code
stringlengths
1
13.8M
set.seed(10) library(mvtnorm) library(mcmcse) library(stableGR) p <- 5 N <- 10000 tail.ind <- floor(N*.80):N foo <- matrix(.50, nrow=p, ncol=p) sigma <- foo^(abs(col(foo)-row(foo))) mu <- sample(10:20, p) mu2 <- mu[p] mvn.gibbs <- stableGR:::mvn.gibbs out.gibbs1 <- mvn.gibbs(N = N, mu = mu, sigma = sigma, p = p) out.gibbs2 <- mvn.gibbs(N = N, mu = mu, sigma = sigma, p = p) obj <- list(out.gibbs1, out.gibbs2) outwithfun <- stable.GR(obj, blather = TRUE, size = "sqroot") withfun <- outwithfun$mpsrf blather <- outwithfun$blather stacked <- rbind(out.gibbs1, out.gibbs2) That <- mcse.multi(stacked, method = "lug", size = sqrt(N))$cov Tmat1 <- mcse.multi(out.gibbs1, method = "lug", size = "sqroot")$cov all.equal(That, blather$AsymVarMatrix) sloan <- stableGR:::size.and.trim(obj, size = "sqroot") trimmedchains <- sloan$trimmedchains stackedchains <- do.call(rbind, trimmedchains) Smat <- var(stackedchains) all.equal(Smat, blather$S) detratio <- det(That)/det(Smat) all.equal(detratio, det(solve(blather$S, blather$AsymVarMatrix))) Nchain <- length(obj) all.equal(2, Nchain) top <- (N-1) + ((detratio)^(1/p)) byhand <- sqrt(top/N) all.equal(byhand, withfun) onechain <- list(out.gibbs1) withfun <- stable.GR(onechain, size = "sqroot")$mpsrf Teigen <- eigen(Tmat1)$values cov1 <- var(out.gibbs1) Seigen <- eigen(cov1)$values detT <- (prod(Teigen)) detS <- (prod(Seigen)) detratio <- detT/detS Nchain <- length(onechain) all.equal(1, Nchain) rhat <- (N-1)/N + ((detratio)^(1/p))/N byhand <- sqrt(rhat) all.equal(byhand, withfun)
HELLNO <- FALSE data.frame <- function ( ..., stringsAsFactors = HELLNO ) { base::data.frame( ..., stringsAsFactors=stringsAsFactors ) } as.data.frame <- function ( x, row.names = NULL, optional = FALSE, stringsAsFactors=HELLNO, ... ){ base::as.data.frame( x, row.names = NULL, optional = FALSE, stringsAsFactors=stringsAsFactors, ... ) }
get_custom_metric <- function(accountId, webPropertyId, customMetricId, token) { path <- sprintf("management/accounts/%s/webproperties/%s/customMetrics/%s", accountId, webPropertyId, customMetricId) get_mgmt(path, token) } list_custom_metrics <- function(accountId, webPropertyId, start.index = NULL, max.results = NULL, token) { path <- sprintf("management/accounts/%s/webproperties/%s/customMetrics", accountId, webPropertyId) list_mgmt(path, list(start.index = start.index, max.results = max.results), token) }
setMethod( f = "plot", signature = "ViSigrid", definition = function(x , scal.unit.tps = 10 , unit.tps = "s" , main = " " , ncharlabel=30 , size.main = 12 , Fontsize.title = 11 , Fontsize.label.Action = 11, Fontsize.label.Time = 11 , Fontsize.label.color = 9, col.main = "black" , col.grid = "grey" , colgreenzone = "green" , colblackzone = "black" , alphainf = 0.8 , alphasup = 1, alphaZones = 0.2 , vp0h = 0.6, vp0w = 0.6, linA = 0.7 , rcircle = 15 , lwdline = 2 , lwd.grid = 1 , lty.grid = 1 ) { book <- methods::slot( x , "book" ) sortindex <- sort( book[ ,4] , index.return = TRUE)$ix if ( any( is.na( book[ , 4] ) ) ) { for (i in seq( 1 , sum( is.na( book[ , 4] ) ), 1) ) { sortindex <- mapply( FUN = function(x , y )(return( if (y >= x ) { return( y + 1) }else{return( y ) } ) ) , x = which( is.na( book[ , 4] ) )[ i ] , y = sortindex ) } } inftps <- max( methods::slot( x , "vect_tps" ) ) lgv <- length( sortindex ) lgH <- length( methods::slot( x , "vect_tps" ) ) - 1 newx <- sapply( c( -0.06 , 0 , 0.06 ) , function(x ) { x * cos( seq( -pi , pi , 2 * pi / 8 ) ) } ) - sapply( c( 0 , 0.3 , 0 ) , function(x ) { -x * sin( seq( -pi , pi , 2 * pi / 8 ) ) } ) + 0.5 newy <- sapply( c( -0.06 , 0 , 0.06 ) , function(x ) { x * sin( seq( -pi , pi , 2 * pi / 8 ) ) } ) - sapply( c( 0 , 0.3 , 0 ) , function(x ) { x * cos( seq( -pi , pi , 2 * pi / 8 ) ) } ) + 0.5 vp0 <- grid::viewport( x = grid::unit( (1 - vp0w ) * 2/3 , "npc" ) , y = grid::unit( (1 - vp0h ) * 2/3 , "npc" ) , width = vp0w , height = vp0h , just = c( 0 , 0 ) , name = "vp0" ) layoutAction <- grid::viewport( layout = grid::grid.layout( lgv , 1 , widths = 1 , heights = 1 ) , name = "layoutAction" ) vplayoutA <- lapply( sortindex , function(x )( grid::viewport( layout.pos.row = which( sortindex == x ) , layout.pos.col = 1 , name = paste0( "vp" , methods::slot( book , "vars")[ x ] ) ) )) names(vplayoutA) = paste0( rep("vp" , lgv ) , methods::slot( book , "vars")[ seq( 1 , lgv , 1 ) ] ) grid::grid.newpage() grid::pushViewport( vp0 ) grid::pushViewport( layoutAction ) for (ia in sortindex ) { grid::pushViewport( vplayoutA[[ which( sortindex == ia ) ]] ) if (methods::slot( book , "typeA")[ ia ] == "p" ) { plotgreenzoneP(book,ia,inftps,colgreenzone,alphaZones) plotblackzoneP(book, ia, inftps, colblackzone, alphaZones) plotpunctual( mat = methods::slot( x , "MATp" ) , iip = which( sortindex[ which( methods::slot( book , "typeA" )[sortindex] == "p" )] == ia ), book = book, colvect = methods::slot( x , "colvect" ) , lgH = lgH , method = methods::slot( x , "parameters")$method , linA = linA ) plotInformersTests(x,book, inftps, ia, alphainf, lwdline, rcircle, linA ,newx, newy) if (length( methods::slot( x , "MATpsup" ) ) > 0 ) { plotpunctualsup(X = methods::slot( x , "MATpsup" ) , idsup = methods::slot( x , "idsup" ) , iip = which( sortindex[ which( methods::slot( book , "typeA" )[sortindex] == "p" )] == ia ) , book = book, method = methods::slot( x , "parameters")$method , linA = linA , lgH = lgH , colvect = methods::slot( x , "colvect" ) , alphasup = alphasup) } }else{ iipp = which(methods::slot( book , "vars")[order(book[ , 4 ] )][which(methods::slot( book , "typeA")[order(book[ , 4 ] )] == "l")] == methods::slot( book , "vars" )[ia] ) plotL( L = methods::slot( x , "L" )[ , c( 2 * sum( methods::slot( book , "typeA" )[sortindex][ seq( 1 , which( sortindex == ia ) , 1) ] == "l" ) - 1 , 2 * sum( methods::slot( book , "typeA" )[sortindex][ seq( 1 , which( sortindex == ia ) , 1) ] == "l" ) ) ] , idsort = methods::slot( x , "idsort" )[ ,iipp ] , inftps = inftps , group = methods::slot( x , "group" ) , BZL = methods::slot( x , "BZL" ) , Lsup = methods::slot( x , "Lsup" ) , idsup = methods::slot( x , "idsup" ) , iip = iipp, t_0 = methods::slot( x , "parameters")$t_0, cols = methods::slot( x , "colvect" ) , linA = linA , alphaZones = alphaZones , alphasup = alphasup , colblackzone = colblackzone) if (is.null( methods::slot( x , "parameters" )$informer ) == FALSE ) { plot_long_informer(x, book, sortindex, iipp, ia, inftps,lwdline,linA,newx, newy) } } grid::upViewport() } grid::upViewport() grid::upViewport() legend_action( book = book ,main = main , size.main = size.main , Fontsize.title = Fontsize.title , Fontsize.label.Action = Fontsize.label.Action, col.main = col.main, ncharlabel=ncharlabel, vp0h = vp0h, vp0w = vp0w,layoutAction=layoutAction,sortindex=sortindex, vplayoutA=vplayoutA) legendgridtimes( vp0, vp0w,vp0h , x , lgv, inftps, scal.unit.tps,col.grid,lwd.grid,lty.grid,Fontsize.label.Time,unit.tps ) legendbottom( x, sortindex, book,vp0w, vp0h, Fontsize.label.color,colblackzone,alphaZones,colgreenzone) } )
blkeig <- function(blk,p,X){ spdensity <- 0.5 if(!is.list(X)){ if(blk[[p,1]] =="s"){ blktmp <- blk[[p,2]] if(length(blktmp) == 1){ out <- eigen(X) d <- out$values V <- out$vectors }else{ d <- matrix(0,sum(blktmp),1) V <- matrix(0,max(dim(X)),max(dim(X))) xx <- mexsvec(blk[p,,drop=FALSE],X,0) blktmp2 <- blktmp *(blktmp+1)/2 s2 <- c(0, cumsum(blktmp2)) blksub <- matrix(list(),1,2) blksub[[1,1]] <- "s" blksub[[1,2]] <- 0 s <- c(0, cumsum(blktmp)) for(i in 1:length(blktmp)){ pos <- c((s[i] +1):s[i+1]) blksub[[2]] <- blktmp[i] Xsub <- mexsmat(blksub,xx[(s2[i]+1):s2[i+1]],0) out <- eigen(Xsub) lam <- out$values d[pos,1] <- lam V[pos,pos] <- out$vectors } } }else if(blk[[p,1]] == "l"){ d = X V <- matrix(1, nrow(X), ncol(X)) } }else{ d <- matrix(list(),nrow(X), ncol(X)) V <- matrix(list(),nrow(X), ncol(X)) for(p in 1:nrow(blk)){ out<- blkeig(blk,p,X[[p]]) d[[p,1]] <- out$d V[[p,1]] <- out$V } } return(list(d=d, V=V)) }
test_that("read_survey() reads data in qualtrics standard and legacy format and converts columns", { survey <- suppressWarnings(qualtRics::read_survey("files/sample.csv")) expect_equal(dim(survey)[1], 1) expect_equal(dim(survey)[2], 20) expect_true(is.numeric(as.numeric(survey$StartDate))) expect_true(is.numeric(survey$LocationLatitude)) survey_legacy <- suppressWarnings( qualtRics::read_survey("files/sample_legacy.csv", legacy = TRUE) ) expect_equal(dim(survey_legacy)[1], 1) expect_equal(dim(survey_legacy)[2], 15) expect_true(is.numeric(as.numeric(survey_legacy$V8))) expect_true(is.numeric(survey_legacy$LocationLatitude)) survey <- suppressWarnings( qualtRics::read_survey("files/sample.csv", col_types = readr::cols(StartDate = readr::col_character())) ) expect_equal(dim(survey)[1], 1) expect_equal(dim(survey)[2], 20) expect_true(is.character(survey$StartDate)) survey_legacy <- suppressWarnings(qualtRics::read_survey( "files/sample_legacy.csv", legacy = TRUE, col_types = readr::cols(StartDate = readr::col_character() ) )) expect_equal(dim(survey)[1], 1) expect_equal(dim(survey)[2], 20) expect_true(is.character(survey$StartDate)) }) test_that("Survey exists to read from disk", { expect_error( qualtRics::read_survey("/users/julia/desktop/error.csv"), "does not exist" ) })
PPP_Model <- function(FQ = NULL, t = NULL, alpha = NULL, truncation = NULL, truncation_type = "lp", dispersion = 1, Status = 0, Comment = "OK") { obj <- list(FQ = FQ, t = t, alpha = alpha, truncation = truncation, truncation_type = truncation_type, dispersion = dispersion, Status = Status, Comment = Comment) class(obj) <- "PPP_Model" if (!is.valid.PPP_Model(obj)) { obj <- list(FQ = NULL, t = NULL, alpha = NULL, truncation = NULL, truncation_type = "lp", dispersion = 1, Status = 2, Comment = is.valid.PPP_Model(obj, comment = TRUE)) class(obj) <- "PPP_Model" } return(obj) } print.PPP_Model <- function(x, ...) { if (!is.positive.finite.number(x$dispersion)) { fq_dist <- "Panjer" } else if (x$dispersion == 1) { fq_dist <- "Poisson" } else if (x$dispersion > 1) { fq_dist <- "Negative Binomial" } else { fq_dist <- "Binomial" } cat("\nPanjer & Piecewise Pareto model\n\n") cat("Collective model with a ", fq_dist, " distribution for the claim count and a Piecewise Pareto distributed severity.", sep = "") cat("\n\n", fq_dist, " Distribution:", sep = "") cat("\nExpected Frequency: ", x$FQ, sep = "") if (is.positive.finite.number(x$dispersion) && x$dispersion != 1) { cat("\nDispersion: ", x$dispersion, sep = "") if (is.positive.finite.number(x$FQ) && x$dispersion > 1) { cat(" (i.e. contagion = ", (x$dispersion - 1)/x$FQ, ")", sep = "") } } cat("\n\nPiecewise Pareto Distribution:") cat("\nThresholds: ", x$t, sep = " ") cat("\nAlphas: ", x$alpha, sep = " ") if (!is.null(x$truncation)) { cat("\nTruncation: ", x$truncation, sep = "") cat("\nTruncation Type: '", x$truncation_type,"'", sep = "") } else { cat("\nThe distribution is not truncated.") } cat("\n\nStatus: ", x$Status) cat("\nComments: ", x$Comment) if (!is.valid.PPP_Model(x)) { cat("\n\nThe model is not valid.\n") cat(is.valid.PPP_Model(x, comment = TRUE)) } cat("\n\n") } is.PPP_Model <- function(x) { if (class(x) == "PPP_Model") { return(TRUE) } else { return(FALSE) } } is.valid.PPP_Model <- function(x, comment = FALSE) { if (class(x) != "PPP_Model" || typeof(x) != "list") { if (!comment) { return(FALSE) } else { return("Object does not have class PPP_Model.") } } required_elements <- c("FQ", "t", "alpha", "truncation", "truncation_type", "dispersion", "Status", "Comment") available <- required_elements %in% names(x) if (sum(!available) > 0) { if (!comment) { return(FALSE) } else { return(paste("Not all required list elements available. Missing elements:", paste(required_elements[!available], collapse = ", "))) } } if (!is.nonnegative.finite.number(x$FQ)) { if (!comment) { return(FALSE) } else { return("FQ must be a nonnegative number.") } } if (!valid.parameters.PiecewisePareto(x$t, x$alpha, x$truncation, x$truncation_type)) { if (!comment) { return(FALSE) } else { return(valid.parameters.PiecewisePareto(x$t, x$alpha, x$truncation, x$truncation_type, comment = TRUE)) } } if (!is.positive.finite.number(x$dispersion)) { if (!comment) { return(FALSE) } else { return("dispersion must be a positive number.") } } if (!comment) { return(TRUE) } else { return("OK") } } PPP_Model_Exp_Layer_Loss_s <- function(Cover, AttachmentPoint, PPP_Model) { if (!is.valid.PPP_Model(PPP_Model)) { warning(is.valid.PPP_Model(PPP_Model, comment = TRUE)) return(NaN) } else { return(PPP_Model$FQ * PiecewisePareto_Layer_Mean(Cover, AttachmentPoint, PPP_Model$t, PPP_Model$alpha, truncation = PPP_Model$truncation, truncation_type = PPP_Model$truncation_type)) } } PPP_Model_Exp_Layer_Loss <- function(Cover, AttachmentPoint, PPP_Model) { .Deprecated("Layer_Mean") PPP_Model_Exp_Layer_Loss_v(Cover, AttachmentPoint, PPP_Model) } PPP_Model_Exp_Layer_Loss_v <- function(Cover, AttachmentPoint, PPP_Model) { if (is.null(Cover) || (is.atomic(Cover) && length(Cover) == 0)) { return(numeric()) } if (is.null(AttachmentPoint) || (is.atomic(AttachmentPoint) && length(AttachmentPoint) == 0)) { return(numeric()) } vecfun <- Vectorize(PPP_Model_Exp_Layer_Loss_s, c("Cover", "AttachmentPoint")) vecfun(Cover, AttachmentPoint, PPP_Model) } PPP_Model_Layer_Var_s <- function(Cover, AttachmentPoint, PPP_Model) { if (!is.valid.PPP_Model(PPP_Model)) { warning(is.valid.PPP_Model(PPP_Model, comment = TRUE)) return(NaN) } else { E_N <- PPP_Model$FQ Var_N <- E_N * PPP_Model$dispersion E_X <- PiecewisePareto_Layer_Mean(Cover, AttachmentPoint, PPP_Model$t, PPP_Model$alpha, truncation = PPP_Model$truncation, truncation_type = PPP_Model$truncation_type) Var_X <- PiecewisePareto_Layer_Var(Cover, AttachmentPoint, PPP_Model$t, PPP_Model$alpha, truncation = PPP_Model$truncation, truncation_type = PPP_Model$truncation_type) return(E_N * Var_X + Var_N * E_X^2) } } PPP_Model_Layer_Var <- function(Cover, AttachmentPoint, PPP_Model) { .Deprecated("Layer_Var") PPP_Model_Layer_Var_v(Cover, AttachmentPoint, PPP_Model) } PPP_Model_Layer_Var_v <- function(Cover, AttachmentPoint, PPP_Model) { if (is.null(Cover) || (is.atomic(Cover) && length(Cover) == 0)) { return(numeric()) } if (is.null(AttachmentPoint) || (is.atomic(AttachmentPoint) && length(AttachmentPoint) == 0)) { return(numeric()) } vecfun <- Vectorize(PPP_Model_Layer_Var_s, c("Cover", "AttachmentPoint")) vecfun(Cover, AttachmentPoint, PPP_Model) } PPP_Model_Layer_Sd_s <- function(Cover, AttachmentPoint, PPP_Model) { if (!is.valid.PPP_Model(PPP_Model)) { warning(is.valid.PPP_Model(PPP_Model, comment = TRUE)) return(NaN) } else { return(sqrt(PPP_Model_Layer_Var_v(Cover, AttachmentPoint, PPP_Model))) } } PPP_Model_Layer_Sd <- function(Cover, AttachmentPoint, PPP_Model) { .Deprecated("Layer_Sd") PPP_Model_Layer_Sd_v(Cover, AttachmentPoint, PPP_Model) } PPP_Model_Layer_Sd_v <- function(Cover, AttachmentPoint, PPP_Model) { if (is.null(Cover) || (is.atomic(Cover) && length(Cover) == 0)) { return(numeric()) } if (is.null(AttachmentPoint) || (is.atomic(AttachmentPoint) && length(AttachmentPoint) == 0)) { return(numeric()) } vecfun <- Vectorize(PPP_Model_Layer_Sd_s, c("Cover", "AttachmentPoint")) vecfun(Cover, AttachmentPoint, PPP_Model) } PPP_Model_Excess_Frequency_s <- function(x, PPP_Model) { if (!is.valid.PPP_Model(PPP_Model)) { warning(is.valid.PPP_Model(PPP_Model, comment = TRUE)) return(NaN) } else if (!is.atomic(x) || !is.numeric(x) || length(x) != 1 || is.na(x)) { warning("x must be a number.") return(NaN) } else { return(PPP_Model$FQ * (1 - pPiecewisePareto(x, PPP_Model$t, PPP_Model$alpha, truncation = PPP_Model$truncation, truncation_type = PPP_Model$truncation_type))) } } PPP_Model_Excess_Frequency <- function(x, PPP_Model) { .Deprecated("Excess_Frequency") PPP_Model_Excess_Frequency_v(x, PPP_Model) } PPP_Model_Excess_Frequency_v <- function(x, PPP_Model) { if (is.null(x) || (is.atomic(x) && length(x) == 0)) { return(numeric()) } vecfun <- Vectorize(PPP_Model_Excess_Frequency_s, "x") vecfun(x, PPP_Model) } PPP_Model_Simulate <- function(n, PPP_Model) { .Deprecated("Simulate_Losses") if (!is.valid.PPP_Model(PPP_Model)) { warning(is.valid.PPP_Model(PPP_Model, comment = TRUE)) return(NaN) } if (!is.positive.finite.number(n)) { warning("n must be a positive number.") return(NaN) } else { n <- ceiling(n) } claim_count <- rPanjer(n, PPP_Model$FQ, PPP_Model$dispersion) claims <- rPiecewisePareto(sum(claim_count), PPP_Model$t, PPP_Model$alpha, PPP_Model$truncation, PPP_Model$truncation_type) result <- matrix(NaN, nrow = n, ncol = max(claim_count)) result[col(result) <= claim_count] <- claims return(result) }
FPLdata <- function() { readr::read_csv("https://raw.githubusercontent.com/andrewl776/fplmodels/master/data/players_by_gameweek_csv.csv") }
JackknifeVariance=function(n,r,pi,strata=FALSE,cluster=FALSE,clu=NULL){ if(length(n)!=1){stop("n must be a scalar.")} if(n<0){stop("n must be a positive number.")} if(!is.vector(r)){stop("r must be a vector.")} if(any(is.na(r))){stop("There are missing values in r.")} if(!is.vector(pi)){stop("pi must be a vector.")} if(any(is.na(pi))){stop("There are missing values in pi.")} if(any((pi<=0)|(pi>1))){stop("There are invalid values in pi.")} if(length(pi)!=length(r)){stop("The lengths of pi and r are different.")} if(((strata==FALSE)&(cluster==FALSE))|((strata==TRUE)&(cluster==FALSE))){ Je=vector() for(i in 1:n){ wi=1/(pi[-i]*((n-1)/n)) Je[i]=sum(r[-i]*wi) } Jve=(1-mean(pi))*((n-1)/n)*sum((Je-mean(Je))^2) } if(((strata==FALSE)&(cluster==TRUE))|((strata==TRUE)&(cluster==TRUE))){ Je=vector() for(i in levels(clu)){ wi=1/(pi[clu!=i]*((n-1)/n)) Je[i]=sum(r[clu!=i]*wi) } Jve=(1-mean(pi))*((n-1)/n)*sum((Je-mean(Je))^2) } if(Jve<0){warning("The variance estimation can not be negative.")} return(Jve) }
givens_rot <- function (a, b) { absa <- abs(a) if (absa == 0){ realVar <- 0 cplxVar <- 1 } else { normVariable <- pracma::Norm(cbind(a, b), p = 2) realVar <- absa / normVariable cplxVar <- a / absa * (Conj(b) / normVariable) } res <- rbind( cbind(realVar, cplxVar), cbind(-Conj(cplxVar), realVar) ) return(res) }
LRMI<-function(data_list,nMI,covariates,strata=NULL,...){ form1="Surv(time,cens)~" form2=NULL if (missing(strata) |is.null(strata)) { form<-as.formula(paste("survival::",paste(form1,covariates))) } if (!missing(strata) && !is.null(strata)) { form2=paste(paste("+strata(",paste(strata, collapse="+")),")") form<-as.formula(paste(paste("survival::",paste(form1,covariates)),form2)) } data1<-data_list$data_uc cate_level<-names(table(data1[,covariates])) cate_n<-length(cate_level) if (!is.null(nMI) && nMI>0){ n<-nrow(data1) stat=matrix(0,nrow=nMI,ncol=cate_n) obs=matrix(0,nrow=nMI,ncol=cate_n) exp=matrix(0,nrow=nMI,ncol=cate_n) ngroup=as.numeric(table(data1[,covariates])) vararray=array(0,dim=c(nMI,cate_n,cate_n)) censor=rep(0,n) data1$time=rep(0,n) data1$cens=rep(0,n) varmean=0 for (isim in 1:nMI) { for (i in 1:n) { j=which(cumsum(data_list$weights[[i]])>runif(1))[1] censor[i]=j data1$time[i]=data_list$time[[i]][j] if (censor[i]<data_list$e[i] ) {data1$cens[i]=1} else if (censor[i]>=data_list$e[i]) {data1$cens[i]=0} } lr1=survival::survdiff(form,data=data1,...) stat[isim,]=c(lr1$obs-lr1$exp) obs[isim,]=c(lr1$obs) exp[isim,]=c(lr1$exp) vararray[isim,,]=lr1$var varmean=varmean+lr1$var } statmean=colMeans(stat) varmean=varmean/nMI obsmean=colMeans(obs) expmean=colMeans(exp) x=statmean B=matrix(0,cate_n,cate_n) for (isim in 1:nMI) { Bi=matrix(stat[isim,]-x,nrow=cate_n,ncol=1) B=B+Bi%*%t(Bi) } B=B/(nMI-1) var_MI<-varmean+((nMI+1)/nMI)*B stat1<-statmean[1:(cate_n-1)] chisq<-stat1%*%solve(var_MI[1:(cate_n-1),1:(cate_n-1)])%*%matrix(stat1) p=as.numeric(1-pchisq(chisq,df=(cate_n-1))) res<-list(est=x,pvalue=p,var=var_MI,est_mat=stat,Var_mat=vararray,chisq=chisq, between_var=B, within_var=varmean,nMI=nMI,df=cate_n-1,obsmean=obsmean,expmean=expmean, covariates=covariates,ngroup=ngroup,cate_level=dimnames(lr1$n)[[1]]) attr(res,"est")=x attr(res,"var")=varmean+((nMI+1)/nMI)*B attr(res,"Est_mat")=stat attr(res,"chisq")=chisq attr(res,"Var_mat")=vararray attr(res,"Between Var")=B attr(res,"Within Var")=varmean attr(res,"nMI")=nMI attr(res,"pvalue")=p attr(res,"df")=df attr(res,"covariates")=covariates attr(res,"ngroup")=ngroup attr(res,"Mean observed events")=obsmean attr(res,"Mean expected events")=expmean } if (is.null(nMI)){ LR_cook<-data.frame() for (z in (0:cate_n)){ Z=data.frame(data1[,c(covariates)]) names(Z)<-c(covariates) if (z>0){ index<-Z[,c(covariates)]==cate_level[z] n=sum(as.numeric(index)) } if (z==0){ index<-c(1:nrow(Z)) n=length(index) } e=data_list$e[index] s=data_list$s[index] x=data_list$time[index] w=data_list$weights[index] Z <- as.matrix(Z) delta<-vector() for (i in (1:n) ) { for (j in 1:(e[[i]])) { if(j==e[[i]]){ dij=0 } else{dij=1} delta<-c(delta,dij) } } times<-unlist(x) weights<-unlist(w) Y<-c(rep(cate_level[z],length(times))) Y<-matrix(Y,ncol=1,byrow=T) risk.set <- function(t) {which(times >= t)} event.set <- function(t) {which(times == t)} rs <- apply(as.matrix(times), 1, risk.set) es <- apply(as.matrix(times), 1, event.set) d <- vector() r<-vector() for(i in 1:length(rs)) { r[i] <- sum(weights[rs[[i]]]) d[i] <- sum(weights[es[[i]]]*delta[es[[i]]]) } if (z==0){ LR_cook<-data.frame(times,d,r) LR_cook<-LR_cook[order(LR_cook$times),] } if (z>0){ temp<-data.frame(times,d,r) temp<-temp[order(temp$times),] names(temp)<-c("times",paste("d", z, sep = ""), paste("r", z, sep = "")) LR_cook<-merge(LR_cook,temp,all.x=TRUE,by = c("times")) } } name_index<-names(LR_cook) for (i in (1:ncol(LR_cook))){ index<-min(which(!is.na(LR_cook[,i])==TRUE)) if (index>1 & substr(name_index[i],1,1)=="r"){ LR_cook[(1:(index-1)),i]=rep(LR_cook[index,i],(index-1)) } if (index>1 & substr(name_index[i],1,1)=="d"){ LR_cook[(1:(index-1)),i]=rep(0,(index-1)) } if (substr(name_index[i],1,1)=="d"){ LR_cook[is.na(LR_cook[,i]),i] <- 0 } if (substr(name_index[i],1,1)=="r"){ for (j in (2:nrow(LR_cook))){ LR_cook[j,i] <- LR_cook[(j-1),i]-LR_cook[(j-1),(i-1)] } } } v<-rep(0,cate_n) w_d<-matrix(rep(0,cate_n*cate_n),nrow=cate_n) for (z in (1:cate_n)){ v[z]=sum(LR_cook[,(4+(z-1)*2)]-LR_cook[,(5+(z-1)*2)]*(LR_cook[,2])/(LR_cook[,3])) } for (i in (1:cate_n)){ for (j in (1:cate_n)){ if (i==j){ w_d[i,j]=sum((LR_cook[,2])*(LR_cook[,(5+(i-1)*2)]/(LR_cook[,3]))*(1-LR_cook[,(5+(i-1)*2)]/LR_cook[,3])* ((LR_cook[,3]-LR_cook[,2])/(LR_cook[,3]-1))) } if (i!=j){ w_d[i,j]=-sum(LR_cook[,(5+(j-1)*2)]*LR_cook[,(5+(i-1)*2)]*(LR_cook[,2])*(LR_cook[,3]-LR_cook[,2])/ ((LR_cook[,3])^2*(LR_cook[,3]-1))) } } } lr_c<-t(v[1:(cate_n-1)])%*%solve(w_d[1:(cate_n-1),1:(cate_n-1)])%*%v[1:(cate_n-1)] p=as.numeric(1-pchisq(lr_c,df=(cate_n-1))) res<-list(est=v,pvalue=p,Var_matrix=w_d,chisq=lr_c, df=cate_n-1,nMI=nMI, column_name=covariates,cate_n=cate_n,cate_level=cate_level) } class(res) <- c("LRMI", class(res)) return(res) }
library("aroma.affymetrix") verbose <- Arguments$getVerbose(-8, timestamp=TRUE) dataSet <- "GSE9890" chipType <- "HG-U133_Plus_2" csR <- AffymetrixCelSet$byName(dataSet, chipType=chipType) print(csR) ab <- extractAffyBatch(csR, verbose=verbose) print(ab)
.juliaobjtable <- new.env(parent = emptyenv()) autowrap <- function(type, fields = NULL, methods = c()){ addExt(type, fields, methods) cmd <- paste0('@eval JuliaCall begin sexp(x :: Main.', type, ') = sexp(JuliaObject(x, "', type, '")) end;') julia_command(cmd) } addExt <- function(type, fields = NULL, methods = c()){ if (is.null(fields)) { fields <- tryCatch(julia_call("string.", julia_eval(paste0("fieldnames(", type, ")"))), warning = function(...) {c()}, error = function(...) {c()} ) } .juliaobjtable[[type]] <- list(fields = fields, methods = methods) } extendJuliaObj <- function(env, type){ r <- .juliaobjtable[[type]] if (!is.null(r)) { for (field in r$fields) makeAttr(env, field) for (method in r$methods) makeMethod(env, method) } } makeAttr <- function(env, name){ force(name) force(env) makeActiveBinding(name, function() field(env, name), env) } makeMethod <- function(env, name){ force(name) force(env) assign(name, function(...) julia_call(name, env, ...), env) }
taxid2rank <- function(x, db='ncbi', verbose=TRUE, warn=TRUE, ...){ result <- ap_vector_dispatch( x = x, db = db, cmd = 'taxid2rank', verbose = verbose, warn = warn, empty = character(0), ... ) if(warn && any(is.na(result))){ msg <- "No rank found for %s of %s taxon IDs" msg <- sprintf(msg, sum(is.na(result)), length(result)) if(verbose){ msg <- paste0(msg, ". The followings are left unrankd: ", paste0(x[is.na(result)], collapse=', ') ) } warning(msg) } result } itis_taxid2rank <- function(src, x, ...){ if (length(x) == 0) return(character(0)) ranks <- unique(sql_collect(src, 'select * from taxon_unit_types')) query <- "SELECT tsn,rank_id FROM taxonomic_units WHERE tsn IN ('%s')" query <- sprintf(query, paste0(x, collapse = "','")) tbl <- sql_collect(src, query) z <- dplyr::left_join(tbl, unique(dplyr::select(ranks, rank_id, rank_name)), by = "rank_id") tolower(z$rank_name[match(x, z$tsn)]) } wfo_taxid2rank <- function(src, x, ...){ if (length(x) == 0) return(character(0)) query <- "SELECT taxonID,taxonRank FROM wfo WHERE taxonID IN ('%s')" query <- sprintf(query, paste0(x, collapse = "','")) tbl <- sql_collect(src, query) tolower(tbl$taxonRank[match(x, tbl$taxonID)]) } tpl_taxid2rank <- function(src, x, ...){ stop("The TPL database is not supported") } col_taxid2rank <- function(src, x, ...){ if (length(x) == 0) return(character(0)) query <- "SELECT taxonID,taxonRank FROM taxa WHERE taxonID IN ('%s')" query <- sprintf(query, paste0(x, collapse = "','")) tbl <- sql_collect(src, query) tolower(tbl$taxonRank[match(x, tbl$taxonID)]) } gbif_taxid2rank <- function(src, x, ...){ if (length(x) == 0) return(character(0)) query <- "SELECT taxonID,taxonRank FROM gbif WHERE taxonID IN ('%s')" query <- sprintf(query, paste0(x, collapse = "','")) tbl <- sql_collect(src, query) tolower(tbl$taxonRank[match(x, tbl$taxonID)]) } ncbi_taxid2rank <- function(src, x, ...){ if (length(x) == 0) return(character(0)) query <- "SELECT tax_id, rank FROM nodes WHERE tax_id IN (%s)" query <- sprintf(query, sql_integer_list(x)) tbl <- sql_collect(src, query) as.character(tbl$rank[match(x, tbl$tax_id)]) }
"pow_int" <- function(x, n, give=FALSE, strict=TRUE){ jj <- process.args(x,n) x.vec <- jj$arg1 n.vec <- jj$arg2 attr <- jj$attr jj <- .C("pow_int", as.double(x.vec), as.integer(n.vec), as.integer(length(x.vec)), val=as.double(x.vec), err=as.double(x.vec), status=as.integer(0*x.vec), PACKAGE="gsl" ) val <- jj$val err <- jj$err status <- jj$status attributes(val) <- attr attributes(err) <- attr attributes(status) <- attr if(strict){ val <- strictify(val,status) } if(give){ return(list(val=val,err=err,status=status)) } else { return(val) } }
search_albums <- function(album_name, output = c("tidy", "raw", "id"), limit = 20, offset = 0, token = my_token){ output <- match.arg(output) response = content(GET("https://api.spotify.com/v1/search/", query = list(q = album_name, type = "album", limit = limit, offset = offset), add_headers(Authorization = token))) items = response$albums$items tidy <- data.frame( artist = map(items, "artists") %>% modify_depth(2, "name") %>% map_chr(paste, collapse = " ft. "), artist_id = map(items, "artists") %>% modify_depth(2, "id") %>% map_chr(paste, collapse = " ft. "), album = map_chr(items, "name"), album_id = map_chr(items, "id"), release_date = map_chr(items, "release_date"), total_tracks = map_int(items, "total_tracks"), type = map_chr(items, "type") ) id = tidy$album_id out <- switch(output, tidy = tidy, raw = response, id = id) out }
useSteward <- function(colors = c(" speed = 30, angle = -45) { bg_size <- length(colors) * 200 colors <- paste0(colors, collapse = ", ") css <- paste0(" .waiter-overlay{ width: 100%; height: 100vh; background: linear-gradient(", angle, "deg, ", colors, "); background-size: ", bg_size, "% ", bg_size, "%; -webkit-animation: stewardAnimation ", speed, "s ease infinite; animation: stewardAnimation ", speed, "s ease infinite; } @-webkit-keyframes stewardAnimation { 0%{background-position:0% 50%;} 50%{background-position:100% 50%;} 100%{background-position:0% 50%;} } @keyframes stewardAnimation { 0%{background-position:0% 50%;} 50%{background-position:100% 50%;} 100%{background-position:0% 50%;} } ") singleton( tags$head( tags$style(css) ) ) } use_steward <- function( colors = c(" speed = 30, angle = -45 ) { useSteward( colors, speed, angle ) }
read_excel_file <- function (file, sheetIndexes = NULL, sheetNames = NULL) { if (is.null(sheetIndexes) && is.null(sheetNames)) { sheetNames <- readxl::excel_sheets(file) } else if (is.null(sheetNames)) { sheetNames <- readxl::excel_sheets(file)[sheetIndexes] } lpt <- list() for (name in sheetNames) { ft <- suppressMessages( readxl::read_excel( file, sheet = name, col_names = FALSE, col_types = "text", trim_ws = TRUE ) ) if (nrow(ft) > 0) { ft <- as.data.frame(ft) names(ft) <- paste("X", 1:length(names(ft)), sep = "") lpt <- c(lpt, list(new_pivot_table(ft, c(file, name)))) } } lpt }
redist_mergesplit_parallel = function(map, nsims, chains=1, warmup=floor(nsims/2), init_plan=NULL, counties=NULL, compactness=1, constraints=list(), constraint_fn=function(m) rep(0, ncol(m)), adapt_k_thresh=0.975, k=NULL, ncores=NULL, cl_type="PSOCK", return_all=TRUE, init_name=NULL, verbose=TRUE, silent=FALSE) { map = validate_redist_map(map) V = nrow(map) adj = get_adj(map) ndists = attr(map, "ndists") chains = as.integer(chains) stopifnot(chains > 1) if (compactness < 0) stop("Compactness parameter must be non-negative") if (adapt_k_thresh < 0 | adapt_k_thresh > 1) stop("`adapt_k_thresh` parameter must lie in [0, 1].") if (nsims < 1) stop("`nsims` must be positive.") exist_name = attr(map, "existing_col") counties = rlang::eval_tidy(rlang::enquo(counties), map) if (is.null(init_plan) && !is.null(exist_name)) { init_plans = matrix(rep(as.integer(as.factor(get_existing(map))), chains), ncol=chains) if (is.null(init_name)) init_names = rep(exist_name, chains) else init_names = rep(init_name, chains) } else if (!is.null(init_plan)) { if (is.matrix(init_plan)) { stopifnot(ncol(init_plan) == chains) init_plans = init_plan } else { init_plans = matrix(rep(as.integer(init_plan), chains), ncol=chains) } if (is.null(init_name)) init_names = rep(exist_name, chains) else init_names = rep(init_name, chains) } if (length(init_plan) == 0L || isTRUE(init_plan == "sample")) { if (!silent) cat("Sampling initial plans with SMC") init_plans = get_plans_matrix( redist_smc(map, chains, counties, compactness, constraints, TRUE, constraint_fn, adapt_k_thresh, ref_name=FALSE, verbose=verbose, silent=silent)) if (is.null(init_name)) init_names = paste0("<init> ", seq_len(chains)) else init_names = paste(init_name, seq_len(chains)) } stopifnot(nrow(init_plans) == V) stopifnot(max(init_plans) == ndists) if (is.null(counties)) { counties = rep(1, V) } else { if (any(is.na(counties))) stop("County vector must not contain missing values.") component = contiguity(adj, as.integer(as.factor(counties))) counties = dplyr::if_else(component > 1, paste0(as.character(counties), "-", component), as.character(counties)) %>% as.factor() %>% as.integer() } constraints = eval_tidy(enquo(constraints), map) proc = process_smc_ms_constr(constraints, V) constraints = proc$constraints n_current = max(constraints$status_quo$current) verbosity = 1 if (verbose) verbosity = 3 if (silent) verbosity = 0 if (is.null(k)) k = 0 pop_bounds = attr(map, "pop_bounds") pop = map[[attr(map, "pop_col")]] init_pop = pop_tally(init_plans, pop, ndists) if (any(init_pop < pop_bounds[1]) | any(init_pop > pop_bounds[3])) stop("Provided initialization does not meet population bounds.") if (any(pop >= get_target(map))) stop("Units ", which(pop >= get_target(map)), " have population larger than the district target.\n", "Redistricting impossible.") if (!requireNamespace("utils", quietly=TRUE)) stop() out = utils::capture.output({ x <- ms_plans(1, adj, init_plans[,1], counties, pop, ndists, pop_bounds[2], pop_bounds[1], pop_bounds[3], compactness, 0, rep(1, ndists), ndists, 0, 0, 0, 1, rep(0, V), 0, 0, 0, rep(1, ndists), 0, beta_fractures = 0, adapt_k_thresh, 0L, verbosity=2) }, type="output") rm(x) k = as.integer(stats::na.omit(stringr::str_match(out, "Using k = (\\d+)")[,2])) if (is.null(ncores)) ncores = parallel::detectCores() ncores = min(ncores, chains) if (!silent) cl = makeCluster(ncores, setup_strategy="sequential", outfile="", methods=FALSE) else cl = makeCluster(ncores, setup_strategy="sequential", methods=FALSE) registerDoParallel(cl) on.exit(stopCluster(cl)) each_len = if (return_all) nsims - warmup else 1 plans = foreach(chain=seq_len(chains), .combine=cbind) %dopar% { if (!silent) cat("Starting chain ", chain, "\n", sep="") algout = ms_plans(N = nsims+1L, l = adj, init = init_plans[, chain], counties = counties, pop = pop, n_distr = ndists, target = pop_bounds[2], lower = pop_bounds[1], upper = pop_bounds[3], rho = compactness, beta_sq = constraints$status_quo$strength, current = constraints$status_quo$current, n_current = n_current, beta_vra = constraints$vra$strength, tgt_min = constraints$vra$tgt_vra_min, tgt_other = constraints$vra$tgt_vra_other, pow_vra = constraints$vra$pow_vra, min_pop = proc$min_pop, beta_vra_hinge = constraints$hinge$strength, tgts_min = constraints$hinge$tgts_min, beta_inc = constraints$incumbency$strength, incumbents = constraints$incumbency$incumbents, beta_splits = constraints$splits$strength, beta_fractures = constraints$multisplits$strength, thresh = adapt_k_thresh, k = k, verbosity=verbosity) if (return_all) algout$plans[, -1:-(warmup+1L), drop=FALSE] else algout$plans[, nsims+1L, drop=FALSE] } out = new_redist_plans(plans, map, "mergesplit", NULL, FALSE, compactness = compactness, constraints = constraints, adapt_k_thresh = adapt_k_thresh) %>% mutate(chain = rep(seq_len(chains), each=each_len*ndists)) if (!is.null(init_names) && !isFALSE(init_name)) { if (all(init_names[1] == init_names)) { out = add_reference(out, init_plans[, 1], init_names[1]) } else { out = Reduce(function(cur, idx) { add_reference(cur, init_plans[, idx], init_names[idx]) %>% mutate(chain = dplyr::coalesce(chain, idx)) }, rev(seq_len(chains)), init=out) } } dplyr::relocate(out, chain, .after="draw") } utils::globalVariables("chain")
permNormLog = function(target, dataset, xIndex, csIndex, wei = NULL, univariateModels = NULL , hash = FALSE, stat_hash = NULL, pvalue_hash = NULL, threshold = 0.05, R = 999) { pvalue = log(1) stat = 0; csIndex[which(is.na(csIndex))] = 0; thres <- threshold * R + 1 if( hash ) { csIndex2 = csIndex[which(csIndex!=0)] csIndex2 = sort(csIndex2) xcs = c(xIndex,csIndex2) key = paste(as.character(xcs) , collapse=" "); if ( !is.null(stat_hash[key]) ) { stat = stat_hash[key]; pvalue = pvalue_hash[key]; results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); } } if ( !is.na( match(xIndex, csIndex) ) ) { if( hash ) { stat_hash[key] <- 0; pvalue_hash[key] <- 1; } results <- list(pvalue = 1, stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); } if( any(xIndex < 0) || any(csIndex < 0) ) { message(paste("error in testIndPois : wrong input of xIndex or csIndex")) results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); } xIndex = unique(xIndex); csIndex = unique(csIndex); x = dataset[ , xIndex]; cs = dataset[ , csIndex]; if ( length(cs)!=0 ) { if ( is.null(dim(cs)[2]) ) { if ( identical(x, cs) ) { if ( hash ) { stat_hash[key] <- 0; pvalue_hash[key] <- 1; } results <- list(pvalue = 1, stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); } } else { for (col in 1:dim(cs)[2]) { if ( identical(x, cs[, col]) ) { if( hash ) { stat_hash[key] <- 0; pvalue_hash[key] <- 1; } results <- list(pvalue = 1, stat = 0, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); } } } } if (length(cs) == 0) { fit2 = glm(target ~ x, family = gaussian(link = log), weights = wei, model = FALSE) dev2 <- fit2$deviance stat <- fit2$null.deviance - dev2 if (stat > 0) { step <- 0 j <- 1 n <- length(target) while (j <= R & step < thres ) { xb <- sample(x, n) bit2 <- glm(target ~ xb, family = gaussian(link = log), weights = wei, model = FALSE) step <- step + ( bit2$deviance < dev2 ) j <- j + 1 } pvalue <- log( (step + 1) / (R + 1) ) } else pvalue <- log(1) } else { fit1 = glm(target ~ cs, family = gaussian(link = log), weights = wei, model = FALSE) fit2 = glm(target ~ cs + x, family = gaussian(link = log), weights = wei, model = FALSE) dev2 <- fit2$deviance stat = fit1$deviance - dev2 if ( stat > 0 ) { step <- 0 j <- 1 n <- length(target) while (j <= R & step < thres ) { xb <- sample(x, n) bit2 <- glm(target ~ cs + xb, family = gaussian(link = log), weights = wei, model = FALSE) step <- step + ( bit2$deviance < dev2 ) j <- j + 1 } pvalue <- log( (step + 1) / (R + 1) ) } else pvalue <- log(1) } if ( is.na(pvalue) || is.na(stat) ) { pvalue = log(1) stat = 0; } else { if ( hash ) { stat_hash[key] <- stat; pvalue_hash[key] <- pvalue; } } results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash); return(results); }
stat_ancova <- function(treatment, baseline_suffix = 'bl', std.beta = FALSE, complete.cases = TRUE) { fns <- list( 'formula_fn' = formula_std, 'fit_fn' = fit_ancova, 'params' = list( 'std.beta' = std.beta, 'complete.cases' = complete.cases ), 'extra_params' = list( 'treatment' = treatment, 'baseline_suffix' = baseline_suffix ) ) fns$stat_type <- 'ancova' class(fns) <- 'abaStat' return(fns) } fit_ancova <- function(formula, data, extra_params) { treatment <- extra_params$treatment formula <- glue('{formula} + {treatment}') bl_suffix <- extra_params$baseline_suffix outcome <- formula %>% strsplit(' ~ ') %>% unlist() %>% head(1) formula <- glue('{formula} + {outcome}_{bl_suffix}') model <- stats::lm(stats::formula(formula), data = data) model$call$formula <- stats::formula(formula) return(model) }
imeansC = function(function1=NULL, function2=NULL, data, digits=2) { if(methods::is(data, "survey.design")!=TRUE) message(paste(sep="","Warning: Dataset \"", deparse(substitute(data)), "\" not a design dataset. Try gssD, nesD, statesD, or worldD instead.")) obj1 = svybyC(function1, function2, data) obj2 = stats::ftable(obj1) obj2 = round(obj2, digits = digits) return(obj2) }
