code
stringlengths 1
13.8M
|
---|
geneViz_Granges2dataframe <- function(gr)
{
range <- as.data.frame(IRanges::ranges(gr))
meta <- as.data.frame(GenomicRanges::mcols(gr))
genomic_data <- cbind(range, meta)
genomic_data <- genomic_data[,c('start', 'end', 'GC', 'width', 'txname')]
return(genomic_data)
} |
globalVariables('i')
run.all.scripts <- function(
output.directory,
stages.to.run = c('alignment', 'qc', 'calling', 'annotation', 'merging'),
variant.callers = NULL,
quiet = FALSE
) {
script.directory <- file.path(output.directory, 'code')
log.directory <- file.path(output.directory, 'log/')
config <- read.yaml(save.config())
num.cores <- config[['num_cpu']]
doParallel::registerDoParallel(cores = num.cores)
print('Note: due to the nature of using multiple cores, jobs may complete out of order')
if ('alignment' %in% stages.to.run){
print('Aligning...')
script.files <- list.files(pattern = '.*align.*\\.sh$', path = script.directory, full.names = TRUE)
script.names <- list.files(pattern = '.*align.*\\.sh$', path = script.directory, full.names = FALSE)
if (length(script.files) > 0) {
foreach::foreach(i=1:length(script.files)) %dopar% {
if (quiet) {
print(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
} else {
system(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
print(paste0('Completed job ', i, ' of ', length(script.files), ' alignment jobs'))
}
}
}
}
if ('qc' %in% stages.to.run){
print('Running QC...')
script.files <- list.files(pattern = '.*target_qc.*\\.sh$', path = script.directory, full.names = TRUE)
script.names <- list.files(pattern = '.*target_qc.*\\.sh$', path = script.directory, full.names = FALSE)
if (length(script.files) > 0) {
foreach::foreach(i=1:length(script.files)) %dopar% {
if (quiet) {
print(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
} else {
system(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
print(paste0('Completed job ', i, ' of ', length(script.files), ' QC jobs'))
}
}
}
}
if ('calling' %in% stages.to.run){
if ('mutect' %in% variant.callers){
print('Running Mutect...')
script.files <- list.files(pattern = '.*mutect.*\\.sh$', path = script.directory, full.names = TRUE)
script.names <- list.files(pattern = '.*mutect.*\\.sh$', path = script.directory, full.names = FALSE)
if (length(script.files) > 0) {
foreach::foreach(i=1:length(script.files)) %dopar% {
if (quiet) {
print(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
} else {
system(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
print(paste0('Completed job ', i, ' of ', length(script.files), ' MuTect jobs'))
}
}
}
}
if ('vardict' %in% variant.callers) {
print('Running VarDict...')
script.files <- list.files(pattern = '.*vardict.*\\.sh$', path = script.directory, full.names = TRUE)
script.names <- list.files(pattern = '.*vardict.*\\.sh$', path = script.directory, full.names = FALSE)
if (length(script.files) > 0) {
foreach::foreach(i=1:length(script.files)) %dopar% {
if (quiet) {
print(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
} else {
system(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
print(paste0('Completed job ', i, ' of ', length(script.files), ' VarDict jobs'))
}
}
}
}
}
if ('annotation' %in% stages.to.run){
print('Annotating...')
script.files <- list.files(pattern = '.*annotate.*\\.sh$', path = script.directory, full.names = TRUE)
script.names <- list.files(pattern = '.*annotate.*\\.sh$', path = script.directory, full.names = FALSE)
if (length(script.files) > 0) {
foreach::foreach(i=1:length(script.files)) %dopar% {
if (quiet) {
print(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
} else {
system(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
print(paste0('Completed job ', i, ' of ', length(script.files), ' annotation jobs'))
}
}
}
}
if ('merging' %in% stages.to.run){
print('Merging...')
script.files <- list.files(pattern = '.*post_processing.*\\.sh$', path = file.path(script.directory, '..'), full.names = TRUE)
script.names <- list.files(pattern = '.*post_processing.*\\.sh$', path = script.directory, full.names = FALSE)
foreach::foreach(i=1:length(script.files)) %dopar% {
if (quiet) {
print(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
} else {
system(paste0('bash ', script.files[i], ' &> ', log.directory, script.names[i], '.out'))
}
}
}
print('All jobs executed')
} |
SlideDeck <- function(slideSep = rep("", 3), newSlide = Slide) {
modules::module({
modules::export("new")
new <- function(rawText) {
slideDeck <- splitRawTextIntoSlides(rawText, slideSep)
map(slideDeck ~ seq_along(slideDeck) ~ length(slideDeck), newSlide)
}
splitRawTextIntoSlides <- function(rawText, slideSep) {
ind <- numeric(length(rawText))
ind[seq_along(slideSep)] <- 0
for (i in seq_along(rawText)[-seq_along(slideSep)]) {
pos <- (i - length(slideSep) + 1):i
if (identical(rawText[pos], slideSep)) ind[i] <- 1
else ind[i] <- 0
}
split(rawText, cumsum(ind))
}
})
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(data.table)
library(DTSg)
data(flow)
flow
summary(flow)
TS <- DTSg$new(
values = flow,
ID = "River Flow"
)
TS <- new(
Class = "DTSg",
values = flow,
ID = "River Flow"
)
TS$print()
TS$summary()
TS$nas(cols = "flow")
if (requireNamespace("dygraphs", quietly = TRUE) &&
requireNamespace("RColorBrewer", quietly = TRUE)) {
TS$plot(cols = "flow")
}
flow[date >= as.POSIXct("2007-10-09", tz = "UTC") & date <= as.POSIXct("2007-11-13", tz = "UTC"), ]
TS <- TS$colapply(fun = interpolateLinear)
TS$nas()
TS$cols()
TS$cols(class = "numeric")
TS$cols(class = "character")
TS$cols(class = c("double", "integer"))
TS$cols(pattern = "f.*w")
TS$cols(pattern = "temp")
TS <- TS$alter(from = "2007-01-01", to = "2008-12-31")
TS
TSm <- TS$aggregate(funby = byYm____, fun = mean)
TSm
TSQ <- TS$aggregate(funby = by_Q____, fun = mean)
TSQ
TSs <- TS$rollapply(fun = mean, na.rm = TRUE, before = 2, after = 2)
TSs
TS <- TS$merge(y = TSs, suffixes = c("_orig", "_movavg"))
TS$values()
TS$ID
TSassigned <- TS
TScloned <- TS$clone(deep = TRUE)
TS$ID <- "Two River Flows"
TS
TSassigned
TScloned |
context("kinematics functions")
test_that("half.wave works fine", {
x <- seq(0,pi,0.01)
y <- sin(x^2*pi)
w <- halfwave(x,y,method="zeros",fit=TRUE,smoothing="spline")
expect_is(w,"list")
expect_named(w,c("method", "names", "dat"))
expect_type(w$names$x,type= "double")
expect_type(w$dat$wave.begin,type = "double")
expect_true(w$method[1]== "zeros")
expect_true(is.na(w$dat$amp2[1]) & is.na(w$dat$pos2[1]))
expect_error(halfwave(x,y,method="foo",fit=TRUE,smoothing="spline"),"method must be set to")
expect_error(halfwave(x,y,method="zeros",fit=TRUE,smoothing="foo"), "should be set to")
expect_error(halfwave(x,y+1.1,method="zeros",fit=TRUE,smoothing="spline"),"1 or fewer zero crossings found")
w2 <- halfwave(x,y+1.1,method="p2t",fit=TRUE,smoothing="spline")
expect_is(w2,"list")
expect_named(w2,c("method", "names", "dat"))
expect_type(w2$names$x,type= "double")
expect_type(w2$dat$wave.begin,type = "double")
expect_true(w2$method[1]== "p2t")
expect_true(is.na(w2$dat$zeros[1]))
})
test_that("wave works fine", {
x <- seq(0,pi,0.01)
y <- sin(x^2*pi)
w <- wave(x,y,method="zeros",fit=TRUE,smoothing="spline")
expect_is(w,"list")
expect_named(w,c("method", "names", "dat"))
expect_type(w$names$x,type= "double")
expect_type(w$dat$wave.begin,type = "double")
expect_true(w$method[1]== "zeros")
expect_true(!is.na(w$dat$amp2[1]) & !is.na(w$dat$pos2[1]))
expect_error(wave(x,y,method="foo",fit=TRUE,smoothing="spline"),"method must be set to")
expect_error(wave(x,y,method="zeros",fit=TRUE,smoothing="foo"), "should be set to")
expect_error(wave(x,y+1.1,method="zeros",fit=TRUE,smoothing="spline"))
w2 <- wave(x,y+1.1,method="p2p",fit=TRUE,smoothing="spline")
expect_is(w2,"list")
expect_named(w2,c("method", "names", "dat"))
expect_type(w2$names$x,type= "double")
expect_type(w2$dat$wave.begin,type = "double")
expect_true(w2$method[1]== "p2p")
expect_true(is.na(w2$dat$zeros[1]))
w3 <- wave(x,y+1.1,method="t2t",fit=F,smoothing="spline")
expect_is(w3,"list")
expect_named(w3,c("method", "names", "dat"))
expect_type(w3$names$x,type= "double")
expect_type(w3$dat$wave.begin,type = "double")
expect_true(w3$method[1]== "t2t")
expect_true(is.na(w3$dat$zeros[1]))
})
test_that("amp.freq works fine", {
x <- seq(0,pi,0.1)
y <- sin(x^1.3*pi)
af <- amp.freq(x=x,y=y)
expect_is(af,"list")
expect_equivalent(round(af$f,1), 69.4)
expect_equivalent(af$snr,38.76)
expect_named(af,c("a", "f", "a.f","snr"))
x <- seq(0.2,pi,0.1)
y <- sin(x^0.3*pi)
af2 <- amp.freq(x,y)
expect_is(af2,"list")
expect_identical(af2$a,numeric(0))
expect_identical(af2$f,numeric(0))
expect_identical(af2$a.f,numeric(0))
}) |
rotmean <- function(X, ..., origin, padzero=TRUE, Xname, result=c("fv", "im"),
adjust=1) {
if(missing(Xname))
Xname <- sensiblevarname(short.deparse(substitute(X)), "X")
trap.extra.arguments(..., .Context="rotmean")
stopifnot(is.im(X))
if(!missing(origin)) {
X <- shift(X, origin=origin)
backshift <- -getlastshift(X)
} else {
backshift <- NULL
}
result <- match.arg(result)
rmax <- with(vertices(Frame(X)), sqrt(max(x^2+y^2)))
Xunpad <- X
if(padzero)
X <- padimage(na.handle.im(X, 0), 0, W=square(c(-1,1)*rmax))
Xdata <- as.data.frame(X)
values <- Xdata$value
radii <- with(Xdata, sqrt(x^2+y^2))
ra <- pmin(range(radii), rmax)
bw <- adjust * 0.1 * sqrt(X$xstep^2 + X$ystep^2)
a <- unnormdensity(radii, from=ra[1], to=ra[2], bw=bw)
b <- unnormdensity(radii, weights=values, from=ra[1], to=ra[2], bw=a$bw)
df <- data.frame(r=a$x, f=b$y/a$y)
FUN <- fv(df,
argu="r",
ylab=substitute(bar(X)(r), list(X=as.name(Xname))),
valu="f",
fmla=(. ~ r),
alim=ra,
labl=c("r", "%s(r)"),
desc=c("distance argument r",
"rotational average"),
unitname=unitname(X),
fname=paste0("bar", paren(Xname)))
attr(FUN, "dotnames") <- "f"
unitname(FUN) <- unitname(X)
if(result == "fv") return(FUN)
FUN <- as.function(FUN)
XX <- as.im(Xunpad, na.replace=1)
IM <- as.im(function(x,y,FUN){ FUN(sqrt(x^2+y^2)) }, XX, FUN=FUN)
if(!is.null(backshift))
IM <- shift(IM,backshift)
unitname(IM) <- unitname(X)
return(IM)
} |
rwrappednormal <- function(n, mu=circular(0), rho=NULL, sd=1, control.circular=list()) {
if (is.circular(mu)) {
datacircularp <- circularp(mu)
} else {
datacircularp <- list(type="angles", units="radians", template="none", modulo="asis", zero=0, rotation="counter")
}
dc <- control.circular
if (is.null(dc$type))
dc$type <- datacircularp$type
if (is.null(dc$units))
dc$units <- datacircularp$units
if (is.null(dc$template))
dc$template <- datacircularp$template
if (is.null(dc$modulo))
dc$modulo <- datacircularp$modulo
if (is.null(dc$zero))
dc$zero <- datacircularp$zero
if (is.null(dc$rotation))
dc$rotation <- datacircularp$rotation
mu <- conversion.circular(mu, units="radians", zero=0, rotation="counter")
attr(mu, "class") <- attr(mu, "circularp") <- NULL
if (is.null(rho))
rho <- exp(-sd^2/2)
if (rho < 0 | rho > 1)
stop("rho must be between 0 and 1")
result <- RwrappednormalRad(n, mu, rho)
result <- conversion.circular(circular(result), dc$units, dc$type, dc$template, dc$modulo, dc$zero, dc$rotation)
return(result)
}
RwrappednormalRad <- function(n, mu, rho) {
if (rho == 0)
result <- runif(n, 0, 2*pi)
else if (rho == 1)
result <- rep(mu, n)
else {
sd <- sqrt(-2 * log(rho))
result <- rnorm(n, mu, sd) %% (2*pi)
}
return(result)
}
dwrappednormal <- function(x, mu=circular(0), rho=NULL, sd=1, K=NULL, min.k=10) {
x <- conversion.circular(x, units="radians", zero=0, rotation="counter")
mu <- conversion.circular(mu, units="radians", zero=0, rotation="counter")
attr(x, "class") <- attr(x, "circularp") <- NULL
attr(mu, "class") <- attr(mu, "circularp") <- NULL
if (is.null(rho))
rho <- exp(-sd^2/2)
if (rho < 0 | rho > 1)
stop("rho must be between 0 and 1")
if (length(mu)!=1)
stop("is implemented only for scalar 'mean'")
result <- DwrappednormalRad(x, mu, rho, K, min.k)
return(result)
}
DwrappednormalRad <- function(x, mu, rho, K, min.k=10) {
var <- -2 * log(rho)
sd <- sqrt(var)
if (is.null(K)) {
range <- abs(mu-x)
K <- (range+6*sqrt(var))%/%(2*pi)+1
K <- max(min.k, K)
}
n <- length(x)
z <- .Fortran("dwrpnorm",
as.double(x),
as.double(mu),
as.double(sd),
as.integer(n),
as.integer(length(mu)),
as.integer(K),
d=mat.or.vec(length(mu), n),
PACKAGE="circular"
)
d <- t(z$d/sqrt(var * 2 * pi))
if (ncol(d)==1)
d <- c(d)
return(d)
}
pwrappednormal <- function(q, mu=circular(0), rho=NULL, sd=1, from=NULL, K=NULL, min.k=10, ...) {
q <- conversion.circular(q, units="radians", zero=0, rotation="counter", modulo="2pi")
mu <- conversion.circular(mu, units="radians", zero=0, rotation="counter", modulo="2pi")
if (is.null(from)) {
from <- mu - pi
} else {
from <- conversion.circular(from, units="radians", zero=0, rotation="counter", modulo="2pi")
}
attr(q, "class") <- attr(q, "circularp") <- NULL
attr(mu, "class") <- attr(mu, "circularp") <- NULL
attr(from, "class") <- attr(from, "circularp") <- NULL
n <- length(q)
if (length(mu) != 1)
stop("is implemented only for scalar 'mean'")
mu <- (mu-from)%%(2*pi)
q <- (q-from)%%(2*pi)
if (is.null(rho)) {
rho <- exp(-sd^2/2)
}
if (rho < 0 | rho > 1)
stop("rho must be between 0 and 1")
intDwrappednormalRad <- function(q) {
if (is.na(q)) {
return(NA)
} else {
return(integrate(DwrappednormalRad, mu=mu, rho=rho, K=K, min.k=min.k, lower=0, upper=q, ...)$value)
}
}
value <- sapply(X=q, FUN=intDwrappednormalRad)
return(value)
}
qwrappednormal <- function(p, mu=circular(0), rho=NULL, sd=1, from=NULL, K=NULL, min.k=10, tol=.Machine$double.eps^(0.6), control.circular=list(), ...) {
epsilon <- 10 * .Machine$double.eps
if (any(p>1) | any(p<0))
stop("p must be in [0,1]")
if (is.circular(mu)) {
datacircularp <- circularp(mu)
} else {
datacircularp <- list(type="angles", units="radians", template="none", modulo="asis", zero=0, rotation="counter")
}
dc <- control.circular
if (is.null(dc$type))
dc$type <- datacircularp$type
if (is.null(dc$units))
dc$units <- datacircularp$units
if (is.null(dc$template))
dc$template <- datacircularp$template
if (is.null(dc$modulo))
dc$modulo <- datacircularp$modulo
if (is.null(dc$zero))
dc$zero <- datacircularp$zero
if (is.null(dc$rotation))
dc$rotation <- datacircularp$rotation
mu <- conversion.circular(mu, units="radians", zero=0, rotation="counter", modulo="2pi")
if (is.null(from)) {
from <- mu - pi
} else {
from <- conversion.circular(from, units="radians", zero=0, rotation="counter", modulo="2pi")
}
attr(mu, "class") <- attr(mu, "circularp") <- NULL
attr(from, "class") <- attr(from, "circularp") <- NULL
n <- length(p)
if (length(mu) != 1)
stop("is implemented only for scalar 'mean'")
mu <- (mu-from)%%(2*pi)
if (is.null(rho))
rho <- exp(-sd^2/2)
if (rho < 0 | rho > 1)
stop("rho must be between 0 and 1")
zeroPwrappednormalRad <- function(x, p, mu, rho, K, min.k) {
if (is.na(x)) {
y <- NA
} else {
y <- integrate(DwrappednormalRad, mu=mu, rho=rho, K=K, min.k=min.k, lower=0, upper=x)$value - p
}
return(y)
}
value <- rep(NA, length(p))
sem <- options()$show.error.messages
options(show.error.messages=FALSE)
for (i in 1:length(p)) {
res <- try(uniroot(zeroPwrappednormalRad, p=p[i], mu=mu, rho=rho, K=K, min.k=min.k, lower=0, upper=2*pi-epsilon, tol=tol))
if (is.list(res)) {
value[i] <- res$root
} else if (p[i] < 10*epsilon) {
value[i] <- 0
} else if (p[i] > 1-10*epsilon) {
value[i] <- 2*pi-epsilon
}
}
options(show.error.messages=sem)
value <- value + from
value <- conversion.circular(circular(value), dc$units, dc$type, dc$template, dc$modulo, dc$zero, dc$rotation)
return(value)
} |
"select.range" <- function (data, groupvec, min, max) {
min.cond <- (groupvec >= min)
max.cond <- (groupvec < max)
cond <- min.cond & max.cond
return(data[cond])
} |
skip_on_cran()
skip_if_not(requireNamespace("survey"))
library(dplyr)
tbl_summary_noby <- trial %>% tbl_summary()
tbl_summary_by <- trial %>% tbl_summary(by = trt)
tbl_svysummary_by <-
survey::svydesign(~1, data = as.data.frame(Titanic), weights = ~Freq) %>%
tbl_svysummary(by = Survived)
test_that("input checks", {
expect_error(
tbl_summary_noby %>% modify_header(stat_0 = "test"),
NA
)
expect_error(
tbl_summary_noby %>% modify_header(stat_0 ~ "test"),
NA
)
expect_error(
tbl_summary_noby %>% modify_header(),
NA
)
})
test_that("checking glue inserts to headers", {
expect_error(
tbl1 <-
tbl_summary_by %>%
modify_header(
list(
all_stat_cols() ~ "{level} ({n}/{N}; {style_percent(p)}%)",
label ~ "Variable (N = {N})"
)
),
NA
)
expect_equal(
tbl1$table_styling$header %>% dplyr::filter(hide == FALSE) %>% dplyr::pull(label),
c("Variable (N = 200)", "Drug A (98/200; 49%)", "Drug B (102/200; 51%)")
)
expect_error(
tbl2 <-
tbl_svysummary_by %>%
modify_header(
list(
all_stat_cols() ~ "{level} ({n}/{N}; {style_percent(p)}%): Unweighted {n_unweighted}/{N_unweighted}; {style_percent(p_unweighted)}%",
label ~ "Variable (N = {N}: Unweighted {N_unweighted})"
)
),
NA
)
expect_equal(
tbl2$table_styling$header %>% dplyr::filter(hide == FALSE) %>% dplyr::pull(label),
c(
"Variable (N = 2201: Unweighted 32)",
"No (1490/2201; 68%): Unweighted 16/32; 50%",
"Yes (711/2201; 32%): Unweighted 16/32; 50%"
)
)
expect_error(
tbl3 <-
lm(mpg ~ hp, mtcars) %>%
tbl_regression() %>%
modify_header(label ~ "Variable (N = {N})"),
NA
)
expect_equal(
tbl3$table_styling$header %>% dplyr::filter(column == "label") %>% dplyr::pull(label),
c("Variable (N = 32)")
)
})
test_that("deprecated argument still works", {
expect_equal(
trial %>%
tbl_summary(by = trt, include = age) %>%
modify_header(stat_by = "{level}") %>%
as_tibble() %>%
select(-1) %>%
names(),
c("Drug A", "Drug B")
)
}) |
plot_joint_marginal <-
function(parameter1,parameter2,percent.burnin=0,thinning=1,param.name1=deparse(substitute(parameter1)),param.name2=deparse(substitute(parameter2))){
burnin <- (percent.burnin/100)*length(which(parameter1!=0))
x <- seq(from = burnin,to = length(which(parameter1!=0)),by = thinning)
plot(parameter1[x],parameter2[x],
col=rainbow(start=0.5,end=1.0,length(parameter1[x]),alpha=0.4),
pch=19,
main=paste("Joint Marginal Density of",paste(param.name1,param.name2,sep=" and "),sep=" "),
xlab=param.name1,
ylab=param.name2,
ylim=c(min(parameter2[x])-abs(min(parameter2[x])-max(parameter2[x]))/5,max(parameter2[x])))
legend(x="bottomright",
cex=0.6,
pt.cex=1,
pch=21,
col=1,
pt.bg=c(rainbow(start=0.5,end=1.0,length(parameter1[x]),alpha=0.8)[c(1,floor(length(parameter1[x])/2),length(parameter1[x]))]),
legend=c("MCMC sampled generation 1",
paste("MCMC sampled generation",floor(length(parameter1[x])/2)),
paste("MCMC sampled generation",length(parameter1[x]))))
} |
fieldByYear <- function(M,
field = "ID",
timespan = NULL,
min.freq = 2,
n.items = 5,
labelsize = NULL,
dynamic.plot = FALSE,
graph = TRUE) {
A <- cocMatrix(M, Field = field, binary = FALSE)
n <- colSums(as.array(A))
trend_med <- apply(A, 2, function(x) {
round(quantile(rep(M$PY, x), c(0.25,0.50,0.75), na.rm=TRUE))
})
trend_med <- as_tibble(t(trend_med)) %>%
rename("year_q1"='25%', "year_med"='50%', "year_q3"='75%') %>%
mutate(item=rownames(t(trend_med)), freq=n) %>%
relocate(c(.data$item,.data$freq), .data$year_q1)
if (is.null(timespan) | length(timespan)!=2){
timespan <- as.numeric(range(trend_med$year_med, na.rm = TRUE))
}
df <- trend_med %>%
mutate(item = tolower(.data$item)) %>%
group_by(.data$year_med) %>%
arrange(desc(.data$freq), .data$item) %>%
arrange(desc(.data$year_med)) %>%
dplyr::slice_head(n=n.items) %>%
dplyr::filter(.data$freq >= min.freq) %>%
dplyr::filter(between(.data$year_med, timespan[1],timespan[2])) %>%
mutate(item = fct_reorder(.data$item, .data$freq))
data("logo",envir=environment())
logo <- grid::rasterGrob(logo,interpolate = TRUE)
yrange <- range(unlist(df[,which(regexpr("year",names(df))>-1)]))
x <- c(0+0.5,0.05+length(levels(df$item))*0.125)+1
y <- c(yrange[2]-0.02-diff(yrange)*0.125,yrange[2]-0.02)
g <- ggplot(df, aes(x=.data$item, y=.data$year_med,
text = paste("Term: ", .data$item,"\nYear: ",
.data$year_med ,"\nTerm frequency: ",.data$freq )))+
geom_point(aes(size = .data$freq), alpha=0.6, color="dodgerblue4")+
scale_size(range=c(2,6))+
scale_y_continuous(breaks = seq(min(df$year_q1),max(df$year_q3), by=2))+
guides(size = guide_legend(order = 1, "Term frequency"), alpha = guide_legend(order = 2, "Term frequency"))+
theme(legend.position = 'right'
,text = element_text(color = "
,panel.background = element_rect(fill = 'gray98')
,panel.grid.minor = element_line(color = '
,panel.grid.major = element_line(color = '
,plot.title = element_text(size = 24)
,axis.title = element_text(size = 14, color = '
,axis.title.y = element_text(vjust = 1, angle = 90, face="bold")
,axis.title.x = element_text(hjust = .95,face="bold")
,axis.text.x = element_text(face="bold", angle = 90)
,axis.text.y = element_text(face="bold")
) + annotation_custom(logo, xmin = x[1], xmax = x[2], ymin = y[1], ymax = y[2])
if (!isTRUE(dynamic.plot)){
g <- g+geom_vline(xintercept=nrow(df)-(which(c(diff(df$year_med))==-1)-0.5), color="grey70",alpha=0.6, linetype=6)+
geom_point(aes(y=.data$year_q1), alpha=0.6, size = 3, color="royalblue4", shape="|")+
geom_point(aes(y=.data$year_q3), alpha=0.6, size = 3, color="royalblue4", shape="|")
}
g <- g+
labs(title="Trend Topics",
x="Term",
y="Year")+
geom_segment(data=df, aes(x = .data$item, y = .data$year_q1, xend = .data$item, yend = .data$year_q3), size=1.0, color="royalblue4", alpha=0.3) +
coord_flip()
if (isTRUE(graph)) {
print(g)
}
results <- list(df = trend_med, df_graph = df, graph = g)
return(results)
}
|
niceLLtix<-function(rcoords)
{
K = 10
scoords = sort(range(rcoords) )
dms1 = dms(scoords)
if(diff(dms1$d)<=1)
{
dm = diff(dms1$m)
if(abs(dm)<=1)
{
dsec = diff(dms1$m*60+dms1$s)
K = goodticdivs(dsec)
secstart = K*trunc(dms1$s[1]/K)
secend = secstart+60*(dm+1)
print(paste(sep=" ","sec", secstart, secend, K))
isec = seq(from=secstart, to=secend, by=K)
FDEGcoord = rep(dms1$d[1], times=length(isec))
FMINcoord = rep(dms1$m[1], times=length(isec))
FSECcoord = isec
}
else
{
dmin = diff(dms1$d*60+dms1$m)
K = goodticdivs(dmin)
minstart = K*trunc(dms1$m[1]/K)
minend = minstart+(dmin+1)
print(paste(sep=" ", "min", minstart, minend, K))
imin = seq(from=minstart, to=minend, by=K)
FDEGcoord = rep(dms1$d[1], times=length(imin))
FMINcoord = imin
FSECcoord = rep(0, times=length(imin))
}
}
else
{
ddeg = diff(dms1$d)
K = 15
K = goodticdivs(ddeg)
degstart = K*trunc(dms1$d[1]/K)
degend =degstart+(ddeg+1)
print(paste(sep=" ", "deg", degstart, degend, K))
ideg = seq(from=degstart, to=degend, by=K)
FDEGcoord = ideg
FMINcoord = rep(0, times=length(ideg))
FSECcoord = rep(0, times=length(ideg))
}
DDcoord = FDEGcoord+FMINcoord/60+FSECcoord/3600
w = which(DDcoord>=scoords[1] & DDcoord<=scoords[2])
DDcoord =DDcoord[w]
si = sign(DDcoord)
final = dms(abs(DDcoord))
return(list(DD=DDcoord, deg=final$d, min=final$m, sec=final$s, si=si))
} |
get_bridging <- function(graph) {
fcn_name <- get_calling_fcn()
if (graph_object_valid(graph) == FALSE) {
emit_error(
fcn_name = fcn_name,
reasons = "The graph object is not valid")
}
ig_graph <- to_igraph(graph)
bridging_scores <- influenceR::bridging(ig_graph)
data.frame(
id = bridging_scores %>%
names() %>%
as.integer(),
bridging = bridging_scores,
stringsAsFactors = FALSE)
} |
LCSSDistance <- function(x, y, epsilon, sigma) {
if (class(try(LCSSInitialCheck(x, y, epsilon, sigma)))=="try-error") {
return(NA)
} else {
tamx <- length(x)
tamy <- length(y)
subcost <- as.numeric(as.vector(t(proxy::dist(x, y, method="euclidean") >
epsilon)))
cost.matrix <- c(1:((tamx + 1) * (tamy + 1))) * 0
if (missing(sigma)) {
resultList <- .C("lcssnw", as.integer(tamx), as.integer(tamy),
as.double(cost.matrix), as.double(subcost))
cost.matrix <- resultList[[3]]
} else {
resultList <- .C("lcss", as.integer(tamx), as.integer(tamy),
as.integer(sigma), as.double(cost.matrix),
as.double(subcost))
cost.matrix <- resultList[[4]]
}
d <- cost.matrix[length(cost.matrix)]
return(d)
}
}
LCSSInitialCheck <- function(x, y, epsilon, sigma) {
if (! is.numeric(x) | ! is.numeric(y)) {
stop('The series must be numeric', call.=FALSE)
}
if (! is.vector(x) | ! is.vector(y)) {
stop('The series must be univariate vectors', call.=FALSE)
}
if (length(x) < 1 | length(y) < 1) {
stop('The series must have at least one point', call.=FALSE)
}
if (! is.numeric(epsilon)) {
stop('The threshold must be numeric', call.=FALSE)
}
if (epsilon < 0) {
stop('The threshold must be positive', call.=FALSE)
}
if (any(is.na(x)) | any(is.na(y))) {
stop('There are missing values in the series', call.=FALSE)
}
if (!missing(sigma)) {
if ((sigma) <= 0) {
stop('The window size must be positive', call.=FALSE)
}
if (sigma < abs(length(x) - length(y))) {
stop('The window size can not be lower than the difference between the series lengths', call.=FALSE)
}
}
} |
source('../gsDesign_independent_code.R')
testthat::test_that("test : checking basic graph layout", {
x <- hGraph()
save_plot_obj <- save_gg_plot(x)
local_edition(3)
expect_snapshot_file(save_plot_obj, "plot_hGraph_1.png")
})
testthat::test_that("test : checking note clockwise ordering", {
x <- hGraph(5)
save_plot_obj <- save_gg_plot(x)
local_edition(3)
expect_snapshot_file(save_plot_obj, "plot_hGraph_2.png")
})
testthat::test_that("test : Add colors (default is 3 gray shades)", {
x <- hGraph(3, fill = 1:3)
save_plot_obj <- save_gg_plot(x)
local_edition(3)
expect_snapshot_file(save_plot_obj, "plot_hGraph_3.png")
})
testthat::test_that("test : Use a hue palette ", {
x <- hGraph(4, fill = factor(1:4), palette = scales::hue_pal(l = 75)(4))
save_plot_obj <- save_gg_plot(x)
local_edition(3)
expect_snapshot_file(save_plot_obj, "plot_hGraph_4.png")
})
testthat::test_that("test: different alpha allocation, hypothesis names and transitions", {
alphaHypotheses <- c(.005, .007, .013)
nameHypotheses <- c("ORR", "PFS", "OS")
m <- matrix(c(
0, 1, 0,
0, 0, 1,
1, 0, 0
), nrow = 3, byrow = TRUE)
x <- hGraph(3, alphaHypotheses = alphaHypotheses, nameHypotheses = nameHypotheses, m = m)
save_plot_obj <- save_gg_plot(x)
local_edition(3)
expect_snapshot_file(save_plot_obj, "plot_hGraph_5.png")
})
testthat::test_that("test: Custom position and size of ellipses, change text to multi-line text", {
cbPalette <- c(
"
"
x <- hGraph(3,
x = sqrt(0:2), y = c(1, 3, 1.5), size = 6, halfWid = .3,
halfHgt = .3, trhw = 0.6,
palette = cbPalette[2:4], fill = c(1, 2, 2),
legend.position = c(.95, .45), legend.name = "Legend:",
labels = c("Group 1", "Group 2"),
nameHypotheses = c("H1:\n Long name", "H2:\n Longer name", "H3:\n Longest name"))
save_plot_obj <- save_gg_plot(x)
local_edition(3)
expect_snapshot_file(save_plot_obj, "plot_hGraph_6.png")
})
testthat::test_that("test: number of digits to show for alphaHypotheses", {
x <- hGraph(nHypotheses = 3, size = 5, halfWid = 1.25, trhw = 0.25,
radianStart = pi/2, offset = pi/20, arrowsize = .03, digits = 3)
save_plot_obj <- save_gg_plot(x)
local_edition(3)
expect_snapshot_file(save_plot_obj, "plot_hGraph_7.png")
}) |
interval_pull <- function(x) {
UseMethod("interval_pull")
}
interval_pull.default <- function(x) {
dont_know(x, "interval_pull()")
}
interval_pull.POSIXt <- function(x) {
dttm <- as.double(x)
nhms <- gcd_interval(dttm)
period <- split_period(nhms)
new_interval(
hour = period$hour,
minute = period$minute,
second = period$second %/% 1,
millisecond = (period$second %% 1 * 1e3) %/% 1,
microsecond = (period$second %% 1 * 1e3) %% 1 * 1e3
)
}
interval_pull.nanotime <- function(x) {
nano <- as.numeric(x)
int <- gcd_interval(nano)
new_interval(nanosecond = int)
}
interval_pull.difftime <- function(x) {
t_units <- units(x)
if (t_units == "weeks") {
nweeks <- gcd_interval(unclass(x))
new_interval(week = nweeks)
} else {
dttm <- as.double(x, units = "secs")
nhms <- gcd_interval(dttm)
period <- split_period(nhms)
new_interval(
day = period$day,
hour = period$hour,
minute = period$minute,
second = period$second
)
}
}
interval_pull.hms <- function(x) {
dttm <- as.double(x)
nhms <- gcd_interval(dttm)
period <- split_period(nhms)
new_interval(
hour = period$hour + period$day * 24,
minute = period$minute,
second = period$second %/% 1,
millisecond = period$second %% 1 %/% 1e-3,
microsecond = period$second %% 1 %/% 1e-6 %% 1e+3
)
}
interval_pull.Period <- function(x) {
second_int <- gcd_interval(x$second)
new_interval(
year = gcd_interval(x$year),
month = gcd_interval(x$month),
day = gcd_interval(x$day),
hour = gcd_interval(x$hour),
minute = gcd_interval(x$minute),
second = second_int %/% 1,
millisecond = round(second_int %% 1 %/% 1e-3),
microsecond = round(second_int %% 1 %/% 1e-6 %% 1e+3)
)
}
interval_pull.Date <- function(x) {
dttm <- as.numeric(x)
ndays <- gcd_interval(dttm)
new_interval(day = ndays)
}
interval_pull.yearweek <- function(x) {
wk <- as.double(x)
nweeks <- gcd_interval(wk)
new_interval(week = nweeks)
}
interval_pull.yearmonth <- function(x) {
mon <- as.double(x)
nmonths <- gcd_interval(mon)
new_interval(month = nmonths)
}
interval_pull.yearquarter <- function(x) {
qtr <- as.double(x)
nqtrs <- gcd_interval(qtr)
new_interval(quarter = nqtrs)
}
interval_pull.numeric <- function(x) {
nunits <- gcd_interval(x)
if (is_empty(x)) {
new_interval(unit = nunits)
} else if (min0(x) > 1581 && max0(x) < 2500) {
new_interval(year = nunits)
} else {
new_interval(unit = nunits)
}
}
interval_pull.ordered <- function(x) {
interval_pull(as.integer(x))
}
new_interval <- function(..., .regular = TRUE, .others = list()) {
stopifnot(is.logical(.regular))
stopifnot(is.list(.others))
default <- list2(...)
names_default <- names(default)
names_unit <- fn_fmls_names(default_interval)
pidx <- pmatch(names_default, names_unit)
if (anyNA(pidx)) {
x_units <- paste(names_default[is.na(pidx)], collapse = ", ")
abort(sprintf("Invalid argument: %s.", x_units))
}
default <- eval_bare(call2("default_interval", !!!default))
out <- dots_list(!!!default, !!!.others, .homonyms = "error")
if (!(all(map_lgl(out, function(x) has_length(x, 1))))) {
abort("Only accepts one input for each argument, not empty or multiple.")
}
new_rcrd(fields = out, .regular = .regular, class = "interval")
}
is_regular_interval <- function(x) {
abort_not_interval(x)
x %@% ".regular"
}
default_interval <- function(year = 0, quarter = 0, month = 0, week = 0,
day = 0, hour = 0, minute = 0, second = 0,
millisecond = 0, microsecond = 0, nanosecond = 0,
unit = 0) {
list(
year = year, quarter = quarter, month = month, week = week,
day = day, hour = hour, minute = minute, second = second,
millisecond = millisecond, microsecond = microsecond,
nanosecond = nanosecond, unit = unit
)
}
irregular <- function() {
new_interval(.regular = FALSE)
}
unknown_interval <- function(x) {
is_regular_interval(x) && sum(vec_c(!!!vec_data(x))) == 0
}
`[[.interval` <- function(x, i, ...) {
field(x, i)
}
`$.interval` <- `[[.interval`
format.interval <- function(x, ...) {
if (!is_regular_interval(x)) return("!")
if (unknown_interval(x)) return("?")
n <- n_fields(x)
micro <- ifelse(is_utf8_output(), "\U00B5s", "us")
defaults <- vec_c("Y", "Q", "M", "W", "D", "h", "m", "s", "ms", micro, "ns", "")
n_defaults <- vec_size(defaults)
misc <- if (n > n_defaults) vec_slice(fields(x), (n_defaults + 1):n) else NULL
fmt_names <- vec_c(defaults, misc)
val <- vec_c(!!!vec_data(x))
paste0(val[val != 0], fmt_names[val != 0], collapse = " ")
}
default_time_units <- function(x) {
abort_not_interval(x)
x <- vec_data(x)
x[["microsecond"]] <- x[["microsecond"]] * 1e-6
x[["millisecond"]] <- x[["millisecond"]] * 1e-3
x[["minute"]] <- x[["minute"]] * 60
x[["hour"]] <- x[["hour"]] * 3600
sum(vec_c(!!!x))
}
abort_not_interval <- function(x) {
if (is_false(inherits(x, "interval"))) {
abort("`x` must be class 'interval'.")
