code
stringlengths 1
13.8M
|
---|
library(testthat)
library(hansard)
test_check("hansard", filter = "misc1") |
mlnaka <- function(x, na.rm = FALSE, ...) {
if (na.rm) x <- x[!is.na(x)] else assertthat::assert_that(!anyNA(x))
ml_input_checker(x)
assertthat::assert_that(min(x) > 0)
n <- length(x)
object <- mlgamma(x^2, na.rm = na.rm, ...)
object["rate"] <- 1 / object["rate"] * object["shape"]
names(object) <- c("shape", "scale")
shape <- object["shape"]
scale <- object["scale"]
class(object) <- "univariateML"
attr(object, "model") <- "Nakagami"
attr(object, "density") <- "nakagami::dnaka"
attr(object, "logLik") <-
unname(n * (shape * log(shape) + log(2) -
lgamma(shape) - shape * log(scale)) +
(2 * shape - 1) * sum(log(x)) - shape / scale * sum(x^2))
attr(object, "support") <- c(0, Inf)
attr(object, "n") <- length(x)
attr(object, "call") <- match.call()
object
} |
context("varying")
if(identical(Sys.getenv("NCRAN"), "TRUE")) pwlddev <- eval(parse(text = paste0("plm", ":", ":", "pdata.frame(wlddev, index = c('iso3c', 'year'))")))
gwlddev <- fgroup_by(wlddev, iso3c)
wdm <- qM(`cat_vars<-`(wlddev, dapply(cat_vars(wlddev), qG)))
g <- GRP(wlddev, ~ region + year)
test_that("vector, matrix and data.frame methods work as intended", {
expect_true(all(dapply(wlddev, varying)))
expect_true(all(varying(wlddev)))
expect_true(all(varying(wdm)))
expect_true(is.atomic(varying(wlddev, drop = TRUE)))
expect_true(is.atomic(varying(wdm, drop = TRUE)))
expect_true(is.data.frame(varying(wlddev, drop = FALSE)))
expect_true(is.matrix(varying(wdm, drop = FALSE)))
expect_true(all_identical(dapply(wlddev, varying), varying(wlddev), varying(wdm)))
expect_true(all_identical(dapply(wlddev, varying, drop = FALSE), varying(wlddev, drop = FALSE), qDF(varying(wdm, drop = FALSE))))
expect_equal(dapply(unattrib(wlddev), varying, wlddev$iso3c), c(FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_true(all_identical(dapply(wlddev, varying, wlddev$iso3c), varying(wlddev, wlddev$iso3c), varying(wdm, wlddev$iso3c)))
expect_true(all_identical(dapply(wlddev, varying, wlddev$iso3c, drop = FALSE), varying(wlddev, wlddev$iso3c, drop = FALSE), qDF(varying(wdm, wlddev$iso3c, drop = FALSE))))
expect_true(all_identical(qM(dapply(wlddev, varying, wlddev$iso3c, any_group = FALSE)),
qM(varying(wlddev, wlddev$iso3c, any_group = FALSE)),
varying(wdm, wlddev$iso3c, any_group = FALSE)))
expect_true(all_identical(qM(dapply(wlddev, varying, wlddev$iso3c, any_group = FALSE, drop = FALSE)),
qM(varying(wlddev, wlddev$iso3c, any_group = FALSE, drop = FALSE)),
varying(wdm, wlddev$iso3c, any_group = FALSE, drop = FALSE)))
expect_true(all_identical(qM(dapply(wlddev, varying, wlddev$iso3c, any_group = FALSE, use.g.names = FALSE)),
qM(varying(wlddev, wlddev$iso3c, any_group = FALSE, use.g.names = FALSE)),
varying(wdm, wlddev$iso3c, any_group = FALSE, use.g.names = FALSE)))
expect_true(all_identical(qM(dapply(wlddev, varying, wlddev$iso3c, any_group = FALSE, use.g.names = FALSE, drop = FALSE)),
qM(varying(wlddev, wlddev$iso3c, any_group = FALSE, use.g.names = FALSE, drop = FALSE)),
varying(wdm, wlddev$iso3c, any_group = FALSE, use.g.names = FALSE, drop = FALSE)))
expect_equal(dapply(unattrib(wlddev), varying, g), c(TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_true(all_identical(dapply(wlddev, varying, g), varying(wlddev, g), varying(wdm, g)))
expect_true(all_identical(dapply(wlddev, varying, g, drop = FALSE), varying(wlddev, g, drop = FALSE), qDF(varying(wdm, g, drop = FALSE))))
expect_true(all_identical(qM(dapply(wlddev, varying, g, any_group = FALSE)),
qM(varying(wlddev, g, any_group = FALSE)),
varying(wdm, g, any_group = FALSE)))
expect_true(all_identical(qM(dapply(wlddev, varying, g, any_group = FALSE, drop = FALSE)),
qM(varying(wlddev, g, any_group = FALSE, drop = FALSE)),
varying(wdm, g, any_group = FALSE, drop = FALSE)))
expect_true(all_identical(qM(dapply(wlddev, varying, g, any_group = FALSE, use.g.names = FALSE)),
qM(varying(wlddev, g, any_group = FALSE, use.g.names = FALSE)),
varying(wdm, g, any_group = FALSE, use.g.names = FALSE)))
expect_true(all_identical(qM(dapply(wlddev, varying, g, any_group = FALSE, use.g.names = FALSE, drop = FALSE)),
qM(varying(wlddev, g, any_group = FALSE, use.g.names = FALSE, drop = FALSE)),
varying(wdm, g, any_group = FALSE, use.g.names = FALSE, drop = FALSE)))
})
test_that("data.frame method formula and cols work as intended", {
expect_equal(varying(wlddev, cols = 2:5), varying(get_vars(wlddev, 2:5)))
expect_equal(varying(wlddev, cols = c("PCGDP","country")), varying(get_vars(wlddev, c("PCGDP","country"))))
expect_equal(varying(wlddev, cols = is.numeric), varying(num_vars(wlddev)))
expect_equal(varying(wlddev, ~iso3c), varying(fselect(wlddev, -iso3c), wlddev$iso3c))
expect_equal(varying(wlddev, PCGDP + country ~ iso3c), varying(fselect(wlddev, PCGDP, country), wlddev$iso3c))
expect_equal(varying(wlddev, PCGDP + country ~ iso3c), varying(wlddev, ~ iso3c, cols = c("PCGDP", "country")))
expect_equal(varying(wlddev, ~iso3c, any_group = FALSE), varying(fselect(wlddev, -iso3c), wlddev$iso3c, any_group = FALSE))
expect_equal(varying(wlddev, PCGDP + country ~ iso3c, any_group = FALSE), varying(fselect(wlddev, PCGDP, country), wlddev$iso3c, any_group = FALSE))
expect_equal(varying(wlddev, PCGDP + country ~ iso3c, any_group = FALSE), varying(wlddev, ~ iso3c, cols = c("PCGDP", "country"), any_group = FALSE))
expect_equal(varying(wlddev, ~region + year), varying(fselect(wlddev, -region, -year), g))
expect_equal(varying(wlddev, PCGDP + country ~ region + year), varying(fselect(wlddev, PCGDP, country), g))
expect_equal(varying(wlddev, PCGDP + country ~ region + year), varying(wlddev, ~ region + year, cols = c("PCGDP", "country")))
expect_equal(varying(wlddev, ~region + year, any_group = FALSE), varying(fselect(wlddev, -region, -year),g, any_group = FALSE))
expect_equal(varying(wlddev, PCGDP + country ~ region + year, any_group = FALSE), varying(fselect(wlddev, PCGDP, country), g, any_group = FALSE))
expect_equal(varying(wlddev, PCGDP + country ~ region + year, any_group = FALSE), varying(wlddev, ~ region + year, cols = c("PCGDP", "country"), any_group = FALSE))
expect_error(varying(wlddev, ~ iso3c2))
expect_error(varying(wlddev, PCGDP + country ~ iso3c2))
expect_error(varying(wlddev, PCGDP + country2 ~ iso3c))
expect_error(varying(wlddev, ~ iso3c, cols = c("PCGDP", "country2")))
expect_error(varying(wlddev, ~ region2 + year))
expect_error(varying(wlddev, PCGDP + country ~ region2 + year))
expect_error(varying(wlddev, PCGDP + country2 ~ region3 + year))
expect_error(varying(wlddev, ~ region + year, cols = c("PCGDP", "country2")))
})
if(identical(Sys.getenv("NCRAN"), "TRUE")) {
test_that("pseries and pdata.frame methods work as intended", {
expect_equal(unattrib(varying(pwlddev)), c(FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_equal(unattrib(varying(pwlddev, effect = "iso3c")), c(FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_equal(unattrib(varying(pwlddev, effect = 2L)), c(TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_equal(unattrib(varying(pwlddev, effect = "year")), c(TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_true(is.atomic(varying(pwlddev, drop = TRUE)))
expect_true(is.data.frame(varying(pwlddev, drop = FALSE)))
expect_true(is.data.frame(varying(pwlddev, any_group = FALSE)))
atrapply <- function(X, FUN, ...) {
res <- vector("list", fncol(X))
for(i in seq_col(X)) {
res[[i]] <- FUN(X[[i]], ...)
}
res
}
expect_identical(attributes(fselect(pwlddev, country:POP)), attributes(pwlddev))
expect_identical(attributes(get_vars(pwlddev, seq_col(pwlddev))), attributes(pwlddev))
expect_equal(unlist(atrapply(fselect(pwlddev, -iso3c), varying)), c(FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_equal(unlist(atrapply(fselect(pwlddev, -iso3c), varying, effect = "iso3c")), c(FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_equal(unlist(atrapply(fselect(pwlddev, -year), varying, effect = 2L)), c(TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_equal(unlist(atrapply(fselect(pwlddev, -year), varying, effect = "year")), c(TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_equal(varying(pwlddev$PCGDP), varying(wlddev$PCGDP, wlddev$iso3c))
expect_equal(varying(pwlddev$PCGDP, any_group = FALSE), varying(wlddev$PCGDP, wlddev$iso3c, any_group = FALSE))
expect_equal(varying(pwlddev$PCGDP, any_group = FALSE, use.g.names = FALSE), varying(wlddev$PCGDP, wlddev$iso3c, any_group = FALSE, use.g.names = FALSE))
expect_equal(lengths(varying(pwlddev, any_group = FALSE), FALSE), lengths(atrapply(fselect(pwlddev, -iso3c), varying, any_group = FALSE)))
expect_identical(unattrib(varying(fselect(wlddev, -iso3c), wlddev$iso3c, any_group = FALSE)),
unattrib(varying(pwlddev, any_group = FALSE)))
expect_identical(unattrib(varying(fselect(wlddev, -iso3c), wlddev$iso3c, any_group = FALSE, drop = FALSE)),
unattrib(varying(pwlddev, any_group = FALSE, drop = FALSE)))
expect_identical(unattrib(varying(fselect(wlddev, -iso3c), wlddev$iso3c, any_group = FALSE, use.g.names = FALSE)),
unattrib(varying(pwlddev, any_group = FALSE, use.g.names = FALSE)))
expect_identical(unattrib(varying(fselect(wlddev, -iso3c), wlddev$iso3c, any_group = FALSE, use.g.names = FALSE, drop = FALSE)),
unattrib(varying(pwlddev, any_group = FALSE, use.g.names = FALSE, drop = FALSE)))
expect_identical(unattrib(varying(fselect(wlddev, -year), wlddev$year, any_group = FALSE)),
unattrib(varying(pwlddev, any_group = FALSE, effect = "year")))
expect_identical(unattrib(varying(fselect(wlddev, -year), wlddev$year, any_group = FALSE, drop = FALSE)),
unattrib(varying(pwlddev, any_group = FALSE, drop = FALSE, effect = "year")))
expect_identical(unattrib(varying(fselect(wlddev, -year), wlddev$year, any_group = FALSE, use.g.names = FALSE)),
unattrib(varying(pwlddev, any_group = FALSE, use.g.names = FALSE, effect = "year")))
expect_identical(unattrib(varying(fselect(wlddev, -year), wlddev$year, any_group = FALSE, use.g.names = FALSE, drop = FALSE)),
unattrib(varying(pwlddev, any_group = FALSE, use.g.names = FALSE, drop = FALSE, effect = "year")))
})
}
test_that("grouped_df method works as intended", {
expect_equal(unattrib(varying(gwlddev)), c(FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE,TRUE,TRUE))
expect_true(is.atomic(varying(gwlddev, drop = TRUE)))
expect_true(is.data.frame(varying(gwlddev, drop = FALSE)))
expect_true(is.data.frame(varying(gwlddev, any_group = FALSE)))
expect_identical(names(varying(gwlddev)), names(wlddev)[-2L])
expect_identical(names(varying(get_vars(gwlddev, 9:12))), names(wlddev)[9:12])
expect_identical(names(varying(gwlddev, any_group = FALSE)), c("iso3c", names(wlddev)[-2L]))
expect_identical(names(varying(gwlddev, any_group = FALSE, keep.group_vars = FALSE)), names(wlddev)[-2L])
expect_identical(names(varying(get_vars(gwlddev, 9:12), any_group = FALSE)), c("iso3c", names(wlddev)[9:12]))
expect_identical(names(varying(get_vars(gwlddev, 9:12), any_group = FALSE, keep.group_vars = FALSE)), names(wlddev)[9:12])
expect_identical(unattrib(varying(fselect(wlddev, -iso3c), wlddev$iso3c, any_group = FALSE)),
unattrib(varying(gwlddev, any_group = FALSE, keep.group_vars = FALSE)))
expect_identical(unattrib(varying(fselect(wlddev, -iso3c), wlddev$iso3c, any_group = FALSE, drop = FALSE)),
unattrib(varying(gwlddev, any_group = FALSE, drop = FALSE, keep.group_vars = FALSE)))
expect_identical(unclass(varying(fselect(wlddev, -iso3c), wlddev$iso3c, any_group = FALSE, use.g.names = FALSE)),
unclass(fungroup(varying(gwlddev, any_group = FALSE, use.g.names = FALSE, keep.group_vars = FALSE))))
expect_identical(unclass(varying(fselect(wlddev, -iso3c), wlddev$iso3c, any_group = FALSE, drop = FALSE)),
unclass(fungroup(varying(gwlddev, any_group = FALSE, use.g.names = TRUE, drop = FALSE, keep.group_vars = FALSE))))
}) |
rlqESLTP <-
function(dudiE, dudiS, dudiL, dudiT, dudiP, ...){
if(!is.null(dudiE))
tabE <- dudiE$li/sqrt(dudiE$eig[1])
if(!is.null(dudiS))
tabS <- dudiS$li/sqrt(dudiS$eig[1])
if(!is.null(dudiP))
tabP <- dudiP$li/sqrt(dudiP$eig[1])
if(!is.null(dudiT))
tabT <- dudiT$li/sqrt(dudiT$eig[1])
if(!is.null(dudiE)&!is.null(dudiS)){
tabES <- cbind.data.frame(tabE, tabS)
names(tabES) <- c(paste("E", 1:ncol(tabE), sep = ""),
paste("S", 1:ncol(tabS), sep = ""))
pcaES <- dudi.pca(tabES, scale = FALSE, row.w = dudiL$lw, scannf = FALSE,
nf = (length(dudiE$eig) + length(dudiS$eig)))
}
else{
if(!is.null(dudiE))
pcaES <- dudiE
else{
if(!is.null(dudiS))
pcaES <- dudiS
else
stop("one table giving site attributes is missing")
}
}
if(!is.null(dudiT)&!is.null(dudiP)){
tabTP <- cbind.data.frame(tabT, tabP)
names(tabTP) <- c(paste("T", 1:ncol(tabT), sep = ""),
paste("P", 1:ncol(tabP), sep = ""))
pcaTP <- dudi.pca(tabTP, scale = FALSE, row.w = dudiL$cw, scannf = FALSE,
nf = (length(dudiT$eig) + length(dudiP$eig)))
}
else{
if(!is.null(dudiT))
pcaTP <- dudiT
else{
if(!is.null(dudiP))
pcaTP <- dudiP
else
stop("one table giving species attributes is missing")
}
}
X <- rlq(pcaES, dudiL, pcaTP, ...)
if(!is.null(dudiE)){
U <- as.matrix(X$l1) * unlist(X$lw)
U <- data.frame(as.matrix(pcaES$tab[, 1:ncol(tabE)]) %*% U[1:ncol(tabE), 1:X$nf])
row.names(U) <- row.names(pcaES$tab)
names(U) <- names(X$lR)
X$lR_givenE <- U
}
if(!is.null(dudiS)){
U <- as.matrix(X$l1) * unlist(X$lw)
if(!is.null(dudiE)){
U <- data.frame(as.matrix(pcaES$tab[, -(1:ncol(tabE))]) %*% U[-(1:ncol(tabE)), 1:X$nf])
row.names(U) <- row.names(pcaES$tab)
}
else{
U <- data.frame(as.matrix(pcaES$tab) %*% U[, 1:X$nf])
row.names(U) <- row.names(pcaES$tab)
}
names(U) <- names(X$lR)
X$lR_givenS <- U
}
if(!is.null(dudiT)){
U <- as.matrix(X$c1) * unlist(X$cw)
U <- data.frame(as.matrix(pcaTP$tab[, 1:ncol(tabT)]) %*% U[1:ncol(tabT), 1:X$nf])
row.names(U) <- row.names(pcaTP$tab)
names(U) <- names(X$lQ)
X$lQ_givenT <- U
}
if(!is.null(dudiP)){
U <- as.matrix(X$c1) * unlist(X$cw)
if(!is.null(dudiT)){
U <- data.frame(as.matrix(pcaTP$tab[, -(1:ncol(tabT))]) %*% U[-(1:ncol(tabT)), 1:X$nf])
row.names(U) <- row.names(pcaTP$tab)
}
else{
U <- data.frame(as.matrix(pcaTP$tab) %*% U[, 1:X$nf])
row.names(U) <- row.names(pcaTP$tab)
}
names(U) <- names(X$lQ)
X$lQ_givenP <- U
}
X$row.w <- dudiL$lw
X$col.w <- dudiL$cw
X$dudiL <- dudiL
X$dudiR <- pcaES
X$dudiQ <- pcaTP
class(X) <- c("rlqESLTP", "rlq", "dudi")
return(X)
} |
profile_ci_t <-
function(data, lower1, upper1, lower2, upper2, cp, df=4, starVal=NA, nlm=FALSE, ...) {
F <- prepare_data(data, lower1, upper1, lower2, upper2)
B <- estimate_t(F, df=df, starVal=starVal, ...)
r0 <- B$C[1,2] / sqrt(B$C[1,1]*B$C[2,2])
loglike <- genloglike5t(F,df=df)
if (is.na(starVal)) {
sv <- starting_values(F)
} else {
sv <- starVal
}
sv <- c(sv[1], sv[2], sv[3], sv[5])
q <- qchisq(cp, 1)/2
g <- function(r, nlm=FALSE, ...) {
if(nlm==TRUE){
f <- genNegloglike4t(F, r, df=df)
m <- nlm(f, sv, hessian = TRUE, ...)
tmpllk <- -m$minimum
sv <- c(m$estimate[1], m$estimate[2], m$estimate[3], m$estimate[4])
}else{
f <- genloglike4t(F, r, df=df)
m <- try(optim(sv, f, control=list(fnscale=-1), ...), silent=TRUE)
tmpllk <- m$value
sv <- c(m$par[1], m$par[2], m$par[3], m$par[4])
}
return(B$loglike - tmpllk - q)
}
llb <- -1
r1 <- try(bracket(g, r0, llb, nlm=nlm, ...), silent=TRUE)
while (class(r1) == "try-error"){
llb <- llb/2
r1 <- try(bracket(g, r0, llb, nlm=nlm, ...), silent=TRUE)
}
lcl <- uniroot(g, c(r1, r0))
rlb <- 1
r2 <- try(bracket(g, r0, rlb, nlm=nlm, ...), silent=TRUE)
while (class(r2) == "try-error"){
rlb <- rlb/2
r2 <- try(bracket(g, r0, rlb, nlm=nlm, ...), silent=TRUE)
}
ucl <- uniroot(g, c(r0, r2))
return(list(lcl=lcl$root, ucl=ucl$root))
} |
gen2single <- function(pu,pa,ep1,ep2,nsoln=5) {
if(pu<pa){
soln <- ph2single(pu=pu,pa=pa,ep1=ep1,ep2=ep2,nsoln=nsoln)
}else if(pu>pa){
tmp.soln <- ph2single(pu=(1-pu),pa=(1-pa),ep1=ep1,ep2=ep2,nsoln=nsoln)
soln <- tmp.soln
soln$r <- tmp.soln$n-tmp.soln$r
}else{
stop("!!!Should pu and pa be either pu>pa or pu<pa!!!\n")
}
soln
ph1 <- list()
ph1$pu <- pu
ph1$pa <- pa
ph1$alpha <- ep1
ph1$beta <- ep2
ph1$out <- soln
ph1$nsoln <- nsoln
class(ph1) <- "gen2single"
ph1
}
print.gen2single <- function(x, ...) {
xout <- x$out
nmax <- x$nsoln
xopt <- xout[1,]
dimnames(xopt)[[1]] <- c("Optimal")
cat("\n Generalized 1-stage Phase II design \n\n")
cat("Unacceptable response/toxicity rate: ",x$pu,"\n")
cat("Desirable response/toxicity rate: ",x$pa,"\n")
cat("Error rates: alpha = ",x$alpha,"; beta = ",x$beta,"\n\n")
print(xopt, digits = 4, ...)
cat("\n")
}
gen2simon <- function(pu, pa, ep1, ep2, nmax = 100) {
if(nmax > 1000) stop("nmax cannot exceed 1000")
alpha.beta <- function(data){
oc.gentwostage.bdry(data[1],data[2],data[3],data[4],data[5],data[6])
}
if(pu<pa){
gph2 <- ph2simon(pu=pu,pa=pa,ep1=ep1,ep2=ep2,nmax=nmax)
tout <- gph2$out
t2out <- cbind(rep(pu,dim(tout)[1]),rep(pa,dim(tout)[1]),tout[,c(1:4)])
t3out <- apply(t2out,1,alpha.beta)
tmp.alpha <- as.numeric(t3out[1,])
tmp.beta <- 1-as.numeric(t3out[2,])
t4out <- tout
t5out <- cbind(t4out,alpha=tmp.alpha,beta=tmp.beta)
gph2$out <- t5out
}else if(pu>pa){
tmp.gph2 <- ph2simon(pu=(1-pu),pa=(1-pa),ep1=ep1,ep2=ep2,nmax=nmax)
tout <- tmp.gph2$out
t2out <- cbind(rep((1-pu),dim(tout)[1]),rep((1-pa),dim(tout)[1]),tout[,c(1:4)])
t3out <- apply(t2out,1,alpha.beta)
tmp.alpha <- as.numeric(t3out[1,])
tmp.beta <- 1-as.numeric(t3out[2,])
t4out <- tout
t5out <- cbind(t4out,alpha=tmp.alpha,beta=tmp.beta)
tmp.gph2$out <- t5out
gph2 <- tmp.gph2
gph2$pu <- pu
gph2$pa <- pa
gph2$out[,1] <- tmp.gph2$out[,2]-tmp.gph2$out[,1]
gph2$out[,3] <- tmp.gph2$out[,4]-tmp.gph2$out[,3]
}else{
stop("!!!Should pu and pa be either pu>pa or pu<pa!!!\n")
}
ph2 <- gph2
class(ph2) <- "gen2simon"
ph2
}
print.gen2simon <- function(x, ...) {
xout <- x$out
nmax <- x$nmax
n <- nrow(xout)
nopt <- ((1:n)[xout[,5]==min(xout[,5])])[1]
xopt <- xout[c(nopt,1),]
dimnames(xopt)[[1]] <- c("Optimal","Minimax")
cat("\n Generalized 2-stage Phase II design \n\n")
cat("Unacceptable response/toxicity rate: ",x$pu,"\n")
cat("Desirable response/toxicity rate: ",x$pa,"\n")
cat("Error rates: alpha = ",x$alpha,"; beta = ",x$beta,"\n\n")
print(xopt, digits = 4, ...)
cat("\n")
if(xopt[1,4]>nmax-10) warning(paste(" Optimal sample size too close to nmax. \n Try increasing nmax (current value = ",nmax,")\n",sep=""))
}
plot.gen2simon <- function(x, ...) {
xout <- x$out
n <- nrow(xout)
nopt <- ((1:n)[xout[,5]==min(xout[,5])])[1]
nopt1 <- min(nopt+5,n)
plot(xout[1:nopt1,4],xout[1:nopt1,5],type="l",xlab="Maximum number of patients",ylab="Expected trial size", ...)
points(xout[1,4],xout[1,5],pch="M")
points(xout[nopt,4],xout[nopt,5],pch="O")
}
oc.gentwostage.bdry <- function(pu, pa, r1, n1, r, n){
if(pu<pa){
out <- oc.twostage.bdry(pu=pu,pa=pa,r1=r1,n1=n1,r=r,n=n)
}else if(pu>pa){
tmp.out <- oc.twostage.bdry(pu=(1-pu),pa=(1-pa),r1=(n1-r1),n1=n1,r=(n-r),n=n)
out <- tmp.out
}else{
stop("!!!Should pu and pa be either pu>pa or pu<pa!!!\n")
}
out
} |
SetOptions = function(y, t, optns){
methodMuCovEst = optns[['methodMuCovEst']]
userBwMu =optns[['userBwMu']];
methodBwMu =optns[['methodBwMu']];
userBwCov =optns[['userBwCov']];
methodBwCov =optns[['methodBwCov']];
kFoldMuCov = optns[['kFoldMuCov']]
methodSelectK =optns[['methodSelectK']];
FVEthreshold =optns[['FVEthreshold']];
FVEfittedCov =optns[['FVEfittedCov']];
fitEigenValues <- optns[['fitEigenValues']];
maxK =optns[['maxK']];
dataType =optns[['dataType']];
error =optns[['error']];
nRegGrid =optns[['nRegGrid']];
methodXi =optns[['methodXi']];
shrink =optns[['shrink']]
kernel =optns[['kernel']];
numBins =optns[['numBins']];
yname =optns[['yname']];
methodRho =optns[['methodRho']];
usergrid =optns[['usergrid']];
userRho = optns[['userRho']];
diagnosticsPlot =optns[['diagnosticsPlot']];
plot =optns[['plot']];
if (!is.null(diagnosticsPlot)) {
warning("The option 'diagnosticsPlot' is deprecated. Use 'plot' instead")
plot = diagnosticsPlot
}
verbose =optns[['verbose']];
userMu =optns[['userMu']];
outPercent =optns[['outPercent']];
userCov =optns[['userCov']];
userSigma2 = optns[['userSigma2']]
rotationCut =optns[['rotationCut']];
useBinnedData =optns[['useBinnedData']];
useBinnedCov = optns[['useBinnedCov']]
lean = optns[['lean']];
useBW1SE =optns[['useBW1SE']];
imputeScores = optns[['imputeScores']];
if(is.null(methodBwMu)){
methodBwMu = 'Default'
}
if(is.null(userBwMu) && methodBwMu == 'Default'){
userBwMu = 0.05 * diff(range(unlist(t)));
}
if(is.null(userBwMu) && methodBwMu != 'Default'){
userBwMu = 0.0;
}
if(is.null(methodBwCov)){
methodBwCov = 'Default';
}
if(is.null(userBwCov) && methodBwCov == 'Default'){
userBwCov = 0.10 * diff(range(unlist(t)));
}
if(is.null(userBwCov) && methodBwCov != 'Default'){
userBwCov = 0.0;
}
if (is.null(kFoldMuCov)) {
kFoldMuCov <- 10L
} else {
kFoldMuCov <- as.integer(kFoldMuCov)
}
if(is.null(methodSelectK)){
methodSelectK = "FVE";
}
if(is.null(FVEthreshold)){
FVEthreshold = 0.99;
}
if(is.null(FVEfittedCov)){
FVEfittedCov = NULL;
}
if(is.null(dataType)){
dataType = IsRegular(t);
}
if (is.null(fitEigenValues)) {
fitEigenValues <- FALSE
}
if(is.null(methodMuCovEst)){
if (dataType == 'Sparse'){
methodMuCovEst = 'smooth';
} else {
methodMuCovEst = 'cross-sectional';
}
}
if (fitEigenValues && dataType == 'Dense') {
stop('Fit method only apply to sparse data')
}
if(is.null(error)){
error = TRUE;
}
if(is.null(nRegGrid)){
if(dataType == 'Dense' || dataType == 'DenseWithMV'){
tt = unlist(t)
nRegGrid = length(unique(signif(tt[!is.na(tt)],6)));
} else {
nRegGrid = 51;
}
}
if(is.null(maxK)){
maxK = min( nRegGrid-2, length(y)-2 );
if(methodMuCovEst == 'smooth'){
maxK = min( maxK, 20)
}
if(maxK < 1){
message("Automatically defined maxK cannot be less than 1. Reset to maxK = 1 now!\n")
maxK = 1
}
if( length(y) <= 3 ){
message("The sample size is less or equal to 3 curves. Be cautious!\n")
}
}
methodNames = c("IN", "CE");
if(!is.null(methodXi) && !(methodXi %in% methodNames)){
message(paste('methodXi', methodXi, 'is unrecognizable! Reset to automatic selection now!\n'));
methodXi = NULL;
}
if(is.null(methodXi)){
if(dataType == 'Dense'){
methodXi = "IN";
}
else{
if(dataType == 'Sparse'){
if(min(sapply(1:length(t),function(i){length(t[[i]])}))>20){
tt = unlist(t);
T_min=range(tt)[1];
T_max=range(tt)[2];
Spacing_max=max(sapply(1:length(t),function(i){max(c(t[[i]][1]-T_min,diff(t[[i]]),T_max-t[[i]][length(t[[i]])]))}));
if(Spacing_max<=(max(tt)-min(tt))*0.06){
methodXi = "IN";
}
else{
methodXi = "CE";
}
}
else{
methodXi = "CE";
}
}
else{
if(dataType == 'DenseWithMV'){
methodXi = "CE"
}
else{
methodXi = "IN"
}
}
}
}
if(is.null(shrink)){
shrink = FALSE;
}
if(shrink == TRUE && (error != TRUE || methodXi != "IN")){
message('shrinkage method only has effects when methodXi = "IN" and error = TRUE! Reset to shrink = FALSE now!\n');
shrink = FALSE
}
if(is.null(kernel)){
if(dataType == "Dense"){
kernel = "epan";
}else{
kernel = "gauss";
}
}
kernNames = c("rect", "gauss", "epan", "gausvar", "quar");
if(!(kernel %in% kernNames)){
message(paste('kernel', kernel, 'is unrecognizable! Reset to automatic selection now!\n'));
kernel = NULL;
}
if(is.null(kernel)){
if(dataType %in% c( "Dense", "DenseWithMV")){
kernel = "epan";
}else{
kernel = "gauss";
}
}
if(is.null(yname)){
yname = as.character(substitute(y))
}
if(maxK > (nRegGrid-2)){
message(paste("maxK can only be less than or equal to", nRegGrid-2,"! Reset to be", nRegGrid-2, "now!\n"));
maxK = nRegGrid -2;
}
if(is.numeric(methodSelectK)){
FVEthreshold <- 1
if(methodSelectK > (nRegGrid-2)){
message(paste("maxK can only be less than or equal to", nRegGrid-2,"! Reset to be", nRegGrid-2, "now!\n"));
maxK = nRegGrid -2;
}else if(methodSelectK <= 0){
message("methodSelectK must be a positive integer! Reset to BIC now!\n");
methodSelectK = "BIC"
FVEthreshold = 0.95;
}
}
if(is.null(plot)){
plot = FALSE;
}
if(is.null(methodRho)){
methodRho <- 'vanilla'
}
if(is.null(userRho)){
userRho = NULL
}
if(is.null(verbose)){
verbose = FALSE;
}
if(is.null(userMu)){
userMu <- NULL
}
if(is.null(userCov)){
userCov <- NULL
}
if(is.null(outPercent)){
outPercent <- c(0,1)
}
if(is.null(rotationCut)){
rotationCut <- c(0.25,.75)
}
if(!is.null(numBins)){
if(numBins < 10){
message("Number of bins must be at least +10!!\n");
numBins = NULL;
}
}
if(is.null(useBinnedData)){
useBinnedData = 'AUTO';
}
if (is.null(useBinnedCov)) {
useBinnedCov <- TRUE
if ( ( 128 > length(y) ) && ( 3 > mean ( unlist( lapply( y, length) ) ) )){
useBinnedCov <- FALSE
}
}
if(is.null(usergrid)){
usergrid = FALSE;
}
if(is.null(lean)){
lean = FALSE;
}
if(is.null(useBW1SE)){
useBW1SE = FALSE;
}
if(is.null(imputeScores)){
imputeScores=TRUE;
}
retOptns <- list(userBwMu = userBwMu, methodBwMu = methodBwMu, userBwCov = userBwCov, methodBwCov = methodBwCov,
kFoldMuCov = kFoldMuCov, methodSelectK = methodSelectK, FVEthreshold = FVEthreshold, FVEfittedCov = FVEfittedCov,
fitEigenValues = fitEigenValues, maxK = maxK, dataType = dataType, error = error, shrink = shrink,
nRegGrid = nRegGrid, rotationCut = rotationCut, methodXi = methodXi, kernel = kernel,
lean = lean, diagnosticsPlot = diagnosticsPlot, plot=plot, numBins = numBins, useBinnedCov = useBinnedCov,
usergrid = usergrid, yname = yname, methodRho = methodRho, verbose = verbose, userMu = userMu, userCov = userCov, methodMuCovEst = methodMuCovEst,
userRho = userRho, userSigma2 = userSigma2, outPercent = outPercent, useBinnedData = useBinnedData, useBW1SE = useBW1SE,
imputeScores = imputeScores)
invalidNames <- !names(optns) %in% names(retOptns)
if (any(invalidNames)) {
stop(sprintf('Invalid option names: %s',
paste0(names(optns)[invalidNames], collapse=', ')))
}
return( retOptns )
} |
prepDocuments <- function(documents, vocab, meta=NULL,
lower.thresh=1, upper.thresh=Inf,
subsample=NULL,
verbose=TRUE) {
if((is.null(documents)|is.null(vocab))){
stop("One of your file inputs has no data")
}
if(!inherits(documents,"list")) {
stop("documents must be a list in stm() format. See ?stm() for format.
See ?readCorpus() for tools for converting from popular formats")
}
if(!is.null(subsample)) {
index <- sample(1:length(documents), subsample)
documents <- documents[index]
if(!is.null(meta)) meta <- meta[index, , drop = FALSE]
}
len <- unlist(lapply(documents, length))
if(any(len==0)) {
stop("Some documents have 0 length. Please check input.
See ?prepDocuments() for more info.")
}
triplet <- doc.to.ijv(documents)
nms <- names(documents)
documents <- ijv.to.doc(triplet$i, triplet$j, triplet$v)
names(documents) <- nms
docs.removed <- c()
miss.vocab <- NULL
vocablist <- sort(unique(triplet$j))
wordcounts <- tabulate(triplet$j)
if(length(vocablist)>length(vocab)) {
stop("Your documents object has more unique features than your vocabulary file has entries.")
}
if(length(vocablist)<length(vocab)) {
if(verbose) cat("Detected Missing Terms, renumbering \n")
miss.vocab <- vocab[-vocablist]
vocab <- vocab[vocablist]
new.map <- cbind(vocablist, 1:length(vocablist))
documents <- lapply(documents, function(d) {
nm <- names(d)
d[1,] <- new.map[match(d[1,], new.map[,1]),2]
names(d) <- nm
return(d)
})
wordcounts <- wordcounts[vocablist]
}
toremove <- which(wordcounts <= lower.thresh | wordcounts >= upper.thresh)
keepers <- which(wordcounts > lower.thresh & wordcounts < upper.thresh)
droppedwords <- c(miss.vocab,vocab[toremove])
if(length(toremove)) {
if(verbose) cat(sprintf("Removing %i of %i terms (%i of %i tokens) due to frequency \n",
length(toremove), length(wordcounts), sum(wordcounts[toremove]), sum(wordcounts)))
vocab <- vocab[-toremove]
remap <- 1:length(keepers)
for(i in 1:length(documents)) {
doc <- documents[[i]]
dockeep <- doc[1,]%in%keepers
doc <- doc[,dockeep,drop=FALSE]
doc[1,] <- remap[match(doc[1,], keepers)]
documents[[i]] <- doc
if(ncol(doc)==0) docs.removed <- c(docs.removed,i)
}
if(length(docs.removed)) {
if(verbose) cat(sprintf("Removing %i Documents with No Words \n", length(docs.removed)))
documents <- documents[-docs.removed]
}
toprint <- sprintf("Your corpus now has %i documents, %i terms and %i tokens.",
length(documents), length(vocab), sum(wordcounts[keepers]))
if(verbose) cat(toprint)
}
if(!is.null(docs.removed) & !is.null(meta)){
meta<-meta[-docs.removed, , drop = FALSE]
}
documents <- lapply(documents, function(x) matrix(as.integer(x), nrow=2))
return(list(documents=documents, vocab=vocab, meta=meta,
words.removed=droppedwords, docs.removed=docs.removed,
tokens.removed=sum(wordcounts[toremove]), wordcounts=wordcounts))
} |
tpaired.randtest <- function(vec1, vec2, nperm = 99, alternative = "two.sided", silent = FALSE) {
n1 <- length(vec1)
n2 <- length(vec2)
if (n1 != n2) stop("The two vectors have different lengths. They cannot be paired.")
alt <- match.arg(alternative, c("two.sided", "less", "greater"))
res <- t.test(vec1, vec2, paired = TRUE, alternative = alt)
t.ref <- res$statistic
if (!silent) {
cat('\nt-test comparing the means of two related samples','\n','\n')
cat('Number of objects:',n1,'\n')
cat('Mean of the differences:',res$estimate,'\n')
cat('t statistic (paired observations):',t.ref,'\n')
cat('95 percent confidence interval of t:',res$conf.int,'\n')
cat('Degrees of freedom:',res$parameter,'\n')
cat('Alternative hypothesis:',alt,'\n')
cat('Prob (parametric):',res$p.value,'\n')
}
nPGE <- 1
for (i in 1:nperm) {
mat <- cbind(vec1,vec2)
topermute <- rbinom(n1,1,0.5)
mat[topermute == 1,] <- mat[topermute == 1, 2:1]
res.perm <- t.test(mat[,1], mat[,2], paired = TRUE, alternative = alt)
t.perm <- res.perm$statistic
if (alt == "two.sided") if (abs(t.perm) >= abs(t.ref) ) nPGE <- nPGE + 1
if (alt == "less") if (t.perm <= t.ref) nPGE <- nPGE + 1
if (alt == "greater") if (t.perm >= t.ref) nPGE <- nPGE + 1
}
P <- nPGE / (nperm + 1)
if (!silent) cat('Prob (',nperm,'permutations):', formatC(P, digits = 5, width = 7,format = "f"),'\n')
return(list(estim = res$est[[1]], t.ref = t.ref, p.param = res$p.value, p.perm = P, nperm = nperm))
} |
secondary_model_data <- function(model_name=NULL) {
model_data <- list(CPM = list(identifier = "CPM",
name = "Cardinal Parameter Model",
pars = c("xmin", "xopt", "xmax", "n"),
model = CPM_model,
ref = paste("Rosso, L., Lobry, J. R., Bajard, S., and Flandrois, J. P. (1995).",
"Convenient Model To Describe the Combined Effects of Temperature and pH on",
"Microbial Growth. Applied and Environmental Microbiology, 61(2), 610-616.")
),
Zwietering = list(identifier = "Zwietering",
name = "Zwietering gamma function",
pars = c("xmin", "xopt", "n"),
model = zwietering_gamma,
ref = paste("Zwietering, Marcel H., Wijtzes, T., De Wit, J. C., and Riet,",
"K. V. (1992). A Decision Support System for Prediction of the Microbial",
"Spoilage in Foods. Journal of Food Protection, 55(12), 973-979.",
"https://doi.org/10.4315/0362-028X-55.12.973")
),
fullRatkowsky = list(identifier = "fullRatkowsky",
name = "(Adapted) Full Ratkowsky model",
pars = c("xmin", "xmax", "c"),
model = full_Ratkowski,
ref = paste("Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A.,",
"Stokes, A. N., and Chandler, R. E. (1983). Model for",
"bacterial culture growth rate throughout the entire",
"biokinetic temperature range. Journal of Bacteriology,",
"154(3), 1222-1226.")
)
)
if (is.null(model_name)) {
return(names(model_data))
}
my_model <- model_data[[model_name]]
if (is.null(my_model)) {
stop(paste("Unknown model name:", model_name))
} else {
my_model
}
}
check_secondary_pars <- function(starting_point, known_pars, sec_model_names,
primary_pars = "mu_opt") {
if (any(names(starting_point) %in% names(known_pars))) {
stop("Parameters cannot be defined as both fixed and to be fitted.")
}
par_names <- c(names(starting_point), names(known_pars))
missing_primary <- primary_pars[!primary_pars %in% par_names]
if (length(missing_primary) > 0) {
stop(paste("Parameter not defined:", missing_primary, "\n"))
}
my_regex <- paste(primary_pars, collapse="|")
par_names <- par_names[!grepl(my_regex, par_names)]
for (each_factor in names(sec_model_names)) {
model_data <- secondary_model_data(sec_model_names[[each_factor]])
req_pars <- paste0(each_factor, "_", model_data$pars)
missing_pars <- req_pars[!req_pars %in% par_names]
if (length(missing_pars) > 0) {
stop(paste("Parameter not defined:", missing_pars, "\n"))
}
this_pars <- par_names[grepl(paste0(each_factor, "_"), par_names)]
unknown_pars <- this_pars[!this_pars %in% req_pars]
if (length(unknown_pars) > 0) {
stop(paste("Unknown parameter: ", unknown_pars, "\n"))
}
}
my_regex <- paste(paste0(names(sec_model_names), "_"), collapse="|")
wtpars <- par_names[!grepl(my_regex, par_names)]
if (length(wtpars) > 0) {
stop(paste("Unknown parameter: ", wtpars, "\n"))
}
} |
knitr::opts_chunk$set(collapse = TRUE, comment = "
library("mlrCPO")
set.seed(123)
base = knitr::opts_knit$get("output.dir")
file = sys.frame(min(grep("^knitr::knit$|^knit$", sapply(sys.calls(), function(x) as.character(x)[1]))))$input
file = basename(file)
path = file.path(base, file)
rpath = gsub("\\.[^.]*$", ".R", path)
knitr::knit_hooks$set(document = function(x) {
if (file_test("-f", rpath)) {
lines = readLines(rpath)
lines = gsub(" *(\n|$)", "\\1", lines)
cat(lines, file = rpath, sep = "\n", append = FALSE)
}
x
})
fullfile = file
allfiles = list.files(path = base, pattern = ".*\\.Rmd$")
stopifnot(file %in% allfiles)
fileinfolist = list()
for (cf in allfiles) {
ismain = TRUE
if (grepl("^z_", cf)) {
infoslot = gsub("^z_", "", cf)
infoslot = gsub("_terse\\.Rmd$", "", infoslot)
subslot = "compact"
} else {
infoslot = gsub("^a_", "", cf)
infoslot = gsub("\\.Rmd$", "", infoslot)
subslot = "main"
}
content = scan(paste(base, cf, sep = "/"), what = "character", quiet = TRUE)
pos = min(c(which(content == "title:"), Inf))
if (is.infinite(pos)) {
stop(sprintf("parsing error: %s", cf))
}
infolist = list(title = content[pos + 1], url = cf, iscurrent = cf == file)
applist = list(infolist)
names(applist) = subslot
fileinfolist[[infoslot]] = c(fileinfolist[[infoslot]], applist)
}
linkify = function(info, title) {
if (info$iscurrent) {
title
} else {
sprintf("[%s](%s)", title, gsub("\\.Rmd$", ".html", info$url))
}
}
for (idx in seq_along(fileinfolist)) {
content = fileinfolist[[sort(names(fileinfolist))[idx]]]
if (!is.null(content$compact)) {
if (paste(sub("[0-9]\\. ", "", content$main$title), "(No Output)") != sub("^z ", "", content$compact$title)) {
stop(sprintf("File %s and its compact version %s have incompatible titles\nThe compact version must be paste(main_title, \"(No Output)\"). Is: '%s', expected: '%s'",
content$main$url, content$compact$url, content$compact$title, paste(content$main$title, "(No Output)")))
}
line = sprintf("%s (%s)", linkify(content$main, content$main$title), linkify(content$compact, "compact version"))
} else {
line = linkify(content$main, content$main$title)
}
cat(sprintf("%s. %s\n", idx, line))
if (content$main$iscurrent || content$compact$iscurrent) {
fullfile = content$main$url
}
}
fullpath = file.path(base, fullfile)
printToc = function(print.level = 3) {
owncontent = readLines(fullpath)
tripletic = grepl("^```", owncontent)
owncontent = owncontent[cumsum(tripletic) %% 2 == 0]
headlines = grep("^
headlevels = nchar(gsub(" .*", "", headlines))
headlines = gsub("^[
links = gsub("[^-a-z. ]", "", tolower(headlines))
links = gsub(" +", "-", links)
links = gsub("-$", "", links)
if (!sum(headlevels <= print.level)) {
return(invisible(NULL))
}
cat("<h", headlevels[1], ">Table of Contents</h", headlevels[1], ">\n<div id=\"TOC\">\n", sep = "")
lastlevel = headlevels[1] - 1
for (idx in seq_along(headlines)) {
line = headlines[idx]
level = headlevels[idx]
link = links[idx]
if (level > print.level) {
next
}
if (level < headlevels[1]) {
stop("First headline level must be the lowest one used, but '", line, "' is lower.")
