code
stringlengths
1
13.8M
NULL NULL CompCase=function(mydata){ sum(is.na(apply(mydata,1,mean))) mydata<-mydata[!is.na(apply(mydata,1,mean)),] } NULL pbc.sample=function(){ Z=list() D=CompCase(survival::pbc[,c(2:4,10:14)]); Z$time=D$time/365.25; Z$status=as.numeric(D$status==2); Z$group=as.numeric(D$trt==2); Z$covariates=as.matrix(D[,4:8]); Z } NULL plot.surv2sample=function(x, measure=NULL,baseline=0,...){ if(is.null(measure)){ y=x$survfit ; class(y)="survfit" ; plot(y,...) } if(measure=="relative percentile"){ xx=x$quanprobs if(baseline==0){y=x$contrast.ratio01}else{y=x$contrast.ratio10} yy=y[(nrow(y)-length(xx)+1):nrow(y),] plotrix::plotCI(xx, yy[,1], uiw=yy[,3], liw=yy[,2], xlab="percent", ylab="relative time (95%CI)",...) } } NULL rmstreg=function(y, delta, x, arm, tau, type="difference", conf.int=0.95) { label.low = paste0("lower ", conf.int) label.upp = paste0("upper ", conf.int) if(type!="difference" && type!="ratio" && type!="lossratio") print("Type must be difference, ratio or lossratio.") if(type=="difference" || type=="ratio" || type=="lossratio"){ n=length(y) x=cbind(1, x) p=length(x[1,]) y0=pmin(y, tau) d0=delta d0[y0==tau]=1 d10=d0[arm==1] d00=d0[arm==0] y10=y0[arm==1] y00=y0[arm==0] x1=x[arm==1,] x0=x[arm==0,] n1=length(d10) n0=length(d00) id1=order(y10) y10=y10[id1] d10=d10[id1] x1=x1[id1,] id0=order(y00) y00=y00[id0] d00=d00[id0] x0=x0[id0,] fitc1=survfit(Surv(y10, 1-d10)~1) fitc0=survfit(Surv(y00, 1-d00)~1) weights1=d10/rep(fitc1$surv, table(y10)) weights0=d00/rep(fitc0$surv, table(y00)) weights=c(weights1, weights0) if(type=="difference") {fitt=lm(c(y10,y00)~rbind(x1, x0)-1, weights=weights) beta0=fitt$coef error1=y10-as.vector(x1%*%beta0) score1=x1*weights1*error1 error0=y00-as.vector(x0%*%beta0) score0=x0*weights0*error0 } if(type=="ratio") {fitt=glm(c(y10,y00)~rbind(x1, x0)-1, family="quasipoisson", weights=weights) beta0=fitt$coef error1=y10-exp(as.vector(x1%*%beta0)) score1=x1*weights1*error1 error0=y00-exp(as.vector(x0%*%beta0)) score0=x0*weights0*error0 } if(type=="lossratio") {fitt=glm(c(tau-y10,tau-y00)~rbind(x1, x0)-1, family="quasipoisson", weights=weights) beta0=fitt$coef error1=tau-y10-exp(as.vector(x1%*%beta0)) score1=x1*weights1*error1 error0=tau-y00-exp(as.vector(x0%*%beta0)) score0=x0*weights0*error0 } kappa.arm1=matrix(0, n1, p) for(i in 1:n1) {kappa1=score1[i,] kappa2=apply(score1[y10>=y10[i],,drop=F], 2, sum)*(1-d10[i])/sum(y10>=y10[i]) kappa3=rep(0, p) for(k in 1:n1) { if(y10[k]<=y10[i]) kappa3=kappa3+apply(score1[y10>=y10[k],,drop=F], 2, sum)*(1-d10[k])/(sum(y10>=y10[k]))^2 } kappa.arm1[i,]=kappa1+kappa2-kappa3 } kappa.arm0=matrix(0, n0, p) for(i in 1:n0) {kappa1=score0[i,] kappa2=apply(score0[y00>=y00[i],,drop=F], 2, sum)*(1-d00[i])/sum(y00>=y00[i]) kappa3=rep(0, p) for(k in 1:n0) {if(y00[k]<=y00[i]) kappa3=kappa3+apply(score0[y00>=y00[k],,drop=F], 2, sum)*(1-d00[k])/(sum(y00>=y00[k]))^2 } kappa.arm0[i,]=kappa1+kappa2-kappa3 } if(type=="difference") {gamma=t(kappa.arm1)%*%kappa.arm1+t(kappa.arm0)%*%kappa.arm0 A=t(x)%*%x varbeta=solve(A)%*%gamma%*%solve(A) } if(type=="ratio" || type=="lossratio") {gamma=t(kappa.arm1)%*%kappa.arm1+t(kappa.arm0)%*%kappa.arm0 A=t(x*exp(as.vector(x%*%beta0)))%*%x varbeta=solve(A)%*%gamma%*%solve(A) } if(type=="difference") {beta0=beta0 se0=sqrt(diag(varbeta)) z0=beta0/se0 p0=1-pchisq(z0^2, 1) cilow=beta0-se0*abs(qnorm((1-conf.int)/2)) cihigh=beta0+se0*abs(qnorm((1-conf.int)/2)) result=cbind(coef=beta0, "se(coef)"=se0, z=z0, p=p0, label.low=cilow, label.upp=cihigh) colnames(result)=c("coef", "se(coef)", "z", "p", label.low, label.upp) } if(type=="ratio" || type=="lossratio") {beta0=beta0 se0=sqrt(diag(varbeta)) z0=beta0/se0 p0=1-pchisq(z0^2, 1) r0=exp(beta0) cilow=exp(beta0-se0*abs(qnorm((1-conf.int)/2))) cihigh=exp(beta0+se0*abs(qnorm((1-conf.int)/2))) result=cbind(coef=beta0, "se(coef)"=se0, z=z0, p=p0, "exp(coef)"=exp(beta0), label.low=cilow, label.upp=cihigh) colnames(result)=c("coef", "se(coef)", "z", "p", "exp(coef)", label.low, label.upp) } if(p==2) rownames(result)=c("intercept", "x") if(p>2) rownames(result)=c("intercept", colnames(x[,-1])) return(result) } } NULL rmstaug=function(y, delta, x, arm, tau, type="difference", conf.int=0.95) { label.low = paste0("lower ", conf.int) label.upp = paste0("upper ", conf.int) if(type!="difference" && type!="ratio" && type!="lossratio") print("Type must be difference, ratio or lossratio.") if(type=="difference" || type=="ratio" || type=="lossratio"){ n=length(y) x=as.matrix(x) p=length(x[1,]) pi=mean(arm) y0=pmin(y, tau) d0=delta d0[y0==tau]=1 d10=d0[arm==1] d00=d0[arm==0] y10=y0[arm==1] y00=y0[arm==0] x1=x[arm==1,,drop=F] x0=x[arm==0,,drop=F] n1=length(d10) n0=length(d00) id1=order(y10) y10=y10[id1] d10=d10[id1] x1=x1[id1,,drop=F] id0=order(y00) y00=y00[id0] d00=d00[id0] x0=x0[id0,,drop=F] fitc1=survfit(Surv(y10, 1-d10)~1) fitc0=survfit(Surv(y00, 1-d00)~1) weights1=d10/rep(fitc1$surv, table(y10)) weights0=d00/rep(fitc0$surv, table(y00)) weights=c(weights1, weights0) if(type=="difference") {fitt=lm(c(y10,y00)~rep(c(1, 0), c(n1, n0)), weights=weights) beta0=fitt$coef error1=y10-beta0[1]-beta0[2] score1=cbind(1, rep(1, n1))*weights1*error1 error0=y00-beta0[1] score0=cbind(1, rep(0, n0))*weights0*error0 } if(type=="ratio") {fitt=glm(c(y10,y00)~rep(c(1, 0), c(n1, n0)), family="quasipoisson", weights=weights) beta0=fitt$coef error1=y10-exp(beta0[1]+beta0[2]) score1=cbind(1, rep(1, n1))*weights1*error1 error0=y00-exp(beta0[1]) score0=cbind(1, rep(0, n0))*weights0*error0 } if(type=="lossratio") {fitt=glm(c(tau-y10,tau-y00)~rep(c(1, 0), c(n1, n0)), family="quasipoisson", weights=weights) beta0=fitt$coef error1=tau-y10-exp(beta0[1]+beta0[2]) score1=cbind(1, rep(1, n1))*weights1*error1 error0=tau-y00-exp(beta0[1]) score0=cbind(1, rep(0, n0))*weights0*error0 } kappa.arm1=matrix(0, n1, 2) for(i in 1:n1) {kappa1=score1[i,] kappa2=apply(score1[y10>=y10[i],,drop=F], 2, sum)*(1-d10[i])/sum(y10>=y10[i]) kappa3=rep(0, 2) for(k in 1:n1) { if(y10[k]<=y10[i]) kappa3=kappa3+apply(score1[y10>=y10[k],,drop=F], 2, sum)*(1-d10[k])/(sum(y10>=y10[k]))^2 } kappa.arm1[i,]=kappa1+kappa2-kappa3 } kappa.arm0=matrix(0, n0, 2) for(i in 1:n0) {kappa1=score0[i,] kappa2=apply(score0[y00>=y00[i],,drop=F], 2, sum)*(1-d00[i])/sum(y00>=y00[i]) kappa3=rep(0, 2) for(k in 1:n0) {if(y00[k]<=y00[i]) kappa3=kappa3+apply(score0[y00>=y00[k],,drop=F], 2, sum)*(1-d00[k])/(sum(y00>=y00[k]))^2 } kappa.arm0[i,]=kappa1+kappa2-kappa3 } if(type=="difference") { A=cbind(c(n1+n0, n1), c(n1, n1)) betainf=solve(A)%*%t(rbind(kappa.arm1, kappa.arm0)) } if(type=="ratio" || type=="lossratio") {mu1=exp(beta0[1]+beta0[2]) mu0=exp(beta0[1]) A=cbind(c(n1*mu1+n0*mu0, n1*mu1), c(n1*mu1, n1*mu1)) betainf=solve(A)%*%t(rbind(kappa.arm1, kappa.arm0)) } aug=rbind(x1*(1-pi), -x0*pi) fit=lm(t(betainf)~aug-1) if(type=="difference") {beta0=beta0 se0=sqrt(diag(betainf%*%t(betainf))) z0=beta0/se0 p0=1-pchisq(z0^2, 1) cilow=beta0-se0*abs(qnorm((1-conf.int)/2)) cihigh=beta0+se0*abs(qnorm((1-conf.int)/2)) result.ini=cbind(coef=beta0, "se(coef)"=se0, z=z0, p=p0, label.low=cilow, label.upp=cihigh) colnames(result.ini)=c("coef", "se(coef)", "z", "p", label.low, label.upp) beta.aug=beta0-apply(aug%*%fit$coef,2,sum) se.aug=sqrt(diag(t(fit$res)%*%fit$res))*sqrt((n1+n0)/(n1+n0-p)) z.aug=beta.aug/se.aug p.aug=1-pchisq(z.aug^2, 1) cilow.aug=beta.aug-se.aug*abs(qnorm((1-conf.int)/2)) cihigh.aug=beta.aug+se.aug*abs(qnorm((1-conf.int)/2)) result.aug=cbind(coef=beta.aug, "se(coef)"=se.aug, z=z.aug, p=p.aug, label.low=cilow.aug, label.upp=cihigh.aug) colnames(result.aug)=c("coef", "se(coef)", "z", "p", label.low, label.upp) } if(type=="ratio" || type=="lossratio") {beta0=beta0 se0=sqrt(diag(betainf%*%t(betainf))) z0=beta0/se0 p0=1-pchisq(z0^2, 1) cilow=beta0-se0*abs(qnorm((1-conf.int)/2)) cihigh=beta0+se0*abs(qnorm((1-conf.int)/2)) result.ini=cbind(coef=beta0, "se(coef)"=se0, z=z0, p=p0, "exp(coef)"=exp(beta0), label.low=exp(cilow), label.upp=exp(cihigh)) colnames(result.ini)=c("coef", "se(coef)", "z", "p", "exp(coef)", label.low, label.upp) beta.aug=beta0-apply(aug%*%fit$coef,2,sum) se.aug=sqrt(diag(t(fit$res)%*%fit$res))*sqrt((n1+n0)/(n1+n0-p)) z.aug=beta.aug/se.aug p.aug=1-pchisq(z.aug^2, 1) cilow.aug=beta.aug-se.aug*abs(qnorm((1-conf.int)/2)) cihigh.aug=beta.aug+se.aug*abs(qnorm((1-conf.int)/2)) result.aug=cbind(coef=beta.aug, "se(coef)"=se.aug, z=z.aug, p=p.aug, "exp(coef)"=exp(beta.aug), label.low=exp(cilow.aug), label.upp=exp(cihigh.aug)) colnames(result.aug)=c("coef", "se(coef)", "z", "p", "exp(coef)", label.low, label.upp) } rownames(result.ini)=rownames(result.aug)=c("intercept", "arm") return(list(result.ini=result.ini, result.aug=result.aug)) } } NULL NULL KM2.pert <- function(time, status, npert=300, timepoints=c(12,24,36,40), quanprobs=c(0.1, 0.15, 0.2), tau_start=0, tau){ indata=cbind(time, status) N=nrow(indata) KK=npert+1 k.time=length(timepoints) ; p.time=matrix(0, nrow=KK, ncol=k.time) k.quan=length(quanprobs) ; q.time=matrix(0, nrow=KK, ncol=k.quan) rmst=rep(0, KK) p.time.ave =rep(0, KK) q.time.ave =rep(0, KK) i=1 ft= survfit(Surv(indata[,1], indata[,2])~1) if(tau_start!=0){ rmst[i]=summary(ft, rmean=tau)$table[5] - summary(ft, rmean=tau_start)$table[5] }else{ rmst[i]=summary(ft, rmean=tau)$table[5] } for (k in 1:k.time){ idx=ft$time<timepoints[k] ; p.time[i, k]=min(ft$surv[idx])} for (k in 1:k.quan){ idx1=round(ft$surv,digits=14) <= (1-quanprobs[k]) ; idx2=round(ft$surv,digits=14) < (1-quanprobs[k]) ; if(sum(as.numeric(idx1))==0){ q.time[i, k]=NA }else{ if(sum(as.numeric(idx1)) == sum(as.numeric(idx2))){ q.time[i, k]= min(ft$time[idx1]) }else{ q.time[i, k]=(min(ft$time[idx1]) + min(ft$time[idx2]))/2 } } } p.time.ave[i]=mean(p.time[i,]) q.time.ave[i]=mean(q.time[i,]) for (i in 2:KK){ ft= survfit(Surv(indata[,1], indata[,2])~1, weight=rexp(N)) if(tau_start!=0){ rmst[i]=summary(ft, rmean=tau)$table[5] - summary(ft, rmean=tau_start)$table[5] }else{ rmst[i]=summary(ft, rmean=tau)$table[5] } for (k in 1:k.time){ idx=ft$time<timepoints[k] ; p.time[i, k]=min(ft$surv[idx])} for (k in 1:k.quan){ idx1=round(ft$surv,digits=14) <= (1-quanprobs[k]) ; idx2=round(ft$surv,digits=14) < (1-quanprobs[k]) ; if(sum(as.numeric(idx1)) == sum(as.numeric(idx2))){ q.time[i, k]= min(ft$time[idx1]) }else{ q.time[i, k]=(min(ft$time[idx1]) + min(ft$time[idx2]))/2 } } p.time.ave[i]=mean(p.time[i,]) q.time.ave[i]=mean(q.time[i,]) } Z=list() Z$percentiles = data.frame(q.time); colnames(Z$percentiles)=quanprobs Z$tyearprobs = data.frame(p.time) ; colnames(Z$tyearprobs) = timepoints Z$rmst = rmst Z$tau = tau Z$tau_start = tau_start Z$tyearprobs.ave=p.time.ave Z$percentiles.ave=q.time.ave return(Z) } NULL GG2.boot=function(time, status, npert=300, timepoints=c(12,24,36,40), quanprobs=c(0.1, 0.15, 0.2), tau){ indata=cbind(time, status) N=nrow(indata) KK=npert+1 k.time=length(timepoints) ; p.time=matrix(0, nrow=KK, ncol=k.time) k.quan=length(quanprobs) ; q.time=matrix(0, nrow=KK, ncol=k.quan) rmst=rep(0, KK) p.time.ave =rep(0, KK) q.time.ave =rep(0, KK) i=1 ft=flexsurvreg(Surv(indata[,1], indata[,2])~1, dist="gengamma") parm=ft$res[,1] integrand=function(x){1-pgengamma(x, mu=parm[1], sigma = parm[2], Q=parm[3])} aa=integrate(integrand, lower=0, upper=tau) rmst[i]=aa$value for (k in 1:k.time){ p.time[i, k]=1-pgengamma(timepoints[k], mu=parm[1], sigma = parm[2], Q=parm[3])} for (k in 1:k.quan){ q.time[i, k]=qgengamma(quanprobs[k], mu=parm[1], sigma = parm[2], Q=parm[3])} p.time.ave[i]=mean(p.time[i,]) q.time.ave[i]=mean(q.time[i,]) for (i in 2:KK){ bs=sample(N, replace=TRUE) bdata=indata[bs,] ft=flexsurvreg(Surv(bdata[,1], bdata[,2])~1, dist="gengamma") parm=ft$res[,1] integrand=function(x){1-pgengamma(x, mu=parm[1], sigma = parm[2], Q=parm[3])} aa=integrate(integrand, lower=0, upper=tau) rmst[i]=aa$value for (k in 1:k.time){ p.time[i, k]=1-pgengamma(timepoints[k], mu=parm[1], sigma = parm[2], Q=parm[3])} for (k in 1:k.quan){ q.time[i, k]=qgengamma(quanprobs[k], mu=parm[1], sigma = parm[2], Q=parm[3])} p.time.ave[i]=mean(p.time[i,]) q.time.ave[i]=mean(q.time[i,]) } Z=list() Z$percentiles=data.frame(q.time); colnames(Z$percentiles)= quanprobs Z$tyearprobs=data.frame(p.time) ; colnames(Z$tyearprobs) = timepoints Z$rmst=rmst Z$tau=tau Z$tyearprobs.ave=p.time.ave Z$percentiles.ave=q.time.ave return(Z) } NULL surv2sample <- function(time, status, arm, npert=1000, timepoints=c(12,24,36,40), quanprobs =c(0.1, 0.15, 0.2), tau_start=0, tau, SEED=NULL, procedure="KM", conf.int=0.95){ if(!is.null(SEED)){ set.seed(SEED) } idx=arm==0; tt=time[idx]; tau0max=max(tt) idx=arm==1; tt=time[idx]; tau1max=max(tt) tau_max = min(tau0max, tau1max) if(!is.null(tau)){ if(tau > tau_max){ stop(paste("The truncation time, tau, needs to be shorter than or equal to the minimum of the largest observed time on each of the two groups: ", round(tau_max, digits=3))) } } if(is.null(tau)){ stop(paste("The truncation time, tau, was not specified. It needs to be specified by users.")) } if(procedure=="KM"){ idx=arm==0; km0=KM2.pert(time[idx], status[idx], npert=npert, timepoints=timepoints, quanprobs = quanprobs, tau_start=tau_start, tau=tau) idx=arm==1; km1=KM2.pert(time[idx], status[idx], npert=npert, timepoints=timepoints, quanprobs = quanprobs, tau_start=tau_start, tau=tau) } if(procedure=="GG"){ idx=arm==0; km0=GG2.boot(time[idx], status[idx], npert=npert, timepoints=timepoints, quanprobs = quanprobs, tau=tau) idx=arm==1; km1=GG2.boot(time[idx], status[idx], npert=npert, timepoints=timepoints, quanprobs = quanprobs, tau=tau) } q_ci = function(x){quantile(x, prob=c((1-conf.int)/2, 1-(1-conf.int)/2))} time_interval = tau - tau_start wk0=cbind(km0$rmst, tau-km0$rmst, km0$tyearprobs, km0$percentiles, km0$tyearprobs.ave, km0$percentiles.ave) wk1=cbind(km1$rmst, tau-km1$rmst, km1$tyearprobs, km1$percentiles, km1$tyearprobs.ave, km1$percentiles.ave) se0=apply(wk0[-1,], 2, sd) se1=apply(wk1[-1,], 2, sd) ci0=apply(wk0[-1,], 2, q_ci) ci1=apply(wk1[-1,], 2, q_ci) measure=c("RMST","Loss time", paste("Prob at",timepoints), paste("Quantile at", quanprobs*100,"%"), "Ave of t-year event rates","Ave percentiles") out.group0=cbind(t(wk0[1,]), t(ci0), se0) out.group1=cbind(t(wk1[1,]), t(ci1), se1) rownames(out.group0)=measure rownames(out.group1)=measure colnames(out.group0)=c("Est.", paste0("Lower ", conf.int*100, "%"), paste0("Upper ", conf.int*100, "%"), "SE") colnames(out.group1)=c("Est.", paste0("Lower ", conf.int*100, "%"), paste0("Upper ", conf.int*100, "%"), "SE") K=ncol(wk0) outq=c() for (k in 1:K){ q0=wk0[,k] ; q1=wk1[,k] diff01=q0-q1 diff10=q1-q0 ratio01=q0/q1 ratio10=q1/q0 outq=cbind(outq, diff01, diff10, ratio01, ratio10) } measures=rep(measure, each=4) contrast=rep(c("Group0-Group1","Group1-Group0","Group0/Group1","Group1/Group0"), K) if(procedure=="KM"){ se=apply(outq[-1,], 2, sd) pval=pnorm(-abs(outq[1,])/se)*2 idx=contrast=="Group0/Group1"|contrast=="Group1/Group0" for (j in 1:length(pval)){ if(contrast[j]=="Group0/Group1" | contrast[j]=="Group1/Group0"){ for (m in 1:length(measure)){ if(measures[j]==measure[m]){ se[j]=sqrt( (se0[m]/out.group0[m,1])^2 + (se1[m]/out.group1[m,1])^2) } } } } pval[idx]=pnorm(-abs(log(outq[1,idx]))/se[idx])*2 lower=outq[1,] - abs(qnorm((1-conf.int)/2))*se upper=outq[1,] + abs(qnorm((1-conf.int)/2))*se idx=contrast=="Group0/Group1"|contrast=="Group1/Group0" lower[idx]=exp(log(outq[1,idx]) - abs(qnorm((1-conf.int)/2))*se[idx]) upper[idx]=exp(log(outq[1,idx]) + abs(qnorm((1-conf.int)/2))*se[idx]) out.contrast=cbind(outq[1,], lower, upper, pval) rownames(out.contrast)=paste(measures, contrast) colnames(out.contrast)=c("Est.", paste0("Lower ", conf.int*100, "%"), paste0("Upper ", conf.int*100, "%"), "p-val") inf.method="Perturbation resampling" } if(procedure=="GG"){ cband=apply(outq[-1,], 2, q_ci) lower=cband[1,] upper=cband[2,] out.contrast=cbind(outq[1,], lower, upper) rownames(out.contrast)=paste(measures, contrast) colnames(out.contrast)=c("Est.", paste0("Lower ", conf.int*100, "%"), paste0("Upper ", conf.int*100, "%")) inf.method="Bootstrap percentile method" } int.surv.group0 = cbind(out.group0[1,1]/time_interval, out.group0[1,2]/time_interval, out.group0[1,3]/time_interval) int.surv.group1 = cbind(out.group1[1,1]/time_interval, out.group1[1,2]/time_interval, out.group1[1,3]/time_interval) int.surv.diff01 = cbind(out.contrast[contrast=="Group0-Group1",][1,1]/time_interval, out.contrast[contrast=="Group0-Group1",][1,2]/time_interval, out.contrast[contrast=="Group0-Group1",][1,3]/time_interval, out.contrast[contrast=="Group0-Group1",][1,4]) int.surv.diff10 = cbind(out.contrast[contrast=="Group1-Group0",][1,1]/time_interval, out.contrast[contrast=="Group1-Group0",][1,2]/time_interval, out.contrast[contrast=="Group1-Group0",][1,3]/time_interval, out.contrast[contrast=="Group1-Group0",][1,4]) out.int.surv = rbind(int.surv.group0, int.surv.group1) out.int.surv.diff = rbind(int.surv.diff01, int.surv.diff10) rownames(out.int.surv) = c("Integrated survival rate Group0", "Integrated survival rate Group1") colnames(out.int.surv) = c("Est.", paste0("Lower ", conf.int*100, "%"), paste0("Upper ", conf.int*100, "%")) rownames(out.int.surv.diff) = c("Integrated survival rate Group0-Group1", "Integrated survival rate Group1-Group0") colnames(out.int.surv.diff) = c("Est.", paste0("Lower ", conf.int*100, "%"), paste0("Upper ", conf.int*100, "%"), "p-val") Z=list() Z$procedure = procedure Z$method = inf.method Z$survfit = survfit(Surv(time, status)~arm) Z$tau_start = tau_start Z$tau = tau Z$time_interval = time_interval Z$npert = npert Z$timepoints = timepoints Z$quanprobs = quanprobs Z$contrast.all = out.contrast Z$group0 = out.group0 Z$group1 = out.group1 Z$RMST = out.contrast[measures=="RMST",] Z$RMLT = out.contrast[measures=="Loss time",] Z$contrast.diff10 = out.contrast[contrast=="Group1-Group0",] Z$contrast.diff01 = out.contrast[contrast=="Group0-Group1",] Z$contrast.ratio01 = out.contrast[contrast=="Group0/Group1",] Z$contrast.ratio10 = out.contrast[contrast=="Group1/Group0",] Z$integrated_surv = out.int.surv Z$integrated_surv.diff = out.int.surv.diff class(Z)="surv2sample" return(Z) } NULL
session <- RevoIOQ:::saveRUnitSession(packages="tools") isWindows <- .Platform$OS.type=="windows" if (!exists("Revo.home")) { Revo.home <- R.home } license.stress.Revo <- function() { path <- Revo.home("licenses") haveRevoScaleR <- !identical(system.file("DESCRIPTION", package="RevoScaleR") , "") if (haveRevoScaleR) { if (!isMicrosoftRClient()){ RevoEdition <- "Microsoft R Server" } else { RevoEdition <- "Microsoft R Client" } } if (identical(RevoEdition, "Microsoft R Server")){ checkTrue(file.exists(file.path(path, ifelse(isWindows, "MicrosoftRServerLicense.txt", "MicrosoftRServerLicense")))) } else { checkTrue(file.exists(file.path(path, ifelse(isWindows, "MicrosoftRClientLicense.txt", "MicrosoftRClientLicense")))) } } "test.AllLicense.stress" <- function() { if (identical(Revo.home(), R.home()) ) { DEACTIVATED("Test deactivated because Microsoft R Services components are not installed on this system.") } res <- try(license.stress.Revo()) checkTrue(!is(res, "try-error"), msg="License stress test failed") } "testzzz.restore.session" <- function() { checkTrue(RevoIOQ:::restoreRUnitSession(session), msg="Session restoration failed") }
dprior <- function(x1, x2 = NULL, prior_par = list(mu_psi = 0, sigma_psi = 1, mu_beta = 0, sigma_beta = 1), what = "logor", hypothesis = "H1") { if ( ! is.list(prior_par) || ! all(c("mu_psi", "sigma_psi", "mu_beta", "sigma_beta") %in% names(prior_par))) { stop('prior_par needs to be a named list with elements "mu_psi", "sigma_psi", "mu_beta", and "sigma_beta', call. = FALSE) } if (prior_par$sigma_psi <= 0 || prior_par$sigma_beta <= 0) { stop('sigma_psi and sigma_beta need to be larger than 0', call. = FALSE) } if ( ! (what %in% c("logor", "or", "p1p2", "p1", "p2", "p2givenp1", "rrisk", "arisk"))) { stop('what needs to be either "logor", "or", "p1p2", "p1", "p2", "p2givenp1", "rrisk", or "arisk"', call. = FALSE) } if ( ! (hypothesis %in% c("H1", "H+", "H-"))) { stop('hypothesis needs to be either "H1", "H+", or "H-"', call. = FALSE) } if (what %in% c("logor", "or")) { out <- do.call(what = paste0("d", what), args = list(x = x1, mu_psi = prior_par[["mu_psi"]], sigma_psi = prior_par[["sigma_psi"]], hypothesis = hypothesis)) } else if (what == "p1p2") { out <- do.call(what = paste0("d", what), args = list(p1 = x1, p2 = x2, mu_psi = prior_par[["mu_psi"]], sigma_psi = prior_par[["sigma_psi"]], mu_beta = prior_par[["mu_beta"]], sigma_beta = prior_par[["sigma_beta"]], hypothesis = hypothesis)) } else if (what == "p2givenp1") { out <- do.call(what = paste0("d", what), args = list(p2 = x1, p1 = x2, mu_psi = prior_par[["mu_psi"]], sigma_psi = prior_par[["sigma_psi"]], mu_beta = prior_par[["mu_beta"]], sigma_beta = prior_par[["sigma_beta"]], hypothesis = hypothesis)) } else if (what %in% c("rrisk", "arisk", "p1", "p2")) { out <- do.call(what = paste0("d", what), args = list(x = x1, mu_psi = prior_par[["mu_psi"]], sigma_psi = prior_par[["sigma_psi"]], mu_beta = prior_par[["mu_beta"]], sigma_beta = prior_par[["sigma_beta"]], hypothesis = hypothesis)) } return(out) }
library(testthat) context("DNAbin2kmerFreqMatrix: convert object of DNAbin into kmer frequence matrix") test_that("DNAbin2kmerFreqMatrix: convert object of DNAbin into kmer frequence matrix",{ require(seqinr) require(ape) data(woodmouse) expect_that(class(DNAbin2kmerFreqMatrix(seqs=woodmouse,kmer=3)),equals("matrix")) })
collapseTree<-function(tree,...){ if(!inherits(tree,"phylo")) stop("tree should be an object of class \"phylo\".") if(inherits(tree,"simmap")) tree<-as.phylo(tree) if(hasArg(nodes)) nodes<-list(...)$nodes else nodes<-TRUE if(hasArg(hold)) hold<-list(...)$hold else hold<-TRUE if(hasArg(drop.extinct)) drop.extinct<-list(...)$drop.extinct else drop.extinct<-TRUE if(is.null(tree$edge.length)){ no.edge<-TRUE tree<-compute.brlen(tree,power=0.5) } else no.edge<-FALSE cat("Click on the nodes that you would like to collapse...\n") flush.console() options(locatorBell=FALSE) if(is.null(tree$node.label)) tree$node.label<-as.character(Ntip(tree)+1:tree$Nnode) else if(any(tree$node.label=="")){ tree$node.label[which(tree$node.label)==""]<- which(tree$node.label=="")+Ntip(tree) } tree$node.label<-sapply(tree$node.label,gsub,pattern=" ",replacement="_") tree$tip.label<-sapply(tree$tip.label,gsub,pattern=" ",replacement="_") otree<-tree<-reorder(tree) if(hold) dev.hold() fan(tree,...) lastPP<-get("last_plot.phylo",envir=.PlotPhyloEnv) points(x=lastPP$xx[1:Ntip(tree)],y=lastPP$yy[1:Ntip(tree)], pch=21,col="blue",bg="white",cex=0.8) points(x=lastPP$xx[1:tree$Nnode+Ntip(tree)], y=lastPP$yy[1:tree$Nnode+Ntip(tree)],pch=21, col="blue",bg="white",cex=1.2) rect(par()$usr[1],par()$usr[4]-3*strheight("W"),par()$usr[2],par()$usr[4], border=0,col=make.transparent("blue",0.2)) textbox(x=par()$usr[1:2],y=par()$usr[4], c("Click nodes to collapse or expand\nRIGHT CLICK to stop"), justify="c",border=0) dev.flush() x<-unlist(locator(1)) if(!is.null(x)){ y<-x[2] x<-x[1] d<-sqrt((x-lastPP$xx)^2+(y-lastPP$yy)^2) nn<-which(d==min(d,na.rm=TRUE)) while(!is.null(x)){ obj<-list(tree) if(nn>(Ntip(tree)+1)){ obj<-splitTree(tree,list(node=nn, bp=tree$edge.length[which(tree$edge[,2]==nn)])) obj[[1]]$tip.label[which(obj[[1]]$tip.label=="NA")]<- tree$node.label[nn-Ntip(tree)] tips<-which(tree$tip.label%in%obj[[1]]$tip.label) theta<-atan(lastPP$yy[nn]/lastPP$xx[nn]) if(lastPP$yy[nn]>0&&lastPP$xx[nn]<0) theta<-pi+theta else if(lastPP$yy[nn]<0&&lastPP$xx[nn]<0) theta<-pi+theta else if(lastPP$yy[nn]<0&&lastPP$xx[nn]>0) theta<-2*pi+theta ii<-which((c(tips,Ntip(tree)+1)-c(0,tips))>1) if(ii>1&&ii<=length(tips)) tips<-c(tips[1:(ii-1)],theta/(2*pi)*Ntip(tree),tips[ii:length(tips)]) else if(ii==1) tips<-c(theta/(2*pi)*Ntip(tree),tips) else if(ii>length(tips)) tips<-c(tips,theta/(2*pi)*Ntip(tree)) tree<-read.tree(text=write.tree(obj[[1]])) M<-matrix(NA,min(c(max(4,Ntip(obj[[2]])),10)),length(tips)) for(i in 1:ncol(M)) M[,i]<-seq(from=tips[i],to=i,length.out=nrow(M)) colnames(M)<-tree$tip.label maxY<-seq(from=sum(sapply(obj,Ntip))-length(obj)+1,to=Ntip(tree), length.out=nrow(M)) pw<-reorder(tree,"pruningwise") H<-nodeHeights(tree) for(i in 1:nrow(M)){ if(hold) dev.hold() fan(tree,pw,H,xlim=lastPP$x.lim,ylim=lastPP$y.lim, tips=M[i,],maxY=maxY[i],...) rect(par()$usr[1],par()$usr[4]-3*strheight("W"), par()$usr[2],par()$usr[4], border=0,col=make.transparent("blue",0.2)) textbox(x=par()$usr[1:2],y=par()$usr[4], c("Click nodes to collapse or expand\nRIGHT CLICK to stop"), justify="c",border=0) if(nodes||i==nrow(M)){ lastPP<-get("last_plot.phylo",envir=.PlotPhyloEnv) points(x=lastPP$xx[1:Ntip(tree)],y=lastPP$yy[1:Ntip(tree)], pch=21,col="blue",bg="white",cex=0.8) points(x=lastPP$xx[1:tree$Nnode+Ntip(tree)], y=lastPP$yy[1:tree$Nnode+Ntip(tree)],pch=21, col="blue",bg="white",cex=1.2) } dev.flush() } } else if(nn<=Ntip(tree)) { if(tree$tip.label[nn]%in%otree$node.label){ on<-which(otree$node.label==tree$tip.label[nn])+Ntip(otree) obj<-splitTree(otree,list(node=on, bp=otree$edge.length[which(otree$edge[,2]==on)])) nlabel<-tree$tip.label[nn] tree$tip.label[nn]<-"NA" if(nn==1) tips<-c(rep(nn,Ntip(obj[[2]])),(nn+1):Ntip(tree)) else if(nn>1&&nn<Ntip(tree)) tips<-c(1:(nn-1),rep(nn,Ntip(obj[[2]])),(nn+1):Ntip(tree)) else if(nn==Ntip(tree)) tips<-c(1:(nn-1),rep(nn,Ntip(obj[[2]]))) tree<-read.tree(text=write.tree(paste.tree(tree,obj[[2]]))) M<-matrix(NA,min(c(max(4,Ntip(obj[[2]])),10)),length(tips)) for(i in 1:ncol(M)) M[,i]<-seq(from=tips[i],to=i,length.out=nrow(M)) colnames(M)<-tree$tip.label pw<-reorder(tree,"pruningwise") H<-nodeHeights(tree) for(i in 1:nrow(M)){ if(hold) dev.hold() fan(tree,pw,H,xlim=lastPP$x.lim,ylim=lastPP$y.lim, tips=M[i,],maxY=NULL,...) rect(par()$usr[1],par()$usr[4]-3*strheight("W"), par()$usr[2],par()$usr[4], border=0,col=make.transparent("blue",0.2)) textbox(x=par()$usr[1:2],y=par()$usr[4], c("Click nodes to collapse or expand \nRIGHT CLICK to stop"), justify="c",border=0) if(nodes||i==nrow(M)){ lastPP<-get("last_plot.phylo",envir=.PlotPhyloEnv) points(x=lastPP$xx[1:Ntip(tree)],y=lastPP$yy[1:Ntip(tree)], pch=21,col="blue",bg="white",cex=0.8) points(x=lastPP$xx[1:tree$Nnode+Ntip(tree)], y=lastPP$yy[1:tree$Nnode+Ntip(tree)],pch=21, col="blue",bg="white",cex=1.2) } dev.flush() } } } else { cat("Collapsing to the root is not permitted. Choose another node.\n") flush.console() } x<-unlist(locator(1)) if(!is.null(x)){ y<-x[2] x<-x[1] lastPP<-get("last_plot.phylo",envir=.PlotPhyloEnv) d<-sqrt((x-lastPP$xx)^2+(y-lastPP$yy)^2) nn<-which(d==min(d,na.rm=TRUE)) } } } options(locatorBell=TRUE) if(drop.extinct){ if(!is.ultrametric(otree)) cat("Input tree was not ultrametric. Ignoring argument drop.extinct.\n") else { th<-setNames(sapply(1:Ntip(tree),nodeheight,tree=tree),tree$tip.label) tips<-names(th)[which(th<(mean(sapply(1:Ntip(otree), nodeheight,tree=otree))-.Machine$double.eps^0.5))] tree<-drop.tip(tree,tips) } } if(no.edge) tree$edge.length<-NULL tree } circles<-function(x,y,r,col="blue") nulo<-mapply(draw.circle,x=x,y=y,radius=r,MoreArgs=list(border=col, col="white",nv=20)) fan<-function(tree,pw=NULL,nH=NULL,colors="black",fsize=0.6,ftype="i",lwd=1,mar=rep(0.1,4), add=FALSE,part=1,xlim=NULL,ylim=NULL,tips=NULL,maxY=NULL,...){ if(length(colors)==1) colors<-rep(colors,nrow(tree$edge)) ftype<-which(c("off","reg","b","i","bi")==ftype)-1 cw<-tree if(is.null(pw)) pw<-reorder(tree,"pruningwise") n<-Ntip(cw) m<-cw$Nnode Y<-vector(length=m+n) if(is.null(tips)) tips<-1:n if(part<1.0) Y[cw$edge[cw$edge[,2]<=n,2]]<-0:(n-1) else Y[cw$edge[cw$edge[,2]<=n,2]]<-tips nodes<-unique(pw$edge[,1]) for(i in 1:m){ desc<-pw$edge[which(pw$edge[,1]==nodes[i]),2] Y[nodes[i]]<-(min(Y[desc])+max(Y[desc]))/2 } if(is.null(maxY)) maxY<-max(Y) Y<-setNames(Y/maxY*2*pi,1:(n+m)) Y<-part*cbind(Y[as.character(tree$edge[,2])],Y[as.character(tree$edge[,2])]) R<-if(is.null(nH)) nodeHeights(cw) else nH x<-R*cos(Y) y<-R*sin(Y) par(mar=mar) offsetFudge<-1.37 offset<-0 if(is.null(xlim)||is.null(ylim)){ pp<-par("pin")[1] sw<-fsize*(max(strwidth(cw$tip.label,units="inches")))+ offsetFudge*offset*fsize*strwidth("W",units="inches") alp<-optimize(function(a,H,sw,pp) (2*a*1.04*max(H)+2*sw-pp)^2,H=R,sw=sw,pp=pp, interval=c(0,1e6))$minimum if(part<=0.25) x.lim<-y.lim<-c(0,max(R)+sw/alp) else if(part>0.25&&part<=0.5){ x.lim<-c(-max(R)-sw/alp,max(R)+sw/alp) y.lim<-c(0,max(R)+sw/alp) } else x.lim<-y.lim<-c(-max(R)-sw/alp,max(R)+sw/alp) xlim<-x.lim ylim<-y.lim } if(!add) plot.new() plot.window(xlim=xlim,ylim=ylim,asp=1) segments(x[,1],y[,1],x[,2],y[,2],col=colors,lwd=lwd,lend=2) ii<-sapply(1:m+n,function(x,y) which(y==x),y=cw$edge) r<-sapply(1:m+n,function(x,y,R) R[match(x,y)],y=cw$edge,R=R) a1<-sapply(ii,function(x,Y) min(Y[x]),Y=Y) a2<-sapply(ii,function(x,Y) max(Y[x]),Y=Y) draw.arc(rep(0,tree$Nnode),rep(0,tree$Nnode),r,a1,a2,lwd=lwd,col=colors) cw$tip.label<-gsub("_"," ",cw$tip.label) for(i in 1:n){ ii<-which(cw$edge[,2]==i) aa<-Y[ii,2]/(2*pi)*360 adj<-if(aa>90&&aa<270) c(1,0.25) else c(0,0.25) tt<-if(aa>90&&aa<270) paste(cw$tip.label[i]," ",sep="") else paste(" ", cw$tip.label[i],sep="") aa<-if(aa>90&&aa<270) 180+aa else aa if(ftype) text(x[ii,2],y[ii,2],tt,srt=aa,adj=adj,cex=fsize,font=ftype) } PP<-list(type="fan",use.edge.length=TRUE,node.pos=1, show.tip.label=if(ftype) TRUE else FALSE,show.node.label=FALSE, font=ftype,cex=fsize,adj=0,srt=0,no.margin=FALSE,label.offset=offset, x.lim=xlim,y.lim=ylim,direction="rightwards",tip.color="black", Ntip=Ntip(cw),Nnode=cw$Nnode,edge=cw$edge, xx=c(x[sapply(1:n,function(x,y) which(x==y)[1],y=tree$edge[,2]),2],x[1,1], if(m>1) x[sapply(2:m+n,function(x,y) which(x==y)[1],y=tree$edge[,2]),2] else c()), yy=c(y[sapply(1:n,function(x,y) which(x==y)[1],y=tree$edge[,2]),2],y[1,1], if(m>1) y[sapply(2:m+n,function(x,y) which(x==y)[1],y=tree$edge[,2]),2] else c())) assign("last_plot.phylo",PP,envir=.PlotPhyloEnv) }
get_trait_acf = function( tree, tip_states, Npairs = 10000, Nbins = NULL, min_phylodistance = 0, max_phylodistance = NULL, uniform_grid = FALSE, phylodistance_grid = NULL){ Ntips = length(tree$tip.label) Nnodes = tree$Nnode Nedges = nrow(tree$edge) if(!is.numeric(tip_states)) return(list(success=FALSE, error="tip_states must be numeric")) Npairs = min(Npairs,(length(tree$tip.label))^2) grid_is_uniform = FALSE if(is.null(phylodistance_grid)){ if(is.null(max_phylodistance) || (max_phylodistance<0)) max_phylodistance = max(find_farthest_tip_pair(tree)$distance) if(is.null(Nbins)){ Nbins = max(2,Npairs/10) } if(uniform_grid){ phylodistance_grid = seq(from=min_phylodistance, to=max_phylodistance, length.out=(Nbins+1))[seq_len(Nbins)] grid_is_uniform = TRUE }else{ tip_phylodistances = sort(sample_pairwise_tip_distances(tree, Npairs=Npairs)) tip_phylodistances = tip_phylodistances[(tip_phylodistances>=min_phylodistance) & (tip_phylodistances<=max_phylodistance)] if(length(tip_phylodistances)==0) return(list(success=FALSE, error=sprintf("Unable to determine suitable phylodistance grid: No phylodistances found in target interval"))) phylodistance_grid = sort(unique(get_inhomogeneous_grid_1D_from_samples(Xstart=min_phylodistance, Xend=max_phylodistance, Ngrid=Nbins+1, randomX=tip_phylodistances)$grid[seq_len(Nbins)])) Nbins = length(phylodistance_grid) } }else{ Nbins = length(phylodistance_grid) if(any(diff(phylodistance_grid)<=0)) return(list(success=FALSE, error="Provided phylodistance_grid must be strictly increasing")) if(is.null(max_phylodistance)){ max_phylodistance = Inf }else{ max_phylodistance = max(max_phylodistance,max(phylodistance_grid)) } if(length(phylodistance_grid)>1){ grid_steps = diff(phylodistance_grid) if(min(grid_steps)>0.9999999*max(grid_steps)) grid_is_uniform = TRUE }else{ grid_is_uniform = TRUE } } results = ACF_continuous_trait_CPP( Ntips = Ntips, Nnodes = Nnodes, Nedges = Nedges, tree_edge = as.vector(t(tree$edge))-1, edge_length = (if(is.null(tree$edge.length)) numeric() else tree$edge.length), state_per_tip = tip_states, max_Npairs = Npairs, phylodistance_grid = phylodistance_grid, max_phylodistance = max_phylodistance, grid_is_uniform = grid_is_uniform, verbose = FALSE, verbose_prefix = "") left_phylodistances = phylodistance_grid right_phylodistances = c((if(Nbins>1) phylodistance_grid[2:Nbins] else NULL), (if(max_phylodistance==Inf) results$max_encountered_phylodistance else max_phylodistance)) centroid_phylodistances = 0.5*(left_phylodistances+right_phylodistances) return(list(success = TRUE, phylodistances = centroid_phylodistances, left_phylodistances = left_phylodistances, right_phylodistances = right_phylodistances, autocorrelations = results$autocorrelations, mean_abs_differences = results$mean_abs_deviations, mean_rel_differences = results$mean_rel_deviations, Npairs_per_distance = results$N_per_grid_point)) }