}
}
gcd_interval <- function(x) {
if (length(x) < 2) {
0
} else {
unique_x <- vec_unique(round(abs(diff(x)), digits = 6))
gcd_vector(unique_x)
}
}
gcd <- function(a, b) {
if (isTRUE(all.equal(b, 0))) a else gcd(b, a %% b)
}
gcd_vector <- function(x) Reduce(gcd, x)
split_period <- function(x) {
output <- seconds_to_period(x)
list(
year = output$year, month = output$month, day = output$day,
hour = output$hour, minute = output$minute, second = output$second
)
}
has_tz <- function(x) {
tz <- attr(x, "tzone")[[1]]
!(is_null(tz) && !inherits(x, "POSIXt"))
}
setOldClass(c("interval", "vctrs_rcrd", "vctrs_vctr"))
setMethod("as.period", "interval", function(x, ...) {
period(
year = x$year,
month = x$quarter * 3 + x$month,
week = x$week,
day = x$day,
hour = x$hour,
minute = x$minute,
second = x$second + x$millisecond / 1e3 + x$microsecond / 1e6 + x$nanosecond / 1e9)
})
setMethod("as.duration", "interval", function(x, ...) {
as.duration(as.period(x))
}) |
setMethodS3("getRelativePath", "default", function(pathname, relativeTo=getwd(), caseSensitive=NULL, ...) {
getWindowsDrivePattern <- function(fmtstr, ...) {
drives <- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
drives <- paste(c(drives, tolower(drives)), collapse="")
sprintf(fmtstr, drives)
}
pathname <- as.character(pathname)
pathname <- .getPathIfEmpty(pathname, where="getRelativePath")
nPathnames <- length(pathname)
if (nPathnames == 0L) return(logical(0L))
if (nPathnames > 1L) {
res <- sapply(pathname, FUN=getRelativePath, relativeTo=relativeTo, caseSensitive=caseSensitive, ...)
return(res)
}
if (is.na(pathname)) return(NA_character_)
if (isUrl(pathname)) return(pathname)
pathname <- getAbsolutePath(pathname, expandTilde=TRUE)
if (!isAbsolutePath(pathname)) return(pathname)
if (is.null(relativeTo))
relativeTo <- "."
if (length(relativeTo) > 1L) {
throw("Argument 'relativeTo' must be a single character string: ", hpaste(relativeTo))
}
if (is.null(caseSensitive)) {
pattern <- getWindowsDrivePattern("^[%s]:")
isWindows <- (regexpr(pattern, relativeTo) != -1L)
caseSensitive <- !isWindows
} else {
caseSensitive <- as.logical(caseSensitive)
if (!caseSensitive %in% c(FALSE, TRUE))
throw("Argument 'caseSensitive' must be logical: ", caseSensitive)
}
relativeTo <- getAbsolutePath(relativeTo, expandTilde=TRUE)
relativeTo <- unlist(strsplit(relativeTo, split="[\\/]"))
pathname <- unlist(strsplit(pathname, split="[\\/]"))
pathnameC <- pathname
if (!caseSensitive) {
relativeTo <- tolower(relativeTo)
pathnameC <- tolower(pathnameC)
}
if (!identical(relativeTo[1L], pathnameC[1L])) {
pathname <- paste(pathname, collapse="/")
return(pathname)
}
for (kk in seq_along(relativeTo)) {
aPart <- relativeTo[1]
bPart <- pathnameC[1]
if (!identical(aPart, bPart))
break
relativeTo <- relativeTo[-1L]
pathname <- pathname[-1L]
pathnameC <- pathnameC[-1L]
}
prefix <- rep("..", length.out=length(relativeTo))
pathname <- c(prefix, pathname)
pathname <- paste(pathname, collapse="/")
if (pathname == "")
pathname <- "."
pathname
}) |
est_irt <- function(x=NULL, data, D=1, model=NULL, cats=NULL, item.id=NULL, fix.a.1pl=FALSE, fix.a.gpcm=FALSE, fix.g=FALSE,
a.val.1pl=1, a.val.gpcm=1, g.val=.2, use.aprior=FALSE, use.bprior=FALSE, use.gprior=TRUE,
aprior=list(dist="lnorm", params=c(0.0, 0.5)), bprior=list(dist="norm", params=c(0.0, 1.0)),
gprior=list(dist="beta", params=c(5, 16)), missing=NA, Quadrature=c(49, 6.0), weights=NULL,
group.mean=0.0, group.var=1.0, EmpHist=FALSE,
use.startval=FALSE, Etol=1e-04, MaxE=500, control=list(iter.max=200),
fipc=FALSE, fipc.method="MEM", fix.loc=NULL, verbose=TRUE) {
cl <- match.call()
if(!fipc) {
est_par <- est_irt_em(x=x, data=data, D=D, model=model, cats=cats, item.id=item.id, fix.a.1pl=fix.a.1pl, fix.a.gpcm=fix.a.gpcm,
fix.g=fix.g, a.val.1pl=a.val.1pl, a.val.gpcm=a.val.gpcm, g.val=g.val, use.aprior=use.aprior, use.bprior=use.bprior,
use.gprior=use.gprior, aprior=aprior, bprior=bprior, gprior=gprior, missing=missing, Quadrature=Quadrature,
weights=weights, group.mean=group.mean, group.var=group.var, EmpHist=EmpHist, use.startval=use.startval,
Etol=Etol, MaxE=MaxE, control=control, verbose=verbose)
} else {
est_par <- est_irt_fipc(x=x, data=data, D=D, item.id=item.id, fix.a.1pl=fix.a.1pl, fix.a.gpcm=fix.a.gpcm, fix.g=fix.g,
a.val.1pl=a.val.1pl, a.val.gpcm=a.val.gpcm, g.val=g.val, use.aprior=use.aprior, use.bprior=use.bprior,
use.gprior=use.gprior, aprior=aprior, bprior=bprior, gprior=gprior, missing=missing, Quadrature=Quadrature,
weights=weights, group.mean=group.mean, group.var=group.var, EmpHist=EmpHist, use.startval=use.startval,
Etol=Etol, MaxE=MaxE, control=control, fipc=TRUE, fipc.method=fipc.method, fix.loc=fix.loc, verbose=verbose)
}
class(est_par) <- "est_irt"
est_par$call <- cl
est_par
}
est_irt_em <- function(x=NULL, data, D=1, model=NULL, cats=NULL, item.id=NULL, fix.a.1pl=FALSE, fix.a.gpcm=FALSE, fix.g=FALSE,
a.val.1pl=1, a.val.gpcm=1, g.val=.2, use.aprior=FALSE, use.bprior=FALSE, use.gprior=TRUE,
aprior=list(dist="lnorm", params=c(0.0, 0.5)), bprior=list(dist="norm", params=c(0.0, 1.0)),
gprior=list(dist="beta", params=c(5, 16)), missing=NA, Quadrature=c(49, 6.0), weights=NULL,
group.mean=0, group.var=1, EmpHist=FALSE, use.startval=FALSE, Etol=1e-04, MaxE=500,
control=list(eval.max=200, iter.max=200), verbose=TRUE) {
start.time <- Sys.time()
if(use.startval & is.null(x)) {
stop("To use starting values for item parameter estimation, the item metadata must be specified in the argument 'x'.", call.=FALSE)
}
if(verbose) {
cat("Parsing input...", '\n')
}
if(!is.null(x)) {
x <- data.frame(x)
colnames(x) <- c("id", "cats", "model", paste0("par.", 1:(ncol(x) - 3)))
if(ncol(x[, -c(1, 2, 3)]) == 2) {
x <- data.frame(x, par.3=NA)
}
x <- back2df(metalist2(x))
id <- x[, 1]
cats <- x[, 2]
model <-
as.character(x[, 3]) %>%
toupper()
if(!use.startval) {
x <- startval_df(cats=cats, model=model)
x$id <- id
}
} else {
model <- toupper(model)
if(length(model) == 1) {
model <- rep(model, ncol(data))
}
if(is.null(cats)) {
if(all(model %in% c("1PLM", "2PLM", "3PLM", "DRM"))) {
cats <- rep(2, ncol(data))
} else {
stop("The number of score categories for the items should be specified in the argument 'cats'.", call.=FALSE)
}
}
if(length(cats) == 1) {
cats <- rep(cats, ncol(data))
}
x <- startval_df(cats=cats, model=model, item.id=item.id)
id <- x$id
}
if(nrow(x) != ncol(data)) stop("The number of items included in 'x' and 'data' must be the same.", call.=FALSE)
if("DRM" %in% model) {
model[model == "DRM"] <- "3PLM"
x$model <- model
memo <- "All 'DRM' items were considered as '3PLM' items during the item parameter estimation. \n"
warning(memo, call.=FALSE)
}
if(!is.na(missing)) {
data[data == missing] <- NA
}
data <- data.matrix(data)
n.resp <- colSums(!is.na(data))
loc_allmiss <- which(n.resp == 0L)
if(length(loc_allmiss) > 0L) {
memo2 <- paste0(paste0("item ", loc_allmiss, collapse = ", "), " has/have no item response data. \n")
stop(memo2, call.=FALSE)
}
if("1PLM" %in% model & !fix.a.1pl) {
loc_1p_const <- which(model == "1PLM")
loc_else <- which(model != "1PLM")
} else {
loc_1p_const <- NULL
loc_else <- 1:nrow(x)
}
param_loc <- parloc(x=x, loc_1p_const=loc_1p_const, loc_else=loc_else,
fix.a.1pl=fix.a.1pl, fix.a.gpcm=fix.a.gpcm, fix.g=fix.g)
nstd <- nrow(data)
if(is.null(weights)) {
quadpt <- seq(-Quadrature[2], Quadrature[2], length.out=Quadrature[1])
weights <- gen.weight(dist="norm", mu=group.mean, sigma=sqrt(group.var), theta=quadpt)
} else {
quadpt <- weights[, 1]
}
resp <- purrr::map2(.x=data.frame(data), .y=cats, .f=function(k, m) factor(k, levels=(seq_len(m) - 1)))
std.id <- 1:nstd
freq.cat <- purrr::map(.x=resp, .f=function(k) stats::xtabs(~ std.id + k, na.action=stats::na.pass, addNA = FALSE))
freq.cat <- purrr::map(.x=freq.cat,
.f=function(k) data.matrix(k) %>%
unname())
rm(resp, envir=environment(), inherits = FALSE)
datlist <- divide_data(data=data, cats=cats, freq.cat=freq.cat)
data1_drm <- datlist$data1_drm
data2_drm <- datlist$data2_drm
data_plm <- datlist$data_plm
rm(datlist, envir=environment(), inherits = FALSE)
if(verbose) {
cat("Estimating item parameters...", '\n')
}
time1 <- Sys.time()
par.history <- list()
for(r in 1:MaxE) {
estep <- Estep(x=x, data1_drm=data1_drm, data2_drm=data2_drm, data_plm=data_plm, freq.cat=freq.cat, weights=weights, D=D)
mstep <- Mstep(estep=estep, id=id, cats=cats, model=model, quadpt=quadpt, D=D, loc_1p_const=loc_1p_const, loc_else=loc_else,
EmpHist=EmpHist, weights=weights, fix.a.1pl=fix.a.1pl, fix.a.gpcm=fix.a.gpcm, fix.g=fix.g, a.val.1pl=a.val.1pl,
a.val.gpcm=a.val.gpcm, g.val=g.val, use.aprior=use.aprior, use.bprior=use.bprior, use.gprior=use.gprior,
aprior=aprior, bprior=bprior, gprior=gprior, group.mean=group.mean, group.var=group.var, nstd=nstd,
Quadrature=Quadrature, use.startval=TRUE, control=control, iter=r, fipc=FALSE,
reloc.par=param_loc$reloc.par, info.mstep=FALSE)
diff_par <- mstep$par_df[, -c(1, 2, 3)] - x[, -c(1, 2, 3)]
max.diff <- abs(max(diff_par, na.rm=TRUE))
llike <- mstep$loglike
if(verbose) {
cat("\r", paste0("EM iteration: ", r, ", Loglike: ", format(round(mstep$loglike, 4), nsmall=4), ", Max-Change: ", format(round(max.diff, 6), nsmall=5)))
}
converge <- max.diff <= Etol
if(converge | r == MaxE) {
par_df <- mstep$par_df
par.history[[r]] <- mstep$par_vec
weights <- mstep$weights
break
} else {
x <- mstep$par_df
par.history[[r]] <- mstep$par_vec
weights <- mstep$weights
}
}
if(verbose) {
cat("", "\n")
}
time2 <- Sys.time()
est_time1 <- round(as.numeric(difftime(time2, time1, units = "secs")), 2)
test_1st <- all(c(all(mstep$convergence == 0L), r < MaxE))
if(test_1st) {
memo3 <- "Convergence criteria are satisfied."
} else {
memo3 <- "Convergence criteria are not satisfied."
warning(paste0(memo3, " \n"), call.=FALSE)
}
estep <- Estep(x=x, data1_drm=data1_drm, data2_drm=data2_drm, data_plm=data_plm, freq.cat=freq.cat, weights=weights, D=D)
llike <- sum(log(estep$likehd %*% matrix(weights[, 2])))
meta <- metalist2(par_df)
post_dist <- estep$post_dist
if(verbose) {
cat("Computing item parameter var-covariance matrix...", '\n')
}
time1 <- Sys.time()
info.data <- info_xpd(meta=meta, freq.cat=freq.cat, post_dist=post_dist, cats=cats, model=model, quadpt=quadpt,
D=D, loc_1p_const=loc_1p_const, loc_else=loc_else, nstd=nstd,
fix.a.1pl=fix.a.1pl, fix.a.gpcm=fix.a.gpcm, fix.g=fix.g, a.val.1pl=a.val.1pl,
a.val.gpcm=a.val.gpcm, g.val=g.val, reloc.par=param_loc$reloc.par)
info.prior <- info_prior(meta=meta, cats=cats, model=model, D=D, loc_1p_const=loc_1p_const,
loc_else=loc_else, nstd=nstd, fix.a.1pl=fix.a.1pl, fix.a.gpcm=fix.a.gpcm, fix.g=fix.g,
a.val.1pl=a.val.1pl, a.val.gpcm=a.val.gpcm, g.val=g.val, aprior=aprior, bprior=bprior,
gprior=gprior, use.aprior=use.aprior, use.bprior=use.bprior, use.gprior=use.gprior,
reloc.par=param_loc$reloc.par)
info.mat <- info.data + info.prior
test_2nd <- all(eigen(info.mat, only.values=TRUE)$values > 1e-20)
if(test_2nd) {
if(test_1st) {
memo4 <- "Solution is a possible local maximum."
} else {
memo4 <- "Information matrix of item parameter estimates is positive definite."
}
} else {
memo4 <- "Information matrix of item parameter estimates is not positive definite; unstable solution."
warning(paste0(memo4, " \n"), call.=FALSE)
}
cov_mat <- suppressWarnings(tryCatch({solve(info.mat, tol=1e-200)}, error = function(e) {NULL}))
if(is.null(cov_mat)) {
se_par <- rep(99999, length(diag(info.mat)))
memo5 <- "Variance-covariance matrix of item parameter estimates is not obtainable; unstable solution."
warning(paste0(memo5, " \n"), call.=FALSE)
} else {
se_par <- suppressWarnings(sqrt(diag(cov_mat)))
memo5 <- "Variance-covariance matrix of item parameter estimates is obtainable."
}
if(any(is.nan(se_par))) {
se_par[is.nan(se_par)] <- 99999
}
se_par <- ifelse(se_par > 99999, 99999, se_par)
time2 <- Sys.time()
est_time2 <- round(as.numeric(difftime(time2, time1, units = "secs")), 2)
se_df <- loc.par <- param_loc$loc.par
for(i in 1:nrow(loc.par)) {
num.loc <- which(!is.na(loc.par[i, ]))
se.loc <- loc.par[i, ][num.loc]
se_df[i, num.loc] <- se_par[se.loc]
}
se_df <- data.frame(par_df[, 1:3], se_df)
colnames(se_df) <- c("id", "cats", "model", paste0("se.", 1:ncol(loc.par)))
loc_df <- data.frame(par_df[, 1:3], loc.par)
colnames(loc_df) <- c("id", "cats", "model", paste0("par.", 1:ncol(loc.par)))
all_df <- data.frame(matrix(NA, nrow=nrow(loc.par), ncol=2*ncol(loc.par)))
all_df[, seq(1, 2*ncol(loc.par), 2)] <- par_df[, -c(1:3)]
all_df[, seq(2, 2*ncol(loc.par), 2)] <- se_df[, -c(1:3)]
col.names <- rep(NA, 2*ncol(loc.par))
col.names[seq(1, 2*ncol(loc.par), 2)] <- paste0("par.", 1:ncol(loc.par))
col.names[seq(2, 2*ncol(loc.par), 2)] <- paste0("se.", 1:ncol(loc.par))
colnames(all_df) <- col.names
full_all_df <- data.frame(x[, 1:3], all_df)
moments <- c(mu=group.mean, sigma2=group.var, sigma=sqrt(group.var))
moments.se <- rep(NA, 3)
group.par <- data.frame(rbind(moments, moments.se))
colnames(group.par) <- c("mu", "sigma2", "sigma")
rownames(group.par) <- c("estimates", "se")
if(use.aprior) aprior.dist <- aprior else aprior.dist <- NULL
if(use.bprior) bprior.dist <- bprior else bprior.dist <- NULL
if(use.gprior) gprior.dist <- gprior else gprior.dist <- NULL
npar.est=length(param_loc$reloc.par)
neg2llke <- - 2 * llike
aic <- 2 * npar.est + neg2llke
bic <- npar.est * log(nstd) + neg2llke
end.time <- Sys.time()
est_time3 <- round(as.numeric(difftime(end.time, start.time, units = "secs")), 2)
rst <- list(estimates=full_all_df, par.est=par_df, se.est=se_df, pos.par=loc_df, covariance=cov_mat, loglikelihood=llike, aic=aic, bic=bic,
group.par=group.par, weights=weights, posterior.dist=post_dist, data=data, scale.D=D, ncase=nstd, nitem=nrow(par_df),
Etol=Etol, MaxE=MaxE, aprior=aprior.dist, bprior=bprior.dist, gprior=gprior.dist, npar.est=npar.est, niter=r, maxpar.diff=max.diff,
EMtime=est_time1, SEtime=est_time2, TotalTime=est_time3, test.1=memo3, test.2=memo4, var.note=memo5, fipc=FALSE,
fipc.method=NULL, fix.loc=NULL)
if(verbose) {
cat("Estimation is finished in", est_time3, "seconds.",'\n')
}
return(rst)
}
est_irt_fipc <- function(x=NULL, data, D=1, item.id=NULL, fix.a.1pl=FALSE, fix.a.gpcm=FALSE, fix.g=FALSE,
a.val.1pl=1, a.val.gpcm=1, g.val=.2, use.aprior=FALSE, use.bprior=FALSE, use.gprior=TRUE,
aprior=list(dist="lnorm", params=c(0.0, 0.5)), bprior=list(dist="norm", params=c(0.0, 1.0)),
gprior=list(dist="beta", params=c(5, 16)), missing=NA, Quadrature=c(49, 6.0), weights=NULL,
group.mean=0.0, group.var=1.0, EmpHist=FALSE, use.startval=FALSE, Etol=1e-04, MaxE=500,
control=list(eval.max=200, iter.max=200), fipc=TRUE, fipc.method="MEM", fix.loc=NULL, verbose=TRUE) {
start.time <- Sys.time()
if(is.null(x)) {
stop("To implement the fixed item parameter calibration, the item metadata must be specified in the argument 'x'.", call.=FALSE)
}
if(verbose) {
cat("Parsing input...", '\n')
}
x <- data.frame(x)
colnames(x) <- c("id", "cats", "model", paste0("par.", 1:(ncol(x) - 3)))
if(ncol(x[, -c(1, 2, 3)]) == 2) {
x <- data.frame(x, par.3=NA)
}
if(!is.null(item.id)) {
x$id <- item.id
}
x <- back2df(metalist2(x))
x$model <-
as.character(x$model) %>%
toupper()
if("DRM" %in% x$model) {
x$model[x$model == "DRM"] <- "3PLM"
memo <- "All 'DRM' items were considered as '3PLM' items during the item parameter estimation. \n"
warning(memo, call.=FALSE)
}
nitem <- nrow(x)
nofix.loc <- c(1:nitem)[!c(1:nitem) %in% fix.loc]
if(length(nofix.loc) == 0L) {nofix.loc <- NULL}
x_fix <- x[fix.loc, ]
if(!is.null(nofix.loc)) {
x_new <- x[nofix.loc, ]
} else {
x_new <- NULL
}
x_fix <- back2df(metalist2(x_fix))
if(!is.null(nofix.loc)) {
x_new <- back2df(metalist2(x_new))
}
if(!is.null(x_new)) {
id <- x_new$id
cats <- x_new$cats
model <- x_new$model
} else {
id <- x_fix$id
cats <- x_fix$cats
model <- x_fix$model
}
if(!is.null(x_new) && !use.startval) {
x_new <- startval_df(cats=cats, model=model, item.id=id)
}
x_all <- startval_df(cats=x$cats, model=x$model, item.id=x$id)
x_all[fix.loc, 1:ncol(x_fix)] <- x_fix
if(!is.null(nofix.loc)) {
x_all[nofix.loc, 1:ncol(x_new)] <- x_new
}
if(nrow(x_all) != ncol(data)) stop("The number of items included in 'x' and 'data' must be the same.", call.=FALSE)
if(!is.na(missing)) {
data[data == missing] <- NA
}
data <- data.matrix(data)
n.resp <- colSums(!is.na(data))
loc_allmiss <- which(n.resp == 0L)
if(length(loc_allmiss) > 0L) {
memo2 <- paste0(paste0("item ", loc_allmiss, collapse = ", "), " has/have no item response data. \n")
stop(memo2, call.=FALSE)
}
data_all <- data
rm(data, envir=environment(), inherits = FALSE)
data_fix <- data_all[, fix.loc, drop=FALSE]
if(!is.null(x_new)) {
data_new <- data_all[, nofix.loc, drop=FALSE]
} else {
data_new <- NULL
}
if("1PLM" %in% model & !fix.a.1pl) {
loc_1p_const <- which(model == "1PLM")
loc_else <- which(model != "1PLM")
} else {
loc_1p_const <- NULL
if(!is.null(x_new)) {
loc_else <- 1:nrow(x_new)
} else {
loc_else <- 1:nrow(x_all)
}
}
if(!is.null(x_new)) {
param_loc <- parloc(x=x_new, loc_1p_const=loc_1p_const, loc_else=loc_else,
fix.a.1pl=fix.a.1pl, fix.a.gpcm=fix.a.gpcm, fix.g=fix.g)
} else {
param_loc <- parloc(x=x_all, loc_1p_const=loc_1p_const, loc_else=loc_else,
fix.a.1pl=FALSE, fix.a.gpcm=FALSE, fix.g=FALSE)
param_loc$loc.par[!is.na(param_loc$loc.par)] <- NA_real_
param_loc$reloc.par <- NULL
}
nstd <- nrow(data_all)
if(is.null(weights)) {
quadpt <- seq(-Quadrature[2], Quadrature[2], length.out=Quadrature[1])
weights <- gen.weight(dist="norm", mu=group.mean, sigma=sqrt(group.var), theta=quadpt)
} else {
quadpt <- weights[, 1]
}
if(!is.null(x_new)) {
resp_new <- purrr::map2(.x=data.frame(data_new), .y=cats, .f=function(k, m) factor(k, levels=(seq_len(m) - 1)))
resp_fix <- purrr::map2(.x=data.frame(data_fix), .y=x_fix$cats, .f=function(k, m) factor(k, levels=(seq_len(m) - 1)))
} else {
resp_new <- NULL
resp_fix <- NULL
}
resp_all <- purrr::map2(.x=data.frame(data_all), .y=x_all$cats, .f=function(k, m) factor(k, levels=(seq_len(m) - 1)))
std.id <- 1:nstd
if(!is.null(x_new)) {
freq_new.cat <- purrr::map(.x=resp_new, .f=function(k) stats::xtabs(~ std.id + k, na.action=stats::na.pass, addNA = FALSE))
freq_fix.cat <- purrr::map(.x=resp_fix, .f=function(k) stats::xtabs(~ std.id + k, na.action=stats::na.pass, addNA = FALSE))
} else {
freq_new.cat <- NULL
freq_fix.cat <- NULL
}
freq_all.cat <- purrr::map(.x=resp_all, .f=function(k) stats::xtabs(~ std.id + k, na.action=stats::na.pass, addNA = FALSE))
if(!is.null(x_new)) {
freq_new.cat <- purrr::map(.x=freq_new.cat,
.f=function(k) data.matrix(k) %>%
unname())
freq_fix.cat <- purrr::map(.x=freq_fix.cat,
.f=function(k) data.matrix(k) %>%
unname())
} else {
freq_new.cat <- NULL
freq_fix.cat <- NULL
}
freq_all.cat <- purrr::map(.x=freq_all.cat,
.f=function(k) data.matrix(k) %>%
unname())
if(!is.null(x_new)) {
rm(resp_new, envir=environment(), inherits = FALSE)
rm(resp_fix, envir=environment(), inherits = FALSE)
}
rm(resp_all, envir=environment(), inherits = FALSE)
if(!is.null(x_new)) {
datlist_new <- divide_data(data=data_new, cats=cats, freq.cat=freq_new.cat)
datlist_fix <- divide_data(data=data_fix, cats=x_fix$cats, freq.cat=freq_fix.cat)
} else {
datlist_new <- NULL
datlist_fix <- NULL
}
datlist_all <- divide_data(data=data_all, cats=x_all$cats, freq.cat=freq_all.cat)
if(is.null(x_new)) {mmt_dist_old <- c(group.mean, group.var)}
if(verbose) {
cat("Estimating item parameters...", '\n')
}
if(fipc.method=="OEM") MaxE <- 1
time1 <- Sys.time()
par.history <- list()
for(r in 1:MaxE) {
if(!is.null(x_new)) {
if(r == 1L) {
estep <- Estep_fipc(x1=x_new, x2=x_fix,
data1_drm1=datlist_new$data1_drm, data2_drm1=datlist_new$data2_drm, data_plm1=datlist_new$data_plm,
data1_drm2=datlist_fix$data1_drm, data2_drm2=datlist_fix$data2_drm, data_plm2=datlist_fix$data_plm,
freq.cat=freq_new.cat, weights=weights, D=D)
} else {
estep <- Estep_fipc(x1=x_new, x2=x_all,
data1_drm1=datlist_new$data1_drm, data2_drm1=datlist_new$data2_drm, data_plm1=datlist_new$data_plm,
data1_drm2=datlist_all$data1_drm, data2_drm2=datlist_all$data2_drm, data_plm2=datlist_all$data_plm,
freq.cat=freq_new.cat, weights=weights, D=D)
}
} else {
estep <- Estep_fipc(x1=x_all, x2=x_all,
data1_drm1=datlist_all$data1_drm, data2_drm1=datlist_all$data2_drm, data_plm1=datlist_all$data_plm,
data1_drm2=datlist_all$data1_drm, data2_drm2=datlist_all$data2_drm, data_plm2=datlist_all$data_plm,
freq.cat=freq_all.cat, weights=weights, D=D)
estep$meta <- NULL
}
mstep <- Mstep(estep=estep, id=id, cats=cats, model=model, quadpt=quadpt, D=D, loc_1p_const=loc_1p_const, loc_else=loc_else,
EmpHist=EmpHist, weights=weights, fix.a.1pl=fix.a.1pl, fix.a.gpcm=fix.a.gpcm, fix.g=fix.g, a.val.1pl=a.val.1pl,
a.val.gpcm=a.val.gpcm, g.val=g.val, use.aprior=use.aprior, use.bprior=use.bprior, use.gprior=use.gprior,
aprior=aprior, bprior=bprior, gprior=gprior, group.mean=group.mean, group.var=group.var, nstd=nstd,
Quadrature=Quadrature, use.startval=TRUE, control=control, iter=r, fipc=TRUE,
reloc.par=param_loc$reloc.par, info.mstep=FALSE)
if(!is.null(x_new)) {
diff_par <- mstep$par_df[, -c(1, 2, 3)] - x_new[, -c(1, 2, 3)]
max.diff <- abs(max(diff_par, na.rm=TRUE))
} else {
mmt_dist_new <- cal_moment(node=mstep$weights$theta, weight=mstep$weights$weight)
diff_par <- mmt_dist_new - mmt_dist_old
max.diff <- abs(max(diff_par, na.rm=TRUE))
}
llike <- mstep$loglike
if(verbose) {
cat("\r", paste0("EM iteration: ", r, ", Loglike: ", format(round(mstep$loglike, 4), nsmall=4), ", Max-Change: ", format(round(max.diff, 5), nsmall=4)))
}
converge <- max.diff <= Etol
if(converge | r == MaxE) {
if(!is.null(x_new)) {
par_df <- mstep$par_df
x_all[nofix.loc, 1:ncol(par_df)] <- par_df
par.history[[r]] <- mstep$par_vec
}
weights <- mstep$weights
break
} else {
if(!is.null(x_new)) {
x_new <- mstep$par_df
x_all[nofix.loc, 1:ncol(x_new)] <- x_new
par.history[[r]] <- mstep$par_vec
} else {
mmt_dist_old <- mmt_dist_new
}
weights <- mstep$weights
}
}
if(verbose) {
cat("", "\n")
}
time2 <- Sys.time()
est_time1 <- round(as.numeric(difftime(time2, time1, units = "secs")), 2)
test_1st <- all(c(all(mstep$convergence == 0L), r < MaxE))
if(test_1st) {
memo3 <- "Convergence criteria are satisfied."
} else {
memo3 <- "Convergence criteria are not satisfied."
warning(paste0(memo3, " \n"), call.=FALSE)
}
if(!is.null(x_new)) {
estep <- Estep_fipc(x1=par_df, x2=x_all,
data1_drm1=datlist_new$data1_drm, data2_drm1=datlist_new$data2_drm, data_plm1=datlist_new$data_plm,
data1_drm2=datlist_all$data1_drm, data2_drm2=datlist_all$data2_drm, data_plm2=datlist_all$data_plm,
freq.cat=freq_new.cat, weights=weights, D=D)
} else {
estep <- Estep_fipc(x1=x_all, x2=x_all,
data1_drm1=datlist_all$data1_drm, data2_drm1=datlist_all$data2_drm, data_plm1=datlist_all$data_plm,
data1_drm2=datlist_all$data1_drm, data2_drm2=datlist_all$data2_drm, data_plm2=datlist_all$data_plm,
freq.cat=freq_all.cat, weights=weights, D=D)
}
llike <- sum(log(estep$likehd %*% matrix(weights[, 2])))
pop_moments <- cal_moment(node=quadpt, weight=weights[, 2])
if(!is.null(x_new)) {
meta <- metalist2(par_df)
post_dist <- estep$post_dist
if(verbose) {
cat("Computing item parameter var-covariance matrix...", '\n')
}
time1 <- Sys.time()
info.data <- info_xpd(meta=meta, freq.cat=freq_new.cat, post_dist=post_dist, cats=cats, model=model, quadpt=quadpt,
D=D, loc_1p_const=loc_1p_const, loc_else=loc_else, nstd=nstd,
fix.a.1pl=fix.a.1pl, fix.a.gpcm=fix.a.gpcm, fix.g=fix.g, a.val.1pl=a.val.1pl,
a.val.gpcm=a.val.gpcm, g.val=g.val, reloc.par=param_loc$reloc.par)
info.prior <- info_prior(meta=meta, cats=cats, model=model, D=D, loc_1p_const=loc_1p_const,
loc_else=loc_else, nstd=nstd, fix.a.1pl=fix.a.1pl, fix.a.gpcm=fix.a.gpcm, fix.g=fix.g,
a.val.1pl=a.val.1pl, a.val.gpcm=a.val.gpcm, g.val=g.val, aprior=aprior, bprior=bprior,
gprior=gprior, use.aprior=use.aprior, use.bprior=use.bprior, use.gprior=use.gprior,
reloc.par=param_loc$reloc.par)
info.mat <- info.data + info.prior
test_2nd <- all(eigen(info.mat, only.values=TRUE)$values > 1e-8)
if(test_2nd) {
if(test_1st) {
memo4 <- "Solution is a possible local maximum."
} else {
memo4 <- "Information matrix of item parameter estimates is positive definite."
}
} else {
memo4 <- "Information matrix of item parameter estimates is not positive definite; unstable solution."
warning(paste0(memo4, " \n"), call.=FALSE)
}
cov_mat <- suppressWarnings(tryCatch({solve(info.mat, tol=1e-200)}, error = function(e) {NULL}))
if(is.null(cov_mat)) {
se_par <- rep(99999, length(diag(info.mat)))
memo5 <- "Variance-covariance matrix of item parameter estimates is not obtainable; unstable solution."
warning(paste0(memo5, " \n"), call.=FALSE)
} else {
se_par <- suppressWarnings(sqrt(diag(cov_mat)))
memo5 <- "Variance-covariance matrix of item parameter estimates is obtainable."
}
if(any(is.nan(se_par))) {
se_par[is.nan(se_par)] <- 99999
}
se_par <- ifelse(se_par > 99999, 99999, se_par)
time2 <- Sys.time()
est_time2 <- round(as.numeric(difftime(time2, time1, units = "secs")), 2)
se_df <- loc.par <- param_loc$loc.par
for(i in 1:nrow(loc.par)) {
num.loc <- which(!is.na(loc.par[i, ]))
se.loc <- loc.par[i, ][num.loc]
se_df[i, num.loc] <- se_par[se.loc]
}
all.col <- max(x_all$cats)
all.col <- ifelse(all.col == 2, 3, all.col)
se_all_df <- loc_all.par <- matrix(NA, nrow=nitem, ncol=all.col)
if(ncol(se_df) < ncol(se_all_df)) {
n2add <- ncol(se_all_df) - ncol(se_df)
se_df <- cbind(se_df, matrix(NA, nrow=nrow(se_df), ncol=n2add))
}
se_all_df[nofix.loc, 1:ncol(se_df)] <- se_df
loc_all.par[nofix.loc, 1:ncol(loc.par)] <- loc.par
se_all_df <- data.frame(x_all[, 1:3], se_all_df)
colnames(se_all_df) <- c("id", "cats", "model", paste0("se.", 1:ncol(loc_all.par)))
loc_all_df <- data.frame(x_all[, 1:3], loc_all.par)
colnames(loc_all_df) <- c("id", "cats", "model", paste0("par.", 1:ncol(loc_all.par)))
} else {
post_dist <- estep$post_dist
if(test_1st) {
memo4 <- "Solution is a possible local maximum."
} else {
memo4 <- "Solution is not a possible local maximum because convergence criteria are not satisfied."
}
cov_mat <- NULL
memo5 <- "Variance-covariance matrix of item parameter estimates was not estimated."
est_time2 <- NULL
se_df <- loc_all.par <- param_loc$loc.par
se_all_df <- data.frame(x_all[, 1:3], se_df)
colnames(se_all_df) <- c("id", "cats", "model", paste0("se.", 1:ncol(se_df)))
loc_all_df <- NULL
}
all_df <- data.frame(matrix(NA, nrow=nrow(loc_all.par), ncol=2*ncol(loc_all.par)))
all_df[, seq(1, 2*ncol(loc_all.par), 2)] <- x_all[, -c(1:3)]
all_df[, seq(2, 2*ncol(loc_all.par), 2)] <- se_all_df[, -c(1:3)]
col.names <- rep(NA, 2*ncol(loc_all.par))
col.names[seq(1, 2*ncol(loc_all.par), 2)] <- paste0("par.", 1:ncol(loc_all.par))
col.names[seq(2, 2*ncol(loc_all.par), 2)] <- paste0("se.", 1:ncol(loc_all.par))
colnames(all_df) <- col.names
full_all_df <- data.frame(x_all[, 1:3], all_df)
mu <- pop_moments[1]
sigma2 <- pop_moments[2]
sigma <- sqrt(pop_moments[2])
moments.est <- c(mu, sigma2, sigma)
se.mu <- sigma / sqrt(nstd)
se.sigma2 <- sigma2 * sqrt(2 / (nstd - 1))
se.sigma <- (1 / (2 * sigma)) * se.sigma2
moments.se <- c(se.mu, se.sigma2, se.sigma)
group.par <- data.frame(rbind(moments.est, moments.se))
colnames(group.par) <- c("mu", "sigma2", "sigma")
rownames(group.par) <- c("estimates", "se")
if(use.aprior) aprior.dist <- aprior else aprior.dist <- NULL
if(use.bprior) bprior.dist <- bprior else bprior.dist <- NULL
if(use.gprior) gprior.dist <- gprior else gprior.dist <- NULL
if(!is.null(x_new)) {
npar.est <- length(param_loc$reloc.par) + 2
} else {
npar.est <- 2
}
neg2llke <- - 2 * llike
aic <- 2 * npar.est + neg2llke
bic <- npar.est * log(nstd) + neg2llke
end.time <- Sys.time()
est_time3 <- round(as.numeric(difftime(end.time, start.time, units = "secs")), 2)
rst <- list(estimates=full_all_df, par.est=x_all, se.est=se_all_df, pos.par=loc_all_df, covariance=cov_mat, loglikelihood=llike,
aic=aic, bic=bic, group.par=group.par, weights=weights, posterior.dist=post_dist, data=data_all, scale.D=D, ncase=nstd,
nitem=nitem, Etol=Etol, MaxE=MaxE, aprior=aprior.dist, bprior=bprior.dist, gprior=gprior.dist, npar.est=npar.est,
niter=r, maxpar.diff=max.diff, EMtime=est_time1, SEtime=est_time2, TotalTime=est_time3, test.1=memo3, test.2=memo4,
var.note=memo5, fipc=TRUE, fipc.method=fipc.method, fix.loc=fix.loc)
if(verbose) {
cat("Estimation is finished in", est_time3, "seconds.",'\n')
}
return(rst)
} |
interactive_threshold <- function(image, type = c("black", "white"), channel = NULL, resolution = 0.1, return_param = FALSE, scale)
{
image_original <- image
image <- image_convert(as.list(image)[[1]], format = "png")
if (!missing(scale))
{
image <- image_scale(image, scale)
}
iniv <- "0"
initial <- image_threshold(image, type = type, threshold = paste(iniv, "%", sep = ""), channel = channel)
iminfo <- image_info(image)
range_thr <- c(0,100)
length_slider <- as.integer(iminfo$width * 0.6)
if (length_slider < 200)
{
length_slider <- 200
}
text_label <- "Threshold: "
quit_waiting <- !is.null(getOption("unit_test_magickGUI"))
temp <- tempfile(fileext = ".jpg")
on.exit(unlink(temp), add = TRUE)
image_write(initial, temp)
image_tcl <- tkimage.create("photo", "image_tcl", file = temp)
iminfo <- image_info(image)
win1 <- tktoplevel()
on.exit(tkdestroy(win1), add = TRUE)
win1.frame1 <- tkframe(win1)
win1.im <- tklabel(win1, image = image_tcl)
win1.frame1.label <- tklabel(win1.frame1, text = sprintf("%s%s %%", text_label, iniv))
slider_value <- tclVar(iniv)
command_slider <- function(...)
{
assign("slider_value", slider_value, inherits = TRUE)
}
win1.frame1.slider <- tkscale(win1.frame1, from = range_thr[1], to = range_thr[2], variable = slider_value, orient = "horizontal", length = length_slider, command = command_slider, resolution = resolution, showvalue = 0)
command_button <- function(...)
{
assign("quit_waiting", TRUE, inherits = TRUE)
}
temp_val <- iniv
update_image <- function()
{
temp_image <- image_threshold(image, type = type, threshold = paste(temp_val, "%", sep = ""), channel = channel)
image_write(temp_image, temp)
image_tcl <- tkimage.create("photo", "image_tcl", file = temp)
tkconfigure(win1.im, image = image_tcl)
}
win1.button <- tkbutton(win1, text = "OK", command = command_button)
tkpack(win1.im)
tkpack(win1.frame1.label, side = "left", anchor = "c")
tkpack(win1.frame1.slider, side = "left", anchor = "c")
tkpack(win1.frame1, side = "top", anchor = "c")
tkpack(win1.button, side = "top", anchor = "c", pady = 20)
pre_slider_value <- as.numeric(tclvalue(slider_value))
if (quit_waiting)
{
wait_test <- TRUE
while (wait_test)
{
wait_test <- FALSE
tryCatch({
tkwm.state(win1)
},
error = function(e) assign("wait_test", TRUE, inherits = TRUE)
)
}
wait_time()
}
tkwm.state(win1, "normal")
while (TRUE)
{
tryCatch({
tkwm.state(win1)
},
error = function(e) assign("quit_waiting", TRUE, inherits = TRUE)
)
if (quit_waiting) break
temp_val <- as.numeric(tclvalue(slider_value))
if (temp_val != pre_slider_value)
{
temp_label <- sprintf("%s%s %%", text_label, formatC(temp_val))
tkconfigure(win1.frame1.label, text = temp_label)
update_image()
pre_slider_value <- temp_val
}
}
val_res <- paste(formatC(pre_slider_value), "%", sep = "")
names(val_res) <- "threshold"
if (return_param)
{
return(val_res)
}
return(image_threshold(image_original, type = type, threshold = val_res, channel = channel))
} |
EDpeff<-function(weight,dose,P,EDp,LB,UB,r=30,epsilon=.001,grid=.01, N_dose=FALSE)
{
change<-ifelse(N_dose==F,0,1)
k1<-length(P)
p<-EDp
e1<-10^-7
e2<-epsilon
n<-1
p1<-1
it<-1
nit<-r
gr<-grid
I5<-10^-10*diag(5)
lb<-LB
LB<-ifelse(change==0,log(LB),log(-UB))
UB<-ifelse(change==0,log(UB),log(-lb))
P[3]<-ifelse(change==0,log(P[3]),log(-P[3]))
T<-P
X<-c(LB,LB+(UB-LB)/4,LB+2*(UB-LB)/4,LB+3*(UB-LB)/4,UB)
W<-rep(1/length(X),length(X)-1)
M<-upinfor(W,T,X,k1)
while(n<nit){
x<-seq(LB,UB,gr)
ds<-rep(0,length(x))
if(exp(UB)<999) {
inv<-ginv(M)
} else {
inv<-Inv(M,I5)
}
for (i in 1:length(x)) {
ds[i]<-DS1(T,x[i],inv,p,k1)
}
newX<-x[which.max(ds)]
newds<-max(ds)
an<-1/(n+1)
newM<-(1-an)*M+an*f(T,newX,k1)%*%t(f(T,newX,k1))
M<-newM
X<-c(X,newX)
n<-n+1
}
r<-length(X)
X<-unique(X[(r-k1):r])
X<-sort(X,decreasing=F)
while(p1>e2) {
x<-seq(LB,UB,gr)
ds<-rep(0,length(x))
D<-S_weight(X,T,e1,c_weight,p,k1,UB,I5)
X<-D[1,]
k<-length(X)
W<-D[2,1:k-1]
if(exp(UB)<999) {
inv<-ginv(upinfor(W,T,X,k1))
} else {
inv<-Inv(upinfor(W,T,X,k1),I5)
}
for (i in 1:length(x)) {
ds[i]<-DS1(T,x[i],inv,p,k1)
}
newX<-x[which.max(ds)]
newds<-max(ds)
X<-c(X,newX)
X<-unique(sort(X,decreasing=F))
newp<-abs(newds-1)
if(abs(newp-p1)<.0000001) newp<-10^-20
if(it>20) newp<-10^-20
p1<-newp
it<-it+1
}
Cpoints<-D[1,]
Cweight<-D[2,1:(length(Cpoints)-1)]
if (change==0) {
Dose<-round(exp(D[1,]),2)
} else {
Dose<--round(exp(D[1,]),2)
}
Weight<-round(D[2,],3)
Copt<-rbind(Dose,Weight)
k<-length(dose)
for (i in 1:k)
if(dose[i]==0) dose[i]<-.0001
if(change==1) dose<--dose
dose<-log(dose)
if(exp(UB)<999) {
inv<-ginv(upinfor(weight,T,dose,k1))
inv_min<-ginv(upinfor(Cweight,T,Cpoints,k1))
} else {
inv<-Inv(upinfor(weight,T,dose,k1),I5)
inv_min<-Inv(upinfor(Cweight,T,Cpoints,k1),I5)
}
eff<-(t(g(T,p))%*%inv_min%*%g(T,p))/(t(g(T,p))%*%inv%*%g(T,p))
size<-100*(1/eff-1)
eff<-round(eff,2)
size<-round(size,2)
cat(format("c-optimal design", width=50),"\n")
print(Copt)
cat(format("c-efficiency", width=50),"\n")
print(eff)
cat(format("%More Samples Needed", width=50),"\n")
print(size)
} |
tidy.confusionMatrix <- function(x, by_class = TRUE, ...) {
cm <- as.list(x$overall)
nms_cm <- stringr::str_to_lower(c(names(cm)[1:2], "McNemar"))
if (by_class) {
if (!inherits(x$byClass, "matrix")) {
classes <-
x$byClass %>%
as.data.frame() %>%
rename_at(1, ~"value") %>%
tibble::rownames_to_column("var") %>%
mutate(var = stringr::str_to_lower(gsub(" ", "_", var)))
terms <- c(nms_cm, classes$var)
class <- c(rep(NA_character_, 3), rep(x$positive, length(terms) - 3))
estimates <- c(cm$Accuracy, cm$Kappa, NA, classes$value)
conf.low <- c(cm$AccuracyLower, rep(NA, length(terms) - 1))
conf.high <- c(cm$AccuracyUpper, rep(NA, length(terms) - 1))
p.value <- c(
cm$AccuracyPValue, NA, cm$McnemarPValue,
rep(NA, length(terms) - 3)
)
}
else {
classes <-
x$byClass %>%
as.data.frame() %>%
tibble::rownames_to_column("class") %>%
pivot_longer(
cols = c(dplyr::everything(), -class),
names_to = "var",
values_to = "value"
) %>%
mutate(
var = stringr::str_to_lower(gsub(" ", "_", var)),
class = gsub("Class: ", "", class)
)
terms <- c(nms_cm, classes$var)
class <- c(rep(NA_character_, 3), classes$class)
estimates <- c(cm$Accuracy, cm$Kappa, NA, classes$value)
conf.low <- c(cm$AccuracyLower, rep(NA, length(terms) - 1))
conf.high <- c(cm$AccuracyUpper, rep(NA, length(terms) - 1))
p.value <- c(
cm$AccuracyPValue, NA, cm$McnemarPValue,
rep(NA, length(terms) - 3)
)
}
df <- tibble(
term = terms,
class = class,
estimate = estimates,
conf.low = conf.low,
conf.high = conf.high,
p.value = p.value
)
} else {
terms <- c(nms_cm)
estimates <- c(cm$Accuracy, cm$Kappa, NA)
conf.low <- c(cm$AccuracyLower, NA, NA)
conf.high <- c(cm$AccuracyUpper, NA, NA)
p.value <- c(cm$AccuracyPValue, NA, cm$McnemarPValue)
df <- tibble(
term = terms,
estimate = estimates,
conf.low = conf.low,
conf.high = conf.high,
p.value = p.value
)
}
as_tidy_tibble(df)
} |
context('GetMonthlyPayments')
test_that("'getURL' errors are handled gracefully", {
set_zillow_web_service_id('ZWSID')
with_mock(
getURL = function(...) {stop('Cryptic getURL error')},
expect_error(GetMonthlyPayments(price = 300000L), "Zillow API call with request '.+' failed with Error in RCurl::getURL\\(request\\): Cryptic getURL error"),
.env = 'RCurl'
)
}) |
approxTime <- function(x, xout, ...) {
if (is.data.frame(x)) {x <- as.matrix(x); wasdf <- TRUE} else wasdf <- FALSE
if (!is.matrix(x)) stop("x must be a matrix or data frame")
m <- ncol(x)
y <- matrix(0, nrow=length(xout), ncol=m)
y[,1] <- xout
for (i in 2:m) {
y[,i] <- as.vector(approx(x[,1], x[,i], xout, ...)$y)
}
if (wasdf) y <- as.data.frame(y)
names(y) <- dimnames(x)[[2]]
y
} |
as.wcmd <- function(x) {
if(!is.list(x))
stop("'x' must be a list")
varcheck(x, c("data", "item1", "ni", "name1"))
if(is.na(pmatch("namel", names(x)))) {
x$namelen <- as.numeric(x$item1) - as.numeric(x$name1)
warning("Missing argument 'namelen' set to item1 - name1 = ",
x$namelen)
}
class(x) <- "wcmd"
return(x)
} |
NUCKpartComposition_RNA<- function(seqs,k=5,ORF=FALSE,reverseORF=TRUE,normalized=TRUE,label=c()) {
if(length(seqs)==1&&file.exists(seqs)){
seqs<-fa.read(seqs,alphabet="rna")
seqs_Lab<-alphabetCheck(seqs,alphabet = "rna",label)
seqs<-seqs_Lab[[1]]
label<-seqs_Lab[[2]]
}
else if(is.vector(seqs)){
seqs<-sapply(seqs,toupper)
seqs_Lab<-alphabetCheck(seqs,alphabet = "rna",label)
seqs<-seqs_Lab[[1]]
label<-seqs_Lab[[2]]
}
else {
stop("ERROR: Input sequence is not in the correct format. It should be a FASTA file or a string vector.")