}
lvldiff = level - lastlevel
if (lvldiff > 1) {
stop("Cannot jump headline levels. Error on: ", line)
}
if (lvldiff > 0) {
cat("<ul>")
} else {
cat("</li>\n")
}
if (lvldiff < 0) {
for (l in seq_len(-lvldiff)) {
cat("</ul></li>")
}
}
cat("<li><a href=\"
lastlevel = level
}
lvldiff = lastlevel - headlevels[1]
cat("</li></ul>\n</div>\n")
}
options(width = 80)
replaceprint = function(ofunc) {
force(ofunc)
function(x, ...) {
cu = capture.output({ret = ofunc(x, ...)})
cu = grep("time: [-+e0-9.]{1,6}", cu, value = TRUE, invert = TRUE)
cat(paste(cu, collapse = "\n"))
if (!grepl("\n$", tail(cu, 1))) {
cat("\n")
}
ret
}
}
for (pfunc in grep("print\\.", ls(asNamespace("mlr")), value = TRUE)) {
ofunc = get(pfunc, asNamespace("mlr"))
assign(pfunc, replaceprint(ofunc))
}
printToc(4)
cat(knitr::knit_child("a_1_getting_started.Rmd", options = list(eval = FALSE)), sep = "\n") |
head.rstack <- function(x, n = 6L, ...) {
newstack <- rstack()
if(n < 0) {
n = max(n, -1*length(x))
n = length(x) + n
}
if(n > length(x)) {
n = length(x)
}
if(n == 0 | n < -1*length(x)) {
return(newstack)
}
node <- x$head
for(i in seq(1,n)) {
if(!is.null(node)) {
newstack <- insert_top(newstack, node$data)
node <- node$nextnode
}
}
return(rev(newstack))
} |
expected <- eval(parse(text="FALSE"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(weight = c(1.9, 3.1, 3.3, 4.8, 5.3, 6.1, 6.4, 7.6, 9.8, 12.4), depression = c(2, 1, 5, 5, 20, 20, 23, 10, 30, 25)), .Names = c(\"weight\", \"depression\"), row.names = c(NA, -10L), class = \"data.frame\"))"));
do.call(`is.environment`, argv);
}, o=expected); |
library(checkargs)
context("isIntegerOrNanOrInfVector")
test_that("isIntegerOrNanOrInfVector works for all arguments", {
expect_identical(isIntegerOrNanOrInfVector(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isIntegerOrNanOrInfVector(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_error(isIntegerOrNanOrInfVector(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isIntegerOrNanOrInfVector(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isIntegerOrNanOrInfVector(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isIntegerOrNanOrInfVector(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isIntegerOrNanOrInfVector(0, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isIntegerOrNanOrInfVector(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isIntegerOrNanOrInfVector(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isIntegerOrNanOrInfVector(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isIntegerOrNanOrInfVector("", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isIntegerOrNanOrInfVector("X", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isIntegerOrNanOrInfVector(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isIntegerOrNanOrInfVector(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isIntegerOrNanOrInfVector(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isIntegerOrNanOrInfVector(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isIntegerOrNanOrInfVector(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isIntegerOrNanOrInfVector(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isIntegerOrNanOrInfVector(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isIntegerOrNanOrInfVector(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isIntegerOrNanOrInfVector(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isIntegerOrNanOrInfVector(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
}) |
lesionBurden.M <- matrix(c(20, 26.8, 9.6,
21.2, 26.5, 10.5,
20.8, 22.5, 10.6,
20.6, 23.1, 9.2,
20.2, 24.3, 10.4,
19.1, 24.1, 10.4,
21, 26, 10.1,
20.4, 26.8, 8,
19.2, 24.9, 10.1,
19.2, 27.7, 8.9),
nrow=3)
lesionBurden.G <- matrix(c(19.5, 22.1, 8.5,
19.5, 21.9, 8.5,
19.6, 22, 8.3,
19.7, 22.1, 8.3,
19.3, 21.9, 8.3,
19.1, 21.8, 8,
19.1, 21.7, 8,
19.3, 21.7, 8,
19.2, 21.7, 8,
19.5, 21.8, 8.1),
nrow=3)
lesionBurden <- array(0, dim=c(3, 10, 2))
lesionBurden[,,1] <- lesionBurden.M
lesionBurden[,,2] <- lesionBurden.G
dimnames(lesionBurden)[[3]] <- c("lesionBurden.M", "lesionBurden.G") |
metacr <- function(x, comp.no = 1, outcome.no = 1,
method, sm,
level = gs("level"), level.ma = gs("level.ma"),
fixed, random,
hakn = FALSE,
method.tau = "DL",
method.tau.ci = gs("method.tau.ci"),
tau.common = FALSE,
prediction = gs("prediction"),
level.predict = gs("level.predict"),
swap.events, logscale,
backtransf = gs("backtransf"),
test.subgroup,
text.fixed = gs("text.fixed"),
text.random = gs("text.random"),
text.predict = gs("text.predict"),
text.w.fixed = gs("text.w.fixed"),
text.w.random = gs("text.w.random"),
title, complab, outclab,
keepdata = gs("keepdata"),
warn = FALSE,
...) {
chkclass(x, "rm5")
if (is.numeric(comp.no))
chknumeric(comp.no, length = 1)
else
chkchar(comp.no, length = 1)
if (is.numeric(outcome.no))
chknumeric(outcome.no, length = 1)
else
chkchar(outcome.no, length = 1)
chklevel(level)
chklevel(level.ma)
chklogical(hakn)
method.tau <- setchar(method.tau, gs("meth4tau"))
if (is.null(method.tau.ci))
method.tau.ci <- if (method.tau == "DL") "J" else "QP"
method.tau.ci <- setchar(method.tau.ci, gs("meth4tau.ci"))
chklogical(tau.common)
chklogical(prediction)
chklevel(level.predict)
if (!missing(swap.events))
chklogical(swap.events)
chklogical(backtransf)
if (!is.null(text.fixed))
chkchar(text.fixed, length = 1)
if (!is.null(text.random))
chkchar(text.random, length = 1)
if (!is.null(text.predict))
chkchar(text.predict, length = 1)
if (!is.null(text.w.fixed))
chkchar(text.w.fixed, length = 1)
if (!is.null(text.w.random))
chkchar(text.w.random, length = 1)
chklogical(keepdata)
sel <- x$comp.no == comp.no & x$outcome.no == outcome.no
if (sum(sel) == 0) {
warning("No data available for comp.no = ", comp.no,
" and outcome.no = ", outcome.no, ".")
return(NULL)
}
x$sel <- sel
if (missing(title))
title <- attributes(x)$title
if (missing(complab))
complab <- unique(x$complab[sel])
if (missing(outclab))
outclab <- unique(x$outclab[sel])
label.e <- unique(x$label.e[sel])
label.c <- unique(x$label.c[sel])
label.left <- unique(x$label.left[sel])
label.right <- unique(x$label.right[sel])
overall <- replaceNULL(unique(x$overall[sel]), TRUE)
if (is.na(overall))
overall <- TRUE
type <- unique(x$type[sel])
if (missing(test.subgroup))
test.subgroup <- unique(x$test.subgroup[sel])
if (missing(method))
method <- unique(x$method[sel])
else
method <- setchar(method, c("Inverse", "MH", "Peto"))
chkchar(method, length = 1)
if (missing(sm))
sm <- unique(x$sm[sel])
chkchar(sm, length = 1)
if (sm == "PETO_OR")
sm <- "OR"
if (missing(fixed))
fixed <- unique(x$fixed[sel])
if (missing(random))
random <- unique(x$random[sel])
if (tau.common & method == "Peto") {
if (warn)
warning("Argument 'tau.common' not considered for Peto method.")
tau.common <- FALSE
}
if (tau.common & method == "MH") {
if (warn)
warning("Argument 'tau.common' not considered for Mantel-Haenszel method.")
tau.common <- FALSE
}
if (!all(is.na(x$logscale[sel]))) {
if (!unique(x$logscale[sel])) {
x$TE[sel] <- log(x$TE[sel])
logscale <- FALSE
}
else
logscale <- TRUE
}
else {
if (!missing(logscale)) {
if (!logscale)
x$TE[sel] <- log(x$TE[sel])
}
else {
if ((type == "I" & method != "Peto") & is.relative.effect(sm)) {
warning("Assuming that values for 'TE' are on log scale. ",
"Please use argument 'logscale = FALSE' if ",
"values are on natural scale.",
call. = FALSE)
logscale <- TRUE
}
else
logscale <- NA
}
}
O.E <- TE <- V <- event.c <- event.e <- grplab <- mean.c <- mean.e <-
n.c <- n.e <- sd.c <- sd.e <- seTE <- studlab <- NULL
dropnames <- c("comp.no", "outcome.no", "group.no",
"overall", "test.subgroup",
"type", "method", "sm", "model", "fixed", "random",
"outclab", "k",
"event.e.pooled", "n.e.pooled",
"event.c.pooled", "n.c.pooled",
"TE.pooled", "lower.pooled", "upper.pooled",
"weight.pooled", "Z.pooled", "pval.TE.pooled",
"Q", "pval.Q", "I2", "tau2", "Q.w", "pval.Q.w", "I2.w",
"swap.events", "enter.n", "logscale", "label.e", "label.c",
"label.left", "label.right", "complab", "sel")
varnames <- names(x)[!(names(x) %in% dropnames)]
Q.Cochrane <- if (method == "MH" & method.tau == "DL") TRUE else FALSE
if (length(unique(x$group.no[sel])) > 1) {
if (type == "D") {
if (missing(swap.events)) {
swap.events <- unique(x$swap.events[sel])
swap.events <- !is.na(swap.events) && swap.events
}
if (swap.events)
m1 <- metabin(n.e - event.e, n.e, n.c - event.c, n.c,
sm = sm, method = method, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
subgroup = grplab,
subgroup.name = "grp",
print.subgroup.name = FALSE,
test.subgroup = test.subgroup,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
RR.Cochrane = TRUE,
Q.Cochrane = Q.Cochrane,
warn = warn, keepdata = keepdata)
else
m1 <- metabin(event.e, n.e, event.c, n.c,
sm = sm, method = method, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
subgroup = grplab,
subgroup.name = "grp",
print.subgroup.name = FALSE,
test.subgroup = test.subgroup,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
RR.Cochrane = TRUE,
Q.Cochrane = Q.Cochrane,
warn = warn, keepdata = keepdata)
}
if (type == "C")
m1 <- metacont(n.e, mean.e, sd.e,
n.c, mean.c, sd.c,
sm = sm, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
subgroup = grplab,
subgroup.name = "grp",
print.subgroup.name = FALSE,
test.subgroup = test.subgroup,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
keepdata = keepdata)
if (type == "P")
m1 <- metagen(O.E / V, sqrt(1 / V),
sm = sm, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
subgroup = grplab,
subgroup.name = "grp",
print.subgroup.name = FALSE,
test.subgroup = test.subgroup,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
keepdata = keepdata)
if (type == "I" & method != "Peto")
m1 <- metagen(TE, seTE,
sm = sm, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
subgroup = grplab,
subgroup.name = "grp",
print.subgroup.name = FALSE,
test.subgroup = test.subgroup,
n.e = n.e,
n.c = n.c,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
keepdata = keepdata)
if (type == "I" & method == "Peto")
m1 <- metagen(O.E / V, sqrt(1 / V),
sm = sm, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
subgroup = grplab,
subgroup.name = "grp",
print.subgroup.name = FALSE,
test.subgroup = test.subgroup,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
keepdata = keepdata)
}
else {
if (type == "D") {
if (missing(swap.events)) {
swap.events <- unique(x$swap.events[sel])
swap.events <- !is.na(swap.events) && swap.events
}
if (swap.events)
m1 <- metabin(n.e - event.e, n.e, n.c - event.c, n.c,
sm = sm, method = method, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
RR.Cochrane = TRUE,
Q.Cochrane = Q.Cochrane,
warn = warn, keepdata = keepdata)
else
m1 <- metabin(event.e, n.e, event.c, n.c,
sm = sm, method = method, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
RR.Cochrane = TRUE,
Q.Cochrane = Q.Cochrane,
warn = warn, keepdata = keepdata)
}
if (type == "C")
m1 <- metacont(n.e, mean.e, sd.e,
n.c, mean.c, sd.c,
sm = sm, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
keepdata = keepdata)
if (type == "P")
m1 <- metagen(O.E / V, sqrt(1 / V),
sm = sm, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
keepdata = keepdata)
if (type == "I" & method != "Peto")
m1 <- metagen(TE, seTE,
sm = sm, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
n.e = n.e,
n.c = n.c,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
keepdata = keepdata)
if (type == "I" & method == "Peto")
m1 <- metagen(O.E / V, sqrt(1 / V),
sm = sm, studlab = studlab,
data = x[sel, varnames],
fixed = fixed, random = random,
hakn = hakn,
method.tau = method.tau, method.tau.ci = method.tau.ci,
tau.common = tau.common,
level = level, level.ma = level.ma,
prediction = prediction, level.predict = level.predict,
overall = overall,
backtransf = backtransf,
text.fixed = text.fixed, text.random = text.random,
text.predict = text.predict,
text.w.fixed = text.w.fixed,
text.w.random = text.w.random,
title = title,
complab = complab, outclab = outclab,
label.e = label.e, label.c = label.c,
label.left = label.left, label.right = label.right,
keepdata = keepdata)
}
if (sm == "OTHER") {
warning('Meta-analysis not possible for sm = "OTHER".')
return(NULL)
}
res <- m1
attr(res, "comp.no") <- comp.no
attr(res, "outcome.no") <- outcome.no
attr(res, "type") <- type
if (type == "D")
attr(res, "swap.events") <- swap.events
attr(res, "logscale") <- logscale
if (!is.null(x$enter.n))
attr(res, "enter.n") <- x$enter.n
res
} |
germinationcount.test <-
function(r, nsamples, n, N, K) {
p.val <- 1 - pRangeHyper(r, nsamples, N, K, n)
offrange <- r
germrate <- K/N
out <- list(R.value = offrange, p.value = p.val,
germination.rate = germrate)
class(out) <- "germinationcount.test"
return(out)
}
print.germinationcount.test <- function(x, digits = 4, ...) {
cat("\n Germination count range test for seed sample heterogeneity",
"\n\nGermination rate of the seed lot:", 100*x$germination.rate, "%",
"\nR-value (count difference):", x$R.value, "seeds",
"\np-value: ", x$p.value)
cat("\nNull hypothesis: germination homogeneity", "\n")
invisible(x)
}
dRangeHyper <- function(r, size, N, K, n)
{
sapply(r, function(r) {
if(r < 0) {
prob <- 0
} else if(r == 0) {
prob <- sum(dhyper(0:n, K, N-K, n)^size)
} else {
prob <- 0
for(x in 0:n) {
prob <- prob +
(phyper(x+r, K, N-K, n) - phyper(x-1, K, N-K, n))^size -
(phyper(x+r, K, N-K, n) - phyper(x, K, N-K, n))^size -
(phyper(x+r-1, K, N-K, n) - phyper(x-1, K, N-K, n))^size +
(phyper(x+r-1, K, N-K, n) - phyper(x, K, N-K, n))^size
}
}
return(prob)
})
}
pRangeHyper <- function(r, size, N, K, n)
{
sapply(r, function(r) {
sum(dRangeHyper(0:r, size, N, K, n))
})
} |
simCR <- function(n, bhr, beta.x.12, beta.x.13, beta.x.14){
bhr.11 <- function(t){return(0)}; eta.1.1 <- function(x.i, t){return(0*sum(x.i))}
bhr.12 <- function(t){return(bhr)}
bhr.13 <- function(t){return(bhr)}
bhr.21 <- function(t){return(0)}; eta.2.1 <- function(x.i, t){return(0*sum(x.i))}
bhr.22 <- function(t){return(0)}; eta.2.2 <- function(x.i, t){return(0*sum(x.i))}
bhr.23 <- function(t){return(0)}; eta.2.3 <- function(x.i, t){return(0*sum(x.i))}
bhr.31 <- function(t){return(0)}; eta.3.1 <- function(x.i, t){return(0*sum(x.i))}
bhr.32 <- function(t){return(0)}; eta.3.2 <- function(x.i, t){return(0*sum(x.i))}
bhr.33 <- function(t){return(0)}; eta.3.3 <- function(x.i, t){return(0*sum(x.i))}
eta.1.2 <- function(x.i, t){
eta <- beta.x.12 * x.i
return(eta)}
eta.1.3 <- function(x.i, t){
eta <- beta.x.13 * x.i
return(eta)}
bhr.14 <- function(t){return(bhr)}
bhr.24 <- function(t){return(0)}; eta.2.4 <- function(x.i, t){return(0*sum(x.i))}
bhr.34 <- function(t){return(0)}; eta.3.4 <- function(x.i, t){return(0*sum(x.i))}
bhr.41 <- function(t){return(0)}; eta.4.1 <- function(x.i, t){return(0*sum(x.i))}
bhr.42 <- function(t){return(0)}; eta.4.2 <- function(x.i, t){return(0*sum(x.i))}
bhr.43 <- function(t){return(0)}; eta.4.3 <- function(x.i, t){return(0*sum(x.i))}
bhr.44 <- function(t){return(0)}; eta.4.4 <- function(x.i, t){return(0*sum(x.i))}
eta.1.4 <- function(x.i, t){
eta <- beta.x.14 * x.i
return(eta)
}
mpl <- list(from.1 = list(from = 1,
all.to = c(2, 3, 4),
all.bhr = list(bhr.11, bhr.12, bhr.13, bhr.14),
eta = list(to.1 = eta.1.1, to.2 = eta.1.2, to.3 = eta.1.3, to.4 = eta.1.4)),
from.2 = list(from = 2,
all.to = NULL,
all.bhr = list(bhr.21, bhr.22, bhr.23, bhr.24),
eta = list(to.1 = eta.2.1, to.2 = eta.2.2, to.3 = eta.2.3, to.4 = eta.2.4)),
from.3 = list(from = 3,
all.to = NULL,
all.bhr = list(bhr.31, bhr.32, bhr.33, bhr.34),
eta = list(to.1 = eta.3.1, to.2 = eta.3.2, to.3 = eta.3.3, to.4 = eta.3.4)),
from.4 = list(from = 4,
all.to = NULL,
all.bhr = list(bhr.41, bhr.42, bhr.43, bhr.44),
eta = list(to.1 = eta.3.1, to.2 = eta.3.2, to.3 = eta.3.3, to.4 = eta.4.4)))
x <- rnorm(n) + 1
X <- matrix(ncol = 1, nrow = n, data = x)
colnames(X) <- c("x")
max.time = 100
all.first.from <- rep(1, times=n)
p <- ncol(X)
histories <- NULL
for (i in 1:n) {
history.i <- simsinglehistory(first.entry = 0, first.from = all.first.from[i],
max.time, mpl, x.i = X[i, ])
if (!is.null(nrow(history.i))) {
history.i <- cbind(history.i, rep(i, 1))
for (x.index in 1:p) {
history.i <- cbind(history.i, rep(X[i, x.index], 1))
}
}
else {
history.i <- cbind(history.i, rep(i, nrow(history.i)))
for (x.index in 1:p) {
history.i <- cbind(history.i, rep(X[i, x.index],
nrow(history.i)))
}
}
histories <- rbind(histories, history.i)
rm(history.i)
}
histories.as.list <- list(id = histories[, 5], entry = histories[, 1],
exit = histories[, 2], from = histories[, 3],
to = histories[, 4])
for (x.index in 1:p) {
histories.as.list[[5 + x.index]] <- histories[, 5 + x.index]
names(histories.as.list)[5 + x.index] <- colnames(X)[x.index]
}
histories <- data.frame(histories.as.list)
rm(histories.as.list)
for(i in 1:nrow(histories)){
cens <- sample(c(TRUE, FALSE), size = 1, prob = c(0.15, 0.85))
if(cens){histories$to[i] <- "cens"}
}
IDs <- unique(histories$id)
for(i in IDs){
hi <- which(histories$id == i)
ho <- histories[hi, ]$to == "cens"
if(any(ho)){
if(min(hi[ho]) < max(hi)){
histories <- histories[-hi[which(hi > min(hi[ho]))], ]
}
}
}
histories$event <- as.numeric(histories$to != "cens")
all.to.list <- list(from.1 = mpl$from.1$all.to,
from.2 = mpl$from.2$all.to,
from.3 = mpl$from.3$all.to,
from.4 = mpl$from.4$all.to)
d <- histories[1, ]
for(i in 1:nrow(histories)){
all.to <- all.to.list[[as.numeric(histories$from[i])]]
add <- rbind(histories[i, ], histories[i, ], histories[i, ], histories[i, ])
add <- add[1:length(all.to), ]
reminder.to <- histories[i, "to"]
reminder.event <- histories[i, "event"]
add[, "to"] <- all.to
add[, "event"] <- 0
if(reminder.event > 0.5){
add[which(all.to == as.numeric(reminder.to)), "event"] <- 1
}
d <- rbind(d, add)
}
d <- d[-1, ]
d$trans <- paste(d$from, d$to, sep="")
d <- d[, c("id", "entry", "exit", "from", "to", "trans", "event", "x")]
hi <- which(d$trans == 12)
x.12.mean <- mean(d[hi, "x"])
ho <- d[, "x"] - x.12.mean
ho[which(!(d$trans == 12))] <- 0
d$x.12 <- ho
hi <- which(d$trans == 13)
x.13.mean <- mean(d[hi, "x"])
ho <- d[, "x"] - x.13.mean
ho[which(!(d$trans == 13))] <- 0
d$x.13 <- ho
hi <- which(d$trans %in% c(12, 13))
x.12.13.mean <- mean(d[hi, "x"])
ho <- d[, "x"] - x.12.13.mean
ho[which(!(d$trans %in% c(12, 13)))] <- 0
d$x.12.13 <- ho
hi <- which(d$trans == 14)
x.14.mean <- mean(d[hi, "x"])
ho <- d[, "x"] - x.14.mean
ho[which(!(d$trans == 14))] <- 0
d$x.14 <- ho
hi <- which(d$trans %in% c(12, 14))
x.12.14.mean <- mean(d[hi, "x"])
ho <- d[, "x"] - x.12.14.mean
ho[which(!(d$trans %in% c(12, 14)))] <- 0
d$x.12.14 <- ho
hi <- which(d$trans %in% c(13, 14))
x.13.14.mean <- mean(d[hi, "x"])
ho <- d[, "x"] - x.13.14.mean
ho[which(!(d$trans %in% c(13, 14)))] <- 0
d$x.13.14 <- ho
x.mean <- mean(d$x)
d$x <- d$x - x.mean
attributes(d)$x.means <- c(x.12.mean, x.13.mean, x.14.mean,
x.12.13.mean, x.12.14.mean, x.13.14.mean, x.mean)
return(d)} |
airnow_loadAnnual <- function(year = NULL,
parameter = 'PM2.5',
baseUrl = 'https://haze.airfire.org/monitoring',
dataDir = NULL) {
if ( is.null(year) ) {
stop("Required parameter 'year' is missing.")
}
year <- as.numeric(year)
validParams <- c("PM2.5")
if ( !parameter %in% validParams ) {
paramsString <- paste(validParams, collapse=", ")
stop(paste0("'", parameter,
"' is not a supported parameter. Use 'parameter = ",
paramsString, "'"), call.=FALSE)
}
if ( year < 2016 ) {
stop("PWFSL has no annual data files for AirNow prior to 2016.")
}
baseUrl <- paste0(baseUrl, '/AirNow/RData/', year)
filename <- paste0("airnow_", parameter, "_", year, ".RData")
ws_monitor <- MazamaCoreUtils::loadDataFile(filename, baseUrl, dataDir)
return(ws_monitor)
} |
get_dashboard_dependencies <- function() {
list(
htmlDependency(
"semantic.dashboard",
as.character(utils::packageVersion("semantic.dashboard")),
c(file = system.file(package = "semantic.dashboard")),
script = "semantic.dashboard.min.js",
stylesheet = "semantic.dashboard.min.css"
)
)
} |
foldp <-
function(p,eps){
(p+eps)/(1-p+eps)
} |
tar_test("database$append_lines() loops when it cannot append to the file", {
path <- file.path(tempfile(), "x", "y")
database <- database_init(path = path)
expect_error(
expect_warning(database$append_lines("line", max_attempts = 10))
)
})
tar_test("test on Windows: pipeline keeps going
tar_script(
list(
tar_target(n_random, rep(1, 200)),
tar_target(random, Sys.sleep(0.01), pattern = map(n_random))
)
)
px <- tar_make(
callr_function = callr::r_bg,
callr_arguments = list(
stdout = "out.txt",
stderr = "err.txt"
)
)
tar_poll()
expect_equal(tar_outdated(), character(0))
expect_equal(tar_progress_branches()$branches, 200L)
expect_equal(tar_progress_branches()$built, 200L)
writeLines(readLines("err.txt"))
}) |
XbetaAndResidu=function(
method,
data,
testCovInd,
nRef,
paraJobs,
refTaxa,
sequentialRun,
standardize,
allFunc,
Mprefix,
covsPrefix,
binPredInd,
seed){
results=list()
dataForEst1=dataRecovTrans(data=data,ref=refTaxa[1],Mprefix=Mprefix,
covsPrefix=covsPrefix)
results$xTildLong=dataForEst1$xTildalong
rm(dataForEst1)
basicInfo=dataInfo(data=data,Mprefix=Mprefix,
covsPrefix=covsPrefix,
binPredInd=binPredInd)
predNames=basicInfo$predNames
testCovNam=predNames[testCovInd]
colnames(data)%in%testCovNam
reducedData=data[,!(colnames(data)%in%testCovNam)]
rm(basicInfo)
reducedBasicInfo=dataInfo(data=reducedData,Mprefix=Mprefix,
covsPrefix=covsPrefix,
binPredInd=binPredInd)
taxaNames=reducedBasicInfo$taxaNames
nTaxa=reducedBasicInfo$nTaxa
nPredics=reducedBasicInfo$nPredics
rm(reducedBasicInfo)
gc()
nNorm=nTaxa-1
nAlphaNoInt=nPredics*nNorm
nAlphaSelec=nPredics*nTaxa
countOfSelec=rep(0,nAlphaSelec)
resultsByRefTaxon=list()
nRef=length(refTaxa)
startT=proc.time()[3]
message("start generating residues for permutation")
if(length(paraJobs)==0){
availCores=availableCores()
if(is.numeric(availCores))paraJobs=max(1,availableCores()-2)
if(!is.numeric(availCores))paraJobs=1
}
if(!sequentialRun){
message(paraJobs, "parallel jobs are registered for generate residues in Phase 1a.")
}
batch=paraJobs
forLoopN=ceiling(nRef/batch)
for(jj in 1:forLoopN){
cl<-parallel::makeCluster(paraJobs)
parallel::clusterExport(cl=cl, varlist=allFunc,envir=parent.env(environment()))
doParallel::registerDoParallel(cl)
if(length(seed)>0){
set.seed(as.numeric(seed)+jj+10^8)
parallel::clusterSetRNGStream(cl=cl,(as.numeric(seed)+jj+10^9))
}
if(sequentialRun){foreach::registerDoSEQ()}
startT1=proc.time()[3]
if(forLoopN>1 & jj<forLoopN){
residu1Resu.j=foreach(i=((jj-1)*batch+1):(jj*batch),.multicombine=T,
.packages=c("picasso","Matrix"),
.errorhandling="pass") %dopar% {
ii=which(taxaNames==refTaxa[i])
dataForEst=dataRecovTrans(data=reducedData,ref=refTaxa[i],Mprefix=Mprefix,
covsPrefix=covsPrefix)
xTildLongTild.i=dataForEst$xTildalong
yTildLongTild.i=dataForEst$UtildaLong
rm(dataForEst)
gc()
if(method=="mcp") {
Penal.i=runPicasso(x=xTildLongTild.i,y=yTildLongTild.i,
nPredics=nPredics,
method="mcp",permutY=FALSE,
standardize=standardize,
seed=seed,seedi=i)
}
betaInt=Penal.i$betaInt
overalIntercp=Penal.i$overalIntercp
rm(Penal.i)
gc()
xBeta=xTildLongTild.i%*%betaInt+overalIntercp
rm(xTildLongTild.i)
residu=yTildLongTild.i-xBeta
rm(yTildLongTild.i)
recturnlist=list()
recturnlist[[1]]=xBeta
recturnlist[[2]]=residu
return(recturnlist)
}
parallel::stopCluster(cl)
rm(data)
gc()
if(jj==1)residu1Resu=residu1Resu.j
if(jj>1)residu1Resu=do.call(c,list(residu1Resu,residu1Resu.j))
}
if(jj==forLoopN){
residu1Resu.j=foreach(i=((jj-1)*batch+1):nRef,.multicombine=T,
.packages=c("picasso","Matrix"),
.errorhandling="pass") %dopar% {
ii=which(taxaNames==refTaxa[i])
dataForEst=dataRecovTrans(data=reducedData,ref=refTaxa[i],Mprefix=Mprefix,
covsPrefix=covsPrefix)
xTildLongTild.i=dataForEst$xTildalong
yTildLongTild.i=dataForEst$UtildaLong
rm(dataForEst)
gc()
if(method=="mcp") {
Penal.i=runPicasso(x=xTildLongTild.i,y=yTildLongTild.i,
nPredics=nPredics,
method="mcp",permutY=FALSE,
standardize=standardize,
seed=seed,seedi=i)
}
betaInt=Penal.i$betaInt
overalIntercp=Penal.i$overalIntercp
rm(Penal.i)
gc()
xBeta=xTildLongTild.i%*%betaInt+overalIntercp
rm(xTildLongTild.i)
residu=yTildLongTild.i-xBeta
rm(yTildLongTild.i)
recturnlist=list()
recturnlist[[1]]=xBeta
recturnlist[[2]]=residu
return(recturnlist)
}
parallel::stopCluster(cl)
rm(data)
gc()
if(forLoopN==1)residu1Resu=residu1Resu.j
if(forLoopN>1)residu1Resu=do.call(c,list(residu1Resu,residu1Resu.j))
}
}
endT=proc.time()[3]
message("Generating residu is done and took ",round((endT-startT1)/60,3),"minutes")
xBetaList=list()
for(i in 1:nRef){
xBetaList[[i]]=residu1Resu[[i]][[1]]
}
residuList=list()
for(i in 1:nRef){
residuList[[i]]=residu1Resu[[i]][[2]]
}
rm(residu1Resu)
results$xBetaList=xBetaList
rm(xBetaList)
results$residuList=residuList
rm(residuList)
return(results)
} |
api_versions = function(url) {
tryCatch({
if (endsWith(url, "/"))
url = substr(url, 1, nchar(url) - 1)
endpoint = "/.well-known/openeo"
info = GET(url = paste0(url, endpoint),config=content_type_json())
if (info$status == 200) {
vlist = content(info)
if (is.raw(vlist)) {
vlist=jsonlite::fromJSON(rawToChar(vlist),simplifyDataFrame = FALSE)
}
class(vlist) = "VersionsList"
if (isNamespaceLoaded("tibble")) {
return(tibble::as_tibble(vlist))
}
return(as.data.frame(vlist))
} else {
stop("Host is not reachable. Please check the URL.")
}
}, error = .capturedErrorToMessage)
}
capabilities = function(con=NULL) {
tryCatch({
con = .assure_connection(con)
con$stopIfNotConnected()
return(con$getCapabilities())
},
error = function(e) {
warning(e$message)
return(invisible(e$message))
})
}
list_features = function(con=NULL) {
tryCatch({
con = .assure_connection(con)
return(con$api.mapping[c("endpoint", "operation", "available")])
}, error = .capturedErrorToMessage)
}
list_file_formats = function(con=NULL) {
tryCatch({
tag = "formats"
con = .assure_connection(con)
formats = con$request(tag = tag, authorized = con$isLoggedIn())
class(formats) = "FileFormatList"
if (length(formats$input) > 0) {
input_formats = names(formats$input)
modified_input_formats = lapply(input_formats, function(format_name) {
f = formats$input[[format_name]]
f$name = format_name
class(f) = "FileFormat"
return(f)
})
names(modified_input_formats) = input_formats
}
if (length(formats$output) > 0) {
output_formats = names(formats$output)
modified_output_formats = lapply(output_formats, function(format_name) {
f = formats$output[[format_name]]
f$name = format_name
class(f) = "FileFormat"
return(f)
})
names(modified_output_formats) = output_formats
formats$output = modified_output_formats
}
return(formats)
}, error = .capturedErrorToMessage)
}
list_service_types = function(con=NULL) {
tryCatch({
con = .assure_connection(con)
con$stopIfNotConnected()
tag = "ogc_services"
services = con$request(tag = tag, authorized = con$isLoggedIn())
class(services) = "ServiceTypeList"
services_type_names = names(services)
services = lapply(services_type_names, function(service_name) {
service = services[[service_name]]
service$name = service_name
class(service) = "ServiceType"
return(service)
})
names(services) = services_type_names
return(services)
}, error = .capturedErrorToMessage)
return(con$list_service_types())
}
terms_of_service = function(con = NULL) {
tryCatch({
con = .assure_connection(con)
con$stopIfNotConnected()
capabilities = con$getCapabilities()
sel = lapply(capabilities$links, function(link) {
if (link$rel == "terms-of-service") {
return(link)
} else {
return(NULL)
}
})
sel = as.list(unlist(sel))
if (length(sel) == 0) {
.no_information_by_backend("terms of service")
return(invisible(NULL))
} else {
htmlViewer(content(GET(sel$href),as = "text",type = "text/html",encoding = "UTF-8"))
return(invisible(sel))
}
}, error = .capturedErrorToMessage)
}
privacy_policy = function(con = NULL) {
tryCatch({
con = .assure_connection(con)
con$stopIfNotConnected()
capabilities = con$getCapabilities()
sel = lapply(capabilities$links, function(link) {
if (link$rel == "privacy-policy") {
return(link)
} else {
return(NULL)
}
})
sel = as.list(unlist(sel))
if (length(sel) == 0) {
.no_information_by_backend("privacy policy")
return(invisible(NULL))
} else {
htmlViewer(content(GET(sel$href),as = "text",type = "text/html",encoding = "UTF-8"))
return(invisible(sel))
}
}, error = .capturedErrorToMessage)
}
conformance = function(con=NULL) {
tryCatch({
con = .assure_connection(con)
con$stopIfNotConnected()
tag = "ogc_conformance"
return(con$request(tag = tag))
}, error = .capturedErrorToMessage)
} |
popFprojHigh <- read.delim(file='popFprojHigh.txt', comment.char=' |
Return.wealthindex <-
function (R, wealth.index = TRUE, ...)
{
x = checkData(R)
columns = ncol(x)
columnnames = colnames(x)
one = 0
if(!wealth.index)
one = 1
for(column in 1:columns) {
column.Return.cumulative = na.skip(x[,column,drop=FALSE],FUN = function(x,one) {cumprod(1+x) - one},one=one)
if(column == 1)
Return.cumulative = column.Return.cumulative
else
Return.cumulative = merge(Return.cumulative,column.Return.cumulative)
}
if(columns == 1)
Return.cumulative = as.xts(Return.cumulative)
colnames(Return.cumulative) = columnnames
reclass(Return.cumulative,match.to=x)
} |
sortPairs <- function(c1, c2, spMat=FALSE){
if (anyNA(c1) | anyNA(c2))
stop("NA are not supported.")
if (((!is.vector(c1) & !is.factor(c1)) | is.list(c1)) | ((!is.vector(c2) & !is.factor(c2)) | is.list(c2)))
stop("c1 and c2 must be vectors or factors but not lists.")
if (length(c1) != length(c2))
stop("the two vectors must have the same length.")
