code
stringlengths
1
13.8M
glm.fsreg_2 <- function(target, dataset, iniset = NULL, wei = NULL, threshold = 0.05, tol = 2, ncores = 1) { dm <- dim(dataset) if ( is.null(dm) ) { n <- length(target) p <- 1 } else { n <- dm[1] p <- dm[2] } devi <- dof <- numeric( p ) moda <- list() k <- 1 tool <- numeric( min(n, p) ) threshold <- log(threshold) pa <- NCOL(iniset) da <- 1:pa dataset <- cbind(iniset, dataset) dataset <- as.data.frame(dataset) if ( is.matrix(target) & NCOL(target) == 2 ) { ci_test <- "testIndBinom" y <- target[, 1] wei <- target[, 2] ywei <- y / wei runtime <- proc.time() devi = dof = numeric(p) if ( pa == 0 ) { mi <- glm( ywei ~ 1, weights = wei, family = binomial, y = FALSE, model = FALSE ) do <- 1 ini <- mi$deviance } else mi <- glm(ywei ~., data = as.data.frame( iniset ), weights = wei, family = binomial, y = FALSE, model = FALSE ) do <- length( coef(mi) ) ini <- mi$deviance if (ncores <= 1) { for (i in 1:p) { mi <- glm( ywei ~ . , as.data.frame( dataset[, c(da, pa + i)] ), weights = wei, family = binomial, y = FALSE, model = FALSE ) devi[i] <- mi$deviance dof[i] = length( coef( mi ) ) } stat = ini - devi pval = pchisq( stat, dof - do, lower.tail = FALSE, log.p = TRUE ) } else { cl <- makePSOCKcluster(ncores) registerDoParallel(cl) mod <- foreach( i = 1:p, .combine = rbind) %dopar% { ww <- glm( ywei ~., data = as.data.frame( dataset[, c(da, pa + i)] ), weights = wei, family = binomial ) return( c( ww$deviance, length( coef( ww ) ) ) ) } stopCluster(cl) stat <- ini - mod[, 1] pval <- pchisq( stat, mod[, 2] - 1, lower.tail = FALSE, log.p = TRUE ) } mat <- cbind(1:p, pval, stat) colnames(mat)[1] <- "variables" rownames(mat) <- 1:p sel <- which.min(pval) info <- matrix( c( 1e300, 0, 0 ), ncol = 3 ) sela <- sel if ( mat[sel, 2] < threshold ) { info[k, ] <- mat[sel, ] mat <- mat[-sel, , drop = FALSE] mi <- glm( ywei ~., data = as.data.frame( dataset[, c(da, sel) ] ), weights = wei, family = binomial, y = FALSE, model = FALSE ) tool[k] <- BIC( mi ) moda[[ k ]] <- mi } if ( info[k, 2] < threshold & nrow(mat) > 0 ) { k <- k + 1 pn <- p - k + 1 ini <- moda[[ 1 ]]$deviance do <- length( coef( moda[[ 1 ]] ) ) devi <- dof <- numeric( pn ) if ( ncores <= 1 ) { for ( i in 1:pn ) { ww <- glm( ywei ~., data = as.data.frame( dataset[, c(da, sela, mat[pa + i, 1]) ] ), weights = wei, family = binomial, y = FALSE, model = FALSE ) devi[i] <- ww$deviance dof[i] <- length( coef( ww ) ) } stat <- ini - devi pval <- pchisq( stat, dof - do, lower.tail = FALSE, log.p = TRUE ) } else { cl <- makePSOCKcluster(ncores) registerDoParallel(cl) mod <- foreach( i = 1:pn, .combine = rbind) %dopar% { ww <- glm( ywei ~., data = as.data.frame( dataset[, c(da, sela, mat[pa + i, 1]) ] ), weights = wei, family = binomial ) return( c( ww$deviance, length( coef( ww ) ) ) ) } stopCluster(cl) stat <- ini - mod[, 1] pval <- pchisq( stat, mod[, 2] - do, lower.tail = FALSE, log.p = TRUE ) } mat[, 2:3] <- cbind(pval, stat) ina <- which.min(mat[, 2]) sel <- mat[ina, 1] if ( mat[ina, 2] < threshold ) { ma <- glm( ywei ~., data=as.data.frame( dataset[, c(da, sela, sel) ] ), weights = wei, family = binomial, y = FALSE, model = FALSE ) tool[k] <- BIC( ma ) if ( tool[ k - 1 ] - tool[ k ] <= tol ) { info <- info } else { info <- rbind(info, c( mat[ina, ] ) ) sela <- info[, 1] mat <- mat[-ina , , drop = FALSE] moda[[ k ]] <- ma } } else info <- info } if ( nrow(info) > 1 & nrow(mat) > 0 ) { while ( info[k, 2] < threshold & k < n - 15 & tool[ k - 1 ] - tool[ k ] > tol & nrow(mat) > 0 ) { ini <- moda[[ k ]]$deviance do <- length( coef( moda[[ k ]] ) ) k <- k + 1 pn <- p - k + 1 devi <- dof <- numeric( pn ) if (ncores <= 1) { for ( i in 1:pn ) { ma <- glm( ywei ~., data = as.data.frame( dataset[, c(da, sela, mat[pa + i, 1] ) ] ), weights = wei, family = binomial, y = FALSE, model = FALSE ) devi[i] <- ma$deviance dof[i] <- length( coef( ma ) ) } stat <- ini - devi pval <- pchisq( stat, dof - do, lower.tail = FALSE, log.p = TRUE ) } else { cl <- makePSOCKcluster(ncores) registerDoParallel(cl) mod <- foreach( i = 1:pn, .combine = rbind) %dopar% { ww <- glm( ywei ~., data = as.data.frame( dataset[, c(da, sela, mat[pa + i, 1]) ] ), weights = wei, family = binomial, y = FALSE, model = FALSE ) return( c( ww$deviance, length( coef( ww ) ) ) ) } stopCluster(cl) stat <- ini - mod[, 1] pval <- pchisq( stat, mod[, 2] - do, lower.tail = FALSE, log.p = TRUE ) } mat[, 2:3] <- cbind(pval, stat) ina <- which.min(mat[, 2]) sel <- mat[ina, 1] if ( mat[ina, 2] < threshold ) { ma <- glm( ywei ~., data = as.data.frame( dataset[, c(da, sela, sel) ] ), weights = wei, family = binomial, y = FALSE, model = FALSE ) tool[k] <- BIC( ma ) if ( tool[ k - 1 ] - tool[ k ] < tol ) { info <- rbind(info, c( 1e300, 0, 0 ) ) } else { info <- rbind( info, mat[ina, ] ) sela <- info[, 1] mat <- mat[-ina , , drop = FALSE] moda[[ k ]] <- ma } } else info <- rbind(info, c( 1e300, 0, 0 ) ) } } runtime <- proc.time() - runtime d <- length(moda) final <- NULL if ( d >= 1 ) { final <- glm( ywei ~., data = as.data.frame( dataset[, c(da, sela) ] ), weights = wei, family = binomial, y = FALSE, model = FALSE ) info <- info[1:d, , drop = FALSE] info <- cbind( info, tool[ 1:d ] ) colnames(info) <- c( "variables", "log.p-value", "stat", "BIC" ) rownames(info) <- info[, 1] } result <- list(mat = t(mat), info = info, final = final, runtime = runtime ) } else { if ( length( unique(target) ) == 2 ) { oiko <- binomial(logit) ci_test <- "testIndLogistic" } else { ci_test <- "testIndPois" oiko <- poisson(log) } runtime <- proc.time() devi = dof = numeric(p) mi <- glm(target ~., data = data.frame( iniset ), family = oiko, y = FALSE, model = FALSE ) ini <- mi$deviance do <- length( coef(mi) ) if (ncores <= 1) { for (i in 1:p) { mi <- glm( target ~ ., data.frame( dataset[, c(da, pa + i)] ), family = oiko, weights= wei, y = FALSE, model = FALSE ) devi[i] <- mi$deviance dof[i] <- length( coef( mi ) ) } stat <- ini - devi pval <- pchisq( stat, dof - do, lower.tail = FALSE, log.p = TRUE ) } else { cl <- makePSOCKcluster(ncores) registerDoParallel(cl) mod <- foreach( i = 1:p, .combine = rbind) %dopar% { ww <- glm( target ~., data = data.frame( dataset[, c(da, pa + i)] ), family = oiko, weights = wei, y = FALSE, model = FALSE ) return( c( ww$deviance, length( coef(ww) ) ) ) } stopCluster(cl) stat <- ini - mod[, 1] pval <- pchisq( stat, mod[, 2] - 1, lower.tail = FALSE, log.p = TRUE ) } mat <- cbind(1:p, pval, stat) colnames(mat)[1] <- "variables" rownames(mat) <- 1:p sel <- which.min(pval) info <- matrix( c( 1e300, 0, 0 ), ncol = 3 ) sela <- sel if ( mat[sel, 2] < threshold ) { info[k, ] <- mat[sel, ] mat <- mat[-sel, , drop= FALSE] mi <- glm( target ~., data = as.data.frame( dataset[, c(da, sel) ] ), family = oiko, weights = wei, y = FALSE, model = FALSE ) tool[k] <- BIC( mi ) moda[[ k ]] <- mi } if ( info[k, 2] < threshold & nrow(mat) > 0 ) { k <- k + 1 pn <- p - k + 1 ini <- mi$deviance do <- length( coef( mi ) ) if ( ncores <= 1 ) { devi <- dof <- numeric(pn) for ( i in 1:pn ) { ww <- glm( target ~., data = as.data.frame( dataset[, c(da, sela, mat[pa + i, 1]) ] ), family = oiko, weights = wei, y = FALSE, model = FALSE ) devi[i] <- ww$deviance dof[i] <- length( coef( ww ) ) } stat <- ini - devi pval <- pchisq( stat, dof - do, lower.tail = FALSE, log.p = TRUE ) } else { cl <- makePSOCKcluster(ncores) registerDoParallel(cl) mod <- foreach( i = 1:pn, .combine = rbind) %dopar% { ww <- glm( target ~., data = as.data.frame( dataset[, c(da, sela, mat[pa + i, 1]) ] ), family = oiko, weights = wei, y = FALSE, model = FALSE ) return( c( ww$deviance, length( coef( ww ) ) ) ) } stopCluster(cl) stat <- ini - mod[, 1] pval <- pchisq( stat, mod[, 2] - do, lower.tail = FALSE, log.p = TRUE ) } mat[, 2:3] <- cbind(pval, stat) ina <- which.min(mat[, 2]) sel <- mat[ina, 1] if ( mat[ina, 2] < threshold ) { ma <- glm( target ~., data=as.data.frame( dataset[, c(da, sela, sel) ] ), family = oiko, weights = wei, y = FALSE, model = FALSE ) tool[k] <- BIC( ma ) if ( tool[ k - 1 ] - tool[ k ] <= tol ) { info <- rbind(info, c( 1e300, 0, 0 ) ) } else { info <- rbind(info, c( mat[ina, ] ) ) sela <- info[, 1] mat <- mat[-ina , , drop = FALSE] moda[[ k ]] <- ma } } else info <- info } if ( nrow(info) > 1 & nrow(mat) > 0 ) { while ( ( info[k, 2] < threshold ) & ( k < n ) & ( tool[ k - 1 ] - tool[ k ] > tol ) & ( nrow(mat) > 0 ) ) { ini <- moda[[ k ]]$deviance do <- length( coef( moda[[ k ]] ) ) k <- k + 1 pn <- p - k + 1 if (ncores <= 1) { devi <- dof <- numeric(pn) for ( i in 1:pn ) { ma <- glm( target ~., data = as.data.frame( dataset[, c(da, sela, mat[pa + i, 1] ) ] ), family = oiko, weights = wei, y = FALSE, model = FALSE ) devi[i] <- ma$deviance dof[i] <- length( coef( ma ) ) } stat <- ini - devi pval <- pchisq( stat, dof - do, lower.tail = FALSE, log.p = TRUE ) } else { cl <- makePSOCKcluster(ncores) registerDoParallel(cl) devi <- dof <- numeric(pn) mod <- foreach( i = 1:pn, .combine = rbind) %dopar% { ww <- glm( target ~., data = as.data.frame( dataset[, c(da, sela, mat[pa + i, 1]) ] ), family = oiko, weights = wei, y = FALSE, model = FALSE ) return( c( ww$deviance, length( coef( ww ) ) ) ) } stopCluster(cl) stat <- ini - mod[, 1] pval <- pchisq( stat, mod[, 2] - do, lower.tail = FALSE, log.p = TRUE ) } mat[, 2:3] <- cbind(pval, stat) ina <- which.min(mat[, 2]) sel <- mat[ina, 1] if ( mat[ina, 2] < threshold ) { ma <- glm( target ~., data = as.data.frame( dataset[, c(da, sela, sel) ] ), family = oiko, weights = wei, y = FALSE, model = FALSE ) tool[k] <- BIC( ma ) if ( tool[ k - 1 ] - tool[ k ] <= tol ) { info <- rbind(info, c( 1e300, 0, 0 ) ) } else { info <- rbind( info, mat[ina, ] ) sela <- info[, 1] mat <- mat[-ina , , drop = FALSE] moda[[ k ]] <- ma } } else info <- rbind(info, c( 1e300, 0, 0 ) ) } } runtime <- proc.time() - runtime d <- length(moda) final <- glm( target ~., data = as.data.frame( dataset[, c(da, sela) ] ), family = oiko, weights = wei, y = FALSE, model = FALSE ) info <- info[1:d, , drop = FALSE] info <- cbind( info, tool[ 1:d ] ) colnames(info) <- c( "variables", "log.p-value", "stat", "BIC" ) rownames(info) <- info[, 1] result <- list(runtime = runtime, mat = t(mat), info = info, ci_test = ci_test, final = final ) } result }
mlsjunkgenv <- function(n = 1, w, x, y, z, round = 5) { if (is.numeric(n)) { mls <- numeric() for (i in 1:n) { ri <- junkgen(w, x, y, z) mls <- c(mls, round(ri, round)) w <- x x <- y y <- z z <- ri } return(mls) } else { stop("Invalid input. Please ensure n is numeric.") } }
plot.dwt <- function (x, levels = NULL, draw.boundary = FALSE, type = "stack", col.plot = "black", col.boundary = "red", X.xtick.at = NULL, X.ytick.at = NULL, Stack.xtick.at = NULL, Stack.ytick.at = NULL, X.xlab = "t", y.rlabs = TRUE, plot.X = TRUE, plot.W = TRUE, plot.V = TRUE, ...) { stackplot.dwt <- function ( x , w.range, v.range, col.plot, col.boundary, draw.boundary = FALSE, X.xtick.at = NULL, X.ytick.at = NULL, Stack.xtick.at = NULL, Stack.ytick.at = NULL, X.xlab = "t", plot.X = TRUE) { innerplot <- function(x, y, type = "l", xtick.at, ytick.at) { if(is.null(xtick.at) == FALSE || is.null(ytick.at) == FALSE) { plot(x, y, type = "l", axes = FALSE, frame.plot = TRUE) if(is.null(xtick.at) == FALSE) { axis(1, at = axTicks(1, xtick.at)) xtickrate <- xtick.at } else { axis(1) xtickrate <- par("xaxp") } if(is.null(ytick.at) == FALSE) { axis(2, at = axTicks(2, ytick.at)) ytickrate <- ytick.at } else { axis(2) ytickrate <- par("yaxp") } } else { plot(x, y, type = "l") xtickrate <- par("xaxp") ytickrate <- par("yaxp") } tickrate <- list(xtick = xtickrate, ytick = ytickrate) tickrate } if(plot.X) { nf <- layout(matrix(c(2,2,1,1), 2, 2, byrow=TRUE), c(1,2), c(2,1), TRUE) par(mai = c(.6, .4, .1, .6)) if( x @class.X == "ts" || x @class.X == "mts") { x.range <- x @attr.X$tsp[1]: x @attr.X$tsp[2] } else{ x.range <- 1:dim( x @series)[1] } tickrate <- innerplot(x.range, x @series[,1], type = "l", X.xtick.at, X.ytick.at) right.usrplotrange <- par()$usr[2] - par()$usr[1] NDCplotrange <- par()$plt[2] - par()$plt[1] marginpos <- (1-par()$plt[2])/2 right.usrlabelpos <- ((marginpos*right.usrplotrange)/NDCplotrange) + par()$usr[2] text(right.usrlabelpos, 0, "X", xpd = TRUE) mtext(X.xlab, side = 1, line = 2) par(mai = c(0, .4, .1, .6)) } if(plot.X == FALSE) { par(mai = c(.4, .4, .1, .6)) if(is.null(Stack.xtick.at) == FALSE) { xtickrate <- Stack.xtick.at } else { xtickrate <- NULL } if(is.null(Stack.ytick.at) == FALSE) { ytickrate <- Stack.ytick.at } else { ytickrate <- NULL } tickrate <- list(xtick = xtickrate, ytick = ytickrate) } if (draw.boundary) { matrixlist <- list(dwt = as.matrix.dwt( x , w.range, v.range), posbound = boundary.as.matrix.dwt( x , w.range, v.range, positive = TRUE), negbound = boundary.as.matrix.dwt( x , w.range, v.range, positive = FALSE)) col <- c(col.plot, col.boundary, col.boundary) } else { matrixlist <- list(dwt = as.matrix.dwt( x , w.range, v.range)) col <- col.plot } if(is.null(w.range) == FALSE) { gammawave <- wt.filter.shift( x @filter, w.range, wavelet = TRUE) } if(is.null(v.range) == FALSE) { gammascale <- wt.filter.shift( x @filter, v.range, wavelet = FALSE) } if(y.rlabs) { rightlabels <- labels.dwt(w.range = w.range, v.range = v.range, gammah = gammawave, gammag = gammascale) } else { rightlabels <- NULL } stackplot(matrixlist, y = NULL, y.rlabs = rightlabels, col = col, xtick.at = tickrate$xtick, ytick.at = tickrate$ytick) } boundary.as.matrix.dwt <- function( x , w.range, v.range, positive = TRUE) { Lprimej <- x @n.boundary if(is.null(w.range) == FALSE) { wavecoefmatrix <- array(NA, c(2*dim( x @series)[1], length(w.range))) Wjplot <- rep(NA, 2*dim( x @series)[1]) wavecoefmatrix.index <- 0 for (j in w.range) { wavecoefmatrix.index <- wavecoefmatrix.index + 1 levelshift <- waveletshift.dwt( x @filter@L, j, dim( x @series)[1])%%(2^j) rightgamma <- wt.filter.shift( x @filter, j, wavelet = TRUE) leftgamma <- Lprimej[j] - rightgamma if(positive) { boundaryheight <- max( x @W[[j]]) } else { boundaryheight <- min( x @W[[j]]) } if(leftgamma != 0) { leftboundarypos <- leftgamma*(2^j) + .5*(2^j) - levelshift } else { leftboundarypos <- 0 } if(rightgamma != 0) { rightboundarypos <- dim( x @series)[1] - rightgamma*(2^j) + .5*(2^j) - levelshift } else { rightboundarypos <- 0 } if(leftboundarypos != 0 && rightboundarypos != 0) { leftspace <- rep(NA, 2*leftboundarypos - 1) middlespace <- rep(NA, 2*(rightboundarypos - leftboundarypos) - 1) rightspace <- rep(NA, 2*(dim( x @series)[1] - rightboundarypos)) Wjplot <- c(leftspace, boundaryheight, middlespace, boundaryheight, rightspace) } if(leftboundarypos == 0 && rightboundarypos != 0) { middlespace <- rep(NA, 2*rightboundarypos - 1) rightspace <- rep(NA, 2*(dim( x @series)[1] - rightboundarypos)) Wjplot <- c(middlespace, boundaryheight, rightspace) } if(leftboundarypos != 0 && rightboundarypos == 0) { leftspace <- rep(NA, 2*leftboundarypos - 1) middlespace <- rep(NA, 2*(dim( x @series)[1] - leftboundarypos)) Wjplot <- c(leftspace, boundaryheight, middlespace) } wavecoefmatrix[,wavecoefmatrix.index] <- Wjplot } } if(is.null(v.range) == FALSE) { scalecoefmatrix <- array(NA, c(2*dim( x @series)[1], length(v.range))) Vjplot <- rep(NA, 2*dim( x @series)[1]) scalecoefmatrix.index <- 0 for(j in v.range) { scalecoefmatrix.index <- scalecoefmatrix.index + 1 levelshift <- scalingshift.dwt( x @filter@L, j, dim( x @series)[1])%%(2^j) rightgamma <- wt.filter.shift( x @filter, j, wavelet = FALSE) leftgamma <- Lprimej[j] - rightgamma Vj <- x @V[[j]][,1] - mean( x @V[[j]][,1]) if(positive) { boundaryheight <- max(Vj) } else { boundaryheight <- min(Vj) } if(leftgamma != 0) { leftboundarypos <- leftgamma*(2^j) + .5*(2^j) - levelshift } else { leftboundarypos <- 0 } if(rightgamma != 0) { rightboundarypos <- dim( x @series)[1] - rightgamma*(2^j) + .5*(2^j) - levelshift } else { rightboundarypos <- 0 } if(leftboundarypos != 0 && rightboundarypos != 0) { leftspace <- rep(NA, 2*leftboundarypos - 1) middlespace <- rep(NA, 2*(rightboundarypos - leftboundarypos) - 1) rightspace <- rep(NA, 2*(dim( x @series)[1] - rightboundarypos)) Vjplot <- c(leftspace, boundaryheight, middlespace, boundaryheight, rightspace) } if(leftboundarypos == 0 && rightboundarypos != 0) { middlespace <- rep(NA, 2*rightboundarypos - 1) rightspace <- rep(NA, 2*(dim( x @series)[1] - rightboundarypos)) Vjplot <- c(middlespace, boundaryheight, rightspace) } if(leftboundarypos != 0 && rightboundarypos == 0) { leftspace <- rep(NA, 2*leftboundarypos - 1) rightspace <- rep(NA, 2*(dim( x @series)[1] - leftboundarypos)) Vjplot <- c(leftspace, boundaryheight, rightspace) } scalecoefmatrix[,scalecoefmatrix.index] <- Vjplot } } if(is.null(w.range) == FALSE && is.null(v.range) == FALSE) { if( x @class.X == "ts" || x @class.X == "mts") { rownames(wavecoefmatrix) <- seq( x @attr.X$tsp[1]-.5, x @attr.X$tsp[2], by = .5) rownames(scalecoefmatrix) <- seq( x @attr.X$tsp[1]-.5, x @attr.X$tsp[2], by = .5) } else { rownames(wavecoefmatrix) <- seq(.5, dim( x @series)[1], by = .5) rownames(scalecoefmatrix) <- seq(.5, dim( x @series)[1], by = .5) } results <- cbind(wavecoefmatrix, scalecoefmatrix) } if(!is.null(w.range) && is.null(v.range)) { if( x @class.X == "ts" || x @class.X == "mts") { rownames(wavecoefmatrix) <- seq( x @attr.X$tsp[1]-.5, x @attr.X$tsp[2], by = .5) } else { rownames(wavecoefmatrix) <- seq(.5, dim( x @series)[1], by = .5) } results <- wavecoefmatrix } if(is.null(w.range) && !is.null(v.range)) { if( x @class.X == "ts" || x @class.X == "mts") { rownames(scalecoefmatrix) <- seq( x @attr.X$tsp[1]-.5, x @attr.X$tsp[2], by = .5) } else { rownames(scalecoefmatrix) <- seq(.5, dim( x @series)[1], by = .5) } results <- scalecoefmatrix } results } as.matrix.dwt <- function ( x , w.range, v.range) { if( x @aligned) { x <- align( x , inverse = TRUE) } if(is.null(w.range) == FALSE) { wavecoefmatrix <- array(NA, c(dim( x @series)[1], length(w.range))) Wjplot <- rep(NA, dim( x @series)[1]) wavecoefmatrix.index <- 0 for (j in w.range) { Wjplot <- rep(NA, dim( x @series)[1]) wavecoefmatrix.index <- wavecoefmatrix.index + 1 Wj <- x @W[[j]][,1] Wjplot[(2^j)*(1:length(Wj))] <- Wj Wjplot <- levelshift.dwt(Wjplot, waveletshift.dwt( x @filter@L, j, dim( x @series)[1])) wavecoefmatrix[,wavecoefmatrix.index] <- Wjplot } } if(is.null(v.range) == FALSE) { scalecoefmatrix <- array(NA, c(dim( x @series)[1], length(v.range))) Vjplot <- rep(NA, dim( x @series)[1]) scalecoefmatrix.index <- 0 for(k in v.range) { scalecoefmatrix.index <- scalecoefmatrix.index + 1 Vj <- x @V[[k]][,1] - mean( x @V[[k]][,1]) Vjplot[(2^k)*(1:length(Vj))] <- Vj Vjplot <- levelshift.dwt(Vjplot, scalingshift.dwt( x @filter@L, k, dim( x @series)[1])) scalecoefmatrix[,scalecoefmatrix.index] <- Vjplot } } if(is.null(w.range) == FALSE && is.null(v.range) == FALSE) { if( x @class.X == "ts" || x @class.X == "mts") { rownames(wavecoefmatrix) <- x @attr.X$tsp[1]: x @attr.X$tsp[2] rownames(scalecoefmatrix) <- x @attr.X$tsp[1]: x @attr.X$tsp[2] } else { rownames(wavecoefmatrix) <- 1:dim( x @series)[1] rownames(scalecoefmatrix) <- 1:dim( x @series)[1] } results <- cbind(wavecoefmatrix, scalecoefmatrix) } if(is.null(w.range) == FALSE && is.null(v.range)) { if( x @class.X == "ts" || x @class.X == "mts") { rownames(wavecoefmatrix) <- x @attr.X$tsp[1]: x @attr.X$tsp[2] } else { rownames(wavecoefmatrix) <- 1:dim( x @series)[1] } results <- wavecoefmatrix } if(is.null(w.range) && is.null(v.range) == FALSE) { if( x @class.X == "ts" || x @class.X == "mts") { rownames(scalecoefmatrix) <- x @attr.X$tsp[1]: x @attr.X$tsp[2] } else { rownames(scalecoefmatrix) <- 1:dim( x @series)[1] } results <- scalecoefmatrix } results } labels.dwt <- function (w.range = NULL, v.range = NULL, gammah = NULL, gammag = NULL) { verticallabel <- list() if(is.null(w.range) == FALSE) { for (j in 1:length(w.range)) { label <- substitute(paste(T^-gamma,W[level]), list(gamma = gammah[j], level = w.range[j])) verticallabel <- c(verticallabel, label) } } if(is.null(v.range) == FALSE) { for (i in 1:length(v.range)) { label <- substitute(paste(T^-gamma,V[level]), list(gamma = gammag[i], level = v.range[i])) verticallabel <- c(verticallabel, label) } } results <- verticallabel results } levelshift.dwt <- function (level, shift) { if(shift != 0) { level <- c(level[(shift+1):length(level)], level[1:shift]) } level } if (type == "stack") { if(class( x ) != "dwt") { stop("Invalid argument: 'dwt' object must be of class dwt.") } if(is.null(levels)) { w.range <- 1: x @level v.range <- max(w.range) } if(class(levels) == "numeric") { if(length(levels) == 1) { w.range <- 1:levels v.range <- max(w.range) } else { w.range <- levels v.range <- max(w.range) } } if(class(levels) == "list") { if(length(levels) < 1) { w.range <- 1: x @level v.range <- max(w.range) } if(length(levels) == 1) { w.range <- levels[[1]] v.range <- max(w.range) } else { w.range <- levels[[1]] v.range <- levels[[2]] } } if(class(levels) != "list" && class(levels) != "vector" && class(levels) != "numeric" && is.null(levels) == FALSE) { stop("Invalid argument: Levels must be numeric, vector, or list.") } if(plot.W == FALSE) { w.range <- NULL } if(plot.V == FALSE) { v.range <- NULL } if(plot.W == FALSE && plot.V == FALSE) { stop("Invalid argument: At least one of plot.W or plot.V must be TRUE") } if(is.null(w.range) == FALSE) { if(min(w.range) < 1 || x @level < max(w.range)) { stop("Invalid argument: Elements of 'levels' must be compatible with the level of decomposition of the 'dwt' object.") } } if(is.null(v.range) == FALSE) { if(min(v.range) < 1 || x @level < max(v.range)) { stop("Invalid argument: Elements of 'levels' must be compatible with the level of decomposition of the 'dwt' object.") } } stackplot.dwt( x , w.range, v.range, col.plot, col.boundary, draw.boundary = draw.boundary, X.xtick.at = X.xtick.at, X.ytick.at = X.ytick.at, Stack.xtick.at = Stack.xtick.at, Stack.ytick.at = Stack.ytick.at, X.xlab = X.xlab, plot.X = plot.X) } else { stop("Only the stackplot is currently implemented.") } }
test_that("range is expanded", { df <- rbind( data_frame(x = "a", y = c(0, runif(10), 1)), data_frame(x = "b", y = c(0, runif(10), 2)) ) p <- ggplot(df, aes(1, y)) + geom_violin(trim = FALSE) + facet_grid(x ~ ., scales = "free") + coord_cartesian(expand = FALSE) expand_a <- stats::bw.nrd0(df$y[df$x == "a"]) * 3 expand_b <- stats::bw.nrd0(df$y[df$x == "b"]) * 3 expect_equal(layer_scales(p, 1)$y$dimension(), c(0 - expand_a, 1 + expand_a)) expect_equal(layer_scales(p, 2)$y$dimension(), c(0 - expand_b, 2 + expand_b)) }) test_that("geom_violin works in both directions", { p <- ggplot(mpg) + geom_violin(aes(drv, hwy)) x <- layer_data(p) expect_false(x$flipped_aes[1]) p <- ggplot(mpg) + geom_violin(aes(hwy, drv)) y <- layer_data(p) expect_true(y$flipped_aes[1]) x$flipped_aes <- NULL y$flipped_aes <- NULL expect_identical(x, flip_data(y, TRUE)[,names(x)]) }) test_that("create_quantile_segment_frame functions for 3 quantiles", { density.data <- data_frame(y = (1:256)/256, density = 1/256) qs <- c(0.25, 0.5, 0.75) expect_equal(create_quantile_segment_frame(density.data, qs)$y, rep(qs, each = 2)) }) test_that("quantiles do not fail on zero-range data", { zero.range.data <- data_frame(y = rep(1,3)) p <- ggplot(zero.range.data) + geom_violin(aes(1, y), draw_quantiles = 0.5) expect_equal(length(layer_grob(p)), 1) }) test_that("geom_violin draws correctly", { set.seed(111) dat <- data_frame(x = rep(factor(LETTERS[1:3]), 30), y = rnorm(90)) dat <- dat[dat$x != "C" | c(T, F),] expect_doppelganger("basic", ggplot(dat, aes(x = x, y = y)) + geom_violin() ) expect_doppelganger("scale area to sample size (C is smaller)", ggplot(dat, aes(x = x, y = y)) + geom_violin(scale = "count"), ) expect_doppelganger("narrower (width=.5)", ggplot(dat, aes(x = x, y = y)) + geom_violin(width = .5) ) expect_doppelganger("with tails and points", ggplot(dat, aes(x = x, y = y)) + geom_violin(trim = FALSE) + geom_point(shape = 21) ) expect_doppelganger("with smaller bandwidth and points", ggplot(dat, aes(x = x, y = y)) + geom_violin(adjust = .3) + geom_point(shape = 21) ) expect_doppelganger("dodging", ggplot(dat, aes(x = "foo", y = y, fill = x)) + geom_violin() ) expect_doppelganger("coord_polar", ggplot(dat, aes(x = x, y = y)) + geom_violin() + coord_polar() ) expect_doppelganger("coord_flip", ggplot(dat, aes(x = x, y = y)) + geom_violin() + coord_flip() ) expect_doppelganger("dodging and coord_flip", ggplot(dat, aes(x = "foo", y = y, fill = x)) + geom_violin() + coord_flip() ) expect_doppelganger("continuous x axis, many groups (center should be at 2.0)", ggplot(dat, aes(x = as.numeric(x), y = y)) + geom_violin() ) expect_doppelganger("continuous x axis, single group (center should be at 1.0)", ggplot(dat, aes(x = as.numeric(1), y = y)) + geom_violin() ) expect_doppelganger("quantiles", ggplot(dat, aes(x=x, y=y)) + geom_violin(draw_quantiles=c(0.25,0.5,0.75)) ) dat2 <- data_frame(x = rep(factor(LETTERS[1:3]), 30), y = rnorm(90), g = rep(factor(letters[5:6]), 45)) expect_doppelganger("grouping on x and fill", ggplot(dat2, aes(x = x, y = y, fill = g)) + geom_violin() ) expect_doppelganger("grouping on x and fill, dodge width = 0.5", ggplot(dat2, aes(x = x, y = y, fill = g)) + geom_violin(position = position_dodge(width = .5)) ) })
include_2015 <- read.delim(file='include_2015.txt', comment.char='
runPower <- function(countsMatrix, designMatrix, depth = c(10, 100, 1000), N = c(3, 6, 10, 20), FDR = c(0.05, 0.1), effectSize = c(1.2, 1.5, 2), includePlots = FALSE) { assertthat::assert_that(requireNamespace("RNASeqPower", quietly = TRUE), msg = "RNASeqPower package is required to run power analysis on the given counts matrix and design matrix.") assertthat::assert_that(requireNamespace("statmod", quietly = TRUE), msg = "'statmod' package is required to run estimate dispersion calculations") assertthat::assert_that(!missing(countsMatrix), !is.null(countsMatrix), class(countsMatrix)[[1]] %in% c("matrix","data.frame"), msg = "countsMatrix must be specified and must be of class matrix or dataframe.") assertthat::assert_that(!missing(designMatrix), !is.null(designMatrix), class(designMatrix)[[1]] %in% c("matrix","data.frame"), msg = "designMatrix must be specified and must be of class matrix or dataframe.") if (any(is.null(depth), !is.numeric(depth), length(depth) != 3)) { warning("depth must be a vector of 3 integer values. Assigning default values 10, 100, 1000.") depth <- c(10, 100, 1000) } if (any(is.null(N), !is.numeric(N), length(N) != 4)) { warning("N must be a vector of 4 integer values. Assigning default values 3, 6, 10, 20.") N <- c(3, 6, 10, 20) } if (any(is.null(FDR), !is.numeric(FDR), length(FDR) != 2)) { warning("FDR must be a vector of 2 integer values. Assigning default values 0.05, 0.1.") FDR <- c(0.05, 0.1) } if (any(is.null(effectSize), !is.numeric(effectSize), length(effectSize) != 3)) { warning("effectiveSize must be a vector of 3 integer values. Assigning default values 1.2, 1.5, 2.") effectSize <- c(1.2, 1.5, 2) } dgelist <- countsMatrix %>% as.matrix() %>% edgeR::DGEList() %>% edgeR::calcNormFactors() %>% edgeR::estimateDisp(design = designMatrix, robust = TRUE) GeoMeanLibSize <- dgelist$samples$lib.size %>% log %>% mean %>% exp depth_avelogcpm <- edgeR::aveLogCPM(depth, GeoMeanLibSize) depthBCV <- sqrt(approx(dgelist$AveLogCPM, dgelist$trended.dispersion, xout = depth_avelogcpm, rule = 2, ties = mean)$y) n <- seq(min(N),max(N),1) alpha <- seq(0.05, 0.9, 0.05) pdat <- data.frame(depth = double(), n = double(), effect = double(), alpha = double(), powerVal = double(), stringsAsFactors = FALSE) for (D in depth) { cv <- depthBCV[D == depth] for (Nf in n) { for (E in effectSize) { for (A in alpha) { do.call("require", list("RNASeqPower")) P <- do.call("rnapower", list(depth = D, n = Nf, cv = cv, effect = E, alpha = A)) pdat <- rbind(pdat, c(depth = D, n = Nf, effect = E, alpha = A, powerVal = P)) } } } } colnames(pdat) <- c("depth", "n", "effect", "alpha", "power") if (is.null(includePlots)) { plot_type <- "none" } else if (is.logical(includePlots) && length(includePlots) == 1) { plot_type <- ifelse(includePlots, "canvasxpress", "none") } else if (is.character(includePlots) && length(includePlots) == 1) { if (tolower(includePlots) %in% c("canvasxpress", "ggplot")) { plot_type <- tolower(includePlots) } else { warning("includePlots must be only one of the following values TRUE, FALSE, 'canvasXpress' or 'ggplot'. Assigning default value FALSE.") plot_type <- "none" } } else { warning("includePlots must be only one of the following values TRUE, FALSE, 'canvasXpress' or 'ggplot'. Assigning default value FALSE.") plot_type <- "none" } rocdat <- dplyr::filter(pdat, n %in% N) rocdat$depth <- as.factor(rocdat$depth) ndat <- dplyr::filter(pdat, alpha %in% FDR) ndat$depth <- as.factor(ndat$depth) ndat$FDR <- ndat$alpha result <- pdat if (plot_type == "canvasxpress") { if ("canvasXpress" %in% .packages(all.available = T)) { do.call("require", list("canvasXpress")) do.call("require", list("htmlwidgets")) rocdat <- rocdat %>% dplyr::arrange(alpha) cx_data <- rocdat %>% dplyr::select(alpha, power) var_data <- rocdat %>% dplyr::select(depth, n, effect) var_data$n <- paste0("n:", var_data$n) var_data$effect <- paste0("effect: ", var_data$effect) events <- do.call("JS", list("{'mousemove' : function(o, e, t) { if (o != null && o != false) { t.showInfoSpan(e, '<b>Alpha</b>: ' + o.y.data[0][0] + '<br><b>Power</b>: ' + o.y.data[0][1]); };}}")) roc <- do.call("canvasXpress", list(data = cx_data, varAnnot = var_data, segregateVariablesBy = list("effect", "n"), layoutType = "rows", dataPointSize = 5, spiderBy = "depth", shapeBy = "depth", colorBy = "depth", title = "ROC curves", xAxisTitle = "FDR", yAxisTitle = "Power", events = events, afterRender = list(list("switchNumericToString", list("depth",FALSE))))) ndat <- ndat %>% dplyr::arrange(n) cx_data <- ndat %>% dplyr::select(n, power) var_data <- ndat %>% dplyr::select(depth, FDR, effect) var_data$FDR <- paste0("FDR:", var_data$FDR) var_data$effect <- paste0("effect: ", var_data$effect) events <- do.call("JS", list("{'mousemove' : function(o, e, t) { if (o != null && o != false) { t.showInfoSpan(e, '<b>N</b>: ' + o.y.data[0][0] + '<br><b>Power</b>: ' + o.y.data[0][1]); };}}")) NvP <- do.call("canvasXpress", list(data = cx_data, varAnnot = var_data, segregateVariablesBy = list("FDR", "effect"), layoutType = "rows", dataPointSize = 5, spiderBy = "depth", shapeBy = "depth", colorBy = "depth", title = "N vs Power", xAxisTitle = "N", yAxisTitle = "Power", events = events, afterRender = list(list("switchNumericToString", list("depth",FALSE))))) result <- list(PowerData = pdat, ROC = roc, NvP = NvP) } else { message('The canvasXpress package is not available, unable to create plots.') } } else if (plot_type == "ggplot") { if ("ggplot2" %in% .packages(all.available = T)) { do.call("require", list("ggplot2")) ggplot = aes = geom_line = scale_x_continuous = scale_y_continuous = facet_grid <- NULL label_both = ggtitle = xlab = ylab = expand_limits = theme = element_text = theme_gray <- NULL effect <- NULL roc <- ggplot(rocdat, aes(x = alpha, y = power, fill = depth, shape = depth, color = depth)) + geom_line(size = 1) + scale_x_continuous(breaks = seq(0, 1, 0.2)) + scale_y_continuous(breaks = seq(0, 1, 0.2)) + facet_grid(effect ~ n, labeller = label_both) + ggtitle("ROC curves") + xlab("\nFDR") + ylab("Power") + expand_limits(x = 0, y = 0) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme_gray(18) NvP <- ggplot(ndat, aes(x = n, y = power, fill = depth, shape = depth, color = depth)) + geom_line(size = 1) + scale_y_continuous(breaks = seq(0, 1, 0.2)) + facet_grid(FDR ~ effect, labeller = label_both) + ggtitle("N vs Power") + xlab("\nN") + ylab("Power") + expand_limits(x = 0, y = 0) + theme_gray() result <- list(PowerData = pdat, ROC = roc, NvP = NvP) } else { message('The canvasXpress package is not available, unable to create plots.') } } result }
mersenne <- function(p) { stopifnot(is.numeric(p), length(p) == 1) if (!isNatural(p) || !isPrime(p)) stop("Argument 'p' must be a prime number for 2^p-1 to be prime.") if (p == 2) return(TRUE) if (!requireNamespace("gmp", quietly = TRUE)) { stop("Package 'gmp' needed: Please install separately.", call. = FALSE) } z2 <- gmp::as.bigz(2) z4 <- z2 * z2 zp <- gmp::as.bigz(p) zm <- z2^zp - 1 S <- rep(z4, p - 1) for (n in 1:(p-2)) S[n+1] <- gmp::mod.bigz(S[n]*S[n] - z2, zm) if (S[p-1] == 0) tf <- TRUE else tf <- FALSE return(tf) }
buttons2 <- function() { if (KTSEnv$activMenu != "gapsetmenu") { subMenu2But <- function(parent = NULL, text = "Load", command = loadAllTypes) { buttonSM2 <- tcltk::tkbutton(parent = parent, text = text, width = 5, command = command, background = "darkolivegreen3", foreground = "white", font = KTSEnv$KTSFonts$subBt) tcltk::tkpack(buttonSM2, side = "left", expand = TRUE, fill = "both") } try(tcltk::tkdestroy(KTSEnv$row231), silent = TRUE) try(tcltk::tkdestroy(KTSEnv$row232), silent = TRUE) row231 <- tcltk::ttkframe(KTSEnv$rows2and3, borderwidth = 0, relief = "raised") subMenu2But(parent = row231, text = "Load", command = loadAllTypes) subMenu2But(parent = row231, text = "Remove", command = removeAllTypes) subMenu2But(parent = row231, text = "Save", command = saveAllTypes) subMenu2But(parent = row231, text = "Export", command = exportall) subMenu2But(parent = row231, text = "Rename", command = renameAllTypes) subMenu2But(parent = row231, text = "Merge", command = mergeTsOrGap) subMenu2But(parent = row231, text = "List", command = refreshDataSetsList) tcltk::tkpack(row231, anchor = "nw", fill = "both") row232 <- tcltk::ttkframe(KTSEnv$rows2and3, borderwidth = 0, relief = "raised") subMenu2But(parent = row232, text = "Gap selection", command = selectionGaps) subMenu2But(parent = row232, text = "Artificial random gaps", command = createRandGaps) subMenu2But(parent = row232, text = "Artificial specific gaps", command = createSpecGaps) subMenu2But(parent = row232, text = "Apply gaps to series", command = applyGap2TSer) subMenu2But(parent = row232, text = "Upsample", command = NAs4Resamp) tcltk::tkpack(row232, anchor = "nw", fill = "both") assign("row231", row231, envir = KTSEnv) assign("row232", row232, envir = KTSEnv) assign("activMenu", "gapsetmenu", envir = KTSEnv) loadAllTypes() } }
plot.gradientDist <- function(x, orderBy, flipAxes = FALSE, main = NULL, xlab = NULL, ylab = "Distance along gradient", xlim = NULL, ylim = NULL, ...) { X <- as.numeric(x) if(missing(orderBy)) { orderBy <- seq_along(X) if(is.null(xlab)) xlab <- "Sample" } else { if(is.null(xlab)) xlab <- deparse(substitute(orderBy)) } xlim <- if(is.null(xlim)) range(orderBy[is.finite(orderBy)]) else xlim ylim <- if(is.null(ylim)) range(X[is.finite(X)]) else ylim if(flipAxes) plot.default(x = X, y = orderBy, xlab = ylab, ylab = xlab, main = main, ylim = xlim, xlim = ylim, ...) else plot.default(x = orderBy, y = X, xlab = xlab, ylab = ylab, main = main, ylim = ylim, xlim = xlim, ...) invisible(x) } lines.gradientDist <- function(x, orderBy, flipAxes = FALSE, type = "l", ...) { X <- as.numeric(x) if(missing(orderBy)) { orderBy <- seq_along(X) } if(flipAxes) lines.default(x = X, y = orderBy, type = type, ...) else lines.default(x = orderBy, y = X, type = type, ...) } points.gradientDist <- function(x, orderBy, flipAxes = FALSE, type = "p", ...) { X <- as.numeric(x) if(missing(orderBy)) { orderBy <- seq_along(X) } if(flipAxes) points.default(x = X, y = orderBy, type = type, ...) else points.default(x = orderBy, y = X, type = type, ...) }
treedisc.ada<-function(lst, pcf, ngrid=NULL, r=NULL, type=NULL, lowest="dens") { if (lowest=="dens") lowest<-0 else lowest<-min(lst$level) if (is.null(type)){ if (is.null(lst$refe)) type<-"lst" else type<-"shape" } if (is.null(r)){ if (type=="shape"){ stepsi<-lst$maxdis/ngrid r<-seq(0,lst$maxdis,stepsi) } else{ stepsi<-lst$maxdis/(ngrid+1) r<-seq(lowest+stepsi,lst$maxdis-stepsi,stepsi) } } mt<-multitree(lst$parent) child<-mt$child sibling<-mt$sibling d<-dim(lst$center)[1] itemnum<-length(lst$parent) parent<-matrix(NA,itemnum,1) pino<-matrix(0,itemnum,1) pinoparent<-matrix(0,itemnum,1) pinorad<-matrix(0,itemnum,1) pino[1]<-1 pinoparent[1]<-0 pinorad[1]<-1 pinin<-1 curradind<-1 while (pinin>0){ cur<-pino[pinin] curpar<-pinoparent[pinin] curradind<-pinorad[pinin] pinin<-pinin-1 if (sibling[cur]>0){ pinin<-pinin+1 pino[pinin]<-sibling[cur] pinoparent[pinin]<-curpar pinorad[pinin]<-curradind } note<-lst$infopointer[cur] if (type=="lst") etai<-pcf$value[note] else{ recci<-matrix(0,2*d,1) downi<-pcf$down[lst$infopointer[note],] highi<-pcf$high[lst$infopointer[note],] for (jj in 1:d){ recci[2*jj-1]<-pcf$grid[downi[jj],jj] recci[2*jj]<-pcf$grid[highi[jj],jj] } etai<-sqrt(etaisrec(lst$refe,recci)) } if (curradind<=length(r)) currad<-r[curradind] else currad<-1000000 if (etai>currad){ parent[cur]<-curpar curpar<-cur curradind<-curradind+1 } while (child[cur]>0){ cur<-child[cur] if (sibling[cur]>0){ pinin<-pinin+1 pino[pinin]<-sibling[cur] pinoparent[pinin]<-curpar pinorad[pinin]<-curradind } note<-lst$infopointer[cur] if (type=="lst") etai<-pcf$value[note] else{ recci<-matrix(0,2*d,1) downi<-pcf$down[lst$infopointer[note],] highi<-pcf$high[lst$infopointer[note],] for (jj in 1:d){ recci[2*jj-1]<-pcf$grid[downi[jj],jj] recci[2*jj]<-pcf$grid[highi[jj],jj] } etai<-sqrt(etaisrec(lst$refe,recci)) } if (curradind<=length(r)) currad<-r[curradind] else currad<-1000000 if (etai>currad){ parent[cur]<-curpar curpar<-cur curradind<-curradind+1 } } } newparent<-matrix(0,itemnum,1) newcenter<-matrix(0,d,itemnum) newvolume<-matrix(0,itemnum,1) newlevel<-matrix(0,itemnum,1) newpointer<-matrix(0,itemnum,1) i<-1 newlkm<-0 while (i<=itemnum){ if (!is.na(parent[i])){ newlkm<-newlkm+1 newpointer[i]<-newlkm if (parent[i]==0) newparent[newlkm]<-0 else newparent[newlkm]<-newpointer[parent[i]] newcenter[,newlkm]<-lst$center[,i] newlevel[newlkm]<-lst$level[i] newvolume[newlkm]<-lst$volume[i] } i<-i+1 } newparent<-newparent[1:newlkm] if (newlkm<=1) newcenter<-matrix(newcenter[,1],d,1) else newcenter<-newcenter[,1:newlkm] newvolume<-newvolume[1:newlkm] newlevel<-newlevel[1:newlkm] newpointer<-newpointer[1:newlkm] return(list(parent=newparent,level=newlevel,volume=newvolume,center=newcenter, refe=lst$refe,bary=lst$bary,root=1,infopointer=newpointer)) }
data("rent", package = "catdata") rent$area <- as.factor(rent$area) rent$year <- as.factor(floor(rent$year / 10) * 10) rent$rooms <- as.factor(rent$rooms) rent$quality <- as.factor(rent$good + 2 * rent$best) levels(rent$quality) <- c("fair", "good", "excellent") sizeClasses <- c(0, seq(30, 140, 10)) rent$size <- as.factor(sizeClasses[findInterval(rent$size, sizeClasses)]) rent$warm <- factor(rent$warm, labels = c("yes", "no")) rent$central <- factor(rent$central, labels = c("yes", "no")) rent$tiles <- factor(rent$tiles, labels = c("yes", "no")) rent$bathextra <- factor(rent$bathextra, labels = c("no", "yes")) rent$kitchen <- factor(rent$kitchen, labels = c("no", "yes")) formu <- rentm ~ p(area, pen = "gflasso") + p(year, pen = "flasso", refcat = 2000) + p(rooms, pen = "flasso") + p(quality, pen = "flasso") + p(size, pen = "flasso") + p(warm, pen = "grouplasso", group = 1) + p(central, pen = "grouplasso", group = 1) + p(tiles, pen = "none") + bathextra + p(kitchen, pen = "lasso") munich.fit <- glmsmurf(formula = formu, family = gaussian(), data = rent, pen.weights = "glm.stand", lambda = 0.1) summary(munich.fit)
get_lto_file_info_tbl <- function() { lto_file_info_tbl <- tibble( type = c("collection", "themeset"), extension = c(".st.txt", ".thset.txt"), header_fragment = c("Collection:", "Themeset:") ) lto_file_info_tbl } lto_file_to_lines <- function(file, type) { if (is_missing(file)) { message <- get_missing_arg_msg(variable_name = "file") abort(message, class = "missing_argument") } if (length(file) != 1 || !is.character(file)) { message <- get_single_string_msg(string = file, variable_name = type) abort(message, class = "function_argument_type_check_fail") } if (isTRUE(!(type %in% get_lto_file_info_tbl()$type))) { abort( str_glue( "The `type` specified LTO file type is invalid.\n", "{col_red(symbol$cross)} {type} is an invalid LTO file type.\n", "{col_yellow(symbol$info)} Valid LTO file types are:\n", "{str_c(get_lto_file_info_tbl()$type, collapse = \"\n\")}" ) ) } if (isTRUE(!is_url(file) && !grepl("\n", file))) { if (is_absolute_path(file)) { file_name <- basename(file) file_path <- file } else { file_name <- file file_path <- file.path(getwd(), file) } if (all(str_ends(file, get_lto_file_info_tbl()$extension, negate = TRUE))) { if (isTRUE(type == "collection")) { extension <- get_lto_file_info_tbl() %>% filter(.data$type == "collection") %>% pull(.data$extension) } else if (isTRUE(type == "themeset")) { extension <- get_lto_file_info_tbl() %>% filter(.data$type == "themeset") %>% pull(.data$extension) } cli_text("file_name: {.val {file}}") cli_text("extension: {.val {extension}}") message <- get_invalid_file_extension_msg(file_name = file, valid_file_extension = extension) abort(message, class = "invalid_file_extension") } if (!file.exists(file)) { message <- get_file_not_found_msg(file) abort(message, class = "file_not_found") } if (is_file_empty(file)) { message <- get_empty_file_msg(file) abort(message, class = "file_empty") } } lines <- readr::read_lines(file) lines } lto_file_to_tbl <- function(lines, verbose = TRUE) { if (is_missing(lines)) { message <- get_missing_arg_msg(variable_name = "lines") abort(message, class = "missing_argument") } info1 <- "{col_yellow(symbol$info)} Run `cat(readr::read_file(system.file(\"extdata\", \"rolling-stone-best-ttz1959-episodes.st.txt\", package = \"stoRy\")))` to view an example collection file.\n" info2 <- "{col_yellow(symbol$info)} Run `cat(readr::read_file(system.file(\"extdata\", \"immortality.thset.txt\", package = \"stoRy\")))` to view an example themeset file." lto_file_types_tbl <- get_lto_file_info_tbl() field_def_tbl <- get_field_def_tbl() parsed_fields_tbl <- tibble( name = character(0), contents = list(tibble(contents = character(0)))) if (last(lines) != "") lines <- append(lines, "") if (!str_starts(lines[2], pattern = "===")) { abort( str_glue( "`file` contains an invalid header.\n", "{col_red(symbol$cross)} The second line must start with \"===\".\n", info1, info2 ), class = "invalid_lto_file_format" ) } header <- lines[1] if (!any(str_starts(header, pattern = lto_file_types_tbl$header_fragment))) { abort( str_glue( "`file` contains an invalid header.\n", "{col_red(symbol$cross)} The first line must start with one of the prefixes\n", "{str_c(lto_file_types_tbl$header_fragment, collapse = \"\n)}\"\n", info1, info2 ), class = "invalid_lto_file_format" ) } if (str_detect(header, ",")) { abort( str_glue( "`file` contains an invalid header.\n", "{col_red(symbol$cross)} The first line must not contain any \",\" characters.\n", info1, info2 ), class = "invalid_lto_file_format" ) } parsed_fields_tbl <- parsed_fields_tbl %>% add_row(tibble(name = "header", contents = list(tibble(contents = header)))) field_line_numbers <- str_which(lines, "^::") field_content_start_line_numbers <- field_line_numbers + 1 field_content_end_line_numbers <- append(field_line_numbers[-1] - 1, length(lines)) number_of_fields <- length(field_line_numbers) for (field_number in seq_len(number_of_fields)) { field_literal <- lines[field_line_numbers[field_number]] if (!isTRUE(field_literal %in% field_def_tbl$literal)) { if (verbose) cli_alert_warning("Discarding unrecognized field: \"{field_literal}\"") } else if (isTRUE(field_def_tbl %>% filter(.data$literal == field_literal) %>% pull(.data$status) == "unsupported")) { if (verbose) cli_alert_warning("Discarding unsupported field: \"{field_literal}\"") } else { name <- field_def_tbl %>% filter(.data$literal == field_literal) %>% pull(.data$name) text <- str_c(lines[field_content_start_line_numbers[field_number] : field_content_end_line_numbers[field_number]], collapse = "\n") format <- field_def_tbl %>% filter(.data$literal == field_literal) %>% pull(.data$format) contents <- parse_field_contents(text, format, field_literal) parsed_fields_tbl <- parsed_fields_tbl %>% add_row(tibble(name = name, contents = list(contents))) } } header <- parsed_fields_tbl %>% filter(.data$name == "header") %>% pull(.data$contents) %>% unlist(use.names = FALSE) lto_file_type <- get_lto_file_type(string = header) expected_field_name <- "description" if (!any(str_detect(parsed_fields_tbl$name, pattern = expected_field_name))) { abort( str_glue( "`file` is missing a required field.\n", "{col_red(symbol$cross)} The required field \":: Description\" is missing.\n", info1, info2 ), class = "invalid_lto_file_format" ) } if (isTRUE(lto_file_type == "themeset")) { expected_field_name <- "component_theme_names" if (!any(str_detect(parsed_fields_tbl$name, pattern = expected_field_name))) { abort( str_glue( "`file` is missing a required field.\n", "{col_red(symbol$cross)} The required field \":: Component Themes\" is missing.\n", info2 ), class = "invalid_lto_file_format" ) } valid_theme_names <- get_themes_tbl() %>% pull(.data$theme_name) candidate_component_theme_names <- parsed_fields_tbl %>% filter(.data$name == expected_field_name) %>% pull(.data$contents) %>% unlist(use.names = FALSE) invalid_component_theme_names <- setdiff(candidate_component_theme_names, valid_theme_names) if (!identical(invalid_component_theme_names, character(0))) { if (verbose) cli_alert_warning("Discarding invalid themes:\n", "{str_c(invalid_component_theme_names, collapse = \"\n\")}") component_theme_names <- intersect(candidate_component_theme_names, valid_theme_names) parsed_fields_tbl$contents[[which(parsed_fields_tbl$name == expected_field_name)]] <- tibble(contents = component_theme_names) } } else if (isTRUE(lto_file_type == "collection")) { expected_field_name <- "title" if (!any(str_detect(parsed_fields_tbl$name, pattern = expected_field_name))) { abort( str_glue( "`file` is missing a required field.\n", "{col_red(symbol$cross)} The required field \":: Title\" is missing.\n", info1 ), class = "invalid_lto_file_format" ) } expected_field_name <- "date" if (!any(str_detect(parsed_fields_tbl$name, pattern = expected_field_name))) { abort( str_glue( "`file` is missing a required field.\n", "{col_red(symbol$cross)} The required field \":: Date\" is missing.\n", info1 ), class = "invalid_lto_file_format" ) } expected_field_name <- "collection_ids" if (!any(str_detect(parsed_fields_tbl$name, pattern = expected_field_name))) { abort( str_glue( "`file` is missing a required field.\n", "{col_red(symbol$cross)} The required field \":: Collections\" is missing.\n", info1 ), class = "invalid_lto_file_format" ) } field_name <- "header" reserved_collection_ids <- get_collections_tbl() %>% pull(.data$collection_id) candidate_collection_id <- parsed_fields_tbl %>% filter(.data$name == field_name) %>% pull(.data$contents) %>% unlist(use.names = FALSE) if (candidate_collection_id %in% reserved_collection_ids) { abort( str_glue( "`file` contains an invalid collection.\n", "{col_red(symbol$cross)} The collection ID \"{collection_id}\" is reserved.\n", info1 ), class = "invalid_lto_file_format" ) } expected_field_name <- "component_story_ids" if (!any(str_detect(parsed_fields_tbl$name, pattern = expected_field_name))) { abort( str_glue( "`file` is missing a required field.\n", "{col_red(symbol$cross)} The required field \":: Component Stories\" is missing.\n", info1 ), class = "invalid_lto_file_format" ) } valid_story_ids <- get_stories_tbl() %>% pull(.data$story_id) candidate_component_story_ids <- parsed_fields_tbl %>% filter(.data$name == expected_field_name) %>% pull(.data$contents) %>% unlist(use.names = FALSE) invalid_story_ids <- setdiff(candidate_component_story_ids, valid_story_ids) if (!identical(invalid_story_ids, character(0))) { if (verbose) cli_alert_warning("Discarding invalid story IDs:\n", "{str_c(invalid_story_ids, collapse = \"\n\")}") component_story_ids <- intersect(candidate_component_story_ids, valid_story_ids) parsed_fields_tbl$contents[[which(parsed_fields_tbl$name == expected_field_name)]] <- tibble(contents = component_story_ids) } } field_names <- parsed_fields_tbl$name description <- parsed_fields_tbl %>% filter(.data$name == "description") %>% pull(.data$contents) %>% unlist(use.names = FALSE) if (isTRUE(lto_file_type == "themeset")) { themeset_name <- parsed_fields_tbl %>% filter(.data$name == "name") %>% pull(.data$contents) %>% unlist(use.names = FALSE) component_theme_names <- parsed_fields_tbl %>% filter(.data$name == "component_theme_names") %>% pull(.data$contents) %>% unlist(use.names = FALSE) lto_tbl <- tibble( themeset_index = NA, themeset_id = header, themeset_name = themeset_name, description = description, component_theme_names = list(component_theme_names) ) } else if (isTRUE(lto_file_type == "collection")) { title <- parsed_fields_tbl %>% filter(.data$name == "title") %>% pull(.data$contents) %>% unlist(use.names = FALSE) date <- parsed_fields_tbl %>% filter(.data$name == "date") %>% pull(.data$contents) %>% unlist(use.names = FALSE) component_story_ids <- parsed_fields_tbl %>% filter(.data$name == "component_story_ids") %>% pull(.data$contents) %>% unlist(use.names = FALSE) if (isTRUE("references" %in% field_names)) { references <- parsed_fields_tbl %>% filter(.data$name == "references") %>% pull(.data$contents) %>% unlist(use.names = FALSE) } else { references <- tibble(references = character(0)) } lto_tbl <- tibble( collection_index = NA, collection_id = header, title = title, description = description, date = date, component_story_ids = list(component_story_ids), references = list(references), themes = list(tibble(data.frame(theme_name = character(0), level = character(0), motivation = character(0)))), source = NA ) } else { lto_tbl <- tibble() } lto_tbl } parse_field_contents <- function(text, format, field_literal) { if (is_missing(text)) { message <- get_missing_arg_msg(variable_name = "text") abort(message, class = "missing_argument") } if (is_missing(format)) { message <- get_missing_arg_msg(variable_name = "format") abort(message, class = "missing_argument") } if (is_missing(field_literal)) { message <- get_missing_arg_msg(variable_name = "field_literal") abort(message, class = "missing_argument") } if (format == "text blocks") { return(tibble(contents = remove_wordwrap(text))) } else if (format == "multiline") { return(tibble(contents = text %>% str_trim() %>% str_split(pattern = "\n") %>% unlist())) } else if (format == "single term") { text <- str_trim(text) return(tibble(contents = text)) } abort( str_glue( "`format` must be a recognized string or NA.\n", "{col_red(symbol$cross)} You supplied the unrecognized value {format}.\n", "{col_yellow(symbol$info)} Run `unique(get_field_def_tbl() %>% dplyr::select(format))` to view recognized values." ) ) } get_lto_file_type <- function(string) { if (is_missing(string)) { message <- get_missing_arg_msg(variable_name = "string") abort(message, class = "missing_argument") } lto_file_types_tbl <- get_lto_file_info_tbl() if (!any(str_starts(string, pattern = lto_file_types_tbl$header_fragment))) { abort( str_glue( "`string` corresponds to an invalid file type.\n", "{symbol$cross} The file's first line must start with one of the prefixes\n", "{str_c(lto_file_types_tbl$header_fragment, collapse = \"\n)}\"" ), class = "invalid_file_type" ) } lto_file_types_tbl$type[str_which(string, pattern = lto_file_types_tbl$header_fragment)] } get_field_def_tbl <- function() { field_names <- c( "choice_themes", "collection_ids", "component_story_ids", "component_theme_names", "date", "description", "major_themes", "minor_themes", "notes", "references", "title" ) field_literals <- c( ":: Choice Themes", ":: Collections", ":: Component Stories", ":: Component Themes", ":: Date", ":: Description", ":: Major Themes", ":: Minor Themes", ":: Notes", ":: References", ":: Title" ) field_formats <- c( NA, "multiline", "multiline", "multiline", "single term", "text blocks", NA, NA, "text blocks", "multiline", "single term" ) field_statuses <- c( "unsupported", "supported", "supported", "supported", "supported", "supported", "unsupported", "unsupported", "supported", "supported", "supported" ) field_def_tbl <- tibble( name = field_names, literal = field_literals, format = field_formats, status = field_statuses ) field_def_tbl }
