code
stringlengths 1
13.8M
|
---|
startShinyItemAnalysis <- function(background = TRUE, ...) {
check_app_deps(...)
run_app_script <- '
appDir <- system.file("ShinyItemAnalysis", package = "ShinyItemAnalysis")
if (appDir == "") {
stop("Could not find example directory. Try re-installing `ShinyItemAnalysis`.", call. = FALSE)
}
shiny::runApp(appDir, display.mode = "normal", launch.browser = TRUE)
'
if (!isAvailable()) {
message(
"\n---------------------------------------------------------------\n",
"ShinyItemAnalysis will run in the console as usual.\n",
"To run the app in a background process, please use RStudio IDE.\n",
"---------------------------------------------------------------"
)
Sys.sleep(5)
eval(parse(text = run_app_script))
} else if (background) {
temp_script <- tempfile(fileext = ".R")
writeLines(run_app_script, con = temp_script)
job_id <- tryCatch(
{
jobRunScript(temp_script, name = "ShinyItemAnalysis")
},
error = function(e) {
message(
"There was an error running the app as a background job.\n",
"It is likely because of your username \"",
Sys.info()[["user"]],
"\" containing special characters.\n",
"Please use `startShinyItemAnalysis(background = FALSE)`."
)
return("fail")
}
)
if (job_id != "fail") {
jobSetStatus(
job_id,
"The app is running in background. You can close it with the STOP button."
)
executeCommand("activateConsole")
message(
"\n----------------------------------------------------------------\n",
"ShinyItemAnalysis will start shortly as a background process.\n",
"The process automatically stops as you close the browser window.\n",
"----------------------------------------------------------------"
)
}
} else {
eval(parse(text = run_app_script))
}
}
run_app <- function(background = TRUE, ...) {
startShinyItemAnalysis(background = background, ...)
}
check_app_deps <- function(...) {
suggests <- read.dcf(system.file("DESCRIPTION", package = "ShinyItemAnalysis"), fields = "Suggests")
suggests <- trimws(strsplit(suggests, c(",", "\\("))[[1]])
suggests <- sapply(strsplit(suggests, "\\("), function(x) trimws(x[[1]]))
suggests_installed <- sapply(suggests, function(x) requireNamespace(x, quietly = TRUE))
suggest_to_install <- suggests[!suggests_installed]
n_pkg <- length(suggest_to_install)
if (n_pkg > 0) {
message(
"Following ", ifelse(n_pkg > 1, "packages are", "package is"),
" needed to run the app but ",
ifelse(n_pkg > 1, "are", "is"), " not installed:"
)
cat("", paste("-", suggest_to_install), "", sep = "\n")
out <- utils::menu(
choices = c("Yes", "No"),
title = message("Do you want to install ", ifelse(n_pkg > 1, "them", "it"), "?")
)
if (out == 1L) {
utils::install.packages(pkgs = suggest_to_install, ...)
} else {
stop("The interactive Shiny app could not be started because of missing dependencies.", call. = FALSE)
}
}
} |
residuez <- function(b, a) {
if (!is.vector(b) || !is.vector(a)) {
stop("b and a must be vectors")
}
rpk <- residue(rev(b), rev(a))
p <- 1 / rpk$p
m <- mpoles(p)
r <- rpk$r * ((-p)^m)
if (!is.null(rpk$k)) {
k <- Conj(rev(rpk$k))
} else {
k <- NULL
}
r <- zapIm(r)
p <- zapIm(p)
list(r = r, p = p, k = k)
} |
make_ga_4_req <- function(viewId,
date_range=NULL,
metrics=NULL,
dimensions=NULL,
dim_filters=NULL,
met_filters=NULL,
filtersExpression=NULL,
order=NULL,
segments=NULL,
pivots=NULL,
cohorts=NULL,
pageToken=0,
pageSize=1000,
samplingLevel=c("DEFAULT", "SMALL","LARGE"),
metricFormat=NULL,
histogramBuckets=NULL) {
samplingLevel <- match.arg(samplingLevel)
if(!is.dim_filter_clause(dim_filters)){
assert_that_ifnn(dim_filters, is.dim_filter)
}
if(!is.met_filter_clause(met_filters)){
assert_that_ifnn(met_filters, is.met_filter)
}
assert_that_ifnn(filtersExpression, is.string)
if(all(is.null(date_range), is.null(cohorts))){
stop("Must supply one of date_range or cohorts", call. = FALSE)
}
if(!is.null(cohorts)){
assert_that(cohort_metric_check(metrics),
cohort_dimension_check(dimensions))
if(!is.null(date_range)){
stop("Don't supply date_range when using cohorts",
call. = FALSE)
}
}
if(is.null(metrics)){
stop("Must supply a metric", call. = FALSE)
}
if(!is.null(segments)){
if(!any("segment" %in% dimensions)){
dimensions <- c(dimensions, "segment")
}
}
id <- sapply(viewId, checkPrefix, prefix = "ga")
date_list_one <- date_ga4(date_range[1:2])
if(length(date_range) == 4){
date_list_two <- date_ga4(date_range[3:4])
} else {
date_list_two <- NULL
}
dim_list <- dimension_ga4(dimensions, histogramBuckets)
met_list <- metric_ga4(metrics, metricFormat)
if(all(is.null(order), !is.null(histogramBuckets))){
bys <- intersect(dimensions, names(histogramBuckets))
order <- lapply(bys,
order_type,
FALSE,
"HISTOGRAM_BUCKET")
}
request <-
structure(
list(
viewId = id,
dateRanges = list(
date_list_one,
date_list_two
),
samplingLevel = samplingLevel,
dimensions = dim_list,
metrics = met_list,
dimensionFilterClauses = dim_filters,
metricFilterClauses = met_filters,
filtersExpression = filtersExpression,
orderBys = order,
segments = segments,
pivots = pivots,
cohortGroup=cohorts,
pageToken=as.character(pageToken),
pageSize = pageSize,
includeEmptyRows = TRUE
),
class = "ga4_req")
request <- rmNullObs(request)
}
google_analytics <- function(viewId,
date_range=NULL,
metrics=NULL,
dimensions=NULL,
dim_filters=NULL,
met_filters=NULL,
filtersExpression=NULL,
order=NULL,
segments=NULL,
pivots=NULL,
cohorts=NULL,
max=1000,
samplingLevel=c("DEFAULT", "SMALL","LARGE"),
metricFormat=NULL,
histogramBuckets=NULL,
anti_sample = FALSE,
anti_sample_batches = "auto",
slow_fetch = FALSE,
useResourceQuotas= NULL,
rows_per_call = 10000L){
if(is_default_project()){
if(!interactive()){
default_project_message()
stop("The default Google Cloud Project for googleAnalyticsR is intended
\nfor evalutation only, not production scripts.
\nPlease set your own client.id and client.secret via googleAuthR::gar_set_client()
\nor otherwise as suggested on the website.", call. = FALSE)
}
}
timer_start <- Sys.time()
assert_that_ifnn(useResourceQuotas, is.flag)
segments <- assign_list_class(segments, "segment_ga4")
dim_filters <- assign_list_class(dim_filters, ".filter_clauses_ga4")
met_filters <- assign_list_class(met_filters, ".filter_clauses_ga4")
if(!is.null(filtersExpression)){
filtersExpression <- as(filtersExpression, "character")
}
assert_that(is.count(rows_per_call),
rows_per_call <= 100000L)
api_max_rows <- rows_per_call
max <- as.integer(max)
allResults <- FALSE
if(max < 0){
max <- api_max_rows - 1L
allResults <- TRUE
}
reqRowLimit <- as.integer(api_max_rows)
if(!is.null(cohorts)){
anti_sample <- FALSE
}
if(anti_sample){
if(isTRUE(useResourceQuotas)){
stop("Can't use anti_sample=TRUE and useResourceQuoteas=TRUE in same API call (and you shouldn't need to)",
call. = FALSE)
}
myMessage("anti_sample set to TRUE. Mitigating sampling via multiple API calls.", level = 3)
return(anti_sample(viewId = viewId,
date_range = date_range,
metrics = metrics,
dimensions = dimensions,
dim_filters = dim_filters,
met_filters = met_filters,
filtersExpression = filtersExpression,
order = order,
segments = segments,
pivots = pivots,
cohorts = cohorts,
metricFormat = metricFormat,
histogramBuckets = histogramBuckets,
anti_sample_batches = anti_sample_batches,
slow_fetch = slow_fetch,
rows_per_call = rows_per_call))
}
if(max > reqRowLimit){
myMessage("Multi-call to API", level = 1)
}
meta_batch_start_index <- seq(from=0, to=max, by=reqRowLimit)
requests <- lapply(meta_batch_start_index, function(start_index){
start_index <- as.integer(start_index)
if(allResults){
remaining <- as.integer(api_max_rows)
} else {
remaining <- min(as.integer(max - start_index), reqRowLimit)
}
make_ga_4_req(viewId = viewId,
date_range = date_range,
metrics = metrics,
dimensions = dimensions,
dim_filters = dim_filters,
met_filters = met_filters,
filtersExpression = filtersExpression,
order = order,
segments = segments,
pivots = pivots,
cohorts = cohorts,
pageToken = start_index,
pageSize = remaining,
samplingLevel = samplingLevel,
metricFormat = metricFormat,
histogramBuckets = histogramBuckets)
})
if(slow_fetch){
out <- fetch_google_analytics_4_slow(requests,
max_rows = max, allRows = allResults,
useResourceQuotas = useResourceQuotas)
allResults <- FALSE
} else {
out <- fetch_google_analytics_4(requests,
merge = TRUE, useResourceQuotas = useResourceQuotas)
}
if(allResults){
all_rows <- as.integer(attr(out, "rowCount"))
if(!is.null(out) && nrow(out) < all_rows){
meta_batch_start_index2 <- tryCatch(seq(from=api_max_rows, to=all_rows, by=reqRowLimit),
error = function(ex){
stop("Sequence batch error: ",
"\n api_max_rows: ",api_max_rows,
"\n all_rows:", all_rows,
"\n reqRowLimit:", reqRowLimit, call. = FALSE)
})
requests2 <- lapply(meta_batch_start_index2, function(start_index){
start_index <- as.integer(start_index)
remaining <- as.integer(api_max_rows)
make_ga_4_req(viewId = viewId,
date_range = date_range,
metrics = metrics,
dimensions = dimensions,
dim_filters = dim_filters,
met_filters = met_filters,
filtersExpression = filtersExpression,
order = order,
segments = segments,
pivots = pivots,
cohorts = cohorts,
pageToken = start_index,
pageSize = remaining,
samplingLevel = samplingLevel,
metricFormat = metricFormat,
histogramBuckets = histogramBuckets)
})
slow <- FALSE
the_rest <- tryCatch(fetch_google_analytics_4(requests2,
merge = TRUE,
useResourceQuotas = useResourceQuotas),
error = function(ex){
myMessage("Error requesting v4 batch - retrying with slow_fetch=TRUE ...",
level = 3)
slow <<- TRUE
Sys.sleep(5)
fetch_google_analytics_4_slow(requests,
max_rows = max,
allRows = allResults,
useResourceQuotas=useResourceQuotas)
})
if(!slow){
out <- rbind(out, the_rest)
} else {
out <- the_rest
}
myMessage("All data downloaded, total of [",all_rows,"] - download time: ",
format(Sys.time() - timer_start),
level = 3)
} else {
myMessage("One batch enough to get all results", level = 1)
}
}
sampling_message(attr(out, "samplesReadCounts"),
attr(out, "samplingSpaceSizes"),
hasDateComparison = any(grepl("\\.d1|\\.d2", names(out))))
out
}
google_analytics_4 <- function(...){
.Deprecated("google_analytics", package = "googleAnalyticsR")
google_analytics(...)
}
fetch_google_analytics_4_slow <- function(request_list,
max_rows,
allRows = FALSE,
useResourceQuotas=NULL){
myMessage("Calling APIv4 slowly....", level = 2)
f <- get_ga4_function()
do_it <- TRUE
the_req <- request_list[[1]]
actualRows <- max_rows
response_list <- list()
while(do_it){
body <- list(
reportRequests = the_req,
useResourceQuotas = useResourceQuotas
)
body <- rmNullObs(body)
myMessage("Slow fetch: [",
the_req$pageToken, "] from estimated actual Rows [",
actualRows, "]",
level = 3)
out <- tryCatch(f(the_body = body),
error = function(err){
custom_error(err)
})
actualRows <- attr(out[[1]], "rowCount")
npt <- attr(out[[1]], "nextPageToken")
if(allRows){
max_rows <- as.integer(actualRows)
}
if(is.null(npt) || as.integer(npt) >= max_rows){
do_it <- FALSE
}
the_req$pageToken <- npt
response_list <- c(response_list, out)
}
Reduce(rbind, response_list)
}
fetch_google_analytics_4 <- function(request_list, merge = FALSE, useResourceQuotas = NULL){
assert_that(is.list(request_list))
ga_batch_limit <- 5
if(length(unique((lapply(request_list, function(x) x$viewId)))) != 1){
stop("request_list must all have the same viewId", call. = FALSE)
}
if(length(unique((lapply(request_list, function(x) x$dateRanges)))) != 1){
stop("request_list must all have the same dateRanges", call. = FALSE)
}
if(length(unique((lapply(request_list, function(x) x$segments)))) != 1){
stop("request_list must all have the same segments", call. = FALSE)
}
if(length(unique((lapply(request_list, function(x) x$samplingLevel)))) != 1){
stop("request_list must all have the same samplingLevel", call. = FALSE)
}
if(length(unique((lapply(request_list, function(x) x$cohortGroup)))) != 1){
stop("request_list must all have the same cohortGroup", call. = FALSE)
}
myMessage("Calling APIv4....", level = 2)
f <- get_ga4_function()
if(!is.null(request_list$viewId) || length(request_list) <= ga_batch_limit){
myMessage("Single v4 batch", level = 2)
request_list <- unitToList(request_list)
body <- list(
reportRequests = request_list,
useResourceQuotas = useResourceQuotas
)
body <- rmNullObs(body)
out <- tryCatch(f(the_body = body),
error = function(err){
custom_error(err)
})
} else {
myMessage("Multiple v4 batch", level = 2)
request_list_index <- seq(1, length(request_list), ga_batch_limit)
batch_list <- lapply(request_list_index,
function(x) request_list[x:(x+(ga_batch_limit-1))])
body_list <- lapply(batch_list, function(x){
bb <- list(reportRequests = x,
useResourceQuotas = useResourceQuotas)
rmNullObs(bb)
})
body_list <- rmNullObs(body_list)
myMessage("Looping over maximum [", length(body_list), "] batches.", level = 1)
response_list <- lapply(body_list, function(b){
myMessage("Fetching v4 data batch...", level = 3)
out <- tryCatch(f(the_body = b),
error = function(err){
custom_error(err)
})
})
out <- unlist(response_list, recursive = FALSE)
}
if(length(out) == 1){
out <- out[[1]]
} else {
if(merge){
if(all(vapply(out, is.null, logical(1)))){
out <- NULL
} else {
df_names <- rmNullObs(lapply(out, function(x) names(x)))
if(length(unique(df_names)) != 1){
stop("List of dataframes have non-identical column names. Got ",
paste(lapply(out, function(x) names(x)), collapse = " "))
}
out <- Reduce(rbind, out)
}
}
}
myMessage("Downloaded [",NROW(out),"] rows from a total of [",attr(out, "rowCount"), "].", level = 3)
out
}
get_ga4_function <- function(){
the_user <- getOption("googleAnalyticsR.quotaUser", Sys.info()[["user"]])
if(the_user != Sys.info()[["user"]]){
myMessage("Fetching API under quotaUser: ", the_user, level =3)
}
gar_api_generator("https://analyticsreporting.googleapis.com/v4/reports:batchGet",
"POST",
pars_args = list(quotaUser = the_user),
data_parse_function = google_analytics_4_parse_batch,
simplifyVector = FALSE)
} |
svds <- function(A, NSvals, which="L", tol=1e-6, u0=NULL, v0=NULL,
orthou=NULL, orthov=NULL, prec=NULL, isreal=NULL, ...) {
opts <- list(...);
if (is.function(A)) {
if (!.is.wholenumber(opts$n) || !.is.wholenumber(opts$m))
stop("matrix dimension not set (set 'm' and 'n')");
Af <- A;
Aarg <- A;
isreal_suggestion <- FALSE;
}
else if (length(dim(A)) != 2) {
stop("A should be a matrix or a function")
}
else {
opts$m <- nrow(A);
opts$n <- ncol(A);
if (is.matrix(A) && (is.integer(A) || is.logical(A))) {
A <- as.double(A);
dim(A) = c(opts$m, opts$n);
}
ismatrix <- (is.matrix(A) && (is.double(A) || is.complex(A)));
isreal_suggestion <-
if (ismatrix) is.double(A)
else (inherits(A, "Matrix") && substr(class(A), 0, 1) == "d");
Af <- function(x,trans)
if (trans == "n") A %*% x else crossprod(A,x);
Afc <- function(x,trans)
if (trans == "n") A %*% x else Conj(t(crossprod(Conj(x),A)));
if ((is.null(isreal) || isreal == isreal_suggestion) && (
ismatrix ||
any(c("dmatrix", "dgeMatrix", "dgCMatrix", "dsCMatrix") %in% class(A)))) {
Aarg <- A;
}
else if ("ddiMatrix" %in% class(A)) {
Af <- function(x,trans) A %*% x;
Aarg <- Af;
}
else {
Aarg <- if (isreal_suggestion) Af else Afc;
}
}
if (!.is.wholenumber(NSvals) || NSvals > min(opts$m, opts$n))
stop("NSvals should be an integer not greater than the smallest dimension of the matrix");
opts$numSvals <- NSvals
targets = list(L="primme_svds_largest",
S="primme_svds_smallest");
if (is.character(which) && which %in% names(targets)) {
opts$target <- targets[[which]];
}
else if (is.numeric(which)) {
opts$targetShifts <- which;
opts$target <- "primme_svds_closest_abs";
}
else {
stop("target should be numeric or L or S");
}
if (!is.numeric(tol) || tol < 0 || tol >= 1) {
stop("tol should be a positive number smaller than 1 or a function")
}
else {
opts$eps <- tol;
}
check_uv <- function(u, v, u_name, v_name) {
if (!is.null(u) && (!is.matrix(u) || nrow(u) != opts$m)) {
stop(paste(u_name, "should be NULL or a matrix with the same number of rows as A"))
}
else if (!is.null(u) && is.null(v)) {
v <- Af(u, "c");
}
if (!is.null(v) && (!is.matrix(v) || nrow(v) != opts$n)) {
stop(paste(v_name, "should be NULL or a matrix with the same number of rows as columns A has"))
}
else if (!is.null(v) && is.null(u)) {
u <- Af(v, "n");
}
if (is.null(u) && is.null(v))
list(u=matrix(nrow=0, ncol=0), v=matrix(nrow=0, ncol=0))
else
list(u=u, v=v);
}
ortho <- check_uv(orthou, orthov, "orthou", "orthov");
init <- check_uv(u0, v0, "u0", "v0");
if (is.null(prec) || is.function(prec)) {
precf <- prec
}
else if (!is.list(prec)) {
stop("prec should be a function or a list(AHA=...,AAH=...,aug=...)")
}
else if (!is.null(prec$AHA) && !is.function(prec$AHA)
&& (!is.matrix(prec$AHA) || length(dim(prec$AHA)) != 2
|| ncol(prec$AHA) != opts$n || nrow(prec$AHA) != opts$n)) {
stop("prec$AHA should be a function or a square matrix of dimension ncol(A)")
}
else if (!is.null(prec$AAH) && !is.function(prec$AAH)
&& (!is.matrix(prec$AAH) || length(dim(prec$AAH)) != 2
|| ncol(prec$AAH) != opts$m || nrow(prec$AAH) != opts$m)) {
stop("prec$AAH should be a function or a square matrix of dimension nrow(A)")
}
else if (!is.null(prec$aug) && !is.function(prec$aug)
&& (!is.matrix(prec$aug) || length(dim(prec$aug)) != 2
|| ncol(prec$aug) != opts$m+opts$n || nrow(prec$aug) != opts$m+opts$n)) {
stop("prec$aug should be a function or a square matrix of dimension nrow(A)+ncol(A)")
}
else {
tofunc <- function(x)
if (is.function(x)) x
else if (is.null(x)) identity
else function(v) solve(x, v);
precf <- function(x, mode) tofunc(prec[[mode]])(x);
}
methodStage1 <- opts[["methodStage1"]];
opts$methodStage1 <- NULL;
methodStage2 <- opts[["methodStage2"]];
opts$methodStage2 <- NULL;
method <- opts[["method"]];
opts$method <- NULL;
if (!is.null(isreal) && !is.logical(isreal)) {
stop("isreal should be logical");
}
else if (is.null(isreal)) {
isreal <- isreal_suggestion;
}
primme_svds <- .primme_svds_initialize();
for (x in names(opts)) {
if (is.list(opts[[x]])) {
primme <- .primme_svds_get_member(x, primme_svds);
for (primmex in names(opts[[x]]))
.primme_set_member(primmex, opts[[x]][[primmex]], primme);
}
else {
.primme_svds_set_member(x, opts[[x]], primme_svds);
}
}
if (!is.null(method) || !is.null(methodStage1) || !is.null(methodStage2)) {
if (is.null(method)) method <- "primme_svds_default";
if (is.null(methodStage1)) methodStage1 <- "PRIMME_DEFAULT_METHOD";
if (is.null(methodStage2)) methodStage2 <- "PRIMME_DEFAULT_METHOD";
.primme_svds_set_method(method, methodStage1, methodStage2, primme_svds);
}
r <- if (!isreal)
.zprimme_svds(ortho$u, ortho$v, init$u, init$v, Aarg, precf, primme_svds)
else
.dprimme_svds(ortho$u, ortho$v, init$u, init$v, Aarg, precf, primme_svds)
r$stats$numMatvecs <- .primme_svds_get_member("stats_numMatvecs", primme_svds)
r$stats$numPreconds <- .primme_svds_get_member("stats_numPreconds", primme_svds)
r$stats$elapsedTime <- .primme_svds_get_member("stats_elapsedTime", primme_svds)
r$stats$estimateANorm <- .primme_svds_get_member("aNorm", primme_svds)
r$stats$timeMatvec <- .primme_svds_get_member("stats_timeMatvec", primme_svds)
r$stats$timePrecond <- .primme_svds_get_member("stats_timePrecond", primme_svds)
r$stats$timeOrtho <- .primme_svds_get_member("stats_timeOrtho", primme_svds)
.primme_svds_free(primme_svds);
if (r$ret != 0)
stop(.getSvdsErrorMsg(r$ret))
else
r$ret <- NULL;
r
}
.getSvdsErrorMsg <- function(n) {
l <- list(
"0" = "success",
"-1" = "unexpected internal error; please consider to set 'printLevel' to a value larger than 0 to see the call stack and to report these errors because they may be bugs",
"-2" = "memory allocation failure",
"-3" = "maximum iterations or matvecs reached",
"-4" = "primme_svds is NULL",
"-5" = "Wrong value for m or n or mLocal or nLocal",
"-6" = "Wrong value for numProcs",
"-7" = "matrixMatvec is not set",
"-8" = "applyPreconditioner is not set but precondition == 1 ",
"-9" = "numProcs >1 but globalSumDouble is not set",
"-10" = "Wrong value for numSvals, it's larger than min(m, n)",
"-11" = "Wrong value for numSvals, it's smaller than 1",
"-13" = "Wrong value for target",
"-14" = "Wrong value for method",
"-15" = "Not supported combination of method and methodStage2",
"-16" = "Wrong value for printLevel",
"-17" = "svals is not set",
"-18" = "svecs is not set",
"-19" = "resNorms is not set",
"-40" = "some LAPACK function performing a factorization returned an error code; set 'printLevel' > 0 to see the error code and the call stack",
"-41" = "error happened at the matvec or applying the preconditioner",
"-42" = "the matrix provided in 'lock' is not full rank",
"-43" = "parallel failure",
"-44" = "unavailable functionality; PRIMME was not compiled with support for the requesting precision or for GPUs");
if (n >= -100)
l[[as.character(n)]]
else if (n >= -200)
paste("Error from PRIMME first stage:", .getEigsErrorMsg(n+100))
else if (n >= -300)
paste("Error from PRIMME second stage:", .getEigsErrorMsg(n+200))
else
"Unknown error code";
} |
iquantile <-
function (x, ...)
UseMethod("iquantile") |
library(uwot)
context("normalized laplacian")
test_that("normalized laplacian", {
expected_norm_lap <-
c2y(
0.7477, -0.1292, -0.03001, 0.02127, -0.563, -0.01149, 0.1402,
-0.2725, -0.01241, 0.1084, -0.106, -0.5723, 0.2024, -0.3082,
0.1642, -5.549e-05, -0.04843, -0.1747, 0.1684, 0.6611
)
res <- normalized_laplacian_init(Matrix::drop0(x2d(iris[1:10, ])))
expect_equal(abs(res), abs(expected_norm_lap), tolerance = 0.2)
})
test_that("laplacian eigenmap", {
expected_lap_eig <- matrix(
c(0.21050269, -0.07732118, 0.63486516,
-0.33501476, 0.11755963, -0.40229306,
-0.36728785, 0.38404235, 0.020391 ,
0.20458482, -0.04123934, -0.44198941,
-0.3841261 , -0.47833969, 0.17196966,
0.3883986 , -0.03743132, -0.22790212,
-0.36483447, -0.32492041, 0.01860336,
-0.27419176, 0.68954246, 0.34392682,
0.04537549, 0.14056785, 0.12175907,
0.39742651, -0.00077821, 0.15609656),
ncol = 3, byrow = TRUE)
A <- matrix(
c(0, 0.0288109, 0.053397, 0.104038, 0.079341, 0.145439, 0.0946093,
0.0434563, 0.139317, 0.189191, 0.0288109, 0, 0.176753, 0.126438,
0.100761, 0.108501, 0.197306, 0.0744967, 0.0940433, 0.0614212,
0.053397, 0.176753, 0, 0.0544213, 0.0662712, 0.0462358, 0.124431,
0.0876854, 0.162838, 0.0494398, 0.104038, 0.126438, 0.0544213, 0,
0.0725848, 0.322066, 0.107206, 0.0395971, 0.164969, 0.130029, 0.079341,
0.100761, 0.0662712, 0.0725848, 0, 0.0532904, 0.255125, 0.0290714,
0.0634819, 0.0482673, 0.145439, 0.108501, 0.0462358, 0.322066,
0.0532904, 0, 0.0748701, 0.0202419, 0.187683, 0.380222, 0.0946093,
0.197306, 0.124431, 0.107206, 0.255125, 0.0748701, 0, 0.0273237,
0.142702, 0.0647643, 0.0434563, 0.0744967, 0.0876854, 0.0395971,
0.0290714, 0.0202419, 0.0273237, 0, 0.0584841, 0.0431531, 0.139317,
0.0940433, 0.162838, 0.164969, 0.0634819, 0.187683, 0.142702,
0.0584841, 0, 0.158817, 0.189191, 0.0614212, 0.0494398, 0.130029,
0.0482673, 0.380222, 0.0647643, 0.0431531, 0.158817, 0),
nrow = 10)
res <- laplacian_eigenmap(A, ndim = 3)
expect_equal(abs(res), abs(expected_lap_eig), tolerance = 1e-4)
expect_equal(abs(irlba_laplacian_eigenmap(A, ndim = 3)), abs(expected_lap_eig), tolerance = 1e-4)
}) |
MODIStsp_get_prodlayers <- function(prodname) {
stopifnot(inherits(prodname, "character"))
prod_opt_list <- load_prodopts()
selprod <- prod_opt_list[grep(prodname, names(prod_opt_list))]
if (length(selprod) == 0){
if (prodname %in% names(prod_opt_list)) {
selprod <- prod_opt_list[prodname]
} else {
stop("Invalid product name. Aborting! prodname should be a MODIS
product code (e.g., \"M*D13Q1\"), or full MODIStsp product name
(e.g., \"Vegetation Indexes_16Days_250m (M*D13Q1)\")")
}
}
prodname <- names(selprod)
selprod <- selprod[[1]][["6"]]
bandnames <- selprod[["bandnames"]]
band_fullnames <- selprod[["band_fullnames"]]
quality_bandnames <- selprod[["quality_bandnames"]]
quality_fullnames <- selprod[["quality_fullnames"]]
indexes_bandnames <- selprod[["indexes_bandnames"]]
indexes_fullnames <- selprod[["indexes_fullnames"]]
cust_ind <- jsonlite::read_json(system.file("ExtData", "MODIStsp_indexes.json",
package = "MODIStsp"))
if (length(cust_ind) == 1) {
cust_ind <- NULL
} else {
cust_ind <- cust_ind[[prodname]][["6"]]
}
indexes_bandnames <- c(indexes_bandnames,
cust_ind$indexes_bandnames)
indexes_fullnames <- c(indexes_fullnames,
cust_ind$indexes_fullnames)
prodnames <- list(prodname = prodname,
bandnames = bandnames,
bandfullnames = band_fullnames,
quality_bandnames = quality_bandnames,
quality_fullnames = quality_fullnames,
indexes_bandnames = indexes_bandnames,
indexes_fullnames = indexes_fullnames)
prodnames
}
MODIStsp_get_prodnames <- function() {
prod_opt_list <- load_prodopts()
names(prod_opt_list)
} |
source("ESEUR_config.r")
library("COMPoissonReg")
library("gamlss")
library("gamlss.tr")
pal_col=rainbow(3)
o_struct=read.csv(paste0(ESEUR_dir, "probability/bolz_data_struct_racket.csv.xz"), as.is=TRUE)
struct=subset(o_struct, size < 15)
pos_struct=subset(struct, size > 0)
all_sizes=rep(struct$size, times=struct$fields)
pos_sizes=rep(pos_struct$size, times=pos_struct$fields)
nbi_mod=gamlss(all_sizes ~ 1, family=NBI)
nbi_pred=sapply(0:12, function(y) length(all_sizes)*
dNBI(y, mu=exp(coef(nbi_mod, what="mu")),
sigma=exp(coef(nbi_mod, what="sigma"))))
cmp_mod=glm.cmp(all_sizes ~ 1, formula.nu=all_sizes~1, beta.init=2.0)
cmp_pred=sapply(0:12, function(y) length(all_sizes)*
dcmp(y, lambda=exp(cmp_mod$beta),
nu=exp(cmp_mod$gamma)))
plot(struct$size, struct$fields, log="y", col=pal_col[1],
xlab="Fields", ylab="Structure types\n")
lines(0:12, cmp_pred, col=pal_col[2])
lines(0:12, nbi_pred, col=pal_col[3]) |
FDistribution <- R6Class("FDistribution",
inherit = SDistribution, lock_objects = F,
public = list(
name = "FDistribution",
short_name = "F",
description = "F Probability Distribution.",
packages = "stats",
initialize = function(df1 = NULL, df2 = NULL, decorators = NULL) {
super$initialize(
decorators = decorators,
support = PosReals$new(zero = FALSE),
type = PosReals$new(zero = TRUE)
)
},
mean = function(...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
mean <- rep(NaN, length(df1))
mean[df2 > 2] <- df2[df2 > 2] / (df2[df2 > 2] - 2)
return(mean)
},
mode = function(which = "all") {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
mode <- rep(NaN, length(df1))
mode[df1 > 2] <- ((df1[df1 > 2] - 2) * df2[df1 > 2]) / (df1[df1 > 2] * (df2[df1 > 2] + 2))
return(mode)
},
variance = function(...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
var <- rep(NaN, length(df1))
var[df2 > 4] <- 2 * (df2[df2 > 4])^2 * (df1[df2 > 4] + df2[df2 > 4] - 2) /
(df1[df2 > 4] * (df2[df2 > 4] - 2)^2 * (df2[df2 > 4] - 4))
return(var)
},
skewness = function(...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
skew <- rep(NaN, length(df1))
skew[df2 > 6] <- ((2 * df1[df2 > 6] + df2[df2 > 6] - 2) * sqrt(8 * (df2[df2 > 6] - 4))) /
(((df2[df2 > 6] - 6) * sqrt(df1[df2 > 6] * (df1[df2 > 6] + df2[df2 > 6] - 2))))
return(skew)
},
kurtosis = function(excess = TRUE, ...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
exkurtosis <- rep(NaN, length(df1))
exkurtosis[df2 > 8] <- (12 * (df1[df2 > 8] * (5 * df2[df2 > 8] - 22) *
(df1[df2 > 8] + df2[df2 > 8] - 2) +
(df2[df2 > 8] - 4) * (df2[df2 > 8] - 2)^2)) /
(df1[df2 > 8] * (df2[df2 > 8] - 6) * (df2[df2 > 8] - 8) * (df1[df2 > 8] + df2[df2 > 8] - 2))
if (excess == TRUE) {
return(exkurtosis)
} else {
return(exkurtosis + 3)
}
},
entropy = function(base = 2, ...) {
df1 <- unlist(self$getParameterValue("df1"))
df2 <- unlist(self$getParameterValue("df2"))
return(log(gamma(df1 / 2), base) + log(gamma(df2 / 2), base) -
log(gamma((df1 + df2) / 2), base) + log(df1 / df2, base) + (1 - df1 / 2)
* digamma(1 + df1 / 2) - (1 + df2 / 2) * digamma(1 + df2 / 2) +
((df1 + df2) / 2) * digamma((df1 + df2) / 2))
},
mgf = function(t, ...) {
return(NaN)
},
pgf = function(z, ...) {
return(NaN)
}
),
active = list(
properties = function() {
prop <- super$properties
prop$support <- if (self$getParameterValue("df1") == 1) {
prop$support <- PosReals$new(zero = FALSE)
} else {
prop$support <- PosReals$new(zero = TRUE)
}
prop
}
),
private = list(
.pdf = function(x, log = FALSE) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
call_C_base_pdqr(
fun = "df",
x = x,
args = list(
df1 = unlist(df1),
df2 = unlist(df2)
),
log = log,
vec = test_list(df1)
)
},
.cdf = function(x, lower.tail = TRUE, log.p = FALSE) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
call_C_base_pdqr(
fun = "pf",
x = x,
args = list(
df1 = unlist(df1),
df2 = unlist(df2)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(df1)
)
},
.quantile = function(p, lower.tail = TRUE, log.p = FALSE) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
call_C_base_pdqr(
fun = "qf",
x = p,
args = list(
df1 = unlist(df1),
df2 = unlist(df2)
),
lower.tail = lower.tail,
log = log.p,
vec = test_list(df1)
)
},
.rand = function(n) {
df1 <- self$getParameterValue("df1")
df2 <- self$getParameterValue("df2")
call_C_base_pdqr(
fun = "rf",
x = n,
args = list(
df1 = unlist(df1),
df2 = unlist(df2)
),
vec = test_list(df1)
)
},
.traits = list(valueSupport = "continuous", variateForm = "univariate")
)
)
.distr6$distributions <- rbind(
.distr6$distributions,
data.table::data.table(
ShortName = "F", ClassName = "FDistribution",
Type = "\u211D+", ValueSupport = "continuous",
VariateForm = "univariate",
Package = "stats", Tags = ""
)
) |
geometricsummary <-
function (g,N,studentize,center,cbb,joint) {
wr1<- g$x-g$pred.x
wr2<- g$y-g$pred.y
if (center==TRUE) {
wr1 <- wr1 - mean(wr1)
wr2 <- wr2 - mean(wr2)
}
n <- g$fit.statistics["n"]
if (is.numeric(cbb)==TRUE){
k <- n/cbb
if (abs(k-round(k)) > 0.00001 || cbb <= 0 || abs(cbb-round(cbb)) > 0.00001) stop("invalid value for cbb.")}
if (studentize==TRUE) {
Xmat <- cbind(rep(1,n),sin(g$period.time),cos(g$period.time))
h <- Xmat%*%solve(crossprod(Xmat))%*%t(Xmat)
r.Ta <- wr1/sqrt(1-diag(h))
r.Tb <- wr2/sqrt(1-diag(h))
wr1 <- r.Ta-mean(r.Ta)
wr2 <- r.Tb-mean(r.Tb)
}
hystenv$warningcountHysteresis <- 0
bootdat <- mapply(geometricbootwrapper, j=1:N, MoreArgs=list(wr1=wr1,wr2=wr2,x.pred=g$pred.x,y.pred=g$pred.y,n=n,cbb=cbb,joint=joint))
bootint2 <- matrix(internal.1(bootdat[4,],bootdat[5,],bootdat[3,]),nrow=N,ncol=3)
bootderived <- matrix(derived.1(bootdat[4,],bootdat[5,],bootdat[3,],bootint2[,1],bootint2[,2],bootint2[,3],rep(g$fit.statistics["period"],N)),nrow=N,ncol=3)
bootamps <- matrix(derived.amps(bootint2[,1],bootint2[,2],bootint2[,3]),nrow=N,ncol=5)
bootfocus <- matrix(derived.focus(bootdat[4,],bootdat[5,],bootdat[3,]),nrow=N,ncol=3)
bootdat <- data.frame(t(bootdat),bootderived,bootint2,bootamps,bootfocus,rep(g$fit.statistics["n"],N))
colnames(bootdat) <- names(g$values)
if (diff(range(bootdat[,"rote.deg"])) > 170)
warning("Bootstrapped rote.deg values on both sides of 0, 180 degrees.")
if (hystenv$warningcountHysteresis > 0) warning("Failed to converge ",hystenv$warningcountHysteresis," times.")
error<-apply(bootdat,2,sd,na.rm=T)
themean<-apply(bootdat,2,mean,na.rm=T)
ranges<-apply(bootdat,2,quantile,probs=c(0.025,0.25,0.5,0.75,0.975),na.rm=T)
full <- data.frame(g$values,t(ranges),error,themean)
colnames(full) <- c("Orig.Estimate","B.q0.025","B.q0.25","B.q0.5","B.q0.75","B.q0.975","Std.Error","Boot.Mean")
full$Bias <- full$Boot.Mean-full$Orig.Estimate
full$Boot.Estimate <- full$Orig.Estimate-full$Bias
full[,c("B.q0.025","B.q0.25","B.q0.5","B.q0.75","B.q0.975")]<-full[,c("B.q0.025","B.q0.25","B.q0.5","B.q0.75","B.q0.975")]-
2*full$Bias
rad<-g$period.time+full["Ta.phase","Boot.Estimate"]
pred.x<-full["b.x","Boot.Estimate"]*cos(rad)+full["cx","Boot.Estimate"]
pred.y<-full["b.y","Boot.Estimate"]*cos(rad)+full["retention","Boot.Estimate"]*sin(rad)+full["cy","Boot.Estimate"]
full <- full[c("b.x","b.y","phase.angle",
"cx","cy","retention","coercion","area",
"lag","split.angle","hysteresis.x","hysteresis.y","ampx","ampy","rote.deg","rote.rad",
"semi.major","semi.minor","focus.x","focus.y","eccentricity"),]
bootEst<-full[,"Boot.Estimate"]
names(bootEst) <- rownames(full)
bootStd<-full[,"Std.Error"]
names(bootStd) <- rownames(full)
full2<-list("values"=full,"Boot.Estimates"=bootEst,"Boot.Std.Errors"=bootStd,
"fit.statistics"=g$fit.statistics,"pred.x"=g$pred.x,"pred.y"=g$pred.y, "x"=g$x,"y"=g$y,"call"=g$call,"method"=g$method,"boot.data"=bootdat,
"Delta.Std.Errors"=g$Std.Errors)
invisible(full2)
} |
context("Statistical Helper Functions")
test_that("function seVar gives correct results", {
expect_equal(seVar(testData$t1), 81.6643849025553)
expect_equivalent(seVar(testData[c("t1", "t2")]),
c(81.6643849025553, 0.0381738341194061))
expect_equivalent(seVar(as.matrix(testData[c("t1", "t2")])),
c(81.6643849025553, 0.0381738341194061))
expect_equal(seVar(testData$t3), NA_real_)
expect_equal(seVar(testData$t3, na.rm = TRUE), 10.7842792902852)
expect_equivalent(seVar(testData[c("t1", "t3")]),
c(81.6643849025553, NA))
expect_equivalent(seVar(testData[c("t1", "t3")], na.rm = TRUE),
c(81.6643849025553, 10.7842792902852))
})
test_that("function skewness gives correct results", {
expect_equal(skewness(testData$t1), 0.626728847814835)
expect_equivalent(skewness(testData[c("t1", "t2")]),
c(0.626728847814835, -0.0584844288330201))
expect_equivalent(skewness(as.matrix(testData[c("t1", "t2")])),
c(0.626728847814835, -0.0584844288330201))
expect_equal(skewness(testData$t3), NA_real_)
expect_equal(skewness(testData$t3, na.rm = TRUE), -0.0683589419435095)
expect_equivalent(skewness(testData[c("t1", "t3")]),
c(0.626728847814835, NA))
expect_equivalent(skewness(testData[c("t1", "t3")], na.rm = TRUE),
c(0.626728847814835, -0.0683589419435095))
})
test_that("function seSkewness gives correct results", {
expect_equal(seSkewness(100), 0.24137977904013)
expect_warning(seSkew <- seSkewness(2),
"the standard error of skewness cannot be calculated")
expect_equal(seSkew, NA)
})
test_that("function kurtosis gives correct results", {
expect_equal(kurtosis(testData$t1), -0.371370665680684)
expect_equivalent(kurtosis(testData[c("t1", "t2")]),
c(-0.371370665680684, -0.322837145891091))
expect_equivalent(kurtosis(as.matrix(testData[c("t1", "t2")])),
c(-0.371370665680684, -0.322837145891091))
expect_equal(kurtosis(testData$t3), NA_real_)
expect_equal(kurtosis(testData$t3, na.rm = TRUE), -0.4226177429994)
expect_equivalent(kurtosis(testData[c("t1", "t3")]),
c(-0.371370665680684, NA))
expect_equivalent(kurtosis(testData[c("t1", "t3")], na.rm = TRUE),
c(-0.371370665680684, -0.4226177429994))
})
test_that("function seKurtosis gives correct results", {
expect_equal(seKurtosis(100), 0.478331132994813)
expect_warning(seKurt <- seKurtosis(2),
"the standard error of kurtosis cannot be calculated")
expect_equal(seKurt, NA)
}) |
Outp3state <- function(data, v, ...) {
return( data.frame("times1"=data[,v[1]], "delta"=as.integer(data[,v[3]] > data[,v[1]]), "times2"=data[,v[3]]-data[,v[1]], "time"=data[,v[3]], "status"=data[,v[4]], data[,-v]) )
} |
"%==%"<- function(a,b){
if (length(a)==1){
(1:length(b))[a == b]
}else if(length(a) > 1){
for (i in 1:length(a)) {
if (i==1){location=list()}
location.i=(1:length(b))[a[i] == b]
location=c(location,list(location.i))
names(location)[length(location)]=a[i]
}
location
}
} |
UnivarMixingDistribution <- function(..., Dlist, mixCoeff,
withSimplify = getdistrOption("simplifyD"))
{
ldots <- list(...)
if(!missing(Dlist)){
Dlist.L <- as(Dlist, "list")
if(!is(try(do.call(UnivarDistrList,args=Dlist.L),silent=TRUE),"try-error"))
ldots <- c(ldots, Dlist.L)
}
l <- length(ldots)
if(l==0) stop ("No components given")
if(l==1) return(ldots[[1]])
mixDistr <- do.call(UnivarDistrList,args=ldots)
ep <- .Machine$double.eps
if(missing(mixCoeff))
mixCoeff <- rep(1,l)/l
else{ if (l!=length(mixCoeff))
stop("argument 'mixCoeff' and the mixing distributions must have the same length")
if(any(mixCoeff < -ep) || sum(mixCoeff)>1+ep)
stop("mixing coefficients are no probabilities")
}
rnew <- .rmixfun(mixDistr = mixDistr, mixCoeff = mixCoeff)
pnew <- .pmixfun(mixDistr = mixDistr, mixCoeff = mixCoeff)
.withArith <- any(as.logical(lapply(mixDistr, function(x) x@".withArith")))
.withSim <- any(as.logical(lapply(mixDistr, function(x) x@".withSim")))
.lowerExact<- all(as.logical(lapply(mixDistr, function(x) x@".lowerExact")))
if (all( as.logical(lapply(mixDistr, function(x) is(x,"AbscontDistribution")))) ||
all( as.logical(lapply(mixDistr, function(x) is(x,"DiscreteDistribution")))))
dnew <- .dmixfun(mixDistr = mixDistr, mixCoeff = mixCoeff)
gaps <- NULL
for(i in 1:l){
if(is.null(gaps)){
try(gaps <- gaps(mixDistr[[i]]), silent=TRUE)
}else{
if(!is(try(gaps0 <- gaps(mixDistr[[i]]), silent=TRUE),"try-error"))
if(!is.null(gaps0)) gaps <- .mergegaps2(gaps,gaps0)
}
}
support <- numeric(0)
for(i in 1:l){
if(!is(try(support0 <- support(mixDistr[[i]]), silent=TRUE),"try-error"))
support <- unique(sort(c(support,support0)))
}
gaps <- .mergegaps(gaps,support)
qnew <- .qmixfun(mixDistr = mixDistr, mixCoeff = mixCoeff,
Cont = TRUE, pnew = pnew, gaps = gaps)
obj <- new("UnivarMixingDistribution", p = pnew, r = rnew, d = NULL, q = qnew,
mixCoeff = mixCoeff, mixDistr = mixDistr, .withSim = .withSim,
.withArith = .withArith,.lowerExact =.lowerExact, gaps = gaps,
support = support)
if (all( as.logical(lapply(mixDistr, function(x) is(x@Symmetry,"SphericalSymmetry"))))){
sc <- SymmCenter(mixDistr[[1]]@Symmetry)
if (all( as.logical(lapply(mixDistr, function(x) .isEqual(SymmCenter(x@Symmetry),sc)))))
obj@Symmetry <- SphericalSymmetry(sc)
}
if (withSimplify)
obj <- simplifyD(obj)
return(obj)
}
setMethod("mixCoeff", "UnivarMixingDistribution", function(object)object@mixCoeff)
setReplaceMethod("mixCoeff", "UnivarMixingDistribution", function(object,value){
object@mixCoeff<- value; object})
setMethod("mixDistr", "UnivarMixingDistribution", function(object)object@mixDistr)
setReplaceMethod("mixDistr", "UnivarMixingDistribution", function(object,value){
object@mixDistr<- value; object})
setMethod("support", "UnivarMixingDistribution", function(object)object@support)
setMethod("gaps", "UnivarMixingDistribution", function(object)object@gaps)
setMethod("p.l", signature(object = "UnivarMixingDistribution"),
function(object) .pmixfun(mixDistr = mixDistr(object),
mixCoeff = mixCoeff(object),
leftright = "left"))
setMethod("q.r", signature(object = "UnivarMixingDistribution"),
function(object){
if(!is.null(gaps(object))&&length(gaps(object)))
.modifyqgaps(pfun = p(object), qfun = q.l(object),
gaps = gaps(object), leftright = "right")
else
q.l(object)
})
setMethod(".lowerExact", "UnivarMixingDistribution", function(object){
er <- is(try(slot(object, ".lowerExact"), silent = TRUE), "try-error")
if(er){ object0 <- conv2NewVersion(object)
objN <- paste(substitute(object))
warning(gettextf("'%s' was generated in an old version of this class.\n",
objN),
gettextf("'%s' has been converted to the new version",objN),
gettextf(" of this class by a call to 'conv2NewVersion'.\n")
)
eval.parent(substitute(object<-object0))
return([email protected])}
[email protected]})
setMethod(".logExact", "UnivarMixingDistribution", function(object){
er <- is(try(slot(object, ".logExact"), silent = TRUE), "try-error")
if(er){ object0 <- conv2NewVersion(object)
objN <- paste(substitute(object))
warning(gettextf("'%s' was generated in an old version of this class.\n",
objN),
gettextf("'%s' has been converted to the new version",objN),
gettextf(" of this class by a call to 'conv2NewVersion'.\n")
)
eval.parent(substitute(object<-object0))
return([email protected])}
[email protected]})
setMethod("Symmetry", "UnivarMixingDistribution", function(object){
er <- is(try(slot(object, "Symmetry"), silent = TRUE), "try-error")
if(er){ object0 <- conv2NewVersion(object)
objN <- paste(substitute(object))
warning(gettextf("'%s' was generated in an old version of this class.\n",
objN),
gettextf("'%s' has been converted to the new version",objN),
gettextf(" of this class by a call to 'conv2NewVersion'.\n")
)
eval.parent(substitute(object<-object0))
return(object0@Symmetry)}
object@Symmetry}) |
getRefPoint = function(fn) {
UseMethod("getRefPoint")
}
getRefPoint.smoof_single_objective_function = function(fn) {
stopf("No reference point available for single-objective function.")
