code
stringlengths 1
13.8M
|
---|
.runThisTest <- Sys.getenv("RunAllRcppTests") == "yes"
if (.runThisTest) {
context("Make_models")
testthat::test_that(
desc = "Print and summary functions",
code = {
model <- make_model("X -> Y")
out <- capture.output(CausalQueries:::print.causal_model(model))
expect_true(any(grepl("\\$X", out)) & any(grepl("\\$Y", out)))
out <- class(CausalQueries:::summary.causal_model(model))
expect_equal(out[1], "summary.causal_model")
expect_equal(out[2], "data.frame")
model <- make_model("X -> Y") %>% set_confound(list("X <-> Y"))
out <- capture.output(CausalQueries:::print.summary.causal_model(model))
expect_true(any(grepl("Parameter matrix.+", out)))
model <- make_model("X->Y") %>% set_restrictions(statement = c("X[] == 0"))
out <- capture.output(CausalQueries:::print.summary.causal_model(model))
expect_true(any(grepl("Restrictions.+", out)))
expect_error(make_model("X -> S <- Y; S <-> Z"))
}
)
} |
library(satellite)
path <- system.file("extdata", package = "satellite")
files <- list.files(path, pattern = glob2rx("LC08*.TIF"), full.names = TRUE)
sat <- satellite(files)
sat <- convSC2Rad(sat)
sat <- convSC2Ref(sat)
sat <- convRad2BT(sat) |
renderTreeMap <- function(div_id,
data,
name = "Main",
leafDepth = 2,
theme = "default",
show.tools = TRUE,
running_in_shiny = TRUE){
theme_placeholder <- .theme_placeholder(theme)
.check_logical(c('show.tools', 'running_in_shiny'))
if(((class(leafDepth) %in% c('integer', 'numeric')) == FALSE)){
stop("Argument 'leafDepth' must be integer.")
}
if(leafDepth <=0 ){
stop("Argument 'leafDepth' must be bigger than 0.")
}
js_statement <- paste0("var " ,
div_id,
" = echarts.init(document.getElementById('",
div_id,
"')",
theme_placeholder,
");",
"option_", div_id,
" = {tooltip : {trigger:'item', formatter: '{b}: {c}'}, ",
ifelse(show.tools,
"toolbox:{feature:{mark:{show:true}, restore:{show: true}, saveAsImage:{}}}, ",
""),
"series :[",
"{name:'", name, "',",
"type:'treemap',",
"leafDepth:", leafDepth, ",",
" itemStyle:{normal: {label: {show: true,formatter: '{b}'},borderWidth: 1},emphasis: {label: {show: true}}},",
"data:",
data,
"",
"}]",
"};",
div_id,
".setOption(option_",
div_id,
");",
"window.addEventListener('resize', function(){",
div_id, ".resize()",
"});")
to_eval <- paste0("output$", div_id ," <- renderUI({tags$script(\"",
js_statement,
"\")})")
if(running_in_shiny == TRUE){
eval(parse(text = to_eval), envir = parent.frame())
} else {
cat(to_eval)
}
} |
check_dependencies <- function() {
CreatePackageReport(pkg_name = "photosynthesis")
} |
make_parameters <- function(model, parameters = NULL, param_type = NULL, warning = TRUE, normalize = TRUE, ...) {
if (!is.null(parameters) && (length(parameters) == length(get_parameters(model))))
return(clean_param_vector(model, parameters))
if (!is.null(param_type))
if (!(param_type %in% c("flat", "prior_mean", "posterior_mean", "prior_draw", "posterior_draw",
"define"))) {
stop("param_type should be one of `flat`, `prior_mean`, `posterior_mean`, `prior_draw`, `posterior_draw`, or `define`")
}
par_args = list(...)
par_args_provided <- sum(names(par_args) %in% c("distribution", "parameters", "node", "label", "statement",
"confound", "nodal_type", "param_set", "param_names"))
if (par_args_provided > 0 & is.null(param_type))
param_type <- "define"
if (is.null(param_type))
param_type <- "prior_mean"
if (param_type == "define") {
param_value <- make_par_values_multiple(model,
y = get_parameters(model),
x = parameters,
normalize = normalize,
...)
}
if (param_type == "flat") {
param_value <- make_priors(model, distribution = "uniform")
}
if (param_type == "prior_mean") {
param_value <- get_priors(model)
}
if (param_type == "prior_draw") {
param_value <- make_prior_distribution(model, 1)
}
if (param_type == "posterior_mean") {
if (is.null(model$posterior))
stop("Posterior distribution required")
param_value <- apply(model$posterior_distribution, 2, mean)
}
if (param_type == "posterior_draw") {
if (is.null(model$posterior))
stop("Posterior distribution required")
df <- model$posterior_distribution
param_value <- df[sample(nrow(df), 1), ]
}
clean_param_vector(model, param_value)
}
set_parameters <- function(model, parameters = NULL, param_type = NULL, warning = FALSE, ...) {
if (length(parameters) != length(get_parameters(model))) {
if(!is.null(parameters)) parameters <- make_parameters(model, parameters = parameters, param_type = "define", ...)
if(is.null(parameters)) parameters <- make_parameters(model, param_type = param_type, ...)
}
model$parameters_df$param_value <- parameters
model$parameters_df <- clean_params(model$parameters_df, warning = warning)
model
}
get_parameters <- function(model, param_type = NULL) {
if (is.null(param_type)) {
x <- model$parameters_df$param_value
names(x) <- model$parameters_df$param_names
}
if (!is.null(param_type))
x <- make_parameters(model, param_type = param_type)
x
} |
zbayes <- setRefClass("Zelig-bayes",
contains = "Zelig")
zbayes$methods(
initialize = function() {
callSuper()
.self$packageauthors <- "Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park"
.self$modelauthors <- "Ben Goodrich, and Ying Lu"
}
)
zbayes$methods(
zelig = function(formula,
burnin = 1000, mcmc = 10000,
verbose = 0,
...,
data,
by = NULL,
bootstrap = FALSE) {
if(!identical(bootstrap,FALSE)){
stop("Error: The bootstrap is not available for Markov chain Monte Carlo (MCMC) models.")
}
.self$zelig.call <- match.call(expand.dots = TRUE)
.self$model.call <- .self$zelig.call
if (missing(verbose))
verbose <- round((mcmc + burnin) / 10)
.self$model.call$verbose <- verbose
.self$num <- mcmc
callSuper(formula = formula, data = data, ..., by = by, bootstrap = FALSE)
}
)
zbayes$methods(
param = function(z.out) {
return(z.out)
}
)
zbayes$methods(
get_coef = function() {
"Get estimated model coefficients"
return(.self$zelig.out$z.out[[1]])
}
)
zbayes$methods(
geweke.diag = function() {
diag <- lapply(.self$zelig.out$z.out, coda::geweke.diag)
if(length(diag)==1){
diag<-diag[[1]]
}
if(!citation("coda") %in% .self$refs){
.self$refs<-c(.self$refs,citation("coda"))
}
ref1<-bibentry(
bibtype="InCollection",
title = "Evaluating the accuracy of sampling-based approaches to calculating posterior moments.",
booktitle = "Bayesian Statistics 4",
author = person("John", "Geweke"),
year = 1992,
publisher = "Clarendon Press",
address = "Oxford, UK",
editor = c(person("JM", "Bernado"), person("JO", "Berger"), person("AP", "Dawid"), person("AFM", "Smith"))
)
.self$refs<-c(.self$refs,ref1)
return(diag)
}
)
zbayes$methods(
heidel.diag = function() {
diag <- lapply(.self$zelig.out$z.out, coda::heidel.diag)
if(length(diag)==1){
diag<-diag[[1]]
}
if(!citation("coda") %in% .self$refs){
.self$refs<-c(.self$refs,citation("coda"))
}
ref1<-bibentry(
bibtype="Article",
title = "Simulation run length control in the presence of an initial transient.",
author = c(person("P", "Heidelberger"), person("PD", "Welch")),
journal = "Operations Research",
volume = 31,
year = 1983,
pages = "1109--44")
.self$refs<-c(.self$refs,ref1)
return(diag)
}
)
zbayes$methods(
raftery.diag = function() {
diag <- lapply(.self$zelig.out$z.out, coda::raftery.diag)
if(length(diag)==1){
diag<-diag[[1]]
}
if(!citation("coda") %in% .self$refs){
.self$refs<-c(.self$refs,citation("coda"))
}
ref1<-bibentry(
bibtype="Article",
title = "One long run with diagnostics: Implementation strategies for Markov chain Monte Carlo.",
author = c(person("Adrian E", "Raftery"), person("Steven M", "Lewis")),
journal = "Statistical Science",
volume = 31,
year = 1992,
pages = "1109--44")
ref2<-bibentry(
bibtype="InCollection",
title = "The number of iterations, convergence diagnostics and generic Metropolis algorithms.",
booktitle = "Practical Markov Chain Monte Carlo",
author = c(person("Adrian E", "Raftery"), person("Steven M", "Lewis")),
year = 1995,
publisher = "Chapman and Hall",
address = "London, UK",
editor = c(person("WR", "Gilks"), person("DJ", "Spiegelhalter"), person("S", "Richardson"))
)
.self$refs<-c(.self$refs,ref1,ref2)
return(diag)
}
) |
source_DropboxData <-function()
{
stop('Unfortunately, source_DropboxData is no longer supported due to changes in the Dropbox API.', call. = FALSE)
} |
set.seed(123)
n.seq <- 250
p <- 5
K <- 2
mix.prop <- c(0.3, 0.7)
TP <- array(rep(NA, p * p * K), c(p, p, K))
TP[,,1] <- matrix(c(0.20, 0.10, 0.15, 0.15, 0.40,
0.10, 0.10, 0.20, 0.20, 0.40,
0.15, 0.10, 0.20, 0.20, 0.35,
0.15, 0.10, 0.20, 0.20, 0.35,
0.30, 0.30, 0.10, 0.10, 0.20), byrow = TRUE, ncol = p)
TP[,,2] <- matrix(c(0.15, 0.35, 0.20, 0.20, 0.10,
0.40, 0.10, 0.20, 0.20, 0.10,
0.25, 0.20, 0.15, 0.15, 0.25,
0.25, 0.20, 0.15, 0.15, 0.25,
0.10, 0.20, 0.20, 0.20, 0.30), byrow = TRUE, ncol = p)
A <- click.sim(n = n.seq, int = c(10, 50), alpha = mix.prop, gamma = TP)
C <- click.read(A$S)
N2 <- click.EM(X = C$X, K = 2); N2$BIC
M2 <- click.EM(X = C$X, y = C$y, K = 2); M2$BIC
F2 <- click.forward(X = C$X, K = 2); F2$BIC
B2 <- click.backward(X = C$X, K = 2); B2$BIC |
miivs <- function(model){
pt <- lavaan::lavaanify( model,
auto = TRUE,
meanstructure = TRUE )
bad.ops <- c("==", "~*~","<~")
if (length(pt$lhs[pt$op %in% bad.ops & pt$user != 2]) > 0) {
stop(paste("miivs: MIIVsem does not currently support",
"the following operators:",
paste0(bad.ops,collapse = ", "),"."))
}
pt$mlabel <- pt$label
condNum <- !(pt$op == "=~" & !duplicated(pt$lhs)) &
(!is.na(pt$ustart) & pt$free == 0)
if (length(pt$ustart[condNum]) > 0){
pt[condNum,]$mlabel <- pt[condNum,]$ustart
}
tmpMarkers <- pt[pt$op == "=~",]$rhs[
which(!duplicated(pt[pt$op == "=~",]$lhs))
]
if (length(tmpMarkers) > 0){
for(i in 1:length(tmpMarkers)){
if(length(pt[pt$op == "=~" & pt$rhs == tmpMarkers[i],"lhs"]) > 1){
stop(paste("miivs: scaling indicators with a factor complexity",
"greater than 1 are not currently supported."))
}
if(length(pt[pt$op == "~" & pt$lhs == tmpMarkers[i],"lhs"]) > 0){
stop(paste("miivs: scaling indicators cannot be depdendent",
"variables in regression equations."))
}
}
pt[pt$op == "=~" & pt$rhs %in% tmpMarkers,]$mlabel <- NA
}
pt$mlabel[pt$mlabel == ""] <- NA
latVars <- unique(pt$lhs[pt$op == "=~"])
obsVars <- setdiff(
unique(c(pt$lhs[pt$op != "=="],pt$rhs[pt$op != "==" & pt$op != "~1"])),
latVars
)
endVars <- unique(c(pt$rhs[pt$op == "=~"], pt$lhs[pt$op == "~"]))
errVars <- paste("e.",endVars,sep="")
exoVars <- c(
setdiff(
unique(c(pt$rhs[pt$op!="=="], pt$lhs[pt$op!="=="])),
endVars
), errVars)
exoVarsObs <- intersect(exoVars, obsVars)
if(length(exoVarsObs) > 0){
pt[pt$rhs %in% exoVarsObs & pt$op == "~~" & pt$lhs == pt$rhs,"exo"] <- 1
}
allVars <- c(endVars,exoVars)
n <- length(exoVars)
m <- length(endVars)
s <- m + n
gamma <- matrix(0, m, n, dimnames = list(endVars, exoVars))
beta <- matrix(0, m, m, dimnames = list(endVars, endVars))
Phi <- matrix(0, n, n, dimnames = list(exoVars, exoVars))
paramValues <- ifelse(
pt$free == 0 & is.na(pt$mlabel),
pt$ustart,
NA
)
for(i in which(pt$op == "=~" & pt$lhs %in% exoVars)){
gamma[pt$rhs[i],pt$lhs[i]] <- paramValues[i]
}
for(i in which(pt$op == "~" & pt$rhs %in% exoVars)){
gamma[pt$lhs[i],pt$rhs[i]] <- paramValues[i]
}
gamma[,(n-m+1):n] <- diag(m)
for(i in which(pt$op == "=~" & ! pt$lhs %in% exoVars)){
beta[pt$rhs[i],pt$lhs[i]] <- paramValues[i]
}
for(i in which(pt$op == "~" & ! pt$rhs %in% exoVars)){
beta[pt$lhs[i],pt$rhs[i]] <- paramValues[i]
}
lhs <- ifelse(
pt$lhs %in% endVars,
paste("e.",pt$lhs,sep=""),
pt$lhs
)
rhs <- ifelse(
pt$rhs %in% endVars,
paste("e.",pt$rhs,sep=""),
pt$rhs
)
for(i in which(pt$op == "~~")){
Phi[lhs[i],rhs[i]] <- Phi[rhs[i],lhs[i]] <- paramValues[i]
}
Beta <- matrix(0,s,s, dimnames = list(allVars, allVars))
Gamma <- matrix(0,s,n, dimnames = list(allVars, exoVars))
I <- diag(nrow(Beta))
Gamma[1:m,] <- gamma
Gamma[(m+1):s,] <- diag(n)
Beta[1:m,1:m]<-beta
`%naproduct%` <- function(x, y) {
as.matrix(
Matrix::Matrix(x, sparse = T) %*%
Matrix::Matrix(y, sparse = T)
)
}
BetaI <- I-Beta
BetaI[is.na(BetaI)] <- 0
BetaI <- solve(BetaI)
BetaNA <- I-(is.na(Beta) | Beta != 0)
trySolve <- function(mat){
"matrix" %in% class(try(solve(mat),silent=T))
}
if (trySolve(BetaNA)){
BetaNA <- solve(BetaNA)
} else {
nz <- length(BetaNA[BetaNA==-1])
BetaNA[BetaNA==-1] <- stats::runif(nz)
BetaNA <- solve(BetaNA)
}
BetaI[BetaNA != 0 & BetaI == 0] <- NA
Sigma <- BetaI %naproduct% Gamma %naproduct%
Phi %naproduct% t(Gamma) %naproduct% t(BetaI)
gamBeta <- cbind(gamma,beta)
eqns <- list()
for(dv in unique(rownames(gamBeta)[which(apply(is.na(gamBeta),1,any))])){
eq <- list()
vars <- c(dv,colnames(gamBeta)[c(which(gamBeta[dv,]!=0), which(is.na(gamBeta[dv,])))])
eq$EQnum <- NA
eq$EQmod <- NA
eq$DVobs <- NA
eq$IVobs <- NA
eq$DVlat <- dv
eq$IVlat <- setdiff(vars[-1], errVars)
compositeDisturbance <- paste("e.",vars[1],sep="")
markers <- NULL
for(var in vars){
if(var %in% latVars){
marker <- rownames(gamBeta)[which(gamBeta[,var]==1)[1]]
compositeDisturbance <- c(
compositeDisturbance,paste("e.",marker,sep="")
)
while(marker %in% latVars){
eq$EQmod <- "measurement"
marker <- rownames(gamBeta)[which(gamBeta[,marker]==1)[1]]
compositeDisturbance <- c(
compositeDisturbance,
paste("e.",marker,sep="")
)
}
markers <- c(markers, marker)
vars[vars == var] <- marker
}
}
eq$DVobs <- vars[1]
eq$IVobs <- setdiff(vars[-1], errVars)
eq$CDist <- compositeDisturbance
eq$MIIVs <- NA
eq$markers <- eq$markers
eqns <- c(eqns,list(eq))
}
for (j in 1:length(eqns)){
eqns[[j]]$EQnum <- j
Sigma_e <- Sigma[,eqns[[j]]$CDist, drop = FALSE]
e <- apply(Sigma_e == 0 & ! is.na(Sigma_e),1,all)
Sigma_i <- Sigma[,eqns[[j]]$markers, drop = FALSE]
i <- apply(Sigma_i != 0 | is.na(Sigma_i),1,all)
eqns[[j]]$MIIVs <- names(which((e&i)[obsVars]))
eqns[[j]]$EQmod <- if (eqns[[j]]$DVlat %in% pt$rhs[pt$op =="=~"] ){
"measurement"
} else {
"regression"
}
}
eqns <- lapply(eqns,function(eq){eq$markers <- NULL; eq})
lhsi <- c(pt$rhs[pt$op == "=~" & duplicated(pt$lhs)],
pt$lhs[pt$op == "~"])
rhsi <- c(pt$lhs[pt$op == "=~" & duplicated(pt$lhs)],
pt$rhs[pt$op == "~"])
labi <- c(pt$mlabel[pt$op == "=~" & duplicated(pt$lhs)],
pt$mlabel[pt$op == "~"])
for ( j in 1:length(eqns)){
td <- eqns[[j]]$DVlat
ti <- eqns[[j]]$IVlat
eqns[[j]]$Label <- labi[which(lhsi %in% td)][
match(ti, rhsi[which(lhsi %in% td)])
]
}
res <- list(
eqns = eqns,
pt = pt,
matrices =
list(
Sigma = Sigma,
Beta = Beta,
BetaI = BetaI,
Gamma = Gamma,
Phi = Phi
)
)
class(res) <- "miivs"
res
} |
penalties.BTLLasso <- function(Y, X = NULL, Z1 = NULL, Z2 = NULL, get.design = get.design,
control = ctrl.BTLLasso()) {
n <- Y$n
m <- Y$m
k <- Y$k
q <- Y$q
object.names <- Y$object.names
penalize.X <- control$penalize.X
penalize.Z1.diffs <- control$penalize.Z1.diffs
penalize.Z1.absolute <- control$penalize.Z1.absolute
penalize.Z2 <- control$penalize.Z2
penalize.intercepts <- control$penalize.intercepts
include.intercepts <- control$include.intercepts
order.effect <- control$order.effect
object.order.effect <- control$object.order.effect
penalize.order.effect.diffs <- control$penalize.order.effect.diffs
penalize.order.effect.absolute <- control$penalize.order.effect.absolute
if(!is.logical(penalize.X)){
if(all(penalize.X %in% get.design$vars.X)){
which.pen.X <- rep(FALSE,get.design$p.X)
which.pen.X[which(get.design$vars.X %in% penalize.X)] <- TRUE
penalize.X <- TRUE
}else{
stop("The argument penalize.X must either be logical or a character vector containing variable names of X which should be penalized!")
}
}else{
which.pen.X <- rep(TRUE,get.design$p.X)
}
if(!is.logical(penalize.Z1.absolute)){
if(all(penalize.Z1.absolute %in% get.design$vars.Z1)){
which.pen.Z1.absolute <- rep(FALSE,get.design$p.Z1)
which.pen.Z1.absolute[which(get.design$vars.Z1 %in% penalize.Z1.absolute)] <- TRUE
penalize.Z1.absolute <- TRUE
}else{
stop("The argument penalize.Z1.absolute must either be logical or a character vector containing variable names of Z1 which should be penalized with respect to absolute values!")
}
}else{
which.pen.Z1.absolute <- rep(TRUE,get.design$p.Z1)
}
if(!is.logical(penalize.Z1.diffs)){
if(all(penalize.Z1.diffs %in% get.design$vars.Z1)){
which.pen.Z1.diffs <- rep(FALSE,get.design$p.Z1)
which.pen.Z1.diffs[which(get.design$vars.Z1 %in% penalize.Z1.diffs)] <- TRUE
penalize.Z1.diffs <- TRUE
}else{
stop("The argument penalize.Z1.diffs must either be logical or a character vector containing variable names of Z1 which should be penalized with respect to absolute differences!")
}
}else{
which.pen.Z1.diffs <- rep(TRUE,get.design$p.Z1)
}
if(!is.logical(penalize.Z2)){
if(all(penalize.Z2 %in% get.design$vars.Z2)){
which.pen.Z2 <- rep(FALSE,get.design$p.Z2)
which.pen.Z2[which(get.design$vars.Z2 %in% penalize.Z2)] <- TRUE
penalize.Z2 <- TRUE
}else{
stop("The argument penalize.Z2 must either be logical or a character vector containing variable names of Z2 which should be penalized!")
}
}else{
which.pen.Z2 <- rep(TRUE,get.design$p.Z2)
}
n.intercepts <- 0
par.names.intercepts <- c()
if (include.intercepts) {
n.intercepts <- m - 1
par.names.intercepts <- object.names[1:(m - 1)]
}
n.order <- 0
if (order.effect) {
n.order <- 1
}
if (object.order.effect) {
n.order <- m
}
numpen.intercepts <- numpen.X <- numpen.Z1 <- numpen.Z2 <- numpen.order <- 0
p.X <- p.Z1 <- p.Z2 <- 0
if (include.intercepts & penalize.intercepts) {
acoefs.intercepts <- diag(m - 1)
help.pen <- matrix(0, ncol = choose(m - 1, 2), nrow = m -
1)
combis <- combn(m - 1, 2)
for (ff in 1:ncol(combis)) {
help.pen[combis[1, ff], ff] <- 1
help.pen[combis[2, ff], ff] <- -1
}
acoefs.intercepts <- cbind(acoefs.intercepts, help.pen)
numpen.intercepts <- ncol(acoefs.intercepts)
}
if (!is.null(X)) {
p.X <- ncol(X)
if (penalize.X) {
acoefs.X <- diag(x = as.numeric(rep(which.pen.X,each=m-1)), p.X * (m - 1))
help.pen <- help.pen2 <- matrix(0, ncol = choose(m - 1, 2), nrow = m -
1)
combis <- combn(m - 1, 2)
for (ff in 1:ncol(combis)) {
help.pen[combis[1, ff], ff] <- 1
help.pen[combis[2, ff], ff] <- -1
}
for (pp in 1:p.X) {
m.above <- matrix(rep(matrix(0, ncol = choose(m -
1, 2), nrow = m - 1), pp - 1), ncol = choose(m -
1, 2))
m.below <- matrix(rep(matrix(0, ncol = choose(m -
1, 2), nrow = m - 1), p.X - pp), ncol = choose(m -
1, 2))
if(which.pen.X[pp]){
acoefs.X <- cbind(acoefs.X, rbind(m.above, help.pen,
m.below))
}else{
acoefs.X <- cbind(acoefs.X, rbind(m.above, help.pen2,
m.below))
}
}
acoefs.X <- acoefs.X[,colSums(abs(acoefs.X))>0, drop = FALSE]
numpen.X <- ncol(acoefs.X)
}
}
if (!is.null(Z1)) {
p.Z1 <- ncol(Z1)/m
if (penalize.Z1.diffs | penalize.Z1.absolute) {
acoefs.Z1 <- c()
if (penalize.Z1.absolute) {
acoefs.Z1 <- diag(x = as.numeric(rep(which.pen.Z1.absolute,each=m)), p.Z1 * m)
}
if (penalize.Z1.diffs) {
help.pen <- help.pen2 <- matrix(0, ncol = choose(m, 2), nrow = m)
combis <- combn(m, 2)
for (ff in 1:ncol(combis)) {
help.pen[combis[1, ff], ff] <- 1
help.pen[combis[2, ff], ff] <- -1
}
for (pp in 1:p.Z1) {
m.above <- matrix(rep(matrix(0, ncol = choose(m,
2), nrow = m), pp - 1), ncol = choose(m,
2))
m.below <- matrix(rep(matrix(0, ncol = choose(m,
2), nrow = m), p.Z1 - pp), ncol = choose(m,
2))
if(which.pen.Z1.diffs[pp]){
acoefs.Z1 <- cbind(acoefs.Z1, rbind(m.above,
help.pen, m.below))
}else{
acoefs.Z1 <- cbind(acoefs.Z1, rbind(m.above,
help.pen2, m.below))
}
}
}
acoefs.Z1 <- acoefs.Z1[,colSums(abs(acoefs.Z1))>0, drop = FALSE]
numpen.Z1 <- ncol(acoefs.Z1)
}
}
if (!is.null(Z2)) {
p.Z2 <- ncol(Z2)/m
if (penalize.Z2) {
acoefs.Z2 <- diag(x = as.numeric(which.pen.Z2), p.Z2)
acoefs.Z2 <- acoefs.Z2[,colSums(abs(acoefs.Z2))>0, drop = FALSE]
numpen.Z2 <- ncol(acoefs.Z2)
}
}
if (order.effect & penalize.order.effect.absolute) {
acoefs.order <- matrix(1, ncol = 1, nrow = 1)
numpen.order <- 1
}
if (object.order.effect & (penalize.order.effect.diffs |
penalize.order.effect.absolute)) {
acoefs.order <- c()
if (penalize.order.effect.absolute) {
acoefs.order <- diag(m)
}
if (penalize.order.effect.diffs) {
help.pen <- matrix(0, ncol = choose(m, 2), nrow = m)
combis <- combn(m, 2)
for (ff in 1:ncol(combis)) {
help.pen[combis[1, ff], ff] <- 1
help.pen[combis[2, ff], ff] <- -1
}
acoefs.order <- cbind(acoefs.order, help.pen)
}
numpen.order <- ncol(acoefs.order)
}
numpen <- numpen.intercepts + numpen.X + numpen.Z1 + numpen.Z2 +
numpen.order
acoefs <- matrix(0, ncol = numpen, nrow = n.intercepts +
p.X * (m - 1) + p.Z1 * m + p.Z2 + n.order)
current.row <- 1
current.col <- 1
if (n.order > 0) {
if (numpen.order > 0) {
acoefs[current.row:(current.row + n.order - 1), current.col:(current.col +
numpen.order - 1)] <- acoefs.order
}
current.row <- current.row + n.order
current.col <- current.col + numpen.order
}
if (include.intercepts) {
if (penalize.intercepts) {
acoefs[current.row:(current.row + m - 2), current.col:(current.col +
numpen.intercepts - 1)] <- acoefs.intercepts
}
current.row <- current.row + m - 1
current.col <- current.col + numpen.intercepts
}
if (!is.null(X)) {
if (penalize.X) {
acoefs[current.row:(current.row + p.X * (m - 1) -
1), current.col:(current.col + numpen.X - 1)] <- acoefs.X
}
current.row <- current.row + p.X * (m - 1)
current.col <- current.col + numpen.X
}
if (!is.null(Z1)) {
if (penalize.Z1.diffs | penalize.Z1.absolute) {
acoefs[current.row:(current.row + p.Z1 * m - 1),
current.col:(current.col + numpen.Z1 - 1)] <- acoefs.Z1
}
current.row <- current.row + p.Z1 * m
current.col <- current.col + numpen.Z1
}
if (!is.null(Z2)) {
if (penalize.Z2) {
acoefs[current.row:(current.row + p.Z2 - 1), current.col:(current.col +
numpen.Z2 - 1)] <- acoefs.Z2
}
current.row <- current.row + p.Z2
current.col <- current.col + numpen.Z2
}
acoefs <- rbind(matrix(0, nrow = floor(q/2), ncol = ncol(acoefs)),
acoefs)
RET <- list(acoefs = acoefs, numpen.intercepts = numpen.intercepts,
numpen.X = numpen.X, numpen.Z1 = numpen.Z1, numpen.Z2 = numpen.Z2,
numpen.order = numpen.order, n.order = n.order, p.X = p.X,
p.Z1 = p.Z1, p.Z2 = p.Z2, weight.penalties = control$weight.penalties)
return(RET)
} |
.trim <- function(x) gsub("^\\s+|\\s+$", "", x)
.safe_deparse <- function(string) {
paste0(sapply(deparse(string, width.cutoff = 500), .trim, simplify = TRUE), collapse = "")
}
.select_rows <- function(data, variable, value) {
data[which(data[[variable]] == value), ]
}
.select_nums <- function(x) {
x[unlist(lapply(x, is.numeric))]
}
.get_direction <- function(direction) {
if (length(direction) > 1) warning("Using first 'direction' value.")
if (is.numeric(direction[1])) {
return(sign(direction[1]))
}
Value <- c(
"left" = -1,
"right" = 1,
"two-sided" = 0,
"twosided" = 0,
"one-sided" = 1,
"onesided" = 1,
"<" = -1,
">" = 1,
"=" = 0,
"==" = 0,
"-1" = -1,
"0" = 0,
"1" = 1,
"+1" = 1
)
direction <- Value[tolower(direction[1])]
if (is.na(direction)) {
stop("Unrecognized 'direction' argument.")
}
direction
}
.prepare_output <- function(temp, cleaned_parameters, is_stan_mv = FALSE, is_brms_mv = FALSE) {
if (isTRUE(is_stan_mv)) {
temp$Response <- gsub("(b\\[)*(.*)\\|(.*)", "\\2", temp$Parameter)
for (i in unique(temp$Response)) {
temp$Parameter <- gsub(sprintf("%s|", i), "", temp$Parameter, fixed = TRUE)
}
merge_by <- c("Parameter", "Effects", "Component", "Response")
remove_cols <- c("Group", "Cleaned_Parameter", "Function", ".roworder")
} else if (isTRUE(is_brms_mv)) {
temp$Response <- gsub("(.*)_(.*)_(.*)", "\\2", temp$Parameter)
merge_by <- c("Parameter", "Effects", "Component", "Response")
remove_cols <- c("Group", "Cleaned_Parameter", "Function", ".roworder")
} else {
merge_by <- c("Parameter", "Effects", "Component")
remove_cols <- c("Group", "Cleaned_Parameter", "Response", "Function", ".roworder")
}
merge_by <- intersect(merge_by, colnames(temp))
temp$.roworder <- 1:nrow(temp)
out <- merge(x = temp, y = cleaned_parameters, by = merge_by, all.x = TRUE)
if ((isTRUE(is_stan_mv) || isTRUE(is_brms_mv)) && all(is.na(out$Effects)) && all(is.na(out$Component))) {
out$Effects <- cleaned_parameters$Effects[1:nrow(out)]
out$Component <- cleaned_parameters$Component[1:nrow(out)]
}
if (all(is.na(out$Effects)) || all(is.na(out$Component))) {
out <- out[!duplicated(out$.roworder), ]
} else {
out <- out[!is.na(out$Effects) & !is.na(out$Component) & !duplicated(out$.roworder), ]
}
attr(out, "Cleaned_Parameter") <- out$Cleaned_Parameter[order(out$.roworder)]
datawizard::data_remove(out[order(out$.roworder), ], remove_cols)
}
.merge_and_sort <- function(x, y, by, all) {
if (is.null(ncol(y))) {
return(x)
}
x$.rowid <- 1:nrow(x)
x <- merge(x, y, by = by, all = all)
datawizard::data_remove(x[order(x$.rowid), ], ".rowid")
}
.group_vars <- function(x) {
grps <- attr(x, "groups", exact = TRUE)
if (is.null(grps)) {
attr(x, "vars", exact = TRUE)
} else {
setdiff(colnames(grps), ".rows")
}
}
.is_baysian_emmeans <- function(x) {
if (inherits(x, "emm_list")) {
x <- x[[1]]
}
post.beta <- methods::slot(x, "post.beta")
!(all(dim(post.beta) == 1) && is.na(post.beta))
}
.add_clean_parameters_attribute <- function(params, model) {
cp <- tryCatch(
{
insight::clean_parameters(model)
},
error = function(e) {
NULL
}
)
attr(params, "clean_parameters") <- cp
params
}
.n_unique <- function(x, na.rm = TRUE) {
if (is.null(x)) {
return(0)
}
if (isTRUE(na.rm)) x <- stats::na.omit(x)
length(unique(x))
} |
fluidPage(theme = 'zoo.css',
fluidRow(
tags$b("If you identify any problem in iSTATS or need some help, please contact us at: [email protected]"
),
br(),
tags$b("Or in github page"
),
tags$a(href="https://github.com/vitor-mendes-iq/iSTATS/issues", "Click here!")
)
) |
function.Minimax <-
function(data, marker, status, tag.healthy = 0, direction = c("<", ">"), control = control.cutpoints(), pop.prev, ci.fit = FALSE, conf.level = 0.95, measures.acc){
direction <- match.arg(direction)
if (is.logical(control$maxSp) == FALSE) {
stop("'maxSp' must be a logical-type argument.", call. = FALSE)
}
FN <-(1-measures.acc$Se[,1])*length(data[data[,status] != tag.healthy, marker])
FP <-(1-measures.acc$Sp[,1])*length(data[data[,status] == tag.healthy, marker])
M <- vector()
for(i in 1:length(measures.acc$cutoffs)) {
if (FN[i] > FP[i]) {
M[i] <- FN[i]
} else {
M[i] <- FP[i]
}
}
cMinimax <- measures.acc$cutoffs[which(round(M,10) == round(min(M,na.rm=TRUE),10))]
if (length(cMinimax)> 1) {
if(control$maxSp == TRUE) {
Spnew <- obtain.optimal.measures(cMinimax, measures.acc)$Sp
cutpointsSpnew <- cMinimax[which(round(Spnew[,1],10) == round(max(Spnew[,1],na.rm=TRUE),10))]
if (length(cutpointsSpnew)> 1) {
Senew <- obtain.optimal.measures(cutpointsSpnew, measures.acc)$Se
cMinimax <- cutpointsSpnew[which(round(Senew[,1],10) == round(max(Senew[,1],na.rm=TRUE),10))]
}
if (length(cutpointsSpnew)== 1) {
cMinimax <- cutpointsSpnew
}
}
if(control$maxSp == FALSE) {
Senew <- obtain.optimal.measures(cMinimax, measures.acc)$Se
cutpointsSenew <- cMinimax[which(round(Senew[,1],10) == round(max(Senew[,1],na.rm=TRUE),10))]
if (length(cutpointsSenew)> 1) {
Spnew <- obtain.optimal.measures(cutpointsSenew, measures.acc)$Sp
cMinimax <- cutpointsSenew[which(round(Spnew[,1],10) == round(max(Spnew[,1],na.rm=TRUE),10))]
}
if (length(cutpointsSenew)== 1) {
cMinimax <- cutpointsSenew
}
}
}
optimal.M <- min(M,na.rm=TRUE)
optimal.cutoff <- obtain.optimal.measures(cMinimax, measures.acc)
res <- list(measures.acc = measures.acc, optimal.cutoff = optimal.cutoff, criterion = M, optimal.criterion = optimal.M)
res
} |
context("ECOS suite Tests") |
context( 'na.true')
test_that( "na.true", {
v <- c(T,NA,F)
na.true(v) ->.; expect_equal( ., c(T,T,F) )
na.false(v) ->.; expect_equal( ., c(T,F,F) )
v <- c( 'a',NA_character_,'c' )
na.true(v) ->.; expect_equal(., c('a','TRUE','c') )
na.false(v) ->.; expect_equal(., c('a','FALSE','c') )
v <- c(1,NA_integer_,3)
na.true(v) ->.; expect_equal(., c(1,1,3))
na.false(v) ->.; expect_equal(., c(1,0,3) )
}) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(caret)
library(FSinR)
data(iris)
evaluator <- wrapperEvaluator("knn")
searcher <- searchAlgorithm('sequentialForwardSelection')
results <- featureSelection(iris, 'Species', searcher, evaluator)
results$bestFeatures
results$bestValue
evaluator <- filterEvaluator('MDLC')
searcher <- searchAlgorithm('sequentialForwardSelection')
results <- featureSelection(iris, 'Species', searcher, evaluator)
results$bestFeatures
results$bestValue
filter_evaluator <- filterEvaluator("IEConsistency")
wrapper_evaluator <- wrapperEvaluator("lvq")
resultFilter <- filter_evaluator(iris, 'Species', c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"))
resultFilter
resultWrapper <- wrapper_evaluator(iris, 'Species', c("Petal.Length", "Petal.Width"))
resultWrapper
library(caret)
library(FSinR)
data(mtcars)
evaluator <- filterEvaluator('determinationCoefficient')
directSearcher <- directSearchAlgorithm('selectKBest', list(k=3))
results <- directFeatureSelection(mtcars, 'mpg', directSearcher, evaluator)
results$bestFeatures
results$featuresSelected
results$valuePerFeature
library(caret)
library(FSinR)
data(mtcars)
evaluator_1 <- filterEvaluator('determinationCoefficient')
evaluator_2 <- filterEvaluator('ReliefFeatureSetMeasure')
hybridSearcher <- hybridSearchAlgorithm('LCC')
results <- hybridFeatureSelection(mtcars, 'mpg', hybridSearcher, evaluator_1, evaluator_2)
results$bestFeatures
results$bestValue |
parse_event_content <- function(event, config) {
if (!is.null(config$deserialiser)) {
return(config$deserialiser(event$event_content))
}
UseMethod("parse_event_content")
}
parse_event_content.default <- function(event, ...) {
parse_json_or_empty(event$event_content)
} |
.geoR.env <- new.env()
"variofit" <-
function (vario, ini.cov.pars, cov.model,
fix.nugget = FALSE, nugget = 0,
fix.kappa = TRUE, kappa = 0.5,
simul.number = NULL, max.dist = vario$max.dist,
weights, minimisation.function,
limits = pars.limits(), messages, ...)
