "all")) expect_error(remake_remove_target(m, "all"), "Not something that can be deleted") expect_null(remake_make(m, "all")) expect_null(remake_make(m, "all")) })
library(GEOquery) library(illuminaHumanv3.db) library(stringr) library(biomaRt) library(MatrixEQTL) library(org.Hs.eg.db) library(clusterProfiler) library("BSgenome.Hsapiens.UCSC.hg19") library(fssemR) library(igraph) library(limma) library(synbreed) library(gage) library(httr) library(XML) gse1 = GEOquery:::parseGSEMatrix( "/media/xinchou/Storage/SMLfl/exp/GSE29999-GPL6947_series_matrix.txt.gz", destdir = "exp", AnnotGPL = FALSE, getGPL = F ) gse2 = GEOquery:::parseGSEMatrix( "/media/xinchou/Storage/SMLfl/exp/GSE29999-GPL6801_series_matrix.txt.gz", destdir = "exp", AnnotGPL = FALSE, getGPL = F ) Exprdat = read.ilmn(files = "/media/xinchou/Storage/SMLfl/exp/GSE29998_non-normalized.txt", probeid = "ID_REF", expr = "AVG_Signal") title2GSM = as.character(gse1$eset@phenoData@data$geo_accession) names(title2GSM) = as.character(gse1$eset@phenoData@data$title) colnames(Exprdat) = title2GSM[colnames(Exprdat)] ExprNorm = neqc(Exprdat) addrIllumina = toTable(illuminaHumanv3ARRAYADDRESS)[, c("ArrayAddress", "IlluminaID")] colnames(addrIllumina) = c("ArrayAddrID", "IlluminaID_1") illuminaToSymbol = toTable(illuminaHumanv3ENTREZREANNOTATED) addrToSymbol = merge(addrIllumina, illuminaToSymbol, by.x="IlluminaID_1", by.y="IlluminaID") addrToLocation = toTable(illuminaHumanv3ENSEMBLREANNOTATED) addrToLocation = merge(addrIllumina, addrToLocation, by.x="IlluminaID_1", by.y="IlluminaID") rownames(addrToLocation) = addrToLocation$IlluminaID_1 expressedProbe = rowSums(ExprNorm$other$Detection < 0.05) > 2 Exprvarmat = ExprNorm$E[expressedProbe,] exprIllumina = intersect(rownames(Exprvarmat), rownames(addrToLocation)) Exprvarmat = Exprvarmat[exprIllumina,] rownames(Exprvarmat) = addrToLocation[rownames(Exprvarmat), 3] SNPlib = read.csv( "/media/xinchou/Storage/SMLfl/exp/GenomeWideSNP_6.na29.annot.csv", comment.char = " sep = ",", stringsAsFactors = F ) SNPlib = SNPlib[SNPlib[,3] != "---" & SNPlib[,4] != "---",] SNPmap = SNPlib[, c(2, 3, 4)] SNPmap = unique(SNPmap) rownames(SNPmap) = SNPmap[,1] SNPhash = SNPlib[, 2] names(SNPhash) = SNPlib[, 1] SNPhash = SNPhash[!duplicated(SNPhash)] SNPvarmat = gse2$eset@assayData$exprs SNPID = rownames(SNPvarmat) FilterSNP = intersect(SNPID, names(SNPhash)) SNPvarmat = SNPvarmat[FilterSNP, , drop = F] snpnames = SNPhash[rownames(SNPvarmat)] names(snpnames) = NULL rownames(SNPvarmat) = snpnames SNPvarmat[SNPvarmat == "NoCall" | SNPvarmat == "NC"] = NA SNPvarmat = t(SNPvarmat) SNPmap = SNPmap[colnames(SNPvarmat),c(2,3)] colnames(SNPmap) = c("chr", "pos") SNPmap[,2] = as.numeric(SNPmap[,2]) PData2 = phenoData(gse2$eset) SNPPheno = PData2@data[rownames(SNPvarmat), 10, drop = F] SNPPheno[,1] = as.numeric(SNPPheno[,1]) - 1 colnames(SNPPheno) = c("Status") SNPData = create.gpData(pheno = SNPPheno, geno = SNPvarmat, map = SNPmap, map.unit = "bp") SNPImputed = readRDS("./data2/ImputedSNP.rds") ImputeData = SNPImputed$geno RawData = SNPData$geno[,colnames(ImputeData)] RawData[RawData == "AA"] = "0" RawData[RawData == "AB"] = "1" RawData[RawData == "BB"] = "2" mode(ImputeData) = "character" for (i in 1:ncol(RawData)) { genomap = na.omit(unique(cbind(ImputeData[,i], RawData[,i]))) t = genomap[,2] names(t) = genomap[,1] ImputeData[,i] = t[ImputeData[,i]] } mode(ImputeData) = "numeric" SNPvarmat = t(ImputeData) PData1 = phenoData(gse1$eset) PData2 = phenoData(gse2$eset) sampidGE = as.character(PData1@data$source_name_ch1) sampidSNP = as.character(PData2@data$source_name_ch1) sampleID = setdiff(intersect(sampidGE, sampidSNP), "08259T2") GEix = sapply(sampleID, function(id) { which(sampidGE == id) }) SNPix = sapply(sampleID, function(id) { which(sampidSNP == id) }) Exprvarmat = Exprvarmat[, GEix, drop = F] SNPvarmat = SNPvarmat[, SNPix, drop = F] Libensembl = useDataset("hsapiens_gene_ensembl", mart = useMart("ensembl")) GeneLocation = getBM( attributes = c( "ensembl_gene_id", "chromosome_name", "start_position", "end_position" ), mart = Libensembl ) Libid = bitr( rownames(Exprvarmat), fromType = "ENSEMBL", toType = "SYMBOL", OrgDb = "org.Hs.eg.db" ) ensembl2id = Libid$SYMBOL names(ensembl2id) = Libid$ENSEMBL GeneLocation = GeneLocation[GeneLocation$ensembl_gene_id %in% names(ensembl2id), , drop = F] GeneLocation = GeneLocation[complete.cases(GeneLocation), , drop = F] GeneLocation = unique(GeneLocation) geneExprData1 = Exprvarmat[as.character(unique(GeneLocation$ensembl_gene_id)), , drop = F] Exprmat = SlicedData$new() colnames(geneExprData1) = NULL Exprmat$initialize(geneExprData1) SNPmat = SlicedData$new() SNPvarmat1 = SNPvarmat colnames(SNPvarmat1) = NULL SNPmat$initialize(SNPvarmat1) GeneLoc = GeneLocation[as.character(GeneLocation$ensembl_gene_id) %in% rownames(geneExprData1), ] GeneLoc = GeneLoc[, c(1, 2, 3, 4)] colnames(GeneLoc) = c("geneid", "chr", "left", "right") rownames(GeneLoc) = NULL SNPLoc = data.frame(SNPlib[,c(2, 3, 4)]) SNPLoc[,3] = as.numeric(SNPLoc[,3]) SNPLoc = SNPLoc[complete.cases(SNPLoc), , drop = F] SNPLoc = unique(SNPLoc) colnames(SNPLoc) = c("snpid", "chr", "pos") SNPLoc = SNPLoc[SNPLoc$snpid %in% rownames(SNPmat),] Covariates = NULL PData = PData1@data[colnames(Exprvarmat), ] Status = as.character(PData$characteristics_ch1) Status[Status == "tissue: Tumor"] = "tumor" Status[Status != "tumor"] = "normal" Covariates = rbind(Covariates, status = ifelse(Status == "normal", 0, 1)) Covmat = SlicedData$new() Covmat$initialize(Covariates) SNPInfo = SNPvarmat1[SNPLoc$snpid[SNPLoc$chr %in% c(as.character(seq(1,22)), "X", "Y", "MT")], ] SNPS = data.frame(id = rownames(SNPInfo), SNPInfo) colnames(SNPS) = c("id", paste("Sample_", seq(1, ncol(SNPInfo)), sep="")) write.table(SNPS, "./data2/SNP.txt", quote = F, row.names = F, col.names = TRUE, sep = "\t") GE = data.frame(id = rownames(geneExprData1), geneExprData1) colnames(GE) = c("id", paste("Sample_", seq(1, ncol(Exprvarmat)), sep="")) write.table(GE, "./data2/GE.txt", quote = F, row.names = F, col.names = TRUE, sep = "\t") COV = data.frame(id = rownames(Covariates), Covariates) colnames(COV) = c("id", paste("Sample_", seq(1, ncol(Covariates)), sep="")) write.table(COV, "./data2/Covariates.txt", quote = F, row.names = F, col.names = TRUE, sep = "\t") saveRDS(SNPLoc, "./data2/SNP.rds") saveRDS(GeneLoc, "./data2/GE.rds") cis_eQTL = read.csv("./data2/cis_eQTL_results_R.txt", sep = "\t", stringsAsFactors = F) Normal = which(Status == "normal") Tumor = which(Status == "tumor") FilterByMAF = apply(SNPvarmat, 1, function(x) { MAF_N = min(c(sum(x[Normal] == 0), sum(x[Normal] == 1), sum(x[Normal] == 2))) / length(Normal) MAF_T = min(c(sum(x[Tumor] == 0), sum(x[Tumor] == 1), sum(x[Tumor] == 2))) / length(Tumor) (MAF_N > 0.05 & MAF_T > 0.05) }) SNPFilterByMAF = names(which(FilterByMAF)) Significant_eQTLs = cis_eQTL[(cis_eQTL$FDR < 0.01 & cis_eQTL$SNP %in% SNPFilterByMAF), , drop = F] Gene2eQTL = split(Significant_eQTLs$SNP, Significant_eQTLs$gene) center = function(X) { apply(X, 1, function(x) { x - mean(x) }) } eQTLRank = lapply(Gene2eQTL, function(g) { t = unique(SNPvarmat[g, Tumor, drop = F]) n = unique(SNPvarmat[g, Normal, drop = F]) min(qr(crossprod(center(t)))$rank, qr(crossprod(center(n)))$rank) }) Gene2eQTL2 = Gene2eQTL for (i in 1:length(Gene2eQTL)) { FDR = NULL g = as.numeric(names(Gene2eQTL[i])) for (s in Gene2eQTL[[i]]) { FDR = c(FDR, Significant_eQTLs[Significant_eQTLs$SNP == s & Significant_eQTLs$gene == g, 6]) } if (eQTLRank[[i]] != 0) { Gene2eQTL[[i]] = Gene2eQTL[[i]][which.min(FDR)] } else { Gene2eQTL[[i]] = NA } } for(i in 1:length(Gene2eQTL)) { if (eQTLRank[[i]] == length(Gene2eQTL[[i]])) { Gene2eQTL[[i]] = Gene2eQTL[[i]] } else if (eQTLRank[[i]] == 1 & length(Gene2eQTL[[i]]) > 1) { FDR = NULL g = as.numeric(names(Gene2eQTL[i])) for (s in Gene2eQTL[[i]]) { FDR = c(FDR, Significant_eQTLs[Significant_eQTLs$SNP == s & Significant_eQTLs$gene == g, 6]) } Gene2eQTL[[i]] = Gene2eQTL[[i]][which.min(FDR)] } else if (eQTLRank[[i]] > 1 & length(Gene2eQTL[[i]]) > 1) { FDR = NULL g = as.numeric(names(Gene2eQTL[i])) for (s in Gene2eQTL[[i]]) { FDR = c(FDR, Significant_eQTLs[Significant_eQTLs$SNP == s & Significant_eQTLs$gene == g, 6]) } index = sort.int(FDR, decreasing = F, index.return = T)$ix n = 0 j = 1 s = c(Gene2eQTL[[i]][index[j]]) j = j + 1 n = 1 while (n < eQTLRank[[i]] & j < length(index)) { tmr = SNPvarmat[c(s, Gene2eQTL[[i]][index[j]]), Tumor, drop = F] nml = SNPvarmat[c(s, Gene2eQTL[[i]][index[j]]), Normal, drop = F] if (qr(crossprod(center(tmr)))$rank == n + 1 && qr(crossprod(center(nml)))$rank == n + 1) { s = c(s, Gene2eQTL[[i]][index[j]]) n = n + 1 } j = j + 1 } Gene2eQTL[[i]] = s } else { Gene2eQTL[[i]] = NA } } Gene2eQTL = Gene2eQTL[!is.na(Gene2eQTL)] annotation2Entrez = read.table( "./data/geneAnnotation.txt", sep = "\t", quote = "\"", na.strings = "-", fill = TRUE, col.names = c("GeneID", "Symbol", "TypeOfGene"), stringsAsFactors = FALSE ) ensembl2entrez = bitr( names(Gene2eQTL), fromType = "ENSEMBL", toType = "ENTREZID", OrgDb = "org.Hs.eg.db" ) gene4mRNA = annotation2Entrez$GeneID[annotation2Entrez$TypeOfGene == "protein-coding"] gene4mRNA = intersect(ensembl2entrez$ENTREZID, gene4mRNA) ensembl2entrez = ensembl2entrez[ensembl2entrez$ENTREZID %in% gene4mRNA, ] Gene2eQTL = Gene2eQTL[unique(ensembl2entrez$ENSEMBL)] Gene2eQTL = Gene2eQTL[sapply(Gene2eQTL, length) != 0] seed = as.numeric(Sys.time()) N = sum(Status == "normal") Ng = length(Gene2eQTL) Nk = sum(sapply(Gene2eQTL, length)) set.seed(seed) Sk = list() index = 0 CandidateEQTLs = NULL for (i in 1:length(Gene2eQTL)) { Sk[[i]] = index + seq(1:length(Gene2eQTL[[i]])) index = max(Sk[[i]]) CandidateEQTLs = c(CandidateEQTLs, Gene2eQTL[[i]]) } CandidateGenes = names(Gene2eQTL) Y = vector("list", 2) Y[[1]] = Exprvarmat[CandidateGenes, Status == "normal"] Y[[2]] = Exprvarmat[CandidateGenes, Status == "tumor"] rownames(Y[[1]]) = rownames(Y[[2]]) = NULL X = vector("list", 2) X[[1]] = SNPvarmat[CandidateEQTLs, Status == "normal"] X[[2]] = SNPvarmat[CandidateEQTLs, Status == "tumor"] rownames(X[[1]]) = rownames(X[[2]]) = NULL data = list( Data = list( X = X, Y = Y, Sk = Sk ), Vars = list( Genes = CandidateGenes, eQTLs = CandidateEQTLs, n = N, p = Ng, k = Nk ) ) saveRDS(data, "./data2/gastric0.01.rds") seed = as.numeric(Sys.time()) set.seed(seed) data = readRDS("./script/data2/gastric0.01.rds") L2lamax(data$Data$X, data$Data$Y, data$Data$Sk, data$Vars$n, data$Vars$p, data$Vars$k) gamma = cv.multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, ngamma = 20, nfold = 5, data$Vars$n, data$Vars$p, data$Vars$k) ifit = multiRegression(data$Data$X, data$Data$Y, data$Data$Sk, gamma, data$Vars$n, data$Vars$p, data$Vars$k, trans = FALSE) Xs = data$Data$X colnames(Xs[[1]]) = colnames(Xs[[2]]) = NULL Ys = data$Data$Y colnames(Ys[[1]]) = colnames(Ys[[2]]) = NULL Sk = data$Data$Sk cvfit = opt.multiFSSEMiPALM2(Xs = Xs, Ys = Ys, Bs = ifit$Bs, Fs = ifit$Fs, Sk = Sk, sigma2 = ifit$sigma2, nlambda = 20, nrho = 20, p = data$Vars$p, q = data$Vars$k, wt = T) fit = multiFSSEMiPALM2(Xs = Xs, Ys = Ys, Bs = ifit$Bs, Fs = ifit$Fs, Sk = Sk, sigma2 = ifit$sigma2, lambda = cvfit$lambda, rho = cvfit$rho, Wl = inverseB(ifit$Bs), Wf = flinvB(ifit$Bs), p = data$Vars$p, maxit = 1000, threshold = 1e-5, sparse = T, verbose = T, trans = T, strict = T) saveRDS(fit, "./data2/gastricfitFSSEM0.01.rds") fit = readRDS("./script/data2/gastricfitFSSEM0.01.rds") data = readRDS("./script/data2/gastric0.01.rds") filterDiffNet = function(fit, data, cutoff = 0.01) { Ci1 = rowMeans(qnorm(1 - cutoff, mean = 0, sd = sqrt(fit$sigma2)) / data$Data$Y[[1]]) Ci2 = rowMeans(qnorm(1 - cutoff, mean = 0, sd = sqrt(fit$sigma2)) / data$Data$Y[[2]]) BThreshold = quantile(c(abs(fit$Bs[[1]])[fit$Bs[[1]] != 0], abs(fit$Bs[[2]])[fit$Bs[[2]] != 0]), seq(0, 1, by = 0.1))[2 + 1] B1 = fit$Bs[[1]] B2 = fit$Bs[[2]] for(i in 1:data$Vars$p) { B1[,i] = B1[,i] * (abs(B1[,i]) >= max(BThreshold, Ci1[i])) B2[,i] = B2[,i] * (abs(B2[,i]) >= max(BThreshold, Ci2[i])) } DiffB = B2 - B1 for(i in 1:data$Vars$p) { DiffB[,i] = DiffB[,i] * ((abs(DiffB[,i]) >= max(BThreshold, Ci1[i], Ci2[i])) & abs(DiffB[,i]) >= pmin(abs(B1[,i]), abs(B2[,i]))) } list(B1 = B1, B2 = B2, DiffB = DiffB) } FilteredB = filterDiffNet(fit, data, cutoff = 0.01) B1 = FilteredB$B1 B2 = FilteredB$B2 DiffB = FilteredB$DiffB adjNormalGRN = as.matrix(B1 != 0) adjTumorGRN = as.matrix(B2 != 0) adjDifferentialGRN = as.matrix(DiffB != 0) NormalGRN = graph_from_adjacency_matrix(t(adjNormalGRN)) %>% set_vertex_attr("name", value = data$Vars$Genes) TumorGRN = graph_from_adjacency_matrix(t(adjTumorGRN)) %>% set_vertex_attr("name", value = data$Vars$Genes) DifferentialGRN = graph_from_adjacency_matrix(t(adjDifferentialGRN)) %>% set_vertex_attr("name", value = data$Vars$Genes) NormalGRN = delete.vertices(igraph::simplify(NormalGRN), degree(NormalGRN) == 0) TumorGRN = delete.vertices(igraph::simplify(TumorGRN), degree(TumorGRN) == 0) DifferentialGRN = delete.vertices(igraph::simplify(DifferentialGRN), degree(DifferentialGRN) == 0) DiffGene = bitr( names(V(DifferentialGRN)), fromType = "ENSEMBL", toType = "ENTREZID", OrgDb = "org.Hs.eg.db" ) DiffGname = bitr( names(V(DifferentialGRN)), fromType = "ENSEMBL", toType = "SYMBOL", OrgDb = "org.Hs.eg.db" ) mRNAgenes = annotation2Entrez[annotation2Entrez$TypeOfGene == "protein-coding", 2] DiffGname = DiffGname[DiffGname$SYMBOL %in% mRNAgenes,] rownames(DiffGname) = DiffGname[,1] UniGene = bitr( data$Vars$Genes, fromType = "ENSEMBL", toType = "ENTREZID", OrgDb = "org.Hs.eg.db" ) UniGname = bitr( data$Vars$Genes, fromType = "ENSEMBL", toType = "SYMBOL", OrgDb = "org.Hs.eg.db" ) UniGname = UniGname[UniGname$SYMBOL %in% mRNAgenes,] UniGene = UniGene[UniGene$ENSEMBL %in% UniGname$ENSEMBL,] GRNLayout = function(G = NULL) { qcut = sort(degree(G), decreasing = T)[10] V(G)$color = "blue" V(G)$frame.color = "blue" V(G)$color[which(degree(G) >= qcut)] = "red" V(G)$frame.color[which(degree(G) >= qcut)] = "darkred" V(G)$size = sqrt(degree(G)) * 1.5 + 0.1 