code
stringlengths
1
13.8M
compareCluster <- function(geneClusters, fun="enrichGO", data='', source_from=NULL, ...) { if(is.character(fun)){ if(fun %in% c("groupGO", "enrichGO", "enrichKEGG")){ fun <- utils::getFromNamespace(fun, "clusterProfiler") } else if(fun %in% c("enrichDO", "enrichPathway")){ fun <- utils::getFromNamespace(fun , "DOSE") } else { source_env <- .GlobalEnv if(!is.null(source_from)){ source_env <- loadNamespace(source_from) } fun <- get(fun, envir = source_env) } } if (typeof(geneClusters) == 'language') { if (!is.data.frame(data)) { stop ('no data provided with formula for compareCluster') } else { genes.var = all.vars(geneClusters)[1] n.var = length(all.vars(geneClusters)) grouping.formula = gsub('^.*~', '~', as.character(as.expression(geneClusters))) n.group.var = length(all.vars(formula(grouping.formula))) geneClusters = dlply(.data=data, formula(grouping.formula), .fun=function(x) { if ( (n.var - n.group.var) == 1 ) { as.character(x[[genes.var]]) } else if ( (n.var - n.group.var) == 2 ) { fc.var = all.vars(geneClusters)[2] geneList = structure(x[[fc.var]], names = x[[genes.var]]) sort(geneList, decreasing=TRUE) } else { stop('only Entrez~group or Entrez|logFC~group type formula is supported') } }) } } clProf <- llply(geneClusters, .fun=function(i) { x=suppressMessages(fun(i, ...)) if (inherits(x, c("enrichResult", "groupGOResult", "gseaResult"))){ as.data.frame(x) } } ) clusters.levels = names(geneClusters) clProf.df <- ldply(clProf, rbind) if (nrow(clProf.df) == 0) { warning("No enrichment found in any of gene cluster, please check your input...") return(NULL) } clProf.df <- plyr::rename(clProf.df, c(.id="Cluster")) clProf.df$Cluster = factor(clProf.df$Cluster, levels=clusters.levels) if (is.data.frame(data) && grepl('+', grouping.formula)) { groupVarName <- strsplit(grouping.formula, split="\\+") %>% unlist %>% gsub("~", "", .) %>% gsub("^\\s*", "", .) %>% gsub("\\s*$", "", .) groupVars <- sapply(as.character(clProf.df$Cluster), strsplit, split="\\.") %>% do.call(rbind, .) for (i in seq_along(groupVarName)) { clProf.df[, groupVarName[i]] <- groupVars[,i] } i <- which(colnames(clProf.df) %in% groupVarName) j <- (1:ncol(clProf.df))[-c(1, i)] clProf.df <- clProf.df[, c(1, i, j)] } res <- new("compareClusterResult", compareClusterResult = clProf.df, geneClusters = geneClusters, .call = match.call(expand.dots=TRUE) ) params <- modifyList(extract_params(args(fun)), extract_params([email protected])) keytype <- params[['keyType']] if (is.null(keytype)) keytype <- "UNKNOWN" readable <- params[['readable']] if (length(readable) == 0) readable <- FALSE res@keytype <- keytype res@readable <- as.logical(readable) res@fun <- params[['fun']] %||% 'enrichGO' return(res) } extract_params <- function(x) { y <- rlang::quo_text(x) if (is.function(x)) y <- sub('\nNULL$', '', y) y <- gsub('"', '', y) %>% sub("[^\\(]+\\(", "", .) %>% sub("\\)$", "", .) %>% gsub("\\s+", "", .) y <- strsplit(y, ",")[[1]] params <- sub("=.*", "", y) vals <- sub(".*=", "", y) i <- params != vals params <- params[i] vals <- vals[i] names(vals) <- params return(as.list(vals)) } setMethod("show", signature(object="compareClusterResult"), function (object){ cmsg <- paste("T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, ", "W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu. ", "clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. ", "The Innovation. 2021, 2(3):100141", sep="\n", collapse="\n") geneClusterLen <- length(object@geneClusters) fun <- object@fun result <- object@compareClusterResult clusts <- split(result, result$Cluster) nterms <- sapply(clusts, nrow) cat(" cat(" cat(" str(object@geneClusters) cat(" str(result) cat(" for (i in seq_along(clusts)) { cat(" } cat(" citation_msg <- NULL if (fun == "enrichDO" || fun == "enrichNCG") { citation_msg <- paste(" Guangchuang Yu, Li-Gen Wang, Guang-Rong Yan, Qing-Yu He. DOSE: an", " R/Bioconductor package for Disease Ontology Semantic and Enrichment", " analysis. Bioinformatics 2015 31(4):608-609", sep="\n", collapse="\n") } else if (fun == "enrichPathway") { citation_msg <- paste(" Guangchuang Yu, Qing-Yu He. ReactomePA: an R/Bioconductor package for", " reactome pathway analysis and visualization. Molecular BioSystems", " 2016, 12(2):477-479", sep="\n", collapse="\n") } if (!is.null(citation_msg)) { cat(paste0("1.", citation_msg), "\n\n") cat(paste0("2.", cmsg), "\n\n") } else { cat(cmsg, "\n\n") } }) setMethod("summary", signature(object="compareClusterResult"), function(object, ...) { warning("summary method to convert the object to data.frame is deprecated, please use as.data.frame instead.") return(as.data.frame(object, ...)) } ) merge_result <- function(enrichResultList) { if ( !is(enrichResultList, "list")) { stop("input should be a name list...") } if ( is.null(names(enrichResultList))) { stop("input should be a name list...") } x <- lapply(enrichResultList, as.data.frame) names(x) <- names(enrichResultList) y <- ldply(x, "rbind") y <- plyr::rename(y, c(.id="Cluster")) y$Cluster = factor(y$Cluster, levels=names(enrichResultList)) new("compareClusterResult", compareClusterResult = y) }
group.test <- function(Teste){ n <- nrow(Teste) letras <- c(1:1000000) w <- Teste[order(Teste[, 1], decreasing = TRUE), ] M <- rep("", n) k <- 1 aux <- cbind(w[, -1]) x <- apply(aux, 1, sum) if (dim(aux)[2] == 1 & sum(aux) == n) { aux3 <- aux M <- rep("g1", n) } else { if (any(x == 0)) { for (z in 1:n) { s <- rep(0, n) if (x[z] == 0) { s[z] <- 1 aux <- cbind(aux, s) } } } pos1 <- aux[1, ] == 1 poscol1 <- which(pos1 == T) aux1 <- cbind(aux[ , -poscol1]) numcol <- ncol(aux1) ncont <- -1 for (j in 1:numcol) { k <- 0 for (i in 1:n) { if (aux1[i, j] ==0 ) { k <- k + 1 } if (aux1[i+1, j] == 1) break } ncont <- cbind(ncont,k) } aux2 <- aux1[, order(ncont[-1])] aux3 <- cbind(aux[, poscol1], aux2) a <- aux3[, 1] for (i in 1:n) { if (a[i] == 1) { M[i] <- paste("g", letras[1], sep="") } else { M[i] <- M[i] } } for (j in 2:(numcol+1)) { for (i in 1:n) { if (aux3[i, j] == 1) { M[i] <- paste(M[i], letras[j], sep = "g") } else { M[i] <- M[i] } } } } return(data.frame(Means = w[, 1], Groups = M)) } group.test2 <- function(Teste) { n <- nrow(Teste) ordertest <- Teste[order(Teste[, 1], decreasing = TRUE), ] letras <- c(1:1000000) M <- rep("", n) if (all(ordertest[, 2] == 1)) { M <- rep("g1", n) } else { M[1] <- "g1" j <- 2 for (i in 2:n) { if (ordertest[i, 2] == ordertest[i-1, 2]) { M[i] <- M[i-1] } else { M[i] <- paste(M[i], letras[j], sep = "g") j <- j + 1 } } } return(data.frame(Means = ordertest[, 1], Groups = M)) }
magrittr::`%>%` NULL utils::globalVariables(c( ".", "inner_join", "mutate", "select", "rename", "quo", "UQ", "quo_name", "from_row", "from_col", "to_row", "to_col", "type", "value", "everything", "data_type", "is_na", ".value", ".data_type", "n", ":=", ".partition", "ns_env", "corner_row", "corner_col", ".boundary" )) concatenate <- function(..., combine_factors = TRUE, fill_factor_na = TRUE) { c.POSIXct <- function(..., recursive = FALSE) { .POSIXct(c(unlist(lapply(list(...), unclass))), tz = "UTC") } dots <- (...) dots_is_null <- purrr::map_lgl(dots, rlang::is_null) if (all(dots_is_null)) { return(dots) } dots_is_scalar_vector <- purrr::map_lgl(dots, rlang::is_scalar_vector) if (any(!dots_is_scalar_vector[!dots_is_null])) { return(dots) } classes <- purrr::map(dots, class) if (length(unique(classes[!dots_is_null])) == 1L) { all_classes <- classes[!dots_is_null][[1]] first_class <- all_classes[1] if (first_class %in% c("factor", "ordered")) { if (combine_factors || fill_factor_na) { dots[dots_is_null] <- list(factor(NA_character_)) } if (combine_factors) { return(forcats::fct_c(rlang::splice(dots))) } else { return(dots) } } else { NA_class_ <- NA if (is.list(dots)) { class(NA_class_) <- all_classes dots[dots_is_null] <- list(NA_class_) } else { dots[dots_is_null] <- NA_class_ } dots <- do.call(c, c(dots, use.names = FALSE)) class(dots) <- all_classes return(dots) } } dots[dots_is_null] <- NA factors <- purrr::map_lgl(classes, ~ .[1] %in% c("factor", "ordered")) dots[factors] <- purrr::map(dots[factors], as.character) dates <- purrr::map_lgl(classes, ~ .[1] %in% c("Date", "POSIXct", "POSIXlt")) dots[dates] <- purrr::map(dots[dates], format, justify = "none", trim = TRUE) do.call(c, c(dots, use.names = FALSE)) } na_types <- list( logical = NA, integer = NA_integer_, double = NA_real_, character = NA_character_, complex = NA_complex_ ) na_of_type <- function(x) structure(na_types[[typeof(x)]], class = class(x)) maybe_format_list_element <- function(x, name, functions) { func <- functions[[name]] if (is.null(func)) func <- identity func(x) } standardise_direction <- function(direction) { stopifnot(length(direction) == 1L) dictionary <- c(`up-left` = "up-left", `up` = "up", `up-right` = "up-right", `right-up` = "right-up", `right` = "right", `right-down` = "right-down", `down-right` = "down-right", `down` = "down", `down-left` = "down-left", `left-down` = "left-down", `left` = "left", `left-up` = "left-up", `up-ish` = "up-ish", `right-ish` = "right-ish", `down-ish` = "down-ish", `left-ish` = "left-ish", NNW = "up-left", N = "up", NNE = "up-right", ENE = "right-up", E = "right", ESE = "right-down", SSE = "down-right", S = "down", SSW = "down-left", WSW = "left-down", W = "left", WNW = "left-up", ABOVE = "up-ish", RIGHT = "right-ish", BELOW = "down-ish", LEFT = "left-ish") if (direction %in% names(dictionary)) return(unname(dictionary[direction])) stop("The direction \"", direction, "\" is not recognised. See ?directions.") }
multilocusTypes <- function(adata) { checkForValidPPEDataset(adata) numLoci <- attr(adata,"numLoci") ploidy <- attr(adata,"ploidy") dioecious <- attr(adata,"dioecious") selfCompatible <- attr(adata,"selfCompatible") progeny <- with(adata,id[!is.na(mother)]) allAdults <- with(adata,id[is.na(mother)]) progenyTypes <- list(); adultTypes <- list() uniqueProgenyTypes <- list() ; uniqueAdultTypes <- list() for (locus in 1:numLoci) { affectedLocus <- paste("Locus",locus,sep="") locusRange <- (3 + dioecious) + (locus-1)*ploidy + 1:ploidy sTypes <- apply(adata[progeny,locusRange], 1, function(vv) { paste(stripNAs(vv),collapse=" ")}) aTypes <- apply(adata[allAdults,locusRange], 1, function(vv) { paste(stripNAs(vv),collapse=" ")}) progenyTypes[[affectedLocus]] <- sTypes adultTypes[[affectedLocus]] <- aTypes uniqueProgenyTypes[[affectedLocus]] <- table(sTypes[sTypes!=""]) uniqueAdultTypes[[affectedLocus]] <- table(aTypes[aTypes!=""]) } numUniqueProgenyTypes <- sapply(uniqueProgenyTypes,length) numUniqueAdultTypes <- sapply(uniqueAdultTypes,length) progenyMLTypes <- do.call("paste",c(progenyTypes,sep=" | ")) names(progenyMLTypes) <- progeny adultMLTypes <- do.call("paste",c(adultTypes,sep=" | ")) names(adultMLTypes) <- allAdults uniqueProgenyMLTypes <- table(progenyMLTypes) uniqueAdultMLTypes <- table(adultMLTypes) numUniqueProgenyMLTypes <- length(uniqueProgenyMLTypes) numUniqueAdultMLTypes <- length(uniqueAdultMLTypes) cc <- utils::stack(lapply(uniqueProgenyTypes,as.vector)) nn <- utils::stack(lapply(uniqueProgenyTypes,names)) rm(uniqueProgenyTypes) uniqueProgenyTypes <- data.frame(Locus=cc$ind, progenyType=nn$values, nIndividuals=cc$values) cc <- utils::stack(lapply(uniqueAdultTypes,as.vector)) nn <- utils::stack(lapply(uniqueAdultTypes,names)) rm(uniqueAdultTypes) uniqueAdultTypes <- data.frame(Locus=cc$ind, adultType=nn$values, nIndividuals=cc$values) tt <- strsplit(names(uniqueProgenyMLTypes),split=" | ",fixed=TRUE) tt <- lapply(tt, function(vv){ if (length(vv) < numLoci) { return(c(vv,"")) } else { return(vv) } }) tt <- as.data.frame(do.call(rbind,tt)) uniqueProgenyMLTypes <- cbind(tt,uniqueProgenyMLTypes) names(uniqueProgenyMLTypes) <- c(paste("Locus",1:numLoci,sep=""), "progenyMLType","Freq") tt <- strsplit(names(uniqueAdultMLTypes),split=" | ",fixed=TRUE) tt <- lapply(tt, function(vv){ if (length(vv) < numLoci) { return(c(vv,"")) } else { return(vv) } }) tt <- as.data.frame(do.call(rbind,tt)) uniqueAdultMLTypes <- cbind(tt,uniqueAdultMLTypes) names(uniqueAdultMLTypes) <- c(paste("Locus",1:numLoci,sep=""), "adultMLType","Freq") alleleSets <- data.frame(row.names=rownames(adata)) for (locus in 1:numLoci) { locusRange <- (3 + dioecious) + (locus-1)*ploidy + 1:ploidy alleleSets[[locus]] <- apply(adata[,locusRange], 1, function(vv) { paste(stripNAs(vv),collapse=" ")}) } names(alleleSets) <- c(paste("Locus",1:numLoci,sep="")) alleleSets$allMLTypes <- apply(alleleSets,1, function(vv){ paste( paste( paste("Locus",1:numLoci,sep=""), vv), collapse=" - ") }) alleleSets <- cbind(adata[,1:(3+dioecious)],alleleSets) return(list(uniqueProgenyTypes=uniqueProgenyTypes, numUniqueProgenyTypes=numUniqueProgenyTypes, uniqueAdultTypes=uniqueAdultTypes, numUniqueAdultTypes=numUniqueAdultTypes, uniqueProgenyMLTypes=uniqueProgenyMLTypes, numUniqueProgenyMLTypes=numUniqueProgenyMLTypes, uniqueAdultMLTypes=uniqueAdultMLTypes, numUniqueAdultMLTypes=numUniqueAdultMLTypes)) }
raptor = function(stop_times, transfers, stop_ids, arrival = FALSE, time_range = 3600, max_transfers = NULL, keep = "all") { from_stop_id <- departure_time_num <- marked <- journey_departure_time <- from_stop_id <- NULL wait_time_to_departure <- marked_departure_time_num <- arrival_time_num <- min_transfer_time <- NULL to_stop_id <- travel_time <- journey_arrival_time <- trnsfrs_from_stop_id <- NULL if(!is.character(stop_ids) && !is.null(stop_ids)) { stop("stop_ids must be a character vector (or NULL)") } stop_times_dt <- as.data.table(stop_times) stop_times_dt <- setup_stop_times(stop_times_dt, reverse = arrival) transfers_dt <- as.data.table(transfers) transfers_dt <- setup_transfers(transfers_dt) from_stop_ids = stop_ids nonexistent_stop_ids = setdiff(from_stop_ids, c(stop_times_dt$to_stop_id, transfers_dt$trnsfrs_from_stop_id, transfers_dt$trnsfrs_to_stop_id)) if(length(nonexistent_stop_ids) > 0) { from_stop_ids <- setdiff(from_stop_ids, nonexistent_stop_ids) if(length(from_stop_ids) == 0) { warning("Stop not found in stop_times or transfers: ", paste(nonexistent_stop_ids, collapse = ", ")) empty_dt = data.table(from_stop_id = character(0), to_stop_id = character(0), travel_time = numeric(0), journey_departure_time = numeric(0), journey_arrival_time = character(0), transfers = numeric(0)) return(empty_dt) } } if(is.null(keep) || !(keep %in% c("shortest", "earliest", "all", "latest"))) { stop(paste0(keep, " is not a supported optimization type, use one of: all, shortest, earliest, latest")) } if(!is.numeric(time_range)) { stop("time_range is not numeric. Needs to be the time range in seconds after the first departure of stop_times") } if(time_range < 1) { stop("time_range is less than 1") } min_departure_time = min(stop_times_dt$departure_time_num) max_departure_time = min_departure_time + time_range if(is.null(max_transfers)) { max_transfers <- 999999 } else if(max_transfers < 0) { stop("max_transfers is less than 0") } transfer_stops = data.frame() if(!is.null(transfers_dt) && max_transfers > 0) { transfer_stops <- transfers_dt[trnsfrs_from_stop_id %in% from_stop_ids] } rptr_colnames = c("to_stop_id", "marked", "journey_arrival_time", "journey_departure_time", "from_stop_id", "transfers") init_stops = data.table( to_stop_id = c(from_stop_ids, transfer_stops$trnsfrs_to_stop_id), marked = F, journey_arrival_time = c(rep(min_departure_time, length(from_stop_ids)), min_departure_time+transfer_stops$min_transfer_time), journey_departure_time = rep(min_departure_time, length(from_stop_ids)+nrow(transfer_stops)), from_stop_id = c(from_stop_ids, transfer_stops$trnsfrs_from_stop_id), transfers = c(rep(0, length(from_stop_ids)), rep(1, nrow(transfer_stops))) ) init_departures = stop_times_dt[init_stops, on = "to_stop_id"] init_departures[, journey_departure_time := departure_time_num] init_departures <- init_departures[!is.na(journey_departure_time)] init_departures[, journey_arrival_time := journey_departure_time ] init_departures[, from_stop_id := to_stop_id] init_departures[, marked := TRUE] init_departures[, transfers := 0] init_departures <- init_departures[, rptr_colnames, with = F] rptr <- rbind(init_stops, init_departures) rptr <- rptr[, rptr_colnames, with = F] rptr <- distinct(rptr) rptr[, journey_arrival_time := journey_arrival_time-1] rptr <- rptr[journey_departure_time <= max_departure_time] k = 0 while(any(rptr$marked)) { rptr_marked <- rptr[marked == TRUE] rptr[,marked := FALSE] setkey(rptr_marked, to_stop_id) departures_marked = stop_times_dt[rptr_marked, on = "to_stop_id", allow.cartesian = TRUE] departures_marked <- departures_marked[departure_time_num > journey_arrival_time,] departures_marked[,wait_time_to_departure := departure_time_num - journey_departure_time] setorder(departures_marked, wait_time_to_departure) departures_marked <- departures_marked[, .SD[1], by=c("to_stop_id", "trip_id")] setorder(departures_marked, departure_time_num) trips_marked <- departures_marked[, .SD[1], by=c("trip_id", "journey_departure_time")] trips_marked <- trips_marked[, c("trip_id", "to_stop_id", "departure_time_num", "journey_departure_time", "from_stop_id")] setnames(trips_marked, c("trip_id", "departure_time_num"), c("trip_id", "marked_departure_time_num")) setkey(trips_marked, trip_id) arrival_candidates = stop_times_dt[trips_marked, on = "trip_id", allow.cartesian = TRUE] arrival_candidates[, transfers := k] arrival_candidates <- arrival_candidates[departure_time_num > marked_departure_time_num] setkey(arrival_candidates, to_stop_id) if(nrow(arrival_candidates) == 0) { break } arrival_candidates[,marked := TRUE] arrival_candidates[,journey_arrival_time := arrival_time_num] arrival_candidates <- arrival_candidates[, rptr_colnames, with = F] if(!is.null(transfers_dt) && (k+1) <= max_transfers) { transfer_candidates = merge( arrival_candidates, transfers_dt, by.x = "to_stop_id", by.y = "trnsfrs_from_stop_id", allow.cartesian = TRUE ) transfer_candidates[, to_stop_id := NULL] setnames(transfer_candidates, old = "trnsfrs_to_stop_id", new = "to_stop_id") transfer_candidates[,journey_arrival_time := (journey_arrival_time + min_transfer_time)] transfer_candidates[,transfers := k+1] transfer_candidates <- transfer_candidates[, rptr_colnames, with = F] arrival_candidates <- rbindlist(list(arrival_candidates, transfer_candidates), use.names = F) } rptr <- rbindlist(list(rptr, arrival_candidates), use.names = F) setorder(rptr, journey_arrival_time) rptr <- rptr[, .SD[1], by = c("to_stop_id", "journey_departure_time")] rptr <- rptr[, rptr_colnames, with = F] k <- k+1 if(k > max_transfers) { break } } rptr[to_stop_id %in% init_stops$to_stop_id, journey_arrival_time := journey_arrival_time + 1] rptr <- rptr[!to_stop_id %in% init_stops$to_stop_id] rptr <- rbind(init_stops, rptr) rptr[,travel_time := journey_arrival_time - journey_departure_time] if(arrival) { max_time = 604800 arrival_tmp = max_time - rptr$journey_arrival_time rptr[,journey_arrival_time := (max_time - journey_departure_time)] rptr[,journey_departure_time := arrival_tmp] stop_tmp = rptr$to_stop_id rptr[,to_stop_id := from_stop_id] rptr[,from_stop_id := stop_tmp] } keep_by = ifelse(arrival, "from_stop_id", "to_stop_id") if(keep == "shortest") { setorder(rptr, travel_time, journey_arrival_time) rptr <- rptr[, .SD[1], by = keep_by] } else if(keep == "earliest") { setorder(rptr, journey_arrival_time, travel_time) rptr <- rptr[, .SD[1], by = keep_by] } else if(keep == "latest") { setorder(rptr, -journey_arrival_time, travel_time) rptr <- rptr[, .SD[1], by = keep_by] } rptr <- rptr[, c("from_stop_id", "to_stop_id", "travel_time", "journey_departure_time", "journey_arrival_time", "transfers")] return(rptr) } travel_times = function(filtered_stop_times, stop_name, time_range = 3600, arrival = FALSE, max_transfers = NULL, max_departure_time = NULL, return_coords = FALSE, return_DT = FALSE, stop_dist_check = 300) { travel_time <- journey_arrival_time <- journey_departure_time <- NULL stop_names = stop_name; rm(stop_name) if("tidygtfs" %in% class(filtered_stop_times)) { gtfs_obj = filtered_stop_times if(is.null(attributes(gtfs_obj$stop_times)$extract_date)) { stop("Travel times cannot be calculated on an unfiltered tidygtfs object. Use filter_feed_by_date().") } filtered_stop_times <- gtfs_obj$stop_times transfers = gtfs_obj$transfers stops = stops_as_dt(gtfs_obj$stops) } else { if(!all(c("stops", "transfers") %in% names(attributes(filtered_stop_times)))) { stop("Stops and transfers not found in filtered_stop_times attributes. Use filter_stop_times() to prepare data or use raptor() for lower level access.") } transfers = attributes(filtered_stop_times)$transfers stops = attributes(filtered_stop_times)$stops } if(!is.null(max_departure_time) && !arrival) { if(!missing(time_range)) { stop("time_range and max_departure_time are set. Only one of them is allowed.") } if(is.character(max_departure_time)) { max_departure_time <- hhmmss_to_seconds(max_departure_time) } min_departure_time = min(filtered_stop_times$departure_time_num) stopifnot(max_departure_time > min_departure_time) time_range <- max_departure_time - min_departure_time } stop_ids = stops$stop_id[which(stops$stop_name %in% stop_names)] if(length(stop_ids) == 0) { stop(paste0("Stop name '", stop_names, "' not found in stops table")) } if(length(stop_ids) > 1 & !is.null(stop_dist_check) & !isFALSE(stop_dist_check)) { stop_dists = stop_group_distances(stops, "stop_name") if(max(stop_dists$dist_max) > stop_dist_check) { stop("Some stops with the same name are more than ", stop_dist_check, " meters apart, see stop_group_distances().\n", "Using travel_times() might lead to unexpected results. Set stop_dist_check=FALSE to ignore this error.") } } rptr = raptor(stop_times = filtered_stop_times, transfers = transfers, stop_ids = stop_ids, max_transfers = max_transfers, arrival = arrival, time_range = time_range, keep = "shortest") .select_stops = function(prefix) { x = stops[,paste0("stop_", c("name", "id", "lon", "lat"))[1:data.table::fifelse(return_coords, 4, 2)], with=FALSE] colnames(x) <- paste0(prefix, colnames(x)) return(x) } rptr_names = merge(.select_stops("from_"), rptr, by = "from_stop_id") rptr_names <- merge(.select_stops("to_"), rptr_names, by = "to_stop_id") keep_by = ifelse(arrival, "from_stop_name", "to_stop_name") setorder(rptr_names, travel_time) rptr_names <- rptr_names[, .SD[1], by = keep_by] rptr_names[,journey_arrival_time := hms::hms(journey_arrival_time)] rptr_names[,journey_departure_time := hms::hms(journey_departure_time)] rptr_names <- rptr_names[,c("from_stop_name", "to_stop_name", "travel_time", "journey_departure_time", "journey_arrival_time", "transfers", "from_stop_id", "to_stop_id", "from_stop_lon", "from_stop_lat", "to_stop_lon", "to_stop_lat")[1:data.table::fifelse(return_coords,12,8)], with = FALSE] if(!return_DT) { rptr_names <- dplyr::as_tibble(rptr_names) } return(rptr_names) } filter_stop_times = function(gtfs_obj, extract_date, min_departure_time, max_arrival_time) { departure_time_num <- arrival_time_num <- NULL if(is.character(extract_date)) { extract_date <- as.Date(extract_date) } if(missing(min_departure_time)) { min_departure_time <- 0 } else if(is.character(min_departure_time)) { min_departure_time <- hhmmss_to_seconds(min_departure_time) } if(missing(max_arrival_time)) { max_arrival_time <- max(gtfs_obj$stop_times$arrival_time)+1 } else if(is.character(max_arrival_time)) { max_arrival_time <- hhmmss_to_seconds(max_arrival_time) } min_departure_time <- as.numeric(min_departure_time) max_arrival_time <- as.numeric(max_arrival_time) if(max_arrival_time <= min_departure_time) { stop("max_arrival_time is before min_departure_time") } service_ids = filter(gtfs_obj$.$dates_services, date == extract_date) if(nrow(service_ids) == 0) { stop(paste0("No stop_times on ", extract_date)) } trip_ids = inner_join(gtfs_obj$trips, service_ids, by = "service_id") trip_ids <- unique(trip_ids$trip_id) stop_times_dt <- as.data.table(gtfs_obj$stop_times) setkey(stop_times_dt, trip_id) set_num_times(stop_times_dt) stop_times_dt <- stop_times_dt[trip_id %in% trip_ids,] stop_times_dt <- stop_times_dt[departure_time_num >= min_departure_time & arrival_time_num <= max_arrival_time,] setindex(stop_times_dt, "stop_id") if(nrow(stop_times_dt) == 0) { stop("No stop times between min_departure_time and max_arrival_time") } attributes(stop_times_dt)$stops <- stops_as_dt(gtfs_obj$stops) attributes(stop_times_dt)$transfers <- gtfs_obj$transfers attributes(stop_times_dt)$extract_date <- extract_date attributes(stop_times_dt)$min_departure_time <- min_departure_time attributes(stop_times_dt)$max_arrival_time <- max_arrival_time return(stop_times_dt) } stops_as_dt = function(gtfs_stops) { stops_dt = as.data.table(gtfs_stops) stops_dt <- stops_dt[,c("stop_id", "stop_name", "stop_lon", "stop_lat")] setkey(stops_dt, "stop_id") setindex(stops_dt, "stop_name") stops_dt } setup_stop_times = function(stop_times, reverse = FALSE) { arrival_time_num <- departure_time_num <- NULL stopifnot(is.data.table(stop_times)) set_num_times(stop_times) setnames(x = stop_times, new = "to_stop_id", old = "stop_id") if(reverse) { max_time = 604800 arrival_time_tmp = stop_times$arrival_time_num stop_times[, arrival_time_num := (max_time - departure_time_num)] stop_times[, departure_time_num := (max_time - arrival_time_tmp)] } if(is.null(key(stop_times)) || "trip_id" != key(stop_times)) { setkeyv(stop_times, "trip_id") } if(is.null(indices(stop_times)) || !("stop_id" %in% indices(stop_times))) { setindex(stop_times, "to_stop_id") } return(stop_times) } setup_transfers = function(transfers) { stopifnot(is.data.table(transfers)) transfer_type <- min_transfer_time <- trnsfrs_from_stop_id <- trnsfrs_to_stop_id <- NULL if(is.null(transfers) || nrow(transfers) == 0) { return(NULL) } if(!"trnsfrs_from_stop_id" %in% colnames(transfers)) { setnames(x = transfers, new = "trnsfrs_from_stop_id", old = "from_stop_id") } if(!"trnsfrs_to_stop_id" %in% colnames(transfers)) { setnames(x = transfers, new = "trnsfrs_to_stop_id", old = "to_stop_id") } transfers <- transfers[transfer_type != "3"] transfers[is.na(min_transfer_time), min_transfer_time := 0] setkey(transfers, "trnsfrs_from_stop_id") return(transfers) } set_num_times = function(stop_times_dt) { arrival_time <- arrival_time_num <- departure_time <- departure_time_num <- NULL stopifnot(is.data.table(stop_times_dt)) if(all(c("arrival_time_num", "departure_time_num") %in% colnames(stop_times_dt))) { return(invisible(stop_times_dt)) } stop_times_dt[,arrival_time_num := as.numeric(arrival_time)] stop_times_dt[,departure_time_num := as.numeric(departure_time)] invisible(stop_times_dt) }
set_couleur_saphirs <- function(map,colEntree=" { msg_error1<-msg_error2<-msg_error3<-msg_error4<-msg_error5 <- NULL if(any(!any(class(map) %in% "leaflet"), !any(class(map) %in% "htmlwidget"))) if(!any(class(map) %in% "leaflet_proxy")) msg_error1 <- "La carte doit etre un objet leaflet ou leaflet_proxy / " if(any(class(colEntree)!="character")) msg_error2 <- "La couleur doit etre de type caractere (nommee ou hexadecimal) / " if(any(class(colSortie)!="character")) msg_error3 <- "La couleur doit etre de type caractere (nommee ou hexadecimal) / " if(any(class(colBorder)!="character")) msg_error4 <- "La couleur de la bordure doit etre de type caractere (nommee ou hexadecimal) / " if(!is.null(map_leaflet)) if (any(!any(class(map_leaflet) %in% "leaflet"), !any(class(map_leaflet) %in% "htmlwidget"))) msg_error5 <- "La carte doit etre un objet leaflet / " if(any(!is.null(msg_error1),!is.null(msg_error2),!is.null(msg_error3),!is.null(msg_error4),!is.null(msg_error5))) { stop(simpleError(paste0(msg_error1,msg_error2,msg_error3,msg_error4,msg_error5))) } if(!is.null(map_leaflet)) { map_proxy <- map map <- map_leaflet } idx_fleche <- NULL idx_legende <- NULL for(i in 1:length(map$x$calls)) { if(map$x$calls[[i]]$method %in% "addPolygons") { if(map$x$calls[[i]]$args[[2]]$nom_fond=="fond_flux") idx_fleche <- i if(map$x$calls[[i]]$args[[2]]$nom_fond=="fond_flux_leg") idx_legende <- i } } if(is.null(map_leaflet)) { val_ent <- which(as.numeric(str_replace_all(substring(map$x$calls[[idx_fleche]]$args[[5]],str_locate(map$x$calls[[idx_fleche]]$args[[5]],":")[[1]]+2,nchar(map$x$calls[[idx_fleche]]$args[[5]])-11)," ",""))>=0) if(length(val_ent)>0) { map$x$calls[[idx_fleche]]$args[[4]]$fillColor[1:length(val_ent)] <- colEntree } val_sor <- which(as.numeric(str_replace_all(substring(map$x$calls[[idx_fleche]]$args[[5]],str_locate(map$x$calls[[idx_fleche]]$args[[5]],":")[[1]]+2,nchar(map$x$calls[[idx_fleche]]$args[[5]])-11)," ",""))<0) if(length(val_sor)>0) { map$x$calls[[idx_fleche]]$args[[4]]$fillColor[length(val_ent)+1:length(val_sor)] <- colSortie } map$x$calls[[idx_fleche]]$args[[4]]$color <- colBorder if(!is.null(idx_legende)) { if(length(val_ent)>0 & length(val_sor)==0) { map$x$calls[[idx_legende]]$args[[4]]$fillColor <- colEntree }else if(length(val_ent)==0 & length(val_sor)>0) { map$x$calls[[idx_legende]]$args[[4]]$fillColor <- colSortie }else { map$x$calls[[idx_legende]]$args[[4]]$fillColor <- "transparent" } map$x$calls[[idx_legende]]$args[[4]]$color <- colBorder } }else { map_leaflet <- map map <- map_proxy clearGroup(map, group = "carte_saphirs") analyse_WGS84 <- map_leaflet$x$calls[[idx_fleche]]$args[[2]]$analyse_WGS84 donnees <- map_leaflet$x$calls[[idx_fleche]]$args[[2]]$donnees code_epsg <- map_leaflet$x$calls[[idx_fleche]]$args[[2]]$code_epsg emprise <- map_leaflet$x$calls[[idx_fleche]]$args[[2]]$emprise varFlux <- map_leaflet$x$calls[[idx_fleche]]$args[[2]]$var_flux max_var <- map_leaflet$x$calls[[idx_fleche]]$args[[2]]$max_var largeurFlecheMax <- map_leaflet$x$calls[[idx_fleche]]$args[[2]]$largeur large_pl <- map_leaflet$x$calls[[idx_fleche]]$args[[2]]$distance map <- addPolygons(map = map, data = analyse_WGS84, stroke = TRUE, color = colBorder, opacity = 1, weight = 1, options = pathOptions(pane = "fond_saphirs", clickable = T), popup = paste0("<b><font color= fill = T, fillColor = sapply(donnees[,varFlux], function(x) if(x>0){colEntree}else{colSortie}), fillOpacity = 1, group = "carte_saphirs", layerId = list(analyse_WGS84=analyse_WGS84,donnees=donnees,colEntree=colEntree,colSortie=colSortie,code_epsg=code_epsg,emprise=emprise,nom_fond="fond_flux",var_flux=varFlux,max_var=max(abs(donnees[,varFlux])),largeur=largeurFlecheMax,distance=large_pl) ) if(!is.null(idx_legende)) { if(max(as.data.frame(donnees)[,varFlux])<0) { map_leaflet$x$calls[[idx_fleche]]$args[[2]]$colEntree <- NULL map_leaflet$x$calls[[idx_fleche]]$args[[2]]$colSortie <- colSortie }else if(min(as.data.frame(donnees)[,varFlux])>=0) { map_leaflet$x$calls[[idx_fleche]]$args[[2]]$colEntree <- colEntree map_leaflet$x$calls[[idx_fleche]]$args[[2]]$colSortie <- NULL }else { map_leaflet$x$calls[[idx_fleche]]$args[[2]]$colEntree <- NULL map_leaflet$x$calls[[idx_fleche]]$args[[2]]$colSortie <- NULL } map_leaflet$x$calls[[idx_fleche]]$args[[4]]$color <- colBorder titre <- map_leaflet$x$calls[[idx_legende]]$args[[2]]$titre lng <- map_leaflet$x$calls[[idx_legende]]$args[[2]]$lng lat <- map_leaflet$x$calls[[idx_legende]]$args[[2]]$lat zoom <- map_leaflet$x$calls[[idx_legende]]$args[[2]]$zoom map <- add_legende_saphirs(map, titre = titre, lng = lng, lat = lat, zoom = zoom, map_leaflet = map_leaflet) } } return(map) }
run_engine_tte <- function( param_files, n_sims = 1L, mode = c("s", "r", "p"), seed = NULL, analysis_data = NULL, analysis_mode = NULL, arm_selection = NULL, armsdropped = NULL, complete_data_analysis = NULL, current_week = NULL, execdata = NULL, final = NULL, fsimdata = NULL, fsimexp = NULL, fsimparam = NULL, interim = NULL, keepfiles = NULL, mcmc_num = NULL, noadapt = NULL, s2_aux_paramfile = NULL, stage = NULL, verbose = FALSE, version = NULL ) { run_engine_common_impl( param_files = param_files, n_sims = n_sims, mode = match.arg(mode), seed = seed, analysis_data = analysis_data, analysis_mode = analysis_mode, arm_selection = arm_selection, armsdropped = armsdropped, complete_data_analysis = complete_data_analysis, current_week = current_week, execdata = execdata, final = final, fsimdata = fsimdata, fsimexp = fsimexp, fsimparam = fsimparam, interim = interim, keepfiles = keepfiles, mcmc_num = mcmc_num, noadapt = noadapt, s2_aux_paramfile = s2_aux_paramfile, stage = stage, verbose = verbose, set = "TTEDesignParameterSet", type = "3", version = version ) }
ts_vva_plot <- function(.data, .date_col, .value_col){ date_col_var_expr <- rlang::enquo(.date_col) value_col_var_expr <- rlang::enquo(.value_col) if(!is.data.frame(.data)){ stop(call. = FALSE, ".data is not a data.frame/tibble, please supply.") } if(rlang::quo_is_missing(date_col_var_expr) | rlang::quo_is_missing(value_col_var_expr)){ stop(call. = FALSE, "Both .date_col and .value_col must be supplied.") } data_tbl <- tibble::as_tibble(.data) %>% dplyr::select({{date_col_var_expr}},{{value_col_var_expr}}) data_diff_tbl <- data_tbl %>% timetk::tk_augment_differences(.value = {{value_col_var_expr}}, .differences = 1) %>% timetk::tk_augment_differences(.value = {{value_col_var_expr}}, .differences = 2) %>% dplyr::rename(velocity = dplyr::contains("_diff1")) %>% dplyr::rename(acceleration = dplyr::contains("_diff2")) %>% tidyr::pivot_longer(-{{date_col_var_expr}}) %>% dplyr::mutate(name = stringr::str_to_title(name)) %>% dplyr::mutate(name = forcats::as_factor(name)) g <- ggplot2::ggplot( data = data_diff_tbl, ggplot2::aes( x = {{date_col_var_expr}}, y = value, group = name, color = name ) ) + ggplot2::geom_line() + ggplot2::facet_wrap(name ~ ., ncol = 1, scale = "free") + ggplot2::theme_minimal() + ggplot2::labs( x = "Date", y = "", color = "" ) p <- plotly::ggplotly(g) output_list <- list( data = list( augmented_data_tbl = data_diff_tbl ), plots = list( static_plot = g, interactive_plot = p ) ) return(invisible(output_list)) }
factor2color <- function (x, colors = NULL) { x <- if (!is.factor(x)){ as.factor(x) warning("'x' has been coerced to a factor.") } else x n <- nlevels(x) colors <- if (is.null(colors)){ if (requireNamespace("RColorBrewer", quietly = TRUE)) RColorBrewer::brewer.pal(n = max(n, 3L, na.rm = TRUE), name = "Set3")[1L: n] else rainbow(n) } else rep(colors, length.out = n) vapply(x, function(y) colors[levels(x) == as.character(y)], character(1L)) }
