code
stringlengths
1
13.8M
"makepd" <- function(mat, eig.tol=1.0000e-06){ cor.mat <- covtocor(mat) mat <- cor.mat$mat eig <- eigen(mat, symmetric = TRUE) D <- sort(eig$values) S <- eig$vectors[,order(sort(D, decreasing=TRUE ))] D[which(D<eig.tol)] <- eig.tol for (i in 1:ncol(S)) S[,i] <- S[,i] * D[i] B <- t(sumsqscale(t(S))) A <- B %*% t(B) return (cortocov(A, cor.mat$sd)) }
qc_missed_cleavages <- function(data, sample, grouping, missed_cleavages, intensity, remove_na_intensities = TRUE, method = "count", plot = FALSE, interactive = FALSE) { protti_colours <- "placeholder" utils::data("protti_colours", envir = environment()) if (remove_na_intensities == TRUE) { if (missing(intensity)) { stop(strwrap("Please provide a column containing intensities or set remove_na_intensities to FALSE", prefix = "\n", initial = "" )) } data <- data %>% tidyr::drop_na({{ intensity }}) } if (method == "count") { result <- data %>% dplyr::distinct({{ sample }}, {{ grouping }}, {{ missed_cleavages }}, {{ intensity }}) %>% dplyr::count({{ sample }}, {{ missed_cleavages }}) %>% dplyr::group_by({{ sample }}) %>% dplyr::mutate(total_peptide_count = sum(n)) %>% dplyr::group_by({{ sample }}, {{ missed_cleavages }}) %>% dplyr::summarise(mc_percent = n / .data$total_peptide_count * 100) %>% dplyr::ungroup() %>% dplyr::mutate({{ missed_cleavages }} := forcats::fct_inorder(factor({{ missed_cleavages }}))) %>% dplyr::mutate({{ sample }} := factor({{ sample }}, levels = unique(stringr::str_sort({{ sample }}, numeric = TRUE)) )) if (plot == FALSE) { return(result) } else { plot <- result %>% ggplot2::ggplot(aes( x = {{ sample }}, y = .data$mc_percent, fill = {{ missed_cleavages }} )) + geom_col(col = "black", size = 1) + { if (interactive == FALSE) { geom_text( data = result %>% dplyr::filter(.data$mc_percent > 5), aes(label = round(.data$mc_percent, digits = 1)), position = position_stack(vjust = 0.9) ) } } + labs( title = "Missed cleavages per .raw file", subtitle = "By percent of total peptide count", x = "Sample", y = "% of total peptide count", fill = "Missed cleavages" ) + theme_bw() + theme( plot.title = ggplot2::element_text(size = 20), axis.title.x = ggplot2::element_text(size = 15), axis.text.y = ggplot2::element_text(size = 15), axis.text.x = ggplot2::element_text(size = 12, angle = 75, hjust = 1), axis.title.y = ggplot2::element_text(size = 15), legend.title = ggplot2::element_text(size = 15), legend.text = ggplot2::element_text(size = 15) ) + scale_fill_manual(values = protti_colours) } } if (method == "intensity") { result <- data %>% tidyr::drop_na({{ intensity }}) %>% dplyr::distinct( {{ sample }}, {{ grouping }}, {{ missed_cleavages }}, {{ intensity }} ) %>% dplyr::group_by({{ sample }}) %>% dplyr::mutate(total_intensity = sum({{ intensity }})) %>% dplyr::group_by({{ sample }}, {{ missed_cleavages }}) %>% dplyr::mutate(sum_intensity_mc = sum({{ intensity }})) %>% dplyr::summarise(mc_percent = .data$sum_intensity_mc / .data$total_intensity * 100) %>% dplyr::ungroup() %>% dplyr::mutate({{ missed_cleavages }} := forcats::fct_inorder(factor({{ missed_cleavages }}))) %>% dplyr::mutate({{ sample }} := factor({{ sample }}, levels = unique(stringr::str_sort({{ sample }}, numeric = TRUE)) )) %>% dplyr::distinct() if (plot == FALSE) { return(result) } else { plot <- result %>% ggplot2::ggplot(aes( x = {{ sample }}, y = .data$mc_percent, fill = {{ missed_cleavages }} )) + geom_col(col = "black", size = 1) + { if (interactive == FALSE) { geom_text( data = result %>% dplyr::filter(.data$mc_percent > 5), aes(label = round(.data$mc_percent, digits = 1)), position = position_stack(vjust = 0.9) ) } } + labs( title = "Missed cleavages per .raw file", subtitle = "By percent of total intensity", x = "", y = "% of total intensity", fill = "Missed cleavages" ) + theme_bw() + theme( plot.title = ggplot2::element_text(size = 20), axis.title.x = ggplot2::element_text(size = 15), axis.text.y = ggplot2::element_text(size = 15), axis.text.x = ggplot2::element_text(size = 12, angle = 75, hjust = 1), axis.title.y = ggplot2::element_text(size = 15), legend.title = ggplot2::element_text(size = 15), legend.text = ggplot2::element_text(size = 15) ) + scale_fill_manual(values = protti_colours) } } if (interactive == TRUE) { return(plotly::ggplotly(plot)) } else { return(plot) } }
bed_closest <- function(x, y, overlap = TRUE, suffix = c(".x", ".y")) { x <- check_interval(x) y <- check_interval(y) check_suffix(suffix) x <- bed_sort(x) y <- bed_sort(y) groups_xy <- shared_groups(x, y) groups_xy <- unique(as.character(c("chrom", groups_xy))) groups_vars <- rlang::syms(groups_xy) x <- convert_factors(x, groups_xy) y <- convert_factors(y, groups_xy) x <- group_by(x, !!! groups_vars) y <- group_by(y, !!! groups_vars) suffix <- list(x = suffix[1], y = suffix[2]) grp_indexes <- shared_group_indexes(x, y) res <- closest_impl(x, y, grp_indexes$x, grp_indexes$y, suffix$x, suffix$y) if (!overlap) { res <- filter(res, .overlap < 1) res <- select(res, -.overlap) } res }
dual_top <- function(alpha, beta, pair, error, numb_cells) { number_plates <- nrow(alpha)/96 max_beta <- ncol(beta) sample_size_well <- numb_cells[, 1] numb_sample <- numb_cells[, 2] small <- which(sample_size_well < 50) if (length(small) == 0 ) return(matrix(nrow = 0, ncol = 3)) if (length(small) > 1) { if (any(small == 1)) { small_wells <- c(1:numb_sample[small[1]]) for (i in 2:length(small)) { j <- small[i] small_wells <- c(small_wells, (sum(numb_sample[1:(j-1)]) + 1):sum(numb_sample[1:j]) ) } } else { small_wells <- vector() for (i in 1:length(small)) { j <- small[i] small_wells <- c(small_wells, (sum(numb_sample[1:(j-1)]) + 1):sum(numb_sample[1:j]) ) } } } else { small_wells <- 1:numb_sample[small] } alpha <- alpha[small_wells, ] beta <- beta[small_wells, ] rec <- matrix(nrow = 0, ncol = 6) colnames(rec) <- c("beta", "alpha1", "alpha2", "shared_LL", "dual_LL", "dual_freq") freq <- pair freq <- freq[freq[, 9] > .8,] freq <- freq[order(freq[, "MLE"], decreasing = TRUE), ] freq <- freq[!is.na(freq[, "MLE"]), ] for (clon in 1:max_beta) { x <- freq[freq[, "beta1"] == clon, , drop = FALSE] numb_cand <- nrow(x) if (numb_cand > 1) { combos <- utils::combn(numb_cand, 2) for (ind in 1:ncol(combos)) { ind_beta <- clon ind_alph1 <- x[combos[1, ind], "alpha1"] ind_alph2 <- x[combos[2, ind], "alpha1"] f1 <- x[combos[1, ind], "MLE"] f2 <- x[combos[2, ind], "MLE"] exp_plates <- 0 sample_size_well <- numb_cells[, 1] numb_sample <- numb_cells[, 2] sample_size_well <- sample_size_well[small] numb_sample <- numb_sample[small] numb_distinct <- length(sample_size_well) well_clone <- rep(0, numb_distinct) well_clone <- matrix(ncol = 5, nrow = numb_distinct) colnames(well_clone) <- c("ba1", "ba2", "a1a2", "ba1a2", "none") for (size in 1:numb_distinct) { ind1 <- cumsum(numb_sample[1:size])[size] - numb_sample[size] + 1 ind2 <- cumsum(numb_sample[1:size])[size] well_clone[size, "ba1"] <- sum(beta[ind1:ind2, ind_beta] == 1 & alpha[ind1:ind2, ind_alph1] == 1 & alpha[ind1:ind2, ind_alph2] == 0) well_clone[size, "ba2"] <- sum(beta[ind1:ind2, ind_beta] == 1 & alpha[ind1:ind2, ind_alph1] == 0 & alpha[ind1:ind2, ind_alph2] == 1) well_clone[size, "a1a2"] <- sum(beta[ind1:ind2, ind_beta] == 0 & alpha[ind1:ind2, ind_alph1] == 1 & alpha[ind1:ind2, ind_alph2] == 1) well_clone[size, "ba1a2"] <- sum(beta[ind1:ind2, ind_beta] == 1 & alpha[ind1:ind2, ind_alph1] == 1 & alpha[ind1:ind2, ind_alph2] == 1) well_clone[size, "none"] <- numb_sample[size] - sum(well_clone[size, 1:4]) } binomial_coeff <- list() for (i in 1:numb_distinct) { binomial_coeff[[i]] <- choose(sample_size_well[i], 1:sample_size_well[i]) } multinomial_coeff <- list() for(i in 1:numb_distinct) { cells_per_well <- sample_size_well[i] multi_mat <- matrix(0, nrow = cells_per_well, ncol = cells_per_well) for (j in 1:(cells_per_well-1)) { for (k in 1:(cells_per_well - j)) { multi_mat[j, k] <- multicool::multinom(c(j, k, sample_size_well[i] - j - k), counts = TRUE) } } multinomial_coeff[[i]] <- multi_mat } shared_LL <- dual_discrim_shared_likelihood(f1, f2, .15, numb_wells = well_clone, numb_cells = sample_size_well, binomials = binomial_coeff, multinomials = multinomial_coeff) dual_LL <- stats::optimize(dual_discrim_dual_likelihood, interval = c(0, .4), err = .15, numb_wells = well_clone, numb_cells = sample_size_well, binomials = binomial_coeff) dual_LL_LL <- dual_LL$objective dual_LL_freq <- dual_LL$minimum rec <- rbind(rec, c(clon, ind_alph1, ind_alph2, shared_LL, dual_LL_LL, dual_LL_freq)) } } } rec <- as.data.frame(rec) rec <- dplyr::mutate(rec, diff = shared_LL - dual_LL) filt_rec <- dplyr::filter(rec, diff > 10) filt_rec <- dplyr::filter(filt_rec, shared_LL > 40 & shared_LL < 100) dual_cand <- filt_rec[, c(1, 1:3), drop = FALSE] names(dual_cand) <- c("beta1", "beta2", "alpha1", "alpha2") dual_cand }
screen_abstracts_ui <- function(){ header <- shinydashboard::dashboardHeader( tag("li", list( class = "dropdown", uiOutput("selector_bar") ) ), title = plotOutput("header") ) sidebar <- shinydashboard::dashboardSidebar( sidebarMenu( id = "tabs", menuItem("Data", icon = shiny::icon("bar-chart-o"), startExpanded = TRUE, fileInput( inputId = "data_in", label = "Import", multiple = TRUE ), actionButton( inputId = "save_data", label = "Save Data", width = "85%" ), actionButton( inputId = "clear_data", label = "Clear Data", width = "85%" ), actionButton( inputId = "exit_app", label = "Exit App", width = "85%" ), br() ), menuItem("Appearance", icon = icon("paint-brush"), selectInput("hide_names", label = "Hide identifying information?", choices = c("Yes" = "TRUE", "No" = "FALSE"), multiple = FALSE ), selectInput( inputId = "hide_screened", label = "Hide screened entries?", choices = c("Yes" = "TRUE", "No" = "FALSE"), multiple = FALSE ), selectInput( inputId = "order", label = "Order citations by:", choices = list( "Random" = "random", "Input" = "initial", "Alphabetical" = "alphabetical", "User-defined" = "user_defined" ) ), uiOutput("column_selector"), actionButton( inputId = "order_result_go", label = "Re-order", width = "85%" ), br() ) ) ) body <- shinydashboard::dashboardBody( revtools_css(), fluidRow( column(width = 1), column( width = 10, tableOutput("citation"), br(), br(), uiOutput(outputId = "render_notes_toggle"), uiOutput(outputId = "render_notes") ), column(width = 1) ) ) return( list( header = header, sidebar = sidebar, body = body ) ) }
"N" <- 21 "r" <- c(10, 23, 23, 26, 17, 5, 53, 55, 32, 46, 10, 8, 10, 8, 23, 0, 3, 22, 15, 32, 3) "n" <- c(39, 62, 81, 51, 39, 6, 74, 72, 51, 79, 13, 16, 30, 28, 45, 4, 12, 41, 30, 51, 7) "x1" <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) "x2" <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
get_new_members <- function(page = 1, myAPI_Key){ API = 'congress' query <- sprintf("members/new.json") pp_query(query, API, page = page, myAPI_Key = myAPI_Key) }
cdc_rankedpairs <- function(x, allow_dup = TRUE, min_valid = 1) { method <- "rankedpairs" if (min_valid < 1) stop("Minimux number of min_valid is 1.") if (!class(x)[1] %in% c("vote", "matrix", "condorcet")) stop("x must be a vote, condorcet or matrix object.") stopifnot(allow_dup %in% c(TRUE, FALSE)) CORE_M <- fInd_cdc_mAtrIx(x, dup_ok = allow_dup, available = min_valid) message("EXTRACTING INFO") class1 <- CORE_M$input_object candidate <- CORE_M$candidate candidate_num <- CORE_M$candidate_num ballot_num <- CORE_M$ballot_num valid_ballot_num <- CORE_M$valid_ballot_num cdc_matrix <- CORE_M$cdc dif_matrix <- CORE_M$dif binary_m <- CORE_M$binary message("SELECTING") summary_m <- sUmmAry_101(x = binary_m, rname = candidate) result_ID <- 0 message("------PAIRWISE") win_side <- c() lose_side <- c() win_num <- c() lose_num <- c() pair_have_tie <- 0 for (i in 1:nrow(cdc_matrix)) { for (j in 1:ncol(cdc_matrix)) { if (i > j) { ij <- cdc_matrix[i, j] ji <- cdc_matrix[j, i] if (ij >= ji) { win_side <- append(win_side, candidate[i]) lose_side <- append(lose_side, candidate[j]) win_num <- append(win_num, ij) lose_num <- append(lose_num, ji) if (ij == ji) pair_have_tie <- 1 } else if (ij < ji) { win_side <- append(win_side, candidate[j]) lose_side <- append(lose_side, candidate[i]) win_num <- append(win_num, ji) lose_num <- append(lose_num, ij) } } } } tally <- data.frame(win_side, lose_side, win_num, lose_num, stringsAsFactors = FALSE) if (pair_have_tie == 0) result_ID <- 1 if (result_ID == 1) { message("------SORTING") tally_o <- order((-1) * tally[, 3], tally[, 4]) tally <- tally[tally_o, ] nr_tally <- nrow(tally) only_num_df <- tally[, c(3, 4)] if (nr_tally == nrow(unique(only_num_df))) { result_ID <- 2 } else { BI_ZERO_ONE <- binary_m BI_ZERO_ONE[BI_ZERO_ONE == -1] <- 0 re_tally <- RP_TIE_SOLVE(x = tally, zeroone = BI_ZERO_ONE) if (re_tally[[1]] == TRUE) result_ID <- 2 tally <- re_tally[[2]] } } if (result_ID == 2) { message("------LOCKING IN") name_m <- as.matrix(tally[, c(1, 2)]) the_source <- lock_winner(name_m, CAND = candidate) winner <- the_source[[2]] LOCK_IN <- the_source[[1]] } message("COLLECTING RESULT") over <- list(call = match.call(), method = method, candidate = candidate, candidate_num = candidate_num, ballot_num = ballot_num, valid_ballot_num = valid_ballot_num, winner = NULL, input_object = class1, cdc = cdc_matrix, dif = dif_matrix, binary = binary_m, summary_m = summary_m, other_info = NULL) if (result_ID == 0) { over$other_info <- list(failure = "Pairwise comparison has ties, i. e., the number of people who prefer i than j is equal to the number of people who prefer j than i.", tally = tally, lock_in = NULL) } if (result_ID == 1) { over$other_info <- list(failure = "There are unsolved ties when sorting the tally.", tally = tally, lock_in = NULL) } if (result_ID == 2) { over$winner <- winner over$other_info <- list(failure = "", tally = tally, lock_in = LOCK_IN) } class(over) <- "condorcet" message("DONE") return(over) }
power.analysis.subgroup = function(TE1, TE2, seTE1, seTE2, sd1, sd2, var1, var2, two.tailed = TRUE) { gamma = abs(TE1 - TE2) if (missing(var1)) { if (missing(sd1)) { var1 = (((TE1 - 1.96 * seTE1) - TE1)/-1.96)^2 var2 = (((TE2 - 1.96 * seTE2) - TE2)/-1.96)^2 varg = var1 + var2 } else { var1 = sd1^2 var2 = sd2^2 varg = var1 + var2 } } else { varg = var1 + var2 } ca_1tail = 1.64 ca_2tail = 1.96 onetail = (1 - pnorm(ca_1tail - (gamma/sqrt(varg)))) twotail = (1 - pnorm(ca_2tail - (gamma/sqrt(varg))) + pnorm(-ca_2tail - (gamma/sqrt(varg)))) if (two.tailed == TRUE) { if (gamma > 1) { gammas = (1:((gamma + 3) * 1000))/1000 powervec = vector() for (i in 1:length(gammas)) { powervec[i] = (1 - pnorm(ca_2tail - (gammas[i]/sqrt(varg))) + pnorm(-ca_2tail - (gammas[i]/sqrt(varg)))) } } else { gammas = (1:1000)/1000 powervec = vector() for (i in 1:length(gammas)) { powervec[i] = (1 - pnorm(ca_2tail - (gammas[i]/sqrt(varg))) + pnorm(-ca_2tail - (gammas[i]/sqrt(varg)))) } } plotdat = as.data.frame(cbind(gammas, powervec)) plot = ggplot(data = plotdat, aes(x = gammas, y = powervec)) + geom_line(color = "blue", size = 2) + geom_point(aes(x = gamma, y = twotail), color = "red", size = 5) + theme_minimal() + geom_hline(yintercept = 0.8, color = "black", linetype = "dashed") + ylab("Power") + xlab("Effect size difference") plot(plot) if (!is.na(plotdat[plotdat$powervec >= 0.8, ][1, 1])) { cat("Minimum effect size difference needed for sufficient power: ", plotdat[plotdat$powervec >= 0.8, ][1, 1], " (input: ", gamma, ")", "\n", sep = "") } cat("Power for subgroup difference test (two-tailed): \n") return(twotail) } else { if (gamma > 1) { gammas = (1:((gamma + 3) * 1000))/1000 powervec = vector() for (i in 1:length(gammas)) { powervec[i] = (1 - pnorm(ca_1tail - (gammas[i]/sqrt(varg)))) } } else { gammas = (1:1000)/1000 powervec = vector() for (i in 1:length(gammas)) { powervec[i] = (1 - pnorm(ca_1tail - (gammas[i]/sqrt(varg)))) } } plotdat = as.data.frame(cbind(gammas, powervec)) plot = ggplot(data = plotdat, aes(x = gammas, y = powervec)) + geom_line(color = "blue", size = 2) + geom_point(aes(x = gamma, y = onetail), color = "red", size = 5) + theme_minimal() + geom_hline(yintercept = 0.8, color = "black", linetype = "dashed") + ylab("Power") + xlab("Effect size difference") plot(plot) if (!is.na(plotdat[plotdat$powervec >= 0.8, ][1, 1])) { cat("Minimum effect size difference needed for sufficient power: ", plotdat[plotdat$powervec >= 0.8, ][1, 1], " (input: ", gamma, ")", "\n", sep = "") } cat("Power for subgroup difference test (one-tailed): \n") return(onetail) } }
nimbleFinalize <- function(extptr) { eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$RNimble_Ptr_ManualFinalizer, extptr)) } cGetNRow <- function(cMV, compIndex = 1) { nRow = eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getNRow, cMV$componentExtptrs[[compIndex]])) return(nRow) } newObjElementPtr <- function(rPtr, name, dll){ eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$getModelObjectPtr, rPtr, name)) } getNimValues <- function(elementPtr, pointDepth = 1, dll){ if(!inherits(elementPtr, "externalptr")) return(NULL) eval(call('.Call', nimbleUserNamespace$sessionSpecificDll$Nim_2_SEXP, elementPtr, as.integer(pointDepth)) ) } setNimValues <- function(elementPtr, values, pointDepth = 1, allowResize = TRUE, dll){ ptrExp <- substitute(elementPtr) storage.mode(values) <- 'numeric' if(!inherits(elementPtr, "externalptr")) return(NULL) jnk = eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$SEXP_2_Nim, elementPtr, as.integer(pointDepth), values, allowResize)) values } setPtrVectorOfPtrs <- function(accessorPtr, contentsPtr, length, dll) { if(!inherits(accessorPtr, 'externalptr')) return(NULL) if(!inherits(contentsPtr, 'externalptr')) return(NULL) if(!is.numeric(length)) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$setPtrVectorOfPtrs, accessorPtr, contentsPtr, as.integer(length))) contentsPtr } setOnePtrVectorOfPtrs <- function(accessorPtr, i, contentsPtr, dll) { if(!inherits(accessorPtr, 'externalptr')) return(NULL) if(!is.numeric(i)) return(NULL) if(!inherits(contentsPtr, 'externalptr')) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$setOnePtrVectorOfPtrs, accessorPtr, as.integer(i-1), contentsPtr)) contentsPtr } setDoublePtrFromSinglePtr <- function(elementPtr, value, dll) { if(!inherits(elementPtr, 'externalptr')) return(NULL) if(!inherits(value, 'externalptr')) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$setDoublePtrFromSinglePtr, elementPtr, value)) value } setSmartPtrFromSinglePtr <- function(elementPtr, value, dll) { if(!inherits(elementPtr, 'externalptr')) return(NULL) if(!inherits(value, 'externalptr')) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$setSmartPtrFromSinglePtr, elementPtr, value)) value } setSmartPtrFromDoublePtr <- function(elementPtr, value, dll) { if(!inherits(elementPtr, 'externalptr')) return(NULL) if(!inherits(value, 'externalptr')) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$setSmartPtrFromDoublePtr, elementPtr, value)) value } getDoubleValue <- function(elementPtr, pointDepth = 1, dll){ if(!inherits(elementPtr, "externalptr") ) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$extract_double_2_SEXP, elementPtr, as.integer(pointDepth))) } setDoubleValue <- function(elementPtr, value, pointDepth = 1, dll){ if(!inherits(elementPtr, "externalptr")) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$populate_SEXP_2_double, elementPtr, as.integer(pointDepth), value)) value } getIntValue <- function(elementPtr, pointDepth = 1, dll){ if(!inherits(elementPtr, "externalptr") ) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$extract_int_2_SEXP, elementPtr, as.integer(pointDepth))) } setIntValue <- function(elementPtr, value, pointDepth = 1, dll){ if(!inherits(elementPtr, "externalptr")) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$populate_SEXP_2_int, elementPtr, as.integer(pointDepth), value)) value } getBoolValue <- function(elementPtr, pointDepth = 1, dll){ if(!inherits(elementPtr, "externalptr") ) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$extract_bool_2_SEXP, elementPtr, as.integer(pointDepth))) } setBoolValue <- function(elementPtr, value, pointDepth = 1, dll){ if(!inherits(elementPtr, "externalptr")) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$populate_SEXP_2_bool, elementPtr, as.integer(pointDepth), value)) value } setCharacterValue <- function(elementPtr, value, dll){ if(!inherits(elementPtr, "externalptr")) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$populate_SEXP_2_string, elementPtr, value)) value } getCharacterValue <- function(elementPtr, dll){ if(!inherits(elementPtr, "externalptr") ) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$extract_string_2_SEXP, elementPtr)) } setCharacterVectorValue <- function(elementPtr, value, dll){ if(!inherits(elementPtr, "externalptr")) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$populate_SEXP_2_stringVector, elementPtr, value)) value } getCharacterVectorValue <- function(elementPtr, dll){ if(!inherits(elementPtr, "externalptr") ) return(NULL) eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$extract_stringVector_2_SEXP, elementPtr)) }
c("Petal.Width", "Petal.Length") library("wrapr") qc(Petal.Width, Petal.Length) iris[, qc(Petal.Width, Petal.Length)] %.>% head(.) OTHER_SYMBOL <- "Petal.Length" qc(Petal.Width, OTHER_SYMBOL) qc(Petal.Width, .(OTHER_SYMBOL)) qc(Petal.Width, c(OTHER_SYMBOL)) qc(a = b) LEFT_NAME = "a" qc(.(LEFT_NAME) := b)
print.seerSet.summary<-function(x, ...) { PY=year=NULL cat(x$title) print(x$d) cat("Notes:\n") for (i in 1:length(x$notes)) cat(i,") ",x$notes[i],"\n") N=sum(x$P$PY) tit=paste(N,"Million",ifelse(x$sex=="male","Male","Female"),"Person-Years") p=qplot(year,PY,ylab="Person-Years (Millions)",main=tit,data=x$P)+ theme(axis.text=element_text(size=rel(2)),axis.title=element_text(size=rel(2))) print(p) }
NULL setGenotypeMarker = function(m, id, geno) { pedlabels = attr(m, 'pedmembers') id_int = match(id, pedlabels) if (anyNA(id_int)) stop2("Unknown ID label: ", setdiff(id, pedlabels)) nid = length(id) als = alleles(m) if(length(geno) == 2 && all(geno %in% als) && !(isXmarker.marker(m) && nid == 2 && all(attr(m, "sex")[id_int] == 1))) geno = paste(geno, collapse = "/") ng = length(geno) if(nid > 1 && ng == 1) geno = rep(geno, nid) else if(nid != ng) stop2("When setting the genotype of multiple individuals, `geno` must have length either 1 or `length(id)`") genoList = strsplit(as.character(geno), "/", fixed = TRUE) lg = lengths(genoList) empt = lg == 0 if(any(empt)) stop2("No alleles given for individual ", id[which(empt)]) bad = lg > 2 if(any(bad)) { idx = which(bad)[1] stop2(sprintf("Too many alleles given for individual '%s': ", id[idx]), genoList[[idx]]) } short = lg == 1 if(isXmarker.marker(m)) short[attr(m, "sex")[id_int] == 1] = FALSE if(any(short)) stop2("Only one allele given for individual ", id[which(short)]) genoList[lg == 1] = lapply(genoList[lg == 1], rep_len, 2) gAls = unlist(genoList, use.names = FALSE) gInt = match(gAls, als, nomatch = 0) miss = gAls[gInt == 0] unknown = setdiff(miss, c("0", "", "-", NA)) if(length(unknown) > 0) { nm = attr(m, "name") stop2(sprintf("Unknown allele for %s: ", ifelse(is.na(nm), "this marker", nm)) , unknown) } even = seq_len(nid) * 2 m[id_int, 1] = gInt[even - 1] m[id_int, 2] = gInt[even] m } setGenotype = function(x, marker = NULL, id, geno) { if(is.null(marker)) marker = seq_len(nMarkers(x)) nma = length(marker) nid = length(id) if(nma != 1 && nid != 1) stop2("Either `marker` or `id` must have length 1") if(nma == 1 && nid == 1) { if(is.pedList(x)) { comp = getComponent(x, id, checkUnique = TRUE, errorIfUnknown = TRUE) x[[comp]] = setGenotype(x[[comp]], marker = marker, id = id, geno = geno) return(x) } midx = whichMarkers(x, markers = marker) x$MARKERS[[midx]] = setGenotypeMarker(x$MARKERS[[midx]], id = id, geno = geno) return(x) } if(nma == 1 ) { if(length(geno) == 1) geno = rep(geno, nid) else if(length(geno) != nid) stop("When setting the genotype of multiple individuals, `geno` must have length either 1 or `length(id)`") if(is.pedList(x)) { comp = getComponent(x, id, checkUnique = TRUE, errorIfUnknown = TRUE) x[[comp]] = lapply(x[[comp]], function(y) { idx = match(id, y$ID, nomatch = 0) setGenotype(y, marker = marker, id = id[idx], geno = geno[idx]) }) return(x) } midx = whichMarkers(x, markers = marker) x$MARKERS[[midx]] = setGenotypeMarker(x$MARKERS[[midx]], id = id, geno = geno) return(x) } if(nid == 1) { if(length(geno) == 1) geno = rep(geno, nma) else if(length(geno) != nma) stop("When setting the genotype for multiple markers, `geno` must have length either 1 or `length(marker)`") if(is.pedList(x)) { comp = getComponent(x, id, checkUnique = TRUE, errorIfUnknown = TRUE) x[[comp]] = setGenotype(x[[comp]], marker = marker, id = id, geno = geno) return(x) } midx = whichMarkers(x, markers = marker) x$MARKERS[[midx]] = lapply(seq_along(midx), function(k) { m = x$MARKERS[[midx[k]]] setGenotypeMarker(m, id = id, geno = geno[k]) }) return(x) } } setAfreq = function(x, marker, afreq) { if(missing(marker) || length(marker) == 0) stop2("Argument `marker` cannot be empty") if(length(marker) > 1) stop2("Frequency replacement can only be done for a single marker") if(is.pedList(x)) { y = lapply(x, setAfreq, marker = marker, afreq = afreq) return(y) } idx = whichMarkers(x, markers = marker) m = x$MARKERS[[idx]] als = alleles(m) freqnames = names(afreq) %||% stop2("The frequency vector must be named with allele labels") if(anyDuplicated.default(freqnames)) stop2("Duplicated alleles in frequency vector: ", afreq[duplicated(freqnames)]) if(length(miss <- setdiff(als, freqnames))) stop2("Alleles missing from frequency vector: ", miss) alsOrder = match(freqnames, als) if(anyNA(alsOrder)) stop2("Unknown allele: ", freqnames[is.na(alsOrder)]) if(round(sum(afreq), 3) != 1) stop2("Frequencies must sum to 1") attr(m, "afreq") = as.numeric(afreq[alsOrder]) x$MARKERS[[idx]] = m x } setMarkername = function(x, marker = NULL, name) { if(is.pedList(x)) { y = lapply(x, setMarkername, marker = marker, name = name) return(y) } marker = marker %||% seq_markers(x) if(length(marker) == 0) stop2("Argument `marker` cannot be empty") if(length(name) != length(marker)) stop2("Length of `name` must equal the number of markers") if(!is.character(name)) stop2("Argument `name` must be a character vector") if (any(dig <- suppressWarnings(name == as.integer(name)), na.rm = TRUE)) stop2("Marker name cannot consist entirely of digits: ", name[dig]) idx = whichMarkers(x, markers = marker) mlist = x$MARKERS[idx] x$MARKERS[idx] = lapply(seq_along(idx), function(i) `attr<-`(mlist[[i]], "name", name[i])) checkDupNames(x) x } setChrom = function(x, marker = NULL, chrom) { if(is.pedList(x)) { y = lapply(x, setChrom, marker = marker, chrom = chrom) return(y) } marker = marker %||% seq_markers(x) if(length(marker) == 0) stop2("Argument `marker` cannot be empty") chrom = as.character(chrom) if(length(chrom) != length(marker)) if(length(chrom) == 1) chrom = rep(chrom, length(marker)) else stop2("Length of `chrom` must equal the number of markers") idx = whichMarkers(x, markers = marker) mlist = x$MARKERS[idx] x$MARKERS[idx] = lapply(seq_along(idx), function(i) `attr<-`(mlist[[i]], "chrom", chrom[i])) x } setPosition = function(x, marker = NULL, posMb) { if(is.pedList(x)) { y = lapply(x, setPosition, marker = marker, posMb = posMb) return(y) } marker = marker %||% seq_markers(x) if(length(marker) == 0) stop2("Argument `marker` cannot be empty") if(length(posMb) != length(marker)) stop2("Length of `posMb` must equal the number of markers") pos = suppressWarnings(as.numeric(posMb)) bad = (!is.na(posMb) & is.na(pos)) | (!is.na(pos) & pos < 0) if(any(bad)) stop2("`posMb` must contain nonnegative numbers or NA: ", posMb[bad]) idx = whichMarkers(x, markers = marker) mlist = x$MARKERS[idx] x$MARKERS[idx] = lapply(seq_along(idx), function(i) `attr<-`(mlist[[i]], "posMb", pos[i])) x }
