code
stringlengths 1
13.8M
|
---|
context("lowest_common")
force_http1_1 <- list(http_version = 2L)
test_that("lowest_common works with ncbi, passing in classifications and doing internally", {
skip_on_cran()
skip_on_travis()
id <- c("9031", "9823", "9606", "9470")
idc <- classification(id, db = 'ncbi', callopts = force_http1_1)
aa <- lowest_common(id[2:4], db = "ncbi")
bb <- lowest_common(id[2:4], db = "ncbi", low_rank = 'class')
cc <- lowest_common(id[2:4], db = "ncbi", class_list = idc, low_rank = 'class')
expect_is(aa, "data.frame")
expect_is(bb, "data.frame")
expect_is(cc, "data.frame")
expect_named(aa, c('name', 'rank', 'id'))
expect_named(cc, c('name', 'rank', 'id'))
expect_identical(aa, bb)
expect_identical(bb, cc)
expect_equal(NROW(aa), 1)
expect_lt(
system.time(lowest_common(id[2:4], db = "ncbi", class_list = idc, low_rank = 'class'))[3],
system.time(lowest_common(id[2:4], db = "ncbi", low_rank = 'class'))[3]
)
})
test_that("lowest_common works with itis", {
skip_on_cran()
ids <- c("180722","180092","572890")
idc <- classification(ids, db = 'itis')
expect_identical(
lowest_common(ids, db = "itis"),
lowest_common(ids, db = "itis", class_list = idc)
)
bb <- lowest_common(ids, db = "itis", low_rank = 'class')
cc <- lowest_common(ids, db = "itis", class_list = idc, low_rank = 'class')
expect_is(bb, "data.frame")
expect_is(cc, "data.frame")
expect_named(cc, c('name', 'rank', 'id'))
expect_identical(bb, cc)
expect_equal(NROW(bb), 1)
}) |
pairwise.BMSC = function(mdl, contrast, covariate = NULL, who = "delta") {
check_contrasts <- function( contr.names , contr.parts , contrast ){
M <- strsplit(contr.names , ":")
out <- NULL
len <- NULL
i <- 1
for(m in M){
len <- c(len , length(m))
for(cp in contr.parts){
for(mm in m){
if(grepl(cp,mm)) out <- c(out , i)
}
}
i <- i +1
}
tab.out <- table( out )
return(as.numeric(names(which(len[unique(out)] == tab.out))))
}
se <- function(object) {
sd(object)/sqrt(length(object))
}
if (mdl[[7]] == "normal") {
d0 <- dnorm(0, 0, 10)
} else if (mdl[[7]] == "cauchy") {
d0 <- dcauchy(0, 0, sqrt(2)/2)
} else if (mdl[[7]] == "student") {
d0 <- LaplacesDemon::dst(0, 10, 3)
}
if (class(mdl)[2] != "BMSC")
stop("Not a valid BMSC object.")
if (!exists("contrast"))
stop("Not a valid contrast")
tmp.post <- tmp.data <- contr.names <- contr.column <- contr.parts <- contr.table <-
tmp.marginal <- findRow <- sum_logspl <- bf_sd <- tmp.y <- NULL
if(who == "delta"){
tmp.post <- rstan::extract(mdl[[2]], pars = "b_Delta")
tmp.data <- mdl[[3]]
contr.names <- colnames(mdl[[5]]$XF_Pts)
contr.table <- mdl[[5]]$XF_Pts
} else if(who == "control"){
tmp.post <- rstan::extract(mdl[[2]], pars = "b_Ctrl")
tmp.data <- mdl[[4]]
contr.names <- colnames(mdl[[5]]$XF_Ctrl)
contr.table <- mdl[[5]]$XF_Ctrl
} else if(who == "singlecase"){
delta <- rstan::extract(mdl[[2]], pars = "b_Delta")
ctrl <- rstan::extract(mdl[[2]], pars = "b_Ctrl")
tmp.post <- list(delta[[1]] + ctrl[[1]])
tmp.data <- mdl[[3]]
contr.names <- colnames(mdl[[5]]$XF_Pts)
contr.table <- mdl[[5]]$XF_Pts
} else stop("Not a valid \"who\" value")
if(sum(grepl(contrast,contr.names))==0) stop("Not a valid contrast")
contr.parts <- unlist(strsplit(contrast,":"))
contr.column <- which(grepl(contrast,contr.names))
contr.column <- c(contr.column, check_contrasts(contr.names[1:(contr.column-1)] , contr.parts , contrast))
contr.column <- c(contr.column, which(grepl("(Intercept)",contr.names)))
contr.column <- contr.column[order(contr.column)]
create.names <- matrix(nrow = nrow(tmp.data) , ncol = length(contr.parts))
ricontrasts <- matrix(nrow = nrow(tmp.data) , ncol = length(contr.parts))
for( i in 1:length(contr.parts) ){
cp <- contr.parts[i]
create.names[ , i] <- as.character(tmp.data[,grepl(substr(cp , start = 1 , stop = (nchar(cp)-1) ), colnames(tmp.data) )])
ricontrasts[ , i] <- contr.table[,contr.column][,cp == colnames(contr.table[,contr.column])]
}
create.names <- as.data.frame( cbind( apply(create.names, 1, paste, collapse = " ") , ricontrasts ) )
create.names <- unique(create.names)
marginal_distribution <- list()
tmp.table <- unique(contr.table[,contr.column])
for(i in 1:nrow(create.names)){
findRow <- NULL
for(j in 1:nrow(tmp.table)){
if(sum(tmp.table[j,colnames(tmp.table)%in%contr.parts] == create.names[i,2:(length(contr.parts)+1)])==length(contr.parts)) findRow <- j
}
marginal_distribution[[create.names[i,1]]] <- data.frame( y = colSums(t(tmp.post[[1]][,contr.column])*tmp.table[findRow,]),
name = create.names[i,1])
}
sum.unique <- list()
for(marginal_name in marginal_distribution){
sum_logspl <- .suppresslogspline(marginal_name$y)
bf_sd <- d0/.suppressdlogspline(0, sum_logspl)
sum.unique[[marginal_name$name[1]]] <- as.data.frame(cbind(mean(marginal_name$y),
se(marginal_name$y),
sd(marginal_name$y),
quantile(marginal_name$y, probs = 2.5/100),
quantile(marginal_name$y, probs = 25/100),
quantile(marginal_name$y, probs = 50/100),
quantile(marginal_name$y, probs = 75/100),
quantile(marginal_name$y, probs = 97.5/100),
bf_sd))
colnames(sum.unique[[marginal_name$name[1]]]) <- c("mean", "se_mean", "sd", "2.5%", "25%", "50%", "75%", "97.5%","BF10 (not zero)")
}
sum.unique <- do.call("rbind" , sum.unique)
row.names(sum.unique) <- create.names[,1]
sum.contrast <- list()
sum.names <- list()
for(i in 1:(length(marginal_distribution)-1)){
for(j in (i+1):length(marginal_distribution)){
tmp.y <- marginal_distribution[[i]]$y - marginal_distribution[[j]]$y
sum_logspl <- .suppresslogspline(tmp.y)
bf_sd <- d0/.suppressdlogspline(0, sum_logspl)
sum.contrast[[paste(i,j)]] <- as.data.frame(cbind(mean(tmp.y),
se(tmp.y),
sd(tmp.y),
quantile(tmp.y, probs = 2.5/100),
quantile(tmp.y, probs = 25/100),
quantile(tmp.y, probs = 50/100),
quantile(tmp.y, probs = 75/100),
quantile(tmp.y, probs = 97.5/100),
bf_sd))
colnames(sum.contrast[[paste(i,j)]]) <- c("mean", "se_mean", "sd", "2.5%", "25%", "50%", "75%", "97.5%","BF10")
sum.names[[paste(i,j)]] <- paste(marginal_distribution[[i]]$name[1],
marginal_distribution[[j]]$name[1],
sep = " - ")
}
}
sum.contrast <- do.call("rbind" , sum.contrast)
row.names(sum.contrast) <- do.call("c" , sum.names)
out <- list(sum.unique , sum.contrast , contrast , covariate , marginal_distribution , mdl[[7]])
class(out) <- append(class(out),"pairwise.BMSC")
return(out)
}
print.pairwise.BMSC = function(x, ...) {
if(is.null(x[[4]])){
cat("\nPairwise Bayesian Multilevel Single Case contrasts of coefficients divided by", x[[3]] , "\n\n")
} else {
cat("\nPairwise Bayesian Multilevel Single Case contrasts of", x[[4]] ,"covariate divided by", x[[3]] , "\n\n")
}
cat("\n\n Marginal distributions\n\n")
print(x[[1]], ...)
cat("\n")
cat("\n\n Table of contrasts\n\n")
print(x[[2]], ...)
} |
proj.gnm <- function (object, ...) {
if (inherits(object, "gnm", TRUE) == 1)
stop("proj is not implemented for gnm objects")
else
NextMethod
} |
evaluation <- function(test, measures){
method <- class(test$method)
dependent <- test$dependent
held_out_rows <- nrow(test$data$holdout)
total_rows <- held_out_rows + nrow(test$data$train)
data_transformation <- test$data_transform
data_transformation <- ifelse(data_transformation=="identity", "None", data_transformation)
test_attributes <- list("Method" = method,
"Dependent variable" = dependent,
"Rows held out" = held_out_rows,
"Total rows in data" = total_rows,
"Data transformation" = data_transformation)
structure(class="evaluation",
list(measures = measures,
test_attributes = test_attributes,
test = test))
}
print.evaluation <- function(x, digits = max(3, getOption("digits")-4), ...){
test <- x$test
measures <- x$measures
test_attributes <- x$test_attributes
test_class <- class(test)
test_class_label <- paste0(capitalize_first(test_class),
" Test Evaluation: ",
test$name)
cat(paste0(test_class_label, "\n\n"))
cat("Test attributes:\n")
held_out_percentage <- paste0(format(test_attributes$"Rows held out" / test_attributes$"Total rows in data" * 100,
digits),
"%")
held_out <- paste(held_out_percentage,
paste0("(", test_attributes$"Rows held out",
" rows)"))
test_attributes <- c(test_attributes[1:2], "Percentage held out" = held_out, test_attributes[4:5])
test_attribute_names <- paste(c(names(test_attributes),
names(measures)),
":")
test_attribute_names <- format(test_attribute_names, justify="right")
test_attribute_names <- test_attribute_names[1:5]
test_attribute_matrix <- cbind(test_attribute_names,
format(test_attributes,
digits))
print(remove_names(test_attribute_matrix),
quote=FALSE)
cat("\nPerformance measures & statistics:\n")
measure_names <- paste(names(measures),
":")
measure_names_labels <- format(measure_names,
justify="right")
measure_matrix <- cbind(measure_names_labels,
format(measures,
digits, justify="right")
)
print(remove_names(measure_matrix),
quote = FALSE)
invisible(x)
}
summary.evaluation <- function(object, include_test_attributes=TRUE, ...){
out <- t(
as.matrix(
object$measures
)
)
rownames(out) <- object$test$name
if(include_test_attributes){
test_attributes <- t(
as.matrix(
object$test_attributes
)
)
out <- cbind(test_attributes,
out)
}
out
} |
treeheatr <- heat_tree |
unit_trace_U_from_phi <- function(phi) {
x <- unit_trace_x_from_phi(phi)
L <- unit_trace_L_from_x(x)
return(L %*% Adj(L))
}
unit_trace_I_l <- function(l) {
stopifnot(length(l)==1)
if (is_quadratic(l)) {
I_l <- c(0,pi/2)
} else {
I_l <- c(0,pi)
}
I_l
}
unit_trace_runif <- function(n, d, verbose=F) {
N <- d*d-1
phi_res <- matrix(NA, nrow=N, ncol=n)
U_res <- array(NA, dim=c(d,d,n))
for (j in 1:n) {
if (verbose) print(j)
tmp <- unit_trace_runif_single(d)
phi_res[,j] <- tmp$phi
U_res[,,j] <- tmp$U
}
list(phi=phi_res, U=U_res)
}
unit_trace_runif_single <- function(d) {
N <- d*d-1
phi_res <- rep(NA, N)
p <- unit_trace_p(d)
q <- unit_trace_q(d)
log_c <- unit_trace_log_c(p,q)
log_d <- unit_trace_log_d(p,q)
mu <- unit_trace_mu(p,q)
sigma2 <- unit_trace_sigma2(p,q)
log_nu <- unit_trace_nu(sigma2, log_c, log_d)
for (l in 1:N) {
accepted <- F
while (!accepted) {
sigma_l <- sqrt(sigma2[l])
phi_star <- rnorm(1, mu[l], sigma_l)
alpha <- unit_trace_log_f_l(phi_star,
p,
q,
log_c,
l) -
dnorm(phi_star, mu[l], sigma_l, log=T) -
log_nu[l]
accepted <- (log(runif(1,0,1)) < alpha)
}
phi_res[l] <- phi_star
}
U <- unit_trace_U_from_phi(phi_res)
list(phi=phi_res, U=U)
}
unit_trace_mu <- function(p, q) {
N <- length(p); stopifnot(length(q)==N); stopifnot(N>1)
res <- rep(pi/2, N)
i <- 1
while (i*i < N) {
l <- i*i
res[l] <- atan(sqrt(q[l]/p[l]))
i <- i+1
}
res
}
unit_trace_sigma2 <- function(p, q) {
N <- length(p); stopifnot(length(q)==N); stopifnot(N>1)
1 / (sqrt(p) + sqrt(q))^2
}
unit_trace_nu <- function(sigma2_vec, log_c_vec, log_d_vec) {
log(2*pi*sigma2_vec) / 2 + log_c_vec - log_d_vec
}
unit_trace_log_c <- function(p, q) {
N <- length(p); stopifnot(length(q)==N); stopifnot(N>1)
res <- rep(NA, N)
i <- 1
for (l in 1:N) {
if (l == i*i) {
res[l] <- log(2) + lgamma( (p[l]+1)/2 + (q[l]+1)/2 ) -
lgamma( (p[l]+1)/2 ) - lgamma( (q[l]+1)/2 )
i <- i+1
} else {
res[l] <- -log(pi)/2 + lgamma( (q[l]+1)/2 + 1/2 ) -
lgamma( (q[l]+1)/2 )
}
}
res
}
unit_trace_log_d <- function(p, q) {
N <- length(p); stopifnot(length(q)==N && N > 1)
res <- rep(0,N)
i <- 1
while (i*i < N) {
l <- i*i
res[l] <- p[l]/2 * log(1+q[l]/p[l]) + q[l]/2 * log(1+p[l]/q[l])
i <- i + 1
}
res
}
is_quadratic <- function(l, thresh=1e-15) {
sl <- sqrt(l)
sl-as.integer(sl) < thresh
}
unit_trace_log_f_l <- function(phi, p, q, log_c, l) {
N <- length(p); stopifnot(length(q) == N && length(log_c) == N && N > 1)
stopifnot(l >= 1 && l <= N)
I_l <- unit_trace_I_l(l)
if (phi <= I_l[1] || phi >= I_l[2]) {
lf_l <- -Inf
}
else {
lf_l <- log_c[l]
if (p[l] != 0) {
lf_l <- lf_l + p[l] * log(cos(phi))
}
if (q[l] != 0) {
lf_l <- lf_l + q[l] * log(sin(phi))
}
}
lf_l
} |
zibellreg<- function(formula, data, approach = c("mle", "bayes"), hessian = TRUE,
hyperpars = list(mu_psi=0, sigma_psi=10, mu_beta=0, sigma_beta=10), ...){
approach <- match.arg(approach)
formula <- Formula::Formula(formula)
mf <- stats::model.frame(formula=formula, data=data)
Terms <- stats::terms(mf)
Z <- stats::model.matrix(formula, data = mf, rhs = 1)
X <- stats::model.matrix(formula, data = mf, rhs = 2)
Xlabels <- colnames(X)
Zlabels <- colnames(Z)
y <- stats::model.response(mf)
n <- nrow(X)
p <- ncol(X)
q <- ncol(Z)
if(p>1){
if(match("(Intercept)", Xlabels)==1){
X_std <- scale(X[,-1])
x_mean <- array(c(0, attr(X_std, "scaled:center")))
x_sd <- array(c(1, attr(X_std, "scaled:scale")))
X_std <- cbind(1, X_std)
Delta_x <- diag(1/x_sd)
Delta_x[1,] <- Delta_x[1,] - x_mean/x_sd
}else{
X_std <- scale(X)
x_mean <- array(attr(X_std, "scaled:center"))
x_sd <- array(attr(X_std, "scaled:scale"))
Delta_x <- diag(1/x_sd)
}
}else{
X_std <- X
x_mean <- array(0)
x_sd <- array(1)
}
if(q>1){
if(match("(Intercept)", Zlabels)==1){
Z_std <- scale(Z[,-1])
z_mean <- array(c(0, attr(Z_std, "scaled:center")))
z_sd <- array(c(1, attr(Z_std, "scaled:scale")))
Z_std <- cbind(1, Z_std)
Delta_z <- diag(1/z_sd)
Delta_z[1,] <- Delta_z[1,] - z_mean/z_sd
}else{
Z_std <- scale(Z)
z_mean <- array(attr(Z_std, "scaled:center"))
z_sd <- array(attr(Z_std, "scaled:scale"))
Delta_z <- diag(1/z_sd)
}
}else{
Z_std <- Z
z_mean <- array(0)
z_sd <- array(1)
}
stan_data <- list(y=y, X=X_std, Z=Z_std, n=n, p=p, q=q, x_mean=x_mean, x_sd=x_sd, z_mean=z_mean, z_sd=z_sd,
mu_beta = hyperpars$mu_beta, sigma_beta=hyperpars$sigma_beta,
mu_psi = hyperpars$mu_psi, sigma_psi=hyperpars$sigma_psi,
approach=0)
if(approach=="mle"){
fit <- rstan::optimizing(stanmodels$zibellreg, hessian=hessian,
data=stan_data, verbose=FALSE, ...)
if(hessian==TRUE){
fit$hessian <- - fit$hessian
}
fit$par <- fit$theta_tilde[-(1:(p+q))]
AIC <- -2*fit$value + 2*(p+q)
fit <- list(fit=fit, logLik = fit$value, AIC = AIC, Delta = magic::adiag(Delta_z, Delta_x))
}else{
stan_data$approach <- 1
fit <- rstan::sampling(stanmodels$zibellreg, data=stan_data, verbose=FALSE, ...)
fit <- list(fit=fit)
}
fit$n <- n
fit$p <- p
fit$q <- q
fit$call <- match.call()
fit$formula <- stats::formula(Terms)
fit$terms <- stats::terms.formula(formula)
fit$labels1 <- Zlabels
fit$labels2 <- Xlabels
fit$approach <- approach
class(fit) <- "zibellreg"
return(fit)
} |
miniusloglik.ce.xt.norm <-
function(dat, pars)
{
mu=pars[1]
npars=length(pars)
sigma=exp(pars[npars])
beta.vec=pars[2:(npars-1)]
failure.dat=dat$failure.dat
aux.inf=dat$aux.inf
xt.obj=dat$xt.obj
wts.mat=aux.inf$wts.mat
npts.vec=aux.inf$npts.vec
x.val=xt.obj$x.val
npts=xt.obj$npts
n=xt.obj$n
para.vec=kronecker(beta.vec,rep(1,npts))
para.mat=kronecker(t(para.vec),rep(1,n))
beta.xt.mat=para.mat*x.val
tmp.mat=kronecker(rep(1,npars-2),diag(npts))
sum.beta.xt.mat=beta.xt.mat%*%tmp.mat
sum.beta.xt.mat=exp(sum.beta.xt.mat)
int.g.beta.xt=rowSums(wts.mat*sum.beta.xt.mat)
g.beta.xt=as.vector(sum.beta.xt.mat)[1:n+n*(npts.vec-1)]
delta=failure.dat[,"delta"]
zz=(log(int.g.beta.xt)-mu)/sigma
ff=dnorm(zz)/(int.g.beta.xt*sigma)
FF=pnorm(zz)
ll=delta*log(g.beta.xt*ff)+(1-delta)*log(1-FF)
res=(-1)*sum(ll)
return(res)
} |
library(OpenMx)
library(rpf)
set.seed(1)
m2.data <- suppressWarnings(try(read.table("models/nightly/data/ms-data.csv"), silent=TRUE))
if (is(m2.data, "try-error")) m2.data <- read.table("data/ms-data.csv")
m2.data[m2.data==-9] <- NA
m2.data <- m2.data + 1
gpcm <- function(outcomes) {
rpf.nrm(outcomes, T.c=lower.tri(diag(outcomes-1),TRUE) * -1)
}
m2.spec <- list()
m2.spec[1:22] <- list(gpcm(5))
m2.spec[2] <- list(gpcm(4))
m2.spec[5] <- list(gpcm(3))
m2.spec[6] <- list(gpcm(4))
m2.spec[13:14] <- list(gpcm(4))
m2.numItems <- length(m2.spec)
for (c in 1:m2.numItems) {
m2.data[[c]] <- mxFactor(m2.data[[c]], levels=1:m2.spec[[c]]$outcomes)
}
m2.maxParam <-max(sapply(m2.spec, rpf.numParam))
ip.mat <- mxMatrix(name="item", nrow=m2.maxParam, ncol=m2.numItems,
values=c(1, 1, rep(0, m2.maxParam-2)), free=FALSE)
colnames(ip.mat) <- colnames(m2.data)
rownames(ip.mat) <- c('f1', rep('n', nrow(ip.mat)-1))
ip.mat$labels[1,] <- 'a1'
ip.mat$free[1,] <- TRUE
rstart <- lapply(m2.spec, rpf.rparam, version=1)
for (ix in 1:m2.numItems) {
thr <- m2.spec[[ix]]$outcomes - 1
ip.mat$free[(2+thr):(1+2*thr), ix] <- TRUE
ip.mat$values[ip.mat$free[,ix],ix] <- rstart[[ix]][ip.mat$free[,ix]]
}
ip.mat$values[!is.na(ip.mat$labels) & ip.mat$labels == 'a1'] <-
sample(ip.mat$values[!is.na(ip.mat$labels) & ip.mat$labels == 'a1'], 1)
fmfit <- structure(c(0.941583, 1, 0, 0, 0, -0.676556, 0.758794, -0.802595, 1.28891, 0.941583, 1, 0, 0, -0.182632, 0.897435, 1.30626, NA, NA, 0.941583, 1, 0, 0, 0, 0.177835, -1.82185, 0.005832, -0.81109, 0.941583, 1, 0, 0, 0, -1.15962, -1.229, 0.032677, 0.4922, 0.941583, 1, 0, 0.457533, 0.324595, NA, NA, NA, NA, 0.941583, 1, 0, 0, -2.69186, -1.04012, 1.61232, NA, NA, 0.941583, 1, 0, 0, 0, -1.38231, 0.034368, -1.214, -0.648291, 0.941583, 1, 0, 0, 0, -1.85655, -1.17135, -0.262079, -0.531158, 0.941583, 1, 0, 0, 0, -1.29475, -0.376539, 0.02024, 0.135187, 0.941583, 1, 0, 0, 0, -1.38279, 0.524151, -0.508742, 0.633671, 0.941583, 1, 0, 0, 0, -0.979595, -0.048528, 0.659669, 0.544857, 0.941583, 1, 0, 0, 0, -2.09039, -1.45472, -0.472137, -0.666386, 0.941583, 1, 0, 0, 0.174682, 0.645437, 0.907132, NA, NA, 0.941583, 1, 0, 0, -0.842216, 0.490717, 1.28034, NA, NA, 0.941583, 1, 0, 0, 0, -0.913355, -0.319602, -0.310164, -0.15536, 0.941583, 1, 0, 0, 0, 0.567085, -1.56762, 0.884553, 0.122113, 0.941583, 1, 0, 0, 0, -0.152985, -0.341317, -0.183837, 1.17952, 0.941583, 1, 0, 0, 0, 0.168869, -0.490354, 0.373892, 1.29714, 0.941583, 1, 0, 0, 0, -0.827385, 0.626197, -1.52994, 0.494209, 0.941583, 1, 0, 0, 0, 0.511263, -0.750358, 1.01852, 0.840026, 0.941583, 1, 0, 0, 0, 0.968905, -0.009671, 1.52297, 1.69255, 0.941583, 1, 0, 0, 0, 1.89582, 0.051828, 2.25758, 1.52469), .Dim = c(9L, 22L), .Dimnames = list(NULL, c("i1", "i2", "i3", "i4", "i5", "i6", "i7", "i8", "i9", "i10", "i11", "i12", "i13", "i14", "i15", "i16", "i17", "i18", "i19", "i20", "i21", "i22")))
if (1) {
cip.mat <- ip.mat
cip.mat$values <- fmfit
cM <- mxModel(model="ms", cip.mat,
mxData(observed=m2.data, type="raw"),
mxExpectationBA81(ItemSpec=m2.spec),
mxFitFunctionML(),
mxComputeOnce('fitfunction', 'fit'))
cM <- mxRun(cM, silent=TRUE)
omxCheckCloseEnough(cM$fitfunction$result, 50661.38, .01)
}
plan <- mxComputeSequence(steps=list(
mxComputeEM('expectation', 'scores',
mxComputeNewtonRaphson(freeSet='item', verbose=0L),
information="mr1991", infoArgs=list(fitfunction='fitfunction')),
mxComputeStandardError(),
mxComputeHessianQuality()))
m2 <- mxModel(model="m2", ip.mat,
mxData(observed=m2.data, type="raw"),
mxExpectationBA81(ItemSpec=m2.spec),
mxFitFunctionML(),
plan)
m2 <- mxRun(m2, silent=TRUE)
omxCheckCloseEnough(m2$output$minimum, 50661.377, .01)
omxCheckCloseEnough(log(m2$output$conditionNumber), 6.57, .5)
semse <- c(0.022, 0.095, 0.116, 0.116, 0.108, 0.176, 0.222, 0.305, 0.382, 0.359, 0.244,
0.215, 0.105, 0.082, 0.067, 0.07, 0.185, 0.215, 0.134, 0.061, 0.071, 0.25,
0.244, 0.231, 0.155, 0.328, 0.209, 0.177, 0.16, 0.211, 0.176, 0.182, 0.185,
0.187, 0.189, 0.201, 0.194, 0.174, 0.161, 0.2, 0.234, 0.409, 0.236, 0.179,
0.154, 0.064, 0.078, 0.092, 0.084, 0.074, 0.092, 0.584, 0.493, 0.441, 0.362,
0.1, 0.097, 0.079, 0.085, 0.113, 0.115, 0.102, 0.111, 0.079, 0.082, 0.076,
0.092, 0.541, 0.607, 0.554, 0.337, 0.081, 0.083, 0.083, 0.098, 0.072, 0.084,
0.103, 0.138, 0.084, 0.103, 0.141, 0.178)
omxCheckCloseEnough(c(m2$output$standardErrors), semse, .01)
emstat <- m2$compute$steps[[1]]$output
omxCheckCloseEnough(emstat$EMcycles, 19, 3)
omxCheckCloseEnough(emstat$totalMstep, 73, 11)
omxCheckCloseEnough(emstat$semProbeCount / length(semse), 3, .1)
omxCheckCloseEnough(m2$output$evaluations, 1086, 23)
print(m2$output$backendTime)
n <- apply(!is.na(m2.data), 2, sum)
i1 <- mxModel(m2,
mxComputeSequence(steps=list(
mxComputeOnce('fitfunction', 'information', "meat"),
mxComputeStandardError(),
mxComputeHessianQuality())))
i1 <- mxRun(i1, silent=TRUE)
omxCheckTrue(i1$output$infoDefinite)
omxCheckCloseEnough(log(i1$output$conditionNumber), 7.3, .5)
se <- c(0.019, 0.1, 0.123, 0.121, 0.119, 0.237, 0.246, 0.33, 0.417, 0.386, 0.281,
0.24, 0.108, 0.086, 0.072, 0.076, 0.221, 0.265, 0.138, 0.068, 0.085, 0.275,
0.267, 0.263, 0.196, 0.359, 0.237, 0.208, 0.203, 0.227, 0.191, 0.199, 0.225,
0.21, 0.215, 0.232, 0.235, 0.184, 0.179, 0.218, 0.254, 0.437, 0.26, 0.201, 0.194,
0.07, 0.083, 0.101, 0.089, 0.079, 0.096, 0.649, 0.549, 0.507, 0.421, 0.106, 0.102,
0.084, 0.093, 0.125, 0.124, 0.112, 0.127, 0.088, 0.089, 0.087, 0.109, 0.633, 0.704,
0.61, 0.415, 0.089, 0.089, 0.09, 0.112, 0.083, 0.092, 0.115, 0.17, 0.095, 0.11, 0.16, 0.192)
omxCheckCloseEnough(c(i1$output$standardErrors), se, .001)
if (0) {
library(mirt)
rdata <- sapply(m2.data, unclass)-1
pars <- mirt(rdata, 1, itemtype="Rasch", D=1, quadpts=49, pars='values')
fit <- mirt(rdata, 1, itemtype="Rasch", D=1, quadpts=49, pars=pars, SE=TRUE, SE.type="crossprod")
got <- coef(fit)
} |
"predict.bsamdpm" <- function(object, newp, newnp, alpha = 0.05, HPD = TRUE, ...) {
smcmc <- object$mcmc$smcmc
nbasis <- object$nbasis
nint <- object$nint + 1
nfun <- object$nfun
fmodel <- object$fmodel
fpm <- object$fpm
xmin <- object$xmin
xmax <- object$xmax
if (missing(newp) && missing(newnp)) {
n <- object$n
newp <- object$w
newnp <- object$x
fxobsg <- object$fit.draws$fxobs
wbg <- object$fit.draws$wbeta
yhatg <- object$fit.draws$yhat
} else if (missing(newp) && !missing(newnp)) {
newp <- object$w
if (!is.matrix(newnp))
newnp <- as.matrix(newnp)
n <- object$n
if (n != nrow(newnp))
stop('The number of observations for both parametric and nonparametric components must be same.')
wbg <- object$fit.draws$wbeta
fxobsg <- .Fortran("predictbsam", as.matrix(newnp), as.double(xmin), as.double(xmax),as.integer(n),
as.integer(nfun), as.integer(nbasis), as.integer(nint), as.integer(fmodel),
as.double(fpm), as.integer(smcmc), as.array(object$mcmc.draws$theta),
as.matrix(object$mcmc.draws$alpha), as.matrix(object$mcmc.draws$psi),
as.matrix(object$mcmc.draws$omega), fxobsg = array(0, dim = c(n, nfun, smcmc)),
NAOK = TRUE, PACKAGE = "bsamGP")$fxobsg
yhatg <- wbg + t(apply(fxobsg, c(1,3), sum))
} else if (!missing(newp) && missing(newnp)) {
newnp <- object$x
if (!is.matrix(newp))
newp <- as.matrix(newp)
newp <- cbind(1, newp)
n <- object$n
if (n != nrow(newp))
stop('The number of observations for both parametric and nonparametric components must be same.')
fxobsg <- object$fit.draws$fxobs
wbg <- object$mcmc.draws$beta %*% t(newp)
yhatg <- wbg + t(apply(fxobsg, c(1,3), sum))
} else if (!missing(newp) && !missing(newnp)) {
if (!is.matrix(newp))
newp <- as.matrix(newp)
newp <- cbind(1, newp)
if (!is.matrix(newnp))
newnp <- as.matrix(newnp)
if (nrow(newp) != nrow(newnp))
stop('The number of observations for both parametric and nonparametric components must be same.')
n <- nrow(newp)
wbg <- object$mcmc.draws$beta %*% t(newp)
fxobsg <- .Fortran("predictbsam", as.matrix(newnp), as.double(xmin), as.double(xmax),as.integer(n),
as.integer(nfun), as.integer(nbasis), as.integer(nint), as.integer(fmodel),
as.double(fpm), as.integer(smcmc), as.array(object$mcmc.draws$theta),
as.matrix(object$mcmc.draws$alpha), as.matrix(object$mcmc.draws$psi),
as.matrix(object$mcmc.draws$omega), fxobsg = array(0, dim = c(n, nfun, smcmc)),
NAOK = TRUE, PACKAGE = "bsamGP")$fxobsg
yhatg <- wbg + t(apply(fxobsg, c(1,3), sum))
}
fxobs <- list()
fxobsm <- apply(fxobsg, c(1, 2), mean)
fxobs$mean <- fxobsm
wbeta <- list()
wbm <- apply(wbg, 2, mean)
wbeta$mean <- wbm
yhat <- list()
ym <- apply(yhatg, 2, mean)
yhat$mean <- ym
if (HPD) {
prob <- 1 - alpha
fx.l <- fx.u <- matrix(0, n, nfun)
for (i in 1:nfun) {
fxobsg.o <- apply(fxobsg[, i, ], 1, sort)
gap <- max(1, min(smcmc - 1, round(smcmc * prob)))
init <- 1:(smcmc - gap)
inds <- apply(fxobsg.o[init + gap, , drop = FALSE] - fxobsg.o[init, , drop = FALSE], 2, which.min)
fx.l[, i] <- fxobsg.o[cbind(inds, 1:n)]
fx.u[, i] <- fxobsg.o[cbind(inds + gap, 1:n)]
}
fxobs$lower <- fx.l
fxobs$upper <- fx.u
wbg.o <- apply(wbg, 2, sort)
gap <- max(1, min(smcmc - 1, round(smcmc * prob)))
init <- 1:(smcmc - gap)
inds <- apply(wbg.o[init + gap, , drop = FALSE] - wbg.o[init, , drop = FALSE], 2, which.min)
wbeta$lower <- wbg.o[cbind(inds, 1:n)]
wbeta$upper <- wbg.o[cbind(inds + gap, 1:n)]
yhatg.o <- apply(yhatg, 2, sort)
gap <- max(1, min(smcmc - 1, round(smcmc * prob)))
init <- 1:(smcmc - gap)
inds <- apply(yhatg.o[init + gap, , drop = FALSE] - yhatg.o[init, , drop = FALSE], 2, which.min)
yhat$lower <- yhatg.o[cbind(inds, 1:n)]
yhat$upper <- yhatg.o[cbind(inds + gap, 1:n)]
} else {
fxobs$lower <- apply(fxobsg, c(1, 2), function(x) quantile(x, prob = alpha/2))
fxobs$upper <- apply(fxobsg, c(1, 2), function(x) quantile(x, prob = 1 - alpha/2))
wbeta$lower <- apply(wbg, 2, function(x) quantile(x, prob = alpha/2))
wbeta$upper <- apply(wbg, 2, function(x) quantile(x, prob = 1 - alpha/2))
yhat$lower <- apply(yhatg, 2, function(x) quantile(x, prob = alpha/2))
yhat$upper <- apply(yhatg, 2, function(x) quantile(x, prob = 1 - alpha/2))
}
out <- list()
out$n <- n
out$nbasis <- nbasis
out$newp <- newp
out$newnp <- newnp
out$alpha <- alpha
out$HPD <- HPD
out$yhat <- yhat
out$wbeta <- wbeta
out$fxobs <- fxobs
if (object$model == 'bsaqdpm')
out$p <- out$p
class(out) <- "predict.bsamdpm"
out
} |
context("FAST_IMPUTE")
options(bigstatsr.check.parallel.blas = FALSE)
test_that("fast imputation (xgboost) works", {
skip_if_not_installed("xgboost")
skip_if(is_cran)
suppressMessages({
library(Matrix)
library(foreach)
library(magrittr)
library(dplyr)
})
bigsnp <- snp_attachExtdata()
G <- bigsnp$genotypes
expect_equal(G$code256, CODE_012)
corr <- snp_cor(G)
ind <- which(apply(corr, 2, function(x) max(x[x < 1])) > 0.6)
indNA <- foreach(j = ind, .combine = "rbind") %do% {
cbind(sample(nrow(G), 100), j)
}
tmpfile <- tempfile()
bigsnp.copy <- snp_writeBed(bigsnp, bedfile = paste0(tmpfile, ".bed")) %>%
snp_readBed(backingfile = tmpfile) %>%
snp_attach()
GNA <- bigsnp.copy$genotypes
GNA[indNA] <- as.raw(3)
counts <- big_counts(GNA)
expect_equal(sum(counts[4, ]), nrow(indNA))
time <- system.time(
infos <- snp_fastImpute(GNA, infos.chr = bigsnp$map$chromosome, p.train = 0.6)
)
counts <- big_counts(GNA)
expect_equal(sum(counts[4, ]), nrow(indNA))
GNA$code256 <- CODE_IMPUTE_PRED
infosNA <- tibble(
col = indNA[, 2],
error = (GNA[indNA] != G[indNA])
) %>%
group_by(col) %>%
summarise(nb_err = sum(error)) %>%
mutate(nb_err_est = (infos[1, ] * infos[2, ] * nrow(G))[col])
pval <- anova(lm(nb_err ~ nb_err_est - 1, data = infosNA))$`Pr(>F)`[[1]]
expect_lt(pval, 2e-16)
fake <- snp_fake(100, 200)
G <- fake$genotypes
G[] <- sample(as.raw(0:3), size = length(G), replace = TRUE)
CHR <- fake$map$chromosome
expect_error(snp_fastImpute(G, 1), "Incompatibility between dimensions.",
fixed = TRUE)
expect_gt(mean(snp_fastImpute(G, CHR)[2, ]), 0.5)
fake <- snp_fake(100, 200)
G <- fake$genotypes
G[] <- sample(as.raw(0:3), size = length(G), replace = TRUE)
CHR <- sort(sample(1:3, ncol(G), TRUE))
G2 <- bigsnpr:::FBM_infos(G)
ind <- 1:11 + 150
G2[1, ind] <- seq(0, 1, 0.1)
G2 <- snp_fastImpute(G, CHR)
G3 <- G$copy(CODE_IMPUTE_PRED)
nbNA <- colSums(is.na(G3[]))
expect_true(all(nbNA[ind] > 0))
expect_true(all(nbNA[-ind] == 0))
bigsnp <- snp_attachExtdata()
G <- bigsnp$genotypes
CHR <- bigsnp$map$chromosome
elemNA <- sample(length(G), size = 20)
G2 <- big_copy(G); G2[elemNA] <- as.raw(3)
G3 <- big_copy(G); G3[elemNA] <- as.raw(3)
expect_equal(snp_fastImpute(G2, CHR, seed = 2)[],
snp_fastImpute(G3, CHR, seed = 2, ncores = 2)[])
expect_equal(G2[], G3[])
})
test_that("fast imputation (simple) works", {
G <- snp_attachExtdata("example-missing.bed")$genotypes
expect_error(snp_fastImputeSimple(G, "mean"), "should be one of")
expect_warning(G1 <- snp_fastImputeSimple(G, "zero"), "deprecated")
expect_equal(G[c(18, 72), 400], rep(NA_real_, 2))
expect_equal(G1[c(18, 72), 400], rep(0, 2))
G2 <- snp_fastImputeSimple(G, "mean0")
expect_equal(G[c(18, 72), 400], rep(NA_real_, 2))
expect_equal(G2[c(18, 72), 400], rep(1, 2))
G3 <- snp_fastImputeSimple(G, "mean2")
expect_equal(G3[c(18, 72), 400], rep(1.01, 2))
G4 <- snp_fastImputeSimple(G, "mode")
expect_equal(G4[c(4, 12), 1], rep(0, 2))
expect_equal(G4[c(18, 72), 400], rep(1, 2))
imp_val <- replicate(500, {
G5 <- snp_fastImputeSimple(G, "random")
G5[c(18, 72), 400]
})
p <- mean(G[, 400], na.rm = TRUE) / 2
prob <- c((1 - p)^2, 2 * p * (1 - p), p^2)
expect_gt(stats::chisq.test(table(imp_val), p = prob)$p.value, 1e-4)
expect_equal(snp_fastImputeSimple(G, method = "mean2")[],
snp_fastImputeSimple(G, method = "mean2", ncores = 2)[])
}) |
library(checkargs)
context("isNegativeIntegerOrNaOrNanVector")
test_that("isNegativeIntegerOrNaOrNanVector works for all arguments", {
expect_identical(isNegativeIntegerOrNaOrNanVector(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_error(isNegativeIntegerOrNaOrNanVector(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNegativeIntegerOrNaOrNanVector(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(0, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNegativeIntegerOrNaOrNanVector(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNegativeIntegerOrNaOrNanVector(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNegativeIntegerOrNaOrNanVector(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector("", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector("X", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNegativeIntegerOrNaOrNanVector(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNegativeIntegerOrNaOrNanVector(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNegativeIntegerOrNaOrNanVector(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNegativeIntegerOrNaOrNanVector(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNegativeIntegerOrNaOrNanVector(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNegativeIntegerOrNaOrNanVector(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
}) |
test_that(
"optimize_design works for one-sample case",
{
set.seed(123)
cal_tbl <- calibrate_thresholds(
p_null = 0.1,
p_alt = 0.3,
n = c(5, 25),
N = 25,
pp_threshold = 0.9,
ppp_threshold = 0.05,
direction = "greater",
delta = NULL,
prior = c(0.5, 0.5),
S = 200,
nsim = 300
)
expect_error(optimize_design.calibrate_thresholds(3))
expect_error(optimize_design(cal_tbl, minimum_power = 1:2))
expect_error(optimize_design(cal_tbl, minimum_power = "a"))
expect_error(optimize_design(cal_tbl, type1_range = 3))
expect_error(optimize_design(cal_tbl, type1_range = c("a", "b")))
expect_snapshot(lapply(optimize_design(cal_tbl), as.data.frame))
}
)
test_that(
"optimize_design works for two-sample case",
{
set.seed(123)
cal_tbl <- calibrate_thresholds(
p_null = c(0.1, 0.1),
p_alt = c(0.1, 0.5),
n = cbind(c(10, 25), c(10, 25)),
N = c(25, 25),
pp_threshold = 0.9,
ppp_threshold = 0.2,
direction = "greater",
delta = 0,
prior = c(0.5, 0.5),
S = 200,
nsim = 300
)
expect_snapshot(lapply(optimize_design(cal_tbl), as.data.frame))
}
) |
test_that("can establish local snapshotter for testing", {
snapper <- local_snapshotter()
snapper$start_file("snapshot-1", "test")
expect_true(snapper$is_active())
expect_equal(snapper$file, "snapshot-1")
expect_equal(snapper$test, "test")
})
test_that("basic workflow", {
path <- withr::local_tempdir()
snapper <- local_snapshotter(path)
snapper$start_file("snapshot-2")
expect_message(expect_snapshot_output("x"), "Can't compare")
snapper$start_file("snapshot-2", "test")
expect_warning(expect_snapshot_output("x"), "Adding new")
snapper$end_file()
expect_true(file.exists(file.path(path, "snapshot-2.md")))
expect_false(file.exists(file.path(path, "snapshot-2.new.md")))
snapper$start_file("snapshot-2", "test")
expect_success(expect_snapshot_output("x"))
snapper$end_file()
expect_true(file.exists(file.path(path, "snapshot-2.md")))
expect_false(file.exists(file.path(path, "snapshot-2.new.md")))
snapper$start_file("snapshot-2", "test")
expect_failure(expect_snapshot_output("y"))
snapper$end_file()
expect_true(file.exists(file.path(path, "snapshot-2.md")))
expect_true(file.exists(file.path(path, "snapshot-2.new.md")))
})
test_that("only create new files for changed variants", {
snapper <- local_snapshotter()
snapper$start_file("variants", "test")
expect_warning(expect_snapshot_output("x"), "Adding new")
expect_warning(expect_snapshot_output("x", variant = "a"), "Adding new")
expect_warning(expect_snapshot_output("x", variant = "b"), "Adding new")
snapper$end_file()
expect_setequal(
snapper$snap_files(),
c("variants.md", "a/variants.md", "b/variants.md")
)
snapper$start_file("variants", "test")
expect_failure(expect_snapshot_output("y"))
expect_success(expect_snapshot_output("x", variant = "a"))
expect_success(expect_snapshot_output("x", variant = "b"))
snapper$end_file()
expect_setequal(
snapper$snap_files(),
c("variants.md", "variants.new.md", "a/variants.md", "b/variants.md")
)
unlink(file.path(snapper$snap_dir, "variants.new.md"))
snapper$start_file("variants", "test")
expect_success(expect_snapshot_output("x"))
expect_success(expect_snapshot_output("x", variant = "a"))
expect_failure(expect_snapshot_output("y", variant = "b"))
snapper$end_file()
expect_setequal(
snapper$snap_files(),
c("variants.md", "a/variants.md", "b/variants.md", "b/variants.new.md")
)
})
test_that("only reverting change in variant deletes .new", {
snapper <- local_snapshotter()
snapper$start_file("v", "test")
expect_warning(expect_snapshot_output("x", variant = "a"), "Adding new")
expect_warning(expect_snapshot_output("x", variant = "b"), "Adding new")
snapper$end_file()
expect_setequal(snapper$snap_files(), c("a/v.md", "b/v.md"))
snapper$start_file("v", "test")
expect_failure(expect_snapshot_output("y", variant = "a"))
snapper$end_file()
expect_setequal(snapper$snap_files(), c("a/v.md", "b/v.md", "a/v.new.md"))
snapper$start_file("v", "test")
expect_success(expect_snapshot_output("x", variant = "a"))
snapper$end_file()
expect_setequal(snapper$snap_files(), c("a/v.md", "b/v.md"))
})
test_that("removing tests removes snap file", {
path <- withr::local_tempdir()
snapper <- local_snapshotter(path)
snapper$start_file("snapshot-3", "test")
expect_warning(expect_snapshot_output("x"), "Adding new")
snapper$end_file()
expect_true(file.exists(file.path(path, "snapshot-3.md")))
snapper$start_file("snapshot-3", "test")
snapper$end_file()
expect_false(file.exists(file.path(path, "snapshot-3.md")))
})
test_that("errors if can't roundtrip", {
snapper <- local_snapshotter()
snapper$start_file("snapshot-4", "test")
expect_error(expect_snapshot_value(NULL), "not symmetric")
})
test_that("errors in test doesn't change snapshot", {
snapper <- local_snapshotter()
snapper$start_file("snapshot-5", "test")
expect_warning(expect_snapshot_output("x"), "Adding new")
snapper$end_file()
snapper$start_file("snapshot-5", "test")
snapper$add_result(NULL, NULL, as.expectation(simpleError("error")))
snapper$end_file()
snapper$start_file("snapshot-5", "test")
expect_warning(expect_snapshot_output("x"), NA)
snapper$end_file()
snapper$start_file("snapshot-5", "test")
expect_snapshot_output("x")
expect_warning(
snapper$add_result(NULL, NULL, as.expectation(simpleError("error"))),
NA
)
snapper$end_file()
})
test_that("skips and unexpected errors reset snapshots", {
regenerate <- FALSE
if (regenerate) {
withr::local_envvar(c(TESTTHAT_REGENERATE_SNAPS = "true"))
}
catch_cnd(
test_file(
test_path("test-snapshot", "test-snapshot.R"),
reporter = NULL
)
)
path <- "test-snapshot/_snaps/snapshot.md"
stopifnot(file.exists(path))
snaps <- snap_from_md(brio::read_lines(path))
titles <- c("errors reset snapshots", "skips reset snapshots")
expect_true(all(titles %in% names(snaps)))
})
test_that("`expect_error()` can fail inside `expect_snapshot()`", {
out <- test_file(
test_path("test-snapshot", "test-expect-condition.R"),
reporter = NULL
)
err <- out[[1]]$results[[1]]
expect_match(err$message, "did not throw the expected error")
}) |
trips <- function(thedata, treat, formu = ~ ., groups=unique(treat), nstrata=5,
method = 'logistic', ...) {
if(length(groups) != 3) stop('Sorry, exactly three groups are required.')
if(nrow(thedata) != length(treat)) stop('length(treat) does not equal nrow(thedata)')
treats <- data.frame(id=1:length(treat), treat=treat,
model1=rep(as.logical(NA), length(treat)),
model2=rep(as.logical(NA), length(treat)),
model3=rep(as.logical(NA), length(treat)),
ps1=rep(as.numeric(NA), length(treat)),
ps2=rep(as.numeric(NA), length(treat)),
ps3=rep(as.numeric(NA), length(treat)) )
treats[which(treats$treat == groups[1]), c('model1','model2')] <- FALSE
treats[which(treats$treat == groups[2]), c('model1','model3')] <- TRUE
treats[which(treats$treat == groups[3]), c('model2')] <- TRUE
treats[which(treats$treat == groups[3]), c('model3')] <- FALSE
rows1 <- which(!is.na(treats$model1))
rows2 <- which(!is.na(treats$model2))
rows3 <- which(!is.na(treats$model3))
if(method == 'logistic') {
message('Using logistic regression to estimate propensity scores...')
m1 <- glm(update(formu, treat ~ .),
data=cbind(thedata[rows1,], treat=treats[rows1,]$model1),
family='binomial', ...)
treats[rows1,]$ps1 <- fitted(m1)
m2 <- glm(update(formu, treat ~ .),
data=cbind(thedata[rows2,], treat=treats[rows2,]$model2),
family='binomial', ...)
treats[rows2,]$ps2 <- fitted(m2)
m3 <- glm(update(formu, treat ~ .),
data=cbind(thedata[rows3,], treat=treats[rows3,]$model3),
family='binomial', ...)
treats[rows3,]$ps3 <- fitted(m3)
} else if(method == 'randomForest') {
message('Using random forests to estimate propensity scores...')
m1 <- randomForest(update(formu, treat ~ .),
data=cbind(thedata[rows1,], treat=factor(treats[rows1,]$model1)), ...)