simulate_trial <- function(n_int = 50, n_fin = 100, cohorts_start = 1, rr_comb, rr_mono, rr_back, rr_plac, rr_transform, random_type = NULL, trial_struc = "all_plac", random = FALSE, prob_comb_rr = NULL, prob_mono_rr = NULL, prob_back_rr = NULL, prob_plac_rr = NULL, prob_rr_transform = prob_rr_transform, stage_data = TRUE, cohort_random = NULL, cohorts_max = 4, sr_drugs_pos = 1, sr_pats = cohorts_max * (n_fin + 3 * cohorts_max), sr_first_pos = FALSE, target_rr = c(0,0,1), cohort_offset = 0, sharing_type = "all", safety_prob = 0, ...) { sample.vec <- function(x, ...) x[sample(length(x), ...)] coh_left_check <- function(x) { if (x$decision[1] %in% c("none", "PROMISING", "CONTINUE") & x$decision[2] == "none") { ret <- TRUE } else { ret <- FALSE } return(ret) } create_cohort_initial <- function(trial_struc, cohorts_start, n_int, n_fin, rr_comb_vec, rr_mono_vec, rr_back_vec, rr_plac_vec) { if (trial_struc == "no_plac") { res_list <- rep(list(c(list(decision = rep("none", 2), alloc_ratio = NULL, n_thresh = NULL, start_n = 0), rep(list(list(rr = NULL, resp_bio = NULL, resp_hist = NULL, n = NULL)), 3))), cohorts_start) for (i in 1:cohorts_start) { names(res_list)[i] <- paste0("Cohort", i) names(res_list[[i]])[5:7] <- c("Comb", "Mono", "Back") res_list[[i]]$alloc_ratio <- c(1,1,1) if (n_int == n_fin) {n_thresh_vec <- c(Inf, n_int)}else{n_thresh_vec <- c(n_int, Inf)} res_list[[i]]$n_thresh <- n_thresh_vec res_list[[i]][[5]]$rr <- rr_comb_vec[i] res_list[[i]][[6]]$rr <- rr_mono_vec[i] res_list[[i]][[7]]$rr <- rr_back_vec[i] } } else { res_list <- rep(list(c(list(decision = rep("none", 2), alloc_ratio = NULL, n_thresh = NULL, start_n = 0), rep(list(list(rr = NULL, resp_bio = NULL, resp_hist = NULL, n = NULL)), 4))), cohorts_start) for (i in 1:cohorts_start) { names(res_list)[i] <- paste0("Cohort", i) names(res_list[[i]])[5:8] <- c("Comb", "Mono", "Back", "Plac") res_list[[i]]$alloc_ratio <- c(1,1,1,1) if (n_int == n_fin) {n_thresh_vec <- c(Inf, n_int)}else{n_thresh_vec <- c(n_int, Inf)} res_list[[i]]$n_thresh <- n_thresh_vec res_list[[i]][[5]]$rr <- rr_comb_vec[i] res_list[[i]][[6]]$rr <- rr_mono_vec[i] res_list[[i]][[7]]$rr <- rr_back_vec[i] res_list[[i]][[8]]$rr <- rr_plac_vec[i] } } if (cohorts_start > 1) { if (sharing_type != "cohort") { res_list <- update_alloc_ratio(res_list) } } return(res_list) } create_cohort_new <- function(res_list, plac, n_int, n_fin, sharing_type, rr_comb_vec, rr_mono_vec, rr_back_vec, rr_plac_vec) { if (n_int == n_fin) {n_thresh_vec <- c(Inf, n_int)}else{n_thresh_vec <- c(n_int, Inf)} if (plac) { new_list <- list(c(list(decision = rep("none", 2), alloc_ratio = c(1,1,1,1), n_thresh = n_thresh_vec, start_n = sum(sapply(res_list, function(x) total_n(x)), na.rm = T) ), rep(list(list(rr = NULL, resp_bio = rep(NA, length(res_list[[1]][[5]]$n)), resp_hist = rep(NA, length(res_list[[1]][[5]]$n)), n = rep(NA, length(res_list[[1]][[5]]$n)))), 4))) names(new_list)[1] <- paste0("Cohort", length(res_list) + 1) names(new_list[[1]])[5:8] <- c("Comb", "Mono", "Back", "Plac") new_list[[1]][[5]]$rr <- rr_comb_vec[length(res_list) + 1] new_list[[1]][[6]]$rr <- rr_mono_vec[length(res_list) + 1] new_list[[1]][[7]]$rr <- rr_back_vec[length(res_list) + 1] new_list[[1]][[8]]$rr <- rr_plac_vec[length(res_list) + 1] } else { new_list <- list(c(list(decision = rep("none", 2), alloc_ratio = c(1,1,1), n_thresh = n_thresh_vec, start_n = sum(sapply(res_list, function(x) total_n(x)), na.rm = T) ), rep(list(list(rr = NULL, resp_bio = rep(NA, length(res_list[[1]][[5]]$n)), resp_hist = rep(NA, length(res_list[[1]][[5]]$n)), n = rep(NA, length(res_list[[1]][[5]]$n)))), 3))) names(new_list)[1] <- paste0("Cohort", length(res_list) + 1) names(new_list[[1]])[5:7] <- c("Comb", "Mono", "Back") new_list[[1]][[5]]$rr <- rr_comb_vec[length(res_list) + 1] new_list[[1]][[6]]$rr <- rr_mono_vec[length(res_list) + 1] new_list[[1]][[7]]$rr <- rr_back_vec[length(res_list) + 1] } res_list <- c(res_list, new_list) if (sharing_type != "cohort") { res_list <- update_alloc_ratio(res_list) } return(res_list) } final_n_cohort <- function(res_list) { res <- matrix(nrow = 4, ncol = length(res_list)) for (i in 1:length(res_list)) { for (j in 1:length(res_list[[i]]$alloc_ratio)) { res[j, i] <- sum(res_list[[i]][[j+4]]$n, na.rm = T) } } rownames(res) <- c("Combo", "Mono", "Backbone", "Placebo") colnames(res) <- paste0("Cohort", 1:length(res_list)) return(res) } is_sr_reached <- function(res_list, sr_drugs_pos, sr_pats, expected) { ret <- 0 positives <- sum(substring(sapply(res_list, function(x) x$decision[2]), 1, 2) == "GO") if (positives >= sr_drugs_pos) { ret <- 1 } if (sr_pats < expected) { if (sum(sapply(res_list, function(x) total_n(x)), na.rm = T) > sr_pats) { ret <- 1 } } return(ret) } total_n <- function(x) { if ("Plac" %in% names(x)) { sum(sapply(x[c("Comb", "Back", "Mono", "Plac")], function(y) y$n), na.rm = T) } else { sum(sapply(x[c("Comb", "Back", "Mono")], function(y) y$n), na.rm = T) } } total_rb <- function(x) { if ("Plac" %in% names(x)) { sum(sapply(x[c("Comb", "Back", "Mono", "Plac")], function(y) y$resp_bio), na.rm = T) } else { sum(sapply(x[c("Comb", "Back", "Mono")], function(y) y$resp_bio), na.rm = T) } } total_rh <- function(x) { if ("Plac" %in% names(x)) { sum(sapply(x[c("Comb", "Back", "Mono", "Plac")], function(y) y$resp_hist), na.rm = T) } else { sum(sapply(x[c("Comb", "Back", "Mono")], function(y) y$resp_hist), na.rm = T) } } update_alloc_ratio <- function(res_list) { cohorts_left <- which(sapply(res_list, function(x) coh_left_check(x))) comb_numb <- sum(sapply(res_list[cohorts_left], function(x) names(x)[5:8]) == "Comb", na.rm = T) back_numb <- sum(sapply(res_list[cohorts_left], function(x) names(x)[5:8]) == "Back", na.rm = T) mono_numb <- sum(sapply(res_list[cohorts_left], function(x) names(x)[5:8]) == "Mono", na.rm = T) plac_numb <- sum(sapply(res_list[cohorts_left], function(x) names(x)[5:8]) == "Plac", na.rm = T) for (i in cohorts_left) { if (length(res_list[[i]]$alloc_ratio) == 3) { res_list[[i]]$alloc_ratio <- c(comb_numb, mono_numb, 1) } else { res_list[[i]]$alloc_ratio <- c(comb_numb, mono_numb, 1, 1) } } return(res_list) } if (random) { if (random_type == "absolute") { rr_comb_vec <- sample.vec(rr_comb, cohorts_max, prob = prob_comb_rr, replace = TRUE) rr_back_vec <- sample.vec(rr_back, cohorts_max, prob = prob_back_rr, replace = TRUE) rr_mono_vec <- sample.vec(rr_mono, cohorts_max, prob = prob_mono_rr, replace = TRUE) rr_plac_vec <- sample.vec(rr_plac, cohorts_max, prob = prob_plac_rr, replace = TRUE) } if (random_type == "risk_difference") { rr_plac_vec <- sample.vec(rr_plac, cohorts_max, prob = prob_plac_rr, replace = TRUE) mono_add <- sample.vec(rr_mono, cohorts_max, prob = prob_mono_rr, replace = TRUE) back_add <- sample.vec(rr_back, cohorts_max, prob = prob_back_rr, replace = TRUE) rr_mono_vec <- pmin(rr_plac_vec + mono_add, 1) rr_back_vec <- pmin(rr_plac_vec + back_add, 1) comb_add <- sample.vec(rr_comb, cohorts_max, prob = prob_comb_rr, replace = TRUE) rr_comb_vec <- pmin(rr_plac_vec + back_add + mono_add + comb_add, 1) } if (random_type == "risk_ratio") { rr_plac_vec <- sample.vec(rr_plac, cohorts_max, prob = prob_plac_rr, replace = TRUE) mono_add <- sample.vec(rr_mono, cohorts_max, prob = prob_mono_rr, replace = TRUE) back_add <- sample.vec(rr_back, cohorts_max, prob = prob_back_rr, replace = TRUE) rr_mono_vec <- pmin(rr_plac_vec * mono_add, 1) rr_back_vec <- pmin(rr_plac_vec * back_add, 1) comb_add <- sample.vec(rr_comb, cohorts_max, prob = prob_comb_rr, replace = TRUE) rr_comb_vec <- pmin(rr_plac_vec * mono_add * back_add * comb_add, 1) } if (random_type == "odds_ratios") { odds_to_rr <- function(x) {x/(1+x)} rr_to_odds <- function(x) {x/(1-x)} rr_plac_vec <- sample.vec(rr_plac, cohorts_max, prob = prob_plac_rr, replace = TRUE) mono_add_or <- sample.vec(rr_mono, cohorts_max, prob = prob_mono_rr, replace = TRUE) back_add_or <- sample.vec(rr_back, cohorts_max, prob = prob_back_rr, replace = TRUE) odds_plac_vec <- rr_to_odds(rr_plac_vec) odds_mono_vec <- odds_plac_vec * mono_add_or odds_back_vec <- odds_plac_vec * back_add_or rr_comb_interaction <- sample.vec(rr_comb, cohorts_max, prob = prob_comb_rr, replace = TRUE) odds_comb_vec <- odds_plac_vec * mono_add_or * back_add_or * rr_comb_interaction rr_mono_vec <- odds_to_rr(odds_mono_vec) rr_back_vec <- odds_to_rr(odds_back_vec) rr_comb_vec <- odds_to_rr(odds_comb_vec) } rr_transform_vec <- rr_transform[sample(1:length(rr_transform), cohorts_max, prob = prob_rr_transform, replace = TRUE)] } else { rr_comb_vec <- rep(rr_comb, cohorts_max) rr_back_vec <- rep(rr_back, cohorts_max) rr_mono_vec <- rep(rr_mono, cohorts_max) rr_plac_vec <- rep(rr_plac, cohorts_max) rr_transform_vec <- rr_transform[sample(1:length(rr_transform), cohorts_max, prob = 1, replace = TRUE)] } cohorts_left <- 1:cohorts_start trial_stop <- 0 first_success <- -1 last_cohort_time <- 0 res_list <- create_cohort_initial(trial_struc, cohorts_start, n_int, n_fin, rr_comb_vec, rr_mono_vec, rr_back_vec, rr_plac_vec) Total_N_Vector <- NULL comb_suc <- 0 mono_suc <- 0 back_suc <- 0 while (!trial_stop) { if (!identical(cohorts_left, which(sapply(res_list, function(x) coh_left_check(x)))) & sharing_type != "cohort") { res_list <- update_alloc_ratio(res_list) } cohorts_left <- which(sapply(res_list, function(x) coh_left_check(x))) cohorts_finished <- which(!sapply(res_list, function(x) coh_left_check(x))) patients_timestamp <- 0 for (i in cohorts_left) { f <- match.fun(rr_transform_vec[[i]]) if (length(res_list[[i]]$alloc_ratio) == 3) { for (j in 5:7) { res_list[[i]][[j]]$n <- c(res_list[[i]][[j]]$n, res_list[[i]]$alloc_ratio[j-4]) patients_timestamp <- patients_timestamp + res_list[[i]]$alloc_ratio[j-4] new_probs <- f(res_list[[i]][[j]]$rr) draw <- t(stats::rmultinom(res_list[[i]]$alloc_ratio[j-4], 1, new_probs)) new_resp_bio <- 0 new_resp_hist <- 0 for (k in 1:nrow(draw)) { if (draw[k,2] == 1) { new_resp_bio <- new_resp_bio + 1 } if (draw[k,3] == 1) { new_resp_hist <- new_resp_hist + 1 } if (draw[k,4] == 1) { new_resp_hist <- new_resp_hist + 1 new_resp_bio <- new_resp_bio + 1 } } res_list[[i]][[j]]$resp_bio <- c(res_list[[i]][[j]]$resp_bio, new_resp_bio) res_list[[i]][[j]]$resp_hist <- c(res_list[[i]][[j]]$resp_hist, new_resp_hist) } } else { for (j in 5:8) { res_list[[i]][[j]]$n <- c(res_list[[i]][[j]]$n, res_list[[i]]$alloc_ratio[j-4]) patients_timestamp <- patients_timestamp + res_list[[i]]$alloc_ratio[j-4] new_probs <- f(res_list[[i]][[j]]$rr) draw <- t(stats::rmultinom(res_list[[i]]$alloc_ratio[j-4], 1, new_probs)) new_resp_bio <- 0 new_resp_hist <- 0 for (k in 1:nrow(draw)) { if (draw[k,2] == 1) { new_resp_bio <- new_resp_bio + 1 } if (draw[k,3] == 1) { new_resp_hist <- new_resp_hist + 1 } if (draw[k,4] == 1) { new_resp_hist <- new_resp_hist + 1 new_resp_bio <- new_resp_bio + 1 } } res_list[[i]][[j]]$resp_bio <- c(res_list[[i]][[j]]$resp_bio, new_resp_bio) res_list[[i]][[j]]$resp_hist <- c(res_list[[i]][[j]]$resp_hist, new_resp_hist) } } } for (i in cohorts_finished) { if (length(res_list[[i]]$alloc_ratio) == 3) { for (j in 5:7) { res_list[[i]][[j]]$n <- c(res_list[[i]][[j]]$n, NA) res_list[[i]][[j]]$resp_bio <- c(res_list[[i]][[j]]$resp_bio, NA) res_list[[i]][[j]]$resp_hist <- c(res_list[[i]][[j]]$resp_hist, NA) } } else { for (j in 5:8) { res_list[[i]][[j]]$n <- c(res_list[[i]][[j]]$n, NA) res_list[[i]][[j]]$resp_bio <- c(res_list[[i]][[j]]$resp_bio, NA) res_list[[i]][[j]]$resp_hist <- c(res_list[[i]][[j]]$resp_hist, NA) } } } last_cohort_time <- last_cohort_time + patients_timestamp for (i in cohorts_left) { safety <- stats::rbinom(1, 1, 1 - ((1 - safety_prob) ^ patients_timestamp)) if (safety) { if (res_list[[i]]$decision[1] == "none") {res_list[[i]]$decision[1] <- "STOP_SAFETY"} res_list[[i]]$decision[2] <- "STOP_SAFETY" res_list[[i]]$final_n <- sum(sapply(res_list, function(x) total_n(x)), na.rm = T) res_list[[i]]$sup_final <- FALSE res_list[[i]]$final_n_cohort <- total_n(res_list[[i]]) if(is.null(res_list[[i]]$interim_n)) {res_list[[i]]$interim_n <- NA} if(is.null(res_list[[i]]$interim_n_cohort)) {res_list[[i]]$interim_n_cohort <- NA} if(is.null(res_list[[i]]$sup_interim)) {res_list[[i]]$sup_interim <- NA} if(is.null(res_list[[i]]$fut_interim)) {res_list[[i]]$fut_interim <- NA} } } if (sum(sapply(res_list, function(x) total_n(x)), na.rm = T) > (cohorts_max * (n_fin + 3 * cohorts_max))) { stop("Total Sample Size is greater than should be possible with settings") } ind_int <- intersect( which(sapply(res_list, function(x) total_n(x)) >= sapply(res_list, function(x) x$n_thresh[1])), which(sapply(res_list, function(x) x$decision[1]) %in% c("none")) ) if (length(ind_int) > 0) { for (i in ind_int) { res_list <- make_decision_trial(res_list, which_cohort = i, interim = TRUE, sharing_type = sharing_type, ...) res_list[[i]]$interim_n <- sum(sapply(res_list, function(x) total_n(x)), na.rm = T) res_list[[i]]$interim_n_cohort <- sum(total_n(res_list[[i]]), na.rm = T) if (res_list[[i]]$decision[1] == "GO_SUP") { res_list[[i]]$decision[2] <- "GO_SUP" res_list[[i]]$n_thresh <- c(Inf, Inf) if (first_success == -1) { first_success <- length(res_list[[i]][[7]]$n) } } if (res_list[[i]]$decision[1] == "STOP_FUT") { res_list[[i]]$decision[2] <- "STOP_FUT" res_list[[i]]$n_thresh <- c(Inf, Inf) } if (res_list[[i]]$decision[1] == "PROMISING") { res_list[[i]]$n_thresh <- c(Inf, n_fin) } if (res_list[[i]]$decision[1] == "CONTINUE") { res_list[[i]]$n_thresh <- c(Inf, n_fin) } } } ind_fin <- intersect( which(sapply(res_list, function(x) total_n(x)) >= sapply(res_list, function(x) x$n_thresh[2])), which(sapply(res_list, function(x) x$decision[2]) %in% c("none", "PROMISING", "CONTINUE")) ) if (length(ind_fin) > 0) { for (i in ind_fin) { res_list <- make_decision_trial(res_list, which_cohort = i, interim = FALSE, sharing_type = sharing_type, ...) res_list[[i]]$final_n <- sum(sapply(res_list, function(x) total_n(x)), na.rm = T) res_list[[i]]$final_n_cohort <- total_n(res_list[[i]]) res_list[[i]]$n_thresh <- c(Inf, Inf) } if (res_list[[i]]$decision[2] == "GO_SUP") { if (first_success == -1) { first_success <- length(res_list[[i]][[7]]$n) } } } if (is_sr_reached(res_list, sr_drugs_pos, sr_pats, cohorts_max * (n_fin + 3 * cohorts_max))) { trial_stop <- 1 ind_stop_sup <- which(sapply(res_list, function(x) x$decision[2]) %in% c("none", "PROMISING", "CONTINUE")) for (j in ind_stop_sup) { res_list[[j]]$decision[2] <- "STOP_SR" res_list[[j]]$final_n <- sum(sapply(res_list, function(x) total_n(x)), na.rm = T) res_list[[j]]$final_n_cohort <- total_n(res_list[[j]]) res_list[[j]]$sup_final <- FALSE if (is.null(res_list[[j]]$interim_n)) { res_list[[j]]$interim_n <- NA res_list[[j]]$interim_n_cohort <- NA res_list[[j]]$sup_interim <- NA res_list[[j]]$fut_interim <- NA } } ind_stop_prior <- which(!sapply(res_list, function(x) x$decision[2]) %in% c("none", "PROMISING", "CONTINUE")) for (j in ind_stop_prior) { if (is.null(res_list[[j]]$interim_n)) { res_list[[j]]$interim_n <- NA res_list[[j]]$interim_n_cohort <- NA res_list[[j]]$sup_interim <- NA res_list[[j]]$fut_interim <- NA } } } if (first_success == -1 | !sr_first_pos) { if (length(res_list) < cohorts_max) { if (!trial_stop) { if(!is.null(cohort_random)) { if (last_cohort_time >= cohort_offset) { prob_new <- 1 - ((1 - cohort_random) ^ patients_timestamp) new_cohort <- stats::rbinom(1, 1, prob_new) if (new_cohort) { if (trial_struc == "all_plac") { plac <- TRUE } if (trial_struc == "no_plac") { plac <- FALSE } if (trial_struc == "stop_post_mono") { if (mono_suc == 0) { if (any(!(sapply(res_list, function(x) x$decision[2]) %in% c("none", "STOP_SAFETY")))) { cohorts_outcome <- which(!(sapply(res_list, function(x) (x$decision[2] %in% c("none", "STOP_SAFETY"))))) for (i in cohorts_outcome) { if (!is.null(res_list[[i]]$sup_final_list)) { mat_result <- res_list[[i]]$sup_final_list[[1]] } else { mat_result <- res_list[[i]]$sup_interim_list[[1]] } success_mono <- apply(mat_result, MARGIN = 2, function(x) all(x, na.rm = T))[3:4] if (any(success_mono)) { mono_suc <- 1 } } if (mono_suc) { plac <- FALSE } else { plac <- TRUE } } else { plac <- TRUE } } else { plac <- FALSE } } if (trial_struc == "stop_post_back") { if (back_suc == 0) { if (any(!(sapply(res_list, function(x) x$decision[2]) %in% c("none", "STOP_SAFETY")))) { cohorts_outcome <- which(!(sapply(res_list, function(x) (x$decision[2] %in% c("none", "STOP_SAFETY"))))) for (i in cohorts_outcome) { if (!is.null(res_list[[i]]$sup_final_list)) { mat_result <- res_list[[i]]$sup_final_list[[1]] } else { mat_result <- res_list[[i]]$sup_interim_list[[1]] } success_back <- apply(mat_result, MARGIN = 2, function(x) all(x, na.rm = T))[3] if (success_back) { back_suc <- 1 } } if (back_suc) { plac <- FALSE } else { plac <- TRUE } } else { plac <- TRUE } } else { plac <- FALSE } } comb_suc <- any(substring(sapply(res_list, function(x) x$decision[2]), 1, 2) == "GO") if (!comb_suc) { res_list <- create_cohort_new(res_list, plac, n_int, n_fin, sharing_type, rr_comb_vec, rr_mono_vec, rr_back_vec, rr_plac_vec) } } } } } } } if (!any(sapply(res_list, function(x) x$decision[2]) %in% c("none", "PROMISING", "CONTINUE"))) { trial_stop <- 1 } Total_N_Vector <- c(Total_N_Vector, sum(sapply(res_list, function(x) total_n(x)), na.rm = T)) } for (i in 1:length(res_list)) { if (is.null(res_list[[i]]$final_n)) { res_list[[i]]$final_n <- NA res_list[[i]]$final_n_cohort <- NA res_list[[i]]$sup_final <- NA res_list[[i]]$fut_final <- NA } if (is.null(res_list[[i]]$interim_n) & is.null(res_list[[i]]$final_n)) { res_list[[i]]$interim_n <- NA res_list[[i]]$interim_n_cohort <- NA res_list[[i]]$sup_interim <- NA res_list[[i]]$fut_interim <- NA res_list[[i]]$final_n <- sum(sapply(res_list, function(x) total_n(x)), na.rm = T) res_list[[i]]$final_n_cohort <- NA res_list[[i]]$sup_final <- NA res_list[[i]]$fut_final <- NA } } if (n_int == n_fin) { for (i in 1:length(res_list)) { res_list[[i]]$interim_n <- NA res_list[[i]]$interim_n_cohort <- NA res_list[[i]]$sup_interim <- NA res_list[[i]]$fut_interim <- NA } } truth <- rep(NA, length(res_list)) if (target_rr[3] == 1) { for (i in 1:length(res_list)) { if (length(res_list[[i]]$alloc_ratio) == 3) { truth[i] <- (res_list[[i]][["Comb"]]$rr > res_list[[i]][["Mono"]]$rr + target_rr[1]) & (res_list[[i]][["Comb"]]$rr > res_list[[i]][["Back"]]$rr + target_rr[1]) } else { truth[i] <- (res_list[[i]][["Comb"]]$rr > res_list[[i]][["Mono"]]$rr + target_rr[1]) & (res_list[[i]][["Comb"]]$rr > res_list[[i]][["Back"]]$rr + target_rr[1]) & (res_list[[i]][["Mono"]]$rr > res_list[[i]][["Plac"]]$rr + target_rr[2]) & (res_list[[i]][["Back"]]$rr > res_list[[i]][["Plac"]]$rr + target_rr[2]) } } } if (target_rr[3] == 2) { for (i in 1:length(res_list)) { if (length(res_list[[i]]$alloc_ratio) == 3) { truth[i] <- (res_list[[i]][["Comb"]]$rr / res_list[[i]][["Mono"]]$rr > target_rr[1]) & (res_list[[i]][["Comb"]]$rr / res_list[[i]][["Back"]]$rr > target_rr[1]) } else { truth[i] <- (res_list[[i]][["Comb"]]$rr / res_list[[i]][["Mono"]]$rr > target_rr[1]) & (res_list[[i]][["Comb"]]$rr / res_list[[i]][["Back"]]$rr > target_rr[1]) & (res_list[[i]][["Mono"]]$rr / res_list[[i]][["Plac"]]$rr > target_rr[2]) & (res_list[[i]][["Back"]]$rr / res_list[[i]][["Plac"]]$rr > target_rr[2]) } } } if (target_rr[3] == 3) { odds <- function(x) {x/(1-x)} for (i in 1:length(res_list)) { if (length(res_list[[i]]$alloc_ratio) == 3) { truth[i] <- (odds(res_list[[i]][["Comb"]]$rr) / odds(res_list[[i]][["Mono"]]$rr) > target_rr[1]) & (odds(res_list[[i]][["Comb"]]$rr) / odds(res_list[[i]][["Back"]]$rr) > target_rr[1]) } else { truth[i] <- (odds(res_list[[i]][["Comb"]]$rr) / odds(res_list[[i]][["Mono"]]$rr) > target_rr[1]) & (odds(res_list[[i]][["Comb"]]$rr) / odds(res_list[[i]][["Back"]]$rr) > target_rr[1]) & (odds(res_list[[i]][["Mono"]]$rr) / odds(res_list[[i]][["Plac"]]$rr) > target_rr[2]) & (odds(res_list[[i]][["Back"]]$rr) / odds(res_list[[i]][["Plac"]]$rr) > target_rr[2]) } } } rr_comb_final <- sapply(res_list, function(x) x$Comb$rr) rr_mono_final <- sapply(res_list, function(x) x$Mono$rr) rr_back_final <- sapply(res_list, function(x) x$Back$rr) rr_plac_final <- unlist(sapply(res_list, function(x) x$Plac$rr)) c <- rr_comb_vec[1:length(res_list)] m <- rr_mono_vec[1:length(res_list)] b <- rr_back_vec[1:length(res_list)] p <- rr_plac_vec[1:length(res_list)] p_real <- unlist(sapply(res_list, function(x) x$Plac$rr)) comb_pats <- sapply(res_list, function(x) x$Comb$n) if (length(comb_pats) == 1) {comb_pats <- as.matrix(comb_pats)} comb_pat_sup_th <- sum(comb_pats[, which(c > p)], na.rm = T) comb_pat_sup_real <- sum(comb_pats[, which(c[1:length(p_real)] > p_real)], na.rm = T) mono_pats <- sapply(res_list, function(x) x$Mono$n) if (length(mono_pats) == 1) {mono_pats <- as.matrix(mono_pats)} mono_pat_sup_th <- sum(mono_pats[, which(m > p)], na.rm = T) mono_pat_sup_real <- sum(mono_pats[, which(m[1:length(p_real)] > p_real)], na.rm = T) back_pats <- sapply(res_list, function(x) x$Back$n) if (length(back_pats) == 1) {back_pats <- as.matrix(back_pats)} back_pat_sup_th <- sum(back_pats[, which(b > p)], na.rm = T) back_pat_sup_real <- sum(back_pats[, which(b[1:length(p_real)] > p_real)], na.rm = T) perc_n_sup_th <- (comb_pat_sup_th + mono_pat_sup_th + back_pat_sup_th) / sum(sapply(res_list, function(x) total_n(x)), na.rm = T) if (trial_struc != "no_plac") { could_have_been_randomised <- sum(sapply(res_list[1:length(p_real)], function(x) x$Plac$n), na.rm = T) + sum(sapply(res_list[1:length(p_real)], function(x) x$Comb$n), na.rm = T) + sum(sapply(res_list[1:length(p_real)], function(x) x$Mono$n), na.rm = T) + sum(sapply(res_list[1:length(p_real)], function(x) x$Back$n), na.rm = T) perc_n_sup_real <- (comb_pat_sup_real + mono_pat_sup_real + back_pat_sup_real) / could_have_been_randomised } else { could_have_been_randomised <- 0 perc_n_sup_real <- NA } if (first_success > 0) { comb_pats_to_first_success <- sum(sapply(res_list, function(x) sum(x$Comb$n[1:first_success], na.rm = T)), na.rm = T) mono_pats_to_first_success <- sum(sapply(res_list, function(x) sum(x$Mono$n[1:first_success], na.rm = T)), na.rm = T) back_pats_to_first_success <- sum(sapply(res_list, function(x) sum(x$Back$n[1:first_success], na.rm = T)), na.rm = T) plac_pats_to_first_success <- sum(sapply(res_list, function(x) sum(x$Plac$n[1:first_success], na.rm = T)), na.rm = T) df <- sapply(res_list, function(x) x$Comb$n[1:first_success]) if (!is.null(ncol(df))) { cohorts_to_first_success <- ncol(df) - length(which(colSums(df, na.rm = T) == 0)) } else { cohorts_to_first_success <- 1 } } else { comb_pats_to_first_success <- NA mono_pats_to_first_success <- NA back_pats_to_first_success <- NA plac_pats_to_first_success <- NA cohorts_to_first_success <- NA } cp <- sum(substring(sapply(res_list, function(x) x$decision[2]), 1, 2) == "GO" & truth) fp <- sum(substring(sapply(res_list, function(x) x$decision[2]), 1, 2) == "GO" & !truth) cn <- sum(substring(sapply(res_list, function(x) x$decision[2]), 1, 2) == "ST" & !truth) fn <- sum(substring(sapply(res_list, function(x) x$decision[2]), 1, 2) == "ST" & truth) ret <- list( Decision = sapply(res_list, function(x) x$decision), RR_Comb = rr_comb_final, RR_Mono = rr_mono_final, RR_Back = rr_back_final, RR_Plac = rr_plac_final, RR_Target = target_rr, N_Cohorts = length(res_list), N_Cohorts_First_Suc = cohorts_to_first_success, Total_N_Vector = Total_N_Vector, Final_N_Cohort = final_n_cohort(res_list), Total_N = sum(sapply(res_list, function(x) total_n(x)), na.rm = T), Total_N_First_Suc = comb_pats_to_first_success + back_pats_to_first_success + mono_pats_to_first_success + plac_pats_to_first_success, Perc_N_Sup_Plac_Th = perc_n_sup_th, Perc_N_Sup_Plac_Real = perc_n_sup_real, Total_N_Comb = sum(sapply(res_list, function(x) sum(x$Comb$n, na.rm = T)), na.rm = T), Total_N_Mono = sum(sapply(res_list, function(x) sum(x$Mono$n, na.rm = T)), na.rm = T), Total_N_Back = sum(sapply(res_list, function(x) sum(x$Back$n, na.rm = T)), na.rm = T), Total_N_Plac = sum(sapply(res_list, function(x) sum(x$Plac$n, na.rm = T)), na.rm = T), Total_N_Plac_First_Suc = plac_pats_to_first_success, Total_N_Plac_Pool = could_have_been_randomised, Successes_Hist = sum(sapply(res_list, function(x) total_rh(x)), na.rm = T), Successes_Hist_Comb = sum(sapply(res_list, function(x) sum(x$Comb$resp_hist, na.rm = T)), na.rm = T), Successes_Hist_Mono = sum(sapply(res_list, function(x) sum(x$Mono$resp_hist, na.rm = T)), na.rm = T), Successes_Hist_Back = sum(sapply(res_list, function(x) sum(x$Back$resp_hist, na.rm = T)), na.rm = T), Successes_Hist_Plac = sum(sapply(res_list, function(x) sum(x$Plac$resp_hist, na.rm = T)), na.rm = T), Successes_Bio = sum(sapply(res_list, function(x) total_rb(x)), na.rm = T), Successes_Bio_Comb = sum(sapply(res_list, function(x) sum(x$Comb$resp_bio, na.rm = T)), na.rm = T), Successes_Bio_Mono = sum(sapply(res_list, function(x) sum(x$Mono$resp_bio, na.rm = T)), na.rm = T), Successes_Bio_Back = sum(sapply(res_list, function(x) sum(x$Back$resp_bio, na.rm = T)), na.rm = T), Successes_Bio_Plac = sum(sapply(res_list, function(x) sum(x$Plac$resp_bio, na.rm = T)), na.rm = T), TP = cp, FP = fp, TN = cn, FN = fn, FDR_Trial = ifelse(!is.na(fp/(cp + fp)), fp/(cp + fp), NA), PTP_Trial = ifelse(!is.na(cp/(cp + fn)), cp/(cp + fn), NA), PTT1ER_Trial = ifelse(!is.na(fp/(fp + cn)), fp/(fp + cn), NA), any_P = as.numeric((cp + fp) > 0), Int_GO = sum(sapply(res_list, function(x) x$sup_interim), na.rm = TRUE), Int_STOP = sum(sapply(res_list, function(x) x$fut_interim), na.rm = TRUE), Safety_STOP = sum(sapply(res_list, function(x) (x$decision[2] == "STOP_SAFETY")), na.rm = TRUE), Int_GO_Trial = sum(sapply(res_list, function(x) x$sup_interim), na.rm = TRUE) / length(res_list), Int_STOP_Trial = sum(sapply(res_list, function(x) x$fut_interim), na.rm = TRUE) / length(res_list), Safety_STOP_Trial = sum(sapply(res_list, function(x) (x$decision[2] == "STOP_SAFETY")), na.rm = TRUE) / length(res_list) ) if (stage_data) { ret <- list(Trial_Overview = ret, Stage_Data = res_list) } return(ret) }
ani_plot <- function(outmo,nfrs=25,moname="mymovie",labs,att=TRUE,pca=TRUE,contrib,zoom,movie_format="gif",binary){ oopt <- animation::ani.options(interval = 0.1) if(att==TRUE){ if(zoom==FALSE){ xr=range(unlist(lapply(1:outmo$nchunk,function(jj) {outmo[[jj]]$xr }))) yr=range(unlist(lapply(1:outmo$nchunk,function(jj) {outmo[[jj]]$yr }))) }else{xyr=active_zoom(outmo,nframes=nfrs,att=T)} }else{ if(zoom==FALSE){ xr=range(unlist(lapply(1:outmo$nchunk,function(jj) {outmo[[jj]]$uxr }))) yr=range(unlist(lapply(1:outmo$nchunk,function(jj) {outmo[[jj]]$uyr }))) }else{xyr=active_zoom(outmo,nframes=nfrs,att=F)} } FUN2 <- function(nfrs,nchunk,xr,yr,contrib) { for (chu in 1:nchunk){ if(zoom==FALSE){ lapply(seq(1,nfrs, by = 1), function(i) { plot_fun(outmo,chu,i,xr,yr,lab=labs,att=att,pca=pca,contrib=contrib,binary) animation::ani.pause()}) }else{ lapply(seq(1,nfrs, by = 1), function(i) { plot_fun(outmo,chu,i,xyr[[chu]]$xr[i,],xyr[[chu]]$yr[i,],lab=labs,att=att,pca=pca,contrib=contrib,binary) animation::ani.pause()}) } } } if (file.exists(moname)) file.remove(moname) if(movie_format=="gif"){ saveGIF(FUN2(nfrs,outmo$nchunk,xr,yr,contrib), interval = 0.1,movie.name=paste(moname,".",movie_format,sep="")) }else{ if(att==TRUE){ frame_name="att_frame" }else{ frame_name="obs_frame" } nmax = nfrs*outmo$nchunk saveLatex(FUN2(nfrs,outmo$nchunk,xr,yr,contrib), img.name = frame_name, ani.opts = "controls,width=0.95\\textwidth", latex.filename = ifelse(interactive(), paste(moname,".tex",sep=""), ""), interval = 0.1, nmax = nmax, ani.dev = "pdf", ani.type = "pdf", ani.width = 7, ani.height = 7,documentclass = paste("\\documentclass{article}", "\\usepackage[papersize={7in,7in},margin=0.3in]{geometry}", sep = "\n")) } }
library(tensorflow) model_dir <- tempfile() sess <- tf$Session() input1 <- tf$placeholder(tf$string) input2 <- tf$placeholder(tf$string) output1 <- tf$string_join(inputs = c("Input1: ", input1, "!")) output2 <- tf$string_join(inputs = c("Input2: ", input2, "!")) export_savedmodel( sess, "tensorflow-multiple", inputs = list(i1 = input1, i2 = input2), outputs = list(o1 = output1, o2 = output2), as_text = TRUE)
ICcforest <- function(formula, data, mtry = NULL, ntree = 100L, applyfun = NULL, cores = NULL, na.action = na.pass, suppress = TRUE, trace = TRUE, perturb = list(replace = FALSE, fraction = 0.632), control = partykit::ctree_control(teststat = "quad", testtype = "Univ", mincriterion = 0, saveinfo = FALSE, minsplit = nrow(data) * 0.15, minbucket = nrow(data) * 0.06), ...){ if (packageVersion("partykit") < "1.2.2") { stop("partykit >= 1.2.2 needed for this function.", call. = FALSE) } if (packageVersion("icenReg") < "2.0.8") { stop("icenReg >= 2.0.8 needed for this function.", call. = FALSE) } requireNamespace("inum") if (!requireNamespace("partykit", quietly = TRUE)) { stop("Package \"pkg\" needed for this function to work. Please install it.", call. = FALSE) } X <- data[,as.character(formula[[2]][[2]])] Y <- data[,as.character(formula[[2]][[3]])] if(sum(X==Y)){ epsilon <- min(diff(sort(unique(c(X,Y)))))/20 ID <- which(X==Y) data[ID,as.character(formula[[2]][[3]])] <- epsilon + data[ID,as.character(formula[[2]][[3]])] } .logrank_trafo <- function(x2){ if(!(is.Surv(x2) && isTRUE(attr(x2, "type") == "interval"))){ stop("Response must be a 'Survival' object with Surv(time1,time2,event) format") } Curve <- ic_np(x2[, 1:2]) Left <- 1 - getFitEsts(Curve, q = x2[, 1]) Right <- 1 - getFitEsts(Curve, q = x2[, 2]) Log_Left <- ifelse(Left<=0,0,Left*log(Left)) Log_Right<- ifelse(Right<=0,0,Right*log(Right)) result <- (Log_Left-Log_Right)/(Left-Right) return(matrix(as.double(result),ncol=1)) } h2 <-function(y, x, start = NULL, weights, offset, estfun = TRUE, object = FALSE, ...) { if (all(is.na(weights))==1) weights <- rep(1, NROW(y)) s <- .logrank_trafo(y[weights > 0,,drop = FALSE]) r <- rep(0, length(weights)) r[weights > 0] <- s list(estfun = matrix(as.double(r), ncol = 1), converged = TRUE) } if (is.null(mtry)) mtry <- tuneICRF(formula, data, control = control, suppress = suppress, trace = trace) if (suppress == TRUE){ invisible(capture.output(res <- partykit::cforest(formula, data, control = control, na.action = na.action, ytrafo = h2, mtry = mtry, ntree = ntree, applyfun = applyfun, cores = cores, perturb = perturb, ...))) } else { res <- partykit::cforest(formula, data, control = control, na.action = na.action, ytrafo = h2, mtry = mtry, ntree = ntree, applyfun = applyfun, cores = cores, perturb = perturb, ...) } class(res) <- c("ICcforest", class(res)) return(res) }
filter_period <- function(.data, ..., .date_var, .period = "1 day") { if (rlang::quo_is_missing(rlang::enquo(.date_var))) { message(".date_var is missing. Using: ", tk_get_timeseries_variables(.data)[1]) } UseMethod("filter_period") } filter_period.default <- function(.data, ..., .date_var, .period = "1 day") { stop("Object is not of class `data.frame`.", call. = FALSE) } filter_period.data.frame <- function(.data, ..., .date_var, .period = "1 day") { data_groups_expr <- rlang::syms(dplyr::group_vars(.data)) date_var_expr <- rlang::enquo(.date_var) if (rlang::quo_is_missing(date_var_expr)) { date_var_text <- tk_get_timeseries_variables(.data)[1] date_var_expr <- rlang::sym(date_var_text) } date_var_text <- rlang::quo_name(date_var_expr) if (!date_var_text %in% names(.data)) { rlang::abort(stringr::str_glue("Attempting to use .date_var = {date_var_text}. Column does not exist in .data. Please specify a date or date-time column.")) } ret_tbl <- .data %>% dplyr::mutate(..date_agg = lubridate::floor_date(!! date_var_expr, unit = .period)) %>% dplyr::group_by(!!! data_groups_expr, ..date_agg) %>% dplyr::filter(...) %>% dplyr::ungroup() %>% dplyr::select(-..date_agg) %>% dplyr::group_by(!!! data_groups_expr) return(ret_tbl) }
testname <- function(test) paste0(test$layer, "_", unname(unlist(test$args))[1]) run_facet_test <- function(test) { library(sf) library(grid) library(raster) data(NLD_prov) NLD_prov <- st_sf(name = as.character(NLD_prov$name), geometry=NLD_prov$geometry, stringsAsFactors = FALSE) NLD_prov$by <- factor(rep(c(NA,2,3, 4), each = 3), levels=1:4, labels = letters[1:4]) NLD_prov$v1 <- c(9, 8, 3, 7, 8, NA, NA, NA, NA, 3, 5, NA) NLD_prov$v2 <- c("x", "y", NA, NA, NA, NA, "x", "y", "x", "y", NA, NA) NLD_prov$name2 <- NLD_prov$name NLD_prov$name[c(5, 7, 8, 9)] <- NA filter <- c(TRUE, TRUE) shp <- NLD_prov if (test$layer == "lines") { shp$geometry <- sf::st_cast(shp$geometry, "MULTILINESTRING", group_or_split = FALSE) } dir.create("output", showWarnings = FALSE) filename <- paste0("output/test_", test$layer, "_", unname(unlist(test$args))[1], ".pdf") fun <- paste0("tm_", test$layer) pdf(filename, width = 7, height = 7) settings <- list(drop.units = c(TRUE, FALSE), free.coords = c(TRUE, FALSE), free.scales = c(TRUE, FALSE), drop.empty.facets = c(TRUE, FALSE), showNA = c(TRUE, FALSE), drop.NA.facets = c(TRUE, FALSE)) shortcuts <- c("du", "fc", "fs", "de", "dn", "sn") comb <- do.call(expand.grid, c(settings, list(KEEP.OUT.ATTRS = FALSE))) cat("\ntest:", testname(test), "\n") pb <- txtProgressBar(min = 1, max = nrow(comb), initial = 1) errs <- data.frame(i = 1:nrow(comb), err = character(nrow(comb)), stringsAsFactors = FALSE) for (i in 1:nrow(comb)) { setTxtProgressBar(pb, i) cb <- as.list(comb[i,]) name <- paste(mapply(paste0, shortcuts, c("F", "T")[as.numeric(unlist(cb)) + 1]), collapse = "_") errs[i, 2] <- tryCatch({ tm <- tm_shape(shp, filter = filter) if (fun == "tm_symbols") tm <- tm + tm_borders() print(tm + do.call(fun, test$args) + do.call(tm_facets, c(list(by="by"), cb)) + tm_layout(title=name) ) "" }, error=function(e) { grid::upViewport(0) grid.text(y = .8, label = name) grid.text(y = .2, label = e) as.character(e) }, warning = function(w) { as.character(w) }) } dev.off() errs <- errs[errs$err != "", ] name <- testname(test) filename <- paste0("output/results_", name, ".rds") saveRDS(errs, file = filename) nr <- nrow(errs) if (nr!=0) { cat(name, paste(errs$i, collapse =", "), "\n") } nr }
spm12_contrast = function( name, weights, replicate = c("none", "repl", "replsc", "sess", "both", "bothsc")) { replicate = match.arg(replicate) replicate = convert_to_matlab(replicate) name = convert_to_matlab(name) if (is.matrix(weights)) { weights = rmat_to_matlab_mat(weights) } else { class(weights) = "rowvec" weights = convert_to_matlab(weights) } L = list( name = name, weights = weights, sessrep = replicate ) return(L) } spm12_contrast_list = function( cons, type = "T") { n_cond = names(cons) extractor = function(ind) { lapply(cons, `[[`, ind) } n_cond2 = extractor("name") n_cond2 = unlist(n_cond2) if (!is.null(n_cond2)) { n_cond = n_cond2 } l_cond = length(cons) msg = "Contrasts must be named and not NA!" if (is.null(n_cond)) { stop(msg) } if (any(n_cond %in% "" | is.na(n_cond))) { stop(msg) } if (length(n_cond) != l_cond) { stop("Conditions not the same as the number of names") } type2 = extractor("type") type2 = unlist(type2) if (!is.null(type2)) { type = type2 } type = match.arg( type, choices = c("T", "F"), several.ok = TRUE) type = rep_len(type, length.out = l_cond) cons = mapply(function(x, y) { x$name = y x$type = NULL x }, cons, n_cond, SIMPLIFY = FALSE) cons = lapply(cons, function(x) { r = do.call("spm12_contrast", x) return(r) }) names(cons) = paste0( "{", seq(cons), "}.", paste0(tolower(type), "con") ) return(cons) }
context("AKS interface with managed identity/private cluster") tenant <- Sys.getenv("AZ_TEST_TENANT_ID") app <- Sys.getenv("AZ_TEST_APP_ID") password <- Sys.getenv("AZ_TEST_PASSWORD") subscription <- Sys.getenv("AZ_TEST_SUBSCRIPTION") if(tenant == "" || app == "" || password == "" || subscription == "") skip("Tests skipped: ARM credentials not set") rgname <- make_name(10) rg <- AzureRMR::az_rm$ new(tenant=tenant, app=app, password=password)$ get_subscription(subscription)$ create_resource_group(rgname, location="australiaeast") echo <- getOption("azure_containers_tool_echo") options(azure_containers_tool_echo=FALSE) test_that("AKS works with private cluster", { aksname <- make_name(10) expect_true(is_aks(rg$create_aks(aksname, agent_pools=agent_pool("pool1", 1), managed_identity=TRUE, private_cluster=TRUE))) aks <- rg$get_aks(aksname) expect_true(is_aks(aks)) expect_error(aks$update_service_password()) pool1 <- aks$get_agent_pool("pool1") expect_is(pool1, "az_agent_pool") pools <- aks$list_agent_pools() expect_true(is.list(pools) && length(pools) == 1 && all(sapply(pools, inherits, "az_agent_pool"))) clus <- aks$get_cluster() expect_true(is_kubernetes_cluster(clus)) }) teardown({ options(azure_containers_tool_echo=echo) suppressMessages(rg$delete(confirm=FALSE)) })
decorate_code <- function(text, ...) { text <- str_trim(text) my_opts <- knitr::opts_chunk$merge(list(...)) is_live <- !isTRUE(getOption('knitr.in.progress')) if (my_opts$eval & is_live) { scope_and_run(text) print(eval(parse(text = text))) } if (!is.null(my_opts$flair) && !my_opts$flair) { placeholder <- list(NULL) attr(placeholder, "class") = "decorated" return(placeholder) } else { my_code_fenced <- paste0("```{r}\n", text, "\n```") if (is_live) { knitted <- knitr::knit(text = my_code_fenced, quiet = TRUE) } else { knitted <- knitr::knit_child(text = my_code_fenced, options = my_opts, quiet = TRUE) } knitted <- knitted %>% src_to_list() attr(knitted, "class") <- "decorated" attr(knitted, "orig_code_text") <- text attr(knitted, "chunk_name") <- NA return(knitted) } }