context("Test distribution names") test_that("'distr2name()' is ok", { expect_identical(distr2name(c("norm", "dnorm", "rhyper", "ppois", "toto")), c("Gaussian", "Gaussian", "Hypergeometric", "Poisson", "toto")) }) test_that("'name2distr()' is ok", { expect_identical(name2distr(c("Cauchy", "Gaussian", "Generalized Extreme Value", "Toto")), c("cauchy", "norm", "gev", "toto")) })
context("PubMed") test_that("GetPubMedByID can process books ( skip_on_cran() if (httr::http_error("https://eutils.ncbi.nlm.nih.gov/")) skip("Couldn't connect to Entrez") test <- GetPubMedByID(c("24977996", "24921111")) if (length(test)) expect_true(length(test) == 2L) }) test_that("GetPubMedByID uses collective name if authors missing ( skip_on_cran() if (httr::http_error("https://eutils.ncbi.nlm.nih.gov/")) skip("Couldn't connect to Entrez") Sys.sleep(2) try_again(3, test <- GetPubMedByID(c(11678951, 15373863))) if (length(test)){ authors <- unlist(test$author) expect_true(length(authors) == 2L) } }) test_that("GetPubMedByID warns if authors missing ( skip_on_cran() if (httr::http_error("https://eutils.ncbi.nlm.nih.gov/")) skip("Couldn't connect to Entrez") Sys.sleep(2) BibOptions(check.entries = FALSE) expect_warning(try_again(3, GetPubMedByID("7936917"))) }) test_that("LookupPubMedID successfully retrieves and add ID's'", { skip_on_cran() file.name <- system.file("Bib", "RJC.bib", package="RefManageR") bib <- ReadBib(file.name) if (httr::http_error("https://eutils.ncbi.nlm.nih.gov/")) skip("Couldn't connect to Entrez") Sys.sleep(2) try_again(3, out <- LookupPubMedID(bib[[101:102]])) expect_equal(length(out), 2L) ids <- setNames(unlist(out$eprint), NULL) expect_equal(ids, c("19381352", "19444335")) Sys.sleep(2) expect_message(try_again(3, LookupPubMedID(bib, 453)), "No PubMed ID's found") }) test_that("GetPubMedByID reading of years/months ( skip_on_cran() if (httr::http_error("https://eutils.ncbi.nlm.nih.gov/")) skip("Couldn't connect to Entrez") Sys.sleep(2) try_again(3, bib <- GetPubMedByID("23891459")) expect_equal(bib$year, "2013") expect_equal(bib$month, "07") })
.onLoad = function(lib, pkg) { options(demo.ask = FALSE, example.ask = FALSE) .ani.env$.ani.opts = list( interval = 1, nmax = 50, ani.width = 480, ani.height = 480, ani.res = NA, imgdir = 'images', ani.type = 'png', ani.dev = 'png', imgnfmt = "%d", title = 'Animations Using the R Language', description = paste('Animations generated in', R.version.string, 'using the package animation'), verbose = TRUE, loop = TRUE, autobrowse = interactive(), autoplay = TRUE, use.dev = TRUE ) if (.Platform$OS.type != "windows") { if (Sys.which('ffmpeg')==''){ if(Sys.which('avconv')!=''){ ani.options(ffmpeg = "avconv") } else { ani.options(ffmpeg= "ffmpeg") } } } }
fix.tpm <- function(x,K) { y <- matrix(x,nrow=K,byrow=TRUE) z <- exp(cbind(y,0)) z/apply(z,1,sum) }
"plotMassSpec" <- function(multimodel, t, plotoptions) { m <- multimodel@modellist resultlist <- multimodel@fit@resultlist kinspecerr <- plotoptions@kinspecerr superimpose <- plotoptions@superimpose if(length(superimpose) < 1 || any(superimpose > length(m))) superimpose <- 1:length(m) allx2 <- allx <- vector() for(i in 1:length(m)) { allx2 <- append(allx2, m[[i]]@x2) allx <- append(allx, m[[i]]@x) } specList <- list() maxs <- mins <- maxspecdim <- 0 specList <- getSpecList(multimodel, t) maxA <- lapply(specList, max) maxs <- max(unlist(maxA)[superimpose]) minA <- lapply(specList, min) mins <- min(unlist(minA)[superimpose]) maxspecdim <- max(unlist(lapply(specList, ncol))[superimpose]) if(dev.cur() != 1) dev.new() par(mgp = c(2, 1, 0), mar=c(0,0,0,0), oma = c(1,0,4,0), mfrow=c( ceiling( ncol(specList[[1]]) / 2), 2)) if(ceiling( ncol(specList[[1]]) / 2)==1) par(mfrow=c(2,1)) xlim <- c(min(allx2),max(allx2)) ylim <- vector() if(length(plotoptions@xlimspec) == 2) xlim <- plotoptions@xlimspec if(length(plotoptions@ylimspec) == 2) ylim <- plotoptions@ylimspec if(length(ylim) == 0) ylim <- c(mins, maxs) if(length(plotoptions@ylimspecplus) == 2) ylim <- ylim + plotoptions@ylimspecplus if (plotoptions@normspec) ylim <- c(-1,1) if(kinspecerr) errtList <- getSpecList(multimodel, t, getclperr=TRUE) plotted <- FALSE for(i in 1) { if(i %in% superimpose) { if(kinspecerr) { if(plotoptions@writeclperr) write.table(errtList[[i]], file=paste(plotoptions@makeps, "_std_err_clp_", i, ".txt", sep=""), quote = FALSE, row.names = m[[i]]@x2) } if (plotoptions@normspec) { sp <- normdat(specList[[i]]) } else sp <- specList[[i]] for(j in 1:ncol(sp)) { if(kinspecerr) plotCI(m[[i]]@x2, sp[,j], uiw=errtList[[i]][,j], main = "", xlab = plotoptions@xlab, ylab="amplitude", lty = 1, col = j, sfrac = 0, type="l", gap = 0, add = !(i == 1), labels = "") else { if(plotoptions@normspec) { mm<-max( sp[,j] ) mi <- min(sp[,j]) ylim <- c(mi, mm) } names.side <- 0 if(j <= 2) names.side <- 3 if(j >= (ncol(sp) - 1)) { names.side <- 1 par(mar=c(2,0,0,0)) } if(names.side != 0) barplot3(sp[,j], col = j, border = j, ylim = ylim, names.arg = m[[i]]@x2, names.side = names.side, names.by = [email protected], axes=FALSE) else barplot3(sp[,j], col = j, border = j, ylim = ylim, axes=FALSE) } } } if(length(plotoptions@title) != 0){ tit <- plotoptions@title if(plotoptions@addfilename) tit <- paste(tit,m[[i]]@datafile) } else { tit <- "" if(plotoptions@addfilename) tit <- paste(tit, m[[i]]@datafile) } mtext(tit, side = 3, outer = TRUE, line = 1) par(las = 2) } abline(0,0) if (dev.interactive() && length(plotoptions@makeps) != 0) { if(plotoptions@output == "pdf") pdev <- pdf else pdev <- postscript dev.print(device=pdev, file=paste(plotoptions@makeps, "_massspec.", plotoptions@output, sep="")) } }
territories_labels <- readr::read_csv( "county_name, state_name, county_fips, state_fips, fips_class, lat, long, state_abbv American Samoa, American Samoa, NA, 60, NA, 19.5, -90, AS Guam, Guam, NA, 66, NA, 20, -100, GU Mariana Islands, Mariana Islands, NA, 69, NA, 22, -78.5, MP Puerto Rico, Puerto Rico, NA, 43, NA, 21, -94, PR Virgin Islands, Virgin Islands, NA, 78, NA, 18, -81, VI", col_types = cols(county_name = col_character(), state_name = col_character(), county_fips = col_character(), state_fips = col_character(), fips_class = col_character(), lat = col_double(), long = col_double(), state_abbv = col_character())) territories_labels_sf <- territories_labels %>% sf::st_as_sf(coords = c("long", "lat")) %>% sf::st_set_crs(4326) %>% sf::st_transform(crs = 2163) %>% select(-county_name, -fips_class, -county_fips)
as.data.frame.summary.opticut <- function(x, row.names = NULL, optional = FALSE, cut, sort, ...) { if (missing(cut)) cut <- getOption("ocoptions")$cut if (missing(sort)) sort <- getOption("ocoptions")$sort .summary_opticut(x, cut=cut, sort=sort) }
aux_lapL1 <- function(A){ E<-sum(A)/2 if (E==1){ return(array(0,c(1,1))) } else { ES<-function(p,q){ result<-0 if (q<=p) {result<-NA} else if(p==1) result<-sum(A[p,1:q]) else { for(i in 1:(p-1)) {result<-result+sum(A[i,(i+1):ncol(A)])} result<-result+sum(A[p,(p+1):q]) } return(result) } Al<-matrix(0,nrow=E,ncol=E) B<-list() for(i in 1:(ncol(A)-1)) {for(j in (i+1):ncol(A)) {if (A[i,j]==1) {n<-ES(i,j) B[[n]]<-c(i,j)} } } for(i in 1:(E-1)) {for(j in (i+1):E) {if((B[[i]][1]==B[[j]][1])|(B[[i]][2]==B[[j]][1])|(B[[i]][2]==B[[j]][2])) {Al[i,j]<-1 Al[j,i]=Al[i,j] } } } A2<-A%*%A D1<-matrix(0,nrow=E,ncol=E) for(r in 1:(ncol(A)-1)) {for(s in (r+1):ncol(A)) { if (A[r,s]==1) {m<-ES(r,s) D1[m,m]<-A2[r,s] } } } Au<-matrix(0,nrow=E,ncol=E) for(i in 1:(E-1)) {for(j in (i+1):E) {if(((B[[i]][1]==B[[j]][1])&(A[B[[i]][2],B[[j]][2]]==1))|((B[[i]][2]==B[[j]][1])&(A[B[[i]][1],B[[j]][2]]==1))|((B[[i]][2]==B[[j]][2])&(A[B[[i]][1],B[[j]][1]]==1))) {Au[i,j]<-1 Au[j,i]<-1 } } } L1<-D1-Au+Al+2*diag(E) return(L1) } }
options(rmarkdown.html_vignette.check_title = FALSE) knitr::opts_chunk$set( collapse = TRUE, comment = " ) set.seed(987202226) cir_data <- runif(n = 30, min = 0, max = 2 * pi) library(sphunif) unif_test(data = cir_data, type = "Watson") unif_test(data = cir_data, type = "Watson", p_value = "MC") unif_test(data = cir_data, type = "Watson", p_value = "asymp") avail_cir_tests unif_test(data = cir_data, type = c("PAD", "Watson")) set.seed(987202226) theta <- runif(n = 30, min = 0, max = 2 * pi) phi <- runif(n = 30, min = 0, max = pi) sph_data <- cbind(cos(theta) * sin(phi), sin(theta) * sin(phi), cos(phi)) avail_sph_tests unif_test(data = sph_data, type = "all", p_value = "MC", M = 1e3) unif_test(data = sph_data, type = "Rayleigh", p_value = "asymp") hyp_data <- r_unif_sph(n = 30, p = 10) unif_test(data = hyp_data, type = "Rayleigh", p_value = "asymp") data(venus) head(venus) nrow(venus) venus$X <- cbind(cos(venus$theta) * cos(venus$phi), sin(venus$theta) * cos(venus$phi), sin(venus$phi)) unif_test(data = venus$X, type = c("PCvM", "PAD"), p_value = "asymp") require(progress) require(progressr) handlers(handler_progress( format = ":spin [:bar] :percent Total: :elapsedfull End \u2248 :eta", clear = FALSE)) with_progress( unif_test(data = venus$X, type = c("PCvM", "PAD"), p_value = "MC", chunks = 1e2, M = 5e2, cores = 2) ) samps_sph <- r_unif_sph(n = 30, p = 3, M = 10) unif_stat(data = samps_sph, type = "all") sim <- unif_stat_MC(n = 30, type = "all", p = 3, M = 1e4, cores = 2, chunks = 10) sim$crit_val_MC head(sim$stats_MC) pow <- unif_stat_MC(n = 30, type = "all", p = 3, M = 1e4, cores = 2, chunks = 10, r_H1 = r_alt, crit_val = sim$crit_val_MC, alt = "vMF", kappa = 1) pow$power_MC r_H1 <- function(n, p, M, l = 1) { samp <- array(dim = c(n, p, M)) for (j in 1:M) { samp[, , j] <- mvtnorm::rmvnorm(n = n, mean = c(l, rep(0, p - 1)), sigma = diag(rep(1, p))) samp[, , j] <- samp[, , j] / sqrt(rowSums(samp[, , j]^2)) } return(samp) } pow <- unif_stat_MC(n = 30, type = "all", p = 3, M = 1e2, cores = 2, chunks = 5, r_H1 = r_H1, crit_val = sim$crit_val_MC) pow$power_MC ht1 <- unif_test(data = samps_sph[, , 1], type = "Rayleigh", p_value = "crit_val", crit_val = sim$crit_val_MC) ht1 ht1$reject ht2 <- unif_test(data = samps_sph[, , 1], type = "Rayleigh", p_value = "MC", stats_MC = sim$stats_MC) ht2 ht2$reject unif_test(data = samps_sph[, , 1], type = "Rayleigh", p_value = "MC")
library(testthat) test_that("autotest", { autotest_sdistribution( sdist = ChiSquaredNoncentral, pars = list(df = 8, location = 2), traits = list( valueSupport = "continuous", variateForm = "univariate", type = PosReals$new(zero = TRUE) ), support = PosReals$new(zero = TRUE), symmetry = "asymmetric", mean = 10, median = 9.2271, variance = 24, skewness = 0.9526, exkur = 1.3333, mgf = NaN, cf = 0.0021 - 0.0179i, pdf = dchisq(1:3, 8, 2), cdf = pchisq(1:3, 8, 2), quantile = qchisq(c(0.24, 0.42, 0.5), 8, 2) ) }) test_that("manual", { expect_equal(ChiSquaredNoncentral$new(df = 1, location = 1)$mgf(0.1), exp(0.1 / 0.8) / (0.8^0.5)) })
"_PACKAGE" if (getRversion() >= "2.15.1") { utils::globalVariables(c( ".", "pd", "pd_nested", "pd_flat", "flattened_pd", "line1", "line2", "col1", "col2", "parent", "terminal", "text", "short", "spaces", "lag_spaces", "newlines", "lag_newlines", "pos_id", NULL )) }
NULL budgets <- function(config = list()) { svc <- .budgets$operations svc <- set_config(svc, config) return(svc) } .budgets <- list() .budgets$operations <- list() .budgets$metadata <- list( service_name = "budgets", endpoints = list("*" = list(endpoint = "https://budgets.amazonaws.com", global = TRUE), "cn-*" = list(endpoint = "budgets.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "budgets.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "budgets.{region}.sc2s.sgov.gov", global = FALSE)), service_id = "Budgets", api_version = "2016-10-20", signing_name = "budgets", json_version = "1.1", target_prefix = "AWSBudgetServiceGateway" ) .budgets$service <- function(config = list()) { handlers <- new_handlers("jsonrpc", "v4") new_service(.budgets$metadata, handlers, config) }
ABautopacf <- function(behavior,phaseX,v,lags){ t1<-table(phaseX) tmax<-t1[names(t1)==v] start<-match(v,phaseX) end<-tmax+start-1 tsx<-behavior[start:end] e=length(tsx) x=1:end x<-ts(x,start=1,end=e,deltat=1) graphics.off() pacf1<-pacf(tsx,lag.max=lags,plot=FALSE,na.action=na.pass,type=c("correlation")) b1<-pacf(tsx,lag.max=lags,plot=TRUE,na.action=na.pass) print(pacf1) print(b1) }
plotAllometry <- function(fit, size, logsz = TRUE, method = c("PredLine", "RegScore", "size.shape", "CAC"), ...){ method <- match.arg(method) n <- length(size) if(n != fit$LM$n) stop("Different number of observations between model fit and size.\n", call. = FALSE) if(!is.numeric(size)) stop("The argument, size, must be a numeric vector.\n", call. = FALSE) if(!is.vector(size)) stop("The argument, size, must be a numeric vector.\n", call. = FALSE) dat <- fit$LM$data Y <- fit$LM$Y form <- if(logsz) as.formula(Y ~ log(size)) else as.formula(Y ~ size) dat$size <- size GM <- fit$GM xc <- if(logsz) log(size) else size if(method == "PredLine") { if(logsz) out <- plot(fit, type = "regression", reg.type = "PredLine", predictor = log(size), ...) else out <- plot(fit, type = "regression", reg.type = "PredLine", predictor = size, ...) } else if(method == "RegScore") { if(logsz) out <- plot(fit, type = "regression", reg.type = "RegScore", predictor = log(size), ...) else out <- plot(fit, type = "regression", reg.type = "RegScore", predictor = size, ...) } else { if(fit$LM$gls){ if(!is.null(fit$LM$weights)) fit <- lm.rrpp(form, data = dat, weights = fit$LM$weights, iter = 0, print.progress = FALSE) if(!is.null(fit$LM$Cov)) fit <- lm.rrpp(form, data = dat, Cov = fit$LM$Cov, iter = 0, print.progress = FALSE) } else { fit <- lm.rrpp(form, data = dat, iter = 0, print.progress = FALSE) } f <- if(fit$LM$gls) fit$LM$gls.fitted else fit$LM$fitted b <- as.matrix(lm(f ~ xc)$coefficients)[2,] y <- fit$LM$Y a <- crossprod(center(y), xc)/sum(xc^2) a <- a/sqrt(sum(a^2)) r <- center(y) CAC <- r%*%a p <- fit$LM$p resid <- r%*%(diag(p) - tcrossprod(a)) RSC <- prcomp(resid)$x Reg.proj <- r %*% b %*% sqrt(1/crossprod(b)) PCA <- prcomp(cbind(y, xc)) PC.points <-PCA$x if(method == "CAC") { par(mfcol = c(1,2)) plot.args <- list(x = xc, y = CAC, xlab = if(logsz) "log(Size)" else "Size", ylab = "CAC", ...) plot2.args <- list(x = CAC, y = RSC[, 1], xlab = "CAC", ylab = "RSC1", ...) do.call(plot, plot.args) do.call(plot, plot2.args) par(mfcol = c(1,1)) out <- list(CAC = CAC, RSC = RSC, plot.args = plot.args, all.plot.args = list(CAC=plot.args, RSC = plot2.args)) } if(method == "size.shape") { v <- round(PCA$sdev^2/sum(PCA$sdev^2) * 100, 2) plot.args <- list(x = PC.points[,1], y = PC.points[,2], xlab = paste("PC 1: ", v[1], "%", sep = ""), ylab = paste("PC 2: ", v[2], "%", sep = ""), ...) do.call(plot, plot.args) title("Size-Shape PC plot") out <- list(size.shape.PCA = PCA, PC.points = PC.points, plot.args = plot.args) } } out$size.var <- xc out$logsz <- logsz out$GM <- GM class(out) <- "plotAllometry" invisible(out) }
td_priceQuote = function(tickers = c('AAPL','MSFT'), output = 'df', accessToken=NULL) { if (output != 'df') { quotes = ram_quote_list(tickers, accessToken) } else { quotes = ram_quote_df(tickers, accessToken) } quotes } td_priceHistory = function(tickers=c('AAPL','MSFT'),startDate=Sys.Date()-30,endDate=Sys.Date(), freq=c('daily','1min','5min','10min','15min','30min'), accessToken=NULL){ if (length(tickers)>15) { tickers = tickers[1:15] warning('More than 15 tickers submitted. Only the first 15 tickers were pulled from the list of tickers.') } if (missing(freq)) freq='daily' allTickers = dplyr::bind_rows(lapply(tickers,function(x) ram_history_single(ticker = x, startDate, endDate, freq, accessToken=accessToken))) allTickers } ram_history_single = function(ticker='AAPL',startDate=Sys.Date()-30,endDate=Sys.Date(), freq=c('daily','1min','5min','10min','15min','30min'), accessToken=NULL){ accessToken = ram_accessToken(accessToken) date_time <- volume <- NULL startDate = as.Date(startDate)+lubridate::days(1) endDate = as.Date(endDate)+lubridate::days(1) old <- options() on.exit(options(old)) options(scipen=999) if (missing(freq)) freq='daily' startDateMS = as.character(as.numeric(lubridate::as_datetime(startDate, tz='America/New_York'))*1000) endDateMS = as.character(as.numeric(lubridate::as_datetime(endDate, tz='America/New_York'))*1000) if (freq=='daily') { PriceURL = paste0('https://api.tdameritrade.com/v1/marketdata/',ticker, '/pricehistory','?periodType=month&frequencyType=daily', '&startDate=',startDateMS,'&endDate=',endDateMS) } else { PriceURL = paste0('https://api.tdameritrade.com/v1/marketdata/',ticker, '/pricehistory','?periodType=day&frequency=', gsub('min','',freq),'&startDate=',startDateMS,'&endDate=',endDateMS) } tickRequest = httr::GET(PriceURL,ram_headers(accessToken)) ram_status(tickRequest) tickHist <- httr::content(tickRequest, as = "text") tickHist <- jsonlite::fromJSON(tickHist) tickHist <- tickHist[["candles"]] if (class(tickHist)=='list') return() tickHist$ticker = ticker tickHist$date_time = lubridate::as_datetime(tickHist$datetime/1000, tz='America/New_York') tickHist$date = as.Date(tickHist$date_time) tickHist = dplyr::select(tickHist,ticker,date,date_time,open:volume) dplyr::as_tibble(tickHist) } ram_quote_list = function(tickers = c('AAPL','MSFT'), accessToken=NULL) { accessToken = ram_accessToken(accessToken) quoteURL = base::paste0('https://api.tdameritrade.com/v1/marketdata/quotes?symbol=', paste0(tickers, collapse = '%2C')) quotes = httr::GET(quoteURL,ram_headers(accessToken)) ram_status(quotes) httr::content(quotes) } ram_quote_df = function(tickers = c('AAPL','MSFT'),accessToken=NULL) { quoteList = ram_quote_list(tickers,accessToken) dplyr::bind_rows(lapply(quoteList,data.frame)) %>% dplyr::as_tibble() }
context("CCA Multi") test_that("cca works for population", { data(population) expect_equivalent(length(table(cca(population, s=1, mode=1))), 429) }) test_that("cca works for population mode 3", { data(population) expect_equivalent(length(table(cca(population, s=10, mode=3))), 15) })
knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE) library(httr) library(dplyr) library(stringr) getBills <- function(key,congress,branch,type,numFrom, numTo) { get_url <- paste('https://api.propublica.org/congress/v1/',congress, '/',branch,'/bills/',type,'.json', sep="" ) listofdfs <- list() x=c() first_20 <- GET(get_url, add_headers(`X-API-Key` = key)) ft_pr <- content(first_20, 'parsed') ft_res1 <- ft_pr$results ft_res2 <- ft_res1[[1]] ft_res3 <- ft_res2$bills ft_res4 <- data.frame(do.call(rbind, ft_res3), stringsAsFactors=FALSE) for(i in numFrom:numTo) { if ((i %% 20) ==0) { url <- paste(get_url,'?offset=', i,sep="") r <- GET(url, add_headers(`X-API-Key` = key)) pr <- content(r, 'parsed') t1 <- pr$results t2 <- t1[[1]] t3 <- t2$bills listofdfs[[i]] <- t3 df_name <- paste("df", i, sep="_") assign(df_name,listofdfs[[i]]) df1_name <- paste("df1", i, sep="_") assign(df1_name, data.frame(do.call(rbind, listofdfs[[i]]), stringsAsFactors=FALSE)) x=append(x,df1_name) } } x1 <- do.call(rbind, mget(x)) x2 <- rbind(ft_res4,x1) x3 <- lapply(x2, function(x) ifelse(x=="NULL", NA, x)) x4 <- lapply(x3, function(x) as.character((unlist(x)))) x5 <- as.data.frame(do.call(cbind, x4)) return(x5) }
Sys.setenv(TZ = "GMT") require(blotter) require(testthat) port = "testBreak" acct = "testBreak" symbol = c("IBM") data(IBM) startDate = first(index(IBM)) endDate = last(index(IBM)) lines = "date,shrs,price,symbol 2007-01-10,100,98.0,IBM 2007-01-16,-200,99.5,IBM 2007-01-17,150,99.45,IBM 2007-01-18,-50,99.0,IBM" con = textConnection(lines) tt.trades = read.csv(con, as.is = TRUE) tt.trades[,"date"] = make.time.unique(as.POSIXct(tt.trades[,"date"])) currency("USD") stock(symbol,"USD") initPortf(port, symbol, initDate = startDate) initAcct(port, portfolios = c(port), initDate = startDate, initEq=10^6) for(i in 1:nrow(tt.trades)){ addTxn(port,Symbol = tt.trades[i,"symbol"], TxnDate = tt.trades[i,"date"], TxnPrice = tt.trades[i,"price"], TxnQty = tt.trades[i,"shrs"]) } updatePortf(port) updateAcct(acct) updateEndEq(acct)
library(lamW) shiehpow <- function(n, m, p, alpha=.05, dist, sides="two.sided") { if(!(dist %in% c("exp", "norm", "dexp"))) { stop('dist must be equal to "exp", "norm", or "dexp."') } if(sides == "two.sided"){test_sides <- "Two-sided"} if(sides == "one.sided"){test_sides <- "One-sided"} N=m+n np<-length(p) nn<-length(n) tht = vector(length=length(p)) muo=vector(length=length(n)) mu=matrix(0,nrow=length(p),ncol=length(n)) sigo=vector(length=length(n)) p2=vector(length=length(p)) p3=vector(length=length(p)) sig=matrix(0,nrow=length(p),ncol=length(n)) p1=vector(length=length(p)) power <- matrix(0,nrow=np,ncol=nn) for(i in 1:np) { for(j in 1:nn) { if (dist == "exp"){ if(p[i] >= .5) { tht[i]= -log(2*(1-p[i])) p1[i] <- p[i] } else if (p[i] < .5) { p1[i] <- 1 - p[i] tht[i]= -log(2*(1-p1[i])) } p2[i]= 1-(2/3)*exp(-tht[i]) p3[i]= 1-exp(-tht[i]) + (1/3)*exp(-2*tht[i]) } if(dist=="norm"){ if(p[i] >= .5) { tht[i]= sqrt(2)*qnorm(p[i]) p1[i] <- p[i] } else if (p[i] < .5) { p1[i] <- 1 - p[i] tht[i]= sqrt(2)*qnorm(p1[i]) } p2[i]= mean((pnorm(rnorm(100000)+tht[i]))^2) p3[i]= p2[i] } if(dist=="dexp"){ if(p[i] >= .5) { tht[i]= (-lamW::lambertWm1(4*(p[i]-1)/(exp(1)^2))) -2 p1[i] <- p[i] } else if (p[i] < .5) { p1[i] <- 1 - p[i] } tht[i]= (-lamW::lambertWm1(4*(p1[i]-1)/(exp(1)^2)))-2 p2[i]= 1-(7/12 + tht[i]/2)*exp(-tht[i]) -(1/12)*exp(-2*tht[i]) p3[i]= p2[i] } N[j]= m[j]+n[j] muo[j]= m[j]*n[j]/2 mu[i,j]= (m[j])*(n[j])*p1[i] sigo[j]= sqrt(m[j]*n[j]*(m[j]+n[j]+1)/12) sig[i,j]=sqrt(m[j]*n[j]*p1[i]*(1-p1[i]) + m[j]*n[j]*(n[j]-1)*(p2[i]-(p1[i])^2) + m[j]*n[j]*(m[j]-1)*(p3[i]-(p1[i])^2)) za1<-qnorm(alpha,lower.tail=F) za2<-qnorm(alpha/2,lower.tail=F) power[i,j]<-pnorm((mu[i,j]-muo[j]-za2*sigo[j])/sig[i,j]) + pnorm((-mu[i,j]+muo[j]-za2*sigo[j])/sig[i,j]) if (sides=="one.sided") { power[i,j]<-pnorm((mu[i,j]-muo[j]-za1*sigo[j])/sig[i,j]) } } } wmw_odds <- round(p/(1-p),3) cat("Distribution: ", dist, "\n", "Sample sizes: ", n, " and ", m, "\n", "p: ", p, "\n", "WMW odds: ", wmw_odds, "\n", "sides: ", test_sides, "\n", "alpha: ", alpha, "\n\n", "Shieh Power: ", round(power,3),sep = "") output_list <- list(distribution = dist,n = n, m = m, p = p, wmw_odds = wmw_odds, alpha = alpha, test_sides = test_sides, power = round(power,3)) }
test_that("Test whether the voxel and object function works", { data("pc_tree") pc <- pc_tree to_test <- voxels(pc_tree, edge_length = c(5, 5, 5)) expect_equal(length(to_test), 3, info = "Length of the object") expect_equal(nrow(to_test$cloud), nrow(pc), info = "Identity of the cloud") expect_equal(length(to_test$parameter), 3, info = "Parameter of voxels") expect_equal(ncol(to_test$voxels), 4, info = "Columns of voxels") expect_equal(nrow(to_test$voxels), 6, info = "n of voxels") expect_equal(min(to_test$voxels$X), (min(pc$X) + 2.5), info = "X cordinate of voxels") expect_equal(min(to_test$voxels$Y), (min(pc$Y) + 2.5), info = "Y cordinate of voxels") expect_equal(min(to_test$voxels$Z), (min(pc$Z) + 2.5), info = "Z cordinate of voxels") expect_equal(sum(to_test$voxels$N), nrow(pc), info = "Total point in voxels") }) test_that("Test whether the voxel function works", { data("pc_tree") pc <- pc_tree to_test <- voxels(pc_tree, edge_length = c(5, 5, 5), obj.voxels = FALSE) expect_equal(ncol(to_test), 4, info = "Columns of voxels") expect_equal(nrow(to_test), 6, info = "n of voxels") expect_equal(min(to_test$X), (min(pc$X) + 2.5), info = "X cordinate of voxels") expect_equal(min(to_test$Y), (min(pc$Y) + 2.5), info = "Y cordinate of voxels") expect_equal(min(to_test$Z), (min(pc$Z) + 2.5), info = "Z cordinate of voxels") expect_equal(sum(to_test$N), nrow(pc), info = "Total point in voxels") })
rowDiffs <- function(x, rows = NULL, cols = NULL, lag = 1L, differences = 1L, dim. = dim(x), ..., useNames = NA) { .Call(C_rowDiffs, x, dim., rows, cols, lag, differences, TRUE, useNames) } colDiffs <- function(x, rows = NULL, cols = NULL, lag = 1L, differences = 1L, dim. = dim(x), ..., useNames = NA) { .Call(C_rowDiffs, x, dim., rows, cols, lag, differences, FALSE, useNames) }