treats[rows1,]$ps1 <- predict(m1, type='prob')[,2]
m2 <- randomForest(update(formu, treat ~ .),
data=cbind(thedata[rows2,], treat=factor(treats[rows2,]$model2)), ...)
treats[rows2,]$ps2 <- predict(m2, type='prob')[,2]
m3 <- randomForest(update(formu, treat ~ .),
data=cbind(thedata[rows3,], treat=factor(treats[rows3,]$model3)), ...)
treats[rows3,]$ps3 <- predict(m3, type='prob')[,2]
} else {
stop(paste0('Unsupported method: ', method))
}
breaks1 <- quantile(treats$ps1, probs=seq(0,1,1/nstrata), na.rm=TRUE)
breaks2 <- quantile(treats$ps2, probs=seq(0,1,1/nstrata), na.rm=TRUE)
breaks3 <- quantile(treats$ps3, probs=seq(0,1,1/nstrata), na.rm=TRUE)
treats$strata1 <- cut(treats$ps1, breaks=breaks1, labels=1:nstrata, include.lowest=TRUE)
treats$strata2 <- cut(treats$ps2, breaks=breaks2, labels=1:nstrata, include.lowest=TRUE)
treats$strata3 <- cut(treats$ps3, breaks=breaks3, labels=1:nstrata, include.lowest=TRUE)
class(treats) <- c('triangle.psa', 'data.frame')
attr(treats, 'data') <- thedata
attr(treats, 'nstrata') <- nstrata
attr(treats, 'model1') <- m1
attr(treats, 'model2') <- m2
attr(treats, 'model3') <- m3
attr(treats, 'breaks1') <- breaks1
attr(treats, 'breaks2') <- breaks2
attr(treats, 'breaks3') <- breaks3
attr(treats, 'groups') <- groups
return(treats)
} |
test_that("Wrong parameters in the Kummer 1F1 function", {
expect_warning(is.nan(chf_1F1(2.5, -1, 2)))
expect_warning(is.nan(chf_1F1(2.5, 3, 2)))
}) |
utils::globalVariables(c("snp", "study", "str"))
generate_spre_forestplot <- function(beta_in, se_in, study_names_in, variant_names_in,
spres_in, spre_colour_palette = c("mono_colour", "black"),
set_studyNOs_as_studyIDs = FALSE, set_study_field_width = "%02.0f",
set_cex = 0.66, set_xlim, set_ylim, set_at, tau2_method = "DL",
adjust_labels = 1, save_plot = FALSE,
verbose_output = FALSE, ...) {
if (missing(set_xlim)) { set_xlim <- NULL }
if (missing(set_at)) { set_at <- NULL }
if (missing(set_ylim)) { set_ylim <- NULL }
beta <- base::as.numeric(beta_in)
se <- base::as.numeric(se_in)
study_names <- base::factor(study_names_in)
variant_names <- base::factor(variant_names_in)
usta <- base::as.numeric(spres_in)
m <- base::data.frame(beta, se, variant_names, study_names, usta)
if (verbose_output) { base::writeLines("\nShowing dataset structure\u003A \n"); utils::str(m) }
if (verbose_output) { base::writeLines("\nShowing first six lines of dataset\u003A \n"); base::print(utils::head(m)) }
m$study <- m$study_names
base::levels(m$study) <- base::seq_along(base::levels(m$study))
nstudies <- base::nlevels(m$study_names)
m$snp <- m$variant_names
base::levels(m$snp) <- base::seq_along(base::levels(m$snp))
nsnps <- base::nlevels(m$variant_names)
if (verbose_output) {
base::writeLines("\n")
base::print(base::paste("Summary\u003A This analysis is based on ", nsnps, " SNP(s) and ", nstudies, " studies"))
base::print("***************** end of part 1\u003A assign snp and study numbers ****************")
base::writeLines("")
}
m_sortby_betas <- dplyr::arrange(m, snp, beta)
if (verbose_output) { base::writeLines("Showing first six lines of dataset sorted by snp then by beta\u003A \n"); base::print(utils::head(m_sortby_betas)) }
list_snp_minidatasets <- base::split(m_sortby_betas, as.factor(m_sortby_betas$variant_names))
if (verbose_output) { base::writeLines("\nSplitting dataset by snp to obtain mini-datasets for each snp\u003A \n"); utils::str(list_snp_minidatasets) }
compute_fe <- function(dframe_current_snp) {
if (set_studyNOs_as_studyIDs) {
metafor_res <- metafor::rma.uni(yi = dframe_current_snp[, "beta"], sei = dframe_current_snp[, "se"], weighted = TRUE, slab = paste(formatC(dframe_current_snp[, "usta"], digits = 2, format = "f", flag = " "), sprintf(set_study_field_width, dframe_current_snp[, "study"]), sep = " "), method = "FE")
} else {
metafor_res <- metafor::rma.uni(yi = dframe_current_snp[, "beta"], sei = dframe_current_snp[, "se"], weighted = TRUE, slab = paste(formatC(dframe_current_snp[, "usta"], digits = 2, format = "f", flag = " "), dframe_current_snp[, "study_names"], sep = " "), method = "FE")
}
output <- base::list(metafor_results_outlier_present = metafor_res, current_snp_name = unique(dframe_current_snp[, "variant_names"]), current_snp_no = unique(dframe_current_snp[, "snp"]))
output
}
metafor_results_fe <- base::lapply(list_snp_minidatasets, compute_fe)
if (verbose_output) { base::writeLines("\nFixed-effect meta-analysis results\u003A \n"); base::print(metafor_results_fe) }
compute_re <- function(dframe_current_snp) {
if (tau2_method == "DL") {
metafor_res <- metafor::rma.uni(yi = dframe_current_snp[, "beta"], sei = dframe_current_snp[, "se"], weighted = TRUE, knha = TRUE, slab = sprintf("%02.0f", dframe_current_snp[, "study"]), method = tau2_method)
}
else {
metafor_res <- metafor::rma.uni(yi = dframe_current_snp[, "beta"], sei = dframe_current_snp[, "se"], weighted = TRUE, knha = TRUE, slab = sprintf("%02.0f", dframe_current_snp[, "study"]), method = tau2_method, control=list(stepadj=0.5, maxiter=10000))
}
output <- base::list(metafor_results_outlier_present = metafor_res, current_snp_name = unique(dframe_current_snp[, "variant_names"]), current_snp_no = unique(dframe_current_snp[, "snp"]))
output
}
metafor_results_re <- base::lapply(list_snp_minidatasets, compute_re)
if (verbose_output) { base::writeLines("\nRandom-effects meta-analysis results\u003A \n"); base::print(metafor_results_re) }
if (verbose_output) base::print("***************** end of part 2: Conduct fixed and random-effects meta-analyses ****************")
generate_forestplot_outlier_present <- function(item_no) {
if (verbose_output) { base::writeLines("\nDisplaying dataset structure for current snp\u003A \n"); utils::str(list_snp_minidatasets[[item_no]]) }
basic_forestplot_params <- metafor::forest(metafor_results_fe[[item_no]]$metafor_results_outlier_present)
grDevices::dev.off()
if(is.null(set_xlim)) { set_xlim <- basic_forestplot_params$xlim }
if(is.null(set_at)) { set_at <- basic_forestplot_params$at }
set_ilab.xpos <- set_xlim[1] - (0.36 * set_xlim[1])
if(is.null(set_ylim)) { set_ylim <- basic_forestplot_params$ylim }
if (verbose_output) {
base::writeLines("Forestplot params\u003A \n");
base::print("set_ylim\u003A "); base::print(set_ylim)
base::print("set_xlim\u003A "); base::print(set_xlim)
base::print("set_at\u003A "); base::print(set_at)
base::print("rows\u003A "); base::print(basic_forestplot_params$rows)
}
opar <- graphics::par(no.readonly =TRUE)
base::on.exit(graphics::par(opar))
op <- graphics::par(cex=set_cex, mar=c(4,4,1,2))
forestplot_name_oulier_present <- base::paste0("forestplot_fixed_effect_sortedby_betas_variant_name_", (metafor_results_fe[[item_no]])$current_snp_name, "_snp_no_", (metafor_results_fe[[item_no]])$current_snp_no, ".tif")
if (save_plot) { grDevices::tiff(forestplot_name_oulier_present, width = 17.35, height = 23.35, units = "cm", res = 600, compression = "lzw", pointsize = 14) }
metafor::forest(metafor_results_fe[[item_no]]$metafor_results_outlier_present, xlim=set_xlim, at=set_at, cex=0.64, xlab = "log odds ratios", addfit=TRUE, mlab = "Summary effect")
graphics::text(set_xlim[2], set_ylim[2] - adjust_labels, "Effect-size [95% CI]", pos=2, cex=set_cex)
graphics::text(0.0, set_ylim[2] - adjust_labels, (metafor_results_fe[[item_no]])$current_snp_name, cex=set_cex)
graphics::text(set_xlim[1], set_ylim[2] - adjust_labels, "SPRE Study", pos=4, cex=set_cex)
plotrix::ablineclip(v = (metafor_results_fe[[item_no]]$metafor_results_outlier_present)$b[1], y1 = -1, y2 = set_ylim[2] - 2, lty="twodash", col = "grey0")
wi <- 1/base::sqrt((metafor_results_fe[[item_no]]$metafor_results_outlier_present)$vi)
psize <- wi/base::sum(wi)
psize <- (psize - base::min(psize)) / (base::max(psize) - base::min(psize))
psize <- (psize * 1.0) + 0.5
df_usta_color <- base::data.frame("usta" = list_snp_minidatasets[[item_no]][, "usta"])
if (spre_colour_palette[1] == "mono_colour") {
df_usta_color$color <- spre_colour_palette[2]
} else if (spre_colour_palette[1] == "dual_colour") {
df_usta_color$color <- spre_colour_palette[2]
df_usta_color[, "color"][df_usta_color$usta < 0] <- spre_colour_palette[3]
} else if (spre_colour_palette[1] == "multi_colour") {
colorspace_hcl_hsv_palettes <- c("rainbow_hcl", "diverge_hcl", "terrain_hcl", "sequential_hcl", "diverge_hsv")
gr_devices_palettes <- c("rainbow", "cm.colors", "topo.colors", "terrain.colors", "heat.colors")
color_ramps_palettes <- c("matlab.like", "matlab.like2", "magenta2green", "cyan2yellow", "blue2yellow", "green2red", "blue2green", "blue2red")
if (spre_colour_palette[2] == colorspace_hcl_hsv_palettes[1]) {
df_usta_color$color <- colorspace::rainbow_hcl(nrow(df_usta_color))
} else if (spre_colour_palette[2] == colorspace_hcl_hsv_palettes[2]) {
df_usta_color$color <- colorspace::diverge_hcl(nrow(df_usta_color))
} else if (spre_colour_palette[2] == colorspace_hcl_hsv_palettes[3]) {
df_usta_color$color <- colorspace::terrain_hcl(nrow(df_usta_color))
} else if (spre_colour_palette[2] == colorspace_hcl_hsv_palettes[4]) {
df_usta_color$color <- colorspace::sequential_hcl(nrow(df_usta_color))
} else if (spre_colour_palette[2] == colorspace_hcl_hsv_palettes[5]) {
df_usta_color$color <- colorspace::diverge_hsv(nrow(df_usta_color))
}
if (spre_colour_palette[2] == gr_devices_palettes[1]) {
df_usta_color$color <- grDevices::rainbow(nrow(df_usta_color), start = 0, end = 5/6)
} else if (spre_colour_palette[2] == gr_devices_palettes[2]) {
df_usta_color$color <- grDevices::cm.colors(nrow(df_usta_color))
} else if (spre_colour_palette[2] == gr_devices_palettes[3]) {
df_usta_color$color <- grDevices::topo.colors(nrow(df_usta_color))
} else if (spre_colour_palette[2] == gr_devices_palettes[4]) {
df_usta_color$color <- grDevices::terrain.colors(nrow(df_usta_color))
} else if (spre_colour_palette[2] == gr_devices_palettes[5]) {
df_usta_color$color <- grDevices::heat.colors(nrow(df_usta_color))
}
if (spre_colour_palette[2] == color_ramps_palettes[1]) {
df_usta_color$color <- colorRamps::matlab.like(nrow(df_usta_color))
} else if (spre_colour_palette[2] == color_ramps_palettes[2]) {
df_usta_color$color <- colorRamps::matlab.like2(nrow(df_usta_color))
} else if (spre_colour_palette[2] == color_ramps_palettes[3]) {
df_usta_color$color <- colorRamps::magenta2green(nrow(df_usta_color))
} else if (spre_colour_palette[2] == color_ramps_palettes[4]) {
df_usta_color$color <- colorRamps::cyan2yellow(nrow(df_usta_color))
} else if (spre_colour_palette[2] == color_ramps_palettes[5]) {
df_usta_color$color <- colorRamps::blue2yellow(nrow(df_usta_color))
} else if (spre_colour_palette[2] == color_ramps_palettes[6]) {
df_usta_color$color <- colorRamps::green2red(nrow(df_usta_color))
} else if (spre_colour_palette[2] == color_ramps_palettes[7]) {
df_usta_color$color <- colorRamps::blue2green(nrow(df_usta_color))
} else if (spre_colour_palette[2] == color_ramps_palettes[8]) {
df_usta_color$color <- colorRamps::blue2red(nrow(df_usta_color))
}
if (spre_colour_palette[2] == "color_brewer_palettes") {
df_usta_color$color <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(as.numeric(spre_colour_palette[3]),spre_colour_palette[4]))(nrow(df_usta_color))
}
}
graphics::points((metafor_results_fe[[item_no]]$metafor_results_outlier_present)$yi, length((metafor_results_fe[[item_no]]$metafor_results_outlier_present)$yi):1, pch=15, col=df_usta_color[, "color"], cex=psize)
graphics::par(op)
if (save_plot) grDevices::dev.off()
}
loci <- seq(unique(m$variant_names))
base::writeLines("\nGenerating forest plots\u003A \u002E\u002E\u002E \n")
lapply(loci, generate_forestplot_outlier_present)
base::writeLines("Done\u002E ")
m_sortby_betas <- dplyr::rename(m_sortby_betas, spre = usta, study_numbers = study, variant_numbers = snp)
if (verbose_output) base::print("***************** end of part 3: Generate forest plots ****************")
base::list(number_variants = nsnps,
number_studies = nstudies,
fixed_effect_results = metafor_results_fe,
random_effects_results = metafor_results_re,
spre_forestplot_dataset = m_sortby_betas)
} |
library(analysisPipelines)
knitr::opts_chunk$set(
eval = FALSE
) |
`BOXarrows3D` <-
function(x1,y1,z1,x2,y2,z2, aglyph=NULL, Rview=ROTX(0), col=grey(.5), border='black',
len = .7, basethick=.05, headlen=.3,headlip=.02)
{
if(missing(len)) { len = .7}
if(missing(basethick)) {basethick=.05 }
if(missing(headlip)) { headlip=.02}
if(missing(headlen)) { headlen=.3 }
if(missing(col)) {col=grey(.5) }
if(missing(border)) { border='black'}
if(missing(Rview)) { Rview=ROTX(0)}
if(missing(aglyph)) {aglyph=NULL }
up = par("usr")
ui = par("pin")
alpha = 65
ratx = (up[2]-up[1])/ui[1]
raty= (up[4]-up[3])/ui[2]
if(length(col)<length(x1)) { col=rep(col,length=length(x1)) }
if(is.null(aglyph))
aglyph = Z3Darrow(len = len , basethick =basethick , headlen =headlen , headlip=headlip )
myzee = matrix(c(0,0,1, 1), nrow=1, ncol=4)
for(i in 1:length(x1))
{
T = TRANmat(x1[i],y1[i],z1[i] )
thelen = sqrt((y2[i]-y1[i])^2+ (x2[i]-x1[i])^2+(z2[i]-z1[i] )^2)
SC = diag(1,nrow = 4)
SC[3,3 ] = thelen
gamma = 180*atan2(y2[i]-y1[i], x2[i]-x1[i] )/pi
beta = 180*atan2( sqrt( (x2[i]-x1[i])^2+(y2[i]-y1[i])^2), z2[i] - z1[i] )/pi
gamma = RPMG::fmod(gamma, 360)
beta = RPMG::fmod(beta, 360)
R3 = ROTZ(gamma)
R2 = ROTY(beta)
R1 = ROTZ(alpha)
M = SC %*% R1 %*% R2 %*% R3 %*% T %*% Rview
M2 = R1 %*% R2 %*% R3 %*% Rview
pglyph3D(aglyph$aglyph, anorms=aglyph$anorm , M=M, M2=M2, zee=myzee , col=col[i] )
}
} |
`print.summary.allPerms` <- function(x, ...) {
dims <- dim(x)
control <- attr(x, "control")
observed <- attr(x, "observed")
attributes(x) <- NULL
dim(x) <- dims
cat("\n")
writeLines(strwrap("Complete enumeration of permutations\n",
prefix = "\t"))
print(control)
cat("\nAll permutations:\n")
writeLines(paste("Contains observed ordering?:", ifelse(observed, "Yes", "No"),
"\n"))
print(x)
return(invisible(x))
} |
expected <- eval(parse(text="FALSE"));
test(id=0, code={
argv <- eval(parse(text="list(structure(3.14159265358979, .Tsp = c(1, 1, 1), class = \"ts\"))"));
do.call(`is.call`, argv);
}, o=expected); |
`panel.ordi3d` <-
function(x, y, z, aspect, ...)
{
dx <- diff(range(x))
dy <- diff(range(y))
dz <- diff(range(z))
aspect <- c(dy/dx, dz/dx)
panel.cloud(x = x, y = y, z = z, aspect = aspect, ...)
} |
assetsSelect <-
function(x, method = c("hclust", "kmeans"), control = NULL, ...)
{
method <- method[1]
if (class(x) == "timeSeries") {
x <- as.matrix(x)
}
fun <- paste(".", method, "Select", sep = "")
FUN <- get(fun)
ans <- FUN(x, control, ...)
ans
}
.hclustSelect <-
function(x, control = NULL, ...)
{
if (is.null(control))
control = c(measure = "euclidean", method = "complete")
measure = control[1]
method = control[2]
ans = hclust(dist(t(x), method = measure), method = method, ...)
class(ans) = c("list", "hclust")
ans
}
.kmeansSelect <-
function(x, control = NULL, ...)
{
if (is.null(control))
control = c(centers = 5, algorithm = "Hartigan-Wong")
centers = as.integer(control[1])
algorithm = control[2]
ans = kmeans(x = t(x), centers = centers, algorithm = algorithm, ...)
class(ans) = c("list", "kmeans")
ans
} |
plot.4thcorner <- function(x, stat = c("D", "D2", "G"), type = c("table", "biplot"), xax = 1, yax = 2, x.rlq = NULL, alpha = 0.05, col = c("lightgrey", "red", "deepskyblue", "purple"),...) {
stat <- match.arg(stat)
type <- match.arg(type)
appel <- as.list(x$call)
fctn <- appel[[1]]
if(!inherits(x, "4thcorner") & !inherits(x, "4thcorner.rlq"))
stop("x must be of class '4thcorner' or '4thcorner.rlq'")
if(inherits(x, "4thcorner.rlq") & stat != "G")
stop("stat should be 'G' for object of class '4thcorner.rlq' (created by the 'fourthcorner2' function)")
if(type == "biplot" & stat == "G")
stop("'biplot not available for the 'G' statistic")
if((stat == "D2" | stat=="D")){
res <- data.frame(matrix(1, length(x$colnames.Q),length(x$colnames.R)))
names(res) <- x$colnames.R
row.names(res) <- x$colnames.Q
if(stat == "D2") {
xrand <- x$tabD2
} else {
xrand <- x$tabD
}
for(i in 1:nrow(res)){
for(j in 1:ncol(res)){
idx.var <- ncol(res) * (i - 1) + j
if(!is.na(xrand$adj.pvalue[idx.var])){
if(xrand$adj.pvalue[idx.var] < alpha){
res[i,j] <- ifelse(xrand$alter[idx.var]=="greater", 2, 3)
if((x$indexR[x$assignR[j]]==1) != (x$indexQ[x$assignQ[i]]==1)){
if(stat == "D")
res[i,j] <- 2
if(stat == "D2")
res[i,j] <- ifelse(xrand$obs[idx.var] > 0, 2, 3)
}
else if((x$indexR[x$assignR[j]]==1) & (x$indexQ[x$assignQ[i]]==1)){
res[i,j] <- ifelse(xrand$obs[idx.var] > 0, 2, 3)
}
else if((x$indexR[x$assignR[j]]==2) & (x$indexQ[x$assignQ[i]]==2)){
res[i,j] <- ifelse(xrand$obs[idx.var] > xrand$expvar$Expectation[idx.var], 2, 3)
}
}
}
}
}
} else if(stat=="G"){
res <- data.frame(matrix(1, length(x$varnames.Q),length(x$varnames.R)))
names(res) <- x$varnames.R
row.names(res) <- x$varnames.Q
xrand <- x$tabG
for(i in 1:nrow(res)){
for(j in 1:ncol(res)){
idx.var <- ncol(res) * (i - 1) + j
if(xrand$adj.pvalue[idx.var] < alpha){
res[i,j] <- ifelse(xrand$alter[idx.var]=="greater", 2, 3)
if((x$indexR[j]==1) & (x$indexQ[i]==1)){
res[i,j] <- ifelse(xrand$obs[idx.var] > 0, 2, 3)
}
}
}
}
}
table4thcorner <- function (df, stat, assignR, assignQ, col)
{
x1 <- 1:ncol(df)
y <- nrow(df):1
opar <- par(mai = par("mai"), srt = par("srt"))
on.exit(par(opar))
table.prepare(x = x1, y = y, row.labels = row.names(df), col.labels = names(df),
clabel.row = 1, clabel.col = 1, grid = FALSE,
pos = "paint")
xtot <- x1[col(as.matrix(df))]
ytot <- y[row(as.matrix(df))]
xdelta <- (max(x1) - min(x1))/(length(x1) - 1)/2
ydelta <- (max(y) - min(y))/(length(y) - 1)/2
z <- unlist(df)
rect(xtot - xdelta, ytot - ydelta, xtot + xdelta, ytot +
ydelta, col = col[1:3][z], border = "grey90")
if((stat == "D") | (stat == "D2")){
idR <- which(diff(assignR)==1)
idQ <- which(diff(assignQ)==1)
if(length(idR) > 0)
segments(sort(unique(xtot))[idR]+xdelta, max(ytot+ydelta), sort(unique(xtot))[idR]+xdelta, min(ytot-ydelta), lwd=2)
if(length(idQ) > 0)
segments(max(xtot+xdelta), sort(unique(ytot), decreasing = TRUE)[idQ+1]+ydelta, min(xtot-xdelta), sort(unique(ytot), decreasing = TRUE)[idQ+1]+ydelta, lwd=2)
}
rect(min(xtot) - xdelta, min(ytot) - ydelta, max(xtot) + xdelta, max(ytot) + ydelta, col = NULL)
}
biplot.rlq4thcorner <- function (res.4thcorner, obj.rlq, stat, alpha, xax, yax, clab.traits, clab.env, col)
{
opar <- par(mar = par("mar"))
on.exit(par(opar))
coolig <- obj.rlq$li[, c(xax, yax)]
coocol <- obj.rlq$c1[, c(xax, yax)]
s.label(coolig, clabel = 0, cpoint = 0, xlim = 1.2 * range(coolig[,1]))
born <- par("usr")
k1 <- min(coocol[, 1])/born[1]
k2 <- max(coocol[, 1])/born[2]
k3 <- min(coocol[, 2])/born[3]
k4 <- max(coocol[, 2])/born[4]
k <- c(k1, k2, k3, k4)
coocol <- 0.9 * coocol/max(k)
idx.pos <- which(t(res.4thcorner)==2, arr.ind=TRUE)
idx.neg <- which(t(res.4thcorner)==3, arr.ind=TRUE)
idx.tot <- list(unique(c(idx.pos[,1],idx.neg[,1])), unique(c(idx.pos[,2],idx.neg[,2])))
par(mar = c(0.1, 0.1, 0.1, 0.1))
if(length(idx.tot[[1]]) > 0)
{
scatterutil.eti(coolig[-idx.tot[[1]],1], coolig[-idx.tot[[1]],2],label=row.names(coolig)[-idx.tot[[1]]], clabel = clab.env, boxes = FALSE, coul = rep(col[1], nrow(coolig) - length(idx.tot[[1]])))
scatterutil.eti(coocol[-idx.tot[[2]],1], coocol[-idx.tot[[2]],2],label=row.names(coocol)[-idx.tot[[2]]], clabel = clab.traits, boxes = FALSE, coul = rep(col[1], nrow(coocol) - length(idx.tot[[2]])))
} else {
scatterutil.eti(coolig[,1], coolig[,2],label=row.names(coolig), clabel = clab.env, boxes = FALSE, coul = rep(col[1], nrow(coolig)))
scatterutil.eti(coocol[,1], coocol[,2],label=row.names(coocol), clabel = clab.traits, boxes = FALSE, coul = rep(col[1], nrow(coocol)))
}
if(nrow(idx.pos) > 0)
segments(coolig[idx.pos[,1],1],coolig[idx.pos[,1],2],coocol[idx.pos[,2],1],coocol[idx.pos[,2],2], lty = 1, lwd = 2, col = col[2])
if(nrow(idx.neg) > 0)
segments(coolig[idx.neg[,1],1],coolig[idx.neg[,1],2],coocol[idx.neg[,2],1],coocol[idx.neg[,2],2], lty = 1, lwd = 2, col = col[3])
if(length(idx.tot[[1]]) > 0)
{
scatterutil.eti.circ(coolig[idx.tot[[1]],1], coolig[idx.tot[[1]],2], label=row.names(coolig)[idx.tot[[1]]], clabel = clab.env, boxes = FALSE)
scatterutil.eti.circ(coocol[idx.tot[[2]],1], coocol[idx.tot[[2]],2],label=row.names(coocol)[idx.tot[[2]]], clabel = clab.traits, boxes = FALSE)
points(coolig[idx.tot[[1]],], pch = 17)
points(coocol[idx.tot[[2]],], pch = 19)
}
}
biplot.axesrlq4thcorner <- function(res.4thcorner, coo, alpha, xax, yax, type.axes, col){
opar <- par(mar = par("mar"))
on.exit(par(opar))
s.label(coo, clabel = 0, cpoint = 0)
if(type.axes == "R.axes")
res.4thcorner <- res.4thcorner[c(xax,yax),]
if(type.axes == "Q.axes"){
res.4thcorner <- res.4thcorner[,c(xax,yax)]
res.4thcorner <- t(res.4thcorner)
}
idx.xax <- which((res.4thcorner[1,] > 1) & (res.4thcorner[2,] == 1))
idx.yax <- which((res.4thcorner[1,] == 1) & (res.4thcorner[2,] > 1))
idx.both <- which((res.4thcorner[1,] > 1) & (res.4thcorner[2,] > 1))
idx.tot <- c(idx.xax, idx.yax, idx.both)
par(mar = c(0.1, 0.1, 0.1, 0.1))
if(length(idx.tot) > 0)
{
scatterutil.eti(coo[-idx.tot,1], coo[-idx.tot,2],label=row.names(coo)[-idx.tot], clabel = 1, boxes = FALSE, coul = rep(col[1], nrow(coo) - length(idx.tot)))
} else {
scatterutil.eti(coo[,1], coo[,2],label=row.names(coo), clabel = 1, boxes = FALSE, coul = rep(col[1], nrow(coo)))
}
if(length(idx.xax) > 0)
scatterutil.eti(coo[idx.xax,1], coo[idx.xax,2],label=row.names(coo)[idx.xax], clabel = 1, boxes = TRUE, coul = rep(col[2], length(idx.xax)))
if(length(idx.yax) > 0)
scatterutil.eti(coo[idx.yax,1], coo[idx.yax,2],label=row.names(coo)[idx.yax], clabel = 1, boxes = TRUE, coul = rep(col[3], length(idx.xax)))
if(length(idx.both) > 0)
scatterutil.eti(coo[idx.both,1], coo[idx.both,2],label=row.names(coo)[idx.both], clabel = 1, boxes = TRUE, coul = rep(col[4], length(idx.both)))
}
if(type=="table"){
table4thcorner(res, stat = stat, assignR = x$assignR, assignQ = x$assignQ, col = col)
} else if(type=="biplot"){
if(fctn =="fourthcorner" | fctn =="fourthcorner2"){
if (!inherits(x.rlq, "rlq"))
stop("'x.rlq' should be of class 'rlq'")
biplot.rlq4thcorner(res.4thcorner = res, obj.rlq = x.rlq, stat = stat, alpha = alpha, xax = xax, yax = yax, clab.traits = 1, clab.env = 1, col = col)
} else if(fctn=="fourthcorner.rlq"){
obj.rlq <- eval(appel$xtest, sys.frame(0))
type.axes <- eval(appel$typetest, sys.frame(0))
if(type.axes == "axes")
stop("The option 'axes' is only implemented for pedagogic purposes and is not relevant to analyse data")
if(type.axes == "R.axes")
coo <- obj.rlq$li[, c(xax, yax)]
if(type.axes == "Q.axes")
coo <- obj.rlq$co[, c(xax, yax)]
biplot.axesrlq4thcorner(res.4thcorner = res, coo = coo, alpha = alpha, xax = xax, yax = yax, type.axes = type.axes, col = col)
}
}
} |
geno.as.array <- function(genotypes,renumber=FALSE,miss=NULL,gtp.sep="/") {
mknum<-function(genotypes, renumber=FALSE, gtp.sep="/") {
alleles<- strsplit(genotypes, gtp.sep)
gtp<-cbind(sapply(alleles, function(x) x[1], simplify=TRUE),
sapply(alleles, function(x) x[2], simplify=TRUE))
if (renumber) {
alleles<-unique(unlist(alleles))
gtp[,1]<-as.numeric(factor(gtp[,1],levels=alleles))
gtp[,2]<-as.numeric(factor(gtp[,2],levels=alleles))
}
if (is.null(miss)) {
gtp[is.na(genotypes),]<-NA
}else{
gtp[is.na(genotypes),]<-miss
}
gtp
}
if (is.null(ncol(genotypes)) || ncol(genotypes)==1) {
res<-mknum(genotypes, renumber=renumber)
}else{
res<-data.frame(mknum(genotypes[,1], renumber=renumber))
for(i in 2:ncol(genotypes)) {
res<-cbind(res,mknum(genotypes[,i], renumber=renumber))
}
colnames(res)<-c(t(outer(names(genotypes),1:2,paste,sep=".")))
}
apply(res,2,as.character)
}
hap <- function(genotypes) {
res<-geno.as.array(genotypes)
nc<-ncol(res)
hap1<-res[,seq(1,nc,2)]
hap2<-res[,seq(2,nc,2)]
loci<-colnames(genotypes)
colnames(hap2)<-colnames(hap1)<-loci
list(hap1=hap1, hap2=hap2, class="haplotype")
}
hapshuffle <- function(haplotypes, hfreq=NULL, ambiguous=NULL, verbose=FALSE, set) {
if (is.null(hfreq)) hfreq<-hapfreq(haplotypes, set=set)
if (is.null(ambiguous)) ambiguous<-hapambig(haplotypes)
nloci<-ncol(haplotypes$hap1)
nobs<-nrow(haplotypes$hap1)
for(ind in ambiguous) {
prop<-curr<-list(hap1=haplotypes$hap1[ind,], hap2=haplotypes$hap2[ind,])
swap<-sample(c(TRUE,FALSE),nloci,replace=TRUE)
if (any(swap)) {
tmp<-prop$hap1[swap]
prop$hap1[swap]<-prop$hap2[swap]
prop$hap2[swap]<-tmp
}
o1<-paste(curr$hap1,collapse=":")
o2<-paste(curr$hap2,collapse=":")
n1<-paste(prop$hap1,collapse=":")
n2<-paste(prop$hap2,collapse=":")
pos.o1<-match(o1,names(hfreq))
pos.o2<-match(o2,names(hfreq))
pos.n1<-match(n1,names(hfreq))
pos.n2<-match(n2,names(hfreq))
pn<-(hfreq[pos.n1]+0.5)*(hfreq[pos.n2]+0.5)
po<-(hfreq[pos.o1]+0.5)*(hfreq[pos.o2]+0.5)
qa<-pn/po
if (verbose) cat("Person ",ind," ",qa," ",o1,"/",o2," -> ",n1,"/",n2,sep="")
if (qa>runif(1)) {
if (verbose) cat(" Accepted\n")
haplotypes$hap1[ind,]<-prop$hap1
haplotypes$hap2[ind,]<-prop$hap2
hfreq[pos.n1]<-hfreq[pos.n1]+1
hfreq[pos.n2]<-hfreq[pos.n2]+1
hfreq[pos.o1]<-hfreq[pos.o1]-1
hfreq[pos.o2]<-hfreq[pos.o2]-1
}else if (verbose) {
cat(" Unchanged\n")
}
}
list(hfreq=hfreq, haplotypes=haplotypes, class="hapshuffle")
}
hapambig <- function(haplotypes) {
which(apply(haplotypes$hap1!=haplotypes$hap2,1,sum)>1)
}
hapenum <- function(haplotypes) {
dat<-rbind(haplotypes$hap1, haplotypes$hap2)
dat<-dat[complete.cases(dat),]
set<-unique(dat[,1])
for(i in 2:ncol(dat)) set<-outer(set,unique(dat[,i]),paste,sep=":")
factor(set)
}
hapfreq <- function(haplotypes, set=NULL) {
if (is.null(set)) set<-hapenum(haplotypes)
hap1<-apply(haplotypes$hap1[complete.cases(haplotypes$hap1),],1,paste,collapse=":")
hap2<-apply(haplotypes$hap2[complete.cases(haplotypes$hap2),],1,paste,collapse=":")
dat<-c(hap1,hap2)
table(factor(dat,levels=set))
}
hapmcmc <- function(gtp, B=1000) {
tot<-2*nrow(gtp)
hap.dat<-hap(gtp)
hap.set<-hapenum(hap.dat)
hap.amb<-hapambig(hap.dat)
hap.new<-list(hfreq=hapfreq(hap.dat, set=hap.set), haplotypes=hap.dat)
res<-matrix(nrow=B, ncol=length(hap.set))
colnames(res)<-as.character(hap.set)
rownames(res)<-1:B
for(i in 1:B) {
hap.new<-hapshuffle(hap.new$haplotypes,hfreq=hap.new$hfreq,ambiguous=hap.amb, set=hap.new$set)
res[i,]<-hap.new$hfreq
}
apply(res,2,mean)/tot
}
mourant <- function(n) {
tab<-matrix(c(91,32,5,147,78,17,85,75,7), nrow=3)
rownames(tab)<-c("M/M","M/N","N/N")
colnames(tab)<-c("S/S","S/s","s/s")
dat<-as.data.frame.table(tab)
p<-dat$Freq/sum(dat$Freq)
dat[sample(1:nrow(dat),n,replace=TRUE,prob=p),1:2]
} |
NULL
NULL
load_esdm <- function(name, path = getwd()) {
path <- paste0(path, "/", name)
a <- try(read.csv(paste0(path, "/Tables/AlgoCorr.csv"), row.names = 1))
if (inherits(a, "try-error")) {
cat("Algorithm correlation table empty ! \n")
a <- data.frame()
}
b <- try(raster(paste0(path, "/Rasters/Binary.tif")))
if (inherits(b, "try-error")) {
projection <- raster(paste0(path, "/Rasters/Probability.tif"))
evaluation <- read.csv(paste0(path, "/Tables/ESDMeval.csv"), row.names = 1)
b <- reclassify(projection, c(-Inf, evaluation$threshold, 0, evaluation$threshold,
Inf, 1))
}
esdm <- Ensemble.SDM(name = as.character(read.csv(paste0(path, "/Tables/Name.csv"))[1,2]),
projection = raster(paste0(path, "/Rasters/Probability.tif")),
binary = b,
uncertainty = try(raster(paste0(path, "/Rasters/uncertainty.tif"))),
evaluation = read.csv(paste0(path, "/Tables/ESDMeval.csv"), row.names = 1),
algorithm.evaluation = read.csv(paste0(path, "/Tables/AlgoEval.csv"),
row.names = 1),
algorithm.correlation = a,
data = read.csv(paste0(path, "/Tables/Data.csv"), row.names = 1),
variable.importance = read.csv(paste0(path, "/Tables/VarImp.csv"), row.names = 1),
parameters = read.csv(paste0(path, "/Tables/Parameters.csv"), row.names = 1, colClasses = "character"))
return(esdm)
}
load_stack <- function(name = "Stack", path = getwd(), GUI = FALSE) {
path <- paste0(path, "/", name)
a <- try(read.csv(paste0(path, "/Stack/Tables/AlgoCorr.csv"), row.names = 1))
if (inherits(a, "try-error")) {
cat("Algorithm correlation table empty ! \n")
a <- data.frame()
}
stack <- Stacked.SDM(name = as.character(read.csv(paste0(path, "/Stack/Tables/Name.csv"))[1,
2]), diversity.map = raster(paste0(path, "/Stack/Rasters/Diversity.tif")),
endemism.map = raster(paste0(path, "/Stack/Rasters/Endemism.tif")),
uncertainty = raster(paste0(path, "/Stack/Rasters/uncertainty.tif")),
evaluation = read.csv(paste0(path, "/Stack/Tables/StackEval.csv"),
row.names = 1), variable.importance = read.csv(paste0(path,
"/Stack/Tables/VarImp.csv"), row.names = 1), algorithm.correlation = a,
algorithm.evaluation = read.csv(paste0(path, "/Stack/Tables/AlgoEval.csv"),
row.names = 1), esdms = list(), parameters = read.csv(paste0(path,
"/Stack/Tables/Parameters.csv"), row.names = 1, colClasses = "character"))
esdms <- list.dirs(paste0(path, "/Species"), recursive = FALSE, full.names = FALSE)
if (GUI) {
incProgress(1/(length(esdms) + 1), detail = "stack main results")
}
for (i in seq_len(length(esdms))) {
cat(esdms[i])
esdm <- load_esdm(esdms[i], path = paste0(path, "/Species"))
stack@esdms[[esdm@name]] <- esdm
if (GUI) {
incProgress(1/(length(esdms) + 1), detail = esdm@name)
}
}
return(stack)
} |
PsimNHPc <-
function(i,lambdaiM, fixed.seed)
{
if (!is.null(fixed.seed)) fixed.seed<-fixed.seed+i
aux<-simNHPc(lambda = lambdaiM[,i], fixed.seed = fixed.seed)$posNH
return(aux)
} |
HampelWeightFunction <- function (x, q1, q2, q3) {
i1 <- which(abs(x) <= q1)
i2 <- which(abs(x) > q1 & abs(x) <= q2)
i3 <- which(abs(x) > q2 & abs(x) <= q3)
i4 <- which(abs(x) > q3)
hampel_weights <- x
hampel_weights[i1] <- 1
hampel_weights[i2] <- q1 / abs(x[i2])
hampel_weights[i3] <- (q1 * (q3 - abs(x[i3]))) / ((q3 - q2) * abs(x[i3]))
hampel_weights[i4] <- 0
return(as.numeric(hampel_weights))
} |
context("user_secrets")
test_that("get_user_secret exists", {
exists('get_user_secret')
}) |
penalty.minfun = function(w, optvars, uservars){
m = optvars$wm
pen = optvars$penalty
rfun = optvars$rfun
if(!is.null(dim(w)[2])){
f = apply(w, 2, FUN = function(y){
f = rfun(y, optvars, uservars) +
ifelse(optvars$index[3]==1 || !is.null(optvars$ineqfun),
pen * sum(pmax(parma.ineq.minfun(y, optvars, uservars), 0)^2), 0) +
pen * sum(parma.eq.minfun(y, optvars, uservars)^2)
if(!is.null(optvars$max.pos)) f = f + pen * pmax(0, (sum((abs(y[optvars$widx])>0.001)) - optvars$max.pos) )^2
return(f)
})
} else{
f = rfun(w, optvars, uservars) +
ifelse(optvars$index[3]==1 || !is.null(optvars$ineqfun),
pen * sum(pmax(parma.ineq.minfun(w, optvars, uservars), 0)^2), 0) +
pen * sum(parma.eq.minfun(w, optvars, uservars)^2)
if(!is.null(optvars$max.pos)) f = f + pen * pmax(0, sum((abs(w[optvars$widx])>0.001)) - optvars$max.pos)^2
}
return( f )
}
penalty.optfun = function(w, optvars, uservars){
m = optvars$m
pen = optvars$penalty
rfun = optvars$rfun
if(!is.null(dim(w)[2])){
f = apply(w, 2, FUN = function(y){
f = rfun(y, optvars, uservars) +
pen * sum(pmax(parma.ineq.optfun(y, optvars, uservars), 0)^2) +
pen * sum(parma.eq.optfun(y, optvars, uservars)^2)
if(!is.null(optvars$max.pos)) f = f + pen * pmax(0, sum((abs(y[optvars$widx]/y[optvars$midx])>0.001)) - optvars$max.pos)^2
return(f)
})
} else{
f = rfun(w, optvars, uservars) +
pen * sum(pmax(parma.ineq.optfun(w, optvars, uservars), 0)^2) +
pen * sum(parma.eq.optfun(w, optvars, uservars)^2)
if(!is.null(optvars$max.pos)) f = f + pen * pmax(0, sum((abs(w[optvars$widx]/w[optvars$midx])>0.001)) - optvars$max.pos)^2
}
return( f )
}
func.lpmupm = function(w, optvars, uservars){
Data = optvars$Data
lmoment = optvars$lmoment
lthreshold = optvars$lthreshold
port = Data %*% as.numeric(w[optvars$widx])
f = (mean(func.max.smooth( (w[optvars$midx]*lthreshold) - port)^lmoment))^(1/lmoment)
return( f )
}
func.ineq.lpmupm = function(w, optvars, uservars){
Data = optvars$Data
umoment = optvars$umoment
uthreshold = optvars$uthreshold
N = optvars$N
LB = optvars$LB
UB = optvars$UB
port = Data %*% as.numeric(w[optvars$widx])
A1 = 1 - (mean(func.max.smooth(port - uthreshold*w[optvars$midx])^umoment))^(1/umoment)
A2 = ( c( w[optvars$midx]*LB - w[optvars$widx], w[optvars$widx] - w[optvars$midx]*UB) )
cons = c(A1, A2)
if(!is.null(optvars$ineqfun)){
n = length(optvars$ineqfun)
fnlist = list(w, optvars, uservars)
names(fnlist) = c("w", "optvars", "uservars")
for(i in 1:n){
cons = c(cons, do.call(optvars$ineqfun[[i]], args = fnlist))
}
}
return( cons )
}
parma.eq.lpmupm = function(w, optvars, uservars){
if(optvars$index[6]==0) cons = eqfun.budget.opt(w, optvars, uservars) else cons = eqfun.leverage.opt(w, optvars, uservars)
if(!is.null(optvars$eqfun)){
n = length(optvars$eqfun)
fnlist = list(w, optvars, uservars)
names(fnlist) = c("w", "optvars", "uservars")
for(i in 1:n){
cons = c(cons, do.call(optvars$eqfun[[i]], args = fnlist))
}
}
return(cons)
}
penalty.lpmupm = function(w, optvars, uservars){
pen = optvars$penalty
if(!is.null(dim(w)[2])){
f = apply(w, 2, FUN = function(y){
f = func.lpmupm(y, optvars, uservars) +
pen * sum(pmax(func.ineq.lpmupm(y, optvars, uservars), 0)^2) +
pen * sum(parma.eq.lpmupm(y, optvars, uservars)^2)
if(!is.null(optvars$max.pos)) f = f + pen * pmax(0, sum((abs(y[optvars$widx]/y[optvars$midx])>0.001)) - optvars$max.pos)^2
return(f)})
} else{
f = func.lpmupm(w, optvars, uservars) +
pen * sum(pmax(func.ineq.lpmupm(w, optvars, uservars), 0)^2) +
pen * sum(parma.eq.lpmupm(w, optvars, uservars)^2)
if(!is.null(optvars$max.pos)) f = f + pen * pmax(0, sum((abs(w[optvars$widx]/w[optvars$midx])>0.001)) - optvars$max.pos)^2
}
return(f)
}
gnlpport = function(optvars, uservars, solver = "cmaes", control = list(), ...)
