code
stringlengths
1
13.8M
CxCy <- function(dat, xname, yname, ...) { xyplot <- ggplot(dat, aes_string(x=xname, y=yname)) + geom_point(alpha = 0.6, color = " theme_minimal() xyplot <- gridExtra::arrangeGrob(xyplot, top = paste0("Scatterplot of ", xname, " and ", yname) ) return(xyplot) } QxCy <- function(dat, xname, yname, binwidth.x = NULL, binwidth.y = NULL, ...) { box1 <- ggplot(dat, aes_string(y = yname,fill = xname)) + geom_boxplot() + coord_flip() + labs(title="Boxplot") + theme_linedraw() + theme(plot.title = element_text(size=12, face="bold.italic", hjust = 0.5), legend.position="bottom", axis.text.y = element_blank(), axis.ticks.y = element_blank()) + theme_minimal() + facet_grid(rows=xname) hist1 <- ggplot(dat, aes_string(x = yname, fill = xname))+ geom_histogram(color="black", binwidth = binwidth.y) hist1 <- hist1 + labs(title="Histogram") + theme_linedraw() + theme_minimal() + theme(plot.title = element_text(size=12, face="bold.italic", hjust = 0.5), legend.position="bottom") + facet_grid(rows = xname) lay <- cbind(1,1,1,2,2) xyplot <- gridExtra::arrangeGrob(hist1, box1, layout_matrix = lay, top = paste0(yname, ": For different levels of ", xname)) return(xyplot) } CxQy <- function(dat, xname, yname, binwidth.x = NULL, binwidth.y = NULL, ...) { box1 <- ggplot(dat, aes_string(y = xname,fill = yname)) + geom_boxplot() + coord_flip() + labs(title="Boxplot") + theme_linedraw() + theme_minimal() + theme(plot.title = element_text(size=12, face="bold.italic", hjust = 0.5), legend.position="bottom", axis.text.y = element_blank(), axis.ticks.y = element_blank()) + facet_grid(rows=yname) hist1 <- ggplot(dat, aes_string(x = xname, fill = yname))+ geom_histogram(color="black", binwidth = binwidth.x) hist1 <- hist1 + labs(title="Histogram") + theme_linedraw() + theme_minimal() + theme(plot.title = element_text(size=12, face="bold.italic", hjust = 0.5), legend.position="bottom") + facet_grid(rows = yname) lay <- cbind(1,1,1,2,2) xyplot <- gridExtra::arrangeGrob(hist1, box1, layout_matrix = lay, top = paste0(xname, ": For different levels of ", yname)) return(xyplot) } QxQy <- function(dat, xname, yname, ...) { x <- dat[, xname] y <- dat[, yname] crosstab <- setNames(data.frame(table(x, y)), c(xname, yname,"Count")) xyplot <- ggplot(crosstab, aes_string(xname, yname, fill= "Count")) + geom_tile(color = "grey69") + scale_fill_gradient2(low="white", high=" geom_text(aes(label=Count))+ theme_minimal() + theme(panel.grid.major=element_blank(), plot.title = element_text(hjust = 0.5, size = 12), legend.position = "blank") + coord_flip() xyplot <- gridExtra::arrangeGrob(xyplot, top = paste0("Crosstab of ", xname, " and ", yname) ) return(xyplot) } Cx <- function(dat, xname, binwidth = NULL, inc.density = T, ...) { quants <- quantile(dat[,1], na.rm = T) iqr_ <- quants[4]-quants[2] quantdf <- data.frame(Value = c(quants[2]-iqr_*1.5, quants[3], quants[4]+1.5*iqr_), labels=c("Whiskers","Median","Whiskers")) p1 <- ggplot(dat, aes_string(x=xname)) + geom_rect(aes(xmin = quants[2], xmax = quants[4], ymin = 0, ymax = Inf, fill = "IQR"), color=NA, alpha = 0.002) if (inc.density) { p1 <- p1 + geom_density(aes(y = ..density..), alpha=.2, fill=" stat_bin(aes(y=..density..), colour="black", fill=" titl <- "Histogram & Density plot" ytitl <- "Density" } else { p1 <- p1 + geom_histogram(color="black", binwidth = binwidth) titl <- "Histogram" ytitl <- "Frequency" } p1 <- p1 + labs(title=titl, y=ytitl) + scale_fill_manual('', values = ' guide = guide_legend(override.aes = list(alpha = 0.5))) + theme_minimal() + theme(plot.title = element_text(size=12, face="bold.italic", hjust = 0.5), legend.position = "bottom") + geom_vline(aes(xintercept=Value, color=labels), data=quantdf, show.legend=T) + scale_color_manual("", values=c("Whiskers"="grey4", "Median"=" "Whiskers"="grey4")) return(p1) } Qx <- function(dat, xname, ...) { piedf <- dplyr::group_by(dat, !!as.name(xname)) piedf <- dplyr::summarise(piedf, counts = n()) piedf <- dplyr::arrange(piedf, desc(counts)) piedf <- dplyr::mutate(piedf, prop = round(counts*100/sum(counts), 1), lab.ypos = cumsum(prop) - 0.5*prop) p1 <- ggplot(piedf, aes(x = "", y = prop, fill = !!as.name(xname))) + geom_bar(width = 1, stat = "identity", color = "white") + coord_polar("y", start = 0)+ labs(title=paste0("Distribution of ", xname), x = NULL,y=NULL)+ theme_void() + theme(legend.position="bottom") + theme(plot.title = element_text(size=12, face="bold.italic", hjust = 0.5)) return(p1) }
test_that("calcProb_value", { item_1 <- new("item_1PL", difficulty = 0.5) item_2 <- new("item_2PL", slope = 1.5, difficulty = 0.5) item_3 <- new("item_3PL", slope = 1.0, difficulty = 0.5, guessing = 0.2) item_4 <- new("item_PC", threshold = c(-1, 0, 1), ncat = 4) item_5 <- new("item_GPC", slope = 1.2, threshold = c(-0.8, -1.0, 0.5), ncat = 4) item_6 <- new("item_GR", slope = 0.9, category = c(-1, 0, 1), ncat = 4) theta_vec <- seq(-3, 3, 1) tol <- 1e-06 expect_equal( log(prod(calcProb(item_1, theta_vec))), -15.57702, tolerance = tol) expect_equal( log(prod(calcProb(item_2, theta_vec))), -20.80176, tolerance = tol) expect_equal( log(prod(calcProb(item_3, theta_vec))), -12.77404, tolerance = tol) expect_equal( log(prod(calcProb(item_4, theta_vec))), -76.95776, tolerance = tol) expect_equal( log(prod(calcProb(item_5, theta_vec))), -91.78112, tolerance = tol) expect_equal( log(prod(calcProb(item_6, theta_vec))), -52.22233, tolerance = tol) expect_equal( mean(log(unlist(calcProb(itempool_science, theta_vec)))), -1.250381, tolerance = tol) expect_equal( mean(log(unlist(calcProb(itempool_reading, theta_vec)))), -1.732649, tolerance = tol) expect_equal( mean(log(unlist(calcProb(itempool_fatigue, theta_vec)))), -5.295978, tolerance = tol) expect_equal( mean(log(unlist(calcProb(itempool_bayes, theta_vec)))), -1.097485, tolerance = tol) })
GenerateRandomClustering <- function(nElement , nClust , Prob = NULL) { if(is.null(Prob)) { Prob <- rep(x = (1/nClust) , nClust) } BestClust = NULL ErrorEncountered = F if (!(length(Prob) == nClust)) { ErrorEncountered = T } if ((abs(sum(Prob) - 1) > .000000001) | (any(Prob < 0))) { ErrorEncountered = T } if (!(any(nClust == 1:nElement))) { ErrorEncountered = T } if (!(ErrorEncountered)) { if (nElement > nClust) { if (nClust == 1) { BestClust = rep(1 , times = nElement) } else { ProbVV = round(Prob * nElement) if (!(sum(ProbVV) == nElement) | (any(ProbVV < 1))) { ProbVV = AdjustProb(ProbVV , nElement) } tempclus = rep(1:length(ProbVV) , ProbVV) BestClust = tempclus[sample(1:nElement,size = nElement,replace = FALSE)] } } else { BestClust = 1:nClust } } if (!(length(unique(BestClust)) == nClust)) { BestClust = NULL } return(BestClust) }
print.rm5 <- function(x, comp.no, outcome.no, ...) { chkclass(x, "rm5") if (missing(comp.no)) comp.no <- unique(x$comp.no) res <- list() n <- 1 for (i in comp.no) { if (missing(outcome.no)) jj <- unique(x$outcome.no[x$comp.no == i]) else jj <- outcome.no for (j in jj) { res[[n]] <- metacr(x, i, j, ...) n <- n + 1 } } n <- 1 for (i in seq_len(length(res))) { if (n > 1) cat("\n*****\n\n") print(res[[n]]) n <- n + 1 } invisible(NULL) }
process_config <- list( privileged = FALSE, user = "1000", tty = TRUE, entrypoint = "sh", arguments = c("-c", "exit 2")) list( id = "f33bbfb39f5b142420f4759b2348913bd4a8d1a6d7fd56499cb41a1bb91d7b3b", running = FALSE, exit_code = 2L, process_config = process_config, open_stdin = TRUE, open_stderr = TRUE, open_stdout = TRUE, container_id = "b53ee82b53a40c7dca428523e34f741f3abc51d9f297a14ff874bf761b995126", pid = 42000L)
context("Student data distribution") library(adoptr) library(testthat) test_that("Constructor works", { expect_true( Student()@two_armed) expect_true( !Student(two_armed = FALSE)@two_armed) expect_equal( Student(TRUE)@multiplier, 2) expect_equal( Student(FALSE)@multiplier, 1) }) test_that("pdf is defined correctly", { dist <- Student(TRUE) x <- seq(-3, 3, by = .1) n <- 22 theta <- .35 expect_equal( probability_density_function(dist, x, n, theta), stats::dt(x, df = 2 * (n - 1), ncp = sqrt(n / 2) * theta), tolerance = 1e-6, scale = 1) }) test_that("cdf is defined correctly", { dist <- Student(FALSE) x <- seq(-3, 3, by = .1) n <- 11 theta <- 0.24 expect_equal( cumulative_distribution_function(dist, x, n, theta), stats::pt(x, df = 1 * (n - 1), ncp = sqrt(n / 1) * theta), tolerance = 1e-6, scale = 1) }) test_that("quantile is defined correctly", { dist <- Student(TRUE) probs <- seq(.01, 1, by = .01) n <- 7 theta <- -.1 expect_equal( quantile(dist, probs, n, theta), stats::qt(probs, df = 2 * (n - 1), ncp = sqrt(n / 2) * theta), tolerance = 1e-6, scale = 1) expect_warning( quantile(dist, -1, n, theta) ) }) test_that("vectorization works", { dist <- Student(two_armed = TRUE) prior <- PointMassPrior(c(.3, .4), c(.4, .6)) expect_equal( predictive_pdf(dist, prior, c(0, 1), 10), sapply(c(0, 1), function(x) predictive_pdf(dist, prior, x, 10)) ) }) test_that("simulate respects seed", { expect_equal( simulate(Student(), 10, 10, 0, seed = 42), simulate(Student(), 10, 10, 0, seed = 42), tolerance = 1e-6, scale = 1) set.seed(42) expect_true( all(simulate(Student(), 10, 12, -.1) != simulate(Student(), 10, 12, -.1))) }) test_that("Student needs larger sample sizes than normal", { dist1 <- Student() pow1 <- Power(dist1, PointMassPrior(.3,1)) ess1 <- ExpectedSampleSize(dist1, PointMassPrior(.3, 1)) toer1 <- Power(dist1, PointMassPrior(0,1)) opt1 <- minimize(ess1, subject_to(pow1>=.9, toer1<=.025), OneStageDesign(200,2))$design dist2 <- Normal() pow2 <- Power(dist2, PointMassPrior(.3,1)) ess2 <- ExpectedSampleSize(dist2, PointMassPrior(.3, 1)) toer2 <- Power(dist2, PointMassPrior(0,1)) opt2 <- minimize(ess2, subject_to(pow2>=.9, toer2<=.025), OneStageDesign(200,2))$design expect_lte( opt2@n1, opt1@n1 ) }) test_that("Published results are reproducible", { dist <- Student(TRUE) H_0 <- PointMassPrior(0, 1) ess <- ExpectedSampleSize(dist, H_0) toer <- Power(dist, H_0) pow1 <- Power(dist, PointMassPrior(1.5, 1)) osd1 <- minimize(ess, subject_to(toer <= 0.025, pow1 >= 0.8), OneStageDesign(20, 2))$design expect_equal(ceiling(osd1@n1), 18 / 2) pow2 <- Power(dist, PointMassPrior(1.0, 1)) osd2 <- minimize(ess, subject_to(toer <= 0.025, pow2 >= 0.8), OneStageDesign(20, 2))$design expect_equal(ceiling(osd2@n1), 34 / 2) pow3 <- Power(dist, PointMassPrior(0.5, 1)) osd3 <- minimize(ess, subject_to(toer <= 0.025, pow3 >= 0.8), OneStageDesign(20, 2))$design expect_equal(ceiling(osd3@n1), 128 / 2) }) test_that("show method", { expect_equal( capture.output(show(Student())), "Student<two-armed> " ) expect_equal( capture.output(show(Student(two_armed = FALSE))), "Student<single-armed> " ) })
lets.subsetPAM <- function(x, names, remove.cells = TRUE) { if (class(x)[1] != "PresenceAbsence") { stop("x argument must be a PresenceAbsence object") } if (class(names)[1] != "character") { stop("names argument must be a character object") } if (class(remove.cells)[1] != "logical") { stop("remove.cells argument must be a TRUE or FALSE") } pos <- colnames(x[[1]]) %in% names errorcont <- names %in% colnames(x[[1]]) if (!any(errorcont)) { stop("None of the names provided match with PAM species") } if (any(!errorcont)) { warning(paste("One or more names", "provided, do not", "match any of the", "PAM species")) } x[[1]] <- x[[1]][, c(1:2, which(pos)), drop = FALSE] if (remove.cells) { x[[1]] <- .removeCells(x[[1]]) } rich <- rowSums(x[[1]][, -(1:2), drop = FALSE]) x[[2]] <- rasterize(x[[1]][, c(1:2), drop = FALSE], x[[2]], rich) x[[3]] <- colnames(x[[1]])[-c(1:2)] return(x) }
context("test-g01-problem") TOL <- 1e-6 a <- Variable(name = "a") b <- Variable(name = "b") c <- Variable(name = "c") x <- Variable(2, name = "x") y <- Variable(3, name = "y") z <- Variable(2, name = "z") A <- Variable(2, 2, name = "A") B <- Variable(2, 2, name = "B") C <- Variable(3, 2, name = "C") ConicSolver <- CVXR:::ConicSolver INSTALLED_SOLVERS <- installed_solvers() SCS.dims_to_solver_dict <- CVXR:::SCS.dims_to_solver_dict ECOS.dims_to_solver_dict <- CVXR:::ECOS.dims_to_solver_dict .p_norm <- CVXR:::.p_norm test_that("test the variables method", { skip_on_cran() p <- Problem(Minimize(a), list(a <= x, b <= A + 2)) vars_ <- variables(p) ref <- list(a, x, b, A) mapply(function(v, r) { expect_equal(v, r) }, vars_, ref) }) test_that("test the parameters method", { skip_on_cran() p1 <- Parameter() p2 <- Parameter(3, nonpos = TRUE) p3 <- Parameter(4, 4, nonneg = TRUE) p <- Problem(Minimize(p1), list(a + p1 <= p2, b <= p3 + p3 + 2)) params <- parameters(p) ref <- c(p1, p2, p3) mapply(function(p, r) { expect_equal(p, r) }, params, ref) }) test_that("test the constants method", { skip_on_cran() c1 <- matrix(stats::rnorm(2), nrow = 1, ncol = 2) c2 <- matrix(stats::rnorm(2), nrow = 2, ncol = 1) p <- Problem(Minimize(c1 %*% x), list(x >= c2)) constants_ <- constants(p) ref <- list(c1, c2) expect_equal(length(constants_), length(ref)) mapply(function(c, r) { expect_equal(dim(c), dim(r)) expect_true(all(value(c) == r)) }, constants_, ref) p <- Problem(Minimize(a), list(x >= 1)) constants_ <- constants(p) ref <- list(matrix(1)) expect_equal(length(ref), length(constants_)) mapply(function(c, r) { expect_equal(dim(c), dim(r)) expect_true(all(value(c) == r)) }, constants_, ref) }) test_that("Test the size_metrics method", { skip_on_cran() p1 <- Parameter() p2 <- Parameter(3, nonpos = TRUE) p3 <- Parameter(4, 4, nonneg = TRUE) c1 <- matrix(stats::rnorm(2), nrow = 2, ncol = 1) c2 <- matrix(stats::rnorm(2), nrow = 1, ncol = 2) constants <- c(2, as.numeric(c2 %*% c1)) p <- Problem(Minimize(p1), list(a + p1 <= p2, b <= p3 + p3 + constants[1], c == constants[2])) n_variables <- size_metrics(p)@num_scalar_variables ref <- size(a) + size(b) + size(c) expect_equal(n_variables, ref) n_data <- size_metrics(p)@num_scalar_data ref <- size(p1) + size(p2) + size(p3) + length(constants) expect_equal(n_data, ref) n_eq_constr <- size_metrics(p)@num_scalar_eq_constr ref <- prod(dim(c2 %*% c1)) expect_equal(n_eq_constr, ref) n_leq_constr <- size_metrics(p)@num_scalar_leq_constr ref <- size(p3) + size(p2) expect_equal(n_leq_constr, ref) max_data_dim <- size_metrics(p)@max_data_dimension ref <- max(dim(p3)) expect_equal(max_data_dim, ref) }) test_that("Test the solver_stats method", { skip_on_cran() prob <- Problem(Minimize(p_norm(x)), list(x == 0)) result <- solve(prob, solver = "ECOS") expect_true(result$solve_time > 0) expect_true(result$setup_time > 0) expect_true(result$num_iters > 0) }) test_that("Test the get_problem_data method", { skip_on_cran() data <- get_problem_data(Problem(Minimize(exp(a) + 2)), "SCS")[[1]] dims <- data[[ConicSolver()@dims]] expect_equal(dims@exp, 1) expect_equal(length(data[["c"]]), 2) expect_equal(dim(data[["A"]]), c(3,2)) data <- get_problem_data(Problem(Minimize(p_norm(x) + 3)), "ECOS")[[1]] dims <- data[[ConicSolver()@dims]] expect_equal(dims@soc, list(3)) expect_equal(length(data[["c"]]), 3) expect_equal(dim(data[["A"]]), c(0,0)) expect_equal(dim(data[["G"]]), c(3,3)) if("CVXOPT" %in% INSTALLED_SOLVERS) { data <- get_problem_data(Problem(Minimize(p_norm(x) + 3)), "CVXOPT")[[1]] dims <- data[["dims"]] expect_equal(dims@soc, list(3)) } }) test_that("Test unpack results method", { skip_on_cran() prob <- Problem(Minimize(exp(a)), list(a == 0)) tmp <- get_problem_data(prob, solver = "SCS") args <- tmp[[1]] chain <- tmp[[2]] inv <- tmp[[3]] data <- list(c = args[["c"]], A = args[["A"]], b = args[["b"]]) cones <- SCS.dims_to_solver_dict(args[[ConicSolver()@dims]]) solution <- scs::scs(A = data$A, b = data$b, obj = data$c, cone = cones) prob <- Problem(Minimize(exp(a)), list(a == 0)) result <- unpack_results(prob, solution, chain, inv) expect_equal(result$getValue(a), 0, tolerance = 1e-3) expect_equal(result$value, 1, tolerance = 1e-3) expect_equal(result$status, "optimal") prob <- Problem(Minimize(p_norm(x)), list(x == 0)) tmp <- get_problem_data(prob, solver = "ECOS") args <- tmp[[1]] chain <- tmp[[2]] inv <- tmp[[3]] cones <- ECOS.dims_to_solver_dict(args[[ConicSolver()@dims]]) solution <- ECOSolveR::ECOS_csolve(args[["c"]], args[["G"]], args[["h"]], cones, args[["A"]], args[["b"]]) prob <- Problem(Minimize(p_norm(x)), list(x == 0)) result <- unpack_results(prob, solution, chain, inv) expect_equal(result$getValue(x), matrix(c(0,0))) expect_equal(result$value, 0) expect_equal(result$status, "optimal") }) test_that("test the is_dcp method", { skip_on_cran() p <- Problem(Minimize(norm_inf(a))) expect_true(is_dcp(p)) p <- Problem(Maximize(norm_inf(a))) expect_false(is_dcp(p)) expect_error(solve(p)) }) test_that("test the is_qp method", { skip_on_cran() A <- matrix(rnorm(4*3), nrow = 4, ncol = 3) b <- matrix(rnorm(4), nrow = 4) Aeq <- matrix(rnorm(2*3), nrow = 2, ncol = 3) beq <- matrix(rnorm(2), nrow = 2, ncol = 1) Fmat <- matrix(rnorm(2*3), nrow = 2, ncol = 3) g <- matrix(rnorm(2), nrow = 2, ncol = 1) obj <- sum_squares(A %*% y - b) qpwa_obj <- 3*sum_squares(-abs(A %*% y)) + quad_over_lin(max_elemwise(abs(A %*% y), rep(3, 4)), 2) not_qpwa_obj <- 3*sum_squares(abs(A %*% y)) + quad_over_lin(min_elemwise(abs(A %*% y), rep(3, 4)), 2) p <- Problem(Minimize(obj), list()) expect_true(is_qp(p)) p <- Problem(Minimize(qpwa_obj), list()) expect_true(is_qp(p)) p <- Problem(Minimize(not_qpwa_obj), list()) expect_false(is_qp(p)) p <- Problem(Minimize(obj), list(Aeq %*% y == beq, Fmat %*% y <= g)) expect_true(is_qp(p)) p <- Problem(Minimize(obj), list(max_elemwise(1, 3*y) <= 200, abs(2*y) <= 100, p_norm(2*y, 1) <= 1000, Aeq %*% y == beq)) expect_true(is_qp(p)) p <- Problem(Minimize(qpwa_obj), list(max_elemwise(1, 3*y) <= 200, abs(2*y) <= 100, p_norm(2*y, 1) <= 1000, Aeq %*% y == beq)) expect_true(is_qp(p)) p <- Problem(Minimize(obj), list(max_elemwise(1, 3*y^2) <= 200)) expect_false(is_qp(p)) p <- Problem(Minimize(qpwa_obj), list(max_elemwise(1, 3*y^2) <= 200)) expect_false(is_qp(p)) }) test_that("test problems involving variables with the same name", { skip_on_cran() var <- Variable(name = "a") p <- Problem(Maximize(a + var), list(var == 2 + a, var <= 3)) result <- solve(p) expect_equal(result$value, 4.0, tolerance = TOL) expect_equal(result$getValue(a), 1, tolerance = TOL) expect_equal(result$getValue(var), 3, tolerance = TOL) }) test_that("test adding problems", { skip_on_cran() prob1 <- Problem(Minimize(a), list(a >= b)) prob2 <- Problem(Minimize(2*b), list(a >= 1, b >= 2)) prob_minimize <- prob1 + prob2 expect_equal(length(prob_minimize@constraints), 3) result <- solve(prob_minimize) expect_equal(result$value, 6, tolerance = TOL) prob3 <- Problem(Maximize(a), list(b <= 1)) prob4 <- Problem(Maximize(2*b), list(a <= 2)) prob_maximize <- prob3 + prob4 expect_equal(length(prob_maximize@constraints), 2) result <- solve(prob_maximize) expect_equal(result$value, 4, tolerance = TOL) prob5 <- Problem(Minimize(3*a)) prob_sum <- Reduce("+", list(prob1, prob2, prob5)) expect_equal(length(prob_sum@constraints), 3) result <- solve(prob_sum) expect_equal(result$value, 12, tolerance = TOL) prob_sum <- Reduce("+", list(prob1)) expect_equal(length(prob_sum@constraints), 1) expect_error(prob_bad_sum <- prob1 + prob3, "Problem does not follow DCP rules") }) test_that("test problem multiplication by scalar", { skip_on_cran() prob1 <- Problem(Minimize(a^2), list(a >= 2)) answer <- solve(prob1)$value factors <- c(0, 1, 2.3, -4.321) for(f in factors) { expect_equal(solve(f * prob1)$value, f * answer, tolerance = TOL) expect_equal(solve(prob1 * f)$value, f * answer, tolerance = TOL) } }) test_that("test problem linear combinations", { skip_on_cran() prob1 <- Problem(Minimize(a), list(a >= b)) prob2 <- Problem(Minimize(2*b), list(a >= 1, b >= 2)) prob3 <- Problem(Maximize(-(b + a)^2), list(b >= 3)) combo1 <- prob1 + 2 * prob2 combo1_ref <- Problem(Minimize(a + 4*b), list(a >= b, a >= 1, b >= 2)) expect_equal(solve(combo1)$value, solve(combo1_ref)$value) combo2 <- prob1 - prob3/2 combo2_ref <- Problem(Minimize(a + (b + a)^2/2), list(b >= 3, a >= b)) expect_equal(solve(combo2)$value, solve(combo2_ref)$value) combo3 <- prob1 + 0*prob2 - 3*prob3 combo3_ref <- Problem(Minimize(a + 3*(b + a)^2), list(a >= b, a >= 1, b >= 3)) expect_equal(solve(combo3)$value, solve(combo3_ref)$value, tolerance = TOL) }) test_that("Test scalar LP problems", { skip_on_cran() p <- Problem(Minimize(3*a), list(a >= 2)) result <- solve(p) expect_equal(result$value, 6, tolerance = TOL) expect_equal(result$getValue(a), 2, tolerance = TOL) p <- Problem(Maximize(3*a - b), list(a <= 2, b == a, b <= 5)) result <- solve(p) expect_equal(result$value, 4.0, tolerance = TOL) expect_equal(result$getValue(a), 2, tolerance = TOL) expect_equal(result$getValue(b), 2, tolerance = TOL) p <- Problem(Minimize(3*a - b + 100), list(a >= 2, b + 5*c - 2 == a, b <= 5 + c)) result <- solve(p) expect_equal(result$value, 101+1.0/6, tolerance = TOL) expect_equal(result$getValue(a), 2, tolerance = TOL) expect_equal(result$getValue(b), 5-1.0/6, tolerance = TOL) expect_equal(result$getValue(c), -1.0/6, tolerance = TOL) exp <- Maximize(a) p <- Problem(exp, list(a <= 2)) result <- solve(p, solver = "ECOS") expect_equal(result$status, "optimal") expect_false(is.na(result$getValue(a))) expect_false(is.na(result$getDualValue(p@constraints[[1]]))) p <- Problem(Maximize(a), list(a >= 2)) result <- solve(p, solver = "ECOS") expect_equal(result$value, Inf) expect_true(is.na(result$getValue(a))) expect_true(is.na(result$getDualValue(p@constraints[[1]]))) if("CVXOPT" %in% INSTALLED_SOLVERS) { p <- Problem(Minimize(-a), list(a >= 2)) result <- solve(p, solver = "CVXOPT") expect_equal(result$status, "unbounded") expect_equal(result$value, -Inf) } p <- Problem(Maximize(a), list(a >= 2, a <= 1)) result <- solve(p, solver = "ECOS") expect_equal(result$status, "infeasible") expect_equal(result$value, -Inf) expect_true(is.na(result$getValue(a))) expect_true(is.na(result$getDualValue(p@constraints[[1]]))) p <- Problem(Minimize(-a), list(a >= 2, a <= 1)) result <- solve(p, solver = "ECOS") expect_equal(result$status, "infeasible") expect_equal(result$value, Inf) }) test_that("Test vector LP problems", { skip_on_cran() c <- Constant(matrix(c(1, 2), nrow = 2, ncol = 1))@value p <- Problem(Minimize(t(c) %*% x), list(x >= c)) result <- solve(p) expect_equal(result$value, 5, tolerance = TOL) expect_equal(result$getValue(x), matrix(c(1, 2)), tolerance = TOL) A <- Constant(rbind(c(3, 5), c(1, 2)))@value I <- Constant(rbind(c(1, 0), c(0, 1))) p <- Problem(Minimize(t(c) %*% x + a), list(A %*% x >= c(-1, 1), 4*I %*% z == x, z >= c(2,2), a >= 2)) result <- solve(p) expect_equal(result$value, 26, tolerance = 1e-3) obj <- result$getValue(t(c) %*% x + a) expect_equal(obj, result$value, tolerance = TOL) expect_equal(result$getValue(x), matrix(c(8,8)), tolerance = 1e-3) expect_equal(result$getValue(z), matrix(c(2,2)), tolerance = 1e-3) }) test_that("Test ECOS with no inequality constraints", { skip_on_cran() Tmat <- value(Constant(matrix(1, nrow = 2, ncol = 2))) p <- Problem(Minimize(1), list(A == Tmat)) result <- solve(p, solver = "ECOS") expect_equal(result$value, 1, tolerance = TOL) expect_equal(result$getValue(A), Tmat, tolerance = TOL) }) test_that("Test matrix LP problems", { skip_on_cran() Tmat <- value(Constant(matrix(1, nrow = 2, ncol = 2))) p <- Problem(Minimize(1), list(A == Tmat)) result <- solve(p) expect_equal(result$value, 1, tolerance = TOL) expect_equal(result$getValue(A), Tmat, tolerance = TOL) Tmat <- value(Constant(matrix(1, nrow = 2, ncol = 3)*2)) p <- Problem(Minimize(1), list(A >= Tmat %*% C, A == B, C == t(Tmat))) result <- solve(p) expect_equal(result$value, 1, tolerance = TOL) expect_equal(result$getValue(A), result$getValue(B), tolerance = TOL) expect_equal(result$getValue(C), t(Tmat), tolerance = TOL) expect_true(all(result$getValue(A) >= Tmat %*% result$getValue(C))) expect_true(is(result$getValue(A), "matrix")) }) test_that("Test variable promotion", { skip_on_cran() p <- Problem(Minimize(a), list(x <= a, x == c(1, 2))) result <- solve(p) expect_equal(result$value, 2, tolerance = TOL) expect_equal(result$getValue(a), 2, tolerance = TOL) p <- Problem(Minimize(a), list(A <= a, A == rbind(c(1,2), c(3,4)))) result <- solve(p) expect_equal(result$value, 4, tolerance = TOL) expect_equal(result$getValue(a), 4, tolerance = TOL) p <- Problem(Minimize(matrix(1, nrow = 1, ncol = 2) %*% (x + a + 1)), list(a + x >= c(1, 2))) result <- solve(p) expect_equal(result$value, 5, tolerance = TOL) }) test_that("Test parameter promotion", { skip_on_cran() a <- Parameter() value(a) <- 2 exp <- cbind(c(1,2), c(3,4))*a expect_false(any(value(exp) - 2*cbind(c(1,2), c(3,4)) != 0)) }) test_that("test problems with parameters", { skip_on_cran() p1 <- Parameter() p2 <- Parameter(3, nonpos = TRUE) p3 <- Parameter(4, 4, nonneg = TRUE) p <- Problem(Maximize(p1*a), list(a + p1 <= p2, b <= p3 + p3 + 2)) value(p1) <- 2 value(p2) <- -matrix(1, nrow = 3, ncol = 1) value(p3) <- matrix(1, nrow = 4, ncol = 4) result <- solve(p) expect_equal(result$value, -6, tolerance = TOL) value(p1) <- NA_real_ p <- Problem(Maximize(p1*a), list(a + p1 <= p2, b <= p3 + p3 + 2)) expect_error(solve(p)) }) test_that("test problems with norm_inf", { skip_on_cran() p <- Problem(Minimize(norm_inf(-2))) result <- solve(p) expect_equal(result$value, 2, tolerance = TOL) p <- Problem(Minimize(norm_inf(a)), list(a >= 2)) result <- solve(p) expect_equal(result$value, 2, tolerance = TOL) expect_equal(result$getValue(a), 2, tolerance = TOL) p <- Problem(Minimize(3*norm_inf(a + 2*b) + c), list(a >= 2, b <= -1, c == 3)) result <- solve(p) expect_equal(result$value, 3, tolerance = TOL) expect_equal(result$getValue(a + 2*b), 0, tolerance = TOL) expect_equal(result$getValue(c), 3, tolerance = TOL) p <- Problem(Maximize(-norm_inf(a)), list(a <= -2)) result <- solve(p) expect_equal(result$value, -2, tolerance = TOL) expect_equal(result$getValue(a), -2, tolerance = TOL) p <- Problem(Minimize(norm_inf(x - z) + 5), list(x >= c(2,3), z <= c(-1,-4))) result <- solve(p, solver = "ECOS") expect_equal(result$value, 12, tolerance = TOL) expect_equal(result$getValue(x[2] - z[2]), 7, tolerance = TOL) }) test_that("Test problems with norm1", { skip_on_cran() p <- Problem(Minimize(norm1(-2))) result <- solve(p) expect_equal(result$value, 2, tolerance = TOL) p <- Problem(Minimize(norm1(a)), list(a <= -2)) result <- solve(p) expect_equal(result$value, 2, tolerance = TOL) expect_equal(result$getValue(a), -2, tolerance = TOL) p <- Problem(Maximize(-norm1(a)), list(a <= -2)) result <- solve(p) expect_equal(result$value, -2, tolerance = TOL) expect_equal(result$getValue(a), -2, tolerance = TOL) p <- Problem(Minimize(norm1(x - z) + 5), list(x >= c(2,3), z <= c(-1,-4))) result <- solve(p) expect_equal(result$value, 15, tolerance = TOL) expect_equal(result$getValue(x[2] - z[2]), 7, tolerance = TOL) }) test_that("Test problems with norm2", { skip_on_cran() p <- Problem(Minimize(norm2(-2))) result <- solve(p) expect_equal(result$value, 2, tolerance = TOL) p <- Problem(Minimize(norm2(a)), list(a <= -2)) result <- solve(p) expect_equal(result$value, 2, tolerance = TOL) expect_equal(result$getValue(a), -2, tolerance = TOL) p <- Problem(Maximize(-norm2(a)), list(a <= -2)) result <- solve(p) expect_equal(result$value, -2, tolerance = TOL) expect_equal(result$getValue(a), -2, tolerance = TOL) p <- Problem(Minimize(norm2(x - z) + 5), list(x >= c(2,3), z <= c(-1,-4))) result <- solve(p) expect_equal(result$value, 12.61577, tolerance = TOL) expect_equal(result$getValue(x), matrix(c(2,3)), tolerance = TOL) expect_equal(result$getValue(z), matrix(c(-1,-4)), tolerance = TOL) p <- Problem(Minimize(norm2(t(x - z)) + 5), list(x >= c(2,3), z <= c(-1,-4))) result <- solve(p) expect_equal(result$value, 12.61577, tolerance = TOL) expect_equal(result$getValue(x), matrix(c(2,3)), tolerance = TOL) expect_equal(result$getValue(z), matrix(c(-1,-4)), tolerance = TOL) }) test_that("Test problems with abs", { skip_on_cran() p <- Problem(Minimize(sum_entries(abs(A))), list(-2 >= A)) result <- solve(p) expect_equal(result$value, 8, tolerance = TOL) expect_equal(result$getValue(A), matrix(rep(-2, 4), nrow = 2, ncol = 2), tolerance = TOL) }) test_that("Test problems