code
stringlengths 1
13.8M
|
---|
protect_smooth <- function( x
, bw = raster::res(x$value)
, ...
){
assert_sdc_raster(x)
r <- x$value
w <- raster::focalWeight(r$count, d = bw, type="Gaus")
x$scale <- x$scale * w[ceiling(nrow(w)/4), ceiling(ncol(w)/4)]
r$count <- smooth_raster(r$count, bw = bw, ...)
r$sum <- smooth_raster(r$sum, bw = bw, ...)
r$mean <- r$sum / r$count
if (x$type == "numeric"){
r$max <- smooth_raster(r$max, bw = bw, ...)
r$max2 <- smooth_raster(r$max2, bw = bw, ...)
}
x$value <- r
x
} |
pcplot <- function(data,
clusters,
barColor = "steelblue",
colorScheme = "schemeCategory10",
width = NULL,
height = NULL,
labelSizes = NULL,
dotSize = NULL,
pcGridlines = FALSE,
barGridlines = FALSE) {
if (typeof(colorScheme) != "character" && typeof(colorScheme) != "list") {
stop("colorScheme must be of type character or a list of colors")
}
if (!is.null(labelSizes) &&
typeof(labelSizes) != "list" &&
typeof(labelSizes) != "double") {
stop("labelSizes must be of type double or a list of arguments")
}
PC <- getPC(data, clusters)
if (typeof(labelSizes) == "double") {
labelSizes <- list(yaxis = labelSizes,
xaxis = labelSizes,
yticks = labelSizes,
xticks = labelSizes,
legend = labelSizes,
tooltip = labelSizes,
title = labelSizes)
}
PC$PC <- PC$PC[order(clusters),]
json_PC <- jsonlite::toJSON(x = PC$PC, dataframe = "rows")
json_PVE <- jsonlite::toJSON(x = PC$PVE)
json_idx <- jsonlite::toJSON(x = PC$idxs)
json_cont <- jsonlite::toJSON(x = PC$cont, dataframe = "rows")
json_thresh <- jsonlite::toJSON(x = PC$thresh)
json_colorScheme <- jsonlite::toJSON(x = colorScheme)
json_labelSizes <- jsonlite::toJSON(x = labelSizes)
x = list(
PC = json_PC,
PVE = json_PVE,
idxs = json_idx,
cont = json_cont,
thresh = json_thresh,
barColor = barColor,
colorScheme = json_colorScheme,
labelSizes = json_labelSizes,
dotSize = dotSize,
pcGridlines = pcGridlines,
barGridlines = barGridlines
)
htmlwidgets::createWidget(
name = 'pcplot',
x,
width = width,
height = height,
package = 'klustR',
sizingPolicy = htmlwidgets::sizingPolicy(
viewer.padding = 0,
browser.fill = TRUE
)
)
}
pcplotOutput <- function(outputId, width = '100%', height = '400px'){
htmlwidgets::shinyWidgetOutput(outputId, 'pcplot', width, height, package = 'klustR')
}
renderpcplot <- function(expr, env = parent.frame(), quoted = FALSE) {
if (!quoted) { expr <- substitute(expr) }
htmlwidgets::shinyRenderWidget(expr, pcplotOutput, env, quoted = TRUE)
} |
getOutliersI <- function(y, rho=c(1,1), FLim=c(0.1,0.9), distribution="normal")
{
if ( !is.vector(y) )
stop("First argument is not of type vector")
if ( sum(y < 0) > 0 & !(distribution == "normal") )
stop("First argument contains nonpositive values")
if ( sum( rho <= 0, na.rm=TRUE ) > 0 )
stop("Values of rho must be positive")
if ( FLim[2] <= FLim[1] | sum( FLim < 0 | FLim > 1) >0 )
stop("Invalid range in FLim: 0<=FLim[1]<FLim[2]<=1")
if ( ! distribution %in% c("lognormal", "pareto", "exponential", "weibull", "normal") )
stop("Invalid distribution (lognormal, pareto, exponential, weibull, normal).")
Y <- y;
y <- sort(y);
N <- length(y)
P <- (1:N)/(N+1)
Lambda <- P >= FLim[1] & P<=FLim[2]
y <- y[Lambda];
p <- P[Lambda];
out <- switch(distribution,
lognormal = getLognormalLimit(y, p, N, rho),
pareto = getParetoLimit(y, p, N, rho),
exponential = getExponentialLimit(y, p, N, rho),
weibull = getWeibullLimit(y, p, N, rho),
normal = getNormalLimit(y, p, N, rho)
)
out$method <- "Method I"
out$distribution=distribution
out$iRight = which( Y > out$limit[2] )
out$iLeft = which( Y < out$limit[1] )
out$nOut = c(Left=length(out$iLeft), Right=length(out$iRight))
out$yMin <- y[1]
out$yMax <- tail(y,1)
out$rho = c(Left=rho[1], Right=rho[2])
out$Fmin = FLim[1]
out$Fmax = FLim[2]
return(out);
} |
binary_3bit_T7 <- function(seqs,binaryType="numBin",label=c(),outFormat="mat",outputFileDist="")
{
if(length(seqs)==1&&file.exists(seqs)){
seqs<-fa.read(seqs,alphabet="aa")
seqs_Lab<-alphabetCheck(seqs,alphabet = "aa",label)
seqs<-seqs_Lab[[1]]
label<-seqs_Lab[[2]]
}
else if(is.vector(seqs)){
seqs<-sapply(seqs,toupper)
seqs_Lab<-alphabetCheck(seqs,alphabet = "aa",label)
seqs<-seqs_Lab[[1]]
label<-seqs_Lab[[2]]
}
else {
stop("ERROR: Input sequence is not in the correct format. It should be a FASTA file or a string vector.")
}
lenSeqs<-sapply(seqs,nchar)
numSeqs=length(seqs)
Group=list("Buried"=c("A","L","F","C","G","I","V","W"),"Exposed"=c("R","K","Q","E","N","D"),"Intermediate"=c("M","S","P","T","H","Y"))
grps<-unlist(Group)
dict<-vector()
numGrp=3
for (i in 1:numGrp)
{
vect<-rep(i,length(Group[[i]]))
dict<-c(dict,vect)
}
names(dict)<-grps
aa<-grps
if(outFormat=="mat"){
if(length(unique(lenSeqs))>1){
stop("ERROR: All sequences should have the same length in 'mat' mode. For sequences with different lengths, please use 'txt' for outFormat parameter")
}
if(binaryType=="strBin"){
binary<-rep(strrep(0,3),20)
names(binary)=aa
for(i in 1:length(dict))
{
pos<-dict[i]
substr(binary[i],pos,pos)<-"1"
}
featureMatrix<-matrix("",nrow = numSeqs, ncol = lenSeqs[1])
for(n in 1:numSeqs){
seq<-seqs[n]
charSeq<-unlist(strsplit(seq,split = ""))
vect<-unlist(binary[charSeq])
featureMatrix[n,]<-vect
}
colnames(featureMatrix)<-paste("pos",1:lenSeqs[1],sep = "")
} else if(binaryType=="logicBin"){
featureMatrix<-matrix(FALSE,nrow = numSeqs, ncol = (lenSeqs[1]*3))
rng<-(0:(lenSeqs[1]-1))*3
for(n in 1:numSeqs){
seq<-seqs[n]
charSeq<-unlist(strsplit(seq,split = ""))
pos1<-as.numeric(dict[charSeq])
pos1<-rng+pos1
featureMatrix[n,pos1]<-TRUE
}
colnames(featureMatrix)<-paste0("pos",rep(1:lenSeqs[1],each=3),"-",rep(names(Group),lenSeqs[1]))
} else if(binaryType=="numBin"){
featureMatrix<-matrix(0,nrow = numSeqs, ncol = (lenSeqs[1]*3))
rng<-(0:(lenSeqs[1]-1))*3
for(n in 1:numSeqs){
seq<-seqs[n]
charSeq<-unlist(strsplit(seq,split = ""))
pos1<-as.numeric(dict[charSeq])
pos1<-rng+pos1
featureMatrix[n,pos1]<-1
}
colnames(featureMatrix)<-paste0("pos",rep(1:lenSeqs[1],each=3),"-",rep(names(Group),lenSeqs[1]))
} else{
stop("ERROR! Choose one of 'strBin', 'logicBin', or 'numBin' for binaryFormat")
}
if(length(label)==numSeqs){
featureMatrix<-as.data.frame(featureMatrix)
featureMatrix<-cbind(featureMatrix,label)
}
row.names(featureMatrix)<-names(seqs)
return(featureMatrix)
}
else if(outFormat=="txt"){
vect<-vector()
nameSeq<-names(seqs)
binary<-rep(strrep(0,3),20)
names(binary)=aa
for(i in 1:length(dict))
{
pos<-dict[i]
substr(binary[i],pos,pos)<-"1"
}
for(n in 1:numSeqs){
seq<-seqs[n]
charSeq<-unlist(strsplit(seq,split = ""))
temp<-c(nameSeq[n],binary[charSeq])
temp<-paste(temp,collapse = "\t")
write(temp,outputFileDist,append = TRUE)
}
}
else{
stop("ERROR: outFormat should be 'mat' or 'txt' ")
}
} |
knitr::opts_chunk$set(echo = TRUE)
options( width=100 )
library(munsellinterpol)
MunsellToxyY( '4.2RP 5.5/8' )
xyY = MunsellToxyY( '4.2RP 5.5/8' )$xyY
xyYtoMunsell( xyY )
par( omi=c(0,0,0,0), mai=c(0.6,0.7,0.4,0.2) )
plotPatchesH( "10GY", back='
par( omi=c(0,0,0,0), mai=c(0.6,0.7,0.4,0.2) )
plotPatchesH( "10GY", space='AdobeRGB', back='
par( omi=c(0,0,0,0), mai=c(0.6,0.7,0.6,0.2) )
plotLociHC( value=8 )
par( omi=c(0,0,0,0), mai=c(0.6,0.7,0.6,0.2) )
plotLociHC( value=8, coords='ab' )
path = system.file( 'extdata/PantoneCoY.txt', package='munsellinterpol' )
pantone = read.table( path, header=TRUE, sep='\t', strings=FALSE )
pantone
pantone$Year = NULL ; pantone$Code = NULL
RGB = as.matrix( pantone[ , c('R','G','B') ] )
HVC = RGBtoMunsell( RGB, space='sRGB' )
pantone$Munsell = MunsellNameFromHVC( HVC )
block = ColorBlockFromMunsell( HVC )
pantone[[ "ISCC-NBS Name" ]] = block$Name
pantone[[ "ISCC-NBS Centroid" ]] = block$Centroid
pantone
color.pant = rgb( RGB, max=255 )
color.cent = rgb( MunsellToRGB( block$Centroid, space='sRGB' )$RGB, max=255 )
tbl = data.frame( row.names=1:nrow(pantone) )
tbl[[ "Pantone Name" ]] = pantone$Name
tbl[[ "Pantone Color" ]] = '' ; tbl[[ "Centroid Color" ]] = ''
tbl[[ "ISCC-NBS Name" ]] = block$Name
library( flextable )
myrt <- regulartable( tbl )
myrt <- align( myrt, j=4, align='left', part='all' )
myrt <- align( myrt, j=2:3, align='center', part='all' )
myrt <- height( myrt, height=1 )
myrt <- width( myrt, j=c(1,4), width=2 ) ; myrt <- width( myrt, j=2:3, width=2.5 )
myrt <- fontsize( myrt, size=14, part='all' ) ; myrt <- fontsize( myrt, size=16, part='header' )
for( i in 1:nrow(tbl) )
{ myrt <- bg(myrt, i=i, j=2, bg=color.pant[i]) ; myrt <- bg(myrt, i=i, j=3, bg=color.cent[i]) }
myrt
sessionInfo() |
dfp_getLineItemTemplatesByStatement <- function(request_data, as_df=TRUE, verbose=FALSE){
request_body <- form_request_body(service='LineItemTemplateService', root_name='getLineItemTemplatesByStatement', data=request_data)
httr_response <- execute_soap_request(request_body=request_body, verbose=verbose)
result <- parse_soap_response(httr_response=httr_response, resp_element='getLineItemTemplatesByStatementResponse', as_df=as_df)
return(result)
} |
lowfhCopula <- function(dim = 2L)
{
if(dim != 2) stop("The lower Frechet-Hoeffding bound copula is only available in the bivariate case")
cdfExpr <- function(d) {
uis <- c(paste0("u", 1:d, "-1"), "1")
expr <- paste(uis, collapse = "+")
expr <- paste0("max(", expr, ",0)")
parse(text = expr)
}
new("lowfhCopula",
dimension = as.integer(dim),
exprdist = c(cdf = cdfExpr(dim),
pdf = expression()))
}
setMethod("pCopula", signature("matrix", "lowfhCopula"),
function(u, copula, log.p = FALSE) {
d <- ncol(u)
stopifnot(d == copula@dimension)
res <- pmax(rowSums(u) - d + 1, 0)
if(log.p) log(res) else res
})
setMethod("rCopula", signature("numeric", "lowfhCopula"),
function(n, copula) {
U <- runif(n)
cbind(U, 1-U)
})
setMethod("tau", signature("lowfhCopula"), function(copula) -1)
setMethod("rho", signature("lowfhCopula"), function(copula) -1)
setMethod("lambda", signature("lowfhCopula"), function(copula) c(lower = 0, upper = 0)) |
library(testthat)
library(osmplotr)
test_check("osmplotr") |
fitted.cpd <- function(object, ...){
nmode <- length(object$A)
xdims <- sapply(object$A, nrow)
Z <- krprod(object$A[[3]], object$A[[2]])
if(nmode > 3L) for(n in 4:nmode) Z <- krprod(object$A[[n]], Z)
array(tcrossprod(object$A[[1]], Z), dim = xdims)
} |
model.pro <- function(spike, flash, fixed=NULL, kv=F) {
findInd <- function(sn, tf, first=T) {
tmp <- sn[tf]
if (sum(tf) == 0) {
return(NA)
} else {
if (first) {
return(tmp[1])
} else {
return(tmp[length(tmp)])
}
}
}
fixedflashspacing <- function(ff) {
re <- 0
sff <- sum(ff)
fseq <- 1:length(ff)
if (sff == 0 ) {
return(length(ff)^2)
} else if (sff == 1) {
af <- fseq[ff==1]
return(af^2 + (length(ff)-af)^2)
} else {
fftimes <- fseq[ff==1]
return(sum(diff(fftimes)^2) + fftimes[1]^2 + (length(ff)-fftimes[length(fftimes)])^2)
}
}
nsf <- length(spike)
t0 <- 1:nsf
t0 <- t0[spike==1]
if (length(t0) < 2 ) {
warning("only one spike in sweep!")
return(NULL)
}
if (is.null(fixed)) {
t0 <- t0[1]
} else {
t0 <- fixed
}
tmp <- flash[1:t0]
if (sum(tmp)> 0) {
f0 <- findInd(seq_along(tmp), tmp==1, first=F)
} else {
f0 <- 1
}
nout <- nsf-t0
re <- matrix(0, nrow=nout, ncol=7)
curspike <- t0
curflash <- f0
curflashspike <- t0
cumflash <- 0
cumpftime <- 0
cumsqpf <- 0
sqcount <- 0
curcount <- 0
zeroout <- 1
if (!is.null(fixed)) {
fixedcumspike <- sum(spike[1:t0])
fixedcumflash <- sum(flash[1:t0])
fixedcumsqcount <- fixedflashspacing(flash[1:t0])
}
for (j in (t0+1):nsf) {
if(zeroout) {
cumflash <- 0
cumpftime <- 0
zeroout <- 0
sqcount <- 0
curcount <- 0
}
pstime <- j-curspike
if (spike[j] ==1) {
curspike <- j
if (kv) curflashspike <- j
zeroout <- 1
}
if (flash[j] ==1) {
curflash <- j
curflashspike <- j
cumflash <- cumflash+1
}
cumpftime <- cumpftime+j-curflash
if (j-curflash == 0) sqcount <- sqcount+curcount
if (kv) {
curcount <- (j-curflashspike)^2
} else {
curcount <- (j-curflash)^2
}
cumsqpf <- sqcount+curcount
if (is.null(fixed)) {
re[j-t0,] <- c(spike[j], flash[j], pstime, j-curflash, cumflash, cumpftime, cumsqpf)
} else {
re[j-t0,] <- c(spike[j], flash[j], pstime, j-curflash, sum(flash[(j-fixed):j]), cumpftime, fixedflashspacing(flash[(j-fixed):j])
)
}
}
re <- as.data.frame(re)
names(re) <- c("spike", "flash", "pstime", "pftime", "cumflash", "cumpftime", "cumsqpf")
re <- data.frame(re, logpf=log(re$pftime+1), logcumf=log(re$cumflash+1), logcumpf=log(re$cumpftime+1), logcumsqpf=log(re$cumsqpf+1))
re$loglogcumsqpf <- log(1 +re$logcumsqpf)
return(re)
} |
import_pattern <- function(filepath) {
if (nchar(readChar(filepath, file.info(filepath)$size)) == 0) {
warning(paste(filepath, "imported 0 characters."))
}
readChar(filepath, file.info(filepath)$size)
} |
"thregIcure" <-
function (formula,data)
{
cl <- match.call()
indx <- match(c("formula", "data"), names(cl), nomatch=0)
if (indx[1] ==0) stop("A formula argument is required")
mf<- cl[c(1, indx)]
f <- Formula(formula)
f1<-formula(f,lhs=1)
f1<-Formula(f1)
mf[[1]] <- as.name("model.frame")
mf$formula <- if(missing(data)) terms(f1) else terms(f1, data=data)
mf$formula <- f1
mf <- eval(mf, parent.frame())
if (nrow(mf) ==0) stop("No (non-missing) observations")
Terms <- terms(mf)
Y <- model.extract(mf, "response")
if (!inherits(Y, "Surv")) stop("Response must be a survival object")
type <- attr(Y, "type")
if (type!='interval') stop(paste("thregI package only support \"", type, "\" survival data", sep=''))
f2<-formula(f1, lhs = 0)
if (length(f2[[2]])!=3) stop(paste("Predictors for both lny0 and mu should be specified"))
x_lny0<-model.matrix(f1, data, rhs=1)
x_mu<-model.matrix(f1, data, rhs=2)
x_lamda<-model.matrix(f1, data, rhs=3)
k<-dim(x_lamda)[2]
left<-Y[,1]
right<-Y[,2]
delta<-Y[,3]
delta3=matrix(0,length(left),1)
for (i in 1 :length(left))
{
if (delta[i]==1) {right[i]=left[i]
delta3[i]=1}
}
right_max=10*max(right)
delta1=matrix(0,length(left),1)
delta2=matrix(0,length(left),1)
for (i in 1 :length(left)){
if (delta[i]==0) {right[i]=right_max}
else if (left[i]==0) { delta1[i]=1 }
else if (delta[i]==3){ delta2[i]=1 }
}
lny0<-function(para_lny0){x_lny0%*%para_lny0}
mu<-function(para_mu){x_mu%*%para_mu}
lamda<-function(para_lamda){x_lamda%*%para_lamda}
d<-function(para)
{
para_lny0=para[1:length(dimnames(x_lny0)[[2]])]
para_mu=para[(length(dimnames(x_lny0)[[2]])+1):(length(dimnames(x_lny0)[[2]])+length(dimnames(x_mu)[[2]]))]
-mu(para_mu)/exp(lny0(para_lny0))
}
v<-function(para)
{
para_lny0=para[1:length(dimnames(x_lny0)[[2]])]
exp(-2*lny0(para_lny0))
}
su<-function(para){
pnorm((1-d(para)*left)/sqrt(v(para)*left))-exp(2*d(para)/v(para))*pnorm(-(1+d(para)*left)/sqrt(v(para)*left))
}
sv<-function(para){
pnorm((1-d(para)*right)/sqrt(v(para)*right))-exp(2*d(para)/v(para))*pnorm(-(1+d(para)*right)/sqrt(v(para)*right))
}
cu<-function(para){
para_lamda=para[(length(dimnames(x_lny0)[[2]])+length(dimnames(x_mu)[[2]])+1):(length(dimnames(x_lny0)[[2]])+length(dimnames(x_mu)[[2]])+length(dimnames(x_lamda)[[2]]))]
exp(lamda(para_lamda))/(1+exp(lamda(para_lamda)))
}
logdf<-function(para){
-.5*(log(2*pi*v(para)*(right^3))+(d(para)*right-1)^2/(v(para)*right))
}
logf0<-function(para) {
-sum(delta1*log(1-sv(para)))-sum(delta2*log(su(para)-sv(para)), na.rm = TRUE)-sum((1-delta1-delta2-delta3)*log(su(para)))-sum(delta3*logdf(para))
}
p0<-rep(0,(length(dimnames(x_lny0)[[2]])+length(dimnames(x_mu)[[2]])))
est0<-nlm(logf0, p0, hessian = TRUE)
loglik0 = (-1)*est0$minimum
logf<-function(para) {
-sum(delta1*log(cu(para)*(1-sv(para))))-sum(delta2*log(cu(para)*(su(para)-sv(para))), na.rm = TRUE)-sum((1-delta1-delta2-delta3)*log((1-cu(para))+cu(para)*su(para)))-sum(delta3*logdf(para))-sum(delta3*log(cu(para)))
}
p<-rep(0,(length(dimnames(x_lny0)[[2]])+length(dimnames(x_mu)[[2]])+length(dimnames(x_lamda)[[2]])))
est<-nlm(logf, p, hessian = TRUE)
names(est$estimate) <-c(paste("lny0:",dimnames(x_lny0)[[2]]),paste("mu:",dimnames(x_mu)[[2]]),paste("logit(p):",dimnames(x_lamda)[[2]]))
loglik = (-1)*est$minimum
fit<-list(coefficients = est$estimate,
var = solve(est$hessian),
loglik = loglik,
AIC = (-2)*loglik+2*(length(dimnames(x_lny0)[[2]])+length(dimnames(x_mu)[[2]])+length(dimnames(x_lamda)[[2]])),
Pvalue = 1-pchisq(2*(loglik-loglik0),df=k),
iter = est$iterations,
call = cl,
mf = mf,
lny0 = dimnames(x_lny0)[[2]],
mu = dimnames(x_mu)[[2]],
lamda = dimnames(x_lamda)[[2]])
class(fit) <- 'thregIcure'
fit
} |
"cells10" |
test_that("MCMC: exponential", {
n_chains <- 2
data <- dreamer_data_linear(n_cohorts = c(10, 20, 30), c(1, 3, 5), 1, 2, 2)
mcmc <- dreamer_mcmc(
data,
mod = model_exp(
mu_b1 = 0,
sigma_b1 = 1,
mu_b2 = 0,
sigma_b2 = 1,
mu_b3 = 0,
sigma_b3 = 1,
shape = 1,
rate = .01
),
n_iter = 5,
silent = TRUE,
convergence_warn = FALSE,
n_chains = n_chains
)
assert_mcmc_format(mcmc, n_chains)
test_posterior(
mcmc,
doses = c(1, 3, 2),
prob = c(.25, .75),
b1 = 1:10,
b2 = 2:11,
b3 = 3:12,
true_responses = rlang::expr(b1 + b2 * (1 - exp(- b3 * dose)))
)
test_posterior(
mcmc,
doses = c(1, 3, 2),
reference_dose = .5,
prob = c(.25, .75),
b1 = 1:10,
b2 = 2:11,
b3 = 3:12,
true_responses = rlang::expr(
b1 + b2 * (1 - exp(- b3 * dose)) -
(b1 + b2 * (1 - exp(- b3 * reference_dose)))
)
)
})
test_that("MCMC: exponential long linear", {
n_chains <- 2
t_max <- 4
times <- c(0, 2, 4)
data <- dreamer_data_linear(
n_cohorts = c(10, 20, 30),
dose = c(1, 3, 5),
b1 = 1,
b2 = 2,
sigma = 2,
longitudinal = "linear",
a = .5,
times = times,
t_max = t_max
)
mcmc <- dreamer_mcmc(
data,
mod = model_exp(
mu_b1 = 0,
sigma_b1 = 1,
mu_b2 = 0,
sigma_b2 = 1,
mu_b3 = 0,
sigma_b3 = 1,
shape = 1,
rate = .01,
longitudinal = model_longitudinal_linear(0, 1, t_max)
),
n_iter = 5,
silent = TRUE,
convergence_warn = FALSE,
n_chains = n_chains
)
assert_mcmc_format(mcmc, n_chains, times)
test_posterior(
mcmc,
doses = c(1, 3, 2),
times = c(1, 5, 2),
prob = c(.25, .75),
b1 = 1:10,
b2 = 2:11,
b3 = 3:12,
a = 10:1,
true_responses = rlang::expr(
a + time / !!t_max * (b1 + b2 * (1 - exp(- b3 * dose)))
)
)
test_posterior(
mcmc,
doses = c(1, 3, 2),
times = c(1, 5, 2),
reference_dose = .5,
prob = c(.25, .75),
b1 = 1:10,
b2 = 2:11,
b3 = 3:12,
a = 10:1,
true_responses = rlang::expr(
a + (time / !!t_max) * (b1 + b2 * (1 - exp(- b3 * dose))) -
(a + (time / !!t_max) * (b1 + b2 * (1 - exp(- b3 * reference_dose))))
)
)
})
test_that("MCMC: exponential long ITP", {
n_chains <- 2
t_max <- 4
times <- c(0, 2, 4)
data <- dreamer_data_linear(
n_cohorts = c(10, 20, 30),
dose = c(1, 3, 5),
b1 = 1,
b2 = 2,
sigma = 2,
longitudinal = "linear",
a = .5,
times = times,
t_max = t_max
)
mcmc <- dreamer_mcmc(
data,
mod = model_exp(
mu_b1 = 0,
sigma_b1 = 1,
mu_b2 = 0,
sigma_b2 = 1,
mu_b3 = 0,
sigma_b3 = 1,
shape = 1,
rate = .01,
longitudinal = model_longitudinal_itp(0, 1, t_max = t_max)
),
n_iter = 5,
silent = TRUE,
convergence_warn = FALSE,
n_chains = n_chains
)
assert_mcmc_format(mcmc, n_chains, times)
test_posterior(
mcmc,
doses = c(1, 3, 2),
times = c(1, 5, 2),
prob = c(.25, .75),
b1 = 1:10,
b2 = 2:11,
b3 = 3:12,
a = 10:1,
c1 = seq(.1, 3, length = 10),
true_responses = rlang::expr(
a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) *
(b1 + b2 * (1 - exp(- b3 * dose)))
)
)
test_posterior(
mcmc,
doses = c(1, 3, 2),
times = c(1, 5, 2),
reference_dose = .5,
prob = c(.25, .75),
b1 = 1:10,
b2 = 2:11,
b3 = 3:12,
a = 10:1,
c1 = seq(.1, 3, length = 10),
true_responses = rlang::expr(
a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) *
(b1 + b2 * (1 - exp(- b3 * dose))) -
(a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) *
(b1 + b2 * (1 - exp(- b3 * reference_dose))))
)
)
})
test_that("MCMC: exponential long IDP", {
n_chains <- 2
t_max <- 4
times <- c(0, 2, 4)
data <- dreamer_data_linear(
n_cohorts = c(10, 20, 30),
dose = c(1, 3, 5),
b1 = 1,
b2 = 2,
sigma = 2,
longitudinal = "linear",
a = .5,
times = times,
t_max = t_max
)
mcmc <- dreamer_mcmc(
data,
mod = model_exp(
mu_b1 = 0,
sigma_b1 = 1,
mu_b2 = 0,
sigma_b2 = 1,
mu_b3 = 0,
sigma_b3 = 1,
shape = 1,
rate = .01,
longitudinal = model_longitudinal_idp(0, 1, t_max = t_max)
),
n_iter = 5,
silent = TRUE,
convergence_warn = FALSE,
n_chains = n_chains
)
assert_mcmc_format(mcmc, n_chains, times)
test_posterior(
mcmc,
doses = c(1, 3, 2),
times = c(1, 5, 2),
prob = c(.25, .75),
b1 = 1:10,
b2 = 2:11,
b3 = 3:12,
a = 10:1,
c1 = seq(.1, 3, length = 10),
c2 = seq(-.1, -.02, length = 10),
d1 = seq(3, 4, length = 10),
d2 = seq(4, 5, length = 10),
gam = seq(.2, .33, length = 10),
true_responses = rlang::expr(
a + (b1 + b2 * (1 - exp(- b3 * dose))) * (
(1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) +
(1 - gam * (1 - exp(- c2 * (time - d1))) /
(1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) +
(1 - gam) * (time > d2)
)
)
)
test_posterior(
mcmc,
doses = c(1, 3, 2),
times = c(1, 5, 2),
reference_dose = .5,
prob = c(.25, .75),
a = 10:1,
b1 = 1:10,
b2 = 2:11,
b3 = 3:12,
c1 = seq(.1, 3, length = 10),
c2 = seq(-.1, -.02, length = 10),
d1 = seq(3, 4, length = 10),
d2 = seq(4, 5, length = 10),
gam = seq(.2, .33, length = 10),
true_responses = rlang::expr(
a + (b1 + b2 * (1 - exp(- b3 * dose))) * (
(1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) +
(1 - gam * (1 - exp(- c2 * (time - d1))) /
(1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) +
(1 - gam) * (time > d2)
) -
(
a + (b1 + b2 * (1 - exp(- b3 * reference_dose))) * (
(1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) +
(1 - gam * (1 - exp(- c2 * (time - d1))) /
(1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) +
(1 - gam) * (time > d2)
)
)
)
)
}) |
test_that("can construct and access components", {
r <- new_rcrd(list(x = 1, y = 2))
expect_equal(length(r), 1)
expect_equal(n_fields(r), 2)
expect_equal(names(r), NULL)
expect_equal(fields(r), c("x", "y"))
expect_error(r$x, class = "vctrs_error_unsupported")
expect_equal(field(r, "x"), 1)
})
test_that("requires format method", {
x <- new_rcrd(list(x = 1))
expect_error(format(x), class = "vctrs_error_unimplemented")
})
test_that("vec_proxy() transforms records to data frames", {
expect_identical(
vec_proxy(new_rcrd(list(a = "1"))),
new_data_frame(list(a = "1"))
)
})
test_that("can't cast list to rcrd", {
l <- list(
new_rcrd(list(a = "1", b = 3L)),
new_rcrd(list(b = "4", a = 2))
)
expect_error(
vec_cast(l, new_rcrd(list(a = 1L, b = 2L))),
class = "vctrs_error_incompatible_type"
)
})
test_that("can recast rcrd from list", {
r <- new_rcrd(list(x = integer(), y = numeric()))
expect_equal(
vec_restore(list(x = 1L, y = 1), r),
new_rcrd(list(x = 1L, y = 1))
)
})
test_that("can't cast rcrd to list", {
r <- new_rcrd(list(x = 1:2, y = 2:3))
expect_error(vec_cast(r, list()), class = "vctrs_error_incompatible_type")
expect_error(vec_cast(r, list()), class = "vctrs_error_incompatible_type")
})
test_that("default casts are implemented correctly", {
r <- new_rcrd(list(x = 1, y = 1))
expect_error(vec_cast(1, r), class = "vctrs_error_incompatible_type")
expect_equal(vec_cast(NULL, r), NULL)
})
test_that("can't cast incompatible rcrd", {
expect_error(
vec_cast(
new_rcrd(list(a = "1", b = 3L)),
new_rcrd(list(a = "1"))
),
class = "vctrs_error_cast_lossy"
)
expect_error(
vec_cast(
new_rcrd(list(a = "1", b = 3L)),
new_rcrd(list(a = "1", c = 3L))
),
class = "vctrs_error_cast_lossy"
)
expect_error(
vec_cast(
new_rcrd(list(a = "a", b = 3L)),
new_rcrd(list(a = 1, b = 3L))
),
class = "vctrs_error_incompatible_type"
)
})
test_that("must be list of equal length vectors", {
expect_error(new_rcrd(list()), "list of length 1")
expect_error(new_rcrd(list(x = environment())), class = "vctrs_error_scalar_type")
expect_error(new_rcrd(list(x = 1:2, y = 1:3)), "same size")
})
test_that("names must be unique", {
expect_error(new_rcrd(list(1, 2)), class = "vctrs_error_names_cannot_be_empty")
expect_error(new_rcrd(list(x = 1, 2)), class = "vctrs_error_names_cannot_be_empty")
expect_error(new_rcrd(list(x = 1, x = 2)), class = "vctrs_error_names_must_be_unique")
expect_error(new_rcrd(setNames(list(1, 2), "x")), "can't return `NA`")
})
test_that("subset assignment throws error", {
x <- new_rcrd(list(x = 1))
expect_error(
x$y <- 2,
class = "vctrs_error_unsupported"
)
})
test_that("can supply data frame as fields", {
expect_identical(
new_rcrd(list(x = 1)),
new_rcrd(tibble(x = 1))
)
})
test_that("fields are not recycled", {
expect_error(
new_rcrd(list(x = 1, y = 1:2)),
"must be the same size"
)
})
test_that("print and str use format", {
local_tuple_methods()
r <- tuple(1, 1:100)
expect_known_output(
file = test_path("test-rcrd-format.txt"),
{
print(r)
cat("\n")
str(r[1:10])
cat("\n")
str(list(list(list(r, 1:100))))
}
)
})
test_that("subsetting methods applied to each field", {
local_tuple_methods()
x <- tuple(1:2, 1)
expect_equal(x[1], tuple(1, 1))
expect_equal(x[[1]], tuple(1, 1))
expect_equal(rep(tuple(1, 1), 2), tuple(c(1, 1), 1))
length(x) <- 1
expect_equal(x, tuple(1, 1))
})
test_that("subset assignment modifies each field", {
local_tuple_methods()
x <- tuple(c(1, 1), c(2, 2))
expect_error(x[[]] <- tuple(), "missing")
x[[1]] <- tuple(3, 3)
expect_equal(x, tuple(c(3, 1), c(3, 2)))
x[1] <- tuple(4, 4)
expect_equal(x, tuple(c(4, 1), c(4, 2)))
})
test_that("subset assignment recycles", {
local_tuple_methods()
x <- tuple(c(1, 1), c(2, 2))
x[1:2] <- tuple(1, 1)
expect_equal(x, tuple(c(1, 1), c(1, 1)))
x[] <- tuple(2, 2)
expect_equal(x, tuple(c(2, 2), c(2, 2)))
})
test_that("can sort rcrd", {
local_tuple_methods()
x <- tuple(c(1, 2, 1), c(3, 1, 2))
expect_equal(xtfrm(x), c(2, 3, 1))
expect_equal(order(x), c(3, 1, 2))
expect_equal(sort(x), tuple(c(1, 1, 2), c(2, 3, 1)))
})
test_that("can use dictionary methods on a rcrd", {
local_tuple_methods()
x <- tuple(c(1, 2, 1), c(3, 1, 3))
expect_equal(unique(x), x[1:2])
expect_equal(duplicated(x), c(FALSE, FALSE, TRUE))
expect_equal(anyDuplicated(x), TRUE)
})
test_that("cannot round trip through list", {
local_tuple_methods()
t <- tuple(1:2, 3:4)
expect_error(vec_cast(t, list()), class = "vctrs_error_incompatible_type")
})
test_that("can convert to list using as.list() or vec_chop() (
local_tuple_methods()
t <- tuple(1:2, 3:4)
expect <- list(tuple(1L, 3L), tuple(2L, 4L))
expect_identical(as.list(t), expect)
expect_identical(vec_chop(t), expect)
})
test_that("dangerous methods marked as unimplemented", {
local_tuple_methods()
t <- tuple()
expect_error(mean(t), class = "vctrs_error_unsupported")
expect_error(abs(t), class = "vctrs_error_unsupported")
expect_error(is.finite(t), class = "vctrs_error_unsupported")
expect_error(is.nan(t), class = "vctrs_error_unsupported")
})
test_that("dots are forwarded", {
expect_error(new_rcrd(list(foo = "foo"))[1, 2], "undefined columns selected")
})
test_that("records are restored after slicing the proxy", {
expect_identical(new_rcrd(list(x = 1:2))[1], new_rcrd(list(x = 1L)))
})
test_that("can slice with df-cols fields", {
x <- new_rcrd(data_frame(x = data_frame(y = 1:2)))
out <- vec_slice(x, 2)
expect_identical(
out,
new_rcrd(data_frame(x = data_frame(y = 2L)))
)
expect_identical(
x[2],
out
)
expect_identical(
x[[2]],
out
)
})
test_that("can rep with df-cols fields", {
x <- new_rcrd(data_frame(x = data_frame(y = 1:2)))
expect_identical(
rep(x, length.out = 4),
vec_slice(x, c(1:2, 1:2))
)
})
test_that("can assign with df-cols fields", {
x <- new_rcrd(data_frame(x = data_frame(y = 1:3)))
y <- new_rcrd(data_frame(x = data_frame(y = FALSE)))
exp <- new_rcrd(data_frame(x = data_frame(y = c(1L, 2L, 0L))))
expect_identical(vec_assign(x, 3, y), exp)
out <- x
out[[3]] <- y
expect_identical(out, exp)
})
test_that("can resize with df-cols fields", {
x <- new_rcrd(data_frame(x = data_frame(y = 1:3)))
length(x) <- 2
expect_identical(x, new_rcrd(data_frame(x = data_frame(y = 1:2))))
length(x) <- 4
expect_identical(x, new_rcrd(data_frame(x = data_frame(y = c(1:2, NA, NA)))))
})
test_that("`[[` preserves type of record fields (
x <- new_rcrd(list(x = 1:3, a = list(1, 2:3, 4:6)))
expect_identical(field(x[3], "a"), list(4:6))
expect_identical(field(x[[3]], "a"), list(4:6))
}) |
.newt <- function(fn,start,...,eps.p = 1e-08,eps.v = NULL,
maxit = 50,verb = FALSE)
{
p.o <- start
itno <- 1
repeat {
fj <- fn(p.o,...)
v <- fj$fval
t1 <- if(is.null(eps.v)) NULL else sum(abs(v))
J <- as.matrix(fj$jacobian)
if(qr(J)$rank < ncol(J)) {
cat("Singular Jacobian.\n")
rslt <- if(is.null(eps.v)) NA else if(t1 < eps.v) p.o
else NA
break
}
else {
p.n <- p.o - solve(J) %*% v
t2 <- max(abs(p.n - p.o))
if(verb) {
tmp <- format(round(c(p.o,p.n,v,t2,t1),6))
np <- length(v)
v1 <- paste(tmp[1:np],collapse = " ")
v2 <- paste(tmp[(np + 1):(2 * np)],collapse = " ")
v3 <- paste(tmp[(2 * np + 1):(3 * np)],collapse = " ")
v4 <- tmp[3 * np + 1]
v5 <- tmp[3 * np + 2]
cat("\nIteration : ",itno,"\n",sep = "")
cat("Old par : ",v1,"\n",sep = "")
cat("New par : ",v2,"\n",sep = "")
cat("Test ch.par: ",v4,"\n",sep = "")
cat("Fn. vals. : ",v3,"\n",sep = "")
if(!is.null(t1))
cat("Test f.val: ",v5,"\n",sep = "")
}
if((!is.null(t1) && t1 < eps.v) | t2 < eps.p) {
rslt <- p.n
break
}
itno <- itno + 1
if(itno > maxit) {
cat("Newton's method failed to converge in\n")
cat(maxit,"iterations.\n")
rslt <- NA
break
}
p.o <- p.n
}
}
as.vector(rslt)
} |
colorSpec <- function( data, wavelength, quantity='auto', organization='auto', specnames=NULL )
{
n = NROW(data)
if( ! is.numeric(data) )
{
log.string( ERROR, "data has incorrect type '%s'.", typeof(data) )
return(NULL)
}
if( ! is.numeric(wavelength) )
{
log.string( ERROR, "wavelength has incorrect type '%s'.", typeof(wavelength) )
return(NULL)
}
if( length(wavelength) != n )
{
log.string( ERROR, "NROW(data) = %d != %d = length(wavelength) mismatch.", n, length(wavelength) )
return(NULL)
}
if( is.integer(wavelength) )
wavelength = as.numeric(wavelength)
if( ! isIncreasingSequence(wavelength) )
{
log.string( ERROR, "wavelength is not increasing." )
return(NULL)
}
if( is.null( dim(data) ) )
{
spectra = 1
if( is.null(specnames) )
specnames = deparse(substitute(data))
attr(data,'specname') = NULL
}
else if( is.matrix(data) )
{
spectra = ncol(data)
if( is.null(specnames) )
specnames = colnames(data)
}
else
{
log.string( ERROR, "data is numeric, but neither vector nor matrix." )
return(NULL)
}
dups = sum(duplicated(specnames))
ok = is.character(specnames) && length(specnames)==spectra && dups==0
if( ! ok )
{
if( 0 < spectra )
{
specnames = sprintf( "S%d", 1:spectra )
combo = paste(specnames,collapse=',')
if( 80 < nchar(combo) ) combo = paste( substr(combo,1,76), '...', collapse='' )
if( 0 < dups )
log.string( WARN, "specnames are invalid (there are %d duplicates). Using '%s' instead.",
dups, combo )
else
log.string( WARN, "specnames are invalid. Using '%s' instead.", combo )
}
else
{
specnames = character(0)
}
}
if( quantity == "auto" )
{
quantity = guessSpectrumQuantity( specnames, '' )
if( is.na( quantity ) )
{
log.string( ERROR, "Cannot guess spectrum quantity from the specnames." )
return(NULL)
}
}
if( is.na( spectrumTypeFromQuantity( quantity ) ) )
{
log.string( ERROR, "quantity='%s' is invalid.", quantity )
return(NULL)
}
if( organization == "auto" )
organization = ifelse( is.null( dim(data) ), "vector", "matrix" )
ok = organization %in% c("df.col","df.row","matrix","vector")
if( ! ok )
{
log.string( ERROR, "organization='%s' is invalid\n", organization )
return(NULL)
}
if( organization == "vector" )
{
if( spectra != 1 )
{
log.string( ERROR, "organization='%s' is invalid, because there are %d spectra in data\n", organization, spectra )
return(NULL)
}
out = as.numeric(data)
}
else if( organization == "matrix" )
{
out = data
dim(out) = c(n,spectra)
}
else if( organization == "df.col" )
{
out = data.frame( Wavelength=wavelength )
if( 0 < spectra )
out = cbind( out, as.data.frame(data) )
row.names(out) = NULL
}
else if( organization == "df.row" )
{
tdata = t(data)
colnames(tdata) = wavelength
out = data.frame( row.names=specnames )
out$spectra = tdata
}
class( out ) = c( "colorSpec", class(out) )
wavelength( out ) = wavelength
quantity( out ) = quantity
specnames( out ) = specnames
attr( out, "metadata" ) = list()
return( out )
}
is.colorSpec <- function(x)
{
if( ! "colorSpec" %in% class(x) )
{
log.string( DEBUG, "'%s' class '%s' is invalid.", deparse(substitute(x)), class(x) )
return(FALSE)
}
if( is.na(organization(x)) )
{
log.string( DEBUG, "'%s' organization '%s' is invalid.", deparse(substitute(x)), organization(x) )
return(FALSE)
}
if( ! type(x) %in% c("light","responsivity.light","material","responsivity.material") )
{
log.string( DEBUG, "'%s' type '%s' is invalid.", deparse(substitute(x)), type(x) )
return(FALSE)
}
wave = wavelength(x)
if( ! is.double( wave ) )
{
log.string( DEBUG, "'%s' wavelengths are not double-precision.", deparse(substitute(x)) )
return(FALSE)
}
if( ! isIncreasingSequence(wave) )
{
log.string( DEBUG, "'%s' wavelengths are not increasing.", deparse(substitute(x)) )
return(FALSE)
}
return(TRUE)
}
as.colorSpec.default <- function( ... )
{
log.string( WARN, "This function is designed to be called from other packages." )
return(NULL)
}
isValidQuantity <- function( .quantity )
{
return( ! is.na( spectrumTypeFromQuantity( .quantity ) ) )
}
isValidType <- function( .type )
{
return( .type %in% c("light","responsivity.light","material","responsivity.material") )
}
guessSpectrumType <- function( .specnames, .header )
{
pattern = "keyword[: \t]+scanner"
if( any( grepl(pattern,.header,ignore.case=TRUE) ) ) return( "responsivity.material" )
pattern = "power|radian|photon"
if( all( grepl(pattern,.specnames,ignore.case=TRUE) ) ) return( "light" )
if( any( grepl( "^IT8", .header ) ) ) return( "material" )
if( 1 < length(.specnames) )
{
pattern_vec = c("^R","^G","^B","^X","^Y","^Z","^L","^M","^S","^V")
if( allDistinctMatches( pattern_vec, .specnames, .ignore=T ) ) return( "responsivity.light" )
}
else
{
pattern = "quantum|QE|gray"
if( all( grepl(pattern,.specnames,ignore.case=TRUE) ) ) return( "responsivity.light" )
}
pattern = "trans|reflect|absorb"
if( all( grepl(pattern,.specnames,ignore.case=TRUE) ) ) return( "material" )
if( any( grepl(pattern,.header,ignore.case=TRUE) ) ) return( "material" )
return( as.character(NA) )
}
spectrumTypeFromQuantity <- function( .quantity )
{
pattern = "^(power|energy|photons|photons/sec)->(electrical|neural|action)$"
if( grepl( pattern, .quantity ) ) return( "responsivity.light" )
pattern = "^material->(electrical|neural|action)$"
if( grepl( pattern, .quantity ) ) return( "responsivity.material" )
pattern = "^(power|energy|photons|photons/sec)$"
if( grepl( pattern, .quantity ) ) return( "light" )
pattern = "^(reflectance|transmittance|absorbance)$"
if( grepl( pattern, .quantity ) ) return( "material" )
return( as.character(NA) )
}
guessSpectrumQuantity <- function( .specnames, .header )
{
pattern = '^
out = sub( pattern, "\\1", .header, ignore.case=T )
idx = which( nchar(out) < nchar(.header) )
if( 0 < length(idx) )
{
value = tolower( out[idx[1]] )
if( isValidQuantity(value) ) return(value)
pattern = "photon[- ]+|photon$"
if( grepl( pattern, value ) ) return('photons')
}
pattern = '^MEAS_TYPE[ \t]*"?([A-Z]+)"?'