plot_contour <- function(dat, covari.sel, trt.sel, resp.sel, outcome.type, setup.ss, n.grid = c(41, 41), brk.es = c(0, 1, 2, 3), n.brk.axis = 7, para.plot = c(0.35, 2, 20), font.size = c(1.5, 1.2, 1, 0.85, 0.8), title = NULL, subtitle = "default", effect = "HR", point.size = 1.2, filled = FALSE, strip = NULL, show.overall = FALSE, palette = "divergent", col.power = 0.5, show.points = FALSE, new.layout = TRUE){ if(new.layout) old.par <- par(no.readonly=T) if (missing(dat)) stop("Data have not been inputed!") if (!(is.data.frame(dat))) stop("The data set is not with a data frame!") if (missing(covari.sel)) stop("The variables for defining subgroups have not been specified!") if (!(is.numeric(covari.sel))) stop("The variables for defining subgroups are not numeric!") if (length(covari.sel) > 2) stop("This function only considers 2 covariates at most for defining subgroups!") if (missing(trt.sel)) stop("The variable specifying the treatment code (for treatment / control groups) has not been specified!") if (!(length(trt.sel) == 1)) stop("The variable specifying the treatment code can not have more than one component!") if (!(is.factor(dat[, trt.sel]))) stop("The variable specifying the treatment code is not categorical!") if (length(names(table(dat[, trt.sel]))) > 2) stop("The variable specifying the treatment code is not binary!") if (sum(is.element(names(table(dat[, trt.sel])), c("0","1"))) != 2) stop("The treatment code is not 0 or 1!") type.all = c("continuous", "binary", "survival") if (is.null(outcome.type)) stop("The type of the response variable has not been specified!") if (!(is.element(outcome.type, type.all)) == TRUE) stop("A unrecognized type has been inputed!") if (outcome.type == "continuous"){ if (missing(resp.sel)) stop("The response variable has not been specified!") if (!(length(resp.sel) == 1)) stop("The response variable has more than one component!") if (!(is.numeric(dat[, resp.sel]))) stop("The response variable is not numeric!") }else if (outcome.type == "binary"){ if (missing(resp.sel)) stop("The response variable has not been specified!") if (!(length(resp.sel) == 1)) stop("The response variable has more than one component!") if (!(is.factor(dat[, resp.sel]) || is.numeric(dat[, resp.sel]) )) stop("The response variable is not categorical or numerical!") if (length(names(table(dat[, resp.sel]))) > 2) stop("The response variable is not binary!") if (sum(is.element(names(table(dat[, resp.sel])), c("0","1"))) != 2) stop(" The response variable is not coded as 0 and 1!") }else if (outcome.type == "survival"){ if (missing(resp.sel)) stop("The response variablehas not been specified!") if (!(length(resp.sel) == 2)) stop("The response variable for analysing survival data should have two components!") if (!(is.numeric(dat[, resp.sel[1]]))) stop("The response variable specifying survival time is not numeric!") if (!(is.numeric(dat[, resp.sel[2]]) || is.logical(dat[, resp.sel[2]]) ) ) stop("The response variable specifying indicators of right censoring should be numerical or logical!") if (length(names(table(dat[, resp.sel[2]]))) > 2) stop("The response variable specifying indicators of right censoring is not binary!") if (sum(is.element(names(table(dat[, resp.sel[2]])), c("0","1"))) != 2) stop("The response variable specifying indicators of right censoring is not coded as 0 and 1!") } if (missing(setup.ss)) stop("The setting for subgroup sample size and overlap have not been specified!") if (!(is.numeric(setup.ss))) stop("The setting for subgroup sample size and overlap are not numeric!") if (length(setup.ss) != 4) stop("The setting for subgroup smaple size and overlap does not have four elements!") if ((setup.ss[1] > setup.ss[2]) || (setup.ss[3] > setup.ss[4]) || (setup.ss[4] > setup.ss[2])){ stop("subgroup overlap sample sizes is larger than subgroup sample size! Or subgroup sample sizes over the first covariate are not larger than their further divided subgroup sample sizes over the second covariate!") } if (missing(n.grid)) stop("The vector specifying the numbers of the grid points has not been specified!") if (!(length(n.grid) == 2)) stop("The vector specifying the numbers of the grid points does not have two components only!") if (!(is.numeric(n.grid)) || (sum(n.grid < 2) != 0 )) stop("The vector specifying the numbers of the grid points is not numeric or has a value less than 2!") if (missing(brk.es)) stop("The vector specifying the numbers of break points for effect sizes has not been specified!") if (!(is.numeric(brk.es))) stop("The vector specifying the numbers of break points for effect sizes is not numeric!") if (missing(para.plot)) stop("The vector specifying the parameters of the contour plot has not been specified!") if (!(length(para.plot) == 3)) stop("The vector specifying the parameters of the contour plot should have 3 components only!") if (!(is.numeric(para.plot)) || (sum(para.plot < 0) != 0 )) stop("The vector specifying the parameters of the contour plot is not numeric or has a negative element!") if (!(para.plot[2] %in% c(0, 1, 2)) ) stop("The second plot parameter is given with a unallowable value!") if (!(para.plot[3]%%1==0) || (para.plot[3] < 0) ) stop("The third plot parameter should be a positive integer!") if (!(is.numeric(font.size))) stop("The argument about the font sizes of the label and text is not numeric!") if (!(length(font.size) == 5)) stop("The length of the font size settings is not 5!!") names(dat)[trt.sel] = "trt" if (outcome.type == "continuous"){ names(dat)[resp.sel] = "resp" }else if (outcome.type == "binary"){ names(dat)[resp.sel] = "resp" }else if (outcome.type == "survival"){ names(dat)[resp.sel[1]] = "time" names(dat)[resp.sel[2]] = "status" } if (outcome.type == "continuous"){ model.int = lm(resp ~ trt, data = dat) model.sum = summary(model.int) overall.treatment.mean = model.sum$coefficients[2, 1] overall.treatment.upper = 0 overall.treatment.lower = 0 }else if (outcome.type == "binary"){ model.int = glm(resp ~ trt, family = "binomial", data = dat) model.sum = summary(model.int) overall.treatment.mean = model.sum$coefficients[2, 1] overall.treatment.upper = 0 overall.treatment.lower = 0 }else if (outcome.type == "survival"){ if (effect == "HR"){ model.int = survival::coxph(survival::Surv(time, status) ~ trt, data = dat) model.sum = summary(model.int) overall.treatment.mean = model.sum$coef[1, 1] overall.treatment.upper = log(model.sum$conf.int[1, 4]) overall.treatment.lower = log(model.sum$conf.int[1, 3]) } if (effect == "RMST"){ dat.subgr.i = dat rmst = survRM2::rmst2(time = dat.subgr.i$time, status = dat.subgr.i$status, arm = dat.subgr.i$trt, tau = time) overall.treatment.mean = rmst$unadjusted.result[1,1] overall.treatment.upper = 0 overall.treatment.lower = 0 } } covari1.table = round(sort(dat[, covari.sel[1]]), 4) lab.vars = names(dat)[covari.sel] N1 = setup.ss[1]; N2 = setup.ss[2] cutpoint.covar1 = list() cutpoint.covar1[[1]] = vector() cutpoint.covar1[[2]] = vector() low.bd.covar1.idx = 1 upp.bd.covar1.idx = N2 ss.full = dim(dat)[1] i = 0 while (upp.bd.covar1.idx < ss.full){ i = i + 1 low.bd.covar1.idx = 1 + (i-1) * (N2 - N1) upp.bd.covar1.idx = min(N2 + (i-1) * (N2 - N1), nrow(dat)) cutpoint.covar1[[1]][i] = covari1.table[low.bd.covar1.idx] cutpoint.covar1[[2]][i] = covari1.table[upp.bd.covar1.idx] } idx.covar1 = list() n.subgrp.covar1 = length(cutpoint.covar1[[1]]) ss.subgrp.covar1 = vector() for (i in 1 : n.subgrp.covar1 ){ idx.covar1[[i]] = which((dat[, covari.sel[1]] >= cutpoint.covar1[[1]][i] & dat[, covari.sel[1]] <= cutpoint.covar1[[2]][i] ) == T ) ss.subgrp.covar1[i] = length(idx.covar1[[i]]) } N3 = setup.ss[3]; N4 = setup.ss[4] cutpoint.covar2 = list() for (i in 1 : n.subgrp.covar1){ covari2.table = round(sort(dat[idx.covar1[[i]], covari.sel[2]]), 4) cutpoint.covar2[[i]] = list() cutpoint.covar2[[i]][[1]] = vector() cutpoint.covar2[[i]][[2]] = vector() low.bd.covar2.idx = 1 upp.bd.covar2.idx = N4 j = 0 stop = 0 while (stop == 0){ j = j + 1 low.bd.covar2.idx = 1 + (j - 1) * (N4 - N3) upp.bd.covar2.idx = min(N4 + (j - 1) * (N4 - N3), length(covari2.table)) upp.bd.covar2.idx.stop = N4 + (j - 1) * (N4 - N3) cutpoint.covar2[[i]][[1]][j] = covari2.table[low.bd.covar2.idx] cutpoint.covar2[[i]][[2]][j] = covari2.table[upp.bd.covar2.idx] if (upp.bd.covar2.idx >= length(covari2.table)) {cutpoint.covar2[[i]][[2]][j] = max(covari2.table)} if (upp.bd.covar2.idx.stop > length(covari2.table)) {stop=1} } } idx.covar2 = list() n.subgrp.covar2 = vector() ss.subgrp.covar2 = list() for (i in 1 : n.subgrp.covar1){ idx.covar2[[i]] = list() ss.subgrp.covar2[[i]] = list() for (j in 1 : length(cutpoint.covar2[[i]][[1]]) ){ idx.covar2[[i]][[j]] = vector() ss.subgrp.covar2[[i]][[j]] = vector() idx.replace= which((dat[idx.covar1[[i]], covari.sel[2]] >= cutpoint.covar2[[i]][[1]][j] & dat[idx.covar1[[i]], covari.sel[2]] <= cutpoint.covar2[[i]][[2]][j] ) == T ) idx.covar2[[i]][[j]] = idx.covar1[[i]][idx.replace] ss.subgrp.covar2[[i]][[j]] = length(idx.covar2[[i]][[j]]) } n.subgrp.covar2[i] = length(idx.covar2[[i]]) } x.raw = dat[covari.sel[1]] y.raw = dat[covari.sel[2]] all.dat = NULL treatment.mean = vector() ss.subgrp = vector() x = vector() y = vector() k = 0 for (i in 1 : n.subgrp.covar1 ){ for (j in 1 : length(cutpoint.covar2[[i]][[1]])){ k = k + 1 cond1 = sum(dat[idx.covar2[[i]][[j]],]$trt == "0") == 0 cond2 = sum(dat[idx.covar2[[i]][[j]],]$trt == "1") == 0 if (cond1 | cond2 ){ treatment.mean[i] = NA }else{ if (outcome.type == "continuous"){ model.int = lm(resp ~ trt, data = dat[idx.covar2[[i]][[j]],]) model.sum = summary(model.int) treatment.mean[k] = model.sum$coefficients[2, 1] }else if (outcome.type == "binary"){ model.int = glm(resp ~ trt, family = "binomial", data = dat[idx.covar2[[i]][[j]],]) model.sum = summary(model.int) treatment.mean[k] = model.sum$coefficients[2, 1] }else if (outcome.type == "survival"){ model.int = survival::coxph(survival::Surv(time, status) ~ trt, data = dat[idx.covar2[[i]][[j]],]) model.sum = summary(model.int) treatment.mean[k] = model.sum$coef[1, 1] } } all.dat = rbind(all.dat, cbind(dat[idx.covar2[[i]][[j]], covari.sel], treatment.mean[k])) x[k] = (cutpoint.covar1[[2]][i] + cutpoint.covar1[[1]][i])/2 y[k] = (cutpoint.covar2[[i]][[2]][j] + cutpoint.covar2[[i]][[1]][j])/2 ss.subgrp[k] = dim(dat[idx.covar2[[i]][[j]],] )[1] } } colnames(all.dat) = c("x", "y", "treatment.mean") cat("The number of subgroups over the first covariate is", n.subgrp.covar1, "\n") cat("The subgroup sample sizes over the first covariate are actually", ss.subgrp.covar1, "\n") cat("The number of further divided subgroups over the second covariate is", n.subgrp.covar2, "\n") if (subtitle == "default"){ subtitle = bquote(N[11] %~~% .(setup.ss[2]) ~", "~ N[12] %~~% .(setup.ss[1]) ~", "~ N[21] %~~% .(setup.ss[4]) ~", "~ N[22] %~~% .(setup.ss[3])) } treatment.df = data.frame(x, y, treatment.mean) treatment.df.model = loess(treatment.mean ~ x*y, data = treatment.df, span = para.plot[1], degree = para.plot[2]) head(all.dat) treatment.df.model = loess(treatment.mean ~ x*y, data = all.dat, span = para.plot[1], degree = para.plot[2]) min.x = min(dat[,covari.sel[1]]);max.x = max(dat[,covari.sel[1]]) min.y = min(dat[,covari.sel[2]]);max.y = max(dat[,covari.sel[2]]) xy.fit.pt = expand.grid(list(x = seq(min.x, max.x, len = n.grid[1]), y = seq(min.y, max.y, len = n.grid[2]))) treatment.df.model.fit = predict(treatment.df.model, newdata = xy.fit.pt) x.range = seq(min.x, max.x, len = n.grid[1]) y.range = seq(min.y, max.y, len = n.grid[2]) if(!filled){ if (new.layout) graphics::layout(matrix(c(1,2), ncol = 1), heights = c(9,1)) graphics::par(mar=c(4, 4, 3, 2) + 0.1) graphics::plot(x, y, xlim = range(x.range), ylim = range(y.range), xlab = lab.vars[1], ylab = lab.vars[2], main = title, col = "gray80", cex.main = font.size[1], cex.lab = font.size[2], cex.axis = font.size[2], cex.sub = font.size[3]) graphics::mtext(subtitle, cex = font.size[3]) cutoff.es = rev(c(-Inf, brk.es, Inf)) if (palette == "divergent"){ pal.2 = colorRampPalette(c(" pal.YlRd = colorRampPalette(c(" pal.WhBl = colorRampPalette(c(" col.vec.div.pos = pal.WhBl((length(brk.es)+1)/2) col.vec.div.neg = pal.YlRd((length(brk.es)+1)/2) col.vec = c(rev(col.vec.div.neg), col.vec.div.pos) if (!(outcome.type == "survival" & effect == "HR")) col.vec = rev(col.vec) col.point = col.vec } if (palette == "continuous"){ colors = c(' pal.all = colorRampPalette(colors, space = "rgb") col.vec = pal.all((length(brk.es)+1)) if (!(outcome.type == "survival" & effect == "HR")) col.vec = rev(col.vec) col.point = col.vec } if (palette == "hcl"){ col.vec = rev(colorspace::diverge_hcl(n = length(brk.es)-1, c = 100, l = c(50,90), power = col.power)) if (!(outcome.type == "survival" & effect == "HR")) col.vec = rev(col.vec) col.point = col.vec } for (i in 1:(length(cutoff.es) - 1)){ graphics::points(x[setdiff(which((treatment.mean > cutoff.es[i + 1])), which((treatment.mean > cutoff.es[i]) ))], y[setdiff(which((treatment.mean > cutoff.es[i + 1])), which((treatment.mean > cutoff.es[i]) ))], col = col.point[i], pch = 16, cex = point.size) } breaks = pretty(c(-3,3), length(col.vec)) graphics::contour(x.range, y.range, treatment.df.model.fit, levels = breaks, vfont = c("sans serif", "plain"), labcex = font.size[5], col = "darkgreen", lty = "solid", add = TRUE) lab0.es = paste("ES >", brk.es[length(brk.es)]) lab1.es = vector() for (i in length(brk.es) : 2){ lab.es.temp = paste(brk.es[i - 1], "< ES <", brk.es[i]) lab1.es = c(lab1.es, lab.es.temp) } lab2.es =paste("ES <", brk.es[1]) lab.es = c(lab0.es, lab1.es, lab2.es) graphics::par(mar=c(0,0,0,0)) graphics::plot(0,0, xaxt = "n", yaxt = "n", type ="n", frame.plot = FALSE) graphics::legend("bottom", rev(lab.es), horiz = T, cex = font.size[4], col = rev(col.point), pch = 16, bg = "white") } if(filled){ if (palette == "divergent"){ cols = c(' pal.YlRd = colorRampPalette(c(" pal.WhBl = colorRampPalette(c(" col.vec.div.pos = pal.WhBl((length(brk.es)-1)/2) col.vec.div.neg = pal.YlRd((length(brk.es)-1)/2) col.vec = c(rev(col.vec.div.neg), col.vec.div.pos) if (!(outcome.type == "survival" & effect == "HR")) col.vec = rev(col.vec) cols = col.vec } if (palette == "continuous"){ cols = c(' pal.all = colorRampPalette(cols, space = "rgb") col.vec = pal.all((length(brk.es)-1)) if (!(outcome.type == "survival" & effect == "HR")) col.vec = rev(col.vec) cols = col.vec } if (palette == "hcl"){ col.vec = rev(colorspace::diverge_hcl(n = length(brk.es)-1, c = 100, l = c(50,90), power = col.power)) if (!(outcome.type == "survival" & effect == "HR")) col.vec = rev(col.vec) cols = col.vec } if (new.layout) graphics::layout(matrix(c(1, 2), nrow=1, ncol=2), widths=c(4,1)) if (is.null(title)){ graphics::par(mar=c(3,3,2,1), mgp = c(2,1,0)) } else{ graphics::par(mar=c(3,3,4,1), mgp = c(2,1,0)) } axis.sep = 0 graphics::plot(x.range, y.range, type = "n", xlim = c(min.x-axis.sep, max.x+axis.sep), ylim = c(min.y-axis.sep, max.y+axis.sep), xlab = lab.vars[1], ylab = lab.vars[2], main = title, col = "gray80", cex.main = font.size[1], cex.lab = font.size[2], cex.axis = font.size[2], cex.sub = font.size[3]) graphics::mtext(subtitle, cex = font.size[3]) breaks = seq(min(brk.es),max(brk.es), length.out = length(cols)+1) breaks.axis = seq(min(brk.es),max(brk.es), length.out = n.brk.axis) graphics::.filled.contour(x.range, y.range, treatment.df.model.fit, levels = breaks, col = rev(cols)) if(show.points) graphics::points(dat[, covari.sel], cex = 0.5, lwd = 0.1) if (is.null(title)){ par(mar=c(3,2,2,1.5), mgp = c(0,1,0)) } else{ par(mar=c(3,2,4,1.5), mgp = c(0,1,0)) } image.scale(brk.es, col= rev(cols), breaks = breaks, axis.pos = 4, add.axis = FALSE) graphics::axis(2, at = breaks.axis, labels = round(breaks.axis, 3), las = 0, cex.axis = font.size[5]) graphics::mtext(strip, side=4, line=0, cex = .75*font.size[5]) if(show.overall){ cat(sprintf("Overall Treatment effect is: %.4f, with confidence interval: (%.4f;%.4f)\n", overall.treatment.mean, overall.treatment.lower, overall.treatment.upper)) graphics::points(x = 0.5, (overall.treatment.mean), pch = 20) graphics::points(x = 0.5, overall.treatment.lower, pch = "-") graphics::points(x = 0.5, overall.treatment.upper, pch = "-") graphics::segments(x0 = 0.5, x1 = 0.5, y0 = overall.treatment.lower, y1 = overall.treatment.upper) } if(new.layout) graphics::par(old.par) } }
"generate.1d.observations" <- function (D1, subsets, basis.fun, hpa, betas = NULL, export.truth=FALSE) { if(is.null(betas)){ betas <- rbind(c(1, 2), c(1, 1), c(1, 3)) colnames(betas) <- c("const", "x") rownames(betas) <- paste("level", 1:3, sep = "") } if(export.truth){ return(list( hpa=hpa, betas=betas ) ) } sigma_squareds <- hpa$sigma_squareds B <- hpa$B rhos <- hpa$rhos delta <- function(i) { out <- rmvnorm(n = 1, mean = basis.fun(D1[subsets[[i]], , drop = FALSE]) %*% betas[i, ], sigma = sigma_squareds[i] * corr.matrix(xold = D1[subsets[[i]], , drop = FALSE], pos.def.matrix = B[[i]]) ) out <- drop(out) names(out) <- rownames(D1[subsets[[i]], , drop = FALSE]) return(out) } use.clever.but.untested.method <- FALSE if(use.clever.but.untested.method){ z1 <- delta(1) z2 <- delta(2) + rhos[1] * z1[match(subsets[[2]], subsets[[1]])] z3 <- delta(3) + rhos[2] * z2[match(subsets[[3]], subsets[[2]])] return(list(z1 = z1, z2 = z2, z3 = z3)) } else { out <- NULL out[[1]] <- delta(1) for(i in 2:length(subsets)){ out[[i]] <- delta(i) + rhos[i-1] * out[[i-1]][match(subsets[[i]], subsets[[i-1]])] } return(out) } }
NULL xp.akaike.plot <- function(gamobj=NULL, title = "Default", xlb = "Akaike value", ylb="Models", ...) { if(is.null(gamobj)){ gamobj <- check.gamobj() if(is.null(gamobj)){ return() } else { } } else { c1 <- call("assign",pos=1, "current.gam", gamobj,immediate=T) eval(c1) } if(is.null(eval(parse(text=paste("current.gam","$steppit",sep=""))))) { cat("This plot is not applicable without stepwise covariate selection.\n") return() } keep <- eval(parse(text=paste("current.gam","$keep",sep=""))) aic <- apply(keep, 2, function(x) return(x$AIC)) df.resid <- apply(keep, 2, function(x) return(x$df.resid)) term <- apply(keep, 2, function(x) return(x$term)) pdata <- data.frame(aic, df.resid, term) aic.ord <- order(pdata$aic) pdata <- pdata[aic.ord, ] if(dim(pdata)[1] > 30){ pdata1 <- pdata[1:30, ] pdata2 <- pdata[1:30, ] } else { pdata1 <- pdata pdata2 <- pdata } pdata1$term <- unclass(pdata1$term) pdata1$term <- reorder(as.factor(pdata1$term), pdata1$aic) names(pdata1$term) <- pdata2$term if(!is.null(title) && title == "Default") { title <- paste("AIC values from stepwise GAM search on ", eval(parse(text=paste("current.gam","$pars",sep=""))), " (Run ", eval(parse(text=paste("current.gam","$runno",sep=""))), ")",sep="") } xplot <- dotplot(term~aic, pdata1, main=title, xlab=xlb, ylab=ylb, scales=list(cex=0.7, tck=-0.01, y=list(labels=pdata2$term,cex=0.6 ) ), ... ) return(xplot) }
plotSel <- function(model, together=FALSE, series=NULL, sex=NULL, axes=TRUE, legend="bottom", main="", xlab="", ylab="", cex.main=1.2, cex.legend=1, cex.lab=1, cex.axis=0.8, cex.strip=0.8, col.strip="gray95", strip=strip.custom(bg=col.strip), las=1, tck=0, tick.number=5, lty.grid=3, col.grid="gray", pch="m", cex.points=1, col.points="black", lty.lines=1, lwd.lines=4, col.lines=c("red","blue"), plot=TRUE, ...) { panel.each <- function(x, y, subscripts, maturity, col.lines.vector, ...) { panel.grid(h=-1, v=-1, lty=lty.grid, col=col.grid) panel.points(maturity$Age, maturity$P, col=col.points, ...) panel.lines(x, y, col=col.lines.vector[subscripts], ...) } panel.together <- function(x, y, subscripts, maturity, ...) { panel.grid(h=-1, v=-1, lty=lty.grid, col=col.grid) panel.points(maturity$Age, maturity$P, col=col.points, ...) panel.superpose(x, y, type="l", subscripts=subscripts, col=col.lines, ...) } x <- if(class(model)=="scape") model$Sel else model if(is.null(series)) series <- unique(x$Series) if(is.null(sex)) sex <- unique(x$Sex) ok.series <- x$Series %in% series if(!any(ok.series)) stop("please check if the 'series' argument is correct") ok.sex <- x$Sex %in% sex if(!any(ok.sex)) stop("please check if the 'sex' argument is correct") x <- x[ok.series & ok.sex,] if(is.numeric(x$Series)) x$Series <- factor(paste("Series", x$Series)) mat <- x[x$Series=="Maturity",] sel <- x[x$Series!="Maturity",] sel$Series <- factor(as.character(sel$Series)) nseries <- length(unique(sel$Series)) lty.lines <- rep(lty.lines, length.out=max(2,nseries)) lwd.lines <- rep(lwd.lines, length.out=max(2,nseries)) col.lines <- rep(col.lines, length.out=max(2,nseries)) mymain <- list(label=main, cex=cex.main) myxlab <- list(label=xlab, cex=cex.lab) myylab <- list(label=ylab, cex=cex.lab) myrot <- switch(as.character(las), "0"=list(x=list(rot=0),y=list(rot=90)), "1"=list(x=list(rot=0),y=list(rot=0)), "2"=list(x=list(rot=90),y=list(rot=0)), "3"=list(x=list(rot=90),y=list(rot=90))) myscales <- c(list(draw=axes,cex=cex.axis,tck=tck, tick.number=tick.number), myrot) mystrip <- strip.custom(bg=col.strip) mytext <- list(cex=cex.strip) mykey <- list(space=legend, text=list(lab=levels(sel$Series),cex=cex.legend), lines=list(lty=lty.lines,lwd=lwd.lines,col=col.lines)) if(!together) { graph <- xyplot(P~Age|Series*Sex, data=sel, panel=panel.each, maturity=mat, as.table=TRUE, main=mymain, xlab=myxlab, ylab=myylab, scales=myscales, strip=strip, par.strip.text=mytext, pch=pch, cex=cex.points, col.points=col.points, lty=lty.lines, lwd=lwd.lines, col.lines.vector=col.lines[factor(x$Sex)], ...) } else { graph <- xyplot(P~Age|Sex, data=sel, groups=sel$Series, panel=panel.together, maturity=mat, main=mymain, xlab=myxlab, ylab=myylab, scales=myscales, strip=strip, par.strip.text=mytext, key=mykey, pch=pch, cex=cex.points, col.points=col.points, lty=lty.lines, lwd=lwd.lines, col.line=col.lines, ...) } if(is.list(graph$x.limits)) { graph$x.limits <- lapply(graph$x.limits, function(x) c(0, max(x$Age))) graph$y.limits <- lapply(graph$y.limits, function(y) c(-0.005, 1.005)) } else { graph$x.limits <- c(0, max(x$Age)) graph$y.limits <- c(-0.005, 1.005) } if(plot) { print(graph) invisible(x) } else { invisible(graph) } }
dat <- readr::read_csv("cas500.csv", show_col_types = FALSE) filtered.1LVL <- filterLevels(dat, "cellsource", c("job")) filtered.3LVL <- filterLevels(dat, "getlunch", c("home", "tuckshop", "friend")) test_that("Result is only those with the filtered variable remains", { expect_true(all(levels(filtered.1LVL$cellsource) == c("job"))) expect_true(all(levels(filtered.3LVL$getlunch) == c("home", "tuckshop", "friend"))) }) test_that("Result is the other categorical variables remain", { expect_true(all(levels(filtered.1LVL$travel) == levels(dat$travel))) expect_true(all(levels(filtered.1LVL$getlunch) == levels(dat$getlunch))) expect_true(all(levels(filtered.1LVL$gender) == levels(dat$gender))) expect_true(all(levels(filtered.3LVL$cellsource) == levels(dat$cellsource))) expect_true(all(levels(filtered.3LVL$travel) == levels(dat$travel))) expect_true(all(levels(filtered.3LVL$gender) == levels(dat$gender))) }) require(survey) data(api) svy <- svydesign(~dnum+snum, weights = ~pw, fpc = ~fpc1+fpc2, data = apiclus2) test_that("Filtering survey design works", { expect_silent( svy_filtered <- filterLevels(svy, "stype", "E") ) svy_filtered_proper <- subset(svy, stype == "E") expect_equal( svymean(~api00, svy_filtered), svymean(~api00, svy_filtered_proper) ) expect_equal( svy_filtered, eval(parse(text = code(svy_filtered))), ignore_attr = TRUE ) })
library(jug) context("testing Request class") jug_req<-Request$new(RawTestRequest$new()$req) test_that("A variable is correctly attached to a request",{ jug_req$attach("testkey", "test") expect_equal(jug_req$params$testkey, "test") })
prices <- 1:10 ans1 <- btest(prices, function() 1) expect_true(inherits(ans1, "btest"))
validate <- function(conn, index, type = NULL, ...) { is_conn(conn) Search(conn, index, type, search_path = "_validate/query", track_total_hits = NULL, ...) }
NULL boundGrade <- function(current_grade, grade_of_record, route_limit_below, route_limit_above) { delta <- getRelativeGrade(current_grade, grade_of_record) if (delta < -route_limit_below) { g <- changeGrade(grade_of_record, -route_limit_below) return(g) } if (delta > route_limit_above) { g <- changeGrade(grade_of_record, route_limit_above) return(g) } return(current_grade) } updateThetaUsingCombined <- function(examinee_object, current_module_position, config) { if (current_module_position %% 2 == 0) { item_data <- examinee_object@item_data[(current_module_position - 1):current_module_position] combined_response <- examinee_object@response[(current_module_position - 1):current_module_position] item_data[[1]]@raw$ID <- paste0("temp1", 1:length(item_data[[1]]@id)) item_data[[2]]@raw$ID <- paste0("temp2", 1:length(item_data[[2]]@id)) combined_item_data <- item_data[[1]] + item_data[[2]] combined_response <- unlist(combined_response) if (config@final_theta$method == "MLEF") { res_tmp <- mlef( object = combined_item_data, resp = combined_response, fence_slope = config@final_theta$fence_slope, fence_difficulty = config@final_theta$fence_difficulty, max_iter = config@final_theta$max_iter, crit = config@final_theta$crit, theta_range = config@final_theta$bound_ML, truncate = config@final_theta$truncate_ML, max_change = config@final_theta$max_change, do_Fisher = config@final_theta$do_Fisher ) } if (config@final_theta$method == "MLE") { res_tmp <- mle( object = combined_item_data, resp = combined_response, max_iter = config@final_theta$max_iter, crit = config@final_theta$crit, theta_range = config@final_theta$bound_ML, truncate = config@final_theta$truncate_ML, max_change = config@final_theta$max_change, do_Fisher = config@final_theta$do_Fisher ) } if (config@final_theta$method == "EAP") { prior_par <- examinee_object@prior_par_by_module[[current_module_position -1]] prior_dist <- genPriorDist( dist_type = "normal", prior_par = prior_par, theta_grid = config@theta_grid, nj = 1) res_tmp <- eap( object = combined_item_data, resp = combined_response, theta_grid = config@theta_grid, prior = prior_dist ) } o <- list() o$theta <- res_tmp$th o$theta_se <- res_tmp$se examinee_object@estimated_theta_by_test[[current_module_position - 1]] <- o examinee_object@estimated_theta_by_test[[current_module_position ]] <- o return(examinee_object) } else { return(examinee_object) } } updateThetaForRouting <- function(examinee_object, current_module_position, combine_policy) { if (current_module_position %% 2 == 1) { examinee_object@routing_based_on[current_module_position] <- "estimated_theta_by_phase" examinee_object@estimated_theta_for_routing[[current_module_position]] <- examinee_object@estimated_theta_by_phase[[current_module_position]] return(examinee_object) } if (current_module_position %% 2 == 0) { if (combine_policy == "always") { examinee_object@routing_based_on[current_module_position] <- "estimated_theta_by_test" examinee_object@estimated_theta_for_routing[[current_module_position]] <- examinee_object@estimated_theta_by_test[[current_module_position]] return(examinee_object) } if (combine_policy == "never") { examinee_object@routing_based_on[current_module_position] <- "estimated_theta_by_phase" examinee_object@estimated_theta_for_routing[[current_module_position]] <- examinee_object@estimated_theta_by_phase[[current_module_position]] return(examinee_object) } if (combine_policy == "conditional") { grade_is_same <- getRelativeGrade( examinee_object@grade_log[current_module_position], examinee_object@grade_log[current_module_position - 1] ) == 0 if (grade_is_same) { examinee_object@routing_based_on[current_module_position] <- "estimated_theta_by_test" examinee_object@estimated_theta_for_routing[[current_module_position]] <- examinee_object@estimated_theta_by_test[[current_module_position]] return(examinee_object) } else { examinee_object@routing_based_on[current_module_position] <- "estimated_theta_by_phase" examinee_object@estimated_theta_for_routing[[current_module_position]] <- examinee_object@estimated_theta_by_phase[[current_module_position]] return(examinee_object) } } stop(sprintf("unexpected combine_policy: '%s'", combine_policy)) } } updateGrade <- function( examinee_object, assessment_structure, module_position, cut_scores, transition_policy = "CI", transition_CI_alpha, transition_percentile_lower, transition_percentile_upper, item_pool) { theta <- examinee_object@estimated_theta_for_routing[[module_position]]$theta theta_se <- examinee_object@estimated_theta_for_routing[[module_position]]$theta_se if (tolower(transition_policy) %in% c( "pool_difficulty_percentile", "pool_difficulty_percentile_exclude_administered", "ci") ) { if (tolower(transition_policy) == "pool_difficulty_percentile") { theta_L <- theta theta_U <- theta item_b <- na.omit(as.vector(item_pool@ipar)) lower_b <- quantile(item_b, transition_percentile_lower) upper_b <- quantile(item_b, transition_percentile_upper) cut_scores_thisgrade <- c(lower_b, 0, upper_b) } else if (tolower(transition_policy) == "pool_difficulty_percentile_exclude_administered") { theta_L <- theta theta_U <- theta administered_item_pool <- suppressWarnings(do.call(c, examinee_object@item_data)) pool <- item_pool - administered_item_pool item_b <- na.omit(as.vector(pool@ipar)) lower_b <- quantile(item_b, transition_percentile_lower) upper_b <- quantile(item_b, transition_percentile_upper) cut_scores_thisgrade <- c(lower_b, 0, upper_b) } else if (tolower(transition_policy) == "ci") { theta_L <- theta - qnorm((1 - transition_CI_alpha / 2)) * theta_se theta_U <- theta + qnorm((1 - transition_CI_alpha / 2)) * theta_se cut_scores_thisgrade <- cut_scores[[examinee_object@current_grade]] } if (length(cut_scores_thisgrade) > 2) { cut_scores_thisgrade <- c( head(cut_scores_thisgrade, 1), tail(cut_scores_thisgrade, 1) ) } relative_grade <- getRelativeGrade( examinee_object@current_grade, examinee_object@grade_log[1] ) if (module_position %% assessment_structure@n_phase == 0) { if ( relative_grade == -1 && "R1" %in% assessment_structure@test_routing_restrictions ) { examinee_object@current_grade <- changeGrade(examinee_object@current_grade, 1) examinee_object@current_grade <- boundGrade( examinee_object@current_grade, examinee_object@grade_log[1], assessment_structure@route_limit_below, assessment_structure@route_limit_above ) return(examinee_object) } } if (theta_U < cut_scores_thisgrade[1]) { if (module_position %% assessment_structure@n_phase == 0) { if ( relative_grade == 0 && "R2" %in% assessment_structure@test_routing_restrictions ) { examinee_object@current_grade <- changeGrade(examinee_object@current_grade, 0) return(examinee_object) } } examinee_object@current_grade <- changeGrade(examinee_object@current_grade, -1) examinee_object@current_grade <- boundGrade( examinee_object@current_grade, examinee_object@grade_log[1], assessment_structure@route_limit_below, assessment_structure@route_limit_above ) return(examinee_object) } else if (theta_L > cut_scores_thisgrade[2]) { test_position <- module_position %/% assessment_structure@n_phase + 1 if (module_position %% assessment_structure@n_phase == 0) { if ( relative_grade >= (test_position - 1) && "R3" %in% assessment_structure@test_routing_restrictions ) { examinee_object@current_grade <- changeGrade(examinee_object@current_grade, 0) return(examinee_object) } } examinee_object@current_grade <- changeGrade(examinee_object@current_grade, 1) examinee_object@current_grade <- boundGrade( examinee_object@current_grade, examinee_object@grade_log[1], assessment_structure@route_limit_below, assessment_structure@route_limit_above ) return(examinee_object) } else { return(examinee_object) } } else if (tolower(transition_policy) == "on_grade") { return(examinee_object) } stop(sprintf( "module position %s: cannot route module for examinee '%s' with relative grade: %s, estimated theta = %s (%s), cut scores = %s, transition policy = %s", module_position, examinee_object@examinee_id, relative_grade, examinee_object@estimated_theta_for_routing[[module_position]]$theta, examinee_object@estimated_theta_for_routing[[module_position]]$theta_se, paste0(cut_scores_thisgrade, collapse = " "), transition_policy )) }
quantile.nifti = function(x, ..., mask) { if (missing(mask)) { x = img_data(x) x = c(x) } else { x = mask_vals(object = x, mask) } quantile(x, ...) } quantile.anlz = function(x, ..., mask) { quantile.nifti(x = x, ..., mask = mask) }
get_edges <- function(format = 'short', collapse = 'none', ...) { if (!collapse %in% c('none', 'all', 'direction')) { stop('Collapse must be either "none", "all" or "direction"') } function(layout) { edges <- collect_edges(layout) edges <- switch( collapse, none = edges, all = collapse_all_edges(edges), direction = collapse_dir_edges(edges) ) edges <- switch( format, short = format_short_edges(edges, layout), long = format_long_edges(edges, layout), stop('Unknown format. Use either "short" or "long"') ) edges <- do.call( cbind, c( list(edges), lapply(list(...), rep, length.out = nrow(edges)), list(stringsAsFactors = FALSE) ) ) attr(edges, 'type_ggraph') <- 'edge_ggraph' edges } } collect_edges <- function(layout) { UseMethod('collect_edges', layout) } collect_edges.default <- function(layout) { attr(layout, 'edges') } check_short_edges <- function(edges) { if (!inherits(edges, 'data.frame')) { stop('edges must by of class data.frame', call. = FALSE) } if (!all(c('from', 'to', 'x', 'y', 'xend', 'yend', 'circular', 'edge.id') %in% names(edges))) { stop('edges must contain the columns from, to, x, y, xend, yend, circular, and edge.id', call. = FALSE) } if (!is.logical(edges$circular)) { stop('circular column must be logical', call. = FALSE) } edges } check_long_edges <- function(edges) { if (!inherits(edges, 'data.frame')) { stop('edges must by of class data.frame', call. = FALSE) } if (!all(c('edge.id', 'node', 'x', 'y', 'circular') %in% names(edges))) { stop('edges must contain the columns edge.id, node, x, y and circular', call. = FALSE) } if (!all(range(table(edges$edge.id)) == 2)) { stop('Each edge must consist of two rows') } if (!is.logical(edges$circular)) { stop('circular column must be logical', call. = FALSE) } edges } add_edge_coordinates <- function(edges, layout) { edges$x <- layout$x[edges$from] edges$y <- layout$y[edges$from] edges$xend <- layout$x[edges$to] edges$yend <- layout$y[edges$to] edges } format_short_edges <- function(edges, layout) { edges <- add_edge_coordinates(edges, layout) nodes1 <- layout[edges$from, , drop = FALSE] names(nodes1) <- paste0('node1.', names(nodes1)) nodes2 <- layout[edges$to, , drop = FALSE] names(nodes2) <- paste0('node2.', names(nodes2)) edges <- cbind(edges, nodes1, nodes2) rownames(edges) <- NULL edges$edge.id <- seq_len(nrow(edges)) check_short_edges(edges) } format_long_edges <- function(edges, layout) { from <- cbind( edge.id = seq_len(nrow(edges)), node = edges$from, layout[edges$from, c('x', 'y')], edges ) to <- cbind( edge.id = seq_len(nrow(edges)), node = edges$to, layout[edges$to, c('x', 'y')], edges ) edges <- rbind_dfs(list(from, to)) node <- layout[edges$node, , drop = FALSE] names(node) <- paste0('node.', names(node)) edges <- cbind(edges, node) rownames(edges) <- NULL check_long_edges(edges[order(edges$edge.id), ]) } complete_edge_aes <- function(aesthetics) { if (is.null(aesthetics)) { return(aesthetics) } if (any(names(aesthetics) == 'color')) { names(aesthetics)[names(aesthetics) == 'color'] <- 'colour' } expand_edge_aes(aesthetics) } expand_edge_aes <- function(x) { short_names <- names(x) %in% c( 'colour', 'color', 'fill', 'linetype', 'shape', 'size', 'width', 'alpha' ) names(x)[short_names] <- paste0('edge_', names(x)[short_names]) x } collapse_all_edges <- function(edges) { from <- pmin(edges$from, edges$to) to <- pmax(edges$to, edges$from) id <- paste(from, to, sep = '-') if (anyDuplicated(id)) { edges$.id <- id edges <- edges %>% group_by(.data$.id) %>% top_n(1) %>% ungroup() } as.data.frame(edges, stringsAsFactors = FALSE) } collapse_dir_edges <- function(edges) { id <- paste(edges$from, edges$to, sep = '-') if (anyDuplicated(id)) { edges$.id <- id edges <- edges %>% group_by(.data$.id) %>% top_n(1) %>% ungroup() } as.data.frame(edges, stringsAsFactors = FALSE) }
