code
stringlengths
1
13.8M
tam_np_inits <- function(dat, nodes, pweights, probs_init, n_basis, model="2PL") { maxK <- apply(dat, 2, max, na.rm=TRUE) K <- max(maxK) K1 <- K + 1 TP <- length(nodes) theta <- nodes I <- ncol(dat) items <- colnames(dat) if ( is.null(probs_init) ){ probs_cum <- probs <- array(0, dim=c(I,K+1,TP) ) for (ii in 1:I){ K_ii <- maxK[ii] K_ii2 <- K_ii+2 q1 <- stats::qlogis( seq( 0,1, len=K_ii2)[ -c(1,K_ii2) ] ) theta1 <- tam_matrix2(theta, nrow=1, ncol=TP) for (kk in 1:K_ii){ probs_cum[ii,kk,] <- stats::plogis(q1[kk] - theta1 ) } probs_cum[ ii, K_ii+1,] <- 1 probs[ii,1,] <- probs_cum[ii,1,] for (kk in 2:(K_ii+1) ){ probs[ii,kk,] <- probs_cum[ii,kk,] - probs_cum[ii,kk-1, ] } } } else { probs <- probs_init } pi.k <- stats::dnorm(theta, mean=0, sd=1) pi.k <- pi.k / sum(pi.k) dat_resp <- ! is.na(dat) dat2 <- dat dat2[ ! dat_resp ] <- 0 dat2 <- as.matrix(dat2) N <- nrow(dat) if (is.null(pweights)){ pweights <- rep(1,N) } pweights <- N * pweights / sum(pweights) use_basis <- ( n_basis > 0 ) | ( model=="1PL") res <- list(maxK=maxK, K=K, K1=K1, TP=TP, I=I, probs=probs, pi.k=pi.k, dat_resp=dat_resp, dat2=dat2, N=N, pweights=pweights, theta=theta, items=items, use_basis=use_basis) return(res) }
ggdist::geom_interval ggdist::GeomInterval
findSNVs = function(hapMat, focalSNV, minWindow = 1) { if(minWindow > ncol(hapMat$hapmat)) stop("minWindow must not exceed number of SNVs") absDistFromFocal = abs(hapMat$posns - hapMat$posns[focalSNV]) current = c(focalSNV,focalSNV) nextSNV = getNextFromFocal(current,absDistFromFocal) while(checkCompatible(current, nextSNV, hapMat$hapmat) && getnSNVs(current) < ncol(hapMat$hapmat)) { current = c(min(nextSNV, current[1]), max(nextSNV, current[2])) nextSNV = getNextFromFocal(current, absDistFromFocal) } if(getnSNVs(current) == ncol(hapMat$hapmat)) { SNVwindow = current[1]:current[2] compat = rep(TRUE, ncol(hapMat$hapmat)) return(list(SNVwindow = SNVwindow, compat = compat)) } if(nextSNV < current[1]) { nextSNV = getNextRightFocal(current,absDistFromFocal) while(!is.na(nextSNV) && checkCompatible(current, nextSNV, hapMat$hapmat)) { current[2] = nextSNV nextSNV = getNextRightFocal(current, absDistFromFocal) } } else { nextSNV = getNextLeftFocal(current, absDistFromFocal) while(!is.na(nextSNV) && checkCompatible(current, nextSNV, hapMat$hapmat)){ current[1] = nextSNV nextSNV = getNextLeftFocal(current,absDistFromFocal) } } compatInds = (current[1]:current[2]) while(getnSNVs(current)<minWindow) { nextSNV = getNextFromFocal(current, absDistFromFocal) current = c(min(nextSNV, current[1]), max(nextSNV, current[2])) } SNVwindow = current[1]:current[2] compat = SNVwindow %in% compatInds return(list(SNVwindow = SNVwindow, compat = compat)) }
context("Unit tests for PLR (mulitple treatment case)") library("mlr3learners") lgr::get_logger("mlr3")$set_threshold("warn") on_cran = !identical(Sys.getenv("NOT_CRAN"), "true") if (on_cran) { test_cases = expand.grid( learner = "regr.lm", dml_procedure = "dml2", score = "partialling out", stringsAsFactors = FALSE) } else { test_cases = expand.grid( learner = c("regr.lm", "regr.cv_glmnet"), dml_procedure = c("dml1", "dml2"), score = c("IV-type", "partialling out"), stringsAsFactors = FALSE) } test_cases[".test_name"] = apply(test_cases, 1, paste, collapse = "_") patrick::with_parameters_test_that("Unit tests for PLR:", .cases = test_cases, { learner_pars = get_default_mlmethod_plr(learner) n_rep_boot = 498 n_folds = 5 set.seed(3141) plr_hat = dml_plr_multitreat(data_plr_multi, y = "y", d = c("d1", "d2", "d3"), n_folds = n_folds, ml_g = learner_pars$ml_g$clone(), ml_m = learner_pars$ml_m$clone(), dml_procedure = dml_procedure, score = score) theta = plr_hat$coef se = plr_hat$se t = plr_hat$t pval = plr_hat$pval set.seed(3141) boot_theta = boot_plr_multitreat(plr_hat$thetas, plr_hat$ses, data_plr_multi, y = "y", d = c("d1", "d2", "d3"), n_folds = n_folds, smpls = plr_hat$smpls, all_preds = plr_hat$all_preds, bootstrap = "normal", n_rep_boot = n_rep_boot, score = score)$boot_coef set.seed(3141) Xnames = names(data_plr_multi)[names(data_plr_multi) %in% c("y", "d1", "d2", "d3", "z") == FALSE] data_ml = double_ml_data_from_data_frame(data_plr_multi, y_col = "y", d_cols = c("d1", "d2", "d3"), x_cols = Xnames) double_mlplr_obj = DoubleMLPLR$new(data_ml, ml_g = learner_pars$ml_g$clone(), ml_m = learner_pars$ml_m$clone(), dml_procedure = dml_procedure, n_folds = n_folds, score = score) double_mlplr_obj$fit() theta_obj = double_mlplr_obj$coef se_obj = double_mlplr_obj$se t_obj = double_mlplr_obj$t_stat pval_obj = double_mlplr_obj$pval set.seed(3141) double_mlplr_obj$bootstrap(method = "normal", n_rep_boot = n_rep_boot) boot_theta_obj = double_mlplr_obj$boot_coef ci_ptwise_obj = double_mlplr_obj$confint(joint = FALSE, level = 0.95) ci_joint_obj = double_mlplr_obj$confint(joint = TRUE, level = 0.95) expect_equal(theta, theta_obj, tolerance = 1e-8) expect_equal(se, se_obj, tolerance = 1e-8) expect_equal(t, t_obj, tolerance = 1e-8) expect_equal(pval, pval_obj, tolerance = 1e-8) expect_equal(as.vector(boot_theta), as.vector(boot_theta_obj), tolerance = 1e-8) } )
pmpp_data <- function(indata, t_dim = "cols", var_name = "Y") { if (!is.matrix(indata)) { indata <- as.matrix(indata) } if (t_dim == "cols") { N <- nrow(indata) T <- ncol(indata) Y <- c() for (i in 1:N) { Y <- rbind(Y, as.matrix(indata[i, ], ncol = 1)) } if (is.null(colnames(indata))) { colnames(indata) <- 1:T } if (is.null(rownames(indata))) { rownames(indata) <- 1:N } out <- data.frame( rep(rownames(indata), each = T), rep(colnames(indata), N), as.numeric(Y) ) } else if (t_dim == "rows") { N <- ncol(indata) T <- nrow(indata) Y <- c() for (i in 1:N) { Y <- rbind(Y, as.matrix(indata[, i], ncol = 1)) } if (is.null(colnames(indata))) { colnames(indata) <- 1:N } if (is.null(rownames(indata))) { rownames(indata) <- 1:T } out <- data.frame( rep(colnames(indata), each = T), rep(rownames(indata), N), as.numeric(Y) ) } colnames(out) <- c("unit", "time", var_name) return(out) }
intpoint_simul <- function(times, subj, U, y, m, tau, lambda, lambcross, px, d){ H = length(tau) mtot = ncol(U) dim = length(subj) dtot = sum(d) W = Weight_Ni(y, subj)$W Wy = W*y b = c(rep(Wy, H), rep(0, ((H-1)*mtot)), rep(0, (H*(mtot-sum(d))))) WU = W*U M0 = matrix(rep(0,(dim*mtot)), ncol=mtot) Hmtot = rep(mtot,H) cum_HmtotB = cumsum(Hmtot) cum_HmtotA = c(1, c(cum_HmtotB+1)) CX=list() Hdim = rep(dim, H) cum_HdimB = cumsum(Hdim) cum_HdimA = c(1, c(cum_HdimB+1)) All_CX = matrix(NA, H*dim, H*mtot) rhs_CX = matrix(NA, H*mtot, H) for(h in 1:H){ CX[[h]] = matrix(0, dim, (mtot*H)) CX[[h]][,(cum_HmtotA[h]:cum_HmtotB[h])] = WU All_CX[cum_HdimA[h]:cum_HdimB[h],]=CX[[h]] rhs_CX[,h] = t(CX[[h]])%*%rep((1-tau[h]),dim) } M1 = matrix(rep(0,(mtot*mtot)), ncol=mtot) D1 = cbind(-diag(mtot), diag(mtot)) CXNC=list() HmtotNC = rep(mtot, (H-1)) cum_HmtotNCB = cumsum(HmtotNC) cum_HmtotNCA = c(1, c(cum_HmtotNCB+1)) All_CXNC = matrix(NA, (H-1)*mtot, H*mtot) rhs_CXNC = matrix(NA, H*mtot, H-1) for(h in 1: (H-1)){ CXNC[[h]] = matrix(0, mtot, (mtot*H)) CXNC[[h]][,(cum_HmtotA[h]:cum_HmtotB[h+1])] = lambcross*D1 All_CXNC[cum_HmtotNCA[h]:cum_HmtotNCB[h],]=CXNC[[h]] rhs_CXNC[,h] = t(CXNC[[h]])%*%rep(1/2, mtot) } if((H*px) == length(lambda)) lambdahpx=lambda else lambdahpx = rep(lambda, (H*px)) Hmk = rep(m,H) Hdk = rep(d,H) cum_HmkB = cumsum(Hmk) cum_HmkA = c(1, c(cum_HmkB+1)) CXPS = list() DPS = list() Hmkdk = Hmk - Hdk cum_HmkdkB = cumsum(Hmkdk) cum_HmkdkA = c(1, c(cum_HmkdkB+1)) All_CXPS = matrix(NA, H*(mtot-dtot), H*mtot) rhs_CXPS = matrix(NA, H*mtot, H*px) for(h in 1:(H*px)){ CXPS[[h]] = matrix(0, (Hmk[h]-Hdk[h]), (mtot*H)) DPS[[h]] = diff(diag(Hmk[h]), diff = Hdk[h]) CXPS[[h]][(1:(Hmk[h]-Hdk[h])),(cum_HmkA[h]:cum_HmkB[h])]=lambdahpx[h]*DPS[[h]] All_CXPS[cum_HmkdkA[h]:cum_HmkdkB[h],]=CXPS[[h]] rhs_CXPS[,h] = t(CXPS[[h]])%*%rep(1/2, Hmk[h]-Hdk[h]) } All_CX = as.matrix.csr(All_CX) All_CXNC = as.matrix.csr(All_CXNC) All_CXPS = as.matrix.csr(All_CXPS) FP = rbind(All_CX, All_CXNC, All_CXPS) rhs = rowSums(rhs_CX) + rowSums(rhs_CXNC) + rowSums(rhs_CXPS) fit = rq.fit.sfn(FP,b,rhs=rhs) alpha = fit$coef intout = list(alpha=alpha, W=W) return(intout) }
read_lines <- function(file, skip = 0, skip_empty_rows = FALSE, n_max = Inf, locale = default_locale(), na = character(), lazy = should_read_lazy(), num_threads = readr_threads(), progress = show_progress()) { if (edition_first()) { if (is.infinite(n_max)) { n_max <- -1L } if (empty_file(file)) { return(character()) } ds <- datasource(file, skip = skip, skip_empty_rows = skip_empty_rows, skip_quote = FALSE) return(read_lines_(ds, skip_empty_rows = skip_empty_rows, locale_ = locale, na = na, n_max = n_max, progress = progress)) } vroom::vroom_lines(file, skip = skip, locale = locale, n_max = n_max, progress = progress, altrep = lazy, skip_empty_rows = skip_empty_rows, na = na, num_threads = num_threads ) } read_lines_raw <- function(file, skip = 0, n_max = -1L, num_threads = readr_threads(), progress = show_progress()) { if (empty_file(file)) { return(list()) } ds <- datasource(file, skip = skip, skip_empty_rows = FALSE, skip_quote = FALSE) read_lines_raw_(ds, n_max = n_max, progress = progress) } write_lines <- function(x, file, sep = "\n", na = "NA", append = FALSE, num_threads = readr_threads(), path = deprecated()) { is_raw <- is.list(x) && inherits(x[[1]], "raw") if (is_present(path)) { deprecate_warn("1.4.0", "write_lines(path = )", "write_lines(file = )") file <- path } if (is_raw || edition_first()) { is_raw <- is.list(x) && inherits(x[[1]], "raw") if (!is_raw) { x <- as.character(x) } file <- standardise_path(file, input = FALSE) if (!isOpen(file)) { on.exit(close(file), add = TRUE) open(file, if (isTRUE(append)) "ab" else "wb") } if (is_raw) { write_lines_raw_(x, file, sep) } else { write_lines_(x, file, na, sep) } return(invisible(x)) } vroom::vroom_write_lines(as.character(x), file, eol = sep, na = na, append = append, num_threads = num_threads) invisible(x) }
rEB.Finite.Bayes<-function(X,z,X.target,z.target,m=c(4,6),m.EB=8, B=10, centering=TRUE, nsample=min(1000,length(z)), g.method='DL',LP.type='L2', sd0=NULL, theta.set.prior=seq(-2.5*sd(z),2.5*sd(z),length.out=500), theta.set.post=seq(z.target-2.5*sd(z),z.target+2.5*sd(z),length.out=500), post.alpha=0.8, plot=TRUE, ...){ max.iter=2000 extraparms=list(...) extraparms$X=X;extraparms$z=z;extraparms$X.target=X.target;extraparms$m=m;extraparms$nsample=nsample;extraparms$centering=centering pb<-txtProgressBar(min=0,max=B,style=3) setTxtProgressBar(pb,0) samplegen<-do.call(LASER,args=extraparms) z.sample<-samplegen$data if(is.null(sd0)){ sd0<-IQR(z.sample)/1.35 } data.z <- cbind(z.sample,rep(sd0,length(z.sample))) reb.start <- BayesGOF::gMLE.nn(data.z[,1], data.z[,2], g.method)$estimate reb.ds.L2 <- BayesGOF::DS.prior(data.z, max.m = m.EB, g.par = reb.start, family = "Normal", LP.type = LP.type) prior.list<-post.list<-list() viter=0 setTxtProgressBar(pb,0.1) for(iter in 1:max.iter){ te_sample<-DS.sampler(nsample, reb.start, reb.ds.L2$LP.par, 'Normal', LP.type) y_sample=sapply(te_sample,function(x){stats::rnorm(1,mean=x,sd=sd0)}) data.y <- cbind(y_sample,rep(sd0,length(y_sample))) reb.start0 <- BayesGOF::gMLE.nn(data.y[,1], data.y[,2], g.method)$estimate if(reb.start0[2]!=0){ viter=viter+1 reb.ds.iter <- BayesGOF::DS.prior(data.y, max.m = m.EB, g.par = reb.start0, family = "Normal", LP.type = LP.type) priorfit_parm=approx(reb.ds.iter$prior.fit$theta.vals,reb.ds.iter$prior.fit$parm.prior, xout=theta.set.prior,method='linear',rule=2)$y prior.list[[viter]]<-reb.ds.iter prior.list[[viter]]$prior.fit=data.frame(theta.vals=theta.set.prior,parm.prior=priorfit_parm) if(is.null(reb.ds.iter$prior.fit$ds.prior)){ prior.list[[viter]]$prior.fit$ds.prior=prior.list[[viter]]$prior.fit$parm.prior }else{ priorfit_ds=approx(reb.ds.iter$prior.fit$theta.vals,reb.ds.iter$prior.fit$ds.prior, xout=theta.set.prior,method='linear',rule=2)$y prior.list[[viter]]$prior.fit$ds.prior=priorfit_ds } reb.micro.iter_1 <- BayesGOF::DS.micro.inf(reb.ds.iter, y.0=z.target, n.0=sd0) reb.micro.iter_fit<-LP.post.conv(theta.set.post, reb.ds.iter, y.0=z.target, n.0=sd0) post.list[[viter]]<-reb.micro.iter_1 post.list[[viter]]$post.fit<-reb.micro.iter_fit if(is.null(post.list[[viter]]$post.fit$ds.pos)){ post.list[[viter]]$post.fit$ds.pos=post.list[[viter]]$post.fit$parm.pos } setTxtProgressBar(pb,viter) if(viter>=B){ break } } } prior.curve<-data.frame( theta.vals=theta.set.prior, parm.prior=apply(sapply(prior.list,function(x){x$prior.fit$parm.prior}),1,mean), ds.prior=apply(sapply(prior.list,function(x){x$prior.fit$ds.prior}),1,mean) ) post.curve<-data.frame( theta.vals=theta.set.post, parm.post=apply(sapply(post.list,function(x){x$post.fit$parm.pos}),1,mean), ds.pos=apply(sapply(post.list,function(x){x$post.fit$ds.pos}),1,mean) ) post.curve$ds.pos[post.curve$ds.pos<0]<-0 prior.curve$ds.prior[prior.curve$ds.prior<0]<-0 post.mean=mean(sapply(post.list,function(x){x$DS.mean})) post.mean.sd=sd(sapply(post.list,function(x){x$DS.mean})) samp.post <- sample(post.curve$ds.pos, 1e5, replace = TRUE,prob = post.curve$ds.pos) crit.post <- quantile(samp.post, 1-post.alpha) hpd.interval<- c(min(post.curve$theta.vals[post.curve$ds.pos >=crit.post]), max(post.curve$theta.vals[post.curve$ds.pos >=crit.post])) prior=list(prior.fit=prior.curve) posterior=list(post.fit=post.curve, post.mode=post.curve$theta.vals[which.max(post.curve$ds.pos)], post.mean=post.mean, post.mean.sd=post.mean.sd, HPD.interval=hpd.interval ) out=list(prior=prior,posterior=posterior,g.par=reb.start,sd0=sd0,sample=z.sample,LP.coef=samplegen$LPcoef) x<-y<-score<-lower<-upper<-ystart<-yend<-NULL if(plot==TRUE){ d0_prior=data.frame(x=prior.curve$theta.vals,y=prior.curve$ds.prior) d0_post=data.frame(x=post.curve$theta.vals,y=post.curve$ds.pos) p_prior<-ggplot2::ggplot(data=d0_prior,aes(x=x,y=y))+geom_line(size=.8,color='red')+ ylab('Estimated Prior')+xlab(expression(theta))+ggtitle('')+ theme(text=element_text(size=13), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.text.x = element_text(size=16), axis.text.y = element_text(size=14), legend.position="none", legend.title=element_blank()) p_post<-ggplot2::ggplot()+geom_line(data=d0_post,aes(x=x,y=y),size=.8,color='red')+ ylab('Posterior Distribution')+xlab(expression(theta))+ggtitle('')+ theme(text=element_text(size=13), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.text.x = element_text(size=16), axis.text.y = element_text(size=14), legend.position="none", legend.title=element_blank()) ci.start.ind<-which.min(abs(hpd.interval[1]-post.curve$theta.vals)) ci.end.ind<-which.min(abs(hpd.interval[2]-post.curve$theta.vals)) d_area<-d0_post[ci.start.ind:ci.end.ind,] p_post<-p_post+geom_area(data=d_area,aes(x=x,y=y),fill='red',alpha=.4) p_post<-p_post+geom_point(data=data.frame(x=posterior$post.mode,y=0), aes(x=x,y=y),color='red',size=4,shape=18) out$plots=list(prior=p_prior,post=p_post) } return(out) }
branches <- reactive({ input$branch_delete input$branch_create input$branch_checkout req(input$repo_directory) br <- suppressWarnings(system(paste("git -C", input$repo_directory, "branch -a"), intern = TRUE)) brs <- attr(br, "status") if (length(br) == 0 || (!is.null(brs) && brs == 128)) { c() } else { br %>% gsub("[\\* ]+", "", .) %>% {.[!grepl("(^master$)|(^remotes/origin/master$)|(^remotes/origin/HEAD)", .)]} } }) observeEvent(input$branch_create, { req(input$repo_directory) if (input$branch_create_name != "") { withProgress(message = "Creating branch", value = 0, style = "old", { mess <- suppressWarnings(system(paste("git -C", input$repo_directory, "checkout -b", input$branch_create_name), intern = TRUE)) }) if (is_empty(mess)) mess <- "No messages" showModal( modalDialog( title = "Branch create messages", span(HTML(paste0(mess, collapse = "</br>"))) ) ) } }) observeEvent(input$branch_create_from_mr, { req(input$repo_directory) remote_fetch <- suppressWarnings(system(paste("git -C", input$repo_directory, "config --get-all remote.origin.fetch"), intern = TRUE)) if (!"+refs/merge-requests/*/head:refs/remotes/origin/merge-requests/*" %in% remote_fetch) { mess <- system(paste("git -C", dir, "config --add remote.origin.fetch +refs/merge-requests/*/head:refs/remotes/origin/merge-requests/*"), intern = TRUE) if (is_empty(mess)) mess <- "No messages" showModal( modalDialog( title = "Branch create from MR messages", span(HTML(paste0(mess, collapse = "</br>"))) ) ) } }) observeEvent(input$branch_merge, { from <- input$branch_merge_from into <- input$branch_merge_into req(input$repo_directory) if (!is.null(from) || !is.null(into)) { withProgress(message = "Merging branch", value = 0, style = "old", { mess1 <- suppressWarnings(system(paste("git -C", input$repo_directory, "checkout", into), intern = TRUE)) mess2 <- suppressWarnings(system(paste("git -C", input$repo_directory, "merge", from), inter = TRUE)) }) showModal( modalDialog( title = "Branch merge messages", span(HTML(paste0(c(mess1, mess2), collapse = "</br>"))) ) ) } }) observeEvent(input$branch_abort, { req(input$repo_directory) mess <- suppressWarnings(system(paste("git -C", input$repo_directory, "merge --abort"), intern = TRUE)) if (is_empty(mess)) mess <- "No messages" showModal( modalDialog( title = "Branch merge abort messages", span(HTML(paste0(mess, collapse = "</br>"))) ) ) }) observeEvent(input$branch_link, { req(input$repo_directory) if (input$branch_create_name != "") { mess <- suppressWarnings(paste("git -C", input$repo_directory, "push --set-upstream origin", input$branch_create_name) %>% system(intern = TRUE)) if (is_empty(mess)) mess <- "No messages" showModal( modalDialog( title = "Branch link messages", span(HTML(paste0(mess, collapse = "</br>"))) ) ) } }) observeEvent(input$branch_unlink, { req(input$repo_directory) branch <- input$branch_delete_name if (is_empty(branch)) input$branch_create_name if (!is_empty(branch)) { mess <- c() for (ib in branch) { mess <- c(mess, system(paste0("git -C ", input$repo_directory, " branch -d -r origin/", ib), intern = TRUE)) } showModal( modalDialog( title = "Branch create messages", span(HTML(paste0(mess, collapse = "</br>"))) ) ) } }) observeEvent(input$branch_delete, { req(input$repo_directory) if (!is.null(input$branch_delete_name)) { withProgress(message = "Deleting branch", value = 0, style = "old", { mess <- system(paste("git -C", input$repo_directory, "checkout master"), intern = TRUE) for (ib in input$branch_delete_name) { mess <- c(mess, system(paste("git -C", input$repo_directory, "branch -D", ib), intern = TRUE)) } }) showModal( modalDialog( title = "Branch create messages", span(HTML(paste0(mess, collapse = "</br>"))) ) ) } }) output$ui_branch_create_name <- renderUI({ br <- rbranches() if (length(br) == 0) { HTML(paste0("<label>", input$repo_directory, " is not a git repo</label></br>")) } else { init <- isolate(input$branch_create_name) init <- ifelse(is_empty(init), "", init) textInput("branch_create_name", NULL, value = init, placeholder = "Provide a name for the new branch") } }) output$ui_branch_merge_branches <- renderUI({ br <- c("master", branches()) %>% .[!grepl("origin/", .)] if (length(br) == 1) { HTML("<label>No branches available to merge</label>") } else { tagList( fillRow(height = "70px", width = "300px", selectInput("branch_merge_from", "From:", choices = br, selected = br[2]), selectInput("branch_merge_into", "Into:", choices = br, selected = br[1]) ) ) } }) rbranches <- reactive({ input$sync; input$sync_unlink; input$branch_link; input$branch_unlink input$branch_create; input$branch_checkout; input$branch_delete; input$branch_merge; input$collect_fetch; input$collect req(input$repo_directory) br <- suppressWarnings(system(paste("git -C", input$repo_directory, "branch --all"), intern = TRUE)) brs <- attr(br, "status") if (length(br) == 0 || (!is.null(brs) && brs == 128)) { c() } else { br %>% {unique(c(.[grepl("\\* ", .)], .))} %>% gsub("[\\* ]+", "", .) %>% {.[!grepl("(^remotes/origin/master$)|(^remotes/origin/HEAD)", .)]} } }) output$ui_branch_checkout_name <- renderUI({ input$branch_create br <- rbranches() if (length(br) == 0) { HTML("<label>No branches available</label>") } else { selectInput("branch_checkout_name", NULL, choices = br) } }) observeEvent(input$branch_checkout, { req(input$repo_directory) if (!is.null(input$branch_checkout_name)) { withProgress(message = "Checkout branch", value = 0, style = "old", { mess <- suppressWarnings(system(paste0("git -C ", input$repo_directory, " checkout ", sub("remotes/origin/", "", input$branch_checkout_name)), intern = TRUE)) }) showModal( modalDialog( title = "Branch checkout messages", span(HTML(paste0(mess, collapse = "</br>"))) ) ) } }) output$ui_branch_delete_name <- renderUI({ resp <- branches() %>% .[!grepl("^remotes/origin", .)] if (length(resp) == 0) { HTML("<label>No branches available to delete</label>") } else { selectizeInput("branch_delete_name", label = NULL, selected = resp[1], choices = resp, multiple = TRUE, options = list(placeholder = "Select branch(es) to delete", plugins = list("remove_button")) ) } })
getWyEndpoints <- function(rdfXTS) { tVals <- zoo::index(rdfXTS[xts::.indexmon(rdfXTS) %in% 8]) ep <- c(0, which(zoo::index(rdfXTS) %in% tVals)) return(ep) } getCyEndpoints <- function(rdfXTS) { tVals <- zoo::index(rdfXTS[xts::.indexmon(rdfXTS) %in% 11]) ep <- c(0, which(zoo::index(rdfXTS) %in% tVals)) return(ep) } getTraceMonthVal <- function(rdfXTS, month) { if (any(month <= 0) || any(month > 12)) stop(paste0( month, " is not a valid month. Use a month from 1 to 12" )) outXTS <- rdfXTS[xts::.indexmon(rdfXTS) %in% (month - 1)] return(outXTS) } getTraceAvg <- function(rdfXTS, yearType) { if (yearType == "WY") ep <- getWyEndpoints(rdfXTS) else ep <- getCyEndpoints(rdfXTS) outXTS <- xts::period.apply(rdfXTS, ep, mean) return(outXTS) } getTraceSum <- function(rdfXTS, yearType) { if (yearType == "WY") ep <- getWyEndpoints(rdfXTS) else ep <- getCyEndpoints(rdfXTS) outXTS <- xts::period.apply(rdfXTS, ep, colSums) return(outXTS) } getTraceMin <- function(rdfXTS, yearType) { if (yearType == "WY") ep <- getWyEndpoints(rdfXTS) else ep <- getCyEndpoints(rdfXTS) outXTS <- xts::period.apply(rdfXTS, ep, function(x) apply(x, 2, min)) return(outXTS) } getTraceMax <- function(rdfXTS, yearType) { if (yearType == "WY") ep <- getWyEndpoints(rdfXTS) else ep <- getCyEndpoints(rdfXTS) outXTS <- xts::period.apply(rdfXTS, ep, function(x) apply(x, 2, max)) return(outXTS) } getArrayPctl <- function(rdfXTS, pctlLevels) { toPctls <- function(rdfXTS) stats::quantile(rdfXTS, pctlLevels) tStep <- paste(xts::periodicity(rdfXTS)$label,"s",sep="") ep <- xts::endpoints(rdfXTS,tStep) outXTS <- xts::period.apply(rdfXTS, ep, toPctls) return(outXTS) } getArrayThresholdExceedance <- function(rdfXTS, valueIn, comparison) { if (comparison == "GT") boolArray <- rdfXTS > valueIn else if (comparison == "LT") boolArray <- rdfXTS < valueIn else stop(paste( comparison, " is not a valid input. Use GT for greater than or LT for less than", sep="" )) trueCount <- xts::xts(rowSums(boolArray),zoo::index(boolArray)) totalCount <- length(dimnames(boolArray)[[2]]) return(trueCount/totalCount * 100) }
recover_data.rsm = function(object, data, mode = c("asis", "coded", "decoded"), ...) { mode = match.arg(mode) cod = codings(object) fcall = object$call if(is.null(data)) data = emmeans::recover_data(fcall, delete.response(terms(object)), object$na.action, ...) if (!is.null(cod) && (mode == "decoded")) { pred = cpred = attr(data, "predictors") trms = attr(data, "terms") data = decode.data(as.coded.data(data, formulas = cod)) for (form in cod) { vn = all.vars(form) if (!is.na(idx <- grep(vn[1], pred))) { pred[idx] = vn[2] cpred = setdiff(cpred, vn[1]) } } attr(data, "predictors") = pred new.trms = update(trms, reformulate(c("1", cpred))) attr(new.trms, "orig") = trms attr(data, "terms") = new.trms } data } emm_basis.rsm = function(object, trms, xlev, grid, mode = c("asis", "coded", "decoded"), ...) { mode = match.arg(mode) cod = codings(object) if(!is.null(cod) && mode == "decoded") { grid = coded.data(grid, formulas = cod) trms = attr(trms, "orig") } m = model.frame(trms, grid, na.action = na.pass, xlev = xlev) X = model.matrix(trms, m, contrasts.arg = object$contrasts) bhat = as.numeric(object$coefficients) V = emmeans::.my.vcov(object, ...) if (sum(is.na(bhat)) > 0) nbasis = estimability::nonest.basis(object$qr) else nbasis = estimability::all.estble dfargs = list(df = object$df.residual) dffun = function(k, dfargs) dfargs$df list(X = X, bhat = bhat, nbasis = nbasis, V = V, dffun = dffun, dfargs = dfargs, misc = list()) }
source("ESEUR_config.r") library("lattice") library("lubridate") library("plyr") scm=read.csv(paste0(ESEUR_dir, "time-series/smr1615/scmlog.csv.xz"), as.is=TRUE, quote="\'") scm$rev=NULL scm$message=NULL scm$date=as.Date(scm$date, format="%Y-%m-%d") start_date=as.Date("1991-01-01", format="%Y-%m-%d") end_date=as.Date("2012-01-01", format="%Y-%m-%d") cfl=read.csv(paste0(ESEUR_dir, "time-series/smr1615/commits_files_lines.csv.xz"), as.is=TRUE, quote="\'") cfl$date=scm$date[cfl$commit] cfl=subset(cfl, (date >= start_date) & (date <= end_date)) cfl$week=floor_date(cfl$date, "week") cfl_week=ddply(cfl, .(week), function(df) data.frame(num_commits=length(unique(df$commit)), lines_added=sum(df$added), lines_deleted=sum(df$removed))) t=xyplot(lines_added ~ week | equal.count(week, 4, overlap=0.1), cfl_week, type="l", aspect="xy", strip=FALSE, xlab="", ylab="Weekly total", scales=list(x=list(relation="sliced", axs="i", cex=0.6), y=list(alternating=FALSE, log=TRUE, cex=0.7))) plot(t)
myers_simple <- function(target, current) { path <- myers_simple_int(target, current) diff_path_to_diff(path, target, current) } myers_simple_int <- function(A, B) { N <- length(A) M <- length(B) MAX <- M + N + 1L OFF <- MAX + 1L Vl <- vector("list", MAX) for(D in seq_len(MAX) - 1L) { Vl[[D + 1L]] <- if(!D) integer(2L * MAX + 1L) else Vl[[D]] for(k in seq(-D, D, by=2L)) { V <- Vl[[D + 1L]] if(k == -D || (k != D && V[k - 1L + OFF] < V[k + 1L + OFF])) { x <- V[k + 1L + OFF] } else { x <- V[k - 1L + OFF] + 1L } y <- x - k while (x < N && y < M && A[x + 1L] == B[y + 1L]) { x <- x + 1L y <- y + 1L } Vl[[D + 1L]][k + OFF] <- x if(x >= N && y >= M) { path.len <- D + max(N, M) res <- matrix(integer(1L), nrow=path.len, ncol=2) res[path.len, ] <- c(x, y) path.len <- path.len - 1L for(d in rev(seq_len(D))) { Vp <- Vl[[d]] break.out <- FALSE repeat { shift.up <- Vp[k + 1L + OFF] == x && x shift.left <- Vp[k - 1L + OFF] == x - 1L && x > 1L if(x <= 0L && y <= 0L) { break } else if(!shift.up && !shift.left) { x <- max(x - 1L, 0L) y <- max(y - 1L, 0L) } else { if(shift.up) { y <- y - 1L k <- k + 1L } else { x <- x - 1L k <- k - 1L } break.out <- TRUE } res[path.len, ] <- c(x, y) path.len <- path.len - 1L if(break.out) break } } if(any(res < 0L)) { stop( "Logic Error: diff generated illegal coords; contact maintainer." ) } return(res) } } } stop("Logic Error, should not get here") } diff_path_to_diff <- function(path, target, current) { stopifnot( is.character(target), is.character(current), is.matrix(path), is.integer(path), ncol(path) == 2, all(path[, 1L] %in% c(0L, seq_along(target))), all(path[, 2L] %in% c(0L, seq_along(current))) ) get_dupe <- function(x) { base <- !logical(length(x)) if(!length(y <- which(x != 0L))) base[[1L]] <- FALSE else base[[min(y)]] <- FALSE base } cur.dup <- as.logical(ave(path[, 1L], path[, 2L], FUN=get_dupe)) tar.dup <- as.logical(ave(path[, 2L], path[, 1L], FUN=get_dupe)) path[!path] <- NA_integer_ path[tar.dup, 1L] <- NA_integer_ path[cur.dup, 2L] <- NA_integer_ tar.path <- target[path[, 1L]] cur.path <- current[path[, 2L]] path[which(tar.path == cur.path), ] <- -path[which(tar.path == cur.path), ] matched <- ifelse(!is.na(path[, 1]) & path[, 1] < 0L, 1L, 0L) splits <- cumsum(abs(diff(c(0, matched)))) chunks <- split.data.frame(path, splits) res.tar <- res.cur <- vector("list", length(chunks)) mm.count <- 0L for(i in seq_along(chunks)) { x <- chunks[[i]] if((neg <- any(x < 0L, na.rm=TRUE)) && !all(x < 0L, na.rm=TRUE)) stop("Internal Error: match group error; contact maintainer") if(neg) { res.tar[[i]] <- res.cur[[i]] <- integer(nrow(x)) } else { tar.mm <- Filter(Negate(is.na), x[, 1L]) cur.mm <- Filter(Negate(is.na), x[, 2L]) x.min.len <- min(length(tar.mm), length(cur.mm)) res.tar[[i]] <- res.cur[[i]] <- seq_len(x.min.len) + mm.count mm.count <- x.min.len + mm.count length(res.tar[[i]]) <- length(tar.mm) length(res.cur[[i]]) <- length(cur.mm) } } if(!length(res.tar)) res.tar <- integer() if(!length(res.cur)) res.cur <- integer() return(list(target=unlist(res.tar), current=unlist(res.cur))) }
context("text_filter") test_that("'text_filter' has the right defaults", { f <- text_filter() expect_equal(f$map_case, TRUE) expect_equal(f$map_quote, TRUE) expect_equal(f$remove_ignorable, TRUE) expect_equal(f$stemmer, NULL) expect_equal(f$stem_dropped, FALSE) expect_equal(f$stem_except, NULL) expect_equal(f$combine, NULL) expect_equal(f$drop_letter, FALSE) expect_equal(f$drop_number, FALSE) expect_equal(f$drop_punct, FALSE) expect_equal(f$drop_symbol, FALSE) expect_equal(f$drop, NULL) expect_equal(f$drop_except, NULL) expect_equal(f$sent_crlf, FALSE) expect_equal(f$sent_suppress, abbreviations_en) }) test_that("'text_filter' has the same defaults for all objects", { x <- c("hello", "world", "how", "are", "you?") y <- as_corpus_text(x) z <- data.frame(text = x) w <- data.frame(text = y) expect_equal(text_filter(x), text_filter()) expect_equal(text_filter(y), text_filter()) expect_equal(text_filter(z), text_filter()) expect_equal(text_filter(w), text_filter()) }) test_that("'text_filter' can be assigned to text", { x <- as_corpus_text("hello") f0 <- text_filter(x) d <- data.frame(text = x) f <- text_filter(map_case = FALSE) text_filter(x) <- f expect_equal(text_filter(x), f) expect_equal(text_filter(d), f0) }) test_that("'text_filter' can be assigned to data frame with \"text\" column", { x <- as_corpus_text("hello") f0 <- text_filter(x) d <- data.frame(text = x) f <- text_filter(map_case = FALSE) text_filter(d) <- f expect_equal(text_filter(x), f0) expect_equal(text_filter(d), f) }) test_that("'text_filter' fails without data frame with \"text\" column", { x <- as_corpus_text("hello") d <- data.frame(not_text = x) f <- text_filter(map_case = FALSE) expect_error(text_filter(d), "no column named \"text\" in data frame") expect_error(text_filter(d) <- f, "no column named \"text\" in data frame") }) test_that("'text_filter' cannot be assigned to character", { x <- "hello" d <- data.frame(text = x, stringsAsFactors = FALSE) f <- text_filter(map_case = FALSE) expect_error(text_filter(x) <- f, "setting a text filter for objects of class \"character\" is not allowed", fixed = TRUE) expect_error(text_filter(d) <- f, "setting a text filter for objects of class \"character\" is not allowed", fixed = TRUE) }) test_that("setting an unrecognized property gives an error", { f <- text_filter() expect_error(f$foo <- "bar", "unrecognized text filter property: 'foo'", fixed = TRUE) expect_error(text_filter(foo = "bar"), "unrecognized text filter property: 'foo'", fixed = TRUE) }) test_that("passing unnamed arguments is not allowed", { expect_error(text_filter(NULL, TRUE), "unnamed arguments are not allowed") x <- as_corpus_text("hello") expect_error(text_filter(x, TRUE), "unnamed arguments are not allowed") }) test_that("giving invalid text to text_filter.corpus_text is not allowed", { expect_error(text_filter.corpus_text("hello"), "argument is not a valid text object") }) test_that("'as_corpus_text' propagates a non-NULL filter argument to character", { x <- "hello" f <- text_filter(map_case = FALSE) x1 <- as_corpus_text("hello", filter = f) x2 <- as_corpus_text("hello") x3 <- as_corpus_text("world", filter = f) expect_false(isTRUE(all.equal(x1, x2))) expect_false(isTRUE(all.equal(x1, x3))) expect_equal(text_filter(x1), f) }) test_that("'as_corpus_text' propagates a non-NULL to text filter to text", { x <- as_corpus_text("hello") f0 <- text_filter(map_case = FALSE, map_quote = FALSE) text_filter(x) <- f0 expect_equal(text_filter(x), f0) f1 <- text_filter(map_case = TRUE, map_quote = FALSE) y <- as_corpus_text(x, filter = f1) expect_equal(text_filter(y), f1) }) test_that("'as_corpus_text' propagates a non-NULL to text filter to data frame", { d <- data.frame(text = "hello") f0 <- text_filter(d) f <- text_filter(map_case = FALSE) x <- as_corpus_text(d, filter = f) expect_equal(text_filter(d), f0) expect_equal(text_filter(x), f) }) test_that("'as_corpus_text' propagates a non-NULL to filter to text data frame", { d <- data.frame(text = as_corpus_text("hello")) f0 <- text_filter(d) f <- text_filter(map_case = FALSE) x <- as_corpus_text(d, filter = f) expect_equal(text_filter(d), f0) expect_equal(text_filter(x), f) }) test_that("'as_corpus_text' with NULL filter leaves it unchanged", { x <- as_corpus_text("hello") f0 <- text_filter(map_case = FALSE, map_quote = FALSE) text_filter(x) <- f0 y <- as_corpus_text(x, filter = NULL) expect_equal(text_filter(y), f0) }) test_that("'text_filter' clears the old filter", { x <- as_corpus_text("wicked") y <- as_corpus_text(x, filter = text_filter(stemmer = "english")) toks1 <- text_tokens(y) expect_equal(text_tokens(y), list("wick")) toks2 <- text_tokens(x) expect_equal(toks2, list("wicked")) }) test_that("'text_filter' can override properties", { x <- as_corpus_text("hello", remove_ignorable = FALSE) f <- text_filter(x, map_case = FALSE, stemmer = "english") f2 <- text_filter(remove_ignorable = FALSE, map_case = FALSE, stemmer = "english") expect_equal(f, f2) }) test_that("'text_filter<-' rejects invalid inputs", { x <- "hello" expect_error(`text_filter<-.corpus_text`(x, text_filter()), "argument is not a valid text object") }) test_that("'text_filter<-' setting NULL works", { x <- as_corpus_text("hello") f <- text_filter(x) text_filter(x) <- NULL f2 <- text_filter(x) expect_equal(f, f2) }) test_that("setting invalid text_filter properties fails", { f <- text_filter() expect_error(f$map_ca <- TRUE, "unrecognized text filter property: 'map_ca'") expect_error(f[[c(1,1)]] <- TRUE, "no such text filter property") expect_error(f[[0]] <- TRUE, "no such text filter property") expect_error(f[[length(f) + 1]] <- TRUE, "no such text filter property") expect_error(f[[NA]] <- TRUE, "no such text filter property") }) test_that("setting numeric properties succeeds", { f <- text_filter() i <- match("combine", names(f)) f[[i]] <- "new york city" expect_equal(f$combine, "new york city") }) test_that("setting multiple properties works", { f <- text_filter() f[c("map_case", "map_quote")] <- FALSE expect_equal(f, text_filter(map_case = FALSE, map_quote = FALSE)) f[c("map_case", "remove_ignorable", "map_quote")] <- c(FALSE, FALSE, TRUE) expect_equal(f, text_filter(map_case = FALSE, map_quote = TRUE, remove_ignorable = FALSE)) }) test_that("invalid operations send errors", { f <- text_filter() expect_error(f[c(NA, "map_case", NA)] <- FALSE, "NAs are not allowed in subscripted assignments") expect_error(f[c(-1, 2)] <- FALSE, "only 0's may be mixed with negative subscripts") expect_error(f[100] <- "hello", "no such text filter property") expect_error(f["map_case"] <- c(TRUE, FALSE), "number of items to replace differs from the replacement length") expect_error(f[c("map_case", "map_case", "map_quote")] <- c(TRUE, FALSE), "number of items to replace differs from the replacement length") }) test_that("text filter printing works", { f <- text_filter() expected <- c( 'Text filter with the following options:', '', ' map_case: TRUE', ' map_quote: TRUE', ' remove_ignorable: TRUE', ' combine: NULL', ' stemmer: NULL', ' stem_dropped: FALSE', ' stem_except: NULL', ' drop_letter: FALSE', ' drop_number: FALSE', ' drop_punct: FALSE', ' drop_symbol: FALSE', ' drop: NULL', ' drop_except: NULL', ' connector: _', ' sent_crlf: FALSE', ' sent_suppress: chr [1:155] "A." "A.D." "a.m." "A.M." "A.S." "AA." ...') skip_if_not(with(R.Version(), paste(major, minor, sep = ".")) >= "3.4.0", "str output changed on R 3.4.0") actual <- strsplit(capture_output(print(f), width = 80), "\n")[[1]] expect_equal(actual, expected) })
gr_cumhaz_flexrsurv_fromto_GA0B0AB<-function(GA0B0AB, var, Y, X0, X, Z, step, Nstep, intTD=intTD_NC, intweightsfunc=intweights_CAV_SIM, intTD_base=intTD_base_NC, nT0basis, Spline_t0=BSplineBasis(knots=NULL, degree=3, keep.duplicates=TRUE), Intercept_t0=TRUE, ialpha0, nX0, ibeta0, nX, ialpha, ibeta, nTbasis, Spline_t =BSplineBasis(knots=NULL, degree=3, keep.duplicates=TRUE), Intercept_t_NPH=rep(TRUE, nX), debug=FALSE, ...){ if (debug) cat(" if(is.null(Z)){ nZ <- 0 } else { nZ <- Z@nZ } if(Intercept_t0){ tmpgamma0 <- GA0B0AB[1:nT0basis] } else { tmpgamma0 <- c(0, GA0B0AB[1:nT0basis]) } if( nX0){ PHterm <-exp(X0 %*% GA0B0AB[ialpha0]) } else { PHterm <- 1 } if(nZ) { tBeta <- t(ExpandAllCoefBasis(GA0B0AB[ibeta], ncol=nZ, value=1)) Zalpha <- Z@DM %*%( diag(GA0B0AB[ialpha]) %*% Z@signature ) Zalphabeta <- Zalpha %*% tBeta if(nX) { Zalphabeta <- Zalphabeta + X %*% t(ExpandCoefBasis(GA0B0AB[ibeta0], ncol=nX, splinebasis=Spline_t, expand=!Intercept_t_NPH, value=0)) } } else { if(nX) { Zalphabeta <- X %*% t(ExpandCoefBasis(GA0B0AB[ibeta0], ncol=nX, splinebasis=Spline_t, expand=!Intercept_t_NPH, value=0)) } } if(nX + nZ) { NPHterm <- intTD(rateTD_gamma0alphabeta, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3], step=step, Nstep=Nstep, intweightsfunc=intweightsfunc, gamma0=GA0B0AB[1:nT0basis], Zalphabeta=Zalphabeta, Spline_t0=Spline_t0*tmpgamma0, Intercept_t0=Intercept_t0, Spline_t = Spline_t, Intercept_t=TRUE) Intb0 <- intTD_base(func=rateTD_gamma0alphabeta, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3], Spline=Spline_t0, step=step, Nstep=Nstep, intweightsfunc=intweightsfunc, gamma0=GA0B0AB[1:nT0basis], Zalphabeta=Zalphabeta, Spline_t0=Spline_t0*tmpgamma0, Intercept_t0=Intercept_t0, Spline_t = Spline_t, Intercept_t=TRUE, debug=debug) if( identical(Spline_t0, Spline_t)){ Intb <- Intb0 } else { Intb <- intTD_base(func=rateTD_gamma0alphabeta, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3], Spline=Spline_t, step=step, Nstep=Nstep, intweightsfunc=intweightsfunc, gamma0=GA0B0AB[1:nT0basis], Zalphabeta=Zalphabeta, Spline_t0=Spline_t0*tmpgamma0, Intercept_t0=Intercept_t0, Spline_t = Spline_t, Intercept_t=TRUE) } if(!Intercept_t0){ Intb0<- Intb0[,-1] } indx_without_intercept <- 2:getNBases(Spline_t) } else { NPHterm <- intTD(rateTD_gamma0, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3], step=step, Nstep=Nstep, intweightsfunc=intweightsfunc, gamma0=GA0B0AB[1:nT0basis], Spline_t0=Spline_t0*tmpgamma0, Intercept_t0=Intercept_t0) Intb0 <- intTD_base(func=rateTD_gamma0, intFrom=Y[,1], intTo=Y[,2], intToStatus=Y[,3], Spline=Spline_t0, step=step, Nstep=Nstep, intweightsfunc=intweightsfunc, gamma0=GA0B0AB[1:nT0basis], Spline_t0=Spline_t0*tmpgamma0, Intercept_t0=Intercept_t0, debug=debug) if(!Intercept_t0){ Intb0<- Intb0[,-1] } Intb <- NULL } if(nX + nZ) { if(nX0>0) { Intb <- Intb * c(PHterm) } } Intb0 <- Intb0 * c(PHterm) dLdgamma0 <- Intb0 if (nX0) { dLdalpha0 <- X0 * c(PHterm * NPHterm) } else { dLdalpha0 <- NULL } if (nX){ dLdbeta0 <- NULL for(i in 1:nX){ if ( Intercept_t_NPH[i] ){ dLdbeta0 <- cbind(dLdbeta0, X[,i] * Intb) } else { dLdbeta0 <- cbind(dLdbeta0, X[,i] * Intb[,indx_without_intercept]) } } } else { dLdbeta0 <- NULL } if (nZ) { baseIntb <- Intb %*% t(tBeta) indZ <- getIndex(Z) dLdalpha <- NULL dLdbeta <- NULL for(iZ in 1:nZ){ dLdalpha <- cbind(dLdalpha, Z@DM[,indZ[iZ,1]:indZ[iZ,2]] * baseIntb[,iZ]) dLdbeta <- cbind(dLdbeta, Intb[,-1, drop=FALSE] * Zalpha[,iZ]) } } else { dLdalpha <- NULL dLdbeta <- NULL } rep <- cbind(dLdgamma0, dLdalpha0, dLdbeta0, dLdalpha, dLdbeta ) if(debug){ attr(rep, "intb0") <- Intb0 attr(rep, "intb") <- Intb } rep }
getGeneFromKGene <- function(keggGeneList){ pkgEnv <- new.env(parent=emptyenv()) if(!exists("keggGene2gene", pkgEnv)) { data("keggGene2gene", package="TPEA", envir=pkgEnv) da1<-pkgEnv[["keggGene2gene"]] } keggGeneList<-as.character(keggGeneList) keggGene2gene<-da1 geneList<-unique(as.character(sapply(strsplit(as.character(keggGene2gene[as.character(keggGene2gene[,1]) %in% keggGeneList,2]),":"),function(x) return (x[2])))) return(geneList) }
source("tutorials/fannie_mae/00_setup.r") library(disk.frame) acqall1 = disk.frame(file.path(outpath, "appl_mdl_data")) system.time(xy <- acqall1[,c("default_next_12m", "oltv"), keep=c("default_next_12m", "oltv")]) dtrain <- xgb.DMatrix(label = xy$default_next_12m, data = as.matrix(xy[,"oltv"])) portfolio_default_rate = xy[,sum(default_next_12m, na.rm = T)/.N] pt = proc.time() m <- xgboost( data=dtrain, nrounds = 1, objective = "binary:logitraw", tree_method="exact", monotone_constraints = 1, base_score = portfolio_default_rate) timetaken(pt) prev_pred = predict(m, dtrain) map_chr(xgb.dump(m), ~str_extract(.x,"\\[f0<[\\d]+\\.[\\d]+\\]")) %>% keep(~!is.na(.x)) %>% map_dbl(~str_extract(.x, "[\\d]+\\.[\\d]+") %>% as.numeric) %>% sort %>% floor -> bins bb = xy[,.(ndef = sum(default_next_12m), .N, m1 = min(oltv), m2 = max(oltv)), .(bins = cut(oltv,c(-Inf,bins,Inf)))] new_bins = sort(unique( bb$m2)) bb = xy[,.(ndef = sum(default_next_12m), .N), .(bins = cut(oltv,c(-Inf,new_bins,Inf)))][order(bins)] setkey(bb, bins) bb %>% filter(!is.na(bins)) %>% mutate(`Orig LTV Band` = bins, `Default Rate%` = ndef/N) %>% ggplot + geom_bar(aes(x = `Orig LTV Band`, y = `Default Rate%`), stat = 'identity') + coord_flip() if(F) { system.time(xyz <- acqall1[,c("default_next_12m", "oltv", "frst_dte"), keep=c("default_next_12m", "oltv", "frst_dte")]) xyz[,frst_yr := substr(frst_dte,4,7) %>% as.integer] xyz[,frst_dte:=NULL] bb = xyz[,.(ndef = sum(default_next_12m), .N), .(bins = cut(oltv,c(-Inf,bins,Inf)), frst_yr)] bb[,binton := sum(N), bins] bb[,dr := ndef/binton] setkey(bb, bins) bb[order(frst_yr,decreasing = T),text_y_pos := cumsum(dr) - dr/2, bins] bb[,text := substr(frst_yr, 3,4)] bb %>% filter(!is.na(bins)) %>% mutate(`Yr of Orig` = as.factor(frst_yr), `Orig LTV Band` = bins, `Default Rate%` = dr) %>% ggplot + geom_bar(aes(x = `Orig LTV Band`, y = `Default Rate%`, fill = `Yr of Orig`), stat = 'identity') + geom_text(aes(x = `Orig LTV Band`, y = text_y_pos, label = text)) + coord_flip() } xy[oltv > 80, oltv_round := ceiling(oltv/5)*5] xy[oltv <= 80, oltv_round := ceiling(oltv/10)*10] xy[oltv <= 40, oltv_round := ceiling(oltv/20)*20] xy[is.na(oltv_round),] xy[,.N, oltv_round] dtrain <- xgb.DMatrix(label = xy$default_next_12m, data = as.matrix(xy[,"oltv_round"])) pt = proc.time() m <- xgboost( data=dtrain, nrounds = 1, objective = "binary:logitraw", tree_method="exact", monotone_constraints = 1, base_score = portfolio_default_rate) timetaken(pt) map_chr(xgb.dump(m), ~str_extract(.x,"\\[f0<[\\d]+[\\.]{0,1}[\\d]+\\]")) %>% keep(~!is.na(.x)) %>% map_dbl(~str_extract(.x, "[\\d]+[\\.]{0,1}[\\d]+") %>% as.numeric) %>% sort -> bins bb = xy[,.(ndef = sum(default_next_12m), .N, m1 = min(oltv_round), m2 = max(oltv_round)), .(bins = cut(oltv_round,c(-Inf,bins,Inf)))] new_bins = sort(unique( bb$m2)) bb = xy[,.(ndef = sum(default_next_12m), .N), .(bins = cut(oltv_round,c(-Inf,new_bins,Inf)))][order(bins)] bb[,odr := ndef/N] setkey(bb, bins) bb %>% filter(!is.na(bins)) %>% mutate(`Orig LTV Band` = bins, `Default Rate%` = ndef/N) %>% ggplot + geom_bar(aes(x = `Orig LTV Band`, y = `Default Rate%`), stat = 'identity') + coord_flip() prev_pred = predict(m, dtrain) prev_pred1 = predict(m, dtrain, predcontrib=T) target = "default_next_12m" feature = "orig_amt" df = acqall1 format_fn = base::I existing_model = prev_pred monotone_constraints = -1 auc <- function(target, score) { df = data.table(target, score) df1 = df[,.(nt = sum(target), n = .N, score)] setkey(df1, score) } add_var_to_scorecard <- function(df, target, feature, monotone_constraints = 0, prev_pred = NULL, format_fn = base::I) { xy = df %>% srckeep(c(target, feature)) %>% collect(parallel = T) code = glue::glue("xy = xy %>% mutate({feature} = format_fn({feature}))") eval(parse(text = code)) dtrain <- xgb.DMatrix(label = xy[,target, with = F][[1]], data = as.matrix(xy[,c(feature), with = F])) if(is.null(prev_pred)) { pt = proc.time() m2 <- xgboost( data=dtrain, nrounds = 1, objective = "binary:logitraw", tree_method="exact", monotone_constraints = monotone_constraints ) timetaken(pt) } else { setinfo(dtrain, "base_margin", prev_pred) pt = proc.time() m2 <- xgboost( data=dtrain, nrounds = 1, objective = "binary:logitraw", tree_method="exact", monotone_constraints = monotone_constraints ) timetaken(pt) a2 = predict(m2, dtrain) a3 = predict(m2, dtrain, predcontrib = T) } map_chr(xgb.dump(m2), ~str_extract(.x,"\\[f0<[\\d]+[\\.]{0,1}[\\d]+\\]")) %>% keep(~!is.na(.x)) %>% map_dbl(~str_extract(.x, "[\\d]+[\\.]{0,1}[\\d]+") %>% as.numeric) %>% sort -> bins code = glue::glue("bb = xy[,.(ndef = sum({target}), .N, m1 = min({feature}), m2 = max({feature})), .(bins = cut({feature},c(-Inf,bins,Inf)))]") eval(parse(text = code)) new_bins = sort(unique(bb$m2)) code1 = glue::glue("bb = xy[,.(ndef = sum(default_next_12m), .N), .(bins = cut({feature},c(-Inf,new_bins,Inf)))][order(bins)]") eval(parse(text = code1)) setkey(bb, bins) bb %>% filter(!is.na(bins)) %>% mutate(`Orig LTV Band` = bins, `Default Rate%` = ndef/N) %>% ggplot + geom_bar(aes(x = `Orig LTV Band`, y = `Default Rate%`), stat = 'identity') + coord_flip() }