library(tidyverse) library(lubridate) library(scales) library(broom) library(extrafont) library(RPostgreSQL) taxi_con = dbConnect(dbDriver("PostgreSQL"), dbname = "nyc-taxi-data", host = "localhost") citi_con = dbConnect(dbDriver("PostgreSQL"), dbname = "nyc-citibike-data", host = "localhost") query = function(sql, con = taxi_con) { dbSendQuery(con, sql) %>% fetch(n = 1e8) %>% as_data_frame() } taxi_hex = " citi_hex = " font_family = ifelse("Open Sans" %in% fonts(), "Open Sans", "Arial") title_font_family = ifelse("Fjalla One" %in% fonts(), "Fjalla One", "Arial") theme_tws = function(base_size = 12) { bg_color = " bg_rect = element_rect(fill = bg_color, color = bg_color) theme_bw(base_size) + theme( text = element_text(family = font_family), plot.title = element_text(family = title_font_family), plot.subtitle = element_text(size = rel(0.7), lineheight = 1), plot.caption = element_text(size = rel(0.5), margin = unit(c(1, 0, 0, 0), "lines"), lineheight = 1.1, color = " plot.background = bg_rect, axis.ticks = element_blank(), axis.text.x = element_text(size = rel(1)), axis.title.x = element_text(size = rel(1), margin = margin(1, 0, 0, 0, unit = "lines")), axis.text.y = element_text(size = rel(1)), axis.title.y = element_text(size = rel(1)), panel.background = bg_rect, panel.border = element_blank(), panel.grid.major = element_line(color = "grey80", size = 0.25), panel.grid.minor = element_line(color = "grey80", size = 0.25), panel.spacing = unit(1.25, "lines"), legend.background = bg_rect, legend.key.width = unit(1.5, "line"), legend.key = element_blank(), strip.background = element_blank() ) } no_axis_titles = function() { theme(axis.title = element_blank()) }
library(rnaturalearth) countries110 <- ne_download(scale=110, type='countries', category='cultural') data_object_names <- data(package = "rnaturalearth")[["results"]][,"Item"] for (i in 1:length(data_object_names)) { data_name <- data_object_names[i] eval(parse(text=paste0("devtools::use_data(",data_name,", compress='xz', overwrite=TRUE)"))) }
tar_test("tar_exist_script()", { expect_false(tar_exist_script()) tar_script() expect_true(tar_exist_script()) }) tar_test("custom script and store args", { skip_on_cran() expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) expect_false(tar_exist_script(script = "example/script.R")) tar_script(tar_target(x, 1), script = "example/script.R") expect_true(tar_exist_script(script = "example/script.R")) expect_false(file.exists("_targets.yaml")) expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) expect_false(file.exists(path_script_default())) expect_false(file.exists(path_store_default())) expect_true(file.exists("example/script.R")) tar_config_set(script = "x") expect_equal(tar_config_get("script"), "x") expect_true(file.exists("_targets.yaml")) })
summary.cofad_bw <- function(object, ...){ x <- object f_tab <- matrix(c( round(x[[1]][1] * x[[1]][5], 3), round(x[[1]][3]), round(x[[1]][1] * x[[1]][5], 3), round(x[[1]][1], 3), round(x[[1]][2], 3), round(x[[1]][5] * x[[1]][4], 3), round(x[[1]][4]), round(x[[1]][5], 3), NA, NA, round(x[[1]][7], 3), round(x[[1]][8]), NA, NA, NA), byrow = T, ncol = 5) rownames(f_tab) <- c("contrast", "within", "total") colnames(f_tab) <- c("SS", "df", "MS", "F", "p") r_tab <- round(matrix(c(x[[4]]), ncol = 1), 3) rownames(r_tab) <- c("r_effectsize", "r_contrast", "r_alerting") colnames(r_tab) <- c("effects") out <- list(f_tab, r_tab) names(out) <- c("F-Table", "Effects") return(out) } summary.cofad_wi <- function(object, ci = .95, ...){ x <- object L_M <- x[[2]][[1]] L_SE <- x[[2]][2] L_df <- x[[1]][3] L_p <- x[[1]][2] L_SE_ci <- qt(p = (1 - ci) / 2, df = L_df, lower.tail = F) * L_SE L_UB <- L_M + L_SE_ci L_LB <- L_M - L_SE_ci L_vals <- matrix(c( L_M, L_SE, L_df, L_p, L_LB, L_UB), ncol = 6) L_eff <- matrix(c(x[[4]][1], x[[4]][2])) rownames(L_eff) <- c("r-contrast", "g-contrast") colnames(L_vals) <- c("Mean", "SE", "df", "p", "CI-lower", "CI-upper") out <- list(L_vals, L_eff) names(out) <- c("L-Statistics", "Effects") return(out) } summary.cofad_mx <- function(object, ...){ x <- object all_L <- as.vector(x[[6]]) all_L <- all_L[which(!is.na(all_L))] SS_total <- sum( (all_L - mean(all_L)) ** 2) df_total <- length(all_L) - 1 f_tab <- matrix(c( SS_contrast <- x[[1]][5], df_contrast <- 1, MS_contrast <- x[[1]][5], F_contrast <- x[[1]][1], p_contrast <- x[[1]][2], SS_within <- x[[1]][6] * x[[1]][4], df_within <- x[[1]][4], MS_within <- x[[1]][6], NA, NA, SS_total, df_total, NA, NA, NA), ncol = 5, byrow = T) f_tab <- round(f_tab, 3) l_tab <- x[[2]] r_tab <- round(matrix(c(x[[5]]), ncol = 1), 3) colnames(r_tab) <- "effect" rownames(r_tab) <- c("r_effectsize", "r_contrast", "r_alerting") rownames(f_tab) <- c("contrast", "within", "total") colnames(f_tab) <- c("SS", "df", "MS", "F", "p" ) out <- list(f_tab, r_tab, l_tab) names(out) <- c("F_Table", "Effects", "Within_Groups") return(out) }
test_that("Queries are constructed from linear models containing factors", { scipen_before <- getOption("scipen") options(scipen=999) a <- 1:10 b <- 2*1:10 c <- as.factor(1:10) df <- data.frame(a,b,c) formula = b ~ a + c model <- lm(formula, data = df) intercept <- model$coefficients[["(Intercept)"]] a_coefficient <- model$coefficients[["a"]] c2_coefficient <- model$coefficients[["c2"]] c3_coefficient <- model$coefficients[["c3"]] c4_coefficient <- model$coefficients[["c4"]] c5_coefficient <- model$coefficients[["c5"]] c6_coefficient <- model$coefficients[["c6"]] c7_coefficient <- model$coefficients[["c7"]] c8_coefficient <- model$coefficients[["c8"]] c9_coefficient <- model$coefficients[["c9"]] c10_coefficient <- model$coefficients[["c10"]] expected <- paste( intercept, " + ", a_coefficient, "*a", " + ", "(CASE WHEN c = ", "'2'", " THEN ", c2_coefficient, " WHEN c = ", "'3'", " THEN ", c3_coefficient, " WHEN c = ", "'4'", " THEN ", c4_coefficient, " WHEN c = ", "'5'", " THEN ", c5_coefficient, " WHEN c = ", "'6'", " THEN ", c6_coefficient, " WHEN c = ", "'7'", " THEN ", c7_coefficient, " WHEN c = ", "'8'", " THEN ", c8_coefficient, " WHEN c = ", "'9'", " THEN ", c9_coefficient, " WHEN c = ", "'10'", " THEN ", 0, " ELSE 0 END)", sep="" ) sql <- modelc::modelc(model) expect_equal(sql, expected) options(scipen=scipen_before) })
x=1:10 x x1 (x1 <- 1:20) (x1=1:30) (x2=c(1,2,13,4,5)) class(x2) (x3=letters[1:10]) class(x3) LETTERS[1:26] (x3b = c('a',"Henry","4")) class(x3b) (x4=c(T,FALSE,TRUE,T,F)) class(x4) x5=c(3L,5L) class(x5) x5a = c(3,5) class(x5a) (x5b = c(1, 'a',T, 4L)) class(x5b) (x6 = seq(0,100,by=3)) methods(class='numeric') ?seq ls() x6 length(x6) x6[20] x6[3] x6[c(2, 4)] x6[-1] x6[-c(1:10, 15:20)] x6[c(2, -4)] x6[-c(1,5,20)] x = x[1:4]; x x6 ; rev(x6) sort(x6) sort(x6, decreasing=T) x6[ x6 > 10 & x6 < 40] length(x6[ x6 > 10 & x6 < 40]) tail(x6) ?tail tail(x6, n=5) x6[length(x6)/2] x6[length(x6)/2] =99 x6[length(x6)/2] x6[1:5] = 99 head(x6) (x=100:111); length(x) matrix(1, nrow=4, ncol=2) (m1 = matrix(100:111, nrow=4)) (m2 = matrix(x, ncol=3, byrow=T)) matrix(x, ncol=6) class(m1) attributes(m1) dim(m1) m1 m1[1,2:3] m1[c(1,3),] m1[,-c(1,3), drop=F] m2[m2 > 105 & m2 < 110] m1 colnames(m1)=c('C1','C2','C3') rownames(m1)=c('R1','R2','R3','R4') colMeans(m1) ; rowMeans(m1) colSums(m1) ; rowSums(m1) min(m1); max(m1);sd(m1) pie(colSums(m1)) barplot(rowSums(m1), col=1:4, ylim=c(0,200)) (rollno = 1:30) (sname = paste('student',1:30,sep='')) (gender = sample(c('M','F'), size=30, replace=T, prob=c(.7,.3))) (marks1 = floor(rnorm(30,mean= 50,sd=10))) (marks2 = ceiling(rnorm(30,40,5))) (course = sample(c('BBA','MBA'), size=30, replace=T, prob=c(.5,.5))) (grades = sample(c(LETTERS[1:5]), size=30, replace=T)) rollno; sname; gender ; marks1 ; marks2; course; grades df1= data.frame(rollno, sname, gender, marks1, marks2, course, grades, stringsAsFactors = F) head(df1) str(df1) head(df1,n=3) tail(df1) class(df1) summary(df1) df1 head(df1) df1$sname df1$gender = factor(df1$gender) df1$course = factor(df1$course) df1$grades = factor(df1$grades, ordered=T, levels=c('E','D','C','B','A')) str(df1) summary(df1) df1 df1$gender df1[1:3 , c(2,4)] df1[ marks2 < 50 & gender=='F', c('rollno', 'sname','gender', 'marks1')] range(df1$marks2) df1[ marks1 > 50 & gender=='F', c(1,2)] df1[ marks1 > 50 | gender=='F', ] names(df1) dim(df1) aggregate(df1$marks1, by=list(df1$gender), FUN=mean) aggregate(marks1 ~ gender, data=df1, FUN=mean) aggregate(cbind(marks1, marks2) ~ gender + course, data=df1, FUN=mean) ?aggregate df1[ order(df1$gender, df1$marks1),] df1$grades df1[ order(df1$course, df1$gender),] df1[ order(df1$course, desc(df1$grades)),] df1[ order(df1$course, df1$grades),] fivenum(df1$marks1); summary(df1$marks1) boxplot(df1$marks1) abline(h=fivenum(df1$marks1), col=1:5,lwd=2) boxplot(marks1 ~ gender, data=df1) boxplot(marks2 ~ course, data=df1) boxplot(marks2 ~ course, data=df1, col=c('red','green')) title("Box Plot of Marks2 vs Course") boxplot(marks2 ~ grades, data=df1, col=1:5) aggregate(cbind(marks1, marks2) ~ gender, data=df1, FUN=mean) library(dplyr) head(df1) df1 %>% select(sname, gender, marks1) %>% head df1 %>% filter(marks2 > 45) df1 %>% filter(marks1 > 45 & gender == 'F') names(df1) head(df1) df1 %>% group_by(course,gender) %>% summarise(MEAN1 = mean(marks1), MAX2 = max(marks2)) df1 %>% group_by(course,gender, grades) %>% count df1 %>% sample_n(2) df1 %>% sample_frac(.3) out2 <- df1 %>% group_by(gender) %>% sample_frac(.2) out2 table(df1$gender) df1 %>% arrange(gender, course, desc(marks1)) %>% select(gender, course, marks1)
relRisk<- function(formula, id, waves = NULL, data = parent.frame(), subset = NULL, contrasts = NULL, na.action = na.omit, corstr = "indep", ncopy = 1000, control = geese.control(), b = NULL, alpha = NULL) { family <- binomial("log") scall <- match.call() mnames <- c("", "formula", "data", "offset", "subset", "na.action", "id", "waves") cnames <- names(scall) cnames <- cnames[match(mnames,cnames,0)] mcall <- scall[cnames] if (is.null(mcall$id)) mcall$id <- as.name("id") mcall[[1]] <- as.name("model.frame") m <- eval(mcall, parent.frame()) y <- model.extract(m, "response") if (is.null(dim(y))) N <- length(y) else N <- dim(y)[1] mterms <- attr(m, "terms") x <- model.matrix(mterms, m, contrasts) offset <- model.extract(m, "offset") if (is.null(offset)) offset <- rep(0, N) w <- rep(1 - 1 / ncopy, N) w.copy <- rep(1 / ncopy, N) y.copy <- 1 - y id <- model.extract(m, id) waves <- model.extract(m, waves) Y <- c(y, y.copy) W <- c(w, w.copy) X <- rbind(x, x) ID <- c(id, id + max(id)) Waves <- c(waves, waves) Offset <- c(offset, offset) Freq <- rep(c(2, 1), each = N) fit0 <- glm.fit(X, Y, offset = Offset, weights = Freq, family = family) fit1 <- glm.fit(X, Y, offset = Offset, family = family, weights = W, start = fit0$coefficients) ans <- geese.fit(X, Y, ID, Offset, weights = W, waves = Waves, family = family, control = control, corstr = corstr, b = fit1$coefficients, scale.fix = TRUE) ans <- c(ans, list(call=scall, formula=formula)) class(ans) <- "geese" ans }
skip_if_vcr_off <- function() { if (!requireNamespace("testthat", quietly = TRUE)) { stop( paste0( "This function is meant to be used within testthat tests.", "Please install testthat." ) ) } if ( nzchar(Sys.getenv("VCR_TURN_OFF")) && as.logical(Sys.getenv("VCR_TURN_OFF")) ) { testthat::skip("Not run when vcr is off") } }
RwlInfo = function (rwl, print = TRUE, chrono = NULL) { yr.range = function(x) { yr.vec = as.numeric(names(x)) mask = !is.na(x) range(yr.vec[mask]) } acf1 = function(x) { x = x[!is.na(x)] ar1 = acf(x, lag.max = 1, plot = FALSE) ar1$acf[2] } skew = function(x) { x = x[!is.na(x)] sum((x - mean(x))^3)/(length(x) * sd(x)^3) } if (is.null(chrono)) chrono <- apply(rwl, 1, mean, na.rm = TRUE) info.fun = function(x, chrono) { out = c(rep(NA, 12)) out[1] = yr.range(x)[1] out[2] = yr.range(x)[2] out[3] = out[2] - out[1] + 1 out[4] = cor(x, chrono, use = "pairwise.complete.obs") out[5] = mean(x, na.rm = TRUE) out[6] = median(x, na.rm = TRUE) out[7] = sd(x, na.rm = TRUE) out[8] = skew(x) out[9] = sens1(x) out[10] = sens2(x) out[11] = gini.coef(x) out[12] = acf1(x) return(out) } out = t(apply(rwl, 2, info.fun, chrono)) colnames(out) <- c("First", "Last", "Span", "Corr", "Mean", "Median", "SD", "Skew", "Sens1", "Sens2", "Gini", " Ar1") col.mean <- c(NA, NA, round(apply(out[, 3:12], 2, mean), 3)) out <- rbind(out, col.mean) rownames(out)[nrow(out)] = "Mean " out[, -c(1:3)] = round(out[, -c(1:3)], 3) out[, 3] = round(out[, 3], 0) if (print) { cat(rep("=", 98), "\n", sep = "") WriteMatrix(out, na = "", sep = "|", ID = T, ID.name = "Seq", col.width = 6, row.name = "Series ") cat(rep("=", 98), "\n", sep = "") } else { return(out) } }
library("testthat") library("spectrolab") context("Spectra subsetting by") spec = as_spectra(spec_matrix_example, name_idx = 1) by_def = names(spec) by_rnd = c(rep(1, 5), rep(2, 10), rep(3, 35)) test_that("by factor that isn't a sample name works", { expect_true( nrow(subset_by(spec, by = by_rnd, n_min = 6, n_max = 20)) == 30 ) }) test_that("by of wrong length throws", { expect_error( subset_by(spec, by = by_def[ 1 : floor(nrow(spec) / 2)], n_min = 1, n_max = 5) ) }) test_that("by of wrong length throws", { expect_error( subset_by(spec, by = NULL, n_min = 1, n_max = 5)) }) test_that("zero n_max throws an error", { expect_error( subset_by(spec, by = by_def, n_min = 1, n_max = 0)) }) test_that("n_max is larger than n_min", { expect_error( subset_by(spec, by = by_def, n_min = 5, n_max = 2)) }) test_that("n_max = 1 will return a subetted obj", { expect_lt( nrow(subset_by(spec, by = by_def, n_min = 1, n_max = 1)), nrow(spec) ) }) test_that("n_min = 5 will return a subetted obj", { expect_lt( nrow(subset_by(spec, by = by_def, n_min = 5, n_max = Inf)), nrow(spec) ) }) test_that("null if n_min is too large", { expect_null( subset_by(spec, by = by_def, n_min = 100, n_max = Inf) ) }) test_that("same spec obj is returned if n_min and n_max are wide enough", { expect_true( nrow(subset_by(spec, by = by_def, n_min = 1, n_max = Inf)) == nrow(spec)) })
library(act) all.tiers <- act::info(examplecorpus)$tiers all.tiers["A", "tier.count"] all.tiers["B", "tier.count"] tierNames <- c("A", "B") x<- examplecorpus x <- act::tiers_delete(examplecorpus, tierNames=tierNames) x@history[length(x@history)] act::info(x)$tiers$tier.name
grace <- function(Y, X, L, lambda.L, lambda.1 = 0, lambda.2 = 0, normalize.L = FALSE, K = 10, verbose = FALSE){ checkdata(X, Y, L) lambda.L <- unique(sort(lambda.L, decreasing = TRUE)) lambda.1 <- unique(sort(lambda.1, decreasing = TRUE)) lambda.2 <- unique(sort(lambda.2, decreasing = TRUE)) ori.Y <- Y ori.X <- X if(min(lambda.L) < 0 | min(lambda.2) < 0 | min(lambda.1) < 0){ stop("Error: Tuning parameters must be non-negative.") } if(min(lambda.L) == 0 & min(lambda.2) == 0 & min(lambda.1) == 0 & length(lambda.L) == 1 & length(lambda.2) == 1 & length(lambda.1) == 1){ stop("Error: At least one of the tuning parameters must be positive.") } Y <- Y - mean(Y) n <- nrow(X) p <- ncol(X) scale.fac <- attr(scale(X), "scaled:scale") X <- scale(X) if(normalize.L){ diag(L)[diag(L) == 0] <- 1 L <- diag(1 / sqrt(diag(L))) %*% L %*% diag(1 / sqrt(diag(L))) } emin <- min(eigen(min(lambda.L) * L + min(lambda.2) * diag(p))$values) if(emin < 1e-5){ stop("Error: The penalty matrix (lambda.L * L + lambda.2 * I) is not always positive definite for all tuning parameters. Consider increase the value of lambda.2.") } if((length(lambda.L) > 1) | (length(lambda.1) > 1) | (length(lambda.2) > 1)){ tun <- cvGrace(X, Y, L, lambda.L, lambda.1, lambda.2, K) lambda.L <- tun[1] lambda.1 <- tun[2] lambda.2 <- tun[3] if(!verbose){ print(paste("Tuning parameters selected by ", K, "-fold cross-validation:", sep = "")) print(paste("lambda.L = ", lambda.L, sep = "")) print(paste("lambda.1 = ", lambda.1, sep = "")) print(paste("lambda.2 = ", lambda.2, sep = "")) } } Lnew <- lambda.L * L + lambda.2 * diag(p) eL <- eigen(Lnew) S <- eL$vectors %*% sqrt(diag(eL$values)) l1star <- lambda.1 Xstar <- rbind(X, t(S)) / sqrt(2) Ystar <- c(Y, rep(0, p)) gammastar <- l1star / sqrt(2) / 2 / (n + p) betahatstar <- glmnet(Xstar, Ystar, lambda = gammastar, intercept = FALSE, standardize = FALSE, thresh = 1e-11)$beta[, 1] betahat <- betahatstar / sqrt(2) truebetahat <- betahat / scale.fac truealphahat <- mean(ori.Y - ori.X %*% truebetahat) return(list(intercept = truealphahat, beta = truebetahat)) }
AAMR <- function (Data.Name, JK = NULL, CL = NULL, PeriodEnd = NULL, Period = NULL) { v013 <- rweight <- sex <- exposure <- agegrp <- death <- NULL Data.Name <- Data.Name[!Data.Name$v005 == 0, ] Data.Name$ID <- seq.int(nrow(Data.Name)) if (is.null(CL)) { Z <- stats::qnorm(.025,lower.tail=FALSE) } else { Z <- stats::qnorm((100-CL)/200,lower.tail=FALSE) } if (is.null(Period)){Periodmsg = 84} else {Periodmsg = Period} if (is.null(PeriodEnd)){ PeriodEndy_ <- as.integer((mean(Data.Name$v008) - 1)/12)+1900 PeriodEndm_ <- round(mean(Data.Name$v008) - ((PeriodEndy_ - 1900) * 12),0) PeriodEndm_m <- round(min(Data.Name$v008) - ((PeriodEndy_ - 1900) * 12),0) PeriodEndm_x <- round(max(Data.Name$v008) - ((PeriodEndy_ - 1900) * 12),0) } else { dates <- paste(PeriodEnd, "01", sep = "-") PeriodEndm_ <- as.numeric(format(as.Date(dates), "%m")) PeriodEndy_ <- as.numeric(format(as.Date(dates), "%Y")) if (PeriodEndm_ >= round(mean(Data.Name$v008) - (((as.integer((mean(Data.Name$v008) - 1)/12)+1900) - 1900) * 12),0) & PeriodEndy_ >= as.integer((mean(Data.Name$v008) - 1)/12)+1900) message(crayon::bold("Note:", "\n", "You specified a reference period that ends after the survey fieldwork dates....."), "\n", "1. Make sure the dates in the survey are coded according to the Gregorian calendar.", "\n", "2. If the dates are coded according to the Gregorian calendar, use a proper PeriodEnd that came before the time of the survey.", "\n", "3. If the dates are not coded according to the Gregorian calendar, use a PeriodEnd according to the used calendar.") } if (is.null(PeriodEnd)){ cat("\n", crayon::white$bgBlue$bold("The current function calculated AAMR based on a reference period of"), crayon::red$bold$underline(Periodmsg), crayon::white$bold$bgBlue("months"), "\n", crayon::white$bold$bgBlue("The reference period ended at the time of the interview, in"), crayon::red$bold$underline(PeriodEndy_ + round(PeriodEndm_/12,digits=2)), "OR", crayon::red$bold$underline(month.abb[PeriodEndm_m]), "-", crayon::red$bold$underline(month.abb[PeriodEndm_x]), crayon::red$bold$underline(PeriodEndy_), "\n", crayon::white$bold$bgBlue("The average reference period is"), crayon::red$bold$underline(round((PeriodEndy_ + PeriodEndm_/12)-(Periodmsg/24), digits =2)), "\n") } else { cat("\n", crayon::white$bgBlue$bold("The current function calculated AAMR based on a reference period of"), crayon::red$bold$underline(Periodmsg), crayon::white$bold$bgBlue("months"), "\n", crayon::white$bold$bgBlue("The reference period ended in"), crayon::red$bold$underline(PeriodEndy_ + round(PeriodEndm_/12,digits=2)), "OR", crayon::red$bold$underline(month.abb[PeriodEndm_]), crayon::red$bold$underline(PeriodEndy_), "\n", crayon::white$bold$bgBlue("The average reference period is"), crayon::red$bold$underline(round((PeriodEndy_ + PeriodEndm_/12)-(Periodmsg/24), digits =2)), "\n") } Data.Name$id <- c(as.factor(Data.Name$v021)) Data.Name$rweight = Data.Name$v005 / 1000000 DeathEx <- DataPrepareM(Data.Name, PeriodEnd, Period) if (is.null(JK)){PSU <- 0} else {PSU <- max(as.numeric(DeathEx$id))} options(dplyr.summarise.inform = FALSE) AGEDIST <- (dplyr::group_by(Data.Name, v013) %>% summarise(x = sum(rweight)))$x/sum(Data.Name$rweight) options(survey.lonely.psu = "adjust") dstrat <- survey::svydesign(id = ~ v021, strata = ~ v022, weights = ~ rweight, data = DeathEx) ASMR <- (survey::svyby(~ death, by = ~ agegrp+sex, denominator = ~ exposure, design = dstrat, survey::svyratio))[, 3] aamr <- c(sum(ASMR[1:7] * AGEDIST), sum(ASMR[8:14] * AGEDIST)) N = (dplyr::group_by(DeathEx, sex) %>% summarise(x = sum(exposure)))$x WN = (survey::svyby(~ exposure, by = ~ sex, design = dstrat, survey::svytotal))$exposure deaths <- WN*(aamr/1000) AAMR_DEFT = sqrt(survey::svyby(~ death, by = ~ sex, denominator = ~ exposure, design = dstrat, deff = "replace", survey::svyratio)$DEff) SEX <- c("FEMALES","MALES") JKres <- matrix(0, nrow = PSU, ncol = 2) dimnames(JKres) <- list(NULL, c("AAMRj_f","AAMRj_m")) if (is.null(JK)){ RESULTS <- cbind.data.frame(SEX, round(deaths, 0), round(WN, 0), aamr, round(N, 0), row.names = NULL) names(RESULTS) <- c("SEX", "Deaths", "Exposure_years", "AAMR", "N") list(RESULTS) } else { for (i in unique(as.numeric(DeathEx$id))) { Data.NameJ <- Data.Name[which(!Data.Name$id == i), ] AGEDISTj <- (dplyr::group_by(Data.NameJ, v013) %>% summarise(x = sum(rweight)))$x/sum(Data.NameJ$rweight) DeathExJ <- DeathEx[which(!DeathEx$id == i), ] ASMRj <- (dplyr::group_by(DeathExJ, sex, agegrp) %>% summarise(x = sum(death*rweight)))$x/ (dplyr::group_by(DeathExJ, sex, agegrp) %>% summarise(x = sum(exposure*rweight)))$x JKres[i,1] <- sum(ASMRj[1:7] * AGEDISTj) JKres[i,2] <- sum(ASMRj[8:14] * AGEDISTj) } AAMRjf = JKres[1:PSU, 1] AAMRjm = JKres[1:PSU, 2] JKSEf = ((PSU * aamr[1] - (PSU-1) * AAMRjf)-aamr[1])^2 JKSEm = ((PSU * aamr[2] - (PSU-1) * AAMRjm)-aamr[2])^2 SE = c(sqrt(sum(JKSEf) / (PSU * (PSU-1))), sqrt(sum(JKSEm) / (PSU * (PSU-1)))) RSE = SE / aamr LCI = aamr - (Z * SE) LCI[LCI <= 0] = 0 UCI = aamr + (Z * SE) PSUs = c(PSU,PSU) RESULTS <- cbind.data.frame(SEX, round(deaths, 0), round(WN, 0), round(aamr,3), round(SE,3), round(N, 0), round(AAMR_DEFT,3), round(RSE,3), round(LCI,3), round(UCI,3), PSUs, row.names = NULL) names(RESULTS) <- c("SEX","Deaths", "Exposure_years", "AAMR", "SE", "N", "DEFT", "RSE", "LCI", "UCI", "iterations") list(RESULTS) } }
substi <- function(x,y,pr=TRUE) { if(length(x)!=length(y)) stop("lengths of x and y are different") nf <- is.factor(x) + is.factor(y) if(nf==1) stop("both x and y must be factor variables if either is") isna <- is.na(x) vnames <- sys.call()[c(2,3)] if(pr) { cat("Variables:",vnames,"\n") cat("Used first variable:",sum(!is.na(x)),"\n") cat("Used second variable:",sum(is.na(x) & !is.na(y)),"\n") } if(nf) { levs <- unique(c(levels(x),levels(y))) x <- as.character(x) y <- as.character(y) x[isna] <- y[isna] x <- factor(x,levs) y <- factor(y,levs) } else x[isna] <- y[isna] ss <- ifelse(isna & is.na(y),NA,ifelse(isna,2,1)) attr(ss,"names") <- NULL ss <- factor(ss,labels=vnames) if(pr) cat("Obs:",sum(!is.na(x))," Obs missing:",sum(is.na(x)),"\n") attr(x,"substi.source") <- ss attr(x,'class') <- c("substi",attr(x,'class')) x } substi.source <- function(x) attr(x,"substi.source") "[.substi" <- function(x, ...) { ss <- attr(x,"substi.source") ats <- attributes(x) ats$dimnames <- ats$dim <- ats$names <- ats$substi.source <- attr(x,'class') <- NULL x <- (x)[...] attributes(x) <- ats attr(x,"substi.source") <- ss[...] x } print.substi <- function(x, ...) { i <- unclass(attr(x, "substi.source")) if(!length(i)) { print.default(x) return(invisible()) } if(is.factor(x)) w <- as.character(x) else w <- format(x) names(w) <- names(x) w[i==2] <- paste(w[i==2], "*", sep = "") attr(w, "label") <- attr(w, "substi.source") <- attr(w, "class") <- NULL print.default(w, quote = FALSE) invisible() } as.data.frame.substi <- function(x, row.names = NULL, optional = FALSE, ...) { nrows <- length(x) if(!length(row.names)) { if(length(row.names <- names(x)) == nrows && !any(duplicated(row.names))) { } else if(optional) row.names <- character(nrows) else row.names <- as.character(1:nrows) } value <- list(x) if(!optional) names(value) <- deparse(substitute(x))[[1]] structure(value, row.names=row.names, class='data.frame') }
expect_equal( sapply(iris, n_distinct), sapply(iris, function(.) length(unique(.))), info = "n_distinct() gives the correct results on a data.frame" ) df_var <- data.frame( l = c(TRUE, FALSE, FALSE), i = c(1, 1, 2), d = Sys.Date() + c(1, 1, 2), f = factor(letters[c(1, 1, 2)]), n = c(1, 1, 2) + 0.5, t = Sys.time() + c(1, 1, 2), c = letters[c(1, 1, 2)], stringsAsFactors = FALSE ) expect_equal( sapply(df_var, n_distinct), sapply(df_var, function(.) length(unique(.))), info = "n_distinct() gives correct results for key types" ) expect_equal( n_distinct(c(1.0, NA, NA)), 2, info = "n_distinct() treats NA correctly" ) expect_equal( n_distinct(1, 1:4), 4, info = "n_distinct() recycles length 1 vectors" ) expect_equal( n_distinct(1:4, 1), 4, info = "n_distinct() recycles length 1 vectors" ) x <- iris$Sepal.Length y <- iris$Sepal.Width expect_equal( n_distinct(iris$Sepal.Length, iris$Sepal.Width), n_distinct(x, y), info = "n_distinct() handles unnamed" ) expect_identical( data.frame(x = 42) %>% summarise(n = n_distinct(.data$x)), data.frame(n = 1L), info = "n_distinct() respects .data" ) rm(df_var, x, y) expect_equal( n_distinct(c(0, 1, 1, 2, 3, 5, 8, NA), na.rm = TRUE), 6L, info = "na.rm removes NAs" ) expect_equal( n_distinct(list(c(1, 1, 2), c(1, 2, 3))), 2L, info = "n_distinct() can handle nested lists" )
test_that("model fitting", { skip_if_not(TEST_MODEL_FITTING) with_parallel({ model <- "RPartModel" expect_output(test_model_binary(model)) expect_output(test_model_factor(model)) expect_output(test_model_numeric(model)) expect_output(test_model_ordered(model)) expect_output(test_model_Surv(model)) }) })
options(replace.assign=TRUE) options(width=80) opts_chunk$set(tidy=FALSE, highlight=TRUE, fig.show='hold', cache=FALSE, par=TRUE) knit_hooks$set(par=function(before, options, envir){ if (before && options$fig.show!='none') par(mar=c(5,4,2,2) + 0.1, cex.lab=.95,cex.axis=.9 ,mgp=c(2,.7,0),tcl=-.3 ) }, crop=hook_pdfcrop) options(width=72) library(gWidgets2) options(guiToolkit="RGtk2") win <- gwindow("Basic example", visible=FALSE) gp <- gvbox(container=win) btn <- gbutton("click me for a message", container=gp) addHandlerClicked(btn, handler=function(h,...) { galert("Hello world!", parent = win) }) visible(win) <- TRUE lorem <- "Lorem ipsum dolor sit amet, consectetur adipiscing elit." win <- gwindow("Nested groups") g <- gvbox(container=win) g$set_borderwidth(10L) txt <- gtext(lorem, container=g, expand=TRUE, fill=TRUE) bg <- ggroup(cont=g) addSpring(bg) gbutton("dismiss", container=bg, handler=function(h,...) dispose(win)) gbutton("about", container=bg, handler=function(h,...) { gmessage("Shows lorem ipsum text", parent=win) }) win <- gwindow("t-test", visible=FALSE) g <- gvbox(container=win) g$set_borderwidth(10L) flyt <- gformlayout(container=g, expand=TRUE) gedit("", initial.msg="variable", label="x", container=flyt) gcombobox(c("two.sided", "less", "greater"), label="alternative", container=flyt) gedit("0", coerce.with=as.numeric, label="mu", container=flyt) gcheckbox("", checked=FALSE, label="paired", container=flyt) gslider(from=0.5, to = 1.0, by=.01, value=0.95, label="conf.level", container=flyt) bg <- ggroup(container=g) addSpring(bg) gbutton("values...", container=bg, handler=function(h,...) { print(svalue(flyt)) }) addSpring(g) size(win) <- c(400, 250) visible(win) <- TRUE win <- gwindow("handler example", visible=FALSE) g <- gvbox(container=win) f <- gframe("Ethnicity", container=g) cb <- gcheckboxgroup(c("White", "American Indian and Alaska Native", "Asian", "Black or African American", "Native Hawaiian and Other Pacific Islander"), container=f) bg <- ggroup(cont=g); addSpring(bg) b <- gbutton("Go", container=bg) enabled(b) <- FALSE addHandlerChanged(cb, handler=function(h,...) { enabled(b) <- length(svalue(h$obj)) > 0 }) visible(win) <- TRUE about <- " A simple GUI to simplify the loading and unloading of packages. This GUI uses `gcheckboxgroup`, with its `use.table` argument, to present the user with familiar checkboxes to indicate selection. Some indexing jujitsu is needed to pull out which value is checked to trigger the event. " installed <- installed.packages() installed_packages <- installed[, "Package"] package_status <- function() { installed_packages %in% loadedNamespaces() } w <- gwindow("package manager", visible=FALSE) g <- gvbox(cont=w) g$set_borderwidth(10L) a <- package_status() tbl <- gcheckboxgroup(installed_packages, checked=package_status(), use.table=TRUE, expand=TRUE, container=g) bg <- ggroup(cont=g) addSpring(bg) gbutton("About", container=bg, handler=function(...) { w1 <- gwindow("About", parent=w, visible=FALSE) g <- gvbox(container=w1); g$set_borderwidth(10) glabel(about, container=g, expand=TRUE) gseparator(container=g) bg <- ggroup(cont=g) addSpring(bg) gbutton("dismiss", cont=bg, handler=function(h,...) { dispose(w1) }) visible(w1) <- TRUE }) visible(w) <- TRUE update_tbl <- function(...) { blockHandlers(tbl) on.exit(unblockHandlers(tbl)) svalue(tbl, index=TRUE) <- package_status() } addHandlerChanged(tbl, handler=function(h, ...) { ind <- svalue(h$obj, index=TRUE) old_ind <- which(package_status()) if(length(x <- setdiff(old_ind, ind))) { message("detach ", installed_packages[x]) pkg <- sprintf("package:%s", installed_packages[x]) detach(pkg, unload=TRUE, character.only=TRUE) } else if (length(x <- setdiff(ind, old_ind))) { require(installed_packages[x], character.only=TRUE) } update_tbl() }) about <- "GUI to upgrade installed packages" repos <- getOption("repos") repos["CRAN"] <- "http://streaming.stat.iastate.edu/CRAN/" options(repos = repos) pkg <- old.packages()[,c("Package", "Installed", "ReposVer")] w <- gwindow("Upgrade installed packages", visible=FALSE) g <- gvbox(container=w) g$set_borderwidth(10) fg <- ggroup(container=g) glabel("Filter by:", container=fg) fltr <- gedit("", initial.msg="Filter by regexp", container=fg) tbl <- gtable(pkg, chosen.col=1, multiple=TRUE, container=g, expand=TRUE) bg <- ggroup(container=g); addSpring(bg) gbutton("About", container=bg, handler=function(h,...) { w1 <- gwindow("About", parent=w, visible=FALSE) g <- gvbox(container=w1); g$set_borderwidth(10) glabel(about, container=g, expand=TRUE) bg <- ggroup(container=g); addSpring(bg) gbutton("dismiss", container=bg, handler=function(h,...) dispose(w1)) visible(w1) <- TRUE }) update_btn <- gbutton("Update selected", container=bg, handler=function(h,...) { pkgs <- svalue(tbl) if(length(pkgs) == 0) return() sapply(pkgs, install.packages) tbl[] <- pkg <<- old.packages()[,c("Package", "Installed", "ReposVer")] svalue(fltr) <- "" }) enabled(update_btn) <- FALSE visible(w) <- TRUE addHandlerKeystroke(fltr, handler=function(h,...) { regexp <- svalue(h$obj) if(nchar(regexp) > 0 && regexp != "") { ind <- grepl(regexp, pkg[, 'Package']) visible(tbl) <- ind } else { visible(tbl) <- rep(TRUE, nrow(pkg)) } }) addHandlerSelectionChanged(tbl, handler=function(h,...) { enabled(update_btn) <- length(svalue(h$obj)) })