out = sub( pattern, "\\1", .header, ignore.case=T )
idx = which( nchar(out) < nchar(.header) )
if( 0 < length(idx) )
{
value = toupper( out[idx[1]] )
if( value == "REFLECTIVE" ) return( 'reflectance' )
if( value == "TRANSMISSIVE" ) return( 'transmittance' )
if( value=="EMISSION" || value=="AMBIENT" ) return( 'energy' )
if( value == "SENSITIVITY" ) return( 'energy->neural' )
}
pattern = "keyword[: \t]+scanner"
if( any( grepl(pattern,.header,ignore.case=TRUE) ) ) return( 'material->electrical' )
type = guessSpectrumType( .specnames, .header ) ; log.string( DEBUG, "guessed type=%s", type )
if( is.na(type) || type == "light" )
{
if( any( grepl( "photon", .specnames, ignore.case=T ) ) ) return( "photons" )
if( any( grepl( "^(energy|power)", .specnames, ignore.case=T ) ) ) return( "energy" )
return( "energy" )
}
else if( is.na(type) || type == "responsivity.light" )
{
if( all( grepl( "^(quant|QE)", .specnames, ignore.case=T ) ) ) return( 'photons->electrical' )
if( any( grepl( "photon", .header, ignore.case=T ) ) ) return( "photons->action" )
if( length(.specnames)==1 && grepl( "gray", .specnames, ignore.case=T ) ) return( 'energy->electrical' )
if( allDistinctMatches( c("^R","^G","^B"), .specnames, .ignore=T ) ) return( 'energy->electrical' )
if( allDistinctMatches( c("^x","^y","^z"), .specnames, .ignore=T ) ) return( 'energy->neural' )
if( allDistinctMatches( c("^L","^M","^S"), .specnames, .ignore=T ) ) return( 'energy->neural' )
if( allDistinctMatches( "^V", .specnames, .ignore=T ) ) return( 'energy->neural' )
return( 'power->action' )
}
else if( is.na(type) || type == "material" )
{
if( any( grepl( "reflect", .specnames, ignore.case=T ) ) ) return( "reflectance" )
if( any( grepl( "transmit", .specnames, ignore.case=T ) ) ) return( "transmittance" )
if( any( grepl( "absorb", .specnames, ignore.case=T ) ) ) return( "absorbance" )
if( any( grepl( "IT8[.]7/1", .header ) ) ) return( "transmittance" )
if( any( grepl( "IT8[.]7/2", .header ) ) ) return( "reflectance" )
if( any( grepl( 'QUANTITY[ \t]+"?TRANSMIT', .header, ignore.case=T ) ) ) return( "transmittance" )
if( any( grepl( 'QUANTITY[ \t]+"?REFLECT', .header, ignore.case=T ) ) ) return( "reflectance" )
}
else if( is.na(type) || type == "responsivity.material" )
{
if( allDistinctMatches( c("^R","^G","^B"), .specnames, .ignore=T ) ) return( 'material->electrical' )
if( allDistinctMatches( c("^x","^y","^z"), .specnames, .ignore=T ) ) return( 'material->neural' )
if( allDistinctMatches( c("^L","^M","^S"), .specnames, .ignore=T ) ) return( 'material->neural' )
return( 'material->action' )
}
log.object( DEBUG, .specnames )
log.string( DEBUG, "Cannot guess quantity from .specnames and .header." )
return( as.character(NA) )
}
validQuantities <- function( .type )
{
qvalid = as.character(NA) ;
if( .type == "light" )
qvalid = c("energy","power","photons")
else if( .type == "responsivity.light" )
qvalid = c("energy->electrical","energy->neural","energy->action","power->electrical","power->neural","power->action","photons->electrical","photons->neural","photons->action")
else if( .type == "material" )
qvalid = c("reflectance","transmittance","absorbance")
else if( .type == "responsivity.material" )
qvalid = c("electrical","neural","action")
return( qvalid )
}
numSpectra.colorSpec <- function(x)
{
org = organization.colorSpec(x)
if( org == "vector" )
return(1L)
else if( org == "matrix" )
return( ncol(x) )
else if( org == "df.col" )
return( ncol(x)-1L )
else if( org == "df.row" )
return( nrow(x) )
return( 0 )
}
numWavelengths.colorSpec <- function(x)
{
org = organization.colorSpec(x)
if( org == "df.row" )
return( ncol( x[[ ncol(x) ]] ) )
else
return( NROW(x) )
}
organization.colorSpec <- function(x)
{
if( is.null(dim(x)) ) return( "vector" )
if( is.matrix(x) )
return( "matrix" )
if( is.data.frame(x) )
{
if( is.matrix( x[[ncol(x)]] ) )
return( "df.row" )
else if( grepl( "^wave|^wl|nm$", colnames(x)[1], ignore.case=T ) )
return( "df.col" )
}
log.object( ERROR, x, 'str' )
log.string( ERROR, "cannot determine organization of object x." )
return( as.character(NA) )
}
"organization<-.colorSpec" <- function( x, value )
{
ok = value %in% c("vector","matrix","df.row","df.col")
if( ! ok )
{
log.string( ERROR, "organization='%s' is invalid.", value )
return(x)
}
org = organization(x)
if( org == value )
return( x )
m = numSpectra(x)
if( value == "vector" && m != 1 )
{
log.string( ERROR, "cannot reorganize to vector because
return( x )
}
out = colorSpec( as.matrix(x), wavelength(x), quantity=quantity(x), organization=value )
if( ! is.null(out) )
{
for( a in c('metadata','sequence','calibrate','emulate') )
attr(out,a) = attr(x,a)
}
return(out)
}
coredata.colorSpec <- function( x, forcemat=FALSE )
{
wave = wavelength(x)
if( numSpectra(x) == 0 )
{
out = matrix( 0, length(wave), 0 )
rownames(out) = as.character(wave)
return( out )
}
org = organization.colorSpec(x)
if( org == "vector" )
{
out = as.double(x)
if( forcemat )
dim(out) = c(length(wave),1)
else
names(out) = as.character(wave)
}
else if( org == "matrix" )
{
out = x
}
else if( org == "df.col" )
{
out = as.matrix.data.frame( x[ , 2:ncol(x), drop=F ] )
}
else if( org == "df.row" )
{
out = t( x[[ncol(x)]] )
}
else
{
log.string( FATAL, "Internal error. organization='%s' is unknown.", org )
return(NULL)
}
class( out ) = 'numeric'
for( a in c( "wavelength","step.wl","quantity","metadata","sequence","calibrate","specname",'emulate') )
attr(out,a) = NULL
if( is.matrix(out) )
{
colnames(out) = specnames(x)
rownames(out) = as.character(wave)
}
return(out)
}
as.matrix.colorSpec <- function( x, ... )
{
return( coredata(x,forcemat=TRUE) )
}
as.data.frame.colorSpec <- function( x, row.names=NULL, optional=FALSE, organization='auto', ... )
{
if( organization == 'auto' )
{
organization = ifelse( organization(x)=='df.row', 'row', 'col' )
}
out = x
if( organization == 'col' )
organization(out) = 'df.col'
else if( organization == 'row' )
organization(out) = 'df.row'
else
{
log.string( ERROR, "organization='%s' is invalid.", organization )
return(NULL)
}
class(out) = 'data.frame'
return( out )
}
extradata.colorSpec <- function( x )
{
org = organization(x)
if( org != "df.row" )
{
return( data.frame( row.names=specnames(x) ) )
}
m = ncol(x)
if( m == 1 )
{
return( data.frame( row.names=row.names(x) ) )
}
out = x[ 1:(m-1) ]
class(out) = 'data.frame'
return( out )
}
"extradata<-.colorSpec" <- function( x, add=FALSE, value )
{
if( ! is.null(value) && ! is.data.frame(value) )
{
log.string( ERROR, "RHS object '%s' is not a data.frame, and not NULL.", deparse(substitute(value))[1] )
return(x)
}
if( is.null(value) && add )
{
return(x)
}
if( is.data.frame(value) && ncol(value)==0 )
{
return(x)
}
org = organization(x)
if( org != "df.row" )
{
log.string( ERROR, "organization(x) = '%s' is invalid. Please change to 'df.row' first.", org )
return(x)
}
if( is.data.frame(value) )
{
if( nrow(value) != nrow(x) )
{
log.string( ERROR, "Row count mismatch. LHS %d != %d RHS.", nrow(x), nrow(value) )
return(x)
}
if( add )
{
namevec = unlist( sapply( list(value,x), colnames ) )
idx = which( duplicated(namevec) )
if( 0 < length(idx) )
{
log.string( ERROR, "Cannot add new extradata, because one of its column names already appears in the current extradata, e.g. '%s'.",
namevec[idx[1]] )
return(x)
}
if( ncol(x) == 1 )
out = cbind( value, x )
else
out = cbind( x[1:(ncol(x)-1)], value, x[ncol(x)] )
}
else
{
out = cbind( value, x[ncol(x)] )
}
}
else
{
out = x[ncol(x)]
}
class(out) = class(x)
for( a in c('wavelength','step.wl','quantity','metadata','sequence','calibrate','emulate') )
{
attr( out, a ) = attr( x, a )
}
specnames(out) = specnames(x)
return( out )
}
wavelength.colorSpec <- function(x)
{
wave = attr(x,"wavelength")
if( is.null(wave) && is.data.frame(x) )
{
wave = x[[1]]
if( is.null(wave) )
log.string( FATAL, "Internal Error. Cannot determine wavelength of object '%s'", deparse(substitute(x)) )
}
return( wave )
}
"wavelength<-.colorSpec" <- function( x, value )
{
n = numWavelengths.colorSpec( x )
if( length(value) != n )
{
log.string( ERROR, "length(wavelength)=%d is invalid.", length(value) )
return(x)
}
if( ! isIncreasingSequence( value ) )
{
log.string( ERROR, "wavelength sequence is not increasing." )
return(x)
}
org = organization.colorSpec( x )
if( org == "df.col" )
{
x[[1]] = as.numeric(value)
}
else if( org == "df.row" )
{
wavecurrent = as.numeric( colnames( x[[ncol(x)]] ) )
if( any( 0.5 < abs(wavecurrent - value) ) )
colnames( x[[ncol(x)]] ) = as.character( value )
}
if( org != "df.col" )
attr( x, "wavelength" ) = as.numeric(value)
if( isRegularSequence(value) )
step = ifelse( 1 < n, (value[n] - value[1])/(n-1), 0 )
else
step = NULL
attr( x,"step.wl") = step
return( x )
}
type.colorSpec <- function(x)
{
return( spectrumTypeFromQuantity( quantity(x) ) )
}
quantity.colorSpec <- function(x)
{
return( attr(x,"quantity") )
}
"quantity<-.colorSpec" <- function( x, value )
{
if( ! isValidQuantity( value ) )
{
log.string( ERROR, "quantity=%s is invalid\n", value )
return(x)
}
attr(x,"quantity") = value
return(x)
}
specnames.colorSpec <- function(x)
{
spectra = numSpectra.colorSpec(x)
if( spectra == 0 ) return( character(0) )
org = organization.colorSpec(x)
if( org == "vector" )
return( attr( x, "specname" ) )
else if( org == "matrix" )
return( colnames(x,do.NULL=F) )
else if( org == "df.col" )
{
cname = colnames(x,do.NULL=F)
return( cname[ 2:ncol(x) ] )
}
else if( org == "df.row" )
{
return( row.names(x) )
}
return( rep(as.character(NA),spectra) )
}
"specnames<-.colorSpec" <- function(x, value)
{
n = numSpectra.colorSpec(x)
if( length(value) != n )
{
log.string( ERROR, "length(value) = %d is invalid. It is not equal to numSpectra = %d",
length(value), n )
return(x)
}
if( n == 0 ) return(x)
count = sum(duplicated(value))
if( 0 < count )
{
log.string( ERROR, "The %d names for the spectra have %d duplicates. Names are ignored.",
n, count)
return(x)
}
org = organization.colorSpec(x)
if( org == "vector" )
{
attr( x, "specname" ) = value
}
else if( org == "matrix" )
colnames(x) = value
else if( org == "df.col" )
colnames(x)[ 2:ncol(x) ] = value
else if( org == "df.row" )
row.names(x) = value
return(x)
}
is.regular.colorSpec <- function(x)
{
return( ! is.null( attr(x,"step.wl") ) )
}
step.wl.colorSpec <- function(x)
{
out = attr(x,"step.wl")
if( ! is.null(out) ) return(out)
wave = wavelength(x)
n = length(wave)
range.wl = range( wave )
out = ifelse( 2<=n, (range.wl[2]-range.wl[1])/(n-1), 1 )
return(out)
}
metadata.colorSpec <- function( x, ... )
{
dots <- c(...)
metadata = attr( x, "metadata" )
if (length (dots) == 0L)
metadata
else if( length (dots) == 1L)
metadata[dots][[1]]
else
metadata[dots]
}
"metadata<-.colorSpec" <- function( x, add=FALSE, value )
{
mask = nzchar( names(value) )
if( ! all (mask) )
log.string( WARN, "options without name are discarded: %d", which(!mask) )
if( add )
{
metadata = attr( x, "metadata" )
attr(x,"metadata") <- modifyList( metadata, value[mask] )
}
else
{
attr(x,"metadata") <- value[mask]
}
return( x )
}
if( 0 )
{
isHuman.colorSpec <- function(x)
{
m = numSpectra(x)
if( m<1 || 3<m ) return(FALSE)
if( ! grepl( 'neural$', quantity(x) ) ) return(FALSE)
theNames = tolower(specnames(x))
return( all( theNames %in% c('x','y','z') ) || all( theNames %in% c('l','m','s') ) )
}
}
regularizeWavelength <- function( .wavelength )
{
n = length( .wavelength )
if( n <= 1 ) return( .wavelength )
return( seq( .wavelength[1], .wavelength[n], length.out=n ) )
}
isRegularSequence <- function( x, epsilon=1.e-6 )
{
if( length(x) <= 1 ) return(TRUE)
xr = regularizeWavelength(x)
return( max( abs(x - xr) ) <= epsilon )
}
isIncreasingSequence <- function( x )
{
n = length(x)
if( n <= 1 ) return(TRUE)
sdiff = diff(x)
if( n == 2 ) return( 0 < sdiff )
if( any( sdiff < 0 ) ) return(FALSE)
if( n == 3 )
return( sum(sdiff==0) <= 1 )
sdiff = sdiff[ 2:(n-2) ]
return( all( 0 < sdiff ) )
}
isStrictlyIncreasingSequence <- function( x )
{
n = length(x)
if( n <= 1 ) return(TRUE)
return( all( 0 < diff(x) ) )
}
is.regular <- function(x)
{
UseMethod("is.regular")
}
step.wl <- function(x)
{
UseMethod("step.wl")
}
numSpectra <- function(x)
{
UseMethod("numSpectra")
}
numWavelengths <- function(x)
{
UseMethod("numWavelengths")
}
coredata <- function( x, forcemat=FALSE )
{
UseMethod("coredata")
}
extradata <- function( x )
{
UseMethod("extradata")
}
"extradata<-" <- function( x, add=FALSE, value )
{
UseMethod("extradata<-")
}
if( FALSE )
{
isValid <- function( x )
{
UseMethod("isValid")
}
}
wavelength <- function(x)
{
UseMethod("wavelength")
}
"wavelength<-" <- function( x, value )
{
UseMethod("wavelength<-")
}
type <- function(x)
{
UseMethod("type")
}
quantity <- function(x)
{
UseMethod("quantity")
}
"quantity<-" <- function( x, value )
{
UseMethod("quantity<-")
}
organization <- function(x)
{
UseMethod("organization")
}
"organization<-" <- function(x, value)
{
UseMethod("organization<-")
}
specnames <- function(x)
{
UseMethod("specnames")
}
"specnames<-" <- function(x, value)
{
UseMethod("specnames<-")
}
metadata <- function(x,...)
{
UseMethod("metadata")
}
"metadata<-" <- function(x,add=FALSE,value)
{
UseMethod("metadata<-")
}
as.colorSpec <- function(...)
{
UseMethod("as.colorSpec")
}
|
plot_threshold <- function(beta_threshold, est_eff) {
beta_threshold <- abs(beta_threshold)
est_eff <- abs(est_eff)
if (est_eff > beta_threshold) {
dd <- dplyr::tibble(
est_eff = est_eff,
beta_threshold = beta_threshold
)
dd <- dplyr::mutate(dd, `Above Threshold` = est_eff - beta_threshold)
dd <- dplyr::rename(dd, `Below Threshold` = beta_threshold)
dd <- dplyr::select(dd, -est_eff)
dd <- tidyr::gather(dd, key, val)
dd <- dplyr::mutate(dd, inference = "group")
y_thresh <- dplyr::filter(dd, key == "Below Threshold")
y_thresh <- dplyr::pull(dplyr::select(y_thresh, val))
y_thresh_text <- y_thresh + sqrt(.005 * abs(y_thresh))
effect_text <- est_eff + (.025 * est_eff)
cols <- c("
} else if (est_eff < beta_threshold) {
dd <- dplyr::tibble(est_eff = est_eff, beta_threshold = beta_threshold)
dd <- dplyr::mutate(dd, `Above Estimated Effect, Below Threshold` = abs(est_eff - beta_threshold))
dd <- dplyr::mutate(dd, `Below Threshold` = est_eff)
dd <- dplyr::select(dd, -beta_threshold)
dd <- dplyr::select(dd, -est_eff)
dd <- tidyr::gather(dd, key, val)
dd <- dplyr::mutate(dd, inference = "group")
y_thresh <- sum(abs(dd$val))
if (est_eff < 0) {
y_thresh <- y_thresh * -1
}
y_thresh_text <- y_thresh + sqrt(.005 * abs(y_thresh))
effect_text <- est_eff + sqrt(.025 * abs(est_eff))
cols <- c("lightgray", "
}
p <- ggplot2::ggplot(dd, ggplot2::aes(x = inference, y = val, fill = key)) +
ggplot2::geom_col(position = "stack") +
ggplot2::geom_hline(yintercept = est_eff, color = "black") +
ggplot2::annotate("text", x = 1, y = effect_text, label = "Estimated Effect") +
ggplot2::geom_hline(yintercept = y_thresh, color = "red") +
ggplot2::annotate("text", x = 1, y = y_thresh_text, label = "Threshold") +
ggplot2::scale_fill_manual("", values = cols) +
ggplot2::theme_bw() +
ggplot2::theme(axis.text.x = ggplot2::element_blank(), axis.ticks = ggplot2::element_blank()) +
ggplot2::xlab(NULL) +
ggplot2::ylab("Effect (abs. value)") +
ggplot2::theme(legend.position = "top")
return(p)
} |
data(tortoise)
data(whale)
data(teasel)
x <- splitA(whale)
whaleT <- x$T
whaleF <- x$F
mp <- function(A, pow) {
if (pow == 1) {
A
}
else {
x <- A
for (i in (2:pow)) {
A <- x %*% A
}
}
A
}
surv <- matrix(numeric(150 * 4), ncol = 4)
for (x in 1:150)
{
surv[x, ] <- colSums(mp(whaleT, x))
}
plot(surv[, 1] / surv[1, 1],
type = "l", ylim = c(0, 1), las = 1, main = "Fig 5.1",
xlab = "Age (years)", ylab = expression(paste("Survivorship ", italic(l(x))))
)
T20 <- mp(whaleT, 20)
whaleF %*% T20 %*% diag(1 / colSums(T20))
fert <- numeric(200)
for (x in 1:200)
{
T20 <- mp(whaleT, x)
phi <- whaleF %*% T20 %*% diag(1 / colSums(T20))
fert[x] <- phi[1, 1]
}
op <- par(mar = c(5, 5, 4, 1))
plot(fert,
type = "l", ylim = c(0, 0.07), las = 1, main = "Fig 5.2",
xlab = "Age (years)", ylab = ""
)
mtext("Age-specific fertility", 2, 3.5)
par(op)
A <- tortoise[["med.high"]]
sens <- sensitivity(A)
def.par <- par(no.readonly = TRUE)
par(mfrow = c(3, 1), mar = c(1.5, 4.5, 1, 2), oma = c(1.5, 0, 1.5, 0), cex = 1.2)
ep <- barplot(sens[1, ],
ylim = c(0, .4), col = "white", las = 1,
ylab = expression(paste("to ", italic(F[i]))), names = ""
)
box()
text(ep, -.05, 1:8, xpd = TRUE)
ep <- barplot(diag(sens),
ylim = c(0, .4), col = "white", las = 1,
ylab = expression(paste("to ", italic(P[i]))), names = ""
)
box()
text(ep, -.05, 1:8, xpd = TRUE)
barplot(c(sens[row(sens) == col(sens) + 1], 0),
ylim = c(0, .4), col = "white", las = 1,
ylab = expression(paste("to ", italic(G[i])))
)
box()
text(ep, -.05, c(1:7, NA), xpd = TRUE)
mtext(expression(paste("Fig 9.3. Sensitivity of ", lambda, "...")), 3, outer = TRUE, cex = 1.4)
mtext(expression(paste("Size class ", italic(i))), 1, outer = TRUE, cex = 1.2)
par(def.par)
sens <- sensitivity(teasel)
plot(log10(c(sens)),
type = "s", las = 1, ylim = c(-5, 2),
xlab = "Stage at time t", xaxt = "n",
ylab = expression(paste(Log[10], " sensitivity of ", lambda)),
main = "Fig 9.4c Stair step plot"
)
axis(1, seq(1, 36, 6), 1:6)
text(log10(c(sens)),
cex = .7, adj = c(0, -.3),
labels = paste(" ", 1:6, rep(1:6, each = 6), sep = "")
)
elas <- elasticity(tortoise[[3]])
el <- c(F = sum(elas[1, ]), P = sum(diag(elas)), G = sum(elas[row(elas) == col(elas) + 1]))
plot(c(0, 1, 2, 0), c(0, sqrt(3), 0, 0),
type = "l", lwd = 2, main = "Fig 9.11 Triangle plot",
xlab = "Tortoise summed elasticities", ylab = "", axes = FALSE
)
text(c(0, 2, 1), c(0, 0, sqrt(3)), names(el), cex = 1.5, pos = c(1, 1, 3), xpd = TRUE)
points(2 - 2 * el[1] - el[3], el[3] * sqrt(3), cex = 1.5, pch = 16, col = "blue")
pods <- c(
0, 0.0067, 0.1632, 0, 0.9535, 0.8827, 0, 0, 0, 0.0802, 0.9586, 0, 0, 0, 0.0414, 0.9752,
0, 0.0062, 0.1737, 0, 1, 0.9020, 0, 0, 0, 0.0694, 0.9582, 0, 0, 0, 0.0418, 0.9855,
0, 0.0037, 0.0988, 0, 0.9562, 0.9030, 0, 0, 0, 0.0722, 0.9530, 0, 0, 0, 0.0406, 0.9798,
0, 0.0043, 0.1148, 0, 1, 0.9015, 0, 0, 0, 0.0727, 0.9515, 0, 0, 0, 0.0485, 0.9667,
0, 0.0042, 0.1054, 0, 0.8165, 0.8903, 0, 0, 0, 0.0774, 0.9515, 0, 0, 0, 0.0485, 0.9810,
0, 0.0027, 0.0732, 0, 1, 0.9123, 0, 0, 0, 0.0730, 0.9515, 0, 0, 0, 0.0485, 0.9545,
0, 0.0025, 0.0651, 0, 1, 0.9254, 0, 0, 0, 0.0746, 0.9515, 0, 0, 0, 0.0485, 0.9810,
0, 0.0047, 0.1159, 0, 1, 0.9200, 0, 0, 0, 0.0800, 0.9706, 0, 0, 0, 0.0294, 0.9608,
0, 0.0068, 0.1761, 0, 1, 0.9241, 0, 0, 0, 0.0759, 0.9562, 0, 0, 0, 0.0438, 1,
0, 0.0061, 0.1418, 0, 1, 0.9167, 0, 0, 0, 0.0833, 0.9286, 0, 0, 0, 0.0714, 1,
0, 0.0050, 0.1251, 0, 1, 0.9216, 0, 0, 0, 0.0784, 0.9515, 0, 0, 0, 0.0485, 0.9810,
0, 0.0021, 0.0542, 0, 1, 0.9254, 0, 0, 0, 0.0746, 0.9515, 0, 0, 0, 0.0485, 0.9810,
0, 0.0027, 0.0732, 0, 1, 0.9286, 0, 0, 0, 0.0714, 0.9515, 0, 0, 0, 0.0485, 0.9810,
0, 0.0045, 0.1220, 0, 1, 0.9286, 0, 0, 0, 0.0714, 0.9515, 0, 0, 0, 0.0485, 1,
0, 0.0052, 0.1428, 0, 1, 0.9286, 0, 0, 0, 0.0714, 0.9515, 0, 0, 0, 0.0485, 0.9810,
0, 0.0037, 0.0998, 0, 1, 0.9286, 0, 0, 0, 0.0714, 0.9515, 0, 0, 0, 0.0485, 0.9810,
0, 0.0047, 0.1273, 0, 1, 0.9286, 0, 0, 0, 0.0714, 0.9515, 0, 0, 0, 0.0485, 0.9810,
0, 0.0024, 0.0797, 0, 1, 0.8929, 0, 0, 0, 0.0595, 0.9515, 0, 0, 0, 0.0485, 1
)
p1 <- matrix(pods, nrow = 18, byrow = TRUE)
colnames(p1) <- paste("a", rep(1:4, each = 4), 1:4, sep = "")
x <- order(paste("a", 1:4, rep(1:4, each = 4), sep = ""))
p1 <- p1[, x]
covmat <- cov(p1)
persp(covmat,
theta = 45, phi = 15, box = FALSE,
main = expression("Fig 10.10a Killer Whale Covariances")
)
w1 <- matrix(apply(p1, 2, mean), nrow = 4)
wS <- sensitivity(w1)
contmat <- covmat * c(wS) %*% t(c(wS))
persp(contmat,
theta = 45, phi = 15, box = FALSE,
main = expression(paste("Fig 10.10b Contributions to V(", lambda, ")"))
)
A <- matrix(apply(contmat, 2, mean), nrow = 4)
dimnames(A) <- dimnames(whale)
round(A / sum(A), 3) |
context("question-checkbox")
test_that("correct messages are not included", {
q <- question(
"test",
answer("A", correct = TRUE, message = "msg **1**"),
answer("B", correct = TRUE, message = "msg _2_"),
answer("C", correct = FALSE, message = "msg **3**"),
answer("D", correct = FALSE, message = "msg _4_"),
answer("E", correct = FALSE, message = "msg **5**")
)
ans <- question_is_correct(q, c("A", "B", "C"))
expect_equivalent(ans$correct, FALSE)
expect_equivalent(as.character(ans$messages), "msg <strong>3</strong>")
ans <- question_is_correct(q, c("A", "B", "C", "D"))
expect_equivalent(ans$correct, FALSE)
expect_equivalent(as.character(ans$messages), "msg <strong>3</strong>\nmsg <em>4</em>")
ans <- question_is_correct(q, c("A"))
expect_equivalent(ans$correct, FALSE)
expect_equivalent(ans$messages, NULL)
ans <- question_is_correct(q, c("A", "B"))
expect_equivalent(ans$correct, TRUE)
expect_equivalent(as.character(ans$messages), "msg <strong>1</strong>\nmsg <em>2</em>")
}) |
"pCBB3" <-
function(theta,delta,s,t)
{
pc<-pcopula1(theta,delta,psiKS,phiBB3,ivpsiKS,ivphiBB3,s,t);
resu<-pc
} |
NULL
fit_two_distr <- function(data, ...) UseMethod("fit_two_distr")
fit_two_distr.default <- function(data, random, aggregated, ...) {
call <- match.call()
name_random <- attr(random, "name")
name_aggregated <- attr(aggregated, "name")
random <- random(data)
aggregated <- aggregated(data)
llr <- NULL
if (!is.null(random$full_output) && !is.null(aggregated$full_output)) {
llr <- llrtest(random, aggregated)
}
structure(list(call = call,
name = list(random = name_random, aggregated = name_aggregated),
model = list(random = random, aggregated = aggregated),
llr = llr),
class = "fit_two_distr")
}
fit_two_distr.count <- function(data, random = smle_pois,
aggregated = smle_nbinom,
n_est = c(random = 1, aggregated = 2), ...) {
call <- match.call()
mapped_data <- map_data(data)
ind <- mapped_data[["i"]]
N <- nrow(mapped_data)
res <- fit_two_distr.default(data, random = random, aggregated = aggregated,
...)
res$call <- call
res$data_class <- class(data)
param <- list(random = NULL, aggregated = NULL)
if (!is.null(res$model$random$full_output)) {
param$random <- coef(summary(res$model$random))
param$random <- param$random[sort(rownames(param$random)),, drop = FALSE]
}
if (!is.null(res$model$aggregated$full_output)) {
param$aggregated <- coef(summary(res$model$aggregated))
new_param <- list(
prob = estimate_param(res$model$aggregated, quote(x2/(x1 + x2)), "norm")
)
param$aggregated <- rbind_param(param$aggregated, new_param)
param$aggregated <- param$aggregated[sort(rownames(param$aggregated)),, drop = FALSE]
}
range_ind <- 0:max(ind)
freq <- setNames(as.data.frame(table(ind)), c("category", "observed"))
freq$category <- as.numeric(levels(freq$category))[freq$category]
freq <- merge(x = data.frame(category = range_ind), y = freq,
by = "category", all = TRUE)
freq[is.na(freq)] <- 0
freq$random <- NA
if (!is.null(res$model$random$full_output)) {
freq$random <- N * dpois(x = range_ind,
lambda = coef(res$model$random)[["lambda"]])
}
freq$aggregated <- NA
if (!is.null(res$model$aggregated$full_output)) {
freq$aggregated <- N * dnbinom(x = range_ind,
mu = coef(res$model$aggregated)[["mu"]],
size = coef(res$model$aggregated)[["k"]])
}
gof <- list(random = NULL, aggregated = NULL)
if (!is.null(res$model$random$full_output)) {
gof$random <- chisq.test2(freq$observed, freq$random,
n_est = n_est[["random"]], rescale.p = TRUE)
}
if (!is.null(res$model$aggregated$full_output)) {
gof$aggregated <- chisq.test2(freq$observed, freq$aggregated,
n_est = n_est[["aggregated"]], rescale.p = TRUE)
}
res$param <- param
res$freq <- freq
res$gof <- gof
res
}
fit_two_distr.incidence <- function(data, random = smle_binom,
aggregated = smle_betabinom,
n_est = c(random = 1, aggregated = 2), ...) {
call <- match.call()
mapped_data <- map_data(data)
ind <- mapped_data[["i"]]
N <- nrow(mapped_data)
n <- unique(mapped_data[["n"]])
if (length(n) != 1) stop(paste0("Current implementation only deals ",
"with equal size sampling units."))
res <- fit_two_distr.default(mapped_data, random = random,
aggregated = aggregated, ...)
res$call <- call
res$data_class <- class(data)
param <- list(random = NULL, aggregated = NULL)
if (!is.null(res$model$random$full_output)) {
param$random <- coef(summary(res$model$random))
param$random <- param$random[sort(rownames(param$random)),, drop = FALSE]
}
if (!is.null(res$model$aggregated$full_output)) {
param$aggregated <- coef(summary(res$model$aggregated))
new_param <- list(
rho = estimate_param(res$model$aggregated, quote(x2/(x2 + 1)), "norm"),
alpha = estimate_param(res$model$aggregated, quote(x1/x2), "norm"),
beta = estimate_param(res$model$aggregated, quote((1 - x1)/x2), "norm")
)
param$aggregated <- rbind_param(param$aggregated, new_param)
param$aggregated <- param$aggregated[sort(rownames(param$aggregated)),, drop = FALSE]
}
range_ind <- 0:n
freq <- setNames(as.data.frame(table(ind)), c("category", "observed"))
freq$category <- as.numeric(levels(freq$category))[freq$category]
freq <- merge(x = data.frame(category = range_ind), y = freq,
by = "category", all = TRUE)
freq[is.na(freq)] <- 0
if (!is.null(res$model$random$full_output)) {
freq$random <- N * dbinom(x = range_ind, size = n,
prob = coef(res$model$random)[["prob"]])
}
if (!is.null(res$model$aggregated$full_output)) {
freq$aggregated <- N * dbetabinom(x = range_ind, size = n,
prob = coef(res$model$aggregated)[["prob"]],
theta = coef(res$model$aggregated)[["theta"]])
}
gof <- list(random = NULL, aggregated = NULL)
if (!is.null(res$model$random$full_output)) {
gof$random <- chisq.test2(freq$observed, freq$random,
n_est = n_est[["random"]], rescale.p = TRUE)
}
if (!is.null(res$model$aggregated$full_output)) {
gof$aggregated <- chisq.test2(freq$observed, freq$aggregated,
n_est = n_est[["aggregated"]], rescale.p = TRUE)
}
res$param <- param
res$freq <- freq
res$gof <- gof
res
}
print.fit_two_distr <- function(x, ...) {
cat("Fitting of two distributions by maximum likelihood\n",
"for '", x$data_class[1L], "' data.\n",
"\nParameter estimates:\n",
"\n(1) ", x$name$random, " (random):\n", sep = "")
if (!is.null(x$param$random)) {
print(x$param$random[, 1:2, drop = FALSE])
} else {
cat("Maximum likelihood procedure did not succeed.\n")
}
cat("\n(2) ", x$name$aggregated, " (aggregated):\n", sep = "")
if (!is.null(x$param$aggregated)) {
print(x$param$aggregated[, 1:2, drop = FALSE])
} else {
cat("Maximum likelihood procedure did not succeed.\n")
}
invisible(x)
}
summary.fit_two_distr <- function(object, ...) {
res <- object
structure(res, class = "summary.fit_two_distr")
}
print.summary.fit_two_distr <- function(x, ...) {
cat("Fitting of two distributions by maximum likelihood\n",
"for '", x$data_class[1L], "' data.\n",
"Parameter estimates:\n",
"\n(1) ", x$name$random, " (random):\n", sep = "")
if (!is.null(x$param$random)) {
printCoefmat(x$param$random)
} else {
cat("Maximum likelihood procedure did not succeed.\n")
}
cat("\n(2) ", x$name$aggregated, " (aggregated):\n", sep = "")
if (!is.null(x$param$aggregated)) {
printCoefmat(x$param$aggregated)
} else {
cat("Maximum likelihood procedure did not succeed.\n")
}
invisible(x)
}
plot.fit_two_distr <- function(x, ..., breaks = NULL) {
if (!is.null(breaks)) {
stopifnot(is.numeric(breaks))
stopifnot(is.wholenumber(breaks))
stopifnot(breaks > 0)
fac <- rep(0:ceiling(nrow(x$freq)/breaks), each = breaks)[1:nrow(x$freq)]
tmp <- split(x$freq, fac, drop = TRUE)
x$freq <- do.call(rbind, lapply(tmp, function(xx) {
res <- xx[0, ]
res[1,1] <- paste0(xx[1, 1], "-", xx[nrow(xx), 1])
res[1, 2:ncol(res)] <- colSums(xx[2:ncol(xx)])
res
}))
}
rownames(x$freq) <- x$freq$category
freq_long <- setNames(as.data.frame.table(as.matrix(x$freq[-1])),
c("Number per sampling unit", "key", "Frequency"))
freq_long$key <- factor(tocamel(freq_long$key),
levels = c("Observed", "Aggregated", "Random"))
gg <- ggplot(freq_long, aes(x = `Number per sampling unit`, y = Frequency,
fill = key))
gg <- gg + geom_bar(stat = "identity", position = "dodge", color = "black",
size = 0.5)
gg <- gg + scale_fill_manual(values = c(Observed = "black",
Aggregated = "grey",
Random = "white"))
gg <- gg + theme_bw()
gg <- gg + theme(legend.justification = c(0.98, 0.98),
legend.position = c(0.98, 0.98),
legend.background = element_rect(size = 0.5,
linetype = "solid",
color = "black"),
legend.title = element_blank())
print(gg)
invisible(NULL)
} |
context("Users/groups")
tenant <- Sys.getenv("AZ_TEST_TENANT_ID")
user <- Sys.getenv("AZ_TEST_USERPRINCIPALNAME")
admin_user <- Sys.getenv("AZ_TEST_ADMINUSERPRINCIPALNAME")
if(tenant == "" || user == "")
skip("User method tests skipped: login credentials not set")
if(!interactive())
skip("User method tests skipped: must be in interactive session")
scopes <- c("https://graph.microsoft.com/.default", "openid", "offline_access")
token <- AzureAuth::get_azure_token(scopes, tenant, .az_cli_app_id, version=2)
gr <- ms_graph$new(token=token)
test_that("User/group read functionality works",
{
me <- gr$get_user()
expect_equal(me$properties$userPrincipalName, admin_user)
me2 <- gr$get_user(user)
expect_equal(me2$properties$userPrincipalName, user)
email <- me2$properties$mail
me3 <- gr$get_user(email=email)
expect_equal(me3$properties$userPrincipalName, user)
name <- me2$properties$displayName
me4 <- gr$get_user(name=name)
expect_equal(me4$properties$userPrincipalName, user)
users <- gr$list_users()
expect_true(is.list(users) && all(sapply(users, is_user)))
objs <- me$list_object_memberships()
expect_true(is.character(objs))
grps1 <- me$list_group_memberships()
expect_true(is.character(grps1))
grps3 <- me$list_direct_memberships()
expect_true(all(sapply(grps3, function(x) is_group(x) || is_directory_role(x))))
expect_true(all(sapply(grps3, function(g) !is.null(g$properties$id))))
grp <- gr$get_group(grps1[1])
expect_true(is_group(grp) && !is.null(grp$properties$id))
grps <- gr$list_groups()
expect_true(is.list(grps) && all(sapply(grps, is_group)))
owned <- me$list_owned_objects()
expect_true(is.list(owned) && all(sapply(owned, inherits, "az_object")))
owned_apps <- me$list_owned_objects(type="application")
expect_true(is.list(owned_apps) && all(sapply(owned_apps, is_app)))
created <- me$list_created_objects()
expect_true(is.list(created) && all(sapply(owned, inherits, "az_object")))
created_apps <- me$list_created_objects(type="application")
expect_true(is.list(created_apps) && all(sapply(created_apps, is_app)))
}) |
kRp.cluster <- function(txts, lang, TT.path, TT.preset){
num.texts <- length(txts)
analysis.res <- sapply(1:num.texts, function(txt.idx){
txt <- txts[txt.idx]
message(paste0("Analyzing text: ", txt, " [", txt.idx, "/", num.texts, "]...\n"))
POS.analysis.res <- treetag(txt, treetagger="manual", lang=lang, TT.options=list(path=TT.path, preset=TT.preset))
frq.analysis.res <- freq.analysis(POS.analysis.res)
frq.vector <- c(describe(frq.analysis.res)[["freq.token"]]) / sum(describe(frq.analysis.res)[["freq.token"]])
hyph.analysis.res <- hyphen(POS.analysis.res)
rdb.vector <- c(
describe(POS.analysis.res)[["avg.sentc.length"]],
describe(POS.analysis.res)[["avg.word.length"]],
describe(hyph.analysis.res)[["avg.syll.word"]]
)
lxd.analysis.res <- lex.div(frq.analysis.res, measure=c("MATTR", "HD-D", "MTLD"), char=c())
res.vector.names <- c(names(frq.vector), "avg.sntc.len", "avg.word.len", "avg.syll.word", "MATTR", "HDD", "MTLD")
all.res <- c(
as.numeric(frq.vector),
as.numeric(rdb.vector),
lxd.analysis.res@MATTR[["MATTR"]],
lxd.analysis.res@HDD[["HDD"]],
lxd.analysis.res@MTLD[["MTLD"]])
names(all.res) <- res.vector.names
return(all.res)
})
return(t(analysis.res))
} |
sgnht = function( logLik, dataset, params, stepsize, logPrior = NULL, minibatchSize = 0.01,
a = 0.01, nIters = 10^4L, verbose = TRUE, seed = NULL ) {
sgnht = sgnhtSetup( logLik, dataset, params, stepsize, logPrior, minibatchSize, a, seed )
options = list( "nIters" = nIters, "verbose" = verbose )
paramStorage = runSGMCMC( sgnht, params, options )
return( paramStorage )
}
sgnhtSetup = function( logLik, dataset, params, stepsize, logPrior = NULL, minibatchSize = 0.01,
a = 0.01, seed = NULL ) {
sgnht = createSGMCMC( logLik, logPrior, dataset, params, stepsize, minibatchSize, seed )
sgnht$ranks = getRanks( params )
sgnht$a = convertList( a, sgnht$params )
class(sgnht) = c( "sgnht", "sgmcmc" )
sgnht$dynamics = declareDynamics( sgnht, seed )
return( sgnht )
} |
test_that("Multivariate normal distribution", {
mu <- c(1,2)
sigma <- matrix(c(4,2,2,3), ncol=2)
dist <- dist_multivariate_normal(mu = list(mu), sigma = list(sigma))
dimnames(dist) <- c("a", "b")
expect_equal(format(dist), "MVN[2]")
expect_equal(
mean(dist),
matrix(c(1,2), nrow = 1, dimnames = list(NULL, c("a", "b")))
)
expect_equal(covariance(dist), list(sigma))
expect_equal(
quantile(dist, 0.1),
matrix(c(qnorm(0.1, mu[1], sqrt(sigma[1,1])), qnorm(0.1, mu[2], sqrt(sigma[2,2]))),
nrow = 1, dimnames = list(NULL, c("a", "b")))
)
skip_if_not_installed("mvtnorm")
expect_equivalent(quantile(dist, 0.1, type = "equicoordinate"), mvtnorm::qmvnorm(0.1, mean = mu, sigma = sigma)$quantile)
expect_equal(density(dist, cbind(1, 2)), mvtnorm::dmvnorm(c(1, 2), mean = mu, sigma = sigma))
expect_equal(density(dist, cbind(-3, 4)), mvtnorm::dmvnorm(c(-3, 4), mean = mu, sigma = sigma))
expect_equivalent(cdf(dist, cbind(1, 2)), mvtnorm::pmvnorm(upper = c(1,2), mean = mu, sigma = sigma))
expect_equivalent(cdf(dist, cbind(-3, 4)), mvtnorm::pmvnorm(c(-3, 4), mean = mu, sigma = sigma))
}) |
context("frequencyStats")
test_that("inputs are correct", {
expect_error(frequencyStats("string"), "frequencyStats expects a Wave object")
expect_error(frequencyStats(1), "frequencyStats expects a Wave object")
})
test_that("plotting is ok", {
data(sheep, package="seewave")
expect_silent(frequencyStats(sheep, plot=TRUE))
}) |
source("ESEUR_config.r")
plot_layout(2, 1)
lnd=read.csv(paste0(ESEUR_dir, "developers/like-n-dis.csv.xz"), as.is=TRUE)
plot(lnd$Number, lnd$Like, type="l", col=point_col,
xaxs="i",
xlab="Number", ylab="Like\n")
lines(loess.smooth(lnd$Number, lnd$Like, span=0.3), col=loess_col)
spectrum(lnd$Like, main="Spectrum density", sub="", col=point_col,
xlab="Frequency", ylab="Density\n")
lnd$l_0=grepl("0$", lnd$Number)
lnd$l_1=grepl("1$", lnd$Number)
lnd$l_2=grepl("2$", lnd$Number)
lnd$l_3=grepl("3$", lnd$Number)
lnd$l_4=grepl("4$", lnd$Number)
lnd$l_5=grepl("5$", lnd$Number)
lnd$l_6=grepl("6$", lnd$Number)
lnd$l_7=grepl("7$", lnd$Number)
lnd$l_8=grepl("8$", lnd$Number)
lnd$l_9=grepl("9$", lnd$Number)
lnd$f_1=grepl("^1", lnd$Number)
lnd$f_2=grepl("^2", lnd$Number)
lnd$f_3=grepl("^3", lnd$Number)
lnd$f_4=grepl("^4", lnd$Number)
lnd$f_5=grepl("^5", lnd$Number)
lnd$f_6=grepl("^6", lnd$Number)
lnd$f_7=grepl("^7", lnd$Number)
lnd$f_8=grepl("^8", lnd$Number)
lnd$f_9=grepl("^9", lnd$Number)
like_mod=glm(Like ~ log(Number)+
(l_0+
l_2+
l_4+l_5+
l_6+
l_8)
+(
f_3+
f_4+f_5+
f_6+
f_7
)
, data=lnd)
summary(like_mod)
dislike_mod=glm(Dislike ~ log(Number)+
(l_0+
l_2+
l_4+l_5+
l_6+
l_8)
+(
f_3+
f_4+f_5+
f_6+
f_7
)
, data=lnd)
summary(dislike_mod) |
filter_fact_rows <- function(st,
name = NULL,
...) {
UseMethod("filter_fact_rows")
}
filter_fact_rows.star_schema <- function(st,
name = NULL,
...) {
stopifnot(!is.null(name))
stopifnot(name %in% get_dimension_names(st))
dimension <- get_dimension(st, name)
key <- dplyr::filter(tibble::as_tibble(dimension), ...)[[1]]
st$fact[[1]] <- st$fact[[1]][st$fact[[1]][[sprintf("%s_key", name)]] %in% key, ]
st
} |
print.fmdsd <-
function(x, mean.print=FALSE, var.print=FALSE, cor.print=FALSE,
skewness.print=FALSE, kurtosis.print=FALSE, digits=2, ...)
{
cat("group variable: ",x$group, "\n")
cat("variables: ", x$variables, "\n")
cat("---------------------------------------------------------------\n")
cat("inertia\n"); print(x$inertia, digits=3, ...)
cat("---------------------------------------------------------------\n")
cat("scores\n"); print(x$scores, ...)
if (mean.print)
{n.group <- length(x$means)
n.var <- length(x$means[[1]])
Means <- matrix(unlist(x$means), nrow = n.group, ncol = n.var, byrow = TRUE,
dimnames = list(NULL, paste("mean", names(x$means[[1]]), sep = ".")))
Means <- data.frame(group=names(x$means), Means, stringsAsFactors = TRUE)
colnames(Means)[1]=colnames(x$scores)[1]
st.dev <- unlist(lapply(lapply(x$variances, diag), sqrt))
Means <- data.frame(Means, matrix(st.dev, nrow = n.group, ncol = n.var,
byrow = TRUE, dimnames = list(NULL, paste("sd", names(x$means[[1]])))),
stringsAsFactors = TRUE)
cat("---------------------------------------------------------------\n")
cat("means, standard deviations and norm by group\n")
print(Means, digits=digits, ...)
}
if (var.print)
{cat("---------------------------------------------------------------\n")
cat("variances/covariances by group\n"); print(x$variances, digits=digits, ...)
}
if (cor.print)
{cat("---------------------------------------------------------------\n")
cat("correlations by group\n"); print(x$correlations, digits=digits, ...)
}
if (skewness.print)
{cat("---------------------------------------------------------------\n")
cat("skewness coefficients by group\n"); print(x$skewness, digits=digits, ...)
}
if (kurtosis.print)
{cat("---------------------------------------------------------------\n")
cat("kurtosis coefficients by group\n"); print(x$kurtosis, digits=digits, ...)
}
return(invisible(x))
} |
setClass(Class="mtkDesignerResult",
representation=representation(
main="data.frame"
),
contains=c("mtkResult"),
prototype(main=data.frame())
)
mtkDesignerResult <- function(main=data.frame(),
information=list())
{
res <- new("mtkDesignerResult", main=main, information=information)
return(res)
}
setMethod(f="summary", signature="mtkDesignerResult", definition=function(object,...){
cat("ABOUT THE PARAMETERS USED : \n")
if(length(object@information)>0) show(summary(object@information, ...))
else cat(" none")
cat("\n")
cat("ABOUT THE GENERATED EXPERIMENT DESIGN :\n\n")
cat(" number of simulations :",nrow(object@main),"\n\n")
show(summary(object@main,...))
}
)
setMethod(f="plot", signature="mtkDesignerResult", definition=function(x,y, ...){
if(!missing(y))plot(x@main, y, ...)
else plot(x@main, ...)
}
)
setMethod(f="print", signature="mtkDesignerResult", definition=function(x,...){
cat("USED PARAMETERS : \n")
if(length(x@information)>0) print(x@information,...)
else cat(" none")
cat("\n")
cat("EXPERIMENTS DESIGN :\n\n")
print(x@main,...)
}
) |
context('lcMethod')
rngReset()
setClass('lcMethodTest', contains = 'lcMethod')
m = new(
'lcMethodTest',
null = NULL,
vNA = NA,
vNaN = NaN,
logical = TRUE,
int = -3L,
num = -2.5,
char = 'a',
fac = factor('b', levels = c('a', 'b')),
form = A~B,
call = 1 + 2 * 3,
name = xvar
)
test_that('name', {
name = getName(m)
expect_equal(name, 'undefined')
})
test_that('shortname', {
name = getShortName(m)
expect_equal(name, 'undefined')
})
test_that('length', {
expect_length(new('lcMethodTest'), 0)
expect_length(new('lcMethodTest', a = 1), 1)
expect_length(new('lcMethodTest', a = 1, b = NULL), 2)
})
test_that('method argument values', {
expect_equivalent(m$null, NULL)
expect_equivalent(m[['vNA']], NA)
expect_equivalent(m$vNA, NA)
expect_equivalent(m$vNaN, NaN)
expect_equivalent(m$logical, TRUE)
expect_equivalent(m$int, -3L)
expect_equivalent(m$num, -2.5)
expect_equivalent(m$char, 'a')
expect_equivalent(m$fac, factor('b', levels = c('a', 'b')))
expect_equivalent(m$form, A ~ B)
expect_equivalent(m$call, 1 + 2 * 3)
expect_equivalent(m[['name', eval = FALSE]], quote(xvar))
expect_error(m$name, 'xvar')
expect_error(m$missing)
expect_error(m[['missing']])
xvar = 2
expect_equivalent(m$name, xvar)
})
test_that('take local over global scope', {
m = new('lcMethodTest', a = 1, var = globalVar)
assign('globalVar', value = 5, envir = .GlobalEnv)
globalVar = 2
expect_equal(m$var, 2)
rm('globalVar', envir = .GlobalEnv)
})
test_that('argument value in global scope', {
m = new('lcMethodTest', a = 1, var = globalVar)
assign('globalVar', value = 7, envir = .GlobalEnv)
expect_equal(m$var, 7)
rm('globalVar', envir = .GlobalEnv)
})
test_that('unevaluated values', {
expect_null(m[['null', eval = FALSE]])
expect_true(is.na(m[['vNA', eval = FALSE]]))
expect_true(is.nan(m[['vNaN', eval = FALSE]]))
expect_true(isTRUE(m[['logical', eval = FALSE]]))
expect_is(m[['int', eval = FALSE]], 'call')
expect_is(m[['num', eval = FALSE]], 'call')
expect_is(m[['char', eval = FALSE]], 'character')
expect_is(m[['fac', eval = FALSE]], 'call')
expect_is(m[['form', eval = FALSE]], 'call')
expect_is(m[['form', eval = FALSE]], 'call')
expect_equivalent(deparse(m[['call', eval = FALSE]]), '1 + 2 * 3')
expect_is(m[['name', eval = FALSE]], 'name')
expect_error(m[['missing', eval = FALSE]])
})
test_that('dependency function evaluation', {
method = lcMethodTestKML()
expect_is(method$centerMethod, 'function')
})
test_that('local variables', {
f = function() {
xvar = 2
new('lcMethodTest', name = xvar)
}
expect_error(f()$name)
g = function() {
xvar = 2
method = new('lcMethodTest', name = xvar)
xvar = 3
method$name
}
expect_equal(g(), 3)
})
test_that('internal variable reference', {
method = new('lcMethodTest', iter = 1e3, warmup = floor(iter / 2))
expect_equal(method$warmup, floor(method$iter / 2))
})
test_that('variable of argument name', {
warmup = 3
method = new('lcMethodTest', iter = 1e3, warmup = warmup)
expect_equal(method$warmup, warmup)
})
test_that('formula', {
method = new('lcMethodTest', formula = A ~ B, formula.sigma = ~C)
expect_is(formula(method), 'formula')
expect_error(formula(method, 'missing'))
expect_equal(formula(method), A ~ B)
expect_equal(formula(method, 'sigma'), ~ C)
})
test_that('empty update', {
m2 = update(m)
expect_equal(names(m2), names(m))
})
test_that('update add single argument', {
srcNames = names(m)
m2 = update(m, new = 1)
expect_equal(names(m), srcNames)
expect_equal(m2$new, 1)
expect_equal(setdiff(names(m2), 'new'), names(m))
expect_equal(update(m, a = 2)$a, 2)
expect_null(update(m, a = NULL)$a)
expect_equal(update(m, c = 2)$c, 2)
m3 = update(m, newf = A ~ B)
expect_named(m3, c('newf', names(m)), ignore.order = TRUE)
expect_equal(m3$newf, A ~ B)
})
test_that('update with eval', {
xvar = 2
m0 = new('lcMethodTest', a = 1, b = 'a', c = NULL, d = NA, e = xvar)
m1 = update(m0, new = xvar, .eval = TRUE)
expect_equal(deparse(m0[['e', eval = FALSE]]), 'xvar')
expect_equal(m1$new, xvar)
})
test_that('update with formula eval', {
xvar = ~ 1
m0 = new('lcMethodTest', a = 1, f = A ~ 0)
m1 = update(m0, f = xvar, .eval = TRUE)
expect_equal(m1$f, A ~ 1)
})
test_that('update formula', {
method = new('lcMethodTest', a = 1, f = A ~ 1)
expect_equal(update(method, f = . ~ B)$f, A ~ B)
})
test_that('update.lcMethod with local variables', {
xvar = 2
method = new('lcMethodTest', e = xvar)
u = update(method, e = xvar)
xvar = 3
expect_equal(u$e, 3)
})
test_that('environment()', {
envir = new.env()
envir$xvar = 3
expect_error(m$name)
environment(m) = envir
expect_equal(m$name, envir$xvar)
})
test_that('variable from custom environment', {
method = new('lcMethodTest', name = xvar)
expect_error(method$name)
envir = new.env()
envir$xvar = 5
expect_error(method$name)
expect_equal(method[['name', envir = envir]], 5)
})
test_that('evaluate', {
expect_error(m$name)
m2 = evaluate(m)
expect_equal(names(m2), names(m))
expect_error(m$name)
envir = new.env()
envir$xvar = 9
m3 = evaluate(m, envir = envir)
expect_equal(m3$name, 9)
expect_error(m$name)
})
test_that('substitute', {
xvar = 2
method = new('lcMethodTest', a = 1, b = 'a', c = NULL, d = NA, e = xvar)
method2 = evaluate.lcMethod(method)
expect_equal(method2[['a', eval = FALSE]], 1)
expect_null(method2[['c', eval = FALSE]])
expect_equal(method2[['e', eval = FALSE]], 2)
})
test_that('.arg error', {
expect_error(new('lcMethodTest', a = 1, .b = 'a'), '\\.')