ts_wfs_nnetar_reg <- function(.model_type = "nnetar", .recipe_list, .non_seasonal_ar = 0, .seasonal_ar = 0, .hidden_units = 5, .num_networks = 10, .penalty = .1, .epochs = 10 ){ model_type = .model_type recipe_list = .recipe_list non_seasonal_ar = .non_seasonal_ar seasonal_ar = .seasonal_ar hidden_units = .hidden_units num_networks = .num_networks penalty = .penalty epochs = .epochs if (!is.character(model_type)) { stop(call. = FALSE, "(.model_type) must be a character like 'nnetar'") } if (!model_type %in% c("nnetar")){ stop(call. = FALSE, "(.model_type) must be one of the following, 'nnetar'") } if (!is.list(recipe_list)){ stop(call. = FALSE, "(.recipe_list) must be a list of recipe objects") } model_spec_nnetar <- modeltime::nnetar_reg( seasonal_period = "auto" , non_seasonal_ar = non_seasonal_ar , seasonal_ar = seasonal_ar , hidden_units = hidden_units , num_networks = num_networks , penalty = penalty , epochs = epochs ) %>% parsnip::set_engine("nnetar") final_model_list <- list( model_spec_nnetar ) wf_sets <- workflowsets::workflow_set( preproc = recipe_list, models = final_model_list, cross = TRUE ) return(wf_sets) }
is.error <- function(Zt, Zp) { if (length(Zt) == 0) { error <- array(data = 0, dim = length(Zp)) } else { error <- array(data = 1, dim = length(Zp)) zt <- as.numeric(names(table(Zt))); zp <- unique(Zp) iset <- 1:length(zt) while (1) { imax <- 0; jmax <- 0; which.not.error <- NULL; Pmax <- 0.0 for (i in iset) { Zti <- Zt[which(Zt == zt[i])] Zpi <- Zp[which(Zt == zt[i])] j <- as.numeric(names(sort(table(Zpi), decreasing = TRUE))) k <- match(j, zp); k <- k[!is.na(k)] if (length(k) > 0) { j <- zp[k[1]]; which.not.error <- which(Zt == zt[i] & Zp == j) P.n <- length(which.not.error); P.d <- length(Zti) if (P.n == P.d) { P <- P.d } else { P <- P.n / P.d } if (P > Pmax) { imax <- i; jmax <- j; which.not.errormax <- which.not.error; Pmax <- P } } } if (imax == 0) { break } else { error[which.not.errormax] <- 0 zp <- zp[which(zp != jmax)]; iset <- iset[which(iset != imax)] } } } error }
"are.parrevgum.valid" <- function(para,nowarn=FALSE) { if(! is.revgum(para)) return(FALSE) if(any(is.na(para$para))) return(FALSE) A <- para$para[2] op <- options() GO <- TRUE if(nowarn == TRUE) options(warn=-1) options(op) if(GO) return(TRUE) return(FALSE) }
find_esgrid = function(my_data, my_cov, treatment, outcome, my_estimand){ obs_cors = rep(NA, ncol(data.frame(my_data[,my_cov]))) for(i in 1:length(obs_cors)){ if(is.factor(my_data[,my_cov[i]])){ obs_cors[i] = abs(stats::cor(as.numeric(my_data[,my_cov[i]]), my_data[,outcome],"pairwise.complete.obs")) } else { obs_cors[i] = abs(stats::cor(as.numeric(as.character(my_data[,my_cov[i]])), my_data[,outcome],"pairwise.complete.obs")) } } mean_noNA = function(x){return(mean(x, na.rm=T))} sd_noNA = function(x){return(stats::sd(x, na.rm=T))} mean_sd_bygroup = my_data %>% dplyr::select(.data[[treatment]], my_cov) %>% dplyr::mutate_if(is.factor, as.numeric) %>% dplyr::group_by(.data[[treatment]]) %>% dplyr::summarize_all(list(mean_noNA, sd_noNA)) %>% data.frame() es_cov = rep(NA, length(my_cov)) if(my_estimand == "ATE"){ if(length(my_cov) > 1){ for(i in 1:length(my_cov)){ diff_means = diff(mean_sd_bygroup[,colnames(mean_sd_bygroup)[grep(paste0("^", my_cov[i], "_fn1$"), colnames(mean_sd_bygroup))]]) denom_ATE = sqrt(sum(mean_sd_bygroup[,colnames(mean_sd_bygroup)[grep(paste0("^", my_cov[i], "_fn2$"), colnames(mean_sd_bygroup))]]^2)/2) es_cov[i] = abs(diff_means/denom_ATE) } } else{ diff_means = diff(mean_sd_bygroup$fn1) denom_ATE = sqrt(sum(mean_sd_bygroup$fn2^2)/2) es_cov[i] = abs(diff_means/denom_ATE) } } else if(my_estimand == "ATT"){ if(length(my_cov) > 1){ for(i in 1:length(my_cov)){ diff_means = diff(mean_sd_bygroup[,colnames(mean_sd_bygroup)[grep(paste0("^", my_cov[i], "_fn1$"), colnames(mean_sd_bygroup))]]) treat_only = mean_sd_bygroup %>% dplyr::filter(.data[[treatment]] == 1) %>% data.frame() denom_ATT = treat_only[,colnames(treat_only)[grep(paste0("^", my_cov[i], "_fn2$"), colnames(treat_only))]] es_cov[i] = abs(diff_means/denom_ATT) } } else{ diff_means = diff(mean_sd_bygroup$fn1) denom_ATT = mean_sd_bygroup$fn2[mean_sd_bygroup[,treatment]==1] es_cov[i] = abs(diff_means/denom_ATT) } } obs_cors = cbind(obs_cors, es_cov) obs_cors = obs_cors %>% data.frame() %>% dplyr::mutate(cov=my_cov) colnames(obs_cors) = c("Cor_Outcome", "ES", "cov") return(obs_cors) }
chainSummary = function(chain, HDPIntervalValue){ nChains = length(chain) if (class(chain) == "list"){ if (nChains > 1){ stackedModelChain = coda::mcmc(do.call("rbind", lapply( X = chain, FUN = function(x) return(as.matrix(x)) ))) modelChain = coda::mcmc.list(lapply(X = chain, FUN = coda::mcmc)) } else { stackedModelChain = chain modelChain = coda::mcmc(modelChain) stackedModelChain = coda::mcmc(modelChain) } } chainSummary = summary(modelChain) chainSummary = cbind(chainSummary$statistics, chainSummary$quantiles) HPDIval = HDPIntervalValue HDPI = coda::HPDinterval(stackedModelChain, prob = HPDIval) colnames(HDPI) = c(paste0("lowerHDPI", HPDIval), paste0("upperHDPI95", HPDIval)) chainSummary = cbind(chainSummary, HDPI) if (nChains > 1){ convergenceDiagnostics = coda::gelman.diag(modelChain, multivariate = FALSE) colnames(convergenceDiagnostics$psrf) = c("PSRF", "PSRF Upper C.I.") chainSummary = cbind(chainSummary, convergenceDiagnostics$psrf) } else { convergenceDiagnostics = coda::heidel.diag(modelChain) temp = convergenceDiagnostics[, c(3,4)] colnames(temp) = c("Heidel.Diag p-value", "Heidel.Diag Htest") chainSummary = cbind(chainSummary, temp) } return(chainSummary) }
context('Testing \'console\'') test_that('.onAttach() works', { expect_true(outsider.base:::.onAttach()) }) test_that('char() works', { expect_true(is.character(outsider.base:::char('char'))) }) test_that('stat() works', { expect_true(is.character(outsider.base:::stat('stat'))) }) test_that('cat_line() works', { expect_null(outsider.base:::cat_line('cat this')) })
.doSortWrap <- local({ INCR_NA_1ST <- 2 INCR <- 1 DECR <- -1 DECR_NA_1ST <- -2 UNSORTED <- 0 UNKNOWN <- NA_integer_ .makeSortEnum <- function(decr, na.last) { if(decr) { if (is.na(na.last) || na.last) DECR else DECR_NA_1ST } else { if (is.na(na.last) || na.last) INCR else INCR_NA_1ST } } function(vec, decr, nalast, noNA = NA) { if (length(vec) > 0 && is.numeric(vec)) { sorted <- .makeSortEnum(decr, nalast) if (is.na(noNA)) { if(is.na(nalast)) noNA <- TRUE else if(nalast) noNA <- !is.na(vec[length(vec)]) else noNA <- !is.na(vec[1L]) } .Internal(wrap_meta(vec, sorted, noNA)) } else vec } }) .doWrap <- .doSortWrap sort <- function(x, decreasing = FALSE, ...) { if(!is.logical(decreasing) || length(decreasing) != 1L) stop("'decreasing' must be a length-1 logical vector.\nDid you intend to set 'partial'?") UseMethod("sort") } sort.default <- function(x, decreasing = FALSE, na.last = NA, ...) { if(is.object(x)) x[order(x, na.last = na.last, decreasing = decreasing)] else sort.int(x, na.last = na.last, decreasing = decreasing, ...) } sort.int <- function(x, partial = NULL, na.last = NA, decreasing = FALSE, method = c("auto", "shell", "quick", "radix"), index.return = FALSE) { decreasing <- as.logical(decreasing) if (is.null(partial) && !index.return && is.numeric(x)) { if (.Internal(sorted_fpass(x, decreasing, na.last))) { attr <- attributes(x) if (! is.null(attr) && ! identical(names(attr), "names")) attributes(x) <- list(names = names(x)) return(x) } } method <- match.arg(method) if (method == "auto" && is.null(partial) && (is.numeric(x) || is.factor(x) || is.logical(x)) && is.integer(length(x))) method <- "radix" if (method == "radix") { if (!is.null(partial)) { stop("'partial' sorting not supported by radix method") } if (index.return && is.na(na.last)) { x <- x[!is.na(x)] na.last <- TRUE } o <- order(x, na.last = na.last, decreasing = decreasing, method = "radix") y <- x[o] y <- .doSortWrap(y, decreasing, na.last) return(if (index.return) list(x = y, ix = o) else y) } else if (method == "auto" || !is.numeric(x)) method <- "shell" if(isfact <- is.factor(x)) { if(index.return) stop("'index.return' only for non-factors") lev <- levels(x) nlev <- nlevels(x) isord <- is.ordered(x) x <- c(x) } else if(!is.atomic(x)) stop("'x' must be atomic") if(has.na <- any(ina <- is.na(x))) { nas <- x[ina] x <- x[!ina] } if(index.return && !is.na(na.last)) stop("'index.return' only for 'na.last = NA'") if(!is.null(partial)) { if(index.return || decreasing || isfact || method != "shell") stop("unsupported options for partial sorting") if(!all(is.finite(partial))) stop("non-finite 'partial'") y <- if(length(partial) <= 10L) { partial <- .Internal(qsort(partial, FALSE)) .Internal(psort(x, partial)) } else if (is.double(x)) .Internal(qsort(x, FALSE)) else .Internal(sort(x, FALSE)) } else { nms <- names(x) switch(method, "quick" = { if(!is.null(nms)) { if(decreasing) x <- -x y <- .Internal(qsort(x, TRUE)) if(decreasing) y$x <- -y$x names(y$x) <- nms[y$ix] if (!index.return) y <- y$x } else { if(decreasing) x <- -x y <- .Internal(qsort(x, index.return)) if(decreasing) if(index.return) y$x <- -y$x else y <- -y } }, "shell" = { if(index.return || !is.null(nms)) { o <- sort.list(x, decreasing = decreasing) y <- if (index.return) list(x = x[o], ix = o) else x[o] } else y <- .Internal(sort(x, decreasing)) }) } if (!is.na(na.last) && has.na) y <- if (!na.last) c(nas, y) else c(y, nas) if (isfact) y <- (if (isord) ordered else factor)(y, levels = seq_len(nlev), labels = lev) if (is.null(partial)) { y <- .doSortWrap(y, decreasing, na.last) } y } order <- function(..., na.last = TRUE, decreasing = FALSE, method = c("auto", "shell", "radix")) { z <- list(...) decreasing <- as.logical(decreasing) if (length(z) == 1L && is.numeric(x <- z[[1L]]) && !is.object(x) && length(x) > 0) { if (.Internal(sorted_fpass(x, decreasing, na.last))) return(seq_along(x)) } method <- match.arg(method) if(any(vapply(z, is.object, logical(1L)))) { z <- lapply(z, function(x) if(is.object(x)) as.vector(xtfrm(x)) else x) return(do.call("order", c(z, list(na.last = na.last, decreasing = decreasing, method = method)))) } if (method == "auto") { useRadix <- all(vapply(z, function(x) { (is.numeric(x) || is.factor(x) || is.logical(x)) && is.integer(length(x)) }, logical(1L))) method <- if (useRadix) "radix" else "shell" } if(method != "radix" && !is.na(na.last)) { if(length(decreasing) > 1L) stop("'decreasing' of length > 1 is only for method = \"radix\"") return(.Internal(order(na.last, decreasing, ...))) } if (method == "radix") { decreasing <- rep_len(as.logical(decreasing), length(z)) return(.Internal(radixsort(na.last, decreasing, FALSE, TRUE, ...))) } if(any(diff((l.z <- lengths(z)) != 0L))) stop("argument lengths differ") na <- vapply(z, is.na, rep.int(NA, l.z[1L])) ok <- if(is.matrix(na)) rowSums(na) == 0L else !any(na) if(all(!ok)) return(integer()) z[[1L]][!ok] <- NA ans <- do.call("order", c(z, list(decreasing = decreasing))) ans[ok[ans]] } sort.list <- function(x, partial = NULL, na.last = TRUE, decreasing = FALSE, method = c("auto", "shell", "quick", "radix")) { decreasing <- as.logical(decreasing) if(is.null(partial) && is.numeric(x) && !is.object(x) && length(x) > 0) { if (.Internal(sorted_fpass(x, decreasing, na.last))) return(seq_along(x)) } method <- match.arg(method) if (method == "auto" && (is.numeric(x) || is.factor(x) || is.logical(x) || (is.object(x) && !is.atomic(x))) && is.integer(length(x))) method <- "radix" if(!is.null(partial)) .NotYetUsed("partial != NULL") if(method == "quick") { if(is.factor(x)) x <- as.integer(x) if(is.numeric(x)) return(sort(x, na.last = na.last, decreasing = decreasing, method = "quick", index.return = TRUE)$ix) else stop("method = \"quick\" is only for numeric 'x'") } if (is.na(na.last)) { x <- x[!is.na(x)] na.last <- TRUE } if(method == "radix") { return(order(x, na.last=na.last, decreasing=decreasing, method="radix")) } if(!is.atomic(x)) stop("'x' must be atomic for 'sort.list', method \"shell\" and \"quick\" Have you called 'sort' on a list?") .Internal(order(na.last, decreasing, x)) } xtfrm.default <- function(x) { y <- if(is.numeric(x)) unclass(x) else as.vector(rank(x, ties.method = "min", na.last = "keep")) if(!is.numeric(y) || ((length(y) != length(x)) && !inherits(x, "data.frame"))) stop("cannot xtfrm 'x'") y } xtfrm.factor <- function(x) as.integer(x) xtfrm.AsIs <- function(x) { if(length(cl <- class(x)) > 1) oldClass(x) <- cl[-1L] NextMethod("xtfrm") } .gt <- function(x, i, j) { xi <- x[i]; xj <- x[j] if (xi == xj) 0L else if(xi > xj) 1L else -1L; } .gtn <- function(x, strictly) { n <- length(x) if(strictly) !all(x[-1L] > x[-n]) else !all(x[-1L] >= x[-n]) } grouping <- function(...) { z <- list(...) if(any(vapply(z, is.object, logical(1L)))) { z <- lapply(z, function(x) if(is.object(x)) as.vector(xtfrm(x)) else x) return(do.call("grouping", z)) } nalast <- TRUE decreasing <- rep_len(FALSE, length(z)) group <- TRUE sortStr <- FALSE return(.Internal(radixsort(nalast, decreasing, group, sortStr, ...))) }
DFPCA <- function(y) { mu<- colMeans(y) sub_mean<-matrix(rep(mu,nrow(y)),nrow(y),ncol(y), byrow=TRUE) resd<-y-sub_mean G <- long_run_covariance_estimation(t(resd)) e1 <- eigen(G) fpca.value <- e1$values fpca.value <- ifelse(fpca.value>=0, fpca.value, 0) percent <- (fpca.value)/sum(fpca.value) ratio<- fpca.value[1]/fpca.value K <- max(min(which(cumsum(percent) > 0.9)), min(which(ratio>sqrt(nrow(y))/log10(nrow(y))))-1, 2) fpca.vectors <- e1$vectors FPCS<-resd%*%fpca.vectors return(list(score=FPCS,lambda=fpca.value, phi=fpca.vectors,mu=mu, npc.select=K, mean=sub_mean)) }
justDoItDoE <- function (command) { Message() if (!getRcmdr("suppress.X11.warnings")) { messages.connection <- file(open = "w+") sink(messages.connection, type = "message") on.exit({ sink(type = "message") close(messages.connection) }) } else messages.connection <- getRcmdr("messages.connection") result <- try(eval(parse(text = command),envir = .GlobalEnv)) if (!class(result)[1]=="try-error") checkWarnings(readLines(messages.connection)) if (getRcmdr("RStudio")) Sys.sleep(0) result }
scores3D=function(true.dens, est.dens, npoints, eps) { check.true=rect.integrate(density=true.dens, npoints=npoints,eps=eps) check.est=rect.integrate(density=est.dens, npoints=npoints,eps=eps) L2.score= ( rect.integrate(density= (est.dens - true.dens)^2, npoints=npoints,eps=eps) )^(1/2) KL.score= rect.integrate( density= (log(true.dens+(true.dens==0))-log(check.true)- log(est.dens+ (est.dens==0))+ log(check.est) ) * true.dens/check.true, npoints=npoints,eps=eps) return(list(check.true=check.true, check.est=check.est, L2score=L2.score, KLscore=KL.score)) }
discretize_cutp <- function(cont_test_set, disc_train_set, cont_train_set) { d <- ncol(cont_train_set) data_validation <- matrix(0, nrow = nrow(cont_test_set), ncol = d) cutoff <- get_cutp(disc_train_set, cont_train_set) for (k in 1:d) { if (nlevels(as.factor(disc_train_set[, k])) > 1) { data_validation[, k] <- cut(cont_test_set[, k], cutoff[[k]], include.lowest = FALSE, labels = seq(1:(length(cutoff[[k]]) - 1))) data_validation[, k] <- factor(data_validation[, k]) } else { data_validation[, k] <- rep(factor(1), nrow(cont_test_set)) } } return(data_validation) }
mod_estimation_dicent_ui <- function(id, label) { ns <- NS(id) tabItem( class = "tabitem-container", tabName = label, h2("Dicentrics: Dose estimation"), fluidRow( box( width = 5, title = span( "Curve fitting data options", help_modal_button( ns("help_fit_data"), ns("help_fit_data_modal") ) ), status = "info", collapsible = TRUE, bsplus::bs_modal( id = ns("help_fit_data_modal"), title = "Help: Fitting data input", size = "large", body = tagList( radioGroupButtons( inputId = ns("help_fit_data_option"), label = NULL, choices = c( "Manual input" = "manual", "Load data" = "load" ), selected = "load" ), conditionalPanel( condition = "input.help_fit_data_option == 'manual'", ns = ns, include_help("estimation/fit_data_input.md") ), conditionalPanel( condition = "input.help_fit_data_option == 'load'", ns = ns, include_help("estimation/fit_data_load.md") ) ) ), fluidRow( col_12( awesomeCheckbox( inputId = ns("load_fit_data_check"), status = "info", label = "Load fit data from RDS file", value = TRUE ), conditionalPanel( condition = "!input.load_fit_data_check", ns = ns, div( class = "side-widget-tall", selectInput( ns("formula_select"), width = 165, label = "Fitting formula", choices = list_fitting_formulas(), selected = "lin-quad" ) ), widget_sep(), actionButton( ns("button_gen_table"), class = "options-button", style = "margin-left: -10px; margin-bottom: 0px;", label = "Generate tables" ), br(), br(), widget_label("Coefficients"), div( class = "hot-improved", rHandsontableOutput(ns("fit_coeffs_hot")) ), br(), awesomeCheckbox( inputId = ns("use_var_cov_matrix"), status = "info", label = "Provide variance-covariance matrix", value = FALSE ) ), conditionalPanel( condition = "input.use_var_cov_matrix", ns = ns, widget_label("Variance-covariance matrix"), div( class = "hot-improved", rHandsontableOutput(ns("fit_var_cov_mat_hot")) ), br() ), conditionalPanel( condition = "input.load_fit_data_check", ns = ns, fileInput( ns("load_fit_data"), label = "File input", accept = c(".rds") ) ), actionButton( ns("button_view_fit_data"), class = "options-button", label = "Preview data" ) ) ) ), tabBox( id = ns("fit_results_tabs"), width = 7, side = "left", tabPanel( title = "Result of curve fit", h5("Fit formula"), uiOutput(ns("fit_formula_tex")), h5("Coefficients"), div( class = "hot-improved", rHandsontableOutput(ns("fit_coeffs")) ) ), tabPanel( title = "Summary statistics", conditionalPanel( condition = "input.load_fit_data_check", ns = ns, h5("Model-level statistics"), div( class = "hot-improved", rHandsontableOutput(ns("fit_model_statistics")) ), br() ), h5("Correlation matrix"), div( class = "hot-improved", rHandsontableOutput(ns("fit_cor_mat")) ), br(), h5("Variance-covariance matrix"), div( class = "hot-improved", rHandsontableOutput(ns("fit_var_cov_mat")) ) ) ) ), fluidRow( box( width = 5, title = span( "Data input options", help_modal_button( ns("help_cases_data"), ns("help_cases_data_modal") ) ), status = "info", collapsible = TRUE, bsplus::bs_modal( id = ns("help_cases_data_modal"), title = "Help: Cases data input", size = "large", body = tagList( radioGroupButtons( inputId = ns("help_cases_data_option"), label = NULL, choices = c( "Manual input" = "manual", "Load data" = "load" ) ), conditionalPanel( condition = "input.help_cases_data_option == 'manual'", ns = ns, include_help("estimation/cases_data_input.md") ), conditionalPanel( condition = "input.help_cases_data_option == 'load'", ns = ns, include_help("estimation/cases_data_load.md") ) ) ), fluidRow( col_12( awesomeCheckbox( inputId = ns("load_case_data_check"), status = "info", label = "Load data from file", value = FALSE ), conditionalPanel( condition = "!input.load_case_data_check", ns = ns, numericInput( ns("num_aberrs"), label = "Maximum number of dicentrics per cell", value = 5 ) ), conditionalPanel( condition = "input.load_case_data_check", ns = ns, fileInput( ns("load_case_data"), label = "File input", accept = c("txt/csv", "text/comma-separated-values", "text/plain", ".csv", ".txt", ".dat") ) ), textAreaInput( inputId = ns("case_description"), label = "Case description", placeholder = "Short summary of the case" ), actionButton( ns("button_upd_table"), class = "options-button", label = "Generate table" ) ) ) ), col_7_inner( box( width = 12, title = "Data input", status = "primary", collapsible = TRUE, div( class = "hot-improved", rHandsontableOutput(ns("case_data_hot")) ), br(), actionButton( ns("button_upd_params"), class = "inputs-button", label = "Calculate parameters" ) ), box( width = 12, title = span( "Dose estimation options", help_modal_button( ns("help_estimation_options"), ns("help_estimation_options_modal") ) ), status = "info", collapsible = TRUE, bsplus::bs_modal( id = ns("help_estimation_options_modal"), title = "Help: Dose estimation options", size = "large", body = tagList( radioGroupButtons( inputId = ns("help_estimation_options_option"), label = NULL, choices = c( "Exposure" = "exposure", "Assessment" = "assess", "Error calculation" = "error", "Survival coefficient" = "surv_coeff" ) ), conditionalPanel( condition = "input.help_estimation_options_option == 'exposure'", ns = ns, include_help("estimation/dose_exposure.md") ), conditionalPanel( condition = "input.help_estimation_options_option == 'assess'", ns = ns, include_help("estimation/dose_assessment.md") ), conditionalPanel( condition = "input.help_estimation_options_option == 'error'", ns = ns, include_help("estimation/dose_error.md"), include_help("dicent/dose_error_methods.md") ), conditionalPanel( condition = "input.help_estimation_options_option == 'surv_coeff'", ns = ns, include_help("estimation/fraction_coeff_select.md") ) ) ), div( class = "side-widget-tall", selectInput( ns("exposure_select"), label = "Exposure", width = "175px", choices = list( "Acute" = "acute", "Protracted" = "protracted", "Highly protracted" = "protracted_high" ), selected = "acute" ) ), widget_sep(), div( class = "side-widget-tall", selectInput( ns("assessment_select"), label = "Assessment", width = "175px", choices = list( "Whole-body" = "whole-body", "Partial-body" = "partial-body", "Heterogeneous" = "hetero" ), selected = "whole-body" ) ), br(), br(), div( class = "side-widget-tall", selectInput( ns("error_method_whole_select"), label = "Whole-body error method", width = "250px", choices = list( "Merkle's method (83%-83%)" = "merkle-83", "Merkle's method (95%-95%)" = "merkle-95", "Delta method (95%)" = "delta" ), selected = "merkle-83" ) ), widget_sep(), div( class = "side-widget-tall", conditionalPanel( condition = "input.assessment_select == 'partial-body'", ns = ns, selectInput( ns("error_method_partial_select"), label = "Partial-body error method", width = "250px", choices = list( "Dolphin (95%)" = "dolphin" ), selected = "dolphin" ) ) ), div( class = "side-widget-tall", conditionalPanel( condition = "input.assessment_select == 'hetero'", ns = ns, selectInput( ns("error_method_hetero_select"), label = "Heterogeneous error method", width = "250px", choices = list( "Delta method (95%)" = "delta" ), selected = "delta" ) ) ), conditionalPanel( condition = "input.exposure_select == 'protracted'", ns = ns, br(), div( class = "side-widget-tall", numericInput( ns("protracted_time"), label = "Irradiation time (h)", width = "175px", value = 0.5, step = 0.1, min = 0 ) ), widget_sep(), div( class = "side-widget-tall", numericInput( ns("protracted_life_time"), label = "Rejoining time (h)", width = "175px", value = 2, step = 0.1, min = 2, max = 5 ) ) ), conditionalPanel( condition = "input.assessment_select != 'whole-body'", ns = ns, br(), div( class = "side-widget-tall", selectInput( ns("fraction_coeff_select"), label = "Survival coefficient", width = "175px", choices = list( "D0" = "d0", "Gamma" = "gamma" ), selected = "d0" ) ), widget_sep(), div( class = "side-widget", conditionalPanel( condition = "input.fraction_coeff_select == 'gamma'", ns = ns, div( class = "side-widget-tall", numericInput( width = "175px", ns("gamma_coeff"), "Gamma", value = 0.3706479, step = 0.01 ) ), div( class = "side-widget-tall", numericInput( width = "150px", ns("gamma_error"), "Error of gamma", value = 0.009164707, step = 0.0001 ) ) ), conditionalPanel( condition = "input.fraction_coeff_select == 'd0'", ns = ns, div( class = "side-widget-tall", numericInput( width = "150px", ns("d0_coeff"), "D0", value = 2.7, step = 0.01, min = 2.7, max = 3.5 ) ) ) ) ), conditionalPanel( condition = "input.assessment_select == 'whole-body'", ns = ns, br() ), conditionalPanel( condition = "input.assessment_select != 'whole-body'", ns = ns, br() ), actionButton( ns("button_estimate"), class = "options-button", label = "Estimate dose" ) ) ) ), fluidRow( col_6_inner( uiOutput(ns("estimation_results_ui")), box( width = 12, title = span( "Save results", help_modal_button( ns("help_fit_data_save"), ns("help_fit_data_save_modal") ) ), status = "warning", collapsible = TRUE, bsplus::bs_modal( id = ns("help_fit_data_save_modal"), title = "Help: Export results", size = "large", body = tagList( include_help("save/estimation_data_save_report.md") ) ), textAreaInput( inputId = ns("results_comments"), label = "Comments", placeholder = "Comments to be included on report" ), downloadButton( ns("save_report"), class = "export-button side-widget-download", label = "Download report" ), div( class = "side-widget-format", selectInput( ns("save_report_format"), label = NULL, width = "85px", choices = list(".pdf", ".docx"), selected = ".pdf" ) ) ) ), box( width = 6, title = "Curve plot", status = "success", collapsible = TRUE, plotOutput(ns("plot")), downloadButton( ns("save_plot"), class = "results-button side-widget-download", label = "Save plot" ), div( class = "side-widget-format", selectInput( ns("save_plot_format"), label = NULL, width = "75px", choices = list(".png", ".pdf"), selected = ".png" ) ) ) ) ) }
"E0vect" <- function(xbar) { i1 <- -0.05043133; i2 <- 0.003383146 E0 <- matrix(c(i1*xbar,i2),ncol=1) E0}
fit.independence <- function(Master, LambdaNames, LambdaName, ItemNames) { master.mlogit <- dfidx::dfidx(Master, choice="y", idx=c("CaseID","alt")) fstack <- stats::as.formula(paste("choice ~ ", paste(LambdaNames, collapse = "+"), "| 0 | 0", sep=" ") ) fit.stack <- mlogit::mlogit(fstack, master.mlogit) estimates <- matrix(fit.stack$coefficients, nrow=length(unique(Master$Item)), ncol=(length(unique(Master$Category))-1), byrow=TRUE) e1 <- -(rowSums(estimates)) estimates <- cbind(e1,estimates) rownames(estimates) <- ItemNames colnames(estimates) <- c("lam1", LambdaName) mlpl.phi <- as.numeric(fit.stack$logLik) AIC <- -1*mlpl.phi - length(LambdaNames) BIC <- -2*mlpl.phi - length(LambdaNames)*log(length(unique(Master$PersonID))) summary.stack <- summary(fit.stack) results <- list(phi.mlogit = summary.stack, fstack = fstack, estimates = estimates, mlpl.phi = mlpl.phi[1], AIC = AIC[1], BIC = BIC[1] ) return(results) }
print.ICA <- function(x, ...) { with(x, { cat(" Call:\n") print(call) cat("\n Best solution: ", position, "\n", "Best value: ", value, "\n", "No. of Imperialists: ", nimp, "\n", "Timings:\n") print(time) }) invisible(x) }
test_that("Mod arg accepts single numeric value", { moderated_mediation_model <- ho_et_al %>% dplyr::mutate(condition_c = build_contrast(condition, "High discrimination", "Low discrimination"), linkedfate_c = scale(linkedfate, scale = FALSE), sdo_c = scale(sdo, scale = FALSE)) %>% mdt_moderated( condition_c, hypodescent, linkedfate_c, sdo_c ) expect_error( moderated_mediation_model %>% compute_indirect_effect_for(Mod = "foo") ) expect_error( moderated_mediation_model %>% compute_indirect_effect_for(Mod = c(1, 2)) ) expect_error( moderated_mediation_model %>% compute_indirect_effect_for(Mod = 0), NA ) }) test_that("JSmediation approach is consistent with the {mediation} approach (Mod = 1)", { withr::local_seed(123) dataset <- ho_et_al %>% dplyr::mutate(condition_c = build_contrast(condition, "Low discrimination", "High discrimination")) %>% dplyr::mutate(dplyr::across(c(linkedfate, sdo), ~ as.numeric(scale(.)))) model_1 <- lm(linkedfate ~ condition_c * sdo, dataset) model_2 <- lm(hypodescent ~ (condition_c + linkedfate) * sdo, dataset) mediation_model <- mediation::mediate(model_1, model_2, covariates = list(sdo = 1), boot = TRUE, boot.ci.type = "perc", sims = 5000, treat = "condition_c", mediator = "linkedfate") JSmediation_model <- dataset %>% mdt_moderated(DV = hypodescent, IV = condition_c, M = linkedfate, Mod = sdo) %>% compute_indirect_effect_for(Mod = 1) JSmediation_estimate <- purrr::chuck(JSmediation_model, "estimate") mediation_estimate <- purrr::chuck(mediation_model, "d0") expect_equal(JSmediation_estimate, mediation_estimate, tolerance = 5e-2) }) test_that("JSmediation approach is consistent with the {processR} approach (Mod = -1, 0, 1)", { withr::local_seed("123") dataset <- ho_et_al %>% dplyr::mutate(condition_c = build_contrast(condition, "Low discrimination", "High discrimination")) %>% dplyr::mutate(dplyr::across(c(linkedfate, sdo), ~ as.numeric(scale(.)))) moderated_mediation_eqn <- processR::tripleEquation(X = "condition_c", M = "linkedfate", Y = "hypodescent", moderator = list(name = "sdo", site = list(c("a", "b", "c")))) moderated_mediation_fit <- withr::with_options(list(warn = -1), lavaan::sem(moderated_mediation_eqn, dataset)) moderated_mediation_indirect_indices <- processR::modmedSummary(moderated_mediation_fit) JSmediation_model <- dataset %>% mdt_moderated(condition_c, hypodescent, linkedfate, sdo) processR_estimates <- purrr::chuck(moderated_mediation_indirect_indices, "indirect") JSmediation_estimate <- purrr::chuck(moderated_mediation_indirect_indices, "values") %>% purrr::map_dbl(~ JSmediation_model %>% compute_indirect_effect_for(.x) %>% purrr::chuck("estimate")) expect_equal(processR_estimates, JSmediation_estimate, tolerance = 5e-2) })
.doTime <- function(x, nc, zvar, dim3) { dodays <- TRUE dohours <- FALSE doseconds <- FALSE un <- nc$var[[zvar]]$dim[[dim3]]$units if (substr(un, 1, 10) == "days since") { startDate = as.Date(substr(un, 12, 22)) } else if (substr(un, 1, 11) == "hours since") { dohours <- TRUE dodays <- FALSE startTime <- substr(un, 13, 30) mult <- 3600 } else if (substr(un, 1, 13) == "seconds since") { doseconds <- TRUE dodays <- FALSE startTime = as.Date(substr(un, 15, 31)) mult <- 1 } else if (substr(un, 1, 12) == "seconds from") { doseconds <- TRUE dodays <- FALSE startTime = as.Date(substr(un, 14, 31)) mult <- 1 } else { return(x) } if (!dodays) { start <- strptime(startTime, "%Y-%m-%d %H:%M:%OS", tz = "UTC") if (is.na(start)) start <- strptime(startTime, "%Y-%m-%d", tz = "UTC") if (is.na(start)) return(x) startTime <- start time <- startTime + as.numeric(getZ(x)) * mult time <- as.character(time) if (!is.na(time[1])) { x@z <- list(time) names(x@z) <- as.character('Date/time') } } else if (dodays) { cal <- ncdf4::ncatt_get(nc, "time", "calendar") if (! cal$hasatt ) { greg <- TRUE } else { cal <- cal$value if (cal =='gregorian' | cal =='proleptic_gregorian' | cal=='standard') { greg <- TRUE } else if (cal == 'noleap' | cal == '365 day' | cal == '365_day') { greg <- FALSE nday <- 365 } else if (cal == '360_day') { greg <- FALSE nday <- 360 } else { greg <- TRUE warning('assuming a standard calender:', cal) } } time <- getZ(x) if (greg) { time <- as.Date(time, origin=startDate) } else { startyear <- as.numeric( format(startDate, "%Y") ) startmonth <- as.numeric( format(startDate, "%m") ) startday <- as.numeric( format(startDate, "%d") ) year <- trunc( as.numeric(time)/nday ) doy <- (time - (year * nday)) origin <- paste(year+startyear, "-", startmonth, "-", startday, sep='') time <- as.Date(doy, origin=origin) } x@z <- list(time) names(x@z) <- 'Date' } return(x) } .dimNames <- function(nc) { n <- nc$dim nams <- vector(length=n) if (n > 0) { for (i in 1:n) { nams[i] <- nc$dim[[i]]$name } } return(nams) } .varName <- function(nc, varname='', warn=TRUE) { n <- nc$nvars dims <- vars <- vector(length=n) if (n > 0) { for (i in 1:n) { vars[i] <- nc$var[[i]]$name dims[i] <- nc$var[[i]]$ndims } vars <- vars[dims > 1] dims <- dims[dims > 1] } if (varname=='') { nv <- length(vars) if (nv == 0) { return('z') } if (nv == 1) { varname <- vars } else { varname <- vars[which.max(dims)] if (warn) { if (sum(dims == max(dims)) > 1) { vars <- vars[dims==max(dims)] warning('varname used is: ', varname, '\nIf that is not correct, you can set it to one of: ', paste(vars, collapse=", ") ) } } } } zvar <- which(varname == vars) if (length(zvar) == 0) { stop('varname: ', varname, ' does not exist in the file. Select one from:\n', paste(vars, collapse=", ") ) } return(varname) } .rasterObjectFromCDF <- function(filename, varname='', band=NA, type='RasterLayer', lvar, level=0, warn=TRUE, dims=1:3, crs="", stopIfNotEqualSpaced=TRUE, ...) { stopifnot(requireNamespace("ncdf4")) stopifnot(type %in% c('RasterLayer', "RasterBrick")) nc <- ncdf4::nc_open(filename, readunlim=FALSE, suppress_dimvals = TRUE) on.exit( ncdf4::nc_close(nc) ) conv <- ncdf4::ncatt_get(nc, 0, "Conventions") zvar <- .varName(nc, varname, warn=warn) dim3 <- dims[3] ndims <- nc$var[[zvar]]$ndims if (ndims== 1) { return(.rasterObjectFromCDF_GMT(nc)) } else if (ndims == 4) { if (missing(lvar)) { nlevs3 <- nc$var[[zvar]]$dim[[3]]$len nlevs4 <- nc$var[[zvar]]$dim[[4]]$len if (nlevs3 > 1 & nlevs4 == 1) { lvar <- 4 } else { lvar <- 3 } } nlevs <- nc$var[[zvar]]$dim[[lvar]]$len if (level <=0 ) { level <- 1 if (nlevs > 1) { warning('"level" set to 1 (there are ', nlevs, ' levels)') } } else { oldlevel <- level <- round(level) level <- max(1, min(level, nlevs)) if (oldlevel != level) { warning('level set to: ', level) } } if (lvar == 4) { dim3 <- 3 } else { dim3 <- 4 } } else if (ndims > 4) { warning(zvar, ' has more than 4 dimensions, I do not know what to do with these data') } ncols <- nc$var[[zvar]]$dim[[dims[1]]]$len nrows <- nc$var[[zvar]]$dim[[dims[2]]]$len xx <- try(ncdf4::ncvar_get(nc, nc$var[[zvar]]$dim[[dims[1]]]$name), silent = TRUE) if (inherits(xx, "try-error")) { xx <- seq_len(nc$var[[zvar]]$dim[[dims[1]]]$len) } rs <- xx[-length(xx)] - xx[-1] if (! isTRUE ( all.equal( min(rs), max(rs), tolerance=0.025, scale= abs(min(rs))) ) ) { if (is.na(stopIfNotEqualSpaced)) { warning('cells are not equally spaced; you should extract values as points') } else if (stopIfNotEqualSpaced) { stop('cells are not equally spaced; you should extract values as points') } } xrange <- c(min(xx), max(xx)) resx <- (xrange[2] - xrange[1]) / (ncols-1) rm(xx) yy <- try(ncdf4::ncvar_get(nc, nc$var[[zvar]]$dim[[dims[2]]]$name), silent = TRUE) if (inherits(yy, "try-error")) { yy <- seq_len(nc$var[[zvar]]$dim[[dims[2]]]$len) } rs <- yy[-length(yy)] - yy[-1] if (! isTRUE ( all.equal( min(rs), max(rs), tolerance=0.025, scale= abs(min(rs))) ) ) { if (is.na(stopIfNotEqualSpaced)) { warning('cells are not equally spaced; you should extract values as points') } else if (stopIfNotEqualSpaced) { stop('cells are not equally spaced; you should extract values as points') } } yrange <- c(min(yy), max(yy)) resy <- (yrange[2] - yrange[1]) / (nrows-1) if (yy[1] > yy[length(yy)]) { toptobottom <- FALSE } else { toptobottom <- TRUE } rm(yy) xrange[1] <- xrange[1] - 0.5 * resx xrange[2] <- xrange[2] + 0.5 * resx yrange[1] <- yrange[1] - 0.5 * resy yrange[2] <- yrange[2] + 0.5 * resy long_name <- zvar unit <- '' natest <- ncdf4::ncatt_get(nc, zvar, "_FillValue") natest2 <- ncdf4::ncatt_get(nc, zvar, "missing_value") prj <- NA minv <- maxv <- NULL a <- ncdf4::ncatt_get(nc, zvar, "min") if (a$hasatt) { minv <- a$value } a <- ncdf4::ncatt_get(nc, zvar, "max") if (a$hasatt) { maxv <- a$value } a <- ncdf4::ncatt_get(nc, zvar, "long_name") if (a$hasatt) { long_name <- a$value } a <- ncdf4::ncatt_get(nc, zvar, "units") if (a$hasatt) { unit <- a$value } a <- ncdf4::ncatt_get(nc, zvar, "grid_mapping") if ( a$hasatt ) { gridmap <- a$value try(atts <- ncdf4::ncatt_get(nc, gridmap), silent=TRUE) try(prj <- .getCRSfromGridMap4(atts), silent=TRUE) } if (is.na(prj)) { if ((tolower(substr(nc$var[[zvar]]$dim[[dims[1]]]$name, 1, 3)) == 'lon') & ( tolower(substr(nc$var[[zvar]]$dim[[dims[2]]]$name, 1, 3)) == 'lat' ) ) { if ( yrange[1] > -91 | yrange[2] < 91 ) { if ( xrange[1] > -181 | xrange[2] < 181 ) { prj <- '+proj=longlat +datum=WGS84' } else if ( xrange[1] > -1 | xrange[2] < 361 ) { prj <- '+proj=longlat +lon_wrap=180 +datum=WGS84' } } } } crs <- .getProj(prj, crs) if (type == 'RasterLayer') { r <- raster(xmn=xrange[1], xmx=xrange[2], ymn=yrange[1], ymx=yrange[2], ncols=ncols, nrows=nrows, crs=crs) names(r) <- long_name } else if (type == 'RasterBrick') { r <- brick(xmn=xrange[1], xmx=xrange[2], ymn=yrange[1], ymx=yrange[2], ncols=ncols, nrows=nrows, crs=crs) r@title <- long_name } else { stop("unknown object type") } r@file@name <- filename r@file@toptobottom <- toptobottom r@data@unit <- unit attr(r@data, "zvar") <- zvar attr(r@data, "dim3") <- dim3 attr(r@data, "level") <- level r@file@driver <- "netcdf" if (natest$hasatt) { r@file@nodatavalue <- as.numeric(natest$value) } else if (natest2$hasatt) { r@file@nodatavalue <- as.numeric(natest2$value) } r@data@fromdisk <- TRUE if (ndims == 2) { nbands <- 1 } else { nbands <- nc$var[[zvar]]$dim[[dim3]]$len r@file@nbands <- nbands dim3_vals <- try(ncdf4::ncvar_get(nc, nc$var[[zvar]]$dim[[dim3]]$name), silent = TRUE) if (inherits(dim3_vals, "try-error")) { dim3_vals <- seq_len(nc$var[[zvar]]$dim[[dim3]]$len) } r@z <- list(dim3_vals) if ( nc$var[[zvar]]$dim[[dim3]]$name == 'time' ) { try( r <- .doTime(r, nc, zvar, dim3) ) } else { vname <- nc$var[[zvar]]$dim[[dim3]]$name vunit <- nc$var[[zvar]]$dim[[dim3]]$units names(r@z) <- paste0(vname, " (", vunit, ")") } } if (length(ndims)== 2 & type != 'RasterLayer') { warning('cannot make a RasterBrick from data that has only two dimensions (no time step), returning a RasterLayer instead') } if (type == 'RasterLayer') { if (is.null(band) | is.na(band)) { if (ndims > 2) { stop(zvar, ' has multiple layers, provide a "band" value between 1 and ', nc$var[[zvar]]$dim[[dim3]]$len) } } else { if (length(band) > 1) { stop('A RasterLayer can only have a single band. You can use a RasterBrick instead') } if (is.na(band)) { r@data@band <- as.integer(1) } else { band <- as.integer(band) if ( band > nbands(r) ) { stop(paste("The band number is too high. It should be between 1 and", nbands)) } if ( band < 1) { stop(paste("band should be 1 or higher")) } r@data@band <- band } r@z <- list( getZ(r)[r@data@band] ) if (!(is.null(minv) | is.null(maxv))) { r@data@min <- minv[band] r@data@max <- maxv[band] r@data@haveminmax <- TRUE } } } else { r@data@nlayers <- r@file@nbands try( names(r) <- as.character(r@z[[1]]), silent=TRUE ) if (!(is.null(minv) | is.null(maxv))) { r@data@min <- minv r@data@max <- maxv r@data@haveminmax <- TRUE } else { r@data@min <- rep(Inf, r@file@nbands) r@data@max <- rep(-Inf, r@file@nbands) } } return(r) }
setup_weight_plot <- function(object, ...) UseMethod("setup_weight_plot") setup_weight_plot.test_mediation <- function(object, ...) { setup_weight_plot(object$fit, ...) } setup_weight_plot.reg_fit_mediation <- function(object, outcome = NULL, npoints = 1000, ...) { have_robust <- is_robust(object) if (!(have_robust && object$robust == "MM")) { stop("weight plot only meaningful for MM-regression") } y <- object$y m <- object$m if (is.null(outcome)) outcome <- c(m, y) else { if (!(is.character(outcome) && length(outcome) > 0L)) { stop("outcome variables must be specified as character strings") } if (!all(outcome %in% c(m, y))) { stop("outcome variables must be the dependent variable or a mediator") } } if (length(outcome) == 1L) { data <- get_weight_percentages(object, outcome = outcome, npoints = npoints) } else { tmp <- lapply(outcome, function(current) { current_data <- get_weight_percentages(object, outcome = current, npoints = npoints) data.frame(Outcome = current, current_data, stringsAsFactors = TRUE) }) data <- do.call(rbind, tmp) } out <- list(data = data, outcome = outcome) class(out) <- "setup_weight_plot" out } get_weight_percentages <- function(object, outcome, npoints = 1000) { y <- object$y m <- object$m p_m <- length(m) if (outcome == y) fit <- object$fit_ymx else if (p_m == 1L) fit <- object$fit_mx else fit <- object$fit_mx[[outcome]] residuals <- residuals(fit) weights <- weights(fit, type = "robustness") n <- length(weights) psi <- fit$control$psi tuning <- fit$control$tuning.psi thresholds <- seq(0, 1, length.out = npoints) expected <- sapply(thresholds, function(threshold) { x <- tuning * sqrt(1 - sqrt(threshold)) pnorm(x, lower.tail = FALSE) }) tails <- c("negative", "positive") out_list <- lapply(tails, function(tail) { if (tail == "negative") { in_tail <- residuals <= 0 } else { in_tail <- residuals > 0 } r <- residuals[in_tail] w <- weights[in_tail] empirical <- sapply(thresholds, function(threshold) { sum(w <= threshold) / n }) if (tail == "negative") { rbind( data.frame(Tail = "Negative residuals", Weights = "Expected", Threshold = thresholds, Percentage = expected, stringsAsFactors = TRUE), data.frame(Tail = "Negative residuals", Weights = "Empirical", Threshold = thresholds, Percentage = empirical, stringsAsFactors = TRUE) ) } else { rbind( data.frame(Tail = "Positive residuals", Weights = "Expected", Threshold = thresholds, Percentage = expected, stringsAsFactors = TRUE), data.frame(Tail = "Positive residuals", Weights = "Empirical", Threshold = thresholds, Percentage = empirical, stringsAsFactors = TRUE) ) } }) do.call(rbind, out_list) }
abline(h=yvalues, v=xvalues) Other graphical parameters (such as line type, color, and width) can also be specified in the abline( ) function. abline(h=c(1,5,7)) abline(v=seq(1,10,2),lty=2,col="blue") Note: You can also use the grid( ) function to add reference lines.