E(G)$color = rgb(0, 0, 0, alpha = .1) Vnames = rep(NA, length(V(G))) Vnames[which(degree(G) >= qcut)] = DiffGname[names(which(degree(G) >= qcut)), 2] plot( G, vertex.label = Vnames, layout = layout.fruchterman.reingold, edge.arrow.size = 0.1, edge.curve = 0.1, vertex.label.font = 1, vertex.label.cex = 0.5, vertex.label.dist = 1, vertex.label.color = "black" ) } GRNLayout(NormalGRN) GRNLayout(TumorGRN) GRNLayout(DifferentialGRN) getGSEAdb = function(db = NULL) { f = readLines(db) lst = sapply(f, function(x) unlist(strsplit(x, "\t", fixed = TRUE))) names(lst) = sapply(lst, function(x) x[1]) lst1 = lapply(lst, function(x) x[-(1:2)]) lst2 = lapply(lst, function(x) x[2]) list(gsea = lst1, url = lst2) } GSEAC2 = getGSEAdb("./script/data2/c2.all.v6.2.entrez.gmt") EntrezGenes = unique(unlist(GSEAC2$gsea)) names(EntrezGenes) = NULL testGSEA = function(geneset, diffgene, universe) { bgset = setdiff(universe, diffgene) pvalue = lapply(geneset, function(x) { x1 = length(intersect(diffgene, x)) x2 = length(setdiff(diffgene, x)) y1 = length(intersect(bgset, x)) y2 = length(setdiff(bgset, x)) c(fisher.test(matrix(c(x1, x2, y1, y2), nrow = 2), alternative = "two.sided")$p.value, ifelse(x1/x2 >= y1/y2, "+", "-")) }) pvalue } GAST_related = lapply(GSEAC2$url, function(url) { url = as.character(url) mdb = GET(url) mdb = readHTMLTable(rawToChar(mdb$content), stringsAsFactors = F) i = which(mdb[[1]][,1] == "Full description or abstract") description = mdb[[1]][i, 2] pattern1 = str_detect(description, "gastric relapse | gastric cancer | gastric tumor | gastric adenocarcinoma") pattern2 = all(str_detect(description, c("gastric", "cancer | tumor | adenocarcinoma | carcinoma"))) pattern1 | pattern2 }) GSEA4GAST = GSEAC2$gsea[unlist(GAST_related)] GSEA4GAST = GSEA4GAST[sapply(GSEA4GAST, function(x){length(intersect(x, unique(UniGene[,2]))) != 0})] result = testGSEA(GSEA4GAST, unique(DiffGene[DiffGene$ENSEMBL %in% names(which(degree(DifferentialGRN, mode = "all") >= 1)), 2]), unique(UniGene[,2])) pvalue_gsea = as.numeric(sapply(result, `[`, 1)) enrich_gsea = sapply(result, `[`, 2) enrich_idx = which(pvalue_gsea < 0.05 & enrich_gsea == "+") enrichedGS = data.frame(gs = names(result)[enrich_idx], description = unlist(GSEAC2$url[names(result)[enrich_idx]]), pval = pvalue_gsea[enrich_idx]) rownames(enrichedGS) = NULL enrichedGS DiffGname[names(sort(degree(DifferentialGRN, mode = "all"), decreasing = T))[1:10], 2] for(n in 1:nrow(enrichedGS)) { cat(as.character(enrichedGS[n,1]), " & ", toupper(format(signif(enrichedGS[n,3], 2), scientific = T)), " \\\\ \n") cat("\\hline \n") }
initQ <- function(ae_data) { if (ncol(ae_data) == 5) { Q <- data.frame(trtem = rep(TRUE, nrow(ae_data))) } if (ncol(ae_data) == 6) { Q <- as.data.frame(as.logical(ae_data[,-c(1:5)])) colnames(Q) <- colnames(ae_data)[-c(1:5)] } if (ncol(ae_data) > 6) { Q <- apply(ae_data[,-c(1:5)], 2, as.logical) } return(Q) }
maturation_in <- function (data) { final_table <- data %>% dplyr::mutate(Age = round((lubridate::time_length(difftime(as.Date(`Testing Date`), as.Date(`Date of Birth`)), "years")/0.5)) * 0.5) %>% dplyr::mutate(`Testing Date` = as.Date(`Testing Date`)) %>% dplyr::mutate(`Date of Birth` = as.Date(`Date of Birth`)) %>% dplyr::mutate(`Birth Year` = lubridate::year(`Date of Birth`)) %>% dplyr::mutate(Quarter = paste("Q", lubridate::quarter(`Date of Birth`), sep = "")) %>% dplyr::mutate(`Weight (KG)` = round((`Weight1 (KG)` + `Weight2 (KG)`) / 2, 1), `Weight (LB)` = round(`Weight (KG)` * 2.20462), `Height (CM)` = round((`Height1 (CM)` + `Height2 (CM)`) / 2, 1), `Height (IN)` = round(`Height (CM)` * 0.393701,1), `Sitting Height (CM)` = ((`Sitting Height1 (CM)` + `Sitting Height2 (CM)`) / 2) - `Bench Height (CM)`, `Leg Length (CM)` = `Height (CM)` - `Sitting Height (CM)`) %>% dplyr::mutate(`H-W Ratio` = round(`Height (CM)` / (`Weight (KG)`^ 0.33333),1), `W-H Ratio` = round((`Weight (KG)` / `Height (CM)`) * 100,1), BMI = round((`Weight (KG)` / (`Height (CM)`/100) ^ 2),1), `Sitting/Stand Height` = round(`Sitting Height (CM)` / `Height (CM)`,1), `Leg Length * Sitting Height` = round(`Leg Length (CM)` * `Sitting Height (CM)`,1), `Age * Leg Length` = `Leg Length (CM)` * Age, `Age * Sitting Height` = `Sitting Height (CM)` * Age, `Age * Weight` = `Weight (KG)` * Age) %>% dplyr::mutate(`Parent Mid Height (CM)` = round((`Mothers Height (CM)` + `Fathers Height (CM)`) / 2, 1)) %>% dplyr::mutate(`Parent Mid Height (IN)` = `Parent Mid Height (CM)` * 0.393701) %>% dplyr::full_join(matuR::table, by = c("Age" = "Age"), copy = T) %>% na.omit() %>% dplyr::mutate(`Estimated Adult Height (IN)` = ifelse(Gender == "Male", round(`B1` + (`Height (IN)` * `M-Height`) + (`Weight (LB)` * `M-Weight`) + (`Parent Mid Height (IN)` * `M-Midparent Stature`),1), round(`B2` + (`Height (IN)` * `F-Height`) + (`Weight (LB)` * `F-Weight`) + (`Parent Mid Height (IN)` * `F-Midparent Stature`),1))) %>% dplyr::mutate(`Estimated Adult Height (CM)` = round(`Estimated Adult Height (IN)` * 2.54,1)) %>% dplyr::mutate(`% Adult Height` = round((`Height (CM)` / `Estimated Adult Height (CM)`) * 100,1)) %>% dplyr::mutate(`Remaining Growth (CM)` = round((`Estimated Adult Height (CM)` - `Height (CM)`),1)) %>% dplyr::mutate(`Remaining Growth (IN)` = round(`Remaining Growth (CM)` * 0.393701,1)) %>% dplyr::mutate(`Maturity Offset (years)` = ifelse(Gender == "Male", round(-9.236 + (0.0002728 * (`Leg Length * Sitting Height`)) + (-0.001663 * `Age * Leg Length`) + (0.007216 * `Age * Sitting Height`) + (0.02292 * `W-H Ratio`),1), round(-9.376 + (0.0001882 * (`Leg Length * Sitting Height`)) + (0.0022 * `Age * Leg Length`) + (0.005841 * `Age * Sitting Height`) + (-0.002658 * `Age * Weight`) + (0.07693 * `W-H Ratio`),1))) %>% dplyr::mutate(`Age @ PHV` = Age - `Maturity Offset (years)`) %>% dplyr::select(Athlete, Gender, `Testing Date`, `Birth Year`, Quarter, Age, `Height (IN)`, `Estimated Adult Height (IN)`, `% Adult Height`, `Remaining Growth (IN)`, `Maturity Offset (years)`, `Age @ PHV`) %>% dplyr::mutate(`Maturity Category` = ifelse(`% Adult Height` < 85, "Pre-Pubertal", ifelse(`% Adult Height` >= 85 & `% Adult Height` < 90, "Early Pubertal", ifelse(`% Adult Height` >= 90 & `% Adult Height` < 95, "Mid-Pubertal", "Late Pubertal")))) return(final_table) }
define_searchrequest_within <- function(operation, seconds, negate, use_uid, flag, esearch, handle) { if (isTRUE(esearch)) { esearch_string = "RETURN () " } else { esearch_string = NULL } if (!is.null(flag)) { flag_string <- paste(flag, collapse = " ") flag_string = paste0(flag_string, " ") } else { flag_string = NULL } if (isTRUE(use_uid)) { use_uid_string = "UID " } else { use_uid_string = NULL } if (isTRUE(negate)) { negate_string = "NOT " } else { negate_string = NULL } customrequest <- paste0(use_uid_string, "SEARCH ", esearch_string, flag_string, negate_string, operation, ' ', seconds) tryCatch({ curl::handle_setopt( handle = handle, customrequest = customrequest) }, error = function(e){ stop("The connection handle is dead. Please, configure a new IMAP connection with ImapCon$new().") }) return(c(handle = handle, customrequest = customrequest)) }
acontext("PredictedPeaks data set") require(httr) PredictedPeaks.RData <- file.path(tempdir(), "PredictedPeaks.RData") request <- GET("http://github.com/tdhock/animint-examples/blob/master/data/PredictedPeaks.RData?raw=true") stop_for_status(request) writeBin(content(request), PredictedPeaks.RData) load(PredictedPeaks.RData, .GlobalEnv) hover.dots <- subset(PredictedPeaks$chromCounts, nonInputType==type) viz <- list( oneChrom=ggplot()+ ggtitle("PeakSegJoint detections on selected chromosome")+ theme_bw()+ coord_cartesian(xlim=c(0, 1))+ theme_animint(width=1500, height=100)+ theme(axis.line.x=element_blank(), axis.text.x=element_blank(), axis.ticks.x=element_blank(), axis.title.x=element_blank())+ geom_text(aes(relative.middle, type.fac, label=samples.up, href=paste0( "http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19&position=", chrom, ":", zoomStart, "-", zoomEnd), showSelected2=chrom, showSelected=dotID), size=11, data=PredictedPeaks$chromCounts)+ scale_y_discrete("cell type", drop=FALSE), chroms=ggplot()+ theme_bw()+ theme_animint(width=1500, height=330)+ scale_y_discrete("chromosome", drop=FALSE)+ scale_x_continuous("position on chromosome (mega bases)")+ geom_text(aes(0, chrom, label=paste0(peaks, "_"), clickSelects=chrom, showSelected=dotID), hjust=1, size=11, data=PredictedPeaks$countsByChrom)+ geom_segment(aes(chromStart/1e6, chrom, clickSelects=chrom, xend=chromEnd/1e6, yend=chrom), size=9, data=PredictedPeaks$chrom.ranges)+ geom_point(aes(chromEnd/1e6, chrom, id=chrom, clickSelects=chrom), size=5, data=PredictedPeaks$chrom.ranges)+ geom_text(aes(max(PredictedPeaks$chrom.ranges$chromEnd)/2e6, chrom, showSelected=dotID, label=totals), data=PredictedPeaks$scatter.text), scatter=ggplot()+ geom_hline(aes(yintercept=N), color="grey", data=PredictedPeaks$counts.Input)+ scale_x_continuous("number of samples with a peak")+ facet_grid(nonInputType ~ .)+ theme_bw()+ scale_fill_gradient(low="grey", high="red")+ theme_animint(width=1500)+ theme(panel.margin=grid::unit(0, "cm"))+ geom_vline(aes(xintercept=N), color="grey", data=PredictedPeaks$counts.not.Input)+ geom_rect(aes(xmin=up-size, xmax=up+size, ymin=Input-size, ymax=Input+size, tooltip=totals, clickSelects=dotID, showSelected=chrom, fill=log10(count)), color="transparent", data=PredictedPeaks$bg.rect), first=list(dotID="38 neutro samples, 1 Input samples", chrom="chr16")) info <- animint2HTML(viz) test_that("without selectize option, only render chrom widget", { widget.vec <- getSelectorWidgets(info$html) expect_identical(widget.vec, "chrom") }) getSorted <- function(){ text.list <- getNodeSet(getHTML(), '//g[@class="geom1_text_oneChrom"]//text') value.vec <- sapply(text.list, xmlValue) sort(as.numeric(value.vec)) } test_that("initially 2 text elements rendered", { num.vec <- getSorted() expect_equal(num.vec, c(1, 38)) }) clickID("chrM") Sys.sleep(1) exp.vec <- c(1, 14, 38) test_that("3 elements rendered (first time)", { num.vec <- getSorted() expect_equal(num.vec, exp.vec) }) clickID("chrY") Sys.sleep(1) clickID("chrM") Sys.sleep(1) test_that("3 elements rendered (second time)", { num.vec <- getSorted() expect_equal(num.vec, exp.vec) }) thresh.df <- data.frame(max.input.samples=9, thresh.type="specific") PredictedPeaks$counts.not.Input$thresh.type <- "max samples" PredictedPeaks$counts.Input$thresh.type <- "max samples" viz <- list( oneChrom=ggplot()+ ggtitle("PeakSegJoint detections on selected chromosome")+ theme_bw()+ coord_cartesian(xlim=c(0, 1))+ theme_animint(width=1500, height=100)+ theme(axis.line.x=element_blank(), axis.text.x=element_blank(), axis.ticks.x=element_blank(), axis.title.x=element_blank())+ geom_text(aes(relative.middle, type.fac, label=samples.up, clickSelects=peak.name, showSelected2=chrom, showSelected=dotID), size=11, data=PredictedPeaks$chromCounts)+ scale_y_discrete("cell type", drop=FALSE), chroms=ggplot()+ theme_bw()+ theme_animint(width=1500, height=330)+ scale_y_discrete("chromosome", drop=FALSE)+ scale_x_continuous("position on chromosome (mega bases)")+ geom_text(aes(0, chrom, label=paste0(peaks, "_"), clickSelects=chrom, showSelected=dotID), hjust=1, size=11, data=PredictedPeaks$countsByChrom)+ geom_segment(aes(chromStart/1e6, chrom, clickSelects=chrom, xend=chromEnd/1e6, yend=chrom), size=9, data=PredictedPeaks$chrom.ranges)+ geom_point(aes(chromEnd/1e6, chrom, id=chrom, clickSelects=chrom), size=5, data=PredictedPeaks$chrom.ranges)+ geom_text(aes(max(PredictedPeaks$chrom.ranges$chromEnd)/2e6, chrom, showSelected=dotID, label=totals), data=PredictedPeaks$scatter.text), scatter=ggplot()+ geom_vline(aes(xintercept=N, color=thresh.type), data=PredictedPeaks$counts.not.Input)+ scale_color_manual("threshold", values=c( "max samples"="grey", specific="grey30"))+ geom_hline(aes(yintercept=max.input.samples+0.5, color=thresh.type), show.legend=TRUE, data=thresh.df)+ geom_hline(aes(yintercept=N, color=thresh.type), show.legend=TRUE, data=PredictedPeaks$counts.Input)+ scale_x_continuous("number of samples with a peak")+ facet_grid(nonInputType ~ .)+ theme_bw()+ scale_fill_gradient(low="grey", high="red")+ theme_animint(width=1500)+ theme(panel.margin=grid::unit(0, "cm"))+ geom_rect(aes(xmin=up-size, xmax=up+size, ymin=Input-size, ymax=Input+size, tooltip=totals, clickSelects=dotID, showSelected=chrom, fill=log10(count)), color="transparent", data=PredictedPeaks$bg.rect)+ geom_point(aes(up, Input, showSelected=peak.name), data=hover.dots), selectize=list(dotID=TRUE, chrom=FALSE), first=list(dotID="38 neutro samples, 1 Input samples", chrom="chr16")) info <- animint2HTML(viz) test_that("selectize option respected", { widget.vec <- getSelectorWidgets(info$html) expected.widgets <- c("dotID", "thresh.type") expect_identical(sort(widget.vec), sort(expected.widgets)) }) test_that("rects rendered in fill legend", { rect.list <- getNodeSet( info$html, '//tr[@class="log10(count)_variable"]//rect') expect_equal(length(rect.list), 5) }) test_that("no lines rendered in fill legend", { line.list <- getNodeSet( info$html, '//tr[@class="log10(count)_variable"]//line') expect_equal(length(line.list), 0) }) test_that("lines in color legend", { line.list <- getNodeSet( info$html, '//tr[@class="thresh_type_variable"]//line') expect_equal(length(line.list), 2) }) specific_hlines <- function(html=getHTML()){ getNodeSet(html, '//g[@class="geom7_hline_scatter"]//line') } specific.id <- "plot_scatter_thresh_type_variable_specific" xpath <- sprintf('//td[@id="%s_label"]', specific.id) specific_opacity <- function(html=getHTML()){ as.numeric(getStyleValue(html, xpath, "opacity")) } test_that("initially rendered hlines", { line.list <- specific_hlines(info$html) expect_equal(length(line.list), 2) computed.opacity <- specific_opacity(info$html) expect_equal(computed.opacity, 1) }) test_that("hlines after clicking specific", { html <- clickHTML(id=specific.id) line.list <- specific_hlines(html) expect_equal(length(line.list), 0) computed.opacity <- specific_opacity(html) expect_equal(computed.opacity, 0.5) }) test_that("hlines after clicking specific again", { html <- clickHTML(id=specific.id) line.list <- specific_hlines(html) expect_equal(length(line.list), 2) computed.opacity <- specific_opacity(html) expect_equal(computed.opacity, 1) })