NewInput.MM1KK <- function(lambda=0, mu=0, k=1, method=3) { res <- list(lambda = lambda, mu = mu, k = k, method = method) class(res) <- "i_MM1KK" res } CheckInput.i_MM1KK <- function(x, ...) { MM1KK_class <- "The class of the object x has to be M/M/1/K/K (i_MM1KK)" MM1KK_anomalous <- "Some value of lambda, mu or k is anomalous. Check the values." MM1KK_method <- "method variable has to be 0 to be exact calculus, 1 to be aproximate calculus, 2 to use Jain's Method or 3 to use Poisson truncated distribution" if (!inherits(x, "i_MM1KK")) stop(MM1KK_class) if (is.anomalous(x$lambda) || is.anomalous(x$mu) || is.anomalous(x$k)) stop(MM1KK_anomalous) if (x$lambda < 0) stop(ALL_lambda_zpositive) if (x$mu <= 0) stop(ALL_mu_positive) if (x$k < 1) stop(ALL_k_warning) if (!is.wholenumber(x$k)) stop(ALL_k_integer) if (x$method != 0 && x$method != 1 && x$method != 2 && x$method != 3) stop(MM1KK_method) } MM1KK_InitPn_Aprox_Aux <- function(n, lambda, mu, c, k, m) { (lfactorial(k) - lfactorial(k-n)) + (n * log(lambda/mu)) } MM1KK_InitPn_Aprox <- function(x) { ProbFactCalculus(x$lambda, x$mu, 1, x$k, x$k, x$k, MM1KK_InitPn_Aprox_Aux, MM1KK_InitPn_Aprox_Aux, MM1KK_InitPn_Aprox_Aux) } MM1KK_InitPn_Exact <- function(x) { pn <- c(0:x$k) z <- x$mu / x$lambda u <- x$lambda / x$mu pn[1] <- B_erlang(x$k, z) totu <- 1 totk <- 1 i <- 2 while (i <= (x$k + 1)) { totu <- totu * u totk <- totk * ((x$k + 1) - i + 1) pn[i] <- pn[1] * totu * totk i <- i + 1 } pn } MM1KK_method2_Aux <- function(x, i) { r <- x$lambda/x$mu if (i == 0) { (x$k - i) * r / (i+1) } else { (x$k - i) * r } } MM1KK_method2_Prod <- function(x,n) { prod <- 1 for (i in 0:(n-1)) { prod <- prod * MM1KK_method2_Aux(x, i) } prod } MM1KK_method2_Prob <- function(x) { pn <- c() sumAux <- 1 for (i in (1:x$k)) { sumAux <- sumAux + MM1KK_method2_Prod(x, i) } pn[1] <- 1/sumAux for (i in 2:(x$k+1)) { pn[i] <- MM1KK_method2_Aux(x, i-2) * pn[i-1] } pn } MM1KK_method3_Prob <- function(x) { z <- x$mu/x$lambda funMethod3 <- function(n){ dpois(x$k-n, z)/ppois(x$k, z) } pn <- sapply(0:x$k, funMethod3) pn } MM1KK_InitPn <- function(x) { if (x$method == 0) pn <- MM1KK_InitPn_Exact(x) else if (x$method == 1) pn <- MM1KK_InitPn_Aprox(x) else if (x$method == 2) pn <- MM1KK_method2_Prob(x) else pn <- MM1KK_method3_Prob(x) pn } QueueingModel.i_MM1KK <- function(x, ...) { CheckInput.i_MM1KK(x, ...) z <- x$mu / x$lambda Pn <- MM1KK_InitPn(x) RO <- 1 - Pn[1] Throughput <- x$mu * RO L <- x$k - (Throughput / x$lambda) W <- (x$k / Throughput) - ( 1 / x$lambda) Wq <- W - (1 / x$mu) Lq <- Throughput * Wq WWs <- (x$k / RO) - z SP <- 1 + z QnAux <- function(n){ Pn[n] * (x$k - (n-1)) / (x$k - L) } Qn <- sapply(1:x$k, QnAux) if (x$k == 1) { Wqq <- NA Lqq <- NA } else { Wqq <- Wq / (1 - Qn[1]) Lqq <- Wqq * x$mu } FW <- function(t){ aux <- function(i, t) { Qn[i] * ppois(i-1, x$mu * t) } 1 - sum(sapply(seq(1, x$k, 1), aux, t)) } if (x$k == 1) FWq <- function(t){ 0 } else { FWq <- function(t){ aux <- function(i, t) { Qn[i+1] * ppois(i-1, x$mu * t) } 1 - sum(sapply(seq(1, x$k-1, 1), aux, t)) } } VN <- sum( (0:x$k)^2 * Pn ) - (L^2) xFWc <- Vectorize(function(t){t * (1 - FW(t))}) xFWqc <- Vectorize(function(t){t * (1 - FWq(t))}) FWInt <- integrate(xFWc, 0, Inf) if (FWInt$message == "OK") VT <- (2 * FWInt$value) - (W^2) else VT <- NA if (x$k == 1) { VNq <- 0 VTq <- 0 } else { VNq <- sum( c(0, 0, 1:(x$k-1))^2 * Pn ) - (Lq^2) FWqInt <- integrate(xFWqc, 0, Inf) if (FWqInt$message == "OK") VTq <- (2 * FWqInt$value) - (Wq^2) else VTq <- NA } res <- list( Inputs=x, RO = RO, Lq = Lq, VNq = VNq, Wq = Wq, VTq = VTq, Throughput = Throughput, L = L, VN = VN, W = W, VT = VT, Lqq = Lqq, Wqq = Wqq, WWs = WWs, SP = SP, Pn = Pn, Qn = Qn, FW = FW, FWq = FWq ) class(res) <- "o_MM1KK" res } Inputs.o_MM1KK <- function(x, ...) { x$Inputs } RO.o_MM1KK <- function(x, ...) { x$RO } Lq.o_MM1KK <- function(x, ...) { x$Lq } VNq.o_MM1KK <- function(x, ...) { x$VNq } Wq.o_MM1KK <- function(x, ...) { x$Wq } VTq.o_MM1KK <- function(x, ...) { x$VTq } L.o_MM1KK <- function(x, ...) { x$L } VN.o_MM1KK <- function(x, ...) { x$VN } W.o_MM1KK <- function(x, ...) { x$W } VT.o_MM1KK <- function(x, ...) { x$VT } Lqq.o_MM1KK <- function(x, ...) { x$Lqq } Wqq.o_MM1KK <- function(x, ...) { x$Wqq } WWs.o_MM1KK <- function(x, ...) { x$WWs } SP.o_MM1KK <- function(x, ...) { x$SP } Pn.o_MM1KK <- function(x, ...) { x$Pn } Qn.o_MM1KK <- function(x, ...) { x$Qn } Throughput.o_MM1KK <- function(x, ...) { x$Throughput } Report.o_MM1KK <- function(x, ...) { reportAux(x) } summary.o_MM1KK <- function(object, ...) { aux <- list(el=CompareQueueingModels(object)) class(aux) <- "summary.o_MM1" aux } print.summary.o_MM1KK <- function(x, ...) { print_summary(x, ...) }
test_that("use_addin() creates the first addins.dcf as promised", { create_local_package() use_addin("addin.test") addin_dcf <- read_utf8(proj_path("inst", "rstudio", "addins.dcf")) expected_file <- path_package("usethis", "templates", "addins.dcf") addin_dcf_expected <- read_utf8(expected_file) addin_dcf_expected[3] <- "Binding: addin.test" addin_dcf_expected[5] <- "" expect_equal(addin_dcf, addin_dcf_expected) })
AnovaTest <- function(ResMMEst , TestedCombination=NULL , Type = "TypeIII" , Cofactor = NULL , X = NULL , formula = NULL , VarList = NULL , NbCores=1){ if (length(ResMMEst[[1]]) != 8) stop("ResMMEst should be the output of the function MMEst") if (Type == "KR"){ return(.AnovaTest_KR(ResMMEst , TestedCombination , Cofactor , X , formula , VarList , NbCores)) }else{ if (!is.null(TestedCombination)){ if (is.matrix(TestedCombination)) TestedCombination <- list(TestedCombination) if (!is.list(TestedCombination)) stop("TestedCombination should be either a list of matrices or a matrix") TestedCombination <- lapply(1:length(TestedCombination) , function(ind) { c <- TestedCombination[[ind]] QR <- qr(c) if (QR$rank != nrow(c)){ message(paste0("Contrast matrix number " ,ind," was not full rank and has been reduced.")) return(matrix(c[QR$pivot[1:QR$rank],],ncol=ncol(c))) }else{ return(c) } }) Res <- mclapply(ResMMEst , function(x) { Beta <- x$Beta VarBeta <- x$VarBeta Test <- t(sapply(TestedCombination , function(C) { if (ncol(C)!=length(Beta)){ Stat <- NA Pval <- NA df <- NA }else{ rgC <- qr(C)$rank CBeta <- tcrossprod(C,t(Beta)) Stat <- crossprod(CBeta, solve(tcrossprod(C,tcrossprod(C,VarBeta)), CBeta)) Pval <- pchisq(Stat , df = rgC , lower.tail=FALSE) df <- rgC } return(c(Stat,Pval,df)) })) colnames(Test) <- c("Wald","pval","df") rownames(Test) <- names(TestedCombination) return(Test) },mc.cores=NbCores) names(Res) <- names(ResMMEst) }else{ Factors <- ResMMEst[[1]]$Factors if (Type=="TypeI"){ Res <- mclapply(ResMMEst , function(x) { Beta <- x$Beta Attr <- x$attr CommonAttr <- lapply(unique(Attr) , function(y) which(Attr==y)) names(CommonAttr) <- c("(Intercept)",Factors[unique(Attr)[-1]]) MatTI <- lapply(names(CommonAttr) , function(y){ mat <- as.numeric(1:length(Beta) %in% CommonAttr[[y]]) return(mat) }) VarBeta <- x$VarBeta Chol <- chol(solve(VarBeta)) TypeIcomp <- tcrossprod(Chol,t(Beta))^2 Test <- t(sapply(MatTI , function(y) { if (length(y)!=length(Beta)){ Stat <- NA Pval <- NA df <- NA }else{ Stat <- sum(y*TypeIcomp) Pval <- pchisq(Stat , df=sum(y) , lower.tail=FALSE) df = sum(y) } return(c(Stat,Pval,df)) })) colnames(Test) <- c("Wald (Type I)","pval","df") rownames(Test) <- names(CommonAttr) return(Test) },mc.cores=NbCores) names(Res) <- names(ResMMEst) } if (Type=="TypeIII"){ Res <- mclapply(ResMMEst , function(x) { Beta <- x$Beta Attr <- x$attr CommonAttr <- lapply(unique(Attr) , function(y) which(Attr==y)) names(CommonAttr) <- c("(Intercept)",Factors[unique(Attr)[-1]]) MatTIII <- lapply(names(CommonAttr) , function(y){ EffectSelected <- CommonAttr[[y]] mat <- t(sapply(EffectSelected , function(z) as.numeric(1:length(Beta)==z))) return(mat) }) VarBeta <- x$VarBeta Test <- t(sapply(MatTIII , function(C) { if (ncol(C)!=length(Beta)){ Stat <- NA Pval <- NA df <- NA }else{ rgC <- qr(C)$rank CBeta <- tcrossprod(C,t(Beta)) Stat <- crossprod(CBeta, solve(tcrossprod(C,tcrossprod(C,VarBeta)), CBeta)) Pval <- pchisq(Stat , df = rgC , lower.tail=FALSE) df = rgC } return(c(Stat,Pval,df)) })) colnames(Test) <- c("Wald (Type III)","pval","df") rownames(Test) <- names(CommonAttr) return(Test) },mc.cores=NbCores) names(Res) <- names(ResMMEst) } if ((Type!="TypeI")&&(Type!="TypeIII")) warning("AnovaTest computes TypeI or TypeIII test when TestedCombination is NULL") } CompNA <- sum(unlist(mclapply(Res,function(x) sum(is.na(x[,2])) , mc.cores=NbCores))) if (CompNA > 0) message(paste0(CompNA," tests were not performed because of incompatible dimension")) return(Res) } }
Rho.p<-function(xin, p.param, dist, p1=0, p2=1) { xi.p <- q.sample(p.param, dist, p1,p2) lowerlim <- -Inf upperlim <- xi.p sampleuse<-xin[which(xin<=upperlim )] xpoints<-seq(min(sampleuse), max(sampleuse), length=50) pdfest<- d.sample(xpoints, dist, p1,p2) cdfest<-p.sample(xpoints, dist, p1,p2) n<-length(xpoints) psi1<- sum(pdfest * cdfest)/n psi2<- sum(pdfest )/n psi3<- sum(pdfest^2 )/n denom<- p.param * psi3 - psi2^2 rhop<- ifelse(denom<0, 0, 2*sqrt(3)/p.param * ( psi1 - p.param/2 * psi2 )/sqrt(p.param * psi3 - psi2^2)) rhop }
VI.aov <- function(x, Describe=FALSE, ...) { GroupL <- interaction(x$model[, -1], sep = ":") FNames = attr(x$terms, 'term.labels') for (Factor in FNames) { cat("\nThe p value for", Factor, "is", round(anova(x)[which(FNames == Factor), 5], 4)) } cat("\n\nThe ratios of the group standard deviations to the overall standard deviation \n", "(groups ordered by increasing mean) are:\n", round(tapply(x$residuals, GroupL, sd) / sqrt(sum(x$residuals ^ 2) / x$df.residual), 2)) cat("\n \n") return(invisible(NULL)) } VI.summary.lm <- function(x, Describe=FALSE, ...) { CoeTable <- x$coe if (row.names(CoeTable)[1] == "(Intercept)") { IsInter = 1 } else { IsInter = 0 } SigPValues <- numeric(nrow(CoeTable) - IsInter) for (Term in 1:length(SigPValues)) { if (CoeTable[Term + IsInter, 4] <= 0.01) { SigPValues[Term] = 0.01 } else if (CoeTable[Term + IsInter, 4] <= 0.05) { SigPValues[Term] = 0.05 } else if (CoeTable[Term + IsInter, 4] <= 0.1) { SigPValues[Term] = 0.1 } } for (SigLevel in c(0.01, 0.05, 0.1)) { SigTerms <- which(SigPValues == SigLevel) if (length(SigTerms) != 0) { cat('The', ifelse(length(SigTerms) == 1, " term which is ", " terms which are;"), 'significant to ', SigLevel * 100, ifelse(length(SigTerms) == 1, "% is", "% are"), '\n', sep = "") for (Term in 1:length(SigTerms)) { Index = SigTerms[Term] + IsInter cat(row.names(CoeTable)[Index], 'with an estimate of', CoeTable[Index, 1], 'and P-Value of', CoeTable[Index, 4], '\n') } cat('\n') } } NonSigTerms <- which(SigPValues == 0) if (length(NonSigTerms) != 0) { if (length(NonSigTerms) == 1) { cat('The term', row.names(CoeTable)[NonSigTerms + IsInter], 'is not significant to 10%.') } else { NoOfTerms <- length(NonSigTerms) cat('The terms', paste(row.names(CoeTable)[NonSigTerms[1:(NoOfTerms - 1)] + IsInter], collapse = ", "), 'and', row.names(CoeTable)[NonSigTerms[NoOfTerms] + IsInter], 'are not significant to 10%.') } } } VI.TukeyHSD <- function(x, Describe=FALSE, ...) { CI <- attr(x, 'conf.level') for (Comparison in 1:length(x)) { CTable = x[[names(x)[Comparison]]] SignPValues = (CTable[, 4] <= (1 - CI)) if (any(SignPValues == TRUE)) { cat("For term ", names(x)[Comparison], " the comparisons which are significant at ", (1 - CI) * 100, "% are:\n", sep = "") for (DRow in 1:length(SignPValues)) { if (SignPValues[DRow] == TRUE) { SComp = strsplit(rownames(CTable)[DRow], "-")[[1]] cat(SComp[1], "and", SComp[2], "with a difference of", round(CTable[DRow, 1], 2), "and P-value of", round(CTable[DRow, 4], 4), "\n") } } } else { cat("For term ", names(x)[Comparison], " there are no comparisons significant at ", (1 - CI) * 100, "%\n", sep = "") } cat("\n") } return(invisible(NULL)) }
context("R Markdown") test_that("The chunk header parser works as expected", { cases <- list( list( input = "```{r}", type = "md", expected = list(engine = "r") ), list( input = "```{r a-b-c}", type = "md", expected = list(engine = "r", label = "a-b-c") ), list( input = "```{r, a-b-c}", type = "md", expected = list(engine = "r", label = "a-b-c") ), list( input = "```{r, a-b-c, a=1+1}", type = "md", expected = list(engine = "r", label = "a-b-c", a = quote(1 + 1)) ), list( input = "```{python}", type = "md", expected = list(engine = "python") ), list( input = "```{r engine = 'Rcpp'}", type = "md", expected = list(engine = "Rcpp") ), list( input = "```{r, engine = 'Rcpp'}", type = "md", expected = list(engine = "Rcpp") ), list( input = "```{r a?weird?label}", type = "md", expected = list(engine = "r", label = "a?weird?label") ), list( input = "```{r a'weird'label, engine = 'bash'}", type = "md", expected = list(engine = "bash", label = "a'weird'label") ), list( input = "```{r, 'a=weird=label', engine = 'bash'}", type = "md", expected = list(engine = "bash", label = "a=weird=label") ), list( input = "<<a-b-c>>=", type = "rnw", expected = list(engine = "r", label = "a-b-c") ), list( input = "<<a-b-c, a=1, b=2>>=", type = "rnw", expected = list(engine = "r", label = "a-b-c", a = 1, b = 2) ) ) for (case in cases) { output <- renv_knitr_options_header(case$input, case$type) expect_same_elements(output, case$expected) } }) test_that("we can parse chunk YAML options", { cases <- list( list( input = " expected = list(a = TRUE) ), list( input = " expected = list(a = TRUE) ) ) for (case in cases) { output <- renv_knitr_options_chunk(case$input) expect_same_elements(output, case$expected) } })
clique <- function (dist,alphac,minsize=1,mult=100) { if (class(dist) != 'dist') stop("The first argument must be of class 'dist'") if (alphac < 0 || alphac > 1) stop("alphac must be [0,1]") sim <- 1-as.matrix(dist) rows <- mult * nrow(sim) cols <- ncol(sim) top <- 0 bottom <- 0 orig <-0 ds <- matrix(0,nrow=rows,ncol=cols) left <- rep(0,rows) tmp <- .Fortran('clique', as.double(sim), ds=as.integer(ds), as.integer(left), as.integer(rows), as.integer(cols), as.double(1-alphac), top=as.integer(top), bottom=as.integer(bottom), orig=as.integer(orig), PACKAGE='optpart') if (tmp$orig < 0) { print('Memory overflow. Increase parameter mult and try again') out <- NULL } else { musubx <- 1 - matrix(tmp$ds,ncol=cols)[tmp$top:tmp$bottom,] test <- apply(musubx,1,sum) >= minsize musubx <- musubx[test,] colnames(musubx) <- attr(dist,'Labels') member <- list() for (i in 1:nrow(musubx)) { member[[i]] <- seq(1:ncol(musubx))[musubx[i,]==1] } out <- list(musubx=musubx,member=member,alphac=alphac, names= attr(dist,'Labels')) attr(out,'class') <- 'clique' attr(out,'call') <- match.call() attr(out,'timestamp') <- date() } out } clique.test <- function (cliq,env,minsize=2,plotit=FALSE) { size <- nrow(cliq$musubx) probs <- rep(NA,size) for (i in 1:size) { if (sum(cliq$musubx[i,]) < minsize) probs[i] <- NA else probs[i] <- envrtest(cliq$musubx[i,],env,plotit=plotit)$prob if (plotit) readline('hit return to continue') } if (plotit) { plot(sort(probs)) abline(h=0.05,col=2) } invisible(probs) } summary.clique <- function(object,...) { num <- nrow(object$musubx) minsize <- min(apply(object$musubx>0,1,sum)) maxsize <- max(apply(object$musubx>0,1,sum)) cat(paste(num,'maximal cliques at alphac = ',object$alphac),"\n") cat(paste('minimum size = ',minsize,"\n")) cat(paste('maximum size = ',maxsize,"\n")) } plot.clique <- function(x, panel='all', ...) { if (panel == 'all' || panel == 1) { plot(sort(apply(x$musubx>0,1,sum)),xlab='clique',ylab='size') if (panel == 'all') readline('hit return to continue : ') } if (panel == 'all' || panel == 2) { plot(sort(apply(x$musubx>0,2,sum)),xlab='plot',ylab='number of cliques') } } clique.size <- function (cli) { if (!inherits(cli,'clique')) stop("You must pass an argument of class 'clique' from clique()") out <- apply(cli$musubx,1,sum) out } clique.occ <- function (cli) { if (!inherits(cli,'clique')) stop("You must pass an argument of class 'clique' from clique()") out <- apply(cli$musubx,2,sum) out } clique.members <- function (cli,which='ALL') { if (!inherits(cli,'clique')) stop("The first argument must be of class 'clique' from clique()") names <- cli$names for (i in 1:length(cli$member)) { x <- names[cli$member[[i]]] if (which=='ALL' | which %in% x) { cat("\n") cat(x) } } cat ("\n") } clique.venn <- function (cli,a,b) { if (!inherits(cli,'clique')) stop("The first argument must be of class 'clique' from clique()") numcli <- nrow(cli$musubx) if (a > numcli | b > numcli) stop(paste("Clique numbers must be less than",numcli+1)) inter <- intersect(cli$member[[a]],cli$member[[b]]) cat("\n") cat(setdiff(cli$member[[a]],cli$member[[b]])) cat("\n") cat(inter) cat("\n") cat(setdiff(cli$member[[b]],cli$member[[a]])) cat("\n") }
print.summpopiita<-function(x, ...){ cat("\n \t Inductive Item Tree Analysis in population values\n") cat("\nAlgorithm:") if(x$v == 1){cat(" minimized corrected IITA\n")} if(x$v == 2){cat(" corrected IITA\n")} if(x$v == 3){cat(" original IITA\n")} cat("\npopulation diff values:\n") print(round(x$pop.diff, digits = 3)) cat("\npopulation error rates:\n") print(round(x$error.pop, digits = 3)) cat("\npopulation matrix:\n") print(round(x$pop.matrix, digits =3)) cat("\nobtained selection set:\n") print(x$selection.set) }
ggplot.train <- function(data = NULL, mapping = NULL, metric = data$metric[1], plotType = "scatter", output = "layered", nameInStrip = FALSE, highlight = FALSE, ..., environment = NULL) { if(!(output %in% c("data", "layered", "ggplot"))) stop("'outout' should be either 'data', 'ggplot' or 'layered'") params <- data$modelInfo$parameters$parameter paramData <- data$modelInfo$parameters if(grepl("adapt", data$control$method)) warning("When using adaptive resampling, this plot may not accurately capture the relationship between the tuning parameters and model performance.") plotIt <- "yes" if(all(params == "parameter")) { plotIt <- "There are no tuning parameters for this model." } else { dat <- data$results if(data$method == "nb") dat$usekernel <- factor(ifelse(dat$usekernel, "Nonparametric", "Gaussian")) if(data$method == "gam") dat$select <- factor(ifelse(dat$select, "Feature Selection", "No Feature Selection")) if(data$method == "qrnn") dat$bag <- factor(ifelse(dat$bag, "Bagging", "No Bagging")) if(data$method == "C5.0") dat$winnow <- factor(ifelse(dat$winnow, "Winnowing", "No Winnowing")) if(data$method == "M5") dat$rules <- factor(ifelse(dat$rules == "Yes", "Rules", "Trees")) paramValues <- apply(dat[,as.character(params),drop = FALSE], 2, function(x) length(unique(x))) if(any(paramValues > 1)) { params <- names(paramValues)[paramValues > 1] paramData <- subset(paramData, parameter %in% params) } else plotIt <- "There are no tuning parameters with more than 1 value." } if(plotIt == "yes") { p <- length(params) dat <- dat[, c(metric, params)] resampText <- resampName(data, FALSE) resampText <- paste(metric, resampText) } else stop(plotIt) p <- ncol(dat) - 1 if(p > 1) { numUnique <- unlist(lapply(dat[, -1], function(x) length(unique(x)))) numUnique <- sort(numUnique, decreasing = TRUE) dat <- dat[, c(metric, names(numUnique))] } if(output == "data") return(dat) if(data$control$search == "random") return(random_search_plot(data, metric = metric)) if(plotType == "scatter") { if (highlight) { bstRes <- data$results for (par in as.character(params)) bstRes <- bstRes[which(bstRes[, par] == data$bestTune[, par]), ] if (nrow(bstRes) > 1) stop("problem in extracting model$bestTune row from model$results") } dnm <- names(dat) if(p > 1 && is.numeric(dat[, 3])) dat[, 3] <- factor(format(dat[, 3])) if(p > 2 & nameInStrip) { strip_vars <- names(dat)[-(1:3)] strip_lab <- as.character(subset(data$modelInfo$parameters, parameter %in% strip_vars)$label) for(i in seq_along(strip_vars)) dat[, strip_vars[i]] <- factor(paste(strip_lab[i], dat[, strip_vars[i]], sep = ": ")) } if (p >= 3) for (col in 1:(p-2)) { lvls <- as.character(unique(dat[, dnm[col+3]])) dat[, dnm[col+3]] <- factor(dat[, dnm[col+3]], levels = lvls) if (highlight) bstRes[, dnm[col+3]] <- factor(bstRes[, dnm[col+3]], levels = lvls) } out <- ggplot(dat, aes_string(x = dnm[2], y = dnm[1])) out <- out + ylab(resampText) out <- out + xlab(paramData$label[paramData$parameter == dnm[2]]) if (highlight) out <- out + geom_point(data = bstRes, aes_string(x = dnm[2], y = dnm[1]), size = 4, shape = 5) if(output == "layered") { if(p >= 2) { leg_name <- paramData$label[paramData$parameter == dnm[3]] out <- out + geom_point(aes_string(color = dnm[3], shape = dnm[3])) out <- out + geom_line(aes_string(color = dnm[3])) out <- out + scale_colour_discrete(name = leg_name) + scale_shape_discrete(name = leg_name) } else out <- out + geom_point() + geom_line() if(p == 3) out <- out + facet_wrap(as.formula(paste("~", dnm[4]))) if(p == 4) out <- out + facet_grid(as.formula(paste(names(dat)[4], "~", names(dat)[5]))) if(p > 4) stop("The function can only handle <= 4 tuning parameters for scatter plots. Use output = 'ggplot' to create your own") } } if(plotType == "level") { if(p == 1) stop("Two tuning parameters are required for a level plot") dnm <- names(dat) if(is.numeric(dat[,2])) dat[,2] <- factor(format(dat[,2]), levels = format(sort(unique(dat[,2])))) if(is.numeric(dat[,3])) dat[,3] <- factor(format(dat[,3]), levels = format(sort(unique(dat[,3])))) if(p > 2 & nameInStrip) { strip_vars <- names(dat)[-(1:3)] strip_lab <- as.character(subset(data$modelInfo$parameters, parameter %in% strip_vars)$label) for(i in seq_along(strip_vars)) dat[, strip_vars[i]] <- factor( paste(strip_lab[i], format(dat[, strip_vars[i]]), sep = ": "), levels = paste(strip_lab[i], format(sort(unique(dat[, strip_vars[i]]))), sep = ": ") ) } out <- ggplot(dat, aes_string(x = dnm[2], y = dnm[3], fill = metric)) out <- out + ylab(paramData$label[paramData$parameter == dnm[3]]) out <- out + xlab(paramData$label[paramData$parameter == dnm[2]]) if(output == "layered") { out <- out + geom_tile() if(p == 3) out <- out + facet_wrap(as.formula(paste("~", dnm[4]))) if(p == 4) out <- out + facet_grid(as.formula(paste(dnm[4], "~", dnm[5]))) if(p > 4) stop("The function can only handle <= 4 tuning parameters for level plots. Use output = 'ggplot' to create your own") } } out } ggplot.rfe <- function(data = NULL, mapping = NULL, metric = data$metric[1], output = "layered", ..., environment = NULL) { if(!(output %in% c("data", "layered", "ggplot"))) stop("'outout' should be either 'data', 'ggplot' or 'layered'") resampText <- resampName(data, FALSE) resampText <- paste(metric, resampText) if(output == "data") return(data$results) if(any(names(data$results) == "Num_Resamples")) { data$results <- subset(data$results, Num_Resamples >= floor(.5 * length(data$control$index))) } notBest <- subset(data$results, Variables != data$bestSubset) best <- subset(data$results, Variables == data$bestSubset) out <- ggplot(data$results, aes_string(x = "Variables", y = metric)) if(output == "ggplot") return(out) out <- out + geom_line() out <- out + ylab(resampText) out <- out + geom_point(data = notBest, aes_string(x = "Variables", y = metric)) out <- out + geom_point(data=best, aes_string(x = "Variables", y = metric), size = 3, colour="blue") out } random_search_plot <- function(x, metric = x$metric[1]) { params <- x$modelInfo$parameters p_names <- as.character(params$parameter) exclude <- NULL for(i in seq(along = p_names)) { if(all(is.na(x$results[, p_names[i]]))) exclude <- c(exclude, i) } if(length(exclude) > 0) p_names <- p_names[-exclude] x$results <- x$results[, c(metric, p_names)] res <- x$results[complete.cases(x$results),] combos <- res[, p_names, drop = FALSE] nvals <- unlist(lapply(combos, function(x) length(unique(x)))) p_names <- p_names[which(nvals > 1)] if(nrow(combos) == 1 | length(p_names) == 0) stop("Can't plot results with a single tuning parameter combination") combos <- combos[, p_names, drop = FALSE] nvals <- sort(nvals[p_names], decreasing = TRUE) is_num <- unlist(lapply(combos, function(x) is.numeric(x) | is.integer(x))) num_cols <- names(is_num)[is_num] other_cols <- names(is_num)[!is_num] num_num <- sum(is_num) num_other <- length(p_names) - num_num if(num_other == 0) { if(num_num == 1) { out <- ggplot(res, aes_string(x = num_cols[1], y = metric)) + geom_point() + xlab(as.character(params$label[params$parameter == num_cols[1]])) } else { if(num_num == 2) { out <- ggplot(res, aes_string(x = num_cols[1], y = num_cols[2], size = metric)) + geom_point() + xlab(as.character(params$label[params$parameter == num_cols[1]])) + ylab(as.character(params$label[params$parameter == num_cols[2]])) } else { vert <- melt(res[, c(metric, num_cols)], id.vars = metric, variable.name = "parameter") vert <- merge(vert, params) names(vert)[names(vert) == "label"] <- "Parameter" out <- ggplot(vert, aes_string(x = "value", y = metric)) + geom_point() + facet_wrap(~Parameter, scales = "free_x") + xlab("") } } } else { if(num_other == length(p_names)) { if(num_other == 1) { out <- ggplot(res, aes_string(x = other_cols[1], y = metric)) + geom_point() + xlab(as.character(params$label[params$parameter == other_cols[1]])) } else { if(num_other == 2) { out <- ggplot(res, aes_string(x = other_cols[1], shape = other_cols[2], y = metric)) + geom_point() + geom_line(aes_string(group = other_cols[2])) + xlab(as.character(params$label[params$parameter == other_cols[1]])) } else { if(num_other == 3) { pname <- as.character(params$label[params$parameter == other_cols[3]]) res[,other_cols[3]] <- paste0(pname, ": ", res[,other_cols[3]]) out <- ggplot(res, aes_string(x = other_cols[1], shape = other_cols[2], y = metric)) + geom_point() + geom_line(aes_string(group = other_cols[2])) + facet_grid(paste0(".~", other_cols[3])) + xlab(as.character(params$label[params$parameter == other_cols[1]])) } else { stop(paste("There are", num_other, "non-numeric variables; I don't have code for", "that Dave")) } } } } else { vert <- melt(res[, c(metric, num_cols, other_cols)], id.vars = c(metric, other_cols), variable.name = "parameter") vert <- merge(vert, params) names(vert)[names(vert) == "label"] <- "Parameter" if(num_other == 1) { out <- ggplot(vert, aes_string(x = "value", y = metric, color = other_cols)) + geom_point() + facet_wrap(~Parameter, scales = "free_x") + xlab("") } else { stop(paste("There are", num_num, "numeric tuning variables and", num_other, "non-numeric variables; I don't have code for", "that Dave")) } } } out }
expected <- eval(parse(text="\"unknown\"")); test(id=0, code={ argv <- eval(parse(text="list(\"Byte Code Compiler\")")); .Internal(Encoding(argv[[1]])); }, o=expected);
create_predict_fun <- function(model, task, predict.fun = NULL, type = NULL) { UseMethod("create_predict_fun") } create_predict_fun.WrappedModel <- function(model, task, predict.fun = NULL, type = NULL) { if (!requireNamespace("mlr")) { "Please install the mlr package." } if (task == "classification") { function(newdata) { pred <- predict(model, newdata = newdata) if (model$learner$predict.type == "response") { pred <- mlr::getPredictionResponse(pred) factor_to_dataframe(pred) } else { mlr::getPredictionProbabilities(pred, cl = model$task.desc$class.levels) } } } else if (task == "regression") { function(newdata) { pred <- predict(model, newdata = newdata) data.frame(.prediction = mlr::getPredictionResponse(pred)) } } else { stop(sprintf("Task type '%s' not supported", task)) } } create_predict_fun.Learner <- function(model, task, predict.fun = NULL, type = NULL) { if (!requireNamespace("mlr3")) { "Please install the mlr3 package." } if (task == "classification") { function(newdata) { if (model$predict_type == "response") { pred <- predict(model, newdata = newdata) factor_to_dataframe(pred) } else { data.frame(predict(model, newdata = newdata, predict_type = "prob"), check.names = FALSE) } } } else if (task == "regression") { function(newdata) { data.frame(predict(model, newdata = newdata)) } } else { stop(sprintf("Task type '%s' not supported", task)) } } create_predict_fun.train <- function(model, task, predict.fun = NULL, type = NULL) { if (task == "classification") { function(newdata) { if (is.null(type)) { pred <- predict(model, newdata = newdata) } else { pred <- predict(model, newdata = newdata, type = type) } if (is_label(pred)) { pred <- factor_to_dataframe(pred) } pred } } else if (task == "regression") { function(newdata) { if (is.null(type)) { prediction <- predict(model, newdata = newdata) } else { prediction <- predict(model, newdata = newdata, type = type) } data.frame(.prediction = prediction, check.names = FALSE) } } else { stop(sprintf("task of type %s not allowed.", task)) } } create_predict_fun.NULL <- function(model, task, predict.fun = NULL, type = NULL) { function(newdata) { pred <- predict.fun(newdata = newdata) if (is_label(pred)) { factor_to_dataframe(pred) } data.frame(pred, check.names = FALSE) } } create_predict_fun.default <- function(model, task, predict.fun = NULL, type = NULL) { if (is.null(predict.fun)) { if (is.null(type)) { predict.fun <- function(object, newdata) predict(object, newdata) } else { predict.fun <- function(object, newdata) predict(object, newdata, type = type) } } function(newdata) { pred <- do.call(predict.fun, list(model, newdata = newdata)) if (is_label(pred)) { pred <- factor_to_dataframe(pred) } data.frame(pred, check.names = FALSE) } } create_predict_fun.keras.engine.training.Model <- function(model, task, predict.fun = NULL, type = NULL) { if (is.null(predict.fun)) { predict.fun <- function(object, newdata) predict(object, newdata) } function(newdata) { pred <- do.call(predict.fun, list(model, newdata = as.matrix(newdata))) data.frame(pred, check.names = FALSE) } } create_predict_fun.H2ORegressionModel <- function(model, task, predict.fun = NULL, type = NULL) { function(newdata) { newdata2 <- h2o::as.h2o(newdata) as.data.frame(h2o::h2o.predict(model, newdata = newdata2)) } } create_predict_fun.H2OBinomialModel <- function(model, task, predict.fun = NULL, type = NULL) { function(newdata) { newdata2 <- h2o::as.h2o(newdata) as.data.frame(h2o::h2o.predict(model, newdata = newdata2))[, -1] } } create_predict_fun.H2OMultinomialModel <- function(model, task, predict.fun = NULL, type = NULL) { function(newdata) { newdata2 <- h2o::as.h2o(newdata) as.data.frame(h2o::h2o.predict(model, newdata = newdata2))[, -1] } } factor_to_dataframe <- function(fac) { check_vector(fac) res <- data.frame(model.matrix(~ fac - 1, data.frame(fac = fac), sep = ":")) colnames(res) <- substring(colnames(res), 4) res }
getOptim <- function(object) { if (!is.DstarM(object)) { stop("Input must be of class DstarM.", call. = FALSE) } else { name <- names(object)[1] if (name == "Bestvals") { return(object$GlobalOptimizer$optim$bestval) } else if (name == "r.hat") { return(sapply(object$GlobalOptimizer, function(x) x$optim$bestval)) } else { warning("No optimizer information available for this object.") return(NULL) } } }
plot_cond <- function(obs,xmat,gxvalues,model,nc,breaks,finebr,showpoints, showlines,maintitle,ylim,angle=-45,density=20,col="black", jitter=NULL,xlab="Distance",ylab="Detection probability", subtitle=TRUE,...){ selection <- xmat$detected[xmat$observer!=obs]==1 selmat <- (xmat[xmat$observer==obs,])[selection,] shist <- hist(xmat$distance[xmat$observer!= obs & xmat$detected==1], breaks=breaks, plot = FALSE) mhist <- hist(xmat$distance[xmat$timesdetected== 2 & xmat$observer==obs], breaks=breaks, plot = FALSE) if(length(mhist$counts) < length(shist$counts)){ prop <- c(mhist$counts/shist$counts[1:length(mhist$counts)], rep(0, (length(shist$counts) - length(mhist$counts)))) }else{ prop <- mhist$counts/shist$counts } mhist$density <- prop mhist$equidist <- FALSE mhist$intensities <- mhist$density histline(mhist$density, breaks=breaks, lineonly=FALSE, xlab=xlab, ylab=ylab, ylim=ylim, angle=angle, density=density, col=col, det.plot=TRUE, ...) if(showlines){ line <- average.line.cond(finebr,obs,model) linevalues <- line$values xgrid <- line$xgrid lines(xgrid,linevalues,...) } if(showpoints){ ifelse(is.null(jitter), jitter.p<-1, jitter.p<-rnorm(length(gxvalues),1,jitter)) points(selmat$distance,gxvalues*jitter.p,...) } if(maintitle!=""){ if(subtitle){ title(paste(maintitle, "\nConditional detection probability\nObserver=", obs ," | Observer = ",3-obs),...) }else{ title(maintitle) } }else{ if(subtitle){ title(paste("Conditional detection probability\nObserver=", obs ," | Observer = ",3-obs),...) } } }
library(sgd) library(ggplot2) generate.data <- function(N, d) { l2 <- function(x) sqrt(sum(x**2)) X <- matrix(rnorm(N*d, mean=0, sd=1/sqrt(N)), nrow=N, ncol=d) theta <- runif(d) theta <- theta * 6 *sqrt(d) / l2(theta) ind <- rbinom(N, size=1, prob=.95) epsilon <- ind * rnorm(N) + (1-ind) * rep(10 ,N) Y <- X %*% theta + epsilon return(list(y=Y, X=X, theta=theta)) } N <- 1000 d <- 200 set.seed(42) data <- generate.data(N, d) dat <- data.frame(y=data$y, x=data$X) sgd.theta <- sgd(y ~ .-1, data=dat, model="m", sgd.control=list(method="sgd", lr.control=c(15, NA, NA, 1/2), npass=10, pass=T)) plot(sgd.theta, data$theta, label="sgd", type="mse-param") + geom_hline(yintercept=1.5, color="green")