n <- length(c1)
if (is.integer(c1) & is.integer(c2)) {
res1 <- getRank(c1)
res2 <- getRank(c2)
mylevels <- list(c1=res1$index, c2=res2$index)
c1 <- res1$translated
c2 <- res2$translated
} else if (is.factor(c1) & is.factor(c2)) {
mylevels <- list(c1 = levels(c1), c2 = levels(c2))
c1 <- as.integer(c1) - 1L
c2 <- as.integer(c2) - 1L
} else {
mylevels <- list(c1 = unique(c1), c2 = unique(c2))
c1 <- as.integer(factor(c1, levels = mylevels$c1)) - 1L
c2 <- as.integer(factor(c2, levels = mylevels$c2)) - 1L
}
i_order <- order(c1, c2, method="radix") - 1L
out <- countPairs(c1, c2, i_order)
if (spMat) {
spOut <- sparseMatrix(i=out$pair_c1,
j=out$pair_c2,
x=out$pair_nb,
dims=sapply(mylevels,length),
dimnames = mylevels, index1=FALSE)
} else {
spOut <- NULL
}
res <- list(spMat = spOut,
levels = mylevels,
nij = out$pair_nb,
ni. = out$c1_nb,
n.j = out$c2_nb,
pair_c1 = out$pair_c1,
pair_c2 = out$pair_c2
)
res
}
ARI <- function(c1, c2){
res <- sortPairs(c1, c2)
N <- length(c1)
stot <- sum(choose(res$nij, 2), na.rm=TRUE)
srow <- sum(choose(res$ni., 2), na.rm=TRUE)
scol <- sum(choose(res$n.j, 2), na.rm=TRUE)
expectedIndex <-(srow*scol)/(choose(N,2))
maximumIndex <- (srow+scol)/2
if (expectedIndex == maximumIndex & stot != 0) {
res <- 1
} else {
res <- (stot-expectedIndex)/(maximumIndex-expectedIndex)
}
res
}
RI <- function(c1, c2){
res <- sortPairs(c1, c2)
N <- length(c1)
res <- 1 + (sum(res$nij^2) - (sum(res$ni.^2) + sum(res$n.j^2))/2)/choose(N,2)
res
}
MARI <- function(c1, c2){
res <- sortPairs(c1, c2)
N <- length(c1)
stot <- sum(choose(res$nij, 2), na.rm=TRUE)
srow <- sum(choose(res$ni., 2), na.rm=TRUE)
scol <- sum(choose(res$n.j, 2), na.rm=TRUE)
T1 <- 2*N
T2 <- sum(res$nij * res$ni.[res$pair_c1+1] * res$n.j[res$pair_c2+1], na.rm=TRUE)
T3 <- -sum(res$nij^2, na.rm=TRUE) - sum(res$ni.^2, na.rm=TRUE) - sum(res$n.j^2, na.rm=TRUE)
expectedIndex <- (srow*scol - stot - (T1+T2+T3)) / (6 *choose(N, 4))
expectedIndex <- expectedIndex * choose(N, 2)
maximumIndex <- (srow+scol)/2
if (expectedIndex == maximumIndex & stot != 0) {
res <- 1
} else {
res <- (stot-expectedIndex)/(maximumIndex-expectedIndex)
}
res
res
}
MARIraw <- function(c1, c2){
res <- sortPairs(c1, c2)
N <- length(c1)
stot <- sum(choose(res$nij, 2), na.rm=TRUE)
srow <- sum(choose(res$ni., 2), na.rm=TRUE)
scol <- sum(choose(res$n.j, 2), na.rm=TRUE)
T1 <- 2*N
T2 <- sum(res$nij * res$ni.[res$pair_c1+1] * res$n.j[res$pair_c2+1], na.rm=TRUE)
T3 <- -sum(res$nij^2, na.rm=TRUE) - sum(res$ni.^2, na.rm=TRUE) - sum(res$n.j^2, na.rm=TRUE)
expectedIndex <- (srow*scol - stot - (T1+T2+T3)) / (6 *choose(N, 4))
res <- (stot / choose(N, 2)) - expectedIndex
res
}
Chi2 <- function(c1, c2){
res <- sortPairs(c1, c2)
N <- length(c1)
res <- N* sum(res$nij^2 / (res$ni.[res$pair_c1+1] * res$n.j[res$pair_c2+1]) )
res <- res - N
res
}
entropy <- function(c1, c2){
res <- sortPairs(c1, c2)
N <- length(c1)
H.UV <- - sum(res$nij * log(res$nij))/N + log(N)
H.U <- - sum(res$ni. * log(res$ni.))/N + log(N)
H.V <- - sum(res$n.j * log(res$n.j))/N + log(N)
res <- list(UV = H.UV, U = H.U, V = H.V, sortPairs = res)
res
}
clustComp <- function(c1, c2) {
H <- entropy(c1,c2)
MI <- - H$UV + H$U + H$V
VI <- H$UV - MI
NVI <- 1 - MI/H$UV
ID <- max(H$U, H$V) - MI
NID <- 1 - MI / max(H$U, H$V)
NMI <- MI / max(H$U, H$V)
EMI <- expected_MI(as.integer(H$ni.), as.integer(H$n.j))
res <- list(RI = RI(c1,c2) ,
ARI = ARI(c1,c2) ,
MI = - H$UV + H$U + H$V ,
AMI = (- H$UV + H$U + H$V - EMI) / (max(H$U,H$V) - EMI),
VI = H$UV - MI ,
NVI = 1 - MI/H$UV ,
ID = max(H$U, H$V) - MI ,
NID = 1 - MI / max(H$U, H$V),
NMI = MI / max(H$U, H$V) ,
Chi2 = Chi2(c1,c2) ,
MARI = MARI(c1,c2) ,
MARIraw = MARIraw(c1,c2)
)
res
res
}
AMI <- function(c1, c2){
H <- entropy(c1,c2)
MI <- - H$UV + H$U + H$V
EMI <- expected_MI(as.integer(H$ni.), as.integer(H$n.j))
res <- (MI - EMI) / (max(H$U,H$V) - EMI)
res
}
NMI <- function(c1, c2, variant = c("max", "min", "sqrt", "sum", "joint")) {
variant <- match.arg(variant)
H <- entropy(c1,c2)
MI <- - H$UV + H$U + H$V
D <- switch(variant,
"max" = max(H$U, H$V),
"sqrt" = sqrt(H$U * H$V),
"min" = min(H$U, H$V),
"sum" = .5*(H$U + H$V),
"joint" = H$UV)
res <- MI / D
res
}
NID <- function(c1, c2) {
H <- entropy(c1,c2)
MI <- - H$UV + H$U + H$V
res <- 1 - MI / max(H$U, H$V)
res
}
NVI <- function(c1, c2) {
H <- entropy(c1,c2)
MI <- - H$UV + H$U + H$V
res <- 1 - MI/H$UV
res
} |
noKernel <- function (dat,smooth=0.1,sort=F,output=1,genplot=T,verbose=T)
{
if(verbose) cat("\n----- REMOVING GAUSSIAN KERNEL SMOOTHER FROM STRATIGRAPHIC SERIES -----\n")
if(smooth <= 0) {stop("**** ERROR, FUNCTION TERMINATED: smooth must be > 0")}
dat <- data.frame(dat)
npts <- length(dat[,1])
if(verbose) cat(" * Number of data points input=", npts,"\n")
dat1 <- data.frame(dat)
if (sort)
{
if(verbose) cat(" * Sorting into increasing order\n")
dat <- dat[order(dat[,1],na.last=NA,decreasing=F),]
}
if (smooth != 0)
{
if(verbose) cat(" * Smoothing/detrending with Gaussian kernel\n")
smoothScaled= abs( dat[1,1]-dat[npts,1] ) * smooth * 2
smooth2 <- ksmooth(dat[,1],dat[,2],kernel=c("normal"),bandwidth=smoothScaled,x.points=dat[,1])
resid<-data.frame(cbind(smooth2$x,(dat[,2]-smooth2$y)))
smoother<-data.frame( cbind(smooth2$x,smooth2$y) )
if(genplot)
{
par(mfrow=c(2,2))
plot(dat,cex=0.5, main="Stratigraphic Data Series",xlab="Location",ylab="Value")
lines(smoother,col="red")
plot(resid, cex=0.5,main="Gaussian Kernel Detrended Series",xlab="Location",ylab="Detrended Value"); lines(resid)
hist(resid[,2],freq=F, xlab="Value", main="Distribution of Residual Values"); lines(density(resid[,2], bw="nrd0"),col="red"); grid()
boxplot(resid[,2], ylab="Value", main="Boxplot of Residual Values")
}
}
if (output==1) return(resid)
if (output==2) return(smoother)
} |
test_that("Plot Time Series and Images", {
cerrado_ndvi <- sits_select(cerrado_2classes, "NDVI")
p <- plot(cerrado_ndvi[1, ])
expect_equal(p$labels$title, "location (-14.05, -54.23) - Cerrado")
cerrado_ndvi_1class <- dplyr::filter(cerrado_ndvi, label == "Cerrado")
p1 <- plot(cerrado_ndvi_1class)
expect_equal(
p1$labels$title,
"Samples (400) for class Cerrado in band = NDVI"
)
p2 <- plot(sits_patterns(cerrado_2classes))
expect_equal(p2$guides$colour$title, "Bands")
expect_equal(p2$theme$legend.position, "bottom")
samples_mt_ndvi <- sits_select(samples_modis_4bands, bands = "NDVI")
point_ndvi <- sits_select(point_mt_6bands, bands = "NDVI")
rfor_model <- sits_train(samples_mt_ndvi, ml_method = sits_rfor())
point_class <- sits_classify(point_ndvi, rfor_model)
p3 <- plot(point_class)
expect_equal(p3$labels$y, "Value")
expect_equal(p3$labels$x, "Time")
expect_equal(p3$theme$legend.position, "bottom")
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
sinop <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6",
data_dir = data_dir,
parse_info = c("X1", "X2", "tile", "band", "date")
)
bbox <- sits_bbox(sinop)
size_x <- bbox["xmax"] - bbox["xmin"]
size_y <- bbox["ymax"] - bbox["ymin"]
roi <- c(floor(bbox["xmin"] + size_x/4),
floor(bbox["xmax"] - size_x/4),
floor(bbox["ymin"] + size_y/4),
floor(bbox["ymax"] - size_y/4))
r_obj <- plot(sinop, red = "EVI", blue = "EVI", green = "NDVI",
roi = roi)
expect_equal(terra::nlyr(r_obj), 3)
expect_equal(terra::ncol(r_obj), 127)
r_obj <- plot(sinop, band = "EVI")
expect_equal(terra::nlyr(r_obj), 1)
expect_equal(terra::ncol(r_obj), 254)
sinop_probs <- suppressMessages(
sits_classify(
sinop,
ml_model = rfor_model,
memsize = 2,
multicores = 1,
output_dir = tempdir()
)
)
p_probs <- plot(sinop_probs)
expect_equal(p_probs$adj, 0.5)
expect_equal(p_probs$lend, "round")
p_probs <- plot(sinop_probs, labels = "Forest")
expect_equal(p_probs$adj, 0.5)
expect_equal(p_probs$lend, "round")
sinop_uncert <- sits_uncertainty(sinop_probs,
output_dir = tempdir())
p_uncert <- plot(sinop_uncert, n_breaks = 11, breaks = "pretty")
expect_equal(p_uncert$adj, 0.5)
expect_equal(p_uncert$lend, "round")
expect_equal(p_uncert$lty, "solid")
sinop_labels <- sits_label_classification(sinop_probs,
output_dir = tempdir())
p4 <- plot(sinop_labels, title = "Classified image")
expect_equal(p4$labels$title, "Classified image")
expect_equal(p4$layers[[1]]$geom_params$hjust, 0.5)
expect_true(p4$layers[[1]]$inherit.aes)
p5 <- plot(sinop_labels, title = "Classified image",
legend = c("Cerrado" = "
"Forest" = "
"Pasture" = "
"Soy_Corn" = "
expect_equal(p5$labels$title, "Classified image")
expect_equal(p5$layers[[1]]$geom_params$hjust, 0.5)
expect_true(p5$layers[[1]]$inherit.aes)
expect_true(all(file.remove(unlist(sinop_probs$file_info[[1]]$path))))
expect_true(all(file.remove(unlist(sinop_labels$file_info[[1]]$path))))
})
test_that("Dendrogram Plot", {
cluster_obj <- sits:::.sits_cluster_dendrogram(cerrado_2classes,
bands = c("NDVI", "EVI")
)
cut.vec <- sits:::.sits_cluster_dendro_bestcut(
cerrado_2classes,
cluster_obj
)
dend <- sits:::.sits_plot_dendrogram(
data = cerrado_2classes,
cluster = cluster_obj,
cutree_height = cut.vec["height"],
palette = "RdYlGn"
)
expect_equal(class(dend), "dendrogram")
})
source("./test-utils.R")
test_that("Plot keras model", {
Sys.setenv(TF_CPP_MIN_LOG_LEVEL = "1")
samples_mt_2bands <- sits_select(samples_modis_4bands,
bands = c("NDVI", "EVI")
)
model <- suppress_keras(
sits_train(
samples_mt_2bands,
sits_mlp(
layers = c(128, 128),
dropout_rates = c(0.5, 0.4),
epochs = 50,
verbose = 0
)
)
)
pk <- plot(model)
expect_true(length(pk$layers) == 2)
expect_true(pk$labels$colour == "data")
expect_true(pk$labels$x == "epoch")
expect_true(pk$labels$y == "value")
})
test_that("Plot series with NA", {
cerrado_ndvi <- cerrado_2classes %>%
sits_select(bands = "NDVI") %>%
dplyr::filter(label == "Cerrado")
cerrado_ndvi_1 <- cerrado_ndvi[1,]
ts <- cerrado_ndvi_1$time_series[[1]]
ts[1,2] <- NA
ts[10,2] <- NA
cerrado_ndvi_1$time_series[[1]] <- ts
pna <- suppressWarnings(plot(cerrado_ndvi_1))
expect_true(pna$labels$x == "Index")
expect_true(pna$labels$y == "value")
})
test_that("SOM map plot", {
set.seed(1234)
som_map <-
suppressWarnings(sits_som_map(
cerrado_2classes,
grid_xdim = 5,
grid_ydim = 5
))
p <- plot(som_map)
expect_true(all(names(p$rect) %in% c("w", "h", "left", "top")))
pc <- plot(som_map, type = "mapping")
expect_true(all(names(pc$rect) %in% c("w", "h", "left", "top")))
})
test_that("SOM evaluate cluster plot", {
set.seed(1234)
som_map <-
suppressWarnings(sits_som_map(
cerrado_2classes,
grid_xdim = 5,
grid_ydim = 5
))
cluster_purity_tb <- sits_som_evaluate_cluster(som_map)
p <- plot(cluster_purity_tb)
expect_equal(p$labels$title, "Confusion by cluster")
expect_equal(p$labels$y, "Percentage of mixture")
}) |
msmedse <- function(x, sewarn = TRUE, ...){
x=elimna(x)
chk=sum(duplicated(x))
if (sewarn) {
if(chk>0){
warning("Tied values detected. Estimate of standard error might be inaccurate.")
}}
y<-sort(x)
n<-length(x)
av<-round((n+1)/2-qnorm(.995)*sqrt(n/4))
if(av==0)av<-1
top<-n-av+1
sqse<-((y[top]-y[av])/(2*qnorm(.995)))^2
sqse<-sqrt(sqse)
sqse
} |
.build_d <- function(model,M) {
model$d = matrix(0,nrow=M,ncol=model$J)
if(!all(!model$semi)){
sojourn.distribution=model$sojourn$type
J = model$J
if(sojourn.distribution=='nonparametric' | sojourn.distribution=="ksmoothed-nonparametric") {
if(!is.null(model$sojourn$d)) {
if(ncol(model$sojourn$d)!=J) stop("ncol(model$d)!=J")
M = nrow(model$sojourn$d)
model$d = model$sojourn$d
}else stop("Sojourn distribution (model$sojourn$d) not specified.")
}
if(sojourn.distribution=="poisson") {
if(is.null(model$sojourn$d)) {
if(is.null(model$sojourn$lambda)) stop('Invalid waiting parameters supplied')
if(is.null(model$sojourn$shift)) stop('No shift parameter provided for Poisson sojourn distribution (must be at least 1)')
model$d = matrix(0,nrow=M,ncol=model$J)
for(i in 1:J){
if(model$semi[i]) model$d[,i] = .dpois.hhsmm(1:M,model$sojourn$lambda[i],model$sojourn$shift[i])
}
} else
for(i in 1:J) model$d = model$sojourn$d
}
if(sojourn.distribution=="lnorm") {
if(is.null(model$sojourn$d)) {
if(is.null(model$sojourn$meanlog) | is.null(model$sojourn$sdlog)) stop('Invalid waiting parameters supplied')
model$d = matrix(0,nrow=M,ncol=model$J)
for(i in 1:J){
if(model$semi[i]){
for(u in 1:M){
model$d[u,i] = plnorm(u,meanlog=model$sojourn$meanlog[i],sdlog=model$sojourn$sdlog[i]) - plnorm(u-1,meanlog=model$sojourn$meanlog[i],sdlog=model$sojourn$sdlog[i])
model$d[u,i] = model$d[u,i] / plnorm(M,meanlog=model$sojourn$meanlog[i],sdlog=model$sojourn$sdlog[i])
}
}
}
}else
for(i in 1:J) model$d = model$sojourn$d
}
if(sojourn.distribution=="gamma") {
if(is.null(model$sojourn$shape) | is.null(model$sojourn$scale)) {
if(is.null(model$sojourn$d))
stop('Invalid waiting parameters supplied')
else model$d = model$sojourn$d
}else {
model$d = matrix(0,nrow=M,ncol=model$J)
for(i in 1:J) {
if(model$semi[i]){
for(u in 1:M){
model$d[u,i] = pgamma(u,shape=model$sojourn$shape[i],scale=model$sojourn$scale[i]) - pgamma(u-1,shape=model$sojourn$shape[i],scale=model$sojourn$scale[i])
model$d[u,i] = model$d[u,i] / (pgamma(M,shape=model$sojourn$shape[i],scale=model$sojourn$scale[i]))
}
}
}
}
}
if(sojourn.distribution=="weibull") {
if(is.null(model$sojourn$shape) | is.null(model$sojourn$scale)) {
if(is.null(model$sojourn$d))
stop('Invalid waiting parameters supplied')
else model$d = model$sojourn$d
}else {
model$d = matrix(0,nrow=M,ncol=model$J)
for(i in 1:J) {
if(model$semi[i]){
for(u in 1:M){
model$d[u,i] = pweibull(u,shape=model$sojourn$shape[i],scale=model$sojourn$scale[i]) - pweibull(u-1,shape=model$sojourn$shape[i],scale=model$sojourn$scale[i])
model$d[u,i] = model$d[u,i] / (pweibull(M,shape=model$sojourn$shape[i],scale=model$sojourn$scale[i]))
}
}
}
}
}
if(sojourn.distribution=="logarithmic") {
if(is.null(model$sojourn$shape)) {
if(is.null(model$sojourn$d))
stop('Invalid waiting parameters supplied')
else model$d = model$sojourn$d
} else {
model$d = matrix(0,nrow=M,ncol=model$J)
for(i in 1:J){
if(model$semi[i]) model$d[,i] = .dlog(1:M,model$sojourn$shape[i])
}
}
}
if (sojourn.distribution == "nbinom") {
model$d = matrix(0,nrow = M, ncol = J)
if(is.null(model$sojourn$mu)) for (i in 1:J){
if(model$semi[i]) model$d[, i] = .dnbinom.hhsmm(1:M,size=model$sojourn$size[i],prob=model$sojourn$prob[i],shift=model$sojourn$shift[i])
}
if(is.null(model$sojourn$prob)) for (i in 1:J){
if(model$semi[i]) model$d[, i] = .dnbinom.hhsmm(1:M,size=model$sojourn$size[i],mu=model$sojourn$mu[i],shift=model$sojourn$shift[i])
}
}
model$d=head(model$d,M)
}
model$D = apply(model$d,2,function(x) rev(cumsum(rev(x))))
model
} |
`points.radline` <-
function (x, ...)
{
poi <- x$y
rnk <- seq(along = poi)
points(rnk, poi, ...)
out <- list(species = cbind(rnk, poi))
class(out) <- "ordiplot"
invisible(out)
}
`points.radfit` <-
function(x, ...)
{
points.radline(x, ...)
} |
loo.design2 <- function(x, w, constraint, ptConstr, knots,
pw, nrq, nl1, neqc, niqc, nvar, lambda)
{
degree <- 2
ks <- degree + 1
stopifnot(is.character(constraint),
length(constraint) == length(niqc),
nvar == as.integer(nvar), length(nvar) == 1, nvar >= 1)
nvar <- as.integer(nvar)
fieq <- FALSE
nk <- length(knots) + 2*(ks - 1)
ncoef <- nk - ks
ox <- order(x)
sortx <- x[ox]
z1 <- .splBasis(ord = ks, knots, ncoef, xo = sortx)
i1 <- rep.int(ox, rep.int(ks, nrq))
j1 <- c(outer(1:ks, z1$offsets, "+"))
Xeq <- as.matrix.csr(new("matrix.coo",
ra = c(t(t(z1$design) * rep(w[ox], ks))),
ia = i1, ja = j1,
dimension = as.integer(c(nrq, nvar))))
nd <- nk - 5
if(lambda != 0) {
niqc1 <- 2*nd
z2 <- .splBasis(ord = ks, knots, ncoef, xo = knots[1:nd],
derivs = rep.int(2, nd))
Xl1 <- new("matrix.csr", ra = lambda,
ja = as.integer(nvar), ia = 1:2,
dimension = as.integer(c(1, nvar)))
Xieq <- new("matrix.csr", ra = c(z2$design,-z2$design),
ja = c(rep.int(outer(1:ks, z2$offsets, "+"),2)),
ia = as.integer(seq(1,2*length(z2$design)+1, by = ks)),
dimension = as.integer(c(niqc1, nvar-1)))
Xeq <- rbind(Xeq, Xl1)
Xieq <- cbind(Xieq, as.matrix.csr(rep.int(1, niqc1)))
fieq <- TRUE
} else niqc1 <- 0
niqc4 <- niqc - (niqc1 + ptConstr$n.smaller + ptConstr$n.greater)
for(i.cnstr in seq(along=constraint)) {
constr <- constraint[i.cnstr]
niqc4. <- niqc4[i.cnstr]
if(constr == "convex" || constr == "concave") {
if(lambda == 0)
z2 <- .splBasis(ord = ks, knots, ncoef, xo = knots[1:niqc4.],
derivs = rep.int(2, niqc4.))
ra <- c(if(constr == "convex")
z2$design else -z2$design)
ja <- c(outer(1:ks, z2$offsets,"+"))
ia <- as.integer(seq(1, length(z2$design)+1, by = ks))
Xc <- new("matrix.csr", ra = ra, ja = ja, ia = ia,
dimension = as.integer(c(niqc4., nvar)))
if(fieq)
Xieq <- rbind(Xieq, Xc)
else {
Xieq <- Xc
fieq <- TRUE
}
}
else if(constr == "periodic") {
z1.3 <- .splBasis(ord = ks, knots, ncoef,
xo = sortx[c(1,nrq)], derivs = c(1,1))
ra <- c(z1.3$design)
ja <- c(outer(1:ks, z1.3$offsets,"+"))
ia <- as.integer(seq(1, length(z1.3$design)+1, by = ks))
Xp <- new("matrix.csr", ra = ra, ja = ja, ia = ia,
dimension = as.integer(c(2,nvar)))
Xp <- rbind(Xeq[ox[nrq],]- Xeq[ox[1],], Xp[2,]-Xp[1,])
if(fieq)
Xieq <- rbind(Xieq, Xp,-Xp)
else {
Xieq <- rbind(Xp,-Xp)
fieq <- TRUE
}
}
else if(constr == "increase" || constr == "decrease") {
z3 <- .splBasis(ord = ks, knots, ncoef, xo = knots[1:niqc4.],
derivs = rep.int(1, niqc4.))
ra <- c(if(constr == "increase")
z3$design else -z3$design)
ja <- c(outer(1:ks, z3$offsets,"+"))
ia <- as.integer(seq(1, length(z3$design)+1, by = ks))
X1 <- new("matrix.csr", ra = ra, ja = ja, ia = ia,
dimension = as.integer(c(niqc4., nvar)))
if(fieq)
Xieq <- rbind(Xieq, X1)
else {
Xieq <- X1
fieq <- TRUE
}
}
}
if(ptConstr$n.smaller > 0) {
o.smaller <- order(ptConstr$smaller[,2])
smaller.o <- ptConstr$smaller[,2][o.smaller]
z3.1 <- .splBasis(ord = ks, knots, ncoef, xo = smaller.o)
ra <- -c(z3.1$design)
ja <- c(outer(1:ks, z3.1$offsets,"+"))
ia <- as.integer(seq(1, length(z3.1$design)+1, by = ks))
Xp <- new("matrix.csr", ra = ra, ja = ja, ia = ia,
dimension = as.integer(c(ptConstr$n.smaller, nvar)))
if(fieq)
Xieq <- rbind(Xieq, Xp)
else {
Xieq <- Xp
fieq <- TRUE
}
}
if(ptConstr$n.greater > 0) {
o.greater <- order(ptConstr$greater[,2])
greater.o <- ptConstr$greater[,2][o.greater]
z3.2 <- .splBasis(ord = ks, knots, ncoef, xo = greater.o)
ra <- c(z3.2$design)
ja <- c(outer(1:ks, z3.2$offsets,"+"))
ia <- as.integer(seq(1, length(z3.2$design)+1, by = ks))
Xp <- new("matrix.csr", ra = ra, ja = ja, ia = ia,
dimension = as.integer(c(ptConstr$n.greater, nvar)))
if(fieq)
Xieq <- rbind(Xieq, Xp)
else {
Xieq <- Xp
fieq <- TRUE
}
}
if(ptConstr$n.equal > 0) {
o.equal <- order(ptConstr$equal[,2])
equal.o <- ptConstr$equal[,2][o.equal]
z1.1 <- .splBasis(ord = ks, knots, ncoef, xo = equal.o)
ra <- c(z1.1$design)
ja <- c(outer(1:ks, z1.1$offsets,"+"))
ia <- as.integer(seq(1, length(z1.1$design)+1, by = ks))
Xp <- new("matrix.csr", ra = ra, ja = ja, ia = ia,
dimension = as.integer(c(ptConstr$n.equal, nvar)))
if(fieq)
Xieq <- rbind(Xieq, Xp,-Xp)
else {
Xieq <- rbind(Xp,-Xp)
fieq <- TRUE
}
}
if(ptConstr$n.gradient > 0) {
o.gradient <- order(ptConstr$gradient[,2])
gradient.o <- ptConstr$gradient[,2][o.gradient]
z1.2 <- .splBasis(ord = ks, knots, ncoef, xo = gradient.o,
derivs = rep.int(1, ptConstr$n.gradient))
ra <- c(z1.2$design)
ja <- c(outer(1:ks, z1.2$offsets,"+"))
ia <- as.integer(seq(1, length(z1.2$design)+1, by = ks))
Xp <- new("matrix.csr", ra = ra, ja = ja, ia = ia,
dimension = as.integer(c(ptConstr$n.gradient, nvar)))
if(fieq)
Xieq <- rbind(Xieq, Xp,-Xp)
else {
Xieq <- rbind(Xp,-Xp)
fieq <- TRUE
}
}
if(fieq)
return(list(Xeq = Xeq, Xieq = Xieq, fieq = fieq, niqc1 = niqc1))
else
return(list(Xeq = Xeq, fieq = fieq, niqc1 = niqc1))
} |
test_that('output="modelsummary_list" and back to data.frame', {
mod <- list(
lm(mpg ~ hp, mtcars),
lm(mpg ~ hp + drat, mtcars))
tab <- modelsummary(mod, "modelsummary_list")
expect_true(all(sapply(tab, inherits, "modelsummary_list")))
expect_true(class(tab) == "list")
tab <- modelsummary(tab, "data.frame")
expect_s3_class(tab, "data.frame")
expect_equal(dim(tab), c(13, 5))
})
test_that("tidiers empty", {
mod <- lm(mpg ~ hp + drat + vs, mtcars)
ml <- list(tidy = modelsummary:::get_estimates(mod))
class(ml) <- "modelsummary_list"
gl <- generics::glance(ml)
expect_s3_class(gl, "data.frame")
expect_equal(dim(gl), c(1, 0))
ml <- list(glance = modelsummary:::get_gof(mod))
class(ml) <- "modelsummary_list"
expect_error(tidy(ml))
}) |
library(propr)
data(iris)
keep <- iris$Species %in% c("setosa", "versicolor")
counts <- iris[keep, 1:4] * 10
group <- ifelse(iris[keep, "Species"] == "setosa", "A", "B")
pd <- propd(counts, group, alpha = NA, p = 100)
theta_d <- setDisjointed(pd)
theta_e <- setEmergent(pd)
theta_d <- updateCutoffs(theta_d, cutoff = seq(0.05, 0.95, 0.3))
theta_e <- updateCutoffs(theta_e, cutoff = seq(0.05, 0.95, 0.3))
data(pd.d, package = "propr")
data(pd.e, package = "propr")
tab <- getResults(pd.d)
plot(pd.d@counts[, 39], pd.d@counts[, 37], col = ifelse(pd.d@group == "WA", "red", "blue"))
grp1 <- pd.d@group == "WA"
grp2 <- pd.d@group != "WA"
abline(a = 0, b = pd.d@counts[grp1, 37] / pd.d@counts[grp1, 39], col = "red")
abline(a = 0, b = pd.d@counts[grp2, 37] / pd.d@counts[grp2, 39], col = "blue")
plot(pd.d@counts[, 37] / pd.d@counts[, 39],
col = ifelse(pd.d@group == "WA", "red", "blue"))
tab <- getResults(pd.e)
plot(pd.e@counts[, 106], pd.e@counts[, 2], col = ifelse(pd.d@group == "WA", "red", "blue"))
grp1 <- pd.e@group == "WA"
grp2 <- pd.e@group != "WA"
abline(a = 0, b = pd.e@counts[grp1, 2] / pd.e@counts[grp1, 106], col = "red")
abline(a = 0, b = pd.e@counts[grp2, 2] / pd.e@counts[grp2, 106], col = "blue")
plot(pd.e@counts[, 2] / pd.e@counts[, 106],
col = ifelse(pd.d@group == "WA", "red", "blue"))
pd.f <- setActive(pd, what = "theta_f")
parallel(pd.d, cutoff = .15, include = "c19327_g2_i3")
parallel(pd.e, include = "c27054_g5_i1") |
Return <- CONCAT("I love"," writing tests")
expect_equal(Return,"I love writing tests") |
hwe.ibf.mc <- function(y, t, M = 10000, verbose = TRUE) {
if (class(y) != "HWEdata") {
stop("y argument not of class 'HWEdata'. Type '?HWEdata' for help.")
}
y.mat <- [email protected]
r <- y@size
R <- r*(r + 1)/2
y.vec <- [email protected]
n <- sum(y.vec, na.rm = TRUE)
if ((t <= 0) | (t > n) | (is.null(t))) {
stop("The training sample size t has to be an integer in between 1 and the sample size n.")
}
r.i <- rowSums(y.mat, na.rm = TRUE)
c.i <- colSums(y.mat, na.rm = TRUE)
theta.hat <- (y.vec + 1)/(n + R)
const <- lfactorial(t) + lfactorial(t + R - 1) + lfactorial(2*n + r - 1) - lfactorial(2*t + r - 1) - lfactorial(n + t + R - 1) -
(n - sum(diag(y.mat)))*log(2) - sum(lfactorial(r.i + c.i))
bf.draws <- vector(length = M)
for (k in 1:M) {
x.vec <- rmultinom(1, t, theta.hat)
x <- matrix(NA, r, r)
for (i in 1:r) {
x[i, 1:i] <- x.vec[((i - 1)*i/2 + 1):(i*(i + 1)/2)]
}
z.i <- rowSums(x, na.rm = TRUE)
d.i <- colSums(x, na.rm = TRUE)
bf.draws[k] <- const + (t - sum(diag(x)))*log(2) + sum(lfactorial(z.i+d.i)) - 2*sum(lfactorial(x.vec)) +
sum(lfactorial(x.vec + y.vec)) - dmultinom(x = x.vec, prob = theta.hat, log = TRUE)
if (verbose) {
if (round(k/10000) == k/10000) print(paste(k, "/", M, sep = ""), quote = FALSE)
}
}
bf.draws <- exp(bf.draws)
bf_mc <- mean(bf.draws)
npp <- 1/(1 + bf_mc)
out <- new("HWEintr", bf = bf_mc, npp = npp, draws = bf.draws, data = y.mat)
return(out)
}
hwe.ibf <- function(y, t) {
if (class(y) != "HWEdata") {
stop("y argument not of class 'HWEdata'. Type '?HWEdata' for help.")
}
r <- y@size
if (r != 2) {
stop("The exact calculation for the Bayes Factor based on intrinsic priors is available only for r (number of alleles) equal to 2.")
}
y.mat <- [email protected]
y.vec <- [email protected]
R <- r*(r + 1)/2
n <- sum(y.vec, na.rm = TRUE)
r.i <- rowSums(y.mat, na.rm = TRUE)
c.i <- colSums(y.mat, na.rm = TRUE)
C <- choose(t + R - 1, R - 1)
tables <- matrix(NA, nrow = R, ncol = C)
indx <- 1
for (i in 0:t) {
for (j in 0:(t - i)) {
tables[, indx] <- c(i, j, t - i - j)
indx <- indx + 1
}
}
const <- lfactorial(t) + lfactorial(t + R - 1) + lfactorial(2*n + r - 1) - lfactorial(2*t + r - 1) - lfactorial(n + t + R - 1) -
(n - sum(diag(y.mat)))*log(2) - sum(lfactorial(r.i + c.i))
bf.log <- vector(length = C)
for (k in 1:C) {
x.vec <- tables[, k]
x <- matrix(NA, r, r)
for (i in 1:r) {
x[i, 1:i] <- x.vec[((i - 1)*i/2 + 1):(i*(i + 1)/2)]
}
z.i <- rowSums(x, na.rm = TRUE)
d.i <- colSums(x, na.rm = TRUE)
bf.log[k] <- const + (t - sum(diag(x)))*log(2) + sum(lfactorial(z.i + d.i)) - 2*sum(lfactorial(x.vec)) +
sum(lfactorial(x.vec + y.vec))
}
out <- sum(exp(bf.log))
return(out)
}
hwe.bf <- function(y) {
if (class(y) != "HWEdata") {
stop("y argument not of class 'HWEdata'. Type '?HWEdata' for help.")
}
y.mat <- [email protected]
r <- y@size
R <- r*(r + 1)/2
y.vec <- [email protected]
n <- sum(y.vec, na.rm = TRUE)
r.i <- rowSums(y.mat, na.rm = TRUE)
c.i <- colSums(y.mat, na.rm = TRUE)
bf.log <- lfactorial(R - 1) + lfactorial(2*n + r - 1) - lfactorial(n + R - 1) - lfactorial(r - 1) - (n - sum(diag(y.mat)))*log(2) -
sum(lfactorial(r.i + c.i)) + sum(lfactorial(y.vec))
out <- exp(bf.log)
return(out)
}
cip.tmp <- function(p11, p21, t, p) {
R <- 3
C <- choose(t + R - 1, R - 1)
tables <- matrix(NA, nrow = R, ncol = C)
indx <- 1
for (i in 0:t) {
for (j in 0:(t - i)) {
tables[, indx] <- c(i, j, t - i - j)
indx <- indx + 1
}
}
const <- factorial(t)*factorial(t + 2)
cip.terms <- numeric(C)
pij <- c(p11, p21, 1 - p11 - p21)
if (all(pij <= 1) & all(pij >= 0)) {
for (k in 1:C) {
x <- tables[, k]
cip.terms[k] <- 2^x[2] * p^(2*x[1] + x[2]) * (1 - p)^(x[2] + 2*x[3]) * prod(pij^x) / prod(factorial(x))^2
}
out <- const*sum(cip.terms) }
else { out <- NA }
return(out)
}
cip.2 <- function(t, p, k = 30) {
p11 <- p21 <- seq(0, 1, length.out = k)
cip <- outer(X = p11, Y = p21, FUN = Vectorize(cip.tmp), t, p)
cip[is.na(cip)] <- 0
nrz <- nrow(cip)
ncz <- ncol(cip)
colors <- colorRampPalette( c("gray","lightgray"))
nbcol <- 100
color <- colors(nbcol)
z <- cip
zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
facetcol <- cut(zfacet, nbcol)
persp(p11, p21, cip, xlab = "p_11", ylab = "p_21", zlab = "density", ticktype = "detailed", shade = .5, theta = -25, phi = 25,
expand = 0.4, scale = TRUE, ltheta = 10, lphi = -10, cex.axis = 1.2, cex.lab = 1.2, col = color[facetcol])
}
ip.tmp <- function(p11, p21, t) {
R <- 3
C <- choose(t + R - 1, R - 1)
tables <- matrix(NA, nrow = R, ncol = C)
indx <- 1
for (i in 0:t) {
for (j in 0:(t - i)) {
tables[, indx] <- c(i, j, t - i - j)
indx <- indx + 1
}
}
const <- factorial(t)*factorial(t + 2)/factorial(2*t + 1)
ip.terms <- numeric(C)
pij <- c(p11, p21, 1 - p11 - p21)
if (all(pij <= 1) & all(pij >= 0)) {
for (k in 1:C) {
x <- tables[,k]
ip.terms[k] <- 2^x[2] * factorial(2*x[1] + x[2]) * factorial(x[2] + 2*x[3]) * prod(pij^x) / prod(factorial(x))^2
}
out <- const*sum(ip.terms) }
else { out <- NA }
return(out)
}
ip.2 <- function(t, k = 30) {
p11 <- p21 <- seq(0, 1, length.out = k)
ip <- outer(X = p11, Y = p21, FUN = Vectorize(ip.tmp), t)
ip[is.na(ip)] <- 0
nrz <- nrow(ip)
ncz <- ncol(ip)
colors <- colorRampPalette( c("gray","lightgray"))
nbcol <- 100
color <- colors(nbcol)
z <- ip
zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
facetcol <- cut(zfacet, nbcol)
persp(p11, p21, ip, xlab = "p_11", ylab = "p_21", zlab = "density", ticktype = "detailed", shade = .5, theta = 50, phi = 35,
expand = 0.4, scale = TRUE, ltheta = 40, lphi = -20, cex.axis = 1.2, cex.lab = 1.2, col = color[facetcol])
}
lik.multin <- function(y, p11, p21) {
if (class(y) != "HWEdata") {
stop("y argument not of class 'HWEdata'. Type '?HWEdata' for help.")
}
y.vec <- [email protected]
n <- sum(y.vec)
out <- matrix(NA, nrow = length(p11), ncol = length(p21))
for (i in 1:length(p11)) {
for (j in 1:length(p21)) {
prob <- c(p11[i], p21[j], 1 - p11[i] - p21[j])
if (all(prob <= 1) & all(prob >= 0)) {
out[i, j] <- dmultinom(y.vec, prob = prob) }
else{ out[i, j] <- NA }
}
}
const <- lfactorial(n) + sum(lgamma(y.vec + 1)) - sum(lfactorial(y.vec)) - lgamma(n + length(y.vec))
const <- exp(const)
out <- out/const
return(out)
}
hwe.ibf.plot <- function(y, t.vec, M = 100000, bf = FALSE) {
if (class(y) != "HWEdata") {
stop("y argument not of class 'HWEdata'. Type '?HWEdata' for help.")
}
n <- sum([email protected], na.rm = TRUE)
H <- length(t.vec)
out.mc <- matrix(NA, nrow = H, ncol = 2)
for (h in 1:H) {
print(paste(h, "/", H, sep = ""), quote = FALSE)
res <- hwe.ibf.mc(y, t.vec[h], M, verbose = FALSE)
out.mc[h,] <- c(log10(res@bf), res@npp)
}
if (y@size == 2) {
out.exact <- matrix(NA, nrow = H, ncol = 2)
hwe.ibf.exact <- Vectorize(hwe.ibf, "t")
res <- hwe.ibf.exact(t.vec, y = y)
out.exact <- cbind(log10(res), 1/(1 + res))
}
res <- hwe.bf(y)
out.std <- c(log10(res), 1/(1 + res))
if (bf) {
idx = 1
ytxt = "Bayes Factor of Alternative vs. Null (log10)"
}
else {
idx = 2
ytxt = "Null Posterior Probability"
}
if (y@size != 2) {
out <- list(mc = out.mc, std = out.std)
}
else {
out <- list(mc = out.mc, std = out.std, exact = out.exact)
}
plot(t.vec/n, out.mc[, idx], type = "n", ylab = ytxt, xlab = "f = t/n", main = "", cex.axis = 1.75,
cex.lab = 1.75, col = gray(.5), ylim = c(min(out.std[idx], out.mc[, idx]), max(out.std[idx], out.mc[, idx])))
abline(h = out.std[idx], col = gray(.5), lty = "longdash")
if (y@size == 2) lines(t.vec/n, out.exact[, idx], col = gray(.3), lty = "longdash", lwd = 2)
lines(smooth.spline(t.vec/n, out.mc[, idx]), col = gray(0), lwd = 2)
invisible(out)
} |
RGX_T <- "t"
RGX_R <- "r"
RGX_Q <- "Q\\s?-?\\s?(w|W|(w|W)ithin|b|B|(b|B)etween)?"
RGX_F <- "F"
RGX_CHI2 <- "((\\[CHI\\]|\\[DELTA\\]G)\\s?|(\\s[^trFzQWnD ]\\s?)|([^trFzQWnD ]2\\s?))2?"
RGX_Z <- "([^a-z](z|Z))"
RGX_DF_T_R_Q <- "\\(\\s?\\d*\\.?\\d+\\s?\\)"
RGX_DF_F <- "\\(\\s?\\d*\\.?(I|l|\\d+)\\s?,\\s?\\d*\\.?\\d+\\s?\\)"
RGX_DF_CHI2 <- "\\(\\s?\\d*\\.?\\d+\\s?(,\\s?N\\s?\\=\\s?\\d*\\,?\\d*\\,?\\d+\\s?)?\\)"
RGX_T_DF <- paste0("(", RGX_T, "\\s?", RGX_DF_T_R_Q, ")")
RGX_R_DF <- paste0("(", RGX_R, "\\s?", RGX_DF_T_R_Q, ")")
RGX_Q_DF <- paste0("(", RGX_Q, "\\s?", RGX_DF_T_R_Q, ")")
RGX_F_DF <- paste0("(", RGX_F, "\\s?", RGX_DF_F, ")")
RGX_CHI2_DF <- paste0("(", RGX_CHI2, "\\s?", RGX_DF_CHI2, ")")
RGX_TEST_DF <- paste0("(", RGX_T_DF, "|", RGX_R_DF, "|", RGX_Q_DF, "|", RGX_F_DF,
"|", RGX_CHI2_DF, "|", RGX_Z, ")")
RGX_TEST_VALUE <- "[<>=]\\s?[^a-zA-Z\\d\\.]{0,3}\\s?\\d*,?\\d*\\.?\\d+\\s?,"
RGX_NS <- "([^a-z]n\\.?s\\.?)"
RGX_P <- "(p\\s?[<>=]\\s?\\d?\\.\\d+e?-?\\d*)"
RGX_P_NS <- paste0("(", RGX_NS, "|", RGX_P, ")")
RGX_NHST <- paste(RGX_TEST_DF, RGX_TEST_VALUE, RGX_P_NS, sep = "\\s?")
RGX_OPEN_BRACKET <- "(.+?(?=\\())"
RGX_TEST_TYPE <- paste(RGX_Z, RGX_OPEN_BRACKET, sep = "|")
RGX_QW <- "w"
RGX_QB <- "b"
RGX_DF <- paste0("(", RGX_DF_T_R_Q, ")|(", RGX_DF_F, ")|(", RGX_DF_CHI2, ")")
RGX_COMP <- "[<>=]"
RGX_1000_SEP <- "(?<=\\d),(?=\\d+)"
RGX_DEC <- "\\.\\d+"
RGX_WEIRD_MINUS <- "\\s?[^\\d\\.\\s]+(?=\\d|\\.)"
RGX_DF1_I_L <- "I|l" |
setMethod(f="resid",signature=c(object="cold"),
function (object, type = c( "pearson","response","null"),...)
{
type <- match.arg(type)
data<[email protected]
data$y<-as.vector(t([email protected]))
ynew<-data$y
mu <- object@Fitted
switch(type, pearson = , response = )
if(type=="pearson"||type=="null"){
res = (ynew - mu)/sqrt(mu)}
else
{res = (ynew - mu)}
names(res) <- c(1:length(res))
round(res,6)
}
) |
"surf.tri" <-
function(p,t){
faces = rbind(t[,-4], t[,-3], t[,-2], t[,-1]);
node4 = rbind(t[, 4], t[, 3], t[, 2], t[, 1]);
i.max = 3*(1:nrow(faces)-1) + max.col(faces)
i.min = 3*(1:nrow(faces)-1) + max.col(-faces)
faces = t(faces)
faces = cbind(faces[i.min], faces[-c(i.max,i.min)], faces[i.max])
ix = order(faces[,1], faces[,2], faces[,3])
fo = apply(faces[ix,],2,diff)
dup = (abs(fo) %*% rep(1,3)) == 0
dup = c(FALSE,dup)
qx = diff(dup)==0
qx = c(qx, !dup[length(dup)])
tri = faces[ix[qx],]
node4 = node4[ix[qx]]
v1 = p[tri[,2],] - p[tri[,1],];
v2 = p[tri[,3],] - p[tri[,1],];
v3 = p[node4,] - p[tri[,1],];
ix = which( apply(extprod3d(v1,v2) * v3, 1, sum) > 0 )
tri[ix,c(2,3)] = tri[ix,c(3,2)]
rownames(tri) = NULL
tri
} |
plot.covfm <- function(x, which.plots = c(4, 3, 5), ...)
{
n.models <- length(x)
mod.names <- names(x)
choices <- c("All",
"Eigenvalues of Covariance Estimate",
"Mahalanobis Distances",
"Ellipses Plot")
if(n.models == 2)
choices <- c(choices, "Distance - Distance Plot")
else
which.plots <- which.plots[which.plots != 5]
all.plots <- 2:length(choices)
tmenu <- paste("plot:", choices)
if(is.numeric(which.plots)) {
if(!all(which.plots %in% all.plots))
stop(sQuote("which"), " must be in 2:", length(choices))
if(length(which.plots) == 0)
return(invisible(x))
if(length(which.plots) > 1) {
par.ask <- par(ask = TRUE)
on.exit(par(ask = par.ask))
}
ask <- FALSE
which.plots <- c(which.plots + 1, 1)
}
else if(which.plots == "all") {
which.plots <- c(all.plots + 1, 1)
ask <- FALSE
par.ask <- par(ask = TRUE)
on.exit(par(ask = par.ask))
}
else
ask <- TRUE
repeat {
if(ask) {
which.plots <- menu(tmenu,
title = "\nMake plot selections (or 0 to exit):\n")
if(any(which.plots == 1)) {
which.plots <- c(all.plots, 0)
par.ask <- par(ask = TRUE)
on.exit(par(ask = par.ask))
}
which.plots <- which.plots + 1
}
if(!length(which.plots))
stop(paste("Invalid choice of plot in \'which.plots\'"))
for(pick in which.plots) {
switch(pick,
return(invisible(x)),
place.holder <- 1,
screePlot.covfm(x,
xlab = "Principal Component",
ylab = "Variances",
main = "Screeplot",
...),
distancePlot.covfm(x,
xlab = "Index",
ylab = "Mahalanobis Distance",
pch = 16,
...),
ellipsesPlot.covfm(x, ...),
{
strip <- paste(mod.names[1], "Distance vs.", mod.names[2], "Distance")
ddPlot.covfm(x,
strip = strip,
xlab = paste(mod.names[2], "Distance"),
ylab = paste(mod.names[1], "Distance"),
main = "Distance-Distance Plot",
pch = 16,
...)
}
)
}
}
invisible(x)
} |
imageClusterPipeline <- function(images, cluster.method = "hist",
distance.method = "emd", lower = c(0, 140 / 255, 0),
upper = c(60 / 255, 1, 60 / 255), hist.bins = 3,
kmeans.bins = 27, bin.avg = TRUE, norm.pix = FALSE,
plot.bins = FALSE, pausing = TRUE,
color.space = "rgb", ref.white, from = "sRGB",
bounds = c(0, 1), sample.size = 20000,
iter.max = 50, nstart = 5, img.type = FALSE,
ordering = "default", size.weight = 0.5,
color.weight = 0.5, plot.heatmap = TRUE,
return.distance.matrix = TRUE,
save.tree = FALSE, save.distance.matrix = FALSE,
a.bounds = c(-127, 128), b.bounds = c(-127, 128)) {
color.space <- tolower(color.space)
if (color.space == "hsv") {
hsv <- TRUE
} else {
hsv <- FALSE
}
if (!is.character(images)) {
stop("'images' argument must be a string (folder containing the images),",
" a vector of strings (paths to individual images),",
" or a combination of both")
}
im.paths <- c()
if (length(which(dir.exists(images))) >= 1) {
im.paths <- unlist(sapply(images[dir.exists(images)], getImagePaths),
use.names = FALSE)
}
im.paths <- c(im.paths,
images[!dir.exists(images)][file.exists(images[!dir.exists(images)])])
im.paths <- im.paths[grep(x = im.paths,
pattern = "[.][jpg.|jpeg.|png.]",
ignore.case = TRUE)]
message(paste(length(im.paths), "images"))
if (cluster.method == "hist") {
message("Pixel binning method: histogram (predetermined bins)")
message("Binning images...")
if (color.space == "lab") {
cluster.list <- getLabHistList(im.paths, bins = hist.bins,
bin.avg = bin.avg, lower = lower, upper = upper,
plotting = plot.bins, from = from,
ref.white = ref.white, pausing = pausing,
sample.size = sample.size,
a.bounds = a.bounds, b.bounds = b.bounds)
} else {
cluster.list <- getHistList(im.paths, bins = hist.bins,
bin.avg = bin.avg, lower = lower,
upper = upper, norm.pix = norm.pix,
plotting = plot.bins, pausing = pausing,
hsv = hsv, bounds = bounds, img.type = img.type)
}
} else if (cluster.method == "kmeans") {
message("Pixel binning method: kmeans (algorithmically determined bins)")
message("Generating clusters...")
cluster.list <- getKMeansList(im.paths, bins = kmeans.bins,
sample.size = sample.size,
plotting = plot.bins,
color.space = color.space,
lower = lower, upper = upper,
iter.max = iter.max, nstart = nstart,
img.type = img.type,
ref.white = ref.white)
cluster.list <- extractClusters(cluster.list,
ordering = FALSE,
normalize = norm.pix)
} else {
stop("cluster.method must be one of either 'hist' or 'kmeans'")
}
message(paste("\nComparison metric for distance matrix:", distance.method))
message("\nCalculating distance matrix...")
distance.matrix <- getColorDistanceMatrix(cluster.list,
method = distance.method, ordering = ordering,
plotting = plot.heatmap, size.weight = size.weight,
color.weight = color.weight)
message("Done")
if (save.tree != FALSE) {
if (is.character(save.tree)) {
if (dir.exists(save.tree)) {
save.tree <- paste(save.tree, "/ColorTree.newick", sep = "")
message(paste("No output filename specified, saving as", save.tree))
}
}
else if (save.tree) {
save.tree <- "./ColorTree.newick"
message("No output filename specified; saving as 'ColorTree.newick'")
} else {
stop("save.tree must be either a valid path or a logical")
}
exportTree(distance.matrix, file = save.tree)
message(paste("Color dendrogram saved to", normalizePath(save.tree)))
}
if (save.distance.matrix != FALSE) {
if (is.character(save.distance.matrix)) {
if (dir.exists(save.distance.matrix)) {
save.distance.matrix <- paste(save.distance.matrix,
"/ColorDistanceMatrix.csv",
sep = "")
message(paste("No output filename specified, saving as",
save.distance.matrix))
}
}
else if (save.distance.matrix) {
save.distance.matrix <- "./ColorDistanceMatrix.csv"
message("No output filename specified;",
" saving as 'ColorDistanceMatrix.csv'")
} else {
stop("save.distance.matrix must be either a valid path or a logical")
}
write.csv(distance.matrix, file = save.distance.matrix)
message(paste("Color distance matrix saved to",
normalizePath(save.distance.matrix)))
}
if (return.distance.matrix) {
return(distance.matrix)
}
} |
as_track <- function(x, ...) {
UseMethod("as_track", x)
}
as_track.SpatialPoints <- function(x, ...) {
xx <- sp::coordinates(x)
track(x = xx[, 1], y = xx[, 2], crs = sf::st_crs(sp::proj4string(x)))
}
as_track.sfc_POINT <- function(x, ...) {
xx <- sf::st_coordinates(x)
track(x = xx[, 1], y = xx[, 2], crs = sf::st_crs(x))
}
as_track.steps_xyt <- function(x, ...) {
n <- nrow(x)
crs <- get_crs(x)
if ("burst_" %in% names(x)) {
xx <- tidyr::nest(x, data = -c(burst_)) %>%
dplyr::mutate(data = purrr::map(data, function(y) {
n1 <- nrow(y)
tibble::tibble(
xs = c(y$x1_, y$x2_[n1]),
ys = c(y$y1_, y$y2_[n1]),
t = c(y$t1_, y$t2_[n1])
)
})) %>% tidyr::unnest(cols = data)
make_track(xx, xs, ys, t, burst_ = burst_,
crs = crs)
} else {
xx <- tibble::tibble(
xs = c(x$x1_, x$x2_[n]),
ys = c(x$y1_, x$y2_[n]),
t = c(x$t1_, x$t2_[n])
)
make_track(xx, xs, ys, t, crs = crs)
}
}
as_track.data.frame <- function(x, ...) {
cols <- colnames(x)
if("x_" %in% cols & "y_" %in% cols & !("t_" %in% cols)) {
make_track(x, .x = x_, .y = y_, ...)