print.soo_function <- function(x, ...) { cat(function_name(x), "\n", " Lower bounds: (", paste(lower_bounds(x), collapse=", "), ")\n", " Upper bounds: (", paste(upper_bounds(x), collapse=", "), ")\n", sep="") }
label_date <- function(format = "%Y-%m-%d", tz = "UTC") { force_all(format, tz) function(x) format(x, format, tz = tz) } label_date_short <- function(format = c("%Y", "%b", "%d", "%H:%M"), sep = "\n") { force_all(format, sep) function(x) { dt <- unclass(as.POSIXlt(x)) changes <- cbind( year = changed(dt$year), month = changed(dt$mon), day = changed(dt$mday) ) changes <- t(apply(changes, 1, cumsum)) >= 1 if (inherits(x, "Date") || all(dt$hour == 0 & dt$min == 0, na.rm = TRUE)) { format[[4]] <- NA if (all(dt$mday == 1, na.rm = TRUE)) { format[[3]] <- NA if (all(dt$mon == 0, na.rm = TRUE)) { format[[2]] <- NA } } } for_mat <- cbind( ifelse(changes[, 1], format[[1]], NA), ifelse(changes[, 2], format[[2]], NA), ifelse(changes[, 3], format[[3]], NA), format[[4]] ) format <- apply(for_mat, 1, function(x) paste(rev(x[!is.na(x)]), collapse = sep)) format(x, format) } } changed <- function(x) c(TRUE, is.na(x[-length(x)]) | x[-1] != x[-length(x)]) append_if <- function(x, cond, value) { x[cond] <- lapply(x[cond], c, value) x } label_time <- function(format = "%H:%M:%S", tz = "UTC") { force_all(format, tz) function(x) { if (inherits(x, "POSIXt")) { format(x, format = format, tz = tz) } else if (inherits(x, "difftime")) { format(as.POSIXct(x), format = format, tz = tz) } else { stop( "time_format can't be used with objects of class ", paste(class(x), collapse = "/"), ".", call. = FALSE ) } } } date_format <- label_date time_format <- label_time
genotype_probabilities <- function(target, fam, geno_freq, trans, penet, monozyg = NULL) { dat <- fam[, names(fam) != "family"] dat <- data.frame(family = rep(1,nrow(fam)), dat) if (is.null(target) | !target %in% dat$indiv) { stop("The target cannot be found in the family data", call. = FALSE) } parents <- setdiff(c(dat$mother, dat$father), NA) keep <- dat$indiv == target if (is.na(dat$mother[keep]) & is.na(dat$father[keep]) & !(target %in% parents)) { p <- geno_freq * penet[keep,] if (sum(p) == 0) {return(rep(NA,length(geno_freq)))} else {return(p/sum(p))} } nold <- 0 keepIDs <- target while (nold < length(keepIDs)) { nold <- length(keepIDs) new <- dat$indiv[dat$mother %in% keepIDs] new <- c(new, dat$indiv[dat$father %in% keepIDs]) new <- c(new, dat$mother[dat$indiv %in% keepIDs]) new <- c(new, dat$father[dat$indiv %in% keepIDs]) new <- setdiff(new, NA) keepIDs <- unique(c(keepIDs, new)) } keep <- dat$indiv %in% keepIDs dat <- dat[keep,] penet <- penet[keep,] if (length(monozyg) >= 1) { for (i in 1:length(monozyg)) { birth_group <- which(dat$indiv %in% monozyg[[i]]) if (length(birth_group) >= 2) { if (target %in% monozyg[[i]]) { representative <- which(dat$indiv==target) } else { representative <- birth_group[1] } p <- apply(penet[birth_group,], 2, prod) penet[representative,] <- p dat$mother[!is.na(dat$mother) & dat$mother %in% monozyg[[i]]] <- dat$indiv[representative] dat$father[!is.na(dat$father) & dat$father %in% monozyg[[i]]] <- dat$indiv[representative] birth_group <- setdiff(birth_group, representative) penet <- penet[-birth_group,] dat <- dat[-birth_group,] } } } target_id <- which(dat$indiv == target) dat$mother[which(is.na(dat$mother))] <- "" dat$father[which(is.na(dat$father))] <- "" dat <- convert_IDs(dat, convert.IDs.numeric = TRUE) fam_penet <- list(fam = dat, penet = penet) p <- pedigree_loglikelihood_g(fam_penet, geno_freq, trans, target_id) return(p) }
context("dtw_disvec") test_that("correct values univariate", { WS <- 11 eps <- 1/10^7 lot <- lapply(1:10, function(i){ rnorm(sample(seq(20, 30, 2), 1), log(i+1)) }) Q <- rnorm(20) dm1 <- dtw_disvec(Q, lot, ws = WS, normalize = TRUE, dist_method = "norm1", ncores=1) dm2 <- dtw_disvec(Q, lot, ws = WS, normalize = TRUE, dist_method = "norm1", ncores=2) byhand <- sapply(1:10, function(i){ dtw2vec(Q = Q, lot[[ i ]], dist_method = "norm1", ws = WS)$normalized_distance }) sum(abs(byhand-dm1$disvec)) sum(abs(byhand-dm2$disvec)) expect_equal(sum(abs(byhand-dm1$disvec)) < eps, TRUE) expect_equal(sum(abs(byhand-dm2$disvec)) < eps, TRUE) }) test_that("correct values multivariate", { WS <- 6 eps <- 1/10^7 lot <- lapply(1:10, function(i){ matrix(rnorm(sample(seq(20, 30, 2), 1), log(i+1)), ncol = 2) }) Q <- matrix(rnorm(20), ncol = 2) dm1 <- dtw_disvec(Q, lot, ws = WS, normalize = TRUE, dist_method = "norm1", ncores=1) dm2 <- dtw_disvec(Q, lot, ws = WS, normalize = TRUE, dist_method = "norm1", ncores=2) byhand <- sapply(1:10, function(i){ dtw2vec(Q = Q, lot[[ i ]], dist_method = "norm1", ws = WS)$normalized_distance }) expect_equal(sum(abs(byhand-dm1$disvec)) < eps, TRUE) expect_equal(sum(abs(byhand-dm2$disvec))< eps, TRUE) }) test_that("pass names of input", { lot <- lapply(1:4, function(i){ cumsum(rnorm(10, i)) }) names(lot) <- letters[1:4] x <- cumsum(rnorm(10)) ret <- dtw_disvec(Q=x, lot = lot, dist_method="norm2") expect_equal(is.null(labels(ret$disvec)), FALSE) })
ABMPaths <- function(){ initialprice <- 100 time <- 1 steps <- 250 dt <- time/steps my.draw <- function(panel) { mu <- panel$mu sigma <- panel$sigma mudt <- mu*dt sigmasqrtdt <- sigma*sqrt(dt) paths <- panel$paths ABMStockprices <- function(initialprice,steps,paths,sigmasqrtdt,mudt){ prices <- matrix(data=NA, nrow=steps+1,ncol=paths) prices[1,] <- initialprice for (i in 2:(steps+1)){ prices[i,] <- prices[i-1,]+ (mudt + sigmasqrtdt*rnorm(paths)) } return(prices) } prices <-ABMStockprices(initialprice,steps,paths,sigmasqrtdt,mudt) x.axis <- seq(0,1,length=steps+1) my.title <- paste(paths, " Arithmetic Brownian motions", "(mu=", mu, ", sigma=", sigma,")") matplot(prices,main= my.title,xlab="time", ylab="price",type='l',lwd=2) panel } my.redraw <- function(panel) { rp.tkrreplot(panel, my.tkrplot) panel } my.panel <- rp.control(title = "Arithmetic Brownian Motion", mu = 20, sigma = 40,paths=1,size=c(500,400)) rp.doublebutton(panel = my.panel, variable= mu, step = 8, range = c(0, 40), showvalue=TRUE, title = "Drift", action = my.redraw) rp.doublebutton(panel = my.panel, variable= sigma, step = 8, range = c(0, 80), showvalue=TRUE, title = "Volatility", action = my.redraw) rp.doublebutton(panel = my.panel, variable= paths, step = 1, range = c(1, 10), showvalue=TRUE, title = "Paths", action = my.redraw) rp.tkrplot(my.panel, my.tkrplot, my.draw, pos = "right", hscale=2,vscale=1.75) }
pred2.env <- function(X, Y, u, Xnew) { X <- as.matrix(X) a <- dim(Y) n <- a[1] r <- a[2] p <- ncol(X) Xnew <- as.matrix(Xnew) if (nrow(Xnew) == 1) Xnew <- t(Xnew) A <- qr.Q(qr(Xnew), complete = TRUE) Ainv <- solve(A) Z <- tcrossprod(X, Ainv) X1 <- Z[, 1] X2 <- Z[, 2:p] fit <- penv(X1, X2, Y, u) X1new <- Ainv[1, ] %*% Xnew X2new <- Ainv[2:p, ] %*% Xnew tmp <- pred.penv(fit, X1new, X2new) return(list(value = tmp$value, covMatrix.estm = tmp$covMatrix.estm, SE.estm = tmp$SE.estm, covMatrix.pred = tmp$covMatrix.pred, SE.pred = tmp$SE.pred)) }
name_backbone <- function(name, rank=NULL, kingdom=NULL, phylum=NULL, class=NULL, order=NULL, family=NULL, genus=NULL, strict=FALSE, verbose=NULL, start=NULL, limit=100, curlopts = list()) { pchk(verbose, "name_backbone") url <- paste0(gbif_base(), '/species/match') args <- rgbif_compact( list(name=name, rank=rank, kingdom=kingdom, phylum=phylum, class=class, order=order, family=family, genus=genus, strict=as_log(strict), offset=start, limit=limit)) tt <- gbif_GET(url, args, FALSE, curlopts) out <- tibble::as_tibble(tt[!names(tt) %in% c("alternatives", "note")]) structure(out, args = args, note = tt$note, type = "single") } name_backbone_verbose <- function(name, rank=NULL, kingdom=NULL, phylum=NULL, class=NULL, order=NULL, family=NULL, genus=NULL, strict=FALSE, start=NULL, limit=100, curlopts = list()) { url <- paste0(gbif_base(), '/species/match') args <- rgbif_compact( list(name=name, rank=rank, kingdom=kingdom, phylum=phylum, class=class, order=order, family=family, genus=genus, strict=as_log(strict), verbose=TRUE, offset=start, limit=limit)) tt <- gbif_GET(url, args, FALSE, curlopts) alt <- tibble::as_tibble(data.table::setDF( data.table::rbindlist( lapply(tt$alternatives, function(x) lapply(x, function(x) if (length(x) == 0) NA else x)), use.names = TRUE, fill = TRUE))) dat <- tibble::as_tibble( data.frame(tt[!names(tt) %in% c("alternatives", "note")], stringsAsFactors = FALSE)) out <- list(data = dat, alternatives = alt) structure(out, args = args, note = tt$note, type = "single") }
context(" CVIs") ols <- ls() with(persistent, { test_that("CVIs give the same results as references.", { skip_on_cran() expect_known_value(base_cvis, file_name(base_cvis)) expect_known_value(internal_fcvis, file_name(internal_fcvis)) expect_known_value(external_fcvis, file_name(external_fcvis)) expect_known_value(cvis_tadp, file_name(cvis_tadp)) expect_known_value(cvis_hc, file_name(cvis_hc)) expect_known_value(cvis_tadp_cent, file_name(cvis_tadp_cent)) expect_known_value(cvis_hc_cent, file_name(cvis_hc_cent)) }) }) rm(list = setdiff(ls(), ols))
' Authors Torsten Pook, [email protected] Copyright (C) 2017 -- 2020 Torsten Pook This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ' alpha_to_beta <- function(alpha,G,Z) { if (requireNamespace("MASS", quietly = TRUE)) { crossprod(Z,crossprod(MASS::ginv(G),alpha)) } else{ crossprod(Z,crossprod(solve(G),alpha)) } } epi <- function(y,Z, G=NULL) { n <- length(y) p <- ncol(Z) stopifnot(n == nrow(Z)) if(length(G)==0){ G <- tcrossprod(Z) } if(requireNamespace("EMMREML", quietly = TRUE)){ fm <- EMMREML::emmreml( y, matrix(1,nrow=n), diag(n), G) } else{ stop("Usage of EMMREML without being installed!") } beta <- alpha_to_beta(drop(fm$uhat),G,Z) return(drop(beta)) }
gamma_Taylor <- function(y, skewness.y = skewness(y), skewness.x = 0, degree = 3) { stopifnot(is.numeric(skewness.x), is.numeric(skewness.y), length(skewness.y) == 1, length(skewness.x) == 1, degree == 1 || degree == 3) if (skewness.x != 0) { degree <- 1 } if (degree == 1) { gamma.hat <- (skewness.y - skewness.x) / 6 } else if (degree == 3) { tmp <- skewness.y + sqrt(4 + skewness.y^2) gamma.hat <- 0.5 * (- (2.0 / tmp)^(1/3) + (tmp / 2.0)^(1/3)) } else { stop("Only first or third degree approximations are available.") } if (skewness.x <= 0) { mu.tmp <- mean.default(y) } else { mu.tmp <- 0 } bounds <- get_gamma_bounds(y, tau = c("mu_x" = mu.tmp, "sigma_x" = sd(y), gamma = 0)) return(sign(gamma.hat) * min(abs(gamma.hat), min(abs(bounds)))) }
library(GGMselect) itest=2 p=30 n=30 eta=0.13 dmax=3 iG = 7 iS = 9 set.seed(iG) Gr <- simulateGraph(p,eta) set.seed(iS*(pi/3.1415)**iG) X <- rmvnorm(n, mean=rep(0,p), sigma=Gr$C) K=2.5 print(selectQE(X, dmax, K, verbose=TRUE)) cat ("End of test ", itest, "\n")
as.data.frame.pstructure <- function(x, row.names = NULL, optional = FALSE, ..., omit.marginality = FALSE) { if (!inherits(x, what = "pstructure")) stop("Must supply an object of class pstructure") x <- x[-match("aliasing", names(x))] if (inherits(x$Q[[1]], what = "projector")) x$Q <- unlist(lapply(x$Q, degfree)) if (omit.marginality) x <- as.data.frame.list(x[-4], stringsAsFactors = FALSE) else { if (x$Q[1] == "Mean") Q <- Q[-1] x <- as.data.frame.list(x, row.names = row.names, optional = optional, stringsAsFactors = FALSE) } names(x)[1] <- "df" return(x) } print.pstructure <- function(x, which = "all", ...) { if (!inherits(x, "pstructure")) stop("Must supply an object of class pstructure") options <- c("projectors", "marginality", "aliasing", "all") print.opt <- options[unlist(lapply(which, check.arg.values, options=options))] if (any(print.opt %in% c("projectors", "all"))) { cat("\nProjection matrix summary\n\n") print(as.data.frame(x, omit.marginality = TRUE)) } if (any(print.opt %in% c("marginality", "all"))) { cat("\nMarginality matrix\n\n") print(x$marginality) } if (any(print.opt %in% c("aliasing", "all"))) { if (is.null(x$aliasing)) cat("\n\nNo aliasing between sources in this pstructure object\n\n") else { print(x$aliasing, ...) } } invisible() } "marginality.pstructure" <- function(object, ...) { if (!inherits(object, "pstructure")) stop("Must supply an object of class pstructure as produced by designAnatomy") if (is.null(object$marginality)) marginality <- NULL else { marginality <- object$marginality } return(marginality) } print.aliasing <- function(x, which.criteria = c("aefficiency","eefficiency","order"), ...) { if (!is.null(x)) { if (!inherits(x, "aliasing")) stop("Must supply an object of class aliasing") if (nrow(x) > 0) { criteria <- c("aefficiency", "eefficiency", "mefficiency", "sefficiency", "xefficiency", "order", "dforthog") options <- c(criteria, "none", "all") kcriteria <- options[unlist(lapply(which.criteria, check.arg.values, options=options))] if ("all" %in% kcriteria) kcriteria <- criteria anycriteria <- !("none" %in% kcriteria) cols <- c("Source","df") if (!all(is.na(x$Alias))) cols <- c(cols, "Alias") if ("In" %in% names(x)) cols <- c(cols, "In") if (anycriteria) { cols <- c(cols, kcriteria) if (!all(kcriteria %in% names(x))) stop("Not all requested efficiency criteria are available in aliasing for printing") } cat(attr(x, which = "title")) y <- x[cols] for (kcrit in kcriteria) { if (kcrit == "order") { y[kcrit] <- formatC(y[[kcrit]], format="f", digits=0, width=5) } else { if (kcrit == "dforthog") { y[kcrit] <- formatC(y[[kcrit]], format="f", digits=0, width=8) } else { y[kcrit] <- formatC(y[[kcrit]], format="f", digits=4, width=11) } } y[kcrit] <- gsub("NA", " ", y[[kcrit]]) } print.data.frame(y, na.print=" ", right=FALSE, row.names=FALSE) } } invisible() } formSources <- function(term.names, marginality, grandMean = FALSE) { if (grandMean) { gmterm <- term.names[1] term.names <- term.names[-1] } nterms <- length(term.names) names(term.names) <- term.names if (nterms == 1) sources <- term.names else { sources <- vector(mode = "character", length = nterms) names(sources) <- term.names fac.list <- lapply(term.names, fac.getinTerm) names(fac.list) <- term.names facs <- unique(unlist(fac.list)) fac.incidence <- do.call(rbind, lapply(fac.list, function(kfac.list, facs) { ind <- rep(FALSE, length(facs)) names(ind) <- facs ind[kfac.list] <- TRUE return(ind) }, facs = facs)) nfac <- length(facs) k1 <- 0 newterms <- list() for (k in 1:(nfac-1)) { k1 <- k1 + 1 facs.identical <- unlist(lapply(facs[(k1+1):nfac], function(jfac, kfac, fac.incidence) { is.same <- all(fac.incidence[,jfac] == fac.incidence[,kfac]) return(is.same) }, kfac = facs[k1], fac.incidence = fac.incidence)) if (any(facs.identical)) { facs.identical <- c(facs[k1], c(facs[(k1+1):nfac])[facs.identical]) nposns <- length(facs.identical) newterms <- lapply(term.names[fac.incidence[,facs[k1]]], function(term, fac.list) { newterm <- term kfac.list <- fac.list[[term]] fac.posns <- sort(match(facs.identical, kfac.list)) if (!any(is.na(fac.posns))) { nposns <- length(fac.posns) if ((nposns-1) == fac.posns[nposns] - fac.posns[1]) { if (fac.posns[1] == 1 & nposns == length(kfac.list)) newterm <- paste("(", paste(kfac.list[fac.posns[1]:fac.posns[nposns]], collapse = "."), ")", sep = "") else { newterm <- paste("(", paste(kfac.list[fac.posns[1]:fac.posns[nposns]], collapse = "."), ")", sep = "") if (fac.posns[1] != 1) newterm <- paste(c(kfac.list[1:(fac.posns[1] - 1)], newterm), collapse = ":") if (fac.posns[nposns] < length(kfac.list)) newterm <- paste(c(newterm, kfac.list[(fac.posns[nposns]+1):length(kfac.list)]), collapse = ":") } } } newterm <- list(term = term, newterm = newterm) return(newterm) }, fac.list = fac.list) if (length(newterms) > 0) { term.names <- unlist(lapply(term.names, function(term, newterms) { for (k in 1:length(newterms)) { if (newterms[[k]]$term == term) term <- newterms[[k]]$newterm } return(term) }, newterms = newterms)) fac.list <- lapply(term.names, fac.getinTerm) names(fac.list) <- term.names colnames(marginality) <- unlist(term.names) rownames(marginality) <- unlist(term.names) } k1 <- k1 + nposns - 1 } if (k1 >= (nfac-1)) break } facs <- unique(unlist(fac.list)) fac.incidence <- do.call(rbind, lapply(fac.list, function(kfac.list, facs) { ind <- rep(FALSE, length(facs)) names(ind) <- facs ind[kfac.list] <- TRUE return(ind) }, facs = facs)) implicit <- vector(mode = "list", length = length(term.names)) names(implicit) <- term.names for (term in term.names) { k <- match(term, rownames(fac.incidence)) kmarg <- as.logical(marginality[, k]) kmarg[k] <- FALSE if (any(kmarg)) { kmarg <- rownames(fac.incidence)[kmarg] implicit[[term]] <- !unlist(lapply(kmarg, function(kterm, term, fac.list) { is.subset <- (length(intersect(fac.list[[term]], fac.list[[kterm]])) > 0) return(is.subset) }, term = term, fac.list = fac.list)) if (any(implicit[[term]])) for (kimpl in kmarg[implicit[[term]]]) fac.incidence[term, ] <- fac.incidence[term, ] | fac.incidence[kimpl, ] } } marg.compliant <- marginality == 1 kmarg.terms <- vector(mode = "list", length = nterms) names(kmarg.terms) <- term.names for (term in term.names) { j <- k <- match(term, term.names) if (j <= 1) { kmarg.terms[[term]] <- character() } else { if (!any(marg.compliant[1:(j-1), k])) kmarg.terms[[term]] <- character() else { repeat { if (j <= 0) break if (j == 1 | !any(marg.compliant[1:(j-1), k])) j <- numeric() else j <- max(c(1:(j-1))[marg.compliant[1:(j-1), k]]) if (length(j) == 0 || is.infinite(j)) break if (j > 1 & any(marginality[1:(j-1), j] == 1)) { marg.compliant[1:(j-1), k][marginality[1:(j-1), j] == 1] <- FALSE } } kmarg.terms[[term]] <- term.names[marg.compliant[,k]] kmarg.terms[[term]] <- kmarg.terms[[term]][-match(term, kmarg.terms[[term]])] } } } for (term in term.names) { k <- match(term, term.names) if (length(kmarg.terms[[term]]) == 0) { sources[k] <- gsub(".", ":", term, fixed = TRUE) nch <- nchar(sources[k]) if (substr(sources[k], 1, 1) == "(" & substr(sources[k], nch, nch) == ")") sources[k] <- substr(sources[k], 2, nch-1) } else { if (length(kmarg.terms[[term]]) == 1) { facs.nesting <- fac.list[kmarg.terms[[term]]][[1]] kfacs <- colnames(fac.incidence)[fac.incidence[kmarg.terms[[term]],]] facs.nesting <- c(na.omit(setdiff(kfacs, facs.nesting)), facs.nesting) facs.nested <- setdiff(fac.list[term][[1]], facs.nesting) } else { facs.nesting <- NULL facs.nested <- NULL common.marginals <- TRUE for (c in match(kmarg.terms[[term]], term.names)) common.marginals <- common.marginals & marginality[,c] == 1 common.marginals <- term.names[common.marginals] facs.nesting <- character() for (cterm in common.marginals) { facs.nesting <- c(facs.nesting, fac.list[cterm][[1]]) } facs.nesting <- unique(facs.nesting) kfacs <- unlist(lapply(kmarg.terms[[term]], function(kmarg, fac.incidence) { fac <- colnames(fac.incidence)[fac.incidence[kmarg,]] }, fac.incidence = fac.incidence)) kfacs <- c(na.omit(setdiff(kfacs, fac.list[term][[1]])), fac.list[term][[1]]) kfacs <- kfacs[!(kfacs %in% facs.nesting)] if (length(kfacs) > 0) { for (kfac in kfacs) { if (all(fac.incidence[kmarg.terms[[term]], kfac])) facs.nesting <- c(facs.nesting, kfac) } } facs.nested <- setdiff(fac.list[term][[1]], facs.nesting) } sources[k] <- paste(facs.nested, collapse = " if (length(facs.nested) == 1) { nch <- nchar(sources[k]) if (substr(sources[k], 1, 1) == "(" & substr(sources[k], nch, nch) == ")") sources[k] <- substr(sources[k], 2, nch-1) } if (length(facs.nesting) > 0) { facs.nesting <- paste(facs.nesting, collapse = ":") facs.nesting <- gsub("(", "", facs.nesting, fixed = TRUE) facs.nesting <- gsub(")", "", facs.nesting, fixed = TRUE) sources[k] <- paste(sources[k], "[", facs.nesting,"]", sep = "") } sources[k] <- gsub(".", ":", sources[k], fixed = TRUE) } } } if (grandMean) { sources <- c(gmterm, sources) names(sources)[1] <- gmterm } return(sources) } "projs.jandw" <- function(R, Q, which.criteria = c("aefficiency","eefficiency","order"), aliasing.print = TRUE) { if (!is.list(Q)) stop("The matrices to orthogonalize to must be in a list") criteria <- c("aefficiency", "eefficiency", "mefficiency", "sefficiency", "xefficiency", "order", "dforthog") options <- c(criteria, "none", "all") kcriteria <- options[unlist(lapply(which.criteria, check.arg.values, options=options))] if ("all" %in% kcriteria) kcriteria <- criteria anycriteria <- !("none" %in% kcriteria) nc <- 3 + length(criteria) aliasing <- data.frame(matrix(nrow = 0, ncol=nc)) colnames(aliasing) <- c("Source", "df", "Alias", criteria) class(aliasing) <- c("aliasing", "data.frame") eff.crit <- vector(mode="list",length=length(criteria)) names(eff.crit) <- criteria terms <- names(Q) aliased <- rep(FALSE, length(terms)) names(aliased) <- terms for (i in 1:length(terms)) { decomp <- proj2.combine(R, Q[[terms[i]]]) df <- degfree(decomp$Qconf) if (df == 0) { warning(paste(terms[[i]],"is aliased with previous terms in the formula", "and has been removed", sep=" ")) eff.crit[criteria] <- 0 aliasing <- rbind(aliasing, data.frame(c(list(Source = terms[[i]], df = df, Alias = " eff.crit), stringsAsFactors = FALSE)) } else { keff.crit <- efficiency.criteria(decomp$efficiencies) if ((df - keff.crit[["dforthog"]]) != 0) { P <- projector(mat.I(nrow(R)) - R) decompP <- proj2.combine(P, Q[[terms[i]]]) keff.crit <- efficiency.criteria(decompP$efficiencies) warning(paste(terms[[i]],"is partially aliased with previous terms in the formula", sep=" ")) aliasing <- rbind(aliasing, data.frame(c(list(Source = terms[[i]], df = degfree(decompP$Qconf), Alias = "unknown"), keff.crit), stringsAsFactors = FALSE)) } } Q[[terms[i]]] <- decomp$Qconf R <- decomp$Qres } if (nrow(aliasing) > 0) { rownames(aliasing) <- NULL class(aliasing) <- c("aliasing", "data.frame") attr(aliasing, which = "title") <- "\nTable of information (partially) aliased with previous sources derived from the same formula\n\n" if (aliasing.print) { if (anycriteria) print(aliasing, which = kcriteria) else print(aliasing, which = "none") } } else { aliasing <- NULL } Q <- Q[!aliased] return(list(Q = Q, aliasing = aliasing)) } "pstructure.formula" <- function(formula, keep.order = TRUE, grandMean = FALSE, orthogonalize = "hybrid", labels = "sources", marginality = NULL, check.marginality = TRUE, omit.projectors = FALSE, which.criteria = c("aefficiency","eefficiency","order"), aliasing.print = TRUE, data = NULL, ...) { options <- c("differencing", "eigenmethods", "hybrid") opt <- options[check.arg.values(orthogonalize, options)] options <- c("terms", "sources") lab.opt <- options[check.arg.values(labels, options)] if (orthogonalize == "eigenmethods" & lab.opt == "sources" & is.null(marginality)) warning("When orthogonalize = eigenmethods and marginality not supplied, labels = sources is ignored") criteria <- c("aefficiency", "eefficiency", "mefficiency", "sefficiency", "xefficiency", "order", "dforthog") options <- c(criteria, "none", "all") kcriteria <- options[unlist(lapply(which.criteria, check.arg.values, options=options))] if ("all" %in% kcriteria) kcriteria <- criteria anycriteria <- !("none" %in% kcriteria) if (is.null(data) | !is.data.frame(data)) stop("Must supply a data.frame for data") n <- nrow(data) Q.G = projector(matrix(1, nrow=n, ncol=n)/n) aliasing <- NULL if (formula == ~1) { if (!grandMean) warning("formula is for grand mean, yet grandMean is FALSE; it will be saved") terms <- "Mean" nterms <- 1 Q <- list(Mean = Q.G) marginality <- diag(1, nrow = nterms, ncol = nterms) rownames(marginality) <- terms colnames(marginality) <- terms sources <- terms } else { terms <- attr(terms(formula, keep.order = keep.order, ...), which="term.labels") nterms <- length(terms) fac.list <- lapply(terms, fac.getinTerm) names(fac.list) <- terms facs <- unique(unlist(fac.list)) if (!all(facs %in% names(data))) stop(paste("Some factor/covariates missing from data:", paste0(facs[!(facs %in% names(data))], collapse = ", "))) fac.modl <- model.frame(formula, data=data) if (grandMean) { Q <- vector("list", length=nterms+1) names(Q) <- c("Mean", terms) Q[["Mean"]] <- Q.G } else { Q <- vector("list", length=nterms) names(Q) <- terms } for (k in 1:nterms) { Q[[terms[k]]] <- model.matrix(as.formula(paste("~ ",terms[k])), data=fac.modl) Q[[terms[k]]] <- Q[[terms[k]]] %*% ginv(t(Q[[terms[k]]]) %*% Q[[terms[k]]]) %*% t(Q[[terms[k]]]) Q[[terms[k]]] <- projector(Q[[terms[k]]] - Q.G) } if (!is.null(marginality)) { if (nrow(marginality) != nterms | ncol(marginality) != nterms) stop(paste("The number of rows and columns in the supplied marginality matrix must be ", "the same as the number of terms in the supplied formula")) if (!all(rownames(marginality) == terms) | !all(colnames(marginality) == terms)) warning("Not all row and column names for the supplied marginality are the same as the expanded set of term names") if (!all(marginality == 1 | marginality == 0)) stop("All elements of the supplied marginality matrix must be 0 or 1") } marg.mat <- diag(1, nrow = nterms, ncol = nterms) rownames(marg.mat) <- terms colnames(marg.mat) <- terms if (length(terms) == 1) { marginality <- as.matrix(c(1)) rownames(marginality) <- colnames(marginality) <- terms sources <- terms <- names(Q) aliasing <- NULL } else { if (orthogonalize == "hybrid") { nc <- 3 + length(criteria) aliasing <- data.frame(matrix(nrow = 0, ncol=nc)) colnames(aliasing) <- c("Source", "df", "Alias", criteria) eff.crit <- vector(mode="list",length=length(criteria)) names(eff.crit) <- criteria for (i in 2:length(terms)) { for (j in 1:(i-1)) { if (marg.mat[i, i] == 1) { Qji <- Q[[terms[j]]] %*% Q[[terms[i]]] if (!is.allzero(Qji)) { if (is.allzero(Qji-Q[[terms[j]]])) { if (is.allzero(Q[[terms[j]]] - Q[[terms[i]]])) { aliasstatus <- "full" marg.mat[terms[i], terms[i]] <- 0 warning(paste(terms[[i]],"is aliased with previous terms in the formula", "and has been removed", sep=" ")) eff.crit[criteria] <- 1 aliasing <- rbind(aliasing, data.frame(c(list(Source = terms[[i]], df = degfree(Q[[terms[i]]]), Alias = terms[[j]]), eff.crit), stringsAsFactors = FALSE), data.frame(c(list(Source = terms[[i]], df = 0, Alias = " eff.crit), stringsAsFactors = FALSE)) } else { marg.mat[terms[j], terms[i]] <- 1 Q[[terms[i]]] <- projector(Q[[terms[i]]] - Q[[terms[j]]]) } } } } } } for (i in 2:length(terms)) { Q.work <- Q[[terms[i]]] Q.jcum <- Q.G aliasstatus <- "none" for (j in 1:(i-1)) { if (marg.mat[j, j] == 1) { Q.jcum <- projector(Q.jcum + Q[[terms[j]]]) if (marg.mat[i, i] == 1) { Qji <- Q[[terms[j]]] %*% Q.work if (!is.allzero(Qji)) { if (is.allzero(Qji-Q[[terms[j]]])) { marg.mat[terms[j], terms[i]] <- 1 Q.work <- projector(Q.work - Q[[terms[j]]]) Q[[terms[i]]] <- Q.work } else { if (is.allzero(Qji - Q.work)) { aliasstatus <- "full" marg.mat[terms[i], terms[i]] <- 0 warning(paste(terms[[i]],"is aliased with previous terms in the formula", "and has been removed", sep=" ")) eff.crit[criteria] <- 1 aliasing <- rbind(aliasing, data.frame(c(list(Source = terms[[i]], df = degfree(Q.work), Alias = terms[[j]]), eff.crit), stringsAsFactors = FALSE)) } else { aliasstatus <- "partial" decompP <- proj2.combine(Q.work, Q[[terms[j]]]) keff.crit <- efficiency.criteria(decompP$efficiencies) aliasing <- rbind(aliasing, data.frame(c(list(Source = terms[[i]], df = degfree(decompP$Qconf), Alias = terms[[j]]), keff.crit[criteria]), stringsAsFactors = FALSE)) R <- projector(diag(1, nrow = n, ncol = n) - Q.jcum) decomp <- proj2.combine(R, Q.work) Q.work <- decomp$Qconf } } } } } } if (aliasstatus == "partial") { decompR <- proj2.combine(Q[[terms[i]]], Q.work) keff.crit <- efficiency.criteria(decompR$efficiencies) aliasing <- rbind(aliasing, data.frame(c(list(Source = terms[[i]], df = degfree(decompR$Qconf), Alias = " keff.crit[criteria]), stringsAsFactors = FALSE)) } if (aliasstatus == "full") { keff.crit <- rep(0, length(criteria)) names(keff.crit) <- criteria aliasing <- rbind(aliasing, data.frame(c(list(Source = terms[[i]], df = degfree(Q[[terms[i]]]), Alias = " keff.crit[criteria]), stringsAsFactors = FALSE)) } Q[[terms[i]]] <- Q.work } if (nrow(aliasing) > 0) { rownames(aliasing) <- NULL class(aliasing) <- c("aliasing", "data.frame") if (lab.opt == "sources") { tmp <- marg.mat diag(tmp) <- 1 sources <- formSources(terms, tmp, grandMean = FALSE) which.sources <- aliasing$Source %in% names(sources) if (any(which.sources)) aliasing$Source[which.sources] <- sources[aliasing$Source[which.sources]] which.sources <- aliasing$Alias %in% names(sources) if (any(which.sources)) aliasing$Alias[which.sources] <- sources[aliasing$Alias[which.sources]] } attr(aliasing, which = "title") <- "\nTable of information (partially) aliased with previous sources derived from the same formula\n\n" if (aliasing.print) { if (anycriteria) print(aliasing, which = kcriteria) else print(aliasing, which = "none") } } else { aliasing <- NULL } aliased <- (diag(marg.mat) == 0) if (any(aliased)) { marg.mat <- marg.mat[!aliased, !aliased] Q <- Q[!aliased] } terms <- names(Q) if (is.null(marginality)) { sources <- formSources(terms, marg.mat, grandMean = grandMean) marginality <- marg.mat } else { if (check.marginality & all(marg.mat == marginality)) warning("Supplied marginality matrix differs from that computed by pstructure formula") sources <- formSources(terms, marginality, grandMean = grandMean) } if (lab.opt == "sources") names(Q) <- sources } else { if (orthogonalize == "differencing") { nc <- 3 aliasing <- data.frame(matrix(nrow = 0, ncol=nc)) colnames(aliasing) <- c("Source", "df", "Alias") class(aliasing) <- c("aliasing", "data.frame") eff.crit <- vector(mode="list",length=length(criteria)) names(eff.crit) <- criteria orthogonal <- TRUE fac.mat <- attr(terms(formula, keep.order = keep.order, ...), which="factors") for (i in 2:length(terms)) { Q.work <- Q[[terms[i]]] for (j in 1:length(terms)) { if (i != j) { if (all((fac.mat[,j] != 0) == (fac.mat[,j] & fac.mat[,i]))) { Q.work <- Q.work - Q[[terms[j]]] marg.mat[terms[j], terms[i]] <- 1 } } } Q.work <- projector(Q.work) if (degfree(Q.work) == 0) { marg.mat[terms[i], terms[i]] <- 0 warning(paste(terms[[i]],"is aliased with previous terms in the formula", "and has been removed", sep=" ")) eff.crit[criteria] <- 1 aliasing <- rbind(aliasing, data.frame(list(Source = terms[[i]], df = 0, Alias = "unknown"), eff.crit, stringsAsFactors = FALSE)) } else { i1 <- i - 1 if (i1 > 0) for (j in 1:i1) if (!is.allzero(Q.work %*% Q[[terms[j]]])) { warning(paste("** Projection matrices for ",terms[i], " and ", terms[j], ' are not orthogonal\n', ' Try orthogonalize = "hybrid" or "eigenmethods"', sep="")) eff.crit[criteria] <- NA aliasing <- rbind(aliasing, data.frame(list(Source = terms[[i]], df = NA, Alias = terms[[j]]), eff.crit, stringsAsFactors = FALSE)) } } Q[[terms[i]]] <- Q.work } if (nrow(aliasing) > 0) { rownames(aliasing) <- NULL class(aliasing) <- c("aliasing", "data.frame") if (lab.opt == "sources") { tmp <- marg.mat diag(tmp) <- 1 sources <- formSources(terms, tmp, grandMean = FALSE) which.sources <- aliasing$Source %in% names(sources) if (any(which.sources)) aliasing$Source[which.sources] <- sources[aliasing$Source[which.sources]] which.sources <- aliasing$Alias %in% names(sources) if (any(which.sources)) aliasing$Alias <- sources[aliasing$Alias] } attr(aliasing, which = "title") <- "\nTable of information (partially) aliased with previous sources derived from the same formula\n\n" if (aliasing.print) print(aliasing, which = "none") } else { aliasing <- NULL } aliased <- (diag(marg.mat) == 0) if (any(aliased)) { marg.mat <- marg.mat[!aliased, !aliased] Q <- Q[!aliased] } terms <- names(Q) if (is.null(marginality)) { sources <- formSources(terms, marg.mat, grandMean = grandMean) marginality <- marg.mat } else { if (check.marginality & all(marg.mat == marginality)) warning("Supplied marginality matrix differs from that computed by pstructure formula") sources <- formSources(terms, marginality, grandMean = grandMean) } if (lab.opt == "sources") names(Q) <- sources } else { R <- projector(diag(1, nrow = n, ncol = n) - Q[[terms[1]]] - Q.G) if (length(terms) > 1) { Qorth <- projs.jandw(R, Q[terms[2:length(terms)]], which.criteria = kcriteria, aliasing.print = aliasing.print) Q <- c(Q[1:match(terms[1], names(Q))], Qorth$Q) aliasing <- Qorth$aliasing } terms <- names(Q) if (is.null(marginality)) { sources <- terms lab.opt <- "terms" } else { aliased <- !(terms %in% names(Q)) if (grandMean) aliased <- aliased[-1] marginality <- marginality[!aliased, !aliased] sources <- formSources(terms, marginality, grandMean = grandMean) names(Q) <- sources lab.opt <- "sources" } } } } } struct <- list(Q = Q, terms = terms, sources = sources, marginality = marginality, aliasing = aliasing) class(struct) <- c("pstructure", "list") attr(struct, which = "labels") <- lab.opt if (omit.projectors) struct$Q <- unlist(lapply(struct$Q, degfree)) return(struct) }
search_for_cis_spliced_peptides <- function(not_linear_list, proteome_db, with_parallel, customCores){ isnot_Linear <- create_spliced_peptides(not_linear_list) isnot_Linear$id<- gsub("\\.x\\d+", "", rownames(isnot_Linear)) isnot_Linear$splicePattern <- paste0("(",isnot_Linear$Fragment1, "((?!",isnot_Linear$Fragment1, ").)*?", isnot_Linear$Fragment2,")") isnot_Linear$id <- paste0(isnot_Linear$id, "-+*&x", isnot_Linear$spliceType, "-,&x", isnot_Linear$splicePattern) nbCores<- parallel::detectCores() if (with_parallel == TRUE & nbCores > 5){ message('with parallel computing (cores)') nbCores<- customCores message(customCores) cis_spliced_peptides <- cis_parallel(nbCores, isnot_Linear, proteome_db) } else if (with_parallel == TRUE & nbCores < 5){ message('without parallel computing\n') isnot_Linear_list<- stats::setNames(as.list(isnot_Linear$splicePattern), isnot_Linear$id) cis_spliced_peptides <- find_cis_spliced_peptides (isnot_Linear_list, proteome_db) } else if (with_parallel == FALSE){ message('without parallel computing\n') isnot_Linear_list<- stats::setNames(as.list(isnot_Linear$splicePattern), isnot_Linear$id) cis_spliced_peptides <- find_cis_spliced_peptides (isnot_Linear_list, proteome_db) } cis_spliced_fd<- data.frame(Fragment=rep(names(cis_spliced_peptides), sapply(cis_spliced_peptides, length)), indices=unlist(cis_spliced_peptides), stringsAsFactors = FALSE) cis_spliced_fd$ForwardOrReverse<- gsub(".*(\\-\\+\\*\\&x)","", cis_spliced_fd$Fragment) cis_spliced_fd$ForwardOrReverse<- gsub("(\\-\\,\\&x).*","", cis_spliced_fd$ForwardOrReverse) cis_spliced_fd$Peptide<- gsub(".*(\\-\\+xx)" ,"", cis_spliced_fd$Fragment, perl=TRUE) cis_spliced_fd$ALC<- gsub(".*(\\-\\-xx)" ,"", cis_spliced_fd$Peptide, perl=TRUE) cis_spliced_fd$Peptide<- gsub("(\\-\\-xx).*" ,"", cis_spliced_fd$Peptide, perl=TRUE) cis_spliced_fd$ALC<- gsub("(\\-\\+\\*\\&x).*" ,"", cis_spliced_fd$ALC, perl=TRUE) cis_spliced_fd$denovo_id<- gsub("(\\-\\+xx).*" ,"", cis_spliced_fd$Fragment, perl=TRUE) cis_spliced_fd$splicePattern<- gsub(".*(\\-\\,\\&x)", "", cis_spliced_fd$Fragment) cis_spliced_fd$spliced_peptide<- gsub("(\\(\\(\\?.*\\?)", "_", cis_spliced_fd$splicePattern) cis_spliced_fd$spliced_peptide<- gsub("\\(|\\)", "", cis_spliced_fd$spliced_peptide) cis_spliced_fd$full_annot <- seqinr::getAnnot(proteome_db[as.numeric(cis_spliced_fd$indices)]) cis_spliced_fd$accessionNumber<- names(proteome_db[as.numeric(cis_spliced_fd$indices)]) cis_spliced_fd$frag1 <- gsub("_.*", "", cis_spliced_fd$spliced_peptide) cis_spliced_fd$frag2 <- gsub(".*_", "", cis_spliced_fd$spliced_peptide) cis_spliced_fd$id<- paste0(cis_spliced_fd$denovo_id,"++", cis_spliced_fd$indices,",,,+", cis_spliced_fd$ForwardOrReverse,"[,.$-+", cis_spliced_fd$spliced_peptide,"-+]", cis_spliced_fd$ALC,"{++", cis_spliced_fd$full_annot,"++}", "+++", cis_spliced_fd$accessionNumber ) almost_final_cis<- get_detailed_cis_positions(cis_spliced_fd, proteome_db) cis_spectrum_interim <- almost_final_cis cis_spectrum_interim$duplid <- paste(cis_spectrum_interim$denovo_id, cis_spectrum_interim$ReversetoForwardFullseq, cis_spectrum_interim$GeneName) cis_spectrum_interim <- cis_spectrum_interim[!duplicated(cis_spectrum_interim$duplid),] cis_spectrum_interim$duplid <- paste(cis_spectrum_interim$denovo_id, cis_spectrum_interim$ReversetoForwardFullseq) cis_spectrum_interim <- cis_spectrum_interim[!duplicated(cis_spectrum_interim$duplid),] uniquecisids<- unique(cis_spectrum_interim$denovo_id) cis_spectrum_interim$ALC <- as.numeric(cis_spectrum_interim$ALC) cis_spectrum_interim2<- by(cis_spectrum_interim, cis_spectrum_interim["denovo_id"], function(z) z[which(z$ALC[z$denovo_id %in% uniquecisids] == max(z$ALC)),]) cis_spectrum_interim2<- do.call(rbind, cis_spectrum_interim2) final_cis<- cis_spectrum_interim2 final_df_cis_peptides<- data.frame(Peptide=final_cis$ReversetoForwardFullseq, Fragment=final_cis$Peptide, denovo_id= final_cis$denovo_id , Length=nchar(final_cis$ReversetoForwardFullseq), Type="cis", spliceType=final_cis$ForwardOrReverse, ALC= final_cis$ALC, stringsAsFactors = FALSE) not_cis <- data.frame(Names=names(cis_spliced_peptides[unlist(lapply( cis_spliced_peptides, function(x) length(x)<1))]),stringsAsFactors=FALSE) not_cis$id<- gsub("\\_x\\d+$","", not_cis$Names) not_cis$ALC <- gsub(".*(\\-\\-xx)","", not_cis$id) not_cis$Peptide<- gsub(".*(\\-\\+xx)","", not_cis$id) not_cis$Peptide <- gsub("(\\-\\-xx).*","", not_cis$Peptide) not_cis$denovo_id<- gsub("(\\-\\+xx).*","", not_cis$id) not_cis$ALC <- gsub("(\\-\\+\\*\\&x).*","", not_cis$ALC) not_cis_ids<- not_cis$denovo_id %in% cis_spectrum_interim2$denovo_id not_cis <- not_cis[!not_cis_ids,] not_cis$id <- gsub("(\\-\\+\\*\\&x).*", "", not_cis$id) not_cis<- not_cis[!duplicated(not_cis$id),] not_cis_list<- stats::setNames(as.list(not_cis$Peptide), not_cis$id) not_cis_list <- not_cis_list[which(!is.na(not_cis_list))] cis_peptides_output<- list(not_cis_list, final_df_cis_peptides) return(cis_peptides_output) }