with quad_form", { skip_on_cran() expect_error(solve(Problem(Minimize(quad_form(x, A)))), "At least one argument to QuadForm must be constant.") expect_error(solve(Problem(Minimize(quad_form(1, A)))), "Invalid dimensions for arguments.") expect_error(solve(Problem(Minimize(quad_form(x, rbind(c(-1,0), c(0,9))))))) P <- rbind(c(4,0), c(0,9)) p <- Problem(Minimize(quad_form(x, P)), list(x >= 1)) result <- solve(p) expect_equal(result$value, 13, tolerance = 1e-3) c <- c(1,2) p <- Problem(Minimize(quad_form(c, A)), list(A >= 1)) result <- solve(p) expect_equal(result$value, 9, tolerance = TOL) c <- c(1,2) P <- rbind(c(4,0), c(0,9)) p <- Problem(Minimize(quad_form(c, P))) result <- solve(p) expect_equal(result$value, 40) }) test_that("Test combining atoms", { skip_on_cran() p <- Problem(Minimize(norm2(5 + p_norm(z,1) + p_norm(x,1) + norm_inf(x - z))), list(x >= c(2,3), z <= c(-1,-4), p_norm(x + z,2) <= 2)) result <- solve(p) expect_equal(result$value, 22, tolerance = TOL) expect_equal(result$getValue(x), matrix(c(2,3)), tolerance = TOL) expect_equal(result$getValue(z), matrix(c(-1,-4)), tolerance = TOL) }) test_that("Test multiplying by constant atoms", { skip_on_cran() p <- Problem(Minimize(norm2(c(3,4)) * a), list(a >= 2)) result <- solve(p) expect_equal(result$value, 10, tolerance = TOL) expect_equal(result$getValue(a), 2, tolerance = TOL) }) test_that("Test recovery of dual variables", { skip_on_cran() for(solver in c("ECOS", "SCS", "CVXOPT")) { if(solver %in% INSTALLED_SOLVERS) { if(solver == "SCS") acc <- 1e-1 else acc <- 1e-5 p <- Problem(Minimize(p_norm(x + z, 1)), list(x >= c(2,3), cbind(c(1,2), c(3,4)) %*% z == c(-1,-4), p_norm(x + z, 2) <= 100)) result <- solve(p, solver = solver) expect_equal(result$value, 4, tolerance = acc) expect_equal(result$getValue(x), matrix(c(4,3)), tolerance = acc) expect_equal(result$getValue(z), matrix(c(-4,1)), tolerance = acc) expect_equal(result$getDualValue(p@constraints[[1]]), matrix(c(0,1)), tolerance = acc) expect_equal(result$getDualValue(p@constraints[[2]]), matrix(c(-1,0.5)), tolerance = acc) expect_equal(result$getDualValue(p@constraints[[3]]), 0, tolerance = acc) Tmat <- matrix(1, nrow = 2, ncol = 3) * 2 c <- matrix(c(3,4), nrow = 1, ncol = 2) p <- Problem(Minimize(1), list(A >= Tmat %*% C, A == B, C == t(Tmat))) result <- solve(p, solver = solver) expect_equal(result$getDualValue(p@constraints[[1]]), matrix(0, nrow = 2, ncol = 2), tolerance = acc) expect_equal(result$getDualValue(p@constraints[[2]]), matrix(0, nrow = 2, ncol = 2), tolerance = acc) expect_equal(result$getDualValue(p@constraints[[3]]), matrix(0, nrow = 3, ncol = 2), tolerance = acc) } } }) test_that("Test problems with indexing", { skip_on_cran() p <- Problem(Maximize(x[1,1]), list(x[1,1] <= 2, x[2,1] == 3)) result <- solve(p) expect_equal(result$value, 2, tolerance = TOL) expect_equal(result$getValue(x), matrix(c(2,3))) n <- 10 Aloc <- matrix(0:(n^2-1), nrow = n, ncol = n) xloc <- Variable(n,n) p <- Problem(Minimize(sum_entries(xloc)), list(xloc == Aloc)) result <- solve(p) answer <- n*n*(n*n+1)/2 - n*n expect_equal(result$value, answer) obj <- A[1,1] + A[1,2] + A[2,2] + A[2,1] p <- Problem(Maximize(obj), list(A <= rbind(c(1,-2), c(-3,4)))) result <- solve(p) expect_equal(result$value, 0, tolerance = TOL) expect_equal(result$getValue(A), rbind(c(1,-2), c(-3,4))) exp <- cbind(c(1,2), c(3,4)) %*% z + x p <- Problem(Minimize(exp[2,1]), list(x == z, z == c(1,2))) result <- solve(p) expect_equal(result$value, 12, tolerance = TOL) expect_equal(result$getValue(x), result$getValue(z), tolerance = TOL) }) test_that("Test problems with slicing", { skip_on_cran() p <- Problem(Maximize(sum_entries(C)), list(C[2:3,] <= 2, C[1,] == 1)) result <- solve(p) expect_equal(result$value, 10, tolerance = TOL) expect_equal(result$getValue(C), cbind(c(1,2,2), c(1,2,2))) p <- Problem(Maximize(sum_entries(C[seq(1,3,2),2])), list(C[2:3,] <= 2, C[1,] == 1)) result <- solve(p) expect_equal(result$value, 3, tolerance = TOL) expect_equal(result$getValue(C[seq(1,3,2),2]), matrix(c(1,2))) p <- Problem(Maximize(sum_entries((C[1:2,] + A)[,1:2])), list(C[2:3,] <= 2, C[1,] == 1, (A + B)[,1] == 3, (A + B)[,2] == 2, B == 1)) result <- solve(p) expect_equal(result$value, 12, tolerance = TOL) expect_equal(result$getValue(C[1:2,]), cbind(c(1,2), c(1,2)), tolerance = TOL) expect_equal(result$getValue(A), cbind(c(2,2),c(1,1)), tolerance = TOL) p <- Problem(Maximize(matrix(c(3,4), nrow = 1, ncol = 2) %*% (C[1:2,] + A)[,1]), list(C[2:3,] <= 2, C[1,] == 1, matrix(c(1,2), nrow = 1, ncol = 2) %*% (A + B)[,1] == 3, (A + B)[,2] == 2, B == 1, 3*A[,1] <= 3)) result <- solve(p) expect_equal(result$value, 12, tolerance = TOL) expect_equal(result$getValue(C[1:2,1]), matrix(c(1,2)), tolerance = TOL) expect_equal(result$getValue(A), cbind(c(1,-0.5), c(1,1)), tolerance = TOL) p <- Problem(Minimize(norm2((C[1:2,] + A)[,1])), list(C[2:3,] <= 2, C[1,] == 1, (A + B)[,1] == 3, (A + B)[,2] == 2, B == 1)) result <- solve(p) expect_equal(result$value, 3, tolerance = TOL) expect_equal(result$getValue(C[1:2,1]), matrix(c(1,-2)), tolerance = 1e-4) expect_equal(result$getValue(A), cbind(c(2,2), c(1,1)), tolerance = TOL) p <- Problem(Maximize(sum_entries(C)), list(t(C[2:3,]) <= 2, t(C[1,]) == 1)) result <- solve(p) expect_equal(result$value, 10, tolerance = TOL) expect_equal(result$getValue(C), cbind(c(1,2,2), c(1,2,2))) }) test_that("Test the vstack function", { skip_on_cran() c <- matrix(1, nrow = 1, ncol = 5) p <- Problem(Minimize(c %*% vstack(x, y)), list(x == c(1,2), y == c(3,4,5))) result <- solve(p) expect_equal(result$value, 15, tolerance = TOL) c <- matrix(1, nrow = 1, ncol = 4) p <- Problem(Minimize(c %*% vstack(x, x)), list(x == c(1,2))) result <- solve(p) expect_equal(result$value, 6, tolerance = TOL) c <- matrix(1, nrow = 2, ncol = 2) p <- Problem(Minimize(sum_entries(vstack(A, C))), list(A >= 2*c, C == -2)) result <- solve(p) expect_equal(result$value, -4, tolerance = TOL) c <- matrix(1, nrow = 1, ncol = 2) p <- Problem(Minimize(sum_entries(vstack(c %*% A, c %*% B))), list(A >= 2, B == -2)) result <- solve(p) expect_equal(result$value, 0, tolerance = TOL) c <- matrix(c(1,-1), nrow = 2, ncol = 1) p <- Problem(Minimize(t(c) %*% vstack(a^2, sqrt(b))), list(a == 2, b == 16)) expect_error(solve(p)) }) test_that("Test the hstack function", { skip_on_cran() c <- matrix(1, nrow = 1, ncol = 5) p <- Problem(Minimize(c %*% t(hstack(t(x), t(y)))), list(x == c(1,2), y == c(3,4,5))) result <- solve(p) expect_equal(result$value, 15, tolerance = TOL) c <- matrix(1, nrow = 1, ncol = 4) p <- Problem(Minimize(c %*% t(hstack(t(x), t(x)))), list(x == c(1,2))) result <- solve(p) expect_equal(result$value, 6, tolerance = TOL) c <- matrix(1, nrow = 2, ncol = 2) p <- Problem(Minimize(sum_entries(hstack(t(A), t(C)))), list(A >= 2*c, C == -2)) result <- solve(p) expect_equal(result$value, -4, tolerance = TOL) D <- Variable(3,3) expr <- hstack(C, D) p <- Problem(Minimize(expr[1,2] + sum_entries(hstack(expr, expr))), list(C >= 0, D >= 0, D[1,1] == 2, C[1,2] == 3)) result <- solve(p) expect_equal(result$value, 13, tolerance = TOL) c <- matrix(c(1,-1), nrow = 2, ncol = 1) p <- Problem(Minimize(t(c) %*% t(hstack(t(a^2), t(sqrt(b))))), list(a == 2, b == 16)) expect_error(solve(p)) }) test_that("Test using a CVXR expression as an objective", { skip_on_cran() expect_error(Problem(x+2)) }) test_that("Test variable transpose", { skip_on_cran() p <- Problem(Minimize(sum_entries(x)), list(t(x) >= matrix(c(1,2), nrow = 1, ncol = 2))) result <- solve(p) expect_equal(result$value, 3, tolerance = TOL) expect_equal(result$getValue(x), matrix(c(1,2))) p <- Problem(Minimize(sum_entries(C)), list(matrix(c(1,1), nrow = 1, ncol = 2) %*% t(C) >= matrix(0:2, nrow = 1, ncol = 3))) result <- solve(p) value <- result$getValue(C) constraints <- lapply(1:3, function(i) { 1*C[i,1] + 1*C[i,2] >= (i-1) }) p <- Problem(Minimize(sum_entries(C)), constraints) result2 <- solve(p) expect_equal(result$value, result2$value) expect_equal(result$getValue(C), value) p <- Problem(Minimize(A[1,2] - t(A)[2,1]), list(A == cbind(c(1,2), c(3,4)))) result <- solve(p) expect_equal(result$value, 0, tolerance = TOL) exp <- t(-x) p <- Problem(Minimize(sum_entries(x)), list(t(-x) <= 1)) result <- solve(p) expect_equal(result$value, -2, tolerance = TOL) c <- matrix(c(1,-1), nrow = 2, ncol = 1) p <- Problem(Minimize(max_elemwise(t(c), 2, 2 + t(c))[2])) result <- solve(p) expect_equal(result$value, 2, tolerance = TOL) c <- cbind(c(1,-1,2), c(1,-1,2)) p <- Problem(Minimize(sum_entries(t(max_elemwise(c, 2, 2+c))[,1]))) result <- solve(p) expect_equal(result$value, 6, tolerance = TOL) c <- cbind(c(1,-1,2), c(1,-1,2)) p <- Problem(Minimize(sum_entries(t(t(c)^2)[,1]))) result <- solve(p) expect_equal(result$value, 6, tolerance = TOL) p <- Problem(Maximize(sum_entries(C)), list(t(C)[,2:3] <= 2, t(C)[,1] == 1)) result <- solve(p) expect_equal(result$value, 10, tolerance = TOL) expect_equal(result$getValue(C), cbind(c(1,2,2), c(1,2,2))) }) test_that("Test multiplication on the left by a non-constant", { skip_on_cran() c <- matrix(c(1,2), nrow = 2, ncol = 1) p <- Problem(Minimize(t(c) %*% A %*% c), list(A >= 2)) result <- solve(p) expect_equal(result$value, 18, tolerance = TOL) p <- Problem(Minimize(a*2), list(a >= 2)) result <- solve(p) expect_equal(result$value, 4, tolerance = TOL) p <- Problem(Minimize(t(x) %*% c), list(x >= 2)) result <- solve(p) expect_equal(result$value, 6, tolerance = TOL) p <- Problem(Minimize((t(x) + t(z)) %*% c), list(x >= 2, z >= 1)) result <- solve(p) expect_equal(result$value, 9, tolerance = TOL) }) test_that("Test redundant constraints", { skip_on_cran() obj <- Minimize(sum_entries(x)) constraints <- list(x == 2, x == 2, t(x) == 2, x[1] == 2) p <- Problem(obj, constraints) result <- solve(p, solver = "ECOS") expect_equal(result$value, 4, tolerance = TOL) obj <- Minimize(sum_entries(x^2)) constraints <- list(x == x) p <- Problem(obj, constraints) result <- solve(p, solver = "ECOS") expect_equal(result$value, 0, tolerance = TOL) }) test_that("Test that symmetry is enforced", { skip_on_cran() p <- Problem(Minimize(lambda_max(A)), list(A >= 2)) result <- solve(p) expect_equal(result$getValue(A), t(result$getValue(A)), tolerance = 1e-3) p <- Problem(Minimize(lambda_max(A)), list(A == cbind(c(1,2), c(3,4)))) result <- solve(p) expect_equal(result$status, "infeasible") }) test_that("Test SDP", { skip_on_cran() obj <- Maximize(A[2,1] - A[1,2]) p <- Problem(obj, list(lambda_max(A) <= 100, A[1,1] == 2, A[2,2] == 2, A[2,1] == 2)) result <- solve(p) expect_equal(result$value, 0, tolerance = 1e-3) }) test_that("Test getting values for expressions", { skip_on_cran() diff_exp <- x - z inf_exp <- norm_inf(diff_exp) sum_entries_exp <- 5 + p_norm(z,1) + p_norm(x,1) + inf_exp constr_exp <- norm2(x + z) obj <- norm2(sum_entries_exp) p <- Problem(Minimize(obj), list(x >= c(2,3), z <= c(-1,-4), constr_exp <= 2)) result <- solve(p) expect_equal(result$value, 22, tolerance = TOL) expect_equal(result$getValue(x), matrix(c(2,3)), tolerance = TOL) expect_equal(result$getValue(z), matrix(c(-1,-4)), tolerance = TOL) xs <- result$getValue(x) zs <- result$getValue(z) expect_equal(result$getValue(diff_exp), xs - zs, tolerance = TOL) expect_equal(result$getValue(inf_exp), norm(xs - zs, "I")) expect_equal(result$getValue(sum_entries_exp), 5 + norm(zs, "1") + norm(xs, "1") + norm(xs - zs, "I")) expect_equal(result$getValue(constr_exp), base::norm(xs + zs, "2")) expect_equal(result$getValue(obj), result$value) }) test_that("Test multiplication by zero", { skip_on_cran() exp <- 0*a expect_equal(value(exp), matrix(0)) obj <- Minimize(exp) p <- Problem(obj) result <- solve(p) expect_equal(result$value, 0, tolerance = TOL) expect_false(is.na(result$getValue(a))) }) test_that("Tests a problem with division", { skip_on_cran() obj <- Minimize(norm_inf(A/5)) p <- Problem(obj, list(A >= 5)) result <- solve(p) expect_equal(result$value, 1, tolerance = TOL) }) test_that("Tests problems with multiply", { skip_on_cran() c <- cbind(c(1,-1), c(2,-2)) expr <- multiply(c, A) obj <- Minimize(norm_inf(expr)) p <- Problem(obj, list(A == 5)) result <- solve(p) expect_equal(result$value, 10, tolerance = TOL) expect_equal(result$getValue(expr), cbind(c(5,-5), c(10,-10)), tolerance = TOL) c <- Matrix::sparseMatrix(i = c(1,2), j = c(1,1), x = c(1,2)) expr <- multiply(c, x) obj <- Minimize(norm_inf(expr)) p <- Problem(obj, list(x == 5)) result <- solve(p) expect_equal(result$value, 10, tolerance = TOL) expect_equivalent(as.matrix(result$getValue(expr)), matrix(c(5,10))) c <- cbind(c(1,-1), c(2,-2)) expr <- multiply(c, a) obj <- Minimize(norm_inf(expr)) p <- Problem(obj, list(a == 5)) result <- solve(p) expect_equal(result$value, 10, tolerance = TOL) expect_equivalent(as.matrix(result$getValue(expr)), cbind(c(5,-5), c(10,-10))) }) test_that("Tests that errors occur when you use an invalid solver", { skip_on_cran() expect_error(solve(Problem(Minimize(Bool())), solver = "ECOS")) expect_error(solve(Problem(Minimize(lambda_max(a))), solver = "ECOS")) expect_error(solve(Problem(Minimize(a)), solver = "SCS")) }) test_that("Tests problems with reshape_expr", { skip_on_cran() expect_equal(value(reshape_expr(1,c(1,1))), matrix(1)) x <- Variable(4) mat <- cbind(c(1,-1), c(2,-2)) vec <- matrix(1:4) vec_mat <- cbind(c(1,2), c(3,4)) expr <- reshape_expr(x,c(2,2)) obj <- Minimize(sum_entries(mat %*% expr)) prob <- Problem(obj, list(x == vec)) result <- solve(prob) expect_equal(result$value, sum(mat %*% vec_mat)) c <- 1:4 expr <- reshape_expr(A,c(4,1)) obj <- Minimize(t(expr) %*% c) constraints <- list(A == cbind(c(-1,-2), c(3,4))) prob <- Problem(obj, constraints) result <- solve(prob) expect_equal(result$value, 20, tolerance = TOL) expect_equal(result$getValue(expr), matrix(c(-1,-2,3,4))) expect_equal(result$getValue(reshape_expr(expr,c(2,2))), cbind(c(-1,-2), c(3,4))) expr <- reshape_expr(C,c(2,3)) mat <- rbind(c(1,-1), c(2,-2)) C_mat <- rbind(c(1,4), c(2,5), c(3,6)) obj <- Minimize(sum_entries(mat %*% expr)) prob <- Problem(obj, list(C == C_mat)) result <- solve(prob) reshaped = matrix(C_mat, nrow = 2, ncol = 3, byrow = FALSE) expect_equal(result$value, sum(mat %*% reshaped), tolerance = TOL) expect_equal(result$getValue(expr), reshaped, tolerance = TOL) c <- cbind(c(1,-1), c(2,-2)) expr <- reshape_expr(c * a,c(1,4)) obj <- Minimize(expr %*% (1:4)) prob <- Problem(obj, list(a == 2)) result <- solve(prob) expect_equal(result$value, -6, tolerance = TOL) expect_equal(result$getValue(expr), 2*matrix(c, nrow = 1), tolerance = TOL) expr <- reshape_expr(c * a,c(4,1)) obj <- Minimize(t(expr) %*% (1:4)) prob <- Problem(obj, list(a == 2)) result <- solve(prob) expect_equal(result$value, -6, tolerance = TOL) expect_equal(result$getValue(expr), 2*matrix(c, ncol = 1), tolerance = TOL) }) test_that("Tests problems with vec", { skip_on_cran() c <- 1:4 expr <- vec(A) obj <- Minimize(t(expr) %*% c) constraints <- list(A == cbind(c(-1,-2), c(3,4))) prob <- Problem(obj, constraints) result <- solve(prob) expect_equal(result$value, 20, tolerance = TOL) expect_equal(result$getValue(expr), matrix(c(-1,-2,3,4))) }) test_that("Test a problem with diag", { skip_on_cran() C <- Variable(3,3) obj <- Maximize(C[1,3]) constraints <- list(diag(C) == 1, C[1,2] == 0.6, C[2,3] == -0.3, C == Variable(3, 3, PSD = TRUE)) prob <- Problem(obj, constraints) result <- solve(prob) expect_equal(result$value, 0.583151, tolerance = 1e-2) }) test_that("Test interaction of caching with changing constraints", { skip_on_cran() prob <- Problem(Minimize(a), list(a == 2, a >= 1)) result <- solve(prob) expect_equal(result$value, 2, tolerance = TOL) prob@constraints[[1]] = (a == 1) result <- solve(prob) expect_equal(result$value, 1, tolerance = TOL) }) test_that("Test positive definite constraints", { skip_on_cran() C <- Variable(3,3) obj <- Maximize(C[1,3]) constraints <- list(diag(C) == 1, C[1,2] == 0.6, C[2,3] == -0.3, C == t(C), C %>>% 0) prob <- Problem(obj, constraints) result <- solve(prob) expect_equal(result$value, 0.583151, tolerance = 1e-2) C <- Variable(2,2) obj <- Maximize(C[1,2]) constraints <- list(C == 1, C %>>% rbind(c(2,0), c(0,2))) prob <- Problem(obj, constraints) result <- solve(prob) expect_equal(result$status, "infeasible") C <- Variable(2, 2, symmetric = TRUE) obj <- Minimize(C[1,1]) constraints <- list(C %<<% cbind(c(2,0), c(0,2))) prob <- Problem(obj, constraints) result <- solve(prob) expect_equal(result$status, "unbounded") }) test_that("Test the duals of PSD constraints", { skip_on_cran() C <- Variable(2, 2, symmetric = TRUE, name = "C") obj <- Maximize(C[1,1]) constraints <- list(C %<<% cbind(c(2,0), c(0,2))) prob <- Problem(obj, constraints) result <- solve(prob, solver = "SCS") expect_equal(result$value, 2, tolerance = 1e-4) psd_constr_dual <- result$getDualValue(constraints[[1]]) C <- Variable(2, 2, symmetric = TRUE, name = "C") X <- Variable(2, 2, PSD = TRUE) obj <- Maximize(C[1,1]) constraints <- list(X == cbind(c(2,0), c(0,2)) - C) prob <- Problem(obj, constraints) result <- solve(prob, solver = "SCS") expect_equal(result$getDualValue(constraints[[1]]), psd_constr_dual, tolerance = 1e-3) C <- Variable(2, 2, symmetric = TRUE) obj <- Maximize(C[1,2] + C[2,1]) constraints <- list(C %<<% cbind(c(2,0), c(0,2)), C >= 0) prob <- Problem(obj, constraints) result <- solve(prob, solver = "SCS") expect_equal(result$value, 4, tolerance = 1e-3) psd_constr_dual <- result$getDualValue(constraints[[1]]) C <- Variable(2, 2, symmetric = TRUE) X <- Variable(2, 2, PSD = TRUE) obj <- Maximize(C[1,2] + C[2,1]) constraints <- list(X == cbind(c(2,0), c(0,2)) - C, C >= 0) prob <- Problem(obj, constraints) result <- solve(prob, solver = "SCS") expect_equal(result$getDualValue(constraints[[1]]), psd_constr_dual, tolerance = 1e-3) }) test_that("Test geo_mean function", { skip_on_cran() x <- Variable(2) cost <- geo_mean(x) prob <- Problem(Maximize(cost), list(x <= 1)) result <- solve(prob) expect_equal(result$value, 1, tolerance = TOL) prob <- Problem(Maximize(cost), list(sum(x) <= 1)) result <- solve(prob) expect_equal(result$getValue(x), matrix(c(0.5,0.5)), tolerance = TOL) x <- Variable(3,3) expect_error(geo_mean(x)) x <- Variable(3,1) g <- geo_mean(x) x <- Variable(1,5) g <- geo_mean(x) p <- c(0.07, 0.12, 0.23, 0.19, 0.39) short_geo_mean <- function(x, p) { p <- as.numeric(p)/sum(p) x <- as.numeric(x) prod(x^p) } x <- Variable(5) prob <- Problem(Maximize(geo_mean(x, p)), list(sum(x) <= 1)) result <- solve(prob) x <- as.numeric(result$getValue(x)) x_true <- p/sum(p) expect_equal(result$value, result$getValue(geo_mean(x, p)), tolerance = TOL) expect_equal(result$value, short_geo_mean(x, p), tolerance = TOL) expect_equal(x, x_true, tolerance = 1e-3) x <- Variable(5) prob <- Problem(Maximize(geo_mean(x, p)), list(p_norm(x) <= 1)) result <- solve(prob) x <- as.numeric(result$getValue(x)) x_true <- sqrt(p/sum(p)) expect_equal(result$value, result$getValue(geo_mean(x, p)), tolerance = 1e-3) expect_equal(result$value, short_geo_mean(x, p), tolerance = 1e-3) expect_equal(x, x_true, tolerance = 1e-3) n <- 5 x_true <- rep(1,n) x <- Variable(n) result <- solve(Problem(Maximize(geo_mean(x)), list(x <= 1))) xval <- as.numeric(result$getValue(x)) expect_equal(xval, x_true, tolerance = 1e-3) args <- lapply(seq_len(n), function(ind) x[ind]) y <- do.call(vstack, args) result <- solve(Problem(Maximize(geo_mean(y)), list(x <= 1))) xval <- as.numeric(result$getValue(x)) expect_equal(xval, x_true, tolerance = 1e-3) y <- do.call(hstack, args) result <- solve(Problem(Maximize(geo_mean(y)), list(x <= 1))) xval <- as.numeric(result$getValue(x)) expect_equal(xval, x_true, tolerance = 1e-3) }) test_that("Test p_norm function", { skip_on_cran() x <- Variable(3, name = "x") avec <- c(1.0, 2, 3) for(p in c(1, 1.6, 1.3, 2, 1.99, 3, 3.7, Inf)) { prob <- Problem(Minimize(p_norm(x, p = p)), list(t(x) %*% avec >= 1)) result <- solve(prob) if(p == Inf) x_true <- rep(1, length(avec))/sum(avec) else if(p == 1) { x_true <- c(0,0,1.0/3) } else x_true <- avec^(1.0/(p-1)) / as.numeric(avec %*% (avec^(1.0/(p-1)))) x_alg <- as.vector(result$getValue(x)) expect_equal(x_alg, x_true, tolerance = 1e-3) expect_equal(result$value, .p_norm(x_alg, p), tolerance = TOL) expect_equal(.p_norm(x_alg, p), result$getValue(p_norm(x_alg, p))) } }) test_that("Test p_norm concave", { skip_on_cran() x <- Variable(3, name = "x") a <- c(-1.0, 2, 3) for(p in c(-1, 0.5, 0.3, -2.3)) { prob <- Problem(Minimize(sum_entries(abs(x-a))), list(p_norm(x,p) >= 0)) result <- solve(prob) expect_equal(result$value, 1, tolerance = TOL) } a <- c(1.0, 2, 3) for(p in c(-1, 0.5, 0.3, -2.3)) { prob <- Problem(Minimize(sum_entries(abs(x-a))), list(p_norm(x,p) >= 0)) result <- solve(prob) expect_equal(result$value, 0, tolerance = TOL) } }) test_that("Test power function", { skip_on_cran() x <- Variable() prob <- Problem(Minimize(power(x, 1.7) + power(x, -2.3) - power(x, 0.45))) result <- solve(prob) xs <- result$getValue(x) expect_true(abs(1.7*xs^0.7 - 2.3*xs^-3.3 - 0.45*xs^-0.55) <= 1e-3) }) test_that("Test a problem with multiply by a scalar", { skip_on_cran() Tnum <- 10 Jnum <- 20 rvec <- matrix(stats::rnorm(Tnum*Jnum), nrow = Tnum, ncol = Jnum) dy <- matrix(stats::rnorm(2*Tnum), nrow = 2*Tnum, ncol = 1) theta <- Variable(Jnum) delta <- 1e-3 loglambda <- rvec %*% theta a <- multiply(dy[1:Tnum], loglambda) b1 <- exp(loglambda) b2 <- multiply(delta, b1) cost <- -a + b1 cost <- -a + b2 prob <- Problem(Minimize(sum_entries(cost))) result <- solve(prob, solver = "SCS") obj <- Minimize(sum_entries(multiply(2, x))) prob <- Problem(obj, list(x == 2)) result <- solve(prob) expect_equal(result$value, 8, tolerance = TOL) })
library(ncappc) ncappc.db <- data.frame(TIME=c(0:10),CONC=c(0,1,2,3.5,3.6,3.2,2.4,1.6,1.3,1.1,0.8)) TIME <- ncappc.db$TIME CONC <- ncappc.db$CONC TIME.positive <- ncappc.db[ncappc.db$TIME >= 0,"TIME"] CONC.positive <- ncappc.db[ncappc.db$CONC >= 0,"CONC"]
reglca_bound_classprobs <- function(class_probs, min_class_probs=1e-4) { if (any(is.na(class_probs))){ TP <- length(class_probs) class_probs <- rep(1/TP, TP) } ind <- class_probs < min_class_probs if (sum(ind)>0){ class_probs[ind] <- min_class_probs class_probs <- cdm_sumnorm(class_probs) } return(class_probs) }
restricted.residual.mean <- function(out,x=0,tau=10,iid=0) { if ((class(out)!='cox.aalen') & (class(out)!='aalen') & (class(out)!='survfit') ) stop ("Must be output from cox.aalen or aalen function\n") if (class(out)=="survfit") { fit.table <- as.matrix(summary(out, rmean=tau)$table) if (ncol(fit.table)==1) fit.table <- t(fit.table) ee <- fit.table[,"*rmean"] se <- fit.table[,"*se(rmean)"] variid <- diag(se^2) S0t <- NULL timetau <- NULL } if (class(out)=="cox.aalen") { time <- out$cum[,1] cumhaz <- out$cum[,2] beta <- out$gamma if (is.matrix(x)!=TRUE) x <- matrix(x,nrow=1) timetau <- c(time[time<tau],tau) RR <- c( exp( x %*% beta) ) cumhaz<- matrix(1,nrow=nrow(x)) %*% t(matrix(cumhaz,ncol=(ncol(out$cum)-1))) S0 <- exp(-cumhaz*RR) S0t <- Cpred(cbind(time,t(S0)),timetau,strict=FALSE)[,-1,drop=FALSE] Lam0t <- Cpred(cbind(time,t(cumhaz)),timetau,strict=FALSE)[,-1,drop=FALSE] ll <- length(timetau) ee <- apply(diff(timetau)*S0t[-ll,,drop=FALSE],2,sum) deet <- apply(Lam0t[-ll,]*diff(timetau)*S0t[-ll,,drop=FALSE],2,sum) RRDeet <- RR* deet nn <- nrow(out$gamma.iid) etiid <- c() if (iid==1) { for (j in 1:nn) { gamiid <- x %*% out$gamma.iid[j,] gamiid <- RRDeet * gamiid Biidj<-Cpred(cbind(time,out$B.iid[[j]]),timetau)[,2] baseiid <- RR* apply(diff(timetau)*S0t[-ll,,drop=FALSE]*Biidj[-ll],2,sum) etiid <- rbind(etiid,c(gamiid+ baseiid)) } variid <- t(etiid) %*% etiid se <- diag(variid)^.5 } else { variid <- se <- NULL } } if (class(out)=="aalen") { time <- out$cum[,1] cumhaz <- out$cum[,-1] timetau <- c(time[time<tau],tau) cumhaz<- as.matrix(x) %*% t(cumhaz) S0 <- exp(-cumhaz) S0t <- Cpred(cbind(time,t(S0)),timetau,strict=FALSE)[,-1,drop=FALSE] Lam0t <- Cpred(cbind(time,t(cumhaz)),timetau)[,-1,drop=FALSE] ll <- length(timetau) ee <- apply(diff(timetau)*S0t[-ll,,drop=FALSE],2,sum) deet <- apply(Lam0t[-ll,]*diff(timetau)*S0t[-ll,,drop=FALSE],2,sum) RRDeet <- deet nn <- length(out$B.iid) etiid <- c() if (iid==1) { for (j in 1:nn) { Biidj<-Cpred(cbind(time,out$B.iid[[j]]),timetau)[,-1] Biidj<- t(x %*% t(Biidj)) baseiid <- apply(diff(timetau)*S0t[-ll,,drop=FALSE]*Biidj[-ll,],2,sum) etiid <- rbind(etiid,c(baseiid)) } variid <- t(etiid) %*% etiid se <- diag(variid)^.5 } else { variid <- se <- NULL } } out <- list(mean=ee,var.mean=variid,se=se,S0tau=S0t,timetau=timetau) class(out) <- "restricted.residual.mean" return(out) } plot.restricted.residual.mean <- function(x,...) { matplot(x$timetau,x$S0tau,type="s") } summary.restricted.residual.mean <- function(object, digits=3,...) { if (!is.null(object$se)) { out <- cbind(object$mean,object$se) colnames(out) <- c("mean","se") } else { out <- matrix(object$mean,ncol=1) colnames(out) <- "mean"} prmatrix(signif(out,digits)) cat("\n"); }
context("match_output_arguments") test_that("match_output_arguments works as expected", { out <- rep(FALSE, 3) names(out) <- c("fit", "plots", "samples") expect_equal(match_output_arguments(supported_args = names(out)), out) out["plots"] <- TRUE expect_equal(match_output_arguments("plots", supported_args = names(out)), out) out["samples"] <- TRUE expect_equal(match_output_arguments(c("plots", "samples"), supported_args = names(out)), out) expect_equal(match_output_arguments("p", supported_args = names(out)), out) })
context('Test the countMissing function.') test_that('countMissing counts and prints correct information.', { set.seed(2) A <- array(rnorm(10 * 20 * 3), dim = c(20, 3, 10)) A[c(3, 4, 5), , 1] <- NA A[8, , 5] <- NA miss <- countMissing(A) expect_equal(miss, c(3, 0, 0, 0, 1, rep(0, 5))) expect_message(countMissing(A), '^2\ ') expect_message(countMissing(A), 'specimen 1 with 3 missing landmarks') })
context("hm_name") path <- system.file('extdata', package = 'hydrotoolbox') guido <- hm_create() %>% hm_build(bureau = 'snih', path = path, file_name = c('snih_hq_guido.xlsx', 'snih_qd_guido.xlsx'), slot_name = c('hq', 'qd'), by = c('none', 'day') ) test_that("obj bad entry", { expect_error( hm_name(obj = TRUE, slot_name = 'qd', col_name = 'q(m3/s)') ) expect_error( hm_name(obj = 1:10, slot_name = 'qd', col_name = 'q(m3/s)') ) expect_error( hm_name(obj = 'guido', slot_name = 'qd', col_name = 'q(m3/s)') ) }) test_that("slot_name bad entry", { expect_error( hm_name(obj = guido, slot_name = 'guido', col_name = 'q(m3/s)') ) expect_error( hm_name(obj = guido, slot_name = TRUE, col_name = 'q(m3/s)') ) expect_error( hm_name(obj = guido, slot_name = c('qd', 'hola'), col_name = 'q(m3/s)') ) expect_error( hm_name(obj = guido, slot_name = c('qd', 'swe'), col_name = 'q(m3/s)') ) expect_error( hm_name(obj = guido, slot_name = c('swe'), col_name = 'q(m3/s)') ) }) test_that("col_name bad entry", { expect_error( hm_name(obj = guido, slot_name = 'qd', col_name = TRUE) ) expect_error( hm_name(obj = guido, slot_name = 'qd', col_name = 1:10) ) expect_error( hm_name(obj = guido, slot_name = 'qd', col_name = guido) ) expect_error( hm_name(obj = guido, slot_name = 'qd', col_name = c('hi', 'bye')) ) })
x <- c("2", "1", "10", NA, "10") E(sort(x, numeric=TRUE), c("1", "2", "10", "10")) E(sort(x, numeric=TRUE, na.last=TRUE), c("1", "2", "10", "10", NA)) E(xtfrm2(x, numeric=TRUE), c(2L, 1L, 3L, NA, 3L)) E(xtfrm2(as.integer(x)), as.integer(x)) E(xtfrm(as.integer(x)), as.integer(x))