} else {
if("x_" %in% cols & "y_" %in% cols & "t_" %in% cols) {
make_track(x, .x = x_, .y = y_, .t = t_, ...)
}
}
} |
summary.rbga <- function(object, echo=FALSE, ...) {
rbga.object = object
output = paste(
"GA Settings", "\n",
" Type = ", rbga.object$type, "\n",
" Population size = ", rbga.object$popSize, "\n",
" Number of Generations = ", rbga.object$iters, "\n",
" Elitism = ", rbga.object$elitism, "\n",
" Mutation Chance = ", rbga.object$mutationChance, "\n",
"\n",
"Search Domain", "\n", sep="")
for (var in 1:length(rbga.object$stringMin)) {
minVar = rbga.object$stringMin[var]
maxVar = rbga.object$stringMax[var]
output = paste(output,
" Var ", var, " = [", minVar, ",", maxVar, "]\n", sep="");
}
output = paste(output, "\n", sep="");
if (!is.null(rbga.object$suggestions)) {
optionPart = paste("Suggestions", "\n", sep="");
for (suggestion in 1:dim(rbga.object$suggestions)[1]) {
optionPart = paste(optionPart,
" ", suggestion, " = (", sep="");
for (var in 1:(dim(rbga.object$suggestions)[2]-1)) {
optionPart = paste(optionPart,
rbga.object$suggestions[suggestion,var], ", ",
sep="");
}
optionPart = paste(optionPart,
rbga.object$suggestions[suggestion,dim(rbga.object$suggestions)[2]],
")\n", sep="");
}
output = paste(output, optionPart, "\n", sep="");
}
if (!is.null(rbga.object$population)) {
optionPart = paste("GA Results", "\n", " Best Solution : ", sep="");
filter = rbga.object$evaluations == min(rbga.object$evaluations);
bestObjectCount = sum(rep(1, rbga.object$popSize)[filter]);
if (bestObjectCount > 1) {
bestSolution = rbga.object$population[filter,][1,];
} else {
bestSolution = rbga.object$population[filter,];
}
for (var in 1:length(bestSolution)) {
optionPart = paste(optionPart,
bestSolution[var], " ",
sep="");
}
output = paste(output, optionPart, "\n", sep="");
}
if (echo) cat(output);
invisible(output);
} |
etry <- function(expr, silent = FALSE,
outFile = getOption("try.outFile", default = stderr()),
max.lines = 100L,
dump.frames = c("partial", "full", "full_global", "no")) {
dump.frames <- match.arg(dump.frames)
TB <- NULL
DP <- list()
tryCatch(
withCallingHandlers(expr, error = function(e) {
if ("max.lines" %in% names(formals(.traceback))) {
TB <<- do.call(.traceback, list(x = 4L, max.lines = max.lines))
} else {
opt_bak <- options(deparse.max.lines = max.lines)
on.exit(options(opt_bak))
TB <<- do.call(.traceback, list(x = 4L))
}
if (dump.frames != "no") {
calls <- sys.calls()
DP <<- sys.frames()
names(DP) <<- limitedLabels(calls)
if (dump.frames == "full_global") {
DP <<- c(.GlobalEnv = as.environment(as.list(.GlobalEnv, all.names = TRUE)), DP)
}
DP <<- DP[-c(length(DP) - 1L, length(DP))]
}
attr(DP, "error.message") <<- paste0(conditionMessage(e), "\n\n")
class(DP) <<- "dump.frames"
}), error = function(e) {
if (dump.frames == "partial") {
nc <- length(sys.calls())
idx2drop <- seq_len(nc - 5L)
} else if (dump.frames == "no") {
idx2drop <- seq_along(DP)
} else {
idx2drop <- integer()
}
DP[idx2drop] <<- NULL
ret <- structure(paste0("Error: ", conditionMessage(e)),
class = c("etry-error", "try-error"),
condition = e,
traceback = TB,
dump.frames = DP)
if (!silent && isTRUE(getOption("show.error.messages"))) {
cat(capture.output(print(ret)), file = outFile, sep = "\n")
}
invisible(ret)
}
)
}
`print.etry-error` <- function(x, max.lines = getOption("traceback.max.lines",
getOption("deparse.max.lines", -1L)),
...) {
cat(paste0(x, "\n\nTraceback:\n"))
n <- length(xx <- attr(x, "traceback"))
if (n == 0L)
cat(gettext("No traceback available"), "\n")
else {
for (i in 1L:n) {
xi <- xx[[i]]
label <- paste0(n - i + 1L, ": ")
m <- length(xi)
srcloc <- if (!is.null(srcref <- attr(xi, "srcref"))) {
srcfile <- attr(srcref, "srcfile")
paste0(" at ", basename(srcfile$filename), "
srcref[1L])
}
if (is.numeric(max.lines) && max.lines > 0L && max.lines < m) {
xi <- c(xi[seq_len(max.lines)], " ...")
m <- length(xi)
} else if (isTRUE(attr(xi, 'truncated'))) {
xi <- c(xi, " ...")
m <- length(xi)
}
if (!is.null(srcloc)) {
xi[m] <- paste0(xi[m], srcloc)
}
if (m > 1)
label <- c(label, rep(substr(" ", 1L,
nchar(label, type = "w")), m - 1L))
cat(paste0(label, xi), sep = "\n")
}
}
if (length(attr(x, "dump.frames"))) cat(paste0("\nCrash dump avilable. Use 'debugger(attr(*, \"dump.frames\"))' for debugging.\n"))
invisible()
} |
check_G_mat <- function(gmat){
.Call('kmcRCPP_RevCHECK',PACKAGE='kmc',gmat)
}
lambdaoo<-function(kmctime,delta,lambda,gtmat){
.Call('kmcomegalambda', PACKAGE = 'kmc',kmctime,delta,lambda,gtmat)
}
kmcdata_rcpp<-function(kmctime,delta,lambda,gtmat){
.Call('kmcRCPP_KMCDATA', PACKAGE = 'kmc',kmctime,delta,lambda,gtmat)
}
kmc_routine4<-function(
delta,
lambda,
gtmat
){
np=as.integer(dim(gtmat))
chk=numeric(np[1])
delta=as.integer(delta)
lambda=as.vector(lambda);
gtmat=as.numeric(gtmat)
re=.C(
"nocopy_kmc_data", delta,gtmat,lambda,np,chk
)
return(re[[5]]);
}
kmc_find0loc <- function(d){
re=1L;
d=as.integer(d);
n=as.integer(length(d));
return(.C("locLastZero",d,n,re)[[3]]);
} |
source('Schelde_pars.R')
FNAResidual <- function (tt, state, dy, parms, scenario = "B1") {
with (as.list(c(state, dy, parms)), {
pH <- -log10(H*1e-6)
TA <- HCO3 + 2*CO3 + NH3 - H
SumCO2 <- CO2 + HCO3 + CO3
SumNH4 <- NH4 + NH3
ECO2 <- KL * (CO2sat - CO2)
EO2 <- KL * (O2sat - O2)
ENH3 <- KL * (NH3sat - NH3)
TO2 <- Transport(O2, O2_up, O2_down)
TNO3 <- Transport(NO3, NO3_up, NO3_down)
TTA <- Transport(TA, TA_up, TA_down)
TSumCO2 <- Transport(SumCO2, SumCO2_up, SumCO2_down)
TSumNH4 <- Transport(SumNH4, SumNH4_up, SumNH4_down)
if (scenario == "A" && tt > 365) {
TOM <- Transport(OM, OM_up_A, OM_down)
} else TOM <- Transport(OM, OM_up , OM_down)
if (scenario == "B1" && (tt > 360 && tt < 370)) {
AddNH4NO3 <- SpillNH4NO3
} else AddNH4NO3 <- 0
if (scenario == "C" && (tt > 360 && tt < 370)) {
AddNH3 <- SpillNH3
} else AddNH3 <- 0
ROx <- rOM * OM * (O2/(O2 + ksO2))
ROxCarbon <- ROx * C_Nratio
RNit <- rNitri * NH4 * (O2/(O2 + ksO2))
ROM <- - dOM + TOM - ROx
RO2 <- - dO2 + TO2 + EO2 - ROxCarbon - 2*RNit
RNO3 <- - dNO3 + TNO3 + RNit + AddNH4NO3
RSumCO2 <- -dCO2 -dHCO3 -dCO3 + TSumCO2 + ECO2 + ROxCarbon
RSumNH4 <- -dNH3 -dNH4 + TSumNH4 + ENH3 + ROx - RNit + AddNH3 + AddNH4NO3
RTA <- -dHCO3-2*dCO3-dNH3 +dH + TTA + ENH3 + ROx - 2*RNit + AddNH3
EquiCO2 <- H * HCO3 - K1CO2 * CO2
EquiHCO3<- H * CO3 - K2CO2 * HCO3
EquiNH4 <- H * NH3 - KNH4 * NH4
return(list(c(ROM, RO2, RNO3, RSumCO2, RSumNH4, RTA, EquiCO2, EquiHCO3, EquiNH4),
c(pH = pH, TA = TA, SumCO2 = SumCO2, SumNH4 = SumNH4)))
})
}
TA_up <- TA_estimate(pH_up, SumCO2_up, SumNH4_up)
TA_down <- TA_estimate(pH_down, SumCO2_down, SumNH4_down)
H_ini <- 10^-pH_ini * 1e6
H <- H_ini
NH3_ini <- KNH4/(KNH4+H)*SumNH4_ini
NH4_ini <- SumNH4_ini - NH3_ini
CO2_ini <- H*H/(H*K1CO2 + H*H + K1CO2*K2CO2)*SumCO2_ini
HCO3_ini <- H*K1CO2/(H*K1CO2 + H*H + K1CO2*K2CO2)*SumCO2_ini
CO3_ini <- K1CO2*K2CO2/(H*K1CO2 + H*H + K1CO2*K2CO2)*SumCO2_ini
TA_ini <- HCO3_ini + 2*CO3_ini + NH3_ini - H_ini
y <- c(OM = OM_ini, O2 = O2_ini, NO3 = NO3_ini, H = H_ini,
NH4 = NH4_ini, NH3 = NH3_ini, CO2 = CO2_ini, HCO3 = HCO3_ini, CO3 = CO3_ini)
dy <- c(dOM = 0, dO2 = 0, dNO3 = 0, dH = 0, dNH4 = 0, dNH3 = 0, dCO2 = 0, dHCO3 = 0, dCO3 = 0)
times <- c(0, 350:405)
outA <- daspk(y = y, times, res = FNAResidual, dy = dy, nalg = 3,
parms = phPars, scenario = "A", hmax = 1)
outB <- daspk(y = y, times, res = FNAResidual, dy = dy, nalg = 3,
parms = phPars, scenario = "B1", hmax = 1)
outC <- daspk(y = y, times, res = FNAResidual, dy = dy, nalg = 3,
parms = phPars, scenario = "C", hmax = 1)
par(mfrow = c(3, 4), mar = c(1, 2, 2, 1), oma = c(3, 3, 3, 0))
Selection <- c("pH","TA","SumCO2","O2")
plot(outA, mfrow = NULL, xlim = c(350,405), type = "l",
xaxt = "n", which = Selection)
plot(outB, mfrow = NULL, xlim = c(350,405), type = "l",
xaxt = "n", which = Selection)
plot(outC, mfrow = NULL, xlim = c(350,405), type = "l",
xaxt = "n", which = Selection)
mtext(side = 1, outer = TRUE, "time, d", line = 2, cex = 1.2)
mtext(side = 2, at = 0.2, outer = TRUE, "Scenario C", line = 1.5, cex = 1.2)
mtext(side = 2, at = 0.5, outer = TRUE, "Scenario B", line = 1.5, cex = 1.2)
mtext(side = 2, at = 0.8, outer = TRUE, "Scenario A", line = 1.5, cex = 1.2)
mtext(side = 3, at = 0.125, outer = TRUE, "pH, -", line = 1, cex = 1.2)
mtext(side = 3, at = 0.375, outer = TRUE, "TA, mol/kg", line = 1, cex = 1.2)
mtext(side = 3, at = 1-0.375, outer = TRUE, "CO2, mol/kg", line = 1, cex = 1.2)
mtext(side = 3, at = 1-0.125, outer = TRUE, "O2, mol/kg", line = 1, cex = 1.2) |
path_precommit_exec <- function(check_if_exists = TRUE) {
final <- getOption("precommit.executable") %>%
as.character()
if (!check_if_exists) {
return(final)
}
if (!file_exists(final)) {
rlang::abort(paste0(
"pre-commit executable does not exist at ",
final,
". Please locate your pre-commit ",
"executable and set the R option `precommit.executable` to this ",
"path so it can be used to perform various pre-commit commands from R."
))
}
final
}
path_pre_commit_exec <- function(check_if_exists = TRUE) {
.Deprecated("path_precommit_exec", old = "path_pre_commit_exec")
path_precommit_exec(check_if_exists = check_if_exists)
}
path_derive_precommit_exec <- function() {
path <- path_derive_precommit_exec_path()
os <- tolower(Sys.info()[["sysname"]])
if (os == "darwin") {
path <- c(path, path_derive_precommit_exec_macOS())
} else if (os == "windows") {
path <- c(path, path_derive_precommit_exec_win())
} else if (os == "linux") {
path <- c(path, path_derive_precommit_exec_linux())
}
path <- unique(path[path != ""])
if (length(path) == 0) {
path_derive_precommit_exec_conda()
} else if (length(path) == 1) {
path
} else {
path_warn_multiple_execs(path)
path[1]
}
}
path_derive_precommit_exec_impl <- function(candidate) {
existant <- path_candidate_to_actual(candidate)
if (length(existant) >= 1) {
existant
} else {
""
}
}
path_warn_multiple_execs <- function(paths) {
rlang::warn(paste0(
"We detected multiple pre-commit executables. This is likely ",
"going to get you into trouble in the future, e.g. when you want to ",
"upgrade, as you easily loose track of different versions. We strongly ",
"suggest to only keep one pre-commit executable and uninstall (or delete) ",
"the other ones. Here are the locations where we detected executables:\n\n",
"- ", paste0(paths, collapse = "\n- "), "\n\n",
"Note that in all local repos where you used pre-commit, the executable ",
"path is hardcoded (in .git/hooks/pre-commit). Deleting a referenced ",
"executable will break pre-commit for that local repo. A simple ",
"re-initialization with `precommit::use_precommit()` or ",
"`$ pre-commit install` will fix this for pre-commit hooks.\n\nIf you ",
"have hook types other than pre-commit such as pre-push (you can check ",
"which files are in .git/hooks/), you need to name the type and use the ",
"command line, i.e. `$ pre-commit install -t pre-push`. "
))
}
path_candidate_to_actual <- function(candidate) {
assumed <- fs::path(candidate, precommit_executable_file())
assumed[file_exists(assumed)]
}
path_derive_precommit_exec_linux <- function() {
path_derive_precommit_exec_impl(
path_if_exist(fs::path_home(".local/bin"))
)
}
path_derive_precommit_exec_win <- function() {
path_derive_precommit_exec_impl(c(
path_derive_precommit_exec_win_python3plus_base(),
fs::path_home("AppData/Roaming/Python/Scripts")
))
}
path_derive_precommit_exec_win_python3plus_base <- function() {
path_derive_precommit_exec_win_python3plus_candidates() %>%
sort(decreasing = TRUE) %>%
fs::path("Scripts")
}
path_derive_precommit_exec_win_python3plus_candidates <- function() {
fs::dir_ls(path_if_exist(fs::path_home("AppData/Roaming/Python/")), regexp = "Python[0-9]+$")
}
path_derive_precommit_exec_macOS <- function() {
path_derive_precommit_exec_macOS_candidates() %>%
path_derive_precommit_exec_impl()
}
path_derive_precommit_exec_macOS_candidates <- function() {
candidate_system <- fs::dir_ls(
path_if_exist("/Library/Frameworks/Python.framework/Versions/"),
regexp = "[0-9]$"
)
candidate_user <- fs::dir_ls(path_if_exist("~/Library/Python/"))
c(
fs::path(sort(candidate_user, decreasing = TRUE), "bin"),
fs::path(sort(candidate_system, decreasing = TRUE), "bin"),
"/usr/local/bin",
"/opt/homebrew/bin"
)
}
path_derive_precommit_exec_path <- function() {
unname(Sys.which(precommit_executable_file()))
}
path_derive_precommit_exec_conda <- function() {
path <- path_derive_precommit_exec_conda_impl("r-precommit")
if (path == "") {
path <- path_derive_precommit_exec_conda_impl("r-reticulate")
if (path != "") {
rlang::warn(paste0(
"The R packae {precommit} now requires the executable to live ",
"in the conda environment r-precommit, not r-reticulate anymore ",
"where it is currently installed. ",
"Please run `precommit::install_precommit(force = TRUE)` to re-install with conda ",
"or choose another installation method as described in the README. To save ",
"space on disk, you probably want to delete the pre-commit executable at ",
path, " and the package sources in the ",
"conda environment r-reticulate with ",
"`reticulate::conda_remove('r-reticulate', 'pre-commit')`."
))
}
}
path
}
path_derive_precommit_exec_conda_impl <- function(conda_env) {
tryCatch(
{
ls <- reticulate::conda_list()
path_reticulate <- fs::path_dir(ls[ls$name == conda_env, "python"][1])
derived <- fs::path(
path_reticulate,
ifelse(is_windows(), "Scripts", ""),
precommit_executable_file()
)
unname(ifelse(file_exists(derived), derived, ""))
},
error = function(e) ""
)
}
precommit_executable_file <- function() {
ifelse(is_windows(), "pre-commit.exe", "pre-commit")
} |
plot.wmat<-function(x, main="Preferences", ylab="Estimate",
psymb=NULL, pcol=NULL, ylim = range(worthmat),log="", ...)
{
worthmat<-x
coeff<-unclass(worthmat)
objnames<-rownames(coeff)
grnames<-colnames(coeff)
if(length(grep(":",grnames))){
gr.lines<-unlist(strsplit(grnames[1],":"))
ngrlin<-length(gr.lines)-0.5
grnames<-gsub(":","\n",grnames)
} else ngrlin <- 1
nobj<-dim(coeff)[1]
ngroups<-dim(coeff)[2]
if (ngroups == 1) colnames(coeff) <- ""
if (is.null(psymb)) psymb<-rep(16,nobj)
if (is.null(pcol))
farbe <- rainbow_hcl(nobj)
else if (length(pcol)>1)
farbe <- pcol
else if(pcol=="black")
farbe <- "black"
else if(pcol %in% c("heat","terrain"))
farbe <- eval(call(paste(pcol,"_hcl",sep="",collapse=""), nobj))
else if(pcol=="gray")
farbe <- eval(call(paste(pcol,".colors",sep="",collapse=""), nobj))
else farbe <- rainbow_hcl(nobj)
pomi <- c(0.2,0.2,0.5,0.2)
if (!(all(pomi==par("omi"))))
par(omi = pomi, mar=c(3,4,0.1,0) )
plot(c(0.5,ngroups+0.5),c(min(coeff),max(coeff)),type="n",axes=FALSE, xlab="",ylab=ylab,ylim=ylim,log=log,...)
title(main,outer=TRUE)
box()
axis(2)
axis(1,at=1:ngroups,labels=grnames,mgp=c(3,ngrlin,0))
adj<-1/nchar(as.character(objnames))
adj<-strwidth(as.character(objnames))/2
d<-strwidth("d")
adj<-adj+d
for (i in 1:ngroups) {
pm<-rep(c(1,-1),nobj)
pm<-pm[1:nobj]
o<-order(coeff[1:nobj,i])
sadj<-adj[o]
sobjnames<-objnames[o]
spsymb<-psymb[o]
sfarbe<-farbe[o]
scoeff<-sort(coeff[,i])
x<-rep(i,nobj)
xy <- xy.coords(x, scoeff)
lines(c(i,i), range(scoeff), ...)
points(xy, pch=spsymb, cex=1.5, col=sfarbe)
text(x+sadj*pm,scoeff,sobjnames)
}
} |
library(vcfR)
context("write.vcf R functions")
test_that("read/write.vcf works for vcfR objects",{
data("vcfR_example")
test_dir <- tempdir()
setwd(test_dir)
write.vcf(vcf, "test.vcf.gz")
test <- read.vcfR("test.vcf.gz", verbose = FALSE)
unlink("test.vcf.gz")
expect_is(test, "vcfR")
expect_identical(colnames(test@fix)[1], "CHROM")
expect_equal(nrow(test@gt), nrow(vcf@gt))
expect_equal(ncol(test@gt), ncol(vcf@gt))
})
test_that("write.vcf.gz works for Chrom objects",{
data("chromR_example")
test_dir <- tempdir()
setwd(test_dir)
write.vcf(chrom, "test.vcf.gz")
test <- read.vcfR("test.vcf.gz", verbose = FALSE)
unlink("test.vcf.gz")
expect_is(test, "vcfR")
expect_identical(colnames(test@fix)[1], "CHROM")
expect_equal(nrow(test@gt), nrow(vcf@gt))
expect_equal(ncol(test@gt), ncol(vcf@gt))
})
test_that("write.vcf.gz works for Chrom objects with mask",{
data("chromR_example")
test_dir <- tempdir()
setwd(test_dir)
[email protected]$mask <- FALSE
[email protected]$mask[1:50] <- TRUE
write.vcf(chrom, "test.vcf.gz", mask=TRUE)
test <- read.vcfR("test.vcf.gz", verbose = FALSE)
unlink("test.vcf.gz")
[email protected]$mask <- TRUE
expect_is(test, "vcfR")
expect_identical(colnames(test@fix)[1], "CHROM")
expect_equal(ncol(test@gt), ncol(vcf@gt))
expect_equal( nrow(test@fix), 50 )
})
test_that("write.var.info works for chromR objects",{
data("chromR_example")
test_dir <- tempdir()
setwd(test_dir)
write.var.info(chrom, "test.csv")
test <- read.table("test.csv", header=TRUE, sep=",")
unlink("test.csv")
expect_is(test, "data.frame")
expect_equal(nrow(test), nrow(vcf@fix))
expect_equal(length(grep("CHROM", colnames(test))), 1)
expect_equal(length(grep("POS", colnames(test))), 1)
expect_equal(length(grep("mask", colnames(test))), 1)
})
test_that("write.win.info works for Chrom objects",{
data("chromR_example")
chrom <- proc.chromR(chrom, verbose = FALSE)
test_dir <- tempdir()
setwd(test_dir)
write.win.info(chrom, "test.csv")
test <- read.table("test.csv", header=TRUE, sep=",")
unlink("test.csv")
expect_is(test, "data.frame")
expect_equal(nrow(test), nrow([email protected]))
expect_equal(grep("CHROM", names(test), value=TRUE), "CHROM")
expect_equal(grep("window", names(test), value=TRUE), "window")
expect_equal(grep("start", names(test), value=TRUE), "start")
expect_equal(grep("end", names(test), value=TRUE), "end")
}) |
NULL
rray_logical_and <- function(x, y) {
out <- rray__logical_and(x, y)
container <- vec_ptype_container2(x, y)
vec_cast_container(out, container)
}
rray_logical_or <- function(x, y) {
out <- rray__logical_or(x, y)
container <- vec_ptype_container2(x, y)
vec_cast_container(out, container)
}
rray_logical_not <- function(x) {
out <- rray__logical_not(x)
container <- vec_ptype_container(x)
vec_cast_container(out, container)
}
rray_any <- function(x, axes = NULL) {
axes <- vec_cast(axes, integer())
validate_axes(axes, x)
res <- rray__any(x, as_cpp_idx(axes))
vec_cast_container(res, x)
}
rray_all <- function(x, axes = NULL) {
axes <- vec_cast(axes, integer())
validate_axes(axes, x)
res <- rray__all(x, as_cpp_idx(axes))
vec_cast_container(res, x)
}
rray_if_else <- function(condition, true, false) {
out <- rray__if_else(condition, true, false)
container <- vec_ptype_container2(true, false)
vec_cast_container(out, container)
} |
NULL
nba_fantasywidget <- function(active_players='N',
date_from='',
date_to='',
last_n_games=0,
league_id='00',
location='',
month='',
opponent_team_id = '',
po_round='',
player_id='',
position='',
season='2019-20',
season_segment='',
season_type='Regular Season',
team_id='',
todays_opponent=0,
todays_players='N',
vs_conference='',
vs_division=''){
season_type <- gsub(' ','+',season_type)
version <- "fantasywidget"
endpoint <- nba_endpoint(version)
full_url <- paste0(endpoint,
"?ActivePlayers=", active_players,
"&DateFrom=",date_from,
"&DateTo=",date_to,
"&LastNGames=", last_n_games,
"&LeagueID=",league_id,
"&Location=",location,
"&Month=",month,
"&OpponentTeamID=", opponent_team_id,
"&PORound=",po_round,
"&PlayerID=",player_id,
"&Position=",position,
"&Season=",season,
"&SeasonSegment=",season_segment,
"&SeasonType=",season_type,
"&TeamID=",team_id,
"&TodaysOpponent=",todays_opponent,
"&TodaysPlayers=",todays_players,
"&VsConference=",vs_conference,
"&VsDivision=",vs_division)
tryCatch(
expr={
resp <- full_url %>%
.nba_headers()
df_list <- purrr::map(1:length(resp$resultSets$name), function(x){
data <- resp$resultSets$rowSet[[x]] %>%
data.frame(stringsAsFactors = F) %>%
as_tibble()
json_names <- resp$resultSets$headers[[x]]
colnames(data) <- json_names
return(data)
})
names(df_list) <- resp$resultSets$name
},
error = function(e) {
message(glue::glue("{Sys.time()}: Invalid arguments or no fantasy widget data for {season} available!"))
},
warning = function(w) {
},
finally = {
}
)
return(df_list)
}
NULL
nba_leaguedashlineups <- function(
conference = '',
date_from = '',
date_to = '',
division = '',
game_segment = '',
group_quantity=5,
last_n_games=0,
league_id='00',
location='',
measure_type='Base',
month=0,
opponent_team_id=0,
outcome='',
po_round='',
pace_adjust='N',
per_mode='Totals',
period=0,
plus_minus='N',
rank='N',
season='2020-21',
season_segment='',
season_type='Regular Season',
shot_clock_range='',
team_id='',
vs_conference='',
vs_division=''){
season_type <- gsub(' ','+',season_type)
version <- "leaguedashlineups"
endpoint <- nba_endpoint(version)
full_url <- paste0(endpoint,
"?Conference=", conference,
"&DateFrom=", date_from,
"&DateTo=", date_to,
"&Division=", division,
"&GameSegment=", game_segment,
"&GroupQuantity=", group_quantity,
"&LastNGames=", last_n_games,
"&LeagueID=", league_id,
"&Location=", location,
"&MeasureType=", measure_type,
"&Month=", month,
"&OpponentTeamID=", opponent_team_id,
"&Outcome=", outcome,
"&PORound=", po_round,
"&PaceAdjust=", pace_adjust,
"&PerMode=", per_mode,
"&Period=", period,
"&PlusMinus=", plus_minus,
"&Rank=", rank,
"&Season=", season,
"&SeasonSegment=", season_segment,
"&SeasonType=", season_type,
"&ShotClockRange=",shot_clock_range,
"&TeamID=", team_id,
"&VsConference=", vs_conference,
"&VsDivision=", vs_division)
tryCatch(
expr={
resp <- full_url %>%
.nba_headers()
df_list <- purrr::map(1:length(resp$resultSets$name), function(x){
data <- resp$resultSets$rowSet[[x]] %>%
data.frame(stringsAsFactors = F) %>%
as_tibble()
json_names <- resp$resultSets$headers[[x]]
colnames(data) <- json_names
return(data)
})
names(df_list) <- resp$resultSets$name
},
error = function(e) {
message(glue::glue("{Sys.time()}: Invalid arguments or no league dashboard lineups data for {season} available!"))
},
warning = function(w) {
},
finally = {
}
)
return(df_list)
}
NULL
nba_leaguelineupviz <- function(
conference = '',
date_from = '',
date_to = '',
division = '',
game_segment = '',
group_quantity=5,
last_n_games=0,
league_id='00',
location='',
measure_type='Base',
minutes_min = 10,
month=0,
opponent_team_id=0,
outcome='',
po_round='',
pace_adjust='N',
per_mode='Totals',
period=0,
plus_minus='N',
rank='N',
season='2020-21',
season_segment='',
season_type='Regular Season',
shot_clock_range='',
team_id='',
vs_conference='',
vs_division=''){
season_type <- gsub(' ','+',season_type)
version <- "leaguelineupviz"
endpoint <- nba_endpoint(version)
full_url <- paste0(endpoint,
"?Conference=", conference,
"&DateFrom=", date_from,
"&DateTo=", date_to,
"&Division=", division,
"&GameSegment=", game_segment,
"&GroupQuantity=", group_quantity,
"&LastNGames=", last_n_games,
"&LeagueID=", league_id,
"&Location=", location,
"&MeasureType=", measure_type,
"&MinutesMin=", minutes_min,
"&Month=", month,
"&OpponentTeamID=", opponent_team_id,
"&Outcome=", outcome,
"&PORound=", po_round,
"&PaceAdjust=", pace_adjust,
"&PerMode=", per_mode,
"&Period=", period,
"&PlusMinus=", plus_minus,
"&Rank=", rank,
"&Season=", season,
"&SeasonSegment=", season_segment,
"&SeasonType=", season_type,
"&ShotClockRange=",shot_clock_range,
"&TeamID=", team_id,
"&VsConference=", vs_conference,
"&VsDivision=", vs_division)
tryCatch(
expr={
resp <- full_url %>%
.nba_headers()
df_list <- purrr::map(1:length(resp$resultSets$name), function(x){
data <- resp$resultSets$rowSet[[x]] %>%
data.frame(stringsAsFactors = F) %>%
as_tibble()
json_names <- resp$resultSets$headers[[x]]
colnames(data) <- json_names
return(data)
})
names(df_list) <- resp$resultSets$name
},
error = function(e) {
message(glue::glue("{Sys.time()}: Invalid arguments or no league lineup viz data for {season} available!"))
},
warning = function(w) {
},
finally = {
}
)
return(df_list)
}
NULL
nba_leagueplayerondetails <- function(
date_from = '',
date_to = '',
game_segment = '',
last_n_games=0,
league_id='00',
location='',
measure_type='Base',
month=0,
opponent_team_id=0,
outcome='',
pace_adjust='N',
per_mode='Totals',
period=0,
plus_minus='N',
rank='N',
season='2020-21',
season_segment='',
season_type='Regular Season',
team_id='1610612749',
vs_conference='',
vs_division=''){
season_type <- gsub(' ','+',season_type)
version <- "leagueplayerondetails"
endpoint <- nba_endpoint(version)
full_url <- paste0(endpoint,
"?DateFrom=", date_from,
"&DateTo=", date_to,
"&GameSegment=", game_segment,
"&LastNGames=", last_n_games,
"&LeagueID=", league_id,
"&Location=", location,
"&MeasureType=", measure_type,
"&Month=", month,
"&OpponentTeamID=", opponent_team_id,
"&Outcome=", outcome,
"&PaceAdjust=", pace_adjust,
"&PerMode=", per_mode,
"&Period=", period,
"&PlusMinus=", plus_minus,
"&Rank=", rank,
"&Season=", season,
"&SeasonSegment=", season_segment,
"&SeasonType=", season_type,
"&TeamID=", team_id,
"&VsConference=", vs_conference,
"&VsDivision=", vs_division)
tryCatch(
expr={
resp <- full_url %>%
.nba_headers()
df_list <- purrr::map(1:length(resp$resultSets$name), function(x){
data <- resp$resultSets$rowSet[[x]] %>%
data.frame(stringsAsFactors = F) %>%
as_tibble()
json_names <- resp$resultSets$headers[[x]]
colnames(data) <- json_names
return(data)
})
names(df_list) <- resp$resultSets$name
},
error = function(e) {
message(glue::glue("{Sys.time()}: Invalid arguments or no league player on/off details data for {season} available!"))
},
warning = function(w) {
},
finally = {
}
)
return(df_list)
}
NULL
nba_leagueseasonmatchups <- function(
def_player_id='',
def_team_id='',
league_id='00',
off_player_id='',
off_team_id='',
per_mode='Totals',
season='2020-21',
season_type='Regular Season'){
season_type <- gsub(' ','+',season_type)
version <- "leagueseasonmatchups"
endpoint <- nba_endpoint(version)
full_url <- paste0(endpoint,
"?DefPlayerID=", def_player_id,
"&DefTeamID=", def_team_id,
"&LeagueID=", league_id,
"&OffPlayerID=", off_player_id,
"&OffTeamID=", off_team_id,
"&PerMode=", per_mode,
"&Season=", season,
"&SeasonType=", season_type)
tryCatch(
expr={
resp <- full_url %>%
.nba_headers()
df_list <- purrr::map(1:length(resp$resultSets$name), function(x){
data <- resp$resultSets$rowSet[[x]] %>%
data.frame(stringsAsFactors = F) %>%
as_tibble()
json_names <- resp$resultSets$headers[[x]]
colnames(data) <- json_names
return(data)
})
names(df_list) <- resp$resultSets$name
},
error = function(e) {
message(glue::glue("{Sys.time()}: Invalid arguments or no league season matchups data for {season} available!"))
},
warning = function(w) {
},
finally = {
}
)
return(df_list)
}
NULL
nba_matchupsrollup <- function(
def_player_id='',
def_team_id='',
league_id='00',
off_player_id='',
off_team_id='',
per_mode='Totals',
season='2020-21',
season_type='Regular Season'){
season_type <- gsub(' ','+',season_type)
version <- "matchupsrollup"
endpoint <- nba_endpoint(version)
full_url <- paste0(endpoint,
"?DefPlayerID=", def_player_id,
"&DefTeamID=", def_team_id,
"&LeagueID=", league_id,
"&OffPlayerID=", off_player_id,
"&OffTeamID=", off_team_id,
"&PerMode=", per_mode,
"&Season=", season,
"&SeasonType=", season_type)
tryCatch(
expr={
resp <- full_url %>%
.nba_headers()
df_list <- purrr::map(1:length(resp$resultSets$name), function(x){
data <- resp$resultSets$rowSet[[x]] %>%
data.frame(stringsAsFactors = F) %>%
as_tibble()
json_names <- resp$resultSets$headers[[x]]
colnames(data) <- json_names
return(data)
})
names(df_list) <- resp$resultSets$name
},
error = function(e) {
message(glue::glue("{Sys.time()}: Invalid arguments or no matchups rollup data for {season} available!"))
},
warning = function(w) {
},
finally = {
}
)
return(df_list)
} |
QueryCountWorker <- R6::R6Class(
"QueryCountWorker",
private = list(
defn = NA,
data = NA,
stateful = FALSE
)
, public = list(
initialize = function(defn, data, stateful = FALSE) {
private$defn <- defn
private$data <- data
stopifnot(self$kosher())
},
getStateful = function() {
private$stateful
},
kosher = function() {
TRUE
},
queryCount = function() {
data <- private$data
filter_expr <- eval(parse(text = paste("rlang::expr(", private$defn$filterCondition, ")")))
data %>%
dplyr::filter(!! filter_expr) %>%
nrow()
}
)
)
QueryCountMaster <- R6::R6Class(
"QueryCountMaster",
private = list(
defn = NA,
dry_run = FALSE,
sites = list(),
mapFn = function(site) {
payload <- list(objectId = site$instanceId,
method = "queryCount")
q <- httr::POST(.makeOpencpuURL(urlPrefix=site$url, fn="executeMethod"),
body = jsonlite::toJSON(payload),
httr::add_headers("Content-Type" = "application/json"),
config = getConfig()$sslConfig
)
.deSerialize(q)
},
result_cache = list(),
debug = FALSE
),
public = list(
initialize = function(defn, debug = FALSE) {
'Initialize the object with a dataset'
private$defn <- defn
private$debug <- debug
stopifnot(self$kosher())
},
kosher = function() {
' Check for appropriateness'
TRUE
},
queryCount = function() {
'Compute the count'
sites <- private$sites
if (private$dry_run) {
mapFn <- function(x) x$worker$queryCount()
} else {
mapFn <- private$mapFn
}
results <- Map(mapFn, sites)
value <- Reduce(f = sum, results)
if (private$debug) {
print("value")
print(value)
}
value
},
getSites = function() {
private$sites
},
addSite = function(name, url = NULL, worker = NULL) {
stopifnot(is.null(url) || is.null(worker))
n <- length(private$sites)
if (is.null(url)) {
private$dry_run <- private$dry_run || TRUE
private$sites[[n+1]] <- list(name = name, worker = worker)
} else {
localhost <- (grepl("^http://localhost", url) ||
grepl("^http://127.0.0.1", url))
private$sites[[n+1]] <- list(name = name, url = url,
localhost = localhost,
dataFileName = if (localhost) paste0(name, ".rds") else NULL)
}
},
run = function() {
'Run Computation'
dry_run <- private$dry_run
defn <- private$defn
debug <- private$debug
n <- length(sites)
if (debug) {
print("run(): checking worker object creation")
}
if (dry_run) {
sites <- private$sites
} else {
instanceId <- generateId(object=list(Sys.time(), self))
private$sites <- sites <- lapply(private$sites,
function(x) list(name = x$name,
url = x$url,
localhost = x$localhost,
dataFileName = x$dataFileName,
instanceId = if (x$localhost) x$name else instanceId))
sitesOK <- sapply(sites,
function(x) {
payload <- if (is.null(x$dataFileName)) {
list(defnId = defn$id, instanceId = x$instanceId)
} else {
list(defnId = defn$id, instanceId = x$instanceId,
dataFileName = x$dataFileName)
}
q <- httr::POST(url = .makeOpencpuURL(urlPrefix=x$url, fn="createWorkerInstance"),
body = jsonlite::toJSON(payload),
httr::add_headers("Content-Type" = "application/json"),
config = getConfig()$sslConfig
)
.deSerialize(q)
})
if (!all(sitesOK)) {
stop("run(): Some sites did not respond successfully!")
sites <- sites[which(sitesOK)]
}
}
result <- self$queryCount()
if (!dry_run) {
if (debug) {
print("run(): checking worker object cleanup")
}
sitesOK <- sapply(sites,
function(x) {
payload <- list(instanceId = x$instanceId)
q <- POST(url = .makeOpencpuURL(urlPrefix=x$url, fn="destroyInstanceObject"),
body = jsonlite::toJSON(payload),
add_headers("Content-Type" = "application/json"),
config=getConfig()$sslConfig
)
.deSerialize(q)
})
if (!all(sitesOK)) {
warning("run(): Some sites did not clean up successfully!")
}
}
result
}
)
)
HEQueryCountWorker <- R6Class(
"HEQueryCountWorker",
inherit = QueryCountWorker,
private = list(
result_cache = list()
),
public = list(
pubkey = NA,
den = NA,
initialize = function(defn, data, pubkey_bits = NULL, pubkey_n = NULL, den_bits = NULL) {
private$defn <- defn
private$data <- data
private$stateful <- TRUE
if (!is.null(pubkey_bits)) {
self$pubkey <- homomorpheR::PaillierPublicKey$new(pubkey_bits, pubkey_n)
self$den <- gmp::as.bigq(2)^(den_bits)
}
stopifnot(self$kosher())
},
setParams = function(pubkey_bits, pubkey_n, den_bits) {
if(is.character(pubkey_n)) {
pubkey_n <- gmp::as.bigz(pubkey_n)
}
if (!is.null(pubkey_bits)) {
self$pubkey <- homomorpheR::PaillierPublicKey$new(pubkey_bits, pubkey_n)
self$den <- gmp::as.bigq(2)^(den_bits)
}
TRUE
},
queryCount = function(partyNumber, token) {
result <- private$result_cache[[token]]
if (is.null(result)) {
result.int <- super$queryCount()
pubkey <- self$pubkey
offset <- homomorpheR::random.bigz(nBits = 256)
zero <- pubkey$encrypt(0)
ncp1Result <- list(int = pubkey$encrypt(result.int - offset), frac = zero)
ncp2Result <- list(int = pubkey$encrypt(result.int + offset), frac = zero)
result <- list(ncp1 = ncp1Result, ncp2 = ncp2Result)
private$result_cache[[token]] <- result
}
if (partyNumber == 1) result$ncp1 else result$ncp2
}
)
)
HEQueryCountMaster <- R6Class(
"HEQueryCountMaster",
inherit = QueryCountMaster,
private = list(
partyNumber = NA,
defn = NA,
mapFn = function(site, token) {
payload <- list(objectId = site$instanceId,
method = "queryCount", partyNumber = private$partyNumber,
token = token)
q <- httr::POST(.makeOpencpuURL(urlPrefix=site$url, fn="executeHEMethod"),
body = jsonlite::toJSON(payload),
httr::add_headers("Content-Type" = "application/json"),
config = getConfig()$sslConfig
)
.deSerialize(q)
},
debug = FALSE
),
public = list(
pubkey = NA,
pubkey_bits = NA,
pubkey_n = NA,
den = NA,
den_bits = NA,
initialize = function(defn, partyNumber, debug = FALSE) {
'Initialize the object with a dataset'
private$defn <- defn
private$partyNumber <- partyNumber
private$debug <- debug
stopifnot(self$kosher())
},
setParams = function(pubkey_bits, pubkey_n, den_bits) {
self$pubkey_bits <- pubkey_bits
if(is.character(pubkey_n)) {
pubkey_n <- gmp::as.bigz(pubkey_n)
}
self$pubkey_n <- pubkey_n
self$den_bits <- den_bits
self$pubkey <- homomorpheR::PaillierPublicKey$new(pubkey_bits, pubkey_n)
self$den <- gmp::as.bigq(2)^(den_bits)
TRUE
},
kosher = function() {
' Check for appropriateness'
TRUE
},
queryCount = function(token) {
'Compute the query count from all sites'
sites <- private$sites
if (private$dry_run) {
mapFn <- function(site, token) site$worker$queryCount(private$partyNumber, token)
} else {
mapFn <- private$mapFn
}
results <- Map(mapFn, sites, rep(token, length(sites)))
pubkey <- self$pubkey
zero <- pubkey$encrypt(0)
intResults <- lapply(results, function(x) gmp::as.bigz(x$int))
fracResults <- lapply(results, function(x) gmp::as.bigz(x$frac))
intSum <- Reduce(f = pubkey$add, x = intResults, init = zero)
fracSum <- Reduce(f = pubkey$add, x = fracResults, init = zero)
list(int = intSum, frac = fracSum)
},
cleanup = function() {
'Send cleanup message to sites'
if (!private$dry_run) {
sites <- private$sites
sitesOK <- sapply(sites,
function(x) {
payload <- list(instanceId = x$instanceId)
q <- httr::POST(url = .makeOpencpuURL(urlPrefix=x$url, fn="destroyInstanceObject"),
body = jsonlite::toJSON(payload),
httr::add_headers("Content-Type" = "application/json"),
config=getConfig()$sslConfig
)
.deSerialize(q)
})
if (!all(sitesOK)) {
warning("run(): Some sites did not clean up successfully!")