MakeRelationship <- function(ped, counseland.id){ iid <- ped[,"indID"] fid <- ped[,"fatherID"] mid <- ped[,"motherID"] gender <- ped[,"gender"] relationship <- rep(0,nrow(ped)) current.id <- counseland.id indiv <- iid == current.id relationship[indiv] <- 1 sibs <- NULL nep <- NULL spouse.id <- NULL potent.spouse.id <- NULL if (sum(indiv)!=0){ if (fid[indiv] !=0 ){ relationship[iid == fid[indiv]] <- 4 sibs <- c(sibs, which(fid == fid[indiv] & !indiv)) } if (mid[indiv]!=0 ){ relationship[iid == mid[indiv]] <- 4 sibs <- c(sibs, which(mid == mid[indiv] & !indiv)) } if (length(unique(sibs))!=0){ relationship[unique(sibs)] <- 2 for (i in 1:length(unique(sibs))){ nep <- c(nep,which(fid==iid[unique(sibs)[i]]|mid==iid[unique(sibs)[i]])) } if (sum(nep)!=0) relationship[unique(nep)] <- 5 } } if(sum(indiv)!=0){ if (gender[indiv]==0){ relationship[mid==iid[indiv]] <- 3 child <- which(mid==iid[indiv]) if (sum(child)!=0){ spouse.id <- unique(fid[child]) if (sum(spouse.id)!=0){ for (i in 1:length(spouse.id)){ relationship[iid==spouse.id[i]] <- 6 } } } }else { relationship[fid==iid[indiv]] <- 3 child <- which(fid==iid[indiv]) if (sum(child)!=0){ spouse.id <- unique(mid[child]) if (sum(spouse.id)!=0){ for ( i in 1:length(spouse.id)){ relationship[iid==spouse.id[i]] <- 6 } } } } } gcid <- is.element(fid, iid[relationship==3]) | is.element(mid, iid[relationship==3]) relationship[gcid] <- 15 if (sum(gcid)!=0) { child.spouse.id <- unique(c(fid[gcid],mid[gcid])) if (sum(child.spouse.id)!=0){ for ( i in 1:length(child.spouse.id)){ indiv <- iid==child.spouse.id[i] if (sum(indiv)!=0){ if (relationship[indiv]==0) relationship[indiv] <- 14 } } } } current.fid <- fid[indiv] current.mid <- mid[indiv] indiv <- iid==current.fid if(sum(indiv, na.rm=TRUE)!=0) { if (fid[indiv]!=0){ relationship[iid==fid[indiv]] <- 8 relationship[fid==fid[indiv] & !indiv] <- 9 } if (mid[indiv]!=0){ relationship[iid==mid[indiv]] <- 8 relationship[mid==mid[indiv] & !indiv] <- 9 } cid <- is.element(fid, iid[relationship==9]) | is.element(mid, iid[relationship==9]) relationship[cid] <- 10 } indiv <- iid==current.mid if(sum(indiv, na.rm=TRUE)!=0){ if (fid[indiv] != 0){ relationship[iid==fid[indiv]] <- 11 relationship[fid==fid[indiv] & !indiv] <- 12 } if (mid[indiv] !=0){ relationship[iid==mid[indiv]] <- 11 relationship[mid==mid[indiv] & !indiv] <- 12 } cid <- is.element(fid, iid[relationship==12]) | is.element(mid, iid[relationship==12]) relationship[cid] <- 13 } if (sum(nep)!=0) potent.spouse.id <- unique(c(fid[nep],mid[nep])) if (sum(potent.spouse.id)!=0){ for ( i in 1:length(potent.spouse.id)){ indiv <- iid==potent.spouse.id[i] if (sum(indiv)!=0){ if (relationship[indiv]==0){ relationship[indiv] <- 7 } } } } cousin <- which(relationship==10 | relationship == 13) if (sum(cousin)!=0) { uncle.spouse.id <- unique(c(fid[cousin],mid[cousin])) if (sum(uncle.spouse.id)!=0){ for ( i in 1:length(uncle.spouse.id)){ indiv <- iid==uncle.spouse.id[i] if (sum(indiv)!=0){ if (relationship[indiv]==0){ relationship[indiv] <- 16 } } } } } return(relationship) }
complexdiv <- function(a,b) { if( is.numeric(b) && is.complex(a) ) { z <- complex(real=Re(a)/b, imaginary=Im(a)/b) } else if( is.complex(b) && is.complex(a) ) { tmp <- complex(real=1,imaginary=2)/complex(real=0,imaginary=0) badcdiv <- is.nan(Re(tmp)) && is.nan(Im(tmp)) z <- a/b if( badcdiv ) { if( any(b == 0) ) { j <- which(b==0) z[j] <- complex(real=Re(a[j])/0, imaginary=Im(a[j])/0) } if( any(is.infinite(b)) ) { j <- which(is.infinite(b)) z[j] <- complex(real=0, imaginary=0) } } } else z <- a/b z }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(blaise) model1 = " DATAMODEL Test FIELDS A : STRING[1] B : INTEGER[1] C : REAL[3,1] D : REAL[3] E : (Male, Female) F : 1..20 G : 1.00..100.00 ENDMODEL " model2 = " DATAMODEL Test FIELDS A : STRING[1] B : INTEGER[1] C : REAL[3,1] D : REAL[3] E : (Male (1), Female (2), Unknown (9)) F : 1..20 G : 1.00..100.00 ENDMODEL " data1 = "A12.30.11 1 1.00 B23.41.2210 20.20 C34.50.0120100.00" data2 = "A12,30,11 1 1,00 B23,41,2210 20,20 C34,50,0920100,00" blafile1 = tempfile('testbla1', fileext = '.bla') datafile1 = tempfile('testdata1', fileext = '.asc') blafile2 = tempfile('testbla2', fileext = '.bla') datafile2 = tempfile('testdata2', fileext = '.asc') writeLines(data1, con = datafile1) writeLines(model1, con = blafile1) writeLines(data2, con = datafile2) writeLines(model2, con = blafile2) df = read_fwf_blaise(datafile1, blafile1) df df_comma = read_fwf_blaise(datafile2, blafile2) df_comma readr::problems(df_comma) df_comma = read_fwf_blaise(datafile2, blafile2, locale = readr::locale(decimal_mark = ",")) df_comma df_enum = read_fwf_blaise(datafile2, blafile2, locale = readr::locale(decimal_mark = ","), numbered_enum = FALSE) df_enum df_laf = read_fwf_blaise(datafile1, blafile1, output = "laf") df_laf df_laf$E outfile = tempfile(fileext = ".asc") outbla = sub(".asc", ".bla", outfile) write_fwf_blaise(df, outfile) readr::read_lines(outfile) readr::read_lines(outbla) outfile_model = tempfile(fileext = ".asc") write_fwf_blaise_with_model(df_enum, outfile_model, blafile2) readr::read_lines(outfile_model) model3 = " DATAMODEL Test FIELDS A : (A, B, C) B : (Male (1), Female (2), Unknown (3)) ENDMODEL " blafile3 = tempfile('testbla3', fileext = '.bla') writeLines(model3, con = blafile3) outfile_new_model = tempfile(fileext = ".asc") write_fwf_blaise_with_model(df_enum, outfile_new_model, blafile3) readr::read_lines(outfile_new_model) model4 = " DATAMODEL Test FIELDS A : (A, B) B : (Male (1), Female (2)) ENDMODEL " blafile4 = tempfile('testbla4', fileext = '.bla') writeLines(model4, con = blafile4) outfile_wrong_model = tempfile(fileext = ".asc") write_fwf_blaise_with_model(df_enum, outfile_wrong_model, blafile4)
NULL total_covar_matrix <- function(ci,entry,delta){ simpleci<- simple_ci(ci) submatrix <- ci_submatrix(simpleci) rows <- unique(c(submatrix$A,submatrix$C)) cols <- unique(c(submatrix$B,submatrix$C)) ind <- integer(0) if(ci$order[entry[1]] %in% rows){ind <- which(cols == ci$order[entry[2]])} if(ci$order[entry[2]] %in% rows){ind <- c(ind,which(cols == ci$order[entry[1]]))} ind <- unique(ind) if(identical(ind,integer(0))){return(matrix(1,nrow = nrow(ci$covariance), ncol = ncol(ci$covariance)))}else{ covar <- matrix(delta,nrow = nrow(ci$covariance), ncol = ncol(ci$covariance)) covar[entry[1],entry[2]] <- 1 covar[entry[2],entry[1]] <- 1 return(covar)} } col_covar_matrix <- function(ci,entry,delta){ covar <- matrix(1,nrow = nrow(ci$covariance), ncol = ncol(ci$covariance)) simpleci<- simple_ci(ci) submatrix <- ci_submatrix(simpleci) rows <- unique(c(submatrix$A,submatrix$C)) cols <- unique(c(submatrix$B,submatrix$C)) temp <- matrix(1,nrow = length(rows), ncol = length(cols)) ind <- integer(0) if(ci$order[entry[1]] %in% rows){ind <- which(cols == ci$order[entry[2]])} if(ci$order[entry[2]] %in% rows){ind <- c(ind,which(cols == ci$order[entry[1]]))} ind <- unique(ind) if(identical(ind,integer(0))){return(covar)}else{ while(length(ind)>0){ for(k in 1:length(ind)){ for (i in 1:length(rows)){ temp[i,ind[k]] <- delta if(rows[i] %in% cols & cols[ind[k]] %in% rows) {temp[which(cols[ind[k]]==rows),which(cols == rows[i])] <- delta} } } check <- c() ind <- c() for (i in 1: length(cols)){ check[i] <- sum(temp[,i]== delta) if(check[i] > 0 & check[i] < length(rows)){ind <- c(ind,i)} } } for(i in 1:nrow(covar)){ for(j in 1:ncol(covar)){ ind <- c(which(ci$order[i]==rows),which(ci$order[j]==cols)) if(length(ind) == 2){ if(temp[ind[1],ind[2]] == delta){ covar[i,j] <- delta; covar[j,i] <- delta } } } } covar[entry[1],entry[2]] <- 1 covar[entry[2],entry[1]] <- 1 return(covar)} } partial_covar_matrix <- function(ci, entry, delta){ covar <- matrix(1,nrow = nrow(ci$covariance), ncol = ncol(ci$covariance)) simpleci<- simple_ci(ci) submatrix <- ci_submatrix(simpleci) rows <- unique(c(submatrix$A,submatrix$C)) cols <- unique(c(submatrix$B,submatrix$C)) ind <- integer(0) if(ci$order[entry[1]] %in% rows){ind <- which(cols == ci$order[entry[2]])} if(ci$order[entry[2]] %in% rows){ind <- c(ind,which(cols == ci$order[entry[1]]))} ind <- unique(ind) if(identical(ind,integer(0))){return(covar)}else{ for(i in 1:length(ci$order)){ for(j in 1:length(ci$order)){ if(ci$order[i] %in% rows & ci$order[j] %in% cols){ covar[i,j] <- delta covar[j,i] <- delta } } } covar[entry[1],entry[2]] <- 1 covar[entry[2],entry[1]] <- 1 return(covar)} } row_covar_matrix <- function(ci, entry, delta){ covar <- matrix(1,nrow = nrow(ci$covariance), ncol = ncol(ci$covariance)) simpleci<- simple_ci(ci) submatrix <- ci_submatrix(simpleci) rows <- unique(c(submatrix$A,submatrix$C)) cols <- unique(c(submatrix$B,submatrix$C)) temp <- matrix(1,nrow = length(rows), ncol = length(cols)) ind <- integer(0) if(ci$order[entry[1]] %in% cols){ind <- which(rows == ci$order[entry[2]])} if(ci$order[entry[2]] %in% cols){ind <- c(ind,which(rows == ci$order[entry[1]]))} ind <- unique(ind) if(identical(ind,integer(0))){return(covar)}else{ while(length(ind)>0){ for(k in 1:length(ind)){ for (i in 1:length(cols)){ temp[ind[k],i] <- delta if(cols[i] %in% rows & rows[ind[k]] %in% cols) {temp[which(rows == cols[i]),which(rows[ind[k]]==cols)] <- delta} } } check <- c() ind <- c() for (i in 1: length(rows)){ check[i] <- sum(temp[i,]== delta) if(check[i] > 0 & check[i] < length(cols)){ind <- c(ind,i)} } } for(i in 1:nrow(covar)){ for(j in 1:ncol(covar)){ ind <- c(which(ci$order[i]==rows),which(ci$order[j]==cols)) if(length(ind) == 2){ if(temp[ind[1],ind[2]] == delta){ covar[i,j] <- delta; covar[j,i] <- delta } } } } covar[entry[1],entry[2]] <- 1 covar[entry[2],entry[1]] <- 1 return(covar)} }
renv_check_unknown_source <- function(records, project = NULL) { if (empty(records)) return(TRUE) if (renv_tests_running()) records$renv <- NULL unknown <- filter(records, function(record) { source <- renv_record_source(record) if (source != "unknown") return(FALSE) localpath <- tryCatch( renv_retrieve_cellar_find(record, project), error = function(e) "" ) if (file.exists(localpath)) return(FALSE) TRUE }) if (empty(unknown)) return(TRUE) if (!renv_tests_running()) renv_warnings_unknown_sources(unknown) FALSE }
make_network <- function(physeq, type="samples", distance="jaccard", max.dist = 0.4, keep.isolates=FALSE, ...){ if( type %in% c("taxa", "species", "OTUs", "otus", "otu")){ if( class(distance) == "dist" ){ obj.dist <- distance if( attributes(obj.dist)$Size != ntaxa(physeq) ){ stop("ntaxa(physeq) does not match size of dist object in distance") } if( !setequal(attributes(obj.dist)$Labels, taxa_names(physeq)) ){ stop("taxa_names does not exactly match dist-indices") } } else if( class(distance) == "character" ){ obj.dist <- distance(physeq, method=distance, type=type, ...) } else { if( !taxa_are_rows(physeq) ){ physeq <- t(physeq) } obj.dist <- distance(as(otu_table(physeq), "matrix")) } TaDiMa <- as.matrix(obj.dist) TaDiMa <- TaDiMa + diag(Inf, ntaxa(physeq), ntaxa(physeq)) CoMa <- TaDiMa < max.dist } else if( type == "samples" ){ if( class(distance) == "dist" ){ obj.dist <- distance if( attributes(obj.dist)$Size != nsamples(physeq) ){ stop("nsamples(physeq) does not match size of dist object in distance") } if( !setequal(attributes(obj.dist)$Labels, sample_names(physeq)) ){ stop("sample_names does not exactly match dist-indices") } } else if( class(distance) == "character" ){ obj.dist <- distance(physeq, method=distance, type=type, ...) } else { if(taxa_are_rows(physeq)){ physeq <- t(physeq) } obj.dist <- distance(as(otu_table(physeq), "matrix")) } SaDiMa <- as.matrix(obj.dist) SaDiMa <- SaDiMa + diag(Inf, nsamples(physeq), nsamples(physeq)) CoMa <- SaDiMa < max.dist } else { stop("type argument must be one of \n (1) samples \n or \n (2) taxa") } ig <- graph.adjacency(CoMa, mode="lower") if( !keep.isolates ){ isolates <- V(ig)[degree(ig) == 0] ig = delete.vertices(ig, V(ig)[degree(ig) == 0]) } if( vcount(ig) < 2 ){ warning("The graph you created has too few vertices. Consider changing `max.dist` argument, and check your data.") } return(ig) }
print.mixfitEM <- function(x, digits = getOption("digits"), ...) { family <- x$family mc <- match.call() mc$digits <- digits fun.name <- paste0("print", family) mc[[1]] <- as.name(fun.name) eval(mc, environment()) }
expected <- eval(parse(text="structure(list(Ozone = c(41L, 36L, 12L, 18L, NA, 28L, 23L, 19L, 8L, NA, 7L, 16L, 11L, 14L, 18L, 14L, 34L, 6L, 30L, 11L, 1L, 11L, 4L, 32L, NA, NA, NA, 23L, 45L, 115L, 37L, NA, NA, NA, NA, NA, NA, 29L, NA, 71L, 39L, NA, NA, 23L, NA, NA, 21L, 37L, 20L, 12L, 13L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 135L, 49L, 32L, NA, 64L, 40L, 77L, 97L, 97L, 85L, NA, 10L, 27L, NA, 7L, 48L, 35L, 61L, 79L, 63L, 16L, NA, NA, 80L, 108L, 20L, 52L, 82L, 50L, 64L, 59L, 39L, 9L, 16L, 78L, 35L, 66L, 122L, 89L, 110L, NA, NA, 44L, 28L, 65L, NA, 22L, 59L, 23L, 31L, 44L, 21L, 9L, NA, 45L, 168L, 73L, NA, 76L, 118L, 84L, 85L, 96L, 78L, 73L, 91L, 47L, 32L, 20L, 23L, 21L, 24L, 44L, 21L, 28L, 9L, 13L, 46L, 18L, 13L, 24L, 16L, 13L, 23L, 36L, 7L, 14L, 30L, NA, 14L, 18L, 20L), Solar.R = c(190L, 118L, 149L, 313L, NA, NA, 299L, 99L, 19L, 194L, NA, 256L, 290L, 274L, 65L, 334L, 307L, 78L, 322L, 44L, 8L, 320L, 25L, 92L, 66L, 266L, NA, 13L, 252L, 223L, 279L, 286L, 287L, 242L, 186L, 220L, 264L, 127L, 273L, 291L, 323L, 259L, 250L, 148L, 332L, 322L, 191L, 284L, 37L, 120L, 137L, 150L, 59L, 91L, 250L, 135L, 127L, 47L, 98L, 31L, 138L, 269L, 248L, 236L, 101L, 175L, 314L, 276L, 267L, 272L, 175L, 139L, 264L, 175L, 291L, 48L, 260L, 274L, 285L, 187L, 220L, 7L, 258L, 295L, 294L, 223L, 81L, 82L, 213L, 275L, 253L, 254L, 83L, 24L, 77L, NA, NA, NA, 255L, 229L, 207L, 222L, 137L, 192L, 273L, 157L, 64L, 71L, 51L, 115L, 244L, 190L, 259L, 36L, 255L, 212L, 238L, 215L, 153L, 203L, 225L, 237L, 188L, 167L, 197L, 183L, 189L, 95L, 92L, 252L, 220L, 230L, 259L, 236L, 259L, 238L, 24L, 112L, 237L, 224L, 27L, 238L, 201L, 238L, 14L, 139L, 49L, 20L, 193L, 145L, 191L, 131L, 223L), Wind = c(7.4, 8, 12.6, 11.5, 14.3, 14.9, 8.6, 13.8, 20.1, 8.6, 6.9, 9.7, 9.2, 10.9, 13.2, 11.5, 12, 18.4, 11.5, 9.7, 9.7, 16.6, 9.7, 12, 16.6, 14.9, 8, 12, 14.9, 5.7, 7.4, 8.6, 9.7, 16.1, 9.2, 8.6, 14.3, 9.7, 6.9, 13.8, 11.5, 10.9, 9.2, 8, 13.8, 11.5, 14.9, 20.7, 9.2, 11.5, 10.3, 6.3, 1.7, 4.6, 6.3, 8, 8, 10.3, 11.5, 14.9, 8, 4.1, 9.2, 9.2, 10.9, 4.6, 10.9, 5.1, 6.3, 5.7, 7.4, 8.6, 14.3, 14.9, 14.9, 14.3, 6.9, 10.3, 6.3, 5.1, 11.5, 6.9, 9.7, 11.5, 8.6, 8, 8.6, 12, 7.4, 7.4, 7.4, 9.2, 6.9, 13.8, 7.4, 6.9, 7.4, 4.6, 4, 10.3, 8, 8.6, 11.5, 11.5, 11.5, 9.7, 11.5, 10.3, 6.3, 7.4, 10.9, 10.3, 15.5, 14.3, 12.6, 9.7, 3.4, 8, 5.7, 9.7, 2.3, 6.3, 6.3, 6.9, 5.1, 2.8, 4.6, 7.4, 15.5, 10.9, 10.3, 10.9, 9.7, 14.9, 15.5, 6.3, 10.9, 11.5, 6.9, 13.8, 10.3, 10.3, 8, 12.6, 9.2, 10.3, 10.3, 16.6, 6.9, 13.2, 14.3, 8, 11.5), Temp = c(67L, 72L, 74L, 62L, 56L, 66L, 65L, 59L, 61L, 69L, 74L, 69L, 66L, 68L, 58L, 64L, 66L, 57L, 68L, 62L, 59L, 73L, 61L, 61L, 57L, 58L, 57L, 67L, 81L, 79L, 76L, 78L, 74L, 67L, 84L, 85L, 79L, 82L, 87L, 90L, 87L, 93L, 92L, 82L, 80L, 79L, 77L, 72L, 65L, 73L, 76L, 77L, 76L, 76L, 76L, 75L, 78L, 73L, 80L, 77L, 83L, 84L, 85L, 81L, 84L, 83L, 83L, 88L, 92L, 92L, 89L, 82L, 73L, 81L, 91L, 80L, 81L, 82L, 84L, 87L, 85L, 74L, 81L, 82L, 86L, 85L, 82L, 86L, 88L, 86L, 83L, 81L, 81L, 81L, 82L, 86L, 85L, 87L, 89L, 90L, 90L, 92L, 86L, 86L, 82L, 80L, 79L, 77L, 79L, 76L, 78L, 78L, 77L, 72L, 75L, 79L, 81L, 86L, 88L, 97L, 94L, 96L, 94L, 91L, 92L, 93L, 93L, 87L, 84L, 80L, 78L, 75L, 73L, 81L, 76L, 77L, 71L, 71L, 78L, 67L, 76L, 68L, 82L, 64L, 71L, 81L, 69L, 63L, 70L, 77L, 75L, 76L, 68L), Month = c(5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L), Day = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L), NULL, NULL), .Names = c(\"Ozone\", \"Solar.R\", \"Wind\", \"Temp\", \"Month\", \"Day\", \"\", \"\"))")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(Ozone = c(41L, 36L, 12L, 18L, NA, 28L, 23L, 19L, 8L, NA, 7L, 16L, 11L, 14L, 18L, 14L, 34L, 6L, 30L, 11L, 1L, 11L, 4L, 32L, NA, NA, NA, 23L, 45L, 115L, 37L, NA, NA, NA, NA, NA, NA, 29L, NA, 71L, 39L, NA, NA, 23L, NA, NA, 21L, 37L, 20L, 12L, 13L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 135L, 49L, 32L, NA, 64L, 40L, 77L, 97L, 97L, 85L, NA, 10L, 27L, NA, 7L, 48L, 35L, 61L, 79L, 63L, 16L, NA, NA, 80L, 108L, 20L, 52L, 82L, 50L, 64L, 59L, 39L, 9L, 16L, 78L, 35L, 66L, 122L, 89L, 110L, NA, NA, 44L, 28L, 65L, NA, 22L, 59L, 23L, 31L, 44L, 21L, 9L, NA, 45L, 168L, 73L, NA, 76L, 118L, 84L, 85L, 96L, 78L, 73L, 91L, 47L, 32L, 20L, 23L, 21L, 24L, 44L, 21L, 28L, 9L, 13L, 46L, 18L, 13L, 24L, 16L, 13L, 23L, 36L, 7L, 14L, 30L, NA, 14L, 18L, 20L), Solar.R = c(190L, 118L, 149L, 313L, NA, NA, 299L, 99L, 19L, 194L, NA, 256L, 290L, 274L, 65L, 334L, 307L, 78L, 322L, 44L, 8L, 320L, 25L, 92L, 66L, 266L, NA, 13L, 252L, 223L, 279L, 286L, 287L, 242L, 186L, 220L, 264L, 127L, 273L, 291L, 323L, 259L, 250L, 148L, 332L, 322L, 191L, 284L, 37L, 120L, 137L, 150L, 59L, 91L, 250L, 135L, 127L, 47L, 98L, 31L, 138L, 269L, 248L, 236L, 101L, 175L, 314L, 276L, 267L, 272L, 175L, 139L, 264L, 175L, 291L, 48L, 260L, 274L, 285L, 187L, 220L, 7L, 258L, 295L, 294L, 223L, 81L, 82L, 213L, 275L, 253L, 254L, 83L, 24L, 77L, NA, NA, NA, 255L, 229L, 207L, 222L, 137L, 192L, 273L, 157L, 64L, 71L, 51L, 115L, 244L, 190L, 259L, 36L, 255L, 212L, 238L, 215L, 153L, 203L, 225L, 237L, 188L, 167L, 197L, 183L, 189L, 95L, 92L, 252L, 220L, 230L, 259L, 236L, 259L, 238L, 24L, 112L, 237L, 224L, 27L, 238L, 201L, 238L, 14L, 139L, 49L, 20L, 193L, 145L, 191L, 131L, 223L), Wind = c(7.4, 8, 12.6, 11.5, 14.3, 14.9, 8.6, 13.8, 20.1, 8.6, 6.9, 9.7, 9.2, 10.9, 13.2, 11.5, 12, 18.4, 11.5, 9.7, 9.7, 16.6, 9.7, 12, 16.6, 14.9, 8, 12, 14.9, 5.7, 7.4, 8.6, 9.7, 16.1, 9.2, 8.6, 14.3, 9.7, 6.9, 13.8, 11.5, 10.9, 9.2, 8, 13.8, 11.5, 14.9, 20.7, 9.2, 11.5, 10.3, 6.3, 1.7, 4.6, 6.3, 8, 8, 10.3, 11.5, 14.9, 8, 4.1, 9.2, 9.2, 10.9, 4.6, 10.9, 5.1, 6.3, 5.7, 7.4, 8.6, 14.3, 14.9, 14.9, 14.3, 6.9, 10.3, 6.3, 5.1, 11.5, 6.9, 9.7, 11.5, 8.6, 8, 8.6, 12, 7.4, 7.4, 7.4, 9.2, 6.9, 13.8, 7.4, 6.9, 7.4, 4.6, 4, 10.3, 8, 8.6, 11.5, 11.5, 11.5, 9.7, 11.5, 10.3, 6.3, 7.4, 10.9, 10.3, 15.5, 14.3, 12.6, 9.7, 3.4, 8, 5.7, 9.7, 2.3, 6.3, 6.3, 6.9, 5.1, 2.8, 4.6, 7.4, 15.5, 10.9, 10.3, 10.9, 9.7, 14.9, 15.5, 6.3, 10.9, 11.5, 6.9, 13.8, 10.3, 10.3, 8, 12.6, 9.2, 10.3, 10.3, 16.6, 6.9, 13.2, 14.3, 8, 11.5), Temp = c(67L, 72L, 74L, 62L, 56L, 66L, 65L, 59L, 61L, 69L, 74L, 69L, 66L, 68L, 58L, 64L, 66L, 57L, 68L, 62L, 59L, 73L, 61L, 61L, 57L, 58L, 57L, 67L, 81L, 79L, 76L, 78L, 74L, 67L, 84L, 85L, 79L, 82L, 87L, 90L, 87L, 93L, 92L, 82L, 80L, 79L, 77L, 72L, 65L, 73L, 76L, 77L, 76L, 76L, 76L, 75L, 78L, 73L, 80L, 77L, 83L, 84L, 85L, 81L, 84L, 83L, 83L, 88L, 92L, 92L, 89L, 82L, 73L, 81L, 91L, 80L, 81L, 82L, 84L, 87L, 85L, 74L, 81L, 82L, 86L, 85L, 82L, 86L, 88L, 86L, 83L, 81L, 81L, 81L, 82L, 86L, 85L, 87L, 89L, 90L, 90L, 92L, 86L, 86L, 82L, 80L, 79L, 77L, 79L, 76L, 78L, 78L, 77L, 72L, 75L, 79L, 81L, 86L, 88L, 97L, 94L, 96L, 94L, 91L, 92L, 93L, 93L, 87L, 84L, 80L, 78L, 75L, 73L, 81L, 76L, 77L, 71L, 71L, 78L, 67L, 76L, 68L, 82L, 64L, 71L, 81L, 69L, 63L, 70L, 77L, 75L, 76L, 68L), Month = c(5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L), Day = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L)), .Names = c(\"Ozone\", \"Solar.R\", \"Wind\", \"Temp\", \"Month\", \"Day\"), row.names = c(NA, -153L)), list(NULL, NULL))")); do.call(`c`, argv); }, o=expected);
voxels_counting <- function(cloud, edge_sizes = NULL, min_size, length_out = 10, bootstrap = FALSE, R = NULL, progress = TRUE, parallel = FALSE, threads = NULL) { colnames(cloud) <- c("X", "Y", "Z") if(is.null(edge_sizes) == TRUE) { ranges <- c(max(cloud[,1]) - min(cloud[,1]), max(cloud[,2]) - min(cloud[,2]), max(cloud[,3]) - min(cloud[,3])) max.range <- ranges[which.max(ranges)] + 0.0001 edge_sizes <- seq(from = log10(c(max.range)), to = log10(min_size), length.out = length_out) edge_sizes <- 10^edge_sizes } cloud_touse <- cloud if(parallel == TRUE) { cl <- makeCluster(threads, outfile="") registerDoSNOW(cl) if(progress == TRUE) { print("Creating voxels in parallel") pb <- txtProgressBar(min = 0, max = length(edge_sizes), style = 3) progress <- function(n) setTxtProgressBar(pb, n) opts <- list(progress=progress) } else { opts <- NULL } results <- foreach(i = 1:length(edge_sizes), .inorder = FALSE, .combine= rbind, .packages = c("data.table", "rTLS"), .options.snow = opts) %dopar% { vox <- voxels(cloud_touse, edge_length = c(edge_sizes[i], edge_sizes[i], edge_sizes[i]), obj.voxels = FALSE) summary <- summary_voxels(vox, edge_length = c(edge_sizes[i], edge_sizes[i], edge_sizes[i]), bootstrap = bootstrap, R = R) return(summary) } results <- results[order(Edge.X)] stopCluster(cl) } else if(parallel == FALSE) { if(progress == TRUE) { print("Creating voxels") pb <- txtProgressBar(min = 0, max = length(edge_sizes), style = 3) } results <- foreach(i = 1:length(edge_sizes), .inorder = FALSE, .combine= rbind) %do% { if(progress == TRUE) { setTxtProgressBar(pb, i) } vox <- voxels(cloud_touse, edge_length = c(edge_sizes[i], edge_sizes[i], edge_sizes[i]), obj.voxels = FALSE) summary <- summary_voxels(vox, edge_length = c(edge_sizes[i], edge_sizes[i], edge_sizes[i]), bootstrap = bootstrap, R = R) return(summary) } if(progress == TRUE) { close(pb) } results <- results[order(Edge.X)] } return(results) } decimals <- function(x) { n <- 0 while (!isTRUE(all.equal(floor(x),x)) & n <= 1e6) { x <- x*10; n <- n+1 } return (n) }
tierChart <- function(x, startMonth = latestJanuary(end(x)), nMonths = 4, nYears = 7, offsets = 0, padDays = 6, pch = "year", lty = "solid", lwd = 1.5, col = 1 + (n.y:1), type = "b", ylim = NULL, outlier.trim = 0, noTrimLastYear = TRUE, extendHorizontalTicks = TRUE, circles.ymd = NULL, circles.col = 6, circles.inches = 0.1, vlines.ymd = NULL, vlines.col = 2, vlines.lty = 4, vlines.lwd = 1.5, vlines2.ymd = NULL, vlines2.col = 3, vlines2.lty = "solid", vlines2.lwd = 2, hlines = NULL, hlines.col = 1, hlines.lty = 1, hlines.lwd = 1, tiPoints.1 = NULL, tiPoints.2 = NULL, pch.1 = "*", pch.2 = "+", col.1 = 2, col.2 = 3, nolegend = FALSE, main = deparse(substitute(x)), topleft.labels = NULL, topright.labels = NULL, legend.ncol = length(years), legend.bg = 0, timestamp = TRUE, topline = TRUE, vlines.periodEnd = TRUE, vlines.month = TRUE, midperiod = FALSE, lwdLastYear = 1.5, cex = 1.5, boxes = TRUE, ...){ oldpar <- par(xpd = FALSE, err = -1, mar = c(2,5,3,5)+0.1, mgp = c(1,0,0), xaxs = "i", yaxs = "i", mex = 1, ann = FALSE) on.exit(par(oldpar), add = TRUE) if(par("new") == FALSE) plot.new() main <- main x <- as.tis(x) xTif <- tif(x) dim(x) <- NULL if(!is.ti(startMonth)) stop("startMonth must be a ti") xEndMonth <- currentMonth(end(x)) if(startMonth > xEndMonth) stop("startMonth after end(x)") endMonth <- startMonth + nMonths - 1 if(endMonth > xEndMonth){ xExtendedEnd <- ti(endMonth, tif(x)) x[xExtendedEnd] <- NA } xStartMonth <- currentMonth(start(x)) years <- (year(startMonth) - nYears + 1): year(startMonth) eyears <- (year(endMonth) - nYears + 1): year(endMonth) eym <- 100*eyears + month(endMonth) years <- years[eym >= (ymd(start(x)) %/% 100)] if(midperiod) xj <- floor(jul(ti(x), offset = 0.5)) else xj <- jul(ti(x)) n.y <- length(years) n.x <- length(x) y.seq <- 1:n.y x.seq <- 1:n.x startMonths <- startMonth - 12*((nYears - 1):0) endMonths <- startMonths + nMonths - 1 inRange <- startMonths <= xEndMonth & endMonths >= xStartMonth startMonths <- startMonths[inRange] endMonths <- endMonths[inRange] offsets <- c(rev(offsets), rep(0, length(years) - length(offsets))) starts <- jul(startMonths - 1) - (padDays - 1) + offsets ends <- jul(endMonths) + padDays + offsets x.ticks <- 1:(1 + ends[n.y] - starts[n.y]) x.ymd <- ymd(seq(starts[n.y], ends[n.y])) x.periodEnds <- x.ymd == ymd(ti(x.ymd, tif = xTif)) feb28 <- match(0228, x.ymd %% 10000, nomatch = FALSE) if(feb28 != FALSE){ feb29 <- match(0229, x.ymd %% 10000, nomatch = FALSE) if(feb29 == FALSE){ x.ticks <- append(x.ticks, length(x.ticks) + 1) x.ymd <- append(x.ymd, x.ymd[feb28]+1, after = feb28) x.periodEnds <- append(x.periodEnds, FALSE, after = feb28) } } xtlen <- length(x.ticks) matrows <- ceiling(xtlen*frequency(x)/365) + 1 py <- matrix(NA, nrow = matrows, ncol = n.y, dimnames = list(character(0), paste(years))) pindex <- pymd <- px <- py for(y in y.seq){ ix <- x.seq[between(xj, starts[y], ends[y])] iRows <- 1:length(ix) pindex[iRows, y] <- ix py[iRows, y] <- x[ix] pymd[iRows, y] <- ymd(xj[ix]) ymd.offset <- 10000 * (max(years) - years[y]) px[iRows, y] <- match(ymd(xj[ix] + offsets[y]) + ymd.offset, x.ymd) } xlim <- c(x.ticks[1], x.ticks[xtlen] + 1) if(missing(ylim)){ bounds <- 1.1 * quantile(py, c(outlier.trim, 1-outlier.trim), na.rm=TRUE) - 0.1 * median(py, na.rm=TRUE) ylim <- c(max(bounds[1], min(py, na.rm=TRUE)), min(bounds[2], max(py, na.rm=TRUE))) if(noTrimLastYear){ pyLastYear <- py[,ncol(py)] ylim <- c(min(bounds[1], min(pyLastYear, na.rm = TRUE)), max(bounds[2], max(pyLastYear, na.rm = TRUE))) } } ylim[2] <- 1.1*ylim[2] - 0.1*ylim[1] y.ticks <- pretty(ylim, n = 8) ylim <- range(y.ticks) plot.window(xlim = xlim, ylim = ylim) if( length(pch) == 1 && is.character(pch) && pch == "year") pch <- paste(substring(years, 4, 4), collapse = "") if(!missing(lwdLastYear)){ lwd <- rep(lwd, length.out = length(years)) lwd[length(lwd)] <- lwdLastYear } if(!nolegend){ legendStrings <- format(years) if(any(offsets != 0)){ roffStrings <- paste("[", offsets, "]", sep = "") roffStrings[offsets == 0] <- "" legendStrings <- paste(legendStrings, roffStrings, sep = "") } legend(x = 0.5*xlim[1] + 0.5*xlim[2], y = max(ylim), legend = legendStrings, pch = pch, lty = lty, lwd = lwd, col = col, ncol = legend.ncol, bg = legend.bg, bty = "o", cex = 1.3, xjust = 0.5) } if(length(main)) mtext(main, side = 3, adj = 0.5, cex = 1.5, line = 0.5) if(tl.len <- length(topleft.labels)){ for(i in 1:tl.len) mtext(topleft.labels[i], side = 3, adj = 0, at = xlim[1], line = tl.len - i + 0.2) } if(tr.len <- length(topright.labels)){ for(i in 1:tr.len) mtext(topright.labels[i], side = 3, adj = 1, at = xlim[2], line = tr.len - i + 0.2) } par(new = TRUE) matplot(px, py, type = type, pch = pch, col = col, cex = cex, lty = lty, lwd = lwd, axes = FALSE, bty = "n", yaxs = "i", xaxs = "i", xlim = xlim, ylim = range(y.ticks), ...) if(type == "b" | type == "p") matpoints(px, py, pch = pch, lty = 1, col = col, cex = cex) periodEnd.ticks <- x.ticks[x.periodEnds] day15 <- (1:xtlen)[x.ymd %% 100 == 15] eom <- (1:xtlen)[x.ymd == ymd(ti(x.ymd, tif = "monthly"))] if(vlines.periodEnd) axis(1, at = periodEnd.ticks, tck = 1, lty = 2, labels = FALSE) if(vlines.month) abline(v = eom, lty = 1) if(extendHorizontalTicks) axis(2, at = y.ticks, tck = 1, lty = 2, labels = FALSE) axis(2, at = y.ticks, las = 1, adj = 1, tck = 0.02, labels = TRUE) axis(4, at = y.ticks, las = 1, adj = 0, tck = 0.02) if(topline) abline(h = ylim[2]) axis(1, at = x.ticks, tck = 0.02, labels = FALSE) monthLabels <- format(jul(x.ymd[day15]), "%b %Y") if(length(monthLabels) > 8) axis(1, at = periodEnd.ticks, tck = 0.04, labels = FALSE) else { periodEndLabels <- paste(x.ymd[x.periodEnds] %% 100) axis(1, at = periodEnd.ticks, tck = 0.04, labels = periodEndLabels) } mtext(text = monthLabels, side = 1, line = 1, at = day15) if(!is.null(vlines.ymd)){ i <- match(vlines.ymd, x.ymd, nomatch = 0) if(any(i != 0)) abline(v = x.ticks[i], col = vlines.col, lty = vlines.lty, lwd = vlines.lwd) } if(!is.null(vlines2.ymd)){ i <- match(vlines2.ymd, x.ymd, nomatch = 0) if(any(i != 0)) abline(v = x.ticks[i], col = vlines2.col, lty = vlines2.lty, lwd = vlines2.lwd) } if(!is.null(hlines)){ abline(h = hlines, col = hlines.col, lty = hlines.lty, lwd = hlines.lwd) } if(!is.null(tiPoints.1)){ ymd.1 <- ymd(ti(tiPoints.1)) i.1 <- match(ymd.1, x.ymd, nomatch = 0) if(any(i.1 != 0)) matpoints(x.ticks[i.1], tiPoints.1[i.1 > 0], pch = pch.1, cex = 1.4, col = col.1) } if(!is.null(tiPoints.2)){ ymd.2 <- ymd(ti(tiPoints.2)) i.2 <- match(ymd.2, x.ymd, nomatch = 0) if(any(i.2 != 0)) matpoints(x.ticks[i.2], tiPoints.2[i.2 > 0], pch = pch.2, cex = 1.4, col = col.2) } if(!is.null(circles.ymd)){ i.circles <- match(circles.ymd, pymd, nomatch = 0) if(any(i.circles != 0)){ x <- px[i.circles] y <- py[i.circles] symbols(x, y, add = TRUE, circles = rep(1, length(x)), inches = circles.inches, col = circles.col) } } if(boxes){ extents <- c(diff(xlim), diff(ylim)) / (par("pin") * c(2, 4)) boxBottom <- ylim[2] - extents[2] lBox <- c(xlim[1], boxBottom, xlim[1]+extents[1], ylim[2]) rBox <- c(xlim[2]-extents[1], boxBottom, xlim[2], ylim[2]) rect(lBox[1], lBox[2], lBox[3], lBox[4], col = "white") rect(rBox[1], rBox[2], rBox[3], rBox[4], col = "white") arrows(lBox[3], (lBox[2] +lBox[4])/2, lBox[1], (lBox[2]+lBox[4])/2, angle = 30,lwd = 4, col = "black") arrows(rBox[1], (rBox[2] +rBox[4])/2, rBox[3], (rBox[2]+rBox[4])/2, angle = 30,lwd = 4, col = "black") printBox <- c(lBox[3], lBox[2], lBox[3] + (lBox[3] - lBox[1]), lBox[4]) rect(printBox[1], printBox[2], printBox[3], printBox[4], col = "darkblue") text(x = mean(printBox[c(1,3)]), y = mean(printBox[c(2,4)]), labels = "Print Me", adj = c(0.5, 0.5), cex = 1.25, col = "white") } else { lBox <- rBox <- printBox <- NULL } if(timestamp) mtext(date(), side = 3, outer = TRUE, line = -1, adj = 1) invisible(list(px = px, py = py, ymd = pymd, index = pindex, lBox = lBox, rBox = rBox, printBox = printBox, startMonth = startMonth, nMonths = nMonths, nYears = nYears)) } adjustableTierChart <- function(x, ..., edit = TRUE, changes = numeric(0), verbose = FALSE){ locateOne <- function(){ options(error = NULL) point <- try(locator(1), silent = TRUE) if(class(point) == "try-error") point <- NULL options(error = quote(recover())) point } arglist <- list(..., edit = edit, verbose = verbose) if(is.null(arglist$main)) arglist$main <- deparse(substitute(x)) arglist$x <- x arglist$changes <- changes arglist$boxes <- TRUE drops <- match(c("edit", "changes", "verbose"), names(arglist), nomatch = 0) tcArgs <- arglist[-drops] tc <- do.call("tierChart", tcArgs) xStart <- start(x) xEnd <- end(x) xStartMonth <- ti(xStart, tif = "monthly") xEndMonth <- ti(xEnd, tif = "monthly") lastcol <- dim(tc$px)[2] not.na <- !(is.na(tc$px[,lastcol]) | is.na(tc$py[,lastcol])) px <- tc$px[not.na, lastcol] py <- tc$py[not.na, lastcol] ymd <- tc$ymd[not.na, lastcol] index <- tc$index[not.na, lastcol] xStep <- mean(diff(px)) lBox <- tc$lBox rBox <- tc$rBox pBox <- tc$printBox startMonth <- tc$startMonth nMonths <- tc$nMonths scrollIncrement <- max(nMonths - 2, 1) if(frequency(xStart) <= 12) scrollIncrement <- round(frequency(xStart)) if(length(changes) > 0){ for(i in 1:nrow(changes)){ change <- changes[i,] j <- match(change["ymd"], ymd, nomatch = 0) if(j > 0) arrows(px[j], py[j], px[j], change["newY"], col = 2) } } if(verbose) cat("Awaiting mouse input...") nextpoint <- locateOne() while(length(nextpoint) != 0){ npX <- nextpoint$x npY <- nextpoint$y lBoxClicked <- rBoxClicked <- pBoxClicked <- FALSE if((npY >= lBox[2]) && (npY <= lBox[4])){ lBoxClicked <- (npX >= lBox[1]) && (npX <= lBox[3]) rBoxClicked <- (npX >= rBox[1]) && (npX <= rBox[3]) pBoxClicked <- (npX >= pBox[1]) && (npX <= pBox[3]) } if(rBoxClicked){ inc <- min(scrollIncrement, xEndMonth - startMonth) arglist$startMonth <- startMonth + inc return(do.call("adjustableTierChart", arglist)) } if(lBoxClicked){ inc <- min(scrollIncrement, startMonth - xStartMonth) arglist$startMonth <- startMonth - inc return(do.call("adjustableTierChart", arglist)) } if(pBoxClicked){ printer <- options()$colorPrinter if(is.null(printer)) cat("options()$colorPrinter not set\n") else { postscript(file = "", command = paste("lp -d", printer, sep = ""), pointsize = 9) setColors(frColors()) modArgs <- tcArgs modArgs$legend.bg <- "grey90" do.call("tierChart", modArgs) dev.off() } } else { if(edit){ xDistances <- abs(px - npX) if(min(xDistances) < xStep){ i <- order(xDistances)[1] new.y <- npY changes <- rbind(changes, c(ymd = ymd[i], newY = npY)) arglist$changes <- changes arrows(px[i], py[i], px[i], new.y, col = 2) if(verbose) cat("Move", ymd[i], "obs from", signif(py[i], 3), "to", signif(new.y, 3), "\nAwaiting mouse input... ") } } } nextpoint <- locateOne() } if(length(changes) > 0) x[match(changes[,"ymd"], ymd(ti(x)))] <- changes[,"newY"] retval <- x attr(retval, "startMonth") <- arglist$startMonth if(verbose) cat("adjustableTierChart() exiting.\n") invisible(retval) }
PlotMixtures <- function(Data, Means, SDs, Weights = rep(1/length(Means),length(Means)), IsLogDistribution = rep(FALSE,length(Means)),SingleColor = 'blue', MixtureColor = 'red',DataColor='black',SingleGausses=FALSE,axes=TRUE,xlab, ylab,xlim, ylim, ParetoRad=NULL, ...){ if(missing(Data)) stop('Data is missing.') if(!inherits(Data,'numeric')){ warning('Data is not a numerical vector. calling as.vector') Data=as.vector(Data) } if(length(Data)==length(Means)) warning('Probably "Data" interchanged with "Means" ') if(!is.null(ParetoRad)){ pareto_radius = ParetoRad }else{ pareto_radius<-DataVisualizations::ParetoRadius(Data) } pdeVal <- DataVisualizations::ParetoDensityEstimation(Data,pareto_radius) if(missing(xlab)){ xlab = '' } if(missing(ylab)){ ylab = 'PDE' } if(missing(IsLogDistribution)) IsLogDistribution = rep(FALSE,length(Means)) if(length(IsLogDistribution)!=length(Means)){ warning(paste('Length of Means',length(Means),'does not equal length of IsLogDistribution',length(IsLogDistribution),'Generating new IsLogDistribution')) IsLogDistribution = rep(FALSE,length(Means)) } X = sort(na.last=T,unique(Data)) AnzGaussians <- length(Means) if(SingleColor != 0){ pdfV=Pdf4Mixtures(X, Means, SDs, Weights) SingleGaussian=pdfV$PDF GaussMixture=pdfV$PDFmixture GaussMixtureInd=which(GaussMixture>0.00001) if(missing(xlim)){ xl = max(X[GaussMixtureInd],na.rm=T) xa = min(X[GaussMixtureInd], 0,na.rm=T) xlim = c(xa,xl) } if(missing(ylim)){ yl <- max(GaussMixture,pdeVal$paretoDensity,na.rm=T) ya <- min(GaussMixture, 0,na.rm=T) ylim <- c(ya,yl+0.1*yl) } plot.new() par(xaxs='i') par(yaxs='i') par(usr=c(xlim,ylim)) if(SingleGausses){ for(g in c(1:AnzGaussians)){ par(new = TRUE) points(X, SingleGaussian[,g], col = SingleColor, type = 'l', xlim = xlim, ylim = ylim, ylab="PDE", ...) } } points(X, GaussMixture, col = MixtureColor, type = 'l',xlim = xlim,...) } else{ plot(X, GaussMixture, col = MixtureColor, type = 'l', xlim, ylim,axes=FALSE, ...) } if(axes){ axis(1,xlim=xlim,col="black",las=1) axis(2,ylim=ylim,col="black",las=1) title(xlab=xlab,ylab=ylab,...) } points(pdeVal$kernels,pdeVal$paretoDensity,type='l', xlim = xlim, ylim = ylim,col=DataColor,...) }
context("wflow_rename") source("setup.R") skip_on_cran_windows() library("git2r") cwd <- getwd() tdir <- tempfile("test-wflow_rename-") on.exit(setwd(cwd)) on.exit(unlink(tdir, recursive = TRUE, force = TRUE), add = TRUE) suppressMessages(wflow_start(tdir, user.name = "Test Name", user.email = "test@email")) tdir <- workflowr:::absolute(tdir) r <- repository(path = tdir) p <- wflow_paths() test_that("wflow_rename can rename one file", { original <- "analysis/about.Rmd" new <- "analysis/new.Rmd" renamed <- wflow_rename(original, new, message = "Rename file") expect_false(fs::file_exists(original)) expect_true(fs::file_exists(new)) expect_identical(renamed$files_git, c(original, new)) last_commit <- commits(r, n = 1)[[1]] last_commit_mes <- last_commit$message last_commit_sha <- last_commit$sha expect_identical(last_commit_mes, "Rename file") expect_output(print(renamed), sprintf("%s -> %s", original, new)) expect_output(print(renamed), stringr::str_sub(last_commit_sha, start = 1, end = 7)) expect_output(print(renamed), "commit message:") undo <- wflow_rename(new, original, message = "Revert to original name") expect_true(fs::file_exists(original)) expect_false(fs::file_exists(new)) expect_identical(undo$files_git, c(new, original)) last_commit <- commits(r, n = 1)[[1]] last_commit_mes <- last_commit$message last_commit_sha <- last_commit$sha expect_identical(last_commit_mes, "Revert to original name") expect_output(print(undo), sprintf("%s -> %s", new, original)) expect_output(print(undo), stringr::str_sub(last_commit_sha, start = 1, end = 7)) expect_output(print(renamed), "commit message:") }) test_that("wflow_rename can rename one file when no Git repo", { git <- ".git" git_tmp <- ".git-tmp" on.exit(fs::file_move(git_tmp, git)) fs::file_move(git, git_tmp) original <- "analysis/about.Rmd" new <- "analysis/new.Rmd" renamed <- wflow_rename(original, new, message = "Rename file") expect_false(fs::file_exists(original)) expect_true(fs::file_exists(new)) expect_identical(renamed$files, original, new) expect_identical(renamed$files_git, NA_character_) undo <- wflow_rename(new, original, message = "Revert to original name") expect_true(fs::file_exists(original)) expect_false(fs::file_exists(new)) expect_identical(undo$files, new) expect_identical(undo$files_git, NA_character_) print_lines <- utils::capture.output(print(undo)) expect_true(sprintf("%s -> %s", new, original) %in% print_lines) expect_false("commit message:" %in% print_lines) }) test_that("wflow_rename can rename one directory", { original <- "code" new <- "scripts" renamed <- wflow_rename(original, new, message = "Rename code directory") expect_false(fs::dir_exists(original)) expect_true(fs::dir_exists(new)) expect_identical(renamed$files_git, c(file.path(original, "README.md"), file.path(new, "README.md"))) undo <- wflow_rename(new, original, message = "Revert to original directory name") expect_true(fs::dir_exists(original)) expect_false(fs::dir_exists(new)) expect_identical(undo$files_git, c(file.path(new, "README.md"), file.path(original, "README.md"))) }) test_that("wflow_rename can rename one directory from outside project", { setwd(cwd) on.exit(setwd(tdir)) original <- file.path(tdir, "code") new <- file.path(tdir, "scripts") renamed <- wflow_rename(original, new, message = "Rename code directory", project = tdir) expect_false(fs::dir_exists(original)) expect_true(fs::dir_exists(new)) expect_identical(renamed$files_git, workflowr:::relative(c(file.path(original, "README.md"), file.path(new, "README.md")))) undo <- wflow_rename(new, original, message = "Revert to original directory name", project = tdir) expect_true(fs::dir_exists(original)) expect_false(fs::dir_exists(new)) expect_identical(undo$files_git, workflowr:::relative(c(file.path(new, "README.md"), file.path(original, "README.md")))) }) test_that("wflow_rename can handle a trailing slash in a directory name", { original <- "code/" new <- "scripts/" expect_identical(workflowr:::absolute(getwd()), tdir) expect_true(fs::dir_exists(original), info = glue::glue("wd is {fs::path_wd()} and contains \n{paste(fs::dir_ls(), collapse = '\n')}")) renamed <- wflow_rename(original, new, message = "Rename code directory") expect_false(fs::dir_exists(original)) expect_true(fs::dir_exists(new)) expect_identical(renamed$files_git, workflowr:::relative(c(file.path(original, "README.md"), file.path(new, "README.md")))) undo <- wflow_rename(new, original, message = "Revert to original directory name") expect_true(fs::dir_exists(original)) expect_false(fs::dir_exists(new)) expect_identical(undo$files_git, workflowr:::relative(c(file.path(new, "README.md"), file.path(original, "README.md")))) }) test_that("wflow_rename can rename one Rmd file with HTML and figs", { skip_on_cran() original <- "analysis/about.Rmd" new <- "analysis/new.Rmd" wflow_publish(original, view = FALSE) dir_fig <- file.path(p$docs, workflowr:::create_figure_path(original)) fs::dir_create(dir_fig) fig <- file.path(dir_fig, "fig.png") fs::file_create(fig) add(r, fig) commit(r, "Publish fake fig to accompany Rmd file to be renamed") html <- workflowr:::to_html(original, outdir = p$docs) html_new <- workflowr:::to_html(new, outdir = p$docs) dir_fig_new <- file.path(p$docs, workflowr:::create_figure_path(new)) fig_new <- file.path(dir_fig_new, "fig.png") renamed <- wflow_rename(original, new, message = "Rename file") expect_false(fs::file_exists(original)) expect_true(fs::file_exists(new)) expect_false(fs::file_exists(html)) expect_true(fs::file_exists(html_new)) expect_false(fs::file_exists(fig)) expect_true(fs::file_exists(fig_new)) expect_identical(renamed$files_git, c(original, html, fig, new, html_new, fig_new)) undo <- wflow_rename(new, original, message = "Revert to original name") expect_true(fs::file_exists(original)) expect_false(fs::file_exists(new)) expect_true(fs::file_exists(html)) expect_false(fs::file_exists(html_new)) expect_true(fs::file_exists(fig)) expect_false(fs::file_exists(fig_new)) expect_identical(undo$files_git, c(new, html_new, fig_new, original, html, fig)) }) test_that("print.wflow_rename works with dry_run", { original <- "README.md" new <- "new.md" renamed <- wflow_rename(original, new, dry_run = TRUE) expect_output(print(renamed), "The following file\\(s\\) would be renamed:") expect_output(print(renamed), sprintf("%s -> %s", original, new)) expect_output(print(renamed), "The following file\\(s\\) would be included in the Git commit:") }) test_that("print.wflow_rename works with `git = FALSE`", { original <- "README.md" new <- "new.md" git_true <- wflow_rename(original, new, git = TRUE, dry_run = TRUE) git_true_print_lines <- utils::capture.output(print(git_true)) expect_true("commit message:" %in% git_true_print_lines) git_false <- wflow_rename(original, new, git = FALSE, dry_run = TRUE) git_false_print_lines <- utils::capture.output(print(git_false)) expect_false("commit message:" %in% git_false_print_lines) })
library('Rcmdr') gm <- function(x) { gettext(paste0(x, '...'), domain='R-Rcmdr') } gt <- function(x) { gettext(x, domain='R-Rcmdr') }
genwr<-function(aindex){ aindex<-as.matrix(aindex) n1<-nrow(aindex) n0<-ncol(aindex) n<-n1+n0 kk<-max(abs(aindex)) tw<-tl<-xp<-rep(0,kk) wr<-vr<-vr0<-wd<-vd0<-wp<-vp<-vp0<-0.0 vd<-rep(0,2) abc1<-.Fortran("xgenwr",as.integer(n1),as.integer(n0),as.integer(kk), as.integer(aindex), tw=as.integer(tw),tl=as.integer(tl),xp=as.double(xp),wr=as.double(wr),vr=as.double(vr),vr0=as.double(vr0), wd=as.double(wd),vd=as.double(vd),vd0=as.double(vd0), wp=as.double(wp),vp=as.double(vp),vp0=as.double(vp0)) wd<-abc1$wd;wr<-abc1$wr;wp<-abc1$wp vd<-abc1$vd;vr<-abc1$vr;vp<-abc1$vp vd0<-abc1$vd0;vr0<-abc1$vr0;vp0<-abc1$vp0 td<-n^(-3/2)*wd/sqrt(vd);pd<-2*(1-pnorm(abs(td))) td0<-n^(-3/2)*wd/sqrt(vd0);pd0<-2*(1-pnorm(abs(td0))) tr<-sqrt(n)*log(wr)*wr/sqrt(vr);pr<-2*(1-pnorm(abs(tr))) tr0<-sqrt(n)*log(wr)/sqrt(vr0);pr0<-2*(1-pnorm(abs(tr0))) tp<-sqrt(n)*log(wp)*wp/sqrt(vp);pp<-2*(1-pnorm(abs(tp))) tp0<-sqrt(n)*log(wp)/sqrt(vp0);pp0<-2*(1-pnorm(abs(tp0))) tw<-abc1$tw;tl<-abc1$tl cwindex<-tw/sum(tw+tl) clindex<-tl/sum(tw+tl) xp<-abc1$xp me<-list(n1=n1,n0=n0,n=n,totalw=sum(tw), totall=sum(tl),tw=tw,tl=tl,xp=xp,cwindex=cwindex,clindex=clindex, wr=wr,vr=vr,vr0=vr0,tr=tr,pr=pr,tr0=tr0,pr0=pr0, wd=wd,vd=vd,vd0=vd0,td=td,pd=pd,td0=td0,pd0=pd0, wp=wp,vp=vp,vp0=vp0,tp=tp,pp=pp,tp0=tp0,pp0=pp0) class(me)<-append(class(me),"WWR") return(me) }
timeDateOptions <- function(...) { current <- if(exists(".splusTimeDateOptions", envir=.splusTimeDateEnv)) { .splusTimeDateEnv$.splusTimeDateOptions } else { .defaultSplusTimeDateOptions } if(!nargs()) { return(current) } a <- list(...) if(length(a) == 1 && is.null(names(a)) && is.list(a[[1]])) { a <- a[[1]] if(is.null(names(a))) { stop("list argument has no valid names") } } r <- vector("list", length(a)) n <- names(a) show <- FALSE changed <- current for(i in seq_along(a)) { ni <- n[[i]] if(!is.null(ni) && nchar(ni)) { changed[[ni]] <- a[[i]] } else { ni = a[[i]] if(!is.character(ni)) stop("invalid argument") show <- TRUE } v <- current[[ni]] if(!is.null(v)) { r[[i]] <- if(is.null(a[[i]])) FALSE else v } names(r)[[i]] <- ni } assign(".splusTimeDateOptions", changed, envir=.splusTimeDateEnv) if(show) r else invisible(r) } .defaultSplusTimeDateOptions <- list(ts.eps = 1e-05, sequence.tol = 1e-06, time.month.name = c("January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December" ), time.month.abb = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"), time.day.name = c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" ), time.day.abb = c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"), time.am.pm = c("AM", "PM"), time.century = 1930, time.zone = "GMT", time.out.format = "%02m/%02d/%04Y %02H:%02M:%02S.%03N", time.out.format.notime = "%02m/%02d/%04Y", time.in.format = "%m[/][.]%d[/][,]%y [%H[:%M[:%S[.%N]]][%p][[(]%3Z[)]]]", tspan.out.format = "%dd %Hh %Mm %Ss %NMS", tspan.in.format = "[%yy[ear[s]][,]] [%dd[ay[s]][,]] [%Hh[our[s]][,]] [%Mm[in[ute][s]][,]] [%Ss[ec[ond][s]][,]] [%NM[s][S]]" )
setMethod( "plot", signature="facelayer", definition=function(x,projargs=NULL,col="heat",border=NA, alpha=NULL, frame=FALSE,legend=TRUE, breaks=NULL, inclusive=TRUE, discrete=FALSE, ...){ actGrid<-get(x@grid) checkLinkedGrid(actGrid, x) if(!is.null(breaks)){ if(!is.numeric(breaks)) stop("The 'breaks' argument has to be numeric.") if(length(breaks)<3) stop("You need to provide at least three values to the 'breaks' argument.") } if(!is.null(alpha)){ if(length(alpha)>1) stop("Only one 'alpha' value is permitted.") } if(suppressWarnings(is.na(actGrid@sp))){ stop(paste("Slot @sp in the linked grid \'",x@grid, "\' is empty.", sep="")) } if(!is.null(projargs)){ if(requireNamespace("rgdal", quietly = TRUE)){ actGrid@sp<-sp::spTransform(actGrid@sp, projargs) } else{ stop("The rgdal package is required to appropriately project this object. ") } } if(sum(x@names%in%rownames(actGrid@faces))!=length(x)) stop("The facenames in the linked grid does not match the facelayer object.") if(class(x@values)%in%c("integer","double", "numeric")){ if(length(unique(x@values[!is.na(x@values)]))==1){ x@values<-as.logical(x@values) } } if(is.logical(x@values)){ x@values[x@values==FALSE]<-NA } boolPresent1<-rep(T,nrow(actGrid@faces)) if(length(x)!=nrow(actGrid@faces)){ boolPresent1<-rownames(actGrid@faces)%in%x@names } actSp<-actGrid@sp[boolPresent1] boolPresent<-rep(T,length(x)) if(sum(is.na(x@values))>0){ boolPresent<-!is.na(x@values) x@values<-x@values[boolPresent] x@names<- x@names[boolPresent] x@length <- sum(boolPresent) } actSp<-actSp[boolPresent] if(class(x@values)=="logical"){ if(length(col)==1) if(col=="heat") col <- " plot(actSp,col=col,border=border,...) } if(class(x@values)%in%c("integer","double", "numeric")){ if(is.null(breaks)){ minimum <- min(x@values) maximum <- max(x@values) steps <- length(x)+1 useBreaks <- seq(minimum, maximum,length.out=steps) }else{ minimum <- min(breaks) maximum <- max(breaks) useBreaks <- breaks } bMax <- FALSE bMin <- FALSE if(inclusive){ beyondMax <- which(x@values>maximum) if(length(beyondMax)>1){ x@values[beyondMax] <- maximum bMax <- TRUE } beyondMin <- which(x@values<minimum) if(length(beyondMin)>1){ x@values[beyondMin] <- minimum bMin <- TRUE } } if(length(col)==1){ if(col=="heat"){ cols <- rev(grDevices::heat.colors(length(useBreaks)-1)) cols<-substring(cols, 1,7) }else{ if(length(col)==1){ stop("You specified only one color.") } } } else{ ramp<-grDevices::colorRampPalette(col, bias=2, space="Lab") cols <- ramp(length(useBreaks)-1) } alreadyCut <- base::cut(x@values, breaks=useBreaks, include.lowest=TRUE) trans2 <- as.numeric(alreadyCut) faceColors<-cols[trans2] if(is.character(border)){ if(length(unique(border))==1){ if(substring(border[1], 1,1)==" border=paste(border, alpha,sep="") } } } faceColors<-paste(faceColors, alpha, sep="") if(legend){ graphics::par(mar=c(2,2,2,8)) } addArgs<-list(...) addArgs$tick.text<-NULL addArgs$ticks<-NULL addArgs$tick.cex<-NULL addArgs$barWidth<-NULL addArgs$barHeight<-NULL addArgs$tickLength<-NULL addArgs$xBot<-NULL firstArgs<-list( x=actSp, col=faceColors, border=border ) plotArgs<-c(firstArgs, addArgs) do.call(plot, plotArgs) if(legend){ oldRef<-graphics::par() oldRef$cin<-NULL oldRef$cra<-NULL oldRef$cxy<-NULL oldRef$din<-NULL oldRef$page<-NULL oldRef$csi<-NULL graphics::par(usr=c(0,100,0,100)) graphics::par(xpd=NA) graphics::par(mar=c(2,2,2,2)) addArgs<-list(...) addArgs$axes<-NULL addArgs$add<-NULL if(!discrete){ tickLabs <- useBreaks }else{ tickLabs <- (useBreaks+useBreaks[2:(length(useBreaks)+1)])/2 tickLabs <- tickLabs[!is.na(tickLabs)] } firstArgs<-list( cols=cols, vals=tickLabs, add=TRUE, xLeft=101, bounds=c(bMin, bMax) ) heatArgs<-c(firstArgs, addArgs) suppressWarnings( do.call(heatMapLegend, heatArgs) ) graphics::par(oldRef) } } if(class(x@values)=="character" & !sum(x@values%in%grDevices::colors())==x@length){ colorAll <- grDevices::colors()[grep('gr(a|e)y', grDevices::colors(), invert = TRUE)] active<-factor(x@values) if(length(levels(active))>length(colorAll)){ cols<-sample(colorAll, length(levels(active)), replace=TRUE) }else{ cols<-sample(colorAll, length(levels(active)), replace=FALSE) } faceColors<-cols[as.numeric(active)] if(is.character(border)){ if(length(unique(border))==1){ if(substring(border[1], 1,1)==" border=paste(border, alpha,sep="") } } } faceColors<-paste(faceColors, alpha, sep="") } if(class(x@values)=="character" & sum(x@values%in%grDevices::colors())==x@length){ faceColors<-paste(x@values, alpha, sep="") } if(class(x@values)=="character"){ addArgs<-list(...) addArgs$tick.text<-NULL addArgs$ticks<-NULL addArgs$tick.cex<-NULL addArgs$barWidth<-NULL addArgs$barHeight<-NULL addArgs$tickLength<-NULL addArgs$xBot<-NULL firstArgs<-list( x=actSp, col=faceColors, border=border ) plotArgs<-c(firstArgs, addArgs) do.call(plot, plotArgs) } if(frame){ plot(actSp, border="black", add=TRUE) } } )
DIGITS <- 2 .onAttach <- function(libname, pkgname){ parallelism_message <- "Use plan(multisession) to set up parallel processing" package_ver <- utils::packageDescription("spatialwarnings", fields = "Version") devel_message <- "" if ( grepl("99$", package_ver, perl = TRUE) ) { devel_message <- " (development version, use at your own risk!)" } packageStartupMessage({ paste0("This is spatialwarnings ", package_ver, devel_message, "\n", parallelism_message) }, appendLF = TRUE) } theme_spwarnings <- function() { lightgray <- " lightgray_darker <- " lightgray_lighter <- " theme_bw() + theme(panel.grid.major = element_line(color = lightgray_darker, linetype = 2, size = .3), panel.grid.minor = element_blank(), strip.background = element_rect(fill = NA, color = NA), panel.border = element_rect(color = lightgray)) } linescale_spwarnings <- function() { scale_color_manual(values = c(' } fillscale_spwarnings <- function(...) { scale_fill_manual(..., values = c(" }
getComments <- function(id, token, verbose=TRUE){ url <- paste0("https://api.instagram.com/v1/media/", id, "/comments") content <- callAPI(url, token) l <- length(content$data) if (verbose) message(l, " comments") if (length(content$data)==0){ stop("Error. No comments?") } df <- commentsListToDF(content$data) return(df) }
Yprice = c(80.13, 79.57, 79.93, 81.69, 80.82, 81.02) Xprice = c(72.86, 72.88, 71.72, 71.54, 71, 71.78) data = data.frame(Yprice, Xprice) plot(y=data$Yprice, x=data$Xprice) LinearR.lm = lm(Yprice ~ Xprice, data = data) coef(LinearR.lm) LinearR.lm summary(LinearR.lm)$r.squared