}
getRefPoint.smoof_multi_objective_function = function(fn) {
return(attr(fn, "ref.point"))
}
getRefPoint.smoof_wrapped_function = function(fn) {
return(getRefPoint(getWrappedFunction(fn)))
} |
context("LISTCOL functions")
data <- structure(
list(
number = 1:3,
labels = list("q", character(0), c("a:1", "b:2", "c-3"))
),
row.names = c(NA, -3L),
class = "data.frame",
.Names = c("number", "labels"))
data2 <- structure(
list(
number = 1:3,
labels = c("a:5", "b:3", "a:1")
),
row.names = c(NA, -3L),
class = "data.frame",
.Names = c("number", "labels"))
test_that("Listcol extract funcion creates appropriate new columns",
{
expect_named( listcol_extract(data, "labels", "a:"), c("number", "labels", "a"))
expect_named( listcol_extract(data, "labels", "b:"), c("number", "labels", "b"))
expect_named( listcol_extract(data, "labels", "c:"), c("number", "labels", "c"))
expect_named( listcol_extract(data, "labels", "c-"), c("number", "labels", "c"))
expect_named( listcol_extract(data, "labels", "a:", new_col_name = "q"), c("number", "labels", "q"))
expect_named( listcol_extract(data, "labels", ":"), c("number", "labels", "V3"))
})
test_that("listcol_extract function populations columns with correct values",
{
expect_equal( listcol_extract(data, "labels", "a:")$a, c(NA, NA, "1"))
expect_equal( listcol_extract(data, "labels", "a:", keep_regex = TRUE)$a, c(NA, NA, "a:1"))
expect_equal( listcol_extract(data, "labels", "b:")$b, c(NA, NA, "2"))
expect_true( all(is.na(listcol_extract(data, "labels", "c:")$c) ))
expect_equal( listcol_extract(data, "labels", "c-")$c, c(NA, NA, "3"))
expect_equal( listcol_extract(data, "labels", ":")$V3[[3]], c("a1", "b2"))
}
)
test_that("listcol_filter preserves the correct values",
{
expect_equal( nrow(listcol_filter(data, "labels", matches = "q")), 1)
expect_equal( nrow(listcol_filter(data, "labels", matches = c("a:", "b:"), is_regex = TRUE)), 1)
expect_equal( nrow(listcol_filter(data, "labels", matches = c(".*"), is_regex = TRUE)), 2)
expect_equal( listcol_filter(data, "labels", matches = "q")$number, 1)
expect_equal( listcol_filter(data, "labels", matches = c("a:", "b:"), is_regex = TRUE)$number, 3)
expect_equal( nrow(listcol_filter(data2, "labels", matches = c("a:", "b:"), is_regex = TRUE)), 3)
}
)
test_that("listcol_pivot creates appropriate new columns",
{
expect_named(listcol_pivot(data, "labels", "^(a|b):"), c("number", "labels", "a:1", "b:2"))
expect_named(
listcol_pivot(data, "labels", "^(a|b):",
transform_fx = function(x) gsub("^(a|b):", "", x)),
c("number", "labels", "1", "2"))
}
) |
"plotPeaks_batch" <-
function(sites, file=NA, do_plot=TRUE,
silent=FALSE, envir=NULL, ...) {
if(! do_plot) file <- NA
if(is.null(envir)) {
pkenv <- new.env()
} else {
if(is.environment(envir)) {
pkenv <- envir
} else {
stop("envir given but not an environment")
}
}
numpk <- 0
for(site in sites) {
if(exists(site, pkenv)) next
if(! silent) message("Pulling peaks for ",site)
pk <- NA
pk <- dataRetrieval::readNWISpeak(site, convert=FALSE)
suppressWarnings(pk <- splitPeakCodes(pk))
numpk <- numpk + length(pk$peak_va[pk$appearsSystematic == TRUE])
if(is.null(pk)) pk <- NA
assign(site, pk, envir=pkenv)
}
if(is.null(envir) & ! silent) message("DONE (num. systematic peaks = ",numpk,")\n")
numpk <- 0
empty_sites <- NULL
if(! is.na(file)) pdf(file, useDingbats=FALSE)
for(site in sites) {
if(do_plot & ! silent) message("Plotting ", site, appendLF=FALSE)
pk <- get(site, envir=pkenv)
if(length(pk) == 1) {
if(do_plot & ! silent) message("---empty")
if(do_plot) {
plot(0:2,0:2, xlab="", ylab="", xaxt="n", yaxt="n", type="n")
text( 1, 1, "EMPTY PEAK FILE")
mtext(site)
}
empty_sites <- c(empty_sites, site)
} else {
numpk <- numpk + length(pk$peak_va[pk$appearsSystematic == TRUE])
if(do_plot) {
plotPeaks(pk, ...)
mtext(site)
}
if(do_plot & ! silent) message("")
}
}
if(do_plot & ! silent) message("DONE (num. systematic peaks = ",numpk,")")
if(! is.na(file)) dev.off()
pkenv <- as.list(pkenv)
attr(pkenv, "empty_sites") <- empty_sites
return(pkenv)
} |
J48DT <- function(data, quiet = FALSE, plot = TRUE) {
msg <- NULL
if (!is.data.frame(data)) {
msg <- c(msg, "input data must be data.frame")
} else if (nrow(data) < 2) {
msg <- c(msg, "input data must have more than one row")
} else if (ncol(data) < 2) {
msg <- c(msg, "input data must have more than one column")
} else if (sum(apply(is.na(data), 1, sum)) > 0) {
msg <- c(msg, "NAs are not allowed in input data")
} else if (sum(apply(data, 1, min)) < 0) {
msg <- c(msg, "negative values are not allowed in input data")
}
if (is.null(msg)) TRUE else msg
exp.df <- as.data.frame(t(data))
classVector <- factor(colnames(data))
j48.model <- J48(classVector ~ ., exp.df)
if (!quiet) print(j48.model)
if (plot) plot(j48.model)
return(j48.model)
} |
plot.cca.fd <- function(x, cexval = 1, ...)
{
ccafd <- x
if (!(inherits(ccafd, "cca.fd"))) stop("First argument not of CCA.FD class.")
ccafd1 <- ccafd[[1]]
ccacoef1 <- ccafd1$coefs
ccabasis1 <- ccafd1$basis
ccafd2 <- ccafd[[2]]
ccacoef2 <- ccafd1$coefs
ccabasis2 <- ccafd2$basis
rangeval <- ccabasis1$rangeval
argvals <- seq(rangeval[1],rangeval[2],len=201)
ccamat1 <- eval.fd(argvals, ccafd1)
ccamat2 <- eval.fd(argvals, ccafd2)
ncan <- dim(ccacoef1)[2]
par(mfrow=c(2,1), pty="s")
if (ncan > 1) par(ask=TRUE) else par(ask=FALSE)
for (j in (1:ncan)) {
plot(argvals, ccamat1[,j], type="l", cex=cexval,
ylab="First canonical weight", main=paste("Harmonic",j))
plot(argvals, ccamat2[,j], type="l", cex=cexval,
ylab="Second canonical weight", main="")
}
par(ask=FALSE)
invisible(NULL)
} |
predict.SeSDA <- function(object, x.test,...){
n <- nrow(x.test)
p <- ncol(x.test)
x.test.norm <- matrix(0,n,p)
for (i in 1:p){
x.test.norm[,i] <- as.matrix(object$transform[[i]](x.test[,i]))
}
pred <- predict.dsda(object$objdsda, x.test.norm,...)
pred
} |
"esrp" |
low <- function(x) {
set_names(x, tolower)
}
pad_dbl <- function(string, width, pad) {
fmt <- paste0("%", pad, width, ".f")
readr::parse_character(
sprintf(fmt, as.double(string))
)
}
commas <- function(...) {
paste0(..., collapse = ", ")
}
pipes <- function(...) {
paste0(..., collapse = "|")
}
anchor <- function(x) {
paste0("^", x, "$")
}
round_any <- function(x, accuracy, f = round) {
f(x / accuracy) * accuracy
}
has_class_df <- function(x) {
any(grepl("data.frame", class(x)))
}
each_list_item_is_df <- function(x) {
if (!is.list(x) || is.data.frame(x)) {
abort("`x` must be a list of datafraems (and not itself a dataframe).")
}
all(vapply(x, has_class_df, logical(1)))
}
groups_lower <- function(x) {
dplyr::grouped_df(x, tolower(dplyr::group_vars(x)))
}
groups_restore <- function(x, ref) {
dplyr::grouped_df(x, dplyr::group_vars(ref))
}
stopifnot_single_plotname <- function(.x) {
if (has_name(.x, "plotname") && detect_if(.x, "plotname", is_multiple)) {
stop("`.x` must have a single plotname.", call. = FALSE)
}
}
abort_bad_class <- function(x) {
.class <- glue_collapse(class(x), sep = ", ", last = ", or ")
abort(glue("Can't deal with data of class: {.class}."))
} |
univariateScore.glmm <- function(target, reps = NULL, group, dataset, test, wei, targetID, slopes, ncores) {
univariateModels <- list();
dm <- dim(dataset)
rows <- dm[1]
cols <- dm[2]
ind <- 1:cols
la <- length( unique(target) )
if ( la > 2 & sum( round(target) - target ) != 0 & !slopes & is.null(wei) ) {
group <- as.numeric(group)
if ( !is.null(reps) ) reps <- as.numeric(reps)
univariateModels <- MXM::rint.regs(target = target, dataset = dataset, targetID = targetID, id = group, reps = reps, tol = 1e-07)
} else {
if ( targetID != -1 ) {
target <- dataset[, targetID]
dataset[, targetID] <- rnorm(rows)
}
univariateModels$pvalue <- numeric(cols)
univariateModels$stat <- numeric(cols)
poia <- Rfast::check_data(dataset)
if ( sum(poia) > 0 ) dataset[, poia] <- rnorm(rows)
if ( ncores == 1 | is.null(ncores) | ncores <= 0 ) {
for(i in ind) {
test_results <- test(target, reps, group, dataset, i, 0, wei = wei, slopes = slopes)
univariateModels$pvalue[[ i ]] <- test_results$pvalue;
univariateModels$stat[[ i ]] <- test_results$stat;
}
} else {
cl <- makePSOCKcluster(ncores)
registerDoParallel(cl)
test <- test
mod <- foreach(i = ind, .combine = rbind, .export = c("lmer", "glmer"), .packages = "lme4") %dopar% {
test_results <- test(target, reps, group, dataset, i, 0, wei = wei, slopes = slopes)
return( c(test_results$pvalue, test_results$stat) )
}
stopCluster(cl)
univariateModels$pvalue[ind] <- as.vector( mod[, 1] )
univariateModels$stat[ind] <- as.vector( mod[, 2] )
}
if ( sum(poia>0) > 0 ) {
univariateModels$stat[poia] <- 0
univariateModels$pvalue[poia] <- log(1)
}
}
if ( !is.null(univariateModels) ) {
if (targetID != - 1) {
univariateModels$stat[targetID] <- 0
univariateModels$pvalue[targetID] <- log(1)
}
}
univariateModels
} |
make_significance_report <- function(defs, ...){
stop("Type 'significance' not yet available.")
} |
test_that("fit01.works", {
library(RRPP)
data("Pupfish")
succeed(lm.rrpp(coords[,1] ~ 1, data = Pupfish,
print.progress = FALSE, iter = 3))
})
test_that("fit02.works", {
library(RRPP)
data("Pupfish")
succeed(lm.rrpp(coords ~ 1, data = Pupfish,
print.progress = FALSE, iter = 3))
})
test_that("fit03.works", {
library(RRPP)
data("Pupfish")
succeed(lm.rrpp(coords ~ CS, data = Pupfish,
print.progress = FALSE, iter = 3))
})
test_that("fit04.works", {
library(RRPP)
data("Pupfish")
succeed(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
print.progress = FALSE, iter = 3))
})
test_that("fit05.works", {
library(RRPP)
data("Pupfish")
succeed(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
SS.type = "II", print.progress = FALSE, iter = 3))
})
test_that("fit06.works", {
library(RRPP)
data("Pupfish")
succeed(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
SS.type = "III", print.progress = FALSE, iter = 3))
})
test_that("fit07.works", {
library(RRPP)
data("Pupfish")
succeed(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
turbo = TRUE, print.progress = FALSE, iter = 3))
})
test_that("fit10.works", {
library(RRPP)
data("Pupfish")
succeed(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
print.progress = FALSE, iter = 3))
})
test_that("fit11.works", {
library(RRPP)
data("Pupfish")
succeed(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
int.first = TRUE,
print.progress = FALSE, iter = 3))
})
test_that("fit12.works", {
library(RRPP)
data("PlethMorph")
succeed(lm.rrpp(TailLength ~ SVL, data = PlethMorph,
print.progress = FALSE, iter = 3))
})
test_that("fit13.works", {
library(RRPP)
data("PlethMorph")
succeed(lm.rrpp(TailLength ~ 1, data = PlethMorph,
print.progress = FALSE,
Cov = PlethMorph$PhyCov,
iter = 3))
})
test_that("fit14.works", {
library(RRPP)
data("PlethMorph")
succeed(lm.rrpp(TailLength ~ SVL, data = PlethMorph,
print.progress = FALSE,
Cov = PlethMorph$PhyCov,
iter = 3))
})
test_that("fit15.works", {
library(RRPP)
data("PlethMorph")
succeed(lm.rrpp(cbind(TailLength, BodyWidth) ~ SVL, data = PlethMorph,
print.progress = FALSE,
Cov = PlethMorph$PhyCov,
iter = 3))
})
test_that("coef.fit01.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords[,1] ~ 1, data = Pupfish,
print.progress = FALSE, iter = 3)))
})
test_that("coef.fit02.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ 1, data = Pupfish,
print.progress = FALSE, iter = 3)))
})
test_that("coef.fit03.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS, data = Pupfish,
print.progress = FALSE, iter = 3)))
})
test_that("coef.fit04.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
print.progress = FALSE, iter = 3)))
})
test_that("coef.fit05.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
SS.type = "II", print.progress = FALSE, iter = 3)))
})
test_that("coef.fit06.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
SS.type = "III", print.progress = FALSE, iter = 3)))
})
test_that("coef.fit07.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
turbo = TRUE, print.progress = FALSE, iter = 3)))
})
test_that("coef.fit10.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
print.progress = FALSE, iter = 3)))
})
test_that("coef.fit11.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
int.first = TRUE,
print.progress = FALSE, iter = 3)))
})
test_that("coef.fit12.works", {
library(RRPP)
data("PlethMorph")
succeed(coef(lm.rrpp(TailLength ~ SVL, data = PlethMorph,
print.progress = FALSE, iter = 3)))
})
test_that("coef.fit13.works", {
library(RRPP)
data("PlethMorph")
succeed(coef(lm.rrpp(TailLength ~ 1, data = PlethMorph,
print.progress = FALSE,
Cov = PlethMorph$PhyCov,
iter = 3)))
})
test_that("coef.fit14.works", {
library(RRPP)
data("PlethMorph")
succeed(coef(lm.rrpp(TailLength ~ SVL, data = PlethMorph,
print.progress = FALSE,
Cov = PlethMorph$PhyCov,
iter = 3)))
})
test_that("coef.fit15.works", {
library(RRPP)
data("PlethMorph")
succeed(coef(lm.rrpp(cbind(TailLength, BodyWidth) ~ SVL, data = PlethMorph,
print.progress = FALSE,
Cov = PlethMorph$PhyCov,
iter = 3)))
})
test_that("coef.t.fit01.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords[,1] ~ 1, data = Pupfish,
print.progress = FALSE, iter = 3),
test = TRUE))
})
test_that("coef.t.fit02.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ 1, data = Pupfish,
print.progress = FALSE, iter = 3),
test = TRUE))
})
test_that("coef.t.fit03.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS, data = Pupfish,
print.progress = FALSE, iter = 3),
test = TRUE))
})
test_that("coef.t.fit04.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
print.progress = FALSE, iter = 3),
test = TRUE))
})
test_that("coef.t.fit05.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
SS.type = "II", print.progress = FALSE, iter = 3),
test = TRUE))
})
test_that("coef.t.fit06.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
SS.type = "III", print.progress = FALSE, iter = 3),
test = TRUE))
})
test_that("coef.t.fit07.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
turbo = TRUE, print.progress = FALSE, iter = 3),
test = TRUE))
})
test_that("coef.t.fit10.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
print.progress = FALSE, iter = 3),
test = TRUE))
})
test_that("coef.t.fit11.works", {
library(RRPP)
data("Pupfish")
succeed(coef(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
int.first = TRUE,
print.progress = FALSE, iter = 3),
test = TRUE))
})
test_that("coef.t.fit12.works", {
library(RRPP)
data("PlethMorph")
succeed(coef(lm.rrpp(TailLength ~ SVL, data = PlethMorph,
print.progress = FALSE, iter = 3),
test = TRUE))
})
test_that("coef.t.fit13.works", {
library(RRPP)
data("PlethMorph")
succeed(coef(lm.rrpp(TailLength ~ 1, data = PlethMorph,
print.progress = FALSE,
Cov = PlethMorph$PhyCov,
iter = 3),
test = TRUE))
})
test_that("coef.t.fit14.works", {
library(RRPP)
data("PlethMorph")
succeed(coef(lm.rrpp(TailLength ~ SVL, data = PlethMorph,
print.progress = FALSE,
Cov = PlethMorph$PhyCov,
iter = 3),
test = TRUE))
})
test_that("coef.t.fit15.works", {
library(RRPP)
data("PlethMorph")
succeed(coef(lm.rrpp(cbind(TailLength, BodyWidth) ~ SVL, data = PlethMorph,
print.progress = FALSE,
Cov = PlethMorph$PhyCov,
iter = 3),
test = TRUE))
})
test_that("anova.fit01.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords[,1] ~ 1, data = Pupfish,
print.progress = FALSE, iter = 3)))
})
test_that("anova.fit02.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ 1, data = Pupfish,
print.progress = FALSE, iter = 3)))
})
test_that("anova.fit03.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ CS, data = Pupfish,
print.progress = FALSE, iter = 3)))
})
test_that("anova.fit04.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
print.progress = FALSE, iter = 3)))
})
test_that("anova.fit05.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
SS.type = "II", print.progress = FALSE, iter = 3)))
})
test_that("anova.fit06.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
SS.type = "III", print.progress = FALSE, iter = 3)))
})
test_that("anova.fit07.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ CS + Pop, data = Pupfish,
turbo = TRUE, print.progress = FALSE, iter = 3)))
})
test_that("anova.fit10.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
print.progress = FALSE, iter = 3)))
})
test_that("anova.fit11.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
int.first = TRUE,
print.progress = FALSE, iter = 3)))
})
test_that("anova.fit11.b.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
int.first = TRUE,
print.progress = FALSE, iter = 3),
effect.type = "cohenf"))
})
test_that("anova.fit11.c.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
int.first = TRUE,
print.progress = FALSE, iter = 3),
effect.type = "Rsq"))
})
test_that("anova.fit11.d.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ CS * Pop * Sex, data = Pupfish,
int.first = TRUE,
print.progress = FALSE, iter = 3),
effect.type = "MS"))
})
test_that("anova.fit11.e.works", {
library(RRPP)
data("Pupfish")
succeed(anova(lm.rrpp(coords ~ Pop * Sex, data = Pupfish,
int.first = TRUE,
print.progress = FALSE, iter = 3),
error = c("Pop:Sex", "Pop:Sex", "Residuals")))
})
test_that("anova.fit12.works", {
library(RRPP)
data("PlethMorph")
succeed(anova(lm.rrpp(TailLength ~ SVL, data = PlethMorph,
print.progress = FALSE, iter = 3)))
})
test_that("predict1.works", {
library(RRPP)
data("PupfishHeads")
fit <- lm.rrpp(log(headSize) ~ sex + locality/year, SS.type = "III",
data = PupfishHeads, print.progress = FALSE, iter = 3)
succeed(predict(fit))
})
test_that("manova1.works", {
library(RRPP)
data("Pupfish")
fit <- lm.rrpp(coords ~ CS + Sex, SS.type = "I",
data = Pupfish, print.progress = FALSE, iter = 3)
succeed(manova.update(fit, print.progress = FALSE))
})
test_that("pairwise1.works", {
library(RRPP)
data("Pupfish")
fit <- lm.rrpp(coords ~ CS + Sex, SS.type = "I",
data = Pupfish, print.progress = FALSE, iter = 3)
succeed(pairwise(fit, groups = Pupfish$Sex, print.progress = FALSE))
})
test_that("trajectory.analysis1.works", {
library(RRPP)
data("Pupfish")
fit <- lm.rrpp(coords ~ Pop * Sex, data = Pupfish, print.progress = FALSE,
iter = 3)
succeed(trajectory.analysis(fit, groups = Pupfish$Pop,
traj.pts = Pupfish$Sex, print.progress = FALSE))
})
test_that("trajectory.analysis2.works", {
library(RRPP)
data("motionpaths")
fit <- lm.rrpp(trajectories ~ groups, data = motionpaths, iter = 3)
succeed(trajectory.analysis(fit, groups = motionpaths$groups, traj.pts = 5))
})
test_that("ordinate1.works", {
library(RRPP)
data("PlethMorph")
Y <- as.data.frame(PlethMorph[c("TailLength", "HeadLength",
"Snout.eye", "BodyWidth",
"Forelimb", "Hindlimb")])
PlethMorph$Y <- as.matrix(Y)
R <- lm.rrpp(Y ~ SVL, data = PlethMorph,
iter = 0, print.progress = FALSE)$LM$residuals
succeed(ordinate(R, scale. = FALSE))
})
test_that("ordinate2.works", {
library(RRPP)
data("PlethMorph")
Y <- as.data.frame(PlethMorph[c("TailLength", "HeadLength",
"Snout.eye", "BodyWidth",
"Forelimb", "Hindlimb")])
PlethMorph$Y <- as.matrix(Y)
R <- lm.rrpp(Y ~ SVL, data = PlethMorph,
iter = 0, print.progress = FALSE)$LM$residuals
succeed(ordinate(R, scale. = TRUE))
})
test_that("ordinate3.works", {
library(RRPP)
data("PlethMorph")
Y <- as.data.frame(PlethMorph[c("TailLength", "HeadLength",
"Snout.eye", "BodyWidth",
"Forelimb", "Hindlimb")])
PlethMorph$Y <- as.matrix(Y)
R <- lm.rrpp(Y ~ SVL, data = PlethMorph,
iter = 0, print.progress = FALSE)$LM$residuals
succeed(ordinate(R, scale. = TRUE,
transform. = FALSE,
Cov = PlethMorph$PhyCov))
})
test_that("ordinate4.works", {
library(RRPP)
data("PlethMorph")
Y <- as.data.frame(PlethMorph[c("TailLength", "HeadLength",
"Snout.eye", "BodyWidth",
"Forelimb", "Hindlimb")])
PlethMorph$Y <- as.matrix(Y)
R <- lm.rrpp(Y ~ SVL, data = PlethMorph,
iter = 0, print.progress = FALSE)$LM$residuals
succeed(ordinate(R, scale. = TRUE,
transform. = TRUE,
Cov = PlethMorph$PhyCov))
})
test_that("ordinate5.works", {
library(RRPP)
data("PlethMorph")
Y <- as.data.frame(PlethMorph[c("TailLength", "HeadLength",
"Snout.eye", "BodyWidth",
"Forelimb", "Hindlimb")])
PlethMorph$Y<- as.matrix(Y)
R <- lm.rrpp(Y ~ SVL, data = PlethMorph,
iter = 0, print.progress = FALSE)$LM$residuals
succeed(ordinate(R, A = PlethMorph$PhyCov, scale. = TRUE))
})
test_that("ordinate6.works", {
library(RRPP)
data("PlethMorph")
Y <- as.data.frame(PlethMorph[c("TailLength", "HeadLength",
"Snout.eye", "BodyWidth",
"Forelimb", "Hindlimb")])
PlethMorph$Y <- as.matrix(Y)
R <- lm.rrpp(Y ~ SVL, data = PlethMorph,
iter = 0, print.progress = FALSE)$LM$residuals
succeed(ordinate(R, A = PlethMorph$PhyCov,
scale. = TRUE,
transform. = FALSE,
Cov = PlethMorph$PhyCov))
}) |
NPMLE.Frank <-
function(x.trunc,y.trunc,x.fix = median(x.trunc), y.fix = median(y.trunc),plotX = TRUE){
m=length(x.trunc)
x.ox=sort(unique(x.trunc))
y.oy=sort(unique(y.trunc))
nx=length(x.ox);ny=length(y.oy)
dHx1=1;Hxn=0;Ay_1=0;dAyn=1
dHx_lyn=numeric(nx);dAy_lyn=numeric(ny)
for(i in 1:nx){
tx=x.ox[nx-i+1]
Rx=sum( (x.trunc<=tx)&(y.trunc>=tx) )
dHx_lyn[nx-i+1]=sum(tx==x.trunc)/Rx
}
for(i in 1:ny){
ty=y.oy[i]
Ry=sum( (x.trunc<=ty)&(y.trunc>=ty) )
dAy_lyn[i]=sum(ty==y.trunc)/Ry
}
dL_lyn=log(c(dHx_lyn[-1],dAy_lyn[-ny]))
l.frank=function(dL){
dHx=c(dHx1,exp(dL[1:(nx-1)]));dAy=c(exp(dL[nx:(nx+ny-2)]),dAyn)
Hx=c(rev(cumsum(rev(dHx)))[-1],Hxn);Ay_=c(Ay_1,cumsum(dAy)[-ny])
alpha=exp(dL[nx+ny-1])
prop=0
for(i in 1:nx){
temp_y=(y.oy>=x.ox[i])
dHxi=dHx[i];dAyi=dAy[temp_y]
Fxi=exp(-Hx[i]);Sy_i=exp(-Ay_[temp_y])
B=alpha^Fxi+alpha^Sy_i
C=alpha^Fxi*alpha^Sy_i
prop=prop+sum((alpha-1)*log(alpha)*C/(C-B+alpha)^2*Sy_i*dAyi*Fxi*dHxi)
}
l=-m*log(prop)
for(i in 1:m){
x_num=sum(x.ox<=x.trunc[i]);y_num=sum(y.oy<=y.trunc[i])
Hxi=Hx[x_num];Ay_i=Ay_[y_num]
dHxi=dHx[x_num];dAyi=dAy[y_num]
Fxi=exp(-Hxi);Sy_i=exp(-Ay_i)
B=alpha^Fxi+alpha^Sy_i
C=alpha^Fxi*alpha^Sy_i
l=l+log((alpha-1)*log(alpha)*C/(C-B+alpha)^2)-Hxi-Ay_i+log(dHxi)+log(dAyi)
}
-l
}
res=nlm(l.frank,p=c(dL_lyn,log(0.9999)),hessian=TRUE)
dL=res$estimate;conv=res$code
alpha=exp(dL[nx+ny-1])
dHx=c(dHx1,exp(dL[1:(nx-1)]))
dAy=c(exp(dL[nx:(nx+ny-2)]),dAyn)
Hx_=rev(cumsum(rev(dHx)));Ay=cumsum(dAy)
Fx=exp(-Hx_);Sy=exp(-Ay)
Hx=c(Hx_[-1],Hxn)
Ay_=c(Ay_1,Ay[-ny])
V_dL=solve(res$hessian)
V=diag(exp(dL))%*%V_dL%*%diag(exp(dL))
SE_alpha=sqrt( V[nx+ny-1,nx+ny-1] )
Low=alpha*exp(-1.96*SE_alpha/alpha)
Up=alpha*exp(1.96*SE_alpha/alpha)
ML=-res$minimum
iter=res$iterations
Grad=res$gradient
Min_eigen=min(eigen(res$hessian)$value)
Hx_fix = Ay_fix = numeric(length(x.fix))
SE_Hx = SE_Ay = numeric(length(x.fix))
for (i in 1:length(x.fix)) {
temp.x = c(x.ox >= x.fix[i])
Hx_fix[i] = Hx_[max(sum(x.ox <= x.fix[i]), 1)]
SE_Hx[i] = sqrt((temp.x[-1]) %*% V[1:(nx - 1), 1:(nx - 1)] %*% (temp.x[-1]))
}
for (i in 1:length(y.fix)) {
temp.y = c(y.oy <= y.fix[i])
Ay_fix[i] = Ay[max(sum(y.oy <= y.fix[i]), 1)]
SE_Ay[i] = sqrt((temp.y[-ny]) %*% V[nx:(nx+ny-2),nx:(nx+ny-2)] %*% (temp.y[-ny]))
}
Fx_fix = exp(-Hx_fix)
Sy_fix = exp(-Ay_fix)
SE_Fx = Fx_fix * SE_Hx
SE_Sy = Sy_fix * SE_Ay
if (plotX == TRUE) {
plot(x.ox, Fx, type = "s", xlab = "x", ylab = "Fx(x): Distribution function of X")
}
list(
alpha = c(estimate=alpha, alpha_se = SE_alpha, Low95_alpha=Low, Up95_alpha=Up),
Hx = c(estimate=Hx_fix, Hx_se = SE_Hx),
Ay = c(estimate=Ay_fix, Ay_se = SE_Ay),
Fx = c(estimate=Fx_fix, Fx_se = SE_Fx),
Sy = c(estimate=Sy_fix, Sy_se = SE_Sy),
ML=ML, convergence = conv,iteration=iter,Grad=sum(Grad^2),MinEigen=Min_eigen
)
} |
require(geometa, quietly = TRUE)
require(testthat)
context("ISOImageryProcessing")
test_that("encoding",{
testthat::skip_on_cran()
md <- ISOImageryProcessing$new()
rp1 <- ISOResponsibleParty$new()
rp1$setIndividualName("someone1")
rp1$setOrganisationName("somewhere1")
rp1$setPositionName("someposition1")
rp1$setRole("pointOfContact")
contact1 <- ISOContact$new()
phone1 <- ISOTelephone$new()
phone1$setVoice("myphonenumber1")
phone1$setFacsimile("myfacsimile1")
contact1$setPhone(phone1)
address1 <- ISOAddress$new()
address1$setDeliveryPoint("theaddress1")
address1$setCity("thecity1")
address1$setPostalCode("111")
address1$setCountry("France")
address1$setEmail("[email protected]")
contact1$setAddress(address1)
res <- ISOOnlineResource$new()
res$setLinkage("http://www.somewhereovertheweb.org")
res$setName("somename")
contact1$setOnlineResource(res)
rp1$setContactInfo(contact1)
ct <- ISOCitation$new()
ct$setTitle("sometitle")
d <- ISODate$new()
d$setDate(ISOdate(2015, 1, 1, 1))
d$setDateType("publication")
ct$addDate(d)
ct$setEdition("1.0")
ct$setEditionDate(ISOdate(2015,1,1))
ct$addIdentifier(ISOMetaIdentifier$new(code = "identifier"))
ct$addPresentationForm("mapDigital")
ct$addCitedResponsibleParty(rp1)
md$setIdentifier("identifier")
md$setProcedureDescription("description")
md$addSoftwareReference(ct)
md$addDocumentation(ct)
md$setRunTimeParameters("parameters")
expect_is(md, "ISOImageryProcessing")
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- ISOImageryProcessing$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
}) |
expected <- eval(parse(text="c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)"));
test(id=0, code={
argv <- eval(parse(text="list(c(1.15623864987889e-07, 2.29156215117184e-06, 2.23566813947706e-05, 0.000143191143888661, 0.000677580461489631, 0.00252801907454942, 0.00775156037133752, 0.0201095764491411, 0.0451105149252681, 0.0890234210350955, 0.15678837112652, 0.249535722442692, 0.362988194603088, 0.487807940725587, 0.611969188999548, 0.724126192770213, 0.816469100858263, 0.885981556331846, 0.933947517503216, 0.964353470219262, 0.982092072679401, 0.991629921792979))"));
do.call(`is.na`, argv);
}, o=expected); |
knitr::opts_chunk$set(collapse = TRUE, comment = "
options(tibble.print_min = 4L, tibble.print_max = 4L)
library(pander)
panderOptions('table.split.table', Inf)
set.caption("Functions to estimate sample size using representative population sampling data.")
ssrs.tab <- "
Sampling | Outcome | RSurveillance | epiR
Representative | Prob disease freedom | `n.pfree` | `rsu.sspfree.rs`
Representative | SSe | `n.freedom` | `rsu.sssep.rs`
Two stage representative | SSe | `n.2stage` | `rsu.sssep.rs2st`
Representative | SSe | `n.freecalc` | `rsu.sssep.rsfreecalc`
Pooled representative | SSe | `n.pooled` | `rsu.sssep.rspool`"
ssrs.df <- read.delim(textConnection(ssrs.tab), header = FALSE, sep = "|", strip.white = TRUE, stringsAsFactors = FALSE)
names(ssrs.df) <- unname(as.list(ssrs.df[1,]))
ssrs.df <- ssrs.df[-1,]
row.names(ssrs.df) <- NULL
pander(ssrs.df, style = 'rmarkdown')
set.caption("Functions to estimate surveillance system sensitivity (SSe) using representative population sampling data.")
seprs.tab <- "
Sampling | Outcome | RSurveillance | epiR
Representative | SSe | `sep.binom` | `rsu.sep.rs`
Representative | SSe | `sep.hypergeo` | `rsu.sep.rs`
Representative | SSe | `sep` | `rsu.sep.rs`
Two stage representative | SSe | `sep.sys` | `rsu.sep.rs2st`
Representative | SSe | `sse.combined` | `rsu.sep.rsmult`
Representative | SSe | `sep.freecalc` | `rsu.sep.rsfreecalc`
Representative | SSe | `sep.binom.imperfect`| `rsu.sep.rsfreecalc`
Pooled representative | SSe | `sep.pooled` | `rsu.sep.rspool`
Representative | SSe | `sep.var.se` | `rsu.sep.rsvarse`
Representative | SSp | `spp` | `rsu.spp.rs`
Representative | SSp | `sph.hp` | `rsu.spp.rs`"
seprs.df <- read.delim(textConnection(seprs.tab), header = FALSE, sep = "|", strip.white = TRUE, stringsAsFactors = FALSE)
names(seprs.df) <- unname(as.list(seprs.df[1,]))
seprs.df <- seprs.df[-1,]
row.names(seprs.df) <- NULL
pander(seprs.df, style = 'rmarkdown')
set.caption("Functions to estimate the probability of disease freedom using representative population sampling data.")
pfreers.tab <- "
Sampling | Outcome | RSurveillance | epiR
Representative | Prob disease of freedom | `pfree.1` | `rsu.pfree.rs`
Representative | Prob disease of freedom | `pfree.calc` | `rsu.pfree.rs`
Representative | Equilibrium prob of disease freedom | `pfree.equ` | `rsu.pfree.equ`"
pfreers.df <- read.delim(textConnection(pfreers.tab), header = FALSE, sep = "|", strip.white = TRUE, stringsAsFactors = FALSE)
names(pfreers.df) <- unname(as.list(pfreers.df[1,]))
pfreers.df <- pfreers.df[-1,]
row.names(pfreers.df) <- NULL
pander(pfreers.df, style = 'rmarkdown')
set.caption("Functions to estimate sample size using risk based sampling data.")
ssrb.tab <- "
Sampling | Outcome | RSurveillance | epiR
Risk-based | SSe | `n.rb` | `rsu.sssep.rbsrg`
Risk-based | SSe | `n.rb.varse` | `rsu.sssep.rbmrg`
Risk-based | SSe | `n.rb.2stage.1` | `rsu.sssep.rb2st1rf`
Risk-based | SSe | `n.rb.2stage.2` | `rsu.sssep.rb2st2rf`"
ssrb.df <- read.delim(textConnection(ssrb.tab), header = FALSE, sep = "|", strip.white = TRUE, stringsAsFactors = FALSE)
names(ssrb.df) <- unname(as.list(ssrb.df[1,]))
ssrb.df <- ssrb.df[-1,]
row.names(ssrb.df) <- NULL
pander(ssrb.df, style = 'rmarkdown')
set.caption("Functions to estimate surveillance system sensitivity (SSe) using risk based sampling data.")
seprb.tab <- "
Sampling | Outcome | RSurveillance | epiR
Risk-based | SSe | `sep.rb.bin.varse` | `rsu.sep.rb`
Risk-based | SSe | `sep.rb.bin` | `rsu.sep.rb1rf`
Risk-based | SSe | `sep.rb.hypergeo` | `rsu.sep.rb1rf`
Risk-based | SSe | `sep.rb2.bin` | `rsu.sep.rb2rf`
Risk-based | SSe | `sep.rb2.hypergeo` | `rsu.sep.rb2rf`
Risk-based | SSe | `sep.rb.hypergeo.varse` | `rsu.sep.rbvarse`
Risk-based | SSe | `sse.rb2stage` | `rsu.sep.rb2stage`"
seprb.df <- read.delim(textConnection(seprb.tab), header = FALSE, sep = "|", strip.white = TRUE, stringsAsFactors = FALSE)
names(seprb.df) <- unname(as.list(seprb.df[1,]))
seprb.df <- seprb.df[-1,]
row.names(seprb.df) <- NULL
pander(seprb.df, style = 'rmarkdown')
set.caption("Functions to estimate surveillance system sensitivity (SSe) using census data.")
sepcen.tab <- "
Sampling | Outcome | RSurveillance | epiR
Risk-based | SSe | `sep.exact` | `rsu.sep.cens`"
sepcen.df <- read.delim(textConnection(sepcen.tab), header = FALSE, sep = "|", strip.white = TRUE, stringsAsFactors = FALSE)
names(sepcen.df) <- unname(as.list(sepcen.df[1,]))
sepcen.df <- sepcen.df[-1,]
row.names(sepcen.df) <- NULL
pander(sepcen.df, style = 'rmarkdown')
set.caption("Functions to estimate surveillance system sensitivity (SSe) using passively collected surveillance data.")
sepcen.tab <- "
Sampling | Outcome | RSurveillance | epiR
Risk-based | SSe | `sep.passive` | `rsu.sep.pass`"
seppas.df <- read.delim(textConnection(sepcen.tab), header = FALSE, sep = "|", strip.white = TRUE, stringsAsFactors = FALSE)
names(seppas.df) <- unname(as.list(seppas.df[1,]))
seppas.df <- seppas.df[-1,]
row.names(seppas.df) <- NULL
pander(seppas.df, style = 'rmarkdown')
set.caption("Miscellaneous functions.")
misc.tab <- "
Details | RSurveillance | epiR
Adjusted risk | `adj.risk` | `rsu.adjrisk`
Adjusted risk | `adj.risk.sim` | `rsu.adjrisk`
Series test interpretation, Se | `se.series` | `rsu.dxtest`
Parallel test interpretation, Se | `se.parallel` | `rsu.dxtest`
Series test interpretation, Sp | `sp.series` | `rsu.dxtest`
Parallel test interpretation, Sp | `sp.parallel` | `rsu.dxtest`
Effective probability of infection | `epi.calc` | `rsu.epinf`
Design prevalence back calculation | `pstar.calc` | `rsu.pstar`
Prob disease is less than design prevalence | | `rsu.sep`"
misc.df <- read.delim(textConnection(misc.tab), header = FALSE, sep = "|", strip.white = TRUE, stringsAsFactors = FALSE)
names(misc.df) <- unname(as.list(misc.df[1,]))
misc.df <- misc.df[-1,]
row.names(misc.df) <- NULL
pander(misc.df, style = 'rmarkdown') |
varsquig<-function(x,y, L=locator(2) , FLIP=FALSE, filcol="blue", tracecol="red" , var=0, xpd=TRUE)
{
if(missing(FLIP) ) { FLIP=FALSE }
if(missing(L) ) { L=locator(2) }
if(missing(filcol) ) { filcol="red" }
if(missing(tracecol) ) { tracecol="red" }
if(missing(var) ) { var=TRUE }
if(is.numeric(var))
{
zee = var*(max(y, na.rm=TRUE)-mean(y, na.rm=TRUE))
}
else
{
zee = 0
}
if(FLIP==TRUE)
{
rx = RPMG::RESCALE(y, min(L$x), max(L$x), min(y), max(y))
ry = RPMG::RESCALE(x, max(L$y), min(L$y), min(x), max(x))
zer =RPMG::RESCALE(zee, min(L$x), max(L$x), min(y), max(y))
yup = rx>zer
g = rx
g[!yup] = zer
g[1] = zer
g[length(rx)] = zer
if(var) polygon(g, ry, col=filcol, border=NA)
}
else
{
rx = RPMG::RESCALE(x, L$x[1], L$x[2], min(x), max(x))
ry = RPMG::RESCALE(y, L$y[1], L$y[2], min(y), max(y))
zer =RPMG::RESCALE(zee, L$y[1], L$y[2], min(y), max(y))
yup = ry>zer
g = ry
g[!yup] = zer
g[1] = zer
g[length(ry)] = zer
if(var) polygon(rx, g , col=filcol, border=NA, xpd=xpd)
}
lines(rx, ry, col=tracecol, xpd=xpd)
} |
knitr::opts_chunk$set(
echo = FALSE,
collapse = TRUE,
comment = "
)
library(states)
library(DT)
data(gwstates)
datatable(gwstates)
data(cowstates)
datatable(cowstates) |
rscontract_open <- function(x) {
UseMethod("rscontract_open")
}
rscontract_open.rscontract_ide <- function(x) {
open_connection_contract(x)
}
rscontract_open.rscontract_spec <- function(x) {
rs_contract <- as_rscontract(x)
rscontract_open(rs_contract)
}
open_connection_contract <- function(spec) {
observer <- getOption("connectionObserver")
if (is.null(observer)) {
return(invisible(NULL))
}
connection_opened <- function(...) observer$connectionOpened(...)
do.call("connection_opened", spec)
} |
powertrack = function (sound, timestep = 5, windowlength = 30,
fs = 22050, show = TRUE, zeromax = TRUE, ...){
if (class(sound) == "ts") fs = frequency(sound)
if (class(sound) == "sound") {
fs = sound$fs
sound = sound$sound
}
if (!is.numeric(sound)) stop ('Sound must be numeric.')
if (timestep < 0) stop ('Timestep must be positive.')
if (windowlength < timestep) stop ('Window length must be greater than or equal to timestep.')