}
}
invisible(TRUE)
},
run = function(token) {
'Run Computation'
dry_run <- private$dry_run
debug <- private$debug
defn <- private$defn
sites <- private$sites
if (dry_run) {
workers <- lapply(sites, function(x) x$worker)
for (worker in workers) {
worker$setParams(pubkey_bits = self$pubkey_bits, pubkey_n = self$pubkey_n, den_bits = self$den_bits)
}
} else {
instanceId <- token
private$sites <- sites <- lapply(private$sites,
function(x) list(name = x$name,
url = x$url,
localhost = x$localhost,
dataFileName = x$dataFileName,
instanceId = if (x$localhost) x$name else instanceId))
sitesOK <- sapply(sites,
function(x) {
payload <- if (is.null(x$dataFileName)) {
list(defnId = defn$id, instanceId = x$instanceId,
pubkey_bits = self$pubkey_bits, pubkey_n = as.character(self$pubkey_n), den_bits = self$den_bits)
} else {
list(defnId = defn$id, instanceId = x$instanceId,
dataFileName = x$dataFileName,
pubkey_bits = self$pubkey_bits, pubkey_n = as.character(self$pubkey_n), den_bits = self$den_bits)
}
q <- httr::POST(url = .makeOpencpuURL(urlPrefix=x$url, fn="createHEWorkerInstance"),
body = jsonlite::toJSON(payload),
httr::add_headers("Content-Type" = "application/json"),
config = getConfig()$sslConfig
)
.deSerialize(q)
})
if (!all(sitesOK)) {
stop("run(): Some sites did not respond successfully!")
sites <- sites[which(sitesOK)]
}
}
self$queryCount(token)
}
)
) |
source(system.file(file.path('tests', 'testthat', 'test_utils.R'), package = 'nimble'))
context("Testing how nimbleFunctions use model variables and nodes")
test_that("nimbleFunction use of model variables and nodes works",
{
code <- nimbleCode({
a ~ dnorm(0, 1)
for(i in 1:5) {
b[i] ~ dnorm(0, 1)
for(j in 1:3)
c[i,j] ~ dnorm(0, 1)
}
})
constants <- list()
data <- list()
inits <- list(a = 1, b=1:5, c = array(1:30, c(5,6)))
Rmodel <- nimbleModel(code, constants, data, inits)
nfDef <- nimbleFunction(
setup = function(model) {
aNode <- 'a'
bNode <- 'b'
cNode <- 'c'
bNode2 <- 'b[2]'
cNode34 <- 'c[3, 4]'
},
run = function(aCheck = double(),
bCheck = double(1),
cCheck = double(2)) {
ok <- TRUE
bNode2v <- model[[bNode2]]
cNode34v <- model[[cNode34]]
bNode2v2 <- model[['b[2]']]
cNode34v2 <- model[['c[3, 4]']]
ok <- ok & bNode2v == bCheck[2]
ok <- ok & bNode2v == bNode2v2
ok <- ok & cNode34v == cCheck[3, 4]
ok <- ok & cNode34v2 == cNode34v
a1 <- model[['a']]
ok <- ok & a1 == aCheck
b1 <- model[['b']]
ok <- ok & sum(dim(b1) != dim(bCheck)) == 0
ok <- ok & sum(b1 != bCheck) == 0
c1 <- model[['c']]
ok <- ok & sum(dim(c1) != dim(cCheck)) == 0
ok <- ok & sum(c1 != cCheck) == 0
model[['a']] <<- a1 + 1
model[['b']] <<- b1 + 1
model[['c']] <<- c1 + 1
aCheck <- aCheck + 1
bCheck <- bCheck + 1
cCheck <- cCheck + 1
a2 <- model$a
ok <- ok & sum(a2 != aCheck) == 0
b2 <- model$b
ok <- ok & sum(dim(b2) != dim(bCheck)) == 0
ok <- ok & sum(b2 != bCheck) == 0
c2 <- model$c
ok <- ok & sum(dim(c2) != dim(cCheck)) == 0
ok <- ok & sum(c2 != cCheck) == 0
model$a <<- a2 + 1
model$b <<- b2 + 1
model$c <<- c2 + 1
aCheck <- aCheck + 1
bCheck <- bCheck + 1
cCheck <- cCheck + 1
bSubCheck <- bCheck[2:4]
cSubCheck <- cCheck[2:4, 3:5]
a3 <- model$a[1]
ok <- ok & a3 == aCheck
b3 <- model$b[2:4]
ok <- ok & sum(dim(b3) != dim(bSubCheck)) == 0
ok <- ok & sum(b3 != bSubCheck) == 0
c3 <- model$c[2:4 , 3:5]
ok <- ok & sum(dim(c3) != dim(cSubCheck)) == 0
ok <- ok & sum(c3 != cSubCheck) == 0
model$a[1] <<- a3 + 1
model$b[2:4] <<- bSubCheck + 1
model$c[2:4, 3:5] <<- cSubCheck + 1
aCheck <- aCheck + 1
bCheck[2:4] <- bSubCheck + 1
cCheck[2:4, 3:5] <- cSubCheck + 1
bSubCheck <- bCheck[2:4]
cSubCheck <- cCheck[2:4, 3:5]
b4 <- model[['b']][2:4]
ok <- ok & sum(dim(b4) != dim(bSubCheck)) == 0
ok <- ok & sum(b4 != bSubCheck) == 0
c4 <- model[['c']][2:4 , 3:5]
ok <- ok & sum(dim(c4) != dim(cSubCheck)) == 0
ok <- ok & sum(c4 != cSubCheck) == 0
model[['b']][2:4] <<- bSubCheck + 1
model[['c']][2:4, 3:5] <<- cSubCheck + 1
bCheck[2:4] <- bSubCheck + 1
cCheck[2:4, 3:5] <- cSubCheck + 1
bSubCheck <- bCheck[2:4]
cSubCheck <- cCheck[2:4, 3:5]
a5 <- model[[aNode]]
ok <- ok & a5 == aCheck
b5 <- model[[bNode]]
ok <- ok & sum(dim(b5) != dim(bCheck)) == 0
ok <- ok & sum(b5 != bCheck) == 0
c5 <- model[[cNode]]
ok <- ok & sum(dim(c5) != dim(cCheck)) == 0
ok <- ok & sum(c5 != cCheck) == 0
model[[aNode]] <<- a5 + 1
model[[bNode]] <<- b5 + 1
model[[cNode]] <<- c5 + 1
aCheck <- aCheck + 1
bCheck <- bCheck + 1
cCheck <- cCheck + 1
bSubCheck <- bCheck[2:4]
cSubCheck <- cCheck[2:4, 3:5]
b6 <- model[[bNode]][2:4]
ok <- ok & sum(dim(b6) != dim(bSubCheck)) == 0
ok <- ok & sum(b6 != bSubCheck) == 0
c6 <- model[[cNode]][2:4 , 3:5]
ok <- ok & sum(dim(c6) != dim(cSubCheck)) == 0
ok <- ok & sum(c6 != cSubCheck) == 0
model[[bNode]][2:4] <<- bSubCheck + 1
model[[cNode]][2:4, 3:5] <<- cSubCheck + 1
return(ok)
returnType(logical())
}
)
Rnf <- nfDef(Rmodel)
uncompiledAns <- Rnf$run(Rmodel$a, Rmodel$b, Rmodel$c)
expect_true(uncompiledAns)
compiled <- compileNimble(Rmodel, Rnf)
compiledAns <- compiled$Rnf$run(Rmodel$a, Rmodel$b, Rmodel$c)
expect_true(compiledAns)
}) |
expected <- eval(parse(text="NULL"));
test(id=0, code={
argv <- eval(parse(text="list(c(0, 0, 0, 0, 0, 1.75368801162502e-134, 0, 0, 0, 2.60477585273833e-251, 1.16485035372295e-260, 0, 1.53160350210786e-322, 0.333331382328728, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.44161262707711e-123, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.968811545398e-173, 0, 8.2359965384697e-150, 0, 0, 0, 0, 6.51733217171341e-10, 0, 2.36840184577368e-67, 0, 9.4348408357524e-307, 0, 1.59959906013771e-89, 0, 8.73836857865034e-286, 7.09716190970992e-54, 0, 0, 0, 1.530425353017e-274, 8.57590058044551e-14, 0.333333106397154, 0, 0, 1.36895217898448e-199, 2.0226102635783e-177, 5.50445388209462e-42, 0, 0, 0, 0, 1.07846402051283e-44, 1.88605464411243e-186, 1.09156111051203e-26, 0, 3.0702877273237e-124, 0.333333209689785, 0, 0, 0, 0, 0, 0, 3.09816093866831e-94, 0, 0, 4.7522727332095e-272, 0, 0, 2.30093251441394e-06, 0, 0, 1.27082826644707e-274, 0, 0, 0, 0, 0, 0, 0, 4.5662025456054e-65, 0, 2.77995853978268e-149, 0, 0, 0))"));
do.call(`names`, argv);
}, o=expected); |
parse_single_roi <- function(data,
min_time = 0,
max_time = +Inf,
reference_hour = NULL,
verbose = TRUE,
columns = NULL,
cache=NULL,
FUN = NULL,
...){
roi_idx = NULL
id <- data$id
region_id <- data$region_id
path <- data$file_info[[1]]$path
if(is.null(columns) & !is.null(FUN)){
needed_columns <- attr(FUN, "needed_columns")
if(!is.null(needed_columns))
columns <- needed_columns(...)
}
if(verbose)
cat(sprintf("Loading ROI number %i from:\n\t%s\n",region_id,path))
if(tools::file_ext(path) != "db")
stop(sprintf("Unsuported file extention in %s",path))
fs = file.info(path)["size"]
if(!is.null(cache)){
db <- memoise::cache_filesystem(cache, algo="md5")
parse_single_roi_wrapped_memo <- memoise::memoise(parse_single_roi_wrapped, cache=db)
}
else{
parse_single_roi_wrapped_memo <- parse_single_roi_wrapped
}
out <- parse_single_roi_wrapped_memo( id,
region_id,
path,
min_time,
max_time,
reference_hour,
columns,
file_size= fs,
FUN,
...
)
if(!is.null(out))
behavr::setbehavr(out, data)
out
}
parse_single_roi_wrapped <- function(id, region_id,path,
min_time = 0,
max_time = +Inf,
reference_hour = NULL,
columns = NULL,
file_size=0,
FUN = NULL,
...
){
time_stamp = NULL
out <- read_single_roi(path,
region_id=region_id,
min_time = min_time,
max_time = max_time,
reference_hour = reference_hour,
columns=columns,
time_stamp = time_stamp)
if(is.null(out) || nrow(out) == 0){
warning(sprintf("No data in ROI %i, from FILE %s. Skipping",region_id, path))
return(NULL)
}
old_cols <- data.table::copy(names(out))
out[,id := id]
data.table::setcolorder(out,c("id", old_cols))
data.table::setkeyv(out, "id")
met <- data.table::data.table(id = id, key="id")
behavr::setbehavr(out, met)
if(!is.null(FUN)){
out <- FUN(out,...)
is_empty <- is.null(out)
if(!is_empty)
is_empty <- nrow(out) == 0
if(is_empty){
warning(sprintf("No data in ROI %i after running FUN, from FILE %s. Skipping",region_id, path))
return(NULL)
}
}
out
} |
logit.spls <- function(Xtrain, Ytrain, lambda.ridge, lambda.l1, ncomp,
Xtest=NULL, adapt=TRUE, maxIter=100, svd.decompose=TRUE,
center.X=TRUE, scale.X=FALSE, weighted.center=TRUE) {
Xtrain <- as.matrix(Xtrain)
ntrain <- nrow(Xtrain)
p <- ncol(Xtrain)
index.p <- c(1:p)
if(is.factor(Ytrain)) {
Ytrain <- as.numeric(levels(Ytrain))[Ytrain]
}
Ytrain <- as.integer(Ytrain)
Ytrain <- as.matrix(Ytrain)
q <- ncol(Ytrain)
one <- matrix(1,nrow=1,ncol=ntrain)
cnames <- NULL
if(!is.null(colnames(Xtrain))) {
cnames <- colnames(Xtrain)
} else {
cnames <- paste0(1:p)
}
if(length(table(Ytrain)) > 2) {
warning("message from logit.spls: multicategorical response")
results = multinom.spls(Xtrain=Xtrain, Ytrain=Ytrain, lambda.ridge=lambda.ridge,
lambda.l1=lambda.l1, ncomp=ncomp, Xtest=Xtest, adapt=adapt,
maxIter=maxIter, svd.decompose=svd.decompose,
center.X=center.X, scale.X=scale.X, weighted.center=weighted.center)
return(results)
}
if ((!is.matrix(Xtrain)) || (!is.numeric(Xtrain))) {
stop("Message from logit.spls: Xtrain is not of valid type")
}
if (ncomp > p) {
warning("Message from logit.spls: ncomp>p is not valid, ncomp is set to p")
ncomp <- p
}
if (p==1) {
warning("Message from logit.spls: p=1 is not valid, ncomp is set to 0")
ncomp <- 0
}
if (!is.null(Xtest)) {
if (is.vector(Xtest)==TRUE) {
Xtest <- matrix(Xtest,ncol=p)
}
Xtest <- as.matrix(Xtest)
ntest <- nrow(Xtest)
if ((!is.matrix(Xtest)) || (!is.numeric(Xtest))) {
stop("Message from logit.spls: Xtest is not of valid type")
}
if (p != ncol(Xtest)) {
stop("Message from logit.spls: columns of Xtest and columns of Xtrain must be equal")
}
}
if ((!is.matrix(Ytrain)) || (!is.numeric(Ytrain))) {
stop("Message from logit.spls: Ytrain is not of valid type")
}
if (q != 1) {
stop("Message from logit.spls: Ytrain must be univariate")
}
if (nrow(Ytrain)!=ntrain) {
stop("Message from logit.spls: the number of observations in Ytrain is not equal to the Xtrain row number")
}
if (sum(is.na(Ytrain))!=0) {
stop("Message from logit.spls: NA values in Ytrain")
}
if (sum(!(Ytrain %in% c(0,1)))!=0) {
stop("Message from logit.spls: Ytrain is not of valid type")
}
if (sum(as.numeric(table(Ytrain))==0)!=0) {
stop("Message from logit.spls: there are empty classes")
}
if ((!is.numeric(lambda.ridge)) || (lambda.ridge<0) || (!is.numeric(lambda.l1)) || (lambda.l1<0)) {
stop("Message from logit.spls: lambda is not of valid type")
}
if ((!is.numeric(ncomp)) || (round(ncomp)-ncomp!=0) || (ncomp<0) || (ncomp>p)) {
stop("Message from logit.spls: ncomp is not of valid type")
}
if ((!is.numeric(maxIter)) || (round(maxIter)-maxIter!=0) || (maxIter<1)) {
stop("Message from logit.spls: maxIter is not of valid type")
}
r <- min(p, ntrain)
DeletedCol <- NULL
sigma2train <- apply(Xtrain, 2, var) * (ntrain-1)/(ntrain)
if (sum(sigma2train < .Machine$double.eps)!=0){
if (sum(sigma2train < .Machine$double.eps)>(p-2)){
stop("Message from logit.spls: the procedure stops because number of predictor variables with no null variance is less than 1.")
}
warning("There are covariables with nul variance")
Xtrain <- Xtrain[,which(sigma2train >= .Machine$double.eps)]
if (!is.null(Xtest)) {
Xtest <- Xtest[,which(sigma2train>= .Machine$double.eps)]
}
DeletedCol <- index.p[which(sigma2train < .Machine$double.eps)]
sigma2train <- sigma2train[which(sigma2train >= .Machine$double.eps)]
p <- ncol(Xtrain)
r <- min(p,ntrain)
}
if(!is.null(DeletedCol)) {
cnames <- cnames[-DeletedCol]
}
meanXtrain <- apply(Xtrain,2,mean)
if(center.X && scale.X) {
sXtrain <- scale(Xtrain, center=meanXtrain, scale=sqrt(sigma2train))
} else if(center.X && !scale.X) {
sXtrain <- scale(Xtrain, center=meanXtrain, scale=FALSE)
} else {
sXtrain <- Xtrain
}
sXtrain.nosvd <- sXtrain
if ((p > ntrain) && (svd.decompose) && (p>1)) {
svd.sXtrain <- svd(t(sXtrain))
r <- length(svd.sXtrain$d[abs(svd.sXtrain$d)>10^(-13)])
V <- svd.sXtrain$u[,1:r]
D <- diag(c(svd.sXtrain$d[1:r]))
U <- svd.sXtrain$v[,1:r]
sXtrain <- U %*% D
rm(D)
rm(U)
rm(svd.sXtrain)
}
if (!is.null(Xtest)) {
meanXtest <- apply(Xtest,2,mean)
sigma2test <- apply(Xtest,2,var)
if(center.X && scale.X) {
sXtest <- scale(Xtest, center=meanXtrain, scale=sqrt(sigma2train))
} else if(center.X && !scale.X) {
sXtest <- scale(Xtest, center=meanXtrain, scale=FALSE)
} else {
sXtest <- Xtest
}
sXtest.nosvd <- sXtest
if ((p > ntrain) && (svd.decompose)) {
sXtest <- sXtest%*%V
}
}
fit <- wirrls(Y=Ytrain, Z=cbind(rep(1,ntrain),sXtrain), Lambda=lambda.ridge, NbrIterMax=maxIter, WKernel=diag(rep(1,ntrain)))
converged=fit$Cvg
if (converged==0) {
warning("Message from logit.spls : Ridge IRLS did not converge; try another lambda.ridge value")
}
if (ncomp==0) {
BETA <- fit$Coefficients
}
if (ncomp!=0) {
Eta <- cbind(rep(1, ntrain), sXtrain) %*% fit$Coefficients
sXtrain = sXtrain.nosvd
if (!is.null(Xtest)) {
sXtest = sXtest.nosvd
}
mu = 1 / (1 + exp(-Eta))
diagV <- mu * (1-mu)
V <- diag(c(diagV))
diagVinv = 1/ifelse(diagV!=0, diagV, diagV+0.00000001)
Vinv = diag(c(diagVinv))
Psi <- Ytrain-mu
pseudoVar = Eta + Vinv %*% Psi
sumV=sum(diagV)
VmeanPseudoVar <- sum(V %*% Eta + Psi ) / sumV
VmeansXtrain <- t(diagV)%*%sXtrain/sumV
resSPLS = spls(Xtrain=sXtrain, Ytrain=pseudoVar, ncomp=ncomp,
weight.mat=V, lambda.l1=lambda.l1, adapt=adapt,
center.X=center.X, scale.X=scale.X,
center.Y=TRUE, scale.Y=FALSE,
weighted.center=weighted.center)
BETA = resSPLS$betahat.nc
} else {
resSPLS = list(A=NULL, X.score=NULL, X.weight=NULL, sXtrain=sXtrain, sYtrain=NULL, V=NULL)
}
hatY <- numeric(ntrain)
hatY <- cbind(rep(1,ntrain),sXtrain) %*% BETA
hatY <- as.numeric(hatY>0)
proba <- numeric(ntrain)
proba <- inv.logit( cbind(rep(1,ntrain),sXtrain) %*% BETA )
if (!is.null(Xtest)) {
hatYtest <- cbind(rep(1,ntest),sXtest) %*% BETA
hatYtest <- as.numeric(hatYtest>0)
proba.test = inv.logit( cbind(rep(1,ntest),sXtest) %*% BETA )
} else {
hatYtest <- NULL
proba.test <- NULL
}
Coefficients=BETA
if(p > 1) {
Coefficients[-1] <- diag(c(1/sqrt(sigma2train)))%*%BETA[-1]
} else {
Coefficients[-1] <- (1/sqrt(sigma2train))%*%BETA[-1]
}
Coefficients[1] <- BETA[1] - meanXtrain %*% Coefficients[-1]
Anames <- cnames[resSPLS$A]
result <- list(Coefficients=Coefficients, hatY=hatY, hatYtest=hatYtest, DeletedCol=DeletedCol,
A=resSPLS$A, Anames=Anames, converged=converged,
X.score=resSPLS$X.score, X.weight=resSPLS$X.weight,
sXtrain=resSPLS$sXtrain, sPseudoVar=resSPLS$sYtrain,
lambda.ridge=lambda.ridge, lambda.l1=lambda.l1, ncomp=ncomp,
V=resSPLS$V, proba=proba, proba.test=proba.test, Xtrain=Xtrain, Ytrain=Ytrain)
class(result) <- "logit.spls"
return(result)
} |
context("count_unique_geno")
test_that("count_unique_geno works", {
g <- rbind(c(NA, "A", "A", "A", "T"),
c(NA, NA, NA, "A", "A"),
c("A", "A", "T", "G", "G"),
rep(NA, 5),
c("N", "H", "", "A", "A"),
c("N", "H", "", "A", "T"),
c("C", "C", "G", "G", NA))
expected <- c(2,1,3,0,1,2,2)
expect_equal(count_unique_geno(g), expected)
rownames(g) <- names(expected) <- paste0("mar", 1:7)
expect_equal(count_unique_geno(g), expected)
})
test_that("count_unique_geno works multi-core", {
if(isnt_karl()) skip("this test only run locally")
g <- rbind(c(NA, "A", "A", "A", "T"),
c(NA, NA, NA, "A", "A"),
c("A", "A", "T", "G", "G"),
rep(NA, 5),
c("N", "H", "", "A", "A"),
c("N", "H", "", "A", "T"),
c("C", "C", "G", "G", NA))
expected <- c(2,1,3,0,1,2,2)
expect_equal(count_unique_geno(g), expected)
expect_equal(count_unique_geno(g, cores=2), expected)
rownames(g) <- names(expected) <- paste0("mar", 1:7)
expect_equal(count_unique_geno(g), expected)
expect_equal(count_unique_geno(g, cores=2), expected)
}) |
library(glue)
make_new <- function(name,
which = c("step", "check")) {
which <- match.arg(which)
stopifnot(is.character(name))
in_recipes_root <-
tail(stringr::str_split(getwd(), "/")[[1]], 1) == "recipes"
if (!in_recipes_root) {
rlang::abort("Change working directory to package root")
}
if (glue::glue("{name}.R") %in% list.files("./R")) {
rlang::abort("step or check already present with this name in /R")
}
boilerplate <-
glue("
{create_documentation(name, which)}
{create_function(name, which)}
{create_generator(name, which)}
{create_prep_method(name, which)}
{create_bake_method(name, which)}
{create_print_method(name, which)}
{create_tidy_method(name, which)}
")
file.create(glue("./R/{name}.R"))
cat(boilerplate, file = glue("./R/{name}.R"))
file.create(glue("./tests/testthat/test_{name}.R"))
}
create_documentation <- function(name,
which) {
glue("
")
}
create_function <- function(name, which) {
glue('
{which}_{name} <-
function(recipe,
...,
role = NA,
trained = FALSE,
<additional args here>
skip = FALSE,
id = rand_id("{name}")) {{
add_{which}(
recipe,
{which}_{name}_new(
terms = ellipse_check(...),
trained = trained,
role = role,
<additional args here>
skip = skip,
id = id
)
)
}}
')
}
create_generator <- function(name, which) {
glue('
{which}_{name}_new <-
function(terms, role, <additional args here>, na_rm, skip, id) {{
step(
subclass = "{name}",
terms = terms,
role = role,
trained = trained,
<additional args here>
skip = skip,
id = id
)
}}
')
}
create_prep_method <- function(name, which) {
glue('
prep.{which}_{name} <- function(x, training, info = NULL, ...) {{
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names])
<prepping action here>
{which}_{name}_new(
terms = x$terms,
role = x$role,
trained = TRUE,
<additional args here>
skip = x$skip,
id = x$id
)
}}
')
}
create_bake_method <- function(name, which) {
glue('
bake.{which}_{name} <- function(object, new_data, ...) {{
<baking actions here>
as_tibble(new_data)
}}
')
}
create_print_method <- function(name, which) {
glue('
print.{which}_{name} <-
function(x, width = max(20, options()$width - 30), ...) {{
cat("<describe action here> ", sep = "")
printer(names(x$means), x$terms, x$trained, width = width)
invisible(x)
}}
')
}
create_tidy_method <- function(name, which) {
glue("
tidy.{which}_{name} <- function(x, ...) {{
if (is_trained(x)) {{
res <-
<action here>
}} else {{
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names,
value = na_dbl)
}}
res$id <- x$id
res
}}
")
} |
.onLoad <- function(libname, pkgname) {
.jpackage(pkgname, lib.loc = libname)
} |
makeSrcDirs = function(repo, cores = 1, scm_auth)
{
binds = getBuilding(repo = repo)
manifest = getBuildingManifest(repo = repo)
scm_auth = replicate(scm_auth, n=nrow(manifest), simplify=FALSE)
sources = mapply(makeSource, url = manifest$url,
type = manifest$type, scm_auth= scm_auth, branch = manifest$branch,
subdir = manifest$subdir, name = manifest$name)
path = checkout_dir(repo)
versions = versions_df(repo)[binds,]
res <- mapply(function(nm, src, repo, path, version) {
ret = makePkgDir(name = nm, source = src, path =path,
latest_only = FALSE, param = param(repo), forceRefresh=FALSE)
if(ret && !is.na(version) && file.exists(file.path(path, nm))) {
gotoVersCommit(file.path(path, nm),
version = version,
src = src,
param = param(repo))
}
ret
},
nm = manifest$name,
version = versions$version,
src = sources,
path = path,
repo = list(repo))
res = unlist(res)
if(!is.logical(res))
print(res)
fullres = repo_results(repo)
fullres$status[binds][!res] = "source checkout failed"
vrs = getCOedVersions(path, manifest = manifest, repo = repo)
inds = fullres$name %in% names(vrs)
fullres$version[inds] = vrs[match(fullres$name[inds],
names(vrs))]
repo_results(repo) = fullres
repo
} |
lav_matrix_vec <- function(A) {
as.vector(A)
}
lav_matrix_vecr <- function(A) {
lav_matrix_vec(t(A))
}
lav_matrix_vech <- function(S, diagonal = TRUE) {
ROW <- row(S); COL <- col(S)
if(diagonal) S[ROW >= COL] else S[ROW > COL]
}
lav_matrix_vechr <- function(S, diagonal = TRUE) {
S[lav_matrix_vechr_idx(n = NCOL(S), diagonal = diagonal)]
}
lav_matrix_vechu <- function(S, diagonal = TRUE) {
S[lav_matrix_vechu_idx(n = NCOL(S), diagonal = diagonal)]
}
lav_matrix_vechru <- function(S, diagonal = TRUE) {
S[lav_matrix_vechru_idx(n = NCOL(S), diagonal = diagonal)]
}
lav_matrix_vech_idx <- function(n = 1L, diagonal = TRUE) {
n <- as.integer(n)
ROW <- matrix(seq_len(n), n, n)
COL <- matrix(seq_len(n), n, n, byrow = TRUE)
if(diagonal) which(ROW >= COL) else which(ROW > COL)
}
lav_matrix_vech_row_idx <- function(n = 1L, diagonal = TRUE) {
n <- as.integer(n)
if(diagonal ) {
unlist(lapply(seq_len(n), seq.int, n))
} else {
1 + unlist(lapply(seq_len(n-1), seq.int, n-1))
}
}
lav_matrix_vech_col_idx <- function(n = 1L, diagonal = TRUE) {
n <- as.integer(n)
if(!diagonal) {
n <- n - 1L
}
rep.int(seq_len(n), times = rev(seq_len(n)))
}
lav_matrix_vechr_idx <- function(n = 1L, diagonal = TRUE) {
n <- as.integer(n)
ROW <- matrix(seq_len(n), n, n)
COL <- matrix(seq_len(n), n, n, byrow = TRUE)
tmp <- matrix(seq_len(n*n), n, n, byrow = TRUE)
if(diagonal) tmp[ROW <= COL] else tmp[ROW < COL]
}
lav_matrix_vechu_idx <- function(n = 1L, diagonal = TRUE) {
n <- as.integer(n)
ROW <- matrix(seq_len(n), n, n)
COL <- matrix(seq_len(n), n, n, byrow = TRUE)
if(diagonal) which(ROW <= COL) else which(ROW < COL)
}
lav_matrix_vechru_idx <- function(n = 1L, diagonal = TRUE) {
n <- as.integer(n)
ROW <- matrix(seq_len(n), n, n)
COL <- matrix(seq_len(n), n, n, byrow = TRUE)
tmp <- matrix(seq_len(n*n), n, n, byrow = TRUE)
if(diagonal) tmp[ROW >= COL] else tmp[ROW > COL]
}
lav_matrix_vech_reverse <- lav_matrix_vechru_reverse <-
lav_matrix_upper2full <-
function(x, diagonal = TRUE) {
if(diagonal) {
p <- (sqrt(1 + 8*length(x))-1)/2
} else {
p <- (sqrt(1 + 8*length(x))+1)/2
}
S <- numeric(p * p)
S[lav_matrix_vech_idx( p, diagonal = diagonal)] <- x
S[lav_matrix_vechru_idx(p, diagonal = diagonal)] <- x
attr(S, "dim") <- c(p, p)
S
}
lav_matrix_vechr_reverse <- lav_matrix_vechu_reverse <-
lav_matrix_lower2full <- function(x, diagonal = TRUE) {
if(diagonal) {
p <- (sqrt(1 + 8*length(x))-1)/2
} else {
p <- (sqrt(1 + 8*length(x))+1)/2
}
stopifnot(p == round(p,0))
S <- numeric(p * p)
S[lav_matrix_vechr_idx(p, diagonal = diagonal)] <- x
S[lav_matrix_vechu_idx(p, diagonal = diagonal)] <- x
attr(S, "dim") <- c(p, p)
S
}
lav_matrix_diag_idx <- function(n = 1L) {
1L + (seq_len(n) - 1L)*(n + 1L)
}
lav_matrix_diagh_idx <- function(n = 1L) {
if(n < 1L) return(integer(0L))
if(n == 1L) return(1L)
c(1L, cumsum(n:2L) + 1L)
}
lav_matrix_antidiag_idx <- function(n = 1L) {
if(n < 1L) return(integer(0L))
1L + seq_len(n)*(n-1L)
}
lav_matrix_vech_which_idx <- function(n = 1L, diagonal = TRUE,
idx = integer(0L), type = "and") {
if(length(idx) == 0L) return(integer(0L))
n <- as.integer(n)
A <- matrix(FALSE, n, n)
if(type == "and") {
A[idx, idx] <- TRUE
} else if(type == "or") {
A[idx, ] <- TRUE
A[ ,idx] <- TRUE
}
which(lav_matrix_vech(A, diagonal = diagonal))
}
lav_matrix_vech_match_idx <- function(n = 1L, diagonal = TRUE,
idx = integer(0L)) {
if (length(idx) == 0L)
return(integer(0L))
n <- as.integer(n)
pstar <- n*(n+1)/2
A <- lav_matrix_vech_reverse(seq_len(pstar))
B <- A[idx, idx, drop = FALSE]
lav_matrix_vech(B, diagonal = diagonal)
}
.dup1 <- function(n = 1L) {
if ((n < 1L) | (round(n) != n)) {
stop("n must be a positive integer")
}
if (n > 255L) {
stop("n is too large")
}
n2 <- n * n; nstar <- n * (n + 1)/2
x <- numeric(n2 * nstar)
r1 <- seq.int(from = n*n+1, by = -(n-1), length.out = n-1)
r2 <- seq.int(from = n-1, by = n-1, length.out = n-1)
r3 <- seq.int(from = 2*n+1, by = n, length.out = n-1)
rr <- unlist(lapply((n-1):1,
function(x) { c(rbind(r1[1:x], r2[1:x]), r3[n-x]) }))
idx <- c(1L, cumsum(rr) + 1L)
x[idx] <- 1.0
attr(x, "dim") <- c(n2, nstar)
x
}
.dup2 <- function (n = 1L) {
if ((n < 1L) | (round(n) != n)) {
stop("n must be a positive integer")
}
if(n > 255L) {
stop("n is too large")
}
nstar <- n * (n+1)/2
n2 <- n * n
x <- numeric(n2 * nstar)
idx1 <- lav_matrix_vech_idx(n) + ((1L:nstar)-1L) * n2
idx2 <- lav_matrix_vechru_idx(n) + ((1L:nstar)-1L) * n2
x[idx1] <- 1.0
x[idx2] <- 1.0
attr(x, "dim") <- c(n2, nstar)
x
}
.dup3 <- function(n = 1L) {
if ((n < 1L) | (round(n) != n)) {
stop("n must be a positive integer")
}
if(n > 255L) {
stop("n is too large")
}
nstar <- n * (n+1)/2
n2 <- n * n
x <- numeric(n2 * nstar)
tmp <- matrix(0L, n, n)
tmp[lav_matrix_vech_idx(n)] <- 1:nstar
tmp[lav_matrix_vechru_idx(n)] <- 1:nstar
idx <- (1:n2) + (lav_matrix_vec(tmp)-1L) * n2
x[idx] <- 1.0
attr(x, "dim") <- c(n2, nstar)
x
}
lav_matrix_duplication <- .dup3
lav_matrix_duplication_pre <- function(A = matrix(0,0,0)) {
n2 <- NROW(A)
stopifnot(sqrt(n2) == round(sqrt(n2)))
n <- sqrt(n2)
idx1 <- lav_matrix_vech_idx(n); idx2 <- lav_matrix_vechru_idx(n)
OUT <- A[idx1, , drop = FALSE] + A[idx2 , , drop = FALSE]
u <- which(idx1 %in% idx2); OUT[u,] <- OUT[u,] / 2.0
OUT
}
lav_matrix_duplication_dup_pre2 <- function(A = matrix(0,0,0)) {
n2 <- NROW(A)
stopifnot(sqrt(n2) == round(sqrt(n2)))
n <- sqrt(n2)
idx1 <- lav_matrix_vech_idx(n); idx2 <- lav_matrix_vechru_idx(n)
OUT <- A[idx1,,drop=FALSE]
u <- which(!idx1 %in% idx2); OUT[u,] <- OUT[u,] + A[idx2[u],]
OUT
}
lav_matrix_duplication_post <- function(A = matrix(0,0,0)) {
n2 <- NCOL(A)
stopifnot(sqrt(n2) == round(sqrt(n2)))
n <- sqrt(n2)
idx1 <- lav_matrix_vech_idx(n); idx2 <- lav_matrix_vechru_idx(n)
OUT <- A[, idx1, drop = FALSE] + A[, idx2, drop = FALSE]
u <- which(idx1 %in% idx2); OUT[,u] <- OUT[,u] / 2.0
OUT
}
lav_matrix_duplication_pre_post <- function(A = matrix(0,0,0)) {
n2 <- NCOL(A)
stopifnot(NROW(A) == n2, sqrt(n2) == round(sqrt(n2)))
n <- sqrt(n2)
idx1 <- lav_matrix_vech_idx(n); idx2 <- lav_matrix_vechru_idx(n)
OUT <- A[idx1, , drop = FALSE] + A[idx2, , drop = FALSE]
u <- which(idx1 %in% idx2); OUT[u,] <- OUT[u,] / 2.0
OUT <- OUT[, idx1, drop = FALSE] + OUT[, idx2, drop = FALSE]
OUT[,u] <- OUT[,u] / 2.0
OUT
}
.dup_ginv1 <- function(n = 1L) {
if ((n < 1L) | (round(n) != n)) {
stop("n must be a positive integer")
}
if(n > 255L) {
stop("n is too large")
}
nstar <- n * (n+1)/2
n2 <- n * n
x <- numeric(nstar * n2)
tmp <- matrix(1:(n*n), n, n)
idx1 <- lav_matrix_vech(tmp) + (0:(nstar-1L))*n2
x[idx1] <- 0.5
idx2 <- lav_matrix_vechru(tmp) + (0:(nstar-1L))*n2
x[idx2] <- 0.5
idx3 <- lav_matrix_diag_idx(n) + (lav_matrix_diagh_idx(n)-1L)*n2
x[idx3] <- 1.0
attr(x, "dim") <- c(n2, nstar)
x <- t(x)
x
}
.dup_ginv2 <- function(n = 1L) {
if ((n < 1L) | (round(n) != n)) {
stop("n must be a positive integer")
}
if(n > 255L) {
stop("n is too large")
}
nstar <- n * (n+1)/2
n2 <- n * n
x <- numeric(nstar * n2)
x[(lav_matrix_vech_idx(n) - 1L)*nstar + 1:nstar] <- 0.5
x[(lav_matrix_vechru_idx(n) - 1L)*nstar + 1:nstar] <- 0.5
x[(lav_matrix_diag_idx(n) - 1L)*nstar + lav_matrix_diagh_idx(n)] <- 1.0
attr(x, "dim") <- c(nstar, n2)
x
}
lav_matrix_duplication_ginv <- .dup_ginv2
lav_matrix_duplication_ginv_pre <- function(A = matrix(0,0,0)) {
A <- as.matrix.default(A)
n2 <- NROW(A)
stopifnot(sqrt(n2) == round(sqrt(n2)))
n <- sqrt(n2)
nstar <- n * (n+1)/2
idx1 <- lav_matrix_vech_idx(n); idx2 <- lav_matrix_vechru_idx(n)
OUT <- (A[idx1, , drop = FALSE] + A[idx2, , drop = FALSE]) / 2
OUT
}
lav_matrix_duplication_ginv_post <- function(A = matrix(0,0,0)) {
A <- as.matrix.default(A)
n2 <- NCOL(A)
stopifnot(sqrt(n2) == round(sqrt(n2)))
n <- sqrt(n2)
idx1 <- lav_matrix_vech_idx(n); idx2 <- lav_matrix_vechru_idx(n)
OUT <- (A[, idx1, drop = FALSE] + A[, idx2, drop = FALSE]) / 2
OUT
}
lav_matrix_duplication_ginv_pre_post <- function(A = matrix(0,0,0)) {
A <- as.matrix.default(A)
n2 <- NCOL(A)
stopifnot(NROW(A) == n2, sqrt(n2) == round(sqrt(n2)))
n <- sqrt(n2)
idx1 <- lav_matrix_vech_idx(n); idx2 <- lav_matrix_vechru_idx(n)
OUT <- (A[idx1, , drop = FALSE] + A[idx2, , drop = FALSE]) / 2
OUT <- (OUT[, idx1, drop = FALSE] + OUT[, idx2, drop = FALSE]) / 2
OUT
}
.com1 <- function(m = 1L, n = 1L) {
if ((m < 1L) | (round(m) != m)) {
stop("n must be a positive integer")
}
if ((n < 1L) | (round(n) != n)) {
stop("n must be a positive integer")
}
p <- m*n
x <- numeric( p*p )
pattern <- rep(c(rep((m+1L)*n, (m-1L)), n+1L), n)
idx <- c(1L, 1L + cumsum(pattern)[-p])
x[idx] <- 1.0
attr(x, "dim") <- c(p,p)
x
}
lav_matrix_commutation <- .com1
lav_matrix_commutation_pre <- function(A = matrix(0,0,0)) {
n2 <- NROW(A)
stopifnot(sqrt(n2) == round(sqrt(n2)))
n <- sqrt(n2)
row.idx <- rep(1:n, each = n) + (0:(n-1L))*n
OUT <- A[row.idx, , drop = FALSE]
OUT
}
lav_matrix_commutation_mn_pre <- function(A, m = 1L, n = 1L) {
mn <- NROW(A)
stopifnot(mn == m * n)
row.idx <- rep(1:m, each = n) + (0:(n-1L))*m
OUT <- A[row.idx, , drop = FALSE]
OUT
}
lav_matrix_commutation_Nn <- function(n = 1L) {
stop("not implemented yet")
}
lav_matrix_kronecker_square <- function(A, check = TRUE) {
dimA <- dim(A); n <- dimA[1L]; n2 <- n*n
if(check) {
stopifnot(dimA[2L] == n)
}
out <- tcrossprod(as.vector(A))
dim(out) <- c(n,n,n,n)
out <- aperm(out, perm = c(3,1,4,2))
dim(out) <- c(n2, n2)
out
}
lav_matrix_kronecker_symmetric <- function(S, check = TRUE) {
dimS <- dim(S); n <- dimS[1L]; n2 <- n*n
if(check) {
stopifnot(dimS[2L] == n)
}
out <- tcrossprod(as.vector(S))
dim(out) <- c(n,n*n,n)
out <- aperm(out, perm = c(3L,2L,1L))
dim(out) <- c(n2, n2)
out
}
lav_matrix_tS2_SxS_S2 <- function(S2, S, check = TRUE) {
n <- NROW(S)
if(check) {
stopifnot(NROW(S2) == n*n)
}
A <- matrix(S %*% matrix(S2, n, ), n*n,)
A2 <- A[rep(1:n, each=n) + (0:(n-1L))*n,,drop = FALSE]
crossprod(A, A2)
}
lav_matrix_symmetric_sqrt <- function(S = matrix(0,0,0)) {
n <- NROW(S)
S.eigen <- eigen(S, symmetric = TRUE)
V <- S.eigen$vectors; d <- S.eigen$values
d[d < 0] <- 0.0
S.sqrt <- V %*% diag(sqrt(d), n, n) %*% t(V)
S.sqrt
}
lav_matrix_orthogonal_complement <- function(A = matrix(0,0,0)) {
QR <- qr(A)
ranK <- QR$rank
Q <- qr.Q(QR, complete = TRUE)
OUT <- Q[, -seq_len(ranK), drop = FALSE]
OUT
}
lav_matrix_bdiag <- function(...) {
if(nargs() == 0L) return(matrix(0,0,0))
dots <- list(...)
if(is.list(dots[[1]])) {
mlist <- dots[[1]]
} else {
mlist <- dots
}
if(length(mlist) == 1L) return(mlist[[1]])
nmat <- length(mlist)
nrows <- sapply(mlist, NROW); crows <- cumsum(nrows)
ncols <- sapply(mlist, NCOL); ccols <- cumsum(ncols)
trows <- sum(nrows)
tcols <- sum(ncols)
x <- numeric(trows * tcols)
for(m in seq_len(nmat)) {
if(m > 1L) {
rcoffset <- trows*ccols[m-1] + crows[m-1]
} else {
rcoffset <- 0L
}
m.idx <- ( rep((0:(ncols[m] - 1L))*trows, each=nrows[m]) +
rep(1:nrows[m], ncols[m]) + rcoffset )
x[m.idx] <- mlist[[m]]
}
attr(x, "dim") <- c(trows, tcols)
x
}
lav_matrix_trace <- function(..., check = TRUE) {
if(nargs() == 0L) return(as.numeric(NA))
dots <- list(...)