library(copula) library(lattice) do.animation <- require("animation") && (!exists("dont.animate") || !dont.animate) options(warn=1) eep.fun <- function(family, alpha, d, n.MC=5000){ vapply(alpha, function(alph) { th <- 1/alph cop <- onacopulaL(family, list(th, 1:d)) U <- rnacopula(n.MC, cop) switch(family, "Gumbel" = { mean(rowSums(cop@copula@iPsi(U, th))^alph) }, "Joe" = { U. <- (1-U)^th lh <- rowSums(log1p(-U.)) l1_h <- log(-expm1(lh)) mean(exp(lh-l1_h)) }, stop("wrong family in eep.fun()")) }, NA_real_) } plot.poly <- function(family, xlim, ylim, method, alpha, d, n.out = 128, pch = 4, cex = 0.4) { stopifnot(is.numeric(alpha), (len <- length(alpha)) >= 1, is.numeric(d), d == round(d), is.numeric(xlim), xlim > 0, is.character(method)) cols <- colorRampPalette(c("red", "orange", "darkgreen", "turquoise", "blue"), space="Lab")(len) switch(family, "Gumbel" = { FUN <- copula:::polyG str <- "G" }, "Joe" = { FUN <- copula:::polyJ str <- "J" }, stop("wrong 'family'")) tit <- paste("poly", str, "(log(x), alpha=..., d=", d, ", log=TRUE, method=\"",method,"\")", sep="") xx <- seq(xlim[1], xlim[2], length = n.out) lx <- log(xx) R <- sapply(alpha, function(ALP) FUN(lx, alpha= ALP, d=d, method=method, log=TRUE)) matplot(xx, R, xlim=xlim, ylim=ylim, main = tit, type = "o", pch=pch, cex=cex, xlab="x", ylab=paste("log(poly",str,"(log(x), ...))", sep=""), lty = 1, lwd = 1.4, col=cols) label <- as.expression(lapply(1:len, function(i) substitute(alpha == A, list(A = alpha[i])))) legend("bottomright", label, bty="n", lwd=1.4, col=cols, pch=pch, pt.cex=cex) invisible(list(f.x = R, x = xx)) } if(do.animation) poly.ani <- function(family, m, d, method, xlim, ylim) { switch(family, "Gumbel" = { fun <- copula:::polyG str <- "G" }, "Joe" = { fun <- copula:::polyJ str <- "J" }, {stop("wrong family in plot.poly")}) alphas <- (1:m)/(m+1) eep <- eep.fun(family, alphas, d) x <- seq(xlim[1], xlim[2], length.out=1000) lx <- log(x) lapply(1:m, function(i) { if(i %% 5 == 1) print(paste(formatC(round(i/m*100), width=3),"% done",sep="")) y <- fun(lx, alpha=alphas[i], d=d, method=method, log=TRUE) p <- xyplot(y~x, type="l", aspect = 1, xlab= "x", ylab=paste("log(poly",str,"(log(x), ...))",sep=""), xlim=xlim, ylim=ylim, key= list(x=0.35, y=0.1, lines=list(lty=1, col="black"), text=list(paste("expected x-value for alpha=", alphas[i],sep=""))), panel=function(...){ panel.xyplot(...) panel.abline(v=eep[i]) }, main=paste("poly",str,"(log(x), alpha=",alphas[i], ", d=",d,", method=",method,", log=TRUE)",sep="")) list(y=y, plot=p) }) } family <- "Gumbel" polyG <- copula:::polyG polyG.meths <- eval(formals(polyG)$method, envir = asNamespace("copula")) alpha <- c(0.99, 0.5, 0.01) xlim <- c(1e-16, 1000) ylim <- c(-40, 40) (ev <- eep.fun(family, alpha=alpha, d=5)) stopifnot(all(xlim[1] < ev, ev < xlim[2])) (my.polyG.meths <- polyG.meths[!(polyG.meths %in% c("dsumSibuya", "dsSib.RmpfrM"))]) pp5 <- sapply(my.polyG.meths, function(met) { r <- plot.poly(family, xlim=xlim, ylim=ylim, method = met, alpha=alpha, d=5) Sys.sleep(2) r }, simplify = FALSE) t(sapply(pp5, function(L) apply(L$f.x, 2, function(.) sum(!is.finite(.))))) xlim <- c(1e-16, 200) ylim <- c(300, 600) (ev <- eep.fun(family, alpha, d=100)) stopifnot(all(xlim[1] < ev, ev < xlim[2])) pp100 <- sapply(my.polyG.meths, function(met) { r <- plot.poly(family, xlim=xlim, ylim=ylim, method = met, alpha=alpha, d=100) Sys.sleep(2) r }, simplify = FALSE) t(sapply(pp100, function(L) apply(L$f.x, 2, function(.) sum(!is.finite(.))))) plot.poly(family, xlim=xlim, ylim=ylim, method="pois", alpha=alpha, d=100) plot.poly(family, xlim=xlim, ylim=ylim, method="pois.direct", alpha=alpha, d=100) plot.poly(family, xlim=xlim, ylim=ylim, method="stirling", alpha=alpha, d=100) plot.poly(family, xlim=xlim, ylim=ylim, method="stirling.horner", alpha=alpha, d=100) plot.poly(family, xlim=xlim, ylim=ylim, method="sort", alpha=alpha, d=100) plot.poly(family, xlim=xlim, ylim=ylim, method="horner", alpha=alpha, d=100) plot.poly(family, xlim=xlim, ylim=ylim, method="direct", alpha=alpha, d=100) plot.poly(family, xlim=xlim, ylim=ylim, method="dsumSibuya", alpha=alpha, d=100) plot.poly(family, xlim=xlim, ylim=ylim, method="dsSib.Rmpfr", alpha=alpha, d=100) set.seed(1) x <- runif(100000, min=0.01, max=120) lx <- log(x) system.time(y.pois <- polyG(lx, alpha=0.99, d=100, method="pois", log=TRUE)) stopifnot(all(is.finite(y.pois))) system.time(y.pois.d <- polyG(lx, alpha=0.99, d=100, method="pois.direct", log=TRUE)) stopifnot(all(is.finite(y.pois.d))) system.time(y.stirl <- polyG(lx, alpha=0.5, d=100, method="stirling", log=TRUE)) stopifnot(all(is.finite(y.stirl))) system.time(y.stirl.Ho <- polyG(lx, alpha=0.5, d=100, method="stirling.horner", log=TRUE))[[1]] stopifnot(all(is.finite(y.stirl.Ho))) system.time(y.dsSib.log <- polyG(lx, alpha=0.99, d=100, method="dsSib.log", log=TRUE)) stopifnot(all(is.finite(y.dsSib.log))) v1 <- polyG(log(1), alpha=0.01, d=100, log=TRUE) v2 <- polyG(log(1), alpha=0.5 , d=100, log=TRUE) v3 <- polyG(log(1), alpha=0.99, d=100, log=TRUE) M.v <- c(354.52779560, 356.56733266, 350.99662083) stopifnot(all.equal(c(v1,v2,v3), M.v)) v1 <- polyG(log(17), alpha=0.01, d=100, log=TRUE) v2 <- polyG(log(17), alpha=0.5 , d=100, log=TRUE) v3 <- polyG(log(17), alpha=0.99, d=100, log=TRUE) M.v <- c(358.15179523, 374.67231305, 370.20372192) stopifnot(all.equal(c(v1,v2,v3), M.v)) M.v <- c(362.38428102, 422.83827969, 435.36899283) v1 <- polyG(log(77), alpha=0.01, d=100, log=TRUE) v2 <- polyG(log(77), alpha=0.5 , d=100, log=TRUE) v3 <- polyG(log(77), alpha=0.99, d=100, log=TRUE) stopifnot(all.equal(c(v1,v2,v3), M.v, tolerance=1e-6)) m <- 49 ylim <- c(200, 700) polyG.ani.dsumSibuya <- poly.ani(family, m, d=100, method="dsumSibuya", xlim=c(1e-16,200), ylim=ylim) if(do.animation) saveHTML(for(i in 1:m) print(polyG.ani.dsumSibuya[[i]]$plot), outdir=file.path(tempdir(),"G_dsumSib")) polyG.ani.pois.direct <- poly.ani(family, m, d=100, method="pois.direct", xlim=c(1e-16,200), ylim=ylim) if(do.animation) saveHTML(for(i in 1:m) print(polyG.ani.pois.direct[[i]]$plot), outdir=file.path(tempdir(),"G_pois.direct")) polyG.ani.stirling <- poly.ani(family, m, d=100, method="stirling", xlim=c(1e-16,200), ylim=ylim) if(do.animation) saveHTML(for(i in 1:m) print(polyG.ani.stirling[[i]]$plot), outdir=file.path(tempdir(),"G_stirling")) polyG.ani.default <- poly.ani(family, m, d=100, method="default", xlim=c(1e-16,200), ylim=ylim) if(do.animation) saveHTML(for(i in 1:m) print(polyG.ani.default[[i]]$plot), outdir=file.path(tempdir(),"G_default")) family <- "Joe" polyJ <- copula:::polyJ alpha <- c(0.05, 0.5, 0.99) xlim <- c(1e-16, 1e120) ylim <- c(0, 1200) set.seed(1) (ev <- eep.fun(family, alpha, d=5, n.MC=100000)) if(!all(xlim[1] < ev, ev < xlim[2])) warning("ev outside xlim") Jmeths <- eval(formals(polyJ)$method) Jpp5 <- sapply(Jmeths, function(met) { r <- plot.poly(family, xlim=xlim, ylim=ylim, method = met, alpha=alpha, d=5) Sys.sleep(2) r }, simplify = FALSE) t(sapply(Jpp5, function(L) apply(L$f.x, 2, function(.) sum(!is.finite(.))))) set.seed(1) xlim <- c(1e-16, 1e120) ylim <- c(0, 30000) system.time(ev <- eep.fun(family, alpha, d=100, n.MC=100000)) ev if(!all(xlim[1] < ev, ev < xlim[2])) warning("ev outside xlim") Jpp100 <- sapply(Jmeths, function(met) { r <- plot.poly(family, xlim=xlim, ylim=ylim, method = met, alpha=alpha, d=100) Sys.sleep(2) r }, simplify = FALSE) t(sapply(Jpp100, function(L) apply(L$f.x, 2, function(.) sum(!is.finite(.))))) set.seed(1) x <- runif(100000, min=0.01, max=1e100) lx <- log(x) system.time(y.log.poly <- polyJ(lx, alpha=0.5, d=100, method="log.poly", log=TRUE))[[1]] stopifnot(all(is.finite(y.log.poly))) system.time(y.log1p <- polyJ(lx, alpha=0.5, d=100, method="log1p", log=TRUE))[[1]] stopifnot(all(is.finite(y.log1p))) v1 <- polyJ(log(1), alpha=0.01, d=100, log=TRUE) v2 <- polyJ(log(1), alpha=0.5, d=100, log=TRUE) v3 <- polyJ(log(1), alpha=0.99, d=100, log=TRUE) M.v <- c(395.73694325, 393.08027226, 386.96715831) stopifnot(all.equal(c(v1,v2,v3), M.v)) v1 <- polyJ(log(1e20), alpha=0.01, d=100, log=TRUE) v2 <- polyJ(log(1e20), alpha=0.5, d=100, log=TRUE) v3 <- polyJ(log(1e20), alpha=0.99, d=100, log=TRUE) M.v <- c(4918.2008336, 4915.3815020, 4909.1039909) stopifnot(all.equal(c(v1,v2,v3), M.v)) v1 <- polyJ(log(1e100), alpha=0.01, d=100, log=TRUE) v2 <- polyJ(log(1e100), alpha=0.5, d=100, log=TRUE) v3 <- polyJ(log(1e100), alpha=0.99, d=100, log=TRUE) M.v <- c(23154.67477009, 23151.85543852, 23145.57792740) stopifnot(all.equal(c(v1,v2,v3), M.v)) polyJ.ani.default <- poly.ani(family, m, d=100, method="log.poly", xlim=c(1e-16,1e120), ylim=ylim) if(do.animation) saveHTML(for(i in 1:m) print(polyJ.ani.default[[i]]$plot), outdir=file.path(tempdir(),"J_log.poly"))
if (grepl("Documents",getwd())){ path <- ".." } else { path <- "/home/ben" } password = as.character(read.delim(glue::glue('{path}/gh.txt'))$pw) library(nflfastR) library(tidyverse) path <- "../nflfastR-raw/raw" write_season <- function(y) { message(glue::glue('Year {y}: scraping play-by-play of { nrow(fast_scraper_schedules(y)) } games')) pbp <- fast_scraper_schedules(y) %>% pull(game_id) %>% fast_scraper(pp = TRUE, dir = path) %>% clean_pbp() %>% add_qb_epa() %>% add_xyac() message(glue::glue('Year {y}: writing to file')) saveRDS(pbp, glue::glue('data/play_by_play_{y}.rds')) write_csv(pbp, glue::glue('data/play_by_play_{y}.csv.gz')) arrow::write_parquet(pbp, glue::glue('data/play_by_play_{y}.parquet')) write_csv(pbp, glue::glue("data/play_by_play_{x}.csv")) utils::zip(glue::glue("data/play_by_play_{x}.zip"), c(glue::glue("data/play_by_play_{x}.csv"))) file.remove(glue::glue("data/play_by_play_{x}.csv")) } walk(1999:2010, write_season) closeAllConnections() walk(2011:2019, write_season) y = 2020 sched <- fast_scraper_schedules(y) %>% filter(season_type %in% c("REG", "POST")) %>% select(game_id, week, season_type) pbp <- sched %>% pull(game_id) %>% fast_scraper(pp = TRUE) %>% clean_pbp() %>% add_qb_epa() %>% add_xyac() write_csv(pbp, glue::glue('data/play_by_play_{y}.csv.gz')) saveRDS(pbp, glue::glue('data/play_by_play_{y}.rds')) arrow::write_parquet(pbp, glue::glue('data/play_by_play_{y}.parquet')) data_repo <- git2r::repository('./') git2r::add(data_repo, 'data/*') git2r::commit(data_repo, message = glue::glue("Updated {Sys.time()} using nflfastR version {utils::packageVersion('nflfastR')}")) git2r::pull(data_repo) git2r::push(data_repo, credentials = git2r::cred_user_pass(username = 'guga31bb', password = paste(password))) message(paste('Successfully uploaded to GitHub values as of',Sys.time())) games <- readRDS(url("https://github.com/leesharpe/nfldata/blob/master/data/games.rds?raw=true")) %>% select(game_id, season, game_type, week, gameday, weekday, gametime, away_team, home_team, away_score, home_score, home_result = result, stadium, location, roof, surface, old_game_id) max_s <- max(games$season) min_s <- min(games$season) write_season_schedule <- function(s){ g <- games %>% filter(season == s) saveRDS(g, glue::glue('schedules/sched_{s}.rds')) } walk(min_s:max_s, write_season_schedule)
kpPolygon <- function(karyoplot, data=NULL, chr=NULL, x=NULL, y=NULL, ymin=NULL, ymax=NULL, data.panel=1, r0=NULL, r1=NULL, clipping=TRUE, ...) { if(!methods::is(karyoplot, "KaryoPlot")) stop("'karyoplot' must be a valid 'KaryoPlot' object") karyoplot$beginKpPlot() on.exit(karyoplot$endKpPlot()) pp <- prepareParameters2("kpPolygon", karyoplot=karyoplot, data=data, chr=chr, x=x, y=y, ymin=ymin, ymax=ymax, r0=r0, r1=r1, data.panel=data.panel, ...) ccf <- karyoplot$coord.change.function xplot <- ccf(chr=pp$chr, x=pp$x, data.panel=data.panel)$x yplot <- ccf(chr=pp$chr, y=pp$y, data.panel=data.panel)$y processClipping(karyoplot=karyoplot, clipping=clipping, data.panel=data.panel) graphics::polygon(x=xplot, y=yplot, ...) invisible(karyoplot) }
Encode <- function(value, map, strs, params, N, id = NULL, cohort = NULL, B = NULL, BP = NULL) { k <- params$k p <- params$p q <- params$q f <- params$f h <- params$h m <- params$m if (is.null(cohort)) { cohort <- sample(1:m, 1) } if (is.null(id)) { id <- sample(N, 1) } ind <- which(value == strs) if (is.null(B)) { B <- as.numeric(map[[cohort]][, ind]) } if (is.null(BP)) { BP <- sapply(B, function(x) sample(c(0, 1, x), 1, prob = c(0.5 * f, 0.5 * f, 1 - f))) } rappor <- sapply(BP, function(x) rbinom(1, 1, ifelse(x == 1, q, p))) list(value = value, rappor = rappor, B = B, BP = BP, cohort = cohort, id = id) } ExamplePlot <- function(res, k, ebs = 1, title = "", title_cex = 4, voff = .17, acex = 1.5, posa = 2, ymin = 1, horiz = FALSE) { PC <- function(k, report) { char <- as.character(report) if (k > 128) { char[char != ""] <- "|" } char } anc <- "darkorange2" colors <- c("lavenderblush3", "maroon4") par(omi = c(0, .55, 0, 0)) plot(1:k, rep(1, k), ylim = c(ymin, 4), type = "n", xlab = "Bloom filter bits", yaxt = "n", ylab = "", xlim = c(0, k), bty = "n", xaxt = "n") mtext(paste0("Participant ", res$id, " in cohort ", res$cohort), 3, 2, adj = 1, col = anc, cex = acex) axis(1, 2^(0:15), 2^(0:15)) abline(v = which(res$B == 1), lty = 2, col = "grey") text(k / 2, 4, paste0('"', paste0(title, as.character(res$value)), '"'), cex = title_cex, col = colors[2], xpd = NA) points(1:k, rep(3, k), pch = PC(k, res$B), col = colors[res$B + 1], cex = res$B + 1) text(k, 3 + voff, paste0(sum(res$B), " signal bits"), cex = acex, col = anc, pos = posa) points(1:k, rep(2, k), pch = PC(k, res$BP), col = colors[res$BP + 1], cex = res$BP + 1) text(k, 2 + voff, paste0(sum(res$BP), " bits on"), cex = acex, col = anc, pos = posa) report <- res$rappor points(1:k, rep(1, k), pch = PC(k, as.character(report)), col = colors[report + 1], cex = report + 1) text(k, 1 + voff, paste0(sum(res$rappor), " bits on"), cex = acex, col = anc, pos = posa) mtext(c("True value:", "Bloom filter (B):", "Fake Bloom \n filter (B'):", "Report sent\n to server:"), 2, 1, at = 4:1, las = 2) legend("topright", legend = c("0", "1"), fill = colors, bty = "n", cex = 1.5, horiz = horiz) legend("topleft", legend = ebs, plot = FALSE) } PlotPopulation <- function(probs, detected, detection_frequency) { cc <- c("gray80", "darkred") color <- rep(cc[1], length(probs)) color[detected] <- cc[2] bp <- barplot(probs, col = color, border = color) inds <- c(1, c(max(which(probs > 0)), length(probs))) axis(1, bp[inds], inds) legend("topright", legend = c("Detected", "Not-detected"), fill = rev(cc), bty = "n") abline(h = detection_frequency, lty = 2, col = "grey") }
generate_scatter_chart = function(shots, base_court, court_theme = court_themes$dark, alpha = 0.8, size = 2.5) { base_court + geom_point( data = shots, aes(x = loc_x, y = loc_y, color = shot_made_flag), alpha = alpha, size = size ) + scale_color_manual( "", values = c(made = court_theme$made, missed = court_theme$missed) ) }
get_gsod_apsim_met <- function(lonlat, dates, wrt.dir = ".", filename = NULL, distance = 100, fillin.radn = FALSE){ if(!requireNamespace("GSODR", quietly = TRUE)){ warning("The GSODR package is required for this function") return(NULL) } if(missing(filename)) filename <- "noname.met" if(!grepl(".met", filename, fixed = TRUE)) stop("filename should end in .met") yr1 <- as.numeric(format(as.Date(dates[1]), "%Y")) yr2 <- as.numeric(format(as.Date(dates[2]), "%Y")) nr.st <- GSODR::nearest_stations(LAT = lonlat[2], LON = lonlat[1], distance = distance) if(length(nr.st) == 0) stop("No stations found. Try increasing the distance.") nr.st1 <- nr.st[1] dts <- as.numeric(format(as.Date(dates), "%Y")) yrs <- seq(from = dts[1], to = dts[2]) gsd <- GSODR::get_GSOD(years = yrs, station = nr.st1) stnid <- gsd$STNID[1] lati <- gsd$LATITUDE[1] longi <- gsd$LONGITUDE[1] if(fillin.radn){ if(!requireNamespace("nasapower", quietly = TRUE)){ warning("The nasapower package is required for this function") return(NULL) } pwr <- get_power_apsim_met(lonlat = lonlat, dates = c(gsd$YEARMODA[1], gsd$YEARMODA[nrow(gsd)])) pwr <- add_column_apsim_met(pwr, value = as.Date(c(1:nrow(pwr)-1), origin = paste0(yr1,"-01-01")), name = "date", units = "()") pwr <- subset(pwr, select = c("date", "radn")) names(pwr) <- c("date", "RADN") gsd$date <- gsd$YEARMODA gsd <- merge(gsd, pwr, by = "date") }else{ gsd$RADN <- NA } gsd <- subset(as.data.frame(gsd), select = c("YEAR", "YDAY","RADN", "MAX", "MIN", "PRCP", "RH", "WDSP")) names(gsd) <- c("year", "day", "radn", "maxt", "mint", "rain", "rh", "windspeed") units <- c("()", "()", "(MJ/m2/day)", "(oC)", "(oC)", "(mm)", "(%)", "(m/s)") if(fillin.radn){ comments <- paste("!data from GSODR R package. Radiation from nasapower R. retrieved: ", Sys.time()) }else{ comments <- paste("!data from GSODR R package. retrieved: ", Sys.time()) } attr(gsd, "filename") <- filename attr(gsd, "site") <- paste("site =", "station-ID", stnid) attr(gsd, "latitude") <- paste("latitude =", lati) attr(gsd, "longitude") <- paste("longitude =", longi) attr(gsd, "tav") <- paste("tav =", mean(colMeans(gsd[,c("maxt","mint")], na.rm=TRUE), na.rm=TRUE)) attr(gsd, "amp") <- paste("amp =", mean(gsd$maxt, na.rm=TRUE) - mean(gsd$mint, na.rm = TRUE)) attr(gsd, "colnames") <- names(gsd) attr(gsd, "units") <- units attr(gsd, "comments") <- comments class(gsd) <- c("met", "data.frame") if(filename != "noname.met"){ write_apsim_met(gsd, wrt.dir = wrt.dir, filename = filename) } return(invisible(gsd)) }
opt22 <- eventReactive(input$RunOpt22, { Gprint(MODE_DEBUG, "Opt22\n") ficout = tempfile() ficin = GenepopFile()$datapath out = TRUE if (is.null(ficin)) { out = FALSE } else { Gprint(MODE_DEBUG, ficin) setRandomSeed(getSeed(input$randomSeed)) show("spinner") tryCatch(write_LD_tables(ficin, outputFile = ficout), error = function(e) { file.create(ficout) write(paste("Exeption : ", e$message), file = ficout) }, finally = hide("spinner")) file.rename("cmdline.txt", "cmdline.old") } data.frame(file = ficout, output = out) }) output$Opt22out <- renderText({ opt <- opt22() if (opt$output) { filePath <- toString(opt$file) if (file.size(filePath) > 300) { fileText <- readLines(filePath) nblig = grep("Number of loci detected", fileText) fileText <- paste(fileText[(nblig + 2):length(fileText)], collapse = "\n") shinyjs::enable("downloadOpt22All") } else { fileText <- readLines(filePath) } } else { fileText <- "No genepop file found! please upload a file" } fileText }) output$downloadOpt22All <- downloadHandler(filename = function() { paste("result_opt22_", Sys.Date(), ".txt", sep = "") }, content = function(con) { opt <- opt22() if (opt$output) { filePath <- toString(opt$file) fileText <- readLines(filePath) } else { fileText <- "No genepop file found! please upload a file" } write(fileText, con) })
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE, fig.align = "center", fig.width = 6, fig.height = 5, out.width = "60%", tidy.opts = list(width.cutoff = 65), tidy = FALSE) set.seed(12314159) library(loon.data) library(loon) library(gridExtra) imageDirectory <- file.path(".", "images", "savingLoonPlots") dataDirectory <- file.path(".", "data", "savingLoonPlots") p_savedStates <- l_getSavedStates(file = file.path(dataDirectory, "p_savedStates")) names(p_savedStates) p_focusOnVersicolor <- l_getSavedStates(file = file.path(dataDirectory, "p_focusOnVersicolor"))
test_that("binwidth is respected", { df <- data_frame(x = c(1, 1, 1, 2), y = c(1, 1, 1, 2)) base <- ggplot(df, aes(x, y)) + stat_bin2d(geom = "tile", binwidth = 0.25) out <- layer_data(base) expect_equal(nrow(out), 2) expect_equal(out$xmin, c(1, 1.75), tolerance = 1e-7) expect_equal(out$xmax, c(1.25, 2), tolerance = 1e-7) }) test_that("breaks override binwidth", { integer_breaks <- (0:4) - 0.5 half_breaks <- seq(0, 3.5, 0.5) df <- data_frame(x = 0:3, y = 0:3) base <- ggplot(df, aes(x, y)) + stat_bin2d( breaks = list(x = integer_breaks, y = NULL), binwidth = c(0.5, 0.5) ) out <- layer_data(base) expect_equal(out$xbin, cut(df$x, adjust_breaks(integer_breaks), include.lowest = TRUE, labels = FALSE)) expect_equal(out$ybin, cut(df$y, adjust_breaks(half_breaks), include.lowest = TRUE, labels = FALSE)) }) test_that("breaks are transformed by the scale", { df <- data_frame(x = c(1, 10, 100, 1000), y = 0:3) base <- ggplot(df, aes(x, y)) + stat_bin_2d( breaks = list(x = c(5, 50, 500), y = c(0.5, 1.5, 2.5))) out1 <- layer_data(base) out2 <- layer_data(base + scale_x_log10()) expect_equal(out1$x, c(27.5, 275)) expect_equal(out2$x, c(1.19897, 2.19897)) })
numeric_FisherInformation <- function(model){ model <- expectedmodel(model) 0.5 * numDeriv::jacobian(psychonetrics_gradient,parVector(model),model=model) } psychonetrics_FisherInformation <- function(model, analytic = TRUE){ if (!analytic){ return(numeric_FisherInformation(model)) } if (model@cpp){ prep <- prepareModel_cpp(parVector(model), model) } else { prep <- prepareModel(parVector(model), model) } if (model@cpp){ estimatorHessian <- switch( model@estimator, "ML" = switch(model@distribution, "Gaussian" = expected_hessian_Gaussian_cpp, "Ising" = expected_hessian_Ising ), "ULS" = switch(model@distribution, "Gaussian" = expected_hessian_ULS_Gaussian_cpp ), "WLS" = switch(model@distribution, "Gaussian" = expected_hessian_ULS_Gaussian_cpp ), "DWLS" = switch(model@distribution, "Gaussian" = expected_hessian_ULS_Gaussian_cpp ), "FIML" = switch(model@distribution, "Gaussian" = expected_hessian_fiml_Gaussian_cppVersion ) ) } else { estimatorHessian <- switch( model@estimator, "ML" = switch(model@distribution, "Gaussian" = expected_hessian_Gaussian, "Ising" = expected_hessian_Ising ), "ULS" = switch(model@distribution, "Gaussian" = expected_hessian_ULS_Gaussian ), "WLS" = switch(model@distribution, "Gaussian" = expected_hessian_ULS_Gaussian ), "DWLS" = switch(model@distribution, "Gaussian" = expected_hessian_ULS_Gaussian ), "FIML" = switch(model@distribution, "Gaussian" = expected_hessian_fiml_Gaussian ) ) } estimatorPart <- estimatorHessian(prep) if (model@cpp){ modelJacobian <- switch( model@model, "varcov" = d_phi_theta_varcov_cpp, "lvm" = d_phi_theta_lvm_cpp, "var1" = d_phi_theta_var1_cpp, "dlvm1" = d_phi_theta_dlvm1_cpp, "tsdlvm1" = d_phi_theta_tsdlvm1_cpp, "meta_varcov" = d_phi_theta_meta_varcov_cpp, "Ising" = d_phi_theta_Ising_cpp, "ml_lvm" = d_phi_theta_ml_lvm_cpp ) } else { modelJacobian <- switch( model@model, "varcov" = d_phi_theta_varcov, "lvm" = d_phi_theta_lvm, "var1" = d_phi_theta_var1, "dlvm1" = d_phi_theta_dlvm1, "tsdlvm1" = d_phi_theta_tsdlvm1, "meta_varcov" = d_phi_theta_meta_varcov, "Ising" = d_phi_theta_Ising, "ml_lvm" = d_phi_theta_ml_lvm ) } modelPart <- sparseordense(modelJacobian(prep)) if (model@cpp){ manualPart <- Mmatrix_cpp(model@parameters) } else { manualPart <- Mmatrix(model@parameters) } if (model@cpp){ if (is(modelPart, "sparseMatrix")){ Fisher <- FisherInformation_inner_cpp_DSS(as.matrix(estimatorPart), modelPart, manualPart) } else { Fisher <- FisherInformation_inner_cpp_DDS(as.matrix(estimatorPart), as.matrix(modelPart), manualPart) } } else { Fisher <- 0.5 * t(manualPart) %*% t(modelPart) %*% estimatorPart %*% modelPart %*% manualPart } as.matrix(Fisher) }
NULL specially <- function(x, fn, preconditions = NULL, actions = NULL, step_id = NULL, label = NULL, brief = NULL, active = TRUE) { segments <- NULL segments_list <- resolve_segments( x = x, seg_expr = segments, preconditions = preconditions ) if (is_a_table_object(x)) { secret_agent <- create_agent(x, label = "::QUIET::") %>% specially( fn = fn, preconditions = preconditions, actions = prime_actions(actions), label = label, brief = brief, active = active ) %>% interrogate() return(x) } agent <- x if (is.null(brief)) { brief <- create_autobrief( agent = agent, assertion_type = "specially" ) } step_id <- normalize_step_id(step_id, columns = "column", agent) i_o <- get_next_validation_set_row(agent) check_step_id_duplicates(step_id, agent) for (i in seq_along(segments_list)) { seg_col <- names(segments_list[i]) seg_val <- unname(unlist(segments_list[i])) agent <- create_validation_step( agent = agent, assertion_type = "specially", i_o = i_o, columns_expr = NULL, column = NULL, values = fn, na_pass = NULL, preconditions = preconditions, seg_expr = segments, seg_col = seg_col, seg_val = seg_val, actions = covert_actions(actions, agent), step_id = step_id, label = label, brief = brief, active = active ) } agent } expect_specially <- function(object, fn, preconditions = NULL, threshold = 1) { fn_name <- "expect_specially" vs <- create_agent(tbl = object, label = "::QUIET::") %>% specially( fn = fn, preconditions = {{ preconditions }}, actions = action_levels(notify_at = threshold) ) %>% interrogate() %>% .$validation_set x <- vs$notify %>% all() threshold_type <- get_threshold_type(threshold = threshold) if (threshold_type == "proportional") { failed_amount <- vs$f_failed } else { failed_amount <- vs$n_failed } act <- testthat::quasi_label(enquo(x), arg = "object") testthat::expect( ok = identical(!as.vector(act$val), TRUE), failure_message = glue::glue( failure_message_gluestring( fn_name = fn_name, lang = "en" ) ) ) act$val <- object invisible(act$val) } test_specially <- function(object, fn, preconditions = NULL, threshold = 1) { vs <- create_agent(tbl = object, label = "::QUIET::") %>% specially( fn = fn, preconditions = {{ preconditions }}, actions = action_levels(notify_at = threshold) ) %>% interrogate() %>% .$validation_set if (inherits(vs$capture_stack[[1]]$warning, "simpleWarning")) { warning(conditionMessage(vs$capture_stack[[1]]$warning)) } if (inherits(vs$capture_stack[[1]]$error, "simpleError")) { stop(conditionMessage(vs$capture_stack[[1]]$error)) } all(!vs$notify) }
isoph.ti=function(TIME, STATUS, Z, ZNAME, P, Q, shape, K, maxiter, eps){ data.all=data.frame(X=TIME,DELTA=STATUS,Z) data=data.all[order(data.all$Z1),] n.total=nrow(data) DELTA.Z1=aggregate(data$DELTA,by=list(Z1=data$Z1),sum) if(shape=='increasing'){ if(DELTA.Z1[1,2]==0){ Z.star=DELTA.Z1[which(DELTA.Z1[,2]>0)[1],1] data=data[data$Z1>=Z.star,] } }else if(shape=='decreasing'){ if(DELTA.Z1[nrow(DELTA.Z1),2]==0){ Z.star=DELTA.Z1[max(which(DELTA.Z1[,2]>0)),1] data=data[data$Z1<=Z.star,] } } n=nrow(data) t=data$X delta=data$DELTA z=data$Z1 w=data[,-c(1:3)] if(Q==1){; w=matrix(data[,-c(1:3)]) }else if(Q>=2){; w=as.matrix(data[,-c(1:3)]) } z.obs=unique(z[delta==1]) m=length(z.obs) t.obs=sort(unique(t)) nt=length(t.obs) k=sum(z.obs<K) if(k==0) k=1 Zk=z.obs[k] Y=dN=matrix(0,n,nt) for(i in 1:n){ rank.t=which(t[i]==t.obs) Y[i,][1:rank.t]=1 if(delta[i]==1) dN[i,][rank.t]=1 } data.all$Z.BAR=data.all$Z1-Zk formula="survival::Surv(X,DELTA)~Z.BAR" if(Q>0) formula=paste(c(formula,paste0("+W",1:Q)),collapse ="") res.initial=isoph.initial(formula,data.all,Q,shape,z.obs,Zk) psi=res.initial$psi beta=res.initial$beta if(Q==0){ rpa.Y=isoph.RPA.ti(n, nt, m, z, z.obs, Y, dN, shape) Y2=rpa.Y$Y2 dN2=rpa.Y$dN2 dNsum=colSums(dN2) Delta=rowSums(dN2) dist=0; exp.beta=NA picm=isoph.picm(psi,m,z.obs,Zk,k, dN2,Y2,dNsum,Delta, eps,maxiter, shape) psi.new=picm$psi.new iter=picm$iter conv=picm$conv }else{ iter=0; dist=1; beta.new=rep(NA,Q) while(dist>=eps){ iter=iter+1 if(iter>maxiter) break Yest=matrix(NA,n,nt) for(j in 1:nt) Yest[,j]=Y[,j]*exp(w%*%beta) rpa.Y=isoph.RPA.ti(n, nt, m, z, z.obs, Yest, dN, shape) Y2=rpa.Y$Y2 dN2=rpa.Y$dN2 dNsum=colSums(dN2) Delta=rowSums(dN2) picm=isoph.picm(psi,m,z.obs,Zk,k, dN2,Y2,dNsum,Delta, eps,maxiter, shape) psi.new=picm$psi.new psi.full=isoph.BTF(m, n, z,z.obs, psi.new,shape) if(picm$conv==0) stop beta.new=isoph.NR(w,beta,Q,psi.full,n,nt,Y,dN, maxiter,eps) dist=sqrt(sum((psi.new-psi)^2))+sqrt(sum((beta.new-beta)^2)) psi=psi.new beta=beta.new } conv="not converged" if(dist<eps) conv="converged" } z.full=sort(data.all$Z1) psi.full=disoph.BTF2(n.total,m,psi.new,z.full,z.obs,shape) iso.cov=data.frame(z=z.full,psi.hat=psi.full) colnames(iso.cov)=c(ZNAME[1],"psi.hat") beta.res=NA if(Q>0){ beta.res=data.frame(est=beta.new, HR=exp(beta.new)) rownames(beta.res)=ZNAME[-1] } res=list(iso.cov=iso.cov,beta=beta.res, conv=conv,iter=iter,Zk=Zk,shape=shape) }
test_that("Check glassbrain", { p = ggseg3d(atlas = aseg_3d) %>% add_glassbrain() expect_is(p, c("plotly", "htmlwidget")) expect_equal(length(p$x$attrs), 37) p = ggseg3d(atlas = aseg_3d) %>% add_glassbrain(hemisphere = "left") expect_is(p, c("plotly", "htmlwidget")) expect_equal(length(p$x$attrs), 35) p = ggseg3d(atlas = aseg_3d) %>% add_glassbrain(hemisphere = "left", colour = "red") expect_equal(length(p$x$attrs), 35) })
ChunkedArray <- R6Class("ChunkedArray", inherit = ArrowDatum, public = list( length = function() ChunkedArray__length(self), type_id = function() ChunkedArray__type(self)$id, chunk = function(i) Array$create(ChunkedArray__chunk(self, i)), as_vector = function() ChunkedArray__as_vector(self, option_use_threads()), Slice = function(offset, length = NULL) { if (is.null(length)) { ChunkedArray__Slice1(self, offset) } else { ChunkedArray__Slice2(self, offset, length) } }, Take = function(i) { if (is.numeric(i)) { i <- as.integer(i) } if (is.integer(i)) { i <- Array$create(i) } call_function("take", self, i) }, Filter = function(i, keep_na = TRUE) { if (is.logical(i)) { i <- Array$create(i) } call_function("filter", self, i, options = list(keep_na = keep_na)) }, SortIndices = function(descending = FALSE) { assert_that(is.logical(descending)) assert_that(length(descending) == 1L) assert_that(!is.na(descending)) call_function( "sort_indices", self, options = list(names = "", orders = as.integer(descending)) ) }, View = function(type) { ChunkedArray__View(self, as_type(type)) }, Validate = function() { ChunkedArray__Validate(self) }, ToString = function() { ChunkedArray__ToString(self) }, Equals = function(other, ...) { inherits(other, "ChunkedArray") && ChunkedArray__Equals(self, other) } ), active = list( null_count = function() ChunkedArray__null_count(self), num_chunks = function() ChunkedArray__num_chunks(self), chunks = function() map(ChunkedArray__chunks(self), Array$create), type = function() ChunkedArray__type(self) ) ) ChunkedArray$create <- function(..., type = NULL) { if (!is.null(type)) { type <- as_type(type) } ChunkedArray__from_list(list2(...), type) } chunked_array <- ChunkedArray$create
matrix_add_by_name <- function(M, ...) { add.by.name <- function(M, M2) { if (is.null(colnames(M2)) && ncol(M2) == 1) colnames(M2) <- name.M2 if (is.null(rownames(M2)) && nrow(M2) == 1) rownames(M2) <- name.M2 the.colnames <- colnames(M2) the.rownames <- rownames(M2) if (is.null(colnames(M)) || is.null(rownames(M)) || is.null(colnames(M2)) || is.null(rownames(M2))) { stop("Li, matrix.add.by.name: null name of the first matrix") } if (any(!(the.colnames %in% colnames(M)))) { print(paste(the.colnames[!(the.colnames %in% colnames(M))])) stop("Li: wrong colnames") } if (any(!(the.rownames %in% rownames(M)))) { print(paste(the.rownames[!(the.rownames %in% rownames(M))])) stop("Li: wrong rownames") } M[the.rownames, the.colnames] <- M[the.rownames, the.colnames] + M2 return(M) } result <- as.matrix(M) M.list <- list(...) if (length(M.list) > 0) { name.list <- match.call(expand.dots = FALSE)$`...` for (k in seq_along(M.list)) { name.M2 <- as.character(name.list[[k]]) M2 <- as.matrix(M.list[[k]]) result <- add.by.name(result, M2) } } return(result) }
Residual.null <- function(param,fixed=0,model,I0,data,lev,fact,sumlev,sposFirst,dim.data) { .C("residual_null", param = as.double(param), fixed = as.double(fixed), lev = as.integer(lev), fact = as.integer(fact), sumlev = as.integer(sumlev), spos_first = as.integer(sposFirst), in_st = as.integer(I0), observed = as.double(data), dimdata = as.integer(dim.data), model = as.integer(model), RSS = as.double(0), NAOK = TRUE, PACKAGE = "rAverage" )$RSS } Residual.eq <- function(param,fixed,data,lev,fact,sumlev,dim.data) { .C("residual_eq", param = as.double(param), fixed = as.double(fixed), lev = as.integer(lev), fact = as.integer(fact), sumlev = as.integer(sumlev), observed = as.double(data), dimdata = as.integer(dim.data), RSS = as.double(0), NAOK = TRUE, PACKAGE = "rAverage" )$RSS } Residual <- function(param,fixed,data,lev,fact,sumlev,dim.data,Dt,nwfix) { .C("residual", param = as.double(param), fixed = as.double(fixed), lev = as.integer(lev), fact = as.integer(fact), sumlev = as.integer(sumlev), observed = as.double(data), dimdata = as.integer(dim.data), deltaweights = as.double(Dt), numfix = as.integer(nwfix$num), valfix = as.double(nwfix$nwval), RSS = as.double(0), NAOK = TRUE, PACKAGE = "rAverage" )$RSS } optimization.IC <- function( data, fact, lev, sumlev, pos, N, dim.data, model.start, par.base, nwfix, fixed, I0, Dt, IC.diff, all, verbose, IC.break, lower, upper, method, control, change) { START <- list( param = model.start@param, RSS = model.start@RSS, IC = c(model.start@BIC,model.start@AIC), n.pars = [email protected], conv = 0, msg = "" ) BEST <- list( param = NULL, RSS = NULL, IC = NULL, n.pars = NULL, comb = NULL, conv = NULL, msg = NULL ) selected <- rep.int(FALSE,sumlev[1]) bounds <- method=="L-BFGS-B" logN <- log(N) if(verbose) { cat("Model selection by information criterion","\n\n") cat("-> start \t", "RSS:",sprintf("%.2f",START$RSS),"\t", "BIC:",sprintf("%.2f",START$IC[1]),"\t", "AIC:",sprintf("%.2f",START$IC[2]),"\n" ) } for(i in 1:sumlev[1]) { if(verbose) cat(" START$param[pos$fixed] <- fixed[pos$fixed] BEST$IC <- START$IC accepted <- FALSE decision <- " Refused" cc <- combin(sumlev[1],i) dim.cc <- dim(cc) if(nwfix$num) { cc.sel <- matrix(FALSE,dim.cc[1],dim.cc[2]) for(j in 1:nwfix$num) cc.sel <- cc.sel + (cc==nwfix$pos[j]) cc.sel <- which(rowSums(cc.sel)==0) cc <- cc[cc.sel,] if(is.vector(cc)) { cc <- t(cc) if(i==1) cc <- t(cc) } dim.cc[1] <- nrow(cc) if(length(cc)==0 | dim.cc[2]<i) next } if(all==FALSE & (i>1 & i<sumlev[1]-1) & dim.cc[1]>1) { if(i>1 & dim.cc[1]>1) { cc.sel <- FALSE elem <- length(vet<-(1:sumlev[1])[selected]) if(elem!=0) { for(k in 1:elem) cc.sel <- cc.sel+(cc[,]==vet[k]) cc <- as.matrix(cc[rowSums(as.matrix(cc.sel))==elem,]) } } dim.cc[1] <- nrow(cc) } for(j in 1:dim.cc[1]) { eachfixed <- fixed eachfixed[pos$wpos[-cc[j,]]] <- START$param[pos$wpos[-cc[j,]]] output <- optim(par=START$param, fn=Residual, fixed=eachfixed, data=data, lev=lev, fact=fact, sumlev=sumlev, dim.data=dim.data, Dt=Dt, nwfix=nwfix[c(1,3)], method=method, lower=lower, upper=upper, control=control ) if(!I0) output$par[pos$wpos] <- output$par[pos$wpos]-mean(output$par[pos$wpos]) else output$par[pos$w0wpos] <- output$par[pos$w0wpos]-mean(output$par[pos$w0wpos]) output$par[pos$fixed] <- fixed[pos$fixed] output$par <- parmeanlast(output$par,fixed,sumlev,Dt,nwfix) if(nwfix$num==0) output$n.pars <- par.base+numpar(output$par[pos$wpos],sumlev[1])-1 else output$n.pars <- par.base+numpar(output$par[pos$wpos[-nwfix$pos]],sumlev[1]-nwfix$num)-1 output$value <- Residual(output$par,fixed,data,lev,fact,sumlev,dim.data,Dt,nwfix) output$IC <- c( N*log(output$value/N)+output$n.pars*logN, N*log(output$value/N)+2*output$n.pars ) if(N/output$n.pars < 40) { output$IC[1] <- output$IC[1]+(output$n.pars*logN*(output$n.pars+1))/(N-output$n.pars-1) output$IC[2] <- output$IC[2]+(2*output$n.pars*(output$n.pars+1))/(N-output$n.pars-1) } if((output$IC[1]+IC.diff[1]<BEST$IC[1]) | ((output$IC[1]<BEST$IC[1]) & (output$IC[2]+IC.diff[2]<BEST$IC[2]))) { BEST$param <- output$par BEST$RSS <- output$value BEST$IC <- output$IC BEST$n.pars <- output$n.pars BEST$comb <- cc[j,] BEST$conv <- output$convergence BEST$msg <- output$message accepted <- change <- TRUE decision <- "Accepted" } if(verbose) { if(output$convergence==0) convergence <- "converged" else convergence <- "not converged" cat("Free W:",cc[j,],"\t", "RSS:",sprintf("%.2f",output$value),"\t", "BIC:",sprintf("%.2f",output$IC[1]),"\t", "AIC:",sprintf("%.2f",output$IC[2]),"\t", decision,"\t", convergence,"\n" ) decision <- " Refused" } } if(accepted) { START <- BEST selected[BEST$comb] <- TRUE } } if(verbose) cat("-> select","\t", "RSS:",round(START$RSS,2),"\t", "BIC:",round(START$IC[1],2),"\t", "AIC:",round(START$IC[2],2),"\n\n" ) return( list( par = START$param, value = START$RSS, convergence = START$conv, message = START$msg, n.pars = START$n.pars, change = change ) ) }
ssocs_ref1 <- c(" c0014_r c0526 c0528 ", " Principal :1619 Min. : 0.000 Min. : 0.00 ", " Vice-principal or disciplinarian: 351 1st Qu.: 1.000 1st Qu.:10.00 ", " Security staff : 20 Median : 4.000 Median :12.00 ", " Other school-level staff : 72 Mean : 9.498 Mean :13.86 ", " Superintendent or district staff: 7 3rd Qu.: 12.000 3rd Qu.:17.00 ", " Max. :100.000 Max. :96.00 ") ssocs_ref2 <- c(" c0134 c0198 c0534 ", " Yes: 441 0-25% :372 Min. : 0.00 ", " No :2321 26-50% :653 1st Qu.: 50.00 ", " 51-75% :710 Median : 68.00 ", " 76-100% :854 Mean : 62.69 ", " Does not offer:173 3rd Qu.: 80.00 ", " Max. :100.00 ") ssocs_refTbl1 <- c("", "Formula: vioinc16 ~ c0600 ", "", "Weight variable: 'finalwgt'", "Variance method: jackknife", "JK replicates: 50", "full data n: 2092", "n used: 2092", "", "", "Summary Table:", " c0600 N WTD_N PCT SE(PCT) MEAN SE(MEAN)", " Yes 996 34762.08 41.58557 1.557152 11.508763 0.6838331", " No 1096 48829.60 58.41443 1.557152 9.518731 0.7048793") ssocs_refTbl2 <- c("", "Formula: schid ~ c0610 + c0134 ", "", "Weight variable: 'finalwgt'", "Variance method: jackknife", "JK replicates: 50", "full data n: 2092", "n used: 2092", "", "", "Summary Table:", " c0610 c0134 N WTD_N PCT SE(PCT)", " Yes Yes 224 8216.959 20.58818 1.668273", " Yes No 1136 31694.097 79.41182 1.668273", " No Yes 132 9735.372 22.28762 2.021483", " No No 600 33945.256 77.71238 2.021483") ssocs_refTbl3 <- c("", "Formula: incid18 ~ c0669 + c0560 ", "", "Weight variable: 'finalwgt'", "Variance method: jackknife", "JK replicates: 50", "full data n: 2762", "n used: 1131", "", "", "Summary Table:", " c0669 c0560 N WTD_N PCT SE(PCT) MEAN SE(MEAN)", " Yes High level of crime 102 2977.7645 10.772062 1.520821 40.741138 3.735516", " Yes Moderate level of crime 231 6400.6924 23.154502 1.880035 31.575244 4.105128", " Yes Low level of crime 536 15036.3585 54.394021 2.261935 14.311370 1.147264", " Yes Students come from areas with very different levels of crime 150 3228.5879 11.679415 1.143869 25.331130 2.914940", " No High level of crime 5 180.0330 4.634943 2.516350 26.108075 8.521599", " No Moderate level of crime 31 953.3728 24.544545 5.296237 18.111184 4.049076", " No Low level of crime 60 1928.6608 49.653296 6.109887 11.365244 1.800395", " No Students come from areas with very different levels of crime 16 822.1887 21.167216 5.824951 6.252847 1.828095") ssocs_refCorr1 <- c("Method: Pearson", "full data n: 2762", "n used: 2762", "", "Correlation: 0.4155861", "Standard Error: 0.0427424", "Confidence Interval: [0.3180694, 0.5044011]") ssocs_refLM1 <- c("(Intercept) c0532 vioinc16 ", "0.446830271 0.009463642 0.018524504 ") ssocs_refLogit1 <- c(" (Intercept) c0532 ", "-4.509334913 -0.002386365 ") ssocs_refWald <- c("Wald test:", "----------", "H0:", "c0532 = 0", "", "Chi-square test:", "X2 = 0.14, df = 1, P(> X2) = 0.71", "", "F test:", "W = 0.14, df1 = 1, df2 = 60, P(> W) = 0.71")
tcensReg_newton<-function(y, X, a = -Inf, v = NULL, epsilon = 1e-4, tol_val = 1e-6, max_iter = 100, step_max = 10, theta_init = NULL){ i <- 1 if(is.null(theta_init) == TRUE & (a != -Inf & is.null(v) == FALSE)){ cens_mod <- suppressWarnings(tcensReg(y ~ X - 1, v = v)) theta_init <- unname(cens_mod$theta) } else{ lm_mod <- lm(y ~ X - 1) theta_init <- c(unname(coef(lm_mod)), log(unname(summary(lm_mod)$sigma))) } theta <- theta_init p <- length(theta) f_0 <- tcensReg_llike(theta, y, X, a, v) tol_check <- 10 * tol_val null_ll <- f_0 grad_vec <- tcensReg_gradient(theta, y, X, a, v) ihess_matrix <- solve(tcensReg_hess(theta, y, X, a, v)) while(i <= max_iter & sum(abs(grad_vec)) > epsilon & tol_check > tol_val){ theta_pot <- theta - ihess_matrix %*% grad_vec f_1 <- tcensReg_llike(theta_pot, y, X, a, v) step_counter <- 1 if(f_0 < f_1){ theta <- theta_pot }else{ while(f_0 >= f_1 & step_counter < step_max){ theta_pot <- theta - ((1 / 2) ^ step_counter) * ihess_matrix %*% grad_vec f_1 <- tcensReg_llike(theta_pot, y, X, a, v) step_counter <- step_counter + 1 } if(step_counter == step_max){warning("Line search error. Reached max step size.", call. = FALSE)} } theta <- theta_pot tol_check <- abs(f_0 - f_1) f_0 <- f_1 grad_vec <- tcensReg_gradient(theta, y, X, a, v) ihess_matrix <- solve(tcensReg_hess(theta, y, X, a, v)) i <- i + 1 } v_cov <- -ihess_matrix if(i == max_iter + 1) warning("Maximum iterations reached. Interpret results with caution.", call. = FALSE) row.names(theta) <- c(colnames(X),"log_sigma") colnames(theta) <- "Estimate" row.names(v_cov) <- row.names(theta) colnames(v_cov) <- row.names(theta) return(list(theta = theta, iterations = i - 1, initial_ll = null_ll, final_ll = f_0, var_cov = v_cov, method="Newton")) }
context("GScholar") test_that("Can retrieve by dates, keep incomplete", { skip_on_cran() if (httr::http_error("https://scholar.google.com")) skip("Couldn't connect to GS") out <- ReadGS(scholar.id = "vqW0UqUAAAAJ", sort.by.date = TRUE, check.entries = "warn", limit = 1) expect_is(out, "BibEntry") expect_equal(length(out), 1L) }) test_that("check drop incomplete", { skip_on_cran() if (httr::http_error("https://scholar.google.com")) skip("Couldn't connect to GS") Sys.sleep(3) num.dropped <- 0 lim <- 6 frame.number <- sys.nframe() out <- withCallingHandlers(ReadGS(scholar.id = "mXSv_1UAAAAJ", limit = lim, sort.by.date = TRUE, check.entries = "error"), message = function(w){ if (any(grepl("information for entry", w))) assign("num.dropped", num.dropped + 1L, envir = sys.frame(frame.number)) w }) expect_is(out, "BibEntry") if (num.dropped > 0) expect_lt(length(out), lim) }) test_that("check read by cites", { skip_on_cran() if (httr::http_error("https://scholar.google.com")) skip("Couldn't connect to GS") Sys.sleep(5) expect_warning(out <- ReadGS(scholar.id = "CJOHNoQAAAAJ", check.entries = "warn", sort.by.date = FALSE, limit = 10), "Incomplete") expect_is(out, "BibEntry") expect_true(!is.null(out[[1L]]$title)) }) test_that("CreateBibKey works with non-ascii characters", { skip_on_cran() if (httr::http_error("https://scholar.google.com")) skip("Couldn't connect to GS") out <- ReadGS(scholar.id = "KfQwll4AAAAJ", limit = 7, sort.by.date = TRUE) expect_is(out, "BibEntry") })
test_that("multiplying linear terms", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) x2 <- x * 2 expect_equal(x2$coefficient, 2) x2 <- 2 * x expect_equal(x2$coefficient, 2) }) test_that("dividing linear terms by a numeric", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) x2 <- x / 2 expect_equal(x2$coefficient, 1 / 2) }) test_that("unary +/- for linear terms", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) expect_equal(+x, x) x2 <- -x expect_equal(x2$coefficient, -1) }) test_that("addition creates linear functions but the terms are", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) x2 <- x + 2 expect_equal(x2$constant, 2) expect_s3_class(x2, "LinearFunction") x2 <- 2 + x expect_equal(x2$constant, 2) expect_s3_class(x2, "LinearFunction") }) test_that("adding and substracting two linear terms", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) y <- new_linear_term(variable = new_linear_variable(2), coefficient = 5) res <- x + y expect_s3_class(res, "LinearFunction") expect_equal(length(terms_list(res)), 2) expect_equal(res$constant, 0) }) test_that("adding a constant to a linear functions", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) x2 <- (x + 2) + 2 expect_equal(x2$constant, 4) expect_s3_class(x2, "LinearFunction") x2 <- 2 + (2 + x) expect_equal(x2$constant, 4) expect_s3_class(x2, "LinearFunction") }) test_that("substracting a constant to a linear functions", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) x2 <- (x + 2) - 2 expect_equal(x2$constant, 0) expect_s3_class(x2, "LinearFunction") x2 <- 2 - (2 + x) expect_equal(x2$constant, 0) expect_s3_class(x2, "LinearFunction") }) test_that("multiplying a linear function by a function", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) + 1 x2 <- x * 10 expect_equal(x2$constant, 10) expect_equal(terms_list(x2)[[1]]$coefficient, 10) expect_error(x2 <- 10 * x, "bug") }) test_that("dividing a linear function by a function", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) + 1 x2 <- x / 2 expect_equal(x2$constant, 1 / 2) expect_equal(terms_list(x2)[[1]]$coefficient, 1 / 2) }) test_that("adding a linear function and linear terms", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) + 1 y <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) z <- new_linear_term(variable = new_linear_variable(2), coefficient = 1) res <- (x + y) + z expect_equal(length(terms_list(res)), 2) }) test_that("substracting a linear function and linear terms", { x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) + 1 y <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) z <- new_linear_term(variable = new_linear_variable(2), coefficient = 42) res <- (x - y) - z expect_equal(length(terms_list(res)), 2) expect_equal(res$constant, 1) expect_setequal( vapply(terms_list(res), function(x) x$coefficient, numeric(1)), c(0, -42) ) x <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) + 1 y <- new_linear_term(variable = new_linear_variable(1), coefficient = 1) z <- new_linear_term(variable = new_linear_variable(2), coefficient = 42) res <- z - (x - y) expect_equal(length(terms_list(res)), 2) expect_equal(res$constant, -1) expect_setequal( vapply(terms_list(res), function(x) x$coefficient, numeric(1)), c(0, 42) ) }) test_that("unary addition/substraction for LinearFunctions", { y <- -(new_linear_term(variable = new_linear_variable(1), coefficient = 1) + 1) z <- +(new_linear_term(variable = new_linear_variable(1), coefficient = 1) + 1) expect_equal(y$constant, -1) expect_equal(terms_list(y)[["1"]]$coefficient, -1) expect_equal(z$constant, 1) expect_equal(terms_list(z)[["1"]]$coefficient, 1) })
rlongonly <- function( m, n=2, k=n, segments=NULL, x.t=1, x.l=0, x.u=x.t, max.iter=1000 ) { if ( missing( m ) ) stop( "Argument 'm' is missing" ) if ( m <= 0 ) stop( "Argument 'm' is not positive" ) by.case <- function( case, number, size, theseSegments, total, lower, upper, iterations ) { return( random.longonly( n=number, k=size, segments=theseSegments, x.t=total, x.l=lower, x.u=upper, max.iter=iterations ) ) } weights <- t( sapply( 1:m, by.case, n, k, segments, x.t, x.l, x.u, max.iter ) ) if ( n == 1 ) { weights <- t( weights ) } return( weights ) }
library("testthat") library("lme4") testLevel <- if (nzchar(s <- Sys.getenv("LME4_TEST_LEVEL"))) as.numeric(s) else 1 if (testLevel>1) { context("glmer.nb") test_that("basic", { set.seed(101) dd <- expand.grid(f1 = factor(1:3), f2 = LETTERS[1:2], g=1:9, rep=1:15, KEEP.OUT.ATTRS=FALSE) mu <- 5*(-4 + with(dd, as.integer(f1) + 4*as.numeric(f2))) dd$y <- rnbinom(nrow(dd), mu = mu, size = 0.5) require("MASS") m.glm <- glm.nb(y ~ f1*f2, data=dd) m.nb <- glmer.nb(y ~ f1*f2 + (1|g), data=dd) expect_equal(unname(fixef(m.nb)), c(1.65008, 0.76715, 1.01147, 1.51241, -0.61506, -0.6104), tol=1e-5) expect_is(m.nb,"glmerMod") expect_true(grepl("negative\\.binomial\\(theta *= *[0-9]*\\.[0-9]+\\)", deparse(m.nb@call$family))) expect_null(m.nb@call$verbose) expect_equal(fixef(m.nb), coef (m.glm), tol=1e-5) m.nb1 <- glmer(Reaction > 250 ~ Days + (1|Subject), data = sleepstudy, family=poisson) m.nb2 <- glmer.nb(y ~ f1*f2 + (1|g), data=dd, subset = g!=8) expect_equal(unname(ngrps(m.nb2)),8) expect_equal(unname(fixef(m.nb2)), c(1.629240234, 0.76028840, 1.008629913, 1.6172507, -0.6814426, -0.66468330),tol=1e-5) old.opts <- options(warning=2) m.nb2 <- glmer.nb(round(Reaction) ~ Days + (1|Subject), data = sleepstudy, subset = Subject != 370, control=glmerControl(check.conv.grad="ignore")) expect_is(m.nb2,"glmerMod") options(old.opts) m.nb3 <- glmer.nb(y~f1+(1|g), data=dd, contrasts=list(f1=contr.sum)) expect_equal(fixef(m.nb3), structure(c(2.93061, -0.29779, 0.02586), .Names = c("(Intercept)", "f11", "f12")),tol=1e-5) m.nb4 <- glmer.nb(y~f1+(1|g), dd) expect_equal(names(m.nb4@call),c("","formula","data","family")) m.nb2 <- glmer.nb(y~f1+(1|g), data=dd, offset=rep(0,nrow(dd))) }) }
check_genderdata_package <- function() { genderdata_version <- "0.6.0" if (!requireNamespace("genderdata", quietly = TRUE)) { message("The genderdata package needs to be installed.") install_genderdata_package() } else if (utils::packageVersion("genderdata") < genderdata_version) { message("The genderdata package needs to be updated.") install_genderdata_package() } } install_genderdata_package <- function() { instructions <- paste(" Please try installing the package for yourself", "using the following command: \n", " remotes::install_github(\"lmullen/genderdata\")\n") error_func <- function(e) { message(e) cat(paste("\nFailed to install the genderdata package.\n", instructions)) } if (interactive()) { input <- utils::menu(c("Yes", "No"), title = "Install the genderdata package?") if (input == 1) { message("Installing the genderdata package.") tryCatch(remotes::install_github("lmullen/[email protected]"), error = error_func, warning = error_func) } else { stop(paste("The genderdata package is necessary for that method.\n", instructions)) } } else { stop(paste("Failed to install the genderdata package.\n", instructions)) } }