summary.phenology <- function(object, resultmcmc = NULL, chain = 1, series = "all", replicate.CI.mcmc = "all", replicate.CI = 10000, level= 0.95, print = TRUE, ...) { formatpar <- getFromNamespace(".format_par", ns="phenology") dailycount <- getFromNamespace(".daily_count", ns="phenology") if (print) { cat(paste("Number of timeseries: ", length(object$data), "\n", sep="")) for (i in 1:length(object$data)) { cat(paste(names(object$data[i]), "\n", sep="")) } cat(paste("Date uncertainty management: ", object$method_incertitude, "\n", sep="")) cat(paste("Managment of zero counts: ", object$zero_counts, "\n", sep="")) cat("Fitted parameters:\n") for (i in 1:length(object$par)) { cat(paste(names(object$par[i]), "=", object$par[i], " SE ", object$se[i], "\n", sep="")) } if (length(object$fixed.parameters)>0) { cat("Fixed parameters:\n") for (i in 1:length(object$fixed.parameters)) { cat(paste(names(object$fixed.parameters[i]), "=", object$fixed.parameters[i], "\n", sep="")) } } cat(paste("Ln L: ", object$value, "\n", sep="")) cat(paste("Parameter number: ", length(object$par), "\n", sep="")) cat(paste("AIC: ", 2*object$value+2*length(object$par), "\n", sep="")) } if (is.numeric(series)) series <- names(object$data)[series] if (any(series == "all")) series <- names(object$data) nseries <- length(series) rna <- rep(NA, nseries) probs <- c((1-level)/2, 0.5, 1-(1-level)/2) retdf <- data.frame(series=series, "without_obs_Mean"=rna, "with_obs_Mean"=rna, "without_obs_Low_ML"=rna, "without_obs_Median_ML"=rna, "without_obs_High_ML"=rna, "without_obs_Mean_ML"=rna, "without_obs_Var_ML"=rna, "with_obs_Low_ML"=rna, "with_obs_Median_ML"=rna, "with_obs_High_ML"=rna, "with_obs_Mean_ML"=rna, "with_obs_Var_ML"=rna, "without_obs_Low_MCMC"=rna, "without_obs_Median_MCMC"=rna, "without_obs_High_MCMC"=rna, "without_obs_Mean_MCMC"=rna, "without_obs_Var_MCMC"=rna, "with_obs_Low_MCMC"=rna, "with_obs_Median_MCMC"=rna, "with_obs_High_MCMC"=rna, "with_obs_Mean_MCMC"=rna, "with_obs_Var_MCMC"=rna, "NbObservations"=rna, "NbMonitoredDays"=rna, stringsAsFactors = FALSE) rownames(retdf) <- series klist_mcmc <- list() klist_ML <- list() klist_Mean <- list() for (nmser in series) { if (print) { tx <- paste0("Timeseries: ", nmser) cat(paste0(rep("-", nchar(tx)), collapse=""), "\n") cat(tx, "\n") cat(paste0(rep("-", nchar(tx)), collapse=""), "\n") } dref <- object$Dates[[nmser]]["reference"] nday <- ifelse(as.POSIXlt(dref+365)$mday==as.POSIXlt(dref)$mday, 365, 366) observedPontes <- data.frame(ordinal=object$data[[nmser]][, "ordinal"], observed=object$data[[nmser]][, "nombre"]) if (any(!is.na(object$data[[nmser]][, "ordinal2"]))) { for (i in which(!is.na(object$data[[nmser]][, "ordinal2"]))) { rnge <- (object$data[[nmser]][i, "ordinal"]+1):(object$data[[nmser]][i, "ordinal2"]) observedPontes <- rbind(observedPontes, data.frame(ordinal= rnge, observed=rep(0, length(rnge)))) } } parg <- formatpar(c(object$par, object$fixed.parameters), nmser) cof <- NULL if ((!is.null(object$add.cofactors)) & (!is.null(object$cofactors))) { j <- 0:(nday-1) cof <- object$cofactors[object$cofactors$Date %in% (dref+j), ] cof <- cof[, -1, drop=FALSE] cof <- as.data.frame(cbind(Date=j, cof)) } dc_mean <- dailycount(d=0:(nday-1), xpar=parg, cofactors=cof, add.cofactors=object$add.cofactors, print=FALSE, zero=1E-9) retdf[nmser, "without_obs_Mean"] <- sum(dc_mean) retdf[nmser, "NbObservations"] <- sum(observedPontes$observed) retdf[nmser, "NbMonitoredDays"] <- nrow(observedPontes) if (print) { cat("Total estimate not taking into account the observations: ") cat(paste0("Mean=", retdf[nmser, "without_obs_Mean"], "\n")) } SDMin <- NULL SDMax <- NULL for (mu in dc_mean) { qnb <- qnbinom(p = c(probs[1], probs[3]), size=c(object$par, object$fixed.parameters)["Theta"], mu=mu) SDMin <- c(SDMin, qnb[1]) SDMax <- c(SDMax, qnb[2]) } dc_mean <- data.frame(Date=dref+(0:(nday-1)), Ordinal = 0:(nday-1), Mean=NA, SD.Low=SDMin, SD.High=SDMax, Observed=NA, Modelled=dc_mean) dc_mean[match(observedPontes[, "ordinal"], dc_mean[, "Ordinal"]), "Observed"] <- observedPontes[, "observed"] dc_mean[, "Mean"] <- ifelse(is.na(dc_mean[, "Observed"]), dc_mean[, "Modelled"], dc_mean[, "Observed"]) if (!is.null(cof)) { dc_mean <- cbind(dc_mean, cof[, -1, drop=FALSE]) } rownames(dc_mean) <- dc_mean[, "Ordinal"] k <- list(dc_mean) names(k) <- nmser klist_Mean <- c(klist_Mean, k) retdf[nmser, "with_obs_Mean"] <- sum(dc_mean[, "Mean"]) if (print) { cat("Total estimate taking into account the observations: ") cat(paste0("Mean=", retdf[nmser, "with_obs_Mean"], "\n")) } pfixed <- object$fixed.parameters sepfixed <- pfixed[strtrim(names(pfixed), 3)=="se pfixed <- pfixed[strtrim(names(pfixed), 3) != "se if (!is.null(sepfixed)) names(sepfixed) <- substring(names(sepfixed), 4) pfixed.df <- data.frame() pfixed.df.mcmc <- data.frame() replicate.CI.mcmc.x <- NULL if (!is.null(resultmcmc)) { if (replicate.CI.mcmc == "all") { replicate.CI.mcmc.x <- nrow(resultmcmc$resultMCMC[[chain]]) } else { replicate.CI.mcmc.x <- replicate.CI.mcmc } } if (!is.null(pfixed)) { for (i in seq_along(pfixed)) { dfadd <- data.frame() dfadd.mcmc <- data.frame() if (!is.na(sepfixed[names(pfixed[i])])) { if (!is.null(replicate.CI)) { dfadd <- data.frame(rnorm(n=replicate.CI, mean=unname(pfixed[i]), sd=sepfixed[names(pfixed[i])])) colnames(dfadd) <- names(pfixed[i]) } if (!is.null(replicate.CI.mcmc.x)) { dfadd.mcmc <- data.frame(rnorm(n=replicate.CI.mcmc.x, mean=unname(pfixed[i]), sd=sepfixed[names(pfixed[i])])) colnames(dfadd.mcmc) <- names(pfixed[i]) } } else { if (!is.null(replicate.CI)) { dfadd <- data.frame(rep(unname(pfixed[i]), replicate.CI)) colnames(dfadd) <- names(pfixed[i]) } if (!is.null(replicate.CI.mcmc.x)) { dfadd.mcmc <- data.frame(rep(unname(pfixed[i]), replicate.CI.mcmc.x)) colnames(dfadd.mcmc) <- names(pfixed[i]) } } if (ncol(pfixed.df.mcmc) ==0 ) { pfixed.df.mcmc <- dfadd.mcmc } else { pfixed.df.mcmc <- cbind(pfixed.df.mcmc, dfadd.mcmc) } if (ncol(pfixed.df) ==0 ) { pfixed.df <- dfadd } else { pfixed.df <- cbind(pfixed.df, dfadd) } } } pfixed.df <- as.matrix(pfixed.df) pfixed.df.mcmc <- as.matrix(pfixed.df.mcmc) lnday <- 0:(nday-1) opord <- observedPontes[, "ordinal"]+1 opnumb <- observedPontes[, "observed"] if (!is.null(resultmcmc)) { lmcmc <- nrow(resultmcmc$resultMCMC[[chain]]) mcmctobeused <- 1:lmcmc if (replicate.CI.mcmc != "all") { repl <- ifelse(nrow(resultmcmc$resultMCMC[[chain]]) <= replicate.CI.mcmc, TRUE, FALSE) mcmctobeused <- sample(x=mcmctobeused, size=replicate.CI.mcmc, replace = repl) } else { replicate.CI.mcmc <- nrow(resultmcmc$resultMCMC[[chain]]) } if (ncol(pfixed.df.mcmc) != 0) { dailydata <- sapply(X = 1:replicate.CI.mcmc, FUN=function(xxx) { px <- c(resultmcmc$resultMCMC[[chain]][mcmctobeused[xxx], ], pfixed.df.mcmc[xxx, ]) xparec <- formatpar(px, nmser) dailycount(lnday, xparec, print=FALSE, cofactors=cof, add.cofactors=object$add.cofactors) }) } else { dailydata <- sapply(X = 1:replicate.CI.mcmc, FUN=function(xxx) { px <- c(resultmcmc$resultMCMC[[chain]][mcmctobeused[xxx], ]) xparec <- formatpar(px, nmser) dailycount(lnday, xparec, print=FALSE, cofactors=cof, add.cofactors=object$add.cofactors) }) } synthesisPontes <- apply(X = dailydata, MARGIN = 2, FUN=sum) synthesisPontes_withObs <- apply(X = dailydata, MARGIN = 2, FUN=function(xxx) { xxx[opord] <- opnumb sum(xxx) }) k <-as.data.frame(t(apply(X = dailydata, MARGIN=1, FUN = function(x) {quantile(x, probs=probs)}))) k <- list(cbind(Ordinal=lnday, k)) names(k) <- nmser klist_mcmc <- c(klist_mcmc, k) k <- unname(quantile(synthesisPontes, probs=probs)) retdf[nmser, c("without_obs_Low_MCMC", "without_obs_Median_MCMC", "without_obs_High_MCMC")] <- k retdf[nmser, c("without_obs_Mean_MCMC", "without_obs_Var_MCMC")] <- c(mean(synthesisPontes), var(synthesisPontes)) if (print) { cat("Total estimate not taking into account the observations MCMC-based:\n") cat(paste0("Low=", k[1], " Median=", k[2], " High=", k[3], "\n")) } k <- unname(quantile(synthesisPontes_withObs, probs=probs)) retdf[nmser, c("with_obs_Low_MCMC", "with_obs_Median_MCMC", "with_obs_High_MCMC")] <- k retdf[nmser, c("with_obs_Mean_MCMC", "with_obs_Var_MCMC")] <- c(mean(synthesisPontes_withObs), var(synthesisPontes_withObs)) if (print) { cat("Total estimate taking into account the observations MCMC-based:\n") cat(paste0("Low=", k[1], " Median=", k[2], " High=", k[3], "\n")) } } else { k <- list(NA) names(k) <- nmser klist_mcmc <- c(klist_mcmc, k) } if (!is.null(object$hessian)) { if (all(names(object$par) %in% colnames(object$hessian))) { par2 <- RandomFromHessianOrMCMC( Hessian = object$hessian, fitted.parameters = object$par, fixed.parameters = object$fixed.parameters, probs = c(0.025, 0.5, 0.975), replicates = replicate.CI, silent=TRUE) par2 <- par2$random dailydata <- sapply(1:replicate.CI, FUN=function(xxx) { dailycount(lnday, formatpar(c(par2[xxx, ]), nmser), print=FALSE, cofactors=cof, add.cofactors=object$add.cofactors) }) k <- as.data.frame(t(apply(X = dailydata, MARGIN=1, FUN = function(x) {quantile(x, probs=probs)}))) k <- list(cbind(Ordinal=lnday, k)) names(k) <- nmser klist_ML <- c(klist_ML, k) synthesisPontes <- apply(X = dailydata, MARGIN = 2, FUN=sum) synthesisPontes_withObs <- apply(X = dailydata, MARGIN = 2, FUN=function(xxx) { xxx[opord] <- opnumb sum(xxx) }) k <- unname(quantile(synthesisPontes, probs=probs)) retdf[nmser, c("without_obs_Low_ML", "without_obs_Median_ML", "without_obs_High_ML")] <- k retdf[nmser, c("without_obs_Mean_ML", "without_obs_Var_ML")] <- c(mean(synthesisPontes), var(synthesisPontes)) if (print) { cat("Total estimate not taking into account the observations ML-based:\n") cat(paste0("Low=", k[1], " Median=", k[2], " High=", k[3], "\n")) } k <- unname(quantile(synthesisPontes_withObs, probs=probs)) retdf[nmser, c("with_obs_Low_ML", "with_obs_Median_ML", "with_obs_High_ML")] <- k retdf[nmser, c("with_obs_Mean_ML", "with_obs_Var_ML")] <- c(mean(synthesisPontes_withObs), var(synthesisPontes_withObs)) if (print) { cat("Total estimate taking into account the observations ML-based:\n") cat(paste0("Low=", k[1], " Median=", k[2], " High=", k[3], "\n")) } } else { k <- list(NA) names(k) <- nmser klist_ML <- c(klist_ML, k) } } else { k <- list(NA) names(k) <- nmser klist_ML <- c(klist_ML, k) } } rout <- list(synthesis=retdf, details_mcmc=klist_mcmc, details_ML=klist_ML, details_Mean=klist_Mean) class(rout) <- "phenologyout" return(invisible(rout)) }
tokens_segment <- function(x, pattern, valuetype = c("glob", "regex", "fixed"), case_insensitive = TRUE, extract_pattern = FALSE, pattern_position = c("before", "after"), use_docvars = TRUE) { UseMethod("tokens_segment") } tokens_segment.tokens <- function(x, pattern, valuetype = c("glob", "regex", "fixed"), case_insensitive = TRUE, extract_pattern = FALSE, pattern_position = c("before", "after"), use_docvars = TRUE) { x <- as.tokens(x) valuetype <- match.arg(valuetype) extract_pattern <- check_logical(extract_pattern) pattern_position <- match.arg(pattern_position) use_docvars <- check_logical(use_docvars) if (!use_docvars) docvars(x) <- NULL attrs <- attributes(x) type <- types(x) ids <- object2id(pattern, type, valuetype, case_insensitive, field_object(attrs, "concatenator")) if ("" %in% pattern) ids <- c(ids, list(0)) if (pattern_position == "before") { result <- qatd_cpp_tokens_segment(x, type, ids, extract_pattern, 1) } else { result <- qatd_cpp_tokens_segment(x, type, ids, extract_pattern, 2) } attrs[["docvars"]] <- reshape_docvars(attrs[["docvars"]], attr(result, "docnum")) field_object(attrs, "unit") <- "segments" if (extract_pattern) attrs[["docvars"]][["pattern"]] <- attr(result, "pattern") rebuild_tokens(result, attrs) }
NULL makeModelComponentsMF <- function(formula, data, weights=NULL, offset=NULL, subset=NULL, na.action=getOption("na.action"), drop.unused.levels=FALSE, xlev=NULL, sparse=FALSE, ...) { cl <- match.call(expand.dots=FALSE) cl$sparse <- cl$`...` <- NULL cl[[1]] <- quote(stats::model.frame) mf <- eval.parent(cl) x <- if(!is.null(sparse) && sparse) Matrix::sparse.model.matrix(attr(mf, "terms"), mf)[, -1, drop=FALSE] else model.matrix(attr(mf, "terms"), mf)[, -1, drop=FALSE] y <- model.response(mf) weights <- model.extract(mf, "weights") offset <- model.extract(mf, "offset") if(is.null(weights)) weights <- rep(1, nrow(mf)) xlev <- .getXlevels(attr(mf, "terms"), mf) list(x=x, y=y, weights=weights, offset=offset, terms=terms(mf), xlev=xlev) } makeModelComponents <- function(formula, data, weights=NULL, offset=NULL, subset=NULL, na.action=getOption("na.action"), drop.unused.levels=FALSE, xlev=NULL, sparse=FALSE, ...) { if(!is.data.frame(data)) { data <- as.data.frame(data) warning("input data was converted to data.frame") } rhs <- formula[[length(formula)]] lhs <- if(length(formula) == 3) formula[[2]] else NULL lhsVars <- all.vars(lhs) rhsTerms <- additiveTerms(rhs, base::setdiff(names(data), lhsVars)) rhs <- rebuildRhs(rhsTerms) rhsVars <- all.vars(rhs) if(!missing(subset)) { subset <- substitute(subset) if(!is.null(subset)) data <- data[eval(subset, data, parent.frame()), , drop=FALSE] } offset <- substitute(offset) offsetVals <- eval(offset, data, parent.frame()) if(!missing(weights) && !is.null(weights <- substitute(weights))) weightVals <- eval(weights, data, parent.frame()) else weightVals <- rep(1, nrow(data)) if(!is.function(na.action)) na.action <- get(na.action, mode="function") if(!is.null(offsetVals)) { data <- na.action(cbind.data.frame(data[c(lhsVars, rhsVars)], offsetVals, weightVals)) offsetVals <- data$offsetVals } else { data <- na.action(cbind.data.frame(data[c(lhsVars, rhsVars)], weightVals)) offsetVals <- NULL } weightVals <- data$weightVals if(length(xlev) == 0) xlev <- list(NULL) else if(is.list(xlev) && !is.list(xlev[[1]])) xlev <- list(xlev) matrs <- mapply(function(x, xlev) { xvars <- all.vars(x) xnames <- all.names(x) isExpr <- !identical(xvars, xnames) anyFactors <- any(sapply(data[xvars], function(x) is.factor(x) || is.character(x))) if(anyFactors || isExpr || sparse) { xlev <- xlev[names(xlev) %in% unique(c(deparse(x), xvars))] f <- eval(call("~", substitute(0 + .x, list(.x=x)))) mf <- model.frame(f, data, drop.unused.levels=drop.unused.levels, xlev=xlev, na.action=na.action) out <- if(sparse) Matrix::sparse.model.matrix(terms(mf), mf, xlev=xlev) else model.matrix(terms(mf), mf, xlev=xlev) attr(out, "xlev") <- lapply(mf, function(x) { if(is.factor(x)) levels(x) else if(is.character(x)) sort(unique(x)) else NULL }) } else if(length(xvars) == 1) { out <- na.action(data[[xvars]]) dim(out) <- c(length(out), 1) colnames(out) <- xvars } else out <- as.matrix(na.action(data[xvars])) out }, rhsTerms, xlev, SIMPLIFY=FALSE) terms <- call("~", rhs) xlev <- lapply(matrs, attr, "xlev") list(x=do.call(cbind, matrs), y=eval(lhs, data), weights=weightVals, offset=offsetVals, terms=terms, xlev=xlev) } additiveTerms <- function(f, vars) { plus <- quote(`+`) minus <- quote(`-`) dot <- quote(.) tilde <- quote(`~`) rhs <- if(!is.symbol(f) && identical(f[[1]], tilde)) f[[length(f)]] else f l <- list() term <- function(x) { if(identical(x, dot)) rev(lapply(vars, as.name)) else x } repeat { if(is.call(rhs) && (identical(rhs[[1]], plus) || identical(rhs[[1]], minus))) { if(identical(rhs[[1]], plus)) l <- c(l, term(rhs[[3]])) else if(identical(rhs[[1]], minus)) vars <- base::setdiff(vars, deparse(rhs[[length(rhs)]])) rhs <- rhs[[2]] } else { l <- c(l, term(rhs)) break } } rev(l) } rebuildRhs <- function(rhs) { expr <- rhs[[1]] if(length(rhs) > 1) for(i in 2:length(rhs)) { expr <- substitute(a + b, list(a=expr, b=rhs[[i]])) } expr }
test_that("plotBiomassObservedVsModel works", { local_edition(3) params <- NS_params expect_error(plotBiomassObservedVsModel(params)) species_params(params)$biomass_observed <- c(0.8, 61, 12, 35, 1.6, 20, 10, 7.6, 135, 60, 30, 78) species_params(params)$biomass_cutoff <- 10 params <- calibrateBiomass(params) dummy <- plotBiomassObservedVsModel(params, return_data = T) expect_equal(dummy$observed, species_params(params)$biomass_observed) expect_error(plotBiomassObservedVsModel(params, species = rep(F, 12))) params2 = params species_params(params2)$biomass_observed[c(1, 7, 10)] = NA dummy <- plotBiomassObservedVsModel(params2, return_data = T) expect_equal(as.character(dummy$species), species_params(params)$species[!is.na(species_params(params2)$biomass_observed)]) expect_equal(dummy$observed, species_params(params2)$biomass_observed [!is.na(species_params(params2)$biomass_observed)]) dummy <- plotBiomassObservedVsModel(params2, return_data = T, show_unobserved = TRUE) expect_equal(as.character(dummy$species), species_params(params)$species) sp_select = c(1, 4, 7, 10, 11, 12) dummy <- plotBiomassObservedVsModel(params, species = sp_select, return_data = T) expect_equal(nrow(dummy), length(sp_select)) expect_equal(dummy$observed, species_params(params)$biomass_observed[sp_select]) dummy <- plotBiomassObservedVsModel(params, return_data = T) p <- plotBiomassObservedVsModel(params) expect_true(is.ggplot(p)) expect_identical(p$labels$x, "observed biomass [g]") expect_identical(p$labels$y, "model biomass [g]") expect_identical(p$data, dummy) vdiffr::expect_doppelganger("plotBiomassObservedVsModel", p) })
appendtofolderh <- function(fh, df, key, after = FALSE) { name.fh <- deparse(substitute(fh)) name.df <- deparse(substitute(df)) if (!is.folderh(fh)) stop("fh must be an object of class 'folderh'.") if (!(key %in% colnames(df))) stop("There is no ", key, " column in ", name.df, " data frame.") if (!after) { if (!(key %in% colnames(fh[[1]]))) stop(paste0("There is no ", key, " column in ", paste(names(fh)[1], collapse = ", "), " data frame of ", name.fh, ".")) fh.ret <- c(list(df), fh) keys <- c(key, attr(fh, "keys")) names(fh.ret)[1] <- name.df } else { if (!(key %in% colnames(fh[[length(fh)]]))) stop(paste0("There is no ", key, " column in ", paste(names(fh)[length(fh)], collapse = ", "), " data frame of ", name.fh, ".")) fh.ret <- c(fh, list(df)) keys <- c(attr(fh, "keys"), key) names(fh.ret)[length(fh)+1] <- name.df } class(fh.ret) <- "folderh" attr(fh.ret, "keys") <- keys return(invisible(fh.ret)) }
calc.parameters.monitor.climate <- function(final_values, ranking.values = NULL) { outfile_path <- file.path(tempdir(),"mc_parameters.csv") if(file.exists(outfile_path)){ unlink(outfile_path) } utils::write.csv(final_values, file = outfile_path, row.names = FALSE) if(!(is.null(ranking.values))){ outfile_ranking_path <- file.path(tempdir(),"mc_ranking.csv") if(file.exists(outfile_ranking_path)){ unlink(outfile_ranking_path) } utils::write.csv(ranking.values, file = outfile_ranking_path, row.names = FALSE) } }
drawAxes <- function(x, which = "x", main = TRUE, label = TRUE, opts, sub = 0, heightOnly = FALSE, layout.only = FALSE, pos = NULL) { fun <- ifelse(is.numeric(x), .numericAxis, .categoricalAxis) fun(x, which, main, label, opts, sub, heightOnly, layout.only, pos) } .numericAxis <- function(x, which = "x", main = TRUE, label = TRUE, opts, sub = 0, heightOnly = FALSE, layout.only = FALSE, pos = NULL) { x <- transform_axes(x, which, opts, label) at <- x$at labs <- x$labs if (!is.logical(labs)) labs <- format(labs) switch(which, "x" = { if (main) { grid.xaxis( gp = gpar(cex = opts$cex.axis), main = main, at = at, label = labs, name = paste( paste0("inz-xaxis-", pos), opts$rowNum, opts$colNum, sep = "." ) ) } else { xlim <- current.viewport()$xscale pushViewport(viewport( x = 0.5, y = 1, height = unit(sub, "in"), just = "bottom", xscale = xlim )) grid.xaxis( gp = gpar(cex = opts$cex.axis), at = at, label = labs, main = FALSE, name = paste("inz-xaxis-top", opts$rowNum, opts$colNum, sep = ".") ) upViewport() } }, "y" = { yax <- yaxisGrob( gp = gpar(cex = opts$cex.axis), main = main, at = at, label = labs, name = paste( paste0("inz-yaxis-", pos), opts$rowNum, opts$colNum, sep = "." ) ) if (label) yax <- editGrob( yax, edits = gEdit( "labels", rot = ifelse(main, 90, 270), hjust = 0.5, vjust = ifelse(main, 0, -0.5) ) ) grid.draw(yax) } ) } .categoricalAxis <- function(x, which = "x", main = TRUE, label = TRUE, opts, sub = 0, heightOnly = FALSE, layout.only = FALSE, pos = NULL) { if (is.null(opts$ZOOM)) x.lev <- levels(x) else { ZOOM <- opts$ZOOM ww <- ZOOM[1]:(sum(ZOOM) - 1) nl <- length(levels(x)) ww <- ww - nl * (ww > nl) x.lev <- levels(x)[ww] } switch(which, "x" = { rot <- opts$rot labText <- textGrob( x.lev, x = unit( (0:length(x.lev))[-1] - 0.5, "native"), y = if (rot) unit(-0.5, "mm") else unit(-1, "lines"), just = if (rot) c("right", "top") else "center", rot = ifelse(rot, 30, 0), gp = gpar(cex = opts$cex.axis * ifelse(rot, 0.8, 1)), name = "inz-labelText" ) wm <- which.max(nchar(as.character(x.lev))) tt <- textGrob(levels(x)[wm]) labwid <- convertWidth(grobWidth(tt), "mm", valueOnly = TRUE) if (heightOnly) { return(grobHeight(labText)) } else { grid.draw(labText) } }, "y" = { if (!is.null(x) & !layout.only) { labels <- levels(x) Nlab <- length(labels) for (i in 1:Nlab) { seekViewport(paste0("VP:plotregion-", i)) grid.text( labels[i], x = unit(-0.5, "lines"), just = "right", gp = gpar(cex = opts$cex.axis) ) upViewport() } } } ) } addGrid <- function(x = FALSE, y = FALSE, gen, opts) { if (!opts$grid.lines) return() if (!any(x, y)) return() col.grid <- opts$col.grid if (col.grid == "default") { if (any(col2rgb(opts$bg) <= 230)) { col.grid <- " } else { col.grid <- " } } if (x) { at.x <- pretty(gen$LIM[1:2]) at.X <- rep(at.x, each = 2) at.Y <- rep(current.viewport()$yscale, length(at.x)) grid.polyline( at.X, at.Y, id.lengths = rep(2, length(at.X) / 2), default.units = "native", gp = gpar(col = col.grid, lwd = 1), name = paste("inz-x-grid", opts$rowNum, opts$colNum, sep = ".") ) } if (y) { at.y <- pretty(gen$LIM[3:4]) at.Y <- rep(at.y, each = 2) at.X <- rep(current.viewport()$xscale, length(at.y)) grid.polyline( at.X, at.Y, id.lengths = rep(2, length(at.Y) / 2), default.units = "native", gp = gpar(col = col.grid, lwd = 1), name = paste("inz-y-grid", opts$rowNum, opts$colNum, sep = ".") ) } } transform_axes <- function(x, which, opts, label, adjust.vp = TRUE) { xt <- x breaks <- NULL if (!is.null(opts$transform[[which]])) { switch(opts$transform[[which]], "datetime" = { xt <- as.POSIXct(x, origin = "1970-01-01", tz = opts$transform$extra[[which]]$tz ) }, "date" = { xt <- as.Date(x, origin = "1970-01-01") }, "time" = { xt <- chron::chron(times. = x) }, "log" = { breaks <- scales::log_trans()$breaks(exp(x)) breaks <- log(breaks) if (all(round(breaks) == breaks)) names(breaks) <- paste0("e^", breaks) else { names(breaks) <- round(exp(breaks)) } }, "log10" = { breaks <- scales::log10_trans()$breaks(10^x) names(breaks) <- breaks breaks <- log10(breaks) }, "bar_percentage" = { breaks <- scales::pretty_breaks()(xt) names(breaks) <- breaks * 100 }, "bar_counts" = { }, { warning(sprintf( "Unsupported transformation `%s`", opts$transform[[which]] )) xt <- x } ) } if (is.null(breaks)) { breaks <- scales::breaks_pretty()(xt) } if (adjust.vp) { xl <- current.viewport()[[switch(which, "x" = "xscale", y = "yscale")]] breaks <- breaks[breaks > xl[1] & breaks < xl[2]] if (length(breaks) == 0) breaks <- seq(min(xl), max(xl), by = 1) } at <- as.numeric(breaks) labs <- FALSE if (label) labs <- if (!is.null(names(breaks))) names(breaks) else at list(at = at, labs = labs) }
em.ic <- function(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL, llhdval = NULL){ if(is.null(emobj)){ emobj <- list(n = nrow(x), pi = pi, Mu = Mu, LTSigma = LTSigma) } emobj$llhdval <- logL(x, emobj = emobj) emobj$adjM <- length(emobj$pi) - 1 + length(emobj$Mu) + length(emobj$LTSigma) ret <- list() ret$AIC <- em.aic(x, emobj = emobj) ret$BIC <- em.bic(x, emobj = emobj) ret$ICL <- em.icl(x, emobj = emobj) ret$ICL.BIC <- em.icl.bic(x, emobj = emobj) ret$CLC <- em.clc(x, emobj = emobj) ret } em.aic <- function(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL){ if(is.null(emobj)){ emobj <- list(pi = pi, Mu = Mu, LTSigma = LTSigma) } if(is.null(emobj$adjM)){ emobj$adjM <- length(emobj$pi) - 1 + length(emobj$Mu) + length(emobj$LTSigma) } if(is.null(emobj$llhdval)){ emobj$llhdval <- logL(x, emobj = emobj) } -2 * emobj$llhdval + 2 * emobj$adjM } em.bic <- function(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL){ if(is.null(emobj)){ emobj <- list(pi = pi, Mu = Mu, LTSigma = LTSigma) } if(is.null(emobj$n)){ emobj$n <- nrow(x) } if(is.null(emobj$adjM)){ emobj$adjM <- length(emobj$pi) - 1 + length(emobj$Mu) + length(emobj$LTSigma) } if(is.null(emobj$llhdval)){ emobj$llhdval <- logL(x, emobj = emobj) } -2 * emobj$llhdval + log(emobj$n) * emobj$adjM } em.icl <- function(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL){ if(is.null(emobj)){ emobj <- list(pi = pi, Mu = Mu, LTSigma = LTSigma) } if(is.null(emobj$n)){ emobj$n <- nrow(x) } if(is.null(emobj$adjM)){ emobj$adjM <- length(emobj$pi) - 1 + length(emobj$Mu) + length(emobj$LTSigma) } if(is.null(emobj$llhdval)){ emobj$llhdval <- logL(x, emobj = emobj) } Z.unnorm <- e.step(x, emobj = emobj, norm = FALSE)$Gamma logL.map <- do.call("c", lapply(1:emobj$n, function(i){ max(Z.unnorm[i, ]) })) -2 * sum(logL.map) + log(emobj$n) * emobj$adjM } em.icl.bic <- function(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL){ if(is.null(emobj)){ emobj <- list(pi = pi, Mu = Mu, LTSigma = LTSigma) } if(is.null(emobj$n)){ emobj$n <- nrow(x) } if(is.null(emobj$adjM)){ emobj$adjM <- length(emobj$pi) - 1 + length(emobj$Mu) + length(emobj$LTSigma) } if(is.null(emobj$llhdval)){ emobj$llhdval <- logL(x, emobj = emobj) } Z <- e.step(x, emobj = emobj)$Gamma Z.unnorm <- e.step(x, emobj = emobj, norm = FALSE)$Gamma log.Z <- Z.unnorm - log(dmixmvn(x, emobj = emobj)) logL.EN <- Z * log.Z -2 * (emobj$llhdval + sum(logL.EN)) + log(emobj$n) * emobj$adjM } em.clc <- function(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL){ if(is.null(emobj)){ emobj <- list(pi = pi, Mu = Mu, LTSigma = LTSigma) } if(is.null(emobj$llhdval)){ emobj$llhdval <- logL(x, emobj = emobj) } Z <- e.step(x, emobj = emobj)$Gamma Z.unnorm <- e.step(x, emobj = emobj, norm = FALSE)$Gamma log.Z <- Z.unnorm - log(dmixmvn(x, emobj = emobj)) logL.EN <- Z * log.Z -2 * (emobj$llhdval + sum(logL.EN)) }
test_that("Item Category Constraint", { out <- itemCategoryConstraint(2, factor(c(1, 1, 2, 2)), "=", targetValues = c(1, 2), itemIDs = 1:4) expect_equal(out$A_binary[1, ], c(1, 1, 0, 0, rep(0, 4))) expect_equal(out$A_binary[2, ], c(rep(0, 4), 1, 1, 0, 0)) expect_equal(out$A_binary[3, ], c(0, 0, 1, 1, rep(0, 4))) expect_equal(out$A_binary[4, ], c(rep(0, 4), 0, 0, 1, 1)) out <- itemCategoryConstraint(1, factor(c(1, 2, 3)), targetValues = c(1, 1, 1), itemIDs = 1:3) expect_equal(out$A_binary[1, ], c(1, 0, 0)) expect_equal(out$A_binary[2, ], c(0, 1, 0)) expect_equal(out$A_binary[3, ], c(0, 0, 1)) expect_is(out, "constraint") }) test_that("Item Category Constraint returns errors and warnings", { expect_error(itemCategoryConstraint(1, c(1, 2, 3), targetValues = c(1, 1, 1)), "'itemCategories' should be a factor.") expect_error(itemCategoryConstraint(2, factor(c(1, 2, 2)), "=", targetValues = c(1, 2), itemIDs = 1:2), "The length of 'itemCategories' and 'itemIDs' should be identical.") expect_error(itemCategoryConstraint(2, factor(c(1, 2, 2, 1)), "=", targetValues = 1), "The number of 'targetValues' should correspond with the number of levels in 'itemCategories'.") expect_error(itemCategoryConstraint(2:3, factor(c(1, 2, 2, 1)), "=", targetValues = c(1, 2), itemIDs = 1:4), "'nForms' should be a vector of length 1.") warns <- capture_warnings(out <- itemCategoryConstraint(2, factor(c(1, 1, 2, 2)), "=", targetValues = c(1, 2))) warns[[1]] <- "Argument 'itemIDs' is missing. 'itemIDs' will be generated automatically." }) test_that("Item Category Min Max and Threshold", { minMax <- itemCategoryRangeConstraint(2, factor(rep(1:2, 10)), range = cbind(min = c(3, 4), max = c(5, 6)), itemIDs = 1:20) expect_equal(minMax, combine2Constraints(itemCategoryMinConstraint(2, factor(rep(1:2, 10)), c(3, 4), itemIDs = 1:20), itemCategoryMaxConstraint(2, factor(rep(1:2, 10)), c(5, 6), itemIDs = 1:20))) expect_equal(minMax, itemCategoryDeviationConstraint(2, factor(rep(1:2, 10)), c(4, 5), c(1, 1), itemIDs = 1:20)) max <- itemCategoryMaxConstraint(1, factor(c(1, 2, 3)), max = c(1, 1, 1), itemIDs = 1:3) expect_equal(max, itemCategoryConstraint(1, factor(c(1, 2, 3)), targetValues = c(1, 1, 1), itemIDs = 1:3)) min <- itemCategoryMinConstraint(1, factor(c(1, 2, 3)), min = c(1, 1, 1), itemIDs = 1:3) expect_equal(min$A_binary[1, ], c(1, 0, 0)) expect_equal(min$A_binary[2, ], c(0, 1, 0)) expect_equal(min$A_binary[3, ], c(0, 0, 1)) expect_is(minMax, "constraint") }) test_that("Item Category Range returns errors", { expect_error(itemCategoryRangeConstraint(2, factor(rep(1:2, 10)), range = cbind(min = c(6, 4), max = c(5, 6))), "The values in the first column of 'range' should be smaller than the values in the second column of 'range'.") expect_error(itemCategoryRangeConstraint(2, factor(rep(1:2, 10)), range = c(min = c(4, 4), max = c(5, 6))), "itemCategories") expect_error(itemCategoryRangeConstraint(2, factor(rep(1:3, 10)), range = rbind(min = c(4, 4, 2), max = c(5, 6, 3))), "itemCategories") expect_error(itemCategoryRangeConstraint(2, factor(rep(1:2, 10)), range = rbind(min = c(4, 4, 2), max = c(5, 6, 3))), "itemCategories") expect_error(itemCategoryRangeConstraint(2, factor(rep(1:2, 10)), range = cbind(min = c(3, 4), max = c(5, 6)), info_text = c("too", "many", "strings")), "'info_text' should be a character string of length equal to to the number of levels in 'itemCategories'.") })
goodnessFilling <- function() { showPANgoodFill1 <- function() { refreshDataSetsList(outp = FALSE) createSubPanR4C1() createTITLE(labTitle = "CHECK FILLING") createTsRb(labTitle = "Time series with no artificial gaps", variableName = "selTsP0") createOK(labTitle = "NEXT", action = goodFill1OnOk) createNote(labTitle = "Only the filling of artificial gaps can be checked") tcltk::tkpack(KTSEnv$subPanR4C1, expand = TRUE, fill = "both") } goodFill1OnOk <- function() { tsWithNoGapsName <- verifyCharEntry(tcltk::tclvalue(KTSEnv$selTsP0), noValid = NA) if (is.na(tsWithNoGapsName)) { tcltk::tkmessageBox(message = "Choose a time series", icon = "warning") } else { assign("tsWithNoGapsName", tsWithNoGapsName, envir = KTSEnv) showPANgoodFill2() } } showPANgoodFill2 <- function() { createSubPanR4C1() createTITLE(labTitle = "CHECK FILLING") createTsRb(labTitle = "Time series with artificial gaps") createOK(labTitle = "NEXT", action = goodFill2OnOk) tcltk::tkpack(KTSEnv$subPanR4C1, expand = TRUE, fill = "both") } goodFill2OnOk <- function() { tsWithGapsName <- verifyCharEntry(tcltk::tclvalue(KTSEnv$selTsP), noValid = NA) if (is.na(tsWithGapsName)) { tcltk::tkmessageBox(message = "Choose a time series", icon = "warning") } else { assign("tsWithGapsName", tsWithGapsName, envir = KTSEnv) showPANgoodFill3() } } showPANgoodFill3 <- function() { createSubPanR4C1() createTITLE(labTitle = "CHECK FILLING") createTsRb(labTitle = "Time series after the filling", variableName = "selTsP1") createOK(labTitle = "RUN", action = goodFill3OnOk) tcltk::tkpack(KTSEnv$subPanR4C1, expand = TRUE, fill = "both") } goodFill3OnOk <- function() { tsFilledName <- verifyCharEntry(tcltk::tclvalue(KTSEnv$selTsP1), noValid = NA) if (is.na(tsFilledName)) { tcltk::tkmessageBox(message = "Choose a time series", icon = "warning") } else { tsFilled <- get(tsFilledName, envir = KTSEnv) tsWithGaps <- get(KTSEnv$tsWithGapsName, envir = KTSEnv) tsWithNoGaps <- get(KTSEnv$tsWithNoGapsName, envir = KTSEnv) initialDates <- as.numeric(c(tsWithNoGaps$time[1], tsWithGaps$time[1], tsFilled$time[1])) samPer <- c(diff(as.numeric(tsWithNoGaps$time[1:2])), diff(as.numeric(tsWithGaps$time[1:2])), diff(as.numeric(tsFilled$time[1:2]))) tsWNoGNasInd <- which(is.na(tsWithNoGaps$value)) tsWGNasInd <- which(is.na(tsWithGaps$value)) tsFilledNasInd <- which(is.na(tsFilled$value)) if (any(initialDates != initialDates[1])) { tcltk::tkmessageBox(message = paste("The selected time series have", "different initial dates"), icon = "warning") showPANgoodFill1() } else if (any(samPer != samPer[1])) { tcltk::tkmessageBox(message = paste("The selected time series have", "different sampling periods"), icon = "warning") showPANgoodFill1() } else if (is.null(tsWGNasInd)) { tcltk::tkmessageBox(message = paste(tsWithGapsName, "has no gaps.", "It should have artifical gaps"), icon = "warning") showPANgoodFill1() } else if (length(intersect(tsWGNasInd, tsFilledNasInd)) == length(tsWGNasInd)) { tcltk::tkmessageBox(message = paste(tsWithGapsName, "and", tsFilledName, "have the same gaps."), icon = "warning") } else { artificialGaps <- setdiff(tsWGNasInd, tsWNoGNasInd) notFilledArtGaps <- intersect(artificialGaps, tsFilledNasInd) filledArtGaps <- setdiff(artificialGaps, notFilledArtGaps) observed <- tsWithNoGaps$value[filledArtGaps] predicted <- tsFilled$value[filledArtGaps] if (length(observed) != length(predicted)) { tcltk::tkmessageBox(message = paste("The observed and predicted", "values have different lengths"), icon = "warning") } else if (any(is.infinite(observed)) | any(is.nan(observed))) { tcltk::tkmessageBox(message = paste("Some observed values are", "Inf,-Inf or NaN"), icon = "warning") } else if (any(is.infinite(predicted)) | any(is.nan(predicted))) { tcltk::tkmessageBox(message = paste("Some predicted values are", "Inf,-Inf or NaN"), icon = "warning") } else { completeCasesInd <- which(stats::complete.cases(observed, predicted)) if (length(completeCasesInd) < 4) { tcltk::tkmessageBox(message = paste("There are less than four", "complete cases"), icon = "warning") } else { observed <- observed[completeCasesInd] predicted <- predicted[completeCasesInd] lmObsPred <- myLinModel(observed, predicted) if (class(lmObsPred) == "character") { tcltk::tkmessageBox(message = lmObsPred, icon = "warning") } else { filledGapsTable <- groupDates(filledArtGaps, tsFilled) txt1 <- "CHECK FILLING" txt21 <- paste("Time series with no artificial gaps:", KTSEnv$tsWithNoGapsName) txt22 <- paste("Time series with artificial gaps:", KTSEnv$tsWithGapsName) txt23 <- paste("Filled time series:", tsFilledName) mvdmd <- as.data.frame(lmObsPred) txt4 <- utils::capture.output(print.data.frame(mvdmd)) txt5 <- "Gaps filled:" txt6 <- utils::capture.output(print.data.frame(filledGapsTable)) txt0 <- c(txt1, txt21, txt22, txt23) tcltk::tkinsert(KTSEnv$txtWidget, "end", paste(txt0, collapse = "\n")) tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n")) tcltk::tkinsert(KTSEnv$txtWidget, "end", paste(txt4, collapse = "\n")) tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n")) tcltk::tkinsert(KTSEnv$txtWidget, "end", paste(txt5, collapse = "\n")) tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n")) tcltk::tkinsert(KTSEnv$txtWidget, "end", paste(txt6, collapse = "\n")) tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n\n")) } } } } cleanEnvir() refreshDataSetsList(outp = FALSE) showPANgoodFill1() } } cleanEnvir() refreshDataSetsList(outp = FALSE) checkIfAnyTs(action = "showPANgoodFill1", envirName = environment(showPANgoodFill1)) }
test_that("can locally override edition", { local_edition(3) expect_equal(edition_get(), 3) local_edition(2) expect_equal(edition_get(), 2) }) test_that("deprecation only fired for newer edition", { local_edition(2) expect_warning(edition_deprecate(3, "old stuff"), NA) local_edition(3) expect_snapshot(edition_deprecate(3, "old stuff")) }) test_that("required only fired for older edition", { withr::local_options(testthat.edition_ignore = FALSE) local_edition(2) expect_error(edition_require(3, "new stuff")) withr::local_options(testthat.edition_ignore = FALSE) local_edition(3) expect_error(edition_require(3, "new stuff"), NA) }) test_that("edition for testthat is 3", { expect_equal(find_edition(package = "testthat"), 3) }) test_that("edition for non-package dir is 2", { expect_equal(find_edition(tempdir()), 2) }) test_that("can set the edition via an environment variable", { local_edition(zap()) withr::local_envvar(TESTTHAT_EDITION = 2) expect_equal(edition_get(), 2) withr::local_envvar(TESTTHAT_EDITION = 3) expect_equal(edition_get(), 3) })
ResultParser <- R6::R6Class(classname = "ResultParser", public = list( destDir = NULL, requestData = NULL, analysisReport = NULL, arResults = NULL, carResults = NULL, aarResults = NULL, aarStatistics = NULL, caarResults = NULL, groups = NULL, initialize = function() { }, parseRequestFile = function(path = "01_RequestFile.csv") { parseReturn <- private$parseFile(path, "requestData", header = F) if (parseReturn) { groups <- unique(self$requestData$V5) } parseReturn }, parseReport = function(path = "analysis_report.csv") { private$parseFile(path, "analysisReport", T) self$analysisReport <- self$analysisReport[-1, ] }, parseAR = function(path = "ar_results.csv", analysisType = "AR") { if (is.null(self$analysisReport)) { self$parseReport() } parseReturn <- private$parseFile(path, "arResults", T) if (!parseReturn) { return(NULL) } else { abnormalReturns <- data.table::copy(self[["arResults"]]) } if (nrow(abnormalReturns) == 0) { message("Analysis performed, but no AR Results. Please look at comments in Analysis report.") return(NULL) } stringr::str_detect(names(abnormalReturns), analysisType) %>% which() -> id abnormalReturns %>% dplyr::select(c(1, id)) %>% reshape2::melt(id.vars = 1) %>% dplyr::rename(eventTime = variable, ar = value) -> self$arResults self$arResults %>% dplyr::mutate(eventTime = as.numeric(stringr::str_replace_all(as.character(eventTime), "[a-zA-Z()]", ""))) -> self$arResults stringr::str_detect(names(abnormalReturns), "t-value") %>% which() -> id if (length(id)) { abnormalReturns %>% dplyr::select(c(1, id)) %>% reshape2::melt(id.vars = 1) %>% dplyr::rename(eventTime = variable, tValue = value) -> tValues tValues %>% dplyr::mutate(eventTime = stringr::str_trim(stringr::str_replace_all(as.character(eventTime), "t-value", ""))) %>% dplyr::mutate(eventTime = as.numeric(stringr::str_replace_all(as.character(eventTime), "[()]", ""))) -> tValues self$arResults %>% dplyr::left_join(tValues, by = c("Event ID", "eventTime")) -> self$arResults } idP <- which(names(self$analysisReport) == "p-value") names(self$analysisReport)[idP] <- paste0("p-value", 1:length(idP)) id <- which(names(self$analysisReport) %in% c("Event ID", "Firm", "Reference Market", "Estimation Window Length")) self$analysisReport %>% dplyr::select(id) -> arReport self$arResults %>% dplyr::left_join(arReport, by = "Event ID") -> self$arResults if (!is.null(self$requestData)) { requestData <- self$requestData[, c(1, 5)] names(requestData) <- c("Event ID", "Group") self$arResults %>% dplyr::left_join(requestData, by = "Event ID") -> self$arResults } }, parseCAR = function(path = "car_results.csv", analysisType = "CAR") { if (is.null(self$analysisReport)) self$parseReport() carResults <- data.table::fread(path) if (nrow(carResults) == 0) { message("Analysis performed, but no CAR Results. Please look at comments in Analysis report.") return(NULL) } self$analysisReport %>% dplyr::select(`Event ID`, Firm) %>% dplyr::right_join(carResults) -> carResults self$carResults <- carResults }, parseAAR = function(path = "aar_results.csv", groups = NULL, analysisType = "AAR") { if (is.null(self$analysisReport)) self$parseReport() if (!is.null(self$groups)) self$groups <- groups aarResults <- data.table::fread(path) if (nrow(aarResults) < 2) { message("Analysis performed, but no AAR Results. Please look at comments in Analysis report.") return(NULL) } stringr::str_detect(names(aarResults), analysisType) %>% which() -> id aarResults %>% reshape2::melt(id.vars = 1, value.name = tolower(analysisType)) %>% dplyr::rename(level = `Grouping Variable/N`, eventTime = variable) -> aarResults self$aarResults <- aarResults aarResults %>% dplyr::mutate(eventTime = as.numeric(stringr::str_replace_all(as.character(eventTime), "[a-zA-Z()]", ""))) -> aarResults aarResults$level %>% stringr::str_detect("Pos:Neg") %>% which() -> idPos idN <- idPos - 1 idAAR <- idN - 1 aarFinal <- aarResults[idAAR, ] aarFinal$aar <- as.numeric(aarFinal$aar) aarFinal$N <- as.numeric(aarResults[idN, ]$aar) aarResults[idPos, ]$aar %>% stringr::str_split(pattern = ":") %>% purrr::map(.f = function(x) as.numeric(x[[1]])) %>% unlist() -> aarFinal$Pos nStat <- idPos[2] - (idPos[1] + 1) - 2 statistics <- c() if (nStat > 0) { for (i in 1:nStat) { idStat <- idPos + i dfStat <- aarResults[idStat, ] statistics <- c(statistics, dfStat$level[1]) aarFinal[[paste0("stat", i)]] <- as.numeric(dfStat$aar) } names(statistics) <- paste0("stat", 1:nStat) self$aarStatistics <- statistics } self$aarResults <- aarFinal }, parseCAAR = function(path = "caar_results.csv", groups = NULL, analysisType = "AAR") { caarResults <- data.table::fread(path) g_names <- c("Grouping Variable", "CAAR Type", "CAAR Value", "Precision Weighted CAAR Value", "ABHAR", "pos:neg CAR", "Number of CARs considered") caar_values <- caarResults[, g_names, with=F] s_names <- setdiff(names(caarResults), g_names) s_names <- c("Grouping Variable", "CAAR Type", s_names) caarResults[, s_names, with=F] %>% data.table::melt(id.vars = c("Grouping Variable", "CAAR Type"), variable.name = "Test", value.name = "Statistics") -> caar_statistics self$caarResults <- list( caar_values = caar_values, caar_statistics = caar_statistics ) }, calcAARCI = function(statistic = "Patell Z", p = 0.95, twosided = T, type = "zStatistic") { statistic <- rlang::arg_match(statistic, c("Patell Z", "Generalized Sign Z", "Csect T", "StdCSect Z", "Rank Z", "Generalized Rank T", "Adjusted Patell Z", "Adjusted StdCSect Z", "Generalized Rank Z", "Skewness Corrected T")) type <- match.arg(type, c("tStatistic", "zStatistic")) if (twosided) { p <- 0.5 + p / 2 if (type == "zStatistic") { zStar <- qnorm(p) } else { } } idStat <- which(self$aarStatistics == statistic) lower <- NULL upper <- NULL if (length(idStat)) { statCol <- names(self$aarStatistics)[idStat] statValue <- self$aarResults[[statCol]] aar <- self$aarResults[["aar"]] lower <- aar - abs(aar) * zStar / abs(statValue) upper <- aar + abs(aar) * zStar / abs(statValue) } return(list(lower = lower, upper = upper)) }, cumSum = function(df, var = "aar", timeVar = NULL, cumVar = NULL, fun = cumsum) { df <- data.table::as.data.table(df) data.table::setkeyv(df, c(cumVar, timeVar)) setnames(df, var, "car") df[, car := fun(car), by = cumVar] df[[var]] <- NULL setnames(df, "car", var) df }, createReport = function(file = "EventStudy.xlsx") { if (!stringr::str_detect(file, ".xlsx")) { file <- paste0(file, ".xlsx") } wb <- openxlsx::createWorkbook() hs1 <- openxlsx::createStyle(fgFill = " border = "Bottom", fontColour = "white") numStyle <- openxlsx::createStyle(numFmt = "0.00") centreStyle <- openxlsx::createStyle(halign = "center", valign = "center") intNumStyle <- openxlsx::createStyle(numFmt = "0") options("openxlsx.numFmt" = " openxlsx::addWorksheet(wb, sheetName = "Analysis Report") openxlsx::writeData(wb, sheet = "Analysis Report", x = self$analysisReport, headerStyle = hs1) openxlsx::setColWidths(wb, sheet = "Analysis Report", cols = 1:ncol(self$analysisReport), widths = 15) if (!is.null(self$arResults)) { self$arResults %>% dplyr::select(-`Estimation Window Length`) -> dtData class(dtData$ar) <- "percentage" names(dtData)[2:4] <- c("Event Time", "AR", "t-Value") openxlsx::addWorksheet(wb, sheetName = "AR Report") openxlsx::writeData(wb, sheet = "AR Report", x =dtData, headerStyle = hs1) openxlsx::setColWidths(wb, sheet = 1, cols = ncol(dtData), widths = 15) wb <- private$setCenterStyle(wb = wb, sheet = "AR Report", rows = 1:(nrow(dtData) + 1), cols = 3:ncol(dtData)) openxlsx::addStyle(wb, "AR Report", style = intNumStyle, rows = 2:(nrow(dtData) + 1), cols = 2, stack = T, gridExpand = TRUE) } if (!is.null(self$carResults)) { dtData <- self$carResults names(dtData)[4] <- "CAR" class(dtData$CAR) <- "percentage" openxlsx::addWorksheet(wb, sheetName = "CAR Report") openxlsx::writeData(wb, sheet = "CAR Report", x = dtData, headerStyle = hs1) wb <- private$setCenterStyle(wb = wb, sheet = "CAR Report", rows = 1:(nrow(dtData) + 1), cols = 3:ncol(dtData)) openxlsx::addStyle(wb, "CAR Report", style = centreStyle, rows = 1:(nrow(dtData) + 1), cols = 3:ncol(dtData), stack = T, gridExpand = TRUE) } if (!is.null(self$aarResults)) { dtData <- self$aarResults statNames <- as.character(self$aarStatistics[names(self$aarResults)]) statId <- which(!is.na(statNames)) names(dtData)[statId] <- statNames[statId] names(dtData)[1:5] <- c("Group", "Event Time", "AAR", "N Firms", "N positive AR") class(dtData$AAR) <- "percentage" openxlsx::addWorksheet(wb, sheetName = "AAR Report") openxlsx::setColWidths(wb, sheet = "AAR Report", cols = 1:ncol(dtData), widths = 15) openxlsx::writeData(wb, sheet = "AAR Report", x = dtData, headerStyle = hs1) wb <- private$setCenterStyle(wb = wb, sheet = "AAR Report", rows = 1:(nrow(dtData) + 1), cols = 3:ncol(dtData)) openxlsx::addStyle(wb, "AAR Report", style = intNumStyle, rows = 2:(nrow(dtData) + 1), cols = c(2, 4:5), stack = T, gridExpand = TRUE) } openxlsx::saveWorkbook(wb, file, overwrite = T) } ), private = list( setCenterStyle = function(wb, sheet, rows, cols) { centreStyle <- openxlsx::createStyle(halign = "center", valign = "center") openxlsx::addStyle(wb, sheet, style = centreStyle, rows = rows, cols = cols, stack = T, gridExpand = TRUE) wb }, parseFile = function(path, dataName, header = F) { if (file.exists(path) || !httr::http_error(path)) { self[[dataName]] <- data.table::fread(path, header = header) TRUE } else { message(paste0("File ", path, " not found!")) FALSE } } ))