dotchart <- function(x, labels = NULL, groups = NULL, gdata = NULL, cex = par("cex"), pt.cex = cex, pch = 21, gpch = 21, bg = par("bg"), color = par("fg"), gcolor = par("fg"), lcolor = "gray", xlim = range(x[is.finite(x)]), main = NULL, xlab = NULL, ylab = NULL, ...) { opar <- par("mai", "mar", "cex", "yaxs") on.exit(par(opar)) par(cex = cex, yaxs = "i") if(!is.numeric(x)) stop("'x' must be a numeric vector or matrix") n <- length(x) if (is.matrix(x)) { if (is.null(labels)) labels <- rownames(x) if (is.null(labels)) labels <- as.character(1L:nrow(x)) labels <- rep_len(labels, n) if (is.null(groups)) groups <- col(x, as.factor = TRUE) glabels <- levels(groups) } else { if (is.null(labels)) labels <- names(x) glabels <- if(!is.null(groups)) levels(groups) if (!is.vector(x)) { warning("'x' is neither a vector nor a matrix: using as.numeric(x)") x <- as.numeric(x) } } plot.new() linch <- if(!is.null(labels)) max(strwidth(labels, "inch"), na.rm = TRUE) else 0 if (is.null(glabels)) { ginch <- 0 goffset <- 0 } else { ginch <- max(strwidth(glabels, "inch"), na.rm = TRUE) goffset <- 0.4 } if (!(is.null(labels) && is.null(glabels))) { nmai <- par("mai") nmai[2L] <- nmai[4L] + max(linch + goffset, ginch) + 0.1 par(mai = nmai) } if (is.null(groups)) { o <- 1L:n y <- o ylim <- c(0, n + 1) } else { o <- sort.list(as.numeric(groups), decreasing = TRUE) x <- x[o] groups <- groups[o] color <- rep_len(color, length(groups))[o] lcolor <- rep_len(lcolor, length(groups))[o] offset <- cumsum(c(0, diff(as.numeric(groups)) != 0)) y <- 1L:n + 2 * offset ylim <- range(0, y + 2) } plot.window(xlim = xlim, ylim = ylim, log = "") lheight <- par("csi") if (!is.null(labels)) { linch <- max(strwidth(labels, "inch"), na.rm = TRUE) loffset <- (linch + 0.1)/lheight labs <- labels[o] mtext(labs, side = 2, line = loffset, at = y, adj = 0, col = color, las = 2, cex = cex, ...) } abline(h = y, lty = "dotted", col = lcolor) points(x, y, pch = pch, col = color, bg = bg, cex = pt.cex/cex) if (!is.null(groups)) { gpos <- rev(cumsum(rev(tapply(groups, groups, length)) + 2) - 1) ginch <- max(strwidth(glabels, "inch"), na.rm = TRUE) goffset <- (max(linch+0.2, ginch, na.rm = TRUE) + 0.1)/lheight mtext(glabels, side = 2, line = goffset, at = gpos, adj = 0, col = gcolor, las = 2, cex = cex, ...) if (!is.null(gdata)) { abline(h = gpos, lty = "dotted") points(gdata, gpos, pch = gpch, col = gcolor, bg = bg, cex = pt.cex/cex, ...) } } axis(1) box() title(main=main, xlab=xlab, ylab=ylab, ...) invisible() }
NULL fastqc <- function(fq.dir = getwd(), qc.dir = NULL, threads = 4, fastqc.path = "~/bin/FastQC/fastqc") { .check_if_unix() if(is.null(qc.dir)) qc.dir <- file.path(fq.dir, "FASTQC") .create_dir(qc.dir) cmd <- paste0(fastqc.path, " ", fq.dir, "/* --threads ", threads, " --outdir ", qc.dir) system(cmd) }
add_title=function(x,title="",size=20,color=NULL,before=TRUE,after=TRUE){ bold_face <- shortcuts$fp_bold(font.size = size) if(!is.null(color)) bold_face=update(bold_face,color=color) fpar1=fpar(ftext(title, prop = bold_face)) if(before) x <- x %>% body_add_par("",style="Normal") x <- x %>% body_add_fpar(fpar1) if(after) x <- x %>% body_add_par("",style="Normal") x } add_self=function(mydoc,data){ if(class(mydoc)=="rpptx"){ mydoc <- mydoc %>% add_slide("Blank",master="Office Theme") mydoc<-mydoc %>% ph_with(value=df2flextable2(data), location = ph_location(left=1,top=2)) } else{ mydoc<-mydoc %>% body_add_par(value="\n\n",style="Normal") mydoc<-mydoc %>% body_add_flextable(df2flextable2(data)) mydoc<-mydoc %>% body_add_par(value="\n\n",style="Normal") } mydoc } add_text2hyperlink=function(mydoc,text){ if(str_detect(text,"\\]\\(")){ devide=function(x){ ref=str_extract(x,"\\(.*\\)") x=str_remove(x,"\\(.*\\)") str=str_extract(x,"\\[.*\\]") text=str_remove(x,"\\[.*\\]") str=substr(str,2,nchar(str)-1) ref=substr(ref,2,nchar(ref)-1) list(text=text,str=str,ref=ref) } temp=str_extract_all(text,".*?\\[.*?\\]\\(.*?\\)") result=lapply(temp,devide) for(i in 1:length(result[[1]]$text)){ if(i==1) { mydoc=ph_with(mydoc,value=result[[1]]$text[i],location = ph_location_type(type="body")) } else{ mydoc=ph_add_text(mydoc,type="body",str=result[[1]]$text[i]) } mydoc=ph_add_text(mydoc,type="body",str=result[[1]]$str[i],href=result[[1]]$ref[i]) } } else{ mydoc=ph_with(mydoc, text, location = ph_location_type(type="body")) } mydoc } add_text=function(mydoc,title="",text="",code="",preprocessing="",echo=FALSE,eval=FALSE,style="Normal",landscape=FALSE){ if(class(mydoc)=="rpptx"){ layout="Title and Content" if((title=="")&(text=="")) layout="Blank" else if(text=="") layout="Title Only" mydoc <- mydoc %>% add_slide(layout = layout, master = "Office Theme") if(title!=""){ mydoc <- mydoc %>% ph_with(value=title, location = ph_location_type(type="title")) } if(text!=""){ mydoc <- mydoc %>% add_text2hyperlink(text=text) } pos=1.5 if(echo) { if(code!=""){ codeft=Rcode2flextable(code,preprocessing=preprocessing,eval=eval,format="pptx") mydoc<-mydoc %>% ph_with(value=codeft, location = ph_location(left=1,top=pos)) pos=2 } } } else{ if(landscape) { mydoc <- mydoc %>% body_end_section_portrait() } mydoc <- mydoc %>% add_title(title) if(text!="") mydoc<-mydoc %>% body_add_par(value=text,style=style) if(echo) { if(code!=""){ codeft=Rcode2flextable(code,eval=eval,format="docx") mydoc<-mydoc %>% body_add_par(value="\n\n",style="Normal") mydoc<-mydoc %>% body_add_flextable(codeft) mydoc<-mydoc %>% body_add_par(value="\n\n",style="Normal") } } } mydoc } add_2ggplots=function(mydoc,plot1,plot2,preprocessing="",width=3,height=2.5,top=2){ if(preprocessing!="") { eval(parse(text=preprocessing)) } gg1<-eval(parse(text=plot1)) gg2<-eval(parse(text=plot2)) if(class(mydoc)=="rpptx"){ mydoc<- mydoc %>% ph_with(dml(code = print(gg1)), location = ph_location(left=0.5,top=top,width=4.5,height=5) ) %>% ph_with(dml(code = print(gg2)), location = ph_location(left=5,top=top,width=4.5,height=5 )) } else{ mydoc <- mydoc %>% body_end_section_continuous() mydoc <-mydoc %>% body_add_gg(value=gg1,width=width,height=height) %>% body_add_gg(value=gg2,width=width,height=height) %>% body_end_section_columns(widths = c(width, width), space = .05, sep = FALSE) } mydoc } add_2flextables=function(mydoc,ft1,ft2,echo=FALSE,width=3,code=""){ pos=1.5 if(echo & (code!="")) pos=2 if(class(mydoc)=="rpptx"){ mydoc<-mydoc %>% ph_with(value=ft1, location = ph_location(left=0.5,top=pos)) %>% ph_with(value=ft2, location = ph_location(left=5,top=pos)) } else { mydoc <- mydoc %>% body_end_section_continuous() mydoc <-mydoc %>% body_add_flextable(value=ft1) %>% body_add_flextable(value=ft2) %>% slip_in_column_break() %>% body_end_section_columns() } mydoc } getCodeOption=function(x,what="echo"){ result=FALSE x=unlist(strsplit(x,",")) x=x[str_detect(x,what)] if(length(x)>0){ x=unlist(strsplit(x,"="))[2] result=eval(parse(text=x)) } result }
ifafgwc <- function (data, pop=NA, distmat=NA, ncluster=2, m=2, distance='euclidean', order=2, alpha=0.7, a=1, b=1, error=1e-5, max.iter=100,randomN=0,vi.dist="uniform", ei.distr="normal", fa.same=10, nfly=10, ffly.no=2, ffly.dist='euclidean', ffly.order=2, gamma=1, ffly.beta=1, ffly.alpha=1, r.chaotic=4,m.chaotic=0.7,ind.levy=1,skew.levy=0,scale.levy=1,ffly.alpha.type=4) { randomnn <- randomN ptm<-proc.time() n <- nrow(data) d <- ncol(data) iter=0 gen=1 beta <- 1-alpha same=0 data <- as.matrix(data) if (alpha ==1) { pop <- rep(1,n) distmat <- matrix(1,n,n) } datax <- data pop <- matrix(pop,ncol=1) mi.mj <- pop%*%t(pop) ffly.finalbest <- init.swarm(data, mi.mj, distmat, distance, order, vi.dist, ncluster, m, alpha, a, b, randomN, 1) inten.finalbest <- ffly.finalbest$I conv <- c(inten.finalbest) ffly.finalpos <- ffly.finalbest$centroid ffly.finalpos.other <- ffly.finalbest$membership ffly.new <- init.swarm(data, mi.mj, distmat, distance, order, vi.dist, ncluster, m, alpha, a, b, randomN, nfly) ffly.swarm <- ffly.new$centroid ffly.other <- ffly.new$membership inten <- ffly.new$I repeat { set.seed(randomN) ffly.alpha <- update_alpha(ffly.alpha,gen,max.iter,ffly.alpha.type) set.seed(randomN) ffly.swarm <- ffly.new$centroid <- moving(ffly.new,ffly.no,ffly.beta,gamma,ffly.alpha,ffly.dist,ffly.order,ei.distr, r.chaotic,m.chaotic,ind.levy,skew.levy,scale.levy,data,m,distance,order,mi.mj,distmat,alpha,beta,a,b,randomN) ffly.other <- ffly.new$membership <- lapply(1:nfly, function(x) uij(data,ffly.swarm[[x]],m,distance,order)) ffly.other <- ffly.new$membership <- lapply(1:nfly, function(x) renew_uij(data,ffly.new$membership[[x]]$u,mi.mj,distmat,alpha,beta,a,b)) ffly.swarm <- ffly.new$centroid <- lapply(1:nfly, function(x) vi(data,ffly.new$membership[[x]],m)) inten <- ffly.new$I <- sapply(1:nfly, function(x) jfgwcv(data,ffly.new$centroid[[x]],m,distance,order)) best <- which(inten==min(inten))[1] ffly.curbest <- ffly.swarm[[best]] ffly.curbest.other <- ffly.other[[best]] inten.curbest <- inten[best] conv <- c(conv,inten.finalbest) if (abs(conv[gen+1]-conv[gen])<error) { same <- same+1 } else { same <- 0 } if (inten.curbest<=inten.finalbest) { ffly.finalpos <- ffly.curbest ffly.finalpos.other <- ffly.curbest.other inten.finalbest <- inten.curbest } gen <- gen+1 randomN <- randomN+nfly if (gen==max.iter || same==fa.same) break } if (any(class(ffly.finalpos.other)=="list")) { new_uij <- ffly.finalpos.other[[1]] vi <- ffly.finalpos[[1]] } else { new_uij <- ffly.finalpos.other vi <- ffly.finalpos } finaldata=determine_cluster(datax,new_uij) cluster=finaldata[,ncol(finaldata)] ifa <- list("converg"=conv,"f_obj"=jfgwcv(data,vi,m,distance,order),"membership"=new_uij,"centroid"=vi, "validation"=index_fgwc(data,cluster,new_uij,vi,m,exp(1)), "cluster"=cluster, "finaldata"=finaldata, "call"=match.call(),"iteration"=gen,"same"=same,"time"=proc.time()-ptm) print(c(order, ncluster,m, randomN)) class(ifa) <- 'fgwc' return (ifa) } init.swarm <- function(data, pop, distmat, distance, order, vi.dist, ncluster, m, alpha, a, b, randomN, nfly) { inten <- rep(0,nfly) beta <- 1-alpha start.uij <- lapply(1:nfly, function(x) gen_uij(data,ncluster,nrow(data),randomN+x)) start.uij <- lapply(1:nfly, function (x) renew_uij(data,start.uij[[x]],pop,distmat,alpha,beta,a,b)) start.vi <- lapply(1:nfly, function (x) vi(data,start.uij[[x]],m)) for(i in 1:nfly) { inten[i] <- jfgwcv(data,start.vi[[i]],m,distance,order) } result <- list("membership"=start.uij,"centroid"=start.vi,"I"=inten) return(result) } intel.ffly <- function(ffly.list,no) { best <- order(ffly.list$I,decreasing = F)[1:no] intel.uij <- lapply(best, function(x) ffly.list$membership[[x]]) intel.vi <- lapply(best, function(x) ffly.list$centroid[[x]]) inten <- ffly.list$I[best] result <- list("membership"=intel.uij,"centroid"=intel.vi,"I"=inten) return(result) } swarm_dist <- function (swarm1,swarm2,distance,order) { return(diag(dist(swarm1,swarm2,distance,order))) } moving <- function(ffly.all,no,ff.beta,gamma,ff.alpha,ffly.dist,ffly.order,ei.distr,r.chaotic,m.chaotic,ind.levy,skew.levy,sca.levy, data,m,distance,order,mi.mj,dist,alpha,beta,a,b,randomN){ times <- 0 intel.ffly <- intel.ffly(ffly.all,no) dd <- dim(ffly.all$centroid[[1]]) ffly <- ffly.all$centroid fit <- ffly.all$I for(i in 1:length(intel.ffly$centroid)){ for(j in 1:length(ffly)){ r <- diag(cdist(ffly[[j]],intel.ffly$centroid[[i]],ffly.dist,ffly.order)) ei <- matrix(eiDist(ei.distr,dd[1]*dd[2],randomN+i+j,r.chaotic,m.chaotic,ind.levy,skew.levy,sca.levy),ncol=dd[2]) if (fit[j] > intel.ffly$I[i]){ ffly[[j]]+beta*exp(-gamma*r^2)*(intel.ffly$centroid[[i]]-ffly[[j]])+(ff.alpha*ei) } else{ times <- times+1 if(times==no){ ffly[[j]]+(ff.alpha*ei) } } fit[j] <- jfgwcv2(data,ffly[[j]],m,distance,order,mi.mj,dist,alpha,beta,a,b) } } return(ffly) }
selective_flattening <- function(x, what, recursionLevel = 0, silent = justifier::opts$get("silent")) { msg(spc(recursionLevel), "Selectively flattening an object called '", deparse(substitute(x)), "' only selecting ", what, " specifications.\n", silent = silent); justifierClass <- paste0( "justifier", tools::toTitleCase(what) ); justifierPlural <- paste0(tolower(what), "s"); if ((inherits(x, justifierClass)) && (inherits(x, "singleJustifierElement"))) { msg(spc(recursionLevel), "Single justifier element present with identifier '", x$id, "'.\n", silent = silent); res <- emptyStructuredJustifierObject; classToUse <- class(res[[justifierPlural]]); res[[justifierPlural]] <- list(x); class(res[[justifierPlural]]) <- classToUse; names(res[[justifierPlural]]) <- get_ids_from_structured_justifierElements( res[[justifierPlural]] ); class(res) <- c("justifier", "justifierStructuredObject", "list"); return(res); } else if ((inherits(x, justifierClass)) && (inherits(x, "multipleJustifierElements"))) { msg(spc(recursionLevel), length(x), " elements present, calling myself recursively to structure them.\n", silent = silent); res <- do.call( c, lapply( x, selective_flattening, what = what, recursionLevel = recursionLevel + 1, silent = silent ) ); res <- unlist(res, recursive = FALSE); class(res) <- c("justifier", "justifierStructuredObject", "list"); return(res); } else { stop("You passed an object that isn't a singleJustifierElement of ", "class ", justifierClass, " or a list of ", "multipleJustifierElements. Instead, it has class(es) ", vecTxtQ(class(x)), "..."); } }
reassign_gen = function(ped_file){ if (!is.ped(ped_file)) { stop("\n \n Expecting a ped object. \n Please use new.ped to create an object of class ped.") } if(!"Gen" %in% colnames(ped_file)){ ped_file$Gen <- assign_gen(ped_file) } if (sum(ped_file$affected[ped_file$available]) == 0) { stop("\n \n No disease-affected relatives present. \n Cannot reassign generations.") } if (sum(ped_file$affected[ped_file$available]) == 1) { gped <- ped_file[ped_file$affected & ped_file$available, ] gped$Gen <- 1 warning(paste0("\n \n Family ", gped$FamID, " only contains one disease-affected relative.")) return(gped) } gped <- ped_file[ped_file$affected & ped_file$available, ] d <- 0 while (d == 0) { readd_dad <- find_missing_parent(gped) readd_mom <- find_missing_parent(gped, dad = FALSE) if (length(c(readd_dad, readd_mom)) == 0) { d <- 1 } else { readd <- ped_file[which(ped_file$ID %in% c(readd_dad, readd_mom)), ] gped <- rbind(gped, readd) } } pedgre <- ped2pedigree(gped) if (any(align.pedigree(pedgre)$spouse == 2)) { stop("\n \n Inbreeding detected. \n reassign_gen is not intended for pedigrees that contain loops or inbreeding.") } id_array <- as.numeric(align.pedigree(pedgre)$nid) id_array <- id_array[id_array != 0] if (any(duplicated(id_array))) { stop("\n \n Loop detected. \n reassign_gen is not intended for pedigrees that contain loops or inbreeding.") } kin_mat <- kinship(pedgre) if (any(kin_mat[gped$affected & gped$available, gped$affected & gped$available] == 0)) { ak_mat <- kin_mat[gped$affected & gped$available, gped$affected & gped$available] url1 <- colnames(ak_mat)[which(ak_mat == 0, arr.ind = T)[1, 1]] url2 <- colnames(ak_mat)[which(ak_mat == 0, arr.ind = T)[1, 2]] stop(paste0("\n \n The disease-affected relatives with ID numbers ", url1, " and ", url2, " are not related. \n Cannot determine most recent common ancestor for unrelated affecteds.")) } old_gen <- gped$Gen gped$Gen <- ifelse(gped$affected, gped$Gen, NA) gen_tab <- table(gped$Gen) min_gens <- as.numeric(names(gen_tab[c(1, 2)])) num_in_min_gen <- as.numeric(gen_tab[1]) if (min_gens[1] == 1 | (min_gens[1] == 2 & num_in_min_gen >= 2)) { return(gped) } else { pair_mat <- combn(x = gped$ID[gped$affected & gped$available], m = 2) mrca <- unique(unlist(lapply(1:ncol(pair_mat), function(x){ find_mrca(gped, pair_mat[1, x], pair_mat[2, x]) }))) if (length(mrca) > 1){ new_gen_diff <- min(old_gen[which(gped$ID %in% mrca)]) - 1 } else { new_gen_diff <- old_gen[which(gped$ID == mrca)] - 1 } gped$Gen[!is.na(gped$Gen)] <- gped$Gen[!is.na(gped$Gen)] - new_gen_diff return(gped) } } censor_ped = function(ped_file, censor_year = NULL){ if (!is.ped(ped_file)) { stop("\n \n Expecting a ped object. \n Please use new.ped to create an object of class ped.") } if (any(is.na(match(c("birthYr", "onsetYr", "deathYr"), colnames(ped_file))))) { stop("\n \n Missing date data. \n Please ensure that ped_file includes the following variables:\n birthYr, onsetYr, deathYr" ) } if (all(is.na(ped_file$birthYr)) & all(is.na(ped_file$onsetYr)) & all(is.na(ped_file$deathYr))) { stop("\n \n Nothing to censor, all date data is missing.") } if (is.null(censor_year)) { if ("proband" %in% colnames(ped_file)) { if(sum(ped_file$proband) == 1){ if (is.na(ped_file$onsetYr[ped_file$proband])) { stop("\n \n Proband's onset year is missing. \n Specify the proband's onset year or specify censor_year.") } else { censor_year <- ped_file$onsetYr[ped_file$proband] } } else { stop("\n \n Proband cannot be uniquely identified.\n Please identify a single proband or specify censor_year. \n ") } } else { stop("\n \n Proband cannot be identified. \n Please identify a proband or specify censor_year.") } } ped_file$affected <- ifelse(is.na(ped_file$onsetYr), FALSE, ifelse(ped_file$onsetYr <= censor_year, T, F)) ped_file$onsetYr <- ifelse(is.na(ped_file$onsetYr), NA, ifelse(ped_file$onsetYr <= censor_year, ped_file$onsetYr, NA)) ped_file$deathYr <- ifelse(is.na(ped_file$deathYr), NA, ifelse(ped_file$deathYr <= censor_year, ped_file$deathYr, NA)) if ("proband" %in% colnames(ped_file)) { ped_file$proband[ped_file$proband] <- ifelse(is.na(ped_file$onsetYr[ped_file$proband]), FALSE, ped_file$proband[ped_file$proband]) } if (all(is.na(ped_file$birthYr))) { censored_ped <- ped_file warning("\n \n Birth data not detected. \n Censoring onset and death data only") } else { censored_ped <- ped_file[which(ped_file$birthYr <= censor_year), ] if (nrow(censored_ped) == 0) { warning("\n \n No data recorded prior to the specified year.") return(censored_ped) } else { d <- 0 while (d == 0) { readd_dad <- find_missing_parent(censored_ped) readd_mom <- find_missing_parent(censored_ped, dad = FALSE) if (length(c(readd_dad, readd_mom)) == 0) { d <- 1 } else { readd <- ped_file[which(ped_file$ID %in% c(readd_dad, readd_mom)), ] censored_ped <- rbind(censored_ped, readd) } } } } return(censored_ped) } get_affectedInfo <- function(ped_file){ aLoc <- match(c("available"), colnames(ped_file)) if (is.na(aLoc)) { ped_file$available <- T } dA_loc <- match(c("DA1", "DA2"), colnames(ped_file)) if (length(dA_loc[!is.na(dA_loc)]) == 2) { ped_file$RVstatus <- ped_file$DA1 + ped_file$DA2 } keep_cols <- match(c("FamID", "ID", "birthYr", "onsetYr", "deathYr", "RR", "proband", "RVstatus", "subtype"), colnames(ped_file)) affected_info <- ped_file[ped_file$affected & ped_file$available, keep_cols[!is.na(keep_cols)]] rownames(affected_info) <- NULL class(affected_info) <- "data.frame" return(affected_info) } get_kinship <- function(ped_file){ aLoc <- match(c("available"), colnames(ped_file)) if (is.na(aLoc)) { ped_file$available <- T } kin_ped <- ped2pedigree(ped_file) kinMat <- kinship(kin_ped)[ped_file$affected & ped_file$available, ped_file$affected & ped_file$available] return(kinMat) } get_famInfo <- function(ped_file, s_ID = NULL){ AV <- get_affectedInfo(ped_file) SRV <- ifelse(any(is.na(match(c("DA1", "DA2"), colnames(ped_file)))), NA, ifelse(any(ped_file$DA1 == 1) | any(ped_file$DA2 == 1), TRUE, FALSE)) YRcols <- match(c("birthYr", "onsetYr"), colnames(ped_file)) AOO <- ifelse(nrow(AV) > 0 & length(YRcols[!is.na(YRcols)]) == 2, mean(AV$onsetYr - AV$birthYr, na.rm = T), NA) AY <- ifelse(nrow(AV) > 0 & !is.na(match(c("proband"), colnames(ped_file))) & sum(AV$proband) == 1, AV$onsetYr[AV$proband], NA) AK <- get_kinship(ped_file) AIBD <- ifelse(nrow(AV) > 0, 2*mean(AK[upper.tri(AK)]), NA) FamDat <- data.frame(FamID = ped_file$FamID[1], totalRelatives = nrow(ped_file), numAffected = nrow(AV), aveOnsetAge = AOO, aveIBD = AIBD, ascertainYear = AY, segRV = SRV) if (!is.null(s_ID)) { k = length(s_ID) subDat <- as.data.frame(matrix(NA, ncol = k, nrow = 1)) colnames(subDat) = paste0("p_", s_ID) subDat[1, ] <- sapply(1:length(s_ID), function(x){ sum(AV$subtype == s_ID[x])/nrow(AV) }) FamDat <- cbind(FamDat, subDat) } return(FamDat) }
lineups_players <- function(df1,n){ if(ncol(df1)==29){ if(n==1){ names(df1) = c("PG","SG","SF","PF","C","MP","FG","FGA","Percentage FG","TP","TPA","Percentage 3P","TWP","TWPA","Percentage 2P","FT","FTA","Percentage FT", "ORB","DRB","TRB","AST","STL","BLK","TOV","PPF","P","M","PM") df1 <- aggregate(cbind(df1$MP,df1$FG,df1$FGA,df1$TP,df1$TPA,df1$TWP,df1$TWPA,df1$FT,df1$FTA,df1$ORB,df1$DRB,df1$TRB,df1$AST,df1$STL,df1$BLK,df1$TOV,df1$PPF,df1$P,df1$M,df1$PM), by=list(PG=df1$PG), FUN=sum) PFG<-sample(c(round(df1[3]/df1[4],3)), size = 1, replace = TRUE) P3P<-sample(c(round(df1[5]/df1[6],3)), size = 1, replace = TRUE) P2P<-sample(c(round(df1[7]/df1[8],3)), size = 1, replace = TRUE) PFT<-sample(c(round(df1[9]/df1[10],3)), size = 1, replace = TRUE) df1 = cbind(df1,PFG,P3P,P2P,PFT) df1 = subset (df1, select=c(1,2,3,4,22,5,6,23,7,8,24,9,10,25,11,12,13,14,15,16,17,18,19,20,21)) df1[5][is.na(df1[5])] <- 0 df1[8][is.na(df1[8])] <- 0 df1[11][is.na(df1[11])] <- 0 df1[14][is.na(df1[14])] <- 0 names(df1) = c("PG","MP","FG","FGA","Percentage FG","3P","3PA","Percentage 3P","2P","2PA","Percentage 2P","FT","FTA","Percentage FT", "ORB","DRB","TRB","AST","STL","BLK","TOV","PF","+","-","+/-") }else if(n==2){ names(df1) = c("PG","SG","SF","PF","C","MP","FG","FGA","Percentage FG","TP","TPA","Percentage 3P","TWP","TWPA","Percentage 2P","FT","FTA","Percentage FT", "ORB","DRB","TRB","AST","STL","BLK","TOV","PPF","P","M","PM") df1 <- aggregate(cbind(df1$MP,df1$FG,df1$FGA,df1$TP,df1$TPA,df1$TWP,df1$TWPA,df1$FT,df1$FTA,df1$ORB,df1$DRB,df1$TRB,df1$AST,df1$STL,df1$BLK,df1$TOV,df1$PPF,df1$P,df1$M,df1$PM), by=list(SG=df1$SG), FUN=sum) PFG<-sample(c(round(df1[3]/df1[4],3)), size = 1, replace = TRUE) P3P<-sample(c(round(df1[5]/df1[6],3)), size = 1, replace = TRUE) P2P<-sample(c(round(df1[7]/df1[8],3)), size = 1, replace = TRUE) PFT<-sample(c(round(df1[9]/df1[10],3)), size = 1, replace = TRUE) df1 = cbind(df1,PFG,P3P,P2P,PFT) df1 = subset (df1, select=c(1,2,3,4,22,5,6,23,7,8,24,9,10,25,11,12,13,14,15,16,17,18,19,20,21)) df1[5][is.na(df1[5])] <- 0 df1[8][is.na(df1[8])] <- 0 df1[11][is.na(df1[11])] <- 0 df1[14][is.na(df1[14])] <- 0 names(df1) = c("SG","MP","FG","FGA","Percentage FG","3P","3PA","Percentage 3P","2P","2PA","Percentage 2P","FT","FTA","Percentage FT", "ORB","DRB","TRB","AST","STL","BLK","TOV","PF","+","-","+/-") }else if(n==3){ names(df1) = c("PG","SG","SF","PF","C","MP","FG","FGA","Percentage FG","TP","TPA","Percentage 3P","TWP","TWPA","Percentage 2P","FT","FTA","Percentage FT", "ORB","DRB","TRB","AST","STL","BLK","TOV","PPF","P","M","PM") df1 <- aggregate(cbind(df1$MP,df1$FG,df1$FGA,df1$TP,df1$TPA,df1$TWP,df1$TWPA,df1$FT,df1$FTA,df1$ORB,df1$DRB,df1$TRB,df1$AST,df1$STL,df1$BLK,df1$TOV,df1$PPF,df1$P,df1$M,df1$PM), by=list(SF=df1$SF), FUN=sum) PFG<-sample(c(round(df1[3]/df1[4],3)), size = 1, replace = TRUE) P3P<-sample(c(round(df1[5]/df1[6],3)), size = 1, replace = TRUE) P2P<-sample(c(round(df1[7]/df1[8],3)), size = 1, replace = TRUE) PFT<-sample(c(round(df1[9]/df1[10],3)), size = 1, replace = TRUE) df1 = cbind(df1,PFG,P3P,P2P,PFT) df1 = subset (df1, select=c(1,2,3,4,22,5,6,23,7,8,24,9,10,25,11,12,13,14,15,16,17,18,19,20,21)) df1[5][is.na(df1[5])] <- 0 df1[8][is.na(df1[8])] <- 0 df1[11][is.na(df1[11])] <- 0 df1[14][is.na(df1[14])] <- 0 names(df1) = c("SF","MP","FG","FGA","Percentage FG","3P","3PA","Percentage 3P","2P","2PA","Percentage 2P","FT","FTA","Percentage FT", "ORB","DRB","TRB","AST","STL","BLK","TOV","PF","+","-","+/-") }else if(n==4){ names(df1) = c("PG","SG","SF","PF","C","MP","FG","FGA","Percentage FG","TP","TPA","Percentage 3P","TWP","TWPA","Percentage 2P","FT","FTA","Percentage FT", "ORB","DRB","TRB","AST","STL","BLK","TOV","PPF","P","M","PM") df1 <- aggregate(cbind(df1$MP,df1$FG,df1$FGA,df1$TP,df1$TPA,df1$TWP,df1$TWPA,df1$FT,df1$FTA,df1$ORB,df1$DRB,df1$TRB,df1$AST,df1$STL,df1$BLK,df1$TOV,df1$PPF,df1$P,df1$M,df1$PM), by=list(PF=df1$PF), FUN=sum) PFG<-sample(c(round(df1[3]/df1[4],3)), size = 1, replace = TRUE) P3P<-sample(c(round(df1[5]/df1[6],3)), size = 1, replace = TRUE) P2P<-sample(c(round(df1[7]/df1[8],3)), size = 1, replace = TRUE) PFT<-sample(c(round(df1[9]/df1[10],3)), size = 1, replace = TRUE) df1 = cbind(df1,PFG,P3P,P2P,PFT) df1 = subset (df1, select=c(1,2,3,4,22,5,6,23,7,8,24,9,10,25,11,12,13,14,15,16,17,18,19,20,21)) df1[5][is.na(df1[5])] <- 0 df1[8][is.na(df1[8])] <- 0 df1[11][is.na(df1[11])] <- 0 df1[14][is.na(df1[14])] <- 0 names(df1) = c("PF","MP","FG","FGA","Percentage FG","3P","3PA","Percentage 3P","2P","2PA","Percentage 2P","FT","FTA","Percentage FT", "ORB","DRB","TRB","AST","STL","BLK","TOV","PF","+","-","+/-") }else if(n==5){ names(df1) = c("PG","SG","SF","PF","C","MP","FG","FGA","Percentage FG","TP","TPA","Percentage 3P","TWP","TWPA","Percentage 2P","FT","FTA","Percentage FT", "ORB","DRB","TRB","AST","STL","BLK","TOV","PPF","P","M","PM") df1 <- aggregate(cbind(df1$MP,df1$FG,df1$FGA,df1$TP,df1$TPA,df1$TWP,df1$TWPA,df1$FT,df1$FTA,df1$ORB,df1$DRB,df1$TRB,df1$AST,df1$STL,df1$BLK,df1$TOV,df1$PPF,df1$P,df1$M,df1$PM), by=list(C=df1$C), FUN=sum) PFG<-sample(c(round(df1[3]/df1[4],3)), size = 1, replace = TRUE) P3P<-sample(c(round(df1[5]/df1[6],3)), size = 1, replace = TRUE) P2P<-sample(c(round(df1[7]/df1[8],3)), size = 1, replace = TRUE) PFT<-sample(c(round(df1[9]/df1[10],3)), size = 1, replace = TRUE) df1 = cbind(df1,PFG,P3P,P2P,PFT) df1 = subset (df1, select=c(1,2,3,4,22,5,6,23,7,8,24,9,10,25,11,12,13,14,15,16,17,18,19,20,21)) df1[5][is.na(df1[5])] <- 0 df1[8][is.na(df1[8])] <- 0 df1[11][is.na(df1[11])] <- 0 df1[14][is.na(df1[14])] <- 0 names(df1) = c("C","MP","FG","FGA","Percentage FG","3P","3PA","Percentage 3P","2P","2PA","Percentage 2P","FT","FTA","Percentage FT", "ORB","DRB","TRB","AST","STL","BLK","TOV","PF","+","-","+/-") } } else if(ncol(df1)==41){ if(n==1){ names(df1) = c("PG","SG","SF","PF","C","MP","FG","oFG","FGA","oFGA","TP","oTP","TPA","oTPA","TWP","oTWP","TWPA","oTWPA","FT","oFT","FTA","oFTA", "ORB","oORB","DRB","oDRB","TRB","oTRB","AST","oAST","STL","oSTL","BLK","oBLK","TOV","oTOV","PPF","oPF","P","M","PM") df1 <- aggregate(cbind(df1$MP,df1$FG,df1$oFG,df1$FGA,df1$oFGA,df1$TP,df1$oTP,df1$TPA,df1$oTPA,df1$TWP,df1$oTWP,df1$TWPA,df1$oTWPA,df1$FT,df1$oFT,df1$FTA,df1$oFTA,df1$ORB,df1$oORB, df1$DRB,df1$oDRB,df1$TRB,df1$oTRB,df1$AST,df1$oAST,df1$STL,df1$oSTL,df1$BLK,df1$oBLK,df1$TOV,df1$oTOV,df1$PPF,df1$oPF,df1$P,df1$M,df1$PM), by=list(PG=df1$PG), FUN=sum) names(df1) = c("PG","MP","FG","oFG","FGA","oFGA","3P","o3P","3PA","o3PA","2P","o2P","2PA","o2PA","FT","oFT","FTA","oFTA", "ORB","oORB","DRB","oDRB","TRB","oTRB","AST","oAST","STL","oSTL","BLK","oBLK","TOV","oTOV","PF","oPF","+","-","+/-") }else if(n==2){ names(df1) = c("PG","SG","SF","PF","C","MP","FG","oFG","FGA","oFGA","TP","oTP","TPA","oTPA","TWP","oTWP","TWPA","oTWPA","FT","oFT","FTA","oFTA", "ORB","oORB","DRB","oDRB","TRB","oTRB","AST","oAST","STL","oSTL","BLK","oBLK","TOV","oTOV","PPF","oPF","P","M","PM") df1 <- aggregate(cbind(df1$MP,df1$FG,df1$oFG,df1$FGA,df1$oFGA,df1$TP,df1$oTP,df1$TPA,df1$oTPA,df1$TWP,df1$oTWP,df1$TWPA,df1$oTWPA,df1$FT,df1$oFT,df1$FTA,df1$oFTA,df1$ORB,df1$oORB, df1$DRB,df1$oDRB,df1$TRB,df1$oTRB,df1$AST,df1$oAST,df1$STL,df1$oSTL,df1$BLK,df1$oBLK,df1$TOV,df1$oTOV,df1$PPF,df1$oPF,df1$P,df1$M,df1$PM), by=list(SG=df1$SG), FUN=sum) names(df1) = c("SG","MP","FG","oFG","FGA","oFGA","3P","o3P","3PA","o3PA","2P","o2P","2PA","o2PA","FT","oFT","FTA","oFTA", "ORB","oORB","DRB","oDRB","TRB","oTRB","AST","oAST","STL","oSTL","BLK","oBLK","TOV","oTOV","PF","oPF","+","-","+/-") }else if(n==3){ names(df1) = c("PG","SG","SF","PF","C","MP","FG","oFG","FGA","oFGA","TP","oTP","TPA","oTPA","TWP","oTWP","TWPA","oTWPA","FT","oFT","FTA","oFTA", "ORB","oORB","DRB","oDRB","TRB","oTRB","AST","oAST","STL","oSTL","BLK","oBLK","TOV","oTOV","PPF","oPF","P","M","PM") df1 <- aggregate(cbind(df1$MP,df1$FG,df1$oFG,df1$FGA,df1$oFGA,df1$TP,df1$oTP,df1$TPA,df1$oTPA,df1$TWP,df1$oTWP,df1$TWPA,df1$oTWPA,df1$FT,df1$oFT,df1$FTA,df1$oFTA,df1$ORB,df1$oORB, df1$DRB,df1$oDRB,df1$TRB,df1$oTRB,df1$AST,df1$oAST,df1$STL,df1$oSTL,df1$BLK,df1$oBLK,df1$TOV,df1$oTOV,df1$PPF,df1$oPF,df1$P,df1$M,df1$PM), by=list(SF=df1$SF), FUN=sum) names(df1) = c("SF","MP","FG","oFG","FGA","oFGA","3P","o3P","3PA","o3PA","2P","o2P","2PA","o2PA","FT","oFT","FTA","oFTA", "ORB","oORB","DRB","oDRB","TRB","oTRB","AST","oAST","STL","oSTL","BLK","oBLK","TOV","oTOV","PF","oPF","+","-","+/-") }else if(n==4){ names(df1) = c("PG","SG","SF","PPF","C","MP","FG","oFG","FGA","oFGA","TP","oTP","TPA","oTPA","TWP","oTWP","TWPA","oTWPA","FT","oFT","FTA","oFTA", "ORB","oORB","DRB","oDRB","TRB","oTRB","AST","oAST","STL","oSTL","BLK","oBLK","TOV","oTOV","PF","oPF","P","M","PM") df1 <- aggregate(cbind(df1$MP,df1$FG,df1$oFG,df1$FGA,df1$oFGA,df1$TP,df1$oTP,df1$TPA,df1$oTPA,df1$TWP,df1$oTWP,df1$TWPA,df1$oTWPA,df1$FT,df1$oFT,df1$FTA,df1$oFTA,df1$ORB,df1$oORB, df1$DRB,df1$oDRB,df1$TRB,df1$oTRB,df1$AST,df1$oAST,df1$STL,df1$oSTL,df1$BLK,df1$oBLK,df1$TOV,df1$oTOV,df1$PPF,df1$oPF,df1$P,df1$M,df1$PM), by=list(PF=df1$PF), FUN=sum) names(df1) = c("PF","MP","FG","oFG","FGA","oFGA","3P","o3P","3PA","o3PA","2P","o2P","2PA","o2PA","FT","oFT","FTA","oFTA", "ORB","oORB","DRB","oDRB","TRB","oTRB","AST","oAST","STL","oSTL","BLK","oBLK","TOV","oTOV","PF","oPF","+","-","+/-") }else if(n==5){ names(df1) = c("PG","SG","SF","PF","C","MP","FG","oFG","FGA","oFGA","TP","oTP","TPA","oTPA","TWP","oTWP","TWPA","oTWPA","FT","oFT","FTA","oFTA", "ORB","oORB","DRB","oDRB","TRB","oTRB","AST","oAST","STL","oSTL","BLK","oBLK","TOV","oTOV","PPF","oPF","P","M","PM") df1 <- aggregate(cbind(df1$MP,df1$FG,df1$oFG,df1$FGA,df1$oFGA,df1$TP,df1$oTP,df1$TPA,df1$oTPA,df1$TWP,df1$oTWP,df1$TWPA,df1$oTWPA,df1$FT,df1$oFT,df1$FTA,df1$oFTA,df1$ORB,df1$oORB, df1$DRB,df1$oDRB,df1$TRB,df1$oTRB,df1$AST,df1$oAST,df1$STL,df1$oSTL,df1$BLK,df1$oBLK,df1$TOV,df1$oTOV,df1$PPF,df1$oPF,df1$P,df1$M,df1$PM), by=list(C=df1$C), FUN=sum) names(df1) = c("C","MP","FG","oFG","FGA","oFGA","3P","o3P","3PA","o3PA","2P","o2P","2PA","o2PA","FT","oFT","FTA","oFTA", "ORB","oORB","DRB","oDRB","TRB","oTRB","AST","oAST","STL","oSTL","BLK","oBLK","TOV","oTOV","PF","oPF","+","-","+/-") } } return(df1) }
fncPairedpROC <- function(){ varPosListn <- function(vars, var){ if (is.null(var)) return(NULL) if (any(!var %in% vars)) NULL else apply(outer(var, vars, "=="), 1, which) - 1 } defaults <- list( initial.prediction = NULL, initial.prediction2 = NULL, initial.label = NULL, initial.narm = 1, initial.percent = 0, initial.direction = "auto", initial.testmethod = "auto", initial.testalternative = "two.sided", initial.testbootn = "2000", initial.testbootstratified = 1, initial.smooth = 0, initial.smoothingmethod = "binormal", initial.smoothinbandwidth = "nrd0", initial.bandwidthnumeric = "", initial.bandwidthadjustment = "1", initial.bandwidthwindow = "gaussian", initial.distributioncontrols = "normal", initial.distributioncases = "normal", initial.smoothingmethod2 = "binormal", initial.smoothinbandwidth2 = "nrd0", initial.bandwidthnumeric2 = "", initial.bandwidthadjustment2 = "1", initial.bandwidthwindow2 = "gaussian", initial.distributioncontrols2 = "normal", initial.distributioncases2 = "normal", initial.cicompute = 1, initial.cilevel = "0.95", initial.cimethod = "bootstrap", initial.cibootn = "2000", initial.cibootstratified = 0, initial.citype = "se", initial.cithresholds = "local maximas", initial.civalues = "seq(0, 1, 0.05)", initial.ciplottype = "shape", initial.civalues2 = "seq(0, 1, 0.05)", initial.auc = 1, initial.partialauc = 0, initial.partialfrom = 0, initial.partialto = 1, initial.partialfocus = "specificity", initial.partialcorrect = 0, initial.plot = 1, initial.printauc = 0, initial.aucpolygon = 0, initial.maxaucpolygon = 0, initial.grid = 0, initial.identity = 1, initial.ciplot = 0, initial.values = 0, initial.printthresrb = "no", initial.customthres = "c(0.5, 1, 10, 100)", initial.xlab=gettextRcmdr("<auto>"), initial.ylab=gettextRcmdr("<auto>"), initial.main=gettextRcmdr("<auto>"), initial.pvalue = 1, initial.legendroc=gettextRcmdr("<auto>"), initial.legendroc2=gettextRcmdr("<auto>"), initial.colorroc=palette()[1], initial.colorroc2=palette()[3], initial.ltyroc="solid", initial.ltyroc2="solid", initial.customthres2 = "c(0.5, 1, 10, 100)", initial.tab=0) dialog.values <- getDialog("PairedpROC", defaults) initializeDialog(title=gettext("Paired ROC curves comparison", domain="R-RcmdrPlugin.ROC"), use.tabs=TRUE, tabs=c("dataTab", "smoothingTab", "aucTab", "ciTab", "optionsTab")) generalFrame <- tkframe(dataTab) generaldataFrame <- ttklabelframe(generalFrame, text = gettext("Data", domain="R-RcmdrPlugin.ROC")) predictionBox <- variableListBox(generaldataFrame, Numeric(), title=gettext("Predictions variable 1 (pick one)", domain="R-RcmdrPlugin.ROC"), initialSelection=varPosn(dialog.values$initial.prediction, "numeric")) prediction2Box <- variableListBox(generaldataFrame, Numeric(), title=gettext("Predictions variable 2 (pick one)", domain="R-RcmdrPlugin.ROC"), initialSelection=varPosn(dialog.values$initial.prediction2, "numeric")) labelBox <- variableListBox(generaldataFrame, Factors(), title=gettext("Outcome variable (pick one)", domain="R-RcmdrPlugin.ROC"), initialSelection=varPosn(dialog.values$initial.label, "factor")) checkBoxes(window = generalFrame, frame = "dataoptionsFrame", boxes = c("narm", "percent"), initialValues = c(dialog.values$initial.narm, dialog.values$initial.percent), labels = gettextRcmdr(c("Remove NAs", "Show/input % instead of 0-1")), title = gettext("Options", domain="R-RcmdrPlugin.ROC"), ttk=TRUE) radioButtons(dataoptionsFrame, name="testmethodrb", buttons=c("auto", "delong", "bootstrap", "venkatraman"), values=c("auto", "delong", "bootstrap", "venkatraman"), labels=gettextRcmdr(c("auto", "delong", "bootstrap", "venkatraman")), title=gettext("Test method", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.testmethod) radioButtons(dataoptionsFrame, name="testalternativerb", buttons=c("two.sided", "less", "greater"), values=c("two.sided", "less", "greater"), labels=gettextRcmdr(c("two sided", "less", "greater")), title=gettext("Alternative", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.testalternative) testbootnVar <- tclVar(dialog.values$initial.testbootn) testbootnEntry <- ttkentry(dataoptionsFrame, width = "25", textvariable = testbootnVar) radioButtons(dataoptionsFrame, name="directionrb", buttons=c("auto", "gt", "lt"), values=c("auto", ">", "<"), labels=gettextRcmdr(c("auto", "Control > cases", "Control <= cases")), title=gettext("Direction", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.direction) smoothingFrame <- tkframe(smoothingTab) smoothingleftpaneFrame <- tkframe(smoothingFrame) smoothinggeneralFrame <- ttklabelframe(smoothingleftpaneFrame, text = gettext("General variable 1", domain="R-RcmdrPlugin.ROC")) smoothingdensityFrame <- ttklabelframe(smoothingleftpaneFrame, text = gettext("Density options", domain="R-RcmdrPlugin.ROC")) smoothingdistributionFrame <- ttklabelframe(smoothingFrame, text = gettext("Distributions options", domain="R-RcmdrPlugin.ROC")) smoothingleftpaneFrame2 <- tkframe(smoothingFrame) smoothinggeneralFrame2 <- ttklabelframe(smoothingleftpaneFrame2, text = gettext("General variable 2", domain="R-RcmdrPlugin.ROC")) smoothingdensityFrame2 <- ttklabelframe(smoothingleftpaneFrame2, text = gettext("Density options", domain="R-RcmdrPlugin.ROC")) smoothingdistributionFrame2 <- ttklabelframe(smoothingFrame, text = gettext("Distributions options", domain="R-RcmdrPlugin.ROC")) radioButtons(smoothinggeneralFrame, name="smoothingmethodrb", buttons=c("binormal", "density", "fitdistr", "logcondens", "logcondens.smooth"), values=c("binormal", "density", "fitdistr", "logcondens", "logcondens.smooth"), labels=gettextRcmdr(c("binormal", "density", "fit distribution", "logcondens", "logcondens.smooth")), title=gettext("Smoothing method", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.smoothingmethod) radioButtons(smoothingdensityFrame, name="smoothinbandwidthrb", buttons=c("nrd0", "nrd", "ucv", "bcv", "SJ", "numeric"), values=c("nrd0", "nrd", "ucv", "bcv", "SJ", "numeric"), labels=gettextRcmdr(c("nrd0", "nrd", "ucv", "bcv", "SJ", "<numeric>")), title=gettext("Bandwidth", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.smoothinbandwidth) bandwidthnumericVar <- tclVar(dialog.values$initial.bandwidthnumeric) bandwidthnumericEntry <- ttkentry(smoothingdensityFrame, width = "25", textvariable = bandwidthnumericVar) bandwidthnumericScroll <- ttkscrollbar(smoothingdensityFrame, orient = "horizontal", command = function(...) tkxview(bandwidthnumericEntry, ...)) tkconfigure(bandwidthnumericEntry, xscrollcommand = function(...) tkset(bandwidthnumericScroll, ...)) tkbind(bandwidthnumericEntry, "<FocusIn>", function() tkselection.clear(bandwidthnumericEntry)) bandwidthadjustmentVar <- tclVar(dialog.values$initial.bandwidthadjustment) bandwidthadjustmentEntry <- ttkentry(smoothingdensityFrame, width = "25", textvariable = bandwidthadjustmentVar) radioButtons(smoothingdensityFrame, name="bandwidthwindowrb", buttons=c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine"), values=c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine"), labels=gettextRcmdr(c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine")), title=gettext("Kernel", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.bandwidthwindow) radioButtons(smoothingdistributionFrame, name="distributioncontrolsrb", buttons=c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy"), values=c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy"), labels=gettextRcmdr(c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy")), title=gettext("Distribution of controls", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.distributioncontrols) radioButtons(smoothingdistributionFrame, name="distributioncasesrb", buttons=c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy"), values=c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy"), labels=gettextRcmdr(c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy")), title=gettext("Distribution of cases", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.distributioncases) radioButtons(smoothinggeneralFrame2, name="smoothingmethod2rb", buttons=c("binormal", "density", "fitdistr", "logcondens", "logcondens.smooth"), values=c("binormal", "density", "fitdistr", "logcondens", "logcondens.smooth"), labels=gettextRcmdr(c("binormal", "density", "fit distribution", "logcondens", "logcondens.smooth")), title=gettext("Smoothing method", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.smoothingmethod2) radioButtons(smoothingdensityFrame2, name="smoothinbandwidth2rb", buttons=c("nrd0", "nrd", "ucv", "bcv", "SJ", "numeric"), values=c("nrd0", "nrd", "ucv", "bcv", "SJ", "numeric"), labels=gettextRcmdr(c("nrd0", "nrd", "ucv", "bcv", "SJ", "<numeric>")), title=gettext("Bandwidth", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.smoothinbandwidth2) bandwidthnumeric2Var <- tclVar(dialog.values$initial.bandwidthnumeric2) bandwidthnumeric2Entry <- ttkentry(smoothingdensityFrame2, width = "25", textvariable = bandwidthnumeric2Var) bandwidthnumeric2Scroll <- ttkscrollbar(smoothingdensityFrame2, orient = "horizontal", command = function(...) tkxview(bandwidthnumeric2Entry, ...)) tkconfigure(bandwidthnumeric2Entry, xscrollcommand = function(...) tkset(bandwidthnumeric2Scroll, ...)) tkbind(bandwidthnumeric2Entry, "<FocusIn>", function() tkselection.clear(bandwidthnumeric2Entry)) bandwidthadjustment2Var <- tclVar(dialog.values$initial.bandwidthadjustment2) bandwidthadjustment2Entry <- ttkentry(smoothingdensityFrame2, width = "25", textvariable = bandwidthadjustment2Var) radioButtons(smoothingdensityFrame2, name="bandwidthwindow2rb", buttons=c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine"), values=c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine"), labels=gettextRcmdr(c("gaussian", "epanechnikov", "rectangular", "triangular", "biweight", "cosine", "optcosine")), title=gettext("Kernel", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.bandwidthwindow2) radioButtons(smoothingdistributionFrame2, name="distributioncontrols2rb", buttons=c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy"), values=c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy"), labels=gettextRcmdr(c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy")), title=gettext("Distribution of controls", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.distributioncontrols2) radioButtons(smoothingdistributionFrame2, name="distributioncases2rb", buttons=c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy"), values=c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy"), labels=gettextRcmdr(c("normal", "lognormal", "logistic", "exponential", "weibull", "gamma", "cauchy")), title=gettext("Distribution of cases", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.distributioncases2) ciFrame <- tkframe(ciTab) checkBoxes(window = ciFrame, frame = "cibootstrapFrame", boxes = c("cibootstratified"), initialValues = c( dialog.values$initial.cibootstratified ),labels = gettextRcmdr(c( "Stratified")), title = gettext("Bootstrap options", domain="R-RcmdrPlugin.ROC"), ttk=TRUE) checkBoxes(window = ciFrame, frame = "cigeneralFrame", boxes = c("cicompute"), initialValues = c( dialog.values$initial.cicompute ),labels = gettextRcmdr(c( "Compute Confidence Interval (CI)")), title = gettext("General", domain="R-RcmdrPlugin.ROC"), ttk=TRUE) cilevelVar <- tclVar(dialog.values$initial.cilevel) cilevelEntry <- ttkentry(cigeneralFrame, width = "25", textvariable = cilevelVar) radioButtons(cigeneralFrame, name="cimethodrb", buttons=c("delong", "bootstrap", "auto"), values=c("delong", "bootstrap", "auto"), labels=gettextRcmdr(c("delong", "bootstrap", "auto")), title=gettext("Method", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.cimethod) radioButtons(cigeneralFrame, name="cityperb", buttons=c("auc", "se", "sp", "thresholds"), values=c("auc", "se", "sp", "thresholds"), labels=gettextRcmdr(c("auc", "se", "sp", "thresholds")), title=gettext("Type of CI", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.citype) radioButtons(cigeneralFrame, name="cithresholdsrb", buttons=c("all", "localmaximas", "custom"), values=c("all", "local maximas", "custom"), labels=gettextRcmdr(c("all", "local maximas", "<custom>")), title=gettext("Thresholds", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.cithresholds) civaluesVar <- tclVar(dialog.values$initial.civalues) civaluesEntry <- ttkentry(cigeneralFrame, width = "25", textvariable = civaluesVar) civaluesScroll <- ttkscrollbar(cigeneralFrame, orient = "horizontal", command = function(...) tkxview(civaluesEntry, ...)) tkconfigure(civaluesEntry, xscrollcommand = function(...) tkset(civaluesScroll, ...)) tkbind(civaluesEntry, "<FocusIn>", function() tkselection.clear(civaluesEntry)) civalues2Var <- tclVar(dialog.values$initial.civalues2) civalues2Entry <- ttkentry(cigeneralFrame, width = "25", textvariable = civalues2Var) civalues2Scroll <- ttkscrollbar(cigeneralFrame, orient = "horizontal", command = function(...) tkxview(civalues2Entry, ...)) tkconfigure(civalues2Entry, xscrollcommand = function(...) tkset(civalues2Scroll, ...)) tkbind(civalues2Entry, "<FocusIn>", function() tkselection.clear(civalues2Entry)) cibootnVar <- tclVar(dialog.values$initial.cibootn) cibootnEntry <- ttkentry(cibootstrapFrame, width = "5", textvariable = cibootnVar) tkgrid(labelRcmdr(cibootstrapFrame, text = gettext("Confidence level number of replicates", domain="R-RcmdrPlugin.ROC")), cibootnEntry, sticky = "ew", padx=6) aucFrame <- tkframe(aucTab) checkBoxes(window = aucFrame, frame = "generalaucFrame", boxes = c("auc", "partialauc"), initialValues = c( dialog.values$initial.auc, dialog.values$initial.partialauc ),labels = gettextRcmdr(c( "Compute Area Under Curve (AUC)", "Compute partial AUC")), title = gettext("General", domain="R-RcmdrPlugin.ROC"), ttk=TRUE) checkBoxes(window = aucFrame, frame = "partialaucFrame", boxes = c("partialcorrect"), initialValues = c( dialog.values$initial.partialcorrect),labels = gettextRcmdr(c( "Correct partial AUC")), title = gettext("Partial AUC", domain="R-RcmdrPlugin.ROC"), ttk=TRUE) partialfromVar <- tclVar(dialog.values$initial.partialfrom) partialfromEntry <- ttkentry(partialaucFrame, width = "25", textvariable = partialfromVar) tkgrid(labelRcmdr(partialaucFrame, text = gettext("From:", domain="R-RcmdrPlugin.ROC")), partialfromEntry, sticky = "ew", padx=6) partialtoVar <- tclVar(dialog.values$initial.partialto) partialtoEntry <- ttkentry(partialaucFrame, width = "25", textvariable = partialtoVar) tkgrid(labelRcmdr(partialaucFrame, text = gettext("To:", domain="R-RcmdrPlugin.ROC")), partialtoEntry, sticky = "ew", padx=6) radioButtons(partialaucFrame, name="partialfocus", buttons=c("specificity", "sensitivity"), values=c("specificity", "sensitivity"), labels=gettextRcmdr(c("specificity", "sensitivity")), title=gettext("Focus", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.partialfocus) optionsParFrame <- tkframe(optionsTab) optFrame <- ttklabelframe(optionsParFrame, text = gettext("Plot Options", domain="R-RcmdrPlugin.ROC")) parFrame <- ttklabelframe(optionsParFrame, text = gettext("Plot Labels", domain="R-RcmdrPlugin.ROC")) legendFrame <- ttklabelframe(optionsParFrame, text = gettext("Legend options", domain="R-RcmdrPlugin.ROC")) checkBoxes(window = optFrame, frame = "optionsFrame", boxes = c("plot", "smooth", "grid","identity","ciplot","values"), initialValues = c( dialog.values$initial.plot, dialog.values$initial.smooth, dialog.values$initial.grid, dialog.values$initial.identity, dialog.values$initial.ciplot, dialog.values$initial.values),labels = gettextRcmdr(c( "Plot", "Smooth","Display grid","Display identity line", "Display confidence interval","Display values (Se, Sp, Thresholds)")), title = gettext("General", domain="R-RcmdrPlugin.ROC"), ttk=TRUE) checkBoxes(window = optFrame, frame = "aucpolygonFrame", boxes = c("aucpolygon", "maxaucpolygon"), initialValues = c( dialog.values$initial.aucpolygon, dialog.values$initial.maxaucpolygon),labels = gettextRcmdr(c( "Polygon of AUC", "Polygon of maximal AUC")), title = gettext("Display area as polygon", domain="R-RcmdrPlugin.ROC"), ttk=TRUE) checkBoxes(window = optFrame, frame = "informationFrame", boxes = c("printauc", "pvalue"), initialValues = c( dialog.values$initial.printauc, dialog.values$initial.pvalue),labels = gettextRcmdr(c( "AUC", "Test p-value")), title = gettext("Display information on plot", domain="R-RcmdrPlugin.ROC"), ttk=TRUE) radioButtons(informationFrame, name="printthresrb", buttons=c("no", "best", "all", "localmaximas", "customthres"), values=c("no", "best", "all", "local maximas", "customthres"), labels=gettextRcmdr(c("no", "best: max(sum(Se + Sp))", "all", "local maximas", "<custom>")), title=gettext("Display threshold(s)", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.printthresrb) customthresVar <- tclVar(dialog.values$initial.customthres) customthresEntry <- ttkentry(informationFrame, width = "25", textvariable = customthresVar) customthresScroll <- ttkscrollbar(informationFrame, orient = "horizontal", command = function(...) tkxview(customthresEntry, ...)) tkconfigure(customthresEntry, xscrollcommand = function(...) tkset(customthresScroll, ...)) tkbind(customthresEntry, "<FocusIn>", function() tkselection.clear(customthresEntry)) customthres2Var <- tclVar(dialog.values$initial.customthres2) customthres2Entry <- ttkentry(informationFrame, width = "25", textvariable = customthres2Var) customthres2Scroll <- ttkscrollbar(informationFrame, orient = "horizontal", command = function(...) tkxview(customthres2Entry, ...)) tkconfigure(customthres2Entry, xscrollcommand = function(...) tkset(customthres2Scroll, ...)) tkbind(customthres2Entry, "<FocusIn>", function() tkselection.clear(customthres2Entry)) xlabVar <- tclVar(dialog.values$initial.xlab) ylabVar <- tclVar(dialog.values$initial.ylab) mainVar <- tclVar(dialog.values$initial.main) xlabEntry <- ttkentry(parFrame, width = "25", textvariable = xlabVar) xlabScroll <- ttkscrollbar(parFrame, orient = "horizontal", command = function(...) tkxview(xlabEntry, ...)) tkconfigure(xlabEntry, xscrollcommand = function(...) tkset(xlabScroll, ...)) tkbind(xlabEntry, "<FocusIn>", function() tkselection.clear(xlabEntry)) tkgrid(labelRcmdr(parFrame, text = gettextRcmdr("x-axis label")), xlabEntry, sticky = "ew", padx=6) tkgrid(labelRcmdr(parFrame, text =""), xlabScroll, sticky = "ew", padx=6) ylabEntry <- ttkentry(parFrame, width = "25", textvariable = ylabVar) ylabScroll <- ttkscrollbar(parFrame, orient = "horizontal", command = function(...) tkxview(ylabEntry, ...)) tkconfigure(ylabEntry, xscrollcommand = function(...) tkset(ylabScroll, ...)) tkgrid(labelRcmdr(parFrame, text = gettextRcmdr("y-axis label")), ylabEntry, sticky = "ew", padx=6) tkgrid(labelRcmdr(parFrame, text=""), ylabScroll, sticky = "ew", padx=6) mainEntry <- ttkentry(parFrame, width = "25", textvariable = mainVar) mainScroll <- ttkscrollbar(parFrame, orient = "horizontal", command = function(...) tkxview(mainEntry, ...)) tkconfigure(mainEntry, xscrollcommand = function(...) tkset(mainScroll, ...)) tkgrid(labelRcmdr(parFrame, text = gettextRcmdr("Graph title")), mainEntry, sticky = "ew", padx=6) tkgrid(labelRcmdr(parFrame, text=""), mainScroll, sticky = "ew", padx=6) radioButtons(parFrame, name="ciplottyperb", buttons=c("shape", "bars"), values=c("shape", "bars"), labels=gettextRcmdr(c("shape", "bars")), title=gettext("CI plot type", domain="R-RcmdrPlugin.ROC"), initialValue = dialog.values$initial.ciplottype) legendrocVar <- tclVar(dialog.values$initial.legendroc) legendrocEntry <- ttkentry(legendFrame, width = "25", textvariable = legendrocVar) legendrocScroll <- ttkscrollbar(legendFrame, orient = "horizontal", command = function(...) tkxview(legendrocEntry, ...)) tkconfigure(legendrocEntry, xscrollcommand = function(...) tkset(legendrocScroll, ...)) tkbind(legendrocEntry, "<FocusIn>", function() tkselection.clear(legendrocEntry)) legendroc2Var <- tclVar(dialog.values$initial.legendroc2) legendroc2Entry <- ttkentry(legendFrame, width = "25", textvariable = legendroc2Var) legendroc2Scroll <- ttkscrollbar(legendFrame, orient = "horizontal", command = function(...) tkxview(legendroc2Entry, ...)) tkconfigure(legendroc2Entry, xscrollcommand = function(...) tkset(legendroc2Scroll, ...)) tkbind(legendroc2Entry, "<FocusIn>", function() tkselection.clear(legendroc2Entry)) colorrocBox <- variableListBox(legendFrame, palette(), title=gettext("Color of ROC 1 (from Palette)", domain="R-RcmdrPlugin.ROC"), initialSelection=varPosListn(palette(), dialog.values$initial.colorroc)) colorroc2Box <- variableListBox(legendFrame, palette(), title=gettext("Color of ROC 2", domain="R-RcmdrPlugin.ROC"), initialSelection=varPosListn(palette(), dialog.values$initial.colorroc2)) ltys <- c("solid", "dashed", "dotted", "dotdash", "longdash", "twodash", "blank") ltyrocBox <- variableListBox(legendFrame, ltys, title=gettext("Line type of ROC 1 (from Palette)", domain="R-RcmdrPlugin.ROC"), initialSelection=varPosListn(ltys, dialog.values$initial.ltyroc)) ltyroc2Box <- variableListBox(legendFrame, ltys, title=gettext("Line type of ROC 2", domain="R-RcmdrPlugin.ROC"), initialSelection=varPosListn(ltys, dialog.values$initial.ltyroc2)) onOK <- function(){ tab <- if (as.character(tkselect(notebook)) == dataTab$ID) 0 else 1 prediction <- getSelection(predictionBox) prediction2 <- getSelection(prediction2Box) label <- getSelection(labelBox) narm <- as.character("1" == tclvalue(narmVariable)) percent <- as.character("1" == tclvalue(percentVariable)) direction <- as.character(tclvalue(directionrbVariable)) testmethod <- as.character(tclvalue(testmethodrbVariable)) testalternative <- as.character(tclvalue(testalternativerbVariable)) testbootn <- as.character(tclvalue(testbootnVar)) smoothingmethod <- as.character(tclvalue(smoothingmethodrbVariable)) smoothinbandwidth <- as.character(tclvalue(smoothinbandwidthrbVariable)) bandwidthnumeric <- as.character(tclvalue(bandwidthnumericVar)) bandwidthadjustment <- as.character(tclvalue(bandwidthadjustmentVar)) bandwidthwindow <- as.character(tclvalue(bandwidthwindowrbVariable)) distributioncases <- as.character(tclvalue(distributioncasesrbVariable)) distributioncontrols <- as.character(tclvalue(distributioncontrolsrbVariable)) smoothingmethod2 <- as.character(tclvalue(smoothingmethod2rbVariable)) smoothinbandwidth2 <- as.character(tclvalue(smoothinbandwidth2rbVariable)) bandwidthnumeric2 <- as.character(tclvalue(bandwidthnumeric2Var)) bandwidthadjustment2 <- as.character(tclvalue(bandwidthadjustment2Var)) bandwidthwindow2 <- as.character(tclvalue(bandwidthwindow2rbVariable)) distributioncases2 <- as.character(tclvalue(distributioncases2rbVariable)) distributioncontrols2 <- as.character(tclvalue(distributioncontrols2rbVariable)) cicompute <- as.character("1" == tclvalue(cicomputeVariable)) cilevel <- as.numeric(as.character(tclvalue(cilevelVar))) cimethod <- as.character(tclvalue(cimethodrbVariable)) citype <- as.character(tclvalue(cityperbVariable)) cithresholds <- as.character(tclvalue(cithresholdsrbVariable)) civalues <- as.character(tclvalue(civaluesVar)) cibootn <- as.integer(as.character(tclvalue(cibootnVar))) cibootstratified <- as.character("1" == tclvalue(cibootstratifiedVariable)) civalues2 <- as.character(tclvalue(civalues2Var)) auc <- as.character("1" == tclvalue(aucVariable)) partialauc <- as.character("1" == tclvalue(partialaucVariable)) partialfrom <- as.character(tclvalue(partialfromVar)) partialto <- as.character(tclvalue(partialtoVar)) partialfocus <- as.character(tclvalue(partialfocusVariable)) partialcorrect <- as.character("1" == tclvalue(partialcorrectVariable)) plot <- as.character("1" == tclvalue(plotVariable)) smooth <- as.character("1" == tclvalue(smoothVariable)) printauc <- as.character("1" == tclvalue(printaucVariable)) aucpolygon <- as.character("1" == tclvalue(aucpolygonVariable)) maxaucpolygon <- as.character("1" == tclvalue(maxaucpolygonVariable)) grid <- as.character("1" == tclvalue(gridVariable)) identity <- as.character("1" == tclvalue(identityVariable)) ciplot <- as.character("1" == tclvalue(ciplotVariable)) values <- as.character("1" == tclvalue(valuesVariable)) printthresrb <- as.character(tclvalue(printthresrbVariable)) customthres <- as.character(tclvalue(customthresVar)) xlab <- trim.blanks(tclvalue(xlabVar)) xlab <- if (xlab == gettextRcmdr("<auto>")) "" else paste(", xlab=\"", xlab, "\"", sep = "") ylab <- trim.blanks(tclvalue(ylabVar)) ylab <- if (ylab == gettextRcmdr("<auto>")) "" else paste(", ylab=\"", ylab, "\"", sep = "") main <- trim.blanks(tclvalue(mainVar)) main <- if (main == gettextRcmdr("<auto>")) "" else paste(", main=\"", main, "\"", sep = "") ciplottype <- as.character(tclvalue(ciplottyperbVariable)) legendroc <- trim.blanks(tclvalue(legendrocVar)) legendroc <- if (legendroc == gettextRcmdr("<auto>")) prediction else legendroc legendroc2 <- trim.blanks(tclvalue(legendroc2Var)) legendroc2 <- if (legendroc2 == gettextRcmdr("<auto>")) prediction2 else legendroc2 colorroc <- getSelection(colorrocBox) colorroc2 <- getSelection(colorroc2Box) convert <- function (color){ f=col2rgb(color) rgb(f[1],f[2],f[3],maxColorValue=255) } if(substr(colorroc,1,1) != " if(substr(colorroc2,1,1) != " ltyroc <- as.character(getSelection(ltyrocBox)) ltyroc2 <- as.character(getSelection(ltyroc2Box)) pvalue <- as.character("1" == tclvalue(pvalueVariable)) customthres2 <- as.character(tclvalue(customthres2Var)) putDialog ("PairedpROC", list( initial.prediction = prediction, initial.prediction2 = prediction2, initial.label = label, initial.narm = tclvalue(narmVariable), initial.percent = tclvalue(percentVariable), initial.direction = as.character(tclvalue(directionrbVariable)), initial.testmethod = as.character(tclvalue(testmethodrbVariable)), initial.testalternative = as.character(tclvalue(testalternativerbVariable)), initial.testbootn = as.character(tclvalue(testbootnVar)), initial.smooth = tclvalue(smoothVariable), initial.smoothingmethod = tclvalue(smoothingmethodrbVariable), initial.smoothinbandwidth = tclvalue(smoothinbandwidthrbVariable), initial.bandwidthnumeric = tclvalue(bandwidthnumericVar), initial.bandwidthadjustment = "1", initial.bandwidthwindow = tclvalue(bandwidthwindowrbVariable), initial.distributioncontrols = tclvalue(distributioncontrolsrbVariable), initial.distributioncases = tclvalue(distributioncasesrbVariable), initial.smoothingmethod2 = tclvalue(smoothingmethod2rbVariable), initial.smoothinbandwidth2 = tclvalue(smoothinbandwidth2rbVariable), initial.bandwidthnumeric2 = tclvalue(bandwidthnumeric2Var), initial.bandwidthadjustment2 = "1", initial.bandwidthwindow2 = tclvalue(bandwidthwindow2rbVariable), initial.distributioncontrols2 = tclvalue(distributioncontrols2rbVariable), initial.distributioncases2 = tclvalue(distributioncases2rbVariable), initial.cicompute = tclvalue(cicomputeVariable), initial.cilevel = tclvalue(cilevelVar), initial.cimethod = tclvalue(cimethodrbVariable), initial.cibootn = tclvalue(cibootnVar), initial.cibootstratified = tclvalue(cibootstratifiedVariable), initial.citype = tclvalue(cityperbVariable), initial.cithresholds = tclvalue(cithresholdsrbVariable), initial.civalues = tclvalue(civaluesVar), initial.ciplottype = tclvalue(ciplottyperbVariable), initial.civalues2 = tclvalue(civalues2Var), initial.auc = tclvalue(aucVariable), initial.partialauc = tclvalue(partialaucVariable), initial.partialfrom = tclvalue(partialfromVar), initial.partialto = tclvalue(partialtoVar), initial.partialfocus = tclvalue(partialfocusVariable), initial.partialcorrect = tclvalue(partialcorrectVariable), initial.plot = tclvalue(plotVariable), initial.printauc = tclvalue(printaucVariable), initial.aucpolygon = tclvalue(aucpolygonVariable), initial.maxaucpolygon = tclvalue(maxaucpolygonVariable), initial.grid = tclvalue(gridVariable), initial.identity = tclvalue(identityVariable), initial.ciplot = tclvalue(ciplotVariable), initial.values = tclvalue(valuesVariable), initial.printthresrb = tclvalue(printthresrbVariable), initial.customthres = as.character(tclvalue(customthresVar)), initial.xlab=tclvalue(xlabVar), initial.ylab=tclvalue(ylabVar), initial.main=tclvalue(mainVar), initial.legendroc = as.character(tclvalue(legendrocVar)), initial.legendroc2 = as.character(tclvalue(legendroc2Var)), initial.colorroc = getSelection(colorrocBox), initial.colorroc2 = getSelection(colorroc2Box), initial.ltyroc = getSelection(ltyrocBox), initial.ltyroc2 = getSelection(ltyroc2Box), initial.pvalue = tclvalue(pvalueVariable), initial.customthres2 = as.character(tclvalue(customthres2Var)), initial.tab=tab)) closeDialog() if (0 == length(prediction)) { errorCondition(recall=fncPairedpROC, message=gettext("You must select a prediction variable 1.", domain="R-RcmdrPlugin.ROC")) return() } if (0 == length(prediction2)) { errorCondition(recall=fncPairedpROC, message=gettext("You must select a prediction variable 2.", domain="R-RcmdrPlugin.ROC")) return() } if (0 == length(label)) { errorCondition(recall=fncPairedpROC, message=gettext("No outcome variable selected.", domain="R-RcmdrPlugin.ROC")) return() } if (percent == "TRUE") { percentupper = 100 pvaluepos = "50" } else { percentupper = 1 pvaluepos = "0.5" } if (cicompute == "TRUE") { if (0 == length(cilevel)) { errorCondition(recall=fncPairedpROC, message=gettext("You must set a confidence interval level.", domain="R-RcmdrPlugin.ROC")) return() } cilevel = as.numeric(cilevel) if ((cilevel < 0) || (cilevel > 1)) { errorCondition(recall=fncPairedpROC, message=gettext("Confidence interval level outside of range.", domain="R-RcmdrPlugin.ROC")) return() } if (0 == length(cibootn)) { errorCondition(recall=fncPairedpROC, message=gettext("You must set a confidence interval number of replicates.", domain="R-RcmdrPlugin.ROC")) return() } if (cibootn < 0) { errorCondition(recall=fncPairedpROC, message=gettext("Confidence interval number of replicates should be a pozitive number.", domain="R-RcmdrPlugin.ROC")) return() } } if (partialauc == "TRUE") { if (0 == length(partialto)) { errorCondition(recall=fncPairedpROC, message=gettext("You must set a partial AUC 'to' limit.", domain="R-RcmdrPlugin.ROC")) return() } partialto = as.numeric(partialto) partialfrom = as.numeric(partialfrom) if ((partialto < 0) | (partialto > percentupper)) { errorCondition(recall=fncPairedpROC, message=gettext("Partial AUC 'to' limit outside of range.", domain="R-RcmdrPlugin.ROC")) return() } if (0 == length(partialfrom)) { errorCondition(recall=fncPairedpROC, message=gettext("You must set a partial AUC 'from' limit.", domain="R-RcmdrPlugin.ROC")) return() } if ((partialfrom < 0) | (partialfrom > percentupper)) { errorCondition(recall=fncPairedpROC, message=gettext("Partial AUC 'from' limit outside of range.", domain="R-RcmdrPlugin.ROC")) return() } if ((max(c(partialfrom, partialto)) <= 1) & (percent=="TRUE")) { Message(message="Maybe you didn't specified well the values, you probably wanted to set the values between 0-100 instead of between 0-1, since percent is checked", type="warning") } if ((max(c(partialfrom, partialto)) > 1) & (percent=="FALSE")) { Message(message="Maybe you didn't specified well the values, you probably wanted to set the values between 0-1 instead of between 0-100, since percent is not checked", type="warning") } } if ((printthresrb == "custom") & (0 == length(customthres))) { errorCondition(recall=fncPairedpROC, message=gettext("Custom threshold for variable 1 should not be empty.", domain="R-RcmdrPlugin.ROC")) return() } if ((printthresrb == "custom") & (0 == length(customthres2))) { errorCondition(recall=fncPairedpROC, message=gettext("Custom threshold for variable 2 should not be empty.", domain="R-RcmdrPlugin.ROC")) return() } .activeDataSet <- ActiveDataSet() if (printthresrb == "customthres") { threshold = customthres threshold2 = customthres2 } else { threshold = paste("'", printthresrb, "'", sep="") threshold2 = paste("'", printthresrb, "'", sep="") } if (partialauc == "TRUE") { partialauc = paste("c(", partialfrom, ", ", partialto, ")", sep="") } command <- paste("roc.obj <- pROC::roc(", label, " ~ ", prediction, ", data=", .activeDataSet, ", na.rm=", narm, ", percent=", percent, ", direction='", direction, "'", ", partial.auc=", partialauc, ", partial.auc.focus='", partialfocus, "'", ", partial.auc.correct=", partialcorrect, ", auc=", auc, ", plot=FALSE, ci=TRUE, of='auc', conf.level=", cilevel, ", ci.method='", cimethod,"', boot.n=", cibootn, ", boot.stratified=", cibootstratified,")", sep = "") doItAndPrint(command) if (plot == "TRUE") { command <- paste("plot(roc.obj, add=FALSE", ", print.auc=", printauc, ", auc.polygon=", aucpolygon, ", max.auc.polygon=", maxaucpolygon, ", print.auc.x=ifelse(roc.obj$percent, 50, .5), print.auc.y=ifelse(roc.obj$percent, 45, .45), print.auc.pattern='AUC: %.2f (%.2f, %.2f)'", ", auc.polygon.col='", colorroc, "AA'", ", max.auc.polygon.col='", colorroc, "22'", ", grid=", grid, ", identity=", identity, ", col='", colorroc, "', lty='", ltyroc, "'", ", print.thres=", threshold, ", print.thres.adj=c(0,0.5), print.thres.cex=0.7, print.thres.pattern='%.2f (%.2f, %.2f)'", xlab, ylab, main, ")", sep = "") doItAndPrint(command) } command <- paste("roc.obj$levels[1] doItAndPrint(command) command <- paste("roc.obj$levels[2] doItAndPrint(command) command <- paste("roc.obj2 <- pROC::roc(", label, " ~ ", prediction2, ", data=", .activeDataSet, ", na.rm=", narm, ", percent=", percent, ", direction='", direction, "'", ", partial.auc=", partialauc, ", partial.auc.focus='", partialfocus, "'", ", partial.auc.correct=", partialcorrect, ", auc=", auc, ", plot=FALSE, ci=TRUE, of='auc', conf.level=", cilevel, ", ci.method='", cimethod,"', boot.n=", cibootn, ", boot.stratified=", cibootstratified,")", sep = "") doItAndPrint(command) if (plot == "TRUE") { command <- paste("plot(roc.obj2, add=TRUE", ", print.auc=", printauc, ", auc.polygon=", aucpolygon, ", max.auc.polygon=", maxaucpolygon, ", print.auc.x=ifelse(roc.obj$percent, 50, .5), print.auc.y=ifelse(roc.obj2$percent, 40, .40), print.auc.pattern='AUC: %.2f (%.2f, %.2f)'", ", auc.polygon.col='", colorroc2, "AA'", ", max.auc.polygon.col='", colorroc2, "22'", ", grid=", grid, ", identity=", identity, ", col='", colorroc2, "', lty='", ltyroc2, "'", ", print.thres=", threshold2, ", print.thres.adj=c(1,0.5), print.thres.cex=0.7, print.thres.pattern='%.2f (%.2f, %.2f)'", xlab, ylab, main, ")", sep = "") doItAndPrint(command) } if (testmethod == "auto") { testmethod = "" } else { testmethod = paste(", method='", testmethod, "'", sep="") } command <- paste("roc.test.obj <- roc.test(roc.obj, roc.obj2, paired=TRUE", testmethod,", alternative='", testalternative, "', boot.n=", testbootn,")", sep = "") doItAndPrint(command) if (pvalue == "TRUE") { command <- paste("text(", pvaluepos, ", ", pvaluepos, ", labels=paste('p-value = ', format.pval(roc.test.obj$p.value), sep=''), adj=c(0, .5))", sep = "") doItAndPrint(command) } command <- paste("roc.test.obj", sep = "") doItAndPrint(command) command <- paste("legend('bottomright', legend=c('", legendroc, "', '", legendroc2, "'), col=c('", colorroc, "', '", colorroc2, "'), lwd=2, lty=c('", ltyroc, "', '", ltyroc2, "'))", sep = "") doItAndPrint(command) if (cicompute == "TRUE") { cilevel = paste(", conf.level=", cilevel, sep="") cimethod = paste(", method='", cimethod, "'", sep="") } if (ciplot == "TRUE") { if (citype == "thresholds") { if (cithresholds == "custom") { threshold = civalues threshold2 = civalues2 } else { threshold = paste("'", cithresholds, "'", sep="") threshold2 = paste("'", cithresholds, "'", sep="") } command <- paste("roc.ci.obj <- ci(roc.obj, of='thresholds', thresholds=", threshold, cilevel, cimethod,", boot.n=", cibootn, ", boot.stratified=", cibootstratified,")", sep = "") doItAndPrint(command) command <- paste("plot(roc.ci.obj, type='", ciplottype, "', col='", colorroc, "AA')", sep = "") doItAndPrint(command) command <- paste("roc.ci.obj2 <- ci(roc.obj2, of='thresholds', thresholds=", threshold2, cilevel, cimethod,", boot.n=", cibootn, ", boot.stratified=", cibootstratified,")", sep = "") doItAndPrint(command) command <- paste("plot(roc.ci.obj2, type='", ciplottype, "', col='", colorroc, "AA')", sep = "") doItAndPrint(command) } else { if ((citype == "se") & (citype == "sp")) { if ((max(eval(parse(text=as.character(civalues)))) <= 1) & (percent=="TRUE")) { Message(message="Maybe you didn't specified well the values, you probably wanted to set seq(0,100,5) (or values between 0-100%) instead of seq(0,1,0.05), since percent is checked", type="warning") } if ((max(eval(parse(text=as.character(civalues)))) > 1) & (percent=="FALSE")) { Message(message="Maybe you didn't specified well the values, you probably wanted to set seq(0,1,0.05) (or values between 0-1) instead of seq(0,100,5), since percent is not checked", type="warning") } if ((max(eval(parse(text=as.character(civalues2)))) <= 1) & (percent=="TRUE")) { Message(message="Maybe you didn't specified well the values, you probably wanted to set seq(0,100,5) (or values between 0-100%) instead of seq(0,1,0.05), since percent is checked", type="warning") } if ((max(eval(parse(text=as.character(civalues2)))) > 1) & (percent=="FALSE")) { Message(message="Maybe you didn't specified well the values, you probably wanted to set seq(0,1,0.05) (or values between 0-1) instead of seq(0,100,5), since percent is not checked", type="warning") } } if (citype == "se") { command <- paste("roc.ci.obj <- ci(roc.obj, of='se', specificities=", civalues, cilevel, cimethod,", boot.n=", cibootn, ", boot.stratified=", cibootstratified,")", sep = "") doItAndPrint(command) command <- paste("roc.ci.obj2 <- ci(roc.obj2, of='se', specificities=", civalues2, cilevel, cimethod,", boot.n=", cibootn, ", boot.stratified=", cibootstratified,")", sep = "") doItAndPrint(command) } if (citype == "sp") { command <- paste("roc.ci.obj <- ci(roc.obj, of='sp', sensitivities=", civalues, cilevel, cimethod,", boot.n=", cibootn, ", boot.stratified=", cibootstratified,")", sep = "") doItAndPrint(command) command <- paste("roc.ci.obj2 <- ci(roc.obj2, of='sp', sensitivities=", civalues2, cilevel, cimethod,", boot.n=", cibootn, ", boot.stratified=", cibootstratified,")", sep = "") doItAndPrint(command) } if (citype == "auc") { command <- paste("roc.ci.obj <- ci(roc.obj, of='auc'", cilevel, cimethod,", boot.n=", cibootn, ", boot.stratified=", cibootstratified,")", sep = "") doItAndPrint(command) doItAndPrint("roc.ci.obj") command <- paste("roc.ci.obj2 <- ci(roc.obj2, of='auc'", cilevel, cimethod,", boot.n=", cibootn, ", boot.stratified=", cibootstratified,")", sep = "") doItAndPrint(command) doItAndPrint("roc.ci.obj2") } command <- paste("plot(roc.ci.obj, type='", ciplottype, "', col='", colorroc, "AA')", sep = "") doItAndPrint(command) command <- paste("plot(roc.ci.obj2, type='", ciplottype, "', col='", colorroc2, "AA')", sep = "") doItAndPrint(command) } } if (smooth == "TRUE") { bandwidth = "" density = "" if (smoothingmethod == "density") { if (smoothinbandwidth == "numeric") { bandwidth = paste(", bw=", bandwidthnumeric, "", sep="") } else { bandwidth = paste(", bw='", smoothinbandwidth, "'", sep="") } } if (smoothingmethod == "fitdistr") { density = paste(", density.cases='", distributioncases, "', density.controls='", distributioncontrols, "'", sep="") } command <- paste("lines(smooth(roc.obj, method = '", smoothingmethod, "'", bandwidth, density, "), col='", colorroc, "', lty='dotdash')", sep = "") doItAndPrint(command) bandwidth2 = "" density2 = "" if (smoothingmethod2 == "density") { if (smoothinbandwidth2 == "numeric") { bandwidth2 = paste(", bw=", bandwidthnumeric2, "", sep="") } else { bandwidth2 = paste(", bw='", smoothinbandwidth2, "'", sep="") } } if (smoothingmethod2 == "fitdistr") { density2 = paste(", density.cases='", distributioncases2, "', density.controls='", distributioncontrols2, "'", sep="") } command <- paste("lines(smooth(roc.obj2, method = '", smoothingmethod2, "'", bandwidth2, density2, "), col='", colorroc2, "', lty='dotdash')", sep = "") doItAndPrint(command) } if (values == "TRUE") { doItAndPrint("roc.obj$sensitivities") doItAndPrint("roc.obj$specificities") doItAndPrint("roc.obj$thresholds") doItAndPrint("roc.obj2$sensitivities") doItAndPrint("roc.obj2$specificities") doItAndPrint("roc.obj2$thresholds") } command <- paste("remove(roc.obj)", sep = "") doItAndPrint(command) command <- paste("remove(roc.obj2)", sep = "") doItAndPrint(command) if (ciplot == "TRUE") { command <- paste("remove(roc.ci.obj)", sep = "") doItAndPrint(command) command <- paste("remove(roc.ci.obj2)", sep = "") doItAndPrint(command) } activateMenus() tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="plot.roc", reset = "fncPairedpROC", apply="fncPairedpROC") tkgrid(getFrame(predictionBox), getFrame(prediction2Box), getFrame(labelBox), sticky = "nw", padx=6, pady=c(6, 6)) tkgrid(testmethodrbFrame, sticky = "w", padx=6, pady=c(0, 6)) tkgrid(testalternativerbFrame, sticky = "w", padx=6, pady=c(0, 6)) tkgrid(labelRcmdr(dataoptionsFrame, text = gettext("Number of replicates", domain="R-RcmdrPlugin.ROC")), testbootnEntry, sticky = "ew", padx=6) tkgrid(directionrbFrame, sticky = "w", padx=6, pady=c(0, 6)) tkgrid(generaldataFrame , dataoptionsFrame, sticky = "nswe", padx=6, pady=6) tkgrid(generalFrame, sticky = "we") tkgrid(smoothingmethodrbFrame, sticky = "w", padx=6, pady=c(6, 6)) tkgrid(smoothinbandwidthrbFrame, sticky = "w", padx=6, pady=c(6, 0)) tkgrid(labelRcmdr(smoothingdensityFrame, text = gettext("Numeric bandwidth", domain="R-RcmdrPlugin.ROC")), bandwidthnumericEntry, sticky = "ew", padx=6, pady=c(6, 0)) tkgrid(labelRcmdr(smoothingdensityFrame, text =""), bandwidthnumericScroll, sticky = "ew", padx=6) tkgrid(labelRcmdr(smoothingdensityFrame, text = gettext("Adjustment", domain="R-RcmdrPlugin.ROC")), bandwidthadjustmentEntry, sticky = "ew", padx=6, pady=c(6, 0)) tkgrid(distributioncontrolsrbFrame, sticky = "w", padx=6, pady=c(6, 0)) tkgrid(distributioncasesrbFrame, sticky = "w", padx=6, pady=c(6, 6)) tkgrid(smoothinggeneralFrame, sticky = "w") tkgrid(smoothingdensityFrame, sticky = "w") tkgrid(smoothingmethod2rbFrame, sticky = "w", padx=6, pady=c(6, 6)) tkgrid(smoothinbandwidth2rbFrame, sticky = "w", padx=6, pady=c(6, 0)) tkgrid(labelRcmdr(smoothingdensityFrame2, text = gettext("Numeric bandwidth", domain="R-RcmdrPlugin.ROC")), bandwidthnumeric2Entry, sticky = "ew", padx=6, pady=c(6, 0)) tkgrid(labelRcmdr(smoothingdensityFrame2, text =""), bandwidthnumeric2Scroll, sticky = "ew", padx=6) tkgrid(labelRcmdr(smoothingdensityFrame2, text = gettext("Adjustment", domain="R-RcmdrPlugin.ROC")), bandwidthadjustment2Entry, sticky = "ew", padx=6, pady=c(6, 0)) tkgrid(distributioncontrols2rbFrame, sticky = "w", padx=6, pady=c(6, 0)) tkgrid(distributioncases2rbFrame, sticky = "w", padx=6, pady=c(6, 6)) tkgrid(smoothinggeneralFrame2, sticky = "w") tkgrid(smoothingdensityFrame2, sticky = "w") tkgrid(smoothingleftpaneFrame , smoothingdistributionFrame, smoothingleftpaneFrame2 , smoothingdistributionFrame2, sticky = "nswe", padx=6, pady=6) tkgrid(smoothingFrame, sticky = "we") tkgrid(labelRcmdr(cigeneralFrame, text = gettext("Confidence level", domain="R-RcmdrPlugin.ROC")), cilevelEntry, sticky = "ew", padx=6) tkgrid(cimethodrbFrame, sticky = "w", padx=6, pady=c(0, 6)) tkgrid(cityperbFrame, sticky = "w", padx=6, pady=c(0, 6)) tkgrid(cithresholdsrbFrame, sticky = "w", padx=6, pady=c(0, 6)) tkgrid(labelRcmdr(cigeneralFrame, text = gettext("Values (Se/Sp/Custom thres.) for variable 1", domain="R-RcmdrPlugin.ROC")), civaluesEntry, sticky = "ew", padx=6, pady=c(0, 6)) tkgrid(labelRcmdr(cigeneralFrame, text =""), civaluesScroll, sticky = "ew", padx=6, pady=c(0, 6)) tkgrid(labelRcmdr(cigeneralFrame, text = gettext("Values (Se/Sp/Custom thres.) for variable 2", domain="R-RcmdrPlugin.ROC")), civalues2Entry, sticky = "ew", padx=6, pady=c(0, 6)) tkgrid(labelRcmdr(cigeneralFrame, text =""), civalues2Scroll, sticky = "ew", padx=6, pady=c(0, 6)) tkgrid(cigeneralFrame , cibootstrapFrame, sticky = "nswe", padx=6, pady=6) tkgrid(ciFrame, sticky = "we") tkgrid(partialfocusFrame, sticky = "w", padx=6, pady=c(6, 6)) tkgrid(generalaucFrame , partialaucFrame, sticky = "nswe", padx=6, pady=6) tkgrid(aucFrame, sticky = "we") tkgrid(labelRcmdr(legendFrame, text = gettext("Legend of ROC 1", domain="R-RcmdrPlugin.ROC")), legendrocEntry, sticky = "ew", padx=6) tkgrid(labelRcmdr(legendFrame, text =""), legendrocScroll, sticky = "ew", padx=6) tkgrid(getFrame(colorrocBox), sticky = "w", padx=6, pady=c(6, 0)) tkgrid(getFrame(ltyrocBox), sticky = "w", padx=6, pady=c(6, 18)) tkgrid(labelRcmdr(legendFrame, text = gettext("Legend of ROC 2", domain="R-RcmdrPlugin.ROC")), legendroc2Entry, sticky = "ew", padx=6) tkgrid(labelRcmdr(legendFrame, text =""), legendroc2Scroll, sticky = "ew", padx=6) tkgrid(getFrame(colorroc2Box), sticky = "w", padx=6, pady=c(6, 0)) tkgrid(getFrame(ltyroc2Box), sticky = "w", padx=6, pady=c(6, 6)) tkgrid(optionsFrame, sticky = "w", padx=6, pady=c(0, 6)) tkgrid(aucpolygonFrame, sticky = "w", padx=6, pady=c(0, 6)) tkgrid(printthresrbFrame, sticky = "w", padx=6, pady=c(0, 6)) tkgrid(labelRcmdr(informationFrame, text = gettext("Custom threshold for variable 1", domain="R-RcmdrPlugin.ROC")), customthresEntry, sticky = "ew", padx=6) tkgrid(labelRcmdr(informationFrame, text =""), customthresScroll, sticky = "ew", padx=6) tkgrid(labelRcmdr(informationFrame, text = gettext("Custom threshold for variable 2", domain="R-RcmdrPlugin.ROC")), customthres2Entry, sticky = "ew", padx=6) tkgrid(labelRcmdr(informationFrame, text =""), customthres2Scroll, sticky = "ew", padx=6) tkgrid(informationFrame, sticky = "w", padx=6, pady=c(0, 6)) tkgrid(ciplottyperbFrame, sticky = "w", padx=6, pady=c(6, 6)) tkgrid(optFrame, parFrame, legendFrame, sticky = "nswe", padx=6, pady=6) tkgrid(optionsParFrame, sticky = "we") tkgrid(ttklabel(dataTab, text="")) tkgrid(ttklabel(dataTab, text="")) tkgrid(labelRcmdr(top, text = " "), padx=6) dialogSuffix(use.tabs=TRUE, grid.buttons=TRUE, tabs=c("dataTab", "smoothingTab", "aucTab", "ciTab", "optionsTab"), tab.names=c("General", "Smoothing", "AUC", "CI", "Plot")) }