{
call.fc <- match.call()
if(missing(messages))
messages.screen <- as.logical(ifelse(is.null(getOption("geoR.messages")), TRUE, getOption("geoR.messages")))
else messages.screen <- messages
if(length(class(vario)) == 0 || all(class(vario) != "variogram"))
warning("object vario should preferably be of the geoR's class \"variogram\"")
if(!missing(ini.cov.pars)){
if(any(class(ini.cov.pars) == "eyefit"))
cov.model <- ini.cov.pars[[1]]$cov.model
if(any(class(ini.cov.pars) == "variomodel"))
cov.model <- ini.cov.pars$cov.model
}
if(missing(cov.model)) cov.model <- "matern"
cov.model <- match.arg(cov.model, choices = .geoR.cov.models)
if(cov.model == "stable") cov.model <- "powered.exponential"
if(cov.model == "powered.exponential")
if(limits$kappa["upper"] > 2) limits$kappa["upper"] <- 2
if(missing(weights)){
if(vario$output.type == "cloud") weights <- "equal"
else weights <- "npairs"
}
else
weights <- match.arg(weights, choices = c("npairs", "equal", "cressie"))
if(messages.screen){
cat(paste("variofit: covariance model used is", cov.model, "\n"))
cat(paste("variofit: weights used:", weights, "\n"))
}
if(missing(minimisation.function))
minimisation.function <- "optim"
if(any(cov.model == c("linear", "power")) & minimisation.function == "nls"){
cat("warning: minimisation function nls can not be used with given cov.model.\n changing for \"optim\".\n")
minimisation.function <- "optim"
}
if(minimisation.function == "nls" & weights != "equal"){
warning("variofit: minimisation function nls can only be used with weights=\"equal\".\n changing for \"optim\".\n")
minimisation.function <- "optim"
}
if (is.matrix(vario$v) & is.null(simul.number))
stop("object in vario$v is a matrix. This function works for only 1 empirical variogram at once\n")
if (!is.null(simul.number))
vario$v <- vario$v[, simul.number]
if(mode(max.dist) != "numeric" || length(max.dist) > 1)
stop("a single numerical value must be provided in the argument max.dist")
if (max.dist == vario$max.dist)
XY <- list(u = vario$u, v = vario$v, n=vario$n)
else
XY <- list(u = vario$u[vario$u <= max.dist],
v = vario$v[vario$u <= max.dist],
n = vario$n[vario$u <= max.dist])
if(cov.model == "pure.nugget"){
minimisation.function <- "not used"
message <- "correlation function does not require numerical minimisation"
if(weights == "equal") lm.wei <- rep(1, length(XY$u))
else lm.wei <- XY$n
if(cov.model == "pure.nugget"){
if(fix.nugget){
temp <- lm((XY$v-nugget) ~ 1, weights = lm.wei)
cov.pars <- c(temp$coef, 0)
}
else{
temp <- lm(XY$v ~ 1, weights = lm.wei)
nugget <- temp$coef
cov.pars <- c(0,0)
}
}
value <- sum((temp$residuals)^2)
}
else{
if(messages.screen)
cat(paste("variofit: minimisation function used:", minimisation.function, "\n"))
umax <- max(vario$u)
vmax <- max(vario$v)
if(missing(ini.cov.pars)){
ini.cov.pars <- as.matrix(expand.grid(c(vmax/2, 3*vmax/4, vmax),
seq(0, 0.8*umax, len=6)))
if(!fix.nugget)
nugget <- unique(c(nugget, vmax/10, vmax/4, vmax/2))
if(!fix.kappa)
kappa <- unique(c(kappa, 0.25, 0.5, 1, 1.5, 2))
if(messages.screen)
warning("initial values not provided - running the default search")
}
else{
if(any(class(ini.cov.pars) == "eyefit")){
init <- nugget <- kappa <- NULL
for(i in 1:length(ini.cov.pars)){
init <- drop(rbind(init, ini.cov.pars[[i]]$cov.pars))
nugget <- c(nugget, ini.cov.pars[[i]]$nugget)
if(cov.model == "gneiting.matern")
kappa <- drop(rbind(kappa, ini.cov.pars[[i]]$kappa))
else
kappa <- c(kappa, ini.cov.pars[[i]]$kappa)
}
ini.cov.pars <- init
}
if(any(class(ini.cov.pars) == "variomodel")){
nugget <- ini.cov.pars$nugget
kappa <- ini.cov.pars$kappa
ini.cov.pars <- ini.cov.pars$cov.pars
}
}
if(is.matrix(ini.cov.pars) | is.data.frame(ini.cov.pars)){
ini.cov.pars <- as.matrix(ini.cov.pars)
if(nrow(ini.cov.pars) == 1)
ini.cov.pars <- as.vector(ini.cov.pars)
else{
if(ncol(ini.cov.pars) != 2)
stop("\nini.cov.pars must be a matrix or data.frame with 2 components: \ninitial values for sigmasq (partial sill) and phi (range parameter)\n")
}
}
else
if(length(ini.cov.pars) > 2)
stop("\nini.cov.pars must provide initial values for sigmasq and phi\n")
if(is.matrix(ini.cov.pars) | (length(nugget) > 1) | (length(kappa) > 1)) {
if(messages.screen)
cat("variofit: searching for best initial value ...")
ini.temp <- matrix(ini.cov.pars, ncol=2)
grid.ini <- as.matrix(expand.grid(sigmasq=unique(ini.temp[,1]),
phi=unique(ini.temp[,2]),
tausq=unique(nugget), kappa=unique(kappa)))
v.loss <- function(parms, u, v, n, cov.model, weights){
sigmasq <- parms[1]
phi <- parms[2]
if(cov.model == "power") phi <- 2 * exp(phi)/(1+exp(phi))
tausq <- parms[3]
kappa <- parms[4]
if(cov.model == "power")
v.mod <- tausq +
cov.spatial(u, cov.pars=c(sigmasq, phi), cov.model="power", kappa=kappa)
else
v.mod <- (sigmasq + tausq) -
cov.spatial(u, cov.pars=c(sigmasq, phi), cov.model = cov.model,
kappa = kappa)
if(weights == "equal")
loss <- sum((v - v.mod)^2)
if (weights == "npairs")
loss <- sum(n * (v - v.mod)^2)
if (weights == "cressie")
loss <- sum((n/(v.mod^2)) * (v - v.mod)^2)
return(loss)
}
grid.loss <- apply(grid.ini, 1, v.loss, u=XY$u, v=XY$v, n=XY$n, cov.model = cov.model, weights = weights)
ini.temp <- grid.ini[which(grid.loss == min(grid.loss))[1],, drop=FALSE]
if(is.R()) rownames(ini.temp) <- "initial.value"
if(messages.screen){
cat(" selected values:\n")
print(rbind(round(ini.temp, digits=2), status=ifelse(c(FALSE, FALSE, fix.nugget, fix.kappa), "fix", "est")))
cat(paste("loss value:", min(grid.loss), "\n"))
}
names(ini.temp) <- NULL
ini.cov.pars <- ini.temp[1:2]
nugget <- ini.temp[3]
kappa <- ini.temp[4]
grid.ini <- NULL
}
if(ini.cov.pars[1] > 2*vmax)
warning("unreasonable initial value for sigmasq (too high)")
if(ini.cov.pars[1] + nugget > 3*vmax)
warning("unreasonable initial value for sigmasq + nugget (too high)")
if(vario$output.type != "cloud"){
if(ini.cov.pars[1] + nugget < 0.3*vmax)
warning("unreasonable initial value for sigmasq + nugget (too low)")
}
if(nugget > 2*vmax)
warning("unreasonable initial value for nugget (too high)")
if(ini.cov.pars[2] > 1.5*umax)
warning("unreasonable initial value for phi (too high)")
if(!fix.kappa){
if(cov.model == "powered.exponential")
Tkappa.ini <- log(kappa/(2-kappa))
else
Tkappa.ini <- log(kappa)
}
if (minimisation.function == "nls") {
if(ini.cov.pars[2] == 0) ini.cov.pars <- max(XY$u)/10
if(kappa == 0) kappa <- 0.5
if(cov.model == "power")
Tphi.ini <- log(ini.cov.pars[2]/(2-ini.cov.pars[2]))
else Tphi.ini <- log(ini.cov.pars[2])
XY$cov.model <- cov.model
if (fix.nugget) {
XY$nugget <- as.vector(nugget)
if(fix.kappa){
XY$kappa <- as.vector(kappa)
res <- nls((v-nugget) ~ matrix((1-cov.spatial(u,cov.pars=c(1,exp(Tphi)),
cov.model=cov.model, kappa=kappa)),
ncol=1),
start=list(Tphi=Tphi.ini), data=XY, algorithm="plinear", ...)
}
else{
if(cov.model == "powered.exponential")
res <- nls((v-nugget) ~ matrix((1-cov.spatial(u,cov.pars=c(1,exp(Tphi)),
cov.model=cov.model,
kappa=(2*exp(Tkappa)/(1+exp(Tkappa))))),
ncol=1),
start=list(Tphi=Tphi.ini, Tkappa = Tkappa.ini),
data=XY, algorithm="plinear", ...)
else
res <- nls((v-nugget) ~ matrix((1-cov.spatial(u,cov.pars=c(1,exp(Tphi)),
cov.model=cov.model,
kappa=exp(Tkappa))), ncol=1),
start=list(Tphi=Tphi.ini, Tkappa = Tkappa.ini),
data=XY, algorithm="plinear", ...)
kappa <- exp(coef(res)["Tkappa"])
names(kappa) <- NULL
}
cov.pars <- coef(res)[c(".lin", "Tphi")]
names(cov.pars) <- NULL
}
else{
if(fix.kappa){
XY$kappa <- kappa
res <- nls(v ~ cbind(1,(1- cov.spatial(u, cov.pars=c(1,exp(Tphi)),
cov.model = cov.model, kappa=kappa))),
start=list(Tphi=Tphi.ini), algorithm="plinear", data=XY, ...)
}
else{
if(cov.model == "powered.exponential")
res <- nls(v ~ cbind(1, (1-cov.spatial(u, cov.pars=c(1, exp(Tphi)),
cov.model = cov.model,
kappa=(2*exp(Tkappa)/(1+exp(Tkappa)))))),
start=list(Tphi=Tphi.ini, Tkappa = Tkappa.ini),
algorithm="plinear", data=XY, ...)
else
res <- nls(v ~ cbind(1, (1-cov.spatial(u, cov.pars=c(1, exp(Tphi)),
cov.model = cov.model,
kappa=exp(Tkappa)))),
start=list(Tphi=Tphi.ini, Tkappa = Tkappa.ini),
algorithm="plinear", data=XY, ...)
kappa <- exp(coef(res)["Tkappa"]);names(kappa) <- NULL
}
nugget <- coef(res)[".lin1"];names(nugget) <- NULL
cov.pars <- coef(res)[c(".lin2", "Tphi")]
names(cov.pars) <- NULL
}
if(cov.model == "power")
cov.pars[2] <- 2 * exp(cov.pars[2])/(1+exp(cov.pars[2]))
else cov.pars[2] <- exp(cov.pars[2])
if(nugget < 0 | cov.pars[1] < 0){
warning("\nvariofit: negative variance parameter found using the default option \"nls\".\n Try another minimisation function and/or fix some of the parameters.\n")
temp <- c(sigmasq=cov.pars[1], phi=cov.pars[2], tausq=nugget, kappa=kappa)
print(rbind(round(temp, digits=4),
status=ifelse(c(FALSE, FALSE, fix.nugget, fix.kappa), "fix", "est")))
return(invisible())
}
value <- sum(resid(res)^2)
message <- "nls does not provides convergence message"
}
if (minimisation.function == "nlm" | minimisation.function == "optim") {
.global.list <- list(u = XY$u, v = XY$v, n=XY$n, fix.nugget = fix.nugget,
nugget = nugget, fix.kappa = fix.kappa, kappa = kappa,
cov.model = cov.model, m.f = minimisation.function,
weights = weights)
ini <- ini.cov.pars
if(cov.model == "power") ini[2] <- log(ini[2]/(2-ini[2]))
if(cov.model == "linear") ini <- ini[1]
if(fix.nugget == FALSE) ini <- c(ini, nugget)
if(!fix.kappa) ini <- c(ini, Tkappa.ini)
names(ini) <- NULL
if(minimisation.function == "nlm"){
result <- nlm(.loss.vario, ini, g.l = .global.list, ...)
result$par <- result$estimate
result$value <- result$minimum
result$convergence <- result$code
if(!is.null(get(".temp.theta", pos=.geoR.env)))
result$par <- get(".temp.theta", pos=.geoR.env)
}
else{
lower.l <- sapply(limits, function(x) x[1])
upper.l <- sapply(limits, function(x) x[2])
if(fix.kappa == FALSE){
if(fix.nugget){
lower <- lower.l[c("sigmasq.lower", "phi.lower","kappa.lower")]
upper <- upper.l[c("sigmasq.upper", "phi.upper","kappa.upper")]
}
else{
lower <- lower.l[c("sigmasq.lower", "phi.lower",
"tausq.rel.lower", "kappa.lower")]
upper <- upper.l[c("sigmasq.upper", "phi.upper",
"tausq.rel.upper", "kappa.upper")]
}
}
else{
if(cov.model == "power"){
if(fix.nugget){
lower <- lower.l[c("sigmasq.lower", "phi.lower")]
upper <- upper.l[c("sigmasq.upper", "phi.upper")]
}
else{
lower <- lower.l[c("sigmasq.lower", "phi.lower", "tausq.rel.lower")]
upper <- upper.l[c("sigmasq.upper", "phi.upper", "tausq.rel.upper")]
}
}
else{
lower <- lower.l["phi.lower"]
upper <- upper.l["phi.upper"]
}
}
result <- optim(ini, .loss.vario, method = "L-BFGS-B",
hessian = TRUE, lower = lower,
upper = upper, g.l = .global.list, ...)
}
value <- result$value
message <- paste(minimisation.function, "convergence code:", result$convergence)
if(cov.model == "linear")
result$par <- c(result$par[1],1,result$par[-1])
cov.pars <- as.vector(result$par[1:2])
if(cov.model == "power")
cov.pars[2] <- 2 * exp(cov.pars[2])/(1+exp(cov.pars[2]))
if(!fix.kappa){
if (fix.nugget)
kappa <- result$par[3]
else{
nugget <- result$par[3]
kappa <- result$par[4]
}
if(.global.list$cov.model == "powered.exponential")
kappa <- 2*(exp(kappa))/(1+exp(kappa))
else kappa <- exp(kappa)
}
else
if(!fix.nugget)
nugget <- result$par[3]
}
}
estimation <- list(nugget = nugget, cov.pars = cov.pars,
cov.model = cov.model, kappa = kappa, value = value,
trend = vario$trend, beta.ols = vario$beta.ols,
practicalRange = practicalRange(cov.model=cov.model,
phi = cov.pars[2], kappa = kappa),
max.dist = max.dist,
minimisation.function = minimisation.function)
estimation$weights <- weights
if(weights == "equal") estimation$method <- "OLS"
else estimation$method <- "WLS"
estimation$fix.nugget <- fix.nugget
estimation$fix.kappa <- fix.kappa
estimation$lambda <- vario$lambda
estimation$message <- message
estimation$call <- call.fc
oldClass(estimation) <- c("variomodel", "variofit")
return(estimation)
}
".loss.vario" <-
function (theta, g.l)
{
if(g.l$cov.model == "linear")
theta <- c(theta[1], 1, theta[-1])
if(g.l$m.f == "nlm"){
assign(".temp.theta", NULL, pos=.geoR.env)
if(!g.l$fix.kappa){
if(g.l$fix.nugget){
if(g.l$cov.model == "power")
theta.minimiser <- theta[1]
else
theta.minimiser <- theta[1:2]
Tkappa <- theta[3]
}
else{
if(g.l$cov.model == "power")
theta.minimiser <- theta[c(1:3)]
else
theta.minimiser <- theta[1:3]
Tkappa <- theta[4]
}
}
else theta.minimiser <- theta
penalty <- 10000 * sum(0 - pmin(theta.minimiser, 0))
theta <- pmax(theta.minimiser, 0)
if(!g.l$fix.kappa) theta <- c(theta.minimiser, Tkappa)
if (any(theta.minimiser < 0)){
assign(".temp.theta", theta, pos=.geoR.env)
}
else penalty <- 0
}
else penalty <- 0
if(!g.l$fix.kappa){
if (g.l$fix.nugget){
tausq <- g.l$nugget
Tkappa <- theta[3]
}
else{
tausq <- theta[3]
Tkappa <- theta[4]
}
if(g.l$cov.model == "powered.exponential")
kappa <- 2*(exp(Tkappa))/(1+exp(Tkappa))
else kappa <- exp(Tkappa)
}
else{
kappa <- g.l$kappa
if (g.l$fix.nugget) tausq <- g.l$nugget
else tausq <- theta[3]
}
sigmasq <- theta[1]
phi <- theta[2]
if(g.l$cov.model == "power") phi <- 2 * exp(phi)/(1+exp(phi))
sill.total <- sigmasq + tausq
if(any(g.l$cov.model == c("linear", "power")))
gammaU <- tausq + sigmasq * (g.l$u^phi)
else
gammaU <- sill.total - cov.spatial(g.l$u, cov.model = g.l$cov.model,
kappa = kappa, cov.pars = c(sigmasq, phi))
if(g.l$weight == "equal")
loss <- sum((g.l$v - gammaU)^2)
if (g.l$weights == "npairs")
loss <- sum(g.l$n * (g.l$v - gammaU)^2)
if (g.l$weights == "cressie")
loss <- sum((g.l$n/(gammaU^2)) * (g.l$v - gammaU)^2)
if(loss > (.Machine$double.xmax^0.5) | loss == Inf | loss == -Inf | is.nan(loss))
loss <- .Machine$double.xmax^0.5
return(loss + penalty)
}
"print.variofit" <-
function(x, digits = "default", ...)
{
if(is.R() & digits == "default")
digits <- max(3, getOption("digits") - 3)
else digits <- options()$digits
if(x$fix.nugget){
est.pars <- c(sigmasq = x$cov.pars[1], phi=x$cov.pars[2])
if(x$fix.kappa == FALSE)
est.pars <- c(est.pars, kappa = x$kappa)
}
else{
est.pars <- c(tausq = x$nugget, sigmasq = x$cov.pars[1], phi=x$cov.pars[2])
if(x$fix.kappa == FALSE)
est.pars <- c(est.pars, kappa = x$kappa)
}
if(x$weights == "equal")
cat("variofit: model parameters estimated by OLS (ordinary least squares):\n")
else
cat("variofit: model parameters estimated by WLS (weighted least squares):\n")
cat(paste("covariance model is:", x$cov.model))
if(any(x$cov.model == c("matern", "powered.exponential",
"cauchy", "gencauchy", "gneiting.matern")))
if(x$fix.kappa) cat(paste(" with fixed kappa =", x$kappa))
if(x$cov.model == "matern" & x$fix.kappa & x$kappa == 0.5)
cat(" (exponential)")
cat("\n")
if(x$fix.nugget)
cat(paste("fixed value for tausq = ", x$nugget,"\n"))
cat("parameter estimates:\n")
print(round(est.pars, digits=digits))
cat(paste("Practical Range with cor=0.05 for asymptotic range:", format(x$practicalRange, ...)))
cat("\n")
if(x$weights == "equal") cat("\nvariofit: minimised sum of squares = ")
else cat("\nvariofit: minimised weighted sum of squares = ")
cat(round(x$value, digits=digits))
cat("\n")
return(invisible())
}
"summary.variofit" <-
function(object, ...)
{
summ.lik <- list()
if(object$weights == "equal")
summ.lik$pmethod <- "OLS (ordinary least squares)"
else
summ.lik$pmethod <- "WLS (weighted least squares)"
summ.lik$cov.model <- object$cov.model
summ.lik$spatial.component <- c(sigmasq = object$cov.pars[1], phi=object$cov.pars[2])
summ.lik$spatial.component.extra <- c(kappa = object$kappa)
summ.lik$nugget.component <- c(tausq = object$nugget)
summ.lik$fix.nugget <- object$fix.nugget
summ.lik$fix.kappa <- object$fix.kappa
summ.lik$practicalRange <- object$practicalRange
summ.lik$sum.of.squares <- c(value = object$value)
if(object$fix.nugget){
summ.lik$estimated.pars <- c(sigmasq = object$cov.pars[1], phi=object$cov.pars[2])
if(object$fix.kappa == FALSE)
summ.lik$estimated.pars <- c(summ.lik$estimated.pars, kappa = object$kappa)
}
else{
summ.lik$estimated.pars <- c(tausq = object$nugget, sigmasq = object$cov.pars[1], phi=object$cov.pars[2])
if(object$fix.kappa == FALSE)
summ.lik$estimated.pars <- c(summ.lik$estimated.pars, kappa = object$kappa)
}
summ.lik$weights <- object$weights
summ.lik$call <- object$call
oldClass(summ.lik) <- "summary.variomodel"
return(summ.lik)
}
"print.summary.variofit" <-
function(x, digits = "default", ...)
{
if(length(class(x)) == 0 || all(class(x) != "summary.variomodel"))
stop("object is not of the class \"summary.variomodel\"")
if(is.R() & digits == "default") digits <- max(3, getOption("digits") - 3)
else digits <- options()$digits
cat("Summary of the parameter estimation\n")
cat("-----------------------------------\n")
cat(paste("Estimation method:", x$pmethod, "\n"))
cat("\n")
cat("Parameters of the spatial component:")
cat("\n")
cat(paste(" correlation function:", x$cov.model))
if(x$cov.model == "matern" & x$fix.kappa & x$spatial.component.extra == 0.5)
cat(" (exponential)")
if(any(x$cov.model == c("matern", "powered.exponential",
"cauchy", "gencauchy", "gneiting.matern"))){
if(x$fix.kappa)
cat(paste("\n (fixed) extra parameter kappa = ", round(x$spatial.component.extra, digits=digits)))
else
cat(paste("\n (estimated) extra parameter kappa = ", round(x$spatial.component.extra, digits=digits)))
}
cat(paste("\n (estimated) variance parameter sigmasq (partial sill) = ", round(x$spatial.component[1], digits=digits)))
cat(paste("\n (estimated) cor. fct. parameter phi (range parameter) = ", round(x$spatial.component[2], digits=digits)))
cat("\n")
cat("\n")
cat("Parameter of the error component:")
if(x$fix.nugget)
cat(paste("\n (fixed) nugget =", round(x$nugget.component, digits = digits)))
else
cat(paste("\n (estimated) nugget = ", round(x$nugget.component, digits=digits)))
cat("\n")
cat("\n")
cat("Practical Range with cor=0.05 for asymptotic range:",
format(x$practicalRange, ...))
cat("\n")
cat("\n")
names(x$sum.of.squares) <- NULL
if(x$weights == "equal") cat("Minimised sum of squares: ")
else cat("Minimised weighted sum of squares: ")
cat(round(x$sum.of.squares, digits=digits))
cat("\n")
cat("\n")
cat("Call:")
cat("\n")
print(x$call)
cat("\n")
invisible(x)
}
"variog.model.env" <-
function(geodata, coords = geodata$coords, obj.variog,
model.pars, nsim = 99, save.sim = FALSE, messages)
{
call.fc <- match.call()
obj.variog$v <- NULL
if(missing(messages))
messages.screen <- as.logical(ifelse(is.null(getOption("geoR.messages")), TRUE, getOption("geoR.messages")))
else messages.screen <- messages
if(any(class(model.pars) == "eyefit")){
if(length(model.pars) == 1L)
model.pars <- model.pars[[1]]
else
stop(paste("variog.model.env: more than one variograma model in the object",
deparse(substitute(model.pars)), "\n specify which i_th model in the list to be used using [[i]]"))
}
if(!is.null(model.pars$beta)) beta <- model.pars$beta
else beta <- 0
if(!is.null(model.pars$cov.model))
cov.model <- model.pars$cov.model
else cov.model <- "exponential"
if(!is.null(model.pars$kappa)) kappa <- model.pars$kappa
else kappa <- 0.5
if(!is.null(model.pars$nugget)) nugget <- model.pars$nugget
else nugget <- 0
cov.pars <- model.pars$cov.pars
if(!is.null(obj.variog$estimator.type))
estimator.type <- obj.variog$estimator.type
else estimator.type <- "classical"
if (obj.variog$output.type != "bin")
stop("envelops can be computed only for binned variogram")
if (messages.screen)
cat(paste("variog.env: generating", nsim, "simulations (with ",
obj.variog$n.data,
"points each) using the function grf\n"))
simula <- grf(obj.variog$n.data, grid = as.matrix(coords),
cov.model = cov.model, cov.pars = cov.pars,
nugget = nugget, kappa = kappa, nsim = nsim,
messages = FALSE)
if(messages.screen)
cat("variog.env: adding the mean or trend\n")
x.mat <- unclass(trend.spatial(trend=obj.variog$trend, geodata = geodata))
if(ncol(x.mat) != length(beta))
stop("incompatible sizes of trend matrix and beta parameter vector. Check whether the trend specification are the same in the objects passed to the arguments \"obj.vario\" and \"model.pars\"")
simula$data <- as.vector(x.mat %*% beta) + simula$data
if (messages.screen)
cat(paste("variog.env: computing the empirical variogram for the",
nsim, "simulations\n"))
nbins <- length(obj.variog$bins.lim) - 1
bin.f <- function(sim){
cbin <- vbin <- sdbin <- rep(0, nbins)
temp <- .C("binit",
as.integer(obj.variog$n.data),
as.double(as.vector(coords[,1])),
as.double(as.vector(coords[,2])),
as.double(as.vector(sim)),
as.integer(nbins),
as.double(as.vector(obj.variog$bins.lim)),
as.integer(estimator.type == "modulus"),
as.double(max(obj.variog$u)),
as.double(cbin),
vbin = as.double(vbin),
as.integer(FALSE),
as.double(sdbin),
PACKAGE = "geoR")$vbin
return(temp)
}
simula.bins <- apply(simula$data, 2, bin.f)
simula.bins <- simula.bins[obj.variog$ind.bin,]
if(exists(".IND.geoR.variog.model.env"))
return(simula.bins)
if(save.sim == FALSE) simula$data <- NULL
if (messages.screen)
cat("variog.env: computing the envelops\n")
limits <- apply(simula.bins, 1, range)
res.env <- list(u = obj.variog$u, v.lower = limits[1, ],
v.upper = limits[2,])
if(save.sim)
res.env$simulated.data <- simula$data
res.env$call <- call.fc
oldClass(res.env) <- "variogram.envelope"
return(res.env)
}
"boot.variofit" <-
function(geodata, coords = geodata$coords, obj.variog,
model.pars, nsim = 99, trace = FALSE, messages)
{
call.fc <- match.call()
if(missing(messages))
messages.screen <- as.logical(ifelse(is.null(getOption("geoR.messages")), TRUE, getOption("geoR.messages")))
else messages.screen <- messages
if(messages.screen)
cat("Computing empirical variograms for simulations\n")
geoR.env <- new.env()
assign(".IND.geoR.variog.model.env", TRUE, pos=geoR.env)
environment(variog.model.env) <- geoR.env
vmat <- variog.model.env(geodata=geodata, coords=coords,
obj.variog=obj.variog, model.pars=model.pars,
nsim=nsim, messages = FALSE)
if(messages.screen){
cat("Fitting models (variofit) for the simulated variograms\n")
cat("be patient - this can take a while to run\n")
}
geoR.count <- new.env()
assign(".geoR.count", 1, envir=geoR.count)
.vf <- function(v){
obj.variog$v <- v
pars <- summary(variofit(obj.variog, messages=FALSE))$estimated.pars
if(trace){
cat(paste("simulation", get(".geoR.count", envir=geoR.count),
"out of", nsim, "\n"))
print(pars)
assign(".geoR.count", get(".geoR.count", envir=geoR.count)+1,
envir=geoR.count)
}
return(pars)
}
res <- as.data.frame(t(apply(vmat, 2, .vf)))
class(res) <- "boot.variofit"
return(res)
} |
expected <- eval(parse(text="\"list\""));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(x = structure(1L, .Label = \"1.3\", class = \"factor\")), .Names = \"x\", row.names = c(NA, -1L), class = \"data.frame\"))"));
.Internal(typeof(argv[[1]]));
}, o=expected); |
filter_trace_length <- function(eventlog, interval, percentage, reverse,...) {
UseMethod("filter_trace_length")
}
filter_trace_length.eventlog <- function(eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
...) {
percentage <- deprecated_perc(percentage, ...)
interval[1] <- deprecated_lower_thr(interval[1], ...)
interval[2] <- deprecated_upper_thr(interval[2], ...)
if(!is.null(interval) && (length(interval) != 2 || !is.numeric(interval) || any(interval < 0, na.rm = T) || all(is.na(interval)) )) {
stop("Interval should be a positive numeric vector of length 2. One of the elements can be NA to create open intervals.")
}
if(!is.null(percentage) && (!is.numeric(percentage) || !between(percentage,0,1) )) {
stop("Percentage should be a numeric value between 0 and 1.")
}
if(is.null(interval) & is.null(percentage))
stop("At least an interval or a percentage must be provided.")
else if((!is.null(interval)) & !is.null(percentage))
stop("Cannot filter on both interval and percentage simultaneously.")
else if(!is.null(percentage))
filter_trace_length_percentile(eventlog,
percentage = percentage,
reverse = reverse)
else
filter_trace_length_threshold(eventlog,
lower_threshold = interval[1],
upper_threshold = interval[2],
reverse = reverse)
}
filter_trace_length.grouped_eventlog <- function(eventlog,
interval = NULL,
percentage = NULL,
reverse = FALSE,
...) {
grouped_filter(eventlog, filter_trace_length, interval, percentage, reverse, ...)
}
ifilter_trace_length <- function(eventlog) {
ui <- miniPage(
gadgetTitleBar("Filter on Trace Length"),
miniContentPanel(
fillCol(
fillRow(
radioButtons("filter_type", "Filter type:", choices = c("Interval" = "int", "Use percentile cutoff" = "percentile")),
radioButtons("reverse", "Reverse filter: ", choices = c("Yes","No"), selected = "No")
),
uiOutput("filter_ui")
)
)
)
server <- function(input, output, session){
output$filter_ui <- renderUI({
if(input$filter_type == "int") {
sliderInput("interval_slider", "Process time interval",
min = min(eventlog %>% group_by_case %>%
summarize(n = n_distinct(!!activity_instance_id_(eventlog))) %>%
pull(n)),
max = max(eventlog %>% group_by_case %>%
summarize(n = n_distinct(!!activity_instance_id_(eventlog))) %>%
pull(n)),
value = c(-Inf,Inf), step = 1)
}
else if(input$filter_type == "percentile") {
sliderInput("percentile_slider", "Percentile cut off:", min = 0, max = 100, value = 80)
}
})
observeEvent(input$done, {
if(input$filter_type == "int")
filtered_log <- filter_trace_length(eventlog,
interval = input$interval_slider,
reverse = ifelse(input$reverse == "Yes", T, F))
else if(input$filter_type == "percentile") {
filtered_log <- filter_trace_length(eventlog,
percentage = input$percentile_slider/100,
reverse = ifelse(input$reverse == "Yes", T, F))
}
stopApp(filtered_log)
})
}
runGadget(ui, server, viewer = dialogViewer("Filter Trace Length", height = 400))
} |
mean( ~NumLaughs, data = resample(Laughter))
mean( ~NumLaughs, data = resample(Laughter))
mean( ~NumLaughs, data = resample(Laughter)) |
genbivunif.t<-function(N=10000, rho, print.cor=TRUE) {
tol<-.Machine$double.eps^0.5
if(N<=0 | abs(N - round(N)) > tol) {
stop("N must be a positive integer.")
}
if(rho<=-1 | rho>=1) {
stop("rho can take values between -1 and 1.")
}
t<-polyroot(c(6*rho,-7,0,1))[1]
t<-Re(t)[abs(Im(t)) < 1e-6]
x<-runif(N)
v2<-runif(N)
u<-rbeta(n=N, shape1=1-t, shape2=1+t)
y<-ifelse(v2<0.5, abs(u-x), 1-abs(1-u-x))
e.rho<-round(cor(x,y), 6)
if(print.cor==TRUE) {
print(paste("Specified rho is ", round(rho, 6), " and empirical rho is ", e.rho, ".", sep=""))
}
return(list(unif.dat=data.frame(x,y), specified.rho=round(rho,6), empirical.rho=e.rho))
} |
netHTML3arrows <- function(nodeLogic=NULL, wd=NULL, names=NULL, concerto="C5"){
if(is.null(nodeLogic)){
warnings("Please insert nodeLogic.")
}
if(is.null(wd)){
message("HTML file is saved in default working directory.")
}
if(concerto != "C4" && concerto !="C5") stop("Please use select either C4 or C5 for the concerto argument.")
if(is.null(wd)){
wd = getwd()
}
htmlfile = file.path(paste0(wd, "/maze.html"))
cat("\n<html><head>",file=htmlfile)
if(concerto=="C5"){
button<- cssC5()
}else{
button<- cssC4()
}
cat("\n<html><head>",file=htmlfile)
cat(button, append=TRUE, file=htmlfile)
cat("\n</head>", append=TRUE, file = htmlfile)
cat("\n<br>", append=TRUE, file = htmlfile)
cat("\n<p align=\"center\" style=\"font-family:lucida sans unicode,lucida grande,sans-serif;font-size:20px;\"><span style=\"color: white;\">Level {{level}} out of {{t_question}}.</span></p>",append=TRUE, file = htmlfile)
cat("\n<body>", append = TRUE, file = htmlfile)
cat("\n<p align=\"center\" style=\"font-family:lucida sans unicode,lucida grande,sans-serif;font-size:14px;\"><font color=\"white\">To solve the puzzle, travel on every path. You can return to the same country but you can only use each path once. </font></p> ", append=TRUE, file=htmlfile)
cat("\n<p align=\"center\" style=\"font-family:lucida sans unicode,lucida grande,sans-serif;font-size:14px;\"><font color=\"white\">You can only go in one direction for those paths with an arrow. </font></p>", append=TRUE, file=htmlfile)
cat("\n<p align=\"center\" style=\"font-family:lucida sans unicode,lucida grande,sans-serif;font-size:14px;\"><font color=\"white\">Click on any country to begin.</font></p>", append=TRUE, file=htmlfile)
o <- suppressWarnings(logicMap(nodeLogic ,base.colour=3, start.colour=9,end.colour= 9,names=names,newValue=9,default.colour=FALSE, no.label=FALSE))
o
coordinates <- layout_with_dh(o)
coordinates.1 <- layout.norm(coordinates)
png(filename="map.png", height=1000, width=1000)
plot.igraph(o,
layout=layout_with_dh,
vertex.shape='square',
vertex.size=10,
vertex.label.cex=0.5)
coord. <- cbind(grconvertX(coordinates.1[, 1], "user", "device"), cbind(grconvertY(coordinates.1[, 2], "user", "device")))
coord.1 <- apply(coord., 1:2, function(x) x/1.8)
dev.off()
cat("\n<div align=center>", append = TRUE, file=htmlfile)
cat("<div class=box>", append=TRUE, file=htmlfile)
cat("\n<div style= 'position:relative;width:auto; height:auto;margin:0 auto' id = 'graphContainer'>", append=TRUE, file=htmlfile)
n.name <- unlist(V(o)$name)
buttons = ""
for (j in 1:nrow(coord.)){
buttons <- paste0(buttons,"\n<div onClick='nodeClick(this)' id = '", j,"'", " class = 'myButton' style = 'z-index:1; left:",(coord.1[j,1]),"px;top:",(coord.1[j,2]),"px'>",n.name[j],"</div>")
}
cat(buttons, append=TRUE, file=htmlfile)
buttons
ed<- ends(o, E(o), names=FALSE)
start.index <- ed[,1]
start.coord <- ncol(coord.)
start.coord
start.node.coord <- matrix(NA, nrow = length(start.index), ncol = start.coord)
for(i in 1:length(start.index)){
start.node.coord[i,]<- coord.[start.index[i],]
}
start.node.coord.1 <- apply(start.node.coord,1:2, function(x) x/1.8)
end.index<- ed[,2]
end.coord <- ncol(coord.)
end.node.coord <- matrix(NA, nrow = length(end.index), ncol= end.coord)
for(i in 1:length(end.index)){
end.node.coord[i,] <- coord.[end.index[i],]
}
end.node.coord.1 <- apply(end.node.coord,1:2, function(x) x/1.8)
ed
(x <- nrow(end.node.coord.1))
rowNumber <- sample(x, size=3, replace=FALSE)
uniDirection = c(2,2)
revDirection = 3
direction <- rep(1,times=nrow(end.node.coord.1))
direction[rowNumber] = c(uniDirection,revDirection)
direction
direction<- cbind(direction)
direction
arrowDirect <- cbind.data.frame(ed,direction)
arrowDirect
arrowDirect
connections = ""
for (i in 1:nrow(ed)){
if(arrowDirect$direction[i]==3){
connections <- paste0(connections,"
<defs>
<marker id=\"arrow",i,"\" markerWidth=\"100\" markerHeight=\"50\" refx=\"40\" refy=\"6\" orient=\"auto\">
<path id=\"colourArrow",i,"\"d=\"M2,1 L2,10 L10,6 L2,2\" style=\"fill:blue\" />
</marker>
</defs>
<path id=",paste0('"',ed[i,1],'_',ed[i,2],'"'), " d=","\"M",end.node.coord.1[i,1],' ',end.node.coord.1[i,2],' L',start.node.coord.1[i,1],' ',start.node.coord.1[i,2],"\" style=\"stroke:black; stroke-width: 3.25px; fill: none ;marker-end: url(
</path> ")
}else if(arrowDirect$direction[i]==2){
connections <- paste0(connections,"
<defs>
<marker id=\"arrow",i,"\" markerWidth=\"100\" markerHeight=\"50\" refx=\"40\" refy=\"6\" orient=\"auto\">
<path id=\"colourArrow",i,"\" d=\"M2,1 L2,10 L10,6 L2,2\" style=\"fill:blue\" />
</marker>
</defs>
<path id=",paste0('"',ed[i,1],'_',ed[i,2],'"'), " d=","\"M",start.node.coord.1[i,1],' ',start.node.coord.1[i,2],' L',end.node.coord.1[i,1],' ',end.node.coord.1[i,2],"\" style=\"stroke:black; stroke-width: 3.25px; fill: none ;marker-end: url(
</path> ")
}else{
connections <- paste0(connections,"
<path id=",paste0('"',ed[i,1],'_',ed[i,2],'"'), " d=","\"M",start.node.coord.1[i,1],' ',start.node.coord.1[i,2],' L',end.node.coord.1[i,1],' ',end.node.coord.1[i,2],"\" style=\"stroke:black; stroke-width: 3.25px; fill: none ;\" >
</path> ")
}
}
connections
start.node <- ed[,1]
start.node<- cbind(start.node)
end.node<- ed[,2]
end.node <- cbind(end.node)
travelled = 0
cat("\n<div>", append = TRUE, file=htmlfile)
cat("\n <svg height=\"610\" width=\"600\">", append=TRUE, file=htmlfile)
cat(connections, append=TRUE, file=htmlfile)
cat("\n </svg>", append=TRUE, file=htmlfile)
cat("\n</div>", append = TRUE, file=htmlfile)
cat("\n</div>", append = TRUE, file=htmlfile)
cat("\n</div>", append = TRUE, file=htmlfile)
cat("\n</div>", append = TRUE, file=htmlfile)
cat("\n<div id=\"hidden\"> </div>", append=TRUE, file=htmlfile)
cat("\n<div id=\"hidden2\"> </div>", append=TRUE, file=htmlfile)
cat("\n<input name=\"next\" style=\"display: none;\" type=\"Submit\" value=\"next\" />",append=TRUE, file=htmlfile)
cat("\n</div>", append = TRUE, file=htmlfile)
cat("\n<p style =\"width:150px; text-align: center; height:20px; background-color:
edge.list <- "\n var edgeArray=["
for (i in 1:length(start.node)){
if (i != 1) {
edge.list <- paste0(edge.list,",[",start.node[i,1],",",end.node[i,1],",", travelled[],",",direction[i,1], "]")
} else {
edge.list <- paste0(edge.list,"[",start.node[i,1],",",end.node[i,1],",", travelled[],",",direction[i,1],"]")
}
}
edge.list <- paste0(edge.list,"];")
edge.list
cat("\n<script>", append = TRUE, file = htmlfile)
cat(edge.list, append=TRUE, file=htmlfile)
javaScript <- javaScript3Arrows(arrowDirect, rowNumber)
cat(javaScript, append=TRUE, file=htmlfile)
cat("\n</script>", append = TRUE, file = htmlfile)
cat("\n</body>", append = TRUE, file = htmlfile)
cat("\n</html>", append = TRUE, file = htmlfile)
message("Check to make sure that maze is solvable. If not, set a different seed.")
} |
winch_available <- function() {
if (grepl("/valgrind/|/vgpreload_", Sys.getenv("LD_PRELOAD"))) {
return(FALSE)
}
default_method != 0L
} |
"low_level_fusion" = function(datasets){
sample.names = colnames(datasets[[1]]$data)
for (i in 2:length(datasets)){
sample.names = intersect(sample.names, colnames(datasets[[i]]$data))
}
subsets = list()
for (i in 1:length(datasets)){
if (!is.null(datasets[[i]]$metadata)) r.factors = TRUE
else r.factors = FALSE
subsets[[i]] = subset_samples(datasets[[i]], samples = sample.names, rebuild.factors = r.factors)
}
ds.fused = fusion_merge(subsets)
ds.fused
}
"fusion_merge" = function(datasets){
ds.fused = datasets[[1]]
ds.fused$description = paste("Data integration from types: ", datasets[[1]]$type, sep = "")
for (i in 2:length(datasets)){
ds.fused$data = rbind(ds.fused$data, datasets[[i]]$data)
ds.fused$description = paste(ds.fused$description, datasets[[i]]$type, sep = ",")
}
ds.fused$metadata = datasets[[1]]$metadata
ds.fused$type = "integrated-data"
ds.fused
} |
mean.fts <- function (x, method = c("coordinate", "FM", "mode", "RP", "RPD", "radius"),
na.rm = TRUE, alpha, beta, weight, ...)