stopifnot(!"lmerTest" %in% .packages()) data("sleepstudy", package="lme4") f <- function(form, data) lmerTest::lmer(form, data=data) form <- "Reaction ~ Days + (Days|Subject)" fm <- f(form, data=sleepstudy) anova(fm) summary(fm) test <- function() { tmp <- sleepstudy m <- lmerTest::lmer(Reaction ~ Days + (Days | Subject), data = tmp) summary(m) } test() test <- function() { tmp <- sleepstudy m <- lme4::lmer(Reaction ~ Days + (Days | Subject), data = tmp) if(requireNamespace("lmerTest", quietly = TRUE)) { summary(lmerTest::as_lmerModLmerTest(m)) } } test() library(lmerTest) assertError <- function(expr, ...) if(requireNamespace("tools")) tools::assertError(expr, ...) else invisible() assertWarning <- function(expr, ...) if(requireNamespace("tools")) tools::assertWarning(expr, ...) else invisible() TOL <- 1e-4 lmer_args <- formals(lme4::lmer) names(lmer_args) lmerTest_args <- formals(lmerTest::lmer) seq_args <- seq_along(lmerTest_args) if(packageVersion("lme4") > '1.1.21') { stopifnot( all.equal(names(lmer_args), names(lmerTest_args)), all.equal(lmer_args, lmerTest_args) ) } else { stopifnot( all.equal(names(lmer_args)[seq_args], names(lmerTest_args[seq_args])), all.equal(lmer_args[seq_args], lmerTest_args[seq_args]) ) } myupdate <- function(m, ...) { update(m, ...) } data("sleepstudy", package="lme4") fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) tmp <- sleepstudy rm(sleepstudy) fmA <- update(fm1, data = tmp) fmB <- myupdate(fm1, data = tmp) fmB@call <- fmA@call stopifnot(isTRUE(all.equal(fmA, fmB, tolerance=TOL))) form <- "Informed.liking ~ Product+Information+ (1|Consumer) + (1|Product:Consumer) + (1|Information:Consumer)" m <- lmer(form, data=ham) class(m) class(update(m, ~.- Product)) stopifnot(inherits(update(m, ~.- Product), "lmerModLmerTest")) data("sleepstudy", package="lme4") myfit <- function(formula, data) { lme4::lmer(formula = formula, data = data) } fm2 <- myfit(Reaction ~ Days + (Days|Subject), sleepstudy) m <- assertError(as_lmerModLmerTest(fm2)) stopifnot( grepl("Unable to extract deviance function from model fit", m[[1]], fixed=TRUE) ) data("sleepstudy", package="lme4") fun <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, devFunOnly = TRUE) stopifnot(is.function(fun) && names(formals(fun)[1]) == "theta") fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) fun <- update(fm1, devFunOnly=TRUE) stopifnot(is.function(fun) && names(formals(fun)[1]) == "theta") notfun <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, devFunOnly = FALSE) stopifnot(inherits(notfun, "lmerModLmerTest")) notfun <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy, devFun = FALSE) stopifnot(inherits(notfun, "lmerModLmerTest")) data("sleepstudy", package="lme4") m <- lme4::lmer(Reaction ~ Days + (Days | Subject), sleepstudy) bm <- lmerTest:::as_lmerModLmerTest(m) stopifnot( inherits(bm, "lmerModLmerTest"), !inherits(m, "lmerModLmerTest"), inherits(bm, "lmerMod"), all(c("vcov_varpar", "Jac_list", "vcov_beta", "sigma") %in% slotNames(bm)) ) m <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) m1 <- update(m, ~.-Days) m2 <- lmer(Reaction ~ (Days | Subject), sleepstudy) stopifnot( inherits(m, "lmerModLmerTest"), inherits(m1, "lmerModLmerTest"), inherits(m2, "lmerModLmerTest"), all.equal(m1, m2, tolerance=1e-6) )
context("FT 1: Fortify pipeline objects") ft1_check_libs <- function() { if (requireNamespace("ggplot2", quietly = TRUE)) { TRUE } else { FALSE } } test_that("fortify fmdat", { if (!ft1_check_libs()) { skip("Libraries cannot be loaded") } data(B500) fmdat <- reformat_data(B500$good_er_scores, B500$labels) curve_df <- ggplot2::fortify(fmdat) expect_true(is.list(curve_df)) }) test_that("fortify cmat", { if (!ft1_check_libs()) { skip("Libraries cannot be loaded") } data(B500) cmat <- create_confmats(scores = B500$good_er_scores, labels = B500$labels) curve_df <- ggplot2::fortify(cmat) expect_true(is.list(curve_df)) }) test_that("fortify pevals", { if (!ft1_check_libs()) { skip("Libraries cannot be loaded") } data(B500) pevals <- calc_measures(scores = B500$good_er_scores, labels = B500$labels) curve_df <- ggplot2::fortify(pevals) expect_true(is.list(curve_df)) })
context("Computer Vision") vision_url <- Sys.getenv("AZ_TEST_COMPUTERVISION_URL") vision_key <- Sys.getenv("AZ_TEST_COMPUTERVISION_KEY") storage <- Sys.getenv("AZ_TEST_STORAGE_ACCT") if(vision_url == "" || vision_key == "" || storage == "") skip("Tests skipped: resource details not set") test_that("Computer Vision endpoint works with URL", { endp <- computervision_endpoint(vision_url, key=vision_key) expect_is(endp, c("computervision_endpoint", "cognitive_endpoint")) res_doms <- list_computervision_domains(endp) expect_type(res_doms, "character") img <- httr::parse_url(storage) img$path <- "cognitive/bill.jpg" img <- httr::build_url(img) res_analyze <- analyze(endp, img) expect_is(res_analyze, "list") expect_is(res_analyze$categories, "data.frame") res_analyze_celeb <- analyze(endp, img, domain="celebrities") expect_is(res_analyze_celeb$categories, "data.frame") expect_is(res_analyze_celeb$categories$detail, "data.frame") res_analyze_tags <- analyze(endp, img, feature_types="tags") expect_is(res_analyze_tags$tags, "data.frame") res_analyze_faces <- analyze(endp, img, feature_types="faces") expect_is(res_analyze_faces$faces, "data.frame") res_desc <- describe(endp, img) expect_is(res_desc, "list") expect_type(res_desc$tags, "character") expect_is(res_desc$captions, "data.frame") res_desc_lang <- describe(endp, img, language="es") expect_is(res_desc_lang, "list") expect_type(res_desc_lang$tags, "character") expect_is(res_desc_lang$captions, "data.frame") res_detobj <- detect_objects(endp, img) expect_is(res_detobj, "data.frame") res_area <- area_of_interest(endp, img) expect_type(res_area, "integer") res_tag <- tag(endp, img) expect_is(res_tag, "data.frame") res_cat <- categorize(endp, img) expect_is(res_cat, "data.frame") text_img <- httr::parse_url(storage) text_img$path <- "cognitive/gettysburg.png" text_img <- httr::build_url(text_img) res_text <- read_text(endp, text_img) expect_is(res_text, "list") expect_type(res_text[[1]], "character") res_thumb <- make_thumbnail(endp, img, outfile=NULL, width=50, height=50) expect_type(res_thumb, "raw") }) test_that("Computer Vision endpoint works with local file", { endp <- computervision_endpoint(vision_url, key=vision_key) img <- "../../inst/images/bill.jpg" res_analyze <- analyze(endp, img) expect_is(res_analyze, "list") })
correct_gamma=function(P_data,rep,n.eta, sample_gamma){ P=list() for (i in 1:rep){ P[[i]]=P_data[(1+n.eta*(i-1)):(n.eta*i),] } correct_sample_G=lapply(1:length(sample_gamma), function(i){t(as.matrix(P[[i]]))%*%sample_gamma[[i]]}) correct_gamma=do.call(rbind,lapply(1:length(correct_sample_G), function(i) {cbind(i,correct_sample_G[[i]])})) colnames(correct_gamma)[1]=c("replication") write.table(correct_gamma, sep=",", file="correct_gamma.csv", row.names=FALSE) }
testthat::test_that("model_summary: lm model", { model <- lm_model( data = iris[1:4], response_variable = "Sepal.Length", predictor_variable = c(Sepal.Width, Petal.Width), two_way_interaction_factor = c(Sepal.Width, Petal.Width), quite = T ) summary <- model_summary(model, return_result = T, assumption_plot = T, quite = T ) expect_false(is.null(summary$model_summary)) expect_false(is.null(summary$model_performance_df)) expect_false(is.null(summary$assumption_plot)) }) testthat::test_that("model_summary: glm model", { expect_warning(model <- glm_model( response_variable = incidence, predictor_variable = period, family = "poisson", data = lme4::cbpp, quite = TRUE, )) summary <- model_summary(model, return_result = T, assumption_plot = T, quite = T ) expect_false(is.null(summary$model_summary)) expect_false(is.null(summary$model_performance_df)) expect_false(is.null(summary$assumption_plot)) }) testthat::test_that(desc = "model_summary: nlme model", { model <- lme_model( data = popular, response_variable = popular, random_effect_factors = sex, non_random_effect_factors = c(extrav, sex, texp), id = class, opt_control = "optim", use_package = "nlme", quite = T ) summary <- model_summary(model, return_result = T, assumption_plot = T, quite = T ) expect_false(is.null(summary$model_summary)) expect_false(is.null(summary$model_performance_df)) expect_false(is.null(summary$assumption_plot)) }) testthat::test_that(desc = "model_summary: lmerTest model", { model <- lme_model( data = popular, response_variable = popular, random_effect_factors = c(extrav), non_random_effect_factors = c(texp), id = class, use_package = "lmerTest", quite = T ) summary <- model_summary(model, return_result = T, assumption_plot = T, quite = T ) expect_false(is.null(summary$model_summary)) expect_false(is.null(summary$model_performance_df)) expect_false(is.null(summary$assumption_plot)) }) testthat::test_that(desc = "model_summary: lme4 model", { model <- lme_model( data = popular, response_variable = popular, random_effect_factors = c(extrav), non_random_effect_factors = c(texp), id = class, use_package = "lme4", quite = T ) summary <- model_summary(model, return_result = T, assumption_plot = T, quite = T ) expect_false(is.null(summary$model_summary)) expect_false(is.null(summary$model_performance_df)) expect_false(is.null(summary$assumption_plot)) }) testthat::test_that(desc = "model_summary: glme model", { testthat::skip_on_cran() model <- expect_warning(glme_model( response_variable = incidence, random_effect_factors = period, family = "poisson", id = herd, data = lme4::cbpp, quite = T )) summary <- model_summary(model, return_result = T, assumption_plot = T, quite = T ) expect_false(is.null(summary$model_summary)) expect_false(is.null(summary$model_performance_df)) expect_false(is.null(summary$assumption_plot)) })
plot.pcovar <- function(x,...,reversals=c(0,0,0,0,0,0)) { o.pcovar<- x rev<- (-2*reversals)+1 y<- o.pcovar$y par(mfrow=c(2,3),pty="s",mar=c(0.0,2.3,2.3,0.3),omi=c(1,0,0,0),mgp=c(1.30,0.5,0),lwd=0.5) colors<- c("darkred","darkolivegreen4","blue","gold","darkorange") coo<- colors[o.pcovar$grel] co<- "black" plot(c(o.pcovar$euclidpca[,1],o.pcovar$euclidpco[,1]),c(o.pcovar$euclidpca[,2]*rev[1],o.pcovar$euclidpco[,2]*rev[1]),xlab="PCO axis 1",ylab="PCO axis 2",asp=1,type="n",cex.axis=0.8,cex.lab=0.8,tcl=-0.3) points(o.pcovar$euclidpca[,1],o.pcovar$euclidpca[,2]*rev[1],pch=16,cex=1.0,col=coo) points(o.pcovar$euclidpco[,1],o.pcovar$euclidpco[,2]*rev[1],pch=16,cex=0.2,col=co) abline(h=0,v=0,lwd=0.6,col="gray") title(substitute(paste("PCOA, Euclidean, ",italic("x'=x")^y,sep=""),list(y=y)),cex.main=1.0) plot(c(o.pcovar$manhpca[,1],o.pcovar$manhpco[,1]),c(o.pcovar$manhpca[,2]*rev[2],o.pcovar$manhpco[,2]*rev[2]),xlab="PCO axis 1",ylab="PCO axis 2",asp=1,type="n",cex.axis=0.8,cex.lab=0.8,tcl=-0.3) points(o.pcovar$manhpca[,1],o.pcovar$manhpca[,2]*rev[2],pch=16,cex=1.0,col=coo) points(o.pcovar$manhpco[,1],o.pcovar$manhpco[,2]*rev[2],pch=16,cex=0.2,col=co) abline(h=0,v=0,lwd=0.6,col="gray") title(substitute(paste("PCOA, Manhattan, ",italic("x'=x")^y,sep=""),list(y=y)),cex.main=1.0) plot(c(o.pcovar$cordpca[,1],o.pcovar$cordpco[,1]),c(o.pcovar$cordpca[,2]*rev[3],o.pcovar$cordpco[,2]*rev[3]),xlab="PCO axis 1",ylab="PCO axis 2",asp=1,type="n",cex.axis=0.8,cex.lab=0.8,tcl=-0.3) points(o.pcovar$cordpca[,1],o.pcovar$cordpca[,2]*rev[3],pch=16,cex=1.0,col=coo) points(o.pcovar$cordpco[,1],o.pcovar$cordpco[,2]*rev[3],pch=16,cex=0.2,col=co) abline(h=0,v=0,lwd=0.6,col="gray") title(substitute(paste("PCOA, Chord distance, ",italic("x'=x")^y,sep=""),list(y=y)),cex.main=1.0) plot(c(o.pcovar$canpca[,1],o.pcovar$canpco[,1]),c(o.pcovar$canpca[,2]*rev[4],o.pcovar$canpco[,2]*rev[4]),xlab="PCO axis 1",ylab="PCO axis 2",asp=1,type="n",cex.axis=0.8,cex.lab=0.8,tcl=-0.3) points(o.pcovar$canpca[,1],o.pcovar$canpca[,2]*rev[4],pch=16,cex=1.0,col=coo) points(o.pcovar$canpco[,1],o.pcovar$canpco[,2]*rev[4],pch=16,cex=0.2,col=co) abline(h=0,v=0,lwd=0.6,col="gray") title(substitute(paste("PCOA, Canberra, ",italic("x'=x")^y,sep=""),list(y=y)),cex.main=1.0) plot(c(o.pcovar$bpca[,1],o.pcovar$bpco[,1]),c(o.pcovar$bpca[,2]*rev[5],o.pcovar$bpco[,2]*rev[5]),xlab="PCO axis 1",ylab="PCO axis 2",asp=1,type="n",cex.axis=0.8,cex.lab=0.8,tcl=-0.3) points(o.pcovar$bpca[,1],o.pcovar$bpca[,2]*rev[5],pch=16,cex=1.0,col=coo) points(o.pcovar$bpco[,1],o.pcovar$bpco[,2]*rev[5],pch=16,cex=0.2,col=co) abline(h=0,v=0,lwd=0.6,col="gray") title(substitute(paste("PCOA, Bray-Curtis, ",italic("x'=x")^y,sep=""),list(y=y)),cex.main=1.0) plot(c(o.pcovar$corpca[,1],o.pcovar$corpco[,1]),c(o.pcovar$corpca[,2]*rev[6],o.pcovar$corpco[,2]*rev[6]),xlab="PCO axis 1",ylab="PCO axis 2",asp=1,type="n",cex.axis=0.8,cex.lab=0.8,tcl=-0.3) points(o.pcovar$corpca[,1],o.pcovar$corpca[,2]*rev[6],pch=16,cex=1.0,col=coo) points(o.pcovar$corpco[,1],o.pcovar$corpco[,2]*rev[6],pch=16,cex=0.2,col=co) abline(h=0,v=0,lwd=0.6,col="gray") title(substitute(paste("PCOA, (1-Correlation)/2, ",italic("x'=x")^y,sep=""),list(y=y)),cex.main=1.0) }
eknives <- stats::ts(c(19, 15, 39, 102, 90, 29, 90, 46, 30, 66, 80, 89, 82, 17, 26, 29),f=12,s=1991)
bunch <- function(earnings, zstar, t1, t2, Tax = 0, cf_start = NA, cf_end = NA, exclude_before = NA, exclude_after = NA, force_after = FALSE, binw = 10, poly_size = 7, convergence = 0.01, max_iter = 100, correct = TRUE, select = TRUE, draw = TRUE, nboots = 0, seed = NA, progress = FALSE, title = "Bunching Visualization", varname = "Earnings") { if (!is.numeric(earnings)) { stop("Earning ector must be numeric") } if (Tax < 0) { stop("This function does not analysze positive notches") } if (exclude_before > cf_start | exclude_after > cf_end) { stop("cf_start and cf_end must be within the excluded range") } if (exclude_before == cf_start & exclude_after == cf_end) { stop("Excluded range must be a strict subset of analysis area") } else if ( (cf_start - exclude_before) + (cf_end - exclude_after) <= poly_size + 1) { stop("Too few bins outside excluded area for polynomial size.") } if (!is.na(cf_start) & cf_start <= 0 | !is.na(cf_end) & cf_end <= 0 ) { stop("cf_start and cf_end must be positive integers") } if (!is.na(exclude_before) & exclude_before < 0 | !is.na(exclude_after) & exclude_after < 0 ) { stop("exclude_before and exclude_after must be non-negative integers") } if (binw <= 0) { stop("Bin width needs to be positive") } if (!poly_size%%(floor(poly_size)) == 0 & poly_size > 0) { stop("poly_size must be a positive integer") } if (convergence <= 0) { stop("Convergence threshold must be positive") } if (convergence > 0.1) { warning(paste0("Convergence threshold is low: ", convergence*100,"%")) } if (max_iter <= 0) { stop("max_iter has to be positive") } else if (!max_iter%%(floor(max_iter)) == 0) { max_iter <- floor(max_iter) warning(paste0("max_iter was rounded down to ", max_iter)) } if (max_iter < 50) { warning("max_iter is set below recommended level of 50") } if (nboots < 0 ) { stop("nboots cannot be negative") } if ( nboots > 0 & !nboots%%(floor(nboots)) == 0 ) { nboots <- floor(nboots) warning(paste0("nboots was rounded down to ", nboots)) } if (nboots > 0 & nboots < 50) { warning("Such few bootstraps?") } if (!is.logical(progress)) { warning("Wrong input for progress bar option, not showing it") progress <- FALSE } population <- length(earnings) if (population < 1000) { warning("Earning vector smaller than 1000. Not sure you want to run an bunching analysis on this sample size") } if (Tax == 0) { result1 <- kink_estimator(earnings, zstar, t1, t2, cf_start, cf_end, exclude_before, exclude_after, binw, poly_size, convergence, max_iter, correct, select, draw, title, varname) if (nboots > 0) { boot_e <- rep(NA, nboots) boot_Bn <- rep(NA, nboots) boot_b <- rep(NA, nboots) if (!is.na(seed)) { set.seed(seed) } if (progress == TRUE) { pb <- utils::txtProgressBar(min = 1, max = nboots, initial = 1, char = "=", width = 80, style = 3) } for (i in 1:nboots) { temp_pop <- sample(earnings,population,replace=TRUE) temp_result <- kink_estimator(temp_pop, zstar, t1, t2, cf_start, cf_end, exclude_before, exclude_after, binw, poly_size, convergence, max_iter, correct, select, draw=FALSE, title, varname) boot_e[i] <- temp_result$e boot_Bn[i] <- temp_result$Bn boot_b[i] <- temp_result$b if (progress == TRUE) { utils::setTxtProgressBar(pb, value = i) } } if (progress == TRUE) { close(pb) } results <- list("e" = result1$e, "Bn" = result1$Bn, "b" = result1$b, "data" = result1$data, "booted_e" = boot_e, "booted_Bn" = boot_Bn, "booted_b" = boot_b ) return(results) } else { return(result1) } } if (Tax > 0) { result1 <- notch_estimator(earnings, zstar, t1, t2, Tax, cf_start, cf_end, exclude_before, exclude_after, force_after, binw, poly_size, convergence, max_iter, select, draw, title, varname) if (nboots > 0) { boot_e <- rep(NA, nboots) boot_Bn <- rep(NA, nboots) boot_dz <- rep(NA, nboots) if (!is.na(seed)) { set.seed(seed) } if (progress == TRUE) { pb <- utils::txtProgressBar(min = 1, max = nboots, initial = 1, char = "=", width = 80, style = 3) } for (i in 1:nboots) { temp_pop <- sample(earnings,population,replace = TRUE) temp_result <- notch_estimator(temp_pop, zstar, t1, t2, Tax, cf_start, cf_end, exclude_before, exclude_after, force_after, binw, poly_size, convergence, max_iter, select, draw = FALSE, title, varname) boot_e[i] <- temp_result$e boot_Bn[i] <- temp_result$Bn boot_dz[i] <- temp_result$notch_size if (progress == TRUE) { utils::setTxtProgressBar(pb, value = i) } } if (progress == TRUE) { close(pb) } results <- list("e" = result1$e, "Bn" = result1$Bn, "notch_size" = result1$notch_size, "data" = result1$data, "booted_e" = boot_e, "booted_Bn" = boot_Bn, "booted_notch_size" = boot_dz ) return(results) } else { return(result1) } } }
"prrace08"
context("num.edges") test_that("num.edges works on edgeLists", { expect_equal(num.edges(generate_empty_edgeList()), 0) edgeL <- generate_fixed_edgeList() expect_equal(num.edges(edgeL), 4) }) test_that("num.edges works on sparsebnFit", { cf <- generate_empty_sparsebnFit() expect_equal(num.edges(cf), 0) cf <- generate_fixed_sparsebnFit() expect_equal(num.edges(cf), 4) }) test_that("num.edges works on sparsebnPath", { cp <- generate_empty_sparsebnPath() expect_equal(num.edges(cp), rep(0, length(cp))) cp <- generate_fixed_sparsebnPath() expect_equal(num.edges(cp), rep(4, length(cp))) })
aggregate.portfolio <- function(x, by = names(x$nodes), FUN = sum, classification = TRUE, prefix = NULL, ...) { level.names <- names(x$nodes) nlevels <- length(level.names) years <- level.names[nlevels] by <- match.arg(by, level.names, several.ok = TRUE) fun <- function(x, ...) FUN(unlist(x), ...) if (identical(by, level.names)) return(cbind(if (classification) x$classification, array(sapply(x$data, FUN, ...), dim(x$data), dimnames = list(NULL, paste(prefix, colnames(x$data), sep = ""))))) if (identical(by, years)) { res <- apply(x$data, 2, fun, ...) names(res) <- paste(prefix, colnames(x$data), sep = "") return(res) } rows <- setdiff(by, years) s <- x$classification[, rows, drop = FALSE] f <- apply(s, 1, paste, collapse = "") f <- factor(f, levels = unique(f)) s <- s[match(levels(f), f), , drop = FALSE] xx <- split(x$data, f) if (years %in% by) { xx <- lapply(xx, matrix, ncol = ncol(x$data)) res <- t(sapply(xx, function(x, ...) apply(x, 2, fun, ...), ...)) cols <- colnames(x$data) } else { res <- sapply(xx, fun, ...) cols <- deparse(substitute(FUN)) } structure(cbind(if (classification) s, res), dimnames = list(NULL, c(if (classification) rows, paste(prefix, cols, sep = "")))) } frequency.portfolio <- function(x, by = names(x$nodes), classification = TRUE, prefix = NULL, ...) { chkDots(...) freq <- function(x) if (identical(x, NA)) NA else length(x[!is.na(x)]) aggregate(x, by, freq, classification, prefix) } severity.portfolio <- function(x, by = head(names(x$node), -1), splitcol = NULL, classification = TRUE, prefix = NULL, ...) { chkDots(...) level.names <- names(x$nodes) ci <- seq_len(ncol(x$data)) by <- match.arg(by, level.names, several.ok = TRUE) if (identical(by, level.names)) { warning("nothing to do") return(x) } if (is.character(splitcol)) splitcol <- pmatch(splitcol, colnames(x$data), duplicates.ok = TRUE) if (is.numeric(splitcol) || is.null(splitcol)) splitcol <- ci %in% splitcol if (tail(level.names, 1L) %in% by) { if (length(by) > 1L) stop("invalid 'by' specification") res <- unroll(x$data, bycol = TRUE, drop = FALSE) colnames(res) <- paste(prefix, colnames(res), sep = "") return(list(main = res[, !splitcol], split = if (all(!splitcol)) NULL else res[, splitcol])) } fun <- function(x) unlist(x[!is.na(x)]) s <- x$classification[, by, drop = FALSE] f <- apply(s, 1, paste, collapse = "") f <- factor(f, levels = unique(f)) s <- s[match(levels(f), f), , drop = FALSE] x.split <- x$data[, splitcol] if (is.null(prefix)) prefix <- "claim." if (all(splitcol)) res.main <- NULL else { x <- cbind(lapply(split(x$data[, !splitcol], f), fun)) res.main <- unroll(x, bycol = FALSE, drop = FALSE) res.main <- if (0L < (nc <- ncol(res.main))) { dimnames(res.main) <- list(NULL, paste(prefix, seq_len(nc), sep = "")) cbind(if (classification) s, res.main) } else NULL } if (all(!splitcol)) res.split <- NULL else { x <- cbind(lapply(split(x.split, f), fun)) res.split <- unroll(x, bycol = FALSE, drop = FALSE) res.split <- if (0L < (nc <- ncol(res.split))) { dimnames(res.split) <- list(NULL, paste(prefix, seq_len(nc), sep = "")) cbind(if (classification) s, res.split) } else NULL } list(main = res.main, split = res.split) } weights.portfolio <- function(object, classification = TRUE, prefix = NULL, ...) { chkDots(...) if (is.null(object$weights)) NULL else { w <- object$weights colnames(w) <- paste(prefix, colnames(w), sep = "") cbind(if (classification) object$classification, w) } }
expected <- c(8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14) test(id=1052, code={ argv <- structure(list(x = structure(list(distance = c(26, 25, 29, 31, 21.5, 22.5, 23, 26.5, 23, 22.5, 24, 27.5, 25.5, 27.5, 26.5, 27, 20, 23.5, 22.5, 26, 24.5, 25.5, 27, 28.5, 22, 22, 24.5, 26.5, 24, 21.5, 24.5, 25.5, 23, 20.5, 31, 26, 27.5, 28, 31, 31.5, 23, 23, 23.5, 25, 21.5, 23.5, 24, 28, 17, 24.5, 26, 29.5, 22.5, 25.5, 25.5, 26, 23, 24.5, 26, 30, 22, 21.5, 23.5, 25, 21, 20, 21.5, 23, 21, 21.5, 24, 25.5, 20.5, 24, 24.5, 26, 23.5, 24.5, 25, 26.5, 21.5, 23, 22.5, 23.5, 20, 21, 21, 22.5, 21.5, 22.5, 23, 25, 23, 23, 23.5, 24, 20, 21, 22, 21.5, 16.5, 19, 19, 19.5, 24.5, 25, 28, 28), age = c(8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14), Subject = structure(c(15L, 15L, 15L, 15L, 3L, 3L, 3L, 3L, 7L, 7L, 7L, 7L, 14L, 14L, 14L, 14L, 2L, 2L, 2L, 2L, 13L, 13L, 13L, 13L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 11L, 11L, 11L, 11L, 16L, 16L, 16L, 16L, 4L, 4L, 4L, 4L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 1L, 20L, 20L, 20L, 20L, 23L, 23L, 23L, 23L, 25L, 25L, 25L, 25L, 26L, 26L, 26L, 26L, 21L, 21L, 21L, 21L, 19L, 19L, 19L, 19L, 22L, 22L, 22L, 22L, 24L, 24L, 24L, 24L, 18L, 18L, 18L, 18L, 17L, 17L, 17L, 17L, 27L, 27L, 27L, 27L), .Label = c("M16", "M05", "M02", "M11", "M07", "M08", "M03", "M12", "M13", "M14", "M09", "M15", "M06", "M04", "M01", "M10", "F10", "F09", "F06", "F01", "F05", "F07", "F02", "F08", "F03", "F04", "F11"), class = c("ordered", "factor")), Sex = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Male", "Female"), class = "factor")), .Names = c("distance", "age", "Subject", "Sex"), row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100", "101", "102", "103", "104", "105", "106", "107", "108"), outer = ~Sex, class = c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame"), formula = distance ~ age | Subject, labels = structure(list(x = "Age", y = "Distance from pituitary to pterygomaxillary fissure"), .Names = c("x", "y")), units = structure(list(x = "(yr)", y = "(mm)"), .Names = c("x", "y")), FUN = function (x) max(x, na.rm = TRUE), order.groups = TRUE), name = "age"), .Names = c("x", "name")) do.call('$.data.frame', argv); }, o = expected);
coverageprob <- function(xi, obswin = NULL){ if (is.im(xi)){ stopifnot(is.null(obswin)) coverprobest <- sum(xi) / sum(is.finite(xi$v)) return(coverprobest) } stopifnot(is.owin(xi)) stopifnot(is.owin(obswin)) xinw <- intersect.owin(xi, obswin) xiinw_area <- area.owin(xinw) w_area <- area.owin(obswin) coverprobest <- xiinw_area / w_area return(coverprobest) } coveragefrac <- coverageprob cp <- coverageprob
if(getRversion() >= "2.15.1") utils::globalVariables(c("x", "value", "n", "model", "lambda", "upper", "lower", "lowest_BIC", "occs")) NULL
library(PortfolioAnalytics) data(edhec) R <- edhec[, 1:8] funds <- colnames(R) init.portf <- portfolio.spec(assets=funds) init.portf <- add.constraint(portfolio=init.portf, type="leverage", min_sum=0.99, max_sum=1.01) init.portf <- add.constraint(portfolio=init.portf, type="long_only") rbES.portf <- add.objective(portfolio=init.portf, type="return", name="mean") rbES.portf <- add.objective(portfolio=rbES.portf, type="risk_budget", name="ES", max_prisk=0.4, arguments=list(p=0.92)) rbES.DE <- optimize.portfolio(R=R, portfolio=rbES.portf, optimize_method="DEoptim", search_size=2000, trace=TRUE) rbES.DE plot(rbES.DE, xlim=c(0, 0.08), ylim=c(0, 0.01)) chart.RiskBudget(rbES.DE, risk.type="pct_contrib") eqES.portf <- add.objective(portfolio=init.portf, type="return", name="mean") eqES.portf <- add.objective(portfolio=eqES.portf, type="risk_budget", name="ES", min_concentration=TRUE, arguments=list(p=0.9, clean="boudt"), multiplier=10) R.clean <- Return.clean(R=R, method="boudt") eqES.RP <- optimize.portfolio(R=R.clean, portfolio=eqES.portf, optimize_method="random", search_size=2000, trace=TRUE) eqES.RP plot(eqES.RP) chart.RiskBudget(eqES.RP, risk.type="pct_contrib") rbStdDev.portf <- add.objective(portfolio=init.portf, type="return", name="mean") rbStdDev.portf <- add.objective(portfolio=rbStdDev.portf, type="risk_budget", name="StdDev", max_prisk=0.25) rbStdDev.DE <- optimize.portfolio(R=R.clean, portfolio=rbStdDev.portf, optimize_method="DEoptim", search_size=2000, trace=TRUE) rbStdDev.DE plot(rbStdDev.DE, risk.col="StdDev", xlim=c(0, 0.035), ylim=c(0, 0.01)) chart.RiskBudget(rbStdDev.DE, risk.type="pct_contrib") rp <- random_portfolios(init.portf, 5000) SDRB.opt.bt <- optimize.portfolio.rebalancing(R, SDRB.portf, optimize_method="random", rp=rp, trace=TRUE, rebalance_on="years", training_period=100, trailing_periods=60) SDRB.opt.bt tmp_summary <- summary(SDRB.opt.bt) names(tmp_summary) tmp_summary extractWeights(tmp_summary) extractObjectiveMeasures(tmp_summary) tmp_stats <- extractStats(SDRB.opt.bt) head(tmp_stats[[1]]) tmp_weights <- extractWeights(SDRB.opt.bt) tmp_obj <- extractObjectiveMeasures(SDRB.opt.bt) chart.Weights(SDRB.opt.bt) chart.RiskBudget(SDRB.opt.bt, match.col="StdDev", risk.type="percent")
new_xmlreadabs <- function(file){ test1 <- xmlParse(file) test2 = getNodeSet(test1, "//PubmedArticle") test2a <- NULL;test2b <- NULL;test2c <- NULL; for (i in 1:length(test2)){ saveXML(test2[[i]], "temp.txt"); temp <- xmlParse("temp.txt"); tempAA <- getNodeSet(temp,"//AbstractText"); if (length(tempAA) == 0) test2a <- c(test2a,"No Abstract Found") else {tempBB <- xmlValue(tempAA);tempBB <- space_quasher(tempBB);test2a <- c(test2a,tempBB[1])}; tempAA <- getNodeSet(temp,"//ISOAbbreviation"); if (length(tempAA) == 0) test2b <- c(test2b,"No Journal Found") else {tempBB <- xmlValue(tempAA);test2b <- c(test2b,tempBB[1])}; tempAA = getNodeSet(temp, "//PMID") if (length(tempAA) == 0) test2c <- c(test2c,"No PMID Found") else {tempBB <- xmlValue(tempAA);test2c <- c(test2c,tempBB[1])}; } check = (length(test2a) == length(test2b)) & (length(test2b) == length(test2c)) if (check) {resultabs = new("Abstracts", Journal = test2b, Abstract = test2a, PMID = as.numeric(test2c)); return(resultabs)} else return("There is some problem in xml file. Please check")}
addGroupOfUnusedAnimals <- function(savedGroupMembers, candidates, ped, minAge, harem) { if (harem) { candidates <- removePotentialSires(candidates, minAge, ped) } n <- length(savedGroupMembers) + 1 savedGroupMembers[[n]] <- ifelse(isEmpty(setdiff(candidates, unlist(savedGroupMembers))), c(NA), list(setdiff(candidates, unlist(savedGroupMembers))))[[1]] savedGroupMembers }
make_commonlink_adjmat <- function(adj_mat){ comm_mat <- matrix(NA, nrow(adj_mat), ncol(adj_mat)) for(ii in 1:nrow(adj_mat)){ for(jj in 1:ncol(adj_mat)){ comm_mat[ii, jj] <- sum(adj_mat[ii,] & adj_mat[,jj]) } } rownames(comm_mat) <- rownames(adj_mat) colnames(comm_mat) <- colnames(adj_mat) return(comm_mat) } make_commonlink_graph <- function(graph, directed = FALSE){ adj_mat <- make_adjmatrix_graph(graph, directed = directed) comm_mat <- make_commonlink_adjmat(adj_mat) return(comm_mat) }
ifef <- function(dv){ dv <- ifelse(is.na(dv) , .Machine$double.eps, dv ) dv <- ifelse(dv == Inf , 8.218407e+20, dv ) dv <- ifelse(dv == -Inf , -8.218407e+20, dv ) dv } intB <- function(y, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, min.dn, min.pr, max.pr, discr = FALSE, ym = NULL){ if(discr == FALSE) pdf <- distrHsAT(y, eta, sigma2, nu, margin, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr)$pdf2 if(discr == TRUE) pdf <- distrHsDiscr(y, eta, sigma2, 1, 1, 1, margin, naive = TRUE, ym, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr)$pdf2 log( 1 + exp( log( pdf ) + rc ) ) } gradBbit1 <- function(y, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, min.dn, min.pr, max.pr, discr = FALSE, ym = NULL){ if(discr == FALSE) dHs <- distrHs(y, eta, sigma2, sigma2.st, nu, nu.st, margin, naive = TRUE, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) if(discr == TRUE) dHs <- distrHsDiscr(y, eta, sigma2, sigma2.st, 1, 1, margin, naive = TRUE, ym, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) pdf2 <- dHs$pdf2 derpdf2.dereta2 <- dHs$derpdf2.dereta2 comp1 <- 1 + exp(log( pdf2 ) + rc) comp2 <- pdf2/comp1 dl.dbe <- derpdf2.dereta2/pdf2 comp2*dl.dbe } gradBbit2 <- function(y, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, min.dn, min.pr, max.pr, discr = FALSE, ym = NULL){ if(discr == FALSE) dHs <- distrHs(y, eta, sigma2, sigma2.st, nu, nu.st, margin, naive = TRUE, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) if(discr == TRUE) dHs <- distrHsDiscr(y, eta, sigma2, sigma2.st, 1, 1, margin, naive = TRUE, ym, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) pdf2 <- dHs$pdf2 derpdf2.dersigma2.st <- dHs$derpdf2.dersigma2.st comp1 <- 1 + exp(log( pdf2 ) + rc) comp2 <- pdf2/comp1 dl.dsigma.st <- derpdf2.dersigma2.st/pdf2 comp2*dl.dsigma.st } gradBbit3 <- function(y, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, min.dn, min.pr, max.pr, discr = FALSE, ym = NULL){ dHs <- distrHs(y, eta, sigma2, sigma2.st, nu, nu.st, margin, naive = TRUE, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) pdf2 <- dHs$pdf2 derpdf2.dernu.st <- dHs$derpdf2.dernu.st comp1 <- 1 + exp(log( pdf2 ) + rc) comp2 <- pdf2/comp1 dl.dnu.st <- derpdf2.dernu.st/pdf2 comp2*dl.dnu.st } hessBbit1 <- function(y, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, min.dn, min.pr, max.pr, discr = FALSE, ym = NULL){ if(discr == FALSE) dHs <- distrHs(y, eta, sigma2, sigma2.st, nu, nu.st, margin, naive = TRUE, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) if(discr == TRUE) dHs <- distrHsDiscr(y, eta, sigma2, sigma2.st, 1, 1, margin, naive = TRUE, ym, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) pdf2 <- dHs$pdf2 derpdf2.dereta2 <- dHs$derpdf2.dereta2 der2pdf2.dereta2 <- dHs$der2pdf2.dereta2 comp1 <- 1 + exp(log(pdf2) + rc) comp2 <- pdf2/comp1 comp3 <- pdf2/comp1^2 d2l.be.be <- (der2pdf2.dereta2 * pdf2 - (derpdf2.dereta2)^2)/pdf2^2 dl.dbe <- derpdf2.dereta2/pdf2 comp2*d2l.be.be + dl.dbe^2*comp3 } hessBbit2 <- function(y, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, min.dn, min.pr, max.pr, discr = FALSE, ym = NULL){ if(discr == FALSE) dHs <- distrHs(y, eta, sigma2, sigma2.st, nu, nu.st, margin, naive = TRUE, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) if(discr == TRUE) dHs <- distrHsDiscr(y, eta, sigma2, sigma2.st, 1, 1, margin, naive = TRUE, ym, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) pdf2 <- dHs$pdf2 derpdf2.dersigma2.st <- dHs$derpdf2.dersigma2.st der2pdf2.dersigma2.st2 <- dHs$der2pdf2.dersigma2.st2 comp1 <- 1 + exp(log(pdf2) + rc) comp2 <- pdf2/comp1 comp3 <- pdf2/comp1^2 d2l.sigma.sigma <- (der2pdf2.dersigma2.st2 * pdf2 - (derpdf2.dersigma2.st)^2)/pdf2^2 dl.dsigma.st <- derpdf2.dersigma2.st/pdf2 comp2*d2l.sigma.sigma + dl.dsigma.st^2*comp3 } hessBbit3 <- function(y, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, min.dn, min.pr, max.pr, discr = FALSE, ym = NULL){ if(discr == FALSE) dHs <- distrHs(y, eta, sigma2, sigma2.st, nu, nu.st, margin, naive = TRUE, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) if(discr == TRUE) dHs <- distrHsDiscr(y, eta, sigma2, sigma2.st, 1, 1, margin, naive = TRUE, ym, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) pdf2 <- dHs$pdf2 derpdf2.dereta2 <- dHs$derpdf2.dereta2 derpdf2.dersigma2.st <- dHs$derpdf2.dersigma2.st der2pdf2.dereta2dersigma2.st <- dHs$der2pdf2.dereta2dersigma2.st comp1 <- 1 + exp(log(pdf2) + rc) comp2 <- pdf2/comp1 comp3 <- pdf2/comp1^2 d2l.be.sigma <- (der2pdf2.dereta2dersigma2.st * pdf2 - derpdf2.dereta2 * derpdf2.dersigma2.st)/pdf2^2 dl.dbe <- derpdf2.dereta2/pdf2 dl.dsigma.st <- derpdf2.dersigma2.st/pdf2 comp2*d2l.be.sigma + dl.dbe*dl.dsigma.st*comp3 } hessBbit4 <- function(y, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, min.dn, min.pr, max.pr, discr = FALSE, ym = NULL){ dHs <- distrHs(y, eta, sigma2, sigma2.st, nu, nu.st, margin, naive = TRUE, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) pdf2 <- dHs$pdf2 derpdf2.dernu.st <- dHs$derpdf2.dernu.st der2pdf2.dernu.st2 <- dHs$der2pdf2.dernu.st2 comp1 <- 1 + exp(log(pdf2) + rc) comp2 <- pdf2/comp1 comp3 <- pdf2/comp1^2 d2l.nu.nu <- (der2pdf2.dernu.st2*pdf2-(derpdf2.dernu.st)^2)/pdf2^2 dl.dnu.st <- derpdf2.dernu.st/pdf2 comp2*d2l.nu.nu + dl.dnu.st^2*comp3 } hessBbit5 <- function(y, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, min.dn, min.pr, max.pr, discr = FALSE, ym = NULL){ dHs <- distrHs(y, eta, sigma2, sigma2.st, nu, nu.st, margin, naive = TRUE, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) pdf2 <- dHs$pdf2 derpdf2.dereta2 <- dHs$derpdf2.dereta2 der2pdf2.dereta2dernu.st <- dHs$der2pdf2.dereta2dernu.st derpdf2.dernu.st <- dHs$derpdf2.dernu.st comp1 <- 1 + exp(log(pdf2) + rc) comp2 <- pdf2/comp1 comp3 <- pdf2/comp1^2 d2l.be.nu <- (der2pdf2.dereta2dernu.st*pdf2 - derpdf2.dereta2*derpdf2.dernu.st)/pdf2^2 dl.dbe <- derpdf2.dereta2/pdf2 dl.dnu.st <- derpdf2.dernu.st/pdf2 comp2*d2l.be.nu + dl.dbe*dl.dnu.st*comp3 } hessBbit6 <- function(y, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, min.dn, min.pr, max.pr, discr = FALSE, ym = NULL){ dHs <- distrHs(y, eta, sigma2, sigma2.st, nu, nu.st, margin, naive = TRUE, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) pdf2 <- dHs$pdf2 derpdf2.dersigma2.st <- dHs$derpdf2.dersigma2.st der2pdf2.dersigma2.stdernu.st <- dHs$der2pdf2.sigma2.st2dernu.st derpdf2.dernu.st <- dHs$derpdf2.dernu.st comp1 <- 1 + exp(log(pdf2) + rc) comp2 <- pdf2/comp1 comp3 <- pdf2/comp1^2 d2l.sigma.nu <- (der2pdf2.dersigma2.stdernu.st*pdf2-(derpdf2.dersigma2.st*derpdf2.dernu.st))/pdf2^2 dl.dsigma.st <- derpdf2.dersigma2.st/pdf2 dl.dnu.st <- derpdf2.dernu.st/pdf2 comp2*d2l.sigma.nu + dl.dsigma.st*dl.dnu.st*comp3 } int1f <- function(y, eta, sigma2, nu, margin, rc, min.dn, min.pr, max.pr){ pdf <- distrHsAT(y, eta, sigma2, nu, margin, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr)$pdf2 log( 1 + exp( log( pdf ) + rc ) ) } d.bpsi <- function(y, X1, X2, X3, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, j, min.dn, min.pr, max.pr){ dHs <- distrHs(y, eta, sigma2, sigma2.st, nu, nu.st, margin, naive = TRUE, min.dn = min.dn, min.pr = min.pr, max.pr = max.pr) pdf2 <- dHs$pdf2 derpdf2.dereta2 <- dHs$derpdf2.dereta2 derpdf2.dersigma2.st <- dHs$derpdf2.dersigma2.st derpdf2.dernu.st <- dHs$derpdf2.dernu.st comp1 <- 1 + exp(log( pdf2 ) + rc) comp2 <- pdf2/comp1 dl.dbe <- derpdf2.dereta2/pdf2 dl.dsigma.st <- derpdf2.dersigma2.st/pdf2 dl.dnu.st <- derpdf2.dernu.st/pdf2 if( margin %in% c("DAGUM","SM","TW") ) res <- cbind( comp2*as.numeric(dl.dbe)%*%t(X1), comp2*as.numeric(dl.dsigma.st)%*%t(X2), comp2*as.numeric(dl.dnu.st)%*%t(X3) ) else res <- cbind( comp2*as.numeric(dl.dbe)%*%t(X1), comp2*as.numeric(dl.dsigma.st)%*%t(X2) ) res[, j] } gradF <- function(params, n, VC, margin, lB, uB, rc, min.dn, min.pr, max.pr){ G <- matrix(NA, n, length(params)) for(i in 1:n){ X1 <- VC$X1[i,] X2 <- VC$X2[i,] X3 <- VC$X3[i,] nu <- nu.st <- 1 eta <- X1%*%params[1:VC$X1.d2] sigma2.st <- X2%*%params[(1+VC$X1.d2):(VC$X1.d2+VC$X2.d2)] if( margin %in% c("DAGUM","SM","TW") ){ nu.st <- X3%*%params[(1+VC$X1.d2+VC$X2.d2):(VC$X1.d2+VC$X2.d2+VC$X3.d2)] ss <- enu.tr(nu.st, margin) nu.st <- ss$vrb.st nu <- ss$vrb } ss <- esp.tr(sigma2.st, margin) sigma2.st <- ss$vrb.st sigma2 <- ss$vrb for(j in 1:length(params)) G[i, j] <- integrate(d.bpsi, lB, uB, X1, X2, X3, eta, sigma2, sigma2.st, nu, nu.st, margin, rc, j, min.dn, min.pr, max.pr)$value } colSums(G) }