generator_funs$clone_method <- function(deep = FALSE) { remap_func_envs <- function(objs, old_new_env_pairs) { lapply(objs, function(x) { if (is.function(x)) { func_env <- environment(x) for (i in seq_along(old_new_env_pairs)) { if (identical(func_env, old_new_env_pairs[[i]]$old)) { environment(x) <- old_new_env_pairs[[i]]$new break } } } x }) } list2env2 <- function(x, envir = NULL, parent = emptyenv(), hash = (length(x) > 100), size = max(29L, length(x)), empty_to_null = TRUE) { if (is.null(envir)) { envir <- new.env(hash = hash, parent = parent, size = size) } if (length(x) == 0) { if (empty_to_null) return(NULL) else return(envir) } list2env(x, envir) } old <- list( list( enclosing = .subset2(self, ".__enclos_env__"), binding = self, private = NULL ) ) if (!is.environment(old[[1]]$enclosing)) { stop("clone() must be called from an R6 object.") } old[[1]]$private <- old[[1]]$enclosing$private has_private <- !is.null(old[[1]]$private) portable <- !identical(old[[1]]$binding, old[[1]]$enclosing) i <- 1 while (TRUE) { if (is.null(old[[i]]$enclosing$super)) { break } old[[i+1]] <- list( binding = old[[i]]$enclosing$super, enclosing = old[[i]]$enclosing$super$.__enclos_env__ ) i <- i + 1 } if (deep) { if (has_private && is.function(old[[1]]$private$deep_clone)) { deep_clone <- old[[1]]$private$deep_clone } else { deep_clone <- function(name, value) { if (is.environment(value) && !is.null(value$`.__enclos_env__`)) { return(value$clone(deep = TRUE)) } value } } } old_1_binding <- old[[1]]$binding old_1_private <- old[[1]]$private make_first_new_slice <- function(old_slice, portable) { new_slice <- list( enclosing = NULL, binding = NULL ) has_private <- !is.null(old_slice$private) if (portable) { enclosing_parent <- parent.env(old_slice$enclosing) binding_parent <- emptyenv() if (has_private) { private_parent <- emptyenv() new_slice$private <- new.env(private_parent, hash = FALSE) } new_slice$binding <- new.env(binding_parent, hash = FALSE) new_slice$enclosing <- new.env(enclosing_parent, hash = FALSE) } else { if (has_private) { private_parent <- parent.env(old_slice$private) new_slice$private <- new.env(private_parent, hash = FALSE) binding_parent <- new_slice$private new_slice$binding <- new.env(binding_parent, hash = FALSE) } else { binding_parent <- parent.env(old_slice$binding) new_slice$binding <- new.env(binding_parent, hash = FALSE) } new_slice$enclosing <- new_slice$binding } new_slice$enclosing$self <- new_slice$binding if (has_private) { new_slice$enclosing$private <- new_slice$private } new_slice$binding$.__enclos_env__ <- new_slice$enclosing new_slice } make_new_slice <- function(old_slice, self, private, enclosing_parent) { enclosing <- new.env(enclosing_parent, hash = FALSE) binding <- new.env(emptyenv(), hash = FALSE) enclosing$self <- self if (!is.null(private)) { enclosing$private <- private } binding$.__enclos_env__ <- enclosing list( enclosing = enclosing, binding = binding ) } new <- list( make_first_new_slice(old[[1]], portable) ) new_1_binding <- new[[1]]$binding new_1_private <- new[[1]]$private new_1_enclosing <- new[[1]]$enclosing if (length(old) > 1) { for (i in seq.int(2, length(old))) { if (portable) { enclosing_parent <- parent.env(old[[i]]$enclosing) } else { enclosing_parent <- new_1_enclosing } new[[i]] <- make_new_slice( old[[i]], new_1_binding, new_1_private, enclosing_parent ) } for (i in seq.int(1, length(old)-1)) { new[[i]]$enclosing$super <- new[[i+1]]$binding } } copy_slice <- function(old_slice, new_slice, old_new_enclosing_pairs, first_slice = FALSE) { binding_names <- ls(old_slice$binding, all.names = TRUE) if (!is.null(old_slice$enclosing$`.__active__`)) { binding_names <- setdiff(binding_names, names(old_slice$enclosing$`.__active__`)) } binding_copies <- mget(binding_names, envir = old_slice$binding) keep_idx <- !(names(binding_copies) %in% c("self", "private", "super", ".__enclos_env__")) binding_copies <- binding_copies[keep_idx] binding_copies <- remap_func_envs(binding_copies, old_new_enclosing_pairs) if (deep) { binding_copies <- mapply( deep_clone, names(binding_copies), binding_copies, SIMPLIFY = FALSE ) } list2env2(binding_copies, new_slice$binding) if (!is.null(old_slice$enclosing$`.__active__`)) { active_copies <- remap_func_envs(old_slice$enclosing$`.__active__`, old_new_enclosing_pairs) for (name in names(active_copies)) { makeActiveBinding(name, active_copies[[name]], new_slice$binding) } new_slice$enclosing$`.__active__` <- active_copies } if (!is.null(old_slice$private)) { private_copies <- as.list.environment(old_slice$private, all.names = TRUE) if (deep) { private_copies <- mapply( deep_clone, names(private_copies), private_copies, SIMPLIFY = FALSE ) } private_copies <- remap_func_envs(private_copies, old_new_enclosing_pairs) list2env2(private_copies, new_slice$private) } if (first_slice) { method_envs <- lapply(old_new_enclosing_pairs, `[[`, "new") is_method <- function(f, method_envs) { env <- environment(f) for (i in seq_along(method_envs)) { if (identical(env, method_envs[[i]])) { return(TRUE) } } FALSE } for (name in names(binding_copies)) { if (is_method(new_slice$binding[[name]], method_envs)) lockBinding(name, new_slice$binding) } if (has_private) { for (name in names(private_copies)) { if (is_method(new_slice$private[[name]], method_envs)) lockBinding(name, new_slice$private) } } } } old_new_enclosing_pairs <- list() for (i in seq_along(old)) { old_new_enclosing_pairs[[i]] <- list( old = old[[i]]$enclosing, new = new[[i]]$enclosing ) } for (i in seq_along(old)) { copy_slice( old[[i]], new[[i]], old_new_enclosing_pairs[seq.int(i, length(old))], (i == 1) ) } if (environmentIsLocked(old_1_binding)) { lockEnvironment(new_1_binding) } if (has_private && environmentIsLocked(old_1_private)) { lockEnvironment(new_1_private) } if (is.function(.subset2(new_1_binding, "finalize"))) { finalizer_wrapper <- function(e) { .subset2(e, "finalize")() } environment(finalizer_wrapper) <- baseenv() reg.finalizer( new_1_binding, finalizer_wrapper, onexit = TRUE ) } if (has_private) { if (is.function(.subset2(new_1_private, "finalize"))) { finalizer_wrapper <- function(e) { .subset2(e, ".__enclos_env__")$private$finalize() } environment(finalizer_wrapper) <- baseenv() reg.finalizer( new_1_binding, finalizer_wrapper, onexit = TRUE ) } } class(new_1_binding) <- class(old_1_binding) new_1_binding }
long2mitml.list <- function(x, split, exclude = NULL){ i1 <- which(colnames(x) == split) f <- x[,i1] if(!is.null(exclude)){ i2 <- if(length(exclude) == 1) f != exclude else !f %in% exclude x <- x[i2, , drop = F] f <- f[i2] if(is.factor(f)) f <- droplevels(f) } out <- split(x[, -i1, drop = F], f = f) names(out) <- NULL class(out) <- c("mitml.list", "list") return(out) }
answer = 42
knitr::opts_chunk$set( collapse = TRUE, comment = " fig.path = "man/figures/README-", out.width = "100%", fig.width = 16 / 2, fig.height = 9 / 2, message = FALSE, warning = FALSE, cache = FALSE ) set.seed(76) library(ggplot2) library(dplyr) library(tidyr) library(stringr) library(forestecology) library(patchwork) library(blockCV) filter <- dplyr::filter census_1_ex ggplot() + geom_sf( data = census_1_ex %>% sf::st_as_sf(coords = c("gx", "gy")), aes(col = sp, size = dbh) ) growth_ex <- compute_growth( census_1 = census_1_ex %>% mutate(sp = to_any_case(sp) %>% factor()), census_2 = census_2_ex %>% filter(!str_detect(codes, "R")) %>% mutate(sp = to_any_case(sp) %>% factor()), id = "ID" ) %>% mutate(basal_area = 0.0001 * pi * (dbh1 / 2)^2) comp_dist <- 1 growth_ex <- growth_ex %>% add_buffer_variable(size = comp_dist, region = study_region_ex) buffer_region <- study_region_ex %>% compute_buffer_region(size = comp_dist) base_plot <- ggplot() + geom_sf(data = study_region_ex, fill = "transparent") + geom_sf(data = buffer_region, fill = "transparent", linetype = "dashed") base_plot + geom_sf(data = growth_ex, aes(col = buffer), size = 2) fold1 <- rbind(c(0, 0), c(5, 0), c(5, 5), c(0, 5), c(0, 0)) fold2 <- rbind(c(5, 0), c(10, 0), c(10, 5), c(5, 5), c(5, 0)) blocks_ex <- bind_rows( sf_polygon(fold1), sf_polygon(fold2) ) %>% mutate(folds = c(1, 2) %>% factor()) SpatialBlock_ex <- blockCV::spatialBlock( speciesData = growth_ex, k = 2, selection = "systematic", blocks = blocks_ex, showBlocks = FALSE, verbose = FALSE ) growth_ex <- growth_ex %>% mutate(foldID = SpatialBlock_ex$foldID %>% factor()) base_plot + geom_sf(data = growth_ex, aes(col = buffer, shape = foldID), size = 2) + geom_sf(data = blocks_ex, fill = "transparent", col = "orange") focal_vs_comp_ex <- growth_ex %>% create_focal_vs_comp(comp_dist, blocks = blocks_ex, id = "ID", comp_x_var = "basal_area") focal_vs_comp_ex focal_vs_comp_ex %>% unnest(cols = "comp") comp_bayes_lm_ex <- focal_vs_comp_ex %>% comp_bayes_lm(prior_param = NULL) comp_bayes_lm_ex p1 <- autoplot(comp_bayes_lm_ex, type = "intercepts") p2 <- autoplot(comp_bayes_lm_ex, type = "dbh_slopes") p3 <- autoplot(comp_bayes_lm_ex, type = "competition") (p1 | p2) / p3 focal_vs_comp_ex <- focal_vs_comp_ex %>% mutate(growth_hat = predict(comp_bayes_lm_ex, newdata = focal_vs_comp_ex)) focal_vs_comp_ex focal_vs_comp_ex %>% rmse(truth = growth, estimate = growth_hat) %>% pull(.estimate) focal_vs_comp_ex <- focal_vs_comp_ex %>% run_cv(comp_dist = comp_dist, blocks = blocks_ex) focal_vs_comp_ex %>% rmse(truth = growth, estimate = growth_hat) %>% pull(.estimate)
context("Lun2Params") params <- newLun2Params() test_that("printing works", { expect_output(show(params), "Lun2Params") }) test_that("nCells checks work", { expect_error(setParam(params, "nCells", 1), "nCells cannot be set directly, set cell.plates instead") expect_error(setParam(params, "nPlates", 1), "nPlates cannot be set directly, set cell.plates instead") }) test_that("gene.params checks work", { expect_error(setParam(params, "gene.params", data.frame(A = 1, B = 1)), "gene.params: Incorrect column names") expect_error(setParam(params, "gene.params", data.frame(Mean = 1, Disp = "a")), "gene.params: May only contain the following types: \\{numeric\\}") })
team_advanced_stats <- function(df1,df2,m){ minutes <- (df2[1,2]/df2[1,1])/5 minutes <- trunc(minutes) tm_poss <- df1[1,4] - df1[1,15] / (df1[1,15] + df2[1,16]) * (df1[1,4] - df1[1,3]) * 1.07 + df1[1,21] + 0.4 * df1[1,13] opp_poss <- df2[1,4] - df2[1,15] / (df2[1,15] + df1[1,16]) * (df2[1,4] - df2[1,3]) * 1.07 + df2[1,21] + 0.4 * df2[1,13] pace <- round(m * ((tm_poss + opp_poss) / (2 * (df1[1,2] / 5))),2) stats <- cbind(df1[1],df1[2]) offrtg <- round(100 * (df1[1,23]/tm_poss),2) defrtg <- round(100 * (df2[1,23]/opp_poss),2) netrtg <- round(offrtg - defrtg,2) TPAr <- round(df1[1,7] / df1[1,4],3) FTr <- round(df1[1,13] / df1[1,4],3) ts <- round(df1[1,23] / (2 * (df1[1,4] + 0.44 * df1[1,13])),3) efg <- round((df1[1,3] + 0.5 * df1[1,6]) / df1[1,4],3) ast <- round(df1[1,18] / df1[1,3],3) ast_to <- round(df1[1,18] / df1[1,21],2) ast_ratio <- round((df1[1,18] * 100) / tm_poss,2) orb <- round(df1[1,15] / (df1[1,15] + df2[1,16]),3) fta_rate <- round(df1[1,12] / df1[1,4],3) tov <- round(df1[1,21] / (df1[1,4] +0.44 * df1[1,13] + df1[1,21]),3) eFG_opp <- round((df2[1,3] + 0.5 * df2[1,6]) / df2[1,4],3) tov_opp <- round(df2[1,21] / (df2[1,4] +0.44 * df2[1,13] + df2[1,21]),3) offRB_opp <- round(df1[1,16] / (df1[1,16] + df2[1,15]),3) fta_rate_opp <- round(df2[1,12] / df2[1,4],3) stats <- cbind(stats,offrtg,defrtg,netrtg,pace,TPAr,FTr,ts,efg,ast,ast_to,ast_ratio,orb,tov,fta_rate,eFG_opp,tov_opp,offRB_opp,fta_rate_opp) names(stats) = c("G","MP","ORtg","DRtg",'NetRtg','Pace',"3PAr","FTr",'TS%','eFG%',"AST%","AST/TO","ASTRATIO%","ORB%","TOV%","FT/FGA","Opp eFG%","Opp TOV%","DRB%","Opp FTr") return(stats) }
"print.floated" <- function(x, digits=max(3, getOption("digits") - 3), level = 0.95, ...) { K <- qnorm((1+level)/2) n <- length(x$coef) mat <- matrix("", n, 4) ci.mat <- matrix(0, n, 2) cm <- x$coefmat cat("Floating treatment contrasts for factor ", x$factor, "\n\n") mat[,1] <- names(x$coef) se <- sqrt(x$var) ci.mat[, 1] <- x$coef - K * se ci.mat[, 2] <- x$coef + K * se mat[,2] <- format(x$coef, digits=digits) mat[,3] <- format(se, digits=digits) ci.mat <- format(ci.mat, digits=digits) mat[,4] <- paste("(", ci.mat[,1], ",", ci.mat[,2], ")", sep="") dimnames(mat) <- list(rep("", n), c("Level", "Coefficient", "Std. Error", "95% Floating CI")) print(mat, quote=FALSE) cat("\nError limits over all contrasts: ", paste(format(c(0.99, x$limits), digits=2)[-1], collapse=","),"\n") }
shiny_oursins <- function(data,fondMaille,fondContour,fondSuppl=NULL,idDataDepart,idDataArrivee,varFlux,decalageAllerRetour=0,decalageCentroid=0,emprise="FRM",fondEtranger=NULL) { options("stringsAsFactors"=FALSE) msg_error1<-msg_error2<-msg_error3<-msg_error4<-msg_error5<-msg_error6<-msg_error7<-msg_error8<-msg_error9<-msg_error10<-msg_error11<-msg_error12<-msg_error13<-msg_error14<-msg_error15<-msg_error16<-msg_error17<-msg_error18<-msg_error19<-msg_error20 <- NULL if(any(class(data)!="data.frame")) msg_error1 <- "Les donnees doivent etre dans un data.frame / " if(any(!any(class(fondMaille) %in% "sf"),!any(class(fondMaille) %in% "data.frame"))) msg_error2 <- "Le fond de maille doit etre un objet sf / " if(any(!any(class(fondContour) %in% "sf"),!any(class(fondContour) %in% "data.frame"))) msg_error3 <- "Le fond de contour doit etre un objet sf / " if(!is.null(fondSuppl)) if(any(!any(class(fondSuppl) %in% "sf"),!any(class(fondSuppl) %in% "data.frame"))) msg_error4 <- "Le fond supplementaire doit etre un objet sf / " if(any(class(idDataDepart)!="character")) msg_error5 <- "Le nom de la variable de depart doit etre de type caractere / " if(any(class(idDataArrivee)!="character")) msg_error6 <- "Le nom de la variable d'arrivee doit etre de type caractere / " if(any(class(varFlux)!="character")) msg_error7 <- "Le nom de la variable doit etre de type caractere / " if(any(class(decalageAllerRetour)!="numeric")) msg_error8 <- "La variable decalageAllerRetour doit etre de type numerique / " if(any(class(decalageCentroid)!="numeric")) msg_error9 <- "La variable decalageCentroid doit etre de type numerique / " if(any(class(emprise)!="character")) msg_error10 <- "La valeur doit etre de type caractere ('FRM', '971', '972', '973', '974', '976' ou '999') / " if(length(names(data))<3) msg_error11 <- "Le tableau des donnees n'est pas conforme. Il doit contenir au minimum une variable identifiant de depart, une variable identifiant d'arrivee et la variable a representer / " if(length(names(fondMaille))<3) msg_error12 <- "Le fond de maille n'est pas conforme. La table doit contenir au minimum une variable identifiant, une variable libelle et la geometry / " if(length(names(fondContour))<3) msg_error13 <- "Le fond de contour n'est pas conforme. La table doit contenir au minimum une variable identifiant, une variable libelle et la geometry / " if(!is.null(fondSuppl)) if(length(names(fondSuppl))<3) msg_error14 <- "Le fond supplementaire n'est pas conforme. La table doit contenir au minimum une variable identifiant, une variable libelle et la geometry / " if(!any(names(data) %in% idDataDepart)) msg_error15 <- "La variable identifiant de depart n'existe pas dans la table des donnees / " if(!any(names(data) %in% idDataArrivee)) msg_error16 <- "La variable identifiant d'arrivee n'existe pas dans la table des donnees / " if(!any(names(data) %in% varFlux)) msg_error17 <- "La variable a representer n'existe pas dans la table des donnees / " if(!emprise %in% c("FRM","971","972","973","974","976","999")) msg_error18 <- "La variable emprise doit etre 'FRM', '971', '972', '973', '974', '976' ou '999' / " if(!is.null(fondEtranger)) if(any(!any(class(fondEtranger) %in% "sf"),!any(class(fondEtranger) %in% "data.frame"))) msg_error19 <- "Le fond etranger doit etre un objet sf / " if(!is.null(fondEtranger)) if(length(names(fondEtranger))<3) msg_error20 <- "Le fond etranger n'est pas conforme. La table doit contenir au minimum une variable identifiant, une variable libelle et la geometry / " if(any(!is.null(msg_error1),!is.null(msg_error2),!is.null(msg_error3),!is.null(msg_error4), !is.null(msg_error5),!is.null(msg_error6),!is.null(msg_error7),!is.null(msg_error8), !is.null(msg_error10),!is.null(msg_error11),!is.null(msg_error12),!is.null(msg_error13), !is.null(msg_error14),!is.null(msg_error15),!is.null(msg_error16),!is.null(msg_error17), !is.null(msg_error18),!is.null(msg_error19),!is.null(msg_error20))) { stop(simpleError(paste0(msg_error1,msg_error2,msg_error3,msg_error4,msg_error5,msg_error6,msg_error7,msg_error8, msg_error10,msg_error11,msg_error12,msg_error13,msg_error14,msg_error15,msg_error16,msg_error17,msg_error18,msg_error19,msg_error20))) } nb_up <- reactiveValues(a=0) nb_down <- reactiveValues(a=0) ordre_analyse <- reactiveValues(a=1,b=2) insert_save <- reactiveValues(a=0) remove_carte <- reactiveValues(a=0) liste_fonds <- reactiveValues(a=c("analyse","maille","contour")) m_save_ou <- reactiveValues(a=0) flux_min <- reactiveValues(a=100) distance_max <- reactiveValues(a=300) flux_majeur <- reactiveValues(a=10) erreur_maille <- reactiveValues(a=FALSE) sourc <- "Source : Insee" names(data)[names(data)==idDataDepart] <- "CODE1" names(data)[names(data)==idDataArrivee] <- "CODE2" names(fondMaille)[1] <- "CODE" names(fondMaille)[2] <- "LIBELLE" names(fondContour)[1] <- "CODE" names(fondContour)[2] <- "LIBELLE" epsg_etranger <- NULL if(!is.null(fondEtranger)) { names(fondEtranger)[1] <- "CODE" names(fondEtranger)[2] <- "LIBGEO" fondEtranger$LIBGEO<-iconv(fondEtranger$LIBGEO,"latin1","utf8") if(substr(st_crs(fondEtranger)[1]$input,1,5) == "EPSG:") { epsg_etranger <- substr(st_crs(fondEtranger)[1]$input,6,9) }else { epsg_etranger <- st_crs(fondEtranger)[1]$input } if(is.na(epsg_etranger) | epsg_etranger=="4326") { epsg_etranger <- "3395" } } if(!is.null(fondSuppl)) { names(fondSuppl)[1] <- "CODE" names(fondSuppl)[2] <- "LIBELLE" fondSuppl$LIBELLE<-iconv(fondSuppl$LIBELLE,"latin1","utf8") } fondMaille$LIBELLE<-iconv(fondMaille$LIBELLE,"latin1","utf8") fondContour$LIBELLE<-iconv(fondContour$LIBELLE,"latin1","utf8") ui <- navbarPage("OCEANIS", id="menu", theme = shinytheme("superhero"), tabPanel("Carte",value="carte", sidebarLayout( sidebarPanel(width = 3, style = "overflow-y:scroll; min-height: 1000px; max-height: 1000px", h4(HTML("<b><font color= uiOutput("variable_flux_ou"), tags$hr(style="border: 5px solid h4(HTML("<b><font color= fluidRow( column(width=9, offset=0.5, uiOutput("ordre_fonds_ou") ), column(width=1, br(), br(), htmlOutput("monter_fond_ou", inline=FALSE), htmlOutput("descendre_fond_ou", inline=FALSE) ) ), uiOutput("ajout_territoire_ou"), uiOutput("ajout_reg_ou"), uiOutput("ajout_dep_ou"), tags$hr(style="border: 5px solid h4(HTML("<b><font color= uiOutput("flux_min_ou"), uiOutput("distance_max_ou"), uiOutput("flux_majeur_ou"), uiOutput("epaisseur_trait_ou"), uiOutput("decalage_aller_retour_ou"), uiOutput("decalage_centroid_ou"), tags$hr(style="border: 5px solid h4(HTML("<b><font color= uiOutput("save_carte_ou"), br(), tags$div(class="dropup", HTML('<button class="btn btn-primary dropdown-toggle" type="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Exporter en projet Qgis <span class="caret"></span> </button>'), tags$ul(class="dropdown-menu", wellPanel( style="background: h4("Export de la carte en projet Qgis"), br(), uiOutput("sortie_qgis_ou"), br(), uiOutput("titre1_qgis_ou"), uiOutput("titre2_qgis_ou"), uiOutput("source_qgis_ou"), tags$head(tags$style(HTML(' uiOutput("export_qgis_ou") ) ) ), br(), uiOutput("aide_image_ou"), br() ), mainPanel( tags$head( tags$style(HTML(".leaflet-container { background: ), tabsetPanel(id="onglets_ou", tabPanel(title=HTML("<b>Carte</b>"),value="carte", leafletOutput("mymap_ou",width="112%",height = 950) ), tabPanel(title=HTML(paste0("<b>Donn","\u00e9","es</b>")),value="donnees", h5("S\u00e9lectionnez une ou plusieurs lignes pour ensuite les visualiser sur la carte."), DT::dataTableOutput("mydonnees_ou",width="112%",height = 950)), tabPanel(title=HTML("<b>Maille</b>"),value="maille", h5("S\u00e9lectionnez une ou plusieurs lignes pour ensuite les visualiser sur la carte."), DT::dataTableOutput("mymaille_ou",width="112%",height = 950)), tabPanel(title=HTML("<b>Contour</b>"),value="contour", h5("S\u00e9lectionnez une ou plusieurs lignes pour ensuite les visualiser sur la carte."), DT::dataTableOutput("mycontour_ou",width="112%",height = 950)) ) ) ) ) ) server <- function(input, output, session) { observe({ output$variable_flux_ou <- renderUI({ selectInput("variable_flux_ou_id", label=h5("Variable des flux (en volume)"), choices = varFlux, selected = varFlux) }) output$ordre_fonds_ou <- renderUI({ selectInput("ordre_fonds_ou_id", label=h5("Modifier l'ordre des fonds"), choices = liste_fonds$a, multiple=TRUE, selectize=FALSE, selected = "analyse") }) output$monter_fond_ou <- renderUI({ actionButton("monter_fond_ou_id", label="", icon=icon("arrow-up")) }) output$descendre_fond_ou <- renderUI({ actionButton("descendre_fond_ou_id", label="", icon=icon("arrow-down")) }) output$ajout_territoire_ou <- renderUI({ checkboxInput("ajout_territoire_ou_id", label = "Afficher le fond des territoires", value = if(is.null(fondSuppl)) FALSE else TRUE) }) output$ajout_reg_ou <- renderUI({ checkboxInput("ajout_reg_ou_id", label = "Afficher le fond des r\u00e9gions", value = FALSE) }) output$ajout_dep_ou <- renderUI({ checkboxInput("ajout_dep_ou_id", label = "Afficher le fond des d\u00e9partements", value = FALSE) }) output$flux_min_ou <- renderUI({ numericInput("flux_min_ou_id", label = h5("Seuil de flux minimal"), value=flux_min$a, step=10) }) output$distance_max_ou <- renderUI({ numericInput("distance_max_ou_id", label = h5("Seuil de distance maximale (km)"), value=distance_max$a, step=10) }) output$flux_majeur_ou <- renderUI({ numericInput("flux_majeur_ou_id", label = h5("Nombre de flux majeurs"), value=flux_majeur$a, step=1) }) output$epaisseur_trait_ou <- renderUI({ sliderInput("epaisseur_trait_ou_id", label = h5(paste0("Epaisseur des traits")), value=2, min=1, max=5, step=1, ticks = TRUE) }) output$decalage_aller_retour_ou <- renderUI({ numericInput("decalage_aller_retour_ou_id", label = h5(paste0("D","\u00e9","calage des lignes allers-retours (km)")), value=decalageAllerRetour, step=1) }) output$decalage_centroid_ou <- renderUI({ numericInput("decalage_centroid_ou_id", label = h5(paste0("D","\u00e9","calage des lignes du centroid (km)")), value=decalageCentroid, step=1) }) output$save_carte_ou <- renderUI({ actionButton("save_carte_ou_id", label=HTML("<font size=3>Sauvegarder la carte dans un onglet</font>"), style="color: }) output$entrees_qgis_ou <- renderUI({ actionButton("entrees_qgis_ou_id", label="Exporter en projet Qgis") }) output$sortie_qgis_ou <- renderUI({ tags$div(class="input-group", HTML('<input type="text" id="sortie_qgis_ou_id" class="form-control" placeholder="Nom du projet" aria-describedby="sortie_qgis_ou_id"> <span class="input-group-addon" id="sortie_qgis_ou_id">.qgs</span>')) }) output$titre1_qgis_ou <- renderUI({ textInput("titre1_qgis_ou_id", label = h5("Titre informatif"), value = "", placeholder= "Facultatif") }) output$titre2_qgis_ou <- renderUI({ textInput("titre2_qgis_ou_id", label = h5("Titre descriptif"), value = "", placeholder= "Facultatif") }) output$source_qgis_ou <- renderUI({ textInput("source_qgis_ou_id", label = h5("Source de la carte"), value = sourc) }) output$aide_image_ou <- renderUI({ tags$div(class="dropup", HTML(paste0('<button class="btn btn-primary dropdown-toggle" type="button" data-toggle="dropdown"> <i class="fa fa-book fa-fw" aria-hidden="true"></i> Proc','\u00e9','dure pour capture d\'','\u00e9','cran <span class="caret"></span> </button>')), tags$ul(class="dropdown-menu", wellPanel( style="background: div( HTML("<font size=2>Deux possibilit\u00e9s :</font>"), br(), br(), strong(HTML("<font size=3>Par l'Outil Capture</font>")), br(), HTML("<font size=2>1- Ouvrir un logiciel de capture (Outil Capture de Windows par exemple).</font>"), br(), HTML(paste0("<font size=2>2- S\u00e9lectionner la zone \u00e0 capturer.</font>")), br(), HTML("<font size=2>3- Enregistrer l'image ou copier la dans le presse-papier.</font>"), br(), br(), strong(HTML(paste0("<font size=3>Par impression d'","\u00e9","cran</font>"))), br(), HTML("<font size=2>1- Appuyer sur la touche clavier \"Impr ecran\".</font>"), br(), HTML("<font size=2>2- Ouvrir un logiciel de retouche image (Paint par exemple).</font>"), br(), HTML("<font size=2>3- Coller l'image et l'enregistrer au format voulu (.jpg, .png, .bmp).</font>") ) ) ) ) }) }) observeEvent(list(input$monter_fond_ou_id,input$descendre_fond_ou_id),{ if(as.numeric(input$monter_fond_ou_id)==0 & as.numeric(input$descendre_fond_ou_id)==0) return(NULL) ordre <- c() if(as.numeric(input$monter_fond_ou_id)>nb_up$a) { ordre <- c(2,3) nb_up$a <- nb_up$a+1 } if(as.numeric(input$descendre_fond_ou_id)>nb_down$a) { ordre <- c(1,2) nb_down$a <- nb_down$a+1 } if(is.null(input$ordre_fonds_ou_id)) pos_select <- 0 else pos_select <- which(liste_fonds$a==input$ordre_fonds_ou_id) if(pos_select>0) { if(pos_select==ordre[1]) liste_fonds$a <- liste_fonds$a[c(2,1,3)] if(pos_select==ordre[2]) liste_fonds$a <- liste_fonds$a[c(1,3,2)] updateSelectInput(session, "ordre_fonds_ou_id", choices = liste_fonds$a, selected = input$ordre_fonds_ou_id ) } },ignoreInit = TRUE) flux_min_ou <- reactive({ if(is.null(input$flux_min_ou_id)) return(flux_min$a) return(input$flux_min_ou_id) }) distance_max_ou <- reactive({ if(is.null(input$distance_max_ou_id)) return(distance_max$a) return(input$distance_max_ou_id) }) flux_majeur_ou <- reactive({ if(is.null(input$flux_majeur_ou_id)) return(flux_majeur$a) return(input$flux_majeur_ou_id) }) output$export_qgis_ou <- renderUI({ downloadButton("downloadProjetQgis_ou", label="Exporter") }) output$downloadProjetQgis_ou <- downloadHandler(contentType = "zip", filename = function(){ paste0(input$sortie_qgis_ou_id,".zip") }, content = function(file){ owd <- setwd(tempdir()) on.exit(setwd(owd)) rep_sortie <- dirname(file) dir.create("layers",showWarnings = F) files <- EXPORT_PROJET_QGIS_OU(file) zip::zip(zipfile = paste0("./",basename(file)), files = files, mode = "cherry-pick") } ) EXPORT_PROJET_QGIS_OU <- function(file) { showModal(modalDialog(HTML("<i class=\"fa fa-spinner fa-spin fa-2x fa-fw\"></i> <font size=+1>Export du projet Qgis en cours...</font> "), size="m", footer=NULL, style = "color: sortie <- input$sortie_qgis_ou_id files <- c("layers", paste0(sortie,".qgs")) rep_sortie <- dirname(file) fond_flux <- analyse_apres_filtre_ou()[[1]] fond_flux <- st_transform(fond_flux, crs= as.numeric(code_epsg_ou())) fond_maille <- st_transform(fondMaille, crs= as.numeric(code_epsg_ou())) fond_contour <- st_transform(fondContour, crs= as.numeric(code_epsg_ou())) if(!is.null(fondSuppl) && input$ajout_territoire_ou_id) fond_territoire <- st_transform(fond_territoire_ou(), crs= as.numeric(code_epsg_ou())) if(input$ajout_dep_ou_id) fond_departement <- st_transform(fond_departement_ou(), crs= as.numeric(code_epsg_ou())) if(input$ajout_reg_ou_id) fond_region <- st_transform(fond_region_ou(), crs= as.numeric(code_epsg_ou())) fond_france <- st_transform(fond_habillage_ou()[[1]], crs= as.numeric(code_epsg_ou())) fond_pays <- st_transform(fond_habillage_ou()[[2]], crs= as.numeric(code_epsg_ou())) suppressWarnings(st_write(fond_flux, paste0(rep_sortie,"/layers/fond_flux.shp"), delete_dsn = TRUE, quiet = TRUE)) suppressWarnings(st_write(fond_maille, paste0(rep_sortie,"/layers/fond_maille.shp"), delete_dsn = TRUE, quiet = TRUE)) suppressWarnings(st_write(fond_contour,paste0(rep_sortie,"/layers/fond_contour.shp"), delete_dsn = TRUE, quiet = TRUE)) if(exists("fond_territoire")) if(!is.null(fond_territoire)) suppressWarnings(st_write(fond_territoire, paste0(rep_sortie,"/layers/fond_territoire.shp"), delete_dsn = TRUE, quiet = TRUE)) if(exists("fond_departement")) if(!is.null(fond_departement)) suppressWarnings(st_write(fond_departement, paste0(rep_sortie,"/layers/fond_departement.shp"), delete_dsn = TRUE, quiet = TRUE)) if(exists("fond_region")) if(!is.null(fond_region)) suppressWarnings(st_write(fond_region,paste0(rep_sortie,"/layers/fond_region.shp"), delete_dsn = TRUE, quiet = TRUE)) suppressWarnings(st_write(fond_france,paste0(rep_sortie,"/layers/fond_france.shp"), delete_dsn = TRUE, quiet = TRUE)) if(exists("fond_pays")) if(!is.null(fond_pays)) suppressWarnings(st_write(fond_pays,paste0(rep_sortie,"/layers/fond_pays.shp"), delete_dsn = TRUE, quiet = TRUE)) chemin_fonds <- rep_sortie titre1 <- paste0(input$titre1_qgis_ou_id,"\n") titre2 <- input$titre2_qgis_ou_id source <- input$source_qgis_ou_id annee <- format(Sys.time(), format = "%Y") variable_a_representer <- varFlux l <- c() l <- c(l,"fond_flux") l <- c(l,"fond_france","fond_contour","fond_maille") if(exists("fond_territoire")) l <- c(l,"fond_territoire") if(exists("fond_departement")) l <- c(l,"fond_departement") if(exists("fond_region")) l <- c(l,"fond_region") if(exists("fond_pays")) l <- c(l,"fond_pays") export_projet_qgis_oursins(l,rep_sortie,sortie,titre1,titre2,source,2," removeModal() showModal(modalDialog(HTML(paste0("<font size=+1>Le projet Qgis a \u00e9t\u00e9 cr","\u00e9","ee.</font>")), size="m", footer=NULL, easyClose = TRUE, style = "color: return(files) } code_epsg_ou <- reactive({ code_epsg <- switch(emprise, "FRM"="2154", "971"="5490", "972"="5490", "973"="2972", "974"="2975", "976"="4471", "999"=epsg_etranger) return(code_epsg) }) analyse_ou <- reactive({ req(input$decalage_aller_retour_ou_id,input$decalage_centroid_ou_id) suppressWarnings(test_k_oursins <- try(k_oursins(fondMaille,names(fondMaille)[1],data,"CODE1","CODE2",varFlux,input$decalage_aller_retour_ou_id,input$decalage_centroid_ou_id),silent=TRUE)) if(!class(test_k_oursins) %in% "try-error") { analyse<-k_oursins(fondMaille,names(fondMaille)[1],data,"CODE1","CODE2",varFlux,input$decalage_aller_retour_ou_id,input$decalage_centroid_ou_id) }else { showModal(modalDialog(HTML(paste0("<font size=+1>La maille ne correspond pas au niveau g\u00e9ographique du fichier de donn","\u00e9","es.<br><br>Veuillez svp choisir une maille adapt","\u00e9","e ou modifier le fichier de donn","\u00e9","es.</font>")), size="l", footer=NULL, easyClose = TRUE, style = "color: erreur_maille$a <- TRUE return(NULL) } if(is.null(analyse)) { showModal(modalDialog(HTML(paste0("<font size=+1>La maille ne correspond pas au niveau g\u00e9ographique du fichier de donn","\u00e9","es.<br><br>Veuillez svp choisir une maille adapt","\u00e9","e ou modifier le fichier de donn","\u00e9","es.</font>")), size="l", footer=NULL, easyClose = TRUE, style = "color: erreur_maille$a <- TRUE return(NULL) } analyse_WGS84 <- st_transform(analyse[[1]],crs=4326) return(list(analyse[[1]],analyse_WGS84)) }) fond_habillage_ou <- reactive({ if(emprise=="FRM") { fond_pays <- st_transform(sf_paysm(),crs=4326) fond_france <- st_transform(sf_fram(),crs=4326) }else if(emprise!="999") { if(emprise=="971") { fond_france <- st_transform(sf_reg01(),crs=4326) fond_pays <- fond_france } if(emprise=="972") { fond_france <- st_transform(sf_reg02(),crs=4326) fond_pays <- fond_france } if(emprise=="973") { fond_france <- st_transform(sf_reg03(),crs=4326) fond_pays <- st_transform(sf_pays973(),crs=4326) } if(emprise=="974") { fond_france <- st_transform(sf_reg04(),crs=4326) fond_pays <- fond_france } if(emprise=="976") { fond_france <- st_transform(sf_reg06(),crs=4326) fond_pays <- fond_france } }else if(emprise=="999") { fond_france <- st_transform(fondEtranger,crs=4326) fond_pays <- fond_france }else{} return(list(fond_france,fond_pays)) }) fond_contour_maille_ou <- reactive({ test_contour <- try(st_transform(fondContour,crs=4326), silent = TRUE) test_maille <- try(st_transform(fondMaille,crs=4326), silent = TRUE) if(any(list(class(test_contour),class(test_maille)) %in% "try-error")) { showModal(modalDialog(HTML(paste0("<font size=+1>Une erreur est survenue dans la cr","\u00e9","ation du territoire.<br><br>Veuillez svp v\u00e9rifier vos donn","\u00e9","es et les variables choisies.</font>")), size="m", footer=NULL, easyClose = TRUE, style = "color: erreur_maille$a <- TRUE return(NULL) }else { contour_WGS84 <- st_transform(fondContour,crs=4326) maille_WGS84 <- st_transform(fondMaille,crs=4326) } return(list(contour_WGS84,maille_WGS84)) }) list_bbox_ou <- reactive({ req(fond_contour_maille_ou()) list_bbox <- list(c(st_bbox(fond_contour_maille_ou()[[1]])[1],st_bbox(fond_contour_maille_ou()[[1]])[3]),c(st_bbox(fond_contour_maille_ou()[[1]])[2],st_bbox(fond_contour_maille_ou()[[1]])[4])) return(list_bbox) }) fond_territoire_ou <- reactive({ if(!is.null(fondSuppl)) { fond_territoire <- st_transform(fondSuppl,crs=4326) return(fond_territoire) }else { return(NULL) } }) fond_region_ou <- reactive({ fond_region <- st_transform(sf_regm(),crs=4326) return(fond_region) }) fond_departement_ou <- reactive({ fond_departement <- st_transform(sf_depm(),crs=4326) return(fond_departement) }) fond_select_donnees_ou <- reactive({ req(analyse_apres_filtre_ou()) fond_donnees <- analyse_apres_filtre_ou()[[1]][input$mydonnees_ou_rows_selected,] return(fond_donnees) }) fond_select_maille_ou <- reactive({ req(fond_contour_maille_ou()) fond_maille <- fond_contour_maille_ou()[[2]][as.data.frame(fond_contour_maille_ou()[[2]])[,"CODE"] %in% as.data.frame(fondMaille)[input$mymaille_ou_rows_selected,"CODE"],] return(fond_maille) }) fond_select_contour_ou <- reactive({ req(fond_contour_maille_ou()) fond_contour <- fond_contour_maille_ou()[[1]][as.data.frame(fond_contour_maille_ou()[[1]])[,"CODE"] %in% as.data.frame(fondContour)[input$mycontour_ou_rows_selected,"CODE"],] return(fond_contour) }) analyse_apres_filtre_ou <- reactive({ req(analyse_ou(),flux_majeur_ou(),distance_max_ou(),flux_min_ou()) if(flux_majeur_ou()>nrow(analyse_ou()[[2]])) { nb_flux_majeur <- nrow(analyse_ou()[[2]]) }else { nb_flux_majeur <- flux_majeur_ou() if(nb_flux_majeur<1) nb_flux_majeur <- 1 } analyse_WGS84_list <- split(analyse_ou()[[2]],factor(analyse_ou()[[2]]$CODE1)) analyse_WGS84_1 <- data.frame() aa <- lapply(1:length(analyse_WGS84_list), function(x) analyse_WGS84_1 <<- rbind(analyse_WGS84_1,as.data.frame(analyse_WGS84_list[[x]])[rev(order(as.data.frame(analyse_WGS84_list[[x]])[,varFlux]))[c(1:nb_flux_majeur)],])) analyse_WGS84_1 <- analyse_WGS84_1[!is.na(analyse_WGS84_1[,varFlux]),] analyse_WGS84_list <- split(analyse_ou()[[2]],factor(analyse_ou()[[2]]$CODE2)) analyse_WGS84_2 <- data.frame() aa <- lapply(1:length(analyse_WGS84_list), function(x) analyse_WGS84_2 <<- rbind(analyse_WGS84_2,as.data.frame(analyse_WGS84_list[[x]])[rev(order(as.data.frame(analyse_WGS84_list[[x]])[,varFlux]))[c(1:nb_flux_majeur)],])) analyse_WGS84_2 <- analyse_WGS84_2[!is.na(analyse_WGS84_2[,varFlux]),] analyse_WGS84 <- unique(rbind(analyse_WGS84_1,analyse_WGS84_2)) analyse_WGS84 <- st_as_sf(analyse_WGS84) analyse_WGS84 <- analyse_WGS84[as.vector(st_length(analyse_WGS84))<=distance_max_ou()*1000,] analyse_WGS84 <- analyse_WGS84[as.data.frame(analyse_WGS84)[,varFlux]>=flux_min_ou(),] analyse_WGS84 <- analyse_WGS84[rev(order(as.data.frame(analyse_WGS84)[,varFlux])),] donnees <- merge(as.data.frame(analyse_WGS84)[,c("CODE1","CODE2")],data,by=c("CODE1","CODE2"),all.x=T) donnees <- sort(donnees[,varFlux], decreasing = TRUE) return(list(analyse_WGS84,donnees)) }) analyse_apres_filtre_init_ou <- reactive({ req(analyse_ou()) if(nrow(analyse_ou()[[2]])<10) { nb_flux_majeur <- nrow(analyse_ou()[[2]]) }else { nb_flux_majeur <- 10 } analyse_WGS84_list <- split(analyse_ou()[[2]],factor(analyse_ou()[[2]]$CODE1)) analyse_WGS84_1 <- data.frame() aa <- lapply(1:length(analyse_WGS84_list), function(x) analyse_WGS84_1 <<- rbind(analyse_WGS84_1,as.data.frame(analyse_WGS84_list[[x]])[rev(order(as.data.frame(analyse_WGS84_list[[x]])[,varFlux]))[c(1:nb_flux_majeur)],])) analyse_WGS84_1 <- analyse_WGS84_1[!is.na(analyse_WGS84_1[,varFlux]),] analyse_WGS84_list <- split(analyse_ou()[[2]],factor(analyse_ou()[[2]]$CODE2)) analyse_WGS84_2 <- data.frame() aa <- lapply(1:length(analyse_WGS84_list), function(x) analyse_WGS84_2 <<- rbind(analyse_WGS84_2,as.data.frame(analyse_WGS84_list[[x]])[rev(order(as.data.frame(analyse_WGS84_list[[x]])[,varFlux]))[c(1:nb_flux_majeur)],])) analyse_WGS84_2 <- analyse_WGS84_2[!is.na(analyse_WGS84_2[,varFlux]),] analyse_WGS84 <- unique(rbind(analyse_WGS84_1,analyse_WGS84_2)) analyse_WGS84 <- st_as_sf(analyse_WGS84) analyse_WGS84 <- analyse_WGS84[as.vector(st_length(analyse_WGS84))<=300*1000,] analyse_WGS84 <- analyse_WGS84[as.data.frame(analyse_WGS84)[,varFlux]>=100,] analyse_WGS84 <- analyse_WGS84[rev(order(as.data.frame(analyse_WGS84)[,varFlux])),] donnees <- merge(as.data.frame(analyse_WGS84)[,c("CODE1","CODE2")],data,by=c("CODE1","CODE2"),all.x=T) donnees <- sort(donnees[,varFlux], decreasing = TRUE) return(list(analyse_WGS84,donnees)) }) react_fond_ou <- reactive({ if(input$menu=="carte") { showModal(modalDialog(HTML("<i class=\"fa fa-spinner fa-spin fa-2x fa-fw\"></i><font size=+1>\u00c9laboration de la carte...</font> "), size="m", footer=NULL, style = "color: if(is.null(fondEtranger)) { proj4 <- st_crs(fondMaille)$proj4string }else{ proj4 <- st_crs(fondEtranger)$proj4string } m <- leaflet(padding = 0, options = leafletOptions( preferCanvas = TRUE, transition = 2, crs = leafletCRS(crsClass = "L.Proj.CRS", code = paste0("EPSG:", code_epsg_ou()), proj4def = proj4, resolutions = 2^(16:1) ) )) %>% setMapWidgetStyle(list(background = " addTiles_insee(attribution = paste0("<a href=\"http://www.insee.fr\">OCEANIS - \u00A9 IGN - INSEE ",format(Sys.time(), format = "%Y"),"</a>")) %>% fitBounds(lng1 = min(list_bbox_ou()[[1]]), lat1 = min(list_bbox_ou()[[2]]), lng2 = max(list_bbox_ou()[[1]]), lat2 = max(list_bbox_ou()[[2]]) ) %>% addScaleBar(position = 'bottomright', options = scaleBarOptions(metric = TRUE, imperial = FALSE) ) %>% addMapPane(name = "fond_pays", zIndex = 401) %>% addMapPane(name = "fond_france", zIndex = 402) %>% addMapPane(name = "fond_dep", zIndex = 403) %>% addMapPane(name = "fond_reg", zIndex = 404) %>% addMapPane(name = "fond_territoire", zIndex = 405) %>% addMapPane(name = "fond_trio3", zIndex = 406) %>% addMapPane(name = "fond_trio2", zIndex = 407) %>% addMapPane(name = "fond_trio1", zIndex = 408) %>% addMapPane(name = "selection", zIndex = 409) %>% addMapPane(name = "fond_legende", zIndex = 410) if(emprise %in% c("FRM","973")) { m <- addPolygons(map = m, data = fond_habillage_ou()[[2]][,"LIBGEO"], opacity = 1, stroke = TRUE, color = "white", weight = 1, options = pathOptions(pane = "fond_pays", clickable = F), fill = T, fillColor = " ) } m <- addPolygons(map = m, data = fond_habillage_ou()[[1]][,"LIBGEO"], opacity = 1, stroke = TRUE, color = "black", weight = 1.5, options = pathOptions(pane = "fond_france", clickable = F), fill = T, fillColor = "white", fillOpacity = 1 ) m_save_ou$a <- m if(!is.null(fondSuppl)) { m <- addPolygons(map = m, data = fond_territoire_ou(), stroke = TRUE, color = " weight = 0.5, options = pathOptions(pane = "fond_territoire", clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.001, group = "territoire" ) } m <- addPolygons(map = m, data = fond_contour_maille_ou()[[1]], opacity = 0.3, stroke = TRUE, color = "black", weight = 3, options = pathOptions(pane = "fond_trio3", clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.3, group = "maille_contour" ) m <- addPolygons(map = m, data = fond_contour_maille_ou()[[2]], opacity = 1, stroke = TRUE, color = "grey", weight = 1, options = pathOptions(pane = "fond_trio2", clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.001, group = "maille_contour" ) analyse_WGS84 <- analyse_apres_filtre_init_ou()[[1]] donnees <- analyse_apres_filtre_init_ou()[[2]] m <- addPolylines(map = m, data = analyse_WGS84, stroke = TRUE, color = " opacity = 1, weight = 2, options = pathOptions(pane = "fond_trio1", clickable = T), popup = paste0("<b><font color= group = "fleche" ) removeModal() showModal(modalDialog(HTML("<font size=+1>Veuillez patientez svp, la carte va s'afficher dans quelques secondes...</font> "), size="m", footer=NULL, easyClose = TRUE, style = "color: return(m) } }) observeEvent(input$ajout_territoire_ou_id,{ proxy <- leafletProxy("mymap_ou") clearGroup(map = proxy, group = "territoire") if(!is.null(fondSuppl)) { if(input$ajout_territoire_ou_id) { proxy <- addPolygons(map = proxy, data = fond_territoire_ou(), stroke = TRUE, color = " weight = 0.5, options = pathOptions(pane = "fond_territoire", clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.001, group = "territoire" ) } } },ignoreInit = TRUE) observeEvent(input$ajout_reg_ou_id,{ proxy <- leafletProxy("mymap_ou") clearGroup(map = proxy, group = "region") if(emprise=="FRM") { if(input$ajout_reg_ou_id) { proxy <- addPolygons(map = proxy, data = fond_region_ou(), stroke = TRUE, color = "grey", opacity = 1, weight = 1.5, options = pathOptions(pane = "fond_reg", clickable = F), fill = F, group = "region" ) } } },ignoreInit = TRUE) observeEvent(input$ajout_dep_ou_id,{ proxy <- leafletProxy("mymap_ou") clearGroup(map = proxy, group = "departement") if(emprise=="FRM") { if(input$ajout_dep_ou_id) { proxy <- addPolygons(map = proxy, data = fond_departement_ou(), stroke = TRUE, color = "grey", opacity = 1, weight = 0.5, options = pathOptions(pane = "fond_dep", clickable = F), fill = F, group = "departement" ) } } },ignoreInit = TRUE) observeEvent(list(input$monter_fond_ou_id,input$descendre_fond_ou_id),{ if(as.numeric(input$monter_fond_ou_id)==0 & as.numeric(input$descendre_fond_ou_id)==0) return(NULL) proxy <- leafletProxy("mymap_ou") clearGroup(map = proxy, group = "maille_contour") clearGroup(map = proxy, group = "fleche") i <- 1 for(fond in liste_fonds$a) { if(fond=="analyse") { analyse_WGS84 <- analyse_apres_filtre_ou()[[1]] donnees <- analyse_apres_filtre_ou()[[2]] proxy <- addPolylines(map = proxy, data = analyse_WGS84, stroke = TRUE, color = " opacity = 1, weight = input$epaisseur_trait_ou_id, options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b><font color= group = "fleche" ) ordre_analyse$a <- i } if(fond=="maille") { proxy <- addPolygons(map = proxy, data = fond_contour_maille_ou()[[2]], opacity = 1, stroke = TRUE, color = "grey", weight = 1, options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.001, group = "maille_contour" ) } if(fond=="contour") { proxy <- addPolygons(map = proxy, data = fond_contour_maille_ou()[[1]], opacity = 0.3, stroke = TRUE, color = "black", weight = 3, options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.3, group = "maille_contour" ) } i <- i + 1 } },ignoreInit = TRUE) observeEvent(list(input$flux_min_ou_id,input$distance_max_ou_id,input$flux_majeur_ou_id,input$epaisseur_trait_ou_id,input$decalage_aller_retour_ou_id,input$decalage_centroid_ou_id),{ req(input$flux_min_ou_id,input$distance_max_ou_id,input$flux_majeur_ou_id,input$epaisseur_trait_ou_id,input$decalage_aller_retour_ou_id,input$decalage_centroid_ou_id) proxy <- leafletProxy("mymap_ou") clearGroup(map = proxy, group = "fleche") analyse_WGS84 <- analyse_apres_filtre_ou()[[1]] donnees <- analyse_apres_filtre_ou()[[2]] proxy <- addPolylines(map = proxy, data = analyse_WGS84, stroke = TRUE, color = " opacity = 1, weight = input$epaisseur_trait_ou_id, options = pathOptions(pane = paste0("fond_trio",ordre_analyse$a), clickable = T), popup = paste0("<b><font color= group = "fleche" ) },ignoreInit = TRUE) observeEvent(input$onglets_ou,{ req(input$onglets_ou) if(input$onglets_ou == "carte") { proxy <- leafletProxy("mymap_ou") clearGroup(map = proxy, group = "select_donnees") if(!is.null(input$mydonnees_ou_rows_selected)) { fond_select_donnees <- st_transform(fond_select_donnees_ou(),crs=4326) proxy <- addPolylines(map = proxy, data = fond_select_donnees, stroke = TRUE, color = " opacity = 1, weight = input$epaisseur_trait_ou_id, options = pathOptions(pane = "selection", clickable = F), fill = F, group = "select_donnees" ) } } },ignoreInit = TRUE) observeEvent(input$onglets_ou,{ req(input$onglets_ou) if(input$onglets_ou == "carte") { proxy <- leafletProxy("mymap_ou") clearGroup(map = proxy, group = "select_maille") if(!is.null(input$mymaille_ou_rows_selected)) { proxy <- addPolygons(map = proxy, data = fond_select_maille_ou(), stroke = FALSE, options = pathOptions(pane = "selection", clickable = F), fill = T, fillColor = " fillOpacity = 1, group = "select_maille" ) } } },ignoreInit = TRUE) observeEvent(input$onglets_ou,{ req(input$onglets_ou) if(input$onglets_ou == "carte") { proxy <- leafletProxy("mymap_ou") clearGroup(map = proxy, group = "select_contour") if(!is.null(input$mycontour_ou_rows_selected)) { proxy <- addPolygons(map = proxy, data = fond_select_contour_ou(), stroke = FALSE, options = pathOptions(pane = "selection", clickable = F), fill = T, fillColor = " fillOpacity = 1, group = "select_contour" ) } } },ignoreInit = TRUE) observeEvent(input$save_carte_ou_id,{ showModal(modalDialog(HTML("<i class=\"fa fa-spinner fa-spin fa-2x fa-fw\"></i><font size=+1>Sauvegarde de la carte en cours...</font> "), size="m", footer=NULL, style = "color: insert_save$a <- insert_save$a + 1 nb_save_carte <- insert_save$a-remove_carte$a m_save <- m_save_ou$a if(nb_save_carte>6) { insert_save$a <- insert_save$a - 1 showModal(modalDialog(HTML("<font size=+1>Vous ne pouvez pas sauvegarger plus de 6 cartes. Veuillez en supprimer avant de continuer.</font> "), size="l", footer=NULL, easyClose = TRUE, style = "color: return(NULL) } output[[paste0("mymap_save_",insert_save$a,"_ou")]] <- renderLeaflet({ if(!is.null(fondSuppl)) { if(isolate(input$ajout_territoire_ou_id)) { m_save <- addPolygons(map = m_save, data = isolate(fond_territoire_ou()), stroke = TRUE, color = " weight = 0.5, options = pathOptions(pane = "fond_territoire", clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.001 ) } } if(isolate(input$ajout_reg_ou_id)) { m_save <- addPolygons(map = m_save, data = isolate(fond_region_ou()), stroke = TRUE, color = "grey", opacity = 1, weight = 1.5, options = pathOptions(pane = "fond_reg", clickable = F), fill = F ) } if(isolate(input$ajout_dep_ou_id)) { m_save <- addPolygons(map = m_save, data = isolate(fond_departement_ou()), stroke = TRUE, color = "grey", opacity = 1, weight = 0.5, options = pathOptions(pane = "fond_dep", clickable = F), fill = F ) } i <- 1 for(fond in isolate(liste_fonds$a)) { if(fond=="analyse") { analyse_WGS84 <- isolate(analyse_apres_filtre_ou())[[1]] donnees <- isolate(analyse_apres_filtre_ou())[[2]] m_save <- addPolylines(map = m_save, data = analyse_WGS84, stroke = TRUE, color = " opacity = 1, weight = isolate(input$epaisseur_trait_ou_id), options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b><font color= ) } if(fond=="maille") { m_save <- addPolygons(map = m_save, data = isolate(fond_contour_maille_ou())[[2]], opacity = 1, stroke = TRUE, color = "grey", weight = 1, options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.001 ) } if(fond=="contour") { m_save <- addPolygons(map = m_save, data = isolate(fond_contour_maille_ou())[[1]], opacity = 0.3, stroke = TRUE, color = "black", weight = 3, options = pathOptions(pane = paste0("fond_trio",i), clickable = T), popup = paste0("<b> <font color= fill = T, fillColor = "white", fillOpacity = 0.3 ) } i <- i + 1 } removeModal() m_save }) output[[paste0("remove_carte_",nb_save_carte,"_ou")]] <- renderUI({ actionButton(paste0("remove_carte_",nb_save_carte,"_ou_id"),label="X Supprimer la carte", style="color: }) appendTab(inputId = "onglets_ou", tabPanel(title=HTML(paste0("<font color= select = TRUE, session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_1_ou_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ou", target = "carte1", session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_2_ou_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ou", target = "carte2", session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_3_ou_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ou", target = "carte3", session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_4_ou_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ou", target = "carte4", session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_5_ou_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ou", target = "carte5", session = session ) }, ignoreInit = TRUE) observeEvent(input$remove_carte_6_ou_id,{ remove_carte$a <- remove_carte$a + 1 removeTab(inputId = "onglets_ou", target = "carte6", session = session ) }, ignoreInit = TRUE) output$mydonnees_ou <- DT::renderDataTable(DT::datatable({ analyse_WGS84 <- analyse_apres_filtre_ou()[[1]] data <- as.data.frame(analyse_WGS84) tableau_donnees <- data[,c("CODE1","CODE2",varFlux)] }, style = 'bootstrap' )) output$mymaille_ou <- DT::renderDataTable(DT::datatable({ data <- as.data.frame(fondMaille) tableau_maille <- data[,c(1:2)] }, style = 'bootstrap' )) output$mycontour_ou <- DT::renderDataTable(DT::datatable({ data <- as.data.frame(fondContour) tableau_contour <- data[,c(1:2)] }, style = 'bootstrap' )) output$mymap_ou <- renderLeaflet({ react_fond_ou() }) } runApp(shinyApp(ui = ui, server = server), launch.browser = TRUE) }
library(raster) library(mlr) library(sf) library(tmap) library(parallelMap) data("lsl", package = "spDataLarge") coords = lsl[, c("x", "y")] data = dplyr::select(lsl, -x, -y) task = makeClassifTask(data = data, target = "lslpts", positive = "TRUE", coordinates = coords) listLearners(task) lrn_ksvm = makeLearner("classif.ksvm", predict.type = "prob", kernel = "rbfdot") getLearnerPackages(lrn_ksvm) helpLearner(lrn_ksvm) perf_level = makeResampleDesc("SpRepCV", folds = 5, reps = 100) tune_level = makeResampleDesc("SpCV", iters = 5) ctrl = makeTuneControlRandom(maxit = 50) ps = makeParamSet( makeNumericParam("C", lower = -12, upper = 15, trafo = function(x) 2^x), makeNumericParam("sigma", lower = -15, upper = 6, trafo = function(x) 2^x) ) wrapper_ksvm = makeTuneWrapper(learner = lrn_ksvm, resampling = tune_level, par.set = ps, control = ctrl, show.info = FALSE, measures = mlr::auc) configureMlr(on.learner.error = "warn", on.error.dump = TRUE) if (Sys.info()["sysname"] %in% c("Linux, Darwin")) { parallelStart(mode = "multicore", level = "mlr.tuneParams", cpus = round(parallel::detectCores() / 2), mc.set.seed = TRUE) } if (Sys.info()["sysname"] == "Windows") { parallelStartSocket(level = "mlr.tuneParams", cpus = round(parallel::detectCores() / 2)) } set.seed(12345) resa_svm_spatial = mlr::resample(learner = wrapper_ksvm, task = task, resampling = perf_level, extract = getTuneResult, show.info = TRUE, measures = mlr::auc) parallelStop() saveRDS(resa_svm_spatial, "extdata/spatial_cv_result.rds") resa_svm_spatial$runtime / 60 resa_svm_spatial$aggr mean(resa_svm_spatial$measures.test$auc) resa_svm_spatial$extract[[1]] resa_svm_spatial$measures.test[1, ]