list(coefficients1 = c(0.3816510853963, 0.0326773607065429, -0.0215376835487049, -0.000972392445321585, -0.00712539864947305, 0.00520993461673147, 0.0325107246949657, -0.0351272068811341, 0.0365909352294855, 0.0187983469090532, -0.0261362398116196, 0.0240074928979442, 0.009473821301171, -0.0100826908786456, 0.0459705733883285, 0.0293458515825391, 0.0124533500914112, 0.0330238754882282, 0.0273958578453473, 0.00301863902482515, -0.0472994866699436, 0.0394375845809032, 0.0118402113508717, 0.0151885220127493, 0.050593165180987, 0.030461099855424, -0.0160406019560156, 0.0323289250402233, -0.064822565117969, -0.0105945435207054, 0.00137210030512961, -0.000873662810908485, -0.0119019205008463, 0.0113038758866042, 0.0221059822083867, -0.019258081661804, -0.00437273843851046, 0.0293095563250024, -0.0109784262530217, -0.0089145500285173, 0.0357290753738689, 0.0210588490023928, 0.0105208621355446, 0.0477795479874507, -0.033698922912952, -0.00683586057926902, 0.0393531758187854, -0.0115179213429775, -0.00383977207148539, 0.0242844559125082, 0.0313155996004055), opt1 = 27.9063081481767, coefficients2a = c(x1 = 0.381651390799115, x2 = 0.0326827154576504, x3 = -0.0215419102387141, x4 = -0.000977429825837963, x5 = -0.00712757813977363, x6 = 0.00520617111704016, x7 = 0.0325110284327129, x8 = -0.0351269431393525, x9 = 0.0365880172936484, x10 = 0.0187935850166332, x11 = -0.0261346717936101, x12 = 0.0239989184688237, x13 = 0.0094741928793818, x14 = -0.0100812329643096, x15 = 0.045969735760914, x16 = 0.029343538702431, x17 = 0.0124518715443752, x18 = 0.0330242657801954, x19 = 0.0273942844381617, x20 = 0.00301963875576265, x21 = -0.0473044239644383, x22 = 0.0394380177472302, x23 = 0.0118422943926443, x24 = 0.0151806963574622, x25 = 0.0505942738758857, x26 = 0.0304645879119146, x27 = -0.0160381278843077, x28 = 0.0323349725509669, x29 = -0.0648290268961756, x30 = -0.0105985196903622, x31 = 0.0013732696328036, x32 = -0.000876623643227784, x33 = -0.0119016904818061, x34 = 0.0113040876659727, x35 = 0.0221064397821272, x36 = -0.0192556577873593, x37 = -0.0043718282988513, x38 = 0.0293093084849596, x39 = -0.0109782716026442, x40 = -0.00891553777673756, x41 = 0.0357307714279319, x42 = 0.0210530389965313, x43 = 0.010521398791892, x44 = 0.0477824596294653, x45 = -0.0336955626616204, x46 = -0.00683672601130845, x47 = 0.0393497973316163, x48 = -0.0115195154467358, x49 = -0.00384181166056642, x50 = 0.024284654636736, x51 = 0.0313176464344522), opt2a = 27.9062756598428, coefficients2b = c(x1 = 0.381651341743556, x2 = 0.0326821354939513, x3 = -0.0215414087393219, x4 = -0.000976926233775292, x5 = -0.00712736691909117, x6 = 0.00520660835590255, x7 = 0.0325109980768012, x8 = -0.0351267702854618, x9 = 0.0365882131630035, x10 = 0.0187945408272744, x11 = -0.0261344735512399, x12 = 0.0239997465796883, x13 = 0.00947405132329673, x14 = -0.0100811252570328, x15 = 0.0459699564058498, x16 = 0.0293434386611666, x17 = 0.0124523133435645, x18 = 0.0330244169251543, x19 = 0.0273943336151615, x20 = 0.00301953357794376, x21 = -0.0473039724886181, x22 = 0.0394380633589978, x23 = 0.0118424795611846, x24 = 0.0151818095395241, x25 = 0.0505941745034349, x26 = 0.0304641985575007, x27 = -0.0160380525740208, x28 = 0.0323346805969823, x29 = -0.0648285572498546, x30 = -0.0105979965109583, x31 = 0.0013732604084724, x32 = -0.000876280129639669, x33 = -0.0119017165777442, x34 = 0.0113041601708157, x35 = 0.0221064407598559, x36 = -0.0192560322885035, x37 = -0.00437193864210694, x38 = 0.0293092448717099, x39 = -0.0109784763129622, x40 = -0.00891521151608254, x41 = 0.0357306990241541, x42 = 0.0210536439808172, x43 = 0.0105210207409851, x44 = 0.0477824491736937, x45 = -0.0336959805998197, x46 = -0.00683663226786749, x47 = 0.039350213384209, x48 = -0.0115192030638305, x49 = -0.003841756346144, x50 = 0.0242847671457174, x51 = 0.0313175707598224), opt2b = 27.9062775445648, coefficients = c(x1 = 0.381651390799115, x2 = 0.0326827154576504, x3 = -0.0215419102387141, x4 = -0.000977429825837963, x5 = -0.00712757813977363, x6 = 0.00520617111704016, x7 = 0.0325110284327129, x8 = -0.0351269431393525, x9 = 0.0365880172936484, x10 = 0.0187935850166332, x11 = -0.0261346717936101, x12 = 0.0239989184688237, x13 = 0.0094741928793818, x14 = -0.0100812329643096, x15 = 0.045969735760914, x16 = 0.029343538702431, x17 = 0.0124518715443752, x18 = 0.0330242657801954, x19 = 0.0273942844381617, x20 = 0.00301963875576265, x21 = -0.0473044239644383, x22 = 0.0394380177472302, x23 = 0.0118422943926443, x24 = 0.0151806963574622, x25 = 0.0505942738758857, x26 = 0.0304645879119146, x27 = -0.0160381278843077, x28 = 0.0323349725509669, x29 = -0.0648290268961756, x30 = -0.0105985196903622, x31 = 0.0013732696328036, x32 = -0.000876623643227784, x33 = -0.0119016904818061, x34 = 0.0113040876659727, x35 = 0.0221064397821272, x36 = -0.0192556577873593, x37 = -0.0043718282988513, x38 = 0.0293093084849596, x39 = -0.0109782716026442, x40 = -0.00891553777673756, x41 = 0.0357307714279319, x42 = 0.0210530389965313, x43 = 0.010521398791892, x44 = 0.0477824596294653, x45 = -0.0336955626616204, x46 = -0.00683672601130845, x47 = 0.0393497973316163, x48 = -0.0115195154467358, x49 = -0.00384181166056642, x50 = 0.024284654636736, x51 = 0.0313176464344522), opt = 27.9062756598428)
layout_functions <- function(name = NULL, graph = NULL, intitial_coords = NULL, effort = 1, ...) { funcs <- list("automatic" = igraph::nicely, "reingold-tilford" = igraph::as_tree, "davidson-harel" = igraph::with_dh, "gem" = igraph::with_gem, "graphopt" = igraph::with_graphopt, "mds" = igraph::with_mds(), "fruchterman-reingold" = igraph::with_fr, "kamada-kawai" = igraph::with_kk, "large-graph" = igraph::with_lgl, "drl" = igraph::with_drl) return_names <- is.null(name) && is.null(graph) && is.null(intitial_coords) if (return_names) { return(names(funcs)) } else { v_weight <- igraph::V(graph)$weight_factor e_weight <- igraph::E(graph)$weight_factor e_density <- igraph::edge_density(graph) defaults <- list("automatic" = list(), "reingold-tilford" = list(circular = TRUE, mode = "out"), "davidson-harel" = list(coords = intitial_coords, maxiter = 10 * effort, fineiter = max(10, log2(igraph::vcount(graph))) * effort, cool.fact = 0.75 - effort * 0.1, weight.node.dist = 13, weight.border = 0, weight.edge.lengths = 0.5, weight.edge.crossings = 100, weight.node.edge.dist = 1), "gem" = list(coords = intitial_coords, maxiter = 40 * igraph::vcount(graph)^2 * effort, temp.max = igraph::vcount(graph) * (1 + effort * 0.1), temp.min = 1/10, temp.init = sqrt(igraph::vcount(graph))), "graphopt" = list(start = intitial_coords, niter = 500 * effort, charge = 0.0005, mass = 30, spring.length = 0, spring.constant = 1, max.sa.movement = 5), "mds" = list(), "fruchterman-reingold" = list(coords = intitial_coords, niter = 500 * effort, start.temp = sqrt(igraph::vcount(graph)) * (1 + effort * 0.1) , grid = "nogrid", weights = e_weight), "kamada-kawai" = list(coords = intitial_coords, maxiter = 100 * igraph::vcount(graph), epsilon = 0, kkconst = igraph::vcount(graph), weights = NULL), "large-graph" = list(maxiter = 200, maxdelta = igraph::vcount(graph), area = igraph::vcount(graph)^2, coolexp = 1.5 - effort * 0.1, repulserad = igraph::vcount(graph)^2 * igraph::vcount(graph), cellsize = sqrt(sqrt(igraph::vcount(graph)^2)), root = 1), "drl" = list(use.seed = ! is.null(intitial_coords), seed = ifelse(is.null(intitial_coords), matrix(stats::runif(igraph::vcount(graph) * 2), ncol = 2), intitial_coords), options = igraph::drl_defaults$default, weights = NULL, fixed = NULL)) arguments <- utils::modifyList(defaults[[name]], list(...)) coords <- igraph::layout_(graph = graph, layout = do.call(funcs[[name]], arguments)) return(coords) } }
Res_stom_SO2 <- function(x, m2=1, m3=4){ db <- x db <- x LAI_Total <- db$BAI + db$LAI theta <- 60 m <- 1 / (cos(theta*pi/180)) antilog<-function(lx,base) { lbx<-lx/log(exp(1),base=base) result<-exp(lbx) result } lx <- (-1.195) + 0.4459 * log(m, base = 10) - 0.0345 * (log(m, base = 10))^2 W <- 1320 * antilog(lx = lx ,base = 10) P <- db$Pres P0 <- 101.325 R_DV <- 600 * exp(-0.185 * (P/P0) * m) * cos(theta * pi / 180) R_dv <- 0.4 * (600 - R_DV) * cos(theta * pi / 180) R_DN <- (720 * exp(-0.06 * (P/P0) * m) - W) * cos(theta * pi / 180) R_dn <-0.6 * (720 - R_DN - W) * cos(theta * pi / 180) R_V <- R_DV + R_dv R_N <- R_DN + R_dn R_T <- db$Rad A <- 0.9 B <- 0.7 C <- 0.88 D <- 0.68 RATIO0 <- R_T / (R_V + R_N) RATIO1<- replace(RATIO0, RATIO0>A , A) RATIO<- replace(RATIO1, RATIO1>C , C) f_V0 <- (R_DV / R_V) * (1 - ((A - RATIO) / B)^(2 / 3)) f_V<- replace(f_V0, f_V0<0 , 0) f_N0 <- (R_DN / R_N) * (1 - ((C - RATIO) / D)^(2 / 3)) f_N<- replace(f_N0, f_N0<0 , 0) Fc <- 4.6 PAR_dir <- f_V * (0.46 * R_T) * Fc PAR_diff <- (1 - f_V) * (0.46 * R_T) * Fc Resistance_out_of_leaf <- NA theta <- 60 E <- 0.185 m <- 1 / (cos(theta * pi / 180)) F_j <- LAI_Total beta <- 90 - theta C_j = 0.07 * PAR_dir * (1.1 - 0.1 * (F_j - (F_j / 2))) * (exp(-sin(beta * pi / 180))) PAR_shade_j <- PAR_diff * exp(-0.5 * (LAI_Total^0.7))+ C_j alpha <- 60 PAR_sun_j <- PAR_dir * ((cos(alpha * pi / 180))/(sin(beta * pi / 180))) + PAR_shade_j Temp_K <- db$Temp + 273.15 T_leaf_limit <- 25 + 273.15 T_leaf_hot <- rep(NA, length(Temp_K)) T_leaf_cold <- rep(NA, length(Temp_K)) Selec_T_leaf_hot <- Temp_K >= T_leaf_limit Selec_T_leaf_cold <- Temp_K < T_leaf_limit T_leaf_hot[Selec_T_leaf_hot & !is.na(Temp_K)] <- (log(1+ Temp_K[Selec_T_leaf_hot & !is.na(Temp_K)] - T_leaf_limit))^2 + T_leaf_limit T_leaf_cold[Selec_T_leaf_cold & !is.na(Temp_K)] <- T_leaf_limit - (log(1+T_leaf_limit - Temp_K[Selec_T_leaf_cold & !is.na(Temp_K)]))^2 T_leaf_df <- cbind.data.frame(T_leaf_hot, T_leaf_cold) T_leaf <- rowSums(T_leaf_df, na.rm=T) T_leaf[is.na(Temp_K)] <- NA T_leaf_df$T_leafdf <- T_leaf T_leaf_df$Air_temp <- Temp_K m1 <- m2 * m3 Vcmax25 <- 90 rh <- db$Hum / 100 b1 <- 0.02 P_O2 <- 210 R <- 8.3144598 S <- 710 H <- 220000 kc25 <- 33.3 E_rae_kc <- 65120 kc <- kc25 * (exp(((T_leaf - 298) * E_rae_kc) / (298 * R * T_leaf))) ko25 <- 29.5 E_rae_ko <- 13990 ko <- ko25 * (exp(((T_leaf - 298) * E_rae_ko) / (298 * R * T_leaf))) Vcmax25 <- 90 E_rae_Vc <- 64637 Vcmax <- (Vcmax25 * exp(((T_leaf - 298) * E_rae_Vc) / (298 * R * T_leaf))) / (1 + exp(((S * T_leaf) - H) / (R * T_leaf))) Jmax25 <- 171 E_rae_J <- 37000 Jmax <- (Jmax25 * exp(((T_leaf - 298) * E_rae_J) / (298 * R * T_leaf))) / (1 + exp(((S * T_leaf) - H) / (R * T_leaf))) E_rae_Rd <- 51176 Rd <- (Vcmax25 * 0.015 * exp(((T_leaf - 298) * E_rae_Rd) / (298 * R * T_leaf))) / (1 + exp(1.3 * (T_leaf - 328))) Gamma <- (0.105 * kc * P_O2) / (ko) alpha0 <- 0.22 J_sun <- (alpha0 * PAR_sun_j) / (sqrt(1 + (((alpha0^2) * (PAR_sun_j^2)) / (Jmax^2)))) J_shade <- (alpha0 * PAR_shade_j) / (sqrt(1 + (((alpha0^2) * (PAR_shade_j^2)) / (Jmax^2)))) J <- (J_sun + J_shade) / 2 c_a <- 400 g_b0 <- 1 / (Res_aero(db)[,"Resist_aero"] + Res_boun_CO2(db)[,"Resist_bound_CO2"]) Converting_factor_conductance <- (P * 1e3) / (R * Temp_K) g_b <- g_b0 * Converting_factor_conductance g_b[LAI_Total <= median(db$BAI)] <- 0 alpha2 <- 1 + (b1 / g_b) - (m1 * rh) beta2 <- c_a * (g_b * m1 * rh - (2 * b1) - g_b) gamma2 <- (c_a^2) * b1 * g_b theta2 <- (g_b * m1 * rh) - b1 a2 <- Vcmax b2 <- kc * (1 + (P_O2 / ko)) d2 <- Gamma e2 <- 1 p2 <- (e2 * beta2 + b2 * theta2 - a2 * alpha2 + e2 * alpha2 * Rd) / (e2 * alpha2) q2 <- (e2 * gamma2 + b2 * (gamma2 / c_a) - a2 * beta2 + a2 * d2 * theta2 + e2 * Rd * beta2 + b2 * theta2 * Rd) / (e2 * alpha2) r2 <- ((-a2 * gamma2) + a2 * d2 * (gamma2 / c_a) + e2 * gamma2 * Rd + Rd * b2 * (gamma2 / c_a)) / (e2 * alpha2) Q2_1 <- ((p2^2) - 3 * q2) / 9 Q2_1[Q2_1 <= 0] <- 0 R2_1 <- (2 * (p2^3) - 9 * p2 * q2 + 27 * r2) / 54 Q2_2 <- Q2_1^3 Q2_2[Q2_2 <= 0] <- 0 Q2_3 <- R2_1 / (sqrt(Q2_2)) Q2_3[Q2_3 > 1] <- NA Q2_3[Q2_3 < -1] <- NA Theta2_1 <- acos(Q2_3) A_photo <- (-2) * sqrt(Q2_1) * cos((Theta2_1 + 4 * pi) / 3) - (p2 / 3) A_photo[A_photo < 0] <- 0 A_photo[LAI_Total <= median(db$BAI)] <- 0 A_photo[db$Daylight=="Night"&!is.na(A_photo)] <- 0 c_s <- c_a - ((A_photo) / g_b) c_s[c_s < 0 ] <- c_a g_s0 <- ((m1 * A_photo * rh) / (c_s)) + b1 g_s0[g_s0 <= 0] <- b1 g_s <- g_s0 / Converting_factor_conductance g_s[LAI_Total <= median(db$BAI)] <- 1 / Resistance_out_of_leaf r_s <- cbind.data.frame(Dates = db$Dates, Resist_stom = 1 / g_s) return(r_s) }
test_that("ConvertFishbaseDiet function works", { all.diets <- try(ConvertFishbaseDiet(ExcludeStage = NULL),silent = TRUE) if ("try-error"%in%class(all.diets)) { skip("could not connect to remote database") }else{ filtered.diets <- ConvertFishbaseDiet(ExcludeStage = "larvae") expect_true(nrow(filtered.diets$DietItems)<nrow(all.diets$DietItems)) expect_length(filtered.diets,2) expect_equal(ncol(filtered.diets$Taxonomy),2) } })
library(ggplot2) (p1 <- ggplot(mtcars, aes(x=cyl)) + geom_bar()) library(dplyr) (p2 <- mtcars %>% group_by(cyl) %>% tally %>% ggplot(., aes(x=cyl, y=n)) + geom_bar(stat='identity')) library(gridExtra) grid.arrange(p1,p2, ncol=2) mtcars %>% group_by(cyl) %>% tally %>% ggplot(., aes(x=factor(cyl), y=n)) + geom_bar(stat='identity') + labs(title="Main Title", x='Cylinders', y='Nos') + coord_flip() ggplot(mtcars, aes(x=wt, y=mpg, color=cyl)) + geom_point() + geom_smooth() ggplot(mtcars, aes(x=wt, y=mpg, color=cyl)) + geom_point() + geom_smooth() + theme(legend.position="none") + labs(title="legend.position='none'") ggplot(mtcars, aes(x=cyl)) + geom_bar(fill='darkgoldenrod2') + theme(panel.background = element_rect(fill = 'steelblue'), panel.grid.major = element_line(colour = "firebrick", size=2), panel.grid.minor = element_line(colour = "blue", size=1)) ggplot(mtcars, aes(x=cyl)) + geom_bar(fill="firebrick") + theme(plot.background=element_rect(fill="steelblue"), plot.margin = unit(c(2, 4, 1, 3), "cm"))
taxid2name <- function(x, db='ncbi', verbose=TRUE, warn=TRUE, ...){ result <- ap_vector_dispatch( x = x, db = db, cmd = 'taxid2name', verbose = verbose, warn = warn, empty = character(0), ... ) if(warn && any(is.na(result))){ msg <- "No name found for %s of %s taxon IDs" msg <- sprintf(msg, sum(is.na(result)), length(result)) if(verbose){ msg <- paste0(msg, ". The followings are left unnamed: ", paste0(x[is.na(result)], collapse=', ') ) } warning(msg) } result } itis_taxid2name <- function(src, x, ...){ if (length(x) == 0) return(character(0)) query <- "SELECT tsn,complete_name FROM taxonomic_units WHERE tsn IN ('%s')" query <- sprintf(query, paste0(x, collapse = "','")) tbl <- sql_collect(src, query) tbl$complete_name[match(x, tbl$tsn)] } wfo_taxid2name <- function(src, x, ...){ if (length(x) == 0) return(character(0)) query <- "SELECT taxonID,scientificName FROM wfo WHERE taxonID IN ('%s')" query <- sprintf(query, paste0(x, collapse = "','")) tbl <- sql_collect(src, query) tbl$scientificName[match(x, tbl$taxonID)] } tpl_taxid2name <- function(src, x, ...){ if (length(x) == 0) return(character(0)) query <- "SELECT id,scientificname FROM tpl WHERE id IN ('%s')" query <- sprintf(query, paste0(x, collapse = "','")) tbl <- sql_collect(src, query) tbl$scientificname[match(x, tbl$id)] } col_taxid2name <- function(src, x, ...){ if (length(x) == 0) return(character(0)) query <- "SELECT taxonID,scientificName FROM taxa WHERE taxonID IN ('%s')" query <- sprintf(query, paste0(x, collapse = "','")) tbl <- sql_collect(src, query) tbl$scientificName[match(x, tbl$taxonID)] } gbif_taxid2name <- function(src, x, ...){ if (length(x) == 0) return(character(0)) query <- "SELECT taxonID,canonicalName FROM gbif WHERE taxonID IN ('%s')" query <- sprintf(query, paste0(x, collapse = "','")) tbl <- sql_collect(src, query) tbl$canonicalName[match(x, tbl$taxonID)] } ncbi_taxid2name <- function(src, x, ...){ if (length(x) == 0) return(character(0)) query <- "SELECT tax_id, name_txt FROM names WHERE name_class == 'scientific name' AND tax_id IN (%s)" query <- sprintf(query, sql_integer_list(x)) tbl <- sql_collect(src, query) as.character(tbl$name_txt[match(x, tbl$tax_id)]) }
gr.survWB <- function (thetas) { thetas <- relist(thetas, skeleton = list.thetas) gammas <- thetas$gammas alpha <- thetas$alpha Dalpha <- thetas$Dalpha sigma.t <- if (is.null(scaleWB)) exp(thetas$log.sigma.t) else scaleWB eta.tw <- as.vector(WW %*% gammas) eta.t <- switch(parameterization, "value" = eta.tw + c(WintF.vl %*% alpha) * Y, "slope" = eta.tw + c(WintF.sl %*% Dalpha) * Y.deriv, "both" = eta.tw + c(WintF.vl %*% alpha) * Y + c(WintF.sl %*% Dalpha) * Y.deriv) eta.s <- switch(parameterization, "value" = c(Ws.intF.vl %*% alpha) * Ys, "slope" = c(Ws.intF.sl %*% Dalpha) * Ys.deriv, "both" = c(Ws.intF.vl %*% alpha) * Ys + c(Ws.intF.sl %*% Dalpha) * Ys.deriv) exp.eta.tw.P <- exp(eta.tw) * P Int <- wk * exp(log(sigma.t) + (sigma.t - 1) * log.st + eta.s) ki <- exp.eta.tw.P * rowsum(Int, id.GK, reorder = FALSE) kii <- c((p.byt * ki) %*% wGH) scgammas <- - colSums(WW * (d - kii), na.rm = TRUE) scalpha <- if (parameterization %in% c("value", "both")) { rr <- numeric(ncol(WintF.vl)) for (k in seq_along(rr)) rr[k] <- - sum((p.byt * (d * WintF.vl[, k] * Y - exp.eta.tw.P * rowsum(Int * Ws.intF.vl[, k] * Ys, id.GK, reorder = FALSE))) %*% wGH, na.rm = TRUE) rr } else NULL scalpha.D <- if (parameterization %in% c("slope", "both")) { rr <- numeric(ncol(WintF.sl)) for (k in seq_along(rr)) rr[k] <- - sum((p.byt * (d * WintF.sl[, k] * Y.deriv - exp.eta.tw.P * rowsum(Int * Ws.intF.sl[, k] * Ys.deriv, id.GK, reorder = FALSE))) %*% wGH, na.rm = TRUE) rr } else NULL scsigmat <- if (is.null(scaleWB)) { Int2 <- st^(sigma.t - 1) * (1 + sigma.t * log.st) * exp(eta.s) - sigma.t * sum((p.byt * (d * (1/sigma.t + logT) - exp.eta.tw.P * rowsum(wk * Int2, id.GK, reorder = FALSE))) %*% wGH, na.rm = TRUE) } else NULL c(scgammas, scalpha, scalpha.D, scsigmat) }
varcast <- function(x, a.v = 0.99, a.e = 0.975, model = c("sGARCH", "lGARCH", "eGARCH", "apARCH", "fiGARCH", "filGARCH"), garchOrder = c(1, 1), n.out = 250, smooth = "none", ...) { if (length(x) <= 1 || !all(!is.na(x)) || !is.numeric(x)) { stop("A numeric vector of length > 1 and without NAs must be passed to", " 'x'.") } if (length(a.v) != 1 || is.na(a.v) || !is.numeric(a.v) || a.v <= 0 || a.v >= 1) { stop("A single numeric value that satisfies >0 and <1 must be passed to", " 'a.v'") } if (length(a.e) != 1 || is.na(a.e) || !is.numeric(a.e) || a.e <= 0 || a.e >= 1) { stop("A single numeric value that satisfies >0 and <1 must be passed to", " 'a.e'") } if (!(length(model) %in% c(1, 6)) || !all(!is.na(model)) || !is.character(model)) { stop("A single character value must be passed to 'model'.") } if (all(model == c("sGARCH", "lGARCH", "eGARCH", "apARCH", "fiGARCH", "filGARCH"))) { model <- "sGARCH" } if (length(garchOrder) != 2 || !all(!is.na(garchOrder)) || !is.numeric(garchOrder) || (garchOrder[[1]] == 0 && garchOrder[[2]] == 0)) { stop("A vector of length 2 must be passed to 'garchOrder' giving the", " first and second order of the GARCH-type model.") } garchOrder <- floor(garchOrder) if (length(n.out) != 1 || is.na(n.out) || !is.numeric(n.out) || n.out <= 0) { stop("A single positive integer must be passed to 'n.out'.") } n.out <- floor(n.out) if (!(length(smooth) %in% c(1, 2)) || !all(!is.na(smooth)) || !is.character(smooth)) { stop("The input to the argument 'smooth' must be a single character ", "value.") } if (all(smooth == c("none", "lpr"))) smooth <- "none" if (length(smooth) != 1 || !(smooth) %in% c("none", "lpr")) { stop("The input to the argument 'smooth' must be a single character ", "value.") } if (smooth == "lpr" && model %in% c("sGARCH", "lGARCH", "eGARCH", "apARCH")) { smooth.method = "smoots" } if (smooth == "lpr" && model %in% c("fiGARCH", "filGARCH")) { smooth.method = "esemifar" } dots <- list(...) ret <- diff(log(x)) n.ret <- length(ret) n.in <- n.ret - n.out ret.in.t <- ret[1:n.in] mean.ret.in <- mean(ret.in.t) ret.in <- ret.in.t - mean.ret.in ret.out.t <- ret[(n.in + 1):n.ret] ret.out <- ret.out.t - mean.ret.in p.true <- p <- garchOrder[1] q.true <- q <- garchOrder[2] if (p.true == 0) p <- 1 if (q.true == 0) q <- 1 l <- max(p, q) if (is.null(dots[["p"]])) { dots[["p"]] <- 3 } dots[["y"]] <- log(ret.in^2) switch(smooth, none = { np.est <- NA zeta.in <- ret.in zeta.out <- ret.out res.in <- log(ret.in^2) res.out <- log(ret.out^2) sxt <- 1 sfc <- 1 mule <- mean(res.in) Csig <- 1 }, lpr = { switch(smooth.method, smoots = { if (is.null(dots[["alg"]])) { dots[["alg"]] <- "A" } np.est <- suppressMessages(do.call(what = smoots::msmooth, args = dots)) res.in <- np.est[["res"]] res.out <- log(ret.out^2) - np.est[["ye"]][n.in] mule <- -log(mean(exp(res.in))) sxt <- exp(0.5 * (np.est[["ye"]] - mule)) sfc <- sxt[n.in] zeta.in <- ret.in / sxt zeta.out <- ret.out / sfc }, esemifar = { np.est <- suppressMessages(do.call(what = esemifar::tsmoothlm, args = dots)) res.in <- np.est[["res"]] res.out <- log(ret.out^2) - np.est[["ye"]][n.in] Csig <- sd(ret.in / exp(0.5 * np.est[["ye"]])) sxt <- exp(0.5 * np.est[["ye"]]) * Csig sfc <- sxt[n.in] zeta.in <- ret.in / sxt zeta.out <- ret.out / sfc }) } ) zeta.n <- tail(zeta.in, n = l) zeta.fc <- c(zeta.n, zeta.out[1:n.out]) if (model %in% c("sGARCH", "eGARCH", "apARCH", "fiGARCH")) { spec <- rugarch::ugarchspec(variance.model = list(model = model, garchOrder = c(p.true, q.true)), mean.model = list(armaOrder = c(0, 0), include.mean = FALSE), distribution.model = "std") model_fit <- rugarch::ugarchfit(spec = spec, data = zeta.in) c.sig <- as.numeric(rugarch::sigma(model_fit)) sig.n <- tail(c.sig, n = l) alpha <- 0 beta <- 0 sig.in <- c.sig * sxt } switch(model, lGARCH = { if (p.true < q.true) { stop("p >= q must be satisfied for the estimation of a Log-GARCH model ", "via its ARMA representation.") } model_fit <- arima(res.in, order = c(p.true, 0, q.true), include.mean = FALSE) y.cent <- c(res.in, res.out) - mule * isTRUE(smooth == "none") mulz <- -log(mean(exp(model_fit[["residuals"]]))) ar <- model_fit$model$phi ma <- -model_fit$model$theta k <- 50 d <- 0 coef.all <- arfilt(ar, ma, d, k) pre0 <- c() add0 <- 0 if (n.in < k) { add0 <- k - n.in pre0 <- rep(0, add0) } y.fc.out <- (1:n.out) * 0 y.cent <- c(pre0, y.cent) for (i in (add0 + n.in + 1):(add0 + n.ret)) { y.fc.out[i - (add0 + n.in)] <- coef.all %*% y.cent[(i - 1):(i - k)] } sig.fc <- exp(0.5 * (y.fc.out + mule - mulz)) sig.fc.in <- exp(0.5 * (y.cent[1:n.in] - model_fit[["residuals"]] + mule - mulz)) sig.fc <- sig.fc * sfc sig.in <- sig.fc.in * sxt ret.sd <- zeta.in / sig.in df <- as.numeric(rugarch::fitdist("std", ret.sd)$pars[[3]]) }, filGARCH = { if (p.true < q.true) { stop("p >= q must be satisfied for the estimation of a Log-GARCH model ", "via its ARMA representation.") } model_fit <- suppressWarnings(fracdiff::fracdiff(res.in, nar = p.true, nma = q.true)) ar <- model_fit[["ar"]] ma <- model_fit[["ma"]] d <- model_fit[["d"]] k <- 50 coef.all <- arfilt(ar, ma, d, k) pre0 <- c() add0 <- 0 y.cent <- c(res.in, res.out) y.cent <- y.cent - mean(res.in) if (n.in < k) { add0 <- k - n.in pre0 <- rep(0, add0) } y.fc.out <- (1:n.out) * 0 y.cent <- c(pre0, y.cent) for (i in (add0 + n.in + 1):(add0 + n.ret)) { y.fc.out[i - (add0 + n.in)] <- coef.all %*% y.cent[(i - 1):(i - k)] } sig.fc <- exp(0.5 * (y.fc.out + mean(res.in))) y.fc.in <- model_fit[["fitted"]] sig.fc.in <- exp(0.5 * y.fc.in) ret.sd <- zeta.in / (sig.fc.in * sxt) df <- as.numeric(rugarch::fitdist("std", ret.sd)$pars[3]) if (smooth == "lpr") { sd.c <- 1 } else { sd.c <- sd(ret.sd) } sig.fc <- sig.fc * sfc * sd.c sig.in <- sig.fc.in * sxt * sd.c }, sGARCH = { pars.general <- unname(rugarch::coef(model_fit)) omega <- pars.general[[1]] if (p.true > 0) alpha = pars.general[2:(1 + p.true)] if (q.true > 0) beta = pars.general[(p.true + 2):(1 + p.true + q.true)] df <- pars.general[[p.true + q.true + 2]] vol.fc <- c(sig.n^2, rep(NA, times = n.out)) for (i in (1 + l):(n.out + l)) { vol.fc[i] <- omega + alpha %*% zeta.fc[(i - 1):(i - p)]^2 + beta %*% vol.fc[(i - 1):(i - q)] } sig.fc <- sqrt(vol.fc[(1 + l):(n.out + l)]) * sfc }, eGARCH = { pars.general <- unname(rugarch::coef(model_fit)) omega <- pars.general[[1]] gamma <- 0 if (p.true > 0) { alpha <- pars.general[2:(1 + p.true)] gamma <- pars.general[(p + q + 2):(2 * p + q + 1) ] } if (q.true > 0) { beta <- pars.general[(p.true + 2):(1 + p.true + q.true)] } df <- pars.general[[2 * p.true + q.true + 2]] eps.in <- zeta.in / c.sig mae <- mean(abs(eps.in)) eps <- c(tail(eps.in, n = l), rep(NA, n.out )) lnsig2 <- c(log(tail(c.sig, n = l)^2), rep(NA, n.out)) sig.fc <- rep(NA, n.out) for (i in (1 + l):(n.out + l)) { lnsig2[i] <- omega + alpha %*% eps[(i - 1):(i - p)] + gamma %*% (abs(eps[(i - 1):(i - p)]) - mae) + beta %*% lnsig2[(i - 1):(i - q)] sig.fc[i - l] <- exp(0.5 * lnsig2[i]) eps[i] <- zeta.fc[i] / sig.fc[i - l] } sig.fc <- sig.fc * sfc }, apARCH = { pars.general <- unname(rugarch::coef(model_fit)) omega <- pars.general[[1]] gamma <- 0 if (p.true > 0) { alpha <- pars.general[2:(1 + p.true)] gamma <- pars.general[(p + q + 2):(2 * p + q + 1) ] } if (q.true > 0) { beta <- pars.general[(p.true + 2):(1 + p.true + q.true)] } d1 <- pars.general[[2 * p.true + q.true + 2]] df <- pars.general[[2 * p.true + q.true + 3]] sig.d <- c(tail(c.sig, n = l)^d1, rep(NA, times = n.out)) for (i in (1 + l):(n.out + l)) { sig.d[i] <- omega + alpha %*% (abs(zeta.fc[(i - 1):(i - p)]) - gamma * zeta.fc[(i - 1):(i - p)])^d1 + beta %*% sig.d[(i - 1):(i - q)] } sig.fc <- sig.d[(1 + l):(n.out + l)]^(1 / d1) * sfc }, fiGARCH = { pars.general <- unname(rugarch::coef(model_fit)) omega <- pars.general[[1]] if (p.true > 0) { alpha <- pars.general[2:(1 + p.true)] } if (q.true > 0) { beta <- pars.general[(p.true + 2):(1 + p.true + q.true)] } d <- pars.general[[p.true + q.true + 2]] df <- pars.general[[p.true + q.true + 3]] zeta.all <- c(zeta.in, zeta.out) k <- n.in coef.all <- arfilt(ar = alpha, ma = beta, d = d, k = k) vol.fc <- omega / (1 - sum(beta)) + sum(coef.all * zeta.all[n.in:(n.in - k + 1)]^2) sig.fc <- c(sqrt(vol.fc), rep(0, (n.out - 1))) for (i in 2:n.out) { vol.fc <- omega / (1 - sum(beta)) + sum(coef.all * zeta.all[(n.in + i - 1):(n.in + i - k)]^2) sig.fc[i] <- sqrt(vol.fc) } sig.fc <- sig.fc * sfc } ) sdev <- sqrt(df / (df - 2)) VaR.fc <- -mean.ret.in + sig.fc * qt(a.v, df)/sdev VaR.e.fc <- -mean.ret.in + sig.fc * qt(a.e, df)/sdev ES0 <- dt(qt(a.e, df), df)/(1 - a.e) * (df + qt(a.e, df)^2)/(df - 1)/sdev Esfc <- -mean.ret.in + sig.fc * ES0 if (smooth == "lpr") { model <- paste0("Semi-", model) } results <- list(model = model, mean = mean.ret.in, model.fit = model_fit, ret.in = ret.in.t, ret.out = ret.out.t, sig.in = sig.in, sig.fc = sig.fc, scale = sxt, scale.fc = sfc, VaR.e = VaR.e.fc, VaR.v = VaR.fc, ES = Esfc, df = df, a.v = 1 - a.v, a.e = 1 - a.e, garchOrder = garchOrder, np.est = np.est) class(results) <- "ufRisk" attr(results, "function") <- "varcast" results }
fillUpDecimals <- function(numVec, howManyToFill=NULL, fill = "0"){ numStr = as.character(numVec) noWholeNum = gsub("^[-+ ]*[0-9a-zA-Z]*$", "", numStr, perl=TRUE) decimChar = gsub("^[-+ ]*[0-9a-zA-Z]*\\.", "", noWholeNum) if(is.null(howManyToFill)){ howManyToFill = max(nchar(decimChar[!is.na(decimChar)])) } if(howManyToFill != 0){ numToFill = pmax(0, howManyToFill - nchar(decimChar)) fills = sapply(numToFill, function(x) {if(is.na(x)) "" else paste(rep(fill, x), collapse="")} ) dPoints = sapply(nchar(noWholeNum), function(x){if(!is.na(x) & x==0) "." else ""}) res = paste(numStr, dPoints, fills, sep="") res[res == "NA"] = NA }else{ res = numStr } res }
wm_records_common <- function(name, fuzzy = FALSE, offset = 1, ...) { assert(name, "character") assert(fuzzy, "logical") assert(offset, c('numeric', 'integer')) assert_len(name, 1) if (length(name) > 1) stop("'name' must be of length 1", call. = FALSE) args <- cc(list( like = as_log(fuzzy), offset = offset )) wm_GET(file.path(wm_base(), "AphiaRecordsByVernacular", name), query = args, ...) } wm_records_common_ <- function(name, fuzzy = FALSE, offset = 1, ...) { run_bind(name, wm_records_common, fuzzy = fuzzy, offset = offset, on_error = warning, ...) }
context(".monoisotopic") test_that(".pseudoCluster", { x <- c(1, 2, 3, 5, 8, 9, 10, 12, 15) m1s2 <- matrix(c(1, 2, 2, 3, 5, 6, 6, 7), nrow=2) m1s3 <- matrix(c(1, 2, 3, 5, 6, 7), nrow=3) m3s3 <- matrix(c(2, 4, 5, 6, 8, 9), nrow=3) m5s4 <- matrix(NA_real_, nrow=4, ncol=0) m12s3 <- matrix(c(1:3, 5:7, 1, 3, 4, 5, 7, 8), nrow=3) expect_error(MALDIquant:::.pseudoCluster(x, size=1), "The .*size.* of a cluster has to be at least 2") expect_equal(MALDIquant:::.pseudoCluster(x, size=2, distance=1), m1s2) expect_equal(MALDIquant:::.pseudoCluster(x, size=3, distance=1), m1s3) expect_equal(MALDIquant:::.pseudoCluster(x, size=3, distance=3), m3s3) expect_equal(MALDIquant:::.pseudoCluster(x, size=4, distance=5), m5s4) expect_equal(MALDIquant:::.pseudoCluster(x, size=3, distance=1:2), m12s3) }) test_that(".F", { x <- seq(1000, 5000, by=10) expect_equal(MALDIquant:::.F(x), 0.000594 * x + 0.03091) }) test_that(".P", { x <- seq(1000, 5000, by=10) expect_equal(MALDIquant:::.P(x, 0:3), dpois(0:3, MALDIquant:::.F(x))) }) test_that(".Psum", { x <- c(1000, 2000) isotopes <- 0:3 p <- sapply(x, function(xx) { pp <- MALDIquant:::.P(xx, isotopes=isotopes) pp/sum(pp) }) expect_equal(MALDIquant:::.Psum(x, isotopes), p) }) test_that(".monoisotopicPattern", { x <- c(1, 2, 3, 5, 8, 9, 10, 12, 15) y <- c(96, 3, 1, 5, 78, 20, 2, 12, 15) expect_equal(MALDIquant:::.monoisotopicPattern(1:10, 1:10), matrix(NA_real_, nrow=3, ncol=0)) expect_equal(MALDIquant:::.monoisotopicPattern(x, y, distance=1, size=3), cbind(1:3, 5:7)) expect_equal(MALDIquant:::.monoisotopicPattern(x, y, distance=1:2, size=3), cbind(1:3, 5:7)) expect_equal(MALDIquant:::.monoisotopicPattern(x, y, distance=2:1, size=3), cbind(c(1, 3, 4), c(5, 7, 8))) expect_equal(MALDIquant:::.monoisotopicPattern(x, y, distance=1, size=2), cbind(1:2, 5:6)) expect_equal(MALDIquant:::.monoisotopicPattern(x, y, distance=1, minCor=0.99), as.matrix(1:3)) }) test_that(".monoisotopic", { x <- c(1, 2, 3, 5, 8, 9, 10, 12, 15) y <- c(96, 3, 1, 5, 78, 20, 2, 12, 15) expect_equal(MALDIquant:::.monoisotopic(double(), double()), numeric()) expect_equal(MALDIquant:::.monoisotopic(1:10, 1:5), numeric()) expect_equal(MALDIquant:::.monoisotopic(1:10, 1:10), numeric()) expect_equal(MALDIquant:::.monoisotopic(x, y, distance=1, size=2:5), c(1, 5)) expect_equal(MALDIquant:::.monoisotopic(x, y, distance=1, minCor=0.99), 1) })
context("qtl2") test_that("fst_genoprob works with qtl2 functions", { library(qtl2) iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2")) iron <- iron[,c(18,19,"X")] map <- insert_pseudomarkers(iron$gmap, step=1) probs <- calc_genoprob(iron, map, error_prob=0.002) dir <- tempdir() fprobs <- fst_genoprob(probs, "iron_probs", dir) expect_equal(fprobs[["18"]], probs[["18"]]) expect_equal(fprobs[[1]], probs[["18"]]) expect_equal(fprobs[["X"]], probs[["X"]]) expect_equal(fprobs[[3]], probs[["X"]]) expect_equal(calc_kinship(probs), calc_kinship(fprobs)) expect_equal(calc_kinship(probs, "loco"), calc_kinship(fprobs, "loco")) expect_equal(calc_kinship(probs, "chr"), calc_kinship(fprobs, "chr")) expect_equal(genoprob_to_alleleprob(probs), genoprob_to_alleleprob(fprobs)) grid <- calc_grid(iron$gmap, step=1) expect_equal(probs_to_grid(probs, grid), probs_to_grid(fprobs, grid)) seed <- 47220527 set.seed(seed) imp <- maxmarg(probs) set.seed(seed) fimp <- maxmarg(fprobs) expect_equal(imp, fimp) set.seed(seed) imp <- maxmarg(probs, map, chr="19", pos=10.3) set.seed(seed) fimp <- maxmarg(fprobs, map, chr="19", pos=10.3) expect_equal(imp, fimp) set.seed(seed) imp <- maxmarg(probs, map, chr="19", pos=10.3, return_char=TRUE) set.seed(seed) fimp <- maxmarg(fprobs, map, chr="19", pos=10.3, return_char=TRUE) expect_equal(imp, fimp) set.seed(seed) imp <- maxmarg(probs, map, chr="X", pos=57.9) set.seed(seed) fimp <- maxmarg(fprobs, map, chr="X", pos=57.9) expect_equal(imp, fimp) set.seed(seed) imp <- maxmarg(probs, map, chr="X", pos=57.9, return_char=TRUE) set.seed(seed) fimp <- maxmarg(fprobs, map, chr="X", pos=57.9, return_char=TRUE) expect_equal(imp, fimp) set.seed(seed) imp <- maxmarg(probs[19]) set.seed(seed) fimp <- maxmarg(fprobs[19]) expect_equal(imp, fimp) set.seed(seed) imp <- maxmarg(probs[,"X"]) set.seed(seed) fimp <- maxmarg(fprobs[,"X"]) expect_equal(imp, fimp) Xcovar <- get_x_covar(iron) sex <- Xcovar[,"sex",drop=FALSE] expect_equal(scan1(probs, iron$pheno, Xcovar=Xcovar), scan1(fprobs, iron$pheno, Xcovar=Xcovar)) expect_equal(scan1(probs, iron$pheno, Xcovar=Xcovar, addcovar=sex), scan1(fprobs, iron$pheno, Xcovar=Xcovar, addcovar=sex)) expect_equal(scan1(probs, iron$pheno, Xcovar=Xcovar, addcovar=sex, intcovar=sex), scan1(fprobs, iron$pheno, Xcovar=Xcovar, addcovar=sex, intcovar=sex)) k <- calc_kinship(probs) fk <- calc_kinship(fprobs) expect_equal(scan1(probs, iron$pheno, k, Xcovar=Xcovar), scan1(fprobs, iron$pheno, fk, Xcovar=Xcovar)) expect_equal(scan1(probs, iron$pheno, k, Xcovar=Xcovar, addcovar=sex), scan1(fprobs, iron$pheno, fk, Xcovar=Xcovar, addcovar=sex)) expect_equal(scan1(probs, iron$pheno, k, Xcovar=Xcovar, addcovar=sex, intcovar=sex), scan1(fprobs, iron$pheno, fk, Xcovar=Xcovar, addcovar=sex, intcovar=sex)) k <- calc_kinship(probs, "loco") fk <- calc_kinship(fprobs, "loco") expect_equal(scan1(probs, iron$pheno, k, Xcovar=Xcovar), scan1(fprobs, iron$pheno, fk, Xcovar=Xcovar)) expect_equal(scan1(probs, iron$pheno, k, Xcovar=Xcovar, addcovar=sex), scan1(fprobs, iron$pheno, fk, Xcovar=Xcovar, addcovar=sex)) expect_equal(scan1(probs, iron$pheno, k, Xcovar=Xcovar, addcovar=sex, intcovar=sex), scan1(fprobs, iron$pheno, fk, Xcovar=Xcovar, addcovar=sex, intcovar=sex)) phe <- iron$pheno[,1,drop=FALSE] expect_equal(scan1coef(subset(probs, chr="18"), phe, addcovar=sex), scan1coef(subset(fprobs, chr="18"), phe, addcovar=sex)) expect_equal(scan1coef(subset(probs, chr="X"), phe, addcovar=Xcovar), scan1coef(subset(fprobs, chr="X"), phe, addcovar=Xcovar)) phe <- iron$pheno[,1,drop=FALSE] expect_equal(scan1coef(subset(probs, chr="18"), phe, k[["18"]], addcovar=sex), scan1coef(subset(fprobs, chr="18"), phe, fk[["18"]], addcovar=sex)) expect_equal(scan1coef(subset(probs, chr="X"), phe, k[["X"]], addcovar=Xcovar), scan1coef(subset(fprobs, chr="X"), phe, fk[["X"]], addcovar=Xcovar)) expect_equal(scan1blup(subset(probs, chr="18"), phe, addcovar=sex), scan1blup(subset(fprobs, chr="18"), phe, addcovar=sex)) expect_equal(scan1blup(subset(probs, chr="X"), phe, addcovar=Xcovar), scan1blup(subset(fprobs, chr="X"), phe, addcovar=Xcovar)) expect_equal(scan1blup(subset(probs, chr="18"), phe, k[["18"]], addcovar=sex), scan1blup(subset(fprobs, chr="18"), phe, fk[["18"]], addcovar=sex)) expect_equal(scan1blup(subset(probs, chr="X"), phe, k[["X"]], addcovar=Xcovar), scan1blup(subset(fprobs, chr="X"), phe, fk[["X"]], addcovar=Xcovar)) n_perm <- 3 seed <- 65418959 set.seed(seed) operm <- scan1perm(probs, phe, n_perm=n_perm) set.seed(seed) foperm <- scan1perm(fprobs, phe, n_perm=n_perm) expect_equal(operm, foperm) set.seed(seed) operm <- scan1perm(probs, iron$pheno, n_perm=n_perm, addcovar=sex) set.seed(seed) foperm <- scan1perm(fprobs, iron$pheno, n_perm=n_perm, addcovar=sex) expect_equal(operm, foperm) set.seed(seed) operm <- scan1perm(probs, iron$pheno, n_perm=n_perm, addcovar=sex, Xcovar=Xcovar, perm_Xsp=TRUE, chr_lengths=chr_lengths(map)) set.seed(seed) foperm <- scan1perm(fprobs, iron$pheno, n_perm=n_perm, addcovar=sex, Xcovar=Xcovar, perm_Xsp=TRUE, chr_lengths=chr_lengths(map)) expect_equal(operm, foperm) set.seed(seed) operm <- scan1perm(probs, iron$pheno, k, n_perm=n_perm, addcovar=sex) set.seed(seed) foperm <- scan1perm(fprobs, iron$pheno, fk, n_perm=n_perm, addcovar=sex) expect_equal(operm, foperm) set.seed(seed) operm <- scan1perm(probs, iron$pheno, k, n_perm=n_perm, addcovar=sex, perm_Xsp=TRUE, chr_lengths=chr_lengths(map)) set.seed(seed) foperm <- scan1perm(fprobs, iron$pheno, fk, n_perm=n_perm, addcovar=sex, perm_Xsp=TRUE, chr_lengths=chr_lengths(map)) expect_equal(operm, foperm) unlink(fst_files(fprobs)) })
lambda0=function(x,y,weights=rep(1,N),exclude=NULL){ if(length(exclude))x=x[,-exclude] N=length(y) ybar=weighted.mean(y,weights) yvar=weighted.mean((y-ybar)^2,weights) y=(y-ybar)/sqrt(yvar) weights=weights/N xbar=t(weights)%*%x xvar=t(weights)%*%(x^2)-xbar^2 grad= abs(t(y*weights)%*%x)/sqrt(xvar) max(grad) }
test_that("SetHITTypeNotification", { skip_if_not(CheckAWSKeys()) hittype <- RegisterHITType(title="10 Question Survey", description = "Complete a 10-question survey", reward = ".20", duration = seconds(hours = 1), keywords = "survey, questionnaire, politics") a <- GenerateNotification("[email protected]", event.type = "HITExpired") SetHITTypeNotification(hit.type = hittype$HITTypeId, notification = a, active = TRUE) SendTestEventNotification(a, test.event.type = "HITExpired") -> result expect_type(result, "list") try(SendTestEventNotification(a, test.event.type = "X"), TRUE) -> result })
CatDynBSD <- function(x,method,multi,mbw.sd) { if(multi) { if(class(x)!="catdyn") { stop("In multi-annual models 'x' must be a single object of class 'catdyn' run at monthly time steps") } if(x$Data$Properties$Units[3] == "ind") { stop("This function is used to calculate standard deviation of annual biomass when the catch is recorded in weight") } if(x$Data$Properties$Units["Time Step"]!="month") { stop("In multi-annual models 'x' must be a single object of class 'catdyn' run at monthly time steps") } Thou.scaler <- 1e6*(x$Data$Properties$Units[4]=="bill") + 1e3*(x$Data$Properties$Units[4]=="mill") + 1e0*(x$Data$Properties$Units[4]=="thou") + 1e-1*(x$Data$Properties$Units[4]=="hund") PopDyn <- data.frame(M=x$Model[[method]]$bt.par$M, SE.M=x$Model[[method]]$bt.stdev["M"], N0=Thou.scaler*x$Model[[method]]$bt.par$N0, SE.N0=Thou.scaler*x$Model[[method]]$bt.stdev["N0"]) if(is.na(PopDyn[2])) { PopDyn[2] <- PopDyn[1]*mean(unlist(x$Model[[method]]$bt.stdev[which(!is.na(x$Model[[method]]$bt.stdev))])/ unlist(x$Model[[method]]$bt.par[which(!is.na(x$Model[[method]]$bt.stdev))])) } if(is.na(PopDyn[4])) { PopDyn[4] <- PopDyn[3]*mean(unlist(x$Model[[method]]$bt.stdev[which(!is.na(x$Model[[method]]$bt.stdev))])/ unlist(x$Model[[method]]$bt.par[which(!is.na(x$Model[[method]]$bt.stdev))])) } Perts <- data.frame(Pest=unlist(x$Model[[method]]$bt.par[grep("P",names(x$Model[[method]]$bt.par))])*Thou.scaler, SE.Pest=unlist(x$Model[[method]]$bt.stdev[grep("P.",names(x$Model[[method]]$bt.par))])*Thou.scaler, tsteps=x$Model[[method]]$Dates[grep("ts.P",names(x$Model[[method]]$Dates))]) if(any(is.na(Perts$SE.Pest))) { Perts$SE.Pest[which(is.na(Perts$SE.Pest))] <- Perts$Pest[which(is.na(Perts$SE.Pest))]*mean(Perts$SE.Pest[which(!is.na(Perts$SE.Pest))]/Perts$Pest[which(!is.na(Perts$SE.Pest))]) } if(length(x$Data$Properties$Fleets$Fleet)==1) { mt <- x$Model[[method]]$Type Timing <- matrix(0,12*mt,1) Timing[1:12] <- ifelse(row(Timing)[1:12] >= Perts$tsteps[1],1,0) Timing[13:24] <- ifelse(row(Timing)[13:24] >= Perts$tsteps[2],1,0) Timing[25:36] <- ifelse(row(Timing)[25:36] >= Perts$tsteps[3],1,0) Timing[37:48] <- ifelse(row(Timing)[37:48] >= Perts$tsteps[4],1,0) Timing[49:60] <- ifelse(row(Timing)[49:60] >= Perts$tsteps[5],1,0) Timing[61:72] <- ifelse(row(Timing)[61:72] >= Perts$tsteps[6],1,0) Timing[73:84] <- ifelse(row(Timing)[73:84] >= Perts$tsteps[7],1,0) Timing[85:96] <- ifelse(row(Timing)[85:96] >= Perts$tsteps[8],1,0) Timing[97:108] <- ifelse(row(Timing)[97:108] >= Perts$tsteps[9],1,0) Timing[109:120] <- ifelse(row(Timing)[109:120] >= Perts$tsteps[10],1,0) Timing[121:132] <- ifelse(row(Timing)[121:132] >= Perts$tsteps[11],1,0) Timing[133:144] <- ifelse(row(Timing)[133:144] >= Perts$tsteps[12],1,0) Timing[145:156] <- ifelse(row(Timing)[145:156] >= Perts$tsteps[13],1,0) Timing[157:168] <- ifelse(row(Timing)[157:168] >= Perts$tsteps[14],1,0) Timing[169:180] <- ifelse(row(Timing)[169:180] >= Perts$tsteps[15],1,0) fleet1 <- x$Data$Properties$Fleets[1,1] if(mt <= 14) { stop("This function is intended to be used to calculate the standard deviation of annual biomass \n to fit a biomass dynamic model from the output of a multi-annual generalized depletion model (MAGD) \n with the catch recorded in biomass. At least 15 years of data must have been used in fitting \n the MAGD for its outputs to be used in this manner.") } Cov.Mat <- cor2cov(cor.mat=x$Model[[method]]$Cor[c(1:(mt+2)), c(1:(mt+2))], sd=c(PopDyn$SE.M,PopDyn$SE.N0,Perts$SE.Pest)) if(length(mbw.sd) != 12 & length(mbw.sd) != 12*mt) {stop("mbw.sd must be a vector of length 12 (monthly mean weight) or 12*number of years (in kg)")} yr1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[1]),"%Y")) yr2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[2]),"%Y")) z <- CatDynPred(x,method) PredStock <- data.frame(Year=sort(rep(yr1:yr2,12)), Month=c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"), TimeStep=1:((yr2-yr1+1)*12), Mmw.kg=x$Data$Data[[fleet1]]$obsmbw.kg, SDmw.kg=mbw.sd, N.thou=z$Model$Results[,10], N.thou.SE=0, B.ton=z$Model$Results[,11], B.ton.SE=0) for(m in 1:12) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PopDyn$N0,Timing[m]*Perts$Pest[1]), cov=Cov.Mat[c(1:3),c(1:3)]) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 13:24) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[12],Timing[m]*Perts$Pest[2]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,4], 0,PredStock$N.thou.SE[12]^2,0, Cov.Mat[4,1],0,Cov.Mat[4,4]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 25:36) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[24],Timing[m]*Perts$Pest[3]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,5], 0,PredStock$N.thou.SE[24]^2,0, Cov.Mat[5,1],0,Cov.Mat[5,5]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 37:48) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[36],Timing[m]*Perts$Pest[4]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,6], 0,PredStock$N.thou.SE[36]^2,0, Cov.Mat[6,1],0,Cov.Mat[6,6]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 49:60) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[48],Timing[m]*Perts$Pest[5]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,7], 0,PredStock$N.thou.SE[48]^2,0, Cov.Mat[7,1],0,Cov.Mat[7,7]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 61:72) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[60],Timing[m]*Perts$Pest[6]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,8], 0,PredStock$N.thou.SE[60]^2,0, Cov.Mat[8,1],0,Cov.Mat[8,8]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 73:84) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[72],Timing[m]*Perts$Pest[7]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,9], 0,PredStock$N.thou.SE[72]^2,0, Cov.Mat[9,1],0,Cov.Mat[9,9]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 85:96) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[84],Timing[m]*Perts$Pest[8]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,10], 0,PredStock$N.thou.SE[84]^2,0, Cov.Mat[10,1],0,Cov.Mat[10,10]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 97:108) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[96],Timing[m]*Perts$Pest[9]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,11], 0,PredStock$N.thou.SE[96]^2,0, Cov.Mat[11,1],0,Cov.Mat[11,11]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 109:120) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[108],Timing[m]*Perts$Pest[10]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,12], 0,PredStock$N.thou.SE[108]^2,0, Cov.Mat[12,1],0,Cov.Mat[12,12]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 121:132) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[120],Timing[m,1]*Perts$Pest[11]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,13], 0,PredStock$N.thou.SE[120]^2,0, Cov.Mat[13,1],0,Cov.Mat[13,13]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 133:144) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[132],Timing[m]*Perts$Pest[12]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,14], 0,PredStock$N.thou.SE[132]^2,0, Cov.Mat[14,1],0,Cov.Mat[14,14]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 145:156) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[144],Timing[m]*Perts$Pest[13]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,15], 0,PredStock$N.thou.SE[144]^2,0, Cov.Mat[15,1],0,Cov.Mat[15,15]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 157:168) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[156],Timing[m]*Perts$Pest[14]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,16], 0,PredStock$N.thou.SE[156]^2,0, Cov.Mat[16,1],0,Cov.Mat[16,16]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 169:180) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[168],Timing[m]*Perts$Pest[15]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,17], 0,PredStock$N.thou.SE[168]^2,0, Cov.Mat[17,1],0,Cov.Mat[17,17]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } if(mt == 16) { Timing[181:192] <- ifelse(row(Timing)[181:192] >= Perts$tsteps[16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m]*Perts$Pest[16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18], 0,PredStock$N.thou.SE[180]^2,0, Cov.Mat[18,1],0,Cov.Mat[18,18]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 17) { Timing[181:192] <- ifelse(row(Timing)[181:192] >= Perts$tsteps[16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m]*Perts$Pest[16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18], 0,PredStock$N.thou.SE[180]^2,0, Cov.Mat[18,1],0,Cov.Mat[18,18]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204] <- ifelse(row(Timing)[193:204] >= Perts$tsteps[17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m]*Perts$Pest[17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19], 0,PredStock$N.thou.SE[192]^2,0, Cov.Mat[19,1],0,Cov.Mat[19,19]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 18) { Timing[181:192] <- ifelse(row(Timing)[181:192] >= Perts$tsteps[16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m]*Perts$Pest[16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18], 0,PredStock$N.thou.SE[180]^2,0, Cov.Mat[18,1],0,Cov.Mat[18,18]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204] <- ifelse(row(Timing)[193:204] >= Perts$tsteps[17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m]*Perts$Pest[17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19], 0,PredStock$N.thou.SE[192]^2,0, Cov.Mat[19,1],0,Cov.Mat[19,19]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216] <- ifelse(row(Timing)[205:216] >= Perts$tsteps[18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m]*Perts$Pest[18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20], 0,PredStock$N.thou.SE[204]^2,0, Cov.Mat[20,1],0,Cov.Mat[20,20]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 19) { Timing[181:192] <- ifelse(row(Timing)[181:192] >= Perts$tsteps[16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m]*Perts$Pest[16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18], 