lpc.fit.spline <- function(lpcsl, num.knots=100){ nbranch <- length(lpcsl)-1 knots.pi <- list() knots.coords <- list() for (r in 0:nbranch) { knots.pi[[r+1]] <- round(lpcsl[[r+1]]$range[1] + 0:(num.knots-1)/(num.knots-1) * (lpcsl[[r+1]]$range[2]-lpcsl[[r+1]]$range[1]), digits=6) coords <- matrix(ncol=num.knots,nrow=length(lpcsl[[r+1]]$splinefun)) for (j in 1:length(lpcsl[[r+1]]$splinefun)) coords[j,] <- lpcsl[[r+1]]$splinefun[[j]](knots.pi[[r+1]]) knots.coords[[r+1]] <- coords } list(knots.coords=knots.coords, knots.pi=knots.pi) }
TLMoments <- function(x, ...) { args <- list(...) if ("max.order" %in% names(args) && !are.integer.like(args$max.order)) stop("max.order must be integer-like. ") if ("na.rm" %in% names(args) && !is.logical(args$na.rm)) stop("na.rm must be TRUE or FALSE. ") UseMethod("TLMoments") } returnTLMoments <- function(out, leftrim, rightrim, order, ...) { class <- class(out$lambdas) args <- list(...) if (!exists("func", args)) args$func <- "TLMoments" if (sum(names(args) == "func") >= 2) { newfunc <- as.vector(unlist(args[names(args) == "func"])) args$func <- NULL args$func <- newfunc } if (!exists("n", args) && exists("data", args)) { if (inherits(out$lambdas, "numeric")) { args$n <- sum(!is.na(args$data)) } else if (inherits(out$lambdas, "matrix")) { args$n <- apply(args$data, 2, function(y) sum(!is.na(y))) } else if (inherits(out$lambdas, "list")) { args$n <- vapply(args$data, length, numeric(1)) } else if (inherits(out$lambdas, "data.frame")) { args$n <- aggregate(args$formula, args$data, length)[[getFormulaSides(args$formula)$lhs]] } } attr(out, "leftrim") <- leftrim attr(out, "rightrim") <- rightrim attr(out, "order") <- order attr(out, "source") <- args class(out) <- c("TLMoments", "list") out } TLMoments.numeric <- function(x, leftrim = 0L, rightrim = 0L, max.order = 4L, na.rm = FALSE, computation.method = "auto", ...) { if (computation.method == "auto") computation.method <- select_computation(leftrim, rightrim) ls <- TLMoment(x, order = 1L:max.order, leftrim = leftrim, rightrim = rightrim, na.rm = na.rm, computation.method = computation.method) out <- list( lambdas = ls, ratios = calcRatios(ls) ) returnTLMoments(out, leftrim, rightrim, 1L:max.order, tl.computation.method = computation.method, data = x) } TLMoments.matrix <- function(x, leftrim = 0L, rightrim = 0L, max.order = 4L, na.rm = FALSE, computation.method = "auto", ...) { if (computation.method == "auto") computation.method <- select_computation(leftrim, rightrim) ls <- apply(x, 2, TLMoment, order = 1L:max.order, leftrim = leftrim, rightrim = rightrim, na.rm = na.rm, computation.method = computation.method) if (max.order == 1) { dim(ls) <- c(1, ncol(x)) } out <- list( lambdas = ls, ratios = apply(ls, 2, calcRatios) ) returnTLMoments(out, leftrim, rightrim, 1L:max.order, tl.computation.method = computation.method, data = x) } TLMoments.list <- function(x, leftrim = 0L, rightrim = 0L, max.order = 4L, na.rm = FALSE, computation.method = "auto", ...) { if (computation.method == "auto") computation.method <- select_computation(leftrim, rightrim) ls <- lapply(x, TLMoment, order = 1L:max.order, leftrim = leftrim, rightrim = rightrim, na.rm = na.rm, computation.method = computation.method) out <- list( lambdas = ls, ratios = lapply(ls, calcRatios) ) returnTLMoments(out, leftrim, rightrim, 1L:max.order, tl.computation.method = computation.method, data = x) } TLMoments.data.frame <- function(x, formula, leftrim = 0L, rightrim = 0L, max.order = 4L, na.rm = FALSE, computation.method = "auto", ...) { if (computation.method == "auto") computation.method <- select_computation(leftrim, rightrim) x <- correctNames(x, "[L|T][0-9]*", ".") formula <- correctNames(formula, "[L|T][0-9]*", ".") nam <- getFormulaSides(formula, names(x)) agg <- aggregate(nam$new.formula, data = x, FUN = TLMoment, order = 1L:max.order, leftrim = leftrim, rightrim = rightrim, na.rm = na.rm, computation.method = computation.method) out <- list( lambdas = cbind(agg[-length(agg)], as.data.frame(agg[[length(agg)]])), ratios = cbind(agg[-length(agg)], as.data.frame(t(apply(agg[[length(agg)]], 1, calcRatios)[-1, ]))) ) returnTLMoments(out, leftrim, rightrim, 1L:max.order, tl.computation.method = computation.method, data = x, formula = nam$new.formula) } TLMoments.PWMs <- function(x, leftrim = 0L, rightrim = 0L, ...) { if (any(diff(attr(x, "order")) != 1)) stop("PWM order must not have gaps") UseMethod("TLMoments.PWMs") } TLMoments.PWMs.numeric <- function(x, leftrim = 0L, rightrim = 0L, ...) { ls <- PWM_to_TLMoments(x, leftrim, rightrim) out <- list( lambdas = setNames(ls, paste0("L", seq_along(ls))), ratios = calcRatios(ls) ) do.call(returnTLMoments, c( list(out = out, leftrim = leftrim, rightrim = rightrim, order = seq_along(ls)), func = "TLMoments.PWMs", pwms = list(removeAttributes(x)), attr(x, "source") )) } TLMoments.PWMs.matrix <- function(x, leftrim = 0L, rightrim = 0L, ...) { ls <- apply(x, 2, function(xx) { PWM_to_TLMoments(xx, leftrim, rightrim) }) rownames(ls) <- paste0("L", seq_along(ls[, 1])) out <- list( lambdas = ls, ratios = apply(ls, 2, calcRatios) ) do.call(returnTLMoments, c( list(out = out, leftrim = leftrim, rightrim = rightrim, order = seq_along(ls[, 1])), func = "TLMoments.PWMs", pwms = list(removeAttributes(x)), attr(x, "source") )) } TLMoments.PWMs.list <- function(x, leftrim = 0L, rightrim = 0L, ...) { ls <- lapply(x, function(xx) { PWM_to_TLMoments(xx, leftrim, rightrim) }) ls <- lapply(ls, function(l) setNames(l, paste0("L", seq_along(l)))) out <- list( lambdas = ls, ratios = lapply(ls, calcRatios) ) do.call(returnTLMoments, c( list(out = out, leftrim = leftrim, rightrim = rightrim, order = seq_along(ls[[1]])), func = "TLMoments.PWMs", pwms = list(removeAttributes(x)), attr(x, "source") )) } TLMoments.PWMs.data.frame <- function(x, leftrim = 0L, rightrim = 0L, ...) { pwms <- x[, grep("beta[0-9]*", names(x)), drop = FALSE] fac <- x[, !grepl("beta[0-9]*", names(x)), drop = FALSE] ls <- apply(pwms, 1, function(xx) { PWM_to_TLMoments(xx, leftrim, rightrim) }) ratios <- apply(ls, 2, calcRatios) ratios <- as.data.frame(t(ratios)) lambdas <- as.data.frame(t(ls)) names(lambdas) <- paste0("L", 1L:ncol(lambdas)) out <- list( lambdas = cbind(fac, lambdas), ratios = cbind(fac, ratios) ) do.call(returnTLMoments, c( list(out = out, leftrim = leftrim, rightrim = rightrim, order = 1L:ncol(lambdas)), func = "TLMoments.PWMs", pwms = list(removeAttributes(x)), attr(x, "source") )) } TLMoments.parameters <- function(x, leftrim = attr(x, "source")$trimmings[1], rightrim = attr(x, "source")$trimmings[2], max.order = 4L, ...) { if (!is.null(max.order) && !are.integer.like(max.order)) stop("max.order must be integer-like. ") if (!is.null(max.order) && max.order <= 0) stop("max.order must be positive. ") if ((!is.null(leftrim) && !are.integer.like(leftrim)) || (!is.null(rightrim) && !are.integer.like(rightrim))) stop("leftrim and rightrim must be integer-like. ") if ((!is.null(leftrim) && leftrim < 0) || (!is.null(rightrim) && rightrim < 0)) stop("leftrim and rightrim must be non-negative. ") UseMethod("TLMoments.parameters") } TLMoments.parameters.numeric <- function(x, leftrim = attr(x, "source")$trimmings[1], rightrim = attr(x, "source")$trimmings[2], max.order = 4L, ...) { if (is.null(leftrim)) leftrim <- 0L if (is.null(rightrim)) rightrim <- 0L if (is.null(attr(x, "source")$lambdas) || !identical(attr(x, "source")$trimmings, c(leftrim, rightrim)) || (!is.null(attr(x, "source")$tl.order) && max(attr(x, "source")$tl.order) != max.order)) { ls <- calcTLMom(max.order, leftrim, rightrim, qfunc = getQ(x)) } else { ls <- attr(x, "source")$lambdas } out <- list( lambdas = setNames(ls, paste0("L", seq_along(ls))), ratios = calcRatios(ls) ) do.call(returnTLMoments,c( list(out = out, leftrim = leftrim, rightrim = rightrim, order = 1L:max.order), func = "TLMoments.parameters", distr = attr(x, "distribution"), parameters = list(removeAttributes(x)), attr(x, "source") )) } TLMoments.parameters.matrix <- function(x, leftrim = attr(x, "source")$trimmings[1], rightrim = attr(x, "source")$trimmings[2], max.order = 4L, ...) { if (is.null(leftrim)) leftrim <- 0L if (is.null(rightrim)) rightrim <- 0L if (is.null(attr(x, "source")$lambdas) || !identical(attr(x, "source")$trimmings, c(leftrim, rightrim)) || (!is.null(attr(x, "source")$tl.order) && max(attr(x, "source")$tl.order) != max.order)) { ls <- apply(x, 2, function(xx) { calcTLMom(max.order, leftrim, rightrim, qfunc = do.call(getQ, c(x = attr(x, "distribution"), as.list(xx)))) }) } else { ls <- attr(x, "source")$lambdas } rownames(ls) <- paste0("L", seq_along(ls[, 1])) out <- list( lambdas = ls, ratios = apply(ls, 2, calcRatios) ) do.call(returnTLMoments,c( list(out = out, leftrim = leftrim, rightrim = rightrim, order = 1L:max.order), func = "TLMoments.parameters", distr = attr(x, "distribution"), parameters = list(removeAttributes(x)), attr(x, "source") )) } TLMoments.parameters.list <- function(x, leftrim = attr(x, "source")$trimmings[1], rightrim = attr(x, "source")$trimmings[2], max.order = 4L, ...) { if (is.null(leftrim)) leftrim <- 0L if (is.null(rightrim)) rightrim <- 0L if (is.null(attr(x, "source")$lambdas) || !identical(attr(x, "source")$trimmings, c(leftrim, rightrim)) || (!is.null(attr(x, "source")$tl.order) && max(attr(x, "source")$tl.order) != max.order)) { ls <- lapply(x, function(xx) { calcTLMom(max.order, leftrim, rightrim, qfunc = do.call(getQ, c(x = attr(x, "distribution"), as.list(xx)))) }) } else { ls <- attr(x, "source")$lambdas } ls <- lapply(ls, function(l) setNames(l, paste0("L", seq_along(l)))) out <- list( lambdas = ls, ratios = lapply(ls, calcRatios) ) do.call(returnTLMoments,c( list(out = out, leftrim = leftrim, rightrim = rightrim, order = 1L:max.order), func = "TLMoments.parameters", distr = attr(x, "distribution"), parameters = list(removeAttributes(x)), attr(x, "source") )) } TLMoments.parameters.data.frame <- function(x, leftrim = attr(x, "source")$trimmings[1], rightrim = attr(x, "source")$trimmings[2], max.order = 4L, ...) { if (is.null(leftrim)) leftrim <- 0L if (is.null(rightrim)) rightrim <- 0L nam <- getFormulaSides(attr(x, "source")$formula) if (is.null(attr(x, "source")$lambdas) || !identical(attr(x, "source")$trimmings, c(leftrim, rightrim)) || (!is.null(attr(x, "source")$tl.order) && max(attr(x, "source")$tl.order) != max.order)) { ls <- apply(x[!(names(x) %in% nam$rhs)], 1, function(xx) { calcTLMom(max.order, leftrim, rightrim, qfunc = do.call(getQ, c(x = attr(x, "distribution"), as.list(xx)))) }) if (max.order == 1) { ls <- rbind(ls, deparse.level = 0) } ls <- as.data.frame(t(ls)) names(ls) <- paste0("L", 1:max.order) fac <- x[nam$rhs] } else { dat <- attr(x, "source")$lambdas fac <- dat[nam$rhs] ls <- dat[!(names(dat) %in% nam$rhs)] } if (max.order > 1) { ratios <- t(apply(ls, 1, calcRatios))[, -1, drop = FALSE] } else { ratios <- matrix(NA, nrow = nrow(ls), ncol = 0) } out <- list( lambdas = cbind(fac, as.data.frame(ls)), ratios = cbind(fac, as.data.frame(ratios)) ) do.call(returnTLMoments,c( list(out = out, leftrim = leftrim, rightrim = rightrim, order = 1L:max.order), func = "TLMoments.parameters", distr = attr(x, "distribution"), parameters = list(removeAttributes(x)), attr(x, "source") )) } print.TLMoments <- function(x, ...) { tmp <- x attributes(tmp) <- NULL dim(tmp) <- dim(x) names(tmp) <- names(x) dimnames(tmp) <- dimnames(x) print(tmp) invisible(x) }
p2rho <- function(Pz, TempK, RH){ if (nargs() < 3 ) {cat("USAGE: result = function(Pressure, TempK, RH) \n"); return()} R_d = 287.04 e_v_star = 0 e_0 = 0 P_d = 0 rho_d = 0 rho_v = 0 e_v_star = wvapsat(TempK, 0) e_0 = e_v_star*RH/100.0 P_d = Pz - e_0 rho_d = 100.*P_d /(R_d*TempK) rho_v = 0.622*100.*e_0/(R_d*TempK) p2rho = rho_d + rho_v return(p2rho) }
residuals.fittedlooplist <- function(object,...){ g <- object thenames <- g$Estimates[,1:(which(colnames(g$Estimates)=="n")-1)] thelengths <- lapply(g$models, function(x) length(x$pred.x)) rowvec <- mapply(function(x,y) rep(x,each=y),1:length(thelengths),y=thelengths) thenames <- thenames[rowvec,] thefittedx<-lapply(g$models,function (x) residuals.fittedloop(x)[,"input"]) thefittedx <- unlist(thefittedx) thefittedy<-lapply(g$models,function (x) residuals.fittedloop(x)[,"output"]) thefittedy <- unlist(thefittedy) thegeom<-lapply(g$models,function (x) residuals.fittedloop(x)[,"geometric"]) thegeom <- unlist(thegeom) data.frame(thenames,"input"=thefittedx,"output"=thefittedy,"geometric"=thegeom) } residuals.fittedlooplist2r <- function(object,...){ g <- object thenames <- g$Estimates[,1:(which(colnames(g$Estimates)=="n")-1)] thelengths <- lapply(g$models, function(x) length(x$pred.x)) rowvec <- mapply(function(x,y) rep(x,each=y),1:length(thelengths),y=thelengths) thenames <- thenames[rowvec,] thefittedx<-lapply(g$models,function (x) residuals.loop2r(x)[,"input"]) thefittedx <- unlist(thefittedx) thefittedy<-lapply(g$models,function (x) residuals.loop2r(x)[,"output"]) thefittedy <- unlist(thefittedy) thegeom<-lapply(g$models,function (x) residuals.loop2r(x)[,"geometric"]) thegeom <- unlist(thegeom) data.frame(thenames,"input"=thefittedx,"output"=thefittedy,"geometric"=thegeom) }
context("ebirdnotable") test_that("ebirdnotable works correctly", { skip_on_cran() out <- ebirdnotable(lat=42, lng=-70, max = 40) expect_is(out, "data.frame") expect_equal(dim(out), c(40,13)) expect_is(out$comName, "character") expect_is(out$howMany, "integer") expect_equal(NCOL(ebirdnotable(region='US-OH', regtype='subnational1')), 13) simpler <- ebirdnotable(lat=42, lng=-70, max = 40, simple = TRUE) expect_equal(dim(simpler), c(40,13)) expect_gt( system.time(ebirdnotable(lat=42, lng=-70, max = 10, sleep = 1))[[3]] , 1) })
cvolumdya<-function(volofatom,component,AtomlistNext){ componum<-length(component) volume<-matrix(0,componum,1) for (i in 1:componum){ numofatoms<-0 pointer<-component[i] while (pointer>0){ numofatoms<-numofatoms+1 pointer<-AtomlistNext[pointer] } volume[i]<-numofatoms*volofatom } return(volume) }
zelazo <- list( active = c(9.00, 9.50, 9.75,10.00,13.00, 9.50), passive = c(11.00,10.00,10.00,11.75,10.50,15.00), none = c(11.50,12.00, 9.00,11.50,13.25,13.00), ctr.8w = c(13.25,11.50,12.00,13.50,11.50))
separateAdditionalSyntax = function(line.simple){ temp = trimws(unlist(strsplit(x = line.simple, split = "<-"))) lhs = temp[1] if (length(grep(pattern = "-", x = lhs)) > 0) { lhs = getVariableList(variableText = temp[1]) } else { lhs = trimws(unlist(strsplit(x = lhs, split = " "))) } rhs = temp[2] tempRHS = trimws(unlist(strsplit(x = rhs, split = "\\("))) latents = list() distributions = list() priors = list() if (tempRHS[1] == "latent"){ latents = as.list(paste(lhs, "<-", rhs)) names(latents) = lhs } else if (tempRHS[1] == "observed"){ distributions = as.list(paste(lhs, "<-", rhs)) names(distributions) = lhs } else if (tempRHS[1] == "prior"){ priors = as.list(paste(lhs, "<-", rhs)) names(priors) = lhs } else { stop(paste0("Blatent syntax error: Unrecognized command ", tempRHS[1], "\n From Line: ", line.simple)) } test = list(latents = latents, distributions = distributions, priors = priors) return(test) }
"plot.fitEmax" <- function(x,int=0,plotResid=FALSE,clev=0.9, predict=TRUE,plotci=TRUE,plotDif=FALSE, xlab='Dose', ylab=ifelse(plotResid,'Residuals',ifelse(plotDif, 'Difference With Placebo','Response')), symbol=NULL,symbolLabel='Group',symbolShape=8,symbolColor='red',symbolSize=4, bwidth=NULL, xlim=NULL, xat=NULL, ylim=NULL, logScale=FALSE, ngrid=200, plot=TRUE, ...){ outplot<-combplot(x=x,bayes=FALSE,int=int,plotResid=plotResid, clev=clev, predict=predict,plotci=plotci,plotDif=plotDif, xlab=xlab,ylab=ylab, symbol=symbol,symbolLabel=symbolLabel,symbolShape=symbolShape, symbolColor=symbolColor,symbolSize=symbolSize, bwidth=bwidth, xlim=xlim, xat=xat, ylim=ylim, logScale=logScale, ngrid=ngrid, plot=plot, ...) return(invisible(outplot)) } "plot.fitEmaxB" <- function(x,int=0,plotResid=FALSE,clev=0.9, predict=TRUE,plotci=TRUE,plotDif=FALSE, xlab='Dose', ylab=ifelse(plotResid,'Residuals',ifelse(plotDif, 'Difference With Placebo','Response')), symbol=NULL,symbolLabel='Group',symbolShape=8,symbolColor='red',symbolSize=4, bwidth=NULL, xlim=NULL, xat=NULL, ylim=NULL, logScale=FALSE, ngrid=200, plot=TRUE, ...){ outplot<-combplot(x=x,bayes=TRUE,int=int,plotResid=plotResid, clev=clev, predict=predict,plotci=plotci,plotDif=plotDif, xlab=xlab,ylab=ylab, symbol=symbol,symbolLabel=symbolLabel,symbolShape=symbolShape, symbolColor=symbolColor,symbolSize=symbolSize, bwidth=bwidth, xlim=xlim,xat=xat,ylim=ylim, logScale=logScale, ngrid=ngrid, plot=plot, ...) return(invisible(outplot)) } combplot <- function(x,bayes,int=0,plotResid=FALSE,clev=0.9, predict=TRUE,plotci=TRUE,plotDif=FALSE, xlab='Dose', ylab=ifelse(plotResid,'Residuals',ifelse(plotDif, 'Difference With Placebo','Response')), symbol=NULL,symbolLabel='Group',symbolShape=8,symbolColor='red', symbolSize=4, bwidth=NULL, xlim=NULL, xat=NULL, ylim=NULL, logScale=FALSE, ngrid=ngrid, plot=TRUE, ...){ if(plotDif && is.null(ylab)){ ylab<-'Y Diff' }else if(plotResid && is.null(ylab)){ ylab<-'Residuals' }else if(is.null(ylab))ylab<-"Y" clevup<- 0.5+clev/2 clevlow<-0.5-clev/2 cadj<- abs(qnorm((1-clev)/2)) nolegend<-is.null(symbol) y<-x$y dose<-x$dose prot<-as.numeric(x$prot) protlab<-levels(x$prot) count<-x$count binary<-x$binary if(!bayes){ if(!binary){ residSD<-sigma(x) }else residSD<-NA } if(isTRUE(plotDif & plotResid))warning('plotDif is ignored when plotResid is TRUE') if(is.null(symbol)){symbol<-factor(rep(1,length(y))) }else symbol<-factor(symbol) if(length(symbol)!=length(y))stop('Symbol variable has invalid length') if(length(symbol)!=length(y))stop('Symbol variable has invalid length') if(int>0){ nprot<-int nstart<-int doselev<-sort(unique(dose[prot==int])) }else{ nprot<-max(prot) nstart<-1 doselev<-sort(unique(dose)) } dmax<-max(doselev)*1.1 dmin<-min(c(0,doselev))-0.1*dmax if(is.null(xlim))xlim<-c(dmin,dmax) dgrid<-seq(0,xlim[2],length=ngrid) dgrid <- c(dgrid, doselev) dgrid <- sort(unique(dgrid)) ngridsup<-length(dgrid) if(!is.null(xat)){ if(min(xat)<xlim[1] | max(xat)>xlim[2]) stop('Tickmark locations are outside X limit') } protD<-NULL doseLevVec<-NULL fitvec<-NULL cilvec<-NULL cihvec<-NULL pilvec<-NULL pihvec<-NULL protG<-NULL predvecG<-NULL dgridvec<-NULL protDS<-NULL ymvecDS<-NULL dosevecDS<-NULL predvalDS<-NULL symDS<-NULL for(k in nstart:nprot){ yS<-y[prot==k] doseS<-dose[prot==k] countS<-count[prot==k] protS<-prot[prot==k] symS<-levels(symbol)[symbol[prot==k]] doselev<-sort(unique(doseS)) ndose<-length(doselev) symlev<-sort(unique(symS)) nsym<-length(symlev) ym <- NULL dvec <- NULL symvec <- NULL nds <- 0 for(i in 1:ndose){ for(j in 1:nsym){ ind<-((doseS==doselev[i]) & (symS==symlev[j])) ng0<-sum(ind) if(ng0>0){ ymhold<-weighted.mean(yS[ind],countS[ind]) if(isTRUE(plotDif & i==1))ym0<-ymhold if(plotDif)ymhold<-ymhold-ym0 ym<-c(ym,ymhold) dvec<-c(dvec,doselev[i]) symvec<-c(symvec,symlev[j]) nds<-nds+1 } } } if(bayes){ seout<-predict(x,doselev,int=k,clev=clev) if(!plotDif){ fitp<-seout$predMed cil<-seout$lb cih<-seout$ub }else{ fitp<-seout$fitdifMed cil<-seout$lbdif cih<-seout$ubdif } nsub<-apply(tapply(countS,list(doseS,symS),sum),1,min,na.rm=TRUE) pmean<-seout$simResp sigsim<-seout$sigsim nsim<-nrow(pmean) pil<-numeric(ndose) pih<-numeric(ndose) for(i in 1:ndose){ if(!binary){ ppred<-rnorm(nsim,pmean[,i],sigsim/sqrt(nsub[i])) }else ppred<-rbinom(nsim,nsub[i],pmean[,i])/nsub[i] if(i==1)pp0<-ppred if(plotDif)ppred<-ppred-pp0 pil[i]<-quantile(ppred,probs=clevlow) pih[i]<-quantile(ppred,probs=clevup) } predvals<-predict(x,dgrid,int=k,clev=clev)$predMed predvalSym<-predict(x,dvec,int=k,clev=clev)$predMed if(plotDif){ predvals<-predvals-predvals[1] predvalSym<-predvalSym-predvalSym[1] } }else{ seout<-predict(x,doselev,int=k,clev=clev) if(!plotDif){ fitp<-seout$pred se<-seout$se cil<-seout$lb cih<-seout$ub }else{ ppred<-seout$pred fitp<-seout$fitdif se<-seout$sedif cil<-seout$lbdif cih<-seout$ubdif } nsub<-apply(tapply(countS,list(doseS,symS),sum),1,min,na.rm=TRUE) if(!binary){ if(!plotDif){ sepred<-sqrt( se^2 + (residSD^2)/nsub ) pil<-fitp-cadj*sepred pih<-fitp+cadj*sepred }else{ sepred<-sqrt( se^2 + (residSD^2)/nsub + (residSD^2)/nsub[1] ) sepred[1]<-0 pil<-fitp-cadj*sepred pih<-fitp+cadj*sepred } }else{ if(!plotDif){ sepred<-sqrt( (se/(fitp*(1-fitp)))^2 + 1/(nsub*fitp*(1-fitp)) ) pil<-plogis(qlogis(fitp)-cadj*sepred) pih<-plogis(qlogis(fitp)+cadj*sepred) }else{ sepred<-sqrt(se^2+ppred*(1-ppred)/nsub + ppred[1]*(1-ppred[1])/nsub[1]) sepred[1]<-0 pil<-fitp-cadj*sepred pih<-fitp+cadj*sepred } } predvals<-predict(x,dgrid,int=k,clev=clev)$pred predvalSym<-predict(x,dvec,int=k,clev=clev)$pred if(plotDif){ predvals<-predvals-predvals[1] predvalSym<-predvalSym-predvalSym[1] } } protD<-c(protD,rep(k,ndose)) doseLevVec<-c(doseLevVec,doselev) fitvec<-c(fitvec,fitp) cilvec<-c(cilvec,cil) cihvec<-c(cihvec,cih) pilvec<-c(pilvec,pil) pihvec<-c(pihvec,pih) protG<-c(protG,rep(k,ngridsup)) predvecG<-c(predvecG,predvals) dgridvec<-c(dgridvec,dgrid) protDS<-c(protDS,rep(k,nds)) ymvecDS<-c(ymvecDS,ym) dosevecDS<-c(dosevecDS,dvec) symDS<-c(symDS,symvec) predvalDS<-c(predvalDS,predvalSym) } residuals<-ymvecDS-predvalDS symDS<-factor(symDS) nlevsym<-length(levels(symDS)) nshape<-length(symbolShape) if(nshape!=nlevsym && nshape==1)symbolShape<-rep(symbolShape,nlevsym) ncolor<-length(symbolColor) if(ncolor!=nlevsym && ncolor==1)symbolColor<-rep(symbolColor,nlevsym) if(int)protlab<-protlab[int] if(plotResid & !logScale){ lplot<-ggplot(data.frame(dosevecDS,residuals,symDS,protDS=factor(protDS,labels=protlab)), aes(x=dosevecDS,y=residuals)) lplot<-lplot+geom_point(aes(shape=symDS,color=symDS),size=symbolSize) lplot<-lplot+scale_color_manual(name=symbolLabel,values=symbolColor) lplot<-lplot+scale_shape_manual(name=symbolLabel,values=symbolShape) lplot<-lplot + geom_hline(yintercept=0,linetype=2) if(length(unique(prot))>1)lplot<-lplot+facet_wrap(~protDS,ncol=min(nprot,3)) lplot<-lplot+ylab(ylab) + xlab(xlab) + theme_bw() if(!is.null(ylim)){lplot<-lplot+coord_cartesian(xlim=xlim,ylim=ylim) }else lplot<-lplot+coord_cartesian(xlim=xlim) } else if(plotResid & logScale){ x0 <- dosevecDS if(sum(x0==0)){ xtemp <- sort(unique(dosevecDS))[2]^2/sort(unique(dosevecDS))[3] dosevecDSlog <- dosevecDS dosevecDSlog[dosevecDS==0] <- xtemp xlimlog <- c(log(xtemp)-(log(xlim[2])-log(xtemp))/10, log(xlim[2])+(log(xlim[2])-log(xtemp))/10) }else{ xtemp <- sort(unique(dosevecDS))[1] dosevecDSlog <- dosevecDS xlimlog <- c(log(xtemp)-(log(xlim[2])-log(xtemp))/10, log(xlim[2])+(log(xlim[2])-log(xtemp))/10) } lplot<-ggplot(data.frame(dosevecDSlog,residuals,symDS,protDS=factor(protDS,labels=protlab)), aes(x=log(dosevecDSlog),y=residuals)) lplot<-lplot+geom_point(aes(shape=symDS,color=symDS),size=symbolSize) lplot<-lplot+scale_color_manual(name=symbolLabel,values=symbolColor) lplot<-lplot+scale_shape_manual(name=symbolLabel,values=symbolShape) lplot<-lplot + geom_hline(yintercept=0,linetype=2) if(is.null(xat)) lplot <- lplot + scale_x_continuous(breaks=log(sort(unique(dosevecDSlog))), labels=sort(unique(dosevecDS))) if(length(unique(prot))>1)lplot<-lplot+facet_wrap(~protDS,ncol=min(nprot,3)) if(!is.null(ylim)){lplot<-lplot+coord_cartesian(xlim=xlimlog,ylim=ylim) }else lplot<-lplot+coord_cartesian(xlim=xlimlog) } else if(!plotResid & !logScale){ if(is.null(bwidth)){werrbar<-min(diff(sort(unique(dosevecDS))))*(0.4) }else werrbar<-bwidth lplot<-ggplot(data.frame(cilvec,cihvec,pilvec,pihvec, doseLevVec,protD=factor(protD,labels=protlab))) lplot<-lplot+scale_color_manual(name=symbolLabel,values=symbolColor) lplot<-lplot+scale_shape_manual(name=symbolLabel,values=symbolShape) if(length(unique(prot))>1)lplot<-lplot+facet_wrap(~protD,ncol=min(nprot,5)) if(predict)lplot<-lplot+geom_errorbar(aes(x=doseLevVec,ymax=pihvec,ymin=pilvec),size=1.1, color='grey',width=werrbar) if(plotci)lplot<-lplot+geom_errorbar(aes(x=doseLevVec,ymax=cihvec,ymin=cilvec),width=0,size=1.1,color='black') lplot<-lplot+geom_line(data=data.frame(dgridvec=dgridvec,predvecG=predvecG, protD=factor(protG,labels=protlab)), aes(x=dgridvec,y=predvecG),color='black',size=1.1, ...) lplot<-lplot+geom_point(data=data.frame(ymvecDS,dosevecDS,symDS,protD=factor(protDS,labels=protlab)), aes(x=dosevecDS,y=ymvecDS,shape=symDS,color=symDS), size=symbolSize) lplot<-lplot+ylab(ylab) + xlab(xlab) + theme_bw() if(!is.null(ylim)){lplot<-lplot+coord_cartesian(xlim=xlim,ylim=ylim) }else lplot<-lplot+coord_cartesian(xlim=xlim) } else if(!plotResid & logScale){ x0 <- doseLevVec if(sum(x0==0)){ xtemp <- sort(unique(doseLevVec))[2]^2/sort(unique(doseLevVec))[3] doseLevVeclog <- doseLevVec dgridveclog <- dgridvec dosevecDSlog <- dosevecDS doseLevVeclog[doseLevVec==0] <- dgridveclog[dgridvec==0] <- dosevecDSlog[dosevecDS==0] <- xtemp bench_doseLevVeclog <- sort(unique(doseLevVeclog)) xlimlog <- c(log(xtemp)-(log(xlim[2])-log(xtemp))/10, log(xlim[2])+(log(xlim[2])-log(xtemp))/10) werrbarlog <- min(diff(sort(unique(log(dosevecDSlog)))))*(0.4) if(plotDif){ mindose <- min(dosevecDS[dosevecDS>0]) index <- which(doseLevVeclog>=mindose) indexgrid <- which(dgridveclog>=mindose) doseLevVec <- doseLevVec[index] doseLevVeclog <- doseLevVeclog[index] dgridveclog <-dgridveclog[indexgrid] predvecG <- predvecG[indexgrid] protG <- protG[indexgrid] dosevecDSlog <- dosevecDSlog[index] cilvec <- cilvec[index] cihvec <- cihvec[index] pilvec <- pilvec[index] pihvec <- pihvec[index] ymvecDS <- ymvecDS[index] protD <- protD[index] protDS <- protDS[index] symDS <- symDS[index] fitvec <- fitvec[index] xlimlog <- c(log(mindose)-(log(xlim[2])-log(mindose))/10, log(xlim[2])+(log(xlim[2])-log(mindose))/10) } lplot<-ggplot(data.frame(cilvec,cihvec,pilvec,pihvec, doseLevVec, doseLevVeclog, protD=factor(protD,labels=protlab))) lplot<-lplot+scale_color_manual(name=symbolLabel,values=symbolColor) lplot<-lplot+scale_shape_manual(name=symbolLabel,values=symbolShape) if(length(unique(prot))>1)lplot<-lplot+facet_wrap(~protD,ncol=min(nprot,5)) if(predict)lplot<-lplot+geom_errorbar(aes(x=log(doseLevVeclog),ymax=pihvec,ymin=pilvec),size=1.1, color='grey',width=werrbarlog) if(plotci)lplot<-lplot+geom_errorbar(aes(x=log(doseLevVeclog),ymax=cihvec,ymin=cilvec),width=0,size=1.1, color='black') data=data.frame(dgridveclog,predvecG=predvecG,protD=factor(protG,labels=protlab)) data1 <- subset(data, data$dgridveclog < bench_doseLevVeclog [2] & data$dgridveclog >= xtemp) data2 <- subset(data, data$dgridveclog >= bench_doseLevVeclog [2]) lplot<-lplot+geom_line(data=data1, aes(x=log(dgridveclog),y=predvecG),color='black',size=1.1, linetype="dashed") lplot<-lplot+geom_line(data=data2, aes(x=log(dgridveclog),y=predvecG),color='black',size=1.1, linetype="solid") lplot<-lplot+geom_point(data=data.frame(ymvecDS,dosevecDSlog,symDS,protD=factor(protDS,labels=protlab)), aes(x=log(dosevecDSlog),y=ymvecDS,shape=symDS,color=symDS), size=symbolSize) if(is.null(xat)) lplot <- lplot + scale_x_continuous(breaks=log(sort(unique(doseLevVeclog))), labels=sort(unique(doseLevVec))) if(!is.null(ylim)){lplot<-lplot+coord_cartesian(xlim=xlimlog,ylim=ylim) }else lplot<-lplot+coord_cartesian(xlim=xlimlog) }else{ xtemp <- sort(unique(doseLevVec))[1]^2/sort(unique(doseLevVec))[2] doseLevVeclog <- doseLevVec dgridveclog <- dgridvec dosevecDSlog <- dosevecDS dgridveclog[dgridvec==0] <- xtemp bench_doseLevVeclog <- sort(unique(doseLevVeclog)) xlimlog <- c(log(xtemp)-(log(xlim[2])-log(xtemp))/10, log(xlim[2])+(log(xlim[2])-log(xtemp))/10) werrbarlog <- min(diff(sort(unique(log(dosevecDSlog)))))*(0.4) if(plotDif){ mindose <- min(dosevecDS[dosevecDS>0]) index <- which(doseLevVeclog>=mindose) indexgrid <- which(dgridveclog>=mindose) doseLevVec <- doseLevVec[index] doseLevVeclog <- doseLevVeclog[index] dgridveclog <-dgridveclog[indexgrid] predvecG <- predvecG[indexgrid] protG <- protG[indexgrid] dosevecDSlog <- dosevecDSlog[index] cilvec <- cilvec[index] cihvec <- cihvec[index] pilvec <- pilvec[index] pihvec <- pihvec[index] ymvecDS <- ymvecDS[index] protD <- protD[index] protDS <- protDS[index] symDS <- symDS[index] fitvec <- fitvec[index] xlimlog <- c(log(mindose)-(log(xlim[2])-log(mindose))/10, log(xlim[2])+(log(xlim[2])-log(mindose))/10) } lplot<-ggplot(data.frame(cilvec,cihvec,pilvec,pihvec, doseLevVec,doseLevVeclog,protD=factor(protD,labels=protlab))) lplot<-lplot+scale_color_manual(name=symbolLabel,values=symbolColor) lplot<-lplot+scale_shape_manual(name=symbolLabel,values=symbolShape) if(length(unique(prot))>1)lplot<-lplot+facet_wrap(~protD,ncol=min(nprot,5)) if(predict)lplot<-lplot+geom_errorbar(aes(x=log(doseLevVeclog),ymax=pihvec,ymin=pilvec),size=1.1, color='grey',width=werrbarlog) if(plotci)lplot<-lplot+geom_errorbar(aes(x=log(doseLevVeclog),ymax=cihvec,ymin=cilvec),width=0,size=1.1,color='black') data=data.frame(dgridveclog,predvecG=predvecG,protD=factor(protG,labels=protlab)) data1 <- subset(data, data$dgridveclog < bench_doseLevVeclog[1] & data$dgridveclog >= xtemp) data2 <- subset(data, data$dgridveclog >= bench_doseLevVeclog[1]) lplot<-lplot+geom_line(data=data1, aes(x=log(dgridveclog),y=predvecG),color='black',size=1.1, linetype="dashed") lplot<-lplot+geom_line(data=data2, aes(x=log(dgridveclog),y=predvecG),color='black',size=1.1, linetype="solid") lplot<-lplot+geom_point(data=data.frame(ymvecDS,dosevecDSlog,symDS,protD=factor(protDS,labels=protlab)), aes(x=log(dosevecDSlog),y=ymvecDS,shape=symDS,color=symDS), size=symbolSize) if(is.null(xat)) lplot <- lplot + scale_x_continuous(breaks=log(sort(unique(doseLevVeclog))), labels=sort(unique(doseLevVec))) if(!is.null(ylim)){lplot<-lplot+coord_cartesian(xlim=xlimlog,ylim=ylim) }else lplot<-lplot+coord_cartesian(xlim=xlimlog) } } lplot <- lplot +ylab(ylab) + xlab(xlab) + theme_bw() lplot <- lplot+ theme(panel.grid.major.x=element_blank(), panel.grid.minor.x=element_blank(), panel.grid.major.y=element_line(size=0.1)) if(nolegend)lplot<-lplot + theme(legend.position = "none") if(!is.null(xat)){ if(!logScale) lplot <- lplot + scale_x_continuous(breaks=xat, labels =xat) if(logScale){ xatbench <- xat xat[xat==0] <- doselev[2]^2/doselev[3] lplot <- lplot + scale_x_continuous(breaks=log(xat), labels =xatbench) } } if(plot){ print(lplot) } return(invisible(list(lplot=lplot,plotdata=cbind(prot=protD,dose=doseLevVec,fit=fitvec, cil=cilvec,cih=cihvec, pil=pilvec,pih=pihvec)))) }
. = NULL volcano2G <- function(foldchange, pvals, labels, pthresh=0.1, log2FCThresh=0.5, main=NULL, xlab="log2 FC", ylab="-log10(Q Value)", xlim=c(-5,5), ylim=c(0,-log10(min(pvals, na.rm=TRUE))), size=1, segment.size=0.3, segement.alpha=0.3, pseudo = NULL, colors = NULL ) { results <- data.frame(log2FoldChange = foldchange, pvalue= pvals, labels=labels ) fcLabel <- paste("Q Value <", pthresh, "& |FC| >", log2FCThresh) if(is.null(results$significance)){ results$significance = ifelse(results$pvalue < pthresh & abs(results$log2FoldChange) > log2FCThresh , fcLabel ,"Not Sig" ) if(!is.null(pseudo)){ results$significance[is.na(pseudo)] <- "pseudo" colors <- c("black", "green", "red" ) }else{ colors <- c("black", "red") } } log2FoldChange <- NULL pvalue <- NULL p = ggplot(results, aes(log2FoldChange, -log10(pvalue))) + geom_point(aes_string(col="significance")) + scale_color_manual(values=colors) p = p + ggplot2::geom_hline(yintercept=-log10(pthresh), col=4, lty=2) p = p + ggplot2::geom_vline(xintercept=c(-log2FCThresh,log2FCThresh), col=4,lty=2) filtres <- subset(results, pvalue<pthresh & abs(log2FoldChange)>log2FCThresh ) p = p + geom_text_repel(data=filtres, aes_string(label='labels'), size=size, segment.size = segment.size, segment.alpha = segement.alpha) if(!is.null(main)){ p = p + ggtitle(main) } p = p + xlab(xlab) p = p + ylab(ylab) p = p + xlim(xlim[1],xlim[2]) p = p + ylim(ylim[1],ylim[2]) return(p) } volcano2GB <- function(dataX, foldchange = "log2FC", pvalue = "q.mod", labels = "names", pthresh=0.1, log2FCThresh=0.5, main=NULL, xlab="log2 FC", ylab="-log10(Q Value)", repel.text.size=1, repel.segment.size=0.5, repel.segement.alpha=0.5, pseudo= NULL ) { dataX <- dataX %>% mutate(yvalue = -log10(!!rlang::sym(pvalue))) fcLabel <- paste(pvalue, "<", pthresh, "& |",foldchange,"| >", log2FCThresh) colors <- NULL if(is.null(dataX$significance)){ dataX$significance = ifelse(dataX[,pvalue] < pthresh & abs(dataX[,foldchange]) > log2FCThresh , fcLabel ,"Not Sig" ) if(!is.null(pseudo)){ dataX$significance[is.na(pseudo)] <- "pseudo" colors <- c("black", "green", "red" ) }else{ colors <- c("black", "red") } } p = ggplot(dataX, aes_string(foldchange, "yvalue")) + geom_point(aes_string(col="significance")) if(!is.null(colors)){ p = p + scale_color_manual(values=colors) } p = p + ggplot2::geom_hline(yintercept=-log10(pthresh), col=4, lty=2) p = p + ggplot2::geom_vline(xintercept=c(-log2FCThresh,log2FCThresh), col=4,lty=2) filtres <- dataX %>% filter( UQ(rlang::sym(pvalue)) < pthresh & abs( UQ(sym(foldchange) )) > log2FCThresh ) p = p + geom_text_repel(data = filtres, aes_string(label=labels), size = repel.text.size, segment.size = repel.segment.size, segment.alpha = repel.segement.alpha) if(!is.null(main)){ p = p + ggtitle(main) } p = p + xlab(xlab) p = p + ylab(ylab) return(p) } addSpecialProteins <- function(p, dataX, special, foldchange = "log2FC", pvalue = "q.mod", labels = "names"){ negLog10 <- function(x){-log10(x)} dataX <- dataX %>% mutate_at(c("yvalue" = pvalue), negLog10) testx <- function(x, special){tmp <- x %in% special; x[!tmp] <- NA; as.character(x)} dataX <- dataX %>% mutate_at(c("names2" = labels) , funs(testx(., special))) xx <- dataX %>% filter_at("names2",all_vars(!is.na(.))) if(nrow(xx) == 0){ return(p) } p <- p + geom_point(data = xx, aes_string(foldchange, "yvalue"), color="cyan", shape=2) p <- p + geom_text_repel(data = dataX, aes_string(label="names2"), color="blue") p }