{
ctrl = .gnlp.ctrl(solver, control)
risk = c("mad", "minimax", "cvar", "cdar", "ev", "lpm", "lpmupm")[optvars$index[4]]
if(optvars$index[5] == 1){
func = penalty.minfun
rfun = switch(risk,
"cvar" = func.mincvar,
"mad" = func.minmad,
"lpm" = func.minlpm,
"minimax" = func.minminmax,
"ev" = func.minvar)
optvars$rfun = rfun
solution = switch(solver,
"cmaes" = gnlp.mincmaes(func, optvars, uservars, ctrl),
"crs" = gnlp.mincrs(func, optvars, uservars, ctrl))
} else{
if(risk == "lpmupm"){
func = penalty.lpmupm
} else{
func = penalty.optfun
rfun = switch(risk,
"cvar" = func.optcvar,
"mad" = func.optmad,
"lpm" = func.optlpm,
"minimax" = func.optminmax,
"ev" = func.optvar)
optvars$rfun = rfun
}
solution = switch(solver,
"cmaes" = gnlp.fraccmaes(func, optvars, uservars, ctrl),
"crs" = gnlp.fraccrs(func, optvars, uservars, ctrl))
}
return( solution )
}
.gnlp.ctrl = function(solver, control){
ans = switch(solver,
"cmaes" = .cmaes.ctrl(control),
"crs" = .crs.ctrl(control))
return(ans)
}
.cmaes.ctrl = function(control){
cmaes.control(options = control$options, CMA = control$CMA)
}
.crs.ctrl = function(control){
ctrl2 = list()
ctrl2$algorithm = "NLOPT_GN_CRS2_LM"
if( is.null(control$minf_max) ) ctrl2$minf_max = 0 else ctrl2$minf_max = control$minf_max
if( is.null(control$ftol_rel) ) ctrl2$ftol_rel = NULL else ctrl2$ftol_rel = control$ftol_rel
if( is.null(control$ftol_abs) ) ctrl2$ftol_abs = 1e-12 else ctrl2$ftol_abs = control$ftol_abs
if( is.null(control$xtol_rel) ) ctrl2$xtol_rel = 1e-11 else ctrl2$xtol_rel = control$xtol_rel
if( is.null(control$maxeval) ) ctrl2$maxeval = 100000 else ctrl2$maxeval = as.integer( control$maxeval )
if( is.null(control$maxtime) ) ctrl2$maxtime = 200 else ctrl2$maxtime = control$maxtime
if( is.null(control$print_level) ) ctrl2$print_level = 0 else ctrl2$print_level = as.integer( control$print_level )
return(ctrl2)
}
gnlp.mincmaes = function(func, optvars, uservars, ctrl){
sol = list()
ans = try(cmaes(pars = optvars$x0, fun = func, optvars = optvars, uservars = uservars,
lower = optvars$LB, upper = optvars$UB, insigma = 0.1,
ctrl = ctrl), silent = TRUE)
if(inherits(ans, 'try-error')){
sol$status = 1
sol$weights = rep(NA, optvars$wm)
sol$risk = NA
sol$reward = NA
if(optvars$index[4]==3) sol$VaR = NA
if(optvars$index[4]==4) sol$DaR = NA
} else {
ansf = nlminb(start = ans$par, func, lower = optvars$LB, upper = optvars$UB,
optvars = optvars, uservars = uservars,
control = list(trace= ifelse(is.null(ctrl$trace), 0, ctrl$trace),
eval.max = 2000, iter.max = 1000))
sol$status = ansf$convergence
sol$weights = ansf$par[optvars$widx]
sol$risk = ansf$objective
sol$reward = sum(sol$weights * optvars$mu)
if(optvars$index[4]==3) sol$VaR = ansf$par[optvars$vidx]
if(optvars$index[4]==4) sol$DaR = ansf$par[optvars$vidx]
}
return(sol)
}
gnlp.mincrs = function(func, optvars, uservars, ctrl){
sol = list()
ans = try(nloptr( optvars$x0, eval_f = func, lb = optvars$LB, ub = optvars$UB,
opts = ctrl, optvars = optvars, uservars = uservars),
silent = TRUE)
if(inherits(ans, 'try-error')){
sol$status = 1
sol$weights = rep(NA, optvars$wm)
sol$risk = NA
sol$reward = NA
if(optvars$index[4]==3) sol$VaR = NA
if(optvars$index[4]==4) sol$DaR = NA
} else {
ansf = nlminb(start = ans$solution, func, lower = optvars$LB,
upper = optvars$UB, optvars = optvars, uservars = uservars,
control = list(trace= ifelse(is.null(ctrl$trace), 0, ctrl$trace),
eval.max = 2000, iter.max = 1000))
sol$status = ansf$convergence
sol$weights = ansf$par[optvars$widx]
sol$risk = ansf$objective
sol$reward = sum(sol$weights * optvars$mu)
if(optvars$index[4]==3) sol$VaR = ansf$par[optvars$vidx]
if(optvars$index[4]==4) sol$DaR = ansf$par[optvars$vidx]
}
return(sol)
}
gnlp.fraccmaes = function(func, optvars, uservars, ctrl){
sol = list()
ans = try(cmaes(pars = optvars$x0, fun = func, optvars = optvars,
uservars = uservars, lower = optvars$fLB,
upper = optvars$fUB, insigma = 0.1, ctrl = ctrl),
silent = TRUE)
if(inherits(ans, 'try-error')){
sol$status = 1
sol$weights = rep(NA, optvars$wm)
sol$risk = NA
sol$reward = NA
sol$multiplier = NA
if(optvars$index[4]==3) sol$VaR = NA
if(optvars$index[4]==4) sol$DaR = NA
} else {
ansf = nlminb(start = ans$par, func, lower = optvars$LB, upper = optvars$UB,
optvars = optvars, uservars = uservars,
control = list(trace= ifelse(is.null(ctrl$trace), 0, ctrl$trace),
eval.max = 2000, iter.max = 1000))
sol$status = ansf$convergence
sol$multiplier = ansf$par[optvars$midx]
sol$weights = ansf$par[optvars$widx]/ansf$par[optvars$midx]
sol$risk = ansf$objective/ansf$par[optvars$midx]
sol$reward = sum(sol$weights * optvars$mu)
if(optvars$index[4]==3) sol$VaR = ansf$par[optvars$vidx]/ansf$par[optvars$midx]
if(optvars$index[4]==4) sol$DaR = ansf$par[optvars$vidx]/ansf$par[optvars$midx]
}
return(sol)
}
gnlp.fraccrs = function(func, optvars, uservars, ctrl){
ctrl2 = list()
ctrl2$algorithm = "NLOPT_GN_CRS2_LM"
sol = list()
if( is.null(ctrl$minf_max) ) ctrl2$minf_max = 0 else ctrl2$minf_max = ctrl$minf_max
if( is.null(ctrl$ftol_rel) ) ctrl2$ftol_rel = NULL else ctrl2$ftol_rel = ctrl$ftol_rel
if( is.null(ctrl$ftol_abs) ) ctrl2$ftol_abs = 1e-12 else ctrl2$ftol_abs = ctrl$ftol_abs
if( is.null(ctrl$xtol_rel) ) ctrl2$xtol_rel = 1e-11 else ctrl2$xtol_rel = ctrl$xtol_rel
if( is.null(ctrl$maxeval) ) ctrl2$maxeval = 100000 else ctrl2$maxeval = as.integer( ctrl$maxeval )
if( is.null(ctrl$maxtime) ) ctrl2$maxtime = 200 else ctrl2$maxtime = ctrl$maxtime
if( is.null(ctrl$print_level) ) ctrl2$print_level = 0 else ctrl2$print_level = as.integer( ctrl$print_level )
ans = try(nloptr( optvars$x0, eval_f = func, lb = optvars$fLB, ub = optvars$fUB,
opts = ctrl, optvars = optvars, uservars = uservars),
silent = TRUE)
if(inherits(ans, 'try-error')){
sol$status = 1
sol$weights = rep(NA, optvars$wm)
sol$risk = NA
sol$reward = NA
sol$multiplier = NA
if(optvars$index[4]==3) sol$VaR = NA
if(optvars$index[4]==4) sol$DaR = NA
} else {
ansf = nlminb(start = ans$solution, func, lower = optvars$LB,
upper = optvars$UB, optvars = optvars, uservars = uservars,
control = list(trace= ifelse(is.null(ctrl$trace), 0, ctrl$trace),
eval.max = 2000, iter.max = 1000))
sol$status = ansf$convergence
sol$multiplier = ansf$par[optvars$midx]
sol$weights = ansf$par[optvars$widx]/ansf$par[optvars$midx]
sol$risk = ansf$objective/ansf$par[optvars$midx]
sol$reward = sum(sol$weights * optvars$mu)
if(optvars$index[4]==3) sol$VaR = ansf$par[optvars$vidx]/ansf$par[optvars$midx]
if(optvars$index[4]==4) sol$DaR = ansf$par[optvars$vidx]/ansf$par[optvars$midx]
}
return(sol)
} |
suppressPackageStartupMessages({
library(magrittr)
library(mockery)
library(purrr)
library(fs)
})
defer <- withr::defer
expect_equivalent <- function(x, y) {
expect_equal(x, y, ignore_attr = TRUE)
}
language_client <- function(working_dir = getwd(), diagnostics = FALSE, capabilities = NULL) {
if (nzchar(Sys.getenv("R_LANGSVR_LOG"))) {
script <- sprintf(
"languageserver::run(debug = '%s')",
normalizePath(Sys.getenv("R_LANGSVR_LOG"), "/", mustWork = FALSE))
} else {
script <- "languageserver::run()"
}
client <- LanguageClient$new(
file.path(R.home("bin"), "R"), c("--slave", "-e", script))
client$notification_handlers <- list(
`textDocument/publishDiagnostics` = function(self, params) {
uri <- params$uri
diagnostics <- params$diagnostics
self$diagnostics$set(uri, diagnostics)
}
)
client$start(working_dir = working_dir, capabilities = capabilities)
client$catch_callback_error <- FALSE
data <- client$fetch(blocking = TRUE)
client$handle_raw(data)
client %>% notify("initialized")
client %>% notify(
"workspace/didChangeConfiguration", list(settings = list(diagnostics = diagnostics)))
withr::defer_parent({
if (Sys.getenv("R_LANGSVR_TEST_FAST", "YES") == "NO") {
client %>% respond("shutdown", NULL, retry = FALSE)
client$process$wait(10 * 1000)
if (client$process$is_alive()) {
cat("server did not shutdown peacefully\n")
client$process$kill_tree()
}
} else {
client$process$kill_tree()
}
})
client
}
notify <- function(client, method, params = NULL) {
client$deliver(Notification$new(method, params))
invisible(client)
}
did_open <- function(client, path, uri = path_to_uri(path), text = NULL, languageId = NULL) {
if (is.null(text)) {
text <- stringi::stri_read_lines(path)
}
text <- paste0(text, collapse = "\n")
if (is.null(languageId)) {
languageId <- if (is_rmarkdown(uri)) "rmd" else "r"
}
notify(
client,
"textDocument/didOpen",
list(
textDocument = list(
uri = uri,
languageId = languageId,
version = 1,
text = text
)
)
)
invisible(client)
}
did_save <- function(client, path, uri = path_to_uri(path), text = NULL) {
includeText <- tryCatch(
client$ServerCapabilities$textDocumentSync$save$includeText,
error = function(e) FALSE
)
if (includeText) {
if (is.null(text)) {
text <- stringi::stri_read_lines(path)
}
text <- paste0(text, collapse = "\n")
params <- list(textDocument = list(uri = uri), text = text)
} else {
params <- list(textDocument = list(uri = uri))
}
notify(
client,
"textDocument/didSave",
params)
Sys.sleep(0.5)
invisible(client)
}
respond <- function(client, method, params, timeout, allow_error = FALSE,
retry = TRUE, retry_when = function(result) length(result) == 0) {
if (missing(timeout)) {
if (Sys.getenv("R_COVR", "") == "true") {
timeout <- 30
} else {
timeout <- 10
}
}
storage <- new.env(parent = .GlobalEnv)
cb <- function(self, result, error = NULL) {
if (is.null(error)) {
storage$done <- TRUE
storage$result <- result
} else if (allow_error) {
storage$done <- TRUE
storage$result <- error
}
}
start_time <- Sys.time()
remaining <- timeout
client$deliver(client$request(method, params), callback = cb)
if (method == "shutdown") {
return(NULL)
}
while (!isTRUE(storage$done)) {
if (remaining < 0) {
fail("timeout when obtaining response")
return(NULL)
}
data <- client$fetch(blocking = TRUE, timeout = remaining)
if (!is.null(data)) client$handle_raw(data)
remaining <- (start_time + timeout) - Sys.time()
}
result <- storage$result
if (retry && retry_when(result)) {
remaining <- (start_time + timeout) - Sys.time()
if (remaining < 0) {
fail("timeout when obtaining desired response")
return(NULL)
}
Sys.sleep(0.2)
return(Recall(client, method, params, remaining, allow_error, retry, retry_when))
}
return(result)
}
respond_completion <- function(client, path, pos, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/completion",
list(
textDocument = list(uri = uri),
position = list(line = pos[1], character = pos[2])
),
...
)
}
respond_completion_item_resolve <- function(client, params, ...) {
respond(
client,
"completionItem/resolve",
params,
...
)
}
respond_signature <- function(client, path, pos, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/signatureHelp",
list(
textDocument = list(uri = uri),
position = list(line = pos[1], character = pos[2])
),
...
)
}
respond_hover <- function(client, path, pos, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/hover",
list(
textDocument = list(uri = uri),
position = list(line = pos[1], character = pos[2])
),
...
)
}
respond_definition <- function(client, path, pos, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/definition",
list(
textDocument = list(uri = uri),
position = list(line = pos[1], character = pos[2])
),
...
)
}
respond_references <- function(client, path, pos, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/references",
list(
textDocument = list(uri = uri),
position = list(line = pos[1], character = pos[2])
),
...
)
}
respond_rename <- function(client, path, pos, newName, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/rename",
list(
textDocument = list(uri = uri),
position = list(line = pos[1], character = pos[2]),
newName = newName
),
...
)
}
respond_prepare_rename <- function(client, path, pos, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/prepareRename",
list(
textDocument = list(uri = uri),
position = list(line = pos[1], character = pos[2])
),
...
)
}
respond_formatting <- function(client, path, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/formatting",
list(
textDocument = list(uri = uri),
options = list(tabSize = 4, insertSpaces = TRUE)
),
...
)
}
respond_range_formatting <- function(client, path, start_pos, end_pos, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/rangeFormatting",
list(
textDocument = list(uri = uri),
range = range(
start = position(start_pos[1], start_pos[2]),
end = position(end_pos[1], end_pos[2])
),
options = list(tabSize = 4, insertSpaces = TRUE)
),
...
)
}
respond_folding_range <- function(client, path, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/foldingRange",
list(
textDocument = list(uri = uri)),
...
)
}
respond_selection_range <- function(client, path, positions, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/selectionRange",
list(
textDocument = list(uri = uri),
positions = positions),
...
)
}
respond_on_type_formatting <- function(client, path, pos, ch, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/onTypeFormatting",
list(
textDocument = list(uri = uri),
position = position(pos[1], pos[2]),
ch = ch,
options = list(tabSize = 4, insertSpaces = TRUE)
),
...
)
}
respond_document_highlight <- function(client, path, pos, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/documentHighlight",
list(
textDocument = list(uri = uri),
position = list(line = pos[1], character = pos[2])
),
...
)
}
respond_document_symbol <- function(client, path, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/documentSymbol",
list(
textDocument = list(uri = uri)
),
...
)
}
respond_workspace_symbol <- function(client, query, ...) {
respond(
client,
"workspace/symbol",
list(
query = query
),
...
)
}
respond_document_link <- function(client, path, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/documentLink",
list(
textDocument = list(uri = uri)
),
...
)
}
respond_document_link_resolve <- function(client, params, ...) {
respond(
client,
"documentLink/resolve",
params,
...
)
}
respond_document_color <- function(client, path, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/documentColor",
list(
textDocument = list(uri = uri)
),
...
)
}
respond_document_folding_range <- function(client, path, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/foldingRange",
list(
textDocument = list(uri = uri)
),
...
)
}
respond_prepare_call_hierarchy <- function(client, path, pos, ..., uri = path_to_uri(path)) {
respond(
client,
"textDocument/prepareCallHierarchy",
list(
textDocument = list(uri = uri),
position = list(line = pos[1], character = pos[2])
),
...
)
}
respond_call_hierarchy_incoming_calls <- function(client, item, ...) {
respond(
client,
"callHierarchy/incomingCalls",
list(
item = item
),
...
)
}
respond_call_hierarchy_outgoing_calls <- function(client, item, ...) {
respond(
client,
"callHierarchy/outgoingCalls",
list(
item = item
),
...
)
}
respond_code_action <- function(client, path, start_pos, end_pos, ..., uri = path_to_uri(path)) {
diagnostics <- client$diagnostics$get(uri)
range <- range(
start = position(start_pos[1], start_pos[2]),
end = position(end_pos[1], end_pos[2])
)
respond(
client,
"textDocument/codeAction",
list(
textDocument = list(uri = uri),
range = range,
context = list(
diagnostics = Filter(function(item) {
range_overlap(item$range, range)
}, diagnostics)
)
),
...
)
}
wait_for <- function(client, method, timeout = 30) {
storage <- new.env(parent = .GlobalEnv)
start_time <- Sys.time()
remaining <- timeout
original_handler <- client$notification_handlers[[method]]
on.exit({
client$notification_handlers[[method]] <- original_handler
})
client$notification_handlers[[method]] <- function(self, params) {
storage$params <- params
original_handler(self, params)
}
while (remaining > 0) {
data <- client$fetch(blocking = TRUE, timeout = remaining)
if (!is.null(data)) {
client$handle_raw(data)
if (hasName(storage, "params")) {
return(storage$params)
}
}
remaining <- (start_time + timeout) - Sys.time()
}
NULL
} |
mlr_tasks = R6Class("DictionaryTask",
inherit = Dictionary,
cloneable = FALSE
)$new()
as.data.table.DictionaryTask = function(x, ...) {
setkeyv(map_dtr(x$keys(), function(key) {
t = tryCatch(x$get(key),
missingDefaultError = function(e) NULL)
if (is.null(t)) {
return(list(key = key))
}
feats = translate_types(t$feature_types$type)
insert_named(list(
key = key,
task_type = t$task_type,
nrow = t$nrow,
ncol = t$ncol,
properties = list(t$properties)
), table(feats))
}, .fill = TRUE), "key")[]
} |
rwe_stan <- function(lst_data,
stan_mdl = c("powerps", "powerpsbinary", "powerp"),
chains = 4, iter = 2000, warmup = 1000,
control = list(adapt_delta = 0.95), ...) {
stan_mdl <- match.arg(stan_mdl)
stan_rst <- rstan::sampling(stanmodels[[stan_mdl]],
data = lst_data,
chains = chains,
iter = iter,
warmup = warmup,
control = control,
...)
stan_rst
}
psrwe_powerp <- function(dta_psbor, v_outcome = "Y",
outcome_type = c("continuous", "binary"),
prior_type = c("fixed", "random"),
..., seed = NULL) {
stopifnot(inherits(dta_psbor,
what = get_rwe_class("PSDIST")))
type <- match.arg(outcome_type)
prior_type <- match.arg(prior_type)
stopifnot(v_outcome %in% colnames(dta_psbor$data))
old_seed <- NULL
if (!is.null(seed)) {
if (exists(".Random.seed", envir = .GlobalEnv)) {
old_seed <- get(".Random.seed", envir = .GlobalEnv)
}
set.seed(seed)
}
rst_obs <- get_observed(dta_psbor$data, v_outcome)
lst_dta <- get_stan_data(dta_psbor, v_outcome, prior_type)
stan_mdl <- if_else("continuous" == type,
"powerps",
"powerpsbinary")
ctl_post <- rwe_stan(lst_data = lst_dta$ctl, stan_mdl = stan_mdl, ...)
ctl_thetas <- extract(ctl_post, "thetas")$thetas
is_rct <- dta_psbor$is_rct
trt_post <- NULL
trt_thetas <- NULL
if (is_rct) {
trt_post <- rwe_stan(lst_data = lst_dta$trt,
stan_mdl = stan_mdl, ...)
trt_thetas <- extract(trt_post, "thetas")$thetas
}
rst_trt <- NULL
rst_effect <- NULL
if (is_rct) {
rst_trt <- get_post_theta(trt_thetas, dta_psbor$Borrow$N_Cur_TRT)
rst_effect <- get_post_theta(trt_thetas - ctl_thetas,
dta_psbor$Borrow$N_Current)
n_ctl <- dta_psbor$Borrow$N_Cur_CTL
} else {
n_ctl <- dta_psbor$Borrow$N_Current
}
rst_ctl <- get_post_theta(ctl_thetas, n_ctl)
if (!is.null(seed)) {
if (!is.null(old_seed)) {
invisible(assign(".Random.seed", old_seed, envir = .GlobalEnv))
} else {
invisible(rm(list = c(".Random.seed"), envir = .GlobalEnv))
}
}
rst <- list(stan_rst = list(ctl_post = ctl_post,
trt_post = trt_post),
Observed = rst_obs,
Control = rst_ctl,
Treatment = rst_trt,
Effect = rst_effect,
Borrow = dta_psbor$Borrow,
Total_borrow = dta_psbor$Total_borrow,
Method = "ps_pp",
Outcome_type = type,
is_rct = is_rct)
class(rst) <- get_rwe_class("ANARST")
rst
}
get_stan_data <- function(dta_psbor, v_outcome, prior_type) {
f_curd <- function(i, d1, d0 = NULL) {
cur_d <- c(N1 = length(d1),
YBAR1 = mean(cur_d1),
YSUM1 = sum(cur_d1))
if (is.null(d0)) {
cur_d <- c(cur_d,
N0 = 0,
YBAR0 = 0,
SD0 = 0)
} else {
cur_d <- c(cur_d,
N0 = length(cur_d0),
YBAR0 = mean(cur_d0),
SD0 = sd(cur_d0))
}
list(stan_d = cur_d,
y1 = d1,
inx1 = rep(i, length(d1)))
}
is_rct <- dta_psbor$is_rct
data <- dta_psbor$data
data <- data[!is.na(data[["_strata_"]]), ]
strata <- levels(data[["_strata_"]])
nstrata <- length(strata)
ctl_stan_d <- NULL
ctl_y1 <- NULL
ctl_inx1 <- NULL
trt_stan_d <- NULL
trt_y1 <- NULL
trt_inx1 <- NULL
for (i in seq_len(nstrata)) {
cur_01 <- get_cur_d(data, strata[i], v_outcome)
cur_d1 <- cur_01$cur_d1
cur_d0 <- cur_01$cur_d0
cur_d1t <- cur_01$cur_d1t
ctl_cur <- f_curd(i, cur_d1, cur_d0)
ctl_stan_d <- rbind(ctl_stan_d, ctl_cur$stan_d)
ctl_y1 <- c(ctl_y1, ctl_cur$y1)
ctl_inx1 <- c(ctl_inx1, ctl_cur$inx1)
if (is_rct) {
trt_cur <- f_curd(i, cur_d1t)
trt_stan_d <- rbind(trt_stan_d, trt_cur$stan_d)
trt_y1 <- c(trt_y1, trt_cur$y1)
trt_inx1 <- c(trt_inx1, trt_cur$inx1)
}
}
ctl_lst_data <- list(S = nstrata,
A = dta_psbor$Total_borrow,
RS = as.array(dta_psbor$Borrow$Proportion),
FIXVS = as.numeric(prior_type == "fixed"),
N0 = as.array(ctl_stan_d[, "N0"]),
N1 = as.array(ctl_stan_d[, "N1"]),
YBAR0 = as.array(ctl_stan_d[, "YBAR0"]),
SD0 = as.array(ctl_stan_d[, "SD0"]),
TN1 = length(ctl_y1),
Y1 = ctl_y1,
INX1 = ctl_inx1,
YBAR1 = as.array(ctl_stan_d[, "YBAR1"]),
YSUM1 = as.array(ctl_stan_d[, "YSUM1"]))
trt_lst_data <- NULL
if (is_rct) {
trt_lst_data <- list(S = nstrata,
A = 0,
RS = as.array(dta_psbor$Borrow$Proportion),
FIXVS = as.numeric("fixed" == "fixed"),
N0 = as.array(trt_stan_d[, "N0"]),
N1 = as.array(trt_stan_d[, "N1"]),
YBAR0 = as.array(trt_stan_d[, "YBAR0"]),
SD0 = as.array(trt_stan_d[, "SD0"]),
TN1 = length(trt_y1),
Y1 = trt_y1,
INX1 = trt_inx1,
YBAR1 = as.array(trt_stan_d[, "YBAR1"]),
YSUM1 = as.array(trt_stan_d[, "YSUM1"]))
}
list(ctl = ctl_lst_data,
trt = trt_lst_data)
}
get_post_theta <- function(thetas, weights) {
ws <- weights / sum(weights)
samples <- t(thetas)
overall <- apply(samples, 2, function(x) sum(x * ws))
means <- apply(samples, 1, mean)
sds <- apply(samples, 1, sd)
mean_overall <- mean(overall)
sd_overall <- sd(overall)
list(Stratum_Samples = samples,
Overall_Samples = overall,
Stratum_Estimate = cbind(Mean = means,
StdErr = sds),
Overall_Estimate = cbind(Mean = mean_overall,
StdErr = sd_overall))
}
summary.PSRWE_RST <- function(object, ...) {
is_rct <- object$is_rct
if (is_rct) {
type <- "Effect"
} else {
type <- "Control"
}
dtype <- object[[type]]$Overall_Estimate
if ("ps_km" == object$Method) {
dtype <- data.frame(dtype) %>%
filter(object$pred_tp == T)
}
Overall <- data.frame(Type = type,
Mean = dtype[1, "Mean"],
StdErr = dtype[1, "StdErr"])
rst <- list(Overall = Overall)
if (exists("CI", object)) {
citype <- cbind(object$CI[[type]]$Overall_Estimate)
if (is.data.frame(citype)) {
if ("ps_km" == object$Method) {
citype <- cbind(citype,
T = object[[type]]$Overall_Estimate$T)
citype <- data.frame(citype) %>%
filter(object$pred_tp == T)
}
rst$CI <- data.frame(Lower = citype[1, "Lower"],
Upper = citype[1, "Upper"],
ConfLvl = object$CI$Conf_int,
ConfType = object$CI$Conf_type,
MethodCI = object$CI$Method_ci,
Method = object$Method)
}
}
if (exists("INFER", object)) {
hitype <- object$INFER[[type]]$Overall_InferProb
if ("ps_km" == object$Method) {
hitype <- cbind(hitype,
T = object[[type]]$Overall_Estimate$T)
hitype <- data.frame(hitype) %>%
filter(object$pred_tp == T)
}
rst$INFER <- data.frame(InferP = hitype[1, "Infer_prob"],
MethodHI = object$INFER$Method_infer,
Alter = object$INFER$Alternative,
Mu = object$INFER$Mu)
}
return(rst)
}
print.PSRWE_RST <- function(x, ...) {
rst <- summary(x, ...)
rst_sum <- rst$Overall
rst_ci <- rst$CI
rst_infer <- rst$INFER
extra_1 <- ""
if ("ps_km" == x$Method) {
extra_1 <- paste(" based on the survival probability at time ",
x$pred_tp, ",", sep = "")
}
if ("Effect" == rst_sum[1, "Type"]) {
extra_2 <- "treatment effect"
extra_2_param <- "theta_trt-theta_ctl"
} else {
extra_2 <- "point estimate"
extra_2_param <- "theta"
}
extra_ci <- ""
if (exists("CI", x)) {
extra_ci <- paste(" Confidence interval: ",
"(",
sprintf("%5.3f", rst_ci[1, "Lower"]),
", ",
sprintf("%5.3f", rst_ci[1, "Upper"]),
")",
" with two-sided level of ",
sprintf("%5.3f", rst_ci[1, "ConfLvl"]),
" by ",
rst_ci[1, "MethodCI"],
" method",
sep = "")
if (!is.na(rst_ci[1, "ConfType"])) {
extra_ci <- paste(extra_ci,
" and ",
rst_ci[1, "ConfType"],
" transformation",
sep = "")
}
extra_ci <- paste(extra_ci, ".", sep = "")
}
extra_hi <- ""
if (exists("INFER", x)) {
extra_hi <- paste(" Hypothesis inference: ",
"H0: ", extra_2_param, " ",
ifelse(rst_infer[1, "Alter"] == "less", ">=", "<="),
" ", sprintf("%5.3f", rst_infer[1, "Mu"]),
" vs. ",
"Ha: ", extra_2_param, " ",
ifelse(rst_infer[1, "Alter"] == "less", "<", ">"),
" ", sprintf("%5.3f", rst_infer[1, "Mu"]),
" with the ", rst_infer[1, "MethodHI"],
" ",
sprintf("%5.5f", rst_infer[1, "InferP"]),
".",
sep = "")
}
ss <- paste("With a total of ", x$Total_borrow,
" subject borrowed from the RWD,",
extra_1, " the ", extra_2,
" is ",
sprintf("%5.3f", rst_sum[1, "Mean"]),
" with standard error ",
sprintf("%5.3f", rst_sum[1, "StdErr"]),
".",
extra_ci,
extra_hi,
sep = "")
cat_paste(ss)
}
plot.PSRWE_RST <- function(x, ...) {
rst <- switch(x$Method,
ps_pp = plot_pp_rst(x, ...),
ps_km = plot_km_rst(x, ...),
ps_cl = {
stop("This method is currently unavailable
for composite likelihood analysis.")
})
rst
} |
source("ESEUR_config.r")
cli=read.csv(paste0(ESEUR_dir, "developers/remington-clilag.tsv"), as.is=TRUE, sep=" ")
gui=read.csv(paste0(ESEUR_dir, "developers/remington-guilag.tsv"), as.is=TRUE, sep=" ")
cli=subset(cli, Lag > 1)
gui=subset(gui, Lag > 1)
name_cli=subset(cli, Category == "Names")
name_gui=subset(gui, Category == "Names")
plot(name_cli$Lag, name_cli$Time, col=point_col,
xlim=c(1, 40), ylim=c(800, 5000),
xlab="Lag", ylab="Reponse time")
lines(loess.smooth(name_cli$Lag, name_cli$Time, span=0.15), col=loess_col)
plot(name_gui$Lag, name_gui$Time, col=point_col,
xlim=c(1, 40), ylim=c(800, 5000),
xlab="Lag", ylab="Reponse time")
lines(loess.smooth(name_gui$Lag, name_gui$Time, span=0.15), col=loess_col) |
`selAPX` <-
function(APX, ista=NULL , icomp=c("V", "N", "E") )
{
if(missing(icomp)) { icomp=NULL }
MPX = data.frame(APX, stringsAsFactors = FALSE)
if(is.null(icomp))
{
atag = APX$name
itag = ista
w1 = which(!is.na(match(atag, itag)))
m = w1
}
else
{
M = RPMG::meshgrid(1:length(ista), 1:length(icomp) )
itag = paste(sep=".",ista[M$x], icomp[M$y])
atag = paste(sep=".", APX$name, APX$comp)
m = which(!is.na(match(atag, itag)))
}
SWP = MPX[ m , ]
SWP = as.list(SWP)
return(SWP)
} |
get_parameters.betareg <- function(x,
component = c("all", "conditional", "precision", "location", "distributional", "auxiliary"),
...) {
component <- match.arg(component)
cf <- stats::coef(x)
params <- data.frame(
Parameter = gsub("^\\(phi\\)_", "", names(cf)),
Estimate = unname(cf),
Component = c(rep("conditional", length(x$coefficients$mean)), rep("precision", length(x$coefficients$precision))),
stringsAsFactors = FALSE,
row.names = NULL
)
if (component != "all") {
params <- params[params$Component == component, , drop = FALSE]
}
.remove_backticks_from_parameter_names(params)
}
get_parameters.DirichletRegModel <- function(x,
component = c("all", "conditional", "precision", "location", "distributional", "auxiliary"),
...) {
component <- match.arg(component)
cf <- stats::coef(x)
if (x$parametrization == "common") {
component <- "all"
n_comp <- lapply(cf, length)
pattern <- paste0("(", paste(x$varnames, collapse = "|"), ")\\.(.*)")
p_names <- gsub(pattern, "\\2", names(unlist(cf)))
params <- data.frame(
Parameter = p_names,
Estimate = unname(unlist(cf)),
Response = rep(names(n_comp), sapply(n_comp, function(i) i)),
stringsAsFactors = FALSE,
row.names = NULL
)
} else {
out1 <- .gather(data.frame(do.call(cbind, cf$beta)), names_to = "Response", values_to = "Estimate")
out2 <- .gather(data.frame(do.call(cbind, cf$gamma)), names_to = "Component", values_to = "Estimate")
out1$Component <- "conditional"
out2$Component <- "precision"
out2$Response <- NA
params <- merge(out1, out2, all = TRUE, sort = FALSE)
params$Parameter <- gsub("(.*)\\.(.*)\\.(.*)", "\\3", names(unlist(cf)))
params <- params[c("Parameter", "Estimate", "Component", "Response")]
}
if (component != "all") {
params <- params[params$Component == component, , drop = FALSE]
}
.remove_backticks_from_parameter_names(params)
}
get_parameters.averaging <- function(x,
component = c("conditional", "full"),
...) {
component <- match.arg(component)
cf <- stats::coef(x, full = component == "full")
params <- data.frame(
Parameter = names(cf),
Estimate = unname(cf),
stringsAsFactors = FALSE,
row.names = NULL
)
.remove_backticks_from_parameter_names(params)
}
get_parameters.glmx <- function(x,
component = c("all", "conditional", "extra", "location", "distributional", "auxiliary"),
...) {
component <- match.arg(component)
cf <- stats::coef(summary(x))
params <- rbind(
data.frame(
Parameter = names(cf$glm[, 1]),
Estimate = unname(cf$glm[, 1]),
Component = "conditional",
stringsAsFactors = FALSE,
row.names = NULL
),
data.frame(
Parameter = rownames(cf$extra),
Estimate = cf$extra[, 1],
Component = "extra",
stringsAsFactors = FALSE,
row.names = NULL
)
)
if (component != "all") {
params <- params[params$Component == component, , drop = FALSE]
}
.remove_backticks_from_parameter_names(params)
}
get_parameters.clm2 <- function(x,
component = c("all", "conditional", "scale"),
...) {
component <- match.arg(component)
cf <- stats::coef(summary(x))
n_intercepts <- length(x$xi)
n_location <- length(x$beta)
n_scale <- length(x$zeta)
params <- data.frame(
Parameter = rownames(cf),
Estimate = unname(cf[, "Estimate"]),
Component = c(rep("conditional", times = n_intercepts + n_location), rep("scale", times = n_scale)),
stringsAsFactors = FALSE,
row.names = NULL
)
if (component != "all") {
params <- params[params$Component == component, , drop = FALSE]
}
.remove_backticks_from_parameter_names(params)
}
get_parameters.clmm2 <- get_parameters.clm2
get_parameters.mvord <- function(x,
component = c("all", "conditional", "thresholds", "correlation"),
...) {
component <- match.arg(component)
junk <- utils::capture.output(s <- summary(x))
thresholds <- as.data.frame(s$thresholds)
thresholds$Parameter <- rownames(thresholds)
thresholds$Response <- gsub("(.*)\\s(.*)", "\\1", thresholds$Parameter)
coefficients <- as.data.frame(s$coefficients)
coefficients$Parameter <- rownames(coefficients)
coefficients$Response <- gsub("(.*)\\s(.*)", "\\2", coefficients$Parameter)
if (!all(coefficients$Response %in% thresholds$Response)) {
resp <- unique(thresholds$Response)
for (i in coefficients$Response) {
coefficients$Response[coefficients$Response == i] <- resp[grepl(paste0(i, "$"), resp)]
}
}
params <- data.frame(
Parameter = c(thresholds$Parameter, coefficients$Parameter),
Estimate = c(unname(thresholds[, "Estimate"]), unname(coefficients[, "Estimate"])),
Component = c(rep("thresholds", nrow(thresholds)), rep("conditional", nrow(coefficients))),
Response = c(thresholds$Response, coefficients$Response),
stringsAsFactors = FALSE,
row.names = NULL
)
params_error <- data.frame(
Parameter = rownames(s$error.structure),
Estimate = unname(s$error.structure[, "Estimate"]),
Component = "correlation",
Response = NA,
stringsAsFactors = FALSE,
row.names = NULL
)
params <- rbind(params, params_error)
if (.n_unique(params$Response) == 1) {
params$Response <- NULL
}
if (component != "all") {
params <- params[params$Component == component, , drop = FALSE]
}
.remove_backticks_from_parameter_names(params)
}
get_parameters.mjoint <- function(x,
component = c("all", "conditional", "survival"),
...) {
component <- match.arg(component)
s <- summary(x)
params <- rbind(
data.frame(
Parameter = rownames(s$coefs.long),
Estimate = unname(s$coefs.long[, 1]),
Component = "conditional",
stringsAsFactors = FALSE,
row.names = NULL
),
data.frame(
Parameter = rownames(s$coefs.surv),
Estimate = unname(s$coefs.surv[, 1]),
Component = "survival",
stringsAsFactors = FALSE,
row.names = NULL
)
)
if (component != "all") {
params <- params[params$Component == component, , drop = FALSE]
}
.remove_backticks_from_parameter_names(params)
}
get_parameters.systemfit <- function(x, ...) {
cf <- stats::coef(summary(x))
f <- find_formula(x)
system_names <- names(f)
parameter_names <- row.names(cf)
out <- lapply(system_names, function(i) {
pattern <- paste0("^", i, "_(.*)")
params <- grepl(pattern, parameter_names)
data.frame(
Parameter = gsub(pattern, "\\1", parameter_names[params]),
Estimate = as.vector(cf[params, "Estimate"]),
Component = i,
stringsAsFactors = FALSE
)
})
do.call(rbind, out)
} |
tabularTestSummary <- function(ph, columns=c("pvalue")) {
if( !is.testMultiple(ph) )
stop(.callErrorMessage("wrongParameterError", "ph", "testMultiple"))
if( sum(columns %in% c("pvalue","wtl","rank")) != length(columns) )
stop(.callErrorMessage("parameterInRangeError", "columns",
"from the list [pvalue,wtl,rank]"))
df <- ph$names
format=data.frame(matrix("%s", nrow=nrow(df),ncol=ncol(df)))
colnames(format) <- colnames(df)
decreasingOrder=c(T)
for ( col in columns )
{
m <- do.call(.mapId2Name[[col]],list(ph))
df <- cbind(df, m$data)
format <- cbind(format, m$format)
decreasingOrder <- c(decreasingOrder, m$decreasingOrder)
}
correct_order <- .orderCascade(df, decreasing = decreasingOrder)
df <- df[correct_order,,drop=FALSE]
format <- format[correct_order,,drop=FALSE]
methodName <- ph$experiment$method
if(ncol(ph$names)>1){
colnames(df)[1:ncol(ph$names)] <- paste(methodName,1:ncol(ph$names))
}
else{
colnames(df)[1] <- methodName
}
if ("pvalue"%in%columns) {
title <- sprintf("Summary of %s post-hoc test for output \"%s\"", ph$tags$scope, ph$tags$target)
tableType = "phtest"
} else {
title <- sprintf("Method comparison for output \"%s\"", ph$tags$target)
tableType = "plain"
}
tab <- .exTabular(tables = list("testMultiple"=df),
formats =list("testMultiple"=format),
tableSplit=1,
tableType=tableType,
title = title,
alias = "TestSummaryTable",
tags = ph$tags)
tab
} |
library(SII)
OCTAVE.TST=sii(
speech=c(50.00,40,40,30,20,0.0),
noise=c(70,65,45,25,1.00,-15.00),
threshold=c(0.00,0,0,0,0,7.10),
method="octave"
)
stopifnot(round(OCTAVE.TST$sii,3)==0.491)
OCTAVE_1.TST=sii(
speech=c(50.00,40,40,30,20,0.0),
noise=c(70,65,45,25,1.00,-15.00),
threshold=c(0.00,0,0,0,0,7.10),
importance=c(0,0,1,0,0,0),
method="octave"
)
stopifnot(round(OCTAVE_1.TST$sii,3)==0.323)
TO.TST=sii(
speech=c(90,5,40,40,40,40,40,40,40,40,40,40,40,40,-10,-10,-10,-10),
noise=c(10,-10,-10,75,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,10,10,10,10),
threshold=c(90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
method="one-third octave"
)
stopifnot(round(TO.TST$sii,3)==0.445)
TO_1.TST=sii(
speech=c(90,5,40,40,40,40,40,40,40,40,40,40,40,40,-10,-10,-10,-10),
noise=c(10,-10,-10,75,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,10,10,10,10),
threshold=c(90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
importance=c(0,0,0,0,0,0,0,0,0,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.3,0),
method="one-third octave"
)
stopifnot(round(TO_1.TST$sii,3)==0.438)
CB.TST=sii(
speech=c(-10,-10,-10,90,5,40,40,40,40,40,40,40,40,40,40,40,40,-10,-10,-10,-10),
noise=c(10,10,10,10,-10,-10,70,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,10,10,10,10),
threshold=c(0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
)
stopifnot(round(CB.TST$sii,3)==0.273)
CB_1.TST=sii(
speech=c(-10,-10,-10,90,5,40,40,40,40,40,40,40,40,40,40,40,40,-10,-10,-10,-10),
noise=c(10,10,10,10,-10,-10,70,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,10,10,10,10),
threshold=c(0,0,0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
importance=c(0,0,0,0,0,0,0,0,0,0,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.3,0,0,0)
)
stopifnot(round(CB_1.TST$sii,3)==0.410)
ECB.TST=sii(
speech=c(-10,90,5,40,40,40,40,40,40,40,40,40,40,40,40,-10,-10),
noise=c(10,10,-10,-10,70,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,10,10),
threshold=c(0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
method="equal-contributing"
)
stopifnot(round(ECB.TST$sii,3)==0.278)
ECB_1.TST=sii(
speech=c(-10,90,5,40,40,40,40,40,40,40,40,40,40,40,40,-10,-10),
noise=c(10,10,-10,-10,70,-10,-10,-10,-10,-10,-10,-10,-10,-10,-10,10,10),
threshold=c(0,90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
importance=c(0,0,0,0,0,0,0,0,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.3,0),
method="equal-contributing"
)
stopifnot(round(ECB_1.TST$sii,3)==0.410) |
library(GLMcat)
data("TravelChoice")
head(TravelChoice)
str(TravelChoice)
exp_8.4 <- discrete_cm(
formula = choice ~ hinc + gc + invt,
case_id = "indv",
alternatives = "mode",
reference = "air",
data = TravelChoice,
alternative_specific = c("gc", "invt"),
cdf = "logistic")
summary(exp_8.4)
(constant_model <- discrete_cm(
formula = choice ~ 1 ,
case_id = "indv",
alternatives = "mode",
reference = c("air", "train", "bus", "car"),
data = TravelChoice,
cdf = "logistic"
))
(car_0 <- discrete_cm(
formula = choice ~ hinc[air] + psize[air] + gc + ttme,
case_id = "indv",
alternatives = "mode",
reference = c("air", "train", "bus", "car"),
alternative_specific = c("gc", "ttme"),
data = TravelChoice,
cdf = "logistic"
))
mod_1 <- discrete_cm(
formula = choice ~ hinc[air] + psize[air] + gc + ttme,
case_id = "indv",
alternatives = "mode",
reference = "air",
alternative_specific = c("gc", "ttme"),
data = TravelChoice,
cdf = "logistic"
)
logLik(mod_1)
mod_2 <- discrete_cm(
formula = choice ~ hinc[air] + psize[air] + gc + ttme,
case_id = "indv",
alternatives = "mode",
reference = "bus",
alternative_specific = c("gc", "ttme"),
data = TravelChoice,
cdf = list("student",30)
)
logLik(mod_2)
mod_3 <- discrete_cm(
formula = choice ~ hinc[air] + psize[air] + gc + ttme,
case_id = "indv",
alternatives = "mode",
reference = "car",
alternative_specific = c("gc", "ttme"),
data = TravelChoice,
cdf = list("student",0.2)
)
logLik(mod_3)
mod_4 <- discrete_cm(
formula = choice ~ hinc[air] + psize[air] + gc + ttme,
case_id = "indv",
alternatives = "mode",
reference = "train",
alternative_specific = c("gc", "ttme"),
data = TravelChoice,
cdf = list("student",1.35)
)
logLik(mod_4) |
d=2
fName="onCircle"
cobra <- cobraInit(xStart=rep(5,d), fn=function(x){c(obj=sum(x^2),equ=(x[1]-1)^2+(x[2]-0)^2-4)},
fName=fName,lower=rep(-10,d), upper=rep(10,d), feval=40)
cobra <- cobraPhaseII(cobra)
print(getXbest(cobra))
print(getFbest(cobra))
optim = 1
plot(abs(cobra$df$Best-optim),log="y",type="l",main=fName,ylab="error",xlab="iteration") |
combine.AIC <- function(AIC) {
stopifnot(is.numeric(AIC))
if (length(AIC) == 1) {
warning("There is only one model fit, and nothing to combine.", call. = TRUE)
AIC.pool <- as.character(format(AIC, nsmall = 1))
} else {
stat <- cbind(mean = mean(AIC), sd = sd(AIC))
AIC.pool <- suppressWarnings(as.character(formatMeanSd(stat, nsmall = 1)))
AIC.pool <- strsplit(AIC.pool, ",")[[1]]
}
return(AIC.pool)
} |
bind_log_odds <- function(tbl, set, feature, n, uninformative = FALSE,
unweighted = FALSE) {
set <- enquo(set)
feature <- enquo(feature)
n_col <- enquo(n)
grouping <- group_vars(tbl)
tbl <- ungroup(tbl)
pseudo <- tbl
if (uninformative) {
pseudo$alpha <- 1
} else {
feat_counts <- count(pseudo, !!feature, wt = !!n_col, name = ".n")
feat_counts <- left_join(tbl, feat_counts, by = as_name(feature))
pseudo$alpha <- feat_counts$.n
}
pseudo <- mutate(pseudo, y_wi = !!n_col + alpha)
feat_counts <- count(pseudo, !!feature, wt = y_wi, name = "y_w")
set_counts <- count(pseudo, !!set, wt = y_wi, name = "n_i")
pseudo_counts <- left_join(pseudo, feat_counts, by = as_name(feature))
pseudo_counts <- left_join(pseudo_counts, set_counts, by = as_name(set))
results <- mutate(
pseudo_counts,
omega_wi = y_wi / (n_i - y_wi),
omega_w = y_w / (sum(y_wi) - y_w),
delta_wi = log(omega_wi) - log(omega_w),
sigma2_wi = 1 / y_wi + 1 / y_w,
zeta_wi = delta_wi / sqrt(sigma2_wi)
)
clean <- rename(
results,
log_odds_weighted = zeta_wi,
log_odds = delta_wi,
)
tbl <- select(
clean,
-y_wi, -y_w, -n_i, -omega_wi, -omega_w, -sigma2_wi, -alpha
)
if (!unweighted) {
tbl$log_odds <- NULL
}
if (!is_empty(grouping)) {
tbl <- group_by(tbl, !!sym(grouping))
}
tbl
} |
context("Linear regression")
set.seed(1, kind="Mersenne-Twister", normal.kind="Inversion")
n <- 1000L
df <- data.frame(
x1 = rnorm(n),
x2 = runif(n),
x3 = rbinom(n, 1, 0.1),
x4 = rgamma(n, 1, 1)
)
df$y <- with(df, 1 + x1 + 2*x2 + 3*x3 + 4*x4 + rnorm(n))
test_that("linear regression works, as well as fitted, residuals and predict methods", {
sampler <- create_sampler(y ~ reg(~1+x1+x2+x3+x4, name="beta"), data=df)
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
summ <- summary(sim)
expect_true(all((0.5 * c(1,1,2,3,4) < summ$beta[, "Mean"]) & (summ$beta[, "Mean"] < 2 * c(1,1,2,3,4))))
expect_true((0.5 < summ$sigma_[, "Mean"]) && (summ$sigma_[, "Mean"] < 2))
expect_equal(fitted(sim, mean.only=TRUE), as.vector(summary(fitted(sim))[, "Mean"]))
expect_equal(residuals(sim, mean.only=TRUE), as.vector(summary(residuals(sim))[, "Mean"]))
expect_equal(nrow(summary(predict(sim, iters=sample(1:500, 100), show.progress=FALSE))), n)
expect_equal(nvars(predict(sim, X.=list(beta=model_matrix(~1+x1+x2+x3+x4, df[1:10, ])), show.progress=FALSE)), 10)
expect_equal(nvars(predict(sim, newdata=df[21, ], show.progress=FALSE)), 1)
})
test_that("single-site Gibbs sampler works", {
sampler <- create_sampler(
y ~ reg(~1, name="mu") + reg(~x1-1, name="beta1") + reg(~x2-1, name="beta2") +
reg(~x3-1, name="beta3") + reg(~x4-1, name="beta4"), data=df
)
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
summ <- summary(sim)
expect_true((0.5 < summ$mu[, "Mean"]) && (summ$mu[, "Mean"] < 2))
expect_true((0.5 < summ$beta1[, "Mean"]) && (summ$beta1[, "Mean"] < 2))
expect_true((2*0.5 < summ$beta2[, "Mean"]) && (summ$beta2[, "Mean"] < 2*2))
expect_true((3*0.5 < summ$beta3[, "Mean"]) && (summ$beta3[, "Mean"] < 3*2))
expect_true((4*0.5 < summ$beta4[, "Mean"]) && (summ$beta4[, "Mean"] < 4*2))
expect_true((0.5 < summ$sigma_[, "Mean"]) && (summ$sigma_[, "Mean"] < 2))
})
test_that("full blocking works", {
sampler <- create_sampler(
y ~ reg(~1, name="mu") + reg(~x1-1, name="beta1") + reg(~x2-1, name="beta2") +
reg(~x3-1, name="beta3") + reg(~x4-1, name="beta4"),
data=df, block=TRUE
)
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
summ <- summary(sim)
expect_true((0.5 < summ$mu[, "Mean"]) && (summ$mu[, "Mean"] < 2))
expect_true((0.5 < summ$beta1[, "Mean"]) && (summ$beta1[, "Mean"] < 2))
expect_true((2*0.5 < summ$beta2[, "Mean"]) && (summ$beta2[, "Mean"] < 2*2))
expect_true((3*0.5 < summ$beta3[, "Mean"]) && (summ$beta3[, "Mean"] < 3*2))
expect_true((4*0.5 < summ$beta4[, "Mean"]) && (summ$beta4[, "Mean"] < 4*2))
expect_true((0.5 < summ$sigma_[, "Mean"]) && (summ$sigma_[, "Mean"] < 2))
})
test_that("custom blocking works", {
sampler <- create_sampler(
y ~ reg(~1, name="mu") + reg(~x1-1, name="beta1") + reg(~x2-1, name="beta2") +
reg(~x3-1, name="beta3") + reg(~x4-1, name="beta4"),
data=df, block=list(c("beta4", "beta2"), c("mu", "beta3"))
)
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
summ <- summary(sim)
expect_true((0.5 < summ$mu[, "Mean"]) && (summ$mu[, "Mean"] < 2))
expect_true((0.5 < summ$beta1[, "Mean"]) && (summ$beta1[, "Mean"] < 2))
expect_true((2*0.5 < summ$beta2[, "Mean"]) && (summ$beta2[, "Mean"] < 2*2))
expect_true((3*0.5 < summ$beta3[, "Mean"]) && (summ$beta3[, "Mean"] < 3*2))
expect_true((4*0.5 < summ$beta4[, "Mean"]) && (summ$beta4[, "Mean"] < 4*2))
expect_true((0.5 < summ$sigma_[, "Mean"]) && (summ$sigma_[, "Mean"] < 2))
})
test_that("using an offset for linear regression works", {
sampler <- create_sampler(
formula = y ~ reg(~ x1 + x2 + x3, name="beta") + offset(4*x4), data=df
)
expect_equal(sampler$offset, 4*df$x4)
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
summ <- summary(sim)
expect_true(all((0.5 * c(1,1,2,3) < summ$beta[, "Mean"]) & (summ$beta[, "Mean"] < 2 * c(1,1,2,3))))
expect_true((0.5 < summ$sigma_[, "Mean"]) && (summ$sigma_[, "Mean"] < 2))
})
test_that("simplified formula + offset works for linear regression", {
sampler <- create_sampler(
formula = y ~ x1 + x2 + x3 + offset(4*x4), data=df
)
expect_equal(sampler$offset, 4*df$x4)
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
summ <- summary(sim)
expect_true(all((0.5 * c(1,1,2,3) < summ$reg1[, "Mean"]) & (summ$reg1[, "Mean"] < 2 * c(1,1,2,3))))
expect_true((0.5 < summ$sigma_[, "Mean"]) && (summ$sigma_[, "Mean"] < 2))
})
test_that("model specification in two steps works", {
mod <- y ~ x1 + x2 + x3 + x4
ml_mod <- y ~ reg(mod, Q0=1e-6, name="beta")
sampler <- create_sampler(ml_mod, data=df, block=TRUE)
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
summ <- summary(sim)
expect_true(all((0.5 * c(1,1,2,3,4) < summ$beta[, "Mean"]) & (summ$beta[, "Mean"] < 2 * c(1,1,2,3,4))))
expect_true((0.5 < summ$sigma_[, "Mean"]) && (summ$sigma_[, "Mean"] < 2))
})
n <- 1000
sd0 <- 0.41
y <- 1 + rnorm(n, sd=sd0)
test_that("different priors for residual variance work", {
sampler <- create_sampler(y ~ 1, sigma.mod=pr_fixed(0.41^2))
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
pm_sigma <- summary(sim$sigma_)[, "Mean"]
expect_true((0.75*sd0 < pm_sigma) && (pm_sigma < 1.25*sd0))
sampler <- create_sampler(y ~ 1, sigma.mod=pr_invchisq(df=1, scale="modeled"))
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
pm_sigma <- summary(sim$sigma_)[, "Mean"]
expect_true((0.75*sd0 < pm_sigma) && (pm_sigma < 1.25*sd0))
sampler <- create_sampler(y ~ 1, sigma.mod=pr_exp(scale=1))
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
pm_sigma <- summary(sim$sigma_)[, "Mean"]
expect_true((0.75*sd0 < pm_sigma) && (pm_sigma < 1.25*sd0))
sampler <- create_sampler(y ~ 1, sigma.mod=pr_gig(a=1, b=1, p=1))
sim <- MCMCsim(sampler, n.iter=500, burnin=100, n.chain=2, verbose=FALSE)
pm_sigma <- summary(sim$sigma_)[, "Mean"]
expect_true((0.75*sd0 < pm_sigma) && (pm_sigma < 1.25*sd0))
}) |
phieta <- function(x, phi){
n <- length(x)
eta <- c(phi[1], diff(phi)/diff(x))
return(eta)
} |
fkpsst<-function(X, ALPHA=0.05, METHOD="MC",
K=default_kernel, h_power=2/5, est_ev=nrow(X), MCNsim=10000, sbb_set=NULL,
M=1000, b=ceiling((2*nrow(X))^(1/3))){
if (h_power<=0 | h_power>=1) stop("The value of 'h_power' exceeds the range (0,1).")
if (METHOD=="MC" & is.null(sbb_set)) stop("You must generate a simluated dataset for Monte Carlo method from the function 'generate_sbb'.")