0,PredStock$N.thou.SE[180]^2,0, Cov.Mat[18,1],0,Cov.Mat[18,18]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204] <- ifelse(row(Timing)[193:204] >= Perts$tsteps[17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m]*Perts$Pest[17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19], 0,PredStock$N.thou.SE[192]^2,0, Cov.Mat[19,1],0,Cov.Mat[19,19]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216] <- ifelse(row(Timing)[205:216] >= Perts$tsteps[18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m]*Perts$Pest[18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20], 0,PredStock$N.thou.SE[204]^2,0, Cov.Mat[20,1],0,Cov.Mat[20,20]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228] <- ifelse(row(Timing)[217:228] >= Perts$tsteps[19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m]*Perts$Pest[19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21], 0,PredStock$N.thou.SE[216]^2,0, Cov.Mat[21,1],0,Cov.Mat[21,21]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 20) { Timing[181:192] <- ifelse(row(Timing)[181:192] >= Perts$tsteps[16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m]*Perts$Pest[16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18], 0,PredStock$N.thou.SE[180]^2,0, Cov.Mat[18,1],0,Cov.Mat[18,18]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204] <- ifelse(row(Timing)[193:204] >= Perts$tsteps[17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m]*Perts$Pest[17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19], 0,PredStock$N.thou.SE[192]^2,0, Cov.Mat[19,1],0,Cov.Mat[19,19]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216] <- ifelse(row(Timing)[205:216] >= Perts$tsteps[18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m]*Perts$Pest[18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20], 0,PredStock$N.thou.SE[204]^2,0, Cov.Mat[20,1],0,Cov.Mat[20,20]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228] <- ifelse(row(Timing)[217:228] >= Perts$tsteps[19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m]*Perts$Pest[19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21], 0,PredStock$N.thou.SE[216]^2,0, Cov.Mat[21,1],0,Cov.Mat[21,21]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240] <- ifelse(row(Timing)[229:240] >= Perts$tsteps[20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m]*Perts$Pest[20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22], 0,PredStock$N.thou.SE[228]^2,0, Cov.Mat[22,1],0,Cov.Mat[22,22]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 21) { Timing[181:192] <- ifelse(row(Timing)[181:192] >= Perts$tsteps[16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m]*Perts$Pest[16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18], 0,PredStock$N.thou.SE[180]^2,0, Cov.Mat[18,1],0,Cov.Mat[18,18]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204] <- ifelse(row(Timing)[193:204] >= Perts$tsteps[17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m]*Perts$Pest[17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19], 0,PredStock$N.thou.SE[192]^2,0, Cov.Mat[19,1],0,Cov.Mat[19,19]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216] <- ifelse(row(Timing)[205:216] >= Perts$tsteps[18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m]*Perts$Pest[18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20], 0,PredStock$N.thou.SE[204]^2,0, Cov.Mat[20,1],0,Cov.Mat[20,20]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228] <- ifelse(row(Timing)[217:228] >= Perts$tsteps[19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m]*Perts$Pest[19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21], 0,PredStock$N.thou.SE[216]^2,0, Cov.Mat[21,1],0,Cov.Mat[21,21]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240] <- ifelse(row(Timing)[229:240] >= Perts$tsteps[20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m]*Perts$Pest[20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22], 0,PredStock$N.thou.SE[228]^2,0, Cov.Mat[22,1],0,Cov.Mat[22,22]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[241:252] <- ifelse(row(Timing)[241:252] >= Perts$tsteps[21],1,0) for(m in 241:252) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[240],Timing[m]*Perts$Pest[21]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,23], 0,PredStock$N.thou.SE[240]^2,0, Cov.Mat[23,1],0,Cov.Mat[23,23]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 22) { Timing[181:192] <- ifelse(row(Timing)[181:192] >= Perts$tsteps[16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m]*Perts$Pest[16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18], 0,PredStock$N.thou.SE[180]^2,0, Cov.Mat[18,1],0,Cov.Mat[18,18]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204] <- ifelse(row(Timing)[193:204] >= Perts$tsteps[17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m]*Perts$Pest[17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19], 0,PredStock$N.thou.SE[192]^2,0, Cov.Mat[19,1],0,Cov.Mat[19,19]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216] <- ifelse(row(Timing)[205:216] >= Perts$tsteps[18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m]*Perts$Pest[18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20], 0,PredStock$N.thou.SE[204]^2,0, Cov.Mat[20,1],0,Cov.Mat[20,20]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228] <- ifelse(row(Timing)[217:228] >= Perts$tsteps[19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m]*Perts$Pest[19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21], 0,PredStock$N.thou.SE[216]^2,0, Cov.Mat[21,1],0,Cov.Mat[21,21]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240] <- ifelse(row(Timing)[229:240] >= Perts$tsteps[20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m]*Perts$Pest[20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22], 0,PredStock$N.thou.SE[228]^2,0, Cov.Mat[22,1],0,Cov.Mat[22,22]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[241:252] <- ifelse(row(Timing)[241:252] >= Perts$tsteps[21],1,0) for(m in 241:252) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[240],Timing[m]*Perts$Pest[21]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,23], 0,PredStock$N.thou.SE[240]^2,0, Cov.Mat[23,1],0,Cov.Mat[23,23]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[253:264] <- ifelse(row(Timing)[253:264] >= Perts$tsteps[22],1,0) for(m in 253:264) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[252],Timing[m]*Perts$Pest[22]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,24], 0,PredStock$N.thou.SE[252]^2,0, Cov.Mat[24,1],0,Cov.Mat[24,24]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 23) { Timing[181:192] <- ifelse(row(Timing)[181:192] >= Perts$tsteps[16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m]*Perts$Pest[16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18], 0,PredStock$N.thou.SE[180]^2,0, Cov.Mat[18,1],0,Cov.Mat[18,18]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204] <- ifelse(row(Timing)[193:204] >= Perts$tsteps[17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m]*Perts$Pest[17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19], 0,PredStock$N.thou.SE[192]^2,0, Cov.Mat[19,1],0,Cov.Mat[19,19]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216] <- ifelse(row(Timing)[205:216] >= Perts$tsteps[18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m]*Perts$Pest[18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20], 0,PredStock$N.thou.SE[204]^2,0, Cov.Mat[20,1],0,Cov.Mat[20,20]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228] <- ifelse(row(Timing)[217:228] >= Perts$tsteps[19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m]*Perts$Pest[19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21], 0,PredStock$N.thou.SE[216]^2,0, Cov.Mat[21,1],0,Cov.Mat[21,21]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240] <- ifelse(row(Timing)[229:240] >= Perts$tsteps[20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m]*Perts$Pest[20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22], 0,PredStock$N.thou.SE[228]^2,0, Cov.Mat[22,1],0,Cov.Mat[22,22]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[241:252] <- ifelse(row(Timing)[241:252] >= Perts$tsteps[21],1,0) for(m in 241:252) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[240],Timing[m]*Perts$Pest[21]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,23], 0,PredStock$N.thou.SE[240]^2,0, Cov.Mat[23,1],0,Cov.Mat[23,23]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[253:264] <- ifelse(row(Timing)[253:264] >= Perts$tsteps[22],1,0) for(m in 253:264) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[252],Timing[m]*Perts$Pest[22]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,24], 0,PredStock$N.thou.SE[252]^2,0, Cov.Mat[24,1],0,Cov.Mat[24,24]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[265:276] <- ifelse(row(Timing)[265:276] >= Perts$tsteps[23],1,0) for(m in 265:276) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[264],Timing[m]*Perts$Pest[23]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,25], 0,PredStock$N.thou.SE[264]^2,0, Cov.Mat[25,1],0,Cov.Mat[25,25]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 24) { Timing[181:192] <- ifelse(row(Timing)[181:192] >= Perts$tsteps[16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m]*Perts$Pest[16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18], 0,PredStock$N.thou.SE[180]^2,0, Cov.Mat[18,1],0,Cov.Mat[18,18]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204] <- ifelse(row(Timing)[193:204] >= Perts$tsteps[17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m]*Perts$Pest[17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19], 0,PredStock$N.thou.SE[192]^2,0, Cov.Mat[19,1],0,Cov.Mat[19,19]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216] <- ifelse(row(Timing)[205:216] >= Perts$tsteps[18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m]*Perts$Pest[18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20], 0,PredStock$N.thou.SE[204]^2,0, Cov.Mat[20,1],0,Cov.Mat[20,20]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228] <- ifelse(row(Timing)[217:228] >= Perts$tsteps[19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m]*Perts$Pest[19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21], 0,PredStock$N.thou.SE[216]^2,0, Cov.Mat[21,1],0,Cov.Mat[21,21]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240] <- ifelse(row(Timing)[229:240] >= Perts$tsteps[20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m]*Perts$Pest[20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22], 0,PredStock$N.thou.SE[228]^2,0, Cov.Mat[22,1],0,Cov.Mat[22,22]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[241:252] <- ifelse(row(Timing)[241:252] >= Perts$tsteps[21],1,0) for(m in 241:252) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[240],Timing[m]*Perts$Pest[21]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,23], 0,PredStock$N.thou.SE[240]^2,0, Cov.Mat[23,1],0,Cov.Mat[23,23]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[253:264] <- ifelse(row(Timing)[253:264] >= Perts$tsteps[22],1,0) for(m in 253:264) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[252],Timing[m]*Perts$Pest[22]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,24], 0,PredStock$N.thou.SE[252]^2,0, Cov.Mat[24,1],0,Cov.Mat[24,24]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[265:276] <- ifelse(row(Timing)[265:276] >= Perts$tsteps[23],1,0) for(m in 265:276) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[264],Timing[m]*Perts$Pest[23]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,25], 0,PredStock$N.thou.SE[264]^2,0, Cov.Mat[25,1],0,Cov.Mat[25,25]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[277:288] <- ifelse(row(Timing)[277:288] >= Perts$tsteps[24],1,0) for(m in 277:288) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[276],Timing[m]*Perts$Pest[24]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,26], 0,PredStock$N.thou.SE[276]^2,0, Cov.Mat[26,1],0,Cov.Mat[26,26]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 25) { Timing[181:192] <- ifelse(row(Timing)[181:192] >= Perts$tsteps[16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m]*Perts$Pest[16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18], 0,PredStock$N.thou.SE[180]^2,0, Cov.Mat[18,1],0,Cov.Mat[18,18]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204] <- ifelse(row(Timing)[193:204] >= Perts$tsteps[17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m]*Perts$Pest[17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19], 0,PredStock$N.thou.SE[192]^2,0, Cov.Mat[19,1],0,Cov.Mat[19,19]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216] <- ifelse(row(Timing)[205:216] >= Perts$tsteps[18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m]*Perts$Pest[18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20], 0,PredStock$N.thou.SE[204]^2,0, Cov.Mat[20,1],0,Cov.Mat[20,20]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228] <- ifelse(row(Timing)[217:228] >= Perts$tsteps[19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m]*Perts$Pest[19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21], 0,PredStock$N.thou.SE[216]^2,0, Cov.Mat[21,1],0,Cov.Mat[21,21]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240] <- ifelse(row(Timing)[229:240] >= Perts$tsteps[20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m]*Perts$Pest[20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22], 0,PredStock$N.thou.SE[228]^2,0, Cov.Mat[22,1],0,Cov.Mat[22,22]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[241:252] <- ifelse(row(Timing)[241:252] >= Perts$tsteps[21],1,0) for(m in 241:252) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[240],Timing[m]*Perts$Pest[21]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,23], 0,PredStock$N.thou.SE[240]^2,0, Cov.Mat[23,1],0,Cov.Mat[23,23]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[253:264] <- ifelse(row(Timing)[253:264] >= Perts$tsteps[22],1,0) for(m in 253:264) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[252],Timing[m]*Perts$Pest[22]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,24], 0,PredStock$N.thou.SE[252]^2,0, Cov.Mat[24,1],0,Cov.Mat[24,24]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[265:276] <- ifelse(row(Timing)[265:276] >= Perts$tsteps[23],1,0) for(m in 265:276) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[264],Timing[m]*Perts$Pest[23]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,25], 0,PredStock$N.thou.SE[264]^2,0, Cov.Mat[25,1],0,Cov.Mat[25,25]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[277:288] <- ifelse(row(Timing)[277:288] >= Perts$tsteps[24],1,0) for(m in 277:288) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[276],Timing[m]*Perts$Pest[24]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,26], 0,PredStock$N.thou.SE[276]^2,0, Cov.Mat[26,1],0,Cov.Mat[26,26]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[289:300] <- ifelse(row(Timing)[289:300] >= Perts$tsteps[25],1,0) for(m in 289:300) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[288],Timing[m]*Perts$Pest[25]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,27], 0,PredStock$N.thou.SE[288]^2,0, Cov.Mat[27,1],0,Cov.Mat[27,27]),3,3)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } } if(length(x$Data$Properties$Fleets$Fleet)==2) { mt <- x$Model[[method]]$Type[1] Timing <- matrix(0,12*mt,2) Timing[1:12,1] <- ifelse(row(Timing)[1:12,1] >= Perts$tsteps[1],1,0) Timing[1:12,2] <- ifelse(row(Timing)[1:12,2] >= Perts$tsteps[mt+1],1,0) Timing[13:24,1] <- ifelse(row(Timing)[13:24,1] >= Perts$tsteps[2],1,0) Timing[13:24,2] <- ifelse(row(Timing)[13:24,2] >= Perts$tsteps[mt+2],1,0) Timing[25:36,1] <- ifelse(row(Timing)[25:36,1] >= Perts$tsteps[3],1,0) Timing[25:36,2] <- ifelse(row(Timing)[25:36,2] >= Perts$tsteps[mt+3],1,0) Timing[37:48,1] <- ifelse(row(Timing)[37:48,1] >= Perts$tsteps[4],1,0) Timing[37:48,2] <- ifelse(row(Timing)[37:48,2] >= Perts$tsteps[mt+4],1,0) Timing[49:60,1] <- ifelse(row(Timing)[49:60,1] >= Perts$tsteps[5],1,0) Timing[49:60,2] <- ifelse(row(Timing)[49:60,2] >= Perts$tsteps[mt+5],1,0) Timing[61:72,1] <- ifelse(row(Timing)[61:72,1] >= Perts$tsteps[6],1,0) Timing[61:72,2] <- ifelse(row(Timing)[61:72,2] >= Perts$tsteps[mt+6],1,0) Timing[73:84,1] <- ifelse(row(Timing)[73:84,1] >= Perts$tsteps[7],1,0) Timing[73:84,2] <- ifelse(row(Timing)[73:84,2] >= Perts$tsteps[mt+7],1,0) Timing[85:96,1] <- ifelse(row(Timing)[85:96,1] >= Perts$tsteps[8],1,0) Timing[85:96,2] <- ifelse(row(Timing)[85:96,2] >= Perts$tsteps[mt+8],1,0) Timing[97:108,1] <- ifelse(row(Timing)[97:108,1] >= Perts$tsteps[9],1,0) Timing[97:108,2] <- ifelse(row(Timing)[97:108,2] >= Perts$tsteps[mt+9],1,0) Timing[109:120,1] <- ifelse(row(Timing)[109:120,1] >= Perts$tsteps[10],1,0) Timing[109:120,2] <- ifelse(row(Timing)[109:120,2] >= Perts$tsteps[mt+10],1,0) Timing[121:132,1] <- ifelse(row(Timing)[121:132,1] >= Perts$tsteps[11],1,0) Timing[121:132,2] <- ifelse(row(Timing)[121:132,2] >= Perts$tsteps[mt+11],1,0) Timing[133:144,1] <- ifelse(row(Timing)[133:144,1] >= Perts$tsteps[12],1,0) Timing[133:144,2] <- ifelse(row(Timing)[133:144,2] >= Perts$tsteps[mt+12],1,0) Timing[145:156,1] <- ifelse(row(Timing)[145:156,1] >= Perts$tsteps[13],1,0) Timing[145:156,2] <- ifelse(row(Timing)[145:156,2] >= Perts$tsteps[mt+13],1,0) Timing[157:168,1] <- ifelse(row(Timing)[157:168,1] >= Perts$tsteps[14],1,0) Timing[157:168,2] <- ifelse(row(Timing)[157:168,2] >= Perts$tsteps[mt+14],1,0) Timing[169:180,1] <- ifelse(row(Timing)[169:180,1] >= Perts$tsteps[15],1,0) Timing[169:180,2] <- ifelse(row(Timing)[169:180,2] >= Perts$tsteps[mt+15],1,0) fleet1 <- x$Data$Properties$Fleets[1,1] fleet2 <- x$Data$Properties$Fleets[2,1] if(mt <= 14) { stop("This function is intended to be used to calculate the standard deviation of annual biomass \n to fit a biomass dynamic model from the output of a multi-annual generalized depletion model (MAGD) \n with the catch recorded in biomass. At least 15 years of data must have been used in fitting \n the MAGD for its outputs to be used in this manner.") } Cov.Mat <- cor2cov(cor.mat=x$Model[[method]]$Cor[c(1:(mt+2),(mt+6):(2*(mt)+5)), c(1:(mt+2),(mt+6):(2*(mt)+5))], sd=c(PopDyn$SE.M,PopDyn$SE.N0,Perts$SE.Pest)) if(length(mbw.sd) != 12 & length(mbw.sd) != 12*mt) {stop("mbw.sd must be a vector of length 12 (monthly mean weight) or 12*number of years, all in kg")} yr1 <- as.numeric(format(as.Date(x$Data$Properties$Dates[1]),"%Y")) yr2 <- as.numeric(format(as.Date(x$Data$Properties$Dates[2]),"%Y")) z <- CatDynPred(x,method) PredStock <- data.frame(Year=sort(rep(yr1:yr2,12)), Month=c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"), TimeStep=1:((yr2-yr1+1)*12), Mmw.kg=(x$Data$Data[[fleet1]]$obsmbw.kg+x$Data$Data[[fleet2]]$obsmbw.kg)/2, SDmw.kg=mbw.sd, N.thou=z$Model$Results[,18], N.thou.SE=0, B.ton=z$Model$Results[,19], B.ton.SE=0) for(m in 1:12) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PopDyn$N0,Timing[m,1]*Perts$Pest[1],Timing[m,2]*Perts$Pest[mt+1]), cov=Cov.Mat[c(1:3,23),c(1:3,23)]) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 13:24) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[12],Timing[m,1]*Perts$Pest[2],Timing[m,2]*Perts$Pest[mt+2]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,4],Cov.Mat[1,24], 0,PredStock$N.thou.SE[12]^2,0,0, Cov.Mat[4,1],0,Cov.Mat[4,4],Cov.Mat[4,24], Cov.Mat[24,1],0,Cov.Mat[24,4],Cov.Mat[24,24]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 25:36) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[24],Timing[m,1]*Perts$Pest[3],Timing[m,2]*Perts$Pest[mt+3]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,5],Cov.Mat[1,25], 0,PredStock$N.thou.SE[24]^2,0,0, Cov.Mat[5,1],0,Cov.Mat[5,5],Cov.Mat[5,25], Cov.Mat[25,1],0,Cov.Mat[25,5],Cov.Mat[25,25]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 37:48) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[36],Timing[m,1]*Perts$Pest[4],Timing[m,2]*Perts$Pest[mt+4]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,6],Cov.Mat[1,26], 0,PredStock$N.thou.SE[36]^2,0,0, Cov.Mat[6,1],0,Cov.Mat[6,6],Cov.Mat[6,26], Cov.Mat[26,1],0,Cov.Mat[26,6],Cov.Mat[26,26]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 49:60) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[48],Timing[m,1]*Perts$Pest[5],Timing[m,2]*Perts$Pest[mt+5]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,7],Cov.Mat[1,27], 0,PredStock$N.thou.SE[48]^2,0,0, Cov.Mat[7,1],0,Cov.Mat[7,7],Cov.Mat[7,27], Cov.Mat[27,1],0,Cov.Mat[27,7],Cov.Mat[27,27]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 61:72) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[60],Timing[m,1]*Perts$Pest[6],Timing[m,2]*Perts$Pest[mt+6]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,8],Cov.Mat[1,28], 0,PredStock$N.thou.SE[60]^2,0,0, Cov.Mat[8,1],0,Cov.Mat[8,8],Cov.Mat[8,28], Cov.Mat[28,1],0,Cov.Mat[28,8],Cov.Mat[28,28]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 73:84) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[72],Timing[m,1]*Perts$Pest[7],Timing[m,2]*Perts$Pest[mt+7]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,9],Cov.Mat[1,29], 0,PredStock$N.thou.SE[72]^2,0,0, Cov.Mat[9,1],0,Cov.Mat[9,9],Cov.Mat[9,29], Cov.Mat[29,1],0,Cov.Mat[29,9],Cov.Mat[29,29]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 85:96) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[84],Timing[m,1]*Perts$Pest[8],Timing[m,2]*Perts$Pest[mt+8]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,10],Cov.Mat[1,30], 0,PredStock$N.thou.SE[84]^2,0,0, Cov.Mat[10,1],0,Cov.Mat[10,10],Cov.Mat[10,30], Cov.Mat[30,1],0,Cov.Mat[30,10],Cov.Mat[30,30]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 97:108) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[96],Timing[m,1]*Perts$Pest[9],Timing[m,2]*Perts$Pest[mt+9]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,11],Cov.Mat[1,31], 0,PredStock$N.thou.SE[96]^2,0,0, Cov.Mat[11,1],0,Cov.Mat[11,11],Cov.Mat[11,31], Cov.Mat[31,1],0,Cov.Mat[31,11],Cov.Mat[31,31]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 109:120) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[108],Timing[m,1]*Perts$Pest[10],Timing[m,2]*Perts$Pest[mt+10]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,12],Cov.Mat[1,32], 0,PredStock$N.thou.SE[108]^2,0,0, Cov.Mat[12,1],0,Cov.Mat[12,12],Cov.Mat[12,32], Cov.Mat[32,1],0,Cov.Mat[32,12],Cov.Mat[32,32]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 121:132) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[120],Timing[m,1]*Perts$Pest[11],Timing[m,2]*Perts$Pest[mt+11]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,13],Cov.Mat[1,33], 0,PredStock$N.thou.SE[120]^2,0,0, Cov.Mat[13,1],0,Cov.Mat[13,13],Cov.Mat[13,33], Cov.Mat[33,1],0,Cov.Mat[33,13],Cov.Mat[33,33]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 133:144) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[132],Timing[m,1]*Perts$Pest[12],Timing[m,2]*Perts$Pest[mt+12]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,14],Cov.Mat[1,34], 0,PredStock$N.thou.SE[132]^2,0,0, Cov.Mat[14,1],0,Cov.Mat[14,14],Cov.Mat[14,34], Cov.Mat[34,1],0,Cov.Mat[34,14],Cov.Mat[34,34]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 145:156) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[144],Timing[m,1]*Perts$Pest[13],Timing[m,2]*Perts$Pest[mt+13]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,15],Cov.Mat[1,35], 0,PredStock$N.thou.SE[144]^2,0,0, Cov.Mat[15,1],0,Cov.Mat[15,15],Cov.Mat[15,35], Cov.Mat[35,1],0,Cov.Mat[35,15],Cov.Mat[35,35]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 157:168) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[156],Timing[m,1]*Perts$Pest[14],Timing[m,2]*Perts$Pest[mt+14]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,16],Cov.Mat[1,36], 0,PredStock$N.thou.SE[156]^2,0,0, Cov.Mat[16,1],0,Cov.Mat[16,16],Cov.Mat[16,36], Cov.Mat[36,1],0,Cov.Mat[36,16],Cov.Mat[36,36]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } for(m in 169:180) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[168],Timing[m,1]*Perts$Pest[15],Timing[m,2]*Perts$Pest[mt+15]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,17],Cov.Mat[1,37], 0,PredStock$N.thou.SE[168]^2,0,0, Cov.Mat[17,1],0,Cov.Mat[17,17],Cov.Mat[17,37], Cov.Mat[37,1],0,Cov.Mat[37,17],Cov.Mat[37,37]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } if(mt == 16) { Timing[181:192,1] <- ifelse(row(Timing)[181:192,1] >= Perts$tsteps[16],1,0) Timing[181:192,2] <- ifelse(row(Timing)[181:192,2] >= Perts$tsteps[mt+16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m,1]*Perts$Pest[16],Timing[m,2]*Perts$Pest[mt+16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18],Cov.Mat[1,38], 0,PredStock$N.thou.SE[180]^2,0,0, Cov.Mat[18,1],0,Cov.Mat[18,18],Cov.Mat[18,38], Cov.Mat[38,1],0,Cov.Mat[38,18],Cov.Mat[38,38]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 17) { Timing[181:192,1] <- ifelse(row(Timing)[181:192,1] >= Perts$tsteps[16],1,0) Timing[181:192,2] <- ifelse(row(Timing)[181:192,2] >= Perts$tsteps[mt+16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m,1]*Perts$Pest[16],Timing[m,2]*Perts$Pest[mt+16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18],Cov.Mat[1,38], 0,PredStock$N.thou.SE[180]^2,0,0, Cov.Mat[18,1],0,Cov.Mat[18,18],Cov.Mat[18,38], Cov.Mat[38,1],0,Cov.Mat[38,18],Cov.Mat[38,38]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204,1] <- ifelse(row(Timing)[193:204,1] >= Perts$tsteps[17],1,0) Timing[193:204,2] <- ifelse(row(Timing)[193:204,2] >= Perts$tsteps[mt+17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m,1]*Perts$Pest[17],Timing[m,2]*Perts$Pest[mt+17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19],Cov.Mat[1,39], 0,PredStock$N.thou.SE[192]^2,0,0, Cov.Mat[19,1],0,Cov.Mat[19,19],Cov.Mat[19,39], Cov.Mat[39,1],0,Cov.Mat[39,19],Cov.Mat[39,39]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 18) { Timing[181:192,1] <- ifelse(row(Timing)[181:192,1] >= Perts$tsteps[16],1,0) Timing[181:192,2] <- ifelse(row(Timing)[181:192,2] >= Perts$tsteps[mt+16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m,1]*Perts$Pest[16],Timing[m,2]*Perts$Pest[mt+16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18],Cov.Mat[1,38], 0,PredStock$N.thou.SE[180]^2,0,0, Cov.Mat[18,1],0,Cov.Mat[18,18],Cov.Mat[18,38], Cov.Mat[38,1],0,Cov.Mat[38,18],Cov.Mat[38,38]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204,1] <- ifelse(row(Timing)[193:204,1] >= Perts$tsteps[17],1,0) Timing[193:204,2] <- ifelse(row(Timing)[193:204,2] >= Perts$tsteps[mt+17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m,1]*Perts$Pest[17],Timing[m,2]*Perts$Pest[mt+17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19],Cov.Mat[1,39], 0,PredStock$N.thou.SE[192]^2,0,0, Cov.Mat[19,1],0,Cov.Mat[19,19],Cov.Mat[19,39], Cov.Mat[39,1],0,Cov.Mat[39,19],Cov.Mat[39,39]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216,1] <- ifelse(row(Timing)[205:216,1] >= Perts$tsteps[18],1,0) Timing[205:216,2] <- ifelse(row(Timing)[205:216,2] >= Perts$tsteps[mt+18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m,1]*Perts$Pest[18],Timing[m,2]*Perts$Pest[mt+18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20],Cov.Mat[1,40], 0,PredStock$N.thou.SE[204]^2,0,0, Cov.Mat[20,1],0,Cov.Mat[20,20],Cov.Mat[20,40], Cov.Mat[40,1],0,Cov.Mat[40,20],Cov.Mat[40,40]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 19) { Timing[181:192,1] <- ifelse(row(Timing)[181:192,1] >= Perts$tsteps[16],1,0) Timing[181:192,2] <- ifelse(row(Timing)[181:192,2] >= Perts$tsteps[mt+16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m,1]*Perts$Pest[16],Timing[m,2]*Perts$Pest[mt+16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18],Cov.Mat[1,38], 0,PredStock$N.thou.SE[180]^2,0,0, Cov.Mat[18,1],0,Cov.Mat[18,18],Cov.Mat[18,38], Cov.Mat[38,1],0,Cov.Mat[38,18],Cov.Mat[38,38]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204,1] <- ifelse(row(Timing)[193:204,1] >= Perts$tsteps[17],1,0) Timing[193:204,2] <- ifelse(row(Timing)[193:204,2] >= Perts$tsteps[mt+17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m,1]*Perts$Pest[17],Timing[m,2]*Perts$Pest[mt+17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19],Cov.Mat[1,39], 0,PredStock$N.thou.SE[192]^2,0,0, Cov.Mat[19,1],0,Cov.Mat[19,19],Cov.Mat[19,39], Cov.Mat[39,1],0,Cov.Mat[39,19],Cov.Mat[39,39]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216,1] <- ifelse(row(Timing)[205:216,1] >= Perts$tsteps[18],1,0) Timing[205:216,2] <- ifelse(row(Timing)[205:216,2] >= Perts$tsteps[mt+18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m,1]*Perts$Pest[18],Timing[m,2]*Perts$Pest[mt+18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20],Cov.Mat[1,40], 0,PredStock$N.thou.SE[204]^2,0,0, Cov.Mat[20,1],0,Cov.Mat[20,20],Cov.Mat[20,40], Cov.Mat[40,1],0,Cov.Mat[40,20],Cov.Mat[40,40]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228,1] <- ifelse(row(Timing)[217:228,1] >= Perts$tsteps[19],1,0) Timing[217:228,2] <- ifelse(row(Timing)[217:228,2] >= Perts$tsteps[mt+19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m,1]*Perts$Pest[19],Timing[m,2]*Perts$Pest[mt+19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21],Cov.Mat[1,41], 0,PredStock$N.thou.SE[216]^2,0,0, Cov.Mat[21,1],0,Cov.Mat[21,21],Cov.Mat[21,41], Cov.Mat[41,1],0,Cov.Mat[41,21],Cov.Mat[41,41]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 20) { Timing[181:192,1] <- ifelse(row(Timing)[181:192,1] >= Perts$tsteps[16],1,0) Timing[181:192,2] <- ifelse(row(Timing)[181:192,2] >= Perts$tsteps[mt+16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m,1]*Perts$Pest[16],Timing[m,2]*Perts$Pest[mt+16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18],Cov.Mat[1,38], 0,PredStock$N.thou.SE[180]^2,0,0, Cov.Mat[18,1],0,Cov.Mat[18,18],Cov.Mat[18,38], Cov.Mat[38,1],0,Cov.Mat[38,18],Cov.Mat[38,38]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204,1] <- ifelse(row(Timing)[193:204,1] >= Perts$tsteps[17],1,0) Timing[193:204,2] <- ifelse(row(Timing)[193:204,2] >= Perts$tsteps[mt+17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m,1]*Perts$Pest[17],Timing[m,2]*Perts$Pest[mt+17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19],Cov.Mat[1,39], 0,PredStock$N.thou.SE[192]^2,0,0, Cov.Mat[19,1],0,Cov.Mat[19,19],Cov.Mat[19,39], Cov.Mat[39,1],0,Cov.Mat[39,19],Cov.Mat[39,39]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216,1] <- ifelse(row(Timing)[205:216,1] >= Perts$tsteps[18],1,0) Timing[205:216,2] <- ifelse(row(Timing)[205:216,2] >= Perts$tsteps[mt+18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m,1]*Perts$Pest[18],Timing[m,2]*Perts$Pest[mt+18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20],Cov.Mat[1,40], 0,PredStock$N.thou.SE[204]^2,0,0, Cov.Mat[20,1],0,Cov.Mat[20,20],Cov.Mat[20,40], Cov.Mat[40,1],0,Cov.Mat[40,20],Cov.Mat[40,40]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228,1] <- ifelse(row(Timing)[217:228,1] >= Perts$tsteps[19],1,0) Timing[217:228,2] <- ifelse(row(Timing)[217:228,2] >= Perts$tsteps[mt+19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m,1]*Perts$Pest[19],Timing[m,2]*Perts$Pest[mt+19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21],Cov.Mat[1,41], 0,PredStock$N.thou.SE[216]^2,0,0, Cov.Mat[21,1],0,Cov.Mat[21,21],Cov.Mat[21,41], Cov.Mat[41,1],0,Cov.Mat[41,21],Cov.Mat[41,41]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240,1] <- ifelse(row(Timing)[229:240,1] >= Perts$tsteps[20],1,0) Timing[229:240,2] <- ifelse(row(Timing)[229:240,2] >= Perts$tsteps[mt+20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m,1]*Perts$Pest[20],Timing[m,2]*Perts$Pest[mt+20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22],Cov.Mat[1,42], 0,PredStock$N.thou.SE[228]^2,0,0, Cov.Mat[22,1],0,Cov.Mat[22,22],Cov.Mat[22,42], Cov.Mat[42,1],0,Cov.Mat[42,22],Cov.Mat[42,42]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 21) { Timing[181:192,1] <- ifelse(row(Timing)[181:192,1] >= Perts$tsteps[16],1,0) Timing[181:192,2] <- ifelse(row(Timing)[181:192,2] >= Perts$tsteps[mt+16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m,1]*Perts$Pest[16],Timing[m,2]*Perts$Pest[mt+16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18],Cov.Mat[1,38], 0,PredStock$N.thou.SE[180]^2,0,0, Cov.Mat[18,1],0,Cov.Mat[18,18],Cov.Mat[18,38], Cov.Mat[38,1],0,Cov.Mat[38,18],Cov.Mat[38,38]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204,1] <- ifelse(row(Timing)[193:204,1] >= Perts$tsteps[17],1,0) Timing[193:204,2] <- ifelse(row(Timing)[193:204,2] >= Perts$tsteps[mt+17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m,1]*Perts$Pest[17],Timing[m,2]*Perts$Pest[mt+17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19],Cov.Mat[1,39], 0,PredStock$N.thou.SE[192]^2,0,0, Cov.Mat[19,1],0,Cov.Mat[19,19],Cov.Mat[19,39], Cov.Mat[39,1],0,Cov.Mat[39,19],Cov.Mat[39,39]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216,1] <- ifelse(row(Timing)[205:216,1] >= Perts$tsteps[18],1,0) Timing[205:216,2] <- ifelse(row(Timing)[205:216,2] >= Perts$tsteps[mt+18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m,1]*Perts$Pest[18],Timing[m,2]*Perts$Pest[mt+18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20],Cov.Mat[1,40], 0,PredStock$N.thou.SE[204]^2,0,0, Cov.Mat[20,1],0,Cov.Mat[20,20],Cov.Mat[20,40], Cov.Mat[40,1],0,Cov.Mat[40,20],Cov.Mat[40,40]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228,1] <- ifelse(row(Timing)[217:228,1] >= Perts$tsteps[19],1,0) Timing[217:228,2] <- ifelse(row(Timing)[217:228,2] >= Perts$tsteps[mt+19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m,1]*Perts$Pest[19],Timing[m,2]*Perts$Pest[mt+19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21],Cov.Mat[1,41], 0,PredStock$N.thou.SE[216]^2,0,0, Cov.Mat[21,1],0,Cov.Mat[21,21],Cov.Mat[21,41], Cov.Mat[41,1],0,Cov.Mat[41,21],Cov.Mat[41,41]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240,1] <- ifelse(row(Timing)[229:240,1] >= Perts$tsteps[20],1,0) Timing[229:240,2] <- ifelse(row(Timing)[229:240,2] >= Perts$tsteps[mt+20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m,1]*Perts$Pest[20],Timing[m,2]*Perts$Pest[mt+20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22],Cov.Mat[1,42], 0,PredStock$N.thou.SE[228]^2,0,0, Cov.Mat[22,1],0,Cov.Mat[22,22],Cov.Mat[22,42], Cov.Mat[42,1],0,Cov.Mat[42,22],Cov.Mat[42,42]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[241:252,1] <- ifelse(row(Timing)[241:252,1] >= Perts$tsteps[21],1,0) Timing[241:252,2] <- ifelse(row(Timing)[241:252,2] >= Perts$tsteps[mt+21],1,0) for(m in 241:252) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[240],Timing[m,1]*Perts$Pest[21],Timing[m,2]*Perts$Pest[mt+21]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,23],Cov.Mat[1,43], 0,PredStock$N.thou.SE[240]^2,0,0, Cov.Mat[23,1],0,Cov.Mat[23,23],Cov.Mat[23,43], Cov.Mat[43,1],0,Cov.Mat[43,23],Cov.Mat[43,43]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 22) { Timing[181:192,1] <- ifelse(row(Timing)[181:192,1] >= Perts$tsteps[16],1,0) Timing[181:192,2] <- ifelse(row(Timing)[181:192,2] >= Perts$tsteps[mt+16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m,1]*Perts$Pest[16],Timing[m,2]*Perts$Pest[mt+16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18],Cov.Mat[1,38], 0,PredStock$N.thou.SE[180]^2,0,0, Cov.Mat[18,1],0,Cov.Mat[18,18],Cov.Mat[18,38], Cov.Mat[38,1],0,Cov.Mat[38,18],Cov.Mat[38,38]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204,1] <- ifelse(row(Timing)[193:204,1] >= Perts$tsteps[17],1,0) Timing[193:204,2] <- ifelse(row(Timing)[193:204,2] >= Perts$tsteps[mt+17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m,1]*Perts$Pest[17],Timing[m,2]*Perts$Pest[mt+17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19],Cov.Mat[1,39], 0,PredStock$N.thou.SE[192]^2,0,0, Cov.Mat[19,1],0,Cov.Mat[19,19],Cov.Mat[19,39], Cov.Mat[39,1],0,Cov.Mat[39,19],Cov.Mat[39,39]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216,1] <- ifelse(row(Timing)[205:216,1] >= Perts$tsteps[18],1,0) Timing[205:216,2] <- ifelse(row(Timing)[205:216,2] >= Perts$tsteps[mt+18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m,1]*Perts$Pest[18],Timing[m,2]*Perts$Pest[mt+18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20],Cov.Mat[1,40], 0,PredStock$N.thou.SE[204]^2,0,0, Cov.Mat[20,1],0,Cov.Mat[20,20],Cov.Mat[20,40], Cov.Mat[40,1],0,Cov.Mat[40,20],Cov.Mat[40,40]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228,1] <- ifelse(row(Timing)[217:228,1] >= Perts$tsteps[19],1,0) Timing[217:228,2] <- ifelse(row(Timing)[217:228,2] >= Perts$tsteps[mt+19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m,1]*Perts$Pest[19],Timing[m,2]*Perts$Pest[mt+19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21],Cov.Mat[1,41], 0,PredStock$N.thou.SE[216]^2,0,0, Cov.Mat[21,1],0,Cov.Mat[21,21],Cov.Mat[21,41], Cov.Mat[41,1],0,Cov.Mat[41,21],Cov.Mat[41,41]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240,1] <- ifelse(row(Timing)[229:240,1] >= Perts$tsteps[20],1,0) Timing[229:240,2] <- ifelse(row(Timing)[229:240,2] >= Perts$tsteps[mt+20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m,1]*Perts$Pest[20],Timing[m,2]*Perts$Pest[mt+20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22],Cov.Mat[1,42], 0,PredStock$N.thou.SE[228]^2,0,0, Cov.Mat[22,1],0,Cov.Mat[22,22],Cov.Mat[22,42], Cov.Mat[42,1],0,Cov.Mat[42,22],Cov.Mat[42,42]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[241:252,1] <- ifelse(row(Timing)[241:252,1] >= Perts$tsteps[21],1,0) Timing[241:252,2] <- ifelse(row(Timing)[241:252,2] >= Perts$tsteps[mt+21],1,0) for(m in 241:252) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[240],Timing[m,1]*Perts$Pest[21],Timing[m,2]*Perts$Pest[mt+21]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,23],Cov.Mat[1,43], 0,PredStock$N.thou.SE[240]^2,0,0, Cov.Mat[23,1],0,Cov.Mat[23,23],Cov.Mat[23,43], Cov.Mat[43,1],0,Cov.Mat[43,23],Cov.Mat[43,43]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[253:264,1] <- ifelse(row(Timing)[253:264,1] >= Perts$tsteps[22],1,0) Timing[253:264,2] <- ifelse(row(Timing)[253:264,2] >= Perts$tsteps[mt+22],1,0) for(m in 253:264) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[252],Timing[m,1]*Perts$Pest[22],Timing[m,2]*Perts$Pest[mt+22]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,24],Cov.Mat[1,44], 0,PredStock$N.thou.SE[252]^2,0,0, Cov.Mat[24,1],0,Cov.Mat[24,24],Cov.Mat[24,44], Cov.Mat[44,1],0,Cov.Mat[44,24],Cov.Mat[44,44]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 23) { Timing[181:192,1] <- ifelse(row(Timing)[181:192,1] >= Perts$tsteps[16],1,0) Timing[181:192,2] <- ifelse(row(Timing)[181:192,2] >= Perts$tsteps[mt+16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m,1]*Perts$Pest[16],Timing[m,2]*Perts$Pest[mt+16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18],Cov.Mat[1,38], 0,PredStock$N.thou.SE[180]^2,0,0, Cov.Mat[18,1],0,Cov.Mat[18,18],Cov.Mat[18,38], Cov.Mat[38,1],0,Cov.Mat[38,18],Cov.Mat[38,38]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204,1] <- ifelse(row(Timing)[193:204,1] >= Perts$tsteps[17],1,0) Timing[193:204,2] <- ifelse(row(Timing)[193:204,2] >= Perts$tsteps[mt+17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m,1]*Perts$Pest[17],Timing[m,2]*Perts$Pest[mt+17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19],Cov.Mat[1,39], 0,PredStock$N.thou.SE[192]^2,0,0, Cov.Mat[19,1],0,Cov.Mat[19,19],Cov.Mat[19,39], Cov.Mat[39,1],0,Cov.Mat[39,19],Cov.Mat[39,39]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216,1] <- ifelse(row(Timing)[205:216,1] >= Perts$tsteps[18],1,0) Timing[205:216,2] <- ifelse(row(Timing)[205:216,2] >= Perts$tsteps[mt+18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m,1]*Perts$Pest[18],Timing[m,2]*Perts$Pest[mt+18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20],Cov.Mat[1,40], 0,PredStock$N.thou.SE[204]^2,0,0, Cov.Mat[20,1],0,Cov.Mat[20,20],Cov.Mat[20,40], Cov.Mat[40,1],0,Cov.Mat[40,20],Cov.Mat[40,40]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228,1] <- ifelse(row(Timing)[217:228,1] >= Perts$tsteps[19],1,0) Timing[217:228,2] <- ifelse(row(Timing)[217:228,2] >= Perts$tsteps[mt+19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m,1]*Perts$Pest[19],Timing[m,2]*Perts$Pest[mt+19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21],Cov.Mat[1,41], 0,PredStock$N.thou.SE[216]^2,0,0, Cov.Mat[21,1],0,Cov.Mat[21,21],Cov.Mat[21,41], Cov.Mat[41,1],0,Cov.Mat[41,21],Cov.Mat[41,41]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240,1] <- ifelse(row(Timing)[229:240,1] >= Perts$tsteps[20],1,0) Timing[229:240,2] <- ifelse(row(Timing)[229:240,2] >= Perts$tsteps[mt+20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m,1]*Perts$Pest[20],Timing[m,2]*Perts$Pest[mt+20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22],Cov.Mat[1,42], 0,PredStock$N.thou.SE[228]^2,0,0, Cov.Mat[22,1],0,Cov.Mat[22,22],Cov.Mat[22,42], Cov.Mat[42,1],0,Cov.Mat[42,22],Cov.Mat[42,42]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[241:252,1] <- ifelse(row(Timing)[241:252,1] >= Perts$tsteps[21],1,0) Timing[241:252,2] <- ifelse(row(Timing)[241:252,2] >= Perts$tsteps[mt+21],1,0) for(m in 241:252) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[240],Timing[m,1]*Perts$Pest[21],Timing[m,2]*Perts$Pest[mt+21]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,23],Cov.Mat[1,43], 0,PredStock$N.thou.SE[240]^2,0,0, Cov.Mat[23,1],0,Cov.Mat[23,23],Cov.Mat[23,43], Cov.Mat[43,1],0,Cov.Mat[43,23],Cov.Mat[43,43]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[253:264,1] <- ifelse(row(Timing)[253:264,1] >= Perts$tsteps[22],1,0) Timing[253:264,2] <- ifelse(row(Timing)[253:264,2] >= Perts$tsteps[mt+22],1,0) for(m in 253:264) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[252],Timing[m,1]*Perts$Pest[22],Timing[m,2]*Perts$Pest[mt+22]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,24],Cov.Mat[1,44], 0,PredStock$N.thou.SE[252]^2,0,0, Cov.Mat[24,1],0,Cov.Mat[24,24],Cov.Mat[24,44], Cov.Mat[44,1],0,Cov.Mat[44,24],Cov.Mat[44,44]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[265:276,1] <- ifelse(row(Timing)[265:276,1] >= Perts$tsteps[23],1,0) Timing[265:276,2] <- ifelse(row(Timing)[265:276,2] >= Perts$tsteps[mt+23],1,0) for(m in 265:276) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[264],Timing[m,1]*Perts$Pest[23],Timing[m,2]*Perts$Pest[mt+23]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,25],Cov.Mat[1,45], 0,PredStock$N.thou.SE[264]^2,0,0, Cov.Mat[25,1],0,Cov.Mat[25,25],Cov.Mat[25,45], Cov.Mat[45,1],0,Cov.Mat[45,25],Cov.Mat[45,45]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 24) { Timing[181:192,1] <- ifelse(row(Timing)[181:192,1] >= Perts$tsteps[16],1,0) Timing[181:192,2] <- ifelse(row(Timing)[181:192,2] >= Perts$tsteps[mt+16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m,1]*Perts$Pest[16],Timing[m,2]*Perts$Pest[mt+16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18],Cov.Mat[1,38], 0,PredStock$N.thou.SE[180]^2,0,0, Cov.Mat[18,1],0,Cov.Mat[18,18],Cov.Mat[18,38], Cov.Mat[38,1],0,Cov.Mat[38,18],Cov.Mat[38,38]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204,1] <- ifelse(row(Timing)[193:204,1] >= Perts$tsteps[17],1,0) Timing[193:204,2] <- ifelse(row(Timing)[193:204,2] >= Perts$tsteps[mt+17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m,1]*Perts$Pest[17],Timing[m,2]*Perts$Pest[mt+17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19],Cov.Mat[1,39], 0,PredStock$N.thou.SE[192]^2,0,0, Cov.Mat[19,1],0,Cov.Mat[19,19],Cov.Mat[19,39], Cov.Mat[39,1],0,Cov.Mat[39,19],Cov.Mat[39,39]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216,1] <- ifelse(row(Timing)[205:216,1] >= Perts$tsteps[18],1,0) Timing[205:216,2] <- ifelse(row(Timing)[205:216,2] >= Perts$tsteps[mt+18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m,1]*Perts$Pest[18],Timing[m,2]*Perts$Pest[mt+18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20],Cov.Mat[1,40], 0,PredStock$N.thou.SE[204]^2,0,0, Cov.Mat[20,1],0,Cov.Mat[20,20],Cov.Mat[20,40], Cov.Mat[40,1],0,Cov.Mat[40,20],Cov.Mat[40,40]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228,1] <- ifelse(row(Timing)[217:228,1] >= Perts$tsteps[19],1,0) Timing[217:228,2] <- ifelse(row(Timing)[217:228,2] >= Perts$tsteps[mt+19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m,1]*Perts$Pest[19],Timing[m,2]*Perts$Pest[mt+19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21],Cov.Mat[1,41], 0,PredStock$N.thou.SE[216]^2,0,0, Cov.Mat[21,1],0,Cov.Mat[21,21],Cov.Mat[21,41], Cov.Mat[41,1],0,Cov.Mat[41,21],Cov.Mat[41,41]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240,1] <- ifelse(row(Timing)[229:240,1] >= Perts$tsteps[20],1,0) Timing[229:240,2] <- ifelse(row(Timing)[229:240,2] >= Perts$tsteps[mt+20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m,1]*Perts$Pest[20],Timing[m,2]*Perts$Pest[mt+20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22],Cov.Mat[1,42], 0,PredStock$N.thou.SE[228]^2,0,0, Cov.Mat[22,1],0,Cov.Mat[22,22],Cov.Mat[22,42], Cov.Mat[42,1],0,Cov.Mat[42,22],Cov.Mat[42,42]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[241:252,1] <- ifelse(row(Timing)[241:252,1] >= Perts$tsteps[21],1,0) Timing[241:252,2] <- ifelse(row(Timing)[241:252,2] >= Perts$tsteps[mt+21],1,0) for(m in 241:252) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[240],Timing[m,1]*Perts$Pest[21],Timing[m,2]*Perts$Pest[mt+21]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,23],Cov.Mat[1,43], 0,PredStock$N.thou.SE[240]^2,0,0, Cov.Mat[23,1],0,Cov.Mat[23,23],Cov.Mat[23,43], Cov.Mat[43,1],0,Cov.Mat[43,23],Cov.Mat[43,43]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[253:264,1] <- ifelse(row(Timing)[253:264,1] >= Perts$tsteps[22],1,0) Timing[253:264,2] <- ifelse(row(Timing)[253:264,2] >= Perts$tsteps[mt+22],1,0) for(m in 253:264) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[252],Timing[m,1]*Perts$Pest[22],Timing[m,2]*Perts$Pest[mt+22]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,24],Cov.Mat[1,44], 0,PredStock$N.thou.SE[252]^2,0,0, Cov.Mat[24,1],0,Cov.Mat[24,24],Cov.Mat[24,44], Cov.Mat[44,1],0,Cov.Mat[44,24],Cov.Mat[44,44]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[265:276,1] <- ifelse(row(Timing)[265:276,1] >= Perts$tsteps[23],1,0) Timing[265:276,2] <- ifelse(row(Timing)[265:276,2] >= Perts$tsteps[mt+23],1,0) for(m in 265:276) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[264],Timing[m,1]*Perts$Pest[23],Timing[m,2]*Perts$Pest[mt+23]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,25],Cov.Mat[1,45], 0,PredStock$N.thou.SE[264]^2,0,0, Cov.Mat[25,1],0,Cov.Mat[25,25],Cov.Mat[25,45], Cov.Mat[45,1],0,Cov.Mat[45,25],Cov.Mat[45,45]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[277:288,1] <- ifelse(row(Timing)[277:288,1] >= Perts$tsteps[24],1,0) Timing[277:288,2] <- ifelse(row(Timing)[277:288,2] >= Perts$tsteps[mt+24],1,0) for(m in 277:288) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[276],Timing[m,1]*Perts$Pest[24],Timing[m,2]*Perts$Pest[mt+24]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,26],Cov.Mat[1,46], 