}
if(ORF==TRUE){
seqs=maxORF_RNA(seqs,reverse=reverseORF)
}
lenSeqs<-sapply(seqs,nchar)
if(k<=0)
{
stop("k should be greater than zero")
}
if(!all(lenSeqs>k))
{
stop("ERROR: k should be smaller than length of sequences")
}
dict<-list("A"=1,"C"=2,"G"=3,"U"=4)
numSeqs<-length(seqs)
featureMatrix<-matrix(0,ncol = (4*k),nrow = numSeqs)
tname<-nameKmer(k=1,type = "rna")
tname<-rep(tname,k)
wname<-rep(1:k,each =4)
coln<-paste(tname,"p",wname,sep = "")
colnames(featureMatrix)<-coln
winSize<-ceiling(lenSeqs/k)
for(n in 1:numSeqs){
seq<-seqs[n]
charSeq<-unlist(strsplit(seq,split = ""))
for(i in 1:k)
{
winSeq<-charSeq[(((i-1)*winSize[n])+1):(i*winSize[n])]
twinSeq<-table(winSeq)
ntwinseq<-names(twinSeq)
for(j in 1:length(twinSeq))
{
colindex<-(i-1)*4+as.numeric(dict[ntwinseq[j]])
featureMatrix[n,colindex]<-twinSeq[j]
}
}
}
if(normalized==TRUE){
featureMatrix[,]<-apply(featureMatrix, 2, function(i) i/winSize)
}
if(length(label)==numSeqs){
featureMatrix<-as.data.frame(featureMatrix)
featureMatrix<-cbind(featureMatrix,label)
}
row.names(featureMatrix)<-names(seqs)
return(featureMatrix)
} |
get_var_info <- function(var_names = NULL, categories = NULL, related_to = NULL, exact = FALSE){
codebook <- csppData::codebook
if(!is.null(var_names) & !is.character(var_names)){
stop("var_names must be a string or character vector.")
}
if(!is.null(categories) & !is.character(categories)){
stop("categories must be a string or character vector.")
}
if(!is.null(related_to) & !is.character(related_to)){
stop("related_to must be a string or character vector.")
}
if(exact == FALSE){
vars <- paste0(var_names, collapse = "|")
cats <- paste0(categories, collapse = "|")
rels <- paste0(related_to, collapse = "|")
data <- codebook %>%
dplyr::filter(stringr::str_detect(.data$variable, vars)) %>%
dplyr::filter(stringr::str_detect(.data$category, cats)) %>%
dplyr::filter_at(.vars = vars(.data$variable, .data$short_desc, .data$long_desc,
.data$category, .data$sources),
.vars_predicate = dplyr::any_vars(stringr::str_detect(., rels)))
if(nrow(data) == 0){
stop("Your request returned no results.")
}
if(nrow(data) > 0){
return(data)
}
}
if(exact == TRUE & !is.null(related_to) & is.null(var_names) & is.null(categories)){
rels <- paste0("\\b",related_to,"\\b", collapse = "|")
data <- data %>%
dplyr::filter_at(.vars = vars(.data$variable, .data$short_desc, .data$long_desc,
.data$category, .data$sources),
.vars_predicate = dplyr::any_vars(grepl(rels, ., ignore.case = T)))
if(nrow(data) == 0){
stop("Your request returned no results.")
}
if(nrow(data) > 0){
return(data)
}
}
if(exact == TRUE & !is.null(var_names) & is.null(categories)){
data <- codebook[codebook$variable %in% var_names, ]
if(!is.null(related_to)){
rels <- paste0("\\b",related_to,"\\b", collapse = "|")
data <- data %>%
dplyr::filter_at(.vars = vars(.data$variable, .data$short_desc, .data$long_desc,
.data$category, .data$sources),
.vars_predicate = dplyr::any_vars(grepl(rels, ., ignore.case = T)))
if(nrow(data) == 0){
stop("Your request returned no results.")
}
if(nrow(data) > 0){
return(data)
}
}
if(nrow(data) == 0){
stop("Your request returned no results.")
}
if(nrow(data) > 0){
return(data)
}
}
if(exact == TRUE & is.null(var_names) & !is.null(categories)){
data <- codebook[codebook$category %in% categories, ]
if(!is.null(related_to)){
rels <- paste0("\\b",related_to,"\\b", collapse = "|")
data <- data %>%
dplyr::filter_at(.vars = vars(.data$variable, .data$short_desc, .data$long_desc,
.data$category, .data$sources),
.vars_predicate = dplyr::any_vars(grepl(rels, ., ignore.case = T)))
if(nrow(data) == 0){
stop("Your request returned no results.")
}
if(nrow(data) > 0){
return(data)
}
}
if(nrow(data) == 0){
stop("Your request returned no results.")
}
if(nrow(data) > 0){
return(data)
}
}
if(exact == TRUE & !is.null(var_names) & !is.null(categories)){
data <- codebook[c(codebook$variable %in% var_names & codebook$category %in% categories), ]
if(!is.null(related_to)){
rels <- paste0("\\b",related_to,"\\b", collapse = "|")
data <- data %>%
dplyr::filter_at(.vars = vars(.data$variable, .data$short_desc, .data$long_desc,
.data$category, .data$sources),
.vars_predicate = dplyr::any_vars(grepl(rels, ., ignore.case = T)))
if(nrow(data) == 0){
stop("Your request returned no results.")
}
if(nrow(data) > 0){
return(data)
}
}
if(nrow(data) == 0){
stop("Your request returned no results.")
}
if(nrow(data) > 0){
return(data)
}
}
} |
ss.aipe.c.ancova <- function(error.var.ancova=NULL, error.var.anova=NULL, rho=NULL, c.weights, width, conf.level=.95,
assurance=NULL, certainty=NULL)
{
if (is.null(error.var.ancova)&is.null(error.var.anova)) stop("Please specify either the ANCOVA error variance, or both the ANOVA error variance and the correlation coefficient")
if(!is.null(assurance)& !is.null(certainty))
{if(assurance!=certainty) stop("'assurance' and 'certainty' must have the same value")}
if(!is.null(certainty)) assurance<- certainty
if(is.null(error.var.ancova))
{if(is.null(error.var.anova)|is.null(rho)) stop("Please specify either the ANCOVA error variance, or both the ANOVA error variance and the correlation coefficient")
error.var<- error.var.anova*(1-rho^2)
}
if(!is.null(error.var.ancova))
{if(!is.null(error.var.anova)|!is.null(rho)) stop("Since you input the ANCOVA error variance, do not input the ANOVA error variance and the correlation coefficient")
error.var<- error.var.ancova
}
if(sum(c.weights)!=0) stop("The sum of the coefficients must be zero")
if(sum(c.weights[c.weights>0])>1) stop("Please use fractions to specify the contrast weights")
alpha <- 1-conf.level
J <- length(c.weights)
sigma <- sqrt(error.var)
n <- (sigma^2 * 4* (qnorm(1-alpha/2))^2* sum(c.weights^2) ) / width^2
tol<- 1e-6
dif<- tol+1
if(is.null(assurance))
{ while (dif > tol)
{n.p <- n
n<- (sigma^2 *4* (qt(1-alpha/2, n*J-J-1))^2 * sum(c.weights^2) ) / width^2
dif <- abs(n-n.p)
}
n<- ceiling(n)
return(n)
}
if(!is.null(assurance))
{ while(dif > tol)
{n.p<-n
n<- ((sigma^2 *4* (qt(1-alpha/2, n*J-J-1))^2 * sum(c.weights^2) ) / width^2) * ( qchisq(assurance, n*J-J-1) / (n*J-J-1) )
dif <- abs(n-n.p)
}
n<- ceiling(n)
return(n)
}
} |
wrapr::apply_left
wrapr::apply_right
wrapr::mk_tmp_name_source
wrapr::map_to_char
wrapr::`%.>%`
wrapr::let
wrapr::qc
wrapr::qe
wrapr::qae
wrapr::build_frame
wrapr::draw_frame
wrapr::qchar_frame
wrapr::`%:=%` |
power.scABEL <- function(alpha=0.05, theta1, theta2, theta0, CV, n,
design=c("2x3x3", "2x2x4", "2x2x3"), regulator,
nsims, details=FALSE, setseed=TRUE)
{
desi <- match.arg(design)
if (missing(regulator)) regulator <- "EMA"
reg <- reg_check(regulator)
if (reg$est_method!="ISC"){
r <- power.scABEL1(alpha, theta1, theta2, theta0, CV, n, design=desi, reg,
nsims, details, setseed)
} else {
r <- power.scABEL2(alpha, theta1, theta2, theta0, CV, n, design=desi, reg,
nsims, details, setseed)
}
r
} |
rRCMT <- function(n, p, p.delta, p.eps, lambda, gamma, mu, sigma, RCMTobj) {
if (missing(n)) {
p <- RCMTobj$p
p.delta <- RCMTobj$p.delta
p.eps <- RCMTobj$p.eps
lambda <- RCMTobj$lambda
gamma <- RCMTobj$gamma
mu <- RCMTobj$mu
sigma <- RCMTobj$sigma
}
x <- 0
y <- as.numeric(n)
if (x==0) {
y[1] <- rET(1, p.delta, gamma)
} else {
z <- rET(1, p.eps, lambda)
alpha <- rlnorm(1, meanlog=mu, sdlog=sigma)
k <- 1+1/alpha
y[1] <- min(z, alpha*x)*k
}
for (i in 2:n) {
if (y[i-1]==0) {
y[i] <- rET(1, p.delta, gamma)
} else {
z <- rET(1, p.eps, lambda)
alpha <- rlnorm(1, meanlog=mu, sdlog=sigma)
k <- 1+1/alpha
y[i] <- min(z, alpha*y[i-1])*k
}
}
y^p
} |
text2color <-
function(words, recode.words, colors) {
nc <- length(colors)
if ((nc -1) != length(recode.words)) {
warning("length of colors should be 1 more than length of recode.words")
}
nomatch <- colors[nc]
colors <- colors[-nc]
nulls <- sapply(recode.words, function(x) identical(x, character(0)))
recode.words[nulls] <- ""
lookup <- lapply(seq_along(recode.words), function(n)
cbind(recode.words[[n]], colors[n]))
lookup <- do.call("rbind.data.frame", lookup)
lookup <- apply(lookup, 2, as.character)
recode <- lookup[match(words, lookup[, 1]), 2]
recode[is.na(recode)] <- nomatch
return(recode)
} |
md_rule <- function(char = c("*", "-", "_"), n = 3, space = FALSE) {
if (n < 3) {
stop("At least 3 characters must be used")
}
char <- match.arg(char)
spaces <- glue::glue_collapse(rep(" ", as.numeric(space)))
if (length(spaces) == 0) {
sep <- ""
} else {
sep <- spaces
}
glue::glue_collapse(rep(char, n), sep = sep)
} |
test_that("modelling works", {
model <- Algorithm.SDM("GLM")
model@name <- paste0("test", "GLM", ".SDM")
model@parameters$data <- "presence-only data set"
model@parameters$metric <- "SES"
data("Occurrences")
data <- data.frame(X = Occurrences$LONGITUDE, Y = Occurrences$LATITUDE)
data$Presence <- 1
model@data <- data
data(Env)
model = PA.select(model, Env, NULL, verbose = FALSE)
model@parameters["PA"] = TRUE
expect_equal(length(which(model@data$Presence == 0)), 1000)
model = data.values(model, Env)
expect_equal(dim(model@data), c(1057, 6))
model = evaluate(model, cv = "holdout", cv.param = c(0.7, 2), thresh = 1001,
metric = "SES", Env)
expect_equal(dim(model@evaluation), c(1, 7))
model = project(model, Env)
expect_equal(all(is.na(values(model@projection))), FALSE)
model = evaluate.axes(model, cv.param = c(0.7, 2), thresh = 1001, metric = "SES",
axes.metric = "Pearson", Env)
expect_equal(dim([email protected]), c(1, 3))
}) |
test_that("plot_partialAPCeffects and plot_marginalAPCeffects", {
testthat::skip_if_not_installed("mgcv")
library(mgcv)
data(drug_deaths)
model <- gam(mortality_rate ~ te(period, age), data = drug_deaths)
drug_deaths$mortality_rate <- drug_deaths$mortality_rate + 1
model_logLink <- bam(mortality_rate ~ te(period, age),
family = Gamma(link = "log"), data = drug_deaths)
gg1 <- plot_partialAPCeffects(model, dat = drug_deaths, variable = "age",
vlines_vec = c(20,70))
gg2 <- plot_partialAPCeffects(model, dat = drug_deaths, variable = "period",
vlines_vec = c(1990,2010))
gg3 <- plot_partialAPCeffects(model, dat = drug_deaths, variable = "cohort",
vlines_vec = c(1950,1970))
gg4 <- plot_partialAPCeffects(model_logLink, dat = drug_deaths, variable = "age")
gg5 <- plot_partialAPCeffects(model_logLink, dat = drug_deaths, variable = "period")
gg6 <- plot_partialAPCeffects(model_logLink, dat = drug_deaths, variable = "cohort")
expect_s3_class(gg1, class = c("gg","ggplot"))
expect_s3_class(gg2, class = c("gg","ggplot"))
expect_s3_class(gg3, class = c("gg","ggplot"))
expect_s3_class(gg4, class = c("gg","ggplot"))
expect_s3_class(gg5, class = c("gg","ggplot"))
expect_s3_class(gg6, class = c("gg","ggplot"))
dat_list <- plot_partialAPCeffects(model, dat = drug_deaths, variable = "cohort",
return_plotData = TRUE)
expect_length(dat_list, 4)
expect_s3_class(dat_list[[2]], "data.frame")
expect_identical(names(dat_list), c("dat_overallEffect","dat_age","dat_period",
"dat_cohort"))
gg7 <- plot_marginalAPCeffects(model, dat = drug_deaths, variable = "age")
gg8 <- plot_marginalAPCeffects(model, dat = drug_deaths, variable = "period")
gg9 <- plot_marginalAPCeffects(model, dat = drug_deaths, variable = "cohort")
expect_s3_class(gg7, class = c("gg","ggplot"))
expect_s3_class(gg8, class = c("gg","ggplot"))
expect_s3_class(gg9, class = c("gg","ggplot"))
dat_list2 <- plot_marginalAPCeffects(model, dat = drug_deaths, variable = "period",
return_plotData = TRUE)
expect_length(dat_list2, 4)
expect_s3_class(dat_list2[[2]], "data.frame")
expect_identical(names(dat_list2), c("dat_overallEffect","dat_age","dat_period",
"dat_cohort"))
})
test_that("plot_jointMarginalAPCeffects", {
testthat::skip_if_not_installed("mgcv")
library(mgcv)
data(drug_deaths)
model1 <- gam(mortality_rate ~ te(period, age), data = drug_deaths)
model2 <- gam(mortality_rate ~ te(period, age) + population, data = drug_deaths)
model_list <- list("Model A" = model1, "Model B" = model2)
gg <- plot_jointMarginalAPCeffects(model_list, dat = drug_deaths,
vlines_list = list("age" = c(20,50),
"cohort" = c(1950,1980)))
expect_s3_class(gg, class = c("gg","ggplot"))
}) |
wilcoxon_rank_sum_test <- function(
data = NULL,
iv_name = NULL,
dv_name = NULL,
sigfigs = 3) {
iv <- dv <- wilcoxon_rank_sum_p_value <- effect_size_r <- NULL
number_of_lvls_in_iv <- length(unique(data[[iv_name]]))
if (number_of_lvls_in_iv < 2) {
stop(paste0(
"There are fewer than 2 levels in the IV: ",
sort(unique(data[[iv_name]]))))
}
dt01 <- setDT(copy(data))[, c(iv_name, dv_name), with = FALSE]
names(dt01) <- c("iv", "dv")
dt01[, iv := factor(iv)]
dt01 <- stats::na.omit(dt01)
group <- sort(unique(dt01$iv))
dt02 <- data.table(t(utils::combn(group, 2)))
names(dt02) <- c("group_1", "group_2")
group_1_median <-
vapply(dt02[["group_1"]], function(i) {
stats::median(dt01[iv == i]$dv, na.rm = TRUE)},
FUN.VALUE = numeric(1L))
group_2_median <-
vapply(dt02[["group_2"]], function(i) {
stats::median(dt01[iv == i]$dv, na.rm = TRUE)},
FUN.VALUE = numeric(1L))
wilcoxon_results <- lapply(seq_len(nrow(dt02)), function(i) {
results_for_1_pair <- stats::wilcox.test(
formula = dv ~ iv,
data = dt01[iv %in% dt02[i, ]],
paired = FALSE)
wilcoxon_rank_sum_p_value <- results_for_1_pair[["p.value"]]
w_stat <- results_for_1_pair[["statistic"]]
z_for_effect_size_r <- stats::qnorm(wilcoxon_rank_sum_p_value / 2)
n_for_pairwise_comparison <- nrow(dt01[iv %in% dt02[i, ]])
effect_size_r <- z_for_effect_size_r /
sqrt(n_for_pairwise_comparison)
output <- c(wilcoxon_rank_sum_p_value, w_stat, effect_size_r)
names(output) <- c(
"wilcoxon_rank_sum_p_value", "w_stat", "effect_size_r")
return(output)})
wilcoxon_results_dt <- as.data.table(
do.call(rbind, wilcoxon_results))
bonferroni_signif_for_wilcoxon_test <- ifelse(
wilcoxon_results_dt[, wilcoxon_rank_sum_p_value] < (.05 / nrow(dt02)),
"Yes", "No")
output <- data.table(
dt02,
group_1_median,
group_2_median,
wilcoxon_results_dt)
output[, wilcoxon_rank_sum_p_value :=
kim::pretty_round_p_value(wilcoxon_rank_sum_p_value)]
output[, effect_size_r := kim::round_flexibly(effect_size_r, sigfigs)]
return(output)
} |
context("Compile")
test_that("Categorical versus Numerical generates a table",
{
test_table <- tangram(drug ~ bili, pbc, "test")
expect_true(inherits(test_table, "tangram"))
})
test_that("Categorical versus a function of Numerical generates a table",
{
test_table <- tangram(drug ~ log(bili), pbc, "test")
expect_true(inherits(test_table, "tangram"))
})
test_that("Categorical versus a Categorical generates a table",
{
test_table <- tangram(drug ~ sex, pbc, "test")
expect_true(inherits(test_table, "tangram"))
})
test_that("Categorical versus a Categorical of coerced type generates a table",
{
test_table <- tangram(drug ~ stage::Categorical, pbc, "test")
expect_true(inherits(test_table, "tangram"))
})
test_that("A multiterm expression generates a table",
{
test_table <- tangram(drug ~ bili + albumin + stage::Categorical + protime + sex + age + spiders, pbc, "test")
expect_true(inherits(test_table, "tangram"))
})
test_that("A Numerical versus a Numerical generates a table",
{
test_table <- tangram(age ~ albumin, pbc, "test")
expect_true(inherits(test_table, "tangram"))
})
test_that("Intercept handling works",
{
d1 <- iris
d1$A <- d1$Sepal.Length > 5.1
attr(d1$A,"label") <- "Sepal Length > 5.1"
tbl1 <- tangram(Species + 1 ~ A + Sepal.Width,data = d1, "test")
expect_true(inherits(tbl1, "tangram"))
})
test_that("trailing spaces in a formula work",
{
tbl1 <- tangram("drug ~ bili ", pbc, "test")
expect_true(inherits(tbl1, "tangram"))
})
test_that("data.frame with names having spaces renders",
{
df <- data.frame("Given Name" = c("John", "Jacob"),
"Sur Name" = c("Jingleheimer", "Smith"),
check.names=FALSE)
tbl1 <- tangram(df, as.character=TRUE, id="tbl1")
expect_true(nchar(summary(tbl1)) > 0)
})
test_that("2 contingency table is correctly rendered",
{
x <- with(warpbreaks, table(wool)) %>% tangram(id="tbl1")
expect_true(length(x) == 2)
expect_true(length(x[[1]]) == 2)
})
test_that("2x3 contingency table is correctly rendered",
{
x <- with(warpbreaks, table(wool, tension)) %>% tangram(id="tbl1")
expect_true(length(x) == 3)
expect_true(length(x[[1]]) == 4)
})
test_that("2x2X6 contingency table is correctly rendered",
{
x <- tangram(UCBAdmissions, id="tbl1", style="nejm")
expect_true(length(x) == 5)
expect_true(length(x[[1]]) == 8)
})
test_that("handles columns with spaces",
{
df <- data.frame(z=1:3, x=4:6)
names(df) <- c("foo bar", "x")
tbl1 <- tangram(x ~ `foo bar`, df)
expect_true(inherits(tbl1, "tangram"))
}) |
tokens_ngrams <- function(x, n = 2L, skip = 0L, concatenator = "_") {
UseMethod("tokens_ngrams")
}
tokens_ngrams.default <- function(x, n = 2L, skip = 0L, concatenator = "_") {
check_class(class(x), "tokens_ngrams")
}
tokens_ngrams.character <- function(x, n = 2L, skip = 0L, concatenator = "_") {
if (is.na(x[1]) && length(x) == 1) return(NULL)
if (any(stringi::stri_detect_charclass(x, "\\p{Z}")) & concatenator != " ")
warning("whitespace detected: you may need to run tokens() first")
if (length(x) < min(n)) return(NULL)
if (identical(as.integer(n), 1L)) {
if (!identical(as.integer(skip), 0L))
warning("skip argument ignored for n = 1")
return(x)
}
tokens_ngrams(as.tokens(list(x)), n = n, skip = skip, concatenator = concatenator)[[1]]
}
char_ngrams <- function(x, n = 2L, skip = 0L, concatenator = "_") {
UseMethod("char_ngrams")
}
char_ngrams.default <- function(x, n = 2L, skip = 0L, concatenator = "_") {
check_class(class(x), "char_ngrams")
}
char_ngrams.character <- function(x, n = 2L, skip = 0L, concatenator = "_") {
as.character(tokens_ngrams(x, n, skip, concatenator))
}
tokens_ngrams.tokens <- function(x, n = 2L, skip = 0L, concatenator = "_") {
x <- as.tokens(x)
n <- check_integer(n, min = 1, max_len = Inf)
skip <- check_integer(skip, min_len = 1, max_len = Inf, min = 0)
concatenator <- check_character(concatenator)
attrs <- attributes(x)
if (identical(n, 1L) && identical(skip, 0L))
return(x)
result <- qatd_cpp_tokens_ngrams(x, types(x), concatenator, n, skip)
field_object(attrs, "ngram") <- n
field_object(attrs, "skip") <- skip
field_object(attrs, "concatenator") <- concatenator
rebuild_tokens(result, attrs)
}
tokens_skipgrams <- function(x, n, skip, concatenator = "_") {
UseMethod("tokens_skipgrams")
}
tokens_skipgrams.default <- function(x, n, skip, concatenator = "_") {
check_class(class(x), "tokens_skipgrams")
}
tokens_skipgrams.tokens <- function(x, n, skip, concatenator = "_") {
tokens_ngrams(x, n = n, skip = skip, concatenator = concatenator)
} |
library(dplyr)
df <- head(ggplot2::diamonds, 20)
df
df <- df %>%
mutate_if(is.character, as.factor)
df
classes <- map_chr(df, ~ class(.x)[[1]])
df <- df %>%
mutate_if(is.factor, as.numeric)
dfl <- df %>%
purrr::transpose() %>%
purrr::map(unname) %>%
purrr::map(unlist) %>%
purrr::map(~ list(data = .x))
dfl
highchart() %>%
hc_chart(
type = "line",
parallelCoordinates = TRUE,
parallelAxes = list(lineWidth = 2)
) %>%
hc_plotOptions(
series = list(
animation = FALSE,
marker= list(
enabled = FALSE,
states = list(
hover = list(
enabled = FALSE
)
)
),
states= list(
hover= list(
halo= list(
size = 0
)
)
),
events= list(mouseOver = JS("function () { this.group.toFront(); }"))
)
) %>%
hc_add_series_list(dfl) |
poissonize <- function(data, interval.width = 365.25/4,
factors = NULL, compress = TRUE) {
person.breaks <- Vectorize(function(stopT)
unique(c(seq(0, stopT, by = interval.width), stopT)))
the.breaks <- person.breaks(data$time)
startT <- lapply(the.breaks, function(x) x[-length(x)])
stopT <- lapply(the.breaks, function(x) x[-1])
count.per.id <- sapply(startT, length)
index <- tapply(data$id, data$id, length)
index <- cumsum(index)
event <- rep(0, sum(count.per.id))
event[cumsum(count.per.id)] <- data$status[index]
expData <- cbind(
data.frame(id = rep(data$id[index], count.per.id),
startT = unlist(startT),
stopT = unlist(stopT),
event = event),
data[sapply(rep(data$id[index], count.per.id),
function(x) which(data$id==x)), factors, drop=FALSE])
expData$time <- expData$stopT - expData$startT
expData$interval <- factor(expData$start)
expData <- subset(expData, select=-c(startT, stopT))
expData$time <- expData$time
if (compress) {
m <- aggregate(x = expData$event,
by = expData[, c('interval', factors), drop=FALSE],
sum)
colnames(m)[ncol(m)] <- 'm'
Rt <- aggregate(x = expData$time,
by = expData[, c('interval', factors), drop=FALSE],
sum)
colnames(Rt)[ncol(Rt)] <- 'Rt'
N <- aggregate(x = expData$event,
by = expData[, c('interval', factors), drop=FALSE],
function(x) sum(!is.na(x)))
colnames(N)[ncol(N)] <- 'N'
expData <- base::merge(m, base::merge(Rt, N))
}
attr(expData, 'interval.width') <- interval.width
return(expData)
} |
split.ped <- function(ped, mem = new.env())
{
key <- digest(list("split.ped",ped))
if(exists(key, envir = mem)) return(list(result= get(key, envir = mem), mem = mem))
n.vec <- which(nb.enfants(ped) > 0 & ped$st[,"pere"] != 0);
ped$st <- ped$st[, c('id', 'pere', 'mere', 'sexe') ]
id.pivots <- matrix(ncol=length(n.vec), nrow=2)
n.pivots <- matrix(ncol=length(n.vec), nrow=2)
new.id <- max(ped$st[,"id"])
new.n <- dim(ped$st)[1]
for(i in seq_along(n.vec))
{
n <- n.vec[i]
new.n <- new.n + 1;
new.id <- new.id + 1
id.pivots[1,i] <- ped$st[n,"id"]
id.pivots[2,i] <- new.id
n.pivots[1,i] <- n;
n.pivots[2,i] <- new.n;
ped$st <- rbind(ped$st, ped$st[n,]);
ped$st[new.n,"id"] <- new.id
ped$st[new.n,"pere"] <- ped$st[n,"pere"]
ped$st[new.n,"mere"] <- ped$st[n,"mere"]
ped$st[n,"pere"] <- ped$st[n,"mere"] <- 0
ped$geno <- c(ped$geno, ped$geno[n])
ped$pheno <- c(ped$pheno, ped$pheno[n])
}
w <- rep(TRUE, new.n)
f2G <- list();
while(any(w))
{
b <- min( ped$st[ w , "id"] )
L <- 0;
while(length(b) != L)
{
L <- length(b);
w.b <- is.element(ped$st[,"id"],b)
b <- union(b, ped$st[w.b,"pere"])
b <- union(b, ped$st[w.b,"mere"])
b <- setdiff(b, 0)
b <- union(b, ped$st[ is.element(ped$st[,"pere"], b) | is.element(ped$st[,"mere"], b) , "id"]);
}
f2G <- c(f2G, list(w.b))
w <- w & (!w.b);
}
x <- as.vector(id.pivots)
f2G.pivots <- vector('list', length(f2G))
for(i in seq_along(f2G)) f2G.pivots[[i]] <- x[is.element(x, ped$st[f2G[[i]],"id"])]
r <- list(ped = ped, id.pivots = id.pivots, n.pivots = n.pivots, f2G = f2G, f2G.pivots=f2G.pivots)
mem.sv(key, r, mem)
return( list(result=r, mem=mem));
}
Elston.on.splitted <- function(splitted, modele, theta, mem=new.env())
{
key <- digest(list("bidouille",splitted, modele, theta))
if(exists(key, envir = mem)) return(list(result= get(key, envir = mem), mem = mem))
if(dim(splitted$n.pivots)[2] == 0)
{
P <- 1;
for(i in seq_along(splitted$f2G))
{
w <- splitted$f2G[[i]]
ped <- list( st = splitted$ped$st[w,,drop=FALSE], geno=splitted$ped$geno[w], pheno=splitted$ped$pheno[w] )
lik.2g <- Likelihood.2g(ped,modele,theta,mem)
P <- P*lik.2g$result;
mem <- lik.2g$mem;
}
mem.sv(key, P, mem);
return( list(result=P, mem=mem) );
}
Re <- extract.pivot(splitted, mem);
extract <- Re$result;
mem <- Re$mem;
S <- 0;
for(a in extract$geno.piv)
{
numerateur <- modele$proba.g(a,theta)*modele$p.pheno(extract$pheno.piv,a,theta)
if(all(numerateur == 0))
next;
numerateur[ numerateur == 0 ] <- 1;
extract$splitted$ped$geno[extract$n.piv] <- a
Re <- Recall(extract$splitted, modele, theta, mem)
P <- Re$result
mem <- Re$mem
for(i in seq_along(extract$F2G))
{
f2g <- extract$F2G[[i]]$ped
n.piv.f2g <- extract$F2G[[i]]$n.piv
f2g$geno[n.piv.f2g] <- a
lik.2g <- Likelihood.2g(f2g,modele,theta,mem)
P <- P*lik.2g$result;
mem <- lik.2g$mem;
}
S <- S + P/numerateur
}
mem.sv(key, S, mem);
return( list(result=S, mem=mem) );
}
extract.pivot <- function(splitted, mem = new.env())
{
key <- digest(list("extract.pivot",splitted))
if(exists(key, envir = mem)) return(list(result= get(key, envir = mem), mem = mem))
k <- 1
n.piv.1 <- splitted$n.pivots[1,k]
n.piv.2 <- splitted$n.pivots[2,k]
id.piv.1 <- splitted$id.pivots[1,k]
id.piv.2 <- splitted$id.pivots[2,k]
ph <- splitted$ped$pheno[[n.piv.1]];
g <- splitted$ped$geno[[ n.piv.1 ]]
splitted$n.pivots <- splitted$n.pivots[,-k,drop=FALSE]
splitted$id.pivots <- splitted$id.pivots[,-k,drop=FALSE]
F2G <- list()
w.fix <- rep(FALSE, length(splitted$f2G))
w <- rep(FALSE, dim(splitted$ped$st)[1])
for(i in seq_along(splitted$f2G))
{
a <- splitted$f2G.pivots[[i]]
splitted$f2G.pivots[[i]] <- a[ a != id.piv.1 & a != id.piv.2 ];
if( length( splitted$f2G.pivots[[i]] ) == 0 )
{
w.fix[i] <- TRUE
w <- w | splitted$f2G[[i]];
ped <- list(st = splitted$ped$st[splitted$f2G[[i]],,drop=FALSE],
pheno = splitted$ped$pheno[splitted$f2G[[i]]], geno=splitted$ped$geno[splitted$f2G[[i]]] )
n.piv <- which( ped$st[,"id"] == id.piv.1 | ped$st[,"id"] == id.piv.2 )
F2G <- c( F2G, list(list(ped=ped, n.piv=n.piv) ))
}
}
if(any(w))
{
splitted$ped <- list( st = splitted$ped$st[!w,,drop=FALSE] , geno = splitted$ped$geno[!w], pheno = splitted$ped$pheno[!w] )
splitted$f2G <- splitted$f2G[!w.fix];
for(i in seq_along(splitted$f2G))
splitted$f2G[[i]] <- splitted$f2G[[i]][!w]
splitted$f2G.pivots <- splitted$f2G.pivots[!w.fix];
splitted$n.pivots <- matrix(sapply( splitted$id.pivots, function(i) which(splitted$ped$st[,"id"]==i) ), nrow=2)
}
n.piv = which( is.element(splitted$ped$st[,"id"], c(id.piv.1, id.piv.2)))
r <- list(n.piv = n.piv , pheno.piv = ph, geno.piv = g, splitted = splitted, F2G = F2G)
mem.sv(key, r, mem);
return(list(result=r, mem=mem))
}
Elston <- function(ped, modele, theta, mem = new.env())
{
if(class(ped) != "es.pedigree")
stop("Argument ped is not of class es.pedigree")
Re <- split.ped(ped, mem)
Elston.on.splitted( Re$result, modele, theta, Re$mem)
} |
cdm_attach_exported_function <- function(pack, fun)
{
CDM_require_namespace(pkg=pack)
fn <- paste0(pack, paste0(rep(":",2), collapse=""), fun)
fn <- eval(parse(text=fn))
return(fn)
} |
library(dbscan)
cl <- dbscan(iris[,-5], eps = .5, minPts = 5)
plot(iris[,-5], col = cl$cluster) |
context('plm0')
test_that("plm0 can handle different inputs", {
expect_error(plm0(Q~W,c(1,2,3)))
expect_error(plm0('Q~W',krokfors))
expect_error(plm0(V~W,krokfors))
expect_error(plm0(Q~W+X,krokfors))
expect_error(plm0(Q~W,krokfors,c_param=min(krokfors$W)+0.5))
expect_error(plm0(Q~W,krokfors,c_param=1L))
expect_error(plm0(Q~W,krokfors,h_max=max(krokfors$W)-0.5))
skip_on_cran()
krokfors_new_names <- krokfors
names(krokfors_new_names) <- c('t1','t2')
set.seed(1)
plm0.fit_new_names <- plm0(t2~t1,krokfors_new_names,num_cores=2)
expect_equal(plm0.fit_new_names$rating_curve,plm0.fit$rating_curve)
})
test_that("the plm0 object with unknown c is in tact", {
expect_is(plm0.fit,"plm0")
test_stage_indep_param(plm0.fit,'a')
test_stage_indep_param(plm0.fit,'b')
test_stage_indep_param(plm0.fit,'c')
test_stage_indep_param(plm0.fit,'sigma_eps')
expect_true(is.double(plm0.fit$Deviance_posterior))
expect_equal(length(plm0.fit$Deviance_posterior),plm0.fit$run_info$num_chains*((plm0.fit$run_info$nr_iter-plm0.fit$run_info$burnin)/plm0.fit$run_info$thin + 1))
expect_equal(unname(unlist(plm0.fit$Deviance_summary[1,])),unname(quantile(plm0.fit$Deviance_posterior,probs=c(0.025,0.5,0.975))))
test_stage_dep_component(plm0.fit,'rating_curve')
test_stage_dep_component(plm0.fit,'rating_curve_mean')
expect_equal(plm0.fit$formula,Q~W)
expect_equal(plm0.fit$data,krokfors[order(krokfors$W),c('Q','W')])
})
test_that("the plm0 object with known c with a maximum stage value is in tact", {
skip_on_cran()
set.seed(1)
plm0.fit_known_c <- plm0(Q~W,krokfors,c_param=known_c,h_max=h_extrap,num_cores=2)
expect_is(plm0.fit_known_c,"plm0")
test_stage_indep_param(plm0.fit_known_c,'a')
test_stage_indep_param(plm0.fit_known_c,'b')
expect_true(is.null(plm0.fit_known_c[['c_posterior']]))
expect_false('c' %in% row.names(plm0.fit_known_c))
test_stage_indep_param(plm0.fit_known_c,'sigma_eps')
expect_true(is.double(plm0.fit_known_c$Deviance_posterior))
expect_equal(length(plm0.fit_known_c$Deviance_posterior),plm0.fit_known_c$run_info$num_chains*((plm0.fit_known_c$run_info$nr_iter-plm0.fit_known_c$run_info$burnin)/plm0.fit_known_c$run_info$thin + 1))
expect_equal(unname(unlist(plm0.fit_known_c$Deviance_summary[1,])),unname(quantile(plm0.fit_known_c$Deviance_posterior,probs=c(0.025,0.5,0.975))))
test_stage_dep_component(plm0.fit_known_c,'rating_curve')
test_stage_dep_component(plm0.fit_known_c,'rating_curve_mean')
expect_equal(max(plm0.fit_known_c$rating_curve$h),h_extrap)
expect_true(max(diff(plm0.fit_known_c$rating_curve$h))<=(0.05+1e-9))
})
test_that("plm0 output remains unchanged", {
skip_on_cran()
skip_on_ci()
skip_on_covr()
expect_equal_to_reference(plm0.fit,file='../cached_results/plm0.fit.rds',update=TRUE)
}) |
CreateInitializeMatrix <-
function(InitialData,WhichCat,empty=FALSE){
N=names(InitialData)
InitMat=matrix(rep(0,length(N)*length(N)),nrow=length(N))
InitDatF=data.frame(InitMat)
names(InitDatF)=N
row.names(InitDatF)=N
if(empty==TRUE){
return(InitDatF)
}else{
InitMat[upper.tri(InitMat)]=1
InitMat[WhichCat!=1,]=0
InitDatF=data.frame(InitMat)
names(InitDatF)=N
row.names(InitDatF)=N
return(InitDatF)
}
} |
data(iris)
data(audit)
test_that("ClusteringModel/stats kmeans pmml() output contains MiningSchema, Output, ClusteringField, and Cluster nodes", {
library(clue)
fit <- kmeans(iris[, 1:4], 3)
pmml_fit <- pmml(fit)
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "ComparisonMeasure", "ClusteringField", "ClusteringField", "ClusteringField", "ClusteringField", "Cluster", "Cluster", "Cluster"))
})
test_that("GeneralRegressionModel/glmnet pmml() output contains Extension, MiningSchema, Output, ParameterList, CovariateList, PPMatrix, and ParamMatrix nodes", {
library(glmnet)
x <- data.matrix(iris[1:4])
y <- data.matrix(iris[5])
fit <- cv.glmnet(x, y)
pmml_fit <- pmml(fit)
expect_named(names(pmml_fit[[3]]), c("Extension", "MiningSchema", "Output", "ParameterList", "CovariateList", "PPMatrix", "ParamMatrix"))
})
test_that("GeneralRegressionModel/stats pmml() output contains MiningSchema, Output, ParameterList, FactorList, CovariateList, PPMatrix, and ParamMatrix nodes", {
suppressWarnings(fit <- glm(as.factor(Adjusted) ~ Age + Employment + Education + Marital + Occupation + Income + Sex + Deductions + Hours,
family = binomial(link = logit), audit
))
pmml_fit <- pmml(fit)
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "ParameterList", "FactorList", "CovariateList", "PPMatrix", "ParamMatrix"))
})
test_that("MiningModel/randomForest pmml() output contains MiningSchema, Output, and Segmentation nodes", {
library(randomForest)
fit <- randomForest(Species ~ ., data = iris, ntree = 3)
a <- capture.output(pmml_fit <- pmml(fit))
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "Segmentation"))
})
test_that("NaiveBayesModel/e1071 pmml() output contains MiningSchema, Output, BayesInputs, and BayesOutput nodes", {
library(e1071)
fit <- naiveBayes(as.factor(Adjusted) ~ Employment + Education + Marital + Occupation + Sex, data = audit)
pmml_fit <- pmml(fit, predicted_field = "Adjusted")
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "BayesInputs", "BayesOutput"))
})
test_that("NeuralNetwork/nnet pmml() output contains MiningSchema, Output, NeuralInputs, NeuralLayer, and NeuralOutputs nodes", {
library(nnet)
fit <- nnet(Species ~ ., data = iris, size = 4, trace = F)
pmml_fit <- pmml(fit)
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "NeuralInputs", "NeuralLayer", "NeuralLayer", "NeuralOutputs"))
})
test_that("RegressionModel/stats pmml() output contains MiningSchema, Output, and RegressionTable nodes", {
fit <- lm(Sepal.Length ~ ., data = iris)
pmml_fit <- pmml(fit)
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "RegressionTable"))
})
test_that("RegressionModel/nnet pmml() output contains MiningSchema, Output, and RegressionTable nodes", {
library(nnet)
fit <- multinom(Species ~ ., data = iris, trace = F)
pmml_fit <- pmml(fit)
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "RegressionTable", "RegressionTable", "RegressionTable"))
})
test_that("SupportVectorMachineModel/e1071 pmml() output contains MiningSchema, Output, LocalTransformations, RadialBasisKernelType, VectorDictionary, and SupportVectorMachine nodes", {
library(e1071)
fit <- svm(Species ~ ., data = iris)
pmml_fit <- pmml(fit)
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "LocalTransformations", "RadialBasisKernelType", "VectorDictionary", "SupportVectorMachine", "SupportVectorMachine", "SupportVectorMachine"))