T = 1 / fs
stepsize = round ((timestep / 1000) / T)
half = round(ceiling (windowlength/1000 * 22050)/ 2)
spots = seq (1+half, length(sound)-half, stepsize)
power = rep (0, length(spots))
for (i in 1:length(spots)){
section = sound[(spots[i]-half):(spots[i]+half)]
power[i] = mean ((section*windowfunc(section))^2)
}
use = (power != 0)
spots = spots[use]
power = power[use]
power = log(power, 10)*10
if (zeromax) power = power - max(power)
time = spots * (1000/fs)
tmp = data.frame (time = time, power = power)
if (show == TRUE) plot(tmp$time, tmp$power, xlab = 'Time (ms)', ylab = 'Power (dB)',
type = 'l', ylim = c(min(power)-1, 2), lwd = 2, col = 4, ...)
invisible (tmp)
} |
.sbwauxfix = function(dat, bal, wei, sol, sd_target = sd_target, ...) {
if (wei$wei_sum == TRUE) {
normalize = 1
} else if (wei$wei_sum == FALSE) {
normalize = 0
} else {stop("The wei_sum is supposed to be TRUE or FALSE.")}
if (wei$wei_pos == TRUE) {
w_min = 0
} else if (wei$wei_pos == FALSE) {
w_min = -Inf
} else {stop("The wei_pos is supposed to be TRUE or FALSE.")}
nor = "l_2"
check_cov = bal$bal_cov[is.na(match(bal$bal_cov, colnames(dat)))]
if (length(check_cov) > 0) stop(paste(paste(check_cov, collapse = ", "), "are not found in the dat."))
if (sum(is.na(dat[, bal$bal_cov])) > 0) {
mis_value = colSums(is.na(dat[, bal$bal_cov]))
stop(paste(paste(names(which(mis_value != 0)), collapse = ", "), "have missing values."))
}
if (length(bal$bal_cov) != length(bal$bal_tar)) stop("bal$bal_cov and par$par_tar should have the same length as well as the same order.")
if (!is.numeric(bal$bal_tol)) {
stop("bal$bal_tol should be numeric.")
} else if (sum(bal$bal_tol < 0) > 0) stop("bal$bal_tol should be non negative.")
problemparameters.object = .problemparameters(dat = dat, nor = nor, bal = bal, normalize = normalize, w_min = w_min, sd_target = sd_target)
sol$sol_nam = tolower(sol$sol_nam)
if (sol$sol_nam == "cplex") {
if (requireNamespace("Rcplex", quietly = TRUE)) {
trace = ifelse(is.null(sol$sol_dis), 0, as.numeric(sol$sol_dis))
ptm = proc.time()
sbw.object = .sbwpricplex(problemparameters.object, trace = trace)
time = (proc.time()-ptm)[3]
}
}
else if (sol$sol_nam == "pogs") {
if (requireNamespace("pogs", quietly=TRUE)) {
if (sum(bal$bal_tol^2) == 0) {
warning("Exact balance may not be acquired. Please use the function summarize to check the balance.")
}
max_iter = ifelse(is.null(sol$sol_pog$sol_pog_max_iter), 100000, sol$sol_pog$sol_pog_max_iter)
rel_tol = ifelse(is.null(sol$sol_pog$rel_tol), 1e-04, sol$sol_pog$rel_tol)
abs_tol = ifelse(is.null(sol$sol_pog$abs_tol), 1e-04, sol$sol_pog$abs_tol)
gap_stop = ifelse(is.null(sol$sol_pog$gap_stop), TRUE, sol$sol_pog$gap_stop)
adaptive_rho = ifelse(is.null(sol$sol_pog$adaptive_rho), TRUE, sol$sol_pog$adaptive_rho)
verbose = ifelse(is.null(sol$sol_dis), 0, as.numeric(sol$sol_dis))
params = list(rel_tol = rel_tol, abs_tol = abs_tol, max_iter = max_iter, adaptive_rho = adaptive_rho, verbose = verbose, gap_stop = gap_stop)
ptm = proc.time()
sbw.object = .sbwpripogs(problemparameters.object, params)
time = (proc.time()-ptm)[3]
}
}
else if (sol$sol_nam == "osqp") {
verbose = as.logical(ifelse(is.null(sol$sol_dis), TRUE, FALSE))
ptm = proc.time()
sbw.object = .sbwpriosqp(problemparameters.object, verbose = verbose)
time = (proc.time()-ptm)[3]
}
else if (sol$sol_nam == "quadprog") {
if (sum(bal$bal_tol^2) == 0) {
stop("This problem does not have a solution from the solver quadprog. Please try other solvers.")
}
ptm = proc.time()
sbw.object = .sbwpriquadprog(problemparameters.object)
time = (proc.time()-ptm)[3]
}
else if (sol$sol_nam == "gurobi") {
if (requireNamespace("gurobi", quietly=TRUE)) {
sol_dis = ifelse(is.null(sol$sol_dis), 0, as.numeric(sol$sol_dis))
params = list(OutputFlag = sol_dis)
ptm = proc.time()
sbw.object = .sbwprigurobi(problemparameters.object, params = params)
time = (proc.time()-ptm)[3]
}
}
else if (sol$sol_nam == "mosek") {
if (requireNamespace("Rmosek", quietly=TRUE)) {
verbose = ifelse(is.null(sol$sol_dis), 0, as.numeric(paste(as.numeric(sol$sol_dis), 0, sep = "")))
ptm = proc.time()
sbw.object = .sbwprimosek(problemparameters.object, verbose = verbose)
time = (proc.time()-ptm)[3]
}
} else {stop("The assignment of solver is not found, please choose one of the available solvers.")}
balance_parameters = problemparameters.object$bal_new
if (length(bal$bal_cov) != length(bal$bal_tol)) {
bal$bal_tol = bal$bal_tol[1]
}
balance_parameters$bal_tol_ori = bal$bal_tol
rm(problemparameters.object)
dat_weights = dat
dat_weights$sbw_weights = as.numeric(as.character(sbw.object$weights))
effective_sample_size = sum(dat_weights$sbw_weights)^2/sum(dat_weights$sbw_weights^2)
output = list(bal = bal, wei = wei, sol = sol, objective_value = sbw.object$objective_value, effective_sample_size = effective_sample_size, time = time, status = sbw.object$status, dat_weights = dat_weights, shadow_price = sbw.object$shadow_price, balance_parameters = balance_parameters)
class(output) = "sbwaux"
return(output)
} |
library(checkargs)
context("isBooleanScalarOrNull")
test_that("isBooleanScalarOrNull works for all arguments", {
expect_identical(isBooleanScalarOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isBooleanScalarOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isBooleanScalarOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isBooleanScalarOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isBooleanScalarOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isBooleanScalarOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isBooleanScalarOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isBooleanScalarOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isBooleanScalarOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
}) |
generateBlockDiagonalMatrices <- function(X, Y, groups, G, intercept=FALSE,
penalty.factors=rep(1, dim(X)[2]),
scaling=TRUE) {
group.names = sort(unique(groups))
num.groups = length(group.names)
num.pairs = num.groups*(num.groups-1)/2
if(intercept) X = cbind(X, matrix(1, dim(X)[1], 1))
new.y = Matrix(0, length(Y)+num.pairs*dim(X)[2],1, sparse=TRUE)
new.x = Matrix(0, dim(X)[1], dim(X)[2]*num.groups,
sparse=TRUE)
new.x.f = Matrix(0, num.pairs*dim(X)[2], dim(X)[2]*num.groups,
sparse=TRUE)
row.start = 1
col.start = 1
for(group.i in 1:num.groups) {
group.inds = groups==group.names[group.i]
row.range = row.start:(row.start+sum(group.inds)-1)
col.range = col.start:(col.start+dim(X)[2]-1)
new.y[row.range] = Y[group.inds]
new.x[row.range, col.range] = X[group.inds,]
if(scaling) {
new.y[row.range] = new.y[row.range]/sum(group.inds)
new.x[row.range, col.range] =
new.x[row.range, col.range]/sum(group.inds)
}
row.start = row.start + sum(group.inds)
col.start = col.start + dim(X)[2]
}
col.start.i = 1
row.start = 1
for(group.i in 1:(num.groups-1)) {
col.start.j = col.start.i + dim(X)[2]
col.range.i = col.start.i:(col.start.i+dim(X)[2]-1)
for(group.j in (group.i+1):num.groups) {
tau = G[group.i, group.j]
row.range = row.start:(row.start+dim(X)[2]-1)
col.range.j = col.start.j:(col.start.j+dim(X)[2]-1)
new.x.f[cbind(row.range, col.range.i)] = sqrt(tau)
new.x.f[cbind(row.range, col.range.j)] = -sqrt(tau)
if(intercept) {
new.x.f[row.range[length(row.range)],
col.range.i[length(col.range.i)]] = 0
new.x.f[row.range[length(row.range)],
col.range.j[length(col.range.j)]] = 0
}
row.start = row.start + dim(X)[2]
col.start.j = col.start.j + dim(X)[2]
}
col.start.i = col.start.i + dim(X)[2]
}
if(intercept) {
penalty = rep(c(penalty.factors, 0), num.groups)
} else {
penalty = rep(penalty.factors, num.groups)
}
return(list(X=new.x, Y=new.y, X.fused=new.x.f, penalty=penalty))
}
fusedL2DescentGLMNet <- function(transformed.x, transformed.x.f,
transformed.y, groups, lambda, gamma=1,
...) {
transformed.x.f = transformed.x.f * sqrt(gamma *
(dim(transformed.x)[1] + dim(transformed.x.f)[1]))
transformed.x = rbind(transformed.x, transformed.x.f)
group.names = sort(unique(groups))
num.groups = length(group.names)
glmnet.result = glmnet(transformed.x, transformed.y, standardize=FALSE, ...)
beta.mat = array(NA, c(dim(transformed.x)[2]/num.groups, num.groups, length(lambda)))
for(lambda.i in 1:length(lambda)) {
coef.temp = coef.glmnet(glmnet.result,
s=lambda[lambda.i]*length(groups)/dim(transformed.x)[1])
beta.mat[,,lambda.i] = coef.temp[2:length(coef.temp)]
}
return(beta.mat)
} |
findcutpoints <- function(cox_pspline_fit,data,nquantile=100,exclude=0.05,eps=0.01, shape="U"){
x <- NULL
if(missing(cox_pspline_fit)|!('coxph'%in%class(cox_pspline_fit))){
stop('"cox_pspline_fit" is missing or incorrect')
}
if(missing(data)|class(data)!="data.frame"){
stop('"data" is missing or incorrect')
}
if(shape!="U" & shape !="inverseU" ){stop('Invalid value for "shape" parameter')}
f <- cox_pspline_fit$formula
variablenames <- all.vars(f)
variablenames <- variablenames[variablenames%in%colnames(data)]
data <- data[,variablenames]
if(length(variablenames)<3){
stop("There are not enough variables in dataset. At least (times, cersor, x) are required.")
} else{
colnames(data) <- c('t','d','x')
confounders <- NA
if (length(variablenames)>3){
for (i in 4:length(variablenames)){
colnames(data)[i] <- paste("x", i-3, sep="")
}
confounders <- colnames(data)[4:length(variablenames)]
}
}
adjpoint <- function(data,y){
lesslarger <- NA
if (dim(data)[1]<=1){
pseudocut <- NA
}else{
for ( j in c(1:(dim(data)[1]-1))){
if((data[j,'y']<y & data[j+1,'y']> y) |
(data[j,'y']>y & data[j+1,'y']< y)){
lesslarger <- j
}
}
equal <- NA
for ( j in c(1:dim(data)[1])){
if(data[j,'y']== y){
equal <- j
}
}
pseudocut <- NA
if (!is.na(equal)){
pseudocut <- data[equal,'x']
}else{
if(!is.na(lesslarger)){
pseudocut <- (data[lesslarger+1,'x']-data[lesslarger,'x'])*(y-data[lesslarger,'y'])/(data[lesslarger+1,'y']-data[lesslarger,'y'])+data[lesslarger,'x']
}else{
pseudocut <- NA
}
}
}
return(pseudocut)
}
ptemp <- termplot(cox_pspline_fit, se=TRUE, plot=FALSE)
xterm <- ptemp[[1]]
PI_fit <- xterm$y
turningpoint_index <- NA
if (shape=="U"){
turningpoint_index <- which(PI_fit == min(PI_fit))
}else{
if(shape=="inverseU"){
turningpoint_index <- which(PI_fit == max(PI_fit))
}
}
ycut <- quantile(PI_fit, probs = seq((0+exclude), (1-exclude),1/nquantile))
cut_spline <- matrix(NA,length(ycut),7)
colnames(cut_spline)=c('Quantile','Lindex','Rindex','Lcutpoint','Rcutpoint','AIC','
for (i in 1:length(ycut)){
y <- as.numeric(ycut[i])
cut_spline[i,"Quantile"] <- names(ycut)[i]
L <- which.min((PI_fit[0:turningpoint_index]-y)^2)
R <- which.min((PI_fit[turningpoint_index:length(PI_fit)]-y)^2) + turningpoint_index - 1
if(abs(PI_fit[L]-PI_fit[R])>eps){
adjust <- xterm[order(xterm$x),c('x','y')]
split <- which(adjust$y == min(PI_fit))
adjust_L <- adjust[1:split,]
adjust_R <- adjust[split:dim(adjust)[1],]
cut_spline[i,"Lcutpoint"] <- round(adjpoint(adjust_L,y),4)
cut_spline[i,"Rcutpoint"] <- round(adjpoint(adjust_R,y),4)
} else {
cut_spline[i,"Lindex"] <- L
cut_spline[i,"Rindex"] <- R
cut_spline[i,"Lcutpoint"] <- xterm$x[L]
cut_spline[i,"Rcutpoint"] <- xterm$x[R]
}
xl <- as.numeric(cut_spline[i,"Lcutpoint"])
xr <- as.numeric(cut_spline[i,"Rcutpoint"])
if(!is.na(cut_spline[i,"Lcutpoint"]) & !is.na(cut_spline[i,"Rcutpoint"])){
datatemp <- data
datatemp <- within(datatemp,{
x_c <- NA
x_c[x < xl] <- 'C1'
x_c[x >= xl & x <= xr] <- 'C2'
x_c[x > xr] <- 'C3'
}
)
datatemp$x_c <- relevel(factor(datatemp$x_c),ref='C2')
if(sum(is.na(confounders))){
f_cox <- Surv(t,d)~factor(x_c)
}else{
f_cox <- as.formula(paste('Surv(t,d)~factor(x_c)','+', paste(confounders, collapse=" + ")))
}
coxHR <- survival::coxph(f_cox ,method='breslow',data=datatemp)
cut_spline[i,"AIC"] <- as.numeric(extractAIC(coxHR)[2])
cut_spline[i,'
}
}
number <- which(cut_spline[,"AIC"]==min(cut_spline[,"AIC"], na.rm = T))
multi <- length(number)
if (multi>1){
if(multi%%2 ==0){
optimal <- c('Cutpoint_L'= (as.numeric(cut_spline[number[ceiling(median(multi))],"Lcutpoint"])+ as.numeric(cut_spline[number[floor(median(multi))],"Lcutpoint"]))/2,
'Cutpoint_R'= (as.numeric(cut_spline[number[ceiling(median(multi))],"Rcutpoint"])+ as.numeric(cut_spline[number[floor(median(multi))],"Rcutpoint"]))/2)
} else {
optimal <- c('Cutpoint_L'= as.numeric(cut_spline[number[median(multi)],"Lcutpoint"]),
'Cutpoint_R'= as.numeric(cut_spline[number[median(multi)],"Rcutpoint"]))
}
}else{
optimal <- c('Cutpoint_L'= as.numeric(cut_spline[number,"Lcutpoint"]),'Cutpoint_R'=as.numeric(cut_spline[number,"Rcutpoint"]))
}
cut_points<- list('allcuts'=cut_spline,'optimal'=optimal)
return(cut_points)
} |
"timedep" <- function(x)
{
x
} |
num.intercepts <- function(fit, type=c('fit', 'var', 'coef'))
{
type <- match.arg(type)
nrp <- fit$non.slopes
if(!length(nrp)) {
nm1 <- names(fit$coef)[1]
nrp <- 1*(nm1=="Intercept" | nm1=="(Intercept)")
}
if(type == 'fit') return(nrp)
w <- if(type == 'var') fit$var else fit$coefficients
i <- attr(w, 'intercepts')
li <- length(i)
if(!li) return(nrp)
if(li == 1 && i == 0) 0 else li
} |
critical_r <- function(n, alpha = .05) {
df <- n - 2
critical_t <- qt(alpha / 2, df, lower.tail = FALSE)
critical_r_value <- sqrt((critical_t ^ 2) / ((critical_t ^ 2) + df))
return(critical_r_value)
} |
rm(list=ls())
library(dplyr)
library(reshape2)
library(ggplot2)
library(SEERaBomb)
LC=c("CLL","SLL","HCL","NHL","MM","HL")
system.time(load("~/Results/amlMDS/pm.RData"))
system.time(load("~/Results/amlMDS/pf.RData"))
brks=c(0,0.25,0.5,0.75,1,1.5,2,2.5,3,4,5,6,8,10,12)
df=mkDF(pf,brks)
dm=mkDF(pm,brks)
d=rbind(cbind(df,Sex="Female"),cbind(dm,Sex="Male"))
d=d%>%filter(cancer1%in%LC)%>%group_by(cancer2,Sex,int)%>%summarize(O=sum(O),E=sum(E),t=weighted.mean(t,py,na.rm=T))
D=d%>%mutate(RR=O/E, L=qchisq(.025,2*O)/(2*E),U=qchisq(.975,2*O+2)/(2*E))
D[D$cancer2=="MDS","t"]=D[D$cancer2=="MDS","t"]+0.05
graphics.off()
quartz(width=7,height=4)
theme_update(legend.position = c(.92, .825),
axis.text=element_text(size=rel(1.2)),
axis.title=element_text(size=rel(1.3)),
axis.title.x=element_text(size=rel(1.0)),
legend.title=element_text(size=rel(1)),
legend.text=element_text(size=rel(1)),
strip.text = element_text(size = rel(1.5)))
g=qplot(x=t,y=RR,data=D,col=cancer2,geom=c("line","point"),
xlab="Years Since Dx of Lymphoid First Cancer",ylab="Relative Risk")
g=g+facet_grid(Sex~.,scales="free")+geom_abline(intercept=1, slope=0)
g1 <- guide_legend("Second\nCancer")
g=g + guides(color=g1)
g=g+ geom_errorbar(aes(ymin=L,ymax=U,width=.15))+scale_y_continuous(breaks=c(0,5,10,15))
print(g)
ggsave("~/Results/amlMDS/lymphoidFirst.eps")
ggsave("~/Results/amlMDS/lymphoidFirst.png") |
context("test idig_view_media")
med_uuid = "e2d288dc-319e-4a13-b759-527021122bbc"
test_that("viewing a media record returns right information", {
testthat::skip_on_cran()
med <- idig_view_media(med_uuid)
expect_that(med, is_a("list"))
expect_that(med$uuid, equals(med_uuid))
expect_that(med$data, is_a("list"))
expect_that(length(med$data$coreid) > 0, is_true())
expect_that(med$indexTerms, is_a("list"))
expect_that(med$indexTerms$uuid, equals(med_uuid))
expect_that(med$attribution, is_a("list"))
expect_that(length(med$attribution$description) > 0, is_true())
}) |
context("compute_bin")
comp_bin <- function(...) {
suppressMessages(compute_bin(...))
}
test_that("compute_bin preserves dates and times", {
dates <- data.frame(val = as.Date("2013-06-01") + 0:100)
NYtimes <- data.frame(
val = as.POSIXct('2001-06-01 21:00', tz = 'America/New_York') + 0:10 * 100
)
UTCtimes <- data.frame(
val = as.POSIXct('2001-06-01 21:00', tz = 'UTC') + seq(0, 1000, by = 10)
)
res <- comp_bin(dates, ~val, width = 30)
expect_true(inherits(res$x_, "Date"))
expect_true(inherits(res$xmin_, "Date"))
expect_true(inherits(res$xmax_, "Date"))
expect_equal(sum(res$count_), length(dates$val))
res <- comp_bin(NYtimes, ~val, width = 120)
expect_true(inherits(res$x_, "POSIXct"))
expect_true(inherits(res$xmin_, "POSIXct"))
expect_true(inherits(res$xmax_, "POSIXct"))
expect_equal(sum(res$count_), length(NYtimes$val))
expect_identical(attr(NYtimes$val, "tzone"), attr(res$x_, "tzone"))
res <- comp_bin(UTCtimes, ~val, width = 120)
expect_equal(sum(res$count_), length(UTCtimes$val))
expect_identical(attr(UTCtimes$val, "tzone"), attr(res$x_, "tzone"))
})
test_that("width in lubridate::Period", {
UTCtimes <- data.frame(
val = as.POSIXct('2001-06-01 21:00', tz = 'UTC') + seq(0, 1000, by = 10)
)
expect_identical(
comp_bin(UTCtimes, ~val, width = lubridate::ms("1 42")),
comp_bin(UTCtimes, ~val, width = 102)
)
})
test_that("Closed left or right", {
dat <- data.frame(x = c(0, 10))
res <- comp_bin(dat, ~x, width = 10, pad = FALSE)
expect_identical(res$count_, c(1, 1))
res <- comp_bin(dat, ~x, width = 10, boundary = 5, pad = FALSE)
expect_identical(res$count_, c(1, 1))
res <- comp_bin(dat, ~x, width = 10, boundary = 0, pad = FALSE)
expect_identical(res$count_, 2)
res <- comp_bin(dat, ~x, width = 5, boundary = 0, pad = FALSE)
expect_identical(res$count_, c(1, 1))
res <- comp_bin(dat, ~x, width = 10, pad = FALSE, closed = "left")
expect_identical(res$count_, c(1, 1))
res <- comp_bin(dat, ~x, width = 10, boundary = 5, pad = FALSE, closed = "left")
expect_identical(res$count_, c(1, 1))
res <- comp_bin(dat, ~x, width = 10, boundary = 0, pad = FALSE, closed = "left")
expect_identical(res$count_, c(2))
res <- comp_bin(dat, ~x, width = 5, boundary = 0, pad = FALSE, closed = "left")
expect_identical(res$count_, c(1, 1))
})
test_that("Setting boundary and center", {
dat <- data.frame(x = c(0, 30))
expect_error(comp_bin(dat, ~x, width = 10, bondary = 5, center = 0, pad = FALSE))
res <- comp_bin(dat, ~x, width = 10, boundary = 0, pad = FALSE)
expect_identical(res$count_, c(1, 0, 1))
expect_identical(res$xmin_[1], 0)
expect_identical(res$xmax_[3], 30)
res <- comp_bin(dat, ~x, width = 10, center = 0, pad = FALSE)
expect_identical(res$count_, c(1, 0, 0, 1))
expect_identical(res$xmin_[1], dat$x[1] - 5)
expect_identical(res$xmax_[4], dat$x[2] + 5)
dat <- data.frame(x = as.Date("2013-06-01") + c(0, 30))
res <- comp_bin(dat, ~x, width = 10, boundary = as.Date("2013-06-01"), pad = FALSE)
expect_identical(res$count_, c(1, 0, 1))
expect_identical(res$xmin_[1], dat$x[1])
expect_identical(res$xmax_[3], dat$x[2])
res <- comp_bin(dat, ~x, width = 10, center = as.Date("2013-06-01"), pad = FALSE)
expect_identical(res$count_, c(1, 0, 0, 1))
expect_identical(res$xmin_[1], dat$x[1] - 5)
expect_identical(res$xmax_[4], dat$x[2] + 5)
dat <- data.frame(
x = as.POSIXct('2001-06-01 21:00', tz = 'America/New_York') + c(0, 30000)
)
res <- comp_bin(dat, ~x, width = 10000, boundary = dat$x[1], pad = FALSE)
expect_identical(res$count_, c(1, 0, 1))
expect_identical(res$xmin_[1], dat$x[1])
expect_identical(res$xmax_[3], dat$x[2])
res <- comp_bin(dat, ~x, width = 10000, center = dat$x[1], pad = FALSE)
expect_identical(res$count_, c(1, 0, 0, 1))
expect_identical(res$xmin_[1], dat$x[1] - 5000)
expect_identical(res$xmax_[4], dat$x[2] + 5000)
})
test_that("Automatic width", {
dat <- data.frame(
num = c(0, 25.0),
num2 = c(0, 50.0),
int = c(1L, 25L),
int2 = c(1L, 50L),
date = as.Date("2013-06-01") + c(0, 100),
posixct = as.POSIXct('2001-06-01 21:00', tz = 'UTC') + c(0, 1000)
)
res <- comp_bin(dat, ~num)
expect_identical(res$width_, rep(1, length(res$width_)))
res <- comp_bin(dat, ~num2)
expect_identical(res$width_, rep(2, length(res$width_)))
res <- comp_bin(dat, ~int)
expect_true(all(res$width_ == 1L))
res <- comp_bin(dat, ~int2)
expect_true(all(res$width_ == 2L))
res <- comp_bin(dat, ~date)
r_version <- as.package_version(paste0(R.Version()$major, ".", R.Version()$minor))
if (r_version >= "3.3.0")
expect_identical(res$width_, rep(7, length(res$width_)))
else
expect_identical(res$width_, rep(2, length(res$width_)))
res <- comp_bin(dat, ~posixct)
expect_identical(res$width_, rep(30, length(res$width_)))
})
test_that("Boundaries across groups should be aligned", {
dat <- data.frame(x = c(0:2, 0:2+0.7), g=c('a','a','a', 'b','b','b'))
res <- dat %>% group_by(g) %>% compute_bin(~x, width = 1, pad = FALSE)
expect_true(length(unique(res$x_ %% 1)) == 1)
expect_identical(dplyr::groups(res), list(quote(g)))
expect_identical(res$count_, rep(1, 6))
})
test_that("Zero-row inputs", {
res <- mtcars[0,] %>% compute_bin(~mpg)
expect_equal(nrow(res), 0)
expect_true(setequal(
names(res),
c("count_", "x_", "xmin_", "xmax_", "width_")
))
res <- mtcars[0,] %>% group_by(cyl) %>% compute_bin(~mpg)
expect_equal(nrow(res), 0)
expect_true(setequal(
names(res),
c("cyl", "count_", "x_", "xmin_", "xmax_", "width_")
))
})
test_that("weights are added", {
df <- data.frame(x = 1:10, y = 1:10)
binned <- df %>% compute_bin(~x, ~y, width = 1, pad = FALSE)
expect_equal(binned$count_, df$y)
})
test_that("NAs get own bin", {
x <- c(1:10, NA, NA, NA, NA)
binned <- bin_vector(x, width = 100)
expect_equal(binned$count_, c(10, 4))
expect_equal(binned$x_, c(50, NA))
})
test_that("only NA, one row of output", {
x <- as.numeric(c(NA, NA, NA, NA))
binned <- bin_vector(x)
expect_equal(binned$count_, 4)
expect_equal(binned$x_, NA)
}) |
artifNA.cv <- function(x, testNA.prop=0.1 )
{
n <- nrow(x)
p <- ncol(x)
total <- n*p
missing.matrix = is.na(x)
valid.data = which(!missing.matrix)
remove.indices = sample(valid.data, testNA.prop*length(valid.data))
x.train = x
x.train[remove.indices] = NA
return (list(remove.indices = remove.indices, x.train = x.train, x=x))
} |
print.elmNN <-
function(x,...) {
cat("Call:\n")
cat(paste(x$call, "\n"))
cat("Number of hidden neurons:\n")
cat(paste(x$nhid, "\n"))
cat("Activation function:\n")
cat(paste(x$actfun, "\n"))
cat("Input arc weights:\n")
cat(paste(head(x$inpweight), "...\n"))
cat("Bias of hidden neurons:\n")
cat(paste(head(x$biashid), "...\n"))
cat("Output arc weights:\n")
cat(paste(head(x$outweight), "...\n"))
cat("Predictions on training set:\n")
cat(paste(head(fitted(x)), "...\n"))
} |
library(hamcrest)
test.CallReplacement <- function() {
call <- quote(sin(x))
call[[1]] <- "cos"
assertThat(typeof(call), equalTo("language"))
}
test.CallSubsetting <- function() {
call <- quote(sin(x,y,z))
call <- call[c(1L,2L)]
assertThat(typeof(call), equalTo("language"))
}
test.RemoveFunctionFromFunctionCall <- function() {
call <- quote(sin(x))
call[[1]] <- NULL
assertThat(typeof(call), equalTo("pairlist"))
assertThat(length(call), equalTo(1))
}
test.DataFrameDollar <- function() {
df <- data.frame(x=1:3)
df$y <- 4:6
assertThat(df$y, equalTo(c(4,5,6)))
}
test.RemoveLastElementInPairList <- function() {
x <- pairlist(a=1,b=1)
x$b <- NULL
assertThat(length(x), equalTo(1))
} |
path_to_file <- function(path = NULL) {
if (is.null(path)) {
dir(system.file("extdata", package = "palmerpenguins"))
} else {
system.file("extdata", path, package = "palmerpenguins", mustWork = TRUE)
}
} |
input1 <- list(hazard_treatment = 0.01, hazard_control = 0.02,
N_total = 300,
lambda = c(0.3, 1), lambda_time = c(25),
interim_look = c(220, 270), EndofStudy = 50)
input2 <- list(hazard_treatment = c(0.01, 0.02), cutpoint = 25,
EndofStudy = 50,N_impute = 10, N_total = 300,
lambda = c(0.3, 1), lambda_time = c(25),
interim_look = c(220, 270), alternative = "less")
context("")
test_that("The binomial bayesCT is ", {
set.seed(200)
expect_equal(do.call(survivalBACT, input1)$hazard_treatment, 0.01)
expect_equal(do.call(survivalBACT, input2)$margin, 0.5)
expect_equal(do.call(survivalBACT, input2)$prob_of_accepting_alternative, 0.95)
input1$alternative <- "lessthan"
expect_error(do.call(binomialBACT, input1))
}) |
bad_variance = list(
list(y ~ 1 + sigma(rel(1))),
list(y ~ 1,
y ~ 1 + sigma(rel(x))),
list(y ~ 1 + sigma(q))
)
test_bad(bad_variance)
good_variance = list(
list(y ~ 1 + sigma(1)),
list(y ~ 1 + sigma(x + I(x^2))),
list(y ~ 1 + sigma(1 + sin(x))),
list(y ~ 1,
~ 0 + sigma(rel(1)),
~ x + sigma(x),
~ 0 + sigma(rel(x))),
list(y ~ 1,
1 + (1|id) ~ rel(1) + I(x^2) + sigma(rel(1) + x)),
list(y | weights(weights_ok) ~ 1 + sigma(1 + x),
~ 0 + sigma(1 + rel(x)))
)
test_good(good_variance)
bad_arma = list(
list(y ~ ar(0)),
list(y ~ ar(-1)),
list(y ~ ar(1.5)),
list(y ~ ar(1) + ar(2)),
list(y ~ ar("1")),
list(y ~ ar(1 + x)),
list(y ~ ar(x))
)
test_bad(bad_arma)
good_arma = list(
list(y ~ ar(1)),
list(y ~ ar(5)),
list(y ~ ar(1, 1 + x + I(x^2) + exp(x))),
list(y ~ ar(1),
~ ar(2, 0 + x)),
list(y ~ 1,
~ 0 + ar(2)),
list(y ~ 1,
1 + (1|id) ~ rel(1) + I(x^2) + ar(2, rel(1) + x)),
list(y ~ ar(1) + sigma(1 + x),
~ ar(2, 1 + I(x^2)) + sigma(1)),
list(y ~ ar(1),
~ ar(2, rel(1))),
list(y | weights(weights_ok) ~ 1 + ar(1),
~ 0 + ar(2, 1 + x))
)
test_good(good_arma) |
"APIS_sire" |
som.nn.visual <- function(codes, data){
if (is.data.frame(data)){
data <- as.matrix(data)
}
if (is.matrix(data)){
winners <- t(apply(data, 1, som.nn.visual.one, codes=codes))
result <- data.frame(winner = winners[,1], distance = winners[,2])
} else {
winners <- som.nn.visual.one(data, codes)
result <- data.frame(winner = winners[1], distance = winners[2])
}
return(result)
}
som.nn.visual.one <- function(one, codes){
taxi <- t(t(codes) - one)
dist.all <- sqrt( rowSums(taxi^2))
winner <- which.min(dist.all)
qerror <- dist.all[winner]
result <- c(winner, qerror)
names(result) <- c("winner", "qerror")
return(result)
} |
test_that("vec_restore() returns a parameters if `x` retains parameters structure", {
x <- parameters(penalty())
expect_s3_class_parameters(vec_restore(x, x))
})
test_that("vec_restore() returns bare tibble if `x` loses parameters structure", {
to <- parameters(penalty())
x <- as_tibble(to)
x <- x["name"]
expect_s3_class_bare_tibble(vec_restore(x, to))
})
test_that("vec_restore() retains extra attributes of `to` when not falling back", {
x <- parameters(penalty())
to <- x
attr(to, "foo") <- "bar"
x_tbl <- as_tibble(x)
x_tbl <- x_tbl[1]
expect_identical(attr(vec_restore(x, to), "foo"), "bar")
expect_identical(attr(vec_restore(x_tbl, to), "foo"), NULL)
expect_s3_class_parameters(vec_restore(x, to))
expect_s3_class_bare_tibble(vec_restore(x_tbl, to))
})
test_that("parameters proxy is a bare data frame", {
x <- parameters(penalty())
expect_s3_class(vec_proxy(x), "data.frame", exact = TRUE)
})
test_that("vec_ptype2() is working", {
x <- parameters(penalty())
y <- parameters(mixture())
tbl <- tibble::tibble(x = 1)
df <- data.frame(x = 1)
expect_identical(vec_ptype2(x, x), dials_global_empty_parameters)
expect_identical(vec_ptype2(x, y), dials_global_empty_parameters)
expect_identical(vec_ptype2(x, tbl), vec_ptype2(tib_upcast(x), tbl))
expect_identical(vec_ptype2(tbl, x), vec_ptype2(tbl, tib_upcast(x)))
expect_identical(vec_ptype2(x, df), vec_ptype2(tib_upcast(x), df))
expect_identical(vec_ptype2(df, x), vec_ptype2(df, tib_upcast(x)))
})
test_that("vec_cast() is working", {
x <- parameters(penalty())
tbl <- tib_upcast(x)
df <- as.data.frame(tbl)
expect_identical(vec_cast(x, x), x)
expect_identical(vec_cast(x, tbl), tbl)
expect_error(vec_cast(tbl, x), class = "vctrs_error_incompatible_type")
expect_identical(vec_cast(x, df), df)
expect_error(vec_cast(df, x), class = "vctrs_error_incompatible_type")
})
test_that("vec_ptype() returns a parameters", {
x <- parameters(penalty())
expect_identical(vec_ptype(x), dials_global_empty_parameters)
expect_s3_class_parameters(vec_ptype(x))
})
test_that("vec_slice() generally returns a parameters", {
params <- list(penalty(), mixture())
x <- parameters(params)
expect_identical(vec_slice(x, 0), dials_global_empty_parameters)
expect_identical(vec_slice(x, 1), parameters(params[1]))
expect_s3_class_parameters(vec_slice(x, 0))
})
test_that("vec_slice() can return an bare tibble if `id` is duplicated", {
params <- list(penalty(), mixture())
x <- parameters(params)
expect_identical(vec_slice(x, c(1, 1)), vec_slice(tib_upcast(x), c(1, 1)))
expect_s3_class_bare_tibble(vec_slice(x, c(1, 1)))
})
test_that("vec_c() returns a parameters when all inputs are parameters unless `id` is duplicated", {
params <- list(penalty(), mixture())
x <- parameters(params[1])
y <- parameters(params[2])
tbl <- tib_upcast(x)
expect_identical(vec_c(x), x)
expect_identical(vec_c(x, x), vec_c(tbl, tbl))
expect_identical(vec_c(x, tbl), vec_c(tbl, tbl))
expect_identical(vec_c(x, y), parameters(params))
expect_identical(vec_c(y, x), parameters(params[2:1]))
})
test_that("vec_rbind() returns a parameters when all inputs are parameters unless `id` is duplicated", {
params <- list(penalty(), mixture())
x <- parameters(params[1])
y <- parameters(params[2])
tbl <- tib_upcast(x)
expect_identical(vec_rbind(x), x)
expect_identical(vec_rbind(x, x), vec_rbind(tbl, tbl))
expect_identical(vec_rbind(x, tbl), vec_rbind(tbl, tbl))
expect_identical(vec_rbind(tbl, x), vec_rbind(tbl, tbl))
expect_identical(vec_rbind(x, y), parameters(params))
expect_identical(vec_rbind(y, x), parameters(params[2:1]))
})
test_that("vec_cbind() returns a bare tibble", {
params <- list(penalty(), mixture())
x <- parameters(params[1])
y <- parameters(params[2])
tbl <- tib_upcast(x)
expect_identical(vec_cbind(x), vec_cbind(tbl))
expect_identical(
suppressMessages(vec_cbind(x, x)),
suppressMessages(vec_cbind(tbl, tbl))
)
expect_identical(
suppressMessages(vec_cbind(x, tbl)),
suppressMessages(vec_cbind(tbl, tbl))
)
expect_identical(
suppressMessages(vec_cbind(tbl, x)),
suppressMessages(vec_cbind(tbl, tbl))
)
}) |
test_that("Writing Python requirements works", {
temp_path <- tempdir(check = TRUE)
fs::dir_create(glue::glue("{temp_path}/.binder"))
z <- glue::glue("
numpy==1.16.*
matplotlib==3.*
seaborn==0.8.1")
holepunch::write_requirements(path = temp_path, requirements = z)
file_path <- glue::glue("{temp_path}/.binder/requirements.txt")
expect_true(fs::file_exists(file_path))
require_contents <- readLines(glue::glue("{temp_path}/.binder/requirements.txt"))
expect_identical(require_contents[1], "numpy==1.16.*")
expect_identical(require_contents[2], "matplotlib==3.*")
expect_identical(require_contents[3], "seaborn==0.8.1")
unlink(temp_path)
})
teardown(unlink("tests/testthat/dir_code/.binder")) |
searchSDF <- function(string, data, fileFormat = NULL, levels = FALSE) {
if (inherits(data, c("edsurvey.data.frame.list"))) {
call0 <- match.call()
resl <- lapply(data$data, function(li) {
call0$data <- li
tryCatch(eval(call0),
error = function(cond) {
message(paste("An error occurred while working on a dataset. Excluding results from this dataset."))
message(cond)
return(0)
},
warning = function(w) {
return(1)
})
})
res <- data.frame()
for(i in seq_along(resl)) {
ires <- resl[[i]]
covs <- data$covs
covn <- colnames(covs)
if(inherits(ires, "data.frame")) {
if(nrow(ires) > 0) {
newCol <- paste(covs[i,covn], collapse=";")
ires[,newCol] <- "*"
if(nrow(res) == 0) {
res <- ires
} else {
res <- merge(res, ires, all=TRUE)
}
}
}
}
res[is.na(res)] <- ""
return(res)
}
checkDataClass(data, c("edsurvey.data.frame", "light.edsurvey.data.frame", "edsurvey.data.frame.list"))
sdf <- data
data <- NULL
if (inherits(sdf, c("edsurvey.data.frame"))) {
dataList <- sdf$dataList
} else {
warning(paste0("Searched for string(s) ", paste(sQuote(string), collapse=", "),
" only in this light.edsurvey.data.frame. To search the full data set, change ",
paste0(sQuote("data")), " argument to the edsurvey.data.frame."))
dataList <- attributes(sdf)$dataList
}
if(is.null(fileFormat)) {
labelsFile <- do.call('rbind', lapply(dataList, function(dl){dl$fileFormat}))
if (!inherits(sdf, c("edsurvey.data.frame"))) {
labelsFile <- labelsFile[(toupper(labelsFile$variableName) %in% toupper(colnames(sdf))), ]
}
} else {
if(length(fileFormat) != 1) {
stop(paste0("The ", sQuote("fileFormat"), " argument must have exactly one level."))