0,PredStock$N.thou.SE[276]^2,0,0, Cov.Mat[26,1],0,Cov.Mat[26,26],Cov.Mat[26,46], Cov.Mat[46,1],0,Cov.Mat[46,26],Cov.Mat[46,46]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } if(mt == 25) { Timing[181:192,1] <- ifelse(row(Timing)[181:192,1] >= Perts$tsteps[16],1,0) Timing[181:192,2] <- ifelse(row(Timing)[181:192,2] >= Perts$tsteps[mt+16],1,0) for(m in 181:192) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[180],Timing[m,1]*Perts$Pest[16],Timing[m,2]*Perts$Pest[mt+16]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,18],Cov.Mat[1,38], 0,PredStock$N.thou.SE[180]^2,0,0, Cov.Mat[18,1],0,Cov.Mat[18,18],Cov.Mat[18,38], Cov.Mat[38,1],0,Cov.Mat[38,18],Cov.Mat[38,38]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[193:204,1] <- ifelse(row(Timing)[193:204,1] >= Perts$tsteps[17],1,0) Timing[193:204,2] <- ifelse(row(Timing)[193:204,2] >= Perts$tsteps[mt+17],1,0) for(m in 193:204) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[192],Timing[m,1]*Perts$Pest[17],Timing[m,2]*Perts$Pest[mt+17]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,19],Cov.Mat[1,39], 0,PredStock$N.thou.SE[192]^2,0,0, Cov.Mat[19,1],0,Cov.Mat[19,19],Cov.Mat[19,39], Cov.Mat[39,1],0,Cov.Mat[39,19],Cov.Mat[39,39]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[205:216,1] <- ifelse(row(Timing)[205:216,1] >= Perts$tsteps[18],1,0) Timing[205:216,2] <- ifelse(row(Timing)[205:216,2] >= Perts$tsteps[mt+18],1,0) for(m in 205:216) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[204],Timing[m,1]*Perts$Pest[18],Timing[m,2]*Perts$Pest[mt+18]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,20],Cov.Mat[1,40], 0,PredStock$N.thou.SE[204]^2,0,0, Cov.Mat[20,1],0,Cov.Mat[20,20],Cov.Mat[20,40], Cov.Mat[40,1],0,Cov.Mat[40,20],Cov.Mat[40,40]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[217:228,1] <- ifelse(row(Timing)[217:228,1] >= Perts$tsteps[19],1,0) Timing[217:228,2] <- ifelse(row(Timing)[217:228,2] >= Perts$tsteps[mt+19],1,0) for(m in 217:228) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[216],Timing[m,1]*Perts$Pest[19],Timing[m,2]*Perts$Pest[mt+19]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,21],Cov.Mat[1,41], 0,PredStock$N.thou.SE[216]^2,0,0, Cov.Mat[21,1],0,Cov.Mat[21,21],Cov.Mat[21,41], Cov.Mat[41,1],0,Cov.Mat[41,21],Cov.Mat[41,41]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[229:240,1] <- ifelse(row(Timing)[229:240,1] >= Perts$tsteps[20],1,0) Timing[229:240,2] <- ifelse(row(Timing)[229:240,2] >= Perts$tsteps[mt+20],1,0) for(m in 229:240) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[228],Timing[m,1]*Perts$Pest[20],Timing[m,2]*Perts$Pest[mt+20]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,22],Cov.Mat[1,42], 0,PredStock$N.thou.SE[228]^2,0,0, Cov.Mat[22,1],0,Cov.Mat[22,22],Cov.Mat[22,42], Cov.Mat[42,1],0,Cov.Mat[42,22],Cov.Mat[42,42]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[241:252,1] <- ifelse(row(Timing)[241:252,1] >= Perts$tsteps[21],1,0) Timing[241:252,2] <- ifelse(row(Timing)[241:252,2] >= Perts$tsteps[mt+21],1,0) for(m in 241:252) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[240],Timing[m,1]*Perts$Pest[21],Timing[m,2]*Perts$Pest[mt+21]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,23],Cov.Mat[1,43], 0,PredStock$N.thou.SE[240]^2,0,0, Cov.Mat[23,1],0,Cov.Mat[23,23],Cov.Mat[23,43], Cov.Mat[43,1],0,Cov.Mat[43,23],Cov.Mat[43,43]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[253:264,1] <- ifelse(row(Timing)[253:264,1] >= Perts$tsteps[22],1,0) Timing[253:264,2] <- ifelse(row(Timing)[253:264,2] >= Perts$tsteps[mt+22],1,0) for(m in 253:264) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[252],Timing[m,1]*Perts$Pest[22],Timing[m,2]*Perts$Pest[mt+22]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,24],Cov.Mat[1,44], 0,PredStock$N.thou.SE[252]^2,0,0, Cov.Mat[24,1],0,Cov.Mat[24,24],Cov.Mat[24,44], Cov.Mat[44,1],0,Cov.Mat[44,24],Cov.Mat[44,44]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[265:276,1] <- ifelse(row(Timing)[265:276,1] >= Perts$tsteps[23],1,0) Timing[265:276,2] <- ifelse(row(Timing)[265:276,2] >= Perts$tsteps[mt+23],1,0) for(m in 265:276) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[264],Timing[m,1]*Perts$Pest[23],Timing[m,2]*Perts$Pest[mt+23]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,25],Cov.Mat[1,45], 0,PredStock$N.thou.SE[264]^2,0,0, Cov.Mat[25,1],0,Cov.Mat[25,25],Cov.Mat[25,45], Cov.Mat[45,1],0,Cov.Mat[45,25],Cov.Mat[45,45]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[277:288,1] <- ifelse(row(Timing)[277:288,1] >= Perts$tsteps[24],1,0) Timing[277:288,2] <- ifelse(row(Timing)[277:288,2] >= Perts$tsteps[mt+24],1,0) for(m in 277:288) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[276],Timing[m,1]*Perts$Pest[24],Timing[m,2]*Perts$Pest[mt+24]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,26],Cov.Mat[1,46], 0,PredStock$N.thou.SE[276]^2,0,0, Cov.Mat[26,1],0,Cov.Mat[26,26],Cov.Mat[26,46], Cov.Mat[46,1],0,Cov.Mat[46,26],Cov.Mat[46,46]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } Timing[289:300,1] <- ifelse(row(Timing)[289:300,1] >= Perts$tsteps[25],1,0) Timing[289:300,2] <- ifelse(row(Timing)[289:300,2] >= Perts$tsteps[mt+25],1,0) for(m in 289:300) { PredStock$N.thou.SE[m] <- deltamethod(g=list(~x2*exp(-x1)+x3*exp(-x1)+x4*exp(-x1)), mean=c(PopDyn$M,PredStock$N.thou[288],Timing[m,1]*Perts$Pest[25],Timing[m,2]*Perts$Pest[mt+25]), cov=matrix(c(Cov.Mat[1,1],0,Cov.Mat[1,27],Cov.Mat[1,47], 0,PredStock$N.thou.SE[288]^2,0,0, Cov.Mat[27,1],0,Cov.Mat[27,27],Cov.Mat[27,47], Cov.Mat[47,1],0,Cov.Mat[47,27],Cov.Mat[47,47]),4,4)) PredStock$B.ton.SE[m] <- sqrt((1e3*PredStock$N.thou.SE[m])^2*(PredStock$Mmw.kg[m]*1e-3)^2 + (1e3*PredStock$N.thou[m])^2*(PredStock$SDmw.kg[m]*1e-3)^2) } } } } if(!multi) { if(length(unique(sapply(1:length(x), function(u) length(x[[u]]$Data$Properties$Fleets$Fleet)))) > 1) {stop("All catdyn objects in the list 'x' must be either 1-fleet or 2-fleets, not some 1-fleet and some 2-fleets")} if(length(unique(as.vector(sapply(1:length(x), function(u) x[[u]]$Data$Properties$Fleets$Fleet)))) == 1) { if(length(unique(sapply(1:length(x), function(u) x[[u]]$Data$Properties$Fleets$Fleet))) > 1) {stop("All catdyn objects in the list 'x' must have the same name of fleet")} if(class(x) != "list" | length(x) < 15) {stop("For intra-annual models (time step is daily or weekly) x must be a list of objects of class 'catdyn' \n from succesful fit of models using CatDynFit, and the number of objects in the list (intra-annual fits) must be 15 consecutive years or more")} ny <- length(x) if(sum(dim(mbw.sd) != c(ny,3)) != 0) {stop(" 'mbw.sd' must be a data.frame with as many rows as the length of 'x' and three columns: \n year, mean weight, and standard deviation of mean weight")} if(length(method) != ny) {stop("One numerical method must be supplied for each catdyn object in 'x' ")} if(any(sapply(1:length(x), function(u) x[[u]]$Model[[method[u]]]$Type)>5)) {stop("The maximum number of perturbations in any of the elements of 'x' must not be higher than 5")} PredStock <- data.frame(Year=as.numeric(format(as.Date(x[[1]]$Data$Properties$Dates[1]),"%Y")):as.numeric(format(as.Date(x[[ny]]$Data$Properties$Dates[1]),"%Y")), Mw.kg=mbw.sd[,2], SDmw.kg=mbw.sd[,3], N0Tot.thou=0, N0Tot.thou.SE=0, B0Tot.ton=0, B0Tot.ton.SE=0) for(i in 1:ny) { if(any(is.na(x[[i]]$Model[[method[i]]]$bt.stdev))) { x[[i]]$Model[[method[i]]]$bt.stdev[which(is.na(x[[i]]$Model[[method[i]]]$bt.stdev))] <- x[[i]]$Model[[method[i]]]$bt.par[which(is.na(x[[i]]$Model[[method[i]]]$bt.stdev))]* mean(unlist(x[[i]]$Model[[method[i]]]$bt.stdev[which(!is.na(x[[i]]$Model[[method[i]]]$bt.stdev))])/ unlist(x[[i]]$Model[[method[i]]]$bt.par[which(!is.na(x[[i]]$Model[[method[i]]]$bt.stdev))])) } mt <- x[[i]]$Model[[method[i]]]$Type Thou.scaler <- 1e6*(x[[i]]$Data$Properties$Units[4]=="bill") + 1e3*(x[[i]]$Data$Properties$Units[4]=="mill") + 1e0*(x[[i]]$Data$Properties$Units[4]=="thou") + 1e-1*(x[[i]]$Data$Properties$Units[4]=="hund") M <- unlist(x[[i]]$Model[[method[i]]]$bt.par["M"]) SE.M <- unlist(x[[i]]$Model[[method[i]]]$bt.stdev["M"]) N0 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par["N0"]) SE.N0 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev["N0"]) if(mt == 0) { PredStock$N0Tot.thou[i] <- N0 PredStock$N0Tor.thou.SE[i] <- SE.N0 PredStock$B0Tot.ton[i] <- N0*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((SE.N0)^2*(mbw.sd[i,2])^2+(N0)^2*(mbw.sd[i,3])^2) } if(mt == 1) { P1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[1:3,1:3],sd=c(SE.M,SE.N0,P1.SE)) PredStock$N0Tot.thou[i] <- N0 + P1*exp(M*P1.back) form <- sprintf("~x2 + x3*exp(x1*%i)", P1.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(mt == 2) { P1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[1:4,1:4],sd=c(SE.M,SE.N0,P1.SE,P2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1*exp(M*P1.back) + P2*exp(M*P2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)", P1.back,P2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1,P2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(mt == 3) { P1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[5]) P3.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[5]) P3.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[1:5,1:5],sd=c(SE.M,SE.N0,P1.SE,P2.SE,P3.SE)) PredStock$N0Tot.thou[i] <- N0 + P1*exp(M*P1.back) + P2*exp(M*P2.back) + P3*exp(M*P3.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)", P1.back,P2.back,P3.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1,P2,P3), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(mt == 4) { P1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[5]) P3.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[5]) P3.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P4 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[6]) P4.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[6]) P4.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[1:6,1:6],sd=c(SE.M,SE.N0,P1.SE,P2.SE,P3.SE,P4.SE)) PredStock$N0Tot.thou[i] <- N0 + P1*exp(M*P1.back) + P2*exp(M*P2.back) + P3*exp(M*P3.back) + P4*exp(M*P4.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)", P1.back,P2.back,P3.back,P4.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1,P2,P3,P4), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(mt == 5) { P1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[5]) P3.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[5]) P3.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P4 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[6]) P4.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[6]) P4.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P5 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P5.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P5.back <- x[[i]]$Model[[method[i]]]$Dates[6]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[1:7,1:7],sd=c(SE.M,SE.N0,P1.SE,P2.SE,P3.SE,P4.SE,P5.SE)) PredStock$N0Tot.thou[i] <- N0 + P1*exp(M*P1.back) + P2*exp(M*P2.back) + P3*exp(M*P3.back) + P4*exp(M*P4.back) + P5*exp(M*P5.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)+x7*exp(x1*%i)", P1.back,P2.back,P3.back,P4.back,P5.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1,P2,P3,P4,P5), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } } } if(length(unique(as.vector(sapply(1:length(x), function(u) x[[u]]$Data$Properties$Fleets$Fleet)))) == 2) { if(length(unique(as.vector(sapply(1:length(x), function(u) x[[u]]$Data$Properties$Fleets$Fleet)))) != 2) {stop("All catdyn objects in the list 'x' must have the same two fleets")} if(class(x) != "list" | length(x) < 15) {stop("For intra-annual models (time step is daily or weekly) x must be a list of objects of class 'catdyn' \n from succesful fit of models using CatDynFit, and the number of objects in the list (intra-annual fits) must be 15 consecutive years or more")} ny <- length(x) if(sum(dim(mbw.sd) != c(ny,3)) != 0) {stop(" 'mbw.sd' must be a data.frame with as many rows as the length of 'x' and three columns: \n year, mean weight, and standard deviation of mean length ")} if(length(method) != ny) {stop("One numerical method must be supplied for each catdyn object in 'x' ")} if(max(as.vector(sapply(1:length(x), function(u) x[[u]]$Model[[method[u]]]$Type)))>5) {stop("The maximum number of perturbations in any of the elements and fleets of 'x' must not be higher than 5; \n any of the models in 'x' can go from a minimum of c(0,0) (pure depletion both fleets) to a maximum of c(5,5)")} PredStock <- data.frame(Year=as.numeric(format(as.Date(x[[1]]$Data$Properties$Dates[1]),"%Y")):as.numeric(format(as.Date(x[[ny]]$Data$Properties$Dates[1]),"%Y")), Mw.kg=mbw.sd[,2], SDmw.kg=mbw.sd[,3], N0Tot.thou=0, N0Tot.thou.SE=0, B0Tot.ton=0, B0Tot.ton.SE=0) for(i in 1:ny) { if(any(is.na(x[[i]]$Model[[method[i]]]$bt.stdev))) { x[[i]]$Model[[method[i]]]$bt.stdev[which(is.na(x[[i]]$Model[[method[i]]]$bt.stdev))] <- x[[i]]$Model[[method[i]]]$bt.par[which(is.na(x[[i]]$Model[[method[i]]]$bt.stdev))]* mean(unlist(x[[i]]$Model[[method[i]]]$bt.stdev[which(!is.na(x[[i]]$Model[[method[i]]]$bt.stdev))])/ unlist(x[[i]]$Model[[method[i]]]$bt.par[which(!is.na(x[[i]]$Model[[method[i]]]$bt.stdev))])) } mt <- x[[i]]$Model[[method[i]]]$Type Thou.scaler <- 1e6*(x[[i]]$Data$Properties$Units[4]=="bill") + 1e3*(x[[i]]$Data$Properties$Units[4]=="mill") + 1e0*(x[[i]]$Data$Properties$Units[4]=="thou") + 1e-1*(x[[i]]$Data$Properties$Units[4]=="hund") M <- unlist(x[[i]]$Model[[method[i]]]$bt.par["M"]) SE.M <- unlist(x[[i]]$Model[[method[i]]]$bt.stdev["M"]) N0 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par["N0"]) SE.N0 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev["N0"]) if(sum(mt == c(0,0))==2) { PredStock$N0Tot.thou[i] <- N0 PredStock$N0Tor.thou.SE[i] <- SE.N0 PredStock$B0Tot.ton[i] <- N0*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((SE.N0)^2*(mbw.sd[i,2])^2+(N0)^2*(mbw.sd[i,3])^2) } if(sum(mt == c(0,1))==2) { P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[6]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[6]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 ts1 <- x[[i]]$Model[[method[i]]]$Dates[1] cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,6),c(1,2,6)],sd=c(SE.M,SE.N0,P1F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F2*exp(M*P1F2.back) form <- sprintf("~x2+x3*exp(x1*%i)", P1F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(0,2))==2) { P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[6]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[6]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,6,7),c(1,2,6,7)],sd=c(SE.M,SE.N0,P1F2.SE,P2F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)", P1F2.back,P2F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F2,P2F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(0,3))==2) { P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[6]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[6]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,6,7,8),c(1,2,6,7,8)],sd=c(SE.M,SE.N0,P1F2.SE,P2F2.SE,P3F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)", P1F2.back,P2F2.back,P3F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F2,P2F2,P3F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(0,4))==2) { P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[6]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[6]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P4F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 ts1 <- x[[i]]$Model[[method[i]]]$Dates[1] cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,6:9),c(1,2,6:9)],sd=c(SE.M,SE.N0,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) + P4F2*exp(M*P4F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)", P1F2.back,P2F2.back,P3F2.back,P4F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F2,P2F2,P3F2,P4F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(0,5))==2) { P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[6]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[6]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P4F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P5F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P5F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P5F2.back <- x[[i]]$Model[[method[i]]]$Dates[6]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,6:10),c(1,2,6:10)],sd=c(SE.M,SE.N0,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE,P5F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) + P4F2*exp(M*P4F2.back) + P5F2*exp(M*P5F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)+x7*exp(x1*%i)", P1F2.back,P2F2.back,P3F2.back,P4F2.back,P5F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F2,P2F2,P3F2,P4F2,P5F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(1,1))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,3,7),c(1,2,3,7)],sd=c(SE.M,SE.N0,P1F1.SE,P1F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P1F2*exp(M*P1F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)", P1F1.back,P1F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P1F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(1,2))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,3,7,8),c(1,2,3,7,8)],sd=c(SE.M,SE.N0,P1F1.SE,P1F2.SE,P2F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)", P1F1.back,P1F2.back,P2F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P1F2,P2F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(1,3))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,3,7:9),c(1,2,3,7:9)],sd=c(SE.M,SE.N0,P1F1.SE,P1F2.SE,P2F2.SE,P3F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)", P1F1.back,P1F2.back,P2F2.back,P3F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P1F2,P2F2,P3F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(1,4))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P4F2.back <- x[[i]]$Model[[method[i]]]$Dates[6]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,3,7:10),c(1,2,3,7:10)],sd=c(SE.M,SE.N0,P1F1.SE,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) + P4F2*exp(M*P4F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)+x7*exp(x1*%i)", P1F1.back,P1F2.back,P2F2.back,P3F2.back,P4F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P1F2,P2F2,P3F2,P4F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(1,5))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P4F2.back <- x[[i]]$Model[[method[i]]]$Dates[6]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P5F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[11]) P5F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[11]) P5F2.back <- x[[i]]$Model[[method[i]]]$Dates[7]-x[[i]]$Model[[method[i]]]$Dates[1]+1 ts1 <- cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,3,7:11),c(1,2,3,7:11)], sd=c(SE.M,SE.N0,P1F1.SE,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE,P5F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) + P4F2*exp(M*P4F2.back) + P5F2*exp(M*P5F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)+x7*exp(x1*%i)+x8*exp(x1*%i)", P1F1.back,P1F2.back,P2F2.back,P3F2.back,P4F2.back,P5F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P1F2,P2F2,P3F2,P4F2,P5F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(2,2))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2F1.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,3,4,8,9),c(1,2,3,4,8,9)], sd=c(SE.M,SE.N0,P1F1.SE,P2F1.SE,P1F2.SE,P2F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P2F1*exp(M*P1F1.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)", P1F1.back,P2F1.back,P1F2.back,P2F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P2F1,P1F2,P2F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(2,3))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2F1.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[6]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,3,4,8:10),c(1,2,3,4,8:10)], sd=c(SE.M,SE.N0,P1F1.SE,P2F1.SE,P1F2.SE,P2F2.SE,P3F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P2F1*exp(M*P2F1.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)+x7*exp(x1*%i)", P1F1.back,P2F1.back,P1F2.back,P2F2.back,P3F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P2F1,P1F2,P2F2,P3F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(2,4))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2F1.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[6]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[11]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[11]) P4F2.back <- x[[i]]$Model[[method[i]]]$Dates[7]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,3,4,8:11),c(1,2,3,4,8:11)], sd=c(SE.M,SE.N0,P1F1.SE,P2F1.SE,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P2F1*exp(M*P2F1.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) + P4F2*exp(M*P4F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)+x7*exp(x1*%i)+x8*exp(x1*%i)", P1F1.back,P2F1.back,P1F2.back,P2F2.back,P3F2.back,P4F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P2F1,P1F2,P2F2,P3F2,P4F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(2,5))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2F1.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[8]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[8]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[6]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[11]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[11]) P4F2.back <- x[[i]]$Model[[method[i]]]$Dates[7]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P5F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[12]) P5F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[12]) P5F2.back <- x[[i]]$Model[[method[i]]]$Dates[8]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1,2,3,4,8:12),c(1,2,3,4,8:12)], sd=c(SE.M,SE.N0,P1F1.SE,P2F1.SE,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE,P5F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P2F1*exp(M*P2F2.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) + P4F2*exp(M*P4F2.back) + P5F2*exp(M*P5F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)+x7*exp(x1*%i)+x8*exp(x1*%i)+x9*exp(x1*%i)", P1F1.back,P2F1.back,P1F2.back,P2F2.back,P3F2.back,P4F2.back,P5F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P2F1,P1F2,P2F2,P3F2,P4F2,P5F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(3,3))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2F1.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[5]) P3F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[5]) P3F1.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[6]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[11]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[11]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[7]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1:5,9:11),c(1:5,9:11)], sd=c(SE.M,SE.N0,P1F1.SE,P2F1.SE,P3F1.SE,P1F2.SE,P2F2.SE,P3F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P2F1*exp(M*P2F1.back) + P3F1*exp(M*P3F1.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)+x7*exp(x1*%i)+x8*exp(x1*%i)", P1F1.back,P2F1.back,P3F1.back,P1F2.back,P2F2.back,P3F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P2F1,P3F1,P1F2,P2F2,P3F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(3,4))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2F1.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[5]) P3F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[5]) P3F1.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[6]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[11]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[11]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[7]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[12]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[12]) P4F2.back <- x[[i]]$Model[[method[i]]]$Dates[8]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1:5,9:12),c(1:5,9:12)], sd=c(SE.M,SE.N0,P1F1.SE,P2F1.SE,P3F1.SE,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P2F1*exp(M*P2F1.back) + P3F1*exp(M*P3F1.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) + P4F2*exp(M*P4F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)+x7*exp(x1*%i)+x8*exp(x1*%i)+x9*exp(x1*%i)", P1F1.back,P2F1.back,P3F1.back,P1F2.back,P2F2.back,P3F2.back,P4F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P2F1,P3F1,P1F2,P2F2,P3F2,P4F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(3,5))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.back <- x[[i]]$Model[[method[i]]]$Dates[2]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2F1.back <- x[[i]]$Model[[method[i]]]$Dates[3]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[5]) P3F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[5]) P3F1.back <- x[[i]]$Model[[method[i]]]$Dates[4]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[9]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[9]) P1F2.back <- x[[i]]$Model[[method[i]]]$Dates[5]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P2F2.back <- x[[i]]$Model[[method[i]]]$Dates[6]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[11]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[11]) P3F2.back <- x[[i]]$Model[[method[i]]]$Dates[7]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[12]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[12]) P4F2.back <- x[[i]]$Model[[method[i]]]$Dates[8]-x[[i]]$Model[[method[i]]]$Dates[1]+1 P5F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[13]) P5F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[13]) P5F2.back <- x[[i]]$Model[[method[i]]]$Dates[9]-x[[i]]$Model[[method[i]]]$Dates[1]+1 cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1:5,9:13),c(1:5,9:13)], sd=c(SE.M,SE.N0,P1F1.SE,P2F1.SE,P3F1.SE,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE,P5F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*P1F1.back) + P2F1*exp(M*P2F1.back) + P3F1*exp(M*P3F1.back) + P1F2*exp(M*P1F2.back) + P2F2*exp(M*P2F2.back) + P3F2*exp(M*P3F2.back) + P4F2*exp(M*P4F2.back) + P5F2*exp(M*P5F2.back) form <- sprintf("~x2+x3*exp(x1*%i)+x4*exp(x1*%i)+x5*exp(x1*%i)+x6*exp(x1*%i)+x7*exp(x1*%i)+x8*exp(x1*%i)+x9*exp(x1*%i)+x10*exp(x1*%i)", P1F1.back,P2F1.back,P3F1.back,P1F2.back,P2F2.back,P3F2.back,P4F2.back,P5F2.back) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=as.formula(form), mean=c(M,N0,P1F1,P2F1,P3F1,P1F2,P2F2,P3F2,P4F2,P5F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(4,4))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.ts <- x[[i]]$Model[[method[i]]]$Dates[2] P2F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2F1.ts <- x[[i]]$Model[[method[i]]]$Dates[3] P3F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[5]) P3F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[5]) P3F1.ts <- x[[i]]$Model[[method[i]]]$Dates[4] P4F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[6]) P4F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[6]) P4F1.ts <- x[[i]]$Model[[method[i]]]$Dates[5] P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P1F2.ts <- x[[i]]$Model[[method[i]]]$Dates[6] P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[11]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[11]) P2F2.ts <- x[[i]]$Model[[method[i]]]$Dates[7] P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[12]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[12]) P3F2.ts <- x[[i]]$Model[[method[i]]]$Dates[8] P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[13]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[13]) P4F2.ts <- x[[i]]$Model[[method[i]]]$Dates[9] ts1 <- x[[i]]$Model[[method[i]]]$Dates[1] cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1:6,10:13),c(1:6,10:13)], sd=c(SE.M,SE.N0,P1F1.SE,P2F1.SE,P3F1.SE,P4F1.SE,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*(P1F1.ts-ts1+1)) + P2F1*exp(M*(P2F1.ts-ts1+1)) + P3F1*exp(M*(P3F1.ts-ts1+1)) + P4F1*exp(M*(P4F1.ts-ts1+1)) + P1F2*exp(M*(P1F2.ts-ts1+1)) + P2F2*exp(M*(P2F2.ts-ts1+1)) + P3F2*exp(M*(P3F2.ts-ts1+1)) + P4F2*exp(M*(P4F2.ts-ts1+1)) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=list(~x2 + x3*exp(x1*(P1F1.ts-ts1+1)) + x4*exp(x1*(P2F1.ts-ts1+1)) + x5*exp(x1*(P3F1.ts-ts1+1)) + x6*exp(x1*(P4F1.ts-ts1+1)) + x7*exp(x1*(P1F2.ts-ts1+1)) + x7*exp(x1*(P2F2.ts-ts1+1)) + x9*exp(x1*(P3F2.ts-ts1+1)) + x10*exp(x1*(P4F2.ts-ts1+1))), mean=c(M,N0,P1F1,P2F1,P3F1,P4F1,P1F2,P2F2,P3F2,P4F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(4,5))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.ts <- x[[i]]$Model[[method[i]]]$Dates[2] P2F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2F1.ts <- x[[i]]$Model[[method[i]]]$Dates[3] P3F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[5]) P3F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[5]) P3F1.ts <- x[[i]]$Model[[method[i]]]$Dates[4] P4F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[6]) P4F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[6]) P4F1.ts <- x[[i]]$Model[[method[i]]]$Dates[5] P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[10]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[10]) P1F2.ts <- x[[i]]$Model[[method[i]]]$Dates[6] P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[11]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[11]) P2F2.ts <- x[[i]]$Model[[method[i]]]$Dates[7] P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[12]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[12]) P3F2.ts <- x[[i]]$Model[[method[i]]]$Dates[8] P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[13]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[13]) P4F2.ts <- x[[i]]$Model[[method[i]]]$Dates[9] P5F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[14]) P5F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[14]) P5F2.ts <- x[[i]]$Model[[method[i]]]$Dates[10] ts1 <- x[[i]]$Model[[method[i]]]$Dates[1] cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1:6,10:14),c(1:6,10:14)], sd=c(SE.M,SE.N0,P1F1.SE,P2F1.SE,P3F1.SE,P4F1.SE,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE,P5F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*(P1F1.ts-ts1+1)) + P2F1*exp(M*(P2F1.ts-ts1+1)) + P3F1*exp(M*(P3F1.ts-ts1+1)) + P4F1*exp(M*(P4F1.ts-ts1+1)) + P1F2*exp(M*(P1F2.ts-ts1+1)) + P2F2*exp(M*(P2F2.ts-ts1+1)) + P3F2*exp(M*(P3F2.ts-ts1+1)) + P4F2*exp(M*(P4F2.ts-ts1+1)) + P5F2*exp(M*(P5F2.ts-ts1+1)) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=list(~x2 + x3*exp(x1*(P1F1.ts-ts1+1)) + x4*exp(x1*(P2F1.ts-ts1+1)) + x5*exp(x1*(P3F1.ts-ts1+1)) + x6*exp(x1*(P4F1.ts-ts1+1)) + x7*exp(x1*(P1F2.ts-ts1+1)) + x7*exp(x1*(P2F2.ts-ts1+1)) + x9*exp(x1*(P3F2.ts-ts1+1)) + x10*exp(x1*(P4F2.ts-ts1+1)) + x11*exp(x1*(P5F2.ts-ts1+1))), mean=c(M,N0,P1F1,P2F1,P3F1,P4F1,P1F2,P2F2,P3F2,P4F2,P5F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } if(sum(mt == c(5,5))==2) { P1F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[3]) P1F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[3]) P1F1.ts <- x[[i]]$Model[[method[i]]]$Dates[2] P2F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[4]) P2F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[4]) P2F1.ts <- x[[i]]$Model[[method[i]]]$Dates[3] P3F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[5]) P3F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[5]) P3F1.ts <- x[[i]]$Model[[method[i]]]$Dates[4] P4F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[6]) P4F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[6]) P4F1.ts <- x[[i]]$Model[[method[i]]]$Dates[5] P5F1 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[7]) P5F1.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[7]) P5F1.ts <- x[[i]]$Model[[method[i]]]$Dates[6] P1F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[11]) P1F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[11]) P1F2.ts <- x[[i]]$Model[[method[i]]]$Dates[7] P2F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[12]) P2F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[12]) P2F2.ts <- x[[i]]$Model[[method[i]]]$Dates[8] P3F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[13]) P3F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[13]) P3F2.ts <- x[[i]]$Model[[method[i]]]$Dates[9] P4F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[14]) P4F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[14]) P4F2.ts <- x[[i]]$Model[[method[i]]]$Dates[10] P5F2 <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.par[15]) P5F2.SE <- Thou.scaler*unlist(x[[i]]$Model[[method[i]]]$bt.stdev[15]) P5F2.ts <- x[[i]]$Model[[method[i]]]$Dates[11] ts1 <- x[[i]]$Model[[method[i]]]$Dates[1] cov <- cor2cov(x[[i]]$Model[[method[i]]]$Cor[c(1:7,11:15),c(1:7,11:15)], sd=c(SE.M,SE.N0,P1F1.SE,P2F1.SE,P3F1.SE,P4F1.SE,P5F1.SE,P1F2.SE,P2F2.SE,P3F2.SE,P4F2.SE,P5F2.SE)) PredStock$N0Tot.thou[i] <- N0 + P1F1*exp(M*(P1F1.ts-ts1+1)) + P2F1*exp(M*(P2F1.ts-ts1+1)) + P3F1*exp(M*(P3F1.ts-ts1+1)) + P4F1*exp(M*(P4F1.ts-ts1+1)) + P5F1*exp(M*(P5F1.ts-ts1+1)) + P1F2*exp(M*(P1F2.ts-ts1+1)) + P2F2*exp(M*(P2F2.ts-ts1+1)) + P3F2*exp(M*(P3F2.ts-ts1+1)) + P4F2*exp(M*(P4F2.ts-ts1+1)) + P5F2*exp(M*(P5F2.ts-ts1+1)) PredStock$N0Tot.thou.SE[i] <- deltamethod(g=list(~x2 + x3*exp(x1*(P1F1.ts-ts1+1)) + x4*exp(x1*(P2F1.ts-ts1+1)) + x5*exp(x1*(P3F1.ts-ts1+1)) + x6*exp(x1*(P4F1.ts-ts1+1)) + x7*exp(x1*(P5F1.ts-ts1+1)) + x8*exp(x1*(P1F2.ts-ts1+1)) + x9*exp(x1*(P2F2.ts-ts1+1)) + x10*exp(x1*(P3F2.ts-ts1+1)) + x11*exp(x1*(P4F2.ts-ts1+1)) + x12*exp(x1*(P5F2.ts-ts1+1))), mean=c(M,N0,P1F1,P2F1,P3F1,P4F1,P1F2,P2F2,P3F2,P4F2,P5F2), cov=cov) PredStock$B0Tot.ton[i] <- PredStock$N0Tot.thou[i]*mbw.sd[i,2] PredStock$B0Tot.ton.SE[i] <- sqrt((PredStock$N0Tot.thou.SE[i])^2*(mbw.sd[i,2])^2+(PredStock$N0Tot.thou[i])^2*(mbw.sd[i,3])^2) } } } } return(PredStock) }
pred <- function(model=NULL,n.ahead=20,tserie=NULL,predictions=NULL){ if(!is.null(model)){ if(!methods::is(model,"modl")) stop("Not a modl object") predictions <- NULL if(model$method=='arima') predictions <- pred.arima(model$model,n.ahead=n.ahead) else if(model$method=='dataMining') predictions <- pred.dataMining(model,n.ahead=n.ahead) obj <- list() class(obj) <- "pred" obj$tserie <- model$tserie obj$predictions <- predictions return (obj) }else{ if(!stats::is.ts(tserie)) stop('Tserie not a ts object') if(!stats::is.ts(predictions)) stop('Predictions not a ts object') obj <- list() class(obj) <- "pred" obj$tserie <- tserie obj$predictions <- predictions return (obj) } } pred.arima <- function(model,n.ahead){ if(!methods::is(model,"Arima")) stop("Not an Arima object") if(n.ahead > 100) stop("n.ahead must be lower than 100") return (stats::predict(model,n.ahead=n.ahead,se.fit=FALSE)) } pred.dataMining <- function(model,n.ahead){ if(!methods::is(model,"modl")) stop("Not a modl object") if(model$method != "dataMining") stop("model method has to be dataMining.") if(n.ahead > 100) stop("n.ahead must be lower than 100") data <- model$tserieDF index <- length(data[,1]) - model$horizon obs <- data[index,] predictions <- NULL for(i in 1:(n.ahead+model$horizon)){ for(j in 1:(ncol(obs))){ colnames(obs)[j] <- paste0('c_',j) } predictions[i] <- caret::predict.train(model$model,obs) obs <- data.frame(c(obs[nrow(obs),2:ncol(obs)],predictions[i])) } predictionsTS <- stats::ts(predictions,start=end(model$tserie)-c(0,model$horizon),frequency=frequency(model$tserie)) return (predictionsTS) } pred.compareModels <- function(originalTS,p_1,p_2,p_3=NULL,p_4=NULL,p_5=NULL, legendNames=NULL,colors=NULL,legend=TRUE,legendPosition=NULL,yAxis="Values",title="Predictions"){ if(!is.ts(originalTS) || !is.ts(p_1) || !is.ts(p_2)) stop('Not a ts object') n <- 2 maxX <- max(end(p_1)[1],end(p_2)[1]) if(!is.null(p_3)) { if(!is.ts(p_3)) stop('Not a ts object') if(end(p_3)[1] > maxX) maxX <- end(p_3)[1] n <- n+1 } if(!is.null(p_4)) { if(!is.ts(p_4)) stop('Not a ts object') if(end(p_4)[1] > maxX) maxX <- end(p_4)[1] n <- n+1 } if(!is.null(p_5)) { if(!is.ts(p_5)) stop('Not a ts object') if(end(p_5)[1] > maxX) maxX <- end(p_5)[1] n <- n+1 } maxX <- maxX+1 minY <- min(originalTS,p_1,p_2,p_3,p_4,p_5) maxY <- max(originalTS,p_1,p_2,p_3,p_4,p_5) xlim <- c(start(originalTS)[1],maxX) ylim <- c(minY,maxY) if(is.null(colors)){ colors <- c('black','green','blue','darkgoldenrod1','aquamarine3','darkorchid' ) colors <- c(colors[1:(n+1)]) }else if(length(colors) != (n+1)) stop('Vector "colors" wrong size. Has to contain colors for every time serie (including the original one)') if(is.null(legendNames)){ legendNames <- c('Original TS','Predictions','Predictions','Predictions','Predictions','Predictions') legendNames <- c(legendNames[1:(n+1)]) }else if(length(legendNames) != (n+1)) stop('Vector "legendNames" wrong size. Has to contain legend names for every time serie (including the original one)') graphics::plot(originalTS,xlim=xlim,ylim=ylim,col=colors[1],ylab=yAxis) title(main=paste0(title)) graphics::lines(p_1,col=colors[2]) graphics::lines(p_2,col=colors[3]) colorCounter <- 4 if(!is.null(p_3)) { graphics::lines(p_3,col=colors[colorCounter]) colorCounter <- colorCounter+1 } if(!is.null(p_4)) { graphics::lines(p_4,col=colors[colorCounter]) colorCounter <- colorCounter+1 } if(!is.null(p_5)) { graphics::lines(p_5,col=colors[colorCounter]) colorCounter <- colorCounter+1 } if(legend){ if(is.null(legendPosition)) legendPosition <- "bottomright" legend(legendPosition,lty=c(1,1),col=colors,legend=legendNames) } } plot.pred <- function(x,ylab="Values",main="Predictions",...){ maxX <- end(x$predictions) minY <- min(x$tserie,x$predictions) maxY <- max(x$tserie,x$predictions) xlim <- c(start(x$tserie)[1],maxX[1]) ylim <- c(minY,maxY) colors <- c('black','green') graphics::plot(x$tserie,xlim=xlim,ylim=ylim,col=colors[1],ylab=ylab,main=main) graphics::lines(x$predictions,col=colors[2]) } summary.pred <- function(object,...){ cat("Predicted time serie object\n\n") cat("~Original time serie:\n") utils::str(object$tserie) cat("\n") cat("~Predictions (n=",length(object$predictions),"):\n") utils::str(object$predictions) } print.pred <- function(x,...){ cat("Predicted time serie object\n\n") cat("Class: pred\n\n") cat("Attributes: \n") cat("$tserie: \n") print(x$tserie) cat("\n") cat("$predictions: \n") print(x$predictions) }
wrcc_loadDaily <- function( parameter = 'PM2.5', baseUrl = 'https://haze.airfire.org/monitoring/latest/RData', dataDir = NULL ) { validParams <- c("PM2.5") if ( !parameter %in% validParams ) { paramsString <- paste(validParams, collapse=", ") stop(paste0("'", parameter, "' is not a supported parameter. Use 'parameter = ", paramsString, "'"), call.=FALSE) } filename <- paste0("wrcc_", parameter, "_latest45.RData") ws_monitor <- MazamaCoreUtils::loadDataFile(filename, baseUrl, dataDir) return(ws_monitor) }
.GlobalEnv <- globalenv() attach(NULL, name = "Autoloads") .AutoloadEnv <- as.environment(2) assign(".Autoloaded", NULL, envir = .AutoloadEnv) T <- TRUE F <- FALSE R.version <- structure(R.Version(), class = "simple.list") version <- R.version R.version.string <- R.version$version.string options(keep.source = interactive()) options(warn = 0) options(timeout = 60) options(encoding = "native.enc") options(show.error.messages = TRUE) options(scipen = 0) options(max.print = 99999) options(add.smooth = TRUE) options(stringsAsFactors = TRUE) if(!interactive() && is.null(getOption("showErrorCalls"))) options(showErrorCalls = TRUE) local({dp <- Sys.getenv("R_DEFAULT_PACKAGES") if(identical(dp, "")) dp <- c("datasets", "utils", "grDevices", "graphics", "stats", "methods") else if(identical(dp, "NULL")) dp <- character(0) else dp <- strsplit(dp, ",")[[1]] dp <- sub("[[:blank:]]*([[:alnum:]]+)", "\\1", dp) options(defaultPackages = dp) }) Sys.setenv(R_LIBS_SITE = .expand_R_libs_env_var(Sys.getenv("R_LIBS_SITE"))) Sys.setenv(R_LIBS_USER = .expand_R_libs_env_var(Sys.getenv("R_LIBS_USER"))) .First.sys <- function() { for(pkg in getOption("defaultPackages")) { res <- require(pkg, quietly = TRUE, warn.conflicts = FALSE, character.only = TRUE) if(!res) warning(gettextf('package %s in options("defaultPackages") was not found', sQuote(pkg)), call. = FALSE, domain = NA) } } .OptRequireMethods <- function() { pkg <- "methods" if(pkg %in% getOption("defaultPackages")) if(!require(pkg, quietly = TRUE, warn.conflicts = FALSE, character.only = TRUE)) warning('package "methods" in options("defaultPackages") was not found', call. = FALSE) } if(nzchar(Sys.getenv("R_BATCH"))) { .Last.sys <- function() { cat("> proc.time()\n") print(proc.time()) } try(Sys.setenv(R_BATCH="")) }
msBP.nrvTrees <- function(sh, maxS = max(sh[,1])) { N <- nrow(sh) veclen <- 2^(maxS+1) - 1 empty <- rep(0, veclen) res <- .C("allTrees_C", as.integer(sh[,1]), as.integer(sh[,2]), as.integer(maxS), as.integer(N), n=as.double(empty), r=as.double(empty), v=as.double(empty), PACKAGE = "msBP") n <- vec2tree(res$n) r <- vec2tree(res$r) v <- vec2tree(res$v) list(n=n, r=r, v=v) }
alfapcr.tune <- function(y, x, model = "gaussian", nfolds = 10, maxk = 50, a = seq(-1, 1, by = 0.1), folds = NULL, ncores = 1, graph = TRUE, col.nu = 15, seed = FALSE) { n <- dim(x)[1] d <- dim(x)[2] - 1 if ( min(x) == 0 ) a <- a[ a > 0 ] da <- length(a) ina <- 1:n if ( is.null(folds) ) folds <- Compositional::makefolds(ina, nfolds = nfolds, stratified = FALSE, seed = seed) nfolds <- length(folds) mspe2 <- array( dim = c( nfolds, d, da) ) if ( model == 'gaussian' ) { tic <- proc.time() for ( i in 1:da ) { z <- Compositional::alfa(x, a[i])$aff mod <- Compositional::pcr.tune(y, z, nfolds = nfolds, maxk = maxk, folds = folds, ncores = ncores, seed = seed, graph = FALSE) mspe2[, , i] <- mod$msp } toc <- proc.time() - tic } else if ( model == "multinomial" ) { tic <- proc.time() for ( i in 1:da ) { z <- Compositional::alfa(x, a[i])$aff mod <- Compositional::multinompcr.tune(y, z, nfolds = nfolds, maxk = maxk, folds = folds, ncores = ncores, seed = seed, graph = FALSE) mspe2[, , i] <- mod$msp } toc <- proc.time() - tic } else if ( model == "binomial" | model == "poisson" ) { tic <- proc.time() for ( i in 1:da ) { z <- Compositional::alfa(x, a[i])$aff mod <- Compositional::glmpcr.tune(y, z, nfolds = nfolds, maxk = maxk, folds = folds, ncores = ncores, seed = seed, graph = FALSE) mspe2[, , i] <- mod$msp } toc <- proc.time() - tic } dimnames(mspe2) <- list(folds = 1:nfolds, PC = paste("PC", 1:d, sep = ""), a = a) mspe <- array( dim = c(da, d, nfolds) ) for (i in 1:nfolds) mspe[, , i] <- t( mspe2[i, , 1:da] ) dimnames(mspe) <- list(a = a, PC = paste("PC", 1:d, sep = ""), folds = 1:nfolds ) mean.mspe <- t( colMeans( aperm(mspe) ) ) if ( model == "multinomial" ) { best.par <- which(mean.mspe == max(mean.mspe), arr.ind = TRUE)[1, ] } else best.par <- which(mean.mspe == min(mean.mspe), arr.ind = TRUE)[1, ] performance <- mean.mspe[ best.par[1], best.par[2] ] names(performance) <- "mspe" rownames(mean.mspe) <- a colnames(mspe) <- paste("PC", 1:d, sep = "") if ( graph ) filled.contour(a, 1:d, mean.mspe, xlab = expression( paste(alpha, " values") ), ylab = "Number of PCs", cex.lab = 1.2, cex.axis = 1.2) best.par <- c( a[ best.par[1] ], best.par[2] ) names(best.par) <- c("alpha", "PC") list(mspe = mean.mspe, best.par = best.par, performance = performance, runtime = toc) }
r2_efron <- function(model) { UseMethod("r2_efron") } r2_efron.default <- function(model) { .r2_efron(model) } .r2_efron <- function(model) { y_hat <- stats::predict(model, type = "response") y <- .factor_to_numeric(insight::get_response(model, verbose = FALSE), lowest = 0) (1 - (sum((y - y_hat)^2)) / (sum((y - mean(y))^2))) }
context("setClasses") test_that("setClasses", { x = list(a=1) expect_equal(setClasses(x, "foo"), structure(list(a=1), class="foo")) expect_equal(setClasses(x, c("foo1", "foo2")), structure(list(a=1), class=c("foo1", "foo2"))) })
read_sparse_csv <- function(input, iterfeature, nfeatures = NA, colClasses = NA, RDS = NA, compress_RDS = TRUE, NA_sparse = FALSE) { columns <- fread(input = input, nrows = 0, stringsAsFactors = FALSE, colClasses = colClasses, data.table = FALSE) colClasses <- rep("numeric", nfeatures) if (is.na(nfeatures[1]) == TRUE) { nfeatures <- ncol(columns) } features <- split(nfeatures, ceiling(seq_along(nfeatures) / iterfeature)) for (i in 1:length(features)) { cat("Loading ", i, "th part.\n", sep = "") data_temp <- fread(input = input, select = features[[i]], stringsAsFactors = FALSE, colClasses = colClasses, data.table = TRUE) gc(verbose = FALSE) if (i > 1) { if (NA_sparse == TRUE) { cat("Coercing to matrix.\n", sep = "") data_temp <- as.matrix(data_temp) gc(verbose = FALSE) cat("Coercing into dgCMatrix with NA as blank.\n", sep = "") data_temp <- dropNA(data_temp) gc(verbose = FALSE) cat("Column binding the full matrix with the newly created matrix.\n\n", sep = "") data <- cbind(data, data_temp) rm(data_temp) } else { cat("Coercing to sparse matrix.\n", sep = "") data_temp <- Matrix(as.matrix(data_temp), sparse = TRUE) gc(verbose = FALSE) cat("Column binding the full matrix with the newly created matrix.\n\n", sep = "") data <- cbind(data, data_temp) rm(data_temp) } gc(verbose = FALSE) } else { if (NA_sparse == TRUE) { cat("Coercing to matrix.\n", sep = "") data_temp <- as.matrix(data_temp) gc(verbose = FALSE) cat("Coercing into dgCMatrix with NA as blank.\n\n", sep = "") data <- dropNA(data_temp) } else { cat("Coercing to sparse matrix.\n", sep = "") data <- Matrix(as.matrix(data_temp), sparse = TRUE) rm(data_temp) } gc(verbose = FALSE) } } if (is.na(RDS) == FALSE) { cat("Saving to RDS format.\n") saveRDS(data, file = RDS, compress = compress_RDS) } return(data) }
NULL setClass( Class = "ClippedFT", contains = "FreqRep" ) setMethod( f = "initialize", signature = "ClippedFT", definition = function(.Object, Y, isRankBased, levels, frequencies, positions.boot, B) { .Object@Y <- Y .Object@isRankBased <- isRankBased .Object@levels <- levels .Object@frequencies <- frequencies [email protected] <- positions.boot .Object@B <- B T <- dim(Y)[1] D <- dim(Y)[2] K <- length(levels) J <- length(frequencies) if (isRankBased) { data <- apply(Y,2,rank) / T } else { data <- Y } IndMatrix <- matrix(0, nrow=T, ncol=K*D*(B+1)) levels <- sort(levels) for (d in 1:D) { sortedData <- sort(data[,d]) t <- 1 for (i in 1:K) { while (t <= T && sortedData[t] <= levels[i]) {t <- t+1} if (t > 1) { IndMatrix[1:(t-1),(d-1)*K+i] <- 1 } } IndMatrix[,(d-1)*K+1:K] <- IndMatrix[rank(data[,d]),(d-1)*K+1:K] } if (B > 0) { pos.boot <- getPositions([email protected],B) for (b in 1:B) { IndMatrix[,(b*(K*D)+1):((b+1)*(K*D))] <- IndMatrix[pos.boot[,b],1:(K*D)] } } cfft <- mvfft(IndMatrix) .Object@values <- array(cfft[unique(round(T*frequencies/(2*pi)))+1,], dim=c(J,K,D,B+1)) .Object@values <- aperm(.Object@values, perm=c(1,3,2,4)) return(.Object) } ) clippedFT <- function( Y, frequencies=2*pi/lenTS(Y) * 0:(lenTS(Y)-1), levels = 0.5, isRankBased=TRUE, B = 0, l = 0, type.boot = c("none","mbb")) { Y <- timeSeriesValidator(Y) if (!(is.vector(frequencies) && is.numeric(frequencies))) { stop("'frequencies' needs to be specified as a vector of real numbers") } if (!(is.vector(levels) && is.numeric(levels))) { stop("'levels' needs to be specified as a vector of real numbers") } if (isRankBased && !(prod(levels >= 0) && prod(levels <=1))) { stop("'levels' need to be from [0,1] when isRankBased==TRUE") } frequencies <- frequenciesValidator(frequencies, lenTS(Y)) type.boot <- match.arg(type.boot, c("none","mbb"))[1] switch(type.boot, "none" = { bootPos <- movingBlocks(lenTS(Y),lenTS(Y))}, "mbb" = { bootPos <- movingBlocks(l,lenTS(Y))} ) freqRep <- new( Class = "ClippedFT", Y = Y, isRankBased = isRankBased, levels = sort(levels), B = B, positions.boot = bootPos, frequencies = frequencies ) return(freqRep) }