})
test_that("SupportVectorMachineModel/kernlab pmml() output contains MiningSchema, Output, LocalTransformations, RadialBasisKernelType, VectorDictionary, and SupportVectorMachine nodes", {
library(kernlab)
a <- capture.output(fit <- ksvm(Species ~ ., data = iris, kernel = "rbfdot"))
pmml_fit <- pmml(fit, data = iris)
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "LocalTransformations", "RadialBasisKernelType", "VectorDictionary", "SupportVectorMachine", "SupportVectorMachine", "SupportVectorMachine"))
})
test_that("Transformations pmml() output contains MiningSchema, Output, LocalTransformations, and RegressionTable nodes", {
dataBox <- xform_wrap(iris)
dataBox <- xform_min_max(dataBox, "1")
dataBox <- xform_z_score(dataBox, "1", map_missing_to = 999)
dataBox <- xform_norm_discrete(dataBox, input_var = "Species")
dataBox <- xform_function(dataBox, orig_field_name = "Sepal.Width", new_field_name = "a_derived_field", expression = "sqrt(Sepal.Width^2 - 3)")
fit <- lm(Petal.Width ~ ., data = dataBox$data)
pmml_fit <- pmml(fit, transform = dataBox)
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "LocalTransformations", "RegressionTable"))
})
test_that("Rpart pmml() output contains MiningSchema, Output, and Node nodes", {
library(rpart)
fit <- rpart(Species ~ ., data = iris)
pmml_fit <- pmml(fit)
expect_named(names(pmml_fit[[3]]), c("MiningSchema", "Output", "Node"))
}) |
library(hamcrest)
Conj.foo <- function(...) 41
Complex.bar <- function(...) 45
test.Conj.1 <- function() assertThat(Conj(NULL), throwsError())
test.Conj.2 <- function() assertThat(Conj(logical(0)), identicalTo(numeric(0)))
test.Conj.3 <- function() assertThat(Conj(c(TRUE, TRUE, FALSE, FALSE, TRUE)), identicalTo(c(1, 1, 0, 0, 1)))
test.Conj.4 <- function() assertThat(Conj(structure(c(TRUE, FALSE), .Names = c("a", ""))), identicalTo(structure(c(1, 0), .Names = c("a", ""))))
test.Conj.5 <- function() assertThat(Conj(c(TRUE, FALSE, NA)), identicalTo(c(1, 0, NA)))
test.Conj.6 <- function() assertThat(Conj(integer(0)), identicalTo(numeric(0)))
test.Conj.7 <- function() assertThat(Conj(structure(integer(0), .Names = character(0))), identicalTo(structure(numeric(0), .Names = character(0))))
test.Conj.8 <- function() assertThat(Conj(1:3), identicalTo(c(1, 2, 3)))
test.Conj.9 <- function() assertThat(Conj(c(1L, NA, 4L, NA, 999L)), identicalTo(c(1, NA, 4, NA, 999)))
test.Conj.10 <- function() assertThat(Conj(c(1L, 2L, 1073741824L, 1073741824L)), identicalTo(c(1, 2, 1073741824, 1073741824), tol = 0.000100))
test.Conj.11 <- function() assertThat(Conj(numeric(0)), identicalTo(numeric(0)))
test.Conj.12 <- function() assertThat(Conj(NaN), identicalTo(NaN))
test.Conj.13 <- function() assertThat(Conj(NA_real_), identicalTo(NA_real_))
test.Conj.14 <- function() assertThat(Conj(1), identicalTo(1))
test.Conj.15 <- function() assertThat(Conj(1.5), identicalTo(1.5, tol = 0.000100))
test.Conj.16 <- function() assertThat(Conj(-1.5), identicalTo(-1.5, tol = 0.000100))
test.Conj.17 <- function() assertThat(Conj(3.14), identicalTo(3.14, tol = 0.000100))
test.Conj.18 <- function() assertThat(Conj(Inf), identicalTo(Inf))
test.Conj.19 <- function() assertThat(Conj(-Inf), identicalTo(-Inf))
test.Conj.20 <- function() assertThat(Conj(complex(0)), identicalTo(complex(0)))
test.Conj.21 <- function() assertThat(Conj(structure(complex(0), .Names = character(0))), identicalTo(structure(complex(0), .Names = character(0))))
test.Conj.22 <- function() assertThat(Conj(complex(real=NaN, imaginary=3)), identicalTo(complex(real=NaN, imaginary=-3)))
test.Conj.23 <- function() assertThat(Conj(NA_complex_), identicalTo(NA_complex_))
test.Conj.24 <- function() assertThat(Conj(1.5+3i), identicalTo(1.5-3i))
test.Conj.25 <- function() assertThat(Conj(1.5-3i), identicalTo(1.5+3i))
test.Conj.26 <- function() assertThat(Conj(-1.5+3i), identicalTo(-1.5-3i))
test.Conj.27 <- function() assertThat(Conj(1.5-3i), identicalTo(1.5+3i))
test.Conj.28 <- function() assertThat(Conj(structure(c(3+4i, 9+2i), .Names = c("a", "b"))), identicalTo(structure(c(3-4i, 9-2i), .Names = c("a", "b"))))
test.Conj.29 <- function() assertThat(Conj(structure(5+9i, rando.attr = "bazinga", class = "zarg")), identicalTo(structure(5-9i, rando.attr = "bazinga", class = "zarg")))
test.Conj.30 <- function() assertThat(Conj(character(0)), throwsError())
test.Conj.31 <- function() assertThat(Conj(c("4.1", "blahh", "99.9", "-413", NA)), throwsError())
test.Conj.32 <- function() assertThat(Conj(list(1)), throwsError())
test.Conj.33 <- function() assertThat(Conj(structure(1:12, .Dim = 3:4)), identicalTo(structure(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), .Dim = 3:4)))
test.Conj.34 <- function() assertThat(Conj(structure(1:12, .Dim = 3:4, .Dimnames = structure(list(x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y")))), identicalTo(structure(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), .Dim = 3:4, .Dimnames = structure(list( x = c("a", "b", "c"), y = c("d", "e", "f", "g")), .Names = c("x", "y")))))
test.Conj.35 <- function() assertThat(Conj(structure(1:3, rando.attrib = 941L)), identicalTo(structure(c(1, 2, 3), rando.attrib = 941L)))
test.Conj.36 <- function() assertThat(Conj(structure(c(1+4.5i, 2+4.5i, 3+4.5i), .Dim = 3L, .Dimnames = list( c("a", "b", "c")))), identicalTo(structure(c(1-4.5i, 2-4.5i, 3-4.5i), .Dim = 3L, .Dimnames = list( c("a", "b", "c")))))
test.Conj.37 <- function() assertThat(Conj(structure(list("foo"), class = "foo")), identicalTo(41))
test.Conj.38 <- function() assertThat(Conj(structure(list("bar"), class = "foo")), identicalTo(41))
test.Conj.39 <- function() assertThat(Conj(structure("foo", class = "foo")), identicalTo(41))
test.Conj.40 <- function() assertThat(Conj(structure(list(1L, "bar"), class = "bar")), identicalTo(45)) |
paletteIFC <- function(x = c("","palette","palette_R","to_light","to_dark")[1], col = "White") {
assert(x, len = 1, alw = c("","palette","palette_R","to_light","to_dark"))
Software_Colors=data.frame(matrix(c("White","LightSkyBlue","CornflowerBlue","MediumSlateBlue","Blue","Aquamarine","MediumSpringGreen","Cyan","DarkTurquoise",
"Teal","Yellow","Gold","DarkKhaki","Lime","Green","Lime","Wheat","SandyBrown","Orange",
"Tomato","Red","Pink","HotPink","Plum","Magenta","DarkOrchid","LightCoral","IndianRed",
"LightGray","Control","Gray","Black",
"Black","CornflowerBlue","CornflowerBlue","MediumSlateBlue","Blue","Aquamarine","MediumSpringGreen","Teal","DarkTurquoise",
"Teal","Gold","Gold","IndianRed","Green","Green", "Lime","DarkOrange","Tomato","DarkOrange",
"Tomato","Red","DeepPink","DeepPink","DarkOrchid","Magenta","DarkOrchid","IndianRed","IndianRed",
"Black","Control","Gray","White"), ncol=2, byrow = FALSE), stringsAsFactors = FALSE)
names(Software_Colors) = c("color", "lightModeColor")
Software_Colors$color_R = gsub("^Teal$","Cyan4", Software_Colors$color)
Software_Colors$color_R = gsub("^Green$","Green4", Software_Colors$color_R)
Software_Colors$color_R = gsub("^Control$","Gray81", Software_Colors$color_R)
Software_Colors$color_R = gsub("^Lime$","Chartreuse", Software_Colors$color_R)
Software_Colors$lightModeColor_R = gsub("^Teal$","Cyan4", Software_Colors$lightModeColor)
Software_Colors$lightModeColor_R = gsub("^Green$","Green4", Software_Colors$lightModeColor_R)
Software_Colors$lightModeColor_R = gsub("^Control$","Gray81", Software_Colors$lightModeColor_R)
Software_Colors$lightModeColor_R = gsub("^Lime$","Chartreuse", Software_Colors$lightModeColor_R)
if(x == "palette") return(as.character(unique(c(Software_Colors[,1], Software_Colors[,2]))))
if(x == "palette_R") return(tolower(as.character(unique(c(Software_Colors[,3], Software_Colors[,4])))))
columns = c(0,0)
M = FALSE
if(x == "to_light") { columns = c(1,3,2,4) }
if(x == "to_dark") { columns = c(2,4,1,3) }
if(!identical(columns,c(0,0))) M = Software_Colors[,columns[1]]==col | Software_Colors[,columns[2]]==col
if(any(M)) return(Software_Colors[which(M), columns[3:4]])
return(Software_Colors)
} |
"hspider" <-
structure(list(WaterCon = c(2.3321, 3.0493, 2.5572, 2.6741, 3.0155,
3.381, 3.1781, 2.6247, 2.4849, 2.1972, 2.2192, 2.2925, 3.5175,
3.0865, 3.2696, 3.0301, 3.3322, 3.1224, 2.9232, 3.1091, 2.9755,
1.2528, 1.1939, 1.6487, 1.8245, 0.9933, 0.9555, 0.9555), BareSand = c(0,
0, 0, 0, 0, 2.3979, 0, 0, 0, 3.9318, 0, 0, 1.7918, 0, 0, 0, 0,
0, 0, 0, 0, 3.2581, 3.0445, 3.2581, 3.5835, 4.5109, 2.3979, 3.434
), FallTwig = c(0, 1.7918, 0, 0, 0, 3.434, 0, 4.2627, 0, 0, 0,
0, 1.7918, 0, 4.3944, 4.6052, 4.4543, 4.3944, 4.5109, 4.5951,
4.5643, 0, 0, 0, 0, 0, 0, 0), CoveMoss = c(3.0445, 1.0986, 2.3979,
2.3979, 0, 2.3979, 0.6931, 1.0986, 4.3307, 3.434, 4.1109, 3.8286,
0.6931, 1.7918, 0.6931, 0.6931, 0.6931, 0, 1.6094, 0.6931, 0.6931,
4.3307, 4.0254, 4.0254, 1.0986, 1.7918, 3.8286, 3.7136), CoveHerb = c(4.4543,
4.5643, 4.6052, 4.6151, 4.6151, 3.434, 4.6151, 3.434, 3.2581,
3.0445, 3.7136, 4.0254, 4.5109, 4.5643, 3.0445, 0.6931, 3.0445,
3.0445, 1.6094, 0.6931, 1.7918, 0.6931, 3.2581, 3.0445, 4.1109,
1.7918, 3.434, 3.434), ReflLux = c(3.912, 1.6094, 3.6889, 2.9957,
2.3026, 0.6931, 2.3026, 0.6931, 3.4012, 3.6889, 3.6889, 3.6889,
3.4012, 1.0986, 0.6931, 0, 1.0986, 1.0986, 0, 0, 0, 3.912, 4.0943,
4.0073, 2.3026, 4.382, 3.6889, 3.6889), Alopacce = c(25, 0, 15,
2, 1, 0, 2, 0, 1, 3, 15, 16, 3, 0, 0, 0, 0, 0, 0, 0, 0, 7, 17,
11, 9, 3, 29, 15), Alopcune = c(10, 2, 20, 6, 20, 6, 7, 11, 1,
0, 1, 13, 43, 2, 0, 3, 0, 1, 1, 2, 1, 0, 0, 0, 1, 0, 0, 0), Alopfabr = c(0,
0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 16,
15, 20, 9, 6, 11, 14), Arctlute = c(0, 0, 2, 1, 2, 6, 12, 0,
0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Arctperi = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 4, 7, 5, 0, 18, 4, 1), Auloalbi = c(4,
30, 9, 24, 9, 6, 16, 7, 0, 0, 1, 0, 18, 4, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 2, 0, 0, 0), Pardlugu = c(0, 1, 1, 1, 1, 0,
1, 55, 0, 0, 0, 0, 1, 3, 6, 6, 2, 5, 12, 13, 16, 0, 2, 0,
1, 0, 0, 0), Pardmont = c(60, 1, 29, 7, 2, 11, 30, 2, 26,
22, 95, 96, 24, 14, 0, 0, 0, 0, 0, 0, 1, 2, 6, 3, 11, 0,
1, 6), Pardnigr = c(12, 15, 18, 29, 135, 27, 89, 2, 1, 0,
0, 1, 53, 15, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 6, 0, 0, 0),
Pardpull = c(45, 37, 45, 94, 76, 24, 105, 1, 1, 0, 1, 8,
72, 72, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), Trocterr = c(57,
65, 66, 86, 91, 63, 118, 30, 2, 1, 4, 13, 97, 94, 25, 28,
23, 25, 22, 22, 18, 1, 1, 0, 16, 1, 0, 2), Zoraspin = c(4,
9, 1, 25, 17, 34, 16, 3, 0, 0, 0, 0, 22, 32, 3, 4, 2, 0,
3, 2, 2, 0, 0, 0, 6, 0, 0, 0)), .Names = c("WaterCon", "BareSand",
"FallTwig", "CoveMoss", "CoveHerb", "ReflLux", "Alopacce", "Alopcune",
"Alopfabr", "Arctlute", "Arctperi", "Auloalbi", "Pardlugu", "Pardmont",
"Pardnigr", "Pardpull", "Trocterr", "Zoraspin"), row.names = c("1",
"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24",
"25", "26", "27", "28"), class = "data.frame") |
set_lockfile_metadata <- function(repos = NULL, r_version = NULL, project = NULL) {
project <- getProjectDir(project)
lf_filepath <- lockFilePath(project)
if (!file.exists(lf_filepath)) {
stop(paste(lockFilePath, " is missing. Run packrat::init('",
project, "') to generate it.", sep = ""))
}
lf <- as.data.frame(readDcf(lf_filepath), stringsAsFactors = FALSE)
if (!is.null(repos)) {
separator <- ",\n"
reposString <- paste(names(repos), unname(repos), sep = "=", collapse = separator)
lf[1, "Repos"] <- reposString
}
if (!is.null(r_version)) {
if (length(r_version) > 1) {
stop("RVersion metadata must contains one element only", call. = FALSE)
}
lf[1, "RVersion"] <- as.character(package_version(r_version))
}
write_dcf(lf, lf_filepath)
invisible()
}
get_lockfile_metadata <- function(metadata = NULL, simplify = TRUE, project = NULL) {
project <- getProjectDir(project)
lockFilePath <- lockFilePath(project)
if (!file.exists(lockFilePath)) {
stop(paste(lockFilePath, " is missing. Run packrat::init('",
project, "') to generate it.", sep = ""))
}
lf_metadata <- readLockFile(lockFilePath)[names(available_metadata)]
if (is.null(metadata)) {
lf_metadata
} else {
result <- lf_metadata[names(lf_metadata) %in% metadata]
if (simplify) unlist(unname(result))
else result
}
}
available_metadata <- c(
r_version = "RVersion",
repos = "Repos"
) |
as.data.frame.CodeSet <- function(x, row.names = NULL, optional = FALSE, ...) {
codes = x$codes
len = 0;
if(is.null(x$excerpts)) {
excerpts = x$codes[[1]]$excerpts;
} else{
excerpts = x$excerpts
}
len = length(excerpts)
args = list(...)
if(is.null(len) && !is.null(args$len)) len = args$len;
if(is.null(args$codes)) codes = x$codes;
if(!is.null(len) && len > 0) {
coded_cols <- sapply(codes, function(x){
df = data.frame( x$computerSet[1:len] )
df
})
names(coded_cols) <- as.character(lapply(codes, `[[`, "name"))
data.frame(ID = 1:len, excerpt = excerpts[1:len], coded_cols)
} else {
data.frame()
}
} |
dFNCHypergeo <-
function(x, m1, m2, n, odds, precision=1E-7) {
stopifnot(is.numeric(x), is.numeric(m1), is.numeric(m2),
is.numeric(n), is.numeric(odds), is.numeric(precision));
.Call("dFNCHypergeo",
as.integer(x),
as.integer(m1),
as.integer(m2),
as.integer(n),
as.double(odds),
as.double(precision),
PACKAGE = "BiasedUrn");
}
dWNCHypergeo <-
function(x, m1, m2, n, odds, precision=1E-7 ) {
stopifnot(is.numeric(x), is.numeric(m1), is.numeric(m2),
is.numeric(n), is.numeric(odds), is.numeric(precision));
.Call("dWNCHypergeo",
as.integer(x),
as.integer(m1),
as.integer(m2),
as.integer(n),
as.double(odds),
as.double(precision),
PACKAGE = "BiasedUrn");
}
pFNCHypergeo <-
function(x, m1, m2, n, odds, precision=1E-7, lower.tail=TRUE) {
stopifnot(is.numeric(x), is.numeric(m1), is.numeric(m2), is.numeric(n),
is.numeric(odds), is.numeric(precision), is.vector(lower.tail));
.Call("pFNCHypergeo",
as.integer(x),
as.integer(m1),
as.integer(m2),
as.integer(n),
as.double(odds),
as.double(precision),
as.logical(lower.tail),
PACKAGE = "BiasedUrn");
}
pWNCHypergeo <-
function(x, m1, m2, n, odds, precision=1E-7, lower.tail=TRUE) {
stopifnot(is.numeric(x), is.numeric(m1), is.numeric(m2), is.numeric(n),
is.numeric(odds), is.numeric(precision), is.vector(lower.tail));
.Call("pWNCHypergeo",
as.integer(x),
as.integer(m1),
as.integer(m2),
as.integer(n),
as.double(odds),
as.double(precision),
as.logical(lower.tail),
PACKAGE = "BiasedUrn");
}
qFNCHypergeo <-
function(p, m1, m2, n, odds, precision=1E-7, lower.tail=TRUE) {
stopifnot(is.numeric(p), is.numeric(m1), is.numeric(m2), is.numeric(n),
is.numeric(odds), is.numeric(precision), is.vector(lower.tail));
.Call("qFNCHypergeo",
as.double(p),
as.integer(m1),
as.integer(m2),
as.integer(n),
as.double(odds),
as.double(precision),
as.logical(lower.tail),
PACKAGE = "BiasedUrn");
}
qWNCHypergeo <-
function(p, m1, m2, n, odds, precision=1E-7, lower.tail=TRUE) {
stopifnot(is.numeric(p), is.numeric(m1), is.numeric(m2), is.numeric(n),
is.numeric(odds), is.numeric(precision), is.vector(lower.tail));
.Call("qWNCHypergeo",
as.double(p),
as.integer(m1),
as.integer(m2),
as.integer(n),
as.double(odds),
as.double(precision),
as.logical(lower.tail),
PACKAGE = "BiasedUrn");
}
rFNCHypergeo <-
function(nran, m1, m2, n, odds, precision=1E-7) {
stopifnot(is.numeric(nran), is.numeric(m1), is.numeric(m2),
is.numeric(n), is.numeric(odds), is.numeric(precision));
.Call("rFNCHypergeo",
as.integer(nran),
as.integer(m1),
as.integer(m2),
as.integer(n),
as.double(odds),
as.double(precision),
PACKAGE = "BiasedUrn");
}
rWNCHypergeo <-
function(nran, m1, m2, n, odds, precision=1E-7) {
stopifnot(is.numeric(nran), is.numeric(m1), is.numeric(m2),
is.numeric(n), is.numeric(odds), is.numeric(precision));
.Call("rWNCHypergeo",
as.integer(nran),
as.integer(m1),
as.integer(m2),
as.integer(n),
as.double(odds),
as.double(precision),
PACKAGE = "BiasedUrn");
}
meanFNCHypergeo <- function(
m1,
m2,
n,
odds,
precision=1E-7) {
stopifnot(is.numeric(m1), is.numeric(m2), is.numeric(n),
is.numeric(odds), is.numeric(precision));
.Call("momentsFNCHypergeo", as.integer(m1), as.integer(m2),
as.integer(n), as.double(odds), as.double(precision),
as.integer(1),
PACKAGE = "BiasedUrn");
}
meanWNCHypergeo <- function(
m1,
m2,
n,
odds,
precision=1E-7) {
stopifnot(is.numeric(m1), is.numeric(m2), is.numeric(n),
is.numeric(odds), is.numeric(precision));
.Call("momentsWNCHypergeo", as.integer(m1), as.integer(m2),
as.integer(n), as.double(odds), as.double(precision),
as.integer(1),
PACKAGE = "BiasedUrn");
}
varFNCHypergeo <- function(
m1,
m2,
n,
odds,
precision=1E-7) {
stopifnot(is.numeric(m1), is.numeric(m2), is.numeric(n),
is.numeric(odds), is.numeric(precision));
.Call("momentsFNCHypergeo", as.integer(m1), as.integer(m2),
as.integer(n), as.double(odds), as.double(precision),
as.integer(2),
PACKAGE = "BiasedUrn");
}
varWNCHypergeo <- function(
m1,
m2,
n,
odds,
precision=1E-7) {
stopifnot(is.numeric(m1), is.numeric(m2), is.numeric(n),
is.numeric(odds), is.numeric(precision));
.Call("momentsWNCHypergeo", as.integer(m1), as.integer(m2),
as.integer(n), as.double(odds), as.double(precision),
as.integer(2),
PACKAGE = "BiasedUrn");
}
modeFNCHypergeo <- function(
m1,
m2,
n,
odds,
precision=0) {
stopifnot(is.numeric(m1), is.numeric(m2), is.numeric(n),
is.numeric(odds));
.Call("modeFNCHypergeo", as.integer(m1), as.integer(m2),
as.integer(n), as.double(odds),
PACKAGE = "BiasedUrn");
}
modeWNCHypergeo <- function(
m1,
m2,
n,
odds,
precision=1E-7) {
stopifnot(is.numeric(m1), is.numeric(m2), is.numeric(n),
is.numeric(odds), is.numeric(precision));
.Call("modeWNCHypergeo", as.integer(m1), as.integer(m2),
as.integer(n), as.double(odds), as.double(precision),
PACKAGE = "BiasedUrn");
}
oddsFNCHypergeo <-
function(mu, m1, m2, n, precision=0.1) {
stopifnot(is.numeric(mu), is.numeric(m1), is.numeric(m2),
is.numeric(n), is.numeric(precision));
.Call("oddsFNCHypergeo",
as.double(mu),
as.integer(m1),
as.integer(m2),
as.integer(n),
as.double(precision),
PACKAGE = "BiasedUrn");
}
oddsWNCHypergeo <-
function(mu, m1, m2, n, precision=0.1) {
stopifnot(is.numeric(mu), is.numeric(m1), is.numeric(m2),
is.numeric(n), is.numeric(precision));
.Call("oddsWNCHypergeo",
as.double(mu),
as.integer(m1),
as.integer(m2),
as.integer(n),
as.double(precision),
PACKAGE = "BiasedUrn");
}
numFNCHypergeo <-
function(mu, n, N, odds, precision=0.1) {
stopifnot(is.numeric(mu), is.numeric(n), is.numeric(N),
is.numeric(odds), is.numeric(precision));
.Call("numFNCHypergeo",
as.double(mu),
as.integer(n),
as.integer(N),
as.double(odds),
as.double(precision),
PACKAGE = "BiasedUrn");
}
numWNCHypergeo <-
function(mu, n, N, odds, precision=0.1) {
stopifnot(is.numeric(mu), is.numeric(n), is.numeric(N),
is.numeric(odds), is.numeric(precision));
.Call("numWNCHypergeo",
as.double(mu),
as.integer(n),
as.integer(N),
as.double(odds),
as.double(precision),
PACKAGE = "BiasedUrn");
}
minHypergeo <- function(m1, m2, n) {
stopifnot(m1>=0, m2>=0, n>=0, n<=m1+m2);
max(n-m2, 0);
}
maxHypergeo <- function(m1, m2, n) {
stopifnot(m1>=0, m2>=0, n>=0, n<=m1+m2);
min(m1, n);
} |
context("cmdscale and sammon")
library(cops)
initsam <- sammon(dis^3)
expect_that(initsam,is_a("sammon"))
expect_that(initsam,is_a("cmdscale")) |
cat_control <-
function (
center = FALSE,
standardize = FALSE,
accuracy = 2, digits = 4,
g = 0.5, epsilon = 10^(-5), maxi = 250, c = 10^(-5), gama = 20, steps = 25, nu = 1,
tuning.criterion = "GCV", K = 5,
cv.refit = FALSE,
lambda.upper=50, lambda.lower=0, lambda.accuracy=.01, scaled.lik=FALSE,
adapted.weights=FALSE, adapted.weights.adj = FALSE, adapted.weights.ridge=FALSE,
assured.intercept=TRUE,
level.control = FALSE,
case.control = FALSE,
pairwise = TRUE,
grouped.cat.diffs = FALSE,
bootstrap = 0,
start.ml = FALSE,
L0.log = TRUE,
subjspec.gr = FALSE,
high = NULL,
...)
{
if (!is.logical(center))
stop ("center must be logical. \n")
if (!is.logical(standardize))
stop ("standardize must be logical. \n")
if (!is.numeric(accuracy) || accuracy < 0)
stop("'accuracy' must be >= 0")
accuracy <- as.integer(accuracy)
if (!is.numeric(digits) || digits < 0)
stop("'digits' must be >= 0")
digits <- as.integer(digits)
if (!is.numeric(g) || length(as.vector(g))!=1 || g>1 || g<0)
stop ("g must be a single, numeric value out of ]0;1[. \n")
if (!is.numeric(epsilon) || epsilon <= 0 || epsilon>1 || length(epsilon)!=1)
stop ("epsilon is ment to be a single, small, positive and numeric value. \n")
if (!is.numeric(maxi) || length(maxi)!=1 || maxi < 1)
stop ("maxi must be a sinlge integer > 0 \n")
maxi <- as.integer(maxi)
if (!is.numeric(steps) || length(steps)!=1 || steps < 1)
stop ("steps must be a sinlge integer > 0 \n")
steps <- as.integer(steps)
if (!is.numeric(c) || c<0 || length(c)!=1)
stop ("c is ment to be a single, small, positive and numeric value. \n")
if (!is.numeric(gama) || length(as.vector(gama))!=1 || gama<0)
stop ("gama must be a singl, positive and numeric value. \n")
if (!(tuning.criterion %in% c("GCV", "UBRE", "deviance", "1SE")))
stop ("tuning.criterion must be one out of 'GCV', 'UBRE', 'deviance'. \n")
if (!is.vector(K))
stop ("K must be a single integer > 1. \n")
if (!is.list(K)) {
if (!is.numeric(K) || K<2)
stop ("K must be a single integer > 1. \n")
}
if (!is.logical(cv.refit))
stop ("cv.refit must be logical. \n")
if (!is.numeric(lambda.upper) || length(lambda.upper)!=1)
stop ("lambda.upper must be numeric and positive \n")
if (!is.numeric(lambda.lower) || length(lambda.lower)!=1)
stop ("lambda.lower must be numeric and positive \n")
if (!is.numeric(lambda.accuracy) || lambda.accuracy <= 0 || length(lambda.accuracy)!=1)
stop ("lambda.accuracy is ment to be a single, positive and numeric value. \n")
if (!is.logical(scaled.lik))
stop ("scaled.lik must be logical. \n")
if (!is.logical(adapted.weights.ridge))
stop ("adapted.weights.ridge must be logical. \n")
if (!is.logical(adapted.weights.adj))
stop ("adapted.weights.adj must be logical. \n")
if (!is.logical(adapted.weights))
stop ("adapted.weights must be logical. \n")
if (!is.logical(assured.intercept))
stop ("assured.intercept must be logical. \n")
if (!is.logical(pairwise))
stop ("pairwise must be logical. \n")
if (!is.logical(grouped.cat.diffs))
stop ("grouped.cat.diffs must be logical. \n")
if (!is.numeric(bootstrap) || bootstrap<0 || length(bootstrap)!=1)
stop ("bootstrap must be positive and numeric; value zero or >10. \n")
if (bootstrap!=0 && bootstrap<10)
bootstrap <- 10
if (!is.logical(level.control))
stop ("level.control must be logical. \n")
if (!is.logical(case.control))
stop ("case.control must be logical. \n")
if (!is.logical(start.ml))
stop ("start.ml must be logical. \n")
if (!is.logical(L0.log))
stop ("L0.log must be logical. \n")
if (!is.logical(subjspec.gr))
stop ("subjspec.gr must be logical. \n")
if (pairwise == FALSE) {high <- NULL}
if (!is.null(high) && !is.numeric(high) )
stop ("high must be NULL or a positive integer. \n")
if (is.numeric(high) && high < 1)
stop ("high must be NULL or a positive integer. \n")
if (is.numeric(high)) high <- as.integer(high)
list(
center = center,
standardize = standardize,
accuracy = accuracy, digits = digits,
g = g, epsilon = epsilon, maxi = maxi, c = c, gama = gama, steps = steps, nu = nu,
tuning.criterion = tuning.criterion, K = K,
cv.refit = cv.refit,
lambda.upper = lambda.upper, lambda.lower = lambda.lower,
lambda.accuracy = lambda.accuracy, scaled.lik = scaled.lik,
adapted.weights = adapted.weights, adapted.weights.adj = adapted.weights.adj, adapted.weights.ridge=adapted.weights.ridge,
assured.intercept = assured.intercept,
level.control = level.control,
case.control = case.control,
pairwise = pairwise,
grouped.cat.diffs = grouped.cat.diffs,
bootstrap = bootstrap,
start.ml = start.ml,
L0.log = L0.log,
subjspec.gr = subjspec.gr,
high = high
)
} |
context("compare with glmnet")
test_that("training loss is similar to the fit by glmnet when E=0", {
grid_size = 10
grid = 10^seq(-4, log10(1), length.out=grid_size)
grid = rev(grid)
tols = c(1e-4)
max_iterations = 2000
for (family in c("gaussian", "binomial")){
for (seed in 1:5) {
for (tol in tols) {
file_name = paste0("testdata/compare_with_glmnet/", seed, "_", family, "_data.rds")
data = readRDS(file_name)
file_name = paste0("testdata/compare_with_glmnet/", seed, "_", family, "_glmnet_results.rds")
glmnet_fit = readRDS(file_name)
sample_size = length(data$Y_train)
fit = gesso.fit(G=data$G_train, E=rep(0, sample_size),
Y=data$Y_train, C=data$C_train,
tolerance=tol, grid=grid, family=family,
normalize=FALSE, max_iterations=max_iterations)
expect_equal(sum(fit$has_converged != 1), 0)
expect_lt(max(fit$objective_value - rep(glmnet_fit$objective_value, rep(grid_size, grid_size))), tol)
}
}
}
}) |
BridgeRHalfLifeCalc3models <- function(inputFile,
group = c("Control","Knockdown"),
hour = c(0, 1, 2, 4, 8, 12),
inforColumn = 4,
CutoffTimePointNumber = 4,
save = T,
outputPrefix = "BridgeR_5"){
stopifnot(is.character(group) && is.vector(group))
stopifnot(is.numeric(hour) && is.vector(hour))
stopifnot(is.numeric(CutoffTimePointNumber))
stopifnot(is.numeric(inforColumn))
stopifnot(is.logical(save))
stopifnot(is.character(outputPrefix))
time_points <- length(hour)
group_number <- length(group)
input_matrix <- inputFile
halflife_infor_header <- c("Model", "R2", "half_life")
half_calc_3model <- function(time_exp_table){
data_point <- length(time_exp_table$exp)
if(!is.null(time_exp_table)){
if(data_point >= CutoffTimePointNumber){
if(as.numeric(as.vector(as.matrix(time_exp_table$exp[1]))) > 0){
optim1 <- function(x){
mRNA_exp <- exp(-x * time_exp_table$hour)
sum((time_exp_table$exp - mRNA_exp)^2)
}
model1_pred <- function(x){
mRNA_exp <- exp(-x * time_exp_table$hour)
(cor(mRNA_exp, time_exp_table$exp, method="pearson"))^2
}
model1_half <- function(x){
mRNA_half <- exp(-a_1 * x)
(mRNA_half - 0.5)^2
}
optim2 <- function(x){
mRNA_exp <- (1.0 - x[2]) * exp(-x[1] * time_exp_table$hour) + x[2]
sum((time_exp_table$exp - mRNA_exp)^2)
}
model2_pred <- function(a,b){
mRNA_exp <- (1.0 - b) * exp(-a * time_exp_table$hour) + b
(cor(mRNA_exp, time_exp_table$exp, method="pearson"))^2
}
model2_half <- function(x){
mRNA_half <- (1.0 - b_2) * exp(-a_2 * x) + b_2
(mRNA_half - 0.5)^2
}
optim3 <- function(x){
mRNA_exp <- x[3] * exp(-x[1] * time_exp_table$hour) + (1.0 - x[3]) * exp(-x[2] * time_exp_table$hour)
sum((time_exp_table$exp - mRNA_exp)^2)
}
model3_pred <- function(a,b,c){
mRNA_exp <- c * exp(-a * time_exp_table$hour) + (1.0 - c) * exp(- b * time_exp_table$hour)
(cor(mRNA_exp, time_exp_table$exp, method="pearson"))^2
}
model3_half <- function(x){
mRNA_half <- c_3 * exp(-a_3 * x) + (1.0 - c_3) * exp(-b_3 * x)
(mRNA_half - 0.5)^2
}
out1 <- suppressWarnings(optim(1,optim1))
min1 <- out1$value
a_1 <- out1$par[1]
half1_1 <- log(2) / a_1
cor1 <- model1_pred(a_1)
out1 <- suppressWarnings(optim(1,model1_half))
half1_2 <- out1$par
mRNA_pred <- exp(-a_1 * time_exp_table$hour)
s2 <- sum((time_exp_table$exp - mRNA_pred)^2) / data_point
AIC1 <- data_point * log(s2) + (2 * 0)
out2 <- suppressWarnings(optim(c(1,0),optim2))
min2 <- out2$value
a_2 <- out2$par[1]
b_2 <- out2$par[2]
cor2 <- model2_pred(a_2, b_2)
out2 <- suppressWarnings(optim(1,model2_half))
half2 <- out2$par
if(b_2 >= 0.5){
half2 <- Inf
}
mRNA_pred <- (1.0 - b_2) * exp(-a_2 * time_exp_table$hour) + b_2
s2 <- sum((time_exp_table$exp - mRNA_pred)^2) / data_point
AIC2 <- data_point * log(s2) + (2 * 1)
out3 <- suppressWarnings(optim(c(1,1,0.1),optim3))
min3 <- out3$value
a_3 <- out3$par[1]
b_3 <- out3$par[2]
c_3 <- out3$par[3]
cor3 <- model3_pred(a_3,b_3,c_3)
out3 <- suppressWarnings(optim(1,model3_half))
half3 <- out3$par
mRNA_pred <- c_3 * exp(-a_3 * time_exp_table$hour) + (1.0 - c_3) * exp(-b_3 * time_exp_table$hour)
s2 <- sum((time_exp_table$exp - mRNA_pred)^2) / data_point
AIC3 <- data_point * log(s2) + (2 * 2)
half_table <- data.frame(half=c(as.numeric(half1_2),
as.numeric(half2),
as.numeric(half3)),
AIC=c(as.numeric(AIC1),
as.numeric(AIC2),
as.numeric(AIC3)))
AIC_list <- order(half_table$AIC)
AIC_flg <- 0
model <- NULL
R2 <- NULL
halflife <- NULL
for(min_AIC_index in AIC_list){
if(min_AIC_index == 1){
selected_half <- half1_2
if(selected_half > 24){
selected_half <- 24
}
if(a_1 > 0){
model <- "model1"
R2 <- cor1
halflife <- selected_half
AIC_flg <- 1
break
}
}
if(min_AIC_index == 2){
selected_half <- half2
if(selected_half == "Inf"){
selected_half <- 24
}else if(selected_half > 24){
selected_half <- 24
}
if(a_2 > 0 && b_2 > 0 && b_2 < 1){
model <- "model2"
R2 <- cor2
halflife <- selected_half
AIC_flg <- 1
break
}
}
if(min_AIC_index == 3){
selected_half <- half3
if(selected_half > 24){
selected_half <- 24
}
if(a_3 > 0 && b_3 > 0 && c_3 > 0 && c_3 < 1){
model <- "model3"
R2 <- cor3
halflife <- selected_half
AIC_flg <- 1
break
}
}
}
if(AIC_flg == 0){
if(a_1 < 0){
model <- "model1"
R2 <- cor1
halflife <- 24
}else{
model <- "no_good_model"
R2 <- "NA"
halflife <- 24
}
}
return(c(model,
R2,
halflife))
}else{
return(rep("NA", 3))
}
}else{
return(rep("NA", 3))
}
}else{
return(rep("NA", 3))
}
}
halflife_calc_3model <- function(data){
data_vector <- NULL
gene_infor <- data[infor_st:infor_ed]
exp <- data[exp_st:exp_ed]
data_vector <- c(gene_infor, exp)
if (all(is.nan(exp)) || all(exp == "NaN")) {
result_list <- rep("NA", 3)
data_vector <- c(data_vector, result_list)
return(data_vector)
}
exp <- as.numeric(exp)
time_point_exp_raw <- data.frame(hour,exp)
time_point_exp_base <- time_point_exp_raw[time_point_exp_raw$exp > 0, ]
model3_result <- half_calc_3model(time_point_exp_base)
data_vector <- c(data_vector, model3_result)
return(data_vector)
}
output_matrix <- NULL
for (group_index in 1:group_number) {
colname_st <- 1 + (group_index - 1) * (inforColumn + time_points)
colname_ed <- group_index * (inforColumn + time_points)
header_label <- colnames(input_matrix)[colname_st:colname_ed]
infor_st_ed <- generate_infor_st_ed(group_index,
time_points,
inforColumn)
infor_st <- infor_st_ed[1]
infor_ed <- infor_st_ed[2]
exp_st <- infor_ed + 1
exp_ed <- infor_ed + time_points
result_matrix <- t(apply((input_matrix), 1, halflife_calc_3model))
colnames(result_matrix) <- c(header_label, halflife_infor_header)
output_matrix <- cbind(output_matrix, result_matrix)
}
output_matrix <- data.table(output_matrix)
if (save == T) {
write.table(output_matrix, quote = F, sep = "\t", row.names = F,
file = paste(outputPrefix, "_halflife_calc_3models.txt", sep=""))
}
return(output_matrix)
} |
guided_tour <- function(index_f, d = 2, alpha = 0.5, cooling = 0.99, max.tries = 25,
max.i = Inf, search_f = search_geodesic, n_sample = 5, ...) {
generator <- function(current, data, tries, ...) {
index <- function(proj) {
index_f(as.matrix(data) %*% proj)
}
valid_fun <- c(
"search_geodesic", "search_better", "search_better_random",
"search_polish", "search_posse"
)
method <- valid_fun[vapply(valid_fun, function(x) {
identical(get(x), search_f)
}, logical(1))]
if (is.null(current)) {
current <- basis_random(ncol(data), d)
cur_index <- index(current)
rcd_env <- parent.frame(n = 3)
rcd_env[["record"]] <- dplyr::add_row(
rcd_env[["record"]],
basis = list(current),
index_val = cur_index,
info = "new_basis",
method = method,
alpha = formals(guided_tour)$alpha,
tries = 1,
loop = 1
)
return(current)
}
cur_index <- index(current)
if (cur_index > max.i) {
cat("Found index ", cur_index, ", larger than selected maximum ", max.i, ". Stopping search.\n",
sep = ""
)
cat("Final projection: \n")
if (ncol(current) == 1) {
for (i in 1:length(current)) {
cat(sprintf("%.3f", current[i]), " ")
}
cat("\n")
}
else {
for (i in 1:nrow(current)) {
for (j in 1:ncol(current)) {
cat(sprintf("%.3f", current[i, j]), " ")
}
cat("\n")
}
}
return(NULL)
}
basis <- search_f(current, alpha, index, tries, max.tries, cur_index = cur_index, frozen = frozen, n_sample = n_sample, ...)
if (method == "search_posse") {
if (!is.null(basis$h)) {
if (basis$h > 30) {
alpha <<- alpha * cooling
}
}
} else {
alpha <<- alpha * cooling
}
list(target = basis$target, index = index)
}
new_geodesic_path("guided", generator)
} |
xgb.unserialize <- function(buffer, handle = NULL) {
cachelist <- list()
if (is.null(handle)) {
handle <- .Call(XGBoosterCreate_R, cachelist)
} else {
if (!is.null.handle(handle))
stop("'handle' is not null/empty. Cannot overwrite existing handle.")