N<-nrow(X)
MeanX<-apply(X,2,sum)/N
StairsumX<-apply((1:N)*X,2,sum)
hat_eta<-X+(((1:N-(N+1)/2)*6/(N-1)-1))%*%t(MeanX)-((1:N-(N+1)/2)*12/(N*(N^2-1)))%*%t(StairsumX)
ZN<-partial_sum(hat_eta)
TN<-mean(ZN^2)
if (METHOD=="MC"){
lambda<-est_eigenvalue(hat_eta,K,h_power,est_ev)
intV<-matrix(sample(sbb_set,MCNsim*est_ev,replace=T),ncol=est_ev)
monte=(intV%*%lambda)[,1]
fkpsst_result<-list(statistic=c(R_N=TN),p.value=mean(TN<monte),sample.size=N,method="Monte-Carlo-based functional KPSS test")
} else {
hat_xi<-apply((1:N-(N+1)/2)*X,2,sum)*(12/(N*(N^2-1)))
hat_mu<-apply(X,2,sum)/N-hat_xi*(N+1)/2
if (METHOD=="SB"){
bs_teststat<-sapply(1:M,function(o){
bs_ind<-sample(1:N,N,replace=T)
bs_hat_eta<-hat_eta[bs_ind,]
bsX=rep(1,N)%*%t(hat_mu)+(1:N)%*%t(hat_xi)+bs_hat_eta
bsTN<-FKPSS_teststat(bsX)
return(bsTN)
}
)
fkpsst_result<-list(statistic=c(R_N=TN),p.value=mean(TN<bs_teststat),sample.size=N,method="Simple-bootstrap-based functional KPSS test")
} else {
bbs_teststat<-sapply(1:M,function(o){
bs<-sample(1:(N-b+1),ceiling(N/b),replace=T)
bbs<-bs[1]:(bs[1]+b-1)
for (i in 2:ceiling(N/b)){
bbs<-c(bbs,bs[i]:(bs[i]+b-1))
}
bs_hat_eta<-hat_eta[bbs[1:N],]
bsX=rep(1,N)%*%t(hat_mu)+(1:N)%*%t(hat_xi)+bs_hat_eta
bsTN<-FKPSS_teststat(bsX)
return(bsTN)
}
)
fkpsst_result<-list(statistic=c(R_N=TN),p.value=mean(TN<bbs_teststat),sample.size=N,method="Moving-block-bootstrap-based functional KPSS test")
}
}
class(fkpsst_result)<-"htest"
return(fkpsst_result)
} |
Internalmammpc = function(targ, data, statistic, max_k, threshold, test = NULL, ini = NULL, user_test = NULL, hash=FALSE,
varsize, stat_hash, pvalue_hash, targetID, ncores) {
runtime = proc.time();
D = length(targ)
if ( is.null(ini) ) {
cols = ncol( data[[ 1 ]] )
sta = pval = matrix(0, D, cols)
univariateModels = list()
if ( identical(test, testIndFisher) ) {
for ( l in 1:D ) {
target = targ[[ l ]]
dataset = data[[ l ]]
rows = length(target)
a = as.vector( cor(target, dataset) )
dof = rows - 3;
wa = abs( 0.5 * log( (1 + a) / (1 - a) ) * sqrt(dof) )
if ( targetID != - 1 ) wa[ targetID ] = 0
sta[l, ] = wa
pval[l, ] = log(2) + pt(-wa, dof, log.p = TRUE)
}
univariateModels$stat = - 2 * Rfast::colsums(pval);
univariateModels$pvalue = pchisq(univariateModels$stat, 2 * D, lower.tail = FALSE, log.p = TRUE) ;
univariateModels$stat_hash = stat_hash;
univariateModels$pvalue_hash = pvalue_hash;
} else if ( identical(test, testIndSpearman) ) {
for ( l in 1:D ) {
target = targ[[ l ]]
dataset = data[[ l ]]
rows = length(target)
a = as.vector( cor(target, dataset) )
dof = rows - 3;
wa = abs( 0.5 * log( (1 + a) / (1 - a) ) * sqrt(dof) / 1.029563 )
if ( targetID != - 1 ) wa[ targetID ] = 0
sta[l, ] = wa
pval[l, ] = log(2) + pt(-wa, dof, lower.tail = FALSE, log.p = TRUE)
}
univariateModels$stat = - 2 * Rfast::colsums(pval);
univariateModels$pvalue = pchisq(univariateModels$stat, 2 * D, lower.tail = FALSE, log.p = TRUE) ;
univariateModels$stat_hash = stat_hash;
univariateModels$pvalue_hash = pvalue_hash;
} else if ( identical(test, testIndMMReg) ) {
univariateModels = list();
fit1 = MASS::rlm(target ~ 1, maxit = 2000, method = "MM")
lik2 = numeric(cols)
dof = numeric(cols)
if ( ncores <= 1 | is.null(ncores) ) {
for (l in 1:D) {
target = targ[[ l ]]
dataset = data[[ l ]]
for ( i in 1:cols ) {
if ( i != targetID ) {
fit2 = MASS::rlm(target ~ dataset[, i], method = "MM", maxit = 2000 )
lik2[i] = as.numeric( logLik(fit2) )
dof[i] = length( coef(fit2) ) - 1
} else {
lik2[i] = lik1
}
}
lik1 = as.numeric( logLik(fit1) )
sta[l, ] = as.vector( 2 * abs(lik1 - lik2) )
pval[l, ] = pchisq(sta[l, ], dof, lower.tail = FALSE, log.p = TRUE)
}
univariateModels$stat = - 2 * Rfast::colsums(pval)
univariateModels$pvalue = pchisq(univariateModels$stat, 2 * D, lower.tail = FALSE, log.p = TRUE) ;
univariateModels$stat_hash = stat_hash;
univariateModels$pvalue_hash = pvalue_hash;
} else {
for ( l in 1:D ) {
target = targ[[ l ]]
dataset = data[[ l ]]
cl <- makePSOCKcluster(ncores)
registerDoParallel(cl)
mod <- foreach(i = 1:cols, .combine = rbind, .packages = "MASS") %dopar% {
if ( i != targetID ) {
fit2 = rlm(target ~ dataset[, i] )
lik2 = as.numeric( logLik(fit2) )
return( c(lik2, length( coef(fit2) ) ) )
} else{
return( c(0, 0) )
}
}
stopCluster(cl)
lik1 = as.numeric( logLik(fit1) )
dof = as.vector( mod[, 2] ) - 1
sta[l, ] = as.vector( 2 * abs(lik1 - mod[, 1]) )
pval[l, ] = pchisq(sta[l, ], dof, lower.tail = FALSE, log.p = TRUE)
}
univariateModels$stat = - 2 * Rfast::colsums(pval)
univariateModels$pvalue = pchisq(univariateModels$stat, 2 * D, lower.tail = FALSE, log.p = TRUE) ;
univariateModels$stat_hash = NULL
univariateModels$pvalue_hash = NULL
}
} else if ( identical(test, testIndLogistic) & is.ordered(target) ) {
lik2 = numeric(cols)
dof = numeric(cols)
univariateModels = list();
fit1 = ordinal::clm(target ~ 1)
df1 = length( coef(fit1) )
if ( ncores <= 1 | is.null(ncores) ) {
for ( l in 1:D ) {
target = targ[[ l ]]
dataset = data[[ l ]]
for ( i in 1:cols ) {
if (i != targetID){
x <- model.matrix(target ~ dataset[, i] )
fit2 <- ordinal::clm.fit(target, x)
lik2[i] <- as.numeric( fit2$logLik )
dof[i] <- length( coef(fit2) ) - df1
} else {
lik2[i] <- lik1
}
}
lik1 = as.numeric( logLik(fit1) )
sta[l, ] = as.vector( 2 * abs(lik1 - lik2) )
pval[l, ] = pchisq(sta[l, ], dof, lower.tail = FALSE, log.p = TRUE)
}
univariateModels$stat = - 2 * Rfast::colsums(pval)
univariateModels$pvalue = pchisq(univariateModels$stat, 2 * D, lower.tail = FALSE, log.p = TRUE) ;
univariateModels$stat_hash = stat_hash;
univariateModels$pvalue_hash = pvalue_hash;
} else {
for ( l in 1:D ) {
target = targ[[ l ]]
dataset = data[[ l ]]
cl <- makePSOCKcluster(ncores)
registerDoParallel(cl)
mod <- foreach(i = 1:cols, .combine = rbind, .packages = "ordinal") %dopar% {
if ( i != targetID ) {
x <- model.matrix(target ~ dataset[, i] )
fit2 <- ordinal::clm.fit(target, x)
lik2 <- as.numeric( fit2$logLik )
return( c(lik2, length( coef(fit2) ) ) )
} else{
return( c(0, 0) )
}
}
stopCluster(cl)
lik1 = as.numeric( logLik(fit1) )
dof = as.vector( mod[, 2] ) - df1
sta[l, ] = as.vector( 2 * abs(lik1 - mod[, 1]) )
pval[l, ] = pchisq(sta[l, ], dof, lower.tail = FALSE, log.p = TRUE)
}
univariateModels$stat = - 2 * Rfast::colsums(pval)
univariateModels$pvalue = pchisq(univariateModels$stat, 2 * D, lower.tail = FALSE, log.p = TRUE) ;
univariateModels$stat_hash = NULL
univariateModels$pvalue_hash = NULL
}
} else {
univariateModels = univariateScore.ma(targ, data, test, statistic = FALSE, hash=hash, stat_hash=stat_hash, pvalue_hash=pvalue_hash, targetID=targetID, ncores=ncores);
}
} else {
univariateModels = ini
}
pvalues = univariateModels$pvalue;
stats = univariateModels$stat;
if ( min(pvalues , na.rm = TRUE) > threshold ) {
results = NULL;
results$selectedVars = c();
class(results$selectedVars) = "numeric";
results$selectedVarsOrder = c();
class(results$selectedVarsOrder) = "numeric";
results$hashObject = NULL;
class(results$hashObject) = 'list';
class(results$univ) = 'list';
results$pvalues = exp(pvalues);
results$stats = stats;
results$univ = univariateModels
results$max_k = max_k;
results$threshold = threshold;
runtime = proc.time() - runtime;
results$runtime = runtime;
return(results);
}
selectedVars = numeric(varsize);
selectedVarsOrder = numeric(varsize)
selectedVar = which( pvalues == pvalues[[which.min(pvalues)]] );
selectedVars[selectedVar] = 1;
selectedVarsOrder[selectedVar] = 1;
remainingVars = numeric(varsize) + 1;
remainingVars[selectedVar] = 0;
remainingVars[pvalues > threshold] = 0;
if (targetID > 0) remainingVars[targetID] = 0;
loop = any(as.logical(remainingVars));
while(loop) {
max_min_results = max_min_assoc.ma(target, dataset, test, threshold, statistic, max_k, selectedVars, pvalues, stats, remainingVars, univariateModels, selectedVarsOrder, hash=hash, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
selectedVar = max_min_results$selected_var;
selectedPvalue = max_min_results$selected_pvalue;
remainingVars = max_min_results$remainingVars;
pvalues = max_min_results$pvalues;
stats = max_min_results$stats;
stat_hash=max_min_results$stat_hash;
pvalue_hash=max_min_results$pvalue_hash;
if(selectedPvalue <= threshold) {
selectedVars[selectedVar] = 1;
selectedVarsOrder[selectedVar] = max(selectedVarsOrder) + 1;
remainingVars[selectedVar] = 0;
}
loop = any(as.logical(remainingVars));
}
selectedVarsOrder[which(!selectedVars)] = varsize;
numberofSelectedVars = sum(selectedVars);
selectedVarsOrder = sort(selectedVarsOrder);
if(targetID > 0) {
toAdjust <- which(selectedVars > targetID);
selectedVars[toAdjust] = selectedVars[toAdjust] + 1;
}
results = NULL;
results$selectedVars = which(selectedVars == 1);
svorder = sort(pvalues[results$selectedVars] , index.return = TRUE);
svorder = results$selectedVars[svorder$ix];
results$selectedVarsOrder = svorder;
hashObject = NULL;
hashObject$stat_hash = stat_hash;
hashObject$pvalue_hash = pvalue_hash;
results$hashObject = hashObject;
class(results$hashObject) = 'list';
results$pvalues = pvalues;
results$stats = stats;
results$univ = univariateModels
results$max_k = max_k;
results$threshold = threshold;
runtime = proc.time() - runtime;
results$runtime = runtime;
return(results);
} |
setCorrectDate <-
function(x, type) {
setCorrectDateEle <- function(x, type) {
inBetween0099 <- function(range1, range2, valueX) {
inBetween0009 <- function(valueXrange, valueX) {
if (valueX == valueXrange) {
result = paste0("0", valueX)
} else {
result = NA
}
}
inBetween1099 <- function(valueXrange, valueX) {
if (valueX == valueXrange) {
result = as.character(valueX)
} else {
result = NA
}
}
posibleDates <- c(sapply(range1, FUN = inBetween0009, valueX = valueX),
sapply(range2, FUN = inBetween1099, valueX = valueX))
posibleDatesNonaInd <- which(is.na(posibleDates) == FALSE)
if (length(posibleDatesNonaInd) == 1) {
result <- posibleDates[posibleDatesNonaInd]
} else {
result = NA
}
result
}
switch(type, validYear = as.character(x),
validMonth = inBetween0099(1:9,10:12, valueX = x),
validDay = inBetween0099(1:9, 10:31, valueX = x),
validHour = inBetween0099(0:9, 10:23, valueX = x),
validMin = inBetween0099(0:9,10:59, valueX = x),
validSec = inBetween0099(0:9, 10:59, valueX = x))
}
result <- verifyIntEntry(x, noValid = NA)
if (is.finite(result)) {
result <- setCorrectDateEle(result, type = type)
}
result
} |
swirl <- function(resume.class="default", ...){
removeTaskCallback("mini")
e <- new.env(globalenv())
class(e) <- c("environment", resume.class)
cb <- function(expr, val, ok, vis, data=e){
e$expr <- expr
e$val <- val
e$ok <- ok
e$vis <- vis
return(resume(e, ...))
}
addTaskCallback(cb, name="mini")
invisible()
}
bye <- function(){
removeTaskCallback("mini")
swirl_out(s()%N%"Leaving swirl now. Type swirl() to resume.", skip_after=TRUE)
invisible()
}
nxt <- function(){invisible()}
skip <- function(){invisible()}
reset <- function(){invisible()}
submit <- function(){invisible()}
play <- function(){invisible()}
main <- function(){invisible()}
restart <- function(){invisible()}
info <- function(){
swirl_out(s()%N%"When you are at the R prompt (>):")
swirl_out(s()%N%"-- Typing skip() allows you to skip the current question.", skip_before=FALSE)
swirl_out(s()%N%"-- Typing play() lets you experiment with R on your own; swirl will ignore what you do...", skip_before=FALSE)
swirl_out(s()%N%"-- UNTIL you type nxt() which will regain swirl's attention.", skip_before=FALSE)
swirl_out(s()%N%"-- Typing bye() causes swirl to exit. Your progress will be saved.", skip_before=FALSE)
swirl_out(s()%N%"-- Typing main() returns you to swirl's main menu.", skip_before=FALSE)
swirl_out(s()%N%"-- Typing info() displays these options again.", skip_before=FALSE, skip_after=TRUE)
invisible()
}
resume <- function(...)UseMethod("resume")
resume.default <- function(e, ...){
args_specification(e, ...)
esc_flag <- TRUE
on.exit(if(esc_flag)swirl_out(s()%N%"Leaving swirl now. Type swirl() to resume.", skip_after=TRUE))
if(uses_func("info")(e$expr)[[1]]){
esc_flag <- FALSE
return(TRUE)
}
if(uses_func("nxt")(e$expr)[[1]]){
do_nxt(e)
}
if(uses_func("reset")(e$expr)[[1]]) {
do_reset(e)
}
if(uses_func("submit")(e$expr)[[1]]){
do_submit(e)
}
if(uses_func("play")(e$expr)[[1]]){
do_play(e)
}
if(uses_func("skip")(e$expr)[[1]]){
if(!exists("skips", e)) e$skips <- 0
e$skips <- 1 + e$skips
e$skipped <- TRUE
correctAns <- e$current.row[,"CorrectAnswer"]
if(is(e$current.row, "script") && is.na(correctAns)) {
correct_script_path <- e$correct_script_temp_path
if(file.exists(correct_script_path)) {
e$script_contents <- readLines(correct_script_path, warn = FALSE)
e$expr <- try(parse(text = e$script_contents), silent = TRUE)
try(source(correct_script_path))
swirl_out(s()%N%"I just sourced the following script, which demonstrates one possible solution.",
skip_after=TRUE)
file.edit(correct_script_path)
readline(s()%N%"Press Enter when you are ready to continue...")
}
} else {
if(exists("newVarName",e)) {
correctAns <- gsub("newVar", e$newVarName, correctAns)
}
e$expr <- parse(text=correctAns)[[1]]
ce <- cleanEnv(e$snapshot)
evaluation <- withVisible(eval(e$expr, ce))
e$vis <- evaluation$visible
e$val <- suppressMessages(suppressWarnings(evaluation$value))
xfer(ce, globalenv())
ce <- as.list(ce)
swirl_out(s()%N%"Entering the following correct answer for you...",
skip_after=TRUE)
message("> ", e$current.row[, "CorrectAnswer"])
if(e$vis & !is.null(e$val)) {
print(e$val)
}
}
e$playing <- FALSE
} else if(exists("playing", envir=e, inherits=FALSE) && e$playing) {
esc_flag <- FALSE
return(TRUE)
}
if(uses_func("main")(e$expr)[[1]]){
do_main(e)
}
if(uses_func("restart")(e$expr)[[1]]){
do_restart(e)
}
if(uses_func("help")(e$expr)[[1]] ||
uses_func("`?`")(e$expr)[[1]]){
corrans <- e$current.row[, "CorrectAnswer"]
corrans_parsed <- parse(text = corrans)
uses_help <- uses_func("help")(corrans_parsed)[[1]] ||
uses_func("`?`")(corrans_parsed)[[1]]
if(!uses_help) {
esc_flag <- FALSE
return(TRUE)
}
}
temp <- mainMenu(e)
if(is.logical(temp) && !isTRUE(temp)){
swirl_out(s()%N%"Leaving swirl now. Type swirl() to resume.", skip_after=TRUE)
esc_flag <- FALSE
return(FALSE)
}
if(!uses_func("swirl")(e$expr)[[1]] &&
!uses_func("swirlify")(e$expr)[[1]] &&
!uses_func("testit")(e$expr)[[1]] &&
!uses_func("demo_lesson")(e$expr)[[1]] &&
!uses_func("nxt")(e$expr)[[1]] &&
isTRUE(customTests$AUTO_DETECT_NEWVAR)) {
e$delta <- mergeLists(safeEval(e$expr, e), e$delta)
}
while(!e$prompt){
if(e$row > min(nrow(e$les), e$test_to)) {
if(is(e, "test") || is(e, "datacamp")) {
post_finished(e)
esc_flag <- FALSE
return(FALSE)
}
saveProgress(e)
new_path <- paste(e$progress,".done", sep="")
if(file.exists(new_path))file.remove(new_path)
file.rename(e$progress, new_path)
courseraCheck(e)
if(exists("les", e, inherits=FALSE)){
rm("les", envir=e, inherits=FALSE)
}
if(exists("skips", e)) e$skips <- 0
clearCustomTests()
if(isTRUE(getOption("swirl_logging"))){
saveLog(e)
}
swirl_out(s()%N%"You've reached the end of this lesson! Returning to the main menu...")
temp <- mainMenu(e)
if(is.logical(temp) && !isTRUE(temp)){
swirl_out(s()%N%"Leaving swirl now. Type swirl() to resume.", skip_after=TRUE)
esc_flag <- FALSE
return(FALSE)
}
}
if(e$iptr == 1){
post_progress(e)
if (!is.null(e$delta)){
e$snapshot <- mergeLists(e$delta,e$snapshot)
}
e$delta <- list()
saveProgress(e)
e$current.row <- e$les[e$row,]
class(e$current.row) <- c(e$current.row[,"Class"],
class(e$current.row))
}
e$instr[[e$iptr]](e$current.row, e)
for(nm in names(e$snapshot)){
if(exists(nm, globalenv()) &&
!identical(e$snapshot[[nm]], get(nm, globalenv()))){
e$delta[[nm]] <- get(nm, globalenv())
}
}
}
e$prompt <- FALSE
esc_flag <- FALSE
return(TRUE)
} |
library(polmineR)
use("polmineR")
testthat::context("kwic")
test_that(
"kwic-method for corpus",
{
expect_equal(
nrow(kwic("REUTERS", query = "oil", pAttribute = "word")@stat),
78L
)
expect_equal(
nrow(kwic("REUTERS", query = '"barrel.*"', pAttribute = "word")@stat),
26L
)
expect_equal(
kwic("REUTERS", query = "asdfasdf", pAttribute = "word"),
NULL
)
expect_equal(
kwic("REUTERS", query = '"asdfasdfasdfasd.*"', cqp = TRUE),
NULL
)
}
)
test_that(
"kwic-method for partition",
{
P <- partition("REUTERS", places = "saudi-arabia", regex = TRUE)
expect_equal(
nrow(kwic(P, query = "oil", pAttribute = "word")@stat),
21L
)
expect_equal(
nrow(kwic(P, query = '"barrel.*"', cqp = TRUE, pAttribute = "word")@stat),
7L
)
expect_equal(
kwic(P, query = "asdfasdf", pAttribute = "word"),
NULL
)
expect_equal(
kwic(P, query = '"asdfasdfasdfasd.*"', cqp = TRUE, pAttribute = "word"),
NULL
)
}
)
test_that(
"as.character-method for kwic objects",
{
oil <- corpus("REUTERS") %>% kwic(query = "oil")
str <- as.character(oil, fmt = NULL)
expect_equal(length(str), 78L)
expect_equal(str[1], "its contract prices for crude oil by 1.50 dlrs a barrel")
expect_equal(
as.character(oil)[1],
"its contract prices for crude <i>oil</i> by 1.50 dlrs a barrel"
)
expect_equal(
as.character(corpus("REUTERS") %>% kwic(query = "oil"), fmt = "<b>%s</b>")[1],
"its contract prices for crude <b>oil</b> by 1.50 dlrs a barrel"
)
}
)
test_that(
"indexing kwic objects",
{
k <- corpus("REUTERS") %>% kwic(query = "oil")
k2 <- k[1:5]
expect_identical(unique(k2@cpos[["match_id"]]), k2@stat[["match_id"]])
}
)
test_that(
"subsetting kwic objects",
{
oil <- corpus("REUTERS") %>% kwic(query = "oil") %>% subset(grepl("prices", right))
expect_identical(unique(oil@cpos[["match_id"]]), oil@stat[["match_id"]])
int_spd <- corpus("GERMAPARLMINI") %>%
kwic(query = "Integration") %>%
enrich(s_attribute = "party") %>%
subset(grepl("SPD", party))
expect_identical(unique(int_spd@stat[["party"]]), "SPD")
}
)
test_that(
"as.data.frame for kwic-method",
{
int <- corpus("GERMAPARLMINI") %>%
kwic(query = "Integration") %>%
enrich(s_attributes = c("date", "speaker", "party")) %>%
as.data.frame()
expect_equal(int[[1]][1], "2009-10-27<br/>Heinz Riesenhuber<br/>NA")
}
)
test_that(
"as.DocumentTermMatrix for kwic-class-object",
{
oil <- kwic("REUTERS", query = "oil")
dtm <- as.DocumentTermMatrix(oil, p_attribute = "word")
expect_equal(
slam::col_sums(dtm)[["prices"]],
nrow(oil@cpos[word == "prices" & direction != 0L])
)
}
)
test_that(
"kwic: NULL object if positivelist removes all matches",
{
k <- corpus("GERMAPARLMINI") %>% kwic(query = 'Integration', cqp = FALSE, positivelist = "Messer")
expect_equal(is.null(k), TRUE)
}
)
test_that(
"kwic: Apply kwic on partition_bundle",
{
sp <- corpus("GERMAPARLMINI") %>%
subset(date == "2009-11-10") %>%
split(s_attribute = "speaker")
kwic_table <- kwic(sp, query = "Integration") %>% slot("stat")
dt <- kwic_table[, .N, by = "subcorpus_name"]
data.table::setorderv(dt, cols = "N", order = -1L)
cnt <- count(sp, query = "Integration", s_attributes = "speaker", progress = FALSE)
cnt <- cnt[TOTAL > 0L]
setorderv(cnt, cols = "TOTAL", order = -1L)
expect_equal(dt[["subcorpus_name"]], cnt[["partition"]])
expect_equal(dt[["N"]], cnt[["TOTAL"]])
}
) |
if (is.null(getGeneric("binOtsu"))) {
setGeneric("binOtsu", function(object, ...) standardGeneric("binOtsu"))
}
if (is.null(getGeneric("closeImage"))) {
setGeneric("closeImage", function(object, ...) standardGeneric("closeImage"))
}
if (is.null(getGeneric("invertImage"))) {
setGeneric("invertImage", function(object, ...) standardGeneric("invertImage"))
}
if (is.null(getGeneric("plot"))) {
setGeneric("plot", function(x, y, ...) standardGeneric("plot"))
}
if (is.null(getGeneric("removeSmallObjects"))) {
setGeneric("removeSmallObjects", function(object, ...)
standardGeneric("removeSmallObjects"))
}
if (is.null(getGeneric("smoothImage"))) {
setGeneric("smoothImage", function(object, ...) standardGeneric("smoothImage"))
}
setMethod(
f = "invertImage",
signature = signature(object = "ms.image"),
definition = function(object) {
if (.isBinary(object)) {
object@values <- (object@values == 0) * 1
} else {
object@values <- max(object@values) - object@values
}
return(object)
}
)
setMethod("plot",
signature = signature(x = "ms.image", y = "missing"),
function(x, palette = "inferno") {
is.bin <- .isBinary(x)
df <- melt(x@values)
is.rgb <- all(grepl('^
if (is.bin) {
df$value <- factor(df$value)
}
gg <- ggplot(df, aes_string(
x = "X1", y = "X2", fill = "value")) +
geom_raster() +
xlab("X") + ylab("Y") +
{
if (is.bin) {
scale_fill_grey(start = 0, end = 1)
} else if (is.rgb) {
scale_fill_identity()
} else {
scale_fill_viridis(option = palette)
}
} +
coord_fixed() + {
if (length(x@name) != 0) {
ggtitle(x@name)
}
} +
guides(
fill = guide_legend(title = "value"),
plot.title = element_text(hjust = 0.5)
) +
theme_bw()
return(gg)
}
)
setMethod(
f = "smoothImage",
signature = signature(object = "ms.image"),
definition = function(object, sigma = 2) {
if (sigma == 0) {
return(object)
}
if (sigma < 0) {
stop("smoothImage: 'sigma' must be positive.")
}
object@values <- as.matrix(blur(as.im(object@values), sigma = sigma))
if (object@scaled) {
object@values <- object@values / max(object@values)
}
return(object)
}
)
setMethod(
f = "binOtsu",
signature = signature(object = "ms.image"),
definition = function(object) {
if (.isBinary(object)) {
bw <- msImage(object@values, "ROI")
} else {
km <- kmeans(c(object@values), 2)
m <- which.min(km$centers)
thr <- max(c(object@values)[km$cluster == m])
bw <- (object@values > thr) * 1
bw <- msImage(as.matrix(bw), "ROI")
}
return(bw)
}
)
setMethod(
f = "closeImage",
signature = signature(object = "ms.image"),
definition = function(object, kern.size = 5) {
if (!.isBinary(object)) {
stop("closeImage can be applied on binary images only.")
}
object@values <- as.matrix(mclosing_square(
im = as.cimg(object@values),
size = kern.size
))
return(object)
}
)
setMethod(
f = "removeSmallObjects",
signature = signature(object = "ms.image"),
definition = function(object, threshold = 5, border = 3) {
if (!.isBinary(object)) {
stop("'removeSmallObjects' can be applied on binary images only.")
}
if (border < 0) {
stop("'border' must be positive.")
}
roiMat <- object@values == 1
if (border > 0) {
roiMat <- addBorderImage(roiMat, border = border)
}
roiMat[roiMat == 0] <- NA
roiMat <- as.cimg(roiMat)
CC <- label(roiMat)
CC <- as.matrix(CC)
if (border > 0) {
CC <- remBorderImage(CC, border = border)
}
ux <- unique(c(CC))
ux <- ux[!is.na(ux)]
numPixelsObjects <- array(NA, length(ux))
for (i in 1:length(ux)) {
numPixelsObjects[i] <- sum(CC == ux[i], na.rm = T)
}
ux <- ux[numPixelsObjects >= threshold]
if (length(ux) == 0) {
warning("All objects were removed. Returning the original image.")
return(object)
}
newRoi <- array(NA, prod(dim(object@values)))
for (i in 1:length(ux))
{
newRoi[CC == ux[i]] <- 1
}
newRoi <- matrix(newRoi, nrow(object@values), ncol(object@values))
stopifnot(all(sort(unique(c(newRoi))) == 1))
newRoi[is.na(newRoi)] <- 0
object <- msImage(values = newRoi, name = "ROI", scale = F)
return(object)
}
) |
plot.density.lengths <-
function (x, main = NULL, xlab = NULL, ylab = "Density", type = "l", zero.line = TRUE, ...) {
nk <- length(x) - 2
if (is.null(main)) {
main <- "Empirical densities of "
if (!x$log) main <- paste(main, "stratum ", sep = "")
if (x$log) main <- paste(main, "log-", sep = "")
main <- paste(main, "lengths - Direction (",
round(x$direction[1], 2), sep = "")
if (length(x$direction) > 1) {
for (i in 2:length(x$direction))
main <- paste(main, round(x$direction[i], 2), sep = ", ")
}
main <- paste(main, ")", sep = "")
}
if (!is.null(xlab)) {
if(length(xlab) < nk) xlab <- rep(xlab[1], nk)
}
else {
xlab <- c()
for (i in 1:nk)
xlab[i] <- paste("N =", x[[i]]$n, " Log-Bandwidth =", formatC(x[[i]]$bw))
}
nomi <- names(x)[1:nk]
mr <- ceiling(sqrt(nk))
mc <- floor(mr - nk / mr)
ly <- matrix(c(rep(1, mr), rep(0, mr), 2:(mr^2+1)), ncol = mr, byrow = TRUE)
yl <- c(rep(0, mr + 2))
ly <- cbind(yl, ly, yl)[, -(2+mr+1-mc)]
widths <- c(rep(2 - 0.5 * mr, 1), rep(30/mr, mr), rep(4 - 0.5 * mr, 1)) / 4
heights <- c(0.75, 1/3.5, rep(7.5/mr, mr-mc))
ly <- layout(ly, widths = widths, heights = heights, respect = TRUE)
mar <- sum(c(0, 1, 0, -0.5, -0.2, rep(0, 4), 0.2, rep(c(-0.1, rep(0, 3)), 2), 0)[1:mr])
mar <- rep(mar, 4)
par(mar = mar)
plot.new()
text(0.5, 0.5, labels = main, cex = 2)
for (i in 1:nk) {
par(mar = c(5, 4, 3, 2))
plot.default(x[[i]], main = nomi[i], xlab = xlab[i], ylab = ylab, type = type, ...)
if (zero.line) abline(h = 0, lwd = 0.1, col = "gray")
}
} |
library(RcppArmadillo)
Rcpp::sourceCpp("cpp/Rlapack.cpp")
set.seed(123)
n <- 5
n_tri <- 50
rl1 <- norm(cx_eig_pair_test(n),"2")
rl2 <- norm(cx_qz_test(n),"2")
rl3 <- cx_rank_test(n)
rl4 <- norm(cx_solve_test(n),"2")
rl5 <- norm(cx_solve_band_test(n_tri),"2")
rl6 <- norm(cx_pinv_test(n),"2")
rl7 <- norm(cx_schur_test(n),"2")
expect_equal(rl1, 0)
expect_equal(rl2, 0)
expect_equal(rl3, n)
expect_equal(rl4, 0)
expect_equal(rl5, 0)
expect_equal(rl6, 1)
expect_equal(rl7, 0) |
context("pred_df")
test_that("perf_df works", {
df1 = perf_df(mtcars$mpg, mtcars$am)
expect_equal(df1$cutoff, c(Inf, sort(unique(mtcars$mpg), decreasing = TRUE)))
expect_true(all(with(df1, fp+tp+tn+fn) == 32))
df2 = perf_df(mtcars$mpg, mtcars$am, quantiles = 4)
expect_equal(df2$pp, c(8, 16, 24, 32))
expect_equal(df2$cutoff, sort(mtcars$mpg, decreasing = TRUE)[c(8, 16, 24, 32)])
expect_equal(df2$rpp, c(0.25, 0.5, 0.75, 1))
df3 = perf_df(mtcars$mpg, mtcars$am, quantiles = 10)
expect_equal(nrow(df3), 10)
df4 = perf_df(mtcars$mpg, mtcars$am, quantiles = 31)
expect_equal(nrow(df4), 31)
df5 = perf_df(mtcars$mpg, mtcars$am, quantiles = 33)
expect_equal(nrow(df5), 32)
}) |
expect_known_output <- function(object, file,
update = TRUE,
...,
info = NULL,
label = NULL,
print = FALSE,
width = 80) {
edition_deprecate(3, "expect_known_output()",
"Please use `expect_snapshot_output()` instead"
)
act <- list()
act$quo <- enquo(object)
act$lab <- label %||% quo_label(act$quo)
act <- append(act, eval_with_output(object, print = print, width = width))
compare_file(file, act$out, update = update, info = info, ...)
invisible(act$val)
}
compare_file <- function(path, lines, ..., update = TRUE, info = NULL) {
if (!file.exists(path)) {
warning("Creating reference output", call. = FALSE)
brio::write_lines(lines, path)
succeed()
return()
}
old_lines <- brio::read_lines(path)
if (update) {
brio::write_lines(lines, path)
if (!all_utf8(lines)) {
warning("New reference output is not UTF-8 encoded", call. = FALSE)
}
}
if (!all_utf8(old_lines)) {
warning("Reference output is not UTF-8 encoded", call. = FALSE)
}
comp <- waldo_compare(
x = old_lines, x_arg = "old",
y = lines, y_arg = "new",
...
)
expect(
length(comp) == 0,
sprintf(
"Results have changed from known value recorded in %s.\n\n%s",
encodeString(path, quote = "'"), paste0(comp, collapse = "\n\n")
),
info = info,
trace_env = caller_env()
)
}
expect_output_file <- function(object, file,
update = TRUE,
...,
info = NULL,
label = NULL,
print = FALSE,
width = 80) {
edition_deprecate(3, "expect_output_file()",
"Please use `expect_snapshot_output()` instead"
)
act <- list()
act$quo <- enquo(object)
act$lab <- label %||% quo_label(act$quo)
act <- append(act, eval_with_output(object, print = print, width = width))
compare_file(file, act$out, update = update, info = info, ...)
invisible(act$val)
}
expect_known_value <- function(object, file,
update = TRUE,
...,
info = NULL,
label = NULL,
version = 2) {
edition_deprecate(3, "expect_known_value()",
"Please use `expect_snapshot_value()` instead"
)
act <- quasi_label(enquo(object), label, arg = "object")
if (!file.exists(file)) {
warning("Creating reference value", call. = FALSE)
saveRDS(object, file, version = version)
succeed()
} else {
ref_val <- readRDS(file)
comp <- compare(act$val, ref_val, ...)
if (update && !comp$equal) {
saveRDS(act$val, file, version = version)
}
expect(
comp$equal,
sprintf(
"%s has changed from known value recorded in %s.\n%s",
act$lab, encodeString(file, quote = "'"), comp$message
),
info = info
)
}
invisible(act$value)
}
expect_equal_to_reference <- function(..., update = FALSE) {
edition_deprecate(3, "expect_equal_to_reference()",
"Please use `expect_snapshot_value()` instead"
)
expect_known_value(..., update = update)
}
expect_known_hash <- function(object, hash = NULL) {
edition_deprecate(3, "expect_known_hash()",
"Please use `expect_snapshot_value()` instead"
)
act <- quasi_label(enquo(object), arg = "object")
act_hash <- digest::digest(act$val)
if (!is.null(hash)) {
act_hash <- substr(act_hash, 1, nchar(hash))
}
if (is.null(hash)) {
warning(paste0("No recorded hash: use ", substr(act_hash, 1, 10)))
succeed()
} else {
expect(
hash == act_hash,
sprintf("Value hashes to %s, not %s", act_hash, hash)
)
}
invisible(act$value)
}
all_utf8 <- function(x) {
! any(is.na(iconv(x, "UTF-8", "UTF-8")))
} |
sample.saver <- function(x, rep = 1, efficiency.known = FALSE,
seed = NULL) {
if (!is.null(x$alpha)) {
return(sample.saver.old(x, rep, efficiency.known, seed))
}
ncells <- ncol(x$estimate)
ngenes <- nrow(x$estimate)
cell.names <- colnames(x$estimate)
gene.names <- rownames(x$estimate)
rep <- as.integer(rep)
if (rep <= 0) {
stop("rep must be a positive integer.")
}
if (!is.null(seed)) {
set.seed(seed)
}
if (rep == 1) {
if (efficiency.known) {
samp <- t(sapply(1:ngenes, function(i)
rnbinom(ncells, mu = x$estimate[i, ],
size = x$estimate[i, ]^2/x$se[i, ]^2)))
} else {
samp <- t(sapply(1:ngenes, function(i)
rgamma(ncells, x$estimate[i, ]^2/x$se[i, ]^2,
x$estimate[i, ]/x$se[i, ]^2)))
samp <- round(samp, 3)
}
rownames(samp) <- gene.names
colnames(samp) <- cell.names
} else {
samp <- vector("list", rep)
for (j in 1:rep) {
if (efficiency.known) {
samp[[j]] <- t(sapply(1:ngenes, function(i)
rnbinom(ncells, mu = x$estimate[i, ],
size = x$estimate[i, ]^2/x$se[i, ]^2)))
} else {
samp[[j]] <- t(sapply(1:ngenes, function(i)
rgamma(ncells, x$estimate[i, ]^2/x$se[i, ]^2,
x$estimate[i, ]/x$se[i, ]^2)))
samp[[j]] <- round(samp[[j]], 3)
}
rownames(samp[[j]]) <- gene.names
colnames(samp[[j]]) <- cell.names
}
}
return(samp)
} |
context("Participant initiating and adding graphemes, and fetching basic information about them.")
library(synr)
test_that("has_graphemes() returns False if there are no graphemes", {
p <- Participant$new()
expect_false(p$has_graphemes())
})
test_that("add_grapheme() raises warning if passed grapheme has no associated symbol", {
p <- Participant$new()
g <- Grapheme$new()
expect_error(p$add_grapheme(g))
})
test_that("add_graphemes() adds all passed graphemes", {
p <- Participant$new()
g1 <- Grapheme$new(symbol='a')
g2 <- Grapheme$new(symbol='b')
g3 <- Grapheme$new(symbol='monday')
g_list <- list(g1, g2, g3)
p$add_graphemes(g_list)
expect_equal(p$graphemes[[2]], g_list[[2]])
})
test_that("has_graphemes() returns True if there are graphemes", {
p <- Participant$new()
g <- Grapheme$new(symbol='a')
p$add_grapheme(g)
expect_true(p$has_graphemes())
})
test_that("get_symbols() returns correct set of symbols", {
p <- Participant$new()
g1 <- Grapheme$new(symbol='a')
g2 <- Grapheme$new(symbol='b')
g3 <- Grapheme$new(symbol='monday')
p$add_grapheme(g1)
p$add_grapheme(g2)
p$add_grapheme(g3)
expect_equal(p$get_symbols(), c('a', 'b', 'monday'))
})
test_that("get_number_all_colored_graphemes returns 3 for participant with 3 all-valid response colors graphemes", {
p <- Participant$new()
g1 <- Grapheme$new(symbol='a')
g1$set_colors(c("
g2 <- Grapheme$new(symbol='b')
g2$set_colors(c("
g3 <- Grapheme$new(symbol='monday')
g3$set_colors(c("
g_list <- list(g1, g2, g3)
p$add_graphemes(g_list)
expect_equal(p$get_number_all_colored_graphemes(), 3)
})
test_that("get_number_all_colored_graphemes returns 0 for participant with no graphemes", {
p <- Participant$new()
expect_equal(p$get_number_all_colored_graphemes(), 0)
})
test_that("get_number_all_colored_graphemes returns 0 for participant with only graphemes without responses", {
p <- Participant$new()
g1 <- Grapheme$new(symbol='a')
g2 <- Grapheme$new(symbol='b')
g3 <- Grapheme$new(symbol='monday')
g_list <- list(g1, g2, g3)
p$add_graphemes(g_list)
expect_equal(p$get_number_all_colored_graphemes(), 0)
})
test_that("get_number_all_colored_graphemes returns 0 for participant with only graphemes with invalid responses", {
p <- Participant$new()
g1 <- Grapheme$new(symbol='a')
g1$set_colors(c(NA, NA, NA, NA), "Luv")
g2 <- Grapheme$new(symbol='b')
g2$set_colors(c(NA, NA, NA, NA), "Luv")
g3 <- Grapheme$new(symbol='monday')
g3$set_colors(c(NA, NA, NA, NA), "Luv")
g_list <- list(g1, g2, g3)
p$add_graphemes(g_list)
expect_equal(p$get_number_all_colored_graphemes(), 0)
})
test_that(paste0(
"get_nonna_color_resp_mat produces expected matrix ",
"for participant with 12 valid responses"
), {
p <- Participant$new()
g1 <- Grapheme$new(symbol='a')
g1$set_colors(c("
g2 <- Grapheme$new(symbol='b')
g2$set_colors(c("
g3 <- Grapheme$new(symbol='monday')
g3$set_colors(c("
g_list <- list(g1, g2, g3)
p$add_graphemes(g_list)
col_mat <- p$get_nonna_color_resp_mat()
expect_equal(nrow(col_mat), 12)
}) |
context("test-message")
test_that("printf works", {
expect_identical(capture.output(printf("My name is %s.", "Florian")),
"My name is Florian.")
}) |
jackmsatpop <-
function(datafile, ndigit=3, interval=1, nrepet=100, richness=F)
{
input=read.delim(file=datafile, sep='\r')
noext= gsub("[.].*$","",datafile)
popcount=rbind(which(input == 'pop', arr.ind=T),which(input=='Pop',arr.ind=T),which(input=='POP',arr.ind=T))
popcount=popcount[,1]
npops=NROW(popcount)
popcount=sort(popcount)
nloci=popcount[1]-1
popsizes=vector(length=npops)
for (h in 1:npops)
{
if (h<npops) popsizes[h]=popcount[h+1]-popcount[h]-1
if (h==npops) popsizes[h]=nrow(input)-popcount[h]
}
n.individuals=sum(popsizes)
datamatrix=matrix(NA, n.individuals, nloci*2)
input2=input[-popcount,]
input3=input2[-(1:nloci)]
for (b in 1:n.individuals)
{
inddata=input3[b]
inddata=as.vector(inddata)
inddata=gsub( "[^[:alnum:]]", "", inddata)
total=nchar(inddata)
diff=total-(ndigit*2*nloci)
for (x in 1:nloci)
{
datamatrix[b,((2*x)-1)]=substr(inddata,diff+(2*ndigit*(x-1))+(ndigit-(ndigit-1)), diff+(2*ndigit*(x-1))+ndigit)
datamatrix[b,(2*x)]=substr(inddata,diff+(2*ndigit*(x-1))+ndigit+1, diff+(2*ndigit*(x-1))+(2*ndigit))
}
}
n.col=ncol(datamatrix)
npop=NROW(popsizes)
matrichness=NULL
matrichnessDev=NULL
for (v in 1:npop)
{
no=v
if (v==1) first=1
if (v>1) first=sum(popsizes[1:(no-1)])+1
last=sum(popsizes[1:no])
pop=datamatrix[first:last,]
compute=jackmsat(pop, interval, nrepet, richness)
name=paste('pop_',no, '.txt', sep='')
Means2=t(compute$Means)
Stdev2=t(compute$Stdev)
if (richness==F) write.table(Means2, file=name, quote=F, sep='\t', row.names=F, col.names=F)
if (richness==F) write.table(Stdev2, file=name, append=T, quote=F, sep='\t', row.names=F, col.names=F)
if (richness==T) matrichness=cbind(matrichness, compute$Means[-1,-1])
if (richness==T) matrichnessDev=cbind(matrichnessDev, compute$Stdev[-1,-1])
}
popnames=c(1:npop)
if (richness==T) {
matrichness=rbind(popnames, matrichness)
matrichnessDev=rbind(popnames, matrichnessDev)
filename=paste('Richness for ', interval, 'ind.txt')
rows2=c('',compute$row.names)
matrichness2=t(matrichness)
matrichness2=rbind(rows2, matrichness2)
matrichnessDev2=t(matrichnessDev)
matrichnessDev2=rbind(rows2, matrichnessDev2)
write.table(matrichness2, file=filename, quote=F, sep='\t', row.names=F, col.names=F)
write.table(matrichnessDev2, file=filename, append=T, quote=F, sep='\t', row.names=F, col.names=F)
}} |
boss <- function(x, y, maxstep=min(nrow(x)-intercept-1, ncol(x)), intercept=TRUE, hdf.ic.boss=TRUE, mu=NULL, sigma=NULL, ...){
n = dim(x)[1]
p = dim(x)[2]
if(maxstep > min(nrow(x)-intercept-1, ncol(x))){
warning('Specified maximum number of steps is larger than expected.')
maxstep = min(nrow(x)-intercept-1, ncol(x))
}
if(!is.null(dim(y))){
if(dim(y)[2] == 1){
y = as.numeric(y)
}else{
stop('Multiple dependent variables are not supported.')