context("factorize") testthat::test_that("factorize works", { data(KidsFeet, package="mosaicData") testcase <- structure(c(2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("87", "88"), class = "factor") expect_equivalent(testcase, factorize(KidsFeet$birthyear)) expect_equivalent(testcase, factorise(KidsFeet$birthyear)) })
crossval.getParams <- function(cv, nobj) { nrep <- 1 if (is.numeric(cv)) { return( list( type = "rand", nrep = 1, nseg = if (cv == 1) nobj else cv ) ) } type <- cv[[1]] if (type == "loo") { return( list( type = "rand", nrep = nrep, nseg = nobj ) ) } nseg <- cv[[2]] if (type == "ven") { return( list( type = "ven", nrep = nrep, nseg = nseg ) ) } nrep <- if (length(cv) == 3) cv[[3]] else 1 return( list( type = type, nrep = nrep, nseg = nseg ) ) } crossval <- function(cv = 1, nobj = NULL, resp = NULL) { if (is.null(nobj)) nobj <- length(resp) p <- crossval.getParams(cv = cv, nobj = nobj) if (!(p$type %in% c("rand", "ven", "loo"))) { stop("Wrong name for cross-validation method.") } if (p$nrep < 1 || p$nrep > 100) { stop("Wrong value for cv repetitions (should be between 1 and 100).") } if (p$nseg < 2 || p$nseg > nobj) { stop("Wrong value for number of segments (should be between 2 and number of objects).") } seglen <- ceiling(nobj / p$nseg) fulllen <- seglen * p$nseg ind <- array(0, dim = c(p$nseg, seglen, p$nrep)) if (p$type == "rand") { for (i in seq_len(p$nrep)) { v <- c(sample(nobj), rep(NA, fulllen - nobj)) ind[, , i] <- matrix(v, nrow = p$nseg, byrow = TRUE) } return(ind) } if (p$type == "ven") { v <- c(order(resp), rep(NA, fulllen - nobj)) ind[, , 1] <- matrix(v, nrow = p$nseg, byrow = FALSE) return(ind) } stop("Something went wrong.") } crossval.str <- function(cv) { if (length(cv) == 0) return("none") if (is.numeric(cv)) { return( if (cv == 1) "full (leave one out)" else sprintf("random with %.0f segments", cv) ) } type <- cv[[1]] if (type == "loo") { return("full (leave one out)") } if (type == "ven") { return(sprintf("venetian blinds with %.0f segments", cv[[2]])) } return( sprintf("random with %.0f segments%s", cv[[2]], if (length(cv) == 3) paste(" and", cv[[3]], "repetitions") else "") ) }
context("pairwise_dist") suppressPackageStartupMessages(library(dplyr)) test_that("pairwise_dist computes a distance matrix", { d <- data.frame(col = rep(c("a", "b", "c"), each = 3), row = rep(c("d", "e", "f"), 3), value = c(1, 2, 3, 6, 5, 4, 7, 9, 8)) ret <- d %>% pairwise_dist(col, row, value) ret1 <- ret$distance[ret$item1 == "a" & ret$item2 == "b"] expect_equal(ret1, sqrt(sum((1:3 - 6:4) ^ 2))) ret2 <- ret$distance[ret$item1 == "b" & ret$item2 == "c"] expect_equal(ret2, sqrt(sum((6:4 - c(7, 9, 8)) ^ 2))) expect_equal(sum(ret$item1 == ret$item2), 0) })
updateDatabase=function(){ options(stringsAsFactors = F) extDB<-"https://raw.githubusercontent.com/jaroberti/metScanR/master/data/metScanR_DB.rda" extTermsDB <- "https://raw.githubusercontent.com/jaroberti/metScanR/master/data/metScanR_terms.rda" extLog="https://raw.githubusercontent.com/jaroberti/metScanR/master/data/dbLog.rda" localDB<-paste0(system.file(package="metScanR"), "/data/metScanR_DB.rda") localTermsDB<-paste0(system.file(package="metScanR"), "/data/metScanR_terms.rda") localLog=paste0(system.file(package = "metScanR"), "/data/dbLog.rda") updateLog<-paste0(system.file(package = "metScanR"), "/data/updateLog.rda") if(!RCurl::url.exists(extDB)){stop("No internet connection- cannot update database.")} load(localLog) localDate=as.Date(dbLog$date[length(dbLog$date)]) if(RCurl::url.exists(extDB)){ if(file.exists(updateLog)){ load(updateLog) if(updateDateFile$Date==Sys.Date() | updateDateFile$Version==dbLog$verison[nrow(dbLog)]){ message("Database is already up-to-date.") } else{ if("package:metScanR" %in% search()){ detach(name = "package:metScanR", unload=T) } message("Updating database...") utils::download.file(extDB, destfile = localDB) utils::download.file(extTermsDB, destfile = localTermsDB) utils::download.file(extLog, destfile = localLog) updateDateFile<-data.frame(Date=updateDate, Version = dbLog$verison[nrow(dbLog)]) save(updateDateFile,file=updateLog) message(paste0("Database updated!")) message(paste0("Reloading metScanR with updated database...")) library(metScanR) } } if(!file.exists(updateLog)){ updateDate=Sys.Date() if("package:metScanR" %in% search()){ detach(name = "package:metScanR", unload=T) } message("Updating database...") utils::download.file(extDB, destfile = localDB) utils::download.file(extTermsDB, destfile = localTermsDB) utils::download.file(extLog, destfile = localLog) updateDateFile<-data.frame(Date=updateDate, Version = dbLog$verison[nrow(dbLog)]) save(updateDateFile,file=updateLog) message(paste0("Database updated!")) message(paste0("Reloading metScanR with updated database...\n")) library(metScanR) } } }
setClass( Class = "S1.match", contains = "ADEg.S1" ) setMethod( f = "initialize", signature = "S1.match", definition = function(.Object, data = list(score = NULL, labels = NULL, at = NULL, frame = 0, storeData = TRUE), ...) { .Object <- callNextMethod(.Object, data = data, ...) .Object@data$labels <- data$labels return(.Object) }) setMethod( f = "prepare", signature = "S1.match", definition = function(object) { name_obj <- deparse(substitute(object)) oldparamadeg <- adegpar() on.exit(adegpar(oldparamadeg)) adegtot <- adegpar([email protected]) if(adegtot$p1d$horizontal & is.null([email protected]$plabels$srt)) adegtot$plabels$srt <- 90 else if(!adegtot$p1d$horizontal & is.null([email protected]$plabels$srt)) adegtot$plabels$srt <- 0 adegtot$p1d$rug$tck <- 0 if(adegtot$p1d$horizontal & is.null([email protected]$ylim)) [email protected]$ylim <- c(0, 1) if(!adegtot$p1d$horizontal & is.null([email protected]$xlim)) [email protected]$xlim <- c(0, 1) [email protected] <- adegtot callNextMethod() assign(name_obj, object, envir = parent.frame()) }) setMethod( f= "panel", signature = "S1.match", definition = function(object, x, y) { if(object@data$storeData) { labels <- object@data$labels at <- object@data$at } else { labels <- eval(object@data$labels, envir = sys.frame(object@data$frame)) at <- eval(object@data$at, envir = sys.frame(object@data$frame)) } lims <- current.panel.limits(unit = "native") nval <- length(y) %/% 2 score2 <- y[(nval + 1):length(y)] score1 <- y[1 : nval] pscore <- [email protected]$p1d plabels <- [email protected]$plabels plboxes <- plabels$boxes porigin <- [email protected]$porigin if(!is.null(labels)) { test <- .textsize(labels, plabels) w <- test$w h <- test$h } lead <- ifelse(pscore$reverse, -1, 1) if(pscore$horizontal) { spacelab <- diff(lims$xlim) / (nval + 1) xlab <- seq(from = lims$xlim[1] + spacelab, by = spacelab, length.out = nval)[rank(score1, ties.method = "first")] ylab <- rep(at, length.out = nval) ypoints <- rep([email protected]$rug, length.out = nval) ypoints2 <- rep(ypoints + lead * 0.05 * abs(diff([email protected]$ylim)), length.out = nval) if(pscore$rug$draw & pscore$rug$line) panel.abline(h = ypoints2, col = porigin$col, lwd = porigin$lwd, lty = porigin$lty, alpha = porigin$alpha) do.call("panel.segments", c(list(x0 = score1, y0 = ypoints, x1 = score2, y1 = ypoints2), [email protected]$plines)) do.call("panel.segments", c(list(x0 = score2, y0 = ypoints2, x1 = xlab, y1 = ylab), [email protected]$plines)) if(!is.null(labels) & any(plabels$cex > 0)) adeg.panel.label(x = xlab , y = ylab + lead * h / 2, labels = labels, plabels = plabels) if(any([email protected]$ppoints$cex > 0)) panel.points(x = c(score1, score2), y = c(ypoints, ypoints2), pch = [email protected]$ppoints$pch, cex = [email protected]$ppoints$cex, col = [email protected]$ppoints$col, alpha = [email protected]$ppoints$alpha, fill = [email protected]$ppoints$fill) } else { spacelab <- diff(lims$ylim) / (nval + 1) ylab <- seq(from = lims$ylim[1] + spacelab, by = spacelab, length.out = nval)[rank(score1, ties.method = "first")] xlab <- rep(at, length.out = nval) xpoints <- rep([email protected]$rug, length.out = nval) xpoints2 <- rep(xpoints + lead * 0.05 * abs(diff([email protected]$xlim)), length.out = nval) if(pscore$rug$draw & pscore$rug$line) panel.abline(v = xpoints2, col = porigin$col, lwd = porigin$lwd, lty = porigin$lty, alpha = porigin$alpha) do.call("panel.segments", c(list(x0 = xpoints, y0 = score1, x1 = xpoints2, y1 = score2), [email protected]$plines)) do.call("panel.segments", c(list(x0 = xpoints2, y0 = score2, x1 = xlab, y1 = ylab), [email protected]$plines)) if(!is.null(labels) & any(plabels$cex > 0)) adeg.panel.label(x = xlab + lead * w / 2 , y = ylab, labels = labels, plabels = plabels) if(any([email protected]$ppoints$cex > 0)) panel.points(x = c(xpoints, xpoints2), y = c(score1, score2), pch = [email protected]$ppoints$pch, cex = [email protected]$ppoints$cex, col = [email protected]$ppoints$col, alpha = [email protected]$ppoints$alpha, fill = [email protected]$ppoints$fill) } }) s1d.match <- function(score1, score2, labels = 1:NROW(score1), at = 0.5, facets = NULL, plot = TRUE, storeData = TRUE, add = FALSE, pos = -1, ...) { thecall <- .expand.call(match.call()) score1 <- eval(thecall$score1, envir = sys.frame(sys.nframe() + pos)) score2 <- eval(thecall$score2, envir = sys.frame(sys.nframe() + pos)) if(NROW(score1) != NROW(score2)) stop("score1 and score2 should have the same length") if(NCOL(score1) != NCOL(score2)) stop("score1 and score2 should have the same number of columns") if((is.data.frame(score1) & NCOL(score1) == 1) | (is.data.frame(score2) & NCOL(score2) == 1)) stop("Not yet implemented for data.frame with only one column, please convert into vector") sortparameters <- sortparamADEg(...) if(!is.null(facets)) { if(NCOL(score1) == 1) object <- multi.facets.S1(thecall, sortparameters$adepar, samelimits = sortparameters$g.args$samelimits) else stop("Facets are not allowed with multiple scores") } else if(NCOL(score1) > 1) { object <- multi.score.S1(thecall) } else { if(length(sortparameters$rest)) warning(c("Unused parameters: ", paste(unique(names(sortparameters$rest)), " ", sep = "")), call. = FALSE) if(storeData) tmp_data <- list(score = c(score1, score2), labels = labels, at = at, frame = sys.nframe() + pos, storeData = storeData) else tmp_data <- list(score = call("c", thecall$score1, thecall$score2), labels = thecall$labels, at = thecall$at, frame = sys.nframe() + pos, storeData = storeData) object <- new(Class = "S1.match", data = tmp_data, adeg.par = sortparameters$adepar, trellis.par = sortparameters$trellis, g.args = sortparameters$g.args, Call = match.call()) prepare(object) setlatticecall(object) if(add) object <- add.ADEg(object) } if(!add & plot) print(object) invisible(object) }
add_rolling_means <- function(data, dates = Date, values = Value, groups = STATION_NUMBER, station_number, roll_days = c(3,7,30), roll_align = "right"){ if (missing(data)) { data <- NULL } if (missing(station_number)) { station_number <- NULL } rolling_days_checks(roll_days, roll_align, multiple = TRUE) flow_data <- flowdata_import(data = data, station_number = station_number) orig_cols <- names(flow_data) flow_data_groups <- dplyr::group_vars(flow_data) flow_data <- dplyr::ungroup(flow_data) flow_data <- format_all_cols(data = flow_data, dates = as.character(substitute(dates)), values = as.character(substitute(values)), groups = as.character(substitute(groups)), rm_other_cols = FALSE) flow_data_new <- flow_data[0,] for (stn in unique(flow_data$STATION_NUMBER)) { flow_data_stn <- dplyr::filter(flow_data, STATION_NUMBER == stn) flow_data_stn <- flow_data_stn[order(flow_data_stn$Date), ] dates_list <- c(flow_data_stn$Date) flow_data_stn <- fill_missing_dates(data = flow_data_stn) for (x in unique(roll_days)) { flow_data_stn[, paste0("Q", x, "Day")] <- RcppRoll::roll_mean(flow_data_stn$Value, n = x, fill = NA, align = roll_align) } flow_data_stn <- dplyr::filter(flow_data_stn, Date %in% dates_list) flow_data_new <- dplyr::bind_rows(flow_data_new, flow_data_stn) } flow_data <- flow_data_new names(flow_data)[names(flow_data) == "STATION_NUMBER"] <- as.character(substitute(groups)) names(flow_data)[names(flow_data) == "Date"] <- as.character(substitute(dates)) names(flow_data)[names(flow_data) == "Value"] <- as.character(substitute(values)) if(!as.character(substitute(groups)) %in% orig_cols) { flow_data <- dplyr::select(flow_data, -STATION_NUMBER) } flow_data <- dplyr::group_by_at(flow_data, dplyr::vars(flow_data_groups)) dplyr::as_tibble(flow_data) }
logit <- function(x){ log(x/(1-x)) } plogit <- function(x, m, s){ pnorm(log(x/(1-x)), m ,s) } qlogit <- function(x, m, s){ z <- qnorm(x, m, s) exp(z) / (1 + exp(z)) } dlogit <- function(x, m, s){ 1 / (x * (1 - x)) * dnorm(log(x / (1 - x)), m, s) } psample <- function(medianfit, precisionfit, lower = NA, upper = NA, median.dist, precision.dist, n.rep = 10000, n.X = 100){ mediandist <- getmediandist(medianfit, median.dist) f <- getdists(precisionfit$transform) lim <- getlimits(lower, upper, f, mediandist, precisionfit) X <- seq(from = lim$lower, to = lim$upper, length = n.X) Xmat <- matrix(X, n.rep, n.X, byrow=T) mu <- matrix(mediandist$rand(n.rep, mediandist$m, mediandist$s), n.rep, n.X) if(precision.dist == "gamma"){ sigma <- matrix(sqrt(1 / rgamma(n.rep, precisionfit$Gamma[[1]], precisionfit$Gamma[[2]])), n.rep, n.X) } if(precision.dist == "lognormal"){ sigma <- matrix(sqrt(1 / rlnorm(n.rep, precisionfit$Log.normal[[1]], precisionfit$Log.normal[[2]])), n.rep, n.X) } pX <- f$cdf(Xmat, f$trans(mu), sigma) list(X=X, pX=pX) } taildensities <- function(m, s, tails, n.x, lower, upper, dens, quan, trans){ xl <- seq(from = lower, to = quan(tails/2, m, s), length = n.x) dl <- dens(xl, m, s) xu <- seq(from = quan(1-tails/2, m, s), to = upper, length = n.x) du <- dens(xu, m, s) data.frame(xl = xl, dl = dl, xu = xu, du = du) } getdists <- function(transform){ if (transform == "identity"){ dens <- dnorm quan <- qnorm cdf <- pnorm trans <- identity } if (transform == "log"){ dens <- dlnorm quan <- qlnorm cdf <- plnorm trans <- log } if (transform == "logit"){ dens <- dlogit quan <- qlogit cdf <- plogit trans <- logit } list(dens = dens, quan = quan, trans = trans, cdf = cdf) } getlimits <- function(lower, upper, f, mediandist, precisionfit){ a<-precisionfit$Gamma[[1]] b<-precisionfit$Gamma[[2]] if(is.na(lower)) lower <- f$quan(0.001, f$trans(mediandist$quan(0.001, mediandist$m, mediandist$s)), 1/qgamma(0.001, a, b)^0.5) if(is.na(upper)) upper <- f$quan(0.999, f$trans(mediandist$quan(0.999, mediandist$m, mediandist$s)), 1/qgamma(0.001, a, b)^0.5) list(lower = lower, upper = upper) } getmediandist <- function(medianfit, d){ if(d == "best"){ ssq <- medianfit$ssq ssq[is.na(ssq)] <- Inf if(ssq[1,1] < ssq[1,4]){d <- "normal"}else{d <- "lognormal"} } if(d == "normal"){ rand <- rnorm quan <- qnorm m <- medianfit$Normal[[1]] s <- medianfit$Normal[[2]] } if(d == "lognormal"){ rand <- rlnorm quan <- qlnorm m <- medianfit$Log.normal[[1]] s <- medianfit$Log.normal[[2]] } list(rand = rand, quan = quan, m = m, s=s) } addQuantileCDF <- function(lower, x1, q1, upper){ if(lower < x1 & x1 < upper){return( annotate("segment", x = c(lower, x1), y = c(q1, q1), xend = c(x1, x1), yend = c(q1, 0), linetype = 2))}else{ return(NULL) } }
NULL fetch_symbol_map.external <- fetch_symbol_map.call parse_source.external <- parse_source.call parse_symbol_map.external <- parse_symbol_map.call source_files.external_base <- source_files.call_base source_files.external_cran <- source_files.call_cran source_files.external_github <- source_files.call_github source_files.external_local <- source_files.call_local
get.ohlcs.google <- function(symbols,start="2013-01-01",end="today"){ n <- length(symbols) ohlc=list() temp <- strsplit(start,"-") a=month.abb[as.numeric(temp[[1]][2])] b=temp[[1]][3] c=temp[[1]][1] if(end != "today"){ temp <- strsplit(end,"-") d=month.abb[as.numeric(temp[[1]][2])] e=temp[[1]][3] f=temp[[1]][1] }else{ end=as.character(Sys.Date()) temp <- strsplit(end,"-") d=month.abb[as.numeric(temp[[1]][2])] e=temp[[1]][3] f=temp[[1]][1] } for(i in 1:n){ URL=paste("https://www.google.com/finance/historical?q=",symbols[i],"&output=csv","&startdate=",a,"+",b,"+",c,"&enddate=",d,"+",e,"+",f, sep="") myCsv <- getURL(URL, ssl.verifypeer = FALSE) dat <- read.csv(textConnection(myCsv)) colnames(dat) <- c("date", "open", "high", "low", "close", "volume") dates=as.character(dat$date) for(j in 1:length(dates)){ tempdates=strsplit(dates[j],"-") tempdates[[1]][2]=match(tempdates[[1]][2],month.abb) tempd=paste(tempdates[[1]][1],tempdates[[1]][2],tempdates[[1]][3],sep="-") dates[j]=format(as.Date(tempd,"%d-%m-%y"),"%Y-%m-%d") } dat$date=dates dat=dat[order(dat$date),] ohlc[[symbols[i]]]=dat } return(ohlc) }
roots_sh <- function(x, modulus = TRUE) { if (!inherits(x, "varest")) { stop("\nPlease provide an object inheriting class 'varest'.\n") } K <- x$K p <- x$p A <- unlist(Acoef_sh(x)) companion <- matrix(0, nrow = K * p, ncol = K * p) companion[1:K, 1:(K * p)] <- A if (p > 1) { j <- 0 for (i in (K + 1):(K * p)) { j <- j + 1 companion[i, j] <- 1 } } roots <- eigen(companion)$values if (modulus) roots <- Mod(roots) return(roots) }
parCodaSamples <- function(cl, model, variable.names = NULL, n.iter, thin = 1, na.rm=TRUE, ...) { requireNamespace("rjags") cl <- evalParallelArgument(cl, quit=TRUE) if (!inherits(cl, "cluster")) stop("cl must be of class 'cluster'") if (!is.character(model)) model <- as.character(model) cldata <- list(variable.names=variable.names, n.iter=n.iter, thin=thin, name=model, na.rm=na.rm) jagsparallel <- function(i, ...) { cldata <- pullDcloneEnv("cldata", type = "model") if (!existsDcloneEnv(cldata$name, type = "results")) return(NULL) res <- pullDcloneEnv(cldata$name, type = "results") n.clones <- nclones(res) out <- rjags::coda.samples(res, variable.names=cldata$variable.names, n.iter=cldata$n.iter, thin=cldata$thin, na.rm=cldata$na.rm, ...) pushDcloneEnv(cldata$name, res, type = "results") if (!is.null(n.clones) && n.clones > 1) { attr(out, "n.clones") <- n.clones } out } res <- parDosa(cl, 1:length(cl), jagsparallel, cldata, lib = c("dclone", "rjags"), balancing = "none", size = 1, rng.type = getOption("dcoptions")$RNG, cleanup = TRUE, dir = NULL, unload=FALSE, ...) res <- res[!sapply(res, is.null)] n.clones <- lapply(res, nclones) if (length(unique(unlist(n.clones))) != 1L) { n.clones <- NULL warnings("inconsistent 'n.clones' values, set to NULL") } else n.clones <- n.clones[[1]] for (i in 1:length(res)) { attr(res, "n.clones") <- NULL } res <- as.mcmc.list(lapply(res, as.mcmc)) if (!is.null(n.clones) && n.clones > 1) { attr(res, "n.clones") <- n.clones class(res) <- c("mcmc.list.dc", class(res)) } res }
metami <- function(data, M = 20, vcov = "r.vcov", r.n.name, ef.name, x.name = NULL, rvcov.method = "average", rvcov.zscore = TRUE, type = NULL, d = NULL, sdt = NULL, sdc = NULL, nt = NULL, nc = NULL, st = NULL, sc = NULL, n_rt = NA, n_rc = NA, r = NULL, func = "mvmeta", formula = NULL, method = "fixed", pool.seq = NULL, return.mi = FALSE, ci.level = 0.95){ pool <- c("coefficients") dat <- data; rm(data) p <- ncol(dat) N <- nrow(dat) if("mice" %in% rownames(installed.packages()) == FALSE) {install.packages("mice")} predMatrix <- mice::make.predictorMatrix(dat) cmplt <- colnames(dat)[unlist(lapply(1:p, function(i){ length(which(is.na(dat[,i]) == TRUE)) == 0}))] if (length(cmplt) == p) stop('There is no missing values in your data') predMatrix[cmplt, ] <- 0 imp <- mice::mice(dat, print = FALSE, m = M, predictorMatrix = predMatrix, method = mice::make.method(dat)) mis <- lapply(1:M, function(i){ unlist(lapply(1:p, function(j){imp$imp[[j]][, i]}) )}) if (return.mi) dat.mi <- list() else dat.mi <- NULL pp <- 2 out.l <- list() for (i in 1:M){ dat.imp <- as.data.frame(dat) dat.imp[is.na(dat.imp)] <- mis[[i]] vcov <- c("r.vcov", "mix.vcov")[match(vcov, c("r.vcov", "mix.vcov"))] if (vcov == "r.vcov"){ obj <- r.vcov(n = dat.imp[, r.n.name], corflat = subset(dat.imp, select = ef.name), zscore = TRUE, method = rvcov.method, name = ef.name) } else if (vcov == "mix.vcov"){ if (!is.na(n_rt)) {n_rt <- dat.imp[, n_rt]} if (!is.na(n_rc)) {n_rc <- dat.imp[, n_rc]} eval.d <- as.data.frame(matrix(NA, N, length(d))) colnames(eval.d) <- ef.name eval.d[, !is.na(d)] <- dat.imp[, d[!is.na(d)]] eval.sdt <- as.data.frame(matrix(NA, N, length(sdt))) eval.sdt[, !is.na(sdt)] <- dat.imp[, sdt[!is.na(sdt)]] eval.sdc <- as.data.frame(matrix(NA, N, length(sdc))) eval.sdc[, !is.na(sdc)] <- dat.imp[, sdc[!is.na(sdc)]] eval.nt <- as.data.frame(matrix(NA, N, length(nt))) eval.nt[, !is.na(nt)] <- dat.imp[, nt[!is.na(nt)]] eval.nc <- as.data.frame(matrix(NA, N, length(nc))) eval.nc[, !is.na(nc)] <- dat.imp[, nc[!is.na(nc)]] eval.st <- as.data.frame(matrix(NA, N, length(st))) eval.st[, !is.na(st)] <- dat.imp[, st[!is.na(st)]] eval.sc <- as.data.frame(matrix(NA, N, length(sc))) eval.sc[, !is.na(sc)] <- dat.imp[, sc[!is.na(sc)]] obj <- mix.vcov(type = type, d = eval.d, sdt = eval.sdt, sdc = eval.sdc, nt = eval.nt, nc = eval.nc, st = eval.st, sc = eval.sc, n_rt = n_rt, n_rc = n_rc, r = r, name = ef.name) } if (rvcov.zscore == FALSE) { if (vcov == "mix.vcov") { stop("rvcov.zscore == FALSE only makes sense if argument vcov is r.vcov")} y.name <- "r" if (func == "metafixed") {y.v.name <- "list.rvcov"} else { y.v.name <- "rvcov"}} else { y.name <- "ef" if (func == "metafixed") {y.v.name <- "list.vcov"} else { y.v.name <- "matrix.vcov"}} ef <- obj[[y.name]] ef.v <- obj[[y.v.name]] if (return.mi) dat.mi[[i]] <- list(dat.imp = dat.imp, ef = ef, ef.v = ef.v) if (func == "mvmeta") { pool <- c("coefficients", "qstat") if("mvmeta" %in% rownames(installed.packages()) == FALSE) {install.packages("mvmeta")} if (is.null(formula)) { stop("Formula must be specified for mvmeta") } else { if (is.null(x.name)) { o <- mvmeta::mvmeta(formula = formula, S = ef.v, data = ef, method = method) } else { xdat <- subset(dat.imp, select = x.name) o <- mvmeta::mvmeta(formula = formula, S = ef.v, method = method, data = data.frame(ef, xdat)) } } } if (func == "metafixed") { o <- metafixed(y = ef, Slist = ef.v) pool <- c("coefficients", "qstat")} if (func == "meta") { pool <- c("coefficients", "Q.stat") if("metaSEM" %in% rownames(installed.packages()) == FALSE) {install.packages("metaSEM")} if (is.null(x.name)) { o <- metaSEM::meta(y = ef, v = ef.v, data = data.frame(ef,ef.v)) } else { xdat <- subset(dat.imp, select = x.name) o <- metaSEM::meta(y = ef, v = ef.v, x = xdat, data = data.frame(ef, ef.v, xdat)) }} oo <- summary(o) output <- vector(mode = "list", length = pp) names(output) <- pool for (j in 1:pp){ output[[pool[j]]] <- as.data.frame(oo[[pool[j]]]) } out.l[[i]] <- output } pp <- 1 out <- vector(mode = "list", length = pp) names(out) <- "coefficients" for (j in 1:pp){ temp <- lapply(1:M, function(i) { out.l[[i]][[j]] }) out[[j]] <- Reduce("+", temp) / M } rnames <- rownames(out[["coefficients"]]) out[["coefficients"]] <- rubinpool(out.l, ci.level, rnames) result <- out result$data.mi <- dat.mi result$results.mi <- out.l if (!is.null(pool.seq)){ temp <- vector(mode = "list", length = length(pool.seq)) names(temp) <- paste("M", pool.seq, sep ="") for (i in 1:length(pool.seq)){ for (j in 1:pp){ tmp <- lapply(1:pool.seq[i], function(i) { out.l[[i]] }) temp[[i]][[j]] <- rubinpool(tmp, ci.level, rnames) } names(temp[[i]]) <- "coefficients" } result$result.seq <- temp } class(out) <- class(result) <- "metami" cat(paste("pooled results from", M, "imputations for missing values in", paste(setdiff(colnames(dat), cmplt), collapse = ","), "\n")) print(summary(out)) result } print.summary.metami <- function(x, ...){ digits = 4 cat("Fixed-effects coefficients","\n",sep="") signif <- symnum(x$coefficients[,"Pr(>|z|)"],corr=FALSE,na=FALSE, cutpoints=c(0, 0.001,0.01,0.05,0.1,1), symbols=c("***","**","*","."," ")) tabletot <- formatC(x$coefficients,digits=digits,format="f") tabletot <- cbind(tabletot,signif) colnames(tabletot)[7] <- "" print(tabletot,quote=FALSE,right=TRUE,print.gap=2) cat("---\nSignif. codes: ",attr(signif,"legend"),"\n\n") } summary.metami <- function(object, ...){ fit = object ci.level = 0.95 x <- list(coefficients = fit$coefficients[!is.na(fit$coefficients[,2]),]) class(x) <- "summary.metami" x } maketable <- function(fit, ci.level = 0.95, names){ coef <- as.numeric(fit$coef) coef.se <- as.numeric(fit$vcov) zval <- coef/coef.se zvalci <- qnorm((1 - ci.level)/2,lower.tail = FALSE) pvalue <- 2*(1-pnorm(abs(zval))) ci.lb <- coef-zvalci*coef.se ci.ub <- coef+zvalci*coef.se cilab <- paste(signif(ci.level,2)*100,"%ci.",c("lb","ub"),sep = "") tab <- cbind(coef, coef.se, zval, pvalue, ci.lb, ci.ub) dimnames(tab) <- list(names, c("Estimate","Std. Error","z","Pr(>|z|)",cilab)) tab } rubinpool <- function(o.list, ci.level, names){ M <- length(o.list) theta <- do.call(rbind, lapply(1:M, function(i){ o.list[[i]]$coefficients[,1]})) vw <- do.call(rbind, lapply(1:M, function(i){ o.list[[i]]$coefficients[,2]})) Vw <- colMeans(vw^2) thetabar <- colMeans(theta) Vb <- colSums(theta - matrix(rep(thetabar, M), nrow = M, byrow = TRUE))^2/(M-1) Vtotal <- Vw + Vb + Vb/M fito <- list(coef = thetabar, vcov = sqrt(Vtotal)) maketable(fito, ci.level = ci.level, names) }
data("dataLatentIV") context("Inputchecks - latentIV - Parameter formula") test_that("Fail if no formula object is passed", { expect_error(latentIV(formula = data.frame(1:3), data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(formula = NULL, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(formula = NA, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(formula = , data = dataLatentIV), regexp = "The above errors were encountered!") }) test_that("Fail if bad 1st RHS", { expect_error(latentIV(formula = y ~ I + P , data = cbind(I=1, dataLatentIV)), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ X1 + X2 + P , data = cbind(X1=1.23, X2=2.34, dataLatentIV)), regexp = "The above errors were encountered!") }) test_that("Fail if bad 2nd RHS", { expect_error(latentIV(formula = y ~ P | P, data = dataLatentIV), regexp = "The above errors were encountered!") }) test_that("Fail if bad LHS", { expect_error(latentIV(formula = ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y1 + y2 ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y1 + y2 + y3 ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y1 | y2 ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(formula = P ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ y, data = dataLatentIV), regexp = "The above errors were encountered!") }) test_that("Fail if formula variables are not in data", { expect_error(latentIV(formula = y ~ P, data = data.frame(y=1:10, X1=1:10, X2=1:10)), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ P, data = data.frame(X1=1:10,X2=1:10, P=1:10)), regexp = "The above errors were encountered!") }) test_that("Fail if formula contains dot (.)", { expect_error(latentIV(formula = . ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ ., data = dataLatentIV), regexp = "The above errors were encountered!") }) test_that("Fail if formula variables are not in data", { expect_error(latentIV(formula= y ~ P ,data=data.frame(y=1:10)), regexp = "The above errors were encountered!") expect_error(latentIV(formula= y ~ P ,data=data.frame(P=1:10)), regexp = "The above errors were encountered!") }) context("Inputchecks - latentIV - Parameter data") test_that("Fail if not data.frame", { expect_error(latentIV(formula = y ~ P, data = ), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ P, data = NULL), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ P, data = NA_integer_), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ P, data = c(y=1:10, P=1:10)), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ P, data = list(y=1:10,P=1:10)), regexp = "The above errors were encountered!") }) test_that("Fail if no rows or cols",{ expect_error(latentIV(formula = y ~ P, data = data.frame()), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ P, data = data.frame(y=integer(), P=integer())), regexp = "The above errors were encountered!") }) test_that("Fail if contains any non-finite", { call.args <- list(formula=y ~ P) test.nonfinite.in.data(data = dataLatentIV, name.col = "y", fct = latentIV, call.args = call.args) test.nonfinite.in.data(data = dataLatentIV, name.col = "P", fct = latentIV, call.args = call.args) }) test_that("Fail if wrong data type in any of the formula parts", { expect_error(latentIV(formula = y ~ P, data = data.frame(y=factor(1:10), P=1:10)), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ P, data = data.frame(y=1:10, P=factor(1:10)), regexp = "The above errors were encountered!")) expect_error(latentIV(formula = y ~ P, data = data.frame(y=as.character(1:10), P=1:10, stringsAsFactors=FALSE)), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ P, data = data.frame(y=1:10, P=as.character(1:10), stringsAsFactors=FALSE)), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ P, data = data.frame(y=as.logical(0:9), P=1:10)), regexp = "The above errors were encountered!") expect_error(latentIV(formula = y ~ P, data = data.frame(y=1:10, P=as.logical(0:9)), regexp = "The above errors were encountered!")) }) test_that("Allow wrong data type in irrelevant columns", { expect_silent(latentIV(formula = y ~ P, verbose = FALSE, data = cbind(dataLatentIV, unused1=as.logical(0:9), unused2=as.character(1:10),unused3=as.factor(1:10), stringsAsFactors = FALSE))) }) context("Inputchecks - latentIV - Parameter start.params") test_that("start.params is vector and all numeric", { expect_error(latentIV(start.params = c("(Intercept)"=2, P = as.character(1)), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = as.factor(c("(Intercept)"=2, P = 1)), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = as.logical(c("(Intercept)"=2, P = 1)), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = as.matrix(c("(Intercept)"=2, P = 0)), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = complex(1,4,2)), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") }) test_that("start.params is not NA",{ expect_error(latentIV(start.params = c("(Intercept)"=2, P = NA_integer_), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = NA_real_), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=NA_integer_, P = 2), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=NA_real_, P = 2), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = NA_integer_, formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = NA_real_, formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") }) test_that("start.params is NULL or missing but runs with message", { expect_message(latentIV(start.params = , formula = y ~ P, data = dataLatentIV), regexp = "No start parameters were given") expect_message(latentIV(start.params = NULL, formula = y ~ P, data = dataLatentIV), regexp = "No start parameters were given") }) test_that("start.params is named correctly", { expect_error(latentIV(start.params = c(2, 1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c(2, P=0), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, p = 1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 1, P = 2), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 1, P2 =3), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c(P = 2), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("Intercept"=2, P = 0), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(intercept)"=2, P = 0), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0), formula = y ~ X1 + X2 + P -1 |P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, X1 = 1, P = 0), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") }) test_that("start.params contains no parameter named pi1, pi2, theta5, theta6, theta7, theta8", { expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0, pi1=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0, pi2=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0, theta5=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0, theta6=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0, theta7=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0, theta8=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0, pi1=1, pi2=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0, pi1=1, theta5=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0, theta7=1, pi2=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, P = 0, pi1=1, pi2=1, theta5=1, theta6=1, theta7=1, theta8=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, pi1=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, pi2=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, theta5=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, theta6=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, theta7=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") expect_error(latentIV(start.params = c("(Intercept)"=2, theta8=1), formula = y ~ P, data = dataLatentIV), regexp = "The above errors were encountered!") }) context("Inputchecks - latentIV - Parameter optimx.args") test.optimx.args(function.to.test = latentIV, parameter.name = "optimx.args", formula=y~P, function.std.data = dataLatentIV) test_that("Has default value empty list()",{ default.arg <- eval(formals(REndo:::latentIV)[["optimx.args"]]) expect_equal(class(default.arg), "list") }) context("Inputchecks - latentIV - Parameter verbose") test.single.logical(function.to.test = latentIV, parameter.name="verbose", formula=y~P, function.std.data=dataLatentIV)