.Call(XGBoosterCreateInEmptyObj_R, cachelist, handle)
}
tryCatch(
.Call(XGBoosterUnserializeFromBuffer_R, handle, buffer),
error = function(e) {
error_msg <- conditionMessage(e)
m <- regexec("(src[\\\\/]learner.cc:[0-9]+): Check failed: (header == serialisation_header_)",
error_msg, perl = TRUE)
groups <- regmatches(error_msg, m)[[1]]
if (length(groups) == 3) {
warning(paste("The model had been generated by XGBoost version 1.0.0 or earlier and was ",
"loaded from a RDS file. We strongly ADVISE AGAINST using saveRDS() ",
"function, to ensure that your model can be read in current and upcoming ",
"XGBoost releases. Please use xgb.save() instead to preserve models for the ",
"long term. For more details and explanation, see ",
"https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html",
sep = ""))
.Call(XGBoosterLoadModelFromRaw_R, handle, buffer)
} else {
stop(e)
}
})
class(handle) <- "xgb.Booster.handle"
return (handle)
} |
if (Sys.getenv("RunAllRcppTests") != "yes") exit_file("Set 'RunAllRcppTests' to 'yes' to run.")
Rcpp::sourceCpp("cpp/language.cpp")
expect_equal( runit_language( call("rnorm") ), call("rnorm" ), info = "Language( LANGSXP )" )
expect_error( runit_language(test.Language), info = "Language not compatible with function" )
expect_error( runit_language(new.env()), info = "Language not compatible with environment" )
expect_error( runit_language(1:10), info = "Language not compatible with integer" )
expect_error( runit_language(TRUE), info = "Language not compatible with logical" )
expect_error( runit_language(1.3), info = "Language not compatible with numeric" )
expect_error( runit_language(as.raw(1) ), info = "Language not compatible with raw" )
expect_equal( runit_lang_variadic_1(), call("rnorm", 10L, 0.0, 2.0 ),
info = "variadic templates" )
expect_equal( runit_lang_variadic_2(), call("rnorm", 10L, mean = 0.0, 2.0 ),
info = "variadic templates (with names)" )
expect_equal( runit_lang_push_back(),
call("rnorm", 10L, mean = 0.0, 2.0 ),
info = "Language::push_back" )
expect_equal( runit_lang_square_rv(), 10.0, info = "Language::operator[] used as rvalue" )
expect_equal( runit_lang_square_lv(), call("rnorm", "foobar", 20.0, 20.0) , info = "Pairlist::operator[] used as lvalue" )
expect_equal( runit_lang_fun(sort, sample(1:10)), 1:10, info = "Language( Function ) " )
expect_equal( runit_lang_inputop(), call("rnorm", 10L, sd = 10L ) , info = "Language<<" )
expect_equal(
runit_lang_unarycall( 1:10 ),
lapply( 1:10, function(n) seq(from=n, to = 0 ) ),
info = "c++ lapply using calls" )
expect_equal(
runit_lang_unarycallindex( 1:10 ),
lapply( 1:10, function(n) seq(from=10, to = n ) ),
info = "c++ lapply using calls" )
expect_equal(
runit_lang_binarycall( 1:10, 11:20 ),
lapply( 1:10, function(n) seq(n, n+10) ),
info = "c++ lapply using calls" )
set.seed(123)
res <- runit_lang_fixedcall()
set.seed(123)
exp <- lapply( 1:10, function(n) rnorm(10) )
expect_equal( res, exp, info = "std::generate" )
e <- new.env()
e[["y"]] <- 1:10
expect_equal( runit_lang_inenv(e), sum(1:10), info = "Language::eval( SEXP )" )
expect_equal( runit_pairlist( pairlist("rnorm") ), pairlist("rnorm" ), info = "Pairlist( LISTSXP )" )
expect_equal( runit_pairlist( call("rnorm") ), pairlist(as.name("rnorm")), info = "Pairlist( LANGSXP )" )
expect_equal( runit_pairlist(1:10), as.pairlist(1:10) , info = "Pairlist( INTSXP) " )
expect_equal( runit_pairlist(TRUE), as.pairlist( TRUE) , info = "Pairlist( LGLSXP )" )
expect_equal( runit_pairlist(1.3), as.pairlist(1.3), info = "Pairlist( REALSXP) " )
expect_equal( runit_pairlist(as.raw(1) ), as.pairlist(as.raw(1)), info = "Pairlist( RAWSXP)" )
expect_error( runit_pairlist(runit_pairlist), info = "Pairlist not compatible with function" )
expect_error( runit_pairlist(new.env()), info = "Pairlist not compatible with environment" )
expect_equal( runit_pl_variadic_1(), pairlist("rnorm", 10L, 0.0, 2.0 ),
info = "variadic templates" )
expect_equal( runit_pl_variadic_2(), pairlist("rnorm", 10L, mean = 0.0, 2.0 ),
info = "variadic templates (with names)" )
expect_equal( runit_pl_push_front(),
pairlist( foobar = 10, "foo", 10.0, 1L),
info = "Pairlist::push_front" )
expect_equal( runit_pl_push_back(),
pairlist( 1L, 10.0, "foo", foobar = 10),
info = "Pairlist::push_back" )
expect_equal( runit_pl_insert(),
pairlist( 30.0, 1L, bla = "bla", 10.0, 20.0, "foobar" ),
info = "Pairlist::replace" )
expect_equal( runit_pl_replace(),
pairlist( first = 1, 20.0 , FALSE), info = "Pairlist::replace" )
expect_equal( runit_pl_size(), 3L, info = "Pairlist::size()" )
expect_equal( runit_pl_remove_1(), pairlist(10.0, 20.0), info = "Pairlist::remove(0)" )
expect_equal( runit_pl_remove_2(), pairlist(1L, 10.0), info = "Pairlist::remove(0)" )
expect_equal( runit_pl_remove_3(), pairlist(1L, 20.0), info = "Pairlist::remove(0)" )
expect_equal( runit_pl_square_1(), 10.0, info = "Pairlist::operator[] used as rvalue" )
expect_equal( runit_pl_square_2(), pairlist(1L, "foobar", 1L) , info = "Pairlist::operator[] used as lvalue" )
expect_equal( runit_formula_(), x ~ y + z, info = "Formula( string )" )
expect_equal( runit_formula_SEXP( x ~ y + z), x ~ y + z, info = "Formula( SEXP = formula )" )
expect_equal( runit_formula_SEXP( "x ~ y + z" ), x ~ y + z, info = "Formula( SEXP = STRSXP )" )
expect_equal( runit_formula_SEXP( parse( text = "x ~ y + z") ), x ~ y + z, info = "Formula( SEXP = EXPRSXP )" )
expect_equal( runit_formula_SEXP( list( "x ~ y + z") ), x ~ y + z, info = "Formula( SEXP = VECSXP(1 = STRSXP) )" )
expect_equal( runit_formula_SEXP( list( x ~ y + z) ), x ~ y + z, info = "Formula( SEXP = VECSXP(1 = formula) )" ) |
context("dam_first_last_lines")
test_that("Start and stop dates work as expected when reading whole file with error 51 at the begining and end", {
FILE <- damr_example("M064.txt")
EXPECTED_FIRST_READ <- damr:::parse_datetime("2017-06-30 14:43:08", tz="UTC")
EXPECTED_LAST_READ <- damr:::parse_datetime("2017-07-03 00:05:00", tz="UTC")
expect_warning(d <- damr:::find_dam_first_last_lines(FILE,
start_datetime = -Inf,
stop_datetime = +Inf,
tz="UTC"),
regexp = "The sampling period is not always regular")
expect_equal(damr:::parse_datetime(d$datetime[1]), EXPECTED_FIRST_READ)
expect_equal(damr:::parse_datetime(d$datetime[2]), EXPECTED_LAST_READ)
EXPECTED_FIRST_READ <- damr:::parse_datetime("2017-06-30 14:44:08", tz="UTC")
expect_silent(damr:::find_dam_first_last_lines( FILE,
start_datetime = EXPECTED_FIRST_READ,
stop_datetime = +Inf, tz="UTC"))
})
test_that("Start and stop dates work as expected when setting a start", {
FILE <- damr_example("M064.txt")
EXPECTED_FIRST_READ <- damr:::parse_datetime("2017-06-30 14:55:00", tz="UTC")
d <- damr:::find_dam_first_last_lines(FILE, start_datetime = "2017-06-30 14:55:00", stop_datetime = +Inf, tz="UTC")
expect_equal(damr:::parse_datetime(d$datetime[1]), EXPECTED_FIRST_READ)
})
test_that("Start and stop dates work as expected when setting a stop", {
FILE <- damr_example("M064.txt")
EXPECTED_FIRST_READ <- damr:::parse_datetime("2017-06-30 14:55:00", tz="UTC")
EXPECTED_LAST_READ <- damr:::parse_datetime("2017-07-01 13:51:00", tz="UTC")
d <- damr:::find_dam_first_last_lines(FILE, start_datetime = "2017-06-30 14:55:00",
stop_datetime = "2017-07-01 13:51:00", tz="UTC")
expect_equal(damr:::parse_datetime(d$datetime[1]), EXPECTED_FIRST_READ)
expect_equal(damr:::parse_datetime(d$datetime[2]), EXPECTED_LAST_READ)
})
test_that("Start date is inclusive when time not specified", {
FILE <- damr_example("M064.txt")
EXPECTED_FIRST_READ <- damr:::parse_datetime("2017-07-01", tz="UTC")
EXPECTED_LAST_READ <- damr:::parse_datetime("2017-07-01 23:59:00", tz="UTC")
d <- damr:::find_dam_first_last_lines(FILE,
start_datetime = "2017-07-01",
stop_datetime = "2017-07-01", tz="UTC")
expect_equal(damr:::parse_datetime(d$datetime[1]), EXPECTED_FIRST_READ)
expect_equal(damr:::parse_datetime(d$datetime[2]), EXPECTED_LAST_READ)
})
test_that("Stop date is inclusive when time not specified", {
FILE <- damr_example("M064.txt")
EXPECTED_FIRST_READ <- damr:::parse_datetime("2017-06-30 14:55:00", tz="UTC")
EXPECTED_LAST_READ <- damr:::parse_datetime("2017-07-02 00:00:00", tz="UTC")
d <- damr:::find_dam_first_last_lines(FILE, start_datetime = "2017-06-30 14:55:00",
stop_datetime = "2017-07-01", tz="UTC")
expect_equal(damr:::parse_datetime(d$datetime[1]), EXPECTED_FIRST_READ)
})
test_that("Error when dates are inconsistent", {
FILE <- damr_example("M064.txt")
expect_error(damr:::find_dam_first_last_lines(FILE, "2017-07-30 14:55:00", "2017-07-01 13:51:00", tz="UTC"),
regex="start_datetime is greater than stop_datetime")
expect_error(damr:::find_dam_first_last_lines(FILE, "2017-01-30 14:55:00", "2017-02-01 13:51:00", tz="UTC"),
regex="No data")
expect_error(damr:::find_dam_first_last_lines(FILE, "2017-07-03 00:06:00", +Inf, tz="UTC"),
regex="No data")
expect_error(damr:::find_dam_first_last_lines(FILE, -Inf, "2017-06-30 14:42:00", tz="UTC"),
regex="No data")
})
test_that("Error for daylight saving bug", {
FILE <- damr_example("M064_DLS_bug1.txt")
expect_error(damr:::find_dam_first_last_lines(FILE),
regex="computer changing time")
FILE <- damr_example("M064_DLS_bug2.txt")
expect_error(damr:::find_dam_first_last_lines(FILE),
regex="[Tt]ime has jumped")
FILE <- damr_example("M064_disconnected.txt")
expect_error(damr:::find_dam_first_last_lines(FILE),
regexp = "[Tt]ime has jumped")
})
test_that("ZIP wiles can be processed", {
FILE <- damr_example("M014.txt.zip")
EXPECTED_FIRST_READ <- damr:::parse_datetime("2017-06-30 14:55:00", tz="UTC")
d <- damr:::find_dam_first_last_lines(FILE, start_datetime = "2017-06-30 14:55:00", stop_datetime = +Inf, tz="UTC")
expect_equal(damr:::parse_datetime(d$datetime[1]), EXPECTED_FIRST_READ)
})
test_that("https://github.com/rethomics/damr/issues/11", {
FILE <- damr_example("issue_11.txt.zip")
d <- damr:::find_dam_first_last_lines(FILE,
start_datetime = "2017-07-11 07:59:00",
stop_datetime = +Inf, tz="UTC")
expect_equal(d[,paste(date, time, sep= " ")], c("11 Jul 17 07:59:00", "11 Jul 17 09:27:00"))
}) |
set.seed(123)
xu <- stats::rnorm(50)
xm <- matrix(stats::rnorm(100), ncol = 2)
index <- seq(Sys.Date(), Sys.Date() + 49, "day")
lambda <- 0.01
xu_vec <- xu
xu_mat <- as.matrix(xu)
xu_ts <- stats::as.ts(xu)
xu_xts <- xts::xts(xu, index)
xu_df <- as.data.frame(xu)
xu_tbl <- tibble::tibble(index = index, x = xu)
xm_vec <- xm
xm_mat <- as.matrix(xm)
xm_ts <- stats::as.ts(xm)
xm_xts <- xts::xts(xm, index)
xm_df <- as.data.frame(xm)
xm_tbl <- tibble::tibble(index = index, x = xm)
test_that("lambda must specified", {
expect_error(exp_decay(xu))
})
test_that("error if lambda is not a number of length 1", {
expect_error(exp_decay(xu, c(lambda, lambda)))
expect_error(exp_decay(xu, as.matrix(lambda)))
})
smooth_numeric <- exp_decay(xu, lambda)
test_that("works on doubles", {
expect_type(smooth_numeric, "double")
expect_s3_class(smooth_numeric, "ffp")
expect_equal(vctrs::vec_size(smooth_numeric), vctrs::vec_size(xu))
})
smooth_matu <- exp_decay(xu_mat, lambda)
test_that("works on univariate matrices", {
expect_type(smooth_matu, "double")
expect_s3_class(smooth_numeric, "ffp")
expect_equal(vctrs::vec_size(smooth_matu), vctrs::vec_size(xu))
})
smooth_matm <- exp_decay(xm_mat, lambda)
test_that("works on multivariate matrices", {
expect_type(smooth_matm, "double")
expect_s3_class(smooth_matm, "ffp")
expect_equal(vctrs::vec_size(smooth_matm), vctrs::vec_size(xu))
})
smooth_tsu <- exp_decay(xu_ts, lambda)
test_that("works on univariate ts", {
expect_type(smooth_tsu, "double")
expect_s3_class(smooth_tsu, "ffp")
expect_equal(vctrs::vec_size(smooth_tsu), vctrs::vec_size(xu))
})
smooth_tsm <- exp_decay(xm_ts, lambda)
test_that("works on multivariate ts", {
expect_type(smooth_tsm, "double")
expect_s3_class(smooth_tsm, "ffp")
expect_equal(vctrs::vec_size(smooth_tsm), vctrs::vec_size(xu))
})
smooth_xtsu <- exp_decay(xu_xts, lambda)
test_that("works on univariate xts", {
expect_type(smooth_xtsu, "double")
expect_s3_class(smooth_xtsu, "ffp")
expect_equal(vctrs::vec_size(smooth_xtsu), vctrs::vec_size(xu))
})
smooth_xtsm <- exp_decay(xm_xts, lambda)
test_that("works on multivariate xts", {
expect_type(smooth_xtsm, "double")
expect_s3_class(smooth_xtsm, "ffp")
expect_equal(vctrs::vec_size(smooth_xtsm), vctrs::vec_size(xu))
})
smooth_dfu <- exp_decay(xu_df, lambda)
test_that("works on univariate data.frames", {
expect_type(smooth_dfu, "double")
expect_s3_class(smooth_dfu, "ffp")
expect_equal(vctrs::vec_size(smooth_dfu), vctrs::vec_size(xu))
})
smooth_dfm <- exp_decay(xm_df, lambda)
test_that("works on multivariate data.frames", {
expect_type(smooth_dfm, "double")
expect_s3_class(smooth_dfm, "ffp")
expect_equal(vctrs::vec_size(smooth_dfm), vctrs::vec_size(xu))
})
smooth_tblu <- exp_decay(xu_tbl, lambda)
test_that("works on univariate tibbles", {
expect_type(smooth_tblu, "double")
expect_s3_class(smooth_tblu, "ffp")
expect_equal(vctrs::vec_size(smooth_tblu), vctrs::vec_size(xu))
})
smooth_tblm <- exp_decay(xm_tbl, lambda)
test_that("works on multivariate tibbles", {
expect_type(smooth_tblm, "double")
expect_s3_class(smooth_tblm, "ffp")
expect_equal(vctrs::vec_size(smooth_tblm), vctrs::vec_size(xu))
})
test_that("results are identical and don't depend on the class", {
expect_equal(smooth_numeric, smooth_matu)
expect_equal(smooth_tsu, smooth_tblu)
expect_equal(smooth_matm, smooth_xtsm)
expect_equal(smooth_tsm, smooth_tblm)
}) |
logml <- function (x, ...) {
UseMethod("logml", x)
}
logml.bridge <- function (x, ...) {
x$logml
}
logml.bridge_list <- function (x, fun = median, ...) {
out <- fun(x$logml, ...)
if (length(out) != 1) {
warning("fun returns results of length != 1, only first used.")
out <- out[1]
}
out
} |
library(rstan)
d <- read.csv('../input/data-ss2.txt')
T <- nrow(d)
data <- list(T=T, T_pred=8, Y=d$Y)
stanmodel <- stan_model(file='ex2.stan')
fit <- sampling(stanmodel, data=data, iter=4000, thin=5, seed=1234) |
source("R/DynCommMainR.R")
source("R/ALGORITHM.R")
source("R/CRITERION.R")
ALGORITHM <- list(
LOUVAIN=1L
)
CRITERION <- list(
MODULARITY=1L
)
DynCommMain <- function(Algorithm,Criterion,Parameters)
{
thisEnv <- environment()
alg <- Algorithm
qlt <- Criterion
prm <- Parameters
if(alg>=1 & alg<=10000){
dc <- new(DynCommRcpp,alg,qlt,prm)
}
else if(alg>=20001 & alg<=30000){
dc <- DynCommMainR(alg,qlt,prm)
}
else{
dc<-NULL
print("Unknown algorithm :(")
}
me <- list(
thisEnv = thisEnv,
results = function(differential=TRUE)
{
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$results(differential))
}
else{
return(matrix(nrow=0,ncol=2,byrow=TRUE,dimnames = list(c(),c("name","value"))))
}
},
addRemoveEdgesFile = function(graphAddRemoveFile){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$addRemoveEdgesFile(graphAddRemoveFile))
}
else{
return(FALSE)
}
},
addRemoveEdgesMatrix = function(graphAddRemoveMatrix){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$addRemoveEdgesMatrix(graphAddRemoveMatrix))
}
else{
return(FALSE)
}
},
quality=function(){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$quality())
}
else{
return(NA)
}
},
communityCount=function(){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$communityCount())
}
else{
return(NA)
}
},
communities=function(){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$communities())
}
else{
return(list())
}
},
communitiesEdgeCount=function() {
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$communitiesEdgeCount())
}
else{
return(NA)
}
},
communityNeighbours=function(community){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$communityNeighbours(community))
}
else{
return(matrix(nrow=0,ncol=2,byrow=TRUE,dimnames = list(c(),c("neighbour","weight"))))
}
},
communityInnerEdgesWeight=function(community){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$communityInnerEdgesWeight(community))
}
else{
return(NA)
}
},
communityTotalWeight=function(community){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$communityTotalWeight(community))
}
else{
return(NA)
}
},
communityEdgeWeight=function(source,destination){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$communityEdgeWeight(source,destination))
}
else{
return(NA)
}
},
communityVertexCount=function(community){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$communityVertexCount(community))
}
else{
return(NA)
}
},
community=function(vertex){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$community(vertex))
}
else{
return(NA)
}
},
vertexCount=function(){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$vertexCount())
}
else{
return(NA)
}
},
verticesAll=function(){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$verticesAll())
}
else{
return(list())
}
},
neighbours=function(vertex){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$neighbours(vertex))
}
else{
return(matrix(nrow=0,ncol=2,byrow=TRUE,dimnames = list(c(),c("neighbour","weight"))))
}
},
edgeWeight=function(source,destination){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$edgeWeight(source,destination))
}
else{
return(NA)
}
},
vertices=function(community){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$vertices(community))
}
else{
return(list())
}
},
edgeCount=function() {
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$edgeCount())
}
else{
return(NA)
}
},
communityMappingMatrix = function(differential=TRUE){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$communityMappingMatrix(differential))
}
else{
return(matrix(nrow=0,ncol=2,byrow=TRUE,dimnames = list(c(),c("vertex","community"))))
}
},
communityMappingFile = function(differential=TRUE,file=""){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$communityMappingFile(prm[which(prm=="cv"),2], differential,file))
}
else{
return(matrix(nrow=0,ncol=1,byrow=TRUE,dimnames = list(c(),c("reply"))))
}
},
time=function(differential=FALSE){
if((alg>=1 & alg<=10000) | (alg>=20001 & alg<=30000)){
return(dc$time(differential))
}
else{
return(NA)
}
}
)
assign('this',me,envir=thisEnv)
class(me) <- append(class(me),"DynCommMain")
return(me)
} |
engine_write = function(x, path, drivers)
{
dir <- dirname(path)
if (!dir.exists(dir)) dir.create(dir, recursive = TRUE)
if (class(x)[1] %in% names(drivers))
driver <- drivers[[class(x)[1]]]
else if (inherits(x, "LAS"))
driver <- drivers$LAS
else if (inherits(x, "stars"))
driver <- drivers$stars
else if (inherits(x, "Raster"))
driver <- drivers$Raster
else if (inherits(x, "Spatial"))
driver <- drivers$Spatial
else if (inherits(x, "sf"))
driver <- drivers$sf
else if (inherits(x, "data.frame"))
driver <- drivers$data.frame
else if (is(x, "lidr_internal_skip_write"))
return(x)
else
stop(glue::glue("Trying to write an object of class {class(x)} but this type is not supported."))
path <- paste0(path, driver$extension)
if (is_raster(x)) {
attr(path, "rasterpkg") <- raster_pkg(x)
attr(path, "layernames") <- raster_names(x)
}
driver$param[[driver$object]] <- x
driver$param[[driver$path]] <- path
do.call(driver$write, driver$param)
return(path)
}
writeSpatial = function(x, filename, overwrite = FALSE, ...)
{
filename <- normalizePath(filename, winslash = "/", mustWork = FALSE)
x <- sf::st_as_sf(x)
if (isTRUE(overwrite))
append = FALSE
else
append = NA
sf::st_write(x, filename, append = append, quiet = TRUE)
} |
context("weighted.ksvm")
test_that("weighted.ksvm fitting", {
library(kernlab)
set.seed(123)
n <- 40
x <- matrix(rnorm(n * 2), ncol = 2)
y <- 2 * (sin(x[,2]) ^ 2 * exp(-x[,2]) > rnorm(n, sd = 0.1) + 0.225) - 1
weights <- runif(n, max = 1.5, min = 0.5)
wk <- weighted.ksvm(x = x[1:n/2,], y = y[1:n/2], C = c(0.1, 0.5, 1),
weights = weights[1:n/2])
expect_is(wk, "wksvm")
pr <- predict(wk, newx = x[1:n/2,])
if (Sys.info()[[1]] != "windows")
{
wk <- weighted.ksvm(x = x[1:n/2,], y = y[1:n/2], C = 1,
weights = weights[1:n/2])
expect_is(wk, "wksvm")
}
expect_error(weighted.ksvm(x = x[1:(n/2+1),], y = y[1:n/2], C = c(10),
weights = weights[1:n/2]))
expect_error(weighted.ksvm(x = x[1:n/2,], y = y[1:n/2], C = c(0.1),
weights = weights[1:(n/2 + 1)]))
foldid <- sample(rep(seq(3), length = n/2))
if (Sys.info()[[1]] != "windows")
{
wk <- weighted.ksvm(x = x[1:n/2,], y = y[1:n/2], C = c(1, 3),
foldid = foldid,
weights = weights[1:n/2])
expect_is(wk, "wksvm")
expect_error(weighted.ksvm(x = x[1:(n/2),], y = y[1:(n/2)], C = c(0.1),
nfolds = 150,
weights = weights[1:(n/2)]))
wk <- weighted.ksvm(x = x[1:(n/2),], y = as.factor(y[1:(n/2)]), C = c(1, 3),
foldid = foldid,
weights = weights[1:(n/2)])
expect_is(wk, "wksvm")
expect_error(weighted.ksvm(x = x[1:(n/2),], y = c(1:5, y[5:(n/2)]), C = c(0.1),
weights = weights[1:(n/2)]))
wk <- weighted.ksvm(x = x[1:(n/2),], y = as.character(y[1:(n/2)]), C = c(1, 3),
foldid = foldid,
weights = weights[1:(n/2)])
expect_is(wk, "wksvm")
wk <- weighted.ksvm(x = x[1:(n/2),], y = as.factor(y[1:(n/2)]), C = c(1, 3),
foldid = foldid,
weights = weights[1:(n/2)])
expect_is(wk, "wksvm")
expect_warning(weighted.ksvm(x = x[1:(n/2),], y = as.character(y[1:(n/2)]), C = c(1, 3),
nfolds = -5,
weights = weights[1:(n/2)]))
expect_error(weighted.ksvm(x = x[1:(n/2),], y = y[1:(n/2)]/2 + 0.5, C = c(0.1),
weights = weights[1:(n/2)]))
wk <- weighted.ksvm(x = x[1:(n/2),], y = as.character(y[1:(n/2)]), C = c(1, 10),
foldid = foldid,
kernel = "polydot",
weights = weights[1:(n/2)])
expect_is(wk, "wksvm")
wk <- weighted.ksvm(x = x[1:(n/2),], y = as.factor(y[1:(n/2)]), C = c(1, 3),
foldid = foldid,
weights = weights[1:(n/2)])
expect_is(wk, "wksvm")
wk <- weighted.ksvm(x = x[1:(n/2),], y = as.character(y[1:(n/2)]), C = c(10),
foldid = foldid,
kernel = "tanhdot",
weights = rep(1, (n/2)),
margin = 0.5,
bound = 10,
maxiter = 200)
expect_is(wk, "wksvm")
wk <- weighted.ksvm(x = x[1:(n/2),], y = as.character(y[1:(n/2)]), C = c(1, 10),
foldid = foldid,
kernel = "vanilladot",
weights = weights[1:(n/2)])
expect_is(wk, "wksvm")
wk <- weighted.ksvm(x = x[1:(n/2),], y = as.character(y[1:(n/2)]), C = c(1, 10),
foldid = foldid,
kernel = "laplacedot",
weights = weights[1:(n/2)])
expect_is(wk, "wksvm")
wk <- weighted.ksvm(x = x[1:(n/2),], y = as.character(y[1:(n/2)]), C = c(1, 10),
foldid = foldid,
kernel = "besseldot",
weights = weights[1:(n/2)])
expect_is(wk, "wksvm")
wk <- weighted.ksvm(x = x[1:25,], y = as.character(y[1:25]), C = c(1, 10),
kernel = "tanhdot", maxiter = 500, bound = 10,
weights = weights[1:25])
expect_is(wk, "wksvm")
summary(wk)
wk <- weighted.ksvm(x = x[1:(n/2),], y = as.character(y[1:(n/2)]), C = c(1, 10),
foldid = foldid,
kernel = "anovadot",
weights = weights[1:(n/2)])
expect_is(wk, "wksvm")
}
}) |
setClass(
Class = "Bargaining",
contains="Bertrand",
representation=representation(
bargpowerPre = "numeric",
bargpowerPost = "numeric",
prices = "numeric",
margins = "numeric",
priceStart = "numeric"
),
prototype=prototype(
bargpowerPre = numeric(),
priceStart = numeric()
),
validity=function(object){
nprods <- length(object@prices)
if(length(object@margins) != nprods){stop("'margins' and 'prices' must have the same length")}
if(
!(all(object@margins >0,na.rm=TRUE) &&
all(object@margins <=1,na.rm=TRUE))
){
stop("elements of vector 'margins' must be between 0 and 1")
}
if(
!(all(object@bargpowerPre >=0,na.rm=TRUE) &&
all(object@bargpowerPre <=1,na.rm=TRUE))
){
stop("elements of vector 'bargpowerPre' must be between 0 and 1")
}
if(
!(all(object@bargpowerPost >=0,na.rm=TRUE) &&
all(object@bargpowerPost <=1,na.rm=TRUE))
){
stop("elements of vector 'bargpowerPost' must be between 0 and 1")
}
if(nprods != length(object@priceStart)){
stop("'priceStart' must have the same length as 'prices'")}
}
)
setClass(
Class = "BargainingLogit",
contains="Logit",
representation=representation(
bargpowerPre = "numeric",
bargpowerPost = "numeric"
),
prototype=prototype(
bargpowerPre = numeric()
),
validity=function(object){
if(
!(all(object@bargpowerPre >=0,na.rm = TRUE) &&
all(object@bargpowerPre <=1,na.rm=TRUE))
){
stop("elements of vector 'bargpowerPre' must be between 0 and 1")
}
if(
!(all(object@bargpowerPost >=0,na.rm=TRUE) &&
all(object@bargpowerPost <=1,na.rm=TRUE))
){
stop("elements of vector 'bargpowerPost' must be between 0 and 1")
}
}
) |
.update_everything <- function() {
old_opt <- .set_opt(
offline = FALSE,
verbose = TRUE
)
on.exit(options(old_opt), add = TRUE)
.parse_icd9cm_leaf_year(
year = "2014",
save_pkg_data = TRUE
)
.print_options()
.set_icd_data_dir()
.print_options()
.icd10cm_extract_sub_chapters(save_pkg_data = TRUE)
.generate_sysdata()
load(file.path("R", "sysdata.rda"))
.generate_spelling()
message("Parsing comorbidity mappings from SAS and text sources.
(Make sure lookup files are updated first.)
Depends on icd9cm_hierarchy being updated.")
icd9_parse_ahrq_sas(save_pkg_data = TRUE)
icd9_parse_quan_deyo_sas(save_pkg_data = TRUE)
.parse_icd9cm_cc(save_pkg_data = TRUE)
icd9_parse_ahrq_ccs(single = TRUE, save_pkg_data = TRUE)
icd9_parse_ahrq_ccs(single = FALSE, save_pkg_data = TRUE)
icd10_parse_ahrq_ccs(version = "2018.1", save_pkg_data = TRUE)
icd9_generate_map_quan_elix(save_pkg_data = TRUE)
icd9_generate_map_elix(save_pkg_data = TRUE)
.parse_icd10cm_all(save_pkg_data = TRUE)
icd10_parse_ahrq_sas(save_pkg_data = TRUE)
.parse_icd10cm_cc(save_pkg_data = TRUE)
icd10_generate_map_quan_elix(save_pkg_data = TRUE)
icd10_generate_map_quan_deyo(save_pkg_data = TRUE)
icd10_generate_map_elix(save_pkg_data = TRUE)
generate_maps_pccc(save_pkg_data = TRUE)
icd10_parse_map_ahrq_pc(save_pkg_data = TRUE)
.parse_cc_hierarchy(save_pkg_data = TRUE)
icd9cm2014_leaf <- get_icd9cm2014_leaf()
.save_in_data_dir(icd9cm2014_leaf)
icd10cm2019 <- .parse_icd10cm_year(2019)
.save_in_data_dir(icd10cm2019)
icd9cm_hierarchy <- get_icd9cm2014()
names(icd9cm_hierarchy)[names(icd9cm_hierarchy) == "leaf"] <- "billable"
.save_in_data_dir(icd9cm_hierarchy)
}
.generate_sysdata <- function(save_pkg_data = TRUE) {
path <- file.path("R", "sysdata.rda")
icd9_short_n <- icd9_generate_all_n()
icd9_short_v <- icd9_generate_all_v()
icd9_short_e <- icd9_generate_all_e()
codes <- icd9cm_hierarchy[["code"]]
icd9_short_n_defined <- vec_to_lookup_pair(grep("^[^VE]+", codes, perl = TRUE, value = TRUE))
icd9_short_v_defined <- vec_to_lookup_pair(grep("^V", codes, perl = TRUE, value = TRUE))
icd9_short_e_defined <- vec_to_lookup_pair(grep("^E", codes, perl = TRUE, value = TRUE))
icd9_short_n_leaf <- vec_to_lookup_pair(get_billable.icd10cm(
icd9_short_n_defined$vec,
short_code = TRUE, icd9cm_edition = "32"
))
icd9_short_v_leaf <- vec_to_lookup_pair(get_billable.icd10cm(
icd9_short_v_defined$vec,
short_code = TRUE, icd9cm_edition = "32"
))
icd9_short_e_leaf <- vec_to_lookup_pair(get_billable.icd10cm(
icd9_short_e_defined$vec,
short_code = TRUE, icd9cm_edition = "32"
))
stopifnot(length(icd9_short_n$vec) == length(icd9_short_n$env))
stopifnot(length(icd9_short_v$vec) == length(icd9_short_v$env))
stopifnot(length(icd9_short_e$vec) == length(icd9_short_e$env))
stopifnot(length(icd9_short_n_leaf$vec) == length(icd9_short_n_leaf$env))
stopifnot(length(icd9_short_v_leaf$vec) == length(icd9_short_v_leaf$env))
stopifnot(length(icd9_short_e_leaf$vec) == length(icd9_short_e_leaf$env))
icd9_short_e
icd9_short_n_leaf
icd9_short_v_leaf
icd9_short_e_leaf
sysdata_names <- c(
"icd9_short_n",
"icd9_short_v",
"icd9_short_e",
"icd9_short_n_defined",
"icd9_short_v_defined",
"icd9_short_e_defined",
"icd9_short_n_leaf",
"icd9_short_v_leaf",
"icd9_short_e_leaf"
)
if (save_pkg_data) {
save(
list = sysdata_names,
file = path,
compress = "xz",
version = 2
)
}
invisible(mget(sysdata_names))
}
icd9_generate_all_major_n <- function() {
sprintf("%03d", 1:999)
}
icd9_generate_all_major_v <- function() {
sprintf("V%02d", 1:99)
}
icd9_generate_all_major_e <- function() {
sprintf("E%03d", 0:999)
}
icd9_generate_all_n <- function(...) {
icd9_generate_all_(major_fun = icd9_generate_all_major_n, ...)
}
icd9_generate_all_v <- function(...) {
icd9_generate_all_(major_fun = icd9_generate_all_major_v, ...)
}
icd9_generate_all_e <- function(...) {
icd9_generate_all_(major_fun = icd9_generate_all_major_e, ...)