}
fileFormat <- tolower(fileFormat)
if(!fileFormat %in% tolower(names(dataList))) {
stop(paste0("The ", sQuote("fileFormat"), " argument must either be one of ", paste(dQuote(names(dataList)), collapse=" or "),"."))
}
names(dataList) <- tolower(names(dataList))
labelsFile <- (dataList[[fileFormat]])$fileFormat
}
for(si in string) {
labelsFile <- labelsFile[grepl(si, labelsFile$variableName, ignore.case = TRUE) |
grepl(si, labelsFile$Labels, ignore.case = TRUE),]
}
if (is.data.frame(labelsFile) & nrow(labelsFile) == 0) {
strg <- ifelse(length(string) > 1, "strings", "string")
warning(paste0("There are no variables containing the ", strg, " ", pasteItems(sQuote(string)), " in this edsurvey.data.frame or light.edsurvey.data.frame."))
return(NULL)
}
labelsFile$variableName <- tolower(labelsFile$variableName)
labelsFile$Levels <- NA
if (levels == TRUE) {
if (length(string) == 1 && string == "") {
stop(paste0("The argument ", sQuote("string"), " must be nonempty to return variable levels."))
}
varsData <- labelsFile[, c("variableName", "Labels", "labelValues", "Levels")]
if ("light.edsurvey.data.frame" %in% class(sdf) == TRUE) {
varsData <- varsData[varsData$variableName %in% colnames(sdf), ]
}
varsData <- varsData[!duplicated(varsData$variableName),]
for (i in 1:length(varsData$variableName)) {
if (varsData$labelValues[[i]] != "") {
levelsInfo <- levelsSDF(varsData$variableName[[i]], sdf)[[varsData$variableName[[i]]]]
varLevels <- paste0(levelsInfo$level, ". ", levelsInfo$labels)
varLevelsSplit <- c()
for (ii in 1:length(varLevels)) {
x <- varLevels[[ii]]
varLevelsSplit <- c(varLevelsSplit, x)
}
varLevelsSplitPaste <- paste(varLevelsSplit, collapse = "; ")
varsData$Levels[[i]] <- varLevelsSplitPaste
} else {
varsData$Levels[[i]] <- paste0(NA)
}
}
varsData <- varsData[, c("variableName", "Labels", "Levels")]
class(varsData) <- c("searchSDF", "data.frame")
} else {
labelsFile$variableName <- tolower(labelsFile$variableName)
varsData <- labelsFile[, c("variableName", "Labels")]
varsData <- data.frame(varsData, stringsAsFactors = FALSE, row.names = NULL)
varsData <- varsData[!duplicated(varsData$variableName),]
}
varsData[] <- lapply(varsData, as.character)
return(varsData)
}
print.searchSDF <- function(x, ...) {
class(x) <- "data.frame"
cols <- colnames(x)
if ("Levels" %in% cols) {
x[] <- lapply(x, as.character)
for (i in 1:length(unique(x$variableName))) {
cat(paste("Variable: ", tolower(x[i, "variableName"]), "\n", sep = ""))
cat(paste("Label: ", x[i, "Labels"], "\n", sep = ""))
if (x$Levels[i] == "NA") {
cat(paste("\n", sep = ""))
} else {
cat(paste("Levels (Lowest level first):\n ", sep = ""))
labs <- lapply(x$Levels, strsplit, split = ";")
for (ii in 1:length(labs[[i]][[1]])) {
cat(paste(" ", labs[[i]][[1]][ii], "\n", sep = ""))
}
}
}
} else {
x[] <- lapply(x, as.character)
cat(paste(x))
}
} |
estimateNAH <- function(RT, CR=NULL) {
nt <- length(RT)
if ( is.null(CR) | length(CR) != nt ) {
CR <- rep(1, nt)
}
RTx <- sort(RT,index.return=TRUE)
RT <- RTx$x
CR <- as.logical(CR)[RTx$ix]
Y <- rep(NA, nt)
for (i in 1:nt ) { Y[i] <- sum(RT >= RT[i]) }
H <- stepfun( RT[CR], c(0,cumsum(1/Y[CR] )))
H.v<-stepfun( RT[CR], c(0,cumsum(1/Y[CR]^2)))
return(list(H=H, Var=H.v))
}
estimateNAK <- function(RT, CR=NULL) {
nt <- length(RT)
if ( is.null(CR) | length(CR) != nt ) {
CR <- rep(1, nt)
}
RTx <- sort(RT,index.return=TRUE)
RT <- RTx$x
CR <- as.logical(CR)[RTx$ix]
G <- rep(NA, nt)
for (i in 1:nt ) { G[i] <- sum(RT <= RT[i]) }
K <- stepfun( RT[CR], c(rev(- cumsum( rev(1/G[CR]) )),0), right=TRUE)
K.v<-stepfun( RT[CR], c(rev( cumsum( rev(1/G[CR]^2) )),0), right=TRUE)
return(list(K=K, Var=K.v))
}
estimateUCIPor <- function(RT, CR=NULL) {
allRT <- sort(c(RT, recursive=TRUE))
ncond <- length(RT)
nt <- length(allRT)
if ( is.null(CR) | length(CR) != length(RT) ){
CR <- vector("list", length(RT))
}
Hucip <- rep(0, nt)
Hucip.v <- rep(0, nt)
for ( i in 1:ncond ) {
Hi <- estimateNAH(RT[[i]], CR[[i]])
Hucip <- Hucip + Hi$H(allRT)
Hucip.v <- Hucip.v + Hi$Var(allRT)
}
Hucip <- stepfun(allRT, c(0, Hucip))
Hucip.v <- stepfun(allRT, c(0, Hucip.v))
return(list(H=Hucip, Var=Hucip.v))
}
estimateUCIPand <- function(RT, CR=NULL) {
allRT <- sort(c(RT, recursive=TRUE))
ncond <- length(RT)
nt <- length(allRT)
if ( is.null(CR) | length(CR) != length(RT) ) {
CR <- vector("list", length(RT))
}
Kucip <- rep(0, nt)
Kucip.v <- rep(0, nt)
for ( i in 1:ncond ) {
Ki <- estimateNAK(RT[[i]], CR[[i]])
Kucip <- Kucip + Ki$K(allRT)
Kucip.v <- Kucip.v + Ki$Var(allRT)
}
Kucip <- stepfun(allRT, c(Kucip,0),right=TRUE)
Kucip.v <- stepfun(allRT, c(Kucip.v,0),right=TRUE)
return(list(K=Kucip, Var=Kucip.v))
} |
"flist.data" <-
function ()
{
return(data(package = "bio.infer")$results[,3])
} |
test_that("Wide format", {
expect_equal(dim(pisaW), c(500, 37))
expect_equal(names(pisaW)[c(1, 2, 14, 26)], c("ID", "y_1", "RT_1", "log_RT_1"))
})
test_that("Long format", {
expect_equal(dim(pisaL), c(6000, 5))
expect_equal(names(pisaL), c("ID", "item", "y", "RT", "log_RT"))
})
test_that("Only positive response times", {
expect_true(all(pisaL$RT > 0))
expect_true(all(unlist(pisaW[, paste0("RT_", 1:12)]) > 0))
})
test_that("Only 0 or 1 in responses", {
expect_true(all(pisaL$y %in% 0:1))
expect_true(all(unlist(pisaW[, paste0("y_", 1:12)]) %in% 0:1))
})
test_that("Log response times in reasonable range", {
expect_true(all(pisaL$log_RT > -1))
expect_true(all(pisaL$log_RT < 8))
expect_true(all(unlist(pisaW[, paste0("log_RT_", 1:12)]) > -1))
expect_true(all(unlist(pisaW[, paste0("log_RT_", 1:12)]) < 8))
}) |
subsetPointsByGrid <- function(X, Y, resolution=200, grouping=NULL) {
if (length(X)!=length(Y)) {
stop("'X' and 'Y' must be of the same length")
}
if (!is.null(grouping)) {
grouping <- as.character(grouping)
if (length(grouping)!=length(X)) {
stop("'X' and 'grouping' must be of the same length")
}
ugroups <- unique(grouping)
ugroups <- ugroups[!is.na(ugroups)]
if (length(resolution)==1L) {
resolution <- rep(resolution, length.out=length(ugroups))
names(resolution) <- ugroups
}
if (!all(ugroups %in% names(resolution))) {
stop("a 'resolution' vector must be named with all levels in 'grouping'")
}
output <- logical(length(X))
for (g in ugroups) {
current <- grouping==g & !is.na(grouping)
output[current] <- subsetPointsByGrid(X[current], Y[current], resolution=resolution[[g]])
}
return(output)
}
resolution <- max(resolution, 1L)
resolution <- min(resolution, sqrt(.Machine$integer.max))
resolution <- as.integer(resolution)
rangeX <- range(X)
rangeY <- range(Y)
binX <- (rangeX[2] - rangeX[1])/resolution
xid <- (X - rangeX[1])/binX
xid <- as.integer(xid)
binY <- (rangeY[2] - rangeY[1])/resolution
yid <- (Y - rangeY[1])/binY
yid <- as.integer(yid)
id <- DataFrame(X=xid, Y=yid)
!duplicated(id, fromLast=TRUE)
} |
Heatmap = setClass("Heatmap",
slots = list(
name = "character",
matrix = "matrix",
matrix_param = "list",
matrix_color_mapping = "ANY",
matrix_legend_param = "ANY",
row_title = "ANY",
row_title_param = "list",
column_title = "ANY",
column_title_param = "list",
row_dend_list = "list",
row_dend_slice = "ANY",
row_dend_param = "list",
row_order_list = "list",
row_order = "numeric",
column_dend_list = "list",
column_dend_slice = "ANY",
column_dend_param = "list",
column_order_list = "list",
column_order = "numeric",
row_names_param = "list",
column_names_param = "list",
top_annotation = "ANY",
top_annotation_param = "list",
bottom_annotation = "ANY",
bottom_annotation_param = "list",
left_annotation = "ANY",
left_annotation_param = "list",
right_annotation = "ANY",
right_annotation_param = "list",
heatmap_param = "list",
layout = "list"
),
contains = "AdditiveUnit"
)
Heatmap = function(matrix, col, name,
na_col = "grey",
color_space = "LAB",
rect_gp = gpar(col = NA),
border = NA,
border_gp = gpar(col = "black"),
cell_fun = NULL,
layer_fun = NULL,
jitter = FALSE,
row_title = character(0),
row_title_side = c("left", "right"),
row_title_gp = gpar(fontsize = 13.2),
row_title_rot = switch(row_title_side[1], "left" = 90, "right" = 270),
column_title = character(0),
column_title_side = c("top", "bottom"),
column_title_gp = gpar(fontsize = 13.2),
column_title_rot = 0,
cluster_rows = TRUE,
cluster_row_slices = TRUE,
clustering_distance_rows = "euclidean",
clustering_method_rows = "complete",
row_dend_side = c("left", "right"),
row_dend_width = unit(10, "mm"),
show_row_dend = TRUE,
row_dend_reorder = is.logical(cluster_rows) || is.function(cluster_rows),
row_dend_gp = gpar(),
cluster_columns = TRUE,
cluster_column_slices = TRUE,
clustering_distance_columns = "euclidean",
clustering_method_columns = "complete",
column_dend_side = c("top", "bottom"),
column_dend_height = unit(10, "mm"),
show_column_dend = TRUE,
column_dend_gp = gpar(),
column_dend_reorder = is.logical(cluster_columns) || is.function(cluster_columns),
row_order = NULL,
column_order = NULL,
row_labels = rownames(matrix),
row_names_side = c("right", "left"),
show_row_names = TRUE,
row_names_max_width = unit(6, "cm"),
row_names_gp = gpar(fontsize = 12),
row_names_rot = 0,
row_names_centered = FALSE,
column_labels = colnames(matrix),
column_names_side = c("bottom", "top"),
show_column_names = TRUE,
column_names_max_height = unit(6, "cm"),
column_names_gp = gpar(fontsize = 12),
column_names_rot = 90,
column_names_centered = FALSE,
top_annotation = NULL,
bottom_annotation = NULL,
left_annotation = NULL,
right_annotation = NULL,
km = 1,
split = NULL,
row_km = km,
row_km_repeats = 1,
row_split = split,
column_km = 1,
column_km_repeats = 1,
column_split = NULL,
gap = unit(1, "mm"),
row_gap = unit(1, "mm"),
column_gap = unit(1, "mm"),
show_parent_dend_line = ht_opt$show_parent_dend_line,
heatmap_width = unit(1, "npc"),
width = NULL,
heatmap_height = unit(1, "npc"),
height = NULL,
show_heatmap_legend = TRUE,
heatmap_legend_param = list(title = name),
use_raster = NULL,
raster_device = c("png", "jpeg", "tiff", "CairoPNG", "CairoJPEG", "CairoTIFF", "agg_png"),
raster_quality = 1,
raster_device_param = list(),
raster_resize_mat = FALSE,
raster_by_magick = requireNamespace("magick", quietly = TRUE),
raster_magick_filter = NULL,
post_fun = NULL) {
dev.null()
on.exit(dev.off2())
verbose = ht_opt("verbose")
.Object = new("Heatmap")
if(missing(name)) {
name = paste0("matrix_", get_heatmap_index() + 1)
increase_heatmap_index()
} else if(is.null(name)) {
name = paste0("matrix_", get_heatmap_index() + 1)
increase_heatmap_index()
}
if(name == "") {
stop_wrap("Heatmap name cannot be empty string.")
}
.Object@name = name
called_args = names(as.list(match.call())[-1])
for(opt_name in c("row_names_gp", "column_names_gp", "row_title_gp", "column_title_gp")) {
opt_name2 = paste0("heatmap_", opt_name)
if(! opt_name %in% called_args) {
if(!is.null(ht_opt(opt_name2))) {
if(verbose) qqcat("re-assign @{opt_name} with `ht_opt('@{opt_name2}'')`\n")
assign(opt_name, ht_opt(opt_name2))
}
}
}
if("top_annotation_height" %in% called_args) {
stop_wrap("`top_annotation_height` is removed. Set the height directly in `HeatmapAnnotation()`.")
}
if("bottom_annotation_height" %in% called_args) {
stop_wrap("`bottom_annotation_height` is removed. Set the height directly in `HeatmapAnnotation()`.")
}
if("combined_name_fun" %in% called_args) {
stop_wrap("`combined_name_fun` is removed. Please directly set `row_names_title`. See https://jokergoo.github.io/ComplexHeatmap-reference/book/a-single-heatmap.html
}
if("heatmap_legend_param" %in% called_args) {
for(opt_name in setdiff(c("title_gp", "title_position", "labels_gp", "grid_width", "grid_height", "border"), names(heatmap_legend_param))) {
opt_name2 = paste0("legend_", opt_name)
if(!is.null(ht_opt(opt_name2)))
if(verbose) qqcat("re-assign heatmap_legend_param$@{opt_name} with `ht_opt('@{opt_name2}'')`\n")
heatmap_legend_param[[opt_name]] = ht_opt(opt_name2)
}
} else {
for(opt_name in c("title_gp", "title_position", "labels_gp", "grid_width", "grid_height", "border")) {
opt_name2 = paste0("legend_", opt_name)
if(!is.null(ht_opt(opt_name2)))
if(verbose) qqcat("re-assign heatmap_legend_param$@{opt_name} with `ht_opt('@{opt_name2}'')`\n")
heatmap_legend_param[[opt_name]] = ht_opt(opt_name2)
}
}
if(is.data.frame(matrix)) {
if(verbose) qqcat("convert data frame to matrix\n")
warning_wrap("The input is a data frame-like object, convert it to a matrix.")
if(!all(sapply(matrix, is.numeric))) {
warning_wrap("Note: not all columns in the data frame are numeric. The data frame will be converted into a character matrix.")
}
matrix = as.matrix(matrix)
}
fa_level = NULL
if(!is.matrix(matrix)) {
if(is.atomic(matrix)) {
if(is.factor(matrix)) {
fa_level = levels(matrix)
}
rn = names(matrix)
matrix = matrix(matrix, ncol = 1)
if(!is.null(rn)) rownames(matrix) = rn
if(!missing(name)) colnames(matrix) = name
if(verbose) qqcat("convert simple vector to one-column matrix\n")
} else {
stop_wrap("If input is not a matrix, it should be a simple vector.")
}
}
if(missing(row_km)) row_km = km
if(is.null(row_km)) row_km = 1
if(missing(row_split)) row_split = split
if(missing(row_gap)) row_gap = gap
if(is.null(column_km)) column_km = 1
if(ncol(matrix) == 0 || nrow(matrix) == 0) {
if(!inherits(cluster_columns, c("dendrogram", "hclust"))) {
cluster_columns = FALSE
show_column_dend = FALSE
}
if(!inherits(cluster_rows, c("dendrogram", "hclust"))) {
cluster_rows = FALSE
show_row_dend = FALSE
}
row_km = 1
column_km = 1
if(verbose) qqcat("zero row/column matrix, set cluster_columns/rows to FALSE\n")
}
if(ncol(matrix) == 1) {
if(!inherits(cluster_columns, c("dendrogram", "hclust"))) {
cluster_columns = FALSE
show_column_dend = FALSE
}
column_km = 1
if(verbose) qqcat("one-column matrix, set cluster_columns to FALSE\n")
}
if(nrow(matrix) == 1) {
if(!inherits(cluster_rows, c("dendrogram", "hclust"))) {
cluster_rows = FALSE
show_row_dend = FALSE
}
row_km = 1
if(verbose) qqcat("one-row matrix, set cluster_rows to FALSE\n")
}
if(is.character(matrix)) {
called_args = names(match.call()[-1])
if("clustering_distance_rows" %in% called_args) {
} else if(inherits(cluster_rows, c("dendrogram", "hclust"))) {
} else {
cluster_rows = FALSE
show_row_dend = FALSE
}
row_dend_reorder = FALSE
cluster_row_slices = FALSE
if(inherits(cluster_rows, c("dendrogram", "hclust")) && length(row_split) == 1) {
if(!"cluster_row_slices" %in% called_args) {
cluster_row_slices = TRUE
}
}
if("clustering_distance_columns" %in% called_args) {
} else if(inherits(cluster_columns, c("dendrogram", "hclust"))) {
} else {
cluster_columns = FALSE
show_column_dend = FALSE
}
column_dend_reorder = FALSE
cluster_column_slices = FALSE
if(inherits(cluster_columns, c("dendrogram", "hclust")) && length(column_split) == 1) {
if(!"cluster_column_slices" %in% called_args) {
cluster_column_slices = TRUE
}
}
row_km = 1
column_km = 1
if(verbose) qqcat("matrix is character. Do not cluster unless distance method is provided.\n")
}
class(matrix) = "matrix"
.Object@matrix = matrix
.Object@matrix_param$row_km = row_km
.Object@matrix_param$row_km_repeats = row_km_repeats
.Object@matrix_param$row_gap = row_gap
.Object@matrix_param$column_km = column_km
.Object@matrix_param$column_km_repeats = column_km_repeats
.Object@matrix_param$column_gap = column_gap
.Object@matrix_param$jitter = jitter
if(!is.null(row_split)) {
if(inherits(cluster_rows, c("dendrogram", "hclust"))) {
if(is.numeric(row_split) && length(row_split) == 1) {
.Object@matrix_param$row_split = row_split
} else {
stop_wrap("When `cluster_rows` is a dendrogram, `row_split` can only be a single number.")
}
} else {
if(identical(cluster_rows, TRUE) && is.numeric(row_split) && length(row_split) == 1) {
} else {
if(!is.data.frame(row_split)) row_split = data.frame(row_split)
if(nrow(row_split) != nrow(matrix)) {
stop_wrap("Length or nrow of `row_split` should be same as nrow of `matrix`.")
}
}
}
}
.Object@matrix_param$row_split = row_split
if(!is.null(column_split)) {
if(inherits(cluster_columns, c("dendrogram", "hclust"))) {
if(is.numeric(column_split) && length(column_split) == 1) {
.Object@matrix_param$column_split = column_split
} else {
stop_wrap("When `cluster_columns` is a dendrogram, `column_split` can only be a single number.")
}
} else {
if(identical(cluster_columns, TRUE) && is.numeric(column_split) && length(column_split) == 1) {
} else {
if(!is.data.frame(column_split)) column_split = data.frame(column_split)
if(nrow(column_split) != ncol(matrix)) {
stop_wrap("Length or ncol of `column_split` should be same as ncol of `matrix`.")
}
}
}
}
.Object@matrix_param$column_split = column_split
.Object@matrix_param$gp = check_gp(rect_gp)
if(missing(border)) {
if(!is.null(ht_opt$heatmap_border)) border = ht_opt$heatmap_border
}
if(!missing(border_gp) && missing(border)) border = TRUE
.Object@matrix_param$border = border
.Object@matrix_param$border_gp = border_gp
.Object@matrix_param$cell_fun = cell_fun
.Object@matrix_param$layer_fun = layer_fun
if(nrow(matrix) > 100 || ncol(matrix) > 100) {
if(!is.null(cell_fun)) {
warning_wrap("You defined `cell_fun` for a heatmap with more than 100 rows or columns, which might be very slow to draw. Consider to use the vectorized version `layer_fun`.")
}
}
if(ncol(matrix) > 0 && nrow(matrix) > 0) {
if(missing(col)) {
col = default_col(matrix, main_matrix = TRUE)
if(!is.null(fa_level)) {
col = col[fa_level]
}
if(verbose) qqcat("color is not specified, use randomly generated colors\n")
}
if(is.null(col)) {
col = default_col(matrix, main_matrix = TRUE)
if(!is.null(fa_level)) {
col = col[fa_level]
}
if(verbose) qqcat("color is not specified, use randomly generated colors\n")
}
if(is.function(col)) {
.Object@matrix_color_mapping = ColorMapping(col_fun = col, name = name, na_col = na_col)
if(verbose) qqcat("input color is a color mapping function\n")
} else if(inherits(col, "ColorMapping")){
.Object@matrix_color_mapping = col
if(verbose) qqcat("input color is a ColorMapping object\n")
} else {
if(is.null(names(col))) {
if(length(col) == length(unique(as.vector(matrix)))) {
if(is.null(fa_level)) {
if(is.numeric(matrix)) {
names(col) = sort(unique(as.vector(matrix)))
col = rev(col)
} else {
names(col) = sort(unique(as.vector(matrix)))
}
} else {
names(col) = fa_level
}
.Object@matrix_color_mapping = ColorMapping(colors = col, name = name, na_col = na_col)
if(verbose) qqcat("input color is a vector with no names, treat it as discrete color mapping\n")
} else if(is.numeric(matrix)) {
col = colorRamp2(seq(min(matrix, na.rm = TRUE), max(matrix, na.rm = TRUE), length.out = length(col)),
col, space = color_space)
.Object@matrix_color_mapping = ColorMapping(col_fun = col, name = name, na_col = na_col)
if(verbose) qqcat("input color is a vector with no names, treat it as continuous color mapping\n")
} else {
stop_wrap("`col` should have names to map to values in `mat`.")
}
} else {
full_col = col
if(is.null(fa_level)) {
col = col[intersect(c(names(col), "_NA_"), as.character(matrix))]
} else {
col = col[intersect(c(fa_level, "_NA_"), names(col))]
}
.Object@matrix_color_mapping = ColorMapping(colors = col, name = name, na_col = na_col, full_col = full_col)
if(verbose) qqcat("input color is a named vector\n")
}
}
.Object@matrix_legend_param = heatmap_legend_param
}
if(identical(row_title, NA) || identical(row_title, "")) {
row_title = character(0)
}
.Object@row_title = row_title
.Object@row_title_param$rot = row_title_rot %% 360
.Object@row_title_param$side = match.arg(row_title_side)[1]
.Object@row_title_param$gp = check_gp(row_title_gp)
.Object@row_title_param$just = get_text_just(rot = row_title_rot, side = .Object@row_title_param$side)
if(identical(column_title, NA) || identical(column_title, "")) {
column_title = character(0)
}
.Object@column_title = column_title
.Object@column_title_param$rot = column_title_rot %% 360
.Object@column_title_param$side = match.arg(column_title_side)[1]
.Object@column_title_param$gp = check_gp(column_title_gp)
.Object@column_title_param$just = get_text_just(rot = column_title_rot, side = .Object@column_title_param$side)
if(is.null(rownames(matrix))) {
if(is.null(row_labels)) {
show_row_names = FALSE
}
}
.Object@row_names_param$labels = row_labels
.Object@row_names_param$side = match.arg(row_names_side)[1]
.Object@row_names_param$show = show_row_names
.Object@row_names_param$gp = check_gp(row_names_gp)
.Object@row_names_param$rot = row_names_rot
.Object@row_names_param$centered = row_names_centered
.Object@row_names_param$max_width = row_names_max_width + unit(2, "mm")
if(show_row_names) {
if(length(row_labels) != nrow(matrix)) {
stop_wrap("Length of `row_labels` should be the same as the nrow of matrix.")
}
if(row_names_centered) {
row_names_anno = anno_text(row_labels, which = "row", gp = row_names_gp, rot = row_names_rot,
location = 0.5,
just = "center")
} else {
row_names_anno = anno_text(row_labels, which = "row", gp = row_names_gp, rot = row_names_rot,
location = ifelse(.Object@row_names_param$side == "left", 1, 0),
just = ifelse(.Object@row_names_param$side == "left", "right", "left"))
}
.Object@row_names_param$anno = row_names_anno
}
if(is.null(colnames(matrix))) {
if(is.null(column_labels)) {
show_column_names = FALSE
}
}
.Object@column_names_param$labels = column_labels
.Object@column_names_param$side = match.arg(column_names_side)[1]
.Object@column_names_param$show = show_column_names
.Object@column_names_param$gp = check_gp(column_names_gp)
.Object@column_names_param$rot = column_names_rot
.Object@column_names_param$centered = column_names_centered
.Object@column_names_param$max_height = column_names_max_height + unit(2, "mm")
if(show_column_names) {
if(length(column_labels) != ncol(matrix)) {
stop_wrap("Length of `column_labels` should be the same as the ncol of matrix.")
}
if(column_names_centered) {
column_names_anno = anno_text(column_labels, which = "column", gp = column_names_gp, rot = column_names_rot,
location = 0.5,
just = "center")
} else {
column_names_anno = anno_text(column_labels, which = "column", gp = column_names_gp, rot = column_names_rot,
location = ifelse(.Object@column_names_param$side == "top", 0, 1),
just = ifelse(.Object@column_names_param$side == "top",
ifelse(.Object@column_names_param$rot >= 0, "left", "right"),
ifelse(.Object@column_names_param$rot >= 0, "right", "left")
))
}
.Object@column_names_param$anno = column_names_anno
}
if(missing(cluster_rows) && !missing(row_order)) {
cluster_rows = FALSE
}
if(is.logical(cluster_rows)) {
if(!cluster_rows) {
row_dend_width = unit(0, "mm")
show_row_dend = FALSE
}
.Object@row_dend_param$cluster = cluster_rows
} else if(inherits(cluster_rows, "dendrogram") || inherits(cluster_rows, "hclust")) {
.Object@row_dend_param$obj = cluster_rows
.Object@row_dend_param$cluster = TRUE
} else if(inherits(cluster_rows, "function")) {
.Object@row_dend_param$fun = cluster_rows
.Object@row_dend_param$cluster = TRUE
} else {
oe = try(cluster_rows <- as.dendrogram(cluster_rows), silent = TRUE)
if(!inherits(oe, "try-error")) {
.Object@row_dend_param$obj = cluster_rows
.Object@row_dend_param$cluster = TRUE
} else {
stop_wrap("`cluster_rows` should be a logical value, a clustering function or a clustering object.")
}
}
if(!show_row_dend) {
row_dend_width = unit(0, "mm")
}
.Object@row_dend_list = list()
.Object@row_dend_param$distance = clustering_distance_rows
.Object@row_dend_param$method = clustering_method_rows
.Object@row_dend_param$side = match.arg(row_dend_side)[1]
.Object@row_dend_param$width = row_dend_width + ht_opt$DENDROGRAM_PADDING
.Object@row_dend_param$show = show_row_dend
.Object@row_dend_param$gp = check_gp(row_dend_gp)
.Object@row_dend_param$reorder = row_dend_reorder
.Object@row_order_list = list()
if(is.null(row_order)) {
.Object@row_order = seq_len(nrow(matrix))
} else {
if(is.character(row_order)) {
row_order = structure(seq_len(nrow(matrix)), names = rownames(matrix))[row_order]
}
if(any(is.na(row_order))) {
stop_wrap("`row_order` should not contain NA values.")
}
if(length(row_order) != nrow(matrix)) {
stop_wrap("length of `row_order` should be same as the number of marix rows.")
}
.Object@row_order = row_order
}
.Object@row_dend_param$cluster_slices = cluster_row_slices
if(missing(cluster_columns) && !missing(column_order)) {
cluster_columns = FALSE
}
if(is.logical(cluster_columns)) {
if(!cluster_columns) {
column_dend_height = unit(0, "mm")
show_column_dend = FALSE
}
.Object@column_dend_param$cluster = cluster_columns
} else if(inherits(cluster_columns, "dendrogram") || inherits(cluster_columns, "hclust")) {
.Object@column_dend_param$obj = cluster_columns
.Object@column_dend_param$cluster = TRUE
} else if(inherits(cluster_columns, "function")) {
.Object@column_dend_param$fun = cluster_columns
.Object@column_dend_param$cluster = TRUE
} else {
oe = try(cluster_columns <- as.dendrogram(cluster_columns), silent = TRUE)
if(!inherits(oe, "try-error")) {
.Object@column_dend_param$obj = cluster_columns
.Object@column_dend_param$cluster = TRUE
} else {
stop_wrap("`cluster_columns` should be a logical value, a clustering function or a clustering object.")
}
}
if(!show_column_dend) {
column_dend_height = unit(0, "mm")
}
.Object@column_dend_list = list()
.Object@column_dend_param$distance = clustering_distance_columns
.Object@column_dend_param$method = clustering_method_columns
.Object@column_dend_param$side = match.arg(column_dend_side)[1]
.Object@column_dend_param$height = column_dend_height + ht_opt$DENDROGRAM_PADDING
.Object@column_dend_param$show = show_column_dend
.Object@column_dend_param$gp = check_gp(column_dend_gp)
.Object@column_dend_param$reorder = column_dend_reorder
if(is.null(column_order)) {
.Object@column_order = seq_len(ncol(matrix))
} else {
if(is.character(column_order)) {
column_order = structure(seq_len(ncol(matrix)), names = colnames(matrix))[column_order]
}
if(any(is.na(column_order))) {
stop_wrap("`column_order` should not contain NA values.")
}
if(length(column_order) != ncol(matrix)) {
stop_wrap("length of `column_order` should be same as the number of marix columns")
}
.Object@column_order = column_order
}
.Object@column_dend_param$cluster_slices = cluster_column_slices
.Object@top_annotation = top_annotation
if(is.null(top_annotation)) {
.Object@top_annotation_param$height = unit(0, "mm")
} else {
if(inherits(top_annotation, "AnnotationFunction")) {
stop_wrap("The annotation function `anno_*()` should be put inside `HeatmapAnnotation()`.")
}
.Object@top_annotation_param$height = height(top_annotation) + ht_opt$COLUMN_ANNO_PADDING
}
if(!is.null(top_annotation)) {
if(length(top_annotation) > 0) {
if(!.Object@top_annotation@which == "column") {
stop_wrap("`which` in `top_annotation` should only be `column`.")
}
}
nb = nobs(top_annotation)
if(!is.na(nb)) {
if(nb != ncol(.Object@matrix)) {
stop_wrap("number of observations in top annotation should be as same as ncol of the matrix.")
}
}
}
if(!is.null(top_annotation)) {
validate_anno_names_with_matrix(matrix, top_annotation, "column")
}
.Object@bottom_annotation = bottom_annotation
if(is.null(bottom_annotation)) {
.Object@bottom_annotation_param$height = unit(0, "mm")
} else {
if(inherits(bottom_annotation, "AnnotationFunction")) {
stop_wrap("The annotation function `anno_*()` should be put inside `HeatmapAnnotation()`.")
}
.Object@bottom_annotation_param$height = height(bottom_annotation) + ht_opt$COLUMN_ANNO_PADDING
}
if(!is.null(bottom_annotation)) {
if(length(bottom_annotation) > 0) {
if(!.Object@bottom_annotation@which == "column") {
stop_wrap("`which` in `bottom_annotation` should only be `column`.")
}
}
nb = nobs(bottom_annotation)
if(!is.na(nb)) {
if(nb != ncol(.Object@matrix)) {
stop_wrap("number of observations in bottom annotation should be as same as ncol of the matrix.")
}
}
}
if(!is.null(bottom_annotation)) {
validate_anno_names_with_matrix(matrix, bottom_annotation, "column")
}
.Object@left_annotation = left_annotation
if(is.null(left_annotation)) {
.Object@left_annotation_param$width = unit(0, "mm")
} else {
if(inherits(left_annotation, "AnnotationFunction")) {
stop_wrap("The annotation function `anno_*()` should be put inside `rowAnnotation()`.")
}
.Object@left_annotation_param$width = width(left_annotation) + ht_opt$ROW_ANNO_PADDING
}
if(!is.null(left_annotation)) {
if(length(left_annotation) > 0) {
if(!.Object@left_annotation@which == "row") {
stop_wrap("`which` in `left_annotation` should only be `row`, or consider using `rowAnnotation()`.")
}
}
nb = nobs(left_annotation)
if(!is.na(nb)) {
if(nb != nrow(.Object@matrix)) {
stop_wrap("number of observations in left annotation should be same as nrow of the matrix.")
}
}
}
if(!is.null(left_annotation)) {
validate_anno_names_with_matrix(matrix, left_annotation, "row")
}
.Object@right_annotation = right_annotation
if(is.null(right_annotation)) {
.Object@right_annotation_param$width = unit(0, "mm")
} else {
if(inherits(right_annotation, "AnnotationFunction")) {
stop_wrap("The annotation function `anno_*()` should be put inside `rowAnnotation()`.")
}
.Object@right_annotation_param$width = width(right_annotation) + ht_opt$ROW_ANNO_PADDING
}
if(!is.null(right_annotation)) {
if(length(right_annotation) > 0) {
if(!.Object@right_annotation@which == "row") {
stop_wrap("`which` in `right_annotation` should only be `row`, or consider using `rowAnnotation()`.")
}
}
nb = nobs(right_annotation)
if(!is.na(nb)) {
if(nb != nrow(.Object@matrix)) {
stop_wrap("number of observations in right annotation should be same as nrow of the matrix.")
}
}
}
if(!is.null(right_annotation)) {
validate_anno_names_with_matrix(matrix, right_annotation, "row")
}
.Object@layout = list(
layout_size = list(
column_title_top_height = unit(0, "mm"),
column_dend_top_height = unit(0, "mm"),
column_anno_top_height = unit(0, "mm"),
column_names_top_height = unit(0, "mm"),
column_title_bottom_height = unit(0, "mm"),
column_dend_bottom_height = unit(0, "mm"),
column_anno_bottom_height = unit(0, "mm"),
column_names_bottom_height = unit(0, "mm"),
row_title_left_width = unit(0, "mm"),
row_dend_left_width = unit(0, "mm"),
row_names_left_width = unit(0, "mm"),
row_dend_right_width = unit(0, "mm"),
row_names_right_width = unit(0, "mm"),
row_title_right_width = unit(0, "mm"),
row_anno_left_width = unit(0, "mm"),
row_anno_right_width = unit(0, "mm")
),
layout_index = matrix(nrow = 0, ncol = 2),
graphic_fun_list = list(),
initialized = FALSE
)
if(is.null(width)) {
width = unit(ncol(matrix), "null")
} else if(is.numeric(width) && !inherits(width, "unit")) {
width = unit(width, "null")
} else if(!inherits(width, "unit")) {
stop_wrap("`width` should be a `unit` object or a single number.")
}
if(is.null(height)) {
height = unit(nrow(matrix), "null")
} else if(is.numeric(height) && !inherits(height, "unit")) {
height = unit(height, "null")
} else if(!inherits(height, "unit")) {
stop_wrap("`height` should be a `unit` object or a single number.")
}
if(!is.null(width) && !is.null(heatmap_width)) {
if(is_abs_unit(width) && is_abs_unit(heatmap_width)) {
stop_wrap("`heatmap_width` and `width` should not all be the absolute units.")
}
}
if(!is.null(height) && !is.null(heatmap_height)) {
if(is_abs_unit(height) && is_abs_unit(heatmap_height)) {
stop_wrap("`heatmap_height` and `height` should not all be the absolute units.")
}
}
if(is.null(use_raster)) {
if(nrow(matrix) > 2000 && ncol(matrix) > 10) {
use_raster = TRUE
if(ht_opt$message) {
message_wrap("`use_raster` is automatically set to TRUE for a matrix with more than 2000 rows. You can control `use_raster` argument by explicitly setting TRUE/FALSE to it.\n\nSet `ht_opt$message = FALSE` to turn off this message.")
}
} else if(ncol(matrix) > 2000 && nrow(matrix) > 10) {
use_raster = TRUE
if(ht_opt$message) {
message_wrap("`use_raster` is automatically set to TRUE for a matrix with more than 2000 columns You can control `use_raster` argument by explicitly setting TRUE/FALSE to it.\n\nSet `ht_opt$message = FALSE` to turn off this message.")
}
} else {
use_raster = FALSE
}
}
if(use_raster) {
if(missing(raster_by_magick)) {
if(!raster_by_magick) {
if(ht_opt$message) {
message_wrap("'magick' package is suggested to install to give better rasterization.\n\nSet `ht_opt$message = FALSE` to turn off this message.")
}
}
}
}
.Object@matrix_param$width = width
.Object@matrix_param$height = height
.Object@heatmap_param$width = heatmap_width
.Object@heatmap_param$height = heatmap_height
.Object@heatmap_param$show_heatmap_legend = show_heatmap_legend
.Object@heatmap_param$use_raster = use_raster
if(missing(raster_device)) {
if(requireNamespace("Cairo", quietly = TRUE)) {
raster_device = "CairoPNG"
} else {
raster_device = "png"
}
} else {
raster_device = match.arg(raster_device)[1]
}
.Object@heatmap_param$raster_device = raster_device
.Object@heatmap_param$raster_quality = raster_quality
.Object@heatmap_param$raster_device_param = raster_device_param
.Object@heatmap_param$raster_resize_mat = raster_resize_mat
.Object@heatmap_param$raster_by_magick = raster_by_magick
.Object@heatmap_param$raster_magick_filter = raster_magick_filter
.Object@heatmap_param$verbose = verbose
.Object@heatmap_param$post_fun = post_fun
.Object@heatmap_param$calling_env = parent.frame()
.Object@heatmap_param$show_parent_dend_line = show_parent_dend_line
if(nrow(matrix) == 0) {
.Object@matrix_param$height = unit(0, "mm")
}
if(ncol(matrix) == 0) {
.Object@matrix_param$width = unit(0, "mm")
}
return(.Object)
}
setMethod(f = "make_row_cluster",
signature = "Heatmap",
definition = function(object) {
object = make_cluster(object, "row")
if(length(object@row_title) > 1) {
if(length(object@row_title) != length(object@row_order_list)) {
stop_wrap("If `row_title` is set with length > 1, the length should be as same as the number of row slices.")
}
}
return(object)
})
setMethod(f = "make_column_cluster",
signature = "Heatmap",
definition = function(object) {
object = make_cluster(object, "column")
if(length(object@column_title) > 1) {
if(length(object@column_title) != length(object@column_order_list)) {
stop_wrap("If `column_title` is set with length > 1, the length should be as same as the number of column slices.")
}
}
return(object)
})
make_cluster = function(object, which = c("row", "column")) {
which = match.arg(which)[1]
verbose = object@heatmap_param$verbose
if(ht_opt("fast_hclust")) {
hclust = fastcluster::hclust
if(verbose) qqcat("apply hclust by fastcluster::hclust\n")
} else {
hclust = stats::hclust
}
mat = object@matrix
jitter = object@matrix_param$jitter
if(is.numeric(mat)) {
if(is.logical(jitter)) {
if(jitter) {
mat = mat + runif(length(mat), min = 0, max = 1e-10)
}
} else {
mat = mat + runif(length(mat), min = 0, max = jitter + 0)
}
}
distance = slot(object, paste0(which, "_dend_param"))$distance
method = slot(object, paste0(which, "_dend_param"))$method
order = slot(object, paste0(which, "_order"))
km = getElement(object@matrix_param, paste0(which, "_km"))
km_repeats = getElement(object@matrix_param, paste0(which, "_km_repeats"))
split = getElement(object@matrix_param, paste0(which, "_split"))
reorder = slot(object, paste0(which, "_dend_param"))$reorder
cluster = slot(object, paste0(which, "_dend_param"))$cluster
cluster_slices = slot(object, paste0(which, "_dend_param"))$cluster_slices
gap = getElement(object@matrix_param, paste0(which, "_gap"))
dend_param = slot(object, paste0(which, "_dend_param"))
dend_list = slot(object, paste0(which, "_dend_list"))
dend_slice = slot(object, paste0(which, "_dend_slice"))
order_list = slot(object, paste0(which, "_order_list"))
order = slot(object, paste0(which, "_order"))
names_param = slot(object, paste0(which, "_names_param"))
dend_param$split_by_cutree = FALSE
if(!is.null(dend_param$obj)) {
if(inherits(dend_param$obj, "hclust")) {
ncl = length(dend_param$obj$order)
} else {
ncl = nobs(dend_param$obj)
}
if(which == "row") {
if(ncl != nrow(mat)) {
stop_wrap("The length of the row clustering object is not the same as the number of matrix rows.")