vpc_opt <- function(bins = 'jenks', n_bins = 'auto', bin_mid = 'mean', pred_corr = FALSE, pred_corr_lower_bnd = 0, pi = c(0.025, 0.975), ci = c(0.025, 0.975), lloq = NULL, uloq = NULL, rtte = FALSE, rtte_calc_diff = TRUE, events = NULL, kmmc = NULL, reverse_prob = FALSE, as_percentage = TRUE) { list(bins = bins, n_bins = n_bins, bin_mid = bin_mid, pred_corr = pred_corr, pred_corr_lower_bnd = pred_corr_lower_bnd, pi = pi, ci = ci, lloq = lloq, uloq = uloq, rtte = rtte, rtte_calc_diff = rtte_calc_diff, events = events, kmmc = kmmc, reverse_prob = reverse_prob, as_percentage = as_percentage, usr_call = names(match.call()[-1])) } get_psn_vpc_strat <- function(psn_cmd) { if (stringr::str_detect(psn_cmd, '-stratify_on')) { psn_cmd %>% {stringr::str_match(string = ., pattern = '-stratify_on=\\s*([^\\s]+)')[1, 2]} %>% stringr::str_split(',') %>% purrr::flatten_chr() } } psn_vpc_parser <- function(xpdb, psn_folder, psn_bins, opt, quiet) { psn_folder <- parse_title(string = psn_folder, xpdb = xpdb, quiet = quiet, problem = default_plot_problem(xpdb)) if (!dir.exists(psn_folder)) { stop('The `psn_folder`:', psn_folder, ' could not be found.', call. = FALSE) } msg('Importing PsN generated data', quiet) if (!dir.exists(file_path(psn_folder, 'm1')) & file.exists(file_path(psn_folder, 'm1.zip'))) { msg('Unziping PsN m1 folder', quiet) utils::unzip(zipfile = file_path(psn_folder, 'm1.zip'), exdir = file_path(psn_folder, '')) unzip <- TRUE } else { unzip <- FALSE } obs_data <- read_nm_tables(file = dir(file_path(psn_folder, 'm1'), pattern = 'original.npctab')[1], dir = file.path(psn_folder, 'm1'), quiet = TRUE) sim_data <- read_nm_tables(file = dir(file_path(psn_folder, 'm1'), pattern = 'simulation.1.npctab')[1], dir = file.path(psn_folder, 'm1'), quiet = TRUE) if (unzip) unlink(x = file_path(psn_folder, 'm1'), recursive = TRUE, force = TRUE) if (file.exists(file_path(psn_folder, 'version_and_option_info.txt'))) { psn_opt <- readr::read_lines(file = file_path(psn_folder, 'version_and_option_info.txt')) psn_cmd <- psn_opt[which(stringr::str_detect(psn_opt, '^Command:')) + 1] psn_opt <- dplyr::tibble(raw = psn_opt[stringr::str_detect(psn_opt,'^-')]) %>% tidyr::separate(col = 'raw', into = c('arg', 'value'), sep = '=') %>% dplyr::mutate(arg = stringr::str_replace(.$arg, '^-', '')) obs_cols <- list(id = 'ID', idv = psn_opt$value[psn_opt$arg == 'idv'], dv = psn_opt$value[psn_opt$arg == 'dv'], pred = 'PRED') sim_cols <- obs_cols if (!any(opt$usr_call == 'pred_corr')) { pred_corr <- as.logical(as.numeric(psn_opt$value[psn_opt$arg == 'predcorr'])) if (!is.na(pred_corr)) opt$pred_corr <- pred_corr } if (!any(opt$usr_call == 'lloq')) { lloq <- as.numeric(psn_opt$value[psn_opt$arg == 'lloq']) if (length(lloq) > 0 && !is.na(lloq)) opt$lloq <- lloq } if (!any(opt$usr_call == 'uloq')) { uloq <- as.numeric(psn_opt$value[psn_opt$arg == 'uloq']) if (length(uloq) > 0 && !is.na(uloq)) opt$uloq <- uloq } nsim <- ifelse(!stringr::str_detect(psn_cmd, '-sampl'), 'na', stringr::str_match(psn_cmd, '-sampl[a-z]+=\\s*([^\\s]+)')[1, 2]) } else { msg('PsN file `version_and_option_info.txt` not found. Using default options.', quiet) obs_cols <- c(id = 'ID', idv = 'TIME', dv = 'DV', pred = 'PRED') sim_cols <- obs_cols } if (file.exists(file_path(psn_folder, 'vpc_bins.txt')) && !any(opt$usr_call == 'bins') && psn_bins) { psn_bins <- readr::read_lines(file = file_path(psn_folder, 'vpc_bins.txt')) %>% .[nchar(.) > 0] %>% utils::tail(n = 1) %>% stringr::str_replace('^.+=', '') %>% {stringr::str_split(., ':')[[1]]} %>% {stringr::str_split(., ',')} %>% purrr::map(~as.numeric(.x)) if (!any(is.na(psn_bins[[1]]))) { opt$bins <- psn_bins[[1]] msg(c('Using PsN-defined binning', ifelse(length(unique(psn_bins)) == 1 , '', '. Only a single bin_array (i.e. first) can be used by xpose.')), quiet) } else { warning('Failed to read PsN-defined binning.', call. = FALSE) } } list(obs_data = obs_data, obs_cols = obs_cols, sim_data = sim_data, sim_cols = sim_cols, opt = opt, psn_folder = psn_folder, psn_cmd = psn_cmd, nsim = nsim) }
plot_ple <- function(object, target=NULL, type="waterfall", ...) { if (is.null(object$mu_train)){ stop("Check ple model fit, no training estimates available.") } mu_hat <- object$mu_train family <- object$family if (is.null(mu_hat$Subgrps)) { mu_hat$Subgrps <- rep("Overall", dim(mu_hat)[1]) } if (is.null(target)) { ple_name <- colnames(mu_hat)[grepl("diff", colnames(mu_hat))] ple_name <- ple_name[1] mu_hat$PLE <- mu_hat[[ple_name]] } if (!is.null(target)) { ple_name <- target mu_hat$PLE <- mu_hat[[target]] } pieces <- unlist(strsplit(ple_name, "_")) if (pieces[1] %in% c("diff")) { if (family=="gaussian") { ple.label <- paste("E(Y|X,A=", pieces[2], ")-", "E(Y|X,A=", pieces[3], ")", sep="") } if (family=="binomial") { ple.label <- paste("P(Y=1|X,A=", pieces[2], ")-", "P(Y=1|X,A=", pieces[3], ")", sep="") } if (family=="survival") { if (object$ple=="ranger") { treetype <- object$treetype ple.label <- paste("RMST(X,A=", pieces[2], ")-", "RMST(X,A=", pieces[3], ")", sep="") } if (object$ple %in% c("linear", "glmnet")) { ple.label <- paste("logHR(X,A=", pieces[2], ")-", "logHR(X,A=", pieces[3], ")", sep="") } } } if (pieces[1] != "diff") { ple.label <- ple_name } y.label <- paste("Estimates:", ple.label) x.label <- y.label mu_hat$id = 1:nrow(mu_hat) if (type=="waterfall") { res = ggplot2::ggplot(mu_hat, ggplot2::aes(x=reorder(id, PLE), y=PLE, fill=Subgrps)) + ggplot2::geom_bar(stat="identity") + ggplot2::ggtitle( paste("Waterfall Plot: Patient-level Estimates,", ple.label)) + ggplot2::ylab(y.label) + ggplot2::xlab("")+ ggplot2::theme_bw() + ggplot2::theme(axis.line.x = ggplot2::element_blank(), axis.text.x = ggplot2::element_blank(), axis.ticks.x = ggplot2::element_blank(), axis.title.y = ggplot2::element_text(face="bold",angle=90)) } if (type=="density") { x.label <- y.label res = ggplot2::ggplot(mu_hat, ggplot2::aes(PLE, fill=Subgrps)) + ggplot2::geom_density(alpha=0.30) + ggplot2::xlab(x.label) + ggplot2::ggtitle(paste("Density Plot: Patient-Level Estimates,", ple.label))+ ggplot2::theme(plot.title=ggplot2::element_text(size=16,face="bold"), axis.text.y=ggplot2::element_blank(), axis.ticks.y=ggplot2::element_blank(), axis.text.x=ggplot2::element_text(face="bold"), axis.title=ggplot2::element_text(size=12,face="bold"))+ ggplot2::theme_bw() } return(res) }
"polls_2008"
Randomization.Coc <- do (5000) * diff( prop( response ~ shuffle(treatment), data = Cocaine ) ) head(Randomization.Coc)
ac <- function(x) { class(x) <- c("nested_list", "character") x } test_that("empty", { empty <- "{empty}" %>% ac() expect_equal(nested_list(c()), empty) expect_equal(nested_list(list()), empty) expect_equal(nested_list(NULL), empty) expect_equal(nested_list(""), ac("")) x <- list(list(list())) comp <- "1. 1. {empty}" %>% ac() expect_equal(nested_list(x), comp) }) test_that("unnamed vectors", { x <- "A" comp <- "A" %>% ac() expect_equal(nested_list(x), comp) x <- 1:3 comp <- "1. 1\n2. 2\n3. 3" %>% ac() expect_equal(nested_list(x), comp) x <- 1:3 comp <- "1. `1`\n2. `2`\n3. `3`" %>% ac() expect_equal(nested_list(x, quote = "`"), comp) }) test_that("unnamed vectors", { x <- c(a = "A", b = "B") comp <- "* a: A\n* b: B" %>% ac() expect_equal(nested_list(x), comp) x <- c(a = "A", b = "B") comp <- ">* a: A\n>* b: B" %>% ac() expect_equal(nested_list(x, pre = ">"), comp) }) test_that("unnamed lists", { x <- list(list()) comp <- "1. {empty}" %>% ac() expect_equal(nested_list(x), comp) x <- list(c()) comp <- "1. {empty}" %>% ac() expect_equal(nested_list(x), comp) x <- list("A", "B") comp <- "1. A\n2. B" %>% ac() expect_equal(nested_list(x), comp) x <- list("A", "B") comp <- " 1. A\n 2. B" %>% ac() expect_equal(nested_list(x, pre = " "), comp) }) test_that("named lists", { x <- list(a = list()) comp <- "* a: {empty}" %>% ac() expect_equal(nested_list(x), comp) x <- list(a = c()) comp <- "* a: {empty}" %>% ac() expect_equal(nested_list(x), comp) x <- list(a = 1) comp <- "* a: 1" %>% ac() expect_equal(nested_list(x), comp) x <- list(a = 1) comp <- " * a: 1" %>% ac() expect_equal(nested_list(x, pre = " "), comp) x <- list(a = 1, 2) comp <- "* a: 1\n* {2}: 2" %>% ac() expect_equal(nested_list(x), comp) }) test_that("nested lists", { x <- list(list("A", "B"), list("C", "D")) comp <- paste0("1. \n 1. A\n 2. B\n", "2. \n 1. C\n 2. D") %>% ac() expect_equal(nested_list(x), comp) x <- list(x1 = list("A", "B"), x2 = list("C", "D")) comp <- paste0("* x1: \n 1. A\n 2. B\n", "* x2: \n 1. C\n 2. D") %>% ac() expect_equal(nested_list(x), comp) x <- list(x1 = list(a = "A", b = "B"), x2 = list()) comp <- paste0("* x1: \n * a: A\n * b: B\n", "* x2: {empty}") %>% ac() expect_equal(nested_list(x), comp) }) test_that("code", { f1 <- function(a = 1) { a + 10 } x <- list( f1 = f1, f2 = function() { "hi"} ) comp <- "* f1: ```r function (a = 1) { a + 10 } ``` * f2: ```r function () { \"hi\" } ```" %>% ac() expect_equal(nested_list(x), comp) comp2 <- strsplit(comp, "\n")[[1]] %>% paste0(">", .) %>% paste(collapse = "\n") %>% ac() expect_equal(nested_list(x, pre = ">"), comp2) }) test_that("example", { x <- list( a = list(a1 = "Named", a2 = "List"), b = list("Unnamed", "List"), c = c(c1 = "Named", c2 = "Vector"), d = c("Unnamed", "Vector"), e = list(e1 = list("A", "B", "C"), e2 = list(a = "A", b = "B"), e3 = c("A", "B", "C"), e4 = 100), f = "not a list or vector" ) comp <- "* a: * a1: Named * a2: List * b: 1. Unnamed 2. List * c: * c1: Named * c2: Vector * d: 1. Unnamed 2. Vector * e: * e1: 1. A 2. B 3. C * e2: * a: A * b: B * e3: 1. A 2. B 3. C * e4: 100 * f: not a list or vector" %>% ac() expect_equal(nested_list(x), comp) })
first_dimensions_match = function(e1, e2) { d1 = dim(e1) d2 = dim(e2) n = min(length(d1), length(d2)) all.equal(d1[n], d2[n]) } Ops.stars <- function(e1, e2) { if (inherits(e1, "stars") && inherits(e2, "stars") && !first_dimensions_match(e1, e2)) stop("(first) dimensions of e1 and e2 do not match") ret = if (missing(e2)) lapply(e1, .Generic) else if (!inherits(e2, "stars")) lapply(e1, .Generic, e2 = e2) else { if (!is.null(dim(e1)) && !isTRUE(all.equal(dim(e1), dim(e2), check.attributes = FALSE))) { stopifnot(length(e2) == 1) lapply(e1, .Generic, e2 = as.vector(e2[[1]])) } else mapply(.Generic, e1, e2, SIMPLIFY = FALSE) } if (any(sapply(ret, function(x) is.null(dim(x))))) ret = lapply(ret, function(x) { dim(x) = dim(e1); x }) if (! inherits(e1, "stars")) setNames(st_as_stars(ret, dimensions = st_dimensions(e2)), names(e2)) else st_as_stars(ret, dimensions = st_dimensions(e1)) } Math.stars = function(x, ...) { ret = lapply(x, .Generic, ...) st_as_stars(ret, dimensions = st_dimensions(x)) } Ops.stars_proxy <- function(e1, e2) { if (!inherits(e1, "stars_proxy")) stop("first argument in expression needs to be the stars_proxy object") if (missing(e2)) collect(e1, match.call(), .Generic, "e1", env = environment()) else collect(e1, match.call(), .Generic, c("e1", "e2"), env = environment()) } Math.stars_proxy = function(x, ...) { collect(x, match.call(), .Generic, env = environment()) } has_single_arg = function(fun, dots) { sum(!(names(as.list(args(fun))) %in% c("", "...", names(dots)))) <= 1 } can_single_arg = function(fun) { !inherits(try(fun(1:10), silent = TRUE), "try-error") } st_apply = function(X, MARGIN, FUN, ...) UseMethod("st_apply") st_apply.stars = function(X, MARGIN, FUN, ..., CLUSTER = NULL, PROGRESS = FALSE, FUTURE = FALSE, rename = TRUE, .fname, single_arg = has_single_arg(FUN, list(...)) || can_single_arg(FUN), keep = FALSE) { if (missing(.fname)) .fname <- paste(deparse(substitute(FUN), 50), collapse = "\n") if (is.character(MARGIN)) MARGIN = match(MARGIN, names(dim(X))) dX = dim(X)[MARGIN] if (PROGRESS && !requireNamespace("pbapply", quietly = TRUE)) stop("package pbapply required, please install it first") if (FUTURE && !requireNamespace("future.apply", quietly = TRUE)) stop("package future.apply required, please install it first") fn = function(y, ...) { ret = if (PROGRESS) pbapply::pbapply(X = y, MARGIN = MARGIN, FUN = FUN, ..., cl = CLUSTER) else { if (is.null(CLUSTER) && !FUTURE) apply(X = y, MARGIN = MARGIN, FUN = FUN, ...) else if (FUTURE) { oopts = options(future.globals.maxSize = +Inf) on.exit(options(oopts)) future.apply::future_apply(y, MARGIN = MARGIN, FUN = FUN, ...) } else parallel::parApply(CLUSTER, X = y, MARGIN = MARGIN, FUN = FUN, ...) } if (is.array(ret)) ret else array(ret, dX) } no_margin = setdiff(seq_along(dim(X)), MARGIN) ret = if (single_arg) lapply(X, fn, ...) else lapply(X, function(a) do.call(FUN, setNames(append(asplit(a, no_margin), list(...)), NULL))) dim_ret = dim(ret[[1]]) ret = if (length(dim_ret) == length(MARGIN)) { if (length(ret) == 1 && rename && make.names(.fname) == .fname) ret = setNames(ret, .fname) st_stars(ret, st_dimensions(X)[MARGIN]) } else { dim_no_margin = dim(X)[-MARGIN] if (length(no_margin) > 1 && dim(ret[[1]])[1] == prod(dim_no_margin)) { r = attr(st_dimensions(X), "raster") new_dim = c(dim_no_margin, dim(ret[[1]])[-1]) for (i in seq_along(ret)) dim(ret[[i]]) = new_dim dims = st_dimensions(X)[c(no_margin, MARGIN)] } else { orig = st_dimensions(X)[MARGIN] r = attr(orig, "raster") dims = if (keep) { c(st_dimensions(X)[no_margin], orig) } else { dim1 = if (!is.null(dimnames(ret[[1]])[[1]])) create_dimension(values = dimnames(ret[[1]])[[1]]) else create_dimension(to = dim_ret[1]) c(structure(list(dim1), names = .fname), orig) } } st_stars(ret, dimensions = create_dimensions(dims, r)) } for (i in seq_along(ret)) names(dim(ret[[i]])) = names(st_dimensions(ret)) ret } if (!isGeneric("%in%")) setGeneric("%in%", function(x, table) standardGeneric("%in%")) setMethod("%in%", signature(x = "stars"), function(x, table) { st_stars(lapply(x, function(y) structure(y %in% table, dim = dim(y))), st_dimensions(x)) } )
helper_scale_nmf_matrix <- function(Signature, Exposure, K, handle_cn = FALSE) { W <- Signature H <- Exposure if (handle_cn) { has_cn <- grepl("^CN[^C]", rownames(Signature)) | startsWith(rownames(Signature), "copynumber") if (any(has_cn)) { W <- W[has_cn, ] } } for (j in seq_len(K)) { Signature[, j] <- Signature[, j] * rowSums(H)[j] Exposure[j, ] <- Exposure[j, ] * colSums(W)[j] } return(list(Signature = Signature, Exposure = Exposure)) }
carray <- function(array, margin = 3L, rows = TRUE, columns = TRUE) { if (length(dim(array)) != 3L) stop("Argument 'array' must be a three-way array.") if (length(margin) != 1L) { warning("Only the first element of argument 'margin' is used.") margin <- margin[1L] } ind <- seq_len(3L) ind_rm <- ind[-margin] row_ind <- ind_rm[1L] col_ind <- ind_rm[2L] dims <- dim(array) dims_rm <- dims[-margin] row_dim <- dims_rm[1L] col_dim <- dims_rm[2L] if (rows) { rmns <- apply(array, sort(c(row_ind, margin)), mean) rmns <- rep(rmns, each = col_dim) rmns <- array(rmns, dim = c(col_dim, dims[-col_ind])) perm <- switch(margin, c(2:3, 1), c(2, 3, 1), c(2:1, 3)) rmns <- aperm(rmns, perm) array <- array - rmns } if (columns) { cmns <- apply(array, sort(c(col_ind, margin)), mean) cmns <- rep(cmns, each = row_dim) cmns <- array(cmns, dim = c(row_dim, dims[-row_ind])) perm <- switch(margin, c(2, 1, 3), 1:3, 1:3) cmns <- aperm(cmns, perm) array <- array - cmns } return(array) }
svg.triangle <- function(corners, col='blue', seg=1, emissive=rgb(0.03, 0.15, 0.21), opacity = 1, name = 'triangle', ontop = FALSE, return.shape = FALSE, plot = TRUE){ if('svg' == getOption("svgviewr_glo_type")) stop("'webgl' mode must be used to enable mesh drawing. This can be done by adding the following parameter to the svg.new() function call: mode='webgl'. This will become the default mode by version 1.4.") if(seg > 1){ edge1_len <- dppt_svg(corners[1,], corners[2,]) edge1_vec <- uvector_svg(corners[1,]-corners[2,]) edge1_spa <- edge1_len / seg edge2_len <- dppt_svg(corners[2,], corners[3,]) edge2_vec <- uvector_svg(corners[3,]-corners[2,]) edge2_spa <- edge2_len / seg edge3_len <- dppt_svg(corners[1,], corners[3,]) edge3_vec <- uvector_svg(corners[3,]-corners[1,]) edge3_spa <- edge3_len / seg edge1_pts <- edge2_pts <- edge3_pts <- matrix(NA, seg-1, 3) for(i in 1:(seg-1)){ edge1_pts[i, ] <- corners[2,] + i*edge1_spa*edge1_vec edge2_pts[i, ] <- corners[2,] + i*edge2_spa*edge2_vec edge3_pts[i, ] <- corners[1,] + i*edge3_spa*edge3_vec } vertices <- rbind(corners[2,], edge1_pts[1,], edge2_pts[1,]) if(seg > 2){ for(i in 2:(seg-1)){ int_len <- dppt_svg(edge1_pts[i, ], edge2_pts[i, ]) int_vec <- uvector_svg(edge2_pts[i, ]-edge1_pts[i, ]) int_spa <- int_len / i vertices <- rbind(vertices, edge1_pts[i, ]) for(j in 1:(i-1)){ vertices <- rbind(vertices, edge1_pts[i, ] + j*int_spa*int_vec) } vertices <- rbind(vertices, edge2_pts[i, ]) } }else{ } vertices <- rbind(vertices, corners[1,], edge3_pts, corners[3,]) faces <- matrix(NA, 0, 3) start_face <- 0 for(i in 1:max(2, (seg))){ for(j in 1:((i-1)*2+1)){ if(j == 1 || j %% 2 == 1){ faces <- rbind(faces, c(start_face, start_face + i, start_face + i + 1)) start_face <- start_face + 1 }else{ faces <- rbind(faces, c(start_face, start_face - 1, start_face + i)) } } } }else{ vertices <- corners faces <- c(0,1,2) } if(!plot) return(list('vertices'=vertices, 'faces'=faces)) if('svg' == getOption("svgviewr_glo_type")){ if(is.vector(faces)) faces <- matrix(faces, 1, 3) svg.points(vertices[1,], col='red') svg.points(vertices[2:(nrow(vertices)-1), ]) svg.points(vertices[nrow(vertices),], col='blue') svg.text(vertices, labels=0:(nrow(vertices)-1), font.size=0.1) if(!is.null(faces)){ faces <- cbind(faces, faces[,1]) svg.pathsC(lapply(seq_len(nrow(faces)), function(i) faces[i,]+1), col='black', opacity.fill=0.2) } }else{ env <- as.environment(getOption("svgviewr_glo_env")) add_at <- length(svgviewr_env$svg$mesh)+1 svgviewr_env$svg$mesh[[add_at]] <- list() svgviewr_env$svg$mesh[[add_at]]$name <- name svgviewr_env$svg$mesh[[add_at]]$vertices <- t(vertices) svgviewr_env$svg$mesh[[add_at]]$faces <- t(faces) svgviewr_env$svg$mesh[[add_at]]$col <- setNames(webColor(col), NULL) svgviewr_env$svg$mesh[[add_at]]$opacity <- setNames(opacity, NULL) svgviewr_env$svg$mesh[[add_at]]$emissive <- setNames(webColor(emissive), NULL) svgviewr_env$svg$mesh[[add_at]]$computeVN <- TRUE svgviewr_env$svg$mesh[[add_at]]$parseModel <- FALSE svgviewr_env$svg$mesh[[add_at]]$depthTest <- !ontop svgviewr_env$ref$names <- c(svgviewr_env$ref$names, name) svgviewr_env$ref$num <- c(svgviewr_env$ref$num, add_at) svgviewr_env$ref$type <- c(svgviewr_env$ref$type, 'mesh') if(!is.null(corners)){ obj_ranges <- apply(corners, 2, 'range', na.rm=TRUE) }else{ obj_ranges <- apply(vertices, 2, 'range', na.rm=TRUE) } corners <- lim2corners(obj_ranges) svgviewr_env$svg$mesh[[add_at]][['lim']] <- obj_ranges svgviewr_env$svg$mesh[[add_at]][['corners']] <- corners } if(return.shape){ return(list('vertices'=vertices, 'faces'=faces)) }else{ return(NULL) } }
staple_bin_img = function( x, set_orient = FALSE, verbose = TRUE, ...) { if (verbose) { message("Reshaping images") } x = reshape_img(x = x, set_orient = set_orient, verbose = verbose) first_image = x$first_image all_nifti = x$all_nifti x = x$x if (verbose) { message("Running STAPLE for binary matrix") } res = staple_bin_mat(x, verbose = verbose, ...) if (verbose) { message("Creating output probability image/array") } outimg = array(res$probability, dim = dim(first_image)) if (all_nifti) { hdr = RNifti::niftiHeader(first_image) hdr$cal_max = 1 hdr$cal_min = 0 hdr$datatype = 16 hdr$bitpix = 32 outimg = RNifti::updateNifti( outimg, template = hdr) } if (verbose) { message("Creating output prior image/array") } priorimg = array(res$prior, dim = dim(first_image)) if (all_nifti) { priorimg = RNifti::updateNifti( priorimg, template = hdr) } if (verbose) { message("Creating label image (probability >= 0.5)") } label = array(res$label, dim = dim(first_image)) if (all_nifti) { hdr$datatype = 2 hdr$bitpix = 8 label = RNifti::updateNifti( label, template = hdr) } res$probability = outimg res$label = label res$prior = priorimg rm(list = c("outimg", "priorimg", "label")) gc() return(res) } staple_multi_img = function( x, set_orient = FALSE, verbose = TRUE, ...) { if (verbose) { message("Reshaping images") } x = reshape_img(x = x, set_orient = set_orient, verbose = verbose) first_image = x$first_image all_nifti = x$all_nifti x = x$x res = staple_multi_mat(x, ...) if (all_nifti) { hdr = RNifti::niftiHeader(first_image) hdr$cal_max = 1 hdr$cal_min = 0 hdr$datatype = 16 hdr$bitpix = 32 } if (verbose) { message("Creating output probability images/arrays") } n_level = ncol(res$probability) outimg = lapply(seq(n_level), function(ind) { probability = res$probability[, ind] outimg = array( probability, dim = dim(first_image)) if (all_nifti) { outimg = RNifti::updateNifti( outimg, template = hdr) } return(outimg) }) names(outimg) = colnames(res$probability) res$probability = outimg rm(list = "outimg"); gc() priorimg = lapply(seq(n_level), function(ind) { probability = res$prior[, ind] outimg = array( probability, dim = dim(first_image)) if (all_nifti) { outimg = RNifti::updateNifti( outimg, template = hdr) } return(outimg) }) names(priorimg) = colnames(res$prior) res$prior = priorimg rm(list = "priorimg"); gc() if (verbose) { message("Creating output label image/array") } label = array( res$label, dim = dim(first_image)) if (all_nifti) { hdr$datatype = 8 hdr$bitpix = 32 label = RNifti::updateNifti( label, template = hdr) } res$label = label return(res) }
graphrate.fun <- function(objres=NULL, fittedlambda=NULL, emplambda=NULL, t=NULL, lint=NULL,typeI='Disjoint', tit='',scax=NULL,scay=NULL, xlegend='topleft',histWgraph=TRUE) { if (is.null(objres)&(is.null(fittedlambda)|is.null(t)|is.null(emplambda)|is.null(lint))) stop ('Argument objres or vector of arguments (fittedlambda, emplambda, t) must be specified') if (is.null(objres)=='FALSE') { fittedlambda<-objres$fittedlambda emplambda<-objres$emplambda typeI<-objres$typeI t<-objres$mlePP@t if (typeI=='Disjoint') t<-t[objres$pm] lint<-objres$lint } if (histWgraph==TRUE) dev.new(record=TRUE) par(mfrow=c(1,1)) if (is.null(scay)==TRUE) { yminn<-min(emplambda,fittedlambda,na.rm=TRUE) ymaxx<-max(emplambda,fittedlambda,na.rm=TRUE) scay<-c(yminn,ymaxx) } if (is.null(scax)==TRUE) scax<-c(min(t, na.rm=TRUE), max(t, na.rm=TRUE)) plot(t, emplambda, cex = 0.5, xlab = "time", ylab = "empirical and fitted occurrence rates", ylim=scay,xlim=scax, type = "l",lty=1) lines(t, fittedlambda, col='red') legend(x=xlegend, legend=c('Empirical rate', 'Fitted rate'), col=c('black', 'red'), lty=c(1,1), cex=0.8) title(sub=paste('Rates calculated in', typeI, 'intervals of length', lint, sep=' '), cex=0.7) mtext(paste(" Model: ", tit, sep=''), outer = TRUE, line = -2,cex=1) return(NULL) }
resolveTies <- function(data, contestants, column) { numJudges <- ncol(data) majority <- ifelse(c(numJudges/2) %% 1 == 0,numJudges/2 + 1, ceiling(numJudges/2)) sumscoreThreshold <- column nextScore <- column+1 sumscores <- apply(data[contestants,], 1, function(a){ sum(a[which(a <= sumscoreThreshold)]) }) winner <- contestants[which.min(sumscores)] winnerScore <- sumscores[which(contestants == winner)] tiedwinner <- any(winnerScore == sumscores[ which(contestants %in% setdiff(contestants,winner))]) if (!tiedwinner) { return(list(winnerfound="sumscore", winner=winner)) } else if(tiedwinner) { if (length(sumscores[which(as.vector(table(sumscores)) > 1)]) == 1){ while(tiedwinner & nextScore <= nrow(data)) { nscores <- apply(data[contestants,], 1, function(a){ length(which(a == nextScore)) }) winner <- contestants[which.max(nscores)] winnerScore <- nscores[which(contestants == winner)] tiedwinner <- any(winnerScore == nscores[ which(contestants %in% setdiff(contestants,winner))]) if (!tiedwinner) { return(list(winnerfound="nextscore", winner=winner)) } else { nextScore <- nextScore + 1 } } if (nextScore > nrow(data)) { reducedData <- apply(data[contestants,], 2, function(a) {order(a)}) reducedRanking <- rankContestants(reducedData) winner <- contestants[which(reducedRanking ==1)] if(length(winner) == 1) return(list(winnerfound="recursivecontests", winner=winner)) else{ return(list(winnerfound = "nowinner", winner = winner)) } } } else if(length(sumscores[which(as.vector(table(sumscores)) > 1)]) > 1){ tiebreakContestants = contestants[which(sumscores == min(sumscores))] reducedData <- apply(data[tiebreakContestants,], 2, function(a) {order(a)}) reducedRanking = rankContestants(reducedData) winner = tiebreakContestants[order(reducedRanking, decreasing = T)] return(list(winnerfound="sumscoretie", winner=winner)) } } }
NULL .gtoolbar.guiWidgetsToolkittcltk <- function(toolkit, toolbar.list=list(), style = c("both","icons","text","both-horiz"), container = NULL, ... ) { GToolBar$new(toolkit, toolbar.list=toolbar.list, style=style, container=container ,...) } GToolBar <- setRefClass("GToolBar", contains="GBoxContainer", fields=list( toolbar_list="list", style="character" ), methods=list( initialize=function(toolkit=NULL, toolbar.list=list(), style = c("both", "icons", "text", "both-horiz"), container = NULL, ...) { if(!is(container, "GWindow")) { message(gettext("gtoolbar requires a gwindow instance as a parent container")) return() } widget <<- ggroup(horizontal=TRUE, spacing=0, expand=TRUE, fill="x", container=container$toolbar_area) initFields(block=widget, toolbar_list=list(), style=style, horizontal=TRUE ) set_spacing(0) add_toolbar_items(toolbar.list) callSuper(toolkit) }, get_widget=function() { widget$widget }, add_toolbar_items=function(items) { "Map a toolbar list, a named list of gaction items or gsepartor items" sapply(items, function(item) { if(is(item, "GAction")) add_gaction_toolitem(item) else if(is(item, "GSeparator")) add_gseparator_toolitem() }) widget$show() toolbar_list <<- gWidgets2:::merge.list(toolbar_list, items) }, add_gaction_toolitem=function(obj) { "Helper to add a gaction item" btn <- gbutton(action=obj, container=widget, expand=FALSE) style_map <- list("both"="center", "icons"="image", "text"="text", "both-horiz"="left") tkconfigure(btn$widget, compound=style_map[[style]], style="Toolbutton") }, add_gseparator_toolitem=function() { "Helper to add a separator" gseparator(horizontal=FALSE, container=widget) }, clear_toolbar=function() { "Clear toolbar items" widget$remove_children() }, get_value=function( ...) { toolbar_list }, set_value=function(value, ...) { "Clear toolbar, add anew" clear_toolbar() add_toolbar_items(value) } ))
session <- RevoIOQ:::saveRUnitSession(packages="tools") graphicsDevice.stress.png <- function() { png(filename = "testplot.png") plot(1:10) dev.off() checkTrue(file.exists("testplot.png")) unlink("testplot.png") } graphicsDevice.stress.jpg <- function() { jpeg(filename = "testplot.jpg") plot(1:10) dev.off() checkTrue(file.exists("testplot.jpg")) unlink("testplot.jpg") } graphicsDevice.stress.svg <- function() { svg(filename = "testplot.svg") plot(1:10) dev.off() checkTrue(file.exists("testplot.svg")) unlink("testplot.svg") } graphicsDevice.stress.cairo_pdf <- function() { cairo_pdf(filename = "testplot.pdf") plot(1:10) dev.off() checkTrue(file.exists("testplot.pdf")) unlink("testplot.pdf") } graphicsDevice.stress.cairo_ps <- function() { cairo_ps(filename = "testplot.ps") plot(1:10) dev.off() checkTrue(file.exists("testplot.ps")) unlink("testplot.ps") } "test.graphicsDevices.stress" <- function() { res <- try(graphicsDevice.stress.png()) checkTrue(!is(res, "try-error"), msg="PNG Graphics Device stress test failed") res <- try(graphicsDevice.stress.jpg()) checkTrue(!is(res, "try-error"), msg="JPG Graphics Device stress test failed") res <- try(graphicsDevice.stress.svg()) checkTrue(!is(res, "try-error"), msg="SVG Graphics Device stress test failed") res <- try(graphicsDevice.stress.cairo_pdf()) checkTrue(!is(res, "try-error"), msg="Cairo PDF Graphics Device stress test failed") res <- try(graphicsDevice.stress.cairo_ps()) checkTrue(!is(res, "try-error"), msg="Cairo PS Graphics Device stress test failed") } "testzzz.restore.session" <- function() { checkTrue(RevoIOQ:::restoreRUnitSession(session), msg="Session restoration failed") }
.onAttach <- function(...) { if (!isTRUE(getOption("syberia.silent"))) { packageStartupMessage(paste0("Loading ", crayon::red("Syberia"), "...\n")) } if (isTRUE(getOption("syberia.autoload_bettertrace", TRUE)) && !identical(Sys.getenv("CI"), "TRUE")) { if (!is.element("devtools", utils::installed.packages()[, 1])) { packageStartupMessage(crayon::yellow(" ...Installing devtools\n")) utils::install.packages("devtools") } if (!requireNamespace("bettertrace", quietly = TRUE)) { packageStartupMessage(crayon::yellow(" ...Installing github.com/robertzk/bettertrace\n")) devtools::install_github("robertzk/bettertrace") } library(bettertrace) } makeActiveBinding("project", env = globalenv(), function() getFromNamespace("active_project", "syberia")()) makeActiveBinding("resource", env = globalenv(), function() getFromNamespace("active_project", "syberia")()$resource) try({ syberia_engine() packageStartupMessage(crayon::yellow( "Loaded syberia project ", sQuote(active_project()$root()), "...\n" )) }, silent = TRUE) } .onDetach <- function(...) { try(silent = TRUE, detach("syberia:shims")) } .onUnload <- function(...) { try(silent = TRUE, detach("syberia:shims")) }
get_all_node_depths = function(tree, as_edge_count=FALSE){ Ntips = length(tree$tip.label) Nnodes = tree$Nnode; depths = get_mean_depth_per_node_CPP( Ntips = Ntips, Nnodes = Nnodes, Nedges = nrow(tree$edge), tree_edge = as.vector(t(tree$edge))-1, edge_length = (if(as_edge_count || is.null(tree$edge.length)) numeric() else tree$edge.length)); return(depths); }
tidy_name <- function(x) { new_spec_names <- unlist(lapply(x, function(y) { split_str <- unlist(stringr::str_split(y, "_")) return(paste0( stringr::str_to_upper(stringr::str_sub(split_str[1], 1, 1)), split_str[2], collapse = "" )) })) return(new_spec_names) }