{
if (class(x)[1] == "fts"|class(x)[1] == "fds"|class(x)[1] == "sfts"){
method = match.arg(method)
if (method == "coordinate"){
loc <- rowMeans(x$y, na.rm = na.rm)
}
if (method == "FM"){
loc <- depth.FM(x)$mtrim
}
if (method == "mode"){
loc <- depth.mode(x)$mtrim
}
if (method == "RP"){
loc <- depth.RP(x)$mtrim
}
if (method == "RPD"){
loc <- depth.RPD(x)$mtrim
}
if (method == "radius"){
loc <- depth.radius(x, alpha, beta, weight)$mtrim
}
if (class(x)[1] == "fds"){
warning("Object is not a functional time series.")
}
return(list(x = x$x, y = loc))
}
else {
stop("Not a functional object.")
}
} |
hdfeppml_int <- function(y, x, fes, tol = 1e-8, hdfetol = 1e-4, colcheck = TRUE, mu = NULL, saveX = TRUE,
init_z = NULL, verbose = FALSE, maxiter = 1000, cluster = NULL, vcv = TRUE) {
x <- data.matrix(x)
n <- length(y)
crit <- 1
iter <- 0
old_deviance <- 0
include_x <- 1:ncol(x)
b <- matrix(NA, nrow = ncol(x), ncol = 1)
xnames <- colnames(x)
if (colcheck == TRUE){
if (verbose == TRUE) {
print("checking collinearity")
}
include_x <- collinearity_check(y, x, fes, 1e-6)
x <- x[, include_x]
}
if (verbose == TRUE) {
print("beginning estimation")
}
while (crit>tol & iter<maxiter) {
iter <- iter + 1
if (verbose == TRUE) {
print(iter)
}
if (iter == 1) {
if (is.null(mu)) mu <- (y + mean(y))/2
z <- (y-mu)/mu + log(mu)
eta <- log(mu)
last_z <- z
if (is.null(init_z)) {
reg_z <- matrix(z)
} else {
reg_z <- init_z
}
reg_x <- x
} else {
last_z <- z
z <- (y-mu)/mu + log(mu)
reg_z <- matrix(z - last_z + z_resid)
reg_x <- x_resid
}
if (verbose == TRUE) {
print("within transformation step")
}
z_resid <- collapse::fhdwithin(reg_z, fes, w = mu)
x_resid <- collapse::fhdwithin(reg_x, fes, w = mu)
if (verbose == TRUE) {
print("obtaining coefficients")
}
reg <- fastolsCpp(sqrt(mu) * x_resid, sqrt(mu) * z_resid)
b[include_x] <- reg
reg <- list("coefficients" = b)
if (verbose == TRUE) {
print(iter)
}
if (length(include_x) == 1) {
reg$residuals <- z_resid - x_resid * b[include_x]
} else {
reg$residuals <- z_resid - x_resid %*% b[include_x]
}
mu <- as.numeric(exp(z - reg$residuals))
if (verbose == TRUE) {
print("info on residuals")
print(max(reg$residuals))
print(min(reg$residuals))
print("info on means")
print(max(mu))
print(min(mu))
print("info on coefficients")
print(max(b[include_x]))
print(min(b[include_x]))
}
if (verbose == TRUE) {
print("calculating deviance")
}
temp <- -(y * log(y/mu) - (y-mu))
temp[which(y == 0)] <- -mu[which(y == 0)]
deviance <- -2 * sum(temp) / n
if (deviance < 0) deviance = 0
delta_deviance <- old_deviance - deviance
if (!is.na(delta_deviance) & (deviance < 0.1 * delta_deviance)) {
delta_deviance <- deviance
}
if (verbose == TRUE) {
print("checking critical value")
}
denom_crit = max(c(min(c(deviance, old_deviance)), 0.1))
crit = abs(delta_deviance) / denom_crit
if (verbose == TRUE) {
print(deviance)
print(crit)
}
old_deviance <- deviance
}
temp <- -(y * log(y / mu) - (y - mu))
temp[which(y == 0)] <- 0
if (verbose == TRUE) {
print("converged")
}
k <- ncol(matrix(x))
n <- length(y)
reg$mu <- mu
reg$deviance <- -2 * sum(temp) / n
reg$bic <- deviance + k * log(n) / n
rownames(reg$coefficients) <- xnames
if (saveX == TRUE) {
reg[["x_resid"]] <- x_resid
reg[["z_resid"]] <- z_resid
}
if (vcv) {
if(!is.null(cluster)) {
nclusters <- nlevels(droplevels(cluster, exclude = if(anyNA(levels(cluster))) NULL else NA))
het_matrix <- (1 / nclusters) * cluster_matrix((y - mu) / sum(sqrt(mu)), cluster, x_resid)
W <- (1/nclusters) * (t(mu*x_resid) %*% x_resid) / sum(sqrt(mu))
R <- try(chol(W), silent = FALSE)
V <- (1/nclusters) * chol2inv(R) %*% het_matrix %*% chol2inv(R)
V <- nclusters / (nclusters - 1) * V
} else {
e = y - mu
het_matrix = (1/n) * t(x_resid*e) %*% (x_resid*e)
W = (1/n) * (t(mu*x_resid) %*% x_resid)
R = try(chol(W), silent = TRUE)
V = (1/n) * chol2inv(R) %*% het_matrix %*% chol2inv(R)
V = (n / (n - 1)) * V
}
}
reg[["se"]] <- sqrt(diag(V))
return(reg)
} |
gearyc.stat<-function(data, applyto="SMR", ...)
{
n<-length(data$Observed)
if(applyto != "SMR")
{
Z<- data$Observed - data$Expected
}
else
{
Z<- data$Observed/data$Expected
Z[!is.finite(Z)]<-0
}
return(spdep::geary(x=Z, ...)$C)
} |
overview <- function(.data) {
n_row <- dim(.data)[1]
n_col <- dim(.data)[2]
size <- object.size(.data)
complete <- complete.cases(.data)
duplicated <- which(duplicated(.data))
na_row <- apply(.data, 1, function(x) any(is.na(x)))
na_col <- apply(.data, 2, function(x) sum(is.na(x)))
info_class <- get_class(.data)
division_metric <- c("size", "size", "size", "size",
"duplicated", "missing", "missing", "missing", "missing",
"data type", "data type", "data type", "data type",
"data type", "data type", "data type")
name_metric <- c("observations", "variables", "values", "memory size",
"duplicate observation", "complete observation",
"missing observation", "missing variables", "missing values",
"numerics", "integers", "factors/ordered", "characters",
"Dates", "POSIXcts", "others")
result <- data.frame(
division = division_metric,
metrics = name_metric,
value = c(n_row, n_col, n_row * n_col, size,
length(duplicated),
sum(complete), sum(na_row >= 1),
sum(na_col >= 1), sum(na_col),
sum(info_class$class == "numeric"),
sum(info_class$class == "integer"),
sum(info_class$class %in% c("factor", "ordered")),
sum(info_class$class == "character"),
sum(info_class$class == "Date"),
sum(info_class$class == "POSIXct"),
sum(!info_class$class %in%
c("numeric", "integer", "factor", "ordered", "character",
"Date", "POSIXct"))
),
stringsAsFactors = FALSE
)
attr(result, "duplicated") <- duplicated
attr(result, "na_col") <- na_col
attr(result, "info_class") <- info_class
class(result) <- append("overview", class(result))
result
}
summary.overview <- function(object, html = FALSE, ...) {
nms <- c("Number of observations",
"Number of variables",
"Number of values",
"Size of located memory(bytes)",
"Number of duplicated observations",
"Number of completed observations",
"Number of observations with NA",
"Number of variables with NA",
"Number of NA",
"Number of numeric variables",
"Number of integer variables",
"Number of factors variables",
"Number of character variables",
"Number of Date variables",
"Number of POSIXct variables",
"Number of other variables")
nms <- format(nms)
line_break <- function(html = FALSE) {
if (!html) {
cat("\n")
} else {
cat("<br>")
}
}
vls <- format(object$value, big.mark = ",")
N <- object$value[1]
n_dup <- object$value[5]
n_na <- object$value[7]
p_dup <- paste0("(", round(n_dup / N * 100, 2), "%)")
p_na <- paste0("(", round(n_na / N * 100, 2), "%)")
vls[5] <- paste(vls[5], p_dup)
vls[7] <- paste(vls[7], p_na)
if (!html) {
cat_rule(
left = "Data Scale",
right = "",
width = 60
)
} else {
cat_rule(
left = "Data Scale",
right = "",
width = 60
) %>%
paste("<br>") %>%
cat()
}
info_scale <- paste0(nms[1:4], " : ", vls[1:4])
if (html) {
info_scale <- paste(info_scale, "<br>")
}
cat_bullet(info_scale)
line_break()
if (!html) {
cat_rule(
left = "Duplicated Data",
right = "",
width = 60
)
} else {
cat_rule(
left = "Duplicated Data",
right = "",
width = 60
) %>%
paste("<br>") %>%
cat()
}
duplicated <- paste0(nms[5], " : ", vls[5])
if (html) {
duplicated <- paste(duplicated, "<br>")
}
cat_bullet(duplicated)
line_break()
if (!html) {
cat_rule(
left = "Missing Data",
right = "",
width = 60
)
} else {
cat_rule(
left = "Missing Data",
right = "",
width = 60
) %>%
paste("<br>") %>%
cat()
}
info_missing <- paste0(nms[6:9], " : ", vls[6:9])
if (html) {
info_missing <- paste(info_missing, "<br>")
}
cat_bullet(info_missing)
line_break()
if (!html) {
cat_rule(
left = "Data Type",
right = "",
width = 60
)
} else {
cat_rule(
left = "Data Type",
right = "",
width = 60
) %>%
paste("<br>") %>%
cat()
}
info_type <- paste0(nms[10:16], " : ", vls[10:16])
if (html) {
info_type <- paste(info_type, "<br>")
}
cat_bullet(info_type)
line_break()
if (!html) {
cat_rule(
left = "Individual variables",
right = "",
width = 60
)
} else {
cat_rule(
left = "Individual variables",
right = "",
width = 60
) %>%
paste("<br>") %>%
cat()
}
info_class <- attr(object, "info_class")
names(info_class) <- c("Variables", "Data Type")
if (!html) {
print(info_class)
} else {
info_class %>%
knitr::kable(format = "html")%>%
kableExtra::kable_styling(full_width = FALSE, font_size = 15, position = "left")
}
}
plot.overview <- function(x, order_type = c("none", "name", "type"),
typographic = TRUE, base_family = NULL, ...) {
info_class <- attr(x, "info_class")
na_col <- attr(x, "na_col")
raw <- data.frame(info_class, cnt = x[1, "value"], n_missing = na_col)
raw <- raw %>%
mutate(variable = factor(variable, levels = variable))
order_type <- match.arg(order_type)
if (order_type == "name") {
raw <- raw %>%
mutate(variable = as.character(variable))
} else if (order_type == "type") {
odr <- raw %>%
mutate(variable = as.character(variable)) %>%
arrange(class, variable) %>%
select(variable) %>%
pull()
raw <- raw %>%
mutate(variable = factor(variable, levels = odr))
}
p <- raw %>%
ggplot() +
geom_bar(aes(x = variable, y = cnt, fill = class), stat = "identity") +
geom_point(aes(x = variable, y = n_missing, color = "Missing")) +
geom_line(aes(x = variable, y = n_missing), group = 1) +
scale_color_manual("Missing", values = 1,
guide = guide_legend(order = 1),
labels = c("")) +
guides(fill = guide_legend(title = "Data Type", order = 1),
color = guide_legend(order = 2)) +
ylab("Count") +
xlab("Variables") +
theme_grey(base_family = base_family) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
if (typographic) {
p <- p +
theme_typographic(base_family) +
theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1))
}
p
} |
fRegress.stderr <- function (y, y2cMap, SigmaE, returnMatrix = FALSE, ...)
{
yfdobj <- y$yfdobj
xfdlist <- y$xfdlist
betalist <- y$betalist
betaestlist <- y$betaestlist
yhatfdobj <- y$yhatfdobj
Cmat <- y$Cmat
Dmat <- y$Dmat
Cmatinv <- y$Cmatinv
wt <- y$wt
df <- y$df
betastderrlist <- y$betastderrlist
YhatStderr <- y$YhatStderr
Bvar <- y$Bvar
c2bMap <- y$c2bMap
p <- length(xfdlist)
ncoef <- 0
for (j in 1:p) {
betaParfdj <- betalist[[j]]
ncoefj <- betaParfdj$fd$basis$nbasis
ncoef <- ncoef + ncoefj
}
if (inherits(yfdobj, "fdPar") || inherits(yfdobj, "fd")) {
if (inherits(yfdobj, "fdPar")) yfdobj <- yfdobj$fd
N <- dim(yfdobj$coefs)[2]
ybasisobj <- yfdobj$basis
rangeval <- ybasisobj$rangeval
ynbasis <- ybasisobj$nbasis
ninteg <- max(501, 10 * ynbasis + 1)
tinteg <- seq(rangeval[1], rangeval[2], len = ninteg)
deltat <- tinteg[2] - tinteg[1]
ybasismat <- eval.basis(tinteg, ybasisobj, 0, returnMatrix)
basisprodmat <- matrix(0, ncoef, ynbasis * N)
mj2 <- 0
for (j in 1:p) {
betafdParj <- betalist[[j]]
betabasisj <- betafdParj$fd$basis
ncoefj <- betabasisj$nbasis
bbasismatj <- eval.basis(tinteg, betabasisj, 0, returnMatrix)
xfdj <- xfdlist[[j]]
tempj <- eval.fd(tinteg, xfdj, 0, returnMatrix)
mj1 <- mj2 + 1
mj2 <- mj2 + ncoefj
indexj <- mj1:mj2
mk2 <- 0
for (k in 1:ynbasis) {
mk1 <- mk2 + 1
mk2 <- mk2 + N
indexk <- mk1:mk2
tempk <- bbasismatj * ybasismat[, k]
basisprodmat[indexj, indexk] <- deltat * crossprod(tempk,
tempj)
}
}
y2cdim <- dim(y2cMap)
if (y2cdim[1] != ynbasis || y2cdim[2] != dim(SigmaE)[1])
stop("Dimensions of Y2CMAP not correct.")
Varc <- y2cMap %*% SigmaE %*% t(y2cMap)
CVar <- kronecker(Varc, diag(rep(1, N)))
C2BMap <- Cmatinv %*% basisprodmat
Bvar <- C2BMap %*% CVar %*% t(C2BMap)
nplot <- max(51, 10 * ynbasis + 1)
tplot <- seq(rangeval[1], rangeval[2], len = nplot)
betastderrlist <- vector("list", p)
PsiMatlist <- vector("list", p)
mj2 <- 0
for (j in 1:p) {
betafdParj <- betalist[[j]]
betabasisj <- betafdParj$fd$basis
ncoefj <- betabasisj$nbasis
mj1 <- mj2 + 1
mj2 <- mj2 + ncoefj
indexj <- mj1:mj2
bbasismat <- eval.basis(tplot, betabasisj, 0, returnMatrix)
PsiMatlist <- bbasismat
bvarj <- Bvar[indexj, indexj]
bstderrj <- sqrt(diag(bbasismat %*% bvarj %*% t(bbasismat)))
bstderrfdj <- smooth.basis(tplot, bstderrj, betabasisj)$fd
betastderrlist[[j]] <- bstderrfdj
}
YhatStderr <- matrix(0, nplot, N)
B2YhatList <- vector("list", p)
for (iplot in 1:nplot) {
YhatVari <- matrix(0, N, N)
tval <- tplot[iplot]
for (j in 1:p) {
Zmat <- eval.fd(tval, xfdlist[[j]])
betabasisj <- betalist[[j]]$fd$basis
PsiMatj <- eval.basis(tval, betabasisj)
B2YhatMapij <- t(Zmat) %*% PsiMatj
B2YhatList[[j]] <- B2YhatMapij
}
m2j <- 0
for (j in 1:p) {
m1j <- m2j + 1
m2j <- m2j + betalist[[j]]$fd$basis$nbasis
B2YhatMapij <- B2YhatList[[j]]
m2k <- 0
for (k in 1:p) {
m1k <- m2k + 1
m2k <- m2k + betalist[[k]]$fd$basis$nbasis
B2YhatMapik <- B2YhatList[[k]]
YhatVari <- YhatVari +
B2YhatMapij %*% Bvar[m1j:m2j,m1k:m2k] %*% t(B2YhatMapik)
}
}
YhatStderr[iplot, ] <- matrix(sqrt(diag(YhatVari)), 1, N)
}
}
else {
ymat <- as.matrix(yfdobj)
N <- dim(ymat)[1]
Zmat <- NULL
for (j in 1:p) {
xfdj <- xfdlist[[j]]
if (inherits(xfdj, "fd")) {
xcoef <- xfdj$coefs
xbasis <- xfdj$basis
betafdParj <- betalist[[j]]
bbasis <- betafdParj$fd$basis
Jpsithetaj <- inprod(xbasis, bbasis)
Zmat <- cbind(Zmat, t(xcoef) %*% Jpsithetaj)
}
else if (inherits(xfdj, "numeric")) {
Zmatj <- xfdj
Zmat <- cbind(Zmat, Zmatj)
}
}
c2bMap <- Cmatinv %*% t(Zmat)
y2bmap <- c2bMap
Bvar <- y2bmap %*% as.matrix(SigmaE) %*% t(y2bmap)
betastderrlist <- vector("list", p)
mj2 <- 0
for (j in 1:p) {
betafdParj <- betalist[[j]]
betabasisj <- betafdParj$fd$basis
ncoefj <- betabasisj$nbasis
mj1 <- mj2 + 1
mj2 <- mj2 + ncoefj
indexj <- mj1:mj2
bvarj <- Bvar[indexj, indexj]
xfdj <- xfdlist[[j]]
if (inherits(xfdj, "fd")) {
betarng <- betabasisj$rangeval
ninteg <- max(c(501, 10 * ncoefj + 1))
tinteg <- seq(betarng[1], betarng[2], len = ninteg)
bbasismat <- eval.basis(tinteg, betabasisj, 0,
returnMatrix)
bstderrj <- sqrt(diag(bbasismat %*% bvarj %*%
t(bbasismat)))
bstderrfdj <- smooth.basis(tinteg, bstderrj,
betabasisj)$fd
}
else {
bsterrj <- sqrt(diag(bvarj))
onebasis <- create.constant.basis(betabasisj$rangeval)
bstderrfdj <- fd(t(bstderrj), onebasis)
}
betastderrlist[[j]] <- bstderrfdj
}
B2YhatList <- vector("list", p)
YhatVari <- matrix(0, N, N)
for (j in 1:p) {
betabasisj <- betalist[[j]]$fd$basis
Xfdj <- xfdlist[[j]]
B2YhatMapij <- inprod(Xfdj, betabasisj)
B2YhatList[[j]] <- B2YhatMapij
}
m2j <- 0
for (j in 1:p) {
m1j <- m2j + 1
m2j <- m2j + betalist[[j]]$fd$basis$nbasis
B2YhatMapij <- B2YhatList[[j]]
m2k <- 0
for (k in 1:p) {
m1k <- m2k + 1
m2k <- m2k + betalist[[k]]$fd$basis$nbasis
B2YhatMapik <- B2YhatList[[k]]
YhatVari <- YhatVari + B2YhatMapij %*% Bvar[m1j:m2j,
m1k:m2k] %*% t(B2YhatMapik)
}
}
YhatStderr <- matrix(sqrt(diag(YhatVari)), N, 1)
}
fRegressList <- list(yfdobj = y$yfdobj, xfdlist = y$xfdlist,
betalist = y$betalist, betaestlist = y$betaestlist,
yhatfdobj = y$yhatfdobj, Cmat = y$Cmat, Dmat = y$Dmat,
Cmatinv = y$Cmatinv, wt = y$wt,
df = y$df, y2cMap = y2cMap, SigmaE = SigmaE,
betastderrlist = betastderrlist, YhatStderr = YhatStderr,
Bvar = Bvar, c2bMap = c2bMap)
class(fRegressList) = "fRegress"
return(fRegressList)
} |
ReplaceDimList <- function(dimList, replaceList, total = "Total") {
for (i in seq_along(replaceList)) {
if (is.character(replaceList[[i]]))
replaceList[[i]] <- Hrc2DimList(replaceList[[i]], total = total)
else
replaceList[[i]] <- FixDimListNames(replaceList[[i]])
}
names1 <- make.names(names(dimList), unique = TRUE)
names2 <- make.names(names(replaceList), unique = TRUE)
matchNames <- match(names1, names2)
dimList[!is.na(matchNames)] <- replaceList[matchNames[!is.na(matchNames)]]
dimList
}
FixDimListNames <- function(x) {
if (!any(!(c("levels", "codes") %in% names(x))))
return(x)
a <- unique(c(pmatch(c("lev", "cod", "nam"), names(x)), 1:2))
a <- a[!is.na(a)][1:2]
names(x)[a] <- c("levels", "codes")
x
} |
get_NOAA_stations_nearXY <- function(lat, lng, apitoken, bbox = 1) {
if(!requireNamespace("httr"))
stop("package `httr` is required")
coord <- data.frame(lat = lat, lng = lng)
coordinates(coord) <- ~ lng + lat
bdim <- bbox / 2
ext_string <- sprintf("%s,%s,%s,%s", lat - bdim, lng - bdim, lat + bdim, lng + bdim)
r <- httr::GET(url = sprintf(
"https://www.ncdc.noaa.gov/cdo-web/api/v2/stations?extent=%s&limit=1000",
ext_string
), httr::add_headers(token = apitoken))
r.content <- httr::content(r, as = "text", encoding = "UTF-8")
d <- jsonlite::fromJSON(r.content)
if(nrow(d$results) == 1000)
message("maximum record limit reached (n = 1000) -- try a smaller bounding box (bbox) value to return fewer stations")
return(d$results)
}
.get_NOAA_GHCND_by_stationyear <- function(stationid, year, datatypeid, apitoken) {
if(!requireNamespace("httr"))
stop("package `httr` is required")
startdate <- sprintf("%s-01-01", year)
enddate <- sprintf("%s-12-31", year)
message(sprintf('Downloading NOAA GHCND data for %s over interval %s to %s...',
stationid, startdate, enddate))
datatypeids <- sprintf("&datatypeid=%s", datatypeid)
datatypeid.url <- paste0(datatypeids, collapse="&")
r <- httr::GET(url = paste0(sprintf(
"https://www.ncdc.noaa.gov/cdo-web/api/v2/data?datasetid=GHCND&stationid=%s&startdate=%s&enddate=%s&limit=1000",
stationid,
startdate,
enddate), datatypeid.url), httr::add_headers(token = apitoken))
r.content <- httr::content(r, as = "text", encoding = "UTF-8")
d <- jsonlite::fromJSON(r.content)
if (length(d$results) == 0) {
message("empty result set")
return(NULL)
}
if (nrow(d$results) == 1000)
message("maximum record limit reached (n = 1000)")
return(d$results)
}
get_NOAA_GHCND <- function(stations, years, datatypeids, apitoken) {
do.call('rbind', lapply(stations, function(s)
do.call('rbind', lapply(years, function(y)
do.call('rbind', lapply(datatypeids, function(d)
.get_NOAA_GHCND_by_stationyear(s, y, d, apitoken)))))))
} |
detectCores <- function(...) {
parallel::detectCores(...)
}
setLogFile <- function(con=stdout())
{
if ("connection" %in% class(con) ) assign('LOGFILE', con)
}
setPPMbounds <- function(proton=c(-0.5,11), carbon=c(0,200))
{
assign('PPM_MIN', proton[1])
assign('PPM_MAX', proton[2])
assign('PPM_MIN_13C', carbon[1])
assign('PPM_MAX_13C', carbon[2])
}
doProcessing <- function (path, cmdfile, samplefile=NULL, bucketfile=NULL, ncpu=1 )
{
if( ! file.exists(path))
stop(paste0("ERROR: ",path," does NOT exist\n"), call.=FALSE)
if( ! file.exists(cmdfile))
stop(paste0("ERROR: ",cmdfile," does NOT exist\n"), call.=FALSE)
if( ! is.null(samplefile) && ! file.exists(samplefile))
stop(paste0("ERROR: ",samplefile," does NOT exist\n"), call.=FALSE)
if( ! is.null(bucketfile) && ! file.exists(bucketfile))
stop(paste0("ERROR: ",bucketfile," does NOT exist\n"), call.=FALSE)
if ( checkMacroCmdFile(cmdfile) == 0 )
stop(paste0("ERROR: ",cmdfile," seems to include errors\n"), call.=FALSE)
trim <- function (x) gsub("^\\s+|\\s+$", "", x)
Write.LOG(LOGFILE, "Rnmr1D: --- READING and CONVERTING ---\n", mode="at")
procParams <- Spec1rProcpar
procParams$VENDOR <- "bruker"
procParams$INPUT_SIGNAL <- "1r"
procParams$READ_RAW_ONLY <- TRUE
CMDTEXT <- gsub("\t", "", readLines(cmdfile))
if ( length(grep("
procpar <- unlist(strsplit(gsub("
Write.LOG(LOGFILE, paste0( "Rnmr1D: ", paste(procpar,collapse=", "), "\n"))
parnames <- NULL; parvals <- NULL
for (param in procpar ) { parnames <- c( parnames, unlist(strsplit(param,"="))[1] ); parvals <- c( parvals, unlist(strsplit(param,"="))[2] ); }
names(parvals) <- parnames; procpar <- data.frame(t(parvals), stringsAsFactors=FALSE)
if (! is.null(procpar$Vendor)) procParams$VENDOR <- tolower(trim(procpar$Vendor))
if (! is.null(procpar$Type)) procParams$INPUT_SIGNAL <- trim(procpar$Type)
if (! is.null(procpar$LB)) procParams$LB <- as.numeric(procpar$LB)
if (! is.null(procpar$GB)) procParams$GB <- as.numeric(procpar$GB)
if (! is.null(procpar$ZNEG)) procParams$RABOT <- ifelse( procpar$ZNEG=="TRUE", TRUE, FALSE)
if (! is.null(procpar$TSP)) procParams$TSP <- ifelse( procpar$TSP=="TRUE", TRUE, FALSE)
if (! is.null(procpar$O1RATIO)) procParams$O1RATIO <- as.numeric(procpar$O1RATIO)
if (! is.null(procpar$ZF)) procParams$ZEROFILLING <- as.numeric(procpar$ZF)
if (! is.null(procpar$USRPHC) && procpar$USRPHC=="TRUE") {
procParams$OPTPHC0 <- procParams$OPTPHC1 <- FALSE
if (! is.null(procpar$PHC0)) procParams$phc0 <- as.numeric(procpar$PHC0)
if (! is.null(procpar$PHC1)) procParams$phc1 <- as.numeric(procpar$PHC1)
} else {
if (! is.null(procpar$PHC0)) procParams$OPTPHC0 <- ifelse( procpar$PHC0=="TRUE", TRUE, FALSE)
if (! is.null(procpar$PHC1)) procParams$OPTPHC1 <- ifelse( procpar$PHC1=="TRUE", TRUE, FALSE)
if (! is.null(procpar$CRIT1)) procParams$CRITSTEP1 <- as.numeric(procpar$CRIT1)
}
if (procParams$INPUT_SIGNAL=='fid') procParams$READ_RAW_ONLY <- FALSE
}
Write.LOG(LOGFILE, "Rnmr1D: Generate the 'samples' & 'factors' files from the list of raw spectra\n")
metadata <- NULL
samples <- NULL
if (!is.null(samplefile) && file.exists(samplefile))
samples <- utils::read.table(samplefile, sep="\t", header=T,stringsAsFactors=FALSE)
metadata <- generateMetadata(path, procParams, samples)
if (is.null(metadata)) {
msg <- "Something failed when attempting to generate the metadata files"
stop(paste0(msg,"\n"), call.=FALSE)
}
gc()
LIST <- metadata$rawids
Write.LOG(LOGFILE, paste0("Rnmr1D: -- Nb Spectra = ",dim(LIST)[1]," -- Nb Cores = ",ncpu,"\n"))
specObj <- NULL
tryCatch({
cl <- parallel::makeCluster(ncpu)
doParallel::registerDoParallel(cl)
Sys.sleep(1)
x <- 0
specList <- foreach::foreach(x=1:(dim(LIST)[1]), .combine=cbind) %dopar% {
ACQDIR <- LIST[x,1]
NAMEDIR <- ifelse( procParams$VENDOR=='bruker', basename(dirname(ACQDIR)), basename(ACQDIR) )
PDATA_DIR <- ifelse( procParams$VENDOR=='rs2d', 'Proc', 'pdata' )
procParams$LOGFILE <- LOGFILE
procParams$PDATA_DIR <- file.path(PDATA_DIR,LIST[x,3])
spec <- Spec1rDoProc(Input=ACQDIR,param=procParams)
if (procParams$INPUT_SIGNAL=='1r') Sys.sleep(0.3)
Write.LOG(stderr(),".")
if (dim(LIST)[1]>1) {
list( x, spec )
} else {
spec
}
}
Write.LOG(LOGFILE,"\n")
gc()
parallel::stopCluster(cl)
if (dim(LIST)[1]>1) {
L <- simplify2array(sapply( order(simplify2array(specList[1,])), function(x) { specList[2,x] } ) )
specList <- L
}
Write.LOG(LOGFILE, "Rnmr1D: Generate the final matrix of spectra...\n")
M <- NULL
N <- dim(LIST)[1]
vpmin<-0; vpmax<-0
for(i in 1:N) {
if (N>1) { spec <- specList[,i]; } else { spec <- specList; }
if (spec$acq$NUC == "13C") { PPM_MIN <- PPM_MIN_13C; PPM_MAX <- PPM_MAX_13C; }
P <- spec$ppm>PPM_MIN & spec$ppm<=PPM_MAX
V <- spec$int[P]
vppm <- spec$ppm[P]
if (PPM_MIN<spec$pmin) {
nbzeros <- round((spec$pmin - PPM_MIN)/spec$dppm)
vpmin <- vpmin + spec$pmin - nbzeros*spec$dppm
V <- c( rep(0,nbzeros), V )
} else {
vpmin <- vpmin + vppm[1]
}
if (PPM_MAX>spec$pmax) {
nbzeros <- round((PPM_MAX - spec$pmax)/spec$dppm)
vpmax <- vpmax + spec$pmax + nbzeros*spec$dppm
V <- c( V, rep(0,nbzeros) )
} else {
vpmax <- vpmax + vppm[length(vppm)]
}
M <- rbind(M, rev(V))
}
cur_dir <- getwd()
specMat <- NULL
specMat$int <- M
specMat$ppm_max <- (vpmax/N);
specMat$ppm_min <- (vpmin/N);
specMat$nspec <- dim(M)[1]
specMat$size <- dim(M)[2]
specMat$dppm <- (specMat$ppm_max - specMat$ppm_min)/(specMat$size - 1)
specMat$ppm <- rev(seq(from=specMat$ppm_min, to=specMat$ppm_max, by=specMat$dppm))
specMat$buckets_zones <- NULL
specMat$namesASintMax <- FALSE
specMat$fWriteSpec <- FALSE
specObj <- metadata
specObj$specMat <- specMat
samples <- metadata$samples
IDS <- cbind(basename(dirname(as.vector(LIST[,1]))), LIST[, c(2:3)])
if (N>1) {
PARS <- t(sapply( c(1:N), function(x) {
c( specList[,x]$acq$PULSE, specList[,x]$acq$NUC, specList[,x]$acq$SOLVENT, specList[,x]$acq$GRPDLY,
specList[,x]$proc$phc0, specList[,x]$proc$phc1, specList[,x]$acq$SFO1, specList[,x]$proc$SI,
specList[,x]$acq$SW, specList[,x]$acq$SWH, specList[,x]$acq$RELAXDELAY, specList[,x]$acq$O1 )
}))
specObj$nuc <- specList[,1]$acq$NUC
} else {
PARS <- t( c( spec$acq$PULSE, spec$acq$NUC, spec$acq$SOLVENT, spec$acq$GRPDLY, spec$proc$phc0, spec$proc$phc1,
spec$acq$SFO1, spec$proc$SI, specList$acq$SW, spec$acq$SWH, spec$acq$RELAXDELAY, spec$acq$O1) )
specObj$nuc <- spec$acq$NUC
}
LABELS <- c("PULSE", "NUC", "SOLVENT", "GRPDLY", "PHC0","PHC1","SF","SI","SW", "SWH","RELAXDELAY","O1" )
if (regexpr('BRUKER', toupper(specList[,1]$acq$INSTRUMENT))>0) {
if (N>1) { PARS <- cbind( IDS[,c(2:3)], PARS ) } else { PARS <- c( IDS[1,c(2:3)], PARS ) }
LABELS <- c("EXPNO", "PROCNO", LABELS)
}
if (regexpr('RS2D', toupper(specList[,1]$acq$INSTRUMENT))>0) {
if (N>1) { PARS <- cbind( IDS[,3], PARS ) } else { PARS <- c( IDS[1,3], PARS ) }
LABELS <- c("PROCNO", LABELS)
}
if (N>1) {
PARS <- cbind( samples[,1], samples[,2], PARS )
} else {
PARS <- c( samples[1, 1], samples[1, 2], PARS )
}
colnames(PARS) <- c("Spectrum", "Samplecode", LABELS )
specObj$infos <- PARS
specObj$origin <- paste(procParams$VENDOR, procParams$INPUT_SIGNAL)
Write.LOG(LOGFILE,"Rnmr1D: ------------------------------------\n")
Write.LOG(LOGFILE,"Rnmr1D: Process the Macro-commands file\n")
Write.LOG(LOGFILE,"Rnmr1D: ------------------------------------\n")
Write.LOG(LOGFILE,"Rnmr1D: \n")
specMat <- doProcCmd(specObj, CMDTEXT, ncpu=ncpu, debug=TRUE)
if (specMat$fWriteSpec) specObj$specMat <- specMat
gc()
if( ! is.null(bucketfile) && file.exists(bucketfile)) {
Write.LOG(LOGFILE, "Rnmr1D: ------------------------------------\n")
Write.LOG(LOGFILE, "Rnmr1D: Process the file of buckets\n")
Write.LOG(LOGFILE, "Rnmr1D: ------------------------------------\n")
Write.LOG(LOGFILE, "Rnmr1D: \n")
buckets_infile <- utils::read.table(bucketfile, header=T, sep="\t",stringsAsFactors=FALSE)
if ( sum(c('min','max') %in% colnames(buckets_infile)) == 2 ) {
buckets <- cbind( buckets_infile$max, buckets_infile$min )
specObj$specMat$buckets_zones <- buckets
Write.LOG(LOGFILE, paste0("Rnmr1D: NB Buckets = ",dim(buckets)[1],"\n"))
Write.LOG(LOGFILE, "Rnmr1D: \n")
} else {
Write.LOG(LOGFILE,"ERROR: the file of bucket's areas does not contain the 2 mandatory columns having 'min' and 'max' in its header line\n")
}
}
specObj$specMat$fWriteSpec <- NULL
specObj$specMat$LOGMSG <- NULL
}, error=function(e) {
cat(paste0("ERROR: ",e))
})
return(specObj)
} |
calc.deviance <- function(obs, pred, weights = rep(1,length(obs)), family="binomial", calc.mean = TRUE) {
if (length(obs) != length(pred)) { stop("observations and predictions must be of equal length") }
y_i <- obs
u_i <- pred
family = tolower(family)
if (family == "binomial" | family == "bernoulli") {
deviance.contribs <- (y_i * log(u_i)) + ((1-y_i) * log(1 - u_i))
deviance <- -2 * sum(deviance.contribs * weights)
} else if (family == "poisson") {
deviance.contribs <- ifelse(y_i == 0, 0, (y_i * log(y_i/u_i))) - (y_i - u_i)
deviance <- 2 * sum(deviance.contribs * weights)
} else if (family == "laplace") {
deviance <- sum(abs(y_i - u_i))
} else if (family == "gaussian") {
deviance <- sum((y_i - u_i) * (y_i - u_i))
} else {
stop('unknown family, should be one of: "binomial", "bernoulli", "poisson", "laplace", "gaussian"')
}
if (calc.mean) deviance <- deviance/length(obs)
return(deviance)
} |
rm(list = ls())
library("highcharter")
suppressPackageStartupMessages(library("dplyr"))
options(highcharter.theme = hc_theme_smpl())
data(diamonds, package = "ggplot2")
series <- diamonds %>%
sample_n(500) %>%
group_by(name = cut) %>%
do(data = list_parse2(data.frame(x = .$price, y = .$carat))) %>%
list_parse()
str(series, max.level = 2)
head(series[[1]]$data, 3)
highchart() %>%
hc_chart(type = "scatter") %>%
hc_add_series_list(series)
dat <- data.frame(id = c(1,2,3,4,5,6),
grp = c("A","A","B","B","C","C"),
value = c(10,13,9,15,11,16))
dat
highchart() %>%
hc_chart(type = "line") %>%
hc_add_series_df_tidy(data = dat, group = grp, values = value) |
get_graphab_raster_codes <- function(proj_name,
mode = "all",
proj_path = NULL){
if(!is.null(proj_path)){
chg <- 1
wd1 <- getwd()
setwd(dir = proj_path)
} else {
chg <- 0
proj_path <- getwd()
}
if(!inherits(proj_name, "character")){
if(chg == 1){setwd(dir = wd1)}
stop("'proj_name' must be a character string")
} else if (!(paste0(proj_name, ".xml") %in% list.files(path = paste0("./", proj_name)))){
if(chg == 1){setwd(dir = wd1)}
stop("The project you refer to does not exist.
Please use graphab_project() before.")
}
proj_end_path <- paste0(proj_name, "/", proj_name, ".xml")
if(!inherits(mode, "character")){
if(chg == 1){setwd(dir = wd1)}
stop("'mode' must be a character string.")
} else if (!(mode %in% c("all", "habitat"))){
if(chg == 1){setwd(dir = wd1)}
stop("'mode' must be equal to 'all' or 'habitat'.")