silverman<-function(x) { abs(0.5*exp(-abs(x)/sqrt(2))*sin(abs(x)/sqrt(2)+pi/4))/1.140086 } ker<-function(obs,bdl,lod) { n=length(lod) h=1.059*sd(lod)*n^(-1/3) wei=rep(1,length(obs)) censored<- !bdl obs <- pmax(obs,lod) ind<-order(obs) data=cbind(obs,censored) data=data[ind,] obs=obs[ind] we=wei[ind] wd=lod[ind] dn<-data[,2] if(length(unique(obs))==length(obs)){ ttn=rep(1,length(obs)) een=dn temp=t(kronecker(t(wd),rep(1,n))-wd) temp=silverman( (temp/h) ) temp1=diag(dn) temp2=upper.tri(matrix(1,n,n), diag =TRUE )+matrix(0,n,n) temp3=matrix(1,n,n) temp6=sapply(obs,FUN=function(x) obs>=x)+matrix(0,n,n) num=temp%*%temp1 deno=temp%*%temp2 pro=1-(num/deno) cond=t(apply(pro,1,function (x){ out=rev(cumprod(rev(x[2:n]))) out=c(out,1) return(out) } )) prob=apply(cond,2,mean,na.rm=T) temp7=matrix(diag(cond),n,n,byrow=FALSE) temp8=lower.tri(matrix(1,n,n), diag =FALSE )+matrix(0,n,n) temp9=matrix(prob,n,n,byrow=TRUE) inter_var=temp8*temp7+temp2*cond temp10=matrix(diag(cond),n,n,byrow=FALSE) temp55=matrix(dn,n,n,byrow=FALSE) variance<-cond-temp9-cond*((temp55*temp6)/(temp10)+1-(1/(inter_var))) sd=sqrt(apply(variance^2,2,sum,na.rm=TRUE))/n lower.cl=pmax(rep(0,n),prob-1.96*sd) upper.cl=pmin(rep(1,n),prob+1.96*sd) out<-cbind(unique.obs=obs,cdf=prob,se=sd,lower=lower.cl,upper=upper.cl) }else{ unique.obs=unique(obs) een=tn=en=ttn=rep(NA,length(unique.obs)) for (i in 1:length(unique.obs)) { ttn[i]=sum(obs==unique.obs[i]) tn[i]=sum( we[obs==unique.obs[i]] ) indi=which(obs==unique.obs[i]) en[i]=sum(dn[indi]*we[indi]) een[i]=sum(dn[which(obs==unique.obs[i])]) } record=rep(NA,length(unique.obs)) num=deno=temp.num=temp.deno=matrix(0,length(obs),length(unique.obs)) for(i in 1: length(obs)){ if(obs[i]<=max(unique.obs)){ record=min(which(unique.obs>=obs[i])) temp.deno[i,record:length(unique.obs)]=1 if(dn[i]==1){ temp.num[i,record]=1 } } } dist=t(kronecker(t(wd),rep(1,n))-wd)/h temp=silverman(dist) temp.num=temp.num temp.deno=temp.deno for(i in 1:length(lod)) { for(j in 1:length(unique.obs)) { num[i,j]=sum(temp[i,]*temp.num[,j]) deno[i,j]=sum(temp[i,]*temp.deno[,j]) } } pro=1-(num/deno) cond=t(apply(pro,1,function (x){ out=rev(cumprod(rev(x[2:length(unique.obs)]))) out=c(out,1) return(out) } )) prob=apply(cond,2,mean) ind_lod=match(unique.obs,obs) cond=cond[ind_lod,] n1=length(ind_lod) temp7=matrix(diag(cond),n1,n1,byrow=FALSE) temp8=lower.tri(matrix(1,n1,n1), diag =FALSE )+matrix(0,n1,n1) temp9=matrix(prob,n1,n1,byrow=TRUE) temp2=upper.tri(matrix(1,n1,n1), diag =TRUE )+matrix(0,n1,n1) inter_var=temp8*temp7+temp2*cond temp10=matrix(diag(cond),n1,n1,byrow=FALSE) temp55=matrix(een,n1,n1,byrow=FALSE) temp6=sapply(unique.obs,FUN=function(x) unique.obs>=x)+matrix(0,n1,n1) variance<-cond-temp9-cond*((temp55*temp6)/(temp10)+1-(1/(inter_var))) sd=sqrt(apply(variance^2,2,sum,na.rm=TRUE))/n lower.cl=pmax(rep(0,n1),prob-1.96*sd) upper.cl=pmin(rep(1,n1),prob+1.96*sd) out<-cbind(unique.obs=unique.obs,cdf=prob,se=sd,lower=lower.cl,upper=upper.cl) } return(out) } KRKM <- function(obs,bdl,lod,method='formula',b=1000) UseMethod("KRKM") KRKM.default<-function(obs,bdl,lod,method='formula',b=1000) { formula=ker(obs,bdl,lod) if(method=='formula'){ out=formula }else if (method=='bootstrap'){ temp=matrix(NA,dim(formula)[1],b) for(i in 1:b) { ind=sample(1:length(lod),replace=TRUE) obs.b=obs[ind] lod.b=lod[ind] bdl.b=bdl[ind] x=formula[,c(1,2)] y=ker(obs.b,bdl.b,lod.b)[,c(1,2)] temp[,i]=merge(x,y,by='obs',all.x=TRUE)[,3] } se=apply(temp,1,sd,na.rm=TRUE) lower=pmax(rep(0,length(se)),out[,2]-1.96*se) upper=pmin(rep(1,(length(se))),out[,2]+1.96*se) var=cbind(se,lower,upper) out=formula[,1:2] out=cbind(out,var) } output=list() output$unique.obs=out[,1] output$cdf=out[,2] output$se=out[,3] output$lower=out[,4] output$upper=out[,5] class(output) <- 'KRKM' output } plot.KRKM<-function(x,conf.int=TRUE,lty=1,col=1,lwd=1,xlim=NULL,ylim=NULL,log="x",xlab=NULL,ylab='CDF',...) { options( warn = -1 ) plot(x$unique.obs,x$cdf,type='s',col=col,lty=lty,log=log,ylab=ylab,xlab=xlab,lwd=lwd,xlim=xlim,ylim=ylim,...) if(conf.int){ points(x$unique.obs,x$lower,type='s',col='black',lty=2,log="x",lwd=1) points(x$unique.obs,x$upper,type='s',col='black',lty=2,log="x",lwd=1) } }
local({ freqData <- as.data.frame(table(galton$child-mean(galton$child), galton$parent-mean(galton$parent))) names(freqData) <- c("child", "parent", "freq") plot(as.numeric(as.vector(freqData$parent)), as.numeric(as.vector(freqData$child)), pch = 21, col = "black", bg = "lightblue", cex = .07 * freqData$freq, xlab = "parent-mean(parent)", ylab = "child-mean(child)", main="Subtracting the means eliminates the intercept.") abline(lm(I(child-mean(child)) ~ I(parent-mean(parent)) - 1, galton),col="blue",lwd=3) abline(h=0, lwd=2) abline(v=0, lwd=2) text(0, .6, "The intercept is 0", col='red', pos=2) points(rep(0,3), rep(0,3), cex=2:4, lwd=2, col='red') })
pesticideTrendCalcs <- function(tndbeg, tndend, ctnd, pval, alpha, setnd, scl, baseConc, mclass) { if (mclass == 1) { por <- tndend - tndbeg ctndPYR <- 100 * (10 ^ ctnd - 1) ctndPpor <- formatC(100 * ((10 ^ ctnd) ^ por) - 100 , digits = 4, flag = " cuciPpor <- formatC(100 * ((10 ^ (ctnd + qnorm(1 - alpha/2) * setnd) ) ^ por) - 100, digits = 4, flag = " clciPpor <- formatC(100 * ((10 ^ (ctnd - qnorm(1 - alpha/2) * setnd) ) ^ por) - 100, digits = 4, flag = " ctndOrigPORPercentBase <- formatC(baseConc * ((10 ^ ctnd) ^ por) - baseConc, digits = 4, flag = " cuciOrigPORPercentBase <- formatC(baseConc * (10 ^ (ctnd + qnorm(1 - alpha/2) * setnd)) ^ por - baseConc, digits = 4, flag = " clciOrigPORPercentBase <- formatC(baseConc * (10 ^ (ctnd - qnorm(1 - alpha/2) * setnd)) ^ por - baseConc, digits = 4, flag = " format = "f") ctndlklhd <- round(1 - pval/2, digits = 4) cat("\n") trends <- c(alpha, round(baseConc, digits = 4), ctndPpor, cuciPpor, clciPpor, ctndOrigPORPercentBase, cuciOrigPORPercentBase, clciOrigPORPercentBase, ctndlklhd) } else if (mclass == 2) { } else { mclassmes <- c("Invalid model class. Currently, the only valid mclass options are numeric values of 1 or 2.") stop(mclassmes) } return(as.numeric(trends)) }
executeURL<- function(fullURL, type){ resp <- getURL(fullURL) out <- fromJSON(resp) if(length(out) != 0){ if(class(out[[1]]) == 'list'){ if(type == 'm'){ out <- YoutheriaToDF(out) out1 <- unique(out) tab1 <- table(out$MeasurementSetID) tab2 <- table(out1$MeasurementSetID) dups <- as.numeric(names(tab1[!tab1==tab2])) for(i in dups){ tempOut <- out1[out1$MeasurementSetID==i,] tabTemp <- names(table(tempOut$ValueType)[table(tempOut$ValueType)>1]) for(j in tabTemp){ rnam <- row.names(out1[out1$MeasurementSetID==i & out1$ValueType==j,]) out1 <- out1[!row.names(out1) %in% rnam[2:length(rnam)],] } } out <- out1 } else { out <- ldply(out, data.frame, stringsAsFactors=FALSE) } } else { out <- as.data.frame(out) } } else { out <- NULL } return(out) }
library(oce) if (file.exists("/data/nwatl")) { test_that("webtide", { path <- paste(getOption("webtide"), "/data/nwatl", sep="") pattern <- "nwatl_ll.nod" if (1 == length(list.files(path=path, pattern=pattern))) { a <- webtide("predict", longitude=-63, latitude=44, plot=FALSE) expect_equal(names(a), c("time", "elevation", "u", "v", "node", "basedir","region")) b <- webtide("map", longitude=-63, latitude=44, plot=FALSE) expect_equal(names(b), c("node", "latitude", "longitude")) if (FALSE) { expect_equal(head(a$elevation), c(-0.20609221409, -0.14463463411, -0.08172047958, -0.01835870715, 0.04443627478, 0.10566059067)) expect_equal(head(a$u), c(0.0069110978571, 0.0053063933931, 0.0038722056401, 0.0026186134050, 0.0015517477196, 0.0006737364902)) expect_equal(head(a$v), c(0.04802913583, 0.04822143736, 0.04790889414, 0.04709160408, 0.04577651402, 0.04397733928)) } } })}
targets::tar_test("tar_format_api()", { expect_null(tar_format_api(x, 1)) }) targets::tar_test("tar_format()", { f <- tar_format("file") x <- f(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "file") }) targets::tar_test("tar_rds() runs", { targets::tar_script(list(tarchetypes::tar_rds(x, 0L))) targets::tar_make(callr_function = NULL) expect_equal(targets::tar_read(x), 0L) }) targets::tar_test("tar_rds() with pattern", { x <- tar_rds(x, 1, pattern = map(y)) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$dimensions, "y") }) targets::tar_test("tar_url()", { x <- tar_url(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "url") }) targets::tar_test("tar_file()", { x <- tar_file(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "file") }) targets::tar_test("tar_rds()", { x <- tar_rds(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "rds") }) targets::tar_test("tar_qs()", { x <- tar_qs(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "qs") }) targets::tar_test("tar_format_feather()", { x <- tar_format_feather(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "feather") }) targets::tar_test("tar_parquet()", { x <- tar_parquet(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "parquet") }) targets::tar_test("tar_fst()", { x <- tar_fst(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "fst") }) targets::tar_test("tar_fst_dt()", { x <- tar_fst_dt(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "fst_dt") }) targets::tar_test("tar_fst_tbl()", { x <- tar_fst_tbl(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "fst_tbl") }) targets::tar_test("tar_keras()", { x <- tar_keras(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "keras") }) targets::tar_test("tar_torch()", { x <- tar_torch(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "torch") }) targets::tar_test("tar_aws_file()", { x <- tar_aws_file(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "aws_file") }) targets::tar_test("tar_aws_rds()", { x <- tar_aws_rds(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "aws_rds") }) targets::tar_test("tar_aws_qs()", { x <- tar_aws_qs(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "aws_qs") }) targets::tar_test("tar_format_aws_feather()", { x <- tar_format_aws_feather(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "aws_feather") }) targets::tar_test("tar_aws_parquet()", { x <- tar_aws_parquet(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "aws_parquet") }) targets::tar_test("tar_aws_fst()", { x <- tar_aws_fst(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "aws_fst") }) targets::tar_test("tar_aws_fst_dt()", { x <- tar_aws_fst_dt(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "aws_fst_dt") }) targets::tar_test("tar_aws_fst_tbl()", { x <- tar_aws_fst_tbl(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "aws_fst_tbl") }) targets::tar_test("tar_aws_keras()", { x <- tar_aws_keras(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "aws_keras") }) targets::tar_test("tar_aws_torch()", { x <- tar_aws_torch(x, 0) expect_true(inherits(x, "tar_target")) expect_equal(x$settings$format, "aws_torch") })
convert.image<- function(imgrgb, threshold=.5) { warning("Use of convert.image(...) is deprecated!") return(convertImage(imgrgb, threshold)) } convertImage<- function(imgrgb, threshold=.5) { img <- ifelse((imgrgb[,,1]+imgrgb[,,2]+imgrgb[,,3])/3>threshold,1,0) return(img); }
ntip <- function(phy, node){ nmax <- Ntip(phy) tips <- vector() while ( length(node) > 0 ){ node <- phy$edge[phy$edge[, 1] %in% node, 2] tips <- c(tips, node[node <= nmax]) node <- node[node > nmax] } length(tips) }
read_pvolfile <- function(file, param = c( "DBZH", "DBZ", "VRADH", "VRAD", "TH", "T", "RHOHV", "ZDR", "PHIDP", "CELL", "BIOLOGY", "WEATHER", "BACKGROUND" ), sort = TRUE, lat, lon, height, elev_min = 0, elev_max = 90, verbose = TRUE, mount = dirname(file)) { tryCatch(read_pvolfile_body( file, param, sort, lat, lon, height, elev_min, elev_max, verbose, mount ), error = function(err) { rhdf5::h5closeAll() stop(err) } ) } read_pvolfile_body <- function(file, param = c( "DBZH", "DBZ", "VRADH", "VRAD", "TH", "T", "RHOHV", "ZDR", "PHIDP", "CELL", "BIOLOGY", "WEATHER", "BACKGROUND" ), sort = TRUE, lat, lon, height, elev_min = 0, elev_max = 90, verbose = TRUE, mount = dirname(file)) { if (!is.logical(sort)) { stop("'sort' should be logical") } if (!missing(lat)) { if (!is.numeric(lat) || lat < -90 || lat > 90) { stop("'lat' should be numeric between -90 and 90 degrees") } } if (!missing(lon)) { if (!is.numeric(lon) || lat < -360 || lat > 360) { stop("'lon' should be numeric between -360 and 360 degrees") } } if (!missing(height)) { if (!is.numeric(height) || height < 0) { stop("'height' should be a positive number of meters above sea level") } } cleanup <- FALSE if (H5Fis_hdf5(file)) { if (!is.pvolfile(file)) { stop("Failed to read HDF5 file.") } } else { if (verbose) { cat("Converting using Docker...\n") } if (!.pkgenv$docker) { stop( "Requires a running Docker daemon.