}
} else {
if(ncl != ncol(mat)) {
stop_wrap("The length of the column clustering object is not the same as the number of matrix columns")
}
}
}
if(cluster) {
if(is.numeric(split) && length(split) == 1) {
if(is.null(dend_param$obj)) {
if(verbose) qqcat("split @{which}s by cutree, apply hclust on the entire @{which}s\n")
if(which == "row") {
dend_param$obj = hclust(get_dist(mat, distance), method = method)
} else {
dend_param$obj = hclust(get_dist(t(mat), distance), method = method)
}
}
}
if(!is.null(dend_param$obj)) {
if(km > 1) {
stop_wrap("You can not perform k-means clustering since you have already specified a clustering object.")
}
if(inherits(dend_param$obj, "hclust")) {
dend_param$obj = as.dendrogram(dend_param$obj)
if(verbose) qqcat("convert hclust object to dendrogram object\n")
}
if(is.null(split)) {
dend_list = list(dend_param$obj)
order_list = list(get_dend_order(dend_param$obj))
if(verbose) qqcat("since you provided a clustering object and @{which}_split is null, the entrie clustering object is taken as an one-element list.\n")
} else {
if(length(split) > 1 || !is.numeric(split)) {
stop_wrap(qq("Since you specified a clustering object, you can only split @{which}s by providing a number (number of @{which} slices)."))
}
if(split < 2) {
stop_wrap(qq("`@{which}_split` should be >= 2."))
}
dend_param$split_by_cutree = TRUE
ct = cut_dendrogram(dend_param$obj, split)
dend_list = ct$lower
dend_slice = ct$upper
sth = tapply(order.dendrogram(dend_param$obj),
rep(seq_along(dend_list), times = sapply(dend_list, nobs)),
function(x) x, simplify = FALSE)
attributes(sth) = NULL
order_list = sth
if(verbose) qqcat("cut @{which} dendrogram into @{split} slices.\n")
}
if(identical(reorder, NULL)) {
if(is.numeric(mat)) {
reorder = TRUE
} else {
reorder = FALSE
}
}
do_reorder = TRUE
if(identical(reorder, NA) || identical(reorder, FALSE)) {
do_reorder = FALSE
}
if(identical(reorder, TRUE)) {
do_reorder = TRUE
if(which == "row") {
reorder = -rowMeans(mat, na.rm = TRUE)
} else {
reorder = -colMeans(mat, na.rm = TRUE)
}
}
if(do_reorder) {
if(which == "row") {
if(length(reorder) != nrow(mat)) {
stop_wrap("weight of reordering should have same length as number of rows.\n")
}
} else {
if(length(reorder) != ncol(mat)) {
stop_wrap("weight of reordering should have same length as number of columns\n")
}
}
for(i in seq_along(dend_list)) {
if(length(order_list[[i]]) > 1) {
sub_ind = sort(order_list[[i]])
dend_list[[i]] = reorder(dend_list[[i]], reorder[sub_ind], mean)
order_list[[i]] = order.dendrogram(dend_list[[i]])
}
}
}
dend_list = lapply(dend_list, adjust_dend_by_x)
slot(object, paste0(which, "_order")) = unlist(order_list)
slot(object, paste0(which, "_order_list")) = order_list
slot(object, paste0(which, "_dend_list")) = dend_list
slot(object, paste0(which, "_dend_param")) = dend_param
slot(object, paste0(which, "_dend_slice")) = dend_slice
if(!is.null(split)) {
if(is.null(attr(dend_list[[1]], ".class_label"))) {
split = data.frame(rep(seq_along(order_list), times = sapply(order_list, length)))
} else {
split = data.frame(rep(sapply(dend_list, function(x) attr(x, ".class_label")), times = sapply(order_list, length)))
}
object@matrix_param[[ paste0(which, "_split") ]] = split
for(i in seq_along(names_param$gp)) {
if(length(names_param$gp[[i]]) == length(order_list)) {
gp_temp = NULL
for(j in seq_along(order_list)) {
gp_temp[ order_list[[j]] ] = names_param$gp[[i]][j]
}
names_param$gp[[i]] = gp_temp
}
}
if(!is.null(names_param$anno)) {
names_param$anno@var_env$gp = names_param$gp
}
slot(object, paste0(which, "_names_param")) = names_param
n_slice = length(order_list)
if(length(gap) == 1) {
gap = rep(gap, n_slice)
} else if(length(gap) == n_slice - 1) {
gap = unit.c(gap, unit(0, "mm"))
} else if(length(gap) != n_slice) {
stop_wrap(qq("Length of `gap` should be 1 or number of @{which} slices."))
}
object@matrix_param[[ paste0(which, "_gap") ]] = gap
title = slot(object, paste0(which, "_title"))
if(!is.null(split)) {
if(length(title) == 0 && !is.null(title)) {
title = apply(unique(split), 1, paste, collapse = ",")
} else if(length(title) == 1) {
if(grepl("%s", title)) {
title = apply(unique(split), 1, function(x) {
lt = lapply(x, function(x) x)
lt$fmt = title
do.call(sprintf, lt)
})
} else if(grepl("@\\{.+\\}", title)) {
title = apply(unique(split), 1, function(x) {
x = x
envir = environment()
title = get("title")
op = parent.env(envir)
calling_env = object@heatmap_param$calling_env
parent.env(envir) = calling_env
title = GetoptLong::qq(title, envir = envir)
parent.env(envir) = op
return(title)
})
} else if(grepl("\\{.+\\}", title)) {
if(!requireNamespace("glue")) {
stop_wrap("You need to install glue package.")
}
title = apply(unique(split), 1, function(x) {
x = x
envir = environment()
title = get("title")
op = parent.env(envir)
calling_env = object@heatmap_param$calling_env
parent.env(envir) = calling_env
title = glue::glue(title, envir = calling_env)
parent.env(envir) = op
return(title)
})
}
}
}
slot(object, paste0(which, "_title")) = title
}
return(object)
}
} else {
if(verbose) qqcat("no clustering is applied/exists on @{which}s\n")
}
if(verbose) qq("clustering object is not pre-defined, clustering is applied to each @{which} slice\n")
consensus_kmeans = function(mat, centers, km_repeats) {
partition_list = lapply(seq_len(km_repeats), function(i) {
as.cl_hard_partition(kmeans(mat, centers))
})
partition_list = cl_ensemble(list = partition_list)
partition_consensus = cl_consensus(partition_list)
as.vector(cl_class_ids(partition_consensus))
}
if(km > 1 && is.numeric(mat)) {
if(which == "row") {
cl = consensus_kmeans(mat, km, km_repeats)
meanmat = lapply(sort(unique(cl)), function(i) {
colMeans(mat[cl == i, , drop = FALSE], na.rm = TRUE)
})
} else {
cl = consensus_kmeans(t(mat), km, km_repeats)
meanmat = lapply(sort(unique(cl)), function(i) {
rowMeans(mat[, cl == i, drop = FALSE], na.rm = TRUE)
})
}
meanmat = do.call("cbind", meanmat)
if(length(reorder) > 1) {
weight = tapply(reorder, cl, mean)
} else {
weight = colMeans(meanmat)
}
if(cluster_slices) {
hc = hclust(dist(t(meanmat)))
hc = as.hclust(reorder(as.dendrogram(hc), weight, mean))
} else {
hc = list(order = order(weight))
}
cl2 = numeric(length(cl))
for(i in seq_along(hc$order)) {
cl2[cl == hc$order[i]] = i
}
cl2 = factor(cl2, levels = seq_along(hc$order))
if(is.null(split)) {
split = data.frame(cl2)
} else if(is.matrix(split)) {
split = as.data.frame(split)
split = cbind(cl2, split)
} else if(is.null(ncol(split))) {
split = data.frame(cl2, split)
} else {
split = cbind(cl2, split)
}
if(verbose) qqcat("apply k-means (@{km} groups) on @{which}s, append to the `split` data frame\n")
}
order_list = list()
if(is.null(split)) {
order_list[[1]] = order
} else {
if(verbose) cat("process `split` data frame\n")
if(is.null(ncol(split))) split = data.frame(split)
if(is.matrix(split)) split = as.data.frame(split)
for(i in seq_len(ncol(split))) {
if(is.numeric(split[[i]])) {
split[[i]] = factor(as.character(split[[i]]), levels = as.character(sort(unique(split[[i]]))))
} else if(!is.factor(split[[i]])) {
split[[i]] = factor(split[[i]])
} else {
split[[i]] = factor(split[[i]], levels = intersect(levels(split[[i]]), unique(split[[i]])))
}
}
split_name = apply(as.matrix(split), 1, paste, collapse = ",")
order2 = do.call("order", split)
level = unique(split_name[order2])
for(k in seq_along(level)) {
l = split_name == level[k]
order_list[[k]] = intersect(order, which(l))
}
names(order_list) = level
}
slice_od = seq_along(order_list)
if(cluster) {
if(verbose) qqcat("apply clustering on each slice (@{length(order_list)} slices)\n")
dend_list = rep(list(NULL), length(order_list))
for(i in seq_along(order_list)) {
if(which == "row") {
submat = mat[ order_list[[i]], , drop = FALSE]
} else {
submat = mat[, order_list[[i]], drop = FALSE]
}
nd = 0
if(which == "row") nd = nrow(submat) else nd = ncol(submat)
if(nd > 1) {
if(!is.null(dend_param$fun)) {
if(which == "row") {
obj = dend_param$fun(submat)
} else {
obj = dend_param$fun(t(submat))
}
if(inherits(obj, "dendrogram") || inherits(obj, "hclust")) {
dend_list[[i]] = obj
} else {
oe = try(obj <- as.dendrogram(obj), silent = TRUE)
if(inherits(oe, "try-error")) {
stop_wrap("the clustering function must return a `dendrogram` object or a object that can be coerced to `dendrogram` class.")
}
dend_list[[i]] = obj
}
order_list[[i]] = order_list[[i]][ get_dend_order(dend_list[[i]]) ]
} else {
if(which == "row") {
dend_list[[i]] = hclust(get_dist(submat, distance), method = method)
} else {
dend_list[[i]] = hclust(get_dist(t(submat), distance), method = method)
}
order_list[[i]] = order_list[[i]][ get_dend_order(dend_list[[i]]) ]
}
} else {
dend_list[[i]] = structure(1, members = 1, height = 0, leaf = TRUE, class = "dendrogram")
order_list[[i]] = order_list[[i]][1]
}
}
names(dend_list) = names(order_list)
for(i in seq_along(dend_list)) {
if(inherits(dend_list[[i]], "hclust")) {
dend_list[[i]] = as.dendrogram(dend_list[[i]])
}
}
if(identical(reorder, NULL)) {
if(is.numeric(mat)) {
reorder = TRUE
} else {
reorder = FALSE
}
}
do_reorder = TRUE
if(identical(reorder, NA) || identical(reorder, FALSE)) {
do_reorder = FALSE
}
if(identical(reorder, TRUE)) {
do_reorder = TRUE
if(which == "row") {
reorder = -rowMeans(mat, na.rm = TRUE)
} else {
reorder = -colMeans(mat, na.rm = TRUE)
}
}
if(do_reorder) {
if(which == "row") {
if(length(reorder) != nrow(mat)) {
stop_wrap("weight of reordering should have same length as number of rows\n")
}
} else {
if(length(reorder) != ncol(mat)) {
stop_wrap("weight of reordering should have same length as number of columns\n")
}
}
for(i in seq_along(dend_list)) {
if(length(order_list[[i]]) > 1) {
sub_ind = sort(order_list[[i]])
dend_list[[i]] = reorder(dend_list[[i]], reorder[sub_ind], mean)
order_list[[i]] = sub_ind[ order.dendrogram(dend_list[[i]]) ]
}
}
if(verbose) qqcat("reorder dendrograms in each @{which} slice\n")
}
if(length(order_list) > 1 && cluster_slices) {
if(which == "row") {
slice_mean = sapply(order_list, function(ind) colMeans(mat[ind, , drop = FALSE], na.rm = TRUE))
} else {
slice_mean = sapply(order_list, function(ind) rowMeans(mat[, ind, drop = FALSE], na.rm = TRUE))
}
if(!is.matrix(slice_mean)) {
slice_mean = matrix(slice_mean, nrow = 1)
}
dend_slice = as.dendrogram(hclust(dist(t(slice_mean))))
dend_slice = reorder(dend_slice, slice_mean, mean)
if(verbose) qqcat("perform clustering on mean of @{which} slices\n")
slice_od = order.dendrogram(dend_slice)
order_list = order_list[slice_od]
dend_list = dend_list[slice_od]
}
}
dend_list = lapply(dend_list, adjust_dend_by_x)
slot(object, paste0(which, "_order")) = unlist(order_list)
slot(object, paste0(which, "_order_list")) = order_list
slot(object, paste0(which, "_dend_list")) = dend_list
slot(object, paste0(which, "_dend_param")) = dend_param
slot(object, paste0(which, "_dend_slice")) = dend_slice
object@matrix_param[[ paste0(which, "_split") ]] = split
if(which == "row") {
if(nrow(mat) != length(order)) {
stop_wrap(qq("Number of rows in the matrix are not the same as the length of the cluster or the @{which} orders."))
}
} else {
if(ncol(mat) != length(order)) {
stop_wrap(qq("Number of columns in the matrix are not the same as the length of the cluster or the @{which} orders."))
}
}
for(i in seq_along(names_param$gp)) {
if(length(names_param$gp[[i]]) == length(order_list)) {
gp_temp = NULL
for(j in seq_along(order_list)) {
gp_temp[ order_list[[j]] ] = names_param$gp[[i]][j]
}
names_param$gp[[i]] = gp_temp
}
}
if(!is.null(names_param$anno)) {
names_param$anno@var_env$gp = names_param$gp
}
slot(object, paste0(which, "_names_param")) = names_param
n_slice = length(order_list)
if(length(gap) == 1) {
gap = rep(gap, n_slice)
} else if(length(gap) == n_slice - 1) {
gap = unit.c(gap, unit(0, "mm"))
} else if(length(gap) != n_slice) {
stop_wrap(qq("Length of `gap` should be 1 or number of @{which} slices."))
}
object@matrix_param[[ paste0(which, "_gap") ]] = gap
title = slot(object, paste0(which, "_title"))
if(!is.null(split)) {
if(length(title) == 0 && !is.null(title)) {
title = names(order_list)
} else if(length(title) == 1) {
if(grepl("%s", title)) {
title = apply(unique(split[order2, , drop = FALSE]), 1, function(x) {
lt = lapply(x, function(x) x)
lt$fmt = title
do.call(sprintf, lt)
})[slice_od]
} else if(grepl("@\\{.+\\}", title)) {
title = apply(unique(split[order2, , drop = FALSE]), 1, function(x) {
x = x
envir = environment()
title = get("title")
op = parent.env(envir)
calling_env = object@heatmap_param$calling_env
parent.env(envir) = calling_env
title = GetoptLong::qq(title, envir = envir)
parent.env(envir) = op
return(title)
})[slice_od]
} else if(grepl("\\{.+\\}", title)) {
if(!requireNamespace("glue")) {
stop_wrap("You need to install glue package.")
}
title = apply(unique(split[order2, , drop = FALSE]), 1, function(x) {
x = x
envir = environment()
title = get("title")
op = parent.env(envir)
calling_env = object@heatmap_param$calling_env
parent.env(envir) = calling_env
title = glue::glue(title, envir = calling_env)
parent.env(envir) = op
return(title)
})[slice_od]
}
}
}
slot(object, paste0(which, "_title")) = title
return(object)
}
setMethod(f = "draw",
signature = "Heatmap",
definition = function(object, internal = FALSE, test = FALSE, ...) {
if(test) {
object = prepare(object)
grid.newpage()
if(is_abs_unit(object@heatmap_param$width)) {
width = object@heatmap_param$width
} else {
width = 0.8
}
if(is_abs_unit(object@heatmap_param$height)) {
height = object@heatmap_param$height
} else {
height = 0.8
}
pushViewport(viewport(width = width, height = height))
draw(object, internal = TRUE)
upViewport()
} else {
if(internal) {
if(nrow(object@layout$layout_index) == 0) return(invisible(NULL))
layout = grid.layout(nrow = length(HEATMAP_LAYOUT_COLUMN_COMPONENT),
ncol = length(HEATMAP_LAYOUT_ROW_COMPONENT), widths = component_width(object),
heights = component_height(object))
pushViewport(viewport(layout = layout))
ht_layout_index = object@layout$layout_index
ht_graphic_fun_list = object@layout$graphic_fun_list
for(j in seq_len(nrow(ht_layout_index))) {
if(HEATMAP_LAYOUT_COLUMN_COMPONENT["heatmap_body"] %in% ht_layout_index[j, 1] &&
HEATMAP_LAYOUT_ROW_COMPONENT["heatmap_body"] %in% ht_layout_index[j, 2]) {
pushViewport(viewport(layout.pos.row = ht_layout_index[j, 1], layout.pos.col = ht_layout_index[j, 2], name = paste(object@name, "heatmap_body_wrap", sep = "_")))
} else {
pushViewport(viewport(layout.pos.row = ht_layout_index[j, 1], layout.pos.col = ht_layout_index[j, 2]))
}
ht_graphic_fun_list[[j]](object)
upViewport()
}
upViewport()
} else {
ht_list = new("HeatmapList")
ht_list = add_heatmap(ht_list, object)
draw(ht_list, ...)
}
}
})
setMethod(f = "prepare",
signature = "Heatmap",
definition = function(object, process_rows = TRUE, process_columns = TRUE) {
if(object@layout$initialized) {
return(object)
}
if(process_rows) {
object = make_row_cluster(object)
}
if(process_columns) {
object = make_column_cluster(object)
}
object = make_layout(object)
return(object)
}) |
d3ClusterDendro <- function(List, height = 2200, width = 900,
heightCollapse = 0, widthCollapse = 0.5, fontsize = 10, linkColour = "
nodeColour = "
diameter = 980, zoom = FALSE, parentElement = "body", standAlone = TRUE,
file = NULL, iframe = FALSE, d3Script = "http://d3js.org/d3.v3.min.js")
{
if (!isTRUE(standAlone) & isTRUE(iframe)){
stop("If iframe = TRUE then standAlone must be TRUE.")
}
if (is.null(file) & isTRUE(iframe)){
Random <- paste0(sample(c(0:9, letters, LETTERS), 5, replace=TRUE),
collapse = "")
file <- paste0("NetworkGraph", Random, ".html")
}
FrameHeight <- height + height * 0.07
FrameWidth <- width + width * 0.03
fontsizeBig <- fontsize * 1.9
linkOpacity <- opacity * 0.5
if (class(List) != "list"){
stop("List must be a list class object.")
}
RootList <- toJSON(List)
RootList <- paste("var root =", RootList, "; \n")
PageHead <- BasicHead()
NetworkCSS <- whisker.render(TreeStyleSheet())
if (!isTRUE(zoom)){
MainScript1 <- whisker.render(MainClusterDendro1())
MainScript2 <- whisker.render(MainClusterDendro2())
}
else if (isTRUE(zoom)){
MainScript1 <- whisker.render(ZoomClusterDendro1())
MainScript2 <- whisker.render(ZoomClusterDendro2())
}
if (is.null(file) & !isTRUE(standAlone)){
cat(NetworkCSS, MainScript1, RootList,
MainScript2)
}
else if (is.null(file) & isTRUE(standAlone)){
cat(PageHead, NetworkCSS, MainScript1, RootList,
MainScript2, "</body>")
}
else if (!is.null(file) & !isTRUE(standAlone)){
cat(NetworkCSS, MainScript1, RootList,
MainScript2, file = file)
}
else if (!is.null(file) & !isTRUE(iframe)){
cat(PageHead, NetworkCSS, MainScript1, RootList,
MainScript2, "</body>", file = file)
}
else if (!is.null(file) & isTRUE(iframe)){
cat(PageHead, NetworkCSS, MainScript1, RootList,
MainScript2, "</body>", file = file)
cat("<iframe src=\'", file, "\'", " height=", FrameHeight, " width=",
FrameWidth, "></iframe>", sep="")
}
} |
generate_double_sum_function <- function(dimensions)
soo_function(name="Double sum",
id=sprintf("double-sum-%id", dimensions),
fun=function(x, ...) .Call(do_f_double_sum, x),
dimensions=dimensions,
lower_bounds=rep(-65.536, dimensions),
upper_bounds=rep(65.536, dimensions),
best_par=rep(0, dimensions),
best_value=0)
class(generate_double_sum_function) <- c("soo_function_generator", "function")
attr(generate_double_sum_function, "id") <- "double-sum"
attr(generate_double_sum_function, "name") <- "Double sum test function" |
new_ml_model_multilayer_perceptron_classification <- function(pipeline_model, formula, dataset, label_col,
features_col, predicted_label_col) {
new_ml_model_classification(
pipeline_model, formula,
dataset = dataset,
label_col = label_col, features_col = features_col,
predicted_label_col = predicted_label_col,
class = "ml_model_multilayer_perceptron_classification"
)
} |
work.calgamma <-
function(dmat,dvec,tmat,tvec,fout)
{
vfs0 <- get(paste('v',fout$smodel,sep=''))
vf0t <- get(paste('v',fout$tmodel,sep=''))
Gd0 <- with(fout,as.vector(vfs0(dmat,scoef[1],scoef[2],scoef[3])))
G0t <- with(fout,as.vector(vf0t(tmat,tcoef[1],tcoef[2],tcoef[3])))
tmp <- fout$k
fitGamma <- Gd0 + G0t - tmp * Gd0 * G0t
chk <- with(fout,(scoef[3]==0) & (tcoef[3]==0))
if(chk){
fitGamma <- fitGamma + 1e-5
}
gd0 <- with(fout,as.vector(vfs0(dvec,scoef[1],scoef[2],scoef[3])))
g0t <- with(fout,as.vector(vf0t(tvec,tcoef[1],tcoef[2],tcoef[3])))
fitgamma <- gd0 + g0t - fout$k * gd0 * g0t
list(Gamma = fitGamma, gamma = fitgamma)
} |
saveWidget <- function(widget, file, selfcontained = TRUE, libdir = NULL,
background = "white", title = class(widget)[[1]],
knitrOptions = list()) {
if (grepl("^
bgcol <- grDevices::col2rgb(background, alpha = TRUE)
background <- sprintf("rgba(%d,%d,%d,%f)", bgcol[1,1], bgcol[2,1], bgcol[3,1], bgcol[4,1]/255)
}
html <- toHTML(widget, standalone = TRUE, knitrOptions = knitrOptions)
if (is.null(libdir)){
libdir <- paste(tools::file_path_sans_ext(basename(file)), "_files",
sep = "")
}
if (selfcontained) {
pandoc_save_markdown(html, file = file, libdir = libdir,
background = background, title = title)
if (!pandoc_available()) {
stop("Saving a widget with selfcontained = TRUE requires pandoc. For details see:\n",
"https://github.com/rstudio/rmarkdown/blob/master/PANDOC.md")
}
pandoc_self_contained_html(file, file)
unlink(libdir, recursive = TRUE)
} else {
html <- tagList(tags$head(tags$title(title)), html)
htmltools::save_html(html, file = file, libdir = libdir, background = background)
}
invisible(NULL)
} |
DistAlleleShare <- function(e)
{
N <- nrow(e)
P <- mat.or.vec(N,2*N+1)
P[1,1] <- e[1,1]
P[1,2] <- e[1,2]
P[1,3] <- e[1,3]
for (r in 2:N)
{
P[r,1] <- P[r-1,1]*e[r,1]
P[r,2] <- P[r-1,1]*e[r,2]+P[r-1,2]*e[r,1]
m <- 2*r-1
for (k in 3:m)
{
P[r,k] <- P[r-1,k-2]*e[r,3]+P[r-1,k-1]*e[r,2]+P[r-1,k]*e[r,1]
}
P[r,2*r] <-P[r-1,2*r-2]*e[r,3]+P[r-1,2*r-1]*e[r,2]
P[r,2*r+1] <- P[r-1,2*r-1]*e[r,3]
}
colnames(P)<-0:(ncol(P)-1)
return(data.frame("X"=c(0:(2*N)),"Density"=P[N,]))
} |
fertilizers <- function() {
f <- system.file("extdata/fertilizers.csv", package="Rquefts")
utils::read.csv(f)
}
nutrientRates <- function(supply, treatment) {
NPK <- supply[, c("N", "P", "K")] * treatment / 100
apply(NPK, 2, sum)
}
fertApp <- function(nutrients, fertilizers, price, exact=TRUE, retCost=FALSE){
stopifnot(length(price) == nrow(fertilizers))
name <- fertilizers$name
supply <- t(as.matrix(fertilizers[,-1,drop=FALSE]))
treatment <- as.matrix(nutrients)
result <- matrix(nrow=ncol(supply), ncol=nrow(treatment))
colnames(result) <- rownames(nutrients)
if (!any(is.na(price))) {
treatment <- treatment * 100
for (i in 1:nrow(treatment)) {
if (exact) {
solution <- limSolve::linp(E=supply, F=treatment[i,], Cost=price)
} else {
solution <- limSolve::linp(G=supply, H=treatment[i,], Cost=price)
}
if (solution$IsError) {
result[,i] <- NA
} else {
result[,i] <- solution$X
}
}
}
if (retCost) {
r <- colSums(result * price)
} else {
r <- data.frame(name, result)
}
r
} |
orthodrom.dist<-function(x1, y1, x2, y2){
dist <- distMeeus(cbind(x1, y1), cbind(x2, y2))/1000
return(dist)
} |
geom_textsmooth <- function(mapping = NULL, data = NULL,
stat = "smooth", position = "identity",
...,
method = NULL,
formula = NULL,
na.rm = FALSE,
method.args = list(),
orientation = NA,
show.legend = NA,
inherit.aes = TRUE) {
params <- set_params(
na.rm = na.rm,
orientation = orientation,
method.args = method.args,
...
)
if (identical(stat, "smooth")) {
params$method <- method
params$formula <- formula
}
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomTextpath,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = params
)
}
geom_labelsmooth <- function(mapping = NULL, data = NULL,
stat = "smooth", position = "identity",
method = NULL,
formula = NULL,
na.rm = FALSE,
method.args = list(),
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...) {
params <- set_params(
na.rm = na.rm,
orientation = orientation,
method.args = method.args,
...
)
if (identical(stat, "smooth")) {
params$method <- method
params$formula <- formula
}
layer(
geom = GeomLabelpath,
mapping = mapping,
data = data,
stat = stat,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = params
)
} |
cat_plot <- function(model, pred, modx = NULL, mod2 = NULL,
data = NULL, geom = c("point", "line", "bar"), pred.values = NULL,
modx.values = NULL, mod2.values = NULL, interval = TRUE, plot.points = FALSE,
point.shape = FALSE, vary.lty = FALSE, centered = "all",
int.type = c("confidence", "prediction"), int.width = .95,
line.thickness = 1.1,
point.size = 1.5, pred.point.size = 3.5, jitter = 0.1, geom.alpha = NULL,
dodge.width = NULL, errorbar.width = NULL,
interval.geom = c("errorbar", "linerange"), outcome.scale = "response",
robust = FALSE, cluster = NULL, vcov = NULL, pred.labels = NULL,
modx.labels = NULL, mod2.labels = NULL, set.offset = 1, x.label = NULL,
y.label = NULL, main.title = NULL, legend.main = NULL,
colors = "CUD Bright", partial.residuals = FALSE, point.alpha = 0.6,
color.class = NULL, at = NULL, ...) {
dots <- list(...)
if (length(dots) > 0) {
if ("predvals" %in% names(dots)) {
pred.values <- dots$predvals
}
if ("modxvals" %in% names(dots)) {
modx.values <- dots$modxvals
}
if ("mod2vals" %in% names(dots)) {
mod2.values <- dots$mod2vals
}
}
if (!is.null(color.class)) {
colors <- color.class
msg_wrap("The color.class argument is deprecated. Please use 'colors'
instead.")
}
pred <- quo_name(enexpr(pred))
modx <- quo_name(enexpr(modx))
if (modx == "NULL") {modx <- NULL}
mod2 <- quo_name(enexpr(mod2))
if (mod2 == "NULL") {mod2 <- NULL}
if (any(c(pred, modx, mod2) %in% centered)) {
warn_wrap("You cannot mean-center the focal predictor or moderators with
this function.")
centered <- centered %not% c(pred, modx, mod2)
if (length(centered) == 0) {centered <- "none"}
}
geom <- geom[1]
if (geom == "dot") {geom <- "point"}
modxvals2 <- mod2vals2 <- resp <- NULL
if (is.null(data)) {
d <- get_data(model, warn = TRUE)
} else {
d <- data
}
weights <- get_weights(model, d)$weights_name
if (is.null(modx.labels) & !is.null(names(modx.values))) {
modx.labels <- names(modx.values)
}
if (is.null(mod2.labels) & !is.null(names(mod2.values))) {
mod2.labels <- names(mod2.values)
}
pred_out <- prep_data(model = model, pred = pred, modx = modx,
pred.values = pred.values,
modx.values = modx.values, mod2 = mod2,
mod2.values = mod2.values, centered = centered,
interval = interval, int.type = int.type,
int.width = int.width, outcome.scale = outcome.scale,
linearity.check = FALSE, robust = robust,
cluster = cluster, vcov = vcov, set.offset = set.offset,
pred.labels = pred.labels,
modx.labels = modx.labels, mod2.labels = mod2.labels,
facet.modx = FALSE, d = d,
survey = "svyglm" %in% class(model), weights = weights,
preds.per.level = 100,
partial.residuals = partial.residuals, at = at, ...)
meta <- attributes(pred_out)
lapply(names(meta), function(x, env) {env[[x]] <- meta[[x]]},
env = environment())
pm <- pred_out$predicted
d <- pred_out$original
plot_cat(predictions = pm, pred = pred, modx = modx, mod2 = mod2,
data = d, geom = geom, pred.values = pred.values,
modx.values = modx.values, mod2.values = mod2.values,
interval = interval,
plot.points = plot.points | partial.residuals,
point.shape = point.shape, vary.lty = vary.lty,
pred.labels = pred.labels, modx.labels = modx.labels,
mod2.labels = mod2.labels, x.label = x.label, y.label = y.label,
main.title = main.title, legend.main = legend.main,
colors = colors, weights = weights, resp = resp,
geom.alpha = geom.alpha, dodge.width = dodge.width,
errorbar.width = errorbar.width, interval.geom = interval.geom,
point.size = point.size, line.thickness = line.thickness,
pred.point.size = pred.point.size, jitter = jitter,
point.alpha = point.alpha)
}
plot_cat <- function(predictions, pred, modx = NULL, mod2 = NULL,
data = NULL, geom = c("point", "line", "bar", "boxplot"),
pred.values = NULL,
modx.values = NULL, mod2.values = NULL, interval = TRUE,
plot.points = FALSE,
point.shape = FALSE, vary.lty = FALSE, pred.labels = NULL,
modx.labels = NULL, mod2.labels = NULL, x.label = NULL,
y.label = NULL, main.title = NULL, legend.main = NULL,
colors = "CUD Bright", weights = NULL, resp = NULL,
jitter = 0.1, geom.alpha = NULL, dodge.width = NULL,
errorbar.width = NULL,
interval.geom = c("errorbar", "linerange"),
line.thickness = 1.1, point.size = 1,
pred.point.size = 3.5, point.alpha = 0.6) {
pm <- predictions
d <- data
geom <- geom[1]
if (geom == "dot") {geom <- "point"}
if (geom %in% c("boxplot", "box")) {
stop_wrap("The boxplot geom is no longer supported.")
}
if (length(jitter) == 1) {jitter <- rep(jitter, 2)}
if (is.null(legend.main)) {
legend.main <- modx
}
if (is.null(x.label)) {
x.label <- pred
}
if (is.null(y.label)) {
y.label <- resp
}
if (is.numeric(pm[[pred]])) {
pred.levels <- if (!is.null(pred.values)) {pred.values} else {
unique(pm[[pred]])
}
pred.labels <- if (!is.null(pred.labels)) {pred.labels} else {
unique(pm[[pred]])
}
pm[[pred]] <- factor(pm[[pred]], levels = pred.levels,
labels = pred.labels)
d <- d[d[[pred]] %in% pred.levels,]
d[[pred]] <- factor(d[[pred]], levels = pred.levels, labels = pred.labels)
}
if (!is.null(modx)) {
gradient <- is.numeric(d[[modx]]) & !vary.lty
} else {gradient <- FALSE}
pred <- sym(pred)
resp <- sym(resp)
if (!is.null(modx)) {modx <- sym(modx)}
if (!is.null(mod2)) {mod2 <- sym(mod2)}
if (!is.null(weights)) {weights <- sym(weights)}
colors <- suppressWarnings(get_colors(colors, length(modx.labels),
gradient = gradient))
types <- c("solid", "4242", "2222", "dotdash", "dotted", "twodash",
"12223242", "F282", "F4448444", "224282F2", "F1")
ltypes <- types[seq_along(modx.labels)]
names(ltypes) <- modx.labels
names(colors) <- modx.labels
if (is.null(geom.alpha)) {
a_level <- 1
if (plot.points == TRUE) {
if (!is.null(modx)) {
a_level <- 0
} else {
a_level <- 0.5
}
} else if (interval == TRUE) {
a_level <- 0.5
}
} else {a_level <- geom.alpha}
if (is.null(dodge.width)) {
dodge.width <- if (geom %in% c("bar", "point")) {0.9} else {0}
}
if (is.null(errorbar.width)) {
errorbar.width <- if (geom == "point") {
0.9
} else if (geom == "bar") {
0.75
} else {0.5}
}
shape <- if (point.shape == TRUE) {modx} else {NULL}
lty <- if (vary.lty == TRUE) {modx} else {NULL}
grp <- if (!is.null(modx)) modx else 1
p <- ggplot(pm, aes(x = !! pred, y = !! resp, group = !! grp,
colour = !! modx, fill = !! modx,
shape = !! shape, linetype = !! lty))
if (geom == "bar") {
p <- p + geom_bar(stat = "identity", position = "dodge", alpha = a_level)
} else if (geom %in% c("point", "line")) {
p <- p + geom_point(size = pred.point.size,
position = position_dodge(dodge.width))
}
if (geom == "line") {
p <- p + geom_path(position = position_dodge(dodge.width),
size = line.thickness)
}
if (interval == TRUE & interval.geom[1] == "errorbar") {
p <- p + geom_errorbar(aes(ymin = !! sym("ymin"), ymax = !! sym("ymax")),
alpha = 1, show.legend = FALSE,
position = position_dodge(dodge.width),
width = errorbar.width,
size = line.thickness)
} else if (interval == TRUE & interval.geom[1] %in% c("line", "linerange")) {
p <- p + geom_linerange(aes(ymin = !! sym("ymin"), ymax = !! sym("ymax")),
alpha = 0.8, show.legend = FALSE,
position = position_dodge(dodge.width),
size = line.thickness)
}
if (!is.null(mod2)) {
facets <- facet_grid(paste(". ~", as_string(mod2)))
p <- p + facets
}
if (plot.points == TRUE) {
constants <- list(alpha = point.alpha)
if (is.null(weights)) {
constants$size <- point.size
}
p <- p + layer(geom = "point", data = d, stat = "identity",
inherit.aes = TRUE, show.legend = FALSE,
mapping = aes(x = !! pred, y = !! resp, size = !! weights,
group = !! grp, colour = !! modx,
shape = !! shape),
position = if (!is.null(modx)) {
position_jitterdodge(dodge.width = dodge.width,
jitter.width = jitter[1],
jitter.height = jitter[2])
} else {
position_jitter(width = jitter[1], height = jitter[2])
},
params = constants) +
scale_size(range = c(1 * point.size, 5 * point.size), guide = "none")
}
if (is.null(mod2)) {
p <- p + theme_nice(legend.pos = "right")
} else {
p <- p + theme_nice(legend.pos = "bottom")
}
p <- p + labs(x = x.label, y = y.label)
p <- p + scale_colour_manual(name = legend.main,
values = colors,
breaks = names(colors)) +
scale_fill_manual(name = legend.main,
values = colors,
breaks = names(colors)) +
scale_shape(name = legend.main) +
scale_x_discrete(limits = pred.values, labels = pred.labels)
if (vary.lty == TRUE) {
p <- p + scale_linetype_manual(name = legend.main, values = ltypes,
breaks = names(ltypes),
na.value = "blank")
p <- p + theme(legend.key.width = grid::unit(3, "lines"))
}
if (!is.null(main.title)) {
p <- p + ggtitle(main.title)
}
return(p)
} |
test_that("make_operation", {
operation <- list(
name = "Operation",
http = list(
method = "POST",
requestUri = "/abc"
),
input = list(
shape = "InputShape"
),
output = list(
shape = "OutputShape"
),
documentation = "Foo."
)
api <- list(
metadata = list(
serviceAbbreviation = "api"
),
shapes = list(
InputShape = list(
required = list(),
members = list(
Input1 = list(shape = "Input1"),
Input2 = list(shape = "Input2"),
Input3 = list(shape = "Input3")
),
type = "structure"
),
Input1 = list(type = "string"),
Input2 = list(type = "string"),
Input3 = list(type = "integer"),
OutputShape = list(
required = list(),
members = list(
Output1 = list(shape = "Output1"),
Output2 = list(shape = "Output2"),
Output3 = list(shape = "Output3")
),
type = "structure"
),
Output1 = list(type = "string"),
Output2 = list(type = "string"),
Output3 = list(type = "integer")
)
)
a <- make_operation(operation, api)
a <- gsub(" +\n", "\n", a)
e <- gsub("\n {4}", "\n",
"
api_operation <- function(Input1 = NULL, Input2 = NULL, Input3 = NULL) {
op <- new_operation(
name = \"Operation\",
http_method = \"POST\",
http_path = \"/abc\",
paginator = list()
)
input <- .api$operation_input(Input1 = Input1, Input2 = Input2, Input3 = Input3)
output <- .api$operation_output()
config <- get_config()
svc <- .api$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.api$operations$operation <- api_operation")
actual <- formatR::tidy_source(text = a, output = FALSE)
expected <- formatR::tidy_source(text = e, output = FALSE)
expect_equal(actual, expected)
}) |
Rsymphony_solve_LP <-
function(obj, mat, dir, rhs, bounds = NULL, types = NULL, max = FALSE,
verbosity = -2, time_limit = -1, node_limit = -1, gap_limit = -1,
first_feasible = FALSE, write_lp = FALSE, write_mps = FALSE)
{
if(!identical(max, TRUE) && !identical(max, FALSE))
stop("'Argument 'max' must be either TRUE or FALSE.")
if(missing(mat) || is.null(mat))
mat <- matrix(0, 0L, length(obj))
if(missing(dir) || is.null(dir))
dir <- character()
if(missing(rhs) || is.null(rhs))
rhs <- numeric()
if((length(dim(mat)) != 2L) && is.numeric(mat))
mat <- matrix(c(mat), nrow = 1L)
nr <- nrow(mat)
nc <- ncol(mat)
if(length(obj) != nc)
stop("Arguments 'obj' and 'mat' are not conformable.")
if(length(dir) != nr)
stop("Arguments 'mat' and 'dir' are not conformable.")
if(length(rhs) != nr)
stop("Arguments 'mat' and 'rhs' are not conformable.")