if(is.list(dots[[1]])) {
mlist <- dots[[1]]
} else {
mlist <- dots
}
nMat <- length(mlist)
if(nMat == 1L) {
S <- mlist[[1]]
if(check) {
stopifnot(NROW(S) == NCOL(S))
}
out <- sum(S[lav_matrix_diag_idx(n = NROW(S))])
} else if(nMat == 2L) {
out <- sum(mlist[[1]] * t(mlist[[2]]))
} else if(nMat == 3L) {
A <- mlist[[1]]
B <- mlist[[2]]
C <- mlist[[3]]
B2 <- B %*% C
out <- sum(A * t(B2))
} else {
M1 <- mlist[[1]]
M2 <- mlist[[2]]
for(m in 3L:nMat) {
M2 <- M2 %*% mlist[[m]]
}
out <- sum(M1 * t(M2))
}
out
}
lav_matrix_crossprod <- function(A, B) {
if(missing(B)) {
if(!anyNA(A)) {
return(base::crossprod(A))
}
B <- A
} else if(!anyNA(A) && !anyNA(B)) {
return(base::crossprod(A, B))
}
if(!inherits(A, "matrix")) {
A <- matrix(A)
}
if(!inherits(B, "matrix")) {
B <- matrix(B)
}
out <- apply(B, 2L, function(x) colSums(A * x, na.rm = TRUE))
if(!is.matrix(out)) {
out <- t(matrix(out))
}
out
}
lav_matrix_rref <- function(A, tol = sqrt( .Machine$double.eps)) {
if(missing(tol)) {
A.norm <- max(abs(apply(A,1,sum)))
tol <- max(dim(A)) * A.norm * .Machine$double.eps
}
stopifnot(is.matrix(A))
nRow <- NROW(A); nCol <- NCOL(A)
pivot = integer(0L)
if(nRow == 0 && nCol == 0) return(matrix(0,0,0))
rowIndex <- colIndex <- 1
while( rowIndex <= nRow &&
colIndex <= nCol ) {
i.below <- which.max(abs(A[rowIndex:nRow, colIndex]))
i <- i.below + rowIndex - 1L
p <- A[i, colIndex]
if(abs(p) <= tol) {
A[rowIndex:nRow, colIndex] <- 0L
colIndex <- colIndex + 1
} else {
pivot <- c(pivot, colIndex)
if(rowIndex != i) {
A[ c(rowIndex,i), colIndex:nCol ] <-
A[ c(i,rowIndex), colIndex:nCol ]
}
A[ rowIndex, colIndex:nCol ] <- A[ rowIndex, colIndex:nCol] / p
other <- seq_len(nRow)[-rowIndex]
A[other, colIndex:nCol] <-
A[other, colIndex:nCol] - tcrossprod(A[other,colIndex],
A[rowIndex,colIndex:nCol])
rowIndex <- rowIndex + 1
colIndex <- colIndex + 1
}
}
list(R = A, pivot = pivot)
}
lav_matrix_orthogonal_complement2 <- function(A,
tol = sqrt( .Machine$double.eps)) {
A <- t(A)
out <- lav_matrix_rref(A = A, tol = tol)
nfree <- NCOL(A) - length(out$pivot)
if(nfree) {
R <- out$R
zero.idx <- which(apply(R, 1, function(x) { all(abs(x) < tol) }))
if(length(zero.idx) > 0) {
R <- R[-zero.idx,, drop = FALSE]
}
FREE <- R[, -out$pivot, drop = FALSE]
I <- diag( nfree )
N <- rbind(-FREE, I)
} else {
N <- matrix(0, nrow = NCOL(A), ncol = 0L)
}
N
}
lav_matrix_symmetric_inverse <- function(S, logdet = FALSE,
Sinv.method = "eigen",
zero.warn = FALSE) {
zero.idx <- which(colSums(S) == 0 & diag(S) == 0 & rowSums(S) == 0)
S.orig <- S
if(length(zero.idx) > 0L) {
if(zero.warn) {
warning("lavaan WARNING: matrix to be inverted contains zero cols/rows")
}
S <- S[-zero.idx, -zero.idx]
}
P <- NCOL(S)
if(P == 0L) {
S.inv <- matrix(0,0,0)
if(logdet) {
attr(S.inv, "logdet") <- 0
}
return(S.inv)
} else if(P == 1L) {
tmp <- S[1,1]
S.inv <- matrix(1/tmp, 1, 1)
if(logdet) {
attr(S.inv, "logdet") <- log(tmp)
}
} else if(P == 2L) {
a11 <- S[1,1]; a12 <- S[1,2]; a21 <- S[2,1]; a22 <- S[2,2]
tmp <- a11*a22 - a12*a21
if(tmp == 0) {
} else {
S.inv <- matrix(c(a22/tmp, -a21/tmp, -a12/tmp, a11/tmp), 2, 2)
if(logdet) {
attr(S.inv, "logdet") <- log(tmp)
}
}
} else if(Sinv.method == "eigen") {
EV <- eigen(S, symmetric = TRUE)
S.inv <-
tcrossprod(EV$vectors / rep(EV$values, each = length(EV$values)),
EV$vectors)
if(logdet) {
if(all(EV$values >= 0)) {
attr(S.inv, "logdet") <- sum(log(EV$values))
} else {
attr(S.inv, "logdet") <- as.numeric(NA)
}
}
} else if(Sinv.method == "solve") {
S.inv <- solve.default(S)
if(logdet) {
ev <- eigen(S, symmetric = TRUE, only.values = TRUE)
if(all(ev$values >= 0)) {
attr(S.inv, "logdet") <- sum(log(ev$values))
} else {
attr(S.inv, "logdet") <- as.numeric(NA)
}
}
} else if(Sinv.method == "chol") {
cS <- chol.default(S)
S.inv <- chol2inv(cS)
if(logdet) {
diag.cS <- diag(cS)
attr(S.inv, "logdet") <- sum(log(diag.cS * diag.cS))
}
} else {
stop("method must be either `eigen', `solve' or `chol'")
}
if(length(zero.idx) > 0L) {
logdet <- attr(S.inv, "logdet")
tmp <- S.orig
tmp[-zero.idx, -zero.idx] <- S.inv
S.inv <- tmp
attr(S.inv, "logdet") <- logdet
attr(S.inv, "zero.idx") <- zero.idx
}
S.inv
}
lav_matrix_inverse_update <- function(A.inv, rm.idx = integer(0L)) {
ndel <- length(rm.idx)
if(ndel == 1L) {
a <- A.inv[-rm.idx, rm.idx, drop = FALSE]
b <- A.inv[rm.idx, -rm.idx, drop = FALSE]
h <- A.inv[rm.idx, rm.idx]
out <- A.inv[-rm.idx, -rm.idx, drop = FALSE] - (a %*% b) / h
}
else if(ndel < NCOL(A.inv)) {
A <- A.inv[-rm.idx, rm.idx, drop = FALSE]
B <- A.inv[ rm.idx,-rm.idx, drop = FALSE]
H <- A.inv[ rm.idx, rm.idx, drop = FALSE]
out <- A.inv[-rm.idx, -rm.idx, drop = FALSE] - A %*% solve.default(H, B)
} else if(ndel == NCOL(A.inv)) {
out <- matrix(0,0,0)
}
out
}
lav_matrix_symmetric_inverse_update <- function(S.inv, rm.idx = integer(0L),
logdet = FALSE,
S.logdet = NULL) {
ndel <- length(rm.idx)
if(ndel == 0L) {
out <- S.inv
if(logdet) {
attr(out, "logdet") <- S.logdet
}
}
else if(ndel == 1L) {
h <- S.inv[rm.idx, rm.idx]
a <- S.inv[-rm.idx, rm.idx, drop = FALSE] / sqrt(h)
out <- S.inv[-rm.idx, -rm.idx, drop = FALSE] - tcrossprod(a)
if(logdet) {
attr(out, "logdet") <- S.logdet + log(h)
}
}
else if(ndel < NCOL(S.inv)) {
A <- S.inv[ rm.idx, -rm.idx, drop = FALSE]
H <- S.inv[ rm.idx, rm.idx, drop = FALSE]
out <- ( S.inv[-rm.idx, -rm.idx, drop = FALSE] -
crossprod(A, solve.default(H, A)) )
if(logdet) {
H.logdet <- log(det(H))
attr(out, "logdet") <- S.logdet + H.logdet
}
} else if(ndel == NCOL(S.inv)) {
out <- matrix(0,0,0)
}
else {
stop("lavaan ERROR: column indices exceed number of columns in S.inv")
}
out
}
lav_matrix_det_update <- function(det.A, A.inv, rm.idx = integer(0L)) {
ndel <- length(rm.idx)
if(ndel == 1L) {
h <- A.inv[rm.idx, rm.idx]
out <- det.A * h
}
else if(ndel < NCOL(A.inv)) {
H <- A.inv[ rm.idx, rm.idx, drop = FALSE]
det.H <- det(H)
out <- det.A * det.H
} else if(ndel == NCOL(A.inv)) {
out <- matrix(0,0,0)
}
out
}
lav_matrix_symmetric_det_update <- function(det.S, S.inv, rm.idx = integer(0L)){
ndel <- length(rm.idx)
if(ndel == 1L) {
h <- S.inv[rm.idx, rm.idx]
out <- det.S * h
}
else if(ndel < NCOL(S.inv)) {
H <- S.inv[ rm.idx, rm.idx, drop = FALSE]
cH <- chol.default(H); diag.cH <- diag(cH)
det.H <- prod(diag.cH * diag.cH)
out <- det.S * det.H
} else if(ndel == NCOL(S.inv)) {
out <- numeric(0L)
}
out
}
lav_matrix_symmetric_logdet_update <- function(S.logdet, S.inv,
rm.idx = integer(0L)) {
ndel <- length(rm.idx)
if(ndel == 1L) {
h <- S.inv[rm.idx, rm.idx]
out <- S.logdet + log(h)
}
else if(ndel < NCOL(S.inv)) {
H <- S.inv[ rm.idx, rm.idx, drop = FALSE]
cH <- chol.default(H); diag.cH <- diag(cH)
H.logdet <- sum(log(diag.cH * diag.cH))
out <- S.logdet + H.logdet
} else if(ndel == NCOL(S.inv)) {
out <- numeric(0L)
}
out
}
lav_matrix_symmetric_diff_smallest_root <- function(M = NULL, P = NULL,
warn = FALSE) {
stopifnot(is.matrix(M), is.matrix(P))
PdiagFlag <- FALSE
tmp <- P
diag(tmp) <- 0
if( all(abs(tmp) < sqrt(.Machine$double.eps)) ) {
PdiagFlag <- TRUE
}
nP <- nrow(P)
diagP <- P[lav_matrix_diag_idx(nP)]
neg.idx <- which(diagP < 0)
if(length(neg.idx) > 0L) {
if(warn) {
warning("some diagonal elements of P are negative (and set to zero)")
}
diag(P)[neg.idx] <- diagP[neg.idx] <- 0
}
zero.idx <- which(abs(diagP) < sqrt(.Machine$double.eps))
if(length(zero.idx) == nP) {
return(0.0)
}
else if(length(zero.idx) == 0L) {
if(PdiagFlag) {
Ldiag <- 1/sqrt(diagP)
LML <- t(Ldiag * M) * Ldiag
} else {
L <- solve(lav_matrix_symmetric_sqrt(P))
LML <- L %*% M %*% t(L)
}
lambda <- eigen(LML, symmetric = TRUE, only.values = TRUE)$values[nP]
} else {
M.pp <- M[-zero.idx, -zero.idx, drop = FALSE]
M.pn <- M[-zero.idx, zero.idx, drop = FALSE]
M.np <- M[ zero.idx, -zero.idx, drop = FALSE]
M.nn <- M[ zero.idx, zero.idx, drop = FALSE]
Mp.n <- M.pp - M.pn %*% solve(M.nn) %*% M.np
P.p <- P[-zero.idx, -zero.idx, drop = FALSE]
if(PdiagFlag) {
diagPp <- diag(P.p)
Ldiag <- 1/sqrt(diagPp)
LML <- t(Ldiag * Mp.n) * Ldiag
} else {
L <- solve(lav_matrix_symmetric_sqrt(P.p))
LML <- L %*% Mp.n %*% t(L)
}
lambda <- eigen(LML, symmetric = TRUE,
only.values = TRUE)$values[nrow(P.p)]
}
lambda
}
lav_matrix_symmetric_force_pd <- function(S, tol = 1e-06) {
if(ncol(S) == 1L) {
return(matrix(max(S[1,1], tol), 1L, 1L))
}
S.eigen <- eigen(S, symmetric = TRUE)
ev <- S.eigen$values
ev[ev/abs(ev[1]) < tol] <- tol*abs(ev[1])
out <- S.eigen$vectors %*% diag(ev) %*% t(S.eigen$vectors)
out
}
lav_matrix_cov <- function(Y, Mu = NULL) {
N <- NROW(Y)
S1 <- stats::cov(Y)
S <- S1 * (N-1) / N
if(!is.null(Mu)) {
P <- NCOL(Y)
ybar <- base::.colMeans(Y, m = N, n = P)
S <- S + tcrossprod(ybar - Mu)
}
S
}
lav_matrix_transform_mean_cov <- function(Y,
target.mean = numeric( NCOL(Y) ),
target.cov = diag( NCOL(Y) )) {
Y <- as.matrix.default(Y)
target.mean <- as.vector(target.mean)
S <- lav_matrix_cov(Y)
S.inv <- solve.default(S)
S.inv.sqrt <- lav_matrix_symmetric_sqrt(S.inv)
target.cov.sqrt <- lav_matrix_symmetric_sqrt(target.cov)
X <- Y %*% S.inv.sqrt %*% target.cov.sqrt
xbar <- colMeans(X)
X <- t( t(X) - xbar + target.mean )
X
}
lav_matrix_mean_wt <- function(Y, wt = NULL) {
Y <- unname(as.matrix.default(Y))
DIM <- dim(Y)
if(is.null(wt)) {
return(colMeans(Y, na.rm = TRUE))
}
if(anyNA(Y)) {
WT <- wt * !is.na(Y)
wN <- .colSums(WT, m = DIM[1], n = DIM[2])
out <- .colSums(wt * Y, m = DIM[1], n = DIM[2], na.rm = TRUE) / wN
} else {
out <- .colSums(wt * Y, m = DIM[1], n = DIM[2]) / sum(wt)
}
out
}
lav_matrix_var_wt <- function(Y, wt = NULL, method = c("unbiased", "ML")) {
Y <- unname(as.matrix.default(Y))
DIM <- dim(Y)
if(is.null(wt)) {
wt <- rep(1, nrow(Y))
}
if(anyNA(Y)) {
WT <- wt * !is.na(Y)
wN <- .colSums(WT, m = DIM[1], n = DIM[2])
w.mean <- .colSums(wt * Y, m = DIM[1], n = DIM[2], na.rm = TRUE) / wN
Ytc <- t( t(Y) - w.mean )
tmp <- .colSums(wt * Ytc*Ytc, m = DIM[1], n = DIM[2], na.rm = TRUE)
out <- switch(match.arg(method), unbiased = tmp / (wN - 1),
ML = tmp / wN)
} else {
w.mean <- .colSums(wt * Y, m = DIM[1], n = DIM[2]) / sum(wt)
Ytc <- t( t(Y) - w.mean )
tmp <- .colSums(wt * Ytc*Ytc, m = DIM[1], n = DIM[2])
out <- switch(match.arg(method), unbiased = tmp / (sum(wt) - 1),
ML = tmp / sum(wt))
}
out
}
lav_matrix_cov_wt <- function(Y, wt = NULL) {
Y <- unname(as.matrix.default(Y))
DIM <- dim(Y)
if(is.null(wt)) {
wt <- rep(1, nrow(Y))
}
if(anyNA(Y)) {
tmp <- na.omit( cbind(Y, wt) )
Y <- tmp[, seq_len(DIM[2]), drop = FALSE]
wt <- tmp[,DIM[2] + 1L]
DIM[1] <- nrow(Y)
w.mean <- .colSums(wt * Y, m = DIM[1], n = DIM[2]) / sum(wt)
Ytc <- t( t(Y) - w.mean )
tmp <- crossprod(sqrt(wt) * Ytc)
out <- tmp / sum(wt)
} else {
w.mean <- .colSums(wt * Y, m = DIM[1], n = DIM[2]) / sum(wt)
Ytc <- t( t(Y) - w.mean )
tmp <- crossprod(sqrt(wt) * Ytc)
out <- tmp / sum(wt)
}
out
}
lav_matrix_inverse_iminus <- function(A = NULL) {
nr <- nrow(A); nc <- ncol(A)
stopifnot(nr == nc)
IA <- A
diag.idx <- lav_matrix_diag_idx(nr)
IA[diag.idx] <- IA[diag.idx] + 1
IA.inv <- IA
A2 <- A %*% A
if(all(A2 == 0)) {
return(IA.inv)
} else {
IA.inv <- IA.inv + A2
}
A3 <- A2 %*% A
if(all(A3 == 0)) {
return(IA.inv)
} else {
IA.inv <- IA.inv + A3
}
A4 <- A3 %*% A
if(all(A4 == 0)) {
return(IA.inv)
} else {
IA.inv <- IA.inv + A4
}
A5 <- A4 %*% A
if(all(A5 == 0)) {
return(IA.inv)
} else {
IA.inv <- IA.inv + A5
}
A6 <- A5 %*% A
if(all(A6 == 0)) {
return(IA.inv)
} else {
tmp <- -A
tmp[diag.idx] <- tmp[diag.idx] + 1
IA.inv <- solve(tmp)
return(IA.inv)
}
} |
check.genotypes <- function(genotypes, geno.enc=c(1,2), minAmount = 20, verbose=FALSE){
if(verbose) cat("check.genotypes: ", ncol(genotypes)," markers, ", nrow(genotypes)," individuals\n")
if(length(geno.enc) < 2) stop("argument 'geno.enc' length is incorrect, provide at least two genotype.values")
toremove <- NULL
idx <- 1
geno.encNaN <- c(geno.enc, NaN, NA)
checks <- apply(genotypes,2 , function(geno){
for(x in geno.enc){
if(length(which(geno==x)) <= minAmount){
if(verbose) cat("Severe: Small/Empty group", x ," (size:",length(which(geno==x)),"), removing marker",idx,"\n")
toremove <<- c(toremove, idx)
}
}
if(any((geno %in% geno.encNaN) == FALSE)){
if(verbose) cat("Severe: Unknown genotype, removing marker",idx,"\n")
toremove <<- c(toremove, idx)
}
idx <<- idx+1
})
toremove <- unique(toremove)
if(length(toremove) > 0){
cat("check.genotypes: Removing", length(toremove),"/",ncol(genotypes), "markers\n")
cat(toremove, "\n")
}
invisible(toremove)
}
munique <- function(x, ... , na.rm=TRUE){
res <- unique(x, ...)
if(na.rm && any(is.na(res))) res <- res[-which(is.na(res))]
return(res)
}
getRVM <- function(n.perms, n.rows){
rvm <- NULL
for(x in 1:n.perms){ rvm <- rbind(rvm,sample(n.rows)); }
rvm
}
lodscorestoscanone <- function(cross,lodscores,traitnames = NULL){
mymap <- qtl::pull.map(cross)
n <- unlist(lapply(FUN=names,mymap))
chr <- NULL
if(!is.null(ncol(mymap[[1]]))){
d <- as.numeric(unlist(lapply(mymap,FUN=function(x) {x[1,]})))
for(i in 1:qtl::nchr(cross)){
chr <- c(chr,rep(names(cross$geno)[i], ncol(mymap[[i]])))
}
}else{
d <- as.numeric(unlist(mymap))
for(i in 1:qtl::nchr(cross)){
chr <- c(chr,rep(names(cross$geno)[i], length(mymap[[i]])))
}
}
qtlprofile <- cbind(chr,d,lodscores)
qtlprofile <- as.data.frame(qtlprofile)
qtlprofile[,1] <- chr
qtlprofile[,2] <- as.numeric(d)
if(!is.null(ncol(lodscores))){
for(x in 1:ncol(lodscores)){
qtlprofile[,2+x] <- as.numeric(lodscores[,x])
}
traitnames = paste("lod",1:ncol(lodscores))
}else{
qtlprofile[,3] <- as.numeric(lodscores)
traitnames = "lod"
}
rownames(qtlprofile) <- n
colnames(qtlprofile) <- c("chr","cM",traitnames)
class(qtlprofile) <- c("scanone", "data.frame")
invisible(qtlprofile)
}
gcLoop <- function(verbose = FALSE){
p_usage <- gc()[2,3]
n_usage <- gc()[2,3]
while(n_usage < p_usage){
p_usage = n_usage
n_usage <- gc()[2,3]
if(verbose) cat("GCloop ",n_usage," ",p_usage,"\n")
}
} |
lrtCapwire <-
function(ecm, tirm, bootstraps=100){
likE <- ecm$likelihood
likT <- tirm$likelihood
LR <- likT - likE
n <- ecm$ml.pop.size
s <- ecm$sample.size
mpop <- ecm$max.pop
get.Lik.Ratio <- function(n, s, max.pop){
dd <- simEcm(n, s)
l.ecm <- suppressWarnings(fitEcm(dd, max.pop)$likelihood)
l.tirm <- suppressWarnings(fitTirm(dd, max.pop)$likelihood)
l.ratio <- l.tirm - l.ecm
return(l.ratio)
}
tstat <- sapply(1:bootstraps, function(x) get.Lik.Ratio(n, s, mpop))
p.value <- (length(which(tstat >= LR) + 1)) / (bootstraps + 1)
return(list(LR=LR, p.value=p.value))
} |
library(igraph)
user <- 'johnmyleswhite'
user.net <- suppressWarnings(read.graph(paste("data/", user, "/", user, "_net.graphml", sep = ""), format = "graphml"))
user.net <- set.vertex.attribute(user.net, "Label", value = get.vertex.attribute(user.net, "name"))
user.cores <- graph.coreness(user.net, mode = "in")
user.clean <- subgraph(user.net, which(user.cores > 1) - 1)
user.ego <- subgraph(user.net, c(0, neighbors(user.net, user, mode = "out")))
user.sp <- shortest.paths(user.ego)
user.hc <- hclust(dist(user.sp))
png(paste('../images/', user, '_dendrogram.png', sep=''), width=1680, height=1050)
plot(user.hc)
dev.off()
for(i in 2:10) {
user.cluster <- as.character(cutree(user.hc, k = i))
user.cluster[1] <- "0"
user.ego <- set.vertex.attribute(user.ego, name = paste("HC", i, sep = ""), value = user.cluster)
}
for(i in 2:10) {
user.km <- kmeans(dist(user.sp), centers = i)
user.cluster <- as.character(user.km$cluster)
user.cluster[1] <- "0"
user.ego <- set.vertex.attribute(user.ego, name = paste("KM", i, sep = ""), value = user.cluster)
}
write.graph(user.net, paste("data/", user, "/", user, "_net.graphml", sep = ""), format = "graphml")
write.graph(user.clean, paste("data/", user, "/", user, "_clean.graphml", sep = ""), format = "graphml")
write.graph(user.ego, paste("data/", user, "/", user, "_ego.graphml", sep = ""), format = "graphml") |
expected <- eval(parse(text="\"|The| |quick| |brown| èé\""));
test(id=0, code={
argv <- eval(parse(text="list(\"\\\\b\", \"|\", \"The quick brown èé\", FALSE, TRUE, FALSE, FALSE)"));
.Internal(gsub(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]], argv[[7]]));
}, o=expected); |
context("Getting information on a graph series")
test_that("graph series information can be obtained", {
empty_series <- create_graph_series()
empty_series_info <-
empty_series %>%
get_graph_series_info()
expect_is(
empty_series_info, "data.frame")
expect_equal(
nrow(empty_series_info), 0)
expect_equal(
ncol(empty_series_info), 7)
expect_is(
empty_series_info[, 1], "integer")
expect_is(
empty_series_info[, 2], "character")
expect_is(
empty_series_info[, 3], "POSIXct")
expect_is(
empty_series_info[, 4], "character")
expect_is(
empty_series_info[, 5], "integer")
expect_is(
empty_series_info[, 6], "integer")
expect_is(
empty_series_info[, 7], "logical")
graph_1 <-
create_graph() %>%
add_node(type = 1) %>%
add_node(type = 2) %>%
add_node(type = 3) %>%
add_edge(
from = 1,
to = 3) %>%
add_edge(
from = 1,
to = 2) %>%
add_edge(
from = 2,
to = 3)
graph_2 <-
graph_1 %>%
add_node(type = 4) %>%
add_edge(
from = 4,
to = 3)
graph_3 <-
graph_2 %>%
add_node(type = 5) %>%
add_edge(
from = 5,
to = 2)
series <- create_graph_series(series_type = "sequential")
series <-
series %>%
add_graph_to_graph_series(
graph = graph_1) %>%
add_graph_to_graph_series(
graph = graph_2) %>%
add_graph_to_graph_series(
graph = graph_3)
info_on_series <-
series %>%
get_graph_series_info()
expect_is(
info_on_series, "data.frame")
expect_equal(
nrow(info_on_series), 3)
expect_equal(
ncol(info_on_series), 7)
expect_is(
info_on_series[, 1], "integer")
expect_is(
info_on_series[, 2], "character")
expect_is(
info_on_series[, 3], "POSIXct")
expect_is(
info_on_series[, 4], "character")
expect_is(
info_on_series[, 5], "integer")
expect_is(
info_on_series[, 6], "integer")
expect_is(
info_on_series[, 7], "logical")
expect_equal(
info_on_series[1, 1], 1)
expect_equal(
info_on_series[2, 1], 2)
expect_equal(
info_on_series[3, 1], 3)
graph_series_temporal_type <-
create_graph_series(series_type = "temporal")
graph <-
create_graph(
graph_name = "graph_no_tz_provided") %>%
set_graph_time(
time = "2015-03-25 03:00",
tz = "GMT")
graph_series_temporal_type <-
graph_series_temporal_type %>%
add_graph_to_graph_series(
graph = graph)
info_on_series_temporal <-
graph_series_temporal_type %>%
get_graph_series_info()
expect_is(
info_on_series_temporal, "data.frame")
expect_equal(
nrow(info_on_series_temporal), 1)
expect_equal(
ncol(info_on_series_temporal), 7)
expect_is(
info_on_series_temporal[, 1], "integer")
expect_is(
info_on_series_temporal[, 2], "character")
expect_is(
info_on_series_temporal[, 3], "POSIXct")
expect_is(
info_on_series_temporal[, 4], "character")
expect_is(
info_on_series_temporal[, 5], "integer")
expect_is(
info_on_series_temporal[, 6], "integer")
expect_is(
info_on_series_temporal[, 7], "logical")
expect_equal(
info_on_series_temporal[, 2], "graph_no_tz_provided")
expect_true(
!is.na(info_on_series_temporal[, 3]))
expect_equal(
info_on_series_temporal[, 4], "GMT")
}) |
idealToMCMC <- function(object, burnin=NULL){
if(!inherits(object, "ideal"))
stop("idealToMCMC only defined for objects of class ideal")
if(is.null(burnin))
b <- eval(object$call$burnin)
keep <- checkBurnIn(object,b)
iters <- as.numeric(dimnames(object$x[keep,,])[[1]])
out <- object$x[keep,,]
if(!is.null(object$beta)){
J <- dim(object$beta)[3]
for(j in 1:J){
thisBeta <- object$beta[keep,,j]
dimnames(thisBeta)[[2]] <- paste(dimnames(thisBeta[[2]]),
dimnames(object$beta[[3]])[j])
out <- cbind(out,thisBeta)
}
}
return(coda::mcmc(data=out,
start=iters[1],
thin=eval(object$call$thin),
end=iters[length(iters)]
)
)
} |
set.seed(1)
N <- 1000
X1 <- runif(N)
X2 <- runif(N)
X3 <- factor(sample(letters[1:4], N, replace = T))
mu <- c(-1, 0, 1, 2)[as.numeric(X3)]
p <- 1 / (1 + exp(-(sin(3 * X1) - 4 * X2 + mu)))
Y <- rbinom(N, 1, p)
w <- rexp(N)
w <- N * w / sum(w)
data <- data.frame(Y = Y, X1 = X1, X2 = X2, X3 = X3)
gbm1 <- gbm(
Y ~ X1 + X2 + X3,
data = data,
weights = w,
var.monotone = c(0, 0, 0),
distribution = "bernoulli",
n.trees = 3000,
shrinkage = 0.001,
interaction.depth = 3,
bag.fraction = 0.5,
train.fraction = 0.5,
cv.folds = 5,
n.cores = 1,
n.minobsinnode = 10
)
best.iter.test <- gbm.perf(gbm1, method = "test", plot.it = FALSE)
best.iter <- best.iter.test
set.seed(2)
N <- 1000
X1 <- runif(N)
X2 <- runif(N)
X3 <- factor(sample(letters[1:4], N, replace = T))
mu <- c(-1, 0, 1, 2)[as.numeric(X3)]
p <- 1 / (1 + exp(-(sin(3 * X1) - 4 * X2 + mu)))
Y <- rbinom(N, 1, p)
data2 <- data.frame(Y = Y, X1 = X1, X2 = X2, X3 = X3)
f.1.predict <- predict(gbm1, data2, n.trees = best.iter.test)
f.new = sin(3 * X1) - 4 * X2 + mu
expect_true(sd(f.new - f.1.predict) < 1.0) |
replacemetdata <- function (metdfr,
oldmetfile = "met.dat",
columns=NULL,
newmetfile = "met.dat",
khrs=NA,
setdates=TRUE){
metlines <- readLines(oldmetfile)
datastart <- grep("DATA START", metlines, ignore.case=TRUE)
preamble <- readLines(oldmetfile)[1:datastart]
if(is.na(khrs))
khrs <- readPAR(oldmetfile,"khrsperday","metformat")
N <- nrow(metdfr)
if(N %% khrs != 0){
extralines <- N %% khrs
metdfr <- metdfr[1:(N-extralines),]
}
writeLines(preamble, newmetfile)
if(setdates){
startdate <- readPAR(oldmetfile,"startdate","metformat")
startDate <- as.Date(startdate[1], "'%d/%m/%y'")
if(is.na(startDate))
startDate <- as.Date(startdate[1], "%d/%m/%y")
enddate <- startDate + N/khrs
replacePAR(newmetfile, "enddate","metformat", format(enddate, "%d/%m/%y"))
}
replacePAR(newmetfile, "nocolumns","metformat", ncol(metdfr))
replacePAR(newmetfile, "khrsperday","metformat", khrs)
if(!is.null(columns))
replacePAR(newmetfile,"columns","metformat",columns,noquotes=TRUE)
g <- readLines(newmetfile,100)
g[grep("data start",g,ignore.case=TRUE)] <- "DATA STARTS"
writeLines(g,newmetfile)
write.table(metdfr, newmetfile, sep = " ", row.names = FALSE,
col.names = FALSE, append = TRUE)
} |
context("rma")
skip_on_cran()
skip_if_not_installed("modeltests")
library(modeltests)
skip_if_not_installed("metafor")
library(metafor)
skip_if_not_installed("lme4")
library(lme4)
test_that("metafor::rma tidier arguments", {
check_arguments(tidy.rma)
check_arguments(glance.rma)
check_arguments(augment.rma, strict = FALSE)
})
dat <-
escalc(
measure = "RR",
ai = tpos,
bi = tneg,
ci = cpos,
di = cneg,
data = dat.bcg
)
res.RE <- rma(yi, vi, data = dat, method = "EB", level = 95)
res.ME <-
rma(
yi,
vi,
mods = ~ I(ablat - 33.46),
data = dat,
method = "EB"
)
res.FE <-
rma(
yi,
vi,
mods = ~ I(ablat - 33.46),
data = dat,
method = "FE"
)
dat2 <- data.frame(
id = c(100, 308, 1596, 2479, 9021, 9028, 161, 172, 537, 7049),
yi = c(-0.33, 0.32, 0.39, 0.31, 0.17, 0.64, -0.33, 0.15, -0.02, 0.00),
vi = c(0.084, 0.035, 0.017, 0.034, 0.072, 0.117, 0.102, 0.093, 0.012, 0.067),
random = c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1),
intensity = c(7, 3, 7, 5, 7, 7, 4, 4, 5, 6)
)
res.WFE <- rma(yi, vi, mods = ~ random + intensity, data = dat2, method = "FE")
dat.long <-
to.long(
measure = "OR",
ai = tpos,
bi = tneg,
ci = cpos,
di = cneg,
data = dat.colditz1994
)
dat.long <-
escalc(
measure = "PLO",
xi = out1,
mi = out2,
data = dat.long
)
dat.long$tpos <-
dat.long$tneg <- dat.long$cpos <- dat.long$cneg <- NULL
levels(dat.long$group) <- c("EXP", "CON")
dat.long$group <- relevel(dat.long$group, ref = "CON")
res.MV <-
rma.mv(
yi,
vi,
mods = ~ group - 1,
random = ~ group |
trial,
struct = "UN",
data = dat.long,
method = "ML"
)
res.GLMM <-
suppressWarnings(
rma.glmm(
measure = "PLO",
xi = ci,
ni = n2i,
data = dat.nielweise2007
)
)
dat.yusuf1985$grp_ratios <-
round(dat.yusuf1985$n1i / dat.yusuf1985$n2i, 2)
suppressWarnings(
res.peto <- rma.peto(
ai = ai,
n1i = n1i,
ci = ci,
n2i = n2i,
data = dat.yusuf1985,
subset = (table == "6")
)
)
dat <- data.frame(
age = c("Age <55", "Age 55+"),
ai = c(8, 22),
bi = c(98, 76),
ci = c(5, 16),
di = c(115, 69)
)
res.MH <-
rma.mh(
ai = ai,
bi = bi,
ci = ci,
di = di,
data = dat,
measure = "RD",
digits = 3,
level = 90
)
check_augment_rma_output <- function(x) {
modeltests::check_tibble(x, "augment")
}
test_that(("tidy.rma"), {
re.tidy <- tidy(res.RE, conf.int = TRUE, conf.level = 0.95)
check_tidy_output(re.tidy)
check_tidy_output(tidy(res.ME))
check_tidy_output(tidy(res.FE))
check_tidy_output(tidy(res.WFE))
check_tidy_output(tidy(res.MV))
check_tidy_output(tidy(res.GLMM))
check_tidy_output(tidy(res.peto))
check_tidy_output(tidy(res.MH))
abs_diff_conf_level <- function(res, conf.level){
res.tidy <- tidy(res.RE, conf.int = TRUE, conf.level = conf.level)
return(abs(res.tidy$conf.high - res.tidy$conf.low))
}
expect_true(all(
abs_diff_conf_level(res.RE, 0.90) < abs_diff_conf_level(res.RE, 0.95),
abs_diff_conf_level(res.RE, 0.95) < abs_diff_conf_level(res.RE, 0.99)
))
expect_equal(re.tidy$conf.low, res.RE$ci.lb, tolerance = 0.001)
expect_equal(re.tidy$conf.high, res.RE$ci.ub, tolerance = 0.001)
})
test_that(("glance.rma"), {
re.glance <- glance(res.RE)
check_glance_outputs(re.glance)
check_glance_outputs(glance(res.ME))
check_glance_outputs(glance(res.FE))
check_glance_outputs(glance(res.WFE))
check_glance_outputs(glance(res.MV))
check_glance_outputs(glance(res.GLMM))
check_glance_outputs(glance(res.peto))
check_glance_outputs(glance(res.MH))
fit.stats <- c("logLik", "deviance", "AIC", "BIC", "AICc")
expect_true(all(fit.stats %in% names(re.glance)))
})
test_that(("augment.rma"), {
check_augment_rma_output(augment(res.RE))
check_augment_rma_output(augment(res.ME))
check_augment_rma_output(augment(res.FE))
check_augment_rma_output(augment(res.WFE))
check_augment_rma_output(augment(res.MV))
check_augment_rma_output(augment(res.GLMM))
check_augment_rma_output(augment(res.peto))
check_augment_rma_output(augment(res.MH))
}) |
globalVariables(c(
"var"
))
estimate_lambda <-
function(n.sim, J, prior.z, overlap, pi0){
n.zones <- length(prior.z)
q <- c(1, 1, rep(0, J-1))
var.q <- c(NA, NA, rep(0, J-1))
for(k in 2:J){
unit.zones <- sample(1:n.zones, k*n.sim, replace=TRUE, prob=prior.z)
unit.zones <- matrix(unit.zones, ncol=k)
no.overlap <- check_overlap(unit.zones, overlap)
denom <- rep(factorial(k), n.sim)
duplicates <- apply(unit.zones, 1, function(x){length(unique(x))})
duplicates <- which(duplicates != k)
for(i in duplicates) {
denom[i] <- factorial(k)/prod(factorial(table(unit.zones[i,])))
}
q[k+1] <- mean(no.overlap/denom)
var.q[k+1] <- var(no.overlap/denom)/n.sim
}
lambda <- (1-pi0)/( (1-pi0)*J + pi0*sum(q[-1]) )
lambda <- rep(lambda, J)
lambda <- c(1-sum(lambda), lambda)
prior.j <- normalize(lambda*q)
return(list(lambda=lambda, prior.j=prior.j))
} |
setMethod("getQuan", "PcaHubert", function(obj) obj@quan)
PcaHubert <- function (x, ...) UseMethod("PcaHubert")
PcaHubert.formula <- function (formula, data = NULL, subset, na.action, ...)
{
cl <- match.call()
mt <- terms(formula, data = data)
if (attr(mt, "response") > 0)
stop("response not allowed in formula")
mf <- match.call(expand.dots = FALSE)
mf$... <- NULL
mf[[1]] <- as.name("model.frame")
mf <- eval.parent(mf)
if (.check_vars_numeric(mf))
stop("PCA applies only to numerical variables")
na.act <- attr(mf, "na.action")
mt <- attr(mf, "terms")
attr(mt, "intercept") <- 0
x <- model.matrix(mt, mf)
res <- PcaHubert.default(x, ...)
cl[[1]] <- as.name("PcaHubert")
res@call <- cl
res
}
PcaHubert.default <- function(x, k=0, kmax=10, alpha=0.75, mcd=TRUE, skew=FALSE, maxdir=250,
scale=FALSE, signflip=TRUE, crit.pca.distances=0.975, trace=FALSE, ...)
{
cl <- match.call()
if(missing(x))
stop("You have to provide at least some data")
data <- as.matrix(x)
n <- nrow(data)
p <- ncol(data)
Xsvd <- .classPC(data, scale=scale, signflip=signflip, scores=TRUE)
if(Xsvd$rank == 0)
stop("All data points collapse!")
myrank <- Xsvd$rank
myscale = if(is.logical(scale) && !scale) vector('numeric', p) + 1 else Xsvd$scale
kmax <- max(min(floor(kmax), Xsvd$rank),1)
if((k <- floor(k)) < 0)
k <- 0
else if(k > kmax) {
warning(paste("The number of principal components k = ", k, " is larger then kmax = ", kmax, "; k is set to ", kmax,".", sep=""))
k <- kmax
}
if(missing(alpha))
{
default.alpha <- alpha
h <- min(h.alpha.n(alpha, n, kmax), n)
alpha <- h/n
if(k == 0) {
if(h < floor((n+kmax+1)/2)) {
h <- floor((n+kmax+1)/2)
alpha <- h/n
warning(paste("h should be larger than (n+kmax+1)/2. It is set to its minimum value ", h, ".", sep=""))
}
}
else {
if(h < floor((n+k+1)/2)) {
h <- floor((n+k+1)/2)
alpha <- h/n
warning(paste("h should be larger than (n+k+1)/2. It is set to its minimum value ", h, ".", sep=""))
}
}
if(h > n) {
alpha <- default.alpha
if(k == 0)
h <- h.alpha.n(alpha, n, kmax)
else
h <- h.alpha.n(alpha, n, k)
warning(paste("h should be smaller than n = ", n, ". It is set to its default value ", h, ".", sep=""))
}
}else
{
if(alpha < 0.5 | alpha > 1)
stop("Alpha is out of range: should be between 1/2 and 1")
if(k == 0)
h <- h.alpha.n(alpha, n, kmax)
else
h <- h.alpha.n(alpha, n, k)
}
X <- Xsvd$scores
center <- Xsvd$center
rot <- Xsvd$loadings
if(mcd && skew)
{
warning("The adjusted outlyingness algorithm for skewed data (skew=TRUE) cannot be applied with the MCD option (mcd=TRUE): 'mcd=FALSE' will be used.")
mcd <- FALSE
}
if(ncol(X) <= min(floor(n/5), kmax) && mcd)
{
if(trace)
cat("\nApplying MCD.\n")
X.mcd <- CovMcd(as.data.frame(X), alpha=alpha)
X.mcd.svd <- svd(getCov(X.mcd))
rank <- ncol(X)
ev <- X.mcd.svd$d
if(trace)
cat("\nEigenvalues of S0: ", ev, "\nTotal variance: ", sum(ev),
"\nExplained variance: ", cumsum(ev)/sum(ev), "\n")
eig0 <- ev
totvar0 <- sum(ev)
Hsubsets0 <- c()
if(k != 0)
k <- min(k, ncol(X))
else
{
test <- which(ev/ev[1] <= 1.E-3)
k <- if(length(test) != 0) min(min(rank, test[1]), kmax)
else min(rank, kmax)
cumulative <- cumsum(ev[1:k])/sum(ev)
if(cumulative[k] > 0.8) {
k <- which(cumulative >= 0.8)[1]
}
if(trace)
cat("\n k, kmax, rank, p: ", k, kmax, rank, p, "\n")
if(trace)
cat("The number of principal components is defined by the algorithm. It is set to ", k,".\n", sep="")
}
scores <- (X - matrix(rep(getCenter(X.mcd), times=nrow(X)), nrow=nrow(X), byrow=TRUE)) %*% X.mcd.svd$u
center <- as.vector(center + sweep(getCenter(X.mcd) %*% t(rot), 2, myscale, "*"))
eigenvalues <- X.mcd.svd$d[1:k]
loadings <- Xsvd$loadings %*% X.mcd.svd$u[,1:k]
scores <- as.matrix(scores[,1:k])
if(is.list(dimnames(data)) && !is.null(dimnames(data)[[1]]))
{
dimnames(scores)[[1]] <- dimnames(data)[[1]]
} else {
dimnames(scores)[[1]] <- 1:n
}
dimnames(loadings) <- list(colnames(data), paste("PC", seq_len(ncol(loadings)), sep = ""))
dimnames(scores)[[2]] <- as.list(paste("PC", seq_len(ncol(scores)), sep = ""))
res <- new("PcaHubert",call=cl,
loadings=loadings,
eigenvalues=eigenvalues,
center=center,
scale=myscale,
rank=myrank,
scores=scores,
k=k,
quan=X.mcd@quan,
alpha=alpha,
skew=FALSE,
ao=NULL,
eig0=eig0,
totvar0=totvar0,
n.obs=n)
}
else
{
if(trace)
cat("\nApplying the projection method of Hubert: skew=", skew, "\n")
outl <- if(skew) adjOutlyingness(X, ndir=maxdir, alpha.cutoff=alpha, mcfun=mcVT)$adjout
else outl(X, maxdir=maxdir, h=h)
H0 <- order(outl)
Xh <- X[H0[1:h],,drop=FALSE]
Xh.svd <- .classPC(Xh)
kmax <- min(Xh.svd$rank, kmax)
if(trace){
cat("\nEigenvalues of S0: ", Xh.svd$eigenvalues, "\nTotal variance: ", sum(Xh.svd$eigenvalues),
"\nExplained variance: ", cumsum(Xh.svd$eigenvalues)/sum(Xh.svd$eigenvalues), "\n")
}
eig0 <- Xh.svd$eigenvalues
totvar0 <- sum(Xh.svd$eigenvalues)
Hsubsets0 <- H0[1:h]
if(k == 0)
{
test <- which(Xh.svd$eigenvalues/Xh.svd$eigenvalues[1] <= 1.E-3)
k <- if(length(test) != 0) min(min(Xh.svd$rank, test[1]), kmax)
else min(Xh.svd$rank, kmax)
cumulative <- cumsum(Xh.svd$eigenvalues[1:k])/sum(Xh.svd$eigenvalues)
if(cumulative[k] > 0.8) {
k <- which(cumulative >= 0.8)[1]
}
if(trace)
cat(paste("The number of principal components is set by the algorithm. It is set to ", k, ".\n", sep=""))
}
if(trace)
cat("\nXsvd$rank, Xh.svd$rank, k and kmax: ", Xsvd$rank, Xh.svd$rank, k, kmax,"\n")
if(k != Xsvd$rank)
{
if(trace)
cat("\nPerform extra reweighting step (k != rank)", k)
k <- min(Xh.svd$rank, k)
XRc <- X - matrix(rep(Xh.svd$center, times=n), nrow=n, byrow=TRUE)
Xtilde <- XRc %*% Xh.svd$loadings[,1:k] %*% t(Xh.svd$loadings[,1:k])
Rdiff <- XRc - Xtilde
odh <- apply(Rdiff, 1, vecnorm)
cutoffodh <- .crit.od(odh, crit=0.975, method=ifelse(skew, "skewed", "umcd"), quan=h)
indexset <- (odh <= cutoffodh)
if(trace)
{
cat("\nCutoff for the orthogonal distances:\n.........: ", cutoffodh)
cat("\numcd.....: ", .crit.od(odh, method="umcd", quan=h), "\n")
cat("\nmedmad...: ", .crit.od(odh), "\n")
cat("\nskewed...: ", .crit.od(odh, method="skewed"), "\n")
cat("\nclassic..: ", .crit.od(odh, method="classic"), "\n")
}
Xh.svd <- .classPC(X[indexset,])
k <- min(Xh.svd$rank, k)
if(trace)
cat("\nPerform extra reweighting step (k != rank)", k, "...Ready.")