}
}
std_result = std(x, y, intercept)
x = std_result$x_std
y = std_result$y_std
mean_x = std_result$mean_x
mean_y = std_result$mean_y
sd_demanedx = std_result$sd_demeanedx
if(hdf.ic.boss & maxstep < p){
guideQR_result = guideQR(x, y, maxstep, TRUE)
Q = guideQR_result$Q[, 1:maxstep]
R = guideQR_result$R[1:maxstep, 1:maxstep]
}else{
guideQR_result = guideQR(x, y, maxstep, FALSE)
Q = guideQR_result$Q
R = guideQR_result$R
}
steps_x = as.numeric(guideQR_result$steps)
z = t(Q) %*% y
trans.q.to.x <- function(beta.q){
beta.x = Matrix::Matrix(0, nrow=p, ncol=maxstep, sparse = TRUE)
beta.x[steps_x, ] = diag(1/sd_demanedx[steps_x]) %*% backsolve(R, beta.q)
beta.x = cbind(0, beta.x)
if(intercept){
beta.x = rbind(Matrix::Matrix(mean_y - mean_x %*% beta.x, sparse=TRUE), beta.x)
}
return(beta.x)
}
beta_q = matrix(rep(z, maxstep), nrow=maxstep, byrow=FALSE)
beta_q = beta_q * upper.tri(beta_q, diag=TRUE)
beta_fs = trans.q.to.x(beta_q)
order_q = order(-z^2)
steps_q = steps_x[order_q]
row_i = rep(order_q, times=seq(maxstep,1))
col_j = unlist(lapply(1:maxstep, function(xx){seq(xx,maxstep)}))
beta_q = Matrix::sparseMatrix(row_i, col_j, x=z[row_i], dims=c(maxstep, maxstep))
beta_boss = trans.q.to.x(beta_q)
if(!hdf.ic.boss){
hdf = IC_result = NULL
}else{
if(n > p){
hdf_result = calc.hdf(guideQR_result$Q, y, sigma, mu, x=NULL)
}else{
hdf_result = calc.hdf(guideQR_result$Q, y, sigma, mu, x)
}
hdf = hdf_result$hdf[1:(maxstep+1)]
sigma = hdf_result$sigma
if(intercept){
hdf = hdf + 1
}
IC_result = calc.ic.all(cbind(0,beta_q), Q, y, hdf, sigma)
}
varnames = colnames(x)
if(is.null(varnames)){
varnames = paste0('X', seq(1,p))
}
if(intercept){
rownames(beta_fs) = rownames(beta_boss) = c('intercept', varnames)
}else{
rownames(beta_fs) = rownames(beta_boss) = varnames
}
names(steps_x) = varnames[steps_x]
names(steps_q) = varnames[steps_q]
out = list(beta_fs=beta_fs,
beta_boss=beta_boss,
steps_x=steps_x,
steps_q=steps_q,
hdf_boss=hdf,
IC_boss=IC_result,
sigma=sigma,
call=list(intercept=intercept))
class(out) = 'boss'
invisible(out)
}
coef.boss <- function(object, ic=c('aicc','bicc','aic','bic','gcv','cp'), select.boss=NULL, ...){
if(is.null(select.boss)){
if(is.null(object$IC_boss)){
warning("boss was called with argument 'hdf.ic.boss=FALSE', the full coef matrix is returned here")
select.boss = 1:ncol(object$beta_boss)
}else{
ic = match.arg(ic)
select.boss = which.min(object$IC_boss[[ic]])
}
}else if(select.boss == 0){
select.boss = 1:ncol(object$select.boss)
}
select.boss[select.boss > ncol(object$beta_boss)] = ncol(object$beta_boss)
beta_boss_opt = object$beta_boss[, select.boss, drop=FALSE]
return(beta_boss_opt)
}
predict.boss <- function(object, newx, ...){
beta_boss_opt = coef(object, ...)
if(is.null(dim(newx))){
newx = matrix(newx, nrow=1)
}else if(dim(newx)[2] == 1){
newx = t(newx)
}
if(object$call$intercept){
newx = cbind(rep(1,nrow(newx)), newx)
}
if(is.null(beta_boss_opt)){
mu_boss_opt = NULL
}else{
if(ncol(newx) != nrow(beta_boss_opt)){
stop('Mismatch dimension of newx and coef for BOSS. Note do NOT add 1 to newx when intercept=TRUE')
}else{
mu_boss_opt = newx %*% beta_boss_opt
}
}
return(mu_boss_opt)
} |
NgetIntermediateResults <- function (obj, offset = NULL, convert = TRUE){
if (!(class(obj) == "NeosJob")) {
stop("\nObject 'obj' is not of class 'NeosJob'.\n")
}
call <- match.call()
jobnumber <- obj@jobnumber
password <- obj@password
nc <- obj@nc
if(is.null(offset)){
offset <- as.integer(0)
} else {
offset <- as.integer(offset)
}
ans <- xml.rpc(url = nc@url, method = "getIntermediateResults",
.args = list(jobnumber = jobnumber, password = password,
offset = offset),
.convert = FALSE, .opts = nc@curlopts, .curl = nc@curlhandle)
tmp <- xmlToList(xmlRoot(xmlTreeParse(ans)))
offset <- as.integer(tmp[2, ])
if (convert) {
tmp1 <- tmp[1, ]
if(!is.null(tmp1$params)){
tmp1 <- gsub("\\n", "", tmp1)
class(tmp1) <- "base64"
ans <- base64(tmp1)
} else {
ans <- "\nNothing left to return from NEOS.\n"
}
}
res <- new("NeosOff", ans = ans, offset = offset,
jobnumber = jobnumber, password = password,
method = "getIntermediateResults", call = call, nc = nc)
return(res)
} |
SuperLearner <- function(Y, X, newX = NULL, family = gaussian(), SL.library,
method = 'method.NNLS', id = NULL, verbose = FALSE, control = list(),
cvControl = list(), obsWeights = NULL, env = parent.frame()) {
time_start = proc.time()
if (is.character(method)) {
if (exists(method, mode = 'list')) {
method <- get(method, mode = 'list')
} else if (exists(method, mode = 'function')) {
method <- get(method, mode = 'function')()
}
} else if (is.function(method)) {
method <- method()
}
if(!is.list(method)) {
stop("method is not in the appropriate format. Check out help('method.template')")
}
if(!is.null(method$require)) {
sapply(method$require, function(x) require(force(x), character.only = TRUE))
}
control <- do.call('SuperLearner.control', control)
cvControl <- do.call('SuperLearner.CV.control', cvControl)
library <- .createLibrary(SL.library)
.check.SL.library(library = c(unique(library$library$predAlgorithm), library$screenAlgorithm))
call <- match.call(expand.dots = TRUE)
if(!inherits(X, 'data.frame')) message('X is not a data frame. Check the algorithms in SL.library to make sure they are compatible with non data.frame inputs')
varNames <- colnames(X)
N <- dim(X)[1L]
p <- dim(X)[2L]
k <- nrow(library$library)
kScreen <- length(library$screenAlgorithm)
Z <- matrix(NA, N, k)
libraryNames <- paste(library$library$predAlgorithm, library$screenAlgorithm[library$library$rowScreen], sep="_")
if(p < 2 & !identical(library$screenAlgorithm, "All")) {
warning('Screening algorithms specified in combination with single-column X.')
}
fitLibEnv <- new.env()
assign('fitLibrary', vector('list', length = k), envir = fitLibEnv)
assign('libraryNames', libraryNames, envir = fitLibEnv)
evalq(names(fitLibrary) <- libraryNames, envir = fitLibEnv)
errorsInCVLibrary <- rep(0, k)
errorsInLibrary <- rep(0, k)
if(is.null(newX)) {
newX <- X
}
if(!identical(colnames(X), colnames(newX))) {
stop("The variable names and order in newX must be identical to the variable names and order in X")
}
if (sum(is.na(X)) > 0 | sum(is.na(newX)) > 0 | sum(is.na(Y)) > 0) {
stop("missing data is currently not supported. Check Y, X, and newX for missing values")
}
if (!is.numeric(Y)) {
stop("the outcome Y must be a numeric vector")
}
if(is.character(family))
family <- get(family, mode="function", envir=parent.frame())
if(is.function(family))
family <- family()
if (is.null(family$family)) {
print(family)
stop("'family' not recognized")
}
if (family$family != "binomial" & isTRUE("cvAUC" %in% method$require)){
stop("'method.AUC' is designed for the 'binomial' family only")
}
validRows <- CVFolds(N = N, id = id, Y = Y, cvControl = cvControl)
if(is.null(id)) {
id <- seq(N)
}
if(!identical(length(id), N)) {
stop("id vector must have the same dimension as Y")
}
if(is.null(obsWeights)) {
obsWeights <- rep(1, N)
}
if(!identical(length(obsWeights), N)) {
stop("obsWeights vector must have the same dimension as Y")
}
.crossValFUN <- function(valid, Y, dataX, id, obsWeights, library,
kScreen, k, p, libraryNames, saveCVFitLibrary) {
tempLearn <- dataX[-valid, , drop = FALSE]
tempOutcome <- Y[-valid]
tempValid <- dataX[valid, , drop = FALSE]
tempWhichScreen <- matrix(NA, nrow = kScreen, ncol = p)
tempId <- id[-valid]
tempObsWeights <- obsWeights[-valid]
for(s in seq(kScreen)) {
screen_fn = get(library$screenAlgorithm[s], envir = env)
testScreen <- try(do.call(screen_fn, list(Y = tempOutcome, X = tempLearn, family = family, id = tempId, obsWeights = tempObsWeights)))
if(inherits(testScreen, "try-error")) {
warning(paste("replacing failed screening algorithm,", library$screenAlgorithm[s], ", with All()", "\n "))
tempWhichScreen[s, ] <- TRUE
} else {
tempWhichScreen[s, ] <- testScreen
}
if(verbose) {
message(paste("Number of covariates in ", library$screenAlgorithm[s], " is: ", sum(tempWhichScreen[s, ]), sep = ""))
}
}
out <- matrix(NA, nrow = nrow(tempValid), ncol = k)
if(saveCVFitLibrary){
model_out <- vector(mode = "list", length = k)
}else{
model_out <- NULL
}
for(s in seq(k)) {
pred_fn = get(library$library$predAlgorithm[s], envir = env)
testAlg <- try(do.call(pred_fn, list(Y = tempOutcome, X = subset(tempLearn, select = tempWhichScreen[library$library$rowScreen[s], ], drop=FALSE), newX = subset(tempValid, select = tempWhichScreen[library$library$rowScreen[s], ], drop=FALSE), family = family, id = tempId, obsWeights = tempObsWeights)))
if(inherits(testAlg, "try-error")) {
warning(paste("Error in algorithm", library$library$predAlgorithm[s], "\n The Algorithm will be removed from the Super Learner (i.e. given weight 0) \n" ))
} else {
out[, s] <- testAlg$pred
if(saveCVFitLibrary){
model_out[[s]] <- testAlg$fit
}
}
if (verbose) message(paste("CV", libraryNames[s]))
}
if(saveCVFitLibrary){
names(model_out) <- libraryNames
}
invisible(list(out = out, model_out = model_out))
}
time_train_start = proc.time()
crossValFUN_out <- lapply(validRows, FUN = .crossValFUN,
Y = Y, dataX = X, id = id,
obsWeights = obsWeights,
library = library, kScreen = kScreen,
k = k, p = p, libraryNames = libraryNames,
saveCVFitLibrary = control$saveCVFitLibrary)
Z[unlist(validRows, use.names = FALSE), ] <- do.call('rbind', lapply(crossValFUN_out, "[[", "out"))
if(control$saveCVFitLibrary){
cvFitLibrary <- lapply(crossValFUN_out, "[[", "model_out")
}else{
cvFitLibrary <- NULL
}
errorsInCVLibrary <- apply(Z, 2, function(x) anyNA(x))
if (sum(errorsInCVLibrary) > 0) {
Z[, as.logical(errorsInCVLibrary)] <- 0
}
if (all(Z == 0)) {
stop("All algorithms dropped from library")
}
getCoef <- method$computeCoef(Z = Z, Y = Y, libraryNames = libraryNames,
obsWeights = obsWeights, control = control,
verbose = verbose,
errorsInLibrary = errorsInCVLibrary)
coef <- getCoef$coef
names(coef) <- libraryNames
time_train = proc.time() - time_train_start
if (!("optimizer" %in% names(getCoef))) {
getCoef["optimizer"] <- NA
}
m <- dim(newX)[1L]
predY <- matrix(NA, nrow = m, ncol = k)
.screenFun <- function(fun, list) {
screen_fn = get(fun, envir = env)
testScreen <- try(do.call(screen_fn, list))
if (inherits(testScreen, "try-error")) {
warning(paste("replacing failed screening algorithm,", fun, ", with All() in full data", "\n "))
out <- rep(TRUE, ncol(list$X))
} else {
out <- testScreen
}
return(out)
}
time_predict_start = proc.time()
whichScreen <- sapply(library$screenAlgorithm, FUN = .screenFun, list = list(Y = Y, X = X, family = family, id = id, obsWeights = obsWeights), simplify = FALSE)
whichScreen <- do.call(rbind, whichScreen)
.predFun <- function(index, lib, Y, dataX, newX, whichScreen, family, id, obsWeights, verbose, control, libraryNames) {
pred_fn = get(lib$predAlgorithm[index], envir = env)
testAlg <- try(do.call(pred_fn, list(Y = Y,
X = subset(dataX,
select = whichScreen[lib$rowScreen[index], ], drop=FALSE),
newX = subset(newX, select = whichScreen[lib$rowScreen[index], ], drop=FALSE),
family = family, id = id, obsWeights = obsWeights)))
if (inherits(testAlg, "try-error")) {
warning(paste("Error in algorithm", lib$predAlgorithm[index], " on full data", "\n The Algorithm will be removed from the Super Learner (i.e. given weight 0) \n" ))
out <- rep.int(NA, times = nrow(newX))
} else {
out <- testAlg$pred
if (control$saveFitLibrary) {
eval(bquote(fitLibrary[[.(index)]] <- .(testAlg$fit)), envir = fitLibEnv)
}
}
if (verbose) {
message(paste("full", libraryNames[index]))
}
invisible(out)
}
predY <- do.call('cbind', lapply(seq(k), FUN = .predFun,
lib = library$library, Y = Y, dataX = X,
newX = newX, whichScreen = whichScreen,
family = family, id = id,
obsWeights = obsWeights, verbose = verbose,
control = control,
libraryNames = libraryNames))
errorsInLibrary <- apply(predY, 2, function(algorithm) anyNA(algorithm))
if (sum(errorsInLibrary) > 0) {
if (sum(coef[as.logical(errorsInLibrary)]) > 0) {
warning(paste0("Re-running estimation of coefficients removing failed algorithm(s)\n",
"Original coefficients are: \n", paste(coef, collapse = ", "), "\n"))
Z[, as.logical(errorsInLibrary)] <- 0
if (all(Z == 0)) {
stop("All algorithms dropped from library")
}
getCoef <- method$computeCoef(Z = Z, Y = Y, libraryNames = libraryNames,
obsWeights = obsWeights, control = control,
verbose = verbose,
errorsInLibrary = errorsInLibrary)
coef <- getCoef$coef
names(coef) <- libraryNames
} else {
warning("Coefficients already 0 for all failed algorithm(s)")
}
}
getPred <- method$computePred(predY = predY, coef = coef, control = control)
time_predict = proc.time() - time_predict_start
colnames(predY) <- libraryNames
if(sum(errorsInCVLibrary) > 0) {
getCoef$cvRisk[as.logical(errorsInCVLibrary)] <- NA
}
time_end = proc.time()
times = list(everything = time_end - time_start,
train = time_train,
predict = time_predict)
out <- list(
call = call,
libraryNames = libraryNames,
SL.library = library,
SL.predict = getPred,
coef = coef,
library.predict = predY,
Z = Z,
cvRisk = getCoef$cvRisk,
family = family,
fitLibrary = get('fitLibrary', envir = fitLibEnv),
cvFitLibrary = cvFitLibrary,
varNames = varNames,
validRows = validRows,
method = method,
whichScreen = whichScreen,
control = control,
cvControl = cvControl,
errorsInCVLibrary = errorsInCVLibrary,
errorsInLibrary = errorsInLibrary,
metaOptimizer = getCoef$optimizer,
env = env,
times = times
)
class(out) <- c("SuperLearner")
return(out)
} |
format_dnf <- function(dnf) {
return(Reduce(function(x, y) {paste(x, y, sep = " + ")}, dnf))
}
xyplot <- function(x, y, data, labels=FALSE, main.diagonal=TRUE, anti.diagonal=FALSE) {
if (is.character(x)) {
xname <- format_dnf(x)
} else {
xname <- ""
}
if (is.character(y)) {
yname <- format_dnf(y)
} else {
yname <- ""
}
x <- evaluate_dnf(data, x)
y <- evaluate_dnf(data, y)
if (labels) {
casenames <- rownames(data)
}
pl <- ggplot2::qplot(x,y) + ggplot2::scale_x_continuous(limits = c(0, 1), name = xname) +
ggplot2::scale_y_continuous(limits = c(0, 1), name = yname)
if (labels) {
pl <- directlabels::direct.label(pl + ggplot2::geom_point(ggplot2::aes(colour=casenames)))
}
if (main.diagonal) {
pl <- pl + ggplot2::geom_segment(ggplot2::aes(x = 0, y = 0, xend = 1, yend = 1))
}
if (anti.diagonal) {
pl <- pl + ggplot2::geom_segment(ggplot2::aes(x = 0, y = 1, xend = 1, yend = 0))
}
return(pl)
}
plot.qca <- function(x, ...) {
xyplot(toupper(x$tt$options$outcome), x$solution[[1]], x$tt$initial.data, ...)
} |
require(fitdistrplus)
data("fremale")
fremale.cens <- Surv2fitdistcens(fremale$AgeIn, fremale$AgeOut, fremale$Death)
f1 <- fitdistcens(fremale.cens, "norm")
f2 <- fitdistcens(fremale.cens, "logis")
f3 <- fitdistcens(fremale.cens, "cauchy")
cdfcompcens(list(f1, f2, f3))
sapply(list(f1, f2, f3), logLik) |
NULL
path_is_not <- function(thing, var = "x") {
function(call, env) {
paste0("Path '", eval(call[[var]], env), "' is not ", thing)
}
}
NULL
is.dir <- function(path) {
assert_that(is.string(path), file.exists(path))
file.info(path)$isdir
}
on_failure(is.dir) <- path_is_not("a directory", "path")
is.writeable <- function(path) {
assert_that(is.string(path), file.exists(path))
file.access(path, mode = 2)[[1]] == 0
}
on_failure(is.writeable) <- path_is_not("writeable", "path")
is.readable <- function(path) {
assert_that(is.string(path), file.exists(path))
file.access(path, mode = 4)[[1]] == 0
}
on_failure(is.readable) <- path_is_not("readable", "path")
has_extension <- function(path, ext) {
tools::file_ext(path) == ext
}
on_failure(has_extension) <- function(call, env) {
path <- eval(call$path, env)
ext <- eval(call$ext, env)
paste0("File '", basename(path), "' does not have extension ", ext)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(msaeRB) |
bf.approx<-function(z,param,size,k2,oa2){
bm=0
vm2=0
sumw=0
log_ABF=0
phi2 <- oa2*k2
for (j in 1:size)
{
beta <- param[z,2*(j-1)+1]
ds2 <- param[z,2*(j-1)+2]**2
w <- 1/(ds2+phi2)
bm = bm + beta*w
sumw = sumw + w
vm2 = vm2 + w
log_ABF<-log_ABF+0.5*log(ds2*w)+0.5*(beta^2/ds2)*(phi2*w)
}
bm=bm/sumw
vm2<-1/vm2
log_ABF<-log_ABF+0.5*log(vm2/(oa2+vm2))+0.5*((bm^2)/vm2)*(oa2/(vm2+oa2))
return(log_ABF)
} |
qDiptab <- diptest:::rdRDS("extraData", "qDiptab.rds") |
rAC <- function(name = c("clayton", "gumbel", "frank", "BB9", "GIG"), n, d, theta){
name <- match.arg(name)
illegalpar <- switch(name,
clayton = (theta < 0),
gumbel = (theta < 1),
frank = (theta < 0),
BB9 = ((theta[1] < 1) | (theta[2] < 0)),
GIG = ((theta[2] < 0) | (theta[3] < 0) | ((theta[1]>0) & (theta[3]==0)) | ((theta[1]<0) & (theta[2]==0))))
if(illegalpar) stop("Illegal parameter value")
independence <- switch(name,
clayton = (theta == 0),
gumbel = (theta == 1),
frank = (theta == 0),
BB9 = (theta[1] == 1),
GIG=FALSE)
U <- runif(n * d)
U <- matrix(U, nrow = n, ncol = d)
if(independence) return(U)
Y <- switch(name,
clayton = rgamma(n, 1/ theta),
gumbel = rstable(n, 1/ theta) * (cos(pi / (2 * theta)))^theta,
frank = rFrankMix(n, theta),
BB9 = rBB9Mix(n, theta),
GIG = rGIG(n, theta[1], theta[2], theta[3]))
Y <- matrix(Y, nrow = n, ncol = d)
phi.inverse <- switch(name,
clayton = function(t, theta){
(1 + t)^(-1/theta)
},
gumbel = function(t, theta){
exp( - t^(1/theta))
},
frank = function(t, theta){
(-1 / theta) * log(1 - (1 - exp( - theta)) * exp( - t))
},
BB9 = function(t, theta){
exp( - (theta[2]^theta[1] + t)^(1/theta[1]) + theta[2])
},
GIG = function(t, theta){
lambda <- theta[1]
chi <- theta[2]
psi <- theta[3]
if(chi==0){
out <- (1 + 2 * t / psi)^(-lambda)
} else if(psi==0){
out <- 2^(lambda + 1) * exp(log(besselK(x = sqrt(2*chi*t), nu = lambda, expon.scaled = FALSE)) -
lambda * log(2 * chi * t) / 2) / gamma(-lambda)
} else {
out <- exp(log(besselK(x = sqrt(chi * (psi + 2 * t)), nu = lambda, expon.scaled = FALSE)) +
lambda * log(chi * psi) / 2 - log(besselK(x = sqrt(chi*psi), nu = lambda, expon.scaled = FALSE)) -
lambda * log(chi * (psi + 2 * t)) / 2)
}
out
}
)
phi.inverse( - log(U) / Y, theta)
}
rACp <- function(name = c("clayton", "gumbel", "frank", "BB9", "GIG"), n, d, theta, A){
name <- match.arg(name)
p <- length(theta)
if ((dim(A)[1] != d) | (dim(A)[2] !=p)) stop("\nWeight matrix 'A' has incorrect dimensions.\n")
sumcheck <- apply(A, 1, sum) - rep(1,d)
if (sum(sumcheck^2) != 0) stop("\nWeights do not sum to one.\n")
for (j in 1:p){
tmp <- rAC(name = name, n = n, d = d, theta = theta[j])
Amat <- matrix(A[, j], ncol = d, nrow = n, byrow = TRUE)
tmp <- tmp^(1 / Amat)
eval(parse(text = paste("U", j, " <- tmp", sep="")))
}
args <- paste("U", 1:p, sep = "", collapse = ",")
result <- parse(text = paste("pmax(", args, ")"))
eval(result)
}
rcopula.gumbel <- function(n, theta, d){
rAC("gumbel", n, d, theta)
}
rcopula.clayton <- function(n, theta, d){
rAC("clayton", n, d, theta)
}
rcopula.frank <- function(n, theta, d){
rAC("frank", n, d, theta)
}
rstable <- function(n, alpha, beta = 1){
t0 <- atan(beta * tan((pi * alpha) / 2)) / alpha
Theta <- pi * (runif(n) - 0.5)
W <- - log(runif(n))
term1 <- sin(alpha * (t0 + Theta)) / (cos(alpha * t0) * cos(Theta))^(1 / alpha)
term2 <- ((cos(alpha * t0 + (alpha - 1) * Theta)) / W)^((1 - alpha) / alpha)
term1 * term2
}
rFrankMix <- function(n, theta){
rfrank(n, theta)
}
rBB9Mix <- function(n, theta){
out <- rep(NA, n)
for (i in 1:n){
X <- 0
U <- 2
while (U > exp(-X * theta[2]^theta[1])){
X <- rstable(1, 1 / theta[1])
U <- runif(1)
}
out[i] <- X
}
out
}
rcopula.Gumbel2Gp <- function(n = 1000, gpsizes = c(2, 2), theta =c(2, 3, 5)){
Y <- rstable(n, 1 / theta[1]) * (cos(pi / (2 * theta[1])))^theta[1]
innerU1 <- rcopula.gumbel(n, theta[2] / theta[1], gpsizes[1])
innerU2 <- rcopula.gumbel(n, theta[3] / theta[1], gpsizes[2])
U <- cbind(innerU1, innerU2)
Y <- matrix(Y, nrow = n, ncol = sum(gpsizes))
out <- exp( - ( - log(U) / Y)^(1 / theta[1]))
out
}
rcopula.GumbelNested <- function(n, theta){
d <- length(theta) + 1
if (d==2)
out <- rcopula.gumbel(n, theta, d)
else if (d > 2){
Y <- rstable(n, 1 / theta[1]) * (cos(pi / (2 * theta[1])))^theta[1]
U <- runif(n)
innerU <- rcopula.GumbelNested(n, theta[-1] / theta[1])
U <- cbind(U, innerU)
Y <- matrix(Y, nrow = n, ncol = d)
out <- exp( - ( - log(U) / Y)^(1 / theta[1]))
}
out
}
dcopula.AC <- function(u, theta, name = c("clayton", "gumbel"), log = TRUE){
name <- match.arg(name)
d <- dim(u)[2]
if ((name == "gumbel") & (d > 2)) stop("\nOnly bivariate Gumbel implemented.\n")
illegalpar <- switch(name,
clayton = (theta <= 0),
gumbel = (theta <= 1))
if(illegalpar){
out <- NA
} else {
phi <- switch(name,
clayton = function(u, theta){(u^(-theta) - 1) / theta},
gumbel = function(u, theta){(-log(u))^theta})
lnegphidash <- switch(name,
clayton = function(u, theta){(-theta - 1)*log(u)},
gumbel = function(u, theta){log(theta) + (theta - 1) * log(-log(u)) -log(u)})
loggfunc <- switch(name,
clayton = function(t, d, theta){d * log(theta) + sum(log((1:d) +1 /theta - 1))-(d + 1 / theta) * log(t * theta + 1)},
gumbel = function(t, d= 2, theta){-2 * log(theta) -t^(1 / theta) + (1 / theta - 2) *log(t) + log(t^(1 / theta) + theta - 1)})
gu <- apply(phi(u, theta), 1, sum)
term1 <- loggfunc(gu, d, theta)
term2 <- apply(lnegphidash(u, theta), 1, sum)
out <- term1 + term2
if(!(log)) out <- exp(out)
}
out
}
dcopula.clayton <- function(u, theta, log = FALSE){
d <- dim(u)[2]
if(d > 2) stop("\nClayton copula density only implemented for d = 2.\n")
u1 <- u[, 1]
u2 <- u[, 2]
out <- log(1 + theta) + (-1 - theta) * log(u1 * u2) + (-2 - 1 / theta) * log(u1^(-theta) + u2^(-theta) - 1)
if (!(log)) out <- exp(out)
out
}
dcopula.gumbel <- function(u, theta, log = FALSE){
d <- dim(u)[2]
if(d > 2) stop("\nGumbel copula density only implemented for d = 2.\n")
u1 <- u[, 1]
u2 <- u[, 2]
innerfunc <- function(x, y, theta){((-log(x))^theta + (-log(y))^theta)^(1 / theta)}
out <- -innerfunc(u1, u2, theta) -log(u1 * u2) + (theta - 1) * log(log(u1) * log(u2)) + log(theta - 1 + innerfunc(u1, u2, theta)) + (1 - 2 * theta) * log(innerfunc(u1, u2, theta))
if (!(log)) out <- exp(out)
out
}
fit.AC <- function(Udata, name = c("clayton", "gumbel"), initial = 2, ...){
negloglik <- function(x, data, name){
- sum(dcopula.AC(data, x, name, log = TRUE))
}
cl <- match.call()
if(!("lower" %in% names(cl))){
lower <- switch(name, gumbel = 1+1e-10, clayton = 0)
fit <- nlminb(initial, negloglik, data = Udata, name = name, lower = lower, ...)
} else {
fit <- nlminb(initial, negloglik, data = Udata, name = name, ...)
}
theta <- fit$par
ifelse(fit$convergence == 0, converged <- TRUE, converged <- FALSE)
hessianmatrix <- hessian(negloglik, theta, data = Udata, name = name)
varcov <- solve(hessianmatrix)
se <- sqrt(diag(varcov))
ll.max <- - fit$objective
out <- list(ll.max = ll.max, theta = theta, se = se, converged = converged, fit = fit)
out
} |
saveout.dcm <- function(df, s, param, control, out = NULL) {
if (s == 1) {
out <- list()
out$param <- param
out$control <- control
if (length(control$nsteps) == 1) {
out$control$timesteps <- seq(1, control$nsteps, control$dt)
} else {
out$control$timesteps <- control$nsteps
}
out$epi <- list()
for (j in 2:ncol(df)) {
out$epi[[names(df)[j]]] <- data.frame(df[, j])
}
} else {
for (j in 2:ncol(df)) {
out$epi[[names(df)[j]]][, s] <- data.frame(df[, j])
}
}
ns <- nrow(out$epi[[1]])
lr.na <- sapply(out$epi, function(x) is.na(x[ns, s]) & !is.na(x[ns - 1, s]))
wh.lr.na <- as.numeric(which(lr.na == TRUE))
if (length(wh.lr.na) > 0) {
for (jj in wh.lr.na) {
out$epi[[jj]][ns, s] <- out$epi[[jj]][ns - 1, s]
}
}
if (s == control$nruns) {
for (s in as.vector(which(lapply(out$epi, class) == "data.frame"))) {
colnames(out$epi[[s]]) <- paste0("run", 1:control$nruns)
}
}
return(out)
}
saveout.icm <- function(dat, s, out = NULL) {
if (s == 1) {
out <- list()
out$param <- dat$param
out$control <- dat$control
out$epi <- list()
for (j in 1:length(dat$epi)) {
out$epi[[names(dat$epi)[j]]] <- data.frame(dat$epi[j])
}
} else {
for (j in 1:length(dat$epi)) {
out$epi[[names(dat$epi)[j]]][, s] <- data.frame(dat$epi[j])
}
}
if (s == dat$control$nsims) {
ftodel <- grep(".FUN", names(out$control), value = TRUE)
out$control[ftodel] <- NULL
for (i in as.vector(which(lapply(out$epi, class) == "data.frame"))) {
colnames(out$epi[[i]]) <- paste0("sim", 1:dat$control$nsims)
}
}
return(out)
}
saveout.net <- function(dat, s, out = NULL) {
if (get_control(dat, "tergmLite") == TRUE) {
num.nw <- length(dat$el)
} else {
num.nw <- length(dat$nw)
}
if (s == 1) {
out <- list()
out$param <- dat$param
out$control <- dat$control
out$nwparam <- dat$nwparam
out$control$num.nw <- num.nw
out[["last_timestep"]] <- get_current_timestep(dat)
out$epi <- list()
for (j in seq_along(dat$epi)) {
out$epi[[names(dat$epi)[j]]] <- data.frame(dat$epi[j])
}
out$el.cuml <- list()
out$el.cuml[[s]] <- dat$el.cuml
out[["_last_unique_id"]] <- list()
out[["_last_unique_id"]][[s]] <- dat[["_last_unique_id"]]
out$attr.history <- list()
out$attr.history[[s]] <- dat$attr.history
out$raw.records <- list()
out$raw.records[[s]] <- dat$raw.records
out$stats <- list()
if (dat$control$save.nwstats == TRUE) {
out$stats$nwstats <- list(dat$stats$nwstats)
}
if (dat$control$save.transmat == TRUE) {
if (!is.null(dat$stats$transmat)) {
row.names(dat$stats$transmat) <- 1:nrow(dat$stats$transmat)
out$stats$transmat <- list(dat$stats$transmat)
} else {
out$stats$transmat <- list(data.frame())
}
class(out$stats$transmat) <- c("transmat", class(out$stats$transmat))
}
if (dat$control$tergmLite == FALSE) {
if (dat$control$save.network == TRUE) {
if (!is.null(dat$temp$nw_list)) {
out$network <- list(dat$temp$nw_list)
} else {
out$network <- list(dat$nw)
}
}
}
if (!is.null(dat$control$save.other)) {
for (i in 1:length(dat$control$save.other)) {
el.name <- dat$control$save.other[i]
out[[el.name]] <- list(dat[[el.name]])
}
}
}
if (s > 1) {
if (!is.null(dat$param$random.params.values)) {
for (nms in names(dat$param$random.params.values)) {
if (length(dat$param$random.params.values[[nms]]) > 1) {
if (!is.list(out$param$random.params.values[[nms]])) {
out$param$random.params.values[[nms]] <- list(
out$param$random.params.values[[nms]]
)
}
out$param$random.params.values[[nms]] <- c(
out$param$random.params.values[[nms]],
list(dat$param$random.params.values[[nms]])
)
} else {
out$param$random.params.values[[nms]] <- c(
out$param$random.params.values[[nms]],
dat$param$random.params.values[[nms]]
)
}
}
}
for (j in seq_along(dat$epi)) {
out$epi[[names(dat$epi)[j]]][, s] <- data.frame(dat$epi[j])
}
out$el.cuml[[s]] <- dat$el.cuml
out[["_last_unique_id"]][[s]] <- dat[["_last_unique_id"]]
out$attr.history[[s]] <- dat$attr.history
out$raw.records[[s]] <- dat$raw.records
if (dat$control$save.nwstats == TRUE) {
out$stats$nwstats[[s]] <- dat$stats$nwstats
}
if (dat$control$save.transmat == TRUE) {
if (!is.null(dat$stats$transmat)) {
row.names(dat$stats$transmat) <- 1:nrow(dat$stats$transmat)
out$stats$transmat[[s]] <- dat$stats$transmat
} else {
out$stats$transmat[[s]] <- data.frame()
}
}
if (dat$control$tergmLite == FALSE) {
if (dat$control$save.network == TRUE) {
if (!is.null(dat$temp$nw_list)) {
out$network[[s]] <- dat$temp$nw_list
} else {
out$network[[s]] <- dat$nw
}
}
}
if (!is.null(dat$control$save.other)) {
for (i in seq_along(dat$control$save.other)) {
el.name <- dat$control$save.other[i]
out[[el.name]][[s]] <- dat[[el.name]]
}
}
}
if (s == dat$control$nsims) {
simnames <- paste0("sim", seq_len(dat$control$nsims))
for (i in as.vector(which(lapply(out$epi, class) == "data.frame"))) {
colnames(out$epi[[i]]) <- simnames
}
if (length(out$el.cuml) > 0)
names(out$el.cuml) <- simnames
if (length(out[["_last_unique_id"]]) > 0)
names(out[["_last_unique_id"]]) <- simnames
if (length(out$attr.history) > 0)
names(out$attr.history) <- simnames
if (length(out$.records) > 0)
names(out$raw.records) <- simnames
if (dat$control$save.nwstats == TRUE) {
names(out$stats$nwstats) <- simnames
}
if (dat$control$save.transmat == TRUE) {
names(out$stats$transmat) <- simnames[seq_along(out$stats$transmat)]
}
if (dat$control$tergmLite == FALSE) {
if (dat$control$save.network == TRUE) {
names(out$network) <- simnames
}
}
ftodel <- grep(".FUN", names(out$control), value = TRUE)
out$control[ftodel] <- NULL
out$control$currsim <- NULL
environment(out$control$nwstats.formula) <- NULL
if (!("temp" %in% dat$control$save.other)) {
out$temp <- NULL
}
}
return(out)
}
process_out.net <- function(dat_list) {
for (s in seq_along(dat_list)) {
if (s == 1) {
out <- saveout.net(dat_list[[s]], s)
} else {
out <- saveout.net(dat_list[[s]], s, out)
}
}
class(out) <- "netsim"
return(out)
} |
options(width=67)
library(vegclust)
library(vegan)
data(wetland)
dim(wetland)
wetlandchord = decostand(wetland,"normalize")
dchord = dist(wetlandchord)
wetland.km = vegclust(x = wetlandchord, mobileCenters=3,
method="KM", nstart=20)
names(wetland.km)
t(wetland.km$memb)
round(wetland.km$mobileCenters, dig=3)
wetland.kmdist = vegclustdist(x = dchord, mobileMemb=3,
method="KM", nstart = 20)
names(wetland.kmdist)
wetland.kmdist$mobileCenters
t(wetland.kmdist$memb)
wetland.km$mode
wetland.kmdist$mode
round(t(wetland.km$dist2clusters), dig=2)
wetland.fcm = vegclust(x = wetlandchord, mobileCenters=3,
method="FCM", m=1.2, nstart=20)
round(t(wetland.fcm$memb), dig=3)
groups = defuzzify(wetland.fcm)$cluster
groups
table(groups)
groups = defuzzify(wetland.fcm, method = "cut", alpha = 0.8)$cluster
groups
table(groups, useNA = "always")
wetland.fcm2 = vegclust(x = wetlandchord, mobileCenters=3,
method="FCM", m=10, nstart=20)
round(t(wetland.fcm2$memb), dig=3)
groups2 = defuzzify(wetland.fcm2, method = "cut", alpha = 0.8)$cluster
table(groups2, useNA = "always")
wetland.nc = vegclust(x = wetlandchord, mobileCenters=3,
method="NC", m=1.2, dnoise=0.8, nstart=20)
round(t(wetland.nc$memb), dig=2)
groups = defuzzify(wetland.nc)$cluster
groups
table(groups)
groups = defuzzify(wetland.nc, method="cut", alpha=0.8)$cluster
groups
table(groups, useNA = "always")
dist(wetland.km$mobileCenters)
dist(wetland.fcm$mobileCenters)
dist(wetland.nc$mobileCenters)
wetland.kmdd = vegclust(x = wetlandchord, mobileCenters=3,
method="KMdd", nstart=20)
t(wetland.kmdd$memb)
round(wetland.kmdd$mobileCenters, dig=3)
wetland.kmdd = vegclustdist(x = dchord, mobileMemb=3,
method="KMdd", nstart=20)
wetland.kmdd$mobileCenters
wetland.31 = wetlandchord[1:31,]
wetland.31 = wetland.31[,colSums(wetland.31)>0]
dim(wetland.31)
wetland.10 = wetlandchord[-(1:31),]
wetland.10 = wetland.10[,colSums(wetland.10)>0]
dim(wetland.10)
km = kmeans(wetland.31, 2)
groups = km$cluster
groups
wetland.31.km = as.vegclust(wetland.31, groups)
wetland.31.km$method
wetland.10.km = vegclass(wetland.31.km, wetland.10)
defuzzify(wetland.10.km)$cluster
wetland.31.km.d = as.vegclust(dist(wetland.31), groups)
wetland.d.10.31 = as.data.frame(as.matrix(dchord)[32:41,1:31])
wetland.d.11.km = vegclass(wetland.31.km.d,wetland.d.10.31)
defuzzify(wetland.d.11.km)$cluster
wetland.31.nc = as.vegclust(wetland.31, groups, method="HNC",
dnoise = 0.8)
wetland.10.nc = vegclass(wetland.31.nc, wetland.10)
defuzzify(wetland.10.nc)$cluster
cf = conformveg(wetland.31, wetland.10)
wetland.31.cf<- cf$x
wetland.10.cf<- cf$y
dim(wetland.31.cf)
dim(wetland.10.cf)
fixed = clustcentroid(wetland.31.cf, groups)
wetland.nc = vegclust(wetland.10.cf, mobileCenters=1,
fixedCenters = fixed,
method = wetland.31.nc$method,
dnoise=wetland.31.nc$dnoise, nstart=10)
defuzzify(wetland.nc)$cluster
wetland.km = vegclust(wetland.10.cf, mobileCenters=1,
fixedCenters = fixed,
method = "KM",
nstart=10)
defuzzify(wetland.km)$cluster
wetland.nc = vegclust(rbind(wetland.31.cf,wetland.10.cf), mobileCenters=1,
fixedCenters = fixed,
method = wetland.31.nc$method,
dnoise=wetland.31.nc$dnoise, nstart=10)
defuzzify(wetland.nc)$cluster
fixedDist = wetland.d.11.km$dist2clusters
wetland.km.d = vegclustdist(dist(wetland.10), mobileMemb = 1,
fixedDistToCenters=fixedDist,
method = "KM",
nstart=10)
defuzzify(wetland.km.d)$cluster
fixedDist = rbind(wetland.31.km.d$dist2clusters, wetland.d.11.km$dist2clusters)
wetland.km.d = vegclustdist(dchord, mobileMemb = 1,
fixedDistToCenters=fixedDist,
method = "KM",
nstart=10)
defuzzify(wetland.km.d)$cluster
groups = c(rep(1, 17), rep(2, 14), rep(3,10))
centroids = clustcentroid(wetlandchord, groups)
round(centroids, dig=3)
medoids = clustmedoid(wetlandchord, groups)
medoids
clustvar(wetlandchord, groups)
clustvar(dchord, groups)
clustvar(wetlandchord)
as.dist(as.matrix(dchord)[medoids,medoids])
dist(centroids)
interclustdist(dchord,groups)
c = clustconst(wetlandchord, memb = as.memb(groups))
d=summary(c, mode="all")
summary(c, mode="cluster", name=names(c)[1]) |
context("test-form_resupport")
test_that("form_resupport works with `method='reflect'` and 'discrete' type", {
p_f <- new_p(data.frame(x = 1:4, prob = (1:4) / 10), "discrete")
p_f_x_tbl <- meta_x_tbl(p_f)
expect_ref_x_tbl(form_resupport(p_f, c(1, 4), "reflect"), p_f_x_tbl)
expect_ref_x_tbl(form_resupport(p_f, c(0, 5), "reflect"), p_f_x_tbl)
expect_ref_x_tbl(
form_resupport(p_f, c(1.1, 5), "reflect"),
data.frame(x = c(1.2, 2:4), prob = (1:4) / 10)
)
expect_ref_x_tbl(
form_resupport(p_f, c(0, 2.3), "reflect"),
data.frame(x = c(0.6, 1, 1.6, 2), prob = c(0.4, 0.1, 0.3, 0.2))
)
expect_ref_x_tbl(
form_resupport(p_f, c(1.1, 2.3), "reflect"),
data.frame(x = c(1.2, 1.6, 2), prob = c(0.1, 0.3, 0.2) / 0.6)
)
expect_ref_x_tbl(
form_resupport(p_f, c(1.1, 1.3), "reflect"),
data.frame(x = 1.2, prob = 1)
)
expect_ref_x_tbl(
form_resupport(p_f, c(2, 5), "reflect"),
data.frame(x = 2:4, prob = c(0.2 + 0.2, 0.3 + 0.1, 0.4) / 1.2)
)
})
test_that("form_resupport works with `method='reflect'`, 'continuous' type", {
p_f <- new_p(data.frame(x = c(0, 1), y = c(1, 1)), "continuous")
p_f_x_tbl <- meta_x_tbl(p_f)
h <- 1e-8
tol <- 1e-9
expect_ref_x_tbl(form_resupport(p_f, c(0, 1), "reflect"), p_f_x_tbl)
expect_ref_x_tbl(form_resupport(p_f, c(-1, 2), "reflect"), p_f_x_tbl)
expect_ref_x_tbl(
form_resupport(p_f, c(0.2, 1), "reflect"),
data.frame(x = c(0.2, 0.4 - h, 0.4, 0.4 + h, 1), y = c(2, 2, 1.5, 1, 1))
)
expect_ref_x_tbl(
form_resupport(p_f, c(0, 0.6), "reflect"),
data.frame(x = c(0, 0.2 - h, 0.2, 0.2 + h, 0.6), y = c(1, 1, 1.5, 2, 2))
)
expect_ref_x_tbl(
form_resupport(p_f, c(0.1, 0.9), "reflect"),
data.frame(
x = c(0.1, 0.2 - h, 0.2, 0.2 + h, 0.8 - h, 0.8, 0.8 + h, 0.9),
y = c(2, 2, 1.5, 1, 1, 1.5, 2, 2)
)
)
})
test_that("form_resupport works with `method = 'trim'` and 'discrete' type", {
x_tbl <- data.frame(
x = c(0, 1, 2, 3, 4, 5, 6, 7),
prob = c(0, 0.2, 0, 0.4, 0.1, 0.1, 0.2, 0)
)
p_f <- new_p(x_tbl, "discrete")
expect_ref_x_tbl(
form_resupport(p_f, c(1.5, 4.5), "trim"),
data.frame(x = 2:4, prob = c(0, 0.8, 0.2))
)
expect_ref_x_tbl(
form_resupport(p_f, c(-1, 1), "trim"),
data.frame(x = 0:1, prob = c(0, 1))
)
expect_ref_x_tbl(form_resupport(p_f, c(-100, 100), "trim"), x_tbl)
expect_error(form_resupport(p_f, c(0.5, 0.75), "trim"), "not.*positive.*prob")
expect_error(form_resupport(p_f, c(-1, 0.5), "trim"), "not.*positive.*prob")
expect_error(form_resupport(p_f, c(6.5, 7), "trim"), "not.*positive.*prob")
})
test_that("form_resupport works with `method = 'trim'` and 'continuous' type", {
x_tbl <- data.frame(
x = c(0, 1, 2, 3, 4, 5, 6, 7, 8),
y = c(0, 0, 0.4, 0, 0, 0, 0.4, 0, 0.4)
)
d_f <- new_d(x_tbl, "continuous")
expect_ref_x_tbl(
form_resupport(d_f, c(0.5, 3.5), "trim"),
data.frame(x = c(0.5, 1, 2, 3, 3.5), y = c(0, 0, 1, 0, 0))
)
expect_ref_x_tbl(
form_resupport(d_f, c(-1, 1.5), "trim"),
data.frame(x = c(0, 1, 1.5), y = c(0, 0, 4))
)
expect_ref_x_tbl(
form_resupport(d_f, c(6.5, 7.5), "trim"),
data.frame(x = c(6.5, 7, 7.5), y = c(2, 0, 2))
)
expect_ref_x_tbl(form_resupport(d_f, c(-100, 100), "trim"), x_tbl)
expect_equal(
meta_support(d_f),
meta_support(form_resupport(d_f, c(-100, 100), "trim"))
)
expect_error(form_resupport(d_f, c(2, 2), "trim"), "not.*positive.*prob")
expect_error(form_resupport(d_f, c(3, 5), "trim"), "not.*positive.*prob")
expect_error(form_resupport(d_f, c(0.5, 0.75), "trim"), "not.*positive.*prob")
expect_error(form_resupport(d_f, c(-1, 0.5), "trim"), "not.*positive.*prob")
})
test_that("form_resupport works with `method='winsor'` and 'discrete' type", {
d_f <- new_d(data.frame(x = 1:4, prob = (1:4) / 10), "discrete")
expect_equal_x_tbl(
form_resupport(d_f, c(5, 6), "winsor"),
new_d(5, "discrete")
)
expect_equal_x_tbl(
form_resupport(d_f, c(0, 0.5), "winsor"),
new_d(0.5, "discrete")
)
expect_equal_x_tbl(
form_resupport(d_f, c(3.14, 3.14), "winsor"),
new_d(3.14, "discrete")
)
expect_ref_x_tbl(
form_resupport(d_f, c(2.5, 6), "winsor"),
data.frame(x = c(2.5, 3, 4), prob = c(0.3, 0.3, 0.4))
)
expect_ref_x_tbl(
form_resupport(d_f, c(0, 2.5), "winsor"),
data.frame(x = c(1, 2, 2.5), prob = c(0.1, 0.2, 0.7))
)
expect_ref_x_tbl(
form_resupport(d_f, c(2.5, 2.75), "winsor"),
data.frame(x = c(2.5, 2.75), prob = c(0.3, 0.7))
)
})
test_that("form_resupport works with `method='winsor'`, 'continuous' type", {
d_f <- new_d(data.frame(x = 0:1, y = c(1, 1)), "continuous")
expect_equal_x_tbl(
form_resupport(d_f, c(2, 3), "winsor"),
new_d(2, "continuous")
)
expect_equal_x_tbl(
form_resupport(d_f, c(-1, 0), "winsor"),
new_d(0, "continuous")
)
expect_equal_x_tbl(
form_resupport(d_f, c(0.7, 0.7), "winsor"),
new_d(0.7, "continuous")
)
expect_ref_x_tbl(
form_resupport(d_f, c(0.3, 1), "winsor"),
data.frame(x = c(0.3, 0.3 + 1e-8, 1), y = c(6e7 + 1.032, 1, 1))
)
expect_ref_x_tbl(
form_resupport(d_f, c(0, 0.7), "winsor"),
data.frame(x = c(0, 0.7 - 1e-8, 0.7), y = c(1, 1, 6e7 + 0.696))
)
expect_ref_x_tbl(
form_resupport(d_f, c(0.3, 0.7), "winsor"),
data.frame(
x = c(0.3, 0.3 + 1e-8, 0.7 - 1e-8, 0.7),
y = c(6e7 + 1.03, 1, 1, 6e7 + 0.696)
)
)
})
test_that("form_resupport works with `method = 'linear'` and 'discrete' type", {
p_f <- new_p(
data.frame(x = c(-1, -0.25, 2), prob = c(0, 0.1, 0.9)), "discrete"
)
expect_ref_x_tbl(
form_resupport(p_f, c(-0.5, 3), "linear"),
data.frame(x = c(-0.5, 0.375, 3), prob = meta_x_tbl(p_f)[["prob"]])
)
expect_equal_x_tbl(
form_resupport(p_f, c(15, 15), "linear"),
new_p(15, "discrete")
)
expect_error(
form_resupport(new_p(1, "discrete"), c(0, 1), "linear"), "single.*interval"
)
})
test_that("form_resupport works with `method='linear'` and 'continuous' type", {
x_tbl <- data.frame(
x = c(0, 1, 2, 5),
y = c(0, 0, 0.5, 0)
)
p_f <- new_p(x_tbl, "continuous")
expect_ref_x_tbl(
form_resupport(p_f, c(1, 3.5), "linear"),
data.frame(x = c(1, 1.5, 2, 3.5), y = c(0, 0, 1, 0))
)
expect_equal_x_tbl(
form_resupport(p_f, c(15, 15), "linear"),
new_p(15, "continuous")
)
})
test_that("form_resupport returns correct class of pdqr-function", {
p_f_dis <- new_p(data.frame(x = 1:2, prob = c(0.3, 0.7)), "discrete")
p_f_con <- new_p(data.frame(x = 1:3, y = c(0, 1, 0)), "continuous")
expect_is(form_resupport(p_f_dis, c(1, 2), "trim"), "p")
expect_is(form_resupport(as_d(p_f_dis), c(1, 2), "trim"), "d")
expect_is(form_resupport(as_q(p_f_dis), c(1, 2), "trim"), "q")
expect_is(form_resupport(as_r(p_f_dis), c(1, 2), "trim"), "r")
expect_is(form_resupport(p_f_con, c(1, 2), "trim"), "p")
expect_is(form_resupport(as_d(p_f_con), c(1, 2), "trim"), "d")
expect_is(form_resupport(as_q(p_f_con), c(1, 2), "trim"), "q")
expect_is(form_resupport(as_r(p_f_con), c(1, 2), "trim"), "r")
expect_is(form_resupport(p_f_dis, c(1, 2), "linear"), "p")
expect_is(form_resupport(as_d(p_f_dis), c(1, 2), "linear"), "d")
expect_is(form_resupport(as_q(p_f_dis), c(1, 2), "linear"), "q")
expect_is(form_resupport(as_r(p_f_dis), c(1, 2), "linear"), "r")
expect_is(form_resupport(p_f_con, c(1, 2), "linear"), "p")
expect_is(form_resupport(as_d(p_f_con), c(1, 2), "linear"), "d")
expect_is(form_resupport(as_q(p_f_con), c(1, 2), "linear"), "q")
expect_is(form_resupport(as_r(p_f_con), c(1, 2), "linear"), "r")
expect_is(form_resupport(p_f_dis, c(1, 2), "reflect"), "p")
expect_is(form_resupport(as_d(p_f_dis), c(1, 2), "reflect"), "d")
expect_is(form_resupport(as_q(p_f_dis), c(1, 2), "reflect"), "q")
expect_is(form_resupport(as_r(p_f_dis), c(1, 2), "reflect"), "r")
expect_is(form_resupport(p_f_con, c(1, 2), "reflect"), "p")
expect_is(form_resupport(as_d(p_f_con), c(1, 2), "reflect"), "d")
expect_is(form_resupport(as_q(p_f_con), c(1, 2), "reflect"), "q")
expect_is(form_resupport(as_r(p_f_con), c(1, 2), "reflect"), "r")
expect_is(form_resupport(p_f_dis, c(1, 2), "winsor"), "p")
expect_is(form_resupport(as_d(p_f_dis), c(1, 2), "winsor"), "d")
expect_is(form_resupport(as_q(p_f_dis), c(1, 2), "winsor"), "q")
expect_is(form_resupport(as_r(p_f_dis), c(1, 2), "winsor"), "r")
expect_is(form_resupport(p_f_con, c(1, 2), "winsor"), "p")
expect_is(form_resupport(as_d(p_f_con), c(1, 2), "winsor"), "d")
expect_is(form_resupport(as_q(p_f_con), c(1, 2), "winsor"), "q")
expect_is(form_resupport(as_r(p_f_con), c(1, 2), "winsor"), "r")
})
test_that("form_resupport handles `NA`s in `support`", {
p_f <- new_p(1:3, "discrete")
expect_close_f(
f_1 = form_resupport(p_f, c(1.5, NA), "trim"),
f_2 = form_resupport(p_f, c(1.5, 3), "trim"),
grid = 0:4 + 0.5
)
expect_close_f(
f_1 = form_resupport(p_f, c(NA, 1.5), "trim"),
f_2 = form_resupport(p_f, c(1, 1.5), "trim"),
grid = 0:4 + 0.5
)
})
test_that("form_resupport returns self when appropriate", {
output_1 <- form_resupport(p_dis, c(NA_real_, NA_real_))
expect_close_f(p_dis, output_1, x_dis_vec)
for (method in methods_resupport) {
output_dis <- form_resupport(p_dis, meta_support(p_dis), method)
expect_close_f(p_dis, output_dis, x_dis_vec)
output_con <- form_resupport(p_con, meta_support(p_con), method)
expect_close_f(p_con, output_con, x_con_vec)
}
})
test_that("form_resupport validates input", {
expect_error(form_resupport(1, c(0, 1), "trim"), "`f`.*not pdqr-function")
expect_error(form_resupport(p_dis), "`support`.*missing.*vector for support")
expect_error(form_resupport(p_dis, "a", "trim"), "`support`.*numeric")
expect_error(form_resupport(p_dis, c(2, 1), "trim"), "`support`")
expect_error(form_resupport(p_dis, c(1, 3), 1), "`method`.*string")
expect_error(form_resupport(p_dis, c(1, 3), "a"), "`method`.*one of")
expect_error(
form_resupport(p_dis, c(x_dis_support[2] + 1, NA), "trim"),
"`NA`.*support.*(10, 9).*not proper"
)
}) |
genDoneSided <- function (func, x, sides, method = "Richardson",
method.args = list(eps = 1e-04, d = 1e-04, zero.tol = sqrt(.Machine$double.eps/7e-07), r = 4,
v = 2), ...)