context("Testing find_write_match()") uid <- as.character(random_hash()) data_product1 <- file.path("data_product", "write", "wildcard", uid, "1") data_product2 <- file.path("data_product", "write", "wildcard", uid, "1", "2") coderun_description <- "Register a file in the pipeline" dataproduct_description <- "A csv file" namespace1 <- "username" endpoint <- Sys.getenv("FDP_endpoint") config_file <- file.path(tempdir(), "config_files", "outputglobbing", paste0("config_", uid, ".yaml")) create_config(path = config_file, description = coderun_description, input_namespace = namespace1, output_namespace = namespace1) add_write(path = config_file, data_product = data_product1, description = dataproduct_description, file_type = "csv") add_write(path = config_file, data_product = data_product2, description = dataproduct_description, file_type = "csv") fair_run(path = config_file, skip = TRUE) config <- file.path(Sys.getenv("FDP_CONFIG_DIR"), "config.yaml") script <- file.path(Sys.getenv("FDP_CONFIG_DIR"), "script.sh") handle <- initialise(config, script) test_that("data products recorded in working config", { writes <- handle$yaml$write testthat::expect_equal(writes[[1]]$data_product, data_product1) testthat::expect_equal(writes[[2]]$data_product, data_product2) testthat::expect_equal(writes[[1]]$use$version, "0.0.1") testthat::expect_equal(writes[[2]]$use$version, "0.0.1") }) path1 <- link_write(handle, data_product1) uid1 <- paste0(uid, "_1") df1 <- data.frame(a = uid1, b = uid1) write.csv(df1, path1) path2 <- link_write(handle, data_product2) uid2 <- paste0(uid, "_2") df2 <- data.frame(a = uid2, b = uid2) write.csv(df2, path2) finalise(handle) data_product3 <- file.path("data_product", "write", "wildcard", uid, "*") use_version <- "${{MAJOR}}" config_file <- file.path(tempdir(), "config_files", "outputglobbing", paste0("config2_", uid, ".yaml")) create_config(path = config_file, description = coderun_description, input_namespace = namespace1, output_namespace = namespace1) add_write(path = config_file, data_product = data_product3, description = dataproduct_description, file_type = "csv", use_version = use_version) fair_run(path = config_file, skip = TRUE) config <- file.path(Sys.getenv("FDP_CONFIG_DIR"), "config.yaml") script <- file.path(Sys.getenv("FDP_CONFIG_DIR"), "script.sh") handle <- initialise(config, script) test_that("data products recorded in working config", { writes <- handle$yaml$write testthat::expect_equal(writes[[1]]$data_product, data_product3) testthat::expect_equal(writes[[2]]$data_product, data_product2) testthat::expect_equal(writes[[3]]$data_product, data_product1) testthat::expect_equal(writes[[1]]$use$version, "1.0.0") testthat::expect_equal(writes[[2]]$use$version, "1.0.0") testthat::expect_equal(writes[[3]]$use$version, "1.0.0") aliases <- find_write_match(handle, data_product3) testthat::expect_true(all(aliases %in% c(data_product1, data_product2, data_product3))) }) data_product4 <- file.path(dirname(data_product3), "new") path4 <- link_write(handle = handle, data_product = data_product4) uid4 <- paste0(uid, "_1") df4 <- data.frame(a = uid4, b = uid4) write.csv(df4, path4) path5 <- link_write(handle = handle, data_product = data_product2) uid5 <- paste0(uid, "_1") df5 <- data.frame(a = uid5, b = uid5) write.csv(df5, path5) test_that("data products recorded in working config", { outputs <- handle$outputs testthat::expect_equal(outputs$data_product[1], data_product4) testthat::expect_equal(outputs$data_product[2], data_product2) testthat::expect_equal(outputs$use_version[1], "1.0.0") testthat::expect_equal(outputs$use_version[2], "1.0.0") })
getsizeratios <- function (bycx, ac, method = "fast") { K1 = nrow(ac) nc = length(bycx) if (method == "fast") { bwx = bycx %*% t(ac) %*% solve(ac %*% t(ac)) sizeratios = rep(0, K1) for (i in 1:K1) { divisor = sqrt(1 + sum(bwx[1:i]^2)) betachat = bycx - bwx[, 1:i, drop = FALSE] %*% ac[1:i, , drop = FALSE] scaledbetac = sqrt(nc/(nc - i)) * betachat/divisor sizeratios[i] = median(abs(as.vector(ac[i, ])/as.vector(scaledbetac))) } return(sizeratios) } else if (method == "leave1out") { bycx = as.vector(bycx) A = Aj = ajtB = bwx = t(bycx) %*% t(ac) B = Bj = ac %*% t(ac) sizeratios = rep(0, K1) scaledbetac = rep(0, nc) temp = .C("getsizeratios", as.double(A), as.double(B), as.double(Aj), as.double(Bj), as.double(bycx), as.double(ac), as.double(ajtB), as.double(sizeratios), as.double(scaledbetac), as.double(bwx), as.integer(K1), as.integer(nc)) return(temp[[8]]) } else return(0) }
library(biostat3) library(dplyr) library(rstpm2) head(brv) brv %>% select(couple, id, sex, doe, dosp, dox, fail) %>% filter(couple<=5) %>% arrange(couple, id) brv <- mutate(brv, age_entry = as.numeric(doe - dob) / 365.24, att_age = as.numeric(dox - dob) / 365.24, t_at_risk = att_age - age_entry) survRate(Surv(age_entry, att_age, fail) ~ sex, data=brv) poisson22b <- glm( fail ~ sex + offset( log( t_at_risk) ), family=poisson, data=brv) summary( poisson22b ) biostat3::eform(poisson22b) select(brv, sex, age_entry) %>% group_by(sex) %>% summarise(meanAgeAtEntry = mean(age_entry)) brv2 <- mutate(brv, id=NULL, y_before_sp_dth = as.numeric(doe -dosp) / 365.24, y_after_sp_dth = as.numeric(dox - dosp) / 365.24) brvSplit <- survSplit(brv2, cut = 0, end="y_after_sp_dth", start="y_before_sp_dth", id="id",event="fail") brvSplit <- mutate(brvSplit, t_sp_at_risk = y_after_sp_dth - y_before_sp_dth, brv = ifelse(y_after_sp_dth > 0, 1, 0)) brvSplit %>% select(couple, id, sex, doe, dosp, dox, fail, y_before_sp_dth, y_after_sp_dth, t_sp_at_risk) %>% filter(couple<=5) %>% arrange(couple, id) poisson22d <- glm( fail ~ brv + offset( log(t_sp_at_risk) ), family=poisson, data=brvSplit) summary(poisson22d) biostat3::eform(poisson22d) poisson22e1 <- glm( fail ~ brv + offset( log(t_sp_at_risk) ), family=poisson, data=filter(brvSplit, sex==1)) summary(poisson22e1) biostat3::eform(poisson22e1) poisson22e2 <- glm( fail ~ brv + offset( log(t_sp_at_risk) ), family=poisson, data=filter(brvSplit, sex==2)) summary(poisson22e2) biostat3::eform(poisson22e2) brvSplit2 <- mutate(brvSplit, sex = as.factor(sex), brv = as.factor(brv)) poisson22e3 <- glm( fail ~ sex + brv:sex + offset( log(t_sp_at_risk) ), family=poisson, data=brvSplit2) summary(poisson22e3) biostat3::eform(poisson22e3) brvSplit3 <- brvSplit2 %>% mutate(age_sp_dth = as.numeric(dosp - dob) / 365.24, age_start = age_sp_dth + y_before_sp_dth, age_end = age_sp_dth + y_after_sp_dth) age_cat <- seq(70,100,5) brvSplit4 <- survSplit(brvSplit3, cut=age_cat, start="age_start", end="age_end", event="fail", zero = 0) brvSplit4 <- mutate(brvSplit4, t_at_risk = age_end- age_start, age = cut(age_end, age_cat)) survRate(Surv(t_at_risk, fail) ~ age, data=brvSplit4) poisson22f1 <- glm( fail ~ brv + age + offset( log(t_at_risk) ), family=poisson, data=brvSplit4) summary(poisson22f1) biostat3::eform(poisson22f1) poisson22f2 <- glm( fail ~ brv +age + sex + offset( log(t_at_risk) ), family=poisson, data=brvSplit4) summary(poisson22f2) biostat3::eform(poisson22f2) poisson22g <- glm( fail ~ age + sex + brv:sex + offset( log(t_at_risk) ), family=poisson, data=brvSplit4) summary(poisson22g) biostat3::eform(poisson22g) summary(coxph(Surv(age_start, age_end, fail) ~ brv, data = brvSplit4)) summary(coxph(Surv(age_start, age_end, fail) ~ brv + sex, data = brvSplit4)) summary(coxph(Surv(age_start, age_end, fail) ~ sex + sex:brv, data = brvSplit4))
NULL hisee <- function(y, ...) UseMethod("hisee") hisee.formula <- function(formula, data=list(), clusterID, waves = NULL, contrasts = NULL, subset, ...) { mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "clusterID", "waves", "subset"), names(mf), 0L) mf <- mf[c(1L, m)] if (is.null(mf$clusterID)){ mf$clusterID <- as.name("clusterID") } if (is.null(mf$waves)){ mf$waves <- NULL } mf$drop.unused.levels <- TRUE mf[[1L]] <- quote(stats::model.frame) mf <- eval(mf, parent.frame()) clusterID <- model.extract(mf, clusterID) if(is.null(clusterID)){ stop("clusterID variable not found.") } waves <- model.extract(mf, waves) y <- model.response(mf, "numeric") x <- model.matrix(attr(mf, "terms"), data=mf, contrasts) if(all(x[,1] ==1)){ x <- x[,-1] } if(any(colSums(x) == 0)){ cat(" cat(colnames(x)[colSums(x) == 0]) cat("\n") stop("The above factors are not found in the given observations") } results <- hisee.default(y, x, clusterID = clusterID, waves = waves, ...) results$call <- match.call() results$call <- contrasts results } hisee.default <- function(y, x, waves = NULL, ...){ results <- hisee.fit(y, x, waves = waves, ...) results$call <- match.call() results } hisee.fit <- function(y, x, family, clusterID, waves = NULL, groupID = 1:ncol(x), corstr="independence", alpha = NULL, intercept = TRUE, offset = 0, control = sgee.control(maxIt = 200, epsilon = 0.05, stoppingThreshold = min(length(y), ncol(x))-intercept, undoThreshold = 0), standardize = TRUE, verbose = FALSE, ...){ maxIt <- control$maxIt epsilon <- control$epsilon undoThreshold <- control$undoThreshold interceptLimit <- control$interceptLimit if(undoThreshold >= epsilon){ if(verbose){ cat(paste0("****** undoThreshold too large! reducing threshold now **********\n")) } undoThreshold <- epsilon/10 } if(is.null(control$stoppingThreshold)){ stoppingThreshold <- min(length(y), ncol(x))-intercept } else { stoppingThreshold <- control$stoppingThreshold } p <- ncol(x) if (is.character(family)){ family <- get(family, mode = "function", envir = parent.frame()) } if (is.function(family)){ family <- family() } if(standardize){ unstandardizedX <- x if(intercept){ x <- scale(x) } else{ x <- scale(x, center = FALSE) } } if(is.null(waves)){ clusz <- unlist(sapply(unique(clusterID), function(x) {sum(clusterID == x)})) waves <- as.integer(unlist(sapply(clusz, function(x) 1:x))) } r <- 1 q <- 1 beta <- rep(0,p) phi <- stats::sd(y)^2 if(is.null(alpha)){ alpha <- 0 } beta0 <- 0 meanLink <- family$linkfun meanLinkInv <- family$linkinv varianceLink <- family$variance mu.eta <- family$mu.eta path <- matrix(rep(0,(maxIt)*(p + intercept)), nrow = maxIt) phiPath <- matrix(rep(0,(maxIt)*r), nrow = maxIt) alphaPath <- matrix(rep(0,(maxIt)*q), nrow = maxIt) clusterIDs <- unique(clusterID) numClusters <- length(clusterIDs) maxClusterSize <- max(waves) stoppedOn <- maxIt R <- genCorMat(corstr = corstr, rho = alpha, maxClusterSize = maxClusterSize) RInv <- solve(R) cat("\n") oldDelta <- rep(0, length(beta)) it <- 0 while (it <maxIt){ it <- it +1 if(verbose){ cat(paste0("****** Beginning iteration } GEEValues <- evaluateGEE(y = y, x = x, beta = beta, beta0 = beta0, intercept, phi = phi, offset = offset, RInv = RInv, numClusters = numClusters, clusterID = clusterID, waves = waves, meanLinkInv = meanLinkInv, mu.eta = mu.eta, varianceLink = varianceLink, corstr = corstr, maxClusterSize = maxClusterSize, interceptLimit = interceptLimit) beta0 <- GEEValues$beta0 phi <- GEEValues$phiHat alpha <- GEEValues$rhoHat RInv <- GEEValues$RInv sumMean <- GEEValues$sumMean a <- rep(0, length(unique(groupID))) for (j in unique(groupID)){ currentGroupIndex <- groupID == j aCurrent <- sumMean[currentGroupIndex] a[j] <- sqrt(sum(aCurrent^2))/sqrt(length(aCurrent)) } delta <- which(a == max(a)) theGroup <- groupID == delta aCurrent <- sumMean[theGroup] maxGradient <- max(abs(aCurrent)) deltaIndex <- abs(aCurrent) == maxGradient if(verbose){ } if (sum(abs(oldDelta[theGroup] + (deltaIndex * epsilon * sign(aCurrent[deltaIndex]))))<= undoThreshold){ if(verbose){ cat(paste0("****** Step Undone! Reducing Stepsize **********\n")) } if(it>2){ if (intercept){ beta <- path[it - 2,-1] } else { beta <- path[it - 2,] } } else{ beta <- rep(0, length(beta)) } epsilon <- epsilon/2 it <- it - 2 oldDelta <- rep(0, length(beta)) if(undoThreshold >= epsilon){ if(verbose){ cat(paste0("****** undoThreshold too large! reducing threshold now **********\n")) } undoThreshold <- epsilon/10 } } else { oldDelta <- rep(0, length(beta)) oldDelta[theGroup] <- (deltaIndex * epsilon * sign(aCurrent[deltaIndex])) beta[theGroup] <- beta[theGroup] + (deltaIndex * epsilon * sign(aCurrent[deltaIndex])) if(intercept){ path[it,] <- c(beta0, beta) } else{ path[it,] <- beta } phiPath[it,] <- phi alphaPath[it,] <- alpha if(((sum(beta != 0) >= stoppingThreshold) | sum(a) < 0.5 )& (it< maxIt) ){ print("stopped on") print(it) print(a[delta]) path[((it+1):maxIt),] <- matrix(rep(path[it,],(maxIt - it)), nrow = (maxIt - it), byrow = TRUE) phiPath[((it+1):maxIt),] <- matrix(rep(phiPath[it,],(maxIt - it)), nrow = (maxIt - it), byrow = TRUE) alphaPath[((it+1):maxIt),] <- matrix(rep(alphaPath[it,],(maxIt - it)), nrow = (maxIt - it), byrow = TRUE) stoppedOn <- it break } } } result <- list(path = path, gammaPath = phiPath, alphaPath = alphaPath, stoppedOn = stoppedOn, maxIt = maxIt, y = y, x = x, intercept = intercept, clusterID = clusterID, groupID = groupID, family = family, offset = offset, epsilon = epsilon) if(standardize){ result$x <- unstandardizedX temp <- path if(intercept){ temp[,-1] <- t(t(path[,-1]) /attr(x, "scaled:scale")) temp[,1] <- path[,1] - crossprod(t(path[,-1]), (attr(x, "scaled:center")/attr(x, "scaled:scale"))) } else{ temp <- t(t(path) /attr(x, "scaled:scale")) } result$standardizedPath <- path result$path <- temp result$standardizedX <- x } class(result) <- "sgee" result }
.pi_T_sample <- function(scaled_doses, n = 10000, alpha_mean, alpha_sd, beta_mean, beta_sd) { alpha <- rnorm(n, alpha_mean, alpha_sd) beta <- rnorm(n, beta_mean, beta_sd) A <- as.matrix(data.frame(alpha, beta)) B <- as.matrix(data.frame(1, scaled_doses)) inv.logit(A %*% t(B)) } .pi_T_moments <- function(scaled_doses, n = 10000, alpha_mean, alpha_sd, beta_mean, beta_sd) { samp <- .pi_T_sample(scaled_doses, n, alpha_mean, alpha_sd, beta_mean, beta_sd) list( mean = colMeans(samp), sd = apply(samp, 2, sd) ) } .pi_E_sample <- function(scaled_doses, n = 10000, gamma_mean, gamma_sd, zeta_mean, zeta_sd, eta_mean, eta_sd) { gamma <- rnorm(n, gamma_mean, gamma_sd) zeta <- rnorm(n, zeta_mean, zeta_sd) eta <- rnorm(n, eta_mean, eta_sd) A <- as.matrix(data.frame(gamma, zeta, eta)) B <- as.matrix(data.frame(1, scaled_doses, scaled_doses^2)) inv.logit(A %*% t(B)) } .pi_E_moments <- function(scaled_doses, n = 10000, gamma_mean, gamma_sd, zeta_mean, zeta_sd, eta_mean, eta_sd) { samp <- .pi_E_sample(scaled_doses, n, gamma_mean, gamma_sd, zeta_mean, zeta_sd, eta_mean, eta_sd) list(mean = colMeans(samp), sd = apply(samp, 2, sd)) } .normal_ess <- function(mean, sd) { a <- (1 - mean) * (mean / sd)^2 - mean b <- a * (1 - mean) / mean list(a = a, b = b, ess = a + b) } .ess <- function(pi_star) { x <- sapply( 1:length(pi_star$mean), function(i) .normal_ess(pi_star$mean[i], pi_star$sd[i])$ess ) mean(x) } get_efftox_priors <- function(doses = NULL, scaled_doses = NULL, pi_T, ess_T, pi_E, ess_E, num_samples = 10^4, seed = 123) { if(is.null(scaled_doses)) { if(is.null(doses)) { stop('Either doses or scaled_doses should be a numerical vector.') } else { y <- log(doses) - mean(log(doses)) } } else { y <- scaled_doses } .f <- function(x) { set.seed(seed) pi_T_star <- .pi_T_moments(scaled_doses = y, n = num_samples, alpha_mean = x[1], alpha_sd = x[2], beta_mean = x[3], beta_sd = x[4]) ess_T_star <- .ess(pi_T_star) pi_E_star <- .pi_E_moments(scaled_doses = y, n = num_samples, gamma_mean = x[5], gamma_sd = x[6], zeta_mean = x[7], zeta_sd = x[8], eta_mean = 0, eta_sd = 0.2) ess_E_star <- .ess(pi_E_star) obj <- sum((pi_T_star$mean - pi_T)^2) + sum((pi_E_star$mean - pi_E)^2) obj <- obj + 0.1 * ((ess_T_star - ess_T)^2 + (ess_E_star - ess_E)^2) obj <- obj + 0.2 * ((x[2] - x[4])^2 + (x[6] - x[8])^2) obj } par <- c(0, 1, 0, 1, 0, 1, 0, 1) x <- optim(par, fn = .f, method = "Nelder-Mead") efftox_priors(alpha_mean = x$par[1], alpha_sd = x$par[2], beta_mean = x$par[3], beta_sd = x$par[4], gamma_mean = x$par[5], gamma_sd = x$par[6], zeta_mean = x$par[7], zeta_sd = x$par[8], eta_mean = 0, eta_sd = 0.2, psi_mean = 0, psi_sd = 1) }
read.bin <- function(binfile, outfile = NULL, start = NULL, end = NULL, Use.Timestamps = FALSE, verbose = TRUE, do.temp = TRUE, do.volt = TRUE, calibrate = TRUE, downsample = NULL, blocksize, virtual = FALSE, mmap.load = (.Machine$sizeof.pointer >= 8), pagerefs = TRUE, ...){ invisible(gc()) requireNamespace("mmap") options(warn = -1) if (verbose){options(warn=0)} opt.args <- c("gain","offset","luxv","voltv", "warn") warn <- FALSE gain <- offset <- NULL luxv <- voltv <- NULL argl <- as.list(match.call()) argind <- pmatch(names(argl),opt.args) argind <- which(!is.na(argind)) if (length(argind) > 0){ called.args <- match.arg(names(argl), opt.args, several.ok = TRUE) for(i in 1:length(called.args)){ assign(called.args[i], eval(argl[[argind[i]]])) } } nobs <- 300 reclength <- 10 position.data <- 10 position.temperature <- 6 position.volts <- 7 orig.opt <- options(digits.secs = 3) pos.rec1 <- npages <- t1c <- t1midnight <- pos.inc <- headlines <- NA header = header.info(binfile, more = T) commasep = unlist(header)[17] == "," H = attr(header, "calibration") for (i in 1:length(H)) assign(names(H)[i], H[[i]]) if ((!exists("pos.rec1")) || (is.na(pos.rec1))) mmap.load = FALSE if ((mmap.load == T) && (length(pagerefs)) < 2) { pagerefs = TRUE } if (missing(blocksize)){ blocksize = Inf if (npages > 10000) blocksize = 10000 } freqint = round(freq) if (!is.null(downsample)) { if (verbose) { cat("Downsampling to ", round(freq/downsample[1],2) , " Hz \n") if (nobs %% downsample[1] != 0) cat("Warning, downsample divisor not factor of ", nobs, "!\n") if ( downsample[1] != floor( downsample[1]) ) cat("Warning, downsample divisor not integer!\n") } } if (verbose) { cat("Number of pages in binary file:", npages, "\n") } freqseq <- seq(0, by = 1/freq, length = nobs) timespan <- nobs/freq timestampsc <- seq(t1c, by = timespan, length = npages) timestamps <- seq(t1, by = timespan, length = npages) tnc <- timestampsc[npages] tn <- timestamps[npages] if (Use.Timestamps == TRUE){ start_precise = start end_precise = end } if (is.null(start)) { start <- 1 } if (is.null(end)) { end <- npages } if (Use.Timestamps == TRUE){ if (start >= 0 & start <= 1 & !missing(start)){ stop("Please eneter the start parameter as a timestamp if using Use.Timestamps = TRUE") } if (end >= 0 & end <= 1 & !missing(end)){ stop("Please eneter the end parameter as a timestap if using Use.Timestamps = TRUE") } if (is.numeric(start)){ start = findInterval(start - 0.5, timestamps, all.inside = T) t1 = timestamps[start+1] } else{ stop(cat("Please enter the start as a numeric timestamp")) } if (is.numeric(end)){ end = findInterval(end, timestamps, all.inside = T) +1 } else{ stop(cat("Please enter the start as a numeric timestamp")) } } else{ if (is.numeric(start)) { if ((start[1] > npages)) { stop(cat("Please input valid start and end times between ", t1c, " and ", tnc, " or pages between 1 and ", npages, ".\n\n"), call. = FALSE) } else if (start[1] < 1) { start = pmax(ceiling( start * npages),1) } } if (is.numeric(end)) { if ((end[1] <= 1)) { end= ceiling(end * npages) } else { end <- pmin(end, npages) } } if (is.character(start)) { start <- parse.time(start, format = "seconds", start = t1, startmidnight = t1midnight) start = findInterval(start - 0.5, timestamps, all.inside = T) t1 = timestamps[start+1] } if (is.character(end)) { end <- parse.time(end, format = "seconds", start = t1, startmidnight = t1midnight) end = findInterval(end, timestamps, all.inside = T) +1 } } index <- NULL for (i in 1:length(start)){ index = c(index, start[i]:end[i]) } if (length(index) == 0) { if (npages > 15) { stop("No pages to process with specified timestamps. Please try again.\n", call. = FALSE) } else { stop("No pages to process with specified timestamps. Please try again. Timestamps in binfile are:\n\n", paste(timestampsc, collapse = " \n"), " \n\n", call. = FALSE) } } if (do.temp) { temperature <- NULL } if (calibrate) { if (!is.null(gain)) { if (!is.numeric(gain)) { stop("Please enter 3 valid values for the x,y,z gains.\n") } else { xgain <- gain[1] ygain <- gain[2] zgain <- gain[3] } } if (!is.null(offset)) { if (!is.numeric(offset)) { stop("Please enter 3 valid values for the x,y,z offsets.\n") } else { xoffset <- offset[1] yoffset <- offset[2] zoffset <- offset[3] } } if (!is.null(voltv)) { if (!is.numeric(voltv)) { stop("Please enter a valid value for the volts.\n") } else { volts <- voltv } } if (!is.null(luxv)) { if (!is.numeric(luxv)) { stop("Please enter a valid value for the lux.\n") } else { lux <- luxv } } } nstreams <- length(index) if(warn){ if (nstreams > 100) { cat("About to read and process", nstreams, "datasets. Continue? Press Enter or control-C to quit.\n") scan(, quiet = TRUE) } } data <- NULL if (mmap.load) { numstrip <- function(dat, size = 4, sep = "." ){ apply(matrix(dat, size), 2, function(t) as.numeric(sub(sep, ".", rawToChar(as.raw(t[t != 58])), fixed = TRUE))) } offset = pos.rec1 - 2 rec2 = offset + pos.inc if ((identical(pagerefs , FALSE)) || is.null(pagerefs)){ pagerefs = NULL } else if (length(pagerefs) < max(index)){ textobj = mmap(binfile, char(), prot = mmapFlags("PROT_READ")) if (is.mmap(textobj)){ startoffset = max(pagerefs, offset) + pos.inc if (identical(pagerefs, TRUE)) pagerefs = NULL numblocks2 = 1 blocksize2 = min(blocksize, max(index+1))*3600 if ( (length(textobj) - startoffset) > blocksize2 ){ numblocks2 = ceiling((length(textobj) - startoffset) /blocksize2) } curr = startoffset for (i in 1:numblocks2){ pagerefs = c(pagerefs, grepRaw("Recorded Data", textobj[curr + 1: min(blocksize2, length(textobj) - curr)], all = T)+ curr-2) curr = curr + blocksize2 if (length(pagerefs) >= max(index)) break } if (curr >= length(textobj)){ pagerefs = c(pagerefs, length(textobj) - grepRaw("[0-9A-Z]", rev(textobj[max(pagerefs):length(textobj)]))+2) } if (verbose) cat("Calculated page references... \n") munmap(textobj) invisible(gc()) } else { pagerefs = NULL warning("Failed to compute page refs") } } mmapobj = mmap(binfile, uint8(), prot = mmapFlags("PROT_READ")) if (!is.mmap(mmapobj)){ warning("MMAP failed, switching to ReadLine. (Likely insufficient address space)") mmap.load = FALSE } if (is.null(pagerefs)){ print("WARNING: Estimating data page references. This can fail if data format is unusual!") digitstring = cumsum(c(offset,10*(pos.inc), 90 *(pos.inc + 1) , 900 *( pos.inc +2 ), 9000*(pos.inc +3) , 90000*(pos.inc +4) , 900000*(pos.inc +5), 9000000 * (pos.inc + 6))) digitstring[1] = digitstring[1] + pos.inc getindex = function(pagenumbers, raw = F ){ digits = floor(log10(pagenumbers)) if (raw){ return( digitstring[digits+1] + (pagenumbers - 10^digits)*(pos.inc+digits )) } else { return( rep(digitstring[digits+1] + (pagenumbers - 10^digits)*(pos.inc+digits), each = nobs * 12) -((nobs*12):1)) } } } else { getindex = function(pagenumbers, raw = F){ if (raw){ return(pagerefs[pagenumbers]) }else{ return(rep(pagerefs[pagenumbers], each = nobs * 12 ) -((nobs*12):1)) } } } } else{ fc2 = file(binfile, "rt") tmpd <- readLines(fc2, n = headlines) replicate ( min( index - 1 ), is.character(readLines(fc2, n=reclength))) } numblocks = 1 blocksize = min(blocksize, nstreams) if (nstreams > blocksize ){ if (verbose) cat("Splitting into ", ceiling(nstreams/blocksize), " chunks.\n") numblocks = ceiling(nstreams/blocksize) } Fulldat = NULL Fullindex = index index.orig = index if (verbose) { cat("Processing...\n") pb <- txtProgressBar(min = 0, max = 100,style = 1) } start.proc.time <- Sys.time() if(!is.null(downsample)){ downsampleoffset = 1 if (length(downsample) == 2){ downsampleoffset = downsample[2] downsample = downsample[1] } } if (virtual){ if (is.null(downsample)) downsample = 1 if (verbose) close(pb) if (exists("fc2")) close(fc2) if (exists("mmapobj")) munmap(mmapobj) Fulldat = timestamps[index] if (verbose) cat("Virtually loaded", length(Fulldat)*length(freqseq)/downsample, "records at", round(freq/downsample,2), "Hz (Will take up approx ", round(56 * as.double(length(Fulldat) * length(freqseq)/downsample )/1000000) ,"MB of RAM)\n") if (verbose) cat(format.GRtime(Fulldat[1], format = "%y-%m-%d %H:%M:%OS3 (%a)")," to ", format.GRtime(tail(Fulldat,1) + nobs /freq,format = "%y-%m-%d %H:%M:%OS3 (%a)"), "\n") output = list(data.out = Fulldat, page.timestamps = timestampsc[index.orig], freq= as.double(freq)/downsample, filename =tail(strsplit(binfile, "/")[[1]],1), page.numbers = index.orig, call = argl, nobs = floor(length(freqseq)/downsample) , pagerefs = pagerefs, header = header) class(output) = "VirtAccData" return(invisible( output )) } voltages = NULL lastread = min(index) - 1 for (blocknumber in 1: numblocks){ index = Fullindex[1:min(blocksize, length(Fullindex))] Fullindex = Fullindex[-(1:blocksize)] proc.file <- NULL if (!mmap.load){ tmpd <- readLines(fc2, n = (max(index) -lastread) * reclength ) bseq = (index - lastread -1 ) * reclength lastread = max(index) if (do.volt){ vdata = tmpd[bseq + position.volts] if (commasep) vdata = sub(",", ".", vdata, fixed = TRUE) voltages = c(voltages, as.numeric(substring(vdata, 17, nchar(vdata)))) } if (is.null(downsample)){ data <- strsplit(paste(tmpd[ bseq + position.data], collapse = ""), "")[[1]] if (do.temp) { tdata <- tmpd[bseq + position.temperature] if (commasep) tdata = sub(",", ".", tdata, fixed = TRUE) temp <- as.numeric(substring(tdata, 13, nchar(tdata))) temperature <- rep(temp, each = nobs) } rm(tmpd) proc.file <- convert.hexstream(data) nn <- rep(timestamps[index], each = length(freqseq)) + freqseq } else { data <- strsplit(paste(tmpd[ bseq + position.data], collapse = ""), "")[[1]] if (do.temp) { tdata <- tmpd[bseq + position.temperature] if (commasep) tdata = sub(",", ".", tdata, fixed = TRUE) temp <- as.numeric(substring(tdata, 13, nchar(tdata))) temperature <- rep(temp, each = nobs) } rm(tmpd) proc.file <- convert.hexstream(data) nn <- rep(timestamps[index], each = length(freqseq)) + freqseq positions = downsampleoffset + (0: floor(( nobs * length(index) - downsampleoffset )/downsample)) * downsample proc.file = proc.file[, positions] if (do.temp){ temperature = temperature[positions] } nn = nn[positions] downsampleoffset = downsample - (nobs*blocksize - downsampleoffset )%% downsample } } else { infeed = getindex(index) infeed = infeed[!is.na(infeed)] tmp = mmapobj[infeed] proc.file = convert.intstream(tmp) pageindices = getindex(index, raw = T) firstrec = as.raw(mmapobj[pageindices[1]:pageindices[2]]) a = grepRaw("Temperature:", firstrec) b = grepRaw(ifelse(commasep, ",", "."), firstrec, offset = a, fixed = TRUE) c = grepRaw("Battery voltage:", firstrec, offset = b) d = grepRaw("Device", firstrec, offset = c) tind = (b-2):(c-2) - length(firstrec) vind = (c+16):(d-2) - length(firstrec) if (do.temp){ tempfeed = rep(pageindices, each = length(tind)) + tind tempfeed = tempfeed[!is.na(tempfeed)] temperature = rep(numstrip(mmapobj[tempfeed], size = length(tind), sep = ifelse(commasep, ",", ".") ), each = nobs) } nn <- rep(timestamps[index], each = length(freqseq)) + freqseq if (!is.null(downsample)){ positions = downsampleoffset + (0: floor(( nobs * length(index) - downsampleoffset )/downsample)) * downsample proc.file = proc.file[, positions] nn = nn[positions] if (do.temp){ temperature = temperature[positions] } downsampleoffset = downsample - (nobs*blocksize - downsampleoffset) %% downsample } if (do.volt){ voltfeed = rep(pageindices, each = length(vind)) + vind voltfeed = voltfeed[!is.na(voltfeed)] voltages = c(voltages, numstrip(mmapobj[voltfeed], size = length(vind) , sep = ifelse(commasep, ",", ".")) ) } } if (verbose) setTxtProgressBar(pb, 100 * (blocknumber-0.5) / numblocks ) if (calibrate) { proc.file[1, ] <- (proc.file[1, ] * 100 - xoffset)/xgain proc.file[2, ] <- (proc.file[2, ] * 100 - yoffset)/ygain proc.file[3, ] <- (proc.file[3, ] * 100 - zoffset)/zgain proc.file[4, ] <- proc.file[4, ] * lux/volts } if ( length(proc.file[1,]) < length(nn)){ nn = nn[1:(length((proc.file[1,])))] } proc.file <- t(proc.file) proc.file <- cbind(nn, proc.file) cnames <- c("timestamp", "x", "y", "z", "light", "button") if (do.temp) { proc.file <- cbind(proc.file, temperature) colnames(proc.file) <- c(cnames, "temperature") } else { colnames(proc.file) <- cnames } Fulldat = rbind(Fulldat, proc.file) if (verbose) setTxtProgressBar(pb, 100 * blocknumber / numblocks) } if (verbose) close(pb) freq = freq * nrow(Fulldat) / (nobs * nstreams) end.proc.time <- Sys.time() cat("Processing took:", format(round(as.difftime(end.proc.time - start.proc.time), 3)), ".\n") cat("Loaded", nrow(Fulldat), "records (Approx ", round(object.size(Fulldat)/1000000) ,"MB of RAM)\n") cat(format.GRtime( Fulldat[1,1], format = "%y-%m-%d %H:%M:%OS3 (%a)"), " to ", format.GRtime(tail(Fulldat[,1],1) , format = "%y-%m-%d %H:%M:%OS3 (%a)"), "\n") if (!mmap.load){ close(fc2) } else { munmap(mmapobj) } if (Use.Timestamps == TRUE){ Fulldat = Fulldat[Fulldat[,1] >= start_precise & Fulldat[,1] <= end_precise, ] } processedfile <- list(data.out = Fulldat, page.timestamps = timestampsc[index.orig], freq = freq, filename = tail(strsplit(binfile, "/")[[1]],1), page.numbers = index.orig, call = argl, page.volts = voltages, pagerefs = pagerefs, header = header) class(processedfile) = "AccData" if (is.null(outfile)) { return(processedfile) } else { save(processedfile, file = outfile) } } convert.hexstream <-function(stream){ maxint <- 2^(12-1) packet <-bitShiftL(strtoi(stream, 16),4*(2:0)) packet<-rowSums(matrix(packet,ncol=3,byrow=TRUE)) packet[packet>=maxint] <- -(maxint - (packet[packet>=maxint] - maxint)) packet<-matrix(packet, nrow=4) packet1 <- bitShiftL(strtoi(stream, 16),4*(2:0)) packet1 <-rowSums(matrix(packet1,ncol=3,byrow=TRUE)) maxint1 = 2^12 packet1[packet1>=maxint1] <- -(maxint1 - (packet1[packet1>=maxint1] - maxint1)) packet1<-matrix(packet1, nrow=4) light <- bitShiftR(packet1[4,],2) button <-bitShiftR(bitAnd(packet[4,],2),1) packet<-rbind(packet[1:3,],light,button) packet } convert.intstream <- function(stream){ maxint <- 2^(12 - 1) stream1 = stream - 48 - 7 * (stream > 64) packet<- drop(matrix(stream1, ncol = 3, byrow = T) %*% 16^(3: 1 - 1)) packet[packet>=maxint] <- -2*maxint + (packet[packet>=maxint] ) packet<-matrix(packet,nrow=4) maxint1 <- 2^(12) stream2 = stream - 48 - 7 * (stream > 64) packet1<- drop(matrix(stream2, ncol = 3, byrow = T) %*% 16^(3: 1 - 1)) packet1[packet1>=maxint1] <- -2*maxint1 + (packet1[packet1>=maxint1] ) packet1<-matrix(packet1,nrow=4) light = abs(floor(packet1[4,] / 4 -> ltmp)) rbind(packet[1:3,], light, (ltmp-light) >0.49) } is.POSIXct <- function(x) inherits(x, "POSIXct") is.POSIXlt <- function(x) inherits(x, "POSIXlt") is.POSIXt <- function(x) inherits(x, "POSIXt") is.Date <- function(x) inherits(x, "Date")
sourceCppFunction <- function(func, isVoid, dll, symbol) { args <- names(formals(func)) body <- quote(CALL_PLACEHOLDER(EXTERNALNAME, ARG))[c( 1:2, rep(3, length(args)) )] for (i in seq(along.with = args)) body[[i + 2]] <- as.symbol(args[i]) body[[1L]] <- .Call body[[2L]] <- getNativeSymbolInfo(symbol, dll)$address if (isVoid) { body <- call("invisible", body) } body(func) <- body func }
test_that("genind2genpop works with missing loci", { data(nancycats) p17 <- nancycats[pop = 17, loc = 3:4] p <- genind2genpop(p17) expect_s4_class(p, "genpop") ptab <- tab(p, freq = TRUE) expect_equal(nrow(ptab), 1L) expect_equal(ncol(ptab), sum(nAll(p17))) expect_false(any(is.na(ptab))) })
stepwise.PIC <- function(x, py, nvarmax = 100, alpha = 0.1) { x <- as.matrix(x) n <- nrow(x) npy <- ncol(py) cpy <- cpyPIC <- NULL icpy <- 0 z <- NULL isig <- T icoloutz <- 1:npy while (isig) { npicmax <- npy - icpy pictemp <- rep(0, npicmax) y <- py[, icoloutz] pictemp <- pic.calc(x, as.matrix(y), z)$pic ctmp <- order(-pictemp)[1] cpytmp <- icoloutz[ctmp] picmaxtmp <- pictemp[ctmp] if (!is.null(z)) { df <- n - ncol(z) } else { df <- n } t <- qt(1 - alpha, df = df) picthres <- sqrt(t^2 / (t^2 + df)) if (picmaxtmp > picthres) { cpy <- c(cpy, cpytmp) cpyPIC <- c(cpyPIC, picmaxtmp) z <- cbind(z, py[, cpytmp]) icoloutz <- icoloutz[-ctmp] icpy <- icpy + 1 if ((npy - icpy) == 0 | icpy >= nvarmax) isig <- F } else { isig <- F if (icpy == 0 & picmaxtmp > 0) { cpy <- cpytmp cpyPIC <- picmaxtmp z <- py[, cpytmp] } } } if (!is.null(z)) { out <- pw.calc(x, py, cpy, cpyPIC) outwt <- out$pw lstwt <- abs(lsfit(z, x)$coef) return(list( cpy = cpy, cpyPIC = cpyPIC, wt = outwt, lstwet = lstwt, icpy = icpy )) } else { message("None of the provided predictors is related to the response variable") } } calc.scaleSTDratio <- function(x, zin, zout) { if (!missing(zout)) { xhat <- knnregl1cv(x, zout) stdratxzout <- sqrt(var(x - xhat) / var(x)) zinhat <- knnregl1cv(zin, zout) stdratzinzout <- sqrt(var(zin - zinhat) / var(zin)) return(0.5 * (stdratxzout + stdratzinzout)) } else { return(1) } } pic.calc <- function(X, Y, Z = NULL) { if (is.null(Z)) { x.in <- X y.in <- Y } else { x.in <- X - knnregl1cv(X, Z) y.in <- apply(Y, 2, function(i) i - knnregl1cv(i, Z)) } pmi <- apply(y.in, 2, function(i) pmi.calc(x.in, i)) tmp <- pmi tmp[tmp < 0] <- 0 pic <- sqrt(1 - exp(-2 * tmp)) return(list(pmi = as.numeric(pmi), pic = as.numeric(pic))) } pw.calc <- function(x, py, cpy, cpyPIC) { wt <- NA Z <- as.matrix(py[, cpy]) if (ncol(Z) == 1) { wt <- calc.scaleSTDratio(x, Z) * cpyPIC if (wt == 0) wt <- 1 } else { for (i in seq_along(cpy)) wt[i] <- calc.scaleSTDratio(x, Z[, i], Z[, -i]) * cpyPIC[i] } return(list(pw = wt / sum(wt))) } knnregl1cv <- function(x, z, k = 0, pw) { x <- as.matrix(x) n <- nrow(x) if (k == 0) { k <- floor(0.5 + 3 * (sqrt(n))) } z <- as.matrix(z) nz <- ncol(z) sd <- sqrt(diag(var(z))) if (missing(pw)) { pw <- rep(1, nz) } for (j in 1:nz) z[, j] <- z[, j] / (sd[j] / pw[j]) d <- as.matrix(dist(z)) ord1 <- apply(d, 2, order) ord <- ord1[2:(k + 1), ] kern <- 1 / (1:k) / sum(1 / (1:k)) xhat <- rep(0, n) for (j in 1:k) xhat <- xhat + x[ord[j, ]] * kern[j] return(xhat) } pmi.calc <- function(X, Y) { N <- length(X) pdf.X <- kernel.est.uvn(X) pdf.Y <- kernel.est.uvn(Y) pdf.XY <- kernel.est.mvn(cbind(X, Y)) calc <- log(pdf.XY / (pdf.X * pdf.Y)) return(sum(calc) / N) } kernel.est.uvn <- function(Z) { N <- length(Z) sigma <- 1.5 * bw.nrd0(Z) constant <- sqrt(2 * pi) * sigma * N dens <- vapply(1:N, function(i) sum(exp(-(Z - Z[i])^2 / (2 * sigma^2))) / constant, numeric(1)) return(dens) } kernel.est.mvn <- function(Z) { N <- nrow(Z) d <- ncol(Z) Cov <- cov(Z) det.Cov <- det(Cov) sigma <- 1.5 * (4 / (d + 2))^(1 / (d + 4)) * N^(-1 / (d + 4)) constant <- (sqrt(2 * pi) * sigma)^d * sqrt(det.Cov) * N dens <- vapply(1:N, function(i) sum(exp(-mahalanobis(Z, center = Z[i, ], cov = Cov) / (2 * sigma^2))) / constant, numeric(1)) return(dens) }