}
xml <- tempfile(pattern = ".txt")
file.copy(from = proj_end_path,
to = xml)
file_data <- utils::read.table(xml)
na_code <- file_data[which(stringr::str_sub(file_data[, 1],
1, 8) == "<noData>"), 1]
na_code <- stringr::str_sub(na_code, 9, -10)
if(na_code == "NaN"){
na_pres <- FALSE
} else {
na_pres <- TRUE
if(stringr::str_sub(na_code, -2, -1) == ".0"){
na_code <- stringr::str_sub(na_code, 1, -3)
}
}
if(mode == "all"){
first_code <- min(which(file_data[, 1] == "<codes>")) + 1
last_code <- min(which(file_data[, 1] == "</codes>")) - 1
vec_codes <- file_data[first_code:last_code, 1]
} else if(mode == "habitat"){
first_code <- which(file_data[, 1] == "<patchCodes>")+1
vec_codes <- file_data[first_code, 1]
}
vec_codes <- unlist(lapply(vec_codes,
FUN = function(x){stringr::str_sub(x, 6, -7)}))
if(na_pres){
if(na_code %in% vec_codes){
vec_codes <- vec_codes[-which(vec_codes == na_code)]
message(paste0("No data value is equal to ", na_code))
}
}
if(chg == 1){
setwd(dir = wd1)
}
vec_codes <- as.numeric(vec_codes)
return(vec_codes)
} |
read.bnd <- function(file, sorted=FALSE)
{
data.raw <- scan(file,
what = list("", ""),
sep = ",",
quote = "")
oldOptions <- options(warn = -1)
on.exit(options(oldOptions))
data.numeric <- lapply(data.raw,
as.numeric)
options(oldOptions)
unquote <- function(string)
{
return(gsub(pattern="\"",
replacement="",
x=string))
}
whereIsIn <- which(data.raw[[1]] == "is.in")
surroundingNames <- unquote(data.raw[[2]][whereIsIn])
whereRegionNames <- setdiff(which(is.na(data.numeric[[1]])),
whereIsIn)
nPolygons <- length(whereRegionNames)
cat("Note: map consists of", nPolygons, "polygons\n")
belongingRegions <- unquote(data.raw[[1]][whereRegionNames])
regions <- unique(belongingRegions)
cat("Note: map consists of", length(regions), "regions\n")
polyLengths <- data.numeric[[2]][whereRegionNames]
enclosedPolygonsInds <- findInterval(x=whereIsIn,
vec=whereRegionNames)
surrounding <- replicate(n=nPolygons,
expr=character())
for(i in seq_along(enclosedPolygonsInds))
{
surrounding[[enclosedPolygonsInds[i]]] <- surroundingNames[i]
}
data.numeric <- cbind(data.numeric[[1]],
data.numeric[[2]])
data.numeric <- na.omit(data.numeric)
cat("Reading map ...")
map <- vector(mode="list", length=nPolygons)
names(map) <- belongingRegions
startInds <- cumsum(c(1, polyLengths))
for(k in seq_along(map)) {
map[[k]] <- data.numeric[startInds[k]:(startInds[k+1] - 1), ]
if(sum(map[[k]][1,] == map[[k]][polyLengths[k],]) != 2)
warning(paste("Note: First and last point of polygon ",k," (region ",names(map)[k],") are not identical", sep=""), call. = FALSE)
}
cat(" finished\n")
rm(data.numeric)
if(sorted){
numericNames <- as.numeric(names(map))
newOrder <-
if(any(is.na(numericNames)))
{
cat("Note: regions sorted by name\n")
order(names(map))
} else {
cat("Note: regions sorted by number\n")
order(numericNames)
}
map <- map[newOrder]
surrounding <- surrounding[newOrder]
}
minima <- sapply(map, function(x){apply(x,2,min)})
maxima <- sapply(map, function(x){apply(x,2,max)})
minimum <- apply(minima,1,min)
maximum <- apply(maxima,1,max)
x.range <- maximum[1] - minimum[1]
y.range <- maximum[2] - minimum[2]
rval <- structure(map, class = "bnd",
surrounding = surrounding, regions = regions)
attr(rval, "asp") <- (y.range / x.range) / cos((mean(c(maximum[2] - minimum[2])) * pi) / 180)
rval
} |
ddirichlet<-function(x,alpha)
{
dirichlet1 <- function(x, alpha)
{
logD <- sum(lgamma(alpha)) - lgamma(sum(alpha))
s<-sum((alpha-1)*log(x))
exp(sum(s)-logD)
}
if(!is.matrix(x))
if(is.data.frame(x))
x <- as.matrix(x)
else
x <- t(x)
if(!is.matrix(alpha))
alpha <- matrix( alpha, ncol=length(alpha), nrow=nrow(x), byrow=TRUE)
if( any(dim(x) != dim(alpha)) )
stop("Mismatch between dimensions of 'x' and 'alpha'.")
pd <- vector(length=nrow(x))
for(i in 1:nrow(x))
pd[i] <- dirichlet1(x[i,],alpha[i,])
pd[ apply( x, 1, function(z) any( z <0 | z > 1)) ] <- 0
pd[ apply( x, 1, function(z) all.equal(sum( z ),1) !=TRUE) ] <- 0
pd
}
rdirichlet<-function(n,alpha)
{
l<-length(alpha);
x<-matrix(rgamma(l*n,alpha),ncol=l,byrow=TRUE);
sm<-x%*%rep(1,l);
x/as.vector(sm);
}
rdirichlet2 <- function(alpha, n) {
return(rdirichlet(n, alpha))
}
odirichlet <- function(a, n = 0, ...) {
if (class(a) != "ovariable") stop("a is not an ovariable!\n")
if (n == 0) n <- openv$N
if ("Iter" %in% colnames(a@output)) n <- 1
out <- oapply(a, FUN = rdirichlet2, n = n, use_aggregate = FALSE, ...)
if (!"Iter" %in% colnames(a@output)) {
levels(out@output$Var2) <- 1:n
colnames(out@output)[colnames(out@output) == "Var2"] <- "Iter"
}
out@output <- out@output[!grepl("^Var", colnames(out@output))]
out@marginal <- colnames(out@output) %in% c(colnames(a@output)[a@marginal], "Iter")
return(out)
} |
setupDASIMTest <- function(packages = c(), env = parent.frame()) {
setupDSLiteServer(packages, c("DASIM1", "DASIM2", "DASIM3"),
"logindata.dslite.dasim", "DSLite", "dslite.server", env)
} |
test_performance <- function(..., reference = 1) {
UseMethod("test_performance")
}
test_performance.default <- function(..., reference = 1, include_formula = FALSE) {
objects <- insight::ellipsis_info(..., only_models = TRUE)
names(objects) <- match.call(expand.dots = FALSE)$`...`
.test_performance_checks(objects)
if (inherits(objects, c("ListNestedRegressions", "ListNonNestedRegressions", "ListLavaan"))) {
test_performance(objects, reference = reference, include_formula = include_formula)
} else {
stop("The models cannot be compared for some reason :/")
}
}
test_performance.ListNestedRegressions <- function(objects,
reference = 1,
include_formula = FALSE,
...) {
out <- .test_performance_init(objects, include_formula = include_formula, ...)
tryCatch(
{
rez <- test_bf(objects, reference = "sequential")
if (!is.null(rez)) {
rez$Model <- NULL
out <- cbind(out, rez)
}
},
error = function(e) {
}
)
tryCatch(
{
rez <- test_vuong(objects)
rez$Model <- NULL
out <- merge(out, rez, sort = FALSE)
},
error = function(e) {
}
)
attr(out, "is_nested") <- attributes(objects)$is_nested
attr(out, "reference") <- if (attributes(objects)$is_nested_increasing) "increasing" else "decreasing"
class(out) <- c("test_performance", class(out))
out
}
test_performance.ListNonNestedRegressions <- function(objects,
reference = 1,
include_formula = FALSE,
...) {
out <- .test_performance_init(objects, include_formula = include_formula, ...)
tryCatch(
{
rez <- test_bf(objects, reference = reference)
if (!is.null(rez)) {
rez$Model <- NULL
out <- cbind(out, rez)
}
},
error = function(e) {
}
)
tryCatch(
{
rez <- test_vuong(objects, reference = reference)
rez$Model <- NULL
out <- merge(out, rez, sort = FALSE)
},
error = function(e) {
}
)
attr(out, "is_nested") <- attributes(objects)$is_nested
attr(out, "reference") <- reference
class(out) <- c("test_performance", class(out))
out
}
format.test_performance <- function(x, digits = 2, ...) {
out <- insight::format_table(x, digits = digits, ...)
if (isTRUE(attributes(x)$is_nested)) {
footer <- paste0(
"Models were detected as nested and are compared in sequential order.\n"
)
} else {
footer <- paste0(
"Each model is compared to ",
x$Name[attributes(x)$reference],
".\n"
)
}
attr(out, "table_footer") <- footer
out
}
print.test_performance <- function(x, digits = 2, ...) {
out <- insight::export_table(format(x, digits = digits, ...), ...)
cat(out)
}
print_md.test_performance <- function(x, digits = 2, ...) {
insight::export_table(format(x, digits = digits, ...), format = "markdown", ...)
}
print_html.test_performance <- function(x, digits = 2, ...) {
insight::export_table(format(x, digits = digits, ...), format = "html", ...)
}
display.test_performance <- function(object, format = "markdown", digits = 2, ...) {
if (format == "markdown") {
print_md(x = object, digits = digits, ...)
} else {
print_html(x = object, digits = digits, ...)
}
}
.test_performance_init <- function(objects, include_formula = FALSE) {
names <- insight::model_name(objects, include_formula = include_formula)
out <- data.frame(
Name = names(objects),
Model = names,
stringsAsFactors = FALSE
)
row.names(out) <- NULL
out
}
.test_performance_checks <- function(objects, multiple = TRUE, same_response = TRUE) {
if (multiple && insight::is_model(objects)) {
stop("At least two models are required to test them.", call. = FALSE)
}
if (same_response && !inherits(objects, "ListLavaan") && attributes(objects)$same_response == FALSE) {
stop(insight::format_message("The models' dependent variables don't have the same data, which is a prerequisite to compare them. Probably the proportion of missing data differs between models."), call. = FALSE)
}
already_warned <- FALSE
for (i in objects) {
if (!already_warned) {
check_formula <- insight::formula_ok(i)
}
if (check_formula) {
already_warned <- TRUE
}
}
objects
} |
InflectWorkflow<-function(Rsq,NumSD,Temperature,Rep,SourcePath,OutputPath){
OutputPath_Curves=paste(OutputPath,"Curves",sep="/")
OutputPath_SigCurves=paste(OutputPath,"SigCurves",sep="/")
FileCondition<-paste(paste("Condition",Rep),"xlsx",sep=".")
FileControl<-paste(paste("Control",Rep),"xlsx",sep=".")
NumberTemperatures<-as.numeric(NROW(Temperature))
ConditionData <- as.data.frame(read_excel(file.path(paste(SourcePath,FileCondition,sep="/"))))
ControlData <- as.data.frame(read_excel(file.path(paste(SourcePath,FileControl,sep="/"))))
Data_Control <- ControlData[,c(2:(1+NumberTemperatures))]
Data_Condition <- ConditionData[,c(2:(1+NumberTemperatures))]
Protein_Control <- ControlData[c(1)]
Protein_Condition <- ConditionData[c(1)]
Data_Control_Norm<-Data_Control[,1:ncol(Data_Control)]/Data_Control[,1]
Data_Condition_Norm<- Data_Condition[,1:ncol(Data_Condition)]/Data_Condition[,1]
All_Control_Norm<-data.frame(Protein_Control,Data_Control_Norm)
All_Condition_Norm<-data.frame(Protein_Condition,Data_Condition_Norm)
All_Control_Norm_Omit<-na.omit(All_Control_Norm)
All_Condition_Norm_Omit<-na.omit(All_Condition_Norm)
Proteins_Control_Norm_Omit<-All_Control_Norm_Omit[1]
Proteins_Condition_Norm_Omit<-All_Condition_Norm_Omit[1]
Data_Control_Norm_Omit<-((All_Control_Norm_Omit[2:(1+NumberTemperatures)]))
Data_Condition_Norm_Omit<-(All_Condition_Norm_Omit[2:(1+NumberTemperatures)])
write_xlsx(Data_Control_Norm_Omit,paste(OutputPath,"NormalizedControlResults.xlsx",sep="/"))
write_xlsx(Data_Condition_Norm_Omit,paste(OutputPath,"NormalizedConditionResults.xlsx",sep="/"))
Data_Control_Norm_Omit_Median<-apply(Data_Control_Norm_Omit, 2, FUN=median)
Data_Condition_Norm_Omit_Median<-apply(Data_Condition_Norm_Omit, 2, FUN=median)
ControlMedian<-Data_Control_Norm_Omit_Median[1:NumberTemperatures]
ConditionMedian<-Data_Condition_Norm_Omit_Median[1:NumberTemperatures]
Proteins_Control_Norm_Omit<-All_Control_Norm_Omit[c(1)]
Proteins_Condition_Norm_Omit<-All_Condition_Norm_Omit[c(1)]
ControlNormBothCorrect<-FPLFit_Correction(ControlMedian,Data_Control_Norm_Omit,"Control",Temperature)
ConditionNormBothCorrect<-FPLFit_Correction(ConditionMedian,Data_Condition_Norm_Omit,"Condition",Temperature)
Data_Norm_Omit<-Data_Control_Norm_Omit
NormBothCorrect<-ControlNormBothCorrect
DataParametersControl<-FPLFit(Data_Control_Norm_Omit,ControlNormBothCorrect,"Control",Temperature,NumberTemperatures)
DataParametersCondition<-FPLFit(Data_Condition_Norm_Omit,ConditionNormBothCorrect,"Condition",Temperature,NumberTemperatures)
DataParametersControlResults <- data.frame(Proteins_Control_Norm_Omit, DataParametersControl, ControlNormBothCorrect)
DataParametersConditionResults <- data.frame(Proteins_Condition_Norm_Omit, DataParametersCondition, ConditionNormBothCorrect)
DataParametersResultsAll <-merge(DataParametersControlResults,DataParametersConditionResults,by="Accession")
significance_condition <- DataParametersResultsAll[c(6)] >= Rsq & DataParametersResultsAll[c(NumberTemperatures+11)] >= Rsq
SignificantAll<- DataParametersResultsAll[significance_condition, c(1:NCOL(DataParametersResultsAll))]
ProteinsFilter<- DataParametersResultsAll[significance_condition, c(1)]
DeltaTmControlMinusCondition<-SignificantAll[,3]-SignificantAll[,8+NumberTemperatures]
DeltaTmDataSet<-data.table(SignificantAll,DeltaTmControlMinusCondition)
DeltaTmSort<-DeltaTmDataSet[order(-DeltaTmControlMinusCondition)]
Observation <- 1:NROW(ProteinsFilter)
DataParametersAnalysisResults <- data.frame(Observation,DeltaTmSort)
Observation <- as.numeric(DataParametersAnalysisResults[,1])
DeltTm <- DataParametersAnalysisResults[,NCOL(DataParametersAnalysisResults)]
TmData <- data.table(Observation, DeltTm)
SDH<-mean(DeltTm)+NumSD*sd(DeltTm)
SDL<-mean(DeltTm)-NumSD*sd(DeltTm)
significance_condition <- DataParametersAnalysisResults[c(NCOL(DataParametersAnalysisResults))] >= SDH | DataParametersAnalysisResults[c(NCOL(DataParametersAnalysisResults))] <= SDL
SignificantAll_SD<- DataParametersAnalysisResults[significance_condition, c(1:NCOL(DataParametersAnalysisResults))]
write_xlsx(DataParametersResultsAll,paste(OutputPath,"Results.xlsx",sep="/"))
write_xlsx(SignificantAll_SD,paste(OutputPath,"SignificantResults.xlsx",sep="/"))
n <- 1
repeat{
pdf(paste(OutputPath_Curves,paste(DataParametersAnalysisResults[n,2],"pdf",sep="."),sep="/"))
plot(x = Temperature, y = DataParametersAnalysisResults[n,c(8:(NumberTemperatures+7))],pch = 2, frame = TRUE,xlab = "Temperature (C)", ylab = "Normalized Abundance",col = "blue",axes=FALSE,ylim=c(0,1.5),xlim=c(20,100),main=DataParametersAnalysisResults[n,2])
Temperaturevals<-seq(min(Temperature), max(Temperature), by=1)
lines(Temperaturevals ,(DataParametersAnalysisResults[n,c(5)]+((DataParametersAnalysisResults[n,c(6)]-DataParametersAnalysisResults[n,c(5)])/(1+exp(-DataParametersAnalysisResults[n,c(3)]*(Temperaturevals-DataParametersAnalysisResults[n,c(4)]))))),col="blue")
points(Temperature, DataParametersAnalysisResults[n,c((13+NumberTemperatures):(12+(2*NumberTemperatures)))], col="red", pch=8,lty=1)
lines(Temperaturevals<-seq(min(Temperature), max(Temperature), by=1),(DataParametersAnalysisResults[n,c(NumberTemperatures+10)]+((DataParametersAnalysisResults[n,c(NumberTemperatures+11)]-DataParametersAnalysisResults[n,c(NumberTemperatures+10)])/(1+exp(-DataParametersAnalysisResults[n,c(NumberTemperatures+8)]*(Temperaturevals-DataParametersAnalysisResults[n,c(NumberTemperatures+9)]))))),lty=2,col="red")
axis(side=1, at=seq(20,100,by=5))
axis(side=2, at=seq(0,1.5, by=.1))
legend(60,1.3,legend=c("Control","Condition"), col=c("blue","red"),pch=c(2,8),lty=c(1,2))
plottable=matrix(data=NA,nrow=3,ncol=2)
colnames(plottable)<-c("Condition","Temperature")
plottable[1,1]<-"Control Tm"
plottable[2,1]<-"Condition Tm"
plottable[3,1]<-"Delta Tm"
plottable[1,2]<-round(DataParametersAnalysisResults[n,c(4)],2)
plottable[2,2]<-round(DataParametersAnalysisResults[n,c(NumberTemperatures+9)],2)
plottable[3,2]<-round((DataParametersAnalysisResults[n,c(4)])-(DataParametersAnalysisResults[n,c(NumberTemperatures+9)]),2)
addtable2plot(60,0.8,plottable,hlines=TRUE,vlines=TRUE,bty="o",bg="gray")
dev.off()
n=n+1
if (n > NROW(DataParametersAnalysisResults)){
break
}
}
n <- 1
repeat{
pdf(paste(OutputPath_SigCurves,paste(SignificantAll_SD[n,2],"pdf",sep="."),sep="/"))
plot(x = Temperature, y = SignificantAll_SD[n,c(8:(NumberTemperatures+7))],pch = 2, frame = TRUE,xlab = "Temperature (C)", ylab = "Normalized Abundance",col = "blue",axes=FALSE,ylim=c(0,1.5),xlim=c(20,100),main=SignificantAll_SD[n,2])
Temperaturevals<-seq(min(Temperature), max(Temperature), by=1)
lines(Temperaturevals ,(SignificantAll_SD[n,c(5)]+((SignificantAll_SD[n,c(6)]-SignificantAll_SD[n,c(5)])/(1+exp(-SignificantAll_SD[n,c(3)]*(Temperaturevals-SignificantAll_SD[n,c(4)]))))),col="blue")
points(Temperature, SignificantAll_SD[n,c((13+NumberTemperatures):(12+(2*NumberTemperatures)))], col="red", pch=8,lty=1)
lines(Temperaturevals<-seq(min(Temperature), max(Temperature), by=1),(SignificantAll_SD[n,c(NumberTemperatures+10)]+((SignificantAll_SD[n,c(NumberTemperatures+11)]-SignificantAll_SD[n,c(NumberTemperatures+10)])/(1+exp(-SignificantAll_SD[n,c(NumberTemperatures+8)]*(Temperaturevals-SignificantAll_SD[n,c(NumberTemperatures+9)]))))),lty=2,col="red")
axis(side=1, at=seq(20,100,by=5))
axis(side=2, at=seq(0,1.5, by=.1))
legend(65,1.3,legend=c("Control","Condition"), col=c("blue","red"),pch=c(2,8),lty=c(1,2))
plottable=matrix(data=NA,nrow=3,ncol=2)
colnames(plottable)<-c("Condition","Temperature")
plottable[1,1]<-"Control Tm"
plottable[2,1]<-"Condition Tm"
plottable[3,1]<-"Delta Tm"
plottable[1,2]<-round(SignificantAll_SD[n,c(4)],2)
plottable[2,2]<-round(SignificantAll_SD[n,c(NumberTemperatures+9)],2)
plottable[3,2]<-round((SignificantAll_SD[n,c(4)])-(SignificantAll_SD[n,c(NumberTemperatures+9)]),2)
addtable2plot(65,0.8,plottable,hlines=TRUE,vlines=TRUE,bty="o",bg="gray")
dev.off()
n=n+1
if (n > NROW(SignificantAll_SD)){
break
}
}
WaterfallPlot <- ggplot(DataParametersAnalysisResults[c(1,NCOL(DataParametersAnalysisResults))],
aes(x = Observation,y = DeltTm)) +
geom_point(size=3) +
labs(x = "Rank of Melting Point Difference Control and Condition",
y = "Delta Tm (C)") +
ylim(c(1.1*min(DataParametersAnalysisResults$DeltaTmControlMinusCondition),1.1*max(DataParametersAnalysisResults$DeltaTmControlMinusCondition))) +
theme_minimal() +
theme(legend.position="none") +theme_set(theme_gray(base_size = 15))+
geom_hline(yintercept = SDH, linetype = "dashed", color = "orange") +
geom_hline(yintercept=SDL, linetype = "dashed", color = "orange")
plot(WaterfallPlot)
ggsave(filename = "WaterfallPlot.pdf",
path = OutputPath_Curves,
plot = WaterfallPlot,
device = "pdf",
width = 10,
height = 10,
units = "in",
useDingbats = FALSE)
} |
test_that("estat_0003411172", {
skip_on_cran()
estat_set_apikey(keyring::key_get("estat-api"))
estat_set("limit_downloads", 1e1)
census_2015 <- estat("https://www.e-stat.go.jp/dbview?sid=0003411172")
expect_s3_class(census_2015, "estat")
census_2015 <- census_2015 %>%
estat_activate("\u8868\u7ae0\u9805\u76ee") %>%
filter(name == "\u4eba\u53e3") %>%
select() %>%
estat_activate("\u5168\u56fd", "region") %>%
select(code, name) %>%
estat_activate("\u6642\u9593\u8ef8", "year") %>%
select(name)
census_2015 <- estat_download(census_2015, "pop")
expect_s3_class(census_2015, "tbl_df")
expect_setequal(names(census_2015), c("region_code", "region_name", "year", "pop"))
expect_equal(vctrs::vec_size(census_2015), 78L)
})
test_that("estat_0003183561", {
skip_on_cran()
estat_set_apikey(keyring::key_get("estat-api"))
worker_city_2015 <- estat("0003183561")
expect_s3_class(worker_city_2015, "estat")
worker_city_2015 <- worker_city_2015 %>%
estat_activate("\u8868\u7ae0\u9805\u76ee") %>%
filter(name == "15\u6b73\u4ee5\u4e0a\u5c31\u696d\u8005\u6570") %>%
select() %>%
estat_activate("\u7523\u696d\u5206\u985e", "industry") %>%
filter(stringr::str_detect(name, "^[AB]")) %>%
select(name) %>%
estat_activate("\u5e74\u9f62") %>%
filter(name == "\u7dcf\u6570\uff08\u5e74\u9f62\uff09") %>%
select() %>%
estat_activate("\u7537\u5973|\u6027\u5225", "sex") %>%
filter(name != "\u7dcf\u6570\uff08\u7537\u5973\u5225\uff09") %>%
select(name) %>%
estat_activate("\u5f93\u696d\u5730") %>%
filter(name == "\u5317\u6d77\u9053") %>%
select() %>%
estat_activate("\u5e74\u6b21") %>%
select() %>%
estat_download("worker")
expect_s3_class(worker_city_2015, "tbl_df")
expect_setequal(names(worker_city_2015), c("industry", "sex", "worker"))
expect_equal(vctrs::vec_size(worker_city_2015), 4L)
}) |
harmonize_geo_code <- function (dat) {
. <- change <- geo <- code13 <- code16 <- nuts_level <- NULL
country_code <- n <- values <- time <- name <- resolution <- NULL
dat <- mutate_if ( dat, is.factor, as.character)
nuts_correspondence <- regional_changes_2016 <- eu_countries <- NULL
utils::data("nuts_correspondence", package = "eurostat", envir = environment())
utils::data("regional_changes_2016", package = "eurostat", envir = environment())
utils::data("eu_countries", package = "eurostat", envir = environment())
regions_in_correspondence <- unique(c(nuts_correspondence$code13, nuts_correspondence$code16))
regions_in_correspondence <- sort(regions_in_correspondence [!is.na(regions_in_correspondence)])
unchanged_regions <- regional_changes_2016 %>%
filter ( change == 'unchanged' )
regional_changes_by_2016 <- nuts_correspondence %>%
mutate ( geo = code16 ) %>%
filter ( !is.na(code16) ) %>%
select ( -geo ) %>%
distinct ( code13, code16, name, nuts_level, change, resolution)
regional_changes_by_2013 <- nuts_correspondence %>%
mutate ( geo = code13 ) %>%
filter ( !is.na(code13) ) %>%
select ( -geo ) %>%
distinct ( code13, code16, name, nuts_level, change, resolution)
all_regional_changes <- regional_changes_by_2016 %>%
full_join ( regional_changes_by_2013,
by = c("code13", "code16", "name", "nuts_level",
"change", "resolution"))
duplicates <- all_regional_changes %>%
add_count ( code13, code16 ) %>%
filter ( n > 1 )
if ( nrow(duplicates) > 0 ) {
stop ("There are duplicates in the correspondence table.")
}
all_regions_full_metadata <- unchanged_regions %>%
mutate ( resolution = NA_character_ ) %>%
rbind ( all_regional_changes )
nuts_2013_codes <- unique (all_regions_full_metadata$code13)
nuts_2016_codes <- unique (all_regions_full_metadata$code16)
nuts_2013_codes <- nuts_2013_codes[!is.na(nuts_2013_codes)]
nuts_2016_codes <- nuts_2016_codes[!is.na(nuts_2016_codes)]
tmp_by_code16 <- dat %>%
mutate ( geo = as.character(geo)) %>%
filter ( geo %in% all_regions_full_metadata$code16 ) %>%
left_join ( all_regions_full_metadata %>%
dplyr::rename ( geo = code16 ),
by = "geo") %>%
mutate ( code16 = geo ) %>%
mutate ( nuts_2016 = geo %in% nuts_2016_codes ) %>%
mutate ( nuts_2013 = geo %in% nuts_2013_codes )
tmp_by_code13 <- dat %>%
mutate ( geo = as.character(geo)) %>%
filter ( geo %in% all_regions_full_metadata$code13 ) %>%
left_join ( all_regions_full_metadata %>%
dplyr::rename ( geo = code13 ),
by = "geo") %>%
mutate ( code13 = geo ) %>%
mutate ( nuts_2016 = geo %in% nuts_2016_codes,
nuts_2013 = geo %in% nuts_2013_codes)
message ( "In this data frame ", nrow(tmp_by_code16),
" observations are coded with the current NUTS2016\ngeo labels and ",
nrow ( tmp_by_code13), " observations/rows have NUTS2013 historical labels.")
tmp_s <- tmp_by_code16 %>%
semi_join ( tmp_by_code13,
by = names ( tmp_by_code13))
if (! all(tmp_s$nuts_2013 & tmp_s$nuts_2016)) { stop ("Wrong selection of unchanged regions.") }
tmp_s2 <- tmp_by_code13 %>%
semi_join ( tmp_by_code16,
by = names (tmp_by_code16))
tmp_a1 <- tmp_by_code16 %>%
anti_join ( tmp_by_code13,
by = names(tmp_by_code13)
)
if ( any(tmp_a1$nuts_2013) ) {
stop ("Wrong selection of NUTS2013-only regions.") }
tmp_a2 <- tmp_by_code13 %>%
anti_join ( tmp_by_code16,
by = names(tmp_by_code13)
)
if ( any(tmp_a2$nuts_2016) ) {
stop ("Wrong selection of NUTS2013-only regions.") }
tmp2 <- rbind ( tmp_s, tmp_a1, tmp_a2 )
not_found_geo <- unique(dat$geo[! dat$geo %in% tmp2$geo ])
not_eu_regions <- not_found_geo[! substr(not_found_geo,1,2) %in% eu_countries$code]
not_found_eu_regions <- not_found_geo[ substr(not_found_geo,1,2) %in% eu_countries$code]
if ( length(not_found_eu_regions)>0 ) {
if ( any( not_found_eu_regions %in% c("SI02", "SI01",
"EL1", "EL2",
"UKI1", "UK2"))) {
message ( "Some or all of these regions use codes earlier than NUTS2013 definition.")
}
if ( any(grepl("XX", not_found_eu_regions ))) {
message ( "Some or all of these regions use data that cannot be connected to a regional unit.")
}
tmp_not_found <- dat %>%
filter ( geo %in% not_found_eu_regions ) %>%
mutate ( nuts_level = nchar(geo)-2,
name = NA_character_,
code13 = NA_character_,
code16 = NA_character_,
nuts_2016 = FALSE,
nuts_2013 = FALSE) %>%
mutate ( code13 = case_when (
geo == "EL1" ~ "EL5",
geo == "EL2" ~ "EL6",
geo == "SI01" ~ "SI03",
geo == "SI02" ~ "SI04",
geo %in% c("UKI1", "UKI2") ~ NA_character_,
substr(geo,3,4) == "XX" ~ geo,
TRUE ~ NA_character_ )) %>%
mutate ( code16 = case_when (
geo == "EL1" ~ "EL5",
geo == "EL2" ~ "EL6",
geo == "SI01" ~ "SI03",
geo == "SI02" ~ "SI04",
geo %in% c("UKI1", "UKI2") ~ NA_character_,
substr(geo,3,4) == "XX" ~ geo,
TRUE ~ NA_character_) ) %>%
mutate ( name = dplyr::case_when (
geo == "SI01" ~ "Vzhodna Slovenija",
geo == "SI02" ~ "Zahodna Slovenija",
geo == "EL1" ~ "Voreia Ellada",
geo == "EL2" ~ "Kentriki Ellada",
geo %in% c("UKI1", "UKI2") ~ NA_character_,
substr(geo,3,4) == "XX" ~ "data not related to any territorial unit",
TRUE ~ NA_character_)) %>%
mutate ( change = dplyr::case_when (
geo %in% c("UKI1", "UKI2") ~ "split in 2013 (NUTS2010 coding)",
geo %in% c("EL1", "EL2") ~ "boundary shift in 2013 (NUTS2010 coding)",
geo %in% c("SI01", "SI02") ~ "boundary shift in 2013 (NUTS2010 coding)",
substr(geo,3,4) == "XX" ~ "data not related to any territorial unit",
TRUE ~ NA_character_ )) %>%
mutate ( resolution = "You should control these changes and see how they affect your data.")
still_not_found_vector <- tmp_not_found %>%
filter ( is.na(code16)) %>%
select (geo) %>% unlist () %>%
unique()
if ( length(still_not_found_vector)>0) {
warning ( "The following geo labels were not found in the correspondence table:",
paste(still_not_found_vector, collapse = ", "), ".")
}
tmp2 <- rbind ( tmp2, tmp_not_found )
}
tmp_not_eu <- dat %>%
filter ( geo %in% not_eu_regions ) %>%
mutate ( nuts_level = nchar(geo)-2,
change = "not in EU - not controlled",
resolution = "check with national authorities",
name = NA_character_,
code13 = NA_character_,
code16 = NA_character_,
nuts_2016 = FALSE,
nuts_2013 = FALSE)
tmp3 <- rbind ( tmp2, tmp_not_eu )
if ( length(dat$geo [! dat$geo %in% tmp3$geo ])>0 ) {
unique ( dat$geo [! dat$geo %in% tmp3$geo ])
message (tmp3 %>% anti_join (dat))
message (dat %>% anti_join (tmp3))
stop ("Not all original rows were checked.")
}
utils::data(eu_countries, package ="eurostat", envir = environment())
eu_country_vector <- unique ( substr(eu_countries$code, 1, 2) )
if ( any(tmp3$change == 'not in EU - not controlled') ) {
not_EU_country_vector <- tmp3 %>%
filter ( change == 'not in EU - not controlled' ) %>%
select ( geo )
not_eu_observations <- nrow (not_EU_country_vector)
not_EU_country_vector <- not_EU_country_vector %>%
unlist() %>% substr(., 1,2) %>% sort () %>%
unique ()
message ( "Not checking for regional label consistency in non-EU countries.\n",
"In this data frame not controlled countries: ",
paste (not_EU_country_vector,
collapse = ", "), " \n",
"with altogether ", not_eu_observations, " observations/rows.")
}
tmp_left <- tmp3 %>% select ( geo, time, values, code13, code16, name )
tmp_right <- tmp3 %>% select ( -geo, -code13, -code16, -time, -values, -name )
cbind ( tmp_left, tmp_right)
} |
best_subset_classifier <- function(model, data.train,
model.family, model.optimizer,
n.iter, verbose = c(TRUE, FALSE)) {
if (isTRUE(verbose == TRUE)) {
if (model.optimizer == 'bobyqa'){
out <- lme4::glmer(formula = model,
data = data.train,
family = model.family,
lme4::glmerControl(
optimizer = model.optimizer,
optCtrl = list(maxfun = n.iter)))
} else if (model.optimizer == 'nloptwrap') {
out <- lme4::glmer(formula = model,
data = data.train,
family = model.family,
lme4::glmerControl(
calc.derivs = FALSE,
optimizer = model.optimizer,
optCtrl = list(
method = "NLOPT_LN_NELDERMEAD",
starttests = TRUE, kkt = TRUE)))
}
} else {
if (model.optimizer == 'bobyqa') {
out <- suppressMessages(suppressWarnings(
lme4::glmer(formula = model,
data = data.train,
family = model.family,
lme4::glmerControl(optimizer = model.optimizer,
optCtrl = list(maxfun = n.iter)))
))
} else if (model.optimizer == 'nloptwrap') {
out <- suppressMessages(suppressWarnings(
lme4::glmer(formula = model,
data = data.train,
family = model.family,
lme4::glmerControl(
calc.derivs = FALSE,
optimizer = model.optimizer,
optCtrl = list(
method = "NLOPT_LN_NELDERMEAD",
starttests = TRUE, kkt = TRUE)))
))
}
}
return(out)
} |
exchangeSPsurv <- function(duration,
immune,
Y0,
LY,
S,
data,
N,
burn,
thin,
w = c(1, 1, 1),
m = 10,
ini.beta = 0,
ini.gamma = 0,
ini.W = 0,
ini.V= 0,
form = c('Weibull', 'exponential', 'loglog'),
prop.varV,
prop.varW,
id_WV = unique(data[,S]))
{
dis <- match.arg(form)
model <- 'frailtySPsurv'
r <- formcall(duration = duration, immune = immune, data = data, Y0 = Y0,
LY = LY, S = S, N = N, burn = burn, thin = thin, w = w, m = m,
ini.beta = ini.beta, ini.gamma = ini.gamma, ini.W = ini.W, ini.V = ini.V,
form = dis, prop.varV = prop.varV, prop.varW = prop.varW, model = model)
if(form == 'loglog'){
results <- mcmcfrailtySPlog(Y = r$Y, Y0 = r$Y0, C = r$C, LY = r$LY, X = r$X, Z = r$Z,
S = r$S, N = r$N, burn = r$burn, thin = r$thin, w = r$w,
m = r$m, ini.beta = r$ini.beta, ini.gamma = r$ini.gamma,
ini.W = r$ini.W, ini.V = r$ini.V,
form = r$form, prop.varV = r$prop.varV, prop.varW = r$prop.varW,
id_WV = id_WV)
} else {
results <- mcmcfrailtySP(Y = r$Y, Y0 = r$Y0, C = r$C, LY = r$LY, X = r$X, Z = r$Z,
S = r$S, N = r$N, burn = r$burn, thin = r$thin, w = r$w,
m = r$m, ini.beta = r$ini.beta, ini.gamma = r$ini.gamma,
ini.W = r$ini.W, ini.V = r$ini.V,
form = r$form, prop.varV = r$prop.varV, prop.varW = r$prop.varW,
id_WV = id_WV)
}
results$call <- match.call()
class(results) <- c(model)
results
}
summary.frailtySPsurv <- function(object, parameter = character(), ...){
summary(coda::mcmc(object[[parameter]]), ...)
}
print.frailtySPsurv <- function(x, ...){
cat('Call:\n')
print(x$call)
cat('\n')
x2 <- summary(x, parameter = 'betas')
cat("\n", "Iterations = ", x2$start, ":", x2$end, "\n", sep = "")
cat("Thinning interval =", x2$thin, "\n")
cat("Number of chains =", x2$nchain, "\n")
cat("Sample size per chain =", (x2$end - x2$start)/x2$thin + 1, "\n")
cat("\nEmpirical mean and standard deviation for each variable,")
cat("\nplus standard error of the mean:\n\n")
cat('\n')
cat('Duration equation: \n')
print(summary(x, parameter = 'betas')$statistics)
cat('\n')
cat('Immune equation: \n')
print(summary(x, parameter = 'gammas')$statistics)
cat('\n')
}
plot.frailtySPsurv <- function(x, parameter = character(), ...){
plot((coda::mcmc(x[[parameter]])), ...)
} |
"emae_series" |
print.MisfittingPersons <- function(x, ...)
{
cat("\n")
cat("Percentage of Misfitting Persons:", round(x$PersonMisfit,4), "%","\n")
cat("\n")
} |
pairSE<-function(daten, m=NULL, nsample=30, size=0.50, seed="no", pot=TRUE, zerocor=TRUE, verbose=TRUE, ...){
N<-dim(daten)[1]
k<-dim(daten)[2]
if(mode(size)=="character") {if(size=="jack"){nsize<-N-1 ; nsample=N } }
if(mode(size)=="numeric") {if(size >= 1 | size <= 0 ) stop("size should have values between 0 and 1") ;nsize<-round(N*size)}
if(mode(seed)=="numeric") {set.seed(seed)}
ergli<-vector("list", length=nsample)
for (i in 1:nsample){
sx<-daten[sample(1:dim(daten)[1],nsize),]
if(verbose==TRUE){cat("sample ", i , "of",nsample, "with size n =",nsize,"\n")}
ergli[[i]]<-pair(sx, m=m, pot=pot,zerocor=zerocor)
}
dim(ergli[[1]]$threshold)[1] -> nvar
dim(ergli[[1]]$threshold)[2] -> nthr
ergli_sig <- t(sapply(ergli,function(x){x$sigma}))
SE_sig<-apply(ergli_sig, 2, sd,na.rm=TRUE)
ergli_thr <- t(sapply(ergli,function(x){x$threshold}))
SE_thr <- matrix((apply(ergli_thr, 2, sd,na.rm=TRUE)),nrow=nvar,ncol=nthr,byrow=F)
rownames(SE_thr) <- names(SE_sig)
colnames(SE_thr) <- paste("threshold",1:nthr,sep=".")
SE <- SE_thr
SEsigma <- SE_sig
parametererg <- pair(daten, m=m, pot=pot,zerocor=zerocor)
parametererg_1 <- parametererg$threshold
erg<-list(threshold=parametererg_1, sigma=parametererg$sigma, SE=SE, SEsigma=SEsigma)
class(erg) <- c("pairSE","list")
return(erg)
} |
print.TransModel <-
function(x,...){
cat("Call:\n")
print(x$call)
if(x$p==0){
cat("No covariates/ null model.","\n")
}
if(x$p>0){
cat("\nCoefficients:\n")
print(x$coefficients)
cat("\nCovariance Matrix:\n")
print(x$vcov)
}
class(x)<-"TransModel"
} |
get_some_data <- function(config, outfile) {
if (config_bad(config)) {
stop("Bad config")
}
if (!can_write(outfile)) {
stop("Can't write outfile")
}
if (!can_open_network_connection(config)) {
stop("Can't access network")
}
data <- parse_something_from_network()
if(!makes_sense(data)) {
return(FALSE)
}
data <- beautify(data)
write_it(data, outfile)
TRUE
} |
BDATBIOMASSE <- function(BDATArtNr, D1, H1 = 0, D2 = 0, H2 = 0, H) {
df <- data.frame(
spp = BDATArtNr, D1 = D1, H1 = H1,
D2 = D2, H2 = H2, H = H
)
res <- getBiomass(tree = df, mapping = NULL)
return(res)
} |
plot.indicators<-function(x, type="sqrtIV", maxline=TRUE, ...) {
A = x$A
B = x$B
sqrtIV=x$sqrtIV
order = rowSums(x$C)
if(is.data.frame(A)) {
if(type=="IV") val = sqrtIV[,1]^2
else if(type=="sqrtIV") val = sqrtIV[,1]
else if(type=="A") val = A[,1]
else if(type=="B") val = B[,1]
else if(type=="LA") val = A[,2]
else if(type=="UA") val = A[,3]
else if(type=="LB") val = B[,2]
else if(type=="UB") val = B[,3]
else if(type=="LsqrtIV") val = sqrtIV[,2]
else if(type=="UsqrtIV") val = sqrtIV[,3]
} else {
if(type=="IV") val = sqrtIV^2
else if(type=="sqrtIV") val = sqrtIV
else if(type=="A") val = A
else if(type=="B") val = B
}
plot(order,val, type="n", axes=FALSE, xlab="Order", ylab=type,...)
points(order,val, pch=1, cex=0.5)
axis(1, at = order, labels=order)
axis(2)
if(maxline) lines(1:max(order),tapply(val,order,max), col="gray")
} |
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_knit$set(root.dir = '.')
library(magrittr)
knitr::include_graphics("NBL_data_files.png", dpi = 10)
knitr::include_graphics("download_from_cart.png", dpi = 10) |
get_na_counts <- function(x, grouping_cols = NULL, exclude_cols=NULL){
UseMethod("get_na_counts")
}
get_na_counts.data.frame <- function(x, grouping_cols = NULL, exclude_cols = NULL){
if(! is.null(grouping_cols)){
check_column_existence(x, grouping_cols, unique_name = "to group by")
x <- x %>% dplyr::group_by(!!!dplyr::syms(grouping_cols))
}
if(! is.null(exclude_cols)){
check_column_existence(x, exclude_cols,unique_name = "to exclude")
x <- x %>% dplyr::select(-all_of(exclude_cols))
}
x %>% dplyr::summarise(dplyr::across(dplyr::everything(), ~sum(is.na(.))))