TABLE <- c("L", "E", "G")
names(TABLE) <- c("<=", "==", ">=")
row_sense <- TABLE[dir]
if(any(is.na(row_sense)))
stop("Argument 'dir' must be one of '<=', '==' or '>='.")
bounds <- glp_bounds(as.list(bounds), nc)
col_lb <-
replace(bounds[, 2L], bounds[, 2L] == -Inf, -.Machine$double.xmax)
col_ub <-
replace(bounds[, 3L], bounds[, 3L] == Inf, .Machine$double.xmax)
int <- if(is.null(types))
logical(nc)
else {
if(!is.character(types) || !all(types %in% c("C", "I", "B")))
stop("Invalid 'types' argument.")
types <- rep(types, length.out = nc)
col_ub[types == "B" & (col_ub > 1)] <- 1
types != "C"
}
mat <- make_csc_matrix(mat)
need_dummy <- (length(mat$values) == 0L)
if(need_dummy) {
obj <- c(obj, 0)
mat <- make_csc_matrix(rbind(c(double(nc), 1)))
row_sense <- "E"
rhs <- 0
types <- c(types, "C")
int <- c(int, FALSE)
col_lb <- c(col_lb, 0)
col_ub <- c(col_ub, 0)
nr <- 1L
nc <- length(obj)
}
out <- .C(R_symphony_solve,
as.integer(nc),
as.integer(nr),
as.integer(mat$matbeg),
as.integer(mat$matind),
as.double(mat$values),
as.double(col_lb),
as.double(col_ub),
as.integer(int),
if(max) as.double(-obj) else as.double(obj),
obj2 = double(nc),
as.character(paste(row_sense, collapse = "")),
as.double(rhs),
double(nr),
objval = double(1L),
solution = double(nc),
status = integer(1L),
verbosity = as.integer(verbosity),
time_limit = as.integer(time_limit),
node_limit = as.integer(node_limit),
gap_limit = as.double(gap_limit),
first_feasible = as.integer(first_feasible),
write_lp = as.integer(write_lp),
write_mps = as.integer(write_mps))
solution <- out$solution
solution[int] <- round(solution[int])
if(need_dummy) {
solution <- solution[-nc]
obj <- obj[-nc]
}
status_db <-
c("TM_NO_PROBLEM" = 225L,
"TM_NO_SOLUTION" = 226L,
"TM_OPTIMAL_SOLUTION_FOUND" = 227L,
"TM_TIME_LIMIT_EXCEEDED" = 228L,
"TM_NODE_LIMIT_EXCEEDED" = 229L,
"TM_ITERATION_LIMIT_EXCEEDED" = 230L,
"TM_TARGET_GAP_ACHIEVED" = 231L,
"TM_FOUND_FIRST_FEASIBLE" = 232L,
"TM_FINISHED" = 233L,
"TM_UNFINISHED" = 234L,
"TM_FEASIBLE_SOLUTION_FOUND" = 235L,
"TM_SIGNAL_CAUGHT" = 236L,
"TM_UNBOUNDED" = 237L,
"PREP_OPTIMAL_SOLUTION_FOUND" = 238L,
"PREP_NO_SOLUTION" = 239L,
"TM_ERROR__NO_BRANCHING_CANDIDATE" = -250L,
"TM_ERROR__ILLEGAL_RETURN_CODE" = -251L,
"TM_ERROR__NUMERICAL_INSTABILITY" = -252L,
"TM_ERROR__COMM_ERROR" = -253L,
"TM_ERROR__USER" = -275L,
"PREP_ERROR" = -276L)
status <- if(out$status == 227L)
c("TM_OPTIMAL_SOLUTION_FOUND" = 0L)
else
status_db[match(out$status, status_db)]
list(solution = solution,
objval = sum(obj * solution),
status = status)
} |
library(cometr)
library(tidyr)
library(ggplot2)
library(keras)
library(reticulate)
exp <- create_experiment(
keep_active = TRUE,
log_output = TRUE,
log_error = FALSE,
log_code = TRUE,
log_system_details = TRUE,
log_git_info = TRUE
)
exp$add_tags(c("made with keras"))
fashion_mnist <- dataset_fashion_mnist()
c(train_images, train_labels) %<-% fashion_mnist$train
c(test_images, test_labels) %<-% fashion_mnist$test
train_images <- train_images / 255
test_images <- test_images / 255
model <- keras_model_sequential()
model %>%
layer_flatten(input_shape = c(28, 28)) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dense(units = 10, activation = 'softmax')
model %>% compile(
optimizer = 'adam',
loss = 'sparse_categorical_crossentropy',
metrics = c('accuracy')
)
epochs <- 5
exp$log_parameter("epochs", epochs)
LogMetrics <- R6::R6Class("LogMetrics",
inherit = KerasCallback,
public = list(
losses = NULL,
on_epoch_end = function(epoch, logs = list()) {
self$losses <- c(self$losses, c(epoch, logs[["loss"]]))
}
)
)
callback <- LogMetrics$new()
model %>% fit(train_images, train_labels, epochs = epochs, verbose = 2,
callbacks = list(callback))
losses <- matrix(callback$losses, nrow = 2)
for (i in 1:ncol(losses)) {
exp$log_metric("loss", losses[2, i], step=losses[1, i])
}
score <- model %>% evaluate(test_images, test_labels, verbose = 0)
cat('Test loss:', score$loss, "\n")
cat('Test accuracy:', score$acc, "\n")
exp$log_metric("test_loss", score$loss)
exp$log_metric("test_accuracy", score$acc)
predictions <- model %>% predict(test_images)
class_names = c('T-shirt/top',
'Trouser',
'Pullover',
'Dress',
'Coat',
'Sandal',
'Shirt',
'Sneaker',
'Bag',
'Ankle boot')
png(file = "FashionMNISTResults.png")
par(mfcol=c(5,5))
par(mar=c(0, 0, 1.5, 0), xaxs='i', yaxs='i')
for (i in 1:25) {
img <- test_images[i, , ]
img <- t(apply(img, 2, rev))
predicted_label <- which.max(predictions[i, ]) - 1
true_label <- test_labels[i]
if (predicted_label == true_label) {
color <- '
} else {
color <- '
}
image(1:28, 1:28, img, col = gray((0:255)/255), xaxt = 'n', yaxt = 'n',
main = paste0(class_names[predicted_label + 1], " (",
class_names[true_label + 1], ")"),
col.main = color)
}
dev.off()
exp$upload_asset("FashionMNISTResults.png")
exp$log_other(key = "Created by", value = "cometr")
exp$print()
exp$stop() |
TransformIni <- function(X, InitTransform="None", transform = "Standardize columns") {
n = nrow(X)
p = ncol(X)
RowNames = rownames(X)
ColNames = colnames(X)
InitTransforms=c("None", "Log", "Logit")
if (is.numeric(InitTransform))
InitTransform = InitTransforms[InitTransform]
ContinuousDataTransform = c("Raw Data", "Substract the global mean", "Double centering", "Column centering", "Standardize columns", "Row centering",
"Standardize rows", "Divide by the column means and center", "Normalized residuals from independence")
if (is.numeric(transform))
transform = ContinuousDataTransform[transform]
switch(InitTransform, `Log` = {
if (sum(which(X<=0)) >0) stop("Initial log transformation is not compatible with negative or zero values")
X = log(X)
},`Logit` = {
if (sum(which(X<=0)) >0) stop("Initial logit transformation is not compatible with negative values")
X= X + 0.01 * (X==0) - 0.01 * (X==1)
x=log(X/(1-X))
})
switch(transform, `Substract the global mean` = {
gmean = mean(X)
X = X - gmean
}, `Double centering` = {
X = (diag(n) - matrix(1, n, n)/n) %*% X %*% (diag(p) - matrix(1, p, p)/p)
}, `Column centering` = {
means = apply(X, 2, mean)
X=X- matrix(1,n,1) %*% matrix(means,1,p)
}, `Standardize columns` = {
means = apply(X, 2, mean)
stdDevs = apply(X, 2, sd)
X=(X- matrix(1,n,1) %*% matrix(means,1,p))/(matrix(1,n,1) %*% matrix(stdDevs,1,p))
}, `Row centering` = {
means = apply(X, 1, mean)
X = X %*% (diag(p) - matrix(1, p, p)/p)
}, `Standardize rows` = {
means = apply(X, 1, mean)
stdDevs = apply(X, 1, sd)
X = solve(diag(stdDevs)) %*% X %*% (diag(p) - matrix(1, p, p)/p)
}, `Divide by the column means and center` = {
means = apply(X, 2, mean)
for (i in (1:p)) X[, i] = X[, i]/means[i]
X = (diag(n) - matrix(1, n, n)/n) %*% X
}, `Normalized residuals from independence` = {
nt = sum(sum(X))
dr = apply(X,1,sum)
dc = apply(X,2,sum)
esp = (t(t(dr)) %*% dc)/nt
var = t(t(1 - dr/nt)) %*% (1 - dc/nt)
X = ((X - esp)/sqrt(esp))/sqrt(var)
},`Divide by the range`={
Rangos=apply(X,2,max)-apply(X,2,min)
X=X%*%diag(1/Rangos)
})
rownames(X) = RowNames
colnames(X) = ColNames
return(X)
} |
Glue <- function(...) abind(..., rev.along=0)
collectSummaries <- function(listOfSummaries){
summaries <- list()
summaries[['coefC']] <- do.call(rbind, lapply(listOfSummaries, '[[', 'coefC'))
rownames(summaries[['coefC']]) <- names(listOfSummaries)
summaries[['vcovC']] <- do.call(Glue, lapply(listOfSummaries, '[[', 'vcovC'))
summaries[['df.resid']] <- do.call(rbind, lapply(listOfSummaries, '[[', 'df.resid'))
summaries[['df.null']] <- do.call(rbind, lapply(listOfSummaries, '[[', 'df.null'))
summaries[['deviance']] <- do.call(rbind, lapply(listOfSummaries, '[[', 'deviance'))
summaries[['dispersion']] <- do.call(rbind, lapply(listOfSummaries, '[[', 'dispersion'))
summaries[['dispersionNoshrink']] <- do.call(rbind, lapply(listOfSummaries, '[[', 'dispersionNoshrink'))
summaries[['converged']] <- do.call(rbind, lapply(listOfSummaries, '[[', 'converged'))
summaries[['loglik']] <- do.call(rbind, lapply(listOfSummaries, '[[', 'loglik'))
summaries[['coefD']] <- do.call(rbind, lapply(listOfSummaries, '[[', 'coefD'))
summaries[['vcovD']] <- do.call(Glue, lapply(listOfSummaries, '[[', 'vcovD'))
rownames(summaries[['coefD']]) <- names(listOfSummaries)
summaries
}
.lrtZlmFit <- function(zlmfit, newMM, hString, ...){
o1 <- zlmfit
LMlike <- o1@LMlike
model.matrix(LMlike) <- newMM
message('Refitting on reduced model...')
if('exprs_values' %in% slotNames(zlmfit)) {
o0 <- zlm(sca=o1@sca, LMlike=LMlike, exprs_values = o1@exprs_values, ...)
} else{
o0 <- zlm(sca=o1@sca, LMlike=LMlike, ...)
}
lambda <- -2*(o0@loglik-o1@loglik)
testable <- o0@converged & o1@converged
testable[,'C'] <- testable[,'C'] & ([email protected] > 1 & [email protected] > 1)[,'C']
lambda <- ifelse(testable, lambda, 0)
df <- [email protected]@df.resid
df <- ifelse(testable, df, 0)
cst <- makeChiSqTable(as.data.frame(lambda), as.data.frame(df), hString)
dimnames(cst) <- list(primerid=mcols(zlmfit@sca)$primerid, test.type=dimnames(cst)[[2]], metric=dimnames(cst)[[3]])
cst
}
setMethod('lrTest', signature=c(object='ZlmFit', hypothesis='character'), function(object, hypothesis, ...){
o1 <- object
LMlike <- o1@LMlike
oldMM <- model.matrix(LMlike)
newF <- update.formula(LMlike@formula, formula(sprintf(' ~. - %s', hypothesis)))
LMlike <- update(LMlike, newF)
newMM <- model.matrix(LMlike)
newq <- qr.Q(qr(newMM))
diff <- any(abs(newq %*% crossprod(newq, oldMM) - oldMM)>1e-6)
if(!diff) stop('Removing term ', sQuote(hypothesis), " doesn't actually alter the model, maybe due to marginality? Try specifying individual coefficents as a `CoefficientHypothesis`.")
.lrtZlmFit(o1, LMlike@modelMatrix, hypothesis, ...)
})
setMethod('lrTest', signature=c(object='ZlmFit', hypothesis='CoefficientHypothesis'), function(object, hypothesis, ...){
h <- generateHypothesis(hypothesis, colnames(object@coefD))
testIdx <- h@index
newMM <- model.matrix(object@LMlike)[,-testIdx, drop=FALSE]
.lrtZlmFit(object, newMM, [email protected], ...)
})
setMethod('lrTest', signature=c(object='ZlmFit', hypothesis='Hypothesis'), function(object, hypothesis, ...){
h <- generateHypothesis(hypothesis, colnames(object@coefD))
lrTest(object, h@contrastMatrix, ...)
})
setMethod('lrTest', signature=c(object='ZlmFit', hypothesis='matrix'), function(object, hypothesis, ...){
LMlike <- object@LMlike
MM <- .rotateMM(LMlike, hypothesis)
testIdx <- attr(MM, 'testIdx')
.lrtZlmFit(object, MM[,-testIdx, drop=FALSE], 'Contrast Matrix', ...)
})
setMethod('waldTest', signature=c(object='ZlmFit', hypothesis='matrix'), function(object, hypothesis){
coefC <- coef(object, 'C')
coefD <- coef(object, 'D')
vcovC <- vcov(object, 'C')
vcovD <- vcov(object, 'D')
converged <- object@converged
genes <- rownames(coefC)
tests <- aaply(seq_along(genes), 1, function(i){
.waldTest(coefC[i,],
coefD[i,],
vcovC[,,i],
vcovD[,,i],
hypothesis, converged[i,])
}, .drop=FALSE)
dimnames(tests)[[1]] <- genes
names(dimnames(tests)) <- c('primerid', 'test.type', 'metric')
tests
})
setMethod('waldTest', signature=c(object='ZlmFit', hypothesis='CoefficientHypothesis'), function(object, hypothesis){
h <- generateHypothesis(hypothesis, colnames(object@coefD))
waldTest(object, h@contrastMatrix)
})
setMethod('waldTest', signature=c(object='ZlmFit', hypothesis='Hypothesis'), function(object, hypothesis){
h <- generateHypothesis(hypothesis, colnames(object@coefD))
waldTest(object, h@contrastMatrix)
})
setMethod('show', signature=c(object='ZlmFit'), function(object){
cat('Fitted zlm on', nrow(object@sca), 'genes and', ncol(object@sca), 'cells.\n Using', class(object@LMlike), as.character(object@LMlike@formula), '\n')
})
setMethod('coef', signature=c(object='ZlmFit'), function(object, which, ...){
which <- match.arg(which, c('C', 'D'))
if(which=='C') object@coefC else object@coefD
})
setMethod('vcov', signature=c(object='ZlmFit'), function(object, which, ...){
which <- match.arg(which, c('C', 'D'))
if(which=='C') object@vcovC else object@vcovD
})
setMethod('se.coef', signature=c(object='ZlmFit'), function(object, which, ...){
which <- match.arg(which, c('C', 'D'))
vc <- if(which=='C') object@vcovC else object@vcovD
se <- sqrt(aaply(vc, 3, diag))
rownames(se) <- mcols(object@sca)$primerid
se
})
normalci <- function(center, se, level){
zstar <- qnorm(1-(1-level)/2)
list(coef=center, ci.lo=center-se*zstar, ci.hi=center+se*zstar)
}
setMethod('summary', signature=c(object='ZlmFit'), function(object, logFC=TRUE, doLRT=FALSE, level=.95, parallel = FALSE, ...){
message('Combining coefficients and standard errors')
coefAndCI <- aaply( c(C='C', D='D'), 1, function(component){
coefs <- coef(object, which=component)
se <- se.coef(object, which=component)
names(dimnames(se)) <- names(dimnames(coefs)) <- c('primerid', 'Coefficient')
ci <- normalci(coefs, se, level)
z <- coefs/se
abind(coef=coefs, z=z, ci.lo=ci[['ci.lo']], ci.hi=ci[['ci.hi']], rev.along=0, hier.names=TRUE)
})
names(dimnames(coefAndCI)) <- c('component', 'primerid', 'contrast', 'metric')
dt <- dcast.data.table(data.table(reshape2::melt(coefAndCI, as.is=TRUE)), primerid + component + contrast ~ metric)
setkey(dt, primerid, contrast)
stouffer <- dt[,list(z=sum(z)/sqrt(sum(!is.na(z))), component='S'), keyby=list(primerid, contrast)]
dt <- rbind(dt, stouffer, fill=TRUE)
if(is.logical(logFC) && logFC){
message("Calculating log-fold changes")
logFC <- getLogFC(zlmfit=object)
}
if(!is.logical(logFC)){
lfc <- logFC
ci <- normalci(lfc$logFC, sqrt(lfc$varLogFC), level=level)
setnames(lfc, 'logFC', 'coef')
lfc <- lfc[,c('component', 'ci.lo', 'ci.hi', 'varLogFC'):=list('logFC', ci$ci.lo, ci$ci.hi, NULL)]
dt <- rbind(dt, lfc, fill=TRUE)
}
setkey(dt, contrast, z)
if(is.logical(doLRT) && doLRT){
doLRT <- setdiff(colnames(coef(object, 'D')), '(Intercept)')
}
if(!is.logical(doLRT)){
message('Calculating likelihood ratio tests')
llrt <- lapply(doLRT, function(x) lrTest(object, CoefficientHypothesis(x), parallel = parallel)[,,'Pr(>Chisq)'])
names(llrt) <- doLRT
llrt <- data.table(reshape2::melt(llrt))
setnames(llrt, c('test.type', 'L1', 'value'), c('component', 'contrast', 'Pr(>Chisq)'))
llrt[,':='(component=c(cont='C', disc='D', hurdle='H')[component],
primerid=as.character(primerid))]
setkey(llrt, primerid, component, contrast)
setkey(dt, primerid, component, contrast)
dt <- merge(llrt, dt, all.x=TRUE, all.y=TRUE)
dt[is.na(component), component :='H']
}
out <- list(datatable=dt)
class(out) <- c('summaryZlmFit', 'list')
out
})
if(getRversion() >= "2.15.1") globalVariables(c(
'contrast',
'metric',
'.',
'value'))
print.summaryZlmFit <- function(x, n=2, by='logFC', ...){
x <- x$datatable
ns <- seq_len(n)
dt <- x[contrast!='(Intercept)',]
by <- match.arg(by, c('logFC', 'D', 'C'))
if(length(intersect(dt$component, 'logFC'))==0 & by=='logFC'){
warning('Log fold change not calculated, selecting discrete', call.=FALSE)
by <- 'D'
}
dt[,metric:=ifelse(is.na(z), 0, -abs(z))]
describe <- switch(by, logFC='log fold change Z-score', D='Wald Z-scores on discrete', C='Wald Z-scores tests on continuous')
dt <- dt[component==by,]
setkey(dt, contrast, metric)
pid <- dt[,list(primerid=primerid[ns]),by=contrast]
setkey(dt, primerid)
setkey(pid, primerid, contrast)
dts <- dt[unique(pid[,list(primerid)]), list(contrast=contrast, primerid=primerid, z=z)]
setkey(dts, primerid, contrast)
dts[pid,value:=sprintf('%6.1f*', z)]
dts[!pid,value:=sprintf('%6.1f ', z)]
cdts <- as.data.frame(dcast.data.table(dts, primerid ~ contrast))
cat('Fitted zlm with top', n, 'genes per contrast:\n')
cat('(', describe, ')\n')
print(cdts, right=FALSE, row.names=FALSE)
invisible(cdts)
} |
NULL
plot_cont_indices <- function(indices_list = NULL,
select = FALSE,
ci_width = 0.95,
min_year = NULL,
max_year = NULL,
species = "",
title_size = 20,
axis_title_size = 18,
axis_text_size = 16,
add_observed_means = FALSE)
{
.Deprecated(new = "plot_indices",
msg = "plot_cont_indices() is deprecated in favour of plot_indices()")
Year <- NULL; rm(Year)
Index <- NULL; rm(Index)
obs_mean <- NULL; rm(obs_mean)
lci <- NULL; rm(lci)
uci <- NULL; rm(uci)
indices = indices_list$data_summary
if(select){
indices = indices[which(indices$Region_Type == "continental"),]
}
lq = (1-ci_width)/2
uq = ci_width+lq
lqc = paste0("Index_q_",lq)
uqc = paste0("Index_q_",uq)
indices$lci = indices[,lqc]
indices$uci = indices[,uqc]
if (!is.null(min_year))
{
indices <- indices[which(indices$Year >= min_year), ]
}
if(!is.null(max_year))
{
indices <- indices[which(indices$Year <= max_year), ]
}
mny = min(indices$Year)
mxy = max(indices$Year)
yys = pretty(seq(mny, mxy))
yys = c(yys[-length(yys)],mxy)
if(add_observed_means){
p <- ggplot2::ggplot() +
ggplot2::theme(panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.background = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "black"),
plot.title = ggplot2::element_text(size = title_size),
axis.title = ggplot2::element_text(size = axis_title_size),
axis.text = ggplot2::element_text(size = axis_text_size)) +
ggplot2::labs(title = paste(species, " Continental Trajectory and raw mean counts", sep = ""),
x = "Year",
y = "Annual index of abundance (mean count)") +
ggplot2::geom_point(data = indices,ggplot2::aes(x = Year,y = obs_mean),colour = grDevices::grey(0.6))+
ggplot2::geom_line(data = indices, ggplot2::aes(x = Year, y = Index)) +
ggplot2::geom_ribbon(data = indices, ggplot2::aes(x = Year, ymin = lci, ymax = uci), alpha = 0.12)+
ggplot2::scale_x_continuous(breaks = yys)+
ggplot2::scale_y_continuous(limits = c(0,NA))
}else{
p <- ggplot2::ggplot() +
ggplot2::theme(panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.background = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "black"),
plot.title = ggplot2::element_text(size = title_size),
axis.title = ggplot2::element_text(size = axis_title_size),
axis.text = ggplot2::element_text(size = axis_text_size)) +
ggplot2::labs(title = paste(species, " Continental Trajectory", sep = ""),
x = "Year",
y = "Annual index of abundance (mean count)") +
ggplot2::geom_line(data = indices, ggplot2::aes(x = Year, y = Index)) +
ggplot2::geom_ribbon(data = indices, ggplot2::aes(x = Year, ymin = lci, ymax = uci), alpha = 0.12)+
ggplot2::scale_x_continuous(breaks = yys)+
ggplot2::scale_y_continuous(limits = c(0,NA))
}
return(p)
} |
hyperParStringNN <- function(hyperpar, topL){
paste(paste("size", hyperpar$size),
paste("decay", hyperpar$decay),
paste("maxit", hyperpar$maxit),
paste0("L", topL), sep = " - ")
}
generateNnet <- function(trainId, loadFromExternalHD, predictors, topL,
hyperpar){
saveDir <- file.path(getwd(), "nnet", "Models")
savePath <- file.path(saveDir, paste0("nnet - ",
paste("train", trainId), " - ",
hyperParStringNN(hyperpar, topL),
".rds"))
if(!file.exists(savePath)){
if(loadFromExternalHD){
featuresDir <- "H:/Facebook features"
} else{
featuresDir <- paste0("../../Feature engineering/", "23-05-2016", "/",
"train")
}
featuresPath <- file.path(featuresDir,
paste0("train features - Random batch - ",
trainId, ".rds"))
targetVar <- "placeMatch"
features <- readRDS(featuresPath)
features <-
features[,names(features) %in% c(predictors, targetVar, "topMRank"),
with=FALSE]
if(!"topMRank" %in% names(features)){
suppressWarnings(features[, topMRank := 1:100, by=row_id])
}
features <- features[topMRank <= topL]
predictorMeans <- sapply(features[, predictors, with=FALSE], mean)
predictorSds <- sapply(features[, predictors, with=FALSE], sd)
targetCol <- which(names(features) == targetVar)
featuresS <- data.table(scale(features))
modelData <- cbind(features[, targetVar, with=FALSE],
featuresS[, predictors, with=FALSE])
form <- paste(targetVar, paste(predictors, collapse=" + "), sep=" ~ ")
model <- nnet(as.formula(form),
size = hyperpar$size,
maxit = hyperpar$maxit,
decay = hyperpar$decay,
data = modelData,
linout = TRUE,
trace = TRUE,
MaxNWts = 1e4)
rm(list=setdiff(ls(), c("model", "predictors", "hyperpar", "predictorMeans",
"predictorSds", "savePath")))
saveRDS(list(model=model, predictors=predictors, hyperpar=hyperpar,
predictorMeans=predictorMeans, predictorSds=predictorSds),
savePath)
}
} |
concatenate_soundfiles <- function(path,
result_file_name = "concatenated",
annotation = "textgrid") {
match.arg(annotation, c("textgrid", "eaf", "exb"))
files <- list.files(
path = normalizePath(path),
pattern = "(\\.WAVE?$)|(\\.wave?$)|(\\.MP3?$)|(\\.mp3?$)"
)
if (length(files) == 0) {
stop("There is no any .wav or .mp3 files")
}
list <- lapply(paste0(normalizePath(path), "/", files), function(file_name) {
ext <- tolower(tools::file_ext(file_name))
if (ext == "wave" | ext == "wav") {
s <- tuneR::readWave(file_name)
} else if (ext == "mp3") {
s <- tuneR::readMP3(file_name)
}
})
sound_attributes <- lapply(seq_along(list), function(x) {
data.frame(
file = files[x],
stereo = list[[x]]@stereo,
samp.rate = list[[x]]@samp.rate,
bit = list[[x]]@bit
)
})
sound_attributes <- do.call(rbind, sound_attributes)
problems <- lapply(sound_attributes, function(i) {
length(unique(i)) != 1
})
if (TRUE %in% problems[-1]) {
pos_probs <- c("channel representation", "sampling rate", "bit rate")
problem_text <- paste(pos_probs[unlist(problems)[-1]], collapse = ", and ")
message(sound_attributes[, unlist(problems)])
stop(paste0(
"You have a problem with ",
problem_text, ". Sampling rate, resolution (bit), and number of
channels should be the same across all recordings."
))
}
sound <- do.call(tuneR::bind, list)
tuneR::writeWave(sound, paste0(path, "/", result_file_name, ".wav"))
if (!is.null(annotation)) {
if (annotation[1] == "textgrid") {
duration <- unlist(lapply(list, function(i) {
length(i@left) / [email protected]
}))
start_time <- c(0, cumsum(duration[-length(duration)]))
end_time <- cumsum(duration)
my_textgrid <- data.frame(
TierNumber = 1,
TierName = "annotation",
TierType = "IntervalTier",
Index = seq_along(files),
StartTime = start_time,
EndTime = end_time,
Label = sort(files),
stringsAsFactors = FALSE
)
writeLines(
c(
'File type = "ooTextFile"',
'Object class = "TextGrid"',
"",
"xmin = 0 ",
paste0("xmax = ", end_time[length(end_time)]),
"tiers? <exists> ",
"size = 1 ",
"item []: ",
" item [1]:",
' class = "IntervalTier"',
' name = "labels"',
" xmin = 0",
paste0(" xmax = ", end_time[length(end_time)]),
paste0(" intervals: size = ", length(duration)),
paste0(paste0(" intervals [", my_textgrid$Index, "]:"),
"\n",
paste0(" xmin = ", my_textgrid$StartTime),
"\n",
paste0(" xmax = ", my_textgrid$EndTime),
"\n",
paste0(' text = "', my_textgrid$Label, '"'),
"\n",
collapse = ""
)
),
paste0(path, "/", result_file_name, ".TextGrid")
)
} else if (annotation[1] == "eaf") {
warning("Will be done in the future")
} else if (annotation[1] == "exb") {
warning("Will be done in the future")
}
}
} |
create_img_db <- function(path, ext = "dcm", all = TRUE, keywords = c("StudyDate", "StudyTime", "SeriesDate", "SeriesTime", "AcquisitionDate", "AcquisitionTime",
"ConversionType", "Manufacturer", "InstitutionName", "InstitutionalDepartmentName",
"ReferringPhysicianName", "Modality", "ManufacturerModelName",
"StudyDescription", "SeriesDescription", "StudyComments", "ProtocolName", "RequestedProcedureID", "ViewPosition",
"StudyInstanceUID", "SeriesInstanceUID", "SOPInstanceUID", "AccessionNumber",
"PatientName", "PatientID", "IssuerOfPatientID", "PatientBirthDate", "PatientSex",
"PatientAge", "PatientSize", "PatientWeight",
"StudyID", "SeriesNumber", "AcquisitionNumber", "InstanceNumber",
"BodyPartExamined", "SliceThickness", "SpacingBetweenSlices", "PixelSpacing", "PixelAspectRatio", "Rows", "Columns", "FieldOfViewDimensions",
"RescaleIntercept", "RescaleSlope", "WindowCenter", "WindowWidth", "BitsAllocated", "BitsStored", "PhotometricInterpretation",
"KVP", "ExposureTime", "XRayTubeCurrent", "ExposureInuAs", "ImageAndFluoroscopyAreaDoseProduct",
"FilterType", "ConvolutionKernel", "CTDIvol", "ReconstructionFieldOfView"),
nThread = 4, na = TRUE, identical = TRUE) {
pydicom <- reticulate::import("pydicom")
img_db <- dcm_db(path = path, ext = ext, all = all, keywords = keywords, nThread = nThread, pydicom = pydicom)
img_db$time_study <- as.POSIXct(paste0(img_db$StudyDate, img_db$StudyTime), format = "%Y%m%d %H%M%S", tz = "EST")
img_db$time_series <- as.POSIXct(paste0(img_db$SeriesDate, img_db$SeriesTime), format = "%Y%m%d %H%M%S", tz = "EST")
img_db$time_acquisition <- as.POSIXct(paste0(img_db$AcquisitionDate, img_db$AcquisitionTime), format = "%Y%m%d %H%M%S", tz = "EST")
img_db$name_img <- trimws(gsub("[[:punct:]]", " ", img_db$PatientName))
img_db$time_date_of_birth_img <- as.POSIXct(img_db$PatientBirthDate, format = "%Y%m%d", tz = "EST")
img_db$img_pixel_spacing <- as.numeric(gsub("\\[(.+),.*", "\\1", img_db$PixelSpacing))
img_db <- remove_column(dt = img_db, na = na, identical = identical)
img_db
} |
facet_sample <- function(n_per_facet = 3,
n_facets = 12,
nrow = NULL,
ncol = NULL,
scales = "fixed",
shrink = TRUE,
strip.position = "top") {
facet <- facet_wrap(~.strata,
nrow = nrow,
ncol = ncol,
scales = scales,
shrink = shrink,
strip.position = strip.position)
facet$params$n <- n_facets
facet$params$n_per_facet <- n_per_facet
ggproto(NULL,
FacetSample,
shrink = shrink,
params = facet$params
)
}
FacetSample <- ggproto(
"FacetSample",
FacetWrap,
compute_layout = function(data,
params) {
id <- seq_len(params$n)
dims <- wrap_dims(n = params$n,
nrow = params$nrow,
ncol = params$ncol)
layout <- data.frame(PANEL = factor(id))
if (params$as.table) {
layout$ROW <- as.integer((id - 1L) %/% dims[2] + 1L)
} else {
layout$ROW <- as.integer(dims[1] - (id - 1L) %/% dims[2])
}
layout$COL <- as.integer((id - 1L) %% dims[2] + 1L)
layout <- layout[order(layout$PANEL), , drop = FALSE]
rownames(layout) <- NULL
layout$SCALE_X <- if (params$free$x) id else 1L
layout$SCALE_Y <- if (params$free$y) id else 1L
cbind(layout, .strata = id)
},
map_data = function(data,
layout,
params) {
if (is.null(data) || nrow(data) == 0) {
return(cbind(data, PANEL = integer(0)))
}
new_data <- data %>%
sample_n_keys(size = params$n * params$n_per_facet) %>%
stratify_keys(n_strata = params$n)
new_data$PANEL = new_data$.strata
return(new_data)
}
) |
CRB <- function(sdf, supp=NULL, A=NULL, eps=1e-04,...)
{
p <- length(sdf)
dsdf <- function(x,j){ (sdf[[j]](x+eps)-sdf[[j]](x-eps))/(2*eps)}
if(is.null(supp)) supp <- matrix(c(rep(-8,p),rep(8,p)),ncol=2)
if(is.null(A)) A <- diag(p)
kap <- NULL
lambda <- NULL
for(j in 1:p){
kap[j] <- integrate(Vectorize(function(x){dsdf(x,j)^2/sdf[[j]](x)}),supp[j,1],supp[j,2],...)$value
lambda[j] <- integrate(Vectorize(function(x){dsdf(x,j)^2*x^2/sdf[[j]](x)}),supp[j,1],supp[j,2],...)$value-1
}
crlb <- matrix(0,p,p)
for(i in 1:p){
for(j in 1:p){
if(i!=j){
crlb[i,j] <- kap[j]/(kap[i]*kap[j]-1)
}else{
crlb[i,i] <- 1/(lambda[i])
}
}
}
FIM <- matrix(0,p^2,p^2)
FIM1 <- matrix(0,p,p)
for(i in 1:p){
for(j in 1:p){
if(i==j){
FIM1 <- tcrossprod(A[,j],A[,i])*lambda[i]
for(l in 1:p){
if(l!=i){
FIM1 <- FIM1+tcrossprod(A[,l],A[,l])*kap[i]
}
}
FIM[((i-1)*p+1):(i*p),((j-1)*p+1):(j*p)]<-FIM1
}else{
FIM[((i-1)*p+1):(i*p),((j-1)*p+1):(j*p)]<-tcrossprod(A[,j],A[,i])
}
}
}
EMD <- sum(crlb-diag(crlb)*as.vector(diag(p)))
list(CRLB=crlb, FIM=FIM, EMD=EMD)
} |
expected <- eval(parse(text="structure(list(ctrl = c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53, 5.33, 5.14), trt1 = c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69), trt2 = c(6.31, 5.12, 5.54, 5.5, 5.37, 5.29, 4.92, 6.15, 5.8, 5.26)), .Names = c(\"ctrl\", \"trt1\", \"trt2\"))"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(ctrl = c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53, 5.33, 5.14), trt1 = c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69), trt2 = c(6.31, 5.12, 5.54, 5.5, 5.37, 5.29, 4.92, 6.15, 5.8, 5.26)), .Dim = 3L, .Dimnames = list(c(\"ctrl\", \"trt1\", \"trt2\"))))"));
do.call(`c`, argv);
}, o=expected); |
test_that("confl_post_page() works", {
skip_on_cran()
res <- structure(list(status_code = 200), class = "response")
m <- mockery::mock(res)
with_mock(
"conflr::confl_verb" = m,
"httr::content" = function(res) NULL,
{
confl_post_page("page", "space1", "title", "<p>foo</p>")
}
)
args <- mockery::mock_args(m)[[1]]
expect_equal(args$body, list(
type = "page",
title = "title",
space = list(
key = "space1"
),
body = list(
storage = list(
value = "<p>foo</p>",
representation = "storage"
)
)
))
})
test_that("confl_update_page() works", {
skip_on_cran()
res <- structure(list(status_code = 200), class = "response")
m <- mockery::mock(res)
info <- list(version = list(number = 11L), type = "page")
m2 <- mockery::mock(info)
with_mock(
"conflr::confl_verb" = m,
"conflr::confl_get_page" = m2,
"httr::content" = function(res) NULL,
{
confl_update_page("1234", "title", "<p>foo</p>")
}
)
args <- mockery::mock_args(m)[[1]]
expect_equal(args$body, list(
type = "page",
title = "title",
body = list(
storage = list(
value = "<p>foo</p>",
representation = "storage"
)
),
version = list(
number = 12L
)
))
}) |
library(gridGraphics)
box1 <- function() {
set.seed(1)
plot(1:7, abs(stats::rnorm(7)), type = "h", axes = FALSE)
axis(1, at = 1:7, labels = letters[1:7])
box(lty = '1373', col = 'red')
}
plotdiff(expression(box1()), "box-1")
plotdiffResult() |
which_first <- function(expr,
verbose = FALSE,
reverse = FALSE,
sexpr,
eval_parent_n = 1L,
suppressWarning = getOption("hutilscpp_suppressWarning", FALSE),
use.which.max = FALSE) {
if (use.which.max) {
return(.which_first(expr, verbose = verbose, reverse = reverse))
}
rhs <- NULL
if (missing(sexpr)) {
sexpr <- substitute(expr)
}
if (!is.call(sexpr) ||
length(sexpr) != 3L ||
isFALSE(op <- op2M(operator <- as.character(sexpr[[1L]])))) {
o <- .which_first(expr, verbose = verbose, reverse = reverse)
return(o)
}
lhs <- sexpr[[2L]]
if (!is.name(lhs)) {
o <- .which_first(expr, verbose = verbose, reverse = reverse)
return(o)
}
rhs <- sexpr[[3L]]
isValidExpr <-
is.numeric(rhs) ||
AND(is.call(rhs) && is.numeric(rhs[[2L]]),
as.character(rhs[[1L]]) == "-") ||
is.logical(rhs_eval <- eval.parent(rhs, n = eval_parent_n)) ||
AND(op >= 7 && op <= 10,
is.numeric(rhs_eval)) ||
AND(is.symbol(rhs),
AND(is.numeric(lhs_eval <- eval.parent(lhs, n = eval_parent_n)),
is.numeric(rhs_eval))) ||
AND(is.character(rhs_eval),
all(is.character(lhs_eval <- eval.parent(lhs, n = eval_parent_n)),
OR(length(lhs_eval) == length(rhs_eval),
length(rhs_eval) == 1L),
OR(operator == "!=",
operator == "=="),
na.rm = TRUE))
if (!isValidExpr) {
o <- .which_first(expr, verbose = verbose, reverse = reverse)
return(o)
}
lhs_eval <- eval.parent(lhs, n = eval_parent_n)
if (length(lhs_eval) <= 1L) {
if (isTRUE(expr)) {
return(1L)
} else {
return(0L)
}
}
rhs_eval <- eval.parent(rhs, n = eval_parent_n)
if (is.logical(lhs_eval)) {
if (operator == "%in%") {
if (reverse) {
o <- do_which_last_in_lgl(lhs_eval,
anyNA_ = anyNA(rhs_eval),
any_ = any(rhs_eval, na.rm = TRUE),
nall_ = !all(rhs_eval, na.rm = TRUE))
} else {
o <- do_which_first_in_lgl(lhs_eval,
anyNA_ = anyNA(rhs_eval),
any_ = any(rhs_eval, na.rm = TRUE),
nall_ = !all(rhs_eval, na.rm = TRUE))
}
return(R_xlen_t(o))
}
if (length(rhs_eval) == length(lhs_eval) ||
operator == "%between%" ||
operator == "%(between)%") {
if (is.logical(rhs_eval)) {
if (identical(as.logical(lhs_eval),
as.logical(rhs_eval))) {
if (operator == "==" || operator == "<=" || operator == ">=" || operator == "%in%") {
return(1L)
} else {
return(0L)
}
} else {
return(do_which_first_lgl_lgl_op(lhs_eval, rhs_eval, op, reverse = reverse))
}
}
}
if (anyNA(rhs_eval)) {
warn_msg <- "`rhs` appears to be logical NA. Treating as\n\twhich_first(is.na(.))"
if (operator == "!=") {
warn_msg <- "`rhs` appears to be logical NA. Treating as\n\twhich_first(!is.na(.))"
}
suppressThisWarn <-
isTRUE(suppressWarning) ||
AND(is.character(suppressWarning),
any(vapply(suppressWarning, grepl, x = warn_msg, perl = TRUE, FUN.VALUE = FALSE),
na.rm = TRUE))
switch(operator,
"==" = {
if (!suppressThisWarn) {
warning(warn_msg)
}
o <- .which_first(is.na(lhs_eval), verbose = verbose, reverse = reverse)
},
"!=" = {
if (!suppressThisWarn) {
warning(warn_msg)
}
o <- .which_first(!is.na(lhs_eval), verbose = verbose, reverse = reverse)
},
stop("`rhs` appears to be logical NA. This is not supported for operator '", operator, "'."))
} else {
o <- .which_first_logical(lhs_eval, as.logical(rhs_eval), operator = operator, rev = reverse)
}
return(R_xlen_t(o))
}
if (is.numeric(lhs_eval) && is.numeric(rhs_eval)) {
if (op == 7L) {
o <-
if (reverse) {
fmatchp(lhs_eval, rhs_eval, whichFirst = -1L)
} else {
fmatchp(lhs_eval, rhs_eval, whichFirst = 1L)
}
return(R_xlen_t(o))
}
nx <- length(lhs_eval)
ny <- length(rhs_eval)
if (op > 7L && op <= 10L && ny != 2) {
stop("Expression in `which_first` was of the form:\n\t which_first(x %between% rhs)\n",
"yet `length(rhs) = ", ny, "`. Ensure the object passed to RHS is an atomic vector ",
"of length two.")
}
if (op < 7L) {
if (nx == 0L || ny == 0L) {
return(0L)
}
if (nx != ny && ny != 1L) {
stop("In `expr ~ <lhs> <op> <rhs>`, length of lhs = ", nx, " but length of rhs = ", ny, ". ",
"With operator '", operator, "' the only permitted lengths of the RHS are 1 and length(lhs).")
}
if (ny == 2L) {
ny <- 3L
}
}
if (is.integer(rhs_eval)) {
y1d <- y1i <- rhs_eval[1L]
y2d <- y2i <- rhs_eval[2L]
} else {
y1d <- y1i <- rhs_eval[1L]
y2d <- y2i <- rhs_eval[2L]
}
if (!is.double(y1d)) {
y1d <- as.double(y1d)
}
if (!is.double(y2d)) {
y2d <- as.double(y2d)
}
if (reverse) {
o <- do_which_last__(lhs_eval, op, rhs_eval,
ny = qd2i(ny),
y1i = qd2i(y1i),
y2i = qd2i(y2i),
y1d = y1d,
y2d = y2d)
} else {
o <- do_which_first__(lhs_eval, op, rhs_eval,
ny = qd2i(ny),
y1i = qd2i(y1i),
y2i = qd2i(y2i),
y1d = y1d,
y2d = y2d)
}
return(R_xlen_t(o))
}
if (is.character(lhs_eval)) {
oc <-
switch(operator,
"==" = AnyCharMatch(lhs_eval, as.character(rhs_eval)),
"!=" = AnyCharMatch(lhs_eval, as.character(rhs_eval), opposite = TRUE),
{
o <- .which_first(expr, verbose = verbose, reverse = reverse)
})
if (oc <= .Machine$integer.max) {
oc <- as.integer(oc)
}
return(oc)
}
o <- .which_first(expr, reverse = reverse)
R_xlen_t(o)
}
.which_first <- function(expr, verbose = FALSE, reverse = FALSE) {
if (verbose) {
message("Falling back to `which.max(expr)`.")
}
if (reverse) {
return(do_which_last(expr))
}
o <- which.max(expr)
if (length(o) == 0L) {
return(0L)
}
if (o == 1L && !expr[1L]) {
o <- 0L
}
o
}
.which_first_logical <- function(lhs, rhs, operator = "==", verbose = FALSE, rev = FALSE) {
stopifnot(length(lhs) >= 1L,
is.logical(rhs), length(rhs) == 1L,
is.logical(verbose))
if (is.na(rhs)) {
return(.Call("C_which_first_lgl1", lhs, rhs, op2M(operator), isTRUE(rev), PACKAGE = packageName))
}
switch({
operator
},
"!=" = {
if (rhs) {
if (rev) {
return(do_which_last_false(lhs))
} else {
return(do_which_first_false(lhs))
}
} else {
if (rev) {
return(do_which_last(lhs))
} else {
return(do_which_first(lhs))
}
}
},
"==" = {
if (rhs) {
if (rev) {
return(do_which_last(lhs))
} else {
return(do_which_first(lhs))
}
} else {
if (rev) {
return(do_which_last_false(lhs))
} else {
return(do_which_first_false(lhs))
}
}
},
"<" = {
if (rhs) {
if (rev) {
return(do_which_last_false(lhs))
} else {
return(do_which_first_false(lhs))
}
} else {
return(0L)
}
},
"<=" = {
if (rhs) {
if (rev) {
return(length(lhs))
} else {
return(1L)
}
} else {
if (rev) {
return(do_which_last_false(lhs))
} else {
return(do_which_first_false(lhs))
}
}
},
">" = {
if (rhs) {
return(0L)
} else {
if (rev) {
return(do_which_last(lhs))
} else {
return(do_which_first(lhs))
}
}
},
">=" = {
if (rhs) {
if (rev) {
return(do_which_last(lhs))
} else {
return(do_which_first(lhs))
}
} else {
if (rev) {
return(length(lhs))
} else {
return(1L)
}
}
})
print(ls.str())
stop("Internal error: 559:2019:11:18. ")
}
which_last <- function(expr,
verbose = FALSE,
reverse = FALSE,
suppressWarning = getOption("hutilscpp_suppressWarning", FALSE)) {
force(reverse)
which_first(expr,
verbose = verbose,
reverse = isFALSE(reverse),
sexpr = substitute(expr),
eval_parent_n = 2L,
suppressWarning = suppressWarning)
}
do_which_first__ <- function(x, op, y,
ny,
y1i,
y2i,
y1d,
y2d) {
Nx <- length(x)
Ny <- length(y)
if (ny > 2L && Nx != Ny) {
stop("Lengths differ.")