options(width=60, prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) library("graphics") library("stats") library("flexmix") library("lattice") ltheme <- canonical.theme("postscript", FALSE) lattice.options(default.theme=ltheme) data("NPreg", package = "flexmix") data("dmft", package = "flexmix") source("myConcomitant.R") par(mfrow=c(1,2)) plot(yn~x, col=class, pch=class, data=NPreg) plot(yp~x, col=class, pch=class, data=NPreg) suppressWarnings(RNGversion("3.5.0")) set.seed(1802) library("flexmix") data("NPreg", package = "flexmix") Model_n <- FLXMRglm(yn ~ . + I(x^2)) Model_p <- FLXMRglm(yp ~ ., family = "poisson") m1 <- flexmix(. ~ x, data = NPreg, k = 2, model = list(Model_n, Model_p), control = list(verbose = 10)) print(plot(m1)) m1.refit <- refit(m1) summary(m1.refit, which = "model", model = 1) print(plot(m1.refit, layout = c(1,3), bycluster = FALSE, main = expression(paste(yn *tilde(" ")* x + x^2))), split= c(1,1,2,1), more = TRUE) print(plot(m1.refit, model = 2, main = expression(paste(yp *tilde(" ")* x)), layout = c(1,2), bycluster = FALSE), split = c(2,1,2,1)) Model_n2 <- FLXMRglmfix(yn ~ . + 0, nested = list(k = c(1, 1), formula = c(~ 1 + I(x^2), ~ 0))) m2 <- flexmix(. ~ x, data = NPreg, cluster = posterior(m1), model = list(Model_n2, Model_p)) m2 c(BIC(m1), BIC(m2)) data("betablocker", package = "flexmix") betaGlm <- glm(cbind(Deaths, Total - Deaths) ~ Treatment, family = "binomial", data = betablocker) betaGlm betaMixFix <- stepFlexmix(cbind(Deaths, Total - Deaths) ~ 1 | Center, model = FLXMRglmfix(family = "binomial", fixed = ~ Treatment), k = 2:4, nrep = 5, data = betablocker) betaMixFix betaMixFix_3 <- getModel(betaMixFix, which = "BIC") betaMixFix_3 <- relabel(betaMixFix_3, "model", "Intercept") parameters(betaMixFix_3) library("grid") betablocker$Center <- with(betablocker, factor(Center, levels = Center[order((Deaths/Total)[1:22])])) clusters <- factor(clusters(betaMixFix_3), labels = paste("Cluster", 1:3)) print(dotplot(Deaths/Total ~ Center | clusters, groups = Treatment, as.table = TRUE, data = betablocker, xlab = "Center", layout = c(3, 1), scales = list(x = list(cex = 0.7, tck = c(1, 0))), key = simpleKey(levels(betablocker$Treatment), lines = TRUE, corner = c(1,0)))) betaMixFix.fitted <- fitted(betaMixFix_3) for (i in 1:3) { seekViewport(trellis.vpname("panel", i, 1)) grid.lines(unit(1:22, "native"), unit(betaMixFix.fitted[1:22, i], "native"), gp = gpar(lty = 1)) grid.lines(unit(1:22, "native"), unit(betaMixFix.fitted[23:44, i], "native"), gp = gpar(lty = 2)) } betaMix <- stepFlexmix(cbind(Deaths, Total - Deaths) ~ Treatment | Center, model = FLXMRglm(family = "binomial"), k = 3, nrep = 5, data = betablocker) betaMix <- relabel(betaMix, "model", "Treatment") parameters(betaMix) c(BIC(betaMixFix_3), BIC(betaMix)) print(plot(betaMixFix_3, nint = 10, mark = 1, col = "grey", layout = c(3, 1))) print(plot(betaMixFix_3, nint = 10, mark = 2, col = "grey", layout = c(3, 1))) table(clusters(betaMix)) predict(betaMix, newdata = data.frame(Treatment = c("Control", "Treated"))) betablocker[c(1, 23), ] fitted(betaMix)[c(1, 23), ] summary(refit(betaMix)) ModelNested <- FLXMRglmfix(family = "binomial", nested = list(k = c(2, 1), formula = c(~ Treatment, ~ 0))) betaMixNested <- flexmix(cbind(Deaths, Total - Deaths) ~ 1 | Center, model = ModelNested, k = 3, data = betablocker, cluster = posterior(betaMix)) parameters(betaMixNested) c(BIC(betaMix), BIC(betaMixNested), BIC(betaMixFix_3)) data("bioChemists", package = "flexmix") data("bioChemists", package = "flexmix") Model1 <- FLXMRglm(family = "poisson") ff_1 <- stepFlexmix(art ~ ., data = bioChemists, k = 1:3, model = Model1) ff_1 <- getModel(ff_1, "BIC") print(plot(refit(ff_1), bycluster = FALSE, scales = list(x = list(relation = "free")))) Model2 <- FLXMRglmfix(family = "poisson", fixed = ~ kid5 + mar + ment) ff_2 <- flexmix(art ~ fem + phd, data = bioChemists, cluster = posterior(ff_1), model = Model2) c(BIC(ff_1), BIC(ff_2)) summary(refit(ff_2)) Model3 <- FLXMRglmfix(family = "poisson", fixed = ~ kid5 + mar + ment) ff_3 <- flexmix(art ~ fem, data = bioChemists, cluster = posterior(ff_2), model = Model3) c(BIC(ff_2), BIC(ff_3)) print(plot(refit(ff_3), bycluster = FALSE, scales = list(x = list(relation = "free")))) Model4 <- FLXMRglmfix(family = "poisson", fixed = ~ kid5 + mar + ment) ff_4 <- flexmix(art ~ 1, data = bioChemists, cluster = posterior(ff_2), concomitant = FLXPmultinom(~ fem), model = Model4) parameters(ff_4) summary(refit(ff_4), which = "concomitant") BIC(ff_4) Model5 <- FLXMRglmfix(family = "poisson", fixed = ~ kid5 + ment + fem) ff_5 <- flexmix(art ~ 1, data = bioChemists, cluster = posterior(ff_2), model = Model5) BIC(ff_5) pp <- predict(ff_5, newdata = data.frame(kid5 = 0, mar = factor("Married", levels = c("Single", "Married")), fem = c("Men", "Women"), ment = mean(bioChemists$ment))) matplot(0:12, sapply(unlist(pp), function(x) dpois(0:12, x)), type = "b", lty = 1, xlab = "Number of articles", ylab = "Probability") legend("topright", paste("Comp.", rep(1:2, each = 2), ":", c("Men", "Women")), lty = 1, col = 1:4, pch = paste(1:4), bty = "n") data("dmft", package = "flexmix") Model <- FLXMRziglm(family = "poisson") Fitted <- flexmix(End ~ log(Begin + 0.5) + Gender + Ethnic + Treatment, model = Model, k = 2 , data = dmft, control = list(minprior = 0.01)) summary(refit(Fitted)) print(plot(refit(Fitted), components = 2, box.ratio = 3)) Concomitant <- FLXPmultinom(~ yb) MyConcomitant <- myConcomitant(~ yb) set.seed(1234) m2 <- flexmix(. ~ x, data = NPreg, k = 2, model = list(Model_n, Model_p), concomitant = Concomitant) m3 <- flexmix(. ~ x, data = NPreg, k = 2, model = list(Model_n, Model_p), cluster = posterior(m2), concomitant = MyConcomitant) summary(m2) summary(m3) determinePrior <- function(object) { object@concomitant@fit(object@concomitant@x, posterior(object))[!duplicated(object@concomitant@x), ] } determinePrior(m2) determinePrior(m3) SI <- sessionInfo() pkgs <- paste(sapply(c(SI$otherPkgs, SI$loadedOnly), function(x) paste("\\\\pkg{", x$Package, "} ", x$Version, sep = "")), collapse = ", ")
pac_compare_versions <- function(pac, old = NULL, new = NULL, fields = c("Imports", "Depends", "LinkingTo"), lib.loc = NULL, repos = "https://cran.rstudio.com/") { stopifnot((length(pac) == 1) && is.character(pac)) stopifnot(pac_isin(pac, repos)) stopifnot(is.null(old) || (length(old) == 1) && is.character(old)) stopifnot(is.null(new) || (length(new) == 1) && is.character(new)) stopifnot(all(fields %in% c("Depends", "Imports", "Suggests", "LinkingTo"))) stopifnot(is.character(repos)) stopifnot(is.null(lib.loc) || all(lib.loc %in% .libPaths())) if (is.null(old)) { stopifnot(pac %in% rownames(installed_packages(lib.loc = lib.loc))) old <- pac_description(pac, local = TRUE)$Version } if (is.null(new)) { new <- pac_last(pac) } stopifnot(utils::compareVersion(new, old) >= 0) one_desc <- pac_description(pac, version = old, lib.loc = lib.loc, repos = repos) if (length(one_desc) == 0) stop(sprintf("Version %s is not exists for %s.", old, pac)) one_base <- paste(Filter(function(x) length(x) > 0, one_desc[fields]), collapse = ",") one_e <- extract_deps(one_base) s_remote <- unique(data.frame( Package = one_e$packages[[1]], Version = replaceNA(one_e$versions[[1]], ""), stringsAsFactors = FALSE )) two_desc <- pac_description(pac, version = new, lib.loc = lib.loc, repos = repos) if (length(two_desc) == 0) stop(sprintf("Version %s is not exists for %s.", new, pac)) two_base <- paste(Filter(function(x) length(x) > 0, two_desc[fields]), collapse = ",") two_e <- extract_deps(two_base) s_remote2 <- unique(data.frame( Package = two_e$packages[[1]], Version = replaceNA(two_e$versions[[1]], ""), stringsAsFactors = FALSE )) res <- merge(s_remote, s_remote2, by = c("Package"), all = TRUE, suffix = paste0(".", c(old, new))) col_old <- paste0("Version.", old) col_new <- paste0("Version.", new) res$version_status <- apply(res, 1, function(x) utils::compareVersion(x[col_new], x[col_old])) rownames(res) <- NULL attr(res, "package") <- pac attr(res, "old") <- old attr(res, "new") <- new res } pac_compare_namespace <- function(pac, old = NULL, new = NULL, lib.loc = NULL, repos = "https://cran.rstudio.com/") { stopifnot((length(pac) == 1) && is.character(pac)) stopifnot(pac_isin(pac, repos)) stopifnot(is.null(old) || (length(old) == 1) && is.character(old)) stopifnot(is.null(new) || (length(new) == 1) && is.character(new)) stopifnot(is.character(repos)) stopifnot(is.null(lib.loc) || all(lib.loc %in% .libPaths())) if (is.null(old)) { stopifnot(pac %in% rownames(installed_packages(lib.loc = lib.loc))) old <- pac_description(pac, local = TRUE)$Version } if (is.null(new)) { new <- pac_last(pac) } stopifnot(utils::compareVersion(new, old) >= 0) result <- list() fields <- c("imports", "exports", "exportPatterns", "importClasses", "importMethods", "exportClasses", "exportMethods", "exportClassPatterns", "dynlibs", "S3methods") one_nam <- pac_namespace(pac, old, lib.loc = lib.loc, repos = repos) if (length(one_nam) == 0) stop(sprintf("Version %s is not exists for %s.", old, pac)) two_nam <- pac_namespace(pac, new, lib.loc = lib.loc, repos = repos) if (length(two_nam) == 0) stop(sprintf("Version %s is not exists for %s.", new, pac)) for (f in fields) { if (f == "S3methods") { old_f <- as.data.frame(one_nam[[f]]) old_f$id <- seq_len(nrow(old_f)) new_f <- as.data.frame(two_nam[[f]]) new_f$id <- seq_len(nrow(new_f)) merged <- merge(old_f, new_f, by = c("V1", "V2", "V3", "V4"), all = TRUE) added <- merged[is.na(merged$id.x) & !is.na(merged$id.y), 1:4] rownames(added) <- NULL removed <- merged[!is.na(merged$id.x) & is.na(merged$id.y), 1:4] rownames(removed) <- NULL result[[f]] <- list(removed = removed, added = added) } else { old_f <- unlist(one_nam[[f]]) new_f <- unlist(two_nam[[f]]) result[[f]] <- list(removed = setdiff(old_f, new_f), added = setdiff(new_f, old_f)) } } structure(result, package = pac, old = old, new = new) }
divOnline <- function(){ runApp(system.file('diveRsity-online', package = 'diveRsity')) }
NULL .servicecatalog$accept_portfolio_share_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), PortfolioShareType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$accept_portfolio_share_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$associate_budget_with_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(BudgetName = structure(logical(0), tags = list(type = "string")), ResourceId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$associate_budget_with_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$associate_principal_with_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), PrincipalARN = structure(logical(0), tags = list(type = "string")), PrincipalType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$associate_principal_with_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$associate_product_with_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), SourcePortfolioId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$associate_product_with_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$associate_service_action_with_provisioning_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ServiceActionId = structure(logical(0), tags = list(type = "string")), AcceptLanguage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$associate_service_action_with_provisioning_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$associate_tag_option_with_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceId = structure(logical(0), tags = list(type = "string")), TagOptionId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$associate_tag_option_with_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$batch_associate_service_action_with_provisioning_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ServiceActionAssociations = structure(list(structure(list(ServiceActionId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), AcceptLanguage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$batch_associate_service_action_with_provisioning_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FailedServiceActionAssociations = structure(list(structure(list(ServiceActionId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ErrorCode = structure(logical(0), tags = list(type = "string")), ErrorMessage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$batch_disassociate_service_action_from_provisioning_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ServiceActionAssociations = structure(list(structure(list(ServiceActionId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), AcceptLanguage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$batch_disassociate_service_action_from_provisioning_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FailedServiceActionAssociations = structure(list(structure(list(ServiceActionId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ErrorCode = structure(logical(0), tags = list(type = "string")), ErrorMessage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$copy_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), SourceProductArn = structure(logical(0), tags = list(type = "string")), TargetProductId = structure(logical(0), tags = list(type = "string")), TargetProductName = structure(logical(0), tags = list(type = "string")), SourceProvisioningArtifactIdentifiers = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "list")), CopyOptions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), IdempotencyToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$copy_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CopyProductToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_constraint_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), Parameters = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), IdempotencyToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_constraint_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ConstraintDetail = structure(list(ConstraintId = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ConstraintParameters = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), ProviderName = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), IdempotencyToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioDetail = structure(list(Id = structure(logical(0), tags = list(type = "string")), ARN = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), ProviderName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_portfolio_share_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), AccountId = structure(logical(0), tags = list(type = "string")), OrganizationNode = structure(list(Type = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ShareTagOptions = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_portfolio_share_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioShareToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Distributor = structure(logical(0), tags = list(type = "string")), SupportDescription = structure(logical(0), tags = list(type = "string")), SupportEmail = structure(logical(0), tags = list(type = "string")), SupportUrl = structure(logical(0), tags = list(type = "string")), ProductType = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ProvisioningArtifactParameters = structure(list(Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Info = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), Type = structure(logical(0), tags = list(type = "string")), DisableTemplateValidation = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), IdempotencyToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProductViewDetail = structure(list(ProductViewSummary = structure(list(Id = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ShortDescription = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Distributor = structure(logical(0), tags = list(type = "string")), HasDefaultPath = structure(logical(0), tags = list(type = "boolean")), SupportEmail = structure(logical(0), tags = list(type = "string")), SupportDescription = structure(logical(0), tags = list(type = "string")), SupportUrl = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Status = structure(logical(0), tags = list(type = "string")), ProductARN = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")), ProvisioningArtifactDetail = structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), Active = structure(logical(0), tags = list(type = "boolean")), Guidance = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_provisioned_product_plan_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PlanName = structure(logical(0), tags = list(type = "string")), PlanType = structure(logical(0), tags = list(type = "string")), NotificationArns = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), PathId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ProvisioningParameters = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), UsePreviousValue = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure"))), tags = list(type = "list")), IdempotencyToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_provisioned_product_plan_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PlanName = structure(logical(0), tags = list(type = "string")), PlanId = structure(logical(0), tags = list(type = "string")), ProvisionProductId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_provisioning_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), Parameters = structure(list(Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Info = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), Type = structure(logical(0), tags = list(type = "string")), DisableTemplateValidation = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), IdempotencyToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_provisioning_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisioningArtifactDetail = structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), Active = structure(logical(0), tags = list(type = "boolean")), Guidance = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Info = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), Status = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_service_action_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Name = structure(logical(0), tags = list(type = "string")), DefinitionType = structure(logical(0), tags = list(type = "string")), Definition = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), Description = structure(logical(0), tags = list(type = "string")), AcceptLanguage = structure(logical(0), tags = list(type = "string")), IdempotencyToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_service_action_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ServiceActionDetail = structure(list(ServiceActionSummary = structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), DefinitionType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Definition = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_tag_option_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$create_tag_option_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TagOptionDetail = structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), Active = structure(logical(0), tags = list(type = "boolean")), Id = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_constraint_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_constraint_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_portfolio_share_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), AccountId = structure(logical(0), tags = list(type = "string")), OrganizationNode = structure(list(Type = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_portfolio_share_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioShareToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_provisioned_product_plan_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PlanId = structure(logical(0), tags = list(type = "string")), IgnoreErrors = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_provisioned_product_plan_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_provisioning_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_provisioning_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_service_action_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Id = structure(logical(0), tags = list(type = "string")), AcceptLanguage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_service_action_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_tag_option_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Id = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$delete_tag_option_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_constraint_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_constraint_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ConstraintDetail = structure(list(ConstraintId = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ConstraintParameters = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_copy_product_status_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), CopyProductToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_copy_product_status_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CopyProductStatus = structure(logical(0), tags = list(type = "string")), TargetProductId = structure(logical(0), tags = list(type = "string")), StatusDetail = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioDetail = structure(list(Id = structure(logical(0), tags = list(type = "string")), ARN = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), ProviderName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), TagOptions = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), Active = structure(logical(0), tags = list(type = "boolean")), Id = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), Budgets = structure(list(structure(list(BudgetName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_portfolio_share_status_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioShareToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_portfolio_share_status_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioShareToken = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), OrganizationNodeValue = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), ShareDetails = structure(list(SuccessfulShares = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ShareErrors = structure(list(structure(list(Accounts = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Message = structure(logical(0), tags = list(type = "string")), Error = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_portfolio_shares_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioId = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), PageToken = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_portfolio_shares_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextPageToken = structure(logical(0), tags = list(type = "string")), PortfolioShareDetails = structure(list(structure(list(PrincipalId = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Accepted = structure(logical(0), tags = list(type = "boolean")), ShareTagOptions = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProductViewSummary = structure(list(Id = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ShortDescription = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Distributor = structure(logical(0), tags = list(type = "string")), HasDefaultPath = structure(logical(0), tags = list(type = "boolean")), SupportEmail = structure(logical(0), tags = list(type = "string")), SupportDescription = structure(logical(0), tags = list(type = "string")), SupportUrl = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProvisioningArtifacts = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), Guidance = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), Budgets = structure(list(structure(list(BudgetName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LaunchPaths = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_product_as_admin_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), SourcePortfolioId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_product_as_admin_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProductViewDetail = structure(list(ProductViewSummary = structure(list(Id = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ShortDescription = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Distributor = structure(logical(0), tags = list(type = "string")), HasDefaultPath = structure(logical(0), tags = list(type = "boolean")), SupportEmail = structure(logical(0), tags = list(type = "string")), SupportDescription = structure(logical(0), tags = list(type = "string")), SupportUrl = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Status = structure(logical(0), tags = list(type = "string")), ProductARN = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")), ProvisioningArtifactSummaries = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), ProvisioningArtifactMetadata = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), TagOptions = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), Active = structure(logical(0), tags = list(type = "boolean")), Id = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), Budgets = structure(list(structure(list(BudgetName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_product_view_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_product_view_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProductViewSummary = structure(list(Id = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ShortDescription = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Distributor = structure(logical(0), tags = list(type = "string")), HasDefaultPath = structure(logical(0), tags = list(type = "boolean")), SupportEmail = structure(logical(0), tags = list(type = "string")), SupportDescription = structure(logical(0), tags = list(type = "string")), SupportUrl = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProvisioningArtifacts = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), Guidance = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_provisioned_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_provisioned_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisionedProductDetail = structure(list(Name = structure(logical(0), tags = list(type = "string")), Arn = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), StatusMessage = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), IdempotencyToken = structure(logical(0), tags = list(type = "string")), LastRecordId = structure(logical(0), tags = list(type = "string")), LastProvisioningRecordId = structure(logical(0), tags = list(type = "string")), LastSuccessfulProvisioningRecordId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), LaunchRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CloudWatchDashboards = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_provisioned_product_plan_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PlanId = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_provisioned_product_plan_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisionedProductPlanDetails = structure(list(CreatedTime = structure(logical(0), tags = list(type = "timestamp")), PathId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), PlanName = structure(logical(0), tags = list(type = "string")), PlanId = structure(logical(0), tags = list(type = "string")), ProvisionProductId = structure(logical(0), tags = list(type = "string")), ProvisionProductName = structure(logical(0), tags = list(type = "string")), PlanType = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), UpdatedTime = structure(logical(0), tags = list(type = "timestamp")), NotificationArns = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ProvisioningParameters = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), UsePreviousValue = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure"))), tags = list(type = "list")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), StatusMessage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceChanges = structure(list(structure(list(Action = structure(logical(0), tags = list(type = "string")), LogicalResourceId = structure(logical(0), tags = list(type = "string")), PhysicalResourceId = structure(logical(0), tags = list(type = "string")), ResourceType = structure(logical(0), tags = list(type = "string")), Replacement = structure(logical(0), tags = list(type = "string")), Scope = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Details = structure(list(structure(list(Target = structure(list(Attribute = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), RequiresRecreation = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Evaluation = structure(logical(0), tags = list(type = "string")), CausingEntity = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_provisioning_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactName = structure(logical(0), tags = list(type = "string")), ProductName = structure(logical(0), tags = list(type = "string")), Verbose = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_provisioning_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisioningArtifactDetail = structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), Active = structure(logical(0), tags = list(type = "boolean")), Guidance = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Info = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), Status = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_provisioning_parameters_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProductName = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactName = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), PathName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_provisioning_parameters_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisioningArtifactParameters = structure(list(structure(list(ParameterKey = structure(logical(0), tags = list(type = "string")), DefaultValue = structure(logical(0), tags = list(type = "string")), ParameterType = structure(logical(0), tags = list(type = "string")), IsNoEcho = structure(logical(0), tags = list(type = "boolean")), Description = structure(logical(0), tags = list(type = "string")), ParameterConstraints = structure(list(AllowedValues = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), AllowedPattern = structure(logical(0), tags = list(type = "string")), ConstraintDescription = structure(logical(0), tags = list(type = "string")), MaxLength = structure(logical(0), tags = list(type = "string")), MinLength = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), ConstraintSummaries = structure(list(structure(list(Type = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), UsageInstructions = structure(list(structure(list(Type = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), TagOptions = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Values = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), ProvisioningArtifactPreferences = structure(list(StackSetAccounts = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), StackSetRegions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), ProvisioningArtifactOutputs = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_record_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string")), PageToken = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_record_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecordDetail = structure(list(RecordId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), UpdatedTime = structure(logical(0), tags = list(type = "timestamp")), ProvisionedProductType = structure(logical(0), tags = list(type = "string")), RecordType = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), RecordErrors = structure(list(structure(list(Code = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), RecordTags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LaunchRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RecordOutputs = structure(list(structure(list(OutputKey = structure(logical(0), tags = list(type = "string")), OutputValue = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_service_action_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Id = structure(logical(0), tags = list(type = "string")), AcceptLanguage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_service_action_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ServiceActionDetail = structure(list(ServiceActionSummary = structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), DefinitionType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Definition = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_service_action_execution_parameters_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ServiceActionId = structure(logical(0), tags = list(type = "string")), AcceptLanguage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_service_action_execution_parameters_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ServiceActionParameters = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), DefaultValues = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_tag_option_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Id = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$describe_tag_option_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TagOptionDetail = structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), Active = structure(logical(0), tags = list(type = "boolean")), Id = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disable_aws_organizations_access_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disable_aws_organizations_access_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disassociate_budget_from_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(BudgetName = structure(logical(0), tags = list(type = "string")), ResourceId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disassociate_budget_from_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disassociate_principal_from_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), PrincipalARN = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disassociate_principal_from_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disassociate_product_from_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disassociate_product_from_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disassociate_service_action_from_provisioning_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ServiceActionId = structure(logical(0), tags = list(type = "string")), AcceptLanguage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disassociate_service_action_from_provisioning_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disassociate_tag_option_from_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceId = structure(logical(0), tags = list(type = "string")), TagOptionId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$disassociate_tag_option_from_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$enable_aws_organizations_access_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$enable_aws_organizations_access_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$execute_provisioned_product_plan_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PlanId = structure(logical(0), tags = list(type = "string")), IdempotencyToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$execute_provisioned_product_plan_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecordDetail = structure(list(RecordId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), UpdatedTime = structure(logical(0), tags = list(type = "timestamp")), ProvisionedProductType = structure(logical(0), tags = list(type = "string")), RecordType = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), RecordErrors = structure(list(structure(list(Code = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), RecordTags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LaunchRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$execute_provisioned_product_service_action_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ServiceActionId = structure(logical(0), tags = list(type = "string")), ExecuteToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string")), AcceptLanguage = structure(logical(0), tags = list(type = "string")), Parameters = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$execute_provisioned_product_service_action_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecordDetail = structure(list(RecordId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), UpdatedTime = structure(logical(0), tags = list(type = "timestamp")), ProvisionedProductType = structure(logical(0), tags = list(type = "string")), RecordType = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), RecordErrors = structure(list(structure(list(Code = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), RecordTags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LaunchRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$get_aws_organizations_access_status_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$get_aws_organizations_access_status_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AccessStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$get_provisioned_product_outputs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), OutputKeys = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$get_provisioned_product_outputs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Outputs = structure(list(structure(list(OutputKey = structure(logical(0), tags = list(type = "string")), OutputValue = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$import_as_provisioned_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), PhysicalId = structure(logical(0), tags = list(type = "string")), IdempotencyToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$import_as_provisioned_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecordDetail = structure(list(RecordId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), UpdatedTime = structure(logical(0), tags = list(type = "timestamp")), ProvisionedProductType = structure(logical(0), tags = list(type = "string")), RecordType = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), RecordErrors = structure(list(structure(list(Code = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), RecordTags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LaunchRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_accepted_portfolio_shares_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PageToken = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PortfolioShareType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_accepted_portfolio_shares_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioDetails = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), ARN = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), ProviderName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_budgets_for_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ResourceId = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_budgets_for_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Budgets = structure(list(structure(list(BudgetName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_constraints_for_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_constraints_for_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ConstraintDetails = structure(list(structure(list(ConstraintId = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_launch_paths_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_launch_paths_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(LaunchPathSummaries = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), ConstraintSummaries = structure(list(structure(list(Type = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), Name = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_organization_portfolio_access_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), OrganizationNodeType = structure(logical(0), tags = list(type = "string")), PageToken = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_organization_portfolio_access_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(OrganizationNodes = structure(list(structure(list(Type = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_portfolio_access_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), OrganizationParentId = structure(logical(0), tags = list(type = "string")), PageToken = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_portfolio_access_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AccountIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_portfolios_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PageToken = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_portfolios_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioDetails = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), ARN = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), ProviderName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_portfolios_for_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), PageToken = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_portfolios_for_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioDetails = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), ARN = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), ProviderName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_principals_for_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_principals_for_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Principals = structure(list(structure(list(PrincipalARN = structure(logical(0), tags = list(type = "string")), PrincipalType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_provisioned_product_plans_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProvisionProductId = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string")), AccessLevelFilter = structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_provisioned_product_plans_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisionedProductPlans = structure(list(structure(list(PlanName = structure(logical(0), tags = list(type = "string")), PlanId = structure(logical(0), tags = list(type = "string")), ProvisionProductId = structure(logical(0), tags = list(type = "string")), ProvisionProductName = structure(logical(0), tags = list(type = "string")), PlanType = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_provisioning_artifacts_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_provisioning_artifacts_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisioningArtifactDetails = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), Active = structure(logical(0), tags = list(type = "boolean")), Guidance = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_provisioning_artifacts_for_service_action_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ServiceActionId = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string")), AcceptLanguage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_provisioning_artifacts_for_service_action_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisioningArtifactViews = structure(list(structure(list(ProductViewSummary = structure(list(Id = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ShortDescription = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Distributor = structure(logical(0), tags = list(type = "string")), HasDefaultPath = structure(logical(0), tags = list(type = "boolean")), SupportEmail = structure(logical(0), tags = list(type = "string")), SupportDescription = structure(logical(0), tags = list(type = "string")), SupportUrl = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProvisioningArtifact = structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), Guidance = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_record_history_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), AccessLevelFilter = structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), SearchFilter = structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_record_history_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecordDetails = structure(list(structure(list(RecordId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), UpdatedTime = structure(logical(0), tags = list(type = "timestamp")), ProvisionedProductType = structure(logical(0), tags = list(type = "string")), RecordType = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), RecordErrors = structure(list(structure(list(Code = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), RecordTags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LaunchRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_resources_for_tag_option_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TagOptionId = structure(logical(0), tags = list(type = "string")), ResourceType = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_resources_for_tag_option_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceDetails = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), ARN = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_service_actions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_service_actions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ServiceActionSummaries = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), DefinitionType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_service_actions_for_provisioning_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string")), AcceptLanguage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_service_actions_for_provisioning_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ServiceActionSummaries = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), DefinitionType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_stack_instances_for_provisioned_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), PageToken = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_stack_instances_for_provisioned_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(StackInstances = structure(list(structure(list(Account = structure(logical(0), tags = list(type = "string")), Region = structure(logical(0), tags = list(type = "string")), StackInstanceStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_tag_options_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Filters = structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), Active = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$list_tag_options_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TagOptionDetails = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), Active = structure(logical(0), tags = list(type = "boolean")), Id = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$provision_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProductName = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactName = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), PathName = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), ProvisioningParameters = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ProvisioningPreferences = structure(list(StackSetAccounts = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), StackSetRegions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), StackSetFailureToleranceCount = structure(logical(0), tags = list(type = "integer")), StackSetFailureTolerancePercentage = structure(logical(0), tags = list(type = "integer")), StackSetMaxConcurrencyCount = structure(logical(0), tags = list(type = "integer")), StackSetMaxConcurrencyPercentage = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NotificationArns = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ProvisionToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$provision_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecordDetail = structure(list(RecordId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), UpdatedTime = structure(logical(0), tags = list(type = "timestamp")), ProvisionedProductType = structure(logical(0), tags = list(type = "string")), RecordType = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), RecordErrors = structure(list(structure(list(Code = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), RecordTags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LaunchRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$reject_portfolio_share_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), PortfolioShareType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$reject_portfolio_share_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$scan_provisioned_products_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), AccessLevelFilter = structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$scan_provisioned_products_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisionedProducts = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Arn = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), StatusMessage = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), IdempotencyToken = structure(logical(0), tags = list(type = "string")), LastRecordId = structure(logical(0), tags = list(type = "string")), LastProvisioningRecordId = structure(logical(0), tags = list(type = "string")), LastSuccessfulProvisioningRecordId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), LaunchRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$search_products_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Filters = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "map")), PageSize = structure(logical(0), tags = list(type = "integer")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$search_products_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProductViewSummaries = structure(list(structure(list(Id = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ShortDescription = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Distributor = structure(logical(0), tags = list(type = "string")), HasDefaultPath = structure(logical(0), tags = list(type = "boolean")), SupportEmail = structure(logical(0), tags = list(type = "string")), SupportDescription = structure(logical(0), tags = list(type = "string")), SupportUrl = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ProductViewAggregations = structure(list(structure(list(structure(list(Value = structure(logical(0), tags = list(type = "string")), ApproximateCount = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "map")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$search_products_as_admin_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), Filters = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "map")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), PageToken = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), ProductSource = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$search_products_as_admin_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProductViewDetails = structure(list(structure(list(ProductViewSummary = structure(list(Id = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ShortDescription = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Distributor = structure(logical(0), tags = list(type = "string")), HasDefaultPath = structure(logical(0), tags = list(type = "boolean")), SupportEmail = structure(logical(0), tags = list(type = "string")), SupportDescription = structure(logical(0), tags = list(type = "string")), SupportUrl = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Status = structure(logical(0), tags = list(type = "string")), ProductARN = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$search_provisioned_products_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), AccessLevelFilter = structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Filters = structure(list(structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "map")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), PageSize = structure(logical(0), tags = list(type = "integer")), PageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$search_provisioned_products_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisionedProducts = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Arn = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), StatusMessage = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), IdempotencyToken = structure(logical(0), tags = list(type = "string")), LastRecordId = structure(logical(0), tags = list(type = "string")), LastProvisioningRecordId = structure(logical(0), tags = list(type = "string")), LastSuccessfulProvisioningRecordId = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), PhysicalId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProductName = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactName = structure(logical(0), tags = list(type = "string")), UserArn = structure(logical(0), tags = list(type = "string")), UserArnSession = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), TotalResultsCount = structure(logical(0), tags = list(type = "integer")), NextPageToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$terminate_provisioned_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisionedProductName = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), TerminateToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string")), IgnoreErrors = structure(logical(0), tags = list(type = "boolean")), AcceptLanguage = structure(logical(0), tags = list(type = "string")), RetainPhysicalResources = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$terminate_provisioned_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecordDetail = structure(list(RecordId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), UpdatedTime = structure(logical(0), tags = list(type = "timestamp")), ProvisionedProductType = structure(logical(0), tags = list(type = "string")), RecordType = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), RecordErrors = structure(list(structure(list(Code = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), RecordTags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LaunchRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_constraint_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Parameters = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_constraint_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ConstraintDetail = structure(list(ConstraintId = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ConstraintParameters = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), ProviderName = structure(logical(0), tags = list(type = "string")), AddTags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), RemoveTags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioDetail = structure(list(Id = structure(logical(0), tags = list(type = "string")), ARN = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), ProviderName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_portfolio_share_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), PortfolioId = structure(logical(0), tags = list(type = "string")), AccountId = structure(logical(0), tags = list(type = "string")), OrganizationNode = structure(list(Type = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ShareTagOptions = structure(logical(0), tags = list(type = "boolean", box = TRUE))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_portfolio_share_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PortfolioShareToken = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Distributor = structure(logical(0), tags = list(type = "string")), SupportDescription = structure(logical(0), tags = list(type = "string")), SupportEmail = structure(logical(0), tags = list(type = "string")), SupportUrl = structure(logical(0), tags = list(type = "string")), AddTags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), RemoveTags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProductViewDetail = structure(list(ProductViewSummary = structure(list(Id = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ShortDescription = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Distributor = structure(logical(0), tags = list(type = "string")), HasDefaultPath = structure(logical(0), tags = list(type = "boolean")), SupportEmail = structure(logical(0), tags = list(type = "string")), SupportDescription = structure(logical(0), tags = list(type = "string")), SupportUrl = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Status = structure(logical(0), tags = list(type = "string")), ProductARN = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_provisioned_product_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProductName = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactName = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), PathName = structure(logical(0), tags = list(type = "string")), ProvisioningParameters = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), UsePreviousValue = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure"))), tags = list(type = "list")), ProvisioningPreferences = structure(list(StackSetAccounts = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), StackSetRegions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), StackSetFailureToleranceCount = structure(logical(0), tags = list(type = "integer")), StackSetFailureTolerancePercentage = structure(logical(0), tags = list(type = "integer")), StackSetMaxConcurrencyCount = structure(logical(0), tags = list(type = "integer")), StackSetMaxConcurrencyPercentage = structure(logical(0), tags = list(type = "integer")), StackSetOperationType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), UpdateToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_provisioned_product_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecordDetail = structure(list(RecordId = structure(logical(0), tags = list(type = "string")), ProvisionedProductName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), UpdatedTime = structure(logical(0), tags = list(type = "timestamp")), ProvisionedProductType = structure(logical(0), tags = list(type = "string")), RecordType = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), RecordErrors = structure(list(structure(list(Code = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), RecordTags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LaunchRoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_provisioned_product_properties_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProvisionedProductProperties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), IdempotencyToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_provisioned_product_properties_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProvisionedProductProperties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), RecordId = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_provisioning_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AcceptLanguage = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Active = structure(logical(0), tags = list(type = "boolean")), Guidance = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_provisioning_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProvisioningArtifactDetail = structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), CreatedTime = structure(logical(0), tags = list(type = "timestamp")), Active = structure(logical(0), tags = list(type = "boolean")), Guidance = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Info = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), Status = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_service_action_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Definition = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), Description = structure(logical(0), tags = list(type = "string")), AcceptLanguage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_service_action_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ServiceActionDetail = structure(list(ServiceActionSummary = structure(list(Id = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), DefinitionType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Definition = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_tag_option_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Id = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), Active = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .servicecatalog$update_tag_option_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TagOptionDetail = structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string")), Active = structure(logical(0), tags = list(type = "boolean")), Id = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) }
simpute.als<-function (x, J = 2, thresh = 1e-05,lambda=0,maxit=100,trace.it=TRUE, warm.start=NULL, final.svd=TRUE) { n <- dim(x) m <- n[2] n <- n[1] this.call=match.call() a=names(attributes(x)) binames=c("biScale:row","biScale:column") if(all(match(binames,a,FALSE))){ biats=attributes(x)[binames] } else biats=NULL xnas <- is.na(x) nz=m*n-sum(xnas) xfill <- x if(!is.null(warm.start)){ if(!all(match(c("u","d","v"),names(warm.start),0)>0))stop("warm.start does not have components u, d and v") warm=TRUE D=warm.start$d JD=sum(D>0) if(JD >= J){ U=warm.start$u[,seq(J),drop=FALSE] V=warm.start$v[,seq(J),drop=FALSE] Dsq=D[seq(J)] } else{ Dsq=c(D,rep(D[JD],J-JD)) Ja=J-JD U=warm.start$u Ua=matrix(rnorm(n*Ja),n,Ja) Ua=Ua-U%*% (t(U)%*%Ua) Ua=svd(Ua)$u U=cbind(U,Ua) V=cbind(warm.start$v,matrix(0,m,Ja)) } xfill[xnas]=(U%*%(Dsq*t(V)))[xnas] } else { V=matrix(0,m,J) U=matrix(rnorm(n*J),n,J) U=svd(U)$u Dsq=rep(1,J) xfill[xnas]=0 } ratio <- 1 iter <- 0 while ((ratio > thresh)&(iter<maxit)) { iter <- iter + 1 U.old=U V.old=V Dsq.old=Dsq B=t(U)%*%xfill if(lambda>0)B=B*(Dsq/(Dsq+lambda)) Bsvd=svd(t(B)) V=Bsvd$u Dsq=(Bsvd$d) U=U%*%Bsvd$v xhat=U %*%(Dsq*t(V)) xfill[xnas]=xhat[xnas] if(trace.it) obj=(.5*sum( (xfill-xhat)[!xnas]^2)+lambda*sum(Dsq))/nz A=t(xfill%*%V) if(lambda>0)A=A*(Dsq/(Dsq+lambda)) Asvd=svd(t(A)) U=Asvd$u Dsq=Asvd$d V=V %*% Asvd$v xhat=U %*%(Dsq*t(V)) xfill[xnas]=xhat[xnas] ratio=Frob(U.old,Dsq.old,V.old,U,Dsq,V) if(trace.it) cat(iter, ":", "obj",format(round(obj,5)),"ratio", ratio, "\n") } if(iter==maxit)warning(paste("Convergence not achieved by",maxit,"iterations")) if(lambda>0&final.svd){ U=xfill%*%V sU=svd(U) U=sU$u Dsq=sU$d V=V%*%sU$v Dsq=pmax(Dsq-lambda,0) if(trace.it){ xhat=U %*%(Dsq*t(V)) obj=(.5*sum( (xfill-xhat)[!xnas]^2)+lambda*sum(Dsq))/nz cat("final SVD:", "obj",format(round(obj,5)),"\n") } } J=min(sum(Dsq>0)+1,J) out=list(u=U[,seq(J)],d=Dsq[seq(J)],v=V[,seq(J)]) attributes(out)=c(attributes(out),list(lambda=lambda,call=this.call),biats) out }
context("Check that epiobs_ parse model frame correctly") levels <- 3 dates <- 5 start <- as.Date("2020-05-01") df <- data.frame(group = gl(levels, dates), date = rep(start + seq(0, dates-1), levels), C = 1, D = 1, E = runif(15), F = runif(15)) tol <- .Machine$double.eps test_that("observation vector stored correctly", { obs <- epiobs(formula = C ~ E + F, i2o = 1) out <- epiobs_(obs, df) expect_true(max(abs(out$y- df$C)) < tol) obs <- epiobs(formula = C + 2 ~ E, i2o=1) out <- epiobs_(obs, df) expect_true(max(abs(out$y- 3)) < tol) }) test_that("offset is captured", { obs <- epiobs(formula = C ~ 1, i2o=1) out <- epiobs_(obs, df) expect_true(length(out$offset) == 15) expect_true(max(abs(out$offset)) < tol) obs <- epiobs(formula = C ~ offset(E) + F, i2o=1) out <- epiobs_(obs,df) expect_equal(out$offset, df$E) }) test_that("autocor is captured", { df$time <- df$date obs <- epiobs(formula = C ~ E, i2o=1) out <- epiobs_(obs, df) expect_identical(out$autocor, NULL) df$time <- df$date obs <- epiobs(formula = C ~ E + rw(time=time), i2o=1) out <- epiobs_(obs, df) expect_true(is.list(out$autocor)) }) test_that("empty response", { expect_error(obs <- epiobs(formula = ~E+F, i2o=1), "response") }) test_that("non-integer warning", { df$y <- 1 + runif(15, 0,0.15) obs <- epiobs(formula = y ~ 1, i2o=1) expect_warning(out <- epiobs_(obs, df), "integer") obs <- epiobs(formula = y ~ 1, i2o=1, family="normal") expect_warning(out <- epiobs_(obs, df), NA) expect_equal(as.numeric(out$y), df$y) }) test_that("negative values caught", { df$y <- 1 df$y[3] <- -1 obs <- epiobs(formula = y ~ 1, i2o=1) expect_error(out <- epiobs_(obs, df), NA) df$y[3] <- -0.5 expect_error(out <- epiobs_(obs, df), "negative") }) test_that("NAs handling", { df[3,"E"] <- NA obs <- epiobs(formula = C ~ F, i2o=1) out <- epiobs_(obs, df) expect_equal(as.numeric(out$y), df$C) expect_equal(out$time, df$date) expect_equal(out$gr, df$group) obs <- epiobs(formula = C ~ E, i2o = 1) out <- epiobs_(obs, df) expect_equal(as.numeric(out$y), df$C[-3]) expect_equal(out$time, df$date[-3]) expect_equal(out$gr, df$group[-3]) obs <- epiobs(formula = C ~ E, i2o=1, na.action = na.fail) expect_error(out <- epiobs_(obs, df), regexp="missing values") obs <- epiobs(formula = C ~ E + rw(time=date), i2o=1) expect_error(out <- epiobs_(obs, df), "increment") })
total_weight_at_dose <- function(x, dose, ...) { UseMethod("total_weight_at_dose") } total_weight_at_dose.default <- function(x, dose = NULL, ...) { if(is.null(dose)) { weights <- weights_at_dose(x, dose = dose) map_dbl(weights, sum) } else { sum(x$dat$weights[x$doses == dose]) } }
ccglmreg <- function(x, ...) UseMethod("ccglmreg") ccglmreg.default <- function(x, ...) { if (extends(class(x), "Matrix")) return(ccglmreg.matrix(x = x, ...)) stop("no method for objects of class ", sQuote(class(x)), " implemented") } ccglmreg.formula <- function(formula, data, weights, offset=NULL, contrasts=NULL, ...){ if(!attr(terms(formula, data=data), "intercept")) stop("non-intercept model is not implemented") if(missing(data)) data <- environment(formula) mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "weights", "offset"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") Y <- model.response(mf, "any") if(length(dim(Y)) == 1L) { nm <- rownames(Y) dim(Y) <- NULL if(!is.null(nm)) names(Y) <- nm } X <- if (!is.empty.model(mt)) model.matrix(mt, mf, contrasts) else matrix(,NROW(Y), 0L) weights <- as.vector(model.weights(mf)) if(!length(weights)) weights <- rep(1, nrow(mf)) else if(any(weights < 0)) stop("negative weights not allowed") if(!is.null(weights) && !is.numeric(weights)) stop("'weights' must be a numeric vector") if(length(weights) != length(Y)) stop("'weights' must be the same length as response variable") offset <- as.vector(model.offset(mf)) if(!is.null(offset)) { if(length(offset) != NROW(Y)) stop(gettextf("number of offsets is %d should equal %d (number of observations)", length(offset), NROW(Y)), domain = NA) } RET <- ccglmreg_fit(X[,-1], Y, weights=weights, offset=offset, ...) RET$call <- match.call() RET <- c(RET, list(formula=formula, terms = mt, data=data, contrasts = attr(X, "contrasts"), xlevels = .getXlevels(mt, mf))) class(RET) <- "ccglmreg" RET } ccglmreg.matrix <- function(x, y, weights, offset=NULL, ...){ RET <- ccglmreg_fit(x, y, weights, offset=offset, ...) RET$call <- match.call() return(RET) } ccglmreg_fit <- function(x,y, weights, offset, cfun="ccave", dfun="gaussian", s=NULL, delta=0.1, fk=NULL, iter=10, reltol=1e-5, penalty=c("enet","mnet","snet"), nlambda=100, lambda=NULL, type.path=c("active", "nonactive"), decreasing=TRUE, lambda.min.ratio=ifelse(nobs<nvars,.05, .001),alpha=1, gamma=3, rescale=TRUE, standardize=TRUE, intercept=TRUE, penalty.factor = NULL, maxit=1000, type.init=c("bst", "co", "heu"), init.family=NULL, mstop.init=10, nu.init=0.1, eps=.Machine$double.eps, epscycle=10, thresh=1e-6, parallel=FALSE, n.cores=2, theta, trace=FALSE, tracelevel=1){ compute.h <- function(rfamily, y, fk_old, s, B){ if(rfamily=="clossR") h <- gradient(family=rfamily, u=y-fk_old, s=s)/B+fk_old else if(rfamily %in% c("closs", "gloss", "qloss")) h <- -y*gradient(family=rfamily, u=y*fk_old, s=s)/B+fk_old h } dfunold2 <- dfun dfunold <- dfun[[1]] if(dfunold %in%c("gaussian","gaussianC") || dfunold %in%c(1,4)) rescale <- FALSE cfunold <- cfun cfun <- cfun2num(cfun) dfun <- dfun2num(dfunold) if(!(cfun %in% 1:8)) stop("cfun is not implemented\n") if(!(dfun %in% c(1, 4, 5, 8, 9))) stop("dfun is not implemented\n") if(dfun==1 | dfun==4) dfunnew <- "gaussian" else dfunnew <- dfunold if(dfunold=="poisson"){ theta <- 1 family <- 3 }else if(dfunold=="negbin"){ if(missing(theta)) stop("theta has to be provided for family=negbin()") family <- 4 }else theta <- 0 call <- match.call() penalty <- match.arg(penalty) type.path <- match.arg(type.path) type.init <- match.arg(type.init) if(type.path=="active") active <- 1 else active <- 0 if (!is.null(lambda) && length(lambda) > 1 && all(lambda == cummin(lambda))){ decreasing <- TRUE } else if(!is.null(lambda) && length(lambda) > 1 && all(lambda == cummax(lambda))) decreasing <- FALSE if(!is.null(init.family)) rfamily <- init.family else{ if(cfun==4 && dfun==1) rfamily <- "clossR" else if(cfun==4 && dfun==4) rfamily <- "closs" else rfamily <- "gaussian" } if(dfun %in% 4:6) y <- y2num(y) if(!is.matrix(x)) x <- matrix(x) nm <- dim(x) nobs <- n <- nm[1] if(length(y)!=n) stop("length of y is different from row of x\n") nvars <- m <- nm[2] if(missing(weights)) weights=rep(1,nobs) weights <- as.vector(weights) w <- weights/sum(weights) if(!is.null(weights) && !is.numeric(weights)) stop("'weights' must be a numeric vector") if( !is.null(weights) && any(weights < 0) ){ stop("negative weights not allowed") } if (is.null(offset)){ is.offset <- FALSE offset <- rep.int(0, nobs) }else is.offset <- TRUE pentype <- switch(penalty, "enet"=1, "mnet"=2, "snet"=3) if(is.null(penalty.factor)) penalty.factor <- rep(1, nvars) if(all(penalty.factor==0)){ lambda <- rep(0, nvars) penalty.factor <- rep(1, nvars) } xold <- x if(is.null(s) || is.na(s)) s <- assign_s(cfun, y) else check_s(cfun, s) if(cfun==6) if(s > 1) delta <- (s-1)/2 else if(s==1) delta <- 0 else{ if(is.null(delta)) stop("delta must be provided") if(delta <= 0) stop("delta must be positive") } penfac <- penalty.factor/sum(penalty.factor) * nvars zscore <- function(rfamily, RET, s){ if(rfamily=="clossR"){ z <- gradient(family=rfamily, u=y-RET$fitted.values, s=s) scores <- abs(crossprod(x, w*z))/(penfac*alpha) } else if(rfamily=="closs"){ z <- gradient(family=rfamily, u=y*RET$fitted.values, s=s) scores <- abs(crossprod(x, w*(y*z)))/(penfac*alpha) } } start <- NULL if(is.null(fk) || is.null(lambda)){ if(type.init %in% c("co", "heu")){ RET <- ccglm(y~1, data=data.frame(cbind(y, rep(1, n))), iter=10000, reltol=1e-20, weights=weights, s=s, cfun=cfun, dfun=dfunold2, init.family=init.family, trace=FALSE) if(type.init=="co") start <- c(coef(RET), rep(0, nvars)) else if(type.init=="heu"){ v <- zscore(rfamily, RET, s) ix <- which(v >= quantile(v, 0.9)) b0.1 <- coef(RET) beta.1 <- rep(0, nvars) beta.1[ix] <- 1 start <- c(b0.1, beta.1) RET$fitted.values <- x %*% beta.1 + b0.1 } } else if(type.init=="bst") { RET <- bst(x, y, family=rfamily, ctrl = bst_control(mstop=mstop.init, nu=nu.init, s=s, intercept=TRUE)) RET$fitted.values <- RET$yhat RET$weights_update <- weights_update <- weights start <- c(attributes(coef(RET))$intercept, coef(RET)) } } else { RET <- NULL RET$fitted.values <- fk } if(dfun==5) ytmp <- (y+1)/2 else ytmp <- y if(is.null(lambda)){ lambda <- try(glmreg_fit(x, ytmp, weights=RET$weights_update, offset=offset, lambda.min.ratio=lambda.min.ratio, nlambda=nlambda, alpha=alpha,gamma=gamma, rescale=FALSE, standardize=standardize, intercept=intercept, penalty.factor = penalty.factor, maxit=1, eps=eps, family=dfunnew, penalty=penalty)$lambda) if(inherits(lambda, "try-error")) stop("Initial value can't compute penalty lambda values. Possible reason: initial weights are all zero. Try to enlarge s value, or change type.init/init.family\n") if(!decreasing) lambda <- rev(lambda) } nlambda <- length(lambda) beta <- matrix(0, ncol=nlambda, nrow=m) fitted <- matrix(NA, ncol=nlambda, nrow=n) b0 <- rep(0, nlambda) weights_cc <- matrix(0, nrow=n, ncol=nlambda) mustart <- rep(0, n) etastart <- rep(0, n) fk_old <- RET$fitted.values if(type.init %in% c("bst", "co") && dfun==5) tmp <- init(RET$weights_update/sum(RET$weights_update), ytmp, offset, family=dfunnew) else if(type.init%in%c("bst","co")) tmp <- init(RET$weights_update, ytmp, offset, family=dfunnew) mustart <- tmp$mu etastart <- tmp$eta stopit <- FALSE if(isTRUE(parallel)){ i <- 1 cl <- parallel::makeCluster(n.cores, outfile="") registerDoParallel(cl) fitall <- foreach(i=1:nlambda, .packages=c("mpath")) %dopar%{ RET <- .Fortran("ccglmreg_onelambda", x_act=as.double(x), y=as.double(y), weights=as.double(weights), n=as.integer(n), m_act=as.integer(m), start_act=as.double(start), etastart=as.double(etastart), mustart=as.double(mustart), yhat=as.double(rep(0, n)), offset=as.double(offset), lambda_i=as.double(lambda[i]), alpha=as.double(alpha), gam=as.double(gamma), rescale=as.integer(rescale), standardize=as.integer(standardize), intercept=as.integer(intercept), penaltyfactor_act=as.double(penalty.factor), maxit=as.integer(maxit), eps=as.double(eps), theta=as.double(theta), penalty=as.integer(pentype), trace=as.integer(trace), iter=as.integer(iter), del=as.double(reltol), cfun=as.integer(cfun), dfun=as.integer(dfun), s=as.double(s), thresh=as.double(thresh), beta_1=as.double(rep(0, m)), b0_1=as.double(0), fk=as.double(rep(0, n)), delta=as.double(delta), weights_update=as.double(rep(0, n)), PACKAGE="mpath") list(beta=RET$beta, b0=RET$b0, yhat=RET$yhat, weights_update=RET$weights_update) } parallel::stopCluster(cl) RET <- fitall[[nlambda]] for(k in 1:nlambda){ beta[,k] <- fitall[[k]]$beta b0[k] <- fitall[[k]]$b0 fitted[,k] <- fitall[[k]]$yhat weights_cc[,k] <- fitall[[k]]$weights_update } tmp <- list(beta=beta, b0=b0, RET=RET, fitted=fitted, weights_cc=weights_cc) } typeA <- function(beta, b0){ if(dfun %in% c(1, 4)) dfuntmp <- 1 else if(dfun==5) dfuntmp <- 2 else if(dfun==8) dfuntmp <- 3 else if(dfun==9) dfuntmp <- 4 else if(dfun==6) if(all(x[,1]==1)) xtmp <- x[,-1] else xtmp <- x i <- 1 los <- pll <- matrix(NA, nrow=iter, ncol=nlambda) weights_cc <- matrix(NA, nrow=n, ncol=nlambda) if(trace && tracelevel==2) tracel <- 1 else tracel <- 0 while(i <= nlambda){ if(trace) message("\nloop in lambda:", i, ", lambda=", lambda[i], "\n") if(trace) { cat(" COCO iterations ...\n") } k <- 1 d1 <- 10 weights_update <- weights satu <- 0 while(d1 > reltol && k <= iter && satu==0){ fitted.values <- fk RET <- .Fortran("glmreg_fit_fortran", x=as.double(x), y=as.double(ytmp), weights=as.double(weights_update), n=as.integer(n), m=as.integer(m), start=as.double(start), etastart=as.double(etastart), mustart=as.double(mustart), offset=as.double(offset), nlambda=as.integer(1), lambda=as.double(lambda[i]), alpha=as.double(alpha), gam=as.double(gamma), rescale=as.integer(rescale), standardize=as.integer(standardize), intercept=as.integer(intercept), penaltyfactor=as.double(penalty.factor), thresh=as.double(thresh), epsbino=as.double(0), maxit=as.integer(maxit), eps=as.double(eps), theta=as.double(theta), family=as.integer(dfuntmp), penalty=as.integer(pentype), trace=as.integer(tracel), beta=as.double(matrix(0, ncol=1, nrow=m)), b0=as.double(0), yhat=as.double(rep(0, n)), satu=as.integer(0), PACKAGE="mpath") satu <- RET$satu if(satu==1) warnings("saturated binomial model") fk <- RET$yhat etastart <- RET$etastart mustart <- RET$mustart if(dfun%in%c(1,4,5)){ weights_update <- .Fortran("update_wt", n=as.integer(n), weights=as.double(weights), y=as.double(y), f=as.double(etastart), cfun=as.integer(cfun), dfun=as.integer(dfun), s=as.double(s), delta=as.double(delta), weights_update=as.double(rep(0, n)), PACKAGE="mpath")$weights_update los[k, i] <- .Fortran("loss2", n=as.integer(n), y=as.double(y), f=as.double(etastart), weights=as.double(weights), cfun=as.integer(cfun), dfun=as.integer(dfun), s=as.double(s), delta=as.double(delta), los=as.double(0.0), PACKAGE="mpath")$los } else{ weights_update <- compute_wt3(y,mustart,theta,weights,cfun,family,s,delta) los[k, i] <- sum(loss3(y,mustart,theta,weights,cfun,family,s,delta)$tmp) } if(dfun!=5) start <- c(RET$b0, RET$beta) penval <- .Fortran("penGLM", start=as.double(RET$beta), m=as.integer(m), lambda=as.double(lambda[i]*penalty.factor), alpha=as.double(alpha), gam=as.double(gamma), penalty=as.integer(pentype), pen=as.double(0.0), PACKAGE="mpath")$pen if(standardize) pll[k, i] <- los[k, i] + n*penval else pll[k, i] <- los[k, i] + penval if(k > 1) d1 <- abs((pll[k, i] - pll[k-1, i])/pll[k-1, i]) if(trace) cat("\n iteration", k, ": relative change of fk", d1, ", robust loss value", los[k, i], ", penalized loss value", pll[k, i], "\n") if(trace) cat(" d1=", d1, ", k=", k, ", d1 > reltol && k <= iter: ", (d1 > reltol && k <= iter), "\n") k <- k + 1 } beta[,i] <- RET$beta b0[i] <- RET$b0 weights_cc[,i] <- weights_update i <- i + 1 } list(beta=beta, b0=b0, RET=RET, risk=los, pll=pll, weights_cc=weights_cc) } typeBB <- function(beta, b0){ if(trace && tracelevel==2) tracel <- 1 else tracel <- 0 if(type.path=="active" && decreasing) RET <- .Fortran("ccglmreg_ad", x=as.double(x), y=as.double(y), weights=as.double(weights), n=as.integer(n), m=as.integer(m), start=as.double(start), etastart=as.double(etastart), mustart=as.double(mustart), offset=as.double(offset), iter=as.integer(iter), nlambda=as.integer(nlambda), lambda=as.double(lambda), alpha=as.double(alpha), gam=as.double(gamma), rescale=as.integer(rescale), standardize=as.integer(standardize), intercept=as.integer(intercept), penaltyfactor=as.double(penalty.factor), maxit=as.integer(maxit), eps=as.double(eps), theta=as.double(theta), epscycle=as.double(epscycle), penalty=as.integer(pentype), trace=as.integer(tracel), del=as.double(reltol), cfun=as.integer(cfun), dfun=as.integer(dfun), s=as.double(s), thresh=as.double(thresh), decreasing=as.integer(decreasing), beta=as.double(beta), b0=as.double(b0), yhat=as.double(RET$fitted.values), los=as.double(rep(0, nlambda)), pll=as.double(rep(0, nlambda)), nlambdacal=as.integer(0), delta=as.double(delta), weights_cc=as.double(matrix(0, nrow=n, ncol=nlambda)), PACKAGE="mpath") else RET <- .Fortran("ccglmreg_fortran", x=as.double(x), y=as.double(y), weights=as.double(weights), n=as.integer(n), m=as.integer(m), start=as.double(start), etastart=as.double(etastart), mustart=as.double(mustart), offset=as.double(offset), iter=as.integer(iter), nlambda=as.integer(nlambda), lambda=as.double(lambda), alpha=as.double(alpha), gam=as.double(gamma), rescale=as.integer(rescale), standardize=as.integer(standardize), intercept=as.integer(intercept), penaltyfactor=as.double(penalty.factor), maxit=as.integer(maxit), eps=as.double(eps), theta=as.double(theta), penalty=as.integer(pentype), trace=as.integer(tracel), del=as.double(reltol), cfun=as.integer(cfun), dfun=as.integer(dfun), s=as.double(s), thresh=as.double(thresh), decreasing=as.integer(decreasing), active=as.integer(active), beta=as.double(beta), b0=as.double(b0), yhat=as.double(RET$fitted.values), los=as.double(rep(0, nlambda)), pll=as.double(rep(0, nlambda)), nlambdacal=as.integer(0), delta=as.double(delta), weights_cc=as.double(matrix(0, nrow=n, ncol=nlambda)), PACKAGE="mpath") list(beta=matrix(RET$beta, ncol=nlambda), b0=RET$b0, RET=RET, risk=RET$los, pll=RET$pll, nlambdacal=RET$nlambdacal, weights_cc=RET$weights_cc) } if(is.null(parallel)) tmp <- typeA(beta, b0) else if(!parallel) tmp <- typeBB(beta, b0) beta <- tmp$beta b0 <- tmp$b0 RET <- tmp$RET RET$weights_update <- tmp$weights_cc if(!is.null(parallel) && standardize && dfun%in%c(5,8,9)){ tmp1 <- stan(x, weights) meanx <- tmp1$meanx normx <- tmp1$normx beta <- beta/normx b0 <- b0 - crossprod(meanx, beta) } if(is.null(colnames(x))) varnames <- paste("V", 1:ncol(x), sep="") else varnames <- colnames(x) dimnames(beta) <- list(varnames, round(lambda, digits=4)) RET$beta <- beta RET$b0 <- matrix(b0, nrow=1) RET$x <- xold RET$y <- y RET$call <- call RET$lambda <- lambda RET$nlambda <- nlambda RET$penalty <- penalty RET$s <- s RET$nlambdacal <- tmp$nlambdacal RET$cfun <- cfunold RET$dfun <- dfunold RET$type.init <- type.init RET$mstop.init <- mstop.init RET$nu.init <- nu.init RET$decreasing <- decreasing RET$type.path <- type.path RET$is.offset <- is.offset RET$fitted.values <- fitted class(RET) <- "ccglmreg" RET } co_evalerr <- function(dfun, y, yhat){ if(dfun %in% c(1:3,8,9)) mean((y - yhat)^2) else if(dfun %in% 4:7) (mean(y != sign(yhat))) } predict.ccglmreg <- function(object, newdata=NULL, weights=NULL, newy=NULL, newoffset=NULL, which=1:object$nlambda, type=c("link", "response","class","loss", "error", "coefficients", "nonzero"), na.action=na.pass, ...){ type=match.arg(type) if(is.null(newdata)){ if(!match(type,c("coefficients", "nonzero"),FALSE))stop("You need to supply a value for 'newdata'") ynow <- object$y } else{ if(!is.null(object$terms)){ mf <- model.frame(delete.response(object$terms), newdata, na.action = na.action, xlev = object$xlevels) ynow <- model.frame(object$terms, newdata)[,1] newdata <- model.matrix(delete.response(object$terms), mf, contrasts = object$contrasts) if(!is.null(ynow) && !is.null(newy)) warnings("response y is used from newdata, but newy is also provided. Check if newdata contains the same y as newy\n") } else ynow <- newy } if(type=="coefficients") return(coef.glmreg(object)[,which]) if(type=="nonzero"){ nbeta <- object$beta[,which] if(length(which)>1) return(eval(parse(text="glmnet:::nonzeroCoef(nbeta[,,drop=FALSE],bystep=TRUE)"))) else return(which(abs(nbeta) > 0)) } if(is.null(newdata)) newx <- as.data.frame(object$x) else newx <- as.data.frame(newdata) if(dim(newx)[2]==dim(object$beta)[1]) newx <- cbind(1, newx) if(object$is.offset) if(is.null(newoffset)) stop("offset is used in the estimation but not provided in prediction\n") else offset <- newoffset else offset <- rep(0, length(ynow)) res <- offset + as.matrix(newx) %*% rbind(object$b0, object$beta) if(type=="link") return(res[, which]) if(type %in% c("link", "response")) return(predict(object, newx=newx, newoffset=newoffset, which=which, type=type)) if(type %in% c("loss", "error") && is.null(ynow)) stop("response variable y missing\n") if(type=="loss"){ object$cfun <- cfun2num(object$cfun) object$dfun <- dfun2num(object$dfun) if(object$dfun %in% 4:5) ynow <- y2num(ynow) tmp <- rep(NA, length(which)) n <- length(ynow) if(missing(weights)) weights <- rep(1/n, n) for(i in 1:length(which)){ if(object$dfun %in% c(1,4,5)) tmp[i] <- .Fortran("loss2", n=as.integer(n), y=as.double(ynow), f=as.double(res[,which[i]]), weights=as.double(weights), cfun=as.integer(object$cfun), dfun=as.integer(object$dfun), s=as.double(object$s), delta=as.double(object$delta), los=as.double(0.0), PACKAGE="mpath")$los else{ mu <- predict(object, newx=newx, newoffset=newoffset,which=which[i], type="response") tmp[i] <- sum(loss3(object$y,mu,object$theta,weights,object$cfun,family,object$s,object$delta)$tmp) } } return(tmp) } if(type=="error"){ object$dfun <- dfun2num(object$dfun) if(object$dfun %in% 4:5) ynow <- y2num(ynow) tmp <- rep(NA, length(which)) for(i in 1:length(which)) tmp[i] <- co_evalerr(object$dfun, ynow, res[,which[i]]) return(tmp) } } coef.ccglmreg <- function(object, ...) coef.glmreg(object)
ozRegion <- function(states = TRUE, coast = TRUE, xlim = NULL, ylim = NULL, eps = 0.25, sections = NULL, visible = NULL) { if (!is.null(xlim) || !is.null(ylim)) { if (is.null(xlim)) rx <- c(113, 154) else rx <- xlim if (is.null(ylim)) ry <- c(-44, -10) else ry <- ylim } else { rx <- NULL ry <- NULL if (!is.null(sections)) { for(i in sections) { rx <- range(c(rx, .Oz.limits[[i]]$x)) ry <- range(c(ry, .Oz.limits[[i]]$y)) } rx <- rx + c( - eps, eps) ry <- ry + c( - eps, eps) } else { rx <- c(113, 154) ry <- c(-44, -10) } } option <- rep(FALSE, 16) if (!is.null(visible)) { option[visible] <- TRUE } else if (!states) { option[1:7] <- TRUE } else if (!coast) { option[8:16] <- TRUE } else if (!is.null(sections)) { option[sections] <- TRUE } else option[1:16] <- TRUE ".Oz.in2la" <- function(internal) { latitude <- (internal - 1998)/52.600000000000001 - 10 latitude } ".Oz.in2lo" <- function(internal) { longitude <- (internal - 420)/52.600000000000001 + 120 longitude } ".Oz.rc" <- function(r1, r2) { !((max(r1) < min(r2)) || (min(r1) > max(r2))) } for(i in 1:16) { option[i] <- (option[i] && .Oz.rc(rx, .Oz.limits[[i]]$x) && .Oz.rc(ry, .Oz.limits[[i]]$y)) } lines <- list(sum(option)) index <- 1 for (i in (1:16)[option]) { lines[[index]] <- list(x=.Oz.in2lo(.Oz.sections[[i]]$x), y=.Oz.in2la(.Oz.sections[[i]]$y)) index <- index + 1 } region <- list(rangex=rx, rangey=ry, lines=lines) class(region) <- "ozRegion" region } oz <- function(states = TRUE, coast = TRUE, xlim = NULL, ylim = NULL, add = FALSE, ar = 1, eps = 0.25, sections = NULL, visible = NULL, ...) { if (add) { xlim <- par("usr")[1:2] ylim <- par("usr")[3:4] } region <- ozRegion(states, coast, xlim, ylim, eps, sections, visible) oldpar <- par(err = -1) on.exit(par(oldpar)) if(!add) { frame() pxy <- par("pin") rx <- region$rangex ry <- region$rangey dx <- ar * (rx[2] - rx[1]) dy <- ry[2] - ry[1] coord <- min(pxy[1] / dx, pxy[2]/dy) xextra <- ((pxy[1] / coord - dx) * 0.5)/ar yextra <- (pxy[2] / coord - dy) * 0.5 par(usr = c(rx[1] - xextra, rx[2] + xextra, ry[1] - yextra, ry[2] + yextra)) } for(i in region$lines) lines(i$x, i$y, ...) } "nsw"<- function(...) { oz(sections = c(4, 13:15), ...) } "nt"<- function(...) { oz(sections = c(2, 9:11), ...) } "qld"<- function(...) { oz(sections = c(3, 11:13), ...) } "sa"<- function(...) { oz(sections = c(7, 8, 10, 12, 14, 16), ...) } "tas"<- function(...) { oz(sections = 6, ...) } "vic"<- function(...) { oz(sections = c(5, 15, 16), ...) } "wa"<- function(...) { oz(sections = c(1, 8, 9), ...) } ".Oz.cities"<- list(name = c("Adelaide", "Albury", "Alice_Springs", "Brisbane", "Broome", "Cairns", "Canberra", "Darwin", "Hobart", "Melbourne", "Newcastle", "Perth", "Sydney", "Townsville"), x = c(138.5333333333333, 146.83333333333329, 133.8833333333333, 152.41666666666671, 122.25, 145.84999999999999, 149.1333333333333, 130.83333333333329, 147.34999999999999, 145, 151.81666666666669, 115.8666666666667, 151.16666666666671, 146.75), y = c(-34.916666666666657, -36, -23.600000000000001, -27, -18, -16.916666666666671, -35.25, -12.33333333333333, -42.833333333333343, -37.666666666666657, -32.866666666666667, -31.949999999999999, -33.883333333333333, -19.25)) ".Oz.limits" <- list(list(x = c(113.194, 129.011), y = c(-35.113999999999997, -13.763999999999999)), list(x = c(129.011, 138.00399999999999), y = c(-16.369, -11.045999999999999)), list(x = c(138.00399999999999, 153.47900000000001), y = c(-28.137, -10.932)), list(x = c(149.65799999999999, 153.66900000000001), y = c(-37.451999999999998, -28.079999999999998)), list(x = c(140.95099999999999, 149.791), y = c(-39.048999999999999, -37.414000000000001)), list(x = c(144.63900000000001, 148.346), y = c(-43.593000000000004, -40.589000000000013)), list(x = c(129.011, 140.97), y = c(-37.966000000000008, -31.425999999999998)), list(x = c(129.011, 129.011), y = c(-31.577999999999999, -25.989000000000001)), list(x = c(129.011, 129.011), y = c(-25.989000000000001, -14.829000000000001)), list(x = c(129.011, 138.00399999999999), y = c(-25.989000000000001, -25.989000000000001)), list(x = c(138.00399999999999, 138.00399999999999), y = c(-25.989000000000001, -16.369)), list(x = c(138.00399999999999, 141.00800000000001), y = c(-28.992000000000001, -25.989000000000001)), list(x = c(141.00800000000001, 153.47900000000001), y = c(-29.163, -28.137)), list(x = c(141.00800000000001, 141.00800000000001), y = c(-34.048999999999999, -28.992000000000001)), list(x = c(141.00800000000001, 149.65799999999999), y = c(-37.414000000000001, -33.915999999999997)), list(x = c(140.95099999999999, 141.00800000000001), y = c(-37.927999999999997, -34.048999999999999))) ".Oz.sections" <- list(list(x = c(894, 879, 872, 867, 861, 848, 835, 832, 825, 810, 797, 791, 785, 780, 780, 776, 767, 750, 744, 738, 735, 730, 727, 639, 636, 633, 632, 632, 629, 626, 623, 622, 621, 620, 618, 616, 612, 611, 608, 608, 606, 604, 600, 598, 596, 596, 594, 592, 591, 587, 586, 581, 580, 578, 577, 534, 530, 526, 525, 523, 522, 519, 518, 516, 515, 514, 511, 509, 502, 500, 497, 494, 489, 444, 437, 431, 429, 425, 423, 423, 422, 420, 418, 414, 410, 409, 408, 408, 404, 404, 402, 401, 400, 399, 396, 396, 395, 395, 394, 394, 395, 395, 393, 392, 391, 389, 388, 388, 389, 389, 387, 382, 381, 381, 380, 379, 377, 376, 373, 369, 369, 370, 369, 368, 367, 366, 365, 364, 363, 363, 362, 360, 357, 355, 354, 355, 354, 354, 353, 353, 351, 350, 342, 342, 339, 339, 337, 337, 336, 336, 335, 334, 335, 330, 322, 322, 328, 329, 328, 327, 327, 328, 329, 329, 328, 327, 327, 326, 324, 323, 321, 320, 318, 317, 310, 308, 307, 306, 304, 304, 278, 279, 277, 274, 271, 269, 267, 266, 266, 265, 264, 262, 259, 258, 257, 255, 250, 248, 246, 242, 239, 234, 233, 230, 228, 227, 227, 229, 230, 232, 228, 226, 225, 225, 226, 226, 224, 222, 220, 217, 212, 210, 207, 206, 202, 202, 200, 199, 196, 196, 195, 190, 187, 184, 182, 178, 174, 157, 159, 161, 162, 164, 169, 170, 171, 176, 179, 181, 183, 185, 187, 187, 188, 188, 190, 190, 192, 192, 191, 189, 189, 188, 188, 189, 191, 191, 190, 191, 193, 194, 194, 195, 196, 197, 195, 195, 194, 194, 195, 195, 196, 196, 197, 199, 199, 199, 198, 199, 198, 200, 201, 203, 202, 202, 199, 198, 198, 197, 196, 197, 196, 197, 197, 196, 197, 197, 196, 195, 195, 193, 193, 189, 185, 184, 180, 178, 175, 171, 171, 169, 168, 165, 163, 161, 157, 159, 159, 160, 160, 158, 158, 157, 158, 160, 161, 161, 160, 159, 157, 159, 159, 158, 158, 156, 154, 154, 151, 148, 143, 138, 137, 137, 138, 137, 137, 135, 133, 131, 129, 127, 126, 119, 116, 113, 113, 112, 112, 113, 113, 112, 112, 110, 108, 106, 100, 98, 95, 89, 87, 84, 83, 81, 80, 75, 74, 73, 70, 69, 66, 65, 64, 64, 63, 62, 63, 67, 68, 68, 69, 70, 70, 71, 71, 72, 74, 74, 75, 76, 78, 78, 80, 80, 82, 82, 84, 84, 86, 86, 87, 89, 90, 91, 93, 96, 97, 99, 99, 98, 97, 96, 95, 90, 88, 86, 85, 84, 82, 82, 81, 81, 80, 80, 81, 80, 78, 75, 74, 75, 79, 79, 80, 81, 81, 82, 85, 85, 86, 90, 92, 92, 91, 92, 94, 96, 98, 98, 100, 100, 101, 103, 101, 97, 91, 89, 89, 88, 86, 84, 80, 76, 75, 78, 79, 79, 78, 75, 74, 72, 77, 78, 79, 80, 83, 87, 88, 90, 93, 95, 96, 96, 94, 94, 92, 91, 90, 89, 93, 95, 96, 96, 100, 104, 106, 107, 109, 110, 110, 111, 111, 95, 94, 94, 92, 92, 91, 91, 89, 87, 88, 89, 91, 92, 95, 97, 97, 100, 100, 102, 103, 106, 109, 110, 112, 114, 114, 112, 112, 111, 109, 109, 110, 110, 112, 112, 113, 113, 114, 114, 115, 115, 116, 117, 117, 118, 120, 122, 124, 126, 127, 128, 128, 129, 129, 132, 134, 135, 137, 138, 141, 143, 146, 151, 161, 163, 163, 164, 166, 167, 169, 166, 167, 168, 170, 171, 171, 174, 176, 177, 179, 180, 181, 184, 185, 189, 191, 194, 200, 203, 207, 207, 211, 212, 221, 222, 222, 227, 227, 226, 228, 232, 237, 242, 243, 244, 247, 249, 251, 252, 251, 252, 254, 255, 257, 257, 255, 256, 263, 264, 264, 264, 263, 264, 267, 268, 269, 272, 273, 274, 275, 276, 276, 275, 276, 277, 286, 289, 294, 297, 301, 304, 305, 307, 308, 313, 315, 316, 316, 318, 319, 324, 340, 344, 346, 348, 353, 359, 362, 367, 368, 370, 372, 374, 377, 380, 383, 387, 389, 389, 390, 392, 393, 397, 399, 403, 409, 412, 414, 417, 446, 452, 456, 460, 463, 469, 475, 484, 489, 491, 492, 495, 499, 504, 505, 505, 506, 506, 507, 507, 508, 512, 515, 516, 514, 514, 517, 520, 523, 531, 531, 534, 535, 535, 539, 543, 543, 542, 539, 538, 538, 537, 537, 535, 534, 532, 532, 534, 534, 533, 534, 533, 533, 535, 536, 540, 541, 540, 542, 544, 546, 548, 552, 554, 555, 555, 554, 554, 556, 559, 563, 565, 567, 569, 571, 571, 572, 579, 581, 578, 577, 577, 579, 580, 580, 581, 583, 583, 584, 585, 587, 589, 589, 591, 593, 595, 598, 599, 603, 606, 606, 608, 610, 610, 611, 610, 608, 608, 607, 614, 616, 618, 620, 621, 620, 621, 622, 621, 618, 613, 609, 607, 604, 602, 602, 604, 606, 608, 609, 607, 603, 602, 611, 612, 610, 606, 606, 607, 610, 611, 612, 615, 615, 613, 613, 615, 616, 617, 618, 618, 617, 617, 616, 616, 617, 619, 620, 625, 626, 629, 631, 631, 632, 635, 635, 637, 637, 638, 638, 639, 640, 641, 643, 644, 644, 646, 648, 650, 650, 649, 649, 648, 652, 653, 652, 657, 660, 661, 661, 659, 658, 653, 653, 651, 651, 650, 650, 649, 651, 651, 650, 650, 651, 651, 660, 662, 662, 663, 663, 665, 665, 666, 666, 665, 665, 666, 668, 668, 670, 671, 673, 674, 676, 679, 679, 681, 681, 682, 687, 688, 688, 687, 687, 685, 681, 680, 679, 678, 677, 678, 685, 683, 680, 678, 677, 676, 675, 678, 681, 684, 685, 686, 685, 685, 686, 688, 689, 690, 691, 691, 690, 692, 692, 694, 697, 698, 699, 699, 700, 701, 702, 702, 704, 705, 705, 709, 713, 712, 712, 711, 709, 707, 706, 704, 703, 703, 704, 703, 704, 704, 703, 703, 702, 701, 700, 699, 698, 698, 697, 697, 698, 698, 697, 697, 695, 694, 693, 693, 695, 695, 696, 696, 697, 698, 698, 697, 697, 698, 697, 696, 697, 696, 700, 700, 701, 701, 703, 704, 704, 706, 708, 710, 711, 712, 714, 715, 716, 717, 717, 718, 717, 718, 718, 717, 718, 718, 717, 717, 714, 713, 713, 714, 715, 716, 717, 719, 721, 721, 720, 719, 718, 718, 719, 719, 721, 722, 725, 726, 726, 727, 727, 730, 730, 734, 734, 733, 733, 732, 732, 735, 737, 739, 739, 740, 740, 741, 741, 740, 740, 741, 744, 745, 744, 743, 741, 738, 737, 736, 738, 739, 741, 742, 744, 744, 742, 740, 739, 744, 747, 749, 750, 751, 751, 750, 750, 749, 749, 750, 751, 751, 748, 748, 752, 754, 755, 756, 755, 755, 754, 755, 759, 762, 764, 765, 766, 766, 765, 764, 764, 765, 765, 764, 765, 767, 767, 768, 769, 771, 770, 770, 771, 771, 773, 775, 776, 778, 777, 773, 774, 782, 783, 784, 784, 782, 781, 777, 775, 777, 780, 789, 790, 789, 789, 790, 792, 792, 793, 795, 799, 801, 804, 805, 809, 810, 812, 814, 815, 817, 819, 819, 818, 819, 820, 821, 821, 822, 823, 826, 829, 830, 834, 835, 835, 836, 837, 841, 848, 849, 851, 851, 852, 852, 853, 853, 854, 854, 855, 856, 855, 853, 853, 851, 850, 849, 848, 848, 847, 847, 845, 845, 846, 845, 845, 844, 844, 846, 848, 848, 849, 849, 850, 850, 851, 851, 852, 852, 853, 854, 855, 856, 857, 857, 858, 857, 856, 855, 855, 854, 854, 852, 854, 855, 857, 859, 860, 861, 861, 862, 863, 863, 865, 865, 864, 863, 861, 861, 862, 863, 865, 866, 867, 867, 870, 872, 873, 874, 876, 877, 878, 879, 884, 888, 889, 892, 893, 894), y = c(863, 857, 852, 851, 847, 844, 840, 838, 838, 834, 831, 831, 829, 829, 828, 827, 827, 829, 832, 832, 831, 830, 828, 793, 791, 790, 789, 788, 783, 779, 774, 768, 765, 756, 753, 751, 750, 749, 743, 741, 740, 741, 741, 739, 739, 740, 740, 741, 740, 740, 737, 735, 735, 736, 738, 735, 735, 738, 741, 743, 745, 746, 746, 745, 745, 744, 743, 744, 746, 747, 746, 747, 747, 742, 740, 741, 741, 740, 742, 744, 744, 743, 741, 738, 738, 737, 737, 736, 735, 734, 733, 732, 730, 729, 728, 726, 724, 721, 720, 717, 716, 715, 715, 716, 716, 715, 714, 712, 712, 710, 710, 712, 711, 710, 708, 708, 709, 709, 712, 712, 711, 711, 712, 712, 713, 713, 712, 713, 711, 709, 708, 708, 709, 708, 707, 706, 706, 705, 704, 703, 701, 701, 698, 697, 696, 694, 692, 690, 689, 688, 686, 686, 685, 685, 680, 681, 686, 685, 685, 684, 683, 683, 681, 682, 680, 681, 680, 681, 681, 682, 682, 681, 680, 679, 679, 680, 682, 682, 680, 679, 681, 683, 683, 680, 680, 681, 681, 680, 679, 677, 678, 679, 679, 677, 677, 678, 678, 679, 679, 677, 677, 679, 679, 681, 681, 682, 683, 683, 684, 684, 688, 688, 687, 685, 685, 684, 684, 687, 687, 689, 689, 690, 690, 692, 694, 696, 697, 701, 704, 705, 708, 713, 715, 716, 718, 718, 719, 759, 757, 757, 756, 756, 754, 754, 753, 756, 757, 762, 765, 771, 772, 776, 776, 778, 780, 781, 786, 789, 795, 802, 806, 809, 814, 816, 818, 812, 810, 808, 807, 810, 813, 815, 816, 818, 819, 821, 822, 834, 836, 843, 845, 846, 848, 848, 849, 848, 849, 848, 840, 840, 843, 845, 846, 845, 842, 842, 844, 848, 850, 851, 851, 850, 851, 851, 850, 851, 853, 853, 854, 859, 863, 873, 877, 879, 883, 886, 894, 900, 905, 910, 914, 919, 926, 929, 933, 934, 936, 937, 938, 945, 948, 953, 956, 956, 958, 959, 960, 962, 969, 975, 980, 983, 987, 990, 995, 999, 1004, 1007, 1010, 1017, 1020, 1023, 1027, 1028, 1032, 1034, 1038, 1041, 1042, 1044, 1046, 1053, 1055, 1056, 1058, 1061, 1073, 1077, 1079, 1081, 1084, 1092, 1095, 1100, 1109, 1113, 1117, 1123, 1126, 1128, 1130, 1132, 1134, 1139, 1140, 1142, 1145, 1148, 1151, 1153, 1153, 1154, 1156, 1156, 1155, 1155, 1157, 1163, 1163, 1162, 1150, 1149, 1146, 1147, 1155, 1158, 1160, 1159, 1154, 1152, 1148, 1149, 1146, 1140, 1136, 1133, 1136, 1134, 1132, 1130, 1128, 1130, 1132, 1132, 1134, 1136, 1140, 1144, 1146, 1150, 1152, 1155, 1157, 1158, 1160, 1164, 1167, 1168, 1170, 1173, 1173, 1172, 1172, 1174, 1176, 1178, 1181, 1185, 1189, 1191, 1190, 1186, 1183, 1183, 1179, 1176, 1173, 1167, 1162, 1156, 1154, 1153, 1152, 1159, 1160, 1163, 1156, 1151, 1149, 1197, 1199, 1210, 1216, 1219, 1227, 1229, 1231, 1235, 1238, 1240, 1243, 1244, 1246, 1248, 1251, 1252, 1255, 1259, 1268, 1272, 1272, 1276, 1281, 1285, 1288, 1292, 1295, 1302, 1307, 1326, 1333, 1335, 1337, 1337, 1342, 1344, 1347, 1352, 1357, 