mox.tree <- function(tree,...) { info.node=list() type=NULL terminal=NULL perc=NULL var=NULL mox=NULL if(length(tree@nodes)>1) { for (n in tree@nodes) { if (n@id==1) { length.root=length(n@elements) } if (length(n@childs)>0) { info.node[[length(info.node)+1]]=data.frame(n@info@variable,n@id,n@childs) } if(length(n@childs)==0) { type="leaf" terminal="yes" } if(n@father==0) { type="root" terminal="no" } if(n@father!=0 && length(n@childs)!=0) { type="node" terminal="no" } perc=round((length(n@elements)/length.root)*100,2) data=data.frame(n@id,n@father,showDeepth(n),type,terminal,length(n@elements),perc) mox=rbind(mox,data) } data.info.node=NULL for(i in 1:length(info.node)){data.info.node=rbind(data.info.node,info.node[[i]])} names(data.info.node)[2]="n.father" names(data.info.node)[3]="n.id" MOX=merge(mox, data.info.node,by="n.id",all.x=TRUE)[,-9] names(MOX)=c("Node","Parent","Depth","Type","Terminal","Size","Percent","Variable","Category") MOX } else { MOX=NULL } return(MOX) }
mewma.ad <- function(l, cE, p, delta=0, r=20, n=20, type="cond", hs=0, ntype=NULL, qm0=20, qm1=qm0) { if ( l<=0 | l>1 ) stop("l has to be between 0 and 1") if ( cE<=0 ) stop("threshold c has to be positive") if ( p<1 ) stop("wrong dimension parameter") if ( delta<0 ) stop("wrong magnitude value") if ( r<4 ) stop("resolution too small") if ( n<5 ) stop("more quadrature nodes needed") itype <- pmatch(tolower(type), c("cond", "cycl")) - 1 if ( is.na(itype) ) stop("wrong type of steady-state density") if ( hs<0 ) stop("wrong head start value") if ( r<4 ) stop("resolution too small") if ( qm0<5 ) stop("more quadrature nodes needed") if ( qm1<5 ) stop("more quadrature nodes needed") if ( is.null(ntype) ) { if ( delta <1e-10 ) { ntype <- "gl2" } else { if ( p==2 ) { ntype <- "gl3" } else { ntype <- "gl5" } } } qtyp <- pmatch(tolower(ntype), c("gl", "co", "ra", "cc", "mc", "sr", "co2", "gl2", "gl3", "gl4", "gl5", "co3", "co4", "ngl1", "ngl2", "ngl3", "ngl4", "ngl5")) - 1 if ( is.na(qtyp) ) stop("invalid type of numerical algorithm") ad <- .C("mewma_ad", as.double(l), as.double(cE), as.integer(p), as.double(delta), as.integer(r), as.integer(n), as.integer(itype), double(hs), as.integer(qtyp), as.integer(qm0), as.integer(qm1), ans=double(length=1), PACKAGE="spc")$ans names(ad) <- NULL ad }
svc <- paws::codestarnotifications() test_that("list_event_types", { expect_error(svc$list_event_types(), NA) }) test_that("list_event_types", { expect_error(svc$list_event_types(MaxResults = 20), NA) }) test_that("list_notification_rules", { expect_error(svc$list_notification_rules(), NA) }) test_that("list_notification_rules", { expect_error(svc$list_notification_rules(MaxResults = 20), NA) }) test_that("list_targets", { expect_error(svc$list_targets(), NA) }) test_that("list_targets", { expect_error(svc$list_targets(MaxResults = 20), NA) })
setMethod("initialize","value.labels",function(.Object,...){ args <- list(...) values <- args$values labels <- args[[1]] ii <- order(values) values <- values[ii] labels <- labels[ii] [email protected] <- labels .Object@values <- values if(validObject(.Object)) return(.Object) }) setValidity("value.labels",function(object){ if(length([email protected])==length(object@values)){ if(length(unique([email protected]))<=length(unique(object@values))) TRUE else paste("More labels than labelled values:\n", " ",length(unique([email protected])),"unique labels\n", " ",length(unique(object@values)),"labelled values") } else paste("There are",length(object@values),"values, but", length([email protected]),"labels") }) setMethod("labels","NULL",function(object,...)NULL) setMethod("labels","item",function(object,...)[email protected]) setMethod("labels<-",signature(x="item",value="ANY"),function(x,value){ [email protected]<-as(value,"value.labels") x }) setMethod("labels<-",signature(x="ANY",value="NULL"),function(x,value){ x }) setMethod("labels<-",signature(x="item",value="NULL"),function(x,value){ [email protected]<-NULL x }) setMethod("labels<-",signature(x="vector",value="ANY"),function(x,value)as.item(x, labels=as(value,"value.labels"))) format.value.labels <- function(x,...){ paste(format(x@values,justify="right"),format(sQuote([email protected]),justify="left")) } print.value.labels <- function(x,...) writeLines(format.value.labels(x)) setMethod("show","value.labels",function(object){ writeLines(c("", " Values and labels:", "", paste(" ",format.value.labels(object)), "")) }) setMethod("[",signature(x="value.labels",i="numeric",j="missing",drop="missing"), function(x,i) new("value.labels",[email protected][i], values=x@values[i]) ) setMethod("[",signature(x="value.labels",i="logical",j="missing",drop="missing"), function(x,i) new("value.labels",[email protected][i], values=x@values[i])) setAs(from="numeric",to="value.labels",function(from,to){ if(length(names(from))){ if(any(dups <- duplicated(names(from)))) warning("Duplicate labels ", paste(sQuote(unique(names(from)[dups])),collapse=" "), call.=FALSE) if(any(duplicated(from))) warning("Duplicate values",call.=FALSE) new("value.labels",names(from),values=unname(from)) } else new("value.labels",character(0),values=logical(0)) }) setAs(from="character",to="value.labels",function(from,to){ if(length(names(from))){ if(any(dups <- duplicated(names(from)))) warning("Duplicate labels", paste(sQuote(unique(names(from)[dups])),collapse=" "), call.=FALSE) if(any(duplicated(from))) warning("Duplicate values",call.=FALSE) new("value.labels",names(from),values=unname(from)) } else new("value.labels",character(0),values=logical(0)) }) setAs(from="value.labels",to="numeric",function(from,to) structure(as.vector(from@values),[email protected]) ) setAs(from="value.labels",to="character",function(from,to) [email protected] ) setMethod("as.vector","value.labels",function(x,mode="any") structure( as.vector(x@values,mode=mode), [email protected] ) ) setMethod("Arith",signature(e1="value.labels",e2="ANY"), function(e1,e2){ if(!is(e2,"value.labels")) e2 <- as(e2,"value.labels") vals <- e1@values labs <- [email protected] newvals <- e2@values newlabs <- [email protected] upd.vals <- intersect(vals,newvals) upd.labs <- newlabs[newvals %in% upd.vals] tmp <- setdiff(newvals,upd.vals) newlabs <- newlabs[match(tmp,newvals,nomatch=0L)] newvals <- tmp if(.Generic == "+"){ labs <- c(labs[vals %nin% upd.vals],upd.labs,newlabs) vals <- c(vals[vals %nin% upd.vals],upd.vals,newvals) ii <- order(vals) vals <- vals[ii] labs <- labs[ii] } else if(.Generic == "-"){ labs <- labs[vals %nin% upd.vals] vals <- vals[vals %nin% upd.vals] ii <- order(vals) vals <- vals[ii] labs <- labs[ii] } else stop("unsupported operator ",dQuote(.Generic)) new("value.labels",labs, values = vals) }) setMethod("has.value.labels","ANY",function(x)FALSE) setMethod("has.value.labels","item",function(x)length([email protected])>0) setMethod("is.labelled",signature(x="item.vector"),function(x){ if(!length([email protected])) return(logical(length(x))) cl <- [email protected] x %in% cl@values }) add_value_labels <- function(x,v){ if(length(labels(x))) labels(x) <- labels(x) + v else labels(x) <- v x }
extract_sparse_parts <- function(A) { if (!requireNamespace("Matrix")) stop("You have to install the Matrix package to call 'extract_sparse_parts'") if (!is(A, 'Matrix')) A <- Matrix::Matrix(A, sparse=TRUE, doDiag=FALSE) A <- Matrix::t(A) A <- as(A, "dgCMatrix") return(.Call(extract_sparse_components, A)) }
test_that("get_last_path_part() works", { expect_last_part <- function(x, tail) { expect_equal(get_last_path_part(x), tail) } expect_last_part("~", "~/") expect_last_part("~/", "~/") expect_last_part("abc", "abc") expect_last_part("abc/", "abc/") expect_last_part("~/abc", "abc") expect_last_part("~/abc/", "abc/") expect_last_part("~/abc/def", "def") expect_last_part("~/abc/def/", "def/") expect_last_part("abc/def", "def") expect_last_part("abc/def/", "def/") expect_last_part("~/abc/def/ghi", "ghi") expect_last_part("~/abc/def/ghi/", "ghi/") expect_last_part("abc/def/ghi", "ghi") expect_last_part("abc/def/ghi/", "ghi/") }) test_that("resolve_paths() works, basic scenarios", { dr_folder <- list(kind = "drive ancestors <- tibble( name = c("a", "b", "c"), id = c("1", "2", "3"), drive_resource = list( c(dr_folder, parents = list(list())), c(dr_folder, parents = list(list("1"))), c(dr_folder, parents = list(list("2"))) ) ) x <- tibble( name = "d", id = "4", drive_resource = list(list(kind = "drive ) with_mock( root_id = function() "", { out <- resolve_paths(as_dribble(x), ancestors) } ) expect_equal(out$path, "a/b/c/d") x$drive_resource <- list(c(dr_folder, parents = list(list("3")))) with_mock( root_id = function() "", { out <- resolve_paths(as_dribble(x), ancestors) } ) expect_equal(out$path, "a/b/c/d/") x <- tibble( name = "e", id = "4", drive_resource = list(list(kind = "drive ) with_mock( root_id = function() "", { out <- resolve_paths(as_dribble(x), ancestors) } ) expect_equal(out$path, "e") }) test_that("resolve_paths() works, with some name duplication", { dr_folder <- list(kind = "drive ancestors <- tibble( name = c("~", "a", "a", "b", "b", "b", "a"), id = c("1", "2", "3", "4", "5", "6", "7"), id_parent = c(NA, "1", "1", "1", "2", "3", "4"), drive_resource = list( c(dr_folder, parents = list(list())), c(dr_folder, parents = list(list("1"))), c(dr_folder, parents = list(list("1"))), c(dr_folder, parents = list(list("1"))), c(dr_folder, parents = list(list("2"))), c(dr_folder, parents = list(list("3"))), c(dr_folder, parents = list(list("4"))) ) ) x <- tibble( name = c("c", "d"), id = c("8", "9"), drive_resource = list( list(kind = "drive list(kind = "drive ) ) with_mock( root_id = function() "", { out <- resolve_paths(as_dribble(x), ancestors) } ) expect_equal(out$path[1], "~/a/b/c") expect_equal(out$path[2], "~/b/a/d") })
expected <- eval(parse(text="c(\"aa\", \"row.names\")")); test(id=0, code={ argv <- eval(parse(text="list(\"^..dfd.\", \"\", c(\"aa\", \"..dfd.row.names\"), FALSE, FALSE, FALSE, FALSE)")); .Internal(`sub`(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]], argv[[7]])); }, o=expected);
url2raster <- function(src) { ext <- tail(strsplit(src, split = ".", fixed = TRUE)[[1]], 1) if (file.exists(src)) file <- src else { file <- tempfile(fileext = paste0(".", ext)) download.file(src, destfile = file, mode = "wb", quiet = TRUE) on.exit(unlink(file)) } readWith <- switch(ext, png = list(readPNG, readJPEG), list(readJPEG, readPNG)) r <- try(readWith[[1]](file, native = TRUE), silent = TRUE) if (inherits(r, "try-error")) r <- try(readWith[[2]](file, native = TRUE), silent = TRUE) if (inherits(r, "try-error")) stop("'%s' does not appear to be a PNG or JPEG file.", src) r } panel.xyimage <- function(x, y, subscripts, groups = NULL, pch = NULL, cex = 1, ..., grid = FALSE, abline = NULL) { if (all(is.na(x) | is.na(y))) return() if (!is.character(pch)) stop("'pch' must be a character vector giving path(s) or URL(s) of PNG or JPEG files.") if (!identical(grid, FALSE)) { if (!is.list(grid)) grid <- switch(as.character(grid), "TRUE" = list(h = -1, v = -1, x = x, y = y), "h" = list(h = -1, v = 0, y = y), "v" = list(h = 0, v = -1, x = x), list(h = 0, v = 0)) do.call(panel.grid, grid) } if (!is.null(abline)) { if (is.numeric(abline)) abline <- as.list(abline) do.call(panel.abline, abline) } if (is.null(groups)) { pch.raster <- url2raster(pch[1]) grid.raster(x, y, image = pch.raster, width = unit(cex * 10, "mm"), height = unit(cex * 10, "mm"), default.units = "native") } else { groups <- as.factor(groups) cex <- rep(cex, length = nlevels(groups)) pch <- rep(pch, length = nlevels(groups)) pch.raster <- lapply(pch, url2raster) g <- as.numeric(groups)[subscripts] ug <- unique(g) for (i in ug) { w <- (g == i) grid.raster(x[w], y[w], image = pch.raster[[i]], width = unit(cex[i] * 8, "mm"), height = unit(cex[i] * 8, "mm"), default.units = "native") } } }
if (Sys.getenv("POSTGRES_USER") != "" & Sys.getenv("POSTGRES_HOST") != "" & Sys.getenv("POSTGRES_DATABASE") != "") { stopifnot(require(RPostgreSQL)) stopifnot(require(datasets)) drv <- dbDriver("PostgreSQL") con <- dbConnect(drv, user=Sys.getenv("POSTGRES_USER"), password=Sys.getenv("POSTGRES_PASSWD"), host=Sys.getenv("POSTGRES_HOST"), dbname=Sys.getenv("POSTGRES_DATABASE"), port=ifelse((p<-Sys.getenv("POSTGRES_PORT"))!="", p, 5432)) if (dbExistsTable(con, "rockdata")) { print("Removing rockdata\n") dbRemoveTable(con, "rockdata") } dbWriteTable(con, "rockdata", rock) res <- dbGetQuery(con, "SELECT * FROM rockdata WHERE peri > $1 LIMIT 10", 4000) print(res) res <- dbGetQuery(con, "SELECT * FROM rockdata WHERE peri > $1 AND shape < $2 LIMIT $3", c(4000, 0.2, 10)) print(res) if (dbExistsTable(con, "rockdata")) { print("Removing rockdata\n") dbRemoveTable(con, "rockdata") } dbDisconnect(con) }
effx<-function(response, type="metric", fup=NULL, exposure, strata=NULL, control=NULL, weights=NULL, eff=NULL, alpha=0.05, base=1, digits=3, data=NULL) { rname<-deparse(substitute(response)) ename<-deparse(substitute(exposure)) if (!missing(strata)) { sname<-deparse(substitute(strata)) } if(!missing(control)) { control.arg <- substitute(control) } type <- match.arg(type, c("metric", "failure", "count", "binary")) if (missing(response)) stop("Must specify the response","\n") if (missing(exposure)) stop("Must specify the exposure","\n") if (type == "failure" && missing(fup)) { stop("Must specify a follow-up variable when type is failure") } if(rname==ename)stop("Same variable specified as response and exposure") if (!missing(strata)) { if(rname==sname)stop("Same variable specified as response and strata") if(sname==ename)stop("Same variable specified as strata and exposure") } if (!missing(data)) { exposure <- eval(substitute(exposure), data) response <- eval(substitute(response), data) if (!missing(strata)) strata <- eval(substitute(strata), data) if (!missing(control)) control <- eval(substitute(control), data) if (!missing(fup)) fup <- eval(substitute(fup), data) if (!missing(weights)) { weights <- eval(substitute(weights), data) } } if(is.logical(response)) response <- as.numeric(response) if(!is.numeric(response)) stop("Response must be numeric, not a factor") if (!missing(weights) && type != "binary") { stop("weights only allowed for a binary response") } if (!missing(strata) && !is.factor(strata)) stop("Stratifying variable must be a factor") if(type=="binary") { if( is.null(eff) ) eff<-"OR" if( !(eff %in% c("OR","RR") ) ) stop( "Only RR and OR allowed for binary response" ) response <- as.numeric(response) tmp<-(response==0 | response==1) if(all(tmp,na.rm=TRUE)==FALSE) stop("Binary response must be logical or coded 0,1 or NA") } if(type=="count") fup<-is.na(response)*1 if(type=="failure") { if( is.null(eff) ) eff<-"RR" response <- as.numeric(response) tmp<-(response==0 | response==1) if(all(tmp,na.rm=TRUE)==FALSE) stop("Failure response must be logical or coded 0,1 or NA") } if(class(exposure)[1]=="ordered") { exposure<-factor(exposure, ordered=F) } if (!missing(control)) { if (is.list(control)) { control.names <- sapply(control.arg, deparse) if (control.names[1] == "list" && length(control.names) == length(control) + 1) { control.names <- control.names[-1] } else { control.names <- paste0(deparse(control.arg), "[", 1:length(control), "]") } names(control) <- control.names } else { control <- list(control) names(control) <- deparse(control.arg) } } cat("---------------------------------------------------------------------------","\n") cat("response : ", rname, "\n") cat("type : ", type, "\n") cat("exposure : ", ename, "\n") if(!missing(control))cat("control vars : ",names(control),"\n") if(!missing(strata)) { cat("stratified by : ",sname,"\n") } cat("\n") if(is.factor(exposure)) { cat(ename,"is a factor with levels: ") cat(paste(levels(exposure),collapse=" / "),"\n") exposure <- Relevel( exposure, base ) cat( "baseline is ", levels( exposure )[1] ,"\n") } else { cat(ename,"is numeric","\n") } if(!missing(strata)) { cat(sname,"is a factor with levels: ") cat(paste(levels(strata),collapse="/"),"\n") } if(type=="metric")cat("effects are measured as differences in means","\n") if(type=="binary") { if( eff=="OR" | is.null(eff))cat("effects are measured as odds ratios","\n") if( eff=="RR" )cat("effects are measured as relative risk","\n") } if(type=="failure") { if( eff=="RR" | is.null(eff))cat("effects are measured as rate ratios","\n") if( eff=="RD" )cat("effects are measured as rate differences","\n") } cat("---------------------------------------------------------------------------","\n") cat("\n") if ( type=="metric") family<-gaussian if ( type=="binary") family<-binomial(link=logit) if ( type=="failure" | type=="count") family<-poisson(link=log) if ( !is.null(eff) ) { if (type=="binary" & eff=="RR") family<-binomial(link=log) if (type=="failure" & eff=="RD") family<-poisson(link=identity) } if(is.factor(exposure)) { nlevE<-length(levels(exposure)) } if(is.factor(exposure)) { cat("effect of",ename,"on",rname,"\n") } else { cat("effect of an increase of 1 unit in",ename,"on",rname,"\n") } if(!missing(control)) { cat("controlled for",names(control),"\n\n") } if(!missing(strata)) { cat("stratified by",sname,"\n\n") } if(missing(strata)) { if(type=="metric") { if(missing(control)) { m<-glm(response~exposure,family=family) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~1,family=family,subset=!is.na(exposure)) } else { m<-glm(response~.+exposure,family=family, subset=!is.na(exposure),data=control) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~.,family=family, subset=!is.na(exposure),data=control) } res<-ci.lin(m,subset=c("Intercept","exposure"),alpha=alpha) res<-res[,c(1,5,6)] } if(type=="binary") { if(missing(control)) { m<-glm(response~exposure,family=family,weights=weights) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~1,family=family,subset=!is.na(exposure),weights=weights) } else { m<-glm(response~.+exposure,family=family, subset=!is.na(exposure),data=control,weights=weights) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~.,family=family, subset=!is.na(exposure),data=control,weights=weights) } res<-ci.lin(m,subset=c("Intercept","exposure"),Exp=TRUE,alpha=alpha) res<-res[,c(5,6,7)] } if (type=="failure" | type=="count") { if (missing(control)) { m<-glm(response/fup~exposure,weights=fup,family=family) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response/fup~1,weights=fup,family=family, subset=!is.na(exposure)) } else { m<-glm(response/fup~.+exposure,weights=fup,family=family, data=control) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response/fup~.,weights=fup,family=family, subset=!is.na(exposure),data=control) } res<-ci.exp(m,subset=c("Intercept","exposure"),alpha=alpha,Exp=(eff=="RR")) } res<-signif(res,digits) colnames(res)[1]<-c("Effect") if(is.factor(exposure)) { ln <- levels(exposure) rownames(res)[2:nlevE]<-paste(ln[2:nlevE],"vs",ln[1]) } aov <- anova(mm,m,test="Chisq") print( res[-1,] ) cat("\nTest for no effects of exposure on", aov[2,3],"df:", "p-value=",format.pval(aov[2,5],digits=3),"\n") invisible(list(res,paste("Test for no effects of exposure on", aov[2,3],"df:","p-value=",format.pval(aov[2,5],digits=3)))) } if(!missing(strata)) { sn <- levels(strata) nlevS<-length(levels(strata)) if(type=="metric") { if(missing(control)) { m<-glm(response~strata/exposure,family=family) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~strata+exposure,family=family) } else { m <-glm(response~strata/exposure + .,family=family, data=control) cat("number of observations ",m$df.null+1,"\n\n") mm <-glm(response~strata+exposure + .,family=family, data=control) } res<-ci.lin(m,subset=c("strata"),alpha=alpha)[c(-1:-(nlevS-1)),c(1,5,6)] } if(type=="binary") { if(missing(control)) { m<-glm(response~strata/exposure,family=family,weights=weights) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~strata+exposure,family=family,weights=weights) } else { m <-glm(response~strata/exposure + .,family=family, data=control,weights=weights) cat("number of observations ",m$df.null+1,"\n\n") mm <-glm(response~strata+exposure + .,family=family, data=control,weights=weights) } res<-ci.exp(m,subset=c("strata"),alpha=alpha)[c(-1:-(nlevS-1)),] } if (type=="failure" | type=="count") { if(missing(control)) { m<-glm(response/fup~strata/exposure,weights=fup,family=family) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response~strata+exposure,weights=fup,family=family) } else { m <-glm(response/fup~.+strata/exposure,weights=fup,family=family,data=control) cat("number of observations ",m$df.null+1,"\n\n") mm<-glm(response/fup~.+strata+exposure,weights=fup,family=family,data=control) } res<-ci.exp(m,subset=c("strata"),alpha=alpha)[c(-1:-(nlevS-1)),] } res<-signif(res,digits) colnames(res)[1]<-c("Effect") if(is.factor(exposure)) { ln<-levels(exposure) newrownames<-NULL for(i in c(1:(nlevE-1))) { newrownames<-c(newrownames, paste("strata",sn[1:nlevS],"level",ln[i+1],"vs",ln[1])) } } else { newrownames<-paste("strata",sn[1:nlevS]) } rownames(res)<-newrownames aov<-anova(mm,m,test="Chisq") print( res ) cat("\nTest for effect modification on", aov[2,3],"df:","p-value=",format.pval(aov[2,5],digits=3),"\n") invisible(list(res,paste("Test for effect modification on", aov[2,3],"df:","p-value=",format.pval(aov[2,5],digits=3)))) } }
library(dplyr) library(tidyr) library(distributional) test_that("vanilla dots geoms and stats work", { skip_if_no_vdiffr() set.seed(1234) p = tribble( ~dist, ~x, "norm", rnorm(20), "t", rt(20, 3) ) %>% unnest(x) %>% ggplot() vdiffr::expect_doppelganger("vanilla geom_dots", p + geom_dots(aes(x = dist, y = x)) ) vdiffr::expect_doppelganger("vanilla geom_dotsh", p + geom_dots(aes(y = dist, x = x)) ) vdiffr::expect_doppelganger("stat_dotsh with a group with 1 dot", p + stat_dots(aes(y = dist, x = x, color = x > 2)) ) vdiffr::expect_doppelganger("stat_dotsh with a group with 2 dots", p + stat_dots(aes(y = dist, x = x, color = x > 1)) ) set.seed(1234) p = tribble( ~dist, ~x, ~datatype, "norm", rnorm(20), "slab", "t", rt(20, 3), "slab" ) %>% unnest(x) %>% bind_rows(tribble( ~ dist, ~x, ~datatype, ~lower, ~upper, "norm", 0, "interval", -1, 1, "t", 0, "interval", -2, 2 )) %>% ggplot() vdiffr::expect_doppelganger("vanilla geom_dotsinterval", p + geom_dotsinterval(aes(y = dist, x = x, xmin = lower, xmax = upper, datatype = datatype)) ) set.seed(1234) p = tribble( ~dist, ~x, "norm", rnorm(100), "t", rt(100, 3) ) %>% unnest(x) %>% ggplot() vdiffr::expect_doppelganger("vanilla stat_dotsinterval", p + stat_dotsinterval(aes(x = dist, y = x), quantiles = 20) ) vdiffr::expect_doppelganger("vanilla stat_dotsintervalh", p + stat_dotsinterval(aes(y = dist, x = x), quantiles = 20) ) }) test_that("coordinate transformations work", { skip_if_no_vdiffr() set.seed(1234) p = tribble( ~dist, ~x, ~datatype, "norm", rnorm(20), "slab", "t", rt(20, 3), "slab" ) %>% unnest(x) %>% bind_rows(tribble( ~ dist, ~x, ~datatype, ~lower, ~upper, "norm", 0, "interval", -1, 1, "t", 0, "interval", -2, 2 )) %>% ggplot() + geom_dotsinterval(aes(y = dist, x = x, xmin = lower, xmax = upper, datatype = datatype)) vdiffr::expect_doppelganger("coord_flip with dotsinterval", p + coord_flip() ) expect_error( print(p + coord_polar(), newpage = FALSE), "geom_dotsinterval does not work properly with non-linear coordinates" ) }) test_that("scale transformations work", { skip_if_no_vdiffr() p = data.frame(x = dist_sample(list(qlnorm(ppoints(20))))) %>% ggplot(aes(xdist = x, y = 0)) vdiffr::expect_doppelganger("transformed scale with dist_sample", p + stat_dist_dotsinterval() + scale_x_log10() ) p = data.frame(x = qlnorm(ppoints(20))) %>% ggplot(aes(x = x, y = 0)) vdiffr::expect_doppelganger("transformed scale with sample data on x", p + stat_dist_dotsinterval() + scale_x_log10() ) p = data.frame(x = qlnorm(ppoints(100))) %>% ggplot(aes(x = x, y = 0)) vdiffr::expect_doppelganger("transformed scale, sample data, quantiles", p + stat_dist_dotsinterval(quantiles = 20) + scale_x_log10() ) }) test_that("stat_dist_dots[interval] works", { skip_if_no_vdiffr() p = tribble( ~dist, ~args, "norm", list(0, 1), "t", list(3) ) %>% ggplot(aes(dist = dist, args = args)) vdiffr::expect_doppelganger("vanilla stat_dist_dots", p + stat_dist_dots(aes(x = dist), n = 20, quantiles = 20) ) vdiffr::expect_doppelganger("vanilla stat_dist_dotsinterval", p + stat_dist_dotsinterval(aes(x = dist), n = 20, quantiles = 20) ) vdiffr::expect_doppelganger("vanilla stat_dist_dotsintervalh", p + stat_dist_dotsinterval(aes(y = dist), n = 20, quantiles = 20) ) }) test_that("stat_dist_dots works on NA data", { skip_if_no_vdiffr() p = data.frame( x = c("norm", NA, "norm"), y = c("a","b", NA) ) %>% ggplot(aes(dist = x, y = y)) expect_warning(vdiffr::expect_doppelganger("stat_dist_dots with na.rm = FALSE", p + stat_dist_dots(na.rm = FALSE, quantiles = 20) ), "Removed 1 rows containing non-finite values") vdiffr::expect_doppelganger("stat_dist_dots with na.rm = TRUE", p + stat_dist_dots(na.rm = TRUE, quantiles = 20) ) }) test_that("stat_dist_dots works on distributional objects", { skip_if_no_vdiffr() p = data.frame( x = dist_normal(0:1, 1:2), y = c("a","b") ) %>% ggplot(aes(dist = x, y = y)) vdiffr::expect_doppelganger("stat_dist_dots with dist_normal", p + stat_dist_dots(quantiles = 20) ) }) test_that("geom_dots binwidth can be specified in unit()s", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("geom_dots with unit() binwidth", mtcars %>% ggplot(aes(y = mpg)) + geom_dots(binwidth = unit(0.1, "native")) + facet_grid(~ am, scales = "free") ) }) test_that("geom_dots allows constraints on binwidth", { skip_if_no_vdiffr() p = data.frame(x = ppoints(20)) %>% ggplot(aes(x = x, y = 0L)) vdiffr::expect_doppelganger("max binwidth", p + geom_dots(binwidth = unit(c(0, 1/40), "npc")) ) vdiffr::expect_doppelganger("min binwidth", p + geom_dots(binwidth = unit(c(1/4, Inf), "npc")) ) }) test_that("dotplot layouts work", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("weave top", mtcars %>% ggplot(aes(x = mpg)) + geom_dots(layout = "weave", side = "top") ) vdiffr::expect_doppelganger("weave bottom", mtcars %>% ggplot(aes(x = mpg)) + geom_dots(layout = "weave", side = "bottom") ) vdiffr::expect_doppelganger("weave both", mtcars %>% ggplot(aes(x = mpg)) + geom_dots(layout = "weave", side = "both") ) vdiffr::expect_doppelganger("swarm top", mtcars %>% ggplot(aes(x = mpg)) + geom_dots(layout = "swarm") ) vdiffr::expect_doppelganger("swarm bottom", mtcars %>% ggplot(aes(x = mpg)) + geom_dots(layout = "swarm", side = "bottom") ) vdiffr::expect_doppelganger("swarm both", mtcars %>% ggplot(aes(x = mpg)) + geom_dots(layout = "swarm", side = "both") ) vdiffr::expect_doppelganger("swarm vertical", mtcars %>% ggplot(aes(y = mpg)) + geom_dots(layout = "swarm") ) }) test_that("dot order is correct", { skip_if_no_vdiffr() p = data.frame(x = qnorm(ppoints(50))) %>% ggplot(aes(x = x, fill = stat(x < 0))) vdiffr::expect_doppelganger("weave dot order", p + geom_dots(layout = "weave") + geom_vline(xintercept = 0) ) vdiffr::expect_doppelganger("swarm dot order", p + geom_dots(layout = "swarm") + geom_vline(xintercept = 0) ) }) test_that("na.rm is propagated to quantile dotplot", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("na.rm with quantile arg", data.frame(x = qnorm(ppoints(100), 1)) %>% ggplot(aes(x, y = 0)) + stat_dots(na.rm = TRUE, quantiles = 20) + scale_x_continuous(limits = c(0,4)) ) }) test_that("geom_dots works with NA in non-data axis", { skip_if_no_vdiffr() p = mtcars %>% ggplot(aes(x = mpg, y = factor(cyl))) + scale_y_discrete(limits = c("4", "6")) expect_warning(vdiffr::expect_doppelganger("NA on y axis", p + geom_dots(na.rm = FALSE) )) vdiffr::expect_doppelganger("removed NA on y axis", p + geom_dots(na.rm = TRUE) ) }) test_that("empty slab from NA removal works", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("dots with no slab from NA removal", { data.frame(x = c(1, NA), datatype = c("interval", "slab")) %>% ggplot(aes(x = x, xmin = x - 1, xmax = x + 1, datatype = datatype)) + geom_dotsinterval(na.rm = TRUE) }) }) test_that("geom_dots works on discrete distributions", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("one integer bin", data.frame(x = rep(1L, 10)) %>% ggplot(aes(x = x, y = 0)) + stat_dots(orientation = "horizontal") + geom_hline(yintercept = 0.9) ) vdiffr::expect_doppelganger("three integer bins", data.frame(x = c(rep(1L, 10), rep(2L, 12), rep(3L, 5))) %>% ggplot(aes(x = x, y = 0)) + stat_dots(orientation = "horizontal") + geom_hline(yintercept = 0.9) ) vdiffr::expect_doppelganger("one character bin", data.frame(x = rep("a", 10)) %>% ggplot(aes(x = x, y = 0)) + stat_dots(orientation = "horizontal") + geom_hline(yintercept = 0.9) ) vdiffr::expect_doppelganger("three character bins", data.frame(x = c(rep("a", 10), rep("b", 12), rep("c", 5))) %>% ggplot(aes(x = x, y = 0)) + stat_dots(orientation = "horizontal") + geom_hline(yintercept = 0.9) ) }) test_that("geom_dots correctly adjusts dot size for stroke size", { skip_if_no_vdiffr() p = data.frame(x = ppoints(40)) %>% ggplot(aes(x = x)) vdiffr::expect_doppelganger("size = 1 and 3", p + geom_dots(aes(y = "a"), binwidth = 1/20, size = 1, color = "black") + geom_dots(aes(y = "b"), binwidth = 1/20, size = 3, color = "black") ) }) test_that("side, justification, and scale can vary", { skip_if_no_vdiffr() vdiffr::expect_doppelganger("varying side", mtcars %>% ggplot(aes(x = mpg, y = cyl, side = case_when(cyl == 4 ~ "top", cyl == 6 ~ "both", cyl == 8 ~ "bottom"), )) + stat_dotsinterval(orientation = "horizontal") ) vdiffr::expect_doppelganger("varying side and just", mtcars %>% ggplot(aes(x = mpg, y = cyl, side = case_when(cyl == 4 ~ "top", cyl == 6 ~ "both", cyl == 8 ~ "bottom"), justification = case_when(cyl == 4 ~ 1, cyl == 6 ~ 0.25, cyl == 8 ~ 0) )) + stat_dotsinterval(orientation = "horizontal", scale = 0.5) ) vdiffr::expect_doppelganger("varying scale, side, just", tibble( x = c(0, rep(1, 9), 0), group = c(rep("a", 4), rep("b", 7)), scale = c(rep(1/3, 4), rep(2/3, 7)), side = c(rep("top", 4), rep("bottom", 7)), justification = c(rep(0, 4), rep(1, 7)) ) %>% ggplot(aes(x = x, y = group, scale = scale, side = side, justification = justification, color = group)) + stat_dots() ) })