dynamic_model <- function(x,total=TRUE){ e0 <- 4153.5 e1 <- 12888.8 a0 <- 139500 a1 <- 2.567e+18 slp <- 1.6 tetmlt <- 277 aa <- a0/a1 ee <- e1 - e0 TK <- x + 273 ftmprt <- slp * tetmlt * (TK - tetmlt)/TK sr <- exp(ftmprt) xi <- sr/(1 + sr) xs <- aa * exp(ee/TK) ak1 <- a1 * exp(-e1/TK) interE <- 0 memo <- new.env(hash = TRUE) posi <- 1 assign(x = paste(1), value = 0, envir = memo) E = 0 S <- ak1 S[1] <- 0 E <- S options(scipen = 30) for (l in 2:length(x)) { if (E[l - 1] < 1) { S[l] <- E[l - 1] E[l] <- xs[l] - (xs[l] - S[l]) * exp(-ak1[l]) } else { S[l] <- E[l - 1] - E[l - 1] * xi[l - 1] E[l] <- xs[l] - (xs[l] - S[l]) * exp(-ak1[l]) } } interE <- E y <- rep(0, length(x)) y[which(interE >= 1)] <- interE[which(interE >= 1)] * xi[which(interE >= 1)] if (total == TRUE) return(tail(cumsum(y),n=1)) else return(y) }
include.others <- function(selected, center, stats, best=FALSE){ above <- sign(stats[3,selected] - center) == 1 if(best){ if(above){ other <- stats[3,] > center & stats[3,] < stats[4,selected] } else { other <- stats[3,] < center & stats[3,] > stats[2,selected] } } else { if(above){ other <- stats[3,] > stats[2,selected] & stats[2,] > center } else { other <- stats[3,] < stats[4,selected] & stats[4,] < center } } other <- which(other) return(other) }
plsRglmmodel.formula <- function(formula,data=NULL,nt=2,limQ2set=.0975,dataPredictY,modele="pls",family=NULL,typeVC="none",EstimXNA=FALSE,scaleX=TRUE,scaleY=NULL,pvals.expli=FALSE,alpha.pvals.expli=.05,MClassed=FALSE,tol_Xi=10^(-12),weights,subset,start=NULL,etastart,mustart,offset,method="glm.fit",control= list(),contrasts=NULL,sparse=FALSE,sparseStop=TRUE,naive=FALSE,verbose=TRUE) { if(missing(modele)){modele="pls"} if (typeVC!="none") {stop("Use plsRglm_kfoldcv for applying kfold cross validation to glms")} if (missing(data)) {data <- environment(formula)} mf <- match.call(expand.dots = FALSE) m <- match(c("formula","data","nt","limQ2set","dataPredictY","modele","family","typeVC","EstimXNA","scaleX","scaleY","pvals.expli","alpha.pvals.expli","MClassed","tol_Xi","weights","subset","start","etastart","mustart","offset","method","control","contrasts","sparse","sparseStop","naive","verbose"), names(mf), 0L) if(is.null(mf$modele)){mf$modele<-"pls"} mf <- mf[c(1L, m)] mf[[1L]] <- as.name("PLS_glm_formula") estmodel <- eval(mf, parent.frame()) class(estmodel) <- "plsRglmmodel" estmodel$call <- match.call() estmodel }
dgig <- function(x, chi = 1, psi = 1, lambda = 1, param = c(chi, psi, lambda), KOmega = NULL) { parResult <- gigCheckPars(param) case <- parResult$case errMessage <- parResult$errMessage if (case == "error") stop(errMessage) param <- as.numeric(param) chi <- param[1] psi <- param[2] lambda <- param[3] omega <- sqrt(chi*psi) if (omega > 700){ KOmega <- besselK(omega, nu = lambda, expon.scaled = TRUE) logDensity <- ifelse(x > 0, (lambda/2)*log(psi/chi) - log(2) - log(KOmega) + omega + (lambda - 1)*log(x) - (1/2)*(chi*x^(-1) + psi*x), -Inf) gigDensity <- exp(logDensity) } else { if (is.null(KOmega)){ KOmega <- besselK(omega, nu = lambda) } gigDensity <- ifelse(x > 0, (psi/chi)^(lambda/2) / (2*KOmega)*x^(lambda - 1) * exp(-(1/2)*(chi*x^(-1) + psi*x)), 0) } gigDensity } pgig <- function(q, chi = 1, psi = 1, lambda = 1, param = c(chi,psi,lambda), lower.tail = TRUE, ibfTol = .Machine$double.eps^(0.85), nmax = 200) { parResult <- gigCheckPars(param) case <- parResult$case errMessage <- parResult$errMessage if (case == "error") stop(errMessage) param <- as.numeric(param) chi <- param[1] psi <- param[2] lambda <- param[3] qCalculate <- which((q > 0) & (is.finite(q))) prob <- rep(NA, length(q)) prob[q <= 0] <- 1 prob[q == Inf] <- 0 omega <- sqrt(chi*psi) KOmega <- besselK(omega, nu = lambda) x <- psi*q/2 y <- chi/(2*q) const <- (psi/chi)^(lambda/2)/(2*KOmega) for (i in qCalculate){ prob[i] <- q[i]^lambda*incompleteBesselK(x[i], y[i], -lambda, tol = ibfTol, nmax = nmax) } prob[qCalculate] <- const*prob[qCalculate] if (lower.tail) prob <- 1 - prob return(prob) } qgig <- function(p, chi = 1, psi = 1, lambda = 1, param = c(chi, psi, lambda), lower.tail = TRUE, method = c("spline", "integrate"), nInterpol = 501, uniTol = 10^(-7), ibfTol = .Machine$double.eps^(0.85), nmax =200, ...){ parResult <- gigCheckPars(param) case <- parResult$case errMessage <- parResult$errMessage if (case == "error") stop(errMessage) if(!lower.tail){ p <- 1 - p lower.tail == TRUE } method <- match.arg(method) param <- as.numeric(param) chi <- param[1] psi <- param[2] lambda <- param[3] modeDist <- gigMode(param = param) pModeDist<- pgig(modeDist, param = param, ibfTol = ibfTol) xRange <- gigCalcRange(param = param, tol = 10^(-7)) quant <- rep(NA, length(p)) invalid <- which((p < 0) | (p > 1)) pFinite <- which((p > 0) & (p < 1)) if (method == "integrate") { less <- which((p <= pModeDist) & (p > .Machine$double.eps^5)) quant <- ifelse(p <= .Machine$double.eps^5, 0, quant) if (length(less) > 0){ xLow <- 0 xRange <- c(xLow, modeDist) zeroFnLess <- function(x, param, p) { return(pgig(x, param = param, ibfTol = ibfTol) - p) } for (i in less){ quant[i] <- uniroot(zeroFnLess, param = param, p = p[i], interval = xRange, tol = uniTol)$root } } greater <- which ((p > pModeDist) & (p < (1 - .Machine$double.eps^5))) p[greater] <- 1 - p[greater] quant <- ifelse(p >= (1 - .Machine$double.eps), Inf, quant) if (length(greater) > 0){ pHigh <- min(p[greater]) xHigh <- modeDist + sqrt(gigVar(param = param)) while (pgig(xHigh, param = param, lower.tail = FALSE) >= pHigh){ xHigh <- xHigh + sqrt(gigVar(param = param)) } xRange <- c(modeDist,xHigh) zeroFnGreater <- function(x, param, p) { return(pgig(x, param = param, lower.tail = FALSE, ibfTol = ibfTol) - p) } for (i in greater){ quant[i] <- uniroot(zeroFnGreater, param = param, p = p[i], interval = xRange, tol = uniTol)$root } } } else if (method == "spline") { inRange <- which((p > pgig(xRange[1], param = param)) & (p < pgig(xRange[2], param = param))) small <- which((p <= pgig(xRange[1], param = param)) & (p >= 0)) large <- which((p >= pgig(xRange[2], param = param)) & (p <= 1)) extreme <- c(small, large) xVals <- seq(xRange[1], xRange[2], length.out = nInterpol) yVals <- pgig(xVals, param = param, ibfTol = max(ibfTol, .Machine$double.eps^0.25) ) splineFit <- splinefun(xVals, yVals) zeroFn <- function(x, p){ return(splineFit(x) - p) } for (i in inRange){ quant[i] <- uniroot(zeroFn, p = p[i], interval = xRange, tol = uniTol)$root } if (length(extreme) > 0){ quant[extreme] <- qgig(p[extreme], param = param, lower.tail = lower.tail, method = "integrate", nInterpol = nInterpol, uniTol = uniTol, ibfTol = ibfTol, ...) } } return(quant) } rgig1 <- function(n, chi = 1, psi = 1, param = c(chi, psi)) { if (length(param) == 2) param <- c(param, 1) parResult <- gigCheckPars(param) case <- parResult$case errMessage <- parResult$errMessage if (case == "error") stop(errMessage) chi <- param[1] psi <- param[2] lambda <- 1 alpha <- sqrt(psi/chi) beta <- sqrt(psi*chi) m <- abs(beta)/beta g <- function(y) { 0.5*beta*y^3 - y^2*(0.5*beta*m + lambda + 1) + y*(-0.5*beta) + 0.5*beta*m } upper <- m while (g(upper) <= 0) upper <- 2*upper yM <- uniroot(g, interval = c(0, m))$root yP <- uniroot(g, interval = c(m, upper))$root a <- (yP - m)*exp(-0.25*beta*(yP + 1/yP - m - 1/m)) b <- (yM - m)*exp(-0.25*beta*(yM + 1/yM - m - 1/m)) c <- -0.25*beta*(m + 1/m) output <- numeric(n) for (i in 1:n) { needValue <- TRUE while (needValue) { R1 <- runif(1) R2 <- runif(1) Y <- m + a*R2/R1 + b*(1 - R2)/R1 if (Y > 0) { if (-log(R1) >= 0.25*beta*(Y + 1/Y) + c) { needValue <- FALSE } } } output[i] <- Y } output/alpha } rgig <- function(n, chi = 1, psi = 1, lambda = 1, param = c(chi, psi, lambda)) { parResult <- gigCheckPars(param) case <- parResult$case errMessage <- parResult$errMessage if (case == "error") stop(errMessage) chi <- param[1] psi <- param[2] lambda <- param[3] if (lambda == 1) stop(return(rgig1(n, param = c(chi, psi)))) alpha <- sqrt(psi/chi) beta <- sqrt(psi*chi) m <- (lambda - 1 + sqrt((lambda - 1)^2 + beta^2))/beta g <- function(y) { 0.5*beta*y^3 - y^2*(0.5*beta*m + lambda + 1) + y*((lambda - 1)*m - 0.5*beta) + 0.5*beta*m } upper <- m while (g(upper) <= 0) upper <- 2*upper yM <- uniroot(g, interval = c(0, m), tol = min(.Machine$double.eps^0.25, (.Machine$double.eps + g(0)/10)))$root yP <- uniroot(g, interval = c(m, upper))$root a <- (yP - m)*(yP/m)^(0.5*(lambda - 1)) * exp(-0.25*beta*(yP + 1/yP - m - 1/m)) b <- (yM - m)*(yM/m)^(0.5*(lambda - 1)) * exp(-0.25*beta*(yM + 1/yM - m - 1/m)) c <- -0.25*beta*(m + 1/m) + 0.5*(lambda - 1)*log(m) output <- numeric(n) for (i in 1:n) { needValue <- TRUE while (needValue) { R1 <- runif(1) R2 <- runif(1) Y <- m + a*R2/R1 + b*(1 - R2)/R1 if (Y > 0) { if (-log(R1) >= -0.5*(lambda - 1)*log(Y) + 0.25*beta*(Y + 1/Y) + c) { needValue <- FALSE } } } output[i] <- Y } output/alpha } ddgig <- function(x, chi = 1, psi = 1, lambda = 1, param = c(chi, psi, lambda), KOmega = NULL) { parResult <- gigCheckPars(param) case <- parResult$case errMessage <- parResult$errMessage if (case == "error") stop(errMessage) param <- as.numeric(param) chi <- param[1] psi <- param[2] lambda <- param[3] omega <- sqrt(chi*psi) if (is.null(KOmega)) KOmega <- besselK(x = omega, nu = lambda) ddgig <- ifelse(x > 0, dgig(x, param = param, KOmega)* (chi/x^2 + 2*(lambda - 1)/x - psi)/2, 0) ddgig }
Profile.multinorm <- function(fn,data,times,pars,coefs=NULL,basisvals=NULL,var=c(1,0.01), fd.obj=NULL,more=NULL,quadrature=NULL, in.meth='nlminb',out.meth='optim', control.in=list(),control.out=list(),eps=1e-6, active=NULL,posproc=FALSE,poslik=FALSE,discrete=FALSE,names=NULL,sparse=FALSE) { dims = dim(data) if(is.null(active)){ active = 1:length(pars) } profile.obj = multinorm.setup(pars,coefs,fn,basisvals,var,fd.obj,more, data,times,quadrature,eps=1e-6,posproc=posproc,poslik=poslik, discrete=discrete,names=names,sparse=sparse) lik = profile.obj$lik proc = profile.obj$proc coefs = profile.obj$coefs data = profile.obj$data times = profile.obj$times Ires = inneropt(data,times,pars,coefs,lik,proc,in.meth,control.in) apars = pars[active] aparamnames = names(apars) res = outeropt(data,times,pars,Ires$coefs,lik,proc,in.meth,out.meth,control.in,control.out,active) apars = res$pars[active] names(apars) = aparamnames ncoefs = as.matrix(res$coefs) pars[active] = apars if(!is.null(fd.obj)){ if(length(dims)>2){ ncoefs = array(ncoefs,c(length(ncoefs)/(dims[2]*dims[3]),dims[2],dims[3])) } else{ ncoefs = array(ncoefs,c(length(ncoefs)/dims[2],dims[2])) } fd.obj = fd(ncoefs,fd.obj$basis) return( list(pars=pars,fd=fd.obj,lik=lik,proc=proc,outer.result=res$outer.result,data=data,times=times) ) } else{ return( list(pars=pars,coefs=ncoefs,lik=lik,proc=proc,outer.result=res$outer.result,data=data,times=times) ) } } Smooth.multinorm <- function(fn,data,times,pars,coefs=NULL,basisvals=NULL,var=c(1,0.01), fd.obj=NULL,more=NULL,quadrature=NULL, in.meth='nlminb',control.in=list(), eps=1e-6,posproc=FALSE,poslik=FALSE,discrete=FALSE,names=NULL,sparse=FALSE) { dims = dim(data) profile.obj = multinorm.setup(pars,coefs,fn,basisvals,var,fd.obj,more, data,times,quadrature,eps=1e-6,posproc=posproc,poslik=poslik, discrete=discrete,names=names,sparse=sparse) lik = profile.obj$lik proc = profile.obj$proc coefs = profile.obj$coefs data = profile.obj$data times = profile.obj$times dims = dim(data) Ires = inneropt(data,times,pars,coefs,lik,proc,in.meth,control.in) ncoefs = Ires$coefs Ires = Ires$res ncoefs = array(ncoefs,dims) if(!is.null(fd.obj)){ ncoefs = array(ncoefs,c(nrow(ncoefs)/dims[2],dims[2],dims[3])) fd.obj = fd(ncoefs,fd.obj$basis) return( list(fd=fd.obj,lik=lik,proc=proc,res=Ires) ) } else{ return( list(coefs=ncoefs,lik=lik,proc=proc,inner.result=Ires,data=data,times=times) ) } } multinorm.setup = function(pars,coefs=NULL,fn,basisvals=NULL,var=c(1,0.01),fd.obj=NULL, more=NULL,data=NULL,times=NULL,quadrature=NULL,eps=1e-6,posproc=FALSE,poslik=FALSE, discrete=FALSE,names=NULL,sparse=FALSE) { if(!is.null(data) & length(dim(data))>2){ data = matrix(data,dim(data)[1]*dim(data)[2],dim(data)[3]) } colnames = names if(!is.null(fd.obj)){ basisvals = fd.obj$basis if(!is.null(fd.obj$coefs)){ coefs = fd.obj$coefs } if(!is.null(fd.obj$fdnames) & is.null(colnames)){ colnames = fd.obj$fdnames[[length(fd.obj$fdnames)]] } } lik = make.multinorm() if(!poslik){ lik$more = c(make.id(),make.cvar())} else { lik$more = c(make.exp(),make.cvar())} lik$more$f.more = NULL lik$more$v.more= list(mat=var[1]*diag(rep(1,2)),sub=matrix(0,0,3)) if(length(dim(coefs))>2){ if(is.null(colnames)){ colnames = dimnames(coefs)[[3]] } nrep = dim(coefs)[2] coefs = matrix(coefs,dim(coefs)[1]*dim(coefs)[2],dim(coefs)[3]) } else{ nrep = 1 colnames = colnames(coefs) } if(!posproc){ if(!discrete) proc = make.Cproc() else proc = make.Dproc() } else{ if(!discrete) proc = make.exp.Cproc() else proc = make.exp.Dproc() } proc$more = make.multinorm() if(is.list(fn)){ proc$more$more = c(fn,make.cvar()) proc$more$more$f.more = NULL proc$more$more$v.more = list(mat=var[2]*diag(rep(1,2)),sub=matrix(0,0,3)) proc$more$more$more = more } else if(is.function(fn)){ proc$more$more = c(make.findif.ode(),make.cvar()) proc$more$more$f.more$eps = eps proc$more$more$f.more$fn = fn proc$more$more$more = more } else if(inherits(fn,'pomp')){ proc$more$more = c(make.findif.ode(),make.cvar()) proc$more$more$f.more$fn = pomp.skeleton proc$more$more$f.more$eps = eps proc$more$more$f.more$more = list(pomp.obj = fn) } else{ stop('fn must be either a list of functions or a function') } proc$more$names = colnames proc$more$parnames = names(pars) if(is.basis(basisvals)){ if(is.null(times)){ stop('if basisvals is is a basis object, you must specify the observation times') } if(sparse){ lik$bvals = spam(diag(rep(1,nrep)) %x% eval.basis(times,basisvals)) } else{ lik$bvals = diag(rep(1,nrep)) %x% eval.basis(times,basisvals) } if(is.null(quadrature) | is.null(quadrature$qpts)){ knots = c(basisvals$rangeval[1],basisvals$params,basisvals$rangeval[2]) qpts = c(knots[1],knots[-length(knots)] + diff(knots)/2,knots[length(knots)]) weights = rep(1,length(qpts)) } else{ qpts = quadrature$qpts weights = quadrature$weights if(is.null(weights)){ weights = rep(1,length(qpts)) } } proc$bvals = list() if(!discrete){ if(sparse){ proc$bvals$bvals = spam(diag(rep(1,nrep)) %x% eval.basis(qpts,basisvals,0)) proc$bvals$dbvals = spam(diag(rep(1,nrep)) %x% eval.basis(qpts,basisvals,1)) }else{ proc$bvals$bvals = diag(rep(1,nrep)) %x% eval.basis(qpts,basisvals,0) proc$bvals$dbvals = diag(rep(1,nrep)) %x% eval.basis(qpts,basisvals,1) } proc$more$qpts = rep(qpts,nrep) proc$mroe$weights = rep(weights,nrep) } else{ len = length(times) if(sparse){ proc$bvals = list(bvals = spam(basisvals[1:(len-1),]), dbvals= spam(basisvals[2:len,])) } else{ proc$bvals = list(bvals = basisvals[1:(len-1),], dbvals= basisvals[2:len,]) } proc$more$qpts = rep(times[1:(len-1)],nrep) } } else{ if(discrete & (is.matrix(basisvals) | is.null(basisvals))){ if(is.null(basisvals)){ basisvals = Diagonal(nrow(coefs)) } if(sparse){ lik$bvals = spam(diag(rep(1,nrep))%x%basisvals) proc$bvals = spam(diag(rep(1,nrep))%x%basisvals) }else{ lik$bvals = diag(rep(1,nrep))%x%basisvals proc$bvals = diag(rep(1,nrep))%x%basisvals } proc$more$qpts = rep(times[1:(length(times)-1)],nrep) } else{ if(sparse){ lik$bvals = spam(diag(rep(1,nrep))%x%basisvals$bvals.obs) proc$bvals = list(bvals=spam(diag(rep(1,nrep)) %x% basisvals$bvals), dbvals=spam(diag(rep(1,nrep)) %x% basisvals$dbvals)) } else{ lik$bvals = diag(rep(1,nrep))%x%basisvals$bvals.obs proc$bvals = list(bvals=diag(rep(1,nrep)) %x% basisvals$bvals, dbvals= diag(rep(1,nrep)) %x%basisvals$dbvals) } proc$more$qpts = rep(basisvals$qpts,nrep) proc$more$weights = rep(basisvals$weights,nrep) } } if(is.null(proc$more$weights)){ proc$more$weights = rep(1,length(proc$more$qpts)) } if(!is.null(data)){ if(length(dim(data))==2){ if(nrep>1){stop('data dimensions must match coefficient dimensions')} if(dim(data)[1] != length(times) | dim(data)[2]!= dim(coefs)[2]){stop('data dimensions, times and coefficient dimensions do not match')} } if(length(dim(data))==3){ if(dim(data)[2] != nrep | dim(data)[3]!=dim(coefs)[2] | dim(data)[1]!=length(times)){ stop('data dimensions, times and coefficient dimensions do not match')} data = matrix(data,dim(data)[1]*dim(data)[2],dim(data)[3]) times = rep(times,nrep) } } return( list(lik=lik,proc=proc,coefs=coefs,data=data,times=times) ) }
crwPostIS = function(object.sim, fullPost=TRUE, df=Inf, scale=1, thetaSamp=NULL) { if(!inherits(object.sim, 'crwSimulator')) stop("Argument needs to be of class 'crwSimulator'\nUse 'crwSimulator( )' to create") fixPar <- object.sim$fixPar Cmat <- object.sim$Cmat[is.na(fixPar),is.na(fixPar)] se <- sqrt(diag(Cmat)) err.mfX <- object.sim$err.mfX err.mfY <- object.sim$err.mfY par <- object.sim$par n2ll.mode <- -2*object.sim$loglik activity <- object.sim$activity driftMod <- object.sim$driftMod mov.mf <- object.sim$mov.mf y <- object.sim$y noObs = object.sim$noObs delta <- object.sim$delta n.errX <- object.sim$n.errX n.errY <- object.sim$n.errY rho = object.sim$rho n.mov <- object.sim$n.mov N <- object.sim$N lower <- object.sim$lower upper <- object.sim$upper prior <- object.sim$prior eInd <- is.na(fixPar) if(fullPost){ if(is.null(object.sim$thetaSampList)){ eps <- rmvtt(mu=rep(0,sum(eInd)), Sigma=scale*Cmat, df=df, lower-par[eInd], upper-par[eInd]) par[eInd] <- par[eInd] + eps if(df==Inf) dens <- dmvnorm(eps, sigma=scale*Cmat, log=TRUE) - dmvnorm(0.0*eps, sigma=scale*Cmat, log=TRUE) else dens <- dmvt(eps, sigma=scale*Cmat, df=df, log=TRUE) - dmvt(0.0*eps, sigma=scale*Cmat, df=df, log=TRUE) } else{ if(is.null(thetaSamp)) thetaSamp <- length(object.sim$thetaSampList) parRow <- sample(1:nrow(object.sim$thetaSampList[[thetaSamp]]), 1, prob=object.sim$thetaSampList[[thetaSamp]][,1]) par <- as.vector(object.sim$thetaSampList[[thetaSamp]][parRow,-c(1:3)]) } } theta = object.sim$par[is.na(object.sim$fixPar)] argslist = par2arglist(theta, fixPar, y, noObs, delta, mov.mf, err.mfX, err.mfY, rho, activity, n.errX, n.errY, n.mov, driftMod) if (driftMod) { out=CTCRWSAMPLE_DRIFT(y, argslist$Hmat, argslist$b, argslist$b.drift, argslist$sig2, argslist$sig2.drift, delta, noObs, argslist$active, argslist$a, argslist$P) } else { out=CTCRWSAMPLE(y, argslist$Hmat, argslist$b, argslist$sig2, delta, noObs, argslist$active, argslist$a, argslist$P) } if(driftMod){ colnames(out$sim) <- apply(expand.grid(c("mu","theta","gamma"), c("x","y")), 1, paste, collapse=".") } else { colnames(out$sim) <- apply(expand.grid(c("mu","nu"), c("x","y")), 1, paste, collapse=".") } ln.prior = ifelse(!is.null(object.sim$prior), object.sim$prior(par[eInd]), 0) isw <- ifelse(is.null(object.sim$thetaSampList) & fullPost==TRUE, out$ll - object.sim$loglik - dens, 0) + ln.prior samp <- list(alpha.sim=out$sim, locType=object.sim$locType, TimeNum=object.sim$TimeNum, loglik=out$lly+out$llx, par=par, log.isw = isw) samp[[object.sim$Time.name]] = object.sim$TimeNum if(object.sim$return_posix) samp[[object.sim$Time.name]] = lubridate::as_datetime(samp[[object.sim$Time.name]]) class(samp) <- c("crwIS","list") attr(samp, "Time.name") = object.sim$Time.name attr(samp,"coord") <- object.sim$coord attr(samp,"random.drift") <- object.sim$driftMod attr(samp,"activity.model") <- !is.null(object.sim$activity) attr(samp,"epsg") <- attr(object.sim,"epsg") attr(samp,"proj4") <- attr(object.sim,"proj4") return(samp) }
setMethodS3("plotDensity", "AffymetrixCelFile", function(this, subset=NULL, types=NULL, ..., xlim=c(0,16), xlab=NULL, ylab="density (integrates to one)", log=TRUE, annotate=TRUE, verbose=FALSE) { requireNamespace("aroma.light") || throw("Package aroma.light not loaded.") if (is.null(xlab)) { if (log) { xlab <- expression(log[2](y)) } else { xlab <- expression(y) } } verbose <- Arguments$getVerbose(verbose) cdf <- getCdf(this) verbose && enter(verbose, "Identifying subset of probes") suppressWarnings({ subset <- identifyCells(cdf, indices=subset, types=types, verbose=less(verbose)) }) verbose && exit(verbose) verbose && enter(verbose, "Plotting the density") verbose && cat(verbose, "Array: ", getName(this)) suppressWarnings({ verbose && enter(verbose, "Loading probe intensities") y <- getData(this, indices=subset, fields="intensities") y <- y$intensities verbose && exit(verbose) if (log) { verbose && cat(verbose, "Taking the logarithm (base 2)") y <- log(y, base=2) } verbose && cat(verbose, "Plotting") plotDensity(y, xlim=xlim, xlab=xlab, ylab=ylab, ...) }) if (annotate) { stextChipType(getChipType(this)) stextLabels(this) stextSize(this, size=length(y)) } verbose && exit(verbose) }) setMethodS3("getAm", "AffymetrixCelFile", function(this, reference, indices=NULL, ..., zeros=FALSE) { reference <- Arguments$getInstanceOf(reference, "AffymetrixCelFile") nbrOfCells <- nbrOfCells(this) if (is.null(indices)) { } else { indices <- Arguments$getIndices(indices, max=nbrOfCells) } if (nbrOfCells != nbrOfCells(reference)) { throw("This and the 'reference' CEL file have different number of cells: ", nbrOfCells, " != ", nbrOfCells(reference)) } y1 <- getData(this, indices=indices, fields="intensities")[,1] offset <- this$offset if (is.null(offset)) offset <- 0 if (offset != 0) cat("Offset: ", offset, "\n", sep="") if (!zeros) { keep <- which(y1 != 0) y1 <- y1[keep] } else { keep <- seq_along(y1) } y1 <- y1 + offset y1 <- log(y1, base=2) if (length(y1) == 0) { y2 <- y1 } else { if (is.null(indices)) { indices <- keep } else { indices <- indices[keep] } y2 <- getData(reference, indices=indices, fields="intensities")[,1] y2 <- y2 + offset y2 <- log(y2, base=2) } am <- matrix(c((y1+y2)/2, y1-y2), ncol=2) colnames(am) <- c("A", "M") am }) setMethodS3("annotateMvsA", "AffymetrixCelFile", function(this, reference, ..., what="M") { if (identical(what, "M")) { abline(h=0, lty=1, col="blue") } stextChipType(getChipType(this)) stextLabels(this, others=reference) }, private=TRUE) setMethodS3("plotMvsA", "AffymetrixCelFile", function(this, reference, indices=NULL, pch=176, xlim=c(0,16), ylim=c(-1,1)*diff(xlim), xlab=expression(A==1/2%*%log[2](y[1]*y[2])), ylab=expression(M==log[2](y[1]/y[2])), ..., annotate=TRUE) { ma <- getAm(this, reference, indices=indices) plot(ma, pch=pch, xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim, ...) if (annotate) { annotateMvsA(this, reference) stextSize(this, size=nrow(ma)) } this$lastPlotData <- ma invisible(ma) }) setMethodS3("smoothScatterMvsA", "AffymetrixCelFile", function(this, reference, indices=NULL, pch=176, xlim=c(0,16), ylim=c(-1,1)*diff(xlim), xlab=expression(A==1/2%*%log[2](y[1]*y[2])), ylab=expression(M==log[2](y[1]/y[2])), ..., annotate=TRUE) { ma <- getAm(this, reference, indices=indices) smoothScatter(ma, pch=pch, xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim, ...) if (annotate) { annotateMvsA(this, reference) stextSize(this, size=nrow(ma)) } this$lastPlotData <- ma invisible(ma) }) setMethodS3("plotMvsX", "AffymetrixCelFile", function(this, reference, x, indices=NULL, pch=176, ylim=c(-1,1)*2, ylab=NULL, ..., what=c("M", "A"), add=FALSE, annotate=!add) { what <- match.arg(what) ma <- getAm(this, reference, indices=indices, zeros=TRUE) nobs <- nrow(ma) if (nobs == 0) throw("Cannot plot M vs X because there is not non-zero data.") if (nobs != length(x)) { throw("The number of log-ratios does not match the number of elements in argument 'x': ", length(nobs), " != ", length(x)) } if (what == "M") { ylab <- expression(M==log[2](y1/y2)) } else { ma <- ma[,2:1] ylab <- expression(A==1/2%*%log[2](y1*y2)) } if (add) { points(x, ma[,1], pch=pch, ...) } else { plot(x, ma[,1], pch=pch, ylim=ylim, ylab=ylab, ...) if (annotate) { annotateMvsA(this, reference, what=what) stextSize(this, size=length(x)) } } ma <- cbind(x=x, ma) this$lastPlotData <- ma invisible(ma) }) setMethodS3("highlight", "AffymetrixCelFile", function(this, indices=NULL, ...) { data <- this$lastPlotData if (!is.null(indices)) data <- data[indices,,drop=FALSE] points(data[,1:2], ...) invisible(data) }, protected=TRUE) setMethodS3("image270", "AffymetrixCelFile", function(this, xrange=c(0,Inf), yrange=c(0,Inf), takeLog=TRUE, interleaved=FALSE, ..., field=c("intensities", "stdvs", "pixels"), col=gray.colors(256), main=getName(this)) { rotate270 <- function(x, ...) { x <- t(x) nc <- ncol(x) if (nc < 2) return(x) x[,nc:1,drop=FALSE] } field <- match.arg(field) suppressWarnings({ y <- readRawDataRectangle(this, xrange=xrange, yrange=yrange, fields=field, ..., drop=TRUE) }) nr <- nrow(y) if (interleaved) { idxEven <- which((1:nr) %% 2 == 0) y[idxEven-1,] <- y[idxEven,] } suppressWarnings({ if (takeLog) { image(log2(rotate270(y)), col=col, ..., axes=FALSE, main=main) } else { image(rotate270(y), col=col, ..., axes=FALSE, main=main) } }) if (is.null(xrange) || xrange[2] == Inf) xrange <- c(0,ncol(y)-1) if (is.null(yrange) || yrange[2] == Inf) yrange <- c(0,nrow(y)-1) cdf <- getCdf(this) dim <- paste(getDimension(cdf), collapse="x") label <- sprintf("Chip type: %s [%s]", getChipType(this), dim) text(x=0, y=0, labels=label, adj=c(0,1.2), cex=0.8, xpd=TRUE) label <- sprintf("(%d,%d)", as.integer(xrange[1]), as.integer(yrange[1])) text(x=0, y=1, labels=label, adj=c(0,-0.7), cex=0.8, xpd=TRUE) label <- sprintf("(%d,%d)", as.integer(xrange[2]), as.integer(yrange[2])) text(x=1, y=0, labels=label, adj=c(1,1.2), cex=0.8, xpd=TRUE) invisible(y) }) setMethodS3("getImage", "AffymetrixCelFile", function(this, other=NULL, transforms=list(sqrt), xrange=c(0,Inf), yrange=xrange, zrange=c(0,sqrt(2^16)), field=c("intensities", "stdvs", "pixels"), zoom=1, ..., readRectFcn=NULL, verbose=FALSE) { readRectangleByField <- function(this, other=NULL, xrange, yrange, ...) { suppressWarnings({ y <- readRawDataRectangle(this, xrange=xrange, yrange=yrange, fields=field, ..., drop=TRUE) }) if (is.null(other)) { } else { if (inherits(other, "AffymetrixCelFile")) { suppressWarnings({ yR <- readRawDataRectangle(other, xrange=xrange, yrange=yrange, fields=field, ..., drop=TRUE) }) } else { yR <- other } y <- y/yR } y } if (!is.null(other)) { if (inherits(other, "AffymetrixCelFile")) { hdr1 <- getHeader(this) hdr2 <- getHeader(other) fields <- c("rows", "cols") if (!identical(hdr1[fields], hdr2[fields])) { throw("Argument 'other' contains an ", class(other)[1], " with a dimension not compatible with the main ", class(this)[1], "") } } else { throw("Argument 'other' is of an unknown class: ", other) } } field <- match.arg(field) zoom <- Arguments$getDouble(zoom, range=c(0,Inf)) if (is.null(readRectFcn)) { readRectFcn <- readRectangleByField } else if (!is.function(readRectFcn)) { throw("Argument 'readRectFcn' is not a function: ", readRectFcn) } verbose <- Arguments$getVerbose(verbose) verbose && enter(verbose, "Getting CEL image") verbose && enter(verbose, "Reading CEL image") y <- readRectFcn(this, other=other, xrange=xrange, yrange=yrange, ...) verbose && str(verbose, y) verbose && summary(verbose, as.vector(y[is.finite(y) & (y != 0)])) verbose && printf(verbose, "RAM: %s\n", hsize(object.size(y), digits = 2L, standard = "IEC")) verbose && exit(verbose) verbose && enter(verbose, "Creating Image") img <- getImage(y, transforms=transforms, scale=zoom, lim=zrange, ..., verbose=less(verbose, 1)) verbose && print(verbose, img) verbose && exit(verbose) verbose && exit(verbose) attr(img, "field") <- field img }) setMethodS3("plotImage", "AffymetrixCelFile", function(this, ...) { img <- getImage(this, ...) display(img); invisible(img) }) setMethodS3("writeImage", "AffymetrixCelFile", function(this, filename=NULL, fullname=NULL, tags=c("*", "sqrt", "gray"), imgFormat="png", path=NULL, field=c("intensities", "stdvs", "pixels"), ..., skip=TRUE, verbose=FALSE) { if (is.null(path)) { rootPath <- "reports" path <- getPath(this) parent <- getParent(path); parent <- getParent(path); parts <- unlist(strsplit(basename(parent), split=",")) dataSet <- parts[1] dataSetTags <- parts[-1] if (length(dataSetTags) == 0) { dataSetTags <- "raw" } else { dataSetTags <- paste(dataSetTags, collapse=",") } chipType <- getChipType(this, fullname=FALSE) set <- "spatial" path <- filePath(rootPath, dataSet, dataSetTags, chipType, set) } path <- Arguments$getWritablePath(path) tags <- Arguments$getCharacters(tags) verbose <- Arguments$getVerbose(verbose) if ("*" %in% tags) { idx <- match("*", tags) tags[idx] <- field tags <- locallyUnique(tags) } verbose && enter(verbose, "Writing CEL image to file") if (is.null(fullname)) { fullname <- getFullName(this) } fullname <- paste(c(fullname, tags), collapse=",") if (is.null(filename)) { filename <- sprintf("%s.%s", fullname, imgFormat) } pathname <- Arguments$getWritablePathname(filename, path=path) verbose && cat(verbose, "Pathname: ", pathname) if (!skip || !isFile(pathname)) { verbose && enter(verbose, "Getting image") img <- getImage(this, ..., verbose=less(verbose)) verbose && cat(verbose, "Image object:") verbose && print(verbose, img) verbose && exit(verbose) verbose && enter(verbose, "Writing image") writeImage(img, file=pathname) verbose && exit(verbose) } verbose && exit(verbose) pathname })