{
if (method != "Richardson")
stop("method not implemented.")
if (length(x) != sum(abs(sides)))
stop("genDoneSided: length(x) != length(sides) or bad arg passed for sides.");
args <- list(eps = 1e-04, d = 1e-04, zero.tol = sqrt(.Machine$double.eps/7e-07),
r = 4, v = 2)
args[names(method.args)] <- method.args
eps <- args$eps
d <- args$d
r <- args$r
v <- args$v
if (v != 2)
stop("The current code assumes v is 2 (the default).")
f0 <- func(x, ...)
p <- length(x)
h0 <- abs(d * x)*(abs(x) >= args$zero.tol) + eps*(abs(x) < args$zero.tol)
D <- matrix(0, length(f0), (p * (p + 3))/2)
Daprox <- matrix(0, length(f0), r)
Hdiag <- matrix(0, length(f0), p)
Haprox <- matrix(0, length(f0), r)
for (i in 1:p) {
h <- h0
for (k in 1:r) {
f2 <- func(x + (sides*(i == (1:p))) * h, ...)
f1 <- f0;
f3 <- func(x + (sides* (i == (1:p))) *2* h, ...)
Daprox[, k] <- (f2-f1)/(h[i]*sides[i])
Haprox[, k] <- (f1 - 2 * f2 + f3)/h[i]^2
h <- h/v
NULL
}
for (m in 1:(r - 1)) for (k in 1:(r - m)) {
Daprox[, k] <- (Daprox[, k + 1] * (2^m) -
Daprox[,k])/(2^m - 1)
Haprox[, k] <- (Haprox[, k + 1] * (2^m) -
Haprox[,k])/(2^m - 1)
NULL
}
D[, i] <- Daprox[, 1]
Hdiag[, i] <- Haprox[, 1]
NULL
}
u <- p
for (i in 1:p) {
for (j in 1:i) {
u <- u + 1
if (i == j) {
D[, u] <- Hdiag[, i]
NULL
}
else {
h <- h0
for (k in 1:r) {
f1 <- f0;
f4 <- func(x + (sides*(i == (1:p))) * h + (sides*(j == (1:p)))*h, ...)
f01 <- func(x + (sides*(i == (1:p))) * h , ...)
f02 <- func(x + (sides*(j == (1:p))) * h , ...)
Daprox[, k] <- (f1 - f01 -f02 + f4)/(sides[i]*sides[j]*h[i]*h[j])
}
for (m in 1:(r - 1)) for (k in 1:(r - m)) {
Daprox[, k] <- (Daprox[, k + 1] * (2^m) -
Daprox[, k])/(2^m - 1)
NULL
}
D[, u] <- Daprox[, 1]
NULL
}
}
}
D <- list(D = D, p = length(x), f0 = f0, func = func, x = x,
d = d, method = method, method.args = args)
class(D) <- "Darray"
invisible(D)
}
hessianOneSided <- function (func, x, sides, method = "Richardson", method.args = list(eps = 1e-04,
d = 1e-4, zero.tol = sqrt(.Machine$double.eps/7e-07), r = 4,
v = 2), ...)
{
if (method != "Richardson")
stop("method not implemented.")
if (1 != length(func(x, ...)))
stop("hessian.default assumes a scalar real valued function.")
D <- genDoneSided(func, x,sides=sides, method = method, method.args = method.args,
...)$D
if (1 != nrow(D))
stop("BUG! should not get here.")
H <- diag(NA, length(x))
u <- length(x)
for (i in 1:length(x)) {
for (j in 1:i) {
u <- u + 1
H[i, j] <- D[, u]
H[j, i] <- D[, u]
}
}
H
}
num.deriv = function(ftn, var, delta=0.001,...){
return((ftn(var+delta,...) - ftn(var-delta,...))/(2*delta))
}
num.deriv2 <- function(ftn, var1,var2, delta=0.00001){
(ftn(c(var1+delta, var2+delta)) + ftn(c(var1-delta, var2-delta)) -
ftn(c(var1+delta, var2-delta)) - ftn(c(var1-delta, var2+delta)))/(4*delta^2);
}
num.2deriv <- function(ftn, var, delta=0.00001,...){
num.deriv(ftn=function(x){num.deriv(ftn=ftn, var=x, delta=delta,...);},
var=var,
delta=delta);
} |
library(ts)
library(gsheet)
df1 = gsheet2tbl('https://docs.google.com/spreadsheets/d/1RCj6uvsu242xDf1l5Qb720DSnOmjnTUG8ety3iYBG90')
beer=df1
beer.ts <- ts(beer, frequency = 12, start = c(1956,1), end = c(1994,12))
beer.ts.qtr <- aggregate(beer.ts, nfrequency=4)
beer.ts.yr <- aggregate(beer.ts, nfrequency=1)
plot.ts(beer.ts[,2], main = "Monthly Beer Production in Australia", xlab = "Year", ylab = "ML")
plot.ts(beer.ts.qtr[,2], main = "Quarterly Beer Production in Australia", xlab = "Year", ylab = "ML")
seasonplot(beer.ts[,2], year.labels = TRUE, year.labels.left=TRUE, col=1:40, pch=19, main = "Monthly Beer Production in Australia - seasonplot", xlab = "Month", ylab = "ML") |
fill_left <- function(df) {
df <- as.data.frame(t(apply(df, 1, function(x) {
return(c(x[!is.na(x)], x[is.na(x)]))
})))
df <- Filter(function(x)
! all(is.na(x)), df)
return(df)
} |
mp_question_multi <- function(mp_id, question_type, start_date,
end_date, extra_args, verbose) {
mp_id_list <- as.list(mp_id)
dat <- vector("list", length(mp_id_list))
seq_list <- seq(from = 1, to = length(mp_id_list), by = 1)
for (i in seq_along(seq_list)) {
dat[[i]] <- hansard::mp_questions(
mp_id = mp_id_list[[i]],
question_type = question_type,
end_date = end_date,
start_date = start_date,
extra_args = extra_args,
verbose = verbose,
tidy = FALSE,
tidy_style = "snake"
)
}
dat <- dat[sapply(dat, function(d) is.null(d) == FALSE)]
df <- dplyr::bind_rows(dat)
names(df)[names(df) == "_about"] <- "about"
df
}
mp_question_tidy <- function(df, tidy_style) {
if (nrow(df) > 0) {
df$dateTabled._value <- as.POSIXct(df$dateTabled._value)
df$AnswerDate._value <- as.POSIXct(df$AnswerDate._value)
df$AnswerDate._datatype <- "POSIXct"
df$dateTabled._datatype <- "POSIXct"
df$tablingMemberPrinted <- unlist(df$tablingMemberPrinted)
df$AnsweringBody <- unlist(df$AnsweringBody)
df$tablingMember._about <- gsub(
"http://data.parliament.uk/members/", "",
df$tablingMember._about
)
}
df <- hansard_tidy(df, tidy_style)
df
} |
.onAttach <- function(...) {
mes <- paste0("healthcareai version ", packageVersion("healthcareai"),
"\nPlease visit https://docs.healthcare.ai for full documentation ",
"and vignettes. Join the community at https://healthcare-ai.slack.com")
packageStartupMessage(mes)
} |
require(SoDA)
load("Examples/with_gps1.rda")
pdf("Examples/gpsScatterPlot.pdf", width = 4, height=4)
with(gps1, {
par(mar = c(2,2,0,0))
xy = geoXY(latitude, longitude)
x = xy[,1]; y = xy[,2]
plot(x, y, asp = 1)
})
dev.off() |
library(testthat)
set.seed(1)
x1 <- 100 + arima.sim(model = list(ar = 0.999), n = 100)
y <- 1.2 * x1 + rnorm(100)
y[71:100] <- y[71:100] + 10
data <- cbind(y, x1)
impact <- CausalImpact::CausalImpact(data, c(1, 70), c(71, 100))
expect_is(impact, "CausalImpact")
impact <- CausalImpact::CausalImpact(
data, c(1, 70), c(71, 100), model.args = list(dynamic.regression = TRUE))
expect_is(impact, "CausalImpact") |
plotQuote <- function(sentences, width=30, text.cex=1, maxwidth=NULL,
main=NULL, xlab="", ylab="", xlim=NULL, ylim=NULL, ...) {
xaxt <- "n"
yaxt <- "n"
numlines <- c()
out <- list()
for(j in 1:length(sentences)){
sentence <- sentences[j]
if(!is.null(maxwidth)) {
sentence <- strwrap(sentence, width=maxwidth)[1]
}
out[[j]] <- stringr::str_wrap(sentence, width)
numlines[j] <- length(strsplit(out[[j]], "\n")[[1]])
}
if(is.null(xlim)) xlim <- c(0, 5)
if(is.null(ylim)) ylim<-c(0,.5*sum(numlines))
plot(c(0,0),type="n", xlim=xlim, ylim=ylim, xaxt=xaxt, yaxt=yaxt, xlab=xlab, ylab=ylab, main=main, ...)
numlines <- c(0, rev(numlines))
out <- rev(out)
start <- 0
for(j in 2:(length(out)+1)){
text(2.5, start + numlines[j-1]/4 + numlines[j]/4, out[[j-1]], cex=text.cex)
start <- start + numlines[j-1]/4 + numlines[j]/4
if(j!=1 & j!=(length(out)+1)) lines(c(0,5), c(sum(numlines[1:j-1])/2 + numlines[j]/2, sum(numlines[1:j-1])/2 + numlines[j]/2), lty=2)
}
} |
NULL
gamelift_accept_match <- function(TicketId, PlayerIds, AcceptanceType) {
op <- new_operation(
name = "AcceptMatch",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$accept_match_input(TicketId = TicketId, PlayerIds = PlayerIds, AcceptanceType = AcceptanceType)
output <- .gamelift$accept_match_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$accept_match <- gamelift_accept_match
gamelift_claim_game_server <- function(GameServerGroupName, GameServerId = NULL, GameServerData = NULL) {
op <- new_operation(
name = "ClaimGameServer",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$claim_game_server_input(GameServerGroupName = GameServerGroupName, GameServerId = GameServerId, GameServerData = GameServerData)
output <- .gamelift$claim_game_server_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$claim_game_server <- gamelift_claim_game_server
gamelift_create_alias <- function(Name, Description = NULL, RoutingStrategy, Tags = NULL) {
op <- new_operation(
name = "CreateAlias",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_alias_input(Name = Name, Description = Description, RoutingStrategy = RoutingStrategy, Tags = Tags)
output <- .gamelift$create_alias_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_alias <- gamelift_create_alias
gamelift_create_build <- function(Name = NULL, Version = NULL, StorageLocation = NULL, OperatingSystem = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateBuild",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_build_input(Name = Name, Version = Version, StorageLocation = StorageLocation, OperatingSystem = OperatingSystem, Tags = Tags)
output <- .gamelift$create_build_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_build <- gamelift_create_build
gamelift_create_fleet <- function(Name, Description = NULL, BuildId = NULL, ScriptId = NULL, ServerLaunchPath = NULL, ServerLaunchParameters = NULL, LogPaths = NULL, EC2InstanceType, EC2InboundPermissions = NULL, NewGameSessionProtectionPolicy = NULL, RuntimeConfiguration = NULL, ResourceCreationLimitPolicy = NULL, MetricGroups = NULL, PeerVpcAwsAccountId = NULL, PeerVpcId = NULL, FleetType = NULL, InstanceRoleArn = NULL, CertificateConfiguration = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateFleet",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_fleet_input(Name = Name, Description = Description, BuildId = BuildId, ScriptId = ScriptId, ServerLaunchPath = ServerLaunchPath, ServerLaunchParameters = ServerLaunchParameters, LogPaths = LogPaths, EC2InstanceType = EC2InstanceType, EC2InboundPermissions = EC2InboundPermissions, NewGameSessionProtectionPolicy = NewGameSessionProtectionPolicy, RuntimeConfiguration = RuntimeConfiguration, ResourceCreationLimitPolicy = ResourceCreationLimitPolicy, MetricGroups = MetricGroups, PeerVpcAwsAccountId = PeerVpcAwsAccountId, PeerVpcId = PeerVpcId, FleetType = FleetType, InstanceRoleArn = InstanceRoleArn, CertificateConfiguration = CertificateConfiguration, Tags = Tags)
output <- .gamelift$create_fleet_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_fleet <- gamelift_create_fleet
gamelift_create_game_server_group <- function(GameServerGroupName, RoleArn, MinSize, MaxSize, LaunchTemplate, InstanceDefinitions, AutoScalingPolicy = NULL, BalancingStrategy = NULL, GameServerProtectionPolicy = NULL, VpcSubnets = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateGameServerGroup",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_game_server_group_input(GameServerGroupName = GameServerGroupName, RoleArn = RoleArn, MinSize = MinSize, MaxSize = MaxSize, LaunchTemplate = LaunchTemplate, InstanceDefinitions = InstanceDefinitions, AutoScalingPolicy = AutoScalingPolicy, BalancingStrategy = BalancingStrategy, GameServerProtectionPolicy = GameServerProtectionPolicy, VpcSubnets = VpcSubnets, Tags = Tags)
output <- .gamelift$create_game_server_group_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_game_server_group <- gamelift_create_game_server_group
gamelift_create_game_session <- function(FleetId = NULL, AliasId = NULL, MaximumPlayerSessionCount, Name = NULL, GameProperties = NULL, CreatorId = NULL, GameSessionId = NULL, IdempotencyToken = NULL, GameSessionData = NULL) {
op <- new_operation(
name = "CreateGameSession",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_game_session_input(FleetId = FleetId, AliasId = AliasId, MaximumPlayerSessionCount = MaximumPlayerSessionCount, Name = Name, GameProperties = GameProperties, CreatorId = CreatorId, GameSessionId = GameSessionId, IdempotencyToken = IdempotencyToken, GameSessionData = GameSessionData)
output <- .gamelift$create_game_session_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_game_session <- gamelift_create_game_session
gamelift_create_game_session_queue <- function(Name, TimeoutInSeconds = NULL, PlayerLatencyPolicies = NULL, Destinations = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateGameSessionQueue",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_game_session_queue_input(Name = Name, TimeoutInSeconds = TimeoutInSeconds, PlayerLatencyPolicies = PlayerLatencyPolicies, Destinations = Destinations, Tags = Tags)
output <- .gamelift$create_game_session_queue_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_game_session_queue <- gamelift_create_game_session_queue
gamelift_create_matchmaking_configuration <- function(Name, Description = NULL, GameSessionQueueArns = NULL, RequestTimeoutSeconds, AcceptanceTimeoutSeconds = NULL, AcceptanceRequired, RuleSetName, NotificationTarget = NULL, AdditionalPlayerCount = NULL, CustomEventData = NULL, GameProperties = NULL, GameSessionData = NULL, BackfillMode = NULL, FlexMatchMode = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateMatchmakingConfiguration",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_matchmaking_configuration_input(Name = Name, Description = Description, GameSessionQueueArns = GameSessionQueueArns, RequestTimeoutSeconds = RequestTimeoutSeconds, AcceptanceTimeoutSeconds = AcceptanceTimeoutSeconds, AcceptanceRequired = AcceptanceRequired, RuleSetName = RuleSetName, NotificationTarget = NotificationTarget, AdditionalPlayerCount = AdditionalPlayerCount, CustomEventData = CustomEventData, GameProperties = GameProperties, GameSessionData = GameSessionData, BackfillMode = BackfillMode, FlexMatchMode = FlexMatchMode, Tags = Tags)
output <- .gamelift$create_matchmaking_configuration_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_matchmaking_configuration <- gamelift_create_matchmaking_configuration
gamelift_create_matchmaking_rule_set <- function(Name, RuleSetBody, Tags = NULL) {
op <- new_operation(
name = "CreateMatchmakingRuleSet",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_matchmaking_rule_set_input(Name = Name, RuleSetBody = RuleSetBody, Tags = Tags)
output <- .gamelift$create_matchmaking_rule_set_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_matchmaking_rule_set <- gamelift_create_matchmaking_rule_set
gamelift_create_player_session <- function(GameSessionId, PlayerId, PlayerData = NULL) {
op <- new_operation(
name = "CreatePlayerSession",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_player_session_input(GameSessionId = GameSessionId, PlayerId = PlayerId, PlayerData = PlayerData)
output <- .gamelift$create_player_session_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_player_session <- gamelift_create_player_session
gamelift_create_player_sessions <- function(GameSessionId, PlayerIds, PlayerDataMap = NULL) {
op <- new_operation(
name = "CreatePlayerSessions",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_player_sessions_input(GameSessionId = GameSessionId, PlayerIds = PlayerIds, PlayerDataMap = PlayerDataMap)
output <- .gamelift$create_player_sessions_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_player_sessions <- gamelift_create_player_sessions
gamelift_create_script <- function(Name = NULL, Version = NULL, StorageLocation = NULL, ZipFile = NULL, Tags = NULL) {
op <- new_operation(
name = "CreateScript",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_script_input(Name = Name, Version = Version, StorageLocation = StorageLocation, ZipFile = ZipFile, Tags = Tags)
output <- .gamelift$create_script_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_script <- gamelift_create_script
gamelift_create_vpc_peering_authorization <- function(GameLiftAwsAccountId, PeerVpcId) {
op <- new_operation(
name = "CreateVpcPeeringAuthorization",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_vpc_peering_authorization_input(GameLiftAwsAccountId = GameLiftAwsAccountId, PeerVpcId = PeerVpcId)
output <- .gamelift$create_vpc_peering_authorization_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_vpc_peering_authorization <- gamelift_create_vpc_peering_authorization
gamelift_create_vpc_peering_connection <- function(FleetId, PeerVpcAwsAccountId, PeerVpcId) {
op <- new_operation(
name = "CreateVpcPeeringConnection",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$create_vpc_peering_connection_input(FleetId = FleetId, PeerVpcAwsAccountId = PeerVpcAwsAccountId, PeerVpcId = PeerVpcId)
output <- .gamelift$create_vpc_peering_connection_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$create_vpc_peering_connection <- gamelift_create_vpc_peering_connection
gamelift_delete_alias <- function(AliasId) {
op <- new_operation(
name = "DeleteAlias",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_alias_input(AliasId = AliasId)
output <- .gamelift$delete_alias_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_alias <- gamelift_delete_alias
gamelift_delete_build <- function(BuildId) {
op <- new_operation(
name = "DeleteBuild",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_build_input(BuildId = BuildId)
output <- .gamelift$delete_build_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_build <- gamelift_delete_build
gamelift_delete_fleet <- function(FleetId) {
op <- new_operation(
name = "DeleteFleet",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_fleet_input(FleetId = FleetId)
output <- .gamelift$delete_fleet_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_fleet <- gamelift_delete_fleet
gamelift_delete_game_server_group <- function(GameServerGroupName, DeleteOption = NULL) {
op <- new_operation(
name = "DeleteGameServerGroup",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_game_server_group_input(GameServerGroupName = GameServerGroupName, DeleteOption = DeleteOption)
output <- .gamelift$delete_game_server_group_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_game_server_group <- gamelift_delete_game_server_group
gamelift_delete_game_session_queue <- function(Name) {
op <- new_operation(
name = "DeleteGameSessionQueue",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_game_session_queue_input(Name = Name)
output <- .gamelift$delete_game_session_queue_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_game_session_queue <- gamelift_delete_game_session_queue
gamelift_delete_matchmaking_configuration <- function(Name) {
op <- new_operation(
name = "DeleteMatchmakingConfiguration",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_matchmaking_configuration_input(Name = Name)
output <- .gamelift$delete_matchmaking_configuration_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_matchmaking_configuration <- gamelift_delete_matchmaking_configuration
gamelift_delete_matchmaking_rule_set <- function(Name) {
op <- new_operation(
name = "DeleteMatchmakingRuleSet",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_matchmaking_rule_set_input(Name = Name)
output <- .gamelift$delete_matchmaking_rule_set_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_matchmaking_rule_set <- gamelift_delete_matchmaking_rule_set
gamelift_delete_scaling_policy <- function(Name, FleetId) {
op <- new_operation(
name = "DeleteScalingPolicy",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_scaling_policy_input(Name = Name, FleetId = FleetId)
output <- .gamelift$delete_scaling_policy_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_scaling_policy <- gamelift_delete_scaling_policy
gamelift_delete_script <- function(ScriptId) {
op <- new_operation(
name = "DeleteScript",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_script_input(ScriptId = ScriptId)
output <- .gamelift$delete_script_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_script <- gamelift_delete_script
gamelift_delete_vpc_peering_authorization <- function(GameLiftAwsAccountId, PeerVpcId) {
op <- new_operation(
name = "DeleteVpcPeeringAuthorization",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_vpc_peering_authorization_input(GameLiftAwsAccountId = GameLiftAwsAccountId, PeerVpcId = PeerVpcId)
output <- .gamelift$delete_vpc_peering_authorization_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_vpc_peering_authorization <- gamelift_delete_vpc_peering_authorization
gamelift_delete_vpc_peering_connection <- function(FleetId, VpcPeeringConnectionId) {
op <- new_operation(
name = "DeleteVpcPeeringConnection",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$delete_vpc_peering_connection_input(FleetId = FleetId, VpcPeeringConnectionId = VpcPeeringConnectionId)
output <- .gamelift$delete_vpc_peering_connection_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$delete_vpc_peering_connection <- gamelift_delete_vpc_peering_connection
gamelift_deregister_game_server <- function(GameServerGroupName, GameServerId) {
op <- new_operation(
name = "DeregisterGameServer",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$deregister_game_server_input(GameServerGroupName = GameServerGroupName, GameServerId = GameServerId)
output <- .gamelift$deregister_game_server_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$deregister_game_server <- gamelift_deregister_game_server
gamelift_describe_alias <- function(AliasId) {
op <- new_operation(
name = "DescribeAlias",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_alias_input(AliasId = AliasId)
output <- .gamelift$describe_alias_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_alias <- gamelift_describe_alias
gamelift_describe_build <- function(BuildId) {
op <- new_operation(
name = "DescribeBuild",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_build_input(BuildId = BuildId)
output <- .gamelift$describe_build_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_build <- gamelift_describe_build
gamelift_describe_ec2_instance_limits <- function(EC2InstanceType = NULL) {
op <- new_operation(
name = "DescribeEC2InstanceLimits",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_ec2_instance_limits_input(EC2InstanceType = EC2InstanceType)
output <- .gamelift$describe_ec2_instance_limits_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_ec2_instance_limits <- gamelift_describe_ec2_instance_limits
gamelift_describe_fleet_attributes <- function(FleetIds = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeFleetAttributes",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_fleet_attributes_input(FleetIds = FleetIds, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_fleet_attributes_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_fleet_attributes <- gamelift_describe_fleet_attributes
gamelift_describe_fleet_capacity <- function(FleetIds = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeFleetCapacity",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_fleet_capacity_input(FleetIds = FleetIds, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_fleet_capacity_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_fleet_capacity <- gamelift_describe_fleet_capacity
gamelift_describe_fleet_events <- function(FleetId, StartTime = NULL, EndTime = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeFleetEvents",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_fleet_events_input(FleetId = FleetId, StartTime = StartTime, EndTime = EndTime, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_fleet_events_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_fleet_events <- gamelift_describe_fleet_events
gamelift_describe_fleet_port_settings <- function(FleetId) {
op <- new_operation(
name = "DescribeFleetPortSettings",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_fleet_port_settings_input(FleetId = FleetId)
output <- .gamelift$describe_fleet_port_settings_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_fleet_port_settings <- gamelift_describe_fleet_port_settings
gamelift_describe_fleet_utilization <- function(FleetIds = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeFleetUtilization",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_fleet_utilization_input(FleetIds = FleetIds, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_fleet_utilization_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_fleet_utilization <- gamelift_describe_fleet_utilization
gamelift_describe_game_server <- function(GameServerGroupName, GameServerId) {
op <- new_operation(
name = "DescribeGameServer",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_game_server_input(GameServerGroupName = GameServerGroupName, GameServerId = GameServerId)
output <- .gamelift$describe_game_server_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_game_server <- gamelift_describe_game_server
gamelift_describe_game_server_group <- function(GameServerGroupName) {
op <- new_operation(
name = "DescribeGameServerGroup",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_game_server_group_input(GameServerGroupName = GameServerGroupName)
output <- .gamelift$describe_game_server_group_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_game_server_group <- gamelift_describe_game_server_group
gamelift_describe_game_server_instances <- function(GameServerGroupName, InstanceIds = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeGameServerInstances",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_game_server_instances_input(GameServerGroupName = GameServerGroupName, InstanceIds = InstanceIds, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_game_server_instances_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_game_server_instances <- gamelift_describe_game_server_instances
gamelift_describe_game_session_details <- function(FleetId = NULL, GameSessionId = NULL, AliasId = NULL, StatusFilter = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeGameSessionDetails",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_game_session_details_input(FleetId = FleetId, GameSessionId = GameSessionId, AliasId = AliasId, StatusFilter = StatusFilter, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_game_session_details_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_game_session_details <- gamelift_describe_game_session_details
gamelift_describe_game_session_placement <- function(PlacementId) {
op <- new_operation(
name = "DescribeGameSessionPlacement",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_game_session_placement_input(PlacementId = PlacementId)
output <- .gamelift$describe_game_session_placement_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_game_session_placement <- gamelift_describe_game_session_placement
gamelift_describe_game_session_queues <- function(Names = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeGameSessionQueues",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_game_session_queues_input(Names = Names, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_game_session_queues_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_game_session_queues <- gamelift_describe_game_session_queues
gamelift_describe_game_sessions <- function(FleetId = NULL, GameSessionId = NULL, AliasId = NULL, StatusFilter = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeGameSessions",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_game_sessions_input(FleetId = FleetId, GameSessionId = GameSessionId, AliasId = AliasId, StatusFilter = StatusFilter, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_game_sessions_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_game_sessions <- gamelift_describe_game_sessions
gamelift_describe_instances <- function(FleetId, InstanceId = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeInstances",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_instances_input(FleetId = FleetId, InstanceId = InstanceId, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_instances_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_instances <- gamelift_describe_instances
gamelift_describe_matchmaking <- function(TicketIds) {
op <- new_operation(
name = "DescribeMatchmaking",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_matchmaking_input(TicketIds = TicketIds)
output <- .gamelift$describe_matchmaking_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_matchmaking <- gamelift_describe_matchmaking
gamelift_describe_matchmaking_configurations <- function(Names = NULL, RuleSetName = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeMatchmakingConfigurations",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_matchmaking_configurations_input(Names = Names, RuleSetName = RuleSetName, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_matchmaking_configurations_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_matchmaking_configurations <- gamelift_describe_matchmaking_configurations
gamelift_describe_matchmaking_rule_sets <- function(Names = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeMatchmakingRuleSets",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_matchmaking_rule_sets_input(Names = Names, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_matchmaking_rule_sets_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_matchmaking_rule_sets <- gamelift_describe_matchmaking_rule_sets
gamelift_describe_player_sessions <- function(GameSessionId = NULL, PlayerId = NULL, PlayerSessionId = NULL, PlayerSessionStatusFilter = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribePlayerSessions",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_player_sessions_input(GameSessionId = GameSessionId, PlayerId = PlayerId, PlayerSessionId = PlayerSessionId, PlayerSessionStatusFilter = PlayerSessionStatusFilter, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_player_sessions_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_player_sessions <- gamelift_describe_player_sessions
gamelift_describe_runtime_configuration <- function(FleetId) {
op <- new_operation(
name = "DescribeRuntimeConfiguration",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_runtime_configuration_input(FleetId = FleetId)
output <- .gamelift$describe_runtime_configuration_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_runtime_configuration <- gamelift_describe_runtime_configuration
gamelift_describe_scaling_policies <- function(FleetId, StatusFilter = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "DescribeScalingPolicies",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_scaling_policies_input(FleetId = FleetId, StatusFilter = StatusFilter, Limit = Limit, NextToken = NextToken)
output <- .gamelift$describe_scaling_policies_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_scaling_policies <- gamelift_describe_scaling_policies
gamelift_describe_script <- function(ScriptId) {
op <- new_operation(
name = "DescribeScript",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_script_input(ScriptId = ScriptId)
output <- .gamelift$describe_script_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_script <- gamelift_describe_script
gamelift_describe_vpc_peering_authorizations <- function() {
op <- new_operation(
name = "DescribeVpcPeeringAuthorizations",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_vpc_peering_authorizations_input()
output <- .gamelift$describe_vpc_peering_authorizations_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_vpc_peering_authorizations <- gamelift_describe_vpc_peering_authorizations
gamelift_describe_vpc_peering_connections <- function(FleetId = NULL) {
op <- new_operation(
name = "DescribeVpcPeeringConnections",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$describe_vpc_peering_connections_input(FleetId = FleetId)
output <- .gamelift$describe_vpc_peering_connections_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$describe_vpc_peering_connections <- gamelift_describe_vpc_peering_connections
gamelift_get_game_session_log_url <- function(GameSessionId) {
op <- new_operation(
name = "GetGameSessionLogUrl",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$get_game_session_log_url_input(GameSessionId = GameSessionId)
output <- .gamelift$get_game_session_log_url_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$get_game_session_log_url <- gamelift_get_game_session_log_url
gamelift_get_instance_access <- function(FleetId, InstanceId) {
op <- new_operation(
name = "GetInstanceAccess",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$get_instance_access_input(FleetId = FleetId, InstanceId = InstanceId)
output <- .gamelift$get_instance_access_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$get_instance_access <- gamelift_get_instance_access
gamelift_list_aliases <- function(RoutingStrategyType = NULL, Name = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "ListAliases",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$list_aliases_input(RoutingStrategyType = RoutingStrategyType, Name = Name, Limit = Limit, NextToken = NextToken)
output <- .gamelift$list_aliases_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$list_aliases <- gamelift_list_aliases
gamelift_list_builds <- function(Status = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "ListBuilds",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$list_builds_input(Status = Status, Limit = Limit, NextToken = NextToken)
output <- .gamelift$list_builds_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$list_builds <- gamelift_list_builds
gamelift_list_fleets <- function(BuildId = NULL, ScriptId = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "ListFleets",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$list_fleets_input(BuildId = BuildId, ScriptId = ScriptId, Limit = Limit, NextToken = NextToken)
output <- .gamelift$list_fleets_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$list_fleets <- gamelift_list_fleets
gamelift_list_game_server_groups <- function(Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "ListGameServerGroups",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$list_game_server_groups_input(Limit = Limit, NextToken = NextToken)
output <- .gamelift$list_game_server_groups_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$list_game_server_groups <- gamelift_list_game_server_groups
gamelift_list_game_servers <- function(GameServerGroupName, SortOrder = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "ListGameServers",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$list_game_servers_input(GameServerGroupName = GameServerGroupName, SortOrder = SortOrder, Limit = Limit, NextToken = NextToken)
output <- .gamelift$list_game_servers_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$list_game_servers <- gamelift_list_game_servers
gamelift_list_scripts <- function(Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "ListScripts",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$list_scripts_input(Limit = Limit, NextToken = NextToken)
output <- .gamelift$list_scripts_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$list_scripts <- gamelift_list_scripts
gamelift_list_tags_for_resource <- function(ResourceARN) {
op <- new_operation(
name = "ListTagsForResource",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$list_tags_for_resource_input(ResourceARN = ResourceARN)
output <- .gamelift$list_tags_for_resource_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$list_tags_for_resource <- gamelift_list_tags_for_resource
gamelift_put_scaling_policy <- function(Name, FleetId, ScalingAdjustment = NULL, ScalingAdjustmentType = NULL, Threshold = NULL, ComparisonOperator = NULL, EvaluationPeriods = NULL, MetricName, PolicyType = NULL, TargetConfiguration = NULL) {
op <- new_operation(
name = "PutScalingPolicy",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$put_scaling_policy_input(Name = Name, FleetId = FleetId, ScalingAdjustment = ScalingAdjustment, ScalingAdjustmentType = ScalingAdjustmentType, Threshold = Threshold, ComparisonOperator = ComparisonOperator, EvaluationPeriods = EvaluationPeriods, MetricName = MetricName, PolicyType = PolicyType, TargetConfiguration = TargetConfiguration)
output <- .gamelift$put_scaling_policy_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$put_scaling_policy <- gamelift_put_scaling_policy
gamelift_register_game_server <- function(GameServerGroupName, GameServerId, InstanceId, ConnectionInfo = NULL, GameServerData = NULL) {
op <- new_operation(
name = "RegisterGameServer",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$register_game_server_input(GameServerGroupName = GameServerGroupName, GameServerId = GameServerId, InstanceId = InstanceId, ConnectionInfo = ConnectionInfo, GameServerData = GameServerData)
output <- .gamelift$register_game_server_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$register_game_server <- gamelift_register_game_server
gamelift_request_upload_credentials <- function(BuildId) {
op <- new_operation(
name = "RequestUploadCredentials",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$request_upload_credentials_input(BuildId = BuildId)
output <- .gamelift$request_upload_credentials_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$request_upload_credentials <- gamelift_request_upload_credentials
gamelift_resolve_alias <- function(AliasId) {
op <- new_operation(
name = "ResolveAlias",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$resolve_alias_input(AliasId = AliasId)
output <- .gamelift$resolve_alias_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$resolve_alias <- gamelift_resolve_alias
gamelift_resume_game_server_group <- function(GameServerGroupName, ResumeActions) {
op <- new_operation(
name = "ResumeGameServerGroup",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$resume_game_server_group_input(GameServerGroupName = GameServerGroupName, ResumeActions = ResumeActions)
output <- .gamelift$resume_game_server_group_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$resume_game_server_group <- gamelift_resume_game_server_group
gamelift_search_game_sessions <- function(FleetId = NULL, AliasId = NULL, FilterExpression = NULL, SortExpression = NULL, Limit = NULL, NextToken = NULL) {
op <- new_operation(
name = "SearchGameSessions",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$search_game_sessions_input(FleetId = FleetId, AliasId = AliasId, FilterExpression = FilterExpression, SortExpression = SortExpression, Limit = Limit, NextToken = NextToken)
output <- .gamelift$search_game_sessions_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$search_game_sessions <- gamelift_search_game_sessions
gamelift_start_fleet_actions <- function(FleetId, Actions) {
op <- new_operation(
name = "StartFleetActions",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$start_fleet_actions_input(FleetId = FleetId, Actions = Actions)
output <- .gamelift$start_fleet_actions_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$start_fleet_actions <- gamelift_start_fleet_actions
gamelift_start_game_session_placement <- function(PlacementId, GameSessionQueueName, GameProperties = NULL, MaximumPlayerSessionCount, GameSessionName = NULL, PlayerLatencies = NULL, DesiredPlayerSessions = NULL, GameSessionData = NULL) {
op <- new_operation(
name = "StartGameSessionPlacement",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$start_game_session_placement_input(PlacementId = PlacementId, GameSessionQueueName = GameSessionQueueName, GameProperties = GameProperties, MaximumPlayerSessionCount = MaximumPlayerSessionCount, GameSessionName = GameSessionName, PlayerLatencies = PlayerLatencies, DesiredPlayerSessions = DesiredPlayerSessions, GameSessionData = GameSessionData)
output <- .gamelift$start_game_session_placement_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$start_game_session_placement <- gamelift_start_game_session_placement
gamelift_start_match_backfill <- function(TicketId = NULL, ConfigurationName, GameSessionArn = NULL, Players) {
op <- new_operation(
name = "StartMatchBackfill",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$start_match_backfill_input(TicketId = TicketId, ConfigurationName = ConfigurationName, GameSessionArn = GameSessionArn, Players = Players)
output <- .gamelift$start_match_backfill_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$start_match_backfill <- gamelift_start_match_backfill
gamelift_start_matchmaking <- function(TicketId = NULL, ConfigurationName, Players) {
op <- new_operation(
name = "StartMatchmaking",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$start_matchmaking_input(TicketId = TicketId, ConfigurationName = ConfigurationName, Players = Players)
output <- .gamelift$start_matchmaking_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$start_matchmaking <- gamelift_start_matchmaking
gamelift_stop_fleet_actions <- function(FleetId, Actions) {
op <- new_operation(
name = "StopFleetActions",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$stop_fleet_actions_input(FleetId = FleetId, Actions = Actions)
output <- .gamelift$stop_fleet_actions_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$stop_fleet_actions <- gamelift_stop_fleet_actions
gamelift_stop_game_session_placement <- function(PlacementId) {
op <- new_operation(
name = "StopGameSessionPlacement",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$stop_game_session_placement_input(PlacementId = PlacementId)
output <- .gamelift$stop_game_session_placement_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$stop_game_session_placement <- gamelift_stop_game_session_placement
gamelift_stop_matchmaking <- function(TicketId) {
op <- new_operation(
name = "StopMatchmaking",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$stop_matchmaking_input(TicketId = TicketId)
output <- .gamelift$stop_matchmaking_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$stop_matchmaking <- gamelift_stop_matchmaking
gamelift_suspend_game_server_group <- function(GameServerGroupName, SuspendActions) {
op <- new_operation(
name = "SuspendGameServerGroup",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$suspend_game_server_group_input(GameServerGroupName = GameServerGroupName, SuspendActions = SuspendActions)
output <- .gamelift$suspend_game_server_group_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$suspend_game_server_group <- gamelift_suspend_game_server_group
gamelift_tag_resource <- function(ResourceARN, Tags) {
op <- new_operation(
name = "TagResource",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$tag_resource_input(ResourceARN = ResourceARN, Tags = Tags)
output <- .gamelift$tag_resource_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$tag_resource <- gamelift_tag_resource
gamelift_untag_resource <- function(ResourceARN, TagKeys) {
op <- new_operation(
name = "UntagResource",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$untag_resource_input(ResourceARN = ResourceARN, TagKeys = TagKeys)
output <- .gamelift$untag_resource_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$untag_resource <- gamelift_untag_resource
gamelift_update_alias <- function(AliasId, Name = NULL, Description = NULL, RoutingStrategy = NULL) {
op <- new_operation(
name = "UpdateAlias",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_alias_input(AliasId = AliasId, Name = Name, Description = Description, RoutingStrategy = RoutingStrategy)
output <- .gamelift$update_alias_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_alias <- gamelift_update_alias
gamelift_update_build <- function(BuildId, Name = NULL, Version = NULL) {
op <- new_operation(
name = "UpdateBuild",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_build_input(BuildId = BuildId, Name = Name, Version = Version)
output <- .gamelift$update_build_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_build <- gamelift_update_build
gamelift_update_fleet_attributes <- function(FleetId, Name = NULL, Description = NULL, NewGameSessionProtectionPolicy = NULL, ResourceCreationLimitPolicy = NULL, MetricGroups = NULL) {
op <- new_operation(
name = "UpdateFleetAttributes",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_fleet_attributes_input(FleetId = FleetId, Name = Name, Description = Description, NewGameSessionProtectionPolicy = NewGameSessionProtectionPolicy, ResourceCreationLimitPolicy = ResourceCreationLimitPolicy, MetricGroups = MetricGroups)
output <- .gamelift$update_fleet_attributes_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_fleet_attributes <- gamelift_update_fleet_attributes
gamelift_update_fleet_capacity <- function(FleetId, DesiredInstances = NULL, MinSize = NULL, MaxSize = NULL) {
op <- new_operation(
name = "UpdateFleetCapacity",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_fleet_capacity_input(FleetId = FleetId, DesiredInstances = DesiredInstances, MinSize = MinSize, MaxSize = MaxSize)
output <- .gamelift$update_fleet_capacity_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_fleet_capacity <- gamelift_update_fleet_capacity
gamelift_update_fleet_port_settings <- function(FleetId, InboundPermissionAuthorizations = NULL, InboundPermissionRevocations = NULL) {
op <- new_operation(
name = "UpdateFleetPortSettings",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_fleet_port_settings_input(FleetId = FleetId, InboundPermissionAuthorizations = InboundPermissionAuthorizations, InboundPermissionRevocations = InboundPermissionRevocations)
output <- .gamelift$update_fleet_port_settings_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_fleet_port_settings <- gamelift_update_fleet_port_settings
gamelift_update_game_server <- function(GameServerGroupName, GameServerId, GameServerData = NULL, UtilizationStatus = NULL, HealthCheck = NULL) {
op <- new_operation(
name = "UpdateGameServer",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_game_server_input(GameServerGroupName = GameServerGroupName, GameServerId = GameServerId, GameServerData = GameServerData, UtilizationStatus = UtilizationStatus, HealthCheck = HealthCheck)
output <- .gamelift$update_game_server_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_game_server <- gamelift_update_game_server
gamelift_update_game_server_group <- function(GameServerGroupName, RoleArn = NULL, InstanceDefinitions = NULL, GameServerProtectionPolicy = NULL, BalancingStrategy = NULL) {
op <- new_operation(
name = "UpdateGameServerGroup",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_game_server_group_input(GameServerGroupName = GameServerGroupName, RoleArn = RoleArn, InstanceDefinitions = InstanceDefinitions, GameServerProtectionPolicy = GameServerProtectionPolicy, BalancingStrategy = BalancingStrategy)
output <- .gamelift$update_game_server_group_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_game_server_group <- gamelift_update_game_server_group
gamelift_update_game_session <- function(GameSessionId, MaximumPlayerSessionCount = NULL, Name = NULL, PlayerSessionCreationPolicy = NULL, ProtectionPolicy = NULL) {
op <- new_operation(
name = "UpdateGameSession",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_game_session_input(GameSessionId = GameSessionId, MaximumPlayerSessionCount = MaximumPlayerSessionCount, Name = Name, PlayerSessionCreationPolicy = PlayerSessionCreationPolicy, ProtectionPolicy = ProtectionPolicy)
output <- .gamelift$update_game_session_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_game_session <- gamelift_update_game_session
gamelift_update_game_session_queue <- function(Name, TimeoutInSeconds = NULL, PlayerLatencyPolicies = NULL, Destinations = NULL) {
op <- new_operation(
name = "UpdateGameSessionQueue",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_game_session_queue_input(Name = Name, TimeoutInSeconds = TimeoutInSeconds, PlayerLatencyPolicies = PlayerLatencyPolicies, Destinations = Destinations)
output <- .gamelift$update_game_session_queue_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_game_session_queue <- gamelift_update_game_session_queue
gamelift_update_matchmaking_configuration <- function(Name, Description = NULL, GameSessionQueueArns = NULL, RequestTimeoutSeconds = NULL, AcceptanceTimeoutSeconds = NULL, AcceptanceRequired = NULL, RuleSetName = NULL, NotificationTarget = NULL, AdditionalPlayerCount = NULL, CustomEventData = NULL, GameProperties = NULL, GameSessionData = NULL, BackfillMode = NULL, FlexMatchMode = NULL) {
op <- new_operation(
name = "UpdateMatchmakingConfiguration",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_matchmaking_configuration_input(Name = Name, Description = Description, GameSessionQueueArns = GameSessionQueueArns, RequestTimeoutSeconds = RequestTimeoutSeconds, AcceptanceTimeoutSeconds = AcceptanceTimeoutSeconds, AcceptanceRequired = AcceptanceRequired, RuleSetName = RuleSetName, NotificationTarget = NotificationTarget, AdditionalPlayerCount = AdditionalPlayerCount, CustomEventData = CustomEventData, GameProperties = GameProperties, GameSessionData = GameSessionData, BackfillMode = BackfillMode, FlexMatchMode = FlexMatchMode)
output <- .gamelift$update_matchmaking_configuration_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_matchmaking_configuration <- gamelift_update_matchmaking_configuration
gamelift_update_runtime_configuration <- function(FleetId, RuntimeConfiguration) {
op <- new_operation(
name = "UpdateRuntimeConfiguration",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_runtime_configuration_input(FleetId = FleetId, RuntimeConfiguration = RuntimeConfiguration)
output <- .gamelift$update_runtime_configuration_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_runtime_configuration <- gamelift_update_runtime_configuration
gamelift_update_script <- function(ScriptId, Name = NULL, Version = NULL, StorageLocation = NULL, ZipFile = NULL) {
op <- new_operation(
name = "UpdateScript",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$update_script_input(ScriptId = ScriptId, Name = Name, Version = Version, StorageLocation = StorageLocation, ZipFile = ZipFile)
output <- .gamelift$update_script_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$update_script <- gamelift_update_script
gamelift_validate_matchmaking_rule_set <- function(RuleSetBody) {
op <- new_operation(
name = "ValidateMatchmakingRuleSet",
http_method = "POST",
http_path = "/",
paginator = list()
)
input <- .gamelift$validate_matchmaking_rule_set_input(RuleSetBody = RuleSetBody)
output <- .gamelift$validate_matchmaking_rule_set_output()
config <- get_config()
svc <- .gamelift$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.gamelift$operations$validate_matchmaking_rule_set <- gamelift_validate_matchmaking_rule_set |
require(geometa, quietly = TRUE)
require(testthat)
context("ISOMultiplicityRange")
test_that("encoding",{
testthat::skip_on_cran()
md <- ISOMultiplicityRange$new(lower = 1, upper = 1)
expect_is(md, "ISOMultiplicityRange")
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- ISOMultiplicityRange$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
}) |
condProbEntropy <- function(idroot, ppars, pcatlist, probs, idx) {
if(is.null(ppars) || length(idx) < 1) {
nodep <- probs
nodep <- nodep[nodep!=0]
return(log(as.numeric(length(pcatlist[[idroot]]))) + sum(nodep*log(nodep)))
}
idnode <- ppars[idx[1]]
return(sum(sapply(seq(1, length(pcatlist[[idnode]])),
function(cat) condProbEntropy(idroot, ppars, pcatlist, probs[[cat]], idx[-1]))
))
}
setMethod("cnKLComplexity", c("catNetwork"),
function(object, node=NULL) {
if(!is(object, "catNetwork"))
stop("The object should be a catNetwork")
if(is.null(node))
node <- 1:object@numnodes
if(is.character(node))
node <- which(object@nodes == node)
if(!is.numeric(node))
node <- 1:object@numnodes
nodeEntropy <- sum(sapply(node, function(i) {
idx <- NULL
if(length(object@parents[[i]])>0)
idx <- 1:length(object@parents[[i]])
return(condProbEntropy(i, object@parents[[i]], object@categories, object@probabilities[[i]], idx))
}))
return(nodeEntropy)
})
cnEntropy <- function(data, perturbations=NULL) {
if(!is.matrix(data) && !is.data.frame(data))
stop("'data' should be a matrix or data frame of categories")
if(is.data.frame(data)) {
data <- as.matrix(t(data))
if(!is.null(perturbations)) {
if(!is.data.frame(perturbations))
stop("Perturbations should be a data frame")
perturbations <- as.matrix(t(perturbations))
}
}
r <- .categorizeSample(data, perturbations, object=NULL, ask=FALSE)
data <- r$data
perturbations <- r$perturbations
numnodes <- dim(data)[1]
numsamples <- dim(data)[2]
nodenames <- rownames(data)
mat <- .Call("ccnEntropyPairwise",
data, perturbations,
PACKAGE="catnet")
klmat <- matrix(mat, numnodes, numnodes)
rownames(klmat)<-nodenames
colnames(klmat)<-nodenames
return(klmat)
}
cnEdgeDistanceKL <- function(data, perturbations) {
if(!is.matrix(data) && !is.data.frame(data))
stop("'data' should be a matrix or data frame of categories")
if(is.null(perturbations)) {
warning("Perturbations are essential for estimating the pairwise causality")
}
if(is.data.frame(data)) {
data <- as.matrix(t(data))
if(!is.null(perturbations)) {
if(!is.data.frame(perturbations))
stop("Perturbations should be a data frame")
perturbations <- as.matrix(t(perturbations))
}
}
r <- .categorizeSample(data, perturbations, object=NULL, ask=FALSE)
data <- r$data
perturbations <- r$perturbations
numnodes <- dim(data)[1]
numsamples <- dim(data)[2]
nodenames <- rownames(data)
mat <- .Call("ccnKLPairwise",
data, perturbations,
PACKAGE="catnet")
klmat <- matrix(mat, numnodes, numnodes)
rownames(klmat)<-nodenames
colnames(klmat)<-nodenames
return(klmat)
}
cnEntropyOrder <- function(data, perturbations=NULL) {
if(!is.matrix(data) && !is.data.frame(data))
stop("'data' should be a matrix or data frame of categories")
if(is.data.frame(data)) {
data <- as.matrix(t(data))
if(!is.null(perturbations)) {
if(!is.data.frame(perturbations))
stop("Perturbations should be a data frame")
perturbations <- as.matrix(t(perturbations))
}
}
r <- .categorizeSample(data, perturbations, object=NULL, ask=FALSE)
data <- r$data
perturbations <- r$perturbations
numnodes <- dim(data)[1]
numsamples <- dim(data)[2]
nodenames <- rownames(data)
norder <- .Call("ccnEntropyOrder",
data, perturbations,
PACKAGE="catnet")
names(norder) <- nodenames
return(norder)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(mde)
na_summary(airquality)
na_summary(airquality,sort_by = "percent_complete")
na_summary(airquality, sort_by = "percent_missing")
na_summary(airquality, sort_by="percent_missing", descending = TRUE)
na_summary(airquality, exclude_cols = c("Day", "Wind"))
test2 <- data.frame(ID= c("A","A","B","A","B"), Vals = c(rep(NA,4),"No"),ID2 = c("E","E","D","E","D"))
na_summary(test2,grouping_cols = c("ID","ID2"))
na_summary(test2, grouping_cols="ID")
get_na_counts(airquality)
test <- structure(list(Subject = structure(c(1L, 1L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), res = c(NA, 1, 2, 3), ID = structure(c(1L,
1L, 2L, 2L), .Label = c("1", "2"), class = "factor")), class = "data.frame", row.names = c(NA,
-4L))
get_na_counts(test, grouping_cols = "ID")
percent_missing(airquality)
percent_missing(test, grouping_cols = "Subject")
percent_missing(airquality,exclude_cols = c("Day","Temp"))
sort_by_missingness(airquality, sort_by = "counts")
sort_by_missingness(airquality, sort_by = "counts", descend = TRUE)
sort_by_missingness(airquality, sort_by = "percents")
dummy_test <- data.frame(ID = c("A","B","B","A"),
values = c("n/a",NA,"Yes","No"))
head(recode_as_na(dummy_test, value = c("n/a","No")))
another_dummy <- data.frame(ID = 1:5, Subject = 7:11,
Change = c("missing","n/a",2:4 ))
head(recode_as_na(another_dummy, subset_cols = "Change", value = c("n/a","missing")))
head(recode_as_na(airquality,value=190,pattern_type="starts_with",pattern="Solar"))
head(recode_as_na(airquality,value=c(67,118),pattern_type="starts_with",pattern="S|O"))
head(recode_as_na(airquality,value=c(67,118),pattern_type="regex",pattern="(?i)^(s|o)"))
head(recode_as_na_if(airquality,sign="gt", percent_na=20))
partial_match <- data.frame(A=c("Hi","match_me","nope"), B=c(NA, "not_me","nah"))
recode_as_na_str(partial_match,"ends_with","ME", case_sensitive=FALSE)
head(recode_as_na_for(airquality,criteria="gt",value=25))
head(recode_as_na_for(airquality, value=40,subset_cols=c("Solar.R","Ozone"), criteria="gt"))
head(recode_na_as(airquality))
head(recode_na_as(airquality, value=NaN))
head(recode_na_as(airquality, value=0, subset_cols="Ozone"))
head(mde::recode_na_as(airquality, value=0, pattern_type="starts_with",pattern="Solar"))
head(column_based_recode(airquality, values_from = "Wind", values_to="Wind", pattern_type = "regex", pattern = "Solar|Ozone"))
head(custom_na_recode(airquality))
head(custom_na_recode(airquality,func="mean",across_columns=c("Solar.R","Ozone")))
head(custom_na_recode(airquality,func=dplyr::lead ))
some_data <- data.frame(ID=c("A1","A1","A1","A2","A2", "A2"),A=c(5,NA,0,8,3,4),B=c(10,0,0,NA,5,6),C=c(1,NA,NA,25,7,8))
head(custom_na_recode(some_data,func = "mean", grouping_cols = "ID"))
head(custom_na_recode(some_data,func = "mean", grouping_cols = "ID", across_columns = c("C", "A")))
some_data <- data.frame(ID=c("A1","A2","A3", "A4"),
A=c(5,NA,0,8), B=c(10,0,0,1),
C=c(1,NA,NA,25))
head(recode_na_if(some_data,grouping_col="ID", target_groups=c("A2","A3"),
replacement= 0))
head(drop_na_if(airquality, sign="gteq",percent_na = 24))
head(drop_na_if(airquality, percent_na = 24, keep_columns = "Ozone"))
head(drop_na_if(airquality, percent_na = 24))
grouped_drop <- structure(list(ID = c("A", "A", "B", "A", "B"),
Vals = c(4, NA, NA, NA, NA), Values = c(5, 6, 7, 8, NA)),
row.names = c(NA, -5L), class = "data.frame")
drop_na_if(grouped_drop,percent_na = 67,sign="gteq",
grouping_cols = "ID")
head(drop_row_if(airquality, sign="gteq", type="count" , value = 2))
head(drop_row_if(airquality, type="percent", value=16, sign="gteq",
as_percent=TRUE))
head(drop_na_at(airquality,pattern_type = "starts_with","O"))
test2 <- data.frame(ID= c("A","A","B","A","B"), Vals = c(4,rep(NA, 4)))
drop_all_na(test2, grouping_cols="ID")
test2 <- data.frame(ID= c("A","A","B","A","B"), Vals = rep(NA, 5))
head(drop_all_na(test, grouping_cols = "ID")) |
NULL
setMethod('dbClearResult',
c('PrestoResult'),
function(res, ...) {
if (dbHasCompleted(res)) {
return(TRUE)
}
uri <- res@cursor$nextUri()
if (uri == '') {
return(TRUE)
}
if (res@cursor$state() == '__KILLED') {
return(TRUE)
}
headers <- .request_headers(res@connection)
delete.uri <- paste0(
res@connection@host, ':', res@connection@port,
'/v1/query/', [email protected]
)
delete.result <- httr::DELETE(delete.uri, config=headers)
s <- httr::status_code(delete.result)
if (s >= 200 && s < 300) {
res@cursor$state('__KILLED')
rv <- TRUE
} else {
rv <- FALSE
}
return(rv)
}
) |
.check_multicollinearity <- function(model,
method = "equivalence_test",
threshold = 0.7, ...) {
valid_parameters <- insight::find_parameters(model, parameters = "^(?!(r_|sd_|prior_|cor_|lp__|b\\[))", flatten = TRUE)
if (inherits(model, "stanfit")) {
dat <- insight::get_parameters(model)[, valid_parameters, drop = FALSE]
} else {
dat <- as.data.frame(model, optional = FALSE)[, valid_parameters, drop = FALSE]
}
if (ncol(dat) > 2) {
dat <- dat[, -1, drop = FALSE]
if (ncol(dat) > 1) {
parameter_correlation <- stats::cor(dat)
parameter <- expand.grid(colnames(dat), colnames(dat), stringsAsFactors = FALSE)
results <- cbind(
parameter,
corr = abs(as.vector(expand.grid(parameter_correlation)[[1]])),
pvalue = apply(parameter, 1, function(r) stats::cor.test(dat[[r[1]]], dat[[r[2]]])$p.value)
)
results <- results[results$pvalue < 0.05 & results$Var1 != results$Var2, ]
if (nrow(results) > 0) {
results$where <- paste0(results$Var1, " and ", results$Var2)
results$where2 <- paste0(results$Var2, " and ", results$Var1)
to_remove <- c()
for (i in 1:nrow(results)) {
if (results$where2[i] %in% results$where[1:i]) {
to_remove <- c(to_remove, i)
}
}
results <- results[-to_remove, ]
threshold <- ifelse(threshold >= .9, .9, threshold)
results <- results[results$corr > threshold & results$corr <= .9, ]
if (nrow(results) > 0) {
where <- paste0("between ", paste0(paste0(results$where, " (r = ", round(results$corr, 2), ")"), collapse = ", "), "")
message("Possible multicollinearity ", where, ". This might lead to inappropriate results. See 'Details' in '?", method, "'.")