context("table_updateColumn") test_that("table_updateColumn() works with no data", { locationTbl <- get(data("wa_monitors_500")) testTbl <- table_updateColumn(locationTbl, "siteName") expect_equal(c(names(locationTbl),"siteName"), names(testTbl)) }) test_that("table_updateColumn() works with data", { locationTbl <- get(data("wa_monitors_500")) wa <- get(data("wa_airfire_meta")) wa_indices <- seq(5,65,5) wa_sub <- wa[wa_indices,] locationID <- table_getLocationID(locationTbl, wa_sub$longitude, wa_sub$latitude, distanceThreshold = 1000) locationData <- wa_sub$siteName testTbl <- table_updateColumn(locationTbl, "siteName", locationID, locationData) testTbl_indices <- table_getRecordIndex(testTbl, locationID) locationTbl_siteName <- testTbl$siteName[testTbl_indices] wa_siteName <- wa$siteName[wa_indices] mask <- !is.na(locationTbl_siteName) expect_equal(locationTbl_siteName[mask], wa_siteName[mask]) })
packageStatus <- function(lib.loc = NULL, repositories = NULL, method, type = getOption("pkgType"), ...) { newestVersion <- function(x) { vers <- package_version(x) max <- vers[1L] for (i in seq_along(vers)) if (max < vers[i]) max <- vers[i] which.max(vers == max) } if(is.null(lib.loc)) lib.loc <- .libPaths() if(is.null(repositories)) repositories <- contrib.url(getOption("repos"), type = type) char2df <- function(x) { y <- list() for(k in 1L:ncol(x)) y[[k]] <- x[,k] attr(y, "names") <- colnames(x) attr(y, "row.names") <- make.unique(y[[1L]]) class(y) <- "data.frame" y } y <- char2df(installed.packages(lib.loc = lib.loc, ...)) y[, "Status"] <- rep("ok", nrow(y)) z <- available.packages(repositories, method, ...) ztab <- table(z[,"Package"]) for(pkg in names(ztab)[ztab>1]){ zrow <- which(z[,"Package"] == pkg) znewest <- newestVersion(z[zrow,"Version"]) z <- z[-zrow[-znewest],] } z <- cbind(z, Status = "not installed") z[z[,"Package"] %in% y$Package, "Status"] <- "installed" z <- char2df(z) attr(z, "row.names") <- z$Package for(k in seq_len(nrow(y))){ pkg <- y[k, "Package"] if(pkg %in% z$Package) { if(package_version(y[k, "Version"]) < package_version(z[pkg, "Version"])) { y[k, "Status"] <- "upgrade" } } else { if(!(y[k, "Priority"] %in% "base")) y[k, "Status"] <- "unavailable" } } y$LibPath <- factor(y$LibPath, levels=lib.loc) y$Status <- factor(y$Status, levels=c("ok", "upgrade", "unavailable")) z$Repository <- factor(z$Repository, levels=repositories) z$Status <- factor(z$Status, levels=c("installed", "not installed")) retval <- list(inst=y, avail=z) class(retval) <- "packageStatus" retval } summary.packageStatus <- function(object, ...) { Libs <- levels(object$inst$LibPath) Repos <- levels(object$avail$Repository) Libs <- lapply(split(object$inst, object$inst$LibPath), function(x) tapply(x$Package, x$Status, function(x) sort(as.character(x)), simplify = FALSE)) Repos <- lapply(split(object$avail, object$avail$Repository), function(x) tapply(x$Package, x$Status, function(x) sort(as.character(x)), simplify = FALSE)) object$Libs <- Libs object$Repos <- Repos class(object) <- c("summary.packageStatus", "packageStatus") object } print.summary.packageStatus <- function(x, ...) { cat("\nInstalled packages:\n") cat( "-------------------\n") for(k in seq_along(x$Libs)) { cat("\n*** Library ", names(x$Libs)[k], "\n", sep = "") print(x$Libs[[k]], ...) } cat("\n\nAvailable packages:\n") cat( "-------------------\n") cat("(each package appears only once)\n") for(k in seq_along(x$Repos)){ cat("\n*** Repository ", names(x$Repos)[k], "\n", sep = "") print(x$Repos[[k]], ...) } invisible(x) } print.packageStatus <- function(x, ...) { cat("Number of installed packages:\n") print(table(x$inst$LibPath, x$inst$Status), ...) cat("\nNumber of available packages (each package counted only once):\n") print(table(x$avail$Repository, x$avail$Status), ...) invisible(x) } update.packageStatus <- function(object, lib.loc=levels(object$inst$LibPath), repositories=levels(object$avail$Repository), ...) { packageStatus(lib.loc=lib.loc, repositories=repositories) } upgrade <- function(object, ...) UseMethod("upgrade") upgrade.packageStatus <- function(object, ask = TRUE, ...) { update <- NULL old <- which(object$inst$Status == "upgrade") if(length(old) == 0L) { cat("Nothing to do!\n") return(invisible()) } askprint <- function(x) write.table(x, row.names = FALSE, col.names = FALSE, quote = FALSE, sep = " at ") haveasked <- character() if(ask) { for(k in old) { pkg <- object$inst[k, "Package"] tmpstring <- paste(pkg, as.character(object$inst[k, "LibPath"])) if(tmpstring %in% haveasked) next haveasked <- c(haveasked, tmpstring) cat("\n") cat(pkg, ":\n") askprint(object$inst[k,c("Version", "LibPath")]) askprint(object$avail[pkg, c("Version", "Repository")]) answer <- askYesNo("Update?") if(is.na(answer)) { cat("cancelled by user\n") return(invisible()) } if(isTRUE(answer)) update <- rbind(update, c(pkg, as.character(object$inst[k, "LibPath"]), as.character(object$avail[pkg, "Repository"]))) } } else { pkgs <- object$inst[ ,"Package"] update <- cbind(pkgs, as.character(object$inst[ , "LibPath"]), as.character(object$avail[pkgs, "Repository"])) update <- update[old, , drop = FALSE] } if(length(update)) { for(repo in unique(update[,3])) { ok <- update[, 3] == repo install.packages(update[ok, 1], update[ok, 2], contriburl = repo, ...) } } }
toleranceBound <- function(psi, gamma, N) { zg <- qnorm(1-gamma) zp <- qnorm(psi) a <- 1 - zg^2/(2*N-2) b <- zp^2 - zg^2/N k1 <- (zp + sqrt(zp^2-a*b))/a k1 }
initialize_states <- function(num.states = NULL, num.samples = NULL, method = c("random", "KmeansPLC", "KmeansFLC", "KmeansPLCFLC", "KmeansFLCPLC"), LCs = list(PLC = NULL, FLC = NULL)) { if (is.null(num.states)) { stop("You must provide the number of clusters.") } if (is.null(num.samples)) { if (is.null(unlist(LCs))) { stop("You must either provide the total number of samples or data 'LCs'.") } else { num.samples <- nrow(LCs$PLC) } } method <- match.arg(method) if (method == "random") { states <- sample.int(n = num.states, size = num.samples, replace = TRUE) states[sample.int(num.samples, num.states, replace = FALSE)] <- seq_len(num.states) } else if (method == "KmeansPLC") { states <- kmeanspp(LCs$PLC, num.states, iter.max = 100, nstart = 10)$cluster } else if (method == "KmeansFLC") { states <- kmeanspp(LCs$FLC, num.states, iter.max = 100, nstart = 10)$cluster } else if (any(method == c("KmeansPLCFLC", "KmeansFLCPLC"))) { first.stage.num.states <- ceiling(num.states^(1/3)) second.stage.num.states <- floor(num.states/first.stage.num.states) second.stage.last.run.num.states <- num.states - first.stage.num.states * second.stage.num.states + second.stage.num.states if (method == "KmeansFLCPLC") { first.stage.data <- rbind(LCs$FLC) second.stage.data <- rbind(LCs$PLC) } else { first.stage.data <- rbind(LCs$PLC) second.stage.data <- rbind(LCs$FLC) } first.stage.labels <- kmeanspp(first.stage.data, first.stage.num.states, iter.max = 100, nstart = 10)$cluster second.stage.labels <- rep(NA, num.samples) for (ll in seq_len(first.stage.num.states - 1)) { second.stage.labels[first.stage.labels == ll] <- (ll - 1) * first.stage.num.states + kmeanspp(second.stage.data[first.stage.labels == ll,], second.stage.num.states, iter.max = 100, nstart = 10)$cluster } second.stage.labels[first.stage.labels == first.stage.num.states] = (first.stage.num.states - 1) * first.stage.num.states + kmeanspp(second.stage.data[first.stage.labels == first.stage.num.states,], second.stage.last.run.num.states, iter.max = 100, nstart = 10)$cluster states <- second.stage.labels } invisible(states) }
ggscatterstats <- function(data, x, y, type = "parametric", conf.level = 0.95, bf.prior = 0.707, bf.message = TRUE, tr = 0.2, k = 2L, results.subtitle = TRUE, label.var = NULL, label.expression = NULL, marginal = TRUE, xfill = " yfill = " point.args = list( size = 3, alpha = 0.4, stroke = 0, na.rm = TRUE ), point.width.jitter = 0, point.height.jitter = 0, point.label.args = list(size = 3, max.overlaps = 1e6), smooth.line.args = list( size = 1.5, color = "blue", method = "lm", formula = y ~ x, na.rm = TRUE ), xsidehistogram.args = list( fill = xfill, color = "black", na.rm = TRUE ), ysidehistogram.args = list( fill = yfill, color = "black", na.rm = TRUE ), xlab = NULL, ylab = NULL, title = NULL, subtitle = NULL, caption = NULL, ggtheme = ggstatsplot::theme_ggstatsplot(), ggplot.component = NULL, output = "plot", ...) { c(x, y) %<-% c(ensym(x), ensym(y)) data %<>% filter(!is.na({{ x }}), !is.na({{ y }})) if (results.subtitle) { type <- stats_type_switch(type) .f.args <- list( data = data, x = {{ x }}, y = {{ y }}, conf.level = conf.level, k = k, tr = tr, bf.prior = bf.prior, top.text = caption ) subtitle_df <- eval_f(corr_test, !!!.f.args, type = type) subtitle <- if (!is.null(subtitle_df)) subtitle_df$expression[[1]] if (type == "parametric" && bf.message) { caption_df <- eval_f(corr_test, !!!.f.args, type = "bayes") caption <- if (!is.null(caption_df)) caption_df$expression[[1]] } } if (output != "plot") { return(switch(output, "caption" = caption, subtitle )) } pos <- position_jitter(width = point.width.jitter, height = point.height.jitter) plot <- ggplot(data, mapping = aes({{ x }}, {{ y }})) + exec(geom_point, position = pos, !!!point.args) + exec(geom_smooth, level = conf.level, !!!smooth.line.args) if (!quo_is_null(enquo(label.var))) { label.var <- ensym(label.var) if (!quo_is_null(enquo(label.expression))) { label_data <- filter(data, !!enexpr(label.expression)) } else { label_data <- data } plot <- plot + exec( ggrepel::geom_label_repel, data = label_data, mapping = aes(label = {{ label.var }}), min.segment.length = 0, position = pos, !!!point.label.args ) } plot <- plot + labs( x = xlab %||% as_name(x), y = ylab %||% as_name(y), title = title, subtitle = subtitle, caption = caption ) + ggtheme + ggplot.component if (marginal) { check_if_installed("ggside", minimum_version = "0.1.2") plot <- plot + exec(ggside::geom_xsidehistogram, mapping = aes(y = after_stat(count)), !!!xsidehistogram.args) + exec(ggside::geom_ysidehistogram, mapping = aes(x = after_stat(count)), !!!ysidehistogram.args) + ggside::scale_ysidex_continuous() + ggside::scale_xsidey_continuous() } plot } grouped_ggscatterstats <- function(data, ..., grouping.var, output = "plot", plotgrid.args = list(), annotation.args = list()) { data %<>% grouped_list({{ grouping.var }}) p_ls <- purrr::pmap( .l = list(data = data, title = names(data), output = output), .f = ggstatsplot::ggscatterstats, ... ) if (output == "plot") p_ls <- combine_plots(p_ls, plotgrid.args, annotation.args) p_ls }
setClassUnion(name = "spatialClasses", members = c("RasterLayer", "RasterLayerSparse", "RasterStack", "RasterBrick", "SpatialLines", "SpatialLinesDataFrame", "SpatialPixels", "SpatialPixelsDataFrame", "SpatialPoints", "SpatialPointsDataFrame", "SpatialPolygons", "SpatialPolygonsDataFrame") )
gapDetect <- function() { isTrueGap <- function(oneListName) { oneList <- get(oneListName, envir = KTSEnv) listNames <- names(oneList) if (is.null(listNames)) { result <- NA } else if (length(listNames) != 6) { result <- NA } else if (listNames[1] == "gaps" & listNames[2] == "tsIni" & listNames[3] == "tsEnd" & listNames[4] == "samPerMin" & listNames[5] == "tsLength" & listNames[6] == "tsName") { result <- oneListName } else { result <- NA } result } listsInGE <- getClassEnvir(classGet = "list", envir = KTSEnv) if (length(listsInGE) == 0) { loadedGaps <- NULL } else { loadedGaps <- apply(as.matrix(listsInGE), 1, FUN = isTrueGap) loadedGaps <- loadedGaps[which(is.na(loadedGaps) == FALSE)] if (length(loadedGaps) == 0) { loadedGaps <- NULL } } loadedGaps }
set.seed(888) data <- dreamer_data_linear( n_cohorts = c(20, 20, 20), dose = c(0, 3, 10), b1 = 1, b2 = 3, sigma = 5 ) output <- dreamer_mcmc( data = data, n_adapt = 1e3, n_burn = 1e3, n_iter = 1e4, n_chains = 2, silent = FALSE, mod_linear = model_linear( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, shape = 1, rate = .001, w_prior = 1 / 2 ), mod_quad = model_quad( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, mu_b3 = 0, sigma_b3 = 1, shape = 1, rate = .001, w_prior = 1 / 2 ) ) diagnostics(output) diagnostics(output$mod_quad)
species.richness.cv <- function(dataset.all.species, landwatermask, fold=5, loocv.limit=10, distances=3:10, weight=0.5, dimension, shift, resolution=1, upperbound, all.species=-1, silent=TRUE, do.parallel=FALSE){ if (all.species[1]==-1){ all.species <- unique(dataset.all.species$speciesID) } else { all.species.tmp <- c() for (species in all.species){ if (length(which(dataset.all.species$speciesID == species)==TRUE) > 0){ all.species.tmp <- c(all.species.tmp, species) } } all.species <- all.species.tmp } number.of.species <- length(all.species) distances <- c(min(distances)-1, distances) message <- "" species.richness.weighted.cv <- matrix(0,dimension[1],dimension[2]) requireNamespace("foreach") if (do.parallel){ if(!foreach::getDoParRegistered()) { if (!silent) {cat("No parallel backend detected! Problem will be solved sequential.\n",sep="")} foreach::registerDoSEQ() } else { if (!silent) {cat("Parallel backend detected.\n",sep="")} } species.richness.weighted.cv <- foreach::foreach(species=all.species, .combine="+", .inorder=FALSE) %dopar% { species.richness.weighted.one.species <- matrix(0,dimension[1],dimension[2]) species.range.all.subs <- array(0, dim=c(length(distances),dimension[1],dimension[2])) dataset.one.species <- extract.species(dataset.all.species, species) number.of.occurrences <- dim(dataset.one.species)[1] if (number.of.occurrences > 2){ subsamples <- generate.subsamples(number.of.occurrences, fold, loocv.limit) for (distance in distances){ for (subsample.id in 1:dim(subsamples)[1]){ subsample <- subsamples[subsample.id,] subsample <- subsample[which(subsample != 0)] dataset.one.subsample <- dataset.one.species[subsample,] species.range.sub <- species.range(dataset.one.subsample, distance, dimension, shift, resolution, landwatermask, upperbound, cross.validation=TRUE) species.range.all.subs[which(distance == distances),,] <- species.range.all.subs[which(distance == distances),,] + species.range.sub } species.range.sub.tmp <- species.range.all.subs[which(distance == distances),,] / matrix(dim(subsamples)[1],dimension[1],dimension[2]) species.range.sub.tmp[which(is.na(species.range.sub.tmp)==TRUE)] <- 0 species.range.all.subs[which(distance == distances),,] <- species.range.sub.tmp if (which(distance==distances)==1){ species.richness.weighted.one.species <- species.range.all.subs[1,,] } else { species.richness.weighted.one.species <- species.richness.weighted.one.species + (distance^(-weight) * (species.range.all.subs[which(distance == distances),,] - species.range.all.subs[which(distance == distances)-1,,])) } } if (!silent){ cat(rep("\b", nchar(message)),sep="") message <- paste("Species ",which(species==all.species)," of ",number.of.species," done!", sep="") cat(message) flush.console() } } return(species.richness.weighted.one.species) } } else { for (species in all.species){ species.richness.weighted.one.species <- matrix(0,dimension[1],dimension[2]) species.range.all.subs <- array(0, dim=c(length(distances),dimension[1],dimension[2])) dataset.one.species <- extract.species(dataset.all.species, species) number.of.occurrences <- dim(dataset.one.species)[1] if (number.of.occurrences > 2){ subsamples <- generate.subsamples(number.of.occurrences, fold, loocv.limit) for (distance in distances){ for (subsample.id in 1:dim(subsamples)[1]){ subsample <- subsamples[subsample.id,] subsample <- subsample[which(subsample != 0)] dataset.one.subsample <- dataset.one.species[subsample,] species.range.sub <- species.range(dataset.one.subsample, distance, dimension, shift, resolution, landwatermask, upperbound, cross.validation=TRUE) species.range.all.subs[which(distance == distances),,] <- species.range.all.subs[which(distance == distances),,] + species.range.sub } species.range.sub.tmp <- species.range.all.subs[which(distance == distances),,] / matrix(dim(subsamples)[1],dimension[1],dimension[2]) species.range.sub.tmp[which(is.na(species.range.sub.tmp)==TRUE)] <- 0 species.range.all.subs[which(distance == distances),,] <- species.range.sub.tmp if (which(distance==distances)==1){ species.richness.weighted.one.species <- species.range.all.subs[1,,] } else { species.richness.weighted.one.species <- species.richness.weighted.one.species + (distance^(-weight) * (species.range.all.subs[which(distance == distances),,] - species.range.all.subs[which(distance == distances)-1,,])) } } species.richness.weighted.cv <- species.richness.weighted.cv + species.richness.weighted.one.species if (!silent){ cat(rep("\b", nchar(message)),sep="") message <- paste("Species ",which(species==all.species)," of ",number.of.species," done!", sep="") cat(message) flush.console() } } } } if (!silent) cat("\n") return(species.richness.weighted.cv) }
sim2.bd.mrca.reconst <- function(mrca,numbsim,lambda,mu,frac,K){ treearray<- list() for (j in 1:numbsim) { temp <- 0 while (temp == 0) { phy <- 0 phy <- sim2.bd.mrca(mrca,1,lambda,mu,K) phy <- reconstructed.age(phy,frac) if (class(phy[[1]])=="phylo"){ if (max(branching.times.complete(phy[[1]]))>(mrca-0.0001)){ treearray <- c(treearray,list(phy[[1]])) temp = 1 } } } } treearray }
PeakSegFPOP_dir <- structure(function (problem.dir, penalty.param, db.file=NULL ){ megabytes <- NULL if(!( is.character(problem.dir) && length(problem.dir)==1 && dir.exists(problem.dir))){ stop( "problem.dir=", problem.dir, " must be the name of a directory", " containing a file named coverage.bedGraph") } if(!( (is.numeric(penalty.param) || is.character(penalty.param)) && length(penalty.param)==1 && (!is.na(penalty.param)) )){ stop("penalty.param must be numeric or character, length 1, not missing") } penalty.str <- paste(penalty.param) prob.cov.bedGraph <- file.path(problem.dir, "coverage.bedGraph") pre <- paste0(prob.cov.bedGraph, "_penalty=", penalty.str) penalty_segments.bed <- paste0(pre, "_segments.bed") penalty_loss.tsv <- paste0(pre, "_loss.tsv") penalty_timing.tsv <- paste0(pre, "_timing.tsv") already.computed <- tryCatch({ timing <- fread( file=penalty_timing.tsv, col.names=c("penalty", "megabytes", "seconds")) first.seg.line <- fread.first(penalty_segments.bed, col.name.list$segments) last.seg.line <- fread.last(penalty_segments.bed, col.name.list$segments) first.cov.line <- fread.first(prob.cov.bedGraph, col.name.list$coverage) last.cov.line <- fread.last(prob.cov.bedGraph, col.name.list$coverage) penalty.loss <- fread(file=penalty_loss.tsv, col.names=col.name.list$loss) nrow.ok <- nrow(timing)==1 && nrow(penalty.loss)==1 && nrow(first.seg.line)==1 && nrow(last.seg.line)==1 && nrow(first.cov.line)==1 && nrow(last.cov.line)==1 loss.segments.consistent <- first.seg.line$chromEnd-last.seg.line$chromStart == penalty.loss$bases start.ok <- first.cov.line$chromStart == last.seg.line$chromStart end.ok <- last.cov.line$chromEnd == first.seg.line$chromEnd nrow.ok && loss.segments.consistent && start.ok && end.ok }, error=function(e){ FALSE }) if(!already.computed){ seconds <- system.time({ result <- PeakSegFPOP_file(prob.cov.bedGraph, penalty.str, db.file) })[["elapsed"]] timing <- data.table( penalty=as.numeric(penalty.str), megabytes=result$megabytes, seconds) write.table( timing, penalty_timing.tsv, row.names=FALSE, col.names=FALSE, quote=FALSE, sep="\t") penalty.loss <- fread(file=penalty_loss.tsv, col.names=col.name.list$loss) } penalty.segs <- fread( file=penalty_segments.bed, col.names=col.name.list$segments) L <- list( segments=penalty.segs, loss=data.table( penalty.loss, timing[, list(megabytes, seconds)])) class(L) <- c("PeakSegFPOP_dir", "list") L }, ex=function(){ data(Mono27ac, package="PeakSegDisk", envir=environment()) data.dir <- file.path( tempfile(), "H3K27ac-H3K4me3_TDHAM_BP", "samples", "Mono1_H3K27ac", "S001YW_NCMLS", "problems", "chr11-60000-580000") dir.create(data.dir, recursive=TRUE, showWarnings=FALSE) write.table( Mono27ac$coverage, file.path(data.dir, "coverage.bedGraph"), col.names=FALSE, row.names=FALSE, quote=FALSE, sep="\t") (fit <- PeakSegDisk::PeakSegFPOP_dir(data.dir, 1952.6)) summary(fit) ann.colors <- c( noPeaks=" peakStart=" peakEnd=" peaks=" library(ggplot2) lab.min <- Mono27ac$labels[1, chromStart] lab.max <- Mono27ac$labels[.N, chromEnd] plist <- coef(fit) gg <- ggplot()+ theme_bw()+ geom_rect(aes( xmin=chromStart/1e3, xmax=chromEnd/1e3, ymin=-Inf, ymax=Inf, fill=annotation), color="grey", alpha=0.5, data=Mono27ac$labels)+ scale_fill_manual("label", values=ann.colors)+ geom_step(aes( chromStart/1e3, count), color="grey50", data=Mono27ac$coverage)+ geom_segment(aes( chromStart/1e3, mean, xend=chromEnd/1e3, yend=mean), color="green", size=1, data=plist$segments)+ geom_vline(aes( xintercept=chromEnd/1e3, linetype=constraint), color="green", data=plist$changes)+ scale_linetype_manual( values=c( inequality="dotted", equality="solid")) gg gg+ coord_cartesian(xlim=c(lab.min, lab.max)/1e3, ylim=c(0, 10)) (gg <- plot(fit)) gg+ geom_step(aes( chromStart, count), color="grey50", data=Mono27ac$coverage) }) coef.PeakSegFPOP_dir <- function(object, ...){ chromEnd <- status <- NULL object$changes <- object$segments[, list( type="segmentation", constraint=ifelse( diff(mean)==0, "equality", "inequality"), chromEnd=chromEnd[-1])] object$peaks <- data.table( type="peaks", object$segments[status=="peak"]) object$segments <- data.table(type="segmentation", object$segments) object } summary.PeakSegFPOP_dir <- function(object, ...){ object$loss } plot.PeakSegFPOP_dir <- function(x, ...){ chromStart <- type <- chromEnd <- constraint <- NULL if(!requireNamespace("ggplot2")){ stop("install ggplot2 for plotting functionality") } L <- coef(x) ggplot2::ggplot()+ ggplot2::theme_bw()+ ggplot2::scale_color_manual(values=c( data="grey50", peaks="deepskyblue", segmentation="green" ))+ ggplot2::geom_segment(ggplot2::aes( chromStart+0.5, mean, color=type, xend=chromEnd+0.5, yend=mean), size=1, data=L$segments)+ ggplot2::geom_segment(ggplot2::aes( chromStart+0.5, Inf, color=type, xend=chromEnd+0.5, yend=Inf), size=2, data=L$peaks)+ ggplot2::geom_point(ggplot2::aes( chromStart+0.5, Inf, color=type), shape=1, size=2, data=L$peaks)+ ggplot2::geom_vline(ggplot2::aes( xintercept=chromEnd+0.5, color=type, linetype=constraint), data=L$changes)+ ggplot2::scale_linetype_manual( values=c( inequality="dotted", equality="solid"))+ ggplot2::xlab("position") }
quantile.ff <- function(x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, ...){ N <- length(x) nms <- if (names) paste(100*probs, "%", sep="") NULL qnt <- 1L + as.integer(probs * (N-1)) idx <- ffordered(x) ql <- x[idx[qnt]] names(ql) <- nms ql }
context("generate_args_setup_script") describe("generate_args_setup_script", { source("helper.R") it("no env", { script <- scriptexec::generate_args_setup_script() length <- length(script) expect_equal(length, 0) }) it("multiple env vars", { script <- scriptexec::generate_args_setup_script(c("t1", "t2")) length <- length(script) expect_equal(length, 2) prefix <- get_os_string("", "SET ") expected_result <- c(paste(prefix, "ARG1=t1", sep = ""), paste(prefix, "ARG2=t2", sep = "")) expect_equal(expected_result, script) }) })
logLikHessian <- function(model){ hess <- hessian(func = logLikH, x = model$theta, g = model$g, X0 = model$X0, Z0 = model$Z0, Z = model$Z, mult = model$mult, beta0 = model$beta0, Delta = model$Delta, k_theta_g = model$k_theta_g, theta_g = model$theta_g, logN = model$logN) if(!isSymmetric(hess)) hess <- (hess + t(hess))/2 return(hess) } C_GP_ci <- function(model, B = 100) { ll_func <- function(logtheta) logLikH(X0 = model$X0, Z0 = model$Z0, Z = model$Z, mult = model$mult, theta = exp(logtheta), g = model$g, covtype = model$covtype, logN = TRUE) hess <- hessian(ll_func, log(model$theta)) if(!isSymmetric(hess)) hess <- (hess + t(hess))/2 SIG_THETA <- -solve(hess) R <- chol(SIG_THETA) sn_draws <- matrix(rnorm(B*ncol(SIG_THETA)), ncol = B) t_draws <- t(t(R) %*% sn_draws) lmodeltheta <- log(model$theta) t_draws <- t(apply(t_draws, 1, function(x) x + lmodeltheta)) eigen_draws <- matrix(NA, nrow = B, ncol = length(model$theta)) for (b in 1:B) { modeli <- model modeli$theta <- exp(t_draws[b,]) modeli <- rebuild(modeli) C <- C_GP(modeli) if (sum(is.nan(C$mat)) > 0) { warning("NaN Encountered in C_GP.") } else { eigen_draws[b,] <- eigen(C$mat)$values } } return(list(ci = apply(eigen_draws, 2, quantile, probs = c(0.025, 0.975)), eigen_draws = eigen_draws)) }
library(ontologyIndex) library(ontologyPlot) data(go) genes <- list( A0A087WUJ7=c("GO:0004553", "GO:0005975"), CTAGE8=c("GO:0016021"), IFRD2=c("GO:0003674", "GO:0005515", "GO:0005634"), OTOR=c("GO:0001502", "GO:0005576", "GO:0007605"), TAMM41=c("GO:0004605", "GO:0016024", "GO:0031314", "GO:0032049"), ZZEF1=c("GO:0005509", "GO:0008270") ) plot_annotation_grid(go, term_sets=genes)
context("Check the equivalence between numeric SOM and relational SOM for a four-dimensional numeric dataset and the square Euclidean distance used as a dissimilarity") test_that("'euclidean' and 'relational' give identical results on toy data", { set.seed(123) nsom <- trainSOM(iris[1:30, 1:4], init.proto = "obs", scaling = "none", maxit = 50) set.seed(123) iris.dist <- dist(iris[1:30, 1:4], method = "euclidian", diag = TRUE, upper = TRUE)^2 rsom <- trainSOM(x.data = iris.dist, type = "relational", scaling = "none", maxit = 50) expect_equal(nsom$clustering, rsom$clustering) })
`MVP.FaSTLMM.LL` <- function(pheno, snp.pool, X0=NULL, ncpus=2){ y=pheno p=0 deltaExpStart = -5 deltaExpEnd = 5 snp.pool=snp.pool[,] if(!is.null(snp.pool)&&var(snp.pool)==0){ deltaExpStart = 100 deltaExpEnd = deltaExpStart } if(is.null(X0)) { X0 = matrix(1, nrow(snp.pool), 1) } X=X0 K.X.svd <- svd(snp.pool) d=K.X.svd$d d=d[d>1e-08] d=d^2 U1=K.X.svd$u U1=U1[,1:length(d)] if(is.null(dim(U1))) U1=matrix(U1,ncol=1) n=nrow(U1) U1TX=crossprod(U1,X) U1TY=crossprod(U1,y) yU1TY <- y-U1%*%U1TY XU1TX<- X-U1%*%U1TX IU = -tcrossprod(U1) diag(IU) = rep(1,n) + diag(IU) IUX=crossprod(IU,X) IUY=crossprod(IU,y) delta.range <- seq(deltaExpStart,deltaExpEnd,by=0.1) m <- length(delta.range) beta.optimize.parallel <- function(ii){ delta <- exp(delta.range[ii]) beta1=0 for(i in 1:length(d)){ one=matrix(U1TX[i,], nrow=1) beta=crossprod(one,(one/(d[i]+delta))) beta1= beta1+beta } beta2=0 for(i in 1:nrow(U1)){ one=matrix(IUX[i,], nrow=1) beta = crossprod(one) beta2= beta2+beta } beta2<-beta2/delta beta3=0 for(i in 1:length(d)){ one1=matrix(U1TX[i,], nrow=1) one2=matrix(U1TY[i,], nrow=1) beta=crossprod(one1,(one2/(d[i]+delta))) beta3= beta3+beta } beta4=0 for(i in 1:nrow(U1)){ one1=matrix(IUX[i,], nrow=1) one2=matrix(IUY[i,], nrow=1) beta=crossprod(one1,one2) beta4= beta4+beta } beta4<-beta4/delta zw1 <- ginv(beta1+beta2) zw2=(beta3+beta4) beta=crossprod(zw1,zw2) part11<-n*log(2*3.14) part12<-0 for(i in 1:length(d)){ part12_pre=log(d[i]+delta) part12= part12+part12_pre } part13<- (nrow(U1)-length(d))*log(delta) part1<- -1/2*(part11+part12+part13) part21<-nrow(U1) part221=0 for(i in 1:length(d)){ one1=U1TX[i,] one2=U1TY[i,] part221_pre=(one2-one1%*%beta)^2/(d[i]+delta) part221 = part221+part221_pre } part222=0 for(i in 1:n){ one1=XU1TX[i,] one2=yU1TY[i,] part222_pre=((one2-one1%*%beta)^2)/delta part222= part222+part222_pre } part22<-n*log((1/n)*(part221+part222)) part2<- -1/2*(part21+part22) LL<-part1+part2 part1<-0 part2<-0 return(list(beta=beta,delta=delta,LL=LL)) } llresults <- lapply(1:m, beta.optimize.parallel) for(i in 1:m){ if(i == 1){ beta.save = llresults[[i]]$beta delta.save = llresults[[i]]$delta LL.save = llresults[[i]]$LL }else{ if(llresults[[i]]$LL > LL.save){ beta.save = llresults[[i]]$beta delta.save = llresults[[i]]$delta LL.save = llresults[[i]]$LL } } } beta=beta.save delta=delta.save LL=LL.save sigma_a1=0 for(i in 1:length(d)){ one1=matrix(U1TX[i,], ncol=1) one2=matrix(U1TY[i,], nrow=1) sigma_a1_pre=(one2-crossprod(one1,beta))^2/(d[i]+delta) sigma_a1= sigma_a1+sigma_a1_pre } sigma_a2=0 for(i in 1:nrow(U1)){ one1=matrix(IUX[i,], ncol=1) one2=matrix(IUY[i,], nrow=1) sigma_a2_pre<-(one2-crossprod(one1,beta))^2 sigma_a2= sigma_a2+sigma_a2_pre } sigma_a2<-sigma_a2/delta sigma_a<- 1/n*(sigma_a1+sigma_a2) sigma_e<-delta*sigma_a return(list(beta=beta, delta=delta, LL=LL, vg=sigma_a, ve=sigma_e)) }
cache_runion <- R6::R6Class( "cache_runion", cloneable = FALSE, public = list( initialize = function(rschedules, rdates, exdates) cache_runion__initialize(self, private, rschedules, rdates, exdates), get_events = function() cache_runion__get_events(self, private) ), private = list( rschedules = list(), rdates = new_date(), exdates = new_date(), events = NULL, built = FALSE, cache_build = function() cache_runion__cache_build(self, private) ) ) cache_runion__cache_build <- function(self, private) { if (all_are_rrules(private$rschedules)) { cache_runion__cache_build_rrules(self, private) } else { cache_runion__cache_build_impl(self, private) } } cache_runion__cache_build_impl <- function(self, private) { rschedules <- private$rschedules rdates <- private$rdates exdates <- private$exdates rschedules_events <- map(rschedules, rschedule_events) if (!vec_is_empty(rdates)) { rschedules_events <- c(rschedules_events, list(rdates)) } events <- vec_unchop(rschedules_events, ptype = new_date()) events <- vec_unique(events) events <- vec_sort(events) if (!vec_is_empty(exdates)) { events <- vec_set_diff(events, exdates) } private$events <- events private$built <- TRUE invisible(self) } cache_runion__cache_build_rrules <- function(self, private) { rrules <- private$rschedules rdates <- private$rdates exdates <- private$exdates call <- cache_runion_build_call(rrules, rdates, exdates) events <- almanac_global_context$call(call) events <- parse_js_date(events) private$events <- events private$built <- TRUE invisible(self) } cache_runion_build_call <- function(rrules, rdates, exdates) { body <- cache_runion_build_call_body(rrules, rdates, exdates) glue2(" function() { [[body]] return ruleset.all() } ") } cache_runion_build_call_body <- function(rrules, rdates, exdates) { body <- "var ruleset = new rrule.RRuleSet()" for(rrule in rrules) { rules <- rrule$rules body <- append_rrule(body, rules) } for(i in seq_along(rdates)) { rdate <- rdates[i] body <- append_rdate(body, rdate) } for(i in seq_along(exdates)) { exdate <- exdates[i] body <- append_exdate(body, exdate) } body } cache_runion__get_events <- function(self, private) { if (!private$built) { private$cache_build() } private$events } cache_runion__initialize <- function(self, private, rschedules, rdates, exdates) { private$rschedules <- rschedules private$rdates <- rdates private$exdates <- exdates self }
condNumLimit <- 1e7 calcCondNum <- function(hess) { d <- try(svd(hess, nu=0, nv=0)$d) if (is(d, "try-error")) return(1e16) if (all(d > 0)) { max(d)/min(d) } else { 1e16 } } MCphase <- function(modelGen, reps=500, verbose=TRUE, maxCondNum) { emcycles <- rep(NA, reps) condnum <- rep(NA, reps) est <- matrix() for (rep in 1:reps) { set.seed(rep) model <- modelGen() em <- model$compute getCondNum <- list(mxComputeOnce('fitfunction', 'information', 'meat'), mxComputeReportDeriv()) plan <- mxComputeSequence(c(em, getCondNum)) model$compute <- plan fit <- try(mxRun(model, silent=TRUE, suppressWarnings = TRUE), silent=TRUE) if (inherits(fit, "try-error")) { print(fit) condnum[rep] <- 1e16 next } else if (fit$output$status$code != 0) { print(paste("status code", fit$output$status$code)) next } emstat <- fit$compute$steps[[1]]$output emcycles[rep] <- emstat$EMcycles condnum[rep] <- calcCondNum(fit$output$hessian) par <- omxGetParameters(fit) if (any(is.na(par))) { print(par) condnum[rep] <- 1e16 next } if (verbose) print(paste(c(rep, emstat, round(condnum[rep])), collapse=" ")) if (all(dim(est) == 1)) { est <- matrix(NA, length(par), reps) rownames(est) <- names(par) } est[,rep] <- par } list(condnum=condnum, est=est) } getMCdata <- function(name, modelGen, correct, recompute=FALSE, reps=500, envir=parent.frame(), maxCondNum) { if (missing(maxCondNum)) stop("Provide a maxCondNum") correct <- c(correct) rda <- paste("data/", name, ".rda", sep="") if (!recompute) { if (file.exists(rda)) { load(rda, envir=envir) } else if (file.exists(paste("models/enormous/", rda, sep=""))) { load(paste("models/enormous/", rda, sep=""), envir=envir) } else { recompute <- TRUE } } if (recompute) { got <- MCphase(modelGen, reps, maxCondNum=maxCondNum) mcMask <- rep(TRUE, reps) if (!is.na(maxCondNum)) { mcMask <- !is.na(got$condnum) & got$condnum < maxCondNum } est <- got$est mcEst <- apply(est[,mcMask], 1, mean) bias <- mcEst - correct if (reps < length(correct)) stop("Not enough replications to estimate the Hessian") mcCov <- cov(t(est)) mcHessian <- solve(mcCov/2) mcBias <- bias mcSE <- sqrt(2*diag(solve(mcHessian))) save(mcMask, mcBias, mcSE, mcHessian, file=rda) if (!is.na(maxCondNum)) { cat(paste("Note:", sum(!mcMask), "excluded due to condition number\n")) } cat("Monte-Carlo study complete. Proceeding with accuracy benchmark.\n") load(rda, envir=envir) } } mvn_KL_D <- function(invH, H) { pcm <- solve(mcHessian) .5*(tr(invH %*% pcm) - nrow(H) - log(det(pcm)/det(H))) } summarizeInfo1 <- function(condnum, emstat=list(EMcycles=NA, semProbeCount=NA), H, standardErrors, cputime, method) { numReturn <- 6 if (!is.na(condnum) && condnum > condNumLimit) return(rep(NA, numReturn)) normH <- NA if (!is.null(H) && all(eigen(H, only.values =TRUE)$val > 0)) { iH <- try(solve(H), silent=TRUE) if (is(iH, "try-error")) return(rep(NA, numReturn)) normH <- mvn_KL_D(H, iH) } normRd <- NA rd <- (standardErrors - mcSE) / mcSE if (!is.na(condnum)) { if (all(is.finite(rd))) { normRd <- norm(rd, "2") } else { print(paste("Method", method,"condition number", condnum, "but some SEs are NA")) condnum <- NA } } got <- c(cputime, emstat$EMcycles, emstat$semProbeCount, condnum, normH, normRd) if (length(got) != numReturn) { print('wrong length') print(got) return(rep(NA, numReturn)) } else { return(got) } } summarizeInfo <- function(fitModel, method) { emstat <- list(EMcycles=NA, semProbeCount=NA) if (length(intersect(c('mr', 'tian', 'agile'), method))) { emstat <- fitModel$compute$steps[[1]]$output } if (fitModel$output$status$code != 0) { summarizeInfo1(NA, emstat, NULL, NULL, fitModel$output$cpuTime, method) return() } H <- fitModel$output$hessian if (is.null(H)) H <- fitModel$output$ihessian condnum <- calcCondNum(H) H <- NULL if (!is.na(condnum) && condnum < 1e12) { if (!is.null(fitModel$output[['hessian']])) { H <- fitModel$output[['hessian']] } if (is.null(H) && !is.null(fitModel$output[['ihessian']])) { H <- solve(fitModel$output[['ihessian']]) } } summarizeInfo1(condnum, emstat, H, fitModel$output$standardErrors, fitModel$output$cpuTime, method) } summarizeDetail <- function(detail, maxCondNum=NA) { mask <- rep(TRUE, dim(detail)[3]) if (!is.na(maxCondNum)) { mask <- apply(is.na(detail['condnum',,]) | detail['condnum',,] < maxCondNum, 2, all) detail <- detail[,,mask] } excluded <- 0 if (dim(detail)[3] > 1) { excluded <- apply(detail['condnum',,], 1, function (c) sum(is.na(c))) } print(round(rbind(excluded, apply(detail, 1:2, mean, na.rm=TRUE)), 4)) cat(paste(" N=", sum(mask), "\n", sep="")) } testPhase <- function(modelGen, reps = 500, verbose=TRUE, methods=c('agile', 'meat')) { rec <- c('cputime', 'emcycles', 'probes', 'condnum', 'hNorm', 'rdNorm') detail <- array(NA, dim=c(length(rec), length(methods), reps), dimnames=list(rec, methods, NULL)) for (rep in 1:reps) { warnings() set.seed(rep) model <- modelGen() em <- model$compute fit <- NULL fitfun <- c() if (is(em$mstep, "MxComputeSequence")) { fitfun <- sapply(em$mstep$steps, function(step) step$fitfunction) } else { fitfun <- em$mstep$fitfunction } sem <- intersect(c('mr', 'tian'), methods) if (length(sem)) { em$accel <- "" em$tolerance <- 1e-11 em$maxIter <- 750L for (semType in sem) { em$information <- "mr1991" em$infoArgs <- list(fitfunction=fitfun, semMethod=semType, semTolerance=sqrt(1e-6)) plan <- mxComputeSequence(list( em, mxComputeStandardError(), mxComputeReportDeriv() )) model$compute <- plan fit <- try(mxRun(model, silent=TRUE, suppressWarnings=TRUE), silent=TRUE) if (inherits(fit, "try-error")) { print(paste("error in", semType)) print(fit) next } else if (fit$output$status$code != 0) { print(paste("status code", fit$output$status$code, "without acceleration")) break } else { detail[,semType,rep] <- summarizeInfo(fit, semType) } } } if (is.null(fit) || inherits(fit, "try-error")) { em$tolerance <- 1e-11 model$compute <- em fit <- try(mxRun(model, silent=TRUE, suppressWarnings = TRUE), silent=TRUE) if (inherits(fit, "try-error")) { print(paste("error finding MLE")) print(fit) next } else if (fit$output$status$code != 0) { print(paste("status code", fit$output$status$code)) next } } if (length(intersect(methods, "agile"))) { em$accel <- 'ramsay1975' em$tolerance <- 1e-11 em$information <- "mr1991" em$infoArgs <- list(fitfunction=fitfun, semMethod="agile") plan <- mxComputeSequence(list( em, mxComputeStandardError(), mxComputeReportDeriv() )) if (is.null(fit)) fit <- model fit$compute <- plan fit <- try(mxRun(fit, silent=TRUE, suppressWarnings = TRUE), silent=TRUE) if (inherits(fit, "try-error")) { print(paste("error in agile")) print(fit) next } else if (fit$output$status$code != 0) { print(paste("status code", fit$output$status$code, "in agile")) next } else { detail[,"agile",rep] <- summarizeInfo(fit, "agile") } } if (length(intersect(methods, "meat"))) { meat <- mxModel(fit, mxComputeSequence(steps=list( mxComputeOnce('fitfunction', 'information', "meat"), mxComputeStandardError(), mxComputeReportDeriv()))) meat <- mxRun(meat, silent=TRUE) detail[,"meat",rep] <- summarizeInfo(meat, "meat") } if (length(intersect(methods, "sandwich"))) { sandwich <- mxModel(fit, mxComputeSequence(steps=list( mxComputeOnce('fitfunction', 'information', "sandwich"), mxComputeStandardError(), mxComputeReportDeriv()))) sandwich <- mxRun(sandwich, silent=TRUE) detail[,"sandwich",rep] <- summarizeInfo(sandwich, "sandwich") } if (length(intersect(methods, c("oakes")))) { em$information <- "oakes1999" em$infoArgs <- list(fitfunction=fitfun) plan <- mxComputeSequence(list( em, mxComputeStandardError(), mxComputeReportDeriv() )) fit$compute <- plan fit <- try(mxRun(fit, silent=TRUE, suppressWarnings = TRUE), silent=TRUE) if (inherits(fit, "try-error")) { print(paste("error in agile")) print(fit) next } else if (fit$output$status$code != 0) { print(paste("status code",fit$output$status$code,"in agile")) next } else { detail[,"oakes",rep] <- summarizeInfo(fit, "oakes") } } if (length(intersect(methods, "estepH"))) { estepH <- mxModel(fit, mxComputeSequence(steps=list( mxComputeOnce(em$expectation, 'scores'), mxComputeOnce(fitfun, 'information', "hessian"), mxComputeStandardError(), mxComputeReportDeriv()))) estepH <- mxRun(estepH, silent=TRUE) detail[,"estepH",rep] <- summarizeInfo(estepH, "estepH") } if (length(intersect(methods, "re"))) { re <- mxModel(fit, mxComputeSequence(steps=list( mxComputeNumericDeriv(stepSize = 1e-3, iterations = 2), mxComputeStandardError(), mxComputeReportDeriv()))) re <- mxRun(re, silent=TRUE) detail[,"re",rep] <- summarizeInfo(re, "re") } if (verbose) { summarizeDetail(detail) } } detail } quantifyAsymmetry <- function(info) { sym1 <- (info + t(info))/2 sym2 <- try(chol(solve(sym1)), silent=TRUE) if (inherits(sym2, "try-error")) return(NA) asymV <- (info - t(info))/2 norm(sym2 %*% asymV %*% sym2, type="2") } summarizeAgile <- function(fit) { numReturn <- 4 condnum <- calcCondNum(fit$output$ihessian) if (is.null(condnum)) condnum <- NA if (is.na(condnum) || (!is.na(condnum) && condnum > condNumLimit)) return(rep(NA, numReturn)) H <- fit$compute$steps[[1]]$debug$outputInfo if (is.null(H)) return(rep(NA, numReturn)) asym <- quantifyAsymmetry(solve(H)) H <- (H + t(H))/2 normH <- NA if (!is.null(H) && all(eigen(H, only.values =TRUE)$val > 0)) { iH <- try(solve(H), silent=TRUE) if (is(iH, "try-error")) return(rep(NA, numReturn)) normH <- mvn_KL_D(H, iH) } normRd <- NA rd <- (fit$output$standardErrors - mcSE) / mcSE if (all(is.finite(rd))) { normRd <- norm(rd, "2") } c(condnum, asym, normH, normRd) } summarizeASEM <- function(detail) { excluded <- apply(detail[,'condnum',], 1, function (c) sum(is.na(c))) grid <- cbind(excluded, apply(detail, 1:2, mean, na.rm=TRUE), apply(detail, 1:2, var, na.rm=TRUE)) cperm <- c(1, 2,6, 3,7, 4,8, 5,9) print(round(grid[,cperm], 4)) } studyASEM <- function(modelGen, reps = 100, verbose=TRUE) { targets=c(seq(-8.1, -3.9, .2), seq(-5.8, -4.4, .2)) targets <- targets[order(runif(length(targets)))] rec <- c('condnum', 'asym', 'hNorm', 'rdNorm') detail <- array(NA, dim=c(length(targets), length(rec), reps), dimnames=list(targets, rec, NULL)) for (rep in 1:reps) { set.seed(rep) model <- modelGen() em <- model$compute em$tolerance <- 1e-10 em$information <- "mr1991" fitfun <- c() if (is(em$mstep, "MxComputeSequence")) { fitfun <- sapply(em$mstep$steps, function(step) step$fitfunction) } else { fitfun <- em$mstep$fitfunction } fit <- NULL for (tx in 1:length(targets)) { if (is.null(fit) || inherits(fit, "try-error")) fit <- model em$infoArgs=list(fitfunction=fitfun, semMethod="agile", semDebug=TRUE, noiseTarget=exp(targets[tx]), semFixSymmetry=TRUE) plan <- mxComputeSequence(list( em, mxComputeStandardError(), mxComputeReportDeriv() )) fit$compute <- plan fit <- try(mxRun(fit, silent=TRUE), silent=TRUE) if (inherits(fit, "try-error")) { next } else { detail[tx,,rep] <- summarizeAgile(fit) } } if (verbose) summarizeASEM(detail) } detail } checkSmoothness <- function(mkmodel, probePoints=50) { set.seed(which(mcMask)[1]) model <- mkmodel() em <- model$compute fitfun <- c() if (is(em$mstep, "MxComputeSequence")) { fitfun <- sapply(em$mstep$steps, function(step) step$fitfunction) } else { fitfun <- em$mstep$fitfunction } em$information <- "mr1991" em$tolerance <- 1e-9 em$infoArgs <- list(fitfunction='fitfunction', semDebug=TRUE, semMethod=seq(.0005, .01, length.out=probePoints)) model$compute <- em model <- mxRun(model, silent=TRUE) em <- model$compute phl <- em$debug$paramHistLen probeOffset <- em$debug$probeOffset semDiff <- em$debug$semDiff upper <- 20 modelfit <- list() result <- data.frame() for (vx in 1:length(model$output$estimate)) { len <- phl[vx] offset <- probeOffset[1:len, vx] dd <- semDiff[1:(len-1), vx] mid <- offset[1:(len-1)] + diff(offset)/2 mask <- abs(diff(offset)) < .01 & dd < upper df <- data.frame(mid=mid[mask], diff=dd[mask]) m1 <- lm(diff ~ 0 + I(1/mid^2), data=df) modelfit[[vx]] <- m1 df$model <- predict(m1) result <- rbind(result, cbind(vx=vx, vname=names(model$output$estimate)[vx], df)) } list(result=result, fits=modelfit, modelfit=sapply(modelfit, function(m) summary(m)$r.squ)) } if (0) { ggplot(subset(smooth$result, vx %in% order(smooth$modelfit)[1:4])) + geom_point(aes(mid, diff), size=2) + geom_line(aes(mid, model), color="green") + facet_wrap(~vname) + labs(x="x midpoint") }
Granger.inference.conditional<-function (x, y, z, ic.chosen = "SC", max.lag = min(4, length(x) - 1), plot = F, type.chosen = "none", p1=0, p2=0, nboots = 1000, conf = 0.95, bp = NULL,ts_boot=1) { if (length(x) == 1) { return("The length of x is only 1") } if (length(x) != length(y)) { return("x and y do not have the same length") } if (length(x) != length(z)) { return("x and z do not have the same length") } if (max.lag > length(x) - 1) { return("The chosen number of lags is larger than or equal to the time length") } if(!requireNamespace("vars")){ return("The packages 'vars' could not be found. Please install it to proceed.") } if(!requireNamespace("tseries")){ return("The packages 'tseries' could not be found. Please install it to proceed.") } requireNamespace("vars") requireNamespace("tseries") if (p1==0){ model1=VAR(cbind(x,z),ic=ic.chosen,lag.max=max.lag,type.chosen) } if (p1>0){ model1=VAR(cbind(x,z),p=p1,type.chosen) } if (p2==0){ model2=VAR(cbind(x,y,z),ic=ic.chosen,lag.max=max.lag,type.chosen) } if (p2>0){ model2=VAR(cbind(x,y,z),p=p2,type.chosen) } if(ts_boot==1){ freq.good = spec.pgram(y, plot = F)$freq/frequency(y) if (is.array(bp) != TRUE) { x_bp <- tsbootstrap(x, nb = nboots) y_bp <- tsbootstrap(y, nb = nboots) z_bp <- tsbootstrap(z, nb = nboots) } if (is.array(bp) == TRUE) { x_bp <- bp[, , 1] y_bp <- bp[, , 2] z_bp <- bp[, , 3] } freq.good = spec.pgram(y, plot = F)$freq/frequency(y) } delay1_bp <- vector("numeric", nboots) delay2_bp <- vector("numeric", nboots) test_stationarity_1 <- vector("numeric", nboots) test_stationarity_2 <- vector("numeric", nboots) top_bp_y.to.x.on.z <- vector("numeric", nboots) freq.curr.l<-vector("numeric", nboots) stat_rate <- vector("numeric", nboots) cause_bp_y.to.x.on.z <- array(0, dim = c(nboots, length(freq.good))) for (w in 1:nboots) { if(ts_boot==1){ xz_mat<-as.data.frame(cbind(x_bp[, w], z_bp[, w])); xyz_mat<-as.data.frame(cbind(x_bp[, w],y_bp[, w], z_bp[, w])); colnames(xz_mat)<-c("x_bp","z_bp") colnames(xyz_mat)<-c("x2_bp","y2_bp","z2_bp") if(p1>0 && p2>0){ model1_bp<-VAR(xz_mat, type.chosen,p=model1$p) model2_bp<-VAR(xyz_mat, type.chosen,p=model2$p) G.xy <- Granger.conditional(xyz_mat[, 1], xyz_mat[, 2], xyz_mat[, 3], plot=F, type.chosen, p1=model1$p,p2=model2$p) } if(p1==0 && p2==0){ model1_bp<-VAR(xz_mat, ic=ic.chosen, lag.max=max.lag, type.chosen) model2_bp<-VAR(xyz_mat, ic=ic.chosen, lag.max=max.lag, type.chosen) G.xy <- Granger.conditional(xyz_mat[, 1], xyz_mat[, 2], xyz_mat[, 3], ic.chosen, max.lag, F, type.chosen) } } delay1_bp[w]<-model1_bp$p delay2_bp[w]<-model2_bp$p freq.curr.l[w]<-length(G.xy$Conditional_causality_y.to.x.on.z) cause_bp_y.to.x.on.z[w,] <- G.xy$Conditional_causality_y.to.x.on.z if (length(which(abs(G.xy$roots_1) >= 1)) > 0) { test_stationarity_1[w] = 1 } if (length(which(abs(G.xy$roots_2) >= 1)) > 0) { test_stationarity_2[w] = 1 } } cause_bp_y.to.x.on.z<-cause_bp_y.to.x.on.z[,1:min(freq.curr.l)] for (w in 1:(nboots)) { top_bp_y.to.x.on.z[w] <- median(cause_bp_y.to.x.on.z[w, ]) } stationary <- intersect(which(test_stationarity_1 == 0), which(test_stationarity_2 == 0)) q_x.on.z <- quantile(top_bp_y.to.x.on.z[stationary], conf) alpha_bonf<-(1-conf)/length(freq.good) conf_bonf<-1-alpha_bonf q_max_x.on.z <- quantile(top_bp_y.to.x.on.z[stationary], conf_bonf) non_stationarity_rate_1 <- sum(test_stationarity_1)/nboots non_stationarity_rate_2 <- sum(test_stationarity_2)/nboots stat_rate<-length(stationary)/nboots if (length(stationary)>=nboots/nboots){ stat_yes=1; n <- G.xy$n GG_x.on.z<-Granger.conditional(x,y,z,ic.chosen,max.lag,F)$Conditional_causality_y.to.x.on.z signif_x.on.z<-which(GG_x.on.z>q_x.on.z) signif_max_x.on.z<-which(GG_x.on.z>q_max_x.on.z) GG <- list(freq.good, n, nboots, conf, stat_yes, non_stationarity_rate_1, non_stationarity_rate_2, mean(delay1_bp[test_stationarity_1==0]),mean(delay2_bp[test_stationarity_2==0]), q_x.on.z, freq.good[signif_x.on.z],q_max_x.on.z,freq.good[signif_max_x.on.z]) names(GG) <- c("frequency", "n", "nboots","confidence_level","stat_yes", "non_stationarity_rate_1", "non_stationarity_rate_2", "delay1_mean","delay2_mean","quantile_conditional_causality_y.to.x.on.z", "freq_y.to.x.on.z","q_max_x.on.z","freq_max_y.to.x.on.z") } if (length(stationary)<nboots/nboots){ stat_yes=0; GG<-list(stat_yes) names(GG)<-c("stat_yes") } if (plot == F) { return(GG) } if (plot == T) { par(mfrow = c(1, 1)) plot(freq.good, GG_x.on.z, type = "l", main = "Conditional Granger-causality y to x on z") abline(h = q_x.on.z) abline(h = q_max_x.on.z) } }