library(fansi) old_max <- fansi:::set_int_max(15) unitizer_sect('tabs', { tabs_as_spaces("\t1234567") tryCatch(tabs_as_spaces("\t12345678"), error=conditionMessage) invisible(fansi:::set_int_max(12)) tabs_as_spaces(c("\t", "\t123")) }) unitizer_sect('wrap', { invisible(fansi:::set_int_max(15)) string <- '0123456789' strwrap_ctl(string, 16) strwrap2_ctl(string, 16, pad.end=' ') tce(strwrap2_ctl(string, 17, pad.end=' ')) strwrap_ctl(string, 16, prefix='-----') tce(strwrap_ctl(string, 16, prefix='------')) strwrap_ctl(string, 16, indent=5) tce(strwrap_ctl(string, 16, indent=6)) strwrap_ctl(string, 16, indent=2, prefix='---') tce(strwrap_ctl(string, 16, indent=3, prefix='---')) string2 <- '012345678901234' string3 <- '0123456789012345' strwrap_ctl(string2, 16) tce(strwrap_ctl(string3, 16)) string4 <- '\033[31m0123456789' tce(strwrap_ctl(string4, 16)) invisible(fansi:::set_int_max(9)) tce(strwrap_ctl("A\033[31m a", 5)) }) unitizer_sect('html', { invisible(fansi:::set_int_max(38)) sgr_to_html("\033[31ma") tce(sgr_to_html("\033[31mab")) tce(sgr_to_html("\033[31m\033[42mhello")) invisible(fansi:::set_int_max(57)) tce(sgr_to_html("\033[31m\033[42mhello", classes=TRUE)) invisible(fansi:::set_int_max(58)) (x <- sgr_to_html("\033[31m\033[42mhello", classes=TRUE)) nchar(x) invisible(fansi:::set_int_max(4)) tce(sgr_to_html("hello")); tce(html_esc("hello")); tce(html_esc("<")); tce(html_esc("<!")); tce(html_esc("&")); tce(html_esc("'")); }) unitizer_sect('unhandled', { invisible(fansi:::set_int_max(10)) string <- paste0(rep("\a", 10), collapse="") unhandled_ctl(string) tcw(unhandled_ctl(c('\a', string))) suppressWarnings(unhandled_ctl(c('\a', string))) }) unitizer_sect('size buffer', { invisible(fansi:::set_int_max(old_max)) fansi:::size_buff(c(0L, 127L, 128L, 64L, 200L, 1024L)) fansi:::size_buff(c(0L, 127L, -128L)) invisible(fansi:::set_int_max(130)) fansi:::size_buff(c(0L, 127L, 128L, 64L, 200L, 1024L)) invisible(fansi:::set_int_max(64)) fansi:::size_buff(c(0L, 32L, 63L, 64L)) fansi:::size_buff(c(0L, 32L, 63L, 65L)) invisible(fansi:::set_int_max(old_max)) dat <- fansi:::size_buff_prot_test() dat['first', 'self'] == dat['smaller 1.0', 'self'] dat['new buff', 'prev'] == dat['grow 1.0', 'self'] dat['new buff', 'prev'] != dat['new buff', 'self'] dat['smaller 1.1', 'self'] == dat['grow 1.0', 'self'] dat['smaller 2.0', 'self'] == dat['new buff', 'self'] dat['smaller 2.0', 'prev'] == dat['new buff', 'prev'] dat['smaller 2.0', 'prev'] == dat['grow 2.0', 'prev'] dat['grow 1.1', 'prev'] == dat['grow 2.0', 'self'] dat['grow 2.1', 'prev'] == dat['grow 1.1', 'self'] }) unitizer_sect('misc', { invisible(fansi:::set_int_max(5)) substr_ctl("\033[43mA B", 5, 5) substr_ctl("12345", 1, 5) substr_ctl("123456", 1, 6) }) fansi:::reset_limits() unitizer_sect('R_len_t', { old_rlent <- fansi:::set_rlent_max(5) tabs_as_spaces("A\tB") new_rlent <- fansi:::set_rlent_max(old_rlent) }) fansi:::reset_limits() unitizer_sect('internal', { tce(.Call(fansi:::FANSI_buff_test_reset)) tce(.Call(fansi:::FANSI_buff_test_copy_overflow)) tce(.Call(fansi:::FANSI_buff_test_mcopy_overflow)) tce(.Call(fansi:::FANSI_buff_test_fill_overflow)) })
"posterior.mode"<-function(x, adjust=0.1, ...){ if(is.mcmc(x)==FALSE){ warning("posterior.mode expecting mcmc object") } find.mode<-function(x,adjust,...){ dx<-density(x, adjust=adjust, ...) dx$x[which.max(dx$y)] } apply(as.matrix(x), 2, find.mode, adjust=adjust, ...) }
setMethodS3("getAlleleProbePairs", "AffymetrixCdfFile", function(this, units=NULL, ignoreOrder=TRUE, force=FALSE, verbose=FALSE, ...) { verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } verbose && enter(verbose, "Identifying the probes stratified by allele basepairs") on.exit(verbose && exit(verbose)) chipType <- getChipType(this) key <- list(method="getAlleleProbePairs", class=class(this)[1], version="2008-02-27", chipType=chipType, units=units, ignoreOrder=ignoreOrder) if (getOption(aromaSettings, "devel/useCacheKeyInterface", FALSE)) { key <- getCacheKey(this, method="getAlleleProbePairs", chipType=chipType, units=units, ignoreOrder=ignoreOrder) } dirs <- c("aroma.affymetrix", chipType) if (!force) { probeSets <- loadCache(key=key, dirs=dirs) if (!is.null(probeSets)) { verbose && cat(verbose, "Loaded from file cache") gc <- gc() verbose && print(verbose, gc) return(probeSets) } } cdfFile <- getPathname(this) verbose && enter(verbose, "Loading all possible allele basepairs") verbose && enter(verbose, "Identifying compatible SNP units") types <- getUnitTypes(this, verbose=less(verbose, 1)) unitsAll <- which(types == 2) verbose && cat(verbose, "Number of SNP units: ", length(unitsAll)) unitSizes <- nbrOfGroupsPerUnit(this, units=unitsAll) verbose && cat(verbose, "Detected unit sizes:") verbose && print(verbose, table(unitSizes)) unitsAll <- unitsAll[unitSizes %in% c(2,4)] unitSizes <- NULL verbose && cat(verbose, "Number of SNP units with 2 or 4 groups: ", length(unitsAll)) verbose && exit(verbose) gc <- gc() if (!is.null(units)) { unitsAll <- intersect(unitsAll, units) } units <- unitsAll unitsAll <- NULL nunits <- length(units) verbose && cat(verbose, "Number of SNP units to query: ", nunits) if (nunits == 0) return(NULL) verbose && enter(verbose, "Retrieving group names") groupNames <- .readCdfGroupNames(cdfFile, units=units) names(groupNames) <- NULL levels <- as.integer(1:4) names(levels) <- c("A", "C", "G", "T") groupNames <- lapply(groupNames, FUN=function(s) { s <- levels[s] names(s) <- NULL s }) uGroupNames <- unique(groupNames) o <- order(as.integer(sapply(uGroupNames, FUN=paste, collapse=""))) uGroupNames <- uGroupNames[o] o <- NULL gc <- gc() verbose && print(verbose, gc) verbose && cat(verbose, "Unique group names:") verbose && str(verbose, lapply(uGroupNames, FUN=function(x) names(levels[x])), vec.len=8) verbose && exit(verbose) verbose && exit(verbose) verbose && enter(verbose, "Loading cell indices for probepairs for requested units") nbrOfUnitsPerChunk <- 100e3 nunits <- length(units) nbrOfChunks <- ceiling(nunits / nbrOfUnitsPerChunk) uu <- 1:nbrOfUnitsPerChunk unitsTodo <- units count <- 1 cells0 <- list() cdfAll <- list() while (length(unitsTodo) > 0) { verbose && enter(verbose, sprintf("Chunk if (length(unitsTodo) <= nbrOfUnitsPerChunk) uu <- 1:length(unitsTodo) verbose && cat(verbose, "Units: ") verbose && str(verbose, unitsTodo[uu]) cdfAll0 <- .readCdfCellIndices(cdfFile, units=unitsTodo[uu], stratifyBy="pm") unitsTodo <- unitsTodo[-uu] names(cdfAll0) <- NULL cells0[[count]] <- unlist(cdfAll0, use.names=FALSE) cdfAll0 <- lapply(cdfAll0, FUN=function(unit) { groups <- .subset2(unit, 1) names(groups) <- NULL lapply(groups, FUN=.subset2, 1) }) gc <- gc() cdfAll <- c(cdfAll, cdfAll0) cdfAll0 <- NULL gc <- gc() verbose && print(verbose, gc) count <- count + 1 verbose && exit(verbose) } units <- unitsTodo <- uu <- NULL gc <- gc() verbose && print(verbose, gc) cells0 <- unlist(cells0, use.names=FALSE) gc <- gc() cells0 <- sort(cells0) gc <- gc() nbrOfCells <- length(cells0) verbose && printf(verbose, "Identified %d (PM_A,PM_B) pairs in %d units, i.e. on average %.2g probe pairs/units\n", round(nbrOfCells/2), nunits, (nbrOfCells/2)/nunits) if (length(cdfAll) != nunits) { throw("Internal error: Expected ", nunits, " units, but got ", length(cdfAll)) } verbose && exit(verbose) verbose && enter(verbose, "Stratifying by unique allele basepairs") probeSets <- vector("list", length(uGroupNames)) for (kk in 1:length(uGroupNames)) { name <- uGroupNames[[kk]] basepair <- paste(names(levels)[name[1:2]], collapse="") verbose && enter(verbose, sprintf("Allele basepair %s (%d of %d)", basepair, kk, length(uGroupNames))) idx <- sapply(groupNames, FUN=identical, name) idx <- which(idx) if (verbose) { bpNames <- matrix(names(levels)[name], nrow=2) bpNames <- paste(bpNames[1,], bpNames[2,], sep="") verbose && cat(verbose, "Allele pairs: ", paste(bpNames, collapse=",")) bpNames <- NULL verbose && cat(verbose, "Number of units: ", length(idx)) } cdf <- cdfAll[idx] cdfAll[idx] <- NA; idx <- NULL cdf0 <- vector("list", length=length(name)) for (gg in 1:length(name)) { cdf0[[gg]] <- unlist(lapply(cdf, FUN=.subset2, gg), use.names=FALSE) } cdf <- NULL probeSets[[kk]] <- cdf0 cdf0 <- NULL names(probeSets)[kk] <- basepair verbose && exit(verbose) } cdfAll <- NULL gc <- gc() verbose && print(verbose, gc) verbose && exit(verbose) verbose && enter(verbose, "Asserting correctness part I", level=-20) nbrOfCells2 <- length(unlist(probeSets, use.names=FALSE)) if (nbrOfCells2 != nbrOfCells) { throw("Internal error: Excepted ", nbrOfCells, " indices: ", nbrOfCells2) } if (!identical(sort(unlist(probeSets, use.names=FALSE)), cells0)) { throw("Internal error: Mismatching probes.") } verbose && exit(verbose) verbose && enter(verbose, "Putting equivalent groups together") probeSets2 <- list() for (kk in 1:length(probeSets)) { bp <- names(probeSets)[kk] value <- probeSets[[kk]] nbrOfPairs <- length(value)/2 for (ll in seq_len(nbrOfPairs)) { value2 <- probeSets2[[bp]] if (is.null(value2)) value2 <- vector("list", length=2) value2[[1]] <- c(value2[[1]], value[[1]]) value2[[2]] <- c(value2[[2]], value[[2]]) probeSets2[[bp]] <- value2 value2 <- NULL bp <- strsplit(bp, split="")[[1]] bp <- c(A="T", C="G", G="C", T="A")[bp] bp <- paste(bp, collapse="") value <- value[-(1:2)] } } verbose && cat(verbose, "Probe pairs: ", paste(sort(names(probeSets2)), collapse=", ")) verbose && exit(verbose) verbose && enter(verbose, "Asserting correctness part II", level=-20) nbrOfCells2 <- length(unlist(probeSets, use.names=FALSE)) if (nbrOfCells2 != nbrOfCells) { throw("Internal error: Excepted ", nbrOfCells, " indices: ", nbrOfCells2) } if (!identical(sort(unlist(probeSets, use.names=FALSE)), cells0)) { throw("Internal error: Mismatching probes.") } verbose && exit(verbose) if (ignoreOrder) { verbose && enter(verbose, "Putting AB and BA groups together") probeSets <- NULL gc <- gc() pairs <- strsplit(names(probeSets2), split="") pairs <- lapply(pairs, FUN=function(x) paste(sort(x), collapse="")) pairs <- unlist(pairs) uPairs <- sort(unique(pairs)) verbose && cat(verbose, "Probe pairs (ignoring order): ", paste(uPairs, collapse=", ")) probeSets <- list() for (pair in uPairs) { idx <- which(pairs == pair) basepairs <- sort(names(probeSets2)[idx]) probeSets[[pair]] <- probeSets2[basepairs] } probeSets2 <- NULL verbose && exit(verbose) verbose && enter(verbose, "Combining AB and BA groups") for (kk in 1:length(probeSets)) { values <- probeSets[[kk]] if (length(values) == 1) { values <- values[[1]] } else { values[[1]][[1]] <- c(values[[1]][[1]], values[[2]][[2]]) values[[1]][[2]] <- c(values[[1]][[2]], values[[2]][[1]]) values <- values[[1]] } probeSets[[kk]] <- values } values <- NULL verbose && exit(verbose) } else { probeSets <- probeSets2 probeSets2 <- NULL } verbose && enter(verbose, "Asserting correctness part III", level=-20) nbrOfCells2 <- length(unlist(probeSets, use.names=FALSE)) if (nbrOfCells2 != nbrOfCells) { throw("Internal error: Excepted ", nbrOfCells, " indices: ", nbrOfCells2) } if (!identical(sort(unlist(probeSets, use.names=FALSE)), cells0)) { throw("Internal error: Mismatching probes.") } gc <- gc() verbose && exit(verbose) verbose && enter(verbose, "Reformatting to matrices") for (kk in 1:length(probeSets)) { verbose && enter(verbose, sprintf("Group values <- probeSets[[kk]] values <- matrix(c(values[[1]], values[[2]]), ncol=2) colnames(values) <- strsplit(names(probeSets)[kk], split="")[[1]] o <- order(values[,1]) values <- values[o,] probeSets[[kk]] <- values verbose && exit(verbose) } values <- o <- NULL gc <- gc() if (isVisible(verbose, level=-20)) verbose && str(verbose, probeSets, level=-20) verbose && exit(verbose) verbose && enter(verbose, "Asserting correctness part IV", level=-20) nbrOfCells2 <- length(unlist(probeSets, use.names=FALSE)) if (nbrOfCells2 != nbrOfCells) { throw("Internal error4: Excepted ", nbrOfCells, " indices: ", nbrOfCells2) } if (!identical(sort(unlist(probeSets, use.names=FALSE)), cells0)) { throw("Internal error: The identified set of indices for various allele probe pairs does not match the original set of cell indices.") } verbose && exit(verbose) verbose && enter(verbose, "Identifying indices for all non-SNP PM cells") unitTypes <- getUnitTypes(this, verbose=less(verbose,1)); verbose && cat(verbose, "Table of identified unit types:") verbose && print(verbose, table(unitTypes)) nonSnpUnits <- which(unitTypes != 2); if (length(nonSnpUnits) > 0) { cells <- getCellIndices(this, units=nonSnpUnits, useNames=FALSE, unlist=TRUE, verbose=less(verbose,1)) } else { cells <- NULL } verbose && cat(verbose, "Identified non-SNP units:") verbose && str(verbose, cells) probeSets$nonSNPs <- cells cells <- NULL verbose && exit(verbose) comment <- key[c("method", "class", "chipType")] comment <- paste(names(comment), comment, sep="=") comment <- paste(comment, collapse=", ") saveCache(probeSets, key=key, comment=comment, dirs=dirs) probeSets }, private=TRUE)