1360, 1370, 1376, 1377, 1379, 1379, 1380, 1381, 1381, 1383, 1317, 1319, 1321, 1325, 1329, 1331, 1332, 1336, 1338, 1340, 1341, 1346, 1347, 1354, 1356, 1359, 1365, 1368, 1371, 1374, 1379, 1382, 1381, 1382, 1378, 1374, 1370, 1367, 1364, 1363, 1361, 1359, 1358, 1358, 1347, 1345, 1344, 1342, 1339, 1339, 1338, 1339, 1342, 1344, 1345, 1345, 1344, 1342, 1342, 1341, 1343, 1351, 1354, 1360, 1368, 1370, 1372, 1374, 1378, 1380, 1382, 1384, 1385, 1390, 1390, 1388, 1388, 1392, 1392, 1393, 1393, 1394, 1393, 1394, 1394, 1393, 1393, 1394, 1395, 1395, 1396, 1396, 1399, 1401, 1405, 1405, 1408, 1408, 1410, 1416, 1417, 1424, 1424, 1428, 1430, 1431, 1432, 1433, 1433, 1433, 1435, 1438, 1440, 1440, 1441, 1442, 1444, 1445, 1448, 1449, 1449, 1450, 1449, 1450, 1449, 1445, 1444, 1444, 1443, 1445, 1443, 1442, 1441, 1444, 1443, 1443, 1446, 1446, 1444, 1443, 1441, 1440, 1439, 1439, 1438, 1438, 1439, 1439, 1440, 1440, 1441, 1442, 1443, 1443, 1448, 1448, 1451, 1453, 1454, 1455, 1457, 1457, 1458, 1458, 1459, 1459, 1461, 1464, 1466, 1470, 1472, 1473, 1475, 1477, 1476, 1476, 1475, 1474, 1475, 1475, 1474, 1474, 1476, 1476, 1478, 1478, 1477, 1477, 1476, 1484, 1486, 1488, 1489, 1491, 1494, 1496, 1503, 1506, 1509, 1512, 1517, 1521, 1525, 1527, 1530, 1532, 1536, 1538, 1543, 1544, 1545, 1547, 1549, 1553, 1554, 1557, 1557, 1558, 1566, 1569, 1574, 1577, 1578, 1578, 1582, 1584, 1585, 1586, 1586, 1584, 1584, 1583, 1582, 1584, 1586, 1589, 1594, 1602, 1607, 1611, 1614, 1618, 1622, 1625, 1627, 1629, 1631, 1633, 1636, 1638, 1637, 1636, 1637, 1640, 1642, 1644, 1645, 1646, 1646, 1649, 1651, 1656, 1659, 1661, 1664, 1666, 1666, 1664, 1661, 1658, 1655, 1653, 1651, 1650, 1649, 1648, 1644, 1642, 1641, 1635, 1632, 1630, 1627, 1625, 1622, 1615, 1611, 1609, 1606, 1613, 1617, 1620, 1622, 1624, 1626, 1628, 1631, 1632, 1632, 1630, 1630, 1631, 1633, 1635, 1635, 1637, 1640, 1642, 1649, 1653, 1653, 1657, 1659, 1661, 1661, 1659, 1660, 1662, 1664, 1665, 1666, 1666, 1668, 1670, 1670, 1673, 1673, 1676, 1676, 1675, 1676, 1677, 1678, 1679, 1680, 1680, 1679, 1679, 1678, 1677, 1676, 1676, 1673, 1672, 1672, 1670, 1670, 1669, 1669, 1668, 1669, 1668, 1668, 1667, 1666, 1665, 1664, 1663, 1662, 1660, 1660, 1658, 1658, 1659, 1661, 1666, 1668, 1670, 1673, 1675, 1676, 1678, 1680, 1681, 1681, 1684, 1687, 1695, 1694, 1690, 1683, 1684, 1687, 1692, 1693, 1694, 1697, 1702, 1704, 1706, 1708, 1709, 1711, 1711, 1710, 1711, 1712, 1713, 1714, 1716, 1717, 1720, 1720, 1721, 1722, 1722, 1721, 1719, 1717, 1716, 1715, 1715, 1712, 1708, 1708, 1709, 1709, 1711, 1713, 1714, 1716, 1718, 1719, 1719, 1717, 1718, 1720, 1721, 1723, 1728, 1730, 1729, 1727, 1727, 1728, 1730, 1731, 1733, 1734, 1734, 1736, 1737, 1738, 1739, 1739, 1738, 1738, 1737, 1734, 1732, 1730, 1729, 1727, 1727, 1726, 1726, 1727, 1726, 1726, 1725, 1726, 1725, 1725, 1726, 1726, 1729, 1729, 1730, 1731, 1731, 1732, 1731, 1732, 1732, 1733, 1734, 1735, 1736, 1738, 1738, 1739, 1739, 1738, 1739, 1738, 1738, 1741, 1742, 1743, 1746, 1747, 1749, 1750, 1752, 1752, 1753, 1754, 1754, 1755, 1757, 1758, 1758, 1758, 1757, 1758, 1757, 1757, 1758, 1758, 1757, 1757, 1757, 1758, 1757, 1758, 1758, 1757, 1756, 1756, 1757, 1757, 1756, 1757, 1757, 1756, 1757, 1758, 1760, 1761, 1761, 1762, 1763, 1763, 1764, 1765, 1766, 1767, 1770, 1772, 1774, 1774, 1775, 1774, 1774, 1772, 1772, 1770, 1770, 1768, 1767, 1766, 1764, 1762, 1760, 1761, 1761, 1762, 1760, 1759, 1756, 1750, 1749, 1753, 1757, 1758, 1760, 1760, 1761, 1761, 1762, 1762, 1763, 1763, 1764, 1767, 1768, 1770, 1774, 1775, 1774, 1776, 1778, 1779, 1783, 1786, 1788, 1789, 1788, 1787, 1789, 1789, 1787, 1790, 1790, 1791, 1793, 1793, 1794, 1793, 1793, 1792, 1788, 1787, 1785, 1784, 1783, 1781, 1780, 1779, 1776, 1774, 1776, 1774, 1776, 1777, 1779, 1781, 1782, 1784, 1786, 1789, 1790, 1790, 1789, 1786, 1785, 1785, 1784, 1784, 1782, 1781, 1781, 1780, 1776, 1775, 1775, 1777, 1779, 1780, 1782, 1783, 1783, 1782, 1784, 1786, 1786, 1788, 1790, 1790, 1789, 1789, 1791, 1793, 1796, 1798, 1800, 1800, 1799, 1799, 1798, 1798, 1797, 1797, 1793, 1792, 1791, 1790, 1790, 1791, 1791, 1790, 1790, 1789, 1789, 1788, 1787, 1786, 1784, 1785, 1785, 1783, 1783, 1782, 1776, 1775, 1772, 1770, 1769, 1766, 1762, 1762, 1761, 1760, 1758, 1756, 1752, 1752, 1750, 1749, 1748, 1747, 1747, 1746, 1746, 1744, 1744, 1743, 1743, 1741, 1740, 1740, 1741, 1741, 1739, 1734, 1732, 1731, 1726, 1724, 1722, 1720, 1715, 1713, 1710, 1706, 1710, 1716, 1719, 1722, 1723, 1722, 1722, 1720, 1719, 1715, 1714, 1712, 1711, 1711, 1709, 1711, 1716, 1717, 1719, 1720, 1722, 1724, 1728, 1732, 1734, 1736, 1738, 1739, 1739, 1740, 1736, 1735, 1736, 1737, 1739, 1742, 1743, 1743, 1745, 1746, 1747, 1747, 1746, 1745, 1745, 1744, 1744, 1743, 1744, 1743, 1743, 1742, 1742, 1741, 1741, 1742, 1743, 1743, 1744, 1744) ), list(x = c(894, 897, 898, 899, 901, 902, 906, 907, 911, 912, 913, 917, 917, 919, 920, 920, 921, 921, 923, 923, 925, 925, 926, 927, 928, 929, 930, 932, 934, 934, 932, 931, 929, 929, 928, 928, 929, 935, 936, 939, 941, 942, 942, 941, 938, 935, 933, 930, 929, 926, 925, 925, 928, 929, 931, 932, 930, 927, 926, 925, 924, 922, 921, 917, 916, 916, 917, 917, 918, 920, 924, 924, 925, 925, 926, 926, 925, 925, 926, 928, 928, 929, 931, 933, 933, 935, 935, 934, 935, 938, 938, 939, 939, 938, 938, 939, 940, 940, 941, 941, 942, 943, 944, 944, 945, 945, 946, 946, 953, 954, 956, 958, 959, 960, 961, 962, 964, 965, 965, 962, 961, 959, 957, 957, 958, 958, 957, 962, 963, 965, 965, 970, 970, 971, 972, 976, 978, 979, 980, 980, 981, 979, 977, 978, 978, 979, 980, 980, 981, 980, 980, 983, 984, 985, 986, 988, 989, 991, 992, 993, 993, 994, 994, 995, 996, 998, 998, 997, 999, 1000, 1001, 1001, 998, 996, 994, 993, 995, 996, 999, 1000, 1000, 998, 997, 995, 993, 993, 994, 996, 998, 1000, 1001, 1002, 1001, 1001, 1002, 1005, 1009, 1014, 1015, 1015, 1014, 1014, 1017, 1017, 1018, 1018, 1019, 1019, 1020, 1022, 1023, 1025, 1031, 1031, 1033, 1034, 1036, 1037, 1039, 1040, 1043, 1046, 1046, 1048, 1048, 1049, 1051, 1054, 1055, 1058, 1058, 1060, 1060, 1062, 1063, 1065, 1068, 1069, 1069, 1068, 1066, 1066, 1068, 1071, 1074, 1075, 1076, 1076, 1077, 1078, 1080, 1083, 1084, 1085, 1085, 1084, 1084, 1081, 1080, 1079, 1079, 1081, 1082, 1082, 1083, 1084, 1084, 1087, 1087, 1084, 1082, 1080, 1077, 1074, 1064, 1059, 1058, 1055, 1054, 1052, 1051, 1048, 1044, 1043, 1043, 1044, 1046, 1049, 1050, 1051, 1053, 1053, 1054, 1056, 1057, 1057, 1058, 1058, 1059, 1060, 1060, 1061, 1063, 1064, 1064, 1063, 1063, 1062, 1064, 1064, 1065, 1065, 1066, 1066, 1068, 1070, 1071, 1071, 1072, 1072, 1073, 1073, 1074, 1073, 1074, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1080, 1079, 1079, 1078, 1079, 1078, 1079, 1079, 1081, 1083, 1083, 1084, 1084, 1085, 1085, 1084, 1085, 1084, 1083, 1082, 1082, 1084, 1088, 1089, 1091, 1091, 1092, 1092, 1093, 1094, 1095, 1095, 1097, 1098, 1098, 1096, 1096, 1098, 1105, 1108, 1108, 1109, 1109, 1110, 1111, 1110, 1110, 1109, 1109, 1112, 1114, 1113, 1114, 1113, 1114, 1113, 1113, 1114, 1114, 1115, 1116, 1117, 1117, 1119, 1124, 1125, 1127, 1130, 1131, 1132, 1132, 1133, 1137, 1138, 1139, 1143, 1143, 1144, 1145, 1146, 1148, 1149, 1150, 1150, 1148, 1147, 1146, 1146, 1145, 1145, 1146, 1147, 1150, 1152, 1153, 1155, 1156, 1156, 1158, 1158, 1160, 1160, 1159, 1160, 1161, 1165, 1165, 1164, 1164, 1165, 1165, 1167, 1168, 1168, 1167, 1167, 1168, 1169, 1170, 1172, 1174, 1174, 1175, 1176, 1178, 1179, 1180, 1180, 1181, 1182, 1184, 1186, 1191, 1192, 1194, 1195, 1197, 1197, 1198, 1199, 1199, 1200, 1202, 1208, 1212, 1212, 1214, 1216, 1219, 1223, 1223, 1224, 1225, 1228, 1229, 1229, 1230, 1234, 1234, 1235, 1237, 1239, 1241, 1242, 1242, 1243, 1243, 1242, 1244, 1243, 1243, 1244, 1244, 1244, 1245, 1245, 1244, 1244, 1246, 1248, 1250, 1252, 1252, 1253, 1253, 1252, 1252, 1251, 1251, 1252, 1253, 1253, 1254, 1254, 1256, 1259, 1263, 1265, 1265, 1262, 1262, 1263, 1264, 1264, 1265, 1265, 1266, 1267, 1267, 1269, 1270, 1271, 1272, 1274, 1276, 1278, 1279, 1279, 1278, 1277, 1276, 1275, 1276, 1275, 1273, 1273, 1274, 1279, 1282, 1284, 1285, 1287, 1288, 1287, 1286, 1286, 1285, 1285, 1286, 1288, 1290, 1290, 1291, 1292, 1292, 1293, 1293, 1294, 1296, 1299, 1301, 1302, 1303, 1301, 1300, 1299, 1301, 1303, 1304, 1306, 1307, 1310, 1312, 1313, 1314, 1315, 1315, 1312, 1310, 1307, 1307, 1305, 1305, 1306, 1303, 1303, 1301, 1300, 1302, 1304, 1303, 1301, 1299, 1294, 1294, 1293, 1293, 1291, 1285, 1284, 1287, 1291, 1291, 1294, 1295, 1294, 1294, 1292, 1290, 1290, 1286, 1286, 1283, 1281, 1281, 1280, 1279, 1279, 1278, 1277, 1274, 1272, 1271, 1270, 1268, 1267, 1267, 1266, 1263, 1262, 1258, 1260, 1259, 1260, 1261, 1259, 1259, 1257, 1257, 1256, 1257, 1257, 1261, 1264, 1265, 1266, 1267, 1267, 1266, 1266, 1265, 1265, 1264, 1261, 1261, 1257, 1252, 1251, 1248, 1242, 1240, 1237, 1237, 1240, 1243, 1244, 1244, 1245, 1246, 1248, 1250, 1251, 1253, 1257, 1267, 1275, 1278, 1281, 1281, 1283, 1286, 1286, 1287, 1287, 1290, 1291, 1292, 1293, 1294, 1296, 1299, 1301, 1303, 1306, 1307, 1309, 1313, 1314, 1317, 1320, 1322, 1323, 1324, 1324, 1326, 1327, 1330, 1333, 1334, 1335, 1338, 1344, 1347, 1351, 1367), y = c(1744, 1743, 1744, 1743, 1742, 1743, 1741, 1742, 1740, 1740, 1739, 1739, 1738, 1738, 1737, 1734, 1734, 1731, 1730, 1728, 1726, 1724, 1724, 1725, 1725, 1726, 1726, 1724, 1725, 1727, 1728, 1729, 1730, 1736, 1738, 1741, 1742, 1745, 1746, 1747, 1747, 1748, 1749, 1748, 1748, 1747, 1747, 1750, 1752, 1755, 1755, 1756, 1759, 1759, 1760, 1761, 1760, 1760, 1761, 1761, 1763, 1763, 1764, 1764, 1766, 1773, 1776, 1779, 1780, 1785, 1787, 1788, 1789, 1790, 1787, 1785, 1784, 1783, 1783, 1787, 1788, 1788, 1789, 1791, 1792, 1794, 1796, 1797, 1798, 1798, 1800, 1800, 1802, 1803, 1804, 1807, 1808, 1810, 1811, 1813, 1813, 1815, 1815, 1816, 1815, 1814, 1812, 1810, 1810, 1811, 1811, 1813, 1813, 1814, 1816, 1816, 1817, 1817, 1818, 1821, 1824, 1826, 1830, 1839, 1841, 1845, 1847, 1850, 1852, 1854, 1857, 1857, 1856, 1856, 1858, 1858, 1857, 1856, 1856, 1858, 1859, 1860, 1860, 1862, 1866, 1867, 1869, 1871, 1871, 1872, 1873, 1873, 1871, 1871, 1869, 1867, 1865, 1864, 1863, 1863, 1861, 1861, 1860, 1858, 1857, 1858, 1859, 1859, 1857, 1857, 1858, 1859, 1862, 1863, 1865, 1865, 1867, 1866, 1865, 1866, 1868, 1869, 1870, 1871, 1871, 1874, 1875, 1876, 1876, 1877, 1878, 1880, 1882, 1883, 1884, 1884, 1882, 1882, 1883, 1884, 1887, 1889, 1890, 1889, 1889, 1886, 1886, 1882, 1880, 1879, 1878, 1877, 1877, 1876, 1876, 1878, 1878, 1879, 1879, 1880, 1881, 1881, 1880, 1878, 1877, 1875, 1873, 1873, 1872, 1873, 1875, 1877, 1878, 1880, 1882, 1884, 1884, 1883, 1882, 1880, 1878, 1880, 1882, 1882, 1881, 1881, 1883, 1885, 1886, 1888, 1888, 1885, 1886, 1888, 1889, 1890, 1891, 1891, 1891, 1892, 1894, 1895, 1897, 1899, 1902, 1903, 1905, 1908, 1911, 1914, 1917, 1917, 1919, 1920, 1920, 1918, 1917, 1918, 1920, 1922, 1925, 1928, 1928, 1929, 1931, 1933, 1933, 1935, 1935, 1934, 1934, 1938, 1938, 1937, 1936, 1933, 1931, 1927, 1925, 1925, 1924, 1923, 1923, 1925, 1927, 1928, 1937, 1938, 1937, 1935, 1936, 1937, 1937, 1938, 1938, 1936, 1936, 1934, 1934, 1931, 1929, 1928, 1928, 1927, 1927, 1932, 1934, 1933, 1933, 1932, 1932, 1934, 1936, 1938, 1940, 1941, 1942, 1942, 1943, 1942, 1942, 1940, 1939, 1938, 1937, 1936, 1935, 1933, 1932, 1931, 1929, 1928, 1924, 1923, 1919, 1919, 1918, 1917, 1917, 1918, 1918, 1919, 1921, 1922, 1922, 1924, 1925, 1927, 1928, 1928, 1925, 1922, 1921, 1919, 1918, 1918, 1917, 1916, 1914, 1913, 1912, 1909, 1909, 1908, 1908, 1908, 1909, 1909, 1908, 1909, 1908, 1909, 1908, 1908, 1909, 1907, 1907, 1906, 1907, 1907, 1906, 1906, 1901, 1900, 1903, 1905, 1906, 1908, 1909, 1909, 1910, 1909, 1907, 1905, 1905, 1904, 1902, 1902, 1901, 1900, 1900, 1899, 1898, 1898, 1899, 1898, 1899, 1899, 1898, 1899, 1897, 1898, 1898, 1897, 1897, 1898, 1900, 1900, 1899, 1899, 1898, 1898, 1896, 1896, 1895, 1891, 1890, 1888, 1889, 1891, 1892, 1893, 1893, 1892, 1891, 1891, 1890, 1889, 1890, 1888, 1887, 1885, 1884, 1884, 1886, 1887, 1887, 1888, 1888, 1889, 1889, 1888, 1887, 1885, 1884, 1883, 1881, 1880, 1880, 1878, 1879, 1879, 1883, 1883, 1884, 1884, 1885, 1886, 1886, 1890, 1891, 1890, 1890, 1888, 1887, 1887, 1886, 1886, 1887, 1886, 1886, 1885, 1886, 1886, 1885, 1884, 1885, 1884, 1884, 1887, 1888, 1888, 1889, 1889, 1890, 1890, 1887, 1886, 1883, 1881, 1877, 1876, 1876, 1877, 1878, 1879, 1881, 1881, 1883, 1883, 1879, 1873, 1871, 1870, 1868, 1863, 1862, 1860, 1858, 1858, 1865, 1863, 1863, 1861, 1861, 1863, 1863, 1867, 1867, 1868, 1869, 1869, 1870, 1872, 1877, 1879, 1879, 1882, 1882, 1887, 1887, 1889, 1889, 1890, 1890, 1887, 1888, 1887, 1888, 1887, 1885, 1884, 1882, 1881, 1881, 1879, 1877, 1875, 1872, 1871, 1872, 1872, 1874, 1876, 1877, 1879, 1879, 1881, 1882, 1882, 1881, 1881, 1879, 1876, 1875, 1875, 1873, 1872, 1870, 1869, 1865, 1861, 1863, 1865, 1867, 1867, 1864, 1862, 1862, 1860, 1860, 1858, 1856, 1854, 1851, 1848, 1846, 1845, 1844, 1845, 1845, 1844, 1843, 1839, 1838, 1836, 1833, 1832, 1829, 1829, 1827, 1824, 1820, 1819, 1818, 1818, 1816, 1816, 1818, 1821, 1821, 1819, 1819, 1820, 1822, 1823, 1823, 1821, 1817, 1819, 1818, 1819, 1817, 1813, 1812, 1812, 1811, 1807, 1805, 1803, 1802, 1800, 1799, 1796, 1798, 1800, 1800, 1798, 1797, 1794, 1790, 1791, 1791, 1789, 1785, 1778, 1774, 1771, 1764, 1759, 1753, 1745, 1745, 1744, 1739, 1737, 1732, 1732, 1731, 1730, 1728, 1726, 1725, 1724, 1723, 1718, 1712, 1708, 1706, 1706, 1704, 1699, 1696, 1688, 1687, 1685, 1682, 1677, 1675, 1680, 1681, 1682, 1681, 1684, 1684, 1683, 1681, 1681, 1682, 1683, 1684, 1684, 1683, 1684, 1683, 1682, 1681, 1679, 1675, 1673, 1673, 1671, 1669, 1667, 1665, 1663, 1663)), list(x = c(1367, 1368, 1368, 1371, 1372, 1373, 1375, 1376, 1378, 1380, 1381, 1383, 1385, 1386, 1389, 1390, 1392, 1399, 1401, 1407, 1408, 1410, 1411, 1413, 1415, 1417, 1419, 1420, 1422, 1424, 1426, 1426, 1427, 1427, 1430, 1430, 1431, 1431, 1432, 1432, 1434, 1436, 1436, 1437, 1437, 1438, 1438, 1442, 1443, 1446, 1447, 1450, 1451, 1452, 1454, 1455, 1456, 1456, 1457, 1459, 1460, 1462, 1462, 1464, 1466, 1468, 1469, 1470, 1473, 1473, 1475, 1475, 1477, 1478, 1479, 1481, 1485, 1487, 1488, 1488, 1489, 1490, 1492, 1493, 1495, 1497, 1498, 1499, 1501, 1502, 1503, 1505, 1507, 1509, 1511, 1511, 1512, 1515, 1515, 1516, 1517, 1517, 1518, 1520, 1522, 1522, 1523, 1523, 1524, 1524, 1525, 1525, 1524, 1525, 1525, 1528, 1528, 1529, 1531, 1532, 1533, 1535, 1536, 1537, 1540, 1541, 1542, 1541, 1541, 1540, 1541, 1541, 1542, 1542, 1544, 1544, 1546, 1546, 1548, 1548, 1549, 1550, 1552, 1552, 1553, 1553, 1554, 1554, 1555, 1556, 1556, 1558, 1560, 1560, 1561, 1561, 1560, 1562, 1563, 1563, 1562, 1562, 1560, 1560, 1557, 1557, 1556, 1556, 1557, 1557, 1558, 1559, 1559, 1558, 1559, 1559, 1558, 1558, 1557, 1556, 1556, 1555, 1555, 1556, 1556, 1557, 1557, 1558, 1558, 1560, 1564, 1564, 1563, 1562, 1562, 1560, 1561, 1561, 1565, 1566, 1566, 1567, 1569, 1570, 1571, 1572, 1572, 1573, 1573, 1574, 1574, 1576, 1578, 1578, 1577, 1577, 1579, 1578, 1577, 1575, 1574, 1574, 1572, 1572, 1575, 1573, 1572, 1569, 1567, 1567, 1565, 1562, 1560, 1560, 1561, 1561, 1562, 1563, 1563, 1562, 1562, 1563, 1563, 1562, 1564, 1565, 1566, 1566, 1567, 1568, 1568, 1569, 1573, 1574, 1575, 1576, 1577, 1577, 1579, 1579, 1580, 1582, 1583, 1582, 1581, 1580, 1579, 1579, 1576, 1577, 1579, 1579, 1580, 1580, 1581, 1581, 1582, 1582, 1581, 1581, 1580, 1581, 1582, 1582, 1583, 1586, 1587, 1587, 1590, 1614, 1614, 1617, 1617, 1618, 1618, 1619, 1619, 1621, 1621, 1620, 1620, 1621, 1621, 1622, 1623, 1623, 1625, 1626, 1626, 1627, 1628, 1630, 1631, 1635, 1637, 1638, 1639, 1640, 1640, 1638, 1637, 1636, 1635, 1635, 1634, 1634, 1635, 1635, 1637, 1638, 1640, 1642, 1643, 1644, 1644, 1650, 1651, 1652, 1652, 1651, 1650, 1650, 1651, 1651, 1652, 1654, 1657, 1658, 1658, 1657, 1656, 1656, 1658, 1658, 1659, 1659, 1660, 1662, 1662, 1661, 1661, 1662, 1662, 1663, 1664, 1665, 1665, 1666, 1667, 1667, 1669, 1669, 1670, 1670, 1671, 1671, 1672, 1674, 1676, 1685, 1686, 1687, 1690, 1692, 1692, 1693, 1694, 1702, 1703, 1704, 1706, 1707, 1708, 1710, 1712, 1713, 1713, 1715, 1717, 1716, 1716, 1718, 1719, 1719, 1721, 1722, 1756, 1759, 1760, 1762, 1763, 1753, 1756, 1754, 1753, 1753, 1754, 1756, 1757, 1755, 1753, 1752, 1752, 1753, 1753, 1752, 1752, 1753, 1755, 1756, 1758, 1756, 1756, 1755, 1754, 1754, 1752, 1752, 1753, 1752, 1752, 1753, 1753, 1754, 1754, 1755, 1756, 1756, 1757, 1757, 1756, 1756, 1758, 1760, 1761, 1762, 1762, 1761, 1761, 1760, 1760, 1761, 1760, 1762, 1763, 1766, 1768, 1768, 1770, 1771, 1771, 1776, 1778, 1778, 1779, 1779, 1780, 1780, 1787, 1787, 1786, 1786, 1785, 1784, 1787, 1787, 1788, 1788, 1789, 1790, 1790, 1791, 1792, 1792, 1794, 1794, 1795, 1795, 1796, 1796, 1795, 1797, 1797, 1796, 1796, 1795, 1794, 1793, 1793, 1792, 1792, 1803, 1804, 1804, 1805, 1808, 1808, 1807, 1807, 1806, 1805, 1805, 1806, 1807, 1807, 1809, 1810, 1812, 1813, 1817, 1819, 1820, 1823, 1825, 1827, 1829, 1830, 1830, 1832, 1833, 1839, 1840, 1841, 1841, 1843, 1844, 1845, 1846, 1845, 1844, 1844, 1847, 1847, 1848, 1850, 1851, 1852, 1854, 1855, 1858, 1859, 1862, 1863, 1862, 1862, 1863, 1863, 1864, 1865, 1865, 1866, 1868, 1868, 1869, 1869, 1871, 1872, 1872, 1873, 1871, 1871, 1872, 1874, 1876, 1878, 1880, 1882, 1883, 1883, 1882, 1880, 1882, 1882, 1881, 1882, 1883, 1887, 1887, 1888, 1892, 1894, 1896, 1898, 1899, 1900, 1900, 1901, 1903, 1904, 1906, 1907, 1908, 1908, 1910, 1910, 1914, 1915, 1916, 1918, 1919, 1919, 1918, 1918, 1922, 1922, 1923, 1924, 1924, 1925, 1925, 1926, 1926, 1928, 1929, 1930, 1931, 1932, 1932, 1933, 1934, 1934, 1936, 1938, 1938, 1937, 1937, 1938, 1938, 1939, 1940, 1940, 1942, 1942, 1944, 1945, 1946, 1946, 1944, 1943, 1943, 1942, 1941, 1939, 1933, 1932, 1931, 1931, 1930, 1930, 1931, 1932, 1932, 1935, 1935, 1937, 1937, 1939, 1940, 1940, 1941, 1942, 1943, 1945, 1945, 1947, 1948, 1950, 1951, 1951, 1950, 1950, 1956, 1957, 1958, 1960, 1960, 1959, 1959, 1960, 1960, 1963, 1963, 1966, 1965, 1965, 1964, 1964, 1968, 1970, 1970, 1971, 1971, 1970, 1970, 1971, 1971, 1972, 1972, 1973, 1974, 1974, 1975, 1975, 1976, 1976, 1977, 1977, 1976, 1980, 1982, 1982, 1984, 1985, 1985, 1988, 1988, 1989, 1989, 1990, 1991, 1994, 1994, 1995, 1995, 1997, 1997, 1999, 2000, 2000, 1997, 1997, 1998, 1998, 2001, 2003, 2005, 2005, 2006, 2006, 2007, 2007, 2009, 2011, 2012, 2021, 2022, 2024, 2027, 2029, 2029, 2028, 2028, 2029, 2029, 2028, 2028, 2027, 2026, 2026, 2025, 2031, 2031, 2032, 2034, 2034, 2035, 2035, 2033, 2033, 2034, 2034, 2035, 2035, 2038, 2038, 2039, 2039, 2040, 2039, 2040, 2039, 2039, 2038, 2037, 2037, 2038, 2038, 2040, 2040, 2041, 2042, 2043, 2043, 2041, 2041, 2040, 2039, 2040, 2041, 2044, 2044, 2048, 2048, 2049, 2050, 2050, 2051, 2053, 2055, 2057, 2058, 2059, 2059, 2062, 2064, 2066, 2073, 2075, 2077, 2078, 2080, 2081, 2082, 2082, 2081, 2083, 2086, 2086, 2087, 2086, 2090, 2090, 2092, 2098, 2099, 2100, 2101, 2101, 2102, 2102, 2103, 2103, 2106, 2108, 2113, 2112, 2112, 2114, 2117, 2118, 2121, 2122, 2125, 2126, 2128, 2130, 2132, 2133, 2134, 2134, 2133, 2132, 2136, 2140, 2143, 2144, 2145, 2147, 2149, 2150, 2150, 2151, 2150, 2150, 2151, 2152, 2154, 2156, 2158, 2159, 2160, 2160, 2163, 2163, 2159, 2159, 2161, 2161, 2162, 2163, 2164, 2164, 2163, 2163, 2162, 2162, 2160, 2159, 2159, 2160, 2160, 2162, 2163, 2171, 2173, 2173, 2178, 2179, 2179, 2178, 2178, 2177, 2177, 2178, 2178, 2180, 2181), y = c(1663, 1662, 1660, 1657, 1657, 1656, 1656, 1655, 1655, 1653, 1653, 1652, 1652, 1651, 1650, 1650, 1648, 1648, 1647, 1647, 1646, 1646, 1645, 1645, 1644, 1644, 1643, 1643, 1642, 1640, 1640, 1639, 1638, 1637, 1637, 1636, 1635, 1634, 1633, 1632, 1631, 1628, 1627, 1627, 1620, 1619, 1618, 1616, 1615, 1615, 1614, 1615, 1614, 1612, 1611, 1610, 1610, 1609, 1608, 1607, 1607, 1605, 1604, 1604, 1604, 1603, 1604, 1604, 1601, 1600, 1599, 1598, 1597, 1597, 1596, 1597, 1597, 1598, 1599, 1598, 1598, 1597, 1598, 1599, 1599, 1600, 1600, 1601, 1602, 1602, 1603, 1603, 1605, 1605, 1607, 1608, 1607, 1607, 1608, 1610, 1611, 1610, 1610, 1609, 1611, 1616, 1618, 1623, 1624, 1628, 1629, 1632, 1633, 1634, 1635, 1638, 1639, 1639, 1643, 1644, 1646, 1648, 1650, 1651, 1657, 1658, 1660, 1661, 1663, 1664, 1665, 1667, 1668, 1669, 1671, 1675, 1678, 1681, 1683, 1686, 1687, 1687, 1689, 1699, 1700, 1705, 1707, 1711, 1712, 1715, 1716, 1718, 1723, 1725, 1727, 1729, 1730, 1731, 1733, 1735, 1738, 1743, 1745, 1751, 1758, 1764, 1766, 1767, 1769, 1772, 1773, 1775, 1778, 1780, 1783, 1784, 1785, 1786, 1787, 1789, 1792, 1794, 1801, 1803, 1809, 1811, 1814, 1815, 1816, 1821, 1825, 1830, 1831, 1831, 1837, 1839, 1841, 1842, 1846, 1848, 1851, 1853, 1855, 1854, 1854, 1853, 1852, 1850, 1849, 1848, 1847, 1845, 1845, 1847, 1848, 1851, 1853, 1854, 1853, 1853, 1854, 1856, 1857, 1860, 1863, 1863, 1862, 1862, 1863, 1864, 1864, 1861, 1861, 1862, 1864, 1865, 1867, 1867, 1869, 1870, 1871, 1872, 1876, 1879, 1881, 1881, 1882, 1887, 1889, 1890, 1891, 1891, 1895, 1895, 1894, 1892, 1891, 1890, 1892, 1893, 1894, 1894, 1895, 1895, 1896, 1896, 1897, 1899, 1902, 1904, 1905, 1908, 1910, 1912, 1912, 1917, 1918, 1938, 1939, 1941, 1942, 1942, 1943, 1944, 1944, 1947, 1947, 1948, 1949, 1944, 1943, 1940, 1939, 1938, 1936, 1934, 1928, 1926, 1920, 1919, 1916, 1914, 1912, 1908, 1908, 1905, 1900, 1899, 1898, 1898, 1897, 1897, 1896, 1898, 1898, 1897, 1897, 1896, 1893, 1891, 1889, 1889, 1887, 1886, 1885, 1883, 1882, 1878, 1877, 1877, 1875, 1874, 1872, 1871, 1868, 1862, 1860, 1860, 1859, 1858, 1856, 1847, 1847, 1848, 1849, 1850, 1850, 1848, 1844, 1843, 1841, 1835, 1833, 1822, 1821, 1820, 1819, 1815, 1813, 1811, 1801, 1799, 1795, 1792, 1791, 1788, 1787, 1786, 1784, 1783, 1778, 1777, 1775, 1772, 1772, 1771, 1771, 1769, 1766, 1766, 1767, 1769, 1769, 1770, 1773, 1776, 1777, 1777, 1778, 1778, 1779, 1780, 1780, 1779, 1777, 1775, 1772, 1772, 1770, 1769, 1766, 1763, 1763, 1762, 1761, 1760, 1760, 1758, 1756, 1756, 1755, 1746, 1746, 1745, 1744, 1743, 1742, 1742, 1741, 1736, 1734, 1732, 1731, 1729, 1728, 1728, 1726, 1725, 1725, 1726, 1726, 1725, 1724, 1723, 1720, 1719, 1718, 1715, 1714, 1713, 1711, 1711, 1709, 1708, 1705, 1700, 1698, 1694, 1693, 1692, 1690, 1688, 1688, 1687, 1686, 1684, 1671, 1671, 1670, 1669, 1666, 1665, 1665, 1663, 1660, 1657, 1654, 1653, 1651, 1651, 1650, 1645, 1644, 1642, 1641, 1640, 1640, 1641, 1641, 1640, 1639, 1635, 1634, 1632, 1629, 1627, 1626, 1624, 1623, 1621, 1619, 1617, 1616, 1614, 1612, 1608, 1607, 1605, 1604, 1600, 1600, 1595, 1594, 1592, 1585, 1583, 1575, 1572, 1571, 1569, 1568, 1557, 1557, 1556, 1555, 1555, 1552, 1551, 1548, 1547, 1545, 1540, 1539, 1537, 1536, 1533, 1530, 1528, 1528, 1524, 1523, 1522, 1522, 1520, 1520, 1522, 1522, 1517, 1516, 1516, 1514, 1515, 1515, 1518, 1520, 1520, 1518, 1517, 1517, 1516, 1514, 1514, 1511, 1511, 1509, 1509, 1508, 1508, 1507, 1507, 1508, 1508, 1509, 1510, 1511, 1513, 1515, 1514, 1512, 1511, 1509, 1508, 1507, 1506, 1505, 1501, 1500, 1499, 1498, 1497, 1495, 1494, 1493, 1489, 1486, 1486, 1485, 1487, 1490, 1490, 1491, 1491, 1492, 1493, 1494, 1494, 1490, 1489, 1487, 1483, 1483, 1485, 1485, 1484, 1484, 1482, 1482, 1481, 1480, 1479, 1478, 1478, 1477, 1477, 1472, 1470, 1470, 1469, 1470, 1470, 1472, 1473, 1474, 1474, 1475, 1475, 1474, 1471, 1470, 1469, 1469, 1468, 1467, 1467, 1466, 1466, 1464, 1463, 1462, 1462, 1464, 1464, 1463, 1462, 1461, 1460, 1459, 1457, 1456, 1456, 1455, 1453, 1452, 1450, 1448, 1447, 1446, 1447, 1447, 1448, 1449, 1451, 1453, 1453, 1454, 1454, 1452, 1449, 1445, 1443, 1443, 1442, 1439, 1438, 1436, 1434, 1433, 1432, 1430, 1429, 1429, 1430, 1430, 1431, 1431, 1430, 1429, 1429, 1428, 1427, 1424, 1424, 1423, 1421, 1420, 1419, 1418, 1412, 1411, 1410, 1410, 1408, 1404, 1403, 1402, 1400, 1397, 1397, 1394, 1393, 1393, 1390, 1389, 1384, 1383, 1379, 1377, 1374, 1372, 1371, 1368, 1366, 1364, 1363, 1357, 1357, 1355, 1353, 1353, 1352, 1350, 1348, 1348, 1345, 1345, 1346, 1347, 1348, 1350, 1350, 1347, 1345, 1343, 1341, 1339, 1338, 1338, 1339, 1343, 1351, 1354, 1356, 1359, 1356, 1355, 1353, 1352, 1351, 1350, 1350, 1349, 1347, 1346, 1345, 1341, 1341, 1339, 1339, 1340, 1342, 1344, 1346, 1345, 1346, 1345, 1346, 1346, 1347, 1348, 1349, 1349, 1348, 1348, 1346, 1345, 1345, 1343, 1341, 1339, 1338, 1337, 1336, 1337, 1337, 1338, 1336, 1333, 1331, 1328, 1326, 1324, 1319, 1317, 1316, 1314, 1313, 1305, 1301, 1295, 1293, 1293, 1292, 1289, 1287, 1286, 1286, 1285, 1285, 1284, 1284, 1285, 1285, 1284, 1284, 1283, 1282, 1281, 1281, 1278, 1276, 1276, 1275, 1274, 1271, 1270, 1267, 1264, 1262, 1262, 1261, 1262, 1261, 1261, 1262, 1264, 1265, 1265, 1264, 1265, 1265, 1261, 1259, 1258, 1252, 1252, 1251, 1249, 1247, 1244, 1241, 1239, 1237, 1235, 1232, 1230, 1231, 1230, 1229, 1226, 1223, 1222, 1219, 1218, 1215, 1213, 1208, 1207, 1204, 1204, 1202, 1202, 1200, 1198, 1197, 1197, 1198, 1197, 1197, 1195, 1192, 1187, 1186, 1183, 1177, 1174, 1173, 1168, 1166, 1165, 1164, 1164, 1162, 1156, 1155, 1145, 1131, 1127, 1123, 1122, 1119, 1118, 1114, 1113, 1111, 1108, 1098, 1093, 1093, 1092, 1089, 1087, 1086, 1084, 1076, 1072, 1070, 1057, 1057, 1058, 1058, 1059, 1060, 1058, 1055, 1054, 1050, 1044)), list(x = c(2181, 2181, 2182, 2182, 2184, 2184, 2185, 2185, 2186, 2187, 2188, 2186, 2186, 2189, 2191, 2191, 2190, 2190, 2188, 2186, 2184, 2184, 2182, 2182, 2181, 2180, 2178, 2176, 2176, 2174, 2174, 2175, 2174, 2173, 2174, 2174, 2173, 2173, 2170, 2171, 2170, 2169, 2169, 2168, 2168, 2167, 2168, 2168, 2167, 2166, 2166, 2164, 2164, 2162, 2160, 2159, 2160, 2159, 2159, 2157, 2156, 2156, 2157, 2157, 2158, 2160, 2160, 2159, 2159, 2160, 2159, 2159, 2158, 2158, 2157, 2157, 2156, 2154, 2153, 2153, 2151, 2151, 2148, 2148, 2147, 2146, 2145, 2145, 2144, 2143, 2142, 2142, 2141, 2138, 2136, 2132, 2131, 2131, 2130, 2130, 2131, 2132, 2132, 2131, 2129, 2127, 2125, 2123, 2122, 2121, 2119, 2119, 2118, 2118, 2117, 2117, 2116, 2114, 2109, 2108, 2104, 2104, 2105, 2106, 2107, 2108, 2109, 2110, 2111, 2112, 2113, 2113, 2112, 2111, 2101, 2101, 2099, 2099, 2098, 2098, 2096, 2095, 2095, 2096, 2096, 2094, 2094, 2093, 2093, 2094, 2094, 2093, 2093, 2092, 2091, 2091, 2090, 2090, 2086, 2086, 2085, 2084, 2084, 2083, 2083, 2082, 2082, 2083, 2086, 2086, 2085, 2085, 2084, 2084, 2083, 2082, 2083, 2083, 2082, 2081, 2080, 2078, 2078, 2079, 2080, 2080, 2081, 2081, 2080, 2080, 2079, 2079, 2078, 2077, 2077, 2076, 2076, 2074, 2072, 2072, 2071, 2071, 2070, 2070, 2071, 2071, 2070, 2070, 2069, 2069, 2068, 2068, 2065, 2064, 2063, 2065, 2065, 2066, 2068, 2068, 2066, 2066, 2063, 2063, 2062, 2061, 2061, 2058, 2059, 2063, 2063, 2061, 2061, 2060, 2060, 2061, 2060, 2058, 2057, 2056, 2054, 2054, 2053, 2053, 2052, 2051, 2051, 2050, 2049, 2050, 2050, 2048, 2046, 2044, 2044, 2047, 2047, 2046, 2046, 2045, 2046, 2046, 2045, 2045, 2044, 2044, 2043, 2043, 2041, 2042, 2043, 2043, 2042, 2043, 2043, 2042, 2041, 2039, 2038, 2037, 2038, 2037, 2037, 2038, 2037, 2039, 2040, 2041, 2042, 2042, 2036, 2034, 2033, 2033, 2032, 2032, 2029, 2029, 2028, 2027, 2025, 2025, 2026, 2026, 2025, 2025, 2024, 2024, 2022, 2022, 2023, 2022, 2022, 2021, 2016, 2016, 2014, 2010, 2008, 2006, 2007, 2009, 2010, 2011, 2011, 2009, 2008, 2007, 2008, 2010, 2009, 2009, 2007, 2006, 2006, 2007, 2008, 2008, 2007, 2006, 2007, 2005, 2006, 2006, 2005, 2006, 2005, 2004, 2003, 2003, 2004, 2003, 2003, 2002, 2002, 2001, 2001, 2000, 1999, 1999, 1998, 1998, 1996, 1996, 1995, 1995, 1996, 1997, 1997, 1996, 1996, 1998, 2000, 2001, 2001, 2002, 2002, 2000, 1999, 2000, 2000, 1999, 2000, 1999, 1999, 1997, 1995, 1991, 1990, 1989, 1986, 1985, 1984, 1983, 1984, 1980), y = c(1044, 1047, 1046, 1044, 1042, 1041, 1040, 1039, 1037, 1036, 1034, 1029, 1021, 1020, 1018, 1017, 1014, 1006, 1002, 1001, 997, 994, 992, 990, 989, 986, 985, 983, 981, 976, 974, 974, 975, 976, 972, 961, 958, 955, 949, 948, 946, 945, 944, 943, 942, 941, 940, 935, 933, 932, 931, 929, 930, 928, 924, 923, 921, 919, 916, 916, 913, 912, 909, 897, 897, 895, 896, 896, 894, 893, 892, 887, 886, 884, 883, 881, 880, 874, 873, 871, 866, 865, 859, 856, 855, 853, 852, 849, 848, 846, 845, 844, 842, 839, 838, 835, 835, 833, 832, 824, 823, 820, 817, 819, 819, 818, 816, 815, 814, 812, 812, 811, 811, 810, 810, 809, 809, 810, 810, 811, 811, 808, 807, 808, 807, 808, 808, 807, 807, 806, 806, 804, 804, 803, 803, 802, 802, 801, 801, 800, 800, 800, 802, 803, 802, 802, 801, 801, 800, 800, 795, 794, 792, 791, 791, 790, 790, 789, 789, 792, 792, 790, 789, 789, 788, 787, 786, 787, 787, 784, 782, 781, 780, 779, 778, 779, 780, 781, 781, 780, 780, 778, 776, 777, 777, 775, 775, 774, 774, 772, 771, 770, 769, 769, 768, 767, 765, 765, 767, 766, 767, 765, 765, 763, 761, 760, 759, 755, 754, 752, 751, 750, 747, 747, 746, 746, 745, 745, 743, 740, 740, 741, 741, 738, 738, 737, 738, 737, 736, 736, 734, 733, 732, 733, 732, 733, 734, 733, 733, 731, 731, 729, 729, 728, 727, 725, 723, 721, 720, 719, 717, 715, 714, 714, 713, 713, 710, 709, 707, 707, 705, 702, 701, 700, 699, 698, 697, 696, 694, 692, 691, 690, 689, 688, 687, 687, 686, 688, 687, 687, 687, 686, 687, 686, 685, 685, 684, 684, 683, 681, 681, 682, 683, 684, 684, 681, 678, 677, 677, 676, 676, 674, 673, 671, 669, 667, 666, 665, 664, 663, 663, 661, 660, 660, 655, 651, 651, 653, 653, 654, 651, 651, 649, 648, 646, 644, 644, 642, 642, 640, 638, 635, 636, 635, 632, 632, 632, 633, 633, 632, 632, 630, 629, 622, 621, 619, 619, 617, 616, 614, 613, 611, 608, 606, 603, 602, 599, 598, 596, 592, 591, 590, 589, 588, 588, 587, 585, 585, 580, 579, 578, 578, 574, 573, 572, 571, 569, 569, 566, 565, 559, 558, 556, 556, 554, 554, 555, 555, 557, 558, 558, 559, 559, 557, 556, 556)), list(x = c(1980, 1984, 1986, 1987, 1986, 1984, 1983, 1983, 1983, 1982, 1982, 1981, 1979, 1975, 1974, 1972, 1964, 1961, 1957, 1952, 1947, 1946, 1945, 1945, 1946, 1946, 1944, 1942, 1923, 1922, 1919, 1915, 1913, 1911, 1907, 1906, 1901, 1901, 1899, 1898, 1897, 1896, 1896, 1897, 1896, 1896, 1895, 1893, 1886, 1885, 1879, 1878, 1879, 1880, 1880, 1879, 1877, 1875, 1873, 1872, 1870, 1869, 1866, 1864, 1863, 1861, 1858, 1857, 1855, 1855, 1857, 1859, 1863, 1864, 1867, 1869, 1870, 1871, 1875, 1877, 1878, 1879, 1882, 1884, 1884, 1886, 1887, 1895, 1895, 1891, 1889, 1887, 1880, 1878, 1876, 1876, 1870, 1869, 1867, 1866, 1864, 1861, 1856, 1853, 1851, 1849, 1847, 1844, 1842, 1840, 1837, 1835, 1835, 1832, 1830, 1829, 1827, 1826, 1826, 1818, 1816, 1814, 1813, 1812, 1810, 1809, 1807, 1805, 1802, 1801, 1801, 1800, 1801, 1802, 1803, 1804, 1803, 1804, 1804, 1805, 1810, 1811, 1811, 1813, 1813, 1814, 1815, 1814, 1814, 1813, 1813, 1814, 1813, 1814, 1813, 1813, 1812, 1812, 1810, 1808, 1806, 1802, 1801, 1800, 1800, 1799, 1797, 1797, 1796, 1796, 1795, 1793, 1792, 1791, 1790, 1790, 1789, 1788, 1787, 1786, 1785, 1783, 1782, 1781, 1779, 1778, 1778, 1779, 1779, 1778, 1778, 1779, 1778, 1779, 1778, 1778, 1776, 1775, 1772, 1771, 1769, 1767, 1763, 1762, 1761, 1760, 1759, 1759, 1763, 1764, 1764, 1765, 1766, 1768, 1768, 1766, 1765, 1765, 1763, 1763, 1761, 1760, 1759, 1755, 1753, 1752, 1750, 1749, 1747, 1747, 1746, 1743, 1742, 1740, 1739, 1736, 1735, 1736, 1734, 1732, 1728, 1726, 1724, 1722, 1721, 1721, 1727, 1731, 1734, 1736, 1736, 1737, 1737, 1739, 1740, 1741, 1740, 1741, 1742, 1742, 1743, 1743, 1744, 1744, 1742, 1740, 1739, 1736, 1735, 1735, 1734, 1732, 1732, 1731, 1730, 1728, 1724, 1723, 1722, 1720, 1719, 1714, 1707, 1704, 1705, 1707, 1712, 1721, 1721, 1722, 1722, 1721, 1720, 1720, 1721, 1721, 1720, 1718, 1716, 1711, 1709, 1706, 1705, 1701, 1702, 1701, 1700, 1698, 1693, 1692, 1691, 1688, 1687, 1686, 1684, 1680, 1678, 1677, 1675, 1674, 1671, 1656, 1654, 1653, 1652, 1651, 1650, 1649, 1648, 1646, 1644, 1642, 1639, 1636, 1631, 1630, 1627, 1626, 1624, 1623, 1621, 1617, 1616, 1613, 1612, 1610, 1604, 1601, 1600, 1599, 1597, 1593, 1591, 1588, 1584, 1583, 1577, 1574, 1571, 1570, 1564, 1561, 1557, 1557, 1558, 1557, 1558, 1557, 1556, 1554, 1552, 1551, 1549, 1548, 1546, 1545, 1543, 1543, 1544, 1543, 1543, 1544, 1544, 1537, 1528, 1523, 1522), y = c(556, 556, 552, 552, 550, 550, 548, 549, 550, 550, 549, 549, 548, 544, 544, 543, 543, 544, 544, 546, 546, 547, 546, 545, 545, 544, 544, 543, 543, 542, 543, 543, 544, 543, 543, 542, 542, 544, 543, 543, 544, 543, 541, 541, 540, 539, 539, 541, 541, 540, 540, 539, 538, 538, 535, 534, 534, 532, 531, 531, 530, 531, 531, 530, 529, 529, 530, 529, 528, 525, 525, 526, 527, 528, 528, 529, 530, 530, 532, 532, 533, 533, 536, 536, 537, 537, 538, 538, 537, 536, 535, 535, 532, 530, 529, 528, 525, 523, 522, 521, 520, 517, 514, 510, 508, 507, 504, 503, 501, 500, 497, 497, 498, 498, 496, 496, 494, 494, 493, 493, 492, 493, 492, 493, 494, 493, 494, 493, 493, 492, 491, 490, 489, 487, 487, 486, 483, 483, 482, 482, 484, 485, 484, 484, 483, 483, 482, 481, 477, 476, 474, 474, 473, 472, 472, 471, 471, 470, 470, 471, 474, 478, 480, 481, 483, 485, 487, 486, 486, 485, 486, 486, 487, 487, 485, 484, 483, 483, 484, 484, 486, 488, 491, 492, 496, 496, 498, 498, 499, 499, 498, 498, 497, 497, 498, 497, 496, 494, 494, 495, 496, 498, 500, 501, 501, 502, 502, 505, 510, 510, 511, 511, 510, 511, 513, 515, 517, 518, 518, 519, 519, 520, 519, 519, 520, 519, 518, 516, 514, 512, 512, 509, 507, 507, 506, 505, 505, 504, 505, 505, 509, 510, 512, 512, 513, 514, 514, 512, 512, 514, 515, 515, 516, 518, 518, 519, 520, 522, 521, 522, 523, 524, 525, 531, 532, 532, 534, 537, 539, 540, 541, 541, 538, 538, 536, 536, 533, 533, 532, 531, 530, 528, 528, 525, 523, 523, 525, 525, 523, 522, 521, 519, 519, 517, 517, 515, 514, 514, 515, 515, 514, 514, 513, 511, 511, 510, 510, 508, 505, 505, 504, 503, 502, 500, 499, 495, 494, 493, 492, 492, 491, 481, 481, 482, 484, 484, 485, 485, 486, 486, 485, 485, 488, 490, 492, 493, 494, 495, 495, 496, 497, 497, 498, 499, 501, 503, 506, 506, 507, 508, 509, 509, 507, 508, 508, 509, 512, 512, 514, 514, 516, 516, 514, 512, 511, 511, 510, 509, 507, 508, 508, 509, 509, 510, 509, 510, 510, 512, 515, 515, 514, 514, 516, 523, 527, 527, 529)), list(x = c(1837, 1837, 1836, 1835, 1832, 1831, 1825, 1824, 1823, 1821, 1820, 1819, 1818, 1818, 1817, 1816, 1816, 1814, 1812, 1811, 1810, 1807, 1807, 1806, 1805, 1803, 1801, 1800, 1799, 1798, 1797, 1797, 1796, 1795, 1792, 1792, 1791, 1790, 1789, 1789, 1786, 1786, 1787, 1787, 1789, 1790, 1791, 1792, 1795, 1795, 1796, 1796, 1797, 1797, 1790, 1789, 1787, 1786, 1784, 1782, 1781, 1781, 1780, 1781, 1781, 1782, 1782, 1781, 1780, 1779, 1774, 1772, 1772, 1771, 1771, 1770, 1770, 1769, 1767, 1765, 1763, 1763, 1762, 1761, 1761, 1760, 1760, 1759, 1759, 1757, 1757, 1756, 1756, 1755, 1755, 1752, 1749, 1749, 1750, 1750, 1751, 1751, 1750, 1750, 1748, 1748, 1747, 1747, 1746, 1746, 1748, 1748, 1749, 1749, 1750, 1750, 1751, 1751, 1752, 1753, 1754, 1754, 1757, 1757, 1758, 1758, 1759, 1760, 1760, 1761, 1762, 1763, 1763, 1764, 1764, 1765, 1762, 1761, 1759, 1759, 1758, 1757, 1757, 1756, 1755, 1755, 1754, 1754, 1753, 1753, 1752, 1751, 1751, 1750, 1749, 1749, 1748, 1748, 1747, 1746, 1744, 1744, 1741, 1740, 1739, 1739, 1738, 1737, 1735, 1734, 1734, 1732, 1732, 1731, 1730, 1730, 1728, 1726, 1724, 1724, 1723, 1724, 1724, 1722, 1722, 1721, 1721, 1719, 1719, 1721, 1721, 1720, 1719, 1718, 1716, 1716, 1717, 1717, 1718, 1719, 1719, 1718, 1718, 1719, 1719, 1721, 1721, 1722, 1723, 1723, 1724, 1725, 1726, 1727, 1729, 1730, 1732, 1733, 1734, 1735, 1736, 1739, 1739, 1740, 1740, 1741, 1742, 1743, 1748, 1748, 1750, 1750, 1751, 1751, 1752, 1753, 1753, 1754, 1755, 1756, 1757, 1760, 1761, 1762, 1763, 1764, 1766, 1767, 1768, 1769, 1770, 1772, 1773, 1775, 1775, 1777, 1779, 1780, 1782, 1783, 1783, 1787, 1788, 1789, 1790, 1794, 1796, 1797, 1797, 1798, 1799, 1800, 1801, 1802, 1803, 1804, 1804, 1805, 1806, 1806, 1808, 1810, 1812, 1817, 1817, 1818, 1819, 1819, 1821, 1823, 1825, 1826, 1828, 1828, 1829, 1829, 1830, 1833, 1834, 1835, 1835, 1837, 1838, 1838, 1839, 1839, 1840, 1840, 1841, 1842, 1843, 1843, 1845, 1843, 1842, 1841, 1840, 1839, 1839, 1838, 1838, 1836, 1835, 1835, 1834, 1831, 1831, 1832, 1832, 1835, 1835, 1836, 1840, 1841, 1842, 1843, 1846, 1848, 1849, 1849, 1850, 1851, 1852, 1854, 1855, 1864, 1866, 1868, 1871, 1872, 1873, 1879, 1883, 1884, 1885, 1886, 1886, 1887, 1888, 1888, 1889, 1889, 1890, 1891, 1896, 1897, 1897, 1899, 1900, 1901, 1902, 1903, 1904, 1904, 1907, 1906, 1908, 1908, 1909, 1909, 1908, 1908, 1907, 1907, 1908, 1908, 1907, 1907, 1908, 1909, 1909, 1910, 1910, 1909, 1909, 1908, 1908, 1907, 1905, 1905, 1906, 1906, 1907, 1907, 1908, 1908, 1907, 1907, 1908, 1908, 1907, 1905, 1905, 1906, 1906, 1909, 1908, 1908, 1909, 1909, 1910, 1910, 1911, 1911, 1910, 1910, 1909, 1908, 1908, 1907, 1907, 1905, 1905, 1906, 1906, 1905, 1905, 1904, 1903, 1901, 1901, 1900, 1901, 1905, 1904, 1899, 1897, 1897, 1896, 1895, 1895, 1894, 1894, 1892, 1892, 1891, 1891, 1893, 1893, 1894, 1894, 1893, 1893, 1894, 1894, 1891, 1889, 1889, 1888, 1888, 1889, 1890, 1891, 1891, 1892, 1892, 1891, 1891, 1890, 1888, 1888, 1887, 1887, 1886, 1886, 1887, 1888, 1888, 1889, 1892, 1893, 1893, 1892, 1891, 1891, 1894, 1894, 1892, 1891, 1890, 1889, 1889, 1888, 1887, 1887, 1886, 1885, 1884, 1883, 1880, 1880, 1879, 1879, 1877, 1876, 1875, 1875, 1876, 1878, 1878, 1879, 1881, 1881, 1880, 1880, 1881, 1883, 1885, 1886, 1888, 1888, 1884, 1884, 1883, 1883, 1882, 1880, 1878, 1876, 1875, 1875, 1874, 1872, 1871, 1868, 1867, 1866, 1866, 1867, 1870, 1870, 1869, 1868, 1868, 1869, 1869, 1866, 1862, 1862, 1863, 1863, 1864, 1865, 1865, 1864, 1865, 1864, 1863, 1862, 1862, 1861, 1861, 1860, 1859, 1858, 1858, 1857, 1855, 1855, 1854, 1851, 1851, 1853, 1854, 1854, 1856, 1857, 1858, 1858, 1859, 1859, 1860, 1861, 1861, 1860, 1860, 1858, 1856, 1856, 1855, 1855, 1853, 1852, 1851, 1850, 1848, 1848, 1847, 1846, 1844, 1844, 1843, 1843, 1842, 1841, 1841, 1840, 1839, 1839, 1838, 1838, 1839, 1839, 1840, 1840, 1841, 1842, 1843, 1844, 1845, 1845, 1842, 1841, 1840, 1839, 1843, 1843, 1842, 1841, 1840, 1839, 1838, 1838, 1837, 1837, 1838, 1839, 1839, 1838, 1839, 1839, 1836, 1836, 1835, 1835, 1836, 1836, 1837, 1837, 1835, 1834), y = c(233, 232, 232, 231, 231, 232, 232, 233, 233, 235, 235, 236, 236, 237, 238, 238, 239, 239, 237, 237, 236, 236, 237, 237, 238, 238, 239, 240, 240, 239, 239, 238, 238, 239, 239, 237, 237, 238, 238, 240, 243, 245, 245, 246, 246, 247, 247, 246, 246, 245, 245, 244, 244, 248, 248, 249, 249, 250, 251, 253, 253, 254, 253, 253, 252, 252, 250, 250, 251, 251, 256, 257, 258, 259, 260, 261, 265, 266, 266, 267, 267, 268, 269, 269, 272, 272, 274, 275, 276, 276, 280, 280, 282, 282, 283, 286, 286, 287, 287, 288, 289, 290, 291, 292, 294, 295, 297, 303, 304, 308, 308, 307, 307, 306, 306, 305, 305, 304, 304, 303, 303, 302, 302, 301, 301, 300, 300, 299, 297, 296, 297, 297, 298, 299, 300, 301, 301, 302, 302, 303, 304, 304, 305, 306, 306, 307, 307, 308, 308, 309, 310, 310, 309, 308, 309, 310, 311, 317, 318, 320, 321, 322, 325, 325, 327, 328, 328, 329, 330, 331, 335, 335, 336, 336, 337, 344, 346, 347, 347, 348, 349, 350, 351, 353, 354, 355, 357, 359, 365, 367, 368, 368, 369, 369, 370, 373, 374, 375, 375, 376, 380, 381, 383, 384, 387, 388, 389, 388, 388, 387, 387, 386, 386, 385, 385, 384, 384, 383, 383, 384, 383, 383, 382, 382, 381, 381, 380, 381, 381, 386, 386, 384, 383, 382, 382, 381, 380, 380, 379, 379, 378, 378, 377, 377, 376, 376, 375, 375, 374, 374, 373, 373, 372, 372, 371, 371, 369, 369, 368, 368, 367, 367, 366, 366, 365, 365, 363, 363, 362, 362, 363, 363, 362, 362, 363, 363, 362, 361, 361, 360, 360, 362, 363, 363, 362, 361, 361, 365, 365, 366, 366, 367, 367, 366, 365, 364, 364, 361, 361, 360, 359, 357, 357, 355, 355, 354, 354, 353, 353, 352, 352, 351, 351, 353, 353, 354, 354, 355, 356, 356, 359, 361, 361, 362, 363, 363, 368, 368, 369, 369, 370, 370, 372, 371, 371, 370, 370, 369, 369, 370, 370, 371, 371, 373, 372, 372, 373, 373, 376, 376, 377, 377, 375, 376, 376, 377, 378, 378, 379, 380, 381, 382, 382, 383, 383, 382, 381, 381, 380, 380, 379, 379, 378, 377, 374, 373, 371, 370, 369, 368, 368, 365, 365, 361, 360, 357, 357, 353, 353, 354, 355, 355, 354, 354, 353, 352, 349, 349, 347, 346, 346, 342, 342, 340, 340, 337, 336, 334, 334, 332, 332, 330, 328, 327, 326, 323, 322, 319, 319, 317, 316, 314, 313, 307, 306, 305, 305, 306, 311, 312, 313, 315, 316, 317, 318, 318, 319, 319, 318, 318, 317, 316, 315, 315, 314, 314, 313, 310, 310, 309, 307, 307, 306, 304, 303, 303, 302, 302, 301, 301, 300, 299, 295, 294, 291, 291, 292, 291, 291, 289, 289, 288, 288, 287, 286, 285, 284, 281, 281, 279, 278, 277, 276, 275, 274, 273, 273, 274, 274, 271, 271, 269, 269, 268, 263, 260, 258, 256, 256, 257, 257, 258, 259, 258, 257, 257, 256, 256, 257, 257, 260, 261, 262, 262, 263, 263, 267, 267, 269, 270, 269, 269, 268, 267, 266, 266, 264, 264, 265, 265, 266, 270, 271, 271, 272, 272, 273, 273, 274, 274, 275, 276, 276, 277, 277, 278, 278, 277, 276, 276, 275, 275, 274, 273, 272, 268, 265, 265, 267, 267, 266, 267, 267, 268, 269, 270, 270, 269, 270, 272, 273, 274, 275, 275, 276, 277, 277, 279, 280, 281, 281, 280, 280, 279, 278, 276, 276, 275, 274, 274, 273, 272, 272, 270, 270, 266, 265, 265, 254, 253, 252, 252, 251, 251, 252, 252, 255, 257, 257, 255, 254, 254, 255, 255, 257, 262, 260, 260, 259, 258, 256, 255, 254, 254, 253, 253, 252, 252, 251, 251, 249, 249, 248, 248, 247, 247, 244, 243, 243, 242, 243, 243, 242, 242, 241, 241, 240, 239, 239, 238, 237, 237, 236, 236, 235, 235, 234, 234, 233, 231, 231)), list(x = c(1522, 1523, 1520, 1515, 1505, 1501, 1497, 1496, 1495, 1495, 1493, 1493, 1492, 1492, 1490, 1490, 1489, 1490, 1491, 1491, 1493, 1493, 1494, 1492, 1491, 1491, 1490, 1489, 1488, 1488, 1482, 1479, 1478, 1478, 1477, 1475, 1473, 1469, 1465, 1459, 1460, 1461, 1462, 1461, 1461, 1460, 1460, 1459, 1458, 1459, 1460, 1462, 1463, 1464, 1465, 1465, 1466, 1465, 1465, 1464, 1464, 1463, 1463, 1459, 1455, 1453, 1447, 1442, 1435, 1431, 1429, 1427, 1425, 1425, 1424, 1422, 1422, 1424, 1425, 1425, 1424, 1425, 1426, 1428, 1429, 1430, 1430, 1429, 1429, 1434, 1420, 1419, 1418, 1417, 1413, 1411, 1411, 1407, 1406, 1400, 1398, 1395, 1390, 1382, 1379, 1378, 1378, 1379, 1388, 1390, 1395, 1398, 1398, 1399, 1399, 1400, 1400, 1399, 1399, 1398, 1398, 1397, 1395, 1396, 1397, 1397, 1394, 1389, 1387, 1385, 1383, 1381, 1378, 1376, 1376, 1375, 1372, 1370, 1370, 1369, 1367, 1366, 1366, 1364, 1364, 1363, 1360, 1358, 1357, 1357, 1355, 1351, 1344, 1337, 1335, 1333, 1331, 1329, 1324, 1318, 1317, 1316, 1313, 1313, 1316, 1316, 1317, 1318, 1319, 1320, 1324, 1327, 1329, 1331, 1335, 1338, 1341, 1343, 1345, 1346, 1345, 1345, 1344, 1344, 1345, 1345, 1343, 1344, 1344, 1345, 1345, 1347, 1347, 1349, 1351, 1354, 1356, 1359, 1361, 1361, 1363, 1364, 1366, 1368, 1368, 1366, 1366, 1365, 1365, 1364, 1364, 1367, 1369, 1370, 1370, 1369, 1369, 1368, 1368, 1367, 1367, 1366, 1364, 1363, 1362, 1362, 1361, 1361, 1360, 1358, 1358, 1359, 1359, 1358, 1359, 1359, 1358, 1356, 1354, 1348, 1346, 1343, 1342, 1341, 1341, 1340, 1340, 1339, 1339, 1338, 1338, 1337, 1314, 1312, 1314, 1315, 1316, 1315, 1313, 1310, 1308, 1306, 1305, 1301, 1296, 1294, 1292, 1290, 1286, 1283, 1282, 1282, 1278, 1278, 1277, 1276, 1274, 1273, 1273, 1274, 1274, 1271, 1266, 1264, 1264, 1263, 1259, 1258, 1258, 1259, 1258, 1258, 1260, 1266, 1265, 1265, 1264, 1264, 1262, 1258, 1258, 1257, 1257, 1252, 1250, 1250, 1249, 1244, 1242, 1240, 1238, 1237, 1236, 1234, 1233, 1232, 1230, 1228, 1226, 1226, 1224, 1223, 1222, 1222, 1221, 1222, 1222, 1223, 1225, 1226, 1228, 1229, 1230, 1232, 1235, 1236, 1238, 1240, 1240, 1239, 1236, 1235, 1235, 1234, 1234, 1233, 1232, 1231, 1227, 1226, 1227, 1229, 1229, 1228, 1226, 1226, 1225, 1222, 1222, 1220, 1219, 1215, 1211, 1208, 1208, 1207, 1206, 1207, 1207, 1206, 1203, 1200, 1200, 1198, 1198, 1194, 1194, 1195, 1195, 1192, 1192, 1190, 1190, 1188, 1185, 1183, 1182, 1180, 1179, 1178, 1178, 1179, 1179, 1177, 1174, 1173, 1172, 1172, 1171, 1168, 1167, 1167, 1168, 1168, 1167, 1167, 1168, 1170, 1173, 1173, 1174, 1176, 1177, 1177, 1178, 1177, 1177, 1175, 1172, 1165, 1163, 1159, 1158, 1158, 1157, 1157, 1158, 1159, 1157, 1156, 1155, 1121, 1119, 1116, 1115, 1113, 1110, 1109, 1106, 1106, 1103, 1102, 1102, 1099, 1098, 1086, 1083, 1081, 1071, 1071, 1070, 1065, 1063, 1063, 1039, 1037, 1037, 1034, 1033, 1032, 1031, 1029, 1027, 1026, 1025, 1022, 1019, 1014, 1013, 1006, 1005, 998, 991, 990, 989, 986, 983, 980, 973, 965, 957, 955, 948, 947, 942, 940, 937, 913, 908, 901, 898, 894), y = c(529, 527, 528, 528, 530, 530, 532, 534, 535, 537, 540, 543, 545, 546, 547, 548, 546, 542, 540, 539, 535, 534, 533, 533, 535, 537, 538, 542, 544, 545, 551, 556, 556, 557, 557, 558, 560, 563, 565, 573, 575, 575, 577, 578, 580, 582, 583, 584, 586, 587, 589, 590, 592, 593, 596, 597, 598, 600, 602, 604, 607, 609, 612, 620, 624, 630, 638, 642, 649, 652, 653, 655, 655, 656, 659, 659, 660, 660, 659, 662, 662, 663, 663, 664, 664, 665, 666, 666, 667, 667, 665, 664, 664, 663, 663, 662, 663, 663, 662, 660, 658, 658, 657, 657, 658, 658, 661, 663, 668, 671, 674, 679, 680, 682, 683, 686, 688, 691, 694, 697, 700, 702, 703, 702, 702, 703, 709, 714, 718, 721, 723, 729, 731, 733, 735, 735, 731, 727, 726, 723, 721, 717, 713, 709, 707, 703, 698, 691, 689, 686, 682, 682, 684, 684, 682, 682, 681, 681, 679, 679, 677, 677, 681, 685, 693, 696, 696, 697, 697, 696, 696, 695, 695, 694, 695, 695, 699, 703, 709, 710, 712, 720, 722, 720, 720, 721, 723, 726, 737, 738, 740, 740, 749, 751, 751, 754, 754, 757, 757, 760, 762, 764, 766, 770, 771, 776, 778, 779, 780, 782, 786, 789, 789, 792, 793, 795, 798, 798, 804, 807, 809, 810, 815, 816, 818, 820, 823, 826, 831, 827, 821, 819, 810, 809, 808, 801, 799, 798, 798, 792, 791, 788, 786, 785, 783, 782, 781, 781, 780, 779, 777, 775, 759, 757, 757, 758, 756, 755, 754, 754, 753, 753, 752, 750, 745, 745, 744, 742, 740, 737, 735, 732, 728, 727, 726, 724, 724, 722, 720, 720, 719, 719, 717, 715, 714, 712, 708, 706, 704, 703, 703, 702, 703, 703, 702, 700, 698, 693, 693, 696, 697, 697, 698, 698, 696, 693, 693, 698, 701, 703, 707, 707, 708, 708, 709, 711, 712, 714, 715, 714, 712, 712, 713, 714, 716, 718, 719, 720, 720, 718, 717, 717, 714, 712, 712, 710, 710, 712, 713, 714, 714, 713, 712, 714, 728, 731, 731, 733, 734, 735, 739, 742, 745, 747, 747, 748, 750, 753, 754, 754, 756, 758, 761, 761, 762, 764, 765, 768, 777, 779, 782, 783, 785, 787, 788, 788, 787, 786, 785, 785, 786, 786, 787, 787, 789, 789, 790, 791, 792, 792, 791, 789, 787, 788, 794, 794, 796, 800, 801, 801, 803, 804, 806, 808, 810, 812, 812, 811, 807, 806, 807, 808, 809, 814, 815, 815, 816, 819, 822, 822, 821, 821, 822, 825, 828, 829, 830, 830, 834, 837, 838, 838, 839, 839, 840, 844, 845, 847, 848, 849, 851, 850, 851, 851, 852, 852, 849, 848, 848, 846, 844, 845, 846, 849, 852, 854, 856, 857, 858, 858, 859, 860, 860, 862, 863, 864, 867, 869, 870, 870, 871, 871, 868, 868, 867, 866, 866, 865, 865, 868, 868, 869, 869, 868, 866, 866, 865, 865, 864, 864, 863, 863)), list(x = c(894, 894), y = c(863, 1157)), list(x = c(894, 894), y = c(1157, 1744)), list(x = c(894, 1367), y = c(1157, 1157)), list(x = c(1367, 1367), y = c(1157, 1663)), list(x = c(1367, 1525, 1525 ), y = c(1157, 1157, 999)), list(x = c(2181, 2181, 2178, 2177, 2174, 2173, 2172, 2171, 2169, 2168, 2167, 2166, 2164, 2164, 2161, 2161, 2158, 2158, 2152, 2151, 2142, 2142, 2137, 2135, 2132, 2130, 2131, 2130, 2130, 2128, 2127, 2126, 2125, 2124, 2123, 2122, 2121, 2118, 2117, 2112, 2111, 2109, 2109, 2108, 2106, 2106, 2107, 2107, 2108, 2108, 2109, 2109, 2110, 2110, 2109, 2109, 2108, 2107, 2102, 2099, 2098, 2098, 2094, 2093, 2092, 2091, 2088, 2087, 2085, 2083, 2082, 2082, 2081, 2081, 2080, 2080, 2077, 2073, 2072, 2072, 2071, 2070, 2070, 2069, 2069, 2068, 2068, 2067, 2067, 2066, 2066, 2065, 2063, 2060, 2059, 2058, 2058, 2054, 2053, 2052, 2052, 2051, 2050, 2048, 2046, 2043, 2043, 2040, 2039, 2037, 2036, 2032, 2031, 2028, 2026, 2025, 2023, 2022, 2022, 2021, 2016, 2016, 2008, 2007, 1999, 1998, 1996, 1995, 1992, 1991, 1988, 1987, 1986, 1986, 1985, 1983, 1983, 1982, 1982, 1979, 1979, 1978, 1977, 1977, 1975, 1974, 1974, 1973, 1973, 1972, 1972, 1971, 1969, 1967, 1966, 1964, 1964, 1961, 1960, 1958, 1958, 1957, 1957, 1956, 1956, 1955, 1955, 1954, 1954, 1953, 1953, 1952, 1952, 1951, 1946, 1525), y = c(1044, 1043, 1043, 1042, 1042, 1041, 1041, 1040, 1040, 1039, 1039, 1038, 1038, 1037, 1037, 1036, 1036, 1035, 1035, 1036, 1036, 1037, 1037, 1038, 1038, 1036, 1036, 1035, 1033, 1032, 1031, 1031, 1030, 1030, 1029, 1029, 1028, 1028, 1027, 1027, 1026, 1026, 1025, 1025, 1023, 1021, 1020, 1019, 1018, 1016, 1015, 1012, 1011, 1009, 1008, 1007, 1005, 1004, 1004, 1005, 1005, 1006, 1006, 1005, 1005, 1004, 1004, 1003, 1003, 1001, 1001, 1000, 999, 994, 994, 993, 990, 990, 991, 992, 993, 993, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1003, 1004, 1007, 1007, 1009, 1010, 1014, 1014, 1015, 1016, 1016, 1017, 1017, 1018, 1018, 1017, 1017, 1016, 1016, 1015, 1015, 1016, 1016, 1018, 1018, 1020, 1020, 1021, 1020, 1020, 1019, 1019, 1018, 1018, 1019, 1019, 1020, 1020, 1021, 1021, 1022, 1022, 1023, 1024, 1024, 1025, 1025, 1024, 1024, 1023, 1022, 1022, 1021, 1019, 1019, 1018, 1018, 1017, 1017, 1016, 1016, 1014, 1014, 1013, 1013, 1012, 1012, 1011, 1011, 1009, 1009, 1008, 1008, 1007, 1007, 1005, 1005, 1004, 1003, 1002, 1002, 1001, 1000, 999, 999)), list(x = c( 1525, 1525), y = c(999, 733)), list(x = c(1980, 1895, 1891, 1891, 1890, 1890, 1889, 1889, 1888, 1888, 1887, 1887, 1886, 1884, 1883, 1882, 1880, 1880, 1879, 1877, 1873, 1872, 1869, 1867, 1865, 1863, 1859, 1857, 1856, 1854, 1844, 1844, 1843, 1843, 1842, 1842, 1840, 1836, 1835, 1833, 1833, 1829, 1828, 1827, 1825, 1824, 1823, 1821, 1821, 1818, 1818, 1816, 1816, 1814, 1813, 1811, 1810, 1808, 1807, 1806, 1805, 1804, 1803, 1798, 1797, 1793, 1791, 1785, 1784, 1782, 1781, 1780, 1778, 1773, 1771, 1769, 1768, 1766, 1765, 1765, 1763, 1761, 1760, 1759, 1758, 1757, 1756, 1754, 1751, 1750, 1744, 1743, 1741, 1741, 1734, 1734, 1733, 1730, 1730, 1729, 1729, 1728, 1727, 1727, 1726, 1725, 1719, 1718, 1715, 1711, 1710, 1709, 1709, 1708, 1707, 1707, 1706, 1706, 1705, 1705, 1704, 1704, 1701, 1700, 1699, 1698, 1697, 1696, 1695, 1695, 1693, 1693, 1691, 1691, 1690, 1688, 1687, 1687, 1686, 1684, 1683, 1682, 1679, 1679, 1677, 1675, 1674, 1673, 1672, 1671, 1669, 1669, 1667, 1666, 1665, 1664, 1663, 1663, 1662, 1658, 1657, 1656, 1655, 1654, 1654, 1652, 1652, 1651, 1651, 1652, 1652, 1653, 1653, 1652, 1652, 1651, 1650, 1650, 1649, 1649, 1648, 1648, 1647, 1647, 1646, 1646, 1640, 1639, 1636, 1635, 1628, 1628, 1627, 1626, 1626, 1623, 1623, 1621, 1621, 1620, 1619, 1619, 1618, 1618, 1617, 1617, 1616, 1614, 1614, 1613, 1612, 1611, 1611, 1610, 1610, 1609, 1609, 1608, 1606, 1606, 1605, 1605, 1601, 1601, 1600, 1600, 1601, 1601, 1602, 1602, 1601, 1600, 1599, 1597, 1596, 1595, 1594, 1594, 1593, 1593, 1592, 1590, 1587, 1586, 1585, 1585, 1584, 1584, 1583, 1583, 1582, 1581, 1580, 1579, 1577, 1577, 1576, 1572, 1571, 1566, 1565, 1564, 1557, 1553, 1552, 1551, 1550, 1549, 1549, 1548, 1543, 1542, 1539, 1539, 1537, 1536, 1534, 1534, 1530, 1528, 1526, 1525), y = c(556, 603, 607, 608, 608, 612, 612, 623, 623, 625, 626, 627, 627, 629, 629, 630, 630, 631, 631, 633, 633, 634, 634, 633, 633, 634, 634, 632, 632, 630, 630, 629, 629, 628, 628, 627, 625, 625, 626, 626, 627, 627, 628, 628, 629, 629, 630, 630, 631, 631, 632, 632, 633, 633, 634, 634, 635, 635, 634, 634, 633, 633, 632, 632, 631, 631, 632, 632, 633, 633, 634, 634, 636, 636, 637, 639, 639, 640, 640, 641, 641, 643, 643, 644, 644, 645, 645, 644, 644, 643, 643, 644, 644, 645, 645, 644, 644, 641, 640, 639, 634, 632, 631, 630, 630, 629, 629, 630, 630, 634, 634, 635, 636, 636, 637, 638, 638, 639, 639, 641, 642, 644, 647, 647, 648, 648, 649, 649, 650, 651, 651, 652, 654, 655, 655, 657, 657, 658, 658, 659, 659, 660, 660, 661, 661, 663, 663, 664, 664, 665, 665, 666, 666, 667, 667, 668, 668, 675, 676, 676, 677, 677, 678, 678, 679, 681, 684, 685, 689, 690, 692, 693, 694, 695, 696, 697, 697, 698, 699, 700, 700, 701, 701, 702, 702, 703, 703, 704, 704, 705, 705, 706, 707, 707, 709, 709, 711, 711, 712, 711, 711, 710, 710, 703, 702, 701, 701, 699, 698, 698, 699, 699, 701, 701, 703, 703, 704, 704, 706, 708, 709, 711, 711, 713, 713, 717, 718, 719, 720, 721, 722, 722, 723, 723, 724, 724, 725, 729, 730, 731, 731, 732, 732, 731, 731, 732, 733, 735, 735, 736, 736, 737, 736, 736, 735, 736, 735, 735, 736, 736, 737, 737, 730, 730, 731, 731, 732, 732, 733, 734, 734, 735, 735, 734, 734, 735, 736, 738, 738, 740, 740, 733)), list(x = c(1525, 1522, 1522), y = c(733, 729, 529 )))