}
center <- center + sweep(Xh.svd$center %*% t(rot), 2, myscale, "*")
rot <- rot %*% Xh.svd$loadings
X2 <- (X - matrix(rep(Xh.svd$center, times=n), nrow=n, byrow=TRUE)) %*% Xh.svd$loadings
X2 <- as.matrix(X2[ ,1:k])
rot <- as.matrix(rot[ ,1:k])
outproj <- if(skew) projectAO(X2, k=k, alpha=alpha, h=h, rot=rot, center=center, scale=myscale, maxdir=maxdir, trace=trace)
else projectMCD(X2, ev=Xh.svd$eigenvalues, k=k, alpha=alpha, h=h, niter=100, rot=rot, center=center, scale=myscale, trace=trace)
center <- outproj$center
eigenvalues <- outproj$eigenvalues
loadings <- outproj$loadings
scores <- outproj$scores
if(is.list(dimnames(data)) && !is.null(dimnames(data)[[1]]))
{
dimnames(scores)[[1]] <- dimnames(data)[[1]]
} else {
dimnames(scores)[[1]] <- 1:n
}
dimnames(loadings) <- list(colnames(data), paste("PC", seq_len(ncol(loadings)), sep = ""))
dimnames(scores)[[2]] <- as.list(paste("PC", seq_len(ncol(scores)), sep = ""))
res <- new("PcaHubert",call=cl,
loadings=loadings,
eigenvalues=eigenvalues,
center=center,
scale=myscale,
rank=myrank,
scores=scores,
k=k,
quan=h,
alpha=alpha,
skew=skew,
ao=outproj$ao,
eig0=eig0,
totvar0=totvar0,
n.obs=n)
}
cl[[1]] <- as.name("PcaHubert")
res@call <- cl
res <- pca.distances(res, data, Xsvd$rank, crit.pca.distances)
return(res)
}
extradir <- function(data, ndirect, all=TRUE){
if(all)
{
cc <- combn(nrow(data), 2)
B2 <- data[cc[1,],] - data[cc[2,],]
}
else {
if(TRUE){
uniran <- function(seed = 0){
seed<-floor(seed*5761)+999
quot<-floor(seed/65536)
seed<-floor(seed)-floor(quot*65536)
random<-seed/65536
list(seed=seed, random=random)
}
randomset <- function(n, k, seed){
ranset <- vector(mode="numeric", length=k)
for(j in 1:k){
r <- uniran(seed)
seed <- r$seed
num <- floor(r$random * n) + 1
if(j > 1){
while(any(ranset == num)){
r <- uniran(seed)
seed <- r$seed
num <- floor(r$random * n) + 1
}
}
ranset[j] <- num
}
ans<-list()
ans$seed <- seed
ans$ranset <- ranset
ans
}
n <- nrow(data)
p <- ncol(data)
r <- 1
B2 <- matrix(0,ndirect, p)
seed <- 0
while(r <= ndirect) {
sseed <- randomset(n, 2, seed)
seed <- sseed$seed
B2[r,] <- data[sseed$ranset[1], ] - data[sseed$ranset[2],]
r <- r + 1
}
} else
{
B2 <- matrix(0,ndirect, ncol(data))
for(r in 1:ndirect) {
smpl <- sample(1:nrow(data), 2)
B2[r,] <- data[smpl[1], ] - data[smpl[2], ]
}
}
}
return(B2)
}
outl <- function(X, maxdir=250, h)
{
if(!is.matrix(X))
X <- as.matrix(X)
n <- nrow(X)
p <- ncol(X)
alldir <- choose(n, 2)
ndir <- min(maxdir, alldir)
all <- (ndir == alldir)
B <- extradir(X, ndir, all=all)
Bnorm <- vector(mode="numeric", length=nrow(B))
Bnorm <- apply(B, 1, vecnorm)
Bnormr <- Bnorm[Bnorm > 1.E-12]
m <- length(Bnormr)
B <- B[Bnorm > 1.E-12,]
A <- diag(1/Bnormr) %*% B
Y <- X %*% t(A)
Z <- matrix(0,n, m)
for(i in 1:m) {
umcd <- unimcd(Y[,i], quan=h)
if(umcd$smcd < 1.E-12) {
if((r2 <- rankMM(X[umcd$weights==1,])) == 1)
stop("At least ", sum(umcd$weights), " observations are identical.")
}
else
Z[,i] <- abs(Y[,i] - umcd$tmcd) / umcd$smcd
}
outl <- apply(Z, 1, max)
outl
}
unimcd <- function(y, quan){
out <- list()
ncas <- length(y)
len <- ncas-quan+1
if(len == 1){
out$tmcd <- mean(y)
out$smcd <- sqrt(var(y))
} else {
ay <- c()
I <- order(y)
y <- y[I]
ay[1] <- sum(y[1:quan])
for(samp in 2:len){
ay[samp]<-ay[samp-1]-y[samp-1]+y[samp+quan-1]
}
ay2<-ay^2/quan
sq<-c()
sq[1]<-sum(y[1:quan]^2)-ay2[1]
for(samp in 2:len){
sq[samp]<-sq[samp-1]-y[samp-1]^2+y[samp+quan-1]^2-ay2[samp]+ay2[samp-1]
}
sqmin<-min(sq)
Isq<-order(sq)
ndup<-sum(sq == sqmin)
ii<-Isq[1:ndup]
slutn<-c()
slutn[1:ndup]<-ay[ii]
initmean<-slutn[floor((ndup+1)/2)]/quan
initcov<-sqmin/(quan-1)
res<-(y-initmean)^2/initcov
sortres<-sort(res)
factor<-sortres[quan]/qchisq(quan/ncas,1)
initcov<-factor*initcov
res<-(y-initmean)^2/initcov
quantile<-qchisq(0.975,1)
out$weights<-(res<quantile)
out$tmcd<-sum(y*out$weights)/sum(out$weights)
out$smcd<-sqrt(sum((y-out$tmcd)^2*out$weights)/(sum(out$weights)-1))
Iinv<-order(I)
out$weights<-out$weights[Iinv]
}
return(out)
}
projectAO <- function(X2, k, alpha, h, rot, center, scale, maxdir, trace)
{
ao <- adjOutlyingness(X2, ndir=maxdir, alpha.cutoff=alpha)
o2 <- ao$adjout
H <- order(o2)
X2h <- as.matrix(X2[H[1:h], ])
ee <- eigen(cov(X2h))
P6 <- ee$vectors
X2center <- colMeans(X2h)
if(trace)
cat("\nFinal step - adjusted outlyingness in ", k, "-dimensional subspace used.\n")
center <- as.vector(center + sweep(X2center %*% t(rot), 2, scale, "*"))
eigenvalues <- ee$values
loadings <- rot %*% P6
scores <- sweep(X2, 2, X2center, "-") %*% P6
list(eigenvalues=eigenvalues, loadings=loadings, scores=scores, center=center, ao=o2, ao.cutoff=as.numeric(ao$cutoff))
}
projectMCD <- function(X2, ev, k, alpha, h, niter=100, rot, center, scale, trace=trace)
{
n <- nrow(X2)
mah <- mahalanobis(X2, center=rep(0, ncol(X2)), cov=diag(ev[1:k], nrow=k))
oldobj <- prod(ev[1:k])
for(j in 1:niter) {
if(trace)
cat("\nIter=",j, " h=", h, " k=", k, " obj=", oldobj, "\n")
Xh <- X2[order(mah)[1:h], ]
Xh.svd <- .classPC(as.matrix(Xh))
obj <- prod(Xh.svd$eigenvalues)
X2 <- (X2 - matrix(rep(Xh.svd$center, times=n), nrow=n, byrow=TRUE)) %*% Xh.svd$loadings
center <- center + sweep(Xh.svd$center %*% t(rot), 2, scale, "*")
rot <- rot %*% Xh.svd$loadings
mah <- mahalanobis(X2, center=matrix(0,1, ncol(X2)), cov=diag(Xh.svd$eigenvalues, nrow=length(Xh.svd$eigenvalues)))
if(Xh.svd$rank == k & abs(oldobj - obj) < 1.E-12)
break
oldobj <- obj
if(Xh.svd$rank < k) {
j <- 1
k <- Xh.svd$rank
}
}
X2mcd <- CovMcd(X2, nsamp=250, alpha=alpha)
if(trace)
cat("\nMCD crit=",X2mcd@crit," and C-Step obj function=",obj," Abs difference=", abs(X2mcd@crit-obj), "\n")
eps <- 1e-16
if(X2mcd@crit < obj + eps)
{
X2cov <- getCov(X2mcd)
X2center <- getCenter(X2mcd)
if(trace)
cat("\nFinal step - PC of MCD cov used.\n")
}else
{
consistencyfactor <- median(mah)/qchisq(0.5,k)
mah <- mah/consistencyfactor
weights <- ifelse(mah <= qchisq(0.975, k), TRUE, FALSE)
wcov <- cov.wt(x=X2, wt=weights, method="ML")
X2center <- wcov$center
X2cov <- wcov$cov
if(trace)
cat("\nFinal step - PC of a reweighted cov used.\n")
}
ee <- eigen(X2cov)
P6 <- ee$vectors
center <- as.vector(center + sweep(X2center %*% t(rot), 2, scale, "*"))
eigenvalues <- ee$values
loadings <- rot %*% P6
scores <- (X2 - matrix(rep(X2center, times=n), nrow=n, byrow=TRUE)) %*% P6
if(trace){
cat("\nEigenvalues of X2:\n")
print(eigenvalues)
}
list(eigenvalues=eigenvalues, loadings=loadings, scores=scores, center=center)
} |
library(lineprof)
library(Gmisc)
library(grid)
grid.newpage()
lineprof({
arrowGrob <- bezierArrowSmpl(x = c(.1,.3,.6,.9),
y = c(0.2, 0.2, 0.9, 0.9))
}) -> lp
grid.draw(arrowGrob)
lineprof::shine(lp)
lineprof({
arrowGrob <- bezierArrowGradient(x = c(.1,.3,.6,.9),
y = c(0.2, 0.2, 0.9, 0.9))
}) -> lp
lineprof::shine(lp) |
test_HT_df <- dplyr::tibble(
text = c("I really love my dog, he is the best most amazing friend anyone
could ever ask for!",
"cats are the best most amazing friends anyone could ask for except
when they are being miserable horrible terrible demon spawn"),
hashtags = c("dog", "cat"),
created_at = lubridate::as_datetime(c('2018-02-09 17:56:30',
'2018-02-10 18:46:10')),
key = c("coolguy123", "crazycatperson1234"))
test_HT_Tidy_df <-
saotd::tweet_tidy(
DataFrame = test_HT_df)
test_HT_Scores_Tidy_df <-
saotd::tweet_scores(
DataFrameTidy = test_HT_Tidy_df,
HT_Topic = "hashtag")
test_HT <-
saotd::tweet_max_scores(
DataFrameTidyScores = test_HT_Scores_Tidy_df,
HT_Topic = "hashtag")
test_HT <- test_HT[[1, 8]]
check_HT <- 2
test_HT_selection <-
saotd::tweet_max_scores(
DataFrameTidyScores = test_HT_Scores_Tidy_df,
HT_Topic = "hashtag", HT_Topic_Selection = "dog")
test_HT_selection <- test_HT_selection[[1, 8]]
check_HT_selection <- 2
test_Topic_df <- dplyr::tibble(
text = c("I really love my dog, he is the best most amazing friend anyone
could ever ask for!",
"cats are the best most amazing friends anyone could ask for except
when they are being miserable horrible terrible demon spawn"),
Topic = c("dog", "cat"),
created_at = lubridate::as_datetime(c('2018-02-09 17:56:30',
'2018-02-10 18:46:10')),
key = c("coolguy123", "crazycatperson1234"))
test_Topic_Tidy_df <-
saotd::tweet_tidy(
DataFrame = test_Topic_df)
test_Topic_Scores_Tidy_df <-
saotd::tweet_scores(
DataFrameTidy = test_Topic_Tidy_df,
HT_Topic = "topic")
test_Topic <-
saotd::tweet_max_scores(
DataFrameTidyScores = test_Topic_Scores_Tidy_df,
HT_Topic = "topic")
test_Topic <- test_Topic[[1, 8]]
check_Topic <- 2
test_Topic_selection <-
saotd::tweet_max_scores(
DataFrameTidyScores = test_Topic_Scores_Tidy_df,
HT_Topic = "topic", HT_Topic_Selection = "dog")
test_Topic_selection <- test_Topic_selection[[1, 8]]
check_Topic_selection <- 2
testthat::test_that("tweet_max_scores function properly ingests data frame", {
testthat::expect_error(
object = saotd::tweet_max_scores(
DataFrameTidyScores = text),
"The input for this function is a data frame.")
testthat::expect_error(
object = saotd::tweet_max_scores(
DataFrameTidyScores = test_HT_Scores_Tidy_df,
HT_Topic = "HT"),
"HT_Topic requires an input of either hashtag for analysis using
hashtags, or topic for analysis looking at topics.")
})
testthat::test_that("The tweet_max_scores function using hashtags properly
computes scores", {
testthat::expect_equal(test_HT, check_HT)
})
testthat::test_that("The tweet_max_scores function using topics properly
computes scores", {
testthat::expect_equal(test_Topic, check_Topic)
})
testthat::test_that("The tweet_max_scores function using hashtags and a hashtag
selection properly computes scores", {
testthat::expect_equal(test_HT_selection, check_HT_selection)
})
testthat::test_that("The Max.Scores function using topics and a topic selection
properly computes scores", {
testthat::expect_equal(test_Topic_selection, check_Topic_selection)
}) |
library(qfasar)
context("Test ghost signature")
test_obj <- make_ghost(prey_sigs = matrix(c(0.05, 0.10, 0.30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, 0.06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=6),
loc = matrix(c(1, 3, 5, 2, 4, 6), ncol=2))
test_that("Objective function is correct",{
expect_equivalent(round(test_obj$dist, 3), 3.751)
expect_equivalent(round(test_obj$sig, 2),
c(0.14, 0.03, 0.22, 0.61))
}) |
melt_table <- function(file, locale = default_locale(), na = "NA", skip = 0,
n_max = Inf, guess_max = min(n_max, 1000),
progress = show_progress(), comment = "",
skip_empty_rows = FALSE) {
ds <- datasource(file, skip = skip, skip_empty_rows = skip_empty_rows)
if (inherits(ds, "source_file") && empty_file(file)) {
return(tibble::tibble(
row = double(), col = double(),
data_type = character(), value = character()
))
}
columns <- fwf_empty(ds, skip = skip, skip_empty_rows = skip_empty_rows, n = guess_max, comment = comment)
tokenizer <- tokenizer_fwf(columns$begin, columns$end,
na = na,
comment = comment,
skip_empty_rows = skip_empty_rows
)
ds <- datasource(file = ds, skip = skip, skip_empty_rows = skip_empty_rows)
out <- melt_tokens(ds, tokenizer,
locale_ = locale, n_max = n_max,
progress = progress
)
warn_problems(out)
}
melt_table2 <- function(file, locale = default_locale(), na = "NA", skip = 0,
n_max = Inf, progress = show_progress(), comment = "",
skip_empty_rows = FALSE) {
ds <- datasource(file, skip = skip, skip_empty_rows = skip_empty_rows)
if (inherits(ds, "source_file") && empty_file(file)) {
return(tibble::tibble(
row = double(), col = double(),
data_type = character(), value = character()
))
}
tokenizer <- tokenizer_ws(
na = na, comment = comment,
skip_empty_rows = skip_empty_rows
)
ds <- datasource(file = ds, skip = skip, skip_empty_rows = skip_empty_rows)
melt_delimited(ds, tokenizer,
locale = locale, skip = skip,
comment = comment, n_max = n_max, progress = progress
)
} |
phongLighting <- function(normals, view, light, color, color2, alpha,
material = "default") {
if (length(light) == 4) {
LI <- light[4]
light <- light[1:3]
}
else LI <- 1
if (is.character(material))
material <- getMaterial(material)
ambient <- material$ambient
diffuse <- material$diffuse
specular <- material$specular
exponent <- material$exponent
sr <- material$sr
V <- view / sqrt(sum(view^2))
L <- light / sqrt(sum(light^2))
H <- (L + V) / sqrt(sum((L + V)^2))
sgn <- as.vector(normals %*% V) > 0
N <- ifelse(sgn,1, -1) * normals
Is <- as.vector(specular * abs(N %*% H) ^ exponent)
Id <- as.vector(diffuse * pmax(N %*% L,0))
rgbcol <- t(col2rgb(ifelse(sgn, color, color2)) / 255)
Lrgbcol <- pmin(LI * ((ambient + Id + sr * Is) * rgbcol + (1 - sr) * Is),
1)
Lrgbcol[is.na(Lrgbcol)] <- 0
rgb(Lrgbcol[,1], Lrgbcol[,2], Lrgbcol[,3], alpha)
}
materials.database <- new.env(hash = TRUE)
registerMaterial <- function(name, ambient = 0.3, diffuse = 0.7,
specular = 0.1, exponent = 10, sr = 0) {
value <- list(ambient = ambient, diffuse = diffuse,
specular = specular, exponent = exponent, sr = sr)
assign(name, value, materials.database)
}
getMaterial <- function(name) {
if (exists(name, materials.database, inherits = FALSE))
get(name, materials.database)
else get("default", materials.database, inherits = FALSE)
}
registerMaterial("shiny", ambient = 0.3, diffuse = 0.6, specular = 0.9,
exponent = 20, sr = 0)
registerMaterial("dull", ambient = 0.3, diffuse = 0.8, specular = 0.0,
exponent = 10, sr = 0)
registerMaterial("metal", ambient = 0.3, diffuse = 0.3, specular = 1.0,
exponent = 25, sr = 0.5)
registerMaterial("default", ambient = 0.3, diffuse = 0.7, specular = 0.1,
exponent = 10, sr = 0)
registerMaterial("metal", ambient = 0.45, diffuse = 0.45, specular = 1.5,
exponent = 25, sr = 0.5)
registerMaterial("shiny", ambient = 0.36, diffuse = 0.72, specular = 1.08,
exponent = 20, sr = 0)
perspLighting <- function(normals, view, light, color, color2, alpha,
material = "default") {
if (length(light) == 4) {
LI <- light[4]
light <- light[1:3]
}
else LI <- 1
if (is.character(material))
material <- getMaterial(material)
exponent <- material$exponent
V <- view / sqrt(sum(view^2))
L <- light / sqrt(sum(light^2))
sgn <- as.vector(normals %*% V) > 0
N <- ifelse(sgn,1, -1) * normals
I <- (pmax(1 + as.vector(N %*% L), 0) / 2) ^ (exponent * (3 / 40))
Lrgbcol <- I * LI * t(col2rgb(ifelse(sgn, color, color2)) / 255)
rgb(Lrgbcol[,1], Lrgbcol[,2], Lrgbcol[,3], alpha)
}
triangleNormalsPhong <- function(triangles) {
N <- triangleNormals(triangles)
ve <- t2ve(triangles)
vt <- vertexTriangles(ve)
VN <- vertexNormals(vt, N)
interpolateVertexNormals(VN, ve$ib)
}
triangleNormalsPhongEX <- function(triangles, reps = 1) {
N <- triangleNormals(triangles)
ve <- t2ve(triangles)
vt <- vertexTriangles(ve)
VN <- vertexNormals(vt, N)
vb <- ve$vb
ib <- ve$ib
n.tri <- nrow(N)
while (reps > 0) {
reps <- reps - 1
n.ver <- nrow(VN)
mt <- triangleMidTriangles(vb, ib, VN)
vb <- cbind(vb, mt$vb)
VN <- rbind(VN, mt$VN)
mtib <- mt$ib + n.ver
ib <- matrix(rbind(ib[1,], mtib[1,],mtib[3,],
mtib[1,], ib[2,],mtib[2,],
mtib[2,], ib[3,], mtib[3,],
mtib),
nrow = 3)
for (i in seq(along = triangles))
if (length(triangles[[i]]) == n.tri)
triangles[[i]] <- rep(triangles[[i]], each = 4)
n.tri <- 4 * n.tri
}
triangles$N <- interpolateVertexNormals(VN, ib)
triangles$v1 <- t(vb[,ib[1,]])
triangles$v2 <- t(vb[,ib[2,]])
triangles$v3 <- t(vb[,ib[3,]])
triangles
}
triangleNormalsPhongEX <- function(triangles, reps = 1) {
N <- triangleNormals(triangles)
ve <- t2ve(triangles)
vt <- vertexTriangles(ve)
VN <- vertexNormals(vt, N)
vb <- ve$vb
ib <- ve$ib
n.tri <- nrow(N)
color <- rep(triangles$color, length = n.tri)
color2 <- rep(triangles$color2, length = n.tri)
col.mesh <- rep(triangles$col.mesh, length = n.tri)
color2 <- ifelse(is.na(color2), color, color2)
col.mesh <- ifelse(is.na(col.mesh), color, col.mesh)
VC <- vertexColors(vt, color)
VC2 <- vertexColors(vt, color2)
VCm <- vertexColors(vt, col.mesh)
while (reps > 0) {
reps <- reps - 1
n.ver <- nrow(VN)
edges <- triangleEdges(vb, ib)
VC <- rbind(VC, (VC[edges[1,],] + VC[edges[2,],]) / 2)
VC2 <- rbind(VC2, (VC2[edges[1,],] + VC2[edges[2,],]) / 2)
VCm <- rbind(VCm, (VCm[edges[1,],] + VCm[edges[2,],]) / 2)
mt <- triangleMidTriangles(vb, ib, VN)
vb <- cbind(vb, mt$vb)
VN <- rbind(VN, mt$VN)
mtib <- mt$ib + n.ver
ib <- matrix(rbind(ib[1,], mtib[1,],mtib[3,],
mtib[1,], ib[2,],mtib[2,],
mtib[2,], ib[3,], mtib[3,],
mtib),
nrow = 3)
for (i in seq(along = triangles))
if (length(triangles[[i]]) == n.tri)
triangles[[i]] <- rep(triangles[[i]], each = 4)
n.tri <- 4 * n.tri
}
triangles$color <- interpolateVertexColors(VC, ib)
triangles$color2 <- interpolateVertexColors(VC2, ib)
triangles$color.mesh <- interpolateVertexColors(VCm, ib)
triangles$N <- interpolateVertexNormals(VN, ib)
triangles$v1 <- t(vb[,ib[1,]])
triangles$v2 <- t(vb[,ib[2,]])
triangles$v3 <- t(vb[,ib[3,]])
triangles
}
lightTriangles <- function(triangles, lighting, light) {
view <- c(0, 0, 1)
normals <- triangleNormals(triangles)
smooth <- if (is.null(triangles$smooth)) 0 else triangles$smooth
if (smooth == 0)
normals <- triangleNormals(triangles)
else if (smooth == 1)
normals <- triangleNormalsPhong(triangles)
else {
triangles <- triangleNormalsPhongEX(triangles, reps = smooth - 1)
normals <- triangles$N
}
n.tri <- nrow(normals)
color <- rep(triangles$color, length = n.tri)
color2 <- rep(triangles$color2, length = n.tri)
color2 <- ifelse(is.na(color2), color, color2)
alpha <- rep(triangles$alpha, length = n.tri)
mat <- triangles$material
triangles$col.light <- lighting(normals, view, light, color, color2,
alpha, mat)
triangles
}
lightScene <- function(scene, lighting, light) {
if (is.Triangles3D(scene))
lightTriangles(scene, lighting, light)
else lapply(scene, lightTriangles, lighting, light)
} |
SatVapPresSlope <-
function(temp_C){
(2508.3/(temp_C+237.3)^2)*exp(17.3*temp_C/(temp_C+237.3))
} |
isStrictlyPositiveNumberOrNaOrNanOrInfVector <- function(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) {
checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = NA, zeroAllowed = FALSE, negativeAllowed = FALSE, positiveAllowed = TRUE, nonIntegerAllowed = TRUE, naAllowed = TRUE, nanAllowed = TRUE, infAllowed = TRUE, message = message, argumentName = argumentName)
} |
GeomSiiRisksurface <- ggplot2::ggproto(
"_class" = "GeomSiiRisksurface",
"_inherit" = ggplot2::GeomPolygon
)
GeomSiiRiskoutline <- ggplot2::ggproto(
"_class" = "GeomSiiRiskoutline",
"_inherit" = ggplot2::GeomPath
)
GeomSiiRiskconnection <- ggplot2::ggproto(
"_class" = "GeomSiiRiskconnection",
"_inherit" = ggplot2::GeomSegment
)
geom_sii_risksurface <- function(data = NULL,
mapping = NULL,
stat = "sii_risksurface",
structure = ggsolvencyii::sii_structure_sf16_eng,
squared = FALSE,
levelmax = 99,
aggregatesuffix = "_other",
plotdetails = NULL,
rotationdegrees = NULL,
rotationdescription = NULL,
maxscrvalue = NULL,
scalingx = 1,
scalingy = 1,
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
) {
ggplot2::layer(data = data,
stat = stat,
geom = GeomSiiRisksurface,
mapping = mapping, position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list( na.rm = na.rm,
levelmax = levelmax,
structure = structure,
maxscrvalue = maxscrvalue,
aggregatesuffix = aggregatesuffix,
scalingx = scalingx,
scalingy = scalingy,
rotationdegrees = rotationdegrees,
rotationdescription = rotationdescription,
squared = squared,
plotdetails = plotdetails,
tocenter = FALSE,
relalpha = FALSE,
purpose = "surface",
...
) )
}
geom_sii_riskoutline <- function(data = NULL,
mapping = NULL,
stat = "sii_riskoutline",
structure = ggsolvencyii::sii_structure_sf16_eng,
squared = FALSE,
levelmax = 99,
aggregatesuffix = "_other",
plotdetails = NULL,
rotationdegrees = NULL,
rotationdescription = NULL,
maxscrvalue = NULL,
scalingx = 1,
scalingy = 1,
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
) {
ggplot2::layer( data = data,
stat = stat,
geom = GeomSiiRiskoutline,
mapping = mapping,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list( na.rm = na.rm,
structure = structure,
squared = squared,
levelmax = levelmax,
aggregatesuffix = aggregatesuffix,
plotdetails = plotdetails,
tocenter = FALSE,
relalpha = FALSE,
maxscrvalue = maxscrvalue,
scalingx = scalingx, scalingy = scalingy,
rotationdegrees = rotationdegrees,
rotationdescription = rotationdescription,
purpose = "outline",
...
) )
}
geom_sii_riskconnection <- function(data = NULL,
mapping = NULL,
stat = "sii_riskconnection",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
) {
ggplot2::layer(data = data,
stat = stat,
geom = GeomSiiRiskconnection,
mapping = mapping,
position = position,
show.legend = FALSE,
inherit.aes = inherit.aes,
params = list( na.rm = na.rm,
...
) )
}
StatSiiRisksurface <- ggplot2::ggproto(
"_class" = "StatSiiRisksurface",
"_inherit" = ggplot2::Stat,
required_aes = c("id", "x", "y", "description", "value"),
setup_params = function(data, params) {
params$maxscrvalue <- fn_maxscrvalue(data = data,
params = params)
if (is.null(params$plotdetails) ) {
params$plotdetails <- fn_constructionplotdetails(params$structure)
}
return(params)
},
setup_data = function(data, params) {
data_out <- fn_setupdata_surfaces(data = data,
params = params)
return(data_out)
},
compute_group = function(data,
scales,
levelmax,
structure,
maxscrvalue,
aggregatesuffix,
scalingx,
scalingy,
rotationdegrees,
rotationdescription,
squared,
plotdetails,
tocenter,
relalpha,
purpose,
...
) {
siiparams <- list(levelmax = levelmax,
structure = structure,
maxscrvalue = maxscrvalue,
aggregatesuffix = aggregatesuffix,
scalingx = scalingx,
scalingy = scalingy,
rotationdegrees = rotationdegrees,
rotationdescription = rotationdescription,
squared = squared,
plotdetails = plotdetails,
tocenter = tocenter,
relalpha = relalpha,
purpose = purpose)
df <- fn_computegroup( data = data,
siiparams = siiparams,
...
)
df <- df$df
df <- dplyr::mutate(df,
x_org = x,
y_org = y)
df <- dplyr::mutate(df,
x = x + xpoint * scalingx,
y = y + ypoint * scalingy)
return(df)
},
finish_layer = function(data, scales, params) {
return(data)
}
)
StatSiiRiskoutline <- ggplot2::ggproto(
"_class" = "StatSiiRiskoutline",
"_inherit" = ggplot2::Stat,
required_aes = c("id", "x", "y",
"description", "value", "comparewithid"),
default_aes = ggplot2::aes(color = "red", lwd = 0.2, comparewithid = 2 ),
setup_params = function(data, params) {
params$maxscrvalue <- fn_maxscrvalue(data = data,
params = params)
if (is.null(params$plotdetails)) {
params$plotdetails <- fn_constructionplotdetails(params$structure)
}
return(params)
},
setup_data = function(data, params) {
if (!"comparewithid" %in% colnames(data)){
message("comparewithid is set to reference itself")
data$comparewithid <- data$id
} else {
}
data_out <- fn_setupdata_outline(data = data,
params = params)
return(data_out)
},
compute_group = function(data,
scales,
levelmax,
structure,
maxscrvalue,
aggregatesuffix,
scalingx,
scalingy,
rotationdegrees,
rotationdescription,
squared,
plotdetails,
tocenter,
relalpha,
purpose,
...
) {
siiparams <- list(levelmax = levelmax,
structure = structure,
maxscrvalue = maxscrvalue,
aggregatesuffix = aggregatesuffix,
scalingx = scalingx,
scalingy = scalingy,
rotationdegrees = rotationdegrees,
rotationdescription = rotationdescription,
squared = squared,
plotdetails = plotdetails,
tocenter = tocenter,
relalpha = relalpha,
purpose = purpose)
df <- fn_computegroup(data = data,
scales = scales,
siiparams = siiparams
)
df <- df$df
df <- dplyr::mutate(df, x_org = x, y_org = y)
df <- dplyr::mutate(df,
x = x + xpoint * scalingx,
y = y + ypoint * scalingy)
return(df)
},
finish_layer = function(data, scales, params) {
return(data)
}
)
StatSiiRiskconnection <- ggplot2::ggproto(
"_class" = "StatSiiRiskconnection",
"_inherit" = ggplot2::Stat,
required_aes = c("id", "x", "y", "comparewithid"),
setup_data = function(data, params) {
data <- fn_setupdata_connection(data = data)
return(data)
},
compute_group = function(data, scales, ...) {
return(data)
}
)
stat_sii_risksurface <- function(mapping = NULL,
data = NULL,
geom = "sii_risksurface",
position = "identity",
show.legend = TRUE,
inherit.aes = TRUE,
na.rm = FALSE,
levelmax = 99,
structure = ggsolvencyii::sii_structure_sf16_eng,
maxscrvalue = NULL,
aggregatesuffix = "_other",
scalingx = 1,
scalingy = 1,
rotationdegrees = NULL,
rotationdescription = NULL,
squared = FALSE,
plotdetails = NULL,
...
) {
ggplot2::layer(mapping = mapping, data = data,
stat = "sii_risksurface",
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(na.rm = na.rm,
levelmax = levelmax,
structure = structure,
maxscrvalue = maxscrvalue,
aggregatesuffix = aggregatesuffix,
scalingx = scalingx,
scalingy = scalingy,
rotationdegrees = rotationdegrees,
rotationdescription = rotationdescription,
plotdetails = plotdetails,
purpose = "surface",
...
) )
} |
miller_rabin <- function(n) {
stopifnot(is.numeric(n), length(n) == 1)
if (floor(n) != ceiling(n) || n <= 0) {
stop("Argument 'n' must be a natural number.")
}
if (n < 2) { return(FALSE)
} else if (n == 2) {return(TRUE)
} else if (n %% 2 == 0) {return(FALSE)
} else if (n >= 2^53) {
stop("Argument 'n' too large to be handled as integer.")
}
if (!requireNamespace("gmp", quietly = TRUE)) {
stop("Package 'gmp' needed: Please install separately.", call. = FALSE)
}
if (n < 2047) {
N <- c(2)
} else if (n < 1373653) {
N <- c(2, 3)
} else if (n < 25326001) {
N <- c(2, 3, 5)
} else if (n < 3215031751) {
N <- c(2, 3, 5, 7)
} else if (n < 2152302898747) {
N <- c(2, 3, 5, 7, 11)
} else if (n < 3474749660383) {
N <- c(2, 3, 5, 7, 11, 13)
} else if (n < 341550071728321) {
N <- c(2, 3, 5, 7, 11, 13, 17)
} else {
N <- c(2, 3, 5, 7, 11, 13, 17, 23)
}
m <- n-1; s <- 0
while ((m %% 2) == 0) {
s <- s + 1
m <- m / 2
}
for (a in N) {
if (a >= n) break
x <- gmp::powm(a, m, n)
if (x == 1) next
t <- s
while (x != (n-1)) {
t <- t-1
if (t <= 0) return(FALSE)
x = ((x*x) %% n)
if (x == 1) return(FALSE)
}
}
return(TRUE)
} |
make.args <- function(..., PRE.ARGS=list(), POST.ARGS=list()) {
a <- list()
l <- c(PRE.ARGS, list(...), POST.ARGS)
for (name in unique(names(l))) {
a[[name]] <- l[[name]]
}
return(a)
}
`plot.randomLCA` <-
function(x,...,graphtype=ifelse(x$random,"marginal","conditional"),conditionalp=0.5,classhorizontal=TRUE) {
if (!inherits(x, "randomLCA"))
stop("Use only with 'randomLCA' objects.\n")
if (missing(graphtype)) graphtype <- ifelse(x$random,"marginal","conditional")
graphdata <- NULL
if (graphtype=="marginal") {
graphdata <- calcMargProb(x)
graphdata <- cbind(perc=rep(0,dim(graphdata)[1]),graphdata)
}
if (graphtype=="conditional") graphdata <- calcCondProb(x,conditionalp)
if (graphtype=="conditional2") graphdata <- calcCond2Prob(x,conditionalp)
if (x$level2) blocksize <- x$level2size
else blocksize <- x$blocksize
noblocks <- dim(x$patterns)[2] %/% blocksize
if (x$level2 | (blocksize!=dim(x$patterns)[2])) {
thenames <- names(x$patterns)
thenames <- strsplit(thenames,"\\.")
temp <- NULL
for (i in 1:noblocks) {
temp <- c(temp,thenames[[1+(i-1)*blocksize]][2])
}
thenames <- temp
} else thenames <- names(x$patterns)
if (blocksize==dim(x$patterns)[2]) {
if (graphtype=="marginal") {
arg.list <- make.args(...,
x = as.formula("outcomep~outcome"),
group=graphdata$class,
data=graphdata,
ylim=c(-0.05,1.05),
xlab="Outcome",
ylab="Outcome Prob.",
scales=list(x=list(at=1:length(thenames),labels=thenames))
)
print(do.call(xyplot, arg.list))
}
if ((graphtype=="conditional") || (graphtype=="conditional2")) {
if (length(conditionalp)>1) {
arg.list <- make.args(...,
x = as.formula("outcomep~outcome|perc"),
group=graphdata$class,
data=graphdata,
ylim=c(-0.05,1.05),
xlab="Outcome",
ylab="Outcome Prob.",
scales=list(x=list(at=1:length(thenames),labels=thenames),alternating=FALSE)
)
print(do.call(xyplot, arg.list))
}
else {
arg.list <- make.args(...,
x = as.formula("outcomep~outcome"),
group=graphdata$class,
data=graphdata,
ylim=c(-0.05,1.05),
xlab="Outcome",
ylab="Outcome Prob.",
scales=list(x=list(at=1:length(thenames),labels=thenames))
)
print(do.call(xyplot, arg.list))
}
}
}
else {
if (classhorizontal) {
if (graphtype=="marginal"){
arg.list <- make.args(...,
x = as.formula("outcomep~block|class"),
group=graphdata$outcome,
data=graphdata,
ylim=c(-0.05,1.05),
xlab="Block",
ylab="Outcome Prob.",
scales=list(x=list(at=1:length(thenames),labels=thenames),alternating=FALSE)
)
print(do.call(xyplot, arg.list))
}
if ((graphtype=="conditional") || (graphtype=="conditional2")) {
if (length(conditionalp)>1) {
arg.list <- make.args(...,
x = as.formula("outcomep~block|class*perc"),
group=graphdata$outcome,
data=graphdata,
ylim=c(-0.05,1.05),
xlab="Block",
ylab="Outcome Prob.",
scales=list(x=list(at=1:length(thenames),labels=thenames),alternating=FALSE)
)
print(do.call(xyplot, arg.list))
} else {
arg.list <- make.args(...,
x = as.formula("outcomep~block|class"),
group=graphdata$outcome,
data=graphdata,
ylim=c(-0.05,1.05),
xlab="Block",
ylab="Outcome Prob.",
scales=list(x=list(at=1:length(thenames),labels=thenames),alternating=FALSE)
)
print(do.call(xyplot, arg.list))
}
}
}
else {
if (graphtype=="marginal") {
arg.list <- make.args(...,
x = as.formula("outcomep~block|class"),
group=graphdata$outcome,
data=graphdata,
ylim=c(-0.05,1.05),
xlab="Block",
ylab="Outcome Prob.",
scales=list(x=list(at=1:length(thenames),labels=thenames),alternating=FALSE)
)
print(do.call(xyplot, arg.list))
}
if ((graphtype=="conditional") || (graphtype=="conditional2")) {
if (length(conditionalp)>1)
arg.list <- make.args(...,
x = as.formula("outcomep~block|perc*class"),
group=graphdata$outcome,
data=graphdata,
ylim=c(-0.05,1.05),
xlab="Block",
ylab="Outcome Prob.",
scales=list(x=list(at=1:length(thenames),labels=thenames),alternating=FALSE)
)
print(do.call(xyplot, arg.list))
}
else {
if (length(conditionalp)>1)
arg.list <- make.args(...,
x = as.formula("outcomep~block|perc*class"),
group=graphdata$outcome,
data=graphdata,
ylim=c(-0.05,1.05),
xlab="Block",
ylab="Outcome Prob.",
scales=list(x=list(at=1:length(thenames),labels=thenames),alternating=FALSE)
)
print(do.call(xyplot, arg.list))
}
}
}
} |
NULL
Geom <- gganimintproto("Geom",
required_aes = character(),
non_missing_aes = character(),
default_aes = aes(),
draw_key = draw_key_point,
handle_na = function(self, data, params) {
remove_missing(data, params$na.rm,
c(self$required_aes, self$non_missing_aes),
snake_class(self)
)
},
draw_layer = function(self, data, params, panel, coord) {
if (empty(data)) {
n <- if (is.factor(data$PANEL)) nlevels(data$PANEL) else 1L
return(rep(list(zeroGrob()), n))
}
params <- params[intersect(names(params), self$parameters())]
args <- c(list(quote(data), quote(panel_scales), quote(coord)), params)
plyr::dlply(data, "PANEL", function(data) {
if (empty(data)) return(zeroGrob())
panel_scales <- panel$ranges[[data$PANEL[1]]]
do.call(self$draw_panel, args)
}, .drop = FALSE)
},
draw_panel = function(self, data, panel_scales, coord, ...) {
groups <- split(data, factor(data$group))
grobs <- lapply(groups, function(group) {
self$draw_group(group, panel_scales, coord, ...)