discretize <- function(x, method = "frequency", breaks = 3, labels = NULL, include.lowest = TRUE, right = FALSE, dig.lab = 3, ordered_result = FALSE, infinity = FALSE, onlycuts = FALSE, categories = NULL, ...) { if(!is.null(categories)) { warning("Parameter categories is deprecated. Use breaks instead! Also, the default method is now frequency!") breaks <- categories } methods <- c("interval", "frequency", "cluster", "fixed") method <- methods[pmatch(tolower(method), methods)] if(is.na(method)) stop("Unknown method!") if(method == "fixed" && length(breaks) < 2) stop("fixed needs at least two values for breaks.") if(method != "fixed" && (length(breaks) != 1 || breaks < 1)) stop("breaks needs to be a single positive integer for this method.") breaks <- switch(method, interval = seq(from=min(x, na.rm=TRUE), to=max(x, na.rm=TRUE), length.out=breaks+1), frequency = stats::quantile(x, probs = seq(0,1, length.out = breaks+1), na.rm = TRUE), cluster = { cl <- stats::kmeans(stats::na.omit(x), breaks, ...) centers <- sort(cl$centers[,1]) as.numeric(c(min(x, na.rm=TRUE), head(centers, length(centers)-1) + diff(centers)/2, max(x, na.rm=TRUE))) }, fixed = breaks ) if(any(duplicated(breaks))){ warning("The calculated breaks are: ", paste(breaks, collapse = ", "), "\n Only unique breaks are used reducing the number of intervals. Look at ? discretize for details.") breaks <- unique(breaks) if(length(breaks) < 2) stop("Less than 2 uniques breaks left. Maybe the variable has only one value!") } if(infinity) { breaks[1] <- -Inf breaks[length(breaks)] <- Inf } if(onlycuts) return(as.vector(breaks)) structure( cut(x, breaks = breaks, labels = labels, include.lowest = include.lowest, right = right, ordered_result = ordered_result), "discretized:breaks" = as.vector(breaks), "discretized:method" = method ) } discretizeDF <- function(df, methods = NULL, default = NULL) { if(is.data.frame(methods)) return(.rediscretizeDF(methods, df)) for(i in colnames(df)) { if(!is.numeric(df[[i]])) next args <- if(is.null(methods[[i]])) default else methods[[i]] if(!is.null(args) && (is.null(args$method) || args$method == "none")) next if(is(err <- try( df[[i]] <- do.call("discretize", c(list(x = df[[i]]), args)), silent = TRUE), "try-error")) stop("Problem with column ", i, "\n", err) } df } .rediscretizeDF <- function(data, newdata) { if(!all(colnames(data) == colnames(newdata))) stop("column names in the new data are not the same as in the discretized data.") cps <- lapply(data, FUN = function(x) { breaks <- attr(x, "discretized:breaks") if(is.null(breaks)) NULL else list(breaks = breaks, method = "fixed", labels = levels(x)) }) discretizeDF(newdata, methods = cps, default = list(method = "none")) }
"copy.gp" <- function(object,object2=NULL,...){ nullFlag=FALSE if(is.null(object2)){ object2=new.env(parent=globalenv()) class(object2)=class(object) nullFlag=TRUE } elements=names(object) for(index in 1:length(elements)){ assign(elements[index],get(elements[index],envir=object,inherits=FALSE),envir=object2) } if(nullFlag){ return(object2) } else{ return(NULL) } }
zones_to_raster = function(v, resolution, variables, ...){ v_extent = raster::extent(v) v_crs = sf::st_crs(v)$proj4string template_raster = raster::raster(v_extent, crs = v_crs, resolution = resolution) v$id = seq_len(nrow(v)) r_id = fasterize::fasterize(v, template_raster, field = "id", ...) out = if (requireNamespace("pbapply", quietly = TRUE)){ raster::stack(pbapply::pblapply(variables, zone_to_raster, v = v, resolution = resolution, id_raster = r_id, ...)) } else { raster::stack(lapply(variables, zone_to_raster, v = v, resolution = resolution, id_raster = r_id, ...)) } } zone_to_raster = function(variable, v, resolution, id_raster, ...){ freq_df = as.data.frame(raster::freq(id_raster)) vals_df = sf::st_drop_geometry(v[c(variable, "id")]) names(vals_df) = c("pop", "value") df = merge(freq_df, vals_df, by = "value", all.x = TRUE) df$density = df$pop / df$count rc_mat = df[c("value", "density")] r = raster::reclassify(id_raster, rc_mat) names(r) = variable r }
context("Test: rhScore() ") data(PhyloExpressionSetExample) data(DivergenceExpressionSetExample) data(PhyloExpressionSetExample) data(DivergenceExpressionSetExample) tai.vals <- TAI(PhyloExpressionSetExample) tdi.vals <- TDI(DivergenceExpressionSetExample) test_that("rhScore computes correct reductive hourglass scores...",{ expect_equal(rhScore(tai.vals, early = 1:2, mid = 3:5, late = 6:7,method = "min", scoringMethod = "mean-mean"),min(c(mean(tai.vals[1:2] - mean(tai.vals[3:5])), mean(tai.vals[6:7] - mean(tai.vals[3:5]))))) expect_equal(rhScore(tdi.vals, early = 1:2, mid = 3:5, late = 6:7,method = "min", scoringMethod = "mean-mean"),min(c(mean(tdi.vals[1:2] - mean(tdi.vals[3:5])), mean(tdi.vals[6:7] - mean(tdi.vals[3:5]))))) })
setMethod("merge", signature(x = "Speclib", y = "Speclib"), function(x, y, ...) { if (dim(x)[2] != dim(y)[2]) stop("Dimensions of Speclibs do not fit") wl <- wavelength(x) if (any(wl!=wavelength(y))) stop("Wavelengths differ") if (nrow(y@SI) == dim(y)[1]) { if (nrow(x@SI) == dim(x)[1]) { SI(x) <- rbind(SI(x),SI(y)) } else { warning("x does not have proper SI definition. SI information will be lost") } } else { warning("y does not have proper SI definition. SI information will be lost") } ids <- c(idSpeclib(x), idSpeclib(y)) spectra(x) <- as.matrix(rbind(spectra(x),spectra(y))) idSpeclib(x) <- as.character(ids) dots <- list(...) if (length(dots) > 0) { oldhist <- usagehistory(x) for (i in 1:length(dots)) { stopifnot(is.speclib(dots[[i]])) x <- merge(x, dots[[i]]) } usagehistory(x) <- NULL usagehistory(x) <- oldhist } uh <- as.character(.get_args(-1)) usagehistory(x) <- paste0("Speclibs '", paste(uh[-1], collapse = "', '"), "' merged") return(x) } )
setClass(Class="NpdeObject", representation=representation( data="NpdeData", results="NpdeRes", sim.data="NpdeSimData", options="list", prefs="list" ), validity=function(object){ validObject(object@data) validObject([email protected]) return(TRUE) } ) setMethod( f="initialize", signature="NpdeObject", definition= function (.Object,data,sim.data,options=list(),prefs=list()){ .Object@data<-data [email protected]<-sim.data .Object@results<-new(Class="NpdeRes") .Object@results["ntot.obs"]<-data["ntot.obs"] .Object@results["not.miss"]<-data["not.miss"] .Object@results["icens"]<-data["icens"] opt<-npdeControl() if(length(options)>0) { for(i in names(options)) { if(length(grep(i,names(opt)))==0) message(paste("Option",i, "not found, check spelling")) else opt[i]<-options[i] } i1<-grep("namsav",names(options)) if(length(i1)!=0 && !is.na(i1)) { opt$namres<-paste(options[i1],".npde",sep="") opt$namgr<-paste(options[i1],".",opt$type.graph,sep="") } } opt<-check.control.options(opt) .Object@options<-opt graph.opt<-set.plotoptions(.Object) if(length(prefs)>0) { for(i in names(prefs)) { if(length(grep(i,names(graph.opt)))==0) message(paste("Graphical option",i, "not found, check spelling")) else graph.opt[i]<-prefs[i] } } .Object@prefs<-graph.opt validObject(.Object) return (.Object ) } ) setMethod( f ="[", signature = "NpdeObject" , definition = function (x,i,j,drop ){ switch (EXPR=i, "data"={return(x@data)}, "sim.data"={return([email protected])}, "results"={return(x@results)}, "options"={return(x@options)}, "prefs"={return(x@prefs)}, stop("No such attribute\n") ) } ) setReplaceMethod( f ="[", signature = "NpdeObject" , definition = function (x,i,j,value){ switch (EXPR=i, "data"={x@data<-value}, "sim.data"={[email protected]<-value}, "results"={x@results<-value}, "options"={x@options<-value}, "prefs"={x@prefs<-value}, stop("No such attribute\n") ) validObject(x) return(x) } )
mipplot_interactive_line <- function(D, language = "en") { model <- period <- NULL name_of_input_df = as.character(substitute(D)) D <- correct_format_of_iamc_dataframe(D) region_list <- levels(D$region) var_list <- levels(D$variable) model_list <- levels(D$model) scenario_list <- levels(D$scenario) period_list <- levels(as.factor(D$period)) ui <- fluidPage( shinyalert::useShinyalert(), titlePanel("mipplot"), sidebarLayout( sidebarPanel( selectInput("region", "region:", choices = c("Choose region" = "", region_list) ), selectInput("variable", "variable:", choices = c("Choose variable" = "", var_list) ), shinyWidgets::pickerInput("model", label = "model:", choices = get_model_name_list(D), multiple = TRUE, options = list( `actions-box` = TRUE, `title` = "Choose model" )), shinyWidgets::pickerInput("scenario", label = "scenario:", choices = get_scenario_name_list(D), multiple = TRUE, options = list( `actions-box` = TRUE, `title` = "Choose scenario" )), shinyWidgets::sliderTextInput( inputId = "period", label = "period:", choices = period_list, selected = c(head(period_list, n = 1), tail(period_list, n = 1)) ), shiny::checkboxInput( inputId = "showLegend", label = "show legend", value = TRUE ), shiny::checkboxInput( inputId = "printCredit", label = "print credit", value = TRUE ), checkboxInput( inputId = "rotateYearLabel45Degrees", label = "roate year label 45 degrees", value = FALSE), selectInput("language", "language:", choices = c( "Chinese(Simplified)" = "zh-cn", "Chinese(Traditional)" = "zh-tw", "English" = "en", "Japanese" = "jp", "Spanish" = "es"), selected = language), shiny::div( class = "form-group shiny-input-container", submitButton(text = "Apply Changes", icon = NULL, width = NULL) ), shiny::div( class = "form-group shiny-input-container", style = "color:red;", shiny::textOutput("warning_message_label") ), shiny::div( class = "form-group shiny-input-container", shiny::tags$label(class="control-label", "code:"), shiny::tags$pre( style = "overflow: scroll; max-height: 10em; white-space: pre-line;", shiny::textOutput( "code_to_reproduce_plot", inline = TRUE) ) ) ), mainPanel( plotOutput("line_plot") ) ) ) server <- function(input, output) { output$code_to_reproduce_plot <- shiny::reactive({ generate_code_to_plot_line(input, name_of_input_df) }) output$line_plot <- renderPlot({ output$warning_message_label <- shiny::reactive("") D_subset = D %>% dplyr::filter( model %in% input$model ) %>% dplyr::filter(input$period[1] <= period) %>% dplyr::filter(period <= input$period[2]) withCallingHandlers({ subset_plot <- mipplot_line(D_subset, variable = input$variable, scenario = input$scenario, region = input$region, legend = input$showLegend, axis_year_text_angle = ifelse(input$rotateYearLabel45Degrees, 45, 0), language = input$language) }, warning = function(e) { if(grepl("too many scenarios", e$message, fixed=TRUE)) { shinyalert::shinyalert( title = "Info", text = e$message, closeOnEsc = TRUE, closeOnClickOutside = TRUE, html = FALSE, type = "info", showConfirmButton = FALSE, showCancelButton = FALSE, timer = 2000, imageUrl = "", animation = TRUE ) output$warning_message_label <- shiny::reactive({ e$message }) } }) if (input$printCredit) { subset_plot <- add_credit_to_list_of_plot(subset_plot) } validate( need( length(input$variable) > 0 && input$variable != "" && length(input$region) > 0 && input$region != "" && length(input$model) > 0 && input$model != "" && length(input$scenario) > 0 && input$scenario != "", "Please specify plotting options.") ) validate( need(length(subset_plot) > 0, "can't find any data in this condition") ) subset_plot }, height = 400, width = 600 ) } shinyApp(ui, server); } get_model_name_list <- function(D) { return (D %>% dplyr::pull(.data$model) %>% unique() %>% levels()) } get_scenario_name_list <- function(D) { return (D %>% dplyr::pull(.data$scenario) %>% unique() %>% levels()) } generate_code_to_plot_line <- function(input, name_of_iamc_data_variable = "D") { return(stringr::str_interp( "data_subset <- ${name_of_iamc_data_variable} %>% filter( model %in% ${get_string_expression_of_vector_of_strings(input$model)} ) %>% filter(${input$period[1]} <= period) %>% filter(period <= ${input$period[2]}) mipplot_line( data_subset, variable = ${get_string_expression_of_vector_of_strings(input$variable)}, scenario = ${get_string_expression_of_vector_of_strings(input$scenario)}, region = ${get_string_expression_of_vector_of_strings(input$region)}, legend = ${as.character(input$showLegend)}, axis_year_text_angle = ${ifelse(input$rotateYearLabel45Degrees, 45, 0)}, language = '${input$language}') ")) }
"sc.gaussian" <- function(params){ sigma <- params[p] mu <- c(X %*% params[-p]) fnb <- dnorm(qb, mu, sigma) fna <- dnorm(qa, mu, sigma) dF <- pnorm(qb, mu, sigma) - pnorm(qa, mu, sigma) sbeta <- colSums(X * (fnb - fna) / dF) ssigma <- sum((fnb * (qb. - mu) - fna * (qa. - mu)) / (sigma * dF)) c(sbeta, ssigma) }