tidy_cauchy <- function(.n = 50, .location = 0, .scale = 1, .num_sims = 1){ n <- as.integer(.n) num_sims <- as.integer(.num_sims) location <- as.numeric(.location) scale <- as.numeric(.scale) if(!is.integer(n) | n < 0){ rlang::abort( "The parameters '.n' must be of class integer. Please pass a whole number like 50 or 100. It must be greater than 0." ) } if(!is.integer(num_sims) | num_sims < 0){ rlang::abort( "The parameter `.num_sims' must be of class integer. Please pass a whole number like 50 or 100. It must be greater than 0." ) } if(!is.numeric(location) | !is.numeric(scale)){ rlang::abort( "The parameters of .location and .scale must be of class numeric and greater than 0." ) } if(scale < 0){ rlang::abort("The parameter of .scale must be greater than or equal to 0.") } x <- seq(1, num_sims, 1) ps <- seq(-n, n-1, 2) qs <- seq(0, 1, (1/(n-1))) df <- dplyr::tibble(sim_number = as.factor(x)) %>% dplyr::group_by(sim_number) %>% dplyr::mutate(x = list(1:n)) %>% dplyr::mutate(y = list(stats::rcauchy(n = n, location = location, scale = scale))) %>% dplyr::mutate(d = list(density(unlist(y), n = n)[c("x","y")] %>% purrr::set_names("dx","dy") %>% dplyr::as_tibble())) %>% dplyr::mutate(p = list(stats::pcauchy(ps, location = location, scale = scale))) %>% dplyr::mutate(q = list(stats::qcauchy(qs, location = location, scale = scale))) %>% tidyr::unnest(cols = c(x, y, d, p, q)) %>% dplyr::ungroup() attr(df, ".location") <- .location attr(df, ".scale") <- .scale attr(df, ".n") <- .n attr(df, ".num_sims") <- .num_sims attr(df, "tibble_type") <- "tidy_cauchy" attr(df, "ps") <- ps attr(df, "qs") <- qs return(df) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) lightenColor <- function(x, amount = .4) { x <- 255 - col2rgb(x); x <- amount * x; x <- 255 - x; x <- rgb(t(x), maxColorValue=255); return(x); } Okabe_Ito <- c(" " " orange <- Okabe_Ito[1]; lightBlue <- Okabe_Ito[2]; green <- Okabe_Ito[3] yellow <- Okabe_Ito[4] darkBlue <- Okabe_Ito[5]; red <- Okabe_Ito[6]; pink <- Okabe_Ito[7]; orange_l <- lightenColor(orange); lightBlue_l <- lightenColor(lightBlue); green_l <- lightenColor(green); yellow_l <- lightenColor(yellow); darkBlue_l <- lightenColor(darkBlue); red_l <- lightenColor(red); pink_l <- lightenColor(pink); orangeBg <- lightenColor(orange, amount=.05); greenBg <- lightenColor(green, amount=.05); oldKableViewOption <- getOption("kableExtra_view_html", NULL); options(kableExtra_view_html = FALSE); oldSilentOption <- preregr::opts$get("silent"); preregr::opts$set(silent = TRUE); knitr::opts_chunk$set(echo = FALSE, comment=""); if (!exists('headingLevel') || !is.numeric(headingLevel) || (length(headingLevel) != 1)) { headingLevel <- 0; } validSectionIds <- x$sections$section_id; validSectionIds <- validSectionIds[ !is.na(validSectionIds) & nchar(validSectionIds) > 0 ]; if (is.null(section)) { sectionsToShow <- validSectionIds; } else { sectionsToShow <- intersect( validSectionIds, section ); } preregr::heading( x$metadata$content[x$metadata$field == "title"], idSlug("preregr-form"), headingLevel=headingLevel ); if (nrow(x$instructions) > 0) { preregr::heading("Instructions", headingLevel=headingLevel + 1); for (i in 1:nrow(x$instructions)) { preregr::heading( x$instructions[i, "heading"], idSlug("preregr-form"), headingLevel=headingLevel + 2 ); cat0("\n\n", x$instructions[i, "description"], "\n\n"); } } preregr::heading("Sections and items", headingLevel=headingLevel + 1); for (section in sectionsToShow) { preregr::heading( "Section: ", x$sections[ x$sections$section_id==section, "section_label" ], idSlug("preregr-form"), headingLevel=headingLevel + 2 ); item_ids <- x$items$item_id[x$items$section_id == section]; item_labels <- x$items$item_label[x$items$section_id == section]; item_descriptions <- x$items$item_description[x$items$section_id == section]; names(item_labels) <- item_ids; names(item_descriptions) <- item_ids; for (currentItemId in item_ids) { cat0("<div class=\"preregr preregr-form-item-spec "); cat0("preregr-form-item\">\n"); cat0("<div class=\"preregr-item-heading\">\n"); cat0("<div class=\"preregr-item-label\">", item_labels[currentItemId], "</div>\n"); cat0("<div class=\"preregr-item-id\">", currentItemId, "</div>\n"); cat0("</div>\n"); cat0("<div class=\"preregr-item-spec-text\">", item_descriptions[currentItemId], "</div>\n"); cat0("</div>\n"); } } preregr::opts$set(silent = oldSilentOption); if (!is.null(oldKableViewOption)) { options(kableExtra_view_html = oldKableViewOption); } preregrJSON <- preregr::form_to_json(x); preregrJSON <- gsub("'", "& preregrJSON ); slug <- paste0("preregr-data-", preregr::randomSlug()); preregr::form_knit( "prpQuant_v1" );
decisionDST <- function (mass, criterion, r = 0.5, sDec = 1:nrow(mass), D = Dcalculus(nrow(mass))){ if (is.vector(mass) || (is.matrix(mass) && nrow(mass) == 1)) { mass = matrix(mass,, 1) } lm=nrow(mass); nbvec_test=ncol(mass); nbclasses=round(log2(lm)); class_fusion=c(); for(k in 1:nbvec_test){ masstmp=mass[,k]; if(criterion==1){ plau=mtopl(masstmp); ii=1:nbclasses; plau_singl=plau[1+2^(ii-1)]; indice=which.max(plau_singl); class_fusion=c(class_fusion,indice); }else if(criterion==2||criterion==3){ croy=mtobel(masstmp); ii=1:nbclasses; croy_singl=croy[1+2^(ii-1)]; valuemax=max(croy_singl); indice=which.max(croy_singl); if(criterion==3){ indice_complementaire=0; for (i in seq(nbclasses,indice,by=-1)){ indice_complementaire=indice_complementaire+2^(nbclasses-(nbclasses-i+1)); } if (valuemax>=croy[indice_complementaire]){ class_fusion=c(class_fusion,indice); }else{ class_fusion=c(class_fusion,0); } }else{ class_fusion=c(class_fusion,indice); } }else if(criterion==4){ pign=mtobetp(t(masstmp)); indice=which.max(pign); class_fusion=c(class_fusion,indice); }else if(criterion==5){ plau=mtopl(t(masstmp)); lambda=1; md=BayesianMass(lambda,r,nbclasses); indice=which.max(plau*md); class_fusion=c(class_fusion,indice); }else if(criterion==6){ sizeSD <- length(sDec) distJ <- c() for (i in 1:sizeSD){ mSD <- matrix(0,lm,1) mSD[sDec[i]] <- 1 distJ <- c(distJ, JousselmeDistance(masstmp, mSD, D)) } indice=which.min(distJ) class_fusion=c(class_fusion,sDec[indice]) }else{ stop('ACCIDENT: The critertion given is not right\n') } } return(class_fusion) } Dcalculus <- function(lm) { natoms = round(log2(lm)) ind = list() if (2^natoms == lm) { ind[[1]] = c(1) ind[[2]] = c(2) step = 3 while (step < 2^natoms) { ind[step] = step step = step + 1 indatom = step for (step2 in 2: (indatom - 2)) { ind[[step]] = sort(union(ind[[indatom - 1]], ind[[step2]])); step = step + 1 } } out = matrix(0, 2^natoms, 2^natoms) for (i in 1:2^natoms) { for (j in 1:2^natoms) { out[i, j] = length(intersect(ind[[i]], ind[[j]]))/length(union(ind[[i]], ind[[j]])) } } } else{ stop("ACCIDENT in Dcalculus: length of input vector not OK: should be a power of 2") } return(out) } JousselmeDistance <- function(m1, m2, Tjaccard) { if (length(m1) == length(m2)) { if(missing(Tjaccard)){ Tjaccard = Dcalculus(length(m1)) } m_diff = matrix(m1 - m2, length(m1) ,1) out = sqrt(t(m_diff) %*% Tjaccard %*% m_diff/2) } else { stop("ACCIDENT in JousselmeDistance: the size of the both masses m1 and m2 is different\n") } return(out) }
context("Mahalanobis distance with missing values") library(modi) test_that("MDmiss without missings outputs the same result as mahalanobis (stats)", { A <- matrix(c(2, 4, 3, 13, 5, 8), nrow = 3, ncol = 2, byrow = TRUE) expect_equal(MDmiss(A, apply(A, 2, mean), var(A)), mahalanobis(A, apply(A, 2, mean), var(A))) })
prep_MCMC <- function(object, start = NULL, end = NULL, thin = NULL, subset = NULL, exclude_chains = NULL, warn = TRUE, mess = TRUE, ...) { if (is.null(start)) { start <- start(object$MCMC) } else { start <- max(start, start(object$MCMC)) } if (is.null(end)) { end <- end(object$MCMC) } else { end <- min(end, end(object$MCMC)) } if (is.null(thin)) thin <- coda::thin(object$MCMC) MCMC <- get_subset(object, subset, warn = warn, mess = mess) chains <- seq_along(MCMC) if (!is.null(exclude_chains)) { chains <- chains[-exclude_chains] } MCMC <- do.call(rbind, window(MCMC[chains], start = start, end = end, thin = thin)) return(MCMC) } get_D_names <- function(params, varname, lvls) { nams <- nlapply(lvls, function(lvl) { params$coef[ lvapply(params$outcome, function(x) varname %in% x) & grepl(paste0("^D[[:digit:]]*_[", varname, "_]*", lvl, "\\["), params$coef) ] }) Filter(length, nams) } rd_vcov <- function(object, outcome = NULL, start = NULL, end = NULL, thin = NULL, exclude_chains = NULL, mess = TRUE, warn = TRUE) { vars <- if (is.null(outcome)) { names(object$coef_list) } else { names(object$coef_list)[outcome] } rd_vcov_list <- nlapply(vars, function(varname) { get_Dmat(object, varname, start = start, end = end, thin = thin, exclude_chains = exclude_chains, mess = mess, warn = warn) }) if (length(rd_vcov_list) == 1L) { rd_vcov_list[[1]] } else { rd_vcov_list } } get_Dmat <- function(object, varname, start = NULL, end = NULL, thin = NULL, exclude_chains = NULL, mess = TRUE, warn = TRUE, lvls = "all") { if (lvls == "all") { lvls <- object$Mlist$idvar } MCMC <- prep_MCMC(object, start = start, end = end, thin = thin, subset = NULL, exclude_chains = exclude_chains, warn = warn, mess = mess) Ds <- get_D_names(parameters(object), varname = varname, lvls = lvls) Dpos <- lapply(Ds, function(d) { t(sapply(strsplit(gsub("[[:print:]]+\\[|\\]", "", d), ","), as.numeric)) }) Dmat <- nlapply(names(Dpos), function(lvl) { nam <- get_rdvcov_names(object, varname, lvl) m <- matrix(nrow = max(Dpos[[lvl]][, 1]), ncol = max(Dpos[[lvl]][, 2]), dimnames = list(nam$nam, nam$nam)) structure(m, class = "Dmat", structure = nam ) }) for (lvl in names(Dmat)) { for (k in seq_along(Ds[[lvl]])) { Dmat[[lvl]][Dpos[[lvl]][k, 1], Dpos[[lvl]][k, 2]] <- mean(MCMC[, Ds[[lvl]][k]]) } Dmat[[lvl]][is.na(Dmat[[lvl]])] <- t(Dmat[[lvl]])[is.na(Dmat[[lvl]])] } Dmat } print.Dmat <- function(x, digits = getOption("digits"), scientific = getOption("scipen"), ...) { r <- rbind(c(rep("", 2), attr(x, "structure")$variable), c(rep("", 2), colnames(x)), cbind(attr(x, "structure")$variable, rownames(x), unname(format(x, digits = digits, scientific = scientific, ...)) ) ) cat(format_Dmat(r), sep = c(rep(" ", ncol(r) - 1), "\n")) } format_Dmat <- function(r) { spaces <- sapply(max(nchar(r)) - nchar(r), function(k) { if (k > 0L) { paste0(rep(" ", k), collapse = "") } else { "" } }) matrix(nrow = nrow(r), ncol = ncol(r), data = paste0(spaces, r) ) } get_rdvcov_names <- function(object, varname, lvl) { pos <- nlapply(attr(object$info_list[[varname]]$rd_vcov[[lvl]], "ranef_index"), function(nr) eval(parse(text = nr))) if (length(pos) > 0L) { nam <- nlapply(names(pos), function(v) { attr(object$info_list[[v]]$hc_list$hcvars[[lvl]], "z_names") }) melt_list( Map(function(pos, nam) { cbind(pos, nam) }, pos = pos, nam = nam), varname = "variable" ) } else { nam <- attr(object$info_list[[varname]]$hc_list$hcvars[[lvl]], "z_names") if (!is.null(nam)) { data.frame(pos = seq_along(nam), nam = nam, variable = varname) } } } print_type <- function(type, family = NULL, upper = FALSE) { a <- switch(type, glm = switch(family, gaussian = 'linear model', binomial = 'binomial model', Gamma = 'Gamma model', poisson = 'poisson model', lognorm = 'log-normal model', beta = 'beta model' ), glmm = switch(family, gaussian = 'linear mixed model', binomial = 'binomial mixed model', Gamma = 'Gamma mixed model', poisson = 'poisson mixed model', lognorm = 'log-normal mixed model', beta = 'beta mixed model' ), coxph = 'proportional hazards model', survreg = 'weibull survival model', clm = 'cumulative logit model', clmm = 'cumulative logit mixed model', mlogit = "multinomial logit model", mlogitmm = "multinomial logit mixed model", JM = "joint survival and longitudinal model" ) if (upper) substr(a, 1, 1) <- toupper(substr(a, 1, 1)) a } get_intercepts <- function(stats, varname, lvls, rev = FALSE) { interc <- stats[grep(paste0("gamma_", varname), rownames(stats)), , drop = FALSE] attr(interc, "rownames_orig") <- rownames(interc) if (isTRUE(rev)) { rownames(interc) <- paste(varname, "\u2264", lvls[-length(lvls)]) } else { rownames(interc) <- paste(varname, ">", lvls[-length(lvls)]) } interc } computeP <- function(x) { above <- mean(x > 0) below <- mean(x < 0) 2 * min(above, below) }
expected <- eval(parse(text="\"NaN\"")); test(id=0, code={ argv <- eval(parse(text="list(NaN)")); do.call(`as.character`, argv); }, o=expected);
orglm.fit <- function (x, y, weights = rep(1, nobs), start = NULL, etastart = NULL, mustart = NULL, offset = rep(0, nobs), family = gaussian(), control = list(), intercept = TRUE, constr, rhs, nec){ orr <- function(x, y, constr, rhs, nec){ unc <- lm.fit(x, y) tBeta <- as.vector(coefficients(unc)) invW <- t(x) %*% x orsolve <- function(tBeta, invW, Constr, RHS, NEC) { Dmat <- 2 * invW dvec <- 2 * tBeta %*% invW Amat <- t(Constr) solve.QP(Dmat, dvec, Amat, bvec = RHS, meq = NEC) } orBeta <- tBeta val <- 0 for (i in 1:control$maxit) { sqp <- orsolve(orBeta, invW, constr, rhs, nec) orBeta <- sqp$solution if (abs(sqp$value - val) <= control$epsilon) break else val <- sqp$value } return(list(coefficients=orBeta)) } control <- do.call("glm.control", control) x <- as.matrix(x) if (is.vector(constr)) constr <- matrix(constr, nrow=1) if (ncol(constr) != ncol(x)) stop(paste("constr has not correct dimensions.\nNumber of columns (",ncol(constr),") should equal the number of parameters: ", ncol(x), sep="")) if (length(rhs) != nrow(constr)) stop(paste("rhs has a different number of elements than there are numbers of rows in constr (",length(rhs), " != ", nrow(constr), ")", sep="")) if (nec < 0) stop("nec needs to be positive") if (nec > length(rhs)) stop(paste("nec is larger than the number of constraints. (",nec," > ",length(rhs),")", sep="")) xnames <- dimnames(x)[[2L]] ynames <- if (is.matrix(y)) rownames(y) else names(y) conv <- FALSE nobs <- NROW(y) nvars <- ncol(x) EMPTY <- nvars == 0 if (is.null(weights)) weights <- rep.int(1, nobs) if (is.null(offset)) offset <- rep.int(0, nobs) variance <- family$variance linkinv <- family$linkinv if (!is.function(variance) || !is.function(linkinv)) stop("'family' argument seems not to be a valid family object", call. = FALSE) dev.resids <- family$dev.resids aic <- family$aic mu.eta <- family$mu.eta unless.null <- function(x, if.null) if (is.null(x)) if.null else x valideta <- unless.null(family$valideta, function(eta) TRUE) validmu <- unless.null(family$validmu, function(mu) TRUE) if (is.null(mustart)) { eval(family$initialize) } else { mukeep <- mustart eval(family$initialize) mustart <- mukeep } if (EMPTY) { eta <- rep.int(0, nobs) + offset if (!valideta(eta)) stop("invalid linear predictor values in empty model", call. = FALSE) mu <- linkinv(eta) if (!validmu(mu)) stop("invalid fitted means in empty model", call. = FALSE) dev <- sum(dev.resids(y, mu, weights)) w <- ((weights * mu.eta(eta)^2)/variance(mu))^0.5 residuals <- (y - mu)/mu.eta(eta) good <- rep(TRUE, length(residuals)) boundary <- conv <- TRUE coef <- numeric() iter <- 0L } else { coefold <- NULL eta <- if (!is.null(etastart)) etastart else if (!is.null(start)) if (length(start) != nvars) stop(gettextf("length of 'start' should equal %d and correspond to initial coefs for %s", nvars, paste(deparse(xnames), collapse = ", ")), domain = NA) else { coefold <- start offset + as.vector(if (NCOL(x) == 1L) x * start else x %*% start) } else family$linkfun(mustart) mu <- linkinv(eta) if (!(validmu(mu) && valideta(eta))) stop("cannot find valid starting values: please specify some", call. = FALSE) devold <- sum(dev.resids(y, mu, weights)) boundary <- conv <- FALSE for (iter in 1L:control$maxit) { good <- weights > 0 varmu <- variance(mu)[good] if (any(is.na(varmu))) stop("NAs in V(mu)") if (any(varmu == 0)) stop("0s in V(mu)") mu.eta.val <- mu.eta(eta) if (any(is.na(mu.eta.val[good]))) stop("NAs in d(mu)/d(eta)") good <- (weights > 0) & (mu.eta.val != 0) if (all(!good)) { conv <- FALSE warning("no observations informative at iteration ", iter) break } z <- (eta - offset)[good] + (y - mu)[good]/mu.eta.val[good] w <- sqrt((weights[good] * mu.eta.val[good]^2)/variance(mu)[good]) ngoodobs <- as.integer(nobs - sum(!good)) fit <- orr(x[good, , drop = FALSE] * w, z * w, constr, rhs, nec) if (any(!is.finite(fit$coefficients))) { conv <- FALSE warning(gettextf("non-finite coefficients at iteration %d", iter), domain = NA) break } start <- fit$coefficients eta <- drop(x %*% start) mu <- linkinv(eta <- eta + offset) dev <- sum(dev.resids(y, mu, weights)) if (control$trace) cat("Deviance =", dev, "Iterations -", iter, "\n") boundary <- FALSE if (!is.finite(dev)) { if (is.null(coefold)) stop("no valid set of coefficients has been found: please supply starting values", call. = FALSE) warning("step size truncated due to divergence", call. = FALSE) ii <- 1 while (!is.finite(dev)) { if (ii > control$maxit) stop("inner loop 1; cannot correct step size", call. = FALSE) ii <- ii + 1 start <- (start + coefold)/2 eta <- drop(x %*% start) mu <- linkinv(eta <- eta + offset) dev <- sum(dev.resids(y, mu, weights)) } boundary <- TRUE if (control$trace) cat("Step halved: new deviance =", dev, "\n") } if (!(valideta(eta) && validmu(mu))) { if (is.null(coefold)) stop("no valid set of coefficients has been found: please supply starting values", call. = FALSE) warning("step size truncated: out of bounds", call. = FALSE) ii <- 1 while (!(valideta(eta) && validmu(mu))){ if (ii > control$maxit) stop("inner loop 2; cannot correct step size", call. = FALSE) ii <- ii + 1 start <- (start + coefold)/2 eta <- drop(x %*% start) mu <- linkinv(eta <- eta + offset) } boundary <- TRUE dev <- sum(dev.resids(y, mu, weights)) if (control$trace) cat("Step halved: new deviance =", dev, "\n") } if (abs(dev - devold)/(0.1 + abs(dev)) < control$epsilon) { conv <- TRUE coef <- start break } else { devold <- dev coef <- coefold <- start } } if (!conv) warning("orglm.fit: algorithm did not converge", call. = FALSE) if (boundary) warning("orglm.fit: algorithm stopped at boundary value", call. = FALSE) eps <- 10 * .Machine$double.eps if (family$family == "binomial") { if (any(mu > 1 - eps) || any(mu < eps)) warning("orglm.fit: fitted probabilities numerically 0 or 1 occurred", call. = FALSE) } if (family$family == "poisson") { if (any(mu < eps)) warning("orglm.fit: fitted rates numerically 0 occurred", call. = FALSE) } xxnames <- xnames residuals <- (y - mu)/mu.eta(eta) nr <- min(sum(good), nvars) names(coef) <- xnames } names(residuals) <- ynames names(mu) <- ynames names(eta) <- ynames wt <- rep.int(0, nobs) wt[good] <- w^2 names(wt) <- ynames names(weights) <- ynames names(y) <- ynames wtdmu <- if (intercept) sum(weights * y)/sum(weights) else linkinv(offset) nulldev <- sum(dev.resids(y, wtdmu, weights)) n.ok <- nobs - sum(weights == 0) nulldf <- n.ok - as.integer(intercept) fit$rank <- rank <- if (EMPTY) 0 else qr(x)$rank resdf <- n.ok - rank fit <- list(coefficients = coef, residuals = residuals, fitted.values = mu, rank=rank, family = family, linear.predictors = eta, deviance = dev, null.deviance = nulldev, iter = iter, weights = wt, prior.weights = weights, df.residual = resdf, df.null = nulldf, y = y, X=x, converged = conv, boundary = boundary, aic=NA, constr=constr, rhs=rhs, nec=nec) class(fit) <- c("glm", "lm") return(fit) }
`_renv_aliases` <- list( bioconductor = "Bioconductor", bitbucket = "Bitbucket", cellar = "Cellar", cran = "CRAN", git2r = "Git", github = "GitHub", gitlab = "GitLab", local = "Local", repository = "Repository", standard = "CRAN", url = "URL", xgit = "Git" ) renv_alias <- function(text) { `_renv_aliases`[[text]] %||% text }
hill_taxa_parti_pairwise <- function(comm, q = 0, rel_then_pool = TRUE, output = c("data.frame", "matrix"), pairs = c("unique", "full"), .progress = TRUE, show_warning = TRUE, ...) { if (any(comm < 0)) stop("Negative value in comm data") if (any(colSums(comm) == 0) & show_warning) warning("Some species in comm data were not observed in any site,\n delete them...") output <- match.arg(output) pairs <- match.arg(pairs) nsite <- nrow(comm) temp <- matrix(1, nsite, nsite) dimnames(temp) <- list(row.names(comm), row.names(comm)) gamma_pair <- alpha_pair <- beta_pair <- local_simi <- region_simi <- temp if(.progress) progbar = utils::txtProgressBar(min = 0, max = nsite - 1, initial = 0, style = 3) for (i in 1:(nsite - 1)) { if(.progress) utils::setTxtProgressBar(progbar, i) for (j in (i + 1):nsite) { o <- hill_taxa_parti(comm[c(i, j), ], q = q, check_data = FALSE, ...) gamma_pair[i, j] <- o$TD_gamma gamma_pair[j, i] <- o$TD_gamma alpha_pair[i, j] <- o$TD_alpha alpha_pair[j, i] <- o$TD_alpha beta_pair[i, j] <- o$TD_beta beta_pair[j, i] <- o$TD_beta local_simi[i, j] <- o$local_similarity local_simi[j, i] <- o$local_similarity region_simi[i, j] <- o$region_similarity region_simi[j, i] <- o$region_similarity } } if(.progress) close(progbar) if (pairs == "full") { if (output == "matrix") { out <- list(q = q, TD_gamma = gamma_pair, TD_alpha = alpha_pair, TD_beta = beta_pair, local_similarity = local_simi, region_similarity = region_simi) } if (output == "data.frame") { site.comp <- as.matrix(expand.grid(row.names(comm), row.names(comm))) out <- plyr::adply(site.comp, 1, function(x) { data.frame(q = q, site1 = x[1], site2 = x[2], TD_gamma = gamma_pair[x[1], x[2]], TD_alpha = alpha_pair[x[1], x[2]], TD_beta = beta_pair[x[1], x[2]], local_similarity = local_simi[x[1], x[2]], region_similarity = region_simi[x[1], x[2]]) })[, -1] out <- tibble::as_tibble(out) } } if (pairs == "unique") { gamma_pair[lower.tri(gamma_pair, diag = TRUE)] <- NA alpha_pair[lower.tri(alpha_pair, diag = TRUE)] <- NA beta_pair[lower.tri(beta_pair, diag = TRUE)] <- NA local_simi[lower.tri(local_simi, diag = TRUE)] <- NA region_simi[lower.tri(region_simi, diag = TRUE)] <- NA if (output == "matrix") { out <- list(q = q, TD_gamma = gamma_pair, TD_alpha = alpha_pair, TD_beta = beta_pair, local_similarity = local_simi, region_similarity = region_simi) } if (output == "data.frame") { site.comp <- as.matrix(expand.grid(row.names(comm), row.names(comm))) out <- plyr::adply(site.comp, 1, function(x) { data.frame(q = q, site1 = x[1], site2 = x[2], TD_gamma = gamma_pair[x[1], x[2]], TD_alpha = alpha_pair[x[1], x[2]], TD_beta = beta_pair[x[1], x[2]], local_similarity = local_simi[x[1], x[2]], region_similarity = region_simi[x[1], x[2]]) }) out <- na.omit(out)[, -1] row.names(out) <- NULL out <- tibble::as_tibble(out) } } out }
test_that("mlr_tasks", { expect_dictionary(mlr_tasks, min_items = 1L) keys = mlr_tasks$keys() for (key in keys) { t = tsk(key) expect_task_supervised(t) } }) test_that("load_x", { ns = getNamespace("mlr3") nn = names(ns) nn = nn[startsWith(names(ns), "load_task")] for (fun in nn) { fun = get(fun, envir = ns, mode = "function") expect_task_supervised(fun()) } }) test_that("tasks are cloned", { if (packageVersion("mlr3misc") >= "0.9.2") { task = tsk("iris") mlr_tasks$add("foo", task) expect_different_address(task, tsk("foo")) mlr_tasks$remove("foo") } })
chessdotcom_leaderboard <- function(game_type = "daily") { df <- jsonlite::fromJSON("https://api.chess.com/pub/leaderboards")[game_type] %>% unname() %>% data.frame() df$X.id <- NULL return(df) } lichess_leaderboard <- function(top_n_players, speed_variant) { top_leaders <- xml2::read_html(paste0("https://lichess.org/player/top/", top_n_players, "/", speed_variant)) %>% rvest::html_table() %>% data.frame() player_status_codes <- gsub( "\\s.*", "", top_leaders$X2[grep("\\s", top_leaders$X2)]) %>% unique() top_leaders$Usernames <- gsub(paste(player_status_codes, collapse="|"), "", top_leaders$X2) %>% gsub("\\s", "", .) colnames(top_leaders) <- c("Rank", "TitleAndName", "Rating", "Progress", "Username") extract_title <- function(x){ if(stringr::str_detect(x, "\\s+")){ x <- gsub( "\\s.*", "", x) } else{ x <- NA } } top_leaders$Title <- mapply(extract_title, top_leaders$TitleAndName) top_leaders <- top_leaders %>% dplyr::select(.data$Rank, .data$Title, .data$Username, .data$Rating, .data$Progress) top_leaders$SpeedVariant <- speed_variant return(top_leaders) }
"samplesMonitors" <- function(node) { if (is.R()){ command <- paste("SamplesEmbed.SetVariable(", sQuote(node), ");SamplesEmbed.StatsGuard;SamplesEmbed.Labels",sep="") .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) len <- length(rlb) if (len == 1 && rlb == "command is not allowed (greyed out)") message(rlb) else{ if(len == 0){ message("model has probably not yet been updated") invisible("model has probably not yet been updated") } else { scan(buffer, what = "character", quiet = TRUE, sep="\n") } } } else { sampsMonsSingle <- function(node){ command <- paste("SamplesEmbed.SetVariable(", sQuote(node), ");SamplesEmbed.StatsGuard;SamplesEmbed.Labels",sep="") .CmdInterpreter(command) buffer <- file.path(tempdir(), "buffer.txt") rlb <- readLines(buffer) len <- length(rlb) if (len == 1 && rlb == "command is not allowed (greyed out)") message(rlb) else{ if(len == 0){ message("model has probably not yet been updated") invisible("model has probably not yet been updated") } else { scan(buffer, what = "character", sep="\n") } } } for(i in seq(along=node)){ mons <- lapply(node, sampsMonsSingle) } mons <- unlist(mons) return(mons) } }
dispatch_parser <- function(filename, decimal = ".", sep = NULL, specnum = 1L) { switch( tolower(file_ext(filename)), procspec = lr_parse_procspec(filename), abs = lr_parse_abs(filename), roh = lr_parse_roh(filename), trm = lr_parse_trm(filename), trt = lr_parse_trt(filename), ttt = lr_parse_ttt(filename), rfl8 = lr_parse_rfl8(filename, specnum), raw8 = lr_parse_raw8(filename, specnum), jdx = lr_parse_jdx(filename), jaz = lr_parse_jaz(filename), jazirrad = lr_parse_jazirrad(filename), spc = lr_parse_spc(filename), lr_parse_generic(filename, decimal = decimal, sep = sep) ) }
lmmlasso <- function(ggmix_object, ...) UseMethod("lmmlasso") lmmlasso.default <- function(ggmix_object, ...) { stop(strwrap("This function should be used with a ggmix object of class lowrank or fullrank")) } lmmlasso.fullrank <- function(ggmix_object, ..., penalty.factor, lambda, lambda_min_ratio, nlambda, n_design, p_design, eta_init, maxit, fdev, standardize, alpha, thresh_glmnet, epsilon, dfmax, verbose) { if (is.null(lambda)) { if (lambda_min_ratio >= 1) stop("lambda_min_ratio should be less than 1") lamb <- lambdalasso(ggmix_object, penalty.factor = penalty.factor, nlambda = nlambda, lambda_min_ratio = lambda_min_ratio, eta_init = eta_init, epsilon = epsilon ) lambda_max <- lamb$sequence[[1]] lamb$sequence[[1]] <- .Machine$double.xmax tuning_params_mat <- matrix(lamb$sequence, nrow = 1, ncol = nlambda, byrow = TRUE) dimnames(tuning_params_mat)[[1]] <- list("lambda") dimnames(tuning_params_mat)[[2]] <- paste0("s", seq_len(nlambda)) lambda_names <- dimnames(tuning_params_mat)[[2]] } else { if (any(lambda < 0)) stop("lambdas should be non-negative") nlambda <- length(lambda) lambda <- as.double(rev(sort(lambda))) lambda_max <- lambda[[1]] tuning_params_mat <- matrix(lambda, nrow = 1, ncol = nlambda, byrow = TRUE) dimnames(tuning_params_mat)[[1]] <- list("lambda") dimnames(tuning_params_mat)[[2]] <- paste0("s", seq_len(nlambda)) lambda_names <- dimnames(tuning_params_mat)[[2]] } coefficient_mat <- matrix( nrow = p_design + 3, ncol = nlambda, dimnames = list( c( colnames(ggmix_object[["x"]]), "eta", "sigma2" ), lambda_names ) ) out_print <- matrix(NA, nrow = nlambda, ncol = 4, dimnames = list( lambda_names, c( "Df", "%Dev", "Lambda", "loglik" ) ) ) beta_init <- matrix(0, nrow = p_design + 1, ncol = 1) sigma2_init <- sigma2lasso(ggmix_object, n = n_design, eta = eta_init, beta = beta_init ) for (LAMBDA in lambda_names) { lambda_index <- which(LAMBDA == lambda_names) lambda <- tuning_params_mat["lambda", LAMBDA][[1]] if (verbose >= 1) { message(sprintf( "Index: %g, lambda: %0.4f", lambda_index, if (lambda_index == 1) lambda_max else lambda )) } k <- 0 converged <- FALSE while (!converged && k < maxit) { Theta_init <- c(as.vector(beta_init), eta_init, sigma2_init) di <- 1 + eta_init * (ggmix_object[["D"]] - 1) wi <- (1 / sigma2_init) * (1 / di) beta_next_fit <- glmnet::glmnet( x = ggmix_object[["x"]], y = ggmix_object[["y"]], family = "gaussian", weights = wi, alpha = alpha, penalty.factor = c(0, penalty.factor), standardize = FALSE, intercept = FALSE, lambda = c(.Machine$double.xmax, lambda), thresh = thresh_glmnet ) beta_next <- beta_next_fit$beta[, 2, drop = FALSE] eta_next <- stats::optim( par = eta_init, fn = fn_eta_lasso_fullrank, gr = gr_eta_lasso_fullrank, method = "L-BFGS-B", control = list(fnscale = 1), lower = 0.01, upper = 0.99, sigma2 = sigma2_init, beta = beta_next, eigenvalues = ggmix_object[["D"]], x = ggmix_object[["x"]], y = ggmix_object[["y"]], nt = n_design )$par sigma2_next <- sigma2lasso(ggmix_object, n = n_design, beta = beta_next, eta = eta_next ) Theta_next <- c(as.vector(beta_next), eta_next, sigma2_next) criterion <- crossprod(Theta_next - Theta_init) converged <- (criterion < epsilon)[1, 1] if (verbose >= 2) { message(sprintf( "Iteration: %f, Criterion: %f", k, criterion )) } k <- k + 1 beta_init <- beta_next eta_init <- eta_next sigma2_init <- sigma2_next } if (!converged) { message(sprintf( "algorithm did not converge for lambda %s", LAMBDA )) } saturated_loglik <- logliklasso(ggmix_object, eta = eta_next, sigma2 = sigma2_next, beta = 1, nt = n_design, x = ggmix_object[["y"]] ) intercept_loglik <- logliklasso(ggmix_object, eta = eta_next, sigma2 = sigma2_next, beta = beta_next[1, , drop = FALSE], nt = n_design, x = ggmix_object[["x"]][, 1, drop = FALSE] ) model_loglik <- logliklasso(ggmix_object, eta = eta_next, sigma2 = sigma2_next, beta = beta_next, nt = n_design ) deviance <- 2 * (saturated_loglik - model_loglik) nulldev <- 2 * (saturated_loglik - intercept_loglik) devratio <- 1 - deviance / nulldev df <- length(nonzeroCoef(beta_next)) - 1 + 2 out_print[LAMBDA, ] <- c( if (df == 0) 0 else df, devratio, lambda, model_loglik ) coefficient_mat[, LAMBDA] <- Theta_next deviance_change <- abs((out_print[lambda_index, "%Dev"] - out_print[lambda_index - 1, "%Dev"]) / out_print[lambda_index, "%Dev"]) if (length(deviance_change) > 0 & out_print[lambda_index, "%Dev"] > 0) { if (deviance_change < fdev) break } if (df > dfmax) break } out_print <- out_print[stats::complete.cases(out_print), ] lambdas_fit <- rownames(out_print) out_print[1, "Lambda"] <- lambda_max out <- list( result = out_print, ggmix_object = ggmix_object, n_design = n_design, p_design = p_design, lambda = out_print[, "Lambda"], coef = methods::as(coefficient_mat[, lambdas_fit, drop = FALSE], "dgCMatrix"), b0 = coefficient_mat["(Intercept)", lambdas_fit], beta = methods::as(coefficient_mat[colnames(ggmix_object[["x"]])[-1], lambdas_fit, drop = FALSE ], "dgCMatrix"), df = out_print[lambdas_fit, "Df"], eta = coefficient_mat["eta", lambdas_fit, drop = FALSE], sigma2 = coefficient_mat["sigma2", lambdas_fit, drop = FALSE], nlambda = length(lambdas_fit), cov_names = colnames(ggmix_object[["x"]]) ) class(out) <- c(paste0("lasso", attr(ggmix_object, "class")), "ggmix_fit") return(out) }
context("Test that citations are generated") test_that("atlas_citation generates DOI for dataset with DOI", { data <- data.frame() attr(data, "doi") <- "test-doi" expect_match(atlas_citation(data), "test-doi") }) test_that("atlas_citation returns an error when no DOI or search url exists", { data <- data.frame() attr(data, "doi") <- NA attr(data, "search_url") <- NA expect_error(atlas_citation(data)) }) test_that("atlas_citation produces a citation using a search url", { data <- data.frame() attr(data, "doi") <- NA attr(data, "search_url") <- "test_url" expect_true(grepl("test_url", atlas_citation(data))) })
suppressWarnings(RNGversion(vstr = "3.5.3")) test_that("LSI works", { set.seed(seed = 1) mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5) method1 <- RunTFIDF(object = mat, method = 1) method2 <- RunTFIDF(object = mat, method = 2) method3 <- RunTFIDF(object = mat, method = 3) method4 <- RunTFIDF(object = mat, method = 4) expect_equal( object = method1[1, ], expected = c(0.000000, 7.957927, 0.000000, 7.131699, 8.805025), tolerance = 1 / 1000 ) expect_equal( object = method2[1, ], expected = c(0.0000000, 0.1980421, 0.0000000, 0.0866434, 0.4620981), tolerance = 1 / 1000 ) expect_equal( object = method3[1, ], expected = c(0.000000, 5.516015, 0.000000, 4.943317, 6.103178), tolerance = 1 / 1000 ) expect_equal( object = method4[1, ], expected = c(0, 2, 0, 1, 2) ) lsi <- suppressWarnings(RunSVD(object = mat)) embeddings <- Seurat::Embeddings(object = lsi) loadings <- Seurat::Loadings(object = lsi) expect_equal( object = as.vector(embeddings[1, ]), expected = c(0.51255352, -0.08674426, 1.33604004, 1.18108240), tolerance = 1 / 1000 ) expect_equal( object = as.vector(loadings[1, ]), expected = c(-0.4024075, -0.4292469, -0.6463644, 0.1740785), tolerance = 1 / 1000 ) }) test_that("Jaccard works", { set.seed(1) mat <- matrix(data = sample(x = c(0, 1), size = 25, replace = TRUE), nrow = 5) jm <- Jaccard(x = mat, y = mat) expect_equal(object = jm[1, ], expected = c(1, 1 / 3, 2 / 5, 1 / 3, 0)) })
source("ESEUR_config.r") library("plyr") plot_layout(2, 1, max_height=12.5) par(mar=MAR_default+c(-0.5, 0.9, -0.5, 0)) pal_col=rainbow(2) added=read.csv(paste0(ESEUR_dir, "sourcecode/iwsc2011-kamiya.csv.xz"), as.is=TRUE) reuse=subset(added, delta > 0) x_bounds=1:100 delta_cnt=count(reuse$delta) plot(delta_cnt, log="xy", col=pal_col[1], cex=1.4, cex.lab=1.4, cex.axis=1.4, xlim=c(2, 100), ylim=c(10, 1e3), xlab="Revision difference", ylab="Reintroduced line sequences\n") dc_mod=glm(log(freq) ~ log(x)+I(log(x)^2), data=delta_cnt, subset=x_bounds) pred=predict(dc_mod) lines(delta_cnt$x[x_bounds], exp(pred), col=pal_col[2]) add_cnt=count(reuse$added) plot(add_cnt, log="xy", col=pal_col[1], cex=1.4, cex.lab=1.4, cex.axis=1.4, xlim=c(1, 100), ylim=c(10, 1e5), xlab="Number of lines", ylab="Reintroduced line sequences\n\n") ac_mod=glm(log(freq) ~ log(x), data=add_cnt, subset=x_bounds) summary(ac_mod) pred=predict(ac_mod) lines(add_cnt$x[x_bounds], exp(pred), col=pal_col[2])
maketensor <- function(A, B){ x <- dim(A)[1] y <- dim(A)[2] z <- dim(B)[2] C <- array(rep(1, x * y * z), c(x, y, z)) for (j in 1 : y){ for (k in 1 : z){ C[,j,k] <- A[,j] * B[,k] } } C }
KFadvance <- function(obs,oldmean,oldvar,A,B,C,D,E,F,W,V,marglik=FALSE,log=TRUE,na.rm=FALSE){ if(na.rm){ if(any(is.na(obs))){ if(all(is.na(obs))){ if(log){ return(list(mean=A%*%oldmean + B,var=A%*%oldvar%*%t(A) + C%*%W%*%t(C),mlik=0)) } else{ return(list(mean=A%*%oldmean + B,var=A%*%oldvar%*%t(A) + C%*%W%*%t(C),mlik=1)) } } else{ M <- diag(length(obs)) M <- M[-which(is.na(obs)),] obs <- obs[which(!is.na(obs))] D <- M%*%D E <- M%*%E F <- M%*%F } } } T <- A %*% oldmean + B S <- A %*% oldvar %*% t(A) + C %*% W %*% t(C) thing1 <- D %*% S tD <- t(D) K <- thing1 %*% tD + F %*% V %*% t(F) margmean <- D %*% T + E resid <- obs-margmean if (marglik==TRUE){ if (all(dim(K)==1)){ thing2 <- S %*% tD newmean <- T + as.numeric(1/K)* thing2 %*% resid newvar <- S - as.numeric(1/K)*thing2 %*% thing1 marginal <- dnorm(obs,as.numeric(margmean),sqrt(as.numeric(K)),log=log) } else{ Kinv <- solve(K) thing3 <- tD %*% Kinv thing4 <- S %*% thing3 newmean <- T + thing4 %*% resid newvar <- S - thing4 %*% thing1 if(log){ marginal <- (-1/2)*t(resid) %*% Kinv %*% resid } else{ marginal <- dmvnorm(as.vector(obs),as.vector(margmean),K,log=log) } } return(list(mean=newmean,var=newvar,mlik=marginal)) } else{ if (all(dim(K)==1)){ thing2 <- S %*% tD newmean <- T + as.numeric(1/K) * thing2 %*% resid newvar <- S - as.numeric(1/K) * thing2 %*% thing1 } else{ Kinv <- solve(K) thing3 <- tD %*% Kinv thing4 <- S %*% thing3 newmean <- T + thing4 %*% resid newvar <- S - thing4 %*% thing1 } return(list(mean=newmean,var=newvar)) } }
test_that("model fitting", { skip_if_not(TEST_MODEL_FITTING) with_parallel({ model <- "LARSModel" expect_error(test_model_binary(model)) expect_error(test_model_factor(model)) expect_output(test_model_numeric(model)) expect_error(test_model_ordered(model)) expect_error(test_model_Surv(model)) }) })
episode_group <- function(df, ..., episode_type = "fixed"){ args <- as.list(substitute(...())) if (length(names(args)[names(args) == ""] > 0)){ err <- paste0("Every argument must be specified:\n", "i- `episode_group()` has been retired!\n", "i - Your values will be passed to `episodes()`.\n", "i - Please specify any argument you've used.") stop(err, call. = FALSE) } out <- bridge_episode_group(df = df, args = args, episode_type = episode_type) if(out$err_cd == FALSE) stop(out$err_nm, call. = FALSE) warning(paste0("`episode_group()` has been retired!:\n", "i - Please use `episodes()` instead.\n", "i - Your values were passed to `episodes()`."), call. = FALSE) rm(list = ls()[ls() != "out"]) return(out$err_nm) } fixed_episodes <- function(date, case_length = Inf, episode_unit = "days", to_s4 = TRUE, case_overlap_methods = 8, deduplicate = FALSE, display = "none", bi_direction = FALSE, recurrence_length = case_length, recurrence_overlap_methods = case_overlap_methods, include_index_period = TRUE, ..., overlap_methods = 8, overlap_method = 8, x){ args <- as.list(substitute(...())) if (length(names(args)[names(args) == ""] > 0)){ err <- paste0("Every argument must be specified:\n", "i - Please specify any argument you've used.") stop(err, call. = FALSE) } if(missing(case_overlap_methods) & !missing(overlap_methods)) { case_overlap_methods <- overlap_methods warning(paste0("`overlap_methods` is deprecated:\n", "i - Please use `case_overlap_methods` instead.\n", "i - Your values were passed to `case_overlap_methods`."), call. = FALSE) }else if(missing(case_overlap_methods) & !missing(overlap_method)) { overlap_methods <- paste0(overlap_method[!duplicated(overlap_method)], collapse = "|") warning(paste0("`overlap_method` is deprecated:\n", "i - Please use `case_overlap_methods` instead.\n", "i - Your values were passed to `case_overlap_methods`."), call. = FALSE) } if(missing(date) & !missing(x)) { date <- x warning(paste0("`x` is deprecated and will be removed in the next release:\n", "i - Please use `date` instead.\n", "i - Your values were passed to `date`."), call. = FALSE) } if(class(display) == "logical"){ display <- ifelse(display == FALSE, "none", "stats") } err <- err_episodes_checks_1(date = date, case_length = case_length, recurrence_length = case_length, episode_type = "fixed", episode_unit = episode_unit, case_overlap_methods = case_overlap_methods, recurrence_overlap_methods = case_overlap_methods, deduplicate = deduplicate, display = display, bi_direction = bi_direction, include_index_period = include_index_period, to_s4 = to_s4) if(isTRUE(err)){ stop(err, call. = FALSE) } episode_unit <- tolower(episode_unit) if(length(episode_unit) == 1){ episode_unit <- rep(episode_unit, length(date)) } r <- prep_lengths(case_length, case_overlap_methods, as.number_line(date), episode_unit, bi_direction) case_length <- r$lengths case_overlap_methods <- r$method if(isTRUE(include_index_period)){ case_length <- c(case_length, list(index_window(date))) case_overlap_methods <- c(case_overlap_methods, list(rep(8, length(date)))) } epids <- episodes(date = date, episode_type = "fixed", case_overlap_methods = case_overlap_methods, recurrence_overlap_methods = case_overlap_methods, display = display, case_length = case_length, recurrence_length = case_length, episode_unit = episode_unit, ...) if(isTRUE(deduplicate)) { epids <- epids[!epids@case_nm %in% c(2L, 3L)] } if(isFALSE(to_s4)){ epids <- to_df(epids) } rm(list = ls()[ls() != "epids"]) return(epids) } rolling_episodes <- function(date, case_length = Inf, recurrence_length = case_length, episode_unit = "days", to_s4 = TRUE, case_overlap_methods = 8, recurrence_overlap_methods = case_overlap_methods, deduplicate = FALSE, display = "none", bi_direction = FALSE, include_index_period = TRUE, ..., overlap_methods = 8, overlap_method = 8, x) { args <- as.list(substitute(...())) if (length(names(args)[names(args) == ""] > 0)){ err <- paste0("Every argument must be specified:\n", "i - Please specify any argument you've used.") stop(err, call. = FALSE) } if(missing(case_overlap_methods) & !missing(overlap_methods)) { case_overlap_methods <- overlap_methods warning(paste0("`overlap_methods` is deprecated:\n", "i - Please use `case_overlap_methods` instead.\n", "i - Your values were passed to `case_overlap_methods`."), call. = FALSE) }else if(missing(case_overlap_methods) & !missing(overlap_method)) { case_overlap_methods <- paste0(overlap_method[!duplicated(overlap_method)], collapse = "|") warning(paste0("`overlap_method` is deprecated:\n", "i - Please use `case_overlap_methods` instead.\n", "i - Your values were passed to `overlap_methods`."), call. = FALSE) } if(missing(recurrence_overlap_methods) & !missing(overlap_methods)) { recurrence_overlap_methods <- overlap_methods warning(paste0("`overlap_methods` is deprecated:\n", "i - Please use `recurrence_overlap_methods` instead.\n", "i - Your values were passed to `recurrence_overlap_methods`."), call. = FALSE) }else if(missing(recurrence_overlap_methods) & !missing(overlap_method)) { recurrence_overlap_methods <- paste0(overlap_method[!duplicated(overlap_method)], collapse = "|") warning(paste0("`overlap_method` is deprecated:\n", "i - Please use `recurrence_overlap_methods` instead.\n", "i - Your values were passed to `recurrence_overlap_methods`."), call. = FALSE) } if(missing(date) & !missing(x)) { date <- x warning(paste0("`x` is deprecated and will be removed in the next release:\n", "i - Please use `date` instead.\n", "i - Your values were passed to `date`."), call. = FALSE) } if(class(display) == "logical"){ display <- ifelse(display == FALSE, "none", "stats") } err <- err_episodes_checks_1(date = date, case_length = case_length, recurrence_length = recurrence_length, episode_type = "rolling", episode_unit = episode_unit, case_overlap_methods = case_overlap_methods, recurrence_overlap_methods = recurrence_overlap_methods, deduplicate = deduplicate, display = display, bi_direction = bi_direction, include_index_period = include_index_period, to_s4 = to_s4) if(isTRUE(err)){ stop(err, call. = FALSE) } episode_unit <- tolower(episode_unit) if(length(episode_unit) == 1){ episode_unit <- rep(episode_unit, length(date)) } r <- prep_lengths(case_length, case_overlap_methods, as.number_line(date), episode_unit, bi_direction) case_length <- r$lengths case_overlap_methods <- r$method r <- prep_lengths(recurrence_length, recurrence_overlap_methods, as.number_line(date), episode_unit, bi_direction) recurrence_length <- r$lengths recurrence_overlap_methods <- r$method if(isTRUE(include_index_period)){ case_length <- c(case_length, list(index_window(date))) recurrence_length <- c(recurrence_length, list(index_window(date))) case_overlap_methods <- c(case_overlap_methods, list(rep(8, length(date)))) recurrence_overlap_methods <- c(recurrence_overlap_methods, list(rep(8, length(date)))) } epids <- episodes(date = date, episode_type = "rolling", case_overlap_methods = case_overlap_methods, recurrence_overlap_methods = recurrence_overlap_methods, display = display, case_length = case_length, recurrence_length = recurrence_length, episode_unit = episode_unit, ...) if(isFALSE(to_s4)){ epids <- to_df(epids) } if(isTRUE(deduplicate)) { epids <- epids[!epids@case_nm %in% c(2L, 3L)] } rm(list = ls()[ls() != "epids"]) return(epids) }
prob.max_sensitivity <- function(preds, labels, thresh = 0.5) { positives <- as.logical(labels) counter <- sum(positives) tp <- as.numeric(sum(preds[positives] >= thresh)) fn <- as.numeric(counter - tp) sens <- tp / (tp + fn) sens <- ifelse(!is.finite(sens), -1, sens) return(sens) }
DGzx<-function(xs, zs, xv, zv, den) { twopi = 2*pi con=13.3464E-03 nvert = length(xv) if(xv[1]!=xv[nvert] & zv[1]!=zv[nvert]) { xv = c(xv, xv[1]) zv = c(zv, zv[1]) } nvert = length(xv) gravz = rep(NA, length(xs)) gravx = rep(NA, length(xs)) for(i in 1:length(xs)) { xst = xs[i] zst = zs[i] x1 = xv[1:(nvert-1)]-xst; z1 = zv[1:(nvert-1)]-zst; x2 = xv[2:(nvert)]-xst; z2 = zv[2:(nvert)]-zst; theta1 = atan2(z1, x1); theta2 = atan2(z2, x2); dsign = sign(z1) != sign(z2) if(any(dsign)) { theta1[ dsign & (x1*z2<x2*z1) & z2>=0] = theta1[ dsign & (x1*z2<x2*z1) & z2>=0]+twopi theta2[ dsign & (x1*z2>x2*z1) & z1>=0] = theta2[ dsign & (x1*z2>x2*z1) & z1>=0 ]+twopi } dx = x2-x1; dz = z2-z1; r1 = sqrt(x1*x1 + z1*z1); r2 = sqrt(x2*x2 + z2*z2); dxz2 = (dx*dx + dz*dz) A = dx*( x1*z2 - x2*z1 )/(dx*dx + dz*dz); B = dz/dx; ZEE = A*( (theta1 - theta2) + B*log(r2/r1)) EX = A*(-((theta1 - theta2) )*B + log(r2/r1)) ZEE[x1*z2 == x2*z1] = 0 EX[x1*z2 == x2*z1] = 0 ZEE[ (x1==0 & z1==0) | (x2==0 & z2==0) ] = 0 EX[ (x1==0 & z1==0) | (x2==0 & z2==0) ] = 0 ZEE[x1==x2] = x1[x1==x2] * log(r2[x1==x2]/r1[x1==x2]) EX[x1==x2] = -1*x1[x1==x2] *(theta1[x1==x2] - theta2[x1==x2]) Z = sum( ZEE ); X = sum( EX ); gravz[i] = con*den*Z gravx[i] = con*den*X } invisible(list(Gz=gravz, Gx=gravx)) }