}
icd9_generate_all_ <- function(major_fun,
short_code = TRUE,
env = new.env(hash = TRUE, baseenv())) {
vec <- character()
for (i in major_fun()) {
kids <- children.icd9(i, short_code = short_code, defined = FALSE)
vec <- c(vec, kids)
}
vec_to_env_count(vec, env = env)
invisible(list(env = env, vec = env_to_vec_flip(env)))
} |
context("test-left_join")
setup({
setup_disk.frame(2)
a = data.frame(a = 1:100, b = 1:100)
b = data.frame(a = 51:150, b = 1:100)
d = data.frame(a = 1:50, b = 1:50)
as.disk.frame(a, file.path(tempdir(), "tmp_a_lj.df"), nchunks = 4, overwrite = T)
as.disk.frame(b, file.path(tempdir(), "tmp_b_lj.df"), nchunks = 5, overwrite = T)
as.disk.frame(d, file.path(tempdir(), "tmp_d_lj.df"), overwrite = T)
as.disk.frame(a, file.path(tempdir(), "tmp_a_lj2.df"), nchunks = 4, overwrite = T)
as.disk.frame(b, file.path(tempdir(), "tmp_b_lj2.df"), nchunks = 5, overwrite = T)
as.disk.frame(d, file.path(tempdir(), "tmp_d_lj2.df"), overwrite = T)
})
test_that("testing left_join where right is data.frame", {
a = disk.frame(file.path(tempdir(), "tmp_a_lj.df"))
b = disk.frame(file.path(tempdir(), "tmp_b_lj.df"))
d = disk.frame(file.path(tempdir(), "tmp_d_lj.df"))
bc = collect(b)
dc = collect(d)
abc = left_join(a, bc, by = "a") %>% collect
expect_equal(nrow(abc), 100)
abc0 = left_join(a, bc, by = c("a","b")) %>% collect
expect_equal(nrow(abc0), 100)
by_cols = c("a","b")
abc0 = left_join(a, bc, by = by_cols) %>% collect
expect_equal(nrow(abc0), 100)
abc100 = left_join(a, bc, by = "b") %>% collect
expect_equal(nrow(abc100), 100)
abd50 = left_join(a, dc, by = "b") %>% collect
expect_equal(nrow(abd50), 100)
})
test_that("testing left_join where right is disk.frame", {
a = disk.frame(file.path(tempdir(), "tmp_a_lj2.df"))
b = disk.frame(file.path(tempdir(), "tmp_b_lj2.df"))
d = disk.frame(file.path(tempdir(), "tmp_d_lj2.df"))
expect_warning({
ab = left_join(a, b, by = "a", merge_by_chunk_id = F) %>% collect
})
expect_equal(nrow(ab), 100)
expect_warning({
ab0 = left_join(a, b, by = c("a","b"), merge_by_chunk_id = F) %>% collect
})
expect_equal(nrow(ab0), 100)
expect_warning({
ab100 = left_join(a, b, by = "b", merge_by_chunk_id = F) %>% collect
})
expect_equal(nrow(ab100), 100)
expect_warning({
ad50 = left_join(a, d, by = "b", merge_by_chunk_id = F) %>% collect
})
expect_equal(nrow(ad50), 100)
})
teardown({
fs::dir_delete(file.path(tempdir(), "tmp_a_lj.df"))
fs::dir_delete(file.path(tempdir(), "tmp_b_lj.df"))
fs::dir_delete(file.path(tempdir(), "tmp_d_lj.df"))
fs::dir_delete(file.path(tempdir(), "tmp_a_lj2.df"))
fs::dir_delete(file.path(tempdir(), "tmp_b_lj2.df"))
fs::dir_delete(file.path(tempdir(), "tmp_d_lj2.df"))
}) |
library(shiny)
ui = fluidPage(
titlePanel("Example Shiny App"),
sidebarLayout(
sidebarPanel(
selectInput(
inputId = "dataset",
label = "Choose a dataset",
choices = c("rock", "pressure", "cars", "iris")),
numericInput(
inputId = "obs",
label = "Number of observations to view:",
value = 10)
),
mainPanel(
tags$div(sprintf("Global Variable Value: %s", GLOBAL_VAR)),
verbatimTextOutput("commandArgs"),
verbatimTextOutput("dataSummary"),
tableOutput("dataView")
)
)
) |
`dixon2002` <-
function (datos, nsim = 99)
{
datos <- as.matrix(datos)
info = mNNinfo(xy = datos[, 1:2], label = datos[, 3])
datos.test = mNNtest(info)
Ni = rowSums(info$ON)
S = log10((info$ON/(Ni - info$ON))/(info$EN/(Ni - info$EN)))
ON = info$ON
EN = info$EN
Z = datos.test$Z
Z.obs = Z
pZas = 2 * (ifelse(Z >= 0, 1 - pnorm(Z), pnorm(Z)))
C = datos.test$C[1]
C.obs = C
Ci = datos.test$Ci[, 1]
Ci.obs = Ci
pCas = datos.test$C[2]
pCias = datos.test$Ci[, 2]
pZr = NULL
pCr = NULL
pCir = NULL
SN = as.vector(t(ON))
if (nsim > 0) {
for (i in 1:nsim) {
print(i)
datos[, 3] = sample(datos[, 3])
info = mNNinfo(xy = datos[, 1:2], label = datos[,
3])
datos.test = mNNtest(info)
Z = cbind(Z, datos.test$Z)
C = c(C, datos.test$C[1])
Ci = cbind(Ci, datos.test$Ci[, 1])
SN <-cbind(SN, as.vector(t(info$ON)))
}
pNr = apply(SN, 1, p2colasr)
pCr = 1 - rank(C)[1]/(length(C))
pCir = apply(Ci, 1, function(x) 1 - rank(x)[1]/(length(x)))
}
St = as.data.frame(as.table(round(S, 2)))
ONt = as.data.frame(as.table(ON))
ENt = as.data.frame(as.table(round(EN, 2)))
Zt = round(datos.test$Z, 2)
round(pZas, 4)
tableZ = cbind(ONt[order(ONt[, 1]), ], ENt[order(ENt[, 1]),
3], St[order(St[, 1]), 3], round(Z.obs, 2), round(pZas,
4))
names(tableZ) = c("From", "To", " Obs.Count", " Exp. Count",
"S ", "Z ", " p-val.as")
if (length(pNr) != 0) {
tableZ = cbind(tableZ, round(pNr, 4))
names(tableZ) = c(names(tableZ)[-8], " p-val.Nobs")
}
rownames(tableZ) = NULL
k = length(unique(datos[, 3]))
df = c(k * (k - 1), rep(k - 1, k))
nombres.test = c("Overall segregation", paste("From ", dimnames(EN)[[1]],
" "))
tablaC = data.frame(cbind(df, round(c(C.obs, Ci.obs), 2),
round(c(pCas, pCias), 4)))
row.names(tablaC) = nombres.test
names(tablaC) = c(" df ", "Chi-sq", "P.asymp")
if (length(pCir) != 0) {
tablaC = cbind(tablaC, round(c(pCr, pCir), 4))
names(tablaC) = c(names(tablaC)[-4], " P.rand")
}
return(list(ON = ON, EN = EN, Z = Z.obs, S = S, pZas = pZas,
pNr = pNr, C = C.obs, Ci = Ci.obs, pCas = pCas, pCias = pCias,
pCr = pCr, pCir = pCir, tablaZ = tableZ, tablaC = tablaC))
} |
NULL
"eight_schools" |
opt.landgen <- function(landscape, nlocations, mindist=0, fixed = NULL, method, NN=8, iter =100, retry=10, mask=NULL, plot=TRUE)
{
scenario <- list()
opt <- data.frame(sd.cost=NA, sd.detour=NA)
if (!is.null(fixed))
{
specified <- nrow(fixed)
} else specified = 0
nadd <- nlocations - specified
if (is.na(crs(landscape))) crs(landscape) <-"+proj=merc +units=m"
for (it in 1:iter)
{
r1 <-landscape
values(r1) <- NA
if (!is.null(mask))
{
r1 <- mask
values(r1)<- ifelse(is.na(values(r1)),1,NA)
}
retryc <- retry
if (mindist==0) {
r1inv <- r1
values(r1inv) <- ifelse(is.na(values(r1inv)),1,NA)
rp<-coordinates(as(r1inv,"SpatialPointsDataFrame") )
choosep <- sample(1:nrow(rp),nadd)
xs <- rp[choosep,1]
ys <- rp[choosep,2]
}
if (mindist>0)
{
if (!is.null(fixed))
{
rd <- rasterize(fixed, r1,1)
rd <- buffer(rd, mindist)
r1 <- sum(r1,rd, na.rm=T)
values(r1) <- ifelse(values(r1)>0,1,NA)
}
left <- sum(is.na(values(r1)))
if (left==0) {cat("There is no area left to place the required number of locations after placing the fixed locations. Reduce mindist or the amount of fixed locations.\n"); stop()}
xc <- NA
yc <- NA
i <- 1
rback <- r1
while (i<=nadd)
{
r1inv <- r1
values(r1inv) <- ifelse(is.na(values(r1inv)),1,NA)
rp<-coordinates(as(r1inv,"SpatialPointsDataFrame") )
choosep <- sample(1:nrow(rp),1)
xs <- rp[choosep,1]
ys <- rp[choosep,2]
xc[i] <- xs
yc[i] <- ys
i <- i+1
rd <- rasterize(cbind(xs,ys), r1,1)
rd <- buffer(rd, mindist)
r1 <- sum(r1,rd, na.rm=T)
values(r1) <- ifelse(values(r1)>0,1,NA)
left <- sum(is.na(values(r1)))
if (left==0 & i<=nadd)
{
retryc <- retryc - 1
cat(paste("No area left after ",i,"points at iteration",it,". I go back and try again.", retryc, "retries left...\n"))
i <- 1
r1 <- rback
if (retryc<1) {stop("Could not find any good combination, reduce mindist or increase retry or reduce number of fixed locations.\n")}
}
}
xs <- xc
ys <- yc
}
locs <- cbind(xs,ys)
rownames(locs) <- LETTERS[1:nadd]
locs <- rbind(fixed, locs)
cost.mat <- costdistances(landscape, locs, method, NN)
eucl.mat <- as.matrix(dist(locs))
sd.cost <- sd(as.dist(cost.mat))
sd.detour = sd(resid(lm(as.dist(cost.mat)~as.dist( eucl.mat))))
opt[it,] <-c(sd.cost, sd.detour)
scenario[[it]] <- locs
}
if (plot)
{
op <- par(mfrow=c(2,2), mai=c(0.5,0.5,0.2,0.2))
opt.val <- which.max(opt$sd.detour)
locs.opt <- scenario[[opt.val]]
locs <- locs.opt
cost.mat <- costdistances(landscape, locs, method, NN)
eucl.mat <- as.matrix(dist(locs))
detour = resid(lm(as.dist(cost.mat)~as.dist( eucl.mat)))
hist(detour, main="Distrubtion of detour", col="darkgreen")
plot(ecdf(opt$sd.detour), main="Cummulative Density of sd.detour")
abline(v=opt[opt.val,"sd.detour"] ,col="blue")
opt.val <- which.max(opt$sd.detour)
locs.opt <- scenario[[opt.val]]
locs <- locs.opt
plot(landscape, main=paste("best:",round(opt[opt.val,"sd.detour"],2) ))
points(locs[,1], locs[,2], pch=16, cex=1.2, col=c(rep("blue", specified), rep("black", nadd)))
text(locs[,1],locs[,2], row.names(locs), cex=1)
opt.val <- which.min(opt$sd.detour)
locs.opt <- scenario[[opt.val]]
locs <- locs.opt
plot(landscape, main=paste("worst:",round(opt[opt.val,"sd.detour"],2) ))
points(locs[,1], locs[,2], pch=16, cex=1.2, col=c(rep("blue", specified), rep("black", nadd)))
text(locs[,1],locs[,2], row.names(locs), cex=1)
par(op)
}
ord <- order(opt$sd.detour, decreasing = TRUE)
return(list(opt=opt[ord,], scenario = scenario[ord]))
} |
expand_list = function(x, max = 5) {
max = max - 1
N = names(x)
ans = lapply(x, FUN=function(n) {
foo = attributes(n)
bar = (names(foo) == "names")
if((length(n) == 0) | (max < 0)) return(foo)
c(foo[!bar], expand_list(n[bar], max = max))
})
names(ans) <- N
return(ans)
}
escape_entities = function(text) {
text = gsub("&", "&", text)
text = gsub(">", ">", text)
text = gsub("<", "<", text)
text = gsub("'", "'", text)
gsub('"', '"', text)
}
to_list_node = function(x, max = 5) {
expand_list(xml2::as_list(x), max = max)
}
to_xml_list = function(x, name, kids, indent = " ", escape = "\n") {
name = as.character(name); assert(name, len = 1, typ = "character")
N = names(x)
if(length(N)==0 & missing(kids)) {
return(sprintf("<%s>%s</%s>", name, x, name))
}
node = do.call(paste0, args = c(list(collapse = " ", lapply(1:length(x), FUN=function(i) sprintf('%s="%s"',N[i],x[[i]])))))
if(missing(kids)) {
return(sprintf("<%s %s />", name, node))
} else {
K = lapply(kids, FUN =function(k) paste0(indent, k, escape))
return(sprintf("<%s %s>%s%s</%s>", name, node, escape, paste0(K, collapse=""), name))
}
}
xml_new_node <- function(name, attrs, .children, text, ...) {
tmp <- xml_new_root("foo")
if(!missing(text) & !missing(attrs)) stop("should be either a 'text' node or a 'attr' node")
tmp %>% xml_add_child(.value = name)
node <- xml_find_first(tmp, xpath = name)
if(!missing(text)) {
node %>% xml_set_text(value = text)
}
if(!missing(attrs)) {
node %>% xml_set_attrs(value = attrs)
}
if(!missing(.children)) {
if(any(class(.children) == "xml_node")) {
node %>% xml_add_child(.value = .children)
} else {
L = length(.children)
first <- node %>% xml_add_child(.value = "")
for(i in 1:L) {
first %>% xml_add_sibling(.value = .children[[i]], .where = "before")
}
xml_remove(first)
}
}
return(node)
} |
calc_si = function(TMAX,TMIN,lat,missingcalc="mean"){
if(is.matrix(TMAX)==FALSE | is.matrix(TMIN)==FALSE){
stop("TMAX or TMIN are not matrices",.call=TRUE)
}
if(is.numeric(TMAX)==FALSE | is.numeric(TMIN)==FALSE | is.numeric(lat)==FALSE){
stop("TMAX, TMIN, or lat are not numeric",.call=TRUE)
}
if(all(TMAX[which(is.na(TMAX)==FALSE)]>200)==TRUE & all(TMIN[which(is.na(TMIN)==FALSE)]>200)==TRUE){
warning("TMAX and TMIN appear to be in degrees K, so I converted them to degrees F")
TMAX = (TMAX-273.15)*9/5+32
TMIN = (TMIN-273.15)*9/5+32
}
baset = 31
frzval = 28
FLImat = FBImat = DMGmat = matrix(NA,nrow=ncol(TMAX),ncol=4)
FSmat = matrix(NA,nrow=ncol(TMAX),ncol=2)
lastfreeze = c()
for(i in 1:ncol(TMAX)){
tasmax = as.vector(TMAX[,i])
tasmin = as.vector(TMIN[,i])
if(missingcalc=="mean"){
message("using monthly mean to impute missing values")
for(x in seq(1,211,by=30)){
start = x
end = x+29
flagm = 0
tmaxNAidx = which(is.na(tasmax[start:end])==TRUE)
tminNAidx = which(is.na(tasmin[start:end])==TRUE)
cntmax = length(tasmax[start:end])-length(tmaxNAidx)
cntmin = length(tasmin[start:end])-length(tminNAidx)
tmax = tasmax[start:end]
tmin = tasmin[start:end]
idx = start:end
if(length(tmaxNAidx)>0){
avgmax = mean(tmax[-tmaxNAidx])
tasmax[idx[tmaxNAidx]]=avgmax
}
if(length(tminNAidx)>0){
avgmin = mean(tmin[-tminNAidx])
tasmin[idx[tminNAidx]]=avgmin
}
if(cntmax < 20 | cntmin <20) flagm = 1
if(flagm == 1){
warning(paste("There is a lot of missing data in TMAX and TMIN for column ",i,sep=""))
}
}
}
if(missingcalc=="loess"){
message("using loess to impute missing values")
tstart = -(nrow(TMAX)/2):0
tstartuse = 1:184
t=1:nrow(TMAX)
tend = seq(367,by=1,length.out=184)
tenduse = seq(366,by=-1,length.out=184)
tenduse = tenduse[order(tenduse)]
tstring = c(tstart,t,tend)
if(i==1){
tmaxseries = c(TMAX[tenduse,i],tasmax,TMAX[tstartuse,(i+1)])
tminseries = c(TMIN[tenduse,i],tasmin,TMIN[tstartuse,(i+1)])
}
if(i>1 & i<ncol(TMAX)){
tmaxseries = c(TMAX[tenduse,(i-1)],tasmax,TMAX[tstartuse,(i+1)])
tminseries = c(TMIN[tenduse,(i-1)],tasmin,TMIN[tstartuse,(i+1)])
}
if(i==ncol(TMAX)){
tmaxseries = c(TMAX[tenduse,(i-1)],tasmax,TMAX[tstartuse,(i-1)])
tminseries = c(TMIN[tenduse,(i-1)],tasmin,TMIN[tstartuse,(i-1)])
}
notNAidx = which(is.na(tmaxseries)==FALSE)
isNAidx = which(is.na(tmaxseries)==TRUE)
loessfit = loess(tmaxseries[notNAidx]~tstring[notNAidx],span=0.03)
tmaxseries[isNAidx] = predict(loessfit,newdata=tstring[isNAidx])
tasmax = tmaxseries[which(tstring>=1 & tstring<=366)]
notNAidx = which(is.na(tminseries)==FALSE)
isNAidx = which(is.na(tminseries)==TRUE)
loessfit = loess(tminseries[notNAidx]~tstring[notNAidx],span=0.03)
tminseries[isNAidx] = predict(loessfit,newdata=tstring[isNAidx])
tasmin = tminseries[which(tstring>=1 & tstring<=366)]
check1idx = which(is.na(tasmax[1:31])==TRUE)
if(length(check1idx)>0){
tasmax[check1idx] = mean(tasmax[1:31],na.rm=TRUE)
}
check1idx = which(is.na(tasmin[1:31])==TRUE)
if(length(check1idx)>0){
tasmin[check1idx] = mean(tasmin[1:31],na.rm=TRUE)
}
if(is.na(tasmax[length(tasmax)])==TRUE){
tasmax[length(tasmax)] = tasmax[(length(tasmax)-1)]
}
if(is.na(tasmin[length(tasmin)])==TRUE){
tasmin[length(tasmin)] = tasmin[(length(tasmin)-1)]
}
if(any(is.na(tasmax)==TRUE)==TRUE){
message("Still has missing values in tasmax")
print(tasmax)
}
if(any(is.na(tasmin)==TRUE)==TRUE){
message("Still has missing values in tasmin")
print(tasmin)
}
}
DOY = 1:length(tasmax)
daystop = max(DOY)
dlen = daylength(daystop,lat=lat)
FLImat[i,2] = leafindex(tasmax=tasmax,tasmin=tasmin,daylen=dlen,baset=baset,refdate=1,type="leaf",plant=1)
FLImat[i,3] = leafindex(tasmax=tasmax,tasmin=tasmin,daylen=dlen,baset=baset,refdate=1,type="leaf",plant=2)
FLImat[i,4] = leafindex(tasmax=tasmax,tasmin=tasmin,daylen=dlen,baset=baset,refdate=1,type="leaf",plant=3)
FLImat[i,1] = round(mean(FLImat[i,2:4],na.rm=TRUE))
if(is.na(FLImat[i,2])==FALSE){FBImat[i,2] = leafindex(tasmax=tasmax,tasmin=tasmin,daylen=dlen,baset=baset,refdate=FLImat[i,2],type="bloom",plant=1)}
if(is.na(FLImat[i,3])==FALSE){FBImat[i,3] = leafindex(tasmax=tasmax,tasmin=tasmin,daylen=dlen,baset=baset,refdate=FLImat[i,3],type="bloom",plant=2)}
if(is.na(FLImat[i,4])==FALSE){FBImat[i,4] = leafindex(tasmax=tasmax,tasmin=tasmin,daylen=dlen,baset=baset,refdate=FLImat[i,4],type="bloom",plant=3)}
FBImat[i,1] = round(mean(FBImat[i,2:4],na.rm=TRUE))
freezeinfo = freezedates(tasmin=tasmin,frzval=frzval,DOY=DOY)
lastfreeze[i] = freezeinfo$lastfreeze
freezedata = subset(freezeinfo[[4]],DOY>=1 & DOY<=180)
if(is.na(lastfreeze[i])==FALSE){
if(is.na(FLImat[i,2])==FALSE){DMGmat[i,2] = damageindex(leafidx=FLImat[i,2],lastfreeze=freezeinfo$lastfreeze)}
if(is.na(FLImat[i,3])==FALSE){DMGmat[i,3] = damageindex(leafidx=FLImat[i,3],lastfreeze=freezeinfo$lastfreeze)}
if(is.na(FLImat[i,4])==FALSE){DMGmat[i,4] = damageindex(leafidx=FLImat[i,4],lastfreeze=freezeinfo$lastfreeze)}
DMGmat[i,1] = round(mean(DMGmat[i,2:4],na.rm=TRUE))
fs = falsesprings(SI=c(FLImat[i,1],FBImat[i,1]),freezedata = freezedata)
FSmat[i,1] = fs$EFS
FSmat[i,2] = fs$LFS
} else {
message("Freeze didn't happen this year, so no damage or false springs")
DMGmat[i,1:4] = 0
FSmat[i,1:2] = 0
}
}
FSEImat = apply(FSmat,2,FSEI)
list(FLImat=FLImat,FBImat=FBImat,DMGmat=DMGmat,lastfreeze=lastfreeze,FSmat=FSmat,FSEImat=FSEImat)
}
soldec = function(DOY){
decvals=c(-23.16,-23.08,-23,-22.92,-22.83,-22.73,-22.62,-22.5,-22.38,-22.24,-22.11,-21.96,-21.81,-21.65,-21.48,-21.31,-21.13,-20.94,
-20.75,-20.55,-20.34,-20.13,-19.91,-19.68,-19.45,-19.21,-18.97,-18.72,-18.46,-18.2,-17.94,-17.68,-17.39,-17.11,-16.83,-16.53,-16.23,
-15.93,-15.62,-15.31,-15,-14.68,-14.36,-14.03,-13.7,-13.36,-13.03,-12.68,-12.34,-11.99,-11.64,-11.28,-10.93,-10.57,-10.2,-9.84,-9.47,
-9.1,-8.73,-8.35,-7.98,-7.6,-7.22,-6.83,-6.45,-6.06,-5.68,-5.29,-4.9,-4.51,-4.12,-3.72,-3.33,-2.93,-2.54,-2.15,-1.75,-1.36,-0.97,-0.57,
-0.17,0.22,0.62,1.01,1.41,1.8,2.19,2.58,2.98,3.37,3.76,4.14,4.53,4.92,5.3,5.68,6.06,6.44,6.82,7.19,7.57,7.94,8.31,8.67,9.04,9.4,9.76,
10.11,10.47,10.82,11.16,11.51,11.85,12.19,12.52,12.85,13.18,13.5,13.83,14.14,14.45,14.76,15.07,15.37,15.67,15.95,16.24,16.53,16.81,17.08,
17.35,17.61,17.87,18.13,18.38,18.62,18.87,19.09,19.32,19.54,19.76,19.97,20.18,20.38,20.57,20.76,20.94,21.12,21.29,21.46,21.61,21.77,21.91,
22.05,22.18,22.31,22.43,22.54,22.65,22.75,22.84,22.93,23.01,23.08,23.15,23.21,23.26,23.31,23.35,23.38,23.41,23.43,23.44,23.44,23.43,23.41,
23.38,23.35,23.31,23.26,23.21,23.15,23.08,23.01,22.93,22.84,22.75,22.65,22.54,22.43,22.31,22.18,22.05,21.91,21.77,21.61,21.46,21.29,21.12,
20.94,20.76,20.57,20.38,20.18,19.97,19.76,19.54,19.32,19.09,18.87,18.62,18.38,18.13,17.87,17.61,17.35,17.08,16.81,16.53,16.24,15.95,15.67,
15.37,15.07,14.76,14.45,14.14,13.83,13.5,13.18,12.85,12.52,12.19,11.85,11.51,11.16,10.82,10.47,10.11,9.76,9.4,9.04,8.67,8.31,7.94,7.57,7.19,
6.82,6.44,6.06,5.68,5.3,4.92,4.53,4.14,3.76,3.37,2.98,2.58,2.19,1.8,1.41,1.01,0.62,0.22,-0.17,-0.57,-0.97,-1.36,-1.75,-2.15,-2.54,-2.93,-3.33,
-3.72,-4.12,-4.51,-4.9,-5.29,-5.68,-6.06,-6.45,-6.83,-7.22,-7.6,-7.98,-8.35,-8.73,-9.1,-9.47,-9.84,-10.2,-10.57,-10.93,-11.28,-11.64,-11.99,-12.34,
-12.68,-13.03,-13.36,-13.7,-14.03,-14.36,-14.68,-15,-15.31,-15.62,-15.93,-16.23,-16.53,-16.83,-17.11,-17.39,-17.68,-17.94,-18.2,-18.46,-18.72,-18.97,
-19.21,-19.45,-19.68,-19.91,-20.13,-20.34,-20.55,-20.75,-20.94,-21.13,-21.31,-21.48,-21.65,-21.81,-21.96,-22.11,-22.24,-22.38,-22.5,-22.62,-22.73,
-22.83,-22.92,-23,-23.08,-23.16,-23.23,-23.29,-23.34,-23.38,-23.42,-23.45,-23.47,-23.48,-23.49,-23.5,-23.5,-23.49,-23.48,-23.47,-23.45,-23.42,
-23.38,-23.34,-23.29,-23.23)
dayvals = c(307:366,1:306)
dayvals[DOY]
}
daylength = function(daystop,lat){
DAYLEN = c()
for(i in 1:daystop){
if(lat < 40){
DLL = 12.14+3.34*tan(lat*pi/180)*cos(0.0172*soldec(i)-1.95)
} else {
DLL = 12.25 + (1.6164+1.7643*(tan(lat*pi/180))^2)*cos(0.0172*soldec(i)-1.95)
}
if(DLL < 1) DLL=1
if(DLL> 23) DLL = 23
DAYLEN[i]=DLL
}
DAYLEN
}
chillh = function(tmax,tmin,daylen,baset){
DTR = tmax-tmin
IDL = floor(daylen)
Thr = c()
Thr[1] = tmin
Thr[2:(IDL+1)]=DTR*sin(pi/(daylen+4)*(1:IDL))+tmin
TS1 = DTR*sin(pi/(daylen+4)*daylen)+tmin
if(TS1 <=0) TS1 = 0.01
Thr[(IDL+2):24] = TS1-(TS1-tmin)/(log(24-daylen))*log((1:(23-IDL)))
CHRS = baset-Thr
CHRSflag = ifelse(CHRS<0,0,1)
CHOUR = sum(CHRSflag)
CHOUR
}
chilldate = function(tasmax,tasmin,DOY,daylen,baset,plant=1){
chillframe = data.frame(tasmax,tasmin,daylen,DOY)
if(nrow(chillframe)==365){
chillframe$DOYadj = ifelse(DOY<=180,DOY+185,DOY-180)
} else {
chillframe$DOYadj = ifelse(DOY<=180,DOY+186,DOY-180)
}
chillframe = chillframe[order(chillframe$DOYadj),]
chillframe$CH = NA
chillframe$ACH = NA
for(i in 1:nrow(chillframe)){
chillframe$CH[i] = chillh(chillframe$tasmax[i],chillframe$tasmin[i],chillframe$daylen[i],baset=baset)
if(i==1) chillframe$ACH[i]=chillframe$CH[i]
if(i>1) chillframe$ACH[i]=chillframe$ACH[(i-1)]+chillframe$CH[i]
}
if(plant==1) chillidx = which(chillframe$ACH >= 1375)
if(plant==2 | plant==3) chillidx = which(chillframe$ACH >= 1250)
chillDOY = chillframe$DOY[chillidx[1]]
chillDOY
}
growdh = function(tmax,tmin,daylen,baset){
if(tmin==0) tmin=0.01
if(tmax==tmin) tmax=tmax+0.01
DTR = tmax-tmin
IDL = floor(daylen)
Thr = c()
Thr[1] = tmin
Thr[2:(IDL+1)]=DTR*sin(pi/(daylen+4)*(1:IDL))+tmin
TS1 = DTR*sin(pi/(daylen+4)*daylen)+tmin
if(TS1 <=0) TS1 = 0.01
Thr[(IDL+2):24] = TS1-(TS1-tmin)/(log(24-daylen))*log((1:(23-IDL)))
GHRS = Thr-baset
GHRS = ifelse(GHRS<0,0,GHRS)
GDHOUR = sum(GHRS)
GDHOUR
}
synval = function(GDH,lagGDH,type="leaf"){
SYNFLAG=0
if(type == "leaf") LIMIT=637
if(type == "bloom") LIMIT=2001
if(type != "leaf" & type !="bloom") stop("Improper event type",.call=TRUE)
VALUE=GDH+lagGDH[1]+lagGDH[2]
if(VALUE >= LIMIT){
SYNFLAG=1
} else {
SNYFLAG=0
}
DDE2=GDH+lagGDH[1]+lagGDH[2]
DD57=sum(lagGDH[5:7])
output = list(synflag = SYNFLAG,ddE2=DDE2,dd57=DD57)
output
}
leafindex = function(tasmax,tasmin,daylen,baset,refdate,type="leaf",plant=1, verbose=FALSE){
ID2 = refdate
daymax = 240
Eflag = 0
AGDH = 0
SYNOP = 0
CNT = refdate-1
lagGDH = rep(0,7)
Alf=list(c(3.306,13.878,0.201,0.153),c(4.266,20.899,0.000,0.248),c(2.802,21.433,0.266,0.000))
Alb=list(c(-23.934,0.116),c(-24.825,0.127),c(-11.368,0.096))
parametersout = matrix(NA,nrow=366,ncol=6)
lagGDHvals = matrix(NA,nrow=366,ncol=7)
while(CNT<daymax & Eflag==0){
CNT = CNT+1
GDH = growdh(tasmax[CNT],tasmin[CNT],daylen[CNT],baset)
if(CNT==1 & type=="leaf"){
lagGDH[1] = GDH
lagGDH[2] = GDH
}
lagGDHvals[CNT,] = lagGDH
synlist = synval(GDH,lagGDH,type=type)
if(CNT>=refdate){
AGDH = GDH+AGDH
if(synlist[[1]]==1) SYNOP=SYNOP+1
}
if(CNT>=refdate){
MDS0 = CNT-refdate
parametersout[CNT,1] = MDS0
parametersout[CNT,2] = SYNOP
parametersout[CNT,3] = synlist[[2]]
parametersout[CNT,4] = synlist[[3]]
parametersout[CNT,5] = AGDH
parametersout[CNT,6] = GDH
if(type=="leaf"){
if(plant==1) MDSUM1=(Alf[[1]][1]*MDS0)+(Alf[[1]][2]*SYNOP)+(Alf[[1]][3]*synlist[[2]])+(Alf[[1]][4]*synlist[[3]])
if(plant==2) MDSUM1=(Alf[[2]][1]*MDS0)+(Alf[[2]][2]*SYNOP)+(Alf[[2]][3]*synlist[[2]])+(Alf[[2]][4]*synlist[[3]])
if(plant==3) MDSUM1=(Alf[[3]][1]*MDS0)+(Alf[[3]][2]*SYNOP)+(Alf[[3]][3]*synlist[[2]])+(Alf[[3]][4]*synlist[[3]])
}
if(type=="bloom"){
if(plant==1) MDSUM1=(Alb[[1]][1]*MDS0)+(Alb[[1]][2]*AGDH)
if(plant==2) MDSUM1=(Alb[[2]][1]*MDS0)+(Alb[[2]][2]*AGDH)
if(plant==3) MDSUM1=(Alb[[3]][1]*MDS0)+(Alb[[3]][2]*AGDH)
}
} else {
MDSUM1 = 1
}
if(MDSUM1>=999.5 & Eflag==0){
if(type=="leaf"){
if(plant==1 | plant==3) OUTDOY = CNT
if(plant==2) OUTDOY = CNT+1
}
if(type=="bloom"){
OUTDOY = CNT
}
Eflag=1
}
lagGDH[2:7]=lagGDH[1:6]
lagGDH[1] = GDH
}
if(CNT>=daymax){
OUTDOY=NA
}
if(verbose==TRUE){
list(OUTDOY=round(OUTDOY),parameters=parametersout,lagGDHvals = lagGDHvals)
} else {
round(OUTDOY)
}
}
freezedates = function(tasmin,frzval,DOY){
frzframe = data.frame(tasmin,DOY)
if(nrow(frzframe)==365){
frzframe$DOYadj = ifelse(DOY<=180,DOY+185,DOY-180)
} else {
frzframe$DOYadj = ifelse(DOY<=180,DOY+186,DOY-180)
}
frzframe = frzframe[order(frzframe$DOYadj),]
idx = which(frzframe$tasmin<=frzval)
lastfreeze = frzframe[idx[length(idx)],2]
firstfreeze = frzframe[idx[1],2]
freezeperiod = frzframe[idx[length(idx)],3]- frzframe[idx[1],3]
if(length(lastfreeze)==0) lastfreeze=NA
freezelist = list(firstfreeze=firstfreeze,lastfreeze=lastfreeze,freezeperiod=freezeperiod,freezedata=frzframe[idx,])
freezelist
}
damageindex = function(leafidx,lastfreeze){
idx = lastfreeze - leafidx
DMG = ifelse(idx<0 | idx>=180,0,idx)
DMG
}
falsesprings = function(SI=c(60,65),freezedata){
EFSidx = which(freezedata$DOY>=(SI[1]+7) & freezedata$DOY<=SI[2])
LFSidx = which(freezedata$DOY>SI[2])
EFS = ifelse(length(EFSidx)>0,1,0)
LFS = ifelse(length(LFSidx)>0,1,0)
FSlist= list(EFS=EFS,LFS=LFS)
FSlist
}
FSEI = function(falsespringvector){
FSEI = (sum(falsespringvector,na.rm=TRUE)/length(falsespringvector))*100
FSEI
} |
renv_report_user_cancel <- function() {
message("* Operation canceled.")
renv_snapshot_auto_suppress_next()
} |
import_nl <- function(tarfile, targetdir, new_session = FALSE) {
system(paste0("tar -zxvf \"", tarfile, "\" -C \"", targetdir, "\""))
if (length(list.files(tarfile, pattern = "Rproj")) == 1 &&
isTRUE(new_session)) {
rstudioapi::openProject(list.files(tarfile,
pattern = "Rproj",
full.names = TRUE
))
}
} |
saveAllMatchesBetween2WBBTeams <- function(dir=".",odir="."){
teams <-c("Adelaide Strikers", "Brisbane Heat", "Hobart Hurricanes",
"Melbourne Renegades", "Melbourne Stars", "Perth Scorchers", "Sydney Sixers",
"Sydney Thunder")
matches <- NULL
for(i in seq_along(teams)){
for(j in seq_along(teams)){
if(teams[i] != teams[j]){
cat("Team1=",teams[i],"Team2=",teams[j],"\n")
tryCatch(matches <- getAllMatchesBetweenTeams(teams[i],teams[j],dir=dir,save=TRUE,odir=odir),
error = function(e) {
print("No matches")
}
)
}
}
matches <- NULL
}
} |
Psi.varshrinkest <- function (x, nstep = 10, ...) {
if (!(inherits(x, "varest"))) {
stop("\nPlease provide an object inheriting class 'varest'.\n")
}
nstep <- abs(as.integer(nstep))
Phi <- Phi(x, nstep = nstep)
Psi <- array(0, dim = dim(Phi))
dfr <- df.residual(x$varresult[[1]])
sigma.u <- crossprod(resid(x)) / dfr
P <- t(chol(sigma.u))
dim3 <- dim(Phi)[3]
for (i in 1:dim3) {
Psi[, , i] <- Phi[, , i] %*% P
}
return(Psi)
} |
hclust_method='ward.D2'
num_rand_iters = 100
MAX_PVAL=0.05
suppressPackageStartupMessages(library("argparse"))
parser = ArgumentParser()
parser$add_argument("--infercnv_obj", help="infercnv_obj file", required=TRUE, nargs=1)
args = parser$parse_args()
library(infercnv)
library(ggplot2)
library(futile.logger)
library(pheatmap)
infercnv_obj = readRDS(args$infercnv_obj)
pdf("test.recursive_trees.pdf")
adj.obj = infercnv:::define_signif_tumor_subclusters(infercnv_obj, p_val=0.05, hclust_method='ward.D2', partition_method='random_trees') |
compute.laplacian.NJW <- function(W, verbose= FALSE){
if(verbose){message("CALCULATION OF THE DEGREE MATRIX")}
degrees <- rowSums(W)
Ds <- diag(1/sqrt(degrees))
if(verbose){message("CALCULATION OF THE LAPLACIAN MATRIX")}
Lsym <- Ds %*% W %*% Ds
if(verbose){message("CALCULATION OF THE EIGEN VECTORS AND VALUES")}
U <- eigen(Lsym, symmetric=TRUE)
if(verbose){
message("EIGEN VALUES = ")
print(U$values)
message("EIGEN VECTOR = ")
print(U$vector)
}
out <- list(Lsym = Lsym, eigen = U, diag = Ds)
} |
absolute_map_builder <- function(variable,
temp_dir,
infile,
mask_file_final,
country_code,
lon_min,
lon_max,
lat_min,
lat_max,
start_date,
end_date,
nc = NULL) {
outfile <- add_ncdf_ext(construct_filename(variable,
format(end_date, "%Y"),
country_code,
"mask"))
outfile <- file.path(temp_dir, outfile)
tmpfile <- add_ncdf_ext(construct_filename(variable,
format(end_date, "%Y"),
country_code))
tmpfile <- file.path(temp_dir, tmpfile)
tmpfile2 <- add_ncdf_ext(construct_filename("TMP",
variable,
format(end_date, "%Y"),
country_code))
tmpfile2 <- file.path(temp_dir, tmpfile2)
tryCatch({
cmsafops::sellonlatbox(
var = variable,
infile = infile,
outfile = tmpfile,
lon1 = lon_min,
lon2 = lon_max,
lat1 = lat_min,
lat2 = lat_max,
overwrite = TRUE,
nc = nc
)}, error = function(cond) {
stop(paste0("An error occured while selecting the given spatial range."))
})
tryCatch({
cmsafops::selperiod(
var = variable,
start = start_date,
end = end_date,
infile = tmpfile,
outfile = tmpfile2,
overwrite = TRUE
)
}, error = function(cond) {
stop(paste0("An error occured while selecting the given period (", start_date, "-", end_date, "). Please make sure that your file contains data for this range."))
})
variable_mask <- get_country_name(country_code)
adjust_location(
variable = variable,
variable_mask = variable_mask,
is_country = is_country(country_code),
mask_file = mask_file_final,
var_file = tmpfile2,
outfile = outfile)
if (file.exists(tmpfile)) { file.remove(tmpfile) }
if (file.exists(tmpfile2)) { file.remove(tmpfile2) }
return(outfile)
} |
context("vault: auth")
test_that("auth", {
srv <- vault_test_server()
cl <- srv$client()
expect_is(cl$auth, "vault_client_auth")
d <- cl$auth$list()
expect_equal(d$path, "token/")
expect_equal(d$type, "token")
expect_error(cl$auth$list(TRUE),
"Detailed auth information not supported")
})
test_that("introspect methods", {
srv <- vault_test_server()
cl <- srv$client()
expect_setequal(cl$auth$backends(),
c("token", "github", "userpass", "approle"))
}) |
clonalOverlap <- function(df, cloneCall = "gene+nt",
method = c("overlap", "morisita", "jaccard", "raw"),
chain = "both",
split.by = NULL,
exportTable = FALSE){
df <- list.input.return(df, split.by)
cloneCall <- theCall(cloneCall)
df <- checkBlanks(df, cloneCall)
df <- df[order(names(df))]
values <- str_sort(as.character(unique(names(df))), numeric = TRUE)
df <- df[quiet(dput(values))]
num_samples <- length(df[])
names_samples <- names(df)
coef_matrix <- data.frame(matrix(NA, num_samples, num_samples))
colnames(coef_matrix) <- names_samples
rownames(coef_matrix) <- names_samples
length <- seq_len(num_samples)
if (chain != "both") {
for (i in seq_along(df)) {
df[[i]] <- off.the.chain(df[[i]], chain, cloneCall)
}
}
if (method == "overlap") {
coef_matrix <- overlapIndex(df, length, cloneCall, coef_matrix)
} else if (method == "morisita") {
coef_matrix <- morisitaIndex(df, length, cloneCall, coef_matrix)
} else if (method == "jaccard") {
coef_matrix <- jaccardIndex(df, length, cloneCall, coef_matrix)
} else if (method == "raw") {
coef_matrix <- rawIndex(df, length, cloneCall, coef_matrix)
}
coef_matrix$names <- rownames(coef_matrix)
if (exportTable == TRUE) { return(coef_matrix) }
coef_matrix <- suppressMessages(melt(coef_matrix))[,-1]
col <- colorblind_vector(7)
coef_matrix$variable <- factor(coef_matrix$variable, levels = values)
coef_matrix$names <- factor(coef_matrix$names, levels = values)
plot <- ggplot(coef_matrix, aes(x=names, y=variable, fill=value)) +
geom_tile() + labs(fill = method) +
geom_text(aes(label = round(value, digits = 3))) +
scale_fill_gradientn(colors = rev(colorblind_vector(5)), na.value = "white") +
theme_classic() + theme(axis.title = element_blank())
return(plot) } |
srt_to_df <- function(file_name) {
con <- file(file_name, encoding = uchardet::detect_file_enc(file_name))
srt <- readLines(con)
close(con)
result <- lapply(split(seq_along(srt), cumsum(grepl("^\\s*$", srt))), function(i) {
block <- srt[i]
block <- block[!grepl("^\\s*$", block)]
if (length(block) == 0) {
return(NULL)
}
if (length(block) < 3) {
warning(paste0(
"There are some non-standard blocks in ",
file_name,
" file"
))
}
return(data.frame(
id = block[1],
times = block[2],
content = paste0(block[3:length(block)], collapse = "\n")
))
})
result <- do.call(rbind, result)
result <- cbind(result, do.call(rbind, strsplit(result[, "times"], " --> ")))
result <- result[, -2]
names(result)[3:4] <- c("time_start", "time_end")
l <- lapply(c("time_start", "time_end"), function(i) {
do.call(rbind, lapply(
strsplit(result[, i], ":|,"),
as.double
)) %*% c(60 * 60, 60, 1, 1 / 1000)
})
result <- cbind(result, as.data.frame(l))
result <- result[, -which(names(result) %in% c("time_start", "time_end"))]
names(result)[3:4] <- c("time_start", "time_end")
result$source <- basename(file_name)
return(result)
} |
NULL
evppi_plot_base <- function(evppi_obj,
pos_legend,
col = NULL,
annot = FALSE) {
legend_params <-
evppi_legend_base(evppi_obj, pos_legend, col)
plot(evppi_obj$k,
evppi_obj$evi,
type = "l",
col = legend_params$col[1],
lty = legend_params$lty[1],
xlab = "Willingness to pay",
ylab = "",
main = "Expected Value of Perfect Partial Information",
lwd = 2,
ylim = range(range(evppi_obj$evi),
range(evppi_obj$evppi)))
if (!is.list(evppi_obj$evppi))
evppi_obj$evppi <- list(evppi_obj$evppi)
evppi_dat <- do.call(cbind, evppi_obj$evppi)
txt_coord_y <- evppi_dat[length(evppi_obj$k), ]
matplot(evppi_obj$k,
evppi_dat,
type = "l",
col = legend_params$col[-1],
lty = legend_params$lty[-1],
add = TRUE)
if (annot) {
text(x = par("usr")[2],
y = txt_coord_y,
labels = paste0("(", evppi_obj$index, ")", collapse = " "),
cex = 0.7,
pos = 2)
}
do.call(legend, legend_params)
return(invisible(NULL))
} |
madapply <- function(...){
.Defunct("future.apply::future_apply")
} |
"als" <- function(CList, PsiList, S=matrix(), WList=list(), thresh =
.001, maxiter = 100, forcemaxiter=FALSE, optS1st=TRUE,
x=1:nrow(CList[[1]]), x2 = 1:nrow(S), baseline=FALSE,
fixed=vector("list", length(PsiList)), uniC=FALSE,
uniS=FALSE, nonnegC = TRUE, nonnegS = TRUE,
normS=0, closureC=list())
{
RD <- 10^20
PsiAll <- do.call("rbind", PsiList)
resid <- vector("list", length(PsiList))
if(length(WList) == 0){
WList <- vector("list", length(PsiList))
for(i in 1:length(PsiList))
WList[[i]] <- matrix(1, nrow(PsiList[[1]]), ncol(PsiList[[1]]))
}
W <- do.call("rbind",WList)
for(i in 1:length(PsiList)) resid[[i]] <- matrix(0, nrow(PsiList[[i]]),
ncol(PsiList[[i]]))
for(j in 1:length(PsiList)) {
for(i in 1:nrow(PsiList[[j]])) {
resid[[j]][i,] <- PsiList[[j]][i,] - CList[[j]][i,] %*% t(S * WList[[j]][i,])
}
}
initialrss <- oldrss <- sum(unlist(resid)^2)
cat("Initial RSS", initialrss, "\n")
iter <- 1
b <- if(optS1st) 1 else 0
oneMore <- FALSE
while( ((RD > thresh || forcemaxiter ) && maxiter >= iter) || oneMore) {
if(iter %% 2 == b)
S <- getS(CList, PsiAll, S, W, baseline, uniS, nonnegS, normS, x2)
else
CList <- getCList(S, PsiList, CList, WList, resid, x, baseline,
fixed, uniC, nonnegC, closureC)
for(j in 1:length(PsiList)) {
for(i in 1:nrow(PsiList[[j]])) {
resid[[j]][i,] <- PsiList[[j]][i,] - CList[[j]][i,] %*% t(S * WList[[j]][i,])
}
}
rss <- sum(unlist(resid)^2)
RD <- ((oldrss - rss) / oldrss)
oldrss <- rss
typ <- if(iter %% 2 == b) "S" else "C"
cat("Iteration (opt. ", typ, "): ", iter, ", RSS: ", rss, ", RD: ", RD,
"\n", sep = "")
iter <- iter + 1
oneMore <- (normS > S && (iter %% 2 != b) && maxiter != 1) ||
(length(closureC) > 0 && (iter %% 2 == b) )
}
cat("Initial RSS / Final RSS =", initialrss, "/", rss, "=",
initialrss/rss,"\n")
return(list(CList = CList, S = S, rss = rss, resid = resid, iter = iter))
} |
theEndClasses <- c('One', 'Two', 'Three', 'Four', 'Five', 'Six')
.quiet <- function(x) {
sink(tempfile())
on.exit(sink())
invisible(force(x))
}
for (thisClass in theEndClasses) {
test_that(
sprintf('%s class can be sucessfully intialized', thisClass)
, expect_true({
.quiet({myObj <- get(thisClass)$new()})
R6::is.R6(myObj)
})
)
} |
print.threg <-
function(x, digits=max(options()$digits - 4, 3), ...)
{
if (!is.null(cl<- x$call)) {
cat("Call:\n")
dput(cl)
cat("\n")
}
coef <- x$coefficients
se <- sqrt(diag(x$var))
tmp <- cbind(coef, se, coef/se,
signif(1 - pchisq((coef/ se)^2, 1), digits -1))
dimnames(tmp) <- list(names(coef), c("coef",
"se(coef)", "z", "p"))
prmatrix(tmp)
cat("\n")
cat("Log likelihood =", format(round(x$loglik, 2)), ",", " AIC =", format(round(x$AIC, 2)), sep="")
cat("\n")
invisible(x)
}
|
tb2.norm <-
function(alpha,theta)
{
m0=length(alpha)
N=10000
quan=matrix((0:(N-1)+0.5)/N,ncol=1)
x=as.numeric(apply(quan,1,qmixnorm,alpha=alpha,theta=theta))
pdf=0
delta=c()
y=c()
z=c()
for(i in 1:m0)
{
delta=cbind(delta,dnorm(x,theta[i],1)-dnorm(x,theta[m0],1))
y=cbind(y,(x-theta[i])*dnorm(x,theta[i],1))
z=cbind(z,((x-theta[i])^2-1)*dnorm(x,theta[i],1)/2 )
pdf=pdf+alpha[i]*dnorm(x,theta[i],1)
}
bi=cbind(delta[,1:(m0-1)],y,z)/pdf
B=t(bi)%*%bi
B11=B[1:(2*m0-1),1:(2*m0-1)]
B12=B[1:(2*m0-1),(2*m0):(3*m0-1)]
B22=B[(2*m0):(3*m0-1),(2*m0):(3*m0-1)]
tB22=B22-t(B12)%*%solve(B11)%*%B12
diagB22=diag(diag(tB22)^(-1/2),m0,m0)
corr=diagB22%*%tB22%*%diagB22
round(corr,3)
} |
plot(seq(-3, 3, 0.1), dnorm(seq(-3, 3, 0.1)),
type = "l", xlab = "$x$", ylab = "$\\phi(x)$")
text(-3, 0.37, adj = c(0, 1),
"$\\phi(x) = \\frac{1}{\\sqrt{2 \\pi}} \\exp(-\\frac{x^2}{2})$", cex = 1.2)
arrows(-2, 0.27, -1.3, dnorm(-1.3) + 0.02)
abline(v = qnorm(0.95), lty = 2)
text(0, dnorm(qnorm(0.95)),
"$\\int_{-\\infty}^{1.65} \\phi(x) dx \\approx 0.95$") |
metamodel <- function(analysis = c("oneway", "twoway", "multiway"),
psa, params = NULL, strategies = NULL,
outcome = c("eff", "cost", "nhb", "nmb", "nhb_loss", "nmb_loss",
"nhb_loss_voi", "nmb_loss_voi"),
wtp = NULL,
type = c("linear", "gam", "poly"), poly.order = 2, k = -1) {
pnames <- psa$parnames
analysis <- match.arg(analysis)
type <- match.arg(type)
if (is.null(params)) {
params <- pnames
} else if (!all(params %in% pnames)) {
wrong_p <- setdiff(p, pnames)
stop(paste0("the following parameters are not valid: ",
paste(wrong_p, collapse = ",")))
} else if (length(params) != 2 & analysis == "twoway") {
stop("If analysis == twoway, exactly 2 params must be provided.")