library(clifro) takaka.df = structure(list(name = c("Takaka, Kotinga Road", "Riwaka At Takaka Hill", "Takaka Pohara", "Takaka At Harwoods", "Takaka At Kotinga", "Takaka @ Canaan", "Upper Takaka 2", "Takaka Ews", "Takaka Aero Raws", "Takaka, Kotinga 2", "Upper Takaka", "Takaka,Patons Rock", "Takaka,Kotinga 1", "Takaka Aero", "Takaka Hill", "Takaka,Bu Bu", "Takaka"), network = c("F02882", "O12090", "F02884", "F15292", "F15291", "F0299A", "F12083", "F02885", "O00957", "F02883", "F12082", "F02772", "F02971", "F02871", "F12081", "F02872", "F02881"), agent = c(3788L, 44046L, 3790L, 44050L, 44051L, 44072L, 11519L, 23849L, 41196L, 3789L, 7316L, 3779L, 3794L, 3785L, 3833L, 3786L, 3787L), start = structure(c(18273600, 316263600, 520516800, 570020400, 704030400, 760014000, 805464000, 1020081600, 1439294400, 502110000, 688820400, -7992000, -255182400, -1046692800, -704894400, -1159875000, -2082886200), class = c("POSIXct", "POSIXt"), tzone = "NZ"), end = structure(c(1597665600, 1597665600, 1597665600, 1597665600, 1597665600, 1597665600, 1597665600, 1597665600, 1597665600, 1341057600, 720442800, 157719600, 49809600, 7732800, -320932800, -760190400, -1333452600), class = c("POSIXct", "POSIXt" ), tzone = "NZ"), open = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), distance = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), lat = c(-40.872, -41.03192, -40.845, -41.03094, -40.87068, -40.93987, -41.01516, -40.86364, -40.81531, -40.882, -41.051, -40.789, -40.9, -40.816, -41.017, -40.85, -40.817 ), lon = c(172.809, 172.84439, 172.867, 172.79802, 172.808, 172.90821, 172.82582, 172.80568, 172.7765, 172.801, 172.833, 172.757, 172.775, 172.772, 172.867, 172.733, 172.8)), class = "data.frame", row.names = c(NA, -17L)) new("cfStation", takaka.df) takaka.df = structure(list(name = c("Takaka, Kotinga Road", "Riwaka At Takaka Hill", "Takaka Pohara", "Takaka At Harwoods", "Takaka At Kotinga", "Takaka @ Canaan", "Upper Takaka 2", "Takaka Ews", "Takaka Aero Raws"), network = c("F02882", "O12090", "F02884", "F15292", "F15291", "F0299A", "F12083", "F02885", "O00957"), agent = c(3788L, 44046L, 3790L, 44050L, 44051L, 44072L, 11519L, 23849L, 41196L), start = structure(c(18273600, 316263600, 520516800, 570020400, 704030400, 760014000, 805464000, 1020081600, 1439294400), class = c("POSIXct", "POSIXt"), tzone = "NZ"), end = structure(c(1597665600, 1597665600, 1597665600, 1597665600, 1597665600, 1597665600, 1597665600, 1597665600, 1597665600), class = c("POSIXct", "POSIXt"), tzone = "NZ"), open = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE), distance = c(NA, NA, NA, NA, NA, NA, NA, NA, NA), lat = c(-40.872, -41.03192, -40.845, -41.03094, -40.87068, -40.93987, -41.01516, -40.86364, -40.81531), lon = c(172.809, 172.84439, 172.867, 172.79802, 172.808, 172.90821, 172.82582, 172.80568, 172.7765)), class = "data.frame", row.names = c(NA, -9L)) new("cfStation", takaka.df) xx.df = structure(list(name = c("Takaka, Kotinga Road", "Takaka Pohara", "Takaka Ews", "Aorere At Salisbury Bridge", "Takaka, Kotinga 2", "Nelson,Mckay Hut", "Gouland Downs", "Golden Bay,Table Hl I", "Golden Bay,Table Hl 2", "Tarakohe", "Takaka Aero", "Totaranui", "Takaka,Bu Bu", "Takaka", "Quartz Ranges"), network = c("F02882", "F02884", "F02885", "F02854", "F02883", "F02821", "F02831", "F02852", "F02853", "F02891", "F02871", "F02892", "F02872", "F02881", "F02851" ), agent = c(3788L, 3790L, 23849L, 44020L, 3789L, 3780L, 3781L, 3783L, 3784L, 3791L, 3785L, 3792L, 3786L, 3787L, 3782L), start = structure(c(18273600, 520516800, 1020081600, 1311595200, 502110000, 417960000, 467982000, 233928000, 233928000, -1188819000, -1046692800, -410270400, -1159875000, -2082886200, -2177494200), class = c("POSIXct", "POSIXt"), tzone = "NZ"), end = structure(c(1597665600, 1597665600, 1597665600, 1597665600, 1341057600, 745416000, 745416000, 690807600, 690807600, 599569200, 7732800, -294667200, -760190400, -1333452600, -2125049400 ), class = c("POSIXct", "POSIXt"), tzone = "NZ"), open = c(TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), distance = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), lat = c(-40.872, -40.845, -40.86364, -40.80236, -40.882, -40.89, -40.892, -40.807, -40.807, -40.825, -40.816, -40.823, -40.85, -40.817, -40.867), lon = c(172.809, 172.867, 172.80568, 172.53328, 172.801, 172.213, 172.351, 172.556, 172.556, 172.898, 172.772, 173.002, 172.733, 172.8, 172.517)), class = "data.frame", row.names = c(NA, -15L)) new("cfStation", xx.df) open.queenstown.stations.df = dget(system.file("extdata", "queenStations", package = "clifro")) open.queenstown.stations = new("cfStation", open.queenstown.stations.df) takaka.town.df = structure(list(name = c("Takaka, Kotinga Road", "Takaka Pohara", "Anatoki At Happy Sams", "Takaka At Kotinga", "Takaka Ews", "Motupiko At Reillys Bridge", "Takaka Aero Raws"), network = c("F02882", "F02884", "F15293", "F15291", "F02885", "F1529M", "O00957"), agent = c(3788L, 3790L, 44015L, 44051L, 23849L, 44041L, 41196L), start = structure(c(18273600, 520516800, 657284400, 704030400, 1020081600, 1164711600, 1439294400 ), class = c("POSIXct", "POSIXt"), tzone = "NZ"), end = structure(c(1598788800, 1598788800, 1598788800, 1598788800, 1598788800, 1598788800, 1598788800 ), class = c("POSIXct", "POSIXt"), tzone = "NZ"), open = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE), distance = c(2.6, 5.7, 5.8, 2.4, 1.6, 2.7, 4.3), lat = c(-40.872, -40.845, -40.88587, -40.87068, -40.86364, -40.85607, -40.81531), lon = c(172.809, 172.867, 172.74982, 172.808, 172.80568, 172.83162, 172.7765)), class = "data.frame", row.names = c(NA, -7L)) takaka.town.st = new("cfStation", takaka.town.df) takaka.town.st[, -c(8, 9)] takaka.town.st[order(takaka.town.st$distance), -c(8, 9)] hourly.rain.dt = new("cfDatatype" , dt_name = "Precipitation" , dt_type = "Rain (fixed periods)" , dt_sel_option_names = list("Hourly") , dt_sel_combo_name = NA_character_ , dt_param = structure("ls_ra,1,2,3,4", .Names = "dt1") , dt_sel_option_params = list(structure("182", .Names = "prm2")) , dt_selected_options = list(2) , dt_option_length = 4 ) hourly.rain.dt kaitaia.df = structure(list(name = c("Kaitaia Aero Ews", "Trounson Cws", "Russell Cws", "Kaikohe Aws", "Purerua Aws", "Cape Reinga Aws", "Kerikeri Aerodrome Aws", "Kaitaia Ews", "Dargaville 2 Ews", "Kerikeri Ews"), network = c("A53026", "A53762", "A54212", "A53487", "A54101", "A42462", "A53295", "A53127", "A53987", "A53191"), agent = c(18183L, 37131L, 41262L, 1134L, 1196L, 1002L, 37258L, 17067L, 25119L, 1056L), start = structure(c(960984000, 1244030400, 1459771200, 500727600, 788871600, 788871600, 1214395200, 913806000, 1067425200, 1025179200), class = c("POSIXct", "POSIXt" ), tzone = "NZ"), end = structure(c(1598702400, 1598702400, 1598702400, 1598616000, 1598616000, 1598616000, 1598616000, 1598443200, 1598011200, 1597924800), class = c("POSIXct", "POSIXt"), tzone = "NZ"), open = c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE), distance = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), lat = c(-35.0677, -35.72035, -35.26835, -35.4172, -35.129, -34.42963, -35.262, -35.13352, -35.93145, -35.183), lon = c(173.2874, 173.65153, 174.136, 173.8229, 174.015, 172.68186, 173.911, 173.26294, 173.85317, 173.926)), class = "data.frame", row.names = c(NA, -10L)) kaitaia.st = new("cfStation", kaitaia.df) my.composite.search = takaka.town.st + kaitaia.st my.composite.search transform(my.composite.search, ndays = round(end - start))[, c(1, 10)]
blockoptwrt <- function(fn,optsw,opt_xt=optsw[2], opt_a=optsw[4],opt_x=optsw[4], opt_samps=optsw[1],opt_inds=optsw[5]){ fprintf(fn,'==============================================================================\n') fprintf(fn,'Optimization of design parameters\n\n') if((opt_samps)){ fprintf(fn,'* Optimize Samples per subject\n') } if((opt_xt)){ fprintf(fn,'* Optimize Sampling Schedule\n') } if((opt_x)){ fprintf(fn,'* Optimize Discrete variables\n') } if((opt_a)){ fprintf(fn,'* Optimize Covariates\n') } if((opt_inds)){ fprintf(fn,'* Optimize Number of individuals per group\n') } fprintf(fn,'\n') return( ) }
print.clv.fitted.transactions.static.cov <- function(x, digits = max(3L, getOption("digits") - 3L), ...){ NextMethod() cat("Constraints: ", [email protected], "\n") cat("Regularization: ", [email protected], "\n") invisible(x) } summary.clv.fitted.transactions.static.cov <- function(object, ...){ res <- NextMethod() class(res) <- c("summary.clv.fitted.transactions.static.cov", class(res)) res$additional.options <- c(res$additional.options, "Regularization"[email protected]) if([email protected]){ res$additional.options <- c(res$additional.options, " lambda.life" = [email protected], " lambda.trans" = [email protected]) } res$additional.options <- c(res$additional.options, "Constraint covs" = [email protected]) if([email protected]){ res$additional.options <- c(res$additional.options, " Constraint params" = paste([email protected], collapse = ", ")) } return(res) } coef.clv.fitted.transactions.static.cov <- function(object, ...){ original.scale.coef.model <- NextMethod() last.row.optimx.coef <- tail(coef([email protected]),n=1) if([email protected]){ names.prefixed.covs <- union([email protected], union([email protected], [email protected])) }else{ names.prefixed.covs <- union([email protected], [email protected]) } names.prefixed.covs <- na.omit(names.prefixed.covs) prefixed.params.cov <- last.row.optimx.coef[1, names.prefixed.covs, drop=TRUE] prefixed.params.cov <- setNames(prefixed.params.cov, names.prefixed.covs) original.scale.params.cov <- clv.model.backtransform.estimated.params.cov(clv.model = [email protected], prefixed.params.cov = prefixed.params.cov) original.scale.params.cov <- setNames(original.scale.params.cov[names.prefixed.covs], names.prefixed.covs) names.original.named.prefixed.all <- names(original.scale.coef.model) if(clv.model.estimation.used.correlation(clv.model = [email protected])){ names(names.original.named.prefixed.all) <- c([email protected]@names.prefixed.params.model, [email protected]@name.prefixed.cor.param.m) }else{ names(names.original.named.prefixed.all) <- [email protected]@names.prefixed.params.model } names.original.named.prefixed.all <- c(names.original.named.prefixed.all, setNames(names(original.scale.params.cov), names(original.scale.params.cov))) names.optimx.coefs <- colnames(last.row.optimx.coef) names.original.named.prefixed.all <- names.original.named.prefixed.all[names.optimx.coefs] params.all <- c(original.scale.coef.model, original.scale.params.cov) return(params.all[names.original.named.prefixed.all]) } setMethod(f = "show", signature = signature(object="clv.fitted.transactions.static.cov"), definition = function(object){ print(x=object)})
context("Ensuring that the `cols_label()` function works as expected") tbl <- dplyr::tribble( ~col_1, ~col_2, ~col_3, ~col_4, 767.6, 928.1, 382.0, 674.5, 403.3, 461.5, 15.1, 242.8, 686.4, 54.1, 282.7, 56.3, 662.6, 148.8, 984.6, 928.1, 198.5, 65.1, 127.4, 219.3, 132.1, 118.1, 91.2, 874.3, 349.7, 307.1, 566.7, 542.9, 63.7, 504.3, 152.0, 724.5, 105.4, 729.8, 962.4, 336.4, 924.2, 424.6, 740.8, 104.2) check_suggests <- function() { skip_if_not_installed("rvest") skip_if_not_installed("xml2") } selection_value <- function(html, key) { selection <- paste0("[", key, "]") html %>% rvest::html_nodes(selection) %>% rvest::html_attr(key) } selection_text <- function(html, selection) { html %>% rvest::html_nodes(selection) %>% rvest::html_text() } test_that("the function `cols_label()` works correctly", { check_suggests() tbl_html <- gt(tbl) %>% cols_label( col_1 = "col_a", col_2 = "col_b", col_3 = "col_c", col_4 = "col_d" ) tbl_html %>% .$`_boxh` %>% .$column_label %>% unlist() %>% expect_equal(c("col_a", "col_b", "col_c", "col_d")) tbl_html %>% render_as_html() %>% xml2::read_html() %>% selection_text("[class='gt_col_heading gt_columns_bottom_border gt_right']") %>% expect_equal(c("col_a", "col_b", "col_c", "col_d")) tbl_html <- gt(tbl) %>% cols_label() tbl_html %>% .$`_boxh` %>% .$var %>% unlist() %>% expect_equal(colnames(tbl)) tbl_html %>% .$`_boxh` %>% .$column_label %>% unlist() %>% expect_equal(colnames(tbl)) tbl_html %>% render_as_html() %>% xml2::read_html() %>% selection_text("[class='gt_col_heading gt_columns_bottom_border gt_right']") %>% expect_equal(c("col_1", "col_2", "col_3", "col_4")) tbl_html <- gt(tbl) %>% cols_label( .list = list( col_1 = "col_a", col_2 = "col_b", col_3 = "col_c", col_4 = "col_d") ) tbl_html %>% .$`_boxh` %>% .$column_label %>% unlist() %>% expect_equal(c("col_a", "col_b", "col_c", "col_d")) tbl_html %>% render_as_html() %>% xml2::read_html() %>% selection_text("[class='gt_col_heading gt_columns_bottom_border gt_right']") %>% expect_equal(c("col_a", "col_b", "col_c", "col_d")) expect_error( gt(tbl) %>% cols_label("col_a")) expect_error( gt(tbl) %>% cols_label(col_a = "col_1")) expect_error( regexp = NA, dplyr::tribble( ~a , ~d, 1, 4, 5, 8 ) %>% gt() %>% cols_label( a = "label a", d = "label d" ) ) expect_error( regexp = NA, dplyr::tribble( ~a , ~dat, 1, 4, 5, 8 ) %>% gt() %>% cols_label( a = "label a", dat = "label dat" ) ) expect_error( dplyr::tribble( ~a , ~.dat, 1, 4, 5, 8 ) %>% gt() %>% cols_label( a = "label a", .dat = "label dat" ) ) })
convolveUnitStep <- function(k, x, irfpar) { m <- matrix(0, nrow=length(x), ncol=length(k)) step1 <- matrix(0, nrow=length(x), ncol=length(irfpar)) for(j in 1:length(irfpar)) step1[,j] <- unitstep(x-irfpar[j]) for(i in 1:length(k)) { dec <- exp(k[i]*x) for(j in 1:length(irfpar)) { s1 <- if(j%%2==0) -1 else 1 s2 <- -1 * s1 decj <- exp(k[i]*irfpar[j]) m[,i] <- m[,i] + (( s1 * dec + s2 * decj) * step1[,j]) + ((-1 + decj) * unitstep(- irfpar[j])) } m[,i] <- m[,i] * exp(-k[i]*x) * (1/k[i]) } m }
readLandmarks.csv <- function(file, x, y=2:4, rownames=NULL, header=TRUE, dec=".", sep=";") { xlen <- length(x) ylen <- length(y) arr <- matrix(NA, xlen, ylen) if (is.factor(x)) x <- as.character(x) if (is.character(x)) { data <- read.table(file, header=header,dec=dec,sep=sep) dat <- NULL count <- 1 if (is.null(rownames)) stop("please specify column containing Landmark names!") rn <- data[,rownames] for (j in 1:length(x)) { check <- which(rn==x[j]) if (length(check) == 0) { warning(paste("dataset misses entry for Landmark",j)) data[99999, y] <- rep(NA,ylen) dat[count] <- 99999 } if (length(check) > 1) { warning(paste("dataset contains landmark dat[count] <- check[1] } else { empty <- which(rn==x[j]) if (length(empty) !=0) dat[count] <- which(rn==x[j]) } count <- count+1 } arr <- as.matrix(data[dat,y]) rown <- x } else { data <- read.table(file,header=header,dec=dec,sep=sep) arr <- as.matrix(data[x,y]) if (is.null(rownames)) rown <- c(1:xlen) else rown <- data[x,rownames] } nas0 <- which(is.na(arr)) nas1 <- as.integer(nas0/(xlen*ylen))+1 nas <- nas1[-(which(duplicated(nas1)))] if (length(nas) > 0) { for (i in 1:length(nas)) { nas2 <- nas0[which(nas1==nas[i])]%%(xlen*ylen) nas2 <- nas2%%xlen nas2 <- nas2[-which(duplicated(nas2))] if (0 %in% nas2) {nas2[which(nas2==0)] <- xlen} if (length(nas2) > 0) nas2 <- sort(nas2) } } else nas2 <- NULL dimnames(arr) <- list(rown,c("X","Y","Z")) return(list(LM=arr,NAs=nas2)) }
"qqplot.gld.bi" <- function (data, fit, param1, param2, len = 10000, name = "", corner = "topleft", type = "", range = c(0, 1), xlab = "", main = "") { q <- seq(0, 1, length = len) minr<-min(range) maxr<-max(range) first.len <- len * fit[9] second.len <- len - first.len first.q <- seq(0, 1, length = first.len) second.q <- seq(0, 1, length = second.len) theo.quantile <- sort(c(qgl(first.q, fit[1], fit[2], fit[3], fit[4], param1), qgl(second.q, fit[5], fit[6], fit[7], fit[8], param2))) fitted.q <- (theo.quantile[!is.inf(theo.quantile)]) qq<-fit[9]*pgl(fitted.q,fit[1:4],param=param1)+(1-fit[9])*pgl(fitted.q, fit[5:8],param=param2) fitted.q<-fitted.q[qq>=minr & qq<=maxr] qq<-qq[qq>=minr & qq<=maxr] data.q <- quantile(data, prob = qq) if (type == "") { if (is.na(xlab) == TRUE) { xlab = "Quantile" } if (is.na(main) == TRUE) { main = paste("Quantile plot for", name) } plot(qq, data.q, xlab = xlab, ylab = "Data values", main = main, xlim = c(minr, maxr), ylim = c(min(fitted.q, data.q), max(fitted.q, data.q)), col = 1, type = "l") lines(qq, fitted.q, col = 6) legend(corner, c("Data", "Fitted Distribution"), col = c(1, 6), lty = 1) } if (type == "str.qqplot") { if ((xlab) == "") { xlab = "Data" } if ((main) == "") { main = paste("Quantile plot for", name) } qqplot(data.q, fitted.q, xlab = xlab, ylab = "Theoretical", main = main) abline(0, 1, col = 2) } }
pcscorebootstrapdata <- function(dat, bootrep, statistic, bootmethod = c("st", "sm", "mvn", "stiefel", "meboot"), smo) { dat = t(dat) n = dim(dat)[1] p = dim(dat)[2] boot = matrix(, p, bootrep) bootdataarray = array(, dim = c(p, n, bootrep)) data = scale(dat, center = TRUE, scale = FALSE) meandata = matrix(rep(as.matrix(colMeans(dat)), n), p, n) dummy = svd(data) U = dummy$u D = diag(dummy$d) V = dummy$v if(bootmethod == "st") { for(b in 1:bootrep) { drawU = U[sample(1:n, n, replace = TRUE), ] bootdata = t(drawU%*%D%*%t(V)) + meandata bootdataarray[,,b] = bootdata boot[,b] = centre(bootdata, type = statistic) } } if(bootmethod == "sm") { for(b in 1:bootrep) { drawU = U[sample(1:n, n, replace = TRUE), ] + mvrnorm(n, rep(0, min(p, n)), var(U) * smo) bootdata = t(drawU%*%D%*%t(V)) + meandata bootdataarray[,,b] = bootdata boot[,b] = centre(bootdata, type = statistic) } } if(bootmethod == "mvn") { for(b in 1:bootrep) { drawU <- mvrnorm(n, colMeans(U), var(U)) bootdata = t(drawU%*%D%*%t(V)) + meandata bootdataarray[,,b] = bootdata boot[,b] = centre(bootdata, type = statistic) } } if(bootmethod == "stiefel") { for(b in 1:bootrep) { X <- mvrnorm(n, colMeans(U), var(U)) tmp <- eigen(t(X)%*%X) drawU = (X%*%(tmp$vec%*%sqrt(diag(1/tmp$val))%*%t(tmp$vec)))[sample(1:n,n,replace=TRUE),] bootdata = t(drawU%*%D%*%t(V)) + meandata bootdataarray[,,b] = bootdata boot[,b] = centre(bootdata, type = statistic) } } if(bootmethod == "meboot") { out <- meboot::meboot(ts(as.numeric(U),start=1,end=n*(min(n,p))), reps = bootrep) for(b in 1:bootrep) { drawU = matrix(out$ensemble[,b], n, min(n,p)) bootdata = t(drawU%*%D%*%t(V)) + meandata bootdataarray[,,b] = bootdata boot[,b] = centre(bootdata, type = statistic) } } return(list(bootdata = bootdataarray, meanfunction = boot)) }
buildPedsExtra = function(labs, sex, extra = 0, ageMat = NULL, knownPO = NULL, allKnown = FALSE, notPO = NULL, noChildren = NULL, connected = TRUE, maxLinearInb = Inf, sexSymmetry = TRUE, verbose = FALSE) { st = Sys.time() N = length(labs) Ntot = N + extra sex = c(sex, rep(0L, extra)) knownPO_long = lapply(1:Ntot, function(i) unlist(lapply(knownPO, function(p) if(max(p) == i) min(p)))) notPO_long = lapply(1:Ntot, function(i) unlist(lapply(notPO, function(p) if(max(p) == i) min(p)))) y = unname(ageMat[, "younger"]) o = unname(ageMat[, "older"]) ageList = lapply(1:N, function(i) list(younger = y[o == i], older = o[y == i])) if(verbose) cat("\nBuilding pedigree list:\n") a1 = adjMatrix(sex = sex[1], connected = TRUE) attr(a1, "anc") = list(1L) Mlist = list(a1) addFUN = function(a, k) { addIndividual(a, addedSex = sex[k], origN = N, final = k == Ntot, connected = connected, knownPO = knownPO_long[[k]], notPO = notPO_long[[k]], ageList = ageList[1:k], noChildren = noChildren, maxLinearInb = maxLinearInb) } for(k in 1 + seq_len(N-1)) { Mlist = unlist(lapply(Mlist, function(a) addFUN(a, k)), recursive = FALSE) if(verbose && k < N) cat(sprintf(" First %d: %d candidates (%s)\n", k, length(Mlist), ftime(st))) } ALLSOLS = validSolutions(Mlist, connected = connected) if(verbose) cat(sprintf(" All %d + 0 extra: %d solutions | %d candidates (%s)\n", N, length(ALLSOLS), length(Mlist), ftime(st))) if(extra) { intermediate = vector("list", length = extra) for(ex in seq_len(extra)) { k = N + ex Mlist = unlist(lapply(Mlist, function(a) addFUN(a, k)), recursive = FALSE) nCand0 = length(Mlist) Mlist = removeDuplicates(Mlist, sexSymmetry) intermediate[[ex]] = validSolutions(Mlist, N, connected) if(verbose) { nCand = length(Mlist) cat(sprintf(" All %d + %d extra: %d solutions | %d candidates | %d duplicates removed (%s)\n", N, ex, length(intermediate[[ex]]), nCand, nCand0 - nCand, ftime(st))) } } ALLSOLS = c(ALLSOLS, unlist(intermediate, recursive = FALSE)) } if(verbose) cat("Total solutions:", length(ALLSOLS), "\nConverting to ped\n") peds = lapply(ALLSOLS, function(a) adj2ped(addMissingParents1(a), labs)) if(verbose) cat("Total time:", ftime(st)) invisible(peds) } addIndividual = function(a, addedSex, origN, final, connected = FALSE, knownPO = NULL, notPO = NULL, ageList = NULL, noChildren = NULL, maxLinearInb = Inf) { if(addedSex == 0L) { addedMale = addIndividual(a, 1L, origN = origN, final = final, connected = connected, knownPO = knownPO, notPO = notPO, ageList = ageList, noChildren = noChildren, maxLinearInb = maxLinearInb) addedFemale = addIndividual(a, 2L, origN = origN, final = final, connected = connected, knownPO = knownPO, notPO = notPO, ageList = ageList, noChildren = noChildren, maxLinearInb = maxLinearInb) return(c(addedMale, addedFemale)) } n = dim(a)[1] k = n + 1 extra = n >= origN checkAge = length(ageList) > 0 thisAge = ageList[[k]] checkInb = maxLinearInb < Inf prev = seq_len(n) sex = attr(a, "sex") mal = which(sex == 1) fem = which(sex == 2) excludeAsParent = c(notPO, noChildren, thisAge$younger) potentialFa = c(0, .mysetdiff(mal, excludeAsParent, makeUnique = FALSE)) potentialMo = c(0, .mysetdiff(fem, excludeAsParent, makeUnique = FALSE)) if(k %in% noChildren) potentialCh = integer(0) else { excludeAsChild = c(notPO, thisAge$older) missingParent = switch(addedSex, which(.colSums(a[mal, , drop = F], length(mal), n) == 0), which(.colSums(a[fem, , drop = F], length(fem), n) == 0)) potentialCh = .mysetdiff(missingParent, excludeAsChild, makeUnique = FALSE) } len = length(potentialFa) * length(potentialMo) * 2^length(potentialCh) RES = vector("list", length = len) aExt = c(rbind(a, rep(FALSE, n)), rep(FALSE, n + 1)) dim(aExt) = c(k, k) sexExt = as.integer(c(sex, addedSex)) tmpA = newAdjMatrix(aExt, sex = sexExt) tmpAnc = attr(a, "anc") length(tmpAnc) = k i = 0 for(fa in potentialFa) for(mo in potentialMo) { par = c(fa, mo) par = par[par > 0] npar = length(par) if(maxLinearInb == 0 && npar == 2 && any(a[par, par])) next if(npar == 0) parAnc = integer(0) else if(npar == 1) parAnc = tmpAnc[[par]] else parAnc = unique.default(c(tmpAnc[[par[1]]], tmpAnc[[par[2]]])) potCh = .mysetdiff(potentialCh, parAnc, makeUnique = FALSE) known = .mysetdiff(knownPO, par, makeUnique = FALSE) if(!all(known %in% potCh)) next for(chs in powerset(potCh, force = known)) { if(final && extra && (length(chs) == 0 || (length(chs) == 1 && npar == 0))) next if(maxLinearInb == 0 && any(a[c(par, chs), c(par, chs)])) next newA = tmpA newA[par, k] = TRUE newA[k, chs] = TRUE if(checkInb && linearInb2(newA, minDist = maxLinearInb + 1)) next if(extra) { hasLonely = hasLonelyExtras(newA, origN) if(final && hasLonely) next attr(newA, "hasLonely") = hasLonely } if(final || k >= origN) { isConn = isConnected(newA) if(final && connected && !isConn) next attr(newA, "connected") = isConn } if(!final || checkAge) { newAnc = tmpAnc newAnc[[k]] = c(k, parAnc) isDesc = vapply(prev, function(d) !(d %in% par) && (d %in% chs || any(chs %in% newAnc[[d]])), logical(1)) desc = which(isDesc) if(length(parAnc)) newAnc[desc] = lapply(newAnc[desc], function(v) unique.default(c(v, k, parAnc))) else newAnc[desc] = lapply(newAnc[desc], function(v) c(v, k)) attr(newA, "anc") = newAnc } if(checkAge && ageViol(newA, newAnc, ageList)) next if(extra && k > origN + 1) newA = canonicalPerm(newA, origN) RES[[i+1]] = newA i = i+1 } } length(RES) = i RES } hasLonelyExtras = function(a, N) { Ntot = dim(a)[1] Nex = Ntot - N if(Nex == 0) return(FALSE) extraCh = .rowSums(a[N + seq_len(Nex), , drop = FALSE], Nex, Ntot) if(any(extraCh == 0)) return(TRUE) extraPar = .colSums(a[, N + seq_len(Nex), drop = FALSE], Ntot, Nex) if(any(extraPar == 0 & extraCh == 1)) return(TRUE) FALSE } canonicalPerm = function(a, N) { n = dim(a)[1] if(n <= N + 1) return(a) Nseq = seq_len(N) exSeq = N + seq_len(n - N) sex = attr(a, "sex") block1 = lapply(Nseq, function(i) a[exSeq, i]) block2 = lapply(Nseq, function(i) a[i, exSeq]) args = c(block1, block2, list(sex[exSeq], decreasing = TRUE, method = "shell")) ord = do.call(order, args) p = c(Nseq, N + ord) a[] = a[p, p] attr(a, "sex") = sex[p] if(!is.null(anc <- attr(a, "anc"))) { pAnc = lapply(anc[p], function(v) match(v, p)) attr(a, "anc") = pAnc } a } removeDuplicates = function(DA, sexSymmetry) { if(sexSymmetry) dups = duplicated.default(lapply(DA, as.integer)) else dups = duplicated.default(lapply(DA, function(da) c(as.integer(da), attr(da, "sex")))) DA[!dups] } validSolutions = function(DA, checkLonely = FALSE, connected = FALSE) { if(length(DA) == 0) return(DA) if(checkLonely) { DA = DA[!sapply(DA, attr, "hasLonely")] if(length(DA) == 0) return(DA) } if(connected) { DA = DA[sapply(DA, attr, "connected")] if(length(DA) == 0) return(DA) } DA } ageViol = function(a, anc, ageList) { for(i in 1:dim(a)[1]) { y = ageList[[i]]$younger if(length(y) && any(y %in% anc[[i]])) return(TRUE) } return(FALSE) }
if (requiet("emmeans") && requiet("insight") && requiet("testthat")) { test_that("emmeans", { m <- glm(am ~ factor(cyl), family = binomial(), data = mtcars ) EList <- emmeans::emmeans(m, pairwise ~ cyl, type = "resp") E <- emmeans::emmeans(m, ~cyl, type = "resp") C <- emmeans::contrast(E, method = "pairwise") expect_equal(find_statistic(EList), "z-statistic") expect_equal(get_statistic(EList)$Statistic, c(1.449, -0.377, -2.346, 1.243, 2.717, 1.393), tolerance = 0.001) expect_equal(get_statistic(EList)$Statistic[1:3], get_statistic(E)$Statistic, tolerance = 0.001) expect_equal(get_statistic(EList)$Statistic[4:6], get_statistic(C)$Statistic, tolerance = 0.001) expect_equal(get_parameters(EList)$Estimate, c(0.727, 0.429, 0.143, 3.556, 16, 4.5), tolerance = 0.001) }) }