rows.cntr.scatter <- function (data, x = 1, y = 2, filter=FALSE, cex.labls=3){ cntr1=cntr2=labels.final=NULL ncols <- ncol(data) nrows <- nrow(data) numb.dim.cols <- ncol(data) - 1 numb.dim.rows <- nrow(data) - 1 a <- min(numb.dim.cols, numb.dim.rows) pnt_labls <- rownames(data) res <- CA(data, ncp = a, graph = FALSE) dfr <- data.frame(lab = pnt_labls, cntr1 = res$row$contrib[,x] * 10, cntr2 = res$row$contrib[, y] * 10, coord1=res$row$coord[,x], coord2=res$row$coord[,y]) dfr$labels1 <- ifelse(dfr$coord1 < 0, "-", "+") dfr$labels2 <- ifelse(dfr$coord2 < 0, "-", "+") dfr$labels.final <- paste0(dfr$lab, " (",dfr$labels1,",",dfr$labels2, ")") xmax <- max(dfr[, 2]) + 10 ymax <- max(dfr[, 3]) + 10 limit.value <- max(xmax, ymax) ifelse(filter==FALSE, dfr <- dfr, dfr <- subset(dfr, cntr1>(100/nrows)*10 | cntr2>(100/nrows)*10)) p <- ggplot(dfr, aes(x = cntr1, y = cntr2)) + geom_point(alpha = 0.8) + geom_hline(yintercept = round((100/nrows) * 10, digits = 0), colour = "red", linetype = "dashed") + geom_vline(xintercept = round((100/nrows) *10, digits = 0), colour = "red", linetype = "dashed") + scale_y_continuous(limits = c(0, limit.value)) + scale_x_continuous(limits = c(0,limit.value)) + geom_abline(intercept = 0, slope = 1, colour=" theme(panel.background = element_rect(fill="white", colour="black")) + geom_text_repel(data = dfr, aes(label = labels.final), size = cex.labls) + labs(x = paste("Row categories' contribution (permills) to Dim.",x), y = paste("Row categories' contribution (permills) to Dim.", y)) + coord_fixed(ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE) return(p) }
NULL get_intercept <- function(object) { check_and_get_ipriorKernel(object) object$intercept } get_y <- function(object) { check_and_get_ipriorKernel(object) if (is.categorical(object)) { warning("Categorical variables were numerised.", call. = FALSE) } res <- as.numeric(object$y + get_intercept(object)) names(res) <- rownames(object$y) res } get_size <- function(object, units = "kB", standard = "SI") { check_and_get_ipriorKernel(object) print(object.size(object), units = units, standard = standard) } get_hyp <- function(object) { check_and_get_ipriorMod(object) res <- object$param.full if (length(res) > 0) return(res) else cat("NA") } get_lambda <- function(object) { tmp <- get_hyp(object) res <- tmp[grep("lambda", names(tmp))] if (length(res) > 0) return(res) else cat("NA") } get_psi <- function(object) { tmp <- get_hyp(object) res <- tmp[grep("psi", names(tmp))] if (length(res) > 0) return(res) else cat("NA") } get_lengthscale <- function(object) { tmp <- get_hyp(object) res <- tmp[grep("lengthscale", names(tmp))] if (length(res) > 0) return(res) else cat("NA") } get_hurst <- function(object) { tmp <- get_hyp(object) res <- tmp[grep("hurst", names(tmp))] if (length(res) > 0) return(res) else cat("NA") } get_offset <- function(object) { tmp <- get_hyp(object) res <- tmp[grep("offset", names(tmp))] if (length(res) > 0) return(res) else cat("NA") } get_degree <- function(object) { if (is.kern_poly(object)) { tmp <- get_kernels(object) return(get_polydegree(tmp)) } else { cat("NA") } } get_se <- function(object) { check_and_get_ipriorMod(object) expand_theta(object$se, object$ipriorKernel$thetal$theta.drop, NA) } get_kernels <- function(object) { if (is.ipriorMod(object)) theta <- object$theta if (is.ipriorKernel(object)) theta <- object$thetal$theta check_and_get_ipriorKernel(object) param.tab <- theta_to_param(theta, object) res <- param.tab$kernel names(res) <- object$xname res } get_kern_matrix <- function(object, theta = NULL, newdata) { if (is.ipriorMod(object)) { if (missing(newdata)) { res <- get_Hlam(object$ipriorKernel, object$theta, FALSE) } else { list2env(before_predict(object, newdata), envir = environment()) res <- get_Htildelam(object$ipriorKernel, object$theta, xstar) } return(res) } else if (is.ipriorKernel(object)) { if (missing(newdata)) { res <- get_Hlam(object, object$thetal$theta, FALSE) } else { list2env(before_predict(list(ipriorKernel = object), newdata), envir = environment()) res <- get_Htildelam(object, object$thetal$theta, xstar) } return(res) } } get_prederror <- function(object, error.type = c("RMSE", "MSE")) { check_and_get_ipriorMod(object) error.type <- match.arg(toupper(error.type), c("RMSE", "MSE")) if (error.type == "MSE") fun <- function(x) x if (error.type == "RMSE") fun <- function(x) sqrt(x) train.error <- c("Training" = object$train.error) if (is.ipriorKernel_cv(object)) { res <- fun(c(train.error, "Test" = object$test$test.error)) } else { res <- fun(train.error) } names(res) <- paste(names(res), error.type) res } get_mse <- function(object) get_prederror(object, "MSE") get_rmse <- function(object) get_prederror(object, "RMSE") get_estl <- function(object) { check_and_get_ipriorKernel(object) unlist(object$estl) } get_method <- function(object) { check_and_get_ipriorMod(object) cat(object$est.method) } get_convergence <- function(object) { check_and_get_ipriorMod(object) cat(object$est.conv) } get_niter <- function(object) { check_and_get_ipriorMod(object) niter <- object$niter maxit <- object$control$maxit cat("Iterations:", paste0(niter, "/", maxit, ".")) } get_time <- function(object) { check_and_get_ipriorMod(object) object$time } get_theta <- function(object) { check_and_get_ipriorMod(object) object$theta }
expected <- eval(parse(text="structure(\"Seed\", .Dim = c(1L, 1L))")); test(id=0, code={ argv <- eval(parse(text="list(structure(\"Seed\", .Dim = c(1L, 1L)))")); .Internal(t.default(argv[[1]])); }, o=expected);
MCP_soft <- function(z,lambda,a=3){ return( S_soft(z,lambda)/(1-1/a) * (abs(z) - a*lambda <= 0) + z * (abs(z) - a*lambda > 0) ) }
require(gamboostLSS) set.seed(1907) x1 <- rnorm(1000) x2 <- rnorm(1000) x3 <- rnorm(1000) x4 <- rnorm(1000) x5 <- rnorm(1000) x6 <- rnorm(1000) mu <- exp(1.5 +1 * x1 +0.5 * x2 -0.5 * x3 -1 * x4) sigma <- exp(-0.4 * x3 -0.2 * x4 +0.2 * x5 +0.4 * x6) y <- numeric(1000) for( i in 1:1000) y[i] <- rnbinom(1, size = sigma[i], mu = mu[i]) dat <- data.frame(x1, x2, x3, x4, x5, x6, y) model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = 10), center = TRUE) mstop(model) model2 <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = list(mu = 10, sigma = 20)), center = TRUE) mstop(model2) f1 <- fitted(model, parameter = "mu", type = "response") f2 <- fitted(model, parameter = "sigma", type = "response") model3 <- glmboost(y ~ ., family = NBinomialSigma(mu = f1, sigma = f2, stabilization = "none"), data = dat, control = boost_control(mstop = 10), center = TRUE) tmp <- coef(model3) + coef(model)$sigma stopifnot(max(abs(tmp - coef(model2)$sigma)) < sqrt(.Machine$double.eps)) layout(matrix(c(1:4, 6, 5), byrow = TRUE, ncol = 2)) plot(model, xlim = c(0,20), ylim = range(sapply(coef(model2), range))) plot(model2, xlim = c(0, 20), ylim = range(sapply(coef(model2), range))) plot(model, xlim = c(0,20), ylim = range(sapply(coef(model2), range)), parameter = "sigma") cp <- coef(model3, aggregate = "cumsum") cp <- matrix(unlist(cp), nrow = length(cp), byrow = TRUE) cp <- cp + coef(model)$sigma cp <- cbind(coef(model)$sigma, cp) cf <- cp[, ncol(cp)] col <- hcl(h = 40, l = 50, c = abs(cf)/max(abs(cf)) * 490) matlines(10:20, t(cp), type = "l", xlab = "Number of boosting iterations", ylab = "Coefficients", col = col) ms <- list(mu = 10, sigma = 20) model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = ms, trace = TRUE), center = TRUE) model[c(20, 30)] ms <- list(mu = 20, sigma = 30) modela <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = ms, trace = TRUE), center = TRUE) stopifnot(max(abs(coef(model)[[1]] - coef(modela)[[1]])) < sqrt(.Machine$double.eps)) stopifnot(max(abs(coef(model)[[2]] - coef(modela)[[2]])) < sqrt(.Machine$double.eps)) model[40] mstop(model) modelb <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = 40, trace = TRUE), center = TRUE) stopifnot(all.equal(risk(model), risk(modelb))) model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = 10, trace = TRUE), center = TRUE) model[20] model2 <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = 20, trace = TRUE), center = TRUE) stopifnot(all.equal(risk(model), risk(model2))) ms <- list(mu = 10, sigma = 20) model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = ms, trace = TRUE), center = TRUE) model[c(5,10)] ms <- list(mu = 5, sigma = 10) model2 <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = ms, trace = TRUE), center = TRUE) stopifnot(all.equal(risk(model), risk(model2))) ms <- list(mu = 10, sigma = 20) model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = ms, trace = TRUE), center = TRUE) model[c(10,25)] mstop(model) ms <- list(mu = 10, sigma = 25) model2 <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = ms, trace = TRUE), center = TRUE) stopifnot(all.equal(risk(model), risk(model2))) ms <- list(mu = 10, sigma = 20) model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = ms, trace = TRUE), center = TRUE) model[c(10,15)] mstop(model) ms <- list(mu = 10, sigma = 15) model2 <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = ms, trace = TRUE), center = TRUE) stopifnot(all.equal(risk(model), risk(model2))) ms <- list(mu = 10, sigma = 20) model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = ms, trace = TRUE), center = TRUE) model[c(10,9)] mstop(model) ms <- list(mu = 10, sigma = 9) model2 <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = ms, trace = TRUE), center = TRUE) stopifnot(all.equal(risk(model), risk(model2))) nus <- list(mu = 0, sigma = 0.2) model <- glmboostLSS(y ~ ., families = NBinomialLSS(), data = dat, control = boost_control(mstop = 10, nu = nus, trace = TRUE), center = TRUE) stopifnot(all(coef(model)[[1]] == 0)) stopifnot(any(coef(model)[[2]] != 0))
den2Q_qd <- function(densityCurves, dSup, t_vec) { n = nrow(densityCurves) m = length(t_vec) res = list() m_dSup = length(dSup) if(min(densityCurves) < 0) { stop("Please correct negative or zero probability density estimates.") } if (length(dSup) < 25) { stop("please give densely observed density curves, with length(dSup) >= 25 ") } res_list_dSup = sapply(1:n, function(i) { dens = densityCurves[i, ] if (abs(fdapace::trapzRcpp(X = dSup, dens) - 1) > 1e-05) { dens = dens/fdapace::trapzRcpp(X = dSup, Y = dens) } cdf_raw = fdapace::cumtrapzRcpp(X = dSup, Y = dens) spline_fit = splinefun(x = dSup, y = cdf_raw, method = "hyman") fitted_cdf = spline_fit(dSup, deriv = 0) fitted_pdf = spline_fit(dSup, deriv = 1) fitted_pdf_prime = spline_fit(dSup, deriv = 2) if(any(fitted_pdf==0)) { index = which(fitted_pdf == 0) fitted_pdf[index] = min(fitted_pdf[-index]) fitted_pdf = fitted_pdf/fdapace::trapzRcpp(X = dSup, Y = fitted_pdf) fitted_cdf = fdapace::cumtrapzRcpp(X = dSup, Y = fitted_pdf) } return(cbind(cdf = fitted_cdf, pdf = fitted_pdf, pdf_prime = fitted_pdf_prime)) }) Qobs_t = t(apply(res_list_dSup[1:m_dSup, ], MARGIN = 2, FUN = function(fitted_cdf) { unique_index = !duplicated(fitted_cdf) approx(x = unique(fitted_cdf), y = dSup[unique_index], xout = t_vec, rule = c(2, 2))[[2]] })) qobs_t = t(sapply(1:n, FUN = function(i) { fitted_cdf = res_list_dSup[1:m_dSup, i] unique_index = !duplicated(fitted_cdf) approx(x = unique(fitted_cdf), y = 1/res_list_dSup[(m_dSup+1):(2*m_dSup), i][unique_index], xout = t_vec, rule = c(2, 2))[[2]] })) qobs_prime_t = t(sapply(1:n, FUN = function(i) { fitted_cdf = res_list_dSup[1:m_dSup, i] unique_index = !duplicated(fitted_cdf) approx(x = unique(fitted_cdf), y = (-1/res_list_dSup[(m_dSup+1):(2*m_dSup), i]^3 * res_list_dSup[(2*m_dSup+1):(3*m_dSup), i])[unique_index], xout = t_vec, rule = c(2, 2))[[2]] })) res$Qobs = Qobs_t res$qobs = qobs_t res$qobs_prime = qobs_prime_t res$fobs = 1/res$qobs return(res) }
"stabiliser_example"
library(OpenMx) data(demoOneFactor) manifests <- names(demoOneFactor) latents <- c("G") template <- mxModel( "template", type="RAM", manifestVars = manifests, latentVars = latents, mxPath(from=latents, to=manifests, values=rnorm(length(manifests))), mxPath(from=manifests, arrows=2, values=rlnorm(length(manifests))), mxPath(from=latents, arrows=2, free=FALSE, values=1.0), mxPath(from = 'one', to = manifests, values=rnorm(length(manifests)))) factorRaw <- mxModel(template, name="OneFactorRaw", mxData(demoOneFactor, type="raw")) factorCov <- mxModel(template, name="OneFactorCov", mxData(observed=cov(demoOneFactor), means=colMeans(demoOneFactor), type="cov", numObs=nrow(demoOneFactor))) plan <- mxComputeSequence(list( mxComputeOnce('fitfunction', 'fit'), mxComputeNumericDeriv(checkGradient=FALSE, hessian=FALSE, iterations=2), mxComputeReportDeriv(), mxComputeReportExpectation() )) factorRaw <- mxRun(mxModel(factorRaw, plan)) factorCov <- mxRun(mxModel(factorCov, plan)) omxCheckCloseEnough(factorRaw$output$fit, factorCov$output$fit + prod(dim(demoOneFactor))*log(2*pi), 1e-10) omxCheckCloseEnough(factorRaw$output$gradient, factorCov$output$gradient, 1e-5)
check_predictions <- function(object, iterations = 50, check_range = FALSE, re_formula = NULL, ...) { if (isTRUE(insight::model_info(object, verbose = FALSE)$is_bayesian) && isFALSE(inherits(object, "BFBayesFactor"))) { insight::check_if_installed( "bayesplot", "to create posterior prediction plots for Stan models" ) bayesplot::pp_check(object) } else if (isTRUE(inherits(object, "BFBayesFactor"))) { insight::format_message(stop( "Posterior preditive checks not yet supported for BayesFactor models", call. = FALSE )) } else { pp_check.lm( object, iterations = iterations, check_range = check_range, re_formula = re_formula, ... ) } } pp_check.lm <- function(object, iterations = 50, check_range = FALSE, re_formula = NULL, ...) { out <- tryCatch( { stats::simulate(object, nsim = iterations, re.form = re_formula, ...) }, error = function(e) { NULL } ) if (is.null(out)) { stop(insight::format_message(sprintf("Could not simulate responses. Maybe there is no 'simulate()' for objects of class '%s'?", class(object)[1])), call. = FALSE) } response <- insight::get_response(object) resp_string <- insight::find_terms(object)$response pattern <- "^(scale|exp|expm1|log|log1p|log10|log2|sqrt)" if (!is.null(resp_string) && grepl(paste0(pattern, "\\("), resp_string)) { out <- .backtransform_sims(out, resp_string) } out$y <- response attr(out, "check_range") <- check_range class(out) <- c("performance_pp_check", "see_performance_pp_check", class(out)) out } pp_check.glm <- pp_check.glmmTMB <- pp_check.glm.nb <- pp_check.lme <- pp_check.merMod <- pp_check.MixMod <- pp_check.mle2 <- pp_check.negbin <- pp_check.polr <- pp_check.rma <- pp_check.vlm <- pp_check.wbm <- pp_check.lm posterior_predictive_check <- check_predictions check_posterior_predictions <- check_predictions print.performance_pp_check <- function(x, verbose = TRUE, ...) { original <- x$y replicated <- x[which(names(x) != "y")] if (min(replicated) > min(original)) { if (verbose) { insight::print_color( insight::format_message("Warning: Minimum value of original data is not included in the replicated data.", "Model may not capture the variation of the data."), "red" ) } } if (max(replicated) < max(original)) { if (verbose) { insight::print_color( insight::format_message("Warning: Maximum value of original data is not included in the replicated data.", "Model may not capture the variation of the data."), "red" ) } } if (requireNamespace("see", quietly = TRUE)) { NextMethod() } invisible(x) } plot.performance_pp_check <- function(x, ...) { insight::check_if_installed("see", "to plot posterior predictive checks") NextMethod() } .backtransform_sims <- function(sims, resp_string) { if (grepl("log(log(", resp_string, fixed = TRUE)) { sims[] <- lapply(sims, function(i) exp(exp(i))) } else if (grepl("log(", resp_string, fixed = TRUE)) { sims[] <- lapply(sims, function(i) exp(i)) } else if (grepl("log1p(", resp_string, fixed = TRUE)) { sims[] <- lapply(sims, function(i) expm1(i)) } else if (grepl("log10(", resp_string, fixed = TRUE)) { sims[] <- lapply(sims, function(i) 10^i) } else if (grepl("log2(", resp_string, fixed = TRUE)) { sims[] <- lapply(sims, function(i) 2^i) } else if (grepl("sqrt(", resp_string, fixed = TRUE)) { sims[] <- lapply(sims, function(i) i^2) } else if (grepl("exp(", resp_string, fixed = TRUE)) { sims[] <- lapply(sims, function(i) log(i)) } else if (grepl("expm1(", resp_string, fixed = TRUE)) { sims[] <- lapply(sims, function(i) log1p(i)) } sims }
library(tidyverse) library(here) library(jkmisc) library(ggraph) library(tidygraph) library(glue) library(ggtext) library(magick) ikea <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv') lvl_one <- ikea %>% group_by(category) %>% summarize(price = sum(price), n = n()) %>% mutate(from = "root") %>% rename(to = category) lvl_two <- ikea %>% group_by(category, name) %>% summarize(price = sum(price), n = n()) %>% rename(from = category, to = name) %>% mutate(idx = row_number()) edges <- bind_rows(lvl_one, lvl_two) %>% select(from, to, n, price) %>% distinct() root <- summarize(edges, across(c(price, n), sum), node = "root") lvl_one_nodes <- lvl_one %>% select(node = to, n, price) lvl_two_nodes <- lvl_two %>% ungroup() %>% select(node = to, n, price, idx) nodes <- bind_rows(root, lvl_one_nodes, lvl_two_nodes) %>% distinct(node, n, price) %>% select(node, n, price) graph <- tbl_graph(nodes, edges) final_graph <- graph %>% activate(nodes) %>% filter(!node_is_isolated()) stem_labels <- create_layout(final_graph, layout = 'dendrogram', circular = TRUE) %>% filter(leaf == FALSE) %>% slice(-1) %>% mutate(percent = n/sum(n, na.rm = TRUE)) %>% mutate(label = str_to_upper(str_replace_all(str_wrap(node, 10), "(?<=.)(?!$)", " "))) %>% mutate(xend = case_when(node == "Sofas & armchairs" ~ x - 0.1, node == "Sideboards, buffets & console tables" ~ x -0.07, node == "Outdoor furniture" ~ x + 0.01, node == "Room dividers" ~ x + 0.02, node == "Nursery furniture" ~ x + 0.05, node == "Children's furniture" ~ x + 0.1, node == "Chests of drawers & drawer units" ~ x + 0.15, TRUE ~ x)) %>% mutate(yend = case_when(node == "Sofas & armchairs" ~ y + 0.1, node == "Room dividers" ~ y, TRUE ~ y)) %>% mutate(xold = x, x = xend, yold = y, y = yend) lines <- stem_labels %>% mutate(xold = case_when(node == "Sofas & armchairs" ~ xold + 0.01, TRUE ~ xold), y = case_when(node == "Sofas & armchairs" ~ y - 0.1, TRUE ~ y)) groups <- final_graph %>% activate(edges) %>% as_tibble() %>% mutate(idx = row_number()) %>% filter(idx > 18) %>% group_by(from) %>% summarize(idx = range(idx)) bars <- create_layout(final_graph, layout = 'dendrogram', circular = TRUE) %>% right_join(groups, by = c(".ggraph.index" = "idx")) %>% mutate(x_item = rep(c("x", "xend"), 17)) %>% pivot_wider(names_from = x_item, values_from = x) %>% mutate(y_item = rep(c("y", "yend"), 17)) %>% pivot_wider(names_from = y_item, values_from = y) %>% group_by(from) %>% summarize(across(.ggraph.orig_index:yend, mean, na.rm = TRUE)) %>% mutate(circular = as.logical(circular)) plot <- ggraph(final_graph, layout = 'dendrogram', circular = TRUE) + geom_edge_diagonal(colour = " geom_node_text(aes(x = x*3, y = y*3, label = glue("{label}\n({scales::percent(percent, accuracy = 0.1)})"), filter = leaf == FALSE & node != 'root', hjust = ifelse(between(node_angle(x,y), 90, 270), 1, 0)), size = 3, color = "white", family = "Noto Sans Bold", data = stem_labels) + geom_segment(aes(x = 2*xold, xend = 2.8*x, y = 2*y, yend = 2.8*yend), data = lines, color = "white", size = 0.2) + geom_node_point(aes(filter = leaf), colour = " geom_segment(data = filter(bars, from == 2), aes(x = x, xend = xend, y = y, yend = yend, group = 1)) + labs(x = NULL, y = NULL, title = NULL, subtitle = NULL, caption = "**Data**: IKEA & Kaggle | **Graphic**: @jakekaupp") + theme_jk(dark = TRUE, grid = FALSE, markdown = TRUE) + theme(legend.position= "none", plot.background = element_rect(fill = " axis.text.x = element_blank(), axis.text.y = element_blank()) + expand_limits(x = c(-2, 2), y = c(-2, 2)) + coord_equal() ggsave(here("2020", "week45", "tw45_plot.png"), plot, width = 12, height = 12) image_read(here("2020", "week45", "tw45_plot.png")) %>% image_trim() %>% image_write(here("2020", "week45", "tw45_plot.png"))
require(distrEx) options("newDevice"=TRUE) D1 <- PrognCondDistribution(Error = Td(1)) D2 <- PrognCondDistribution(Error = Td(3)) D3 <- PrognCondDistribution(Error = ConvexContamination(Norm(), Norm(4,1), size=0.1)) D4 <- PrognCondDistribution(Error = ConvexContamination(Norm(), Norm(0,9), size=0.1)) D5 <- PrognCondDistribution(Error = ConvexContamination(Norm(), Norm(0,9), size=0.2)) y <- seq(from = 0, to = 8, length = 100) f <- function(y, e1){ E(e1, fun = function(x){x[1]}, cond = y) } system.time(erg1 <- sapply(y, f, D1)) system.time(erg2 <- sapply(y, f, D2)) system.time(erg3 <- sapply(y, f, D3)) system.time(erg4 <- sapply(y, f, D4)) system.time(erg5 <- sapply(y, f, D5)) post.mod <- function(cond, e1) { optimize(f = d(e1), interval = c(q.l(e1)(1e-3, cond), q.l(e1)(1e-3, cond, lower.tail = FALSE)), tol = .Machine$double.eps^0.25, maximum = TRUE, cond = cond)$maximum } D0 <- PrognCondDistribution() system.time(perg0 <- sapply(y, post.mod, D0)) system.time(perg1 <- sapply(y, post.mod, D1)) system.time(perg2 <- sapply(y, post.mod, D2)) system.time(perg3 <- sapply(y, post.mod, D3)) system.time(perg4 <- sapply(y, post.mod, D4)) system.time(perg5 <- sapply(y, post.mod, D5)) plot(y, 0.5*y, type = "l") lines(y, erg1, col = "red") lines(y, erg2, col = "blue") lines(y, erg3, col = "orange") lines(y, erg4, col = "darkgreen") lines(y, erg5, col = "darkred") title("Posterior Mean") windows() plot(y, perg0, type = "l", ylim = c(-0.5, 4)) lines(y, perg1, col = "red") lines(y, perg2, col = "blue") lines(y, perg3, col = "orange") lines(y, perg4, col = "darkgreen") lines(y, perg5, col = "darkred") title("Posterior Modus")
mackWolfeTest <- function(x, ...) UseMethod("mackWolfeTest") mackWolfeTest.default <- function(x, g, p = NULL, nperm=1000,...) { if (is.list(x)) { if (length(x) < 2L) stop("'x' must be a list with at least 2 elements") DNAME <- deparse(substitute(x)) x <- lapply(x, function(u) u <- u[complete.cases(u)]) k <- length(x) l <- sapply(x, "length") if (any(l == 0)) stop("all groups must contain data") g <- factor(rep(1 : k, l)) p <- x$p nperm <- x$nperm x <- unlist(x) } else { if (length(x) != length(g)) stop("'x' and 'g' must have the same length") DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(g))) OK <- complete.cases(x, g) x <- x[OK] g <- g[OK] if (!all(is.finite(g))) stop("all group levels must be finite") g <- factor(g) k <- nlevels(g) if (k < 2) stop("all observations are in the same group") } if (!is.null(p)){ if (p > k){ stop("Selected 'p' > Nr. of groups: ", p, " > ", k) } else if (p < 1){ stop("Selected 'p' < 1: ", p) } } Rij <- rank(x) n <- tapply(x, g, length) Ustat.fn <- function(Rij, g, k){ lev <- levels(g) U <- diag(k) .fn <- function(Ri, Rj){ tmp <- sum( unlist( sapply(Ri, function(i) length(Rj[Rj > i]) ) ) ) return(tmp) } for(i in 2:k){ for(j in 1:(i-1)){ U[i,j] <- .fn(Rij[g==lev[i]], Rij[g==lev[j]]) U[j,i] <- .fn(Rij[g==lev[j]], Rij[g==lev[i]]) } } return(U) } Ap.fn <- function(p, U){ tmp1 <- 0 if (p > 1){ for(i in 1:(p-1)){ for (j in (i+1):p){ tmp1 <- tmp1 + U[i,j] } } } tmp2 <- 0 if (p < k){ for (i in p:(k-1)){ for(j in (i+1):k){ tmp2 <- tmp2 + U[j,i] } } } return(tmp1 + tmp2) } N1.fn <- function(p, n) sum(n[1:p]) N2.fn <- function(p, n) sum(n[p:k]) meanAt <- function(p, n){ N1 <- N1.fn(p, n) N2 <- N2.fn(p, n) return((N1^2 + N2^2 - sum(n^2) - n[p]^2)/4) } varAt <- function(p, n){ N1 <- N1.fn(p, n) N2 <- N2.fn(p, n) N <- sum(n) var0 <- (2 * (N1^3 + N2^3) + 3 * (N1^2 + N2^2) - sum(n^2 * (2 * n + 3)) - n[p]^2 * (2 * n[p] + 3) + 12 * n[p] * N1 * N2 - 12 * n[p]^2 * N) / 72 return(var0) } if (!is.null(p)){ if(sum(table(x) - 1) > 0){ warning(c("Ties are present. Exact variances can not be computed.", " p-values are over-estimated.")) } U <- Ustat.fn(Rij, g, k) EST <- c("Ap" = Ap.fn(p, U)) MEAN <- meanAt(p, n) SD <- sqrt(varAt(p,n)) METHOD <- c("Mack-Wolfe test for umbrella alternatives", "with known peak") STAT <- (EST - MEAN)/ SD names(STAT) <- NULL names(STAT) <- "z" PVAL <- pnorm(STAT, lower.tail=FALSE) } else { U <- Ustat.fn(Rij, g, k) Ap <- sapply(1:k, function(p) Ap.fn(p, U)) mean0 <- sapply(1:k, function(p) meanAt(p, n)) var0 <- sapply(1:k, function(p) varAt(p, n)) Astar <- (Ap - mean0) / sqrt(var0) STAT <- c("Ap*" = max(Astar)) p <- which(Astar == STAT) EST <- NULL mt <- sapply(1:nperm, function(i){ ix <- sample(Rij) Uix <- Ustat.fn(ix, g, k) Apix <- sapply(1:k, function(p) Ap.fn(p, Uix)) Astarix <- (Apix - mean0) / sqrt(var0) max(Astarix) }) PVAL <- length(mt[mt > STAT]) / nperm METHOD <- c("Mack-Wolfe test for umbrella alternatives", "with unknown peak") } ans <- list(method = METHOD, data.name = DNAME, p.value = PVAL, statistic = STAT, alternative = paste0("\ntheta_1 <= ... <= theta_p >= ... >= theta_k, p = ",p), estimates = EST) class(ans) <- "htest" ans } mackWolfeTest.formula <- function(formula, data, subset, na.action, p = NULL, nperm=1000, ...) { mf <- match.call(expand.dots=FALSE) m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0L) mf <- mf[c(1L, m)] mf[[1L]] <- quote(stats::model.frame) if(missing(formula) || (length(formula) != 3L)) stop("'formula' missing or incorrect") mf <- eval(mf, parent.frame()) if(length(mf) > 2L) stop("'formula' should be of the form response ~ group") DNAME <- paste(names(mf), collapse = " by ") names(mf) <- NULL y <- do.call("mackWolfeTest", c(as.list(mf), p = p, nperm=nperm)) y$data.name <- DNAME y }
testData = createData(sampleSize = 40, family = gaussian(), randomEffectVariance = 0) fittedModel <- lm(observedResponse ~ Environment1, data = testData) res = simulateResiduals(fittedModel) testTemporalAutocorrelation(res, time = testData$time) timeSeries1 = createData(sampleSize = 40, family = gaussian(), randomEffectVariance = 0) timeSeries1$location = 1 timeSeries2 = createData(sampleSize = 40, family = gaussian(), randomEffectVariance = 0) timeSeries2$location = 2 testData = rbind(timeSeries1, timeSeries2) fittedModel <- lm(observedResponse ~ Environment1, data = testData) res = simulateResiduals(fittedModel) res = recalculateResiduals(res, group = testData$time) testTemporalAutocorrelation(res, time = unique(testData$time)) res = recalculateResiduals(res, sel = testData$location == 1) testTemporalAutocorrelation(res, time = unique(testData$time)) \dontrun{ set.seed(1) C <- exp(-as.matrix(dist(seq(0,50,by=.5)))) obs <- as.numeric(mvtnorm::rmvnorm(1,sigma=C)) opar <- par(mfrow = c(1,2)) image(C, main = "Specified autocorrelation (covariance)") plot(obs, type = "l", main = "Time series") par(opar) x = replicate(1000, as.numeric(mvtnorm::rmvnorm(1,sigma=C))) res <- createDHARMa(x, obs, integerResponse = F) plot(res) testTemporalAutocorrelation(res, time = 1:length(res$scaledResiduals)) res <- createDHARMa(x, obs, integerResponse = F, rotation = C) testUniformity(res) testTemporalAutocorrelation(res, time = 1:length(res$scaledResiduals)) res <- createDHARMa(x, obs, integerResponse = F, rotation = "estimated") testUniformity(res) testTemporalAutocorrelation(res, time = 1:length(res$scaledResiduals)) }
as_seqinr_alignment <- function (x, ...) { UseMethod("as_seqinr_alignment", x) } as_seqinr_alignment.bioseq_dna <- function(x, ...) { check_dna(x) s <- x attributes(s) <- NULL res <- list(nb = length(x), nam = names(x), seq = s) class(res) <- "alignment" return(res) } as_seqinr_alignment.bioseq_rna <- function(x, ...) { check_rna(x) s <- x attributes(s) <- NULL res <- list(nb = length(x), nam = names(x), seq = s) class(res) <- "alignment" return(res) } as_seqinr_alignment.bioseq_aa <- function(x, ...) { check_aa(x) s <- x attributes(s) <- NULL res <- list(nb = length(x), nam = names(x), seq = s) class(res) <- "alignment" return(res) }
"ecld.mpnum" <- function(object, x) { if ([email protected]) return(ecd.mpfr(x)) if (class(x)=="list") return(simplify2array(x)) return(x) } "ecld.ifelse" <- function(object, test, yes, no) { rs <- ifelse(test, ecld.mpnum(object, yes), ecld.mpnum(object, no)) ecld.mpnum(object, rs) } "ecld.sapply" <- function(object, x, FUN, ...) { rs <- sapply(x, FUN, ...) ecld.mpnum(object, rs) } "ecld.mclapply" <- function(object, x, FUN, ...) { rs <- parallel::mclapply(x, FUN, ...) ecld.mpnum(object, rs) }
local({ wrap.file <- function() tcltk::tclvalue(file.name) <- tcltk::tcl("tk_getOpenFile") wrap.mask <- function() tcltk::tclvalue(mask) <- tcltk::tcl("tk_getOpenFile") do <- function(){ if(tcltk::tclvalue(alt) == "File Summary") fs() if(tcltk::tclvalue(alt) == "Plot Time Series") pts() if(tcltk::tclvalue(alt) == "Plot Periodogram") period() if(tcltk::tclvalue(alt) == "Image Slice") im.sl() if(tcltk::tclvalue(alt) == "Image Volume") im.vol() if(tcltk::tclvalue(alt) == "Movie") im.mov() if(tcltk::tclvalue(alt) == "Spectral Summary") im.spec() } fs <- function(...) f.analyze.file.summary(tcltk::tclvalue(file.name)) pts <- function(...) { plot(f.read.analyze.ts(tcltk::tclvalue(file.name), as.numeric(tcltk::tclvalue(x)), as.numeric(tcltk::tclvalue(y)), as.numeric(tcltk::tclvalue(z))), typ = "l", ylab = "fMRI response", xlab = "Scans") } period <- function(...){ par(mfrow = c(1, 1), mar = c(4, 4, 5, 5)) a <- f.read.analyze.ts(tcltk::tclvalue(file.name), as.numeric(tcltk::tclvalue(x)), as.numeric(tcltk::tclvalue(y)), as.numeric(tcltk::tclvalue(z))) b <- fft(a) / sqrt(2 * pi * length(a)) b <- b[10:floor(length(b) / 2) + 1] b <- Mod(b)^2 plot(b, ylab = "Periodogram", xlab = "Fourier Frequency") } im.sl <- function(...){ par(mfrow = c(1, 1), mar = c(0, 0, 0, 0)) a <- f.read.analyze.slice(tcltk::tclvalue(file.name), as.numeric(tcltk::tclvalue(z)), as.numeric(tcltk::tclvalue(t))) image(a) par(mfrow = c(1, 1), mar = c(4, 4, 5, 5)) } im.vol <- function(...){ a <- f.read.analyze.header(tcltk::tclvalue(file.name))$dim d <- ceiling(sqrt(a[4])) par(mfrow =c(d, d), mar = c(0, 0, 0, 0)) b <- array(0, dim = a[2:4]) for(i in 1:a[4]){ b[, , i] <- f.read.analyze.slice(tcltk::tclvalue(file.name), i, as.numeric(tcltk::tclvalue(t))) } for(i in 1:a[4]){ image(b[, , i], axes = FALSE) box() } par(mfrow = c(1, 1), mar = c(4, 4, 5, 5)) } im.mov <- function(...){ par(mfrow = c(1, 1), mar = c(0, 0, 0, 0)) a <- f.read.analyze.header(tcltk::tclvalue(file.name))$dim b <- array(0, dim = c(a[2], a[3], a[5])) for(i in 1:a[5]){ b[, , i] <- f.read.analyze.slice(tcltk::tclvalue(file.name), as.numeric(tcltk::tclvalue(z)), i) } image(b[, , 1], axes = FALSE) for(i in 2:a[5]){ image(b[, , i], axes = FALSE, add = TRUE) } par(mfrow = c(1, 1), mar = c(4, 4, 5, 5)) } im.spec <- function(...){ par(mfrow = c(1, 1), mar = c(4, 4, 5, 5)) if(tcltk::tclvalue(mask) == "") tcltk::tclvalue(mask) <- FALSE a <- f.spectral.summary(tcltk::tclvalue(file.name), tcltk::tclvalue(mask)) par(mfrow = c(1, 1), mar = c(4, 4, 5, 5)) } mask <- tcltk::tclVar("sdasd") alt <- tcltk::tclVar() x <- tcltk::tclVar() y <- tcltk::tclVar() z <- tcltk::tclVar() t <- tcltk::tclVar() if(.Platform$OS.type == "windows") flush.console() base <- tcltk::tktoplevel() tcltk::tkwm.title(base, "ANALYZE file explore") f1 <- tcltk::tkframe(base, relief = "groove", borderwidth = 2) file.name <- tcltk::tclVar() tcltk::tkpack(tcltk::tkentry(f1, textvariable = file.name, width = 40)) file.find.but <- tcltk::tkbutton(f1, text = "Select File", command = wrap.file) tcltk::tkpack(file.find.but) mask <- tcltk::tclVar() tcltk::tkpack(tcltk::tkentry(f1, textvariable = mask, width = 40)) mask.find.but <- tcltk::tkbutton(f1, text = "Select Mask File", command = wrap.mask) tcltk::tkpack(mask.find.but) opt.rbuts <- tcltk::tkframe(base, relief = "groove", borderwidth = 2) tcltk::tkpack(tcltk::tklabel(opt.rbuts, text = "Options")) alt <- tcltk::tclVar() for (i in c("File Summary", "Plot Time Series", "Plot Periodogram", "Image Slice", "Image Volume", "Movie", "Spectral Summary")) { tmp <- tcltk::tkradiobutton(opt.rbuts, text = i, variable = alt, value = i) tcltk::tkpack(tmp, anchor = "w") } fr2 <- tcltk::tkframe(base, relief = "groove", borderwidth = 2) x <- tcltk::tclVar() x.entry <- tcltk::tkentry(fr2, textvariable = x) y <- tcltk::tclVar() y.entry <- tcltk::tkentry(fr2, textvariable = y) z <- tcltk::tclVar() z.entry <- tcltk::tkentry(fr2, textvariable = z) t <- tcltk::tclVar() t.entry <- tcltk::tkentry(fr2, textvariable = t) tcltk::tkgrid(f1) tcltk::tkgrid(tcltk::tklabel(fr2, text = "Variables"), columnspan = 2) tcltk::tkgrid(tcltk::tklabel(fr2, text = "x variable"), x.entry) tcltk::tkgrid(tcltk::tklabel(fr2, text = "y variable"), y.entry) tcltk::tkgrid(tcltk::tklabel(fr2, text = "z variable"), z.entry) tcltk::tkgrid(tcltk::tklabel(fr2, text = "t variable"), t.entry) tcltk::tkgrid(opt.rbuts) tcltk::tkgrid(fr2) fr3 <- tcltk::tkframe(base, borderwidth = 2) q.but <- tcltk::tkbutton(fr3, text = "Quit", command = function() tcltk::tkdestroy(base)) ok.but <- tcltk::tkbutton(fr3, text = "OK", command = do) tcltk::tkgrid(ok.but, q.but) tcltk::tkgrid(fr3) })