})
ggname(snake_class(self), gTree(
children = do.call("gList", grobs)
))
},
draw_group = function(self, data, panel_scales, coord) {
stop("Not implemented")
},
setup_data = function(data, params) data,
use_defaults = function(self, data, params = list()) {
missing_aes <- setdiff(names(self$default_aes), names(data))
if (empty(data)) {
data <- plyr::quickdf(self$default_aes[missing_aes])
} else {
data[missing_aes] <- self$default_aes[missing_aes]
}
aes_params <- intersect(self$aesthetics(), names(params))
check_aesthetics(params[aes_params], nrow(data))
data[aes_params] <- params[aes_params]
data
},
extra_params = c("na.rm"),
parameters = function(self, extra = FALSE) {
panel_args <- names(gganimintproto_formals(self$draw_panel))
group_args <- names(gganimintproto_formals(self$draw_group))
args <- if ("..." %in% panel_args) group_args else panel_args
args <- setdiff(args, names(gganimintproto_formals(Geom$draw_group)))
if (extra) {
args <- union(args, self$extra_params)
}
args
},
aesthetics = function(self) {
c(union(self$required_aes, names(self$default_aes)), "group")
},
pre_process = function(g, g.data, ranges){
list(g = g, g.data = g.data)
},
export_animint = function(l, d, meta, layer_name, ggplot, built, AnimationInfo) {
xminv <- y <- xmaxv <- chunks.for <- NULL
g <- list(geom=strsplit(layer_name, "_")[[1]][2])
g$classed <- layer_name
ranges <- built$panel$ranges
g$aes <- sapply(l$mapping, function(k) as.character(as.expression(k)))
g$params <- getLayerParams(l)
s.aes <- selectSSandCS(g$aes)
meta$selector.aes[[g$classed]] <- s.aes
do.not.copy <- colsNotToCopy(g, s.aes)
copy.cols <- ! names(d) %in% do.not.copy
g.data <- d[copy.cols]
is.ss <- names(g$aes) %in% s.aes$showSelected$one
show.vars <- g$aes[is.ss]
pre.subset.order <- as.list(names(show.vars))
is.cs <- names(g$aes) %in% s.aes$clickSelects$one
update.vars <- g$aes[is.ss | is.cs]
update.var.names <- if(0 < length(update.vars)){
data.frame(variable=names(update.vars), value=NA)
}
interactive.aes <- with(s.aes, {
rbind(clickSelects$several, showSelected$several,
update.var.names)
})
for(row.i in seq_along(interactive.aes$variable)){
aes.row <- interactive.aes[row.i, ]
is.variable.value <- !is.na(aes.row$value)
selector.df <- if(is.variable.value){
selector.vec <- g.data[[paste(aes.row$variable)]]
data.frame(value.col=aes.row$value,
selector.name=unique(paste(selector.vec)))
}else{
value.col <- paste(aes.row$variable)
data.frame(value.col,
selector.name=update.vars[[value.col]])
}
for(sel.i in 1:nrow(selector.df)){
sel.row <- selector.df[sel.i,]
value.col <- paste(sel.row$value.col)
selector.name <- paste(sel.row$selector.name)
meta$selectors[[selector.name]]$is.variable.value <- is.variable.value
if(is.null(meta$selectors[[selector.name]]$type)){
selector.type <- meta$selector.types[[selector.name]]
if(is.null(selector.type))selector.type <- "single"
stopifnot(is.character(selector.type))
stopifnot(length(selector.type)==1)
stopifnot(selector.type %in% c("single", "multiple"))
meta$selectors[[selector.name]]$type <- selector.type
}
for(look.for in c("showSelected", "clickSelects")){
if(grepl(look.for, aes.row$variable)){
meta$selectors[[selector.name]][[look.for]] <- TRUE
}
}
value.vec <- unique(g.data[[value.col]])
key <- paste(g$classed, row.i, sel.i)
meta$selector.values[[selector.name]][[key]] <-
list(values=paste(value.vec), update=g$classed)
}
}
is.show <- grepl("showSelected", names(g$aes))
has.show <- any(is.show)
stat.type <- class(l$stat)[[1]]
checkForNonIdentityAndSS(stat.type, has.show, is.show, l,
g$classed, names(g.data), names(g$aes))
position.type <- class(l$position)[[1]]
if(has.show && position.type != "PositionIdentity"){
print(l)
warning("showSelected only works with position=identity, problem: ",
g$classed)
}
processed_values <- l$geom$pre_process(g, g.data, ranges)
g <- processed_values$g
g.data <- processed_values$g.data
for(color.var in c("colour", "color", "fill")){
if(color.var %in% names(g.data)){
g.data[,color.var] <- toRGB(g.data[,color.var])
}
if(color.var %in% names(g$params)){
g$params[[color.var]] <- toRGB(g$params[[color.var]])
}
}
has.no.fill <- g$geom %in% c("path", "line")
zero.size <- any(g.data$size == 0, na.rm=TRUE)
if(zero.size && has.no.fill){
warning(sprintf("geom_%s with size=0 will be invisible",g$geom))
}
if(inherits(ggplot$coordinates, "CoordFlip")){
names(g.data) <- switch_axes(names(g.data))
}
g$types <- sapply(g.data, function(x) {
type <- paste(class(x), collapse="-")
if(type == "character"){
if(sum(!is.rgb(x))==0){
"rgb"
}else if(sum(!is.linetype(x))==0){
"linetype"
}else {
"character"
}
}else{
type
}
})
g$types[["group"]] <- "character"
ordfactidx <- which(g$types=="ordered-factor")
for(i in ordfactidx){
g.data[[i]] <- factor(as.character(g.data[[i]]))
g$types[[i]] <- "factor"
}
time.col <- NULL
if(is.list(AnimationInfo$time)){
g.time.list <- list()
for(c.or.s in names(s.aes)){
cs.info <- s.aes[[c.or.s]]
for(a in cs.info$one){
if(g$aes[[a]] == AnimationInfo$time$var){
g.time.list[[a]] <- g.data[[a]]
time.col <- a
}
}
for(row.i in seq_along(cs.info$several$value)){
cs.row <- cs.info$several[row.i,]
c.name <- paste(cs.row$variable)
is.time <- g.data[[c.name]] == AnimationInfo$time$var
g.time.list[[c.name]] <- g.data[is.time, paste(cs.row$value)]
}
}
u.vals <- unique(unlist(g.time.list))
if(length(u.vals)){
AnimationInfo$timeValues[[paste(g$classed)]] <- sort(u.vals)
}
}
if(length(time.col)){
pre.subset.order <- pre.subset.order[order(pre.subset.order != time.col)]
}
subset.vec <- unlist(pre.subset.order)
if("chunk_vars" %in% names(g$params)){
designer.chunks <- g$params$chunk_vars
if(!is.character(designer.chunks)){
stop("chunk_vars must be a character vector; ",
"use chunk_vars=character() to specify 1 chunk")
}
not.subset <- !designer.chunks %in% g$aes[subset.vec]
if(any(not.subset)){
stop("invalid chunk_vars ",
paste(designer.chunks[not.subset], collapse=" "),
"; possible showSelected variables: ",
paste(g$aes[subset.vec], collapse=" "))
}
is.chunk <- g$aes[subset.vec] %in% designer.chunks
chunk.cols <- subset.vec[is.chunk]
nest.cols <- subset.vec[!is.chunk]
}else{
if(length(meta$selectors)==0){
nest.cols <- subset.vec
chunk.cols <- NULL
}else{
selector.types <- sapply(meta$selectors, "[[", "type")
selector.names <- g$aes[subset.vec]
subset.types <- selector.types[selector.names]
can.chunk <- subset.types != "multiple"
names(can.chunk) <- subset.vec
tmp <- tempfile()
some.lines <- rbind(head(g.data), tail(g.data))
write.table(some.lines, tmp,
col.names=FALSE,
quote=FALSE, row.names=FALSE, sep="\t")
bytes <- file.info(tmp)$size
bytes.per.line <- bytes/nrow(some.lines)
bad.chunk <- function(){
if(all(!can.chunk))return(NULL)
can.chunk.cols <- subset.vec[can.chunk]
maybe.factors <- g.data[, can.chunk.cols, drop=FALSE]
for(N in names(maybe.factors)){
maybe.factors[[N]] <- paste(maybe.factors[[N]])
}
rows.per.chunk <- table(maybe.factors)
bytes.per.chunk <- rows.per.chunk * bytes.per.line
if(all(4096 < bytes.per.chunk))return(NULL)
dim.byte.list <- list()
if(length(can.chunk.cols) == 1){
dim.byte.list[[can.chunk.cols]] <- sum(bytes.per.chunk)
}else{
for(dim.i in seq_along(can.chunk.cols)){
dim.name <- can.chunk.cols[[dim.i]]
dim.byte.list[[dim.name]] <-
apply(bytes.per.chunk, -dim.i, sum)
}
}
selector.df <-
data.frame(chunks.for=length(rows.per.chunk),
chunks.without=sapply(dim.byte.list, length),
min.bytes=sapply(dim.byte.list, min))
not.one <- subset(selector.df, 1 < chunks.for)
if(nrow(not.one) == 0){
NULL
}else{
rownames(not.one)[[which.max(not.one$min.bytes)]]
}
}
while({
bad <- bad.chunk()
!is.null(bad)
}){
can.chunk[[bad]] <- FALSE
}
if(any(can.chunk)){
nest.cols <- subset.vec[!can.chunk]
chunk.cols <- subset.vec[can.chunk]
}else{
nest.cols <- subset.vec
chunk.cols <- NULL
}
}
}
plot.has.panels <- nrow(built$panel$layout) > 1
g.data <- removeUniquePanelValue(g.data, plot.has.panels)
if(length(chunk.cols)){
selector.names <- as.character(g$aes[chunk.cols])
chunk.name <- paste(selector.names, collapse="_")
g$chunk_order <- as.list(selector.names)
for(selector.name in selector.names){
meta$selectors[[selector.name]]$chunks <-
unique(c(meta$selectors[[selector.name]]$chunks, chunk.name))
}
}else{
g$chunk_order <- list()
}
g$nest_order <- as.list(nest.cols)
names(g$chunk_order) <- NULL
names(g$nest_order) <- NULL
g$subset_order <- g$nest_order
if(plot.has.panels){
g$subset_order <- c(g$subset_order, "PANEL")
g$nest_order <- c(g$nest_order, "PANEL")
}
if((nrow(s.aes$showSelected$several) > 0)){
g$nest_order <- with(s.aes$showSelected$several, {
c(g$nest_order, paste(variable), paste(value))
})
g$subset_order <-
c(g$subset_order, paste(s.aes$showSelected$several$variable))
}
data.object.geoms <- c("line", "path", "ribbon", "polygon")
if("group" %in% names(g$aes) && g$geom %in% data.object.geoms){
g$nest_order <- c(g$nest_order, "group")
}
if(any(is.na(g.data)) && "group" %in% names(g$aes)){
sp.cols <- unlist(c(chunk.cols, g$nest_order))
order.args <- list()
for(sp.col in sp.cols){
order.args[[sp.col]] <- g.data[[sp.col]]
}
ord <- do.call(order, order.args)
g.data <- g.data[ord,]
is.missing <- apply(is.na(g.data), 1, any)
diff.vec <- diff(is.missing)
new.group.vec <- c(FALSE, diff.vec == 1)
for(chunk.col in sp.cols){
one.col <- g.data[[chunk.col]]
is.diff <- c(FALSE, one.col[-1] != one.col[-length(one.col)])
new.group.vec[is.diff] <- TRUE
}
subgroup.vec <- cumsum(new.group.vec)
g.data$group <- subgroup.vec
}
for(xy in c("x", "y")){
range.name <- paste0(xy, ".range")
range.mat <- sapply(ranges, "[[", range.name)
xy.col.vec <- grep(paste0("^", xy), names(g.data), value=TRUE)
xy.col.df <- g.data[, xy.col.vec, drop=FALSE]
cmp.list <- list(`<`, `>`)
for(row.i in seq_along(cmp.list)){
panel.vec <- if("PANEL" %in% names(g.data)){
g.data$PANEL
}else{
rep(1, nrow(g.data))
}
extreme.vec <- range.mat[row.i, panel.vec]
cmp <- cmp.list[[row.i]]
to.rep <- cmp(xy.col.df, extreme.vec)
row.vec <- row(to.rep)[to.rep]
xy.col.df[to.rep] <- extreme.vec[row.vec]
}
g.data[, xy.col.vec] <- xy.col.df
}
data.or.null <- getCommonChunk(g.data, chunk.cols, g$aes)
g.data.varied <- if(is.null(data.or.null)){
split.x(na.omit(g.data), chunk.cols)
}else{
g$columns$common <- as.list(names(data.or.null$common))
tsv.name <- sprintf("%s_chunk_common.tsv", g$classed)
tsv.path <- file.path(meta$out.dir, tsv.name)
write.table(data.or.null$common, tsv.path,
quote = FALSE, row.names = FALSE,
sep = "\t")
data.or.null$varied
}
list(g=g, g.data.varied=g.data.varied, timeValues=AnimationInfo$timeValues)
}
)
NULL
.pt <- 72.27 / 25.4
.stroke <- 96 / 25.4
check_aesthetics <- function(x, n) {
ns <- vapply(x, length, numeric(1))
good <- ns == 1L | ns == n
if (all(good)) {
return()
}
stop(
"Aesthetics must be either length 1 or the same as the data (", n, "): ",
paste(names(!good), collapse = ", "),
call. = FALSE
)
} |
marginal.effects <- function (object, ...)
UseMethod("marginal.effects") |
getParametrosOfModel <- function(ajuste, base=NULL, formula = NULL){
if (is.null(ajuste)){
if(is.null(base) || is.null(formula))
stop("se ajuste eh null base e formula devem ser informados e vice versa")
return(getColumnsOfBase(base=base, strColumns = formula))
}
return(getColumnsOfAjust(ajuste = ajuste))
} |
grid.vwline <- function(...) {
grid.draw(vwlineGrob(...))
}
vwlineGrob <- function(x, y, w, default.units="npc", open=TRUE,
linejoin="round", lineend="butt", mitrelimit=4,
stepWidth=FALSE,
render=if (open) vwPolygon else vwPath(),
gp=gpar(fill="black"), name=NULL, debug=FALSE) {
if (!is.unit(x)) {
x <- unit(x, default.units)
}
if (!is.unit(y)) {
y <- unit(y, default.units)
}
if (!inherits(w, "widthSpec")) {
w <- widthSpec(w, default.units)
}
checkvwline(x, y, w)
gTree(x=x, y=y, w=w, open=open, render=render,
linejoin=linejoin, lineend=lineend, mitrelimit=mitrelimit,
stepWidth=stepWidth,
gp=gp, name=name, cl="vwlineGrob",
debug=debug)
}
checkvwline <- function(x, y, w) {
if (max(length(x), length(y), length(w)) < 2)
stop("A vwline must have at least two points")
nx <- length(x)
ny <- length(y)
nw <- length(w)
if (nx != ny || nx != nw) {
stop("x, y, and w must all have same length")
}
}
buildEdge <- function(join,
perpStart, perpEnd, inside, mitrelen, mitrelimit,
intpt1, intpt2, arc, linejoin, leftedge) {
N <- length(perpStart)
x <- vector("list", N+1)
x[[1]] <- perpStart[1]
if (N > 1) {
for (i in 1:(N-1)) {
if (inside[i]) {
x[[i+1]] <- c(perpEnd[i], join[i+1], perpStart[i+1])
} else {
switch(linejoin,
round=
{
if (leftedge) {
x[[i+1]] <- c(perpEnd[i], arc[[i]],
perpStart[i+1])
} else {
x[[i+1]] <- c(perpEnd[i], rev(arc[[i]]),
perpStart[i+1])
}
},
mitre=
{
if (mitrelen[i] < mitrelimit) {
x[[i+1]] <- c(intpt1[i], intpt2[i])
} else {
x[[i+1]] <- c(perpEnd[i], perpStart[i+1])
}
},
bevel=
{
x[[i+1]] <- c(perpEnd[i], perpStart[i+1])
},
stop("Invalid linejoin value")
)
}
}
}
x[[N+1]] <- perpEnd[N]
unlist(x)
}
vwlinePoints <- function(grob) {
x <- convertX(grob$x, "in", valueOnly=TRUE)
y <- convertY(grob$y, "in", valueOnly=TRUE)
w <- grob$w
w$left <- pmin(convertWidth(w$left, "in", valueOnly=TRUE),
convertHeight(w$left, "in", valueOnly=TRUE))
w$right <- pmin(convertWidth(w$right, "in", valueOnly=TRUE),
convertHeight(w$right, "in", valueOnly=TRUE))
sinfo <- segInfo(x, y, w, grob$open, grob$stepWidth, grob$debug)
cinfo <- cornerInfo(sinfo, grob$open, grob$stepWidth, grob$debug)
carcinfo <- cornerArcInfo(sinfo, cinfo, grob$open, grob$debug)
if (!grob$open) {
x <- c(x, x[1])
y <- c(y, y[1])
}
leftx <- buildEdge(x,
sinfo$perpStartLeftX,
sinfo$perpEndLeftX,
cinfo$leftInside,
cinfo$leftMitreLength, grob$mitrelimit,
cinfo$leftIntx1,
cinfo$leftIntx2,
carcinfo$leftarcx,
grob$linejoin, TRUE)
lefty <- buildEdge(y,
sinfo$perpStartLeftY,
sinfo$perpEndLeftY,
cinfo$leftInside,
cinfo$leftMitreLength, grob$mitrelimit,
cinfo$leftInty1,
cinfo$leftInty2,
carcinfo$leftarcy,
grob$linejoin, TRUE)
rightx <- buildEdge(rev(x),
rev(sinfo$perpEndRightX),
rev(sinfo$perpStartRightX),
rev(cinfo$rightInside),
rev(cinfo$rightMitreLength), grob$mitrelimit,
rev(cinfo$rightIntx2),
rev(cinfo$rightIntx1),
rev(carcinfo$rightarcx),
grob$linejoin, FALSE)
righty <- buildEdge(rev(y),
rev(sinfo$perpEndRightY),
rev(sinfo$perpStartRightY),
rev(cinfo$rightInside),
rev(cinfo$rightMitreLength), grob$mitrelimit,
rev(cinfo$rightInty2),
rev(cinfo$rightInty1),
rev(carcinfo$rightarcy),
grob$linejoin, FALSE)
list(left=list(x=leftx, y=lefty),
right=list(x=rightx, y=righty),
sinfo=sinfo)
}
buildEnds <- function(w, einfo, earcinfo, stepWidth, lineend, mitrelimit) {
switch(lineend,
butt=
{
startx <- starty <- endx <- endy <- numeric()
},
round=
{
startx <- earcinfo[[1]]$arcx[[1]]
starty <- earcinfo[[1]]$arcy[[1]]
endx <- earcinfo[[2]]$arcx[[1]]
endy <- earcinfo[[2]]$arcy[[1]]
},
mitre=
{
width <- w$left[1] + w$right[1]
if (width > 0 &&
is.finite(einfo$startmitrelength) &&
einfo$startmitrelength/width <= mitrelimit &&
abs(earcinfo[[1]]$cornerangle) < pi) {
startx <- einfo$startmitre$x
starty <- einfo$startmitre$y
} else {
startx <- c(einfo$startcorner2$x, einfo$startcorner1$x)
starty <- c(einfo$startcorner2$y, einfo$startcorner1$y)
}
N <- length(w$left)
if (stepWidth) {
width <- w$left[N-1] + w$right[N-1]
} else {
width <- w$left[N] + w$right[N]
}
if (width > 0 &&
is.finite(einfo$endmitrelength) &&
einfo$endmitrelength/width <= mitrelimit &&
abs(earcinfo[[2]]$cornerangle) < pi) {
endx <- einfo$endmitre$x
endy <- einfo$endmitre$y
} else {
endx <- c(einfo$endcorner1$x, einfo$endcorner2$x)
endy <- c(einfo$endcorner1$y, einfo$endcorner2$y)
}
},
square=
{
startx <- c(einfo$startcorner2$x, einfo$startcorner1$x)
starty <- c(einfo$startcorner2$y, einfo$startcorner1$y)
endx <- c(einfo$endcorner1$x, einfo$endcorner2$x)
endy <- c(einfo$endcorner1$y, einfo$endcorner2$y)
},
stop("Invalid lineend value")
)
list(startx=startx, starty=starty, endx=endx, endy=endy)
}
vwlineOutline <- function(grob, simplify=TRUE) {
x <- convertX(grob$x, "in", valueOnly=TRUE)
y <- convertY(grob$y, "in", valueOnly=TRUE)
w <- grob$w
w$left <- pmin(convertWidth(w$left, "in", valueOnly=TRUE),
convertHeight(w$left, "in", valueOnly=TRUE))
w$right <- pmin(convertWidth(w$right, "in", valueOnly=TRUE),
convertHeight(w$right, "in", valueOnly=TRUE))
pts <- vwlinePoints(grob)
if (grob$open) {
sinfo <- segInfo(x, y, w, grob$open, grob$stepWidth, grob$debug)
einfo <- endInfo(x, y, w, sinfo, grob$stepWidth, grob$debug)
earcinfo <- endArcInfo(sinfo, einfo, grob$debug)
ends <- buildEnds(w, einfo, earcinfo, grob$stepWidth,
grob$lineend, grob$mitrelimit)
outline <- list(x=c(ends$startx, pts$left$x, ends$endx, pts$right$x),
y=c(ends$starty, pts$left$y, ends$endy, pts$right$y))
} else {
outline <- list(x=pts$left, y=pts$right)
}
xna <- is.na(outline$x)
yna <- is.na(outline$y)
if (any(xna | yna)) {
outline$x <- outline$x[!(xna | yna)]
outline$y <- outline$y[!(xna | yna)]
warning("Removed NA values from outline")
}
if (simplify)
polysimplify(outline, filltype="nonzero")
else
outline
}
makeContent.vwlineGrob <- function(x, ...) {
outline <- vwlineOutline(x)
addGrob(x,
x$render(unlist(lapply(outline, "[[", "x")),
unlist(lapply(outline, "[[", "y")),
sapply(outline, function(o) length(o$x)),
x$gp, "outline"))
}
edgePoints.vwlineGrob <- function(x, d,
x0, y0,
which=1,
direction="forward",
debug=FALSE,
...) {
which <- which[1]
outline <- vwlineOutline(x)
if (which > length(outline)) {
stop("Invalid which value")
}
edge <- outline[[which]]
if (!is.unit(x0)) x0 <- unit(x0, "npc")
if (!is.unit(y0)) y0 <- unit(y0, "npc")
pts <- reorderEdge(edge, x0, y0)
vwEdgePoints(pts, d, direction == "forward", x$open, debug)
}
outline.vwlineGrob <- function(x, simplify=TRUE, ...) {
vwlineOutline(x, simplify=simplify)
} |
generate_heatmap_chart = function(shots, base_court, court_theme = court_themes$dark) {
base_court +
stat_density_2d(
data = shots,
aes(x = loc_x, y = loc_y, fill = stat(density / max(density))),
geom = "raster", contour = FALSE, interpolate = TRUE, n = 200
) +
geom_path(
data = court_points,
aes(x = x, y = y, group = desc),
color = court_theme$lines
) +
scale_fill_viridis_c(
"Shot Frequency ",
limits = c(0, 1),
breaks = c(0, 1),
labels = c("lower", "higher"),
option = "inferno",
guide = guide_colorbar(barwidth = 15)
) +
theme(legend.text = element_text(size = rel(0.6)))
} |
context("test-savitzkyGolay")
test_that("savitzkyGolay works", {
nirdata <- data("NIRsoil")
X_savitzkyGolay <- savitzkyGolay(NIRsoil$spc, m = 1, p = 1, w = 3)
expect_is(X_savitzkyGolay, "matrix")
expect_true(round(max(abs(X_savitzkyGolay[1, ])), 5) == 0.00528)
}) |
NULL
NULL
set_all_borders <- function(ht, row, col, value = 0.4) {
recall_ltrb(ht, "set_%s_border")
}
map_all_borders <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_border")
}
set_all_border_colors <- function(ht, row, col, value) {
recall_ltrb(ht, "set_%s_border_color")
}
map_all_border_colors <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_border_color")
}
set_all_border_styles <- function(ht, row, col, value) {
recall_ltrb(ht, "set_%s_border_style")
}
map_all_border_styles <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_border_style")
}
set_all_padding <- function(ht, row, col, value) {
recall_ltrb(ht, "set_%s_padding")
}
map_all_padding <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_padding")
}
set_tb_padding <- function (ht, row, col, value) {
recall_ltrb(ht, "set_%s_padding", sides = c("top", "bottom"))
}
map_tb_padding <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_padding", sides = c("top", "bottom"))
}
set_lr_padding <- function (ht, row, col, value) {
recall_ltrb(ht, "set_%s_padding", sides = c("left", "right"))
}
map_lr_padding <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_padding", sides = c("left", "right"))
}
set_tb_borders <- function (ht, row, col, value) {
recall_ltrb(ht, "set_%s_border", sides = c("top", "bottom"))
}
map_tb_borders <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_border", sides = c("top", "bottom"))
}
set_lr_borders <- function (ht, row, col, value) {
recall_ltrb(ht, "set_%s_border", sides = c("left", "right"))
}
map_lr_borders <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_border", sides = c("left", "right"))
}
set_tb_border_colors <- function (ht, row, col, value) {
recall_ltrb(ht, "set_%s_border_color", sides = c("top", "bottom"))
}
map_tb_border_colors <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_border_color", sides = c("top", "bottom"))
}
set_lr_border_colors <- function (ht, row, col, value) {
recall_ltrb(ht, "set_%s_border_color", sides = c("left", "right"))
}
map_lr_border_colors <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_border_color", sides = c("left", "right"))
}
set_tb_border_styles <- function (ht, row, col, value) {
recall_ltrb(ht, "set_%s_border_style", sides = c("top", "bottom"))
}
map_tb_border_styles <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_border_style", sides = c("top", "bottom"))
}
set_lr_border_styles <- function (ht, row, col, value) {
recall_ltrb(ht, "set_%s_border_style", sides = c("left", "right"))
}
map_lr_border_styles <- function (ht, row, col, fn) {
recall_ltrb(ht, "map_%s_border_style", sides = c("left", "right"))
}
recall_ltrb <- function(ht, template,
sides = c("left", "top", "right", "bottom")) {
call <- sys.call(sys.parent(1L))
call_names <- parse(text = paste0("huxtable::",
sprintf(template, sides)))
for (cn in call_names) {
call[[1]] <- cn
call[[2]] <- quote(ht)
ht <- eval(call, list(ht = ht), parent.frame(2L))
}
ht
} |
partial.q <- function(x, PI, MU, S, t, logit.PI = TRUE){
K <- length(PI)
N <- dim(x)[1]
p <- dim(x)[2]
mp <- p * (p + 1) / 2
M <- K - 1 + K * p + K * p * (p + 1) / 2
G <- Gmat(p)
Id <- diag(p)
invS <- apply(S, 3, solve)
dim(invS) <- c(p, p, K)
SS <- lapply(1:N, function(i){
Sbuf.1 <- NULL
if(K != 1){
if(logit.PI){
Sbuf.1 <- t[i, -K] - PI[-K]
} else{
tmp <- t[i, ] / PI
Sbuf.1 <- tmp[1:(K-1)] - tmp[K]
}
}
Sbuf.2 <- list()
Sbuf.3 <- list()
for(j in 1:K){
tmp <- x[i,] - MU[j,]
dim(tmp) <- c(p, 1)
tmp.1 <- t[i,j] * invS[,,j]
Sbuf.2[[j]] <- tmp.1 %*% tmp
Smat <- tmp.1 %*% (tmp %*% t(tmp) %*% invS[,,j] - Id) / 2
Sbuf.3[[j]] <- as.vector(Smat) %*% G
}
c(Sbuf.1, do.call("c", Sbuf.2), do.call("c", Sbuf.3))
})
do.call("cbind", SS)
} |
transform <- function(xy, m) {
newX = m[1] * xy[,1] + m[3] * xy[,2] + m[5]
newY = m[2] * xy[,1] + m[4] * xy[,2] + m[6]
cbind(newX, newY)
}
oneline <- function(x, id) {
x <- trimws(gsub('^m', "", x))
ss <- trimws(unlist(strsplit(x, "m ")))
out <- list()
for (j in 1:length(ss)) {
v <- unlist(utils::read.table(text=ss[j], sep=" "))
vv <- as.numeric(unlist(strsplit(v, ",")))
vv <- matrix(vv, ncol=2, byrow=TRUE)
if (j > 1) {
vv[1,] <- vv[1,] + a[1,]
}
a <- apply(vv, 2, cumsum)
out[[j]] <- a
}
out <- lapply(1:length(out), function(p) cbind(id=id, part=p, out[[p]], hole=0))
out <- do.call(rbind, out)
out[,4] <- -out[,4]
out
}
oneline2 <- function(x, id) {
x <- trimws(gsub('^M', "", x))
ss <- trimws(unlist(strsplit(x, "ZM")))
out <- list()
for (j in 1:length(ss)) {
v <- unlist(strsplit(ss[j], "L"))
v <- unlist(strsplit(v, "C"))
v <- unlist(strsplit(v, " "))
v <- gsub("Z", "", v)
vv <- as.numeric(unlist(strsplit(v, ",")))
vv <- matrix(vv, ncol=2, byrow=TRUE)
out[[j]] <- vv
}
out <- lapply(1:length(out), function(p) cbind(id=id, part=p, out[[p]], hole=0))
do.call(rbind, out)
}
readSVG <- function(f) {
doc <- XML::htmlParse(f)
p <- XML::xpathSApply(doc, "//path", XML::xmlGetAttr, "d")
s <- list()
for (i in 1:length(p)) {
s[[i]] <- oneline2(p[i], i)
}
ss <- do.call(rbind, s)
v <- vect(ss, type="polygons")
a <- XML::xpathSApply(doc, "//path", XML::xmlAttrs)
a <- unique(unlist(sapply(a, names)))
a <- a[-grep(":", a)]
a <- a[a != "d"]
if (length(a) > 0) {
att <- list()
for (i in 1:length(a)) {
z <- XML::xpathSApply(doc, "//path", XML::xmlGetAttr, a[i])
att[[i]] <- sapply(z, function(i) if (is.null(i)) NA else i, USE.NAMES = FALSE)
}
names(att) <- a
values(v) <- data.frame(att)
}
v
} |
require(testthat)
if(FALSE){
deffile = system.file("extdata/fastq_haplotyper.def", package = "flowr")
flowdef = as.flowdef(deffile)
plot_flow(head(flowdef, 4), pdf = TRUE)
plot_flow(head(flowdef, 7), pdf = TRUE)
plot_flow(flowdef, pdf = TRUE)
} |
gamma.shape <- function(object, ...) UseMethod("gamma.shape")
gamma.shape.glm <- function(object, it.lim = 10,
eps.max = .Machine$double.eps^0.25,
verbose = FALSE, ...)
{
if(is.null(object$y)) object <- update(object, y = TRUE)
y <- object$y
A <- object$prior.weights
if(is.null(A)) A <- rep(1, length(y))
u <- object$fitted.values
Dbar <- object$deviance/object$df.residual
alpha <- (6 + 2*Dbar)/(Dbar*(6 + Dbar))
if(verbose) {
message(gettextf("Initial estimate: %s", format(alpha)), domain = NA)
utils::flush.console()
}
fixed <- -y/u - log(u) + log(A) + 1 + log(y + (y == 0))
eps <- 1
itr <- 0
while(abs(eps) > eps.max && (itr <- itr + 1) <= it.lim) {
sc <- sum(A * (fixed + log(alpha) - digamma(A * alpha)))
inf <- sum(A * (A * trigamma(A * alpha) - 1/alpha))
alpha <- alpha + (eps <- sc/inf)
if(verbose) {
message(gettextf("Iter. %d Alpha: %s", itr, format(alpha)),
domain = NA)
utils::flush.console()
}
}
if(itr > it.lim) warning("iteration limit reached")
res <- list(alpha = alpha, SE = sqrt(1/inf))
class(res) <- "gamma.shape"
res
}
gamma.dispersion <- function(object, ...)
1/gamma.shape(object, ...)[[1L]]
print.gamma.shape <- function(x, ...)
{
y <- x
x <- array(unlist(x), dim = 2L:1L,
dimnames = list(c("Alpha:", "SE:"), ""))
NextMethod("print")
invisible(y)
} |
dmnom <- function(x, size, prob, log = FALSE) {
if (is.vector(prob))
prob <- matrix(prob, nrow = 1)
else if (!is.matrix(prob))
prob <- as.matrix(prob)
if (is.vector(x))
x <- matrix(x, nrow = 1)
else if (!is.matrix(x))
x <- as.matrix(x)
cpp_dmnom(x, size, prob, log[1L])
}
rmnom <- function(n, size, prob) {
if (length(n) > 1)
n <- length(n)
if (is.vector(prob))
prob <- matrix(prob, nrow = 1)
else if (!is.matrix(prob))
prob <- as.matrix(prob)
cpp_rmnom(n, size, prob)
} |
export.snowprofileCsv <- function(profile,
filename = stop("filename must be provided"),
sep = ",",
export.all = "Layers",
variables = NA) {
stopifnot(is.snowprofile(profile))
if (!all(is.na(variables)))
if (!is.list(variables))
stop("variables must be either NA or a tag-value list of the format: height = 'height_top'; see ?export.snowprofileCsv")
if (!all(names(variables) %in% c(names(profile), names(profile$layers)))) {
warning("At least one of your specified variable names does not exist in the snowprofile object, ignoring...")
variables <- variables[names(variables) %in% c(names(profile), names(profile$layers))]
}
if (isTRUE(export.all)) {
vexp <- c(names(profile$layers), names(profile))
} else if (isFALSE(export.all)) {
vexp <- names(variables)
} else if (export.all == "Layers") {
vexp <- unique(c(names(profile$layers), names(variables)))
} else {
stop("export.all must either be TRUE, FALSE or 'Layers'")
}
layers <- profile$layers[vexp[which(vexp %in% names(profile$layers))]]
meta <- profile[vexp[which(vexp %in% names(profile))]]
if ((length(layers) > 0) && (length(meta) > 0)) {
DF <- data.frame(layers, meta)
} else if ((length(layers) > 0) && (length(meta) == 0)) {
DF <- data.frame(layers)
} else if ((length(layers) == 0) && (length(meta) > 0)) {
DF <- data.frame(meta)
}
if (is.list(variables)) {
cn <- colnames(DF)
cn[which(cn %in% names(variables))] <- as.character(variables[cn[which(cn %in% names(variables))]])
colnames(DF) <- cn
DF <- DF[, as.character(c(variables, cn[!cn %in% variables]))]
}
write.csv(DF, file = filename, row.names = FALSE, quote = FALSE)
} |
longst <- function(longdat, long.formula, model, longdat2) {
if (model == "int") {
rf <- as.formula(
paste("~1", colnames(longdat)[1], sep = "|"))
} else if (model == "intslope") {
rf <- as.formula(
paste(paste0("~", colnames(longdat)[3]), colnames(longdat)[1], sep = "|"))
} else {
tsq <- paste0(paste0("I(", paste(colnames(longdat)[3], "^2", sep = "")), ")")
rf <- as.formula(
paste(paste0("~", paste(colnames(longdat)[3], tsq, sep = "+")),
colnames(longdat)[1], sep = "|"))
}
long.start <- nlme::lme(long.formula,
random = rf,
method = "ML",
data = data.frame(longdat2),
na.action = na.omit,
control = lmeControl(maxIter = 1000,
msMaxIter = 1000,
opt = "optim",
tolerance = 1e-05,
msTol = 1e-06))
q <- dim(nlme::VarCorr(long.start))[1] - 1
sigma.u <- as.matrix(nlme::getVarCov(long.start))
rownames(sigma.u) <- paste("U_", 0:(q - 1), sep = "")
colnames(sigma.u) <- paste("U_", 0:(q - 1), sep = "")
if (model == "intslope") {
corr <- as.numeric(nlme::VarCorr(long.start)[2, 3])
} else if (model == "int") {
corr <- NA
} else if (model == "quad") {
corr <- as.numeric(nlme::VarCorr(long.start)[2:3, 3])
}
sigma.z <- long.start$sigma^2
ll <- long.start$logLik
b1 <- nlme::fixef(long.start)
list("b1" = data.frame(b1),
"sigma.z" = sigma.z,
"sigma.u" = sigma.u,
"corr" = corr,
"log.like" = ll)
} |
setMethod(
"readability",
signature(txt.file="kRp.corpus"),
function(
txt.file,
summary=TRUE,
mc.cores=getOption("mc.cores", 1L),
quiet=TRUE,
...
){
tagged_list <- split_by_doc_id(txt.file)
corpusReadability(txt.file) <- mclapply(names(tagged_list), function(thisText){
dot_args <- list(...)
if(any(!is.null(dot_args[["keep.input"]]), !is.null(dot_args[["as.feature"]]))){
stop(simpleError("The arguments \"keep.input\" and \"as.feature\" are FALSE by default and can't be changed!"))
} else {}
if(any(names(corpusHyphen(txt.file)) == thisText)){
default <- list(txt.file=tagged_list[[thisText]], quiet=quiet, keep.input=FALSE, ...)
args <- modifyList(default, list(hyphen=corpusHyphen(txt.file)[[thisText]]))
rdb <- do.call(readability, args)
} else {
rdb <- readability(
tagged_list[[thisText]],
quiet=quiet,
keep.input=FALSE,
as.feature=FALSE,
...
)
}
return(rdb)
}, mc.cores=mc.cores)
corpusMeta(txt.file, "readability") <- list(index=c())
corpusMeta(txt.file, "readability")[["index"]] <- sort(
unique(
unlist(mclapply(corpusReadability(txt.file), function(thisText){
names(summary(thisText, flat=TRUE))
}, mc.cores=mc.cores)
)
)
)
names(corpusReadability(txt.file)) <- names(describe(txt.file))
if(isTRUE(summary)){
txt.file <- summary(txt.file)
} else {}
return(txt.file)
}
) |
glaguerre.quadrature.rules <- function( n, alpha, normalized=FALSE )
{
recurrences <- glaguerre.recurrences( n, alpha, normalized )
inner.products <- glaguerre.inner.products( n, alpha )
return( quadrature.rules( recurrences, inner.products ) )
} |
`RODM_create_dt_model` <- function(
database,
data_table_name,
case_id_column_name = NULL,
target_column_name,
model_name = "DT_MODEL",
auto_data_prep = TRUE,
cost_matrix = NULL,
gini_impurity_metric = TRUE,
max_depth = NULL,
minrec_split = NULL,
minpct_split = NULL,
minrec_node = NULL,
minpct_node = NULL,
retrieve_outputs_to_R = TRUE,
leave_model_in_dbms = TRUE,
sql.log.file = NULL)
{
if (!is.null(sql.log.file)) write(paste("--- SQL calls by ODM function: RODM_create_dt_model ",
date(), "---"), file = sql.log.file, append = TRUE, ncolumns = 1000)
DT.settings.table <- data.frame(matrix(c(
"ALGO_NAME", "ALGO_DECISION_TREE"),
nrow = 1, ncol=2, byrow=TRUE))
names(DT.settings.table) <- c("SETTING_NAME", "SETTING_VALUE")
if (gini_impurity_metric == FALSE) {
DT.settings.table <- rbind(DT.settings.table,
data.frame(matrix(c("TREE_IMPURITY_METRIC", "TREE_IMPURITY_ENTROPY"),
nrow=1, ncol=2, byrow=TRUE,
dimnames = list(NULL,c("SETTING_NAME", "SETTING_VALUE")))))
}
if (!is.null(max_depth)) {
DT.settings.table <- rbind(DT.settings.table,
data.frame(matrix(c("TREE_TERM_MAX_DEPTH", max_depth),
nrow=1, ncol=2, byrow=TRUE,
dimnames = list(NULL,c("SETTING_NAME", "SETTING_VALUE")))))
}
if (!is.null(minrec_split)) {
DT.settings.table <- rbind(DT.settings.table,
data.frame(matrix(c("TREE_TERM_MINREC_SPLIT", minrec_split),
nrow=1, ncol=2, byrow=TRUE,
dimnames = list(NULL,c("SETTING_NAME", "SETTING_VALUE")))))
}
if (!is.null(minpct_split)) {
DT.settings.table <- rbind(DT.settings.table,
data.frame(matrix(c("TREE_TERM_MINPCT_SPLIT", minpct_split),
nrow=1, ncol=2, byrow=TRUE,
dimnames = list(NULL,c("SETTING_NAME", "SETTING_VALUE")))))
}
if (!is.null(minrec_node)) {
DT.settings.table <- rbind(DT.settings.table,
data.frame(matrix(c("TREE_TERM_MINREC_NODE", minrec_node),
nrow=1, ncol=2, byrow=TRUE,
dimnames = list(NULL,c("SETTING_NAME", "SETTING_VALUE")))))
}
if (!is.null(minpct_node)) {
DT.settings.table <- rbind(DT.settings.table,
data.frame(matrix(c("TREE_TERM_MINPCT_NODE", minpct_node),
nrow=1, ncol=2, byrow=TRUE,
dimnames = list(NULL,c("SETTING_NAME", "SETTING_VALUE")))))
}
RODM_store_settings(database, DT.settings.table, auto_data_prep,
sql.log.file, cost_matrix)
dt.list <- RODM_create_model(
database, model_name, "dbms_data_mining.classification",
data_table_name, case_id_column_name, target_column_name,
retrieve_outputs_to_R, sql.log.file)
if (retrieve_outputs_to_R == TRUE) {
query.string <- paste(
"SELECT * FROM ",
" XMLTable('for $s in /PMML/TreeModel//ScoreDistribution ",
" return ",
" <scores id=\"{$s/../@id}\" ",
" tvalue=\"{$s/@value}\" ",
" tcount=\"{$s/@recordCount}\" ",
" />' ",
" passing dbms_data_mining.get_model_details_xml('", model_name, "') ",
" COLUMNS ",
" node_id NUMBER PATH '/scores/@id', ",
" target_value VARCHAR2(4000) PATH '/scores/@tvalue', ",
" target_count NUMBER PATH '/scores/@tcount') ", sep="");
distributions <- sqlQuery(database, query = query.string)
if (!is.null(sql.log.file)) write(query.string, file = sql.log.file, append = TRUE, ncolumns = 1000)
dt.list <- c(dt.list, list("dt.distributions" = distributions))
query.string <- paste(
"WITH X as ",
"(SELECT * FROM ",
" XMLTable('for $n in /PMML/TreeModel//Node ",
" let $rf := ",
" if (count($n/CompoundPredicate) > 0) then ",
" $n/CompoundPredicate/*[1]/@field ",
" else ",
" if (count($n/SimplePredicate) > 0) then ",
" $n/SimplePredicate/@field ",
" else ",
" $n/SimpleSetPredicate/@field ",
" let $ro := ",
" if (count($n/CompoundPredicate) > 0) then ",
" if ($n/CompoundPredicate/*[1] instance of ",
" element(SimplePredicate)) then ",
" $n/CompoundPredicate/*[1]/@operator ",
" else if ($n/CompoundPredicate/*[1] instance of ",
" element(SimpleSetPredicate)) then ",
" (\"in\") ",
" else () ",
" else ",
" if (count($n/SimplePredicate) > 0) then ",
" $n/SimplePredicate/@operator ",
" else if (count($n/SimpleSetPredicate) > 0) then ",
" (\"in\") ",
" else () ",
" let $rv := ",
" if (count($n/CompoundPredicate) > 0) then ",
" if ($n/CompoundPredicate/*[1] instance of ",
" element(SimplePredicate)) then ",
" $n/CompoundPredicate/*[1]/@value ",
" else ",
" $n/CompoundPredicate/*[1]/Array/text() ",
" else ",
" if (count($n/SimplePredicate) > 0) then ",
" $n/SimplePredicate/@value ",
" else ",
" $n/SimpleSetPredicate/Array/text() ",
" let $sf := ",
" if (count($n/CompoundPredicate) > 0) then ",
" $n/CompoundPredicate/*[2]/@field ",
" else () ",
" let $so := ",
" if (count($n/CompoundPredicate) > 0) then ",
" if ($n/CompoundPredicate/*[2] instance of ",
" element(SimplePredicate)) then ",
" $n/CompoundPredicate/*[2]/@operator ",
" else if ($n/CompoundPredicate/*[2] instance of ",
" element(SimpleSetPredicate)) then ",
" (\"in\") ",
" else () ",
" else () ",
" let $sv := ",
" if (count($n/CompoundPredicate) > 0) then ",
" if ($n/CompoundPredicate/*[2] instance of ",
" element(SimplePredicate)) then ",
" $n/CompoundPredicate/*[2]/@value ",
" else ",
" $n/CompoundPredicate/*[2]/Array/text() ",
" else () ",
" return ",
" <pred id=\"{$n/../@id}\" ",
" score=\"{$n/@score}\" ",
" rec=\"{$n/@recordCount}\" ",
" cid=\"{$n/@id}\" ",
" rf=\"{$rf}\" ",
" ro=\"{$ro}\" ",
" rv=\"{$rv}\" ",
" sf=\"{$sf}\" ",
" so=\"{$so}\" ",
" sv=\"{$sv}\" ",
" />' ",
"passing dbms_data_mining.get_model_details_xml('", model_name, "') ",
" COLUMNS ",
" parent_node_id NUMBER PATH '/pred/@id', ",
" child_node_id NUMBER PATH '/pred/@cid', ",
" rec NUMBER PATH '/pred/@rec', ",
" score VARCHAR2(4000) PATH '/pred/@score', ",
" rule_field VARCHAR2(4000) PATH '/pred/@rf', ",
" rule_op VARCHAR2(20) PATH '/pred/@ro', ",
" rule_value VARCHAR2(4000) PATH '/pred/@rv', ",
" surr_field VARCHAR2(4000) PATH '/pred/@sf', ",
" surr_op VARCHAR2(20) PATH '/pred/@so', ",
" surr_value VARCHAR2(4000) PATH '/pred/@sv')) ",
"select pid parent_node, nid node, rec record_count, ",
" score prediction, rule_pred local_rule, surr_pred local_surrogate, ",
" rtrim(replace(full_rule,'$O$D$M$'),' AND') full_simple_rule from ( ",
" select row_number() over (partition by nid order by rn desc) rn, ",
" pid, nid, rec, score, rule_pred, surr_pred, full_rule from ( ",
" select rn, pid, nid, rec, score, rule_pred, surr_pred, ",
" sys_connect_by_path(pred, '$O$D$M$') full_rule from ( ",
" select row_number() over (partition by nid order by rid) rn, ",
" pid, nid, rec, score, rule_pred, surr_pred, ",
" nvl2(pred,pred || ' AND ',null) pred from( ",
" select rid, pid, nid, rec, score, rule_pred, surr_pred, ",
" decode(rn, 1, pred, null) pred from ( ",
" select rid, nid, rec, score, pid, rule_pred, surr_pred, ",
" nvl2(root_op, '(' || root_field || ' ' || root_op || ' ' || root_value || ')', null) pred, ",
" row_number() over (partition by nid, root_field, root_op order by rid desc) rn from ( ",
" SELECT ",
" connect_by_root(parent_node_id) rid, ",
" child_node_id nid, ",
" rec, score, ",
" connect_by_root(rule_field) root_field, ",
" connect_by_root(rule_op) root_op, ",
" connect_by_root(rule_value) root_value, ",
" nvl2(rule_op, '(' || rule_field || ' ' || rule_op || ' ' || rule_value || ')', null) rule_pred, ",
" nvl2(surr_op, '(' || surr_field || ' ' || surr_op || ' ' || surr_value || ')', null) surr_pred, ",
" parent_node_id pid ",
" FROM ( ",
" SELECT parent_node_id, child_node_id, rec, score, rule_field, surr_field, rule_op, surr_op, ",
" replace(replace(rule_value,'" "', ''', '''),'"', '''') rule_value, ",
" replace(replace(surr_value,'" "', ''', '''),'"', '''') surr_value ",
" FROM ( ",
" SELECT parent_node_id, child_node_id, rec, score, rule_field, surr_field, ",
" decode(rule_op,'lessOrEqual','<=','greaterThan','>',rule_op) rule_op, ",
" decode(rule_op,'in','('||rule_value||')',rule_value) rule_value, ",
" decode(surr_op,'lessOrEqual','<=','greaterThan','>',surr_op) surr_op, ",
" decode(surr_op,'in','('||surr_value||')',surr_value) surr_value ",
" FROM X) ",
" ) ",
" CONNECT BY PRIOR child_node_id = parent_node_id ",
" ) ",
" ) ",
" ) ",
" ) ",
" CONNECT BY PRIOR rn = rn - 1 ",
" AND PRIOR nid = nid ",
" START WITH rn = 1 ",
" ) ",
") ",
"where rn = 1", sep="");
nodes <- sqlQuery(database, query = query.string)
if (!is.null(sql.log.file)) write(query.string, file = sql.log.file, append = TRUE, ncolumns = 1000)
dt.list <- c(dt.list, list("dt.nodes" = nodes))
}
if (leave_model_in_dbms == FALSE) RODM_drop_model(database, model_name, sql.log.file)
return(dt.list)
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.