source("test.prolog.R") library(earth) options(warn=1) sex <- factor(c("m","f","f","f","f")) pclass <- factor(c("1st", "2nd", "3rd", "3rd", "3rd")) x.short <- data.frame(dose=1L:5L, numericx=c(1.1,1.2,1.3,1.4,1.5), logicalx=c(TRUE,FALSE,TRUE,FALSE,TRUE), sex=sex, pclass=pclass) y.short <- data.frame(success=c(1,2,3,0,1), fail =c(1,1,1,0,0)) short <- data.frame(x.short, y.short) x.short.unsorted <- x.short[nrow(x.short):1, ] y.short.unsorted <- y.short[nrow(y.short):1, ] short.unsorted <- data.frame(x.short.unsorted, y.short.unsorted) long <- data.frame( success =c( F, T, F, T, T, F, T, T, T, F, T), dose =c( 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 5L), numericx=c( 1.1, 1.1, 1.2, 1.2, 1.2, 1.3, 1.3, 1.3, 1.3, 1.4, 1.5), logicalx=c( T, T, F, F, F, T, T, T, T, F, T), sex =factor(c( "m", "m", "f", "f", "f", "f", "f", "f", "f", "f", "f")), pclass =factor(c("1st","1st","2nd","2nd","2nd","3rd","3rd","3rd","3rd","3rd","3rd"))) bpairs.index <- c(1L, 3L, 6L, 10L, 11L) ynames <- c("success", "fail") check.expanded.bpairs <- function(long.expanded, long.ref, bpairs.index.ref, ynames.ref) { stopifnot(rownames(long.expanded)[1] == "row1.1") stripped.long.expanded <- long.expanded rownames(stripped.long.expanded) <- 1:nrow(long.expanded) attr(stripped.long.expanded, "bpairs.index") <- NULL attr(stripped.long.expanded, "ynames") <- NULL if(!identical(stripped.long.expanded, long.ref)) { printf("\n---print.default(stripped.long.expanded)------\n") print.default(stripped.long.expanded) printf("\n---print.default(long.ref)--------------------\n") print.default(long.ref) printf("\n----------------------------------------------\n") stop("!identical(stripped.long.expanded, long.ref), see above prints") } stopifnot(identical(attr(long.expanded, "bpairs.index"), bpairs.index.ref)) stopifnot(identical(attr(long.expanded, "ynames"), ynames.ref)) } cat("expand.bpairs(x.short, y.short)\n") long.default <- expand.bpairs(x.short, y.short) check.expanded.bpairs(long.default, long, bpairs.index, ynames) long.default.sort <- expand.bpairs(x.short.unsorted, y.short.unsorted, sort=TRUE) attr(long.default.sort, "row.names") <- NULL attr(long.default.sort, "ynames") <- NULL long1 <- long rownames(long1) <- NULL attr(long1, "row.names") <- NULL attr(long1, "bpairs.index") <- NULL stopifnot(all.equal(long.default.sort, long1)) cat("expand.bpairs(expand.bpairs(short$dose, y.short)\n") long.default.dose <- expand.bpairs(short$dose, y.short) colnames(long.default.dose)[2] <- "dose" check.expanded.bpairs(long.default.dose, long[,c("success", "dose")], bpairs.index, ynames) cat("expand.bpairs(short.data.frame, c(6,7))\n") short.data.frame <- data.frame(x.short, y.short) long.colindex <- expand.bpairs(short.data.frame, c(6,7)) check.expanded.bpairs(long.colindex, long, bpairs.index, ynames) cat("expand.bpairs(short.data.frame.dose, c(2,3))\n") short.data.frame.dose <- data.frame(dose=x.short$dose, y.short) long.default.dose <- expand.bpairs(short.data.frame.dose, c(2,3)) check.expanded.bpairs(long.default.dose, long[,c("success", "dose")], bpairs.index, ynames) cat("expand.bpairs(short.data.frame, c(\"success\",\"fail\"))\n") short.data.frame <- data.frame(x.short, y.short) long.charindex <- expand.bpairs(short.data.frame, c("success", "fail")) check.expanded.bpairs(long.charindex, long, bpairs.index, ynames) cat("expand.bpairs(short.data.frame.dose, c(2,3))\n") short.data.frame.dose <- data.frame(dose=x.short$dose, y.short) long.default.charindex.dose <- expand.bpairs(short.data.frame.dose, c(2,3)) check.expanded.bpairs(long.default.charindex.dose, long[,c("success", "dose")], bpairs.index, ynames) expect.err(try(expand.bpairs()), "expand.bpairs: no y argument") expect.err(try(expand.bpairs(short.data.frame.dose)), "expand.bpairs: no y argument") expect.err(try(expand.bpairs(short.data.frame.dose, c(2,3), nonesuch=99)), "expand.bpairs.default: unrecognized argument 'nonesuch'") expect.err(try(expand.bpairs(short.data.frame, c(5,6))), "short.data.frame[,c(5,6)] is not a two-column matrix of binomial pairs") expect.err(try(expand.bpairs(short.data.frame, 1)), "expand.bpairs: bad y argument '1'") expect.err(try(expand.bpairs(short.data.frame, c(1,2,3))), "bad y argument 'c(1, 2, 3)'") expect.err(try(expand.bpairs(short.data.frame, c(1,2))), "expand.bpairs: short.data.frame[,c(1,2)] is not a two-column matrix of binomial pairs") expect.err(try(expand.bpairs(short.data.frame, c(99,100))), "'ycolumns' is out of range, allowed values are 1 to 7") expect.err(try(expand.bpairs(short.data.frame, c("success99", "fail"))), "undefined columns selected") expect.err(try(expand.bpairs(short.data.frame, c("nonesuch", "fail"))), "undefined columns selected") expect.err(try(expand.bpairs(short.data.frame, "nonesuch")), "bad y argument 'nonesuch'") expect.err(try(expand.bpairs(short.data.frame, nonesuch)), "object 'nonesuch' not found") options(warn=2) expect.err(try(expand.bpairs(short.data.frame, c("nonesuch", "fail"))), "\"nonesuch\" in ycolumns does not match any names") expect.err(try(expand.bpairs(short.data.frame, c("fail", "nonesuch99"))), "\"nonesuch99\" in ycolumns does not match any names") expect.err(try(expand.bpairs(short.data.frame, c("", "fail"))), "ycolumns[1] is an empty string \"\"") expect.err(try(expand.bpairs(short.data.frame, c("success", ""))), "ycolumns[2] is an empty string \"\"") options(warn=1) try(expand.bpairs(short.data.frame, c("success", ""))) cat("expand.bpairs(success.fail~., data=x.short)\n") success.fail <- cbind(success=short$success, fail=short$fail) long.formula.matrix <- expand.bpairs(success.fail~., data=x.short) check.expanded.bpairs(long.formula.matrix, long, bpairs.index, ynames) cat("expand.bpairs(success+fail~., data=x.short)\n") xy.short <- data.frame(y.short, x.short) long.formula <- expand.bpairs(success+fail~., data=xy.short) check.expanded.bpairs(long.formula, long, bpairs.index, ynames) long.formula.sort <- expand.bpairs(x.short, y.short, sort=TRUE) long.formula.sort <- expand.bpairs(x.short.unsorted, y.short.unsorted, sort=TRUE) attr(long.formula.sort, "row.names") <- NULL attr(long.formula.sort, "ynames") <- NULL long1 <- long rownames(long1) <- NULL attr(long1, "row.names") <- NULL attr(long1, "bpairs.index") <- NULL stopifnot(all.equal(long.formula.sort, long1)) expand.bpairs(success+fail+fail~., data=xy.short) expect.err(try(expand.bpairs(success~., data=xy.short)), "expand.bpairs: 'success' does not have two columns") expect.err(try(expand.bpairs(success+success~., data=xy.short)), "expand.bpairs: 'success + success' does not have two columns") cat("expand.bpairs(success.fail~., data=x.short)\n") success.fail <- cbind(success=short$success, fail=short$fail) long.formula.matrix <- expand.bpairs(success.fail~., data=x.short) check.expanded.bpairs(long.formula.matrix, long, bpairs.index, ynames) cat("expand.bpairs(data.frame(success.fail)~., data=x.short)\n") expect.err(try(expand.bpairs(data.frame(success.fail)~., data=x.short)), "invalid type (list) for variable 'data.frame(success.fail)'") cat("expand.bpairs(expand.bpairs(success+fail~dose, data=xy.short)\n") long.formula.dose <- expand.bpairs(success+fail~dose, data=xy.short) check.expanded.bpairs(long.formula.dose, long[,c("success", "dose")], bpairs.index, ynames) trues <- xy.short$success falses <- xy.short$fail cat("expand.bpairs(expand.bpairs(trues+falses~dose, data=x.short)\n") long.formula.dose <- expand.bpairs(trues+falses~~dose, data=xy.short) stopifnot(identical(colnames(long.formula.dose), c("trues", "dose"))) colnames(long.formula.dose) <- c("success", "dose") attr(long.formula.dose, "ynames") <- c("success", "fail") check.expanded.bpairs(long.formula.dose, long[,c("success", "dose")], bpairs.index, ynames) cat("expand.bpairs(expand.bpairs(trues+falses~., data=x.short)\n") long.formula <- expand.bpairs(trues+falses~., data=xy.short) stopifnot(identical(colnames(long.formula), c("trues", "success", "fail", "dose", "numericx", "logicalx", "sex", "pclass"))) cat("expand.bpairs(expand.bpairs(success.fail~dose, data=x.short)\n") long.formula.dose <- expand.bpairs(success.fail~dose, data=x.short) check.expanded.bpairs(long.formula.dose, long[,c("success", "dose")], bpairs.index, ynames) cat("expand.bpairs(expand.bpairs(success.fail~dose, data=xy.short)\n") long.formula.dose <- expand.bpairs(success.fail~dose, data=xy.short) check.expanded.bpairs(long.formula.dose, long[,c("success", "dose")], bpairs.index, ynames) x.short.na <- x.short x.short.na$dose[3] <- NA long.na <- long long.na$dose[6:9] <- NA cat("expand.bpairs(success.fail~., data=x.short.na)\n") long.formula.na <- expand.bpairs(success.fail~., data=x.short.na) check.expanded.bpairs(long.formula.na, long.na, bpairs.index, ynames) cat("expand.bpairs(success.fail~dose., data=x.short.na)\n") long.formula.dose.na <- expand.bpairs(success.fail~dose, data=x.short.na) check.expanded.bpairs(long.formula.dose.na, long.na[,c("success", "dose")], bpairs.index, ynames) expect.err(try(expand.bpairs(nonesuch~., data=x.short)), "object 'nonesuch' not found") expect.err(try(expand.bpairs(dose~., data=x.short)), "'dose' does not have two columns") expect.err(try(expand.bpairs(dose~success.fail, data=x.short)), "'dose' does not have two columns") long.formula <- expand.bpairs(success.fail~., data=xy.short) check.expanded.bpairs(long.formula, long, bpairs.index, ynames) long.formula.dose <- expand.bpairs(success.fail~dose, data=xy.short) check.expanded.bpairs(long.formula.dose, long[,c("success", "dose")], bpairs.index, ynames) old.success.fail <- success.fail success.fail <- 99 expect.err(try(expand.bpairs(success.fail~., data=xy.short)), "variable lengths differ (found for 'success')") success.fail <- old.success.fail short <- matrix(c( 5, 2, 2, 9, 5, 9, 20,20,30,20,20,30), ncol=2) colnames(short) <- c("dose", "temp") success.fail <- matrix(c(1,2,0,2,2,0, 3,3,1,0,1,0), ncol=2) long <- matrix(c( 0, 5, 20, 0, 5, 20, 0, 5, 20, 1, 5, 20, 0, 2, 20, 0, 2, 20, 0, 2, 20, 1, 2, 20, 1, 2, 20, 0, 2, 30, 1, 9, 20, 1, 9, 20, 0, 5, 20, 1, 5, 20, 1, 5, 20, 0, 9, 30), ncol=3, byrow=TRUE) colnames(long) <- c("V1", "dose", "temp") long <- as.data.frame(long) bpairs.index <- c(1L, 5L, 10L, 11L, 13L, 16L) ynames <- c("V1", "V2") long.default <- expand.bpairs(short, success.fail) long.default$V1 <- as.numeric(long.default$V1) check.expanded.bpairs(long.default, long, bpairs.index, ynames) example(expand.bpairs) survived <- c(3,2,1,1) died <- c(0,1,2,2) dose <- c(10,10,20,20) sex <- factor(c("male", "female", "male", "female")) short.data <- data.frame(survived, died, dose, sex) long.data <- expand.bpairs(survived + died ~ ., short.data) print(long.data) stopifnot(identical(expand.bpairs(data=short.data, y=cbind(survived, died)), long.data)) stopifnot(identical(expand.bpairs(short.data, c(1,2)), long.data)) stopifnot(identical(expand.bpairs(short.data, c("survived", "died")), long.data)) pairs(short.data, main="short.data") pairs(long.data, main="long.data") short.unsorted.nocolnames <- short.unsorted colnames(short.unsorted.nocolnames) <- NULL temp <- expand.bpairs(short.unsorted, 6:7) temp.nocolnames <- expand.bpairs(short.unsorted.nocolnames, 6:7) stopifnot(all.equal(colnames(temp.nocolnames), c("true", "X1", "X2", "X3", "X4", "X5"))) colnames(temp.nocolnames) <- colnames(temp) attr(temp, "ynames") <- NULL stopifnot(identical(temp.nocolnames, temp)) source("test.epilog.R")
NULL if (getRversion() >= "2.15.1") { utils::globalVariables(".") utils::globalVariables("where") }
ISOClassification <- R6Class("ISOClassification", inherit = ISOCodeListValue, private = list( xmlElement = "MD_ClassificationCode", xmlNamespacePrefix = "GMD" ), public = list( initialize = function(xml = NULL, value, description = NULL){ super$initialize(xml = xml, id = private$xmlElement, value = value, description = description, setValue = FALSE) } ) ) ISOClassification$values <- function(labels = FALSE){ return(ISOCodeListValue$values(ISOClassification, labels)) }
.onLoad <- function (lib, pkg) { guiWidgets(.GUI) <- "tcltkGUI" }
extract_matrix.RowLinkedMatrix <- function(x, i, j, ...) { if (length(i) == 0L) { Z <- matrix(data = integer(), nrow = 0L, ncol = length(j), dimnames = list(NULL, colnames(x)[j])) } else { index <- index(x, i = i, sort = FALSE) nodeList <- unique(index[, 1L]) if (length(nodeList) > 1L) { Z <- matrix(data = integer(), nrow = length(i), ncol = length(j), dimnames = list(rownames(x)[i], colnames(x)[j])) for (curNode in nodeList) { if (is.na(curNode)) { nodeIndex = is.na(index[, 1L]) Z[nodeIndex, ] <- NA_integer_ } else { nodeIndex <- index[, 1L] == curNode nodeIndex[is.na(nodeIndex)] <- FALSE Z[nodeIndex, ] <- as.matrix(x[[curNode]][index[nodeIndex, 3L], j, drop = FALSE]) } } } else { if (is.na(nodeList)) { Z <- matrix(data = NA_integer_, nrow = length(i), ncol = length(j), dimnames = list(rep(NA_character_, length(i)), colnames(x)[j])) } else { Z <- as.matrix(x[[nodeList]][index[, 3L], j, drop = FALSE]) } } } return(Z) } extract_vector.RowLinkedMatrix <- function(x, i, ...) { if (length(i) == 0L) { Z <- integer(0L) } else { ij <- ktoij(x, i) rowsPerNode <- sapply(x, nrow) nodeBoundaries <- c(0L, cumsum(rowsPerNode)) nodeMembership <- .bincode(ij[["i"]], nodeBoundaries) nodeList <- unique(nodeMembership) if (length(nodeList) > 1L) { Z <- vector(mode = "integer", length = length(i)) for (curNode in nodeList) { if (is.na(curNode)) { nodeIndex <- is.na(nodeMembership) Z[nodeIndex] <- NA_integer_ } else { nodeIndex <- nodeMembership == curNode nodeIndex[is.na(nodeIndex)] <- FALSE localIndex <- ((ij[["j"]][nodeIndex] - 1L) * rowsPerNode[curNode] + ij[["i"]][nodeIndex]) - nodeBoundaries[curNode] Z[nodeIndex] <- x[[curNode]][localIndex] } } } else { if (is.na(nodeList)) { Z <- rep(NA_integer_, length(i)) } else { localIndex <- ((ij[["j"]] - 1L) * rowsPerNode[nodeList] + ij[["i"]]) - nodeBoundaries[nodeList] Z <- x[[nodeList]][localIndex] } } } return(Z) } replace_matrix.RowLinkedMatrix <- function(x, i, j, ..., value) { dim(value) <- c(length(i), length(j)) index <- index(x, i = i, sort = FALSE) nodeList <- unique(index[, 1L]) for (curNode in nodeList) { nodeIndex <- index[, 1L] == curNode x[[curNode]][index[nodeIndex, 3L], j] <- value[nodeIndex, ] } return(x) } replace_vector.RowLinkedMatrix <- function(x, i, ..., value) { ij <- ktoij(x, i) rowsPerNode <- sapply(x, nrow) nodeBoundaries <- c(0L, cumsum(rowsPerNode)) nodeMembership <- .bincode(ij[["i"]], nodeBoundaries) nodeList <- unique(nodeMembership) for (curNode in nodeList) { nodeIndex <- nodeMembership == curNode localIndex <- ((ij[["j"]][nodeIndex] - 1L) * rowsPerNode[curNode] + ij[["i"]][nodeIndex]) - nodeBoundaries[curNode] x[[curNode]][localIndex] <- value[nodeIndex] } return(x) } dim.RowLinkedMatrix <- function(x) { p <- ncol(x[[1L]]) n <- 0L for (i in 1L:nNodes(x)) { n <- n + nrow(x[[i]]) } return(c(n, p)) } rownames.RowLinkedMatrix <- function(x) { nodes <- nodes(x) names <- rep("", nodes[nrow(nodes), 3L]) for (i in seq_len(nrow(nodes))) { nodeNames <- rownames(x[[i]]) if (!is.null(nodeNames)) { names[(nodes[i, 2L]:nodes[i, 3L])] <- nodeNames } } if (all(names == "")) { names <- NULL } return(names) } colnames.RowLinkedMatrix <- function(x) { colnames(x[[1L]]) } dimnames.RowLinkedMatrix <- function(x) { list(rownames.RowLinkedMatrix(x), colnames.RowLinkedMatrix(x)) } `rownames<-.RowLinkedMatrix` <- function(x, value) { nodes <- nodes(x) for (i in 1L:nrow(nodes)) { rownames(x[[i]]) <- value[(nodes[i, 2L]:nodes[i, 3L])] } return(x) } `colnames<-.RowLinkedMatrix` <- function(x, value) { for (i in 1L:nNodes(x)) { colnames(x[[i]]) <- value } return(x) } `dimnames<-.RowLinkedMatrix` <- function(x, value) { d <- dim(x) rownames <- value[[1L]] colnames <- value[[2L]] if (!is.list(value) || length(value) != 2L || !(is.null(rownames) || length(rownames) == d[1L]) || !(is.null(colnames) || length(colnames) == d[2L])) { stop("invalid dimnames") } x <- `rownames<-.RowLinkedMatrix`(x, rownames) x <- `colnames<-.RowLinkedMatrix`(x, colnames) return(x) } rbind.RowLinkedMatrix <- function(..., deparse.level = 1L) { dotdotdot <- list(...) nodes <- list() for (i in seq_along(dotdotdot)) { node <- dotdotdot[[i]] if (is(node, "LinkedMatrix")) { nodes <- append(nodes, slot(node, ".Data")) } else { nodes <- append(nodes, node) } } do.call(RowLinkedMatrix, nodes) } nodes.RowLinkedMatrix <- function(x) { rowsPerNode <- sapply(x, nrow) rowUpperBoundaries <- cumsum(rowsPerNode) rowLowerBoundaries <- rowUpperBoundaries - rowsPerNode + 1 n <- length(rowsPerNode) nodes <- matrix(data = c(1:n, rowLowerBoundaries, rowUpperBoundaries), nrow = n, ncol = 3L, dimnames = list(NULL, c("node", "row.ini", "row.end"))) return(nodes) } index.RowLinkedMatrix <- function(x, i = NULL, sort = TRUE, ...) { nodes <- nodes(x) if (!is.null(i)) { i <- as.integer(i) if (sort) { i <- sort(i) } } else { i <- seq_len(nodes[nrow(nodes), 3L]) } nodeBoundaries <- c(0L, nodes[, 3L]) nodeMembership <- .bincode(i, breaks = nodeBoundaries) index <- matrix(data = c(nodeMembership, i, i - nodeBoundaries[nodeMembership]), nrow = length(i), ncol = 3L, dimnames = list(NULL, c("node", "row.global", "row.local"))) return(index) } as.RowLinkedMatrix <- function(x, ...) { UseMethod("as.RowLinkedMatrix") } as.RowLinkedMatrix.list <- function(x, ...) { do.call(RowLinkedMatrix, x, ...) } RowLinkedMatrix <- setClass("RowLinkedMatrix", contains = "list") setValidity("RowLinkedMatrix", function(object) { nodes <- slot(object, ".Data") if (length(nodes) == 0L) { return("there needs to be at least one node") } if (!all(sapply(nodes, isMatrixLike))) { return("arguments need to be matrix-like") } if (length(unique(sapply(nodes, ncol))) != 1L) { return("arguments need the same number of columns") } names <- lapply(nodes, colnames) if (length(names) > 1L && !all(duplicated(names) | duplicated(names, fromLast = TRUE))) { warning("column names of matrix-like objects do not match: colnames() only uses the column names of the first node") } return(TRUE) }) `[.RowLinkedMatrix` <- extract( extract_vector = extract_vector.RowLinkedMatrix, extract_matrix = extract_matrix.RowLinkedMatrix, allowDoubles = TRUE ) `[<-.RowLinkedMatrix` <- replace( replace_vector = replace_vector.RowLinkedMatrix, replace_matrix = replace_matrix.RowLinkedMatrix, allowDoubles = TRUE )
packageStartupMessage("This is gllm 0.34") emgllm <- function(y,s,X,maxit=1000,tol=0.00001) { if (typeof(X)=="language") { X<-model.matrix(X) } X<-cbind(X,double(nrow(X))) em<-emgllmfitter(y,s,X,maxit,tol) deviance=2 * sum(em$y * log(em$y / em$f), na.rm=TRUE) observed.values<-em$y fitted.values<-em$f full.table<-em$e list(deviance=deviance, observed.values=observed.values, fitted.values=fitted.values, full.table=full.table) } emgllmfitter <- function(y,s,X,maxit,tol) .C("gllm", y = as.double(y), ji = as.integer(s-1), c = X, istop = as.integer(maxit), conv = as.double(tol), e = double(nrow(X)) + 1, ni = as.integer(nrow(X)), nj = as.integer(length(y)), nk = as.integer(ncol(X)-1), f = double(length(y)), PACKAGE="gllm") scatter<- function(y,s) { S<-matrix(rep(0,length(y)*length(s)),nrow=length(y)) for(i in 1:length(s)) if (s[i]<=length(y)) S[s[i],i]<-1 t(S) } scoregllm<-function(y,s,X,m,tol=1e-5) { eps<-0.00001 call <- match.call() formula<-NULL if (typeof(X)=="language") { formula<-X X<-model.matrix(X) } X<-t(X) S<-scatter(y,s) z<-as.vector(S %*% solve(t(S) %*% S, tol=1e-10) %*% y) iter<- 0 olddev<- -1 deviance<- 0 b<-qr.solve(t(X),log(m),tol=1e-10) while(abs(olddev-deviance)>tol) { iter<-iter+1 olddev<-deviance if (iter>1) m<- as.vector(exp(t(X) %*% b)) P<- S %*% solve(t(S) %*% diag(m) %*% S, tol=1e-10) %*% t(S) %*% diag(m) A<- P %*% t(X) V<- t(A) %*% diag(m) %*% A V<- qr.solve(V,tol=1e-10) b<- b - V %*% t(A) %*% (m - z) f<- as.vector(t(S) %*% m) use<-(y>eps & f>eps) deviance<- 2.0*sum(y[use]*log(y[use]/f[use])) } observed.values<-y fitted.values<-f residuals<- f residuals[f>0]<-(y[f>0]-f[f>0])/sqrt(f[f>0]) full.table<-m coefficients<-as.vector(b) names(coefficients)<-rownames(X) bl<-(rownames(X)=="") names(coefficients)[bl]<-paste("beta",1:nrow(X),sep="")[bl] se<-sqrt(diag(V)) df<-length(y)-qr(X)$rank res<-list(call=call,formula=formula, iter=iter,deviance=deviance,df=df, coefficients=coefficients,se=se,V=V, observed.values=observed.values, fitted.values=fitted.values, residuals=residuals, full.table=full.table) class(res) <- "gllm" res } gllm <- function(y,s,X,method="hybrid",em.maxit=1,tol=0.00001) { if (method=="hybrid" || method=="scoring") { scoregllm(y,s,X,as.array(emgllm(y,s,X,maxit=em.maxit,tol=tol)$full.table)) }else{ scoregllm(y,s,X,as.array(emgllm(y,s,X,maxit=10000,tol=tol)$full.table)) } } summary.gllm <- function(object, ...) { tab.coef<-data.frame(object$coefficients, object$se, exp(object$coefficients), exp(object$coefficients-1.96*object$se), exp(object$coefficients+1.96*object$se), row.names=names(object$coefficients)) colnames(tab.coef)<-c("Estimate","S.E.","exp(Estimate)", "Lower 95% CL","Upper 95% CL") tab.fitted<-data.frame(object$observed.values, object$fitted.values, object$residuals) colnames(tab.fitted)<-c("Observed Count","Predicted","Residual") summary<- list() summary$call<-object$call summary$nobs<-length(object$observed.values) summary$nfull<-length(object$full.table) summary$mean.cell<-mean(object$observed.values) summary$deviance<-object$deviance summary$model.df<-object$df summary$coefficients<-tab.coef summary$residuals<-tab.fitted class(summary) <- "summary.gllm" summary } print.summary.gllm <- function(x, digits=NULL, show.residuals = FALSE, ...) { if (is.null(digits)) digits <- options()$digits else options(digits=digits) cat("\nCall:\n") cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") cat("\nNo. cells in observed table: ", x$nobs, "\n",sep="") cat("No. cells in complete table: ", x$nfull, "\n",sep="") cat(" Mean observed cell size: ", x$mean.cell, "\n",sep="") cat(" Model Deviance (df): ", formatC(x$deviance,digits=2,format="f"), " (", x$model.df, ")\n\n",sep="") print(x$coefficients, digits=digits) if (show.residuals) { cat("\n") print(x$residuals, digits=digits) } } boot.table <- function(y,strata=NULL) { ynew<-rep(0.5, length(y)) if (is.null(strata)) { tab.ynew<-table(sample(rep(1:length(y),y),replace=TRUE)) ynew[as.integer(names(tab.ynew))]<-tab.ynew }else{ s<-as.integer(strata) for(i in unique(s)) { idx<-s==i tab.ynew<-table(sample(rep((1:length(y))[idx],y[idx]),replace=TRUE)) ynew[as.integer(names(tab.ynew))]<-tab.ynew } } ynew } boot.gllm <- function(y,s,X,method="hybrid",em.maxit=1,tol=0.00001, strata=NULL,R=200) { if (method=="hybrid" || method=="scoring") { f0<-scoregllm(y,s,X,as.array(emgllm(y,s,X,maxit=em.maxit,tol=tol)$full.table))$full.table }else{ f0<-scoregllm(y,s,X,as.array(emgllm(y,s,X,maxit=10000,tol=tol)$full.table))$full.table } result<-as.matrix(t(f0)) cat("It",0,":",y,"\n") for(i in 1:R) { ynew<-boot.table(y,strata=strata) cat("It",i,":",ynew,"\n") result<-rbind(result, t(scoregllm(ynew,s,X,as.array(emgllm(ynew,s,X, maxit=em.maxit,tol=tol)$full.table))$full.table)) } result } anova.gllm <- function(object, ..., test = c("Chisq", "none")) { modelname<-unlist(strsplit(deparse(match.call()),"[(),]")) modelname<-gsub("[() ]","",modelname) modelname<-gsub("object=","",modelname) modelname<-modelname[-c(1,grep("=",modelname))] test <- match.arg(test) dots <- list(...) mlist <- list(object, ...) nt <- length(mlist) dflis <- sapply(mlist, function(x) x$df) s <- order(dflis, decreasing=TRUE) mlist <- mlist[s] if(any(!sapply(mlist, inherits, "gllm"))) { stop("not all objects are of class `gllm'") } mds <- modelname[s] dfs <- dflis[s] lls <- sapply(mlist, function(x) x$deviance) tss <- "" if (nt>1) tss <- c("", paste(1:(nt - 1), 2:nt, sep = " vs ")) df <- c(NA, -diff(dfs)) x2 <- c(NA, -diff(lls)) pr <- c(NA, 1 - pchisq(x2[-1], df[-1])) out <- data.frame(Model = mds, Resid.df = dfs, Deviance = lls, Pr.Fit = 1-pchisq(lls,dfs), Test = tss, Df = df, LRtest = x2, Prob = pr) names(out) <- c("Model", "Resid. df", "Resid. Dev", "Pr(GOFChi)", "Test", " Df", "LR stat.", "Pr(Chi)") if(test=="none") out <- out[, 1:6] class(out) <- c("Anova", "data.frame") attr(out, "heading") <- c("Likelihood ratio tests of Loglinear Models\n") out } ld2 <- function(locus1, locus2=NULL) { all.possible.genos <- function(genotypes,gtp.sep="/") { alleles<- sort(unique(unlist(strsplit(genotypes[!is.na(genotypes)], gtp.sep)))) gtp<-cbind(rep(alleles,seq(length(alleles),1,-1)), rev(alleles)[sequence(seq(length(alleles),1,-1))]) paste(gtp[,1],gtp[,2],sep=gtp.sep) } genofactor <- function(genotypes, gtp.sep="/") { factor(genotypes, levels=all.possible.genos(genotypes)) } ng.to.nall<-function(ngenos) (sqrt(1+8*ngenos)-1)/2 if (is.null(locus2)) { if (is.table(locus1) && length(dim(locus1))==2) { ld.table<-locus1 }else if (is.data.frame(locus1)) { ld.table<-table(genofactor(locus1[,1]), genofactor(locus1[,2])) } }else{ ld.table<-table(genofactor(locus1), genofactor(locus2)) } siz<-dim(ld.table) if (length(siz)==2 && siz[1]>1 && all(siz>1)) { nall1<-ng.to.nall(siz[1]) nall2<-ng.to.nall(siz[2]) m0<-ld2.model(nall1,nall2,"~a1+a2") m1<-ld2.model(nall1,nall2,"~a1+a2+d") m2<-ld2.model(nall1,nall2,"~a1+a2+p1") m3<-ld2.model(nall1,nall2,"~a1+a2+p1+p2") m4<-ld2.model(nall1,nall2,"~a1+a2+p1+p2+d") m0<-gllm(c(t(ld.table)),m0$s,m0$X,method="hybrid",em.maxit=1,tol=0.00001) m1<-gllm(c(t(ld.table)),m1$s,m1$X,method="hybrid",em.maxit=1,tol=0.00001) m2<-gllm(c(t(ld.table)),m2$s,m2$X,method="hybrid",em.maxit=1,tol=0.00001) m3<-gllm(c(t(ld.table)),m3$s,m3$X,method="hybrid",em.maxit=1,tol=0.00001) m4<-gllm(c(t(ld.table)),m4$s,m4$X,method="hybrid",em.maxit=1,tol=0.00001) res<-list(m0=m0,m1=m1,m2=m2,m3=m3,m4=m4) class(res)<-"ld2" res }else{ cat("Must have two polymorphic loci\n") } } print.ld2 <- function(x,...) { cat("\nAssuming HWE\n") print(summary(x$m1)) cat("\n") print(anova(x$m0,x$m1)) cat("\nModelling HWD\n") print(summary(x$m4)) cat("\n") print(anova(x$m0,x$m2,x$m3,x$m4)) } ld2.model <- function(nall1, nall2, formula="~a1+a2+p1+p2+d") { mkgeno<-function(nall) { lab<-t(outer(1:nall, 1:nall, paste,sep="/")) lab[lower.tri(lab,diag=TRUE)] } ld.terms<-function(nall1, nall2, formula=formula) { nter<-cumsum(c(1,nall1-1,nall2-1, (nall1-1)*(nall1-1), (nall2-1)*(nall2-1), (nall1-1)*(nall2-1))) ter<-pmatch(unlist(strsplit(formula,"[~+]")),c("a1","a2","p1","p2","d")) ter<-ter[!is.na(ter)] res<-1 for(i in ter) res<-append(res,seq(nter[i]+1, nter[i+1])) res } ng1<-nall1*(nall1+1)/2 ng2<-nall2*(nall2+1)/2 gam<-nall1*nall1*nall2*nall2 gen<-ng1*ng2 mod<-nall1+nall2-1+ (nall1-1)*(nall1-1)+(nall2-1)*(nall2-1)+ (nall1-1)*(nall2-1) Geno<-matrix(1:gen, nrow=ng1, byrow=TRUE) rownames(Geno)<-mkgeno(nall1) colnames(Geno)<-mkgeno(nall2) S<-array(0, dim=c(nall1,nall1,nall2,nall2)) X<-matrix(0, nrow=gam, ncol=mod) colnames(X)<-c("Int",paste("a1",2:nall1,sep="."), paste("a2",2:nall2,sep="."), paste("p1",outer(2:nall1,2:nall1,paste,sep=""),sep="."), paste("p2",outer(2:nall2,2:nall2,paste,sep=""),sep="."), paste("d",outer(2:nall1,2:nall2,paste,sep=""),sep=".")) k<-0 for(i in 1:nall1) for(i2 in 1:i) for(j in 1:nall2) for(j2 in 1:j) { k<-k+1 S[i,i2,j,j2]<-S[i,i2,j2,j]<-S[i2,i,j,j2]<-S[i2,i,j2,j]<-k } S<-matrix(S, nrow=nall1*nall1, ncol=nall2*nall2) rownames(S)<-outer(1:nall1,1:nall1,paste,sep="/") colnames(S)<-outer(1:nall2,1:nall2,paste,sep="/") k<-0 hap<-rep(" ",gam) for(i in 1:nall1) for(i2 in 1:nall1) for(j in 1:nall2) for(j2 in 1:nall2) { k<-k+1 a1<-rep(0,nall1) a1[i]<-a1[i]+1 a1[i2]<-a1[i2]+1 p1<-matrix(0, nrow=nall1, ncol=nall1) p1[i,i2]<-p1[i,i2]+1 a2<-rep(0,nall2) a2[j]<-a2[j]+1 a2[j2]<-a2[j2]+1 p2<-matrix(0, nrow=nall2, ncol=nall2) p2[j,j2]<-p2[j,j2]+1 d<-matrix(0, nrow=nall1, ncol=nall2) d[i, j2]<-d[i, j2]+1 d[i2, j]<-d[i2, j]+1 X[k,]<-c(1,a1[-1],a2[-1],c(p1[-1,-1]), c(p2[-1,-1]), c(d[-1,-1])) hap[k]<-paste(i,j,";",i2,j2,sep="") } rownames(X)<-hap s<-c(t(S)) names(s)<-hap list(Geno=Geno, s=s, X=X[,ld.terms(nall1,nall2,formula)]) }
match.arg.ext = function(arg, choices, base = 1, several.ok = FALSE, numeric = FALSE, ignore.case = FALSE) { if (missing(choices)) { formal.args <- formals(sys.function(sys.parent())) choices <- eval(formal.args[[deparse(substitute(arg))]]) } if (is.character(arg)) { if (ignore.case) { choices = tolower(choices) arg = tolower(arg) } res = match.arg(arg=arg,choices=choices,several.ok=several.ok) if (numeric) res = which(choices %in% res) + base - 1 } else if (is.numeric(arg)) { if ( (arg<base) | (arg>(length(choices)+base-1)) ) stop("'arg' should be between ",base," and ",length(choices)+base-1) if (numeric) { res = arg } else { res = choices[arg - base + 1] } } else stop("'arg' should be numeric or character") return(res) }
context("setting environmental data") test_that("Hmsc returns error both XData and X are given", { expect_error(Hmsc(Y=matrix(1:10),XData=data.frame(x1 = 1:10),X=matrix(1:10)),"only one of XData and X arguments must be specified") }) test_that("Hmsc returns error when XData is not a data frame or list of data frames", { expect_error(Hmsc(Y=matrix(1:10),XData=matrix(1:10)), NULL) expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),XData=list(s1 = 1:10, s2 = 1:10)),"each element of X list must be a data.frame") }) test_that("Hmsc returns error when X is not a matrix", { expect_error(Hmsc(Y=matrix(1:10),X=data.frame(x1 = 1:10)),"X must be a matrix or a list of matrix objects") expect_error(Hmsc(Y=matrix(1:10),X=list(s1 = data.frame(x1 = 1:10))),"each element of X list must be a matrix") }) test_that("Hmsc returns error when X or XData contains NA values", { expect_error(Hmsc(Y=matrix(1:10),X=list(x1 = matrix(c(1:9,NA)))),"NA values are not allowed in X") expect_error(Hmsc(Y=matrix(1:10),XData=list(x1 = data.frame(c(1:9,NA)))),"NA values are not allowed in XData") expect_error(Hmsc(Y=matrix(1:10),XData=data.frame(c(1:9,NA))),"NA values are not allowed in XData") expect_error(Hmsc(Y=matrix(1:10),X=matrix(c(1:9,NA))),"NA values are not allowed in X") }) test_that("Hmsc returns error when the size of X or XData is not correct", { expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=list(s1 = matrix(1:10))),"the length of X list argument must be equal to the number of species") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),XData=list(s1=data.frame(x1 = 1:10))),"the length of XData list argument must be equal to the number of species") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),XData=list(s1=data.frame(x1 = 1:10),s2=data.frame(x1=1:9))),"for each element of XData list the number of rows must be equal to the number of sampling units") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),XData=data.frame(x1 = 1:9)),"the number of rows in XData must be equal to the number of sampling units") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=list(s1=matrix(1:18),s2=matrix(1:10))),"for each element of X list the number of rows must be equal to the number of sampling units") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:9)),"the number of rows in X must be equal to the number of sampling units") }) test_that("Hmsc returns error when X contains more than one intercept column", { Xmat = matrix(rep(1,20),nrow=10,ncol=2) colnames(Xmat) = c("Intercept","(Intercept)") Xdat = data.frame(Xmat) XdatList = list(s1=Xdat,s2=Xdat) expect_error(Hmsc(Y=matrix(1:10),X=Xmat), "only one column of X matrix can be named Intercept or (Intercept)",fixed=TRUE) expect_error(Hmsc(Y=matrix(1:10),XData=Xdat),"only one column of X matrix can be named Intercept or (Intercept)",fixed=TRUE) expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),XData=XdatList),"only one column of X matrix can be named Intercept or (Intercept)",fixed=TRUE) }) test_that("Hmsc returns error when intercept column does not only contain 1",{ Xmat = matrix(rep(1,20),nrow=10,ncol=2) Xdat = data.frame(Xmat) XdatList = list(s1=Xdat,s2=Xdat) }) context("setting trait data") test_that("Hmsc returns error when the wrong combination of Tr, TrData and TrFormula is given", { expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10), TrData = data.frame(t1 = 1:2), Tr = matrix(1:2)),"only one of TrData and Tr arguments can be specified") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10), TrData = data.frame(t1 = 1:2)),"TrFormula argument must be specified if TrData is provided") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10), Tr = data.frame(t1 = 1:2)),"Tr must be a matrix") }) test_that("Hmsc returns error when trait data does not have the right size",{ expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10), Tr = matrix(1:3)),"the number of rows in Tr should be equal to number of columns in Y") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10), TrData = data.frame(t1=1:3),TrFormula = ~t1),"the number of rows in TrData should be equal to number of columns in Y") }) test_that("Hmsc returns error when there are unknowns in trait data",{ expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10), Tr = matrix(c(1,NA))),"Tr parameter must not contain any NA values") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10), TrData = data.frame(t1=c(1,NA)),TrFormula = ~t1),"TrData parameter must not contain any NA values") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10), TrData =data.frame(t1 = 1:2), TrFormula = ~ t2),"object 't2' not found") }) test_that("Hmsc returns error when the intercept columns for Tr is not correctly specified",{ Traits = matrix(rep(1,4),nrow=2,ncol=2) colnames(Traits) = c("Intercept","(Intercept)") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),Tr = Traits),"only one column of Tr matrix can be named Intercept or (Intercept)",fixed=TRUE) expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),TrData = data.frame(Traits),TrFormula = ~ Intercept + (Intercept)),"only one column of Tr matrix can be named Intercept or (Intercept)",fixed=TRUE) Traits = matrix(rep(0,2),nrow=2,ncol=1) colnames(Traits) = c("Intercept") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),Tr = Traits),"intercept column in Tr matrix must be a column of ones") }) test_that("Hmsc returns error when intercept is specified in TrFormula",{ Traits = matrix(rep(1,4),nrow=2,ncol=2) colnames(Traits) = c("Intercept","x1") expect_error(Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),TrData = data.frame(Traits),TrFormula = ~ Intercept + x1),"only one column of Tr matrix can be named Intercept or (Intercept)",fixed=TRUE) Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),TrData = data.frame(Traits),TrFormula = ~ x1) }) context("setting phylogenetic data") test_that("Hmsc returns error when both a tree and a correlation matrix are specified",{ expect_error(Hmsc(Y=matrix(1:10),X=matrix(1:10),phyloTree=TD$phy, C=TD$C), "only one of phyloTree and C arguments can be specified") }) test_that("Hmsc returns error when ",{ expect_error(Hmsc(Y=matrix(1:10),X=matrix(1:10), C=TD$C), "the size of square matrix C must be equal to number of species") }) context("setting latent structure") test_that("Hmsc returns error when studydesign does not match random levels",{ expect_error(Hmsc(Y=matrix(1:10),X=matrix(1:10),ranLevels = TD$rL1), "studyDesign is empty, but ranLevels is not") expect_error(Hmsc(Y=matrix(1:10),X=matrix(1:10),ranLevels = TD$rL1,studyDesign = data.frame(sample = as.factor(1:10))), "studyDesign must contain named columns corresponding to all levels listed in ranLevelsUsed") expect_error(Hmsc(Y=matrix(1:10),X=matrix(1:10),ranLevels = list(unit =TD$rL1),studyDesign = data.frame(sample = as.factor(1:10))), "studyDesign must contain named columns corresponding to all levels listed in ranLevelsUsed") Hmsc(Y=matrix(1:10),X=matrix(1:10),ranLevels = list(sample =TD$rL1),studyDesign = data.frame(sample = as.factor(1:10))) }) test_that("Hmsc returns error when studydesign does not match Y",{ expect_error(Hmsc(Y=matrix(1:10),X=matrix(1:10),ranLevels = list(unit =TD$rL1),studyDesign = data.frame(sample = as.factor(1:9))), "the number of rows in studyDesign must be equal to number of rows in Y") }) context("scaling") test_that("Scaling for Y",{ m = Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10)) expect_equivalent(colMeans(m$YScaled),c(11/2,31/2)) expect_equivalent(colMeans(m$Y),c(11/2,31/2)) m = Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),YScale = TRUE) expect_equivalent(colMeans(m$YScaled),c(0,0)) expect_equivalent(colMeans(m$Y),c(11/2,31/2)) expect_equivalent(round(m$YScalePar),matrix(c(6,3,16,3),ncol=2)) m = Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),YScale = TRUE,distr = c('normal','probit')) expect_equivalent(colMeans(m$YScaled),c(0,31/2)) expect_equivalent(colMeans(m$Y),c(11/2,31/2)) expect_equivalent(round(m$YScalePar),matrix(c(6,3,0,1),ncol=2)) m = Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),YScale = TRUE,distr = c('poisson','lognormal poisson')) expect_equivalent(colMeans(m$YScaled),c(11/2,31/2)) expect_equivalent(colMeans(m$Y),c(11/2,31/2)) }) test_that("Scaling for X",{ m = Hmsc(Y=matrix(1:10),X=matrix(1:10)) expect_equivalent(colMeans(m$X),5.5) expect_equivalent(round(colMeans(m$XScaled)),1) expect_equivalent(round(m$XScalePar),c(0,7)) m = Hmsc(Y=matrix(1:10),X=matrix(1:10),XScale = FALSE) expect_equivalent(colMeans(m$X),5.5) expect_equivalent(colMeans(m$XScaled),5.5) m = Hmsc(Y=matrix(1:10),XData=data.frame(x1=1:10),XFormula = ~x1) expect_equivalent(colMeans(m$X),c(1,5.5)) expect_equivalent(colMeans(m$XScaled),c(1,0)) expect_equivalent(round(m$XScalePar),matrix(c(0,1,6,3),ncol=2)) }) test_that("Scaling for traits",{ Traits = matrix(c(1,1,2,23),nrow=2,ncol=2) colnames(Traits) = c("Intercept","x1") m = Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),TrData = data.frame(Traits),TrFormula = ~ x1) expect_equivalent(m$Tr,Traits) expect_equivalent(round(colMeans(m$TrScaled)),c(1,0)) expect_equivalent(round(m$TrScalePar),matrix(c(0,1,12,15),ncol=2)) m = Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),Tr = Traits) expect_equivalent(m$Tr,Traits) expect_equivalent(round(colMeans(m$TrScaled)),c(1,0)) expect_equivalent(round(m$TrScalePar),matrix(c(0,1,12,15),ncol=2)) m = Hmsc(Y=matrix(1:20,nrow=10,ncol=2),X=matrix(1:10),Tr = Traits,TrScale = FALSE) expect_equivalent(m$TrScaled,Traits) }) context("Setting data model") test_that("Family set correctly",{ m = Hmsc(Y=matrix(1:20,nrow=5,ncol=4),X=matrix(1:5),distr=c('probit','poisson','normal','lognormal poisson')) expect_equivalent(m$distr[,1],c(2,3,1,3)) }) test_that("Variance set correctly",{ m = Hmsc(Y=matrix(1:20,nrow=5,ncol=4),X=matrix(1:5),distr=c('probit','poisson','normal','lognormal poisson')) expect_equivalent(m$distr[,2],c(0,0,1,1)) }) test_that("Hmsc returns error when unsuitable data model is given",{ expect_error(Hmsc(Y=matrix(1:10,nrow=5,ncol=2),X=matrix(1:5),distr=c('probit','logit')), "'arg' should be one of \"normal\", \"probit\", \"poisson\", \"lognormal poisson\"") }) context("setting variable selection") test_that("Hmsc is set correctly",{ m = Hmsc(Y=TD$Y, XData=TD$X, XFormula=~x1+x2, TrData=TD$Tr, TrFormula = ~T1 + T2, phyloTree=TD$phy, ranLevels=list("sample"=TD$rL2,"plot"=TD$rL1), studyDesign = TD$studyDesign, distr=c("probit")) expect_equal(m$Y,TD$m$Y) expect_equal(m$YScaled,TD$m$YScaled) expect_equal(m$XData,TD$m$XData) expect_equal(m$XScaled,TD$m$XScaled) expect_equal(m$C,TD$m$C) expect_equal(m$Pi,TD$m$Pi) expect_equal(m$studyDesign,TD$m$studyDesign) expect_equal(m$TrData,TD$m$TrData) expect_equal(m$ranLevels,TD$m$ranLevels) expect_equal(m$ranLevelsUsed,TD$m$ranLevelsUsed) expect_equal(m$dfPi,TD$m$dfPi) expect_equal(m$phyloTree,TD$m$phyloTree) expect_equal(m$TrScaled,TD$m$TrScaled) })