}
results <- results[results$corr > .9, ]
if (nrow(results) > 0) {
where <- paste0("between ", paste0(paste0(results$where, " (r = ", round(results$corr, 2), ")"), collapse = ", "), "")
warning("Probable multicollinearity ", where, ". This might lead to inappropriate results. See 'Details' in '?", method, "'.", call. = FALSE)
}
}
}
}
} |
objective1TV <- function(x,T,phi,y,lambda) {
X <- T %*% x
OF <- norm( phi %*% X - y , c("F") ) ^ 2 + lambda * TV1 (X)
return (OF)
} |
test_that('sample sizes must be equal', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(9)
expect_error(grpsel(x, y))
})
test_that('group must have ncol(x) elements', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, group = 1:11))
})
test_that('group (as a list) must have ncol(x) elements', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, group = list(1:5, 6:11)))
})
test_that('y must be in {0,1} with logistic loss', {
set.seed(123)
y <- rbinom(10, 1, 0.5)
y[y == 0] <- - 1
x <- rnorm(10)
expect_error(grpsel(x, y, loss = 'logistic'))
})
test_that('y must not contain NAs', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
y[1] <- NA
expect_error(grpsel(x, y))
})
test_that('x must not contain NAs', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
x[1] <- NA
expect_error(grpsel(x, y))
})
test_that('lambda must contain a vector for every unique gamma', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, penalty = 'grSubset+grLasso', gamma = 1:5, lambda = 0))
})
test_that('lambda must contain ngamma vectors', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, penalty = 'grSubset+grLasso', ngamma = 5, lambda = 0))
})
test_that('nlambda must be greater than zero', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, nlambda = 0))
})
test_that('ngamma must be greater than zero', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, ngamma = 0))
})
test_that('alpha must be in (0,1)', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, alpha = 1))
})
test_that('when max.cd.iter is exceeded a warning is provided', {
set.seed(123)
y <- rnorm(100)
x <- matrix(rnorm(100 * 10), 100, 10)
expect_warning(grpsel(x, y, max.cd.iter = 5))
})
test_that('when max.ls.iter is exceeded a warning is provided', {
set.seed(123)
y <- rnorm(100)
x <- matrix(rnorm(100 * 10), 100, 10)
expect_warning(grpsel(x, y, max.ls.iter = 0))
})
test_that('gamma.min must be positive', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, gamma.min = 0))
})
test_that('gamma.max must be positive', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, gamma.max = 0))
})
test_that('subset.factor must have same length as group', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, subset.factor = rep(1, 11)))
})
test_that('lasso.factor must have same length as group', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, lasso.factor = rep(1, 11)))
})
test_that('ridge.factor must have same length as group', {
set.seed(123)
y <- rnorm(10)
x <- rnorm(10)
expect_error(grpsel(x, y, ridge.factor = rep(1, 11)))
})
test_that('regression with square loss works', {
set.seed(123)
group <- rep(1:5, each = 2)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rnorm(100)
fit <- grpsel(x, y, group, loss = 'square', eps = 1e-15)
beta <- coef(fit)[, ncol(coef(fit))]
beta.target <- as.numeric(glm(y ~ x, family = 'gaussian')$coef)
expect_equal(beta, beta.target)
})
test_that('regression with logistic loss works', {
set.seed(123)
group <- rep(1:5, each = 2)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rbinom(100, 1, 0.5)
fit <- grpsel(x, y, group, loss = 'logistic', eps = 1e-15)
beta <- coef(fit)[, ncol(coef(fit))]
beta.target <- as.numeric(glm(y ~ x, family = 'binomial')$coef)
expect_equal(beta, beta.target)
})
test_that('regression with different sized groups works', {
set.seed(123)
group <- c(1, 1, 1, 1, 2, 2, 2, 3, 3, 4)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rnorm(100)
fit <- grpsel(x, y, group, loss = 'square', eps = 1e-15)
beta <- coef(fit)[, ncol(coef(fit))]
beta.target <- as.numeric(glm(y ~ x, family = 'gaussian')$coef)
expect_equal(beta, beta.target)
})
test_that('regression with overlapping groups works', {
set.seed(123)
group <- list(1:5, 5:10)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rnorm(100)
fit <- grpsel(x, y, group, loss = 'square', eps = 1e-15)
beta <- coef(fit)[, ncol(coef(fit))]
beta.target <- as.numeric(glm(y ~ x, family = 'gaussian')$coef)
expect_equal(beta, beta.target)
})
test_that('regression without orthogonalisation works', {
set.seed(123)
group <- rep(1:5, each = 2)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rnorm(100)
fit <- grpsel(x, y, group, loss = 'square', eps = 1e-15, orthogonalise = F)
beta <- coef(fit)[, ncol(coef(fit))]
beta.target <- as.numeric(glm(y ~ x, family = 'gaussian')$coef)
expect_equal(beta, beta.target)
})
test_that('regression without sorting works', {
set.seed(123)
group <- rep(1:5, each = 2)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rnorm(100)
fit <- grpsel(x, y, group, loss = 'square', eps = 1e-15, sort = F)
beta <- coef(fit)[, ncol(coef(fit))]
beta.target <- as.numeric(glm(y ~ x, family = 'gaussian')$coef)
expect_equal(beta, beta.target)
})
test_that('regression with screening works', {
set.seed(123)
group <- rep(1:15, each = 2)
x <- matrix(rnorm(100 * 30), 100, 30)
y <- rnorm(100)
fit <- grpsel(x, y, group, loss = 'square', eps = 1e-15, screen = 5)
beta <- coef(fit)[, ncol(coef(fit))]
beta.target <- as.numeric(glm(y ~ x, family = 'gaussian')$coef)
expect_equal(beta, beta.target)
})
test_that('regression with screening and violations works', {
set.seed(123)
group <- rep(1:15, each = 2)
x <- matrix(rnorm(100 * 30), 100, 30)
y <- rowSums(x) + rnorm(100)
fit <- grpsel(x, y, group, loss = 'square', eps = 1e-15, screen = 1)
beta <- coef(fit)[, ncol(coef(fit))]
beta.target <- as.numeric(glm(y ~ x, family = 'gaussian')$coef)
expect_equal(beta, beta.target)
})
test_that('regression with a constant response works', {
set.seed(123)
group <- rep(1:5, each = 2)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rep(1, 100)
fit <- grpsel(x, y, group, loss = 'square', eps = 1e-15)
beta <- coef(fit)[, ncol(coef(fit))]
beta.target <- as.numeric(glm(y ~ x, family = 'gaussian')$coef)
beta.target[2] <- 0
expect_equal(beta, beta.target)
})
test_that('coefficients are extracted correctly', {
set.seed(123)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rowSums(x) + rnorm(100)
fit <- grpsel(x, y, eps = 1e-15)
fit.target <- glm(y ~ x, family = 'gaussian')
beta <- coef(fit, lambda = 0)
beta.target <- as.matrix(as.numeric(coef(fit.target)))
expect_equal(beta, beta.target)
})
test_that('predictions are computed correctly', {
set.seed(123)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rowSums(x) + rnorm(100)
fit <- grpsel(x, y, eps = 1e-15)
fit.target <- glm(y ~ x, family = 'gaussian')
yhat <- predict(fit, x, lambda = 0)
yhat.target <- as.matrix(as.numeric(predict(fit.target, as.data.frame(x))))
expect_equal(yhat, yhat.target)
})
test_that('predictions are computed correctly when x is a data frame', {
set.seed(123)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rowSums(x) + rnorm(100)
fit <- grpsel(x, y, eps = 1e-15)
fit.target <- glm(y ~ x, family = 'gaussian')
yhat <- predict(fit, as.data.frame(x), lambda = 0)
yhat.target <- as.matrix(as.numeric(predict(fit.target, as.data.frame(x))))
expect_equal(yhat, yhat.target)
})
test_that('plot function returns a plot', {
set.seed(123)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rowSums(x) + rnorm(100)
fit <- grpsel(x, y, eps = 1e-15)
p <- plot(fit)
expect_s3_class(p, 'ggplot')
})
test_that('number of predictors does not exceed pmax', {
set.seed(123)
group <- rep(1:5, each = 2)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rnorm(100)
fit <- grpsel(x, y, group, loss = 'square', eps = 1e-15, pmax = 5)
beta <- coef(fit)[, ncol(coef(fit))]
sparsity <- sum(beta[- 1] != 0)
expect_lte(sparsity, 5)
})
test_that('number of groups does not exceed gmax', {
set.seed(123)
group <- rep(1:5, each = 2)
x <- matrix(rnorm(100 * 10), 100, 10)
y <- rnorm(100)
fit <- grpsel(x, y, group, loss = 'square', eps = 1e-15, gmax = 2)
beta <- coef(fit)[, ncol(coef(fit))]
group.sparsity <- sum(vapply(unique(group), \(k) norm(beta[- 1][which(group == k)], '2'),
numeric(1)) != 0)
expect_lte(group.sparsity, 2)
})
test_that('number of ridge solutions is ngamma', {
set.seed(123)
n <- 100
p <- 10
gamma <- 0.1
x <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)
fit <- grpsel(x, y, penalty = 'grSubset+Ridge', ngamma = 5, lambda = rep(list(0), 5), eps = 1e-15)
beta <- coef(fit)
expect_equal(ncol(beta), 5)
})
test_that('number of group lasso solutions is ngamma', {
set.seed(123)
n <- 100
p <- 10
gamma <- 0.1
x <- matrix(rnorm(n * p), n, p)
y <- rnorm(n)
fit <- grpsel(x, y, penalty = 'grSubset+grLasso', ngamma = 5, lambda = rep(list(0), 5),
eps = 1e-15)
beta <- coef(fit)
expect_equal(ncol(beta), 5)
})
test_that('number of group lasso solutions is ngamma for logistic loss', {
set.seed(123)
n <- 100
p <- 10
gamma <- 0.1
x <- matrix(rnorm(n * p), n, p)
y <- rbinom(n, 1, 0.5)
fit <- grpsel(x, y, penalty = 'grSubset+grLasso', loss = 'logistic', ngamma = 5,
lambda = rep(list(0), 5), eps = 1e-15)
beta <- coef(fit)
expect_equal(ncol(beta), 5)
})
test_that('number of group lasso solutions is ngamma for logistic loss', {
set.seed(123)
n <- 100
p <- 10
gamma <- 0.1
x <- matrix(rnorm(n * p), n, p)
y <- rbinom(n, 1, 0.5)
fit <- grpsel(x, y, penalty = 'grSubset+grLasso', loss = 'logistic', ngamma = 5,
lambda = rep(list(0), 5), lasso.factor = c(0, rep(1, 9)), eps = 1e-15)
beta <- coef(fit)
expect_equal(ncol(beta), 5)
})
test_that('number of group lasso solutions is ngamma', {
set.seed(123)
n <- 100
p <- 10
gamma <- 0.1
x <- matrix(rnorm(n * p), n, p)
y <- rbinom(n, 1, 0.5)
fit <- grpsel(x, y, penalty = 'grSubset+grLasso', ngamma = 5, lambda = rep(list(0), 5),
lasso.factor = c(0, rep(1, 9)), eps = 1e-15)
beta <- coef(fit)
expect_equal(ncol(beta), 5)
})
test_that('local search improves on coordinate descent for logistic loss', {
set.seed(123)
n <- 100
p <- 50
group <- rep(1:25, each = 2)
x <- matrix(rnorm(n * p), n, p) + 2 * matrix(rnorm(n), n, p)
y <- rbinom(n, 1, 1 / (1 + exp(- rowSums(x[, 1:10]))))
fit.ls <- grpsel(x, y, group, loss = 'logistic', ls = T)
fit.cd <- grpsel(x, y, group, loss = 'logistic', ls = F)
loss.ls <- fit.ls$loss[[1]][which(fit.ls$np[[1]] %in% fit.cd$np[[1]])]
loss.cd <- fit.cd$loss[[1]][which(fit.cd$np[[1]] %in% fit.ls$np[[1]])]
expect_true(sum(loss.ls) < sum(loss.cd))
})
test_that('local search improves on coordinate descent for square loss', {
set.seed(123)
n <- 100
p <- 50
group <- rep(1:25, each = 2)
x <- matrix(rnorm(n * p), n, p) + 2 * matrix(rnorm(n), n, p)
y <- rnorm(n, rowSums(x[, 1:10]))
fit.ls <- grpsel(x, y, group, loss = 'square', ls = T)
fit.cd <- grpsel(x, y, group, loss = 'square', ls = F)
loss.ls <- fit.ls$loss[[1]][which(fit.ls$np[[1]] %in% fit.cd$np[[1]])]
loss.cd <- fit.cd$loss[[1]][which(fit.cd$np[[1]] %in% fit.ls$np[[1]])]
expect_true(sum(loss.ls) < sum(loss.cd))
})
test_that('local search improves on coordinate descent for square loss without orthogonalisation', {
set.seed(123)
n <- 100
p <- 50
group <- rep(1:25, each = 2)
x <- matrix(rnorm(n * p), n, p) + 2 * matrix(rnorm(n), n, p)
y <- rnorm(n, rowSums(x[, 1:10]))
fit.ls <- grpsel(x, y, group, loss = 'square', ls = T, orthogonalise = F)
fit.cd <- grpsel(x, y, group, loss = 'square', ls = F, orthogonalise = F)
loss.ls <- fit.ls$loss[[1]][which(fit.ls$np[[1]] %in% fit.cd$np[[1]])]
loss.cd <- fit.cd$loss[[1]][which(fit.cd$np[[1]] %in% fit.ls$np[[1]])]
expect_true(sum(loss.ls) < sum(loss.cd))
}) |
inside_var <- function(t,ascale_r,ascale_nr,tau,bshape,ascale_cens,p){
num = p*sapply(t,survw_integratef,ascale=ascale_r,bshape=bshape,tau=tau)+(1-p)*sapply(t,survw_integratef,ascale=ascale_nr,bshape=bshape,tau=tau)
den = survmixture_f(t,ascale_r, ascale_nr, bshape, p)
dervS = p*survw_derivf(t,ascale_r,bshape) + (1-p)*survw_derivf(t,ascale_nr,bshape)
inside_integral <- (num/den)^2*(1/survw_f(t,ascale_cens,bshape=1))*dervS
return(-inside_integral)
}
var_f <- function(ascale_r,ascale_nr,tau,bshape,ascale_cens,p){
requireNamespace("stats")
integrate(inside_var,lower=0,upper=tau,ascale_r=ascale_r, ascale_nr= ascale_nr,tau=tau,bshape=bshape,ascale_cens=ascale_cens,p=p)$value
}
survw_integratef <- function(t,tau, ascale,bshape){
requireNamespace("stats")
int <- integrate(survw_f,lower=t, upper=tau,ascale,bshape)$value
return(int)
} |
open_todoist_website_profile <- function(verbose = TRUE) {
if (verbose) {
message("opening https://todoist.com/prefs/integrations")
}
browseURL("https://todoist.com/prefs/integrations")
} |
require(geometa, quietly = TRUE)
require(testthat)
context("ISOMedium")
test_that("encoding",{
testthat::skip_on_cran()
md <- ISOMedium$new()
md$setName("satellite")
md$addDensity(1.0)
md$setDensityUnits("string")
md$setVolumes(1L)
md$addMediumFormat("tar")
md$setMediumNote("description")
expect_is(md, "ISOMedium")
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- ISOMedium$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
})
test_that("encoding - i18n",{
testthat::skip_on_cran()
md <- ISOMedium$new()
md$setName("satellite")
md$addDensity(1.0)
md$setDensityUnits("string")
md$setVolumes(1L)
md$addMediumFormat("tar")
md$setMediumNote(
"description",
locales = list(
EN="description_EN",
FR="description_FR",
ES="description_ES",
AR="description_AR",
RU="description_RU",
ZH="description_ZH"
))
expect_is(md, "ISOMedium")
xml <- md$encode()
expect_is(xml, "XMLInternalNode")
md2 <- ISOMedium$new(xml = xml)
xml2 <- md2$encode()
expect_true(ISOAbstractObject$compare(md, md2))
}) |
`.onLoad` <- function(libname, pkgname) {
assign( "sd.default", stats::sd , asNamespace(pkgname))
assign("var.default", stats::var, asNamespace(pkgname))
} |
context("test-ant")
test_that("ant pulls the right number of words for cool", {
expect_length(ant("cool"), 2)
})
test_that("ant returns character(0) when it cannot find a word", {
expect_length(ant("xxxx"), 0)
expect_is(ant("xxxx"), "character")
})
test_that("ant pulls the right number of words for cool with n_words", {
expect_length(ant("cool", 1), 1)
expect_length(ant("cool", 2), 2)
expect_length(ant("cool", 100), 2)
})
test_that("ant with n_words returns 0 when it cannot find a word", {
expect_length(ant("xxxx", 5), 0)
}) |
context("numericalSolution")
on.exit(unlink('Rplots.pdf'))
vdp.pars <- list(y0 = c(4, 2), tlim = c(0, 100))
vdp.out <- do.call(numericalSolution,
c(list(deriv=phaseR::vanDerPol, parameters = 3), vdp.pars))
test_that("behavior equal to reference behavior", {
expect_equal_to_reference(vdp.out[c("x","y")], "test-numericalSolution_ref-vdp.rds")
})
test_that("alternative formulation equal to reference behavior", {
vdp.alt <- function(t, state, parameters) {
with(as.list(c(state, parameters)), {
dx <- y
dy <- mu*(1 - x^2)*y - x
list(c(dx, dy))
})
}
vdp.alt.out <- do.call(numericalSolution,
c(list(deriv=vdp.alt, parameters = c(mu=3)), vdp.pars))
expect_equal(vdp.alt.out[c("x","y")], vdp.out[c("x","y")])
}) |
test_that("pd_stack() works", {
dd <- prism_archive_subset("ppt", "daily", mon = 1, years = 1981:2011)
expect_s4_class(x <- pd_stack(dd), "RasterStack")
expect_equal(dim(x)[3], length(dd))
expect_setequal(names(x), dd)
mm <- prism_archive_subset("tdmean", "monthly", years = 2005)
expect_s4_class(x <- pd_stack(mm), "RasterStack")
expect_equal(dim(x)[3], length(mm))
expect_setequal(names(x), mm)
cc <- c(dd, mm)
expect_s4_class(x <- pd_stack(cc), "RasterStack")
expect_equal(dim(x)[3], length(cc))
expect_setequal(names(x), cc)
}) |
context("utils-predicates")
test_that("is_zipcmd_available detects zipcommand", {
skip_if_not(is_zipcmd_available(), "system zip-command is available")
expect_true(is_zipcmd_available())
})
test_that("is_zipcmd_available() detects missing zipcommand", {
expect_false(is_zipcmd_available("sdjkghsaghaskjghsagj"))
})
test_that("utils-fs can create/remove files in dry_run memory", {
td <- file.path(tempdir(), "rotor")
tf1 <- file.path(td, "foo")
tf2 <- file.path(td, "bar")
dir.create(tf1, recursive = TRUE)
file.create(tf2)
on.exit(unlink(c(tf2, tf1, td), recursive = TRUE))
expect_true(is_dir(tf1))
expect_false(is_dir(tf2))
})
test_that("is_pure_BackupQueue", {
td <- file.path(tempdir(), "rotor")
dir.create(td, recursive = TRUE)
on.exit(unlink(td, recursive = TRUE))
tf <- file.path(td, "test.log")
file.create(tf)
expect_true(is_pure_BackupQueue(tf))
expect_true(is_pure_BackupQueueDateTime(tf))
expect_true(is_pure_BackupQueueIndex(tf))
tf_date <- file.path(td, "test.2017.log")
file.create(tf_date)
expect_true(is_pure_BackupQueue(tf))
expect_true(is_pure_BackupQueueDateTime(tf))
expect_false(is_pure_BackupQueueIndex(tf))
tf_idx <- file.path(td, "test.1.log")
file.create(tf_idx)
expect_false(is_pure_BackupQueue(tf))
expect_false(is_pure_BackupQueueDateTime(tf))
expect_false(is_pure_BackupQueueIndex(tf))
expect_error(assert_pure_BackupQueue(tf), "not possible")
expect_warning(assert_pure_BackupQueue(tf, warn_only = TRUE))
file.remove(tf_date)
expect_true(is_pure_BackupQueue(tf))
expect_false(is_pure_BackupQueueDateTime(tf))
expect_true(is_pure_BackupQueueIndex(tf))
unlink(tf_idx)
})
test_that("is_parsable_date/time works", {
expect_true(is_parsable_datetime(as.Date("2018-12-01")))
expect_true(is_parsable_datetime(as.POSIXct("2018-12-01 12:01:01")))
expect_true(is_parsable_datetime("2018-12-01"))
expect_true(is_parsable_datetime("20181201"))
expect_true(is_parsable_datetime("2018-02"))
expect_true(is_parsable_datetime("201802"))
expect_true(is_parsable_datetime("2018"))
expect_true(is_parsable_datetime(20181231))
expect_false(is_parsable_datetime("1 week"))
expect_false(is_parsable_datetime("2 years"))
expect_true(is_parsable_datetime("2019-12-12--13-12-11"))
expect_true(is_parsable_datetime("2019-12-12--13-12-"))
expect_true(is_parsable_datetime("2019-12-12--13--"))
expect_true(is_parsable_datetime("2019-12-12----"))
expect_true(is_parsable_datetime("2019-12-----"))
expect_true(is_parsable_datetime("2019------"))
expect_false(is_parsable_datetime("------"))
expect_true(is_parsable_datetime("2019-12-12T13-12-11"))
expect_true(is_parsable_datetime("2019-12-12T13-12-"))
expect_true(is_parsable_datetime("2019-12-12T13T"))
expect_true(is_parsable_datetime("2019-12-12TT"))
expect_true(is_parsable_datetime("2019-12TT-"))
expect_true(is_parsable_datetime("2019TTT"))
expect_false(is_parsable_datetime("TTT"))
expect_true(is_parsable_datetime("2019-12-12 13-12-11"))
expect_true(is_parsable_datetime("2019-12-12 13-12-"))
expect_true(is_parsable_datetime("2019-12-12 13 "))
expect_true(is_parsable_datetime("2019-12-12 "))
expect_true(is_parsable_datetime("2019-12 -"))
expect_true(is_parsable_datetime("2019 "))
expect_false(is_parsable_datetime(" "))
expect_false(is_parsable_date("2019-12-12--13-12-11"))
expect_false(is_parsable_date("2019-12-12--13-12-"))
expect_false(is_parsable_date("2019-12-12--13--"))
expect_true(is_parsable_date("2019-12-12----"))
expect_true(is_parsable_date("2019-12-----"))
expect_true(is_parsable_date("2019------"))
expect_false(is_parsable_date("------"))
})
test_that("is_backup_older_than_interval works as expected", {
now <- as.POSIXct("2019-12-11 00:12:13")
expect_true(is_backup_older_than_interval(as.Date("2019-12-11"), "0 days", now))
expect_true(is_backup_older_than_interval(as.Date("2019-12-11"), "-1 days", now))
expect_true(is_backup_older_than_interval(as.Date("2019-12-11"), 0, now))
expect_true(is_backup_older_than_interval(as.Date("2019-12-11"), -1, now))
now <- "2019-12-11--00-12"
expect_false(is_backup_older_than_interval(as.Date("2019-01-01"), "1 year", now))
expect_true(is_backup_older_than_interval(as.Date("2018-12-12"), "1 year", now))
expect_true(is_backup_older_than_interval(as.Date("2018-12-12"), "0 year", now))
expect_false(is_backup_older_than_interval(as.Date("2999-12-12"), Inf, now))
})
test_that("is_backup_older_than_interval works with weeks", {
expect_false(
is_backup_older_than_interval(interval = "1 week", as.Date("2019-04-01"), as.Date("2019-04-07"))
)
expect_true(
is_backup_older_than_interval(interval = "1 week", as.Date("2019-04-01"), as.Date("2019-04-08"))
)
expect_false(
is_backup_older_than_interval(interval = "6 week", as.Date("2019-04-01"), as.Date("2019-05-06"))
)
expect_true(
is_backup_older_than_interval(interval = "5 weeks", as.Date("2019-04-01"), as.Date("2019-05-06"))
)
expect_false(
is_backup_older_than_interval(interval = "1 month", as.Date("2019-04-01"), as.Date("2019-04-30"))
)
expect_true(
is_backup_older_than_interval(interval = "1 month", as.Date("2019-04-01"), as.Date("2019-05-01"))
)
expect_false(
is_backup_older_than_interval(interval = "6 month", as.Date("2019-04-01"), as.Date("2019-09-01"))
)
expect_true(
is_backup_older_than_interval(interval = "5 months", as.Date("2019-04-01"), as.Date("2019-09-06"))
)
})
test_that("is_backup_older_than_datetime works as expected", {
now <- as.POSIXct("2019-12-11 00:12:13")
expect_true(is_backup_older_than_datetime(as.Date("2019-12-11"), now))
expect_false(is_backup_older_than_datetime(as.Date("2019-12-11"), as.Date(now)))
expect_false(is_backup_older_than_datetime(as.Date("2019-12-12"), now))
}) |
RI.hybridFS.FRST <- function(decision.table, control = list()){
return(quickreduct.alg(decision.table, type.method = "hybrid.rule.induction", control = control))
}
RI.GFRS.FRST <- function(decision.table, control = list()){
if (is.null(attr(decision.table, "decision.attr"))){
stop("A decision attribute is not indicated.")
}
if (attr(decision.table, "nominal.attrs")[attr(decision.table, "decision.attr")] == FALSE){
stop("The decision attribute must be nominal values")
}
control <- setDefaultParametersIfMissing(control, list(alpha.precision = 0.05, type.aggregation = c("t.tnorm", "lukasiewicz"), type.relation = c("tolerance", "eq.1"),
t.implicator = "lukasiewicz"))
objects <- decision.table
desc.attrs <- attr(decision.table, "desc.attrs")
nominal.att <- attr(decision.table, "nominal.attrs")
num.att <- ncol(objects)
indx.univ <- c(seq(1, nrow(objects)))
num.object <- nrow(objects)
names.attr <- t(colnames(objects))
alpha.precision <- control$alpha.precision
type.aggregation <- ch.typeAggregation(control$type.aggregation)
type.relation <- control$type.relation
t.similarity <- type.relation[2]
t.implicator <- control$t.implicator
t.tnorm <- type.aggregation[[2]]
res.temp <- build.discMatrix.FRST(decision.table = decision.table, type.discernibility = "alpha.red", num.red = "all", alpha.precision = alpha.precision,
type.relation = type.relation, t.implicator = t.implicator, type.aggregation = type.aggregation, show.discernibilityMatrix = TRUE)
disc.mat <- res.temp$disc.mat
att.val.red <- c()
for (i in 1 : ncol(disc.mat)){
att.val.core <- c()
disc.list <- disc.mat[, i]
disc.list <- unique(disc.list)
disc.list <- disc.list[which(!is.na(disc.list))]
att.val.core <- disc.list[which(sapply(disc.list, length) == 1)]
if (length(att.val.core) != 0){
disc.list <- disc.list[which(sapply(disc.list, length) > 1)]
for (ii in 1 : length(att.val.core)){
disc.list <- disc.list[which(sapply(disc.list, function(x){att.val.core[ii] %in% x}) == FALSE)]
}
}
else {
att.val.core <- disc.list[which.min(sapply(disc.list, length))]
disc.list <- disc.list[which(sapply(disc.list, function(x){att.val.core %in% x}) == FALSE)]
}
temp.red <- c()
while (length(disc.list) != 0){
new.red <- names(which.max(table(unlist(disc.list))))
temp.red <- c(temp.red, new.red)
disc.list <- disc.list[which(sapply(disc.list, function(x){new.red %in% x}) == FALSE)]
}
temp.red <- c(temp.red, unlist(att.val.core))
att.val.red <- append(att.val.red, list(unique(temp.red)))
}
attributes <- c(seq(1, (num.att - 1)))
control.ind <- list(type.aggregation = type.aggregation, type.relation = type.relation)
IND <- BC.IND.relation.FRST(decision.table, attributes = attributes, control = control.ind)
IND.decAttr <- BC.IND.relation.FRST(decision.table, attributes = c(num.att), control = control.ind)
control <- list(t.implicator = t.implicator, t.tnorm = t.tnorm, alpha = alpha.precision)
FRST.fvprs <- BC.LU.approximation.FRST(decision.table, IND, IND.decAttr,
type.LU = "fvprs", control = control)
cons.deg <- BC.positive.reg.FRST(decision.table, FRST.fvprs)$positive.freg
res <- cal.var.range(objects, attributes = seq(1, (num.att - 1)), nominal.att)
range.dt <- res$range.data
variance.dt <- res$variance.data
all.rules <- att.val.red
min.rules <- c()
object.rules <- list()
exit <- FALSE
while (exit == FALSE && length(all.rules) >= 1){
cover.rule <- c()
num.rl <- matrix()
indx.seq <- seq(1, length(all.rules))
indx.logical.0 <- which(sapply(all.rules, length) == 0)
if (length(indx.logical.0) != 0){
indx.seq <- indx.seq[-indx.logical.0]
}
for (j in indx.seq){
cov.rl <- c()
counter <- 0
attrs <- all.rules[[j]]
rl.obj <- objects[j, sapply(attrs, function(x) which(colnames(objects) == x))]
state.att <- nominal.att[sapply(attrs, function(x) which(colnames(objects) == x))]
range.data.temp <- matrix(range.dt[1, sapply(attrs, function(x) which(colnames(objects) == x))], nrow = 1)
variance.data.temp <- matrix(variance.dt[1, sapply(attrs, function(x) which(colnames(objects) == x))], nrow = 1)
for (k in indx.seq){
if (j != k){
temp.rl.obj <- objects[k, sapply(attrs, function(x) which(colnames(objects) == x))]
IND.rel <- matrix(nrow = 1, ncol = length(state.att))
for (ii in 1 : length(state.att)){
if (state.att[ii] == TRUE){
t.similarity <- "boolean"
}
IND.rel[1, ii] <- unlist(similarity.equation(rl.obj[ii], temp.rl.obj[ii], t.similarity, delta = 0.2,
range.data = range.data.temp[1, ii], variance.data = variance.data.temp[1, ii]))
}
if ((1 - min(IND.rel)) < cons.deg[j]){
cov.rl <- c(cov.rl, k)
counter <- counter + 1
}
}
}
cover.rule <- append(cover.rule, list(cov.rl))
num.rl[j] <- counter
}
if (length(num.rl) == num.object){
list.obj <- rbind(seq(1, num.object), num.rl)
}
indx.max.cov <- which.max(num.rl)
selected.obj <- list.obj[1, indx.max.cov]
min.rules <- append(min.rules, list(all.rules[[indx.max.cov]]))
object.rules <- append(object.rules, list(selected.obj))
all.rules <- all.rules[-c(cover.rule[[indx.max.cov]], indx.max.cov)]
list.obj <- list.obj[, -c(cover.rule[[indx.max.cov]], indx.max.cov), drop = FALSE]
if (length(all.rules) == 1){
min.rules <- append(min.rules, all.rules)
object.rules <- append(object.rules, list(list.obj[1, 1]))
exit <- TRUE
}
}
indx.logical.0 <- which(sapply(min.rules, length) == 0)
if (length(indx.logical.0) != 0){
min.rules <- min.rules[-indx.logical.0]
object.rules <- object.rules[-indx.logical.0]
}
rules <- list(attributes = min.rules, objects = object.rules, threshold = cons.deg)
return(std.rules(rules, type.method = "RI.GFRS.FRST", decision.table, t.similarity, t.tnorm))
}
RI.indiscernibilityBasedRules.RST <- function(decision.table, feature.set) {
if (!inherits(decision.table, "DecisionTable")) {
stop("Provided data should inherit from the \'DecisionTable\' class.")
}
if (!inherits(feature.set, "FeatureSubset")) {
stop("Provided feature subset should inherit from the \'FeatureSubset\' class.")
}
if(is.null(attr(decision.table, "decision.attr"))) {
stop("A decision attribute is not indicated.")
} else {
decisionIdx <- attr(decision.table, "decision.attr")
}
if(!all(attr(decision.table, "nominal.attrs"))) {
stop("Some of the attributes are numerical.
Discretize attributes before calling RST-based rule induction methods.")
}
reduct <- feature.set$reduct
if (length(reduct) >= 1) {
INDrelation <- BC.IND.relation.RST(decision.table, reduct)$IND.relation
}
else stop("empty feature subset")
clsFreqs <- table(decision.table[[decisionIdx]])
uniqueCls <- names(clsFreqs)
ruleSet <- sapply(INDrelation,
function(idxs, rule, dataS, clsVec, uniqueCls) laplaceEstimate(list(idx = as.integer(reduct),
values = as.character(unlist(dataS[idxs[1],reduct],
use.names = FALSE))),
dataS, clsVec, uniqueCls, suppIdx = idxs),
reduct, decision.table, decision.table[[decisionIdx]], uniqueCls,
simplify = FALSE, USE.NAMES = FALSE)
names(ruleSet) = NULL
attr(ruleSet, "uniqueCls") <- as.character(uniqueCls)
attr(ruleSet, "supportDenominator") <- nrow(decision.table)
attr(ruleSet, "clsProbs") <- clsFreqs/sum(clsFreqs)
attr(ruleSet, "majorityCls") <- as.character(uniqueCls[which.max(table(decision.table[[decisionIdx]]))])
attr(ruleSet, "method") <- "indiscernibilityBasedRules"
attr(ruleSet, "dec.attr") <- colnames(decision.table[decisionIdx])
attr(ruleSet, "colnames") <- colnames(decision.table)[-decisionIdx]
ruleSet = ObjectFactory(ruleSet, classname = "RuleSetRST")
return(ruleSet)
}
RI.CN2Rules.RST <- function(decision.table, K = 3) {
if (!inherits(decision.table, "DecisionTable")) {
stop("Provided data should inherit from the \'DecisionTable\' class.")
}
if(is.null(attr(decision.table, "decision.attr"))) {
stop("A decision attribute is not indicated.")
} else {
decIdx = attr(decision.table, "decision.attr")
}
if(!all(attr(decision.table, "nominal.attrs"))) {
stop("Some of the attributes are numerical.
Discretize attributes before calling RST-based rule induction methods.")
}
clsVec <- decision.table[,decIdx]
uniqueCls <- unique(clsVec)
decisionName = colnames(decision.table)[decIdx]
decision.table <- decision.table[, -decIdx]
clsFreqs <- table(clsVec)
uncoveredObjIdx <- 1:nrow(decision.table)
rules = list()
while (length(uncoveredObjIdx) > 0) {
rules[[length(rules)+1]] = findBestCN2Rule(decision.table[uncoveredObjIdx,], clsVec[uncoveredObjIdx], uniqueCls, K)
uncoveredObjIdx = uncoveredObjIdx[setdiff(1:length(uncoveredObjIdx), rules[[length(rules)]]$support)]
}
attr(rules, "uniqueCls") <- as.character(sort(uniqueCls))
attr(rules, "supportDenominator") <- nrow(decision.table)
attr(rules, "clsProbs") <- clsFreqs/sum(clsFreqs)
attr(rules, "majorityCls") <- as.character(sort(uniqueCls)[which.max(clsFreqs)])
attr(rules, "method") <- "CN2Rules"
attr(rules, "dec.attr") <- decisionName
attr(rules, "colnames") <- colnames(decision.table)[-decIdx]
rules = ObjectFactory(rules, classname = "RuleSetRST")
return(rules);
}
RI.LEM2Rules.RST <- function(decision.table) {
if (!inherits(decision.table, "DecisionTable")) {
stop("Provided data should inherit from the \'DecisionTable\' class.")
}
if(is.null(attr(decision.table, "decision.attr"))) {
stop("A decision attribute is not indicated.")
} else decIdx = attr(decision.table, "decision.attr")
if(!all(attr(decision.table, "nominal.attrs"))) {
stop("Some of the attributes are numerical.
Discretize attributes before calling RST-based rule induction methods.")
}
clsVec <- decision.table[,decIdx]
uniqueCls <- unique(clsVec)
decisionName = colnames(decision.table)[decIdx]
clsFreqs <- table(clsVec)
INDrelation = BC.IND.relation.RST(decision.table, (1:ncol(decision.table))[-decIdx])
approximations = BC.LU.approximation.RST(decision.table, INDrelation)
lowerApproximations = approximations$lower.approximation
rm(INDrelation, approximations)
descriptorsList = attr(decision.table, "desc.attrs")[-decIdx]
descriptorCandidates = list()
for (i in 1:length(descriptorsList)) {
descriptorCandidates = c(descriptorCandidates,
lapply(descriptorsList[[i]],
function(v, x) return(list(idx = x, values = v)), i))
}
attributeValuePairs = lapply(descriptorCandidates, laplaceEstimate,
decision.table[,-decIdx], clsVec, uniqueCls)
rm(descriptorsList, descriptorCandidates)
rules = list()
for(i in 1:length(lowerApproximations)) {
rules[[i]] = computeLEM2covering(as.integer(lowerApproximations[[i]]), attributeValuePairs,
clsVec, uniqueCls)
}
rules = unlist(rules, recursive = FALSE)
rules = lapply(rules, function(x) laplaceEstimate(list(idx = x$idx, values = x$values),
decision.table, clsVec, uniqueCls, suppIdx = x$support))
attr(rules, "uniqueCls") <- as.character(sort(uniqueCls))
attr(rules, "supportDenominator") <- nrow(decision.table)
attr(rules, "clsProbs") <- clsFreqs/sum(clsFreqs)
attr(rules, "majorityCls") <- as.character(sort(uniqueCls)[which.max(clsFreqs)])
attr(rules, "method") <- "LEM2Rules"
attr(rules, "dec.attr") <- decisionName
attr(rules, "colnames") <- colnames(decision.table)[-decIdx]
rules = ObjectFactory(rules, classname = "RuleSetRST")
return(rules);
}
RI.AQRules.RST <- function(decision.table, confidence = 1.0, timesCovered = 1) {
if (!inherits(decision.table, "DecisionTable")) {
stop("Provided data should inherit from the \'DecisionTable\' class.")
}
if (is.null(attr(decision.table, "decision.attr"))) {
stop("A decision attribute is not indicated.")
} else decIdx = attr(decision.table, "decision.attr")
if (!all(attr(decision.table, "nominal.attrs"))) {
stop("Some of the attributes are numerical.
Discretize attributes before calling RST-based rule induction methods.")