setMethod("show", "pixmap", function(object){ cat("Pixmap image\n") cat(" Type :", class(object), "\n") cat(" Size :", paste(object@size, collapse="x"), "\n") cat(" Resolution :", paste(object@cellres, collapse="x"), "\n") cat(" Bounding box :", object@bbox, "\n") if(is(object, "pixmapIndexed")) cat(" Nr. of colors :", length(unique(as(object@index, "vector"))), "of", length(object@col), "\n") cat("\n") }) setMethod("plot", "pixmap", function(x, y, xlab="", ylab="", axes=FALSE, asp=1, ...){ x = as(x, "pixmapIndexed") X <- seq(x@bbox[1], x@bbox[3], by=x@cellres[1]) Y <- seq(x@bbox[2], x@bbox[4], by=x@cellres[2]) image(x=X, y=Y, z=t(x@index[nrow(x@index):1,,drop=FALSE]), col=x@col, xlab=xlab, ylab=ylab, axes=axes, asp=asp, ...) }) pixmap <- function(data=NULL, nrow=dim(data)[1], ncol=dim(data)[2], bbox=NULL, bbcent=FALSE, cellres=NULL) { cellres <- rep(cellres, length=2) if(is.null(bbox)){ if(is.null(cellres)) cellres <- c(1,1) if(is.null(nrow)){ if(!is.null(ncol)) nrow <- ceiling(length(data)/ncol) else stop("Too few dimension attributes (nrow, ncol, bbox)\n") } else if(is.null(ncol)) ncol <- ceiling(length(data)/nrow) if(bbcent) bbox <- c(1,1,cellres[1]*ncol, cellres[2]*nrow) else bbox <- c(0,0,cellres[1]*ncol, cellres[2]*nrow) } else{ if(is.null(cellres)){ if(is.null(nrow)){ if(!is.null(ncol)) nrow <- ceiling(length(data)/ncol) else stop("Too few dimension attributes (nrow, ncol, bbox)\n") } else if(is.null(ncol)) ncol <- ceiling(length(data)/nrow) cellres = .getCellres(bbox, bbcent, c(nrow, ncol)) } else{ if(bbcent){ ncol <- (bbox[3]-bbox[1])/cellres[1]+1 nrow <- (bbox[4]-bbox[2])/cellres[2]+1 } else{ ncol <- (bbox[3]-bbox[1])/cellres[1] nrow <- (bbox[4]-bbox[2])/cellres[2] } } } new("pixmap", size=as(c(nrow, ncol),"integer"), cellres=cellres, bbox=bbox, bbcent=bbcent) } pixmapGrey = function(data, ...) { z = new("pixmapGrey", pixmap(data, ...)) datamax <- max(data) datamin <- min(data) data <- as.numeric(data) if(datamax>1 || datamin<0) data <- (data - datamin)/(datamax-datamin) z@grey = matrix(data, nrow=z@size[1], ncol=z@size[2]) z } pixmapRGB = function(data, ...) { z = new("pixmapRGB", pixmap(data, ...)) datamax <- max(data) datamin <- min(data) data <- as.numeric(data) if(datamax>1 || datamin<0) data <- (data - datamin)/(datamax-datamin) data = array(data, dim=c(z@size[1], z@size[2], 3)) z@red = matrix(data[,,1], nrow=z@size[1], ncol=z@size[2]) z@green = matrix(data[,,2], nrow=z@size[1], ncol=z@size[2]) z@blue = matrix(data[,,3], nrow=z@size[1], ncol=z@size[2]) z } pixmapIndexed = function(data, col=NULL, ...) { z = new("pixmapIndexed", pixmap(data, ...)) data <- as(data, "integer") datamin <- min(data) if(datamin<=0) data <- data - datamin + 1 datamax <- max(data) z@index = matrix(data, nrow=z@size[1], ncol=z@size[2]) if(is.null(col)) col <- heat.colors(datamax) else{ if(is(col,"function")) col <- col(datamax) else { if(length(col) < datamax){ warning("number of of colors smaller than number of data values, recycling\n") col <- rep(col, length=datamax) } } } z@col = col z } setAs("pixmapGrey", "pixmapRGB", function(from, to){ z = new(to, as(from, "pixmap")) z@red = from@grey z@green = from@grey z@blue = from@grey z@channels = c("red", "green", "blue") z }) setAs("pixmapRGB", "pixmapGrey", function(from, to){ addChannels(from) }) setAs("pixmapRGB", "pixmapIndexed", function(from, to){ z = new(to, as(from, "pixmap")) x = rgb(from@red,from@green,from@blue) col <- unique(x) x <- match(x, col) z@index <- matrix(x, nrow=z@size[1], ncol=z@size[2]) z@col = col z }) setAs("pixmapGrey", "pixmapIndexed", function(from, to){ z = new(to, as(from, "pixmap")) x = grey(from@grey) col <- unique(x) x <- match(x, col) z@index <- matrix(x, nrow=z@size[1], ncol=z@size[2]) z@col = col z }) setAs("pixmapIndexed", "pixmapRGB", function(from, to){ z = new(to, as(from, "pixmap")) x <- col2rgb(from@col[from@index])/255 z@red <- matrix(x["red",], nrow=z@size[1], ncol=z@size[2]) z@green <- matrix(x["green",], nrow=z@size[1], ncol=z@size[2]) z@blue <- matrix(x["blue",], nrow=z@size[1], ncol=z@size[2]) z@channels = c("red", "green", "blue") z }) setAs("ANY", "pixmapGrey", function(from, to){ as(as(from, "pixmapRGB"), to) }) setAs("ANY", "pixmapIndexed", function(from, to){ as(as(from, "pixmapRGB"), to) }) setGeneric("addChannels", function(object, coef=NULL) standardGeneric("addChannels")) setMethod("addChannels", "pixmapRGB", function(object, coef=NULL){ if(is.null(coef)) coef = c(0.30, 0.59, 0.11) z = new("pixmapGrey", object) z@grey = coef[1] * object@red + coef[2] * object@green + coef[3] * object@blue z@channels = "grey" z }) setGeneric("getChannels", function(object, colors="all") standardGeneric("getChannels")) setMethod("getChannels", "pixmapChannels", function(object, colors="all"){ for(k in 1:length(colors)) colors[k] = match.arg(colors[k], c("all", object@channels)) if(any(colors=="all")) colors = object@channels colors = unique(colors) if(length(colors)>1){ z = array(0, dim=c(object@size, length(colors))) dimnames(z) = list(NULL, NULL, colors) for(k in colors){ z[,,k] = slot(object, k) } } else{ z = slot(object, colors) } z }) setMethod("[", "pixmap", function(x, i, j, ..., drop=FALSE){ if(missing(j)) j = TRUE if(missing(i)) i = TRUE osize = x@size if(is(x, "pixmapIndexed")){ x@index = x@index[i,j,drop=FALSE] x@size = dim(x@index) } else if(is(x, "pixmapChannels")){ for(k in x@channels) slot(x, k) = slot(x, k)[i,j,drop=FALSE] x@size = dim(slot(x, k)) } else stop(paste("Cannot subset objects of class", class(x))) bbox = numeric(4) if(x@bbcent){ b = seq(x@bbox[1], x@bbox[3], length=osize[2]) bbox[c(1,3)] = range(b[j]) b = seq(x@bbox[2], x@bbox[4], length=osize[1]) bbox[c(2,4)] = range(b[i]) } else{ b = seq(x@bbox[1], x@bbox[3]-x@cellres[1], length=osize[2]) bbox[1] = min(b[j]) bbox[3] = max(b[j]) + x@cellres[1] b = seq(x@bbox[2], x@bbox[4]-x@cellres[2], length=osize[1]) bbox[2] = min(b[i]) bbox[4] = max(b[i]) + x@cellres[2] } x@bbox = bbox x@cellres <- .getCellres(bbox, x@bbcent, x@size) x }) .getCellres = function(bbox, bbcent, size) { if(bbcent) cellres = c((bbox[3]-bbox[1])/(size[2]-1), (bbox[4]-bbox[2])/(size[1]-1)) else cellres = c((bbox[3]-bbox[1])/size[2], (bbox[4]-bbox[2])/size[1]) cellres }
bprecess = function( ra, dec, mu_radec, parallax = numeric(length(ra)), rad_vel = numeric(length(ra)), epoch = 2000) { n = length( ra ) if(length(rad_vel)!=n ) stop(paste('rad_vel keyword vector must contain ', n,' values')) if(!missing(mu_radec) && (length(mu_radec)!=2*n )) stop('mu_radec keyword (proper motion) be dimensioned (2,' + n, ')') radeg = 180/pi sec_to_radian = 1/radeg/3600 m = cbind( c(+0.9999256795, -0.0111814828, -0.0048590040, -0.000551, -0.238560, +0.435730) , c(+0.0111814828, +0.9999374849, -0.0000271557, +0.238509, -0.002667, -0.008541) , c(+0.0048590039, -0.0000271771, +0.9999881946 , -0.435614, +0.012254, +0.002117) , c(-0.00000242389840, +0.00000002710544, +0.00000001177742, +0.99990432, -0.01118145, -0.00485852) , c(-0.00000002710544, -0.00000242392702, +0.00000000006585, +0.01118145, +0.99991613, -0.00002716) , c(-0.00000001177742, +0.00000000006585,-0.00000242404995, +0.00485852, -0.00002717, +0.99996684)) a_dot = 1e-3*c(1.244, -1.579, -0.660 ) ra_rad = ra/radeg dec_rad = dec/radeg cosra = cos( ra_rad ) sinra = sin( ra_rad ) cosdec = cos( dec_rad ) sindec = sin( dec_rad ) dec_1950 = dec*0. ra_1950 = ra*0. for(i in 1:n) { a = 1e-6*c( -1.62557, -0.31919, -0.13843) r0 = c( cosra[i]*cosdec[i], sinra[i]*cosdec[i], sindec[i] ) if(!missing(mu_radec) ){ mu_a = mu_radec[ (2*n-1) ] mu_d = mu_radec[ 2*n ] r0_dot = c( -mu_a*sinra[i]*cosdec[i] - mu_d*cosra[i]*sindec[i] , mu_a*cosra[i]*cosdec[i] - mu_d*sinra[i]*sindec[i] , mu_d*cosdec[i] ) + 21.095 * rad_vel[i] * parallax[i] * r0 } else { r0_dot = c(0.0, 0.0, 0.0) } r_0 = c(r0, r0_dot) r_1 = r_0 %*% t(m) r1 = r_1[1:3] r1_dot = r_1[4:6] if(!missing(mu_radec) ){ r1 = r1 + sec_to_radian * r1_dot * (epoch - 1950.0)/100. a = a + sec_to_radian * a_dot * (epoch - 1950.0)/100. } x1 = r_1[1] y1 = r_1[2] z1 = r_1[3] rmag = sqrt( x1^2 + y1^2 + z1^2 ) s1 = r1/rmag s1_dot = r1_dot/rmag s = s1 for(j in 1:3) { r = s1 + a - (sum(s * a))*s s = r/rmag } x = r[1] y = r[2] z = r[3] r2 = x^2 + y^2 + z^2 rmag = sqrt( r2 ) if(!missing(mu_radec) ){ r_dot = s1_dot + a_dot - ( sum( s * a_dot))*s x_dot = r_dot[1] ; y_dot= r_dot[2] ; z_dot = r_dot[3] mu_radec[(2*n-1)] = ( x*y_dot - y*x_dot) / ( x^2 + y^2) mu_radec[2*n] = ( z_dot* (x^2 + y^2) - z*(x*x_dot + y*y_dot) ) / ( r2*sqrt( x^2 + y^2) ) } dec_1950[i] = asin( z / rmag) ra_1950[i] = atan2( y, x) if(parallax[i]>0 ){ rad_vel[i] = ( x*x_dot + y*y_dot + z*z_dot )/ (21.095*parallax[i]*rmag) parallax[i] = parallax[i] / rmag } } neg = (ra_1950<0) ra_1950[neg] = ra_1950[neg] + 2.*pi ra_1950 = ra_1950*radeg dec_1950 = dec_1950*radeg return(list(ra_1950 = ra_1950, dec_1950=dec_1950)) }
test_that("can get fx prices", { skip_if_no_token() x <- riingo_fx_prices(c("audusd", "eurusd")) expect_identical(unique(x$ticker), c("audusd", "eurusd")) expect_s3_class(x$date, "POSIXct") }) test_that("can get fx prices with partial failures", { skip_if_no_token() expect_warning( x <- riingo_fx_prices(c("audusd", "foobar")), "No error was thrown" ) expect_identical(unique(x$ticker), "audusd") }) test_that("can get 1 minute resolution prices", { skip_if_no_token() start <- Sys.Date() - 10 end <- Sys.Date() x <- riingo_fx_prices( "eurusd", start_date = start, end_date = end, resample_frequency = "1min" ) min_diff <- min(diff(as.numeric(x$date))) expect_identical(min_diff, 60) })
expand.dtplyr_step <- function(data, ..., .name_repair = "check_unique") { dots <- capture_dots(data, ..., .j = FALSE) dots <- dots[!vapply(dots, is_null, logical(1))] if (length(dots) == 0) { return(data) } named_dots <- have_name(dots) if (any(!named_dots)) { symbol_dots <- vapply(dots, is_symbol, logical(1)) needs_v_name <- !symbol_dots & !named_dots v_names <- paste0("V", 1:length(dots)) names(dots)[needs_v_name] <- v_names[needs_v_name] names(dots)[symbol_dots] <- lapply(dots[symbol_dots], as_name) } names(dots) <- vctrs::vec_as_names(names(dots), repair = .name_repair) dots_names <- names(dots) out <- step_subset_j( data, vars = union(data$groups, dots_names), j = expr(CJ(!!!dots, unique = TRUE)) ) if (any(dots_names %in% out$groups)) { group_vars <- out$groups expanded_group_vars <- dots_names[dots_names %in% group_vars] out <- step_subset( out, groups = character(), j = expr(!!expanded_group_vars := NULL) ) out <- group_by(out, !!!syms(group_vars)) } out } expand.data.table <- function(data, ..., .name_repair = "check_unique") { data <- lazy_dt(data) tidyr::expand(data, ..., .name_repair = .name_repair) }
hyperlink <- function(text, url) { if (has_hyperlink()) { paste0("\u001B]8;;", url, "\u0007", text, "\u001B]8;;\u0007") } else { text } } has_hyperlink <- function() { enabled <- getOption("crayon.hyperlink") if (!is.null(enabled)) { return(isTRUE(enabled)) } if (!isatty(stdout())) { return(FALSE) } if (os_type() == "windows") { return(TRUE) } if (nzchar(Sys.getenv("CI")) || nzchar(Sys.getenv("TEAMCITY_VERSION"))) { return(FALSE) } if (nzchar(TERM_PROGRAM <- Sys.getenv("TERM_PROGRAM"))) { version <- package_version( Sys.getenv("TERM_PROGRAM_VERSION"), strict = FALSE) if (TERM_PROGRAM == "iTerm.app") { if (!is.na(version) && version >= "3.1") return(TRUE) } } if (nzchar(VTE_VERSION <- Sys.getenv("VTE_VERSION"))) { if (package_version(VTE_VERSION) >= "0.50.1") return(TRUE) } FALSE }
"print.sreg" <- function(x, ...) { if (length(x$lambda) > 1) { c1 <- "Number of Observations:" c2 <- (x$N) c1 <- c(c1, "Number of values of lambda in grid:") c2 <- c(c2, length(x$lambda)) sum <- cbind(c1, c2) } else { digits <- 4 N <- x$N c1 <- "Number of Observations:" c2 <- (x$N) c1 <- c(c1, "Unique Observations:") c2 <- c(c2, length(x$xM)) c1 <- c(c1, "Effective degrees of freedom:") c2 <- c(c2, format(round(x$trace, 1))) c1 <- c(c1, "Residual degrees of freedom:") c2 <- c(c2, format(round(x$N - x$trace, 1))) c1 <- c(c1, "Residual root mean square:") c2 <- c(c2, format(signif(sqrt(sum(x$residuals^2)/N), 4))) c1 <- c(c1, "Lambda ( smoothing parameter)") c2 <- c(c2, format(signif((x$lambda), 4))) sum <- cbind(c1, c2) } dimnames(sum) <- list(rep("", dim(sum)[1]), rep("", dim(sum)[2])) cat("Call:\n") dput(x$call) print(sum, quote = FALSE) invisible(x) }
test_that("Mplus User Guide 5.1 - CFA with continuous indicators results can be read in", { m <- readModels(target = htmlout("https://statmodel.com/usersguide/chap5/ex5.1.html")) b <- coef(m, params = "loading") expect_equal(b$est[1], 1.000) expect_equal(b$se[1], 0.000) expect_equal(m$summaries$BIC, 9931.295) }) test_that("Mplus User Guide 5.2 - CFA with categorical indicators results can be read in", { m <- readModels(target = htmlout("https://statmodel.com/usersguide/chap5/ex5.2.html")) b <- coef(m, params = "loading") expect_equal(b$est[1], 1.000) expect_equal(b$se[1], 0.000) expect_equal(m$summaries$WRMR, 0.342) }) test_that("Mplus User Guide 5.5 part 4 - 4PL IRT results can be read in", { m <- readModels(target = htmlout("https://statmodel.com/usersguide/chap5/ex5.5part4.html")) b <- coef(m, params = "loading") expect_equal(b$est[1], 0.918) expect_equal(b$se[1], 0.155) expect_equal(m$summaries$BIC, 269933.988) }) test_that("Mplus User Guide 5.12 - SEM results can be read in", { m <- readModels(target = htmlout("https://statmodel.com/usersguide/chap5/ex5.12.html")) b <- coef(m, params = "loading") expect_equal(b$est[1], 1.000) expect_equal(b$se[1], 0.000) b <- coef(m, params = "regression") expect_equal(b$est[1], 0.473) expect_equal(b$se[1], 0.057) expect_equal(m$summaries$BIC, 19542.505) }) test_that("Mplus User Guide 5.33 - Bayesian SEM multiple group results can be read in", { m <- readModels(target = htmlout("https://statmodel.com/usersguide/chap5/ex5.33.html")) b <- coef(m, params = "loading") expect_equal(b$est[1], 0.848) expect_equal(b$se[1], 0.061) expect_equal(m$summaries$DIC, 35277.206) })