} |
ULS_Gauss <- function(prep){
fit_per_group <- (prep$nPerGroup+1)/(prep$nTotal) * sapply(prep$groupModels, do.call, what=ULS_Gauss_pergroup)
sum(fit_per_group)
}
ULS_Gauss_pergroup <- function(means,S,tau,mu,sigma,WLS.W,estimator,thresholds, meanstructure = TRUE, corinput = FALSE,...){
if (estimator == "DWLS"){
WLS.W <- Diagonal(x = diag(WLS.W))
}
if (missing(tau) || all(is.na(as.matrix(tau)))){
if (meanstructure){
obs <- as.vector(means)
imp <- as.vector(mu)
} else {
obs <- numeric(0)
imp <- numeric(0)
}
} else {
obs <- numeric(0)
imp <- numeric(0)
for (i in seq_along(thresholds)){
if (!is.na(means[i])){
obs <- c(obs, means[i])
imp <- c(imp, mu[i])
} else {
obs <- c(obs, thresholds[[i]])
imp <- c(imp, tau[seq_len(length(thresholds[[i]])),i])
}
}
}
if (corinput){
obs <- c(obs, Vech(S, diag = FALSE))
imp <- c(imp, Vech(sigma, diag = FALSE))
} else {
obs <- c(obs, Vech(S))
imp <- c(imp, Vech(sigma))
}
as.numeric(t(obs - imp) %*% WLS.W %*% (obs - imp))
} |
ahistory <- function(artifact = NULL, md5hash = NULL, repoDir = aoptions('repoDir'), format = "regular", alink = FALSE, ...) {
if (!is.null(artifact))
md5hash <- adigest(artifact)
if (is.null(md5hash))
stop("Either artifact or md5hash has to be set")
stopifnot(length(format) == 1 & format %in% c("regular", "kable"))
elements <- strsplit(md5hash, "/")[[1]]
if (length(elements) >= 3){
md5hash <- tail(elements,1)
subdir <- ifelse(length(elements) > 3, paste(elements[3:(length(elements)-1)], collapse="/"), "/")
RemoteRepoCheck( repo = elements[2], user = elements[1],
branch = "master", subdir = subdir,
repoType = aoptions("repoType"))
remoteHook <- getRemoteHook(repo = elements[2], user = elements[1], branch = "master", subdir = subdir)
Temp <- downloadDB( remoteHook )
on.exit( unlink( Temp, recursive = TRUE, force = TRUE))
repoDir <- Temp
}
res_names <- c()
res_md5 <- md5hash
ind <- 1
while (!is.null(md5hash) && length(md5hash)>0) {
tags <- getTagsLocal(md5hash, tag = "", repoDir=repoDir)
tmp <- grep(tags, pattern="^RHS:", value = TRUE)
if (length(tmp) > 0) {
res_names[ind] <- substr(tmp[1],5,nchar(tmp[1]))
} else {
tmp <- grep(tags, pattern="^name:", value = TRUE)
if (length(tmp) > 0) {
res_names[ind] <- substr(tmp[1],6,nchar(tmp[1]))
} else {
df <- data.frame(md5hash = res_md5, call = rep("", length(res_md5)), stringsAsFactors = FALSE)
if (format == "kable") {
class(df) = c("ahistoryKable", "data.frame")
if (alink) {
df$md5hash <- paste0("[",
df$md5hash,
"]",
sapply(df$md5hash, alink, ...) %>%
as.vector() %>%
strsplit(split = "]") %>%
lapply(`[[`, 2)
)
}
} else {
class(df) = c("ahistory", "data.frame")
}
return(df)
}
}
md5hash <- grep(tags, pattern="^LHS:", value = TRUE)
if (length(md5hash) > 0) {
md5hash <- substr(md5hash[1],5,nchar(md5hash[1]))
res_md5[ind+1] <- md5hash
}
ind <- ind + 1
}
if (length(res_md5) != length(res_names)) {
res_md5[max(length(res_md5), length(res_names))+1] = ""
res_names[max(length(res_md5), length(res_names))+1] = ""
}
df <- data.frame(md5hash = res_md5, call = res_names, stringsAsFactors = FALSE)
if (format == "kable") {
class(df) = c("ahistoryKable", "data.frame")
if (alink) {
df$md5hash <- paste0("[",
df$md5hash,
"]",
sapply(df$md5hash, alink, ...) %>%
as.vector() %>%
strsplit(split = "]") %>%
lapply(`[[`, 2)
)
}
} else {
class(df) = c("ahistory", "data.frame")
}
df
}
print.ahistory <- function(x, ...) {
x[,2] <- paste0(x[,2], sapply(max(nchar(x[,2])) + 1 - nchar(x[,2]),
function(j) paste(rep(" ", j), collapse="")))
for (i in nrow(x):1) {
if (i < nrow(x)) cat("-> ") else cat(" ")
cat(x[i,2], " [", x[i,1], "]\n", sep = "")
}
}
print.ahistoryKable <- function(x, ...){
if (!requireNamespace("knitr", quietly = TRUE)) {
stop("knitr package required for archivist:::print.ahistoryKable function")
}
cat(knitr::kable(x[nrow(x):1, 2:1], ...), sep="\n")
} |
select.spls <- function(model){
res.select <- list()
for (h in 1:model$ncomp){
set.ind.zero <- which(model$loadings$X[,h]!=0)
names(set.ind.zero) <- model$names$X[set.ind.zero]
res.select[[h]] <- set.ind.zero
}
select.x <- res.select
ind.total.x <- sort(unique(unlist(select.x)))
names(ind.total.x) <- model$names$X[ind.total.x]
res.select <- list()
for (h in 1:model$ncomp){
set.ind.zero <- which(model$loadings$Y[,h]!=0)
names(set.ind.zero) <- model$names$Y[set.ind.zero]
res.select[[h]] <- set.ind.zero
}
select.y <- res.select
ind.total.y <- sort(unique(unlist(select.y)))
names(ind.total.y) <- model$names$Y[ind.total.y]
return(list(select.X=select.x,select.Y=select.y,select.X.total=ind.total.x,select.Y.total=ind.total.y))
} |
lsem_bootstrap_inference <- function(parameters_boot, est, repl_factor=NULL)
{
R <- ncol(parameters_boot)
est_boot <- rowMeans(parameters_boot, na.rm=TRUE)
if (is.null(repl_factor)){
repl_factor <- 1/(R-1)
}
se_boot <- sqrt( rowSums( ( parameters_boot - est_boot )^2 ) * repl_factor )
bias_boot <- (est_boot - est)*repl_factor*(R-1)
est_bc <- est - bias_boot
res <- list(mean_boot=est_boot, se_boot=se_boot, est_bc=est_bc,
bias_boot=bias_boot, est=est)
return(res)
} |
if (getRversion() >= "2.15.1") {
utils::globalVariables(c(
"regionId", "i.family", "wd", "wd.x", "wd.y", "taxo", ".EACHI",
"meanWDsp", "nIndsp", "sdWDsp", "meanWD", "meanWDgn", "nInd", "nIndgn",
"sdWD", "sdWDgn", "levelWD", "meanWDfm", "nIndfm", "sdWDfm",
"meanWDst", "nIndst", "sdWDst"
))
}
getWoodDensity <- function(genus, species, stand = NULL, family = NULL, region = "World",
addWoodDensityData = NULL, verbose = TRUE) {
if (length(genus) != length(species)) {
stop("Your data (genus and species) do not have the same length")
}
if (!is.null(family) && (length(genus) != length(family))) {
stop("Your family vector and your genus/species vectors do not have the same length")
if (any(colSums(table(family, genus) > 0, na.rm = TRUE) >= 2)) {
stop("Some genera are in two or more families")
}
}
if (!is.null(stand) && (length(genus) != length(stand))) {
stop("Your stand vector and your genus/species vectors do not have the same length")
}
if (!is.null(addWoodDensityData)) {
if (!(all(names(addWoodDensityData) %in% c("genus", "species", "wd", "family")) && length(names(addWoodDensityData)) %in% c(3, 4))) {
stop('The additional wood density database should be organized in a dataframe with three (or four) columns:
"genus","species","wd", and the column "family" is optional')
}
}
wdData <- setDT(copy(BIOMASS::wdData))
sd_10 <- setDT(copy(BIOMASS::sd_10))
sd_tot <- sd(wdData$wd)
Region <- tolower(region)
if ((Region != "world") && any(is.na(chmatch(Region, tolower(wdData$regionId))))) {
stop("One of the region you entered is not recognized in the global wood density database")
}
subWdData <- wdData
if (!("world" %in% Region)) {
subWdData <- wdData[tolower(regionId) %chin% Region]
}
if (nrow(subWdData) < 1000 && is.null(addWoodDensityData)) {
warning(
"DRYAD data only stored ", nrow(subWdData), " wood density values in your region of interest. ",
'You could provide additional wood densities (parameter addWoodDensityData) or widen your region (region="World")'
)
}
if (!is.null(addWoodDensityData)) {
setDT(addWoodDensityData)
if (!("family" %in% names(addWoodDensityData))) {
genusFamily <- setDT(copy(BIOMASS::genusFamily))
addWoodDensityData[genusFamily, on = "genus", family := i.family]
}
addWoodDensityData <- addWoodDensityData[!is.na(wd), ]
subWdData <- merge(subWdData, addWoodDensityData, by = c("family", "genus", "species"), all = TRUE)
subWdData[!is.na(regionId), wd := wd.x][is.na(regionId), wd := wd.y][, ":="(wd.x = NULL, wd.y = NULL)]
}
if (verbose) {
message("The reference dataset contains ", nrow(subWdData), " wood density values")
}
inputData <- data.table(genus = as.character(genus), species = as.character(species))
if (!is.null(family)) {
inputData[, family := as.character(family)]
} else {
if (!exists("genusFamily", inherits = FALSE)) {
genusFamily <- setDT(copy(BIOMASS::genusFamily))
}
inputData[genusFamily, on = "genus", family := i.family]
}
if (!is.null(stand)) {
inputData[, stand := as.character(stand)]
}
taxa <- unique(inputData, by = c("family", "genus", "species"))
if (verbose) {
message("Your taxonomic table contains ", nrow(taxa), " taxa")
}
coalesce <- function(x, y) {
if (length(y) == 1) {
y <- rep(y, length(x))
}
where <- is.na(x)
x[where] <- y[where]
x
}
meanWdData <- subWdData[(family %in% taxa$family | genus %in% taxa$genus | species %in% taxa$species), ]
if (nrow(meanWdData) == 0) {
stop("Our database have not any of your family, genus and species")
}
inputData[, ":="(meanWD = NA_real_, nInd = NA_integer_, sdWD = NA_real_, levelWD = NA_character_)]
if (!((!is.null(family) && nrow(merge(inputData, meanWdData[, .N, by = .(family)], c("family"))) != 0) ||
nrow(merge(inputData, meanWdData[, .N, by = .(family, genus)], c("family", "genus"))) != 0 ||
nrow(merge(inputData, meanWdData[, .N, by = .(family, genus, species)], c("family", "genus", "species"))) != 0)) {
stop("There is no exact match among the family, genus and species, try with 'addWoodDensity'
or inform the 'family' or increase the 'region'")
}
sdSP <- sd_10[taxo == "species", sd]
meanSP <- meanWdData[,
by = c("family", "genus", "species"),
.(
meanWDsp = mean(wd),
nIndsp = .N,
sdWDsp = sdSP
)
]
inputData[meanSP,
on = c("family", "genus", "species"), by = .EACHI,
`:=`(
meanWD = meanWDsp,
nInd = nIndsp,
sdWD = sdWDsp,
levelWD = "species"
)
]
sdGN <- sd_10[taxo == "genus", sd]
meanGN <- meanSP[,
by = c("family", "genus"),
.(
meanWDgn = mean(meanWDsp),
nIndgn = .N,
sdWDgn = sdGN
)
]
inputData[meanGN,
on = c("family", "genus"), by = .EACHI,
`:=`(
meanWD = coalesce(meanWD, meanWDgn),
nInd = coalesce(nInd, nIndgn),
sdWD = coalesce(sdWD, sdWDgn),
levelWD = coalesce(levelWD, "genus")
)
]
if (!is.null(family)) {
sdFM <- sd_10[taxo == "family", sd]
meanFM <- meanGN[,
by = family,
.(
meanWDfm = mean(meanWDgn),
nIndfm = .N,
sdWDfm = sdFM
)
]
inputData[meanFM,
on = "family", by = .EACHI,
`:=`(
meanWD = coalesce(meanWD, meanWDfm),
nInd = coalesce(nInd, nIndfm),
sdWD = coalesce(sdWD, sdWDfm),
levelWD = coalesce(levelWD, "family")
)
]
}
if (!is.null(stand)) {
meanST <- inputData[!is.na(meanWD),
by = stand,
.(
meanWDst = mean(meanWD),
nIndst = .N,
sdWDst = sd(meanWD)
)
]
inputData[is.na(meanWD), levelWD := stand]
inputData[meanST,
on = "stand", by = .EACHI,
`:=`(
meanWD = coalesce(meanWD, meanWDst),
nInd = coalesce(nInd, nIndst),
sdWD = coalesce(sdWD, sdWDst)
)
]
}
meanDS <- inputData[
!is.na(meanWD),
.(
meanWDds = mean(meanWD),
nIndds = .N,
sdWDds = sd(meanWD)
)
]
inputData[
is.na(meanWD),
`:=`(
meanWD = meanDS$meanWDds,
nInd = meanDS$nIndds,
sdWD = meanDS$sdWDds,
levelWD = "dataset"
)
]
inputData[is.na(sdWD) | sdWD==0, sdWD:=sd_tot]
result <- setDF(inputData[, .(family, genus, species, meanWD, sdWD, levelWD, nInd)])
return(result)
} |
timeIntegratedBranchRate <- function(t1, t2, p1, p2){
tol <- 0.00001;
res <- vector(mode = 'numeric', length = length(t1));
zero <- which(abs(p2) < tol);
p1s <- p1[zero];
t1s <- t1[zero];
t2s <- t2[zero];
res[zero] <- p1s * (t2s - t1s);
nonzero <- which(p2 < -tol);
p1s <- p1[nonzero];
p2s <- p2[nonzero];
t1s <- t1[nonzero];
t2s <- t2[nonzero];
res[nonzero] <- (p1s/p2s)*(exp(p2s*t2s) - exp(p2s*t1s));
nonzero <- which(p2 > tol);
p1s <- p1[nonzero];
p2s <- p2[nonzero];
t1s <- t1[nonzero];
t2s <- t2[nonzero];
res[nonzero] <- (p1s/p2s)*(2*p2s*(t2s-t1s) + exp(-p2s*t2s) - exp(-p2s*t1s));
return(res);
} |
subset.mppData <- function(x, mk.list = NULL, gen.list = NULL, ...) {
check_mppData(mppData = x)
if(is.null(mk.list) && is.null(gen.list)){
stop("You must specify either mk.list or gen.list.")
}
if (!is.null(mk.list)){
if (!(is.character(mk.list) || is.logical(mk.list) || is.numeric(mk.list))) {
stop("mk.list must be a character, logical or numeric vector.")
}
if(is.logical(mk.list)){
if(length(mk.list) != dim(x$map)[1])
stop("The mk.list does not have the same length as the map")
}
if (is.logical(mk.list) || is.numeric(mk.list)) {
mk.list <- x$map[mk.list, 1]
}
}
if (!is.null(gen.list)){
if (!(is.character(gen.list) || is.logical(gen.list) || is.numeric(gen.list))) {
stop("gen.list must be a character, logical or numeric vector.")
}
if(is.logical(gen.list)){
if(length(gen.list) != length(x$geno.id))
stop("gen.list does not have the same length as the genotypes list")
}
if (is.logical(gen.list) || is.numeric(gen.list)) {
gen.list <- x$geno.id[gen.list]
geno.ind <- x$geno.id %in% gen.list
} else if(is.character(gen.list)) {
geno.ind <- x$geno.id %in% gen.list
}
}
if(!is.null(mk.list)){
x$geno.IBS <- x$geno.IBS[, x$map[, 1] %in% mk.list,
drop = FALSE]
for (i in 1:length(x$geno.IBD$geno)) {
chr.mk.names <- attr(x$geno.IBD$geno[[i]]$prob, "dimnames")[[2]]
indicator <- chr.mk.names %in% mk.list
x$geno.IBD$geno[[i]]$prob <- x$geno.IBD$geno[[i]]$prob[, indicator, ]
}
x$allele.ref <- x$allele.ref[, x$map[, 1] %in% mk.list,
drop = FALSE]
x$geno.par <- x$geno.par[(x$geno.par[, 1] %in% mk.list), ,
drop = FALSE]
if(!is.null(x$par.clu)){
x$par.clu <- x$par.clu[rownames(x$par.clu) %in% mk.list, ,
drop = FALSE]
}
x$map <- x$map[(x$map[, 1] %in% mk.list), , drop = FALSE]
chr.ind <- factor(x = x$map[, 2], levels = unique(x$map[, 2]))
x$map[, 3] <- sequence(table(chr.ind))
}
if(!is.null(gen.list)){
x$geno.IBS <- x$geno.IBS[geno.ind, ]
for (i in 1:length(x$geno.IBD$geno)) {
x$geno.IBD$geno[[i]]$prob <- x$geno.IBD$geno[[i]]$prob[geno.ind, , ]
}
x$pheno <- x$pheno[geno.ind, , drop = FALSE]
x$geno.id <- x$geno.id[geno.ind]
ped.temp <- as.matrix(x$ped.mat)
ped.mat.found <- ped.temp[ped.temp[, 1] == "founder", , drop = FALSE]
ped.mat.off <- ped.temp[ped.temp[, 1] == "offspring", , drop = FALSE]
ped.mat.off <- ped.mat.off[geno.ind, , drop = FALSE]
found.sub <- unique(c(ped.mat.off[, 3], ped.mat.off[, 4]))
ped.mat.found <- ped.mat.found[ped.mat.found[, 2] %in% found.sub, ,
drop = FALSE]
pedigree.new <- rbind(ped.mat.found, ped.mat.off)
x$ped.mat <- data.frame(pedigree.new, stringsAsFactors = FALSE)
x$cross.ind <- x$cross.ind[geno.ind]
}
list.cr <- unique(x$cross.ind)
ppc <- x$par.per.cross
ppc <- ppc[ppc[, 1] %in% list.cr, , drop = FALSE]
x$parents <- union(ppc[, 2], ppc[, 3])
x$n.cr <- length(list.cr)
x$n.par <- length(x$parents)
x$par.per.cross <- ppc
new_par <- c("mk.names", "chr", "pos.ind", "pos.cM", x$parents)
x$geno.par <- x$geno.par[, colnames(x$geno.par) %in% new_par ,
drop = FALSE]
if(!is.null(x$par.clu)){
par.clu <- x$par.clu
par.clu <- par.clu[, x$parents]
par.clu <- parent_clusterCheck(par.clu = par.clu)[[1]]
x$par.clu <- par.clu
}
class(x) <- c("mppData", "list")
return(x)
} |
aw <- function(object, ...) UseMethod("aw")
aw.mkinfit <- function(object, ...) {
oo <- list(...)
data_object <- object$data[c("time", "variable", "observed")]
for (i in seq_along(oo)) {
if (!inherits(oo[[i]], "mkinfit")) stop("Please supply only mkinfit objects")
data_other_object <- oo[[i]]$data[c("time", "variable", "observed")]
if (!identical(data_object, data_other_object)) {
stop("It seems that the mkinfit objects have not all been fitted to the same data")
}
}
all_objects <- list(object, ...)
AIC_all <- sapply(all_objects, AIC)
delta_i <- AIC_all - min(AIC_all)
denom <- sum(exp(-delta_i/2))
w_i <- exp(-delta_i/2) / denom
return(w_i)
}
aw.mmkin <- function(object, ...) {
if (ncol(object) > 1) stop("Please supply an mmkin column object")
do.call(aw, object)
} |
library(ggplot2)
sortList <- function(x) {
x[sort(names(x))]
}
print.ggplot <- custom_print.ggplot
test_that("ggplot coordmap", {
dat <- data.frame(xvar = c(0, 5), yvar = c(10, 20))
tmpfile <- tempfile("test-shiny", fileext = ".png")
on.exit(unlink(tmpfile))
p <- ggplot(dat, aes(xvar, yvar)) + geom_point() +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0))
png(tmpfile, width = 500, height = 500)
m <- getGgplotCoordmap(print(p), 500, 500, 72)
dev.off()
expect_equal(m$dims, list(width = 500, height = 500))
expect_equal(m$panels[[1]]$mapping, list(x = "xvar", y = "yvar"))
expect_equal(
sortList(m$panels[[1]]$domain),
sortList(list(left=0, right=5, bottom=10, top=20))
)
expect_equal(
sortList(m$panels[[1]]$log),
sortList(list(x=NULL, y=NULL))
)
expect_identical(m$panels[[1]]$panel_vars, list(a=1)[0])
expect_true(m$panels[[1]]$range$left > 20 && m$panels[[1]]$range$left < 70)
expect_true(m$panels[[1]]$range$right > 480 && m$panels[[1]]$range$right < 499)
expect_true(m$panels[[1]]$range$bottom > 450 && m$panels[[1]]$range$bottom < 490)
expect_true(m$panels[[1]]$range$top > 1 && m$panels[[1]]$range$top < 20)
p <- ggplot(dat, aes(xvar)) + geom_point(aes(y=yvar))
png(tmpfile)
m <- getGgplotCoordmap(print(p), 500, 500, 72)
dev.off()
expect_equal(sortList(m$panels[[1]]$mapping), list(x = "xvar", y = "yvar"))
p <- ggplot(dat, aes(xvar/2)) + geom_histogram(binwidth=1)
png(tmpfile)
m <- getGgplotCoordmap(print(p), 500, 500, 72)
dev.off()
expect_equal(sortList(m$panels[[1]]$mapping), list(x = "xvar/2", y = NULL))
})
test_that("ggplot coordmap with facet_wrap", {
dat <- data.frame(xvar = c(0, 5, 10), yvar = c(10, 20, 30),
g = c("a", "b", "c"))
tmpfile <- tempfile("test-shiny", fileext = ".png")
on.exit(unlink(tmpfile))
p <- ggplot(dat, aes(xvar, yvar)) + geom_point() +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0)) +
facet_wrap(~ g, ncol = 2)
png(tmpfile)
m <- getGgplotCoordmap(print(p), 500, 400, 72)
dev.off()
expect_equal(length(m$panels), 3)
expect_equal(m$panels[[1]]$panel, 1)
expect_equal(m$panels[[1]]$row, 1)
expect_equal(m$panels[[1]]$col, 1)
expect_equal(m$panels[[2]]$panel, 2)
expect_equal(m$panels[[2]]$row, 1)
expect_equal(m$panels[[2]]$col, 2)
expect_equal(m$panels[[3]]$panel, 3)
expect_equal(m$panels[[3]]$row, 2)
expect_equal(m$panels[[3]]$col, 1)
expect_equal(m$panels[[1]]$mapping, list(x = "xvar", y = "yvar", panelvar1 = "g"))
expect_equal(m$panels[[1]]$mapping, m$panels[[2]]$mapping)
expect_equal(m$panels[[2]]$mapping, m$panels[[3]]$mapping)
expect_equal(
sortList(m$panels[[1]]$domain),
sortList(list(left=0, right=10, bottom=10, top=30))
)
expect_equal(sortList(m$panels[[1]]$domain), sortList(m$panels[[2]]$domain))
expect_equal(sortList(m$panels[[2]]$domain), sortList(m$panels[[3]]$domain))
factor_vals <- dat$g
expect_equal(m$panels[[1]]$panel_vars, list(panelvar1 = factor_vals[1]))
expect_equal(m$panels[[2]]$panel_vars, list(panelvar1 = factor_vals[2]))
expect_equal(m$panels[[3]]$panel_vars, list(panelvar1 = factor_vals[3]))
})
test_that("ggplot coordmap with facet_grid", {
dat <- data.frame(xvar = c(0, 5, 10), yvar = c(10, 20, 30),
g = c("a", "b", "c"))
tmpfile <- tempfile("test-shiny", fileext = ".png")
on.exit(unlink(tmpfile))
p <- ggplot(dat, aes(xvar, yvar)) + geom_point() +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0))
p1 <- p + facet_grid(. ~ g)
png(tmpfile)
m <- getGgplotCoordmap(print(p1), 500, 400, 72)
dev.off()
expect_equal(length(m$panels), 3)
expect_equal(m$panels[[1]]$panel, 1)
expect_equal(m$panels[[1]]$row, 1)
expect_equal(m$panels[[1]]$col, 1)
expect_equal(m$panels[[2]]$panel, 2)
expect_equal(m$panels[[2]]$row, 1)
expect_equal(m$panels[[2]]$col, 2)
expect_equal(m$panels[[3]]$panel, 3)
expect_equal(m$panels[[3]]$row, 1)
expect_equal(m$panels[[3]]$col, 3)
expect_equal(m$panels[[1]]$mapping, list(x = "xvar", y = "yvar", panelvar1 = "g"))
expect_equal(m$panels[[1]]$mapping, m$panels[[2]]$mapping)
expect_equal(m$panels[[2]]$mapping, m$panels[[3]]$mapping)
expect_equal(
sortList(m$panels[[1]]$domain),
sortList(list(left=0, right=10, bottom=10, top=30))
)
expect_equal(sortList(m$panels[[1]]$domain), sortList(m$panels[[2]]$domain))
expect_equal(sortList(m$panels[[2]]$domain), sortList(m$panels[[3]]$domain))
factor_vals <- dat$g
expect_equal(m$panels[[1]]$panel_vars, list(panelvar1 = factor_vals[1]))
expect_equal(m$panels[[2]]$panel_vars, list(panelvar1 = factor_vals[2]))
expect_equal(m$panels[[3]]$panel_vars, list(panelvar1 = factor_vals[3]))
p1 <- p + facet_grid(g ~ .)
png(tmpfile)
m <- getGgplotCoordmap(print(p1), 500, 400, 72)
dev.off()
expect_equal(length(m$panels), 3)
expect_equal(m$panels[[1]]$panel, 1)
expect_equal(m$panels[[1]]$row, 1)
expect_equal(m$panels[[1]]$col, 1)
expect_equal(m$panels[[2]]$panel, 2)
expect_equal(m$panels[[2]]$row, 2)
expect_equal(m$panels[[2]]$col, 1)
expect_equal(m$panels[[3]]$panel, 3)
expect_equal(m$panels[[3]]$row, 3)
expect_equal(m$panels[[3]]$col, 1)
expect_equal(m$panels[[1]]$mapping, list(x = "xvar", y = "yvar", panelvar1 = "g"))
expect_equal(m$panels[[1]]$mapping, m$panels[[2]]$mapping)
expect_equal(m$panels[[2]]$mapping, m$panels[[3]]$mapping)
expect_equal(
sortList(m$panels[[1]]$domain),
sortList(list(left=0, right=10, bottom=10, top=30))
)
expect_equal(sortList(m$panels[[1]]$domain), sortList(m$panels[[2]]$domain))
expect_equal(sortList(m$panels[[2]]$domain), sortList(m$panels[[3]]$domain))
factor_vals <- dat$g
expect_equal(m$panels[[1]]$panel_vars, list(panelvar1 = factor_vals[1]))
expect_equal(m$panels[[2]]$panel_vars, list(panelvar1 = factor_vals[2]))
expect_equal(m$panels[[3]]$panel_vars, list(panelvar1 = factor_vals[3]))
})
test_that("ggplot coordmap with 2D facet_grid", {
dat <- data.frame(xvar = c(0, 5, 10, 15), yvar = c(10, 20, 30, 40),
g = c("a", "b"), h = c("i", "j"))
tmpfile <- tempfile("test-shiny", fileext = ".png")
on.exit(unlink(tmpfile))
p <- ggplot(dat, aes(xvar, yvar)) + geom_point() +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0))
p1 <- p + facet_grid(g ~ h)
png(tmpfile)
m <- getGgplotCoordmap(print(p1), 500, 400, 72)
dev.off()
expect_equal(length(m$panels), 4)
expect_equal(m$panels[[1]]$panel, 1)
expect_equal(m$panels[[1]]$row, 1)
expect_equal(m$panels[[1]]$col, 1)
expect_equal(m$panels[[2]]$panel, 2)
expect_equal(m$panels[[2]]$row, 1)
expect_equal(m$panels[[2]]$col, 2)
expect_equal(m$panels[[3]]$panel, 3)
expect_equal(m$panels[[3]]$row, 2)
expect_equal(m$panels[[3]]$col, 1)
expect_equal(m$panels[[4]]$panel, 4)
expect_equal(m$panels[[4]]$row, 2)
expect_equal(m$panels[[4]]$col, 2)
expect_equal(m$panels[[1]]$mapping, list(x = "xvar", y = "yvar", panelvar1 = "h", panelvar2 = "g"))
expect_equal(m$panels[[1]]$mapping, m$panels[[2]]$mapping)
expect_equal(m$panels[[2]]$mapping, m$panels[[3]]$mapping)
expect_equal(m$panels[[4]]$mapping, m$panels[[4]]$mapping)
expect_equal(
sortList(m$panels[[1]]$domain),
sortList(list(left=0, right=15, bottom=10, top=40))
)
expect_equal(sortList(m$panels[[1]]$domain), sortList(m$panels[[2]]$domain))
expect_equal(sortList(m$panels[[2]]$domain), sortList(m$panels[[3]]$domain))
expect_equal(sortList(m$panels[[3]]$domain), sortList(m$panels[[4]]$domain))
expect_equal(m$panels[[1]]$panel_vars, list(panelvar1 = dat$h[1], panelvar2 = dat$g[1]))
expect_equal(m$panels[[2]]$panel_vars, list(panelvar1 = dat$h[2], panelvar2 = dat$g[1]))
expect_equal(m$panels[[3]]$panel_vars, list(panelvar1 = dat$h[1], panelvar2 = dat$g[2]))
expect_equal(m$panels[[4]]$panel_vars, list(panelvar1 = dat$h[2], panelvar2 = dat$g[2]))
})
test_that("ggplot coordmap with various data types", {
tmpfile <- tempfile("test-shiny", fileext = ".png")
on.exit(unlink(tmpfile))
dat <- expand.grid(xvar = letters[1:3], yvar = LETTERS[1:4])
p <- ggplot(dat, aes(xvar, yvar)) + geom_point() +
scale_x_discrete(expand = c(0 ,0)) +
scale_y_discrete(expand = c(0, 0))
png(tmpfile)
m <- getGgplotCoordmap(print(p), 500, 400, 72)
dev.off()
expectation <- list(
left = 1,
right = 3,
bottom = 1,
top = 4,
discrete_limits = list(
x = letters[1:3],
y = LETTERS[1:4]
)
)
expect_equal(
sortList(m$panels[[1]]$domain),
sortList(expectation)
)
dat <- data.frame(
xvar = as.Date("2016-09-27") + c(0, 10),
yvar = as.POSIXct("2016-09-27 09:00:00", origin = "1960-01-01", tz = "GMT") + c(3600, 0)
)
p <- ggplot(dat, aes(xvar, yvar)) + geom_point() +
scale_x_date(expand = c(0 ,0)) +
scale_y_datetime(expand = c(0, 0))
png(tmpfile)
m <- getGgplotCoordmap(print(p), 500, 400, 72)
dev.off()
expect_equal(
sortList(m$panels[[1]]$domain),
sortList(list(
left = as.numeric(dat$xvar[1]),
right = as.numeric(dat$xvar[2]),
bottom = as.numeric(dat$yvar[2]),
top = as.numeric(dat$yvar[1])
))
)
})
test_that("ggplot coordmap with various scales and coords", {
tmpfile <- tempfile("test-shiny", fileext = ".png")
on.exit(unlink(tmpfile))
dat <- data.frame(xvar = c(0, 5), yvar = c(10, 20))
p <- ggplot(dat, aes(xvar, yvar)) + geom_point() +
scale_x_continuous(expand = c(0 ,0)) +
scale_y_reverse(expand = c(0, 0))
png(tmpfile)
m <- getGgplotCoordmap(print(p), 500, 400, 72)
dev.off()
expect_equal(
sortList(m$panels[[1]]$domain),
sortList(list(left=0, right=5, bottom=20, top=10))
)
p <- ggplot(dat, aes(xvar, yvar)) + geom_point() +
scale_x_continuous(expand = c(0 ,0)) +
scale_y_continuous(expand = c(0 ,0)) +
coord_flip()
png(tmpfile)
m <- getGgplotCoordmap(print(p), 500, 400, 72)
dev.off()
expect_equal(m$panels[[1]]$mapping, list(x = "yvar", y = "xvar"))
expect_equal(
sortList(m$panels[[1]]$domain),
sortList(list(left=10, right=20, bottom=0, top=5))
)
dat <- data.frame(xvar = c(10^-1, 10^3), yvar = c(2^-2, 2^4))
p <- ggplot(dat, aes(xvar, yvar)) + geom_point() +
scale_x_log10(expand = c(0 ,0)) +
scale_y_continuous(expand = c(0, 0)) +
coord_trans(y = "log2")
png(tmpfile)
m <- getGgplotCoordmap(print(p), 500, 400, 72)
dev.off()
expect_equal(
sortList(m$panels[[1]]$log),
sortList(list(x=10, y=2))
)
expect_equal(
sortList(m$panels[[1]]$domain),
sortList(list(left=-1, right=3, bottom=-2, top=4))
)
})
test_that("ggplot coordmap maintains discrete limits", {
tmpfile <- tempfile("test-shiny", fileext = ".png")
on.exit(unlink(tmpfile))
p <- ggplot(mpg) +
geom_point(aes(fl, cty), alpha = 0.2) +
facet_wrap(~drv, scales = "free_x")
png(tmpfile)
m <- getGgplotCoordmap(print(p), 500, 400, 72)
dev.off()
expect_length(m$panels, 3)
expect_equal(
m$panels[[1]]$domain$discrete_limits,
list(x = c("d", "e", "p", "r"))
)
expect_equal(
m$panels[[2]]$domain$discrete_limits,
list(x = c("c", "d", "e", "p", "r"))
)
expect_equal(
m$panels[[3]]$domain$discrete_limits,
list(x = c("e", "p", "r"))
)
p2 <- ggplot(mpg) +
geom_point(aes(cty, fl), alpha = 0.2) +
facet_wrap(~drv, scales = "free_y")
png(tmpfile)
m2 <- getGgplotCoordmap(print(p2), 500, 400, 72)
dev.off()
expect_length(m2$panels, 3)
expect_equal(
m2$panels[[1]]$domain$discrete_limits,
list(y = c("d", "e", "p", "r"))
)
expect_equal(
m2$panels[[2]]$domain$discrete_limits,
list(y = c("c", "d", "e", "p", "r"))
)
expect_equal(
m2$panels[[3]]$domain$discrete_limits,
list(y = c("e", "p", "r"))
)
p3 <- ggplot(mpg) +
geom_point(aes(fl, cty), alpha = 0.2) +
scale_x_discrete(limits = c("c", "d", "e"))
png(tmpfile)
m3 <- getGgplotCoordmap(suppressWarnings(print(p3)), 500, 400, 72)
dev.off()
expect_length(m3$panels, 1)
expect_equal(
m3$panels[[1]]$domain$discrete_limits,
list(x = c("c", "d", "e"))
)
p4 <- ggplot(mpg) +
geom_point(aes(cty, fl), alpha = 0.2) +
scale_y_discrete(limits = c("e", "f"))
png(tmpfile)
m4 <- getGgplotCoordmap(suppressWarnings(print(p4)), 500, 400, 72)
dev.off()
expect_length(m4$panels, 1)
expect_equal(
m4$panels[[1]]$domain$discrete_limits,
list(y = c("e", "f"))
)
p5 <- ggplot(mpg) +
geom_point(aes(fl, cty), alpha = 0.2) +
scale_x_discrete(
limits = c("e", "f"),
labels = c("foo", "bar")
)
png(tmpfile)
m5 <- getGgplotCoordmap(suppressWarnings(print(p5)), 500, 400, 72)
dev.off()
expect_length(m5$panels, 1)
expect_equal(
m5$panels[[1]]$domain$discrete_limits,
list(x = c("e", "f"))
)
}) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(ruin)
set.seed(1991)
model <- CramerLundbergCapitalInjections(
initial_capital = 0,
premium_rate = 1,
claim_poisson_arrival_rate = 1,
claim_size_generator = rexp,
claim_size_parameters = list(rate = 1),
capital_injection_poisson_rate = 1,
capital_injection_size_generator = rexp,
capital_injection_size_parameters = list(rate = 1)
)
one_path <- simulate_path(model = model, max_time_horizon = 10)
one_path <- simulate_path(model = model, max_time_horizon = 10)
head(one_path@path)
plot_path(one_path)
ruin_probability(model = model, time_horizon = 10, parallel = FALSE) |
build_vignette_with_user_id_token = FALSE
if (build_vignette_with_user_id_token) {
knitr::opts_chunk$set(fig.width = 12,
fig.height = 10,
fig.align = "center",
warning = FALSE,
message = FALSE,
eval = TRUE,
echo = TRUE,
cache = TRUE,
cache.rebuild = TRUE)
USER_ID = 'use the true user-id here'
token = 'use the true token here'
}
if (!build_vignette_with_user_id_token) {
knitr::opts_chunk$set(fig.width = 12,
fig.height = 10,
fig.align = "center",
warning = FALSE,
message = FALSE)
file_heart = system.file('tests_vignette_rds', 'heart_dat.RDS', package = 'fitbitViz')
file_sleep = system.file('tests_vignette_rds', 'sleep_ts.RDS', package = 'fitbitViz')
file_tcx = system.file('tests_vignette_rds', 'res_tcx.RDS', package = 'fitbitViz')
file_rst = system.file('tests_vignette_rds', 'raysh_rst.tif', package = 'fitbitViz')
heart_dat = readRDS(file = file_heart)
sleep_ts = readRDS(file = file_sleep)
res_tcx = readRDS(file = file_tcx)
raysh_rst = raster::raster(x = file_rst)
}
WEEK = 11
num_character_error = 135
weeks_2021 = fitbitViz:::split_year_in_weeks(year = 2021)
date_start = lubridate::floor_date(lubridate::ymd(weeks_2021[WEEK]), unit = 'weeks') + 1
date_end = date_start + 6
sleep_time_begins = "00H 40M 0S"
sleep_time_ends = "08H 00M 0S"
VERBOSE = FALSE
dt_heart_rate_data = data.table::rbindlist(heart_dat$heart_rate_intraday)
dt_heart_rate = DT::datatable(data = dt_heart_rate_data,
rownames = FALSE,
extensions = 'Buttons',
options = list(pageLength = 10,
dom = 'Bfrtip',
buttons = list(list(extend = 'csv',
filename = 'heart_rate_time_series'))))
dt_heart_rate
hrt_rt_var = fitbitViz::heart_rate_variability_sleep_time(heart_rate_data = heart_dat,
sleep_begin = sleep_time_begins,
sleep_end = sleep_time_ends,
ggplot_hr_var = TRUE,
angle_x_axis = 25)
dt_heart_rate_var = DT::datatable(data = hrt_rt_var$hr_var_data,
rownames = FALSE,
extensions = 'Buttons',
options = list(pageLength = 10,
dom = 'Bfrtip',
buttons = list(list(extend = 'csv',
filename = 'heart_rate_variability'))))
dt_heart_rate_var
dt_sleep_heatmap = DT::datatable(data = sleep_ts$heatmap_data,
rownames = FALSE,
extensions = 'Buttons',
options = list(pageLength = 10,
dom = 'Bfrtip',
buttons = list(list(extend = 'csv',
filename = 'sleep_heat_map'))))
dt_sleep_heatmap
res_lft = fitbitViz::leafGL_point_coords(dat_gps_tcx = res_tcx,
color_points_column = 'AltitudeMeters',
provider = leaflet::providers$Esri.WorldImagery,
option_viewer = rstudioapi::viewer,
CRS = 4326)
res_lft
dt_gps_tcx = DT::datatable(data = res_tcx,
rownames = FALSE,
extensions = 'Buttons',
class = 'white-space: nowrap',
options = list(pageLength = 10,
dom = 'Bfrtip',