\nTo enable, start your ", "local Docker daemon, and run 'check_docker()' in R\n" ) } file <- nexrad_to_odim_tempfile(file, verbose = verbose, mount = mount ) if (!is.pvolfile(file)) { file.remove(file) stop("converted file contains errors") } cleanup <- TRUE } scans <- h5ls(file, recursive = FALSE)$name scans <- scans[grep("dataset", scans)] elevs <- sapply( scans, function(x) { h5readAttributes( file, paste(x, "/where", sep = "") )$elangle } ) scans <- scans[elevs >= elev_min & elevs <= elev_max] h5struct <- h5ls(file) h5struct <- h5struct[h5struct$group == "/", ]$name attribs.how <- attribs.what <- attribs.where <- NULL if ("how" %in% h5struct) { attribs.how <- h5readAttributes(file, "how") } if ("what" %in% h5struct) { attribs.what <- h5readAttributes(file, "what") } if ("where" %in% h5struct) { attribs.where <- h5readAttributes(file, "where") } vol.lat <- c(attribs.where$lat) vol.lon <- c(attribs.where$lon) vol.height <- c(attribs.where$height) if (is.null(vol.lat)) { if (missing(lat)) { if (cleanup) { file.remove(file) } stop("latitude not found in file, provide 'lat' argument") } } if (!missing(lat)) { vol.lat <- lat } if (is.null(vol.lon)) { if (missing(lon)) { if (cleanup) { file.remove(file) } stop("longitude not found in file, provide 'lon' argument") } } if (!missing(lon)) { vol.lon <- lon } if (is.null(vol.height)) { if (missing(height)) { if (cleanup) { file.remove(file) } stop("antenna height not found in file, provide 'height' argument") } } if (!missing(height)) { vol.height <- height } geo <- list(lat = vol.lat, lon = vol.lon, height = vol.height) datetime <- as.POSIXct(paste(attribs.what$date, attribs.what$time), format = "%Y%m%d %H%M%S", tz = "UTC" ) sources <- strsplit(attribs.what$source, ",")[[1]] radar <- gsub("RAD:", "", sources[which(grepl("RAD:", sources))]) attribs.where$height <- vol.height attribs.where$lat <- vol.lat attribs.where$lon <- vol.lon data <- lapply( scans, function(x) { read_pvolfile_scan(file, x, param, radar, datetime, geo) } ) valid_scans <- which(!sapply(data, is.null)) assert_that(length(valid_scans) > 0, msg = paste("none of the requested scan parameters found in file", file)) if(length(valid_scans) < length(scans)){ warning(paste("ignoring",length(scans)-length(valid_scans),"scan(s) in file",file,"because requested scan parameter(s) are missing.")) } data <- data[valid_scans] if (sort) { data <- data[order(sapply(data, get_elevation_angles))] } output <- list( radar = radar, datetime = datetime, scans = data, attributes = list( how = attribs.how, what = attribs.what, where = attribs.where ), geo = geo ) class(output) <- "pvol" if (cleanup) { file.remove(file) } output } read_pvolfile_scan <- function(file, scan, param, radar, datetime, geo) { h5struct <- h5ls(file) h5struct <- h5struct[h5struct$group == paste("/", scan, sep = ""), ]$name groups <- h5struct[grep("data", h5struct)] if (length(param) == 1 && param == "all") { allParam <- TRUE } else { allParam <- FALSE } if (!allParam) { quantityNames <- sapply( groups, function(x) { h5readAttributes( file, paste(scan, "/", x, "/what", sep = "" ) )$quantity } ) groups <- groups[quantityNames %in% param] if (length(groups) == 0) { return(NULL) } } attribs.how <- attribs.what <- attribs.where <- NULL if ("how" %in% h5struct) { attribs.how <- h5readAttributes(file, paste(scan, "/how", sep = "")) } if ("what" %in% h5struct) { attribs.what <- h5readAttributes(file, paste(scan, "/what", sep = "")) } if ("where" %in% h5struct) { attribs.where <- h5readAttributes(file, paste(scan, "/where", sep = "")) } geo$elangle <- c(attribs.where$elangle) geo$rscale <- c(attribs.where$rscale) geo$ascale <- c(360 / attribs.where$nrays) quantities <- lapply( groups, function(x) { read_pvolfile_quantity( file, paste(scan, "/", x, sep = ""), radar, datetime, geo ) } ) quantityNames <- sapply(quantities, "[[", "quantityName") quantities <- lapply(quantities, "[[", "quantity") names(quantities) <- quantityNames output <- list( radar = radar, datetime = datetime, params = quantities, attributes = list( how = attribs.how, what = attribs.what, where = attribs.where ), geo = geo ) class(output) <- "scan" output } read_pvolfile_quantity <- function(file, quantity, radar, datetime, geo) { data <- h5read(file, quantity)$data storage.mode(data) <- "numeric" attr <- h5readAttributes(file, paste(quantity, "/what", sep = "")) data <- replace(data, data == as.numeric(attr$nodata), NA) data <- replace(data, data == as.numeric(attr$undetect), NaN) data <- as.numeric(attr$offset) + as.numeric(attr$gain) * data if(attr$quantity == "RHOHV"){ data <- replace(data, data > 10, NaN) } class(data) <- c("param", class(data)) attributes(data)$radar <- radar attributes(data)$datetime <- datetime attributes(data)$geo <- geo attributes(data)$param <- attr$quantity list(quantityName = attr$quantity, quantity = data) }
source("ESEUR_config.r") pal_col=rainbow(3) rev_acc=read.csv(paste0(ESEUR_dir, "regression/coderev-acc_years.csv.xz")) rev_acc$accuracy=rev_acc$accuracy*100 plot(rev_acc$years.in.security, rev_acc$accuracy, col=pal_col[2], yaxs="i", xlab="Years working in security", ylab="Percentage of vulnerabilities detected\n") year_span=0:8 loess_mod=loess(accuracy ~ years.in.security, data=rev_acc, span=0.9) loess_pred=predict(loess_mod, newdata=data.frame(years.in.security=year_span)) lines(year_span, loess_pred, col=pal_col[3]) gl_mod=glm(accuracy ~ years.in.security, data=rev_acc) y_pred=predict(gl_mod, newdata=list(years.in.security=year_span), type="response", se.fit=TRUE) lines(year_span, y_pred$fit, col=pal_col[1])
context("tunnel_methods_tests") SLAccount <- account() test_that("canGetTunnels", { tunnels <- getTunnels(SLAccount, "seleniumPipes") expect_true(inherits(tunnels, "list")) }) test_that("canGetTunnel", { tunnels <- getTunnels(SLAccount, "seleniumPipes") if(length(tunnels) > 0){ tunnel <- getTunnel(SLAccount, "seleniumPipes", tunnelID = tunnels[[1]]) expect_true(inherits(tunnel, "list")) } }) test_that("canDeleteTunnel", { tunnels <- getTunnels(SLAccount, "seleniumPipes") if(length(tunnels) > 0){ res <- deleteTunnel(SLAccount, "seleniumPipes", tunnelID = tunnels[[1]]) expect_true(res$result) } } )
get_fun <- function(x){ if( grepl("::", x, fixed = TRUE) ){ coumpounds <- strsplit(x, split = "::", x, fixed = TRUE)[[1]] z <- getFromNamespace(coumpounds[2], ns = coumpounds[1] ) } else { z <- getAnywhere(x) if(length(z$objs) < 1){ stop("could not find any function named ", shQuote(z$name), " in loaded namespaces or in the search path. If the package is installed, specify name with `packagename::function_name`.") } } z } file_with_meta_ext <- function(file, meta_ext, ext = tools::file_ext(file)) { paste(tools::file_path_sans_ext(file), ".", meta_ext, ".", ext, sep = "" ) } absolute_path <- function(x){ if (length(x) != 1L) stop("'x' must be a single character string") epath <- path.expand(x) if( file.exists(epath)){ epath <- normalizePath(epath, "/", mustWork = TRUE) } else { if( !dir.exists(dirname(epath)) ){ stop("directory of ", x, " does not exist.", call. = FALSE) } cat("", file = epath) epath <- normalizePath(epath, "/", mustWork = TRUE) unlink(epath) } epath } tables_default_values <- list( style = "Table", layout = "autofit", width = 1, tab.lp = "tab:", topcaption = FALSE, caption = list( style = "Table Caption", pre = "Table ", sep = ": ", tnd = 0, tns = "-", fp_text = fp_text_lite(bold = TRUE) ), conditional = list( first_row = TRUE, first_column = FALSE, last_row = FALSE, last_column = FALSE, no_hband = FALSE, no_vband = TRUE ) ) plots_default_values <- list( style = "Figure", align = "center", fig.lp = "fig:", topcaption = FALSE, caption = list( style = "Image Caption", pre = "Figure ", sep = ": ", tnd = 0, tns = "-", fp_text = fp_text_lite(bold = TRUE) ) ) lists_default_values <- list( ol.style = NULL, ul.style = NULL ) page_size_default_values <- list( width = 8.3, height = 11.7, orient = "portrait" ) page_mar_default_values <- list( bottom = 1.25, top = 1.25, right = 0.5, left = .5, header = 0.5, footer = 0.5, gutter = 0.5 ) get_docx_uncached <- function() { ref_docx <- read_docx(get_reference_value(format = "docx")) ref_docx } get_reference_rdocx <- memoise(get_docx_uncached) rdocx_document <- function(base_format = "rmarkdown::word_document", tables = list(), plots = list(), lists = list(), mapstyles = list(), page_size = list(), page_margins = list(), reference_num = TRUE, ...) { args <- list(...) if(is.null(args$reference_docx)){ args$reference_docx <- system.file( package = "officedown", "examples", "bookdown", "template.docx" ) } if(!is.null(args$number_sections) && isTRUE(args$number_sections)){ args$number_sections <- FALSE } args$reference_docx <- absolute_path(args$reference_docx) base_format_fun <- get_fun(base_format) output_formats <- do.call(base_format_fun, args) tables <- modifyList(tables_default_values, tables) plots <- modifyList(plots_default_values, plots) lists <- modifyList(lists_default_values, lists) page_size <- modifyList(page_size_default_values, page_size) page_margins <- modifyList(page_mar_default_values, page_margins) output_formats$knitr$opts_chunk <- append( output_formats$knitr$opts_chunk, list(tab.cap.style = tables$caption$style, tab.cap.pre = tables$caption$pre, tab.cap.sep = tables$caption$sep, tab.cap.tnd = tables$caption$tnd, tab.cap.tns = tables$caption$tns, tab.cap.fp_text = tables$caption$fp_text, tab.lp = tables$tab.lp, tab.topcaption = tables$topcaption, tab.style = tables$style, tab.width = tables$width, first_row = tables$conditional$first_row, first_column = tables$conditional$first_column, last_row = tables$conditional$last_row, last_column = tables$conditional$last_column, no_hband = tables$conditional$no_hband, no_vband = tables$conditional$no_vband, fig.cap.style = plots$caption$style, fig.cap.pre = plots$caption$pre, fig.cap.sep = plots$caption$sep, fig.cap.tnd = plots$caption$tnd, fig.cap.tns = plots$caption$tns, fig.cap.fp_text = plots$caption$fp_text, fig.align = plots$align, fig.style = plots$style, fig.lp = plots$fig.lp, fig.topcaption = plots$topcaption ) ) if(is.null(output_formats$knitr$knit_hooks)){ output_formats$knitr$knit_hooks <- list() } output_formats$knitr$knit_hooks$plot <- plot_word_fig_caption intermediate_dir <- "." temp_intermediates_generator <- output_formats$intermediates_generator output_formats$intermediates_generator <- function(...){ intermediate_dir <<- list(...)[[2]] temp_intermediates_generator(...) } output_formats$post_knit <- function( metadata, input_file, runtime, ...){ output_file <- file_with_meta_ext(input_file, "knit", "md") output_file <- file.path(intermediate_dir, output_file) content <- readLines(output_file) content <- post_knit_caption_references(content, lp = tables$tab.lp) content <- post_knit_caption_references(content, lp = plots$fig.lp) content <- post_knit_std_references(content, numbered = reference_num) content <- block_macro(content) writeLines(content, output_file) } output_formats$post_processor <- function(metadata, input_file, output_file, clean, verbose) { x <- officer::read_docx(output_file) x <- process_images(x) x <- process_links(x) x <- process_embedded_docx(x) x <- process_par_settings(x) x <- process_list_settings(x, ul_style = lists$ul.style, ol_style = lists$ol.style) x <- change_styles(x, mapstyles = mapstyles) default_sect_properties <- prop_section( page_size = page_size( orient = page_size$orient, width = page_size$width, height = page_size$height), type = "continuous", page_margins = page_mar( bottom = page_margins$bottom, top = page_margins$top, right = page_margins$right, left = page_margins$left, header = page_margins$header, footer = page_margins$footer, gutter = page_margins$gutter) ) defaut_sect_headers <- xml_find_all(docx_body_xml(x), "w:body/w:sectPr/w:headerReference") defaut_sect_headers <- lapply(defaut_sect_headers, as_xml_document) defaut_sect_footers <- xml_find_all(docx_body_xml(x), "w:body/w:sectPr/w:footerReference") defaut_sect_footers <- lapply(defaut_sect_footers, as_xml_document) x <- body_set_default_section(x, default_sect_properties) defaut_sect <- xml_find_first(docx_body_xml(x), "w:body/w:sectPr") for(i in rev(seq_len(length(defaut_sect_footers)))){ xml_add_child(defaut_sect, defaut_sect_footers[[i]]) } for(i in seq_len(length(defaut_sect_headers))){ xml_add_child(defaut_sect, defaut_sect_headers[[i]]) } forget(get_reference_rdocx) print(x, target = output_file) output_file } output_formats$bookdown_output_format = 'docx' output_formats }
context("check-output") library(testthat) library(overviewR) test_that("overview_tab() returns a data frame", { output_table <- overview_tab(dat = toydata, id = ccode, time = year) expect_is(output_table, "data.frame") }) test_that("overview_tab() returns a dataframe with correct number of rows", { output_table <- overview_tab(dat = toydata, id = ccode, time = year) expect_equal(nrow(output_table), length(unique(toydata$ccode))) }) test_that("overview_tab() works on a dataframe that is already in the correct format", { df_com <- data.frame( ccode = c( rep("RWA", 4), rep("AGO", 8), rep("BEN", 2), rep("GBR", 5), rep("FRA", 3) ), year = c( seq(1990, 1995), seq(1990, 1992), seq(1995, 1999), seq(1991, 1999, by = 2), seq(1993, 1999, by = 3) )) output_table <- overview_tab(dat = df_com, id = ccode, time = year) expect_equal(nrow(output_table), 5) }) test_that("check output of overview_print", { output_table <- overview_tab(dat = toydata, id = ccode, time = year) input_output <- overview_print(output_table, save_out = FALSE) testthat::expect_null(print(input_output)) }) test_that("check output of overview_print with save_out", { testthat::skip_on_cran() output_table <- overview_tab(dat = toydata, id = ccode, time = year) temp <- tempfile() on.exit(unlink(temp), add = TRUE) tex_output <- overview_print(output_table, save_out = TRUE, path = temp, file = "output.tex") testthat::expect_null(print(tex_output)) }) test_that("check output of overview_print for crosstab", { output_cross <- overview_crosstab(dat = toydata, id = ccode, time = year, cond1 = population, cond2 = gdp, threshold1 = 27000, threshold2 = 25000) input_output <- overview_print(output_cross, crosstab = TRUE, save_out = FALSE) testthat::expect_null(print(input_output)) }) test_that("check output of overview_print for crosstab with save_out", { testthat::skip_on_cran() output_cross <- overview_crosstab(dat = toydata, id = ccode, time = year, cond1 = population, cond2 = gdp, threshold1 = 27000, threshold2 = 25000) temp <- tempfile() on.exit(unlink(temp), add = TRUE) tex_output <- overview_print(output_cross, crosstab = TRUE, save_out = TRUE, path = temp, file = "output.tex") testthat::expect_null(print(tex_output)) }) test_that("Get an error message", { df_combined <- data.frame( countries = c( rep("RWA", 4), rep("AGO", 8), rep("BEN", 2), rep("GBR", 5), rep("FRA", 3) )) expect_error(overview_print(df_combined), "Data frame requires two columns that represent the time and scope dimension of the data") }) test_that("Get a warning message", { data_test <- data.frame( countries = c("RWA", "BDI"), years = c(1990, 2000) ) expect_warning(overview_print(data_test)) }) test_that("overview_crosstab() returns a data frame", { output_crosstab <- overview_crosstab( dat = toydata, cond1 = gdp, cond2 = population, threshold1 = 25000, threshold2 = 27000, id = ccode, time = year ) expect_is(output_crosstab, "data.frame") }) test_that("overview_crosstab() works on a dataframe that is already in the correct format", { df_com <- data.frame( ccode = c( rep("RWA", 4), rep("AGO", 8), rep("BEN", 2), rep("GBR", 5), rep("FRA", 3) ), year = c( seq(1990, 1993), seq(1990, 1997), seq(1995, 1996), seq(1991, 1995), seq(1993, 1999, by = 3) ), population = seq(1, 44, by = 2), gdp = seq(1, 44, by = 2)) output_cross <- overview_crosstab(dat = df_com, id = ccode, time = year, cond1 = population, cond2 = gdp, threshold1 = 20, threshold2 = 10) expect_equal(nrow(output_cross), 2) }) test_that("check output of overview_na", { plot_na <- overview_na(dat = toydata) testthat::expect_is(plot_na, "ggplot") plot_na_abs <- overview_na(dat = toydata, perc = FALSE) testthat::expect_is(plot_na_abs, "ggplot") }) test_that("check output of overview_heat", { plot_heat <- overview_heat(toydata, ccode, year, perc = TRUE, exp_total = 12) testthat::expect_is(plot_heat, "ggplot") plot_heat_abs <- overview_heat(toydata, ccode, year, perc = FALSE) testthat::expect_is(plot_heat_abs, "ggplot") }) test_that("check output of overview_heat with label FALSE", { plot_heat_no_lab <- overview_heat(toydata, ccode, year, perc = TRUE, label = FALSE, exp_total = 12) testthat::expect_is(plot_heat_no_lab, "ggplot") }) test_that("check output of overview_heat with label FALSE and no perc", { plot_heat_abs_lab_false <- overview_heat(toydata, ccode, year, perc = FALSE, label = FALSE) testthat::expect_is(plot_heat_abs_lab_false, "ggplot") }) test_that("check output of overview_plot", { plot <- overview_plot(dat = toydata, id = ccode, time = year) testthat::expect_is(plot, "ggplot") }) test_that("check output of overview_plot", { plot <- overview_plot(dat = toydata, id = ccode, time = year, asc = FALSE) testthat::expect_is(plot, "ggplot") })