context("Interpolation and extrapolation of concentration") test_that("extrapolate.conc", { expect_error( extrapolate.conc( conc=1, time=1, time.out=2, extrap.method="wrong" ), regexp="extrap.method must be one of 'AUCinf', 'AUClast', or 'AUCall'" ) expect_error( extrapolate.conc( conc=1, time=1, time.out=c(2, 3), extrap.method="AUCinf" ), regexp="Only one time.out value may be estimated at once." ) expect_warning( v1 <- extrapolate.conc( conc=NA, time=1, time.out=2, extrap.method="AUCinf" ) ) expect_equal(v1, NA) expect_error( extrapolate.conc( conc=1, time=1, time.out=0.5, extrap.method="AUCinf" ), regexp="extrapolate.conc can only work beyond Tlast, please use interp.extrap.conc to combine both interpolation and extrapolation." ) expect_error( extrapolate.conc( conc=1, time=1, time.out=1, extrap.method="AUCinf" ), regexp="extrapolate.conc can only work beyond Tlast, please use interp.extrap.conc to combine both interpolation and extrapolation." ) expect_equal( extrapolate.conc( conc=c(0, 1, 0), time=1:3, time.out=4, extrap.method="AUClast" ), 0 ) expect_equal( extrapolate.conc( conc=c(0, 1, 0), time=1:3, time.out=2.5, extrap.method="AUClast" ), 0 ) expect_equal( extrapolate.conc( conc=c(0, 1, 0), time=1:3, time.out=4, extrap.method="AUCall" ), 0 ) expect_equal( extrapolate.conc( conc=c(0, 1, 1), time=1:3, time.out=4, lambda.z=2, extrap.method="AUCall" ), 0 ) expect_equal( extrapolate.conc( conc=c(0, 1, 0), time=1:3, time.out=2.5, extrap.method="AUCall" ), 0.5 ) expect_equal( extrapolate.conc( conc=c(0, 1, 0), time=1:3, time.out=2.5, lambda.z=1, extrap.method="AUCinf" ), 1*exp(-1*0.5) ) expect_equal( extrapolate.conc( conc=c(0, 5, 0), time=1:3, time.out=2.5, lambda.z=3, extrap.method="AUCinf" ), 5*exp(-3*0.5) ) expect_equal( extrapolate.conc( conc=c(0, 5, 0), time=1:3, time.out=2.5, lambda.z=NA, extrap.method="AUCinf" ), as.numeric(NA) ) expect_equal( expect_warning( extrapolate.conc( conc=rep(NA, 3), time=1:3, time.out=2.5, lambda.z=NA, extrap.method="AUCinf" ) ), NA ) extrapolations <- list( AUCinf=exp(-2), AUCall=0, AUClast=0 ) for (n in names(extrapolations)) { expect_equal( extrapolate.conc( conc=c(0, 1, 0.5, 1, 0), time=0:4, 5, lambda.z=1, extrap.method=n ), extrapolations[[n]], info=n ) } extrapolations <- list( AUCinf=exp(-1), AUCall=0, AUClast=0 ) for (n in names(extrapolations)) { expect_equal( extrapolate.conc( conc=c(0, 1, 0.5, 1, 0), time=0:4, 4, lambda.z=1, extrap.method=n ), extrapolations[[n]], info=n ) } extrapolations <- list( AUCinf=exp(-0.5), AUCall=0.5, AUClast=0 ) for (n in names(extrapolations)) { expect_equal( extrapolate.conc( conc=c(0, 1, 0.5, 1, 0), time=0:4, 3.5, lambda.z=1, extrap.method=n ), extrapolations[[n]], info=n ) } }) test_that("interpolate.conc", { interpolations <- list( linear=0, "lin up/log down"=0 ) for (n in names(interpolations)) { expect_equal( interpolate.conc( conc=c(0, 1), time=0:1, time.out=0, interp.method=n ), interpolations[[n]], info=n ) } interpolations <- list( linear=1, "lin up/log down"=1 ) for (n in names(interpolations)) { expect_equal( interpolate.conc( conc=c(0, 1), time=0:1, time.out=1, interp.method=n ), interpolations[[n]], info=n ) } interpolations <- list( linear=1, "lin up/log down"=1 ) for (n in names(interpolations)) { expect_equal( interpolate.conc( conc=c(0, 1, NA, 1), time=0:3, time.out=2, interp.method=n ), interpolations[[n]], info=n ) } interpolations <- list( linear=0.5, "lin up/log down"=0.5 ) for (n in names(interpolations)) { expect_equal( interpolate.conc( conc=c(0, 1, 0), time=0:2, time.out=0.5, interp.method=n ), interpolations[[n]], info=n ) } interpolations <- list( linear=1.75, "lin up/log down"=2^0.75 ) for (n in names(interpolations)) { expect_equal( interpolate.conc( conc=c(0, 2, 1), time=0:2, time.out=1.25, interp.method=n ), interpolations[[n]], info=n ) } interpolations <- list( linear=1.75, "lin up/log down"=2^0.75 ) for (n in names(interpolations)) { expect_equal( interpolate.conc( conc=c(0, 2, 1), time=seq(-10, -8, by=1), time.out=-8.75, interp.method=n ), interpolations[[n]], info=n ) } interpolations <- list( linear=0.25, "lin up/log down"=0.25 ) for (n in names(interpolations)) { expect_equal( interpolate.conc( conc=c(0, 1, 0, 1, 0), time=0:4, time.out=2.25, conc.blq="keep", interp.method=n ), interpolations[[n]], info=n ) } interpolations <- list( linear=0.5, "lin up/log down"=0.5 ) for (n in names(interpolations)) { expect_equal( interpolate.conc( conc=c(0, 1, 0, 1, 0), time=0:4, time.out=1.5, conc.blq="keep", interp.method=n ), interpolations[[n]], info=n ) } interpolations <- list( linear=0.5, "lin up/log down"=0.5 ) for (n in names(interpolations)) { expect_equal( interpolate.conc( conc=c(0, 1, 0, 1, 0), time=0:4, time.out=2.5, conc.blq="keep", interp.method=n ), interpolations[[n]], info=n ) } interpolations <- list( linear=1, "lin up/log down"=1 ) for (n in names(interpolations)) { expect_equal( interpolate.conc( conc=c(0, 1, 0, 1, 0), time=0:4, time.out=2.25, conc.blq="drop", interp.method=n ), interpolations[[n]], info=n ) } expect_equal( interpolate.conc( conc=c(0, 1, 0.5, 1, 0), time=0:4, time.out=1.5, interp.method="lin up/log down"), exp(mean(log(c(1, 0.5)))) ) expect_error( interpolate.conc( conc=c(0, 1, 0.5, 1, 0), time=0:4, time.out=5, interp.method="lin up/log down" ), regexp="`interpolate.conc()` can only works through Tlast, please use `interp.extrap.conc()` to combine both interpolation and extrapolation.", fixed=TRUE ) expect_equal( interpolate.conc( conc=0:1, time=0:1, time.out=-1), 0, info="conc.origin defaults to zero" ) expect_equal( interpolate.conc( conc=0:1, time=0:1, time.out=-1, conc.origin=NA), NA, info="conc.origin is honored as NA" ) expect_equal( interpolate.conc( conc=0:1, time=0:1, time.out=-1, conc.origin=5 ), 5, info="conc.origin is honored as a number" ) expect_equal( interpolate.conc( conc=c(NA, 1), time=c(0, 1), time.out=0.5, check=FALSE ), NA_real_, info="Skipping the checks with an NA bounding the interpolation gives NA" ) expect_equal( interpolate.conc( conc=c(NA, 1, 2), time=c(0, 1, 2), time.out=1.5, check=FALSE ), 1.5, info="Skipping the checks with an NA, but not bounding the interpolation gives the expected value." ) expect_error( interpolate.conc( conc=0:1, time=0:1, time.out=0:1 ), regexp="Can only interpolate for one time point per function call", info="Confirm that more than one time.out requested is an error" ) expect_error( interpolate.conc( conc=0:1, time=0:1, time.out=0.5, interp.method="this doesn't work" ), regexp=tryCatch(expr={ match.arg("foo", choices=c("lin up/log down", "linear")) }, error=function(e) e)$message, fixed=TRUE, info="Confirm that invalid interpolation methods are an error." ) expect_error( interpolate.conc( conc=0:1, time=0:1, time.out=0.5, conc.origin=1:2 ), regexp="conc.origin must be a scalar", info="conc.origin must be a scalar" ) expect_error( interpolate.conc( conc=0:1, time=0:1, time.out=0.5, conc.origin="A" ), regexp="conc.origin must be NA or a number \\(and not a factor\\)", info="conc.origin must be a number and not a factor (character)" ) expect_error( interpolate.conc( conc=0:1, time=0:1, time.out=0.5, conc.origin=factor("A") ), regexp="conc.origin must be NA or a number \\(and not a factor\\)", info="conc.origin must be a number and not a factor (factor)" ) }) test_that("interp.extrap.conc", { expect_equal( interp.extrap.conc( conc=c(0, 1, 0.5, 1, 0), time=0:4, time.out=1.5, interp.method="lin up/log down" ), exp(mean(log(c(1, 0.5)))) ) expect_equal( expect_warning( interp.extrap.conc( conc=c(0, 1, 0.5, 1, 0), time=0:4, time.out=c(1.5, NA), interp.method="lin up/log down" ) ), c(exp(mean(log(c(1, 0.5)))), NA) ) expect_warning( interp.extrap.conc( conc=c(0, 1, 0.5, 1, 0), time=0:4, time.out=c(1.5, NA), interp.method="lin up/log down" ), regexp="An interpolation/extrapolation time is NA" ) expect_error( interp.extrap.conc( conc=c(0, 1, 0.5, 1, 0), time=0:4, time.out=c(), interp.method="lin up/log down" ), regexp="time.out must be a vector with at least one element" ) }) test_that("interp.extrap.conc.dose handles all eventualities", { event_choices <- unlist(event_choices_interp.extrap.conc.dose, use.names=FALSE) eventualities <- expand.grid( event_before=setdiff(event_choices, "output_only"), event=setdiff(event_choices, "none"), event_after=setdiff(event_choices, "output_only") ) eventualities$method <- NA_character_ for (nm in names(interp.extrap.conc.dose.select)) { mask_selected <- do.call( interp.extrap.conc.dose.select[[nm]]$select, list(x=eventualities) ) expect_true( any(mask_selected), info=sprintf("interp.extrap.conc.dose.select[[%s]] matched at least one eventuality", nm) ) expect_true( !any(mask_selected & !is.na(eventualities$method)), info=sprintf("interp.extrap.conc.dose.select[[%s]] overlapped with another method.", nm) ) eventualities$method[mask_selected] <- nm } expect_false( any(is.na(eventualities$method)), info="interp.extrap.conc.dose.select matched all eventualities" ) }) test_that("interp.extrap.conc.dose", { expect_error( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, route.dose="foo", duration.dose=NA, time.out=c(-1, -0.1, 0, 0.1, 7), out.after=FALSE ), regexp="route.dose must be either 'extravascular' or 'intravascular'", info="Route must be valid" ) expect_error( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, route.dose=c("extravascular", "extravascular"), duration.dose=NA, time.out=c(-1, -0.1, 0, 0.1, 7), out.after=FALSE ), regexp="route.dose must either be a scalar or the same length as time.dose", info="Route must have the correct length" ) expect_error( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, route.dose="extravascular", duration.dose="A", time.out=c(-1, -0.1, 0, 0.1, 7), out.after=FALSE ), regexp="duration.dose must be NA or a number.", info="duration.dose must be NA or a number (character)." ) expect_error( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, route.dose="extravascular", duration.dose=factor("A"), time.out=c(-1, -0.1, 0, 0.1, 7), out.after=FALSE ), regexp="duration.dose must be NA or a number.", info="duration.dose must be NA or a number (factor)." ) expect_error( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, route.dose="extravascular", duration.dose=c(1, NA), time.out=c(-1, -0.1, 0, 0.1, 7), out.after=FALSE ), regexp="duration.dose must either be a scalar or the same length as time.dose", info="duration.dose must match the length of time.dose or be a scalar." ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=-2, check=FALSE ), interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=-2 ), info="Check is respected" ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=-2 ), structure(0, Method="Before all events"), info="Interpolation before all events yields conc.origin which defaults to zero." ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, conc.origin=NA, time.out=-2), structure(NA_real_, Method="Before all events"), info="Interpolation before all events yields conc.origin respecting its input." ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=-1 ), structure(0, Method="Observed concentration"), info="When there is a concentration measurement at a time point, it is returned." ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=-0.1 ), structure(0, Method="Extrapolation"), info="When the previous measurement is zero and there is no dose between, it is returned." ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=0), structure(0, Method="Extrapolation"), info="When the previous measurement is zero it is at the time of the dose, zero is returned." ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=0.1 ), structure(0.1, Method="Dose before, concentration after without a dose"), info="Extrapolation to a dose then interpolation between the dose and the next time works." ) expect_equal( expect_warning( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=c(0, 0.1), time.out=0.2 ), regexp="Cannot interpolate between two doses or after a dose without a concentration after the first dose.", fixed=TRUE, info="Two doses in a row generates a warning" ), structure(NA_real_, Method="Dose before, concentration after without a dose"), info="Extrapolation to a dose then interpolation between the dose and the next time gives NA when the dose is NA." ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=5 ), structure(0.25, Method="Observed concentration"), info="Copy from after the dose." ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=7 ), structure(NA_real_, Method="Extrapolation"), info="Extrapolation without lambda.z gives NA result" ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=7, lambda.z=log(2) ), structure(0.0625, Method="Extrapolation"), info="Extrapolation with lambda.z gives result" ) expect_equal( interp.extrap.conc.dose( conc=0:2, time=0:2, time.dose=0, time.out=0.5 ), structure(0.5, Method="Interpolation"), info="Interpolation works" ) expect_equal( interp.extrap.conc.dose( conc=c(0:2, 1), time=0:3, time.dose=0, time.out=2.5, method="linear" ), structure(sqrt(2), Method="Interpolation"), info="Interpolation respects method" ) expect_equal( interp.extrap.conc.dose( conc=0:2, time=0:2, time.dose=0, route.dose="intravascular", time.out=0, duration.dose=0, out.after=FALSE ), structure(0, Method="Observed concentration"), info="Observed before IV bolus" ) expect_equal( interp.extrap.conc.dose( conc=0:2, time=0:2, time.dose=0, route.dose="intravascular", time.out=0, duration.dose=0, out.after=TRUE ), structure(1, Method="Immediately after an IV bolus with a concentration next"), info="Observed after IV bolus, one concentration" ) expect_equal( interp.extrap.conc.dose( conc=c(0, 2, 1), time=0:2, time.dose=0, route.dose="intravascular", time.out=0, duration.dose=0, out.after=TRUE ), structure(4, Method="Immediately after an IV bolus with a concentration next"), info="Observed after IV bolus, two concentrations" ) expect_equal( interp.extrap.conc.dose( conc=c(2, 1), time=1:2, time.dose=0, route.dose="intravascular", time.out=0.5, duration.dose=0 ), structure(2*sqrt(2), Method="After an IV bolus with a concentration next"), info="After IV bolus, two concentrations" ) expect_equal( interp.extrap.conc.dose( conc=2, time=1, time.dose=0, route.dose="intravascular", time.out=0.5, duration.dose=0 ), structure(2, Method="After an IV bolus with a concentration next"), info="After IV bolus, one concentration" ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=c(-2, 2) ), structure( c(0, 2), Method=c("Before all events", "Observed concentration") ), info="Outputs are in the same order as inputs (initially sorted)" ) expect_equal( interp.extrap.conc.dose( conc=c(0, 1, 2, 1, 0.5, 0.25), time=c(-1, 1:5), time.dose=0, time.out=c(2, -2) ), structure( c(2, 0), Method=c("Observed concentration", "Before all events") ), info="Outputs are in the same order as inputs (reverse sorted time.out)" ) })
tiny_width = 5.5 tiny_height = 3 + 2/3 small_width = med_width = 6.75 small_height = med_height = 4.5 large_width = 8 large_height = 5.25 knitr::opts_chunk$set( fig.width = small_width, fig.height = small_height ) if (capabilities("cairo") && Sys.info()[['sysname']] != "Darwin") { knitr::opts_chunk$set( dev = "png", dev.args = list(type = "cairo") ) } library(dplyr) library(tidyr) library(purrr) library(ggdist) library(ggplot2) library(distributional) library(cowplot) theme_set(theme_ggdist()) .old_options = options(width = 120) set.seed(1234) n = 5000 df = tibble( .draw = 1:n, intercept = rnorm(n, 3, 1), slope = rnorm(n, 1, 0.25), x = list(-4:5), y = map2(intercept, slope, ~ .x + .y * -4:5) ) %>% unnest(c(x, y)) df %>% filter(.draw %in% 1:100) %>% ggplot(aes(x = x, y = y, group = .draw)) + geom_line(alpha = 0.25) df %>% group_by(x) %>% median_qi(y) df %>% group_by(x) %>% median_qi(y) %>% ggplot(aes(x = x, y = y, ymin = .lower, ymax = .upper)) + geom_lineribbon(fill = "gray65") df %>% group_by(x) %>% median_qi(y, .width = c(.50, .80, .95)) %>% ggplot(aes(x = x, y = y, ymin = .lower, ymax = .upper)) + geom_lineribbon() + scale_fill_brewer() df %>% ggplot(aes(x = x, y = y)) + stat_lineribbon() + scale_fill_brewer() df %>% ggplot(aes(x = x, y = y)) + stat_lineribbon(.width = c(.66, .95)) + scale_fill_brewer() df %>% ggplot(aes(x = x, y = y)) + stat_lineribbon(aes(fill = stat(.width)), .width = ppoints(50)) + scale_fill_distiller() df %>% ggplot(aes(x = x, y = y)) + stat_lineribbon(aes(fill_ramp = stat(.width)), .width = ppoints(50), fill = " scale_fill_ramp_continuous(range = c(1, 0)) df_2groups = rbind( mutate(df, g = "a"), mutate(df, g = "b", y = (y - 2) * 0.5) ) df_2groups %>% ggplot(aes(x = x, y = y, color = g)) + stat_lineribbon() + scale_fill_brewer() df_2groups %>% ggplot(aes(x = x, y = y, fill = g)) + stat_lineribbon(alpha = 1/4) df_2groups %>% ggplot(aes(x = x, y = y, fill = g)) + stat_lineribbon(aes(fill_ramp = stat(level))) analytical_df = tibble( x = -4:5, y_mean = 3 + x, y_sd = sqrt(x^2/10 + 1), ) analytical_df analytical_df %>% ggplot(aes(x = x, dist = dist_normal(y_mean, y_sd))) + stat_dist_lineribbon() + scale_fill_brewer() k = 11 n = 501 df = tibble( .draw = 1:k, mean = seq(-5,5, length.out = k), x = list(seq(-15,15,length.out = n)), ) %>% unnest(x) %>% mutate(y = dnorm(x, mean, 3)/max(dnorm(x, mean, 3))) df %>% ggplot(aes(x = x, y = y)) + geom_line(aes(group = .draw), alpha=0.2) df %>% group_by(x) %>% median_qi(y, .width = .5) %>% ggplot(aes(x = x, y = y)) + geom_lineribbon(aes(ymin = .lower, ymax = .upper)) + geom_line(aes(group = .draw), alpha=0.15, data = df) + scale_fill_brewer() + ggtitle("50% pointwise intervals with point_interval()") df %>% group_by(x) %>% curve_interval(y, .width = .5) %>% ggplot(aes(x = x, y = y)) + geom_lineribbon(aes(ymin = .lower, ymax = .upper)) + geom_line(aes(group = .draw), alpha=0.15, data = df) + scale_fill_brewer() + ggtitle("50% curvewise intervals with curve_interval()") k = 1000 large_df = tibble( .draw = 1:k, mean = seq(-5,5, length.out = k), x = list(seq(-15,15,length.out = n)), ) %>% unnest(x) %>% mutate(y = dnorm(x, mean, 3)/max(dnorm(x, mean, 3))) pointwise_plot = large_df %>% group_by(x) %>% median_qi(y, .width = c(.5, .8, .95)) %>% ggplot(aes(x = x, y = y)) + geom_hline(yintercept = 1, color = "gray75", linetype = "dashed") + geom_lineribbon(aes(ymin = .lower, ymax = .upper)) + scale_fill_brewer() + ggtitle("point_interval()") curvewise_plot = large_df %>% group_by(x) %>% curve_interval(y, .width = c(.5, .8, .95)) %>% ggplot(aes(x = x, y = y)) + geom_hline(yintercept = 1, color = "gray75", linetype = "dashed") + geom_lineribbon(aes(ymin = .lower, ymax = .upper)) + scale_fill_brewer() + ggtitle("curve_interval()") plot_grid(nrow = 2, pointwise_plot, curvewise_plot ) set.seed(1234) n = 4000 mpg = seq(min(mtcars$mpg), max(mtcars$mpg), length.out = 100) mtcars_boot = tibble( .draw = 1:n, m = map(.draw, ~ loess( hp ~ mpg, span = 0.9, control = loess.control(surface = "direct"), data = slice_sample(mtcars, prop = 1, replace = TRUE) )), hp = map(m, predict, newdata = tibble(mpg)), mpg = list(mpg) ) %>% select(-m) %>% unnest(c(hp, mpg)) mtcars_boot %>% filter(.draw < 400) %>% ggplot(aes(x = mpg, y = hp)) + geom_line(aes(group = .draw), alpha = 1/10) + geom_point(data = mtcars) + coord_cartesian(ylim = c(0, 400)) mtcars_boot %>% ggplot(aes(x = mpg, y = hp)) + stat_lineribbon(.width = c(.5, .7, .9)) + geom_point(data = mtcars) + scale_fill_brewer() + coord_cartesian(ylim = c(0, 400)) mtcars_boot %>% group_by(mpg) %>% curve_interval(hp, .width = c(.5, .7, .9)) %>% ggplot(aes(x = mpg, y = hp)) + geom_lineribbon(aes(ymin = .lower, ymax = .upper)) + geom_point(data = mtcars) + scale_fill_brewer() + coord_cartesian(ylim = c(0, 400)) mtcars_boot %>% group_by(mpg) %>% curve_interval(hp, .width = c(.5, .7, .9), .interval = "bd-mbd") %>% ggplot(aes(x = mpg, y = hp)) + geom_lineribbon(aes(ymin = .lower, ymax = .upper)) + geom_point(data = mtcars) + scale_fill_brewer() + coord_cartesian(ylim = c(0, 400)) options(.old_options)
expected <- eval(parse(text="structure(list(c0 = logical(0)), .Names = \"c0\", row.names = integer(0), class = \"data.frame\")")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(c0 = structure(integer(0), .Label = character(0), class = \"factor\")), .Names = \"c0\", row.names = character(0), class = \"data.frame\"), structure(list(c0 = structure(integer(0), .Label = character(0), class = \"factor\")), .Names = \"c0\", row.names = character(0), class = \"data.frame\"))")); do.call(`%%`, argv); }, o=expected);
densityVoronoi.tpp <- function(X, f = 1, nrep = 1, at=c("points","pixels"), dimt=128,...){ if(!inherits(X, "tpp")) stop("X should an object of class tpp") if(missing(at)) at <- "pixels" n <- npoints(X) if(f<0 | f>1) stop("f should be between 0 and 1") Xt <- lpp(X=cbind(X$data$t,rep(0,n)), L=linnet_interval(startp=X$time[1], endp=X$time[2])) out <- densityVoronoi.lpp(Xt,f=f,nrep=nrep,dimyx=dimt,...) if(at=="pixels"){ out1 <- out$v[!is.na(out$v)] class(out1) <- c("tppint") attr(out1,"time") <- X$data$t attr(out1,"tgrid") <- out$xcol attr(out1,"tpp") <- X return(out1) } else{ Tint <- out$v[!is.na(out$v)] ID <- findInterval(X$data$t, out$xcol) ID[which(ID==0)] <- 1 Tintout <- Tint[ID] class(Tintout) <- c("numeric") attr(out,"time") <- X$data$t return(Tintout) } }
if (!interactive()) options(prompt = " ", continue = " ", width = 70) library(jsonlite) library(OmicNavigator) .tmplib <- tempfile() local({ dir.create(.tmplib) .libPaths(c(.tmplib, .libPaths())) abc <- OmicNavigator:::testStudy(name = "ABC") plots <- OmicNavigator:::testPlots() abc <- addPlots(abc, plots) tmpReport <- tempfile(fileext = ".html") writeLines("<p>example</p>", tmpReport) abc <- addReports(abc, list(model_02 = tmpReport)) OmicNavigator::installStudy(abc) }) studies <- listStudies(libraries = .tmplib) toJSON(studies, auto_unbox = TRUE, pretty = TRUE) resultsTable <- getResultsTable( study = "ABC", modelID = "model_01", testID = "test_01" ) toJSON(resultsTable[1:2, ], pretty = TRUE) enrichmentsTable <- getEnrichmentsTable( study = "ABC", modelID = "model_01", annotationID = "annotation_01" ) toJSON(enrichmentsTable[1:2, ], pretty = TRUE) enrichmentsTable <- getEnrichmentsTable( study = "ABC", modelID = "model_01", annotationID = "annotation_01", type = "adjusted" ) toJSON(enrichmentsTable[1:2, ], pretty = TRUE) enrichmentsNetwork <- getEnrichmentsNetwork( study = "ABC", modelID = "model_01", annotationID = "annotation_01" ) enrichmentsNetworkMinimal <- list( tests = enrichmentsNetwork[["tests"]], nodes = enrichmentsNetwork[["nodes"]][1:3, ], links = enrichmentsNetwork[["links"]][1:3, ] ) toJSON(enrichmentsNetworkMinimal, auto_unbox = TRUE, pretty = TRUE) nodeFeatures <- getNodeFeatures( study = "ABC", annotationID = "annotation_01", termID = "term_01" ) toJSON(nodeFeatures[1:4], pretty = TRUE) linkFeatures <- getLinkFeatures( study = "ABC", annotationID = "annotation_01", termID1 = "term_01", termID2 = "term_03" ) toJSON(linkFeatures[1:4], pretty = TRUE) plotStudy( study = "ABC", modelID = "model_01", featureID = "feature_0001", plotID = "plotBase", testID = "test_01" ) plotStudy( study = "ABC", modelID = "model_03", featureID = "feature_0001", plotID = "plotGg", testID = "test_01" ) plotStudy( study = "ABC", modelID = "model_01", featureID = c("feature_0001", "feature_0002"), plotID = "plotMultiFeature", testID = "test_01" ) plotStudy( study = "ABC", modelID = "model_01", featureID = c("feature_0001", "feature_0002"), plotID = "plotMultiTestMf", testID = c("test_01", "test_02") ) modelID <- c("model_01", "model_02") testID <- c("test_01", "test_02") names(testID) <- modelID plotStudy( study = "ABC", modelID = modelID, featureID = c("feature_0002", "feature_0003", "feature_0004"), plotID = "multiModel_scatterplot", testID = testID ) resultsIntersection <- getResultsIntersection( study = "ABC", modelID = "model_01", anchor = "test_01", mustTests = c("test_01", "test_02"), notTests = c(), sigValue = .5, operator = "<", column = "p_val" ) toJSON(resultsIntersection[1:2, ], pretty = TRUE) enrichmentsIntersection <- getEnrichmentsIntersection( study = "ABC", modelID = "model_01", annotationID = "annotation_01", mustTests = c("test_01", "test_02"), notTests = c(), sigValue = .5, operator = "<", type = "nominal" ) toJSON(enrichmentsIntersection[1:2, ], pretty = TRUE) resultsUpset <- getResultsUpset( study = "ABC", modelID = "model_01", sigValue = .5, operator = "<", column = "p_val" ) enrichmentsUpset <- getEnrichmentsUpset( study = "ABC", modelID = "model_01", annotationID = "annotation_02", sigValue = .05, operator = "<", type = "nominal" ) upsetCols <- getUpsetCols( study = "ABC", modelID = "model_01" ) toJSON(upsetCols, auto_unbox = TRUE, pretty = TRUE) metaFeaturesTable <- getMetaFeaturesTable( study = "ABC", modelID = "model_01", featureID = "feature_0001" ) toJSON(metaFeaturesTable[1:2, ], pretty = TRUE) barcodeData <- getBarcodeData( study = "ABC", modelID = "model_01", testID = "test_01", annotationID = "annotation_02", termID = "term_05" ) toJSON(barcodeData, auto_unbox = TRUE, pretty = TRUE) reportLink <- getReportLink( study = "ABC", modelID = "model_01" ) toJSON(reportLink, auto_unbox = TRUE, pretty = TRUE) reportLink <- getReportLink( study = "ABC", modelID = "model_02" ) toJSON(reportLink, auto_unbox = TRUE, pretty = TRUE) resultsLinkouts <- getResultsLinkouts( study = "ABC", modelID = "model_01" ) toJSON(resultsLinkouts, auto_unbox = TRUE, pretty = 2) enrichmentsLinkouts <- getEnrichmentsLinkouts( study = "ABC", annotationID = "annotation_01" ) toJSON(enrichmentsLinkouts, auto_unbox = TRUE, pretty = 2) enrichmentsLinkouts <- getEnrichmentsLinkouts( study = "ABC", annotationID = "annotation_03" ) toJSON(enrichmentsLinkouts, auto_unbox = TRUE, pretty = TRUE) metaFeaturesLinkouts <- getMetaFeaturesLinkouts( study = "ABC", modelID = "model_01" ) toJSON(metaFeaturesLinkouts, auto_unbox = TRUE, pretty = 2) resultsFavicons <- getFavicons(linkouts = resultsLinkouts) toJSON(resultsFavicons, auto_unbox = TRUE, pretty = 2) enrichmentsFavicons <- getFavicons(linkouts = enrichmentsLinkouts) toJSON(enrichmentsFavicons, auto_unbox = TRUE, pretty = 2) toJSON(getResultsTable(study = "ABC", modelID = "?", testID = "?")) toJSON(getEnrichmentsTable(study = "ABC", modelID = "?", annotationID = "?")) toJSON(getEnrichmentsNetwork(study = "ABC", modelID = "?", annotationID = "?")) toJSON(getNodeFeatures(study = "ABC", annotationID = "?", termID = "?")) toJSON(getLinkFeatures(study = "ABC", annotationID = "?", termID1 = "?", termID2 = "?")) toJSON(getUpsetCols(study = "ABC", modelID = "?")) toJSON(getMetaFeaturesTable(study = "ABC", modelID = "?", featureID = "?")) toJSON(getBarcodeData(study = "ABC", modelID = "?", testID = "?", annotationID = "?", termID = "?")) toJSON(getReportLink(study = "ABC", modelID = "?"), auto_unbox = TRUE, pretty = TRUE) toJSON(getResultsLinkouts(study = "ABC", modelID = "?"), auto_unbox = TRUE, pretty = 2) toJSON(getEnrichmentsLinkouts(study = "ABC", annotationID = "?")) toJSON(getPackageVersion(), auto_unbox = TRUE)
get_time <- function(object) { pluck(object, "final_signature", "when", "time") } get_info <- function(path, repo = ".") { in_repository <- path %in% (git2r::ls_tree(repo = repo, recursive = TRUE) %>% mutate(filepath = paste0(path, name)) %>% pull(filepath)) if (in_repository) { blame_object <- blame(repo = repo, path = path) file <- path first_last <- blame_object %>% pluck("hunks") %>% map(get_time) %>% flatten_dbl() %>% range() %>% as.POSIXct.numeric(origin = "1970-01-01") %>% set_names(nm = c("first", "last")) } else { file <- path first_last <- c(as.POSIXct.numeric(NA_real_, origin = "1970-01-01"), file.info(file.path(repo, path))$mtime) %>% set_names(nm = c("first", "last")) } list( file = file, in_repository = in_repository, first_modif = first_last[1], last_modif = first_last[2] ) } get_last_modif <- function(repo = ".", path = "R", recursive = TRUE, untracked = TRUE) { folder <- normalizePath(file.path(repo, path), mustWork = FALSE) if (dir.exists(folder)) { if (path != "") { files <- git2r::ls_tree(repo = repo, recursive = recursive) %>% filter(path == paste0(!!path, "/")) %>% mutate(filepath = paste0(path, name)) %>% pull(filepath) if (isTRUE(untracked)) { not_in_git <- git2r::status(repo, all_untracked = TRUE) %>% unlist() files <- c(files, not_in_git[grepl(paste0(path, "/"), not_in_git)]) } } else { files <- git2r::ls_tree(repo = repo, recursive = recursive) %>% mutate(filepath = paste0(path, name)) %>% pull(filepath) if (isTRUE(untracked)) { not_in_git <- git2r::status(repo, all_untracked = TRUE) %>% unlist() files <- c(files, not_in_git[grepl(paste0(path, "/"), not_in_git)]) } } } else { stop(path, "/ folder was not found") } if (length(files) == 0) { stop("There are no files to show. ", "Check the path, recursive and untracked parameters.") } map(files, ~ get_info(.x, repo = repo)) } present_files <- function(repo = ".", path = "R", recursive = TRUE, untracked = TRUE) { get_last_modif(repo, path, recursive, untracked) %>% purrr::map_dfr(as_tibble) %>% transmute( File = file, `Tracked in git` = ifelse(in_repository, "Yes", "No"), `Date of creation` = first_modif, `Last modification` = last_modif ) %>% knitr::kable(., format = "markdown") %>% paste(., collapse = " \n") } create_vignette_last_modif <- function(repo = ".", path = "R", recursive = TRUE, untracked = TRUE) { vig <- file.path(repo, "vignettes") if (!dir.exists(vig)) { stop("vignettes folder doesn't exist, please create vignettes folder") } else { update_vignette_last_modif(repo, path, recursive, untracked) } } update_vignette_last_modif <- function(repo = ".", path = "R", recursive = TRUE, untracked = TRUE) { vig <- file.path(repo, "vignettes") file <- file.path(vig, "modification_files.Rmd") if (file.exists(file)) { unlink(file) } path_to_copy <- system.file("template/modification_files.Rmd", package = "gitdown") file.copy(path_to_copy, to = vig) if (file.exists(file)) { md <- c( paste0("Created on: ", Sys.time()), "\n\n", present_files(repo, path, recursive, untracked), "\n\n") write(md, file = file, append = TRUE) } else { stop("Copying the file didn't work!") } }
MvnormalCreate <- function(priorParameters) { mdObj <- MixingDistribution("mvnormal", priorParameters, "conjugate") return(mdObj) } Likelihood.mvnormal <- function(mdObj, x, theta) { y <- sapply(seq_len(dim(theta[[1]])[3]), function(i) mvtnorm::dmvnorm(x, theta[[1]][,, i], theta[[2]][, , i])) return(y) } PriorDraw.mvnormal <- function(mdObj, n = 1) { priorParameters <- mdObj$priorParameters sig <- rWishart(n, priorParameters$nu, priorParameters$Lambda) mu <- simplify2array( lapply(seq_len(n), function(x) mvtnorm::rmvnorm(1, priorParameters$mu0, solve(sig[, , x] * priorParameters$kappa0)) ) ) theta <- list(mu = mu, sig = sig) return(theta) } PosteriorDraw.mvnormal <- function(mdObj, x, n = 1, ...) { post_parameters <- PosteriorParameters(mdObj, x) sig <- rWishart(n, post_parameters$nu_n, post_parameters$t_n) mu <- simplify2array( lapply(seq_len(n), function(x) mvtnorm::rmvnorm(1, post_parameters$mu_n, solve(post_parameters$kappa_n * sig[, , x])) ) ) return(list(mu = mu, sig = sig/post_parameters$kappa_n^2)) } PosteriorParameters.mvnormal <- function(mdObj, x) { if (!is.matrix(x)) { x <- matrix(x, ncol = length(x)) } kappa0 <- mdObj$priorParameters$kappa0 mu0 <- mdObj$priorParameters$mu0 kappa_n <- kappa0 + nrow(x) nu_n <- mdObj$priorParameters$nu + nrow(x) mu_n <- (kappa0 * mu0 + nrow(x) * colMeans(x))/(nrow(x) + kappa0) sum_squares <- (nrow(x) - 1) * var(x) sum_squares[is.na(sum_squares)] <- 0 t_n <- mdObj$priorParameters$Lambda + sum_squares + ((kappa0 * nrow(x))/(kappa0 + nrow(x))) * ((mu0 - colMeans(x)) %*% t(mu0 - colMeans(x))) return(list(mu_n = mu_n, t_n = t_n, kappa_n = kappa_n, nu_n = nu_n)) } Predictive.mvnormal <- function(mdObj, x) { priorParameters <- mdObj$priorParameters pred <- numeric(nrow(x)) d <- ncol(x) for (i in seq_along(pred)) { post_params <- PosteriorParameters(mdObj, x[i, ,drop=FALSE]) pred[i] <- (pi^(-nrow(x[i,,drop=FALSE]) * d/2)) pred[i] <- pred[i] * (priorParameters$kappa0/post_params$kappa_n)^(d/2) pred[i] <- pred[i] * (det(priorParameters$Lambda)^(priorParameters$nu/2))/(det(post_params$t_n)^(post_params$nu_n/2)) if (pred[i] > 0) { gamma_contrib <- prod(sapply(seq_along(d), function(j) gamma(priorParameters$nu/2 + nrow(x[i,,drop=FALSE])/2 + (1 - j)/2)))/prod(sapply(seq_along(d), function(j) gamma(priorParameters$nu/2 + (1 - j)/2))) pred[i] <- pred[i] * gamma_contrib } } return(pred) }
options(prompt = " ", continue = " ", digits = 4, show.signif.stars = FALSE)
TSGS <- function(x, filter=c("UBF-DDC","UBF","DDC","UF"), partial.impute=FALSE, tol=1e-4, maxiter=150, method=c("bisquare","rocke"), init=c("emve","qc","huber","imputed","emve_c"), mu0, S0){ xcall <- match.call() filter <- match.arg(filter) method <- match.arg(method) init <- match.arg(init) if(is.data.frame(x) | is.matrix(x)) x <- data.matrix(x) else stop("Data matrix must be of class matrix or data.frame.") if(any(is.na(x))) warning("Data matrix contains missing values.") n <- nrow(x) p <- ncol(x) if( p >200 | p < 2 ) stop("Column dimension of 'x' must be in between 2 and 200.") if(filter == "UF"){ xf <- gy.filt(x, alpha = c(0.95, 0)) } else if(filter == "UBF"){ xf <- gy.filt(x) } else if(filter == "DDC"){ tmp <- capture.output({res.DDC <- cellWise::DDC(x)}) xf <- x xf[res.DDC$indcells] <- NA } else if(filter == "UBF-DDC"){ xf.ubf <- gy.filt(x) v.ubf <- 1*is.na(xf.ubf) tmp <- capture.output({res.DDC <- cellWise::DDC(x)}) xf.ddc <- x xf.ddc[res.DDC$indcells] <- NA v.ddc <- 1*is.na(xf.ddc) xf <- x xf[v.ubf == 1 & v.ddc == 1] <- NA } xf_pi <- xf if( partial.impute ){ ximp <- .impute.coord.med(xf_pi) aid <- which(rowSums(!is.na(xf_pi)) == p) uid <- which(rowSums(!is.na(xf_pi)) < p) n0 <- n/2 + (p+1) if( n0 > length(aid) ){ fid <- sample( uid, n0 - length(aid)) xf_pi[fid,] <- ximp[fid,] } } res <- GSE(xf_pi, tol=tol, maxiter=maxiter, method=method, init=init, mu0, S0) res <- new("TSGS", call = xcall, S = res@S, mu = res@mu, xf = xf, sc = res@sc, mu0 = res@mu0, S0 = res@S0, iter = res@iter, eps = res@eps, estimator = "2SGS", x = x, ximp = res@ximp, weights = res@weights, weightsp = res@weightsp, pmd = res@pmd, pmd.adj = [email protected], p = res@p, pu = res@pu) res }
context("moon") test_that( "1900/01/01 is new moon", { expect_equal( attr( moon( day = 0 ), "data")$name, "new moon" ) expect_equal( attr( moon( day = 0 ), "day") , attr( moon( date = lubridate::ymd("1900/01/01") ), "day" ) ) })
FCEPlot.Aggr.FCEs_obj <- reactive({ input$FCEPlot.Aggr.Refresh dsList <- isolate(FCEPlot.Aggr.data()) if (is.null(dsList)) return(NULL) aggr_on <- ifelse(input$FCEPlot.Aggr.Aggregator == 'Functions', 'funcId', 'DIM') targets <- isolate(FCEPlot.Aggr.Targets_obj) dt <- generate_data.Aggr(dsList, aggr_on = aggr_on, targets = targets, which = 'by_FV') dt }) render_FCEPlot_aggr_plot <- reactive({ withProgress({ y_attr <- if (input$FCEPlot.Aggr.Ranking) 'rank' else 'value' y_title <- if (input$FCEPlot.Aggr.Ranking) 'Rank' else 'Best-so-far f(x)' reverse_scale <- input$FCEPlot.Aggr.Mode == 'radar' dt <- FCEPlot.Aggr.FCEs_obj() plot_general_data(dt, type = input$FCEPlot.Aggr.Mode, x_attr = 'funcId', y_attr = y_attr, x_title = "FuncId", y_title = y_title, show.legend = T, scale.ylog = input$FCEPlot.Aggr.Logy, scale.reverse = reverse_scale) }, message = "Creating plot") }) FCEPlot.Aggr.data <- function() { data <- subset(DATA_RAW(), ID %in% isolate(input$FCEPlot.Aggr.Algs)) if (length(data) == 0) return(NULL) if (input$FCEPlot.Aggr.Aggregator == 'Functions') { data <- subset(data, DIM == input$Overall.Dim) if (length(unique(get_funcId(data))) == 1) { shinyjs::alert("This plot is only available when the dataset contains multiple functions for the selected dimension.") return(NULL) } } else{ data <- subset(data, funcId == input$Overall.Funcid) if (length(unique(get_dim(data))) == 1) { shinyjs::alert("This plot is only available when the dataset contains multiple dimensions for the selected function") return(NULL) } } if (length(unique(get_id(data))) == 1) { shinyjs::alert("This plot is only available when the dataset contains multiple IDs for the selected dimension.") return(NULL) } data } FCE_multi_function <- function() { dt <- FCEPlot.Aggr.FCEs_obj() if (input$FCEPlot.Aggr.Aggregator == 'Functions') dt <- dcast(dt, funcId~ID, value.var = 'value') else dt <- dcast(dt, DIM~ID, value.var = 'value') dt } default_runtimes_table <- reactive({ data <- FCEPlot.Aggr.data() if (is.null(data)) return(NULL) targets <- get_target_dt(data) if (input$FCEPlot.Aggr.Aggregator == 'Functions') targets <- targets[, c('funcId', 'target')] else targets <- targets[, c('DIM', 'target')] }) FCEPlot.Aggr.Targets_obj <- NULL proxy_FCEPlot.Aggr.Targets <- dataTableProxy('FCEPlot.Aggr.Targets') output$FCEPlot.Aggr.Targets <- DT::renderDataTable({ req(length(DATA_RAW()) > 0) FCEPlot.Aggr.Targets_obj <<- default_runtimes_table() FCEPlot.Aggr.Targets_obj }, editable = TRUE, rownames = FALSE, options = list(pageLength = 5, lengthMenu = c(5, 10, 25, -1), scrollX = T, server = T)) observeEvent(input$FCEPlot.Aggr.Targets_cell_edit, { info <- input$FCEPlot.Aggr.Targets_cell_edit i <- info$row req(i > 0) j <- info$col + 1 v <- info$value FCEPlot.Aggr.Targets_obj[i, j] <<- DT::coerceValue(v, FCEPlot.Aggr.Targets_obj[['target']][[i]]) replaceData(proxy, FCEPlot.Aggr.Targets_obj, resetPaging = FALSE, rownames = FALSE) }) output$FCEPlot.Aggr.FCETable <- DT::renderDataTable({ input$FCEPlot.Aggr.Refresh req(length(DATA_RAW()) > 0) withProgress({ dt <- FCE_multi_function() }, message = "Creating table") dt }, editable = FALSE, rownames = TRUE, options = list(pageLength = 5, lengthMenu = c(5, 10, 25, -1), scrollX = T, server = T)) output$FCEPlot.Aggr.Plot <- renderPlotly( render_FCEPlot_aggr_plot() ) output$FCEPlot.Aggr.DownloadTable <- downloadHandler( filename = function() { eval(FCE_multi_func_name) }, content = function(file) { df <- FCE_multi_function() save_table(df, file) } ) output$FCEPlot.Aggr.Download <- downloadHandler( filename = function() { eval(FIG_NAME_FV_AGGR) }, content = function(file) { save_plotly(render_FCEPlot_aggr_plot(), file) }, contentType = paste0('image/', input$FCEPlot.Aggr.Format) )
rmvnorm90ci_exact <- function(n, lower, upper, correlationMatrix){ correlationMatrix<-as.matrix(correlationMatrix) lower<-data.matrix(lower) upper<-data.matrix(upper) colnames(lower)<-NULL colnames(upper)<-NULL c_0.95=qnorm(0.95) if ( !is.numeric(lower) || !is.numeric(upper) ) stop("lower and upper value of the 90%-confidence interval must be given.") if( !identical(length(lower), length(upper)) ) stop("lower and upper vectors must be of the same length.") if( !identical( correlationMatrix, t(correlationMatrix) ) ) stop("correlationMatrix must be a symmetric matrix.") if( !identical( as.vector(diag(correlationMatrix)), rep(1, nrow(correlationMatrix)) ) ) stop("All diagonal elements of correlationMatrix must be equal to 1.") if( !identical(length(lower), nrow(correlationMatrix)) ) stop("confidence interval vectors and correlationMatrix must the same number of rows.") mean<-rowMeans(cbind(lower,upper)) sd<-((mean - lower)/c_0.95)[,1] sigma<-(t(sd*correlationMatrix))*sd x<-mvtnorm::rmvnorm(n=n, mean=mean, sigma=sigma) x }
estdweibull <- function(x, method="ML", zero=FALSE, eps=0.0001, nmax=1000) { par<-numeric(2) n<-length(x) m1<-mean(x) m2<-mean(x^2) beta0<-1 q0<-ifelse(zero,m1/(m1+1),(m1-1)/m1) if(method=="M") { if(sum(x<=as.numeric(!zero)+1)==n) { message("Method of moments not applicable on this sample!") par<-c(NA,NA) } else { par<-solnp(pars<-c(q0,beta0),fun=lossdw,x=x,zero=zero,eps=eps,nmax=nmax,LB=c(0,0),UB=c(1,100))$pars } } else if (method=="ML") { if(sum(x<=as.numeric(!zero)+1)==n) { message("Method of maximum likelihood not applicable on this sample!") par<-c(NA,NA) } else { par<-nlm(f=loglikedw,x=x,zero=zero,p=c(q0,beta0))$estimate } } else if (method=="P") { y<-sum(x==as.numeric(!zero)) if(y==0) { message("Method of proportion not applicable for estimating q!") par<-c(NA,NA) } else { par[1]<-1-y/n z<-sum(x==(as.numeric(!zero)+1)) if(z+y==round(n) | z/n==0) { message("Method of proportion not applicable for estimating beta!") par[2]<-NA } else par[2]<-log(log(par[1]-z/n)/log(par[1]))/log(2) } } par }
estimDev <- function(psi,y ){ alpha1 <- mean(y)-mean(psi) y <- y - alpha1 psi <- sort(psi,decreasing = TRUE ) y <- sort(y,decreasing = TRUE ) g <-matrix(0,1, length(psi)) n_p <- length(psi) length(psi) g_0 <- g i_t = 0 i_max = n_p t=1 for(t in 2:i_max){ res <- NULL for(j in 1:n_p ){ res <- c( res, c_fun(j, i_t, y ,psi) ) } abs1 <- which.min2(res[(i_t+1):n_p], na.rm=TRUE) +i_t if(abs(abs1)!=Inf){ for(j in (i_t+1):abs1 ){ g[1,j] <- psi[j] + c_fun(abs1, i_t, y ,psi) } i_t <- abs1 }else{break; } if( i_t==n_p){ break; } if(t%%1000==0){ delta <- sum(sum(abs(g-g_0))) g_0 <- g } } t<- seq(-5,5, length.out=300) g <- as.vector(g) start <- sort(g) for (i in 1:length(g)){ start[i] <-max(start[1:i]) } start[is.na(start)]<-max(start, rm.na=T) g <- sort(start,decreasing = T) mean(g) - mean(psi) g_star <- approxfun(psi, g,method = "linear") return(g_star) }
xgx_minor_breaks_log10 <- function(data_range) { r1 <- range(log10(data_range)) r <- r1 r[1] <- floor(r[1]) r[2] <- ceiling(r[2]) + 1 minor_breaks <- c() for (i in seq(r[1], r[2])) { minor_breaks <- c(minor_breaks, seq(2 * 10^(i - 1), 10^i - 10^(i - 1), by = 10^(i - 1))) } minor_breaks <- minor_breaks[minor_breaks <= 10^r1[2]] minor_breaks <- minor_breaks[minor_breaks >= 10^r1[1]] return(minor_breaks) }
"grisons"
dmudetagen <- function(mu,B,Link,Dist){ if (Link=="Inverse") dmudeta<-mu^2 if (Link=="Log") dmudeta<-mu if (Link=="Identity") dmudeta<-rep(1,length(mu)) if (Link=="Logit") dmudeta<-(B-mu)*(mu/B) dmudeta }
nbcomp.bootplsR<-function(Y,X,R=500,sim="ordinary",ncpus=1,parallel="no",typeBCa=TRUE, verbose=TRUE){ indboot2=1 ncolBoot <- 5+2*typeBCa if(verbose){print(indboot2)} ressimYT<-plsRglm::PLS_lm(Y, X, nt = indboot2, modele = "pls", scaleX=TRUE, verbose=verbose) compTsim=ressimYT$tt databoot=cbind(ressimYT$RepY,compTsim) if(sim!="permutation"){ sim.bootSim2<-boot::boot(data=databoot, parallel=parallel, ncpus=ncpus, statistic=coefs.plsR.CSim, sim=sim, stype="i", R=R) confYT=t(as.matrix(plsRglm::confints.bootpls(sim.bootSim2,typeBCa = typeBCa))) while (confYT[1,ncolBoot]>0){ indboot2=indboot2+1 if(verbose){print(indboot2)} ressimYT<-plsRglm::PLS_lm(Y, X, nt = indboot2, modele = "pls", scaleX=TRUE, verbose=verbose) if (ncol(ressimYT$tt)==ressimYT$nt){ compTsim=ressimYT$tt databoot=cbind(ressimYT$RepY,compTsim) sim.bootSim2<-boot::boot(data=databoot, parallel=parallel, ncpus=ncpus, statistic=coefs.plsR.CSim, sim=sim, stype="i", R=R) confYT=t(as.matrix(plsRglm::confints.bootpls(sim.bootSim2,typeBCa = typeBCa))) } else{confYT=matrix(0,indboot2,ncolBoot+1)} } } else { sim.bootSim2<-boot::boot(data=databoot, parallel=parallel, ncpus=ncpus, statistic=permcoefs.plsR.CSim, sim="permutation", stype="i", R=R) confYT=t(as.matrix(plsRglm::confints.bootpls(sim.bootSim2,typeBCa = typeBCa))) while (confYT[1,ncolBoot]>0){ indboot2=indboot2+1 if(verbose){print(indboot2)} ressimYT<-plsRglm::PLS_lm(Y, X, nt = indboot2, modele = "pls", scaleX=TRUE, verbose=verbose) if (ncol(ressimYT$tt)==ressimYT$nt){ compTsim=ressimYT$tt databoot=cbind(ressimYT$RepY,compTsim) sim.bootSim2<-boot::boot(data=databoot, parallel=parallel, ncpus=ncpus, statistic=permcoefs.plsR.CSim, sim="permutation", stype="i", R=R) confYT=t(as.matrix(plsRglm::confints.bootpls(sim.bootSim2,typeBCa = typeBCa))) } else{confYT=matrix(0,indboot2,ncolBoot+1)} } } if(verbose){print(paste("Optimal number of components: K = ", indboot2-1, sep = ""))} return(indboot2-1) }
preWaveform <- function(freq, duration, from, xunit, samp.rate){ if (!is.numeric(duration) || duration <= 0 || length(duration) != 1) stop("'duration' must be a positive numeric of length 1") if (!is.numeric(from) || from < 0 || length(from) != 1) stop("'from' must be a positive numeric of length 1") if (!is.numeric(samp.rate) || samp.rate < 0 || length(samp.rate) != 1) stop("'samp.rate' must be a positive numeric of length 1") if(!is.numeric(freq) || freq <= 0 || length(freq) != 1) stop("'freq' must be a positive numeric of length 1") if(xunit == "time"){ duration <- duration * samp.rate from <- from * samp.rate } return(c(duration = round(duration), from = round(from))) } postWaveform <- function(channel, samp.rate, bit, stereo, pcm = FALSE, ...){ if(!is.numeric(bit) || length(bit)!=1 || (!bit %in% c(0,1,8,16,24,32,64))) stop("'bit' must be an integer of length 1 in {0,1,8,16,24,32,64}") if(bit == 8) channel <- channel + 127 if(stereo && !is.matrix(channel)) channel <- matrix(channel, ncol = 2, nrow = length(channel)) Wobj <- Wave(channel, samp.rate = samp.rate, bit = if(bit %in% 0:1) 32 else bit, pcm = pcm, ...) normalize(Wobj, unit = as.character(bit), center = FALSE) } silence <- function(duration = samp.rate, from = 0, samp.rate = 44100, bit = 1, stereo = FALSE, xunit = c("samples", "time"), ...){ xunit <- match.arg(xunit) durFrom <- preWaveform(freq = 1, duration = duration, from = from, xunit = xunit, samp.rate = samp.rate) channel <- rep(0, durFrom["duration"]) postWaveform(channel = channel, samp.rate = samp.rate, bit = bit, stereo = stereo, ...) } sine <- function(freq, duration = samp.rate, from = 0, samp.rate = 44100, bit = 1, stereo = FALSE, xunit = c("samples", "time"), ...){ xunit <- match.arg(xunit) durFrom <- preWaveform(freq = freq, duration = duration, from = from, xunit = xunit, samp.rate = samp.rate) channel <- sin(2 * pi * freq * (durFrom["from"]:(sum(durFrom)-1)) / samp.rate) postWaveform(channel = channel, samp.rate = samp.rate, bit = bit, stereo = stereo, ...) } sawtooth <- function(freq, duration = samp.rate, from = 0, samp.rate = 44100, bit = 1, stereo = FALSE, xunit = c("samples", "time"), reverse = FALSE, ...){ xunit <- match.arg(xunit) durFrom <- preWaveform(freq = freq, duration = duration, from = from, xunit = xunit, samp.rate = samp.rate) channel <- seq(durFrom["from"], 2*freq*sum(durFrom), length = durFrom["duration"]) %% 2 - 1 if(!is.logical(reverse) || length(reverse) != 1) stop("'reverse' must be a logical value of length 1") if(reverse) channel <- rev(channel) postWaveform(channel = channel, samp.rate = samp.rate, bit = bit, stereo = stereo, ...) } square <- function(freq, duration = samp.rate, from = 0, samp.rate = 44100, bit = 1, stereo = FALSE, xunit = c("samples", "time"), up = 0.5, ...){ xunit <- match.arg(xunit) durFrom <- preWaveform(freq = freq, duration = duration, from = from, xunit = xunit, samp.rate = samp.rate) if(!is.numeric(up) || length(up) != 1 || max(abs(up)) > .5) stop("'up' must be a numeric in [-0.5, 0.5] of length 1") channel <- sign(seq(durFrom["from"], freq*sum(durFrom), length = durFrom["duration"]) %% 1 - 1 + up) postWaveform(channel = channel, samp.rate = samp.rate, bit = bit, stereo = stereo, ...) } noise <- function(kind = c("white", "pink", "power", "red"), duration = samp.rate, samp.rate = 44100, bit = 1, stereo = FALSE, xunit = c("samples", "time"), alpha = 1, ...){ xunit <- match.arg(xunit) kind <- match.arg(kind) if(kind != "power" && !missing(alpha)) warning("alpha ignored if noise kind is not 'power'") durFrom <- preWaveform(freq = 1, duration = duration, from = 0, xunit = xunit, samp.rate = samp.rate) N <- durFrom["duration"] * (stereo + 1) channel <- switch(kind, white = rnorm(N), pink = TK95(N, alpha = 1), power = TK95(N, alpha = alpha), red = TK95(N, alpha = 1.5) ) channel <- matrix(channel, ncol = (stereo + 1)) postWaveform(channel = channel, samp.rate = samp.rate, bit = bit, stereo = stereo, ...) } TK95 <- function(N, alpha = 1){ f <- seq(from=0, to=pi, length.out=(N/2+1))[-c(1,(N/2+1))] f_ <- 1 / f^alpha RW <- sqrt(0.5*f_) * rnorm(N/2-1) IW <- sqrt(0.5*f_) * rnorm(N/2-1) fR <- complex(real = c(rnorm(1), RW, rnorm(1), RW[(N/2-1):1]), imaginary = c(0, IW, 0, -IW[(N/2-1):1]), length.out=N) reihe <- fft(fR, inverse=TRUE) return(Re(reihe)) } pulse <- function(freq, duration = samp.rate, from = 0, samp.rate = 44100, bit = 1, stereo = FALSE, xunit = c("samples", "time"), width = 0.1, plateau = 0.2, interval = 0.5, ...){ xunit <- match.arg(xunit) if((width < 0) || (width > 1)) stop("Parameter 'width' must be between 0 and 1.") if((interval < 0) || (interval > 1)) stop("Parameter 'interval' must be between 0 and 1.") if((plateau < 0) || (plateau > 1)) stop("Parameter 'interval' must be between 0 and 1.") durFrom <- preWaveform(freq = freq, duration = duration, from = from, xunit = xunit, samp.rate = samp.rate) x <- freq * (durFrom["from"]:(sum(durFrom)-1)) / samp.rate channel <- .C(C_pulsewav, as.integer(length(x)), as.double(width), as.double(interval), as.double(plateau), as.double(x), y = double(length(x)))$y postWaveform(channel = channel, samp.rate = samp.rate, bit = bit, stereo = stereo, ...) }