})
test_that('negative nClusters error', {
expect_error(new('lcMethodTest', nClusters = -1))
})
test_that('print', {
expect_output(print(m))
})
test_that('show', {
expect_output(show(m))
})
test_that('as.data.frame(eval=FALSE)', {
refDf = data.frame(
null = NA,
vNA = NA,
vNaN = NaN,
logical = TRUE,
int = '-3L',
num = '-2.5',
char = 'a',
fac = 'factor(\"b\", levels = c(\"a\", \"b\"))',
form = 'A ~ B',
call = '1 + 2 * 3',
name = 'xvar',
stringsAsFactors = FALSE
)
df = as.data.frame(m, eval = FALSE)
expect_length(df, length(m))
expect_named(df, names(m))
expect_equal(df, refDf)
})
test_that('as.data.frame(eval=TRUE)', {
refDf = data.frame(
null = NA,
vNA = NA,
vNaN = NaN,
logical = TRUE,
int = -3L,
num = -2.5,
char = 'a',
fac = factor('b', levels = c('a', 'b')),
form = 'A ~ B',
call = 7,
name = 'xvar',
stringsAsFactors = FALSE
)
df = as.data.frame(m, eval = TRUE)
expect_length(df, length(m))
expect_named(df, names(m))
expect_equal(df, refDf)
})
test_that('as.data.frame with symbols', {
xvar = 2
df = as.data.frame(m, eval = TRUE)
expect_length(df, length(m))
expect_named(df, names(m))
expect_equal(df$name, xvar)
})
test_that('as.list', {
xvar = 2
method = new('lcMethodTest', a = 1, b = 'a', c = NULL, d = NA, e = xvar)
xvar = 3
expect_equal(as.list(method), list(a = 1, b = 'a', c = NULL, d = NA, e = xvar))
expect_length(as.list(method, eval = FALSE), length(method))
})
test_that('as.list with function', {
method = lcMethodTestKML()
lis = as.list(method, args = kml::parALGO)
expect_length(setdiff(names(lis), formalArgs(kml::parALGO)), 0)
})
test_that('as.list with two functions', {
method = lcMethodTestKML()
funs = c(kml::parALGO, kml::kml)
lis = as.list(method, args = funs)
expect_length(setdiff(names(lis), union(formalArgs(funs[[1]]), formalArgs(funs[[2]]))), 0)
}) |
LM13=function(trat,
resp,
ylab="Dependent",
error="SE",
xlab="Independent",
theme=theme_classic(),
legend.position="top",
r2="all",
point="all",
width.bar=NA,
scale="none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
pointshape = 21,
round=NA,
xname.formula="x",
yname.formula="y",
comment=NA,
fontfamily="sans"){
requireNamespace("ggplot2")
if(is.na(width.bar)==TRUE){width.bar=0.01*mean(trat)}
dados=data.frame(trat,resp)
medias=c()
dose=tapply(trat, trat, mean)
media=tapply(resp, trat, mean)
if(error=="SE"){desvio=tapply(resp,trat,sd)/sqrt(tapply(resp,trat,length))}
if(error=="SD"){desvio=tapply(resp,trat,sd)}
if(error=="FALSE"){desvio=0}
dose=tapply(trat, trat, mean)
moda=lm(resp~trat+I(trat^3))
mods=summary(moda)$coefficients
modm=lm(media~dose+I(dose^3))
if(r2=="mean"){r2=round(summary(modm)$r.squared,2)}
if(r2=="all"){r2=round(summary(moda)$r.squared,2)}
coef1=coef(moda)[1]
coef2=coef(moda)[2]
coef3=coef(moda)[3]
s1 = s = sprintf("~~~%s == %e %s %e*%s %s %e*%s^3 ~~~~~ italic(R^2) == %0.2f",
yname.formula,
coef1,
ifelse(coef2 >= 0, "+", "-"),
abs(coef2),
xname.formula,
ifelse(coef3 >= 0, "+", "-"),
abs(coef3),
xname.formula,
r2)
if(is.na(comment)==FALSE){s1=paste(s1,"~\"",comment,"\"")}
data1=data.frame(trat=unique(trat),
resp=media,
media=media,
desvio)
xp=seq(min(trat),max(trat),length.out = 1000)
preditos=data.frame(x=xp,
y=predict(moda,newdata = data.frame(trat=xp)))
x=preditos$x
y=preditos$y
predesp=predict(moda)
predobs=resp
if(point=="mean"){
graph=ggplot(data1,aes(x=trat,y=media))
if(error!="FALSE"){graph=graph+geom_errorbar(aes(ymin=media-desvio,
ymax=media+desvio),
width=width.bar,
size=linesize)}
graph=graph+
geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill="gray")}
if(point=="all"){
graph=ggplot(data.frame(trat,resp),aes(x=trat,y=resp))
graph=graph+
geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill="gray")}
grafico=graph+theme+
geom_line(data=preditos,aes(x=x,
y=y,color="black"),size=linesize)+
scale_color_manual(name="",values=1,label=parse(text = s1))+
theme(axis.text = element_text(size=textsize,color="black",family = fontfamily),
axis.title = element_text(size=textsize,color="black",family = fontfamily),
legend.position = legend.position,
legend.text = element_text(size=textsize,family = fontfamily),
legend.direction = "vertical",
legend.text.align = 0,
legend.justification = 0)+
ylab(ylab)+xlab(xlab)
if(scale=="log"){grafico=grafico+scale_x_log10()}
models=mods
model=moda
r2=summary(modm)$r.squared
aic=AIC(moda)
bic=BIC(moda)
vif.test=function (mod){
if (any(is.na(coef(mod))))
stop("there are aliased coefficients in the model")
v <- vcov(mod)
assign <- attr(model.matrix(mod), "assign")
if (names(coefficients(mod)[1]) == "(Intercept)") {
v <- v[-1, -1]
assign <- assign[-1]}
else warning("No intercept: vifs may not be sensible.")
terms <- labels(terms(mod))
n.terms <- length(terms)
if (n.terms < 2)
stop("model contains fewer than 2 terms")
R <- cov2cor(v)
detR <- det(R)
result <- matrix(0, n.terms, 3)
rownames(result) <- terms
colnames(result) <- c("GVIF", "Df", "GVIF^(1/(2*Df))")
for (term in 1:n.terms) {
subs <- which(assign == term)
result[term, 1] <- det(as.matrix(R[subs, subs])) * det(as.matrix(R[-subs,
-subs]))/detR
result[term, 2] <- length(subs)}
if (all(result[, 2] == 1))
result <- result[, 1]
else result[, 3] <- result[, 1]^(1/(2 * result[, 2]))
result}
vif=vif.test(moda)
predesp=predict(moda)
predobs=resp
rmse=sqrt(mean((predesp-predobs)^2))
temp1=seq(min(trat),max(trat),length.out=5000)
result=predict(moda,newdata = data.frame(trat=temp1),type="response")
maximo=temp1[which.max(result)]
respmax=result[which.max(result)]
minimo=temp1[which.min(result)]
respmin=result[which.min(result)]
cat("\n")
graphs=data.frame("Parameter"=c("X Maximum",
"Y Maximum",
"X Minimum",
"Y Minimum",
"AIC",
"BIC",
"r-squared",
"RMSE"),
"values"=c(maximo,
respmax,
minimo,
respmin,
aic,
bic,
r2,
rmse))
graficos=list("Coefficients"=models,
"values"=graphs,
"VIF"=vif,
grafico)
print(graficos)
} |
UnitSimplex <- function( n, k=1 ) {
n <- as.integer( n )
k <- as.integer( k )
T <- EdgeSubdivision( n=n-1, k=k )
S <- diag( rep(1.0,n) )
subS <- array( 0.0, dim=c(n,n,k^(n-1)) )
if (k==1) { subS[,,1] <- S }
else {
for (i in 1:k^(n-1)) {
subS[,,i] <- SimplexCoord(S,T[,,i])
}
}
a <- SVIFromColor(S,T)
mesh <- list(type="UnitSimplex",mvmesh.type=1L,n=n,m=n-1L,vps=n,S=subS,V=a$V,SVI=a$SVI,k=k)
class(mesh) <- "mvmesh"
return(mesh) }
SolidSimplex <- function( n, k=1 ) {
n <- as.integer( n )
k <- as.integer( k )
T <- EdgeSubdivision( n=n, k=k )
M <- dim(T)[3]
S <- rbind( diag( rep(1,n) ), rep(0,n) )
subS <- array( 0.0, c(n+1,n,M) )
if (k==1) { subS[,,1] <- S }
else {
for (i in 1:M) {
subS[,,i] <- SimplexCoord(S,T[,,i])
}
}
a <- SVIFromColor(S,T)
mesh <- list(type="SolidSimplex",mvmesh.type=2L,n=n,m=n,vps=n+1L,S=subS,V=a$V,SVI=a$SVI,k=k)
class(mesh) <- "mvmesh"
return(mesh) }
UnitSphere <- function( n, k=1, method="dyadic", p=2, positive.only=FALSE ) {
n <- as.integer( n )
k <- as.integer( k )
stopifnot( n > 1, k >= 0, method %in% c("dyadic","edgewise"), length(p)==1,
p > 0, is.logical(positive.only) )
if (method=="edgewise") {
a <- UnitSphereEdgewise( n=n, k=k, p=p, positive.only=positive.only )
} else {
a <- UnitSphereDyadic( n=n, k=k, p=p, positive.only=positive.only )
}
return(a) }
UnitSphereEdgewise <- function( n, k, p, positive.only ) {
n <- as.integer( n )
k <- as.integer( k )
stopifnot(k > 0)
a <- UnitSimplex( n=n, k=k )
V <- a$V
M <- nrow(V)
SVI <- a$SVI
if (p != 1.0) {
r <- LpNorm( V, p )
for (i in 1:M) {
V[i,] <- V[i,]/r[i]
}
}
if (!positive.only ) {
newptr <- rep( 0L, M )
for (i in 1:((2^n)-1)) {
y <- ConvertBase( i, 2, n )
signs <- (-1)^y
newM <- nrow(V)
newV <- rbind( V, matrix(NA,nrow=M, ncol=n ) )
for (j in 1:M) {
tmp <- signs*V[j,]
l <- MatchRow( tmp, newV )
if ( length(l) == 0 ) {
newM <- newM + 1
newV[newM,] <- tmp
newptr[j] <- newM
} else {
newptr[j] <- l[1]
}
}
V <- newV[1:newM,]
newSVI <- matrix( 0L, nrow=n, ncol=ncol(a$SVI) )
for (j in 1:ncol(newSVI)) {
for (m in 1:n) {
newSVI[m,j] <- newptr[ SVI[m,j] ]
}
}
SVI <- cbind(SVI,newSVI)
}
}
nSVI <- ncol(SVI)
subS <- array( 0.0, c(n,n,nSVI) )
for (i in 1:nSVI) {
for (j in 1:n) {
subS[j,,i] <- V[ SVI[j,i], ]
}
}
mesh <- list( type="UnitSphere, edgewise",mvmesh.type=3L,n=n,m=n-1L,vps=n,
S=subS, V=V, SVI=SVI, k=k, p=p , positive.only=positive.only)
class(mesh) <- "mvmesh"
return( mesh ) }
UnitSphereDyadic <- function( n, k, start="diamond", p, positive.only ) {
n <- as.integer(n)
k <- as.integer(k)
stopifnot( n > 1, k >= 0, p > 0, is.logical(positive.only), start %in% c("diamond","icos3d" ) )
if (start=="diamond") {
a <- UnitSphereEdgewise( n=n, k=1, p=2, positive.only=positive.only )
} else {
if (start=="icos3d") {
if (n == 3) {
if (!positive.only) { a <- Icosahedron( ) }
else { stop("start='icos3d' not allowed when positive.only=TRUE") }
} else {
stop('Starting shape "icos3d" is only allowed in 3-dimensions')
}
}
}
V <- a$V
SVI <- a$SVI
if (k > 0) {
for (i in 1:k) {
b <- EdgeSubdivisionMulti( V, SVI, k=2, normalize=TRUE, p=p )
V <- b$V
SVI <- b$SVI
}
}
nS <- ncol(SVI)
S <- array( 0.0, dim=c(n,n,nS))
for (j in 1:nS) {
S[,,j] <- V[SVI[,j], ]
}
mesh <- list( type="UnitSphere, dyadic", mvmesh.type=4L, n=n, m=n-1L, vps=n, S=S, V=V, SVI=SVI,
k=k, p=p, start=start, positive.only=positive.only )
class(mesh) <- "mvmesh"
return(mesh) }
UnitBall <- function( n, k=1, method="dyadic", p=2, positive.only=FALSE ) {
n <- as.integer( n )
k <- as.integer( k )
sphere <- UnitSphere( n=n, k=k, method=method, p=p, positive.only=positive.only )
origin <- rep(0.0,n)
newV <- rbind( sphere$V, origin, deparse.level=0 )
nV <- nrow(newV)
nS <- dim(sphere$S)[3]
newS <- array( 0.0, dim=c(n+1,n,nS) )
for (i in 1:nS) {
newS[,,i] <- rbind( sphere$S[,,i], origin )
}
newSVI <- rbind( sphere$SVI, rep( nV, nS ) )
mesh <- list(type=paste("UnitBall,",method),mvmesh.type=ifelse(method=="edgewise",5L,6L),
n=n,m=n,vps=n+1L,S=newS,V=newV,SVI=newSVI,
k=k,method=method,p=p,positive.only=positive.only)
class(mesh) <- "mvmesh"
return(mesh) }
PolarSphere <- function( n, breaks=c(rep(4,n-2),8), p=2, positive.only=FALSE ) {
n <- as.integer( n )
stopifnot( n >= 2 )
rect.mesh <- SolidRectangle( a=rep(0.0,n-1), b=c(rep(pi,n-2),2*pi), breaks=breaks)
nV <- nrow(rect.mesh$V)
V <- Polar2Rectangular( r=rep(1.0,nV), theta=rect.mesh$V )
nS <- dim(rect.mesh$S)[3]
vps <- as.integer(2^(n-1))
S <- array( 0.0, dim=c(vps,n,nS) )
for (k in 1:nS) {
for (j in 1:vps) {
S[j,,k] <- V[ rect.mesh$SVI[j,k], ]
}
}
mesh <- list(type="PolarSphere",mvmesh.type=9L,
n=n,m=n-1L,vps=vps,S=S,V=V,SVI=rect.mesh$SVI,
breaks=breaks,p=p,positive.only=positive.only)
class(mesh) <- "mvmesh"
return(mesh) }
PolarBall <- function( n, breaks=c(rep(4,n-2),8), p=2, positive.only=FALSE ) {
n <- as.integer( n )
sphere <- PolarSphere( n=n, breaks=breaks, p=p, positive.only=positive.only )
origin <- rep(0.0,n)
newV <- rbind( sphere$V, origin, deparse.level=0 )
nV <- nrow(newV)
nS <- dim(sphere$S)[3]
vps <- as.integer(2^(n-1)+1)
newS <- array( 0.0, dim=c(vps,n,nS) )
for (k in 1:nS) {
newS[,,k] <- rbind( sphere$S[,,k], origin )
}
newSVI <- rbind( sphere$SVI, rep( nV, nS ) )
mesh <- list(type="PolarBall",mvmesh.type=10L,
n=n,m=n,vps=vps,S=newS,V=newV,SVI=newSVI,
breaks=breaks,p=p,positive.only=positive.only)
class(mesh) <- "mvmesh"
return(mesh) }
rmvmesh <- function( n, mesh, weights=rep(1,ncol(mesh$SVI)) ) {
stopifnot( n >= 1, class(mesh)=="mvmesh", length(weights)==ncol(mesh$SVI) )
dimS <- dim(mesh$S)
vps <- mesh$vps; d <- mesh$n; nS <- dimS[3]
x <- matrix( 0.0, nrow=n, ncol=d )
which.splx <- sample.int( n=nS, size=n, replace=TRUE, prob=weights )
if ( mesh$m+1 == mesh$vps ) {
u <- matrix( rexp( n*vps),nrow=vps,ncol=n )
u.sum <- colSums(u)
for (i in 1:n) { u[,i] <- u[,i]/u.sum[i] }
for (i in 1:n) {
j <- which.splx[i]
x[i,] <- u[,i] %*% mesh$S[,,j]
}
return(x)
}
a <- rep(0.0,d); b <- a
if ( mesh$type %in% c("SolidRectangle","HollowRectangle") ) {
u <- matrix( runif( n*d ), nrow=n ,ncol=d )
for (i in 1:n) {
j <- which.splx[i]
for (k in 1:d) {
a[k] <- min( mesh$S[,k,j] )
b[k] <- max( mesh$S[,k,j] )
}
x[i,] <- a + u[i, ]*(b-a)
}
return(x)
}
stop( "Cannot currently simulate from a mesh of type ", mesh$type )
}
SolidRectangle <- function( a, b, breaks=5, silent=FALSE ) {
breaks <- mvmeshRectBreaks( a, b, breaks, silent )
n <- length(a)
ngrid <- as.integer(sapply(breaks,length))
nbins <- ngrid - 1L
nV <- prod(ngrid)
V <- matrix( 0.0, ncol=n, nrow=nV )
i <- rep(1L,n)
j <- 1L
while (i[1] > 0) {
for (k in 1:n) { V[j,k] <- breaks[[k]][i[k]] }
j <- j + 1L
i <- NextMultiIndex(i,ngrid)
}
nS <- prod(nbins)
vps <- as.integer(2^n)
S <- array( 0.0, dim=c(vps,n,nS) )
SVI <- matrix( 0L, nrow=vps, ncol=nS )
i <- rep(1L,n)
j <- 1L
while (i[1] > 0) {
for (k in 1:vps) {
m <- ConvertBase( k-1L, 2L, n )
for (l in 1:n) {
S[k,l,j] <- breaks[[l]][i[l]+m[l]]
}
SVI[k,j] <- MatchRow( S[k,,j], V )
}
i <- NextMultiIndex(i,nbins)
j <- j + 1L
}
mesh <- list(type="SolidRectangle",mvmesh.type=7L,n=n,m=n,vps=as.integer(2^n),S=S,V=V,SVI=SVI,
a=a,b=b,breaks=breaks)
class(mesh) <- "mvmesh"
return(mesh) }
mvmeshRectBreaks <- function(a,b,breaks,silent ) {
stopifnot( is.numeric(a), is.numeric(b), is.vector(a), is.vector(b),
length(a)==length(b), length(a) >= 1, all(a < b) )
n <- length(a)
if ( is.numeric(breaks) & is.vector(breaks) ) {
breaks <- as.integer(breaks)
if( length(breaks)==1 ) {
breaks <- rep(breaks,n)
}
stopifnot( all(breaks > 0), length(breaks)==n )
new.breaks <- vector(mode="list",length=n)
for (j in 1:n) {
new.breaks[[j]] <- seq( a[j], b[j], length=breaks[j]+1)
}
breaks <- new.breaks
}
if( !is.list(breaks) ) { stop("breaks must be an integer, a vector of integers, or a list") }
for (j in 1:n) {
stopifnot( is.numeric(breaks[[j]]), is.vector(breaks[[j]]), length(breaks[[j]]) > 1,
all(diff(breaks[[j]])>0) )
}
if( !silent ) {
aa <- rep(NA,n)
bb <- rep(NA,n)
for (j in 1:n) {
tmp <- range( breaks[[j]] )
aa[j] <- tmp[1]
bb[j] <- tmp[2]
}
if ( any(a < aa) | any(b > bb) ){
warning("specified breaks do not cover the hyperectangle [a,b]" )
}
}
return( breaks ) }
HollowRectangle <- function( a, b, breaks=5, silent=FALSE ) {
n <- length(a)
allBreaks <- mvmeshRectBreaks( a, b, breaks, silent )
bnd <- sapply(allBreaks,range)
for (i in 1:n) {
side <- SolidRectangle( a[-i], b[-i], allBreaks[-i] )
nVside <- nrow(side$V)
nSVIside <- ncol(side$SVI)
if (i==1) {
V <- rbind( cbind(rep(bnd[1,1],nVside),side$V), cbind( rep(bnd[2,1],nVside),side$V) )
SVI <- cbind( side$SVI, side$SVI+nVside)
nV0 <- nrow(V)
} else {
nV <- nrow(V)
left <- side$V[,1:(i-1),drop=FALSE]
if( i < n) {
right <- side$V[,i:ncol(side$V),drop=FALSE]
} else {
right <- matrix(0.0,nrow=nVside,ncol=0)
}
newV <- rbind( cbind(left, rep(bnd[1,i],nVside), right), cbind(left, rep(bnd[2,i],nVside), right) )
V <- rbind(V,newV)
SVI <- cbind(SVI,side$SVI+nV,side$SVI+nV+nVside)
}
}
nVnew <- nV0
for (j in (nV0+1):nrow(V)) {
k <- MatchRow( V[j,],V,1,nVnew )
if (length(k) == 1) {
change <- which( SVI == j )
SVI[change] <- k
} else {
nVnew <- nVnew + 1
V[nVnew,] <- V[j, ]
change <- which( SVI == j )
SVI[change] <- nVnew
}
}
mesh <- mvmeshFromSVI( V[1:nVnew, ] , SVI, n-1 )
mesh$type <- "HollowRectangle"
mesh$mvmesh.type=13L
mesh$breaks <- allBreaks
return(mesh) }
HollowTube <- function( n, k.x=1, k.circumference=2, method="dyadic", p=2 ){
n <- as.integer(n)
k.x <- as.integer(k.x)
k.circumfernce <- as.integer(k.circumference)
stopifnot( n >= 2, k.x >= 1, k.circumference >= 1 )
x.grid <- seq(0,1,length=k.x+1)
vps <- 2*(n-1)
if (n==2){
nS <- 2*k.x
SVI <- matrix( 0L, nrow=vps, ncol=nS )
V <- cbind( rep(x.grid,2), c(rep(1,k.x+1),rep(-1,k.x+1) ) )
for (i in 1:k.x) {
SVI[ ,i] <- c(i,i+1)
SVI[ ,i+k.x] <- c(i+k.x+1,i+k.x+2)
}
} else {
sphere <- UnitSphere(n=n-1,k=k.circumference,method=method,p=p)
nS.sphere <- dim(sphere$S)[3]
nV.sphere <- nrow(sphere$V)
V <- matrix( 0.0, nrow=(k.x+1)*nV.sphere, ncol=n )
k <- 0
for (i in 1:(k.x+1)) {
for (j in 1:nV.sphere) {
k <- k + 1
V[k, ] <- c( x.grid[i], sphere$V[j,] )
}
}
nS <- k.x * nS.sphere
SVI <- matrix( 0L, nrow=vps, ncol=nS )
k <- 0
for (i in 1:k.x) {
for (j in 1:nS.sphere) {
k <- k + 1
SVI[ ,k] <- c( (i-1)*nV.sphere + sphere$SVI[,j], rev(i*nV.sphere + sphere$SVI[,j]) )
}
}
}
S <- array( 0.0, dim=c(vps,n,nS ) )
for (i in 1:nS) {
for (j in 1:vps) {
S[j, ,i] <- V[SVI[j,i],]
}
}
mesh <- list(type="HollowTube",mvmesh.type=11L,n=n,vps=vps,S=S,V=V,SVI=SVI,
k.x=k.x,k.circumference=k.circumference)
class(mesh) <- "mvmesh"
return(mesh)}
SolidTube <- function( n, k.x=1, k.circumference=2,
method="dyadic", p=2 ){
n <- as.integer(n)
k.x <- as.integer(k.x)
k.circumfernce <- as.integer(k.circumference)
stopifnot( n >= 2, k.x >= 1, k.circumference >= 1 )
x.grid <- seq(0,1,length=k.x+1)
vps <- 2*n
if (n==2){
nS <- k.x
SVI <- matrix( 0L, nrow=vps, ncol=nS )
V <- cbind( rep(x.grid,2), c(rep(1,k.x+1),rep(-1,k.x+1) ) )
for (i in 1:nS) {
SVI[ ,i] <- c(i,i+1,i+k.x+2,i+k.x+1)
}
} else {
ball <- UnitBall(n=n-1,k=k.circumference,method=method,p=p)
nS.ball <- dim(ball$S)[3]
nV.ball <- nrow(ball$V)
V <- matrix( 0.0, nrow=(k.x+1)*nV.ball, ncol=n )
k <- 0
for (i in 1:(k.x+1)) {
for (j in 1:nV.ball) {
k <- k + 1
V[k, ] <- c( x.grid[i], ball$V[j,] )
}
}
nS <- k.x * nS.ball
SVI <- matrix( 0L, nrow=vps, ncol=nS )
k <- 0
for (i in 1:k.x) {
for (j in 1:nS.ball) {
k <- k + 1
SVI[ ,k] <- c( (i-1)*nV.ball + ball$SVI[,j], rev(i*nV.ball + ball$SVI[,j]) )
}
}
}
S <- array( 0.0, dim=c(vps,n,nS ) )
for (i in 1:nS) {
for (j in 1:vps) {
S[j, ,i] <- V[SVI[j,i],]
}
}
mesh <- list(type="SolidTube",mvmesh.type=12L,n=n,vps=n,S=S,V=V,SVI=SVI,
k.x=k.x,k.circumference=k.circumference)
class(mesh) <- "mvmesh"
return(mesh)}
NextMultiIndex <- function( i, n ) {
cur <- 1L
k <- length(i)
repeat {
i[cur] <- i[cur]+1L
if (i[cur] <= n[cur]) { break }
if (cur == k) {
i[1] <- 0
break
}
i[cur] <- 1L
cur <- cur + 1L
}
return(i) }
EdgeSubdivision <- function( n, k ){
n <- as.integer(n)
k <- as.integer(k)
stopifnot( length(n)==1, length(k)==1 )
nS <- k^n
T <- array( 0L, dim=c(k,n+1,nS) )
CS <- matrix( 0L, nrow=k, ncol=n+1)
for (l in 1L:nS) {
x <- ConvertBase( l-1L, k, n )
cor <- 0L
for (i in 1L:k){
CS[i,1] <- cor
for (j in 1:n) {
if ( x[n+1-j] == (i-1L) ) { cor <- cor + 1L }
CS[i,j+1] <- cor;
}
}
T[,,l] <- CS
}
return(T) }
ConvertBase <- function( m, b, n ){
y <- rep(0L,n)
for(i in 1:n){
d <- floor(m/b)
y[i] <- m-d*b
m <- d
}
return(y) }
SimplexCoord <- function( S, color ){
n <-ncol(S)
vps <- nrow(S)
P <- matrix(0.0,nrow=vps,ncol=n)
for (j in 1:vps) {
P[j,] <- PointCoord(S,color[,j])
}
return(P) }
PointCoord <- function( S, color ){
n <- ncol(S)
k <- length(color)
P <- rep( 0.0, n )
for (i in 1:k) { P <- P + S[color[i]+1, ] }
return(P/k) }
SVIFromColor <- function( S, T ) {
n <- ncol(S)
k <- dim(T)[1]
vps <- dim(T)[2]
nS <- dim(T)[3]
a <- matrix( 0L, nrow=k, ncol=nS*vps )
m <- 0
for (i in 1:nS) {
for (j in 1:vps) {
m <- m + 1
a[,m] <- T[,j,i]
}
}
b <- unique(a,MARGIN=2)
nV <- ncol(b)
V <- matrix(0.0,nrow=nV,ncol=n)
for (i in 1:nV) {
V[i,] <- PointCoord(S,b[,i])
}
SVI <- matrix( 0L, nrow=vps, ncol=nS )
for (i in 1:vps) {
for (j in 1:nS) {
for (m in 1:nV) {
if( identical(b[,m],T[,i,j] )) { SVI[i,j] <- m }
}
}
}
return( list( V=V, SVI=SVI ) ) }
NumVertices <- function( n, k, single=TRUE ) {
v <- matrix(as.integer(0),k,n)
v[1,] <- 1:n
v[,1] <- as.integer(1)
for (j in 2:n) {
for (i in 2:k) {
v[i,j] <- v[i-1,j] + v[i,j-1]
}
}
if (single) return(v[k,n])
else return(v)
}
MatchRow <- function( v, table, first=1, last=nrow(table) ) {
j <- integer(0)
for (i in first:last) {
if (identical(v,table[i,]) ) { j <- c(j,i) }
}
return( j ) }
EdgeSubdivisionMulti <- function( V, SVI, k, normalize=FALSE, p=2 ) {
k <- as.integer( k )
stopifnot( is.matrix(V), is.matrix(SVI), k > 1, is.logical(normalize), p > 0.0 )
n <- ncol(V); nV <- nrow(V); vps <- nrow(SVI); nS <- ncol(SVI)
T <- EdgeSubdivision( n=vps-1, k=k )
new <- SVIFromColor( V[ SVI[,1], ], T )
M <- nrow(new$V); L <- ncol(new$SVI)
Vnew <- matrix(0.0,ncol=n,nrow=nS*M)
SVInew <- matrix( 0L, nrow=vps, ncol=nS*L)
Vend <- 0L
SVIend <- 0L
for (i in 1:nS) {
new <- SVIFromColor( V[SVI[,i], ], T )
Vnew[ (Vend+1):(Vend+M), ] <- new$V
SVInew[ ,(SVIend+1):(SVIend+L)] <- new$SVI + Vend
Vend <- Vend+M
SVIend <- SVIend + L
}
count <- 1
for (i in 2:Vend) {
l <- which(SVInew==i)
j <- MatchRow( Vnew[i,], Vnew, 1, count )
if (length(j)==0) {
count <- count + 1
Vnew[count,] <- Vnew[i,]
SVInew[l] <- count
} else {
SVInew[l] <- j[1]
}
}
if (normalize) {
r <- LpNorm(Vnew[1:count,],p)
for (i in 1:count) {
Vnew[i,] <- Vnew[i,]/r[i]
}
}
mesh <- list( V=Vnew[1:count,], SVI=SVInew)
class(mesh) <- "mvmesh"
return(mesh)}
Icosahedron <- function( ) {
p <- (sqrt(5)-1)/2
V <- matrix( c(0,p,1, 0,p,-1, 0,-p,1, 0,-p,-1, p,1,0, p,-1,0,
-p,1,0, -p,-1,0, 1,0,p, -1,0,p, 1,0,-p, -1,0,-p), nrow=12, ncol=3, byrow=TRUE)
c1 <- 1.0/sqrt( sum( V[1,]^2 ) )
V <- c1*V
SVI <- matrix( as.integer(c( 1,3,9, 1,9,5, 1,5,7, 1,7,10, 1,10,3, 4,12,2,
4,2,11, 4,11,6, 4,6,8, 4,8,12, 9,3,6, 5,9,11, 7,5,2, 10,7,12,
3,10,8, 2,12,7, 11,2,5, 6,11,9, 8,6,3, 12,8,10 ) ), nrow= 3 , ncol= 20 )
S <- array( 0.0, dim=c(3,3,20))
for (k in 1:20) {
S[ ,,k] <- V[ SVI[,k], ]
}
mesh <- list( type="Icosahedron", mvmesh.type=8L, n=3L,m=2,vps=3,k=NA, originalS=S, S=S, V=V, SVI=SVI )
class(mesh) <- "mvmesh"
return( mesh ) }
LpNorm <- function( x, p ){
if (is.vector(x)) { x <- matrix(x,nrow=1) }
stopifnot( is.matrix(x), nrow(x) > 0, ncol(x) > 0, p > 0 )
if (is.finite(p)) {
r <- apply( abs(x)^p, MARGIN=1, FUN=sum )^(1/p)
} else {
r <- apply( abs(x), MARGIN=1, FUN=max )
}
return(r) }
AffineTransform <- function( mesh, A, shift ) {
stopifnot( is.list(mesh), class(mesh)=="mvmesh", is.matrix(A), is.numeric(A), is.numeric(shift),
is.vector(shift), nrow(A)==ncol(A), nrow(A)==length(shift) )
new <- mesh
new$type <- paste( mesh$type, "+affine", sep="" )
nV <- nrow( new$V )
nS <- ncol( new$SVI )
vps <- new$vps
affine.func <- function( v, A, b ) { A %*% v + b }
new$V <- t( apply( mesh$V, MARGIN=1, affine.func, A=A, b=shift ) )
for (k in 1:nS) {
for (j in 1:vps) {
new$S[j,,k] <- new$V[ new$SVI[j,k], ]
}
}
return( new ) }
Rotate2D <- function( theta ) {
stopifnot( is.numeric(theta), length(theta)==1 )
return( matrix( c( cos(theta),sin(theta),-sin(theta),cos(theta) ),
nrow=2,ncol=2) )}
Rotate3D <- function( theta ) {
stopifnot( is.numeric(theta), length(theta)==3 )
Rx <- matrix( c(1,0,0, 0,cos(theta[1]),sin(theta[1]),
0,-sin(theta[1]),cos(theta[1]) ), nrow=3, ncol=3)
Ry <- matrix( c(cos(theta[2]),0,-sin(theta[2]), 0,1,0,
sin(theta[2]),0,cos(theta[2]) ), nrow=3, ncol=3)
Rz <- matrix( c(cos(theta[3]),sin(theta[3]),0, -sin(theta[3]),cos(theta[3]),0,
0,0,1 ), nrow=3, ncol=3)
return( Rx %*% Ry %*% Rz )}
V2Hrep <- function( S ) {
if (is.matrix(S) ) { S <- array( S, dim=c(nrow(S),ncol(S),1) ) }
nS <- dim(S)[3]
dim.Hrep <- c(0L,0L)
for (k in 1:nS) {
Vk <- makeV( S[,,k] )
tmp <- rcdd::scdd( Vk, representation="V" )$output
if (k==1) {
dim.Hrep <- dim(tmp)
H <- array( 0.0, dim=c(dim.Hrep,nS) )
}
if ( any(dim(tmp) != dim.Hrep)) stop( "simplices have different size H-representations" )
H[,,k] <- tmp
}
return(H) }
H2Vrep <- function( H ) {
if (is.matrix(H) ) { H <- array( H, dim=c(nrow(H),ncol(H),1) ) }
dimH <- dim(H)
stopifnot( is.array(H), length(dimH)==3 )
nS <- dimH[3]
dim.Vrep <- c(0L,0L)
for (k in 1:nS) {
tmp <- rcdd::scdd( H[,,k], representation="H" )$output[ ,-c(1,2),drop=FALSE]
if (k==1) {
dim.Vrep <- dim(tmp)
S <- array( 0.0, dim=c(dim(tmp),nS))
}
if ( any(dim(tmp) != dim.Vrep)) stop( "simplices have different size V-representations" )
S[,,k] <- tmp
}
return(S) }
SatisfyHrep <- function( x, Hsingle ) {
stopifnot( is.matrix(Hsingle) )
l <- Hsingle[ ,1]
b <- Hsingle[ ,2]
A <- - Hsingle[ , -(1:2)]
if (is.vector(x)) { x <- matrix( x, nrow=1 ) }
stopifnot( is.matrix(x), ncol(x)+2==ncol(Hsingle) )
n <- ncol(x)
nx <- nrow(x)
satisfy <- integer(0)
for (k in 1:nx) {
axmb <- A %*% x[k,] - b
if (all(axmb <= 0.0) & all( l*axmb == 0 ) ) { satisfy <- c(satisfy,k) }
}
return(satisfy)}
Polar2Rectangular <- function( r, theta ) {
m <- length(r)
if (!is.matrix(theta)) { theta <- as.matrix(theta,nrow=1) }
stopifnot( m == nrow(theta))
n <- ncol(theta) + 1L
x <- matrix(0.0,nrow=m,ncol=n)
for (j in 1:m) {
col.cos <- cos(theta[j,])
col.sin <- sin(theta[j,])
s <- c( col.cos[1], rep(col.sin[1],n-1) )
if (n > 2) {
for (k in 2:(n-1)) {
s[k] <- s[k]*col.cos[k]
s[(k+1):n] <- s[(k+1):n]*col.sin[k]
}
}
x[j,] <- r[j]*s
}
return(x) }
Rectangular2Polar <- function( x ) {
if(!is.matrix(x)) { x <- as.matrix(x,nrow=1) }
n <- ncol(x)
m <- nrow(x)
r <- rep(0.0,m)
theta <- matrix(0.0,ncol=n-1,nrow=m)
for (j in 1:m) {
rsq <- x[j,]^2
cum.rsq <- cumsum(rev(rsq))
r[j] <- sqrt( cum.rsq[n] )
if (r[j] > 0.0) {
if (n>2) {
for (k in 1:(n-2)) {
theta[j,k] <- atan2( sqrt(cum.rsq[n-k]), x[j,k] )
}
}
theta[j,n-1] <- 2*atan2( x[j,n], x[j,n-1]+sqrt(cum.rsq[2] ) )
}
}
return(list(r=r,theta=theta))}
IntersectMultipleSimplicesV <- function( S1, S2 ) {
H1 <- V2Hrep( S1 )
H2 <- V2Hrep( S2 )
return( IntersectMultipleSimplicesH( H1, H2 ) ) }
IntersectMultipleSimplicesH <- function( H1, H2, skip.redundant=FALSE ) {
stopifnot( ncol(H1)==ncol(H2) )
n <- ncol(H1)-2
count <- 0
S <- NULL
index1 <- integer(0)
index2 <- index1
nS1 <- dim(H1)[3]
nS2 <- dim(H2)[3]
for (i2 in 1:nS2) {
for (i1 in 1:nS1) {
a <- Intersect2SimplicesH( H1[,,i1], H2[,,i2], tessellate=TRUE )
if ( !is.null(a$S) && (dim(a$S)[1]>0) ) {
m <- dim(a$S)[3]
index1 <- c(index1,rep(i1,m))
index2 <- c(index2,rep(i2,m))
if (is.null(S) ) {
S <- a$S
} else {
S <- abind( S, a$S, force.array=TRUE )
}
}
}
}
dimnames(S) <- NULL
return( list( S=S, index1=index1, index2=index2 ) )}
Intersect2SimplicesH <- function( H1, H2, tessellate=FALSE, skip.redundant=FALSE ) {
if( is.vector( H1 ) ) { H1 <- matrix( H1, nrow=1 ) }
if( is.vector( H2 ) ) { H2 <- matrix( H2, nrow=1 ) }
n <- ncol(H1)-2
if (skip.redundant ) {
H <- rbind( H1, H2 )
} else {
H <- rcdd::redundant( rbind( H1, H2 ), representation="H")$output
}
V <- NULL
S <- NULL
if( nrow(H) > n) {
V <- H2Vrep( H )[,,1]
if (tessellate) {
if (nrow(V) > n) {
new.tess <- geometry::delaunayn( V, options="Qz" )
S <- array( 0.0, dim=c(n+1,n,nrow(new.tess)) )
for (k in 1:nrow(new.tess)) {
b <- new.tess[k,]
cur.tess <- V[b,]
S[,,k] <- cur.tess
}
}
}
}
return( list(H=H, V=V, S=S) ) }
Lift2UnitSimplex <- function( S ){
n <- nrow(S)
if (is.matrix(S)) { S <- array(S,dim=c(nrow(S),ncol(S),1) )}
stopifnot( is.array(S), length(dim(S))==3 )
nS <- dim(S)[3]
S2 <- array( 0.0, dim=c(n,n,nS) )
for (k in 1:nS) {
tmp <- 1-rowSums( S[,,k,drop=FALSE] )
S2[,,k] <- cbind(S[,,k],tmp)
}
return(S2) }
mvmeshFromSVI <- function( V, SVI, m ) {
vps <- nrow(SVI)
n <- ncol(V)
nS <- ncol(SVI)
S <- array( 0.0, dim=c(vps,n,nS) )
for (i in 1:nS) {
for (j in 1:vps) {
S[j,,i] <- V[SVI[j,i],]
}
}
a <- list(type="mvmeshFromSVI",mvmesh.type=-1,n=n,m=m,vps=vps,S=S,V=V,SVI=SVI)
class(a) <- "mvmesh"
return(a) }
mvmeshFromSimplices <- function( S ) {
if (is.matrix(S)) { S <- array(S,dim=c(dim(S),1) ) }
stopifnot( is.array(S), length(dim(S))==3 )
dimS <- dim(S)
vps <- dimS[1]
n <- dimS[2]
nS <- dimS[3]
V <- uniqueRowsFromDoubleArray( S )
SVI <- matrix( 0L, nrow=vps, ncol=nS)
for (i in 1:nrow(V)) {
for (j in 1:nS) {
k <- MatchRow( V[i,], S[,,j])
if (length(k) > 0) {
SVI[k,j] <- i
}
}
}
k <- which(SVI==0)
if( length(k) > 0 ) warning(paste(length(k),"unmatched rows in function mvmeshFromSimplices"))
a <- list(type="mvmeshFromSimplices",mvmesh.type=-1,n=n,m=vps-1,vps=vps,S=S,V=V,SVI=SVI)
class(a) <- "mvmesh"
return(a)}
uniqueRowsFromDoubleArray <- function( A ) {
if( is.matrix(A) ) { A <- array( A, dim=c(dim(A),1) ) }
stopifnot( is.array(A), length(dim(A))==3, all(dim(A)>0) )
nA <- dim(A)[3]
B <- matrix( 0, ncol=ncol(A), nrow=nrow(A)*nA )
B[1,] <- A[1,,1]
count <- 1
for (i in 1:nA) {
for (j in 1:nrow(A)) {
match <- MatchRow( A[j,,i], B, first=1, last=count )
if (length(match)==0) {
count <- count + 1
B[count,] <- A[j,,i]
}
}
}
return(B[1:count, ]) }
mvmeshFromVertices <- function( V ) {
SVI <- t( delaunayn( V ) )
n <- ncol(V)
nV <- nrow(V)
vps <- nrow(SVI)
S <- array( 0.0, dim=c(vps,n,ncol(SVI)))
for (i in 1:ncol(SVI)) {
for (j in 1:n) {
S[j,,i] <- V[SVI[j,i],]
}
}
a <- list(type="mvmeshFromVertices",mvmesh.type=-1,n=n,m=n,vps=vps,S=S,V=V,SVI=SVI)
class(a) <- "mvmesh"
return(a)}
mvmeshCombine <- function( mesh1, mesh2 ) {
stopifnot( mesh1$n == mesh2$n, mesh1$m==mesh2$m, mesh1$vps==mesh2$vps )
new <- mesh1
new$V <- rbind(mesh1$V,mesh2$V)
new$SVI <- cbind(mesh1$SVI,mesh2$SVI)
new$S <- abind( mesh1$S, mesh2$S )
return(new) } |
library(datasets)
X = cbind(attenu$mag, attenu$dist)
colnames(X) = c("mag", "dist")
X_s = cbind(attenu$mag, 1 / attenu$dist)
colnames(X_s) = c("mag", "dist_inv")
y = attenu$accel
fit = lmvar(y, X, X_s)
fitted(fit, sigma = FALSE)
fitted(fit, mu = FALSE)
fitted(fit, sigma = FALSE, interval = "confidence")
fitted(fit, mu = FALSE, interval = "confidence", level = 0.8)
fitted(fit)
fitted(fit, interval = "confidence")
fitted(fit, interval = "prediction", level = 0.9)
y = log(attenu$accel)
fit_log = lmvar(y, X, X_s)
fitted(fit_log)
fitted(fit_log, log = TRUE)
fitted(fit_log, log = TRUE, interval = "confidence", level = 0.9) |
simplify.expression <- function(P.num, P.den) {
if (is.null(P.den)) {
if (P.num$fraction) {
P.new <- simplify.expression(P.num$num, P.num$den)
if (P.new$product && length(P.new$children) == 1) {
ss <- P.new$sumset
P.new <- P.new$children[[1]]
P.new$sumset <- union(P.new$sumset, ss)
}
return(P.new)
}
P <- P.num
if (P$product) {
parse.children <- sapply(P$children, FUN = function(x) (x$product || length(x$sumset) > 0 || x$fraction || x$sum))
if (sum(parse.children) > 0) return(P)
while (length(P$sumset) > 0) {
if (P$children[[1]]$var %in% P$sumset) {
P$sumset <- setdiff(P$sumset, P$children[[1]]$var)
P$children <- P$children[-1]
} else break
}
if (length(P$children) == 1) {
ch <- P$children[[1]]
return(probability(var = ch$var, cond = ch$cond, sumset = P$sumset,
domain = ch$domain, do = ch$do))
}
if (length(P$children) == 0) {
return(probability())
} else return(P)
} else {
return(probability(var = setdiff(P$var, P$sumset), cond = P$cond, sumset = c(),
domain = P$domain, do = P$do))
}
} else {
P.num <- simplify.expression(P.num, NULL)
P.den <- simplify.expression(P.den, NULL)
if (length(P.den$sumset) > 0) {
P.new <- probability(fraction = TRUE)
P.new$num <- P.num
P.new$den <- P.den
return(P.new)
} else {
if (P.num$product) {
parse.children.num <- sapply(P.num$children, FUN = function(x) (x$product || length(x$sumset) > 0 || x$fraction || x$sum))
if (sum(parse.children.num) > 0) {
P.new <- probability(fraction = TRUE)
P.new$num <- P.num
P.new$den <- P.den
return(P.new)
}
if (P.den$product) {
parse.children.den <- sapply(P.den$children, FUN = function(x) (x$product || length(x$sumset) > 0 || x$fraction || x$sum))
if (sum(parse.children.den) > 0) {
P.new <- probability(fraction = TRUE)
P.new$num <- P.num
P.new$den <- P.den
return(P.new)
} else {
last.num <- length(P.num$children)
last.den <- length(P.den$children)
while (length(P.den$children) > 0) {
P.num$children <- P.num$children[-last.num]
P.den$children <- P.den$children[-last.den]
last.num <- last.num - 1
last.den <- last.den - 1
}
if (length(P.den$children) == 1) P.den <- P.den$children[[1]]
if (length(P.den$children) == 0) {
return(P.num)
} else {
P.new <- probability(fraction = TRUE)
P.new$num <- P.num
P.new$den <- P.den
return(P.new)
}
}
} else {
P.num$children <- P.num$children[-length(P.num$children)]
if (length(P.num$children) == 1) {
ch <- P.num$children[[1]]
ch$sumset <- P.num$sumset
return(ch)
}
return(P.num)
}
}
}
}
} |
expected <- eval(parse(text="5L"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(name = structure(c(\"McNeil\", \"Ripley\", \"Ripley\", \"Tierney\", \"Tukey\", \"Venables\"), class = \"AsIs\"), title = structure(c(3L, 6L, 7L, 4L, 2L, 5L), .Label = c(\"An Introduction to R\", \"Exploratory Data Analysis\", \"Interactive Data Analysis\", \"LISP-STAT\", \"Modern Applied Statistics ...\", \"Spatial Statistics\", \"Stochastic Simulation\"), class = \"factor\"), other.author = structure(c(NA, NA, NA, NA, NA, 1L), .Label = c(\"Ripley\", \"Venables & Smith\"), class = \"factor\"), nationality = structure(c(1L, 2L, 2L, 3L, 3L, 1L), .Label = c(\"Australia\", \"UK\", \"US\"), class = \"factor\"), deceased = structure(c(1L, 1L, 1L, 1L, 2L, 1L), .Label = c(\"no\", \"yes\"), class = \"factor\")), .Names = c(\"name\", \"title\", \"other.author\", \"nationality\", \"deceased\"), row.names = c(6L, 4L, 5L, 3L, 1L, 2L), class = \"data.frame\"))"));
do.call(`length`, argv);
}, o=expected); |
mqmscan <- function(cross,cofactors=NULL,pheno.col=1,model=c("additive","dominance"),forceML=FALSE,
cofactor.significance=0.02,em.iter=1000,window.size=25.0,step.size=5.0,logtransform = FALSE,
estimate.map = FALSE,plot=FALSE,verbose=FALSE, outputmarkers=TRUE, multicore=TRUE, batchsize=10, n.clusters=1,
test.normality=FALSE,off.end=0)
{
start <- proc.time()
model <- match.arg(model)
cross <- omit_x_chr(cross)
if(forceML){
forceML <- 1
}else{
forceML <- 0
}
dominance <- 0
if(model=="dominance"){
dominance <- 1
}
if(estimate.map){
estimate.map <- 1
}else{
estimate.map <- 0
}
n.run <- 0
if(is.null(cross)){
stop("No cross file. Please supply a valid cross object.")