buttons = list(list(extend = 'csv',
filename = 'GPS_TCX_data'))))
dt_gps_tcx
sf_rst_ext = fitbitViz::extend_AOI_buffer(dat_gps_tcx = res_tcx,
buffer_in_meters = 1000,
CRS = 4326,
verbose = VERBOSE)
linestring_dat = fitbitViz::gps_lat_lon_to_LINESTRING(dat_gps_tcx = res_tcx,
CRS = 4326,
time_split_asc_desc = NULL,
verbose = VERBOSE)
idx_3m = c(which.min(res_tcx$AltitudeMeters),
as.integer(length(res_tcx$AltitudeMeters) / 2),
which.max(res_tcx$AltitudeMeters))
cols_3m = c('latitude', 'longitude', 'AltitudeMeters')
dat_3m = res_tcx[idx_3m, ..cols_3m] |
localUploadUI <- function(id){
ns <- NS(id)
box(width = 4, title = h2("Upload Local Files"), solidHeader = T, status = "success",
fileInput(
inputId = ns("file"),
label = "Upload Local Files",
accept = NULL,
multiple = TRUE,
placeholder = "Drag and drop files here"
),
DT::DTOutput(ns("dtfiles")),
verbatimTextOutput(ns("test")),
hr(),
textInput(
ns("new_local_filename"),
label = "Set Destination Directory (for testing only)",
placeholder = "Enter New Directory Name Here"
),
actionButton(ns("LocalFinishButton"), label = "Finish Download"),
hr(),
p("Location of Downloaded Files: (Testing Only)"),
verbatimTextOutput(ns("LocaldbfilesPath"))
)
}
localUpload <- function(input, output, session){
observe({
inFile <- input$file
n <- length(inFile$name)
names <- inFile$name
if (is.null(inFile))
return(NULL)
splits <- list()
for (i in 1:n) {
splits <- base::sub("/tmp/Rtmp[[:alnum:]]{6}/", "", inFile[i, "datapath"])
print(splits)
filenames <- list.files(temp)
oldpath <- file.path(temp, splits[i])
print(oldpath[i])
print(list.files(temp)[i])
print(file.path(temp, inFile[i, "name"]))
base::file.rename(oldpath[i], file.path(temp, "local_tempdir", inFile[i, "name"]))
base::unlink(dirname(oldpath[i]), recursive = TRUE)
}
uploaded_local <- as.data.frame(list.files(file.path(temp, "local_tempdir")))
names(uploaded_local) <- "Available Files"
Shared.data$local_files <- uploaded_local
})
output$dtfiles <- DT::renderDT({Shared.data$local_files}, selection = 'single', options = list(ordering = F, dom = 'tp'))
observe({
Shared.data$selected_row_local <- as.character(Shared.data$local_files[input$dtfiles_rows_selected,])
})
output$test <- renderPrint({Shared.data$selected_row_local})
observeEvent(input$LocalFinishButton, {
local_dirname <- gsub(" ", "_", input$new_local_filename)
dir.create(file.path(PEcAn_path, local_dirname))
path_to_local_tempdir <- file.path(local_tempdir)
list_of_local_files <- list.files(path_to_local_tempdir)
n <- length(list_of_d1_files)
for (i in 1:n){
base::file.copy(file.path(path_to_local_tempdir, list_of_local_files[i]), file.path(PEcAn_path, local_dirname, list_of_local_files[i]))
}
output$LocaldbfilesPath <- renderText({paste0(PEcAn_path, local_dirname)})
})
} |
plot.mmsbm <- function(x, type="groups", FX=NULL, node=NULL, ...){
if(type %in% c("blockmodel", "membership", "hmm")){
if (!requireNamespace("ggplot2", quietly = TRUE)) {
stop("Package \"ggplot2\" needed to produce requested plot. Please install it.",
call. = FALSE)
}
}
if(type=="groups"){
colRamp <- colorRamp(c("
g.mode <- ifelse(x$forms$directed, "directed", "undirected")
adj_mat <- x$BlockModel
dimnames(adj_mat) <- list(paste("G",1:nrow(adj_mat), sep=""),
paste("G", 1:ncol(adj_mat), sep=""))
block.G <- igraph::graph.adjacency(plogis(adj_mat), mode=g.mode, weighted=TRUE)
e.weight <- (1/diff(range(igraph::E(block.G)$weight))) * (igraph::E(block.G)$weight - max(igraph::E(block.G)$weight)) + 1
e.cols <- rgb(colRamp(e.weight), maxColorValue = 255)
times.arg <- if(g.mode == "directed") {
x$n_blocks
} else {
rev(seq_len(x$n_blocks))
}
v.size <- rowMeans(x$MixedMembership)*100 + 20
radian.rescale <- function(x, start=0, direction=1) {
c.rotate <- function(x) (x + start) %% (2 * pi) * direction
c.rotate(scales::rescale(x, c(0, 2 * pi), range(x)))
}
loop.rads <- radian.rescale(x=1:x$n_blocks, direction=-1, start=0)
loop.rads <- rep(loop.rads, times = times.arg)
igraph::plot.igraph(block.G, main = "",
edge.width=4, edge.color=e.cols, edge.curved = x$forms$directed, edge.arrow.size = 0.65,
edge.loop.angle = loop.rads,
vertex.size=v.size, vertex.color="white", vertex.frame.color="black",
vertex.label.font=2, vertex.label.cex=1, vertex.label.color="black",
layout = igraph::layout_in_circle)
.bar.legend(colRamp, range(igraph::E(block.G)$weight))
}
if(type=="blockmodel"){
x$dyadic.data$Y <- x$Y
nodes <- unique(x$monadic.data$`(nid)`)
MMat <- sapply(nodes,function(y){
Dsub <- x$dyadic.data[x$dyadic.data$`(sid)`==y | x$dyadic.data$`(rid)`==y,]
return(sapply(nodes, function(y){sum(Dsub$Y[Dsub$`(sid)`==y | Dsub$`(rid)`==y])}))
})
diag(MMat) <- 0
clusters <- head(x, n=length(nodes))
csort <- sort(sapply(nodes, function(y){which.max(sapply(clusters, "[[", y))}))
corder <- unlist(sapply(1:x$n_blocks, function(z){sort(clusters[[z]][names(csort)[csort==z]], decreasing=T)}))
MMat <- MMat[names(corder), names(corder)]
plot(1, 1,
xlim = c(.5, length(nodes) + .5),
ylim = c(.5, length(nodes) + .5),
main = "",
xlab = "",
ylab = "",
type = "n", axes = FALSE)
polygon.color <- c("white", "black")
for (i in 1:length(nodes)) {
for (t in 1:length(nodes)) {
temp <- ifelse(MMat[i,t] > 0, 2, 1)
polygon(c(.5 + t - 1, .5 + t, .5 + t, .5 + t - 1),
length(nodes) - c(i-.5, i-.5, i+.5, i+.5),
density = NA,
border = polygon.color[temp],
col = polygon.color[temp])
}
}
par(xpd=FALSE)
for(i in 1:x$n_blocks){
if(i < x$n_blocks){
abline(h=length(nodes)-length(which(csort %in% 1:i))-.5, col="red", lty=2, lwd=2)
abline(v=length(which(csort %in% 1:i))+.5, col="red", lty=2, lwd=2)
}
}
v.size <- rowMeans(x$MixedMembership)
bm <- x$BlockModel
bm[upper.tri(bm)] <- NA
dm <- data.frame(Sender = rep(paste("Group", 1:nrow(bm)), times = x$n_blocks),
Receiver = rep(paste("Group", 1:nrow(bm)), each = x$n_blocks),
Val = plogis(c(bm)))
dm <- dm[complete.cases(dm),]
dm$Sender <- factor(dm$Sender, levels=rev(paste("Group", 1:nrow(bm))))
p <- ggplot2::ggplot(ggplot2::aes_string(y = "Sender", x = "Receiver", fill="Val"), data = dm) +
ggplot2::ggtitle("Edge Formation Between Blocs") +
ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5)) +
ggplot2::geom_tile(color = "white") +
ggplot2::theme_bw() +
ggplot2::scale_size(guide='none') +
ggplot2::scale_fill_gradient2(low = "
midpoint = max(dm$Val)/2, limit = c(0,max(dm$Val)), name="Edge\nProbability")
print(p)
}
if(type=="membership"){
ifelse(is.null(node),
nr <- 1:nrow(x$monadic.data),
nr <- which(x$monadic.data$`(nid)`==node))
avgmems <- lapply(1:nrow(x$MixedMembership), function(y){
tapply(x$MixedMembership[y,nr], x$monadic.data[nr,"(tid)"], mean)})
avgmems <- as.data.frame(cbind(rep(unique(as.character(x$monadic.data[nr,"(tid)"])), nrow(x$MixedMembership)),unlist(avgmems),
rep(1:nrow(x$MixedMembership), each=length(unique(x$monadic.data[nr,"(tid)"])))))
colnames(avgmems) <- c("Time", "Avg.Membership", "Group")
avgmems$Group <- factor(avgmems$Group, levels=length(unique(avgmems$Group)):1)
if(class(avgmems$Avg.Membership) != "numeric"){avgmems$Avg.Membership <- as.numeric(as.character(avgmems$Avg.Membership))}
if(class(avgmems$Time) != "numeric"){avgmems$Time <- as.numeric(as.character(avgmems$Time))}
return(ggplot2::ggplot() +
ggplot2::geom_area(ggplot2::aes_string(y = "Avg.Membership", x = "Time", fill="Group"), data = avgmems,
stat="identity", position="stack") +
ggplot2::guides(fill=ggplot2::guide_legend(title="Group")))
}
if(type=="effect"){
stopifnot(is.list(FX))
cov <- strsplit(names(FX)[1], " ")[[1]][5]
ymax <- max(hist(FX[[5]])[["counts"]])
hist(FX[[5]], main=paste("Distribution of Marginal Effects:", strsplit(names(FX)[1], " ")[[1]][5]),
xlab=paste("Effect of", cov, "on Pr(Edge Formation)"))
plot(unique(x$dyadic.data[,"(tid)"]), tapply(FX[[5]], x$dyadic.data[,"(tid)"], mean), type="o",
xlab="Time", ylab=paste("Effect of", cov, "on Pr(Edge Formation)"), main="Marginal Effect over Time")
nodenames <- names(sort(table(x$monadic.data[,"(nid)"]), decreasing=TRUE))
nodes <- sort(FX[[3]])[names(sort(FX[[3]])) %in% nodenames]
plot(1, type="n", xlab="Node-Level Estimated Effect", ylab="",
xlim=c(min(nodes), max(nodes) + 0.001),
ylim = c(0, length(nodes)), yaxt="n")
for(i in 1:length(nodes)){
points(nodes[i],i, pch=19)
text(nodes[i],i, names(nodes)[i], pos=4, cex=0.7)
}
}
if(type=="hmm"){
hms <- as.data.frame(do.call(rbind, lapply(1:nrow(x$Kappa), function(x){
cbind(1:ncol(x$Kappa), x$Kappa[x,], x)
})))
colnames(hms) <- c("Time", "Kappa", "State")
hms$State <- as.factor(hms$State)
return(ggplot2::ggplot() +
ggplot2::geom_area(ggplot2::aes_string(y = "Kappa", x = "Time", fill="State"), data = hms,
stat="identity", position="stack") +
ggplot2::guides(fill=ggplot2::guide_legend(title="HMM State")))
}
} |
coxed.npsf.tvc <- function(cox.model, newdata=NULL, coef=NULL, b.ind=NULL) {
start <- ceiling(cox.model$y[,1])
end <- ceiling(cox.model$y[,2])
failed <- cox.model$y[,3]
exp.xb <- exp(predict(cox.model, type="lp"))
if(!is.null(coef)){
start <- start[b.ind]
end <- end[b.ind]
failed <- failed[b.ind]
exp.xb <- exp.xb[b.ind]
}
h <- as.data.frame(cbind(start, end, failed, exp.xb))
diff <- h$end - h$start
h <- h[rep(1:nrow(h), diff),]
h$time <- h$start + sequence(diff)
h$failed <- ifelse(h$time==h$end, h$failed, 0)
h <- dplyr::group_by(h, time)
h <- dplyr::summarize(h, d = sum(failed),
exp.xb = sum(exp.xb))
CBH <- cumsum(h$d / h$exp.xb)
S.bl <- exp(-CBH)
baseline.functions <- data.frame(time = h$time, cbh = CBH, survivor = S.bl)
if(!is.null(newdata)) exp.xb <- exp(predict(cox.model, newdata=newdata, type="lp"))
expect.duration <- sapply(exp.xb, FUN=function(x){
sum(S.bl^x)
})
return(list(baseline.functions = baseline.functions,
exp.dur = expect.duration))
} |
gen_esize_m <- function (lineup_boot_df, k){
table_boot_df <- map(lineup_boot_df,~table(.))
map_dbl(table_boot_df, ~ esize_m(., k))
} |
.resno2str <- function(res, sep=c("+", "-")) {
res <- res[!is.na(res)]
if(!length(res)>0){
return(NULL)
}
else {
res1 <- bounds(res)
res2 <- paste(res1[,"start"], res1[,"end"], sep=sep[2])
inds <- res1[,"start"] == res1[,"end"]
res2[inds] <- res1[inds, "start"]
res3 <- paste(res2, collapse=sep[1])
return(res3)
}
}
pymol <- function(...)
UseMethod("pymol")
pymol.pdbs <- function(pdbs, col=NULL, as="ribbon", file=NULL,
type="script", exefile = "pymol", user.vec=NULL, ...) {
allowed <- c("session", "script", "launch")
if(!type %in% allowed) {
stop(paste("input argument 'type' must be either of:",
paste(allowed, collapse=", ")))
}
allowed <- c("ribbon", "cartoon", "lines", "putty")
if(!as %in% allowed) {
stop(paste("input argument 'as' must be either of:",
paste(allowed, collapse=", ")))
}
if(!is.null(col) & !inherits(col, "core")) {
if(length(col) == 1) {
allowed <- c("index", "index2", "rmsf", "gaps", "user")
if(!col %in% allowed) {
stop(paste("input argument 'col' must be either of:",
paste(allowed, collapse=", ")))
}
}
else {
if(!is.numeric(col)) {
stop("col must be a numeric vector with length equal to the number of structures in the input pdbs object")
}
if(length(col) != length(pdbs$id)) {
stop("col must be a vector with length equal to the number of structures in input pdbs")
}
}
}
if(is.null(file)) {
if(type=="session")
file <- "R.pse"
if(type=="script")
file <- "R.pml"
}
if(type %in% c("session", "launch")) {
exefile1 <- .get.exepath(exefile)
success <- .test.exefile(exefile1)
if(!success) {
stop(paste("Launching external program failed\n",
" make sure '", exefile, "' is in your search path", sep=""))
}
exefile <- exefile1
}
dots <- list(...)
if("prefix" %in% names(dots)) {
pdbs$id <- paste(dots$prefix, pdbs$id, sep="")
}
if("pdbext" %in% names(dots)) {
pdbs$id <- paste(pdbs$id, dots$pdbext, sep="")
}
if(type %in% c("session", "launch"))
tdir <- tempdir()
else
tdir <- "."
pdbdir <- paste(tdir, "pymol_pdbs", sep="/")
if(!file.exists(pdbdir))
dir.create(pdbdir)
pmlfile <- tempfile(tmpdir=tdir, fileext=".pml")
psefile <- tempfile(tmpdir=tdir, fileext=".pse")
ids <- basename.pdb(pdbs$id)
bf <- NULL
if(as == "putty") {
bf <- rmsf(pdbs$xyz)
}
else {
if(!is.null(col)) {
if(col[1] == "rmsf") {
bf <- rmsf(pdbs$xyz)
}
if(col[1] == "index2") {
bf <- 1:ncol(pdbs$ali)/ncol(pdbs$ali)
}
if(col[1] == "user") {
if(is.null(user.vec) || !is.numeric(user.vec) ||
length(user.vec) != ncol(pdbs$ali)) {
stop("User defined color vector must be numeric and the same dimension as pdbs")
}
bf <- user.vec
}
}
}
if(all(file.exists(pdbs$id))) {
allatom <- TRUE
files <- pdbs$id
for(i in 1:length(pdbs$id)) {
pdb <- read.pdb(files[i])
sele <- atom.select(pdb, "calpha")
gaps <- is.gap(pdbs$xyz[i,])
pdb$xyz <- fit.xyz(pdbs$xyz[i, !gaps], pdb$xyz,
fixed.inds = 1:length(pdbs$xyz[i, !gaps]),
mobile.inds = sele$xyz)
fn <- paste0(pdbdir, "/", ids[i], ".pdb")
tmpbf <- NULL
if(!is.null(bf)) {
gaps <- is.gap(pdbs$ali[i,])
tmpbf <- pdb$atom$b*0
tmpbf[sele$atom] <- bf[!gaps]
}
write.pdb(pdb, b=tmpbf, file=fn)
files[i] <- fn
}
}
else {
allatom <- FALSE
files <- rep(NA, length(pdbs$id))
for(i in 1:length(pdbs$id)) {
pdb <- pdbs2pdb(pdbs, inds=i)[[1]]
fn <- paste0(pdbdir, "/", ids[i], ".pdb")
tmpbf <- NULL
if(!is.null(bf)) {
gaps <- is.gap(pdbs$ali[i,])
tmpbf <- bf[!gaps]
}
write.pdb(pdb=pdb, b=tmpbf, file=fn)
files[i] <- fn
}
}
lines <- rep(NA, 5*length(pdbs$id))
for(i in 1:length(files)) {
lines[i] <- paste("load", files[i])
}
l <- i
if(as == "putty") {
lines[l+1] <- "cartoon putty"
lines[l+2] <- "as cartoon"
lines[l+3] <- "unset cartoon_smooth_loops"
lines[l+4] <- "unset cartoon_flat_sheets"
lines[l+5] <- "spectrum b, rainbow"
lines[l+6] <- "set cartoon_putty_radius, 0.2"
l <- l+6
as <- "cartoon"
}
if(!allatom) {
if(!as %in% c("cartoon", "ribbon")) {
warning("'as' set to 'ribbon' for c-alpha only structures")
as <- "ribbon"
}
lines[l+1] <- paste0("set ", as, "_trace_atoms, 1")
l <- l+1
}
lines[l+1] <- paste("as", as)
l <- l+1
if(!is.null(col)) {
if(inherits(col, "core")) {
core <- col
l <- l+1
lines[l] <- "color grey50"
for(j in 1:length(files)) {
res <- .resno2str(pdbs$resno[j, core$atom])
if(!is.null(res)) {
selname <- paste0(ids[j], "-core")
lines[l+1] <- paste0("select ", selname, ", ", ids[j], " and resi ", res)
lines[l+2] <- paste0("color red, ", selname)
l <- l+2
}
}
}
if(col[1] == "gaps") {
l <- l+1
lines[l] <- "color grey50"
gaps <- gap.inspect(pdbs$ali)
for(j in 1:length(files)) {
res <- .resno2str(pdbs$resno[j, gaps$t.inds])
if(!is.null(res)) {
selname <- paste0(ids[j], "-gap")
lines[l+1] <- paste0("select ", selname, ", ", ids[j], " and resi ", res)
lines[l+2] <- paste0("color red, ", selname)
l <- l+2
}
}
}
if(length(col) > 1 & is.vector(col)) {
cols <- c("grey40", "red", "green", "blue", "cyan",
"purple", "yellow", "grey90", "magenta", "orange",
"pink", "wheat", "deepolive", "teal", "violet",
"limon", "slate", "density", "forest", "smudge", "salmon",
"brown")
for(j in 1:length(files)) {
lines[l+1] <- paste0("color ", cols[col[j]], ", ", ids[j])
l <- l+1
}
}
if(col[1] == "rmsf") {
l <- l+1
lines[l] <- "spectrum b, rainbow"
}
if(col[1] == "index") {
for(i in 1:length(pdbs$id)) {
l <- l+1
lines[l] <- paste("spectrum count, rainbow,", ids[i], "and name C*")
}
}
if(col[1] == "index2") {
for(i in 1:length(pdbs$id)) {
l <- l+1
lines[l] <- paste("spectrum b, rainbow,", ids[i])
}
}
if(col[1] == "user") {
for(i in 1:length(pdbs$id)) {
l <- l+1
lines[l] <- paste("spectrum b, rainbow,", ids[i])
}
}
}
lines[l+1] <- "zoom"
l <- l+1
if(type == "session") {
lines[l+1] <- paste("save",
normalizePath(psefile, winslash='/', mustWork=FALSE))
}
lines <- lines[!is.na(lines)]
write.table(lines, file=pmlfile, append=FALSE, quote=FALSE, sep="\n",
row.names=FALSE, col.names=FALSE)
if(type %in% c("session", "launch")) {
if(type == "session")
args <- "-cq"
else
args <- ""
cmd <- paste(exefile, args, pmlfile)
os1 <- Sys.info()["sysname"]
if (os1 == "Windows") {
status <- shell(paste(shQuote(exefile), args, pmlfile))
}
else {
status <- system(cmd)
}
if(!(status %in% c(0,1))) {
stop(paste("An error occurred while running command\n '",
exefile, "'", sep=""))
}
}
if(type == "session") {
file.copy(psefile, file, overwrite=TRUE)
unlink(pmlfile)
unlink(psefile)
message(paste("PyMOL session written to file", file))
invisible(file)
}
if(type == "script") {
file.copy(pmlfile, file, overwrite=TRUE)
unlink(pmlfile)
message(paste("PyMOL script written to file", file))
invisible(file)
}
} |
expected <- eval(parse(text="structure(c(1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L), class = \"factor\", .Label = c(\"A\", \"B\", \"C\", \"D\"))"));
test(id=0, code={
argv <- eval(parse(text="list(structure(1:4, .Label = c(\"A\", \"B\", \"C\", \"D\"), class = \"factor\", .Names = c(\"a\", \"b\", \"c\", \"d\")), 2)"));
.Internal(rep.int(argv[[1]], argv[[2]]));
}, o=expected); |
add_ceplane_setup <- function(plot_params) {
do.call("plot",
plot_params$setup,
quote = TRUE)
axis(1)
axis(2)
}
add_ceplane_polygon <- function(plot_params) {
do.call("polygon",
plot_params$polygon,
quote = TRUE)
box()
}
add_ceplane_points <- function(he,
plot_params) {
do.call("matplot",
c(list(x = he$delta_e,
y = he$delta_c,
add = TRUE),
plot_params$points),
quote = TRUE)
}
add_ceplane_icer <- function(he,
plot_params) {
do.call("text",
plot_params$icer_text,
quote = TRUE)
do.call("points",
c(list(
x = colMeans(he$delta_e),
y = colMeans(he$delta_c)),
plot_params$icer_points),
quote = TRUE)
}
add_ceplane_k_txt <- function(plot_params) {
k_equals_txt <-
paste0("k == ",
format(
plot_params$wtp,
digits = 3,
nsmall = 2,
scientific = FALSE))
do.call(text,
c(list(labels =
parse(text = k_equals_txt)),
plot_params$k_txt))
}
add_ceplane_legend <- function(legend_params) {
do.call(legend, legend_params)
}
add_axes <- function() {
abline(h = 0, v = 0, col = "dark grey")
} |
tll <- function(l) {
deprecate("purrr::transpose")
if (length(l) == 0)
return(list())
plyr::llply(
setMissingNames(object=seq_along(l[[1]]), nm=names(l[[1]])),
function (n)
plyr::llply(l, function(ll) ll[[n]])
)
} |
rm_proc_create_pseudoraters <- function( dat, rater, pid, reference_rater=NULL )
{
dat0 <- dat
rater0 <- paste0(rater)
pid0 <- pid
items <- colnames(dat)
dat <- NULL
pid <- NULL
rater <- NULL
I <- length(items)
m0 <- as.data.frame( matrix(NA, nrow=nrow(dat0), ncol=I) )
colnames(m0) <- colnames(dat0)
for (ii in 1:I){
dat_ii <- m0
dat_ii[, ii ] <- dat0[,ii]
rater_ii <- paste0( rater0, "-", items[ii] )
rater <- c( paste(rater), paste(rater_ii) )
dat <- rbind( dat, dat_ii)
pid <- c( pid, pid0)
}
if ( ! is.null(reference_rater) ){
reference_rater <- paste0(reference_rater, "-", items )
}
res <- list( dat=dat, rater=rater, pid=pid, reference_rater=reference_rater)
return(res)
} |
acontext("hjust text anchor")
grad.desc <- function(
FUN = function(x, y) x^2 + 2 * y^2, rg = c(-3, -3, 3, 3), init = c(-3, 3),
gamma = 0.05, tol = 0.001, gr = NULL, len = 50, nmax = 50) {
x <- seq(rg[1], rg[3], length = len)
y <- seq(rg[2], rg[4], length = len)
contour <- expand.grid(x = x, y = y)
contour$z <- as.vector(outer(x, y, FUN))
nms = names(formals(FUN))
grad = if (is.null(gr)) {
deriv(as.expression(body(FUN)), nms, function.arg = TRUE)
} else {
function(...) {
res = FUN(...)
attr(res, 'gradient') = matrix(gr(...), nrow = 1, ncol = 2)
res
}
}
xy <- init
newxy <- xy - gamma * attr(grad(xy[1], xy[2]), 'gradient')
z <- FUN(newxy[1], newxy[2])
gap <- abs(z - FUN(xy[1], xy[2]))
i <- 1
while (gap > tol && i <= nmax) {
xy <- rbind(xy, newxy[i, ])
newxy <- rbind(newxy, xy[i + 1, ] - gamma * attr(grad(xy[i + 1, 1], xy[i + 1, 2]), 'gradient'))
z <- c(z, FUN(newxy[i + 1, 1], newxy[i + 1, 2]))
gap <- abs(z[i + 1] - FUN(xy[i + 1, 1], xy[i + 1, 2]))
i <- i + 1
if (i > nmax) warning('Maximum number of iterations reached!')
}
objective <- data.frame(iteration = 1:i, x = xy[, 1], y = xy[, 2], z = z)
invisible(list(contour = contour, objective = objective))
}
dat <- grad.desc()
contour <- dat$contour
objective <- dat$objective
objective <- plyr::ldply(objective$iteration, function(i) {
df <- subset(objective, iteration <= i)
cbind(df, iteration2 = i)
})
objective2 <- subset(objective, iteration == iteration2)
grad.desc.viz <- function(hjust) {
objective2$hjust <- hjust
contour.plot <- ggplot() +
geom_contour(data = contour, aes(x = x, y = y, z = z, colour = ..level..), size = .5) +
scale_colour_continuous(name = "z value") +
geom_path(data = objective, aes(x = x, y = y),
showSelected = "iteration2", colour = "red", size = 1) +
geom_point(data = objective, aes(x = x, y = y), showSelected = "iteration2", colour = "green",
size = 2) +
geom_text(data = objective2, aes(x = x, y = y - 0.2, label = round(z, 2)), showSelected = "iteration2") +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0)) +
ggtitle("contour of function value") +
theme_animint(width = 600, height = 600)
objective.plot <- ggplot() +
geom_line(data = objective2, aes(x = iteration, y = z), colour = "red") +
geom_point(data = objective2, aes(x = iteration, y = z), colour = "red") +
geom_tallrect(data = objective2, aes(xmin = iteration - 1 / 2, xmax = iteration + 1 / 2),
clickSelects = "iteration2", alpha = .3) +
geom_text(data = objective2, aes(x = iteration, y = z + 0.3,
label = iteration), showSelected = "iteration2", hjust = hjust) +
ggtitle("objective value vs. iteration") +
theme_animint(width = 600, height = 600)
viz <- list(contour = contour.plot, objective = objective.plot,
time = list(variable = "iteration2", ms = 2000),
title = "Demonstration of Gradient Descent Algorithm")
}
viz <- grad.desc.viz(hjust = 0)
info <- animint2HTML(viz)
test_that("unspecified hjust means text-anchor: middle (other hjust=0)", {
style.value <-
getStyleValue(info$html, '//g[@class="geom4_text_contour"]//text',
"text-anchor")
expect_match(style.value, "middle")
})
test_that('geom_text(hjust=0) => <text style="text-anchor: start">', {
style.value <-
getStyleValue(info$html, '//g[@class="geom8_text_objective"]//text',
"text-anchor")
expect_match(style.value, "start")
})
viz <- grad.desc.viz(hjust = 1)
info <- animint2HTML(viz)
test_that("unspecified hjust means text-anchor: middle (other hjust=1)", {
style.value <-
getStyleValue(info$html, '//g[@class="geom4_text_contour"]//text',
"text-anchor")
expect_match(style.value, "middle")
})
test_that('geom_text(hjust=1) => <text style="text-anchor: end">', {
style.value <-
getStyleValue(info$html, '//g[@class="geom8_text_objective"]//text',
"text-anchor")
expect_match(style.value, "end")
})
viz <- grad.desc.viz(hjust = 0.5)
info <- animint2HTML(viz)
test_that("unspecified hjust means text-anchor: middle (other hjust=0.5)", {
style.value <-
getStyleValue(info$html, '//g[@class="geom4_text_contour"]//text',
"text-anchor")
expect_match(style.value, "middle")
})
test_that('geom_text(hjust=0.5) => <text style="text-anchor: middle">', {
style.value <-
getStyleValue(info$html, '//g[@class="geom8_text_objective"]//text',
"text-anchor")
expect_match(style.value, "middle")
})
test_that('geom_text(hjust=other) => unsupported value error', {
viz <- grad.desc.viz(hjust = 0.8)
expect_error(animint2HTML(viz), "animint only supports hjust values 0, 0.5, 1")
})
hjust.df <- data.frame(
hjust=c(0,0.5,1),
anchor=c("start", "middle", "end"),
stringsAsFactors=FALSE)
hjust.df$label <- paste0("hjust=",hjust.df$hjust)
rownames(hjust.df) <- hjust.df$label
viz <- list(
text=ggplot()+
geom_text(aes(hjust, hjust, label=label, hjust=hjust),
data=hjust.df)
)
test_that("aes(hjust) works fine for 0, 0.5, 1", {
info <- animint2HTML(viz)
xpath <- '//g[@class="geom1_text_text"]//text'
text.list <- getNodeSet(info$html, xpath)
computed.anchor <- getStyleValue(info$html, xpath, "text-anchor")
label.vec <- sapply(text.list, xmlValue)
expected.anchor <- hjust.df[label.vec, "anchor"]
expect_identical(computed.anchor, expected.anchor)
})
hjust.df <- data.frame(hjust=c(0,0.5,1,1.5),
anchor=c("start", "middle", "end", "unknown"))
hjust.df$label <- paste0("hjust=",hjust.df$hjust)
rownames(hjust.df) <- hjust.df$label
viz <- list(
text=ggplot()+
geom_text(aes(hjust, hjust, label=label, hjust=hjust),
data=hjust.df)
)
test_that("error if aes(hjust) not in 0, 0.5, 1", {
expect_error({
info <- animint2HTML(viz)
}, "animint only supports hjust values 0, 0.5, 1")
})
vjust.df <- data.frame(vjust=c(0,0.5,1))
vjust.df$label <- paste0("vjust=",vjust.df$vjust)
rownames(vjust.df) <- vjust.df$label
viz <- list(
text=ggplot()+
geom_text(aes(vjust, vjust, label=label, vjust=vjust),
data=vjust.df)
)
test_that("aes(vjust!=0) raises warning", {
expect_warning({
animint2HTML(viz)
}, "animint only supports vjust=0")
})
viz <- list(
text=ggplot()+
geom_text(aes(vjust, vjust, label=0, vjust=0),
data=vjust.df)
)
test_that("aes(vjust=0) does not raise warning", {
expect_no_warning({
animint2HTML(viz)
})
})
viz <- list(
text=ggplot()+
geom_text(aes(vjust, vjust, label="no vjust"),
data=vjust.df)
)
test_that("unspecified vjust does not raise warning", {
expect_no_warning({
animint2HTML(viz)
NULL
})
})
viz.1 <- list(
text=ggplot()+
geom_text(aes(vjust, vjust, label=1),
vjust=1,
data=vjust.df)
)
viz.0.5 <- list(
text=ggplot()+
geom_text(aes(vjust, vjust, label=0),
vjust=0.5,
data=vjust.df)
)
viz.0.7 <- list(
text=ggplot()+
geom_text(aes(vjust, vjust, label=0.7),
vjust=0.7,
data=vjust.df)
)
test_that("geom_text(vjust!=0) raises warning", {
expect_warning({
animint2HTML(viz.1)
}, "animint only supports vjust=0")
expect_warning({
animint2HTML(viz.0.5)
}, "animint only supports vjust=0")
expect_warning({
animint2HTML(viz.0.7)
}, "animint only supports vjust=0")
})
viz <- list(
text=ggplot()+
geom_text(aes(vjust, vjust, label=0),
vjust=0,
data=vjust.df)
)
test_that("geom_text(vjust=0) does not raise warning", {
expect_no_warning({
animint2HTML(viz)
})
}) |
.runThisTest <- Sys.getenv("RunAllparametersTests") == "yes"
if (.runThisTest && requiet("testthat") && requiet("parameters")) {
test_that("emmeans | lm", {
skip_if_not_installed("emmeans")
skip_if_not_installed("boot")
model <- lm(mpg ~ log(wt) + factor(cyl), data = mtcars)
set.seed(7)
b <- bootstrap_model(model, iterations = 1000)
expect_equal(summary(emmeans::emmeans(b, ~cyl))$emmean,
summary(emmeans::emmeans(model, ~cyl))$emmean,
tolerance = 0.1
)
set.seed(7)
b <- bootstrap_parameters(model, iterations = 1000)
expect_equal(summary(emmeans::emmeans(b, ~cyl))$emmean,
summary(emmeans::emmeans(model, ~cyl))$emmean,
tolerance = 0.1
)
mp <- model_parameters(emmeans::emmeans(b, consec ~ cyl), verbose = FALSE)
expect_equal(
colnames(mp),
c(
"Parameter", "Median", "CI", "CI_low", "CI_high", "pd",
"ROPE_CI", "ROPE_low", "ROPE_high", "ROPE_Percentage", "Component"
)
)
expect_equal(nrow(mp), 5)
})
test_that("emmeans | lmer", {
skip_if_not_installed("emmeans")
skip_if_not_installed("boot")
skip_if_not_installed("lme4")
model <- lme4::lmer(mpg ~ log(wt) + factor(cyl) + (1 | gear), data = mtcars)
set.seed(7)
b <- bootstrap_model(model, iterations = 1000)
expect_equal(summary(emmeans::emmeans(b, ~cyl))$emmean,
summary(emmeans::emmeans(model, ~cyl))$emmean,
tolerance = 0.1
)
set.seed(7)
b <- bootstrap_parameters(model, iterations = 1000)
expect_equal(summary(emmeans::emmeans(b, ~cyl))$emmean,
summary(emmeans::emmeans(model, ~cyl))$emmean,
tolerance = 0.1
)
mp <- suppressWarnings(model_parameters(emmeans::emmeans(b, consec ~ cyl)))
expect_equal(
colnames(mp),
c(
"Parameter", "Median", "CI", "CI_low", "CI_high", "pd",
"ROPE_CI", "ROPE_low", "ROPE_high", "ROPE_Percentage", "Component"
)
)
expect_equal(nrow(mp), 5)
})
} |
CSWCapabilities <- R6Class("CSWCapabilities",
inherit = OWSCapabilities,
private = list(
xmlElement = "Capabilities",
xmlNamespacePrefix = "CSW"
),
public = list(
initialize = function(url, version, client = NULL, logger = NULL, ...) {
owsVersion <- switch(version,
"2.0.2" = "1.1",
"3.0.0" = "2.0"
)
private$xmlNamespacePrefix <- paste0(private$xmlNamespacePrefix,"_",gsub("\\.","_",version))
super$initialize(
element = private$xmlElement, namespacePrefix = private$xmlNamespacePrefix,
url, service = "CSW", owsVersion = owsVersion, serviceVersion = version,
logger = logger, ...)
xmlObj <- self$getRequest()$getResponse()
}
)
) |
context("fillBins")
library(testthat)
library(lubridate)
library(stringi)
set_seed(10)
pedOne <- data.frame(ego_id = c("s1", "d1", "s2", "d2", "o1", "o2", "o3", "o4"),
`si re` = c(NA, NA, NA, NA, "s1", "s1", "s2", "s2"),
dam_id = c(NA, NA, NA, NA, "d1", "d2", "d2", "d2"),
sex = c("F", "M", "M", "F", "F", "F", "F", "M"),
birth_date = mdy(
paste0(sample(1:12, 8, replace = TRUE), "-",
sample(1:28, 8, replace = TRUE), "-",
sample(seq(0, 15, by = 3), 8, replace = TRUE) +
2000)),
stringsAsFactors = FALSE, check.names = FALSE)
pedOne$age <- (mdy("06/01/2018") - as.Date(pedOne$birth)) / dyears(1)
test_that("fillBins adds correct number to each bin", {
lower_ages <- seq(0, 20, by = 5)
upper_ages <- NULL
expect_equal(fillBins(pedOne, lower_ages)$males, c(0, 0, 2, 1, 0))
expect_equal(fillBins(pedOne, lower_ages)$females, c(2, 2, 0, 1, 0))
}) |
NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")), "true")
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
purl = NOT_CRAN,
eval = NOT_CRAN,
screenshot.force = FALSE
) |
context("test-ls_fun_calls")
test_that("ls_fun_calls works", {
fun <- ls_fun_calls(quote(library(tidycode)))
expect_equal(fun, list("library"))
fun <- ls_fun_calls(quote(lm(mpg ~ cyl, mtcars)))
expect_equal(fun, list("lm", "~"))
}) |
text1 <- "Really love my dog, he is the best friend anyone could ever ask for!"
text2 <- "RT I want @coolguy24 to meet me for
test_Tidy_df <- tibble::tribble(
~user_id,
~status_id,
~created_at,
~screen_name,
~text,
~hashtags,
~location,
~key,
~query,
as.character(12344),
as.character(098098),
as.POSIXct("2021-04-07 01:15:33"),
as.character("cool123"),
text1,
as.character("dog"),
as.character("Phoenix AZ"),
as.character("dude123 2021-04-07 01:15:33"),
as.character("
as.character(987234),
as.character(90898),
as.POSIXct("2021-04-07 01:16:43"),
as.character("sweet123"),
text2,
as.character("dog"),
as.character("Denver CO"),
as.character("sweet123 2021-04-07 01:16:43"),
as.character("
)
true_Tidy_df <- tibble::tribble(
~text, ~Token,
text1, as.character("love"),
text1, as.character("dog"),
text1, as.character("friend"),
text2, as.character("coolguy24"),
text2, as.character("meet"),
text2, as.character("icecream")
)
true <- true_Tidy_df[[2]]
test <- saotd::tweet_tidy(DataFrame = test_Tidy_df)
test <- test[[10]]
testthat::test_that("The tweet_tidy function is working as properly", {
testthat::expect_equal(test, true)
testthat::expect_error(object = saotd::tweet_tidy(DataFrame = text),
"The input for this function is a data frame.")