source("ESEUR_config.r") library("pwr") plot_layout(2, 1) pal_col=rainbow(3) ff=read.csv(paste0(ESEUR_dir, "faults/firefox.csv.xz"), as.is=TRUE) fit_fails=function(fail_count, ff_data, is_quasi) { y=cbind(fail_count, 10-fail_count) b_mod=glm(y ~ (cpu_speed+memory+disk_size)^3, data=ff_data, family=ifelse(is_quasi, quasibinomial, binomial)) t=stepAIC(b_mod, trace=0) return(t) } power.test=function(base_prob, p_diff, num_runs = 10, req_pow = NULL) { t = pwr.2p.test(h = ES.h(base_prob+p_diff, base_prob), n = num_runs, sig.level = 0.05, power = req_pow) return(t) } base_p=c(0.5, 2.5, 5.0) plot(1, type="n", xaxs="i", yaxs="i", xlim=range((1:45)/100), ylim=c(0, 0.9), xlab="Difference", ylab="Power\n") for (ip in 1:3) { pow=sapply(1:45, function(X) power.test(base_p[ip]/10, X/100, 10)$power) lines((1:45)/100, pow, col=pal_col[ip]) pow=sapply(1:45, function(X) power.test(base_p[ip]/10, X/100, 50)$power) lines((1:45)/100, pow, col=pal_col[ip]) } text(0.20, 0.7, "50") text(0.25, 0.3, "10") title("Power of experiment", cex.main=1.1) legend("bottomright", legend=as.character(base_p/10), bty="n", title="Before", fill=pal_col, cex=1.3) plot(1, type="n", log="y", xaxs="i", yaxs="i", xlim=range((1:45)/100), ylim=c(10, 1000), xlab="Difference", ylab="Runs\n") for (ip in 1:3) { pow=sapply(1:45, function(X) power.test(base_p[ip]/10, X/100, NULL, 0.8)$n) lines((1:45)/100, pow, ,ylim=c(10, 1000), col=pal_col[ip]) } title("Runs needed", cex.main=1.1) legend("bottomleft", legend=as.character(base_p/10), bty="n", title="Before", fill=pal_col, cex=1.3)
library(rethinking) library(animation) polar2screen <- function( dist, origin, theta ) { vx <- cos(theta) * dist; vy <- sin(theta) * dist; c( origin[1]+vx , origin[2]+vy ); } screen2polar <- function( origin, dest ) { vx <- dest[1] - origin[1]; vy <- dest[2] - origin[2]; dist <- sqrt( vx*vx + vy*vy ); theta <- asin( abs(vy) / dist ); if( vx < 0 && vy < 0 ) theta <- pi + theta; if( vx < 0 && vy > 0 ) theta <- pi - theta; if( vx > 0 && vy < 0 ) theta <- 2*pi - theta; if( vx < 0 && vy==0 ) theta <- pi; if( vx==0 && vy < 0 ) theta <- 3*pi/2; c( theta, dist ); } point.polar <- function(dist,theta,origin=c(0,0),draw=TRUE,...) { pt <- polar2screen(dist,origin,theta) if ( draw==TRUE ) points( pt[1] , pt[2] , ... ) invisible( pt ) } line.polar <- function(dist,theta,origin=c(0,0),...) { pt1 <- polar2screen(dist[1],origin,theta) pt2 <- polar2screen(dist[2],origin,theta) lines( c(pt1[1],pt2[1]), c(pt1[2],pt2[2]) , ... ) } line.short <- function(x,y,short=0.1,...) { pt1 <- c(x[1],y[1]) pt2 <- c(x[2],y[2]) theta <- screen2polar( pt1 , pt2 )[1] dist <- screen2polar( pt1 , pt2 )[2] q1 <- polar2screen( short , pt1 , theta ) q2 <- polar2screen( dist-short , pt1 , theta ) lines( c(q1[1],q2[1]) , c(q1[2],q2[2]) , ... ) } wedge <- function(dist,start,end,pt,hedge=0.1,alpha,lwd=2,draw=TRUE,hit,...) { n <- length(pt) points.save <- matrix(NA,nrow=n,ncol=2) span <- abs(end-start) span2 <- span*(1 - 2*hedge) origin <- start + span*hedge gap <- span2/n theta <- origin + gap/2 border <- rep("black",length(pt)) if ( !missing(hit) ) border <- ifelse( hit==1 , 2 , 1 ) if ( !missing(alpha) ) { pt <- sapply( 1:length(pt) , function(i) col.alpha(pt[i],alpha[i]) ) border <- sapply( 1:length(pt) , function(i) col.alpha(border[i],alpha[i]) ) } for ( i in 1:n ) { points.save[i,] <- point.polar( dist , theta , pch=21 , lwd=lwd , bg=pt[i] , col=border[i] , draw=draw, ... ) theta <- theta + gap } points.save } point_on_line <- function( x , y , p ) { X <- x[1]*(1-p) + x[2]*p Y <- y[1]*(1-p) + y[2]*p c(X,Y) } garden <- function( arc , possibilities , data , alpha.fade = 0.25 , col.open=2 , col.closed=1 , hedge=0.1 , hedge1=0 , newplot=TRUE , plot.origin=FALSE , cex=1.5 , lwd=2 , adj.cex , adj.lwd , lwd.dat=1 , ring_dist , progression , prog_dat , xlim=c(-1,1) , ylim=c(-1,1) , thresh=0.2 , ... ) { poss.cols <- ifelse( possibilities==1 , rangi2 , "white" ) if ( missing(adj.cex) ) adj.cex=rep(1,length(data)) if ( missing(adj.lwd) ) adj.lwd=rep(1,length(data)) if ( newplot==TRUE ) { par(mgp = c(1.5, 0.5, 0), mar = c(1, 1, 1, 1) + 0.1, tck = -0.02) plot( NULL , xlim=xlim , ylim=ylim , bty="n" , xaxt="n" , yaxt="n" , xlab="" , ylab="" ) } if ( plot.origin==TRUE ) point.polar( 0 , 0 , pch=16 ) N <- length(data) n_poss <- length(possibilities) goldrat <- 1.618 if ( missing(ring_dist) ) { ring_dist <- rep(1,N) if ( N>1 ) for ( i in 2:N ) ring_dist[i] <- ring_dist[i-1]*goldrat ring_dist <- ring_dist / sum(ring_dist) } if ( length(alpha.fade)==1 ) alpha.fade <- rep(alpha.fade,N) if ( length(col.open)==1 ) col.open <- rep(col.open,N) if ( length(col.closed)==1 ) col.closed <- rep(col.closed,N) draw_wedge <- function(r,hit_prior,arc2,hedge=0.1,hedge1=0,lines_to) { hit <- hit_prior * ifelse( possibilities==data[r] , 1 , 0 ) alpha <- ifelse( hit==1 , 1 , alpha.fade[r] ) the_col <- ifelse( hit==1 , col.open , col.closed ) hedge_use <- ifelse( r==1 , hedge1 , hedge ) do_draw <- TRUE if ( progression[r] < 1 ) do_draw <- FALSE rd <- 0 for ( rdi in 1:r ) rd <- rd + ring_dist[rdi] if ( prog_dat[r] == 1 ) pts <- wedge( rd , arc2[1] , arc2[2] , poss.cols , hedge=hedge_use , alpha=alpha , cex=cex*adj.cex[r] , lwd=lwd*adj.lwd[r] , draw=do_draw , hit=hit ) else pts <- wedge( rd , arc2[1] , arc2[2] , poss.cols , hedge=hedge_use , alpha=alpha , cex=cex*adj.cex[r] , lwd=lwd*adj.lwd[r] , draw=do_draw ) if ( N > r ) { span <- abs( arc2[1] - arc2[2] ) / n_poss for ( j in 1:n_poss ) { new_arc <- c( arc2[1]+span*(j-1) , arc2[1]+span*j ) pts2 <- draw_wedge(r+1,hit[j],new_arc,hedge,lines_to=pts[j,]) } } if ( !missing(lines_to) ) { for ( k in 1:n_poss ) { if ( progression[r] > thresh ) { ptend <- point_on_line( c(lines_to[1],pts[k,1]) , c(lines_to[2],pts[k,2]) , progression[r] ) line.short( c(lines_to[1],ptend[1]) , c(lines_to[2],ptend[2]) , lwd=lwd*adj.lwd[r] , short=0.04 , col=col.closed[1] ) } if ( prog_dat[r] > thresh && hit[k]==1 ) { ptend <- point_on_line( c(lines_to[1],pts[k,1]) , c(lines_to[2],pts[k,2]) , prog_dat[r] ) line.short( c(lines_to[1],ptend[1]) , c(lines_to[2],ptend[2]) , lwd=lwd*adj.lwd[r]+lwd.dat , short=0.04 , col=col.open[1] ) } } } return(pts) } pts1 <- draw_wedge(1,1,arc=arc,hedge=hedge,lines_to=c(0,0)) invisible(pts1) } goldrat <- 1.618 ring_dist <- rep(1,3) for ( i in 2:3 ) ring_dist[i] <- ring_dist[i-1]*goldrat ring_dist <- ring_dist / sum(ring_dist) dat <- c(1,0,1) dat <- c(-1,-1,-1) arc <- c( 0 , pi ) garden( arc = arc, possibilities = c(0,0,0,1), data = dat, hedge = 0.05, ring_dist=ring_dist, alpha.fade=1, progression=c(1,1,0.1) ) ani.record(reset = TRUE) poss <- c(0,1,1,1) nsteps <- 20 prog_seq <- seq( from=0 , to=1 , length=nsteps ) prog <- c(0,0,0) for ( rr in 1:3 ) { for ( p in prog_seq ) { prog[rr] <- p garden( arc = arc, possibilities = poss, data = c(1,0,0), hedge = 0.05, ring_dist=ring_dist, alpha.fade=1, progression=prog, prog_dat=c(0,0,0), ylim=c(0,1), thresh=0.3 ) ani.record() } } oopts = ani.options(interval = 0.1) ani.replay() prog_seq <- seq( from=0 , to=1 , length=nsteps ) prog <- c(1,1,1) prog2 <- c(0,0,0) for ( rr in 1:3 ) { for ( p in prog_seq ) { prog2[rr] <- p garden( arc = arc, possibilities = poss, data = c(1,0,1), hedge = 0.05, ring_dist=ring_dist, alpha.fade=1, progression=prog, prog_dat=prog2, ylim=c(0,1), lwd.dat=2, thresh=0.3 ) ani.record() } } oopts = ani.options(interval = 0.1) ani.replay()
library(FRAPO) library(fPortfolio) library(PerformanceAnalytics) data(EuroStoxx50) pr <- timeSeries(EuroStoxx50, charvec = rownames(EuroStoxx50)) NAssets <- ncol(pr) RDP <- na.omit((pr / lag(pr, k = 1) - 1) * 100) to <- time(RDP)[208:nrow(RDP)] from <- rep(start(RDP), length(to)) DDbound <- 0.10 DDalpha <- 0.95 mvspec <- portfolioSpec() BoxC <- c("minsumW[1:NAssets] = 0.0", "maxsumW[1:NAssets] = 1.0") wMV <- wCD <- matrix(NA, ncol = ncol(RDP), nrow = length(to)) for(i in 1:length(to)){ series <- window(RDP, start = from[i], end = to[i]) prices <- window(pr, start = from[i], end = to[i]) mv <- minvariancePortfolio(data = series, spec = mvspec, constraints = BoxC) cd <- PCDaR(prices, alpha = DDalpha, bound = DDbound, softBudget = TRUE) wMV[i, ] <- c(getWeights(mv)) wCD[i, ] <- Weights(cd) } wMV <- rbind(rep(NA, ncol(RDP)), wMV[-nrow(wMV), ]) wMVL1 <- timeSeries(wMV, charvec = to) colnames(wMVL1) <- colnames(RDP) wCD <- rbind(rep(NA, ncol(RDP)), wCD[-nrow(wCD), ]) wCDL1 <- timeSeries(wCD, charvec = to) colnames(wCDL1) <- colnames(RDP) RDPback <- RDP[to,] colnames(RDPback) <- colnames(RDP)
HAuni <- function(Sum,K,H) { H/(H + K)*Sum } Auni <- function(Sum,K,H) { K/(H + K)*Sum } H2Abi <- function(Sum, K1, K2, H) { (H^2/(H^2+K1*H+K1*K2))*Sum } HAbi <- function(Sum, K1, K2, H) { (K1*H/(H^2+K1*H+K1*K2))*Sum } Abi <- function(Sum, K1, K2, H) { (K1*K2/(H^2+K1*H+K1*K2))*Sum } H3Atri <- function(Sum, K1, K2, K3, H) { (H^3/(H^3 + H^2*K1 + H*K1*K2 + K1*K2*K3))*Sum } H2Atri <- function(Sum, K1, K2, K3, H) { (K1*H^2/(H^3 + H^2*K1 + H*K1*K2 + K1*K2*K3))*Sum } HAtri <- function(Sum, K1, K2, K3, H) { (K1*K2*H/(H^3 + H^2*K1 + H*K1*K2 + K1*K2*K3))*Sum } Atri <- function(Sum, K1, K2, K3, H) { (K1*K2*K3/(H^3 + H^2*K1 + H*K1*K2 + K1*K2*K3))*Sum } calcTA <- function(aquaenv, H) { with (aquaenv, { HCO3 <- HAbi (SumCO2, K_CO2, K_HCO3, H) CO3 <- Abi (SumCO2, K_CO2, K_HCO3, H) return(HCO3 + 2*CO3 + calcTAMinor(aquaenv, H)) }) } calcTAMinor <- function(aquaenv, H) { with (aquaenv, { BOH4 <- Auni (SumBOH3, K_BOH3, H) OH <- K_W / H HPO4 <- HAtri (SumH3PO4, K_H3PO4, K_H2PO4, K_HPO4, H) PO4 <- Atri (SumH3PO4, K_H3PO4, K_H2PO4, K_HPO4, H) SiOOH3 <- HAbi (SumSiOH4, K_SiOH4, K_SiOOH3, H) HS <- HAbi (SumH2S, K_H2S, K_HS, H) S2min <- Abi (SumH2S, K_H2S, K_HS, H) NH3 <- Auni (SumNH4, K_NH4, H) HSO4 <- HAbi (SumH2SO4, K_H2SO4, K_HSO4, H) HF <- HAuni (SumHF, K_HF, H) H3PO4 <- H3Atri(SumH3PO4, K_H3PO4, K_H2PO4, K_HPO4, H) return(BOH4 + OH + HPO4 + 2*PO4 + SiOOH3 + HS + 2*S2min + NH3 - H - HSO4 - HF - H3PO4) }) } calcH_TA <- function(aquaenv, TA) { H <- c() aquaenv[["TA"]] <- TA for (z in 1:length(aquaenv)) { aquaenvtemp <- as.list(as.data.frame(aquaenv)[z,]) with (aquaenvtemp, { Htemp <- Technicals$Hstart; i <- 1 while ((abs(calcTA(aquaenvtemp, Htemp) - aquaenvtemp$TA) > Technicals$Haccur) && (i <= Technicals$maxiter)) { a <- TA - calcTAMinor(aquaenvtemp, Htemp) b <- K_CO2*(a-SumCO2) c <- K_CO2*K_HCO3*(a-2*SumCO2) Htemp <- (-b + sqrt(b^2 - (4*a*c)))/(2*a); i <- i + 1 if (Htemp<0) {break} } if ((Htemp < 0) || (i > Technicals$maxiter)) { Htemp <- uniroot(function(x){calcTA(aquaenvtemp, x) - aquaenvtemp$TA}, Technicals$unirootinterval, tol=Technicals$uniroottol, maxiter=Technicals$maxiter)$root } H <<- c(H, Htemp) }) } return(H) } calcH_CO2 <- function(aquaenv, CO2) { H <- c() aquaenv[["CO2"]] <- CO2 for (x in 1:length(aquaenv)) { aquaenvtemp <- as.list(as.data.frame(aquaenv)[x,]) with (aquaenvtemp, { a <- CO2 - SumCO2 b <- K_CO2*CO2 c <- K_CO2*K_HCO3*CO2 H <<- c(H, ((-b-sqrt(b^2 - 4*a*c))/(2*a))) }) } return(H) } calcSumCO2_pH_CO2 <- function(aquaenv, pH, CO2) { SumCO2 <- c() aquaenv[["pH"]] <- pH aquaenv[["CO2"]] <- CO2 for (x in 1:length(aquaenv)) { aquaenvtemp <- as.list(as.data.frame(aquaenv)[x,]) with (aquaenvtemp, { H <- 10^{-pH} denom <- H^2/(H^2 + H*K_CO2 + K_CO2*K_HCO3) SumCO2 <<- c(SumCO2, (CO2/denom)) }) } return(SumCO2) } calcSumCO2_pH_TA <- function(aquaenv, pH, TA) { SumCO2 <- c() aquaenv[["pH"]] <- pH aquaenv[["TA"]] <- TA for (x in 1:length(aquaenv)) { aquaenvtemp <- as.list(as.data.frame(aquaenv)[x,]) with (aquaenvtemp, { H <- 10^{-pH} c2 <- (H*K_CO2) /(H^2 + H*K_CO2 + K_CO2*K_HCO3) c3 <- (K_CO2*K_HCO3)/(H^2 + H*K_CO2 + K_CO2*K_HCO3) numer <- TA - calcTAMinor(aquaenvtemp, H) denom <- c2 + 2*c3 SumCO2 <<- c(SumCO2, (numer/denom)) }) } return(SumCO2) } calcSumCO2_TA_CO2 <- function(aquaenv, TA, CO2) { SumCO2 <- c() aquaenv[["TA"]] <- TA aquaenv[["CO2"]] <- CO2 for (i in 1:length(aquaenv)) { aquaenvtemp <- as.list(as.data.frame(aquaenv)[i,]) with (aquaenvtemp, { f <- function(x) { c1 <- (x^2) /(x^2 + x*K_CO2 + K_CO2*K_HCO3) c2 <- (x*K_CO2) /(x^2 + x*K_CO2 + K_CO2*K_HCO3) c3 <- (K_CO2*K_HCO3)/(x^2 + x*K_CO2 + K_CO2*K_HCO3) return(TA - ((c2+2*c3)*(CO2/c1) + calcTAMinor(aquaenvtemp, x))) } H <- uniroot(f, Technicals$unirootinterval, tol=Technicals$uniroottol, maxiter=Technicals$maxiter)$root attr(aquaenvtemp, "class") <- "aquaenv" SumCO2 <<- c(SumCO2, calcSumCO2_pH_TA(aquaenvtemp, -log10(H), TA)) }) } return(SumCO2) }
smoothCPPP <- function(y, B, tau, lambdashort_glatt, lambdashort_orig, DD, NB, glatterms, smoothtype) { .Call('_expectreg_smoothCPPP', PACKAGE = 'expectreg', y, B, tau, lambdashort_glatt, lambdashort_orig, DD, NB, glatterms, smoothtype) }
time_group("Printing graphs to the screen") time_that("Print large graphs without attributes", replications = 10, init = { library(igraph); set.seed(42) }, reinit = { g <- make_lattice(c(1000, 1000)) }, { print(g) }) time_that("Summarize large graphs without attributes", replications = 10, init = { library(igraph); set.seed(42) }, reinit = { g <- make_lattice(c(1000, 1000)) }, { summary(g) }) time_that("Print large graphs with large graph attributes", replications = 10, init = { library(igraph); set.seed(42) }, reinit = { g <- make_lattice(c(1000, 1000)); g <- set_graph_attr(g, "foo", 1:1000000) }, { print(g) }) time_that("Summarize large graphs with large graph attributes", replications = 10, init = { library(igraph); set.seed(42) }, reinit = { g <- make_lattice(c(1000, 1000)); g <- set_graph_attr(g, "foo", 1:1000000) }, { summary(g) }) time_that("Print large graphs with vertex attributes", replications = 10, init = { library(igraph); set.seed(42) }, reinit = { g <- make_lattice(c(1000, 1000)); g <- set_vertex_attr(g, 'foo', value = as.character(seq_len(gorder(g)))) }, { print(g) }) time_that("Summarize large graphs with vertex attributes", replications = 10, init = { library(igraph); set.seed(42) }, reinit = { g <- make_lattice(c(1000, 1000)); g <- set_vertex_attr(g, 'foo', value = as.character(seq_len(gorder(g)))) }, { print(g) }) time_that("Print large graphs with edge attributes", replications = 10, init = { library(igraph); set.seed(42) }, reinit = { g <- make_lattice(c(1000, 1000)); g <- set_edge_attr(g, 'foo', value = as.character(seq_len(gsize(g)))) }, { print(g) }) time_that("Summarize large graphs with edge attributes", replications = 10, init = { library(igraph); set.seed(42) }, reinit = { g <- make_lattice(c(1000, 1000)); g <- set_edge_attr(g, 'foo', value = as.character(seq_len(gsize(g)))) }, { print(g) })
pattern_plots<-function(data, meta, low=NA,high=NA, Condition="Condition_1"){ if((is.na(low))||(is.na(high))){stop("You need to supply low an d high parameters for plotting")} meta<-utils::read.csv(meta, header=TRUE) meta<-meta[,c("Sample_ID",Condition)] colnames(meta)<-c("Sample_ID","Condition") data_temp<-data rownames(data_temp)<-data$"Symbol" data_temp<-data_temp[meta$"Sample_ID"] data_temp$"Mean"<-apply(data_temp,1,mean) data_temp<-data_temp[data_temp$"Mean">=low,] data_temp<-data_temp[data_temp$"Mean"<=high,] symbol_vals<-rownames(data_temp) data<-data[which(data$"Symbol"%in%symbol_vals),] data_transform<-reshape2::melt(data,"Symbol") data_transform<-merge(data_transform,meta,by.x="variable",by.y="Sample_ID") temp_df_mean <-stats::aggregate(.~ Condition+Symbol, data_transform, mean, na.rm = TRUE) df<-data_transform df_mean <- dplyr::group_by(df, Condition) df_mean <-dplyr::ungroup(dplyr::summarize(df_mean, average = mean(value))) Condition<-df[,"Condition"] value<-df$"value" Condition_mean<-as.data.frame(df_mean)[,"Condition"] average<-df_mean$"average" p<- ggplot2::ggplot(df, ggplot2::aes(Condition,value, fill=Condition)) +ggplot2::geom_violin(trim=FALSE, alpha=0.5)+ggplot2::geom_point(data = df_mean, mapping = ggplot2::aes(x = Condition_mean, y = average),color="red") +ggplot2::geom_line(data = df_mean, mapping = aes(x = Condition_mean, y = average,group=1))+viridis::scale_fill_viridis(discrete = TRUE) methods::show(p) qual_col_pals <- RColorBrewer::brewer.pal.info[which(RColorBrewer::brewer.pal.info$"category"%in%c('qual')),] col_vector <- unlist(mapply(RColorBrewer::brewer.pal, qual_col_pals$"maxcolors", rownames(qual_col_pals))) colors <- col_vector[1:nlevels(as.factor(data$"Symbol"))] plot_ly(data = temp_df_mean, x = ~Condition, y = ~value, color = ~Symbol, colors = colors, type="bar") }
panel_st <- function(data, agg = data$config$st$aggregation$active, agg_met = data$config$st$aggregation$method) { if (agg) { if (agg_met == "static") { panel <- panel_st_agg_static(data) } else if (agg_met == "dynamic") { panel <- panel_st_agg_dynamic(data) } else if (agg_met == "nodes") { panel <- panel_st_agg_node(data) } } else { panel <- panel_st_raw(data = data, runtime = FALSE) } return(panel) } panel_st_runtime <- function(data, agg = data$config$starpu$aggregation$active) { if (agg) { panel <- panel_st_agg_static(data, runtime = TRUE, step = data$config$starpu$aggregation$step) } else { panel <- panel_st_raw(data = data, runtime = TRUE) } return(panel) } panel_st_raw <- function(data = NULL, ST.Outliers = data$config$st$outliers, base_size = data$config$base_size, expand_x = data$config$expand, expand_y = data$config$st$expand, selected_nodes = data$config$selected_nodes, labels = data$config$st$labels, alpha = data$config$st$alpha, idleness = data$config$st$idleness, taskdeps = data$config$st$tasks$active, tasklist = data$config$st$tasks$list, levels = data$config$st$tasks$levels, makespan = data$config$st$makespan, abe = data$config$st$abe$active, pmtoolbounds = data$config$pmtool$bounds$active, cpb = data$config$st$cpb, cpb_mpi = data$config$st$cpb_mpi$active, legend = data$config$st$legend, x_start = data$config$limits$start, x_end = data$config$limits$end, runtime = FALSE) { if (is.null(data)) stop("data provided to state_chart is NULL") if (is.null(expand_x) || !is.numeric(expand_x)) { expand_x <- 0.05 } if (is.null(x_start) || (!is.na(x_start) && !is.numeric(x_start))) { x_start <- NA } if (is.null(x_end) || (!is.na(x_end) && !is.numeric(x_end))) { x_end <- NA } if (is.null(legend) || !is.logical(legend)) { legend <- TRUE } gow <- ggplot() + default_theme(base_size, expand_x) App <- data$Application if (!is.null(selected_nodes)) { data$Y %>% separate(.data$Parent, into = c("Node"), remove = FALSE, extra = "drop", fill = "right") %>% filter(.data$Node %in% selected_nodes) %>% arrange(.data$Position) %>% mutate(New = cumsum(lag(.data$Height, default = 0))) %>% select(.data$Parent, .data$New) -> new_y if (runtime) { data$Starpu <- data$Starpu %>% left_join(new_y, by = c("ResourceId" = "Parent")) %>% mutate(Position = if_else(is.na(.data$New), -3, .data$New)) %>% select(-.data$New) } else { data$Application <- data$Application %>% left_join(new_y, by = c("ResourceId" = "Parent")) %>% mutate(Position = if_else(is.na(.data$New), -3, .data$New)) %>% mutate(Height = if_else(is.na(.data$New), 0, .data$Height)) %>% select(-.data$New) App <- data$Application %>% filter(.data$Position >= 0) } } if (runtime) { gow <- gow + geom_states(data$Starpu, ST.Outliers, runtime, data$Colors, labels = labels, expand = expand_y, rect_outline = data$config$st$rect_outline, alpha_value = alpha, Y = data$Y ) } else { gow <- gow + geom_states(App, ST.Outliers, runtime, data$Colors, labels = labels, expand = expand_y, rect_outline = data$config$st$rect_outline, alpha_value = alpha, Y = data$Y ) } if (!runtime) { if (idleness) gow <- gow + geom_idleness(data) if (taskdeps) { if(!is.null(data$Last)){ tasksel <- last(data, tasklist) }else{ tasksel <- gaps_backward_deps( data = data, tasks = tasklist, levels = levels ) } if (nrow(tasksel) > 0 & !is.null(selected_nodes)) { tasksel <- tasksel %>% left_join(new_y, by = c("ResourceId" = "Parent")) %>% mutate(Position = if_else(is.na(.data$New), -3, .data$New)) %>% select(-.data$New) } gow <- gow + geom_path_highlight(tasksel) } if (cpb || cpb_mpi) gow <- gow + geom_cpb(data) if (abe) gow <- gow + geom_abe(data) if (pmtoolbounds) gow <- gow + geom_pmtool_bounds(data) if (makespan) gow <- gow + geom_makespan(App, bsize = base_size) } if (!legend) { gow <- gow + theme(legend.position = "none") } gow <- gow + coord_cartesian(xlim = c(x_start, x_end), ylim = c(0, NA)) return(gow) } geom_states <- function(dfw = NULL, Show.Outliers = FALSE, StarPU = FALSE, Colors = NULL, labels = "1", expand = 0.05, rect_outline = FALSE, alpha_value = 0.5, Y = NULL) { if (is.null(dfw)) stop("data is NULL when given to geom_states") if (is.null(Colors)) stop("data is NULL when given to geom_states") ret <- list() if (StarPU) { ret[[length(ret) + 1]] <- scale_fill_manual(values = starpu_colors()) } else { ret[[length(ret) + 1]] <- scale_fill_manual(values = extract_colors(dfw, Colors)) } yconfm <- yconf(dfw, labels, Y) ret[[length(ret) + 1]] <- scale_y_continuous( breaks = yconfm$Position + (yconfm$Height / 3), labels = unique(as.character(yconfm$ResourceId)), expand = c(expand, 0) ) ret[[length(ret) + 1]] <- ylab(ifelse(StarPU, "StarPU Workers", "Application Workers")) ret[[length(ret) + 1]] <- geom_rect( data = dfw, aes( fill = .data$Value, xmin = .data$Start, xmax = .data$End, ymin = .data$Position, ymax = .data$Position + .data$Height - 0.2 ), color = ifelse(rect_outline, "black", NA), alpha = ifelse(Show.Outliers && !StarPU, alpha_value, 1.0) ) if (Show.Outliers && !StarPU) { ret[[length(ret) + 1]] <- geom_rect( data = (dfw %>% filter(.data$Outlier == TRUE)), aes( fill = .data$Value, xmin = .data$Start, xmax = .data$End, ymin = .data$Position, ymax = .data$Position + .data$Height - 0.2 ), color = ifelse(rect_outline, "black", NA), alpha = 1 ) } return(ret) } geom_path_highlight <- function(paths = NULL) { if (is.null(paths)) return(list()) if ((paths %>% nrow()) == 0) { return(list()) } ret <- list() ret[[length(ret) + 1]] <- geom_rect( data = paths, size = 1, aes( color = .data$Path, xmin = .data$Start, xmax = .data$End, ymin = .data$Position, ymax = .data$Position + .data$Height - 0.2 ), alpha = 0 ) paths %>% select(.data$JobId, .data$Start, .data$End, .data$Position, .data$Height) %>% unique() -> x1 paths %>% select(.data$Path, .data$JobId, .data$Dependent) %>% left_join(x1, by = c("JobId" = "JobId")) %>% left_join(x1, by = c("Dependent" = "JobId")) %>% na.omit() -> pathlines ret[[length(ret) + 1]] <- geom_segment( data = pathlines, aes( x = .data$Start.x, xend = .data$End.y, y = .data$Position.x + (.data$Height.x / 2), yend = .data$Position.y + (.data$Height.y / 2), color = .data$Path ) ) return(ret) } panel_st_agg_node <- function(data, x_start = data$config$limits$start, x_end = data$config$limits$end, step = data$config$st$aggregation$step, legend = data$config$st$legend) { if (is.null(step) || !is.numeric(step)) { if (is.null(data$config$global_agg_step)) { agg_step <- 100 } else { agg_step <- data$config$global_agg_step } } else { agg_step <- step } if (is.null(x_start) || (!is.na(x_start) && !is.numeric(x_start))) { x_start <- NA } if (is.null(x_end) || (!is.na(x_end) && !is.numeric(x_end))) { x_end <- NA } if (is.null(legend) || !is.logical(legend)) { legend <- TRUE } step <- 100 df <- time_aggregation_prep(data$Application) df <- time_aggregation_do(df %>% group_by(.data$Node, .data$ResourceId, .data$ResourceType, .data$Task), step) df.spatial <- node_spatial_aggregation(df) space.within <- 0.01 space.between <- 0.0 space <- space.between df.spatial %>% mutate(Node = as.integer(as.character(.data$Node))) %>% select(.data$Node, .data$ResourceType) %>% unique() %>% mutate(ResourceType.Height = 1) %>% arrange(-.data$Node, desc(.data$ResourceType)) %>% mutate(ResourceType.Position = cumsum(lag(.data$ResourceType.Height, default = 0) + space) - space) %>% as.data.frame() -> df.node_position df.spatial %>% mutate(Start = .data$Slice, End = .data$Start + .data$Duration) %>% mutate(Node = as.integer(as.character(.data$Node))) %>% left_join(df.node_position, by = c("Node", "ResourceType")) %>% group_by(.data$Node, .data$ResourceType, .data$Slice) %>% arrange(-.data$Node) %>% mutate(Position = .data$ResourceType.Position + cumsum(.data$Activity) - .data$Activity) %>% mutate(Height = 1) %>% ungroup() -> df.spatial_prep hl_per_node_ABE(data$Application) %>% mutate(Node = as.integer(as.character(.data$Node))) %>% select(-.data$MinPosition, -.data$MaxPosition) %>% left_join(df.node_position %>% select(.data$Node, .data$ResourceType.Position, .data$ResourceType.Height) %>% unique(), by = c("Node")) %>% select(.data$Node, .data$Result, .data$ResourceType.Position, .data$ResourceType.Height) %>% arrange(-.data$Node) %>% group_by(.data$Node, .data$Result) %>% summarize( Node.Position = min(.data$ResourceType.Position), Node.Height = sum(.data$ResourceType.Height) ) %>% ungroup() %>% mutate(MinPosition = .data$Node.Position) %>% mutate(MaxPosition = .data$Node.Position + .data$Node.Height + space.between) -> df.pernodeABE df.node_position %>% group_by(.data$Node, .data$ResourceType) %>% summarize(Node.Position = min(.data$ResourceType.Position) + sum(.data$ResourceType.Height) - 0.5) %>% mutate(Label = paste(.data$ResourceType, .data$Node)) -> yconf new_state_plot <- df.spatial_prep %>% ggplot() + default_theme(data$config$base_size, data$config$expand) + xlab("Time [ms]") + scale_fill_manual(values = extract_colors(df.spatial_prep %>% rename(Value = .data$Task), data$Colors)) + scale_y_continuous( breaks = yconf$Node.Position, labels = yconf$Label, expand = c(data$config$expand, 0) ) + ylab("Node Occupation") + geom_rect(aes( fill = .data$Task, xmin = .data$Start, xmax = .data$End, ymin = .data$Position, ymax = .data$Position + .data$Activity ), alpha = .5) if (data$config$st$makespan) new_state_plot <- new_state_plot + geom_makespan(df.spatial_prep, bsize = data$config$base_size) if (data$config$st$abe$active) { new_state_plot <- new_state_plot + geom_abe_internal(df.pernodeABE, base_size = data$config$base_size, abesize = data$config$st$abe$size, bar_color = data$config$st$abe$bar_color, text = data$config$st$abe$text, label = data$config$st$abe$label ) } if (data$config$st$cpb || data$config$st$cpb_mpi$active) { cpbs <- hl_global_cpb(data) } if (data$config$st$cpb) { new_state_plot <- new_state_plot + geom_cpb_internal(df.spatial_prep, cpbs$CPB, "CPB:", bsize = data$config$base_size) } if (data$config$st$cpb_mpi$active) { if (is.na(data$config$st$cpb_mpi$tile_size)) { starvz_warn("CPB_MPI is active and st$cpb_mpi$tile_size is NULL") } if (is.na(data$config$st$cpb_mpi$bandwidth)) { starvz_warn("CPB_MPI is active and st$cpb_mpi$bandwidth is NULL") } tile_size <- data$config$st$cpb_mpi$tile_size bandwidth <- data$config$st$cpb_mpi$bandwidth cpbmpit <- cpbs$CPB + cpbs$NMPI * (tile_size * tile_size * 8) / bandwidth / 1000000 new_state_plot <- new_state_plot + geom_cpb_internal(df.spatial_prep, cpbs$CPBMPI, "CPB-MPI:", bsize = data$config$base_size) if (data$config$st$cpb_mpi$theoretical) { new_state_plot <- new_state_plot + geom_cpb_internal(df.spatial_prep, cpbmpit, "CPB-MPI*:", bsize = data$config$base_size) } } new_state_plot <- new_state_plot + coord_cartesian(xlim = c(x_start, x_end), ylim = c(0, NA)) + guides(fill = guide_legend(nrow = 2)) if (!legend) { new_state_plot <- new_state_plot + theme(legend.position = "none") } return(new_state_plot) }
unselectCurrentCluster<-function ( df, dbg=FALSE ) { if (dbg) cat('unselectCurrentCluster called\n') if (dbg) printVar(df$currentCluster) if (!is.null(df$clusters) && length(df$clusters)>=df$currentCluster && !is.null(df$clusters[[df$currentCluster]]$indices)) { df<-pushSelectionHistory(df,dbg) currentClusterIdxInH<-max(df$clusters[[df$currentCluster]]$indices) currentClusterLeafs<-computeMemberIndices(df$h,currentClusterIdxInH) df$leafColorIdxs[currentClusterLeafs]<-0 df$unselectedBranches$indices<- c(df$unselectedBranches$indices,df$clusters[[df$currentCluster]]$indices) df$unselectedBranches$branches<- rbind(df$unselectedBranches$branches,df$clusters[[df$currentCluster]]$branches) df$clusters[[df$currentCluster]]$indices<-NULL df$clusters[[df$currentCluster]]$branches<-NULL selectionChanged<-TRUE } else { selectionChanged<-FALSE } return(list(df=df,selectionChanged=selectionChanged)) }
head(APMultipleChoice) answer <- c(85, 90, 79, 78, 68) chisq.test(answer)
STF = function(sp, time, endTime = delta(time)) { new("STF", ST(sp, time, endTime)) } STFDF = function(sp, time, data, endTime = delta(time)) { new("STFDF", STF(sp, time, endTime), data = data) } myCoordinates = function(x) { stopifnot(is(x, "Spatial")) if (is(x, "SpatialLines")) do.call(rbind, lapply(coordinates(x), function(x) x[[1]][1,])) else coordinates(x) } setMethod("coordinates", "STF", function(obj) { mc = myCoordinates(obj@sp) m = matrix(apply(mc, 2, rep, nrow(obj@time)), ncol = ncol(mc)) dimnames(m)[[2]] = coordnames(obj@sp) m }) index.STF = function(x, ...) { rep(index(x@time), each = length(x@sp)) } index.STFDF = index.STF as.data.frame.STF = function(x, row.names = NULL, ...) { if (is.null(row.names(x@sp))) row.names(x@sp) = 1:nrow(x@sp) timedata = apply(x@time, 2, rep, each = length(x@sp)) ret = data.frame(as.data.frame(coordinates(x)), sp.ID = rep(factor(row.names(x@sp), levels = row.names(x@sp)), nrow(x@time)), time = index(x), endTime = rep(x@endTime, each= length(x@sp)), timedata, row.names = row.names, ...) if ("data" %in% slotNames(x@sp)) { x = apply(x@sp@data, 2, rep, nrow(x@time)) row.names(x) = NULL data.frame(ret, x) } else ret } setAs("STF", "data.frame", function(from) as.data.frame.STF(from)) as.data.frame.STFDF = function(x, row.names = NULL, ...) { f = as.data.frame(as(x, "STF")) data.frame(f, x@data, row.names = row.names, ...) } setAs("STFDF", "data.frame", function(from) as.data.frame.STFDF(from)) unstack.STFDF = function(x, form, which = 1,...) { if(missing(form)) form = as.formula(paste(names(x@data)[which], "sp.ID", sep = "~")) ret = unstack(as(x, "data.frame"), form, ...) rownames(ret) = make.unique(as.character(index(x@time))) ret } as.STFDF.xts = function(from) { nc = seq_along(from@data) ret = do.call(cbind, lapply(nc, function(i) { ix = index(from@time) if (is(ix, "Date")) xts(unstack(from[,,i, drop = FALSE]), ix) else xts(unstack(from[,,i, drop = FALSE]), ix, tzone = tzone(from@time)) } ) ) if (length(nc) > 1) names(ret) = as.vector(t(outer(names(from@data), row.names(from@sp), paste, sep = "."))) else names(ret) = row.names(from@sp) ret } setAs("STFDF", "xts", as.STFDF.xts) as.zoo.STFDF = function(x,...) as.zoo(as(x, "xts")) setAs("STFDF", "zoo", function(from) as.zoo.STFDF(from)) as.array.STFDF = function(x, ...) { a = array(NA, dim(x)) for (i in 1:dim(x)[3]) a[,,i] = t(as(x[,, i, drop = FALSE], "xts")) dimnames(a) = list(NULL, make.names(index(x@time)), names(x@data)) a } subs.STF_and_STFDF <- function(x, i, j, ... , drop = is(x, "STFDF")) { nr = dim(x)[1] nc = dim(x)[2] n.args = nargs() dots = list(...) missing.i = missing(i) missing.j = missing(j) if (length(dots) > 0) { missing.k = FALSE k = dots[[1]] } else missing.k = TRUE if (missing.i && missing.j && missing.k) return(x) if (!missing.k && is(x, "STFDF")) { x@data = x@data[ , k, drop = FALSE] if (missing.j && n.args == 2) return(x) } if (!missing.i && is(i, "STF")) { j = which(!is.na(timeMatch(x,i))) i = which(!is.na(over(x@sp, geometry(i@sp)))) missing.j = FALSE } matrix.i <- FALSE if (!is.character(row.names(x@sp))) row.names(x@sp) <- as.character(row.names(x@sp)) if (missing.i) s = 1:length(x@sp) else { if (is.matrix(i)) { stopifnot(ncol(i)==2) s <- unique(i[,1]) missing.j <- FALSE matrix.i <- TRUE } else { if (is(i, "Spatial")) { s = which(!is.na(over(x@sp, geometry(i)))) } else if (is.logical(i)) { i = rep(i, length.out = length(x@sp)) s = which(i) } else if (is.character(i)) { s = match(i, row.names(x@sp), nomatch = FALSE) } else s = i x@sp = x@sp[s,] } } if (missing.j) t = 1:nrow(x@time) else { if (matrix.i) t <- unique(i[,2]) else { if (is.logical(j)) j = which(j) nct = ncol(x@time) x@time = cbind(x@time, 1:nrow(x@time)) x@time = x@time[j] t = as.vector(x@time[, nct+1]) x@time = x@time[,-(nct+1)] x@endTime = x@endTime[t] } } if (matrix.i) { ind <- i[order(i[,2]),] ind[,1] <- match(ind[,1], s) ind[,2] <- match(ind[,2], t) reOrder <- numeric(nrow(ind)) for (ts in unique(ind[,2])) { selRow <- which(ind[,2] == ts) reOrder[selRow] <- selRow[order(ind[selRow,1])] } ind[,1] <- ind[reOrder,1] if (is(x, "STFDF")) { sel <- (i[,2]-1)*nr+i[,1] x <- STSDF(x@sp[s,], x@time[t,], x@data[sel,,drop=FALSE], ind, x@endTime[t]) } else x <- STS(x@sp[s,], x@time[t,], ind, x@endTime[t]) } else if (is(x, "STFDF")) { df = x@data x@data = data.frame(lapply(x@data, function(v) as.vector(matrix(v, nr, nc)[s,t]))) for (i in which(sapply(df, is.factor))) x@data[,i] = factor(x@data[,i], levels = levels(df[,i])) } if (drop) { if (length(s) == 1 && all(s > 0)) { if (length(t) == 1) x = x@data[1,] else { ix = index(x@time) xs = cbind(x@data, as.data.frame(x@time)) if (is(ix, "Date")) x = xts(xs, ix) else x = xts(xs, ix, tzone = tzone(x@time)) } } else { if (length(t) == 1) { if(is(x, "STFDF")) x = addAttrToGeom(x@sp, x@data, match.ID = FALSE) else x = x@sp } } } x } setMethod("[", "STFDF", subs.STF_and_STFDF) setMethod("[", "STF", subs.STF_and_STFDF) na.omit.STFDF <- function(object, drop=TRUE, ...){ data <- na.omit(object@data) omit <- attr(data, "na.action") n <- length(object@sp) s <- unique((omit-1) %% n + 1) t <- unique((omit-1) %/% n + 1) if (drop && (length(s)==n || length(t)==nrow(object@time))) return(NA) else return(object[(1:n)[!(1:n) %in% s], (1:nrow(object@time))[!1:nrow(object@time) %in% t], drop=drop]) } setMethod("addAttrToGeom", signature(x = "STF", y = "data.frame"), function(x, y, match.ID, ...) new("STFDF", x, data = y) ) length.STF = function(x) { prod(dim(x)[1:2]) } length.STFDF = function(x) { prod(dim(x)[1:2]) } setMethod("geometry", "STFDF", function(obj) as(obj, "STF")) nbMult = function(nb, st, addT = TRUE, addST = FALSE) { stopifnot(is(st, "STF")) stopifnot(is(nb, "nb")) stopifnot(length(nb) == length(st@sp)) n = dim(st)[2] if (n <= 1) return(nb) L = length(nb) ret = list() FN = function(x,i,j,L) { ret = as.integer(x + i * L) if (addT) { if (addST) now = c(ret, j + i * L) else now = j + i * L if (i > 0) ret = c(ret, now - L) if (i < (n-1)) ret = c(ret, now + L) } sort(ret) } for (i in 0:(n-1)) { app = lapply(1:L, function(j) FN(nb[[j]], i, j, L)) ret = append(ret, app) } attributes(ret) = attributes(nb) attr(ret, "region.id") = as.character(1:length(ret)) ret }
converged <- function(fit, step="init step", stop=FALSE){ if (fit$convergence==1) { ret <- FALSE if (stop) stop(paste("iteration limit 'maxit' have been reached in", step, sep=" ")) } else if (fit$convergence==10) { ret <- FALSE if (stop) stop(paste("Degenerancy of Nelder_Mead simplex", step, sep=" ")) } else { ret <- TRUE } ret }
context("checkEnvironment") test_that("checkEnvironment", { myobj = new.env() expect_succ_all(Environment, myobj) myobj = list() expect_fail_all(Environment, myobj) ee = new.env(parent = emptyenv()) ee$yyy = 1 ee$zzz = 1 expect_false(testEnvironment(NULL)) expect_false(testEnvironment(list())) expect_true(testEnvironment(ee)) expect_false(testEnvironment(ee, contains = "xxx")) expect_true(testEnvironment(ee, contains = "yyy")) expect_true(testEnvironment(ee, contains = c("yyy", "zzz"))) expect_error(assertEnvironment(list()), "environment") expect_error(assertEnvironment(ee, "xxx"), "with name") expect_error(assertEnvironment(letters), "character") })
context("Test of tdcc()") test_that("Result is correct", { temp <- rbind(1:20, c(1,3,2,4,16,10,19,12,18,17, 20,5,14,7,8,11,6,15,9,13)) res <- tdcc(temp, pearson = TRUE)["pearson"] expect_equal(res, 0.730271, tolerance = 1e-7, check.attributes = FALSE) })