}
clsVec <- decision.table[,decIdx]
uniqueCls <- unique(clsVec)
decisionName = colnames(decision.table)[decIdx]
clsFreqs <- table(clsVec)
INDrelation = BC.IND.relation.RST(decision.table, (1:ncol(decision.table))[-decIdx])
approximations = BC.LU.approximation.RST(decision.table, INDrelation)
lowerApproximations = approximations$lower.approximation
rm(INDrelation, approximations)
descriptorsList = attr(decision.table, "desc.attrs")[-decIdx]
descriptorCandidates = list()
for (i in 1:length(descriptorsList)) {
tmpDescriptors = lapply(descriptorsList[[i]],
function(v, x) return(list(idx = x, values = v)), i)
tmpDescriptors = lapply(tmpDescriptors, laplaceEstimate,
decision.table[,-decIdx], clsVec, uniqueCls)
names(tmpDescriptors) = descriptorsList[[i]]
descriptorCandidates[[length(descriptorCandidates) + 1]] = tmpDescriptors
}
rm(descriptorsList, tmpDescriptors)
rules = list()
set.seed(123)
for(i in 1:length(lowerApproximations)) {
rules[[i]] = computeAQcovering(as.integer(lowerApproximations[[i]]),
descriptorCandidates,
decision.table[,-decIdx],
epsilon = 1 - confidence, K = timesCovered)
}
rules = unlist(rules, recursive = FALSE)
rules = lapply(rules, function(x) laplaceEstimate(list(idx = x$idx, values = x$values),
decision.table, clsVec, uniqueCls, suppIdx = x$support))
attr(rules, "uniqueCls") <- as.character(sort(uniqueCls))
attr(rules, "supportDenominator") <- nrow(decision.table)
attr(rules, "clsProbs") <- clsFreqs/sum(clsFreqs)
attr(rules, "majorityCls") <- as.character(sort(uniqueCls)[which.max(clsFreqs)])
attr(rules, "method") <- "AQRules"
attr(rules, "dec.attr") <- decisionName
attr(rules, "colnames") <- colnames(decision.table)[-decIdx]
rules = ObjectFactory(rules, classname = "RuleSetRST")
return(rules)
}
predict.RuleSetFRST <- function(object, newdata, ...) {
if(!inherits(object, "RuleSetFRST")) stop("not a legitimate rules based on FRST model")
if (any(object$type.method == c("RI.hybridFS.FRST", "RI.GFRS.FRST")) && object$type.model == "FRST"){
rules <- object$rules
t.similarity <- object$t.similarity
t.tnorm <- object$t.tnorm
variance.data <- object$variance.data
range.data <- object$range.data
antecedent.attr <- object$antecedent.attr
testData <- newdata[, c(colnames(newdata) %in% antecedent.attr), drop = FALSE]
res <- data.frame(stringsAsFactors = FALSE)
for (i in 1 : nrow(newdata)){
miu.Ra <- data.frame(stringsAsFactors = FALSE)
for (j in 1 : length(rules$rules)){
namesAtt <- colnames(rules$rules[[j]])
test.dt <- testData[i, match(c(namesAtt[-length(namesAtt)]), names(testData)), drop = FALSE]
valRules <- rules$rules[[j]]
tra.dt <- valRules[-ncol(valRules)]
mat.calc <- rbind(test.dt, tra.dt)
P <- which(object$antecedent.attr %in% c(namesAtt[-length(namesAtt)]))
temp.relation <- NA
for (ii in 1 : length(P)){
if (object$nominal.att[P[ii]] == TRUE){
t.similarity <- "boolean"
}
temp <- unlist(similarity.equation(test.dt[1, ii], tra.dt[1, ii], t.similarity, delta = 0.2, range.data = range.data[1, P[ii]],
variance.data = variance.data[1, P[ii]]))
if (is.na(temp.relation)){
temp.relation <- temp
}
else {
temp.relation <- func.tnorm(temp.relation, temp, t.tnorm = t.tnorm)
}
}
miu.Ra[j, 1] <- valRules[1, ncol(valRules)]
miu.Ra[j, 2] <- temp.relation
}
if (object$type.task == "classification"){
options(stringsAsFactors = FALSE)
if (object$type.method == c("RI.hybridFS.FRST")){
fired.rules <- which.max(miu.Ra[, 2])
}
else if (object$type.method == "RI.GFRS.FRST"){
miu.Ra[, 2] <- 1 - miu.Ra[, 2]
fired.rules <- which(miu.Ra[, 2] <= rules$threshold)
if (length(fired.rules) > 1){
fired.rules <- which.min(miu.Ra[fired.rules, 2])
}
}
res <- rbind(res, miu.Ra[fired.rules, 1, drop = FALSE])
}
else {
if (object$type.method == c("RI.hybridFS.FRST")){
miu.Ra <- as.matrix(miu.Ra)
result <- (miu.Ra[, 2] %*% miu.Ra[, 1, drop = FALSE]) / sum(miu.Ra[, 2])
res <- rbind(res, result)
}
}
}
}
rownames(res) <- NULL
colnames(res) <- object$consequent.attr
return(res)
}
predict.RuleSetRST <- function(object, newdata, ...) {
if(!inherits(object, "RuleSetRST")) stop("The rule set does not an object from the \'RuleSetRST\' class")
if(!inherits(newdata, "DecisionTable")) stop("Provided data should inherit from the \'DecisionTable\' class.")
method = attr(object, "method")
if (!(method %in% c("indiscernibilityBasedRules", "CN2Rules", "LEM2Rules", "AQRules"))) {
stop("Unrecognized classification method")
}
majorityCls = attr(object, "majorityCls")
uniqueCls = attr(object, "uniqueCls")
clsProbs = attr(object, "clsProbs")
predVec = switch(method,
indiscernibilityBasedRules = {
ruleSet = object[order(sapply(object, function(X) X$laplace), decreasing = TRUE)]
INDclasses = sapply(ruleSet, function(x) paste(unlist(x$values), collapse = " "))
consequents = sapply(ruleSet, function(x) x$consequent)
newdata = do.call(paste, newdata[, ruleSet[[1]]$idx, drop = FALSE])
sapply(newdata, bestFirst, INDclasses, consequents, majorityCls, uniqueCls, clsProbs)
},
CN2Rules = apply(as.matrix(newdata), 1, firstWin, ruleSet = object),
LEM2Rules = apply(as.matrix(newdata), 1, rulesVoting, ruleSet = object, ...),
AQRules = apply(as.matrix(newdata), 1, rulesVoting, ruleSet = object, ...) )
predVec <- as.data.frame(predVec)
rownames(predVec) <- NULL
colnames(predVec) <- "predictions"
return(predVec)
}
RI.laplace = function(rules, ...) {
if(!inherits(rules, "RuleSetRST")) stop("not a legitimate RuleSetRST object")
qualityVec = sapply(rules, function(x) x$laplace)
names(qualityVec) = paste0('Rule_', 1:length(rules))
qualityVec
}
RI.support = function(rules, ...) {
if(!inherits(rules, "RuleSetRST")) stop("not a legitimate RuleSetRST object")
suppD = attr(rules, "supportDenominator")
qualityVec = sapply(rules, function(x, N) length(x$support)/N, suppD)
names(qualityVec) = paste0('Rule_', 1:length(rules))
qualityVec
}
RI.confidence = function(rules, ...) {
if(!inherits(rules, "RuleSetRST")) stop("not a legitimate RuleSetRST object")
nOfClasses = length(attr(rules, "uniqueCls"))
qualityVec = sapply(rules, function(x, N) (x$laplace*(length(x$support) + N) - 1)/length(x$support), nOfClasses)
names(qualityVec) = paste0('Rule_', 1:length(rules))
qualityVec
}
RI.lift = function(rules, ...) {
if(!inherits(rules, "RuleSetRST")) stop("not a legitimate RuleSetRST object")
suppD = attr(rules, "supportDenominator")
clsProbs = attr(rules, "clsProbs")
qualityVec = sapply(rules,
function(x, probs, N) x$laplace/((probs[x$consequent]*N + 1)/(length(probs) + N)),
clsProbs, suppD)
names(qualityVec) = paste0('Rule_', 1:length(rules))
qualityVec
} |
comptest.cor <- function(x = NULL, y = NULL, z = NULL, group = NULL, r.xy = NULL, r.xz = NULL, r.yz = NULL, n = NULL,
r.1 = NULL, r.2 = NULL, n.1 = NULL, n.2 = NULL, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, digits = 3, output = TRUE) {
if (((!is.null(x) | !is.null(y) | !is.null(z) | !is.null(group)) &
(!is.null(r.xy) | !is.null(r.xz) | !is.null(r.yz) | !is.null(n) | !is.null(r.1) | !is.null(r.2) | !is.null(n.1) | !is.null(n.2))) |
(!is.null(r.xy) | !is.null(r.xz) | !is.null(r.yz) | !is.null(r.yz)) & (!is.null(r.2) | !is.null(n.1) | !is.null(n.2))) {
stop("Specifiy function parameters using arguments (x, y, z), (x, y, group), (r.xy, r.xz, r.yz, n) or (r.1, r.2, n.1, n.2)")
}
if (!is.null(r.xy) | !is.null(r.xz) | !is.null(r.yz) | !is.null(r.1) | !is.null(r.2)) {
if (any(c(r.xy, r.xz, r.yz, r.1, r.2) > 1 | c(r.xy, r.xz, r.yz, r.1, r.2) < -1)) {
stop("Specified correlation coefficient(s) out of bounds")
}
}
if (!is.null(z) & !is.null(group)) {
stop("Specify either z (dependent sample) or group (independent sample)")
}
type <- ifelse(is.null(group) & is.null(r.1) & is.null(r.2), "dependent", "independent")
if (type == "dependent") {
if (is.null(r.xy) & is.null(r.xz) & is.null(r.yz)) {
dat <- data.frame(na.omit(cbind(x, y, z)))
r.xy <- cor(dat$x, dat$y)
r.xz <- cor(dat$x, dat$z)
r.yz <- cor(dat$y, dat$z)
n <- nrow(dat)
}
if (n < 4) {
stop("Number of observations smaller than n = 4")
}
z.r.xy <- 0.5 * log((1 + r.xy) / (1 - r.xy))
z.r.xz <- 0.5 * log((1 + r.xz) / (1 - r.xz))
r.1 <- (r.xy + r.xz) / 2
cov.r <- 1 / ((1 - r.1^2)^2) * (r.yz * (1 - 2 * r.1^2) - 0.5 * r.1^2 * (1 - 2 * r.1^2 - r.yz^2))
se <- sqrt((2 - 2*cov.r) / (n - 3))
z.diff <- (z.r.xy - z.r.xz) / se
r.xy.conf <- conf.cor(r = r.xy, n = n, conf.level = conf.level, output = FALSE)$res
r.xz.conf <- conf.cor(r = r.xz, n = n, conf.level = conf.level, output = FALSE)$res
cor.r <- ((r.yz - 0.5 * r.xy * r.xz) * (1 - r.xy^2 - r.xz^2 - r.yz^2) + r.yz^3) /
((1 - r.xy^2) * (1 - r.xz^2))
lower <- r.xy - r.xz - sqrt((r.xy - r.xy.conf$lower)^2 + (r.xz.conf$upper - r.xz)^2 -
2 * cor.r * (r.xy - r.xy.conf$lower) * (r.xz.conf$upper - r.xz))
upper <- r.xy - r.xz + sqrt((r.xy.conf$upper - r.xy)^2 + (r.xz - r.xz.conf$lower)^2 -
2* cor.r * (r.xy.conf$upper - r.xy) * (r.xz - r.xz.conf$lower))
} else {
if (is.null(r.1) & is.null(r.2) & is.null(n.1) & is.null(n.2)) {
dat <- apply(cbind(x, y), 2, function(x) split(x, group))
r.1 <- cor(dat$x[[1]], dat$y[[1]], "complete.obs")
n.1 <- nrow(na.omit(cbind(dat$x[[1]], dat$y[[1]])))
r.2 <- cor(dat$x[[2]], dat$y[[2]], "complete.obs")
n.2 <- nrow(na.omit(cbind(dat$x[[2]], dat$y[[2]])))
}
if (any(c(n.1, n.2) < 4)) {
stop("Number of observations smaller than n = 4")
}
z.r.1 <- 0.5 * log((1 + r.1) / (1 - r.1))
z.r.2 <- 0.5 * log((1 + r.2) / (1 - r.2))
se <- sqrt(1 / (n.1 - 3) + 1 / (n.2 - 3))
z.diff <- (z.r.1 - z.r.2) / se
r.1.conf <- conf.cor(r = r.1, n = n.1, output = FALSE)$res
r.2.conf <- conf.cor(r = r.2, n = n.2, output = FALSE)$res
lower <- r.1 - r.2 - sqrt((r.1 - r.1.conf$lower)^2 + (r.2.conf$upper - r.2)^2)
upper <- r.1 - r.2 + sqrt((r.1.conf$upper - r.1)^2 + (r.2 - r.2.conf$lower)^2)
}
alternative <- ifelse(all(c("two.sided", "less", "greater") %in% alternative), "two.sided", alternative)
if (alternative == "two.sided") {
pval <- pnorm(abs(z.diff), lower.tail = FALSE) * 2
}
if (alternative == "greater") {
pval <- ifelse(z.diff < 0, 1, pnorm(z.diff, lower.tail = FALSE))
}
if (alternative == "less") {
pval <- ifelse(z.diff > 0, 1, pnorm(z.diff, lower.tail = TRUE))
}
if (type == "dependent") {
object <- list(call = match.call(),
dat = data.frame(x, y, z),
spec = list(type = "dependent", alternative = alternative, conf.level = conf.level, digits = digits),
res = list(z = z.diff, pval = pval, r.xy = r.xy, r.xz = r.xz, r.yz = r.yz, diff = r.xy - r.xz, n = n,
lower = lower, upper = upper))
} else {
object <- list(call = match.call(),
dat = data.frame(x, y, group),
spec = list(type = "independent", alternative = alternative, conf.level = conf.level, digits = digits),
res = list(z = z.diff, pval = pval, r.1 = r.1, n.1 = n.1, r.2 = r.2, n.2 = n.2, diff = r.1 - r.2,
lower = lower, upper = upper))
}
class(object) <- "comptest.cor"
if (output == TRUE) { print(object) }
return(invisible(object))
} |
library(ggplot2)
library(patchwork)
data(PlantCounts, package = "MSG")
set.seed(717)
gg_plant =
ggplot(PlantCounts, aes(altitude, counts)) +
geom_point(color = rgb(0, 0, 0, 0.3))
gg_plant1 = gg_plant
for (i in seq(0.02, 1, length = 70)) {
gg_plant1 = gg_plant1 +
geom_smooth(se = FALSE, span = i, color = rgb(0.4, i, 0.4)) +
labs(x = "高度", y = "频数")
}
gg_plant2 = gg_plant
for (i in 1:200) {
idx = sample(nrow(PlantCounts), 300, TRUE)
gg_plant2 = gg_plant2 +
geom_smooth(data = PlantCounts[idx, ], se = FALSE,
color = rgb(0, 0, 0, 0.1)) +
labs(x = "高度", y = "频数")
}
print(gg_plant1 | gg_plant2) |
KnowBPolygon<-function(data, format="A", shape=NULL, shapenames=NULL, admAreas=FALSE, Area="World", curve= "Rational", estimator=1,
cutoff=1, cutoffCompleteness= 0, cutoffSlope= 1, extent=TRUE, minLon, maxLon, minLat, maxLat, int=30,
colbg="
colexc = NULL, colfexc="black", colscale=c("
legend.pos="y", breaks=9, xl=0, xr=0, yb=0, yt=0, asp, lab = NULL, xlab = "Longitude", ylab = "Latitude", main1="Records",
main2="Observed richness", main3="Completeness", main4="Slope", cex.main = 1.6, cex.lab = 1.4, cex.axis = 1.2, cex.legend=0.9,
family = "sans", font.main = 2, font.lab = 1, font.axis = 1, lwdP=0.6, lwdC=0.1, trans=c(1,1),
ndigits=0, save="CSV", file1 = "Species per site", file2 = "Estimators",
file3 = "Standard error of the estimators", na = "NA", dec = ",", row.names = FALSE, Maps=TRUE,
jpg=TRUE, jpg1="Records.jpg", jpg2="Observed richness.jpg", jpg3="Completeness.jpg", jpg4="Slope.jpg",cex=1.5, pch=15,
cex.labels=1.5, pchcol="red", ask=FALSE){
if(is.null(shape)){
if(Area=="World" & xl==0){
xl=182
}
if(Area=="World" & xr==0){
xr=188
}
}
if(!missing(minLon)){
if(!missing(maxLon)){
if(minLon==-180 & maxLon==180){
xl=182
xr=188
}
}
}
method="accumulation"
SpR<-FALSE
largematrix<-TRUE
options(warn=-1)
if(jpg==FALSE) par(ask=ask) else yuret<-1
if(exists("adworld")==FALSE){
adworld<-1
stop("It is necessary to load data(adworld)")
}
if(Area!="World" & exists("adworld1")==FALSE){
stop("It is necessary to use RWizard and replace data(adworld) by @_Build_AdWorld_, for using administative areas")
}
if(!is.null(exclude)){
stop("It is necessary to use RWizard and replace data(adworld) by @_Build_AdWorld_, for using administative areas")
}
if(exists("adworld1")==FALSE){
adworld1<-1
}
if(exists("adworld2")==FALSE){
adworld2<-1
}
if(!is.null(shape) & is.null(shapenames)){
stop("It is necessary to specify in the argment 'shapenames' the variable with the names of the polygons in the shape")
}
values1<-data.frame(1,2,3,4,5,6,7,8,9,10,11)
values2<-data.frame(1,2,3,4,5,6,7,8)
values3<-data.frame(1,2,3,4,5,6,7,8,9,10,11,12,13)
sevalues1<-data.frame(1,2,3,4,5,6,7)
sevalues2<-data.frame(1,2,3,4,5,6)
sevalues3<-data.frame(1,2,3,4,5,6,7,8)
salA<-data.frame(c(2,5,6,1,0,6,5,8,7,4,9,8), nrow=4)
sal<-data.frame(c(2,5,6,1,0,6,5,8,7,4,9,8), nrow=4)
cu2<-NA;cu3<-NA;cu4<-NA;cu5<-NA
sp2<-NA;sp3<-NA;sp4<-NA;sp5<-NA
serandom<-NA;seexact<-NA;secoleman<-NA;serarefaction<-NA
if(format=="B"){
data[is.na(data)]<-0
}
if(format=="A"){
ZZ<-matrix(rep("",8),nrow=4)
x<-na.exclude(data)
if(format=="B"){
xLo<-x[,1]
xLa<-x[,2]
dimg<-dim(x[,c(-1,-2)])
replicas<-rep(dimg[1], dimg[2])
x2<-matrix(as.matrix(x[,c(-1,-2)]), ncol=1)
headers<-names(x[,c(-1,-2)])
sps<-rep(x=headers,times=replicas)
xLo<-rep(x=xLo,times=dimg[2])
xLa<-rep(x=xLa,times=dimg[2])
x<-data.frame(sps,xLo,xLa,x2)
names(x)<-c("Species","Longitude","Latitude", "Counts")
x<-x[x$Counts>0,]
x<-x[(x$Longitude!=0 & x$Latitude!=0),]
}
if(format=="A"){
if(method=="accumulation"){
b<-x[,4]
x<-x[rep(1:nrow(x[,1:3]), b), ]
x[,4]<-1
}
}
if(format=="A"){
re<-dim(x)
Records<-seq(1,re[1],1)
temp<-cbind(x,Records)
div<-x[,2]*cos(180*3.1416/180)+x[,3]*sin(90*3.1416/180)+(x[,2]+x[,3])*x[,2]+(x[,2]-x[,3])*x[,3]+
(x[,2]+x[,3])*x[,3]+(x[,2]-x[,3])*x[,2]+(x[,2]-x[,3])*x[,2]*x[,3]+(x[,2]+x[,3])*x[,2]*x[,3]
dt1<-cbind(x,div)
dt1<-dt1[order(dt1[,5]), ]
pp1<-subset(temp, !duplicated(temp[,1]))
dimtemp<-dim(temp)
dimpp1<-dim(pp1)
elements<-dimtemp[1]*dimpp1[1]
rm(pp1)
elements[is.na(elements)]<-0
if(elements>2000000000) elements<-0 else elements<-elements
if(SpR==FALSE) elements<-0 else elements<-elements
if(elements==0){
datosac<-x
datosf<-x
}
else{
datosf<-with(dt1, table(dt1[,5],dt1[,1]))
datosac<-with(temp, table(temp[,5],temp[,1]))
}
sums<-aggregate(datosf[,4],by=list(datosf[,1],datosf[,2],datosf[,3]),sum,na.rm=TRUE)
names(sums)<-c("Species","Longitude","Latitude","Records")
if(save=="RData"){
file1<-paste(file1,".RData", sep="")
save(sums, file=file1)
}
else{
file1<-paste(file1,".CSV", sep="")
if(dec=="."){
write.csv(x=sums, file = file1, row.names=row.names,na=na, fileEncoding = "")
}
else{
write.csv2(x=sums, file = file1, row.names=row.names,na=na, fileEncoding = "")
}
}
if(elements==0){
datosf<-x
datosac<-x
}
else{
datosac<-cbind(temp[,2:3],datosac)
datos2<-dt1[,2:3]
datos2<-subset(datos2, !duplicated(datos2))
datosf<-cbind(datos2,datosf)
datosf<-datosf[order(datosf[,1], datosf[,2]), ]
}
datosf[is.na(datosf)]<-0
species<-aggregate(x[,4],by=list(x[,1]),FUN=sum,na.rm=TRUE)
species1<-aggregate(x[,4],by=list(x[,1]),FUN=mean,na.rm=TRUE)
species<-cbind(species,species1[,2])
colnames(species)<-c("Species","Sum", "Mean")
}
else{
datosf<-x
datosac<-replace(x[,-c(1,2)], x[,-c(1,2)]>1,1)
datosac<-cbind(x[,c(1,2)],datosac)
Sum<-colSums(x[,-c(1,2)])
Mean<-colMeans(x[,-c(1,2)])
species<-rbind(Sum,Mean)
colnames(species)<-colnames(x[,-c(1,2)])
species<-cbind(c("Sum","Mean"),species)
}
if(format=="B") elements<-1 else elements<-elements
if(elements==0){
}
else{
}
rm(x)
}
else{
tableR<-data
}
if(format=="A"){
tableR<-data
}
if(format=="B"){
tableR<-as.data.frame(data)
}
ppp<-1
pppp<-1
if(is.null(shape)){
out<-split(adworld,f = adworld$Area)
out<-out[c(-1,-2)]
if(Area!="World" & exists("adworld1")==TRUE){
out<-split(adworld1,f = adworld1$Area)
}
Areas<-names(out)
numero<-length(Areas)
out<-lapply(out, function(x) x[!(names(x) %in% c("Area"))])
out<-as.matrix(out)
}
else{
if(class(shape)=="list"){
data<-shape[[1]]
lsh<-length(shape)
if(lsh>1){
ss<-seq(2,lsh)
hh<-as.character(shape[ss])
data<-eval(parse(text=paste("subset(data,",noquote(shapenames), " %in% hh)", sep="")))
}
}
else{
data<-shape
if(class(data)=="character"){
data<-eval(parse(text=paste(".GlobalEnv$", data, sep="")))
}
}
numero<-length(data)
Areas<-eval(parse(text=paste("data$",noquote(shapenames),sep="")))
}
cut<-cutoff
leng1<-numero
uio<-1
pvalor<-1
suma<-1
sumas<-1
ZZ<-matrix(rep("",8),nrow=4)
rm(dt1)
rm(datosf)
rm(temp)
rm(species1)
rm(species)
rm(div)
rm(Records)
rm(datosac)
rm(datos2)
rm(values1)
rm(values2)
rm(values3)
rm(pp)
rm(sums)
for(z in 1:numero){
end.time<-Sys.time()
end.times <- format(end.time, "%b %d, %Y at %X")
ZZ[1,1]<-end.times
ZZ[2,1]<-paste(z,"from", numero,"polygons")
ZZ[2,2]<-""
write.table(ZZ,"Inf.txt", row.names=FALSE,col.names=FALSE)
if(is.null(shape)){
pp<-as.data.frame(out[z])
}
else{
pp<-as.data.frame(data@polygons[[z]]@Polygons[[1]]@coords)
}
if(format=="B"){
log<-mgcv::in.out(as.matrix(pp),as.matrix(tableR[, c(1,2)]))
}
if(format=="A"){
log<-mgcv::in.out(as.matrix(pp),as.matrix(tableR[, c(2,3)]))
}
if(any(log==TRUE)==TRUE){
if(format=="B"){
mm<-cbind(tableR,log)
dhh<-dim(mm)
tableR<-subset(mm,(mm[,dhh[2]] == FALSE))
tableR<-tableR[,c(-dhh[2])]
mm<-mm[mm[,dhh[2]],]
mm<-mm[,c(-1,-2,-dhh[2])]
mm<-mm[, apply(mm, 2, sum)!=0]
if(class(mm)=="integer"){
dimtt<-length(mm)
}
else{
dimt<-dim(mm)
dimtt<-dimt[1]
}
}
if(format=="A"){
mm<-cbind(tableR,log)
dhh<-dim(mm)
tableR<-subset(mm,(mm[,dhh[2]] == FALSE))
tableR<-tableR[,c(-dhh[2])]
mm<-mm[mm[,dhh[2]],]
mm<-mm[,c(-dhh[2])]
sp<-as.character(unique(mm[,1]))
lsp<-length(sp)
dco<-dim(mm)
Lm<-mm[,2:3]
for(as in 1:lsp){
col<-rep(0,dco[1])
r<-which(mm[,1]==sp[as])
col[r]<-1
Lm<-cbind(Lm,col)
}
names(Lm)<-c("Longitude","Latitude",sp)
mm<-Lm[,c(-1,-2)]
if(class(mm)=="integer"){
dimtt<-length(mm)
}
else{
dimt<-dim(mm)
dimtt<-dimt[1]
}
}
R2random<-NA
R2exact<-NA
if(method=="accumulation"){
if(estimator==0 | estimator==2){
if(is.null(dim(mm))){
cu2<-NA
serandom<-NA
}
else{
cu<- vegan::specaccum(mm, method="random", permutations = 200)
datosc<-data.frame(cu$richness, cu$sites)
ymax<-max(datosc[,1],na.rm=T)
ymin<-min(datosc[,1],na.rm=T)
xmax<-max(datosc[,2],na.rm=T)
xmin<-min(datosc[,2],na.rm=T)
if(curve=="Clench"){
modelo<-try(nls(cu.richness ~ A*cu.sites/(1+B*cu.sites), data=datosc, start=list(A=1, B=0.01)), silent=T)
}
if(curve=="Exponential"){
modelo<-try(nls(cu.richness ~ (A)*(1-exp((-B*cu.sites))), data=datosc, start=list(A=ymax, B=0.01)), silent=T)
}
if(curve=="Saturation"){
modelo<-try(nls(cu.richness~A*(1-exp(-B*(cu.sites-C))), data=datosc, trace=T, start=list(A=ymax, B=0.01, C=0)), silent=TRUE)
}
if(curve=="Rational"){
modelo<-try(nls(cu.richness~(A+B*cu.sites)/(1+C*cu.sites), data=datosc, trace=T, start=list(A=1, B=1, C=0)), silent=TRUE)
}
res<-summary(modelo)
if(res[1]=="1"){
cu2<-NA
serandom<-NA
}
else{
cu2<-res$parameters[1,1]/res$parameters[2,1]
if(curve=="Saturation" | curve=="Exponential"){
cu2<-res$parameters[1,1]
}
if(curve=="Rational"){
cu2<-res$parameters[2,1]/res$parameters[3,1]
}
if(cu2<0){
cu2<-NA
sp2<-NA
serandom<-NA
}
else{
cu2<-cu2
leng<-length(cu$sites)
sp2<-cu$richness[leng]-cu$richness[leng-1]
if(curve=="Clench"){res1<-datosc[,1]-(res$coefficients[1,1]*datosc[,2])/(1+res$coefficients[2,1]*datosc[,2])}
if(curve=="Exponential"){res1<-datosc[,1]-(res$coefficients[1,1])*(1-exp((-res$coefficients[2,1]*datosc[,2])))}
if(curve=="Saturation"){res1<-datosc[,1]-(res$coefficients[1,1]*(1-exp(-res$coefficients[2,1]*(datosc[,2]-res$coefficients[3,1]))))}
if(curve=="Rational"){res1<-datosc[,1]-(res$coefficients[1,1]+res$coefficients[2,1]*datosc[,2])/(1+res$coefficients[3,1]*datosc[,2])}
serandom<-sqrt(sum((res1)^2)/length(res1))
R2random<-1-var(res1, na.rm=T)/var(datosc[,1], na.rm=T)
}
}
}
}
if(estimator==0 | estimator==1){
if(is.null(dim(mm))){
cu3<-NA
seexact<-NA
}
else{
cu<- vegan::specaccum(mm, method="exact")
datosc<-data.frame(cu$richness, cu$sites)
ymax<-max(datosc[,1],na.rm=T)
ymin<-min(datosc[,1],na.rm=T)
xmax<-max(datosc[,2],na.rm=T)
xmin<-min(datosc[,2],na.rm=T)
if(curve=="Clench"){
modelo<-try(nls(cu.richness ~ A*cu.sites/(1+B*cu.sites), data=datosc, start=list(A=1, B=0.01)), silent=T)
}
if(curve=="Exponential"){
modelo<-try(nls(cu.richness ~ (A)*(1-exp((-B*cu.sites))), data=datosc, start=list(A=ymax, B=0.01)), silent=T)
}
if(curve=="Saturation"){
modelo<-try(nls(cu.richness~A*(1-exp(-B*(cu.sites-C))), data=datosc, trace=T, start=list(A=ymax, B=0.01, C=0)), silent=TRUE)
}
if(curve=="Rational"){
modelo<-try(nls(cu.richness~(A+B*cu.sites)/(1+C*cu.sites), data=datosc, trace=T, start=list(A=1, B=1, C=0)), silent=TRUE)
}
res<-summary(modelo)
if(res[1]=="1"){
cu3<-NA
seexact<-NA
}
else{
cu3<-res$parameters[1,1]/res$parameters[2,1]
if(curve=="Saturation" | curve=="Exponential"){
cu3<-res$parameters[1,1]
}
if(curve=="Rational"){
cu3<-res$parameters[2,1]/res$parameters[3,1]
}
if(cu3<0){
cu3<-NA
sp3<-NA
seexact<-NA
}
else{
cu3<-cu3
leng<-length(cu$sites)
sp3<-cu$richness[leng]-cu$richness[leng-1]
if(curve=="Clench"){res1<-datosc[,1]-(res$coefficients[1,1]*datosc[,2])/(1+res$coefficients[2,1]*datosc[,2])}
if(curve=="Exponential"){res1<-datosc[,1]-(res$coefficients[1,1])*(1-exp((-res$coefficients[2,1]*datosc[,2])))}
if(curve=="Saturation"){res1<-datosc[,1]-(res$coefficients[1,1]*(1-exp(-res$coefficients[2,1]*(datosc[,2]-res$coefficients[3,1]))))}
if(curve=="Rational"){res1<-datosc[,1]-(res$coefficients[1,1]+res$coefficients[2,1]*datosc[,2])/(1+res$coefficients[3,1]*datosc[,2])}
seexact<-sqrt(sum((res1)^2)/length(res1))
R2exact<-1-var(res1, na.rm=T)/var(datosc[,1], na.rm=T)
}
}
}
}
if(estimator==0){
Methods<-c(cu3,cu2)
Methods[Methods < 0] <- NA
seMethods<-c(seexact, serandom)
seMethods[seMethods < 0] <- NA
Methodssp<-c(sp3, sp2)
Methodssp[Methodssp < 0] <- NA
slope<-mean(Methodssp, na.rm=T)
pred<-mean(Methods, na.rm=T)
}
if(estimator==1){
Methods<-c(cu3)
Methods[Methods < 0] <- NA
seMethods<-c(seexact)
seMethods[seMethods < 0] <- NA
Methodssp<-c(sp3)
Methodssp[Methodssp < 0] <- NA
slope<-Methodssp
pred<-Methods
}
if(estimator==2){
Methods<-c(cu2)
Methods[Methods < 0] <- NA
seMethods<-c(serandom)
seMethods[seMethods < 0] <- NA
Methodssp<-c(sp2)
Methodssp[Methodssp < 0] <- NA
slope<-Methodssp
pred<-Methods
}
dimy<-dim(mm)
if(is.null(dimy)){
dimy[2]<-1
records<-length(mm)
}
else{
records<-dimy[1]
}
com<-(dimy[2]*100/pred)
pred<-round(pred)
residuals<-dimy[2]-pred
if(!is.null(dimy[2]) & !is.null(records) & estimator==0 & length(mm)>1){
if((records/dimy[2])>cut){
if(!is.na(slope) & slope>cutoffSlope){
com<-NA
}
if(!is.na(com) & com<cutoffCompleteness){
com<-NA
}
if(is.na(cu3)){
sp3<-NA
}
if(is.na(cu2)){
sp2<-NA
}
if(is.na(sp3) | is.na(sp2)){
slope<-NA
}
ratio<-records/dimy[2]
estimators<-data.frame(Areas[z],records, dimy[2], cu3,cu2,sp3,sp2,slope,com, ratio)
seestimators<-data.frame(Areas[z],records, dimy[2],seexact, serandom,R2exact,R2random)
}
else{
ratio<-records/dimy[2]
estimators<-data.frame(Areas[z],records, dimy[2], NA,NA,NA,NA,NA,NA,ratio)
seestimators<-data.frame(Areas[z],records, dimy[2],NA, NA,NA,NA)
}
colnames(estimators)<-c("Area","Records","Observed.richness", "Richness.exact", "Richness.random","Slope.exact", "Slope.random", "Mean.slope", "Completeness", "Ratio")
colnames(seestimators)<-c("Area","Records","Observed.richness","SE.exact", "SE.random","R2.exact","R2.random")
if(pppp==1){
finales<-estimators
finalsees<-seestimators
pppp<-2
}
else{
finales<-rbind(finales,estimators)
finalsees<-rbind(finalsees,seestimators)
}
}
if(!is.null(dimy[2]) & !is.null(records) & estimator==1 & length(mm)>1){
if(records/dimy[2]>cut){
if(!is.na(sp3) & sp3>cutoffSlope){
com<-NA
}
if(!is.na(com) & com<cutoffCompleteness){
com<-NA
}
if(is.na(cu3)){
sp3<-NA
}
ratio<-records/dimy[2]
estimators<-data.frame(Areas[z],records, dimy[2], cu3,sp3,com,ratio)
seestimators<-data.frame(Areas[z],records, dimy[2], seexact,R2exact)
}
else{
ratio<-records/dimy[2]
estimators<-data.frame(Areas[z],records, dimy[2], NA,NA,NA,ratio)
seestimators<-data.frame(Areas[z],records, dimy[2],NA,NA)
}
colnames(estimators)<-c("Area","Records","Observed.richness", "Richness","Slope", "Completeness","Ratio")
colnames(seestimators)<-c("Area","Records","Observed.richness","SE","R2")
if(pppp==1){
finales<-estimators
finalsees<-seestimators
pppp<-2
}
else{
finales<-rbind(finales,estimators)
finalsees<-rbind(finalsees,seestimators)
}
}
if(!is.null(dimy[2]) & !is.null(records) & estimator==2 & length(mm)>1){
if((records/dimy[2])>cut){
if(!is.na(sp2) & sp2>cutoffSlope){
com<-NA
}
if(!is.na(com) & com<cutoffCompleteness){
com<-NA
}
if(is.na(cu2)){
sp2<-NA
}
ratio<-records/dimy[2]
estimators<-data.frame(Areas[z],records, dimy[2], cu2,sp2,com,ratio)
seestimators<-data.frame(Areas[z],records, dimy[2], serandom,R2random)
}
else{
ratio<-records/dimy[2]
estimators<-data.frame(Areas[z],records, dimy[2], NA,NA,NA,ratio)
seestimators<-data.frame(Areas[z],records, dimy[2],NA,NA)
}
colnames(estimators)<-c("Area","Records","Observed.richness", "Richness","Slope", "Completeness","Ratio")
colnames(seestimators)<-c("Area","Records","Observed.richness","SE","R2")
if(pppp==1){
finales<-estimators
finalsees<-seestimators
pppp<-2
}
else{
finales<-rbind(finales,estimators)
finalsees<-rbind(finalsees,seestimators)
}
}
}
}
rm(log)
rm(cu)
}
end.time<-Sys.time()
end.times <- format(end.time, "%b %d, %Y at %X")
ZZ[1,1]<-end.times
ZZ[2,1]<-"Saving files...."
ZZ[2,2]<-""
write.table(ZZ,"Inf.txt", row.names=FALSE,col.names=FALSE)
if(exists("finales")==FALSE){
stop("There are no records in any of the shapes")
}
else{
estimators<-finales
seestimators<-finalsees
if(save=="RData"){
file2<-paste(file2,".RData", sep="")
file3<-paste(file3,".RData", sep="")
save(estimators, file=file2)
save(seestimators, file=file3)
}
else{
file2<-paste(file2,".CSV", sep="")
file3<-paste(file3,".CSV", sep="")
if(dec=="."){
write.csv(x=estimators, file = file2, row.names=row.names,na=na, fileEncoding = "")
write.csv(x=seestimators, file = file3, row.names=row.names,na=na, fileEncoding = "")
}
else{
write.csv2(x=estimators, file = file2, row.names=row.names,na=na, fileEncoding = "")
write.csv2(x=seestimators, file = file3, row.names=row.names,na=na, fileEncoding = "")
}
}
}
if(Maps==TRUE){
temporal<-estimators
datos<-data
estimators<-na.exclude(estimators)
AreasS<-as.character(unique(estimators[,1]))
if(length(AreasS)<=1){
stop("Maps are not depicted because there are less than two polygons with information about completeness (see the file Estimators)")
}
if(is.null(shape)){
data<-subset(adworld, adworld[,3]==AreasS)
}
else{
data<-eval(parse(text=paste("subset(data,",noquote(shapenames), " %in% AreasS)", sep="")))
}
if(method=="accumulation") graphics<-4 else graphics<-3
if(admAreas==TRUE | is.null(shape)){
d<-length(Area)
AA<-Area[1]
if (AA=="World"){
datos1<-adworld[2:5,]
}
else{
datos1<-rbind(adworld1,adworld2)
}
datos1<-na.exclude(datos1)
}
dimes<-dim(estimators)
for(gg in 1:graphics){
if(gg==1){
filejpg<-jpg1
main<-main1
tt<-2
AreasS<-as.character(unique(temporal[,1]))
if(is.null(shape)){
data<-subset(adworld, adworld[,3]==AreasS)
}
else{
data<-eval(parse(text=paste("subset(datos,",noquote(shapenames), " %in% AreasS)", sep="")))
}
var<-temporal[,tt]
ZZ[1,1]<-end.times
ZZ[2,1]<-"Printing plot"
ZZ[2,2]<-main1
}
if(gg==2){
filejpg<-jpg2
main<-main2
tt<-3
AreasS<-as.character(unique(temporal[,1]))
if(is.null(shape)){
data<-subset(adworld, adworld[,3]==AreasS)
}
else{
data<-eval(parse(text=paste("subset(datos,",noquote(shapenames), " %in% AreasS)", sep="")))
}
var<-temporal[,tt]
ZZ[1,1]<-end.times
ZZ[2,1]<-"Printing plot"
ZZ[2,2]<-main2
}
if(gg==3){
filejpg<-jpg3
main<-main3
tt<-dimes[2]-2
AreasS<-as.character(unique(estimators[,1]))
if(!is.null(shape)){
data<-eval(parse(text=paste("subset(datos,",noquote(shapenames), " %in% AreasS)", sep="")))
}
var<-estimators[,"Completeness"]
ZZ[1,1]<-end.times
ZZ[2,1]<-"Printing plot"
ZZ[2,2]<-main3
}
if(gg==4){
filejpg<-jpg4
main<-main4
tt<-dimes[2]-3
AreasS<-as.character(unique(estimators[,1]))
if(estimator==1 | estimator==2) var<-estimators[,"Slope"] else var<-estimators[,"Mean.slope"]
ZZ[1,1]<-end.times
ZZ[2,1]<-"Printing plot"
ZZ[2,2]<-main4
colscale<-rev(colscale)
ndigits=ndigits+2
}
write.table(ZZ,"Inf.txt", row.names=FALSE,col.names=FALSE)
if(!is.null(shape)){
if(class(var)=="character"){
variable<-datos@data[,var]
}
else{
variable<-var
}
if(class(variable)=="factor"){
variable<-as.numeric(levels(variable))[variable]
}
}
else{
variable<-as.numeric(var)
}
if(jpg==TRUE){
jpeg(filename = filejpg, width = 8000, height = 4000, units = "px", pointsize = 14, quality = 1200, bg = "white", res = 600)
}
squishplot <- function(xlim,ylim,asp=1){
if(length(xlim) < 2) stop('xlim must be a vector of length 2')
if(length(ylim) < 2) stop('ylim must be a vector of length 2')
tmp <- par(c('plt','pin','xaxs','yaxs'))
if( tmp$xaxs == 'i' ){
xlim <- range(xlim)
} else {
tmp.r <- diff(range(xlim))
xlim <- range(xlim) + c(-1,1)*0.04*tmp.r
}
if( tmp$yaxs == 'i' ){
ylim <- range(ylim)
} else {
tmp.r <- diff(range(ylim))
ylim <- range(ylim) + c(-1,1)*0.04*tmp.r
}
tmp2 <- (ylim[2]-ylim[1])/(xlim[2]-xlim[1])
tmp.y <- tmp$pin[1] * tmp2 * asp
if(tmp.y < tmp$pin[2]){
par(pin=c(tmp$pin[1], tmp.y))
par(plt=c(tmp$plt[1:2], par('plt')[3:4]))
} else {
tmp.x <- tmp$pin[2]/tmp2/asp
par(pin=c(tmp.x, tmp$pin[2]))
par(plt=c(par('plt')[1:2], tmp$plt[3:4]))
}
return(invisible(tmp['plt']))
}
if(!is.null(shape)){
colors<- colorRampPalette(colscale)(int)
if(class(variable)=="factor"){
class<-cut(levels(variable)[variable], int)
}
else{
class<-cut(as.numeric(variable), int)
}
colors<-colors[class]
}
if (missing(inc)) inc=0.005 else inc=inc
if(!is.null(shape)){
if (missing(maxLon)){
if(datos@bbox[1,2]<0) maxLon<-(datos@bbox[1,2]-datos@bbox[1,2]*inc) else maxLon<-(datos@bbox[1,2]+datos@bbox[1,2]*inc)
}
else {
maxLon<-maxLon
}
if (missing(minLon)){
if(datos@bbox[1,1]<0) minLon<-(datos@bbox[1,1]+datos@bbox[1,1]*inc) else minLon<-(datos@bbox[1,1]-datos@bbox[1,1]*inc)
}
else {
minLon<-minLon
}
if (missing(maxLat)){
if(datos@bbox[2,2]<0) maxLat<-(datos@bbox[2,2]-datos@bbox[2,2]*inc) else maxLat<-(datos@bbox[2,2]+datos@bbox[2,2]*inc)
}
else {
maxLat<-maxLat
}
if (missing(minLat)){
if(datos@bbox[2,1]<0) minLat<-(datos@bbox[2,1]+datos@bbox[2,1]*inc) else minLat<-(datos@bbox[2,1]-datos@bbox[2,1]*inc)
}
else {
minLat<-minLat
}
}
else{
if (AA=="World"){
if (missing(minLat)) minLat<--90 else minLat<-minLat
if (missing(maxLat)) maxLat<-90 else maxLat<-maxLat
if (missing(minLon)) minLon<--180 else minLon<-minLon
if (missing(maxLon)) maxLon<-180 else maxLon<-maxLon
}
else{
if (missing(maxLon)){
if(max(datos1$Lon)<0) maxLon<-(max(datos1$Lon)-max(datos1$Lon)*inc) else maxLon<-(max(datos1$Lon)+max(datos1$Lon)*inc)
}
else {
maxLon<-maxLon
}
if (missing(minLon)){
if(min(datos1$Lon)<0) minLon<-(min(datos1$Lon)+min(datos1$Lon)*inc) else minLon<-(min(datos1$Lon)-min(datos1$Lon)*inc)
}
else {
minLon<-minLon
}
if (missing(maxLat)){
if(max(datos1$Lat)<0) maxLat<-(max(datos1$Lat)-max(datos1$Lat)*inc) else maxLat<-(max(datos1$Lat)+max(datos1$Lat)*inc)
}
else {
maxLat<-maxLat
}
if (missing(minLat)){
if(min(datos1$Lat)<0) minLat<-(min(datos1$Lat)+min(datos1$Lat)*inc) else minLat<-(min(datos1$Lat)-min(datos1$Lat)*inc)
}
else {
minLat<-minLat
}
}
}
legend.max=max(variable)
legend.min=min(variable)
if(legend.min<0) legend.min<-legend.min+legend.min*0.1/100 else legend.min<-legend.min-legend.min*0.1/100
if(legend.max<0) legend.max<-legend.max-legend.max*0.1/100 else legend.max<-legend.max+legend.max*0.1/100
Lati<-(maxLat+minLat)/2
if (pro==TRUE) aspe=(1/cos(Lati*pi/180)) else aspe=1
if (missing(asp)) asp=aspe else asp=asp
tmp<-squishplot(xlim=c(minLon,maxLon), ylim=c(minLat,maxLat), asp=aspe)
if(min(variable)==0) ini<-(-0.00001) else ini<-legend.min
legend.freq1=abs((legend.max-ini)/(length(colscale)))
legend.freq=abs((legend.max-ini)/(breaks-1))
if(missing(legend.pos)){
if((maxLon-minLon)>260 & (maxLon-minLon)/(maxLat-minLat)>2.265) legend.pos="x" else legend.pos=legend.pos
}
if (legend.pos=="y") par(oma=c(0,0,0,1)) else par(oma=c(0,0,2,0))
plot(0,0,xlim=c(minLon,maxLon),ylim=c(minLat,maxLat),xlab=xlab, main="", axes=TRUE, pty="s",
ylab = ylab, cex.lab=cex.lab, cex.main=cex.main, cex.axis= cex.axis,type="n",bty="o", font.lab=font.lab, font.axis=font.axis,lab=lab,yaxs="i",xaxs="i",yaxt="n",xaxt="n")
mtext(text=main,side=3, line=0.3, cex=cex.main, font=font.main)
axis(side=1,xlim=c(minLon,maxLon),lwd=lwdP, cex.axis=cex.axis)
axis(side=2,ylim=c(minLat,maxLat),lwd=lwdP, cex.axis=cex.axis)
if(colbg=="
if(admAreas==TRUE){
if (AA=="World") {
polygon(adworld$Lon,adworld$Lat,col=colcon, border=colf)
if(!is.null(exclude)){
polygon(adworld2$Lon,adworld2$Lat,col=colexc, border=colfexc)
}
}
else {
polygon(adworld1$Lon,adworld1$Lat,col=colcon, border=colf)
polygon(adworld2$Lon,adworld2$Lat,col=colexc, border=colfexc)
}
}
if(!is.null(shape)){
sp::plot(data, col=colors, xlim=c(minLon,maxLon),ylim=c(minLat,maxLat), add=TRUE, bg="transparent")
}
else{
leng<-length(variable)
rbPal <- colorRampPalette(colscale)
colors<- rbPal(100)[as.numeric(cut(as.numeric(variable),breaks = 100))]
for(kk in 1:leng){
if(Area=="World") dataP<-subset(adworld, adworld[,3]==AreasS[kk]) else dataP<-subset(adworld1, adworld1[,3]==AreasS[kk])
polygon(dataP$Lon,dataP$Lat,col=colors[kk], border=colf)
}
}
if (legend.pos=="y"){
if (xl==0){
x1<-(maxLon-minLon)*(-0.00106495)+0.747382095+maxLon
x2<-(maxLon-minLon)*(-0.003194851)+2.060146284+maxLon
}
else{
x1<-xl
x2<-xr
}
if(legend.max<=10){
sequ<-(seq(ini,legend.max,by=legend.freq))
sequ<-round(sequ, digits=ndigits)
}
else{
if(ini==0){
legend.freq=abs((legend.max-ini)/(breaks-1))
sequ<-(seq(ini,legend.max,by=legend.freq))
sequ<-round(sequ, digits=ndigits)
}
else{
sequ<-(seq(ini,legend.max,by=legend.freq))
sequ<-round(sequ, digits=ndigits)
}
}
if(legend.min<0) legend.min<-legend.min+legend.min*0.1/100 else legend.min<-legend.min-legend.min*0.1/100
if(legend.max<0) legend.max<-legend.max-legend.max*0.1/100 else legend.max<-legend.max+legend.max*0.1/100
plotrix::color.legend(xl=x1, yb=minLat, xr= x2,
yt=maxLat, sequ, gradient="y", align="rb", cex=cex.legend, rect.col=colscale)
}
else{
if (yb==0){
if(!is.null(main)){
y1<-maxLat+(maxLat-minLat)*(0.101851852)-1.333333333
y2<-maxLat+(maxLat-minLat)*(0.157407407)-1.333333333
}
else{
y1<-maxLat+(maxLat-minLat)*(0.027777778)
y2<-maxLat+(maxLat-minLat)*(0.083333333)
}
}
else{
y1<-yb
y2<-yt
}
if(legend.max<=10){
sequ<-(seq(ini,legend.max,by=legend.freq))
sequ<-round(sequ, digits=ndigits)
}
else{
sequ<-(seq(ini,legend.max,by=legend.freq))
sequ<-round(sequ, digits=ndigits)
}
plotrix::color.legend(xl=minLon, yb=y1, xr=maxLon, yt=y2, sequ,
gradient="x", align="lt", cex=cex.legend, rect.col=colscale)
}
par(tmp)
if(jpg==TRUE){
dev.off()
}
}
}
ZZ[1,1]<-"END"
ZZ[1,2]<-""
ZZ[2,1]<-""
ZZ[2,2]<-""
write.table(ZZ,"Inf.txt", row.names=FALSE,col.names=FALSE)
rm(tableR)
rm(out)
rm(dataP)
rm(datos)
rm(datos1)
rm(data)
} |
build_authorization_uri <- function(resource, tenant, app, username=NULL, ...,
aad_host="https://login.microsoftonline.com/", version=1)
{
version <- normalize_aad_version(version)
default_opts <- list(
client_id=app,
response_type="code",
redirect_uri="http://localhost:1410/",
login_hint=username,
state=paste0(sample(letters, 20, TRUE), collapse="")
)
default_opts <- if(version == 1)
c(default_opts, resource=resource)
else c(default_opts, scope=paste_v2_scopes(resource))
opts <- utils::modifyList(default_opts, list(...))
aad_uri(aad_host, normalize_tenant(tenant), version, "authorize", opts)
}
get_device_creds <- function(resource, tenant, app, aad_host="https://login.microsoftonline.com/", version=1)
{
version <- normalize_aad_version(version)
uri <- aad_uri(aad_host, normalize_tenant(tenant), version, "devicecode")
body <- if(version == 1)
list(resource=resource)
else list(scope=paste_v2_scopes(resource))
body <- c(body, client_id=app)
res <- httr::POST(uri, body=body, encode="form")
process_aad_response(res)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.