}) |
library(lg)
context("Bandwidth selection")
set.seed(1)
n <- 20
x <- rt(n, df = 10)
result <- bw_select_cv_univariate(x)
test_that("Univariate bw selection works", {
expect_true(is.numeric(result$bw))
expect_equal(result$convergence, 0)
})
n <- 20
x_uni <- rnorm(n)
x_tri <- cbind(rnorm(n), rnorm(n), rnorm(n))
test_that("Plugin bw selection works", {
expect_equal(bw_select_plugin_univariate(x = x_uni), 1.75*n^(-1/5))
expect_equal(bw_select_plugin_multivariate(x = x_tri), 1.75*n^(-1/6))
expect_equal(bw_select_plugin_univariate(n = n), 1.75*n^(-1/5))
expect_equal(bw_select_plugin_multivariate(n = n), 1.75*n^(-1/6))
expect_equal(bw_select_plugin_univariate(n = n, c = 1, a = -.5), n^(-.5))
}) |
context("array")
test_that("array patterns work as expected", {
skip_on_ci()
skip_if_not_installed("vdiffr")
library("vdiffr")
df <- data.frame(trt = c("a", "b", "c"),
outcome = c(2.3, 1.9, 3.2))
pattern_ggplot <- function(pattern) {
ggplot(df, aes(trt, outcome)) +
geom_col_pattern(aes(fill=trt),
colour='black',
pattern = pattern) +
theme_bw() +
labs(title = pattern)
}
expect_doppelganger("gradient", pattern_ggplot("gradient"))
expect_doppelganger("magick", pattern_ggplot("magick"))
skip_if_not_installed("ambient")
set.seed(42)
expect_doppelganger("ambient", pattern_ggplot("ambient"))
})
test_that("image pattern work as expected", {
skip_on_ci()
skip_if_not_installed("vdiffr")
library("vdiffr")
logo_filename <- system.file("img", "Rlogo.png" , package="png")
magpie_filename <- system.file("img", "magpie.jpg", package="ggpattern")
bug_filename <- system.file("img", "bug.jpg" , package="ggpattern")
df1 <- data.frame(
trt = c("a", "b", "c"),
outcome = c(2.3, 1.9, 3.2),
gravity = c('South', 'North', 'West'),
filltype = c('squish', 'fit' , 'expand'),
scale = c(1, 2, 0.5),
filename = c(logo_filename, magpie_filename, bug_filename),
stringsAsFactors = FALSE
)
expect_doppelganger("image_logo_none", {
ggplot(df1, aes(trt, outcome)) +
geom_col_pattern(
aes(
fill = trt,
pattern_gravity = I(gravity),
pattern_scale = I(scale)
),
pattern = 'image',
pattern_filename = logo_filename,
pattern_type = 'none',
colour = 'black'
) +
theme_bw(15) +
labs(
title = "ggpattern::geom_col_pattern()",
subtitle = "pattern = 'image', pattern_type = 'none'"
) +
theme(legend.key.size = unit(1.5, 'cm')) +
coord_fixed(ratio = 1/2)
})
expect_doppelganger("image_logo_variety", {
ggplot(df1, aes(trt, outcome)) +
geom_col_pattern(
aes(
fill = trt,
pattern_gravity = I(gravity),
pattern_type = I(filltype)
),
pattern = 'image',
colour = 'black',
pattern_filename = logo_filename,
) +
theme_bw(15) +
labs(
title = "ggpattern::geom_col_pattern()",
subtitle = "pattern = 'image'"
) +
theme(legend.position = 'none') +
coord_fixed(ratio = 1/2)
})
}) |
PlotLOOCV <- function(name, burnin = 0.1) {
opar <-par(no.readonly=TRUE)
on.exit(par(opar))
inFileName <- paste0(name, '.xml')
inFile <- readLines(inFileName)
versionLine <- readLines(inFileName,n=1)
ver <- grepl(pattern = 'version=\"1.0', x = versionLine)
ver2 <- grepl(pattern = 'version=\"2.', x = versionLine)
ver1 = F
if (ver == T & ver2 == F) {ver1 = T}
if (ver1 == T) {
check <- any(grepl(pattern = 'Generated by BEAUTi v1.10.', x = inFile))
if (check == T) {stop(
"Leave-one-out analysis not yet implemented for this Beast 1 version")}
matchLines <- grep(pattern = "date value=", x = inFile, value = T)
values <- na.omit(as.numeric (gsub("[^0-9].", "", matchLines)))
taxa = length(values)
for (i in 1 : taxa){
fileRep <- paste0(name, ".Taxon", i, ".log")
if (file_test("-f", fileRep) == F) {stop(
"Log files not found, check files and verify that follow the proper naming convention
--filename.Taxon1.log")}
temp1 <- read.table(fileRep, header = TRUE, sep = '\t')
bn <- dim(temp1)[1] - round(dim(temp1)[1]*(burnin), 0)
temp2 <- tail(temp1, bn)
coltemp <- colnames(temp2[2])
col <- unlist(strsplit(colnames(temp2[2]), split = "age.")) [2]
if (i == 1) {data <- cbind(temp2[, 2])} else {
data <- cbind(data, temp2[, 2])}
if (i == 1) {colnames = col} else {
colnames = c(colnames, col)}
print (paste("log of taxon", i, "processed"))
}
}
if (ver2 == T) {
linearDates=F
taxa <- length(grep('taxon=', inFile))
line <- grep(pattern = 'traitname=\"date|traitname=\'date', x = inFile)
linearDates <- grepl(pattern = 'value=', inFile[line])
if (linearDates == T) {
dateLine <- inFile[line]
step1 <- gsub('\">','',strsplit(dateLine, 'value=\"')[[1]][2])
step2 <- unlist(strsplit(step1, ","))
numberDates <- length(step2)
date <- unlist(strsplit(step2, "="))
dateHap <- date[c(T, F)]
dateHap <- dateHap[1: numberDates]
dateValues <- date[c(F, T)]
values <- (as.numeric(gsub(",$", "", dateValues)))
for (i in 1 : taxa){
fileRep <- paste0(name, ".Taxon", i, ".log")
temp1 <- read.table(fileRep, header = TRUE, sep = '\t')
bn <- dim(temp1)[1] - round(dim(temp1)[1]*(burnin), 0)
temp2 <- tail(temp1, bn)
coltemp <- colnames(temp2[3])
col <- unlist(strsplit(colnames(temp2[3]), split = "height.")) [2]
if (i == 1) {data <- cbind(temp2[, 3])} else {
data <- cbind(data, temp2[, 3])}
if (i == 1) {colnames = col} else {
colnames = c(colnames, col)}
print (paste("log of taxon", i, "processed"))
}
}
if (linearDates == F) {
datePositions = c()
repeat {
if (length(grep("value=", inFile[line])) > 0) line <- line + 1
if (length(grep("alignment", inFile[line])) > 0) break
if (length(grep("=", inFile[line])) > 0) {datePositions <- c(datePositions, line)}
line <- line + 1
}
numberDates <- length(datePositions)
dateLines <- inFile[datePositions]
dateLines <- trimws(dateLines)
date <- unlist(strsplit(dateLines, "="))
dateHap <- date[c(T, F)]
dateHap <- dateHap[1: numberDates]
values <- date[c(F, T)]
values <- na.omit(as.numeric (gsub("[^\\d]+", "", values, perl = T)))
for (i in 1 : taxa){
fileRep <- paste0(name, ".Taxon", i, ".log")
temp1 <- read.table(fileRep, header = TRUE, sep = '\t')
bn <- dim(temp1)[1] - round(dim(temp1)[1]*(burnin), 0)
temp2 <- tail(temp1, bn)
coltemp <- colnames(temp2[3])
col <- unlist(strsplit(colnames(temp2[3]), split = "height.")) [2]
if (i == 1) {data <- cbind(temp2[, 3])} else {
data <- cbind(data, temp2[, 3])}
if (i == 1) {colnames = col} else {
colnames = c(colnames, col)}
print (paste("log of taxon", i, "processed"))
}
}
}
colnames(data) = colnames
if (ver1 == T) {
data = ceiling(max(values)) - data
}
stats = matrix('NA',3,dim(data)[2])
colnames(stats) = colnames(data)
rownames(stats) = c("median", "min", "max")
for (i in 1:dim(stats)[2]){
stats[1,i] = median(data[, i])
stats[2,i] = emp.hpd(data[, i], conf = 0.95)[1]
stats[3,i] = emp.hpd(data[, i], conf = 0.95)[2]
}
write.table (stats, paste0(name, "_leave_one_out.txt"))
mindata = floor(as.numeric(min(stats[2, ])))
maxdata = ceiling(as.numeric(max(stats[3, ])))
xsp <- maxdata - mindata
xlim <- c(mindata - xsp * 0.35, maxdata)
ylim <- c(-2*taxa, 0)
fail = NULL
plot(1, xlim = xlim, ylim = ylim, axes = F, xlab = "",
ylab = "", type = "n", ann = F)
for (i in 1 : taxa){
median = (as.numeric(stats[1, i]))
min = round((as.numeric(stats[2, i])), 3)
max = round((as.numeric(stats[3, i])), 3)
label = substr(colnames[i], 1, 20)
arrows (min, -2*i, max, -2*i, angle = 90, code = 3, length = 0.08, lwd = 1)
points (median, -2*i, cex = 1, pch = 3)
if (min <= values[i] & values[i] <= max) {pt = 1; col = "black"}
else {pt = 20; col = "red"; fail <- append(fail, i)}
points (values[i], -2*i, cex = 1, pch = pt, col = col, bg = col)
text ((mindata - xsp * 0.20), -2*i, labels = label, cex = 0.5)
}
axis(1, at = seq(mindata, maxdata), labels = seq(mindata, maxdata),
cex.axis = 0.7, lwd = 1, line = 0)
LOOCV_result <- all(fail == 0)
if (LOOCV_result == TRUE) {
mtext("Pass!!! Age estimation for all taxa inside the expected 95% HPD",
side = 3, line = 1, col = "red")
} else {mtext(paste("Age estimation for taxon/taxa",
paste(fail, collapse = ", "),
"is/are not overlapping with expected 95% HPD"), side = 3,
line = 2, col = "red");
mtext("Attention !!! check LOOCV report file", side = 3, line = 1,
col = "red");
write.table (colnames[fail], row.names = fail, sep = ",",
col.names = "Taxon not overlapping with estimated 95% HPD (position, name)",
paste0(name, "_LOOCV_report.txt"))
}
pdf(paste0("Fig_LOOCV_", name, ".pdf"))
plot(1, xlim = xlim, ylim = ylim, axes = F, xlab = "",
ylab = "", type = "n", ann = F)
for (i in 1 : taxa){
median = (as.numeric(stats[1, i]))
min = round((as.numeric(stats[2, i])), 3)
max = round((as.numeric(stats[3, i])), 3)
label = substr(colnames[i], 1, 20)
arrows (min, -2*i, max, -2*i, angle = 90, code = 3, length = 0.08, lwd = 1)
points (median, -2*i, cex = 1, pch = 3)
if (min <= values[i] & values[i] <= max) {pt = 1; col = "black"}
else {pt = 20; col = "red"; fail}
points (values[i], -2*i, cex = 1, pch = pt, col = col, bg = col)
text ((mindata - xsp * 0.20), -2*i, labels = label, cex = 0.5)
}
axis(1, at = seq(mindata, maxdata), labels = seq(mindata, maxdata),
cex.axis = 0.7, lwd = 1, line = 0)
LOOCV_result <- all(fail == 0)
if (LOOCV_result == TRUE) {
mtext("Pass!!! Age estimation for all taxa inside the expected 95% HPD",
side = 3, line = 1, col = "red")
} else {mtext(paste("Age estimation for taxon/taxa",
paste(fail, collapse = ", "),
"is/are not overlapping with expected 95% HPD"), side = 3,
line = 2, col = "red");
mtext("Attention !!! check LOOCV report file", side = 3, line = 1,
col = "red")
}
dev.off()
} |
test_that(
"test.has_no_duplicates.without_duplicates.returns_false",
{
x <- 1:10
expect_true(has_no_duplicates(x))
}
)
test_that(
"test.has_no_duplicates.with_1_duplicate.returns_false",
{
x <- rep.int(1, 2)
actual <- has_no_duplicates(x)
expect_false(actual)
expect_equal(cause(actual), noquote("x has a duplicate at position 2."))
}
)
test_that(
"test.has_no_duplicates.with_multiple_duplicates.returns_false",
{
x <- rep.int(1, 3)
actual <- has_no_duplicates(x)
expect_false(actual)
expect_equal(cause(actual), noquote("x has duplicates at positions 2, 3."))
}
)
test_that(
"test.has_duplicates.without_duplicates.returns_false",
{
x <- 1:10
actual <- has_duplicates(x)
expect_false(actual)
expect_equal(cause(actual), noquote("x has no duplicates."))
}
)
test_that(
"test.has_duplicates.with_duplicates.returns_false",
{
x <- rep.int(1, 2)
expect_true(has_duplicates(x))
}
) |
if (capabilities("tcltk") && requireNamespace("tcltk", quietly = TRUE)) {
handlers("tkprogressbar")
with_progress({ y <- slow_sum(1:10) })
print(y)
} |
library(jsonlite)
library(shiny)
library(stringr)
library(dplyr)
library(ggplot2)
library(lubridate)
library(cranlogs)
library(zoo)
library(plotly)
library(scales)
library(httr)
cranlogs::cran_downloads("vistime", "last-month")
get_initial_release_date = function(packages)
{
min_date = Sys.Date() - 1
for (pkg in packages)
{
pkg_data = httr::GET(paste0("http://crandb.r-pkg.org/", pkg, "/all"))
pkg_data = httr::content(pkg_data)
initial_release = pkg_data$timeline[[1]]
min_date = min(min_date, as.Date(initial_release))
}
min_date
}
package_names = names(httr::content(httr::GET("http://crandb.r-pkg.org/-/desc")))
ui <- fluidPage(
titlePanel("Package Downloads Over Time"),
sidebarLayout(
sidebarPanel(
HTML("Enter an R package to see the
"You can enter multiple packages to compare them"),
selectInput("package",
label = "Packages:",
selected = c("timevis", "timeline", "vistime", "timelineS"),
choices = package_names,
multiple = TRUE),
radioButtons("transformation",
"Data Transformation:",
c("Monthly", "Weekly", "Daily", "Cumulative")),
sliderInput("mav_n", "Window for moving average", min = 1, max = 50, step = 5, value = 7),
HTML("Created using the <a href='https://github.com/metacran/cranlogs'>cranlogs</a> package.",
"This app is not affiliated with RStudio or CRAN.",
"You can find the code for the app <a href='https://github.com/dgrtwo/cranview'>here</a>,",
"or read more about it <a href='http://varianceexplained.org/r/cran-view/'>here</a>.")
),
mainPanel(
plotlyOutput("downloadsPlot")
)
)
)
server <- function(input, output) {
downloads <- reactive({
packages <- input$package
cran_downloads(packages = packages,
from = get_initial_release_date("vistime"),
to = Sys.Date()-4) %>% as_tibble
})
output$downloadsPlot <- renderPlotly({
d <- downloads() %>% group_by(package)
if (input$transformation == "Cumulative") {
d <- d %>% mutate_at("count", cumsum)
} else if (input$transformation == "Monthly"){
d <- d %>% group_by(package, month = as.yearmon(date)) %>%
summarize(date = min(date), count = sum(count))
} else if (input$transformation == "Weekly"){
d <- d %>% group_by(package, week = paste0(year(date), "-", str_pad(week(date), pad = "0", width = 2))) %>%
summarize(date = min(date), count = sum(count))
}
d <- d %>% group_by(package) %>%
mutate(mav = rollmean(count, input$mav_n, fill = NA, align = "right")) %>%
ungroup() %>% filter(!is.na(mav))
p <- plot_ly(type = "scatter")
if('vistime' %in% input$package){
releases <- content(GET(paste0("http://crandb.r-pkg.org/vistime/all")))$timeline
for(version in names(releases)){
p <- p %>%
add_segments(x = as.POSIXct(releases[[version]]), xend = as.POSIXct(releases[[version]]),
y = 0, yend = max(d$mav), color = I("grey"), showlegend = FALSE) %>%
add_text(x = as.POSIXct(releases[[version]]),
y = max(d$mav)*1.1,
text = version,
color = I("grey"), showlegend = FALSE)
}
}
p %>%
add_lines(x = ~date, y=~mav, data = d, color = ~package) %>%
layout(xaxis=list(title="Date"),
yaxis=list(title="Number of downloads"),
title = ifelse(input$mav_n > 1, paste("Averaged over", input$mav_n, str_replace(tolower(input$transformation), "ly", "s")), ""))
})
}
shinyApp(ui = ui, server = server) |
gen_news <- function(old_y, new_y, output_dfm, target_variable, target_period) {
old_y <- data.frame(date=new_y$date) %>%
left_join(old_y, by="date")
data_old <- old_y
data_new <- new_y
is_quarterly <- function(dates, series) {
tmp <- data.frame(dates, series) %>%
dplyr::filter(!is.na(series)) %>%
select(dates) %>% pull
if (identical((sapply(tmp, function(x) substr(x, 6, 7)) %>% unique %>% sort), c("03", "06", "09", "12"))) {
return (TRUE)
} else {
return (FALSE)
}
}
quarterly <- c(FALSE)
for (i in 2:ncol(data_new)) {
quarterly <- append(quarterly, is_quarterly(data_new[,1], data_new[,i]))
}
monthlies <- data_old[,which(quarterly == FALSE)]
quarterlies <- data_old[,which(quarterly == TRUE)]
column_names <- c(colnames(data_old)[which(quarterly == FALSE)], colnames(data_old)[which(quarterly == TRUE)])
data_old <- cbind(monthlies, quarterlies)
colnames(data_old) <- column_names
monthlies <- data_new[,which(quarterly == FALSE)]
quarterlies <- data_new[,which(quarterly == TRUE)]
data_new <- cbind(monthlies, quarterlies)
colnames(data_new) <- column_names
t_nowcast <- which(data_new$date == target_period)
add_month <- function (X) {
month <- as.numeric(substr(X, 6, 7))
year <- as.numeric(substr(X, 1, 4))
if (month == 12) {
return (as.Date(paste0(year+1, "-01-01")))
} else {
return (as.Date(paste0(year, "-", month+1, "-01")))
}
}
for (i in 1:12) {
data_old[nrow(data_new) + 1, "date"] <- add_month(data_old[nrow(data_old), "date"])
data_new[nrow(data_new) + 1, "date"] <- add_month(data_new[nrow(data_new), "date"])
}
dates <- data_new$date
data_old <- data_old[,2:ncol(data_old)]
data_new <- data_new[,2:ncol(data_new)]
i_series <- which(colnames(data_new) == target_variable)
N <- ncol(data_new)
data_rev <- cbind(data.frame(date=dates), data_new)
data_rev[is.na(cbind(data.frame(date=dates), data_old))] <- NA
results_old <- news_dfm(cbind(data.frame(date=dates), data_old), data_rev, output_dfm, target_variable, target_period)
y_old <- results_old$y_old
results_new <- news_dfm(data_rev, cbind(data.frame(date=dates), data_new), output_dfm, target_variable, target_period)
y_rev <- results_new$y_old; y_new <- results_new$y_new
actual <- results_new$actual; forecast <- results_new$fore; weight <- results_new$weight
if (sum(is.na(forecast)) == length(forecast)) {
message("No forecast was made")
news_table <- NULL
impact_revisions <- 0
impact_releases <- 0
} else {
impact_revisions <- y_rev - y_old
news <- actual - forecast
impact_releases <- sweep(weight, MARGIN = 1, news, "*")
news_table <- data.frame(cbind(forecast, actual, weight, impact_releases), row.names = colnames(data_old))
colnames(news_table) <- c("Forecast", "Actual", "Weight", "Impact")
news_table[,"New Data"] <- as.numeric(as.logical(colSums(is.na(data_old) & !is.na(data_new))))
impact_total <- impact_revisions + colSums(impact_releases, na.rm = T)
message("Nowcast Impact Decomposition")
message(paste("old nowcast: ", y_old * 100, "%", sep = ""))
message(paste("new nowcast: ", y_new * 100, "%", sep = ""))
message(paste("Impact from data revisions: ", sprintf("%.2f", impact_revisions * 100), "%", sep = ""))
message(paste("Impact from data releases: ",
sprintf("%.2f", sum(news_table[, "Impact"] * 100, na.rm = TRUE)), "%", sep = ""))
message(paste("Total impact: ",
sprintf("%.2f", (impact_revisions + sum(news_table[, "Impact"], na.rm = TRUE)) * 100),
"%", sep = ""))
message("Nowcast Detail Table")
message(news_table[, c("Forecast", "Actual", "Weight", "Impact")])
}
return(list(target_period = target_period, target_variable = target_variable, y_old = y_old, y_new = y_new, forecast = forecast, actual = actual, weight = weight,
news_table = news_table, impact_revisions = impact_revisions,
impact_releases = impact_releases,
impact_total = impact_total))
} |
mcnp_est_nps <- function(err_target) {
n <- as.numeric(readline(prompt = "How many tallies (1, 2 or 3) will you be scanning? "))
stopifnot(n %in% c(1, 2, 3))
cat("Copy and paste MCNP tally fluctuation charts. \n
Then hit [enter] \n
Do not include column headers.")
raw_scan <- scan()
mtrx <- matrix(raw_scan, ncol = 1 + 5 * n, byrow = TRUE)
tfc.df <- data.frame(mtrx)
rm(mtrx)
latter_half <- tfc.df[-(1:floor(length(tfc.df[, 1]) / 2)), ]
new_err <- seq(err_target, 0.5, length.out = 50)
err_loc <- c(3, 8, 13)[1:n]
tal_num <- c("first", "second", "third")
counter <- 0
nps_fn <- function(err, b, m) exp((err - b) / m)
for (i in err_loc) {
counter <- counter + 1
cat("\n ")
if (latter_half[length(latter_half[, 1]), i] <= err_target) {
cat(paste0("Error target already achieved in ", tal_num[counter], " tally."))
next
}
lm1 <- stats::lm(latter_half[, i] ~ log(latter_half[, 1]))
if (summary(lm1)$adj.r.squared < 0.8) {
cat(paste0("Warning: Not a reliable trend in ", tal_num[counter], " tally. \n"))
}
if (lm1$coefficients[[2]] > 0) {
cat(paste0(
"Error trend is positive in ", tal_num[counter],
" tally.\nResults will be erroneous.\n"
))
}
extrap_nps1 <- nps_fn(new_err, stats::coefficients(lm1)[[1]], stats::coefficients(lm1)[[2]])
cat("\n ")
print(data.frame(Tally = tal_num[counter], `Estimated nps needed` = format(extrap_nps1[1],
digits = 2, scientific = TRUE
), `error target` = err_target, row.names = ""))
graphics::plot(
x = tfc.df[, 1], y = tfc.df[, i], xlim = c(tfc.df[1, 1], max(c(extrap_nps1, tfc.df[, 1]))), ylim = c(
err_target,
max(tfc.df[, i])
), xlab = "nps", ylab = "MC run uncert",
log = "x", main = paste0(
"rough forecast nps vs error, ",
tal_num[counter], " tally"
), col = "darkblue", col.main = "darkblue", col.axis = "darkblue", col.lab = "darkblue"
)
graphics::lines(extrap_nps1, new_err[1:length(extrap_nps1)],
col = "firebrick1",
lty = 2
)
graphics::abline(h = err_target, col = "darkgreen", lty = 2)
}
} |
library("shiny")
library("shinyWidgets")
ui <- fluidPage(
tags$h1("Exemple dropdown"),
dropdown(
tags$h3("List of Input"),
shinyWidgets::pickerInput(inputId = 'xcol', label = 'X Variable', choices = names(iris)),
selectInput(inputId = 'ycol', label = 'Y Variable', choices = names(iris), selected = names(iris)[[2]]),
sliderInput(inputId = 'clusters', label = 'Cluster count', value = 3, min = 1, max = 9),
style = "material-circle", icon = icon("cog"), status = "danger",
animate = animateOptions(enter = animations$zooming_entrances$zoomInDown, exit = animations$zooming_exits$zoomOutUp, duration = 1)
),
plotOutput(outputId = 'plot1')
)
server <- function(input, output, session) {
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(selectedData(), input$clusters)
})
output$plot1 <- renderPlot({
palette(c("
"
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData(),
col = clusters()$cluster,
pch = 20, cex = 3)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
}
shinyApp(ui = ui, server = server) |
cat("Running ranking (LambdaMart) example.\n")
generate.data <- function(N) {
num.queries <- floor(N/25)
query <- sample(1:num.queries, N, replace=TRUE)
query.level <- runif(num.queries)
X1 <- query.level[query]
X2 <- runif(N)
X3 <- runif(N)
Y <- X1 + X2
X2 <- X2 + scale(runif(num.queries))[query]
SNR <- 5
sigma <- sqrt(var(Y)/SNR)
Y <- Y + runif(N, 0, sigma)
data.frame(Y, query=query, X1, X2, X3)
}
cat('Generating data\n')
N=1000
data.train <- generate.data(N)
cat('Fitting a model with gaussian loss function\n')
train_params_gauss <- training_params(num_trees = 2000, shrinkage = 0.005,
interaction_depth = 3, bag_fraction = 0.5,
num_train = N, id = seq_len(nrow(data)), num_features = 3,
min_num_obs_in_node = 10)
gbm.gaussian <- gbmt(Y~X1+X2+X3,
data=data.train,
distribution=gbm_dist('Gaussian'),
train_params=train_params_gauss,
keep_gbm_data=TRUE,
cv_folds=5,
is_verbose = FALSE
)
best.iter.gaussian <- gbmt_performance(gbm.gaussian, method="cv")
title('Training of gaussian model')
cat('Fitting a model with pairwise loss function (ranking metric: normalized discounted cumulative gain)\n')
gbm.ndcg <- gbmt(Y~X1+X2+X3,
data=data.train,
distribution=gbm_dist(
name='Pairwise',
metric="ndcg",
group='query'),
train_params=train_params_gauss,
keep_gbm_data=TRUE,
cv_folds=5,
is_verbose = FALSE
)
best.iter.ndcg <- gbmt_performance(gbm.ndcg, method='cv')
title('Training of pairwise model with ndcg metric')
cat('Fit a model with pairwise loss function (ranking metric: fraction of concordant pairs)\n')
gbm.conc <- gbmt(Y~X1+X2+X3,
data=data.train,
distribution=gbm_dist(
name='Pairwise',
metric="conc",
group='query'),
train_params = train_params_gauss,
keep_gbm_data=TRUE,
cv_folds=5,
is_verbose = FALSE
)
best.iter.conc <- gbmt_performance(gbm.conc, method='cv')
title('Training of pairwise model with conc metric')
par.old <- par(mfrow=c(1,3))
summary(gbm.gaussian, num_trees=best.iter.gaussian, main='gaussian')
summary(gbm.ndcg, num_trees=best.iter.ndcg, main='pairwise (ndcg)')
summary(gbm.conc, num_trees=best.iter.conc, main='pairwise (conc)')
par(par.old)
cat("Generating some new data\n")
data.test <- generate.data(N)
cat("Calculating predictions\n")
predictions <- data.frame(random=runif(N),
X2=data.test$X2,
gaussian=predict(gbm.gaussian, data.test, best.iter.gaussian),
pairwise.ndcg=predict(gbm.ndcg, data.test, best.iter.ndcg),
pairwise.conc=predict(gbm.conc, data.test, best.iter.conc))
cat("Computing loss metrics\n")
dist_1 <- gbm_dist("Gaussian")
dist_2 <- gbm_dist(name='Pairwise', metric="ndcg",
group_index=data.test$query, max_rank=5)
dist_3 <- gbm_dist(name='Pairwise', metric="conc",
group_index=data.test$query, max_rank=0)
result.table <- data.frame(measure=c('random', 'X2 only', 'gaussian', 'pairwise (ndcg)', 'pairwise (conc)'),
squared.loss=sapply(1:length(predictions), FUN=function(i) {
loss(y=data.test$Y, predictions[[i]], w=rep(1,N), offset=rep(0, N), dist=gbm_dist(name="Gaussian")) }),
ndcg5.loss=sapply(1:length(predictions), FUN=function(i) {
loss(y=data.test$Y, predictions[[i]], w=rep(1,N), offset=rep(0 ,N), distribution_obj=dist_2)}),
concordant.pairs.loss=sapply(1:length(predictions), FUN=function(i) {
loss(y=data.test$Y, predictions[[i]], w=rep(1,N), offset=rep(0, N), distribution_obj= dist_3) }),
row.names=NULL)
cat('Performance measures for the different models on the test set (smaller is better):\n')
print(result.table,digits=2) |
plot.effpoly <- function(x, x.var=which.max(levels),
main=paste(effect, "effect plot"),
symbols=TRUE, lines=TRUE, axes, confint, lattice, ...,
type, multiline, rug, xlab, ylab, colors, cex, lty, lwd,
factor.names, show.strip.values,
ci.style, band.colors, band.transparency, style,
transform.x, ticks.x, xlim,
ticks, ylim, rotx, roty, alternating, grid, layout,
key.args, use.splines){
if (!is.logical(lines) && !is.list(lines)) lines <- list(lty=lines)
lines <- applyDefaults(lines,
defaults=list(lty=trellis.par.get("superpose.line")$lty,
lwd=trellis.par.get("superpose.line")$lwd[1],
col=NULL, splines=TRUE, multiline=FALSE),
arg="lines")
if (missing(multiline)) multiline <- lines$multiline
if (missing(lwd)) lwd <- lines$lwd
if (missing(lty)) lty <- lines$lty
if (missing(use.splines)) use.splines <- lines$splines
lines.col <- lines$col
lines <- if (missing(lty)) lines$lty else lty
if (!is.logical(symbols) && !is.list(symbols)) symbols <- list(pch=symbols)
symbols <- applyDefaults(symbols,
defaults= list(
pch=trellis.par.get("superpose.symbol")$pch,
cex=trellis.par.get("superpose.symbol")$cex[1]),
arg="symbols")
cex <- symbols$cex
symbols <- symbols$pch
if (missing(axes)) axes <- NULL
axes <- applyDefaults(axes, defaults=list(
x=list(rotate=0, cex=1, rug=TRUE),
y=list(lab=NULL, lim=c(NA, NA), ticks=list(at=NULL, n=5),
type="probability", rotate=0, cex=1),
alternating=TRUE, grid=FALSE),
arg="axes")
x.args <- applyDefaults(axes$x, defaults=list(rotate=0, cex=1, rug=TRUE),
arg="axes$x")
if (missing(xlab)) {
xlab.arg <- FALSE
xlab <- list()
}
if (missing(xlim)) {
xlim.arg <- FALSE
xlim <- list()
}
if (missing(ticks.x)) {
ticks.x.arg <- FALSE
ticks.x <- list()
}
if (missing(transform.x)) {
transform.x.arg <- FALSE
transform.x <- list()
}
if (missing(rotx)) rotx <- x.args$rotate
if (missing(rug)) rug <- x.args$rug
cex.x <- x.args$cex
x.args$rotate <- NULL
x.args$rug <- NULL
x.args$cex <- NULL
x.pred.names <- names(x.args)
if (length(x.pred.names) > 0){
for (pred.name in x.pred.names){
x.pred.args <- applyDefaults(x.args[[pred.name]],
defaults=list(lab=NULL, lim=NULL, ticks=NULL, transform=NULL),
arg=paste0("axes$x$", pred.name))
if (!xlab.arg) xlab[[pred.name]] <- x.pred.args$lab
if (!xlim.arg) xlim[[pred.name]] <- x.pred.args$lim
if (!ticks.x.arg) ticks.x[[pred.name]] <- x.pred.args$ticks
if (!transform.x.arg) transform.x[[pred.name]] <- x.pred.args$transform
}
}
if (length(xlab) == 0) xlab <- NULL
if (length(xlim) == 0) xlim <- NULL
if (length(ticks.x) == 0) ticks.x <- NULL
if (length(transform.x) == 0) transform.x <- NULL
y.args <- applyDefaults(axes$y, defaults=list(lab=NULL, lim=c(NA, NA), ticks=list(at=NULL, n=5), type="probability", style="lines", rotate=0, cex=1), arg="axes$y")
if (missing(ylim)) ylim <- y.args$lim
if (missing(ticks)) ticks <- y.args$ticks
if (missing(type)) type <- y.args$type
type <- match.arg(type, c("probability", "logit"))
if (missing(ylab)) ylab <- y.args$lab
if (is.null(ylab)) ylab <- paste0(x$response, " (", type, ")")
if (missing(roty)) roty <- y.args$rotate
cex.y <- y.args$cex
if (missing(alternating)) alternating <- axes$alternating
if (missing(grid)) grid <- axes$grid
if (missing(style)) style <- match.arg(y.args$style, c("lines", "stacked"))
if (missing(colors)) colors <- if (is.null(lines.col)){
if (style == "lines" || x$model == "multinom")
trellis.par.get("superpose.line")$col
else sequential_hcl(length(x$y.levels))
} else {
lines.col
}
if (missing(confint)) confint <- NULL
confint <- applyDefaults(confint,
defaults=list(style=if (style == "lines" && !multiline && !is.null(x$se.prob)) "auto" else "none", alpha=0.15, col=colors),
onFALSE=list(style="none", alpha=0, col="white"),
arg="confint")
if (missing(ci.style)) ci.style <- confint$style
if (missing(band.transparency)) band.transparency <- confint$alpha
if (missing(band.colors)) band.colors <- confint$col
if(!is.null(ci.style)) ci.style <- match.arg(ci.style, c("auto", "bars", "lines", "bands", "none"))
confint <- confint$style != "none"
if (is.null(multiline)) multiline <- if (confint) FALSE else TRUE
effect.llines <- llines
has.se <- !is.null(x$confidence.level)
if (confint && !has.se) stop("there are no confidence limits to plot")
if (style == "stacked"){
if (type != "probability"){
type <- "probability"
warning('type set to "probability" for stacked plot')
}
if (confint){
confint <- FALSE
warning('confint set to FALSE for stacked plot')
}
ylim <- c(0, 1)
}
if (missing(lattice)) lattice <- NULL
lattice <- applyDefaults(lattice, defaults=list(
layout=NULL,
strip=list(factor.names=TRUE, values=TRUE, cex=1),
array=list(row=1, col=1, nrow=1, ncol=1, more=FALSE),
arg="lattice"
))
lattice$key.args <- applyDefaults(lattice$key.args, defaults=list(
space="top", border=FALSE, fontfamily="sans", cex=.75, cex.title=1,
arg="key.args"
))
if (missing(layout)) layout <- lattice$layout
if (missing(key.args)) key.args <- lattice$key.args
strip.args <- applyDefaults(lattice$strip, defaults=list(factor.names=TRUE, values=TRUE, cex=1), arg="lattice$strip")
factor.names <- strip.args$factor.names
if (missing(show.strip.values)) show.strip.values <- strip.args$values
cex.strip <- strip.args$cex
height.strip <- max(1, cex.strip)
array.args <- applyDefaults(lattice$array, defaults=list(row=1, col=1, nrow=1, ncol=1, more=FALSE), arg="lattice$array")
row <- array.args$row
col <- array.args$col
nrow <- array.args$nrow
ncol <- array.args$ncol
more <- array.args$more
.mod <- function(a, b) ifelse( (d <- a %% b) == 0, b, d)
.modc <- function(a) .mod(a, length(colors))
.mods <- function(a) .mod(a, length(symbols))
.modl <- function(a) .mod(a, length(lines))
effect <- paste(sapply(x$variables, "[[", "name"), collapse="*")
split <- c(col, row, ncol, nrow)
n.predictors <- length(names(x$x))
y.lev <- x$y.lev
n.y.lev <- length(y.lev)
ylevel.names <- make.names(paste("prob",y.lev))
colnames(x$prob) <- colnames(x$logit) <- ylevel.names
if (has.se){
colnames(x$lower.logit) <- colnames(x$upper.logit) <-
colnames(x$lower.prob) <- colnames(x$upper.prob)<- ylevel.names
}
x.frame <-as.data.frame(x)
predictors <- names(x.frame)[1:n.predictors]
levels <- if (n.predictors==1) length (x.frame[,predictors])
else sapply(apply(x.frame[, predictors, drop=FALSE], 2, unique), length)
if (is.character(x.var)) {
which.x <- which(x.var == predictors)
if (length(which.x) == 0) stop(paste("x.var = '", x.var, "' is not in the effect.", sep=""))
x.var <- which.x
}
x.vals <- x.frame[, names(x.frame)[x.var]]
response <- matrix(0, nrow=nrow(x.frame), ncol=n.y.lev)
for (i in 1:length(x$y.lev)){
level <- which(colnames(x$prob)[i] == ylevel.names)
response[,i] <- rep(x$y.lev[level], length(response[,i]))
}
prob <- as.vector(x$prob)
logit <- as.vector(x$logit)
response <- as.vector(response)
if (has.se){
lower.prob <- as.vector(x$lower.prob)
upper.prob <- as.vector(x$upper.prob)
lower.logit <- as.vector(x$lower.logit)
upper.logit <- as.vector(x$upper.logit)
}
response <- factor(response, levels=y.lev)
Data <- data.frame(prob, logit)
if (has.se) Data <- cbind(Data, data.frame(lower.prob, upper.prob, lower.logit, upper.logit))
Data[[x$response]] <- response
for (i in 1:length(predictors)){
Data <- cbind(Data, x.frame[predictors[i]])
}
levs <- levels(x$data[[predictors[x.var]]])
n.predictor.cats <- sapply(Data[, predictors[-c(x.var)], drop=FALSE],
function(x) length(unique(x)))
if (length(n.predictor.cats) == 0) n.predictor.cats <- 1
ci.style <- if(is.null(ci.style) || ci.style == "auto") {
if(is.factor(x$data[[predictors[x.var]]])) "bars" else "bands"} else ci.style
if( ci.style=="none" ) confint <- FALSE
if (!confint){
if (style == "lines"){
if (!multiline){
layout <- if(is.null(layout)) c(prod(n.predictor.cats), length(levels(response)), 1)
else layout
if (is.factor(x$data[[predictors[x.var]]])){
range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE)
ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]),
range[2] + .025*(range[2] - range[1]))
tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n)
levs <- levels(x$data[[predictors[x.var]]])
if (show.strip.values){
for (pred in predictors[-x.var]){
Data[[pred]] <- as.factor(Data[[pred]])
}
}
result <- xyplot(eval(if (type=="probability")
parse(text=if (n.predictors==1)
paste("prob ~ as.numeric(", predictors[x.var],") |", x$response)
else paste("prob ~ as.numeric(", predictors[x.var],") |",
paste(predictors[-x.var], collapse="*"),
paste("*", x$response)))
else parse(text=if (n.predictors==1)
paste("logit ~ as.numeric(", predictors[x.var],") |", x$response)
else paste("logit ~ as.numeric(", predictors[x.var],")|",
paste(predictors[-x.var], collapse="*"),
paste("*", x$response)))),
par.strip.text=list(cex=0.8),
strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip),
par.strip.text=list(cex=cex.strip)),
panel=function(x, y, subscripts, x.vals, rug, ... ){
if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at)
good <- !is.na(y)
effect.llines(x[good], y[good], lwd=lwd, lty=lty, type="b", pch=19, col=colors[1], cex=cex, ...)
subs <- subscripts+as.numeric(rownames(Data)[1])-1
},
ylab=ylab,
ylim=if (is.null(ylim))
if (type == "probability") range(prob) else range(logit)
else ylim,
xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]],
main=main,
x.vals=x$data[[predictors[x.var]]],
rug=rug,
scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x),
y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y), alternating=alternating),
layout=layout,
data=Data, ...)
result$split <- split
result$more <- more
class(result) <- c("plot.eff", class(result))
}
else {
if(use.splines) effect.llines <- spline.llines
range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE)
ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]),
range[2] + .025*(range[2] - range[1]))
tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n)
nm <- predictors[x.var]
x.vals <- x$data[[nm]]
if (nm %in% names(ticks.x)){
at <- ticks.x[[nm]]$at
n <- ticks.x[[nm]]$n
}
else{
at <- NULL
n <- 5
}
xlm <- if (nm %in% names(xlim)){
xlim[[nm]]
}
else range.adj(Data[nm])
tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){
trans <- transform.x[[nm]]$trans
make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n)
}
else {
trans <- I
make.ticks(xlm, link=I, inverse=I, at=at, n=n)
}
if (show.strip.values){
for (pred in predictors[-x.var]){
Data[[pred]] <- as.factor(Data[[pred]])
}
}
result <- xyplot(eval(if (type=="probability")
parse(text=if (n.predictors==1)
paste("prob ~ trans(", predictors[x.var],") |", x$response)
else paste("prob ~ trans(", predictors[x.var],") |",
paste(predictors[-x.var], collapse="*"),
paste("*", x$response)))
else parse(text=if (n.predictors==1)
paste("logit ~ trans(", predictors[x.var],") |", x$response)
else paste("logit ~ trans(", predictors[x.var],") |",
paste(predictors[-x.var], collapse="*"),
paste("*", x$response)))
),
par.strip.text=list(cex=0.8),
strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip),
par.strip.text=list(cex=cex.strip)),
panel=function(x, y, subscripts, x.vals, rug, ... ){
if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at)
if (rug) lrug(trans(x.vals))
good <- !is.na(y)
effect.llines(x[good], y[good], lwd=lwd, lty=lty, col=colors[1], ...)
subs <- subscripts+as.numeric(rownames(Data)[1])-1
},
ylab=ylab,
xlim=suppressWarnings(trans(xlm)),
ylim= if (is.null(ylim))
if (type == "probability") range(prob) else range(logit)
else ylim,
xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]],
main=main,
x.vals=x$data[[predictors[x.var]]],
rug=rug,
scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y),
x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x),
alternating=alternating),
layout=layout,
data=Data, ...)
result$split <- split
result$more <- more
class(result) <- c("plot.eff", class(result))
}
} else {
layout <- if (is.null(layout)){
lay <- c(prod(n.predictor.cats[-(n.predictors - 1)]),
prod(n.predictor.cats[(n.predictors - 1)]), 1)
if (lay[1] > 1) lay else lay[c(2, 1, 3)]
}
else layout
if (n.y.lev > min(c(length(colors), length(lines), length(symbols))))
warning('Colors, lines and symbols may have been recycled')
range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE)
ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]),
range[2] + .025*(range[2] - range[1]))
tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n)
if (is.factor(x$data[[predictors[x.var]]])){
key <- list(title=x$response, cex.title=1, border=TRUE,
text=list(as.character(unique(response))),
lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd),
points=list(pch=symbols[.mods(1:n.y.lev)], col=colors[.modc(1:n.y.lev)]),
columns = if ("x" %in% names(key.args)) 1 else
find.legend.columns(length(n.y.lev),
space=if("x" %in% names(key.args)) "top" else key.args$space))
for (k in names(key.args)) key[k] <- key.args[k]
if (show.strip.values){
for (pred in predictors[-x.var]){
Data[[pred]] <- as.factor(Data[[pred]])
}
}
result <- xyplot(eval(if (type=="probability")
parse(text=if (n.predictors==1)
paste("prob ~ as.numeric(", predictors[x.var], ")")
else paste("prob ~ as.numeric(", predictors[x.var],") | ",
paste(predictors[-x.var], collapse="*")))
else parse(text=if (n.predictors==1)
paste("logit ~ as.numeric(", predictors[x.var], ")")
else paste("logit ~ as.numeric(", predictors[x.var],") | ",
paste(predictors[-x.var], collapse="*")))),
strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip),
par.strip.text=list(cex=cex.strip)),
panel=function(x, y, subscripts, rug, z, x.vals, ...){
if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at)
for (i in 1:n.y.lev){
sub <- z[subscripts] == y.lev[i]
good <- !is.na(y[sub])
effect.llines(x[sub][good], y[sub][good], lwd=lwd, type="b", col=colors[.modc(i)], lty=lines[.modl(i)],
pch=symbols[i], cex=cex, ...)