}
outcome <- match.arg(outcome)
y <- calculate_outcome(outcome, psa$cost, psa$effectiveness, wtp)
strat <- psa$strategies
if (is.null(strategies)) {
strategies <- strat
} else if (!all(strategies %in% strat)) {
wrong_strats <- setdiff(strategies, strat)
errmsg <- paste0("the following are not in psa$strategies: ",
paste(wrong_strats, collapse = ","))
stop(errmsg)
}
dat <- data.frame(y, psa$parameters)
if (nrow(dat) < length(params)) {
errmsg <- paste0("The number of parameters to be estimated by the metamodel
cannot be greater than the number of PSA samples")
stop(errmsg)
}
lms <- NULL
if (analysis == "oneway") {
for (p in params) {
for (s in strategies) {
mod <- mm_run_reg(analysis, s, p, dat, type, poly.order, k)
mod$param_of_int <- p
mod$strat <- s
lms[[p]][[s]] <- mod
}
}
}
if (analysis == "twoway" | analysis == "multiway") {
for (s in strategies) {
mod <- mm_run_reg(analysis, s, params, dat, type, poly.order, k)
mod$param_of_int <- params
mod$strat <- s
lms[[s]] <- mod
}
}
metamodel <- list(outcome = outcome, mods = lms, wtp = wtp,
params = params, strategies = strategies,
psa = psa, analysis = analysis,
type = type, poly.order = poly.order, k = k)
class(metamodel) <- "metamodel"
return(metamodel)
}
mm_run_reg <- function(analysis, dep, params, dat, type, poly.order, k) {
n_params <- length(params)
if (type == "gam" && k < 3 && n_params != 1) {
k <- 3
warning("k has been set to its minimum value of 3")
}
if (type == "gam" && ((k - 1) ^ n_params > 500)) {
stop(paste0("\nIn your proposed metamodel, k-1 to the power of the number of parameters must not
be greater than 500 (i.e. (k-1)^n_params < 500). This proposed model has ", n_params, " parameters,
and a k value of ", k, ". Models that exceed this approximate threshold will fail to execute
due to memory constraints and/or take an excessively long time to fit."))
}
if (type == "linear") {
fbeg <- paste0(dep, " ~ ")
if (n_params > 1) {
fparam <- paste(params, collapse = " + ")
} else {
fparam <- params
}
f <- as.formula(paste0(fbeg, fparam))
metamod <- lm(f, data = dat)
metamod$call <- call("lm", formula = f, data = quote(dat))
}
if (type == "poly") {
fbeg <- paste0(dep, " ~ ")
fparam <- ""
list_of_ps <- lapply(params, function(p) paste("poly(", p, ",", poly.order, ", raw=TRUE)"))
if (analysis == "twoway") {
list_of_ps <- append(list_of_ps,
paste0("poly(", params[1], ",", poly.order, ", raw=TRUE):",
"poly(", params[2], ",", poly.order, ", raw=TRUE)"))
}
fparam <- paste(list_of_ps, collapse = " + ")
f <- as.formula(paste0(fbeg, fparam))
metamod <- lm(f, data = dat)
metamod$call <- call("lm", formula = f, data = quote(dat))
}
if (type == "gam") {
fbeg <- paste0(dep, " ~ ")
fparam <- ""
if (n_params == 1) {
fparam <- paste0(fparam, "s(", params, ", k=", k, ")")
} else {
params_k <- paste0("s(", params, ", k=", k, ")")
f_s <- paste(params_k, collapse = " + ")
k_ti <- ifelse(k == -1, NA, k)
fparam <- paste0(f_s, " + ti(", paste(params, collapse = ", "), ", k = ", k_ti, ")")
}
f <- as.formula(paste0(fbeg, fparam))
metamod <- gam(f, data = dat)
}
return(metamod)
}
print.metamodel <- function(x, ...) {
wtp <- x$wtp
cat("metamodel object", "\n",
"-------------------------", "\n",
"a list of the following objects: ",
paste(names(x), collapse = ", "), "\n",
"\n",
"some details: ", "\n",
"-------------------------", "\n",
"analysis: this is a ", substr(x$analysis, 1, 3), "-way metamodel \n",
"mods: a nested list of ", x$type, " metamodels \n",
"outcome: ", x$outcome, "\n",
"WTP: ", ifelse(!is.null(wtp), wtp, "NA"), "\n",
"strategies: ", paste(x$strategies, collapse = ", "), "\n",
"parameters modeled: ", paste(x$params, collapse = ", "), "\n",
sep = "")
}
summary.metamodel <- function(object, ...) {
analysis <- object$analysis
type <- object$type
summary_df <- NULL
if (analysis == "multiway") {
stop("metamodel summary not available for multiway analyses")
}
if (analysis == "oneway") {
for (p in object$params) {
for (s in object$strategies) {
lm_summary <- summary(object$mods[[p]][[s]])
if (type == "gam") {
r2 <- lm_summary$r.sq
} else {
r2 <- lm_summary$r.squared
}
df_new_row <- data.frame("param" = p, "strat" = s, "rsquared" = r2)
summary_df <- rbind(summary_df, df_new_row)
}
}
}
if (analysis == "twoway") {
params <- object$params
for (s in object$strategies) {
lm_summary <- summary(object$mods[[s]])
if (type == "gam") {
r2 <- lm_summary$r.sq
} else {
r2 <- lm_summary$r.squared
}
df_new_row <- data.frame("param1" = params[1], "param2" = params[2],
"strat" = s, "rsquared" = r2)
summary_df <- rbind(summary_df, df_new_row)
}
}
return(summary_df)
}
predict.metamodel <- function(object, ranges = NULL, nsamp = 100, ...) {
analysis <- object$analysis
if (analysis == "multiway") {
stop("metamodel predictions not available for multiway analyses")
}
if (!is.null(ranges)) {
if (!inherits(ranges, "list")) {
stop("ranges must be a named list of vectors")
}
for (i in ranges) {
if (!is.null(i) & length(i) != 2) {
stop("all entries in ranges must have length 2 or be NULL")
}
}
}
psa_params <- object$params
psa_paramvals <- object$psa$parameters
mods <- object$mods
strats <- object$strategies
if (analysis == "oneway") {
pred_data_nrow <- nsamp
}
if (analysis == "twoway") {
pred_data_nrow <- nsamp ^ 2
}
pdata <- data.frame(matrix(colMeans(psa_paramvals),
nrow = pred_data_nrow,
ncol = ncol(psa_paramvals),
byrow = TRUE))
colnames(pdata) <- colnames(psa_paramvals)
if (is.null(ranges)) {
q_params <- psa_params
} else {
q_params <- names(ranges)
if (!all(q_params %in% psa_params)) {
wrong_params <- setdiff(q_params, psa_params)
stop(paste0("The following range names were not found in psa$parameters:\n",
paste(wrong_params, collapse = ", ")))
}
}
if (analysis == "oneway") {
outcome_dfs <- vector(mode = "list",
length = length(strats) * length(q_params))
counter <- 1
for (p in q_params) {
param_val <- make_param_seq(p, ranges, nsamp, psa_paramvals)
newdata <- data.frame(param_val)
this_p_data <- pdata
this_p_data[, p] <- newdata
for (s in strats) {
mod <- mods[[p]][[s]]
outcome_dfs[[counter]] <- data.frame("parameter" = p, "strategy" = s,
"param_val" = newdata,
"outcome_val" = predict(mod, newdata = this_p_data, type = "response"),
stringsAsFactors = FALSE)
counter <- counter + 1
}
}
}
if (analysis == "twoway") {
outcome_dfs <- vector(mode = "list",
length = length(strats))
counter <- 1
p1 <- psa_params[1]
p2 <- psa_params[2]
p1_samp <- make_param_seq(p1, ranges, nsamp, psa_paramvals)
p2_samp <- make_param_seq(p2, ranges, nsamp, psa_paramvals)
p1p2_data <- data.frame(expand.grid(p1_samp, p2_samp))
pdata[, c(p1, p2)] <- p1p2_data
for (s in strats) {
mod <- mods[[s]]
outcome <- predict(mod, newdata = pdata)
outcome_df <- data.frame("p1" = pdata[, p1], "p2" = pdata[, p2],
"strategy" = s, "outcome_val" = outcome,
stringsAsFactors = FALSE)
names(outcome_df)[1:2] <- c(p1, p2)
outcome_dfs[[counter]] <- outcome_df
counter <- counter + 1
}
}
combined_df <- bind_rows(outcome_dfs)
return(combined_df)
}
make_param_seq <- function(p, ranges, nsamp, psa_paramvals) {
p_range <- ranges[[p]]
p_psa_vals <- psa_paramvals[, p]
if (is.null(p_range)) {
p_range <- quantile(p_psa_vals, c(0.025, 0.975))
} else {
psa_range <- range(p_psa_vals)
if (p_range[1] < psa_range[1] | p_range[2] > psa_range[2]) {
warning(paste0("The requested range for ", p, " is outside of the PSA range.\n",
"requested range: [", paste(p_range, collapse = ","), "]\n",
"PSA range: [", paste(psa_range, collapse = ", "), "]\n.",
"Please interpret results with caution."))
}
}
seq(p_range[1], p_range[2], length.out = nsamp)
} |
zhr.plot<-function(zhrdata,xlim1,xlim2,xinc,ylim1,ylim2,yinc,dlim1=NULL,dlim2=NULL,dinc=NULL,dunit=NULL)
{
if(!is.data.frame(zhrdata))
stop("Invalid input parameter specification: check data")
if(!("sollong"%in%names(zhrdata))|| !("ZHR"%in%names(zhrdata)) || !("st.error"%in%names(zhrdata)))
stop("Error: zhrdata does not contain columns named sollong, ZHR and st.error")
year<-year(zhrdata$date[1])
if(is.null(dlim1) || is.null(dlim2) || is.null(dinc) || is.null(dunit)){
solvals<-seq(xlim1,xlim2,by=xinc)
dates<-solar.long_date(solvals,year)
}else{
date1<-tryCatch(as.POSIXct(dlim1,tz="UTC"),error=function(e){return(NA)})
date2<-tryCatch(as.POSIXct(dlim2,tz="UTC"),error=function(e){return(NA)})
if(is.na(date1) || is.na(date2))
stop("Invalid input parameter specification: check dlim1/dlim2 format")
if(date1>date2)
stop("Error:dlim2 must be greater than dlim1")
if(any(c(year(date1),year(date2))!=year))
stop("Year in start and end dates have to match data year")
if(!is.numeric(dinc))
stop("Invalid input parameter specification: check dinc format")
if(!dunit%in%c("min","h","day"))
stop("Invalid input parameter specification: check dunit format")
dstep<-function(dinc,dunit)
{switch(dunit,min=60*dinc,h=3600*dinc,day=86400*dinc)
}
dates<-seq(date1,date2,by=dstep(dinc,dunit))
solvals<-solar.long(dates)
}
if(!is.null(dunit) && dunit=="day")
{xlab2<-paste(day(dates),month.abb[month(dates)],sep="")
}else{
xlab2<-paste(day(dates),month.abb[month(dates)]," ",strftime(dates,format="%H:%M",tz="UTC"),sep="")}
ind<-!is.na(zhrdata$ZHR)
par(mar=c(5,4,6,3))
graph.data(zhrdata$sollong[ind],zhrdata$ZHR[ind],zhrdata$st.error[ind],"ZHR(Corrected hourly meteor rate)",xlim1,xlim2,xinc,ylim1,ylim2,yinc)
axis(3,solvals,labels=F,tcl=0.4)
text(solvals,par("usr")[4]+0.1*yinc,srt=45,xpd=TRUE,pos=4,offset=-0.1,labels=xlab2)
mtext(paste("Time (UT,",year,")",sep=""),side=3,line=4,cex=1.2)
} |
context("test-ls_packages")
test_that("listing packages from list of calls works", {
pkgs <- ls_packages(list(
quote(library(tidycode)),
quote(library(chicken)),
quote(foo::bar),
quote(lm(mpg ~ cyl, mtcars)))
)
expect_equal(pkgs, c("tidycode", "chicken", "foo"))
})
test_that("listing packages from data frame works", {
d <- read_rfiles(tidycode_example("example_plot.R"))
pkgs <- ls_packages(d$expr)
expect_equal(pkgs, "tidyverse")
})
test_that("can list packages from an individual call", {
expect_equal(ls_packages(quote(library(tidycode))), "tidycode")
}) |
plot.survFitTT <- function(x,
xlab = "Concentration",
ylab = "Survival probability",
main = NULL,
fitcol = "orange",
fitlty = 1,
fitlwd = 1,
spaghetti = FALSE,
cicol = "orange",
cilty = 2,
cilwd = 1,
ribcol = "grey70",
adddata = FALSE,
addlegend = FALSE,
log.scale = FALSE,
style = "ggplot", ...) {
sel <- if(log.scale) x$dataTT$conc > 0 else TRUE
dataTT <- x$dataTT[sel, ]
dataTT$resp <- dataTT$Nsurv / dataTT$Ninit
dataTT <- aggregate(resp ~ conc, dataTT, mean)
transf_data_conc <- optLogTransform(log.scale, dataTT$conc)
display.conc <- (function() {
x <- optLogTransform(log.scale, dataTT$conc)
s <- seq(min(x),max(x), length = 100)
if(log.scale) exp(s) else s
})()
curv_conc <- optLogTransform(log.scale, display.conc)
conf.int <- survLlbinomConfInt(x, log.scale)
cred.int <- survMeanCredInt(x, display.conc)
spaghetti.CI <- if (spaghetti) { survSpaghetti(x, display.conc) } else NULL
dataCIm <- if (spaghetti) {melt(cbind(curv_conc, spaghetti.CI),
id.vars = c("curv_conc", "conc"))} else NULL
curv_resp <- data.frame(conc = curv_conc, resp = cred.int[["q50"]],
Line = "loglogistic")
if (style == "generic") {
survFitPlotGenericCredInt(x,
dataTT$conc, transf_data_conc, dataTT$resp,
curv_conc, curv_resp,
conf.int, cred.int, spaghetti.CI, dataCIm,
xlab, ylab, fitcol, fitlty, fitlwd,
main, addlegend, adddata,
cicol, cilty, cilwd, ribcol, log.scale)
}
else if (style == "ggplot") {
survFitPlotGG(x,
dataTT$conc, transf_data_conc, dataTT$resp,
curv_conc, curv_resp,
conf.int, cred.int, spaghetti.CI, dataCIm,
xlab, ylab, fitcol, fitlty, fitlwd,
main, addlegend, adddata,
cicol, cilty, cilwd / 2, ribcol)
}
else stop("Unknown style")
}
survLlbinomConfInt <- function(x, log.scale) {
x <- cbind(aggregate(Nsurv ~ time + conc, x$dataTT, sum),
Ninit = aggregate(Ninit ~ time + conc, x$dataTT, sum)$Ninit)
ci <- apply(x, 1, function(x) {
binom.test(x["Nsurv"], x["Ninit"])$conf.int
})
rownames(ci) <- c("qinf95", "qsup95")
colnames(ci) <- x$conc
if (log.scale) ci <- ci[ ,colnames(ci) != 0]
return(ci)
}
survMeanCredInt <- function(fit, x) {
mctot <- do.call("rbind", fit$mcmc)
k <- nrow(mctot)
if (fit$det.part == "loglogisticbinom_3") {
d2 <- mctot[, "d"]
}
log10b2 <- mctot[, "log10b"]
b2 <- 10^log10b2
log10e2 <- mctot[, "log10e"]
e2 <- 10^log10e2
qinf95 = NULL
q50 = NULL
qsup95 = NULL
for (i in 1:length(x)) {
if (fit$det.part == "loglogisticbinom_2") {
theomean <- 1 / (1 + (x[i] / e2)^(b2))
}
else if (fit$det.part == "loglogisticbinom_3") {
theomean <- d2 / (1 + (x[i] / e2)^(b2))
}
qinf95[i] <- quantile(theomean, probs = 0.025, na.rm = TRUE)
q50[i] <- quantile(theomean, probs = 0.5, na.rm = TRUE)
qsup95[i] <- quantile(theomean, probs = 0.975, na.rm = TRUE)
}
ci <- data.frame(qinf95 = qinf95,
q50 = q50,
qsup95 = qsup95)
return(ci)
}
survSpaghetti <- function(fit, x) {
mctot <- do.call("rbind", fit$mcmc)
sel <- sample(nrow(mctot))[1:ceiling(nrow(mctot) / 10)]
if (fit$det.part == "loglogisticbinom_3") {
d2 <- mctot[, "d"][sel]
}
log10b2 <- mctot[, "log10b"][sel]
b2 <- 10^log10b2
log10e2 <- mctot[, "log10e"][sel]
e2 <- 10^log10e2
dtheo <- array(data = NA, dim = c(length(x), length(e2)))
for (i in 1:length(e2)) {
if (fit$det.part == "loglogisticbinom_2") {
dtheo[, i] <- 1 / (1 + (x / e2[i])^(b2[i]))
}
else if (fit$det.part == "loglogisticbinom_3") {
dtheo[, i] <- d2[i] / (1 + (x / e2[i])^(b2[i]))
}
}
dtheof <- as.data.frame(cbind(x, dtheo))
names(dtheof) <- c("conc", paste0("X", 1:length(sel)))
return(dtheof)
}
survFitPlotGenericCredInt <- function(x,
data_conc, transf_data_conc, data_resp,
curv_conc, curv_resp,
conf.int, cred.int, spaghetti.CI, dataCIm,
xlab, ylab, fitcol, fitlty, fitlwd,
main, addlegend, adddata,
cicol, cilty, cilwd, ribcol, log.scale)
{
plot(transf_data_conc, data_resp,
xlab = xlab,
ylab = ylab,
main = main,
xaxt = "n",
yaxt = "n",
ylim = c(0, 1.01),
type = "n")
axis(side = 2, at = pretty(c(0, max(c(conf.int["qsup95",],
cred.int[["qsup95"]])))))
axis(side = 1,
at = transf_data_conc,
labels = data_conc)
if (!is.null(spaghetti.CI)) {
color <- "gray"
color_transparent <- adjustcolor(color, alpha.f = 0.05)
by(dataCIm, dataCIm$variable, function(x) {
lines(x$curv_conc, x$value, col = color_transparent)
})
} else if(!is.null(ribcol)) {
polygon(c(curv_conc, rev(curv_conc)), c(cred.int[["qinf95"]],
rev(cred.int[["qsup95"]])),
col = ribcol, border = NA)
}
lines(curv_conc, cred.int[["qsup95"]], type = "l", col = cicol, lty = cilty,
lwd = cilwd)
lines(curv_conc, cred.int[["qinf95"]], type = "l", col = cicol, lty = cilty,
lwd = cilwd)
if (adddata) {
segments(transf_data_conc, data_resp,
transf_data_conc, conf.int["qsup95", ])
segments(transf_data_conc, data_resp,
transf_data_conc, conf.int["qinf95", ])
points(transf_data_conc, data_resp, pch = 16)
}
lines(curv_conc, curv_resp[, "resp"], type = "l", col = fitcol, lty = fitlty,
lwd = fitlwd)
if (addlegend) {
legend("bottomleft", pch = c(ifelse(adddata, 16, NA), NA, NA, NA),
lty = c(NA, ifelse(adddata, 1, NA), cilty, fitlty),
lwd = c(NA, ifelse(adddata,1, NA), cilwd, fitlwd),
col = c(ifelse(adddata, 1, NA), 1, cicol, fitcol),
legend = c(ifelse(adddata, "Observed values", NA),
ifelse(adddata, "Confidence interval", NA),
"Credible limits", x$det.part),
bty = "n")
}
}
survFitPlotGGCredInt <- function(x, data, curv_resp, conf.int, cred.int,
spaghetti.CI, dataCIm, cilty, cilwd,
valCols, fitlty, fitlwd, ribcol, xlab, ylab, main,
adddata) {
data.three <- data.frame(conc = data$transf_conc,
qinf95 = conf.int["qinf95",],
qsup95 = conf.int["qsup95",],
Conf.Int = "Confidence interval")
data.four <- data.frame(conc = curv_resp$conc,
qinf95 = cred.int[["qinf95"]],
qsup95 = cred.int[["qsup95"]],
Cred.Lim = "Credible limits")
if (adddata) {
plt_3 <- ggplot(data) +
geom_segment(aes(x = conc, xend = conc, y = qinf95, yend = qsup95,
linetype = Conf.Int), data.three,
color = valCols$cols3) +
scale_linetype(name = "") +
theme_minimal()
}
plt_302 <- if (!is.null(spaghetti.CI)) {
ggplot(data) + geom_line(data = dataCIm, aes(x = curv_conc, y = value,
group = variable),
col = "gray", alpha = 0.05)
} else {
ggplot(data) + geom_ribbon(data = data.four, aes(x = conc, ymin = qinf95,
ymax = qsup95),
fill = ribcol, col = NA, alpha = 0.4)
}
plt_32 <- plt_302 +
geom_line(data = data.four, aes(conc, qinf95, color = Cred.Lim),
linetype = cilty, size = cilwd) +
geom_line(data = data.four, aes(conc, qsup95, color = Cred.Lim),
linetype = cilty, size = cilwd) +
scale_color_manual("", values = valCols$cols4) +
theme_minimal()
if (!is.null(spaghetti.CI)) {
plt_40 <- ggplot(data) +
geom_line(data = dataCIm, aes(x = curv_conc, y = value, group = variable),
col = "gray", alpha = 0.05)
} else {
plt_40 <- ggplot(data) + geom_ribbon(data = data.four, aes(x = conc,
ymin = qinf95,
ymax = qsup95),
fill = ribcol,
col = NA, alpha = 0.4)
}
plt_401 <- plt_40 +
geom_line(data = data.four, aes(conc, qinf95),
linetype = cilty, size = cilwd, color = valCols$cols4) +
geom_line(data = data.four, aes(conc, qsup95),
linetype = cilty, size = cilwd, color = valCols$cols4) +
geom_line(data = curv_resp, aes(conc, resp),
linetype = fitlty, size = fitlwd, color = valCols$cols2) +
scale_color_discrete(guide = "none") +
ylim(0, 1) +
labs(x = xlab, y = ylab) +
ggtitle(main) + theme_minimal()
if (adddata) {
plt_4 <- plt_401 + geom_point(data = data, aes(transf_conc, resp)) +
geom_segment(aes(x = conc, xend = conc, y = qinf95, yend = qsup95),
data.three, col = valCols$cols3)
} else {
plt_4 <- plt_401
}
return(list(plt_3 = if (adddata) plt_3 else NULL,
plt_32 = plt_32,
plt_4 = plt_4))
}
survFitPlotGG <- function(x,
data_conc, transf_data_conc, data_resp,
curv_conc, curv_resp,
conf.int, cred.int, spaghetti.CI, dataCIm,
xlab, ylab, fitcol, fitlty, fitlwd,
main, addlegend, adddata,
cicol, cilty, cilwd, ribcol) {
if (Sys.getenv("RSTUDIO") == "") {
dev.new()
}
data <- data.frame(conc = data_conc, transf_conc = transf_data_conc,
resp = data_resp, Points = "Observed values")
valCols <- fCols(data, fitcol, cicol)
if (adddata) {
plt_1 <- ggplot(data) +
geom_point(data = data, aes(transf_conc, resp, fill = Points),
col = valCols$cols1) + scale_fill_hue("") +
theme_minimal()
}
plt_2 <- ggplot(data) +
geom_line(data = curv_resp, aes(conc, resp, colour = Line),
linetype = fitlty, size = fitlwd) +
scale_colour_manual("", values = valCols$cols2) +
theme_minimal()
plt_4 <-
survFitPlotGGCredInt(x, data, curv_resp, conf.int, cred.int, spaghetti.CI,
dataCIm, cilty, cilwd, valCols, fitlty, fitlwd, ribcol,
xlab, ylab, main, adddata)$plt_4
if (addlegend) {
mylegend_1 <- if (adddata) { legendGgplotFit(plt_1) } else NULL
mylegend_2 <- legendGgplotFit(plt_2)
plt_5 <- plt_4 + scale_x_continuous(breaks = data$transf_conc,
labels = data$conc)
plt_3 <- survFitPlotGGCredInt(x, data, curv_resp, conf.int, cred.int,
spaghetti.CI, dataCIm, cilty, cilwd,
valCols, fitlty, fitlwd, ribcol, xlab, ylab, main,
adddata)$plt_3
plt_32 <- survFitPlotGGCredInt(x, data, curv_resp, conf.int, cred.int,
spaghetti.CI, dataCIm, cilty, cilwd,
valCols, fitlty, fitlwd, ribcol, xlab, ylab, main,
adddata)$plt_32
mylegend_3 <- if (adddata) { legendGgplotFit(plt_3) } else NULL
mylegend_32 <- legendGgplotFit(plt_32)
if (adddata) {
grid.arrange(plt_5, arrangeGrob(mylegend_1, mylegend_3, mylegend_32,
mylegend_2, nrow = 6), ncol = 2,
widths = c(6, 2))
} else {
grid.arrange(plt_5, arrangeGrob(mylegend_32,
mylegend_2, nrow = 6), ncol = 2,
widths = c(6, 2))
}
}
else {
plt_5 <- plt_4 + scale_x_continuous(breaks = data$transf_conc,
labels = data$conc)
return(plt_5)
}
} |
library(testthat)
library(tsbox)
test_that("works with df with improper col classes", {
library(dplyr)
x.chr <- ts_tbl(mdeaths) %>%
mutate(time = as.character(time))
expect_s3_class(ts_ts(x.chr), "ts")
x.fct <- ts_tbl(mdeaths) %>%
mutate(time = as.factor(as.character(time)))
expect_s3_class(ts_ts(x.fct), "ts")
})
test_that("time column of daily data is treated as Date (
x <- tibble(
time = seq.Date(as.Date("2000-01-01"), length.out = 10, by = "day"),
value = rnorm(10)
)
z <- ts_dts(ts_ts(x))
expect_s3_class(z$time, "Date")
})
test_that("time column of daily data is survives two way conversion (
x <- structure(list(time = structure(c(
16030, 16031, 16034, 16035,
16036
), class = "Date"), value = c(
18680.35, 18766.53, 18741.95,
18759.68, 18812.33
)), class = "data.frame", row.names = c(
NA,
-5L
))
z <- ts_na_omit(ts_tbl(ts_ts(x)))
expect_equal(z$time, x$time)
}) |
NULL
setMethod("nrow", "VTableTree",
function(x) length(collect_leaves(x, TRUE ,TRUE)))
setMethod("nrow", "TableRow",
function(x) 1L)
setMethod("ncol", "VTableNodeInfo",
function(x) {
ncol(col_info(x))
})
setMethod("ncol", "TableRow",
function(x) {
if(!no_colinfo(x))
ncol(col_info(x))
else
length(spanned_values(x))
})
setMethod("ncol", "LabelRow",
function(x) {
ncol(col_info(x))
})
setMethod("ncol", "InstantiatedColumnInfo",
function(x) {
length(col_exprs(x))
})
setMethod("dim", "VTableNodeInfo",
function(x) c(nrow(x), ncol(x)))
setGeneric("tree_children", function(x) standardGeneric("tree_children"))
setMethod("tree_children", c(x = "VTree"),
function(x) x@children)
setMethod("tree_children", c(x = "VTableTree"),
function(x) x@children)
setMethod("tree_children", c(x = "VLeaf"),
function(x) list())
setGeneric("tree_children<-", function(x, value) standardGeneric("tree_children<-"))
setMethod("tree_children<-", c(x = "VTree"),
function(x, value){
x@children = value
x
})
setMethod("tree_children<-", c(x = "VTableTree"),
function(x, value){
x@children = value
x
})
setGeneric("content_table", function(obj) standardGeneric("content_table"))
setMethod("content_table", "TableTree",
function(obj) obj@content)
setMethod("content_table", "ANY",
function(obj) NULL)
setGeneric("content_table<-", function(obj, value) standardGeneric("content_table<-"))
setMethod("content_table<-", c("TableTree", "ElementaryTable"),
function(obj, value) {
obj@content = value
obj
})
setGeneric("next_rpos", function(obj, nested = TRUE, for_analyze = FALSE) standardGeneric("next_rpos"))
setMethod("next_rpos", "PreDataTableLayouts",
function(obj, nested, for_analyze = FALSE) next_rpos(rlayout(obj), nested, for_analyze = for_analyze))
.check_if_nest <- function(obj, nested, for_analyze) {
if(!nested)
FALSE
else
for_analyze ||
!(is(last_rowsplit(obj), "VAnalyzeSplit") ||
is(last_rowsplit(obj), "AnalyzeMultiVars"))
}
setMethod("next_rpos", "PreDataRowLayout",
function(obj, nested, for_analyze) {
l = length(obj)
if(length(obj[[l]]) > 0L &&
!.check_if_nest(obj, nested, for_analyze)) {
l = l + 1L
}
l
})
setMethod("next_rpos", "ANY", function(obj, nested) 1L)
setGeneric("next_cpos", function(obj, nested = TRUE) standardGeneric("next_cpos"))
setMethod("next_cpos", "PreDataTableLayouts",
function(obj, nested) next_cpos(clayout(obj), nested))
setMethod("next_cpos", "PreDataColLayout",
function(obj, nested) {
if(nested || length(obj[[length(obj)]]) == 0)
length(obj)
else
length(obj) + 1L
})
setMethod("next_cpos", "ANY", function(obj, nested) 1L)
setGeneric("last_rowsplit", function(obj) standardGeneric("last_rowsplit"))
setMethod("last_rowsplit", "NULL",
function(obj) NULL)
setMethod("last_rowsplit", "SplitVector",
function(obj) {
if(length(obj) == 0)
NULL
else
obj[[length(obj)]]
})
setMethod("last_rowsplit", "PreDataRowLayout",
function(obj) {
if(length(obj) == 0)
NULL
else
last_rowsplit(obj[[ length( obj ) ]])
})
setMethod("last_rowsplit", "PreDataTableLayouts",
function(obj) last_rowsplit(rlayout(obj)))
setGeneric("rlayout", function(obj) standardGeneric("rlayout"))
setMethod("rlayout", "PreDataTableLayouts",
function(obj) obj@row_layout)
setMethod("rlayout", "ANY", function(obj) PreDataRowLayout())
setGeneric("rlayout<-", function(object, value) standardGeneric("rlayout<-"))
setMethod("rlayout<-", "PreDataTableLayouts",
function(object, value) {
object@row_layout = value
object
})
setGeneric("tree_pos", function(obj) standardGeneric("tree_pos"))
setMethod("tree_pos", "VLayoutNode",
function(obj) obj@pos_in_tree)
setGeneric("pos_subset", function(obj) standardGeneric("pos_subset"))
setMethod("pos_subset", "TreePos",
function(obj) obj@subset)
setMethod("pos_subset", "VLayoutNode",
function(obj) pos_subset(tree_pos(obj)))
setGeneric("pos_splits", function(obj) standardGeneric("pos_splits"))
setMethod("pos_splits", "TreePos",
function(obj) obj@splits)
setMethod("pos_splits", "VLayoutNode",
function(obj) pos_splits(tree_pos(obj)))
setGeneric("pos_splvals", function(obj) standardGeneric("pos_splvals"))
setMethod("pos_splvals", "TreePos",
function(obj) obj@s_values)
setMethod("pos_splvals", "VLayoutNode",
function(obj) pos_splvals(tree_pos(obj)))
setGeneric("pos_split_labels", function(obj) standardGeneric("pos_split_labels"))
setMethod("pos_split_labels", "TreePos",
function(obj) {
spls = pos_splits(obj)
sapply(spls, function(x) x@split_label)
})
setMethod("pos_split_labels", "VLayoutNode",
function(obj) pos_split_labels(tree_pos(obj)))
setGeneric("split_texttype", function(obj) standardGeneric("split_texttype"))
setMethod("split_texttype", "VarLevelSplit", function(obj) "varlevels")
setMethod("split_texttype", "MultiVarSplit", function(obj) "multivar")
setMethod("split_texttype", "AllSplit", function(obj) "allobs")
setMethod("split_texttype", "RootSplit", function(obj) "root")
setMethod("split_texttype", "NULLSplit", function(obj) "null")
setMethod("split_texttype", "VarStaticCutSplit", function(obj) "scut")
setMethod("split_texttype", "VarDynCutSplit", function(obj) "dyncut")
setMethod("split_texttype", "ManualSplit", function(obj) "manual")
setMethod("split_texttype", "ANY", function(obj) stop("unknown split type"))
setGeneric("pos_spltypes", function(obj) standardGeneric("pos_spltypes"))
setMethod("pos_spltypes", "TreePos",
function(obj) {
spls = pos_splits(obj)
sapply(spls, split_texttype)
})
setMethod("pos_spltypes", "VLayoutNode",
function(obj) pos_spltypes(tree_pos(obj)))
setGeneric("pos_splval_labels", function(obj) standardGeneric("pos_splval_labels"))
setMethod("pos_splval_labels", "TreePos",
function(obj) obj@sval_labels)
setMethod("pos_splval_labels", "VLayoutNode",
function(obj) pos_splval_labels(tree_pos(obj)))
setGeneric("spl_payload", function(obj) standardGeneric("spl_payload"))
setMethod("spl_payload", "Split", function(obj) obj@payload)
setGeneric("spl_payload<-", function(obj, value) standardGeneric("spl_payload<-"))
setMethod("spl_payload<-", "Split", function(obj, value) {
obj@payload <- value
obj
})
setGeneric("spl_label_var", function(obj) standardGeneric("spl_label_var"))
setMethod("spl_label_var", "VarLevelSplit", function(obj) obj@value_label_var)
setMethod("spl_label_var", "Split", function(obj) NULL)
setGeneric("obj_name", function(obj) standardGeneric("obj_name"))
setMethod("obj_name", "VNodeInfo",
function(obj) obj@name)
setMethod("obj_name", "Split",
function(obj) obj@name)
setGeneric("obj_name<-", function(obj, value) standardGeneric("obj_name<-"))
setMethod("obj_name<-", "VNodeInfo",
function(obj, value) {
obj@name = value
obj
})
setMethod("obj_name<-", "Split",
function(obj, value) {
obj@name = value
obj
})
setGeneric("obj_label", function(obj) standardGeneric("obj_label"))
setMethod("obj_label", "Split", function(obj) obj@split_label)
setMethod("obj_label", "ANY", function(obj) attr(obj, "label"))
setMethod("obj_label", "TableRow", function(obj) obj@label)
setMethod("obj_label", "VTableTree",
function(obj) obj_label(tt_labelrow(obj)))
setMethod("obj_label", "ValueWrapper", function(obj) obj@label)
setGeneric("obj_label<-", function(obj, value) standardGeneric("obj_label<-"))
setMethod("obj_label<-", "Split",
function(obj, value) {
obj@split_label <- value
obj
})
setMethod("obj_label<-", "TableRow",
function(obj, value){
obj@label = value
obj
})
setMethod("obj_label<-", "ValueWrapper",
function(obj, value){
obj@label = value
obj
})
setMethod("obj_label<-", "ANY",
function(obj, value){
attr(obj, "label") = value
obj
})
setMethod("obj_label<-", "VTableTree",
function(obj, value) {
lr = tt_labelrow(obj)
obj_label(lr) = value
if( !is.na(value) && nzchar(value))
labelrow_visible(lr) = TRUE
else if(is.na(value))
labelrow_visible(lr) = FALSE
tt_labelrow(obj) = lr
obj
})
setGeneric("tt_labelrow", function(obj) standardGeneric("tt_labelrow"))
setMethod("tt_labelrow", "VTableTree",
function(obj) obj@labelrow)
setGeneric("tt_labelrow<-", function(obj, value) standardGeneric("tt_labelrow<-"))
setMethod("tt_labelrow<-", "VTableTree",
function(obj, value) {
obj@labelrow = value
obj
})
setGeneric("labelrow_visible", function(obj) standardGeneric("labelrow_visible"))
setMethod("labelrow_visible", "VTableTree",
function(obj) {
labelrow_visible(tt_labelrow(obj))
})
setMethod("labelrow_visible", "LabelRow",
function(obj) obj@visible)
setMethod("labelrow_visible", "VAnalyzeSplit",
function(obj) .labelkids_helper(obj@var_label_position))
setGeneric("labelrow_visible<-", function(obj, value) standardGeneric("labelrow_visible<-"))
setMethod("labelrow_visible<-", "VTableTree",
function(obj, value) {
lr = tt_labelrow(obj)
labelrow_visible(lr) = value
tt_labelrow(obj) = lr
obj
})
setMethod("labelrow_visible<-", "LabelRow",
function(obj, value) {
obj@visible = value
obj
})
setMethod("labelrow_visible<-", "VAnalyzeSplit",
function(obj, value) {
obj@var_label_position = value
obj
})
setGeneric("label_kids", function(spl) standardGeneric("label_kids"))
setMethod("label_kids", "Split", function(spl) spl@label_children)
setGeneric("label_kids<-", function(spl, value) standardGeneric("label_kids<-"))
setMethod("label_kids<-", c("Split", "character"), function(spl, value) {
label_kids(spl) <- .labelkids_helper(value)
spl
})
setMethod("label_kids<-", c("Split", "logical"), function(spl, value) {
spl@label_children <- value
spl
})
setGeneric("vis_label", function(spl) standardGeneric("vis_label"))
setMethod("vis_label", "Split", function(spl) {
.labelkids_helper(label_position(spl))
})
setGeneric("vis_label<-", function(spl, value) standardGeneric("vis_label<-"))
setGeneric("label_position", function(spl) standardGeneric("label_position"))
setMethod("label_position", "Split", function(spl) spl@split_label_position)
setMethod("label_position", "VAnalyzeSplit", function(spl) spl@var_label_position)
setGeneric("label_position<-", function(spl, value) standardGeneric("label_position<-"))
setMethod("label_position<-", "Split", function(spl, value) {
value <- match.arg(value, valid_lbl_pos)
spl@split_label_position <- value
spl
})
setGeneric("content_fun", function(obj) standardGeneric("content_fun"))
setMethod("content_fun", "Split", function(obj) obj@content_fun)
setGeneric("content_fun<-", function(object, value) standardGeneric("content_fun<-"))
setMethod("content_fun<-", "Split", function(object, value) {
object@content_fun = value
object
})
setGeneric("analysis_fun", function(obj) standardGeneric("analysis_fun"))
setMethod("analysis_fun", "AnalyzeVarSplit", function(obj) obj@analysis_fun)
setMethod("analysis_fun", "AnalyzeColVarSplit", function(obj) obj@analysis_fun)
setGeneric("analysis_fun<-", function(object, value) standardGeneric("analysis_fun<-"))
setMethod("analysis_fun<-", "AnalyzeVarSplit", function(object, value) {
object@analysis_fun <- value
object
})
setMethod("analysis_fun<-", "AnalyzeColVarSplit", function(object, value) {
if(is(value, "function"))
value <- list(value)
object@analysis_fun <- value
object
})
setGeneric("split_fun", function(obj) standardGeneric("split_fun"))
setMethod("split_fun", "CustomizableSplit", function(obj) obj@split_fun)
setMethod("split_fun", "Split", function(obj) NULL)
setGeneric("content_extra_args", function(obj) standardGeneric("content_extra_args"))
setMethod("content_extra_args", "Split", function(obj) obj@content_extra_args)
setGeneric("content_extra_args<-", function(object, value) standardGeneric("content_extra_args<-"))
setMethod("content_extra_args<-", "Split", function(object, value) {
object@content_extra_args = value
object
})
setGeneric("content_var", function(obj) standardGeneric("content_var"))
setMethod("content_var", "Split", function(obj) obj@content_var)
setGeneric("content_var<-", function(object, value) standardGeneric("content_var<-"))
setMethod("content_var<-", "Split", function(object, value) {
object@content_var = value
object
})
setGeneric("avar_inclNAs", function(obj) standardGeneric("avar_inclNAs"))
setMethod("avar_inclNAs", "VAnalyzeSplit",
function(obj) obj@include_NAs)
setGeneric("avar_inclNAs<-", function(obj, value) standardGeneric("avar_inclNAs<-"))
setMethod("avar_inclNAs<-", "VAnalyzeSplit",
function(obj, value) {
obj@include_NAs = value
})
setGeneric("spl_labelvar", function(obj) standardGeneric("spl_labelvar"))
setMethod("spl_labelvar", "VarLevelSplit", function(obj) obj@value_label_var)
setGeneric("spl_child_order", function(obj) standardGeneric("spl_child_order"))
setMethod("spl_child_order", "VarLevelSplit", function(obj) obj@value_order)
setGeneric("spl_child_order<-",
function(obj, value) standardGeneric("spl_child_order<-"))
setMethod("spl_child_order<-", "VarLevelSplit",
function(obj, value) {
obj@value_order = value
obj
})
setMethod("spl_child_order",
"ManualSplit",
function(obj) obj@levels)
setMethod("spl_child_order",
"MultiVarSplit",
function(obj) spl_varnames(obj))
setMethod("spl_child_order",
"AllSplit",
function(obj) character())
setMethod("spl_child_order",
"VarStaticCutSplit",
function(obj) spl_cutlabels(obj))
setGeneric("root_spl", function(obj) standardGeneric("root_spl"))
setMethod("root_spl", "PreDataAxisLayout",
function(obj) obj@root_split)
setGeneric("root_spl<-", function(obj, value) standardGeneric("root_spl<-"))
setMethod("root_spl<-", "PreDataAxisLayout",
function(obj, value) {
obj@root_split <- value
obj
})
setGeneric("obj_avar", function(obj) standardGeneric("obj_avar"))
setMethod("obj_avar", "TableRow", function(obj) obj@var_analyzed)
setMethod("obj_avar", "ElementaryTable", function(obj) obj@var_analyzed)
setGeneric("row_cells", function(obj) standardGeneric("row_cells"))
setMethod("row_cells", "TableRow", function(obj) obj@leaf_value)
setGeneric("row_cells<-", function(obj, value) standardGeneric("row_cells<-"))
setMethod("row_cells<-", "TableRow", function(obj, value) {
obj@leaf_value <- value
obj
})
setGeneric("row_values", function(obj) standardGeneric("row_values"))
setMethod("row_values", "TableRow", function(obj) rawvalues(obj@leaf_value))
setGeneric("row_values<-", function(obj, value) standardGeneric("row_values<-"))
setMethod("row_values<-", "TableRow",
function(obj, value) {
obj@leaf_value = lapply(value, rcell)
obj
})
setMethod("row_values<-", "LabelRow",
function(obj, value) {
stop("LabelRows cannot have row values.")