swap_funct_robust <- function(vect_arch_ini, rss_arch_ini, huge = 200, numArchoid, x_gvv, n, PM, prob){ vect_arch_end <- vect_arch_ini rss <- rss_arch_ini for (l in 1:numArchoid) { rss1 <- c() setpossibles <- setdiff(1:n,vect_arch_ini) for (i in setpossibles) { zs <- x_gvv[,c(i,vect_arch_ini[-l])] zs <- as.matrix(zs) alphas <- matrix(0, nrow = numArchoid, ncol = n) for (j in 1:n) { alphas[, j] = coef(nnls(zs, x_gvv[,j])) } resid <- zs[1:(nrow(zs) - 1),] %*% alphas - x_gvv[1:(nrow(x_gvv) - 1),] rss1[i] <- frobenius_norm_funct_robust(resid, PM, prob) / n if (rss1[i] < rss) { rss <- rss1[i] vect_arch_end = c(i,vect_arch_ini[-l]) } } } if (numArchoid == 1) { result <- swap2_k1_funct_robust(vect_arch_end, vect_arch_ini, rss, huge, numArchoid, x_gvv, n, PM, prob) }else{ result <- swap2_funct_robust(vect_arch_end, vect_arch_ini, rss, huge, numArchoid, x_gvv, n, PM, prob) } return(result) } swap2_funct_robust <- function(vect_arch_end, vect_arch_ini, rss, huge = 200, numArchoid, x_gvv, n, PM, prob){ vect_arch_ini_aux <- vect_arch_ini vect_arch_end_aux <- vect_arch_end rss_aux <- rss vect_arch_end2 <- c() while (any(sort(vect_arch_end_aux) != sort(vect_arch_ini_aux))) { se <- setdiff(vect_arch_end_aux,vect_arch_ini_aux) se1 <- setdiff(vect_arch_end_aux,se) for (l in 1:length(se1)) { rss1 <- c() comp <- c(se,se1[-l]) setpossibles <- setdiff(1:n,vect_arch_end_aux) for (i in setpossibles) { zs <- x_gvv[,c(i,comp)] zs <- as.matrix(zs) alphas <- matrix(0, nrow = numArchoid, ncol = n) for (j in 1:n) { alphas[, j] = coef(nnls(zs, x_gvv[,j])) } resid <- zs[1:(nrow(zs) - 1),] %*% alphas - x_gvv[1:(nrow(x_gvv) - 1),] rss1[i] <- frobenius_norm_funct_robust(resid, PM, prob) / n if (rss1[i] < rss_aux) { rss_aux <- rss1[i] vect_arch_end2 <- c(i,comp) } } } if (is.null(vect_arch_end2)) { vect_arch_end_aux <- vect_arch_end_aux vect_arch_ini_aux <- vect_arch_end_aux }else{ vect_arch_ini_aux <- vect_arch_end_aux vect_arch_end_aux <- vect_arch_end2 } } zs <- x_gvv[,vect_arch_end_aux] zs <- as.matrix(zs) alphas_def <- matrix(0, nrow = numArchoid, ncol = n) for (j in 1:n) { alphas_def[, j] = coef(nnls(zs, x_gvv[,j])) } resid_def <- zs[1:(nrow(zs) - 1),] %*% alphas_def - x_gvv[1:(nrow(x_gvv) - 1),] return(list(cases = vect_arch_end_aux, rss = rss_aux, archet_ini = vect_arch_ini, alphas = alphas_def, resid = resid_def)) } swap2_k1_funct_robust <- function(vect_arch_end, vect_arch_ini, rss, huge=200, numArchoid, x_gvv, n, PM, prob){ vect_arch_ini_aux <- vect_arch_ini vect_arch_end_aux <- vect_arch_end rss_aux <- rss vect_arch_end2 <- c() while (vect_arch_end_aux != vect_arch_ini_aux) { rss1 <- c() setpossibles <- setdiff(1:n,vect_arch_end_aux) for (i in setpossibles) { zs <- x_gvv[,i] zs <- as.matrix(zs) alphas <- matrix(0, nrow = numArchoid, ncol = n) for (j in 1:n) { alphas[, j] = coef(nnls(zs, x_gvv[,j])) } resid <- zs[1:(nrow(zs) - 1),] %*% alphas - x_gvv[1:(nrow(x_gvv) - 1),] rss1[i] <- frobenius_norm_funct_robust(resid, PM, prob) / n if (rss1[i] < rss_aux) { rss_aux <- rss1[i] vect_arch_end2 = i } } if (is.null(vect_arch_end2)) { vect_arch_end_aux <- vect_arch_end_aux vect_arch_ini_aux <- vect_arch_end_aux }else{ vect_arch_ini_aux <- vect_arch_end_aux vect_arch_end_aux <- vect_arch_end2 } } zs <- x_gvv[,vect_arch_end_aux] zs <- as.matrix(zs) alphas_def <- matrix(0, nrow = numArchoid, ncol = n) for (j in 1:n) { alphas_def[, j] = coef(nnls(zs, x_gvv[,j])) } resid_def <- zs[1:(nrow(zs) - 1),] %*% alphas_def - x_gvv[1:(nrow(x_gvv) - 1),] return(list(cases = vect_arch_end_aux, rss = rss_aux, archet_ini = vect_arch_ini, alphas = alphas_def, resid = resid_def)) }
aggregate.escalc <- function(x, cluster, time, V, struct="CS", rho, phi, weighted=TRUE, fun, na.rm=TRUE, subset, select, digits, ...) { mstyle <- .get.mstyle("crayon" %in% .packages()) .chkclass(class(x), must="escalc") if (any(!is.element(struct, c("ID","CS","CAR","CS+CAR")))) stop(mstyle$stop("Unknown 'struct' specified.")) if (length(na.rm) == 1L) na.rm <- c(na.rm, na.rm) k <- nrow(x) mf <- match.call() mf.V <- mf[[match("V", names(mf))]] mf.cluster <- mf[[match("cluster", names(mf))]] mf.time <- mf[[match("time", names(mf))]] mf.subset <- mf[[match("subset", names(mf))]] V <- eval(mf.V, x, enclos=sys.frame(sys.parent())) cluster <- eval(mf.cluster, x, enclos=sys.frame(sys.parent())) time <- eval(mf.time, x, enclos=sys.frame(sys.parent())) subset <- eval(mf.subset, x, enclos=sys.frame(sys.parent())) if (is.null(cluster)) stop(mstyle$stop("Must specify 'cluster' variable.")) if (anyNA(cluster)) stop(mstyle$stop("No missing values allowed in 'cluster' variable.")) if (length(cluster) != k) stop(mstyle$stop(paste0("Length of variable specified via 'cluster' (", length(cluster), ") does not match length of data (", k, ")."))) ucluster <- unique(cluster) n <- length(ucluster) if (!is.null(attr(x, "vi.names"))) { vi.name <- attr(x, "vi.names")[1] } else { if (!is.element("vi", names(x))) stop(mstyle$stop("Cannot determine name of the 'vi' variable.")) vi.name <- "vi" } if (is.null(x[[vi.name]])) stop(mstyle$stop("Cannot find 'vi' variable in data frame.")) if (is.null(V)) { vi <- x[[vi.name]] if (struct=="ID") R <- diag(1, nrow=k, ncol=k) if (is.element(struct, c("CS","CS+CAR"))) { if (missing(rho)) stop(mstyle$stop("Must specify 'rho' for this var-cov structure.")) if (length(rho) == 1L) rho <- rep(rho, n) if (length(rho) != n) stop(mstyle$stop(paste0("Length of 'rho' (", length(rho), ") does not match the number of clusters (", n, ")."))) if (any(rho > 1) || any(rho < -1)) stop(mstyle$stop("Value(s) of 'rho' must be in [-1,1].")) } if (is.element(struct, c("CAR","CS+CAR"))) { if (missing(phi)) stop(mstyle$stop("Must specify 'phi' for this var-cov structure.")) if (length(phi) == 1L) phi <- rep(phi, n) if (length(phi) != n) stop(mstyle$stop(paste0("Length of 'phi' (", length(phi), ") does not match the number of clusters (", n, ")."))) if (any(phi > 1) || any(phi < 0)) stop(mstyle$stop("Value(s) of 'phi' must be in [0,1].")) if (is.null(time)) stop(mstyle$stop("Must specify 'time' variable for this var-cov structure.")) if (length(time) != k) stop(mstyle$stop(paste0("Length of variable specified via 'time' (", length(time), ") does not match length of data (", k, ")."))) } if (struct=="CS") { R <- matrix(0, nrow=k, ncol=k) for (i in 1:n) { R[cluster == ucluster[i], cluster == ucluster[i]] <- rho[i] } } if (struct == "CAR") { R <- matrix(0, nrow=k, ncol=k) for (i in 1:n) { R[cluster == ucluster[i], cluster == ucluster[i]] <- outer(time[cluster == ucluster[i]], time[cluster == ucluster[i]], function(x,y) phi[i]^(abs(x-y))) } } if (struct == "CS+CAR") { R <- matrix(0, nrow=k, ncol=k) for (i in 1:n) { R[cluster == ucluster[i], cluster == ucluster[i]] <- rho[i] + (1 - rho[i]) * outer(time[cluster == ucluster[i]], time[cluster == ucluster[i]], function(x,y) phi[i]^(abs(x-y))) } } diag(R) <- 1 S <- diag(sqrt(as.vector(vi)), nrow=k, ncol=k) V <- S %*% R %*% S } else { if (.is.vector(V)) { if (length(V) == 1L) V <- rep(V, k) if (length(V) != k) stop(mstyle$stop(paste0("Length of 'V' (", length(V), ") does not match length of data frame (", k, ")."))) V <- diag(as.vector(V), nrow=k, ncol=k) } if (is.data.frame(V)) V <- as.matrix(V) if (!is.null(dimnames(V))) V <- unname(V) if (!.is.square(V)) stop(mstyle$stop("'V' must be a square matrix.")) if (!isSymmetric(V)) stop(mstyle$stop("'V' must be a symmetric matrix.")) if (nrow(V) != k) stop(mstyle$stop(paste0("Dimensions of 'V' (", nrow(V), "x", ncol(V), ") do not match length of data frame (", k, ")."))) for (i in 1:n) { if (any(abs(V[cluster == ucluster[i], cluster != ucluster[i]]) >= .Machine$double.eps, na.rm=TRUE)) warning(mstyle$warning(paste0("Estimates in cluster '", ucluster[i], "' appear to have non-zero covariances with estimates belonging to a different cluster.")), call.=FALSE) } } if (!is.null(attr(x, "yi.names"))) { yi.name <- attr(x, "yi.names")[1] } else { if (!is.element("yi", names(x))) stop(mstyle$stop("Cannot determine name of the 'yi' variable.")) yi.name <- "yi" } if (is.null(x[[yi.name]])) stop(mstyle$stop("Cannot find 'yi' variable in data frame.")) yi <- as.vector(x[[yi.name]]) if (!is.null(subset)) { subset <- .setnafalse(subset, k=k) x <- x[subset,,drop=FALSE] yi <- yi[subset] V <- V[subset,subset,drop=FALSE] cluster <- cluster[subset] k <- nrow(x) ucluster <- unique(cluster) n <- length(ucluster) if (k == 0L) stop(mstyle$stop("Processing terminated since k == 0.")) } if (na.rm[1]) { has.na <- is.na(yi) | .anyNAv(V) not.na <- !has.na if (any(has.na)) { x <- x[not.na,] yi <- yi[not.na] V <- V[not.na,not.na,drop=FALSE] cluster <- cluster[not.na] } k <- nrow(x) ucluster <- unique(cluster) n <- length(ucluster) if (k == 0L) stop(mstyle$stop("Processing terminated since k == 0.")) } all.pd <- TRUE for (i in 1:n) { Vi <- V[cluster == ucluster[i], cluster == ucluster[i]] if (!anyNA(Vi) && any(eigen(Vi, symmetric=TRUE, only.values=TRUE)$values <= .Machine$double.eps)) { all.pd <- FALSE warning(mstyle$warning(paste0("'V' appears to be not positive definite in cluster ", ucluster[i], ".")), call.=FALSE) } } if (!all.pd) stop(mstyle$stop("Cannot aggregate estimates with a non-positive-definite 'V' matrix.")) yi.agg <- rep(NA_real_, n) vi.agg <- rep(NA_real_, n) for (i in 1:n) { Vi <- V[cluster == ucluster[i], cluster == ucluster[i]] if (weighted) { Wi <- try(chol2inv(chol(Vi)), silent=FALSE) if (inherits(Wi, "try-error")) stop(mstyle$stop(paste0("Cannot take inverse of 'V' in cluster ", ucluster[i], "."))) sumWi <- sum(Wi) yi.agg[i] <- sum(Wi %*% cbind(yi[cluster == ucluster[i]])) / sumWi vi.agg[i] <- 1 / sumWi } else { ki <- sum(cluster == ucluster[i]) yi.agg[i] <- sum(yi[cluster == ucluster[i]]) / ki vi.agg[i] <- sum(Vi) / ki^2 } } if (!missing(fun)) { if (!is.list(fun) || length(fun) != 3 || any(sapply(fun, function(f) !is.function(f)))) stop(mstyle$stop("Argument 'fun' must be a list of functions of length 3.")) fun1 <- fun[[1]] fun2 <- fun[[2]] fun3 <- fun[[3]] } else { fun1 <- function(x) { m <- mean(x, na.rm=na.rm[2]) if (is.nan(m)) NA else m } fun2 <- fun1 fun3 <- function(x) { if (na.rm[2]) { tab <- table(na.omit(x)) } else { tab <- table(x, useNA="ifany") } val <- tail(names(sort(tab)), 1) if (is.null(val)) NA else val } } fcluster <- factor(cluster, levels=ucluster) xsplit <- split(x, fcluster) xagg <- lapply(xsplit, function(xi) { tmp <- lapply(xi, function(xij) { if (inherits(xij, c("numeric","integer"))) { fun1(xij) } else if (inherits(xij, c("logical"))) { fun2(xij) } else { fun3(xij) } }) as.data.frame(tmp) }) xagg <- do.call(rbind, xagg) facs <- sapply(x, is.factor) if (any(facs)) { for (j in which(facs)) { xagg[[j]] <- factor(xagg[[j]]) } } xagg[which(names(xagg) == yi.name)] <- yi.agg xagg[which(names(xagg) == vi.name)] <- vi.agg measure <- attr(x[[yi.name]], "measure") if (is.null(measure)) measure <- "GEN" attr(xagg[[yi.name]], "measure") <- measure attr(xagg, "yi.names") <- yi.name attr(xagg, "vi.names") <- vi.name if (!missing(digits)) { attr(xagg, "digits") <- .get.digits(digits=digits, xdigits=attr(x, "digits"), dmiss=FALSE) } else { attr(xagg, "digits") <- attr(x, "digits") } if (is.null(attr(xagg, "digits"))) attr(xagg, "digits") <- 4 class(xagg) <- c("escalc", "data.frame") if (!missing(select)) { nl <- as.list(seq_along(x)) names(nl) <- names(x) sel <- eval(substitute(select), nl, parent.frame()) xagg <- xagg[,sel,drop=FALSE] } rownames(xagg) <- NULL return(xagg) }
ISOProductionSeries <- R6Class("ISOProductionSeries", inherit = ISOSeries, private = list( xmlElement = "DS_ProductionSeries", xmlNamespacePrefix = "GMD" ), public = list( initialize = function(xml = NULL){ super$initialize(xml = xml) } ) )
b_wincred_protocol_version <- "1.0.0" b_wincred_i_get <- function(target) { .Call(keyring_wincred_get, target) } b_wincred_i_set <- function(target, password, username = NULL, session = FALSE) { username <- username %||% getOption("keyring_username") .Call(keyring_wincred_set, target, password, username, session) } b_wincred_i_delete <- function(target) { .Call(keyring_wincred_delete, target) } b_wincred_i_exists <- function(target) { .Call(keyring_wincred_exists, target) } b_wincred_i_enumerate <- function(filter) { .Call(keyring_wincred_enumerate, filter) } b_wincred_i_escape <- function(x) { if (is.null(x)) x else URLencode(x) } b_wincred_i_unescape <- function(x) { URLdecode(x) } b_wincred_target <- function(keyring, service, username) { username <- username %||% getOption("keyring_username") keyring <- if (is.null(keyring)) "" else b_wincred_i_escape(keyring) service <- b_wincred_i_escape(service) username <- if (is.null(username)) "" else b_wincred_i_escape(username) paste0(keyring, ":", service, ":", username) } b_wincred_i_parse_target <- function(target) { parts <- lapply(strsplit(target, ":"), lapply, b_wincred_i_unescape) extract <- function(x, i) x[i][[1]] %||% "" res <- data.frame( stringsAsFactors = FALSE, keyring = vapply(parts, extract, "", 1), service = vapply(parts, extract, "", 2), username = vapply(parts, extract, "", 3) ) } b_wincred_target_keyring <- function(keyring) { b_wincred_target(keyring, "", "") } b_wincred_target_lock <- function(keyring) { b_wincred_target(keyring, "", "unlocked") } b_wincred_parse_keyring_credential <- function(target) { value <- rawToChar(b_wincred_i_get(target)) con <- textConnection(value) on.exit(close(con), add = TRUE) as.list(read.dcf(con)[1,]) } b_wincred_write_keyring_credential <- function(target, data) { con <- textConnection(NULL, open = "w") mat <- matrix(unlist(data), nrow = 1) colnames(mat) <- names(data) write.dcf(mat, con) value <- paste0(paste(textConnectionValue(con), collapse = "\n"), "\n") close(con) b_wincred_i_set(target, password = charToRaw(value)) } b_wincred_get_encrypted_aes <- function(str) { r <- openssl::base64_decode(str) structure(tail(r, -16), iv = head(r, 16)) } b_wincred_unlock_keyring_internal <- function(keyring, password = NULL) { target_lock <- b_wincred_target_lock(keyring) if (b_wincred_i_exists(target_lock)) { openssl::base64_decode(rawToChar(b_wincred_i_get(target_lock))) } else { target_keyring <- b_wincred_target_keyring(keyring) keyring_data <- b_wincred_parse_keyring_credential(target_keyring) if (is.null(password)) { message("keyring ", sQuote(keyring), " is locked, enter password to unlock") password <- get_pass() if (is.null(password)) stop("Aborted unlocking keyring") } aes <- openssl::sha256(charToRaw(password), key = keyring_data$Salt) verify <- b_wincred_get_encrypted_aes(keyring_data$Verify) tryCatch( openssl::aes_cbc_decrypt(verify, key = aes), error = function(e) stop("Invalid password, cannot unlock keyring") ) b_wincred_i_set( target_lock, charToRaw(openssl::base64_encode(aes)), session = TRUE) aes } } b_wincred_is_locked_keyring_internal <- function(keyring) { target_lock <- b_wincred_target_lock(keyring) ! b_wincred_i_exists(target_lock) } backend_wincred <- R6Class( "backend_wincred", inherit = backend_keyrings, public = list( name = "windows credential store", initialize = function(keyring = NULL) b_wincred_init(self, private, keyring), get = function(service, username = NULL, keyring = NULL) b_wincred_get(self, private, service, username, keyring), get_raw = function(service, username = NULL, keyring = NULL) b_wincred_get_raw(self, private, service, username, keyring), set = function(service, username = NULL, keyring = NULL, prompt = "Password: ") b_wincred_set(self, private, service, username, keyring, prompt), set_with_value = function(service, username = NULL, password = NULL, keyring = NULL) b_wincred_set_with_value(self, private, service, username, password, keyring), set_with_raw_value = function(service, username = NULL, password = NULL, keyring = NULL) b_wincred_set_with_value(self, private, service, username, password, keyring), delete = function(service, username = NULL, keyring = NULL) b_wincred_delete(self, private, service, username, keyring), list = function(service = NULL, keyring = NULL) b_wincred_list(self, private, service, keyring), keyring_create = function(keyring, password = NULL) b_wincred_keyring_create(self, private, keyring, password), keyring_list = function() b_wincred_keyring_list(self, private), keyring_delete = function(keyring = NULL) b_wincred_keyring_delete(self, private, keyring), keyring_lock = function(keyring = NULL) b_wincred_keyring_lock(self, private, keyring), keyring_unlock = function(keyring = NULL, password = NULL) b_wincred_keyring_unlock(self, private, keyring, password), keyring_is_locked = function(keyring = NULL) b_wincred_keyring_is_locked(self, private, keyring), keyring_default = function() b_wincred_keyring_default(self, private), keyring_set_default = function(keyring = NULL) b_wincred_keyring_set_default(self, private, keyring), docs = function() { modifyList(super$docs(), list( . = "Store secrets in the Windows Credential Store." )) } ), private = list( keyring = NULL, keyring_create_direct = function(keyring, password) b_wincred_keyring_create_direct(self, private, keyring, password) ) ) b_wincred_init <- function(self, private, keyring) { private$keyring <- keyring invisible(self) } b_wincred_get <- function(self, private, service, username, keyring) { password <- self$get_raw(service, username, keyring) encoding <- get_encoding_opt() b_wincred_decode(password, encoding = encoding) } b_wincred_get_raw <- function(self, private, service, username, keyring) { keyring <- keyring %||% private$keyring target <- b_wincred_target(keyring, service, username) password <- b_wincred_i_get(target) if (! is.null(keyring)) { aes <- b_wincred_unlock_keyring_internal(keyring) enc <- b_wincred_get_encrypted_aes(rawToChar(password)) password <- openssl::aes_cbc_decrypt(enc, key = aes) } password } b_wincred_decode <- function(password, encoding = 'auto') { if (encoding == 'auto') { b_wincred_decode_auto(password) } else { password <- iconv(list(password), from = encoding, to = "") password } } b_wincred_decode_auto <- function(password) { if (any(password == 0)) { password <- iconv(list(password), from = "UTF-16LE", to = "") if (is.na(password)) { stop("Key contains embedded null bytes, use get_raw()") } password } else { rawToChar(password) } } b_wincred_set <- function(self, private, service, username, keyring, prompt) { password <- get_pass(prompt) if (is.null(password)) stop("Aborted setting keyring key") b_wincred_set_with_value(self, private, service, username, password, keyring) invisible(self) } b_wincred_set_with_value <- function(self, private, service, username, password, keyring) { encoding <- get_encoding_opt() if (encoding != 'auto') { password <- enc2utf8(password) password <- iconv(x = password, from = 'UTF-8', to = encoding, toRaw = TRUE)[[1]] } else { password <- charToRaw(password) } b_wincred_set_with_raw_value(self, private, service, username, password, keyring) } b_wincred_set_with_raw_value <- function(self, private, service, username, password, keyring) { keyring <- keyring %||% private$keyring target <- b_wincred_target(keyring, service, username) if (is.null(keyring)) { b_wincred_i_set(target, password, username = username) return(invisible(self)) } target_keyring <- b_wincred_target_keyring(keyring) aes <- b_wincred_unlock_keyring_internal(keyring) enc <- openssl::aes_cbc_encrypt(password, key = aes) password <- charToRaw(openssl::base64_encode(c(attr(enc, "iv"), enc))) b_wincred_i_set(target, password = password, username = username) invisible(self) } b_wincred_delete <- function(self, private, service, username, keyring) { keyring <- keyring %||% private$keyring target <- b_wincred_target(keyring, service, username) b_wincred_i_delete(target) invisible(self) } b_wincred_list <- function(self, private, service, keyring) { keyring <- keyring %||% private$keyring filter <- if (is.null(service)) { paste0(b_wincred_i_escape(keyring), ":*") } else { paste0(b_wincred_i_escape(keyring), ":", b_wincred_i_escape(service), ":*") } list <- b_wincred_i_enumerate(filter) list <- grep("(::|::unlocked)$", list, value = TRUE, invert = TRUE) parts <- b_wincred_i_parse_target(list) data.frame( service = parts$service, username = parts$username, stringsAsFactors = FALSE ) } b_wincred_keyring_create <- function(self, private, keyring, password) { password <- password %||% get_pass() if (is.null(password)) stop("Aborted craeting keyring") private$keyring_create_direct(keyring, password) invisible(self) } b_wincred_keyring_create_direct <- function(self, private, keyring, password) { target_keyring <- b_wincred_target_keyring(keyring) if (b_wincred_i_exists(target_keyring)) { stop("keyring ", sQuote(keyring), " already exists") } salt <- openssl::base64_encode(openssl::rand_bytes(32)) aes <- openssl::sha256(charToRaw(password), key = salt) verify <- openssl::aes_cbc_encrypt(openssl::rand_bytes(15), key = aes) verify <- openssl::base64_encode(c(attr(verify, "iv"), verify)) dcf <- list( Version = b_wincred_protocol_version, Verify = verify, Salt = salt ) b_wincred_write_keyring_credential(target_keyring, dcf) b_wincred_unlock_keyring_internal(keyring, password) invisible(self) } b_wincred_keyring_list <- function(self, private) { list <- b_wincred_i_enumerate("*") parts <- b_wincred_i_parse_target(list) default <- ! paste0(parts$keyring, "::") %in% list if (length(list) > 0 && any(default)) { parts$username[default] <- paste0(parts$service[default], ":", parts$username[default]) parts$service[default] <- parts$keyring[default] parts$keyring[default] <- "" } res <- data.frame( stringsAsFactors = FALSE, keyring = unname(unique(parts$keyring)), num_secrets = as.integer(unlist(tapply(parts$keyring, factor(parts$keyring, levels = unique(parts$keyring)), length, simplify = FALSE))), locked = vapply(unique(parts$keyring), FUN.VALUE = TRUE, USE.NAMES = FALSE, function(x) { ! any(parts$username[parts$keyring == x] == "unlocked") } ) ) res$num_secrets <- res$num_secrets - (! res$locked) - (res$keyring != "") if ("" %in% res$keyring) res$locked[res$keyring == ""] <- FALSE res } b_wincred_keyring_delete <- function(self, private, keyring) { self$confirm_delete_keyring(keyring) keyring <- keyring %||% private$keyring items <- self$list(keyring = keyring) target_keyring <- b_wincred_target_keyring(keyring) b_wincred_i_delete(target_keyring) target_lock <- b_wincred_target_lock(keyring) try(b_wincred_i_delete(target_lock), silent = TRUE) for (i in seq_len(nrow(items))) { target <- b_wincred_target(keyring, items$service[i], items$username[i]) try(b_wincred_i_delete(target), silent = TRUE) } invisible() } b_wincred_keyring_lock <- function(self, private, keyring) { keyring <- keyring %||% private$keyring if (is.null(keyring)) { warning("Cannot lock the default windows credential store keyring") } else { target_lock <- b_wincred_target_lock(keyring) try(b_wincred_i_delete(target_lock), silent = TRUE) invisible() } } b_wincred_keyring_unlock <- function(self, private, keyring, password = NULL) { keyring <- keyring %||% private$keyring if (is.null(password)) password <- get_pass() if (is.null(password)) stop("Aborted unlocking keyring") if (!is.null(keyring)) { b_wincred_unlock_keyring_internal(keyring, password) } invisible() } b_wincred_keyring_is_locked <- function(self, private, keyring) { keyring <- keyring %||% private$keyring if (is.null(keyring)) { FALSE } else { b_wincred_is_locked_keyring_internal(keyring) } } b_wincred_keyring_default <- function(self, private) { private$keyring } b_wincred_keyring_set_default <- function(self, private, keyring) { private$keyring <- keyring invisible(self) }
context("test-extract_row") m <- matrix(c(TRUE, TRUE, FALSE, TRUE), nrow = 2) > 0 m <- as(m, "RsparseMatrix") r <- extract_row_lgRMatrix(m, 1) test_that("extract_row_lgRMatrix works", { expect_equal(r, c(TRUE, FALSE)) }) m <- matrix(1:4, nrow = 2) m <- as(m, "RsparseMatrix") r <- extract_row_dgRMatrix(m, 1) test_that("extract_row_dgRMatrix works", { expect_equal(r, c(1, 3)) })
library(latticeExtra) library(matrixTrellis) data(apple, package="HH") apple.aov.1 <- aov(yield ~ block + pre*treat, data=apple) apple.aov.2 <- aov(yield ~ block + pre + treat, data=apple) apple.aov.2b<- aov(yield ~ block + treat + pre, data=apple) apple$yield.block.effect <- fitted(lm(yield ~ block, data=apple)) - mean(apple$yield) apple$pre.block.effect <- fitted(lm(pre ~ block, data=apple)) - mean(apple$pre) apple$yield.block <- apple$yield - apple$yield.block.effect apple$pre.block <- apple$pre - apple$pre.block.effect apple.ancova.3be<- ancovaplot(yield.block ~ treat*pre.block, data=apple, groups=block, pch=letters[1:4], cex=1.4, col.line=trellis.par.get()$superpose.symbol$col, col.by.groups=TRUE) apple.ancova.3be apple.ancova.3bh<- ancovaplot(yield.block ~ treat*pre.block, data=apple, col=c("red","green","purple","orange","blue","navyblue"), pch=letters[1:6], cex=1.4, col.line=trellis.par.get()$superpose.symbol$col, col.by.groups=FALSE) apple.ancova.3bh apple.ancova.4 <- ancovaplot(yield.block ~ pre.block + treat, data=apple) apple.aov.4 <- aov(yield.block ~ pre.block + treat, data=apple) apple.ancova.6 <- ancovaplot(yield.block ~ treat, x=pre.block, data=apple) apple$yield.block.pre <- apple$yield.block - predict.lm(apple.aov.4, type="terms", terms="pre.block") apple.ancova.5 <- ancovaplot(yield.block.pre ~ treat, x=pre.block, data=apple) apple.ancova.7 <- ancovaplot(yield.block ~ pre.block, groups=treat, data=apple) apple.ancova.8b <- ancovaplot(yield ~ pre * treat, data=apple, groups=block, pch=letters[1:4], cex=1.4, col.line=trellis.par.get()$superpose.symbol$col, condition=apple$treat) apple.ancova.8b apple7 <- do.call(c, list(a5 =apple.ancova.5, a4 =apple.ancova.4, a6 =apple.ancova.6, a7 =apple.ancova.7, a3be=apple.ancova.3be, a8b=apple.ancova.8b, layout=c(7, 6))) apple7 <- update(apple7, scales=list(y=list(rot=0))) apple7 apple7mt <- matrix.trellis(apple7, nrow=6, ncol=7, byrow=TRUE) apple7mt$condlevels[[2]] <- c("5","4","6","7","3bd","8") apple7mt$condlevels[[1]][7] <- "Superpose" apple7mt useOuterStrips(apple7mt) combineLimits(apple7mt) apple7uc <- useOuterStrips(combineLimits(apple7mt)) apple7uc apple7ucr <- update(apple7uc, scales=list( x=list(relation="same", at=7:11))) apple7ucr tmp <- apple7ucr$y.limits dim(tmp) <- c(7,6) tmp.range <- sapply(1:6, function(i) range(unlist(tmp[,i]))) for (i in 1:35) apple7ucr$y.limits[[i]] <- range(tmp.range[,-6]) for (i in 36:42) apple7ucr$y.limits[[i]] <- tmp.range[,6] apple7ucr <- update(apple7ucr, xlab="pre (adjusted as indicated)", ylab="yield (adjusted as indicated)", scales=list( y=list(at=rep(list(c(200,250,300,350), NULL,NULL,NULL,NULL,NULL,NULL), 6)), x=list(alternating=1)), xlab.top="Treatment") apple7ucr apple7ucrs <- resizePanels(update(apple7ucr, between=list( x=c(.2,.2,.2,.2,.2,1), y=c(.5,.2,.2,.2,1))), h=c(rep(diff(apple7ucr$y.limits[[1]]), 5), diff(apple7ucr$y.limits[[36]]))) apple7ucrs apple7ucrs2 <- apple7ucrs apple7ucrs2$condlevels[[2]] <- c("y|bx~t","y|b~x|b+t","y|b~t","y|b~x|b","y|b~x|b*t","y~x*t") apple7ucrs2