}
crosstype <- crosstype(cross)
if(crosstype == "f2" || crosstype == "bc" || crosstype == "riself"){
if(crosstype == "f2"){
ctype = 1
}
if(crosstype == "bc" || crosstype=="dh" || crosstype=="haploid"){
ctype = 2
}
if(crosstype == "riself") {
ctype = 3
g <- as.numeric(pull.geno(cross))
g <- sort(unique(g[!is.na(g)]))
if(max(g)==2) {
for(i in seq(along=cross$geno))
cross$geno[[i]]$data[!is.na(cross$geno[[i]]$data) & cross$geno[[i]]$data==2] <- 3
}
}
n.ind <- nind(cross)
n.chr <- nchr(cross)
if(verbose) {
cat("INFO: Received a valid cross file type:",crosstype,".\n")
cat("INFO: Number of individuals: ",n.ind,"\n")
cat("INFO: Number of chromosomes: ",n.chr,"\n")
}
savecross <- cross
geno <- NULL
chr <- NULL
dist <- NULL
newcmbase <- NULL
out.qtl <- NULL
for(i in 1:n.chr) {
geno <- cbind(geno,cross$geno[[i]]$data)
chr <- c(chr,rep(i,dim(cross$geno[[i]]$data)[2]))
newcmbase = c(newcmbase,min(cross$geno[[i]]$map))
cross$geno[[i]]$map <- cross$geno[[i]]$map-(min(cross$geno[[i]]$map))
dist <- c(dist,cross$geno[[i]]$map)
}
if(cofactor.significance <=0 || cofactor.significance >= 1){
stop("cofactor.significance must be between 0 and 1.\n")
}
if(any(is.na(geno))){
stop("Missing genotype information, please estimate unknown data, before running mqmscan.\n")
}
if(missing(cofactors)) cofactors <- rep(0,sum(nmar(cross)))
numcofold <- sum(cofactors)
cofactors <- checkdistances(cross,cofactors,1)
numcofnew <- sum(cofactors)
if(numcofold!=numcofnew){
cat("INFO: Removed ",numcofold-numcofnew," cofactors that were close to eachother\n")
}
pheno.col = stringPhenoToInt(cross,pheno.col)
if (length(pheno.col) > 1){
cross$pheno <- cross$pheno[,pheno.col]
result <- mqmscanall( cross,cofactors=cofactors,forceML=forceML,model=model,
cofactor.significance=cofactor.significance,step.size=step.size,window.size=window.size,
logtransform=logtransform, estimate.map = estimate.map,plot=plot, verbose=verbose,n.clusters=n.clusters,batchsize=batchsize)
return(result)
}
if(pheno.col != 1){
if(verbose) {
cat("INFO: Selected phenotype ",pheno.col,".\n")
cat("INFO: Number of phenotypes in object ",nphe(cross),".\n")
}
if(nphe(cross) < pheno.col || pheno.col < 1){
stop("No such phenotype in cross object.\n")
}
}
if(test.normality && !mqmtestnormal(cross, pheno.col, 0.01, FALSE)){
warning("Trait might not be normal (Shapiro normality test)\n")
}
pheno <- cross$pheno[,pheno.col]
phenovar = var(pheno,na.rm = TRUE)
if(phenovar > 1000){
if(!logtransform){
if(verbose) cat("INFO: Before LOG transformation Mean:",mean(pheno,na.rm = TRUE),"variation:",var(pheno,na.rm = TRUE),".\n")
}
}
if(logtransform){
cross <- transformPheno(cross,pheno.col,transf=log)
pheno <- cross$pheno[,pheno.col]
}
n.mark <- ncol(geno)
if(verbose) cat("INFO: Number of markers:",n.mark,"\n")
dropped <- NULL
droppedIND <- NULL
for(i in 1:length(pheno)) {
if(is.na(pheno[i]) || is.infinite(pheno[i])){
if(verbose) cat("INFO: Dropped individual ",i," with missing phenotype.\n")
dropped <- c(dropped,i)
if(!is.null(cross$mqm)){
droppedIND <- c(droppedIND,cross$mqm$augIND[i])
}
n.ind = n.ind-1
}
}
if(!is.null(dropped)){
geno <- geno[-dropped,]
pheno <- pheno[-dropped]
}
if(!is.null(cross$mqm)){
augmentedNind <- cross$mqm$Nind
augmentedInd <- cross$mqm$augIND
if(verbose){
cat("n.ind:",n.ind,"\n")
cat("augmentedNind:",augmentedNind,"\n")
cat("length(augmentedInd):",length(augmentedInd),"\n")
}
if(!is.null(dropped)){
augmentedInd <- cross$mqm$augIND[-dropped]
augmentedInd[1] <- 0
for(x in 1:(length(augmentedInd)-1)){
if(augmentedInd[x+1] - 1 > augmentedInd[x] ){
for(y in (x+1):length(augmentedInd)){
augmentedInd[y] <- augmentedInd[y] - ((augmentedInd[x+1] - augmentedInd[x])-1)
}
}
}
}
augmentedNind <- length(unique(augmentedInd))
if(verbose){
cat("New augmentedNind:",augmentedNind,"\n")
cat("New length(augmentedInd):",length(augmentedInd),"\n")
}
}else{
augmentedNind <- n.ind
augmentedInd <- 0:n.ind
}
backward <- 0;
if(missing(cofactors)){
if(verbose) cat("INFO: No cofactors, setting cofactors to 0\n")
cofactors = rep(0,n.mark)
}else{
if(length(cofactors) != n.mark){
if(verbose) cat("ERROR:
}else{
if(verbose) cat("INFO:",sum(cofactors!=0),"Cofactors received to be analyzed\n")
if((sum(cofactors) > n.ind-10 && dominance==0)){
stop("Cofactors don't look okay for use without dominance\n")
}
if((sum(cofactors)*2 > n.ind-10 && dominance==1)){
stop("Cofactors don't look okay for use with dominance\n")
}
if(sum(cofactors) > 0){
if(verbose) cat("INFO: Doing backward elimination of selected cofactors.\n")
backward <- 1;
n.run <- 0;
}else{
backward <- 0;
cofactors = rep(0,n.mark)
}
}
}
step.min = -off.end;
step.max = max(dist)+step.size+off.end;
step.max <- as.integer(ceiling((step.max+step.size)/step.size)*step.size)
if((step.min+step.size) > step.max){
stop("step.max needs to be >= step.min + step.size")
}
if(step.size < 1){
stop("step.size needs to be >= 1")
}
qtlAchromo <- length(seq(step.min,step.max,step.size))
if(verbose) cat("INFO: Number of locations per chromosome: ",qtlAchromo, "\n")
end.1 <- proc.time()
result <- .C("R_mqmscan",
as.integer(n.ind),
as.integer(n.mark),
as.integer(1),
as.integer(geno),
as.integer(chr),
DIST=as.double(dist),
as.double(pheno),
COF=as.integer(cofactors),
as.integer(backward),
as.integer(forceML),
as.double(cofactor.significance),
as.integer(em.iter),
as.double(window.size),
as.double(step.size),
as.double(step.min),
as.double(step.max),
as.integer(n.run),
as.integer(augmentedNind),
as.integer(augmentedInd),
QTL=as.double(rep(0,2*n.chr*qtlAchromo)),
as.integer(estimate.map),
as.integer(ctype),
as.integer(dominance),
as.integer(verbose),
PACKAGE="qtl")
end.2 <- proc.time()
qtl <- NULL
info <- NULL
names <- NULL
for(i in 1:(n.chr*qtlAchromo)) {
qtl <- rbind(qtl,c(ceiling(i/qtlAchromo),rep(seq(step.min,step.max,step.size),n.chr)[i],result$QTL[i]))
info <- rbind(info,result$QTL[(n.chr*qtlAchromo)+i])
names <- c(names,paste("c",ceiling(i/qtlAchromo),".loc",rep(seq(step.min,step.max,step.size),n.chr)[i],sep=""))
}
if(estimate.map){
new.map <- pull.map(cross)
chrmarkers <- nmar(cross)
sum <- 1
for(i in 1:length(chrmarkers)) {
for(j in 1:chrmarkers[[i]]) {
new.map[[i]][j] <- result$DIST[sum]
sum <- sum+1
}
}
}
if(plot){
if(estimate.map && backward){
op <- par(mfrow = c(3,1))
}else{
if(estimate.map || backward){
op <- par(mfrow = c(2,1))
}else{
op <- par(mfrow = c(1,1))
}
}
if(estimate.map){
if(verbose) cat("INFO: Viewing the user supplied map versus genetic map used during analysis.\n")
plotMap(pull.map(cross), new.map,main="Supplied map versus re-estimated map")
}
}
if(backward){
if(!estimate.map){
new.map <- pull.map(cross)
}
chrmarkers <- nmar(cross)
mapnames <- NULL
for(x in 1:nchr(cross)){
mapnames <- c(mapnames,names(pull.map(cross)[[x]]))
}
sum <- 1
model.present <- 0
qc <- NULL
qp <- NULL
qn <- NULL
for(i in 1:length(chrmarkers)) {
for(j in 1:chrmarkers[[i]]) {
if(result$COF[sum] != 48){
if(verbose) cat("MODEL: Marker",sum,"named:", strsplit(names(unlist(new.map)),".",fixed=TRUE)[[sum]][2],"from model found, CHR=",i,",POSITION=",as.double(unlist(new.map)[sum])," cM\n")
qc <- c(qc, as.character(names(cross$geno)[i]))
qp <- c(qp, as.double(unlist(new.map)[sum]))
qn <- c(qn, mapnames[sum])
model.present <- 1
}
sum <- sum+1
}
}
if(!is.null(qc) && model.present){
why <- sim.geno(savecross,n.draws=1)
QTLmodel <- makeqtl(why, qc, qp, qn, what="draws")
attr(QTLmodel,"mqm") <- 1
if(plot) plot(QTLmodel)
}
}
rownames(qtl) <- names
qtl <- cbind(qtl,1/(min(info))*(info-min(info)))
qtl <- cbind(qtl,1/(min(info))*(info-min(info))*qtl[,3])
colnames(qtl) = c("chr","pos (cM)",paste("LOD",colnames(cross$pheno)[pheno.col]),"info","LOD*info")
qtl <- as.data.frame(qtl, stringsAsFactors=TRUE)
if(backward && !is.null(qc) && model.present){
attr(qtl,"mqmmodel") <- QTLmodel
cimcovar <- as.data.frame(cbind(as.numeric(attr(qtl,"mqmmodel")[[4]]),as.data.frame(attr(qtl,"mqmmodel")[[5]])), stringsAsFactors=TRUE)
rownames(cimcovar) <- attr(qtl,"mqmmodel")[[2]]
colnames(cimcovar) <- c("chr","pos")
attr(qtl, "marker.covar.pos") <- cimcovar
}
class(qtl) <- c("scanone",class(qtl))
if(outputmarkers){
for( x in 1:nchr(cross)){
to.remove <- NULL
chr.length <- max(cross$geno[[x]]$map)
markers.on.chr <- which(qtl[,1]==x)
to.remove <- markers.on.chr[which(qtl[markers.on.chr,2] > chr.length+off.end+(2*step.size))]
to.remove <- c(to.remove,markers.on.chr[which(qtl[markers.on.chr,2] < -off.end)])
if(length(to.remove) > 0) qtl <- qtl[-to.remove,]
}
qtl <- addmarkerstointervalmap(cross,qtl)
qtl <- as.data.frame(qtl, stringsAsFactors=TRUE)
if(backward && !is.null(qc) && model.present){
attr(qtl,"mqmmodel") <- QTLmodel
cimcovar <- as.data.frame(cbind(as.numeric(attr(qtl,"mqmmodel")[[4]]),as.data.frame(attr(qtl,"mqmmodel")[[5]])), stringsAsFactors=TRUE)
rownames(cimcovar) <- attr(qtl,"mqmmodel")[[2]]
colnames(cimcovar) <- c("chr","pos")
attr(qtl, "marker.covar.pos") <- cimcovar
}
class(qtl) <- c("scanone",class(qtl))
}
qtlnew <- qtl
rownames(qtlnew) <- paste0("qtlnew_X", 1:nrow(qtl))
oldnames <- rownames(qtl)
for(x in 1:n.chr){
markers.on.chr <- which(qtl[,1]==x)
if(newcmbase[x] !=0 && nrow(qtl[markers.on.chr,]) > 0){
qtl[markers.on.chr,2] <- qtl[markers.on.chr,2]+newcmbase[x]
for(n in 1:nrow(qtl[markers.on.chr,])){
name <- rownames(qtl[markers.on.chr,])[n]
id <- which(name==oldnames)
if(!is.na(name) && grepl(".loc",name,fixed=TRUE)){
rownames(qtlnew)[id] <- paste(strsplit(name,".loc",fixed=TRUE)[[1]][1],".loc",qtlnew[id,2],sep="")
}else{
rownames(qtlnew)[id] <- name
}
}
}else{
rownames(qtlnew)[markers.on.chr] <- rownames(qtl)[markers.on.chr]
}
}
qtl <- qtlnew
for( x in 1:nchr(cross)){
if(chrtype(cross$geno[[x]])!="X"){
to.remove <- NULL
chr.length <- max(cross$geno[[x]]$map)
markers.on.chr <- which(qtl[,1]==x)
to.remove <- markers.on.chr[which(qtl[markers.on.chr,2] > chr.length+off.end)]
to.remove <- c(to.remove,markers.on.chr[which(qtl[markers.on.chr,2] < -off.end)])
qtl <- qtl[-to.remove,]
}
}
qtl[,1] <- factor(names(cross$geno)[qtl[,1]], levels=names(cross$geno))
if(plot){
info.c <- qtl
e <- 0
for(i in 1:ncol(qtl)){
if(is.na(info.c[i,5])){
e<- 1
}
if(is.infinite(info.c[i,5])){
e<- 1
}
if(is.null(info.c[i,5])){
e<- 1
}
}
if(!e){
mqmplot.singletrait(qtl,main=paste(colnames(cross$pheno)[pheno.col],"at significance=",cofactor.significance))
}else{
plot(qtl,main=paste(colnames(cross$pheno)[pheno.col],"at significance=",cofactor.significance),lwd=1)
grid(max(qtl$chr),5)
labels <- paste("QTL",colnames(cross$pheno)[pheno.col])
legend("topright", labels,col=c("black"),lty=c(1))
}
op <- par(mfrow = c(1,1))
}
end.3 <- proc.time()
if(verbose) cat("INFO: Calculation time (R->C,C,C-R): (",round((end.1-start)[3], digits=3), ",",round((end.2-end.1)[3], digits=3),",",round((end.3-end.2)[3], digits=3),") (in seconds)\n")
qtl
}else{
stop("Currently only F2, BC, and selfed RIL crosses can be analyzed by MQM.")
}
} |
"VMACpp" <- function(da,q=1,include.mean=T,fixed=NULL,beta=NULL,sebeta=NULL,prelim=F,details=F,thres=2.0){
if(!is.matrix(da))da=as.matrix(da)
nT=dim(da)[1]
k=dim(da)[2]
if(q < 1)q=1
kq=k*q
THini <- function(y,x,q,include.mean){
if(!is.matrix(y))y=as.matrix(y)
if(!is.matrix(x))x=as.matrix(x)
nT=dim(y)[1]
k=dim(y)[2]
ist=1+q
ne=nT-q
if(include.mean){
xmtx=matrix(1,ne,1)
}
else {
xmtx=NULL
}
ymtx=y[ist:nT,]
for (j in 1:q){
xmtx=cbind(xmtx,x[(ist-j):(nT-j),])
}
xtx=crossprod(xmtx,xmtx)
xty=crossprod(xmtx,ymtx)
xtxinv=solve(xtx)
beta=xtxinv%*%xty
resi= ymtx - xmtx%*%beta
sse=crossprod(resi,resi)/ne
dd=diag(xtxinv)
sebeta=NULL
for (j in 1:k){
se=sqrt(dd*sse[j,j])
sebeta=cbind(sebeta,se)
}
THini <- list(estimates=beta,se=sebeta)
}
if(length(fixed) < 1){
m1=VARorder(da,q+12,output=FALSE)
porder=m1$aicor
if(porder < 1)porder=1
m2=VAR(da,porder,output=FALSE)
y=da[(porder+1):nT,]
x=m2$residuals
m3=THini(y,x,q,include.mean)
beta=m3$estimates
sebeta=m3$se
nr=dim(beta)[1]
if(prelim){
fixed = matrix(0,nr,k)
for (j in 1:k){
tt=beta[,j]/sebeta[,j]
idx=c(1:nr)[abs(tt) >= thres]
fixed[idx,j]=1
}
}
if(length(fixed) < 1){fixed=matrix(1,nr,k)}
}
else{
nr=dim(beta)[1]
}
par=NULL
separ=NULL
fix1=fixed
VMAcnt=0
ist=0
if(include.mean){
jdx=c(1:k)[fix1[1,]==1]
VMAcnt=length(jdx)
if(VMAcnt > 0){
par=beta[1,jdx]
separ=sebeta[1,jdx]
}
TH=-beta[2:(kq+1),]
seTH=sebeta[2:(kq+1),]
ist=1
}
else {
TH=-beta
seTH=sebeta
}
for (j in 1:k){
idx=c(1:(nr-ist))[fix1[(ist+1):nr,j]==1]
if(length(idx) > 0){
par=c(par,TH[idx,j])
separ=c(separ,seTH[idx,j])
}
}
ParMA <- par
LLKVMACpp <- function(par,zt=zt,q=q,fixed=fix1,include.mean=include.mean){
k=ncol(zt)
nT=nrow(zt)
kq=k*q
fix <- fixed
ListObs = .Call("GetVMAObs", zt, fix1, par, q, include.mean)
zt = do.call(rbind, ListObs)
ListTH = .Call("GetVMATH", zt, fix1, par, q, include.mean)
TH = do.call(rbind, ListTH)
mm=eigen(TH)
V1=mm$values
P1=mm$vectors
v1=Mod(V1)
ich=0
for (i in 1:kq){
if(v1[i] > 1)V1[i]=1/V1[i]
ich=1
}
if(ich > 0){
P1i=solve(P1)
GG=diag(V1)
TH=Re(P1%*%GG%*%P1i)
Theta=t(TH[1:k,])
icnt <- VMAcnt
ist=0
if(icnt > 0)ist=1
for (j in 1:k){
idx=c(1:kq)[fix[(ist+1):(ist+kq),j]==1]
jcnt=length(idx)
if(jcnt > 0){
par[(icnt+1):(icnt+jcnt)]=TH[j,idx]
icnt=icnt+jcnt
}
}
ParMA <- par
}
at=mFilter(zt,t(Theta))
sig=t(at)%*%at/nT
ll=dmvnorm(at,rep(0,k),sig)
LLKVMACpp =-sum(log(ll))
LLKVMACpp
}
cat("Number of parameters: ",length(par),"\n")
cat("initial estimates: ",round(par,4),"\n")
lowerBounds=par; upperBounds=par
npar=length(par)
mult=2.0
if((npar > 10)||(q > 2))mult=1.2
for (j in 1:npar){
lowerBounds[j] = par[j]-mult*separ[j]
upperBounds[j] = par[j]+mult*separ[j]
}
cat("Par. Lower-bounds: ",round(lowerBounds,4),"\n")
cat("Par. Upper-bounds: ",round(upperBounds,4),"\n")
if(details){
fit = nlminb(start = ParMA, objective = LLKVMACpp,zt=da,fixed=fixed,include.mean=include.mean,q=q,
lower = lowerBounds, upper = upperBounds, control = list(trace=3))
}
else {
fit = nlminb(start = ParMA, objective = LLKVMACpp, zt=da, fixed=fixed, include.mean=include.mean, q=q,
lower = lowerBounds, upper = upperBounds)
}
epsilon = 0.0001 * fit$par
npar=length(par)
Hessian = matrix(0, ncol = npar, nrow = npar)
for (i in 1:npar) {
for (j in 1:npar) {
x1 = x2 = x3 = x4 = fit$par
x1[i] = x1[i] + epsilon[i]; x1[j] = x1[j] + epsilon[j]
x2[i] = x2[i] + epsilon[i]; x2[j] = x2[j] - epsilon[j]
x3[i] = x3[i] - epsilon[i]; x3[j] = x3[j] + epsilon[j]
x4[i] = x4[i] - epsilon[i]; x4[j] = x4[j] - epsilon[j]
Hessian[i, j] = (LLKVMACpp(x1,zt=da,q=q,fixed=fixed,include.mean=include.mean)
-LLKVMACpp(x2,zt=da,q=q,fixed=fixed,include.mean=include.mean)
-LLKVMACpp(x3,zt=da,q=q,fixed=fixed,include.mean=include.mean)
+LLKVMACpp(x4,zt=da,q=q,fixed=fixed,include.mean=include.mean))/
(4*epsilon[i]*epsilon[j])
}
}
est=fit$par
cat("Final Estimates: ",est,"\n")
se.coef = sqrt(diag(solve(Hessian)))
tval = fit$par/se.coef
matcoef = cbind(fit$par, se.coef, tval, 2*(1-pnorm(abs(tval))))
dimnames(matcoef) = list(names(tval), c(" Estimate",
" Std. Error", " t value", "Pr(>|t|)"))
cat("\nCoefficient(s):\n")
printCoefmat(matcoef, digits = 4, signif.stars = TRUE)
cat("---","\n")
cat("Estimates in matrix form:","\n")
icnt=0
ist=0
cnt=NULL
if(include.mean){
ist=1
cnt=rep(0,k)
secnt=rep(1,k)
jdx=c(1:k)[fix1[1,]==1]
icnt=length(jdx)
if(icnt > 0){
cnt[jdx]=est[1:icnt]
secnt[jdx]=se.coef[1:icnt]
cat("Constant term: ","\n")
cat("Estimates: ",cnt,"\n")
}
}
cat("MA coefficient matrix","\n")
TH=matrix(0,kq,k)
seTH=matrix(1,kq,k)
for (j in 1:k){
idx=c(1:kq)[fix1[(ist+1):nr,j]==1]
jcnt=length(idx)
if(jcnt > 0){
TH[idx,j]=est[(icnt+1):(icnt+jcnt)]
seTH[idx,j]=se.coef[(icnt+1):(icnt+jcnt)]
icnt=icnt+jcnt
}
}
icnt=0
for (i in 1:q){
cat("MA(",i,")-matrix","\n")
theta=t(TH[(icnt+1):(icnt+k),])
print(theta,digits=3)
icnt=icnt+k
}
zt=da
if(include.mean){
for (i in 1:k){
zt[,i]=zt[,i]-cnt[i]
}
}
at=mFilter(zt,t(TH))
sig=t(at)%*%at/nT
cat(" ","\n")
cat("Residuals cov-matrix:","\n")
print(sig)
dd=det(sig)
d1=log(dd)
aic=d1+2*npar/nT
bic=d1+log(nT)*npar/nT
cat("----","\n")
cat("aic= ",aic,"\n")
cat("bic= ",bic,"\n")
Theta=t(TH)
if(include.mean){
TH=rbind(cnt,TH)
seTH=rbind(secnt,seTH)
}
VMACpp <- list(data=da,MAorder=q,cnst=include.mean,coef=TH,secoef=seTH,residuals=at,Sigma=sig,Theta=Theta,mu=cnt,aic=aic,bic=bic)
} |
zvode <- function(y, times, func, parms, rtol=1e-6, atol=1e-6,
jacfunc=NULL, jactype = "fullint", mf = NULL, verbose=FALSE,
tcrit = NULL, hmin=0, hmax=NULL, hini=0, ynames=TRUE, maxord=NULL,
bandup=NULL, banddown=NULL, maxsteps=5000, dllname=NULL,
initfunc=dllname, initpar=parms, rpar=NULL, ipar=NULL,
nout=0, outnames=NULL, forcings=NULL, initforc = NULL,
fcontrol=NULL, ...) {
n <- length(y)
if (! is.null(times) && !is.numeric(times))
stop("`times' must be NULL or numeric")
if (!is.function(func) && !is.character(func))
stop("`func' must be a function or character vector")
if (is.character(func) && (is.null(dllname) || !is.character(dllname)))
stop("specify the name of the dll or shared library where func can be found (without extension)")
if (!is.numeric(rtol)) stop("`rtol' must be numeric")
if (!is.numeric(atol)) stop("`atol' must be numeric")
if (!is.null(tcrit) & !is.numeric(tcrit)) stop("`tcrit' must be numeric")
if (!is.null(jacfunc) && !(is.function(jacfunc) || is.character(jacfunc)))
stop(paste(jacfunc," must be a function or character vector"))
if (length(atol) > 1 && length(atol) != n)
stop("`atol' must either be a scalar, or as long as `y'")
if (length(rtol) > 1 && length(rtol) != n)
stop("`rtol' must either be a scalar, or as long as `y'")
if (!is.numeric(hmin)) stop("`hmin' must be numeric")
if (hmin < 0) stop("`hmin' must be a non-negative value")
if (is.null(hmax))
hmax <- if (is.null(times)) 0 else max(abs(diff(times)))
if (!is.numeric(hmax)) stop("`hmax' must be numeric")
if (hmax < 0) stop("`hmax' must be a non-negative value")
if (hmax == Inf) hmax <- 0
if (!is.null(hini))
if(hini < 0) stop("`hini' must be a non-negative value")
if (!is.null(maxord))
if (maxord < 1)
stop("`maxord' must be >1")
if (is.null(mf)) {
if (jactype == "fullint" )
imp <- 22
else if (jactype == "fullusr" )
imp <- 21
else if (jactype == "bandusr" )
imp <- 24
else if (jactype == "bandint" )
imp <- 25
else
stop("'jactype' must be one of 'fullint', 'fullusr', 'bandusr' or 'bandint' if 'mf' not specified")
} else imp <- mf
if (! imp %in% c(10:17, 20:27, -11,-12,-14,-15,-21, -22, -24: -27))
stop ("method flag 'mf' not allowed")
miter <- abs(imp)%%10
if (miter %in% c(1,4) & is.null(jacfunc))
stop ("'jacfunc' NOT specified; either specify 'jacfunc' or change 'jactype' or 'mf'")
meth <- abs(imp)%/%10
jsv <- sign(imp)
if (is.null (maxord))
maxord <- ifelse(meth==1,12,5)
if (meth==1 && maxord > 12)
stop ("'maxord' too large: should be <= 12")
if (meth==2 && maxord > 5 )
stop ("'maxord' too large: should be <= 5")
if (miter %in% c(4,5) && is.null(bandup))
stop("'bandup' must be specified if banded Jacobian")
if (miter %in% c(4,5) && is.null(banddown))
stop("'banddown' must be specified if banded Jacobian")
if (is.null(banddown)) banddown <-1
if (is.null(bandup )) bandup <-1
Func <- NULL
JacFunc <- NULL
if (miter == 4 && banddown>0)
erow<-matrix(data=0, ncol=n, nrow=banddown) else erow<-NULL
Ynames <- attr(y,"names")
flist<-list(fmat=0,tmat=0,imat=0,ModelForc=NULL)
ModelInit <- NULL
if (is.character(func) | inherits(func, "CFunc")) {
DLL <- checkDLL(func,jacfunc,dllname,
initfunc,verbose,nout, outnames)
ModelInit <- DLL$ModelInit
Func <- DLL$Func
JacFunc <- DLL$JacFunc
Nglobal <- DLL$Nglobal
Nmtot <- DLL$Nmtot
if (! is.null(forcings))
flist <- checkforcings(forcings,times,dllname,initforc,verbose,fcontrol)
rho <- NULL
if (is.null(ipar)) ipar<-0
if (is.null(rpar)) rpar<-0
if (!is.null(jacfunc)) {
if (miter == 4&& banddown>0)
stop("The combination of user-supplied banded Jacobian in a dll is NOT allowed")
}
} else {
if(is.null(initfunc))
initpar <- NULL
rho <- environment(func)
if(ynames) {
Func <- function(time,state) {
attr(state,"names") <- Ynames
func (time,state,parms,...)[1]
}
Func2 <- function(time,state){
attr(state,"names") <- Ynames
func (time,state,parms,...)
}
JacFunc <- function(time,state){
attr(state,"names") <- Ynames
rbind(jacfunc(time,state,parms,...),erow)
}
} else {
Func <- function(time,state)
func (time,state,parms,...)[1]
Func2 <- function(time,state)
func (time,state,parms,...)
JacFunc <- function(time,state)
rbind(jacfunc(time,state,parms,...),erow)
}
FF <- checkFuncComplex(Func2,times,y,rho)
Nglobal<-FF$Nglobal
Nmtot <- FF$Nmtot
if (miter %in% c(1,4)) {
tmp <- eval(JacFunc(times[1], y), rho)
if (!is.matrix(tmp))
stop("Jacobian function must return a matrix\n")
dd <- dim(tmp)
if((miter ==4 && any(dd != c(bandup+banddown+banddown+1,n))) ||
(miter ==1 && any(dd != c(n,n))))
stop("Jacobian dimension not ok")
}
}
lzw <- n*(maxord+1)+2*n
if(miter %in% c(1,2) && imp>0)
lzw <- lzw + 2*n*n+2
if(miter %in% c(1,2) && imp<0)
lzw <- lzw + n*n
if(miter ==3)
lzw <- lzw + n
if(miter %in% c(4,5) && imp>0)
lzw <- lzw + (3*banddown+2*bandup+2)*n
if(miter %in% c(4,5) && imp<0)
lzw <- lzw + (2*banddown+bandup+1)*n
lrw <- 20 +n
liw <- ifelse(miter %in% c(0,3),30,30+n)
iwork <- vector("integer",30)
rwork <- vector("double",20)
rwork[] <- 0.
iwork[] <- 0
iwork[1] <- banddown
iwork[2] <- bandup
iwork[5] <- maxord
iwork[6] <- maxsteps
if(! is.null(tcrit)) rwork[1] <- tcrit
rwork[5] <- hini
rwork[6] <- hmax
rwork[7] <- hmin
if (! is.null(times))
itask <- ifelse (is.null (tcrit), 1,4) else
itask <- ifelse (is.null (tcrit), 2,5)
if(is.null(times)) times<-c(0,1e8)
if (verbose) {
printtask(itask,func,jacfunc)
printM("\n--------------------")
printM("Integration method")
printM("--------------------")
df <- c("method flag, =",
"jsv =",
"meth =",
"miter =")
vals <- c(imp, jsv, meth, miter)
txt <- "; (note: mf = jsv * (10 * meth + miter))"
if (jsv==1) txt<-c(txt,
"; a copy of the Jacobian is saved for reuse in the corrector iteration algorithm" ) else
if (jsv==-1)txt<-c(txt,
"; a copy of the Jacobian is not saved")
if (meth==1)txt<-c(txt,
"; the basic linear multistep method: the implicit Adams method") else
if (meth==2)txt<-c(txt,"; the basic linear multistep method:
based on backward differentiation formulas")
if (miter==0)txt<-c(txt,
"; functional iteration (no Jacobian matrix is involved") else
if (miter==1)txt<-c(txt,
"; chord iteration with a user-supplied full (NEQ by NEQ) Jacobian") else
if (miter==2)txt<-c(txt,
"; chord iteration with an internally generated full Jacobian,
(NEQ extra calls to F per df/dy value)") else
if (miter==3)txt<-c(txt,
"; chord iteration with an internally generated diagonal Jacobian
(1 extra call to F per df/dy evaluation)") else
if (miter==4)txt<-c(txt,
"; chord iteration with a user-supplied banded Jacobian") else
if (miter==5)txt<-c(txt,
"; chord iteration with an internally generated banded Jacobian
(using ML+MU+1 extra calls to F per df/dy evaluation)")
printmessage(df, vals, txt)
}
storage.mode(y) <- "complex"
storage.mode(times) <- "double"
on.exit(.C("unlock_solver"))
out <- .Call("call_zvode", y, times, Func, initpar, rtol, atol,
rho, tcrit, JacFunc, ModelInit, as.integer(itask),
as.double(rwork),as.integer(iwork), as.integer(imp),as.integer(Nglobal),
as.integer(lzw),as.integer(lrw),as.integer(liw), as.complex (rpar),
as.integer(ipar),flist,PACKAGE = "deSolve")
nR <- ncol(out)
out [1,] <- as.complex(times[1:nR])
out <- saveOut(out, y, n, Nglobal, Nmtot, func, Func2,
iin=c(1,12:23), iout=1:13)
attr(out, "type") <- "cvode"
if (verbose) diagnostics(out)
out
}
checkFuncComplex<- function (Func2, times, y, rho) {
if (! is.complex(y))
stop("'y' should be complex, not real")
tmp <- eval(Func2(times[1], y), rho)
if (!is.list(tmp))
stop("Model function must return a list\n")
if (length(tmp[[1]]) != length(y))
stop(paste("The number of derivatives returned by func() (",
length(tmp[[1]]),
") must equal the length of the initial conditions vector (",
length(y),")",sep=""))
if (! is.complex(tmp[[1]]))
stop("derivatives (first element returned by 'func') should be complex, not real")
Nglobal <- if (length(tmp) > 1)
length(unlist(tmp[-1])) else 0
Nmtot <- attr(unlist(tmp[-1]),"names")
return(list(Nglobal = Nglobal, Nmtot=Nmtot))
} |
context("Github API")
test_that("Non Nested", {
mydata <- fromJSON("https://api.github.com/users/hadley/orgs");
expect_that(mydata, is_a("data.frame"));
});
test_that("Nested 1 Level", {
mydata <- fromJSON("https://api.github.com/users/hadley/repos");
expect_that(mydata, is_a("data.frame"));
expect_that(mydata$owner, is_a("data.frame"));
expect_that(nrow(mydata), equals(nrow(mydata$owner)));
});
test_that("Nested 1 Level", {
mydata <- fromJSON("https://api.github.com/repos/hadley/ggplot2/issues");
expect_that(mydata, is_a("data.frame"));
expect_that(mydata$user, is_a("data.frame"));
expect_that(mydata$pull_request, is_a("data.frame"));
expect_that(nrow(mydata), equals(nrow(mydata$pull_request)));
});
test_that("Nested 1 Level within list", {
mydata <- fromJSON("https://api.github.com/search/repositories?q=tetris+language:assembly&sort=stars&order=desc");
expect_that(mydata, is_a("list"));
expect_that(mydata$items, is_a("data.frame"));
expect_that(mydata$items$owner, is_a("data.frame"));
expect_that(nrow(mydata$items), equals(nrow(mydata$items$owner)));
});
test_that("Nested 2 Level", {
mydata <- fromJSON("https://api.github.com/repos/hadley/ggplot2/commits");
expect_that(mydata, is_a("data.frame"));
expect_that(mydata$commit, is_a("data.frame"));
expect_that(mydata$commit$author, is_a("data.frame"));
expect_that(mydata$commit$author$name, is_a("character"));
expect_that(nrow(mydata), equals(nrow(mydata$commit)));
expect_that(nrow(mydata), equals(nrow(mydata$commit$author)));
});
test_that("Nested inconsistent (payload), one-to-many", {
mydata <- fromJSON("https://api.github.com/users/hadley/events");
expect_that(mydata, is_a("data.frame"));
expect_that(mydata$actor, is_a("data.frame"));
expect_that(mydata$repo, is_a("data.frame"));
expect_that(mydata$type, is_a("character"));
expect_that(mydata$payload, is_a("data.frame"));
if(any(mydata$type == "PushEvent")){
expect_true(all(vapply(mydata$payload$commits, function(x){is.null(x) || is.data.frame(x)}, logical(1))));
}
});
test_that("Nested inconsistent (payload), one-to-many", {
mydata <- fromJSON("https://api.github.com/repos/hadley/ggplot2/events");
if(any("ForkEvent" %in% mydata$type)){
expect_that(mydata$payload$forkee$owner, is_a("data.frame"))
}
if(any(mydata$type %in% c("IssuesEvent", "IssueCommentEvent"))){
expect_that(mydata$payload$issue, is_a("data.frame"));
expect_that(mydata$payload$issue$user, is_a("data.frame"));
}
}); |
detectbound <- function(distname, vstart, obs, fix.arg=NULL, echo=FALSE)
{
ddistname <- paste("d", distname, sep="")
argdist <- formalArgs(ddistname)
argdist <- argdist[!argdist %in% c("x", "log")]
stopifnot(all(names(vstart) %in% argdist))
if("scale" %in% argdist && "rate" %in% argdist)
{
if(length(grep("rate", as.character(formals(ddistname)$scale))) > 0)
{
argdist <- argdist[argdist != "rate"]
if("rate" %in% names(vstart))
{
vstart["rate"] <- 1/vstart["rate"]
names(vstart)[names(vstart) == "rate"] <- "scale"
}
}
}
argdist <- argdist[!argdist %in% names(fix.arg)]
if(length(argdist) == 0)
return(NULL)
if(echo)
{
print(argdist)
print(vstart)
}
lowb <- rep(-Inf, length(argdist))
uppb <- -lowb
names(lowb) <- names(uppb) <- argdist
eps <- sqrt(.Machine$double.eps)
owarn <- getOption("warn")
oerr <- getOption("show.error.messages")
options(warn=-1, show.error.messages=FALSE)
for(a in argdist)
{
if(echo)
cat(a, "\n")
dx <- do.call(ddistname, c(list(obs), as.list(vstart), as.list(fix.arg)))
if(any(is.nan(dx)))
stop("wrong init param")
vstarta <- vstart
aval <- -1:1
for(i in 1:length(aval))
{
vstarta[a] <- aval[i]-eps
dx1 <- try(do.call(ddistname, c(list(obs), as.list(vstarta), as.list(fix.arg))), silent=TRUE)
vstarta[a] <- aval[i]+eps
dx2 <- try(do.call(ddistname, c(list(obs), as.list(vstarta), as.list(fix.arg))), silent=TRUE)
if(echo)
{
cat(i, "\ttested value", vstarta, "\n")
print(dx1)
print(dx2)
}
if(class(dx1) == "try-error" && class(dx2) != "try-error")
{
lowb[a] <- aval[i]
}
if(any(is.nan(dx1)) && any(!is.nan(dx2)))
{
lowb[a] <- aval[i]
}
if(class(dx1) != "try-error" && class(dx2) == "try-error")
{
uppb[a] <- aval[i]
}
if(any(!is.nan(dx1)) && any(is.nan(dx2)))
{
uppb[a] <- aval[i]
}
}
}
options(warn=owarn, show.error.messages=oerr)
rbind(lowb, uppb)
} |
context("test bi_scale_fill function")
data("stl_race_income", package = "biscale")
data <- bi_class(stl_race_income, x = pctWhite, y = medInc, dim = 2)
library(ggplot2)
library(sf)
test_that("missing parameters trigger appropriate errors", {
expect_error(ggplot() +
geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(dim = 2),
"A palette must be specified for the 'pal' argument. Please choose one of: 'Brown', 'DkBlue', 'DkCyan', 'DkViolet', or 'GrPink'.")
})
test_that("incorrectly specified parameters trigger appropriate errors", {
expect_error(ggplot() +
geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "ham", dim = 2),
"The given palette is not one of the allowed options for bivariate mapping. Please choose one of: 'Brown', 'DkBlue', 'DkCyan', 'DkViolet', or 'GrPink'.")
expect_error(ggplot() +
geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "Brown", dim = 5),
"The 'dim' argument only accepts the numeric values '2' or '3'.")
expect_error(ggplot() +
geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "Brown", dim = "ham"),
"The 'dim' argument only accepts the numeric values '2' or '3'.")
})
test_that("correctly specified functions execute without error", {
expect_error(ggplot() +
geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "Brown", dim = 2), NA)
expect_error(ggplot() +
geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "DkBlue", dim = 2), NA)
expect_error(ggplot() +
geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "DkCyan", dim = 2), NA)
expect_error(ggplot() +
geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "DkViolet", dim = 2), NA)
expect_error(ggplot() +
geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "GrPink", dim = 2), NA)
})
custom_pal <- bi_pal_manual(val_1_1 = "
test_that("correctly specified functions execute without error", {
expect_error(ggplot() +
geom_sf(data = data, aes(color = bi_class), show.legend = FALSE) +
bi_scale_fill(pal = custom_pal, dim = 2), NA)
}) |
classnameOK <- function(text) {
gsub("[^._A-Za-z0-9]+", "_", text)
}
JunitReporter <- R6::R6Class("JunitReporter",
inherit = Reporter,
public = list(
results = NULL,
timer = NULL,
doc = NULL,
errors = NULL,
failures = NULL,
skipped = NULL,
tests = NULL,
root = NULL,
suite = NULL,
suite_time = NULL,
file_name = NULL,
elapsed_time = function() {
time <- (private$proctime() - self$timer)[["elapsed"]]
self$timer <- private$proctime()
time
},
reset_suite = function() {
self$errors <- 0
self$failures <- 0
self$skipped <- 0
self$tests <- 0
self$suite_time <- 0
},
start_reporter = function() {
check_installed("xml2", "JunitReporter")
self$timer <- private$proctime()
self$doc <- xml2::xml_new_document()
self$root <- xml2::xml_add_child(self$doc, "testsuites")
self$reset_suite()
},
start_file = function(file) {
self$file_name <- file
},
start_test = function(context, test) {
if (is.null(context)) {
context_start_file(self$file_name)
}
},
start_context = function(context) {
self$suite <- xml2::xml_add_child(
self$root,
"testsuite",
name = context,
timestamp = private$timestamp(),
hostname = private$hostname()
)
},
end_context = function(context) {
xml2::xml_attr(self$suite, "tests") <- as.character(self$tests)
xml2::xml_attr(self$suite, "skipped") <- as.character(self$skipped)
xml2::xml_attr(self$suite, "failures") <- as.character(self$failures)
xml2::xml_attr(self$suite, "errors") <- as.character(self$errors)
xml2::xml_attr(self$suite, "time") <- as.character(round(self$suite_time, 3))
self$reset_suite()
},
add_result = function(context, test, result) {
self$tests <- self$tests + 1
time <- self$elapsed_time()
self$suite_time <- self$suite_time + time
name <- test %||% "(unnamed)"
testcase <- xml2::xml_add_child(
self$suite, "testcase",
time = toString(time),
classname = classnameOK(context),
name = classnameOK(name)
)
first_line <- function(x) {
loc <- expectation_location(x)
paste0(strsplit(x$message, split = "\n")[[1]][1], " (", loc, ")")
}
if (expectation_error(result)) {
error <- xml2::xml_add_child(testcase, "error", type = "error", message = first_line(result))
xml2::xml_text(error) <- crayon::strip_style(format(result))
self$errors <- self$errors + 1
} else if (expectation_failure(result)) {
failure <- xml2::xml_add_child(testcase, "failure", type = "failure", message = first_line(result))
xml2::xml_text(failure) <- crayon::strip_style(format(result))
self$failures <- self$failures + 1
} else if (expectation_skip(result)) {
xml2::xml_add_child(testcase, "skipped", message = first_line(result))
self$skipped <- self$skipped + 1
}
},
end_reporter = function() {
if (is.character(self$out)) {
xml2::write_xml(self$doc, self$out, format = TRUE)
} else if (inherits(self$out, "connection")) {
file <- tempfile()
xml2::write_xml(self$doc, file, format = TRUE)
cat(brio::read_file(file), file = self$out)
} else {
stop("unsupported output type: ", toString(self$out))
}
}
),
private = list(
proctime = function() {
proc.time()
},
timestamp = function() {
strftime(Sys.time(), "%Y-%m-%dT%H:%M:%SZ", tz = "UTC")
},
hostname = function() {
Sys.info()[["nodename"]]
}
)
)
JunitReporterMock <- R6::R6Class("JunitReporterMock",
inherit = JunitReporter,
public = list(),
private = list(
proctime = function() {
c(user = 0, system = 0, elapsed = 0)
},
timestamp = function() {
"1999:12:31 23:59:59"
},
hostname = function() {
"nodename"
}
)
) |
require(ocs4R, quietly = TRUE)
require(testthat)
context("api-user-provisioning")
test_that("User Provisioning API - getUsers",{
users <- OCS$getUsers()
expect_is(users, "character")
expect_equal(length(users), 1L)
})
test_that("User Provisioning API - getUser",{
user <- OCS$getUser("admin")
expect_is(user, "list")
user.df <- OCS$getUser("admin", TRUE)
expect_is(user.df, "data.frame")
})
test_that("User Provisioning API - addUser",{
added <- OCS$addUser("john.doe", password = "ocs4johnsecret")
expect_true(added)
users <- OCS$getUsers()
expect_equal(length(users), 2L)
user <- OCS$getUser("john.doe")
expect_is(user, "list")
expect_true(user$enabled)
expect_equal(user$displayname, "john.doe")
expect_null(user$email)
})
test_that("User Provisioning API - disableUser / enableUser",{
disabled <- OCS$disableUser("john.doe")
expect_true(disabled)
user <- OCS$getUser("john.doe")
expect_false(user$enabled)
enabled <- OCS$enableUser("john.doe")
expect_true(enabled)
user <- OCS$getUser("john.doe")
expect_true(user$enabled)
})
test_that("User Provisioning API - editUser",{
edited <- OCS$editUser("john.doe", key = "display", value = "John Doe")
expect_true(edited)
john <- OCS$getUser("john.doe")
expect_equal(john$displayname, "John Doe")
edited2 <- OCS$editUserDisplayName("john.doe", displayName = "John Doe Jr.")
expect_true(edited2)
john <- OCS$getUser("john.doe")
expect_equal(john$displayname, "John Doe Jr.")