gqq <- setRefClass( Class = "gqq", fields = c("vbbox1", "vbbox2", "lbbox1", "lbbox2", "rbbox1", "tbbox1"), contains = c("plot_base"), methods = list( setFront = function() { vbbox1 <<- variableboxes$new() vbbox1$front( top = top, types = list(nonFactors()), titles = list( gettextKmg2("Y variable (pick one)") ), initialSelection = list(0) ) lbbox1 <<- textfields$new() lbbox1$front( top = top, initValues = list("<auto>", "<auto>", "<auto>"), titles = list( gettextKmg2("Horizontal axis label"), gettextKmg2("Vertical axis label"), gettextKmg2("Title") ) ) rbbox1 <<- radioboxes$new() rbbox1$front( top = alternateFrame, labels = list( gettextKmg2("Normal distribution"), gettextKmg2("Log-normal distribution"), gettextKmg2("Beta distribution"), gettextKmg2("Exponential distribution"), gettextKmg2("Gamma distribution"), gettextKmg2("Weibull distribution"), gettextKmg2("Other distribution") ), title = gettextKmg2("Distribution") ) lbbox2 <<- textfields$new() lbbox2$front( top = alternateFrame, initValues = list( "distribution = qnorm, dparams = list(mean = 0, sd = 1)" ), titles = list( gettextKmg2("Parameters for other distribution") ) ) tbbox1 <<- toolbox$new() tbbox1$front(top, showcolourbox = FALSE) }, setBack = function() { vbbox1$back() lbbox1$back() boxlist <- c( list(rbbox1$frame), list(labelRcmdr(alternateFrame, text=" ")), list(lbbox2$frame) ) do.call(tkgrid, c(lbbox2$back_list, list(sticky="nw"))) do.call(tkgrid, c(boxlist, list(sticky="nw"))) tkgrid(alternateFrame, stick="nw") tkgrid(labelRcmdr(alternateFrame, text=" "), stick="nw") tbbox1$back(4) }, getWindowTitle = function() { gettextKmg2("Q-Q plot") }, getHelp = function() { "Distributions" }, getParms = function() { x <- character(0) y <- getSelection(vbbox1$variable[[1]]) z <- character(0) s <- character(0) t <- character(0) y <- checkVariable(y) xlab <- tclvalue(lbbox1$fields[[1]]$value) xauto <- "Theoretical quantile" ylab <- tclvalue(lbbox1$fields[[2]]$value) yauto <- "Sample quantile" zlab <- character(0) main <- tclvalue(lbbox1$fields[[3]]$value) size <- tclvalue(tbbox1$size$value) family <- getSelection(tbbox1$family) colour <- character(0) save <- tclvalue(tbbox1$goption$value[[1]]) theme <- checkTheme(getSelection(tbbox1$theme)) options( kmg2FontSize = tclvalue(tbbox1$size$value), kmg2FontFamily = seq_along(tbbox1$family$varlist)[tbbox1$family$varlist == getSelection(tbbox1$family)] - 1, kmg2SaveGraph = tclvalue(tbbox1$goption$value[[1]]), kmg2Theme = seq_along(tbbox1$theme$varlist)[tbbox1$theme$varlist == getSelection(tbbox1$theme)] - 1 ) distType <- tclvalue(rbbox1$value) distParms <- tclvalue(lbbox2$fields[[1]]$value) list( x = x, y = y, z = z, s = s, t = t, xlab = xlab, xauto = xauto, ylab = ylab, yauto = yauto, zlab = zlab, main = main, size = size, family = family, colour = colour, save = save, theme = theme, distType = distType, distParms = distParms ) }, checkError = function(parms) { if (length(parms$y) == 0) { errorCondition( recall = windowQQ, message = gettextKmg2("Y variable is not selected") ) errorCode <- TRUE } else { if (mode == 1) { commandDoIt("require(\"ggplot2\")", log = TRUE) } setDataframe(parms) if (parms$distType == "2" && any(.df$y <= 0)) { response <- tclvalue(RcmdrTkmessageBox( message = gettextKmg2("The log-normal distribution defined on the interval (0, +Inf)."), title = gettextKmg2("Error"), icon = "error", type = "ok", default = "ok") ) if (response == "ok") { return(TRUE) } } else if (parms$distType == "3" && any(.df$y > 1 | .df$y < 0)) { response <- tclvalue(RcmdrTkmessageBox( message = gettextKmg2("The beta distribution defined on the interval [0, 1]."), title = gettextKmg2("Error"), icon = "error", type = "ok", default = "ok") ) if (response == "ok") { return(TRUE) } } else if (parms$distType == "4" && any(.df$y < 0)) { response <- tclvalue(RcmdrTkmessageBox( message = gettextKmg2("The exponential distribution defined on the interval [0, +Inf)."), title = gettextKmg2("Error"), icon = "error", type = "ok", default = "ok") ) if (response == "ok") { return(TRUE) } } else if (parms$distType == "5" && any(.df$y < 0)) { response <- tclvalue(RcmdrTkmessageBox( message = gettextKmg2("The gamma distribution defined on the interval [0, +Inf)."), title = gettextKmg2("Error"), icon = "error", type = "ok", default = "ok") ) if (response == "ok") { return(TRUE) } } else if (parms$distType == "6" && any(.df$y < 0)) { response <- tclvalue(RcmdrTkmessageBox( message = gettextKmg2("The weibull distribution defined on the interval [0, +Inf)."), title = gettextKmg2("Error"), icon = "error", type = "ok", default = "ok") ) if (response == "ok") { return(TRUE) } } else { if (parms$distType == "1") { command <- paste0( " ".est <- c(mean(.df$y), sd(.df$y))" ) } else if (parms$distType == "2") { command <- paste0( " ".est <- c(mean(log(.df$y)), sd(log(.df$y)))" ) } else if (parms$distType == "3") { command <- paste0( " ".est <- c(mean(.df$y)*(mean(.df$y)*(1 - mean(.df$y))/var(.df$y) - 1), (1 - mean(.df$y))*(mean(.df$y)*(1 - mean(.df$y))/var(.df$y) - 1))" ) } else if (parms$distType == "4") { command <- paste0( " ".est <- 1 / mean(.df$y)" ) } else if (parms$distType == "5") { command <- paste0( " ".objf <- function(p, y) {", "-sum(dgamma(y, shape = p[1], scale = p[2], log = TRUE))", "}\n", ".est <- optim(c(1, 1), .objf, y = .df$y)" ) } else if (parms$distType == "6") { command <- paste0( " ".objf <- function(p, y) {", "-sum(dweibull(y, shape = p[1], scale = p[2], log = TRUE))", "}\n", ".est <- optim(c(1, 1), .objf, y = .df$y)" ) } if (any(parms$distType == c("5", "6"))) { commandDoIt(command) registRmlist(.objf) registRmlist(.est) } else if (any(parms$distType == c("1", "2", "3", "4"))) { commandDoIt(command) registRmlist(.est) } if (any(parms$distType == c("5", "6")) && (is.na(match(".est", ls(envir = .GlobalEnv, all.names = TRUE))) || .est$convergence != 0)) { response <- tclvalue(RcmdrTkmessageBox( message = gettextKmg2("Parameter estimation failed."), title = gettextKmg2("Error"), icon = "error", type = "ok", default = "ok" )) if (response == "ok") { errorCode <- TRUE } } else { .plot <- getPlot(parms) commandDoIt("print(.plot)") if (mode == 1 && parms$save == "1") .self$savePlot(.plot) pos <- 1 assign(".lastcom", paste0(codes, "\n"), envir = as.environment(pos)) errorCode <- 2 } } } errorCode }, getGgplot = function(parms) { "ggplot(data = .df, aes(sample = y)) + \n " }, getGeom = function(parms) { if (parms$distType == "1") { distParms <- "distribution = qnorm, dparams = list(mean = .est[1], sd = .est[2])" } else if (parms$distType == "2") { distParms <- "distribution = qlnorm, dparams = list(meanlog = .est[1], sdlog = .est[2])" } else if (parms$distType == "3") { distParms <- "distribution = qbeta, dparams = list(shape1 = .est[1], shape2 = .est[2])" } else if (parms$distType == "4") { distParms <- "distribution = qexp, dparams = list(rate = .est)" } else if (parms$distType == "5") { distParms <- "distribution = qgamma, dparams = list(shape = .est$par[1], scale = .est$par[2])" } else if (parms$distType == "6") { distParms <- "distribution = qweibull, dparams = list(shape = .est$par[1], scale = .est$par[2])" } else { distParms <- parms$distParms } paste0("stat_qq(", distParms, ") + \n ") }, getMain = function(parms) { if (nchar(parms$main) == 0) { main <- "" } else if (parms$main == "<auto>") { if (parms$distType == "1") { main <- paste0( "Theoretical: qnorm(mean = ", round(.est[1], 1), ", sd = ", round(.est[2], 1), ")" ) } else if (parms$distType == "2") { main <- paste0( "Theoretical: qlnorm(meanlog = ", round(.est[1], 1), ", sdlog = ", round(.est[2], 1), ")" ) } else if (parms$distType == "3") { main <- paste0( "Theoretical: qbeta(shape1 = ", round(.est[1], 1), ", shape2 = ", round(.est[2], 1), ")" ) } else if (parms$distType == "4") { main <- paste0("Theoretical: qexp(rate = ", round(.est, 1), ")") } else if (parms$distType == "5") { main <- paste0( "Theoretical: qgamma(shape = ", round(.est$par[1], 1), ", scale = ", round(.est$par[2], 1), ")" ) } else if (parms$distType == "6") { main <- paste0( "Theoretical: qweibull(shape = ", round(.est$par[1], 1), ", scale = ", round(.est$par[2], 1), ")" ) } else { main <- paste0("Theoretical: ", parms$distParms) } main <- paste0("labs(title = \"", main, "\") + \n ") } else { main <- paste0("labs(title = \"", parms$main, "\") + \n ") } main } ) ) windowQQ <- function() { QQ <- RcmdrPlugin.KMggplot2::gqq$new() QQ$plotWindow() }
cyclocomp_package_dir <- function(path = ".") { tmp <- tempfile() dir.create(tmp) on.exit(unlink(tmp, recursive = TRUE), add = TRUE) pkgname <- desc_get("Package", file = file.path(path, "DESCRIPTION")) targz <- build_package(path) install_local(targz, lib = tmp) r(libpath = c(tmp, .libPaths()), function(pkg) { loadNamespace(pkg) cyclocomp::cyclocomp_package(pkg) }, args = list(pkgname) ) } build_package <- function(path) { path <- normalizePath(path) tmpdir <- tempfile() dir.create(tmpdir) on.exit(unlink(tmpdir, recursive = TRUE)) file.copy(path, tmpdir, recursive = TRUE) if (file.info(path)$isdir) { build_status <- with_dir( tmpdir, rcmd_safe("build", basename(path)) ) unlink(file.path(tmpdir, basename(path)), recursive = TRUE) } report_system_error("Build failed", build_status) on.exit(NULL) file.path( tmpdir, list.files(tmpdir, pattern = "\\.tar\\.gz$") ) } report_system_error <- function(msg, status) { if (status$status == 0) return() if (status$stderr == "") { stop( msg, ", unknown error, standard output:\n", yellow(status$stdout), call. = FALSE ) } else { stop( underline(yellow(paste0("\n", msg, ", standard output:\n\n"))), yellow(status$stdout), "\n", underline(red("Standard error:\n\n")), red(status$stderr), call. = FALSE ) } }
useToastr <- function() { addResourcePath("toastr", system.file("toastr", package = "shinytoastr")) tags$head( tags$link( rel = "stylesheet", type = "text/css", href = "toastr/toastr.min.css" ), tags$script( src = "toastr/toastr.min.js" ), tags$script( src = "toastr/shinytoastr.js" ) ) } toastr_fun <- function(toast_type) { function( message, title = "", closeButton = FALSE, newestOnTop = FALSE, progressBar = FALSE, position = c("top-right", "top-center", "top-left", "top-full-width", "bottom-right", "bottom-center", "bottom-left", "bottom-full-width"), preventDuplicates = FALSE, showDuration = 300, hideDuration = 1000, timeOut = 5000, extendedTimeOut = 1000, showEasing = c("swing", "linear"), hideEasing = c("swing", "linear"), showMethod = c("fadeIn", "slideDown", "show"), hideMethod = c("fadeOut", "hide") ) { options <- list( closeButton = isTRUE(closeButton), newestonTop = isTRUE(newestOnTop), progressBar = isTRUE(progressBar), positionClass = paste0("toast-", match.arg(position)), preventDuplicates = isTRUE(preventDuplicates), showDuration = as_count(showDuration), hideDuration = as_count(hideDuration), timeOut = as_count(timeOut), extendedTimeOut = as_count(extendedTimeOut), showEasing = match.arg(showEasing), hideEasing = match.arg(hideEasing), showMethod = match.arg(showMethod), hideMethod = match.arg(hideMethod) ) session <- getSession() session$sendCustomMessage( type = 'toastr', message = list( type = toast_type, message = message, title = title, options = options ) ) } } toastr_success <- toastr_fun("success") toastr_info <- toastr_fun("info") toastr_warning <- toastr_fun("warning") toastr_error <- toastr_fun("error") getSession <- function() { session <- getDefaultReactiveDomain() if (is.null(session)) { stop("could not find the Shiny session object. This usually happens ", "when toastr is called from a context that wasn't set up by a ", "Shiny session.") } session } as_count <- function(x) { x <- as.integer(x) stopifnot(length(x) == 1, ! is.na(x)) x }
wilcoxonOR = function(formula=NULL, data=NULL, x=NULL, y=NULL, ci=FALSE, conf=0.95, type="perc", R=1000, histogram=FALSE, digits=3, reportIncomplete=FALSE, verbose=FALSE, ...){ if(!is.null(formula)){ x = eval(parse(text=paste0("data","$",all.vars(formula[[2]])[1]))) g = factor(eval(parse(text=paste0("data","$",all.vars(formula[[3]])[1])))) A = x[g==levels(g)[1]] B = x[g==levels(g)[2]] } if(is.null(formula)){ A = x B = y x = c(A, B) g = factor(c(rep("A", length(A)), rep("B", length(B)))) } Matrix = outer(A,B,FUN="-") Diff1 = Matrix>0 Diff2 = Matrix<0 OR = signif(mean(Diff1) / mean(Diff2), digits=digits) if(verbose){ Out = data.frame( Statistic = c("Proportion Ya > Yb","Proportion Ya < Yb", "Proportion ties"), Value = c(signif(mean(Matrix>0), digits=3), signif(mean(Matrix<0), digits=3), signif(mean(Matrix==0), digits=3)) ) cat("\n") print(Out) cat("\n") } if(ci==TRUE){ Data = data.frame(x,g) Function = function(input, index){ Input = input[index,] if(length(unique(droplevels(Input$g)))==1){ FLAG=1 return(c(NA,FLAG))} if(length(unique(droplevels(Input$g)))>1){ Matrix = outer(Input$x[Input$g==levels(Input$g)[1]], Input$x[Input$g==levels(Input$g)[2]], FUN="-") Diff1 = Matrix>0 Diff2 = Matrix<0 p = signif(mean(Diff1) / mean(Diff2), digits=digits) FLAG=0 return(c(p, FLAG))}} Boot = boot(Data, Function, R=R) BCI = boot.ci(Boot, conf=conf, type=type) if(type=="norm") {CI1=BCI$normal[2]; CI2=BCI$normal[3];} if(type=="basic"){CI1=BCI$basic[4]; CI2=BCI$basic[5];} if(type=="perc") {CI1=BCI$percent[4]; CI2=BCI$percent[5];} if(type=="bca") {CI1=BCI$bca[4]; CI2=BCI$bca[5];} if(sum(Boot$t[,2])>0 & reportIncomplete==FALSE) {CI1=NA; CI2=NA} CI1=signif(CI1, digits=digits) CI2=signif(CI2, digits=digits) if(histogram==TRUE){hist(Boot$t[,1], col = "darkgray", main="", xlab="PS")} } if(ci==FALSE){names(OR)="OR"; return(OR)} if(ci==TRUE){names(OR) = "" return(data.frame(OR=OR, lower.ci=CI1, upper.ci=CI2))} }
profilelike.gls <- function(formula, data, correlation=NULL, subject, profile.theta, method="ML", lo.theta, hi.theta, length=300, round=2, subset=NULL, weights=NULL, ...){ if(!is.null(subset)){ stop("Warning message: 'subset' should not be provided") } if(!is.null(weights)){ stop("Warning message: 'weights' should not be provided") } m <- model.frame(formula, data) X <- model.matrix(formula, m) y <- model.response(m) theta.off <- data[,names(data)==profile.theta] id <- data[,names(data)==subject] if(!is.numeric(theta.off)){ stop("Warning message: 'profile.theta' must be a numeric variable") } if( ( length(theta.off)!= length(y) | length(theta.off)!= length(X[,1]) | length(y)!= length(X[,1]) ) ){ cat("Warning message: remove missing data \n") } if( ( is.null(lo.theta) | is.null(hi.theta) )){ cat("Warning message: provide lo.theta and hi.theta \n") fit <- lm(y ~ -1 + X + theta.off, na.action=na.fail) mle <- summary(fit)$coefficient["theta.off",1] se <- summary(fit)$coefficient["theta.off",2] lo.theta <- round(mle - 4*se, round) hi.theta <- round(mle + 4*se, round) } theta <- seq(from =lo.theta, to=hi.theta, length=length) log.lik <- rep(NA, length) for(i in 1:length){ pi <- theta[i] y.off <- y - pi*theta.off fit <- gls(y.off ~ -1 + X, correlation = correlation, method="ML", na.action=na.fail) log.lik[i] <- logLik(fit) } theta <- theta[is.na(log.lik)!=1] log.lik <- log.lik[is.na(log.lik)!=1] profile.lik <- exp(log.lik) mm <- max(log.lik, na.rm=TRUE) log.norm.lik <- log.lik - mm profile.lik.norm <- exp(log.norm.lik) return(list(theta=theta, profile.lik=profile.lik, profile.lik.norm=profile.lik.norm)) }