AutoCatBoostHurdleCARMA <- function(data, NonNegativePred = FALSE, Threshold = NULL, RoundPreds = FALSE, TrainOnFull = FALSE, TargetColumnName = 'Target', DateColumnName = 'DateTime', HierarchGroups = NULL, GroupVariables = NULL, TimeWeights = 1, FC_Periods = 30, TimeUnit = 'week', TimeGroups = c('weeks','months'), NumOfParDepPlots = 10L, TargetTransformation = FALSE, Methods = c('BoxCox', 'Asinh', 'Log', 'LogPlus1', 'Sqrt', 'Asin', 'Logit'), AnomalyDetection = NULL, XREGS = NULL, Lags = c(1L:5L), MA_Periods = c(2L:5L), SD_Periods = NULL, Skew_Periods = NULL, Kurt_Periods = NULL, Quantile_Periods = NULL, Quantiles_Selected = c('q5','q95'), Difference = TRUE, FourierTerms = 6L, CalendarVariables = c('second', 'minute', 'hour', 'wday', 'mday', 'yday', 'week', 'wom', 'isoweek', 'month', 'quarter', 'year'), HolidayVariable = c('USPublicHolidays','EasterGroup','ChristmasGroup','OtherEcclesticalFeasts'), HolidayLookback = NULL, HolidayLags = 1L, HolidayMovingAverages = 1L:2L, TimeTrendVariable = FALSE, ZeroPadSeries = NULL, DataTruncate = FALSE, SplitRatios = c(0.7, 0.2, 0.1), PartitionType = 'timeseries', Timer = TRUE, DebugMode = FALSE, TaskType = 'GPU', NumGPU = 1, EvalMetric = 'RMSE', GridTune = FALSE, PassInGrid = NULL, ModelCount = 100, MaxRunsWithoutNewWinner = 50, MaxRunMinutes = 24L*60L, NTrees = list('classifier' = 200, 'regression' = 200), Depth = list('classifier' = 9, 'regression' = 9), LearningRate = list('classifier' = NULL, 'regression' = NULL), L2_Leaf_Reg = list('classifier' = NULL, 'regression' = NULL), RandomStrength = list('classifier' = 1, 'regression' = 1), BorderCount = list('classifier' = 254, 'regression' = 254), BootStrapType = list('classifier' = 'Bayesian', 'regression' = 'Bayesian')) { if(DebugMode) print('Load catboost----') loadNamespace(package = 'catboost') if(DebugMode) print(' Args <- CARMA_Define_Args(TimeUnit=TimeUnit, TimeGroups=TimeGroups, HierarchGroups=HierarchGroups, GroupVariables=GroupVariables, FC_Periods=FC_Periods, PartitionType=PartitionType, TrainOnFull=TrainOnFull, SplitRatios=SplitRatios, SD_Periods=SD_Periods, Skew_Periods=Skew_Periods, Kurt_Periods=Kurt_Periods, Quantile_Periods=Quantile_Periods, TaskType=TaskType, BootStrapType=BootStrapType, GrowPolicy=NULL, TimeWeights=NULL, HolidayLookback=HolidayLookback, Difference=Difference, NonNegativePred=NonNegativePred) IndepentVariablesPass <- Args$IndepentVariablesPass NonNegativePred <- Args$NonNegativePred HolidayLookback <- Args$HolidayLookback HoldOutPeriods <- Args$HoldOutPeriods HierarchGroups <- Args$HierarchGroups GroupVariables <- Args$GroupVariables BootStrapType <- Args$BootStrapType TimeWeights <- Args$TimeWeights TimeGroups <- Args$TimeGroups FC_Periods <- Args$FC_Periods GrowPolicy <- Args$GrowPolicy Difference <- Args$Difference TimeGroup <- Args$TimeGroupPlaceHolder TimeUnit <- Args$TimeUnit TaskType <- Args$TaskType; rm(Args) ArgsListtt <- c(as.list(environment())) if(!data.table::is.data.table(data)) data.table::setDT(data) if(!is.null(XREGS) && !data.table::is.data.table(XREGS)) data.table::setDT(XREGS) if(!TrainOnFull) HoldOutPeriods <- round(SplitRatios[2L] * length(unique(data[[eval(DateColumnName)]])), 0L) if(DebugMode) print('Feature Engineering: Add Zero Padding for missing dates----') if(data[, .N] != unique(data)[, .N]) stop('There is duplicates in your data') if(!is.null(ZeroPadSeries)) { data <- TimeSeriesFill(data, DateColumnName=eval(DateColumnName), GroupVariables=GroupVariables, TimeUnit=TimeUnit, FillType=ZeroPadSeries, MaxMissingPercent=0.0, SimpleImpute=FALSE) data <- ModelDataPrep(data=data, Impute=TRUE, CharToFactor=FALSE, FactorToChar=FALSE, IntToNumeric=FALSE, LogicalToBinary=FALSE, DateToChar=FALSE, RemoveDates=FALSE, MissFactor='0', MissNum=0, IgnoreCols=NULL) } else { temp <- TimeSeriesFill(data, DateColumnName=eval(DateColumnName), GroupVariables=GroupVariables, TimeUnit=TimeUnit, FillType='maxmax', MaxMissingPercent=0.25, SimpleImpute=FALSE) if(temp[,.N] != data[,.N]) stop('There are missing dates in your series. You can utilize the ZeroPadSeries argument to handle this or manage it before running the function') } if(DebugMode) print(' Output <- CarmaFCHorizon(data.=data, XREGS.=XREGS, TrainOnFull.=TrainOnFull, Difference.= Difference, FC_Periods.=FC_Periods, HoldOutPeriods.=HoldOutPeriods, DateColumnName.=DateColumnName) FC_Periods <- Output$FC_Periods HoldOutPeriods <- Output$HoldOutPeriods; rm(Output) if(DebugMode) print('merging xregs to data') if(!is.null(XREGS)) { Output <- CarmaMergeXREGS(data.=data, XREGS.=XREGS, TargetColumnName.=TargetColumnName, GroupVariables.=GroupVariables, DateColumnName.=DateColumnName) data <- Output$data; Output$data <- NULL XREGS <- Output$XREGS; rm(Output) } if(DebugMode) print(' if(!is.null(GroupVariables)) { data.table::setkeyv(x = data, cols = c(eval(GroupVariables), eval(DateColumnName))) if(!is.null(XREGS)) data.table::setkeyv(x = XREGS, cols = c('GroupVar', eval(DateColumnName))) } else { data.table::setkeyv(x = data, cols = c(eval(DateColumnName))) if(!is.null(XREGS)) data.table::setkeyv(x = XREGS, cols = c(eval(DateColumnName))) } if(DebugMode) print('Data Wrangling: Remove Unnecessary Columns ----') data <- CarmaSubsetColumns(data.=data, XREGS.=XREGS, GroupVariables.=GroupVariables, DateColumnName.=DateColumnName, TargetColumnName.=TargetColumnName) if(DebugMode) print('Feature Engineering: Concat Categorical Columns - easier to deal with this way ----') if(!is.null(GroupVariables)) { data[, GroupVar := do.call(paste, c(.SD, sep = ' ')), .SDcols = GroupVariables] if(length(GroupVariables) > 1L) data[, eval(GroupVariables) := NULL] else if(GroupVariables != 'GroupVar') data[, eval(GroupVariables) := NULL] } if(DebugMode) print('Variables for Program: Store unique values of GroupVar in GroupVarVector ----') if(!is.null(GroupVariables)) { GroupVarVector <- data.table::as.data.table(x = unique(as.character(data[['GroupVar']]))) data.table::setnames(GroupVarVector, 'V1', 'GroupVar') } if(DebugMode) print('Data Wrangling: Standardize column ordering ----') if(!is.null(GroupVariables)) data.table::setcolorder(data, c('GroupVar', eval(DateColumnName), eval(TargetColumnName))) else data.table::setcolorder(data, c(eval(DateColumnName), eval(TargetColumnName))) if(DebugMode) print('Data Wrangling: Convert DateColumnName to Date or POSIXct ----') Output <- CarmaDateStandardize(data.=data, XREGS.=NULL, DateColumnName.=DateColumnName, TimeUnit.=TimeUnit) data <- Output$data; Output$data <- NULL XREGS <- Output$XREGS; rm(Output) if(DebugMode) print('Data Wrangling: Ensure TargetColumnName is Numeric ----') if(!is.numeric(data[[eval(TargetColumnName)]])) data[, eval(TargetColumnName) := as.numeric(get(TargetColumnName))] if(DebugMode) print('Variables for Program: Store number of data partitions in NumSets ----') NumSets <- length(SplitRatios) if(DebugMode) print('Variables for Program: Store Maximum Value of TargetColumnName in val ----') if(!is.null(Lags)) { if(is.list(Lags) && is.list(MA_Periods)) val <- max(unlist(Lags), unlist(MA_Periods)) else val <- max(Lags, MA_Periods) } if(DebugMode) print('Data Wrangling: Sort data by GroupVar then DateColumnName ----') if(!is.null(GroupVariables)) data <- data[order(GroupVar, get(DateColumnName))] else data <- data[order(get(DateColumnName))] if(DebugMode) print('Feature Engineering: Fourier Features ----') Output <- CarmaFourier(data.=data, XREGS.=XREGS, FourierTerms.=FourierTerms, TimeUnit.=TimeUnit, TargetColumnName.=TargetColumnName, GroupVariables.=GroupVariables, DateColumnName.=DateColumnName, HierarchGroups.=HierarchGroups) FourierTerms <- Output$FourierTerms; Output$FourierTerms <- NULL FourierFC <- Output$FourierFC; Output$FourierFC <- NULL data <- Output$data; rm(Output) if(DebugMode) print('Feature Engineering: Add Create Calendar Variables ----') if(!is.null(CalendarVariables)) data <- CreateCalendarVariables(data=data, DateCols=eval(DateColumnName), AsFactor=FALSE, TimeUnits=CalendarVariables) if(DebugMode) print('Feature Engineering: Add Create Holiday Variables ----') if(!is.null(HolidayVariable)) { data <- CreateHolidayVariables(data, DateCols = eval(DateColumnName), LookbackDays = if(!is.null(HolidayLookback)) HolidayLookback else LB(TimeUnit), HolidayGroups = HolidayVariable, Holidays = NULL) if(!(tolower(TimeUnit) %chin% c('1min','5min','10min','15min','30min','hour'))) { data[, eval(DateColumnName) := lubridate::as_date(get(DateColumnName))] } else { data[, eval(DateColumnName) := as.POSIXct(get(DateColumnName))] } } if(DebugMode) print('Anomaly detection by Group and Calendar Vars ----') if(!is.null(AnomalyDetection)) { data <- GenTSAnomVars( data = data, ValueCol = eval(TargetColumnName), GroupVars = if(!is.null(CalendarVariables) && !is.null(GroupVariables)) c('GroupVar', paste0(DateColumnName, '_', CalendarVariables[1])) else if(!is.null(GroupVariables)) 'GroupVar' else NULL, DateVar = eval(DateColumnName), KeepAllCols = TRUE, IsDataScaled = FALSE, HighThreshold = AnomalyDetection$tstat_high, LowThreshold = AnomalyDetection$tstat_low) data[, paste0(eval(TargetColumnName), '_zScaled') := NULL] data[, ':=' (RowNumAsc = NULL, CumAnomHigh = NULL, CumAnomLow = NULL, AnomHighRate = NULL, AnomLowRate = NULL)] } if(DebugMode) print('Feature Engineering: Add Target Transformation ----') if(TargetTransformation) { TransformResults <- AutoTransformationCreate(data, ColumnNames=TargetColumnName, Methods=Methods, Path=NULL, TransID='Trans', SaveOutput=FALSE) data <- TransformResults$Data; TransformResults$Data <- NULL TransformObject <- TransformResults$FinalResults; rm(TransformResults) } else { TransformObject <- NULL } if(DebugMode) print('Copy data for non grouping + difference ----') if(is.null(GroupVariables) && Difference) antidiff <- data.table::copy(data[, .SD, .SDcols = c(eval(TargetColumnName),eval(DateColumnName))]) if(DebugMode) print('Feature Engineering: Add Difference Data ----') Output <- CarmaDifferencing(GroupVariables.=GroupVariables, Difference.=Difference, data.=data, TargetColumnName.=TargetColumnName, FC_Periods.=FC_Periods) data <- Output$data; Output$data <- NULL dataStart <- Output$dataStart; Output$dataStart <- NULL FC_Periods <- Output$FC_Periods; Output$FC_Periods <- NULL Train <- Output$Train; rm(Output) if(DebugMode) print('Feature Engineering: Lags and Rolling Stats ----') Output <- CarmaTimeSeriesFeatures(data.=data, TargetColumnName.=TargetColumnName, DateColumnName.=DateColumnName, GroupVariables.=GroupVariables, HierarchGroups.=HierarchGroups, Difference.=Difference, TimeGroups.=TimeGroups, TimeUnit.=TimeUnit, Lags.=Lags, MA_Periods.=MA_Periods, SD_Periods.=SD_Periods, Skew_Periods.=Skew_Periods, Kurt_Periods.=Kurt_Periods, Quantile_Periods.=Quantile_Periods, Quantiles_Selected.=Quantiles_Selected, HolidayVariable.=HolidayVariable, HolidayLags.=HolidayLags, HolidayMovingAverages.=HolidayMovingAverages, DebugMode.=DebugMode) IndependentSupplyValue <- Output$IndependentSupplyValue; Output$IndependentSupplyValue <- NULL HierarchSupplyValue <- Output$HierarchSupplyValue; Output$HierarchSupplyValue <- NULL GroupVarVector <- Output$GroupVarVector; Output$GroupVarVector <- NULL Categoricals <- Output$Categoricals; Output$Categoricals <- NULL data <- Output$data; rm(Output) if(!is.null(GroupVariables) && !'GroupVar' %chin% names(data)) data[, GroupVar := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(GroupVariables)] if(DebugMode) print('Data Wrangling: ModelDataPrep() to prepare data ----') data <- ModelDataPrep(data=data, Impute=TRUE, IntToNumeric=TRUE, DateToChar=FALSE, FactorToChar=FALSE, CharToFactor=TRUE, LogicalToBinary=FALSE, RemoveDates=FALSE, MissFactor='0', MissNum=-1, IgnoreCols=NULL) if(DebugMode) print('Data Wrangling: Remove dates with imputed data from the DT_GDL_Feature_Engineering() features ----') if(DataTruncate && !is.null(Lags)) data <- CarmaTruncateData(data.=data, DateColumnName.=DateColumnName, TimeUnit.=TimeUnit) if(DebugMode) print('Feature Engineering: Add TimeTrend Variable----') if(TimeTrendVariable) { if(!is.null(GroupVariables)) data[, TimeTrend := seq_len(.N), by = 'GroupVar'] else data[, TimeTrend := seq_len(.N)] } if(DebugMode) print('Create TimeWeights ----') train <- CarmaTimeWeights(train.=data, TimeWeights.=TimeWeights, GroupVariables.=GroupVariables, DateColumnName.=DateColumnName) FutureDateData <- unique(data[, get(DateColumnName)]) if(DebugMode) print('Data Wrangling: Partition data with AutoDataPartition()----') Output <- CarmaPartition(data.=data, SplitRatios.=SplitRatios, TrainOnFull.=TrainOnFull, NumSets.=NumSets, PartitionType.=PartitionType, GroupVariables.=GroupVariables, DateColumnName.=DateColumnName) train <- Output$train; Output$train <- NULL valid <- Output$valid; Output$valid <- NULL data <- Output$data; Output$data <- NULL test <- Output$test; rm(Output) if(DebugMode) print('Variables for CARMA function:IDcols----') IDcols <- names(data)[which(names(data) %chin% DateColumnName)] IDcols <- c(IDcols, names(data)[which(names(data) == TargetColumnName)]) if(DebugMode) print('Data Wrangling: copy data or train for later in function since AutoRegression will modify data and train ----') if(!is.null(GroupVariables)) data.table::setorderv(x = data, cols = c('GroupVar',eval(DateColumnName)), order = c(1,1)) else data.table::setorderv(x = data, cols = c(eval(DateColumnName)), order = c(1)) Step1SCore <- data.table::copy(data) if(DebugMode) print('Define ML args ----') Output <- CarmaFeatures(data.=data, train.=train, XREGS.=XREGS, Difference.=Difference, TargetColumnName.=TargetColumnName, DateColumnName.=DateColumnName, GroupVariables.=GroupVariables) ModelFeatures <- Output$ModelFeatures TargetVariable <- Output$TargetVariable; rm(Output) if(!is.null(SplitRatios) || !TrainOnFull) TOF <- FALSE else TOF <- TRUE if(DebugMode) print('Run AutoCatBoostHurdleModel() and return list of ml objects ----') TestModel <- AutoCatBoostHurdleModel( task_type = TaskType, ModelID = 'ModelTest', SaveModelObjects = FALSE, ReturnModelObjects = TRUE, data = data.table::copy(train), TrainOnFull = TrainOnFull, ValidationData = data.table::copy(valid), TestData = data.table::copy(test), Buckets = 0L, TargetColumnName = TargetVariable, FeatureColNames = ModelFeatures, PrimaryDateColumn = eval(DateColumnName), WeightsColumnName = if('Weights' %chin% names(train)) 'Weights' else NULL, IDcols = IDcols, DebugMode = DebugMode, Paths = normalizePath('./'), MetaDataPaths = NULL, TransformNumericColumns = NULL, Methods = NULL, ClassWeights = c(1,1), SplitRatios = c(0.70, 0.20, 0.10), NumOfParDepPlots = NumOfParDepPlots, PassInGrid = PassInGrid, GridTune = GridTune, BaselineComparison = 'default', MaxModelsInGrid = 500L, MaxRunsWithoutNewWinner = 100L, MaxRunMinutes = 60*60, MetricPeriods = 10L, Trees = NTrees, Depth = Depth, RandomStrength = RandomStrength, BorderCount = BorderCount, LearningRate = LearningRate, L2_Leaf_Reg = L2_Leaf_Reg, RSM = list('classifier' = c(1.0), 'regression' = c(1.0)), BootStrapType = BootStrapType, GrowPolicy = list('classifier' = 'SymmetricTree', 'regression' = 'SymmetricTree')) if(!is.null(Threshold)) { threshold <- TestModel$ClassifierModel$EvaluationMetrics col <- names(threshold)[grep(pattern = Threshold, x = names(threshold))] Threshold <- threshold[, .SD, .SDcols = c('Threshold', eval(col))][order(-get(col))][1,1][[1]] } if(!TrainOnFull) return(TestModel) if(DebugMode) options(warn = 2) if(DebugMode) print('Variable for interation counts: max number of rows in Step1SCore data.table across all group ----') N <- CarmaRecordCount(GroupVariables.=GroupVariables,Difference.=Difference, Step1SCore.=Step1SCore) if(DebugMode) print('ARMA PROCESS FORECASTING----') for(i in seq_len(FC_Periods+1L)) { if(DebugMode) print('Row counts----') if(i != 1) N <- as.integer(N + 1L) if(DebugMode) print('Machine Learning: Generate predictions----') if(i == 1L) { if(!is.null(GroupVariables)) { Preds <- RemixAutoML::AutoCatBoostHurdleModelScoring( TestData = data.table::copy(Step1SCore), Path = NULL, ModelID = 'ModelTest', ModelList = TestModel$ModelList, ArgsList = TestModel$ArgsList, Threshold = Threshold, CARMA = TRUE) Preds[, (names(Preds)[2L:5L]) := NULL] data.table::set(Preds, j = eval(DateColumnName), value = NULL) data.table::setnames(Preds, 'UpdatedPrediction', 'Predictions') data.table::setcolorder(Preds, c(2L,1L,3L:ncol(Preds))) if(RoundPreds) Preds[, Predictions := round(Predictions)] } else { Preds <- AutoCatBoostHurdleModelScoring( TestData = data.table::copy(Step1SCore), Path = NULL, ModelID = 'ModelTest', ModelList = TestModel$ModelList, ArgsList = TestModel$ArgsList, Threshold = Threshold, CARMA = TRUE) Preds[, (names(Preds)[2L:5L]) := NULL] if(DateColumnName %chin% names(Preds)) data.table::set(Preds, j = eval(DateColumnName), value = NULL) data.table::setnames(Preds, 'UpdatedPrediction', 'Predictions') data.table::setcolorder(Preds, c(2L,1L,3L:ncol(Preds))) if(RoundPreds) Preds[, Predictions := round(Predictions)] } if(Difference) { if(eval(TargetColumnName) %chin% names(Step1SCore) && eval(TargetColumnName) %chin% names(Preds)) { data.table::set(Preds, j = eval(TargetColumnName), value = NULL) } if(eval(DateColumnName) %chin% names(Step1SCore)) data.table::set(Step1SCore, j = eval(DateColumnName), value = NULL) if(eval(DateColumnName) %chin% names(Preds)) data.table::set(Preds, j = eval(DateColumnName), value = NULL) if(!is.null(GroupVariables)) { UpdateData <- cbind(FutureDateData, Step1SCore[, .SD, .SDcols = eval(TargetColumnName)],Preds) } else { UpdateData <- cbind(FutureDateData[2L:(nrow(Step1SCore)+1L)], Step1SCore[, .SD, .SDcols = eval(TargetColumnName)],Preds) } data.table::setnames(UpdateData, 'FutureDateData', eval(DateColumnName)) } else { if(NonNegativePred) Preds[, Predictions := data.table::fifelse(Predictions < 0.5, 0, Predictions)] UpdateData <- cbind(FutureDateData[1L:N],Preds) data.table::setnames(UpdateData,c('V1'),c(eval(DateColumnName))) } } else { if(!is.null(GroupVariables)) { if(Difference) IDcols = 'ModTarget' else IDcols <- eval(TargetColumnName) if(!is.null(HierarchGroups)) { temp <- data.table::copy(UpdateData[, ID := 1:.N, by = c(eval(GroupVariables))]) temp <- temp[ID == N][, ID := NULL] } else { temp <- data.table::copy(UpdateData[, ID := 1:.N, by = 'GroupVar']) temp <- temp[ID == N][, ID := NULL] } Preds <- RemixAutoML::AutoCatBoostHurdleModelScoring( TestData = temp, Path = NULL, ModelID = 'ModelTest', ModelList = TestModel$ModelList, ArgsList = TestModel$ArgsList, Threshold = Threshold, CARMA = TRUE) Preds[, (setdiff(names(Preds),'UpdatedPrediction')) := NULL] data.table::setnames(Preds, 'UpdatedPrediction', 'Predictions') if(RoundPreds) Preds[, Predictions := round(Predictions)] if(DebugMode) print('Update data group case----') data.table::setnames(Preds, 'Predictions', 'Preds') if(NonNegativePred & !Difference) Preds[, Preds := data.table::fifelse(Preds < 0.5, 0, Preds)] Preds <- cbind(UpdateData[ID == N], Preds) if(Difference) Preds[, ModTarget := Preds][, eval(TargetColumnName) := Preds] else Preds[, eval(TargetColumnName) := Preds] Preds[, Predictions := Preds][, Preds := NULL] UpdateData <- UpdateData[ID != N] if(any(class(UpdateData$Date) %chin% c('POSIXct','POSIXt')) & any(class(Preds$Date) == 'Date')) UpdateData[, eval(DateColumnName) := as.Date(get(DateColumnName))] UpdateData <- data.table::rbindlist(list(UpdateData, Preds)) if(Difference) UpdateData[ID %in% c(N-1,N), eval(TargetColumnName) := cumsum(get(TargetColumnName)), by = 'GroupVar'] UpdateData[, ID := NULL] } else { Preds <- RemixAutoML::AutoCatBoostHurdleModelScoring( TestData = UpdateData[.N], Path = NULL, ModelID = 'ModelTest', ModelList = TestModel$ModelList, ArgsList = TestModel$ArgsList, Threshold = Threshold, CARMA = TRUE) Preds[, (setdiff(names(Preds),'UpdatedPrediction')) := NULL] data.table::setnames(Preds, 'UpdatedPrediction', 'Predictions') if(RoundPreds) Preds[, Predictions := round(Predictions)] if(DebugMode) print('Update data non-group case----') data.table::set(UpdateData, i = UpdateData[, .N], j = which(names(UpdateData) %chin% c(TargetColumnName, "Predictions")), value = Preds[[1L]]) } } if(i != FC_Periods+1L) { if(DebugMode) print('Timer----') if(Timer) if(i != 1) print(paste('Forecast future step: ', i-1)) if(Timer) starttime <- Sys.time() if(DebugMode) print('Create single future record ----') CalendarFeatures <- NextTimePeriod(UpdateData.=UpdateData, TimeUnit.=TimeUnit, DateColumnName.=DateColumnName) if(DebugMode) print('Update feature engineering ----') UpdateData <- UpdateFeatures(UpdateData.=UpdateData, GroupVariables.=GroupVariables, CalendarFeatures.=CalendarFeatures, CalendarVariables.=CalendarVariables, GroupVarVector.=GroupVarVector, DateColumnName.=DateColumnName, XREGS.=XREGS, FourierTerms.=FourierTerms, FourierFC.=FourierFC, TimeGroups.=TimeGroups, TimeTrendVariable.=TimeTrendVariable, N.=N, TargetColumnName.=TargetColumnName, HolidayVariable.=HolidayVariable, HolidayLookback.=HolidayLookback, TimeUnit.=TimeUnit, AnomalyDetection.=AnomalyDetection, i.=i) if(DebugMode) print('Update Lags and MAs ----') UpdateData <- CarmaRollingStatsUpdate(ModelType='catboost', DebugMode.=DebugMode, UpdateData.=UpdateData, GroupVariables.=GroupVariables, Difference.=Difference, CalendarVariables.=CalendarVariables, HolidayVariable.=HolidayVariable, IndepVarPassTRUE.=IndepentVariablesPass, data.=data, CalendarFeatures.=CalendarFeatures, XREGS.=XREGS, HierarchGroups.=HierarchGroups, GroupVarVector.=GroupVarVector, TargetColumnName.=TargetColumnName, DateColumnName.=DateColumnName, Preds.=Preds, HierarchSupplyValue.=HierarchSupplyValue, IndependentSupplyValue.=IndependentSupplyValue, TimeUnit.=TimeUnit, TimeGroups.=TimeGroups, Lags.=Lags, MA_Periods.=MA_Periods, SD_Periods.=SD_Periods, Skew_Periods.=Skew_Periods, Kurt_Periods.=Kurt_Periods, Quantile_Periods.=Quantile_Periods, Quantiles_Selected.=Quantiles_Selected, HolidayLags.=HolidayLags, HolidayMovingAverages.=HolidayMovingAverages) if(Timer) endtime <- Sys.time() if(Timer && i != 1) print(endtime - starttime) } } gc() if(DebugMode) print('Return data prep ----') Output <- CarmaReturnDataPrep(UpdateData.=UpdateData, FutureDateData.=FutureDateData, dataStart.=dataStart, DateColumnName.=DateColumnName, TargetColumnName.=TargetColumnName, GroupVariables.=GroupVariables, Difference.=Difference, TargetTransformation.=TargetTransformation, TransformObject.=TransformObject, NonNegativePred.=NonNegativePred) UpdateData <- Output$UpdateData; Output$UpdateData <- NULL TransformObject <- Output$TransformObject; rm(Output) if(is.null(GroupVariables) && "Predictions0" %chin% names(UpdateData)) data.table::set(UpdateData, j = 'Predictions0', value = NULL) return(list( Forecast = UpdateData, ModelInformation = TestModel, TransformationDetail = if(exists('TransformObject') && !is.null(TransformObject)) TransformObject else NULL, ArgsList = ArgsListtt)) }
"U15"
'%+%' <- function(x,y) { merge.semforest(x,y) }
contemporaryPhy <- function(phy, maxBin, minBin, reScale=0, allTraits, closest.min=TRUE, traits.from.tip=TRUE) { node.in <- match(unique(phy$edge[,1]), phy$edge[,1]) node.times <- nodeTimes(phy)[node.in,1] names(node.times) <- unique(phy$edge[,1]) startBin <- maxBin - reScale endBin <- minBin - reScale nodePreBin <- as.numeric(names(node.times)[which(node.times < endBin)]) tip.times <- nodeTimes(phy)[which(phy$edge[,2] <= Ntip(phy)), 2] tipsInBin <- intersect(which(tip.times >= endBin), which(tip.times <= startBin)) int.node <- which(phy$edge[,2] > Ntip(phy)) descendantAsTrait <- rep(0, dim(phy$edge)[1]) for(rr in int.node) descendantAsTrait[rr] <- length(node.descendents(phy$edge[rr,2], phy, T)[[2]]) tipsInMat <- which(phy$edge[,2] <= Ntip(phy)) terminalTips <- which(descendantAsTrait == 0) loseTips <- match(tipsInMat[tipsInBin], terminalTips) descendantAsTrait[terminalTips[-loseTips]] <- 1 names(descendantAsTrait) <- phy$edge[,2] success <- timeTravelPhy(phy=phy, node=nodePreBin, nodeEstimate=descendantAsTrait, timeCut=endBin) suc <- removeNonBin(success$phy, success$tipData, keepByTime=startBin - endBin) out <- list() out <- suc names(out) <- c("phy", "descendants") if(!is.null(allTraits)) { first.times <- nodeTimes(phy) new.phylo <- suc$prunedPhy time.new.phylo <- nodeTimes(new.phylo) + reScale new.tip.names <- new.phylo$tip.label identify.tip <- regexpr("node_", new.phylo$tip.label) original.tip <- which(identify.tip == -1) same.as.original <- new.tip.names[original.tip] which.tips <- match(match(same.as.original, phy$tip.label), phy$edge[,2]) new.spp <- which(identify.tip != -1) location.new.spp <- match(new.spp, new.phylo$edge[,2]) node.original <- as.numeric(gsub("node_", "", new.phylo$tip.label[new.spp])) which.nodes <- match(node.original, phy$edge[,2]) on.orig <- sort(c(which.nodes, which.tips)) if (closest.min) closest.bin <- minBin else closest.bin <- maxBin trait.mat.new <- sapply(1:length(on.orig), function(i) { here.node <- on.orig[i] diff.age <- abs(first.times[here.node, ] - closest.bin) smallest.distance <- which.min(diff.age) if(smallest.distance == 2) { allTraits[here.node] } else { older.node <- match(phy$edge[here.node,1], phy$edge[,2]) allTraits[older.node] } } ) if(traits.from.tip) trait.mat.new[original.tip] <- allTraits[which.tips] out$traits <- trait.mat.new } return(out) }
label_parse <- function() { function(text) { text <- as.character(text) out <- vector("expression", length(text)) for (i in seq_along(text)) { expr <- parse(text = text[[i]]) out[[i]] <- if (length(expr) == 0) NA else expr[[1]] } out } } label_math <- function(expr = 10^.x, format = force) { .x <- NULL quoted <- substitute(expr) subs <- function(x) { do.call("substitute", list(quoted, list(.x = x))) } function(x) { x <- format(x) ret <- lapply(x, subs) ret <- as.expression(ret) ret[is.na(x)] <- NA names(ret) <- names(x) ret } } parse_format <- label_parse math_format <- label_math
context("test-nnetar") airmiles <- as_tsibble(airmiles) test_that("Automatic NNETAR selection", { air_fit <- airmiles %>% model(NNETAR(box_cox(value, 0.15))) expect_equal(model_sum(air_fit[[1]][[1]]), "NNAR(1,1)") air_fit <- airmiles %>% model(NNETAR(box_cox(value, 0.15) ~ trend() + rnorm(length(index)))) air_fit <- airmiles %>% model(NNETAR(box_cox(value, 0.15) ~ trend())) air_fit %>% generate(h = 10, times = 5) fc_sim <- air_fit %>% forecast(h = 10, times = 5) fc_boot <- air_fit %>% forecast(h = 10, times = 5, bootstrap = TRUE) expect_equal( fc_sim$value, fc_boot$value, tolerance = 100 ) expect_output( UKLungDeaths[1:24, ] %>% model(NNETAR(mdeaths)) %>% report(), "NNAR\\(4,1,3\\)\\[12\\]" ) }) test_that("Manual NNETAR selection", { fit <- UKLungDeaths %>% model(NNETAR(mdeaths ~ AR(p = 3, P = 2))) expect_equal(model_sum(fit[[1]][[1]]), "NNAR(3,2,3)[12]") expect_equal( with(augment(fit), .fitted + .resid)[-(1:24)], UKLungDeaths$mdeaths[-(1:24)] ) expect_warning( airmiles[1:5, ] %>% model(NNETAR(value ~ AR(10))), "Reducing number of lagged inputs due to short series" ) }) test_that("NNETAR with bad inputs", { expect_warning( airmiles[1:2, ] %>% model(NNETAR(value)), "Not enough data to fit a model" ) expect_warning( airmiles %>% model(NNETAR(resp(rep_along(value, NA)))), "All observations are missing, a model cannot be estimated without data" ) expect_warning( airmiles %>% model(NNETAR(resp(rep_along(value, 1)))), "Constant data, setting `AR\\(p=1, P=0\\)`, and `scale_inputs=FALSE`" ) expect_warning( airmiles %>% model(NNETAR(value ~ rep_along(value, 1))), "Constant xreg column, setting `scale_inputs=FALSE`" ) })
bindEvents <- function( rec, file, by.species=TRUE, parallel=FALSE, return.times=FALSE ) { if(class(file) != "data.frame") events <- read.csv(file=file) else events <- file events['duration'] <- events[, 'end.time']-events[, 'start.time'] if(by.species) { spp <- events$name events <- split(events, events$name) events <- lapply(events, function(x) data.frame(x, start.time.collapsed=cumsum(x$duration)-x$duration, end.time.collapsed=cumsum(x$duration))) } else { events$start.time.collapsed=cumsum(events$duration)-events$duration events$end.time.collapsed=cumsum(events$duration) } if(parallel && by.species) { collapsed <- parallel::mclapply(X=events, FUN=function(x) collapseClips(rec=rec, start.times=x$start.time, end.times=x$end.time), max(1, parallel::detectCores()-1)) } else if(by.species) { collapsed <- lapply(X=events, FUN=function(x) collapseClips(rec=rec, start.times=x$start.time, end.times=x$end.time)) } else { collapsed <- list(collapseClips(rec=rec, start.times=events$start.time, end.times=events$end.time)) } if(return.times) return(list(times=events, wave=collapsed)) else return(collapsed) }
structure(list(url = "https://api.twitter.com/2/tweets?tweet.fields=attachments%2Cauthor_id%2Cconversation_id%2Ccreated_at%2Centities%2Cgeo%2Cid%2Cin_reply_to_user_id%2Clang%2Cpublic_metrics%2Cpossibly_sensitive%2Creferenced_tweets%2Csource%2Ctext%2Cwithheld&user.fields=created_at%2Cdescription%2Centities%2Cid%2Clocation%2Cname%2Cpinned_tweet_id%2Cprofile_image_url%2Cprotected%2Cpublic_metrics%2Curl%2Cusername%2Cverified%2Cwithheld&expansions=author_id%2Centities.mentions.username%2Cgeo.place_id%2Cin_reply_to_user_id%2Creferenced_tweets.id%2Creferenced_tweets.id.author_id&place.fields=contained_within%2Ccountry%2Ccountry_code%2Cfull_name%2Cgeo%2Cid%2Cname%2Cplace_type&ids=1%2C1266868259925737474%2C1266867327079002121%2C1266866660713127936%2C1266864490446012418%2C1266860737244336129%2C1266859737615826944%2C1266859455586676736%2C1266858090143588352%2C1266857669157097473%2C1266856357954756609%2C1266855807699861506%2C1266855344086663169%2C1266854627758276608%2C1266854586188476421", status_code = 200L, headers = structure(list(date = "Sun, 19 Dec 2021 20:49:05 UTC", server = "tsa_o", `api-version` = "2.32", `content-type` = "application/json; charset=utf-8", `cache-control` = "no-cache, no-store, max-age=0", `content-length` = "7714", `x-access-level` = "read", `x-frame-options` = "SAMEORIGIN", `content-encoding` = "gzip", `x-xss-protection` = "0", `x-rate-limit-limit` = "300", `x-rate-limit-reset` = "1639947531", `content-disposition` = "attachment; filename=json.json", `x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "275", `strict-transport-security` = "max-age=631138519", `x-response-time` = "401", `x-connection-hash` = "a8dd0b91b56c071e60ae4b83ca064c192d64678a1e03c31011044170217df8ed"), class = c("insensitive", "list")), all_headers = list(list(status = 200L, version = "HTTP/2", headers = structure(list(date = "Sun, 19 Dec 2021 20:49:05 UTC", server = "tsa_o", `api-version` = "2.32", `content-type` = "application/json; charset=utf-8", `cache-control` = "no-cache, no-store, max-age=0", `content-length` = "7714", `x-access-level` = "read", `x-frame-options` = "SAMEORIGIN", `content-encoding` = "gzip", `x-xss-protection` = "0", `x-rate-limit-limit` = "300", `x-rate-limit-reset` = "1639947531", `content-disposition` = "attachment; filename=json.json", `x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "275", `strict-transport-security` = "max-age=631138519", `x-response-time` = "401", `x-connection-hash` = "a8dd0b91b56c071e60ae4b83ca064c192d64678a1e03c31011044170217df8ed"), class = c("insensitive", "list")))), cookies = structure(list(domain = c(".twitter.com", ".twitter.com", ".twitter.com", ".twitter.com"), flag = c(TRUE, TRUE, TRUE, TRUE), path = c("/", "/", "/", "/"), secure = c(TRUE, TRUE, TRUE, TRUE), expiration = structure(c(1702744284, 1702744284, 1702744284, 1702744284), class = c("POSIXct", "POSIXt")), name = c("guest_id_marketing", "guest_id_ads", "personalization_id", "guest_id"), value = c("REDACTED", "REDACTED", "REDACTED", "REDACTED")), row.names = c(NA, -4L), class = "data.frame"), content = charToRaw("{\"data\":[{\"author_id\":\"1239879547409006592\",\"referenced_tweets\":[{\"type\":\"retweeted\",\"id\":\"1266816466512297984\"}],\"created_at\":\"2020-05-30T23:05:05.000Z\",\"text\":\"RT @TheReal32492440: date = structure(1639946945, class = c("POSIXct", "POSIXt" ), tzone = "GMT"), times = c(redirect = 0, namelookup = 3.4e-05, connect = 3.5e-05, pretransfer = 0.000126, starttransfer = 0.413385, total = 0.414157)), class = "response")
knitr::opts_chunk$set( collapse = TRUE, comment = " out.width = "100%" ) library(sdcSpatial) library(sdcSpatial) data("enterprises") head(enterprises) summary(enterprises) sp::plot(enterprises) production <- sdc_raster(enterprises, "production", r = 500) plot(production, value="mean", sensitive=FALSE, main="mean production") raster::plot(production$value[[1:3]]) print(production) production$min_count <- 5 production$max_risk <- 0.9 production <- sdc_raster(enterprises, "production" , r = 500, min_count = 5, max_risk = 0.9) sensitivity_score(production) plot(production) sensitive_cells <- is_sensitive(production) production_smoothed <- protect_smooth(production, bw = 500) plot(production_smoothed) production_safe <- remove_sensitive(production_smoothed) sensitivity_score(production_safe) mean_production <- mean(production_safe) mean_production <- raster::disaggregate(mean_production, 10, "bilinear") col <- c(" " raster::plot(mean_production, col=col) fined <- sdc_raster(enterprises, "fined", min_count = 5, r = 200, max_risk = 0.8) print(fined) col <- c(" , " plot(fined, "mean", col=col) fined_qt <- protect_quadtree(fined) plot(fined_qt, col=col) fined_smooth <- protect_smooth(fined, bw = 500) plot(fined_smooth, col = col) sensitivity_score(fined_smooth)
basepredict = function(model, values, sim.count = 1000, conf.int = 0.95, sigma=NULL, set.seed=NULL, type = c("any", "simulation", "bootstrap"), summary = TRUE){ UseMethod("basepredict") }
gmdh.combi.twice_3 <- function(X, y, G) { fin.1 <- Inf fin.2 <- 0 lap <- 0 modelos <- vector(mode = "list", length = 2) names(modelos) <- c("results", "G") modelos$G <- G prune <- ncol(X) while(fin.1 >= fin.2) { lap <- lap + 1 message(paste("Layer ", lap, sep = "")) regressors <- fun.poly(X, G = G) regressors <- fun.filter(regressors) combs <- do.call(expand.grid, rep(list(c(FALSE, TRUE)), ncol(regressors)))[-1, ] results <- apply(combs, 1, function(x){fun.svd_3(y = y, x = regressors[, x, drop = FALSE])}) names(results) <- paste(lap, c("."), 1:length(results), sep = "") Z <- lapply(results, predict.svd, regressors) Z <- matrix(data = unlist(Z), nrow = nrow(X), ncol = length(Z)) colnames(Z) <- names(results) Z <- fun.filter(Z) nombres.Z <- colnames(Z) cv <- unlist(lapply(results, function(x){x$CV})) cv <- cv[nombres.Z] ndx <- sort(na.omit(order(cv)[1:prune])) cv <- cv[ndx, drop = FALSE] results <- results[names(cv)] Z <- Z[, names(cv)] fin.1 <- min(cv, na.rm = TRUE) message(paste(" Error ", fin.1, sep = "")) lap <- lap + 1 message(paste("Layer ", lap, sep = "")) regressors <- fun.poly(Z, G = G) regressors <- fun.filter(regressors) combs <- do.call(expand.grid, rep(list(c(FALSE, TRUE)), ncol(regressors)))[-1, ] results.2 <- apply(combs, 1, function(x){fun.svd_3(y = y, x = regressors[, x, drop = FALSE])}) names(results.2) <- paste(lap, c("."), 1:length(results.2), sep = "") X <- lapply(results.2, predict.svd, regressors) X <- matrix(data = unlist(X), nrow = nrow(Z), ncol = length(X)) colnames(X) <- names(results.2) X <- fun.filter(X) nombres.X <- colnames(X) cv <- unlist(lapply(results.2, function(x){x$CV})) cv <- cv[nombres.X] ndx <- sort(na.omit(order(cv)[1:prune])) cv <- cv[ndx, drop = FALSE] X <- X[, names(cv)] fin.2 <- min(cv, na.rm = TRUE) message(paste(" Error ", fin.2, sep = "")) results.2 <- results.2[ndx] modelos$results[[length(modelos$results) + 1]] <- results modelos$results[[length(modelos$results) + 1]] <- results.2 class(modelos) <- "combitwice" ifelse(fin.2 >= fin.1, return(modelos), NA) } }
simple_UVs <- function(data) { simple_UVs <- CI <- NULL simple_UVs <- CIs(data) dplyr::rename(simple_UVs, simple_UV = CI) }
ergm.MCMLE <- function(init, nw, model, initialfit, control, proposal, proposal.obs, verbose=FALSE, sequential=control$MCMLE.sequential, estimate=TRUE, ...) { message("Starting Monte Carlo maximum likelihood estimation (MCMLE):") obs <- ! is.null(proposal.obs) coef.hist <- rbind(init) stats.hist <- matrix(NA, 0, length(model$nw.stats)) stats.obs.hist <- matrix(NA, 0, length(model$nw.stats)) steplen.hist <- c() steplen <- control$MCMLE.steplength if(control$MCMLE.steplength=="adaptive") steplen <- 1 if(is.null(control$MCMLE.samplesize)) control$MCMLE.samplesize <- max(control$MCMLE.samplesize.min,control$MCMLE.samplesize.per_theta*nparam(model,canonical=FALSE, offset=FALSE)) if(obs && is.null(control$obs.MCMLE.samplesize)) control$obs.MCMLE.samplesize <- max(control$obs.MCMLE.samplesize.min,control$obs.MCMLE.samplesize.per_theta*nparam(model,canonical=FALSE, offset=FALSE)) control <- remap_algorithm_MCMC_controls(control, "MCMLE") control$MCMC.base.effectiveSize <- control$MCMC.effectiveSize control$obs.MCMC.base.effectiveSize <- control$obs.MCMC.effectiveSize control$MCMC.base.samplesize <- control$MCMC.samplesize control$obs.MCMC.base.samplesize <- control$obs.MCMC.samplesize control0 <- control ergm.getCluster(control, max(verbose-1,0)) nw.orig <- nw s <- single.impute.dyads(nw, constraints=proposal$arguments$constraints, constraints.obs=proposal.obs$arguments$constraints, min_informative = control$obs.MCMC.impute.min_informative, default_density = control$obs.MCMC.impute.default_density, output="ergm_state", verbose=verbose) if(control$MCMLE.density.guard>1){ ec <- network.edgecount(s) control$MCMC.maxedges <- round(min(control$MCMC.maxedges, max(control$MCMLE.density.guard*ec, control$MCMLE.density.guard.min))) if(verbose) message("Density guard set to ",control$MCMC.maxedges," from an initial count of ",ec," edges.") } model$nw.stats <- summary(model, s) statshift <- model$nw.stats - NVL(model$target.stats,model$nw.stats) statshift[is.na(statshift)] <- 0 s <- update(s, model=model, proposal=proposal, stats=statshift) s <- rep(list(s),nthreads(control)) if(obs){ control.obs <- control for(name in OBS_MCMC_CONTROLS) control.obs[[name]] <- control[[paste0("obs.", name)]] control0.obs <- control.obs s.obs <- lapply(s, update, model=NVL(model$obs.model,model), proposal=proposal.obs) } .boost_samplesize <- function(boost, base=FALSE){ for(ctrl in c("control", if(obs) "control.obs")){ control <- get(ctrl, parent.frame()) sampsize.boost <- NVL2(control$MCMC.effectiveSize, boost^control$MCMLE.sampsize.boost.pow, boost) control$MCMC.samplesize <- round((if(base) control$MCMC.base.samplesize else control$MCMC.samplesize) * sampsize.boost) control$MCMC.effectiveSize <- NVL3((if(base) control$MCMC.base.effectiveSize else control$MCMC.effectiveSize), . * boost) control$MCMC.samplesize <- ceiling(max(control$MCMC.samplesize, control$MCMC.effectiveSize*control$MCMLE.min.depfac)) assign(ctrl, control, parent.frame()) } NULL } if(control$MCMLE.termination=='confidence'){ estdiff.prev <- NULL d2.not.improved <- rep(FALSE, control$MCMLE.confidence.boost.lag) } mcmc.init <- init calc.MCSE <- FALSE last.adequate <- FALSE ERGM_STATE_ELEMENTS <- c("el", "nw0", "stats", "ext.state", "ext.flag") STATE_VARIABLES <- c("mcmc.init", "calc.MCSE", "last.adequate", "coef.hist", "stats.hist", "stats.obs.hist", "steplen.hist", "steplen","setdiff.prev","d2.not.improved") CONTROL_VARIABLES <- c("control", "control.obs", "control0", "control0.obs") INTERMEDIATE_VARIABLES <- c("s", "s.obs", "statsmatrices", "statsmatrices.obs", "coef.hist", "stats.hist", "stats.obs.hist", "steplen.hist") if(!is.null(control$resume)){ message("Resuming from state saved in ", sQuote(control$resume),".") state <- new.env() load(control$resume,envir=state) .merge_controls <- function(saved.ctrl, saved.ctrl0, ctrl0){ ctrl <- saved.ctrl for(name in union(names(ctrl), names(ctrl0))){ if(!identical(ctrl[[name]],ctrl0[[name]])){ if(!identical(ctrl0[[name]], saved.ctrl0[[name]])){ if(verbose) message("Passed-in control setting ", sQuote(name), " changed from original run: overriding saved state.") ctrl[[name]] <- ctrl0[[name]] }else if(verbose) message("Passed-in control setting ", sQuote(name), " unchanged from original run: using saved state.") } } ctrl } control <- .merge_controls(state$control, state$control0, control0) if(obs) control.obs <- .merge_controls(state$control.obs, state$control0.obs, control0.obs) for(i in seq_along(s)) for(name in ERGM_STATE_ELEMENTS) s[[i]][[name]] <- state$s.reduced[[i]][[name]] if(obs) for(i in seq_along(s.obs)) for(name in ERGM_STATE_ELEMENTS) s.obs[[i]][[name]] <- state$s.obs.reduced[[i]][[name]] for(name in intersect(ls(state), STATE_VARIABLES)) assign(name, state[[name]]) rm(state) } for(iteration in 1:control$MCMLE.maxit){ if(verbose){ message("\nIteration ",iteration," of at most ", control$MCMLE.maxit, " with parameter:") message_print(mcmc.init) }else{ message("Iteration ",iteration," of at most ", control$MCMLE.maxit,":") } if(!is.null(control$checkpoint)){ message("Saving state in ", sQuote(sprintf(control$checkpoint, iteration)),".") s.reduced <- s for(i in seq_along(s.reduced)) s.reduced[[i]]$model <- s.reduced[[i]]$proposal <- NULL if(obs){ s.obs.reduced <- s.obs for(i in seq_along(s.obs.reduced)) s.obs.reduced[[i]]$model <- s.obs.reduced[[i]]$proposal <- NULL } save(list=intersect(ls(), c("s.reduced", "s.obs.reduced", STATE_VARIABLES, CONTROL_VARIABLES)), file=sprintf(control$checkpoint, iteration)) rm(s.reduced) suppressWarnings(rm(s.obs.reduced)) } if(verbose) message("Starting unconstrained MCMC...") z <- ergm_MCMC_sample(s, control, theta=mcmc.init, verbose=max(verbose-1,0)) if(z$status==1) stop("Number of edges in a simulated network exceeds that in the observed by a factor of more than ",floor(control$MCMLE.density.guard),". This is a strong indicator of model degeneracy or a very poor starting parameter configuration. If you are reasonably certain that neither of these is the case, increase the MCMLE.density.guard control.ergm() parameter.") statsmatrices <- z$stats s.returned <- z$networks statsmatrix <- as.matrix(statsmatrices) if(verbose){ message("Back from unconstrained MCMC.") if(verbose>1){ message("Average statistics:") message_print(colMeans(statsmatrix)) } } if(obs){ if(verbose) message("Starting constrained MCMC...") z.obs <- ergm_MCMC_sample(s.obs, control.obs, theta=mcmc.init, verbose=max(verbose-1,0)) statsmatrices.obs <- z.obs$stats s.obs.returned <- z.obs$networks statsmatrix.obs <- as.matrix(statsmatrices.obs) if(verbose){ message("Back from constrained MCMC.") if(verbose>1){ message("Average statistics:") message_print(colMeans(statsmatrix.obs)) } } }else{ statsmatrices.obs <- statsmatrix.obs <- NULL z.obs <- NULL } if(sequential) { s <- s.returned if(obs){ s.obs <- s.obs.returned } } if(!is.null(control$MCMLE.save_intermediates)){ save(list=intersect(ls(), INTERMEDIATE_VARIABLES), file=sprintf(control$MCMLE.save_intermediates, iteration)) } esteqs <- ergm.estfun(statsmatrices, theta=mcmc.init, model=model) esteq <- as.matrix(esteqs) if(isTRUE(all.equal(apply(esteq,2,stats::sd), rep(0,ncol(esteq)), check.names=FALSE))&&!all(esteq==0)) stop("Unconstrained MCMC sampling did not mix at all. Optimization cannot continue.") check_nonidentifiability(esteq, NULL, model, tol = control$MCMLE.nonident.tol, type="statistics", nonident_action = control$MCMLE.nonident, nonvar_action = control$MCMLE.nonvar) esteqs.obs <- if(obs) ergm.estfun(statsmatrices.obs, theta=mcmc.init, model=model) else NULL esteq.obs <- if(obs) as.matrix(esteqs.obs) else NULL if(!is.null(control$MCMC.effectiveSize)){ control$MCMC.interval <- round(max(z$final.interval/control$MCMLE.effectiveSize.interval_drop,1)) control$MCMC.burnin <- round(max(z$final.interval*16,16)) if(verbose) message("New interval = ",control$MCMC.interval,".") if(obs){ control.obs$MCMC.interval <- round(max(z.obs$final.interval/control$MCMLE.effectiveSize.interval_drop,1)) control.obs$MCMC.burnin <- round(max(z.obs$final.interval*16,16)) if(verbose) message("New constrained interval = ",control.obs$MCMC.interval,".") } } if(verbose){ message("Average estimating function values:") message_print(if(obs) colMeans(esteq.obs)-colMeans(esteq) else -colMeans(esteq)) } if(!estimate){ if(verbose){message("Skipping optimization routines...")} s.returned <- lapply(s.returned, as.network) l <- list(coefficients=mcmc.init, mc.se=rep(NA,length=length(mcmc.init)), sample=statsmatrices, sample.obs=statsmatrices.obs, iterations=1, MCMCtheta=mcmc.init, loglikelihood=NA, mle.lik=NULL, gradient=rep(NA,length=length(mcmc.init)), samplesize=control$MCMC.samplesize, failure=TRUE, newnetwork = s.returned[[1]], newnetworks = s.returned) return(structure (l, class="ergm")) } if(control$MCMLE.termination=='confidence'){ estdiff <- NVL3(esteq.obs, colMeans(.), 0) - colMeans(esteq) pprec <- diag(sqrt(control$MCMLE.MCMC.precision), nrow=length(estdiff)) Vm <- pprec%*%(cov(esteq) - NVL3(esteq.obs, cov(.), 0))%*%pprec novar <- diag(Vm) == 0 Vm[!novar,!novar] <- as.matrix(nearPD(Vm[!novar,!novar,drop=FALSE], posd.tol=0)$mat) iVm <- ginv(Vm) diag(Vm)[novar] <- sqrt(.Machine$double.xmax) d2 <- estdiff%*%iVm%*%estdiff if(d2<2) last.adequate <- TRUE } if(verbose){message("Starting MCMLE Optimization...")