})
test_that("User Provisioning API - getUserGroups",{
admingroups <- OCS$getUserGroups("admin")
expect_equal(admingroups, "admin")
})
test_that("User Provisioning API - getGroups",{
groups <- OCS$getGroups()
expect_equal(groups, "admin")
})
test_that("User Provisioning API - addGroup",{
added <- OCS$addGroup("scientists")
expect_true(added)
groups <- OCS$getGroups()
expect_equal(groups, c("admin", "scientists"))
})
test_that("User Provisioning API - getGroup",{
admin_group <- OCS$getGroup("admin")
expect_equal(admin_group$id, "admin")
expect_equal(admin_group$users, "admin")
sc_group <- OCS$getGroup("scientists")
expect_equal(sc_group$id, "scientists")
expect_null(sc_group$users)
})
test_that("User Provisioning API - addToGroup",{
added <- OCS$addToGroup("john.doe", "scientists")
expect_true(added)
expect_true("john.doe" %in% OCS$getGroup("scientists")$users)
})
test_that("User Provisioning API - removeFromGroup",{
removed <- OCS$removeFromGroup("john.doe", "scientists")
expect_true(removed)
expect_false("john.doe" %in% OCS$getGroup("scientists")$users)
})
test_that("User Provisioning API - deleteUser",{
deleted <- OCS$deleteUser("john.doe")
expect_true(deleted)
users <- OCS$getUsers()
expect_false("john.doe" %in% users)
})
test_that("UserProvisioning API - deleteGroup",{
deleted <- OCS$deleteGroup("scientists")
expect_true(deleted)
groups <- OCS$getGroups()
expect_false("scientists" %in% groups)
}) |
context("ape")
test_that("From ape::phylo to RNeXML::nexml object", {
skip_on_cran()
data(bird.orders)
expect_is(as(bird.orders, "nexml"), class="nexml")
})
test_that("We can go from various orderings of ape::phylo to RNeXML::nexml", {
skip_on_cran()
data(bird.orders)
nexml <- as(bird.orders, "nexml")
phy <- as(nexml, "phylo")
p <- plot(phy)
expect_that(plot(phy), is_a("list"))
expect_that(phy, is_a("phylo"))
})
test_that("From nexml to multiPhylo", {
skip_on_cran()
f <- system.file("examples", "trees.xml", package="RNeXML")
doc <- xmlParse(f)
root <- xmlRoot(doc)
nexml <- as(root, "nexml")
expect_warning(phy <- as(nexml, "phylo"), "Multiple trees found, Returning multiPhylo object")
expect_is(phy, "multiPhylo")
})
test_that("We can serialize the various versions of the ape format", {
skip_on_cran()
data(bird.orders)
nexml <- as(bird.orders, "nexml")
nexml_write(nexml, file = "test.xml")
expect_true_or_null(nexml_validate("test.xml"))
unlink("test.xml")
})
test_that("We can read and write NeXML to phylo and back without edge.lengths", {
skip_on_cran()
s <- "owls(((Strix_aluco,Asio_otus),Athene_noctua),Tyto_alba);"
cat(s, file = "ex.tre", sep = "\n")
owls <- read.tree("ex.tre")
nexml_write(owls, file = "ex.xml")
owls2 <- as(nexml_read("ex.xml"), "phylo")
expect_equal(owls, owls2)
unlink("ex.tre")
unlink("ex.xml")
})
test_that("Rooted trees remain rooted on conversions", {
skip_on_cran()
expect_true(is.rooted(bird.orders))
expect_true(is.rooted(as(as(bird.orders, "nexml"), "phylo")))
write.nexml(bird.orders, file = "tmp.xml")
expect_true(is.rooted(as(read.nexml("tmp.xml"), "phylo")))
unlink("tmp.xml")
})
test_that("Unrooted trees remain unrooted on conversions", {
skip_on_cran()
phy <- unroot(bird.orders)
expect_false(is.rooted(phy))
expect_false(is.rooted(as(as(phy, "nexml"), "phylo")))
write.nexml(phy, file = "tmp.xml")
expect_false(is.rooted(as(read.nexml("tmp.xml"), "phylo")))
unlink("tmp.xml")
})
test_that("We can convert trees with only some edge lengths into ape::phylo", {
skip_on_cran()
f <- system.file("examples", "some_missing_branchlengths.xml", package="RNeXML")
expect_warning(a <- as(read.nexml(f), "phylo"), "Multiple trees found, Returning multiPhylo object")
})
test_that("NeXML with rootedge can be converted to ape::phylo", {
skip_on_cran()
f <- system.file("examples", "coal.xml", package = "RNeXML")
nex <- read.nexml(f)
tr <- nex@trees[[1]]@tree[[1]]
phy <- as(nex, "phylo")
testthat::expect_equal(Nnode(phy) + Ntip(phy), length(tr@node) + 1)
testthat::expect_equal(Nedge(phy), length(tr@edge) + 1)
newick <- write.tree(phy)
testthat::expect_true(startsWith(newick, "(("))
testthat::expect_true(grepl('):[0-9.]+);$', newick))
}) |
context( "sfc_multipoints " )
test_that("various objects converted to sfc_MULTIPOINT objects",{
m <- matrix()
expect_error( sfheaders:::rcpp_sfc_multipoint( m, NULL, NULL, "" ), "sfheaders - can't work out the dimension")
m <- matrix(c(0,0), ncol = 2)
res <- sfheaders:::rcpp_sfc_multipoint( m, NULL, NULL, "" )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( all( is.na( unclass( attr( res, "z_range" ) ) ) ) )
m <- matrix(c(0,0,1,1), ncol = 2, byrow = T)
res <- sfheaders:::rcpp_sfc_multipoint( m, NULL, NULL, "" )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
m <- matrix(c(0,0,0,0,1,1), ncol = 3, byrow = T)
res <- sfheaders:::rcpp_sfc_multipoint( m, NULL, NULL, "" )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( all( attr( res, "z_range") == c(0,1) ) )
m <- matrix(c(0,0,1,1), ncol = 2, byrow = T)
res <- sfheaders:::rcpp_sfc_multipoint( m, c(0L,1L), NULL, "" )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
m <- matrix(c(0,0,1,1), ncol = 2, byrow = T)
expect_error( sfheaders:::rcpp_sfc_multipoint( m, NULL, 0L, "" ), "sfheaders - can't work out the dimension" )
m <- matrix(c(0,0,1,1), ncol = 2, byrow = T)
res <- sfheaders:::rcpp_sfc_multipoint( m, c(0L,1L), 0L, "" )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
m <- matrix(c(0,0,1,1), ncol = 2, byrow = T)
expect_error( sfheaders:::rcpp_sfc_multipoint( m, NULL, c(0L), "" ), "sfheaders - can't work out the dimension")
m <- matrix(c(0,0,0,0,1,1,1,1,1), ncol = 3, byrow = T)
res <- sfheaders:::rcpp_sfc_multipoint( m, c(1L,2L), c(0L), "" )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
df <- data.frame(x = 1, y = 1)
res <- sfheaders:::rcpp_sfc_multipoint(df, NULL, NULL, "")
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
df <- data.frame(id = 1, x = 1, y = 1)
res <- sfheaders:::rcpp_sfc_multipoint(df, c("x","y"), c("id"), "" )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
df <- data.frame(id = 1:2, x = 1:2, y = 1:2)
res <- sfheaders:::rcpp_sfc_multipoint(df, c("x","y"), c("id"), "" )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
df <- data.frame(id = 1, x = 1:2, y = 1:2)
res <- sfheaders:::rcpp_sfc_multipoint(df, c("x","y"), c("id"), "" )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
})
test_that("after refactoring issue14 I haven't lost anything",{
is_multipoint <- function(x) {
y <- sapply( x, function(y) is.matrix(unclass(y)))
z <- sapply( x, function(y) attr( y, "class")[2] == "MULTIPOINT")
return( all(y) & all(z))
}
v <- 1:3
res <- sfheaders:::rcpp_sfc_multipoint(v, NULL, NULL, "")
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( is_multipoint( res ) )
v <- c(1.2,2,3)
res <- sfheaders:::rcpp_sfc_multipoint(v, NULL, NULL, "")
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( is_multipoint( res ) )
m <- matrix(1:4, ncol = 2)
res <- sfheaders:::rcpp_sfc_multipoint(m, NULL, NULL, "")
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( is_multipoint( res ) )
m <- matrix(1:4, ncol = 2)
res <- sfheaders:::rcpp_sfc_multipoint(m, c(0L,1L), NULL, "")
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( is_multipoint( res ) )
m <- matrix(1:4, ncol = 2)
df <- as.data.frame( m )
res <- sfheaders:::rcpp_sfc_multipoint(df, NULL, NULL, "")
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( is_multipoint( res ) )
m <- matrix(1:4, ncol = 2)
df <- as.data.frame( m )
res <- sfheaders:::rcpp_sfc_multipoint(df, c(0L,1L), NULL, "")
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( is_multipoint( res ) )
m <- matrix(1:4, ncol = 2)
df <- as.data.frame( m )
res <- sfheaders:::rcpp_sfc_multipoint(df, c("V1","V2"), NULL, "")
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( is_multipoint( res ) )
m <- matrix(1L:4L, ncol = 2)
df <- as.data.frame( m )
m <- as.matrix( m )
res <- sfheaders:::rcpp_sfc_multipoint(m, c("V1","V2"), NULL, "")
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( is_multipoint( res ) )
m <- matrix(c(1.2,2,3,4), ncol = 2)
df <- as.data.frame( m )
m <- as.matrix( m )
res <- sfheaders:::rcpp_sfc_multipoint(m, c("V1","V2"), NULL, "")
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( is_multipoint( res ) )
m <- matrix(1:8, ncol = 2)
m <- cbind(m, c(1,1,2,2))
res <- sfheaders:::rcpp_sfc_multipoint(m, NULL, 2L, "")
expect_true( is_multipoint( res ) )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
m <- matrix(1L:8L, ncol = 2)
m <- cbind(m, c(1L,1L,2L,2L))
res <- sfheaders:::rcpp_sfc_multipoint(m, c(0L,1L), 2L, "")
expect_true( is_multipoint( res ) )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
m <- matrix(1:8, ncol = 2)
m <- cbind(m, c(1,1,2,2))
res <- sfheaders:::rcpp_sfc_multipoint(m, c(0L,1L), 2L, "")
expect_true( is_multipoint( res ) )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
m <- matrix(1:8, ncol = 2)
m <- cbind(m, c(1,1,2,2))
df <- as.data.frame( m )
res <- sfheaders:::rcpp_sfc_multipoint(df, NULL, 2L, "")
expect_true( is_multipoint( res ) )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
m <- matrix(1:8, ncol = 2)
m <- cbind(m, c(1,1,2,2))
df <- as.data.frame( m )
res <- sfheaders:::rcpp_sfc_multipoint(df, c(0L,1L), 2L, "")
expect_true( is_multipoint( res ) )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
m <- matrix(1:8, ncol = 2)
m <- cbind(m, c(1,1,2,2))
df <- as.data.frame( m )
res <- sfheaders:::rcpp_sfc_multipoint(df, c("V1","V2"), c("V3"), "")
expect_true( is_multipoint( res ) )
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
m <- matrix(1:4, ncol = 2)
expect_error( sfheaders:::rcpp_sfc_multipoint(m, NULL, 0L, ""), "sfheaders - can't work out the dimension")
})
test_that("data.frame with non-numeric id columns work",{
is_multipoint <- function(x) {
y <- sapply( x, function(y) is.matrix(unclass(y)))
z <- sapply( x, function(y) attr( y, "class")[2] == "MULTIPOINT")
return( all(y) & all(z))
}
df <- data.frame(
p_id = letters[c(1,1,1,1,2,2,2,2)]
, l_id = c(1,1,1,1,1,1,1,1)
, x = c(1,2,3,1,4,5,6,4)
, y = c(1,2,3,1,4,5,6,4)
, stringsAsFactors = F
)
res <- sfheaders::sfc_multipoint(
obj = df
, x = "x"
, y = "y"
, multipoint_id = "p_id"
)
expect_equal( attr( res, "class" ), c("sfc_MULTIPOINT", "sfc") )
expect_true( is_multipoint( res ) )
})
test_that("vectorised version works",{
is_multipoint <- function(x) {
y <- sapply( x, function(y) is.matrix(unclass(y)))
z <- sapply( x, function(y) attr( y, "class")[2] == "MULTIPOINT")
return( all(y) & all(z))
}
m1 <- matrix(1:12, ncol = 3)
m2 <- matrix(1:12, ncol = 3)
lst <- list( m1, m2 )
res <- sfheaders:::rcpp_sfc_multipoints( lst, "" )
expect_true( all( sapply( res, is_multipoint ) ) )
}) |
timestamp <- Sys.time()
library(caret)
library(plyr)
library(recipes)
library(dplyr)
model <- "bayesglm"
set.seed(2)
training <- twoClassSim(50, linearVars = 2)
testing <- twoClassSim(500, linearVars = 2)
trainX <- training[, -ncol(training)]
trainY <- training$Class
rec_cls <- recipe(Class ~ ., data = training) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors())
cctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all",
classProbs = TRUE,
summaryFunction = twoClassSummary)
cctrl2 <- trainControl(method = "LOOCV",
classProbs = TRUE, summaryFunction = twoClassSummary)
cctrl3 <- trainControl(method = "none",
classProbs = TRUE, summaryFunction = twoClassSummary)
set.seed(849)
test_class_cv_model <- train(trainX, trainY,
method = "bayesglm",
trControl = cctrl1,
metric = "ROC",
preProc = c("center", "scale"))
set.seed(849)
test_class_cv_form <- train(Class ~ ., data = training,
method = "bayesglm",
trControl = cctrl1,
metric = "ROC",
preProc = c("center", "scale"))
test_class_pred <- predict(test_class_cv_model, testing[, -ncol(testing)])
test_class_prob <- predict(test_class_cv_model, testing[, -ncol(testing)], type = "prob")
test_class_pred_form <- predict(test_class_cv_form, testing[, -ncol(testing)])
test_class_prob_form <- predict(test_class_cv_form, testing[, -ncol(testing)], type = "prob")
set.seed(849)
test_class_loo_model <- train(trainX, trainY,
method = "bayesglm",
trControl = cctrl2,
metric = "ROC",
preProc = c("center", "scale"))
set.seed(849)
test_class_none_model <- train(trainX, trainY,
method = "bayesglm",
trControl = cctrl3,
tuneLength = 1,
metric = "ROC",
preProc = c("center", "scale"))
test_class_none_pred <- predict(test_class_none_model, testing[, -ncol(testing)])
test_class_none_prob <- predict(test_class_none_model, testing[, -ncol(testing)], type = "prob")
set.seed(849)
test_class_rec <- train(x = rec_cls,
data = training,
method = "bayesglm",
trControl = cctrl1,
metric = "ROC")
if(
!isTRUE(
all.equal(test_class_cv_model$results,
test_class_rec$results))
)
stop("CV weights not giving the same results")
test_class_imp_rec <- varImp(test_class_rec)
test_class_pred_rec <- predict(test_class_rec, testing[, -ncol(testing)])
test_class_prob_rec <- predict(test_class_rec, testing[, -ncol(testing)],
type = "prob")
test_levels <- levels(test_class_cv_model)
if(!all(levels(trainY) %in% test_levels))
cat("wrong levels")
library(caret)
library(plyr)
library(recipes)
library(dplyr)
set.seed(1)
training <- SLC14_1(30)
testing <- SLC14_1(100)
trainX <- training[, -ncol(training)]
trainY <- training$y
rec_reg <- recipe(y ~ ., data = training) %>%
step_center(all_predictors()) %>%
step_scale(all_predictors())
testX <- trainX[, -ncol(training)]
testY <- trainX$y
rctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all")
rctrl2 <- trainControl(method = "LOOCV")
rctrl3 <- trainControl(method = "none")
set.seed(849)
test_reg_cv_model <- train(trainX, trainY,
method = "bayesglm",
trControl = rctrl1,
preProc = c("center", "scale"))
test_reg_pred <- predict(test_reg_cv_model, testX)
set.seed(849)
test_reg_cv_form <- train(y ~ ., data = training,
method = "bayesglm",
trControl = rctrl1,
preProc = c("center", "scale"))
test_reg_pred_form <- predict(test_reg_cv_form, testX)
set.seed(849)
test_reg_loo_model <- train(trainX, trainY,
method = "bayesglm",
trControl = rctrl2,
preProc = c("center", "scale"))
set.seed(849)
test_reg_none_model <- train(trainX, trainY,
method = "bayesglm",
trControl = rctrl3,
tuneLength = 1,
preProc = c("center", "scale"))
test_reg_none_pred <- predict(test_reg_none_model, testX)
set.seed(849)
test_reg_rec <- train(x = rec_reg,
data = training,
method = "bayesglm",
trControl = rctrl1)
if(
!isTRUE(
all.equal(test_reg_cv_model$results,
test_reg_rec$results))
)
stop("CV weights not giving the same results")
test_reg_imp_rec <- varImp(test_reg_rec)
test_reg_pred_rec <- predict(test_reg_rec, testing[, -ncol(testing)])
tests <- grep("test_", ls(), fixed = TRUE, value = TRUE)
sInfo <- sessionInfo()
timestamp_end <- Sys.time()
save(list = c(tests, "sInfo", "timestamp", "timestamp_end"),
file = file.path(getwd(), paste(model, ".RData", sep = "")))
if(!interactive())
q("no") |
print.phenologyout <- function(x, ...) {
object <- x
cat(paste("Number of timeseries: ", nrow(object$synthesis), "\n", sep=""))
for (i in 1:nrow(object$synthesis)) {
nmser <- object$synthesis[i, "series"]
tx <- paste0("Timeseries: ", nmser)
cat(paste0(rep("-", nchar(tx)), collapse=""), "\n")
cat(tx, "\n")
cat(paste0(rep("-", nchar(tx)), collapse=""), "\n")
cat("Total estimate not taking into account the observations: ")
cat(paste0("Mean=", object$synthesis[nmser, "without_obs_Mean"], "\n"))
cat("Total estimate taking into account the observations: ")
cat(paste0("Mean=", object$synthesis[nmser, "with_obs_Mean"], "\n"))
if (!is.na(object$synthesis[nmser, "without_obs_Median_ML"])) {
cat("Total estimate not taking into account the observations ML-based:\n")
cat(paste0("Low=", object$synthesis[nmser, "without_obs_Low_ML"],
" Median=", object$synthesis[nmser, "without_obs_Median_ML"],
" High=", object$synthesis[nmser, "without_obs_High_ML"], "\n"))
cat("Total estimate taking into account the observations ML-based:\n")
cat(paste0("Low=", object$synthesis[nmser, "with_obs_Low_ML"],
" Median=", object$synthesis[nmser, "with_obs_Median_ML"],
" High=", object$synthesis[nmser, "with_obs_High_ML"], "\n"))
}
if (!is.na(object$synthesis[nmser, "without_obs_Median_MCMC"])) {
cat("Total estimate not taking into account the observations MCMC-based:\n")
cat(paste0("Low=", object$synthesis[nmser, "without_obs_Low_MCMC"],
" Median=", object$synthesis[nmser, "without_obs_Median_MCMC"],
" High=", object$synthesis[nmser, "without_obs_High_MCMC"], "\n"))
cat("Total estimate taking into account the observations MCMC-based:\n")
cat(paste0("Low=", object$synthesis[nmser, "with_obs_Low_MCMC"],
" Median=", object$synthesis[nmser, "with_obs_Median_MCMC"],
" High=", object$synthesis[nmser, "with_obs_High_MCMC"], "\n"))
}
}
} |
lsh <- function(bucket_size=NA,
hash_width=NA,
input_model=NA,
k=NA,
num_probes=NA,
projections=NA,
query=NA,
reference=NA,
second_hash_size=NA,
seed=NA,
tables=NA,
true_neighbors=NA,
verbose=FALSE) {
IO_RestoreSettings("K-Approximate-Nearest-Neighbor Search with LSH")
if (!identical(bucket_size, NA)) {
IO_SetParamInt("bucket_size", bucket_size)
}
if (!identical(hash_width, NA)) {
IO_SetParamDouble("hash_width", hash_width)
}
if (!identical(input_model, NA)) {
IO_SetParamLSHSearchPtr("input_model", input_model)
}
if (!identical(k, NA)) {
IO_SetParamInt("k", k)
}
if (!identical(num_probes, NA)) {
IO_SetParamInt("num_probes", num_probes)
}
if (!identical(projections, NA)) {
IO_SetParamInt("projections", projections)
}
if (!identical(query, NA)) {
IO_SetParamMat("query", to_matrix(query))
}
if (!identical(reference, NA)) {
IO_SetParamMat("reference", to_matrix(reference))
}
if (!identical(second_hash_size, NA)) {
IO_SetParamInt("second_hash_size", second_hash_size)
}
if (!identical(seed, NA)) {
IO_SetParamInt("seed", seed)
}
if (!identical(tables, NA)) {
IO_SetParamInt("tables", tables)
}
if (!identical(true_neighbors, NA)) {
IO_SetParamUMat("true_neighbors", to_matrix(true_neighbors))
}
if (verbose) {
IO_EnableVerbose()
} else {
IO_DisableVerbose()
}
IO_SetPassed("distances")
IO_SetPassed("neighbors")
IO_SetPassed("output_model")
lsh_mlpackMain()
output_model <- IO_GetParamLSHSearchPtr("output_model")
attr(output_model, "type") <- "LSHSearch"
out <- list(
"distances" = IO_GetParamMat("distances"),
"neighbors" = IO_GetParamUMat("neighbors"),
"output_model" = output_model
)
IO_ClearSettings()
return(out)
} |
html_cat <- function(msg, id = paste0("ID", stats::runif(1))) {
htmltools::div(class = "caption",
id = id,
style = "padding-top: 8px; padding-bottom: 8px; color:
text-align: left;", msg) %>%
as.character() %>%
cat()
}
break_page <- function() {
htmltools::HTML(
paste0(htmltools::div(class = 'page-break-after', ""))
)
}
break_page_asis <- function() {
htmltools::HTML(
cat(
paste0(
htmltools::div(class = 'page-break-after', "")
)
)
)
}
break_line_asis <- function(n = 1) {
for (i in seq(n)) {
htmltools::br() %>%
as.character() %>%
cat()
}
}
print_tab <- function(tab, n_rows = 25, add_row = 3, caption = "",
full_width = TRUE, font_size = 14, align = NULL,
col.names = NA, digits = 2, big_mark = TRUE) {
N <- nrow(tab)
n_pages <- 1
if (N > n_rows) {
n_pages <- n_pages + ceiling((N - n_rows) / (n_rows + add_row))
}
for (i in seq(n_pages)) {
if (i == 1) {
idx <- intersect(seq(N), seq(n_rows))
} else {
idx <- (max(idx) + 1):(max(idx) + n_rows + add_row) %>%
pmin(N) %>%
unique()
}
if (is.null(align)) {
if (big_mark) {
ktab <- knitr::kable(tab[idx, ], digits = digits, format = "html",
caption = ifelse(i > 1, paste(caption, "(continued)"), caption),
col.names = col.names, format.args = list(big.mark = ","))
} else {
ktab <- knitr::kable(tab[idx, ], digits = digits, format = "html",
caption = ifelse(i > 1, paste(caption, "(continued)"), caption),
col.names = col.names)
}
} else {
if (big_mark) {
ktab <- knitr::kable(tab[idx, ], digits = digits, format = "html", align = align,
caption = ifelse(i > 1, paste(caption, "(continued)"), caption),
col.names = col.names, format.args = list(big.mark = ","))
} else {
ktab <- knitr::kable(tab[idx, ], digits = digits, format = "html", align = align,
caption = ifelse(i > 1, paste(caption, "(continued)"), caption),
col.names = col.names)
}
}
ktab %>%
kableExtra::kable_styling(full_width = full_width, font_size = font_size,
position = "left") %>%
gsub("font-size: initial !important;",
"font-size: 12px !important;", .) %>%
cat()
if (n_pages == 1 | i < n_pages) {
break_page_asis()
}
}
}
col2hex <- function(col) {
if (length(grep("^
return(col)
}
mat_rgb <- col %>%
tolower() %>%
grDevices::col2rgb() %>%
t() / 255
grDevices::rgb(mat_rgb)
}
fixed_text <- function(x, max_width = 30) {
ifelse(nchar(x) > max_width, paste(strtrim(x, max_width - 4), "..."), x)
} |
context("basic RDD functions")
sc <- sparkR.init()
nums <- 1:10
rdd <- parallelize(sc, nums, 2L)
intPairs <- list(list(1L, -1), list(2L, 100), list(2L, 1), list(1L, 200))
intRdd <- parallelize(sc, intPairs, 2L)
test_that("get number of partitions in RDD", {
expect_equal(numPartitions(rdd), 2)
expect_equal(numPartitions(intRdd), 2)
})
test_that("first on RDD", {
expect_true(first(rdd) == 1)
newrdd <- lapply(rdd, function(x) x + 1)
expect_true(first(newrdd) == 2)
})
test_that("count and length on RDD", {
expect_equal(count(rdd), 10)
expect_equal(length(rdd), 10)
})
test_that("count by values and keys", {
mods <- lapply(rdd, function(x) { x %% 3 })
actual <- countByValue(mods)
expected <- list(list(0, 3L), list(1, 4L), list(2, 3L))
expect_equal(sortKeyValueList(actual), sortKeyValueList(expected))
actual <- countByKey(intRdd)
expected <- list(list(2L, 2L), list(1L, 2L))
expect_equal(sortKeyValueList(actual), sortKeyValueList(expected))
})
test_that("lapply on RDD", {
multiples <- lapply(rdd, function(x) { 2 * x })
actual <- collect(multiples)
expect_equal(actual, as.list(nums * 2))
})
test_that("lapplyPartition on RDD", {
sums <- lapplyPartition(rdd, function(part) { sum(unlist(part)) })
actual <- collect(sums)
expect_equal(actual, list(15, 40))
})
test_that("mapPartitions on RDD", {
sums <- mapPartitions(rdd, function(part) { sum(unlist(part)) })
actual <- collect(sums)
expect_equal(actual, list(15, 40))
})
test_that("flatMap() on RDDs", {
flat <- flatMap(intRdd, function(x) { list(x, x) })
actual <- collect(flat)
expect_equal(actual, rep(intPairs, each=2))
})
test_that("filterRDD on RDD", {
filtered.rdd <- filterRDD(rdd, function(x) { x %% 2 == 0 })
actual <- collect(filtered.rdd)
expect_equal(actual, list(2, 4, 6, 8, 10))
filtered.rdd <- Filter(function(x) { x[[2]] < 0 }, intRdd)
actual <- collect(filtered.rdd)
expect_equal(actual, list(list(1L, -1)))
filtered.rdd <- filterRDD(rdd, function(x) { x > 10 })
actual <- collect(filtered.rdd)
expect_equal(actual, list())
})
test_that("lookup on RDD", {
vals <- lookup(intRdd, 1L)
expect_equal(vals, list(-1, 200))
vals <- lookup(intRdd, 3L)
expect_equal(vals, list())
})
test_that("several transformations on RDD (a benchmark on PipelinedRDD)", {
rdd2 <- rdd
for (i in 1:12)
rdd2 <- lapplyPartitionsWithIndex(
rdd2, function(split, part) {
part <- as.list(unlist(part) * split + i)
})
rdd2 <- lapply(rdd2, function(x) x + x)
actual <- collect(rdd2)
expected <- list(24, 24, 24, 24, 24,
168, 170, 172, 174, 176)
expect_equal(actual, expected)
})
test_that("PipelinedRDD support actions: cache(), persist(), unpersist(), checkpoint()", {
rdd2 <- rdd
rdd2 <- lapplyPartitionsWithIndex(
rdd2,
function(split, part) {
part <- as.list(unlist(part) * split)
})
cache(rdd2)
expect_true(rdd2@env$isCached)
rdd2 <- lapply(rdd2, function(x) x)
expect_false(rdd2@env$isCached)
unpersist(rdd2)
expect_false(rdd2@env$isCached)
persist(rdd2, "MEMORY_AND_DISK")
expect_true(rdd2@env$isCached)
rdd2 <- lapply(rdd2, function(x) x)
expect_false(rdd2@env$isCached)
unpersist(rdd2)
expect_false(rdd2@env$isCached)
setCheckpointDir(sc, "checkpoints")
checkpoint(rdd2)
expect_true(rdd2@env$isCheckpointed)
rdd2 <- lapply(rdd2, function(x) x)
expect_false(rdd2@env$isCached)
expect_false(rdd2@env$isCheckpointed)
collect(rdd2)
unlink("checkpoints")
})
test_that("reduce on RDD", {
sum <- reduce(rdd, "+")
expect_equal(sum, 55)
sumInline <- reduce(rdd, function(x, y) { x + y })
expect_equal(sumInline, 55)
})
test_that("lapply with dependency", {
fa <- 5
multiples <- lapply(rdd, function(x) { fa * x })
actual <- collect(multiples)
expect_equal(actual, as.list(nums * 5))
})
test_that("lapplyPartitionsWithIndex on RDDs", {
func <- function(splitIndex, part) { list(splitIndex, Reduce("+", part)) }
actual <- collect(lapplyPartitionsWithIndex(rdd, func), flatten = FALSE)
expect_equal(actual, list(list(0, 15), list(1, 40)))
pairsRDD <- parallelize(sc, list(list(1, 2), list(3, 4), list(4, 8)), 1L)
partitionByParity <- function(key) { if (key %% 2 == 1) 0 else 1 }
mkTup <- function(splitIndex, part) { list(splitIndex, part) }
actual <- collect(lapplyPartitionsWithIndex(
partitionBy(pairsRDD, 2L, partitionByParity),
mkTup),
FALSE)
expect_equal(actual, list(list(0, list(list(1, 2), list(3, 4))),
list(1, list(list(4, 8)))))
})
test_that("sampleRDD() on RDDs", {
expect_equal(unlist(collect(sampleRDD(rdd, FALSE, 1.0, 2014L))), nums)
})
test_that("takeSample() on RDDs", {
data <- parallelize(sc, 1:100, 2L)
for (seed in 4:5) {
s <- takeSample(data, FALSE, 20L, seed)
expect_equal(length(s), 20L)
expect_equal(length(unique(s)), 20L)
for (elem in s) {
expect_true(elem >= 1 && elem <= 100)
}
}
for (seed in 4:5) {
s <- takeSample(data, FALSE, 200L, seed)
expect_equal(length(s), 100L)
expect_equal(length(unique(s)), 100L)
for (elem in s) {
expect_true(elem >= 1 && elem <= 100)
}
}
for (seed in 4:5) {
s <- takeSample(data, TRUE, 20L, seed)
expect_equal(length(s), 20L)
for (elem in s) {
expect_true(elem >= 1 && elem <= 100)
}
}
for (seed in 4:5) {
s <- takeSample(data, TRUE, 100L, seed)
expect_equal(length(s), 100L)
expect_true(length(unique(s)) < 100L)
}
for (seed in 4:5) {
s <- takeSample(data, TRUE, 200L, seed)
expect_equal(length(s), 200L)
expect_true(length(unique(s)) < 100L)
}
})
test_that("mapValues() on pairwise RDDs", {
multiples <- mapValues(intRdd, function(x) { x * 2 })
actual <- collect(multiples)
expected <- lapply(intPairs, function(x) {
list(x[[1]], x[[2]] * 2)
})
expect_equal(sortKeyValueList(actual), sortKeyValueList(expected))
})
test_that("flatMapValues() on pairwise RDDs", {
l <- parallelize(sc, list(list(1, c(1,2)), list(2, c(3,4))))
actual <- collect(flatMapValues(l, function(x) { x }))
expect_equal(actual, list(list(1,1), list(1,2), list(2,3), list(2,4)))
actual <- collect(flatMapValues(intRdd, function(x) { x:(x + 1) }))
expect_equal(actual,
list(list(1L, -1), list(1L, 0), list(2L, 100), list(2L, 101),
list(2L, 1), list(2L, 2), list(1L, 200), list(1L, 201)))
})
test_that("reduceByKeyLocally() on PairwiseRDDs", {
pairs <- parallelize(sc, list(list(1, 2), list(1.1, 3), list(1, 4)), 2L)
actual <- reduceByKeyLocally(pairs, "+")
expect_equal(sortKeyValueList(actual),
sortKeyValueList(list(list(1, 6), list(1.1, 3))))
pairs <- parallelize(sc, list(list("abc", 1.2), list(1.1, 0), list("abc", 1.3),
list("bb", 5)), 4L)
actual <- reduceByKeyLocally(pairs, "+")
expect_equal(sortKeyValueList(actual),
sortKeyValueList(list(list("abc", 2.5), list(1.1, 0), list("bb", 5))))
})
test_that("distinct() on RDDs", {
nums.rep2 <- rep(1:10, 2)
rdd.rep2 <- parallelize(sc, nums.rep2, 2L)
uniques <- distinct(rdd.rep2)
actual <- sort(unlist(collect(uniques)))
expect_equal(actual, nums)
})
test_that("maximum() on RDDs", {
max <- maximum(rdd)
expect_equal(max, 10)
})
test_that("minimum() on RDDs", {
min <- minimum(rdd)
expect_equal(min, 1)
})
test_that("sumRDD() on RDDs", {
sum <- sumRDD(rdd)
expect_equal(sum, 55)
})
test_that("keyBy on RDDs", {
func <- function(x) { x*x }
keys <- keyBy(rdd, func)
actual <- collect(keys)
expect_equal(actual, lapply(nums, function(x) { list(func(x), x) }))
})
test_that("repartition/coalesce on RDDs", {
rdd <- parallelize(sc, 1:20, 4L)
r1 <- repartition(rdd, 2)
expect_equal(numPartitions(r1), 2L)
count <- length(collectPartition(r1, 0L))
expect_true(count >= 8 && count <= 12)
r2 <- repartition(rdd, 6)
expect_equal(numPartitions(r2), 6L)
count <- length(collectPartition(r2, 0L))
expect_true(count >=0 && count <= 4)
r3 <- coalesce(rdd, 1)
expect_equal(numPartitions(r3), 1L)
count <- length(collectPartition(r3, 0L))
expect_equal(count, 20)
})
test_that("sortBy() on RDDs", {
sortedRdd <- sortBy(rdd, function(x) { x * x }, ascending = FALSE)
actual <- collect(sortedRdd)
expect_equal(actual, as.list(sort(nums, decreasing = TRUE)))
rdd2 <- parallelize(sc, sort(nums, decreasing = TRUE), 2L)
sortedRdd2 <- sortBy(rdd2, function(x) { x * x })
actual <- collect(sortedRdd2)
expect_equal(actual, as.list(nums))
})
test_that("takeOrdered() on RDDs", {
l <- list(10, 1, 2, 9, 3, 4, 5, 6, 7)
rdd <- parallelize(sc, l)
actual <- takeOrdered(rdd, 6L)
expect_equal(actual, as.list(sort(unlist(l)))[1:6])
l <- list("e", "d", "c", "d", "a")
rdd <- parallelize(sc, l)
actual <- takeOrdered(rdd, 3L)
expect_equal(actual, as.list(sort(unlist(l)))[1:3])
})
test_that("top() on RDDs", {
l <- list(10, 1, 2, 9, 3, 4, 5, 6, 7)
rdd <- parallelize(sc, l)
actual <- top(rdd, 6L)
expect_equal(actual, as.list(sort(unlist(l), decreasing = TRUE))[1:6])
l <- list("e", "d", "c", "d", "a")
rdd <- parallelize(sc, l)
actual <- top(rdd, 3L)
expect_equal(actual, as.list(sort(unlist(l), decreasing = TRUE))[1:3])
})
test_that("fold() on RDDs", {
actual <- fold(rdd, 0, "+")
expect_equal(actual, Reduce("+", nums, 0))
rdd <- parallelize(sc, list())
actual <- fold(rdd, 0, "+")
expect_equal(actual, 0)
})
test_that("aggregateRDD() on RDDs", {
rdd <- parallelize(sc, list(1, 2, 3, 4))
zeroValue <- list(0, 0)
seqOp <- function(x, y) { list(x[[1]] + y, x[[2]] + 1) }
combOp <- function(x, y) { list(x[[1]] + y[[1]], x[[2]] + y[[2]]) }
actual <- aggregateRDD(rdd, zeroValue, seqOp, combOp)
expect_equal(actual, list(10, 4))
rdd <- parallelize(sc, list())
actual <- aggregateRDD(rdd, zeroValue, seqOp, combOp)
expect_equal(actual, list(0, 0))
})
test_that("zipWithUniqueId() on RDDs", {
rdd <- parallelize(sc, list("a", "b", "c", "d", "e"), 3L)
actual <- collect(zipWithUniqueId(rdd))
expected <- list(list("a", 0), list("b", 3), list("c", 1),
list("d", 4), list("e", 2))
expect_equal(actual, expected)
rdd <- parallelize(sc, list("a", "b", "c", "d", "e"), 1L)
actual <- collect(zipWithUniqueId(rdd))
expected <- list(list("a", 0), list("b", 1), list("c", 2),
list("d", 3), list("e", 4))
expect_equal(actual, expected)
})
test_that("zipWithIndex() on RDDs", {
rdd <- parallelize(sc, list("a", "b", "c", "d", "e"), 3L)
actual <- collect(zipWithIndex(rdd))
expected <- list(list("a", 0), list("b", 1), list("c", 2),
list("d", 3), list("e", 4))
expect_equal(actual, expected)
rdd <- parallelize(sc, list("a", "b", "c", "d", "e"), 1L)
actual <- collect(zipWithIndex(rdd))
expected <- list(list("a", 0), list("b", 1), list("c", 2),
list("d", 3), list("e", 4))
expect_equal(actual, expected)
})
test_that("glom() on RDD", {
rdd <- parallelize(sc, as.list(1:4), 2L)
actual <- collect(glom(rdd))
expect_equal(actual, list(list(1, 2), list(3, 4)))
})
test_that("keys() on RDDs", {
keys <- keys(intRdd)
actual <- collect(keys)
expect_equal(actual, lapply(intPairs, function(x) { x[[1]] }))
})
test_that("values() on RDDs", {
values <- values(intRdd)
actual <- collect(values)
expect_equal(actual, lapply(intPairs, function(x) { x[[2]] }))
})
test_that("pipeRDD() on RDDs", {
actual <- collect(pipeRDD(rdd, "more"))
expected <- as.list(as.character(1:10))
expect_equal(actual, expected)
trailed.rdd <- parallelize(sc, c("1", "", "2\n", "3\n\r\n"))
actual <- collect(pipeRDD(trailed.rdd, "sort"))
expected <- list("", "1", "2", "3")
expect_equal(actual, expected)
rev.nums <- 9:0
rev.rdd <- parallelize(sc, rev.nums, 2L)
actual <- collect(pipeRDD(rev.rdd, "sort"))
expected <- as.list(as.character(c(5:9, 0:4)))
expect_equal(actual, expected)
})
test_that("zipRDD() on RDDs", {
rdd1 <- parallelize(sc, 0:4)
rdd2 <- parallelize(sc, 1000:1004)
actual <- collect(zipRDD(rdd1, rdd2))
expect_equal(actual,
list(list(0, 1000), list(1, 1001), list(2, 1002), list(3, 1003), list(4, 1004)))
mockFile = c("Spark is pretty.", "Spark is awesome.")
fileName <- tempfile(pattern="spark-test", fileext=".tmp")
writeLines(mockFile, fileName)
rdd <- textFile(sc, fileName)
actual <- collect(zipRDD(rdd, rdd))
expected <- lapply(mockFile, function(x) { list(x ,x) })
expect_equal(actual, expected)
rdd1 <- parallelize(sc, 0:1)
actual <- collect(zipRDD(rdd1, rdd))
expected <- lapply(0:1, function(x) { list(x, mockFile[x + 1]) })
expect_equal(actual, expected)
rdd1 <- map(rdd, function(x) { x })
actual <- collect(zipRDD(rdd, rdd1))
expected <- lapply(mockFile, function(x) { list(x, x) })
expect_equal(actual, expected)
unlink(fileName)
})
test_that("cartesian() on RDDs", {
rdd <- parallelize(sc, 1:3)
actual <- collect(cartesian(rdd, rdd))
expect_equal(sortKeyValueList(actual),
list(
list(1, 1), list(1, 2), list(1, 3),
list(2, 1), list(2, 2), list(2, 3),
list(3, 1), list(3, 2), list(3, 3)))
emptyRdd <- parallelize(sc, list())
actual <- collect(cartesian(rdd, emptyRdd))
expect_equal(actual, list())
mockFile = c("Spark is pretty.", "Spark is awesome.")
fileName <- tempfile(pattern="spark-test", fileext=".tmp")
writeLines(mockFile, fileName)
rdd <- textFile(sc, fileName)
actual <- collect(cartesian(rdd, rdd))
expected <- list(
list("Spark is awesome.", "Spark is pretty."),
list("Spark is awesome.", "Spark is awesome."),
list("Spark is pretty.", "Spark is pretty."),
list("Spark is pretty.", "Spark is awesome."))
expect_equal(sortKeyValueList(actual), expected)
rdd1 <- parallelize(sc, 0:1)
actual <- collect(cartesian(rdd1, rdd))
expect_equal(sortKeyValueList(actual),
list(
list(0, "Spark is pretty."),
list(0, "Spark is awesome."),
list(1, "Spark is pretty."),
list(1, "Spark is awesome.")))
rdd1 <- map(rdd, function(x) { x })
actual <- collect(cartesian(rdd, rdd1))
expect_equal(sortKeyValueList(actual), expected)
unlink(fileName)
})
test_that("subtract() on RDDs", {
l <- list(1, 1, 2, 2, 3, 4)
rdd1 <- parallelize(sc, l)
actual <- collect(subtract(rdd1, rdd1))
expect_equal(actual, list())
rdd2 <- parallelize(sc, list())
actual <- collect(subtract(rdd1, rdd2))
expect_equal(as.list(sort(as.vector(actual, mode="integer"))),
l)
rdd2 <- parallelize(sc, list(2, 4))
actual <- collect(subtract(rdd1, rdd2))
expect_equal(as.list(sort(as.vector(actual, mode="integer"))),
list(1, 1, 3))
l <- list("a", "a", "b", "b", "c", "d")
rdd1 <- parallelize(sc, l)
rdd2 <- parallelize(sc, list("b", "d"))
actual <- collect(subtract(rdd1, rdd2))
expect_equal(as.list(sort(as.vector(actual, mode="character"))),
list("a", "a", "c"))
})
test_that("subtractByKey() on pairwise RDDs", {
l <- list(list("a", 1), list("b", 4),
list("b", 5), list("a", 2))
rdd1 <- parallelize(sc, l)
actual <- collect(subtractByKey(rdd1, rdd1))
expect_equal(actual, list())
rdd2 <- parallelize(sc, list())
actual <- collect(subtractByKey(rdd1, rdd2))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(l))
rdd2 <- parallelize(sc, list(list("a", 3), list("c", 1)))
actual <- collect(subtractByKey(rdd1, rdd2))
expect_equal(actual,
list(list("b", 4), list("b", 5)))
l <- list(list(1, 1), list(2, 4),
list(2, 5), list(1, 2))
rdd1 <- parallelize(sc, l)
rdd2 <- parallelize(sc, list(list(1, 3), list(3, 1)))
actual <- collect(subtractByKey(rdd1, rdd2))
expect_equal(actual,
list(list(2, 4), list(2, 5)))
})
test_that("intersection() on RDDs", {
actual <- collect(intersection(rdd, rdd))
expect_equal(sort(as.integer(actual)), nums)
emptyRdd <- parallelize(sc, list())
actual <- collect(intersection(rdd, emptyRdd))
expect_equal(actual, list())
rdd1 <- parallelize(sc, list(1, 10, 2, 3, 4, 5))
rdd2 <- parallelize(sc, list(1, 6, 2, 3, 7, 8))
actual <- collect(intersection(rdd1, rdd2))
expect_equal(sort(as.integer(actual)), 1:3)
})
test_that("join() on pairwise RDDs", {
rdd1 <- parallelize(sc, list(list(1,1), list(2,4)))
rdd2 <- parallelize(sc, list(list(1,2), list(1,3)))
actual <- collect(join(rdd1, rdd2, 2L))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(list(list(1, list(1, 2)), list(1, list(1, 3)))))
rdd1 <- parallelize(sc, list(list("a",1), list("b",4)))
rdd2 <- parallelize(sc, list(list("a",2), list("a",3)))
actual <- collect(join(rdd1, rdd2, 2L))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(list(list("a", list(1, 2)), list("a", list(1, 3)))))
rdd1 <- parallelize(sc, list(list(1,1), list(2,2)))
rdd2 <- parallelize(sc, list(list(3,3), list(4,4)))
actual <- collect(join(rdd1, rdd2, 2L))
expect_equal(actual, list())
rdd1 <- parallelize(sc, list(list("a",1), list("b",2)))
rdd2 <- parallelize(sc, list(list("c",3), list("d",4)))
actual <- collect(join(rdd1, rdd2, 2L))
expect_equal(actual, list())
})
test_that("leftOuterJoin() on pairwise RDDs", {
rdd1 <- parallelize(sc, list(list(1,1), list(2,4)))
rdd2 <- parallelize(sc, list(list(1,2), list(1,3)))
actual <- collect(leftOuterJoin(rdd1, rdd2, 2L))
expected <- list(list(1, list(1, 2)), list(1, list(1, 3)), list(2, list(4, NULL)))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(expected))
rdd1 <- parallelize(sc, list(list("a",1), list("b",4)))
rdd2 <- parallelize(sc, list(list("a",2), list("a",3)))
actual <- collect(leftOuterJoin(rdd1, rdd2, 2L))
expected <- list(list("b", list(4, NULL)), list("a", list(1, 2)), list("a", list(1, 3)))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(expected))
rdd1 <- parallelize(sc, list(list(1,1), list(2,2)))
rdd2 <- parallelize(sc, list(list(3,3), list(4,4)))
actual <- collect(leftOuterJoin(rdd1, rdd2, 2L))
expected <- list(list(1, list(1, NULL)), list(2, list(2, NULL)))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(expected))
rdd1 <- parallelize(sc, list(list("a",1), list("b",2)))
rdd2 <- parallelize(sc, list(list("c",3), list("d",4)))
actual <- collect(leftOuterJoin(rdd1, rdd2, 2L))
expected <- list(list("b", list(2, NULL)), list("a", list(1, NULL)))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(expected))
})
test_that("rightOuterJoin() on pairwise RDDs", {
rdd1 <- parallelize(sc, list(list(1,2), list(1,3)))
rdd2 <- parallelize(sc, list(list(1,1), list(2,4)))
actual <- collect(rightOuterJoin(rdd1, rdd2, 2L))
expected <- list(list(1, list(2, 1)), list(1, list(3, 1)), list(2, list(NULL, 4)))
expect_equal(sortKeyValueList(actual), sortKeyValueList(expected))
rdd1 <- parallelize(sc, list(list("a",2), list("a",3)))
rdd2 <- parallelize(sc, list(list("a",1), list("b",4)))
actual <- collect(rightOuterJoin(rdd1, rdd2, 2L))
expected <- list(list("b", list(NULL, 4)), list("a", list(2, 1)), list("a", list(3, 1)))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(expected))
rdd1 <- parallelize(sc, list(list(1,1), list(2,2)))
rdd2 <- parallelize(sc, list(list(3,3), list(4,4)))
actual <- collect(rightOuterJoin(rdd1, rdd2, 2L))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(list(list(3, list(NULL, 3)), list(4, list(NULL, 4)))))
rdd1 <- parallelize(sc, list(list("a",1), list("b",2)))
rdd2 <- parallelize(sc, list(list("c",3), list("d",4)))
actual <- collect(rightOuterJoin(rdd1, rdd2, 2L))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(list(list("d", list(NULL, 4)), list("c", list(NULL, 3)))))
})
test_that("fullOuterJoin() on pairwise RDDs", {
rdd1 <- parallelize(sc, list(list(1,2), list(1,3), list(3,3)))
rdd2 <- parallelize(sc, list(list(1,1), list(2,4)))
actual <- collect(fullOuterJoin(rdd1, rdd2, 2L))
expected <- list(list(1, list(2, 1)), list(1, list(3, 1)), list(2, list(NULL, 4)), list(3, list(3, NULL)))
expect_equal(sortKeyValueList(actual), sortKeyValueList(expected))
rdd1 <- parallelize(sc, list(list("a",2), list("a",3), list("c", 1)))
rdd2 <- parallelize(sc, list(list("a",1), list("b",4)))
actual <- collect(fullOuterJoin(rdd1, rdd2, 2L))
expected <- list(list("b", list(NULL, 4)), list("a", list(2, 1)), list("a", list(3, 1)), list("c", list(1, NULL)))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(expected))
rdd1 <- parallelize(sc, list(list(1,1), list(2,2)))
rdd2 <- parallelize(sc, list(list(3,3), list(4,4)))
actual <- collect(fullOuterJoin(rdd1, rdd2, 2L))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(list(list(1, list(1, NULL)), list(2, list(2, NULL)), list(3, list(NULL, 3)), list(4, list(NULL, 4)))))
rdd1 <- parallelize(sc, list(list("a",1), list("b",2)))
rdd2 <- parallelize(sc, list(list("c",3), list("d",4)))
actual <- collect(fullOuterJoin(rdd1, rdd2, 2L))
expect_equal(sortKeyValueList(actual),
sortKeyValueList(list(list("a", list(1, NULL)), list("b", list(2, NULL)), list("d", list(NULL, 4)), list("c", list(NULL, 3)))))
})
test_that("sortByKey() on pairwise RDDs", {
numPairsRdd <- map(rdd, function(x) { list (x, x) })
sortedRdd <- sortByKey(numPairsRdd, ascending = FALSE)
actual <- collect(sortedRdd)
numPairs <- lapply(nums, function(x) { list (x, x) })
expect_equal(actual, sortKeyValueList(numPairs, decreasing = TRUE))
rdd2 <- parallelize(sc, sort(nums, decreasing = TRUE), 2L)
numPairsRdd2 <- map(rdd2, function(x) { list (x, x) })
sortedRdd2 <- sortByKey(numPairsRdd2)
actual <- collect(sortedRdd2)
expect_equal(actual, numPairs)
l <- list(list("a", 1), list("b", 2), list("1", 3), list("d", 4), list("2", 5))
rdd3 <- parallelize(sc, l, 2L)
sortedRdd3 <- sortByKey(rdd3)
actual <- collect(sortedRdd3)
expect_equal(actual, list(list("1", 3), list("2", 5), list("a", 1), list("b", 2), list("d", 4)))
rdd4 <- parallelize(sc, l, 1L)
sortedRdd4 <- sortByKey(rdd4)
actual <- collect(sortedRdd4)
expect_equal(actual, list(list("1", 3), list("2", 5), list("a", 1), list("b", 2), list("d", 4)))
rdd5 <- parallelize(sc, l, 2L)
sortedRdd5 <- sortByKey(rdd5, numPartitions = 1L)
actual <- collect(sortedRdd5)
expect_equal(actual, list(list("1", 3), list("2", 5), list("a", 1), list("b", 2), list("d", 4)))
l2 <- list(list("a", 1))
rdd6 <- parallelize(sc, l2, 2L)
sortedRdd6 <- sortByKey(rdd6)
actual <- collect(sortedRdd6)
expect_equal(actual, l2)
l3 <- list()
rdd7 <- parallelize(sc, l3, 2L)
sortedRdd7 <- sortByKey(rdd7)
actual <- collect(sortedRdd7)
expect_equal(actual, l3)
})
test_that("collectAsMap() on a pairwise RDD", {
rdd <- parallelize(sc, list(list(1, 2), list(3, 4)))
vals <- collectAsMap(rdd)
expect_equal(vals, list(`1` = 2, `3` = 4))
rdd <- parallelize(sc, list(list("a", 1), list("b", 2)))
vals <- collectAsMap(rdd)
expect_equal(vals, list(a = 1, b = 2))
rdd <- parallelize(sc, list(list(1.1, 2.2), list(1.2, 2.4)))
vals <- collectAsMap(rdd)
expect_equal(vals, list(`1.1` = 2.2, `1.2` = 2.4))
rdd <- parallelize(sc, list(list(1, "a"), list(2, "b")))
vals <- collectAsMap(rdd)
expect_equal(vals, list(`1` = "a", `2` = "b"))
})
test_that("sampleByKey() on pairwise RDDs", {
rdd <- parallelize(sc, 1:2000)
pairsRDD <- lapply(rdd, function(x) { if (x %% 2 == 0) list("a", x) else list("b", x) })
fractions <- list(a = 0.2, b = 0.1)
sample <- sampleByKey(pairsRDD, FALSE, fractions, 1618L)
expect_equal(100 < length(lookup(sample, "a")) && 300 > length(lookup(sample, "a")), TRUE)
expect_equal(50 < length(lookup(sample, "b")) && 150 > length(lookup(sample, "b")), TRUE)
expect_equal(lookup(sample, "a")[which.min(lookup(sample, "a"))] >= 0, TRUE)
expect_equal(lookup(sample, "a")[which.max(lookup(sample, "a"))] <= 2000, TRUE)
expect_equal(lookup(sample, "b")[which.min(lookup(sample, "b"))] >= 0, TRUE)
expect_equal(lookup(sample, "b")[which.max(lookup(sample, "b"))] <= 2000, TRUE)
rdd <- parallelize(sc, 1:2000)
pairsRDD <- lapply(rdd, function(x) { if (x %% 2 == 0) list(2, x) else list(3, x) })
fractions <- list(`2` = 0.2, `3` = 0.1)
sample <- sampleByKey(pairsRDD, TRUE, fractions, 1618L)
expect_equal(100 < length(lookup(sample, 2)) && 300 > length(lookup(sample, 2)), TRUE)
expect_equal(50 < length(lookup(sample, 3)) && 150 > length(lookup(sample, 3)), TRUE)
expect_equal(lookup(sample, 2)[which.min(lookup(sample, 2))] >= 0, TRUE)
expect_equal(lookup(sample, 2)[which.max(lookup(sample, 2))] <= 2000, TRUE)
expect_equal(lookup(sample, 3)[which.min(lookup(sample, 3))] >= 0, TRUE)
expect_equal(lookup(sample, 3)[which.max(lookup(sample, 3))] <= 2000, TRUE)
}) |
getProducts = function(value, position = NULL){
values.list = value[[1]]
is.factor = value[[2]]
n = length(values.list)
result = 1
results = c()
for(i in 1:n){
variable = values.list[[i]]
if(is.factor[i]){
variable.length = length(variable[,1])
}else{
variable.length = length(variable)
}
if(!is.null(position) && i == position && !is.factor[i]){
result = result * (variable.length-1)
}else if(!is.null(position) && i == position & is.factor[i]){
gauss = (variable.length)*(variable.length-1)/2
result = result * gauss
}
else{
result = result * variable.length
}
results = c(results,result)
}
return(results)
} |
formulaUnimva <- function( formula, var.subset, split.x=FALSE,
intercept=0, allow.noresp=FALSE ){
if(intercept==0){
formula <- update(formula, ~ . + 0)
} else {
formula <- update(formula, ~ . + 1)
}
if(split.x){
foo.new <- extend.x.formula(formula, return.interaction=FALSE,
extend.term=TRUE)
} else foo.new <- formula
terms.foo <- terms(foo.new)
term.labels <- attr(terms.foo,"term.labels")
formulasUni.mvad <- list()
resp <- attr(terms.foo,"response")
if(resp==1) {
respname <- foo.new[[2]]
datay <- eval(respname)
respname <- deparse(respname, width.cutoff =500)
} else {
if(!allow.noresp) stop("no formulaUnimva's can be build: formula has no response")
formulasUni.mvad[[1]] <- foo.new
return(formulasUni.mvad)
}
labelsyp <- labels(datay)[[2]]
p <- NCOL(datay)
if(p==0) stop("no formulaUnimva's can be build: formula has no response")
if(missing(var.subset)) {
var.subset <- 1:p
} else {
if(is.logical(var.subset) & any(!is.na(var.subset)))
var.subset <- which(var.subset[!is.na(var.subset)])
if((max (var.subset)>p) | (p<1)) stop("'var.subset' is not valid")
}
if(p > 1) {
j=1
for (i in var.subset){
tmp <- paste("(",respname,")[,",i,"]", sep="")
fooi <- as.formula(paste(tmp,'~',c(terms.foo[[3]])))
if(intercept==0) {
formulasUni.mvad[[j]] <- update(fooi, ~ . + 0)
} else {
formulasUni.mvad[[j]] <- update(fooi, ~ . + 1)
}
j=1+j
}
} else formulasUni.mvad[[1]] <- foo.new
names(formulasUni.mvad)<- labelsyp[var.subset]
class(formulasUni.mvad) <- c("formulaUnimva", "list")
return( formulasUni.mvad)
}
is.formulaUnimva <- function(x) {
inherits(x, "formulaUnimva")
}
setMethod("show", "formulaUnimva",
function(object) {
obj<-object@g
show(obj)
}) |
gf_point(distance ~ stretch, data = elasticband) %>%
gf_lm() %>%
gf_ribbon(lwr + upr ~ stretch, fill = "skyblue",
data = cbind(elasticband, predict(eband.model, interval = "prediction"))) %>%
gf_ribbon(lwr + upr ~ stretch,
data = cbind(elasticband, predict(eband.model, interval = "confidence")))
gf_point(distance ~ stretch, data = elasticband) %>%
gf_lm(interval = "prediction", fill = "skyblue") %>%
gf_lm(interval = "confidence") |
`SIRbd` <-
function (t, y, p)
{
S <- y[1]
I <- y[2]
R <- y[3]
with(as.list(p), {
dS.dt <- b * (S + I + R) - B * I * S - m * S
dI.dt <- B * I * S - g * I - m * I
dR.dt <- g * I - m * R
return(list(c(dS.dt, dI.dt, dR.dt)))
})
} |
library(EnvStats)
stats <- summaryStats(Iron.ppm ~ Well, data = EPA.09.Ex.13.1.iron.df,
combine.groups = FALSE, digits = 2, stats.in.rows = TRUE)
stats
windows()
boxplot(Iron.ppm ~ Well, data = EPA.09.Ex.13.1.iron.df,
ylim = c(0, 250), ylab = "Iron (ppm)",
main = "Figure 13-1. Side-by-Side Iron Boxplots")
points(1:ncol(stats), stats["Mean", ], pch = 5)
windows()
stripChart(Iron.ppm ~ Well, data = EPA.09.Ex.13.1.iron.df,
show.ci = F, location.scale.text.cex = 0.7,
ylim = c(0, 250), ylab = "Iron (ppm)")
mtext("Alternative Figure 13-1. Side-by-Side Iron Strip Plots",
cex = 1.25, font = 2, line = 2.5)
windows()
stripChart(Iron.ppm ~ Well, data = EPA.09.Ex.13.1.iron.df,
location.scale.text.cex = 0.7,
ylim = c(0, 300), ylab = "Iron (ppm)")
mtext(paste("Alternative Figure 13-1. Side-by-Side Iron Strip Plots",
"with 95% Confidence Intervals", sep = "\n"),
cex = 1.25, font = 2, line = 1.75)
stats <- summaryStats(log(Iron.ppm) ~ Well, data = EPA.09.Ex.13.1.iron.df,
combine.groups = F, digits = 2, stats.in.rows = TRUE)
stats
windows()
boxplot(log(Iron.ppm) ~ Well, data = EPA.09.Ex.13.1.iron.df,
ylim = c(3, 6), ylab = "Log Iron log(ppm)",
main = "Figure 13-2. Side-by-Side Log(Iron) Boxplots")
points(1:ncol(stats), stats["Mean",], pch = 5)
windows()
stripChart(log(Iron.ppm) ~ Well, data = EPA.09.Ex.13.1.iron.df,
show.ci = F, location.scale.text.cex = 0.7,
ylim = c(3, 6), ylab = "Log Iron log(ppm)")
mtext("Alternative Figure 13-2. Side-by-Side Log(Iron) Strip Plots",
cex = 1.15, font = 2, line = 2.5)
windows()
stripChart(log(Iron.ppm) ~ Well, data = EPA.09.Ex.13.1.iron.df,
location.scale.text.cex = 0.7,
ylim = c(3, 6), ylab = "Log(Iron) log(ppm)")
mtext(paste("Alternative Figure 13-2. Side-by-Side Log(Iron) Strip Plots",
"with 95% Confidence Intervals", sep = "\n"), line = 1.75,
cex = 1.15, font = 2)
rm(stats)
stats <- summaryStats(log(Iron.ppm) ~ Well, data = EPA.09.Ex.13.1.iron.df,
digits = 3, combine.groups = TRUE, stats.in.rows = TRUE)
stats
fit <- aov(log(Iron.ppm) ~ Well, data = EPA.09.Ex.13.1.iron.df)
anova(fit)
rm(fit, stats)
stats <- summaryStats(log(Iron.ppm) ~ Well,
data = EPA.09.Ex.13.1.iron.df,
combine.groups = F, digits = 3,
stats.in.rows = TRUE)
UPLs <- sapply(
with(EPA.09.Ex.13.1.iron.df, split(Iron.ppm, Well)),
function(x, pi.type, conf.level) {
predIntLnorm(x, pi.type = "upper",
conf.level = 0.99)$interval$limits["UPL"]
})
rbind(stats[c("Mean", "SD", "N"), ], "99% PL" = round(UPLs, 1))
fit <- aov(log(Iron.ppm) ~ Well, data = EPA.09.Ex.13.1.iron.df)
anova.fit <- anova(fit)
anova.fit
RMSE <- anova.fit["Residuals", "Mean Sq"]
Df <- anova.fit["Residuals", "Df"]
t.crit <- qt(0.99, df = Df)
UPLs <- sapply(
with(EPA.09.Ex.13.1.iron.df, split(log(Iron.ppm), Well)),
function(x, t.crit, RMSE) {
exp(mean(x) + t.crit * sqrt(RMSE * (1 + 1/length(x))))
},
t.crit = t.crit, RMSE = RMSE)
rbind(stats[c("Mean", "SD", "N"), ], "99% PL" = round(UPLs, 1))
rm(stats, UPLs, fit, anova.fit, RMSE, Df, t.crit) |
chart_PerfSummary <- function(ret = ret, geometric = TRUE, main = "Cumulative Returns and Drawdowns", linesize = 1.25) {
ret <- xts::xts(ret[, -1], order.by = ret[, 1])
if (geometric == TRUE) {
cumret <- cumprod(ret + 1)
} else {
cumret <- cumsum(ret)
}
Drawdowns <- PerformanceAnalytics::Drawdowns(ret, geometric)
cumret <- dplyr::as_tibble(cumret) %>%
dplyr::mutate(date = zoo::index(cumret)) %>%
tidyr::gather(series, value, -date)
cumret$variable <- "CumRet"
drawd <- dplyr::as_tibble(Drawdowns) %>%
dplyr::mutate(date = zoo::index(Drawdowns)) %>%
tidyr::gather(series, value, -date)
drawd$variable <- "Dranwdowns"
df <- rbind(drawd, cumret)
df %>% ggplot2::ggplot(ggplot2::aes(x = date, y = value, color = series)) +
ggplot2::facet_grid(variable ~ ., scales = "free", space = "free") +
ggplot2::geom_line() +
ggplot2::ggtitle(main) +
ggplot2::xlab("") +
ggplot2::ylab("")
} |
runChain = function(chainNumber, variables, data, specs, options, chain, message){
temp = lapply(X = variables, FUN = function(x) {x$loadPointers(); return(NULL)})
temp = lapply(X = variables, FUN = function(x) {x$initializeParameters(); return(NULL)})
data = initUnits(data = data, variables = variables, specs = specs)
totalIter = (chainNumber-1)*specs$iterationsPerChain
lastIterNum = 0
iter = 1
for (iter in 1:(options$nBurnin+options$nSampled*options$nThin)){
totalIter = totalIter+1
if (iter %% options$nThin == 0 & iter > options$nBurnin){
lastIterNum = lastIterNum+1
iterNum = lastIterNum
} else {
iterNum = NA
}
eval(message)
data = sampleUnits(data = data, variables = variables, specs = specs)
temp = lapply(X = variables, FUN = function(x, data) {x$sampleParameters(data = data); return(NULL)}, data = data)
if (!is.na(iterNum)) {
chain[iterNum,] = unlist(lapply(X = specs$parameters$paramLocation, FUN = function(x){return(eval(parse(text=x)))}))
}
}
cat("\r")
return(chain)
} |
id.garch <- function(x, max.iter = 5, crit = 0.001, restriction_matrix = NULL, start_iter = 50){
u <- Tob <- p <- k <- residY <- coef_x <- yOut <- type <- y <- A_hat <- NULL
get_var_objects(x)
if(inherits(x,"varest")){
if(!is.null(x$restrictions)){
stop("id.garch currently supports identification of unrestricted VARs only. Consider using id.dc, id.cvm or id.chol instead.")