forest.default <- function(x, vi, sei, ci.lb, ci.ub, annotate=TRUE, showweights=FALSE, header=FALSE, xlim, alim, olim, ylim, at, steps=5, level=95, refline=0, digits=2L, width, xlab, slab, ilab, ilab.xpos, ilab.pos, order, subset, transf, atransf, targs, rows, efac=1, pch, psize, plim=c(0.5,1.5), col, lty, fonts, cex, cex.lab, cex.axis, ...) { mstyle <- .get.mstyle("crayon" %in% .packages()) na.act <- getOption("na.action") if (!is.element(na.act, c("na.omit", "na.exclude", "na.fail", "na.pass"))) stop(mstyle$stop("Unknown 'na.action' specified under options().")) if (missing(transf)) transf <- FALSE if (missing(atransf)) atransf <- FALSE transf.char <- deparse(transf) atransf.char <- deparse(atransf) if (is.function(transf) && is.function(atransf)) stop(mstyle$stop("Use either 'transf' or 'atransf' to specify a transformation (not both).")) yi <- x if (missing(targs)) targs <- NULL if (missing(at)) at <- NULL if (missing(ilab)) ilab <- NULL if (missing(ilab.xpos)) ilab.xpos <- NULL if (missing(ilab.pos)) ilab.pos <- NULL if (missing(subset)) subset <- NULL if (missing(order)) order <- NULL if (missing(pch)) pch <- 15 if (missing(psize)) psize <- NULL if (missing(col)) col <- NULL if (missing(cex)) cex <- NULL if (missing(cex.lab)) cex.lab <- NULL if (missing(cex.axis)) cex.axis <- NULL level <- .level(level) if (length(digits) == 1L) digits <- c(digits,digits) ddd <- list(...) if (missing(lty)) { lty <- c("solid", "solid") } else { if (length(lty) == 1L) lty <- c(lty, "solid") } if (length(efac) == 1L) efac <- rep(efac, 2L) if (is.null(ddd$annosym)) { annosym <- c(" [", ", ", "]", "-") } else { annosym <- ddd$annosym if (length(annosym) == 3L) annosym <- c(annosym, "-") if (length(annosym) != 4L) stop(mstyle$stop("Argument 'annosym' must be a vector of length 3 (or 4).")) } if (is.null(attr(yi, "measure"))) { measure <- "GEN" } else { measure <- attr(yi, "measure") } estlab <- .setlab(measure, transf.char, atransf.char, gentype=3, short=TRUE) if (is.expression(estlab)) { header.right <- str2lang(paste0("bold(", estlab, " * '", annosym[1], "' * '", 100*(1-level), "% CI'", " * '", annosym[3], "')")) } else { header.right <- paste0(estlab, annosym[1], 100*(1-level), "% CI", annosym[3]) } if (is.logical(header)) { if (header) { header.left <- "Study" } else { header.left <- NULL header.right <- NULL } } else { if (!is.character(header)) stop(mstyle$stop("Argument 'header' must either be a logical or character vector.")) if (length(header) == 1L) { header.left <- header } else { header.left <- header[1] header.right <- header[2] } } if (!annotate) header.right <- NULL if (is.null(ddd$decreasing)) { decreasing <- FALSE } else { decreasing <- ddd$decreasing } if (!is.null(ddd$clim)) olim <- ddd$clim if (is.null(ddd$rowadj)) { rowadj <- rep(0,3) } else { rowadj <- ddd$rowadj if (length(rowadj) == 1L) rowadj <- c(rowadj,rowadj,0) if (length(rowadj) == 2L) rowadj <- c(rowadj,0) } if (is.null(ddd$top)) { top <- 3 } else { top <- ddd$top } lplot <- function(..., textpos, decreasing, clim, rowadj, annosym, top) plot(...) labline <- function(..., textpos, decreasing, clim, rowadj, annosym, top) abline(...) lsegments <- function(..., textpos, decreasing, clim, rowadj, annosym, top) segments(...) laxis <- function(..., textpos, decreasing, clim, rowadj, annosym, top) axis(...) lmtext <- function(..., textpos, decreasing, clim, rowadj, annosym, top) mtext(...) lpolygon <- function(..., textpos, decreasing, clim, rowadj, annosym, top) polygon(...) ltext <- function(..., textpos, decreasing, clim, rowadj, annosym, top) text(...) lpoints <- function(..., textpos, decreasing, clim, rowadj, annosym, top) points(...) if (!missing(vi) && is.function(vi)) stop(mstyle$stop("Cannot find variable specified for 'vi' argument."), call.=FALSE) if (hasArg(ci.lb) && hasArg(ci.ub)) { if (length(ci.lb) != length(ci.ub)) stop(mstyle$stop("Length of 'ci.lb' and 'ci.ub' is not the same.")) if (missing(vi) && missing(sei)) { vi <- ((ci.ub - ci.lb) / (2*qnorm(level/2, lower.tail=FALSE)))^2 } else { if (missing(vi)) vi <- sei^2 } if (length(ci.lb) != length(vi)) stop(mstyle$stop("Length of 'vi' (or 'sei') does not match length of ('ci.lb', 'ci.ub') pairs.")) } else { if (missing(vi)) { if (missing(sei)) { stop(mstyle$stop("Must specify either 'vi', 'sei', or ('ci.lb', 'ci.ub') pairs.")) } else { vi <- sei^2 } } if (length(yi) != length(vi)) stop(mstyle$stop("Length of 'vi' (or 'sei') does not match length of 'yi'.")) ci.lb <- yi - qnorm(level/2, lower.tail=FALSE) * sqrt(vi) ci.ub <- yi + qnorm(level/2, lower.tail=FALSE) * sqrt(vi) } k <- length(yi) if (length(vi) != k) stop(mstyle$stop("Length of 'yi' does not match the length of 'vi', 'sei', or the ('ci.lb', 'ci.ub') pairs.")) if (missing(slab)) { if (!is.null(attr(yi, "slab")) && length(attr(yi, "slab")) == k) { slab <- attr(yi, "slab") } else { slab <- paste("Study", seq_len(k)) } } else { if (length(slab) == 1L && is.na(slab)) slab <- rep("", k) } if (length(slab) != k) stop(mstyle$stop(paste0("Length of the 'slab' argument (", length(slab), ") does not correspond to the number of outcomes (", k, ")."))) if (!is.null(ilab)) { if (is.null(dim(ilab))) ilab <- cbind(ilab) if (nrow(ilab) != k) stop(mstyle$stop(paste0("Length of the 'ilab' argument (", nrow(ilab), ") does not correspond to the number of outcomes (", k, ")."))) } if (length(pch) == 1L) pch <- rep(pch, k) if (length(pch) != k) stop(mstyle$stop(paste0("Length of the 'pch' argument (", length(pch), ") does not correspond to the number of outcomes (", k, ")."))) if (!is.null(psize)) { if (length(psize) == 1L) psize <- rep(psize, k) if (length(psize) != k) stop(mstyle$stop(paste0("Length of the 'psize' argument (", length(psize), ") does not correspond to the number of outcomes (", k, ")."))) } if (!is.null(col)) { if (length(col) == 1L) col <- rep(col, k) if (length(col) != k) stop(mstyle$stop(paste0("Length of the 'col' argument (", length(col), ") does not correspond to the number of outcomes (", k, ")."))) } else { col <- rep("black", k) } if (!is.null(subset)) { subset <- .setnafalse(subset, k=k) if (length(subset) != k) stop(mstyle$stop(paste0("Length of the 'subset' argument (", length(subset), ") does not correspond to the number of outcomes (", k, ")."))) } if (!is.null(order)) { if (length(order) == 1L) { order <- match.arg(order, c("obs", "yi", "prec", "vi")) if (order == "obs" || order == "yi") sort.vec <- order(yi) if (order == "prec" || order == "vi") sort.vec <- order(vi, yi) } else { if (length(order) != k) stop(mstyle$stop(paste0("Length of the 'order' argument (", length(order), ") does not correspond to the number of outcomes (", k, ")."))) if (grepl("^order\\(", deparse1(substitute(order)))) { sort.vec <- order } else { sort.vec <- order(order, decreasing=decreasing) } } yi <- yi[sort.vec] vi <- vi[sort.vec] ci.lb <- ci.lb[sort.vec] ci.ub <- ci.ub[sort.vec] slab <- slab[sort.vec] ilab <- ilab[sort.vec,,drop=FALSE] pch <- pch[sort.vec] psize <- psize[sort.vec] col <- col[sort.vec] subset <- subset[sort.vec] } if (!is.null(subset)) { yi <- yi[subset] vi <- vi[subset] ci.lb <- ci.lb[subset] ci.ub <- ci.ub[subset] slab <- slab[subset] ilab <- ilab[subset,,drop=FALSE] pch <- pch[subset] psize <- psize[subset] col <- col[subset] } k <- length(yi) if (missing(rows)) { rows <- k:1 } else { if (length(rows) == 1L) rows <- rows:(rows-k+1) } if (length(rows) != k) stop(mstyle$stop(paste0("Length of the 'rows' argument (", length(rows), ") does not correspond to the number of outcomes (", k, ")", ifelse(is.null(subset), ".", " after subsetting.")))) yi <- yi[k:1] vi <- vi[k:1] ci.lb <- ci.lb[k:1] ci.ub <- ci.ub[k:1] slab <- slab[k:1] ilab <- ilab[k:1,,drop=FALSE] pch <- pch[k:1] psize <- psize[k:1] col <- col[k:1] rows <- rows[k:1] yivi.na <- is.na(yi) | is.na(vi) if (any(yivi.na)) { not.na <- !yivi.na if (na.act == "na.omit") { yi <- yi[not.na] vi <- vi[not.na] ci.lb <- ci.lb[not.na] ci.ub <- ci.ub[not.na] slab <- slab[not.na] ilab <- ilab[not.na,,drop=FALSE] pch <- pch[not.na] psize <- psize[not.na] col <- col[not.na] rows.new <- rows rows.na <- rows[!not.na] for (j in seq_len(length(rows.na))) { rows.new[rows >= rows.na[j]] <- rows.new[rows >= rows.na[j]] - 1 } rows <- rows.new[not.na] } if (na.act == "na.fail") stop(mstyle$stop("Missing values in results.")) } k <- length(yi) if (is.function(transf)) { if (is.null(targs)) { yi <- sapply(yi, transf) ci.lb <- sapply(ci.lb, transf) ci.ub <- sapply(ci.ub, transf) } else { yi <- sapply(yi, transf, targs) ci.lb <- sapply(ci.lb, transf, targs) ci.ub <- sapply(ci.ub, transf, targs) } } tmp <- .psort(ci.lb, ci.ub) ci.lb <- tmp[,1] ci.ub <- tmp[,2] if (!missing(olim)) { if (length(olim) != 2L) stop(mstyle$stop("Argument 'olim' must be of length 2.")) olim <- sort(olim) yi[yi < olim[1]] <- olim[1] yi[yi > olim[2]] <- olim[2] ci.lb[ci.lb < olim[1]] <- olim[1] ci.ub[ci.ub > olim[2]] <- olim[2] } if (showweights) { weights <- 1/vi weights <- 100 * weights / sum(weights, na.rm=TRUE) } if (is.null(psize)) { if (any(vi <= 0, na.rm=TRUE)) { psize <- rep(1, k) } else { if (length(plim) < 2L) stop(mstyle$stop("Argument 'plim' must be of length 2 or 3.")) wi <- 1/sqrt(vi) if (!is.na(plim[1]) && !is.na(plim[2])) { rng <- max(wi, na.rm=TRUE) - min(wi, na.rm=TRUE) if (rng <= .Machine$double.eps^0.5) { psize <- rep(1, k) } else { psize <- (wi - min(wi, na.rm=TRUE)) / rng psize <- (psize * (plim[2] - plim[1])) + plim[1] } } if (is.na(plim[1]) && !is.na(plim[2])) { psize <- wi / max(wi, na.rm=TRUE) * plim[2] if (length(plim) == 3L) psize[psize <= plim[3]] <- plim[3] } if (!is.na(plim[1]) && is.na(plim[2])) { psize <- wi / min(wi, na.rm=TRUE) * plim[1] if (length(plim) == 3L) psize[psize >= plim[3]] <- plim[3] } if (all(is.na(psize))) psize <- rep(1, k) } } rng <- max(ci.ub, na.rm=TRUE) - min(ci.lb, na.rm=TRUE) if (annotate) { if (showweights) { plot.multp.l <- 2.00 plot.multp.r <- 2.00 } else { plot.multp.l <- 1.20 plot.multp.r <- 1.20 } } else { plot.multp.l <- 1.20 plot.multp.r <- 0.40 } if (missing(xlim)) { xlim <- c(min(ci.lb, na.rm=TRUE) - rng * plot.multp.l, max(ci.ub, na.rm=TRUE) + rng * plot.multp.r) xlim <- round(xlim, digits[[2]]) } alim.spec <- TRUE if (missing(alim)) { if (is.null(at)) { alim <- range(pretty(x=c(min(ci.lb, na.rm=TRUE), max(ci.ub, na.rm=TRUE)), n=steps-1)) alim.spec <- FALSE } else { alim <- range(at) } } alim <- sort(alim) xlim <- sort(xlim) if (xlim[1] > min(yi, na.rm=TRUE)) { xlim[1] <- min(yi, na.rm=TRUE) } if (xlim[2] < max(yi, na.rm=TRUE)) { xlim[2] <- max(yi, na.rm=TRUE) } if (alim[1] < xlim[1]) { xlim[1] <- alim[1] } if (alim[2] > xlim[2]) { xlim[2] <- alim[2] } if (is.null(ddd$textpos)) { textpos <- xlim } else { textpos <- ddd$textpos } if (length(textpos) != 2L) stop(mstyle$stop("Argument 'textpos' must be of length 2.")) if (is.na(textpos[1])) textpos[1] <- xlim[1] if (is.na(textpos[2])) textpos[2] <- xlim[2] if (missing(ylim)) { ylim <- c(0.5, max(rows, na.rm=TRUE)+top) } else { ylim <- sort(ylim) } if (is.null(at)) { if (alim.spec) { at <- seq(from=alim[1], to=alim[2], length.out=steps) } else { at <- pretty(x=c(min(ci.lb, na.rm=TRUE), max(ci.ub, na.rm=TRUE)), n=steps-1) } } else { at[at < alim[1]] <- alim[1] at[at > alim[2]] <- alim[2] at <- unique(at) } at.lab <- at if (is.function(atransf)) { if (is.null(targs)) { at.lab <- formatC(sapply(at.lab, atransf), digits=digits[[2]], format="f", drop0trailing=is.integer(digits[[2]])) } else { at.lab <- formatC(sapply(at.lab, atransf, targs), digits=digits[[2]], format="f", drop0trailing=is.integer(digits[[2]])) } } else { at.lab <- formatC(at.lab, digits=digits[[2]], format="f", drop0trailing=is.integer(digits[[2]])) } if (missing(fonts)) { fonts <- rep(par("family"), 3L) } else { if (length(fonts) == 1L) fonts <- rep(fonts, 3L) if (length(fonts) == 2L) fonts <- c(fonts, fonts[1]) } if (is.null(names(fonts))) fonts <- setNames(c(1L,1L,1L), nm=fonts) par(family=names(fonts)[1], font=fonts[1]) par.mar <- par("mar") par.mar.adj <- par.mar - c(0,3,1,1) par.mar.adj[par.mar.adj < 0] <- 0 par(mar = par.mar.adj) on.exit(par(mar = par.mar), add=TRUE) lplot(NA, NA, xlim=xlim, ylim=ylim, xlab="", ylab="", yaxt="n", xaxt="n", xaxs="i", bty="n", col="black", ...) labline(h=ylim[2]-(top-1), lty=lty[2], col="black", ...) par.usr <- par("usr") if (is.numeric(refline)) lsegments(refline, par.usr[3], refline, ylim[2]-(top-1), lty="dotted", col="black", ...) height <- par.usr[4] - par.usr[3] if (is.null(cex)) { lheight <- strheight("O") cex.adj <- ifelse(k * lheight > height * 0.8, height/(1.25 * k * lheight), 1) } if (is.null(cex)) { cex <- par("cex") * cex.adj } else { if (is.null(cex.lab)) cex.lab <- cex if (is.null(cex.axis)) cex.axis <- cex } if (is.null(cex.lab)) cex.lab <- par("cex") * cex.adj if (is.null(cex.axis)) cex.axis <- par("cex") * cex.adj laxis(side=1, at=at, labels=at.lab, cex.axis=cex.axis, col="black", ...) if (missing(xlab)) xlab <- .setlab(measure, transf.char, atransf.char, gentype=1) lmtext(xlab, side=1, at=min(at) + (max(at)-min(at))/2, line=par("mgp")[1]-0.5, cex=cex.lab, col="black", ...) for (i in seq_len(k)) { if (is.na(yi[i]) || is.na(ci.lb[i]) || is.na(ci.ub[i])) next if (ci.lb[i] >= alim[2]) { lpolygon(x=c(alim[2], alim[2]-(1.4/100)*cex*(xlim[2]-xlim[1]), alim[2]-(1.4/100)*cex*(xlim[2]-xlim[1]), alim[2]), y=c(rows[i], rows[i]+(height/150)*cex*efac[2], rows[i]-(height/150)*cex*efac[2], rows[i]), col=col[i], border=col[i], ...) next } if (ci.ub[i] <= alim[1]) { lpolygon(x=c(alim[1], alim[1]+(1.4/100)*cex*(xlim[2]-xlim[1]), alim[1]+(1.4/100)*cex*(xlim[2]-xlim[1]), alim[1]), y=c(rows[i], rows[i]+(height/150)*cex*efac[2], rows[i]-(height/150)*cex*efac[2], rows[i]), col=col[i], border=col[i], ...) next } lsegments(max(ci.lb[i], alim[1]), rows[i], min(ci.ub[i], alim[2]), rows[i], lty=lty[1], col=col[i], ...) if (ci.lb[i] >= alim[1]) { lsegments(ci.lb[i], rows[i]-(height/150)*cex*efac[1], ci.lb[i], rows[i]+(height/150)*cex*efac[1], col=col[i], ...) } else { lpolygon(x=c(alim[1], alim[1]+(1.4/100)*cex*(xlim[2]-xlim[1]), alim[1]+(1.4/100)*cex*(xlim[2]-xlim[1]), alim[1]), y=c(rows[i], rows[i]+(height/150)*cex*efac[2], rows[i]-(height/150)*cex*efac[2], rows[i]), col=col[i], border=col[i], ...) } if (ci.ub[i] <= alim[2]) { lsegments(ci.ub[i], rows[i]-(height/150)*cex*efac[1], ci.ub[i], rows[i]+(height/150)*cex*efac[1], col=col[i], ...) } else { lpolygon(x=c(alim[2], alim[2]-(1.4/100)*cex*(xlim[2]-xlim[1]), alim[2]-(1.4/100)*cex*(xlim[2]-xlim[1]), alim[2]), y=c(rows[i], rows[i]+(height/150)*cex*efac[2], rows[i]-(height/150)*cex*efac[2], rows[i]), col=col[i], border=col[i], ...) } } ltext(textpos[1], rows+rowadj[1], slab, pos=4, cex=cex, col=col, ...) if (!is.null(ilab)) { if (is.null(ilab.xpos)) stop(mstyle$stop("Must specify 'ilab.xpos' argument when adding information with 'ilab'.")) if (length(ilab.xpos) != ncol(ilab)) stop(mstyle$stop(paste0("Number of 'ilab' columns (", ncol(ilab), ") does not match length of 'ilab.xpos' argument (", length(ilab.xpos), ")."))) if (!is.null(ilab.pos) && length(ilab.pos) == 1L) ilab.pos <- rep(ilab.pos, ncol(ilab)) par(family=names(fonts)[3], font=fonts[3]) for (l in seq_len(ncol(ilab))) { ltext(ilab.xpos[l], rows+rowadj[3], ilab[,l], pos=ilab.pos[l], cex=cex, ...) } par(family=names(fonts)[1], font=fonts[1]) } if (annotate) { if (is.function(atransf)) { if (is.null(targs)) { annotext <- cbind(sapply(yi, atransf), sapply(ci.lb, atransf), sapply(ci.ub, atransf)) } else { annotext <- cbind(sapply(yi, atransf, targs), sapply(ci.lb, atransf, targs), sapply(ci.ub, atransf, targs)) } tmp <- .psort(annotext[,2:3]) annotext[,2:3] <- tmp } else { annotext <- cbind(yi, ci.lb, ci.ub) } if (showweights) annotext <- cbind(weights, annotext) annotext <- .fcf(annotext, digits[[1]]) annotext <- sub("-", annosym[4], annotext, fixed=TRUE) if (missing(width)) { width <- apply(annotext, 2, function(x) max(nchar(x))) } else { if (length(width) == 1L) width <- rep(width, ncol(annotext)) if (length(width) != ncol(annotext)) stop(mstyle$stop(paste0("Length of 'width' argument (", length(width), ") does not match the number of annotation columns (", ncol(annotext), ")."))) } for (j in seq_len(ncol(annotext))) { annotext[,j] <- formatC(annotext[,j], width=width[j]) } if (showweights) { annotext <- cbind(annotext[,1], "% ", annotext[,2], annosym[1], annotext[,3], annosym[2], annotext[,4], annosym[3]) } else { annotext <- cbind(annotext[,1], annosym[1], annotext[,2], annosym[2], annotext[,3], annosym[3]) } annotext <- apply(annotext, 1, paste, collapse="") annotext[grepl("NA", annotext, fixed=TRUE)] <- "" par(family=names(fonts)[2], font=fonts[2]) ltext(textpos[2], rows+rowadj[2], labels=annotext, pos=2, cex=cex, col=col, ...) par(family=names(fonts)[1], font=fonts[1]) } else { width <- NULL } for (i in seq_len(k)) { if (is.na(yi[i])) next if (yi[i] >= alim[1] && yi[i] <= alim[2]) lpoints(x=yi[i], y=rows[i], pch=pch[i], cex=cex*psize[i], col=col[i], ...) } ltext(textpos[1], ylim[2]-(top-1)+1, header.left, pos=4, font=2, cex=cex, ...) ltext(textpos[2], ylim[2]-(top-1)+1, header.right, pos=2, font=2, cex=cex, ...) res <- list(xlim=par("usr")[1:2], alim=alim, at=at, ylim=ylim, rows=rows, cex=cex, cex.lab=cex.lab, cex.axis=cex.axis, ilab.xpos=ilab.xpos, ilab.pos=ilab.pos, textpos=textpos) sav <- c(res, list(level=level, annotate=annotate, digits=digits[1], width=width, transf=transf, atransf=atransf, targs=targs, fonts=fonts[1:2], annosym=annosym)) try(assign("forest", sav, envir=.metafor), silent=TRUE) invisible(res) }
merge_states <- function(states, weight.matrix) { if (any(duplicated(states))) { stop("You must provide different states.") } weight.matrix[, states[1]] <- rowSums(weight.matrix[, states]) weight.matrix <- weight.matrix[, -states[-1]] invisible(weight.matrix) }
diameter <- function(g, dist=NULL){ if(class(g)[1]!="graphNEL"){ stop("'g' has to be a 'graphNEL' object") } stopifnot(.validateGraph(g)) if(is.null(dist)){ dist <- distanceMatrix(g) } return(max(dist)) }
"errors.cb" <- function(x) { ncb.od(x)$errors.cb }
context("Test ebreg function.") dcomplex <- function(x, n, p, a, b, log=TRUE) { o <- -x * (log(b) + a * log(p)) + log(x <= n) if(!log) o <- exp(o) return(o) } test_that('the right things are NULL when pred is FALSE', { n=100 p=200 r=0.5 sig2 <- 1 signal=1 beta <- rep(1, 5) s0 <- length(beta) d <- 1 log.f <- function(x) dcomplex(x, n, p, 0.05, 1) g <- function(i, j) r**(abs(i - j)) R <- outer(1:p, 1:p, g) e <- eigen(R) sqR <- e$vectors %*% diag(sqrt(e$values)) %*% t(e$vectors) X <- matrix(rnorm(n * p), nrow=n, ncol=p) %*% sqR X.new <- matrix(rnorm(p), nrow=1, ncol=p) %*% sqR y <- as.numeric(X[, 1:s0] %*% beta[1:s0]) + sqrt(sig2) * rnorm(n) y.new <- as.numeric(X.new[,1:s0] %*% beta[1:s0]) + sqrt(sig2) * rnorm(1) o1 <- ebreg(y, X, X.new, FALSE, alpha=.99, gam=.005, NULL, FALSE, igpar=c(0.01, 4), log.f, M=5000, sample.beta=TRUE) expect_true( is.null(o1$ynew)) expect_true( is.null(o1$ynew.mean)) expect_true( is.null(o1$PI)) }) test_that('the right things are NULL when sample.beta is FALSE', { n=100 p=200 r=0.5 signal=1 sig2 <- 1 beta <- rep(1, 5) s0 <- length(beta) d <- 1 log.f <- function(x) dcomplex(x, n, p, 0.05, 1) g <- function(i, j) r**(abs(i - j)) R <- outer(1:p, 1:p, g) e <- eigen(R) sqR <- e$vectors %*% diag(sqrt(e$values)) %*% t(e$vectors) X <- matrix(rnorm(n * p), nrow=n, ncol=p) %*% sqR X.new <- matrix(rnorm(p), nrow=1, ncol=p) %*% sqR y <- as.numeric(X[, 1:s0] %*% beta[1:s0]) + sqrt(sig2) * rnorm(n) y.new <- as.numeric(X.new[,1:s0] %*% beta[1:s0]) + sqrt(sig2) * rnorm(1) o1 <- ebreg(y, X, X.new, FALSE, alpha=.99, gam=.005, NULL, FALSE, igpar=c(0.01, 4), log.f, M=5000, pred=TRUE) expect_true( is.null(o1$beta)) expect_true( is.null(o1$beta.mean)) expect_true( is.null(o1$CI)) }) test_that('the right things are NULL when prior is TRUE', { n=100 p=200 r=0.5 sig2 <- 1 signal=1 beta <- rep(1, 5) s0 <- length(beta) d <- 1 log.f <- function(x) dcomplex(x, n, p, 0.05, 1) g <- function(i, j) r**(abs(i - j)) R <- outer(1:p, 1:p, g) e <- eigen(R) sqR <- e$vectors %*% diag(sqrt(e$values)) %*% t(e$vectors) X <- matrix(rnorm(n * p), nrow=n, ncol=p) %*% sqR X.new <- matrix(rnorm(p), nrow=1, ncol=p) %*% sqR y <- as.numeric(X[, 1:s0] %*% beta[1:s0]) + sqrt(sig2) * rnorm(n) y.new <- as.numeric(X.new[,1:s0] %*% beta[1:s0]) + sqrt(sig2) * rnorm(1) o1 <- ebreg(y, X, X.new, FALSE, alpha=.99, gam=.005, NULL, TRUE, igpar=c(0.01, 4), log.f, M=5000, pred=TRUE) expect_true( is.null(o1$sig2)) }) test_that('returned values have the right size', { n=100 p=200 r=0.5 M=5000 signal=1 sig2 <- 1 beta <- rep(1, 5) s0 <- length(beta) d <- 1 log.f <- function(x) dcomplex(x, n, p, 0.05, 1) g <- function(i, j) r**(abs(i - j)) R <- outer(1:p, 1:p, g) e <- eigen(R) sqR <- e$vectors %*% diag(sqrt(e$values)) %*% t(e$vectors) X <- matrix(rnorm(n * p), nrow=n, ncol=p) %*% sqR X.new <- matrix(rnorm(p), nrow=1, ncol=p) %*% sqR y <- as.numeric(X[, 1:s0] %*% beta[1:s0]) + sqrt(sig2) * rnorm(n) y.new <- as.numeric(X.new[,1:s0] %*% beta[1:s0]) + sqrt(sig2) * rnorm(1) o1 <- ebreg(y, X, X.new, FALSE, alpha=.99, gam=.005, NULL, TRUE, igpar=c(0.01, 4), log.f, M=M, pred=TRUE, sample.beta=TRUE) expect_true(ncol(o1$beta)==p) expect_true(nrow(o1$beta)==M) expect_true(length(o1$beta.mean)==p) })
samonCrossSummaryIM <- function(trt1,trt2, CIlevel=0.95) { Nalpha <- trt1$Nalpha alphaList <- trt1$alphaList NSamples <- trt1$NSamples n10 <- trt1$n0 n20 <- trt2$n0 TM1 <- trt1$TM[, c("alpha","IFEst","MIIFVar")] TM2 <- trt2$TM[, c("alpha","IFEst","MIIFVar")] TS1 <- trt1$TS[, c("alpha","Sample","IFEst","MIIFVar","mIFEst")] TS2 <- trt2$TS[, c("alpha","Sample","IFEst","MIIFVar","mIFEst")] colnames(TM1) <- c("alpha1","IFEst1","IFVar1") colnames(TM2) <- c("alpha2","IFEst2","IFVar2") colnames(TS1) <- c("alpha1","Sample","IFEst1","IFVar1","MIFEst1") colnames(TS2) <- c("alpha2","Sample","IFEst2","IFVar2","MIFEst2") for ( i1 in 1:Nalpha ) { for ( i2 in 1:Nalpha ) { alpha1 <- alphaList[i1] alpha2 <- alphaList[i2] TMA1 <- TM1[TM1[,"alpha1"] == alpha1,, drop=FALSE ] TMA2 <- TM2[TM2[,"alpha2"] == alpha2,, drop=FALSE ] TSA1 <- TS1[TS1[,"alpha1"] == alpha1,, drop=FALSE ] TSA2 <- TS2[TS2[,"alpha2"] == alpha2,, drop=FALSE ] TM <- cbind(TMA1,TMA2) TM[,"Difference"] <- TM[,"IFEst2" ] - TM[,"IFEst1" ] TM[,"DIFSE"] <- sqrt(TM[,"IFVar2"] + TM[,"IFVar1"]) TS <- merge(TSA1,TSA2,by=c("Sample")) TS[,"Difference"] <- TS[,"IFEst2" ] - TS[,"IFEst1" ] TS[,"DIFSE"] <- sqrt(TS[,"IFVar2"] + TS[,"IFVar1"]) TS[,"TIF"] <- (TS[,"Difference"] - TS[,"MIFEst2"] + TS[,"MIFEst1"]) / TS[,"DIFSE"] TS <- data.frame(TS) cicut <- CIlevel cicut1 <- (1 - CIlevel)/2 cicut2 <- 1 - cicut1 myq <- function(x) { x1 <- as.vector(quantile(x, c(cicut1,cicut2))) x2 <- as.vector(quantile(abs(x), c(cicut))) return(c(x1,x2)) } ag3 <- matrix(myq( TS[,c("TIF") ]), nrow=1) colnames(ag3) <- c("tIFLow", "tIFHigh", "tIFSym") TM <- merge(TM,ag3) zcut <- qnorm( cicut2 ) lb1 <- TM[,"Difference"] - zcut * TM[,"DIFSE"] ub1 <- TM[,"Difference"] + zcut * TM[,"DIFSE"] lb5 <- TM[,"Difference"] - TM[,"tIFHigh"] * TM[,"DIFSE"] ub5 <- TM[,"Difference"] - TM[,"tIFLow" ] * TM[,"DIFSE"] lb7 <- TM[,"Difference"] - TM[,"tIFSym"] * TM[,"DIFSE"] ub7 <- TM[,"Difference"] + TM[,"tIFSym"] * TM[,"DIFSE"] Difference <- TM[,"Difference"] CI <- cbind( alpha1, alpha2,Difference,lb1, ub1, lb5, ub5, lb7, ub7) if ( i1 == 1 & i2 == 1) { CIout <- CI TMout <- TM } else { CIout <- rbind(CIout,CI) TMout <- rbind(TMout,TM) } } } Ret <- list( TM = TMout, CI = CIout, Nalpha = Nalpha, alphaList = alphaList, CIlevel=CIlevel ) return(Ret) }
NULL maxlambdaMGLM <- function(object) { object@maxlambda } setMethod("maxlambda", "MGLMsparsereg", function(object) maxlambdaMGLM(object)) NULL dofMGLM <- function(object) { object@Dof } setMethod("dof", "MGLMsparsereg", function(object) dofMGLM(object))
if (!isGeneric('makeTP')) { setGeneric('makeTP', function(x, ...) standardGeneric('makeTP')) } makeTP <- function(projectDir=tempdir(), locationName="treePos", missionTrackList=NULL, launchPos=c(8.772055,50.814689), demFn=NULL, flightAltitude=100, climbDist=7.5, aboveTreeAlt=15, circleRadius = 1.0, takeOffAlt = 50.0, presetFlightTask="remote", maxSpeed=25.0, followSurfaceRes=5, altFilter=0.5, windCondition=1, launchAltitude=-9999, uavType="pixhawk", cameraType = "MAPIR2", copy = FALSE, runDir="") { task <- NULL demFn <- path.expand(demFn) locationName <- paste0(locationName,"_missions") surveyArea <- missionTrackList projstru <- setProjStructure (projectDir, locationName, flightAltitude, uavType, cameraType, surveyArea, demFn, copy, "P") dateString <- projstru[3] taskName <- projstru[2] csvFn <- projstru[1] projectDir<-projstru[4] runDir<-makeGlobalVar(name = "runDir",value = file.path(projectDir,"fp-data/run/")) logger <- log4r::create.logger(logfile = paste0(file.path(projectDir, "fp-data/log/"),strsplit(basename(taskName), "\\.")[[1]][1],'.log')) log4r::level(logger) <- "INFO" log4r::levellog(logger,'INFO',"--------------------- START RUNfile.path(runDir, ---------------------------") log4r::levellog(logger, 'INFO', paste("Working folder: ", file.path(projectDir))) flightList <- readTreeTrack(missionTrackList) test <- try(readLaunchPos(launchPos)) if (class(test)!="try-error"){ launchPos <- test flightArea <- flightList+launchPos } else{ log4r::levellog(logger, 'FATAL', " stop(" } p <- list() p$launchLat <- launchPos@coords[2] p$launchLon <- launchPos@coords[1] p$locationName <- locationName p$missionTrackList <- missionTrackList p$demFn <- demFn p$flightAltitude <- flightAltitude p$presetFlightTask <- presetFlightTask p$maxSpeed <- maxSpeed p$followSurfaceRes <- followSurfaceRes p$windCondition <- windCondition p$uavType <- uavType p$curvesize <- 0 p$rotationdir <- 0 p$gimbalmode <- 0 p$gimbalpitchangle <- -90 p$launchAltitude <- launchAltitude p$aboveTreeAlt <- aboveTreeAlt p$altFilter <- altFilter p$projectDir <- projectDir p$climbDist <- climbDist p$task <- fp_getPresetTask("treetop") fullTreeList <- makeFlightPathT3(flightList, p, uavType, task, demFn, logger, projectDir, locationName, circleRadius, flightArea, takeOffAlt, runDir) log4r::levellog(logger, 'INFO', paste("taskName : ", taskName)) log4r::levellog(logger, 'INFO', paste("DEM filename : ", demFn)) log4r::levellog(logger, 'INFO', paste("launchAltitude : ", launchAltitude)) log4r::levellog(logger, 'INFO', paste("followSurface : ", followSurfaceRes)) log4r::levellog(logger, 'INFO', paste("altfilter : ", altFilter)) log4r::levellog(logger, 'INFO', paste("flightAltitude : ", flightAltitude)) log4r::levellog(logger, 'INFO', paste("flightAltitude : ", aboveTreeAlt)) log4r::levellog(logger, 'INFO', paste("flightAltitude : ", circleRadius)) log4r::levellog(logger, 'INFO', paste("flightAltitude : ", takeOffAlt)) log4r::levellog(logger, 'INFO', paste("presetFlightTask: ", presetFlightTask)) if (uavType == "djiP3"){ log4r::levellog(logger, 'INFO', paste("curvesize : ", p$curvesize)) log4r::levellog(logger, 'INFO', paste("rotationdir : ", p$rotationdir)) log4r::levellog(logger, 'INFO', paste("gimbalmode : ", p$gimbalmode)) log4r::levellog(logger, 'INFO',paste("gimbalpitchangle: ", p$gimbalpitchangle)) } log4r::levellog(logger,'INFO',paste("max flight speed : ",round(maxSpeed, digits = 1)," (km/h) ")) log4r::levellog(logger,'INFO',"--------------------- END RUN -----------------------------") note <- " Fly save and have Fun..." dumpFile(paste0(file.path(projectDir, "fp-data/log/"),strsplit(basename(taskName), "\\.")[[1]][1],'.log')) cat("\n NOTE: You will find all parameters in the logfile:\n",paste0(file.path(projectDir, "fp-data/log/"),strsplit(basename(taskName), "\\.")[[1]][1],'.log'),"","\n ", "\n Fly save and have Fun...") }
MCSimulation<-function(P, i, nsteps){ n <- nrow(P)-1 statehist <- c(i, rep(0, nsteps)) for (step in 2:(nsteps+1)){ statehist[step] <- sample(0:n,1,prob=P[1+statehist[step-1],]) } return(statehist) }
gen_skinny_cube <- function(dimension) { kind_gen = 5 m_gen = 0 Vpoly_gen = FALSE Mat = poly_gen(kind_gen, Vpoly_gen, FALSE, dimension, m_gen) b = Mat[, 1] Mat = Mat[, -c(1), drop = FALSE] P = Hpolytope(A = -Mat, b = b, volume = 2^(dimension -1)*200) return(P) }
display_name <- function(x) { stopifnot(inherits(x, "coverage")) if (length(x) == 0) { return() } filenames <- vcapply(x, function(x) get_source_filename(x$srcref, full.names = TRUE)) to_relative_path(filenames, attr(x, "root")) } to_relative_path <- function(path, base) { if (is.null(base)) { return(path) } rex::re_substitutes(path, rex::rex(base, "/"), "") } filter_non_package_files <- function(x) { filenames <- vcapply(x, function(x) get_source_filename(x$srcref, full.names = TRUE)) x[rex::re_matches(filenames, rex::rex(attr(x, "package")$path, "/"), "")] }
NAO <- function(ano_exp = NULL, ano_obs = NULL, lon, lat, ftime_average = 2:4, obsproj = TRUE) { if (!is.null(ano_exp)) { if (!is.numeric(ano_exp) || !is.array(ano_exp)) { stop("Parameter 'ano_exp' must be a numeric array.") } if (length(dim(ano_exp)) != 6) { stop("'ano_exp' must have dimensions c(n. experimental data sets, n. members, n. start dates, n. forecast time steps, n. latitudes, n. longitudes).") } } if (!is.null(ano_obs)) { if (!is.numeric(ano_obs) || !is.array(ano_obs)) { stop("Parameter 'ano_obs' must be a numeric array.") } if (length(dim(ano_obs)) != 6) { stop("'ano_obs' must have dimensions c(n. observational data sets, n. obs. members, n. start dates, n. forecast time steps, n. latitudes, n. longitudes).") } } if (!is.null(ano_obs) && !is.null(ano_exp)) { if (!identical(dim(ano_exp)[3:6], dim(ano_obs)[3:6])) { stop("'ano_obs' and 'ano_exp' must have the same number of start dates, forecast time steps, latitudes and longitudes.") } } if (!is.numeric(lon) || !is.numeric(lat)) { stop("'lon' and 'lat' must be numeric vectors.") } if (is.null(attr(lon, 'first_lon')) || is.null(attr(lon, 'last_lon')) || is.null(attr(lon, 'array_across_gw')) || is.null(attr(lon, 'data_across_gw'))) { .warning("At least one of the attributes 'first_lon', 'last_lon', 'data_across_gw' or 'array_across_gw' of the parameter 'lon' is not defined (see documentation on output 'lon' of ?Load). The spatial domain of the provided data may be unnoticedly wrong.") } if (is.null(attr(lat, 'last_lat'))) { attr(lat, 'last_lat') <- tail(lat, 1) } if (is.null(attr(lat, 'first_lat'))) { attr(lat, 'first_lat') <- head(lat, 1) } stop_bad_domain <- "The typical domain used to compute the NAO is 20N-80N, 80W-40E.\n" stop_needed <- FALSE if (attr(lat, 'last_lat') < 70 || attr(lat, 'last_lat') > 90 || attr(lat, 'first_lat') > 30 || attr(lat, 'first_lat') < 10) { stop_needed <- TRUE } if (!is.null(attr(lon, 'data_across_gw'))) { if (!attr(lon, 'data_across_gw')) { stop_needed <- TRUE } } if (!is.null(attr(lon, 'first_lon')) && !is.null(attr(lon, 'last_lon'))) { if (!(attr(lon, 'last_lon') < attr(lon, 'first_lon'))) { stop_needed <- TRUE } else if (attr(lon, 'last_lon') > 50 || attr(lon, 'last_lon') < 30 || attr(lon, 'first_lon') > 290 || attr(lon, 'first_lon') < 270) { stop_needed <- TRUE } } if (stop_needed) { stop(stop_bad_domain) } if (!is.null(ano_exp)) { dims <- dim(ano_exp) } else if (!is.null(ano_obs)) { dims <- dim(ano_obs) } else { stop("Either one of 'ano_exp' or 'ano_obs' must be provided.") } nlon <- dims[6] nlat <- dims[5] nftimes <- dims[4] nyr <- dims[3] nmemb <- dims[2] nexp <- dims[1] if (length(lon) != nlon) { stop("Inconsistent number of longitudes and input field dimensions.") } if (length(lat) != nlat) { stop("Inconsistent number of latitudes and input field dimensions.") } if (nyr < 2) { stop("At least data for 2 start dates must be provided.") } if (!is.numeric(ftime_average)) { stop("'ftime_average' must be a numeric vector.") } if (any(ftime_average > nftimes)) { stop("'ftime_averages' contains indexes to non-existing forecast time steps.") } if (!is.logical(obsproj)) { stop("'obsproj' must be either TRUE or FALSE.") } if (obsproj) { if (is.null(ano_obs)) { stop("Parameter 'obsproj' set to TRUE but no 'ano_obs' provided.") } if (is.null(ano_exp)) { .warning("parameter 'obsproj' set to TRUE but no 'ano_exp' provided.") } } fcsys <- 1 NAOF.ver <- NULL NAOO.ver <- NULL OEOF <- NULL if (!is.null(ano_exp)) { ano_exp <- ano_exp[fcsys, , , ftime_average, , , drop = FALSE] f1 <- Mean1Dim(ano_exp, posdim = 4, narm = TRUE) dim(f1) <- c(1, nmemb, nyr, 1, nlat, nlon) NAOF.ver <- array(NA, c(nmemb, nyr)) } if (!is.null(ano_obs)) { ano_obs <- ano_obs[1, 1, , ftime_average, , , drop = FALSE] o1 <- Mean1Dim(ano_obs, posdim = 4, narm = TRUE) dim(o1) <- c(1, 1, nyr, 1, nlat, nlon) NAOO.ver <- array(NA, c(1, nyr)) } for (iy in 1:nyr) { if (!is.null(ano_obs)) { o2 <- o1[1, 1, -iy, 1, , ] dim(o2) <- c(nyr - 1, nlat, nlon) OEOF <- EOF(o2, lon, lat, neofs = 1) sign <- 1 if (0 < mean(OEOF$EOFs[1, which.min(abs(lat - 65)), ], na.rm = T)) { sign <- -1 } OEOF$EOFs <- OEOF$EOFs * sign OEOF$PCs <- OEOF$PCs * sign PCO <- ProjectField(o1, OEOF, mode = 1) NAOO.ver[1, iy] <- PCO[1, 1, iy, 1] } if (!is.null(ano_exp)) { if (!obsproj) { f2 <- f1[1, , -iy, 1, , ] dim(f2) <- c(nmemb * (nyr - 1), nlat, nlon) FEOF <- EOF(f2, lon, lat, neofs = 1) sign <- 1 if (0 < FEOF$EOFs[1, which.min(abs(lat - 65)), ]) { sign <- -1 } FEOF$EOFs <- FEOF$EOFs * sign FEOF$PCs <- FEOF$PCs * sign PCF <- ProjectField(f1, FEOF, mode = 1) for (imemb in 1:nmemb) { NAOF.ver[imemb, iy] <- PCF[1, imemb, iy, 1] } } else { PCF <- ProjectField(f1, OEOF, mode = 1) NAOF.ver[, iy] <- PCF[1, , iy, 1] } } } return(list(NAO_exp = NAOF.ver, NAO_obs = NAOO.ver, EOFs_obs = OEOF)) }
context("Applying transformations") test_that("Existing transformations can be applied and combined", { options(RNiftyReg.threads=2L) t2 <- readNifti(system.file("extdata","epi_t2.nii.gz",package="RNiftyReg")) t1 <- readNifti(system.file("extdata","flash_t1.nii.gz",package="RNiftyReg")) mni <- readNifti(system.file("extdata","mni_brain.nii.gz",package="RNiftyReg")) t2_to_t1 <- readAffine(system.file("extdata","affine.txt",package="RNiftyReg"), t2, t1) t1_to_mni <- readNifti(system.file("extdata","control.nii.gz",package="RNiftyReg"), t1, mni) deformation <- deformationField(t2_to_t1, jacobian=TRUE) expect_equal(round(worldToVoxel(as.array(deformation)[34,49,64,1,], t2)), c(40,40,20)) expect_equal(as.array(jacobian(deformation))[34,49,64], prod(diag(t2_to_t1)), tolerance=0.05) expect_equal(applyTransform(t2_to_t1,c(40,40,20),nearest=TRUE), c(34,49,64)) expect_equal(class(applyTransform(t2_to_t1,t2,internal=TRUE))[1], "internalImage") saveTransform(t2_to_t1, "t2_to_t1.rds") reloadedTransform <- loadTransform("t2_to_t1.rds") expect_equal(applyTransform(reloadedTransform,c(40,40,20),nearest=TRUE), c(34,49,64)) expect_equivalent(applyTransform(t2_to_t1,t2), applyTransform(reloadedTransform,t2)) unlink("t2_to_t1.rds") skip_on_os("solaris") point <- applyTransform(t2_to_t1, c(40,40,20), nearest=FALSE) expect_equal(applyTransform(t1_to_mni,point,nearest=TRUE), c(33,49,24)) expect_equal(round(applyTransform(t1_to_mni,point,nearest=FALSE)), c(33,49,24)) expect_equal(applyTransform(t1_to_mni,t1,interpolation=0)[33,49,25], t1[34,49,64]) t2_to_mni <- composeTransforms(t2_to_t1, t1_to_mni) expect_equal(applyTransform(t2_to_mni,c(40,40,20),nearest=TRUE), c(33,49,24)) t2_to_t1_half <- halfTransform(t2_to_t1) expect_equivalent(composeTransforms(t2_to_t1_half,t2_to_t1_half), t2_to_t1) t1_to_mni_half <- halfTransform(t1_to_mni) mniIdentity <- buildAffine(source=mni) t1_to_mni_reconstructed <- composeTransforms(t1_to_mni_half, t1_to_mni_half, mniIdentity) expect_equal(applyTransform(t1_to_mni_reconstructed,point,nearest=TRUE), c(33,49,24)) })
data <- dat.bourassa1996 data <- escalc(measure = "OR", ai = lh.le, bi = lh.re, ci = rh.le, di= rh.re, data = data, add = 1/2, to = "all") data$mage[is.na(data$mage)] <- median(data$mage, na.rm = TRUE) data[c(5:8)] <- lapply(data[c(5:8)], factor) data$yi <- as.numeric(data$yi) set.seed(33) mf.cluster.b1996 <- MetaForest(formula = yi~ selection + investigator + hand_assess + eye_assess + mage +sex, data = data, study = "sample", whichweights = "unif", num.trees = 300) test_that("clustermf has the correct number of trees", {expect_equal(300, mf.cluster.b1996$forest$num.trees)}) test_that("Metaforest calls clustermf", {expect_true(inherits(mf.cluster.b1996, "cluster_mf"))})
context("envir") test_that("set env", { path <- test_prepare_orderly_example("minimal") cfg <- c("database:", " source:", " driver: RSQLite::SQLite", " args:", " dbname: source.sqlite", " user: $MY_USER") writeLines(cfg, file.path(path, "orderly_config.yml")) config <- orderly_config_$new(path) expect_error(orderly_db_args(config$database$source, config, "loc"), "Environment variable 'MY_USER' is not set") writeLines(c("MY_USER: foo"), path_orderly_envir_yml(path)) x <- orderly_db_args(config$database$source, config) expect_equal(x$args$user, "foo") writeLines(c("MY_USER: bar"), path_orderly_envir_yml(path)) x <- orderly_db_args(config$database$source, config) expect_equal(x$args$user, "bar") }) test_that("read env", { path <- tempfile() dir.create(path) filename <- path_orderly_envir_yml(path) writeLines(c("foo: 1", "foo: 2"), filename) expect_error(orderly_envir_read(path)) writeLines(c("- foo: 1", "- foo: 2"), filename) expect_error(orderly_envir_read(path), "must be named") writeLines(c("foo: 1", "bar: [2, 3]"), filename) expect_error( orderly_envir_read(path), "Expected all elements of orderly_envir.yml to be scalar (check 'bar')", fixed = TRUE) }) test_that("non-character data is OK", { path <- tempfile() dir.create(path) filename <- path_orderly_envir_yml(path) writeLines(c("foo: 1", "bar: 2"), filename) dat <- orderly_envir_read(path) expect_equal(dat, c(foo = "1", bar = "2")) }) test_that("remove null values", { path <- tempfile() dir.create(path) filename <- path_orderly_envir_yml(path) writeLines(c("foo: ~", "bar: 2"), filename) dat <- orderly_envir_read(path) expect_equal(dat, c(bar = "2")) })
EDRDistance <- function(x, y, epsilon, sigma) { if (class(try(EDRInitialCheck(x, y, epsilon, sigma))) == "try-error") { return(NA) } else { tamx <- length(x) tamy <- length(y) subcost<-as.numeric(as.vector(t(proxy::dist(x, y, method="euclidean") > epsilon))) cost.matrix <- c(1:((tamx + 1) * (tamy + 1))) * 0 + (sum(subcost) * length(subcost)) if (missing(sigma)) { resultList <- .C("edrnw", as.integer(tamx), as.integer(tamy), as.double(cost.matrix), as.double(subcost)) cost.matrix <- resultList[[3]] } else { resultList <- .C("edr", as.integer(tamx), as.integer(tamy), as.integer(sigma), as.double(cost.matrix), as.double(subcost)) cost.matrix <- resultList[[4]] } d <- cost.matrix[length(cost.matrix)] return(d) } } EDRInitialCheck <- function(x, y, epsilon, sigma) { if (! is.numeric(x) | ! is.numeric(y)) { stop('The series must be numeric', call.=FALSE) } if (! is.vector(x) | ! is.vector(y)) { stop('The series must be univariate vectors', call.=FALSE) } if (length(x) < 1 | length(y) < 1) { stop('The series must have at least one point', call.=FALSE) } if (! is.numeric(epsilon)) { stop('The threshold must be numeric', call.=FALSE) } if (epsilon < 0) { stop('The threshold must be positive', call.=FALSE) } if (any(is.na(x)) | any(is.na(y))) { stop('There are missing values in the series', call.=FALSE) } if (! missing(sigma)) { if ((sigma) <= 0) { stop('The window size must be positive', call.=FALSE) } if (sigma < abs(length(x) - length(y))) { stop('The window size can not be lower than the difference between the series lengths', call.=FALSE) } } }
rgoogleads <- new.env(parent = emptyenv()) rgoogleads$last_request_id <- NULL rgoogleads$customer_id <- NULL invisible(rgoogleads) gads_last_request_ids <- function() { return(rgoogleads$last_request_id) } gads_customer_id_to_env <- function(customer_id) { customer_id <- str_replace_all(customer_id, "-", "") %>% str_replace('(\\d{3})(\\d{3})(\\d{4})', '\\1-\\2-\\3') rgoogleads$customer_id <- customer_id } gads_customer_id_from_env <- function() { return(rgoogleads$customer_id) }
"significantSNP"