})
setGeneric("spanned_values", function(obj) standardGeneric("spanned_values"))
setMethod("spanned_values", "TableRow",
function(obj) {
sp = row_cspans(obj)
rvals = row_values(obj)
unlist(mapply(function(v, s) rep(list(v), times = s),
v = rvals, s = sp),
recursive = FALSE)
})
setMethod("spanned_values", "LabelRow",
function(obj) {
rep(list(NULL), ncol(obj))
})
setGeneric("spanned_cells", function(obj) standardGeneric("spanned_cells"))
setMethod("spanned_cells", "TableRow",
function(obj) {
sp = row_cspans(obj)
rvals = row_cells(obj)
unlist(mapply(function(v, s) rep(list(v), times = s)),
recursive = FALSE)
})
setMethod("spanned_cells", "LabelRow",
function(obj) {
rep(list(NULL), ncol(obj))
})
setGeneric("spanned_values<-", function(obj, value) standardGeneric("spanned_values<-"))
setMethod("spanned_values<-", "TableRow",
function(obj, value) {
sp = row_cspans(obj)
splvec = cumsum(unlist(lapply(sp, function(x) c(1, rep(0, x - 1)))))
rvals = lapply(split(value, splvec),
function(v) {
if(length(v) == 1)
return(v)
stopifnot(length(unique(v)) == 1L)
rcell(unique(v), colspan= length(v))
})
row_values(obj) = rvals
obj
})
setMethod("spanned_values<-", "LabelRow",
function(obj, value) {
if(!is.null(value))
stop("Label rows can't have non-null cell values, got", value)
obj
})
setGeneric("obj_format", function(obj) standardGeneric("obj_format"))
setMethod("obj_format", "ANY", function(obj) attr(obj, "format"))
setMethod("obj_format", "VTableNodeInfo", function(obj) obj@format)
setMethod("obj_format", "Split", function(obj) obj@split_format)
setGeneric("obj_format<-", function(obj, value) standardGeneric("obj_format<-"))
setMethod("obj_format<-", "ANY", function(obj, value) {
attr(obj, "format") = value
obj
})
setMethod("obj_format<-", "VTableNodeInfo", function(obj, value) {
obj@format = value
obj
})
setMethod("obj_format<-", "Split", function(obj, value) {
obj@split_format = value
obj
})
setGeneric("set_format_recursive", function(obj, format, override = FALSE) standardGeneric("set_format_recursive"))
setMethod("set_format_recursive", "TableRow",
function(obj, format, override = FALSE) {
if(is.null(format))
return(obj)
if(is.null(obj_format(obj)) || override)
obj_format(obj) = format
lcells = row_cells(obj)
lvals = lapply(lcells, function(x) {
if(!is.null(x) && is.null(obj_format(x)))
obj_format(x) = obj_format(obj)
x
})
row_values(obj) = lvals
obj
})
setMethod("set_format_recursive", "LabelRow",
function(obj, format, override = FALSE) obj)
setMethod("set_format_recursive", "VTableTree",
function(obj, format, override = FALSE) {
force(format)
if(is.null(format))
return(obj)
if(is.null(obj_format(obj)) || override)
obj_format(obj) = format
kids = tree_children(obj)
kids = lapply(kids, function(x, format2, oride) set_format_recursive(x,
format = format2, override = oride),
format2 = obj_format(obj), oride = override)
tree_children(obj) = kids
obj
})
setGeneric("content_format", function(obj) standardGeneric("content_format"))
setMethod("content_format", "Split", function(obj) obj@content_format)
setGeneric("content_format<-", function(obj, value) standardGeneric("content_format<-"))
setMethod("content_format<-", "Split", function(obj, value) {
obj@content_format = value
obj
})
`%||%` = function(L, R) if(length(L) == 0) R else L
setGeneric("value_formats", function(obj, default = obj_format(obj)) standardGeneric("value_formats"))
setMethod("value_formats", "ANY",
function(obj, default) {
attr(obj, "format") %||% default
})
setMethod("value_formats", "TableRow",
function(obj, default) {
if(!is.null(obj_format(obj)))
default <- obj_format(obj)
formats = lapply(row_cells(obj), function(x)
value_formats(x) %||% default)
formats
})
setMethod("value_formats", "LabelRow",
function(obj, default) {
rep(list(NULL), ncol(obj))
})
setMethod("value_formats", "VTableTree",
function(obj, default) {
if(!is.null(obj_format(obj)))
default <- obj_format(obj)
rws = collect_leaves(obj, TRUE, TRUE)
formatrws = lapply(rws, value_formats, default = default)
mat = do.call(rbind, formatrws)
row.names(mat) = row.names(obj)
mat
})
setGeneric("collect_leaves",
function(tt, incl.cont = TRUE, add.labrows = FALSE)
standardGeneric("collect_leaves"), signature = "tt")
setMethod("collect_leaves", "TableTree",
function(tt, incl.cont = TRUE, add.labrows = FALSE) {
ret = c(
if(add.labrows && labelrow_visible(tt)) {
tt_labelrow(tt)
},
if(incl.cont) {tree_children(content_table(tt))},
lapply(tree_children(tt),
collect_leaves, incl.cont = incl.cont, add.labrows = add.labrows))
unlist(ret, recursive = TRUE)
})
setMethod("collect_leaves", "ElementaryTable",
function(tt, incl.cont = TRUE, add.labrows = FALSE) {
ret = tree_children(tt)
if(add.labrows && labelrow_visible(tt)) {
ret = c(tt_labelrow(tt), ret)
}
ret
})
setMethod("collect_leaves", "VTree",
function(tt, incl.cont, add.labrows) {
ret = lapply(tree_children(tt),
collect_leaves)
unlist(ret, recursive = TRUE)
})
setMethod("collect_leaves", "VLeaf",
function(tt, incl.cont, add.labrows) {
list(tt)
})
setMethod("collect_leaves", "NULL",
function(tt, incl.cont, add.labrows) {
list()
})
setMethod("collect_leaves", "ANY",
function(tt, incl.cont, add.labrows)
stop("class ", class(tt), " does not inherit from VTree or VLeaf"))
n_leaves <- function(tt, ...) {
length(collect_leaves(tt, ...))
}
setGeneric("row_cspans", function(obj) standardGeneric("row_cspans"))
setMethod("row_cspans", "TableRow", function(obj) obj@colspans)
setMethod("row_cspans", "LabelRow",
function(obj) rep(1L, ncol(obj)))
setGeneric("row_cspans<-", function(obj, value) standardGeneric("row_cspans<-"))
setMethod("row_cspans<-", "TableRow", function(obj, value) {
obj@colspans = value
obj
})
setMethod("row_cspans<-", "LabelRow", function(obj, value) {
stop("attempted to set colspans for LabelRow")
})
setGeneric("cell_cspan", function(obj) standardGeneric("cell_cspan"))
setMethod("cell_cspan", "CellValue", function(obj) attr(obj, "colspan"))
setGeneric("cell_cspan<-", function(obj, value) standardGeneric("cell_cspan<-"))
setMethod("cell_cspan<-", "CellValue", function(obj, value) {
attr(obj, "colspan") <- value
obj
})
setGeneric("tt_level", function(obj) standardGeneric("tt_level"))
setMethod("tt_level", "VNodeInfo", function(obj) obj@level)
setGeneric("tt_level<-", function(obj, value) standardGeneric("tt_level<-"))
setMethod("tt_level<-", "VNodeInfo", function(obj, value) {
obj@level = as.integer(value)
obj
})
setMethod("tt_level<-", "VTableTree",
function(obj, value) {
obj@level = as.integer(value)
tree_children(obj) = lapply(tree_children(obj),
`tt_level<-`, value = as.integer(value) + 1L)
obj
})
setGeneric("indent_mod", function(obj) standardGeneric("indent_mod"))
setMethod("indent_mod", "Split",
function(obj) obj@indent_modifier)
setMethod("indent_mod", "VTableNodeInfo",
function(obj) obj@indent_modifier)
setMethod("indent_mod", "ANY",
function(obj) attr(obj, "indent_mod") %||% 0L)
setMethod("indent_mod", "RowsVerticalSection",
function(obj) {
val <- attr(obj, "indent_mods") %||% rep(0L, length(obj))
setNames(val, names(obj))
})
setGeneric("indent_mod<-", function(obj, value) standardGeneric("indent_mod<-"))
setMethod("indent_mod<-", "Split",
function(obj, value) {
obj@indent_modifier = as.integer(value)
obj
})
setMethod("indent_mod<-", "VTableNodeInfo",
function(obj, value) {
obj@indent_modifier = as.integer(value)
obj
})
setMethod("indent_mod<-", "CellValue",
function(obj, value) {
attr(obj, "indent_mod") <- as.integer(value)
obj
})
setMethod("indent_mod<-", "RowsVerticalSection",
function(obj, value) {
if(length(value) != 1 && length(value) != length(obj))
stop("When setting indent mods on a RowsVerticalSection the value must have length 1 or the number of rows")
attr(obj, "indent_mods") <- as.integer(value)
obj
})
setGeneric("content_indent_mod", function(obj) standardGeneric("content_indent_mod"))
setMethod("content_indent_mod", "Split",
function(obj) obj@content_indent_modifier)
setMethod("content_indent_mod", "VTableNodeInfo",
function(obj) obj@content_indent_modifier)
setGeneric("content_indent_mod<-", function(obj, value) standardGeneric("content_indent_mod<-"))
setMethod("content_indent_mod<-", "Split",
function(obj, value) {
obj@content_indent_modifier = as.integer(value)
obj
})
setMethod("content_indent_mod<-", "VTableNodeInfo",
function(obj, value) {
obj@content_indent_modifier = as.integer(value)
obj
})
setGeneric("rawvalues", function(obj) standardGeneric("rawvalues"))
setMethod("rawvalues", "ValueWrapper", function(obj) obj@value)
setMethod("rawvalues", "LevelComboSplitValue", function(obj) obj@combolevels)
setMethod("rawvalues", "list", function(obj) lapply(obj, rawvalues))
setMethod("rawvalues", "ANY", function(obj) obj)
setMethod("rawvalues", "CellValue", function(obj) obj[[1]])
setMethod("rawvalues", "TreePos",
function(obj) rawvalues(pos_splvals(obj)))
setMethod("rawvalues", "RowsVerticalSection", function(obj) unlist(obj, recursive = FALSE))
setGeneric("value_names", function(obj) standardGeneric("value_names"))
setMethod("value_names", "ANY", function(obj) as.character(rawvalues(obj)))
setMethod("value_names", "TreePos",
function(obj) value_names(pos_splvals(obj)))
setMethod("value_names", "list", function(obj) lapply(obj, value_names))
setMethod("value_names", "ValueWrapper", function(obj) rawvalues(obj))
setMethod("value_names", "LevelComboSplitValue", function(obj) obj@value)
setMethod("value_names", "RowsVerticalSection", function(obj) attr(obj, "row_names"))
setGeneric("value_labels", function(obj) standardGeneric("value_labels"))
setMethod("value_labels", "ANY", function(obj) as.character(obj_label(obj)))
setMethod("value_labels", "TreePos", function(obj) sapply(pos_splvals(obj), obj_label))
setMethod("value_labels", "list", function(obj) {
ret <- lapply(obj, obj_label)
if(!is.null(names(obj))) {
inds <- vapply(ret, function(x) length(x) == 0, NA)
ret[inds] = names(obj)[inds]
}
ret
})
setMethod("value_labels", "RowsVerticalSection", function(obj) setNames(attr(obj, "row_labels"), value_names(obj)))
setMethod("value_labels", "ValueWrapper", function(obj) obj_label(obj))
setMethod("value_labels", "LevelComboSplitValue", function(obj) obj_label(obj))
setMethod("value_labels", "MultiVarSplit", function(obj) obj@var_labels)
setGeneric("spl_varlabels", function(obj) standardGeneric("spl_varlabels"))
setMethod("spl_varlabels", "MultiVarSplit", function(obj) obj@var_labels)
setGeneric("spl_varlabels<-", function(object, value) standardGeneric("spl_varlabels<-"))
setMethod("spl_varlabels<-", "MultiVarSplit", function(object, value) {
object@var_labels <- value
object
})
setGeneric("splv_extra", function(obj) standardGeneric("splv_extra"))
setMethod("splv_extra", "SplitValue",
function(obj) obj@extra)
setGeneric("splv_extra<-", function(obj, value) standardGeneric("splv_extra<-"))
setMethod("splv_extra<-", "SplitValue",
function(obj, value) {
obj@extra <- value
obj
})
setGeneric("split_exargs", function(obj) standardGeneric("split_exargs"))
setMethod("split_exargs", "Split",
function(obj) obj@extra_args)
setGeneric("split_exargs<-", function(obj, value) standardGeneric("split_exargs<-"))
setMethod("split_exargs<-", "Split",
function(obj, value ) {
obj@extra_args <- value
obj
})
is_labrow = function(obj) is(obj, "LabelRow")
spl_ref_group = function(obj) {
stopifnot(is(obj, "VarLevWBaselineSplit"))
obj@ref_group_value
}
setGeneric("clayout_splits", function(obj) standardGeneric("clayout_splits"))
setMethod("clayout_splits", "LayoutColTree", function(obj) {
clayout_splits(tree_children(obj)[[1]])
})
setMethod("clayout_splits", "LayoutColLeaf", function(obj) {
pos_splits(tree_pos(obj))
})
setMethod("clayout_splits", "VTableNodeInfo",
function(obj) clayout_splits(clayout(obj)))
setGeneric("clayout", function(obj) standardGeneric("clayout"))
setMethod("clayout", "VTableNodeInfo",
function(obj) obj@col_info@tree_layout)
setMethod("clayout", "PreDataTableLayouts",
function(obj) obj@col_layout)
setMethod("clayout", "ANY", function(obj) PreDataColLayout())
setGeneric("clayout<-", function(object, value) standardGeneric("clayout<-"))
setMethod("clayout<-", "PreDataTableLayouts",
function(object, value) {
object@col_layout = value
object
})
setGeneric("col_info", function(obj) standardGeneric("col_info"))
setMethod("col_info", "VTableNodeInfo",
function(obj) obj@col_info)
setGeneric("col_info<-", function(obj, value) standardGeneric("col_info<-"))
setMethod("col_info<-", "TableRow",
function(obj, value) {
obj@col_info = value
obj
})
.set_cinfo_kids = function(obj) {
kids = lapply(tree_children(obj),
function(x) {
col_info(x) = col_info(obj)
x
})
tree_children(obj) = kids
obj
}
setMethod("col_info<-", "ElementaryTable",
function(obj, value) {
obj@col_info = value
.set_cinfo_kids(obj)
})
setMethod("col_info<-", "TableTree",
function(obj, value) {
obj@col_info = value
if(nrow(content_table(obj))) {
ct = content_table(obj)
col_info(ct) = value
content_table(obj) = ct
}
.set_cinfo_kids(obj)
})
setGeneric("coltree", function(obj, df = NULL, rtpos = TreePos()) standardGeneric("coltree"))
setMethod("coltree", "InstantiatedColumnInfo",
function(obj, df = NULL, rtpos = TreePos()) {
if(!is.null(df))
warning("Ignoring df argument and retrieving already-computed LayoutColTree")
obj@tree_layout
})
setMethod("coltree", "PreDataTableLayouts",
function(obj, df, rtpos) coltree(clayout(obj), df, rtpos))
setMethod("coltree", "PreDataColLayout",
function(obj, df, rtpos) {
kids = lapply(obj, function(x) splitvec_to_coltree(df = df, splvec = x, pos = rtpos))
if(length(kids) == 1)
res = kids[[1]]
else
res = LayoutColTree(lev = 0L,
kids = kids,
tpos = rtpos,
spl = RootSplit())
disp_ccounts(res) = disp_ccounts(obj)
res
})
setMethod("coltree", "LayoutColTree",
function(obj, df, rtpos) obj)
setMethod("coltree", "VTableTree",
function(obj, df, rtpos) coltree(col_info(obj)))
setMethod("coltree", "TableRow",
function(obj, df, rtpos) coltree(col_info(obj)))
setGeneric("coltree<-", function(obj, value) standardGeneric("coltree<-"))
setMethod("coltree<-", c("InstantiatedColumnInfo", "LayoutColTree"),
function(obj, value) {
obj@tree_layout <- value
obj
})
setMethod("coltree<-", c("VTableTree", "LayoutColTree"),
function(obj, value) {
cinfo <- col_info(obj)
coltree(cinfo) <- value
col_info(obj) <- cinfo
obj
})
setGeneric("col_exprs", function(obj, df = NULL) standardGeneric("col_exprs"))
setMethod("col_exprs", "PreDataTableLayouts",
function(obj, df = NULL) col_exprs(clayout(obj), df))
setMethod("col_exprs", "PreDataColLayout",
function(obj, df = NULL) {
if(is.null(df))
stop("can't determine col_exprs without data")
ct <- coltree(obj, df = df)
make_col_subsets(ct, df = df)
})
setMethod("col_exprs", "InstantiatedColumnInfo",
function(obj, df = NULL) {
if(!is.null(df))
warning("Ignoring df method when extracted precomputed column subsetting expressions.")
obj@subset_exprs
})
setGeneric("col_extra_args", function(obj, df = NULL) standardGeneric("col_extra_args"))
setMethod("col_extra_args", "InstantiatedColumnInfo",
function(obj, df) {
if(!is.null(df))
warning("Ignorning df when retrieving already-computed column extra arguments.")
obj@cextra_args
})
setMethod("col_extra_args", "PreDataTableLayouts",
function(obj, df) col_extra_args(clayout(obj), df))
setMethod("col_extra_args", "PreDataColLayout",
function(obj, df) {
col_extra_args(coltree(obj, df), NULL)
})
setMethod("col_extra_args", "LayoutColTree",
function(obj, df) {
if(!is.null(df))
warning("Ignoring df argument and returning already calculated extra arguments")
get_col_extras(obj)
})
setMethod("col_extra_args", "LayoutColLeaf",
function(obj, df) {
if(!is.null(df))
warning("Ignoring df argument and returning already calculated extra arguments")
get_pos_extra(pos = tree_pos(obj))
})
setGeneric("col_counts", function(obj) standardGeneric("col_counts"))
setMethod("col_counts", "InstantiatedColumnInfo",
function(obj) obj@counts)
setMethod("col_counts", "VTableNodeInfo",
function(obj) col_counts(col_info(obj)))
setGeneric("col_counts<-", function(obj, value) standardGeneric("col_counts<-"))
setMethod("col_counts<-", "InstantiatedColumnInfo",
function(obj, value) {
obj@counts = value
obj
})
setMethod("col_counts<-", "VTableNodeInfo",
function(obj, value) {
cinfo = col_info(obj)
col_counts(cinfo) = value
col_info(obj) = cinfo
obj
})
setGeneric("col_total", function(obj) standardGeneric("col_total"))
setMethod("col_total", "InstantiatedColumnInfo",
function(obj) obj@total_count)
setMethod("col_total", "VTableNodeInfo",
function(obj) col_total(col_info(obj)))
setGeneric("col_total<-", function(obj, value) standardGeneric("col_total<-"))
setMethod("col_total<-", "InstantiatedColumnInfo",
function(obj, value) {
obj@total_count = value
obj
})
setMethod("col_total<-", "VTableNodeInfo",
function(obj, value) {
cinfo = col_info(obj)
col_total(cinfo) = value
col_info(obj) = cinfo
obj
})
setGeneric("disp_ccounts", function(obj) standardGeneric("disp_ccounts"))
setMethod("disp_ccounts", "VTableTree",
function(obj) disp_ccounts(col_info(obj)))
setMethod("disp_ccounts", "InstantiatedColumnInfo",
function(obj) obj@display_columncounts)
setMethod("disp_ccounts", "PreDataTableLayouts",
function(obj) disp_ccounts(clayout(obj)))
setMethod("disp_ccounts", "PreDataColLayout",
function(obj) obj@display_columncounts)
setGeneric("disp_ccounts<-", function(obj, value) standardGeneric("disp_ccounts<-"))
setMethod("disp_ccounts<-", "VTableTree",
function(obj, value) {
cinfo = col_info(obj)
disp_ccounts(cinfo) = value
col_info(obj) = cinfo
obj
})
setMethod("disp_ccounts<-", "InstantiatedColumnInfo",
function(obj, value) {
obj@display_columncounts = value
obj
})
setMethod("disp_ccounts<-", "PreDataColLayout",
function(obj, value) {
obj@display_columncounts = value
obj
})
setMethod("disp_ccounts<-", "LayoutColTree",
function(obj, value) {
obj@display_columncounts = value
obj
})
setMethod("disp_ccounts<-", "PreDataTableLayouts",
function(obj, value) {
clyt = clayout(obj)
disp_ccounts(clyt) = value
clayout(obj) = clyt
obj
})
setGeneric("colcount_format", function(obj) standardGeneric("colcount_format"))
setMethod("colcount_format", "InstantiatedColumnInfo",
function(obj) obj@columncount_format)
setMethod("colcount_format", "VTableNodeInfo",
function(obj) colcount_format(col_info(obj)))
setMethod("colcount_format", "PreDataColLayout",
function(obj) obj@columncount_format)
setMethod("colcount_format", "PreDataTableLayouts",
function(obj) colcount_format(clayout(obj)))
setGeneric("colcount_format<-", function(obj,value) standardGeneric("colcount_format<-"))
setMethod("colcount_format<-", "InstantiatedColumnInfo",
function(obj, value) {
obj@columncount_format = value
obj
})
setMethod("colcount_format<-", "VTableNodeInfo",
function(obj, value) {
cinfo = col_info(obj)
colcount_format(cinfo) = value
col_info(obj) = cinfo
obj
})
setMethod("colcount_format<-", "PreDataColLayout",
function(obj, value) {
obj@columncount_format = value
obj
})
setMethod("colcount_format<-", "PreDataTableLayouts",
function(obj, value) {
clyt = clayout(obj)
colcount_format(clyt) = value
clayout(obj) = clyt
obj
})
setGeneric("no_colinfo", function(obj) standardGeneric("no_colinfo"))
setMethod("no_colinfo", "VTableNodeInfo",
function(obj) no_colinfo(col_info(obj)))
setMethod("no_colinfo", "InstantiatedColumnInfo",
function(obj) length(obj@subset_exprs) == 0)
setMethod("names", "VTableNodeInfo",
function(x) names(col_info(x)))
setMethod("names", "InstantiatedColumnInfo",
function(x) names(coltree(x)))
setMethod("names", "LayoutColTree",
function(x) {
unname(unlist(lapply(tree_children(x),
function(obj) {
nm <- obj_name(obj)
rep(nm, n_leaves(obj))
})))
})
setMethod("row.names", "VTableTree",
function(x) {
unname(sapply(collect_leaves(x, add.labrows = TRUE),
obj_label, USE.NAMES = FALSE))
})
setMethod("as.vector", "TableRow", function(x, mode) as.vector(unlist(row_values(x)), mode = mode))
setMethod("as.vector", "ElementaryTable", function(x, mode) {
stopifnot(nrow(x) == 1L)
as.vector(tree_children(x)[[1]], mode = mode)
})
setMethod("as.vector", "VTableTree", function(x, mode) {
stopifnot(nrow(x) == 1L)
if(nrow(content_table(x)) == 1L)
tab = content_table(x)
else
tab = x
as.vector(tree_children(tab)[[1]], mode = mode)
})
setGeneric("spl_cuts", function(obj) standardGeneric("spl_cuts"))
setMethod("spl_cuts", "VarStaticCutSplit",
function(obj) obj@cuts)
setGeneric("spl_cutlabels", function(obj) standardGeneric("spl_cutlabels"))
setMethod("spl_cutlabels", "VarStaticCutSplit",
function(obj) obj@cut_labels)
setGeneric("spl_cutfun", function(obj) standardGeneric("spl_cutfun"))
setMethod("spl_cutfun", "VarDynCutSplit",
function(obj) obj@cut_fun)
setGeneric("spl_cutlabelfun", function(obj) standardGeneric("spl_cutlabelfun"))
setMethod("spl_cutlabelfun", "VarDynCutSplit",
function(obj) obj@cut_label_fun)
setGeneric("spl_is_cmlcuts", function(obj) standardGeneric("spl_is_cmlcuts"))
setMethod("spl_is_cmlcuts", "VarDynCutSplit",
function(obj) obj@cumulative_cuts)
setGeneric("spl_varnames",
function(obj) standardGeneric("spl_varnames"))
setMethod("spl_varnames", "MultiVarSplit",
function(obj) obj@var_names)
setGeneric("spl_varnames<-",
function(object, value) standardGeneric("spl_varnames<-"))
setMethod("spl_varnames<-", "MultiVarSplit",
function(object, value) {
object@var_names <- value
object
})
setGeneric("top_left", function(obj) standardGeneric("top_left"))
setMethod("top_left", "VTableTree", function(obj) top_left(col_info(obj)))
setMethod("top_left", "InstantiatedColumnInfo", function(obj) obj@top_left)
setMethod("top_left", "PreDataTableLayouts", function(obj) obj@top_left)
setGeneric("top_left<-", function(obj, value) standardGeneric("top_left<-"))
setMethod("top_left<-", "VTableTree", function(obj, value) {
cinfo <- col_info(obj)
top_left(cinfo) <- value
col_info(obj) <- cinfo
obj
})
setMethod("top_left<-", "InstantiatedColumnInfo", function(obj, value) {
obj@top_left <- value
obj
})
setMethod("top_left<-", "PreDataTableLayouts", function(obj, value) {
obj@top_left <- value
obj
})
vil_collapse <- function(x) {
x <- unlist(x)
x <- x[!is.na(x)]
x <- unique(x)
x[nzchar(x)]
}
setGeneric("vars_in_layout", function(lyt) standardGeneric("vars_in_layout"))
setMethod("vars_in_layout", "PreDataTableLayouts",
function(lyt) {
vil_collapse(c(vars_in_layout(clayout(lyt)),
vars_in_layout(rlayout(lyt))))
})
setMethod("vars_in_layout", "PreDataAxisLayout",
function(lyt) {
vil_collapse(lapply(lyt, vars_in_layout))
})
setMethod("vars_in_layout", "SplitVector",
function(lyt) {
vil_collapse(lapply(lyt, vars_in_layout))
})
setMethod("vars_in_layout", "Split",
function(lyt) vil_collapse(c(spl_payload(lyt),
content_var(lyt),
spl_label_var(lyt))))
setMethod("vars_in_layout", "CompoundSplit",
function(lyt) vil_collapse(lapply(spl_payload(lyt), vars_in_layout)))
setMethod("vars_in_layout", "ManualSplit",
function(lyt) character())
setGeneric("main_title", function(obj) standardGeneric("main_title"))
setMethod("main_title", "VTitleFooter",
function(obj) obj@main_title)
setGeneric("main_title<-", function(obj, value) standardGeneric("main_title<-"))
setMethod("main_title<-", "VTitleFooter",
function(obj, value) {
stopifnot(length(value) == 1)
obj@main_title <- value
obj
})
setGeneric("subtitles", function(obj) standardGeneric("subtitles"))
setMethod("subtitles", "VTitleFooter",
function(obj) obj@subtitles)
setGeneric("subtitles<-", function(obj, value) standardGeneric("subtitles<-"))
setMethod("subtitles<-", "VTitleFooter",
function(obj, value) {
obj@subtitles <- value
obj
})
all_titles <- function(obj) c(main_title(obj), subtitles(obj))
setGeneric("main_footer", function(obj) standardGeneric("main_footer"))
setMethod("main_footer", "VTitleFooter",
function(obj) obj@main_footer)
setGeneric("main_footer<-", function(obj, value) standardGeneric("main_footer<-"))
setMethod("main_footer<-", "VTitleFooter",
function(obj, value) {
obj@main_footer <- value
obj
})
setGeneric("prov_footer", function(obj) standardGeneric("prov_footer"))
setMethod("prov_footer", "VTitleFooter",
function(obj) obj@provenance_footer)
setGeneric("prov_footer<-", function(obj, value) standardGeneric("prov_footer<-"))
setMethod("prov_footer<-", "VTitleFooter",
function(obj, value) {
obj@provenance_footer <- value
obj
})
all_footers <- function(obj) c(main_footer(obj), prov_footer(obj))
make_ref_value <- function(value) {
if(is(value, "RefFootnote"))
value <- list(value)
else if (!is.list(value) || any(!sapply(value, is, "RefFootnote")))
value <- lapply(value, RefFootnote)
value
}
setGeneric("row_footnotes", function(obj) standardGeneric("row_footnotes"))
setMethod("row_footnotes", "TableRow",
function(obj) obj@row_footnotes)
setMethod("row_footnotes", "RowsVerticalSection",
function(obj) attr(obj, "row_footnotes") %||% list())
setGeneric("row_footnotes<-", function(obj, value) standardGeneric("row_footnotes<-"))
setMethod("row_footnotes<-", "TableRow",
function(obj, value) {
obj@row_footnotes <- make_ref_value(value)
obj
})
setMethod("row_footnotes", "ElementaryTable",
function(obj) {
rws <- collect_leaves(obj, TRUE, TRUE)
cells <- lapply(rws, row_footnotes)
cells
})
setGeneric("cell_footnotes", function(obj) standardGeneric("cell_footnotes"))
setMethod("cell_footnotes", "CellValue",
function(obj) attr(obj, "footnotes") %||% list())
setMethod("cell_footnotes", "TableRow",
function(obj) {
ret <- lapply(row_cells(obj), cell_footnotes)
if(length(ret) != ncol(obj)) {
ret <- rep(ret, row_cspans(obj))
}
ret
})
setMethod("cell_footnotes", "LabelRow",
function(obj) {
rep(list(list()), ncol(obj))
})
setMethod("cell_footnotes", "ElementaryTable",
function(obj) {
rws <- collect_leaves(obj, TRUE, TRUE)
cells <- lapply(rws, cell_footnotes)
do.call(rbind, cells)
})
setGeneric("cell_footnotes<-", function(obj, value) standardGeneric("cell_footnotes<-"))
setMethod("cell_footnotes<-", "CellValue",
function(obj, value) {
attr(obj, "footnotes") <- make_ref_value(value)
obj
})
.cfn_set_helper <- function(obj, value) {
if(length(value) != ncol(obj))
stop("Did not get the right number of footnote ref values for cell_footnotes<- on a full row.")
row_cells(obj) <- mapply(function(cell, fns) {
if(is.list(fns))
cell_footnotes(cell) <- lapply(fns, RefFootnote)
else
cell_footnotes(cell) <- list(RefFootnote(fns))
cell
},
cell = row_cells(obj),
fns = value, SIMPLIFY=FALSE)
obj
}
setMethod("cell_footnotes<-", "DataRow",
definition = .cfn_set_helper)
setMethod("cell_footnotes<-", "ContentRow",
definition = .cfn_set_helper)
setGeneric("col_fnotes_here", function(obj) standardGeneric("col_fnotes_here"))
setMethod("col_fnotes_here", c("LayoutColTree"), function(obj) obj@col_footnotes)
setMethod("col_fnotes_here", c("LayoutColLeaf"), function(obj) obj@col_footnotes)
setGeneric("col_fnotes_here<-", function(obj, value) standardGeneric("col_fnotes_here<-"))
setMethod("col_fnotes_here<-", "LayoutColTree", function(obj, value) {
obj@col_footnotes <- make_ref_value(value)
obj
})
setMethod("col_fnotes_here<-", "LayoutColLeaf", function(obj, value) {
obj@col_footnotes <- make_ref_value(value)
obj
})
setGeneric("ref_index", function(obj) standardGeneric("ref_index"))
setMethod("ref_index", "RefFootnote",
function(obj) obj@index)
setGeneric("ref_index<-", function(obj, value) standardGeneric("ref_index<-"))
setMethod("ref_index<-", "RefFootnote",
function(obj, value) {
obj@index <- value
obj
})
setGeneric(".fnote_set_inner<-", function(ttrp, colpath, value) standardGeneric(".fnote_set_inner<-"))
setMethod(".fnote_set_inner<-", c("TableRow", "NULL"),
function(ttrp, colpath, value) {
row_footnotes(ttrp) <- value
ttrp
})
setMethod(".fnote_set_inner<-", c("TableRow", "character"),
function(ttrp, colpath, value) {
ind <- .path_to_pos(path = colpath, tt = ttrp, cols = TRUE)
cfns <- cell_footnotes(ttrp)
cfns[[ind]] <- value
cell_footnotes(ttrp) <- cfns
ttrp
})
setMethod(".fnote_set_inner<-", c("InstantiatedColumnInfo", "character"),
function(ttrp, colpath, value) {
ctree <- col_fnotes_at_path(coltree(ttrp), colpath, fnotes = value)
coltree(ttrp) <- ctree
ttrp
})
setMethod(".fnote_set_inner<-", c("VTableTree", "ANY"),
function(ttrp, colpath, value) {
if(labelrow_visible(ttrp) && !is.null(value)) {
lblrw <- tt_labelrow(ttrp)
row_footnotes(lblrw) <- value
tt_labelrow(ttrp) <- lblrw
} else if(NROW(content_table(ttrp)) == 1L) {
ctbl <- content_table(ttrp)
pth <- make_row_df(ctbl)$path[[1]]
fnotes_at_path(ctbl, pth, colpath) <- value
content_table(ttrp) <- ctbl
} else {
stop("an error occured. this shouldn't happen. please contact the maintainer")
}
ttrp
})
setGeneric("fnotes_at_path<-", function(obj, rowpath = NULL, colpath = NULL, reset_idx = TRUE, value) standardGeneric("fnotes_at_path<-"))
setMethod("fnotes_at_path<-", c("VTableTree", "character"),
function(obj, rowpath = NULL, colpath = NULL, reset_idx = TRUE, value) {
rw <- tt_at_path(obj, rowpath)
.fnote_set_inner(rw, colpath) <- value
tt_at_path(obj, rowpath) <- rw
if(reset_idx)
obj <- update_ref_indexing(obj)
obj
})
setMethod("fnotes_at_path<-", c("VTableTree", "NULL"),
function(obj, rowpath = NULL, colpath = NULL, reset_idx = TRUE, value) {
cinfo <- col_info(obj)
.fnote_set_inner(cinfo, colpath) <- value
col_info(obj) <- cinfo
if(reset_idx)
obj <- update_ref_indexing(obj)
obj
})
`col_footnotes_here<-` <- function(obj, value) {
obj@col_footnotes <- make_ref_value(value)
obj
} |
dateTaxonTreePBDB <- function(
taxaTree,
taxaDataPBDB = taxaTree$taxaDataPBDB,
minBranchLen = 0,
tipTaxonDateUsed = "shallowestAge",
dropZeroOccurrenceTaxa = TRUE,
plotTree = FALSE){
if(!any(colnames(taxaDataPBDB)!="lastapp_min_ma")){
stop(paste0(
"a data table of PBDB variables, generated with show=app",
" must be provided either directly",
"or as a taxaDataPBDB element of taxaTrees"))
}
lastAppTimes <- c("lastapp_min_ma","lastapp_max_ma")
firstAppTimes <- c("firstapp_min_ma","firstapp_max_ma")
taxaDataPBDB_orig <- taxaDataPBDB
if(is.null(taxaTree$node.label)){
message("No node labels found - is this a taxon tree from the PBDB?")
combData <- taxaDataPBDB
}else{
nodeNames <- taxaTree$node.label
nodeNames <- sapply(
strsplit(
nodeNames,
split=".",
fixed=TRUE
),
function(x) x[[1]]
)
nodeNamesNoMatch <- sapply(
nodeNames,
function(x)
all(x != taxaDataPBDB$taxon_name)
)
if(any(nodeNamesNoMatch)){
nodeNames <- nodeNames[nodeNamesNoMatch]
nodeNames <- paste0(nodeNames, collapse=",")
apiAddressNodes <- paste0(
"http://paleobiodb.org/data1.2/taxa/list.txt?name=",
nodeNames,"&show=app,parent"
)
nodeData <- read.csv(apiAddressNodes,
stringsAsFactors = FALSE)
sharedColNames <- intersect(colnames(nodeData), colnames(taxaDataPBDB))
taxaDataReduced <- taxaDataPBDB[,sharedColNames]
nodeDataReduced <- nodeData[,sharedColNames]
combData <- rbind(taxaDataReduced, nodeDataReduced)
}
}
appData <- processTaxonAppData(dataPBDB = combData,
dropZeroOccurrenceTaxa = dropZeroOccurrenceTaxa)
dropTips <- sapply(taxaTree$tip.label,
function(x) all(x != appData$taxon_name)
)
if(any(dropTips)){
message(paste0("The following tips did not have resolvable",
" appearance times and were dropped:"))
message(paste0(taxaTree$tip.label[dropTips],
collapse = ", "))
taxaTree <- drop.tip(taxaTree,
tip = which(dropTips)
)
}
if(is.null(taxaTree$node.label)){
nodeChildren <- lapply(prop.part(taxaTree), function(x)
taxaTree$tip.label[x]
)
nodeMaxAges <- numeric()
for(i in 1:Nnode(taxaTree)){
matchedChildren <- match(nodeChildren[[i]], appData$taxon_name)
maxChildAges <- appData$firstapp_max_ma[matchedChildren]
nodeMaxAges[i] <- max(maxChildAges)
}
}else{
nodeMaxAges <- appData$firstapp_max_ma[
match(taxaTree$node.label, appData$taxon_name)
]
}
tipMatches <- match(taxaTree$tip.label, appData$taxon_name)
fourDateRanges <- appData[tipMatches,
c(firstAppTimes,lastAppTimes )]
if(tipTaxonDateUsed == "deepestAge"){
tipAges <- fourDateRanges$firstapp_max_ma
}
if(tipTaxonDateUsed == "shallowestAge"){
tipAges <- fourDateRanges$lastapp_min_ma
}
allAges <- as.numeric(c(tipAges, nodeMaxAges))
taxaNAapps <- is.na(allAges)
if(any(taxaNAapps)){
namesAllAges <- c(taxaTree$tip.label, taxaTree$node.label)
noappNames <- namesAllAges[taxaNAapps]
noappNames <- paste0(noappNames, collapse = ",\n")
stop(paste0("Some ages contain NAs: \n",
noappNames))
}
datedTree <- nodeDates2branchLengths(
nodeDates = allAges,
tree = taxaTree,
allTipsModern = FALSE
)
if(minBranchLen>0){
datedTree <- minBranchLength(
tree = datedTree,
mbl = minBranchLen)
datedTree <- ladderize(datedTree)
plotName <- paste0(
"Dated Phylogeny (",
minBranchLen,
" Minimum Branch Length)"
)
}else{
plotName <- "Dated Phylogeny"
}
checkRootTimeRes <- checkRootTime(datedTree,
stopIfFail = TRUE)
if(plotTree){
plot(datedTree,
main = plotName,
show.node.label = FALSE,
cex = 0.5)
axisPhylo()
}
rownames(fourDateRanges) <- taxaTree$tip.label
datedTree$tipTaxonFourDateRanges <- fourDateRanges
datedTree$ranges.used <- fourDateRanges[,
c("firstapp_max_ma","lastapp_min_ma")
]
colnames(datedTree$ranges.used) <- c("FAD", "LAD")
datedTree$taxaDataPBDB <- taxaDataPBDB_orig
return(datedTree)
}
processTaxonAppData <- function(dataPBDB, dropZeroOccurrenceTaxa){
lastAppTimes <- c("lastapp_min_ma","lastapp_max_ma")
firstAppTimes <- c("firstapp_min_ma","firstapp_max_ma")
isExtant <- dataPBDB$is_extant == "extant"
isExtinct <- dataPBDB$is_extant == "extinct"
hasZeroOcc <- (dataPBDB$n_occs == 0)
isExtinctAndZeroOcc <- hasZeroOcc & isExtinct
hasNAFirstApps <- apply(
dataPBDB[,firstAppTimes], 1,function(x) is.na(x[1]) & is.na(x[2])
)
if(any(isExtant)){
dataPBDB[isExtant, lastAppTimes] <- 0
dataPBDB[isExtant & hasNAFirstApps, firstAppTimes] <- 0
}
if(any(isExtinctAndZeroOcc) & dropZeroOccurrenceTaxa){
dataPBDB <- dataPBDB[-which(isExtinctAndZeroOcc),]
}
return(dataPBDB)
} |
get_nominees_by_state <- function(congress, state, page = 1, myAPI_Key){
API = 'congress'
control <- 107:cMaxCongress
if(!congress %in% 107:cMaxCongress){
stop("Incorrect congress, posible options are: ", control[1], ", ", control[2], ", ", control[3], " through ", control[9] )
}
if(!validate_state(state))
stop("Incorrect state")
query <- sprintf("%s/nominees/state/%s.json", congress, state)
pp_query(query, API, page = page, myAPI_Key = myAPI_Key)
} |
calculateFeatures = function(feat.object, control, ...) {
assertClass(feat.object, "FeatureObject")
possible = as.character(unlist(listAllFeatureSets()))
if (missing(control))
control = list()
assertList(control)
prog = control_parameter(control, "show_progress", TRUE)
subset = control_parameter(control, "subset", possible)
assertSubset(subset, choices = possible)
allow.costs = control_parameter(control, "allow_costs",
!is.null(feat.object$fun))
allow.cellmapping = control_parameter(control, "allow_cellmapping", TRUE)
assertLogical(allow.costs)
blacklist = control_parameter(control, "blacklist", NULL)
if (any(feat.object$blocks <= 2)) {
if (!("cm_conv" %in% blacklist)) {
blacklist = unique(c(blacklist, "cm_conv"))
warning("The 'cm_conv' features were not computed, because not all blocks were greater than 2.")
}
}
assertSubset(blacklist, choices = possible)
expensive = setdiff(listAvailableFeatureSets(allow.additional_costs = TRUE),
listAvailableFeatureSets(allow.additional_costs = FALSE))
if (allow.costs & is.null(feat.object$fun) & any(expensive %in% setdiff(subset, blacklist)))
stop("The local search features require the exact function!")
sets = listAvailableFeatureSets(subset, allow.cellmapping, allow.costs, blacklist)
if (prog) {
bar = makeProgressBar(min = 0, max = length(sets), label = "")
no_chars = max(nchar(sets))
features = lapply(sets, function(set) {
txt = paste0(set, paste(rep(" ", no_chars - nchar(set)), collapse = ""))
bar$inc(1L, txt)
calculateFeatureSet(feat.object, set, control, ...)
})
} else {
features = lapply(sets, function(set) calculateFeatureSet(feat.object, set, control, ...))
}
do.call(c, features)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.