}
}
restriction_matrix = get_restriction_matrix(restriction_matrix, k)
restrictions <- length(restriction_matrix[!is.na(restriction_matrix)])
sigg <- crossprod(u)/(Tob - 1 - k * p)
eigVectors <- eigen(sigg)$vectors
eigValues <- diag(eigen(sigg)$values)
eigVectors <- eigVectors[,rev(1:ncol(eigVectors))]
eigValues <- diag(rev(eigen(sigg)$values))
CC <- eigVectors %*% sqrt(eigValues) %*% t(eigVectors)
B0 <- solve(solve(sqrt(eigValues)) %*% t(eigVectors))
ste <- solve(sqrt(eigValues)) %*% t(eigVectors) %*% t(u)
parameter_consider <- GarchStart(k, ste, Tob, start_iter)
parameter_ini_univ <- parameter_consider[[which.min(sapply(parameter_consider, '[[', 'Likelihoods'))]]$ParameterE
Sigma_e_univ <- parameter_consider[[which.min(sapply(parameter_consider, '[[', 'Likelihoods'))]]$ConVariance
if(restrictions > 0){
resultUnrestricted <- identifyGARCH(B0 = B0, k = k, Tob = Tob, restriction_matrix = NULL, Sigma_e_univ = Sigma_e_univ, coef_x = coef_x, x = x,
parameter_ini_univ = parameter_ini_univ, max.iter = max.iter, crit = crit, u = u, p = p, yOut = yOut, type = type)
result <- identifyGARCH(B0 = B0, k = k, Tob = Tob, restriction_matrix = restriction_matrix, Sigma_e_univ = Sigma_e_univ, coef_x = coef_x, x = x,
parameter_ini_univ = parameter_ini_univ, max.iter = max.iter, crit = crit, u = u, p = p, yOut = yOut, type = type)
lRatioTestStatistic = 2 * (resultUnrestricted$Lik - result$Lik)
pValue = round(1 - pchisq(lRatioTestStatistic, result$restrictions), 4)
lRatioTest <- data.frame(testStatistic = lRatioTestStatistic, p.value = pValue)
rownames(lRatioTest) <- ""
colnames(lRatioTest) <- c("Test statistic", "p-value")
result$lRatioTest <- lRatioTest
}else{
restriction_matrix <- NULL
result <- identifyGARCH(B0 = B0, k = k, Tob = Tob, restriction_matrix = restriction_matrix, Sigma_e_univ = Sigma_e_univ, coef_x = coef_x, x = x,
parameter_ini_univ = parameter_ini_univ, max.iter = max.iter, crit = crit, u = u, p = p, yOut = yOut, type = type)
}
if (type == 'const' | type == 'trend') {
result$AIC <- (-2) * result$Lik + 2*(k + p * k^2 + 2*k + k^2)
} else if (type == 'none') {
result$AIC <- (-2) * result$Lik + 2*(p * k^2 + 2*k + k^2)
} else if (type == 'both') {
result$AIC <- (-2) * result$Lik + 2*(2*k + p * k^2 + 2*k + k^2)
}
result$VAR <- x
result$CC <- CC
result$I_test <- garch_ident_test(result)
class(result) <- "svars"
return(result)
} |
Inv_sinh_CI_OR_2x2 <- function(n, alpha=0.05, printresults=TRUE) {
estimate <- n[1, 1] * n[2, 2] / (n[1, 2] * n[2, 1])
z <- qnorm(1-alpha / 2, 0, 1)
tmp <- asinh(0.5 * z*sqrt(1 / n[1, 1] + 1 / n[1, 2] + 1 / n[2, 1] + 1 / n[2, 2]))
L <- exp(log(estimate) - 2 * tmp)
U <- exp(log(estimate) + 2 * tmp)
if (n[1, 1] == 0) {U = (z ^ 2) * n[2, 2] / (n[1, 2] * n[2, 1])}
if (n[2, 2] == 0) {U = n[1, 1] * (z ^ 2) / (n[1, 2] * n[2, 1])}
if (n[1, 1] == 0 && n[2, 2] == 0) {
U = ((z ^ 2) * (z ^ 2)) / (n[1, 2] * n[2, 1])
}
if (n[1, 2] == 0) {L = n[1, 1] * n[2, 2] / ((z ^ 2) * n[2, 1])}
if (n[2, 1] == 0) {L = n[1, 1] * n[2, 2] / (n[1, 2] * (z ^ 2))}
if (n[1, 2] == 0 && n[2, 1] == 0) {
L = n[1, 1] * n[2, 2] / ((z ^ 2) * (z ^ 2))
}
if (printresults) {
print(
sprintf(
'The inverse sinh CI: estimate = %6.4f (%g%% CI %6.4f to %6.4f)',
estimate, 100 * (1 - alpha), L, U
),
quote=FALSE
)
}
res <- data.frame(lower=L, upper=U, estimate=estimate)
invisible(res)
} |
plot_DetPlot <- function(
object,
signal.integral.min,
signal.integral.max,
background.integral.min,
background.integral.max,
method = "shift",
signal_integral.seq = NULL,
analyse_function = "analyse_SAR.CWOSL",
analyse_function.control = list(),
n.channels = NULL,
show_ShineDownCurve = TRUE,
respect_RC.Status = FALSE,
verbose = TRUE,
...
) {
object.structure <- structure_RLum(object)
if(is.null(n.channels)){
n.channels <- ceiling(
(background.integral.min - 1 - signal.integral.max) / (signal.integral.max - signal.integral.min)
)
}
analyse_function.settings <- list(
sequence.structure = c("TL", "IR50", "pIRIR225"),
dose.points = NULL,
mtext.outer = "",
fit.method = "EXP",
fit.force_through_origin = FALSE,
plot = FALSE,
plot.single = FALSE
)
analyse_function.settings <- modifyList(analyse_function.settings, analyse_function.control)
if (is.null(signal_integral.seq)) {
if(signal.integral.min == signal.integral.max){
signal_integral.seq <- signal.integral.min:(background.integral.min - 1)
}else{
signal_integral.seq <-
seq(signal.integral.min,
background.integral.min - 1,
by = signal.integral.max - signal.integral.min)
}
}
if(analyse_function == "analyse_SAR.CWOSL"){
results <- merge_RLum(lapply(1:n.channels, function(x){
analyse_SAR.CWOSL(
object = object,
signal.integral.min = if(method == "shift"){signal_integral.seq[x]}else{signal_integral.seq[1]},
signal.integral.max = signal_integral.seq[x+1],
background.integral.min = background.integral.min,
background.integral.max = background.integral.max,
dose.points = analyse_function.settings$dose.points,
mtext.outer = analyse_function.settings$mtext.outer,
fit.force_through_origin = analyse_function.settings$fit.force_through_origin,
fit.method = analyse_function.settings$fit.method,
plot = analyse_function.settings$plot,
plot.single = analyse_function.settings$plot.single,
verbose = verbose
)
}))
}
else if(analyse_function == "analyse_pIRIRSequence"){
results <- merge_RLum(lapply(1:n.channels, function(x){
analyse_pIRIRSequence(
object = object,
signal.integral.min = if(method == "shift"){signal_integral.seq[x]}else{signal_integral.seq[1]},
signal.integral.max = signal_integral.seq[x+1],
background.integral.min = background.integral.min,
background.integral.max = background.integral.max,
dose.points = analyse_function.settings$dose.points,
mtext.outer = analyse_function.settings$mtext.outer,
plot = analyse_function.settings$plot,
plot.single = analyse_function.settings$plot.single,
sequence.structure = analyse_function.settings$sequence.structure,
verbose = verbose
)
}))
}
else{
stop("[plot_DetPlot()] 'analyse_function' unknown!", call. = FALSE)
}
if(analyse_function == "analyse_pIRIRSequence"){
pIRIR_signals <- unique(get_RLum(results)$Signal)
}else{
pIRIR_signals <- NA
}
df_final <- lapply(1:length(pIRIR_signals), function(i){
df <- get_RLum(results)
if(!is.na(pIRIR_signals[1])){
df <- df[df$Signal == pIRIR_signals[i],]
}
OSL_curve <-
as(get_RLum(object, recordType = "SL")[[i]], "matrix")
OSL_curve <- OSL_curve[1:signal_integral.seq[n.channels + 1],]
m <-
((min(df$De - df$De.Error, na.rm = TRUE)) - (max(df$De, na.rm = TRUE) + max(df$De.Error, na.rm = TRUE))) / (min(OSL_curve[, 2], na.rm = TRUE) - max(OSL_curve[, 2], na.rm = TRUE))
n <- (max(df$De, na.rm = TRUE) + max(df$De.Error, na.rm = TRUE)) - m * max(OSL_curve[, 2])
OSL_curve[, 2] <- m * OSL_curve[, 2] + n
rm(n, m)
plot.settings <- list(
ylim = c(min(df$De - df$De.Error, na.rm = TRUE),
(max(df$De, na.rm = TRUE) + max(df$De.Error, na.rm = TRUE))),
xlim = c(min(OSL_curve[, 1]), max(OSL_curve[, 1])),
ylab = expression(paste(D[e] / s, " and ", L[n]/(a.u.))),
xlab = "Stimulation time [s]",
main = "De(t) plot",
pch = 1,
mtext = ifelse(is.na(pIRIR_signals[1]), "", paste0("Signal: ",pIRIR_signals[i])),
cex = 1,
legend = TRUE,
legend.text = c(expression(L[n]-signal), expression(D[e])),
legend.pos = "bottomleft"
)
plot.settings <- modifyList(plot.settings, list(...))
par(cex = plot.settings$cex)
plot(
NA,
NA,
xlim = plot.settings$xlim,
ylim = plot.settings$ylim,
xlab = plot.settings$xlab,
ylab = plot.settings$ylab,
main = plot.settings$main
)
if (show_ShineDownCurve) {
lines(OSL_curve, type = "b", pch = 20)
}
df_x <-
OSL_curve[seq(signal.integral.max, signal_integral.seq[n.channels+1], length.out = nrow(df)),1]
df_final <- cbind(df, df_x)
if (respect_RC.Status) {
df_final <- df_final[df_final$RC.Status != "FAILED", ]
}
points(df_final[, c("df_x", "De")], pch = plot.settings$pch)
segments(
x0 = df_final$df_x,
y0 = df_final$De + df_final$De.Error,
x1 = df_final$df_x,
y1 = df_final$De - df_final$De.Error
)
mtext(side = 3, plot.settings$mtext)
if(plot.settings$legend){
legend(
plot.settings$legend.pos,
legend = plot.settings$legend.text,
pch = c(plot.settings$pch, 20),
bty = "n"
)
}
return(df_final)
})
return(set_RLum(
class = "RLum.Results",
data = list(
De.values = as.data.frame(data.table::rbindlist(df_final)),
signal_integral.seq = signal_integral.seq
),
info = list(call = sys.call())
))
} |
mr_scatter_plot <- function(mr_results, dat)
{
requireNamespace("ggplot2", quietly=TRUE)
requireNamespace("plyr", quietly=TRUE)
mrres <- plyr::dlply(dat, c("id.exposure", "id.outcome"), function(d)
{
d <- plyr::mutate(d)
if(nrow(d) < 2 | sum(d$mr_keep) == 0)
{
return(blank_plot("Insufficient number of SNPs"))
}
d <- subset(d, mr_keep)
index <- d$beta.exposure < 0
d$beta.exposure[index] <- d$beta.exposure[index] * -1
d$beta.outcome[index] <- d$beta.outcome[index] * -1
mrres <- subset(mr_results, id.exposure == d$id.exposure[1] & id.outcome == d$id.outcome[1])
mrres$a <- 0
if("MR Egger" %in% mrres$method)
{
temp <- mr_egger_regression(d$beta.exposure, d$beta.outcome, d$se.exposure, d$se.outcome, default_parameters())
mrres$a[mrres$method == "MR Egger"] <- temp$b_i
}
if("MR Egger (bootstrap)" %in% mrres$method)
{
temp <- mr_egger_regression_bootstrap(d$beta.exposure, d$beta.outcome, d$se.exposure, d$se.outcome, default_parameters())
mrres$a[mrres$method == "MR Egger (bootstrap)"] <- temp$b_i
}
ggplot2::ggplot(data=d, ggplot2::aes(x=beta.exposure, y=beta.outcome)) +
ggplot2::geom_errorbar(ggplot2::aes(ymin=beta.outcome-se.outcome, ymax=beta.outcome+se.outcome), colour="grey", width=0) +
ggplot2::geom_errorbarh(ggplot2::aes(xmin=beta.exposure-se.exposure, xmax=beta.exposure+se.exposure), colour="grey", height=0) +
ggplot2::geom_point() +
ggplot2::geom_abline(data=mrres, ggplot2::aes(intercept=a, slope=b, colour=method), show.legend=TRUE) +
ggplot2::scale_colour_manual(values=c("
ggplot2::labs(colour="MR Test", x=paste("SNP effect on", d$exposure[1]), y=paste("SNP effect on", d$outcome[1])) +
ggplot2::theme(legend.position="top", legend.direction="vertical") +
ggplot2::guides(colour=ggplot2::guide_legend(ncol=2))
})
mrres
}
blank_plot <- function(message)
{
requireNamespace("ggplot2", quietly=TRUE)
ggplot2::ggplot(data.frame(a=0,b=0,n=message)) + ggplot2::geom_text(ggplot2::aes(x=a,y=b,label=n)) + ggplot2::labs(x=NULL,y=NULL) + ggplot2::theme(axis.text=ggplot2::element_blank(), axis.ticks=ggplot2::element_blank())
} |
had_miyamoto<-function(n){
p<-n/4
m<- (p-1)/2
A<-miyamotoC(n)
if(is.null(A)){
return(NULL)
}
C1<- -A[2:(m+1),2:(m+1)]
C2<- A[2:(m+1),(m+2):p]
C2t<- C2
C4<- A[(m+2):p,(m+2):p]
K<-Hadamard_Matrix(p-1)
if(is.matrix(K)==F){
return(NULL)
}
K1<- K[1:((p-1)/2),1:((p-1)/2)]
K2<- K[1:((p-1)/2),(((p-1)/2)+1):(p-1)]
K3<- -K[(((p-1)/2)+1):(p-1), 1:((p-1)/2)]
K4<- K[(((p-1)/2)+1):(p-1), (((p-1)/2)+1):(p-1)]
zero <-matrix(rep(0,m*m),nrow=m,ncol=m)
u1<- cbind(C1,C2,zero,zero)
u2<-cbind(-C2t,C4,zero,zero)
u3<-cbind(zero,zero,C1,C2)
u4<- cbind(zero,zero,-C2t,C4)
U<-rbind(u1,u2,u3,u4)
I<-diag(m)
v1<- cbind(I,zero,K1,K2)
v2<- cbind(zero,I,K3,-K4)
v3<- cbind(-t(K1),-t(K3), I,zero)
v4<- cbind(-t(K2),t(K4),zero,I)
V<-rbind(v1,v2,v3,v4)
s1<- matrix(rep(1),nrow = 2,ncol = 2)
s2<- matrix(c(1,-1,-1,1),nrow = 2,ncol = 2)
T11<- (C1 %x% s1) + (I %x% s2)
T12<- (C2 %x% s1) + (zero %x% s2)
T13<- (zero %x% s1) + ( K1 %x% s2)
T14<- (zero %x% s1) + ( K2 %x% s2)
T21<- (t(C2) %x% s1) + ( zero %x% s2)
T22<- (C4 %x% s1) + ( I %x% s2)
T23<- (zero %x% s1) + ( K3 %x% s2)
T24<- (zero %x% s1) + ( K4 %x% s2)
T31<- (zero %x% s1) + ( t(K1) %x% s2)
T32<-(zero %x% s1) + ( t(K3) %x% s2)
T33<-(C1 %x% s1) + ( I %x% s2)
T34<- (C2 %x% s1) + ( zero %x% s2)
T41<- (zero %x% s1) + ( t(K2) %x% s2)
T42<- (zero %x% s1) + ( t(K4) %x% s2)
T43<- (t(C2) %x% s1) + ( zero %x% s2)
T44<-(C4 %x% s1) + ( I %x% s2)
et<-matrix(rep(1),ncol = 2*m,nrow = 1)
e<-matrix(rep(1),ncol = 1,nrow = 2*m)
a1<-cbind(1,et)
a12<- cbind(e,T12)
X12<-rbind(a1,a12)
a13<- cbind(e,T13)
X13<-rbind(a1,a13)
a14<- cbind(e,T14)
X14<-rbind(a1,a14)
a21<- cbind(e,T21)
X21<-rbind(a1,a21)
a23<- cbind(e,T23)
X23<-rbind(a1,a23)
a24<- cbind(e,T24)
X24<-rbind(a1,a24)
a31<- cbind(e,T31)
X31<-rbind(a1,a31)
a32<- cbind(e,T32)
X32<-rbind(a1,a32)
a34<- cbind(e,T34)
X34<-rbind(a1,a34)
a41<- cbind(e,T41)
X41<-rbind(a1,a41)
a42<- cbind(e,T42)
X42<-rbind(a1,a42)
a43<- cbind(e,T43)
X43<-rbind(a1,a43)
b1<- cbind(1,-et)
b11<- cbind(-e,T11)
X11<-rbind(b1,b11)
b22<- cbind(-e,T22)
X22<-rbind(b1,b22)
b33<- cbind(-e,T33)
X33<-rbind(b1,b33)
b44<- cbind(-e,T44)
X44<-rbind(b1,b44)
h1<- cbind(X11,X12,X13,X14)
h2<- cbind(-X21,X22,X23,-X24)
h3<- cbind(-X31,-X32,X33,X34)
h4<- cbind(-X41,X42,-X43,X44)
H<-rbind(h1,h2,h3,h4)
return(H)
} |
cwt_wst <-
function(signal,
dt = 1,
scales = NULL,
powerscales = TRUE,
wname = c("MORLET", "DOG", "PAUL", "HAAR", "HAAR2"),
wparam = NULL,
waverad = NULL,
border_effects = c("BE", "PER", "SYM"),
makefigure = TRUE,
time_values = NULL,
energy_density = FALSE,
figureperiod = TRUE,
xlab = "Time",
ylab = NULL,
main = NULL,
zlim = NULL
) {
wname <- toupper(wname)
wname <- match.arg(wname)
if (is.null(waverad)) {
if ((wname == "MORLET") || (wname == "DOG")) {
waverad <- sqrt(2)
} else if (wname == "PAUL") {
waverad <- 1 / sqrt(2)
} else {
waverad <- 0.5
}
}
border_effects <- toupper(border_effects)
border_effects <- match.arg(border_effects)
nt <- length(signal)
fourierfactor <- fourier_factor(wname = wname, wparam = wparam)
if (is.null(scales)) {
scmin <- 2 / fourierfactor
scmax <- floor(nt / (2 * waverad))
if (powerscales) {
scales <- pow2scales(c(scmin, scmax, ceiling(256 / log2(scmax / scmin))))
} else {
scales <- seq(scmin, scmax, by = (scmax - scmin) / 256)
}
scalesdt <- scales * dt
} else {
if (powerscales && length(scales) == 3) {
scales <- pow2scales(scales)
} else {
if (is.unsorted(scales)) {
warning("Scales were not sorted.")
scales <- sort(scales)
}
aux <- diff(log2(scales))
if (powerscales && ((max(aux) - min(aux)) / max(aux) > 0.05)) {
warning("Scales seem like they are not power 2 scales. Powerscales set to FALSE.")
powerscales <- FALSE
}
}
scalesdt <- scales
scales <- scales / dt
}
ns <- length(scales)
if (border_effects == "BE") {
nt_ini <- 1
nt_end <- nt
} else if (border_effects == "PER") {
ndatcat <- ceiling(ceiling(waverad * scales[ns]) / nt)
ntcat <- (ndatcat * 2 + 1) * nt
datcat <- numeric(ntcat)
for (itcat in 1:ntcat) {
datcat[itcat] = signal[itcat - floor((itcat - 1) / nt) * nt]
}
signal <- datcat
nt_ini <- ndatcat * nt + 1
nt_end <- nt_ini + nt - 1
} else if (border_effects == "SYM") {
ndatcat <- ceiling(ceiling(waverad * scales[ns]) / nt)
dat_sym <- signal
aux <- rev(signal)
for (icat in 1:ndatcat) {
dat_sym <- c(aux, dat_sym, aux)
aux <- rev(aux)
}
signal <- dat_sym
nt_ini <- ndatcat * nt + 1
nt_end <- nt_ini + nt - 1
}
nt <- length(signal)
coefs <- matrix(0, nrow = nt, ncol = ns)
if (wname == "HAAR") {
precision <- max(12, floor(log2(max(scales))) + 4)
step <- 2 ^ (-precision)
xval <- seq(from = 0, to = 1 + step, by = step)
xmax <- max(xval)
psi_integ <- xval * (xval < 1 / 2) + (1 - xval) * (xval >= 1 / 2)
for (k in 1:ns) {
a <- scales[k]
j <- 1 + floor((0:a * xmax) / (a * step))
if (length(j) == 1) {
j <- c(1, 1)
}
f <- rev(psi_integ[j])
coefs[, k] <- -sqrt(a) * core(diff(stats::convolve(signal, f, type = "open")), nt)
}
} else if (wname == "HAAR2") {
for (j in 1:ns) {
kmatrix <- matrix(0, nrow = nt, ncol = nt)
klen <- floor((scales[j] - 1) / 2)
kfrac <- (((scales[j] - 1) / 2) - klen)
for (i in 1:nt) {
kmin <- max(1, i - klen)
kmax <- min(nt, i + klen)
if (kmin <= (i - 1)) {
kmatrix[kmin:(i - 1), i] <- 1
}
if (kmin >= 2) {
kmatrix[kmin - 1, i] <- kfrac
}
if (kmax >= (i + 1)) {
kmatrix[(i + 1):kmax, i] <- -1
}
if (kmax <= (nt - 1)) {
kmatrix[kmax + 1, i] <- -kfrac
}
}
coefs[, j] <- signal %*% kmatrix / sqrt(scales[j])
}
} else {
f <- stats::fft(signal)
k <- 1:trunc(nt / 2)
k <- k * 2 * pi / nt
k <- c(0, k, -k[trunc((nt - 1) / 2):1])
n <- length(k)
if (wname == "MORLET") {
if (is.null(wparam)) {
wparam <- 6
}
expnt <- -(diag(x = scales, ncol = ns) %*% matrix(rep(k, ns), nrow = ns, byrow = T) - wparam) ^ 2 / 2
expnt <- sweep(expnt, MARGIN = 2, (k > 0), `*`)
Norm <- sqrt(scales * k[2]) *pi ^ (-.25) * sqrt(n)
daughter <- diag(x = Norm, ncol = ns) %*% exp(expnt)
daughter <- sweep(daughter, MARGIN = 2, (k > 0), `*`)
coefs <- coefs + 1i*coefs
} else if (wname == "PAUL") {
if (is.null(wparam)) {
wparam <- 4
}
coefs <- coefs + 1i*coefs
expnt <- -diag(x = scales, ncol = ns) %*% matrix(rep(k, ns), nrow = ns, byrow = T)
expnt <- sweep(expnt, MARGIN = 2, (k > 0), `*`)
Norm <- sqrt(scales * k[2]) * (2 ^ wparam / sqrt(wparam * prod(2:(2 * wparam - 1)))) * sqrt(n)
daughter <- diag(x = Norm, ncol = ns) %*% expnt ^ wparam * exp(expnt)
daughter <- sweep(daughter, MARGIN = 2, (k > 0), `*`)
coefs <- coefs + 1i*coefs
} else if (wname == "DOG") {
if (is.null(wparam)) {
wparam <- 2
}
preexpnt <- (diag(x = scales, ncol = ns) %*% matrix(rep(k, ns), nrow = ns, byrow = T))
expnt <- -preexpnt ^ 2 / 2
Norm <- sqrt(scales * k[2] / gamma(wparam + 0.5)) * sqrt(n)
daughter <- diag(x = -Norm * (1i ^ wparam), ncol = ns) %*% preexpnt ^ wparam * exp(expnt)
}
coefs <- stats::mvfft(t(sweep(daughter, MARGIN = 2, f, `*`)), inverse = TRUE) / length(f)
}
coefs <- coefs[nt_ini:nt_end, 1:ns] * sqrt(dt)
nt <- nt_end - nt_ini + 1
coi_maxscale <- numeric(nt)
for (i in 1:nt) {
coi_maxscale[i] <- dt * min(i - 1, nt - i) / waverad
}
if (makefigure) {
if (is.null(time_values)) {
X <- seq(0, (nt - 1) * dt, dt)
} else {
if (length(time_values) != nt) {
warning("Invalid length of time_values vector. Changing to default.")
X <- seq(0, (nt - 1) * dt, dt)
} else {
X <- time_values
}
}
ylab_aux <- ylab
if (figureperiod) {
Y <- fourierfactor * scalesdt
coi <- fourierfactor * coi_maxscale
if (is.null(ylab)) ylab <- "Period"
} else {
Y <- scalesdt
coi <- coi_maxscale
if (is.null(ylab)) ylab <- "Scale"
}
if (energy_density) {
Z <- t(t(abs(coefs) ^ 2) / scalesdt)
if (is.null(main)) main <- "Wavelet Power Spectrum / Scales"
} else {
Z <- abs(coefs) ^ 2
if (is.null(main)) main <- "Wavelet Power Spectrum"
}
if (ns > 1) {
wavPlot(
Z = Z,
X = X,
Y = Y,
Ylog = powerscales,
coi = coi,
Xname = xlab,
Yname = ylab,
Zname = main,
zlim = zlim
)
} else {
if (is.null(ylab_aux)) {
if (energy_density) {
ylab <- "Wavelet Power Spectrum / Scales"
} else {
ylab <- "Wavelet Power Spectrum"
}
}
plot(X, Z, type = "l", xlab = xlab, ylab = ylab, main = main, xaxt = "n")
axis(side = 1, at = X[1 + floor((0:8) * (nt - 1) / 8)])
abline(v = range(X[(coi > Y)]), lty = 2)
}
}
return(list(
coefs = coefs,
scales = scalesdt,
fourierfactor = fourierfactor,
coi_maxscale = coi_maxscale
))
}
core <- function(x, n) {
if (n > length(x)) {
stop("Error. The length of the vector x should be greater than n.")
}
if (n == length(x)) {
extracted <- x
} else {
if (length(x) %% 2 == 0){
center1 <- length(x) / 2
center2 <- length(x) / 2 + 1
if (n %% 2 == 1) {
n1 <- center1 - floor(n / 2)
n2 <- center2 + floor(n / 2) - 1
} else {
n1 <- center1 - (n / 2 - 1)
n2 <- center2 + (n / 2 - 1)
}
} else {
center <- floor(length(x) / 2) + 1
if (n %% 2 == 1) {
n1 <- center - floor(n / 2)
n2 <- center + floor(n / 2)
} else {
n1 <- center - n / 2
n2 <- center + (n / 2 - 1)
}
}
extracted <- x[n1:n2]
}
return(extracted)
} |
leafsfirst.complex<-function(dendat,f,complex,rho=0)
{
d<-dim(dendat)[2]
lkm<-dim(complex)[1]
lambdas<-matrix(0,lkm,1)
mids<-matrix(0,lkm,d)
for (i in 1:lkm){
vs<-complex[i,]
vals<-f[vs]
lambdas[i]<-min(vals)
mids[i,1]<-mean(dendat[vs,1])
mids[i,2]<-mean(dendat[vs,2])
}
pcfhigh<-mids+rho/2
pcfdown<-mids-rho/2
distat<-lambdas
infopointer<-seq(1,lkm)
ord<-order(distat)
infopointer<-infopointer[ord]
parent<-matrix(0,lkm,1)
child<-matrix(0,lkm,1)
sibling<-matrix(0,lkm,1)
volume<-matrix(0,lkm,1)
radius<-matrix(0,lkm,1)
number<-matrix(0,lkm,1)
atomlist<-matrix(0,lkm,lkm)
atomnumb<-matrix(0,lkm,1)
highestNext<-matrix(0,lkm,1)
boundrec<-matrix(0,lkm,2*d)
node<-lkm
parent[node]<-0
child[node]<-0
sibling[node]<-0
radius[node]<-distat[ord[node]]
simple<-complex[infopointer[node],]
simp<-dendat[simple,]
volume[node]<-voltriangle(simp)
number[node]<-1
atomlist[node,1]<-infopointer[node]
atomnumb[node]<-1
beg<-node
highestNext[node]<-0
note<-infopointer[node]
for (i in 1:d){
boundrec[node,2*i-1]<-pcfdown[note,i]
boundrec[node,2*i]<-pcfhigh[note,i]
}
j<-2
while (j<=lkm){
node<-lkm-j+1
highestNext[node]<-beg
beg<-node
rec1<-matrix(0,2*d,1)
note<-infopointer[node]
for (i in 1:d){
rec1[2*i-1]<-pcfdown[note,i]
rec1[2*i]<-pcfhigh[note,i]
}
boundrec[node,]<-rec1
radius[node]<-distat[ord[node]]
simple<-complex[infopointer[node],]
simp<-dendat[simple,]
volume[node]<-voltriangle(simp)
number[node]<-1
atomlist[node,1]<-infopointer[node]
atomnumb[node]<-1
curroot<-highestNext[beg]
prevroot<-beg
ekatouch<-0
while (curroot>0){
istouch<-touchstep.complex(node,curroot,boundrec,child,sibling,
infopointer,pcfdown,pcfhigh,dendat,complex)
if (istouch==1){
parent[curroot]<-node
if (ekatouch==0) ekatouch<-1 else ekatouch<-0
if (ekatouch==1){
child[node]<-curroot
}
else{
sibling[lastsib]<-curroot
}
number[node]<-number[node]+number[curroot]
volume[node]<-volume[node]+volume[curroot]
atomlist[node,(atomnumb[node]+1):(atomnumb[node]+atomnumb[curroot])]<-atomlist[curroot,1:atomnumb[curroot]]
atomnumb[node]<-atomnumb[curroot]+atomnumb[node]
radius[node]<-min(distat[ord[node]],distat[ord[curroot]])
rec1<-boundrec[node,]
rec2<-boundrec[curroot,]
boundrec[node,]<-boundbox(rec1,rec2)
highestNext[prevroot]<-highestNext[curroot]
}
if (istouch==0) prevroot<-curroot else lastsib<-curroot
curroot<-highestNext[curroot]
}
j<-j+1
}
root<-1
maxdis<-distat[ord[length(ord)]]
center<-t(mids[infopointer,])
lf<-list(
parent=parent,volume=volume,center=center,level=radius,
root=root,
infopointer=infopointer,
maxdis=maxdis,
dendat=dendat,rho=rho,
atomlist=atomlist,atomnumb=atomnumb)
return(lf)
} |
fii2fi <-
function(DESIGN,fii,fi){
Dsup <- fastEucCalc(fii,fi)
minD <- apply(Dsup,1,min)
Group_Assigned=Re(Dsup==repmat(minD,1,ncol(DESIGN)))
return(list(distances=Dsup,assignments=Group_Assigned,confusion=t(Group_Assigned) %*% DESIGN))
} |
test_that("invalid parameter values are detected", {
expect_equal(is_GHvalid(h = c(2, 3, 0, 0.8, 1.2, 18)), TRUE)
expect_type(is_GHvalid(h = -3), 'character')
expect_type(is_GHvalid(h = c(2, -3, 4, 9)), 'character')
}) |
library(ggplot2)
power.analysis.bw = function (d, OR, k, n1, n2, p = 0.05, heterogeneity = "fixed")
{
odds = FALSE
if (missing(OR) & missing(d)) {
stop("Either 'd' or 'OR' must be provided.")
}
if (!(heterogeneity %in% c("fixed", "low", "moderate", "high"))) {
stop("'heterogeneity' must be either 'fixed', 'low', 'moderate', 'high'.")
}
if (missing(d)) {
odds = TRUE
d = log(OR) * (sqrt(3)/pi)
token1 = "log"
}
else {
token1 = "no.log"
}
es = d
if (heterogeneity == "fixed") {
het.factor = 1
v.d = ((n1 + n2)/(n1 * n2)) + ((d * d)/(2 * (n1 + n2)))
v.m = v.d/k
lambda = (d/sqrt(v.m))
plevel = 1 - (p/2)
zval = qnorm(p = plevel, 0, 1)
power = 1 - (pnorm(zval - lambda)) + (pnorm(-zval - lambda))
token2 = "fixed"
}
if (heterogeneity == "low") {
het.factor = 1.33
v.d = ((n1 + n2)/(n1 * n2)) + ((d * d)/(2 * (n1 + n2)))
v.m = v.d/k
v.m = 1.33 * v.m
lambda = (d/sqrt(v.m))
plevel = 1 - (p/2)
zval = qnorm(p = plevel, 0, 1)
power = 1 - (pnorm(zval - lambda)) + (pnorm(-zval - lambda))
token2 = "low"
}
if (heterogeneity == "moderate") {
het.factor = 1.67
v.d = ((n1 + n2)/(n1 * n2)) + ((d * d)/(2 * (n1 + n2)))
v.m = v.d/k
v.m = 1.67 * v.m
lambda = (d/sqrt(v.m))
plevel = 1 - (p/2)
zval = qnorm(p = plevel, 0, 1)
power = 1 - (pnorm(zval - lambda)) + (pnorm(-zval - lambda))
token2 = "moderate"
}
if (heterogeneity == "high") {
het.factor = 2
v.d = ((n1 + n2)/(n1 * n2)) + ((d * d)/(2 * (n1 + n2)))
v.m = v.d/k
v.m = 2 * v.m
lambda = (d/sqrt(v.m))
plevel = 1 - (p/2)
zval = qnorm(p = plevel, 0, 1)
power = 1 - (pnorm(zval - lambda)) + (pnorm(-zval - lambda))
token2 = "high"
}
dvec = (1:1000)/1000
if (d > 1) {
dvec = (1:(d * 1000))/1000
}
powvect = vector()
for (i in 1:length(dvec)) {
d = dvec[i]
v.d = ((n1 + n2)/(n1 * n2)) + ((d * d)/(2 * (n1 + n2)))
v.m = v.d/k
v.m = het.factor * v.m
lambda = (d/sqrt(v.m))
plevel = 1 - (p/2)
zval = qnorm(p = plevel, 0, 1)
powvect[i] = 1 - (pnorm(zval - lambda)) + (pnorm(-zval -
lambda))
}
if (odds == FALSE) {
plotdat = as.data.frame(cbind(dvec, powvect))
plot = ggplot(data = plotdat, aes(x = dvec, y = powvect)) +
geom_line(color = "gray70", size = 2) + geom_point(aes(x = es,
y = power), color = "gray30", size = 5) + theme_minimal() +
geom_hline(yintercept = 0.8, color = "black", linetype = "dashed") +
ylab("Power") + xlab("Effect size (SMD)")
}
else {
dvecs = exp(dvec * (pi/sqrt(3)))
dvec.inv = exp(-dvec * (pi/sqrt(3)))
dvec = as.vector(rbind(dvec.inv, dvecs))
powvect = as.vector(rbind(powvect, powvect))
plotdat = as.data.frame(cbind(dvec, powvect))
plot = ggplot(data = plotdat, aes(x = dvec, y = powvect)) +
geom_line(color = "gray70", size = 2) + geom_point(aes(x = exp(es *
(pi/sqrt(3))), y = power), color = "gray30", size = 5) +
theme_minimal() + geom_hline(yintercept = 0.8, color = "black",
linetype = "dashed") + ylab("Power") + xlab("Effect size (OR)") +
scale_x_log10()
}
return.list = list(Plot = plot, Power = power)
class(return.list) = c("power.analysis", token1, token2)
invisible(return.list)
return.list
} |
context("Testing ai function works as advertised")
a <- c(1, 2, 3, 4, 7)
b <- c(1, 3, 2, 5, 3)
test_that("ai returns correct classes",{
expect_is(ai(a, b), "ai")
})
test_that("ai errors correctly", {
expect_error(ai(3, "a"))
expect_error(ai(3, 2))
expect_error(ai(3, 2), lambda=-3)
expect_error(ai(3, 2), alpha=4)
})
ans=ai(x=IPIA$Tomography, y=IPIA$Urography)
test_that("ai returns the same value", {
expect_equal(round(ans$indexEst["Lin.CCC", "Est"], 3), 0.810)
expect_equal(round(ans$indexEst["Lin.CCC", "95LL"], 3), 0.693)
expect_equal(round(ans$indexEst["Lin.CCC", "95UL"], 3), 0.885)
expect_equal(round(ans$intervalEst["Bland-Altman.LOA", "95LL"], 3), -17.752)
expect_equal(round(ans$intervalEst["Bland-Altman.LOA", "95UL"], 3), 21.098)
expect_equal(round(ans$intervalEst["Liao.AI", "95LL"], 3), -19.275)
expect_equal(round(ans$intervalEst["Liao.AI", "95UL"], 3), 19.275)
expect_equal(round(ans$tolProb, 3), 0.485)
})
ans=ai(x=IPIA$Urography, y=IPIA$Tomography, clin.limit=c(-15, 15))
test_that("ai returns the same value with clin.limit", {
expect_equal(round(ans$alpha.cl, 3), 0.124)
expect_equal(ans$k.cl, 5)
expect_equal(round(ans$tolProb.cl, 2), 0.64)
}) |
NULL
simulate_access <- function() simulate_dbi("ACCESS")
dbplyr_edition.ACCESS <- function(con) {
2L
}
sql_query_select.ACCESS <- function(con, select, from,
where = NULL, group_by = NULL,
having = NULL, order_by = NULL,
limit = NULL, distinct = FALSE, ...,
subquery = FALSE) {
sql_select_clauses(con,
select = sql_clause_select(con, select, distinct, top = limit),
from = sql_clause_from(con, from),
where = sql_clause_where(con, where),
group_by = sql_clause_group_by(con, group_by),
having = sql_clause_having(con, having),
order_by = sql_clause_order_by(con, order_by, subquery, limit)
)
}
sql_translation.ACCESS <- function(con) {
sql_variant(
sql_translator(.parent = base_scalar,
as.numeric = sql_prefix("CDBL"),
as.double = sql_prefix("CDBL"),
as.integer = sql_prefix("INT"),
as.logical = sql_prefix("CBOOL"),
as.character = sql_prefix("CSTR"),
as.Date = sql_prefix("CDATE"),
exp = sql_prefix("EXP"),
log = sql_prefix("LOG"),
log10 = function(x) {
sql_expr(log(!!x) / log(10L))
},
sqrt = sql_prefix("SQR"),
sign = sql_prefix("SGN"),
floor = sql_prefix("INT"),
ceiling = function(x) {
sql_expr(int(!!x + .9999999999))
},
ceil = function(x) {
sql_expr(int(!!x + .9999999999))
},
`^` = function(x, y) {
sql_expr((!!x) ^ (!!y))
},
nchar = sql_prefix("LEN"),
tolower = sql_prefix("LCASE"),
toupper = sql_prefix("UCASE"),
substr = function(x, start, stop){
right <- stop - start + 1
left <- stop
sql_expr(right(left(!!x, !!left), !!right))
},
trimws = sql_prefix("TRIM"),
paste = sql_paste_infix(" ", "&", function(x) sql_expr(CStr(!!x))),
paste0 = sql_paste_infix("", "&", function(x) sql_expr(CStr(!!x))),
is.null = sql_prefix("ISNULL"),
is.na = sql_prefix("ISNULL"),
ifelse = function(test, yes, no){
sql_expr(iif(!!test, !!yes, !!no))
},
coalesce = function(x, y) {
sql_expr(iif(isnull(!!x), !!y, !!x))
},
pmin = function(x, y) {
sql_expr(iif(!!x <= !!y, !!x, !!y))
},
pmax = function(x, y) {
sql_expr(iif(!!x <= !!y, !!y, !!x))
},
Sys.Date = sql_prefix("DATE")
),
sql_translator(.parent = base_agg,
sd = sql_aggregate("STDEV"),
var = sql_aggregate("VAR"),
cor = sql_not_supported("cor"),
cov = sql_not_supported("cov"),
n_distinct = sql_not_supported("n_distinct"),
),
sql_translator(.parent = base_no_win)
)
}
sql_table_analyze.ACCESS <- function(con, table, ...) {
NULL
}
sql_escape_logical.ACCESS <- function(con, x) {
y <- ifelse(x, -1, 0)
y[is.na(x)] <- "NULL"
y
}
sql_escape_date.ACCESS <- function(con, x) {
y <- format(x, "
y[is.na(x)] <- "NULL"
y
}
sql_escape_datetime.ACCESS <- function(con, x) {
y <- format(x, "
y[is.na(x)] <- "NULL"
y
}
globalVariables(c("CStr", "iif", "isnull", "text")) |
expected <- TRUE
test(id=10, code={
argv <- structure(list(x = structure(c(1412799280.04908, 1412799280.04908
), class = c("POSIXct", "POSIXt")), what = "POSIXt"), .Names = c("x",
"what"))
do.call('inherits', argv);
}, o = expected);
|
orderMCMCmain<-function(param,iterations,stepsave,MAP=TRUE, posterior=0.5,
startorder=c(1:n),moveprobs,plus1=FALSE,chainout=TRUE,
scoreout=FALSE,startspace=NULL,blacklist=NULL,gamma=1,verbose=FALSE,alpha=NULL,
hardlimit=ifelse(plus1,15,22),
cpdag=FALSE,addspace=NULL,scoretable=NULL){
result<-list()
maxobj<-list()
MCMCtraces<-list()
n<-param$n
nsmall<-param$nsmall
matsize<-ifelse(param$DBN,n+nsmall,n)
if(!param$DBN) {
if(param$bgn!=0) {
updatenodes<-c(1:n)[-param$bgnodes]
} else {
updatenodes<-c(1:n)
}
} else {
updatenodes<-c(1:nsmall)
}
maxorder<-startorder
if (is.null(blacklist)) {
blacklist<-matrix(0,nrow=matsize,ncol=matsize)
}
diag(blacklist)<-1
if(!is.null(param$bgnodes)) {
for(i in param$bgnodes) {
blacklist[,i]<-1
}
}
if (!is.null(scoretable)) {
startskel<-scoretable$adjacency
blacklist<-scoretable$blacklist
scoretable<-scoretable$tables
} else {
if (is.null(startspace)){
startspace<-definestartspace(alpha,param,cpdag=cpdag,algo="pc")
}
startskeleton<-1*(startspace&!blacklist)
if(!is.null(addspace)) { startskel<-1*((addspace|startskeleton)&!blacklist)
} else {startskel<-startskeleton }
}
blacklistparents<-list()
for (i in 1:matsize) {
blacklistparents[[i]]<-which(blacklist[,i]==1)
}
if(verbose) {
cat(paste("maximum parent set size is", max(apply(startskel,2,sum))),"\n")
}
if(max(apply(startskel,2,sum))>hardlimit) {
stop("the size of maximal parent set is higher that the hardlimit; redifine the search space or increase the hardlimit!")
}
tablestart<-Sys.time()
ptab<-listpossibleparents.PC.aliases(startskel,isgraphNEL=FALSE,n,updatenodes)
if (verbose) {
cat("core space defined, score table are being computed \n")
flush.console()
}
if (plus1==FALSE) {
parenttable<-ptab$parenttable
aliases<-ptab$aliases
numberofparentsvec<-ptab$numberofparentsvec
numparents<-ptab$numparents
rowmaps<-parentsmapping(parenttable,numberofparentsvec,n,updatenodes)
if(is.null(scoretable)) {
scoretable<-scorepossibleparents.alias(parenttable,aliases,n,param,updatenodes,rowmaps,
numparents,numberofparentsvec)
}
posetparenttable<-poset(parenttable,numberofparentsvec,rowmaps,n,updatenodes)
if(MAP==TRUE){
maxmatrices<-posetscoremax(posetparenttable,scoretable,numberofparentsvec,rowmaps,
n,plus1lists=NULL,updatenodes)
tableend<-Sys.time()
MCMCresult<-orderMCMCbasemax(n,nsmall,startorder,iterations,stepsave,moveprobs,parenttable,
scoretable,aliases,numparents,rowmaps,maxmatrices,
numberofparentsvec,gamma=gamma,bgnodes=param$bgnodes,matsize=matsize)
mcmcend<-Sys.time()
} else {
bannedscore<-poset.scores(posetparenttable,scoretable,numberofparentsvec,rowmaps,
n,plus1lists=NULL,ptab$numparents,updatenodes=updatenodes)
tableend<-Sys.time()
MCMCresult<-orderMCMCbase(n,nsmall,startorder,iterations,stepsave,moveprobs,parenttable,
scoretable,aliases,numparents,rowmaps,
bannedscore,numberofparentsvec,gamma=gamma,
bgnodes=param$bgnodes,matsize=matsize)
mcmcend<-Sys.time()
}
} else {
parenttable<-ptab$parenttable
aliases<-ptab$aliases
numberofparentsvec<-ptab$numberofparentsvec
numparents<-ptab$numparents
plus1lists<-PLUS1(matsize,aliases,updatenodes,blacklistparents)
rowmaps<-parentsmapping(parenttable,numberofparentsvec,n,updatenodes)
if(is.null(scoretable)) {
scoretable<-scorepossibleparents.PLUS1(parenttable,plus1lists,n,param,updatenodes,
rowmaps,numparents,numberofparentsvec)
}
posetparenttable<-poset(parenttable,numberofparentsvec,rowmaps,n,updatenodes)
if(MAP==TRUE){
maxmatrices<-posetscoremax(posetparenttable,scoretable,numberofparentsvec,
rowmaps,n,plus1lists=plus1lists,updatenodes)
} else {
bannedscore<-poset.scores(posetparenttable,scoretable,ptab$numberofparentsvec,rowmaps,
n,plus1lists=plus1lists,ptab$numparents,updatenodes)
}
if(verbose) {
cat(paste("score tables computed, orderMCMCis running"),"\n")
flush.console()
}
tableend<-Sys.time()
if(MAP) {
MCMCresult<-orderMCMCplus1max(n,nsmall,startorder,iterations,stepsave,moveprobs,parenttable,
scoretable,aliases,numparents,rowmaps,plus1lists,maxmatrices,numberofparentsvec,
gamma=gamma,bgnodes=param$bgnodes,matsize=matsize)
} else {
MCMCresult<-orderMCMCplus1(n,nsmall,startorder,iterations,stepsave,moveprobs,parenttable,
scoretable,aliases,numparents,rowmaps,plus1lists,
bannedscore,numberofparentsvec,gamma=gamma,
bgnodes=param$bgnodes,matsize=matsize)
}
mcmcend<-Sys.time()
}
if(chainout) {
if(param$DBN) {
MCMCchain<-lapply(MCMCresult$incidence,function(x)DBNtransform(x,param=param))
MCMCtraces$incidence<-MCMCchain
MCMCtraces$orders<-lapply(MCMCresult$orders,order2var,varnames=param$firstslice$labels)
} else {
MCMCtraces$incidence<-lapply(MCMCresult$incidence,function(x)assignLabels(x,param$labels))
MCMCtraces$orders<-lapply(MCMCresult$orders,order2var,varnames=param$labels)
}
MCMCtraces$orderscores<-MCMCresult$orderscores
}
maxobj<-storemaxMCMC(MCMCresult,param)
maxN<-which.max(MCMCresult$DAGscores)
if (scoreout){
if(chainout){output<-4}
else{output<-3}
} else {
if(chainout) {output<-2}
else {output<-1}
}
result$DAG<-maxobj$DAG
result$CPDAG<-graph2m(dag2cpdag(m2graph(result$DAG)))
result$score<-maxobj$score
result$maxorder<-maxobj$order
result$info<-list()
tabletime<-tableend-tablestart
if(units(tabletime)=="mins") {
tabletime<-as.numeric(tabletime*60)
}
mcmctime<-mcmcend-tableend
if(units(mcmctime)=="mins") {
mcmctime<-as.numeric(mcmctime*60)
}
result$info$runtimes<-c(tabletime,mcmctime)
names(result$info$runtimes)<-c("scoretables","MCMCchain")
result$trace<-MCMCresult$DAGscores
switch(as.character(output),
"1"={
},
"2"={
result$traceadd<-MCMCtraces
},
"3"={
result$scoretable<-list()
result$scoretable$adjacency<-startskel
result$scoretable$tables<-scoretable
result$scoretable$blacklist<-blacklist
attr(result$scoretable,"class")<-"scorespace"
},
"4"={
result$scoretable<-list()
result$scoretable$adjacency<-startskel
result$scoretable$tables<-scoretable
result$scoretable$blacklist<-blacklist
attr(result$scoretable,"class")<-"scorespace"
result$traceadd<-MCMCtraces
}
)
attr(result,"class")<-"orderMCMC"
return(result)
} |
cat("\014")
rm(list = ls())
setwd("~/git/of_dollars_and_data")
source(file.path(paste0(getwd(),"/header.R")))
library(scales)
library(readxl)
library(lubridate)
library(zoo)
library(ggrepel)
library(survey)
library(lemon)
library(mitools)
library(Hmisc)
library(tidyverse)
folder_name <- "xxxx_scf_wealth_over_time"
out_path <- paste0(exportdir, folder_name)
dir.create(file.path(paste0(out_path)), showWarnings = FALSE)
age_year_groups <- data.frame(year = c(seq(1992, 2019, 3),
seq(1995, 2019, 3),
seq(1998, 2019, 3),
seq(2001, 2019, 3),
seq(2004, 2019, 3),
seq(2007, 2019, 3)),
age_group = c(rep(1, 10),
rep(2, 9),
rep(3, 8),
rep(4, 7),
rep(5, 6),
rep(6, 5)),
min_age = c(seq(64, 91, 3),
seq(64, 88, 3),
seq(64, 85, 3),
seq(64, 82, 3),
seq(64, 79, 3),
seq(64, 76, 3)),
max_age = c(seq(66, 93, 3),
seq(66, 90, 3),
seq(66, 87, 3),
seq(66, 84, 3),
seq(66, 81, 3),
seq(66, 78, 3)))
for(i in 1:nrow(age_year_groups)){
print(i)
min_age <- age_year_groups[i, "min_age"]
max_age <- age_year_groups[i, "max_age"]
yr <- age_year_groups[i, "year"]
ag_group <- age_year_groups[i, "age_group"]
tmp <- readRDS(paste0(localdir, "0003_scf_stack.Rds")) %>%
filter(year == yr, age >= min_age, age <= max_age) %>%
mutate(age_group = ag_group,
min_max_age = paste0(min_age, "-", max_age)) %>%
select(hh_id, imp_id, year, age_group, min_max_age, networth, reteq, wgt)
if(i == 1){
df <- tmp
} else{
df <- df %>% bind_rows(tmp)
}
}
summary <- df %>%
group_by(year, age_group, min_max_age) %>%
summarise(
median_nw = wtd.quantile(networth, weights = wgt, probs=0.5),
median_reteq = wtd.quantile(reteq, weights = wgt, probs=0.5)
) %>%
ungroup() %>%
gather(-year, -age_group, -min_max_age, key=key, value=value) %>%
mutate()
to_plot <- summary %>%
filter(key == "median_reteq")
file_path <- paste0(out_path, "/median_nw_over_time.jpeg")
plot <- ggplot(data = to_plot, aes(x = year, y=value, col = as.factor(age_group))) +
geom_line() +
scale_color_discrete(guide = FALSE) +
of_dollars_and_data_theme +
labs(x = "Year" , y = "Median Net Worth") +
ggtitle(paste0("Median Liquid Net Worth"))
ggsave(file_path, plot, width = 15, height = 12, units = "cm") |
test_all_formats <- function(zone = TRUE) {
out <- paste(
"C: %C",
"y: %y",
"Y: %Y",
"b: %b",
"h: %h",
"B: %B",
"m: %m",
"d: %d",
"a: %a",
"A: %A",
"w: %w",
"g: %g",
"G: %G",
"V: %V",
"u: %u",
"U: %U",
"W: %W",
"j: %j",
"D: %D",
"x: %x",
"F: %F",
"H: %H",
"I: %I",
"M: %M",
"S: %S",
"p: %p",
"R: %R",
"T: %T",
"X: %X",
"r: %r",
"c: %c",
"%: %%",
sep = "\n"
)
if (!zone) {
return(out)
}
paste(
out,
"z: %z",
"Ez: %Ez",
"Z: %Z",
sep = "\n"
)
} |
coef.alspath <- function(object, s = NULL, type =
c("coefficients", "nonzero"), ...) {
type <- match.arg(type)
b0 <- t(as.matrix(object$b0))
rownames(b0) <- "(Intercept)"
nbeta <- rbind2(b0, object$beta)
if (!is.null(s)) {
vnames <- dimnames(nbeta)[[1]]
dimnames(nbeta) <- list(NULL, NULL)
lambda <- object$lambda
lamlist <- lambda.interp(lambda, s)
nbeta <- nbeta[,lamlist$left,drop=FALSE]%*%Diagonal(x=lamlist$frac) +
nbeta[,lamlist$right,drop=FALSE]%*%Diagonal(x=1-lamlist$frac)
dimnames(nbeta) <- list(vnames, paste(seq(along = s)))
}
if (type == "coefficients") return(nbeta)
if (type == "nonzero")
return(nonzero(nbeta[-1, , drop = FALSE], bystep = TRUE))
} |
cid_compinfo <- function(...) {
.Deprecated("pc_prop", package = "webchem")
cid_compinfo(...)