regrresidplot <- function(x, y, resid.plot=FALSE, fit.line=TRUE, lm.object=lm(y~x), x.name=names(lm.object$model)[2], col=trellis.par.get()$plot.symbol$col, col.yhat=NULL, col.fit="gray80", col.resid="gray40", ...) { xyplot(y ~ x, resid.plot=resid.plot, fit.line=fit.line, lm.object=lm.object, x.name=x.name, col.fit=col.fit, col.resid=col.resid, ..., panel=function(x, y, ..., resid.plot, fit.line, lm.object, x.name) { panel.xyplot(x, y, ..., col=col, pch=19) if (fit.line) { newdata <- data.frame(x=cplx(101)) names(newdata)[1] <- x.name newdata$y <- predict(lm.object, newdata=newdata) panel.lines(newdata[[1]], newdata$y, col=col.fit, ...) } yhat <- fitted(lm.object) if (!is.null(col.yhat)) panel.points(x, yhat, col=col.yhat, ..., pch=20) panel.residSquare(x, y, yhat=yhat, resid.plot=resid.plot, col=col.resid, ...) }) } panel.residSquare <- function(x, y, yhat, resid.plot=FALSE, col="black", ...) { if (resid.plot==FALSE) return() if (resid.plot=="square") { xright <- x + convertUnit(unit(abs(yhat-y), "native"), axisFrom="y", typeFrom="dimension", unitTo="native", axisTo="x", typeTo="dimension", valueOnly=TRUE) panel.rect(xleft=x, ybottom=y, xright, ytop=yhat, border=col, ...) } else panel.segments(x, y, x, yhat, col=col, ...) } cplx <- function(length) { xlim <- current.panel.limits()$xlim scale(1:length, 1, (length-1)/diff(xlim)) + xlim[1] }
apa_print.BFBayesFactor <- function( x , iterations = 10000 , central_tendency = median , hdi = 0.95 , standardized = FALSE , ratio_subscript = "10" , auto_invert = TRUE , scientific = TRUE , max = 1000 , min = 1 / max , evidential_boost = NULL , ... ) { if(length(x) > 1) { ellipsis <- list(...) ellipsis$ratio_subscript <- ratio_subscript ellipsis$auto_invert <- auto_invert ellipsis$scientific <- scientific ellipsis$max <- max ellipsis$min <- min bf <- c() for(i in seq_along(x)) { ellipsis$x <- x[i] if(!is.null(evidential_boost)) ellipsis$evidential_boost <- evidential_boost[i] bf[i] <- do.call("apa_print_bf", ellipsis) } bf <- as.list(bf) names(bf) <- names(x)$numerator } else bf <- apa_print_bf(x, ...) apa_res <- apa_print_container() apa_res$statistic <- bf if(class(x@numerator[[1]]) %in% c("BFoneSample", "BFindepSample")) { posterior_samples <- BayesFactor::posterior(x, index = 1, iterations = iterations) apa_res$estimate <- bf_estimates( x@numerator[[1]] , posterior_samples , central_tendency = central_tendency , hdi = hdi , standardized = standardized ) } apa_res$full_result <- paste0(apa_res$estimate, ", ", apa_res$statistic) apa_res } apa_print.BFBayesFactorTop <- function(x, ...) { x_BFBayesFactor <- BayesFactor::as.BFBayesFactor(x) ellipsis <- list(...) if(is.null(ellipsis$ratio_subscript)) ellipsis$ratio_subscript <- "01" if(!is.null(ellipsis$evidential_boost)) evidential_boost <- ellipsis$evidential_boost bf <- c() for(i in seq_along(x_BFBayesFactor)) { ellipsis$x <- x_BFBayesFactor[i] if(!is.null(ellipsis$evidential_boost)) ellipsis$evidential_boost <- evidential_boost[i] bf <- c(bf, do.call("apa_print_bf", ellipsis)) } full_terms <- bf_term_labels(x@denominator) full_terms <- bf_sort_terms(full_terms) restricted_terms <- lapply(x@numerator, bf_term_labels) restricted_terms <- lapply(restricted_terms, bf_sort_terms) omitted_terms <- lapply(restricted_terms, function(x) full_terms[!full_terms %in% x]) names(bf) <- sanitize_terms(omitted_terms) apa_res <- apa_print_container() apa_res$statistic <- as.list(rev(bf)) apa_res } apa_print.BFBayesFactorList <- function(x, ...) { bf <- vapply(x, apa_print_bf, as.character(as.vector(x[[1]])), ...) names(bf) <- names(x) apa_res <- apa_print_container() apa_res$statistic <- as.list(bf) apa_res } setMethod(f = "apa_print", signature = "BFBayesFactor", definition = apa_print.BFBayesFactor) setMethod(f = "apa_print", signature = "BFBayesFactorTop", definition = apa_print.BFBayesFactorTop) setMethod("apa_print", "BFBayesFactorList", apa_print.BFBayesFactorList) apa_print_bf <- function(x, ...) { UseMethod("apa_print_bf", x) } apa_print_bf.default <- function(x, ...) no_method(x) apa_print_bf.numeric <- function( x , ratio_subscript = "10" , auto_invert = TRUE , escape = TRUE , scientific = TRUE , max = 1000 , min = 1 / max , evidential_boost = NULL , log = FALSE , ... ) { validate(x, check_NA = TRUE, check_infinite = FALSE) validate(ratio_subscript, check_class = "character", check_length = 1) validate(auto_invert, check_class = "logical", check_length = 1) validate(scientific, check_class = "logical", check_length = 1) validate(max, check_class = "numeric", check_length = 1) validate(min, check_class = "numeric", check_length = 1) if(!is.null(evidential_boost)) validate(evidential_boost, check_class = "numeric", check_length = length(x)) validate(log, check_class = "logical", check_length = 1) ellipsis <- list(...) ellipsis$x <- as.vector(x) ellipsis$use_math <- FALSE if(!is.null(evidential_boost)) { ellipsis$x <- ellipsis$x * evidential_boost } if(auto_invert) { to_invert <- ellipsis$x < 1 ellipsis$x[to_invert] <- 1 / ellipsis$x[to_invert] ratio_subscript <- rep(ratio_subscript, length(x)) ratio_subscript[to_invert] <- invert_subscript(ratio_subscript) } if(escape) { ratio_subscript <- paste0("\\textrm{", escape_latex(ratio_subscript), "}") } if(scientific & (ellipsis$x > max - 1 | ellipsis$x < min)) { ellipsis$format <- "e" if(is.null(ellipsis$digits)) ellipsis$digits <- 2 bf <- do.call("printnum", ellipsis) bf <- typeset_scientific(bf) } else { if(is.null(ellipsis$zero)) ellipsis$zero <- FALSE bf <- do.call("printnum", ellipsis) } bf_name <- if(!log) "BF" else "log BF" bf <- paste0("$\\mathrm{", bf_name, "}_{", ratio_subscript, "} ", add_equals(bf), "$") bf <- setNames(bf, names(x)) bf } apa_print_bf.BFBayesFactor <- function(x, ...) { validate(as.vector(x), check_NA = TRUE) bf <- apa_print_bf(as.vector(x)) bf <- setNames(bf, names(x@numerator)) bf } invert_subscript <- function(x) { seperator <- if(nchar(x) == 2) "" else "/" paste0(rev(unlist(strsplit(x, seperator))), collapse = seperator) } typeset_scientific <- function(x) { x <- gsub("e\\+00$", "", x) x <- gsub("e\\+0?(\\d+)$", " \\\\times 10\\^\\{\\1\\}", x) x <- gsub("e\\-0?(\\d+)$", " \\\\times 10\\^\\{-\\1\\}", x) x } bf_term_labels <- function(x) { model_formula <- formula(x@identifier$formula) attr(terms(model_formula), "term.labels") } bf_sort_terms <- function(x) { sapply(strsplit(x, ":"), function(y) paste(sort(y), collapse = ":")) } setGeneric( name = "bf_estimates" , def = function(x, ...) standardGeneric("bf_estimates") ) bf_estimates_ttest <- function( x , samples , central_tendency = median , hdi = 0.95 , standardized = FALSE ) { validate(samples, check_class = "mcmc") validate(central_tendency, check_class = "function") validate(hdi, check_class = "numeric", check_length = 1, check_range = c(0, 1)) validate(standardized, check_class = "logical", check_length = 1) if(standardized) { estimate <- "delta" est_name <- "d" } else { estimate <- ifelse(class(x) == "BFoneSample", "mu", "beta (x - y)") est_name <- "M" } samples <- as.numeric(samples[, estimate]) est_mean <- central_tendency(samples) est_hdi <- hd_int(samples, level = hdi) estimate <- paste0("$", est_name, " = ", printnum(est_mean), "$ ", print_hdint(est_hdi)) estimate } suppressMessages( setMethod(f = "bf_estimates", signature = "BFoneSample", definition = bf_estimates_ttest) ) suppressMessages( setMethod(f = "bf_estimates", signature = "BFindepSample", definition = bf_estimates_ttest) )
check_cqgate <- function(object) { stopifnot(length(object@bits) == 2) stopifnot(all(object@bits > 0)) stopifnot(length(object@bits) == length(unique(object@bits))) } setClass("cqgate", representation(bits="integer", gate="sqgate"), prototype(bits=c(1L, 2L), gate=Id(2L)), validity=check_cqgate ) cqgate <- function(bits=c(1L, 2L), gate=Id(2L)) { return(methods::new("cqgate", bits=as.integer(bits), gate=gate)) } setMethod("*", c("cqgate", "qstate"), function(e1, e2) { stopifnot(all(e1@bits > 0) && all(e1@bits <= e2@nbits)) bits <- e1@bits nbits <- e2@nbits res <- e2@coefs al <- 0:(2^e2@nbits-1) cb <- is.bitset(al, bit=bits[1]) ii <- is.bitset(al, bit=bits[2]) & cb kk <- (!is.bitset(al, bit=bits[2])) & cb res[kk] <- e1@gate@M[1,1]*e2@coefs[kk] + e1@gate@M[1,2]*e2@coefs[ii] res[ii] <- e1@gate@M[2,1]*e2@coefs[kk] + e1@gate@M[2,2]*e2@coefs[ii] circuit <- e2@circuit ngates <- length(circuit$gatelist) circuit$gatelist[[ngates+1]] <- list(type=e1@gate@type, bits=c(e1@bits, NA)) if(e1@gate@type == "Rx" || e1@gate@type == "Ry" || e1@gate@type == "Rz" || grepl("^R[0-9]+", e1@gate@type)) circuit$gatelist[[ngates+1]]$angle <- Arg(e1@gate@M[2,2]) circuit$gatelist[[ngates+1]]$controlled <- TRUE return(qstate(nbits=nbits, coefs=as.complex(res), basis=e2@basis, circuit=circuit)) } )
plot_bars_and_hoops <- function(x,y,Name,R,colours = c('orange','darkgreen','red'),lwds = c(2,2,2),number_sites=-1,first='n'){ par(mfrow=c(1,2)) plot_bar_chart(Name,R,number_sites=number_sites,first=first,colours=c(colours[3],colours[2])) class(x) = "hoops" class(y) = "hoops" plot(x,y,Name,R,colours = colours,lwds = lwds, number_sites=number_sites,first=first) par(mfrow=c(1,1)) }
tree_to_labels <- function(tr, remove_quotes = TRUE) { n_right <- unlist(gregexpr("\\)", tr)) n_left <- unlist(gregexpr("\\(", tr)) if (n_right[1] == -1) n_right <- 0 else n_right <- length(n_right) if (n_left[1] == -1) n_left <- 0 else n_left <- length(n_left) if (!identical(n_right, n_left)) { stop("invalid newick string, numbers of ( and ) don't match") } tr <- gsub("\\s+", "", tr) tr <- gsub(":[0-9]+(\\.[0-9]+)?", "", tr) if (n_right < 1) { tip_lbl <- gsub(";$", "", tr) edge_lbl <- character(0) } else { edge_lbl <- unlist(strsplit(tr, ")")) edge_lbl <- grep("^[^\\(]", edge_lbl, value = T) edge_lbl <- gsub("(,|;).*$", "", edge_lbl) edge_lbl <- edge_lbl[nzchar(edge_lbl)] tip_lbl <- unlist(strsplit(tr, ",")) tip_lbl <- gsub("^\\(*", "", tip_lbl) tip_lbl <- gsub("\\).*$", "", tip_lbl) tip_lbl <- tip_lbl[nzchar(tip_lbl)] } if (remove_quotes) { tip_lbl <- gsub("^(\\\"|\\\')(.+)(\\\'|\\\")$", "\\2", tip_lbl) } list(tip_label = tip_lbl, edge_label = edge_lbl) }
properties_ <- function(deckgl) { deckgl$x$layers[[1]]$properties } get_layer_props <- function(widget, idx = 1) { widget$x$calls[[idx]]$args$properties }
expSBM_select <- function(K_max, N, edgelist, method = "SBM_gaussian", directed = F, trunc = T, tol = 0.001, n_iter_max = 100, init_blur_value = 1, verbose = F) { res <- list() res$fitted_models <- list() elbo_values <- icl_values <- rep(NA,K_max) for (k in 1:K_max) { lambda_init <- as.numeric(rdirichlet(1, rep(1,k))) Z_init_collapsed <- expSBM_init(edgelist = edgelist, K = k, method = method, blur_value = init_blur_value) K_collapsed <- sum(colSums(Z_init_collapsed) > 0) Z_init <- matrix(0,N,k) if (k > 1) Z_init[,1:K_collapsed] = Z_init_collapsed else Z_init = Z_init_collapsed mu_init <- matrix(rgamma(k*k,1,1),k,k) if (!directed) for (g in 1:k) for (h in 1:k) if (g > h) mu_init[g,h] = mu_init[h,g] nu_init <- matrix(rgamma(k*k,1,1),k,k) if (!directed) for (g in 1:k) for (h in 1:k) if (g > h) nu_init[g,h] = nu_init[h,g] res$fitted_models[[k]] <- output <- expSBM_EM(N, edgelist, Z_init, lambda_init, mu_init, nu_init, directed, trunc, tol, n_iter_max, verbose) elbo_values[k] = output$elbo_values[length(output$elbo_values)] Z_map_vec <- apply(output$Z_star, 1, which.max) Z_map <- matrix(0,N,k) for (i in 1:N) Z_map[i,Z_map_vec[i]] = 1 marginal_likelihood_contribution <- expSBM_ELBO(N, edgelist, Z_map, output$lambda_star, output$mu_star, output$nu_star, directed, trunc, verbose)$elbo_value prior_contribution <- sum(Z_map %*% log(ifelse(output$lambda_star > 0, output$lambda_star, 1))) if (directed) icl_values[k] = marginal_likelihood_contribution + prior_contribution - k^2 * log(nrow(edgelist)) - 0.5 * (k-1) * log(N) if (!directed) icl_values[k] = marginal_likelihood_contribution + prior_contribution - (k*(k+1)/2) * log(nrow(edgelist)) - 0.5 * (k-1) * log(N) } res$icl_values <- icl_values res$K_star <- which.max(icl_values) res$best_model <- res$fitted_models[[res$K_star]] res }
getHDoutliers <- function (data, memberLists, alpha = 0.05, transform = TRUE) { data <- if (transform) dataTrans(data) else as.matrix(data) if (any(is.na(data))) stop("missing values not allowed") exemplars <- sapply(memberLists, function(x) x[[1]]) d <- knn.dist(data[exemplars, ], k = 1) n <- length(d) ord <- order(d) dmin <- min(d) dmax <- max(d) gaps <- c(0, diff(d[ord])) n4 <- max(min(50, floor(n/4)), 2) J <- 1:n4 start <- max(floor(n/2), 1) + 1 ghat <- numeric(n) for (i in start:n) ghat[i] <- sum((J/n4) * gaps[i - J + 1]) logAlpha <- log(1/alpha) use <- start:n bound <- Inf for (i in start:n) { if (gaps[i] > logAlpha * ghat[i]) { bound <- d[ord][i - 1] break } } ex <- exemplars[which(d > bound)] mem1 <- sapply(memberLists, function(x) x[1]) out <- unlist(memberLists[match(ex, mem1)]) names(out) <- NULL out }
BlockTop <- function(a,l,lag) { C <- array(dim=c(l,l,lag+3)) for(x in 1:(lag+3)) { C[,,x] <- c(xpnd(a[((l*(l+1)/2)*(x-1)+1):(x*(l+1)*l/2)])) } f <- c(C) A <- array(matrix(c(f,f[1:(l*l)],f),nrow=l,ncol=(2*(lag+4)-1)*l),dim=c(l,l,2*(lag+4)-1)) MM <- matrix(nrow=(lag+4)*(l),ncol=(lag+4)*(l)) for(i in 1:(lag+4)) { for(j in 1:(lag+4)) { MM[(l*i-(l-1)):(i*l),(l*j-(l-1)):(j*l)] <- A[,,j+(i-1)] } } S <- MM[1:((1+lag)*l),]%*%t(MM[1:((1+lag)*l),]) return(list(S=S)) }
phf_leaders <- function(player_type, season = 2021, season_type="Regular Season"){ league_info <- phf_league_info(season=season) season_id <- dplyr::case_when( season == 2022 ~ 3372, season == 2021 ~ 2779, season == 2020 ~ 1950, season == 2019 ~ 2047, season == 2018 ~ 2046, season == 2017 ~ 2045, season == 2016 ~ 246, TRUE ~ NA_real_ ) team_row <- league_info$teams player_type <- ifelse(player_type == "skaters", "players", player_type) season_type <- gsub(" ","+", season_type) base_url <- "https://web.api.digitalshift.ca/partials/stats/leaders/table?player_type=" full_url <- paste0(base_url, player_type, "&division_id=", unique(team_row$division_id), "&game_type=", season_type, "&season_id=", season_id, "&limit=350&all=true" ) res <- httr::RETRY( "GET", full_url, httr::add_headers( `Authorization`='ticket="4dM1QOOKk-PQTSZxW_zfXnOgbh80dOGK6eUb_MaSl7nUN0_k4LxLMvZyeaYGXQuLyWBOQhY8Q65k6_uwMu6oojuO"')) check_status(res) tryCatch( expr={ resp <- (res %>% httr::content(as = "text", encoding="utf-8") %>% jsonlite::parse_json() %>% purrr::pluck("content") %>% rvest::read_html() %>% rvest::html_elements("table")) resp <- unique(resp) skaters_href <- resp[[1]] %>% rvest::html_elements("tr") %>% rvest::html_elements("td > a.person-inline") %>% rvest::html_attr("href") team_href <- resp[[1]] %>% rvest::html_elements("tr") %>% rvest::html_elements("td > a.team-inline") %>% rvest::html_attr("href") skaters <- resp[[1]] %>% rvest::html_table() skaters_href <- data.frame( season_type = season_type, player_href = skaters_href, team_href = team_href ) skaters <- dplyr::bind_cols(skaters, skaters_href) if(player_type=="players"){ suppressWarnings( skaters <- skaters %>% tidyr::separate(.data$`FoW/L`,into = c("faceoffs_won", "faceoffs_lost"), sep = " - ", remove = FALSE) %>% dplyr::mutate_at(c("faceoffs_won","faceoffs_lost"), function(x){ as.integer(x) }) ) skaters <- skaters %>% dplyr::rename( player_jersey = .data$` player_name = .data$Name, team_name = .data$Team, position = .data$Pos, games_played = .data$GP, goals = .data$G, assists = .data$A, points = .data$Pts, points_per_game_average = .data$PPGA, penalty_minutes = .data$PIM, plus_minus = .data$`+/-`, shots_on_goal = .data$SOG, scoring_pct = .data$`S%`, blocks = .data$Blk, giveaways = .data$GvA, takeaways = .data$TkA, faceoffs_won_lost = .data$`FoW/L`, faceoffs_win_pct = .data$`Fo%`, powerplay_goals = .data$`PPG`, shorthanded_goals = .data$`SHG`, game_winning_goals = .data$`GWG`, shots = .data$`Sh`, shots_blocked = .data$`ShBl`) %>% dplyr::mutate( player_name = stringr::str_replace(.data$player_name, pattern = " player_id = as.integer(stringr::str_extract(.data$player_href, "\\d+")), team_id = as.integer(stringr::str_extract(stringr::str_remove(.data$team_href,"stats ) }else{ skaters <- skaters %>% dplyr::rename( player_jersey = .data$` player_name = .data$Name, team_name = .data$Team, games_played = .data$GP, wins = .data$W, losses = .data$L, ties = .data$T, overtime_losses = .data$OTL, shots_against = .data$SA, goals_against = .data$GA, saves = .data$Sv, save_percent = .data$`Sv%`, goals_against_average = .data$GAA, shutouts = .data$SO, minutes_played = .data$MP, penalty_minutes = .data$PIM, goals = .data$G, assists = .data$A) %>% dplyr::mutate( player_name = stringr::str_replace(.data$player_name,pattern = " player_id = as.integer(stringr::str_extract(.data$player_href, "\\d+")), team_id = as.integer(stringr::str_extract(stringr::str_remove(.data$team_href,"stats ) } }, error = function(e) { message(glue::glue("{Sys.time()}: Invalid parameters or no leaderboard data available!")) }, warning = function(w) { }, finally = { } ) return(skaters) }
cor.test <- function(x, ...) UseMethod("cor.test") cor.test.default <- function(x, y, alternative = c("two.sided", "less", "greater"), method = c("pearson", "kendall", "spearman"), exact = NULL, conf.level = 0.95, continuity = FALSE, ...) { alternative <- match.arg(alternative) method <- match.arg(method) DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(y))) if(length(x) != length(y)) stop("'x' and 'y' must have the same length") if(!is.numeric(x)) stop("'x' must be a numeric vector") if(!is.numeric(y)) stop("'y' must be a numeric vector") OK <- complete.cases(x, y) x <- x[OK] y <- y[OK] n <- length(x) NVAL <- 0 conf.int <- FALSE if(method == "pearson") { if(n < 3L) stop("not enough finite observations") method <- "Pearson's product-moment correlation" names(NVAL) <- "correlation" r <- cor(x, y) df <- n - 2L ESTIMATE <- c(cor = r) PARAMETER <- c(df = df) STATISTIC <- c(t = sqrt(df) * r / sqrt(1 - r^2)) if(n > 3) { if(!missing(conf.level) && (length(conf.level) != 1 || !is.finite(conf.level) || conf.level < 0 || conf.level > 1)) stop("'conf.level' must be a single number between 0 and 1") conf.int <- TRUE z <- atanh(r) sigma <- 1 / sqrt(n - 3) cint <- switch(alternative, less = c(-Inf, z + sigma * qnorm(conf.level)), greater = c(z - sigma * qnorm(conf.level), Inf), two.sided = z + c(-1, 1) * sigma * qnorm((1 + conf.level) / 2)) cint <- tanh(cint) attr(cint, "conf.level") <- conf.level } PVAL <- switch(alternative, "less" = pt(STATISTIC, df), "greater" = pt(STATISTIC, df, lower.tail=FALSE), "two.sided" = 2 * min(pt(STATISTIC, df), pt(STATISTIC, df, lower.tail=FALSE))) } else { if(n < 2) stop("not enough finite observations") PARAMETER <- NULL TIES <- (min(length(unique(x)), length(unique(y))) < n) if(method == "kendall") { method <- "Kendall's rank correlation tau" names(NVAL) <- "tau" r <- cor(x,y, method = "kendall") ESTIMATE <- c(tau = r) if(!is.finite(ESTIMATE)) { ESTIMATE[] <- NA STATISTIC <- c(T = NA) PVAL <- NA } else { if(is.null(exact)) exact <- (n < 50) if(exact && !TIES) { q <- round((r + 1) * n * (n - 1) / 4) STATISTIC <- c(T = q) pkendall <- function(q, n) .Call(C_pKendall, q, n) PVAL <- switch(alternative, "two.sided" = { if(q > n * (n - 1) / 4) p <- 1 - pkendall(q - 1, n) else p <- pkendall(q, n) min(2 * p, 1) }, "greater" = 1 - pkendall(q - 1, n), "less" = pkendall(q, n)) } else { xties <- table(x[duplicated(x)]) + 1 yties <- table(y[duplicated(y)]) + 1 T0 <- n * (n - 1)/2 T1 <- sum(xties * (xties - 1))/2 T2 <- sum(yties * (yties - 1))/2 S <- r * sqrt((T0 - T1) * (T0 - T2)) v0 <- n * (n - 1) * (2 * n + 5) vt <- sum(xties * (xties - 1) * (2 * xties + 5)) vu <- sum(yties * (yties - 1) * (2 * yties + 5)) v1 <- sum(xties * (xties - 1)) * sum(yties * (yties - 1)) v2 <- sum(xties * (xties - 1) * (xties - 2)) * sum(yties * (yties - 1) * (yties - 2)) var_S <- (v0 - vt - vu) / 18 + v1 / (2 * n * (n - 1)) + v2 / (9 * n * (n - 1) * (n - 2)) if(exact && TIES) warning("Cannot compute exact p-value with ties") if (continuity) S <- sign(S) * (abs(S) - 1) STATISTIC <- c(z = S / sqrt(var_S)) PVAL <- switch(alternative, "less" = pnorm(STATISTIC), "greater" = pnorm(STATISTIC, lower.tail=FALSE), "two.sided" = 2 * min(pnorm(STATISTIC), pnorm(STATISTIC, lower.tail=FALSE))) } } } else { method <- "Spearman's rank correlation rho" if (is.null(exact)) exact <- TRUE names(NVAL) <- "rho" r <- cor(rank(x), rank(y)) ESTIMATE <- c(rho = r) if(!is.finite(ESTIMATE)) { ESTIMATE[] <- NA STATISTIC <- c(S = NA) PVAL <- NA } else { pspearman <- function(q, n, lower.tail = TRUE) { if(n <= 1290 && exact) .Call(C_pRho, round(q) + 2*lower.tail, n, lower.tail) else { den <- (n*(n^2-1))/6 if (continuity) den <- den + 1 r <- 1 - q/den pt(r / sqrt((1 - r^2)/(n-2)), df = n-2, lower.tail = !lower.tail) } } q <- (n^3 - n) * (1 - r) / 6 STATISTIC <- c(S = q) if(TIES && exact){ exact <- FALSE warning("Cannot compute exact p-value with ties") } PVAL <- switch(alternative, "two.sided" = { p <- if(q > (n^3 - n) / 6) pspearman(q, n, lower.tail = FALSE) else pspearman(q, n, lower.tail = TRUE) min(2 * p, 1) }, "greater" = pspearman(q, n, lower.tail = TRUE), "less" = pspearman(q, n, lower.tail = FALSE)) } } } RVAL <- list(statistic = STATISTIC, parameter = PARAMETER, p.value = as.numeric(PVAL), estimate = ESTIMATE, null.value = NVAL, alternative = alternative, method = method, data.name = DNAME) if(conf.int) RVAL <- c(RVAL, list(conf.int = cint)) class(RVAL) <- "htest" RVAL } cor.test.formula <- function(formula, data, subset, na.action, ...) { if(missing(formula) || !inherits(formula, "formula") || length(formula) != 2L) stop("'formula' missing or invalid") m <- match.call(expand.dots = FALSE) if(is.matrix(eval(m$data, parent.frame()))) m$data <- as.data.frame(data) m[[1L]] <- quote(stats::model.frame) m$... <- NULL mf <- eval(m, environment(formula)) if(length(mf) != 2L) stop("invalid formula") DNAME <- paste(names(mf), collapse = " and ") names(mf) <- c("x", "y") y <- do.call("cor.test", c(mf, list(...))) y$data.name <- DNAME y }
minnz <- function(V) { C <- NULL k <- length(V) for (i in 1:k) { if ((V[i] == 0) == FALSE) (C[i] <- V[i]) else (C[i] <- 9999919) } m <- min(C) if (max(V) == 1) (m <- 1) if (m == 9999919) (warning("Error: Minimum calculation failed.")) return(m) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(gh) gitcreds::gitcreds_cache_envvar("https://github.acme.com")
sensibo.pods <- function(key = getOption("sensibo.key")) { url <- file.path(base_url(), "users/me/pods") pods <- xGET(url, query=glue::glue("apiKey={key}")) do.call(c, lapply(pods, function(pod){pod$id})) } sensibo.pod.info <- function(pod, key = getOption("sensibo.key")) { if(length(pod)>1) stop("You must specify only one pod id here.") url <- file.path(base_url(), glue::glue("pods/{pod}")) xGET(url, query=glue::glue("apiKey={key}")) } sensibo.pod.states <- function(pod, n = 10, key = getOption("sensibo.key")) { if(length(pod)>1) stop("You must specify only one pod id here.") if(is.null(n)) n <- 10 if(n > 20) n <- 20 url <- file.path(base_url(), glue::glue("pods/{pod}/acStates")) states <- xGET(url, query=glue::glue("limit={n}&apiKey={key}")) return(states) } sensibo.pod.state <- function(pod, state, key = getOption("sensibo.key")) { if(length(pod)>1) stop("You must specify only one pod id here.") if(length(state)>1) stop("You must specify only one state id here.") url <- file.path(base_url(), glue::glue("pods/{pod}/acStates/{state}")) probe.list <- xGET(url, query=glue::glue("apiKey={key}")) return(probe.list) } sensibo.pod.probe <- function(pod, key = getOption("sensibo.key")) { if(length(pod)>1) stop("You must specify only one pod id here.") url <- file.path(base_url(), glue::glue("pods/{pod}/measurements")) xGET(url, query=glue::glue("apiKey={key}")) } sensibo.pod.historical <- function(pod, days = 1, key = getOption("sensibo.key")) { if(length(pod)>1) stop("You must specify only one pod id here.") if(is.null(days)) days <- 1 if(days > 7) days <- 7 url <- file.path(base_url(), glue::glue("pods/{pod}/historicalMeasurements")) m <- xGET(url, query=glue::glue("days={days}&apiKey={key}")) df <- merge(do.call(rbind, lapply(m$temperature, function(t){as.data.frame(t, stringsAsFactors = F)})), do.call(rbind, lapply(m$humidity, function(t){as.data.frame(t, stringsAsFactors = F)})), by = "time") colnames(df) <- c("time", "temperature", "humidity") return(df) } sensibo.pod.set <- function(pod, on = NULL, mode = NULL, fan = NULL, unit = NULL, temperature = NULL, swing = NULL, key = getOption("sensibo.key")) { if(length(pod)>1) stop("You must specify only one pod id here.") url <- file.path(base_url(), glue::glue("pods/{pod}/acStates")) body.list <- list("on" = on, "mode" = mode, "fan" = fan, "unit" = unit, "temperature" = temperature, "swing" = swing) propset <- do.call(c,lapply(body.list, function(body.list){!is.null(body.list)})) body <- jsonlite::toJSON(list("acState" = body.list[propset]), auto_unbox = T) xPOST(url, query=glue::glue("apiKey={key}"), body = body) } sensibo.pod.smartmode <- function(pod, key = getOption("sensibo.key")) { if(length(pod)>1) stop("You must specify only one pod id here.") url <- file.path(base_url(), glue::glue("pods/{pod}/smartmode")) react.list <- xGET(url, query=glue::glue("apiKey={key}")) return(react.list) } sensibo.pod.smartmode.set <- function(pod, enable = NULL, key = getOption("sensibo.key")) { if(length(pod)>1) stop("You must specify only one pod id here.") url <- file.path(base_url(), glue::glue("pods/{pod}/smartmode")) body.list <- list("enabled" = enable) propset <- do.call(c,lapply(body.list, function(body.list){!is.null(body.list)})) body <- jsonlite::toJSON(body.list[propset], auto_unbox = T) xPOST(url, query=glue::glue("apiKey={key}"), body = body) }