}
stopifnot(is.numeric(x),
is.integer(op), length(op) == 1L,
is.numeric(y),
is.integer(y1i), is.integer(y2i),
length(y1i) == 1L,
length(y2i) == 1L,
is.double(y1d), is.double(y2d),
length(y1d) == 1L,
length(y2d) == 1L)
.Call("Cwhich_first__",
x, op, y,
ny,
y1i,
y2i,
y1d,
y2d,
PACKAGE = packageName)
}
do_which_first <- function(x) {
.Call("Cwhich_first", x, PACKAGE = packageName)
}
do_which_last <- function(x) {
.Call("Cwhich_last", x, PACKAGE = packageName)
}
do_which_first_false <- function(x) {
.Call("Cwhich_first_false", x, PACKAGE = packageName)
}
do_which_last_false <- function(x) {
.Call("Cwhich_last_false", x, PACKAGE = packageName)
}
do_which_first_in_lgl <- function(x, anyNA_, any_, nall_) {
.Call("Cwhich_first_in_lgl", x, anyNA_, any_, nall_, PACKAGE = packageName)
}
do_which_last_in_lgl <- function(x, anyNA_, any_, nall_) {
.Call("Cwhich_last_in_lgl", x, anyNA_, any_, nall_, PACKAGE = packageName)
}
do_which_firstNA <- function(x) {
.Call("Cwhich_firstNA", x, PACKAGE = packageName)
}
do_which_lastNA <- function(x) {
.Call("Cwhich_lastNA", x, PACKAGE = packageName)
}
do_which_last_notTRUE <- function(x) {
.Call("Cwhich_last_notTRUE", x, PACKAGE = packageName)
}
do_which_last_notFALSE <- function(x) {
.Call("Cwhich_last_notFALSE", x, PACKAGE = packageName)
}
do_which_first_lgl_lgl_op <- function(x, y, op, reverse = FALSE) {
.Call("Cwhich_first_lgl_lgl_op", x, y, op, reverse, PACKAGE = packageName)
}
do_which_last__ <- function(x, op, y,
ny,
y1i,
y2i,
y1d,
y2d) {
Nx <- length(x)
Ny <- length(y)
if (ny > 2L && Nx != Ny) {
stop("Lengths differ.")
}
stopifnot(is.numeric(x),
is.integer(op), length(op) == 1L,
is.numeric(y),
is.integer(y1i), is.integer(y2i),
length(y1i) == 1L,
length(y2i) == 1L,
is.double(y1d), is.double(y2d),
length(y1d) == 1L,
length(y2d) == 1L)
.Call("Cwhich_last__",
x, op, y,
ny,
y1i,
y2i,
y1d,
y2d,
PACKAGE = packageName)
} |
tippecanoe <- function(input,
output,
layer_name = NULL,
min_zoom = NULL,
max_zoom = NULL,
drop_rate = NULL,
overwrite = TRUE,
other_options = NULL,
keep_geojson = FALSE) {
check_install <- system("tippecanoe -v") == 0
if (!check_install) {
stop("tippecanoe is not installed. Please visit https://github.com/mapbox/tippecanoe for installation instructions.",
call. = FALSE)
}
opts <- c()
if (!is.null(min_zoom)) {
opts <- c(opts, sprintf("-Z%s", min_zoom))
}
if (!is.null(max_zoom)) {
opts <- c(opts, sprintf("-z%s", max_zoom))
}
if (is.null(min_zoom) && is.null(max_zoom)) {
opts <- c(opts, "-zg")
}
if (!is.null(drop_rate)) {
opts <- c(opts, sprintf("-r%s", drop_rate))
} else {
opts <- c(opts, "-as")
}
if (overwrite) {
opts <- c(opts, "-f")
}
collapsed_opts <- paste0(opts, collapse = " ")
if (!is.null(other_options)) {
extra_opts <- paste0(other_options, collapse = " ")
collapsed_opts <- paste(collapsed_opts, extra_opts)
}
dir <- getwd()
if (any(grepl("^sf", class(input)))) {
input <- sf::st_transform(input, 4326)
if (is.null(layer_name)) {
layer_name <- stringi::stri_rand_strings(1, 6)
}
if (keep_geojson) {
outfile <- paste0(layer_name, ".geojson")
path <- file.path(dir, outfile)
sf::st_write(input, path, quiet = TRUE,
delete_dsn = TRUE, delete_layer = TRUE)
} else {
tmp <- tempdir()
tempfile <- paste0(layer_name, ".geojson")
path <- file.path(tmp, tempfile)
sf::st_write(input, path, quiet = TRUE,
delete_dsn = TRUE, delete_layer = TRUE)
}
call <- sprintf("tippecanoe -o %s/%s %s %s",
dir, output, collapsed_opts, path)
system(call)
} else if (class(input) == "character") {
if (!is.null(layer_name)) {
collapsed_opts <- paste0(collapsed_opts, " -l ", layer_name)
}
call <- sprintf("tippecanoe -o %s/%s %s %s",
dir, output, collapsed_opts, input)
system(call)
}
} |
expected <- eval(parse(text="structure(list(x = 2.28125, y = 1.70580465116279, xlab = NULL, ylab = NULL), .Names = c(\"x\", \"y\", \"xlab\", \"ylab\"))"));
test(id=0, code={
argv <- eval(parse(text="list(x = 2.28125, y = 1.70580465116279, xlab = NULL, ylab = NULL)"));
do.call(`list`, argv);
}, o=expected); |
XMLParseErrors <-
structure(c(0L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L,
38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L,
51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L,
64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L, 76L,
77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L, 88L, 89L,
90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L,
102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 200L, 201L, 202L,
203L, 204L, 205L, 500L, 501L, 502L, 503L, 504L, 505L, 506L, 507L,
508L, 509L, 510L, 511L, 512L, 513L, 514L, 515L, 516L, 517L, 518L,
519L, 520L, 521L, 522L, 523L, 524L, 525L, 526L, 527L, 528L, 529L,
530L, 531L, 532L, 533L, 534L, 535L, 536L, 537L, 538L, 539L, 540L,
541L, 800L, 801L, 1000L, 1001L, 1002L, 1003L, 1004L, 1005L, 1006L,
1007L, 1008L, 1009L, 1010L, 1011L, 1012L, 1013L, 1014L, 1015L,
1016L, 1017L, 1018L, 1019L, 1020L, 1021L, 1022L, 1023L, 1024L,
1025L, 1026L, 1027L, 1028L, 1029L, 1030L, 1031L, 1032L, 1033L,
1034L, 1035L, 1036L, 1037L, 1038L, 1039L, 1040L, 1041L, 1042L,
1043L, 1044L, 1045L, 1046L, 1047L, 1048L, 1049L, 1050L, 1051L,
1052L, 1053L, 1054L, 1055L, 1056L, 1057L, 1058L, 1059L, 1060L,
1061L, 1062L, 1063L, 1064L, 1065L, 1066L, 1067L, 1068L, 1069L,
1070L, 1071L, 1072L, 1073L, 1074L, 1075L, 1076L, 1077L, 1078L,
1079L, 1080L, 1081L, 1082L, 1083L, 1084L, 1085L, 1086L, 1087L,
1088L, 1089L, 1090L, 1091L, 1092L, 1093L, 1094L, 1095L, 1096L,
1097L, 1098L, 1099L, 1100L, 1101L, 1102L, 1103L, 1104L, 1105L,
1106L, 1107L, 1108L, 1109L, 1110L, 1111L, 1112L, 1113L, 1114L,
1115L, 1116L, 1117L, 1118L, 1119L, 1120L, 1121L, 1122L, 1200L,
1201L, 1202L, 1203L, 1204L, 1205L, 1206L, 1207L, 1208L, 1209L,
1210L, 1211L, 1212L, 1213L, 1214L, 1215L, 1216L, 1217L, 1218L,
1219L, 1220L, 1221L, 1300L, 1301L, 1302L, 1303L, 1400L, 1401L,
1402L, 1403L, 1450L, 1500L, 1501L, 1502L, 1503L, 1504L, 1505L,
1506L, 1507L, 1508L, 1509L, 1510L, 1511L, 1512L, 1513L, 1514L,
1515L, 1516L, 1517L, 1518L, 1519L, 1520L, 1521L, 1522L, 1523L,
1524L, 1525L, 1526L, 1527L, 1528L, 1529L, 1530L, 1531L, 1532L,
1533L, 1534L, 1535L, 1536L, 1537L, 1538L, 1539L, 1540L, 1541L,
1542L, 1543L, 1544L, 1545L, 1546L, 1547L, 1548L, 1549L, 1550L,
1551L, 1552L, 1553L, 1554L, 1555L, 1556L, 1600L, 1601L, 1602L,
1603L, 1604L, 1605L, 1606L, 1607L, 1608L, 1609L, 1610L, 1611L,
1612L, 1613L, 1614L, 1615L, 1616L, 1617L, 1618L, 1650L, 1651L,
1652L, 1653L, 1654L, 1700L, 1701L, 1702L, 1703L, 1704L, 1705L,
1706L, 1707L, 1708L, 1709L, 1710L, 1711L, 1712L, 1713L, 1714L,
1715L, 1716L, 1717L, 1718L, 1719L, 1720L, 1721L, 1722L, 1723L,
1724L, 1725L, 1726L, 1727L, 1728L, 1729L, 1730L, 1731L, 1732L,
1733L, 1734L, 1735L, 1736L, 1737L, 1738L, 1739L, 1740L, 1741L,
1742L, 1743L, 1744L, 1745L, 1746L, 1747L, 1748L, 1749L, 1750L,
1751L, 1752L, 1753L, 1754L, 1755L, 1756L, 1757L, 1758L, 1759L,
1760L, 1761L, 1762L, 1763L, 1764L, 1765L, 1766L, 1767L, 1768L,
1769L, 1770L, 1771L, 1772L, 1773L, 1774L, 1775L, 1776L, 1777L,
1778L, 1779L, 1780L, 1781L, 1782L, 1783L, 1784L, 1785L, 1786L,
1787L, 1788L, 1789L, 1790L, 1791L, 1792L, 1793L, 1794L, 1795L,
1796L, 1797L, 1798L, 1799L, 1800L, 1801L, 1802L, 1803L, 1804L,
1805L, 1806L, 1807L, 1808L, 1809L, 1810L, 1811L, 1812L, 1813L,
1814L, 1815L, 1816L, 1817L, 1818L, 1819L, 1820L, 1821L, 1822L,
1823L, 1824L, 1825L, 1826L, 1827L, 1828L, 1829L, 1830L, 1831L,
1832L, 1833L, 1834L, 1835L, 1836L, 1837L, 1838L, 1839L, 1840L,
1841L, 1842L, 1843L, 1844L, 1845L, 1846L, 1847L, 1848L, 1849L,
1850L, 1851L, 1852L, 1853L, 1854L, 1855L, 1856L, 1857L, 1858L,
1859L, 1860L, 1861L, 1862L, 1863L, 1864L, 1865L, 1866L, 1867L,
1868L, 1869L, 1870L, 1871L, 1872L, 1873L, 1874L, 1875L, 1876L,
1877L, 1878L, 1879L, 1900L, 1901L, 1902L, 1903L, 1950L, 1951L,
1952L, 1953L, 1954L, 1955L, 2000L, 2001L, 2002L, 2003L, 2020L,
2021L, 2022L, 3000L, 3001L, 3002L, 3003L, 3004L, 3005L, 3006L,
3007L, 3008L, 3009L, 3010L, 3011L, 3012L, 3013L, 3014L, 3015L,
3016L, 3017L, 3018L, 3019L, 3020L, 3021L, 3022L, 3023L, 3024L,
3025L, 3026L, 3027L, 3028L, 3029L, 3030L, 3031L, 3032L, 3033L,
3034L, 3035L, 3036L, 3037L, 3038L, 3039L, 3040L, 3041L, 3042L,
3043L, 3044L, 3045L, 3046L, 3047L, 3048L, 3049L, 3050L, 3051L,
3052L, 3053L, 3054L, 3055L, 3056L, 3057L, 3058L, 3059L, 3060L,
3061L, 3062L, 3063L, 3064L, 3065L, 3066L, 3067L, 3068L, 3069L,
3070L, 3071L, 3072L, 3073L, 3074L, 3075L, 3076L, 3077L, 3078L,
3079L, 3080L, 3081L, 3082L, 3083L, 3084L, 3085L, 3086L, 3087L,
3088L, 3089L, 3090L, 3091L, 4000L, 4001L, 4900L, 4901L, 5000L,
5001L, 5002L, 5003L, 5004L, 5005L, 5006L, 5007L, 5008L, 5009L,
5010L, 5011L, 5012L, 5013L, 5014L, 5015L, 5016L, 5017L, 5018L,
5019L, 5020L, 5021L, 5022L, 5023L, 5024L, 5025L, 5026L, 5027L,
5028L, 5029L, 5030L, 5031L, 5032L, 5033L, 5034L, 5035L, 5036L,
5037L, 6000L, 6001L, 6002L, 6003L, 6004L), .Names = c("XML_ERR_OK",
"XML_ERR_INTERNAL_ERROR", "XML_ERR_NO_MEMORY", "XML_ERR_DOCUMENT_START",
"XML_ERR_DOCUMENT_EMPTY", "XML_ERR_DOCUMENT_END", "XML_ERR_INVALID_HEX_CHARREF",
"XML_ERR_INVALID_DEC_CHARREF", "XML_ERR_INVALID_CHARREF", "XML_ERR_INVALID_CHAR",
"XML_ERR_CHARREF_AT_EOF", "XML_ERR_CHARREF_IN_PROLOG", "XML_ERR_CHARREF_IN_EPILOG",
"XML_ERR_CHARREF_IN_DTD", "XML_ERR_ENTITYREF_AT_EOF", "XML_ERR_ENTITYREF_IN_PROLOG",
"XML_ERR_ENTITYREF_IN_EPILOG", "XML_ERR_ENTITYREF_IN_DTD", "XML_ERR_PEREF_AT_EOF",
"XML_ERR_PEREF_IN_PROLOG", "XML_ERR_PEREF_IN_EPILOG", "XML_ERR_PEREF_IN_INT_SUBSET",
"XML_ERR_ENTITYREF_NO_NAME", "XML_ERR_ENTITYREF_SEMICOL_MISSING",
"XML_ERR_PEREF_NO_NAME", "XML_ERR_PEREF_SEMICOL_MISSING", "XML_ERR_UNDECLARED_ENTITY",
"XML_WAR_UNDECLARED_ENTITY", "XML_ERR_UNPARSED_ENTITY", "XML_ERR_ENTITY_IS_EXTERNAL",
"XML_ERR_ENTITY_IS_PARAMETER", "XML_ERR_UNKNOWN_ENCODING", "XML_ERR_UNSUPPORTED_ENCODING",
"XML_ERR_STRING_NOT_STARTED", "XML_ERR_STRING_NOT_CLOSED", "XML_ERR_NS_DECL_ERROR",
"XML_ERR_ENTITY_NOT_STARTED", "XML_ERR_ENTITY_NOT_FINISHED",
"XML_ERR_LT_IN_ATTRIBUTE", "XML_ERR_ATTRIBUTE_NOT_STARTED", "XML_ERR_ATTRIBUTE_NOT_FINISHED",
"XML_ERR_ATTRIBUTE_WITHOUT_VALUE", "XML_ERR_ATTRIBUTE_REDEFINED",
"XML_ERR_LITERAL_NOT_STARTED", "XML_ERR_LITERAL_NOT_FINISHED",
"XML_ERR_COMMENT_NOT_FINISHED", "XML_ERR_PI_NOT_STARTED", "XML_ERR_PI_NOT_FINISHED",
"XML_ERR_NOTATION_NOT_STARTED", "XML_ERR_NOTATION_NOT_FINISHED",
"XML_ERR_ATTLIST_NOT_STARTED", "XML_ERR_ATTLIST_NOT_FINISHED",
"XML_ERR_MIXED_NOT_STARTED", "XML_ERR_MIXED_NOT_FINISHED", "XML_ERR_ELEMCONTENT_NOT_STARTED",
"XML_ERR_ELEMCONTENT_NOT_FINISHED", "XML_ERR_XMLDECL_NOT_STARTED",
"XML_ERR_XMLDECL_NOT_FINISHED", "XML_ERR_CONDSEC_NOT_STARTED",
"XML_ERR_CONDSEC_NOT_FINISHED", "XML_ERR_EXT_SUBSET_NOT_FINISHED",
"XML_ERR_DOCTYPE_NOT_FINISHED", "XML_ERR_MISPLACED_CDATA_END",
"XML_ERR_CDATA_NOT_FINISHED", "XML_ERR_RESERVED_XML_NAME", "XML_ERR_SPACE_REQUIRED",
"XML_ERR_SEPARATOR_REQUIRED", "XML_ERR_NMTOKEN_REQUIRED", "XML_ERR_NAME_REQUIRED",
"XML_ERR_PCDATA_REQUIRED", "XML_ERR_URI_REQUIRED", "XML_ERR_PUBID_REQUIRED",
"XML_ERR_LT_REQUIRED", "XML_ERR_GT_REQUIRED", "XML_ERR_LTSLASH_REQUIRED",
"XML_ERR_EQUAL_REQUIRED", "XML_ERR_TAG_NAME_MISMATCH", "XML_ERR_TAG_NOT_FINISHED",
"XML_ERR_STANDALONE_VALUE", "XML_ERR_ENCODING_NAME", "XML_ERR_HYPHEN_IN_COMMENT",
"XML_ERR_INVALID_ENCODING", "XML_ERR_EXT_ENTITY_STANDALONE",
"XML_ERR_CONDSEC_INVALID", "XML_ERR_VALUE_REQUIRED", "XML_ERR_NOT_WELL_BALANCED",
"XML_ERR_EXTRA_CONTENT", "XML_ERR_ENTITY_CHAR_ERROR", "XML_ERR_ENTITY_PE_INTERNAL",
"XML_ERR_ENTITY_LOOP", "XML_ERR_ENTITY_BOUNDARY", "XML_ERR_INVALID_URI",
"XML_ERR_URI_FRAGMENT", "XML_WAR_CATALOG_PI", "XML_ERR_NO_DTD",
"XML_ERR_CONDSEC_INVALID_KEYWORD", "XML_ERR_VERSION_MISSING",
"XML_WAR_UNKNOWN_VERSION", "XML_WAR_LANG_VALUE", "XML_WAR_NS_URI",
"XML_WAR_NS_URI_RELATIVE", "XML_ERR_MISSING_ENCODING", "XML_WAR_SPACE_VALUE",
"XML_ERR_NOT_STANDALONE", "XML_ERR_ENTITY_PROCESSING", "XML_ERR_NOTATION_PROCESSING",
"XML_WAR_NS_COLUMN", "XML_WAR_ENTITY_REDEFINED", "XML_ERR_UNKNOWN_VERSION",
"XML_ERR_VERSION_MISMATCH", "XML_NS_ERR_XML_NAMESPACE", "XML_NS_ERR_UNDEFINED_NAMESPACE",
"XML_NS_ERR_QNAME", "XML_NS_ERR_ATTRIBUTE_REDEFINED", "XML_NS_ERR_EMPTY",
"XML_NS_ERR_COLON", "XML_DTD_ATTRIBUTE_DEFAULT", "XML_DTD_ATTRIBUTE_REDEFINED",
"XML_DTD_ATTRIBUTE_VALUE", "XML_DTD_CONTENT_ERROR", "XML_DTD_CONTENT_MODEL",
"XML_DTD_CONTENT_NOT_DETERMINIST", "XML_DTD_DIFFERENT_PREFIX",
"XML_DTD_ELEM_DEFAULT_NAMESPACE", "XML_DTD_ELEM_NAMESPACE", "XML_DTD_ELEM_REDEFINED",
"XML_DTD_EMPTY_NOTATION", "XML_DTD_ENTITY_TYPE", "XML_DTD_ID_FIXED",
"XML_DTD_ID_REDEFINED", "XML_DTD_ID_SUBSET", "XML_DTD_INVALID_CHILD",
"XML_DTD_INVALID_DEFAULT", "XML_DTD_LOAD_ERROR", "XML_DTD_MISSING_ATTRIBUTE",
"XML_DTD_MIXED_CORRUPT", "XML_DTD_MULTIPLE_ID", "XML_DTD_NO_DOC",
"XML_DTD_NO_DTD", "XML_DTD_NO_ELEM_NAME", "XML_DTD_NO_PREFIX",
"XML_DTD_NO_ROOT", "XML_DTD_NOTATION_REDEFINED", "XML_DTD_NOTATION_VALUE",
"XML_DTD_NOT_EMPTY", "XML_DTD_NOT_PCDATA", "XML_DTD_NOT_STANDALONE",
"XML_DTD_ROOT_NAME", "XML_DTD_STANDALONE_WHITE_SPACE", "XML_DTD_UNKNOWN_ATTRIBUTE",
"XML_DTD_UNKNOWN_ELEM", "XML_DTD_UNKNOWN_ENTITY", "XML_DTD_UNKNOWN_ID",
"XML_DTD_UNKNOWN_NOTATION", "XML_DTD_STANDALONE_DEFAULTED", "XML_DTD_XMLID_VALUE",
"XML_DTD_XMLID_TYPE", "XML_DTD_DUP_TOKEN", "XML_HTML_STRUCURE_ERROR",
"XML_HTML_UNKNOWN_TAG", "XML_RNGP_ANYNAME_ATTR_ANCESTOR", "XML_RNGP_ATTR_CONFLICT",
"XML_RNGP_ATTRIBUTE_CHILDREN", "XML_RNGP_ATTRIBUTE_CONTENT",
"XML_RNGP_ATTRIBUTE_EMPTY", "XML_RNGP_ATTRIBUTE_NOOP", "XML_RNGP_CHOICE_CONTENT",
"XML_RNGP_CHOICE_EMPTY", "XML_RNGP_CREATE_FAILURE", "XML_RNGP_DATA_CONTENT",
"XML_RNGP_DEF_CHOICE_AND_INTERLEAVE", "XML_RNGP_DEFINE_CREATE_FAILED",
"XML_RNGP_DEFINE_EMPTY", "XML_RNGP_DEFINE_MISSING", "XML_RNGP_DEFINE_NAME_MISSING",
"XML_RNGP_ELEM_CONTENT_EMPTY", "XML_RNGP_ELEM_CONTENT_ERROR",
"XML_RNGP_ELEMENT_EMPTY", "XML_RNGP_ELEMENT_CONTENT", "XML_RNGP_ELEMENT_NAME",
"XML_RNGP_ELEMENT_NO_CONTENT", "XML_RNGP_ELEM_TEXT_CONFLICT",
"XML_RNGP_EMPTY", "XML_RNGP_EMPTY_CONSTRUCT", "XML_RNGP_EMPTY_CONTENT",
"XML_RNGP_EMPTY_NOT_EMPTY", "XML_RNGP_ERROR_TYPE_LIB", "XML_RNGP_EXCEPT_EMPTY",
"XML_RNGP_EXCEPT_MISSING", "XML_RNGP_EXCEPT_MULTIPLE", "XML_RNGP_EXCEPT_NO_CONTENT",
"XML_RNGP_EXTERNALREF_EMTPY", "XML_RNGP_EXTERNAL_REF_FAILURE",
"XML_RNGP_EXTERNALREF_RECURSE", "XML_RNGP_FORBIDDEN_ATTRIBUTE",
"XML_RNGP_FOREIGN_ELEMENT", "XML_RNGP_GRAMMAR_CONTENT", "XML_RNGP_GRAMMAR_EMPTY",
"XML_RNGP_GRAMMAR_MISSING", "XML_RNGP_GRAMMAR_NO_START", "XML_RNGP_GROUP_ATTR_CONFLICT",
"XML_RNGP_HREF_ERROR", "XML_RNGP_INCLUDE_EMPTY", "XML_RNGP_INCLUDE_FAILURE",
"XML_RNGP_INCLUDE_RECURSE", "XML_RNGP_INTERLEAVE_ADD", "XML_RNGP_INTERLEAVE_CREATE_FAILED",
"XML_RNGP_INTERLEAVE_EMPTY", "XML_RNGP_INTERLEAVE_NO_CONTENT",
"XML_RNGP_INVALID_DEFINE_NAME", "XML_RNGP_INVALID_URI", "XML_RNGP_INVALID_VALUE",
"XML_RNGP_MISSING_HREF", "XML_RNGP_NAME_MISSING", "XML_RNGP_NEED_COMBINE",
"XML_RNGP_NOTALLOWED_NOT_EMPTY", "XML_RNGP_NSNAME_ATTR_ANCESTOR",
"XML_RNGP_NSNAME_NO_NS", "XML_RNGP_PARAM_FORBIDDEN", "XML_RNGP_PARAM_NAME_MISSING",
"XML_RNGP_PARENTREF_CREATE_FAILED", "XML_RNGP_PARENTREF_NAME_INVALID",
"XML_RNGP_PARENTREF_NO_NAME", "XML_RNGP_PARENTREF_NO_PARENT",
"XML_RNGP_PARENTREF_NOT_EMPTY", "XML_RNGP_PARSE_ERROR", "XML_RNGP_PAT_ANYNAME_EXCEPT_ANYNAME",
"XML_RNGP_PAT_ATTR_ATTR", "XML_RNGP_PAT_ATTR_ELEM", "XML_RNGP_PAT_DATA_EXCEPT_ATTR",
"XML_RNGP_PAT_DATA_EXCEPT_ELEM", "XML_RNGP_PAT_DATA_EXCEPT_EMPTY",
"XML_RNGP_PAT_DATA_EXCEPT_GROUP", "XML_RNGP_PAT_DATA_EXCEPT_INTERLEAVE",
"XML_RNGP_PAT_DATA_EXCEPT_LIST", "XML_RNGP_PAT_DATA_EXCEPT_ONEMORE",
"XML_RNGP_PAT_DATA_EXCEPT_REF", "XML_RNGP_PAT_DATA_EXCEPT_TEXT",
"XML_RNGP_PAT_LIST_ATTR", "XML_RNGP_PAT_LIST_ELEM", "XML_RNGP_PAT_LIST_INTERLEAVE",
"XML_RNGP_PAT_LIST_LIST", "XML_RNGP_PAT_LIST_REF", "XML_RNGP_PAT_LIST_TEXT",
"XML_RNGP_PAT_NSNAME_EXCEPT_ANYNAME", "XML_RNGP_PAT_NSNAME_EXCEPT_NSNAME",
"XML_RNGP_PAT_ONEMORE_GROUP_ATTR", "XML_RNGP_PAT_ONEMORE_INTERLEAVE_ATTR",
"XML_RNGP_PAT_START_ATTR", "XML_RNGP_PAT_START_DATA", "XML_RNGP_PAT_START_EMPTY",
"XML_RNGP_PAT_START_GROUP", "XML_RNGP_PAT_START_INTERLEAVE",
"XML_RNGP_PAT_START_LIST", "XML_RNGP_PAT_START_ONEMORE", "XML_RNGP_PAT_START_TEXT",
"XML_RNGP_PAT_START_VALUE", "XML_RNGP_PREFIX_UNDEFINED", "XML_RNGP_REF_CREATE_FAILED",
"XML_RNGP_REF_CYCLE", "XML_RNGP_REF_NAME_INVALID", "XML_RNGP_REF_NO_DEF",
"XML_RNGP_REF_NO_NAME", "XML_RNGP_REF_NOT_EMPTY", "XML_RNGP_START_CHOICE_AND_INTERLEAVE",
"XML_RNGP_START_CONTENT", "XML_RNGP_START_EMPTY", "XML_RNGP_START_MISSING",
"XML_RNGP_TEXT_EXPECTED", "XML_RNGP_TEXT_HAS_CHILD", "XML_RNGP_TYPE_MISSING",
"XML_RNGP_TYPE_NOT_FOUND", "XML_RNGP_TYPE_VALUE", "XML_RNGP_UNKNOWN_ATTRIBUTE",
"XML_RNGP_UNKNOWN_COMBINE", "XML_RNGP_UNKNOWN_CONSTRUCT", "XML_RNGP_UNKNOWN_TYPE_LIB",
"XML_RNGP_URI_FRAGMENT", "XML_RNGP_URI_NOT_ABSOLUTE", "XML_RNGP_VALUE_EMPTY",
"XML_RNGP_VALUE_NO_CONTENT", "XML_RNGP_XMLNS_NAME", "XML_RNGP_XML_NS",
"XML_XPATH_EXPRESSION_OK", "XML_XPATH_NUMBER_ERROR", "XML_XPATH_UNFINISHED_LITERAL_ERROR",
"XML_XPATH_START_LITERAL_ERROR", "XML_XPATH_VARIABLE_REF_ERROR",
"XML_XPATH_UNDEF_VARIABLE_ERROR", "XML_XPATH_INVALID_PREDICATE_ERROR",
"XML_XPATH_EXPR_ERROR", "XML_XPATH_UNCLOSED_ERROR", "XML_XPATH_UNKNOWN_FUNC_ERROR",
"XML_XPATH_INVALID_OPERAND", "XML_XPATH_INVALID_TYPE", "XML_XPATH_INVALID_ARITY",
"XML_XPATH_INVALID_CTXT_SIZE", "XML_XPATH_INVALID_CTXT_POSITION",
"XML_XPATH_MEMORY_ERROR", "XML_XPTR_SYNTAX_ERROR", "XML_XPTR_RESOURCE_ERROR",
"XML_XPTR_SUB_RESOURCE_ERROR", "XML_XPATH_UNDEF_PREFIX_ERROR",
"XML_XPATH_ENCODING_ERROR", "XML_XPATH_INVALID_CHAR_ERROR", "XML_TREE_INVALID_HEX",
"XML_TREE_INVALID_DEC", "XML_TREE_UNTERMINATED_ENTITY", "XML_TREE_NOT_UTF8",
"XML_SAVE_NOT_UTF8", "XML_SAVE_CHAR_INVALID", "XML_SAVE_NO_DOCTYPE",
"XML_SAVE_UNKNOWN_ENCODING", "XML_REGEXP_COMPILE_ERROR", "XML_IO_UNKNOWN",
"XML_IO_EACCES", "XML_IO_EAGAIN", "XML_IO_EBADF", "XML_IO_EBADMSG",
"XML_IO_EBUSY", "XML_IO_ECANCELED", "XML_IO_ECHILD", "XML_IO_EDEADLK",
"XML_IO_EDOM", "XML_IO_EEXIST", "XML_IO_EFAULT", "XML_IO_EFBIG",
"XML_IO_EINPROGRESS", "XML_IO_EINTR", "XML_IO_EINVAL", "XML_IO_EIO",
"XML_IO_EISDIR", "XML_IO_EMFILE", "XML_IO_EMLINK", "XML_IO_EMSGSIZE",
"XML_IO_ENAMETOOLONG", "XML_IO_ENFILE", "XML_IO_ENODEV", "XML_IO_ENOENT",
"XML_IO_ENOEXEC", "XML_IO_ENOLCK", "XML_IO_ENOMEM", "XML_IO_ENOSPC",
"XML_IO_ENOSYS", "XML_IO_ENOTDIR", "XML_IO_ENOTEMPTY", "XML_IO_ENOTSUP",
"XML_IO_ENOTTY", "XML_IO_ENXIO", "XML_IO_EPERM", "XML_IO_EPIPE",
"XML_IO_ERANGE", "XML_IO_EROFS", "XML_IO_ESPIPE", "XML_IO_ESRCH",
"XML_IO_ETIMEDOUT", "XML_IO_EXDEV", "XML_IO_NETWORK_ATTEMPT",
"XML_IO_ENCODER", "XML_IO_FLUSH", "XML_IO_WRITE", "XML_IO_NO_INPUT",
"XML_IO_BUFFER_FULL", "XML_IO_LOAD_ERROR", "XML_IO_ENOTSOCK",
"XML_IO_EISCONN", "XML_IO_ECONNREFUSED", "XML_IO_ENETUNREACH",
"XML_IO_EADDRINUSE", "XML_IO_EALREADY", "XML_IO_EAFNOSUPPORT",
"XML_XINCLUDE_RECURSION", "XML_XINCLUDE_PARSE_VALUE", "XML_XINCLUDE_ENTITY_DEF_MISMATCH",
"XML_XINCLUDE_NO_HREF", "XML_XINCLUDE_NO_FALLBACK", "XML_XINCLUDE_HREF_URI",
"XML_XINCLUDE_TEXT_FRAGMENT", "XML_XINCLUDE_TEXT_DOCUMENT", "XML_XINCLUDE_INVALID_CHAR",
"XML_XINCLUDE_BUILD_FAILED", "XML_XINCLUDE_UNKNOWN_ENCODING",
"XML_XINCLUDE_MULTIPLE_ROOT", "XML_XINCLUDE_XPTR_FAILED", "XML_XINCLUDE_XPTR_RESULT",
"XML_XINCLUDE_INCLUDE_IN_INCLUDE", "XML_XINCLUDE_FALLBACKS_IN_INCLUDE",
"XML_XINCLUDE_FALLBACK_NOT_IN_INCLUDE", "XML_XINCLUDE_DEPRECATED_NS",
"XML_XINCLUDE_FRAGMENT_ID", "XML_CATALOG_MISSING_ATTR", "XML_CATALOG_ENTRY_BROKEN",
"XML_CATALOG_PREFER_VALUE", "XML_CATALOG_NOT_CATALOG", "XML_CATALOG_RECURSION",
"XML_SCHEMAP_PREFIX_UNDEFINED", "XML_SCHEMAP_ATTRFORMDEFAULT_VALUE",
"XML_SCHEMAP_ATTRGRP_NONAME_NOREF", "XML_SCHEMAP_ATTR_NONAME_NOREF",
"XML_SCHEMAP_COMPLEXTYPE_NONAME_NOREF", "XML_SCHEMAP_ELEMFORMDEFAULT_VALUE",
"XML_SCHEMAP_ELEM_NONAME_NOREF", "XML_SCHEMAP_EXTENSION_NO_BASE",
"XML_SCHEMAP_FACET_NO_VALUE", "XML_SCHEMAP_FAILED_BUILD_IMPORT",
"XML_SCHEMAP_GROUP_NONAME_NOREF", "XML_SCHEMAP_IMPORT_NAMESPACE_NOT_URI",
"XML_SCHEMAP_IMPORT_REDEFINE_NSNAME", "XML_SCHEMAP_IMPORT_SCHEMA_NOT_URI",
"XML_SCHEMAP_INVALID_BOOLEAN", "XML_SCHEMAP_INVALID_ENUM", "XML_SCHEMAP_INVALID_FACET",
"XML_SCHEMAP_INVALID_FACET_VALUE", "XML_SCHEMAP_INVALID_MAXOCCURS",
"XML_SCHEMAP_INVALID_MINOCCURS", "XML_SCHEMAP_INVALID_REF_AND_SUBTYPE",
"XML_SCHEMAP_INVALID_WHITE_SPACE", "XML_SCHEMAP_NOATTR_NOREF",
"XML_SCHEMAP_NOTATION_NO_NAME", "XML_SCHEMAP_NOTYPE_NOREF", "XML_SCHEMAP_REF_AND_SUBTYPE",
"XML_SCHEMAP_RESTRICTION_NONAME_NOREF", "XML_SCHEMAP_SIMPLETYPE_NONAME",
"XML_SCHEMAP_TYPE_AND_SUBTYPE", "XML_SCHEMAP_UNKNOWN_ALL_CHILD",
"XML_SCHEMAP_UNKNOWN_ANYATTRIBUTE_CHILD", "XML_SCHEMAP_UNKNOWN_ATTR_CHILD",
"XML_SCHEMAP_UNKNOWN_ATTRGRP_CHILD", "XML_SCHEMAP_UNKNOWN_ATTRIBUTE_GROUP",
"XML_SCHEMAP_UNKNOWN_BASE_TYPE", "XML_SCHEMAP_UNKNOWN_CHOICE_CHILD",
"XML_SCHEMAP_UNKNOWN_COMPLEXCONTENT_CHILD", "XML_SCHEMAP_UNKNOWN_COMPLEXTYPE_CHILD",
"XML_SCHEMAP_UNKNOWN_ELEM_CHILD", "XML_SCHEMAP_UNKNOWN_EXTENSION_CHILD",
"XML_SCHEMAP_UNKNOWN_FACET_CHILD", "XML_SCHEMAP_UNKNOWN_FACET_TYPE",
"XML_SCHEMAP_UNKNOWN_GROUP_CHILD", "XML_SCHEMAP_UNKNOWN_IMPORT_CHILD",
"XML_SCHEMAP_UNKNOWN_LIST_CHILD", "XML_SCHEMAP_UNKNOWN_NOTATION_CHILD",
"XML_SCHEMAP_UNKNOWN_PROCESSCONTENT_CHILD", "XML_SCHEMAP_UNKNOWN_REF",
"XML_SCHEMAP_UNKNOWN_RESTRICTION_CHILD", "XML_SCHEMAP_UNKNOWN_SCHEMAS_CHILD",
"XML_SCHEMAP_UNKNOWN_SEQUENCE_CHILD", "XML_SCHEMAP_UNKNOWN_SIMPLECONTENT_CHILD",
"XML_SCHEMAP_UNKNOWN_SIMPLETYPE_CHILD", "XML_SCHEMAP_UNKNOWN_TYPE",
"XML_SCHEMAP_UNKNOWN_UNION_CHILD", "XML_SCHEMAP_ELEM_DEFAULT_FIXED",
"XML_SCHEMAP_REGEXP_INVALID", "XML_SCHEMAP_FAILED_LOAD", "XML_SCHEMAP_NOTHING_TO_PARSE",
"XML_SCHEMAP_NOROOT", "XML_SCHEMAP_REDEFINED_GROUP", "XML_SCHEMAP_REDEFINED_TYPE",
"XML_SCHEMAP_REDEFINED_ELEMENT", "XML_SCHEMAP_REDEFINED_ATTRGROUP",
"XML_SCHEMAP_REDEFINED_ATTR", "XML_SCHEMAP_REDEFINED_NOTATION",
"XML_SCHEMAP_FAILED_PARSE", "XML_SCHEMAP_UNKNOWN_PREFIX", "XML_SCHEMAP_DEF_AND_PREFIX",
"XML_SCHEMAP_UNKNOWN_INCLUDE_CHILD", "XML_SCHEMAP_INCLUDE_SCHEMA_NOT_URI",
"XML_SCHEMAP_INCLUDE_SCHEMA_NO_URI", "XML_SCHEMAP_NOT_SCHEMA",
"XML_SCHEMAP_UNKNOWN_MEMBER_TYPE", "XML_SCHEMAP_INVALID_ATTR_USE",
"XML_SCHEMAP_RECURSIVE", "XML_SCHEMAP_SUPERNUMEROUS_LIST_ITEM_TYPE",
"XML_SCHEMAP_INVALID_ATTR_COMBINATION", "XML_SCHEMAP_INVALID_ATTR_INLINE_COMBINATION",
"XML_SCHEMAP_MISSING_SIMPLETYPE_CHILD", "XML_SCHEMAP_INVALID_ATTR_NAME",
"XML_SCHEMAP_REF_AND_CONTENT", "XML_SCHEMAP_CT_PROPS_CORRECT_1",
"XML_SCHEMAP_CT_PROPS_CORRECT_2", "XML_SCHEMAP_CT_PROPS_CORRECT_3",
"XML_SCHEMAP_CT_PROPS_CORRECT_4", "XML_SCHEMAP_CT_PROPS_CORRECT_5",
"XML_SCHEMAP_DERIVATION_OK_RESTRICTION_1", "XML_SCHEMAP_DERIVATION_OK_RESTRICTION_2_1_1",
"XML_SCHEMAP_DERIVATION_OK_RESTRICTION_2_1_2", "XML_SCHEMAP_DERIVATION_OK_RESTRICTION_2_2",
"XML_SCHEMAP_DERIVATION_OK_RESTRICTION_3", "XML_SCHEMAP_WILDCARD_INVALID_NS_MEMBER",
"XML_SCHEMAP_INTERSECTION_NOT_EXPRESSIBLE", "XML_SCHEMAP_UNION_NOT_EXPRESSIBLE",
"XML_SCHEMAP_SRC_IMPORT_3_1", "XML_SCHEMAP_SRC_IMPORT_3_2", "XML_SCHEMAP_DERIVATION_OK_RESTRICTION_4_1",
"XML_SCHEMAP_DERIVATION_OK_RESTRICTION_4_2", "XML_SCHEMAP_DERIVATION_OK_RESTRICTION_4_3",
"XML_SCHEMAP_COS_CT_EXTENDS_1_3", "XML_SCHEMAV_NOROOT", "XML_SCHEMAV_UNDECLAREDELEM",
"XML_SCHEMAV_NOTTOPLEVEL", "XML_SCHEMAV_MISSING", "XML_SCHEMAV_WRONGELEM",
"XML_SCHEMAV_NOTYPE", "XML_SCHEMAV_NOROLLBACK", "XML_SCHEMAV_ISABSTRACT",
"XML_SCHEMAV_NOTEMPTY", "XML_SCHEMAV_ELEMCONT", "XML_SCHEMAV_HAVEDEFAULT",
"XML_SCHEMAV_NOTNILLABLE", "XML_SCHEMAV_EXTRACONTENT", "XML_SCHEMAV_INVALIDATTR",
"XML_SCHEMAV_INVALIDELEM", "XML_SCHEMAV_NOTDETERMINIST", "XML_SCHEMAV_CONSTRUCT",
"XML_SCHEMAV_INTERNAL", "XML_SCHEMAV_NOTSIMPLE", "XML_SCHEMAV_ATTRUNKNOWN",
"XML_SCHEMAV_ATTRINVALID", "XML_SCHEMAV_VALUE", "XML_SCHEMAV_FACET",
"XML_SCHEMAV_CVC_DATATYPE_VALID_1_2_1", "XML_SCHEMAV_CVC_DATATYPE_VALID_1_2_2",
"XML_SCHEMAV_CVC_DATATYPE_VALID_1_2_3", "XML_SCHEMAV_CVC_TYPE_3_1_1",
"XML_SCHEMAV_CVC_TYPE_3_1_2", "XML_SCHEMAV_CVC_FACET_VALID",
"XML_SCHEMAV_CVC_LENGTH_VALID", "XML_SCHEMAV_CVC_MINLENGTH_VALID",
"XML_SCHEMAV_CVC_MAXLENGTH_VALID", "XML_SCHEMAV_CVC_MININCLUSIVE_VALID",
"XML_SCHEMAV_CVC_MAXINCLUSIVE_VALID", "XML_SCHEMAV_CVC_MINEXCLUSIVE_VALID",
"XML_SCHEMAV_CVC_MAXEXCLUSIVE_VALID", "XML_SCHEMAV_CVC_TOTALDIGITS_VALID",
"XML_SCHEMAV_CVC_FRACTIONDIGITS_VALID", "XML_SCHEMAV_CVC_PATTERN_VALID",
"XML_SCHEMAV_CVC_ENUMERATION_VALID", "XML_SCHEMAV_CVC_COMPLEX_TYPE_2_1",
"XML_SCHEMAV_CVC_COMPLEX_TYPE_2_2", "XML_SCHEMAV_CVC_COMPLEX_TYPE_2_3",
"XML_SCHEMAV_CVC_COMPLEX_TYPE_2_4", "XML_SCHEMAV_CVC_ELT_1",
"XML_SCHEMAV_CVC_ELT_2", "XML_SCHEMAV_CVC_ELT_3_1", "XML_SCHEMAV_CVC_ELT_3_2_1",
"XML_SCHEMAV_CVC_ELT_3_2_2", "XML_SCHEMAV_CVC_ELT_4_1", "XML_SCHEMAV_CVC_ELT_4_2",
"XML_SCHEMAV_CVC_ELT_4_3", "XML_SCHEMAV_CVC_ELT_5_1_1", "XML_SCHEMAV_CVC_ELT_5_1_2",
"XML_SCHEMAV_CVC_ELT_5_2_1", "XML_SCHEMAV_CVC_ELT_5_2_2_1", "XML_SCHEMAV_CVC_ELT_5_2_2_2_1",
"XML_SCHEMAV_CVC_ELT_5_2_2_2_2", "XML_SCHEMAV_CVC_ELT_6", "XML_SCHEMAV_CVC_ELT_7",
"XML_SCHEMAV_CVC_ATTRIBUTE_1", "XML_SCHEMAV_CVC_ATTRIBUTE_2",
"XML_SCHEMAV_CVC_ATTRIBUTE_3", "XML_SCHEMAV_CVC_ATTRIBUTE_4",
"XML_SCHEMAV_CVC_COMPLEX_TYPE_3_1", "XML_SCHEMAV_CVC_COMPLEX_TYPE_3_2_1",
"XML_SCHEMAV_CVC_COMPLEX_TYPE_3_2_2", "XML_SCHEMAV_CVC_COMPLEX_TYPE_4",
"XML_SCHEMAV_CVC_COMPLEX_TYPE_5_1", "XML_SCHEMAV_CVC_COMPLEX_TYPE_5_2",
"XML_SCHEMAV_ELEMENT_CONTENT", "XML_SCHEMAV_DOCUMENT_ELEMENT_MISSING",
"XML_SCHEMAV_CVC_COMPLEX_TYPE_1", "XML_SCHEMAV_CVC_AU", "XML_SCHEMAV_CVC_TYPE_1",
"XML_SCHEMAV_CVC_TYPE_2", "XML_SCHEMAV_CVC_IDC", "XML_SCHEMAV_CVC_WILDCARD",
"XML_SCHEMAV_MISC", "XML_XPTR_UNKNOWN_SCHEME", "XML_XPTR_CHILDSEQ_START",
"XML_XPTR_EVAL_FAILED", "XML_XPTR_EXTRA_OBJECTS", "XML_C14N_CREATE_CTXT",
"XML_C14N_REQUIRES_UTF8", "XML_C14N_CREATE_STACK", "XML_C14N_INVALID_NODE",
"XML_C14N_UNKNOW_NODE", "XML_C14N_RELATIVE_NAMESPACE", "XML_FTP_PASV_ANSWER",
"XML_FTP_EPSV_ANSWER", "XML_FTP_ACCNT", "XML_FTP_URL_SYNTAX",
"XML_HTTP_URL_SYNTAX", "XML_HTTP_USE_IP", "XML_HTTP_UNKNOWN_HOST",
"XML_SCHEMAP_SRC_SIMPLE_TYPE_1", "XML_SCHEMAP_SRC_SIMPLE_TYPE_2",
"XML_SCHEMAP_SRC_SIMPLE_TYPE_3", "XML_SCHEMAP_SRC_SIMPLE_TYPE_4",
"XML_SCHEMAP_SRC_RESOLVE", "XML_SCHEMAP_SRC_RESTRICTION_BASE_OR_SIMPLETYPE",
"XML_SCHEMAP_SRC_LIST_ITEMTYPE_OR_SIMPLETYPE", "XML_SCHEMAP_SRC_UNION_MEMBERTYPES_OR_SIMPLETYPES",
"XML_SCHEMAP_ST_PROPS_CORRECT_1", "XML_SCHEMAP_ST_PROPS_CORRECT_2",
"XML_SCHEMAP_ST_PROPS_CORRECT_3", "XML_SCHEMAP_COS_ST_RESTRICTS_1_1",
"XML_SCHEMAP_COS_ST_RESTRICTS_1_2", "XML_SCHEMAP_COS_ST_RESTRICTS_1_3_1",
"XML_SCHEMAP_COS_ST_RESTRICTS_1_3_2", "XML_SCHEMAP_COS_ST_RESTRICTS_2_1",
"XML_SCHEMAP_COS_ST_RESTRICTS_2_3_1_1", "XML_SCHEMAP_COS_ST_RESTRICTS_2_3_1_2",
"XML_SCHEMAP_COS_ST_RESTRICTS_2_3_2_1", "XML_SCHEMAP_COS_ST_RESTRICTS_2_3_2_2",
"XML_SCHEMAP_COS_ST_RESTRICTS_2_3_2_3", "XML_SCHEMAP_COS_ST_RESTRICTS_2_3_2_4",
"XML_SCHEMAP_COS_ST_RESTRICTS_2_3_2_5", "XML_SCHEMAP_COS_ST_RESTRICTS_3_1",
"XML_SCHEMAP_COS_ST_RESTRICTS_3_3_1", "XML_SCHEMAP_COS_ST_RESTRICTS_3_3_1_2",
"XML_SCHEMAP_COS_ST_RESTRICTS_3_3_2_2", "XML_SCHEMAP_COS_ST_RESTRICTS_3_3_2_1",
"XML_SCHEMAP_COS_ST_RESTRICTS_3_3_2_3", "XML_SCHEMAP_COS_ST_RESTRICTS_3_3_2_4",
"XML_SCHEMAP_COS_ST_RESTRICTS_3_3_2_5", "XML_SCHEMAP_COS_ST_DERIVED_OK_2_1",
"XML_SCHEMAP_COS_ST_DERIVED_OK_2_2", "XML_SCHEMAP_S4S_ELEM_NOT_ALLOWED",
"XML_SCHEMAP_S4S_ELEM_MISSING", "XML_SCHEMAP_S4S_ATTR_NOT_ALLOWED",
"XML_SCHEMAP_S4S_ATTR_MISSING", "XML_SCHEMAP_S4S_ATTR_INVALID_VALUE",
"XML_SCHEMAP_SRC_ELEMENT_1", "XML_SCHEMAP_SRC_ELEMENT_2_1", "XML_SCHEMAP_SRC_ELEMENT_2_2",
"XML_SCHEMAP_SRC_ELEMENT_3", "XML_SCHEMAP_P_PROPS_CORRECT_1",