lintNamespace <- function (namespace, checkPackages = TRUE) { resetErrors(file = namespace) if (isTRUE(checkPackages)) allpacks <- .packages(all.available = TRUE) test <- try(getNamespace("tools")$.check_namespace( dirname(tools::file_path_as_absolute(namespace))), silent = TRUE) if (inherits(test, "try-error")) { if (regexpr("object is not subsettable", test) > 0) { lengths <- sapply(p, length) if (any(lengths == 1)) { line <- attr(p, "srcref")[[which(lengths == 1)[1]]][1] addError(file = namespace, line = line, message = "object is not subsettable") } } else addError(parseError(test)) } p <- suppressWarnings(parse(namespace)) directives <- sapply(p, function(x) as.character(x[[1]])) namespaceDirectives <- c("export", "exportPattern", "exportClass", "exportClasses", "exportMethods", "import", "importFrom", "importClassFrom", "importClassesFrom", "importMethodsFrom", "useDynLib", "S3method", "if") if (any(test <- !directives %in% namespaceDirectives)) { problemLine <- sapply(attr(p, "srcref")[test], function(x) as.integer(x[1])) addError(file = namespace, line = problemLine, message = paste("`", directives[test], "` : Wrong NAMESPACE directive", sep = ""), type = "warning") } nS3 <- 0 here <- environment() parseDirective <- function (e, srcref, p, i) { asChar <- function (cc) { r <- as.character(cc) if (any(r == "")) addError(file = namespace, type = "error", message = gettextf("empty name in directive '%s' in NAMESPACE file", as.character(e[[1]])), line = srcref[1]) return(r) } switch(as.character(e[[1]]), "if" = { if (eval(e[[2]], .GlobalEnv)) parseDirective(e[[3]], srcref) else if (length(e) == 4) parseDirective(e[[4]], srcref) }, "{" = for (ee in as.list(e[-1])) parseDirective(ee, srcref), "=", "<-" = { parseDirective(e[[3]], srcref) }, export = { exp <- e[-1] exp <- structure(asChar(exp), names = names(exp)) if (!length(exp)) addError( file = namespace, line = srcref[1], message = "empty export", type = "warning") }, exportPattern = { pat <- asChar(e[-1]) if (!length(pat)) addError( file = namespace, line = srcref[1], message = "empty pattern", type = "warning") if (asChar(regexpr("[^\\\\]\\\\[^\\\\]", attr(p, "srcref")[[i]]) > 0)) addError( file = namespace, line = srcref[1], message = "wrong pattern, need to double escape", type = "warning") }, exportClass = , exportClasses = { }, exportMethods = { }, import = { packages <- asChar(e[-1]) if (!length(packages)) addError(file = namespace, line = srcref[1], message = "empty import directive", type = "warning") if (isTRUE(checkPackages)) { test <- packages %in% allpacks if (any(!test)) addError(line = srcref[1], file = namespace, type = "error", message = sprintf("package `%s` is set to be imported but is not available", packages[!test])) } }, importFrom = { imp <- asChar(e[-1]) if (length(imp) < 2) { addError(file = namespace, line = srcref[1], message = "Not enough information in importFrom directive", type = "error") } else { if (!require(imp[1], character.only = TRUE)) { addError(line = srcref[1], file = namespace, type = "error", message = sprintf("package `%s` is set to be imported but is not available", imp[1])) } else if(any(test <- !imp[-1] %in% ls(sprintf("package:%s", imp[1])))) { addError(line = srcref[1], file = namespace, type = "error", message = sprintf("object `%s` not exported from %s", imp[-1][test], imp[1])) } } }, importClassFrom = , importClassesFrom = { imp <- asChar(e[-1]) if (length(imp) < 2) { addError(file = namespace, line = srcref[1], message = "Not enough information in importFrom directive", type = "error") } else if (!require(imp[1], character.only = TRUE)) { addError(line = srcref[1], file = namespace, type = "error", message = sprintf("package `%s` is set to be imported but is not available", imp[1])) } }, importMethodsFrom = { imp <- asChar(e[-1]) if (length(imp) < 2) { addError(file = namespace, line = srcref[1], message = "Not enough information in importFrom directive", type = "error") } else if (!require(imp[1], character.only = TRUE)) { addError(line = srcref[1], file = namespace, type = "error", message = sprintf("package `%s` is set to be imported but is not available", imp[1])) } }, useDynLib = { }, S3method = { spec <- e[-1] if (length(spec) != 2 && length(spec) != 3) addError(message = gettextf("bad 'S3method' directive: %s", deparse(e)), file = namespace, line = srcref[1], type = "error") assign("nS3", get("nS3", envir = here) + 1, envir = here) if (nS3 > 500) addError(message= "too many 'S3method' directives", file = namespace, line = srcref[1], type = "error") }) } for (i in 1:length(p) ) { srcref <- attr(p, "srcref") parseDirective(p[[i]], as.integer(srcref[[i]]), p, i) } return(getErrors(file = namespace)) }
context("select") test_that("list.select", { x <- list(p1 = list(type = "A", score = list(c1 = 10, c2 = 8)), p2 = list(type = "B", score = list(c1 = 9, c2 = 9)), p3 = list(type = "B", score = list(c1 = 9, c2 = 7))) expect_identical(list.select(x, type), lapply(x, function(xi) { xi["type"] })) expect_identical(list.select(x, type, score), lapply(x, function(xi) { xi[c("type", "score")] })) expect_identical(list.select(x, range = range(unlist(score))), lapply(x, function(xi) { list(range = range(unlist(xi$score))) })) expect_identical(list.select(x, n = length(.)), lapply(x, function(xi) { list(n = length(xi)) })) lapply(1:3, function(i) list.select(x, p = score$c1 + i)) })
getRecursions.data.frame = function(x, radius, threshold = 0, timeunits = c("hours", "secs", "mins", "days"), verbose = TRUE) { stopifnot(is.data.frame(x)) stopifnot(ncol(x) == 4) stopifnot(radius > 0) timeunits = match.arg(timeunits) results = getRecursionsCpp(x[,1], x[,2], x[,3], x[,4], x[,1], x[,2], radius, threshold, timeunits, verbose) results$timeunits = timeunits class(results) = "recurse" if (verbose) { class(results) = c("recurse", "recurse.verbose") dataTz = attr(x[,3], "tzone") if (!is.null(dataTz)) { attr(results$revisitStats$entranceTime, "tzone") = dataTz attr(results$revisitStats$exitTime, "tzone") = dataTz } } return(results) }
matddhellingerpar <- function(freq) { distances = diag(0, nrow = length(freq)) dimnames(distances) = list(names(freq), names(freq)) for (i in 2:length(freq)) for (j in 1:(i-1)) { distances[i, j] = distances[j, i] = ddhellingerpar(freq[[i]], freq[[j]]) } as.dist(distances) }
sparseCov <- function( dat, alf=0.5, iter=10, pnrm=Inf, THRSH='hard' ){ return( sparseMat( cov(dat),ncol(dat),alf,iter,pnrm,THRSH ) ); }
test_that("translate_SQRT returns the expected string", { expect_equal(translate_SQRT("SQRT(x)"), "sqrt(x)") })
print.summary.speff <- function(x,...){ if (!is.null(x$rsq)){ cat("\nOptimal models using",x$method,"method:\n") if (x$predicted[1]) cat("Control: ",format(x$formula$control),", R-squared: ",round(x$rsq[1],2),"\n",sep="") if (x$predicted[2]) cat("Treatment: ",format(x$formula$treatment),", R-squared: ",round(x$rsq[2],2),"\n",sep="") } cat("\nTreatment effect\n") print(x$tab, digits=5, print.gap=2) }
Get.Publication.info <-function(Searchquery, Publicationinfo = c("title", "source", "lastauthor", "pubtype", "pubdate", "pmcrefcount"),Output = NULL) { Query_result <- entrez_search(db = "pubmed", term = Searchquery) Query_result <- entrez_search(db = "pubmed", term = Searchquery, retmax = Query_result$count) PubmedIds <- Query_result$ids Publication.data <- as.data.frame(matrix(ncol = length(Publicationinfo), nrow = 1)) colnames(Publication.data) <- Publicationinfo Counter <- 1 for (Id in PubmedIds) { taxize_summ <- tryCatch({ entrez_summary(db = "pubmed", id = Id) }, error = function(cond) { message(paste0("ID ", Id, " cause an error.")) }) print(paste0(Counter, " Finished out of ", length(PubmedIds))) Counter <- Counter + 1 Publication.info <- NULL for (Paperinfo in Publicationinfo) { Publication.info <- c(Publication.info, paste0(taxize_summ[[Paperinfo]], collapse = " ")) } Publication.data <- rbind(Publication.data, Publication.info) } Publication.data <- na.omit(Publication.data) if (!is.null(Output)) { write.csv(Publication.data, paste0(Output, "/Publications.csv")) } return(Publication.data) }
NULL .dbGetQuery <- function(conn, statement, ...) { result <- dbSendQuery(conn, statement, ...) on.exit(dbClearResult(result)) return(.fetch.all(result)) } setMethod('dbGetQuery', c('PrestoConnection', 'character'), .dbGetQuery)
refNote <- function(text = "This is a test note", number = "*"){ out <- paste('<span class="ref"><span class="refnum">[', number, ']</span><span class="refbody">', text, '</span></span>', sep = "") return(out) }
cal.cox.coef <- function (gnExpMat, survivaltime, censor){ cox.coef = NULL max.col = ifelse (is.matrix(gnExpMat), ncol(gnExpMat), 1) for (i in 1:max.col){ if(is.matrix(gnExpMat)) var = gnExpMat[,i] else var = gnExpMat cox.t = coxph(Surv (survivaltime, censor)~var) cox.coef = c(cox.coef, cox.t$coef) } return (cox.coef) }
library(hamcrest) expected <- c(-0x1.add9e4ddca7dp+9 + 0x0p+0i, -0x1.7f227fa8f63a4p+4 + -0x1.edf266ade3082p+7i, -0x1.348fafee85b6dp+5 + 0x1.8016e53c0d5edp+6i, -0x1.2d932f6fe8a19p+8 + 0x1.21df47692c1f4p+7i, -0x1.dea5cff330756p+6 + 0x1.7c7c236101e3ep+3i, -0x1.4d0b483e5ff8ap+7 + -0x1.48a590f868673p+7i, -0x1.8df13854bb9c7p+6 + 0x1.a45c9ad7b1119p+7i, -0x1.20f83291dd046p+7 + 0x1.100d807de1125p+5i, -0x1.acfa792dbb668p+7 + -0x1.7839e6f3578f3p+6i, -0x1.03475e70a1d74p+4 + 0x1.0410882c62405p+7i, -0x1.ab43887f1f2bep+6 + -0x1.d9bb0bbb680e3p+6i, -0x1.62e090103e3a1p+6 + 0x1.377dce48c7982p+8i, -0x1.526cc38a2d7a5p+8 + 0x1.a02a4db052bp+6i, 0x1.748ff0009b228p+3 + -0x1.b555ba784d423p+6i, -0x1.3b13484152468p+7 + 0x1.6994f832c3674p+7i, -0x1.580b6402b7901p+5 + -0x1.d55e3ba7476a7p+4i, 0x1.0fe6bd5fc1704p+7 + 0x1.93cbde2b58122p+5i, -0x1.d8447fb83e9d4p+5 + 0x1.a6a15f95eb11ap+7i, -0x1.49df9a72c863ep+5 + 0x1.30e567441ceccp+5i, -0x1.30042a91d1a47p+7 + -0x1.2e93987d142bep+6i, 0x1.d886a19a47407p+7 + 0x1.7b93d04127a9cp+6i, 0x1.bf4e7f840dd68p+4 + -0x1.087bb424aa774p+5i, -0x1.f9f311a1245p-2 + -0x1.e2570517fedfap+6i, 0x1.62fc496b6cd77p+7 + 0x1.06081ecb0ba38p+4i, 0x1.6d4e5be45fddcp+6 + 0x1.aee5daf3effa2p+7i, 0x1.7ced1ac842e46p+4 + 0x1.f646dea54892ap+5i, -0x1.7f79060d5f6e2p+7 + 0x1.d0f8a49e432c8p+5i, 0x1.3b3e8b2b4cd02p+7 + -0x1.2aad1083c37a6p+7i, 0x1.682cb4f803048p+5 + 0x1.c32c867b4804p+7i, 0x1.061eac1aa950bp+7 + -0x1.1d0b3a37ec118p+6i, -0x1.0542e3e6da282p+5 + 0x1.b4cbfdb6eb8a6p+6i, 0x1.f6e007af08328p+4 + -0x1.e4d2121f9b84bp+7i, -0x1.ee8ae9929034cp+4 + -0x1.35f1ea9dda048p+4i, -0x1.a33b282ed55ap+3 + -0x1.c595beacee0a3p+4i, -0x1.271e1ab82b1fcp+4 + -0x1.49b710f2e114ap+6i, 0x1.f32e76c8b67c2p+6 + -0x1.237625f037794p+6i, -0x1.ceca5538b8dbcp+6 + -0x1.66228a1a609f1p+6i, 0x1.70cd356e02b6ap+5 + 0x1.2ac0486e05ff5p+4i, 0x1.9d551f3e8e17ep+4 + -0x1.09a670b211e74p+5i, 0x1.32dfab510574cp+8 + -0x1.880707c938e46p+7i, -0x1.1bfef62bb6214p+6 + -0x1.e28f005805a76p+5i, 0x1.9ff19e1d6a52cp+6 + -0x1.765af3ed3df4ap+6i, -0x1.6887809dcdbddp+6 + 0x1.e20c3dc56327p+5i, 0x1.014c33d4d56dp+6 + -0x1.b12ce623ac49cp+5i, 0x1.3497065b89cf6p+5 + -0x1.49c121038177cp+6i, -0x1.ed9d8e7f0c28ep+5 + -0x1.9232f96baa1a3p+6i, -0x1.8cf45e6866c9cp+3 + 0x1.bf97cbf312f58p+3i, 0x1.030b58a34c778p+6 + -0x1.e0ac6d29e8712p+6i, -0x1.4394681263fap+6 + -0x1.b8e6b7d9c9ecfp+5i, -0x1.705ab246602cep+6 + -0x1.d20a644442702p+5i, -0x1.2c258312070ccp+6 + -0x1.05b166b53b4c2p+6i, -0x1.a18c016dea55ep+3 + -0x1.20fc6927f269fp+7i, -0x1.7c2ba71e200a2p+6 + -0x1.9a03be6dda49cp+4i, 0x1.829c09324c7cp+0 + -0x1.6f8eba793ed3cp+5i, -0x1.309f59d3cf6c2p+6 + -0x1.d7b51ef6c9db4p+5i, -0x1.746235f1dafa2p+3 + -0x1.b4695db215fbdp+5i, 0x1.28c684d18acaap+5 + 0x1.5ce6b01c06bdbp+4i, 0x1.1aa757177974p+5 + 0x1.2dd1153be5ddbp+6i, -0x1.21a64f5e4b9dap+6 + -0x1.59cd26b805beap+5i, 0x1.501dead17b853p+5 + -0x1.ed6a03ea0a758p+3i, 0x1.ffad6cb26cfe7p+5 + 0x1.24615856ae181p+4i, -0x1.eb5f0d98af99ap+4 + 0x1.024e6da4d8758p+3i, -0x1.9654a31c06158p+4 + 0x1.0e8796fc9385ap+4i, 0x1.6228f29a747f2p+5 + 0x1.8d37be991acp-5i, -0x1.60b191682d337p+5 + 0x1.4956f8cf808ep+5i, -0x1.db423979f0458p+2 + 0x1.fb068f0fe0bbap+5i, 0x1.7c1a176e66ep-2 + 0x1.3a37886a76aa2p+4i, -0x1.c651d8d321f56p+4 + 0x1.03a449b48801fp+4i, 0x1.0bdfc335e3e42p+5 + -0x1.3ebb35793ae9cp+6i, 0x1.a0557c0e0079p+4 + 0x1.25f9edbbb791fp+4i, 0x1.5f1c0e3d26f7ep+2 + 0x1.d8077fd83a274p+4i, 0x1.db7a203173dfp+3 + -0x1.bc66b226884c1p+5i, 0x1.aadb4fce7cbf8p+0 + -0x1.9602bfa9b507p+2i, 0x1.b184aa1da4eacp+3 + 0x1.b20b4ad232304p+4i, -0x1.f649c44852708p+2 + -0x1.8e5eac916962cp+4i, 0x1.a99a62e00dd3cp+3 + -0x1.881f5bd7b3c4dp+4i, 0x1.b1711d89d26b6p+4 + 0x1.6c07f3f3dfafap+4i, 0x1.c96bbbec53ceap+5 + -0x1.1ba2eba0ffe56p+4i, 0x1.dff38e3dca8cep+5 + -0x1.fc8fc6a6bea4p+3i, -0x1.83d7fd00e76f7p+5 + -0x1.3b5cbc1fff985p+6i, -0x1.4f7f480dab12ap+5 + -0x1.13f2854080771p+4i, 0x1.f1d07e37243fp-1 + 0x1.bdf687849df11p+4i, 0x1.59115e5d2785p+1 + -0x1.257e7a1a2850cp+3i, 0x1.c6b0a18a37588p+4 + -0x1.48f1d72163dc5p+4i, 0x1.9fea9572e818ap+2 + -0x1.0c4b17b800aep-1i, 0x1.838da8ff8a597p+4 + 0x1.5de94b9e6f939p+5i, -0x1.0c36c70fdef34p+2 + 0x1.ec4b5d4f2905p+2i, 0x1.d25816dd36118p+4 + -0x1.f474c4a3e1efep+5i, -0x1.1566760d4eba8p+5 + -0x1.3130a9fe5877ap+5i, -0x1.f3d187e6d0ac9p+3 + -0x1.8ad4e346eef6cp+5i, 0x1.17835196c587p+5 + 0x1.3ad14337646bp+4i, -0x1.6ef6f5ba68065p+4 + -0x1.60c0de42ff23ep+6i, -0x1.a608ed6f4def4p+4 + -0x1.49095e66919c3p+6i, -0x1.e1a0464429b2ap+4 + 0x1.5c4043a346299p+5i, -0x1.88559e5d76afbp+6 + 0x1.07787b4dc4c15p+3i, -0x1.9f8410968c12p+3 + -0x1.228d9ea4b3429p+5i, 0x1.e17028d8e9cd6p+5 + -0x1.80670f352a9e6p+6i, 0x1.c3e3bcd284ef9p+3 + -0x1.3454b6492ef54p+2i, -0x1.b18f09438aa78p+3 + -0x1.0d6431712859p+5i, 0x1.7cc7f4956824p+3 + -0x1.d3db42d45e58p-1i, 0x1.7fdf0cad7e89dp+4 + -0x1.cd855eae4040cp+4i, -0x1.d50d6a86b1d2ap+4 + 0x1.b1925b945f9p+2i, 0x1.13c5097d1dp-3 + 0x1.c62a30ed8c256p+5i, -0x1.015ab8080964p+5 + 0x1.2a27636d3ba56p+6i, 0x1.c5f1917aba4dp+2 + -0x1.aa747eba448ep+4i, 0x1.21073a7f209f4p+5 + 0x1.93057d3cf56a4p+5i, -0x1.f1a2ac5a61d26p+3 + 0x1.f5d07e393039p+1i, -0x1.6b557181ea068p+5 + 0x1.10dc4b1cf4014p+6i, 0x1.5bbb8059a4dc9p+5 + -0x1.ad4d42a6d72afp+3i, 0x1.276587ba22be8p+3 + -0x1.e384a2b574e9p+1i, 0x1.ad4c8aeea418p+2 + 0x1.fdc3d39c69p-5i, -0x1.c223793e418bep+4 + 0x1.0900df676ae8ap+5i, 0x1.08916d80cfe4p+3 + -0x1.0023bbd92368ep+5i, 0x1.1082fb603b3acp+5 + 0x1.fb92732e289cp-1i, 0x1.3b9d4721a50b4p+3 + -0x1.4d8de0a552b66p+2i, 0x1.1d08c2bae7878p+3 + 0x1.0f8f83446f6c2p+4i, 0x1.49041adfb428ap+4 + -0x1.769391ac25ee4p+5i, 0x1.d631bd0d35248p+4 + 0x1.922bbd02c2258p+4i, -0x1.05a10abc6c93cp+3 + -0x1.8a26576e35461p+5i, -0x1.fb06b0ee9a6d2p+3 + -0x1.2d46702f9628ap+6i, 0x1.cf2a21b90b3bp+3 + 0x1.648d8cbcdc1bap+5i, -0x1.158086b01ca2p+2 + -0x1.e87e4d7b90684p+3i, -0x1.7845f1b7363cp+1 + -0x1.8adec2ce89961p+6i, 0x1.18355f386f2dp+0 + 0x1.7ede93a006fd9p+6i, -0x1.34fbc37dfb54bp+5 + 0x1.a5881396bff14p+3i, -0x1.1474f3c6a783p+6 + -0x1.ce8db595beec3p+4i, 0x1.16ef8263f170cp+5 + -0x1.968530ea481bep+5i, -0x1.3bf3ed0d2893p+2 + -0x1.b4bb62daf666ap+5i, 0x1.54d9a6e48a27p+3 + 0x1.c8f708fa55ffp+4i, -0x1.a337042b579d4p+5 + -0x1.12bccd5e003bcp+4i, -0x1.5cb2071686f96p+5 + -0x1.ae023e902dc9dp+6i, -0x1.b14b606925716p+5 + -0x1.bb6531af513ap+4i, -0x1.f90b67c0ca8ecp+5 + 0x1.11c653854791ep+7i, -0x1.8aa579be03bbcp+7 + 0x1.01447335fd33p+5i, 0x1.c3df54f05eb28p+2 + -0x1.a9863d75c9734p+4i, 0x1.e59a3749eb78p+4 + 0x1.88891f7a0688p+0i, -0x1.bf11cd467bb2bp+5 + 0x1.04223de1a199fp+7i, -0x1.592dc5eb26ddp+3 + 0x1.1f44417fe0654p+4i, 0x1.06d66773838c4p+6 + -0x1.6369d11f33daap+4i, 0x1.0d60bb39c4c78p+4 + -0x1.944d1d9d59e78p+5i, -0x1.4a13aff3d5db9p+6 + 0x1.e414d1df6e355p+5i, -0x1.0f700b530012p+4 + 0x1.0e226e77efe74p+4i, 0x1.cc181ad84ec94p+4 + 0x1.4221ff36bec2p+6i, 0x1.8858a46b1dcebp+5 + -0x1.1fd2936d0d138p+5i, -0x1.0cd1e76f5cda8p+4 + -0x1.ccf46c252f588p+4i, -0x1.bfcf3ccaaaee6p+4 + 0x1.745e7c7f1d56p+5i, 0x1.943858a568868p+6 + 0x1.eebe63cb03523p+6i, 0x1.f9c5f29cb00c7p+5 + -0x1.6c70518f522b5p+5i, -0x1.eb501b23cc77p+3 + 0x1.27ab37b136bd4p+4i, 0x1.794127e21fe09p+6 + 0x1.703a9af5bf68p-1i, 0x1.053efc8675eecp+6 + 0x1.87b4f4b581fb2p+6i, -0x1.be407a59496e8p+3 + -0x1.dab196bd1a00ep+6i, 0x1.d6951f44eaebfp+5 + -0x1.3495babdaea46p+6i, 0x1.34641afd69e16p+5 + -0x1.83387d519d712p+5i, 0x1.93e2ea3e48c51p+5 + -0x1.da4d147fdf08bp+3i, 0x1.86617bd8ef836p+6 + -0x1.1abcd899c1d7ep+7i, 0x1.4524e1283c1cp+3 + -0x1.d7eae89540f7bp+5i, 0x1.064fc8ed49778p+4 + -0x1.30e923ed4e5c9p+7i, -0x1.b2ff7f7517526p+5 + -0x1.260a2bdf71f32p+7i, 0x1.447bc9abc1444p+6 + -0x1.0567eb63a6448p+6i, 0x1.3f9f84e8b3a51p+4 + -0x1.03883ffb834a1p+7i, -0x1.097d7a6ba9732p+6 + -0x1.0a143ba94279p+8i, 0x1.795d7927573c3p+7 + -0x1.5ea6f7e54e5ep+4i, -0x1.417d7a5a7f6edp+5 + -0x1.2f25a8470981ap+7i, -0x1.12c2a0d7f7cb3p+2 + -0x1.1793da602d88dp+7i, -0x1.a26fa6f92e90cp+3 + -0x1.f203bf9d9d8cp+4i, 0x1.75cb923fa68p+6 + -0x1.4dd0445738562p+8i, 0x1.9c6f719218984p+6 + 0x1.82077e60e5f9ep+7i, -0x1.6f88cc1d575fdp+7 + -0x1.2ae552a46abe8p+6i, -0x1.e6d7a8effe1cep+7 + -0x1.45d187fba43f9p+7i, -0x1.7a10382ffe0acp+6 + -0x1.8d0ad45dc4541p+7i, 0x1.db558c7b667f2p+4 + 0x1.e595f8aa8795ep+6i, -0x1.348f1f150c90cp+8 + 0x1.c2f0b61c087e9p+5i, -0x1.37ee3f8ad063fp+4 + -0x1.1a9a14bd7c83fp+8i, 0x1.504bbafb64f4bp+7 + -0x1.66af6fe9d0726p+2i, -0x1.62ea14ed4fc05p+8 + 0x1.37e0df060ddcp+8i, -0x1.0cf851aa95694p+8 + -0x1.672cede3f1b8bp+7i, -0x1.596ebf7511ce4p+7 + -0x1.2953c9da23fe4p+8i, 0x1.489ed2153c41ap+7 + -0x1.d417d08a51484p+7i, -0x1.4494201ab76dfp+7 + 0x1.4dd1eee6af7eap+8i, -0x1.216f74b7dc12dp+7 + -0x1.6de3e2eba6226p+7i, 0x1.7fb9a62d3d764p+7 + 0x1.786b8610e2d7ap+6i, -0x1.1c0c301063d22p+4 + -0x1.3bf96d871e3fbp+6i, -0x1.9abc265397a62p+7 + 0x1.a27d4272b8276p+7i, -0x1.43ae52dc5fa8p+6 + -0x1.49cfbf40d1a0dp+5i, 0x1.7d52a00e9dc1cp+6 + 0x1.c87e487e7cc54p+4i, 0x1.ca21c9eb85291p+7 + -0x1.7ad28da332694p+6i, -0x1.dce40d11c9853p+6 + 0x1.d84be1235050fp+6i, 0x1.1470b17c0dfe3p+6 + 0x1.952ec4fed63a1p+6i, -0x1.2cf6fabc2ea63p+6 + 0x1.942177ef5e59ep+5i, 0x1.63d98b24b1efap+7 + -0x1.1e36447fb20bap+5i, -0x1.eb341aad4f387p+6 + 0x1.cd16f36faa17fp+6i, 0x1.d418e91837738p+0 + -0x1.abca793e4158ap+4i, -0x1.5e134b5e7d6d3p+5 + 0x1.18c9d9d50989p+4i, 0x1.367206937a3bep+6 + -0x1.b44463ea2e3aap+6i, 0x1.18f839e769866p+7 + 0x1.292d2f389ac6ap+6i, 0x1.08e981af5d95dp+6 + 0x1.9be2c2b4527f6p+4i, 0x1.0592a2b14982bp+3 + 0x1.142b485f4a24p+6i, -0x1.f0d6b3ca42db6p+4 + -0x1.3c86602b4076ep+3i, 0x1.1b09d9900e7dcp+7 + 0x1.9c8580379a8e4p+6i, -0x1.bdd989b44f07fp+3 + -0x1.05ba0f1439dbcp+6i, -0x1.1cbd02b95cec3p+6 + 0x1.fc780cc13f9d6p+5i, 0x1.615d7eefa0724p+7 + -0x1.d25b1e79797bbp+5i, 0x1.375e5500e329cp+6 + 0x1.43247812cfc16p+5i, 0x1.a8aba1cc19cd5p+3 + 0x1.dc93f01674c1p+0i, 0x1.60b9d1320e406p+4 + 0x1.cde7d88f27f8fp+6i, -0x1.6df863d7314f4p+4 + -0x1.824be20a4f9f1p+6i, 0x1.52e3cc43f36b2p+5 + 0x1.0d9dd8aec47eap+5i, 0x1.9ad8b66b5b38p+6 + -0x1.a79778ffe1aep+4i, 0x1.b64cf4968cf7ap+6 + 0x1.6983bcb0346dap+4i, 0x1.70f584acf2c69p+4 + -0x1.27189e84ee5a5p+7i, 0x1.b5ff899f4280cp+5 + 0x1.6769a40702e5cp+5i, 0x1.584f6d26e48f3p+4 + 0x1.0038660262d5cp+6i, 0x1.993f06005b49cp+6 + 0x1.1273bdc0f5054p+5i, 0x1.a131f8ae6115ep+5 + -0x1.80bc65989c1b7p+5i, 0x1.76bde9602161bp+4 + 0x1.ba87bb3091368p+3i, -0x1.3ac931618d30ep+3 + -0x1.08141eb65da9cp+6i, 0x1.ec0d2a204c851p+6 + 0x1.4e50437b5755ap+6i, -0x1.6757876125ec9p+6 + -0x1.8b42a2dd74dd3p+5i, 0x1.ef35ccc2e3108p+4 + -0x1.947d7fb36962p+6i, -0x1.3fe53bb272ca8p+6 + -0x1.26e8cef6cb9e2p+6i, 0x1.81e3cee9bc117p+5 + 0x1.1488a1d2fa226p+5i, -0x1.b87207b977943p+6 + -0x1.a3c815aeadbd6p+5i, 0x1.1827d25489404p+4 + 0x1.bc99536db4b9ap+3i, -0x1.36dd99cadcdbep+5 + 0x1.4b71da9969ae2p+3i, 0x1.42cb3a4106e6p-1 + 0x1.92b95bec1ca9cp+4i, 0x1.a23a2e1d45dap+4 + -0x1.85aee017a05e2p+5i, 0x1.48800c56e59d1p+3 + 0x1.2dd4f4470631dp+4i, -0x1.9ee9e342900dap+3 + 0x1.84ecc6e1c2e8bp+5i, 0x1.f92856e41bbe8p+6 + 0x1.9d11c7925c0f2p+5i, -0x1.65cc62c307aaap+6 + 0x1.c4556b90f44fbp+4i, 0x1.cf20a1bbbfee8p+3 + -0x1.5b8e2e1c1b1abp+4i, -0x1.aeec33e8f1cd8p+6 + -0x1.06ff797e1f17dp+5i, 0x1.34303cd2962bep+5 + -0x1.f91e5eba6d54p+2i, -0x1.5fce39193d054p+6 + -0x1.4p-48i, 0x1.34303cd2962c2p+5 + 0x1.f91e5eba6d49ep+2i, -0x1.aeec33e8f1cd4p+6 + 0x1.06ff797e1f173p+5i, 0x1.cf20a1bbbfeefp+3 + 0x1.5b8e2e1c1b1ap+4i, -0x1.65cc62c307aa7p+6 + -0x1.c4556b90f450ap+4i, 0x1.f92856e41bbdfp+6 + -0x1.9d11c7925c107p+5i, -0x1.9ee9e342900bap+3 + -0x1.84ecc6e1c2e86p+5i, 0x1.48800c56e59dp+3 + -0x1.2dd4f44706336p+4i, 0x1.a23a2e1d45dbp+4 + 0x1.85aee017a05cfp+5i, 0x1.42cb3a4106e8p-1 + -0x1.92b95bec1ca99p+4i, -0x1.36dd99cadcdbp+5 + -0x1.4b71da9969b4cp+3i, 0x1.1827d254893f6p+4 + -0x1.bc99536db4b59p+3i, -0x1.b87207b977944p+6 + 0x1.a3c815aeadbcbp+5i, 0x1.81e3cee9bc11p+5 + -0x1.1488a1d2fa236p+5i, -0x1.3fe53bb272ca6p+6 + 0x1.26e8cef6cb9d9p+6i, 0x1.ef35ccc2e3101p+4 + 0x1.947d7fb36962p+6i, -0x1.6757876125edp+6 + 0x1.8b42a2dd74ddap+5i, 0x1.ec0d2a204c84bp+6 + -0x1.4e50437b5756p+6i, -0x1.3ac931618d2e8p+3 + 0x1.08141eb65da9ap+6i, 0x1.76bde960215f8p+4 + -0x1.ba87bb3091365p+3i, 0x1.a131f8ae61153p+5 + 0x1.80bc65989c1b2p+5i, 0x1.993f06005b496p+6 + -0x1.1273bdc0f506p+5i, 0x1.584f6d26e4902p+4 + -0x1.0038660262d62p+6i, 0x1.b5ff899f42805p+5 + -0x1.6769a40702e5p+5i, 0x1.70f584acf2c67p+4 + 0x1.27189e84ee5a2p+7i, 0x1.b64cf4968cf7dp+6 + -0x1.6983bcb0346dfp+4i, 0x1.9ad8b66b5b383p+6 + 0x1.a79778ffe1ac5p+4i, 0x1.52e3cc43f36abp+5 + -0x1.0d9dd8aec47e1p+5i, -0x1.6df863d7314f5p+4 + 0x1.824be20a4f9f2p+6i, 0x1.60b9d1320e402p+4 + -0x1.cde7d88f27f8ep+6i, 0x1.a8aba1cc19dp+3 + -0x1.dc93f01674cbp+0i, 0x1.375e5500e329fp+6 + -0x1.43247812cfc21p+5i, 0x1.615d7eefa0726p+7 + 0x1.d25b1e79797c2p+5i, -0x1.1cbd02b95cec5p+6 + -0x1.fc780cc13f9cdp+5i, -0x1.bdd989b44f05bp+3 + 0x1.05ba0f1439dbcp+6i, 0x1.1b09d9900e7dap+7 + -0x1.9c8580379a8e6p+6i, -0x1.f0d6b3ca42db2p+4 + 0x1.3c86602b40766p+3i, 0x1.0592a2b149828p+3 + -0x1.142b485f4a245p+6i, 0x1.08e981af5d95fp+6 + -0x1.9be2c2b45281p+4i, 0x1.18f839e769866p+7 + -0x1.292d2f389ac69p+6i, 0x1.367206937a3c6p+6 + 0x1.b44463ea2e3a8p+6i, -0x1.5e134b5e7d6cep+5 + -0x1.18c9d9d509876p+4i, 0x1.d418e9183776p+0 + 0x1.abca793e41583p+4i, -0x1.eb341aad4f38cp+6 + -0x1.cd16f36faa181p+6i, 0x1.63d98b24b1efap+7 + 0x1.1e36447fb20b2p+5i, -0x1.2cf6fabc2ea62p+6 + -0x1.942177ef5e592p+5i, 0x1.1470b17c0dfep+6 + -0x1.952ec4fed639fp+6i, -0x1.dce40d11c9858p+6 + -0x1.d84be12350509p+6i, 0x1.ca21c9eb85295p+7 + 0x1.7ad28da332694p+6i, 0x1.7d52a00e9dc25p+6 + -0x1.c87e487e7cc59p+4i, -0x1.43ae52dc5fa86p+6 + 0x1.49cfbf40d1a18p+5i, -0x1.9abc265397a67p+7 + -0x1.a27d4272b8278p+7i, -0x1.1c0c301063cf8p+4 + 0x1.3bf96d871e3fep+6i, 0x1.7fb9a62d3d763p+7 + -0x1.786b8610e2d7dp+6i, -0x1.216f74b7dc12dp+7 + 0x1.6de3e2eba6229p+7i, -0x1.4494201ab76e5p+7 + -0x1.4dd1eee6af7eep+8i, 0x1.489ed2153c42p+7 + 0x1.d417d08a51484p+7i, -0x1.596ebf7511ce4p+7 + 0x1.2953c9da23fe6p+8i, -0x1.0cf851aa95695p+8 + 0x1.672cede3f1b8ep+7i, -0x1.62ea14ed4fc08p+8 + -0x1.37e0df060ddcp+8i, 0x1.504bbafb64f4dp+7 + 0x1.66af6fe9d06f8p+2i, -0x1.37ee3f8ad0622p+4 + 0x1.1a9a14bd7c84p+8i, -0x1.348f1f150c911p+8 + -0x1.c2f0b61c087ebp+5i, 0x1.db558c7b667e8p+4 + -0x1.e595f8aa8795fp+6i, -0x1.7a10382ffe0adp+6 + 0x1.8d0ad45dc454ap+7i, -0x1.e6d7a8effe1dp+7 + 0x1.45d187fba43fap+7i, -0x1.6f88cc1d575ffp+7 + 0x1.2ae552a46abeep+6i, 0x1.9c6f719218984p+6 + -0x1.82077e60e5fap+7i, 0x1.75cb923fa6802p+6 + 0x1.4dd0445738564p+8i, -0x1.a26fa6f92e92cp+3 + 0x1.f203bf9d9d8acp+4i, -0x1.12c2a0d7f7c3p+2 + 0x1.1793da602d88ep+7i, -0x1.417d7a5a7f6e4p+5 + 0x1.2f25a84709822p+7i, 0x1.795d7927573cap+7 + 0x1.5ea6f7e54e5ecp+4i, -0x1.097d7a6ba9733p+6 + 0x1.0a143ba942794p+8i, 0x1.3f9f84e8b3a62p+4 + 0x1.03883ffb834a3p+7i, 0x1.447bc9abc144cp+6 + 0x1.0567eb63a644ep+6i, -0x1.b2ff7f7517525p+5 + 0x1.260a2bdf71f37p+7i, 0x1.064fc8ed49778p+4 + 0x1.30e923ed4e5c8p+7i, 0x1.4524e1283c1cp+3 + 0x1.d7eae89540f7bp+5i, 0x1.86617bd8ef83p+6 + 0x1.1abcd899c1d77p+7i, 0x1.93e2ea3e48c42p+5 + 0x1.da4d147fdf06p+3i, 0x1.34641afd69e18p+5 + 0x1.83387d519d71p+5i, 0x1.d6951f44eaecp+5 + 0x1.3495babdaea3ep+6i, -0x1.be407a59496b4p+3 + 0x1.dab196bd19fffp+6i, 0x1.053efc8675efp+6 + -0x1.87b4f4b581fbp+6i, 0x1.794127e21fe0ap+6 + -0x1.703a9af5bf88p-1i, -0x1.eb501b23cc766p+3 + -0x1.27ab37b136bd2p+4i, 0x1.f9c5f29cb00c1p+5 + 0x1.6c70518f522acp+5i, 0x1.943858a568864p+6 + -0x1.eebe63cb03524p+6i, -0x1.bfcf3ccaaaef6p+4 + -0x1.745e7c7f1d55cp+5i, -0x1.0cd1e76f5cdb8p+4 + 0x1.ccf46c252f58p+4i, 0x1.8858a46b1dceap+5 + 0x1.1fd2936d0d13p+5i, 0x1.cc181ad84ec72p+4 + -0x1.4221ff36bec1ep+6i, -0x1.0f700b5300114p+4 + -0x1.0e226e77efe58p+4i, -0x1.4a13aff3d5dbdp+6 + -0x1.e414d1df6e349p+5i, 0x1.0d60bb39c4c93p+4 + 0x1.944d1d9d59e68p+5i, 0x1.06d66773838c6p+6 + 0x1.6369d11f33daap+4i, -0x1.592dc5eb26dep+3 + -0x1.1f44417fe0648p+4i, -0x1.bf11cd467bb34p+5 + -0x1.04223de1a199fp+7i, 0x1.e59a3749eb778p+4 + -0x1.88891f7a068p+0i, 0x1.c3df54f05eb5p+2 + 0x1.a9863d75c9714p+4i, -0x1.8aa579be03bbbp+7 + -0x1.01447335fd32p+5i, -0x1.f90b67c0ca8f4p+5 + -0x1.11c653854791ep+7i, -0x1.b14b60692570ap+5 + 0x1.bb6531af513acp+4i, -0x1.5cb2071686f83p+5 + 0x1.ae023e902dc9bp+6i, -0x1.a337042b579d6p+5 + 0x1.12bccd5e003c4p+4i, 0x1.54d9a6e48a258p+3 + -0x1.c8f708fa55fe6p+4i, -0x1.3bf3ed0d28928p+2 + 0x1.b4bb62daf666ap+5i, 0x1.16ef8263f1714p+5 + 0x1.968530ea481b7p+5i, -0x1.1474f3c6a7835p+6 + 0x1.ce8db595beec4p+4i, -0x1.34fbc37dfb53fp+5 + -0x1.a5881396bfef8p+3i, 0x1.18355f386f28p+0 + -0x1.7ede93a006fd9p+6i, -0x1.7845f1b73634p+1 + 0x1.8adec2ce8995fp+6i, -0x1.158086b01cap+2 + 0x1.e87e4d7b90688p+3i, 0x1.cf2a21b90b3c1p+3 + -0x1.648d8cbcdc1b7p+5i, -0x1.fb06b0ee9a6e9p+3 + 0x1.2d46702f96285p+6i, -0x1.05a10abc6c924p+3 + 0x1.8a26576e3546p+5i, 0x1.d631bd0d3523ap+4 + -0x1.922bbd02c226p+4i, 0x1.49041adfb428fp+4 + 0x1.769391ac25ee5p+5i, 0x1.1d08c2bae7871p+3 + -0x1.0f8f83446f6c2p+4i, 0x1.3b9d4721a50bcp+3 + 0x1.4d8de0a552b4cp+2i, 0x1.1082fb603b3a7p+5 + -0x1.fb92732e28b4p-1i, 0x1.08916d80cfe67p+3 + 0x1.0023bbd923689p+5i, -0x1.c223793e418cdp+4 + -0x1.0900df676ae84p+5i, 0x1.ad4c8aeea418p+2 + -0x1.fdc3d39c6ap-5i, 0x1.276587ba22bf4p+3 + 0x1.e384a2b574d7p+1i, 0x1.5bbb8059a4dd5p+5 + 0x1.ad4d42a6d72dp+3i, -0x1.6b557181ea06bp+5 + -0x1.10dc4b1cf4013p+6i, -0x1.f1a2ac5a61d1cp+3 + -0x1.f5d07e393032p+1i, 0x1.21073a7f209eap+5 + -0x1.93057d3cf56aap+5i, 0x1.c5f1917aba558p+2 + 0x1.aa747eba448dep+4i, -0x1.015ab8080963bp+5 + -0x1.2a27636d3ba58p+6i, 0x1.13c5097d1cc8p-3 + -0x1.c62a30ed8c251p+5i, -0x1.d50d6a86b1d3bp+4 + -0x1.b1925b945f924p+2i, 0x1.7fdf0cad7e8a9p+4 + 0x1.cd855eae404p+4i, 0x1.7cc7f49568254p+3 + 0x1.d3db42d45e7ep-1i, -0x1.b18f09438aa9p+3 + 0x1.0d64317128599p+5i, 0x1.c3e3bcd284eeep+3 + 0x1.3454b6492eedp+2i, 0x1.e17028d8e9cdcp+5 + 0x1.80670f352a9e8p+6i, -0x1.9f8410968c0d8p+3 + 0x1.228d9ea4b3435p+5i, -0x1.88559e5d76b03p+6 + -0x1.07787b4dc4c0cp+3i, -0x1.e1a0464429b34p+4 + -0x1.5c4043a3462ap+5i, -0x1.a608ed6f4dedap+4 + 0x1.49095e66919ccp+6i, -0x1.6ef6f5ba6805ep+4 + 0x1.60c0de42ff23ep+6i, 0x1.17835196c5886p+5 + -0x1.3ad14337646acp+4i, -0x1.f3d187e6d0ab3p+3 + 0x1.8ad4e346eef8p+5i, -0x1.1566760d4ebaap+5 + 0x1.3130a9fe58774p+5i, 0x1.d25816dd36125p+4 + 0x1.f474c4a3e1f0cp+5i, -0x1.0c36c70fdeef8p+2 + -0x1.ec4b5d4f290c4p+2i, 0x1.838da8ff8a5acp+4 + -0x1.5de94b9e6f93ap+5i, 0x1.9fea9572e81cfp+2 + 0x1.0c4b17b800d4p-1i, 0x1.c6b0a18a375b8p+4 + 0x1.48f1d72163da8p+4i, 0x1.59115e5d2788p+1 + 0x1.257e7a1a2851ap+3i, 0x1.f1d07e3724968p-1 + -0x1.bdf687849df15p+4i, -0x1.4f7f480dab129p+5 + 0x1.13f285408078ap+4i, -0x1.83d7fd00e76f6p+5 + 0x1.3b5cbc1fff984p+6i, 0x1.dff38e3dca8c9p+5 + 0x1.fc8fc6a6bea42p+3i, 0x1.c96bbbec53ce6p+5 + 0x1.1ba2eba0ffe56p+4i, 0x1.b1711d89d26b8p+4 + -0x1.6c07f3f3dfaf6p+4i, 0x1.a99a62e00dd31p+3 + 0x1.881f5bd7b3c6p+4i, -0x1.f649c448527p+2 + 0x1.8e5eac9169624p+4i, 0x1.b184aa1da4ea8p+3 + -0x1.b20b4ad2322fap+4i, 0x1.aadb4fce7cd58p+0 + 0x1.9602bfa9b5074p+2i, 0x1.db7a203173e1ap+3 + 0x1.bc66b226884b9p+5i, 0x1.5f1c0e3d26f66p+2 + -0x1.d8077fd83a26ep+4i, 0x1.a0557c0e00796p+4 + -0x1.25f9edbbb7917p+4i, 0x1.0bdfc335e3e4ep+5 + 0x1.3ebb35793ae92p+6i, -0x1.c651d8d321f42p+4 + -0x1.03a449b488019p+4i, 0x1.7c1a176e66b8p-2 + -0x1.3a37886a76a9ap+4i, -0x1.db423979f047p+2 + -0x1.fb068f0fe0bbp+5i, -0x1.60b191682d332p+5 + -0x1.4956f8cf808dep+5i, 0x1.6228f29a747ebp+5 + -0x1.8d37be9919cp-5i, -0x1.9654a31c06162p+4 + -0x1.0e8796fc93859p+4i, -0x1.eb5f0d98af974p+4 + -0x1.024e6da4d874cp+3i, 0x1.ffad6cb26cfe8p+5 + -0x1.24615856ae171p+4i, 0x1.501dead17b84ap+5 + 0x1.ed6a03ea0a743p+3i, -0x1.21a64f5e4b9d6p+6 + 0x1.59cd26b805bdep+5i, 0x1.1aa757177973bp+5 + -0x1.2dd1153be5dep+6i, 0x1.28c684d18acadp+5 + -0x1.5ce6b01c06bdep+4i, -0x1.746235f1dafc4p+3 + 0x1.b4695db215fb6p+5i, -0x1.309f59d3cf6bep+6 + 0x1.d7b51ef6c9da6p+5i, 0x1.829c09324c84p+0 + 0x1.6f8eba793ed4p+5i, -0x1.7c2ba71e200a1p+6 + 0x1.9a03be6dda4b7p+4i, -0x1.a18c016dea578p+3 + 0x1.20fc6927f269dp+7i, -0x1.2c258312070cbp+6 + 0x1.05b166b53b4cp+6i, -0x1.705ab246602cap+6 + 0x1.d20a644442708p+5i, -0x1.4394681263f9dp+6 + 0x1.b8e6b7d9c9ed4p+5i, 0x1.030b58a34c779p+6 + 0x1.e0ac6d29e8716p+6i, -0x1.8cf45e6866cap+3 + -0x1.bf97cbf312f4ap+3i, -0x1.ed9d8e7f0c286p+5 + 0x1.9232f96baa1ap+6i, 0x1.3497065b89cf4p+5 + 0x1.49c121038178p+6i, 0x1.014c33d4d56cfp+6 + 0x1.b12ce623ac48fp+5i, -0x1.6887809dcdbdcp+6 + -0x1.e20c3dc56326cp+5i, 0x1.9ff19e1d6a53p+6 + 0x1.765af3ed3df49p+6i, -0x1.1bfef62bb620fp+6 + 0x1.e28f005805a8p+5i, 0x1.32dfab510574bp+8 + 0x1.880707c938e48p+7i, 0x1.9d551f3e8e182p+4 + 0x1.09a670b211e77p+5i, 0x1.70cd356e02b6p+5 + -0x1.2ac0486e0601p+4i, -0x1.ceca5538b8db8p+6 + 0x1.66228a1a609f1p+6i, 0x1.f32e76c8b67c6p+6 + 0x1.237625f037797p+6i, -0x1.271e1ab82b1fcp+4 + 0x1.49b710f2e114dp+6i, -0x1.a33b282ed55ap+3 + 0x1.c595beacee0a7p+4i, -0x1.ee8ae9929036p+4 + 0x1.35f1ea9dda04cp+4i, 0x1.f6e007af0834ap+4 + 0x1.e4d2121f9b84cp+7i, -0x1.0542e3e6da27cp+5 + -0x1.b4cbfdb6eb8a6p+6i, 0x1.061eac1aa951p+7 + 0x1.1d0b3a37ec11p+6i, 0x1.682cb4f80303dp+5 + -0x1.c32c867b4804p+7i, 0x1.3b3e8b2b4cd03p+7 + 0x1.2aad1083c37a8p+7i, -0x1.7f79060d5f6e5p+7 + -0x1.d0f8a49e432b8p+5i, 0x1.7ced1ac842e4p+4 + -0x1.f646dea54892ap+5i, 0x1.6d4e5be45fddcp+6 + -0x1.aee5daf3effa3p+7i, 0x1.62fc496b6cd7bp+7 + -0x1.06081ecb0ba68p+4i, -0x1.f9f311a1244p-2 + 0x1.e2570517fee01p+6i, 0x1.bf4e7f840dd7cp+4 + 0x1.087bb424aa77cp+5i, 0x1.d886a19a47408p+7 + -0x1.7b93d04127aa1p+6i, -0x1.30042a91d1a48p+7 + 0x1.2e93987d142bap+6i, -0x1.49df9a72c864p+5 + -0x1.30e567441cecdp+5i, -0x1.d8447fb83e9cfp+5 + -0x1.a6a15f95eb11cp+7i, 0x1.0fe6bd5fc1704p+7 + -0x1.93cbde2b5812fp+5i, -0x1.580b6402b7906p+5 + 0x1.d55e3ba7476bcp+4i, -0x1.3b1348415246ap+7 + -0x1.6994f832c3676p+7i, 0x1.748ff0009b22p+3 + 0x1.b555ba784d424p+6i, -0x1.526cc38a2d7a8p+8 + -0x1.a02a4db052b02p+6i, -0x1.62e090103e3aap+6 + -0x1.377dce48c7987p+8i, -0x1.ab43887f1f2c2p+6 + 0x1.d9bb0bbb680eep+6i, -0x1.03475e70a1d7cp+4 + -0x1.0410882c62406p+7i, -0x1.acfa792dbb66ep+7 + 0x1.7839e6f3578f7p+6i, -0x1.20f83291dd049p+7 + -0x1.100d807de1127p+5i, -0x1.8df13854bb9ccp+6 + -0x1.a45c9ad7b111ep+7i, -0x1.4d0b483e5ff8cp+7 + 0x1.48a590f86867bp+7i, -0x1.dea5cff33075cp+6 + -0x1.7c7c236101e34p+3i, -0x1.2d932f6fe8a1dp+8 + -0x1.21df47692c1f7p+7i, -0x1.348fafee85b77p+5 + -0x1.8016e53c0d5eep+6i, -0x1.7f227fa8f6398p+4 + 0x1.edf266ade308ap+7i ) assertThat(stats:::fft(z=c(-7.34978965516479, 2.17131398089138, -6.33866196170059, -6.90592867113389, -0.0113047513374505, -20.352482597231, -9.76366385344955, -5.44727527150623, -38.8338073696961, 0.15679457444755, -18.7763448480381, -21.0058891942075, 13.5997666951942, -0.280288084928417, -8.00277515881392, 4.17625093823445, -0.376076857900577, -3.75275775603125, -0.00695107187795879, -5.31527883208898, 4.46755481166189, 0.567970088895075, 4.77685725549287, 1.35058041691026, 0.943524195068992, 0.0206541052314919, 0.183650054105491, -0.235314799083292, -1.38385309095582, -2.75712343904144, 0.257630281242699, 2.24096849441385, -1.04750136478229, 2.08505890366643, -0.00481599812803781, -0.730957685215846, -8.04687675352377, 2.18571428541391, -2.46497349266617, -4.98463375278781, -3.14443959489096, -0.628341498228297, -7.28319501446031, -0.0197259670964958, -2.75224721747325, -0.27745042994779, -5.32441259075585, -1.44731681511964, 8.03941450650205, 4.52619909336342, -1.13572489589848, 1.06046609487547, -1.50966507161758, -4.21104955530085, -0.106963563535257, -2.6545189659242, -2.22821073471975, -3.67861943297574, -2.61085488970969, 0.495412455258236, -1.30436585238751, 0.659579826155498, 4.12704271104832, 2.96550521202127, -1.67879100596426, 2.39663867976626, -2.39964185387181, 0.686602809525303, -0.776890900502591, -1.67994324142599, -0.460219841282026, -3.43678232780962, 1.7906595637447, 4.29068451298771, -2.54834650675063, -1.66900811128708, -0.782989626585176, -3.53466639036002, -0.894132175472473, 1.12535233267424, -6.21884921079606, 0.839742732224532, -2.28638764333812, -0.00370441092171243, 0.466792594316811, 0.859492058091605, 0.604127788421366, -3.7622941542445, 0.620993977812953, -5.245543816004, -0.918340522953523, -2.94697901456518, 0.000592633183947139, -0.935270855558396, 0.60386257696295, -0.904894438925587, 6.16834270538408, -0.649751912879373, 5.81998619274346, 5.19729405995881, -9.31389594112096, -0.574065575386835, -8.6195892427404, -1.779583056253, -4.6708019406065, -8.05943646414585, 2.8910730625913, -9.04249661590512, 9.78789950105741, 13.4809370918883, -5.38208806158573, 1.74683554470233, 9.34792752558025, -3.44625370202322, 4.58897248700183, -3.93334237192196, 1.35559345605078, -4.80434430436266, -0.223213598332833, 7.46106253079644, -0.616757069948777, 4.68279829108154, 2.4882897961141, -3.97857831089891, -1.51552162775457, -0.867228101921097, -7.27604562654879, -0.0341172148382841, -6.27202780781203, -0.692558712030191, -2.28192543162662, 1.08339182563154, 5.14936751065038, -1.29199351126187, 4.40885926514266, -0.323033813147648, -1.14683671565304, 0.00494164100877328, -0.345588798149673, 5.49601390389117, -1.43812817977208, 6.48402296559972, -4.8957058664165, -1.45324950414464, -0.63567485244181, -7.3677156267252, 0.00398276629968695, 0.5945571322703, 1.26482460097525, -1.31384613723359, 5.59224653372849, 1.9633330449091, -1.59828764929225, 0.207662580762002, -5.16730399697917, 1.40277377720045, 1.63569870564092, 0.984923002589916, -0.0345654331822847, 4.82171082770418, 2.14082874533581, -2.82810634496359, 0.0797090159836944, -6.36506311456573, -1.51775884023329, -6.97338760941422, -8.25056343915563, 0.0850679993313883, -11.065177953407, -9.69840265410653, 0.411076150231953, -6.80382140174278, -7.8251439971141, -1.33460095067788, -7.25812194000699, -11.9269517004491, -3.11298601125692, -13.9222416991964, 0.115569748835781, -1.16191850821664, -6.69521433961008, 2.0193953309914, 1.12256334578426, -4.3995808958654, -0.394102922378977, -0.25469452729788, 1.15496206123532, -0.00116498962750556, -3.08731954323099, -5.17494351073813, -0.894614127899894, -2.73996825671277, 0.733046233908727, -0.115818961914661, -0.0420374490258803, 0.368825304420055, 0.0121752611414375, 0.0806947285912734, -5.98872842081419, 1.47527873873802, -4.75194980210009, 1.01427846110915, 1.65484218109453, -1.32263185270982, 1.56576271007941, 1.45453265176124, -0.0376190055337404, 3.48522800785135, -2.44970812455326, 8.59570374052921, -1.7828472080354, 5.55564858973805, 7.67348357883987, 2.29752167125936, 6.55237286590372, -0.00296221420787119, 3.96035173602675, -1.16732453604894, -7.21310441898552, -1.4790778010996, -7.96924496798519, -3.20193809282299, -5.62690176230733, -9.95183222270227, 0.0137030014356907, -9.98641619763897, 0.384718437168334, 13.7026359501345, -6.37971937639048, 10.2563471001967, 11.1919375653217, -1.17079608474429, 4.51121531157537, -10.9721401706896, -8.1247540768237, -2.3638522620174, -23.9315042490372, 10.1180259729374, -20.6496800965057, 8.91162981044919, 1.34997554114717, -3.05237654022552, 3.75676560241452, 3.59344536359033, -0.417044094109139, -0.469241799972831, -1.2528375332018, -4.61438966650404, 1.04014505007012, 0.288824724360609, -1.60081675731785, 0.863398590444596, 2.08273602878312, -0.173583166646783, -0.339521867391123, -0.0508715867783883, -2.80638451843493, -1.0943685509487, 0.225374746905434, -1.48151776373873, 2.19671482355452, 5.08776045709935, -2.63269063976141, 11.6391735293497, -0.56835593952689, -1.83999656241524, 5.0898874899154, -17.4445069131666, -6.56195033343605, -4.86762449986659, -24.3011443265718, -1.81897212866172, -19.5879142374202, -15.0441434326082, 1.17922387141451, -12.7409442194373, 1.36251141672002, 1.57663858648609, -8.85667209146122, -1.18151413986187, 1.73955989571161, -8.22794715524901, -1.25895718826798, -5.8613112171518, -3.34234884520339, -0.345911229857183, -0.98423261673054, -1.98713381340123, 0.641010119415937, -0.0359206397422201, 1.51120206066676, 0.427293949858943, 3.65481126100239, 2.09632370582427, 0.694436276210105, 1.98056690105038, 0.884131282263325, 3.14924407671228, 0.0565374429089586, -0.841223288591555, 2.79501468473361, -2.7983474869864, -2.17200181403754, -0.298048851289791, -3.88399898907978, -4.80281744801249, -1.53925078055171, -8.66988070684015, -0.298932233075103, -8.80884286122301, -9.00620801486017, 0.461296454021319, -1.38300751624957, -12.1132821608429, -14.8389361415066, -2.43494501098662, -15.8353791894072, -0.462127533418109, -4.56239112373678, -5.25935743379802, -0.333085721139147, -5.12799795125851, -5.27481421775689, 5.77346738351044, -8.36015827092282, 0.468547775290383, 7.59732950183313, -4.35429131990282, 3.2591436400886, -3.67705226015189, -4.11711028755469, 4.776995952489, -6.56208732892593, 1.07337803203839, -0.499555951199867, -16.7904450895811, 8.20161829557333, -15.3903869964331, -20.627865725261, 6.40125012298495, -22.4184404515219, -11.9741943983031, -0.689211472799639, -18.9179675106862, -0.512673410808726, -10.8717351438712, -13.2706937016591, 15.0231275275149, -15.7076158380064, -2.67007637923131, 16.1496413496614, -12.2105846653788, 8.17803995409392, 0.387235325306791, -21.8614663059986, 3.66758625302468, -21.3696256945814, -0.330196070462789, 1.22247545570553, -21.7016544647715, 2.28204308462443, -5.00575484181943, -6.83185450249509, -8.29782708471046, -1.275340741865, 1.35302695231738, -0.0374731408322102, 3.67346046648786, 2.63868956287966, -0.626066680742508, 0.649605596637525, 1.77586090496691, 0.929314960063292, -0.361683203842528, -0.211686035629108, 0.865714362684181, 0.168471650065465, -1.82338323892656, -1.46730171850371, -0.463205953430522, -1.90885982276408, 0.585263375051362, 1.68078969687008, -0.545192168131676, 5.82161373247637, 0.418524510398686, 2.21619583999717, 4.61503873055521, -5.50122040829837, -1.866638831164, -2.70233147729082, -13.0036650793718, -0.400038238219057, -14.0560641590161, -6.80648398760882, -1.84303526143468, -7.03448628627229, -6.47975240993989, 1.53864026582815, -7.44769860247011, 4.22555558002357, 1.40813071000905, -4.02020097594931, 6.23521048752929, -7.40646973857678, 2.33205204287526, 9.27130512156855, -2.17588422422781, 10.5646159340965, -4.63860587364421, 4.20603790265988, 3.5167785740308, -7.45411159155492, 2.83301664928991, -2.91728060352519, -3.6847874330314, 0.45597659388152, -0.568493786722375, -2.64024994626372, -2.53084542213233, -0.465534070634776, -0.0840144027446836, 0.0597846422675136, -0.934978362547354, -0.893698181120751, 0.693260943420861, 0.0685214780903158, -0.991077540226312, 0.180881581917324, -0.36606434350682, -0.0444488131547632, 0.0713250028814436, -0.761457538562641, -2.04755033141203, -0.997601972501108, 2.1298837213424, -6.15727854024994, 0.132191092961796, -12.4546790658587, -2.60995692678617, -3.21881223017067, -6.67707365679882, 2.06663976269597, 3.3710488009292, 1.57344545561532, 12.1329109737918, -0.982314279088975, -4.05603324351742, 4.56699555321954, -3.51072795314121, 0.263379460137528, 1.12427806156684, -5.16117511939298, 0.798551598275607, -1.35188140528664, -3.95663616805659, -2.89141792899761, -4.30786753752407, -3.06895256017837, 0.315066087919452, -2.94738864627794, -0.960482246242672, -10.084437136255, 0.79280060324264, -11.0026726452933, -15.172935402954, -2.39813889661846, -18.0114734331588)) , identicalTo( expected, tol = 1e-6 ) )