} if(!is.null(control$MCMLE.steplength.margin)){ steplen <- .Hummel.steplength( if(control$MCMLE.steplength.esteq) esteq else statsmatrix[,!model$etamap$offsetmap,drop=FALSE], if(control$MCMLE.steplength.esteq) esteq.obs else statsmatrix.obs[,!model$etamap$offsetmap,drop=FALSE], control$MCMLE.steplength.margin, control$MCMLE.steplength, point.gamma.exp=control$MCMLE.steplength.point.exp, steplength.prev=steplen, x1.prefilter=control$MCMLE.steplength.prefilter, x2.prefilter=control$MCMLE.steplength.prefilter, precision=control$MCMLE.steplength.precision, min=control$MCMLE.steplength.min, verbose=verbose, x2.num.max=control$MCMLE.steplength.miss.sample, parallel=control$MCMLE.steplength.parallel, steplength.maxit=control$MCMLE.steplength.maxit, control=control ) steplen0 <- if(control$MCMLE.termination%in%c("precision","Hummel") && control$MCMLE.steplength.margin<0 && control$MCMLE.steplength==steplen) .Hummel.steplength( if(control$MCMLE.steplength.esteq) esteq else statsmatrix[,!model$etamap$offsetmap,drop=FALSE], if(control$MCMLE.steplength.esteq) esteq.obs else statsmatrix.obs[,!model$etamap$offsetmap,drop=FALSE], 0, control$MCMLE.steplength, steplength.prev=steplen, point.gamma.exp=control$MCMLE.steplength.point.exp, x1.prefilter=control$MCMLE.steplength.prefilter, x2.prefilter=control$MCMLE.steplength.prefilter, precision=control$MCMLE.steplength.precision, min=control$MCMLE.steplength.min, verbose=verbose, x2.num.max=control$MCMLE.steplength.miss.sample, steplength.maxit=control$MCMLE.steplength.maxit, parallel=control$MCMLE.steplength.parallel, control=control ) else steplen steplen.converged <- control$MCMLE.steplength==steplen0 }else{ steplen <- control$MCMLE.steplength steplen.converged <- TRUE } message("Optimizing with step length ", fixed.pval(steplen, eps = control$MCMLE.steplength.min), ".") if(control$MCMLE.steplength==steplen && !steplen.converged) message("Note that convergence diagnostic step length is ",steplen0,".") if(steplen.converged || is.null(control$MCMLE.steplength.margin) || iteration==control$MCMLE.maxit) calc.MCSE <- TRUE steplen.hist <- c(steplen.hist, steplen) v<-ergm.estimate(init=mcmc.init, model=model, statsmatrices=statsmatrices, statsmatrices.obs=statsmatrices.obs, epsilon=control$epsilon, nr.maxit=control$MCMLE.NR.maxit, nr.reltol=control$MCMLE.NR.reltol, calc.mcmc.se=control$MCMLE.termination == "precision" || (control$MCMC.addto.se && last.adequate) || iteration == control$MCMLE.maxit, hessianflag=control$main.hessian, method=control$MCMLE.method, dampening=control$MCMLE.dampening, dampening.min.ess=control$MCMLE.dampening.min.ess, dampening.level=control$MCMLE.dampening.level, metric=control$MCMLE.metric, steplen=steplen, steplen.point.exp=control$MCMLE.steplength.point.exp, verbose=verbose, estimateonly=!calc.MCSE) message("The log-likelihood improved by ", fixed.pval(v$loglikelihood, 4), ".") coef.hist <- rbind(coef.hist, coef(v)) stats.obs.hist <- NVL3(statsmatrix.obs, rbind(stats.obs.hist, apply(.[], 2, base::mean))) stats.hist <- rbind(stats.hist, apply(statsmatrix, 2, base::mean)) if(control$MCMLE.termination=='Hotelling'){ conv.pval <- ERRVL(try(suppressWarnings(approx.hotelling.diff.test(esteqs, esteqs.obs)$p.value)), NA) message("Nonconvergence test p-value:", format(conv.pval), "") if(!is.na(conv.pval) && conv.pval>=1-sqrt(1-control$MCMLE.conv.min.pval)){ if(last.adequate){ message("No nonconvergence detected twice. Stopping.") break }else{ message("No nonconvergence detected once; increasing sample size if not already increased.") last.adequate <- TRUE .boost_samplesize(control$MCMLE.last.boost, TRUE) } }else{ last.adequate <- FALSE } }else if(control$MCMLE.termination=='confidence'){ if(!is.null(estdiff.prev)){ d2.prev <- estdiff.prev%*%iVm%*%estdiff.prev if(verbose) message("Distance from origin on tolerance region scale: ", d2, " (previously ", d2.prev, ").") d2.not.improved <- d2.not.improved[-1] if(d2 >= d2.prev){ d2.not.improved <- c(d2.not.improved,TRUE) }else{ d2.not.improved <- c(d2.not.improved,FALSE) } } estdiff.prev <- estdiff if(d2<2){ IS.lw <- function(sm, etadiff){ nochg <- etadiff==0 | apply(sm, 2, function(x) max(x)==min(x)) basepred <- sm[,!nochg,drop=FALSE] %*% etadiff[!nochg] } lw2w <- function(lw){w<-exp(lw-max(lw)); w/sum(w)} hotel <- try(suppressWarnings(approx.hotelling.diff.test(esteqs, esteqs.obs)), silent=TRUE) if(inherits(hotel, "try-error")){ message("Unable to test for convergence; increasing sample size.") .boost_samplesize(control$MCMLE.confidence.boost) }else{ etadiff <- ergm.eta(coef(v), model$etamap) - ergm.eta(mcmc.init, model$etamap) esteq.lw <- IS.lw(statsmatrix, etadiff) esteq.w <- lw2w(esteq.lw) estdiff <- -lweighted.mean(esteq, esteq.lw) estcov <- hotel$covariance.x*sum(esteq.w^2)*length(esteq.w) if(obs){ esteq.obs.lw <- IS.lw(statsmatrix.obs, etadiff) esteq.obs.w <- lw2w(esteq.obs.lw) estdiff <- estdiff + lweighted.mean(esteq.obs, esteq.obs.lw) estcov <- estcov + hotel$covariance.y*sum(esteq.obs.w^2)*length(esteq.obs.w) } estdiff <- estdiff[!hotel$novar] estcov <- estcov[!hotel$novar, !hotel$novar] d2e <- estdiff%*%iVm[!hotel$novar, !hotel$novar]%*%estdiff if(d2e<1){ T2 <- try(.ellipsoid_mahalanobis(estdiff, estcov, iVm[!hotel$novar, !hotel$novar]), silent=TRUE) if(inherits(T2, "try-error")){ message("Unable to test for convergence; increasing sample size.") .boost_samplesize(control$MCMLE.confidence.boost) }else{ nonconv.pval <- .ptsq(T2, hotel$parameter["param"], hotel$parameter["df"], lower.tail=FALSE) if(verbose) message("Test statistic: T^2 = ",T2,", with ", hotel$parameter["param"], " free parameters and ",hotel$parameter["df"], " degrees of freedom.") message("Convergence test p-value: ", fixed.pval(nonconv.pval, 4), ". ", appendLF=FALSE) if(nonconv.pval < 1-control$MCMLE.confidence){ message("Converged with ",control$MCMLE.confidence*100,"% confidence.") break }else{ message("Not converged with ",control$MCMLE.confidence*100,"% confidence; increasing sample size.") critval <- .qtsq(control$MCMLE.confidence, hotel$parameter["param"], hotel$parameter["df"]) if(verbose) message(control$MCMLE.confidence*100,"% confidence critical value = ",critval,".") boost <- min((critval/T2),control$MCMLE.confidence.boost) .boost_samplesize(boost) } } } } } if(d2>=2 || d2e>1){ message("Estimating equations are not within tolerance region.") if(sum(d2.not.improved) > control$MCMLE.confidence.boost.threshold){ message("Estimating equations did not move closer to tolerance region more than ", control$MCMLE.confidence.boost.threshold," time(s) in ", control$MCMLE.confidence.boost.lag, " steps; increasing sample size.") .boost_samplesize(control$MCMLE.confidence.boost) d2.not.improved[] <- FALSE } } }else if(!steplen.converged){ last.adequate <- FALSE .boost_samplesize(1, TRUE) }else if(control$MCMLE.termination == "precision"){ prec.loss <- (sqrt(diag(v$mc.cov+v$covar))-sqrt(diag(v$covar)))/sqrt(diag(v$mc.cov+v$covar)) if(verbose){ message("Standard Error:") message_print(sqrt(diag(v$covar))) message("MC SE:") message_print(sqrt(diag(v$mc.cov))) message("Linear scale precision loss due to MC estimation of the likelihood:") message_print(prec.loss) } if(sqrt(mean(prec.loss^2, na.rm=TRUE)) <= control$MCMLE.MCMC.precision){ if(last.adequate){ message("Precision adequate twice. Stopping.") break }else{ message("Precision adequate. Performing one more iteration.") last.adequate <- TRUE } }else{ last.adequate <- FALSE prec.scl <- max(sqrt(mean(prec.loss^2, na.rm=TRUE))/control$MCMLE.MCMC.precision, 1) if (!is.null(control$MCMC.effectiveSize)) { control$MCMC.effectiveSize <- round(control$MCMC.effectiveSize * prec.scl) if(control$MCMC.effectiveSize/control$MCMC.samplesize>control$MCMLE.MCMC.max.ESS.frac) control$MCMC.samplesize <- control$MCMC.effectiveSize/control$MCMLE.MCMC.max.ESS.frac message("Increasing target MCMC sample size to ", control$MCMC.samplesize, ", ESS to",control$MCMC.effectiveSize,".") } else { control$MCMC.samplesize <- round(control$MCMC.samplesize * prec.scl) control$MCMC.burnin <- round(control$MCMC.burnin * prec.scl) message("Increasing MCMC sample size to ", control$MCMC.samplesize, ", burn-in to",control$MCMC.burnin,".") } if(obs){ if (!is.null(control.obs$MCMC.effectiveSize)) { control.obs$MCMC.effectiveSize <- round(control.obs$MCMC.effectiveSize * prec.scl) if(control.obs$MCMC.effectiveSize/control.obs$MCMC.samplesize>control.obs$MCMLE.MCMC.max.ESS.frac) control.obs$MCMC.samplesize <- control.obs$MCMC.effectiveSize/control.obs$MCMLE.MCMC.max.ESS.frac message("Increasing target constrained MCMC sample size to ", control.obs$MCMC.samplesize, ", ESS to",control.obs$MCMC.effectiveSize,".") } else { control.obs$MCMC.samplesize <- round(control.obs$MCMC.samplesize * prec.scl) control.obs$MCMC.burnin <- round(control.obs$MCMC.burnin * prec.scl) message("Increasing constrained MCMC sample size to ", control.obs$MCMC.samplesize, ", burn-in to",control.obs$MCMC.burnin,".") } } } }else if(control$MCMLE.termination=='Hummel'){ if(last.adequate){ message("Step length converged twice. Stopping.") break }else{ message("Step length converged once. Increasing MCMC sample size.") last.adequate <- TRUE .boost_samplesize(control$MCMLE.last.boost, TRUE) } } if ((length(steplen.hist) > 2) && sum(tail(steplen.hist,2)) < 2*control$MCMLE.steplength.min) { stop("MCMLE estimation stuck. There may be excessive correlation between model terms, suggesting a poor model for the observed data. If target.stats are specified, try increasing SAN parameters.") } if (iteration == control$MCMLE.maxit) { message("MCMLE estimation did not converge after ", control$MCMLE.maxit, " iterations. The estimated coefficients may not be accurate. Estimation may be resumed by passing the coefficients as initial values; see 'init' under ?control.ergm for details.") } mcmc.init <- coef(v) } message("Finished MCMLE.") v$sample <- statsmatrices if(obs) v$sample.obs <- statsmatrices.obs nws.returned <- lapply(s.returned, as.network) v$network <- nw.orig v$newnetworks <- nws.returned v$newnetwork <- nws.returned[[1]] v$coef.init <- init v$est.cov <- v$mc.cov v$mc.cov <- NULL v$coef.hist <- coef.hist v$stats.hist <- stats.hist v$stats.obs.hist <- stats.obs.hist v$steplen.hist <- steplen.hist v$iterations <- iteration if(obs) for(name in OBS_MCMC_CONTROLS) control[[paste0("obs.", name)]] <- control.obs[[name]] v$control <- control v$etamap <- model$etamap v } .ellipsoid_mahalanobis <- function(y, W, U){ y <- c(y) if(y%*%U%*%y>=1) stop("Point is not in the interior of the ellipsoid.") I <- diag(length(y)) WU <- W%*%U x <- function(l) c(solve(I+l*WU, y)) zerofn <- function(l) ERRVL(try({x <- x(l); c(x%*%U%*%x)-1}, silent=TRUE), +Inf) eig <- Re(eigen(WU, only.values=TRUE)$values) lmin <- -1/max(eig) l <- uniroot(zerofn, lower=lmin, upper=0, tol=sqrt(.Machine$double.xmin))$root x <- x(l) (y-x)%*%solve(W)%*%(y-x) }
insert_test <- function(selected_shaker, shaker_name) { context(str_glue("salt_insert: {shaker_name}")) if (is.character(selected_shaker)) { shaker_contents <- selected_shaker } else { shaker_contents <- inspect_shaker(selected_shaker) } test_that(str_glue("insert {shaker_name}"), { insert_res <- map(battery, function(x) { salt_insert(x, p = 0.5, insertions = selected_shaker) }) imap(insert_res, function(x, n) expect_is(x, class = "character", info = n)) walk2(insert_res, battery_lengths, expect_length) imap(insert_res, function(x, n) { expect_true(any(map_lgl(x, function(y) { any(str_detect(y, fixed(shaker_contents))) })), info = str_glue("shaker name: {shaker_name} - battery test: {n}")) }) }) test_that(str_glue("overload insert {shaker_name}"), { walk(battery, function(b) { expect_warning(salt_insert(b, insertions = selected_shaker, p = 0.5, n = 30)) }) }) test_that("error on zero-length input", { expect_error(salt_insert(zero_length, insertions = selected_shaker)) }) } imap(c(shaker, list("literal" = literal_salts)), insert_test)
write.tree <- function (tree=NULL, file=NULL) { if (is.null(tree)) stop(simpleError("Please provide a value for tree to write.tree()")) if (is(tree, "BIOM")) tree <- rbiom::phylogeny(tree) if (!is(tree, "phylo")) stop(simpleError("Provided tree is not a 'phylo' or 'BIOM' class object.")) rootNode <- setdiff(tree$edge[,1], tree$edge[,2]) parentAt <- aggregate(1:nrow(tree$edge), by=list(tree$edge[,1]), c, simplify=FALSE) parentAt <- setNames(lapply(parentAt[,2], unlist), parentAt[,1]) fx <- function (root=NULL) { nodes <- parentAt[[as.character(root)]] if (length(nodes) == 0) { nodeLabel <- tree$tip.label[root] if (any(grepl(" ", nodeLabel, fixed=TRUE))) { if (any(grepl("_", nodeLabel, fixed=TRUE))) { nodeLabel <- paste0("'", nodeLabel, "'") } else { nodeLabel <- gsub(" ", "_", nodeLabel) } } return (nodeLabel) } children <- tree$edge[nodes, 2] children <- sapply(children, fx) if (!is.null(tree$edge.length)) children <- paste(sep=":", children, tree$edge.length[nodes]) sprintf("(%s)", paste(collapse=",", children)) } newick <- paste0(fx(rootNode), ";") if (!is.null(file)) return (writeLines(text=newick, con=file, sep="")) return (newick) }
compHclust <- function(x,xhc) { if ((!is.matrix(x))|(!is.numeric(x))) { stop("'x' must be a numeric matrix") } if (any(is.na(as.vector(x)))) { stop("'x' has missing values, please impute missing values") } if (class(xhc)!="hclust") { stop("'xhc' must be of class 'hclust'") } if (ncol(x)!=length(xhc$order)) { stop("'xhc' must be a clustering of the columns of 'x'") } x.hat <- as.matrix(x)%*%A.chc(xhc) return(list("x.prime"=x-x.hat,"gene.imp"=RGI.chc(x,x.hat))) }
cplex_dir <- normalizePath(Sys.getenv("CPLEX_HOME")) test_that("virgo_solver works on MWCS", { if (!file.exists(cplex_dir)) { skip("No CPLEX available") } solver <- virgo_solver(cplex_dir=cplex_dir) solution <- solve_mwcsp(solver, mwcs_small_instance) expect_equal(solution$weight, 3) }) test_that("virgo_solver works on GMWCS", { if (!file.exists(cplex_dir)) { skip("No CPLEX available") } solver <- virgo_solver(cplex_dir=cplex_dir) solution <- solve_mwcsp(solver, gmwcs_small_instance) expect_equal(solution$weight, 11) }) test_that("virgo_solver works on SGMWCS", { if (!file.exists(cplex_dir)) { skip("No CPLEX available") } solver <- virgo_solver(cplex_dir=cplex_dir) solution <- solve_mwcsp(solver, sgmwcs_small_instance) expect_equal(solution$weight, 51) }) test_that("heuristic virgo_solver works on MWCS", { solver <- virgo_solver(cplex_dir=NULL) solution <- solve_mwcsp(solver, mwcs_small_instance) expect_equal(solution$weight, 3) }) test_that("heuristic virgo_solver works on GMWCS", { solver <- virgo_solver(cplex_dir=NULL) solution <- solve_mwcsp(solver, gmwcs_small_instance) expect_gt(solution$weight, 0) expect_lte(solution$weight, 11) }) test_that("heuristic virgo_solver works on SGMWCS", { solver <- virgo_solver(cplex_dir=NULL) solution <- solve_mwcsp(solver, sgmwcs_small_instance) expect_equal(solution$weight, 51) }) test_that("virgo solver does not supported repeated negative signals", { sgmwcs_edges <- data.frame(from = c(1, 2, 2, 3, 4, 5, 1), to = c(2, 3, 4, 4, 6, 6, 5), signal = c("S6", "S2", "S7", "S2", "S8", "S9", "S10")) sgmwcs_instance <- igraph::graph_from_data_frame(sgmwcs_edges, directed = FALSE) igraph::V(sgmwcs_instance)$signal <- c("S1", "S3", "S4", "S5", "S1", "S1") sgmwcs_instance$signals <- stats::setNames(c(7.0, -20.0, 40.0, 15.0, 8.0, 3.0, -7.0, -10.0, -2.0, -15.3, 1.0), paste0("S", 1:11)) solver <- virgo_solver(cplex_dir=NULL) expect_error(solution <- solve_mwcsp(solver, sgmwcs_instance)) }) test_that("heuristic virgo_solver works on SGMWCS", { solver <- virgo_solver(cplex_dir=NULL) si <- sgmwcs_small_instance si$signals <- c(si$signals, "neg"=-1) solution <- solve_mwcsp(solver, si) expect_true(!is.null(solution)) })
context("gppm-easychecks") test_that("wrong variable names", { tmpData <- myDataLong names(tmpData)[3] <- 't ' expect_error(gpModel <- gppm('b0+b1*t','(t==t names(tmpData)[3] <- 't! expect_error(gpModel <- gppm('b0+b1*t','(t==t names(tmpData)[3] <- 'Ha ha' expect_error(gpModel <- gppm('b0+b1*t','(t==t names(tmpData)[3] <- '3D5' expect_error(gpModel <- gppm('b0+b1*t','(t==t }) test_that("ID not in", { expect_error(gpModel <- gppm('b0+b1*t','(t==t }) test_that("DV not in", { expect_error(gpModel <- gppm('b0+b1*t','(t==t }) context("gppm-meanCovariance") test_that("linear regression", { gpModel <- gppm('b0+b1*t','(t==t mFormula <- getIntern(gpModel,'parsedmFormula') cFormula <- getIntern(gpModel,'parsedcFormula') expect_equal(mFormula,"b0+b1*X[i,j,1]") expect_equal(cFormula,"(X[i,j,1]==X[i,k,1])*sigma") myModelSpec <- summary(gpModel)$modelSpecification expect_equal(myModelSpec$meanFormula,"b0+b1*t") expect_equal(myModelSpec$covFormula,"(t==t expect_equal(myModelSpec$params,c('b0','b1','sigma')) expect_equal(myModelSpec$nPars,3) expect_equal(myModelSpec$preds,c('t')) expect_equal(myModelSpec$nPreds,1) }) test_that("Bayesian Linear regression", { gpModel <- gppm('0','(t*t mFormula <- getIntern(gpModel,'parsedmFormula') cFormula <- getIntern(gpModel,'parsedcFormula') expect_equal(mFormula,"0") expect_equal(cFormula,"(X[i,j,1]*X[i,k,1]+1)*sigmab+(X[i,j,1]==X[i,k,1])*sigma") }) test_that("squared exponential", { gpModel <- gppm('c','sigmaf*exp(-(t-t mFormula <- getIntern(gpModel,'parsedmFormula') cFormula <- getIntern(gpModel,'parsedcFormula') expect_equal(mFormula,"c") expect_equal(cFormula,"sigmaf*exp(-(X[i,j,1]-X[i,k,1])^2/rho)+(X[i,j,1]==X[i,k,1])*sigma") }) test_that("hard names", { tmp <- myData names(tmp) <- c('ID45','t83','y13') gpModel <- gppm('b0+b1*t83','(t83==t83 mFormula <- getIntern(gpModel,'parsedmFormula') cFormula <- getIntern(gpModel,'parsedcFormula') expect_equal(mFormula,"b0+b1*X[i,j,1]") expect_equal(cFormula,"(X[i,j,1]==X[i,k,1])*sigma") })
plot.ECFOCF <- function(x, ..., result="CF", category=NA, period=1) { p3p <- list(...) result <- tolower(result) if (result=="data") { do.call(getFromNamespace("plot.TableECFOCF", ns="phenology"), modifyList(list(x=x$data, period=period, cex.points=4, pch=19, col="black", cex.axis=0.8, cex.labels=0.5, col.labels="red", show.labels=FALSE, show.0=FALSE, pch.0=4, cex.0=0.5, col.0="blue", show.scale = TRUE), p3p)) } if (result=="ecfocf0") { if (all(is.na(category)) | (all(category == ""))) { do.call(getFromNamespace("plot.TableECFOCF", ns="phenology"), modifyList(list(x=x$ECFOCF_0, period=period, cex.points=4, pch=19, col="black", cex.axis=0.8, cex.labels=0.5, col.labels="red", show.labels=FALSE, show.0=FALSE, pch.0=4, cex.0=0.5, col.0="blue", show.scale = TRUE), p3p)) } else { do.call(getFromNamespace("plot.TableECFOCF", ns="phenology"), modifyList(list(x=x$ECFOCF_0_categories[[as.numeric(category)]], period=period, cex.points=4, pch=19, col="black", cex.axis=0.8, cex.labels=0.5, col.labels="red", show.labels=FALSE, show.0=FALSE, pch.0=4, cex.0=0.5, col.0="blue", show.scale = TRUE), p3p)) } } if (result=="ecfocf") { if (all(is.na(category)) | (all(category == ""))) { do.call(getFromNamespace("plot.TableECFOCF", ns="phenology"), modifyList(list(x=x$ECFOCF, period=period, cex.points=4, pch=19, col="black", cex.axis=0.8, cex.labels=0.5, col.labels="red", show.labels=FALSE, show.0=FALSE, pch.0=4, cex.0=0.5, col.0="blue", show.scale = TRUE), p3p)) } else { do.call(getFromNamespace("plot.TableECFOCF", ns="phenology"), modifyList(list(x=x$ECFOCF_categories[[as.numeric(category)]], period=period, cex.points=4, pch=19, col="black", cex.axis=0.8, cex.labels=0.5, col.labels="red", show.labels=FALSE, show.0=FALSE, pch.0=4, cex.0=0.5, col.0="blue", show.scale = TRUE), p3p)) } } if (result=="cf") { if (all(is.na(category)) | (all(category == ""))) { cf <- x$CF main="Clutch Frequency: All categories" } else { cf <- x$CF_categories[[as.numeric(category)]] main=paste0("Clutch Frequency: Category ", as.character(category)) } do.call(plot, modifyList(list(x=1:length(cf), xlab="Clutch Frequency", ylab="Density", main=main, y=cf, type="h", xaxt="n"), p3p)[c("x", "y", "type", "col", "main", "cex.axis", "bty", "las", "xlab", "ylab", "xaxt", "xlim", "ylim")]) axis(side = 1, at=1:length(cf), cex.axis=unlist(modifyList(list(cex.axis=0.8), p3p)[c("cex.axis")])) } if ((result=="ocf") | (result=="dataocf")) { if (result=="ocf") { ylab="Density" if (all(is.na(category)) | (all(category == ""))) { ecfocf <- x$ECFOCF[, , period] main="Observed Clutch Frequency: All categories" } else { ecfocf <- x$ECFOCF_categories[[as.numeric(category)]][, , period] main=paste0("Observed Clutch Frequency: Category ", as.character(category)) } } else { ylab="Frequency" ecfocf <- x$data[, , period] main="Observed OCF" } ocf <- rowSums(ecfocf, na.rm = TRUE) do.call(plot, modifyList(list(x=0:(length(ocf)-1), xlab="Observed Clutch Frequency", ylab=ylab, main=main, y=ocf, type="h"), p3p)[c("x", "y", "type", "col", "main", "cex.axis", "bty", "las", "xlab", "ylab", "xlim", "ylim", "xaxt", "yaxt", "axes")]) } if ((result=="ecf") | (result=="dataecf")) { if (result=="ecf") { ylab="Density" if (all(is.na(category)) | (all(category == ""))) { ecfocf <- x$ECFOCF[, , period] main="Estimated Clutch Frequency: All categories" } else { ecfocf <- x$ECFOCF_categories[[as.numeric(category)]][, , period] main=paste0("Estimated Clutch Frequency: Category ", as.character(category)) } } else { ylab="Frequency" ecfocf <- x$data[, , period] main="Observed ECF" } ecf <- colSums(ecfocf, na.rm = TRUE) do.call(plot, modifyList(list(x=0:(length(ecf)-1), xlab="Estimated Clutch Frequency", ylab=ylab, main=main, y=ecf, type="h"), p3p)[c("x", "y", "type", "col", "main", "cex.axis", "bty", "las", "xlab", "ylab", "xlim", "ylim", "xaxt", "yaxt", "axes")]) } if (result=="period") { if (all(is.na(category)) | (all(category == ""))) { y <- x$period main="All categories" } else { y <- x$period_categories[[as.numeric(category)]] main=paste("Category", category) } perr <- list(x=0:(length(y)-1), y=y, las=1, bty="n", ylab="Probability of nesting", xlab="Period", main=main) perr <- modifyList(perr, p3p) do.call(plot, perr) } if (result=="prob") { if (is.null(x$SE_df)) { warning("The estimate of standard error for capture probability is not available") } else { if (all(is.na(category)) | (all(category == ""))) { category <- "" cl <- sapply(X = rownames(x$SE_df), function(x) { grepl("prob", x) }) } else { category <- as.character(category) cl <- sapply(X = rownames(x$SE_df), function(x) { grepl(paste0("prob", category, "\\."), x) | grepl(paste0("a", category), x) | ((grepl(paste0("prob\\."), x)) & (category == "1") & !grepl(paste0("a[^", category, "]"), x)) }) } perr <- list(x=1:sum(cl), y=x$SE_df[cl, "Estimate"], y.minus=x$SE_df[cl, "2.5 %"], y.plus = x$SE_df[cl, "97.5 %"], xlim=c(0.5, sum(cl)+0.5), ylim=c(0,1), las=1, bty="n", xaxt="n", ylab="Probability of capture", xlab="Categories", main="SE using delta method") perr <- modifyList(perr, p3p) do.call(plot_errbar, perr) if (is.null(p3p$xaxt)) p3p$xaxt <- "r" if (p3p$xaxt != "n") { segments(x0=1:sum(cl), y0=-0.1, y1=-0.15, xpd=TRUE) cex <- p3p[["cex.axis"]] y <- p3p[["y.axis"]] if (is.null(cex)) cex <- 1 if (is.null(y)) y <- -0.3 do.call(text, modifyList(list(x = 1:sum(cl), y=y, cex=cex, labels = rownames(x$SE_df)[cl], xpd=TRUE), p3p[c("srt", "labels")])) } } } }
library(tinytest) library(ggiraph) library(ggplot2) library(xml2) source("setup.R") { eval(test_geom_layer, envir = list(name = "geom_jitter_interactive")) }
library("zoo") library("chron") Sys.setenv(TZ = "GMT") Lines <- " time latitude longitude altitude distance heartrate 1277648884 0.304048 -0.793819 260 0.000000 94 1277648885 0.304056 -0.793772 262 4.307615 95 1277648894 0.304075 -0.793544 263 25.237911 103 1277648902 0.304064 -0.793387 256 40.042988 115 " z <- read.zoo(text = Lines, header = TRUE) z DF <- structure(list( Time = structure(1:5, .Label = c("7:10:03 AM", "7:10:36 AM", "7:11:07 AM", "7:11:48 AM", "7:12:25 AM"), class = "factor"), Bid = c(6118.5, 6118.5, 6119.5, 6119, 6119), Offer = c(6119.5, 6119.5, 6119.5, 6120, 6119.5)), .Names = c("Time", "Bid", "Offer"), row.names = c(NA, -5L), class = "data.frame") DF z <- read.zoo(DF, FUN = function(x) times(as.chron(paste("1970-01-01", x), format = "%Y-%m-%d %H:%M:%S %p"))) z Lines <- " Date;Time;Close 01/09/2009;10:00;56567 01/09/2009;10:05;56463 01/09/2009;10:10;56370 01/09/2009;16:45;55771 01/09/2009;16:50;55823 01/09/2009;16:55;55814 02/09/2009;10:00;55626 02/09/2009;10:05;55723 02/09/2009;10:10;55659 02/09/2009;16:45;55742 02/09/2009;16:50;55717 02/09/2009;16:55;55385 " f <- function(x) times(paste(x, 0, sep = ":")) z <- read.zoo(text = Lines, header = TRUE, sep = ";", split = 1, index = 2, FUN = f) colnames(z) <- sub("X(..).(..).(....)", "\\3-\\2-\\1", colnames(z)) z Lines <- " Date Time O H L C 1/2/2005 17:05 1.3546 1.3553 1.3546 1.35495 1/2/2005 17:10 1.3553 1.3556 1.3549 1.35525 1/2/2005 17:15 1.3556 1.35565 1.35515 1.3553 1/2/2005 17:25 1.355 1.3556 1.355 1.3555 1/2/2005 17:30 1.3556 1.3564 1.35535 1.3563 " f <- function(d, t) as.chron(paste(as.Date(chron(d)), t)) z <- read.zoo(text = Lines, header = TRUE, index = 1:2, FUN = f) z Lines <- " views number timestamp day time 1 views 910401 1246192687 Sun 6/28/2009 12:38 2 views 921537 1246278917 Mon 6/29/2009 12:35 3 views 934280 1246365403 Tue 6/30/2009 12:36 4 views 986463 1246888699 Mon 7/6/2009 13:58 5 views 995002 1246970243 Tue 7/7/2009 12:37 6 views 1005211 1247079398 Wed 7/8/2009 18:56 7 views 1011144 1247135553 Thu 7/9/2009 10:32 8 views 1026765 1247308591 Sat 7/11/2009 10:36 9 views 1036856 1247436951 Sun 7/12/2009 22:15 10 views 1040909 1247481564 Mon 7/13/2009 10:39 11 views 1057337 1247568387 Tue 7/14/2009 10:46 12 views 1066999 1247665787 Wed 7/15/2009 13:49 13 views 1077726 1247778752 Thu 7/16/2009 21:12 14 views 1083059 1247845413 Fri 7/17/2009 15:43 15 views 1083059 1247845824 Fri 7/17/2009 18:45 16 views 1089529 1247914194 Sat 7/18/2009 10:49 " cl <- c("NULL", "numeric", "character")[c(1, 1, 2, 2, 1, 3, 1)] cn <- c(NA, NA, "views", "number", NA, NA, NA) z <- read.zoo(text = Lines, skip = 1, col.names = cn, colClasses = cl, index = 3, format = "%m/%d/%Y", aggregate = function(x) tail(x, 1)) z (z45 <- z[format(time(z), "%w") %in% 4:5,]) z45[!duplicated(format(time(z45), "%U"), fromLast = TRUE), ] g <- seq(start(z), end(z), by = "day") z.filled <- na.locf(z, xout = g) z.filled[format(time(z.filled), "%w") == "5", ] Lines <- " Date,Time,Open,High,Low,Close,Up,Down 05.02.2001,00:30,421.20,421.20,421.20,421.20,11,0 05.02.2001,01:30,421.20,421.40,421.20,421.40,7,0 05.02.2001,02:00,421.30,421.30,421.30,421.30,0,5" f <- function(d, t) chron(d, paste(t, "00", sep = ":"), format = c("m.d.y", "h:m:s")) z <- read.zoo(text = Lines, sep = ",", header = TRUE, index = 1:2, FUN = f) z f2 <- function(d, t) as.chron(paste(d, t), format = "%d.%m.%Y %H:%M") z2 <- read.zoo(text = Lines, sep = ",", header = TRUE, index = 1:2, FUN = f2) z2 z3 <- read.zoo(text = Lines, sep = ",", header = TRUE, index = 1:2, tz = "", format = "%d.%m.%Y %H:%M") z3 Lines <- "Date Time V2 V3 V4 V5 2010-10-15 13:43:54 73.8 73.8 73.8 73.8 2010-10-15 13:44:15 73.8 73.8 73.8 73.8 2010-10-15 13:45:51 73.8 73.8 73.8 73.8 2010-10-15 13:46:21 73.8 73.8 73.8 73.8 2010-10-15 13:47:27 73.8 73.8 73.8 73.8 2010-10-15 13:47:54 73.8 73.8 73.8 73.8 2010-10-15 13:49:51 73.7 73.7 73.7 73.7 " z <- read.zoo(text = Lines, header = TRUE, index = 1:2, tz = "") z Lines <- " 13/10/2010 A 23 13/10/2010 B 12 13/10/2010 C 124 14/10/2010 A 43 14/10/2010 B 54 14/10/2010 C 65 15/10/2010 A 43 15/10/2010 B N.A. 15/10/2010 C 65 " z <- read.zoo(text = Lines, na.strings = "N.A.", format = "%d/%m/%Y", split = 2) z Lines <- ' "","Fish_ID","Date","R2sqrt" "1",1646,2006-08-18 08:48:59,0 "2",1646,2006-08-18 09:53:20,100 ' z <- read.zoo(text = Lines, header = TRUE, sep = ",", colClasses = c("NULL", "NULL", "character", "numeric"), FUN = as.chron) z z2 <- read.zoo(text = Lines, header = TRUE, sep = ",", colClasses = c("NULL", "NULL", "character", "numeric"), tz = "") z2 Lines <- " iteration Datetime VIC1 NSW1 SA1 QLD1 1 1 2011-01-01 00:30 5482.09 7670.81 2316.22 5465.13 2 1 2011-01-01 01:00 5178.33 7474.04 2130.30 5218.61 3 1 2011-01-01 01:30 4975.51 7163.73 2042.39 5058.19 4 1 2011-01-01 02:00 5295.36 6850.14 1940.19 4897.96 5 1 2011-01-01 02:30 5042.64 6587.94 1836.19 4749.05 6 1 2011-01-01 03:00 4799.89 6388.51 1786.32 4672.92 " z <- read.zoo(text = Lines, skip = 1, index = 3:4, FUN = paste, FUN2 = as.chron) z z2 <- read.zoo(text = Lines, skip = 1, index = 3:4, tz = "") z2 DF <- structure(list( Date = structure(c(14609, 14638, 14640, 14666, 14668, 14699, 14729, 14757, 14759, 14760), class = "Date"), A = c(4.9, 5.1, 5, 4.8, 4.7, 5.3, 5.2, 5.4, NA, 4.6), B = c(18.4, 17.7, NA, NA, 18.3, 19.4, 19.7, NA, NA, 18.1), C = c(32.6, NA, 32.8, NA, 33.7, 32.4, 33.6, NA, 34.5, NA), D = c(77, NA, 78.7, NA, 79, 77.8, 79, 81.7, NA, NA)), .Names = c("Date", "A", "B", "C", "D"), row.names = c(NA, -10L), class = "data.frame") DF z <- read.zoo(DF) na.locf(z)[!duplicated(as.yearmon(time(z)), fromLast = TRUE)] Lines <- " 2009-10-07 0.009378 2009-10-19 0.014790 2009-10-23 -0.005946 2009-10-23 0.009096 2009-11-08 0.004189 2009-11-10 -0.004592 2009-11-17 0.009397 2009-11-24 0.003411 2009-12-02 0.003300 2010-01-15 0.010873 2010-01-20 0.010712 2010-01-20 0.022237 " z <- read.zoo(text = Lines, aggregate = function(x) tail(x, 1)) z Lines <- " timestamp,time-step-index,value 2009-11-23 15:58:21,23301,800 2009-11-23 15:58:29,23309,950 " z <- read.zoo(text = Lines, header = TRUE, sep = ",", tz = "") z z2 <- read.zoo(text = Lines, header = TRUE, sep = ",", FUN = as.chron) z2 Lines <- " Date Time Value 01/23/2000 10:12:15 12.12 01/24/2000 11:10:00 15.00 " z <- read.zoo(text = Lines, header = TRUE, index = 1:2, FUN = chron) z Lines <- " Year Qtr1 Qtr2 Qtr3 Qtr4 1992 566 443 329 341 1993 344 212 133 112 1994 252 252 199 207 " za <- read.zoo(text = Lines, header = TRUE) za zq <- zooreg(as.vector(t(za)), start = yearqtr(start(za)), freq = 4) zq
expandYearlyCosts <- function(costdb, startcolumn, endcolumn) { if(!("Cost_ID" %in% colnames(costdb))) { stop("The 'invacost' object does not seem to be the invacost database (lacks cost_ID column)") } if(!(startcolumn %in% colnames(costdb))) { stop("The 'startcolumn' does not exist in the invacost database, please check spelling.") } if(!(endcolumn %in% colnames(costdb))) { stop("The 'endcolumn' does not exist in the invacost database, please check spelling.") } if(!(sum(is.na(costdb[,startcolumn]))==0)) { stop(paste("The 'startcolumn' is missing values for", sum(is.na(costdb[,startcolumn])),"rows. A pre-filled start column should be available in 'Probable_starting_year_adjusted' (see the help file).")) } if(!(sum(is.na(costdb[,endcolumn]))==0)) { stop(paste("The 'endcolumn' is missing values for", sum(is.na(costdb[,endcolumn])),"rows. A pre-filled end column should be available in 'Probable_ending_year_adjusted' (see the help file).")) } return( dplyr::bind_rows( lapply(costdb$Cost_ID, function(x, costdb., start, end) { years <- costdb.[which(costdb.$Cost_ID == x), start]: costdb.[which(costdb.$Cost_ID == x), end] return(data.frame(Impact_year = years, costdb.[which(costdb.$Cost_ID == x), ][ rep(seq_len(nrow(costdb.[costdb.$Cost_ID == x, ])), each = length(years)), ])) }, costdb. = costdb, start = startcolumn, end = endcolumn) ) ) }
variance_ratio <- function(df, time.var, species.var, abundance.var, bootnumber, replicate.var = NA, average.replicates = TRUE, level = 0.95, li, ui) { if ((!missing(li) | !missing(ui))) { warning("argument li and ui are deprecated; please use level instead.", call. = FALSE) } check_numeric(df, time.var, abundance.var) if (is.na(replicate.var)) { check_single_onerep(df, time.var, species.var) VR <- variance_ratio_longformdata(df, time.var, species.var, abundance.var) nullval <- cyclic_shift(df, time.var = time.var, species.var = species.var, abundance.var = abundance.var, FUN = variance_ratio_matrixdata, bootnumber = bootnumber) nullout <- confint(nullval) output <- cbind(nullout, VR) } else { df <- droplevels(df) check_single(df, time.var, species.var, replicate.var) if (average.replicates == TRUE) { check_multispp(df, species.var, replicate.var) df <- df[order(df[[replicate.var]]),] X <- split(df, df[replicate.var]) VR <- mean(unlist(lapply(X, FUN = variance_ratio_longformdata, time.var, species.var, abundance.var))) nullval <- cyclic_shift(df = df, time.var = time.var, species.var = species.var, abundance.var = abundance.var, replicate.var = replicate.var, FUN = variance_ratio_matrixdata, bootnumber = bootnumber) nullout <- confint(nullval) output <- cbind(nullout, VR) } else { check_multispp(df, species.var, replicate.var) df <- df[order(df[[replicate.var]]),] X <- split(df, df[replicate.var]) cyclic_shift_nofun <- function(f = variance_ratio_matrixdata){ function(...) { cyclic_shift(FUN = f, ...) } } null_list <- lapply(X = X, FUN = cyclic_shift_nofun(), time.var = time.var, species.var = species.var, abundance.var = abundance.var, replicate.var = NA, bootnumber = bootnumber) null_intervals <- lapply(null_list, confint) repnames <- lapply(names(null_intervals), as.data.frame) nullout <- do.call("rbind", Map(cbind, repnames, null_intervals)) names(nullout)[1] <- replicate.var VR_list <- lapply(X, FUN = variance_ratio_longformdata, time.var, species.var, abundance.var) VRnames <- lapply(names(VR_list), as.data.frame) VR_df <- lapply(VR_list, as.data.frame) VRout <- do.call("rbind", Map(cbind, VRnames, VR_df)) names(VRout) <- c(replicate.var, "VR") output <- merge(nullout, VRout, by = replicate.var) } } row.names(output) <- NULL return(output) } variance_ratio_matrixdata <- function(comdat){ check_sppvar(comdat) all.cov <- stats::cov(comdat, use = "pairwise.complete.obs") col.var <- apply(comdat, 2, stats::var) com.var <- sum(all.cov) pop.var <- sum(col.var) var.ratio <- com.var/pop.var return(var.ratio) } variance_ratio_longformdata <- function(df, time.var, species.var, abundance.var){ com.use <- transpose_community(df, time.var, species.var, abundance.var) var.ratio <- variance_ratio_matrixdata(com.use) return(var.ratio) }
above_percent <- function(data, targets_above = c(140, 180, 250)){ x = target_val = id = NULL rm(list = c("id", "target_val", "x")) data = check_data_columns(data) is_vector = attr(data, "is_vector") targets_above = as.double(targets_above) out = lapply( targets_above, function(target_val) { data = data %>% dplyr::group_by(id) %>% dplyr::summarise(x = mean(gl > target_val, na.rm = TRUE) * 100) %>% dplyr::mutate(target_val = paste0("above_", target_val)) data }) out = dplyr::bind_rows(out) out = tidyr::spread(data = out, key = target_val, value = x) if (is_vector) { out$id = NULL } return(out) }
.warningGEVShapeLarge <- function(xi){ if(xi>=4.5) warning("A shape estimate larger than 4.5 was produced.\n", "Shape parameter values larger than 4.5 are critical\n", "in the GEV family as to numerical issues. Be careful with \n", "ALE results obtained here; they might be unreliable.") } .pretreat.of.interest <- function(of.interest,trafo,withMu=FALSE){ if(is.null(trafo)){ of.interest <- unique(of.interest) if(!withMu && length(of.interest) > 2) stop("A maximum number of two parameters resp. parameter transformations may be selected.") if(withMu && length(of.interest) > 3) stop("A maximum number of three parameters resp. parameter transformations may be selected.") if(!withMu && !all(of.interest %in% c("scale", "shape", "quantile", "expected loss", "expected shortfall"))) stop("Parameters resp. transformations of interest have to be selected from: ", "'scale', 'shape', 'quantile', 'expected loss', 'expected shortfall'.") if(withMu && !all(of.interest %in% c("loc", "scale", "shape", "quantile", "expected loss", "expected shortfall"))) stop("Parameters resp. transformations of interest have to be selected from: ", "'loc', 'scale', 'shape', 'quantile', 'expected loss', 'expected shortfall'.") muAdd <- 0 if(withMu & "loc" %in% of.interest){ muAdd <- 1 muWhich <- which(of.interest=="loc") notmuWhich <- which(!of.interest %in% "loc") of.interest <- of.interest[c(muWhich,notmuWhich)] } if(("scale" %in% of.interest) && ("scale" != of.interest[1+muAdd])){ of.interest[2+muAdd] <- of.interest[1+muAdd] of.interest[1+muAdd] <- "scale" } if(!("scale" %in% of.interest) && ("shape" %in% of.interest) && ("shape" != of.interest[1+muAdd])){ of.interest[2+muAdd] <- of.interest[1+muAdd] of.interest[1+muAdd] <- "shape" } if(!any(c("scale", "shape") %in% of.interest) && ("quantile" %in% of.interest) && ("quantile" != of.interest[1+muAdd])){ of.interest[2+muAdd] <- of.interest[1+muAdd] of.interest[1+muAdd] <- "quantile" } if(!any(c("scale", "shape", "quantile") %in% of.interest) && ("expected shortfall" %in% of.interest) && ("expected shortfall" != of.interest[1+muAdd])){ of.interest[2+muAdd] <- of.interest[1+muAdd] of.interest[1+muAdd] <- "expected shortfall" } } return(of.interest) } .define.tau.Dtau <- function(of.interest, btq, bDq, btes, bDes, btel, bDel, p, N){ tau <- NULL if("scale" %in% of.interest){ tau <- function(theta){ th <- theta[1]; names(th) <- "scale"; th} Dtau <- function(theta){ D <- t(c(1, 0)); rownames(D) <- "scale"; D} } if("shape" %in% of.interest){ if(is.null(tau)){ tau <- function(theta){th <- theta[2]; names(th) <- "shape"; th} Dtau <- function(theta){D <- t(c(0,1));rownames(D) <- "shape";D} }else{ tau <- function(theta){th <- theta names(th) <- c("scale", "shape"); th} Dtau <- function(theta){ D <- diag(2); rownames(D) <- c("scale", "shape");D} } } if("quantile" %in% of.interest){ if(is.null(p)) stop("Probability 'p' has to be specified.") if(is.null(tau)){ tau <- function(theta){ }; body(tau) <- btq Dtau <- function(theta){ };body(Dtau) <- bDq }else{ tau1 <- tau tau <- function(theta){ } body(tau) <- substitute({ btq0 th0 <- tau0(theta) th <- c(th0, q) names(th) <- c(names(th0),"quantile") th }, list(btq0=btq, tau0 = tau1)) Dtau1 <- Dtau Dtau <- function(theta){} body(Dtau) <- substitute({ bDq0 D0 <- Dtau0(theta) D1 <- rbind(D0, D) rownames(D1) <- c(rownames(D0),"quantile") D1 }, list(Dtau0 = Dtau1, bDq0 = bDq)) } } if("expected shortfall" %in% of.interest){ if(is.null(p)) stop("Probability 'p' has to be specified.") if(is.null(tau)){ tau <- function(theta){ }; body(tau) <- btes Dtau <- function(theta){ }; body(Dtau) <- bDes }else{ tau1 <- tau tau <- function(theta){ } body(tau) <- substitute({ btes0 th0 <- tau0(theta) th <- c(th0, es) names(th) <- c(names(th0),"expected shortfall") th}, list(tau0 = tau1, btes0=btes)) Dtau1 <- Dtau Dtau <- function(theta){} body(Dtau) <- substitute({ bDes0 D0 <- Dtau0(theta) D1 <- rbind(D0, D) rownames(D1) <- c(rownames(D0),"expected shortfall") D1}, list(Dtau0 = Dtau1, bDes0=bDes)) } } if("expected loss" %in% of.interest){ if(is.null(N)) stop("Expected frequency 'N' has to be specified.") if(is.null(tau)){ tau <- function(theta){ }; body(tau) <- btel Dtau <- function(theta){ }; body(Dtau) <- bDel }else{ tau1 <- tau tau <- function(theta){ } body(tau) <- substitute({ btel0 th0 <- tau0(theta) th <- c(th0, el) names(th) <- c(names(th0),"expected los") th}, list(tau0 = tau1, btel0=btel)) Dtau1 <- Dtau Dtau <- function(theta){} body(Dtau) <- substitute({ bDel0 D0 <- Dtau0(theta) D1 <- rbind(D0, D) rownames(D1) <- c(rownames(D0),"expected loss") D1}, list(Dtau0 = Dtau1, bDel0=bDel)) } } trafo <- function(x){ list(fval = tau(x), mat = Dtau(x)) } return(trafo) } setMethod("validParameter",signature(object="GEVFamily"), function(object, param, tol =.Machine$double.eps){ if (is(param, "ParamFamParameter")) param <- main(param) if (!all(is.finite(param))) return(FALSE) if (any(param[1] <= tol)) return(FALSE) if(object@param@withPosRestr) if (any(param[2] <= tol)) return(FALSE) if (any(param[2] <= -1/2)) return(FALSE) return(TRUE) }) GEVFamily <- function(loc = 0, scale = 1, shape = 0.5, of.interest = c("scale", "shape"), p = NULL, N = NULL, trafo = NULL, start0Est = NULL, withPos = TRUE, secLevel = 0.7, withCentL2 = FALSE, withL2derivDistr = FALSE, withMDE = FALSE, ..ignoreTrafo = FALSE, ..withWarningGEV = TRUE){ theta <- c(loc, scale, shape) if(..withWarningGEV).warningGEVShapeLarge(shape) of.interest <- .pretreat.of.interest(of.interest,trafo) distrSymm <- NoSymmetry() names(theta) <- c("loc", "scale", "shape") scaleshapename <- c("scale"="scale", "shape"="shape") btq <- bDq <- btes <- bDes <- btel <- bDel <- NULL if(!is.null(p)){ btq <- substitute({ q <- loc0 + theta[1]*((-log(p0))^(-theta[2])-1)/theta[2] names(q) <- "quantile" q }, list(loc0 = loc, p0 = p)) bDq <- substitute({ scale <- theta[1]; shape <- theta[2] D1 <- ((-log(p0))^(-shape)-1)/shape D2 <- -scale/shape*(D1 + log(-log(p0))*(-log(p0))^(-shape)) D <- t(c(D1, D2)) rownames(D) <- "quantile"; colnames(D) <- NULL D }, list(p0 = p)) btes <- substitute({ if(theta[2]>=1L){ warning("Expected value is infinite for shape > 1") es <- NA }else{ pg <- pgamma(-log(p0),1-theta[2], lower.tail = TRUE) es <- theta[1] * (gamma(1-theta[2]) * pg/ (1-p0) - 1 )/ theta[2] + loc0 } names(es) <- "expected shortfall" es }, list(loc0 = loc, p0 = p)) bDes <- substitute({ if(theta[2]>=1L){ D1 <- D2 <- NA} else { scale <- theta[1]; shape <- theta[2] pg <- pgamma(-log(p0), 1-theta[2], lower.tail = TRUE) dd <- ddigamma(-log(p0),1-theta[2]) g0 <- gamma(1-theta[2]) D1 <- (g0*pg/(1-p0)-1)/theta[2] D21 <- D1/theta[2] D22 <- dd/(1-p0)/theta[2] D2 <- -theta[1]*(D21+D22)} D <- t(c(D1, D2)) rownames(D) <- "expected shortfall" colnames(D) <- NULL D }, list(loc0 = loc, p0 = p)) } if(!is.null(N)){ btel <- substitute({ if(theta[2]>=1L){ warning("Expected value is infinite for shape > 1") el <- NA }else{ el <- N0*(loc0+theta[1]*(gamma(1-theta[2])-1)/theta[2])} names(el) <- "expected loss" el }, list(loc0 = loc,N0 = N)) bDel <- substitute({ if(theta[2]>=1L){ D1 <- D2 <- NA}else{ scale <- theta[1]; shape <- theta[2] ga <- gamma(1-shape) D1 <- N0*(ga-1)/shape D2 <- -N0*scale*ga*digamma(1-shape)/shape- D1*scale/shape} D <- t(c(D1, D2)) rownames(D) <- "expected loss" colnames(D) <- NULL D }, list(loc0 = loc, N0 = N)) } fromOfInt <- FALSE if(is.null(trafo)||..ignoreTrafo){fromOfInt <- TRUE trafo <- .define.tau.Dtau(of.interest, btq, bDq, btes, bDes, btel, bDel, p, N) }else if(is.matrix(trafo) & nrow(trafo) > 2) stop("number of rows of 'trafo' > 2") param <- ParamFamParameter(name = "theta", main = c(theta[2],theta[3]), fixed = theta[1], trafo = trafo, withPosRestr = withPos, .returnClsName ="ParamWithScaleAndShapeFamParameter") distribution <- GEV(loc = loc, scale = scale, shape = shape) startPar <- function(x,...){ mu <- theta[1] n <- length(x) epsn <- min(floor(secLevel*sqrt(n))+1,n) if(is.null(start0Est)){ e0 <- .getBetaXiGEV(x=x, mu=mu, xiGrid=.getXiGrid(), withPos=withPos, withMDE=withMDE) }else{ if(is(start0Est,"function")){ e1 <- start0Est(x, ...) e0 <- if(is(e1,"Estimate")) estimate(e1) else e1 }else stop("Argument 'start0Est' must be a function or NULL.") if(!is.null(names(e0))) e0 <- e0[c("scale", "shape")] } if(quantile(e0[2]/e0[1]*(x-mu), epsn/n)< (-1)){ if(e0[2]>0) stop("shape is positive and some data smaller than 'loc-scale/shape' ") else stop("shape is negative and some data larger than 'loc-scale/shape' ") } names(e0) <- NULL return(e0) } makeOKPar <- function(theta) { if(withPos){ theta <- abs(theta) }else{ if(!is.null(names(theta))){ if(theta["shape"]< (-1/2)) theta["shape"] <- -1/2+1e-4 theta["scale"] <- abs(theta["scale"]) }else{ theta[1] <- abs(theta[1]) if(theta[2]< (-1/2)) theta[2] <- -1/2+1e-4 } } return(theta) } modifyPar <- function(theta){ theta <- makeOKPar(theta) sh <- if(!is.null(names(theta))) theta["shape"] else theta[2] if(..withWarningGEV).warningGEVShapeLarge(sh) if(!is.null(names(theta))){ sc <- theta["scale"] sh <- theta["shape"] }else{ sc <- theta[1] sh <- theta[2] } GEV(loc = loc, scale = theta[1], shape = theta[2]) } L2deriv.fct <- function(param) { sc <- force(main(param)[1]) k <- force(main(param)[2]) tr <- fixed(param)[1] if(..withWarningGEV).warningGEVShapeLarge(k) Lambda1 <- function(x) { y <- x*0 ind <- if(k>0)(x > tr-sc/k) else (x<tr-sc/k) x <- (x[ind]-tr)/sc x1 <- 1 + k * x y[ind] <- (x*(1-x1^(-1/k))-1)/x1/sc return(y) } Lambda2 <- function(x) { y <- x*0 ind <- if(k>0)(x > tr-sc/k) else (x<tr-sc/k) x <- (x[ind]-tr)/sc x1 <- 1 + k * x x2 <- x / x1 y[ind]<- (1-x1^(-1/k))/k*(log(x1)/k-x2)-x2 return(y) } if(withCentL2){ dist0 <- GEV(scale = sc, shape = k, loc = tr) suppressWarnings({ z1 <- E(dist0, fun=Lambda1) z2 <- E(dist0, fun=Lambda2) }) }else{z1 <- z2 <- 0} return(list(function(x){ Lambda1(x)-z1 },function(x){ Lambda2(x)-z2 })) } FisherInfo.fct <- function(param) { sc <- force(main(param)[1]) k <- force(main(param)[2]) if(abs(k)>=1e-4){ k1 <- k+1 if(..withWarningGEV).warningGEVShapeLarge(k) G20 <- gamma(2*k) G10 <- gamma(k) G11 <- digamma(k)*gamma(k) G01 <- ..dig1 G02 <- ..trig1dig1sq x0 <- k1^2*2*k I11 <- G20*x0-2*G10*k*k1+1 I11 <- I11/sc^2/k^2 I12 <- G20*(-x0)+ G10*(k^3+4*k^2+3*k) - k1 I12 <- I12 + G11*(k^3+k^2) -G01*k I12 <- I12/sc/k^3 I22 <- G20*x0 +k1^2 -G10*(x0+2*k*k1) I22 <- I22 - G11*2*k^2*k1 + G01*2*k*k1+k^2 *G02 I22 <- I22 /k^4 }else{ I11 <- ..I22/sc^2 I12 <- ..I23/sc I22 <- ..I33 } mat <- PosSemDefSymmMatrix(matrix(c(I11,I12,I12,I22),2,2)) dimnames(mat) <- list(scaleshapename,scaleshapename) return(mat) } FisherInfo <- FisherInfo.fct(param) name <- "GEV Family" L2Fam <- new("GEVFamily") L2Fam@scaleshapename <- scaleshapename L2Fam@name <- name L2Fam@param <- param L2Fam@distribution <- distribution [email protected] <- L2deriv.fct [email protected] <- FisherInfo.fct L2Fam@FisherInfo <- FisherInfo L2Fam@startPar <- startPar L2Fam@makeOKPar <- makeOKPar L2Fam@modifyParam <- modifyPar L2Fam@L2derivSymm <- FunSymmList(NonSymmetric(), NonSymmetric()) L2Fam@L2derivDistrSymm <- DistrSymmList(NoSymmetry(), NoSymmetry()) L2deriv <- EuclRandVarList(RealRandVariable(L2deriv.fct(param), Domain = Reals())) L2derivDistr <- NULL if(withL2derivDistr){ suppressWarnings(L2derivDistr <- imageDistr(RandVar = L2deriv, distr = distribution)) } if(fromOfInt){ [email protected] <- substitute(GEVFamily(loc = loc0, scale = scale0, shape = shape0, of.interest = of.interest0, p = p0, N = N0, withPos = withPos0, withCentL2 = FALSE, withL2derivDistr = FALSE, ..ignoreTrafo = TRUE), list(loc0 = loc, scale0 = scale, shape0 = shape, of.interest0 = of.interest, p0 = p, N0 = N, withPos0 = withPos)) }else{ [email protected] <- substitute(GEVFamily(loc = loc0, scale = scale0, shape = shape0, of.interest = NULL, p = p0, N = N0, trafo = trafo0, withPos = withPos0, withCentL2 = FALSE, withL2derivDistr = FALSE), list(loc0 = loc, scale0 = scale, shape0 = shape, p0 = p, N0 = N, withPos0 = withPos, trafo0 = trafo)) } L2Fam@LogDeriv <- function(x){ x0 <- (x-loc)/scale x1 <- 1 + x0 * shape (shape+1)/scale/x1 + x1^(-1-1/shape)/scale } L2Fam@L2deriv <- L2deriv L2Fam@L2derivDistr <- L2derivDistr [email protected] <- FALSE [email protected] <- FALSE [email protected] <- FALSE return(L2Fam) } ddigamma <- function(t,s){ int <- function(x) exp(-x)*(log(x))*x^(s-1) integrate(int, lower=0, upper=t)$value }