}
},
ylab=ylab,
ylim= if (is.null(ylim))
if (type == "probability") range(prob) else range(logit)
else ylim,
xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]],
x.vals=x$data[[predictors[x.var]]],
rug=rug,
z=response,
scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x),
y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y),
alternating=alternating),
main=main,
key=key,
layout=layout,
data=Data, ...)
result$split <- split
result$more <- more
class(result) <- c("plot.eff", class(result))
}
else {
if(use.splines) effect.llines <- spline.llines
range <- if (type=="probability") range(prob, na.rm=TRUE) else range(logit, na.rm=TRUE)
ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]),
range[2] + .025*(range[2] - range[1]))
tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n)
nm <- predictors[x.var]
x.vals <- x$data[[nm]]
if (nm %in% names(ticks.x)){
at <- ticks.x[[nm]]$at
n <- ticks.x[[nm]]$n
}
else{
at <- NULL
n <- 5
}
xlm <- if (nm %in% names(xlim)){
xlim[[nm]]
}
else range.adj(Data[nm])
tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){
trans <- transform.x[[nm]]$trans
make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n)
}
else {
trans <- I
make.ticks(xlm, link=I, inverse=I, at=at, n=n)
}
key <- list(title=x$response, cex.title=1, border=TRUE,
text=list(as.character(unique(response))),
lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd),
columns = if ("x" %in% names(key.args)) 1 else
find.legend.columns(length(n.y.lev),
space=if("x" %in% names(key.args)) "top" else key.args$space))
for (k in names(key.args)) key[k] <- key.args[k]
if (show.strip.values){
for (pred in predictors[-x.var]){
Data[[pred]] <- as.factor(Data[[pred]])
}
}
result <- xyplot(eval(if (type=="probability")
parse(text=if (n.predictors==1) paste("prob ~ trans(", predictors[x.var], ")")
else paste("prob ~ trans(", predictors[x.var],") |",
paste(predictors[-x.var], collapse="*")))
else parse(text=if (n.predictors==1) paste("logit ~ trans(", predictors[x.var], ")")
else paste("logit ~ trans(", predictors[x.var],") | ",
paste(predictors[-x.var], collapse="*")))),
strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip),
par.strip.text=list(cex=cex.strip)),
panel=function(x, y, subscripts, rug, z, x.vals, ...){
if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at)
if (rug) lrug(trans(x.vals))
for (i in 1:n.y.lev){
sub <- z[subscripts] == y.lev[i]
good <- !is.na(y[sub])
effect.llines(x[sub][good], y[sub][good], lwd=lwd, type="l", col=colors[.modc(i)], lty=lines[.modl(i)], ...)
}
},
ylab=ylab,
xlim=suppressWarnings(trans(xlm)),
ylim= if (is.null(ylim))
if (type == "probability") range(prob) else range(logit)
else ylim,
xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]],
x.vals=x$data[[predictors[x.var]]],
rug=rug,
z=response,
scales=list(x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x),
y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y),
alternating=alternating),
main=main,
key=key,
layout=layout,
data=Data, ...)
result$split <- split
result$more <- more
class(result) <- c("plot.eff", class(result))
}
}
}
else {
tickmarks <- make.ticks(c(0, 1), link=I, inverse=I, at=ticks$at, n=ticks$n)
layout <- if (is.null(layout)){
lay <- c(prod(n.predictor.cats[-(n.predictors - 1)]),
prod(n.predictor.cats[(n.predictors - 1)]), 1)
if (lay[1] > 1) lay else lay[c(2, 1, 3)]
}
else layout
if (n.y.lev > length(colors))
stop(paste('Not enough colors to plot', n.y.lev, 'regions'))
key <- list(text=list(lab=rev(y.lev)),
rectangle=list(col=rev(colors[1:n.y.lev])),
columns = 1)
for (k in names(key.args)) key[k] <- key.args[k]
if (is.factor(x$data[[predictors[x.var]]])){
if(any(is.na(Data$prob))) stop("At least one combination of factor levels is not estimable.\n Stacked plots are misleading, change to style='lines'")
result <- barchart(eval(parse(text=if (n.predictors == 1)
paste("prob ~ ", predictors[x.var], sep="")
else paste("prob ~ ", predictors[x.var]," | ",
paste(predictors[-x.var], collapse="*")))),
strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip),
par.strip.text=list(cex=cex.strip)),
panel=function(x, y, ...){
panel.barchart(x, y, ...)
if (grid) ticksGrid(x=NA, y=tickmarks$at, col="white")
},
groups = response,
col=colors,
horizontal=FALSE,
stack=TRUE,
data=Data,
ylim=ylim,
ylab=ylab,
xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]],
scales=list(x=list(rot=rotx, at=1:length(levs), labels=levs, cex=cex.x),
y=list(rot=roty, at=tickmarks$at, labels=tickmarks$labels, cex=cex.y),
alternating=alternating),
main=main,
key=key,
layout=layout)
result$split <- split
result$more <- more
class(result) <- c("plot.eff", class(result))
}
else {
if(use.splines) effect.llines <- spline.llines
nm <- predictors[x.var]
x.vals <- x$data[[nm]]
if (nm %in% names(ticks.x)){
at <- ticks.x[[nm]]$at
n <- ticks.x[[nm]]$n
}
else{
at <- NULL
n <- 5
}
xlm <- if (nm %in% names(xlim)){
xlim[[nm]]
}
else range.adj(Data[nm])
tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){
trans <- transform.x[[nm]]$trans
make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n)
}
else {
trans <- I
make.ticks(xlm, link=I, inverse=I, at=at, n=n)
}
if (show.strip.values){
for (pred in predictors[-x.var]){
x$x[[pred]] <- as.factor(x$x[[pred]])
}
}
result <- densityplot(eval(parse(text=if (n.predictors == 1)
paste("~ trans(", predictors[x.var], ")", sep="")
else paste("~ trans(", predictors[x.var], ") | ",
paste(predictors[-x.var], collapse="*")))),
probs=x$prob,
strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip),
par.strip.text=list(cex=cex.strip)),
panel = function(x, subscripts, rug, x.vals, probs=probs, col=colors, ...){
fill <- function(x, y1, y2, col){
if (length(y2) == 1) y2 <- rep(y2, length(y1))
if (length(y1) == 1) y1 <- rep(y1, length(y2))
panel.polygon(c(x, rev(x)), c(y1, rev(y2)), col=col)
}
n <- ncol(probs)
Y <- t(apply(probs[subscripts,], 1, cumsum))
fill(x, 0, Y[,1], col=col[1])
for (i in 2:n){
fill(x, Y[,i-1], Y[,i], col=col[i])
}
if (rug) lrug(trans(x.vals))
if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at, col="white")
},
rug=rug,
x.vals=x$data[[predictors[x.var]]],
data=x$x,
xlim=suppressWarnings(trans(xlm)),
ylim= c(0, 1),
ylab=ylab,
xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]],
scales=list(x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x),
y=list(rot=roty, at=tickmarks$at, labels=tickmarks$labels, cex=cex.y),
alternating=alternating),
main=main,
key=key,
layout=layout, ...)
result$split <- split
result$more <- more
class(result) <- c("plot.eff", class(result))
}
}
}
else{
if (type == "probability"){
lower <- lower.prob
upper <- upper.prob
}
else {
lower <- lower.logit
upper <- upper.logit
}
if (!multiline){
layout <- if(is.null(layout)) c(prod(n.predictor.cats), length(levels(response)), 1)
else layout
if (is.factor(x$data[[predictors[x.var]]])){
range <- range(c(lower, upper), na.rm=TRUE)
ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]),
range[2] + .025*(range[2] - range[1]))
tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n)
levs <- levels(x$data[[predictors[x.var]]])
if (show.strip.values){
for (pred in predictors[-x.var]){
Data[[pred]] <- as.factor(Data[[pred]])
}
}
result <- xyplot(eval(if (type=="probability")
parse(text=if (n.predictors==1)
paste("prob ~ as.numeric(", predictors[x.var],") |", x$response)
else paste("prob ~ as.numeric(", predictors[x.var],") |",
paste(predictors[-x.var], collapse="*"),
paste("*", x$response)))
else parse(text=if (n.predictors==1)
paste("logit ~ as.numeric(", predictors[x.var],") |", x$response)
else paste("logit ~ as.numeric(", predictors[x.var],")|",
paste(predictors[-x.var], collapse="*"),
paste("*", x$response)))),
par.strip.text=list(cex=0.8),
strip=strip.custom(..., strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip),
par.strip.text=list(cex=cex.strip)),
panel=function(x, y, subscripts, x.vals, rug, lower, upper, ... ){
if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at)
good <- !is.na(y)
effect.llines(x[good], y[good], lwd=lwd, lty=lty, type="b", pch=19, col=colors[1], cex=cex, ...)
subs <- subscripts+as.numeric(rownames(Data)[1])-1
if (ci.style == "bars"){
larrows(x0=x[good], y0=lower[subs][good],
x1=x[good], y1=upper[subs][good],
angle=90, code=3, col=colors[.modc(2)], length=0.125*cex/1.5)
}
else if(ci.style == "lines"){
effect.llines(x[good], lower[subs][good], lty=2, col=colors[.modc(2)])
effect.llines(x[good], upper[subs][good], lty=2, col=colors[.modc(2)])
}
else { if(ci.style == "bands") {
panel.bands(x[good], y[good],
lower[subs][good], upper[subs][good],
fill=band.colors[1], alpha=band.transparency)
}}
},
ylab=ylab,
ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim,
xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]],
main=main,
x.vals=x$data[[predictors[x.var]]],
rug=rug,
lower=lower,
upper=upper,
scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x),
y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y),
alternating=alternating),
layout=layout,
data=Data, ...)
result$split <- split
result$more <- more
class(result) <- c("plot.eff", class(result))
}
else {
if(use.splines) effect.llines <- spline.llines
range <- range(c(lower, upper), na.rm=TRUE)
ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]),
range[2] + .025*(range[2] - range[1]))
tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n)
nm <- predictors[x.var]
x.vals <- x$data[[nm]]
if (nm %in% names(ticks.x)){
at <- ticks.x[[nm]]$at
n <- ticks.x[[nm]]$n
}
else{
at <- NULL
n <- 5
}
xlm <- if (nm %in% names(xlim)){
xlim[[nm]]
}
else range.adj(Data[nm])
tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){
trans <- transform.x[[nm]]$trans
make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n)
}
else {
trans <- I
make.ticks(xlm, link=I, inverse=I, at=at, n=n)
}
if (show.strip.values){
for (pred in predictors[-x.var]){
Data[[pred]] <- as.factor(Data[[pred]])
}
}
result <- xyplot(eval(if (type=="probability")
parse(text=if (n.predictors==1)
paste("prob ~ trans(", predictors[x.var],") |", x$response)
else paste("prob ~ trans(", predictors[x.var],") |",
paste(predictors[-x.var], collapse="*"),
paste("*", x$response)))
else parse(text=if (n.predictors==1)
paste("logit ~ trans(", predictors[x.var],") |", x$response)
else paste("logit ~ trans(", predictors[x.var],") |",
paste(predictors[-x.var], collapse="*"),
paste("*", x$response)))
),
par.strip.text=list(cex=0.8),
strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip),
par.strip.text=list(cex=cex.strip)),
panel=function(x, y, subscripts, x.vals, rug, lower, upper, ... ){
if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at)
if (rug) lrug(trans(x.vals))
good <- !is.na(y)
effect.llines(x[good], y[good], lwd=lwd, lty=lty, col=colors[1], ...)
subs <- subscripts+as.numeric(rownames(Data)[1])-1
if (ci.style == "bars"){
larrows(x0=x[good], y0=lower[subs][good],
x1=x[good], y1=upper[subs][good],
angle=90, code=3, col=colors[.modc(2)], length=0.125*cex/1.5)
}
else if(ci.style == "lines"){
effect.llines(x[good], lower[subs][good], lty=2, col=colors[.modc(2)])
effect.llines(x[good], upper[subs][good], lty=2, col=colors[.modc(2)])
}
else { if(ci.style == "bands") {
panel.bands(x[good], y[good],
lower[subs][good], upper[subs][good],
fill=band.colors[1], alpha=band.transparency)
}}
},
ylab=ylab,
xlim=suppressWarnings(trans(xlm)),
ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim,
xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]],
main=main,
x.vals=x$data[[predictors[x.var]]],
rug=rug,
lower=lower,
upper=upper,
scales=list(y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y),
x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x),
alternating=alternating),
layout=layout,
data=Data, ...)
result$split <- split
result$more <- more
class(result) <- c("plot.eff", class(result))
}
} else {
layout <- if (is.null(layout)){
lay <- c(prod(n.predictor.cats[-(n.predictors - 1)]),
prod(n.predictor.cats[(n.predictors - 1)]), 1)
if (lay[1] > 1) lay else lay[c(2, 1, 3)]
}
else layout
if (n.y.lev > min(c(length(colors), length(lines), length(symbols))))
warning('Colors, lines and symbols may have been recycled')
if (is.factor(x$data[[predictors[x.var]]])){
range <- range(c(lower, upper), na.rm=TRUE)
ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]),
range[2] + .025*(range[2] - range[1]))
tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n)
key <- list(title=x$response, cex.title=1, border=TRUE,
text=list(as.character(unique(response))),
lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd),
points=list(pch=symbols[.mods(1:n.y.lev)], col=colors[.modc(1:n.y.lev)]),
columns = if ("x" %in% names(key.args)) 1 else
find.legend.columns(length(n.y.lev),
space=if("x" %in% names(key.args)) "top" else key.args$space))
for (k in names(key.args)) key[k] <- key.args[k]
if (show.strip.values){
for (pred in predictors[-x.var]){
Data[[pred]] <- as.factor(Data[[pred]])
}
}
result <- xyplot(eval(if (type=="probability")
parse(text=if (n.predictors==1)
paste("prob ~ as.numeric(", predictors[x.var], ")")
else paste("prob ~ as.numeric(", predictors[x.var],") | ",
paste(predictors[-x.var], collapse="*")))
else parse(text=if (n.predictors==1)
paste("logit ~ as.numeric(", predictors[x.var], ")")
else paste("logit ~ as.numeric(", predictors[x.var],") | ",
paste(predictors[-x.var], collapse="*")))),
strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip),
par.strip.text=list(cex=cex.strip)),
panel=function(x, y, subscripts, rug, z, x.vals, lower, upper, ...){
if (grid) ticksGrid(x=1:length(levs), y=tickmarks$at)
for (i in 1:n.y.lev){
os <- if (ci.style == "bars"){
(i - (n.y.lev + 1)/2) * (2/(n.y.lev-1)) * .01 * (n.y.lev - 1)
} else {
0
}
sub <- z[subscripts] == y.lev[i]
good <- !is.na(y[sub])
effect.llines(x[sub][good] + os, y[sub][good], lwd=lwd, type="b", col=colors[.modc(i)], lty=lines[.modl(i)],
pch=symbols[i], cex=cex, ...)
if (ci.style == "bars"){
larrows(x0=x[sub][good] + os, y0=lower[ ][sub][good],
x1=x[sub][good] + os, y1=upper[subscripts][sub][good],
angle=90, code=3, col=colors[.modc(i)], length=0.125*cex/1.5)
}
else if(ci.style == "lines"){
effect.llines(x[sub][good], lower[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)])
effect.llines(x[sub][good], upper[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)])
}
else { if(ci.style == "bands") {
panel.bands(x[sub][good], y[sub][good],
lower[subscripts][sub][good], upper[subscripts][sub][good],
fill=colors[.modc(i)], alpha=band.transparency)
}}
}
},
ylab=ylab,
ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim,
xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]],
x.vals=x$data[[predictors[x.var]]],
rug=rug,
z=response,
lower=lower,
upper=upper,
scales=list(x=list(at=1:length(levs), labels=levs, rot=rotx, cex=cex.x),
y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y),
alternating=alternating),
main=main,
key=key,
layout=layout,
data=Data, ...)
result$split <- split
result$more <- more
class(result) <- c("plot.eff", class(result))
}
else {
if(use.splines) effect.llines <- spline.llines
range <- range(c(lower, upper), na.rm=TRUE)
ylim <- if (!any(is.na(ylim))) ylim else c(range[1] - .025*(range[2] - range[1]),
range[2] + .025*(range[2] - range[1]))
tickmarks <- make.ticks(ylim, link=I, inverse=I, at=ticks$at, n=ticks$n)
nm <- predictors[x.var]
x.vals <- x$data[[nm]]
if (nm %in% names(ticks.x)){
at <- ticks.x[[nm]]$at
n <- ticks.x[[nm]]$n
}
else{
at <- NULL
n <- 5
}
xlm <- if (nm %in% names(xlim)){
xlim[[nm]]
}
else range.adj(Data[nm])
tickmarks.x <- if ((nm %in% names(transform.x)) && !(is.null(transform.x))){
trans <- transform.x[[nm]]$trans
make.ticks(trans(xlm), link=transform.x[[nm]]$trans, inverse=transform.x[[nm]]$inverse, at=at, n=n)
}
else {
trans <- I
make.ticks(xlm, link=I, inverse=I, at=at, n=n)
}
key <- list(title=x$response, cex.title=1, border=TRUE,
text=list(as.character(unique(response))),
lines=list(col=colors[.modc(1:n.y.lev)], lty=lines[.modl(1:n.y.lev)], lwd=lwd),
columns = if ("x" %in% names(key.args)) 1 else
find.legend.columns(length(n.y.lev),
space=if("x" %in% names(key.args)) "top" else key.args$space))
for (k in names(key.args)) key[k] <- key.args[k]
if (show.strip.values){
for (pred in predictors[-x.var]){
Data[[pred]] <- as.factor(Data[[pred]])
}
}
result <- xyplot(eval(if (type=="probability")
parse(text=if (n.predictors==1) paste("prob ~ trans(", predictors[x.var], ")")
else paste("prob ~ trans(", predictors[x.var],") |",
paste(predictors[-x.var], collapse="*")))
else parse(text=if (n.predictors==1) paste("logit ~ trans(", predictors[x.var], ")")
else paste("logit ~ trans(", predictors[x.var],") | ",
paste(predictors[-x.var], collapse="*")))),
strip=strip.custom(strip.names=c(factor.names, TRUE), sep=" = ", par.strip.text=list(cex=cex.strip),
par.strip.text=list(cex=cex.strip)),
panel=function(x, y, subscripts, rug, z, x.vals, lower, upper, ...){
if (grid) ticksGrid(x=tickmarks.x$at, y=tickmarks$at)
if (rug) lrug(trans(x.vals))
for (i in 1:n.y.lev){
sub <- z[subscripts] == y.lev[i]
good <- !is.na(y[sub])
effect.llines(x[sub][good], y[sub][good], lwd=lwd, type="l", col=colors[.modc(i)], lty=lines[.modl(i)], ...)
if (ci.style == "bars"){
larrows(x0=x[sub][good], y0=lower[subscripts][sub][good],
x1=x[sub][good], y1=upper[subscripts][sub][good],
angle=90, code=3, col=colors[.modc(i)], length=0.125*cex/1.5)
}
else if(ci.style == "lines"){
effect.llines(x[sub][good], lower[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)])
effect.llines(x[sub][good], upper[subscripts][sub][good], lty=lines[.modl(i)], col=colors[.modc(i)])
}
else { if(ci.style == "bands") {
panel.bands(x[sub][good], y[sub][good],
lower[subscripts][sub][good], upper[subscripts][sub][good],
fill=colors[.modc(i)], alpha=band.transparency)
}}
}
},
ylab=ylab,
xlim=suppressWarnings(trans(xlm)),
ylim= if (is.null(ylim)) c(min(lower), max(upper)) else ylim,
xlab=if (is.null(xlab)) predictors[x.var] else xlab[[x.var]],
x.vals=x$data[[predictors[x.var]]],
rug=rug,
z=response,
lower=lower,
upper=upper,
scales=list(x=list(at=tickmarks.x$at, labels=tickmarks.x$labels, rot=rotx, cex=cex.x),
y=list(at=tickmarks$at, labels=tickmarks$labels, rot=roty, cex=cex.y),
alternating=alternating),
main=main,
key=key,
layout=layout,
data=Data, ...)
result$split <- split
result$more <- more
class(result) <- c("plot.eff", class(result))
}
}
}
result
} |
shape_file.split= function(im,shapefile,namesFile="test",path=getwd(),type="jpg"){
pbbb = txtProgressBar(min = 0, max = length(unique(shapefile[,1])), initial = 0)
Nomes=NULL
print("Progress:")
for(i in unique(shapefile[,1])){
setTxtProgressBar(pbbb,i)
id=shapefile[,1]==i
pa=shapefile[id,3:4][1,]
pb=shapefile[id,3:4][2,]
pc=shapefile[id,3:4][3,]
pd=shapefile[id,3:4][4,]
sh1=round(rbind(pa,pb,pc,pd),0)
ii=im
[email protected][,,][email protected][,,]*0+1
ii[sh1[1,1],sh1[1,2],]=0
ii[sh1[2,1],sh1[2,2],]=0
ii[sh1[3,1],sh1[3,2],]=0
ii[sh1[4,1],sh1[4,2],]=0
pa0=pa;pb0=pb;pc0=pc;pd0=pd
pb[2]=pa[2]=min(pb0[2],pa0[2])
pc[1]=pb[1]=max(pc0[1],pb0[1])
pd[2]=pc[2]=max(pd0[2],pc0[2])
pa[1]=pd[1]=min(pa0[1],pd0[1])
sh2=rbind(pa,pb,pc,pd)
im2= crop_image(im,w=round(min(sh2[,1]),0):round(max(sh2[,1]),0),
h=round(min(sh2[,2]),0):round(max(sh2[,2]),0),plot = F)
nome=paste0(path,"/",namesFile,"_",i,".",type)
write_image(im2,files = nome)
Nomes=c(Nomes,nome)
}
print("Arquivos criados (files created):")
print(Nomes)
return(Nomes)
} |
test_that_cli("make_line", {
expect_equal(make_line(1, "-"), "-")
expect_equal(make_line(0, "-"), "")
expect_equal(make_line(2, "-"), "--")
expect_equal(make_line(10, "-"), "----------")
expect_equal(make_line(2, "12"), "12")
expect_equal(make_line(0, "12"), "")
expect_equal(make_line(1, "12"), "1")
expect_equal(make_line(9, "12"), "121212121")
expect_equal(make_line(10, "12"), "1212121212")
})
test_that("width option", {
expect_equal(
rule(width = 11, line = "-"),
rule_class("-----------")
)
})
test_that("left label", {
expect_equal(
rule("label", width = 12, line = "-"),
rule_class("-- label ---")
)
expect_equal(
rule("l", width = 12, line = "-"),
rule_class("-- l -------")
)
expect_equal(
rule("label", width = 9, line = "-"),
rule_class("-- label ")
)
expect_equal(
rule("label", width = 8, line = "-"),
rule_class("-- label")
)
expect_equal(
rule("label", width = 6, line = "-"),
rule_class("-- lab")
)
})
test_that("centered label", {
expect_error(
rule(left = "label", center = "label"),
"cannot be specified"
)
expect_error(
rule(center = "label", right = "label"),
"cannot be specified"
)
expect_equal(
rule(center = "label", width = 13, line = "-"),
rule_class("--- label ---")
)
expect_equal(
rule(center = "label", width = 14, line = "-"),
rule_class("---- label ---")
)
expect_equal(
rule(center = "label", width = 9, line = "-"),
rule_class("- label -")
)
expect_equal(
rule(center = "label", width = 8, line = "-"),
rule_class("- labe -")
)
expect_equal(
rule(center = "label", width = 7, line = "-"),
rule_class("- lab -")
)
})
test_that("right label", {
expect_equal(
rule(right = "label", width = 12, line = "-"),
rule_class("--- label --")
)
expect_equal(
rule(right = "l", width = 12, line = "-"),
rule_class("------- l --")
)
expect_equal(
rule(right = "label", width = 9, line = "-"),
rule_class(" label --")
)
expect_equal(
rule(right = "label", width = 8, line = "-"),
rule_class(" label -")
)
expect_equal(
rule(right = "label", width = 6, line = "-"),
rule_class(" label")
)
expect_equal(
rule(right = "label", width = 5, line = "-"),
rule_class(" labe")
)
expect_equal(
rule(right = "label", width = 4, line = "-"),
rule_class(" lab")
)
})
test_that("line_col", {
withr::with_options(
list(cli.num_colors = 256L), {
expect_true(ansi_has_any(
rule(line_col = "red")
))
expect_true(ansi_has_any(
rule(left = "left", line_col = "red")
))
expect_true(ansi_has_any(
rule(left = "left", right = "right", line_col = "red")
))
expect_true(ansi_has_any(
rule(center = "center", line_col = "red")
))
expect_true(ansi_has_any(
rule(right = "right", line_col = "red")
))
expect_true(ansi_has_any(
rule(line_col = col_red)
))
}
)
})
test_that_cli("get_line_char", {
expect_equal(get_line_char(1), cli::symbol$line)
expect_equal(get_line_char(2), cli::symbol$double_line)
expect_equal(get_line_char("bar1"), cli::symbol$lower_block_1)
expect_equal(get_line_char("bar2"), cli::symbol$lower_block_2)
expect_equal(get_line_char("bar3"), cli::symbol$lower_block_3)
expect_equal(get_line_char("bar4"), cli::symbol$lower_block_4)
expect_equal(get_line_char("bar5"), cli::symbol$lower_block_5)
expect_equal(get_line_char("bar6"), cli::symbol$lower_block_6)
expect_equal(get_line_char("bar7"), cli::symbol$lower_block_7)
expect_equal(get_line_char("bar8"), cli::symbol$lower_block_8)
expect_equal(get_line_char("xxx"), "xxx")
expect_equal(get_line_char(c("x", "y", "z")), "xyz")
})
test_that("print.cli_rule", {
withr::local_options(cli.width = 20)
expect_snapshot(rule("foo"))
}) |
df2list <- function(x, start.col = 1) {
end.col <- ncol(x);
x <- lapply(x[,start.col:end.col], function(x, label){label[x!=0]}, rownames(x));
return (x);
} |
"_PACKAGE"
setOldClass(c("hms", "difftime"))
NULL
hms <- function(seconds = NULL, minutes = NULL, hours = NULL, days = NULL) {
args <- list(seconds = seconds, minutes = minutes, hours = hours, days = days)
check_args(args)
arg_secs <- map2(args, c(1, 60, 3600, 86400), `*`)
secs <- reduce(arg_secs[!map_lgl(args, is.null)], `+`)
if (is.null(secs)) secs <- numeric()
new_hms(as.numeric(secs))
}
new_hms <- function(x = numeric()) {
vec_assert(x, numeric())
out <- new_duration(x, units = "secs")
class(out) <- c("hms", class(out))
out
}
is_hms <- function(x) inherits(x, "hms")
NULL
is.hms <- function(x) {
deprecate_soft("0.5.0", "hms::is.hms()", "hms::is_hms()")
is_hms(x)
}
vec_ptype_abbr.hms <- function(x) {
"time"
}
vec_ptype_full.hms <- function(x) {
"time"
}
as_hms <- function(x, ...) {
check_dots_used()
UseMethod("as_hms")
}
as_hms.default <- function(x, ...) {
vec_cast(x, new_hms())
}
as.hms <- function(x, ...) {
deprecate_soft("0.5.0", "hms::as.hms()", "hms::as_hms()")
UseMethod("as.hms", x)
}
as.hms.default <- function(x, ...) {
as_hms(x)
}
as.hms.POSIXt <- function(x, tz = pkgconfig::get_config("hms::default_tz", ""), ...) {
time <- as.POSIXlt(x, tz = tz)
vec_cast(time, new_hms())
}
as.hms.POSIXlt <- function(x, tz = pkgconfig::get_config("hms::default_tz", ""), ...) {
time <- as.POSIXlt(as.POSIXct(x), tz = tz)
vec_cast(time, new_hms())
}
as.POSIXct.hms <- function(x, ...) {
vec_cast(x, new_datetime())
}
as.POSIXlt.hms <- function(x, ...) {
vec_cast(x, as.POSIXlt(new_datetime()))
}
as.character.hms <- function(x, ...) {
vec_cast(x, character())
}
format_hms <- function(x) {
xx <- decompose(x)
ifelse(is.na(x), NA_character_, paste0(
ifelse(xx$sign, "-", ""),
format_hours(xx$hours), ":",
format_two_digits(xx$minute_of_hour), ":",
format_two_digits(xx$second_of_minute),
format_tics(xx$tics)))
}
`[[.hms` <- function(x, ...) {
vec_restore(NextMethod(), x)
}
`[<-.hms` <- function(x, i, value) {
if (missing(i)) {
i <- TRUE
}
x <- vec_data(x)
if (identical(class(value), "numeric")) {
attr(value, "units") <- NULL
}
value <- vec_cast(value, new_hms())
x[i] <- vec_data(value)
new_hms(x)
}
c.hms <- function(x, ...) {
vec_c(x, ...)
}
`units<-.hms` <- function(x, value) {
if (!identical(value, "secs")) {
warning("hms always uses seconds as unit.", call. = FALSE)
}
x
}
format.hms <- function(x, ...) {
if (length(x) == 0L) {
"hms()"
} else {
format(as.character(x), justify = "right")
}
}
print.hms <- function(x, ...) {
cat(format(x), sep = "\n")
invisible(x)
} |
update_candidate <- function(add_active_group.index, active_group.index, candidate.group, order, level){
new_candidate.group <- list()
active.group <- candidate.group[active_group.index]
unique.active.group <- lapply(active.group, FUN = function(x) x[[length(x)]])
for(group.index in add_active_group.index){
new_active.group <- candidate.group[[group.index]]
new_active.resolution <- max(sapply(new_active.group, function(x) x$resolution))
new_active.order <- max(sapply(new_active.group, function(x) length(x$effect)))
if(new_active.resolution < level){
group.add <- new_active.group[sapply(new_active.group, FUN = function(x) x$resolution == new_active.resolution)]
group.add <- lapply(group.add, function(x) {
x$resolution <- x$resolution + 1
return(x)})
if(new_active.order == 1){
new_candidate.add <- c(new_active.group, group.add)
new_candidate.group <- c(new_candidate.group, list(new_candidate.add))
}else{
dupicate.index <- is.anydupicate(group.add, unique.active.group, type = 2)
if(all(dupicate.index[-length(dupicate.index)])){
new_candidate.add <- c(new_active.group, group.add)
new_candidate.group <- c(new_candidate.group, list(new_candidate.add))
}
}
}
if(new_active.order < order & length(active.group) > 0){
same_order_level.group <- active.group[sapply(active.group, function(x.ls) max(sapply(x.ls, function(x) x$resolution)) == new_active.resolution &
max(sapply(x.ls, function(x) length(x$effect))) == new_active.order)]
same_order_level.group <- c(same_order_level.group, list(new_active.group))
if(length(same_order_level.group) > new_active.order){
test.table <- combn(length(same_order_level.group) - 1, new_active.order)
test.table <- rbind(test.table, length(same_order_level.group))
temp.group <- lapply(same_order_level.group, function(x.ls) x.ls[length(x.ls)])
group.tmp <- sapply(temp.group, function(x.ls) x.ls[sapply(x.ls, function(x) length(x$effect) == new_active.order)])
effect_heredity.index <- which(apply(test.table, 2, function(x){
group.tbl <- table(c(sapply(group.tmp[x], function(x.ls) x.ls$effect)))
all(group.tbl == new_active.order) & length(group.tbl) == (new_active.order + 1)
}))
for(ii in effect_heredity.index){
effect.new <- sort(unique(c(sapply(group.tmp[test.table[,ii]], function(x.ls) x.ls$effect))))
group.new <- vector("list", new_active.resolution)
for(jj in 1:new_active.resolution) group.new[[jj]] <- list(effect = effect.new, resolution = jj)
if(new_active.resolution > 1){
dupicate.index <- is.anydupicate(group.new[jj-1], unique.active.group, type = 2)
}else {
dupicate.index <- TRUE
}
if(dupicate.index){
new_candidate.add <- c(unique(unlist(same_order_level.group[test.table[,ii]], recursive = FALSE)), group.new)
new_candidate.group <- c(new_candidate.group, list(new_candidate.add))
}
}
}
}
}
if(length(new_candidate.group) > 1) new_candidate.group <- list.unique(new_candidate.group)
if(length(new_candidate.group) > 0){
delete.fg <- !is.anydupicate(new_candidate.group, candidate.group, type = 1)
if(any(delete.fg)){
new_candidate.group <- new_candidate.group[delete.fg]
}
}
return(new_candidate.group)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(tidycomm)
WoJ
WoJ %>%
add_index(ethical_flexibility, ethics_1, ethics_2, ethics_3, ethics_4) %>%
dplyr::select(ethical_flexibility, ethics_1, ethics_2, ethics_3, ethics_4)
WoJ %>%
add_index(ethical_flexibility, ethics_1, ethics_2, ethics_3, ethics_4, type = "sum") %>%
dplyr::select(ethical_flexibility, ethics_1, ethics_2, ethics_3, ethics_4)
WoJ <- WoJ %>%
add_index(ethical_flexibility, ethics_1, ethics_2, ethics_3, ethics_4) %>%
add_index(trust_in_politics, trust_parliament, trust_government, trust_parties, trust_politicians)
WoJ %>%
get_reliability()
WoJ %>%
get_reliability(trust_in_politics)
WoJ %>%
get_reliability(type = 'omega', interval.type = 'mlr') |
"new_jersey_counts" |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library("FMM")
generateFMM(M=2,A=3,alpha=1.5,beta=2.3,omega=0.1,
plot=TRUE,outvalues=FALSE)
fmm2.data <-generateFMM(M=0,A=c(2,2),alpha=c(1.5,3.4),beta=c(0.2,2.3),omega=c(0.1,0.2),
plot=FALSE, outvalues=TRUE)
str(fmm2.data)
set.seed(15)
fmm2.data <-generateFMM(M=0,A=c(2,2),alpha=c(1.5,3.4),beta=c(0.2,2.3),omega=c(0.1,0.2),
plot=TRUE, outvalues=TRUE,
sigmaNoise=0.3)
fit.fmm2 <- fitFMM(vData = fmm2.data$y, timePoints = fmm2.data$t, nback = 2)
summary(fit.fmm2)
getFMMPeaks(fit.fmm2, timePointsIn2pi = TRUE)
fit1 <- fitFMM(vData = fmm2.data$y, timePoints = fmm2.data$t, nback = 2,
lengthAlphaGrid = 48, lengthOmegaGrid = 24, numReps = 3,
showTime = TRUE)
fit2 <- fitFMM(vData = fmm2.data$y, timePoints = fmm2.data$t, nback = 2,
lengthAlphaGrid = 14, lengthOmegaGrid = 7, numReps = 6,
showTime = TRUE)
getR2(fit1)
getR2(fit2)
fit3 <- fitFMM(vData = fmm2.data$y, timePoints = fmm2.data$t, nback = 2,
maxiter = 5, stopFunction = R2(difMax = 0.01),
showTime = TRUE, showProgress = TRUE)
set.seed(1115)
rfmm.data <-generateFMM(M = 3, A = c(4,3,1.5,1),
alpha = c(3.8,1.2,4.5,2),
beta = c(rep(3,2),rep(1,2)),
omega = c(rep(0.1,2),rep(0.05,2)),
plot = TRUE, outvalues = TRUE,
sigmaNoise = 0.3)
fit.rfmm <- fitFMM(vData = rfmm.data$y, timePoints = rfmm.data$t, nback = 4,
betaOmegaRestrictions = c(1, 1, 2, 2),
lengthAlphaGrid = 24, lengthOmegaGrid = 15, numReps = 5)
summary(fit.rfmm)
titleText <- "Two FMM waves"
par(mfrow=c(1,2))
plotFMM(fit.fmm2, textExtra = titleText)
plotFMM(fit.fmm2, components = TRUE, textExtra = titleText, legendInComponentsPlot = TRUE)
library("RColorBrewer")
library("ggplot2")
library("gridExtra")
titleText <- "Four restricted FMM waves"
defaultrFMM2 <- plotFMM(fit.rfmm, use_ggplot2 = TRUE, textExtra = titleText)
defaultrFMM2 <- defaultrFMM2 + theme(plot.margin=unit(c(1,0.25,1.3,1), "cm")) +
ylim(-5, 6)
comprFMM2 <- plotFMM(fit.rfmm, components=TRUE, use_ggplot2 = TRUE, textExtra = titleText)
comprFMM2 <- comprFMM2 + theme(plot.margin=unit(c(1,0.25,0,1), "cm")) +
ylim(-5, 6) + scale_color_manual(values = brewer.pal("Set1",n = 8)[3:6])
grid.arrange(defaultrFMM2, comprFMM2, nrow = 1) |
Subsets and Splits