KPN <- function( level ) { switch( level, { n = c(0.0000000000000000e+000) w = c(1.0000000000000000e+000) }, { n = c(0.0000000000000000e+000, 1.7320508075688772e+000) w = c(6.6666666666666663e-001, 1.6666666666666666e-001) }, { n = c(0.0000000000000000e+000, 1.7320508075688772e+000) w = c(6.6666666666666674e-001, 1.6666666666666666e-001) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.7320508075688772e+000, 4.1849560176727323e+000) w = c(4.5874486825749189e-001, 1.3137860698313561e-001, 1.3855327472974924e-001, 6.9568415836913987e-004) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.7320508075688772e+000, 2.8612795760570582e+000, 4.1849560176727323e+000) w = c(2.5396825396825407e-001, 2.7007432957793776e-001, 9.4850948509485125e-002, 7.9963254708935293e-003, 9.4269457556517470e-005) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.7320508075688772e+000, 2.8612795760570582e+000, 4.1849560176727323e+000) w = c(2.5396825396825429e-001, 2.7007432957793776e-001, 9.4850948509485070e-002, 7.9963254708935293e-003, 9.4269457556517551e-005) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.7320508075688772e+000, 2.8612795760570582e+000, 4.1849560176727323e+000) w = c(2.5396825396825418e-001, 2.7007432957793781e-001, 9.4850948509485014e-002, 7.9963254708935311e-003, 9.4269457556517592e-005) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.7320508075688772e+000, 2.8612795760570582e+000, 4.1849560176727323e+000) w = c(2.5396825396825418e-001, 2.7007432957793781e-001, 9.4850948509485042e-002, 7.9963254708935276e-003, 9.4269457556517375e-005) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 4.1849560176727323e+000, 5.1870160399136562e+000, 6.3633944943363696e+000) w = c(2.6692223033505302e-001, 2.5456123204171222e-001, 1.4192654826449365e-002, 8.8681002152028010e-002, 1.9656770938777492e-003, 7.0334802378279075e-003, 1.0563783615416941e-004, -8.2049207541509217e-007, 2.1136499505424257e-008) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 4.1849560176727323e+000, 5.1870160399136562e+000, 6.3633944943363696e+000) w = c(3.0346719985420623e-001, 2.0832499164960877e-001, 6.1151730125247716e-002, 6.4096054686807610e-002, 1.8085234254798462e-002, -6.3372247933737571e-003, 2.8848804365067559e-003, 6.0123369459847997e-005, 6.0948087314689840e-007, 8.6296846022298632e-010) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 4.1849560176727323e+000, 5.1870160399136562e+000, 6.3633944943363696e+000) w = c(3.0346719985420623e-001, 2.0832499164960872e-001, 6.1151730125247709e-002, 6.4096054686807541e-002, 1.8085234254798459e-002, -6.3372247933737545e-003, 2.8848804365067555e-003, 6.0123369459847922e-005, 6.0948087314689830e-007, 8.6296846022298839e-010) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 4.1849560176727323e+000, 5.1870160399136562e+000, 6.3633944943363696e+000) w = c(3.0346719985420623e-001, 2.0832499164960872e-001, 6.1151730125247716e-002, 6.4096054686807624e-002, 1.8085234254798466e-002, -6.3372247933737545e-003, 2.8848804365067559e-003, 6.0123369459847841e-005, 6.0948087314689830e-007, 8.6296846022298963e-010) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 4.1849560176727323e+000, 5.1870160399136562e+000, 6.3633944943363696e+000) w = c(3.0346719985420600e-001, 2.0832499164960883e-001, 6.1151730125247730e-002, 6.4096054686807638e-002, 1.8085234254798459e-002, -6.3372247933737580e-003, 2.8848804365067555e-003, 6.0123369459847868e-005, 6.0948087314689830e-007, 8.6296846022298756e-010) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 4.1849560176727323e+000, 5.1870160399136562e+000, 6.3633944943363696e+000) w = c(3.0346719985420617e-001, 2.0832499164960874e-001, 6.1151730125247702e-002, 6.4096054686807596e-002, 1.8085234254798459e-002, -6.3372247933737563e-003, 2.8848804365067555e-003, 6.0123369459847936e-005, 6.0948087314689851e-007, 8.6296846022298322e-010) }, { n = c(0.0000000000000000e+000, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 4.1849560176727323e+000, 5.1870160399136562e+000, 6.3633944943363696e+000) w = c(3.0346719985420612e-001, 2.0832499164960874e-001, 6.1151730125247723e-002, 6.4096054686807652e-002, 1.8085234254798459e-002, -6.3372247933737597e-003, 2.8848804365067563e-003, 6.0123369459848091e-005, 6.0948087314689851e-007, 8.6296846022298983e-010) }, { n = c(0.0000000000000000e+000, 2.4899229757996061e-001, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.2336260616769419e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 3.6353185190372783e+000, 4.1849560176727323e+000, 5.1870160399136562e+000, 6.3633944943363696e+000, 7.1221067008046166e+000, 7.9807717985905606e+000, 9.0169397898903032e+000) w = c(2.5890005324151566e-001, 2.8128101540033167e-002, 1.9968863511734550e-001, 6.5417392836092561e-002, 6.1718532565867179e-002, 1.7608475581318002e-003, 1.6592492698936010e-002, -5.5610063068358157e-003, 2.7298430467334002e-003, 1.5044205390914219e-005, 5.9474961163931621e-005, 6.1435843232617913e-007, 7.9298267864869338e-010, 5.1158053105504208e-012, -1.4840835740298868e-013, 1.2618464280815118e-015) }, { n = c(0.0000000000000000e+000, 2.4899229757996061e-001, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.2336260616769419e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 3.6353185190372783e+000, 4.1849560176727323e+000, 5.1870160399136562e+000, 5.6981777684881099e+000, 6.3633944943363696e+000, 7.1221067008046166e+000, 7.9807717985905606e+000, 9.0169397898903032e+000) w = c(1.3911022236338039e-001, 1.0387687125574284e-001, 1.7607598741571459e-001, 7.7443602746299481e-002, 5.4677556143463042e-002, 7.3530110204955076e-003, 1.1529247065398790e-002, -2.7712189007789243e-003, 2.1202259559596325e-003, 8.3236045295766745e-005, 5.5691158981081479e-005, 6.9086261179113738e-007, -1.3486017348542930e-008, 1.5542195992782658e-009, -1.9341305000880955e-011, 2.6640625166231651e-013, -9.9313913286822465e-016) }, { n = c(0.0000000000000000e+000, 2.4899229757996061e-001, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.2336260616769419e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 3.6353185190372783e+000, 4.1849560176727323e+000, 4.7364330859522967e+000, 5.1870160399136562e+000, 5.6981777684881099e+000, 6.3633944943363696e+000, 7.1221067008046166e+000, 7.9807717985905606e+000, 9.0169397898903032e+000) w = c(5.1489450806921377e-004, 1.9176011588804434e-001, 1.4807083115521585e-001, 9.2364726716986353e-002, 4.5273685465150391e-002, 1.5673473751851151e-002, 3.1554462691875513e-003, 2.3113452403522071e-003, 8.1895392750226735e-004, 2.7524214116785131e-004, 3.5729348198975332e-005, 2.7342206801187888e-006, 2.4676421345798140e-007, 2.1394194479561062e-008, 4.6011760348655917e-010, 3.0972223576062995e-012, 5.4500412650638128e-015, 1.0541326582334014e-018) }, { n = c(0.0000000000000000e+000, 2.4899229757996061e-001, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.2336260616769419e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 3.6353185190372783e+000, 4.1849560176727323e+000, 4.7364330859522967e+000, 5.1870160399136562e+000, 5.6981777684881099e+000, 6.3633944943363696e+000, 7.1221067008046166e+000, 7.9807717985905606e+000, 9.0169397898903032e+000) w = c(5.1489450806921377e-004, 1.9176011588804437e-001, 1.4807083115521585e-001, 9.2364726716986353e-002, 4.5273685465150523e-002, 1.5673473751851151e-002, 3.1554462691875604e-003, 2.3113452403522050e-003, 8.1895392750226670e-004, 2.7524214116785131e-004, 3.5729348198975447e-005, 2.7342206801187884e-006, 2.4676421345798140e-007, 2.1394194479561056e-008, 4.6011760348656077e-010, 3.0972223576063011e-012, 5.4500412650637663e-015, 1.0541326582337958e-018) }, { n = c(0.0000000000000000e+000, 2.4899229757996061e-001, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.2336260616769419e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 3.6353185190372783e+000, 4.1849560176727323e+000, 4.7364330859522967e+000, 5.1870160399136562e+000, 5.6981777684881099e+000, 6.3633944943363696e+000, 7.1221067008046166e+000, 7.9807717985905606e+000, 9.0169397898903032e+000) w = c(5.1489450806925551e-004, 1.9176011588804440e-001, 1.4807083115521585e-001, 9.2364726716986298e-002, 4.5273685465150537e-002, 1.5673473751851155e-002, 3.1554462691875573e-003, 2.3113452403522080e-003, 8.1895392750226724e-004, 2.7524214116785137e-004, 3.5729348198975352e-005, 2.7342206801187888e-006, 2.4676421345798124e-007, 2.1394194479561056e-008, 4.6011760348656144e-010, 3.0972223576062963e-012, 5.4500412650638365e-015, 1.0541326582335402e-018) }, { n = c(0.0000000000000000e+000, 2.4899229757996061e-001, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.2336260616769419e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 3.6353185190372783e+000, 4.1849560176727323e+000, 4.7364330859522967e+000, 5.1870160399136562e+000, 5.6981777684881099e+000, 6.3633944943363696e+000, 7.1221067008046166e+000, 7.9807717985905606e+000, 9.0169397898903032e+000) w = c(5.1489450806913744e-004, 1.9176011588804429e-001, 1.4807083115521594e-001, 9.2364726716986312e-002, 4.5273685465150391e-002, 1.5673473751851151e-002, 3.1554462691875565e-003, 2.3113452403522089e-003, 8.1895392750226670e-004, 2.7524214116785142e-004, 3.5729348198975285e-005, 2.7342206801187888e-006, 2.4676421345798119e-007, 2.1394194479561059e-008, 4.6011760348656594e-010, 3.0972223576062950e-012, 5.4500412650638696e-015, 1.0541326582332041e-018) }, { n = c(0.0000000000000000e+000, 2.4899229757996061e-001, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.2336260616769419e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 3.6353185190372783e+000, 4.1849560176727323e+000, 4.7364330859522967e+000, 5.1870160399136562e+000, 5.6981777684881099e+000, 6.3633944943363696e+000, 7.1221067008046166e+000, 7.9807717985905606e+000, 9.0169397898903032e+000) w = c(5.1489450806903368e-004, 1.9176011588804448e-001, 1.4807083115521574e-001, 9.2364726716986423e-002, 4.5273685465150516e-002, 1.5673473751851161e-002, 3.1554462691875543e-003, 2.3113452403522063e-003, 8.1895392750226713e-004, 2.7524214116785164e-004, 3.5729348198975319e-005, 2.7342206801187905e-006, 2.4676421345798151e-007, 2.1394194479561082e-008, 4.6011760348656005e-010, 3.0972223576063043e-012, 5.4500412650637592e-015, 1.0541326582339926e-018) }, { n = c(0.0000000000000000e+000, 2.4899229757996061e-001, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.2336260616769419e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 3.6353185190372783e+000, 4.1849560176727323e+000, 4.7364330859522967e+000, 5.1870160399136562e+000, 5.6981777684881099e+000, 6.3633944943363696e+000, 7.1221067008046166e+000, 7.9807717985905606e+000, 9.0169397898903032e+000) w = c(5.1489450806913755e-004, 1.9176011588804442e-001, 1.4807083115521577e-001, 9.2364726716986381e-002, 4.5273685465150468e-002, 1.5673473751851155e-002, 3.1554462691875560e-003, 2.3113452403522045e-003, 8.1895392750226572e-004, 2.7524214116785158e-004, 3.5729348198975298e-005, 2.7342206801187892e-006, 2.4676421345798129e-007, 2.1394194479561072e-008, 4.6011760348656103e-010, 3.0972223576062963e-012, 5.4500412650638207e-015, 1.0541326582338368e-018) }, { n = c(0.0000000000000000e+000, 2.4899229757996061e-001, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.2336260616769419e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 3.6353185190372783e+000, 4.1849560176727323e+000, 4.7364330859522967e+000, 5.1870160399136562e+000, 5.6981777684881099e+000, 6.3633944943363696e+000, 7.1221067008046166e+000, 7.9807717985905606e+000, 9.0169397898903032e+000) w = c(5.1489450806914438e-004, 1.9176011588804442e-001, 1.4807083115521577e-001, 9.2364726716986340e-002, 4.5273685465150509e-002, 1.5673473751851155e-002, 3.1554462691875586e-003, 2.3113452403522058e-003, 8.1895392750226551e-004, 2.7524214116785142e-004, 3.5729348198975386e-005, 2.7342206801187884e-006, 2.4676421345798082e-007, 2.1394194479561059e-008, 4.6011760348656382e-010, 3.0972223576062942e-012, 5.4500412650638381e-015, 1.0541326582336941e-018) }, { n = c(0.0000000000000000e+000, 2.4899229757996061e-001, 7.4109534999454085e-001, 1.2304236340273060e+000, 1.7320508075688772e+000, 2.2336260616769419e+000, 2.5960831150492023e+000, 2.8612795760570582e+000, 3.2053337944991944e+000, 3.6353185190372783e+000, 4.1849560176727323e+000, 4.7364330859522967e+000, 5.1870160399136562e+000, 5.6981777684881099e+000, 6.3633944943363696e+000, 7.1221067008046166e+000, 7.9807717985905606e+000, 9.0169397898903032e+000) w = c(5.1489450806919989e-004, 1.9176011588804437e-001, 1.4807083115521580e-001, 9.2364726716986395e-002, 4.5273685465150426e-002, 1.5673473751851158e-002, 3.1554462691875539e-003, 2.3113452403522054e-003, 8.1895392750226681e-004, 2.7524214116785142e-004, 3.5729348198975292e-005, 2.7342206801187884e-006, 2.4676421345798108e-007, 2.1394194479561056e-008, 4.6011760348655901e-010, 3.0972223576062975e-012, 5.4500412650638412e-015, 1.0541326582337527e-018) } ) return( list( "nodes" = n, "weights" = w ) ) }
library(data.table) x1 = data.table(id = c(1L, 1L, 2L, 3L, NA_integer_), t = c(1L, 2L, 1L, 2L, NA_integer_), x = 11:15) y1 = data.table(id = c(1,2, 4), y = c(11L, 15L, 16)) x2 = data.table(id = c(1, 4, 2, 3, NA), t = c(1L, 2L, 1L, 2L, NA_integer_), x = c(16, 12, NA, NA, 15)) y2 = data.table(id = c(1, 2, 5, 6, 3), yd = c(1, 2, 5, 6, 3), y = c(11L, 15L, 20L, 13L, 10L), x = c(16:20)) y3 <- data.table(id = c("c","b", "c", "a"), y = c(11L, 15L, 18L, 20L)) x3 <- data.table(id=c("c","b", "d"), v=8:10, foo=c(4,2, 7)) x4 = data.table(id1 = c(1, 1, 2, 3, 3), id2 = c(1, 1, 2, 3, 4), t = c(1L, 2L, 1L, 2L, NA_integer_), x = c(16, 12, NA, NA, 15)) y4 = data.table(id = c(1, 2, 5, 6, 3), id2 = c(1, 1, 2, 3, 4), y = c(11L, 15L, 20L, 13L, 10L), x = c(16:20)) test_that("correct frequencies", { b <- base::table(y4$id2) b <- as.numeric(b) j <- freq_table(y4, "id2") j <- j[ id2 != "total" ][, n] expect_equal(b, j) }) test_that("correct totals", { tr <- nrow(y4) j <- freq_table(y4, "id2") j <- j[ id2 == "total" ][, n] expect_equal(tr, j) })
summary.nb <- function(object, coords=NULL, longlat=NULL, scale=1, ...) { nb <- object if (!inherits(nb, "nb")) stop("Not a neighbours list") c.nb <- card(nb) n.nb <- length(nb) regids <- attr(nb, "region.id") if(is.null(regids)) regids <- as.character(1:n.nb) print.nb(object) cat("Link number distribution:\n") print(table(c.nb, deparse.level=0)) if(any(c.nb > 0)) { min.nb <- min(c.nb[c.nb > 0]) cat(length(c.nb[c.nb == min.nb]), " least connected region", ifelse(length(c.nb[c.nb == min.nb]) < 2L, "", "s"), ":\n", paste(regids[which(c.nb == min.nb)], collapse=" "), " with ", min.nb, " link", ifelse(min.nb < 2L, "", "s"), "\n", sep="") max.nb <- max(c.nb) cat(length(c.nb[c.nb == max.nb]), " most connected region", ifelse(length(c.nb[c.nb == max.nb]) < 2L, "", "s"), ":\n", paste(regids[which(c.nb == max.nb)], collapse=" "), " with ", max.nb, " link", ifelse(max.nb < 2L, "", "s"), "\n", sep="") } if(!is.null(coords)) { dlist <- nbdists(nb, coords, longlat=longlat) cat("Summary of link distances:\n") print(summary(unlist(dlist))) stem(unlist(dlist), scale=scale) } } print.nb <- function(x, ...) { nb <- x if (!inherits(nb, "nb")) stop("Not a neighbours list") c.nb <- card(nb) n.nb <- length(nb) regids <- attr(nb, "region.id") if(is.null(regids)) regids <- as.character(1:n.nb) cat("Neighbour list object:\n") cat("Number of regions:", n.nb, "\n") cat("Number of nonzero links:", sum(c.nb), "\n") cat("Percentage nonzero weights:", (100*sum(c.nb))/(n.nb^2), "\n") cat("Average number of links:", mean(c.nb), "\n") if(any(c.nb == 0)) cat(length(c.nb[c.nb == 0]), " region", ifelse(length(c.nb[c.nb == 0]) < 2L, "", "s"), " with no links:\n", paste(strwrap(paste(regids[which(c.nb == 0)], collapse=" ")), collapse="\n"), "\n", sep="") res <- is.symmetric.nb(nb, verbose=FALSE) if (!res) cat("Non-symmetric neighbours list\n") invisible(x) } summary.listw <- function(object, coords=NULL, longlat=FALSE, zero.policy=NULL, scale=1, ...) { if (is.null(zero.policy)) zero.policy <- get("zeroPolicy", envir = .spdepOptions) stopifnot(is.logical(zero.policy)) if (any(card(object$neighbours) == 0) && !zero.policy) stop("regions with no neighbours found, use zero.policy=TRUE") cat("Characteristics of weights list object:\n") summary(object$neighbours, coords=coords, longlat=longlat, scale=scale, ...) style <- object$style cat(paste("\nWeights style:", style, "\n")) if (is.na(style)) style = "NA" cat("Weights constants summary:\n") print(data.frame(rbind(unlist(spweights.constants(object, zero.policy=zero.policy))[c(1, 5:8)]), row.names=style)) } print.listw <- function(x, zero.policy=NULL, ...) { if (is.null(zero.policy)) zero.policy <- get("zeroPolicy", envir = .spdepOptions) stopifnot(is.logical(zero.policy)) if (any(card(x$neighbours) == 0) && !zero.policy) stop("regions with no neighbours found, use zero.policy=TRUE") cat("Characteristics of weights list object:\n") print.nb(x$neighbours, ...) style <- x$style cat(paste("\nWeights style:", style, "\n")) if (is.na(style)) style = "NA" cat("Weights constants summary:\n") df <- data.frame(rbind(unlist(spweights.constants(x, zero.policy=zero.policy))[c(1, 5:8)]), row.names=style) print(df) invisible(x) }
file_names <- list( r = slurmR::snames("r", tmp_path = "[tmp_path]", job_name = "[job-name]"), sh = slurmR::snames("sh", tmp_path = "[tmp_path]", job_name = "[job-name]"), out = slurmR::snames("out", tmp_path = "[tmp_path]", job_name = "[job-name]"), rds = slurmR::snames("rds", tmp_path = "[tmp_path]", job_name = "[job-name]") ) file_names <- lapply( file_names, gsub, pattern = ".+/(?=[0-9])", replacement = "", perl = TRUE ) file_names <- lapply(file_names, function(f) paste0("`", f, "`"))
escapeContent <- function(content_s_1, escapeBraces_b_1 = FALSE) { patchArobas <- function(x_s) { if (stringr::str_count(x_s, '@') == 0L) return(x_s) paste(strsplit(x_s, "@@|@")[[1]], collapse = '@@', sep = '@@') } patchPercent <- function(x_s) { if (stringr::str_count(x_s, '%') == 0L) return(x_s) paste(strsplit(x_s, "\\\\%|%")[[1]], collapse = '\\%', sep = '\\%') } patchOB <- function(x_s) { if (stringr::str_count(x_s, '\\{') == 0L) return(x_s) paste(strsplit(x_s, "\\\\\\{|\\{")[[1]], collapse = '\\{', sep = '\\{') } patchCB <- function(x_s) { if (stringr::str_count(x_s, '\\}') == 0L) return(x_s) paste(strsplit(x_s, "\\\\\\}|\\}")[[1]], collapse = '\\}', sep = '\\}') } s <- paste0(content_s_1, '\t') s <- patchArobas(s) s <- patchPercent(s) if (!escapeBraces_b_1) return(substring(s, 1L, nchar(s) - 1L)) s <- patchOB(s) s <- patchCB(s) substring(s, 1L, nchar(s) - 1L) }
dist.bin.3col<-function(dist.bin,obj.name=NULL) { dist.3col<-function(dist) { dist=as.matrix(dist) rowname=rownames(dist) colname=colnames(dist) rown=row(dist) coln=col(dist) dist.v=as.vector(stats::as.dist(dist)) rown.v=as.vector(stats::as.dist(rown)) coln.v=as.vector(stats::as.dist(coln)) res=data.frame(name1=rowname[rown.v],name2=colname[coln.v],dis=dist.v) res } dist.3col=cbind(dist.3col(dist.bin[[1]]),sapply(2:length(dist.bin),function(i){dist.3col(dist.bin[[i]])[,3]})) colnames(dist.3col)[3:ncol(dist.3col)]<-paste0(paste(c(obj.name,"bin"),collapse = "."),1:length(dist.bin)) dist.3col }
wDC <- function(DCf = 100, rw = 200, a = 0.75, b = 0.75) { Qf <- 800 * exp(-DCf / 400) Qs <- a * Qf + b * (3.94 * rw) DCs <- 400 * log(800 / Qs) DCs <- ifelse(DCs < 15, 15, DCs) return(DCs) }
test_that("simple ratio", { expect_equal(nom_ratio(2), "two in one") expect_equal(nom_ratio(0.5), "one in two") expect_equal(nom_ratio(1000), "one thousand in one") }) test_that("ratio vector", { expect_equal( nom_ratio(c(2, 0.25, .000001), "to"), c("two to one", "one to four", "one to one million") ) }) test_that("ratio with max_n", { expect_equal(nom_ratio(2, max_n = 10), "two in one") expect_equal(nom_ratio(20, max_n = 10), "20 in one") expect_equal(nom_ratio(c(2, 20), max_n = 10), c("two in one", "20 in one")) expect_equal(nom_ratio(c(2, 20), max_n = -1), c("2 in 1", "20 in 1")) expect_equal( nom_ratio(c(20, 20), max_n = c(10, 100)), c("20 in one", "twenty in one") ) }) test_that("negative ratio", { expect_equal(nom_ratio(-2), "negative two in one") expect_equal( nom_card(-525600), "negative five hundred twenty-five thousand six hundred" ) expect_equal( nom_ratio(-100000000, sep = "to"), "negative one hundred million to one" ) expect_equal(nom_ratio(-2, negative = "minus"), "minus two in one") expect_equal( nom_ratio(c(-2, -0.5), negative = c("negative", "minus")), c("negative two in one", "minus one in two") ) }) test_that("ratio with fracture ...", { expect_equal(nom_ratio(1/2, base_10 = TRUE), "five in ten") expect_equal( nom_ratio(c(0, 1/2, 3/4), common_denom = TRUE), c("zero in four", "two in four", "three in four") ) expect_equal(nom_ratio(27/50, max_denom = 25), "seven in thirteen") expect_equal(nom_ratio(15/100, sep = "to", max_denom = 15), "one to seven") }) test_that("early return", { expect_equal(nom_ratio(numeric(0)), character(0)) }) test_that("errors", { expect_error(nom_ratio(character(1))) expect_error(nom_ratio(numeric(1), negative = numeric(1))) expect_error(nom_ratio(numeric(1), negative = character(0))) expect_error(nom_ratio(numeric(1), negative = character(2))) expect_error(nom_ratio(numeric(1), max_n = numeric(0))) expect_error(nom_ratio(numeric(1), max_n = character(1))) })
rita_sample <- function(data, from = NULL, to = NULL, states = NULL, facilities = NULL ) { states <- states %||% unique(data$facility_state) facilities <- facilities %||% unique(subset(data, facility_state %in% states)$facility) validate_recent(data, from, to , states, facilities) get_sample(data, from, to, states, facilities) } get_sample <- function(data, from, to, states, facilities) { dt <- dplyr::filter( data, viral_load_requested %in% c("Yes", "yes", "true", TRUE), recency_interpretation == "Recent", facility_state %in% states, facility %in% facilities ) if (!is.null(from)) { dt <- dplyr::filter( dt, date_sample_collected >= lubridate::ymd(from) ) } if(!is.null(to)) { dt <- dplyr::filter( dt, date_sample_collected <= lubridate::ymd(to) ) } return(dt) } utils::globalVariables( c("recency_interpretation", "date_sample_collected", "viral_load_requested", "facility_state") )
predict.pcrfit <- function( object, newdata, which = c("y", "x"), interval = c("none", "confidence", "prediction"), level = 0.95, ... ) { which <- match.arg(which) interval <- match.arg(interval) if (missing(newdata)) newDATA <- object$DATA else { if (which == "x") newDATA <- cbind(rep(1, nrow(newdata)), newdata) else newDATA <- newdata } modNAME <- object$MODEL$name if (modNAME == "spl3") { YVEC <- object$DATA[, 2] if (which == "y") PRED <- object$MODEL$fct(newDATA[, 1], coef(object), YVEC) else PRED <- object$MODEL$inv(newDATA[, 2], coef(object), YVEC) return(PRED) } if (which == "y") PRED <- object$MODEL$fct(newDATA[, 1], coef(object)) else PRED <- object$MODEL$inv(newDATA[, 2], coef(object)) if (modNAME %in% c("mak2", "mak2i", "mak3", "mak3i", "cm3")) return(PRED) if (which == "y") DERIVS <- lapply(object$MODEL$parnames, function(x) D(object$MODEL$expr.grad, x)) else DERIVS <- lapply(object$MODEL$parnames, function(x) D(object$MODEL$inv.grad, x)) if (inherits(DERIVS, "try-error")) return(PRED) GRAD <- NULL resMAT <- NULL if (!identical(interval, "none")) { TQUAN <- qt(1 - (1 - level)/2, df.residual(object)) } for (i in 1:nrow(newDATA)) { tempDATA <- data.frame(newDATA[i, , drop = FALSE], t(coef(object))) dfEVAL <- as.numeric(lapply(DERIVS, function(x) eval(x, envir = tempDATA))) GRAD <- rbind(GRAD, as.numeric(dfEVAL)) VAR <- dfEVAL %*% vcov(object) %*% dfEVAL if (interval == "confidence") { UPPER <- PRED[i] + TQUAN * sqrt(VAR) LOWER <- PRED[i] - TQUAN * sqrt(VAR) COLNAMES <- c("Prediction", "SE", "Lower", "Upper") } if (interval == "prediction") { UPPER <- PRED[i] + TQUAN * sqrt(VAR + resVar(object)) LOWER <- PRED[i] - TQUAN * sqrt(VAR + resVar(object)) COLNAMES <- c("Prediction", "SE", "Lower", "Upper") } if (interval == "none") { UPPER <- NULL LOWER <- NULL VAR <- NULL COLNAMES <- c("Prediction") } resMAT <- rbind(resMAT, c(PRED[i], VAR, LOWER, UPPER)) } resMAT <- as.data.frame(resMAT) colnames(resMAT) <- COLNAMES attr(resMAT, "gradient") <- as.matrix(GRAD) return(resMAT) }
sbrier_ltrc <- function(obj, id = NULL, pred, type = c("IBS","BS")){ if(!inherits(obj, "Surv")) stop("obj is not of class Surv") if (attr(obj, "type") != "counting") stop("only dataset with left-truncated and right-censored (pseudo-subject) observations allowed") n <- nrow(obj) if (!is.null(id)){ if (n != length(id)) stop("The length of id is different from the Surv object!") } else { id <- 1:n } id.sub = unique(id) n.sub = length(id.sub) obj <- as.data.frame(as.matrix(obj)) if (n == n.sub){ data_sbrier = obj data_sbrier$id = 1:n } else { data_sbrier <- data.frame(matrix(0, nrow = n.sub, ncol = 3)) names(data_sbrier) <- c("start", "stop", "status") data_sbrier$id <- id.sub for (ii in 1:n.sub){ data_sbrier[ii, ]$start = min(obj[id == id.sub[ii], ]$start) data_sbrier[ii, ]$stop = max(obj[id == id.sub[ii], ]$stop) data_sbrier[ii, ]$status = sum(obj[id == id.sub[ii], ]$status) } } if (type[1] == "IBS"){ ret <- sapply(1:n.sub, function(Ni) .ibsfunc(Ni = Ni, data_sbrier = data_sbrier, pred = pred)) ret <- mean(ret) names(ret) = "Integrated Brier score" } else if (type[1] == "BS"){ tpnt <- pred$survival.times[pred$survival.times <= min(pred$survival.tau)] bsres <- sapply(1:n.sub, function(Ni) .bsfunc(Ni = Ni, data_sbrier = data_sbrier, pred = pred, tpnt = tpnt)) bsres <- rowMeans(bsres) ret <- data.frame(matrix(0, ncol = 2, nrow = length(tpnt))) colnames(ret) <- c("Time", "BScore") ret$Time <- tpnt ret$BScore <- bsres } else { stop("type can only be 'IBS' or 'BS'") } return(ret) } .ibsfunc <- function(Ni, data_sbrier, pred){ id_uniq <- unique(data_sbrier$id) tpnt = pred$survival.times[pred$survival.times <= pred$survival.tau[Ni]] tlen = length(tpnt) if (class(pred$survival.probs)[1] == "matrix"){ Shat = pred$survival.probs[1:tlen, Ni] } else if(class(pred$survival.probs)[1] == "list"){ Shat = pred$survival.probs[[Ni]][1:tlen] } hatcdist <- prodlim::prodlim(Surv(start, stop, status) ~ 1, data = data_sbrier, reverse = TRUE) Ttildei <- data_sbrier[data_sbrier$id == id_uniq[Ni], ]$stop Tleft = data_sbrier[data_sbrier$id == id_uniq[Ni], ]$start csurv_adj = predictProb(hatcdist, time.eval = Tleft) if (is.na(csurv_adj)) stop("reverse Kaplan-Meier estimate at the left-truncateion point is NA! ") csurv_obs <- predictProb(hatcdist, time.eval = Ttildei) / csurv_adj csurv_obs[csurv_adj == 0] <- Inf csurv_obs[csurv_obs == 0] <- Inf csurv_t <- predictProb(hatcdist, time.eval = tpnt[tpnt < Ttildei]) / csurv_adj csurv_t[is.na(csurv_t)] <- min(csurv_t, na.rm = TRUE) csurv_t[csurv_t == 0] <- Inf csurv <- c(1/csurv_t, rep(1 / csurv_obs, sum(tpnt >= Ttildei))) Indicator_t <- as.integer(tpnt < Ttildei) Indicator_t[Indicator_t == 0] = as.integer(data_sbrier[data_sbrier$id == id_uniq[Ni],]$status == 1) fibs_itg = (as.integer(tpnt < Ttildei) - Shat) ^ 2 * csurv * Indicator_t ibs = diff(tpnt) %*% (fibs_itg[-length(fibs_itg)] + fibs_itg[-1]) / 2 ibs = ibs / diff(range(tpnt)) ibs } .bsfunc <- function(Ni, data_sbrier, pred, tpnt){ id_uniq <- unique(data_sbrier$id) tlen = length(tpnt) if (class(pred$survival.probs)[1] == "matrix"){ Shat = pred$survival.probs[1:tlen, Ni] } else if(class(pred$survival.probs)[1] == "list"){ Shat = pred$survival.probs[[Ni]][1:tlen] } hatcdist <- prodlim::prodlim(Surv(start, stop, status) ~ 1, data = data_sbrier, reverse = TRUE) Ttildei <- data_sbrier[data_sbrier$id == id_uniq[Ni], ]$stop Tleft = data_sbrier[data_sbrier$id == id_uniq[Ni], ]$start csurv_adj = predictProb(hatcdist, time.eval = Tleft) if (is.na(csurv_adj)) stop("reverse Kaplan-Meier estimate at the left-truncateion point is NA! ") csurv_obs <- predictProb(hatcdist, time.eval = Ttildei) / csurv_adj csurv_obs[csurv_adj == 0] <- Inf csurv_obs[csurv_obs == 0] <- Inf csurv_t <- predictProb(hatcdist, time.eval = tpnt[tpnt < Ttildei]) / csurv_adj csurv_t[is.na(csurv_t)] <- min(csurv_t, na.rm = TRUE) csurv_t[csurv_t == 0] <- Inf csurv <- c(1 / csurv_t, rep(1 / csurv_obs, sum(tpnt >= Ttildei))) Indicator_t <- as.integer(tpnt < Ttildei) Indicator_t[Indicator_t == 0] = as.integer(data_sbrier[data_sbrier$id == id_uniq[Ni], ]$status == 1) fibs_itg = (as.integer(tpnt < Ttildei) - Shat) ^ 2 * csurv * Indicator_t fibs_itg }
gpd2frech <- function(x, loc = 0, scale = 1, shape = 0, pat = 1){ z <- pgpd(x, loc, scale, shape, lower.tail = FALSE) z <- -1 / log(1 - pat * z) return(z) } frech2gpd <- function(z, loc = 0, scale = 1, shape = 0, pat = 1){ x <- exp(-1/z) / pat x <- qgpd(x, loc, scale, shape) return(x) }
norm.min.max<-function(spectra){ for(i in 2:ncol(spectra)){ spectra[,i]<-(spectra[,i]-min(spectra[,i], na.rm=T))/(max(spectra[,i], na.rm = T)-min(spectra[,i], na.rm=T)) } return(spectra) }
print.condList <- function (x, ...){ nn <- names(x) ll <- length(x) if (length(nn) != ll) nn <- paste("Component", seq.int(ll)) for (i in seq_len(ll)){ x1 <- x[[i]] info <- attr(x1, "info") cat(addblanks(nn[i]), if (info$reshaped) paste0(" [input: ", info$input, "]"), ":\n") print(x1, ...) cat("\n") } invisible(x) } `[.condList` <- function(x, ...){ out <- NextMethod() attributes(out) <- c( attributes(out), attributes(x)[c("class", "type", "n", "cases", "ct")] ) i <- eval.parent(sys.call()[[3]]) if (is.character(i)) i <- match(i, names(x), 0L) attr(out, "info") <- attr(x, "info")[i, ] out } `[[.condList` <- function(x, ...){ out <- NextMethod() if (identical(out, "Invalid condition")) return(out) attributes(out) <- c( attributes(out), attributes(x)[c("type", "n", "cases", "ct")]) i <- eval.parent(sys.call()[[3]]) if (is.character(i)) i <- match(i, names(x), 0L) attr(out, "info") <- attr(x, "info")[i, ] out } `$.condList` <- function(x, ...){ out <- NextMethod() if (is.null(out) || identical(out, "Invalid condition")) return(out) attributes(out) <- c( attributes(out), attributes(x)[c("type", "n", "cases", "ct")]) i <- sys.call()[[3]] i <- match(as.character(i), names(x), 0L) attr(out, "info") <- attr(x, "info")[i, ] out } summary.condList <- function(object, ...){ print.condList(object, print.table = FALSE) }
mrlplot <- function(data, tlim = NULL, nt = min(100, length(data)), p.or.n = FALSE, alpha = 0.05, ylim = NULL, legend.loc = "bottomleft", try.thresh = quantile(data, 0.9, na.rm = TRUE), main = "Mean Residual Life Plot", xlab = "Threshold u", ylab = "Mean Excess", ...) { invisible(nt) invisible(try.thresh) check.quant(data, allowna = TRUE, allowinf = TRUE) check.param(tlim, allowvec = TRUE, allownull = TRUE) if (!is.null(tlim)) { if (length(tlim) != 2) stop("threshold range tlim must be a numeric vector of length 2") if (tlim[2] <= tlim[1]) stop("a range of thresholds must be specified by tlim") } check.logic(p.or.n) check.n(nt) if (nt == 1) stop("number of thresholds must be a non-negative integer >= 2") check.prob(alpha, allownull = TRUE) if (!is.null(alpha)){ if (alpha <= 0 | alpha >= 1) stop("significance level alpha must be between (0, 1)") } check.param(ylim, allowvec = TRUE, allownull = TRUE) if (!is.null(ylim)) { if (length(ylim) != 2) stop("ylim must be a numeric vector of length 2") if (ylim[2] <= ylim[1]) stop("a range of y axis limits must be specified by ylim") } check.text(legend.loc, allownull = TRUE) if (!is.null(legend.loc)) { if (!(legend.loc %in% c("bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", "center"))) stop("legend location not correct, see help(legend)") } if (any(!is.finite(data))) warning("non-finite data values have been removed") data = data[which(is.finite(data))] if (is.unsorted(data)) { data = sort(data) } else { if (data[1] > data[length(data)]) data = rev(data) } check.quant(data) if (is.null(tlim)) { thresholds = seq(median(data) - 2*.Machine$double.eps, data[length(data) - 6], length.out = nt) } else { thresholds = seq(tlim[1], tlim[2], length.out = nt) } n = length(data) data = data[data > min(thresholds)] udata = unique(data) if (length(udata) <= nt) { warning("less data than number of thresholds requested, so will use unique data as thresholds") thresholds = udata[-length(udata)] } nminu = sum(data > min(thresholds)) if (nminu <= 10) stop("data must have more than 10 exceedances of lowest threshold") nmaxu = sum(data > max(thresholds)) if (nmaxu == 0) { warning("thresholds above max of input data are dropped") thresholds = thresholds[thresholds <= max(data)] nmaxu = sum(data > max(thresholds)) } if (nmaxu <= 5) warning("confidence intervals are not shown where there are less than 5 exceedances") nt = length(thresholds) if (nt < 2) stop("must be more than 1 threshold") if (!is.null(try.thresh)) { if (length(try.thresh) == 0 | mode(try.thresh) != "numeric") stop("threshold to fit GPD to must be numeric scalar or vector") if (any((try.thresh < min(thresholds)) | (try.thresh >= max(thresholds)))) stop("potential thresholds must be within range specifed by tlim") } me.calc <- function(u, x, alpha) { excesses = x[x > u] - u nxs = length(excesses) meanxs = mean(excesses) sdxs = ifelse(nxs <= 5, NA, sd(excesses)) results = c(u, nxs, meanxs, sdxs) if (!is.null(alpha)) { results = c(results, meanxs + qnorm(c(alpha/2, 1 - alpha/2)) * sdxs/sqrt(nxs)) } return(results) } me = t(sapply(thresholds, FUN = me.calc, x = data, alpha = alpha)) me = as.data.frame(me) if (!is.null(alpha)) { names(me) = c("u", "nu", "mean.excess", "sd.excess", "cil.excess", "ciu.excess") } else { names(me) = c("u", "nu", "mean.excess", "sd.excess") } par(mar = c(5, 4, 7, 2) + 0.1) if (!is.null(alpha)) { mes = range(me[, 5:6], na.rm = TRUE) merange = seq(mes[1] - (mes[2] - mes[1])/10, mes[2] + (mes[2] - mes[1])/10, length.out = 200) allmat = matrix(merange, nrow = nt, ncol = 200, byrow = TRUE) memat = matrix(me[, 3], nrow = nt, ncol = 200, byrow = FALSE) sdmat = matrix(me[, 4]/sqrt(me[, 2]), nrow = nt, ncol = 200, byrow = FALSE) z = (allmat - memat)/sdmat z[abs(z) > 3] = NA if (is.null(ylim)) { ylim = range(merange, na.rm = TRUE) ylim = ylim + c(-1, 1) * diff(ylim)/10 } image(thresholds, merange, dnorm(z), col = gray(seq(1, 0.3, -0.01)), main = main, xlab = xlab, ylab = ylab, ylim = ylim, ...) matplot(matrix(thresholds, nrow = nt, ncol = 3, byrow = FALSE), me[, c(3, 5, 6)], add = TRUE, type = "l", lty = c(1, 2, 2), col = "black", lwd = c(2, 1, 1), ...) } else { if (is.null(ylim)) { ylim = range(me[, 3], na.rm = TRUE) ylim = ylim + c(-1, 1) * diff(ylim)/10 } plot(thresholds, me[, 3], main = main, xlab = xlab, ylab = ylab, ylim = ylim, add = TRUE, type = "l", lty = 1, col = "black", lwd = 2, ...) } box() naxis = rev(ceiling(2^pretty(log2(c(nmaxu, nminu)), 10))) naxis = naxis[(naxis > nmaxu) & (naxis < nminu)] nxaxis = c(min(thresholds), rev(data)[naxis+1], max(thresholds)) naxis = c(nminu, naxis, nmaxu) if ((nxaxis[length(nxaxis)] - nxaxis[length(nxaxis) - 1]) < diff(range(thresholds))/10) { nxaxis = nxaxis[-(length(nxaxis) - 1)] naxis = naxis[-(length(naxis) - 1)] } if ((nxaxis[2] - nxaxis[1]) < diff(range(thresholds))/20) { nxaxis = nxaxis[-2] naxis = naxis[-2] } if (p.or.n) { axis(side = 3, at = nxaxis, line = 0, labels = formatC(naxis/n, digits = 2, format = "g")) mtext("Tail Fraction phiu", side = 3, line = 2) } else { axis(side = 3, at = nxaxis, line = 0, labels = naxis) mtext("Number of Excesses", side = 3, line = 2) } if (!is.null(try.thresh)) { ntry = length(try.thresh) mleparams = matrix(NA, nrow = 2, ncol = ntry) linecols = rep(c("blue", "green", "red"), length.out = ntry) for (i in 1:ntry) { fitresults = fgpd(data, try.thresh[i], std.err = FALSE) mleparams[, i] = fitresults$mle mrlint = (fitresults$mle[1] - fitresults$mle[2] * try.thresh[i])/(1 - fitresults$mle[2]) mrlgrad = fitresults$mle[2]/(1 - fitresults$mle[2]) lines(c(try.thresh[i], max(thresholds)), mrlint + mrlgrad * c(try.thresh[i], max(thresholds)), lwd = 2, lty = 1, col = linecols[i]) lines(c(min(thresholds), try.thresh[i]), mrlint + mrlgrad * c(min(thresholds), try.thresh[i]), lwd = 2, lty = 2, col = linecols[i]) abline(v = try.thresh[i], lty = 3, col = linecols[i]) } if (!is.null(legend.loc)) { if (!is.null(alpha)) { legend(legend.loc, c("Sample Mean Excess", paste(100*(1 - alpha), "% CI"), paste("u =", formatC(try.thresh[1:min(c(3, ntry))], digits = 2, format = "g"), "sigmau =", formatC(mleparams[1, 1:min(c(3, ntry))], digits = 2, format = "g"), "xi =", formatC(mleparams[2, 1:min(c(3, ntry))], digits = 2, format = "g"))), lty = c(1, 2, rep(1, min(c(3, ntry)))), lwd = c(2, 1, rep(1, min(c(3, ntry)))), col = c("black", "black", linecols), bg = "white") } else { legend(legend.loc, c("Sample Mean Excess", paste("u =", formatC(try.thresh[1:min(c(3, ntry))], digits = 2, format = "g"), "sigmau =", formatC(mleparams[1, 1:min(c(3, ntry))], digits = 2, format = "g"), "xi =", formatC(mleparams[2, 1:min(c(3, ntry))], digits = 2, format = "g"))), lty = c(1, rep(1, min(c(3, ntry)))), lwd = c(2, rep(1, min(c(3, ntry)))), col = c("black", linecols), bg = "white") } } } else { if (!is.null(legend.loc)) { if (!is.null(alpha)) { legend(legend.loc, c("Sample Mean Excess", paste(100*(1 - alpha), "% CI")), lty = c(1, 2), lwd = c(2, 1), bg = "white") } else { legend(legend.loc, "Sample Mean Excess", lty = 1, lwd = 2, bg = "white") } } } invisible(me) }