shinydashboard::tabItem( tabName = "gauge", fluidRow( column( width = 12, br(), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("Simple example", align="center"), column( width = 12, rAmCharts::amChartsOutput("gauge1")) )), tabPanel( title = "Code", fluidRow( h2("Simple example", align="center"), column( width = 12, verbatimTextOutput("code_gauge1")) ) ) ) ) ) )
context("Testing the freqlist output") TAB <- table(mdat[, c("Group", "Sex", "Phase")]) TAB.subset <- table(mdat[!(mdat$Group == "Low" & mdat$Sex == "Male"), c("Group", "Sex", "Phase")]) TAB.na <- table(mdat[, c("trt", "ethan")], useNA = 'a') old.labs <- c(cumFreq = "cumFreq", freqPercent = "freqPercent", cumPercent = "cumPercent") test_that("A basic freqlist call", { expect_identical( capture.kable(summary(freqlist(TAB), labelTranslations = old.labs)), c("|Group |Sex |Phase | Freq| cumFreq| freqPercent| cumPercent|", "|:-----|:------|:-----|----:|-------:|-----------:|----------:|", "|High |Female |I | 4| 4| 4.44| 4.44|", "| | |II | 8| 12| 8.89| 13.33|", "| | |III | 3| 15| 3.33| 16.67|", "| |Male |I | 7| 22| 7.78| 24.44|", "| | |II | 2| 24| 2.22| 26.67|", "| | |III | 6| 30| 6.67| 33.33|", "|Low |Female |I | 7| 37| 7.78| 41.11|", "| | |II | 8| 45| 8.89| 50.00|", "| | |III | 2| 47| 2.22| 52.22|", "| |Male |I | 5| 52| 5.56| 57.78|", "| | |II | 4| 56| 4.44| 62.22|", "| | |III | 4| 60| 4.44| 66.67|", "|Med |Female |II | 11| 71| 12.22| 78.89|", "| | |III | 3| 74| 3.33| 82.22|", "| |Male |II | 8| 82| 8.89| 91.11|", "| | |III | 8| 90| 8.89| 100.00|" ) ) }) test_that("strata option in freqlist call", { expect_identical( capture.kable(summary(freqlist(TAB, strata = "Group"), single = FALSE, labelTranslations = old.labs)), c("|Group |Sex |Phase | Freq| cumFreq| freqPercent| cumPercent|", "|:-----|:------|:-----|----:|-------:|-----------:|----------:|", "|High |Female |I | 4| 4| 13.33| 13.33|", "| | |II | 8| 12| 26.67| 40.00|", "| | |III | 3| 15| 10.00| 50.00|", "| |Male |I | 7| 22| 23.33| 73.33|", "| | |II | 2| 24| 6.67| 80.00|", "| | |III | 6| 30| 20.00| 100.00|", "" , "" , "|Group |Sex |Phase | Freq| cumFreq| freqPercent| cumPercent|", "|:-----|:------|:-----|----:|-------:|-----------:|----------:|", "|Low |Female |I | 7| 7| 23.33| 23.33|", "| | |II | 8| 15| 26.67| 50.00|", "| | |III | 2| 17| 6.67| 56.67|", "| |Male |I | 5| 22| 16.67| 73.33|", "| | |II | 4| 26| 13.33| 86.67|", "| | |III | 4| 30| 13.33| 100.00|", "" , "" , "|Group |Sex |Phase | Freq| cumFreq| freqPercent| cumPercent|", "|:-----|:------|:-----|----:|-------:|-----------:|----------:|", "|Med |Female |II | 11| 11| 36.67| 36.67|", "| | |III | 3| 14| 10.00| 46.67|", "| |Male |II | 8| 22| 26.67| 73.33|", "| | |III | 8| 30| 26.67| 100.00|" ) ) expect_error(freqlist(TAB, strata = "group"), "strata variable not found") }) test_that("sparse option in freqlist call", { expect_identical( capture.kable(summary(freqlist(TAB, sparse = TRUE), labelTranslations = old.labs)), c("|Group |Sex |Phase | Freq| cumFreq| freqPercent| cumPercent|", "|:-----|:------|:-----|----:|-------:|-----------:|----------:|", "|High |Female |I | 4| 4| 4.44| 4.44|", "| | |II | 8| 12| 8.89| 13.33|", "| | |III | 3| 15| 3.33| 16.67|", "| |Male |I | 7| 22| 7.78| 24.44|", "| | |II | 2| 24| 2.22| 26.67|", "| | |III | 6| 30| 6.67| 33.33|", "|Low |Female |I | 7| 37| 7.78| 41.11|", "| | |II | 8| 45| 8.89| 50.00|", "| | |III | 2| 47| 2.22| 52.22|", "| |Male |I | 5| 52| 5.56| 57.78|", "| | |II | 4| 56| 4.44| 62.22|", "| | |III | 4| 60| 4.44| 66.67|", "|Med |Female |I | 0| 60| 0.00| 66.67|", "| | |II | 11| 71| 12.22| 78.89|", "| | |III | 3| 74| 3.33| 82.22|", "| |Male |I | 0| 74| 0.00| 82.22|", "| | |II | 8| 82| 8.89| 91.11|", "| | |III | 8| 90| 8.89| 100.00|" ) ) }) test_that("NA options in freqlist call", { expect_identical( capture.kable(summary(freqlist(TAB.na, na.options = "include"))), c("|trt |ethan | Freq| Cumulative Freq| Percent| Cumulative Percent|", "|:---|:-------|----:|---------------:|-------:|------------------:|", "|A |Ethan | 17| 17| 18.89| 18.89|", "| |Heinzen | 16| 33| 17.78| 36.67|", "| |NA | 3| 36| 3.33| 40.00|", "|B |Ethan | 25| 61| 27.78| 67.78|", "| |Heinzen | 29| 90| 32.22| 100.00|" ) ) expect_identical( capture.kable(summary(freqlist(TAB.na, na.options = "showexclude"))), c("|trt |ethan | Freq| Cumulative Freq| Percent| Cumulative Percent|", "|:---|:-------|----:|---------------:|-------:|------------------:|", "|A |Ethan | 17| 17| 19.54| 19.54|", "| |Heinzen | 16| 33| 18.39| 37.93|", "| |NA | 3| NA| NA| NA|", "|B |Ethan | 25| 58| 28.74| 66.67|", "| |Heinzen | 29| 87| 33.33| 100.00|" ) ) expect_identical( capture.kable(summary(freqlist(TAB.na, na.options = "remove"))), c("|trt |ethan | Freq| Cumulative Freq| Percent| Cumulative Percent|", "|:---|:-------|----:|---------------:|-------:|------------------:|", "|A |Ethan | 17| 17| 19.54| 19.54|", "| |Heinzen | 16| 33| 18.39| 37.93|", "|B |Ethan | 25| 58| 28.74| 66.67|", "| |Heinzen | 29| 87| 33.33| 100.00|" ) ) }) test_that("Changing the labels on non-grouped freqlists", { ref <- c( "|Treatment |Ethan Rocks | Freq| Cumulative Freq| Percent| Cumulative Percent|", "|:---------|:-----------|----:|---------------:|-------:|------------------:|", "|A |Ethan | 17| 17| 18.89| 18.89|", "| |Heinzen | 16| 33| 17.78| 36.67|", "| |NA | 3| 36| 3.33| 40.00|", "|B |Ethan | 25| 61| 27.78| 67.78|", "| |Heinzen | 29| 90| 32.22| 100.00|" ) expect_identical( capture.kable(summary(freqlist(TAB.na, na.options = "include"), labelTranslations = c(trt = "Treatment", ethan = "Ethan Rocks"))), ref ) expect_identical( capture.kable(summary(freqlist(TAB.na, na.options = "include", labelTranslations = list(trt = "Treatment", ethan = "Ethan Rocks")))), ref ) expect_identical( capture.kable(summary(freqlist(TAB.na, na.options = "include", labelTranslations = c(trt = "Treatment", ethan ="Ethan Rocks")))), ref ) expect_error(freqlist(TAB.na, labelTranslations = c("Treatment", "Ethan Rocks")), "Unnamed label") expect_error(freqlist(TAB.na, labelTranslations = c(hi = "Treatment", ethan = "Ethan Rocks")), NA) tmp <- freqlist(TAB.na, na.options = "include") labels(tmp) <- c(trt = "Treatment", ethan = "Ethan Rocks") expect_identical( capture.kable(summary(tmp)), ref ) labels(tmp) <- NULL expect_identical( capture.kable(summary(tmp)), c("|trt |ethan | Freq| cumFreq| freqPercent| cumPercent|", "|:---|:-------|----:|-------:|-----------:|----------:|", "|A |Ethan | 17| 17| 18.89| 18.89|", "| |Heinzen | 16| 33| 17.78| 36.67|", "| |NA | 3| 36| 3.33| 40.00|", "|B |Ethan | 25| 61| 27.78| 67.78|", "| |Heinzen | 29| 90| 32.22| 100.00|" ) ) labels(tmp) <- c(ethan = "Ethan Rocks", trt = "Treatment", dummy = "Dummy") expect_identical( capture.kable(summary(tmp)), c( "|Treatment |Ethan Rocks | Freq| cumFreq| freqPercent| cumPercent|", "|:---------|:-----------|----:|-------:|-----------:|----------:|", "|A |Ethan | 17| 17| 18.89| 18.89|", "| |Heinzen | 16| 33| 17.78| 36.67|", "| |NA | 3| 36| 3.33| 40.00|", "|B |Ethan | 25| 61| 27.78| 67.78|", "| |Heinzen | 29| 90| 32.22| 100.00|" ) ) }) test_that("Changing the labels on grouped freqlists", { expect_identical( capture.kable(summary(freqlist(TAB.na, options = "include", strata = "ethan", labelTranslations = c(trt = "Treatment", ethan = "Ethan", old.labs)))), c("|Ethan |Treatment | Freq| cumFreq| freqPercent| cumPercent|" , "|:-----|:---------|----:|-------:|-----------:|----------:|" , "|Ethan |A | 17| 17| 40.48| 40.48|" , "| |B | 25| 42| 59.52| 100.00|" , "" , "" , "|Ethan |Treatment | Freq| cumFreq| freqPercent| cumPercent|", "|:-------|:---------|----:|-------:|-----------:|----------:|", "|Heinzen |A | 16| 16| 35.56| 35.56|", "| |B | 29| 45| 64.44| 100.00|", "" , "" , "|Ethan |Treatment | Freq| cumFreq| freqPercent| cumPercent|" , "|:-----|:---------|----:|-------:|-----------:|----------:|" , "|NA |A | 3| 3| 100.00| 100.00|" ) ) }) test_that("dupLabels works", { expect_identical( capture.kable(summary(freqlist(TAB, labelTranslations = old.labs), dupLabels = TRUE)), c("|Group |Sex |Phase | Freq| cumFreq| freqPercent| cumPercent|", "|:-----|:------|:-----|----:|-------:|-----------:|----------:|", "|High |Female |I | 4| 4| 4.44| 4.44|", "|High |Female |II | 8| 12| 8.89| 13.33|", "|High |Female |III | 3| 15| 3.33| 16.67|", "|High |Male |I | 7| 22| 7.78| 24.44|", "|High |Male |II | 2| 24| 2.22| 26.67|", "|High |Male |III | 6| 30| 6.67| 33.33|", "|Low |Female |I | 7| 37| 7.78| 41.11|", "|Low |Female |II | 8| 45| 8.89| 50.00|", "|Low |Female |III | 2| 47| 2.22| 52.22|", "|Low |Male |I | 5| 52| 5.56| 57.78|", "|Low |Male |II | 4| 56| 4.44| 62.22|", "|Low |Male |III | 4| 60| 4.44| 66.67|", "|Med |Female |II | 11| 71| 12.22| 78.89|", "|Med |Female |III | 3| 74| 3.33| 82.22|", "|Med |Male |II | 8| 82| 8.89| 91.11|", "|Med |Male |III | 8| 90| 8.89| 100.00|" ) ) expect_identical( capture.kable(summary(freqlist(TAB, strata = "Group", labelTranslations = old.labs), single = FALSE, dupLabels = TRUE)), c("|Group |Sex |Phase | Freq| cumFreq| freqPercent| cumPercent|", "|:-----|:------|:-----|----:|-------:|-----------:|----------:|", "|High |Female |I | 4| 4| 13.33| 13.33|", "|High |Female |II | 8| 12| 26.67| 40.00|", "|High |Female |III | 3| 15| 10.00| 50.00|", "|High |Male |I | 7| 22| 23.33| 73.33|", "|High |Male |II | 2| 24| 6.67| 80.00|", "|High |Male |III | 6| 30| 20.00| 100.00|", "" , "" , "|Group |Sex |Phase | Freq| cumFreq| freqPercent| cumPercent|", "|:-----|:------|:-----|----:|-------:|-----------:|----------:|", "|Low |Female |I | 7| 7| 23.33| 23.33|", "|Low |Female |II | 8| 15| 26.67| 50.00|", "|Low |Female |III | 2| 17| 6.67| 56.67|", "|Low |Male |I | 5| 22| 16.67| 73.33|", "|Low |Male |II | 4| 26| 13.33| 86.67|", "|Low |Male |III | 4| 30| 13.33| 100.00|", "" , "" , "|Group |Sex |Phase | Freq| cumFreq| freqPercent| cumPercent|", "|:-----|:------|:-----|----:|-------:|-----------:|----------:|", "|Med |Female |II | 11| 11| 36.67| 36.67|", "|Med |Female |III | 3| 14| 10.00| 46.67|", "|Med |Male |II | 8| 22| 26.67| 73.33|", "|Med |Male |III | 8| 30| 26.67| 100.00|" ) ) }) test_that("Adding a title", { expect_identical( capture.kable(summary(freqlist(TAB.na, options = "include", labelTranslations = c(trt = "Treatment", ethan = "Ethan", old.labs)), dupLabels = TRUE, title = "Ethan Rocks")), c("Table: Ethan Rocks" , "" , "|Treatment |Ethan | Freq| cumFreq| freqPercent| cumPercent|", "|:---------|:-------|----:|-------:|-----------:|----------:|", "|A |Ethan | 17| 17| 18.89| 18.89|", "|A |Heinzen | 16| 33| 17.78| 36.67|", "|A |NA | 3| 36| 3.33| 40.00|", "|B |Ethan | 25| 61| 27.78| 67.78|", "|B |Heinzen | 29| 90| 32.22| 100.00|" ) ) expect_identical( capture.kable(summary(freqlist(TAB.na, options = "include", strata = "ethan", labelTranslations = c(trt = "Treatment", ethan = "Ethan", old.labs)), dupLabels = TRUE, title = "Ethan Rocks")), c("Table: Ethan Rocks" , "" , "|Ethan |Treatment | Freq| cumFreq| freqPercent| cumPercent|" , "|:-----|:---------|----:|-------:|-----------:|----------:|" , "|Ethan |A | 17| 17| 40.48| 40.48|" , "|Ethan |B | 25| 42| 59.52| 100.00|" , "" , "" , "|Ethan |Treatment | Freq| cumFreq| freqPercent| cumPercent|", "|:-------|:---------|----:|-------:|-----------:|----------:|", "|Heinzen |A | 16| 16| 35.56| 35.56|", "|Heinzen |B | 29| 45| 64.44| 100.00|", "" , "" , "|Ethan |Treatment | Freq| cumFreq| freqPercent| cumPercent|" , "|:-----|:---------|----:|-------:|-----------:|----------:|" , "|NA |A | 3| 3| 100.00| 100.00|" ) ) }) test_that("Formula method works", { expect_identical( capture.kable(summary(freqlist(TAB.na, options = "include"), labelTranslations = c(trt = "Trt", ethan = "Ethan"))), capture.kable(summary(freqlist(~ trt + addNA(ethan), data = mdat), labelTranslations = c("addNA(ethan)" = "Ethan", trt = "Trt"))) ) if(getRversion() >= "3.4.0") { expect_identical( capture.kable(summary(freqlist(~ trt + ethan, data = mdat, addNA = TRUE), labelTranslations = c(trt = "Trt", ethan = "Ethan"))), capture.kable(summary(freqlist(~ trt + addNA(ethan), data = mdat), labelTranslations = c("addNA(ethan)" = "Ethan", trt = "Trt"))) ) } else skip("R version isn't right to use 'addNA=TRUE'") }) test_that("digits specification", { expect_identical( capture.kable(summary(freqlist(~ trt + addNA(ethan), data = mdat), digits.pct = 1, digits.count = 1)), capture.kable(summary(freqlist(~ trt + addNA(ethan), data = mdat, digits.pct = 1, digits.count = 1))) ) expect_identical( capture.kable(summary(freqlist(~ trt + addNA(ethan), data = mdat), digits.pct = 1, digits.count = 1)), c( "|Treatment Arm |addNA(ethan) | Freq| Cumulative Freq| Percent| Cumulative Percent|", "|:-------------|:------------|----:|---------------:|-------:|------------------:|", "|A |Ethan | 17.0| 17.0| 18.9| 18.9|", "| |Heinzen | 16.0| 33.0| 17.8| 36.7|", "| |NA | 3.0| 36.0| 3.3| 40.0|", "|B |Ethan | 25.0| 61.0| 27.8| 67.8|", "| |Heinzen | 29.0| 90.0| 32.2| 100.0|" ) ) }) test_that("11/18/16: Emily Lundt's subsetted table and duplicate label problem", { expect_identical( capture.kable(summary(freqlist(TAB.subset), labelTranslations = old.labs)), c("|Group |Sex |Phase | Freq| cumFreq| freqPercent| cumPercent|", "|:-----|:------|:-----|----:|-------:|-----------:|----------:|", "|High |Female |I | 4| 4| 5.19| 5.19|", "| | |II | 8| 12| 10.39| 15.58|", "| | |III | 3| 15| 3.90| 19.48|", "| |Male |I | 7| 22| 9.09| 28.57|", "| | |II | 2| 24| 2.60| 31.17|", "| | |III | 6| 30| 7.79| 38.96|", "|Low |Female |I | 7| 37| 9.09| 48.05|", "| | |II | 8| 45| 10.39| 58.44|", "| | |III | 2| 47| 2.60| 61.04|", "|Med |Female |II | 11| 58| 14.29| 75.32|", "| | |III | 3| 61| 3.90| 79.22|", "| |Male |II | 8| 69| 10.39| 89.61|", "| | |III | 8| 77| 10.39| 100.00|" ) ) }) test_that("04/17/18: using 'method' in freqlist ( dat <- data.frame(method = c(1, 1, 2, 2, 3, 3, 4, 4)) expect_identical( capture.kable(summary(freqlist(~method, data = dat))), c("|method | Freq| Cumulative Freq| Percent| Cumulative Percent|", "|:------|----:|---------------:|-------:|------------------:|", "|1 | 2| 2| 25.00| 25.00|", "|2 | 2| 4| 25.00| 50.00|", "|3 | 2| 6| 25.00| 75.00|", "|4 | 2| 8| 25.00| 100.00|" ) ) }) test_that("02/26/19: don't drop labels with subset= argument ( expect_identical( capture.kable(summary(freqlist(~ age, data = mockstudy, subset = age > 80))), c("|Age in Years | Freq| Cumulative Freq| Percent| Cumulative Percent|", "|:------------|----:|---------------:|-------:|------------------:|", "|81 | 12| 12| 41.38| 41.38|", "|82 | 6| 18| 20.69| 62.07|", "|83 | 6| 24| 20.69| 82.76|", "|84 | 1| 25| 3.45| 86.21|", "|85 | 2| 27| 6.90| 93.10|", "|88 | 2| 29| 6.90| 100.00|" ) ) }) test_that("03/20/2019: freqlist still works with all zero counts ( tab0 <- table(factor(c(), levels = c("m", "f"))) expect_error(print(summary(freqlist(tab0))), "There wasn't anything") expect_identical( capture.kable(summary(freqlist(tab0), sparse = TRUE)), c("|Var1 | Freq| Cumulative Freq| Percent| Cumulative Percent|", "|:----|----:|---------------:|-------:|------------------:|", "|m | 0| 0| NA| NA|", "|f | 0| 0| NA| NA|" ) ) }) test_that("03/21/2019: freqlist doesn't lose labels when subsetting ( expect_identical( capture.kable(summary(freqlist(~ sex + ps + arm, data = mockstudy, strata = "arm", subset = arm == "F: FOLFOX" & !is.na(ps))[c(1:2, 4)])), c("|Treatment Arm |sex | Freq|", "|:-------------|:------|----:|", "|F: FOLFOX |Male | 168|", "| | | 148|", "| | | 16|", "| |Female | 110|", "| | | 95|", "| | | 13|" ) ) }) test_that("02/28/2020: freqlist.formula works without needing addNA AND na.option ( expect_identical( capture.kable(summary(freqlist(~ sex + ps, data = mockstudy))), c("|sex |ps | Freq| Cumulative Freq| Percent| Cumulative Percent|", "|:------|:--|----:|---------------:|-------:|------------------:|", "|Male |0 | 391| 391| 26.08| 26.08|", "| |1 | 329| 720| 21.95| 48.03|", "| |2 | 34| 754| 2.27| 50.30|", "| |NA | 162| 916| 10.81| 61.11|", "|Female |0 | 244| 1160| 16.28| 77.38|", "| |1 | 202| 1362| 13.48| 90.86|", "| |2 | 33| 1395| 2.20| 93.06|", "| |NA | 104| 1499| 6.94| 100.00|" ) ) expect_identical( capture.kable(summary(freqlist(~ sex + ps, data = mockstudy, addNA = FALSE))), capture.kable(summary(freqlist(~ sex + ps, data = mockstudy, na.options = "remove"))) ) })
sample_posterior_R <- function(R, n = 1000, window = 1L) { if (!inherits(R, "estimate_R")) { stop("R must be generated from the estimate_r function.") } mu <- R$R$`Mean(R)`[window] sigma <- R$R$`Std(R)`[window] cv <- sigma / mu shape <- 1 / (cv ^ 2) scale <- mu * cv ^ 2 rgamma(n, shape = shape, scale = scale) }
is.gce_zone_operation <- function(x){ inherits(x, "gce_zone_operation") } as.zone_operation <- function(x){ structure(x, class = c("gce_zone_operation", class(x))) } is.gce_global_operation <- function(x){ inherits(x, "gce_global_operation") } as.region_operation <- function(x){ structure(x, class = c("gce_region_operation", class(x))) } is.gce_region_operation <- function(x){ inherits(x, "gce_region_operation") } as.global_operation <- function(x){ structure(x, class = c("gce_global_operation", class(x))) } gce_delete_op <- function(operation) { if(inherits(operation, c("gce_global_operation", "gce_zone_operation","gce_region_operation"))){ UseMethod("gce_delete_op", operation) } else { myMessage("No operation class found. Got: ", class(operation), level = 1) return(operation) } } gce_delete_op.gce_zone_operation <- function(operation) { if(is.gce_zone_operation(operation)){ url <- operation$selfLink } else { stop("Not a gce_zone_operation") } f <- gar_api_generator(url, "DELETE", data_parse_function = function(x) x) suppressWarnings(out <- f()) myMessage("Operation cancelled", level = 3) as.zone_operation(out) } gce_delete_op.gce_global_operation <- function(operation) { if(is.gce_global_operation(operation)){ url <- operation$selfLink } else { stop("Not a gce_global_operation") } f <- gar_api_generator(url, "DELETE", data_parse_function = function(x) x) suppressWarnings(out <- f()) myMessage("Operation cancelled", level = 3) as.zone_operation(out) } gce_get_op <- function(operation = .Last.value){ if(inherits(operation, c("gce_global_operation", "gce_zone_operation","gce_region_operation"))){ UseMethod("gce_get_op", operation) } else { myMessage("No operation class found. Got: ", class(operation), level = 1) return(operation) } } gce_get_op.gce_zone_operation <- function(operation) { if(is.gce_zone_operation(operation)){ url <- operation$selfLink } else { stop("Not a gce_zone_operation") } f <- gar_api_generator(url, "GET", data_parse_function = function(x) x) out <- f() as.zone_operation(out) } gce_get_op.gce_global_operation <- function(operation) { if(is.gce_global_operation(operation)){ url <- operation$selfLink } else { stop("Not class gce_global_operation") } f <- gar_api_generator(url, "GET", data_parse_function = function(x) x) out <- f() as.global_operation(out) } gce_list_zone_op <- function(filter = NULL, maxResults = NULL, pageToken = NULL, project = gce_get_global_project(), zone = gce_get_global_zone()) { url <- sprintf("https://www.googleapis.com/compute/v1/projects/%s/zones/%s/operations", project, zone) pars <- list(filter = filter, maxResults = maxResults, pageToken = pageToken) pars <- rmNullObs(pars) f <- gar_api_generator(url, "GET", pars_args = pars, data_parse_function = function(x) x) f() } gce_wait <- function(operation, wait = 3, verbose = TRUE, timeout_tries = 50){ if(inherits(operation, "character")){ stop("Use the job object instead of job$name") } if(operation$kind != "compute myMessage("Not an operation, returning object") return(operation) } DO_IT <- TRUE tries <- 0 myMessage("Starting operation...", level = 2) while(DO_IT){ check <- gce_get_op(operation) if(check$status == "DONE"){ DO_IT <- FALSE } else if(check$status == "RUNNING"){ if(verbose) myMessage("Operation running...", level = 3) } else { if(verbose) myMessage("Checking operation...", check$status, level = 3) } Sys.sleep(wait) tries <- tries + 1 if(tries > timeout_tries){ myMessage("Timeout reached in operation") check$error$errors <- "Timeout reached in operation" DO_IT <- FALSE } } if(verbose && !is.null(check$endTime)) myMessage("Operation complete in ", format(timestamp_to_r(check$endTime) - timestamp_to_r(check$insertTime)), level = 3) if(!is.null(check$error)){ errors <- check$error$errors e.m <- paste(vapply(errors, print, character(1)), collapse = " : ", sep = " \n") warning(" warning(" } check }
library(ggplot2) xGrid = c(0+.Machine$double.eps,seq(0,1, length.out=81)[-c(1,81)],1-.Machine$double.eps) theta0 <- expand.grid(mu=seq(0,2,length.out=9), sigma=10^seq(-0.5,0.5,length.out=5)) n <- nrow(theta0) .calcDensityGrid <- function( theta0 ,xGrid = seq(0,1, length.out=81)[-c(1,81)] ){ dx <- apply( theta0, 1, function(theta0i){ dx <- dlogitnorm(xGrid, mu=theta0i[1], sigma=theta0i[2]) }) dimnames(dx) <- list(iX=NULL,iTheta=NULL) ds <- melt(dx) ds[1:10,] ds$mu <- rep(as.factor(round(theta0[,1],2)), each=length(xGrid)) ds$sigma <- rep(as.factor(round(theta0[,2],2)), each=length(xGrid)) ds$x <- rep(xGrid, nrow(theta0)) ds } .calcCdfGrid <- function( theta0 ,xGrid = seq(0,1, length.out=81)[-c(1,81)] ){ dx <- apply( theta0, 1, function(theta0i){ dx <- plogitnorm(xGrid, mu=theta0i[1], sigma=theta0i[2]) }) dimnames(dx) <- list(iX=NULL,iTheta=NULL) ds <- melt(dx) ds[1:10,] ds$mu <- rep(as.factor(round(theta0[,1],2)), each=length(xGrid)) ds$sigma <- rep(as.factor(round(theta0[,2],2)), each=length(xGrid)) ds$x <- rep(xGrid, nrow(theta0)) ds } windows(width=7,height=4.5) ds <- .calcDensityGrid(theta0,xGrid=xGrid) qplot(xGrid,value,data=ds, geom="line", color=sigma, ylab="density")+ facet_wrap(~mu,scales="free")+opts(axis.title.x = theme_blank()) windows(width=4,height=4) ds <- .calcDensityGrid(theta0,xGrid=xGrid) qplot(xGrid,value,data=ds[ds$mu %in% c(0,1),], geom="line", color=sigma, ylab="density")+ facet_grid(mu~.,scales="free")+opts(axis.title.x = theme_blank()) ds <- .calcCdfGrid(theta0,xGrid=xGrid) qplot(xGrid,value,data=ds[ds$mu %in% c(0,1),], geom="line", color=sigma, ylab="cumulative density")+ facet_grid(mu~.,scales="free")+opts(axis.title.x = theme_blank()) mle=0.8 mu <- seq(0,logit(mle),length.out=10)[-10] tmp <- twSigmaLogitnorm(mle,mu) sigma2 <- (logit(mle)-mu)/(2*mle-1) theta0 <- cbind(mu,sigma=as.numeric(sqrt(sigma2))) ds <- .calcDensityGrid(theta0,xGrid=xGrid) qplot(xGrid,value,data=ds, geom="line", color=mu ) qlogitnorm(p=0.975,mu=theta0[,1],sigma=theta0[,2]) qlogitnorm(p=0.99,mu=theta0[,1],sigma=theta0[,2]) mle=0.8 plot( .ofLogitnormMLE(mu,mle=mle,quant=0.95,perc=0.999) ~ mu) theta <- twCoefLogitnormMLE( mle=mle,quant=0.95,perc=0.99) plot( dlogitnorm(xGrid,mu=theta[1],sigma=theta[2])~xGrid, type="l") c( (logit(mle)-theta[1])/(2*mle-1), theta[2]^2 ) abline(v=c(mle,0.99),col="gray") mle=0.5 theta <- twCoefLogitnormMLE( mle=mle,quant=0.99,perc=0.999) q2 <- qlogitnorm(0.999,mu=theta[1],sigma=theta[2]) plot( dlogitnorm(xGrid,mu=theta[1],sigma=theta[2])~xGrid, type="l") abline(v=c(mle,q2),col="gray") mle=0.1 theta <- twCoefLogitnormMLE( mle=mle,quant=0.5,perc=0.99) quant2 <- qlogitnorm(0.99,mu=theta[1],sigma=theta[2]) plot( dlogitnorm(xGrid,mu=theta[1],sigma=theta[2])~xGrid, type="l") abline(v=c(mle,quant2),col="gray") mle=0.9 theta <- twCoefLogitnormMLE( mle=mle,quant=0.98,perc=0.99) quant2 <- qlogitnorm(0.99,mu=theta[1],sigma=theta[2]) plot( dlogitnorm(xGrid,mu=theta[1],sigma=theta[2])~xGrid, type="l") abline(v=c(mle,quant2),col="gray") mle=0.9 mu=seq(0,if(mle<0.5) mle else 1-mle,length.out=10)[-10] mu=seq(0,0.25,length.out=10)[-10] tmp <- twSigmaLogitnorm(mle,mu) sigma2 <- (logit(mle)-mu)/(2*mle-1) theta0 <- cbind(mu,sigma=as.numeric(sqrt(sigma2))) ds <- .calcDensityGrid(theta0,xGrid=xGrid) qplot(xGrid,value,data=ds, geom="line", color=mu, ylim=c(0.9,1.2) )
context("Dataframe Structure") test_that("curve_mean", { GroupA <- runif(100, min = 0, max = 100) GroupB <- runif(100, min = 0, max = 100) RandomData <- data.frame(GroupA, GroupB) bob <- curve_mean(GroupA, GroupB, RandomData, method = "default") variable1 <- rnorm(100) variable2 <- rnorm(100) variable3 <- rnorm(100) variable4 <- rnorm(100) variable5 <- rnorm(100) variable6 <- rnorm(100) variable7 <- rnorm(100) sampledf <- data.frame(variable1, variable2, variable3, variable4, variable5, variable6, variable7) columnnames <- c("lower.limit", "upper.limit", "intrvl.width", "intrvl.level", "cdf", "pvalue", "svalue") colnames(sampledf) <- columnnames expect_equivalent(str(bob[[1]]), str(sampledf)) }) test_that("curve_gen", { GroupA <- rnorm(50) GroupB <- rnorm(50) RandomData <- data.frame(GroupA, GroupB) rob <- glm(GroupA ~ GroupB, data = RandomData) bob <- curve_gen(rob, "GroupB", method = "glm") variable1 <- rnorm(100) variable2 <- rnorm(100) variable3 <- rnorm(100) variable4 <- rnorm(100) variable5 <- rnorm(100) variable6 <- rnorm(100) variable7 <- rnorm(100) sampledf <- data.frame(variable1, variable2, variable3, variable4, variable5, variable6, variable7) columnnames <- c("lower.limit", "upper.limit", "intrvl.width", "intrvl.level", "cdf", "pvalue", "svalue") colnames(sampledf) <- columnnames expect_equivalent(str(bob[[1]]), str(sampledf)) }) test_that("curve_meta", { library(metafor) GroupAData <- runif(20, min = 0, max = 100) GroupAMean <- round(mean(GroupAData), digits = 2) GroupASD <- round(sd(GroupAData), digits = 2) GroupBData <- runif(20, min = 0, max = 100) GroupBMean <- round(mean(GroupBData), digits = 2) GroupBSD <- round(sd(GroupBData), digits = 2) GroupCData <- runif(20, min = 0, max = 100) GroupCMean <- round(mean(GroupCData), digits = 2) GroupCSD <- round(sd(GroupCData), digits = 2) GroupDData <- runif(20, min = 0, max = 100) GroupDMean <- round(mean(GroupDData), digits = 2) GroupDSD <- round(sd(GroupDData), digits = 2) StudyName <- c("Study1", "Study2") MeanTreatment <- c(GroupAMean, GroupCMean) MeanControl <- c(GroupBMean, GroupDMean) SDTreatment <- c(GroupASD, GroupCSD) SDControl <- c(GroupBSD, GroupDSD) NTreatment <- c(20, 20) NControl <- c(20, 20) metadf <- data.frame(StudyName, MeanTreatment, MeanControl, SDTreatment, SDControl, NTreatment, NControl) library(metafor) dat <- escalc( measure = "SMD", m1i = MeanTreatment, sd1i = SDTreatment, n1i = NTreatment, m2i = MeanControl, sd2i = SDControl, n2i = NControl, data = metadf ) res <- rma(yi, vi, data = dat, slab = paste(StudyName, sep = ", "), method = "FE", digits = 2) metaf <- curve_meta(res) variable1 <- rnorm(100) variable2 <- rnorm(100) variable3 <- rnorm(100) variable4 <- rnorm(100) variable5 <- rnorm(100) variable6 <- rnorm(100) variable7 <- rnorm(100) sampledf <- data.frame(variable1, variable2, variable3, variable4, variable5, variable6, variable7) columnnames <- c("lower.limit", "upper.limit", "intrvl.width", "intrvl.level", "cdf", "pvalue", "svalue") colnames(sampledf) <- columnnames expect_equivalent(str(metaf[[1]]), str(sampledf)) })
block.ts <- function(data, l=2) { if(l == 1) { return(invisible(data)) } if(is.vector(data)) { N <- floor(length(data)/l)*l return( apply(array(data, dim=c(l, N/l)), 2, mean)) } if(length(dim(data))!=2) { stop("block.ts currently only implemented for vectors of 2-dim arrays\n") } N <- floor(length(data[,1])/l)*l ncf <- array(0, dim=c(N/l,length(data[1,]))) j <- 1 for ( i in seq(1,N,l)) { ncf[j,] <- apply(data[i:(i+l-1),], 2, mean) j <- j+1 } return(invisible(ncf)) }
node <- function(object) { UseMethod("node") } way <- function(object) { UseMethod("way") } relation <- function(object) { UseMethod("relation") } elem_by_id <- function(id, subclass) { structure(c(id = id), element = subclass, class = c(subclass, "element")) } node.default <- function(object) { elem_by_id(object, "node") } way.default <- function(object) { elem_by_id(object, "way") } relation.default <- function(object) { elem_by_id(object, "relation") } attrs <- function(condition) { structure(list(condition = substitute(condition)), what = "attrs", class = "condition") } tags <- function(condition) { structure(list(condition = substitute(condition)), what = "tags", class = "condition") } refs <- function(condition) { structure(list(condition = substitute(condition)), what = "refs", class = "condition") } node.condition <- function(object) { structure(object, element = "node") } way.condition <- function(object) { structure(object, element = "way") } relation.condition <- function(object) { structure(object, element = "relation") }
mean(Sepal.Length ~ Species, data = iris) median(Sepal.Length ~ Species, data = iris) df_stats(Sepal.Length ~ Species, data = iris, mean, median)
MannKendallLTP <- function(data) { nx <- as.integer(length(data)) nx_double_sum <- as.integer((nx*(nx-1))/2) out1<-.C("score",nx,data,tr = as.integer(array(0,dim = c(1,3))),PACKAGE = "HKprocess") S <- (out1$tr)[1] V0Sminus <- (out1$tr)[2] denom_ties <- (out1$tr)[3] rm(out1) V0S <- (nx * (nx - 1) * (2*nx + 5))/18 - V0Sminus/18 u <- ifelse(S > 0,(S - 1)/sqrt(V0S),ifelse(S==0,0,(S + 1)/sqrt(V0S))) pvalue_mann_kendall <- 2 * pnorm(-abs(u)) rm(u) denominator <- sqrt(nx_double_sum - 0.5 * denom_ties)* sqrt(nx_double_sum) tau <- S/denominator out2<-.C("score0",nx,data,tr = array(0,dim = c(1,nx_double_sum)),PACKAGE = "HKprocess") s0 <- median(out2$tr) rm(out2) y <- data - s0 * (1:nx) ranky <- rank(y,ties.method = c("average")) z <- qnorm(ranky/(nx + 1)) Hest <- mleHK(z)[3] mHsign <- 0.5 - 2.87 * (nx^(-0.9067)) sHsign <- 0.77654 * (nx^(-0.5)) - 0.0062 pvalue_H <- 2 * pnorm(-abs((Hest - mHsign)/sHsign)) a0 <- (1.0024 * nx - 2.5681)/(nx + 18.6693) a1 <- (-2.2510 * nx + 157.2075)/(nx + 9.2245) a2 <- (15.3402 * nx - 188.6140)/(nx + 5.8917) a3 <- (-31.4258 * nx + 549.8599)/(nx - 1.1040) a4 <- (20.7988 * nx - 419.0402)/(nx - 1.9248) B <- a0 + a1 * Hest + a2 * Hest^2 + a3 * Hest^3 + a4 * Hest^4 out3<-.C("VstarSfunction",nx,Hest,tr = array(0,dim = c(1,1)),PACKAGE = "HKprocess") V_star_S <- (c((out3$tr)[1])) rm(out3) VS <- B * V_star_S u <- ifelse(S > 0,(S - 1)/sqrt(VS),ifelse(S==0,0,(S + 1)/sqrt(VS))) pvalue_mann_kendall_ltp <- 2 * pnorm(-abs(u)) rm(u) Mann_Kendall <- setNames(c(tau,S,V0S,s0,denominator,pvalue_mann_kendall), c("Kendall_s_tau_statistic","Score","V0Score","Sen_slope","denominator", "2_sided_pvalue")) H_significance <- setNames(c(Hest,pvalue_H),c("Hest","2_sided_pvalue")) Mann_Kendall_LTP <- setNames(c(VS,pvalue_mann_kendall_ltp),c("VScore", "2_sided_pvalue")) results_names <- c("Mann_Kendall","Significance_of_H","Mann_Kendall_LTP") results <- list(Mann_Kendall,H_significance,Mann_Kendall_LTP) names(results) <- results_names return(results) }
context("tuning") test_that("tuning_run throws graceful errors with wrong sample argument", { with_tests_dir({ expect_error( tuning_run("write_run_data.R", confirm = FALSE, flags = list( learning_rate = c(0.01, 0.02), max_steps = c(2500, 500) ), sample = 1.1, echo = FALSE ) ) }) with_tests_dir({ expect_error( tuning_run("write_run_data.R", confirm = FALSE, flags = list( learning_rate = c(0.01, 0.02), max_steps = c(2500, 500) ), sample = 0, echo = FALSE ) ) }) runs <- with_tests_dir({ tuning_run("write_run_data.R", confirm = FALSE, flags = list( learning_rate = c(0.01, 0.02), max_steps = c(2500, 500) ), sample = 1e-6, echo = FALSE ) }) expect_equal(nrow(runs), 1) }) test_that("tuning_run can execute multiple runs", { runs <- with_tests_dir({ tuning_run("write_run_data.R", confirm = FALSE, flags = list( learning_rate = c(0.01, 0.02), max_steps = c(2500, 500) ), sample = 1, echo = FALSE ) }) expect_equal(nrow(runs), 4) }) test_that("tuning_run can correctly handle different types of inputs for flags", { grid <- expand.grid( learning_rate = c(0.01, 0.02), max_steps = c(2500, 500, 99) ) runs <- with_tests_dir(tuning_run("write_run_data.R", confirm = FALSE, flags = grid )) expect_equal(nrow(runs), 6) expect_error( with_tests_dir(tuning_run("write_run_data.R", confirm = FALSE), "flags must be specified as a named list" )) expect_error( tuning_run("write_run_data.R", confirm = FALSE, flags = list(c(0.01, 0.02), c(2500, 500)) ), "as a named list" ) }) runs_dirs <- with_tests_dir(normalizePath(list.dirs("runs", recursive = FALSE))) unlink(runs_dirs, recursive = TRUE)
ipta <- function(x = x, y = y, Monthly = Monthly){ df <- cbind.data.frame(x, y, Monthly) d <- rbind.data.frame(df, df[1, ]) distance = sqrt(diff(d$x)^2 + diff(d$y)^2) slope = diff(d$y) / diff(d$x) plot(d$x, d$y, pch = 19, type = "b", main = "Innovative Polygon Trend Analysis", xlab = "First half", ylab = "Second half", xlim = c(min(d$x),max(d$x)), ylim = c(min(d$y),max(d$y))) text(x = d$x, y = d$y, labels = df$Monthly, cex=0.8, pos=3,col="black") abline(a = 0, b = 1, col = "black", lwd = 2) return(list("Distance" = distance, "Slope" = slope)) }
context("Results for derived statistics") elements <- 1:10 total <- length(elements) detectedH1 <- c(1:4, 8,9) trueH1 <- 1:5 test_that("derived statistics are correct", { expect_equal(ebc_TPR(detectedH1, trueH1), 4 / 5) expect_equal(ebc_TNR(detectedH1, trueH1, elements), 3 / 5) expect_equal(ebc_TNR(detectedH1, trueH1, m = total), 3 / 5) expect_equal(ebc_PPV(detectedH1, trueH1), 2 / 3) expect_equal(ebc_NPV(detectedH1, trueH1, elements), 3 / 4) expect_equal(ebc_NPV(detectedH1, trueH1, m = total), 3 / 4) expect_equal(ebc_FNR(detectedH1, trueH1), 1 / 5) expect_equal(ebc_FPR(detectedH1, trueH1, elements), 2 / 5) expect_equal(ebc_FPR(detectedH1, trueH1, m = total), 2 / 5) expect_equal(ebc_FDR(detectedH1, trueH1), 1 / 3) expect_equal(ebc_FOR(detectedH1, trueH1, elements), 1 / 4) expect_equal(ebc_FOR(detectedH1, trueH1, m = total), 1 / 4) expect_equal(ebc_ACC(detectedH1, trueH1, elements), 7 / 10) expect_equal(ebc_ACC(detectedH1, trueH1, m = total), 7 / 10) expect_equal(ebc_BACC(detectedH1, trueH1, elements), 7 / 10) expect_equal(ebc_BACC(detectedH1, trueH1, m = total), 7 / 10) expect_equal(ebc_F1(detectedH1, trueH1), 8 / 11) expect_equal(ebc_PLR(detectedH1, trueH1, elements), 2) expect_equal(ebc_PLR(detectedH1, trueH1, m = total), 2) expect_equal(ebc_NLR(detectedH1, trueH1, elements), 1 / 3) expect_equal(ebc_NLR(detectedH1, trueH1, m = total), 1 / 3) expect_equal(ebc_DOR(detectedH1, trueH1, elements), 6) expect_equal(ebc_DOR(detectedH1, trueH1, m = total), 6) }) detectedH1 <- sample(letters, 14) trueH1 <- sample(letters, 15) test_that("relations between statistics are correct", { expect_equal(ebc_TPR(detectedH1, trueH1), 1 - ebc_FNR(detectedH1, trueH1)) expect_equal(ebc_TNR(detectedH1, trueH1, letters), 1 - ebc_FPR(detectedH1, trueH1, letters)) expect_equal(ebc_PPV(detectedH1, trueH1), 1 - ebc_FDR(detectedH1, trueH1)) expect_equal(ebc_NPV(detectedH1, trueH1, letters), 1 - ebc_FOR(detectedH1, trueH1, letters)) expect_equal(ebc_F1(detectedH1, trueH1), 2 / ((1 / ebc_TPR(detectedH1, trueH1)) + 1 / ebc_PPV(detectedH1, trueH1))) expect_equal(ebc_DOR(detectedH1, trueH1, letters), ebc_PLR(detectedH1, trueH1, letters) / ebc_NLR(detectedH1, trueH1, letters)) })
library(hansard) context("research_briefings") test_that("research_briefings return expected format", { skip_on_cran() skip_on_travis() rtl <- hansard_research_topics_list() expect_is(rtl, "list") rsl <- hansard_research_subtopics_list() expect_is(rsl, "list") rtyl <- hansard_research_types_list() expect_is(rtyl, "list") rbdf <- hansard_research_briefings( subtopic = "Falkland Islands", verbose = TRUE ) expect_length(rbdf, 14) expect_true(tibble::is_tibble(rbdf)) rbtsb <- hansard_research_briefings( topic = "Defence", subtopic = "Falkland Islands", verbose = TRUE ) expect_true(tibble::is_tibble(rbtsb)) expect_true(rbdf[[1]][[1]] == rbtsb[[1]][[1]]) })
m2Set <- function (v=c(0)) { nv<-list();k<-0; for (i in 1:length( v ) ) for (j in 1:length(v[[i]][[1]])) if (!is.element( list(c(v[[i]][[1]][[j]])), nv) ) { k<-k+1; nv[[k]]<-v[[i]][[1]][[j]]; } return(nv); }
monmlp.reshape <- function(x, y, weights, hidden1, hidden2) { N11 <- ncol(x)+1 N12 <- hidden1 N1 <- N11*N12 W1 <- weights[1:N1] W1 <- matrix(W1, N11, N12) if (hidden2==0){ N21 <- hidden1+1 N22 <- ncol(y) N2 <- N1 + N21*N22 W2 <- weights[(N1+1):N2] W2 <- matrix(W2, N21, N22) W.list <- list(W1=W1, W2=W2) } else{ N21 <- hidden1+1 N22 <- hidden2 N2 <- N1 + N21*N22 W2 <- weights[(N1+1):N2] W2 <- matrix(W2, N21, N22) N31 <- hidden2+1 N32 <- ncol(y) N3 <- N2 + N31*N32 W3 <- weights[(N2+1):N3] W3 <- matrix(W3, N31, N32) W.list <- list(W1=W1, W2=W2, W3=W3) } W.list }
random.active.test <- function( x.b, x.g, k=length(x.b), segments=NULL, max.iter=2000, eps=0.001 ) { if ( missing( x.b ) ) stop( "argument 'x.b' is missing" ) if ( !is.vector( x.b ) ) stop( "argument 'x.b' is not a vector" ) if ( !is.numeric( x.b ) ) stop( "argument 'x.b' is not a numeric vector" ) n <- length( x.b ) if ( n == 1 ) stop( "Argument 'x.b' must be of length greater than 1" ) if ( missing( x.g ) ) stop( "argument 'x.g' is missing" ) if ( x.g <= 0 ) stop( "argument x.g is not positive" ) if ( !is.null( segments ) ) { activeInvestments <- collapse.segments( segments ) numberInvestments <- length( activeInvestments ) if ( numberInvestments > n || max( activeInvestments ) > n ) stop( "argument 'segments' has investments that are not allowed" ) thisResult <- random.active.test( x.b[activeInvestments], x.g, k=numberInvestments, segments=NULL,max.iter, eps ) weights <- thisResult$x iter <- thisResult$iter passiveInvestments <- segment.complement( n, activeInvestments ) x.a <- rep( 0, n ) x.p <- rep( 0, n ) x.a[activeInvestments] <- weights x.p[passiveInvestments] <- x.b[passiveInvestments] x <- x.a + x.p result <- list( x=x, iter=iter ) return( result ) } if ( k < n ) { if ( k < 2 ) stop( "argument 'k' is less than two" ) allInvestments <- 1:n activeInvestments <- sample( allInvestments, k, replace=FALSE ) thisResult <- random.active.test( x.b[activeInvestments], x.g, k, segments=NULL, max.iter, eps ) weights <- thisResult$x iter <- thisResult$iter passiveInvestments <- segment.complement( n, activeInvestments ) x.a <- rep( 0, n ) x.p <- rep( 0, n ) x.a[activeInvestments] <- weights x.p[passiveInvestments] <- x.b[passiveInvestments] x <- x.a + x.p result <- list( x=x, iter=iter ) return( result ) } if ( k > n ) stop( "argument 'k' is greater than the number of benchmark investments" ) x.t.b <- sum( x.b ) x.t.long <- x.g * x.t.b / 2 x.t.short <- x.t.long thisResult <- random.longshort.test( n, k, segments, x.t.long, x.t.short, max.iter, eps ) x.ls <- thisResult$x iter <- thisResult$iter x <- x.b + x.ls result <- list( x=x, iter=iter ) return( result ) }