Reg_K1Q <- function(Y, mat, Z, dt,type){ M <- round(max(mat)/dt) m <- round(min(mat)/dt) b <- matrix(data=NA, ncol= ncol(Y) , nrow = M ) for(i in 1:ncol(Y)){ a <- stats::splinefun(mat, t(Y[,i]), method="fmm") b[,i] <- t(a(seq(dt, M*dt, dt))) } R <- b Bn <- stats::lm( Jmisc::demean(t(R))~ Jmisc::demean(t(Z))-1)$coefficients Bn <- t(Bn) h <- m n <- as.matrix((2*m):M, nrow =(2*m):M , ncol=1) d <- matrix(data=NA, ncol= ncol(Bn), nrow=nrow(n) ) for (j in 1:ncol(Bn)){ d[,j] <- (h/n)*Bn[h,j] } LHS <- Bn[n,] - d RHS <- matrix(data=NA, ncol= ncol(Bn), nrow=nrow(n) ) for (j in 1:ncol(Bn)){ RHS[,j] <- (1-h/n)*Bn[n-h,j] } K1Qh <- mldivide(RHS,LHS) K1Q <- suppressWarnings(powerplus::Matpow(K1Qh, numer=1, denom = h)) if (type == "Jordan"){ K1Q <- Convert2JordanForm(K1Q) } return(K1Q) } Convert2JordanForm <- function(K1XQ) { x <- t(eigen(K1XQ)$values) idx <- numeric(length(x)) for (j in 1:length(x)){ if (Im(x[j])==0){ idx [j] <- 1 } else{ idx [j] <- 0 }} realx <- Re(x[which(idx==1)]) if (numel(realx)%%2==0){ lQ <- as.numeric(vector()) }else{ lQ <- realx[1] realx <- realx[seqi(2,length(realx))] } for (h in seqi(1,numel(realx)/2)){ lQ <- rbind( lQ, 0.5*(realx[2*h-1]+realx[2*h]), (0.5*(realx[2*h-1]- realx[2*h]))^2) } imagx <- t(x[Im(x)!=0]) for (h in seqi(1,numel(imagx)/2)){ lQ <- rbind(lQ, Re(imagx[2*h-1]), -abs(Im(imagx[2*h-1]))^2) } N<- numel(lQ) K1Q <- rbind(zeros(1,N), eye(N-1,N)) i0 <- 0 if (N%%2!=0){ K1Q[1] <- lQ[1] lQ <- lQ[2:length(lQ)] i0 <- 1 } for (h in seqi(1,numel(lQ)/2)){ K1Q[i0+2*h-1,i0+2*h-1] <- lQ[2*h-1] K1Q[i0+2*h,i0+2*h] <- lQ[2*h-1] K1Q[i0+2*h-1,i0+2*h] <- lQ[2*h] } return(K1Q) }
ci <- function(x, ...) { UseMethod("ci") } .ci_bayesian <- function(x, ci = 0.95, method = "ETI", effects = c("fixed", "random", "all"), component = c("conditional", "zi", "zero_inflated", "all"), parameters = NULL, verbose = TRUE, BF = 1, ...) { if (tolower(method) %in% c("eti", "equal", "ci", "quantile")) { return(eti(x, ci = ci, effects = effects, component = component, parameters = parameters, verbose = verbose, ...)) } else if (tolower(method) %in% c("bci", "bca", "bcai")) { return(bci(x, ci = ci, effects = effects, component = component, parameters = parameters, verbose = verbose, ...)) } else if (tolower(method) %in% c("hdi")) { return(hdi(x, ci = ci, effects = effects, component = component, parameters = parameters, verbose = verbose, ...)) } else if (tolower(method) %in% c("si")) { return(si(x, BF = BF, effects = effects, component = component, parameters = parameters, verbose = verbose, ...)) } else { stop("`method` should be 'ETI' (for equal-tailed interval),'HDI' (for highest density interval), `BCI` (for bias corrected and accelerated bootstrap intervals) or 'SI' (for support interval).") } } ci.numeric <- function(x, ci = 0.95, method = "ETI", verbose = TRUE, BF = 1, ...) { .ci_bayesian(x, ci = ci, method = method, verbose = verbose, BF = BF, ...) } ci.data.frame <- ci.numeric ci.emmGrid <- function(x, ci = NULL, ...) { if (!.is_baysian_emmeans(x)) { if (!requireNamespace("parameters")) { stop("'parameters' required for this function to work.") } if (is.null(ci)) ci <- 0.95 return(parameters::ci(model = x, ci = ci, ...)) } if (is.null(ci)) ci <- 0.95 x <- insight::get_parameters(x) ci(x, ci = ci, ...) } ci.emm_list <- ci.emmGrid ci.sim.merMod <- function(x, ci = 0.95, method = "ETI", effects = c("fixed", "random", "all"), parameters = NULL, verbose = TRUE, ...) { .ci_bayesian(x, ci = ci, method = method, effects = effects, parameters = parameters, verbose = verbose, ...) } ci.sim <- function(x, ci = 0.95, method = "ETI", parameters = NULL, verbose = TRUE, ...) { .ci_bayesian(x, ci = ci, method = method, parameters = parameters, verbose = verbose, ...) } ci.stanreg <- function(x, ci = 0.95, method = "ETI", effects = c("fixed", "random", "all"), component = c("location", "all", "conditional", "smooth_terms", "sigma", "distributional", "auxiliary"), parameters = NULL, verbose = TRUE, BF = 1, ...) { .ci_bayesian(x, ci = ci, method = method, effects = effects, component = component, parameters = parameters, verbose = verbose, BF = BF, ...) } ci.brmsfit <- function(x, ci = 0.95, method = "ETI", effects = c("fixed", "random", "all"), component = c("conditional", "zi", "zero_inflated", "all"), parameters = NULL, verbose = TRUE, BF = 1, ...) { .ci_bayesian(x, ci = ci, method = method, effects = effects, component = component, parameters = parameters, verbose = verbose, BF = BF, ...) } ci.stanfit <- ci.stanreg ci.blavaan <- ci.stanreg ci.BFBayesFactor <- ci.numeric ci.MCMCglmm <- function(x, ci = 0.95, method = "ETI", verbose = TRUE, ...) { nF <- x$Fixed$nfl ci(as.data.frame(x$Sol[, 1:nF, drop = FALSE]), ci = ci, method = method, verbose = verbose, ...) } ci.bamlss <- function(x, ci = 0.95, method = "ETI", component = c("all", "conditional", "location"), verbose = TRUE, ...) { component <- match.arg(component) ci(insight::get_parameters(x, component = component), ci = ci, method = method, verbose = verbose, ...) } ci.bcplm <- function(x, ci = 0.95, method = "ETI", verbose = TRUE, ...) { ci(insight::get_parameters(x), ci = ci, method = method, verbose = verbose, ...) } ci.blrm <- ci.bcplm ci.mcmc <- ci.bcplm ci.mcmc.list <- ci.bcplm ci.BGGM <- ci.bcplm ci.get_predicted <- ci.data.frame
knitr::opts_chunk$set( collapse = TRUE, echo = FALSE, comment = " ) use_dt <- FALSE if(requireNamespace("DT", quietly = TRUE)) use_dt <- TRUE DT::datatable(nflreadr::dictionary_espn_qbr, options = list(scrollX = TRUE, pageLength = 25), filter = "top", rownames = FALSE )
mc.spGini<-function(Nsim=99,Bandwidth,x,Coord.X,Coord.Y,WType='Binary') { SIM.m<-matrix(data=NA, nrow=Nsim, ncol=5) Obs<-length(x) Coords<-cbind(Coord.X,Coord.Y) spGini.Obs<-spGini(Coords,Bandwidth,x,WType) SG<-spGini.Obs[[3]]/spGini.Obs[[1]] for(i in 1:Nsim){ spGini.SIM<-spGini(Coords[sample(nrow(Coords)),],Bandwidth,x,WType) SIM.m[i,1]<-i SIM.m[i,2]<-spGini.SIM[[2]] SIM.m[i,3]<-spGini.SIM[[3]] SIM.m[i,4]<-spGini.SIM[[3]] / spGini.SIM[[1]] if (SIM.m[i,4]>=SG){ SIM.m[i,5]<-1} else {SIM.m[i,5]<-0} } C.test<-sum(SIM.m[,5]) if ((Nsim-C.test)< C.test) {C.test=Nsim-C.test} pseudo.p<-(1+C.test)/(Nsim+1) SIMs<-data.frame(SIM.ID=SIM.m[,1], SIM.gwGini= SIM.m[,2],SIM.nsGini=SIM.m[,3], SIM.SG=SIM.m[,4], SIM.Extr= SIM.m[,5]) return(list(SIM=SIMs,spGini.Observed=spGini.Obs,pseudo.p=pseudo.p)) }
context("Tests for posterior_predict helper functions") test_that("posterior_predict for location shift models runs without errors", { ns <- 30 nobs <- 10 prep <- structure(list(ndraws = ns), class = "brmsprep") prep$dpars <- list( mu = matrix(rnorm(ns * nobs), ncol = nobs), sigma = rchisq(ns, 3), nu = rgamma(ns, 4) ) i <- sample(nobs, 1) pred <- brms:::posterior_predict_gaussian(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_student(i, prep = prep) expect_equal(length(pred), ns) }) test_that("posterior_predict for various skewed models runs without errors", { ns <- 50 nobs <- 2 prep <- structure(list(ndraws = ns), class = "brmsprep") prep$dpars <- list( sigma = rchisq(ns, 3), beta = rchisq(ns, 3), mu = matrix(rnorm(ns * nobs), ncol = nobs), alpha = rnorm(ns), ndt = 1 ) pred <- brms:::posterior_predict_lognormal(1, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_shifted_lognormal(1, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_exgaussian(1, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_skew_normal(1, prep = prep) expect_equal(length(pred), ns) }) test_that("posterior_predict for aysm_laplace models runs without errors", { ns <- 50 prep <- structure(list(ndraws = ns), class = "brmsprep") prep$dpars <- list( sigma = rchisq(ns, 3), quantile = rbeta(ns, 2, 1), mu = matrix(rnorm(ns*2), ncol = 2), zi = rbeta(ns, 10, 10) ) pred <- brms:::posterior_predict_asym_laplace(1, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_zero_inflated_asym_laplace(1, prep = prep) expect_equal(length(pred), ns) }) test_that("posterior_predict for multivariate linear models runs without errors", { ns <- 10 nvars <- 3 ncols <- 4 nobs <- nvars * ncols Sigma = array(cov(matrix(rnorm(300), ncol = 3)), dim = c(3, 3, 10)) prep <- structure(list(ndraws = ns), class = "mvbrmsprep") prep$mvpars <- list( Mu = array(rnorm(ns*nobs*nvars), dim = c(ns, nobs, nvars)), Sigma = aperm(Sigma, c(3, 1, 2)) ) prep$dpars <- list(nu = rgamma(ns, 5)) prep$data <- list(N = nobs, N_trait = ncols) pred <- brms:::posterior_predict_gaussian_mv(1, prep = prep) expect_equal(dim(pred), c(ns, nvars)) pred <- brms:::posterior_predict_student_mv(2, prep = prep) expect_equal(dim(pred), c(ns, nvars)) }) test_that("posterior_predict for ARMA covariance models runs without errors", { ns <- 20 nobs <- 15 prep <- structure(list(ndraws = ns), class = "brmsprep") prep$dpars <- list( mu = matrix(rnorm(ns*nobs), ncol = nobs), sigma = rchisq(ns, 3), nu = rgamma(ns, 5) ) prep$ac <- list( ar = matrix(rbeta(ns, 0.5, 0.5), ncol = 1), ma = matrix(rnorm(ns, 0.2, 1), ncol = 1), begin_tg = c(1, 5, 12), end_tg = c(4, 11, 15) ) prep$data <- list(se = rgamma(ns, 10)) prep$family$fun <- "gaussian_time" pred <- brms:::posterior_predict_gaussian_time(1, prep = prep) expect_equal(length(pred), ns * 4) prep$family$fun <- "student_time" pred <- brms:::posterior_predict_student_time(2, prep = prep) expect_equal(length(pred), ns * 7) }) test_that("loglik for SAR models runs without errors", { ns = 3 prep <- structure(list(ndraws = ns, nobs = 10), class = "brmsprep") prep$dpars <- list( mu = matrix(rnorm(30), nrow = ns), nu = rep(2, ns), sigma = rep(10, ns) ) prep$ac <- list(lagsar = matrix(c(0.3, 0.5, 0.7)), Msar = diag(10)) pred <- brms:::posterior_predict_gaussian_lagsar(1, prep = prep) expect_equal(dim(pred), c(3, 10)) pred <- brms:::posterior_predict_student_lagsar(1, prep = prep) expect_equal(dim(pred), c(3, 10)) prep$ac$errorsar <- prep$ac$lagsar prep$ac$lagsar <- NULL pred <- brms:::posterior_predict_gaussian_errorsar(1, prep = prep) expect_equal(dim(pred), c(3, 10)) pred <- brms:::posterior_predict_student_errorsar(1, prep = prep) expect_equal(dim(pred), c(3, 10)) }) test_that("posterior_predict for FCOR models runs without errors", { ns <- 3 nobs <- 10 prep <- structure(list(ndraws = ns, nobs = nobs), class = "brmsprep") prep$dpars <- list( mu = matrix(rnorm(nobs * ns), nrow = ns), sigma = rep(1, ns), nu = rep(2, ns) ) prep$ac <- list(Mfcor = diag(nobs)) pred <- brms:::posterior_predict_gaussian_fcor(1, prep = prep) expect_equal(dim(pred), c(ns, nobs)) pred <- brms:::posterior_predict_student_fcor(1, prep = prep) expect_equal(dim(pred), c(ns, nobs)) }) test_that("posterior_predict for count and survival models runs without errors", { ns <- 25 nobs <- 10 trials <- sample(10:30, nobs, replace = TRUE) prep <- structure(list(ndraws = ns, nobs = nobs), class = "brmsprep") prep$dpars <- list( eta = matrix(rnorm(ns*nobs), ncol = nobs), shape = rgamma(ns, 4), xi = 0 ) prep$dpars$nu <- prep$dpars$sigma <- prep$dpars$shape + 1 prep$data <- list(trials = trials) i <- sample(nobs, 1) prep$dpars$mu <- brms:::inv_cloglog(prep$dpars$eta) pred <- brms:::posterior_predict_binomial(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_discrete_weibull(i, prep = prep) expect_equal(length(pred), ns) prep$dpars$mu <- exp(prep$dpars$eta) pred <- brms:::posterior_predict_poisson(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_negbinomial(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_negbinomial2(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_geometric(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_com_poisson(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_exponential(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_gamma(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_frechet(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_inverse.gaussian(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_gen_extreme_value(i, prep = prep) expect_equal(length(pred), ns) prep$family$link <- "log" pred <- brms:::posterior_predict_weibull(i, prep = prep) expect_equal(length(pred), ns) }) test_that("posterior_predict for bernoulli and beta models works correctly", { ns <- 17 nobs <- 10 prep <- structure(list(ndraws = ns, nobs = nobs), class = "brmsprep") prep$dpars <- list( mu = brms:::inv_logit(matrix(rnorm(ns * nobs * 2), ncol = 2 * nobs)), phi = rgamma(ns, 4) ) i <- sample(1:nobs, 1) pred <- brms:::posterior_predict_bernoulli(i, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_beta(i, prep = prep) expect_equal(length(pred), ns) }) test_that("posterior_predict for circular models runs without errors", { ns <- 15 nobs <- 10 prep <- structure(list(ndraws = ns, nobs = nobs), class = "brmsprep") prep$dpars <- list( mu = 2 * atan(matrix(rnorm(ns * nobs * 2), ncol = nobs * 2)), kappa = rgamma(ns, 4) ) i <- sample(seq_len(nobs), 1) pred <- brms:::posterior_predict_von_mises(i, prep = prep) expect_equal(length(pred), ns) }) test_that("posterior_predict for