orderBook <- function(events, tp=as.POSIXlt(Sys.time(), tz="UTC"), max.levels=NULL, bps.range=0, min.bid=0, max.ask=Inf) { pct.range <- bps.range*0.0001 activeBids <- function(active.orders) { bids <- active.orders[active.orders$direction=="bid" & active.orders$type != "market", ] bids <- bids[order(-bids$price, bids$id), ] first.price <- head(bids, 1)$price cbind(bids, bps=((first.price-bids$price)/first.price)*10000, liquidity=cumsum(bids$volume)) } activeAsks <- function(active.orders) { asks <- active.orders[active.orders$direction=="ask" & active.orders$type != "market", ] asks <- asks[order(asks$price, asks$id), ] first.price <- head(asks, 1)$price cbind(asks, bps=((asks$price-first.price)/first.price)*10000, liquidity=cumsum(asks$volume)) } active.orders <- (function() { created.before <- events[events$action == "created" & events$timestamp <= tp, "id"] deleted.before <- events[events$action == "deleted" & events$timestamp <= tp, "id"] active.order.ids <- setdiff(created.before, deleted.before) active.orders <- events[events$id %in% active.order.ids, ] active.orders <- active.orders[active.orders$timestamp <= tp, ] changed.orders <- active.orders$action == "changed" changed.before <- active.orders[changed.orders, ] changed.before <- changed.before[order(changed.before[, "volume"]), ] changed.before <- changed.before[!duplicated(changed.before$id), ] active.orders <- active.orders[!changed.orders, ] active.orders <- active.orders[!(active.orders$id %in% changed.before$id), ] active.orders <- rbind(active.orders, changed.before) stopifnot(all(active.orders$timestamp <= tp)) stopifnot(all(!duplicated(active.orders$id))) active.orders })() asks <- activeAsks(active.orders)[, c("id", "timestamp", "exchange.timestamp", "price", "volume", "liquidity", "bps")] asks <- asks[rev(1:nrow(asks)), ] bids <- activeBids(active.orders)[, c("id", "timestamp", "exchange.timestamp", "price", "volume", "liquidity", "bps")] if(pct.range > 0) { max.ask <- tail(asks, 1)$price*(1+pct.range) asks <- asks[asks$price <= max.ask, ] min.bid <- head(bids, 1)$price*(1-pct.range) bids <- bids[bids$price >= min.bid, ] } if(!is.null(max.levels)) { asks <- tail(asks, max.levels) bids <- head(bids, max.levels) } rownames(asks) <- NULL rownames(bids) <- NULL list(timestamp=tp, asks=asks, bids=bids) }
ITM = function(x, y, hx, hy, h, space = c("mean", "pdf"), xdensity = c("normal", "kernel", "elliptic"), out = FALSE, outden = FALSE) { n = NROW(x); p = NCOL(x) if(length(y) != n) stop("Error:\n\tThe length of the response is not equal to the number of rows of the predictors!\n") x = as.matrix(x) y = scale(y) temp = x.standardize(x) Sinvsqrt = temp$Sinvsqrt xstd = temp$x.std space = match.arg(space) xdensity = match.arg(xdensity) if(xdensity == "normal") { denidx = 0; index = NULL; f0gk = NULL } else { denidx = 1 f0gk = switch(xdensity, kernel = .C("dlogden1", as.double(xstd), as.integer(n), as.integer(p), as.double(h), as.integer(outden), f0 = double(n), dlogf = double(n*p)), elliptic = .C("dlogden3", as.double(xstd), as.integer(n), as.integer(p), as.double(h), as.integer(outden), f0 = double(n), rdlogf = double(n), dlogf = double(n*p))) cutpoint = quantile(f0gk$f0, 0.1) index = (f0gk$f0 >= cutpoint) gk = matrix(f0gk$dlogf, ncol = p)[index, ] xstd = xstd[index, ]; y = y[index]; n = sum(index) } Mfunindex = paste(space, denidx, sep="") M = switch(Mfunindex, mean0 = .C("ITM_mean_norm", as.double(xstd), as.double(y), as.double(hx), as.integer(n), as.integer(p), as.integer(out), M = double(p * p))$M, mean1 = .C("ITM_mean", as.double(xstd), as.double(gk), as.double(y), as.double(hx), as.integer(n), as.integer(p), as.integer(out), M = double(p * p))$M, pdf0 = .C("ITM_pdf_norm", as.double(xstd), as.double(y), as.double(hx), as.double(hy), as.integer(n), as.integer(p), as.integer(out), M = double(p * p))$M, pdf1 = .C("ITM_pdf", as.double(xstd), as.double(gk), as.double(y), as.double(hx), as.double(hy), as.integer(n), as.integer(p), as.integer(out), M = double(p * p))$M) M = matrix(M, nrow = p, ncol = p) M.raw = eigen(M, symmetric = T) M.evectors = Sinvsqrt %*% M.raw$vectors M.evectors = apply(M.evectors, 2, function(a) {a / sqrt(sum(a^2))}) info = paste("targeted space:", space, "\ndensity of predictors:", xdensity, "\n") list(evalues = M.raw$values, evectors = M.evectors, M = M, index = index, density = f0gk$f0, info = info) } x.standardize = function(x) { x.e = eigen(cov(x), symmetric = T) Sinvsqrt = x.e$vectors %*% diag(1/sqrt(x.e$values)) %*% t(x.e$vectors) x.std = scale(x, center = T, scale = F) %*% Sinvsqrt list(x.std = x.std, Sinvsqrt = Sinvsqrt) } pm.dist = function(A, B) { A.orth <- qr.Q(qr(A)) B.orth <- qr.Q(qr(B)) BAAB <- t(B.orth) %*% A.orth %*% t(A.orth) %*% B.orth BAAB.eig <- eigen(BAAB, only.values = T)$values r = 1 - sqrt(mean(BAAB.eig)) d = max(svd(B.orth %*% t(B.orth) - A.orth %*% t(A.orth))$d) list(r = r, d = d) } rmixnorm = function(n, p, percent, cvec) { if(length(percent) != NCOL(cvec)) stop("The length of percent and cvec are not equal!") if(p != NROW(cvec)) stop("The dimension of cvec is not equal to p!") ncut = c(0, n * cumsum(percent / sum(percent))) x = matrix(rnorm(n * p), nrow = n, ncol = p) for(i in 1:length(percent)) { index = (ncut[i]+1):(ncut[i+1]) x[index, ] = sweep(x[index, ], 2, cvec[, i], "+") } x }
test_that("Transcript parsing yields correct records", { tr.out = processZoomTranscript(fname=system.file('extdata', "meeting001_transcript.vtt", package = 'zoomGroupStats'), recordingStartDateTime = '2020-04-20 13:30:00',languageCode = 'en') expect_equal(nrow(tr.out), 300) expect_equal(length(unique(tr.out$userName)), 6) expect_equal(lubridate::is.POSIXct(tr.out$utteranceStartTime), TRUE) expect_equal(lubridate::is.POSIXct(tr.out$utteranceEndTime), TRUE) expect_equal(is.numeric(tr.out$utteranceStartSeconds), TRUE) expect_equal(is.numeric(tr.out$utteranceEndSeconds), TRUE) })
peelingOneIterate = function (X, posDT, gain = TRUE, nullDist = NULL, threshold = NULL, numIters = 5) { output = data.frame(chr = rep(NA, numIters), peelStart = rep(NA, numIters), peelStop = rep(NA, numIters), peakLoc = rep(NA, numIters), peakVal = rep(NA, numIters), peakPVal = rep(NA, numIters)) gainLossInd = (-1)^(1 + gain) X1 = X * gainLossInd for (i in 1:numIters) { tempK = which.max(rowMeans(X1)) tempPeakVal = gainLossInd * signif(rowMeans(X1)[tempK], 4) tempPeakPVal = ifelse(is.null(nullDist), NA, (1 + sum(nullDist > tempPeakVal))/length(nullDist) * (gainLossInd == 1) + (1 + sum(nullDist < tempPeakVal))/length(nullDist) * (gainLossInd == -1)) tempPeakPval = min(tempPeakPVal, 1) tempPeel = peelingOne(X = X1, posDT = posDT, k = tempK, threshold = threshold) output[i,] = c(posDT[tempK, 1], tempPeel[[2]][1], tempPeel[[2]][2], posDT[tempK, 2], tempPeakVal, tempPeakPVal) X1 = tempPeel[[1]] } return(output) }
flatsun<-function(x,maxseq,id,modonube=FALSE){ bad<-NULL liston <- getOption("liston") homefolder <- getOption("homefolder") milista<-unique(liston) if(!modonube){me<-gdata::first(which(milista$SOUID == substring(id,9,14) & substring(milista$ELEI,1,2)=='SS'))} if(modonube){me<-gdata::first(which(milista$SOUID == substring(id,9,14) & substring(milista$ELEI,1,2)=='CC'))} if(!modonube){cloud<-gdata::first(which(milista$STAID == milista$STAID[me] & milista$PARID == milista$PARID[me] & substring(milista$ELEI,1,2)=='CC'))} if(modonube){cloud<-gdata::first(which(milista$STAID == milista$STAID[me] & milista$PARID == milista$PARID[me] & substring(milista$ELEI,1,2)=='SS'))} if(length(cloud)==0){bad<-flat(x[,2],maxseq,exclude=100);return(bad)} if(!is.null(cloud) &!(is.na(cloud))){ if(!modonube){y<-readecad(paste0(homefolder,'raw/CC_SOUID',milista$SOUID[cloud],'.txt'))[,3:4]} if(modonube){y<-x;x<-readecad(paste0(homefolder,'raw/SS_SOUID',milista$SOUID[cloud],'.txt'))[,3:4]} names(x)<-c('date','sun');names(y)<-c('date','cloud') if(!modonube){z<-merge(x,y,all.x=TRUE,all.y=FALSE)} if(modonube){z<-merge(x,y,all.x=FALSE,all.y=TRUE)} maximo<-length(which(!is.na(z[,2])));real<-length(which(!is.na(z[,2]) & !is.na(z[,3]))) evaluation=real/maximo if(!modonube & evaluation < 0.80){bad<-flat(x[,2],maxseq,exclude=100);return(bad)} if(modonube & evaluation < 0.80){bad<-flat(x[,2],maxseq,exclude=c(0,8));return(bad)} if(!modonube){bid<-flat(z[,2],maxseq)} if(modonube){bid<-flat(z[,3],maxseq)} if(length(bid)==0){return(bad)} z$flat<-0;z$flat[bid]<-1 z$difs<-0;z$difs[1]<-NA;z$difs[2:nrow(z)]<-diff(z$flat) if(z$flat[1]==1){z$difs[1]<-1} start=which(z$difs == 1) end=which(z$difs == -1)-1 if(z$flat[nrow(z)]==1){end<-c(end,nrow(z))} juntos<-data.frame(start,end) for(i in 1:nrow(juntos)){juntos$sol[i]<-mean(z$sun[juntos$start[i]:juntos$end[i]],na.rm=TRUE)} for(i in 1:nrow(juntos)){juntos$nube[i]<-mean(z$cloud[juntos$start[i]:juntos$end[i]],na.rm=TRUE)} if(!modonube){for(i in 1:nrow(juntos)){if(!is.na(juntos$sol[i]) & !is.na(juntos$nube[i])){if(juntos$sol[i]< 1 & juntos$nube[i] > 7){z$flat[juntos$start[i]:juntos$end[i]]<-0}}}} juntos$date<-z$date[start] juntos$date<-as.Date(paste(substring(juntos$date,1,4),substring(juntos$date,5,6),substring(juntos$date,7,8),sep='-')) juntos$lat<-milista$LAT[me];juntos$lon<-milista$LON[me] totest<-data.frame(juntos$date,juntos$lat,juntos$lon);names(totest)<-c('date','lat','lon') juntos$maxsun<-juntos$sol/(as.numeric(suncalc::getSunlightTimes(data=totest)$night-suncalc::getSunlightTimes(data=totest)$dawn)*10)*100 juntos$maxsun[which(is.na(juntos$maxsun))]<-0 if(!modonube){for(i in 1:nrow(juntos)){if(!is.na(juntos$sol[i]) & !is.na(juntos$nube[i])){if(juntos$maxsun[i]> 90 & juntos$nube[i] < 2){z$flat[juntos$start[i]:juntos$end[i]]<-0}}}} if(modonube){for(i in 1:nrow(juntos)){if(!is.na(juntos$sol[i]) & !is.na(juntos$nube[i])){if(juntos$maxsun[i]> 70 & juntos$nube[i] < 2){z$flat[juntos$start[i]:juntos$end[i]]<-0}}}} if(modonube){for(i in 1:nrow(juntos)){if(!is.na(juntos$sol[i]) & !is.na(juntos$nube[i])){if(juntos$maxsun[i]< 10 & juntos$nube[i] > 7){z$flat[juntos$start[i]:juntos$end[i]]<-0}}}} bad<-which(z$flat == 1) return(bad) } }
set.seed(123) N = 100 k = 2 X = matrix(rnorm(N * k), ncol = k) y = -.5 + .2*X[, 1] + .1*X[, 2] + rnorm(N, sd = .5) dfXy = data.frame(X, y) lm_ML = function(par, X, y) { beta = par[-1] sigma2 = par[1] sigma = sqrt(sigma2) N = nrow(X) LP = X %*% beta mu = LP L = dnorm(y, mean = mu, sd = sigma, log = TRUE) -sum(L) } lm_LS = function(par, X, y) { beta = par LP = X %*% beta mu = LP L = crossprod(y - mu) } X = cbind(1, X) init = c(1, rep(0, ncol(X))) names(init) = c('sigma2', 'intercept', 'b1', 'b2') optlmML = optim( par = init, fn = lm_ML, X = X, y = y, control = list(reltol = 1e-8) ) optlmLS = optim( par = init[-1], fn = lm_LS, X = X, y = y, control = list(reltol = 1e-8) ) pars_ML = optlmML$par pars_LS = c(sigma2 = optlmLS$value / (N - k - 1), optlmLS$par) modlm = lm(y ~ ., dfXy) round( rbind( pars_ML, pars_LS, modlm = c(summary(modlm)$sigma^2, coef(modlm))), digits = 3 ) modglm = glm(y ~ ., data = dfXy) summary(modglm) coefs = solve(t(X) %*% X) %*% t(X) %*% y sqrt(crossprod(y - X %*% coefs) / (N - k - 1)) summary(modlm)$sigma sqrt(modglm$deviance / modglm$df.residual) c(sqrt(pars_ML[1]), sqrt(pars_LS[1]))
if (!testthat:::on_cran()) { scrimp_res <- NULL scrimp_res_par <- NA test_that("Scrimp", { set.seed(2021) expect_silent(scrimp_res <<- scrimp( data = motifs_discords_small, window_size = 150, exclusion_zone = 0.5, progress = FALSE )) expect_type(scrimp_res, "list") expect_snapshot_value(scrimp_res, style = "serialize") }) test_that("Scrimp Parallel", { set.seed(2021) expect_silent(scrimp_res_par <<- scrimp( data = motifs_discords_small, window_size = 150, exclusion_zone = 0.5, n_workers = 2, progress = FALSE )) expect_type(scrimp_res_par, "list") expect_snapshot_value(scrimp_res_par, style = "serialize") }) test_that("Scrimps are equal", { expect_equal(scrimp_res, scrimp_res_par) }) }
eh_test_subtype <- function(label, M, factors, data, digits = 2) { if (!class(data[[label]]) %in% c("numeric", "integer")) { stop("The argument to label must be numeric or integer. Arguments of type character and factor are not supported, please see the documentation.") } if (min(data[[label]] != 0)) { stop("The argument to label should start with 0. 0 indicates control subjects and cases should be labeled 1 through M, the total number of subtypes.") } if (class(M) != "numeric" | M < 2) { stop("The argument to M, the total number of subtypes, must be a numeric value >=2.") } if (length(levels(factor(data[[label]][data[[label]] != 0]))) != M) { stop("M is not equal to the number of non-zero levels in the variable supplied to label. Please make sure M reflects the number of subtypes in the data.") } if (any(grep("^[^:]+:", factors)) == TRUE) { stop("Risk factor names cannot include colons. Please rename the offending risk factor and try again.") } mform <- mlogit::mFormula( stats::as.formula(paste0(label, " ~ 1 |", paste(factors, collapse = " + "))) ) data2 <- mlogit::mlogit.data(data, choice = label, shape = "wide") fit <- mlogit::mlogit(formula = mform, data = data2) coefnames <- unique(sapply( strsplit(rownames(summary(fit)$CoefTable), ":"), "[[", 1 ))[-1] beta_plr <- matrix(summary(fit)$CoefTable[, 1], ncol = M, byrow = T)[-1, , drop = FALSE] beta_se <- matrix(summary(fit)$CoefTable[, 2], ncol = M, byrow = T)[-1, , drop = FALSE] colnames(beta_plr) <- colnames(beta_se) <- levels(as.factor(data[[label]]))[-1] rownames(beta_plr) <- rownames(beta_se) <- coefnames p <- nrow(beta_plr) or <- round(exp(beta_plr), digits) lci <- round(exp(beta_plr - stats::qnorm(0.975) * beta_se), digits) uci <- round(exp(beta_plr + stats::qnorm(0.975) * beta_se), digits) beta_se_p <- or_ci_p <- pval <- NULL vcov_plr <- stats::vcov(fit) V <- lapply(coefnames, function(x) { vcov_plr[ which(sapply(strsplit(rownames(vcov_plr), ":"), "[[", 1) == x), which(sapply(strsplit(rownames(vcov_plr), ":"), "[[", 1) == x) ] }) Lmat <- matrix(0, nrow = (M - 1), ncol = M) Lmat[row(Lmat) == col(Lmat)] <- 1 Lmat[row(Lmat) - col(Lmat) == -1] <- -1 pval <- sapply(1:p, function(i) { aod::wald.test( b = beta_plr[i, ], Sigma = V[[i]], L = Lmat )$result$chi2["P"] }) pval <- as.data.frame(pval) rownames(pval) <- coefnames colnames(pval) <- "p_het" beta_se_p <- data.frame(matrix(paste0( round(beta_plr, digits), " (", round(beta_se, digits), ")" ), ncol = M), round(pval, 3), stringsAsFactors = FALSE ) or_ci_p <- data.frame(matrix(paste0(or, " (", lci, "-", uci, ")"), ncol = M), round(pval, 3), stringsAsFactors = FALSE ) rownames(or_ci_p) <- rownames(beta_se_p) <- coefnames colnames(or_ci_p) <- colnames(beta_se_p) <- c(levels(as.factor(data[[label]]))[-1], "p_het") or_ci_p$p_het[or_ci_p$p_het == "0"] <- "<.001" beta_se_p$p_het[beta_se_p$p_het == "0"] <- "<.001" return(list( beta = beta_plr, beta_se = beta_se, eh_pval = pval, or_ci_p = or_ci_p, beta_se_p = beta_se_p, var_covar = vcov_plr )) }
close.bracket<-function(pattern, x){ possible.end<-nchar(x)+1 start<-gregexpr(pattern, x)[[1]] n<-length(start) openB<-gregexpr("\\(", x)[[1]] closeB<-gregexpr("\\)", x)[[1]] end<-1:n if(n==1 & start[1]==-1){ end<--1 }else{ for(i in 1:n){ nopen<-1 pos<-openB[match(TRUE, openB>start[i])]+1 while(nopen!=0){ if(pos%in%openB){nopen<-nopen+1} if(pos%in%closeB){nopen<-nopen-1} pos<-pos+1 if(pos>possible.end){stop("formuala invalid")} } end[i]<-pos-1 } } cbind(start,end) }
blandr.display.and.plot <- function(method1, method2, method1name = "Method 1", method2name = "Method 2", plotTitle = "Bland-Altman plot for comparison of 2 methods", sig.level = 0.95, annotate = FALSE, ciDisplay = TRUE, ciShading = FALSE, normalLow = FALSE, normalHigh = FALSE, lowest_y_axis = FALSE, highest_y_axis = FALSE, point_size = 0.8) { .Deprecated("blandr.display.and.draw") blandr.display.and.draw(method1, method2, method1name, method2name, plotTitle, sig.level, annotate, ciDisplay, ciShading, normalLow, normalHigh, lowest_y_axis, highest_y_axis, point_size) }
ggplot_add.ggplot <- function(object, plot, object_name) { patches <- get_patches(plot) add_patches(object, patches) } ggplot_add.grob <- function(object, plot, object_name) { plot + wrap_elements(full = object) } ggplot_add.formula <- ggplot_add.grob ggplot_add.raster <- ggplot_add.grob ggplot_add.nativeRaster <- ggplot_add.grob should_autowrap <- function(x) { is.grob(x) || inherits(x, 'formula') || is.raster(x) || inherits(x, 'nativeRaster') } get_patches <- function(plot) { empty <- is_empty(plot) if (is_patchwork(plot)) { patches <- plot$patches plot$patches <- NULL class(plot) <- setdiff(class(plot), 'patchwork') } else { patches <- new_patchwork() } if (!empty) { patches$plots <- c(patches$plots, list(plot)) } patches } is_patchwork <- function(x) inherits(x, 'patchwork') as_patchwork <- function(x) { UseMethod('as_patchwork') } as_patchwork.default <- function(x) { stop('Don\'t know how to convert an object of class <', paste(class(x), collapse = ', '),'> to a patchwork', call. = FALSE) } as_patchwork.ggplot <- function(x) { class(x) <- c('patchwork', class(x)) x$patches <- new_patchwork() x } as_patchwork.patchwork <- function(x) x add_patches <- function(plot, patches) { UseMethod('add_patches') } add_patches.ggplot <- function(plot, patches) { plot <- as_patchwork(plot) plot$patches <- patches plot } add_patches.patchwork <- function(plot, patches) { patches$plots <- c(patches$plots, list(plot)) add_patches(plot_filler(), patches) } new_patchwork <- function() { list( plots = list(), layout = plot_layout(), annotation = plot_annotation() ) } plot_filler <- function() { p <- ggplot() class(p) <- c('plot_filler', class(p)) p } is_empty <- function(x) inherits(x, 'plot_filler') has_tag.plot_filler <- function(x) FALSE
sum(1,2)
cat("Testing the calculation of the BIC score...\n") library(pcalg) load("test_bicscore.rda") tol <- sqrt(.Machine$double.eps) settings <- expand.grid(format = c("scatter", "raw"), cpp = c(FALSE, TRUE), stringsAsFactors = FALSE) nreps <- 5 for (m in 1:nrow(settings)) { cat(sprintf("Setting: storage format = %s, C++ library = %s\n", settings$format[m], settings$cpp[m])) for (i in 1:nreps) { perm <- 1:nrow(gauss.data) if (i > 1) { set.seed(i) perm <- sample(perm) } score <- new("GaussL0penIntScore", targets = gauss.targets, target.index = gauss.target.index[perm], data = gauss.data[perm, ], format = settings$format[m], use.cpp = settings$cpp[m], intercept = FALSE) if (any(score$pp.dat$data.count != 1000)) { stop("The number of non-interventions are not calculated correctly.") } stopifnot(is.list(score$pp.dat$non.int), length(score$pp.dat$non.int) == 5) stopifnot(all(sapply(1:5, function(j) { isTRUE(all.equal(score$pp.dat$non.int[[j]], setdiff(1:1200, 200*j + 1:200))) }))) if (settings$format[m] == "scatter") { if (!isTRUE(all.equal(score$pp.dat$scatter.index, 1:5))) { stop("The indices of the scatter matrices are not calculated correctly.") } for (j in 1:5) { if (!isTRUE(all.equal(score$pp.dat$scatter[[j]][1:5, 1:5], gauss.scatter[[j]], tolerance = tol))) { stop("The scatter matrices are not calculated correctly.") } } } for (j in 1:5) { if (!isTRUE(all.equal(gauss.loc.score[[j]], score$local.score(j, gauss.parents[[j]]), tolerance = tol))) { stop("The local score is not calculated correctly.") } } for (j in 1:5) { local.mle <- score$local.fit(j, gauss.parents[[j]]) if (length(local.mle) != length(gauss.mle[[j]]) || !isTRUE(all.equal(gauss.mle[[j]], local.mle, tolerance = tol))) { stop("The local MLE is not calculated correctly.") } } } } temp.targets <- gauss.targets temp.targets[[2]] <- rep(temp.targets[[2]], 4) score <- new("GaussL0penIntScore", targets = temp.targets, target.index = gauss.target.index, data = gauss.data, format = "scatter", use.cpp = FALSE, intercept = FALSE) stopifnot(isTRUE(all.equal(score$pp.dat$targets, gauss.targets))) stopifnot(isTRUE(all.equal(score$pp.dat$target.index, gauss.target.index))) stopifnot(isTRUE( tryCatch( score <- new("GaussL0penIntScore", targets = gauss.targets, target.index = gauss.target.index), error = function(e) { cat(paste(" Error caught:", e$message, "\n", sep = " ")) TRUE } ))) set.seed(307) temp.targets <- gauss.targets temp.targets <- c(temp.targets, temp.targets[[6]]) temp.target.index <- gauss.target.index temp.target.index[sample(which(gauss.target.index == 6), size = 20)] <- length(temp.targets) stopifnot(isTRUE( tryCatch( score <- new("GaussL0penIntScore", targets = temp.targets, target.index = temp.target.index, data = gauss.data), error = function(e) { cat(paste(" Error caught:", e$message, "\n", sep = " ")) TRUE } ))) temp.targets <- gauss.targets temp.targets[[2]] <- c(temp.targets[[2]], 9) stopifnot(isTRUE( tryCatch( score <- new("GaussL0penIntScore", targets = temp.targets, target.index = gauss.target.index, data = gauss.data), error = function(e) { cat(paste(" Error caught:", e$message, "\n", sep = " ")) TRUE } ))) temp.target.index <- gauss.target.index temp.target.index[1] <- length(gauss.targets) + 1 stopifnot(isTRUE( tryCatch(score <- new("GaussL0penIntScore", targets = gauss.targets, target.index = temp.target.index, data = gauss.data), error = function(e) { cat(paste(" Error caught:", e$message, "\n", sep = " ")) TRUE } ))) cat("Done.\n")
peek_back <- function(d, ...) {UseMethod("peek_back", d)}
expected <- "1.235e+04" test(id=11, code={ argv <- structure(list(fmt = "%9.4g", 12345.6789), .Names = c("fmt", "")) do.call('sprintf', argv); }, o = expected);
library("Matrix") library("testthat") library("L0Learn") library("pracma") tmp <- L0Learn::GenSynthetic(n=50, p=200, k=10, seed=1, rho=1, b0=0) Xsmall <- tmp[[1]] ysmall <- tmp[[2]] tol = 1e-4 if (sum(apply(Xsmall, 2, sd) == 0)) { stop("X needs to have non-zero std for each column") } Xsmall_sparse <- as(Xsmall, "dgCMatrix") userLambda <- list() userLambda[[1]] <- c(logspace(-1, -10, 100)) test_that("Intercepts are supported for all losses, algorithims, penalites, and matrix types", { skip_on_cran() for (p in c("L0", "L0L1", "L0L2")){ L0Learn.fit(Xsmall_sparse, ysmall, penalty=p, intercept = TRUE) L0Learn.cvfit(Xsmall_sparse, ysmall, penalty=p, nFolds=2, intercept = TRUE) } for (a in c("CD", "CDPSI")){ L0Learn.fit(Xsmall_sparse, ysmall, algorithm=a, intercept = TRUE) L0Learn.cvfit(Xsmall_sparse, ysmall, algorithm=a, nFolds=2, intercept = TRUE) } for (l in c("Logistic", "SquaredHinge")){ L0Learn.fit(Xsmall_sparse, sign(ysmall), loss=l, intercept = TRUE) L0Learn.cvfit(Xsmall_sparse, ysmall, algorithm=a, nFolds=2, intercept = TRUE) } succeed() }) test_that("Intercepts for Sparse Matricies are deterministic", { skip_on_cran() for (p in c("L0", "L0L1", "L0L2")){ set.seed(1) x1 <- L0Learn.fit(Xsmall_sparse, ysmall, penalty=p) set.seed(1) x2 <- L0Learn.fit(Xsmall_sparse, ysmall, penalty=p) expect_equal(x1$a0, x2$a0, info=p) } for (a in c("CD", "CDPSI")){ set.seed(1) x1 <- L0Learn.fit(Xsmall_sparse, ysmall, algorithm=a) set.seed(1) x2 <- L0Learn.fit(Xsmall_sparse, ysmall, algorithm=a) expect_equal(x1$a0, x2$a0, info=a) } for (l in c("Logistic", "SquaredHinge")){ set.seed(1) x1 <- L0Learn.fit(Xsmall_sparse, sign(ysmall), loss=l) set.seed(1) x2 <- L0Learn.fit(Xsmall_sparse, sign(ysmall), loss=l) expect_equal(x1$a0, x2$a0, info=l) } }) test_that("Intercepts are passed between Swap iterations", { skip_on_cran() }) tmp <- L0Learn::GenSynthetic(n=100, p=1000, k=10, seed=1, rho=1.5, b0=0) X <- tmp[[1]] y <- tmp[[2]] tol = 1e-4 if (sum(apply(X, 2, sd) == 0)) { stop("X needs to have non-zero std for each column") } X_sparse <- as(X, "dgCMatrix") test_that("When lambda0 is large, intecepts should be found similar for both sparse and dense methods", { skip_on_cran() BIGuserLambda <- list() BIGuserLambda[[1]] <- c(logspace(2, -2, 10)) for (a in c("CD", "CDPSI")){ set.seed(1) x1 <- L0Learn.fit(X_sparse, y, penalty="L0", intercept = TRUE, algorithm = a, autoLambda=FALSE, lambdaGrid=BIGuserLambda, maxSuppSize=100) set.seed(1) x2 <- L0Learn.fit(X, y, penalty="L0", intercept = TRUE, algorithm = a, autoLambda=FALSE, lambdaGrid=BIGuserLambda, maxSuppSize=100) for (i in 1:length(x1$a0)){ if ((x1$suppSize[[1]][i] == 0) && (x2$suppSize[[1]][i] == 0)){ expect_equal(x1$a0[[1]][i], x2$a0[[1]][i]) } else if (x1$suppSize[[1]][i] == x2$suppSize[[1]][i]){ expect_equal(x1$a0[[1]][i], x2$a0[[1]][i], tolerance=1e-6, scale=x1$a0[[1]][i]) } } } }) test_that("Intercepts are learned close to real values", { skip_on_cran() fineuserLambda <- list() fineuserLambda[[1]] <- c(logspace(-1, -10, 100)) k = 10 for (a in c("CD", "CDPSI")){ for (b0 in c(-100, -10, -2, 2, 10, 100)){ tmp <- L0Learn::GenSynthetic(n=500, p=200, k=k, seed=1, rho=1, b0=b0) X2 <- tmp[[1]] y2 <- tmp[[2]] tol = 1e-4 if (sum(apply(X2, 2, sd) == 0)) { stop("X needs to have non-zero std for each column") } X2_sparse <- as(X2, "dgCMatrix") x1 <- L0Learn.fit(X2_sparse, y2, penalty="L0", intercept = TRUE, algorithm = a, autoLambda=FALSE, lambdaGrid=fineuserLambda, maxSuppSize=1000) x2 <- L0Learn.fit(X2, y2, penalty="L0", intercept = TRUE, algorithm = a, autoLambda=FALSE, lambdaGrid=fineuserLambda, maxSuppSize=1000) for (i in 1:length(x1$suppSize[[1]])){ if (x1$suppSize[[1]][i] == k){ expect_lt(abs(x1$a0[[1]][i] - b0), abs(.01*b0)) } } for (i in 1:length(x2$suppSize[[1]])){ if (x2$suppSize[[1]][i] == k){ expect_lt(abs(x2$a0[[1]][i] - b0), abs(.01*b0)) } } } } })
getCytobandColors <- function(color.table=NULL, color.schema=c("circos", "biovizbase", "only.centromeres")) { color.schema <- match.arg(color.schema) if(!is.null(color.table)) { return(color.table) } else { if(color.schema %in% names(.karyoploter.colors$cytobands$schemas)) { return(.karyoploter.colors$cytobands$schemas[[color.schema]]) } else { stop("Unknown color.schema. Available schemas for cytobands are: ", paste0(names(.karyoploter.colors$cytobands$schemas), collapse = ", ")) } } stop("Error in getCytobandColors") }