}
aw_query <- function(...) {
.Deprecated("bcpc_query", package = "webchem")
bcpc_query(...)
} |
loadKarsTSFonts <-
function() {
fontmainbt <- tcltk::tkfont.create(family = "Arial",
size = 14, weight = "bold")
fontsubbt <- tcltk::tkfont.create(family = "Arial",
size = 12, weight = "bold")
fontsubbt1 <- tcltk::tkfont.create(family = "Arial",
size = 12, weight = "bold",
underline = TRUE)
fonttitle0pan <- tcltk::tkfont.create(family = "Arial",
size = 11, weight = "bold",
underline = TRUE)
fonttitle1pan <- tcltk::tkfont.create(family = "Arial",
size = 11, weight = "bold")
fonttitle2pan <- tcltk::tkfont.create(family = "Arial",
size = 11, slant = "italic")
fontnormpan <- tcltk::tkfont.create(family = "Arial", size = 11)
fontaclara <- tcltk::tkfont.create(family = "Arial",
size = 11, slant = "italic")
KTSEnv$KTSFonts <- list(mainBt = fontmainbt, subBt = fontsubbt,
subBt1 = fontsubbt1,
explain = fontaclara, T0 = fonttitle0pan,
T1 = fonttitle1pan, T2 = fonttitle2pan,
normal = fontnormpan)
} |
extract.ergmito <- function(
model,
include.aic = TRUE,
include.bic = TRUE,
include.loglik = TRUE,
include.nnets = TRUE,
include.offset = TRUE,
include.convergence = TRUE,
include.timing = TRUE,
...
) {
if (!requireNamespace("texreg", quietly = TRUE))
stop("Need to install the `texreg` package.", call. = FALSE)
s <- summary(model, ...)
coefficient.names <- rownames(s$coefs)
coefficients <- s$coefs[, 1]
standard.errors <- s$coefs[, "Std. Error"]
significance <- s$coefs[, "Pr(>|z|)"]
gof <- numeric()
gof.names <- character()
gof.decimal <- logical()
if (include.aic == TRUE && !is.null(s$aic)) {
aic <- s$aic
gof <- c(gof, aic)
gof.names <- c(gof.names, "AIC")
gof.decimal <- c(gof.decimal, TRUE)
}
if (include.bic == TRUE && !is.null(s$bic)) {
bic <- s$bic
gof <- c(gof, bic)
gof.names <- c(gof.names, "BIC")
gof.decimal <- c(gof.decimal, TRUE)
}
if (include.loglik == TRUE && !is.null(model$mle.lik)) {
lik <- model$mle.lik[1]
gof <- c(gof, lik)
gof.names <- c(gof.names, "Log Likelihood")
gof.decimal <- c(gof.decimal, TRUE)
}
if (include.nnets) {
gof <- c(gof, nnets(model$network))
gof.names <- c(gof.names, "Num. networks")
gof.decimal <- c(gof.decimal, FALSE)
}
if (include.convergence) {
gof <- c(gof, model$optim.out$convergence)
gof.names <- c(gof.names, "Convergence")
gof.decimal <- c(gof.decimal, FALSE)
}
model_terms <- terms(formula(model))
if (include.offset && length(noffsets <- attr(model_terms, "offset"))) {
offsets <- rownames(attr(model_terms, "factor"))[attr(model_terms, "offset")]
offsets <- paste("(offset)", gsub("^offset[(]|[)]$", "", offsets))
coefficient.names <- c(coefficient.names, offsets)
coefficients <- c(coefficients, rep(1, length(offsets)))
standard.errors <- c(standard.errors, rep(NA, length(offsets)))
significance <- c(significance, rep(NA, length(offsets)))
}
if (inherits(model, "ergmito_boot")) {
gof <- c(gof, model$R)
gof.names <- c(gof.names, "N replicates")
gof.decimal <- c(gof.decimal, FALSE)
gof <- c(gof, model$nvalid)
gof.names <- c(gof.names, "N Used replicates")
gof.decimal <- c(gof.decimal, FALSE)
}
if (include.timing) {
gof <- c(
gof,
ifelse(
inherits(model, "ergmito_boot"),
model$timer_boot["total"],
model$timer["total"]
)
)
gof.names <- c(gof.names, "Time (seconds)")
gof.decimal <- c(gof.decimal, TRUE)
}
return(
texreg::createTexreg(
coef.names = coefficient.names,
coef = coefficients,
se = standard.errors,
pvalues = significance,
gof.names = gof.names,
gof = gof,
gof.decimal = gof.decimal
)
)
}
setMethod(
"extract", signature = className("ergmito", "ergmito"),
definition = extract.ergmito
)
setMethod(
"extract", signature = className("ergmito_boot", "ergmito"),
definition = extract.ergmito
) |
context("check accuracy of tango.test")
data(nydf)
coords = as.matrix(nydf[, c("x", "y")])
dc = as.matrix(dist(coords))
kvec = 1
k = 1
p = nydf$pop / sum(nydf$pop)
qdat = nydf$cases / sum(nydf$cases)
nn = sum(nydf$cases)
w = diag(p) - p %*% t(p)
rad = kvec[k]
ac = exp(-dc / rad)
hh = ac %*% w
hh2 = hh %*% hh
av = sum(diag(hh))
av2 = sum(diag(hh2))
av3 = sum(diag(hh2 %*% hh))
skew1 = 2 * sqrt(2) * av3 / (av2) ^ 1.5
df1 = 8 / skew1 / skew1
eg1 = av
vg1 = 2 * av2
gt = (qdat - p) %*% ac %*% (qdat - p) * nn
stat1 = (gt - eg1) / sqrt(vg1)
aprox = df1 + sqrt(2 * df1) * stat1
w = dweights(coords, kappa = 1)
results = tango.test(nydf$cases, nydf$pop, w, nsim = 0)
test_that("check accuracy for tango.test for NY data", {
expect_equal(df1, results$dfc)
expect_equal(aprox[1, 1], results$tstat.chisq)
}) |
context("elliptic_PI")
test_that("Comparisons with Wolfram", {
expect_equal(0.3468194+0.7198448i,
elliptic_PI(1+1i, 2, -2), tolerance = 1e-7)
expect_equal(0.67834548+1.05327009i,
elliptic_PI(1+1i, 2, -2i), tolerance = 1e-7)
expect_equal(0.671398646+0.79618888i,
elliptic_PI(1+1i, 2+1i, -2i), tolerance = 1e-7)
})
test_that("n=0", {
expect_equal(elliptic_PI(7+1i,0,2-1i), elliptic_F(7+1i,2-1i))
})
test_that("n=m", {
phi <- 7+1i
m <- 2-1i
expect_equal(
elliptic_E(phi, m),
(1-m)*elliptic_PI(phi, m, m) + m*sin(2*phi)/2/sqrt(1-m*sin(phi)^2)
)
})
test_that("n=1", {
phi <- 1+1i
m <- 2-1i
expect_equal(
elliptic_PI(phi, 1, m),
(sqrt(1-m*sin(phi)^2)*tan(phi)-elliptic_E(phi,m))/(1-m) +
elliptic_F(phi, m)
)
})
test_that("m=0", {
z <- 1+1i
n <- 3
expect_equal(
elliptic_PI(z, n, 0),
atanh(sqrt(n-1)*tan(z)) / sqrt(n-1)
)
})
test_that("m=1", {
z <- 1+1i
n <- 3
expect_equal(
elliptic_PI(z, n, 1),
(sqrt(n) * atanh(sqrt(n)*sin(z)) - atanh(sin(z))) / (n-1)
)
})
test_that("misc equalities", {
n <- 2+2i
m <- 3
expect_equal(
elliptic_PI(asin(1/sqrt(m)), n, m),
elliptic_PI(pi/2, n/m, 1/m) / sqrt(m)
)
})
test_that("Symmetry", {
z <- -5 + 3i
n <- 3 + 11i
m <- -4 - 9i
expect_equal(
elliptic_PI(Conj(z), Conj(n), Conj(m)),
Conj(elliptic_PI(z, n, m))
)
})
test_that("Parity", {
z <- -5 + 3i
n <- 3 + 11i
m <- -4 - 9i
expect_equal(
elliptic_PI(-z, n, m),
-elliptic_PI(z, n, m)
)
}) |
context("test-StoxExport: ICES biotic export")
example <- system.file("testresources", "biotic_v3_example.xml", package="RstoxData")
data <- RstoxData::ReadBiotic(example)
data[[1]]$fishstation[, stationstartdate := stationstopdate]
ICESBiotic <- RstoxData::ICESBiotic(data, SurveyName = "NONE", Country = "No", Organisation = 612)
ICESBiotic <- RstoxData::WriteICESBiotic(ICESBiotic)
expect_equal(dim(ICESBiotic[[1]]), c(96, 45))
context("test-StoxExport: ICES acoustic export
example <- system.file("testresources", "ICES_Acoustic_1.xml", package="RstoxData")
data <- RstoxData::ReadAcoustic(example)
ICESAcoustic2 <- RstoxData::ICESAcoustic(data)
ICESAcousticCSV2 <- RstoxData::WriteICESAcoustic(ICESAcoustic2)
expect_equal(dim(ICESAcousticCSV2[[1]]), c(19, 25))
context("test-StoxExport: ICES acoustic export
example <- system.file("testresources", "ICES_Acoustic_2.xml", package="RstoxData")
data <- RstoxData::ReadAcoustic(example)
ICESAcoustic2 <- RstoxData::ICESAcoustic(data)
ICESAcousticCSV2 <- RstoxData::WriteICESAcoustic(ICESAcoustic2)
expect_equal(dim(ICESAcousticCSV2[[1]]), c(23, 25)) |
SWE <- function(level){
x <- NULL
if(level==1){
x1 <- arcgis.se(level = level)
x2 <- ourworldindata.org(id = "SWE")
x <- full_join(x1, x2, by = "date")
}
if(level==2){
x <- arcgis.se(level = level)
x$id <- id(x$state, iso = "SWE", ds = "arcgis.se", level = level)
}
return(x)
} |
setGeneric("filterOrder", def = function(object, ...){ standardGeneric("filterOrder") })
setGeneric("filterCoef",
def = function(object, convention, ...){ standardGeneric("filterCoef") } )
setGeneric("filterPolyCoef",
function(object, lag_0 = TRUE, ...){ standardGeneric("filterPolyCoef") })
setGeneric("filterPoly",
function(object, ...){ standardGeneric("filterPoly") })
setClass("VirtualMonicFilter", contains = c("VIRTUAL"))
setClass("VirtualSPFilter", contains = c("VirtualMonicFilter", "VIRTUAL"))
setClass("VirtualBJFilter", contains = c("VirtualMonicFilter", "VIRTUAL"))
setMethod("filterCoef", c("VirtualBJFilter", "character"),
function(object, convention){
co <- filterCoef(object)
switch(convention,
"BJ" = , "--" = , "-" = co,
"SP" = , "++" = , "+" = - co,
stop("invalid value for argument `convention'.")
)
}
)
setMethod("filterCoef", c("VirtualSPFilter", "character"),
function(object, convention){
co <- filterCoef(object)
switch(convention,
"BJ" = , "--" = , "-" = - co,
"SP" = , "++" = , "+" = co,
stop("invalid value for argument `convention'.")
)
}
)
setMethod("filterPolyCoef", "VirtualBJFilter",
function(object, lag_0 = TRUE){
co <- filterCoef(object)
if(lag_0)
c(1, - co)
else
- co
}
)
setMethod("filterPolyCoef", "VirtualSPFilter",
function(object, lag_0 = TRUE){
co <- filterCoef(object)
if(lag_0)
c(1, co)
else
co
}
)
setClass("VirtualMonicFilterSpec", contains = "VIRTUAL",
slots = c(coef = "ANY", order = "numeric"),
prototype = list(coef = numeric(0), order = 0)
)
setMethod("filterOrder", "VirtualMonicFilterSpec",
function(object) object@order )
setMethod("filterCoef", c("VirtualMonicFilterSpec", "missing"),
function(object) object@coef )
setMethod("filterPoly", "VirtualMonicFilterSpec",
function(object) polynom(filterPolyCoef(object)))
setClass("MonicFilterSpec", contains = c("VirtualMonicFilterSpec", "VIRTUAL"),
slots = c(coef = "numeric")
)
setClass("BJFilter", contains = c("MonicFilterSpec", "VirtualBJFilter"))
setClass("SPFilter", contains = c("MonicFilterSpec", "VirtualSPFilter"))
setMethod("initialize", "MonicFilterSpec",
function(.Object, coef, order, ...){
.Object <- callNextMethod()
if(missing(coef)){
if(.Object@order > 0)
.Object@coef <- rep(NA_real_, .Object@order)
}else if(missing(order))
.Object@order <- length(.Object@coef)
.Object
}
)
setMethod("show", signature(object = "MonicFilterSpec"),
function (object)
{
cat("order: ", object@order, "\n")
cat("Coefficients:", "\n")
print(object@coef)
}
)
setAs("numeric", "BJFilter", function(from) new("BJFilter", coef = from))
setAs("numeric", "SPFilter", function(from) new("SPFilter", coef = from))
setAs("BJFilter", "SPFilter", function(from) new("SPFilter", coef = - from@coef))
setAs("SPFilter", "BJFilter", function(from) new("BJFilter", coef = - from@coef))
setMethod("filterCoef", c("BJFilter", "character"),
function(object, convention){
switch(convention,
"BJ" = , "--" = , "-" = object@coef,
"SP" = , "++" = , "+" = - object@coef,
stop("invalid value for argument `convention'.")
)
}
)
setMethod("filterCoef", c("SPFilter", "character"),
function(object, convention){
switch(convention,
"BJ" = , "--" = , "-" = - object@coef,
"SP" = , "++" = , "+" = object@coef,
stop("invalid value for argument `convention'.")
)
}
)
setMethod("filterPolyCoef", "BJFilter",
function(object, lag_0 = TRUE){
if(lag_0)
c(1, - object@coef)
else
- object@coef
}
)
setMethod("filterPolyCoef", "SPFilter",
function(object, lag_0 = TRUE){
if(lag_0)
c(1, object@coef)
else
object@coef
}
)
setMethod("filterPoly", "BJFilter", function(object) polynom(c(1, - object@coef)) )
setMethod("filterPoly", "SPFilter", function(object) polynom(c(1, object@coef)) )
setMethod("show", signature(object = "BJFilter"),
function (object)
{
.reportClassName(object, "BJFilter")
callNextMethod()
}
)
setMethod("show", signature(object = "SPFilter"),
function (object)
{
.reportClassName(object, "SPFilter")
callNextMethod()
}
)
setClass("VirtualArmaFilter", contains = c("VirtualMonicFilter", "VIRTUAL"),
slots = c(ar = "VirtualMonicFilter", ma = "VirtualMonicFilter"),
prototype = list(ar = new("BJFilter"), ma = new("SPFilter"))
)
setMethod("filterOrder", "VirtualArmaFilter",
function(object){
list(ar = filterOrder(object@ar),
ma = filterOrder(object@ma) )
}
)
setMethod("filterPoly", "VirtualArmaFilter",
function(object){
list(ar = filterPoly(object@ar),
ma = filterPoly(object@ma) )
}
)
setMethod("filterPolyCoef", "VirtualArmaFilter",
function(object, lag_0 = TRUE, ...){
list(ar = filterPolyCoef(object@ar, lag_0 = lag_0, ...),
ma = filterPolyCoef(object@ma, lag_0 = lag_0, ...) )
}
)
setMethod("filterCoef", c("VirtualArmaFilter", "missing"),
function(object){
list(ar = filterCoef(object@ar),
ma = filterCoef(object@ma) )
}
)
setMethod("filterCoef", c("VirtualArmaFilter", "character"),
function(object, convention){
switch(convention,
"BJ" = , "--" = , "SP" = , "++" =
list(ar = filterCoef(object@ar, convention = convention),
ma = filterCoef(object@ma, convention = convention) ),
"-+" = , "BD" =
list(ar = filterCoef(object@ar, convention = "-"),
ma = filterCoef(object@ma, convention = "+") ),
"+-" = list(ar = filterCoef(object@ar, convention = "+"),
ma = filterCoef(object@ma, convention = "-") ),
"+" = , "-" =
stop("invalid value for argument `convention'."),
stop("invalid value for argument `convention'.")
)
}
)
setMethod("nSeasons", "VirtualArmaFilter", function(object) nSeasons(object@ar))
setAs("VirtualArmaFilter", "list",
function(from){
filterCoef(from)
}
)
setMethod("show", signature(object = "VirtualArmaFilter"),
function (object)
{
cat('\nslot "ar":\n')
show(object@ar)
cat('\nslot "ma":\n')
show(object@ma)
}
)
setClass("ArmaFilter", contains = "VirtualArmaFilter",
slots = c(ar = "BJFilter", ma = "SPFilter"),
)
setMethod("initialize", "ArmaFilter",
function(.Object, ..., ar, ma){
if(!missing(ar))
.Object@ar <- as(ar, "BJFilter")
if(!missing(ma))
.Object@ma <- as(ma, "SPFilter")
.Object <- callNextMethod(.Object, ...)
.Object
}
)
setMethod("show", signature(object = "ArmaFilter"),
function (object)
{
.reportClassName(object, "ArmaFilter")
callNextMethod()
}
)
setClass("ArFilter", contains = "ArmaFilter" )
setClass("MaFilter", contains = "ArmaFilter" )
setMethod("initialize", "ArFilter",
function(.Object, ...){
.Object <- callNextMethod()
if(.Object@ma@order > 0)
stop("Non-trivial moving average part.")
.Object
}
)
setMethod("initialize", "MaFilter",
function(.Object, ...){
.Object <- callNextMethod()
if(.Object@ar@order > 0)
stop("Non-trivial autoregressive part.")
.Object
}
)
setClass("VirtualCascadeFilter", contains = c("VirtualMonicFilter", "VIRTUAL"))
setClass("VirtualSarimaFilter", contains = c("VirtualCascadeFilter", "VIRTUAL"))
setGeneric("iOrder", def = function(object){ standardGeneric("iOrder") })
setGeneric("siOrder", def = function(object){ standardGeneric("siOrder") })
setGeneric("anyUnitRoots", def = function(object){ standardGeneric("anyUnitRoots") })
setMethod("anyUnitRoots", "VirtualSarimaFilter",
function(object){
iOrder(object) > 0 || siOrder(object) > 0
}
)
setClass("SarimaFilter", contains = "VirtualSarimaFilter",
slots = c(nseasons = "numeric",
iorder = "numeric",
siorder = "numeric",
ar = "BJFilter",
ma = "SPFilter",
sar = "BJFilter",
sma = "SPFilter"
),
prototype = list(nseasons = NA_real_, iorder = 0, siorder = 0 )
)
setMethod("initialize", "SarimaFilter",
function(.Object, ..., ar, ma, sar, sma){
.Object <- callNextMethod(.Object, ...)
if(!missing(ar)) .Object@ar <- as(ar, "BJFilter")
if(!missing(ma)) .Object@ma <- as(ma, "SPFilter")
if(!missing(sar)) .Object@sar <- as(sar, "BJFilter")
if(!missing(sma)) .Object@sma <- as(sma, "SPFilter")
.Object
}
)
setMethod("nSeasons", "SarimaFilter", function(object) object@nseasons)
setMethod("iOrder", "SarimaFilter", function(object) object@iorder)
setMethod("siOrder", "SarimaFilter", function(object) object@siorder)
setReplaceMethod("nSeasons", "SarimaFilter",
function(object, ..., value){
object@nseasons <- value
object
})
setMethod("filterOrder", "SarimaFilter",
function(object){
list(nseasons = object@nseasons,
iorder = object@iorder,
siorder = object@siorder,
ar = object@ar@order,
ma = object@ma@order,
sar = object@sar@order,
sma = object@sma@order
)
}
)
setMethod("filterCoef", c("SarimaFilter", "missing"),
function(object){
list(nseasons = object@nseasons,
iorder = object@iorder,
siorder = object@siorder,
ar = filterCoef(object@ar ),
ma = filterCoef(object@ma ),
sar = filterCoef(object@sar),
sma = filterCoef(object@sma)
)
}
)
setMethod("filterCoef", c("SarimaFilter", "character"),
function(object, convention){
co <-
switch(convention,
"BJ" = , "--" = , "SP" = , "++" =
list(ar = filterCoef(object@ar, convention = convention),
ma = filterCoef(object@ma, convention = convention),
sar = filterCoef(object@sar, convention = convention),
sma = filterCoef(object@sma, convention = convention)
),
"-+" = , "BD" =
list(ar = filterCoef(object@ar, convention = "-"),
ma = filterCoef(object@ma, convention = "+"),
sar = filterCoef(object@sar, convention = "-"),
sma = filterCoef(object@sma, convention = "+")
),
"+-" = list(ar = filterCoef(object@ar, convention = "+"),
ma = filterCoef(object@ma, convention = "-"),
sar = filterCoef(object@sar, convention = "+"),
sma = filterCoef(object@sma, convention = "-")
),
"+" = , "-" =
stop("invalid value for argument `convention'."),
filterCoef(object, new(convention))
)
c(list(nseasons = object@nseasons,
iorder = object@iorder,
siorder = object@siorder),
co)
}
)
setMethod("filterPoly", "SarimaFilter",
function(object){
nseas <- object@nseasons
b1 <- polynom(c(0,1))
arpoly <- filterPoly(object@ar )
mapoly <- filterPoly(object@ma )
aripoly <- (1-b1)^object@iorder
if(is.na(nseas)){
sarpoly <-
smapoly <-
sarpoly_expanded <-
smapoly_expanded <-
saripoly_expanded <- polynom(1)
fullarpoly <- arpoly * aripoly
fullmapoly <- mapoly
}else{
bs <- polynom(c(rep(0, nseas), 1))
sarpoly <- filterPoly(object@sar)
smapoly <- filterPoly(object@sma)
sarpoly_expanded <- predict(sarpoly,bs)
smapoly_expanded <- predict(smapoly,bs)
saripoly_expanded <- (1-bs)^object@siorder
fullarpoly <- arpoly * sarpoly_expanded * aripoly * saripoly_expanded
fullmapoly <- mapoly * smapoly_expanded
}
list(nseasons = nseas,
iorder = object@iorder,
siorder = object@siorder,
ipoly = aripoly,
sipoly = saripoly_expanded,
arpoly = arpoly,
mapoly = mapoly,
sarpoly = sarpoly_expanded,
smapoly = smapoly_expanded,
fullarpoly = fullarpoly,
fullmapoly = fullmapoly,
core_sarpoly = sarpoly,
core_smapoly = smapoly
)
}
)
setMethod("filterPolyCoef", "SarimaFilter",
function(object, lag_0 = TRUE){
res <- filterPoly(object)
polycomp <- grep("poly", names(res), value = TRUE)
for(nam in polycomp){
res[[nam]] <- coef(res[[nam]])
}
if(!lag_0){
for(nam in polycomp){
res[[nam]] <- res[[nam]][-1]
}
}
res
}
)
summary.SarimaFilter <- function(object, ...){
.reportClassName(object, "SarimaFilter")
objpoly <- filterPoly(object)
res <- c(
if(!is.na(objpoly$nseasons)) paste0("Period: ", objpoly$nseasons)
else ""
, ""
, "Non-stationary part of model"
, paste0(" Order of differencing: ", objpoly$iorder)
, paste0(" Order of seasonal differencing: ", objpoly$siorder)
, paste0(" Differencing polynomial (ari): ", .capturePrint(objpoly$ipoly))
, paste0(" Seasonal differencing polynomial (sari): ",
.capturePrint(objpoly$sipoly))
, ""
, "Stationary part of model"
, .formatNameNumeric(" ar coefficients: ", filterCoef(object@ar))
, .formatNameNumeric(" ma coefficients: ", filterCoef(object@ma))
, .formatNameNumeric(" seasonal ar coefficients: ", filterCoef(object@sar))
, .formatNameNumeric(" seasonal ma coefficients: ", filterCoef(object@sma))
, ""
, paste0(" ar polynomial (non-seasonal): ", .capturePrint(objpoly$arpoly))
, paste0(" ma polynomial (non-seasonal): ", .capturePrint(objpoly$mapoly))
, paste0(" seasonal ar polynomial: ", .capturePrint(objpoly$sarpoly))
, paste0(" seasonal ma polynomial: ", .capturePrint(objpoly$smapoly))
, ""
, "Fully expanded polynomials:"
, paste0(" full ar polynomial: ", .capturePrint(objpoly$fullarpoly))
, paste0(" full ma polynomial: ", .capturePrint(objpoly$fullmapoly))
, "")
cat(res, sep="\n")
invisible(objpoly)
}
setMethod("show", signature(object = "SarimaFilter"),
function (object){
.reportClassName(object, "SarimaFilter")
seasflag <- !is.na(object@nseasons)
if(seasflag)
cat("Period: ", object@nseasons, "\n")
else cat("Non-seasonal model", "\n")
cat("Order of differencing: ", object@iorder, "\n")
if(seasflag)
cat("Order of seasonal differencing: ", object@siorder, "\n")
cat(c("", .formatNameNumeric("ar coefficients: ", filterCoef(object@ar)),
.formatNameNumeric("ma coefficients: ", filterCoef(object@ma))
), sep = "\n")
if(seasflag)
cat(.formatNameNumeric("seasonal ar coefficients: ",
filterCoef(object@sar)),
.formatNameNumeric("seasonal ma coefficients: ",
filterCoef(object@sma))
, sep = "\n")
invisible(NULL)
}
) |
prunelev<-function(bt,lambda=NULL,n=NULL){
len<-length(bt$mean)
bt$mean<-matrix(1,len,1)
if (!is.null(lambda)) bt$ssr<-exmavec(bt$volume,bt$nelem,n,lambda)
ini1<-preprocess(bt$ssr,bt$left,bt$right,bt$mean)
bt$S<-t(ini1$S)
bt$mean<-t(ini1$mean)
bt$left<-ini1$left
bt$right<-ini1$right
treeseq<-pruseqlev(bt)
return(treeseq)
} |
itcONE11 = function(varpar=list(K=1000000, DH=-20000, HD=0.1, N=0.5),stapar=list(P0=0.01, L0=0, Asyr=0.2, V0=1.4195), injV0){
par3=XMt_func(stapar, injV0);
XMt0=par3$XMt;
Pe = varpar$N*stapar$P0;
Km=varpar$K/1E3;
Pt=1.0/(1.0/Pe+XMt0/varpar$N/stapar$Asyr);
Fi=exp(-injV0/stapar$V0/1E3);
Pp=Pt/Fi;
At=Pt*XMt0/varpar$N;
Ap=stapar$Asyr*(1.0-Pp/Pe);
a=1.0+(Km*Ap)+(Km*Pp);
b=4.0*Km*Km*Pp*Ap;
PAp=(a-sqrt((a*a)-b))/(2*Km);
a=1.0+(Km*At)+(Km*Pt);
b=4.0*Km*Km*Pt*At;
PAt=(a-sqrt((a*a)-b))/(2*Km);
(stapar$V0*(varpar$DH*(PAt-Fi*PAp))+varpar$HD)/injV0/stapar$Asyr*1E3;
} |
yield.dollar = function(cf, times, start, end, endtime){
all=list(cf,times,start,end,endtime)
if(any(lapply(all,is.null)==T)) stop("Cannot input any variables as NULL.")
one=list(start,end,endtime)
if(any(lapply(one,length)!= 1)) stop("start, end, and endtime must be of length 1.")
if(length(cf) != length(times)){
stop('length of vectors "cf" and "times" must be equal')}
if(any(is.na(cf) | any(is.na(times)) | any(is.na(c(start,end,endtime)))))
stop("Cannot input any variables as NA.")
if(!is.vector(cf) | !is.vector(times) | !is.numeric(cf) | !is.numeric(times))
stop('variable "cf" and "times" must be numeric vector')
num2=list(start,end,endtime)
na.num2=num2[which(lapply(num2,is.na)==F)]
if(any(lapply(na.num2,is.numeric)==F)) stop("All variables must be numeric.")
if(any(cf==Inf) | any(times==Inf) | any(c(start,end,endtime)==Inf))
stop("Cannot input any variables as infinite.")
if(any(times<0) | endtime <=0)
stop('"times" vector and "endtime" must be positive')
if(any(times>endtime))
stop('time of comparison (endtime) must be larger than any number in vector "times"')
if(length(cf) != length(times))
stop("length of cashflow vector and times vector must be equal")
I = end - start - sum(cf)
runsum=0
for(i in 1:length(cf)){
runsum = runsum + cf[i]*(endtime-times[i])}
yield = I/(start*endtime+runsum)
return(yield)
} |
boxplot.lengths <-
function (x, ..., log = FALSE, zeros.rm = TRUE) {
newlen <- x$length + 0
if (zeros.rm & x$zeros) {
newlen <- x$length + x$maxcens
}
if (log) newlen <- log(newlen)
boxplot(newlen ~ x$categories, ...)
} |
print.survHE <- function(x,mod=1,...) {
exArgs <- list(...)
availables <- load_availables()
if(!exists("digits",where=exArgs)){digits=6} else {digits=exArgs$digits}
if(!exists("original",where=exArgs)){original=FALSE} else {original=exArgs$original}
if(exists("orig",exArgs)){original=exArgs$orig}
if(original==TRUE) {
do.call(
paste0("original_table_",x$method),
args=list(x,mod,digits)
)
}
else {
res=do.call(
paste0("get_stats_",x$method),
args=list(x,mod)
)
format_table(x,mod,res,digits)
}
} |
library(mizer)
rm(list=ls())
comm_params <- set_community_model(max_w=50e3,
beta=100, sigma=1.3,
h=20, alpha=0.17, n=0.75, q=0.8, z0=0.2, f0=0.6,
r_pp=4, kappa=5,
rec_mult=0.01)
comm_time_sim <- 800
comm_sim0 <- project(comm_params, t_max=comm_time_sim, effort=0, dt=0.1)
plot(comm_sim0)
plotBiomass(comm_sim0, start_time=700)
comm_sim1 <- project(comm_params, t_max=comm_time_sim, effort=1.5, dt=0.1)
plot(comm_sim1)
plotBiomass(comm_sim1, start_time=700)
trait_params <- set_trait_model(max_w=100e3, no_sp=10, min_w_inf=5, max_w_inf=100e3*0.9,
beta=100, sigma=1.3,
h=20, alpha=0.6, n=0.75, q=0.8, z0pre=2, f0=0.6, ks=2.4,
r_pp=4, kappa=5,
k0=5000,
min_w_pp = 1e-10)
trait_time_sim <- 200
trait_sim0 <- project(trait_params, t_max=trait_time_sim, effort=0, dt=1)
plot(trait_sim0)
plotBiomass(trait_sim0, start_time=150)
trait_sim1 <- project(trait_params, t_max=trait_time_sim, effort=0.6, dt=1)
plot(trait_sim1)
plotBiomass(trait_sim1, start_time=150)
data(NS_species_params)
data(inter)
NS_species_params$knife_edge_size <- 1000
ms_params <- MizerParams(NS_species_params, inter,
max_w=1e6, kappa=9.27e10, q=0.8, n=2/3, z0pre=0.6,
min_w_pp = 1e-10)
ms_time_sim <- 150
ms_sim0 <- project(ms_params, t_max=ms_time_sim, effort=0)
plot(ms_sim0)
ms_sim1 <- project(ms_params, t_max=ms_time_sim, effort=0.75)
plot(ms_sim1)
dim(comm_sim1@n)
dimnames(comm_sim1@n)
comm_sim1@params@w
comm_sim1@params@w_full
no_avg_steps <- 400
avg_steps_indices <- (comm_time_sim-no_avg_steps+2):(comm_time_sim+1)
comm0_npp <- apply(comm_sim0@n_pp[avg_steps_indices,],2,mean) * comm_sim0@params@w_full
comm0_n <- apply(comm_sim0@n[avg_steps_indices,,],2,mean) * comm_sim0@params@w
comm1_n <- apply(comm_sim1@n[avg_steps_indices,,],2,mean) * comm_sim1@params@w
comm_relative_abundance <- comm1_n / comm0_n
trait0_npp <- trait_sim0@n_pp[trait_time_sim+1,] * trait_sim0@params@w_full
trait0_n <- sweep(trait_sim0@n[trait_time_sim+1,,],2,trait_sim0@params@w,"*")
trait1_n <- sweep(trait_sim1@n[trait_time_sim+1,,],2,trait_sim1@params@w,"*")
trait0_n_total <- apply(trait0_n,2,sum)
trait1_n_total <- apply(trait1_n,2,sum)
trait_relative_abundance <- trait1_n_total / trait0_n_total
ms0_npp <- ms_sim0@n_pp[ms_time_sim+1,] * ms_sim0@params@w_full
ms0_n <- sweep(ms_sim0@n[ms_time_sim+1,,],2,ms_sim0@params@w,"*")
ms1_n <- sweep(ms_sim1@n[ms_time_sim+1,,],2, ms_sim1@params@w,"*")
ms0_n_total <- apply(ms0_n,2,sum)
ms1_n_total <- apply(ms1_n,2,sum)
ms_relative_abundance <- ms1_n_total / ms0_n_total
cc_index <- which(comm_sim0@params@w_full == comm_sim0@params@w[1])
comm_base <- (comm_sim0@params@w_full * comm_sim0@params@cc_pp)[cc_index]
cc_index <- which(trait_sim0@params@w_full == trait_sim0@params@w[1])
trait_base <- (trait_sim0@params@w_full * trait_sim0@params@cc_pp)[cc_index]
cc_index <- which(ms_sim0@params@w_full == ms_sim0@params@w[1])
ms_base <- (ms_sim0@params@w_full * ms_sim0@params@cc_pp)[cc_index]
width <- 14
height <- 7
png(filename="Figure1.png", width = width, height = height, units="cm",res=800, pointsize=8)
nf <- layout(matrix(1:6,2,3,byrow=TRUE), rep(width/3,3),c(3/6,3/6)*height,TRUE)
ylim <- c(1e-10,10)
xlim <- c(1e-3,1e4)
cascade_ylim <- c(0.1,10)
fat_lwd <- 2
fished_lty <- 3
resource_colour <- "green"
resource_lwd <- 1
par(mar=c(1,5,2,1))
plot(x=comm_sim0@params@w, y= comm0_n / comm_base, log="xy", type="n", ylab="Biomass relative to carrying capacity", xlim=xlim, ylim=ylim, main = "(a)", xlab="")
lines(x=comm_sim0@params@w_full, y= comm0_npp / comm_base, col=resource_colour, lwd=resource_lwd)
lines(x=comm_sim0@params@w, y=comm0_n / comm_base, col="red", lwd=fat_lwd)
lines(x=comm_sim0@params@w, y=comm1_n / comm_base, col="blue", lwd=fat_lwd, lty=fished_lty)
plot(x=trait_sim0@params@w, y= trait0_n_total / trait_base, log="xy", type="n", ylab="", xlim=xlim, ylim=ylim, main = "(b)", xlab="")
lines(x=trait_sim0@params@w_full, y= trait0_npp / trait_base, col=resource_colour, lwd=resource_lwd)
lines(x=trait_sim0@params@w, y=trait0_n_total / trait_base, col="red", lwd=fat_lwd)
lines(x=trait_sim1@params@w, y=trait1_n_total / trait_base, col="blue", lwd=fat_lwd, lty=fished_lty)
for (i in 1:10){
lines(x=trait_sim0@params@w, y=trait0_n[i,] / trait_base)
}
plot(x=ms_sim0@params@w, y= ms0_n_total / ms_base, log="xy", type="n", ylab="", xlim=xlim, ylim=ylim, main = "(c)", xlab="")
lines(x=ms_sim0@params@w_full, y=ms0_npp / ms_base, col=resource_colour, lwd=resource_lwd)
lines(x=ms_sim0@params@w, y=ms0_n_total / ms_base, col="red", lwd=fat_lwd)
lines(x=ms_sim1@params@w, y=ms1_n_total / ms_base, col="blue", lwd=fat_lwd, lty=3)
for (i in 1:12){
lines(x=ms_sim0@params@w, y=ms0_n[i,] / ms_base)
}
par(mar=c(5,5,5,1))
plot(x=comm_sim0@params@w, y=comm_relative_abundance, log="xy", type="n", ylab="Relative abundance", xlim=xlim, ylim=cascade_ylim, main = "", xlab="Body mass (g)", yaxt="n")
axis(side = 2, at=c(0.2,1,5))
lines(x=comm_sim0@params@w, y=comm_relative_abundance)
lines(x=c(min(comm_sim0@params@w),max(comm_sim0@params@w)), y=c(1,1),lty=2)
lines(x=c(1000,1000),y=c(1e-20,1e20),lty=3)
plot(x=trait_sim0@params@w, y=trait_relative_abundance, log="xy", type="n", ylab="", xlim=xlim, ylim=cascade_ylim, main = "", xlab="Body mass (g)", yaxt="n")
axis(side = 2, at=c(0.2,1,5))
lines(x=trait_sim0@params@w, y=trait_relative_abundance)
lines(x=c(min(trait_sim0@params@w),max(trait_sim0@params@w)), y=c(1,1),lty=2)
lines(x=c(1000,1000),y=c(1e-20,1e20),lty=3)
plot(x=ms_sim0@params@w, y=ms_relative_abundance, log="xy", type="n", xlab = "Body mass (g)", ylab="", xlim=xlim, ylim=cascade_ylim, main = "", yaxt="n")
axis(side = 2, at=c(0.2,1,5))
lines(x=ms_sim0@params@w, y=ms_relative_abundance)
lines(x=c(min(ms_sim0@params@w),max(ms_sim0@params@w)), y=c(1,1),lty=2)
lines(x=c(1000,1000),y=c(1e-20,1e20),lty=3)
dev.off()
rm(list=ls())
library(mizer)
data(NS_species_params)
data(inter)
NS_species_params$species
NS_species_params$gear <- c("Industrial", "Industrial", "Pelagic", "Pelagic", "Beam", "Otter", "Beam", "Otter", "Beam", "Otter", "Otter", "Otter")
NS_species_params$knife_edge_size <- NA
NS_species_params[NS_species_params$gear == "Industrial", "knife_edge_size"] <- 10
NS_species_params[NS_species_params$gear == "Pelagic", "knife_edge_size"] <- 80
NS_species_params[NS_species_params$gear == "Otter", "knife_edge_size"] <- 270
NS_species_params[NS_species_params$gear == "Beam", "knife_edge_size"] <- 155
NS_species_params
NS_params <- MizerParams(NS_species_params, inter)
NS_params@catchability
time_to_equib <- 100
NS_equib <- project(NS_params, t_max=time_to_equib)
plot(NS_equib)
n_equib <- NS_equib@n[time_to_equib+1,,]
n_pp_equib <- NS_equib@n_pp[time_to_equib+1,]
gear_names <- c("Pelagic","Beam","Otter","Industrial")
project_time <- 100
fishing_effort <- array(0, dim=c(project_time, 4), dimnames=list(time=1:project_time, gear=gear_names))
fishing_effort[,"Pelagic"] <- c(rep(0,10),seq(from = 0, to = 1, length = 10), rep(1,80))
fishing_effort[,"Beam"] <- c(rep(0,30),seq(from = 0, to = 0.75, length = 10), rep(0.75,60))
fishing_effort[,"Otter"] <- c(rep(0,50),seq(from = 0, to = 0.9, length = 10), rep(0.9,40))
fishing_effort[,"Industrial"] <- c(rep(0,70),seq(from = 0, to = 1.5, length = 10), rep(1.5,20))
plot(x = 1:project_time, y = seq(from=0,to=1,length=project_time), type="n", xlab = "Years", ylab="Fishing effort", ylim=c(0,1.5))
for (i in 1:4){
lines(x=1:project_time, y = fishing_effort[,i], lty=i)
}
legend(x="bottomright",legend=c("Pelagic", "Beam", "Otter", "Industrial"), lty=1:4)
NS_sim <- project(NS_params, effort=fishing_effort, initial_n = n_equib, initial_n_pp = n_pp_equib)
plot(NS_sim)
plotBiomass(NS_sim)
ssb <- getSSB(NS_sim)
rescale_ssb <- sweep(ssb,2,ssb[1,],"/")
yield <- getYieldGear(NS_sim)
max_yield <- apply(yield,c(2,3),max)
rescale_yield <- sweep(yield,c(2,3), max_yield, "/")
yield[yield==0] <- NA
rescale_yield[rescale_yield==0] <- NA
min_w <- 10
max_w <- 5000
threshold_w <- 100
lfi <- getProportionOfLargeFish(NS_sim, min_w=min_w, max_w=max_w, threshold_w=threshold_w)
mw <- getMeanWeight(NS_sim, min_w=min_w, max_w=max_w)
mmw <- getMeanMaxWeight(NS_sim, min_w=min_w, max_w=max_w, measure="biomass")
slope <- getCommunitySlope(NS_sim, min_w=min_w, max_w=max_w)[,"slope"]
rescale_lfi <- lfi / lfi[1]
rescale_mw <- mw / mw[1]
rescale_mmw <- mmw / mmw[1]
gear_lty <- 1:4
names(gear_lty) <- gear_names
species_names <- as.character(NS_params@species_params$species)
species_lty <- rep(NA,12)
names(species_lty) <- species_names
cols <- c("black","blue","magenta","green","red")
species_col <- rep(NA,12)
names(species_col) <- species_names
for (i in gear_names){
gear_idx <- (NS_params@species_params$gear == i)
species_col[NS_params@species_params$species[gear_idx]] <- cols[1:(sum(gear_idx))]
species_lty[NS_params@species_params$species[gear_idx]] <- 1
}
width <- 7
height <- 20
add_effort_lines <- function(){
lwd <- 0.5
lines(x=c(11,11), y=c(-1e20,1e20), lty=gear_lty[1], lwd=lwd)
lines(x=c(31,31), y=c(-1e20,1e20), lty=gear_lty[2], lwd=lwd)
lines(x=c(51,51), y=c(-1e20,1e20), lty=gear_lty[3], lwd=lwd)
lines(x=c(71,71), y=c(-1e20,1e20), lty=gear_lty[4], lwd=lwd)
}
png(filename="Figure2.png", width = width, height = height, units="cm",res=1000, pointsize=8)
rel_heights <- c(0.7,rep(0.5,8),0.5,0.8,1)
heights = (height / sum(rel_heights)) * rel_heights
nf <- layout(matrix(1:length(rel_heights),length(rel_heights),1,byrow=TRUE), widths = width, heights=heights,TRUE)
right_margin <- 4
left_margin <- 4.5
legend_txt_cex <- 0.7
leg_line <- 0.3
seg_len <- 2.5
leg_bty <- "n"
leg_box_lwd <- 0
par(mar=c(0,left_margin,0.5,right_margin))
plot(x = 1:project_time, y=1:project_time, type="n", ylim=c(0,max(fishing_effort)), xlab="", ylab=expression(Effort~(y^{-1})), xaxt="n")
text(x=5,y=1.4,labels="(a)")
for (i in gear_names){
lines(x = 1:project_time, y=NS_sim@effort[,i], lty=gear_lty[i])
}
add_effort_lines()
legend(x="bottomright", legend = gear_names, lty=gear_lty, cex=legend_txt_cex, pt.lwd=leg_line, seg.len=seg_len, bty=leg_bty, box.lwd=leg_box_lwd)
rescale_yield_min <- min(rescale_yield[rescale_yield>0], na.rm=TRUE)
rescale_yield_max <- max(rescale_yield[rescale_yield>0], na.rm=TRUE)
main_labels <- c("(b)","(c)","(d)","(e)")
names(main_labels) <- gear_names
for (gear in gear_names){
species_in_gear <- NS_params@species_params$species[NS_params@species_params$gear==gear]
par(mar=c(0,left_margin,0,right_margin))
plot(x = 1:project_time, y=1:project_time, type="n", ylim=c(rescale_yield_min, rescale_yield_max), ylab="", xlab="", xaxt="n", yaxt="n")
axis(4)
text(x=5,y=0.9,labels=main_labels[gear])
mtext(gear, side=2, line=1, cex=0.6)
if (gear == gear_names[2]){
mtext("Relative Yield", side=4, line=3, cex=0.6, adj=-3)
}
add_effort_lines()
for (i in species_in_gear){
lines(x = 1:project_time, y=rescale_yield[1:project_time,gear,i], col=species_col[i], lty=species_lty[i])
}
legend(x="bottomright", legend=species_in_gear, lty=species_lty[species_in_gear], col=species_col[species_in_gear], cex = legend_txt_cex, ncol=1, pt.lwd=leg_line, seg.len = seg_len, bty=leg_bty, box.lwd=leg_box_lwd)
}
main_labels <- c("(f)","(g)","(h)","(i)")
names(main_labels) <- gear_names
for (gear in gear_names){
species_in_gear <- NS_params@species_params$species[NS_params@species_params$gear==gear]
par(mar=c(0,left_margin,0,right_margin))
plot(x = 1:project_time, y=1:project_time, type="n", ylim=c(min(rescale_ssb),max(rescale_ssb)), ylab="", xlab="", xaxt="n")
if (gear == gear_names[2]){
mtext("Relative SSB", side=2, line=3, cex=0.6, adj=-3)
}
text(x=5,y=1.75,labels=main_labels[gear])
mtext(gear, side=4, line=1, cex=0.6)
add_effort_lines()
for (i in species_in_gear){
lines(x = 1:project_time, y=rescale_ssb[ ,i], col=species_col[i], lty=species_lty[i])
}
}
par(mar=c(0,left_margin,0,right_margin))
ylim <- range(slope)
plot(x = 1:project_time, y=1:project_time, type="n", ylab="", xlab="Years", ylim=ylim, yaxt="n", xaxt="n")
axis(4)
text(x=5,y=-1.5,labels="(j)")
mtext("Community slope", side=4, line=3, cex=0.6)
add_effort_lines()
lines(x = 1:project_time, y = slope[2:(project_time+1)])
par(mar=c(4,left_margin,0,right_margin))
ylim <- c(0,max(rescale_lfi,rescale_mw, rescale_mmw, slope))
plot(x = 1:project_time, y=1:project_time, type="n", ylab="Relative metrics", xlab="Years", ylim=ylim)
text(x=5,y=2.5,labels="(k)")
lines(x = 1:project_time, y = rescale_lfi[2:(project_time+1)], col=1)
lines(x = 1:project_time, y = rescale_mw[2:(project_time+1)], col=2)
lines(x = 1:project_time, y = rescale_mmw[2:(project_time+1)], col=3)
add_effort_lines()
legend(x="bottomright", legend = c("LFI", "MW", "MMW"), lty=1, col=c(1,2,3), cex = legend_txt_cex, ncol=1, pt.lwd=leg_line, seg.len = seg_len, bty=leg_bty, box.lwd=leg_box_lwd)
biomass_time <- sweep(apply(NS_sim@n[c(2,21,41,61,81),,],c(1,3),sum),2,NS_sim@params@w,"*")
xlim <- c(1,5e4)
ylim <- c(5e5,max(biomass_time))/1000
par(mar=c(4,left_margin,1,right_margin))
plot(x=NS_sim@params@w, y = NS_sim@params@w, type="n", ylab="Total biomass (kg)", xlab = "Size (g)", log="xy", ylim = ylim, xlim=xlim)
text(x=2,y=1e9,labels="(l)")
cols <- c(1,2,3,4,6)
for (i in 1:5){
lines(x=NS_sim@params@w, y = biomass_time[i,]/1000, col=cols[i])
}
legend(x="bottomleft", legend=c("Unfished", "Year 20: Pelagic", "Year 40: Beam", "Year 60: Otter", "Year 80: Industrial"), lty=1, col=cols, cex = legend_txt_cex, pt.lwd=leg_line, seg.len = seg_len, bty=leg_bty, box.lwd=leg_box_lwd)
dev.off() |
if(getRversion() >= "2.15.1"){
utils::globalVariables(c("day", "month", "year", "flow", "tp", "baseflow",
".warned"), add = TRUE)
}
createlfobj <- function(x, ...){
UseMethod("createlfobj")
}
createlfobj.lfobj <- function(x, hyearstart = NULL, baseflow = NULL,
meta = NULL, ...){
if(is.null(baseflow)){
baseflow <- "baseflow" %in% names(x)
}
if(is.null(meta)){
meta <- attr(x, "lfobj")
}
dat <- createlfobj.data.frame(x = x, hyearstart = hyearstart,
baseflow = baseflow,
meta = meta, ...)
return(dat)
}
createlfobj.ts <- function(x, startdate, dateformat = "%d/%m/%Y", ...){
start <- as.Date(startdate, dateformat)
time <- seq(from = start, along.with = x, by = "days")
df <- data.frame(strsplit_date(time), flow = as.vector(x))
dat <- createlfobj(x = df, ...)
return(dat)
}
createlfobj.data.frame <- function(x, hyearstart = NULL, baseflow = TRUE,
meta = list(), ...){
cols <- c("day", "month", "year", "flow")
if(!all(cols %in% names(x))) {
stop("Your data frame must contain colums named",
paste(shQuote(cols), collapse = ", "),
"! Please look at the help files for more information.")
}
if(!(is.null(hyearstart) || hyearstart %in% 1:12)){
stop("if set, hyearstart must be an integer between 1 and 12")
}
if((is.null(hyearstart))){
hyearstart <- hyear_start(x)
}
meta <- as.list(meta)
meta[["hyearstart"]] <- hyearstart
x <- as.data.frame(x)
dat <- x[, cols]
time <- time.lfobj(x)
fullseq <- seq(from = min(time), to = max(time), by = "day")
missing <- fullseq[!fullseq %in% time]
if(length(missing)) {
warning("Irregular time series provided. Missing obervations were padded with NAs.")
gaps <- data.frame(strsplit_date(missing), flow = NA)
dat <- rbind(dat, gaps)
}
dat$hyear <- as.numeric(as.character(water_year(time.lfobj(dat),
origin = hyearstart)))
if(is.unsorted(time) || length(missing)) dat <- dat[order(c(time, missing)), ]
rownames(dat) <- NULL
if(baseflow) dat$baseflow <- baseflow(dat$flow, ...)
attr(dat, "lfobj") <- meta
class(dat) <- c("lfobj", "data.frame")
return(dat)
}
as.lfobj <- function(x, ...){
UseMethod("as.lfobj")
}
as.lfobj.xts <- function(x, ...) {
if(!is.null(ncol(x)) && ncol(x) != 1) stop("object with one column expected.")
df <- data.frame(strsplit_date(time(x)), flow = as.vector(x))
dat <- createlfobj(x = df, ...)
return(dat)
}
as.lfobj.zoo <- function(x, ...) {
as.lfobj.xts(x, ...)