"XML_SCHEMAP_P_PROPS_CORRECT_2_1", "XML_SCHEMAP_P_PROPS_CORRECT_2_2",
"XML_SCHEMAP_E_PROPS_CORRECT_2", "XML_SCHEMAP_E_PROPS_CORRECT_3",
"XML_SCHEMAP_E_PROPS_CORRECT_4", "XML_SCHEMAP_E_PROPS_CORRECT_5",
"XML_SCHEMAP_E_PROPS_CORRECT_6", "XML_SCHEMAP_SRC_INCLUDE", "XML_SCHEMAP_SRC_ATTRIBUTE_1",
"XML_SCHEMAP_SRC_ATTRIBUTE_2", "XML_SCHEMAP_SRC_ATTRIBUTE_3_1",
"XML_SCHEMAP_SRC_ATTRIBUTE_3_2", "XML_SCHEMAP_SRC_ATTRIBUTE_4",
"XML_SCHEMAP_NO_XMLNS", "XML_SCHEMAP_NO_XSI", "XML_SCHEMAP_COS_VALID_DEFAULT_1",
"XML_SCHEMAP_COS_VALID_DEFAULT_2_1", "XML_SCHEMAP_COS_VALID_DEFAULT_2_2_1",
"XML_SCHEMAP_COS_VALID_DEFAULT_2_2_2", "XML_SCHEMAP_CVC_SIMPLE_TYPE",
"XML_SCHEMAP_COS_CT_EXTENDS_1_1", "XML_SCHEMAP_SRC_IMPORT_1_1",
"XML_SCHEMAP_SRC_IMPORT_1_2", "XML_SCHEMAP_SRC_IMPORT_2", "XML_SCHEMAP_SRC_IMPORT_2_1",
"XML_SCHEMAP_SRC_IMPORT_2_2", "XML_SCHEMAP_INTERNAL", "XML_SCHEMAP_NOT_DETERMINISTIC",
"XML_SCHEMAP_SRC_ATTRIBUTE_GROUP_1", "XML_SCHEMAP_SRC_ATTRIBUTE_GROUP_2",
"XML_SCHEMAP_SRC_ATTRIBUTE_GROUP_3", "XML_SCHEMAP_MG_PROPS_CORRECT_1",
"XML_SCHEMAP_MG_PROPS_CORRECT_2", "XML_SCHEMAP_SRC_CT_1", "XML_SCHEMAP_DERIVATION_OK_RESTRICTION_2_1_3",
"XML_SCHEMAP_AU_PROPS_CORRECT_2", "XML_SCHEMAP_A_PROPS_CORRECT_2",
"XML_SCHEMAP_C_PROPS_CORRECT", "XML_SCHEMAP_SRC_REDEFINE", "XML_SCHEMAP_SRC_IMPORT",
"XML_SCHEMAP_WARN_SKIP_SCHEMA", "XML_SCHEMAP_WARN_UNLOCATED_SCHEMA",
"XML_SCHEMAP_WARN_ATTR_REDECL_PROH", "XML_SCHEMAP_WARN_ATTR_POINTLESS_PROH",
"XML_SCHEMAP_AG_PROPS_CORRECT", "XML_SCHEMAP_COS_CT_EXTENDS_1_2",
"XML_SCHEMAP_AU_PROPS_CORRECT", "XML_SCHEMAP_A_PROPS_CORRECT_3",
"XML_SCHEMAP_COS_ALL_LIMITED", "XML_SCHEMATRONV_ASSERT", "XML_SCHEMATRONV_REPORT",
"XML_MODULE_OPEN", "XML_MODULE_CLOSE", "XML_CHECK_FOUND_ELEMENT",
"XML_CHECK_FOUND_ATTRIBUTE", "XML_CHECK_FOUND_TEXT", "XML_CHECK_FOUND_CDATA",
"XML_CHECK_FOUND_ENTITYREF", "XML_CHECK_FOUND_ENTITY", "XML_CHECK_FOUND_PI",
"XML_CHECK_FOUND_COMMENT", "XML_CHECK_FOUND_DOCTYPE", "XML_CHECK_FOUND_FRAGMENT",
"XML_CHECK_FOUND_NOTATION", "XML_CHECK_UNKNOWN_NODE", "XML_CHECK_ENTITY_TYPE",
"XML_CHECK_NO_PARENT", "XML_CHECK_NO_DOC", "XML_CHECK_NO_NAME",
"XML_CHECK_NO_ELEM", "XML_CHECK_WRONG_DOC", "XML_CHECK_NO_PREV",
"XML_CHECK_WRONG_PREV", "XML_CHECK_NO_NEXT", "XML_CHECK_WRONG_NEXT",
"XML_CHECK_NOT_DTD", "XML_CHECK_NOT_ATTR", "XML_CHECK_NOT_ATTR_DECL",
"XML_CHECK_NOT_ELEM_DECL", "XML_CHECK_NOT_ENTITY_DECL", "XML_CHECK_NOT_NS_DECL",
"XML_CHECK_NO_HREF", "XML_CHECK_WRONG_PARENT", "XML_CHECK_NS_SCOPE",
"XML_CHECK_NS_ANCESTOR", "XML_CHECK_NOT_UTF8", "XML_CHECK_NO_DICT",
"XML_CHECK_NOT_NCNAME", "XML_CHECK_OUTSIDE_DICT", "XML_CHECK_WRONG_NAME",
"XML_CHECK_NAME_NOT_NULL", "XML_I18N_NO_NAME", "XML_I18N_NO_HANDLER",
"XML_I18N_EXCESS_HANDLER", "XML_I18N_CONV_FAILED", "XML_I18N_NO_OUTPUT"
))
XMLDomainErrors <-
structure(0:28, .Names = c("NONE", "PARSER", "TREE", "NAMESPACE",
"DTD", "HTML", "MEMORY", "OUTPUT", "IO", "FTP", "HTTP", "XINCLUDE",
"XPATH", "XPOINTER", "REGEXP", "DATATYPE", "SCHEMASP", "SCHEMASV",
"RELAXNGP", "RELAXNGV", "CATALOG", "C14N", "XSLT", "VALID", "CHECK",
"WRITER", "MODULE", "I18N", "SCHEMATRONV")) |
library(forecast)
?nhtemp
par(mfrow=c(1,1))
plot(nhtemp)
(fitse = ets(nhtemp, model='ANN'))
(fitse2 = ses(nhtemp))
forecast(fitse,3)
plot(forecast(fitse,c(3)))
accuracy(fitse)
TS = level + slope * t + irregular
plot(AirPassengers)
plot(log(AirPassengers))
(fithe = ets(log(AirPassengers), model='AAA'))
(pred = forecast(fithe, 5))
plot(pred, main='Forecast for Air Travel', ylab='Log (Air Passengers)', xlab='Time')
pred$mean
(pred$mean = exp(pred$mean))
(pred$lower = exp(pred$lower))
(pred$upper = exp(pred$upper))
(p = cbind(pred$mean, pred$lower, pred$upper))
(pred$mean = exp(pred$mean))
TS = level + slope * t + s(t) + irregular
fit <- HoltWinters(nhtemp, beta=FALSE, gamma=FALSE)
fit
forecast(fit, 1)
plot(forecast(fit, 1), xlab="Year", ylab=expression(paste("Temperature (", degree*F,")",)), main="New Haven Annual Mean Temperature")
accuracy(fit)
fit <- HoltWinters(log(AirPassengers))
fit
accuracy(fit)
pred <- forecast(fit, 5)
pred
plot(pred, main="Forecast for Air Travel",
ylab="Log(AirPassengers)", xlab="Time")
pred$mean <- exp(pred$mean)
pred$lower <- exp(pred$lower)
pred$upper <- exp(pred$upper)
p <- cbind(pred$mean, pred$lower, pred$upper)
dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
p
library(forecast)
fit <- ets(JohnsonJohnson)
fit
plot(forecast(fit), main="Johnson and Johnson Forecasts",
ylab="Quarterly Earnings (Dollars)", xlab="Time")
library(forecast)
library(tseries)
plot(Nile)
ndiffs(Nile)
dNile <- diff(Nile)
plot(dNile)
adf.test(dNile)
library(forecast)
?auto.arima
?arima |
"plot.sucra" <- function(x, legend.position = "none", ...) {
nT <- length(x$SUCRA)
cumeffectiveness <- apply(x$rankprob, 2, cumsum)
names <- x$names
gglist <- vector(mode = "list", nT)
for (TRT in 1:nT) {
Area=round(x$SUCRA[TRT], 3)
ddd <- data.frame(trt = names, CDF = cumeffectiveness[,TRT], PDF = x$rankprob[,TRT], stringAsFactors = FALSE)
ddd$trt <- factor(ddd$trt, levels = ddd$trt)
bb <- ggplot(ddd, aes(x = trt, group = 1)) +
geom_line(aes(y = CDF), color = "
geom_line(aes(y = PDF), color = rgb(0, 157, 114, maxColorValue = 255), linetype = "twodash", size = 1) +
theme_gray() + theme(legend.position = legend.position) +
ylab("Probability") + labs(title = paste0("Trt (", names[TRT], "): ", Area))
gglist[[TRT]] <- bb
}
do.call(grid.arrange, gglist)
invisible(gglist)
} |
test_that("best_tau works", {
skip_on_cran()
skip_if(getRversion() < "3.6.0")
img <- ijtiff::read_tif(system.file("extdata", "bleached.tif",
package = "detrendr"
), msg = FALSE)
expect_error(
best_tau(img),
paste0(
"You must choose \\*either\\* 'FCS' \\*or\\* 'FFS' for\\s?",
"`purpose`."
)
)
set.seed(1)
expect_equal(round(best_tau(img, purpose = "ffs", parallel = 2)),
34,
tolerance = 2
)
img_2ch <- abind::abind(img, img, along = 3)
set.seed(1)
t1 <- best_tau(img_2ch, purpose = "fcs")
expect_equal(length(t1), 2)
set.seed(1)
t2 <- best_tau(img_2ch, purpose = "fcs")
expect_equal(t1, t2, tolerance = 1)
img <- array(rpois(99^3, 99), dim = rep(99, 3))
bt <- best_tau(img, purpose = "ffs")
if (!is.na(bt)) {
expect_gt(bt, 150)
}
img[] <- 0
expect_error(
best_tau(img, purpose = "fcs"),
"all pixel values are equal to 0"
)
})
test_that("best_l works", {
skip_on_cran()
img <- ijtiff::read_tif(system.file("extdata", "bleached.tif",
package = "detrendr"
), msg = FALSE)
expect_error(
best_l(img),
paste0(
"You must choose \\*either\\* 'FCS' \\*or\\* 'FFS' for\\s?",
"`purpose`."
)
)
set.seed(1)
expect_equal(round(best_l(img, parallel = 2, purpose = "ffs")),
17,
tolerance = 2
)
img_2ch <- abind::abind(img, img, along = 3)
set.seed(1)
l1 <- best_l(img_2ch, purpose = "fcs")
expect_equal(length(l1), 2)
expect_equal(mean(l1), 17, tolerance = 2)
set.seed(4)
img <- array(rpois(99^3, 99), dim = rep(99, 3))
bt <- round(best_tau(img, purpose = "ffs"))
if (!is.na(bt)) {
expect_equal(bt, 28372, tolerance = 28200)
}
img[] <- 0
expect_error(best_l(img, purpose = "ffs"), "all pixel values are equal to 0")
img <- array(round(seq(0, .Machine$integer.max, length.out = 2^3)),
dim = rep(2, 3)
)
expect_error(
best_l(img, purpose = "ffs"),
"Even with.*the most severe detrend"
)
skip_if_not_installed("abind")
})
test_that("best_degree works", {
skip_on_cran()
img <- ijtiff::read_tif(system.file("extdata", "bleached.tif",
package = "detrendr"
), msg = FALSE)
expect_error(
best_degree(img),
paste0(
"You must choose \\*either\\* 'FCS' \\*or\\* 'FFS' for\\s?",
"`purpose`."
)
)
set.seed(1)
best_degree <- suppressWarnings(round(best_degree(img, purpose = "ffs")))
expect_equal(best_degree, 17, tolerance = 2)
img_2ch <- abind::abind(img, img, along = 3)
d1 <- suppressWarnings(best_degree(img_2ch, purpose = "fcs"))
expect_equal(length(d1), 2)
expect_equal(mean(d1), 17, tolerance = 2)
set.seed(7)
img <- array(rpois(99^3, 99), dim = rep(99, 3))
best_degree <- suppressWarnings(round(best_degree(img, purpose = "ffs")))
expect_equal(best_degree, NA_real_)
img[] <- 0
expect_error(
best_degree(img, purpose = "ffs"),
"all pixel values are equal to 0"
)
})
test_that("best_swaps() works", {
img <- ijtiff::read_tif(system.file("extdata", "bleached.tif",
package = "detrendr"
))
set.seed(1)
expect_equal(best_swaps(img, quick = TRUE), 1588366, tolerance = 4000)
expect_error(
best_swaps(array(7, dim = rep(1, 4))),
paste(
"Your image is constant: all pixel values are equal to 7.+",
"This type of image is not detrendable."
)
)
for (i in seq_len(77)) {
set.seed(i)
sim_img <- array(rpois(6^4, 8), dim = rep(6, 4))
expect_lt(
sum(best_swaps(sim_img, quick = TRUE)),
sum(sim_img) * dim(sim_img)[3]
)
}
}) |
library(odr)
myod1 <- od.2(icc = 0.2, r12 = 0.5, r22 = 0.5, c1 = 1, c2 = 5, c1t = 1, c2t = 50,
varlim = c(0.01, 0.02))
myod2 <- od.2(icc = 0.2, r12 = 0.5, r22 = 0.5, c1 = 1, c2 = 5, c1t = 1, c2t = 50,
plot.by = list(p = "p"), n = 20, varlim = c(0.005, 0.030))
myod3 <- od.2(icc = 0.2, r12 = 0.5, r22 = 0.5, c1 = 1, c2 = 5, c1t = 1, c2t = 50,
p = 0.5, varlim = c(0.005, 0.020))
myod4 <- od.2(icc = 0.2, r12 = 0.5, r22 = 0.5, c1 = 1, c2 = 5, c1t = 1, c2t = 50,
plots = FALSE, n = 20, p = 0.5, varlim = c(0.005, 0.025))
mym <- power.2(expr = myod1, d = 0.3, q = 1, power = 0.8)
figure <- par(mfrow = c(1, 2))
budget <- NULL
nrange <- c(2:50)
for (n in nrange)
budget <- c(budget, power.2(expr = myod1, constraint = list (n = n), d = 0.3, q = 1, power = 0.8)$out$m)
plot(nrange, budget, type = "l", lty = 1, xlim = c(0, 50), ylim = c(1500, 3500),
xlab = "Level-1 sample size: n", ylab = "Budget", main = "", col = "black")
abline(v = 9, lty = 2, col = "Blue")
budget <- NULL
prange <- seq(0.05, 0.95, by = 0.005)
for (p in prange)
budget <- c(budget, power.2(expr = myod1, constraint = list (p = p), d = 0.3, q = 1, power = 0.8)$out$m)
plot(prange, budget, type = "l", lty = 1, xlim = c(0, 1), ylim = c(1500, 7000),
xlab = "Porportion groups in treatment: p", ylab = "Budget", main = "", col = "black")
abline(v = 0.33, lty = 2, col = "Blue")
par(figure)
mypower <- power.2(expr = myod1, q = 1, d = 0.3, m = 1702)
figure <- par(mfrow = c (1, 2))
pwr <- NULL
nrange <- c(2:50)
for (n in nrange)
pwr <- c(pwr, power.2(expr = myod1, constraint = list (n = n), d = 0.3, q = 1, m = 1702)$out)
plot(nrange, pwr, type = "l", lty = 1, xlim = c(0, 50), ylim = c(0.4, 0.9),
xlab = "Level-1 sample size: n", ylab = "Power", main = "", col = "black")
abline(v = 9, lty = 2, col = "Blue")
pwr <- NULL
prange <- seq(0.05, 0.95, by = 0.005)
for (p in prange)
pwr <- c(pwr, power.2(expr = myod1, constraint = list (p = p), d = 0.3, q = 1, m = 1702)$out)
plot(prange, pwr, type = "l", lty = 1, xlim = c(0, 1), ylim = c(0.1, 0.9),
xlab = "Porportion groups in treatment: p", ylab = "Power", main = "", col = "black")
abline(v = 0.33, lty = 2, col = "Blue")
par(figure)
mymdes <- power.2(expr = myod1, q = 1, power = 0.80, m = 1702)
figure <- par(mfrow = c (1, 2))
MDES <- NULL
nrange <- c(2:50)
for (n in nrange)
MDES <- c(MDES, power.2(expr = myod1, constraint = list (n = n), power = 0.8, q = 1, m = 1702)$out)
plot(nrange, MDES, type = "l", lty = 1, xlim = c(0, 50), ylim = c(0.3, 0.8),
xlab = "Level-1 sample size: n", ylab = "MDES", main = "", col = "black")
abline(v = 9, lty = 2, col = "Blue")
MDES <- NULL
prange <- seq(0.05, 0.95, by = 0.005)
for (p in prange)
MDES <- c(MDES, power.2(expr = myod1, constraint = list (p = p), power = 0.8, q = 1, m = 1702)$out)
plot(prange, MDES, type = "l", lty = 1, xlim = c(0, 1), ylim = c(0.3, 0.8),
xlab = "Porportion groups in treatment: p", ylab = "MDES", main = "", col = "black")
abline(v = 0.33, lty = 2, col = "Blue")
par(figure)
myJ <- power.2(cost.model = FALSE, expr = myod1, d = 0.3, q = 1, power = 0.8)
myJ$out
mypower1 <- power.2(cost.model = FALSE, expr = myod1, J = 59, d = 0.3, q = 1)
mypower1$out
mymdes1 <- power.2(cost.model = FALSE, expr = myod1, J = 59, power = 0.8, q = 1)
mymdes1$out
figure <- par(mfrow = c (1, 2))
pwr <- NULL
mrange <- c(300:3000)
for (m in mrange)
pwr <- c(pwr, power.2(expr = myod1, d = 0.3, q = 1, m = m)$out)
plot(mrange, pwr, type = "l", lty = 1, xlim = c(300, 3000), ylim = c(0, 1),
xlab = "Budget", ylab = "Power", main = "", col = "black")
abline(v = 1702, lty = 2, col = "Blue")
pwr <- NULL
Jrange <- c(4:100)
for (J in Jrange)
pwr <- c(pwr, power.2(expr = myod1, cost.model = FALSE, d = 0.3, q = 1, J = J)$out)
plot(Jrange, pwr, type = "l", lty = 1, xlim = c(4, 100), ylim = c(0, 1),
xlab = "Level-2 sample size: J", ylab = "Power", main = "", col = "black")
abline(v = 59, lty = 2, col = "Blue")
par(figure)
myre <- re(od = myod1, subod= myod2)
myre$re
myre <- re(od = myod1, subod= myod3)
myre <- re(od = myod1, subod= myod4) |
context("ml fpm prefixspan")
test_that("ml_prefixspan() works as expected", {
test_requires_version("2.4.0", "prefixspan requires spark 2.4.0+")
skip_on_arrow()
sc <- testthat_spark_connection()
df <- tibble::tibble(
seq = list(
list(list(1, 2), list(3)),
list(list(1), list(3, 2), list(1, 2)),
list(list(1, 2), list(5)),
list(list(6))
)
)
sdf <- copy_to(sc, df, overwrite = TRUE)
prefix_span_model <- ml_prefixspan(
sc,
seq_col = "seq",
min_support = 0.5,
max_pattern_length = 5,
max_local_proj_db_size = 32000000
)
res <- prefix_span_model$frequent_sequential_patterns(sdf) %>%
collect()
expect_equal(nrow(res), 5)
expect_setequal(
lapply(seq(nrow(res)), function(i) as.list(res[i,])),
list(
list(sequence = list(list(list(3))), freq = 2),
list(sequence = list(list(list(2))), freq = 3),
list(sequence = list(list(list(1))), freq = 3),
list(sequence = list(list(list(1, 2))), freq = 3),
list(sequence = list(list(list(1), list(3))), freq = 2)
)
)
}) |
context("packages")
test_that("packages", {
reg = makeTestRegistry(packages = "MASS")
expect_true(is.list(reg$packages) && setequal(names(reg$packages), c("BatchJobs", "MASS")))
reg = addRegistryPackages(reg, "testthat")
expect_true(is.list(reg$packages) && setequal(names(reg$packages), c("BatchJobs", "MASS", "testthat")))
reg = addRegistryPackages(reg, "checkmate")
expect_true(is.list(reg$packages) && setequal(names(reg$packages), c("BatchJobs", "MASS", "testthat", "checkmate")))
reg = removeRegistryPackages(reg, "testthat")
expect_true(is.list(reg$packages) && setequal(names(reg$packages), c("BatchJobs", "MASS", "checkmate")))
reg = removeRegistryPackages(reg, "MASS")
expect_true(is.list(reg$packages) && setequal(names(reg$packages), c("BatchJobs", "checkmate")))
reg = setRegistryPackages(reg, c("MASS", "checkmate"))
expect_true(is.list(reg$packages) && setequal(names(reg$packages), c("BatchJobs", "MASS", "checkmate")))
reg = addRegistryPackages(reg, "BatchJobs")
expect_true(is.list(reg$packages) && setequal(names(reg$packages), c("BatchJobs", "MASS", "checkmate")))
}) |
`func.mode` <- function(functions, h = 0.20)
{
depth.mode(functions)
} |
library(RJcluster)
high_balanced = simulate_HD_data()
low_balanced = simulate_HD_data(signal_variance = 2)
high_unbalanced = simulate_HD_data(size_vector = c(20, 20, 80, 80))
print(dim(high_balanced$X))
print(dim(low_balanced$X))
print(dim(high_unbalanced$X))
res_high_balanced = RJclust(data = high_balanced$X)
res_low_balanced = RJclust(data = low_balanced$X)
res_high_unbalanced = RJclust(data = high_unbalanced$X)
results = list(res_high_balanced, res_low_balanced, res_high_unbalanced)
data = list(high_balanced, low_balanced, high_unbalanced, high_balanced, low_balanced, high_unbalanced)
for (i in 1:length(results))
{
temp_results = results[[i]]
mi = Mutual_Information(temp_results$class, data[[i]]$Y)
print(paste("Number of classes found:", temp_results$K, "NMI:", round(mi$nmi,2), "AMI", round(mi$ami,2)))
} |
ldl <- function(x, tol) {
if(length(x) == 1) {
if(x >= 0) return(matrix(x))
if(x < 0) stop("Matrix x is not positive semidefinite.")
}
if (missing(tol)) {
tol <- max(100, max(abs(diag(as.matrix(x))))) * .Machine$double.eps
}
if (!isSymmetric(x, tol = tol))
stop("Matrix is not symmetric!")
out <- .Fortran(fldl, x = x, as.integer(dim(x)[1]), tol = tol, info = integer(1))
if (out$info != 0)
stop("Matrix x is not positive semidefinite.")
out$x
} |
library(plumber)
cars_lm <- lm(mpg ~ cyl + disp, data = mtcars)
v <- vetiver_model(cars_lm, "cars1")
test_that("default endpoint", {
p <- pr() %>% vetiver_pr_predict(v)
expect_equal(names(p$routes), c("ping", "predict"))
expect_equal(map_chr(p$routes, "verbs"),
c(ping = "GET", predict = "POST"))
})
test_that("default endpoint via modular functions", {
p1 <- pr() %>% vetiver_pr_predict(v)
p2 <- pr() %>% vetiver_pr_post(v) %>% vetiver_pr_docs(v)
expect_equal(p1$endpoints, p2$endpoints)
expect_equal(p1$routes, p2$routes)
})
test_that("pin URL endpoint", {
v$metadata <- list(url = "potato")
p <- pr() %>% vetiver_pr_predict(v)
expect_equal(names(p$routes), c("pin-url", "ping", "predict"))
expect_equal(map_chr(p$routes, "verbs"),
c(`pin-url` = "GET", ping = "GET", predict = "POST"))
})
test_that("default OpenAPI spec", {
v$metadata <- list(url = "potatoes")
p <- pr() %>% vetiver_pr_predict(v)
car_spec <- p$getApiSpec()
post_spec <- car_spec$paths$`/predict`$post
expect_equal(names(post_spec), c("summary", "requestBody", "responses"))
expect_equal(as.character(post_spec$summary),
"Return predictions from model using 2 features")
expect_equal(post_spec$requestBody$content$`application/json`$schema$items,
list(type = "object",
properties = list(cyl = list(type = "number"),
disp = list(type = "number"))))
get_spec <- car_spec$paths$`/pin-url`$get
expect_equal(as.character(get_spec$summary),
"Get URL of pinned vetiver model")
})
test_that("OpenAPI spec is the same for modular functions", {
v$metadata <- list(url = "potatoes")
p1 <- pr() %>% vetiver_pr_predict(v)
p2 <- pr() %>% vetiver_pr_post(v) %>% vetiver_pr_docs(v)
spec1 <- p1$getApiSpec()
spec2 <- p2$getApiSpec()
expect_equal(spec1, spec2)
})
test_that("OpenAPI spec for save_ptype = FALSE", {
v1 <- vetiver_model(cars_lm, "cars1", save_ptype = FALSE)
p <- pr() %>% vetiver_pr_predict(v1)
expect_equal(names(p$routes), c("ping", "predict"))
expect_equal(map_chr(p$routes, "verbs"),
c(ping = "GET", predict = "POST"))
car_spec <- p$getApiSpec()
post_spec <- car_spec$paths$`/predict`$post
expect_equal(names(post_spec), c("summary", "requestBody", "responses"))
expect_equal(as.character(post_spec$summary),
"Return predictions from model")
expect_equal(names(post_spec$requestBody$content$`application/json`$schema$items),
c("type", "properties"))
})
test_that("OpenAPI spec with custom ptype", {
car_ptype <- mtcars[15:16, 2:3]
v <- vetiver_model(cars_lm, "cars1", b, save_ptype = car_ptype)
p <- pr() %>% vetiver_pr_predict(v)
car_spec <- p$getApiSpec()
post_spec <- car_spec$paths$`/predict`$post
expect_equal(names(post_spec), c("summary", "requestBody", "responses"))
expect_equal(as.character(post_spec$summary),
"Return predictions from model using 2 features")
expect_equal(post_spec$requestBody$content$`application/json`$schema$items,
list(type = "object",
properties = list(cyl = list(type = "number"),
disp = list(type = "number"))))
expect_equal(post_spec$requestBody$content$`application/json`$schema$example,
purrr::transpose(car_ptype))
})
test_that("OpenAPI spec with additional endpoint", {
v$metadata <- list(url = "potatoes")
another_handler <- function(req) {
newdata <- req$body
sum(newdata[names(v$ptype)])
}
p <- pr() %>%
vetiver_pr_post(v) %>%
pr_post(path = "/sum", handler = another_handler) %>%
vetiver_pr_docs(v)
car_spec <- p$getApiSpec()
expect_equal(sort(names(car_spec$paths)),
sort(paste0("/", names(p$routes))))
post_spec <- car_spec$paths$`/predict`$post
sum_spec <- car_spec$paths$`/sum`$post
expect_equal(names(post_spec), c("summary", "requestBody", "responses"))
expect_equal(names(sum_spec), c("summary", "requestBody", "responses"))
expect_equal(as.character(post_spec$summary),
"Return predictions from model using 2 features")
expect_equal(as.character(sum_spec$summary),
"Return /sum from model using 2 features")
items <- list(type = "object",
properties = list(cyl = list(type = "number"),
disp = list(type = "number")))
expect_equal(post_spec$requestBody$content$`application/json`$schema$items,
items)
expect_equal(sum_spec$requestBody$content$`application/json`$schema$items,
items)
})
test_that("debug listens to `is_interactive()`", {
rlang::with_interactive(value = FALSE, {
p <- pr() %>% vetiver_pr_predict(v)
expect_equal(p$getDebug(), FALSE)
})
rlang::with_interactive(value = TRUE, {
p <- pr() %>% vetiver_pr_predict(v)
expect_equal(p$getDebug(), TRUE)
})
}) |
catColorPal <- function(x, levels = NULL, colors = NULL, naCol = "
if (is.null(levels)) {
if (is.factor(x)) levels <- levels(x)
else levels <- unique(x)
}
if (is.null(colors)) colors <- DEFAULT_CAT_COLORS
colors <- rep(colors, length.out = length(levels))
names(colors) <- levels
res <- unname(colors[as.character(x)])
res[is.na(res)] <- naCol
attr(res, "levels") <- levels
attr(res, "pal") <- colors
res
} |
maskFile <- function(shp_poligon, nam="RSIP_", dimname=c(17,26))
{
cuenca<-readOGR('.',shp_poligon)
cuenca<- spTransform(cuenca, CRS('+proj=longlat +datum=WGS84'))
files<- list.files(pattern='.tif')
imageraster <- raster(files[1])
imageraster <- crop(imageraster, cuenca)
imageraster <- mask(imageraster, cuenca)
names(imageraster) <- substr(files[1], dimname[1], dimname[2])
names(imageraster) <- paste0(nam,names(imageraster))
cat(sprintf('\n RSIP: Processing raster %s \n',names(imageraster)))
writeRaster(imageraster,names(imageraster), format = "GTiff",overwrite = T)
if(length(files)>=2){
for (i in 2:length(files))
{
imageraster <- raster(files[i])
imageraster <- crop(imageraster, cuenca)
imageraster <- mask(imageraster, cuenca)
names(imageraster) <- substr(files[i], dimname[1], dimname[2])
names(imageraster) <- paste0(nam,names(imageraster))
writeRaster(imageraster, names(imageraster), format = "GTiff",overwrite = T)
cat(sprintf('RSIP: Processing raster %s \n',names(imageraster)))
}
}
}
exportValueGrid <- function()
{
files<- list.files(pattern='.tif')
imageraster <- raster(files[1])
cat(sprintf('\n RSIP: Processing raster %s \n',names(imageraster)))
val<-rasterToPoints(imageraster)
combine<-cbind(val[,1],val[,2],val[,3])
if(length(files)>=2){
for (i in 2:length(files))
{
imageraster <- raster(files[i])
val<-rasterToPoints(imageraster)
combine<-cbind(combine,val[,3])
cat(sprintf('RSIP: Processing raster %s \n',names(imageraster)))
}
}
write.table(combine,paste0('RSIP_ValueGrid','.txt'))
cat('\nRSIP: Successful Analysis! - The Values were printed correctly \n')
}
exportValuePoligon <- function(shp_poligon)
{
cuenca <- readOGR('.',shp_poligon)
files<- list.files(pattern='.tif')
imageraster <- raster(files[1])
cat(sprintf('RSIP: Processing raster %s \n',names(imageraster)))
rbrick <- imageraster
if(length(files)>=2){
for (i in 2:length(files))
{
imageraster <- raster(files[i])
rbrick <- addLayer(rbrick,imageraster)
cat(sprintf('RSIP: Processing raster %s \n',names(imageraster)))
}
}
cat('\n RSIP: Extracting basin values...\n')
Pm_c <-extract(rbrick, cuenca[1:1, ])
write.table(Pm_c, file = paste0('RSIP_ValuePoligono','.csv'),row.names=T, na="",col.names=T, sep="\t")
cat('\nRSIP: Successful Analysis! - The Values were printed correctly \n')
}
exportValuePointShp <- function(shp_station)
{
estaciones <- readOGR('.',shp_station)
estaciones.ll <- spTransform(estaciones, CRS("+proj=longlat"))
files<- list.files(pattern='.tif')
imageraster <- raster(files[1])
cat(sprintf('RSIP: Processing raster %s \n',names(imageraster)))
rbrick <- imageraster
if(length(files)>=2){
for (i in 2:length(files))
{
imageraster <- raster(files[i])
rbrick <- addLayer(rbrick,imageraster)
cat(sprintf('RSIP: Processing raster %s \n',names(imageraster)))
}
}
cat('\n RSIP: Extracting Values from Stations...\n')
Pm_e <-extract(rbrick,estaciones)
name_station<-estaciones@data[[1]]
row.names(Pm_e)<- name_station
write.table(Pm_e,paste0('RSIP_ValuePointShp','.txt'))
cat('\nRSIP: Successful Analysis! - The Values were printed correctly \n')
}
exportValuePointsTxt<- function(txt_xy)
{
xy<-cbind(txt_xy[,1],txt_xy[,2])
files<- list.files(pattern='.tif')
imageraster <- raster(files[1])
cat(sprintf('RSIP: Processing raster %s \n',names(imageraster)))
rbrick <- imageraster
if(length(files)>=2){
for (i in 2:length(files))
{
imageraster <- raster(files[i])
rbrick <- addLayer(rbrick,imageraster)
cat(sprintf('Processing raster %s \n',names(imageraster)))
}
}
cat('\n RSIP: Extracting Values from File...\n')
Pm_e <-extract(rbrick,xy)
df1 <- data.frame(Pe = Pm_e)
rownames(df1) <- txt_xy[,3]
write.table(df1,paste0('RSIP_ValuePointsTxt','.txt'))
print(df1)
cat('\nRSIP: Successful Analysis! - The Values were printed correctly \n')
}
plotAll <- function(dimplot = c(3,4), color = c("red", "yellow",'green3',"cyan", "blue"),
zlim=c(-10,2000), dimname=c(17,23))
{
files<- list.files(pattern='.tif')
imageraster <- raster(files[1])
names(imageraster) <- substr(files[1], dimname[1], dimname[2])
cat(sprintf('RSIP: Processing raster %s \n',names(imageraster)))
rbrick <- imageraster
if(length(files)>=2){
for (i in 2:length(files))
{
imageraster <- raster(files[i])
names(imageraster) <- substr(files[i], dimname[1], dimname[2])
rbrick <- addLayer(rbrick,imageraster)
cat(sprintf('RSIP: Processing raster %s \n',names(imageraster)))
}
}
spplot(rbrick,layout=dimplot, zlim = zlim, col.regions=colorRampPalette(color)(255))
cat('\nRSIP: Successful Analysis! - The imagen were printed correctly \n')
}
trmmToTiff <- function()
{
files<- list.files(pattern='.nc4')
for (i in 1:length(files))
{
dat.ncdf4 <- nc_open(files[i])
lon <- ncvar_get(dat.ncdf4, 'lon')
lat <- ncvar_get(dat.ncdf4, 'lat')
Pdiario <- ncvar_get(dat.ncdf4, 'precipitation')
d1 <- expand.grid(x = lon, y = lat)
p<-as.vector(t(Pdiario))
df <- data.frame( x = d1$x, y = d1$y, P_daily = p)
dfr<-rasterFromXYZ(df)
projection(dfr) <- CRS("+proj=longlat +datum=WGS84")
writeRaster(dfr, filename = dat.ncdf4$filename, format = 'GTiff', overwrite = T)
cat(sprintf('RSIP: Processesing raster %s \n',dat.ncdf4$filename))
}
} |
vuniroot2 <- function(
y, f, interval = stop('must provide a length-2 `interval`'),
tol = .Machine$double.eps^.25, maxiter = 1000
) {
if (any(is.infinite(y))) stop('infinite return from function `f` cannot be handled')
out <- rep(NA_real_, times = length(y))
if (!any(yok <- !is.na(y))) return(out)
out[yok] <- Inf
yok_ <- y[yok]
f.intv <- f(interval)
if (anyNA(f.intv)) {
stop('function evaluated at either end of the `interval` must not be NA')
}
f.lower <- f.intv[1L] - yok_
f.upper <- f.intv[2L] - yok_
if (any(fl0 <- (abs(f.lower) < tol))) {
out[yok][fl0] <- interval[1L]
f.lower <- f.lower[!fl0]
f.upper <- f.upper[!fl0]
yok[yok][fl0] <- FALSE
if (!any(yok)) return(out)
}
if (any(fu0 <- (abs(f.upper) < tol))) {
out[yok][fu0] <- interval[2L]
f.lower <- f.lower[!fu0]
f.upper <- f.upper[!fu0]
yok[yok][fu0] <- FALSE
if (!any(yok)) return(out)
}
yok_ <- y[yok]
if (any(sign_same <- (f.lower * f.upper > 0))) {
out[yok][sign_same & (abs(f.lower) < abs(f.upper))] <- -Inf
sign_change <- which(!sign_same)
} else sign_change <- seq_along(yok_)
if (nn <- length(sign_change)) {
out[yok][sign_change] <- vuniroot(
f = function(x) f(x) - yok_[sign_change],
lower = rep(interval[1L], times = nn), upper = rep(interval[2L], times = nn),
f.lower = f.lower[sign_change], f.upper = f.upper[sign_change],
extendInt = 'no', check.conv = TRUE,
tol = tol, maxiter = maxiter, trace = 0L)[[1L]]
}
return(out)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.