}
"[.lfobj" <- function (x, i, j, drop = TRUE) {
y <- "[.data.frame"(x, i, j, drop)
attr(y, "lfobj") <- attr(x, "lfobj")
return(y)
}
time.lfobj <- function(x) {
with(x, as.Date(paste(year, month, day, sep = "-")))
}
lfcheck <- function(lfobj){
if(!is.lfobj(lfobj)){
stop("This functions is designed for objects of the class 'lfobj'. ",
"Please use 'createlfobj()' or see '?createlfobj' for more information")
}
}
is.lfobj <- function(x) {
inherits(x, "lfobj") &
all(c("day", "month", "year", "flow", "hyear") %in% colnames(x))
} |
globalVariables(c("ic", "mods", "k", "loss_index", "set", "pow_sc", "pow_adapt",
"_DF_", "_IND_COL_"))
other_if_null <- function(x, other) `if`(is.null(x), other, x)
block_size <- function(n, ncores = 1) {
block.max <- getOption("bigstatsr.block.sizeGB") / ncores
max(1, floor(block.max * 1024^3 / (8 * n)))
}
CutBySize <- function(m, block.size, nb = ceiling(m / block.size)) {
bigparallelr::split_len(m, nb_split = nb)
}
seq2 <- bigparallelr::seq_range
bigparallelr::rows_along
bigparallelr::cols_along
big_increment <- function(X, add, use_lock = FALSE) {
if (use_lock) {
locked <- bigparallelr::lock(X$backingfile)
on.exit(bigparallelr::unlock(locked), add = TRUE)
}
if (is.matrix(add)) incr_FBM_mat(X, add) else incr_FBM_vec(X, add)
}
covar_from_df <- function(df) {
assert_class(df, "data.frame")
if (is.null(names(df))) names(df) <- paste0("V", seq_along(df))
stats::model.matrix.lm(~ ., data = df, na.action = "na.pass")[, -1, drop = FALSE]
}
as_scaling_fun <- function(center.col, scale.col, ind.col = seq_along(center.col)) {
assert_lengths(center.col, scale.col, ind.col)
e <- new.env(parent = baseenv())
assign("_DF_", data.frame(center = center.col, scale = scale.col), envir = e)
assign("_IND_COL_", ind.col, envir = e)
f <- function(X, ind.row, ind.col) {
ind <- match(ind.col, `_IND_COL_`)
`_DF_`[ind, ]
}
environment(f) <- e
f
} |
SVM.Regression.Config <- setClass("SVM.Regression.Config", slots = c(cost="numeric", epsilon="numeric", kernel="character")
, validity = function(object) {
if (object@cost>=0 && object@epsilon>0 && object@kernel %in% c("linear","polynomial","radial","sigmoid")) TRUE
else "invalid parameters"
}
, contains = "Regression.Config"
)
SVM.Regression.FitObj <- setClass("SVM.Regression.FitObj", contains = "Regression.FitObj")
make.configs.svm.regression <- function(df=expand.grid(cost=c(0.1,0.5,1.0,5.0,10,50,75,100), epsilon=c(0.1,0.25), kernel="radial")) {
ret <- lapply(1:nrow(df), function(i) {
SVM.Regression.Config(cost=df$cost[i], epsilon=df$epsilon[i], kernel=as.character(df$kernel[i]))
})
}
setMethod("BaseLearner.Fit", "SVM.Regression.Config",
function(object, formula, data, tmpfile=NULL, print.level=1) {
respVar <- all.vars(formula)[1]
y <- data[,respVar]
est <- svm(formula, data, kernel=object@kernel, cost=object@cost, epsilon=object@epsilon)
pred <- as.vector(predict(est))
if (!is.null(tmpfile)) {
save(est, file=tmpfile, compress=FALSE)
rm(est); gc()
}
ret <- SVM.Regression.FitObj(config=object
, est=if (is.null(tmpfile)) est else tmpfile
, pred=pred)
return (ret)
}
)
predict.SVM.Regression.FitObj <- function(object, newdata=NULL, ...) {
if (is.null(newdata)) return (object@pred)
if (is.character(object@est)) object@est <- load.object(object@est)
newpred <- as.vector(predict(object@est, newdata=newdata, na.action=na.pass))
return (newpred)
} |
Mstep.mfa <- function(Y, g, q, pivec, B, mu, D,
sigma_type, D_type, tau, ...) {
p <- ncol(Y)
n <- nrow(Y)
pivec <- t(colSums(tau) / n)
for (i in 1:g)
mu[, i] <- matrix(colSums(sweep(Y, MARGIN=1, tau[, i], '*'))) /
sum(tau[, i])
tau <- tau.mfa(Y = Y, g = g, q = q, pivec = pivec, B = B, mu = mu,
D = D, sigma_type = sigma_type, D_type = D_type)
if (sigma_type == 'common') {
inv_D <- diag(1 / diag(D))
B_inv_D <- B * diag(inv_D)
beta <- (inv_D - B_inv_D %*%
(chol.inv(diag(q) + t(B_inv_D) %*% B)) %*%
t(B_inv_D)) %*% B
W <- (diag(q) - t(beta) %*% B)
V <- matrix(0, nrow = p, ncol = p)
for(i in 1 : g) {
Ymu <- sweep(Y, 2, mu[, i, drop=FALSE], '-')
V <- V + t(Ymu) %*% sweep(Ymu, 1, tau[, i], '*')
}
B <- try(V %*% beta %*% solve(n * W + t(beta) %*% V %*% beta))
if(any(class(B) %in% 'try-error')) {
ERR <- "inversion of a singular matrix"
class(ERR) <- "error"
return(ERR)
}
D <- diag(diag(V) +
rowSums(B %*% (n * W + t(beta) %*% V %*% beta) * B) -
2 * diag(B %*% t(beta) %*% V)) / n
}
if(sigma_type == "unique") {
if (D_type == "unique") {
for(i in 1 : g) {
inv_D <- diag(1 / diag(D[,, i]))
B_inv_D <- B[,, i] * diag(inv_D)
beta <- (inv_D - B_inv_D %*%
(chol.inv(diag(q) + t(B_inv_D) %*% B[,, i])) %*%
t(B_inv_D)) %*% B[,, i]
Ymu <- sweep(Y, 2, mu[, i, drop=FALSE], '-')
V <- t(Ymu) %*% sweep(Ymu, 1, tau[, i], '*')
W <- diag(q) - t(beta) %*% B[,, i]
tau_i <- sum(tau[,i])
B2 <- try(solve(W * tau_i + t(beta) %*% V %*% beta))
if(any(class(B2) %in% 'try-error')) {
ERR <- "inversion of a singular matrix"
class(ERR) <- "error"
return(ERR)
}
B[,, i] <- V %*% beta %*% B2
D[,, i] <- diag((diag(V) - 2 * diag(B[,, i] %*% t(beta) %*% V) +
rowSums((B[,, i] %*% (W * tau_i +
t(beta) %*% V %*% beta)) * B[,, i])) / tau_i)
}
}
if (D_type == "common") {
inv_D <- diag(1 / diag(D))
D <- array(NA, c(p, p, g))
for (i in 1 : g) {
B_inv_D <- sweep(as.matrix(B[,, i]), 1, diag(inv_D), "*")
beta <- (inv_D - B_inv_D %*%
(chol.inv(diag(q) + t(B_inv_D) %*% B[,, i])) %*%
t(B_inv_D)) %*% B[,, i]
Ymu <- sweep(Y, 2, mu[, i, drop = FALSE], '-')
V <- t(Ymu) %*% sweep(Ymu, 1, tau[, i], '*')
W <- diag(q) - t(beta) %*% B[,, i]
tau_i <- sum(tau[, i])
B2 <- try(solve(W * tau_i + t(beta) %*% V %*% beta))
if(any(class(B2) %in% 'try-error')) {
ERR <- "inversion of a singular matrix"
class(ERR) <- "error"
return(ERR)
}
B[,, i] <- V %*% beta %*% B2
D[,, i] <- diag(diag(V) - 2 * diag(B[,, i] %*% t(beta) %*% V) +
rowSums((B[,, i] %*% (W * tau_i + t(beta) %*% V %*% beta)) *
B[,, i]))
}
D <- diag(diag(apply(D, c(1, 2), sum))/n)
}
}
model <- list(g = g, q = q, pivec = pivec, B = B, mu = mu, D = D,
sigma_type = sigma_type, D_type = D_type)
class(model) <- "mfa"
return(model)
} |
predict.bcgam <- function(object, newdata, interval=c("credible"),
level=0.95, parameter=c("mu"), ...)
{
tt <- terms(object)
if (!inherits(object, "bcgam"))
warning("calling predict.bcgam(<fake-bcgam-object>) ...")
if (missing(newdata) || is.null(newdata)) {
mm <- X <- model.matrix(object)
mmDone <- TRUE
offset <- object$offsetn
}
else {
Terms <- delete.response(tt)
m <- model.frame(Terms, newdata, na.action = na.pass,
xlev = object$levels)
if (!is.null(cl <- attr(Terms, "dataClasses")))
.checkMFClasses(cl, m)
X <- model.matrix(Terms, m, contrasts.arg = object$contrasts)
offset <- rep(0, nrow(X))
if (!is.null(off.num <- attr(tt, "offset")))
for (i in off.num) offset <- offset + eval(attr(tt,
"variables")[[i + 1]], newdata)
if (!is.null(object$call$offset))
offset <- offset + eval(object$call$offset, newdata)
mmDone <- FALSE
}
n=length(object$y)
L=length(object$xmat)/n
delta.newdata<-NULL
incr<-NULL
decr<-NULL
zmatb.newdata<-NULL
xmat.newdata<-cbind(X)
no.rows=dim(newdata)[1]
v=1:no.rows*0+1
for(i in 1:L){
Xi=X[,object$ind_nonparam[i]]
if(object$shapes[i]==1){
delta.newdata=rbind( delta.newdata,monincr(Xi,object$knots[[i]])$sigma-object$center.delta[[i]] )}
if(object$shapes[i]==2){
delta.newdata=rbind( delta.newdata,mondecr(Xi,object$knots[[i]])$sigma-object$center.delta[[i]] )}
if(object$shapes[i]==3){ delta.i=convex(Xi, object$knots[[i]], pred.new=TRUE)
delta.newdata=rbind( delta.newdata,delta.i$sigma-t(delta.i$x.mat%*%object$center.delta[[i]]) )}
if(object$shapes[i]==4){ delta.i=concave(Xi, object$knots[[i]], pred.new=TRUE)
delta.newdata=rbind( delta.newdata,delta.i$sigma-t(delta.i$x.mat%*%object$center.delta[[i]]) )}
if(object$shapes[i]==5){
delta.newdata=rbind( delta.newdata,incconvex(Xi,object$knots[[i]])$sigma-object$center.delta[[i]] )}
if(object$shapes[i]==7){
delta.newdata=rbind( delta.newdata,incconcave(Xi,object$knots[[i]])$sigma-object$center.delta[[i]] )}
if(object$shapes[i]==6){
delta.newdata=rbind( delta.newdata,decconvex(Xi,object$knots[[i]])$sigma-object$center.delta[[i]] )}
if(object$shapes[i]==8){
delta.newdata=rbind( delta.newdata,decconcave(Xi,object$knots[[i]])$sigma-object$center.delta[[i]] )}
if(object$shapes[i]==1|object$shapes[i]==5|object$shapes[i]==7){incr=c(incr,1)}else{incr=c(incr,0)}
if(object$shapes[i]==2|object$shapes[i]==6|object$shapes[i]==8){decr=c(decr,1)}else{decr=c(decr,0)}
if(incr[i]==0 & decr[i]==0){
zmatb.newdata=cbind(zmatb.newdata,Xi)
}
}
ind.nonparaplusinter=c(1, object$ind_nonparam)
if(no.rows==1){
if(object$ind_intercept==1){
zmatb.newdata=c(v,xmat.newdata[,-(ind.nonparaplusinter)],zmatb.newdata) }
else{zmatb.newdata=c(xmat.newdata[,-(ind.nonparaplusinter)],zmatb.newdata)}
deltazmat=c(t(delta.newdata),zmatb.newdata)
pred.sims=object$coefs.sims%*%deltazmat
}
else{
if(object$ind_intercept==1){
zmatb.newdata=cbind(v,xmat.newdata[,-(ind.nonparaplusinter)],zmatb.newdata) }
else{zmatb.newdata=cbind(xmat.newdata[,-(ind.nonparaplusinter)],zmatb.newdata)}
deltazmat=cbind(t(delta.newdata),zmatb.newdata)
pred.sims=object$coefs.sims%*%t(deltazmat)
}
alpha.upper=1-(1-level)/2
alpha.lower=(1-level)/2
q.upper=function(x){quantile(x,alpha.upper)}
q.lower=function(x){quantile(x,alpha.lower)}
get.predgaussian=function(x){rnorm( rep(1,length(x)) ,x , object$sigma.sims)}
get.predbinomial=function(x){rbinom( rep(1,length(x)), rep(1,length(x)), x) }
get.predpoisson=function(x){rpois( rep(1,length(x)), x) }
if(object$family=="gaussian"){
if(interval=="credible"|interval=="prediction"){
cred.mean=apply(pred.sims,2,mean)
if(interval=="credible"){
if(parameter=="eta"){
cred.sd=apply(pred.sims,2,sd)
cred.upper=apply(pred.sims,2,q.upper)
cred.lower=apply(pred.sims,2,q.lower)
list(cred.mean=cred.mean, cred.sd=cred.sd,
cred.lower=cred.lower, cred.upper=cred.upper,
y.lab="Estimated Mean")
}
else{
if(parameter=="mu"){
cred.sd=apply(pred.sims,2,sd)
cred.upper=apply(pred.sims,2,q.upper)
cred.lower=apply(pred.sims,2,q.lower)
list(cred.mean=cred.mean, cred.sd=cred.sd,
cred.lower=cred.lower, cred.upper=cred.upper,
y.lab="Estimated Mean")
}
else{stop("parameter not valid!")}
}
}
else{
pred.gaussian=apply(pred.sims, 2, get.predgaussian)
pred.mean=apply(pred.gaussian,2,mean)
pred.sd=apply(pred.gaussian,2,sd)
pred.upper=apply(pred.gaussian,2,q.upper)
pred.lower=apply(pred.gaussian,2,q.lower)
list(pred.mean=pred.mean, pred.sd=pred.sd,
pred.lower=pred.lower, pred.upper=pred.upper,
y.lab="Prediction Mean")
}
}
else{stop("incorrect type of interval!")}
}
else{
if(object$family=="binomial"){
if(interval=="credible"|interval=="prediction"){
mu.pred.sims=exp(pred.sims)/(1+exp(pred.sims))
if(interval=="credible"){
if(parameter=="eta"){
cred.mean=apply(pred.sims,2,mean)
cred.sd=apply(pred.sims,2,sd)
cred.upper=apply(pred.sims,2,q.upper)
cred.lower=apply(pred.sims,2,q.lower)
list(cred.mean=cred.mean, cred.sd=cred.sd,
cred.lower=cred.lower, cred.upper=cred.upper,
y.lab="Estimated log(odds)")
}
else{
if(parameter=="mu"){
cred.mean=apply(mu.pred.sims,2,mean)
cred.sd=apply(mu.pred.sims,2,sd)
cred.upper=apply(mu.pred.sims,2,q.upper)
cred.lower=apply(mu.pred.sims,2,q.lower)
list(cred.mean=cred.mean, cred.sd=cred.sd,
cred.lower=cred.lower, cred.upper=cred.upper,
y.lab="Estimated probability")
}
else{stop("parameter not valid!")}
}
}
else{
pred.binomial<-apply(mu.pred.sims, 2, get.predbinomial)
pred.mean<-apply(pred.binomial,2,mean)
pred.sd<-apply(pred.binomial,2,sd)
list(pred.mean=pred.mean, pred.sd=pred.sd,
y.lab="Prediction probability")
}
}
else{stop("incorrect type of interval!")}
}
else{
if(object$family=="poisson"){
if(interval=="credible"|interval=="prediction"){
mu.pred.sims=exp(pred.sims)
if(interval=="credible"){
if(parameter=="eta"){
cred.mean=apply(pred.sims,2,mean)
cred.sd=apply(pred.sims,2,sd)
cred.upper=apply(pred.sims,2,q.upper)
cred.lower=apply(pred.sims,2,q.lower)
list(cred.mean=cred.mean, cred.sd=cred.sd,
cred.lower=cred.lower, cred.upper=cred.upper,
y.lab="Estimated log(counts)")
}
else{
if(parameter=="mu"){
cred.mean=apply(mu.pred.sims,2,mean)
cred.sd=apply(mu.pred.sims,2,sd)
cred.upper=apply(mu.pred.sims,2,q.upper)
cred.lower=apply(mu.pred.sims,2,q.lower)
list(cred.mean=cred.mean, cred.sd=cred.sd,
cred.lower=cred.lower, cred.upper=cred.upper,
y.lab="Estimated counts")
}
else{stop("parameter not valid!")}
}
}
else{
pred.poisson<-apply(mu.pred.sims, 2, get.predpoisson)
pred.mean<-apply(pred.poisson,2,mean)
pred.sd<-apply(pred.poisson,2,sd)
list(pred.mean=pred.mean, pred.sd=pred.sd,
y.lab="Prediction counts")
}
}
else{stop("incorrect type of interval!")}
}
}
}
} |
curve_karcher_mean <- function (beta, mode = "O", rotated = T, scale = F, maxit = 20, ms = "mean")
{
if(ms!="mean"&ms!="median"){warning("ms must be either \"mean\" or \"median\". ms has been set to \"mean\"",immediate. = T)}
if(ms!="median"){ms = "mean"}
mean_scale=NA
mean_scale_q=NA
tmp = dim(beta)
n = tmp[1]
T1 = tmp[2]
N = tmp[3]
q = array(0, c(n, T1, N))
len = rep(0,N)
len_q = rep(0,N)
cent = matrix(0,n,N)
for (ii in 1:N) {
beta1 = beta[,,ii]
centroid1 = calculatecentroid(beta1)
cent[,ii] = -1*centroid1
dim(centroid1) = c(length(centroid1),1)
beta1 = beta1 - repmat(centroid1,1,T1)
beta[,,ii] = beta1
out = curve_to_q(beta1)
q[, , ii] = out$q
len[ii] = out$len
len_q[ii] = out$lenq
}
mu = q[, , 1]
bmu = beta[, , 1]
delta = 0.5
tolv = 1e-04
told = 5 * 0.001
itr = 1
sumd = rep(0, maxit + 1)
sumd[1] = Inf
v = array(0, c(n, T1, N))
normvbar = rep(0, maxit + 1)
if(ms == "median"){
d_i = rep(0,N)
v_d = array(0, c(n, T1, N))
}
cat("\nInitializing...\n")
gam = matrix(0,T1,N)
for (k in 1:N) {
out = find_rotation_seed_unqiue(mu,q[, , k],mode)
gam[,k] = out$gambest
}
gam = t(gam)
gamI = SqrtMeanInverse(t(gam))
bmu = group_action_by_gamma_coord(bmu, gamI)
mu = curve_to_q(bmu)$q
mu[is.nan(mu)] <- 0
while (itr < maxit) {
cat(sprintf("Iteration: %d\n", itr))
mu = mu/sqrt(innerprod_q2(mu, mu))
if (mode=="C"){
basis = find_basis_normal(mu)
}
for (i in 1:N) {
q1 = q[, , i]
out = find_rotation_seed_unqiue(mu,q1,mode)
qn_t = out$q2best/sqrt(innerprod_q2(out$q2best,out$q2best))
q1dotq2 = innerprod_q2(mu,qn_t)
if (q1dotq2 > 1){
q1dotq2 = 1
}
if (q1dotq2 < -1){
q1dotq2 = -1
}
dist = acos(q1dotq2)
u = qn_t - q1dotq2 * q1
normu = sqrt(innerprod_q2(u,u))
if (normu > 1e-4){
w = u*acos(q1dotq2)/normu
} else {
w = matrix(0, nrow(beta1), T1)
}
if (mode=="O"){
v[, , i] = w
} else {
v[, , i] = project_tangent(w, q1, basis)
}
if(ms == "median"){
d_i[i] = sqrt(innerprod_q2(v[,,i], v[,,i]))
if (d_i[i]>0){
v_d[,,i] = v[,,i]/d_i[i]
} else{
v_d[,,i] = v[,,i]
}
}
sumd[itr + 1] = sumd[itr + 1] + dist^2
}
if(ms == "median"){
sumv = rowSums(v_d, dims = 2)
sum_dinv = sum(1/d_i)
vbar = sumv/sum_dinv
}
else{
sumv = rowSums(v, dims = 2)
vbar = sumv/N
}
normvbar[itr] = sqrt(innerprod_q2(vbar, vbar))
normv = normvbar[itr]
if ((sumd[itr]-sumd[itr+1]) < 0){
break
} else if ((normv > tolv) && (abs(sumd[itr + 1] - sumd[itr]) > told)) {
mu = cos(delta * normvbar[itr]) * mu + sin(delta *
normvbar[itr]) * vbar/normvbar[itr]
if (mode == "C") {
mu = project_curve(mu)
}
x = q_to_curve(mu)
a = -1 * calculatecentroid(x)
dim(a) = c(length(a), 1)
betamean = x + repmat(a, 1, T1)
}
else {
break
}
itr = itr + 1
}
if (scale){
mean_scale = prod(len)^(1/length(len))
mean_scale_q = prod(len_q)^(1/length(len))
betamean = mean_scale*betamean
}
ifelse(ms=="median",type<-"Karcher Median",type<-"Karcher Mean")
return(list(beta = beta, mu = mu, type = type, betamean = betamean, v = v, q = q,
E=normvbar[1:itr], cent = cent, len = len, len_q = len_q,
qun = sumd[1:itr], mean_scale = mean_scale, mean_scale_q=mean_scale_q))
} |
auroc <- function(score, bool) {
n1 <- sum(!bool)
n2 <- sum(bool)
U <- sum(rank(score)[!bool]) - n1 * (n1 + 1) / 2
return(1 - U / n1 / n2)
}
set.seed(42)
score <- sample(10, 1e3, replace = TRUE)
bool <- sample(c(TRUE, FALSE), 1e3, replace = TRUE)
pROC::auc(bool, score)
mltools::auc_roc(score, bool)
ROCR::performance(ROCR::prediction(score, bool), "auc")@y.values[[1]]
auroc(score, bool)
bigstatsr::AUC(score, bool + 0L)
microbenchmark::microbenchmark(
pROC::auc(bool, score),
mltools::auc_roc(score, bool),
ROCR::performance(ROCR::prediction(score, bool), "auc")@y.values,
auroc(score, bool),
bigstatsr::AUC(score, bool + 0L),
times = 5
)
auroc(score, bool)
bigstatsr::AUC(score, bool + 0L)
microbenchmark::microbenchmark(
auroc(score, bool),
bigstatsr::AUC(score, bool + 0L),
times = 500
)
score <- sample(10, 1e5, replace = TRUE)
bool <- sample(c(TRUE, FALSE), 1e5, replace = TRUE)
auroc(score, bool)
bigstatsr::AUC(score, bool + 0L)
microbenchmark::microbenchmark(
auroc(score, bool),
bigstatsr::AUC(score, bool + 0L),
times = 20
)
score <- rnorm(1e5)
bool <- sample(c(TRUE, FALSE), 1e5, replace = TRUE)
bool2 <- bool + 0L
auroc(score, bool)
bigstatsr::AUC(score, bool2)
microbenchmark::microbenchmark(
auroc(score, bool),
bigstatsr::AUC(score, bool2),
times = 20
) |
context("test-summ_separation")
classmetric_sep_methods <- c("GM", "OP", "F1", "MCC")
test_that("summ_separation works with method 'KS'", {
p_f <- new_p(data.frame(x = 1:4, prob = 1:4 / 10), "discrete")
p_g <- new_p(data.frame(x = 1:4, prob = 4:1 / 10), "discrete")
expect_equal(summ_separation(p_f, p_g, method = "KS"), 2)
expect_equal(summ_separation(p_g, p_f, method = "KS"), 2)
p_f <- new_p(data.frame(x = 1:4, y = c(1, 0, 0, 1)), "continuous")
p_g <- new_p(
data.frame(x = c(1.5, 2.5, 4.5), prob = c(0.1, 0.7, 0.3)), "discrete"
)
expect_equal(summ_separation(p_f, p_g, method = "KS"), 2)
expect_equal(summ_separation(p_g, p_f, method = "KS"), 2)
p_f <- new_p(data.frame(x = c(0, 1), y = c(0, 2)), "continuous")
p_g <- new_p(data.frame(x = c(0, 1), y = c(2, 0)), "continuous")
expect_equal(summ_separation(p_f, p_g, method = "KS"), 0.5)
expect_equal(summ_separation(p_g, p_f, method = "KS"), 0.5)
})
test_that("summ_separation works with methods from `summ_classmetric`", {
p_f <- new_d(1:4, "discrete")
p_g <- new_d(2:6 + 0.1, "discrete")
expect_equal(summ_separation(p_f, p_g, "GM"), 3, tolerance = 4e-4)
expect_equal(summ_separation(p_g, p_f, "GM"), 3, tolerance = 4e-4)
p_f <- new_d(seq(-5, 4, by = 1), "discrete")
p_g <- as_d(dnorm)
expect_equal(summ_separation(p_f, p_g, "GM"), -1, tolerance = 1e-3)
expect_equal(summ_separation(p_g, p_f, "GM"), -1, tolerance = 1e-3)
p_f <- as_d(dunif, min = -2)
p_g <- as_d(dnorm)
expect_equal(summ_separation(p_f, p_g, "GM"), -0.331789, tolerance = 3e-8)
expect_equal(summ_separation(p_g, p_f, "GM"), -0.331789, tolerance = 3e-8)
})
test_that("summ_separation returns smallest among alternatives", {
d_1 <- new_d(data.frame(x = 1:4, y = c(0, 1, 0, 0)), "continuous")
d_2 <- new_d(data.frame(x = 3:6, y = c(0, 0, 1, 0)), "continuous")
expect_equal(summ_separation(d_1, d_2, "KS"), 3)
expect_equal(summ_separation(d_1, d_2, "GM"), 3)
expect_equal(summ_separation(d_1, d_2, "OP"), 3)
expect_equal(summ_separation(d_1, d_2, "F1"), 3)
expect_equal(summ_separation(d_1, d_2, "MCC"), 3)
})
test_that("summ_separation uses `n_grid` argument", {
f_con <- new_d(data.frame(x = c(0, 1), y = c(1, 1)), "continuous")
g_con <- new_d(data.frame(x = c(0, 1.5), y = c(1, 1) / 1.5), "continuous")
expect_equal(
summ_separation(f_con, g_con, method = "GM", n_grid = 4), 0.5
)
})
test_that("summ_separation works with non-overlapping supports", {
cur_dis_1 <- new_p(1:4, "discrete")
cur_dis_2 <- new_p(5:6, "discrete")
cur_con_1 <- new_p(data.frame(x = 1:4, y = c(1, 1) / 3), "continuous")
cur_con_2 <- new_p(data.frame(x = 5:6, y = c(1, 1)), "continuous")
cur_con_3 <- new_p(data.frame(x = 4:5, y = c(1, 1)), "continuous")
cur_dirac_1 <- new_d(1, "continuous")
cur_dirac_2 <- new_d(2, "continuous")
expect_equal(summ_separation(cur_dis_1, cur_dis_2), 4.5)
expect_equal(summ_separation(cur_dis_2, cur_dis_1), 4.5)
expect_equal(
summ_separation(new_p(1:2, "discrete"), new_p(2:3, "discrete")), 2
)
expect_equal(
summ_separation(new_p(2:3, "discrete"), new_p(1:2, "discrete")), 2
)
expect_equal(summ_separation(cur_dis_1, cur_con_2), 4.5)
expect_equal(summ_separation(cur_con_2, cur_dis_1), 4.5)
expect_equal(summ_separation(cur_dis_1, cur_con_3), 4)
expect_equal(summ_separation(cur_con_3, cur_dis_1), 4)
expect_equal(summ_separation(cur_con_1, cur_con_2), 4.5)
expect_equal(summ_separation(cur_con_2, cur_con_1), 4.5)
expect_equal(summ_separation(cur_con_1, cur_con_3), 4)
expect_equal(summ_separation(cur_con_3, cur_con_1), 4)
expect_equal(summ_separation(cur_dirac_1, cur_dirac_2), 1.5)
expect_equal(summ_separation(cur_dirac_2, cur_dirac_1), 1.5)
})
test_that("summ_separation validates input", {
expect_error(summ_separation("a", d_dis), "`f`.*not pdqr-function")
expect_error(summ_separation(d_dis, "a"), "`g`.*not pdqr-function")
expect_error(summ_separation(d_dis, d_con, method = 1), "`method`.*string")
expect_error(
summ_separation(d_dis, d_con, method = "a"), "`method`.*one of"
)
expect_error(
summ_separation(d_dis, d_con, n_grid = "a"), "`n_grid`.*number"
)
expect_error(
summ_separation(d_dis, d_con, n_grid = 1:2), "`n_grid`.*single"
)
})
test_that("separation_ks works with two 'discrete' functions", {
p_f <- new_d(1:3, "discrete")
p_g <- new_d(1:3 + 1.5, "discrete")
expect_equal(separation_ks(p_f, p_g), 3)
expect_equal(separation_ks(p_g, p_f), 3)
expect_equal(
separation_ks(
new_p(data.frame(x = 1:4, prob = 1:4 / 10), "discrete"),
new_p(data.frame(x = 1:4, prob = 4:1 / 10), "discrete")
),
2
)
p_f <- as_p(ppois, lambda = 10)
p_g <- as_p(ppois, lambda = 5)
expect_equal(separation_ks(p_f, p_g), 7)
})
test_that("separation_ks works with mixed-type functions", {
cur_dis <- new_p(1:10, "discrete")
cur_con <- new_p(data.frame(x = c(0, 10), y = c(1, 1) / 10), "continuous")
expect_equal(separation_ks(cur_dis, cur_con), 1)
expect_equal(separation_ks(cur_con, cur_dis), 1)
expect_equal(
separation_ks(
new_p(data.frame(x = 1:2, y = c(1, 1)), "continuous"),
new_p(2, "discrete")
),
2
)
p_dis_2 <- new_p(data.frame(x = 2:3, prob = c(0.5, 0.5)), "discrete")
p_con_2 <- new_p(data.frame(x = 1:4, y = c(1, 0, 0, 1)), "continuous")
expect_equal(separation_ks(p_dis_2, p_con_2), 2)
p_dis_3 <- new_p(2.5, "discrete")
p_con_3 <- new_p(data.frame(x = 1:4, y = c(1, 0, 0, 1)), "continuous")
expect_equal(separation_ks(p_dis_3, p_con_3), 2)
})
test_that("separation_ks works with two 'continuous' functions", {
p_f <- new_p(data.frame(x = 0:1, y = c(2, 0)), "continuous")
p_g <- new_p(data.frame(x = c(0.5, 1, 1.5), y = c(0, 2, 0)), "continuous")
expect_equal(separation_ks(p_f, p_g), 2 / 3)
expect_equal(separation_ks(p_g, p_f), 2 / 3)
p_f <- new_p(
data.frame(x = c(1:3, 5, 7), y = c(0, 0.5, 0, 0.25, 0)), "continuous"
)
p_g <- new_p(
data.frame(x = c(1:3, 5, 7) + 0.5, y = c(0, 0.5, 0, 0.25, 0)), "continuous"
)
expect_equal(separation_ks(p_f, p_g), 2.25)
p_f <- as_p(punif)
p_g <- as_p(punif, min = -1, max = 3)
expect_equal(separation_ks(p_f, p_g), 1)
p_f <- new_p(data.frame(x = 1:4, y = c(1, 0, 0, 1)), "continuous")
p_g <- new_p(data.frame(x = 0:5, y = c(0, 1, 0, 0, 1, 0) / 2), "continuous")
expect_equal(separation_ks(p_f, p_g), 1)
p_f <- new_p(data.frame(x = 1:4, y = c(0, 1, 0, 0)), "continuous")
p_g <- new_p(data.frame(x = 3:6, y = c(0, 0, 1, 0)), "continuous")
expect_equal(separation_ks(p_f, p_g), 3)
})
test_that("separation_ks works with identical inputs", {
expect_equal(separation_ks(d_dis, d_dis), meta_support(d_dis)[1])
expect_equal(separation_ks(d_con, d_con), meta_support(d_con)[1])
d_dirac <- new_d(2, "continuous")
expect_equal(
separation_ks(d_dirac, d_dirac), meta_support(d_dirac)[1],
tolerance = 1e-9
)
})
test_that("separation_ks works with dirac-like functions", {
d_dirac <- new_d(2, "continuous")
d_dirac_dis <- new_d(2, "discrete")
expect_equal(separation_ks(d_dis, d_dirac), separation_ks(d_dis, d_dirac_dis))
expect_equal(separation_ks(d_dirac, d_dirac_dis), 2, tolerance = 1e-10)
expect_equal(
separation_ks(d_con, d_dirac), separation_ks(d_con, d_dirac_dis)
)
})
test_that("separation_classmetric works with two 'discrete' functions", {
f_dis <- new_d(1:4, "discrete")
g_dis <- new_d(2:6 + 0.1, "discrete")
separations <- vapply(
classmetric_sep_methods, separation_classmetric, numeric(1),
f = f_dis, g = g_dis
)
expect_equal(
separations, c(GM = 3, OP = 3, F1 = 2, MCC = 4), tolerance = 5e-4
)
})
test_that("separation_classmetric works with mixed-type functions", {
f_dis <- new_d(seq(-5, 4, by = 1), "discrete")
g_con <- as_d(dnorm)
separations <- vapply(
classmetric_sep_methods, separation_classmetric, numeric(1),
f = f_dis, g = g_con
)
expect_equal(
separations, c(GM = -1, OP = 0, F1 = -2, MCC = -2), tolerance = 5e-4
)
})
test_that("separation_classmetric works with two 'continuous' functions", {
f_con <- as_d(dunif, min = -2)
g_con <- as_d(dnorm)
separations <- vapply(
classmetric_sep_methods, separation_classmetric, numeric(1),
f = f_con, g = g_con
)
expect_equal(
separations[c("GM", "OP", "F1")],
c(GM = -0.331789, OP = -0.2291151, F1 = -1.3043396),
tolerance = 6e-8
)
expect_equal(separations["MCC"], c(MCC = 1), tolerance = 2e-4)
})
test_that("separation_classmetric works with different pdqr classes", {
expect_equal(
separation_classmetric(d_dis, d_con, "GM"),
separation_classmetric(p_dis, q_con, "GM")
)
}) |
context("compare_models")
cds <- load_a549()
test_that("compare_models() correctly deems NB better than Poisson",{
test_cds = cds[rowData(cds)$gene_short_name == "ANGPTL4",]
zinb_cds = test_cds
zinb_fit = fit_models(zinb_cds, expression_family = "zinegbinomial", model_formula_str = "~log_dose")
zipoisson_cds = test_cds
zipoisson_fit = fit_models(zipoisson_cds,expression_family = "zipoisson", model_formula_str = "~log_dose")
nb_cds = test_cds
nb_fit = fit_models(nb_cds, model_formula_str = "~log_dose", expression_family = "negbinomial")
nb_reduced_fit = fit_models(nb_cds, model_formula_str = "~1", expression_family = "negbinomial")
nb_comparison = suppressWarnings(compare_models(nb_fit, nb_reduced_fit))
expect_equal(nb_comparison$p_value[1], 0.0000228, tolerance=1e-3)
nb_fit = fit_models(nb_cds, model_formula_str = "~log_dose", clean_model = FALSE, expression_family = "negbinomial")
nb_reduced_fit = fit_models(nb_cds, model_formula_str = "~1", clean_model = FALSE, expression_family = "negbinomial")
require("lmtest")
lmtest_lrt_pval = lmtest::lrtest(nb_fit$model[[1]], nb_reduced_fit$model[[1]])[2,5]
expect_equal(nb_comparison$p_value[1], lmtest_lrt_pval)
skip("currently failing")
nb_vs_zipoisson_comparison = compare_models(nb_fit, zipoisson_fit)
expect_equal(nb_vs_zipoisson_comparison$p_value[1], NA_real_)
zinb_vs_zipoisson_comparison = compare_models(zinb_fit, zipoisson_fit)
expect_equal(zinb_vs_zipoisson_comparison$p_value[1], NA_real_)
}) |
myoptim <- function(no_of_studies, study_optim, ref_dat_optim, X_rbind, X_bdiag_list, C, initial_val, threshold, model_optim, missing_covariance_study_indices, different_intercept, no_of_iter_outer)
{
beta_old <- as.vector(initial_val)
eps_inner <- 0
study <- study_optim
ref_dat <- ref_dat_optim
threshold_optim <- threshold
status = 1
X_abdiag = Reduce(magic::adiag,X_bdiag_list)
if(different_intercept == FALSE)
{
iter = 0
continue <- TRUE
r_first_U <- c()
r_second_U <- c()
U <- matrix(NA, nrow(C), nrow(ref_dat))
Gamma_hat <- matrix(NA, nrow(C), ncol(ref_dat))
while(continue)
{
r = c()
r_first <- c()
r_second <- c()
Dn_1 <- matrix(NA, ncol(ref_dat), nrow(C))
Dn_2 <- c()
W_star_first_list <- list()
V <- c()
k_j <- 1
W_temp_1 <- as.vector((1/(1 + exp(-ref_dat %*% beta_old)))*(1/(1 + exp(ref_dat %*% beta_old))))
W <- diag(W_temp_1)
e1 <- as.vector(1/(1 + exp(-ref_dat %*% beta_old)))
e2 <- as.vector((exp(-ref_dat %*% beta_old) - 1)/(exp(-ref_dat %*% beta_old) + 1))
e3 <- as.vector(1/(1 + exp(ref_dat %*% beta_old)))
l <- e1*e2*e3
nan_indices <- which(l %in% NaN == TRUE)
l[nan_indices] <- 0
L <- diag(l)
for(k in 1 : no_of_studies)
{
r_first[[k]] <- e1
col_ind <- which(colnames(ref_dat) %in% names(study[[k]][[1]]) == TRUE)
r_second[[k]] <- as.vector(1/(1 + exp(-ref_dat[,col_ind] %*% study[[k]][[1]])))
Dn_2 <- c(Dn_2, as.vector(t(ref_dat[,col_ind]) %*% (r_first[[k]] - r_second[[k]])))
ncol_study <- length(col_ind)
Dn_1[,k_j: (k_j + ncol_study -1)] <- t(ref_dat) %*% W %*% ref_dat[, col_ind]
W_star_first_list[[k]] <- W %*% ref_dat[,col_ind]
k_j <- k_j + ncol_study
r = c(r, (r_first[[k]] - r_second[[k]]))
}
Dn <- Dn_1 %*% C %*% Dn_2
L = diag(rep(l, no_of_studies))
V = as.vector(t(r) %*% X_abdiag %*% C %*% t(X_abdiag) %*% L)
W_star_second <- diag(V)
W_star_first <- Reduce(magic::adiag,W_star_first_list) %*% C %*% t(Reduce(magic::adiag,W_star_first_list))
W_star <- W_star_first + W_star_second
J_n <- t(X_rbind) %*% W_star %*% X_rbind
if(det(J_n) == 0)
{
beta_old <- rep(NA, ncol(ref_dat))
break;
}
beta_new <- beta_old - (solve(J_n, tol=1e-60) %*% Dn)
eps_inner <- sqrt(sum((beta_new - beta_old)^2))
beta_old <- beta_new
iter = iter + 1
if(eps_inner < threshold_optim || iter > 2000)
{
continue <- FALSE
if(iter >= 2000 && eps_inner >= threshold_optim)
{
status = 0
}
}
}
no_of_iter_outer <- no_of_iter_outer + 1
if(sum(is.na(beta_old)) == 0)
{
study_indices <- seq(1,no_of_studies,1)
non_missing_covariance_study_indices <- study_indices[-which(study_indices %in% missing_covariance_study_indices)]
lambda_ref <- list()
if(length(missing_covariance_study_indices) > 0)
{
for(k in missing_covariance_study_indices)
{
col_ind <- which(colnames(ref_dat) %in% names(study[[k]][[1]]) == TRUE)
w_lambda_ref_logistic_vec <- (((1/(1 + exp(ref_dat[,col_ind] %*% study[[k]][[1]])))^2)*(1/(1 + exp(-ref_dat %*% beta_old)))) + (((1/(1 + exp(-ref_dat[,col_ind] %*% study[[k]][[1]])))^2)*(1/(1 + exp(ref_dat %*% beta_old))))
W_lambda_ref_logistic <- diag(as.vector(w_lambda_ref_logistic_vec))
lambda_ref[[k]] <- (t(ref_dat[,col_ind]) %*% W_lambda_ref_logistic %*% ref_dat[,col_ind])/(study[[k]][[3]])
}
for(k in non_missing_covariance_study_indices)
{
col_ind <- which(colnames(ref_dat) %in% names(study[[k]][[1]]) == TRUE)
temp_weight_logistic <- as.vector((1/(1 + exp(-ref_dat[, col_ind] %*% study[[k]][[1]])))*(1/(1 + exp(ref_dat[,col_ind] %*% study[[k]][[1]]))))
W_k <- t(ref_dat[,col_ind]) %*% diag(temp_weight_logistic) %*% ref_dat[,col_ind]
lambda_ref[[k]] <- (W_k %*% study[[k]][[2]] %*% t(W_k))/(nrow(ref_dat))
}
}
if(length(missing_covariance_study_indices) == 0)
{
for(k in 1 : no_of_studies)
{
col_ind <- which(colnames(ref_dat) %in% names(study[[k]][[1]]) == TRUE)
temp_weight_logistic <- as.vector((1/(1 + exp(-ref_dat[, col_ind] %*% study[[k]][[1]])))*(1/(1 + exp(ref_dat[,col_ind] %*% study[[k]][[1]]))))
W_k <- t(ref_dat[,col_ind]) %*% diag(temp_weight_logistic) %*% ref_dat[,col_ind]
lambda_ref[[k]] <- (W_k %*% study[[k]][[2]] %*% t(W_k))/(nrow(ref_dat))
}
}
Lambda_ref <- Reduce(magic::adiag,lambda_ref)
k_U = 1
r_first_1 <- as.vector(1/(1 + exp(-ref_dat %*% beta_old)))
W_Gamma_temp_1 <- as.vector((1/(1 + exp(-ref_dat %*% beta_old)))*(1/(1 + exp(ref_dat %*% beta_old))))
for(k in 1: no_of_studies)
{
col_ind <- which(colnames(ref_dat) %in% names(study[[k]][[1]]) == TRUE)
r_first_U[[k]] <- r_first_1
r_second_U[[k]] <- as.vector(1/(1 + exp(-ref_dat[,col_ind] %*% study[[k]][[1]])))
U[k_U:(k_U + length(col_ind)-1), ] <- t(ref_dat[ ,col_ind]) %*% diag(r_first_U[[k]]-r_second_U[[k]])
Gamma_hat[k_U:(k_U + length(col_ind)-1), ] <- t(ref_dat[, col_ind]) %*% diag(W_Gamma_temp_1) %*% ref_dat
k_U <- k_U + length(col_ind)
}
Delta_hat <- (U %*% t(U))/(nrow(ref_dat))
C_beta <- solve(Lambda_ref + Delta_hat, tol = 1e-60)
Gamma_hat <- Gamma_hat/nrow(ref_dat)
info <- (t(Gamma_hat) %*% C_beta %*% Gamma_hat)
if(det(info) == 0)
{
asy_var_opt = NULL
}else{
if(no_of_iter_outer == 1)
{
if(det(t(Gamma_hat) %*% Gamma_hat) == 0)
{
asy_var_opt = NULL
}else{
asy_var_opt <- (solve(t(Gamma_hat) %*% Gamma_hat, tol = 1e-60) %*% (t(Gamma_hat) %*% (Lambda_ref + Delta_hat) %*% Gamma_hat) %*% solve(t(Gamma_hat) %*% Gamma_hat, tol = 1e-60))/(nrow(ref_dat))
}
}
asy_var_opt <- solve(info, tol = 1e-60)/nrow(ref_dat)
}
}
if(sum(is.na(beta_old)) > 0)
{
asy_var_opt = NULL
C_beta = NULL
}
return(list("beta_optim" = beta_old, "C_optim" = C_beta, "Asy_var_optim" = asy_var_opt, "iter_IRWLS" = iter - 1, "Status" = status))
}
if(different_intercept == TRUE)
{
W_Gamma <- list()
X_rbind_star <- matrix(0, nrow(ref_dat)*no_of_studies, length(beta_old))
k_X_rbind_star <- 1
for(k in 1:no_of_studies)
{
X_rbind_star[(k_X_rbind_star:(k_X_rbind_star + nrow(ref_dat) -1)),k] <- 1
X_rbind_star[(k_X_rbind_star:(k_X_rbind_star + nrow(ref_dat) -1)), ((no_of_studies + 1):length(beta_old))] <- ref_dat[,-1]
k_X_rbind_star <- k_X_rbind_star + nrow(ref_dat)
}
iter = 0
continue <- TRUE
r_first_U <- c()
r_second_U <- c()
U <- matrix(NA, nrow(C), nrow(ref_dat))
Gamma_hat <- matrix(NA, nrow(C), length(beta_old))
while(continue)
{
beta_k <- list()
for(k in 1:no_of_studies)
{
beta_k[[k]] <- beta_old[c(k,((no_of_studies + 1):length(beta_old)))]
}
r_first <- c()
r_second <- c()
r <- c()
Dn_1 <- matrix(NA, length(beta_old), nrow(C))
Dn_2 <- c()
W <- list()
L <- list()
W_star_first_list <- list()
V <- c()
k_j <- 1
for(k in 1:no_of_studies)
{
W_temp_1 <- as.vector((1/(1 + exp(-ref_dat %*% beta_k[[k]])))*(1/(1 + exp(ref_dat %*% beta_k[[k]]))))
W[[k]] <- diag(W_temp_1)
}
for(k in 1:no_of_studies)
{
e1 <- as.vector(1/(1 + exp(-ref_dat %*% beta_k[[k]])))
e2 <- as.vector((exp(-ref_dat %*% beta_k[[k]]) - 1)/(exp(-ref_dat %*% beta_k[[k]]) + 1))
e3 <- as.vector(1/(1 + exp(ref_dat %*% beta_k[[k]])))
l <- e1*e2*e3
nan_indices <- which(l %in% NaN == TRUE)
l[nan_indices] <- 0
L[[k]] <- diag(l)
}
k_j_star <- 1
for(k in 1 : no_of_studies)
{
r_first[[k]] <- as.vector(1/(1 + exp(-ref_dat %*% beta_k[[k]])))
col_ind <- which(colnames(ref_dat) %in% names(study[[k]][[1]]) == TRUE)
r_second[[k]] <- as.vector(1/(1 + exp(-ref_dat[,col_ind] %*% study[[k]][[1]])))
Dn_2 <- c(Dn_2, as.vector(t(ref_dat[,col_ind]) %*% (r_first[[k]] - r_second[[k]])))
ncol_study <- length(col_ind)
Dn_1[,k_j: (k_j + ncol_study -1)] <- t(X_rbind_star[k_j_star:(k_j_star + nrow(ref_dat) - 1), ]) %*% W[[k]] %*% ref_dat[, col_ind]
W_star_first_list[[k]] <- W[[k]] %*% ref_dat[,col_ind]
k_j <- k_j + ncol_study
k_j_star <- k_j_star + nrow(ref_dat)
r = c(r, (r_first[[k]] - r_second[[k]]))
}
Dn <- Dn_1 %*% C %*% Dn_2
V = as.vector(t(r) %*% X_abdiag %*% C %*% t(X_abdiag) %*% Reduce(magic::adiag,L))
W_star_second <- diag(V)
W_star_first <- Reduce(magic::adiag,W_star_first_list) %*% C %*% t(Reduce(magic::adiag,W_star_first_list))
W_star <- W_star_first + W_star_second
J_n <- t(X_rbind_star) %*% W_star %*% X_rbind_star
if(det(J_n) == 0)
{ beta_old <- rep(NA, (ncol(ref_dat) - 1 + no_of_studies))
break;
}
beta_new <- beta_old - (solve(J_n, tol = 1e-60) %*% Dn)
eps_inner <- sqrt(sum((beta_new - beta_old)^2))
beta_old <- beta_new
iter = iter + 1
if(eps_inner < threshold_optim || iter > 2000)
{
continue <- FALSE
if(iter >= 2000 && eps_inner >= threshold_optim)
{
status = 0
}
}
}
no_of_iter_outer <- no_of_iter_outer + 1
if(sum(is.na(beta_old)) == 0)
{
for(k in 1:no_of_studies)
{
beta_k[[k]] <- beta_old[c(k,((no_of_studies + 1):length(beta_old)))]
}
study_indices <- seq(1,no_of_studies,1)
non_missing_covariance_study_indices <- study_indices[-which(study_indices %in% missing_covariance_study_indices)]
lambda_ref <- list()
if(length(missing_covariance_study_indices) > 0)
{
for(k in missing_covariance_study_indices)
{
col_ind <- which(colnames(ref_dat) %in% names(study[[k]][[1]]) == TRUE)
w_lambda_ref_logistic_vec <- (((1/(1 + exp(ref_dat[,col_ind] %*% study[[k]][[1]])))^2)*(1/(1 + exp(-ref_dat %*% beta_k[[k]])))) + (((1/(1 + exp(-ref_dat[,col_ind] %*% study[[k]][[1]])))^2)*(1/(1 + exp(ref_dat %*% beta_k[[k]]))))
W_lambda_ref_logistic <- diag(as.vector(w_lambda_ref_logistic_vec))
lambda_ref[[k]] <- (t(ref_dat[,col_ind]) %*% W_lambda_ref_logistic %*% ref_dat[,col_ind])/(study[[k]][[3]])
}
for(k in non_missing_covariance_study_indices)
{
col_ind <- which(colnames(ref_dat) %in% names(study[[k]][[1]]) == TRUE)
temp_weight_logistic <- as.vector((1/(1 + exp(-ref_dat[, col_ind] %*% study[[k]][[1]])))*(1/(1 + exp(ref_dat[,col_ind] %*% study[[k]][[1]]))))
W_k <- t(ref_dat[,col_ind]) %*% diag(temp_weight_logistic) %*% ref_dat[,col_ind]
lambda_ref[[k]] <- (W_k %*% study[[k]][[2]] %*% t(W_k))/(nrow(ref_dat))
}
}
if(length(missing_covariance_study_indices) == 0)
{
for(k in 1 : no_of_studies)
{
col_ind <- which(colnames(ref_dat) %in% names(study[[k]][[1]]) == TRUE)
temp_weight_logistic <- as.vector((1/(1 + exp(-ref_dat[, col_ind] %*% study[[k]][[1]])))*(1/(1 + exp(ref_dat[,col_ind] %*% study[[k]][[1]]))))
W_k <- t(ref_dat[,col_ind]) %*% diag(temp_weight_logistic) %*% ref_dat[,col_ind]
lambda_ref[[k]] <- (W_k %*% study[[k]][[2]] %*% t(W_k))/(nrow(ref_dat))
}
}
Lambda_ref <- Reduce(magic::adiag,lambda_ref)
k_U = 1
k_j_star <- 1
for(k in 1: no_of_studies)
{
col_ind <- which(colnames(ref_dat) %in% names(study[[k]][[1]]) == TRUE)
r_first_U[[k]] <- as.vector(1/(1 + exp(-ref_dat %*% beta_k[[k]])))
r_second_U[[k]] <- as.vector(1/(1 + exp(-ref_dat[,col_ind] %*% study[[k]][[1]])))
U[k_U:(k_U + length(col_ind)-1), ] <- t(ref_dat[ ,col_ind]) %*% diag(r_first_U[[k]]-r_second_U[[k]])
W_Gamma_temp_1 <- as.vector((1/(1 + exp(-ref_dat %*% beta_k[[k]])))*(1/(1 + exp(ref_dat %*% beta_k[[k]]))))
Gamma_hat[k_U:(k_U + length(col_ind)-1), ] <- t(ref_dat[, col_ind]) %*% diag(W_Gamma_temp_1) %*% X_rbind_star[k_j_star:(k_j_star + nrow(ref_dat) - 1), ]
k_U <- k_U + length(col_ind)
k_j_star <- k_j_star + nrow(ref_dat)
}
Delta_hat <- (U %*% t(U))/(nrow(ref_dat))
C_beta <- solve(Lambda_ref + Delta_hat, tol = 1e-60)
Gamma_hat <- Gamma_hat/nrow(ref_dat)
info <- (t(Gamma_hat) %*% C_beta %*% Gamma_hat)
if(det(info) == 0)
{
asy_var_opt = NULL
}else{
if(no_of_iter_outer == 1)
asy_var_opt <- (solve(t(Gamma_hat) %*% Gamma_hat, tol = 1e-60) %*% (t(Gamma_hat) %*% (Lambda_ref + Delta_hat) %*% Gamma_hat) %*% solve(t(Gamma_hat) %*% Gamma_hat, tol = 1e-60))/(nrow(ref_dat))
asy_var_opt <- solve(info, tol = 1e-60)/nrow(ref_dat)
}
}
if(sum(is.na(beta_old)) > 0)
{
asy_var_opt = NULL
C_beta = NULL
}
return(list("beta_optim" = beta_old, "C_optim" = C_beta, "Asy_var_optim" = asy_var_opt, "iter_IRWLS" = iter - 1, "Status" = status))
}
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.