zero-inflated and hurdle models runs without erros", { ns <- 50 nobs <- 8 trials <- sample(10:30, nobs, replace = TRUE) prep <- structure(list(ndraws = ns, nobs = nobs), class = "brmsprep") prep$dpars <- list( eta = matrix(rnorm(ns * nobs * 2), ncol = nobs * 2), shape = rgamma(ns, 4), phi = rgamma(ns, 1), zi = rbeta(ns, 1, 1), coi = rbeta(ns, 5, 7) ) prep$dpars$hu <- prep$dpars$zoi <- prep$dpars$zi prep$data <- list(trials = trials) prep$dpars$mu <- exp(prep$dpars$eta) pred <- brms:::posterior_predict_hurdle_poisson(1, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_hurdle_negbinomial(2, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_hurdle_gamma(5, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_zero_inflated_poisson(3, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_zero_inflated_negbinomial(6, prep = prep) expect_equal(length(pred), ns) prep$dpars$mu <- brms:::inv_logit(prep$dpars$eta) pred <- brms:::posterior_predict_zero_inflated_binomial(4, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_zero_inflated_beta(8, prep = prep) expect_equal(length(pred), ns) pred <- brms:::posterior_predict_zero_one_inflated_beta(7, prep = prep) expect_equal(length(pred), ns) }) test_that("posterior_predict for ordinal models runs without erros", { ns <- 50 nobs <- 8 nthres <- 3 ncat <- nthres + 1 prep <- structure(list(ndraws = ns, nobs = nobs), class = "brmsprep") prep$dpars <- list( mu = array(rnorm(ns * nobs), dim = c(ns, nobs)), disc = rexp(ns) ) prep$thres$thres <- array(0, dim = c(ns, nthres)) prep$data <- list(Y = rep(1:ncat, 2), ncat = ncat) prep$family$link <- "logit" prep$family$family <- "cumulative" pred <- sapply(1:nobs, brms:::posterior_predict_cumulative, prep = prep) expect_equal(dim(pred), c(ns, nobs)) prep$family$family <- "sratio" pred <- sapply(1:nobs, brms:::posterior_predict_sratio, prep = prep) expect_equal(dim(pred), c(ns, nobs)) prep$family$family <- "cratio" pred <- sapply(1:nobs, brms:::posterior_predict_cratio, prep = prep) expect_equal(dim(pred), c(ns, nobs)) prep$family$family <- "acat" pred <- sapply(1:nobs, brms:::posterior_predict_acat, prep = prep) expect_equal(dim(pred), c(ns, nobs)) prep$family$link <- "probit" pred <- sapply(1:nobs, brms:::posterior_predict_acat, prep = prep) expect_equal(dim(pred), c(ns, nobs)) }) test_that("posterior_predict for categorical and related models runs without erros", { set.seed(1234) ns <- 50 nobs <- 8 ncat <- 3 prep <- structure(list(ndraws = ns, nobs = nobs), class = "brmsprep") prep$dpars <- list( mu1 = array(rnorm(ns*nobs, 0, 0.1), dim = c(ns, nobs)), mu2 = array(rnorm(ns*nobs, 0, 0.1), dim = c(ns, nobs)) ) prep$data <- list(Y = rep(1:ncat, 2), ncat = ncat) prep$family <- categorical() prep$refcat <- 1 pred <- sapply(1:nobs, brms:::posterior_predict_categorical, prep = prep) expect_equal(dim(pred), c(ns, nobs)) prep$data$trials <- sample(1:20, nobs) prep$family <- multinomial() pred <- brms:::posterior_predict_multinomial(i = sample(1:nobs, 1), prep = prep) expect_equal(dim(pred), c(ns, ncat)) prep$dpars$phi <- rexp(ns, 1) prep$family <- dirichlet() pred <- brms:::posterior_predict_dirichlet(i = sample(1:nobs, 1), prep = prep) expect_equal(dim(pred), c(ns, ncat)) expect_equal(rowSums(pred), rep(1, nrow(pred))) prep$family <- brmsfamily("dirichlet2") prep$dpars$mu1 <- rexp(ns, 10) prep$dpars$mu2 <- rexp(ns, 10) prep$dpars$mu3 <- rexp(ns, 10) pred <- brms:::posterior_predict_dirichlet2(i = sample(1:nobs, 1), prep = prep) expect_equal(dim(pred), c(ns, ncat)) expect_equal(rowSums(pred), rep(1, nrow(pred))) prep$family <- brmsfamily("logistic_normal") prep$dpars <- list( mu2 = rnorm(ns), mu3 = rnorm(ns), sigma2 = rexp(ns, 10), sigma3 = rexp(ns, 10) ) prep$lncor <- rbeta(ns, 2, 1) pred <- brms:::posterior_predict_logistic_normal(i = sample(1:nobs, 1), prep = prep) expect_equal(dim(pred), c(ns, ncat)) expect_equal(rowSums(pred), rep(1, nrow(pred))) }) test_that("truncated posterior_predict run without errors", { ns <- 30 nobs <- 15 prep <- structure(list(ndraws = ns, nobs = nobs), class = "brmsprep") prep$dpars <- list( mu = matrix(rnorm(ns * nobs), ncol = nobs), sigma = rchisq(ns, 3) ) prep$refcat <- 1 prep$data <- list(lb = sample(-(4:7), nobs, TRUE)) pred <- sapply(1:nobs, brms:::posterior_predict_gaussian, prep = prep) expect_equal(dim(pred), c(ns, nobs)) prep$dpars$mu <- exp(prep$dpars$mu) prep$data <- list(ub = sample(70:80, nobs, TRUE)) pred <- sapply(1:nobs, brms:::posterior_predict_poisson, prep = prep) expect_equal(dim(pred), c(ns, nobs)) prep$data <- list(lb = rep(0, nobs), ub = sample(70:75, nobs, TRUE)) pred <- sapply(1:nobs, brms:::posterior_predict_poisson, prep = prep) expect_equal(dim(pred), c(ns, nobs)) }) test_that("posterior_predict for the wiener diffusion model runs without errors", { skip("skip as long as RWiener fails on R-devel for 3.6.0") ns <- 5 nobs <- 3 prep <- structure(list(ndraws = ns, nobs = nobs), class = "brmsprep") prep$dpars <- list( mu = matrix(rnorm(ns * nobs), ncol = nobs), bs = rchisq(ns, 3), ndt = rep(0.5, ns), bias = rbeta(ns, 1, 1) ) prep$data <- list(Y = abs(rnorm(ns)) + 0.5, dec = c(1, 0, 1)) i <- sample(1:nobs, 1) expect_equal(nrow(brms:::posterior_predict_wiener(i, prep)), ns) }) test_that("posterior_predict_custom runs without errors", { ns <- 15 nobs <- 10 prep <- structure(list(ndraws = ns, nobs = nobs), class = "brmsprep") prep$dpars <- list( mu = matrix(rbeta(ns * nobs * 2, 1, 1), ncol = nobs * 2) ) prep$data <- list(trials = rep(1, nobs)) prep$family <- custom_family( "beta_binomial2", dpars = c("mu", "tau"), links = c("logit", "log"), lb = c(NA, 0), type = "int", vars = "trials[n]" ) posterior_predict_beta_binomial2 <- function(i, prep) { mu <- prep$dpars$mu[, i] rbinom(prep$ndraws, size = prep$data$trials[i], prob = mu) } expect_equal(length(brms:::posterior_predict_custom(sample(1:nobs, 1), prep)), ns) })
ASDC<- function(seqs,label=c()){ upto=TRUE if(length(seqs)==1&&file.exists(seqs)){ seqs<-fa.read(seqs,alphabet="aa") seqs_Lab<-alphabetCheck(seqs,alphabet = "aa",label) seqs<-seqs_Lab[[1]] label<-seqs_Lab[[2]] } else if(is.vector(seqs)){ seqs<-sapply(seqs,toupper) seqs_Lab<-alphabetCheck(seqs,alphabet = "aa",label) seqs<-seqs_Lab[[1]] label<-seqs_Lab[[2]] } else { stop("ERROR: Input sequence is not in the correct format. It should be a FASTA file or a string vector.") } flag=0 numSeqs=length(seqs) rng<-sapply(seqs, nchar) rng<-rng-1 featureMatrix <- matrix(0 , ncol = 400,nrow = numSeqs) dipep<-nameKmer(k=2,type = "aa") featName<-vector() colnames(featureMatrix)<-dipep tempname<-dipep for(n in 1:numSeqs){ seq<-seqs[n] seqChars<-unlist(strsplit(seq,split = "")) lenSeq<-length(seqChars) len<-rng[n] for(i in 1:len){ nums<-i-1 temp1<-seqChars[1:(lenSeq-nums-1)] temp2<-seqChars[((nums+1)+1):(lenSeq)] kmers<-paste(temp1,temp2,sep = "") tbkmers<-table(kmers) nmtbkmers<-names(tbkmers) tempvect<-vector(mode = "numeric",length = 400) names(tempvect)<-tempname tempvect[nmtbkmers]<-tbkmers featureMatrix[n,]<-featureMatrix[n,]+tempvect } featureMatrix[n,]<-featureMatrix[n,]/sum(featureMatrix[n,]) } if(length(label)==numSeqs){ featureMatrix<-as.data.frame(featureMatrix) featureMatrix<-cbind(featureMatrix,label) } row.names(featureMatrix)<-names(seqs) return(featureMatrix) }
NULL summary.vreq_LdM<-function(object,...) { res<-list(class="vreq_LdM", com=get_com(object), comnull=get_comnull(object), vr=get_vr(object)) class(res)<-c("summary_tsvr","list") return(res) } print.vreq_LdM<-function(x,...) { cat(paste0("Object of class vreq_LdM:\n CVcom2: ",get_com(x),"\n CVpop2: ",get_comnull(x),"\n LdM vr: ",get_vr(x))) } set_com.vreq_LdM<-function(obj,newval) { stop("Error in set_com: vreq_LdM slots should not be changed individually") } set_comnull.vreq_LdM<-function(obj,newval) { stop("Error in set_comnull: vreq_LdM slots should not be changed individually") } set_vr.vreq_LdM<-function(obj,newval) { stop("Error in set_vr: vreq_LdM slots should not be changed individually") } get_com.vreq_LdM<-function(obj) { return(obj$com) } get_comnull.vreq_LdM<-function(obj) { return(obj$comnull) } get_vr.vreq_LdM<-function(obj) { return(obj$vr) }
knitr::opts_chunk$set( collapse = TRUE, comment = " fig.path = "man/figures/", dpi = 300, fig.width = 5, fig.height = 3 ) library(cusumcharter) library(ggplot2) test_vec <- c(1,1,2,3,5,7,11,7,5,7,8,9,5) test_vec test_vec <- c(1,1,2,3,5,7,11,7,5,7,8,9,5) variances <- cusum_single(test_vec) p <- qplot(y = variances) p <- p + geom_line() p + geom_hline(yintercept = 0) p variance_df <- cusum_single_df(test_vec) variance_df p <- qplot(y = variance_df$x) p <- p + geom_line() p <- p + geom_hline(yintercept = variance_df$target) p cs_data <- cusum_control(test_vec) cs_data cusum_control_plot(cs_data,xvar = obs) cusum_control_plot(cs_data,xvar = obs, show_below = TRUE) library(dplyr) library(ggplot2) library(cusumcharter) testdata <- tibble::tibble( N = c(-15L,2L,-11L,3L,1L,1L,-11L,1L,1L, 2L,1L,1L,1L,10L,7L,9L,11L,9L), metric = c("metric1","metric1","metric1","metric1","metric1", "metric1","metric1","metric1","metric1","metric2", "metric2","metric2","metric2","metric2","metric2", "metric2","metric2","metric2")) datecol <- as.Date(c("2021-01-01","2021-01-02", "2021-01-03", "2021-01-04" , "2021-01-05", "2021-01-06","2021-01-07", "2021-01-08", "2021-01-09")) testres <- testdata %>% dplyr::group_by(metric) %>% dplyr::mutate(cusum_control(N)) %>% dplyr::ungroup() %>% dplyr::group_by(metric) %>% dplyr::mutate(report_date = datecol) %>% ungroup() p5 <- cusum_control_plot(testres, xvar = report_date, show_below = TRUE, facet_var = metric, title_text = "Highlights above and below control limits") p5
NULL if(getRversion() >= "2.15.1") utils::globalVariables(c(".", "descriptr", "dplyr", "ggplot2", "highcharter", "jsonlite", "lubridate", "magrittr", "plotly", "purrr", "rbokeh", "readr", "readxl", "scales", "shiny", "shinyBS", "shinythemes", "stringr", "tibble", "tidyr", "tools"))
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(fedmatch) name_vec <- corp_data1[, Company] name_vec clean_strings(name_vec) print(sp_char_words) new_sp_char <- data.table::data.table(character = c("o"), replacement = c("apple")) clean_strings(name_vec, sp_char_words = new_sp_char) print(corporate_words[1:5]) clean_strings(name_vec, common_words = data.table::data.table(word = c("general", "almart"), replacement = c("bananas", "oranges"))) word_frequency(sample(c("hi", "Hello", "bye "), 1e4, replace = TRUE)) clean_strings(name_vec, sp_char_words = new_sp_char, remove_char = c("a", "c")) clean_strings(name_vec, common_words = data.table::data.table(word = c("general", "company"), replacement = c("bananas", "oranges")), remove_words = TRUE) clean_strings(c( "call", "calling", "called"), stem = TRUE)
zoom <- function(x, ...) { UseMethod("zoom") } zoom.trellis <- function(x, size=1, main=1.2*size, lab=size, axis=size, strip=size, sub=0.9*size, legend=0.9*size, splom=0.9*size, ...) { suppressWarnings({ if(!is.null(main)) x$main$cex <- main if(!is.null(lab)) x$xlab$cex <- lab if(!is.null(lab)) x$ylab$cex <- lab if(!is.null(axis)) x$x.scales$cex <- rep(axis, length(x$x.scales$cex)) if(!is.null(axis)) x$y.scales$cex <- rep(axis, length(x$y.scales$cex)) if(!is.null(strip)) x$par.strip.text$cex <- strip if(!is.null(sub)) x$sub$cex <- sub if(!is.null(legend) && !is.null(x$legend)) { side <- names(x$legend)[1] x$legend[[side]]$args$key$cex.title <- legend x$legend[[side]]$args$cex <- legend x$legend[[side]]$args$key$cex <- legend x$legend[[side]]$args$key$text$cex <- legend } if(!is.null(splom)) x$panel.args.common$varname.cex <- splom }) print(x) }
AbForests_PlotGraphs<-function(graphs,no_arg,topdf,filename){ if(is.null((no_arg))){ temp<-graphs[sapply(graphs,function(x) "network" %in% names(x))] if(length(temp)==0){ temp<-lapply(graphs,function(x) x[sapply(x,function(p) "network" %in% names(p))]) } }else{ el_list<-sapply(graphs,function(x) x[no_arg]) temp<-el_list[sapply(el_list,function(x) "network" %in% names(x))] if(length(el_list)==0){ temp<-lapply(el_list,function(x) x[sapply(x,function(p) "network" %in% names(p))]) } } if ("igraph" %in% unlist(lapply(temp,function(x) lapply(x,class))) || "igraph" %in% unlist(lapply(temp,function(x) lapply(x,function(a) lapply(a,class))))){ if(topdf==TRUE){ .WRITE_TO_PDF(filename) lapply(temp, function(p){ if(is.null(p$network)){ p<-p[sapply(p,function(x) "network" %in% names(x))][[1]] } plot(p$network) if (!is.null(p$legend)){ graphics::legend(p$legend[[1]],bty = p$legend[[2]],legend=p$legend[[3]],fill=p$legend[[4]],border=p$legend[[5]],inset=p$legend[[6]],xpd=p$legend[[7]],title=p$legend$title,cex=p$legend[[10]]) } }) grDevices::dev.off() }else{ lapply(temp, function(p){ if(is.null(p$network)){ p<-p[sapply(p,function(x) "network" %in% names(x))][[1]] } plot(p$network) if (!is.null(p$legend)){ graphics::legend(p$legend[[1]],bty = p$legend[[2]],legend=p$legend[[3]],fill=p$legend[[4]],border=p$legend[[5]],inset=p$legend[[6]],xpd=p$legend[[7]],title=p$legend$title,cex=p$legend[[10]]) } }) } }else{ if(topdf==TRUE){ tryCatch( expr = { print_res<-lapply(graphs, function(x){ x[[no_arg]]}) gg_class<-c("gg","ggplot") if(all(match( gg_class, unlist(lapply(print_res, class))))){ .WRITE_TO_PDF(filename) invisible(lapply(print_res, print)) grDevices::dev.off() }else{ stop('Error: Wrong arguments! Try again!') } }, error = function(e){ message('Error: Wrong arguments! Try again!') } ) }else{ tryCatch( expr = { print_res<-lapply(graphs, function(x){ x[[no_arg]] }) }, error = function(e){ message('Error: Wrong arguments! Try again!') } ) } } }
format_bytes <- function (x, standard = "SI", digits = 1, width = 3, sep = " ") { if (any(x < 0)) stop("'x' must be positive") if (standard == "SI") { suffix <- c("B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") base <- 1000 } else { suffix <- c("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB") base <- 1024 } .applyHuman <- function(x, base, suffix, digits, width, sep) { n <- length(suffix) for (i in 1:n) { if (x >= base) { if (i < n) x <- x/base } else { break } } if (is.null(width)) { x <- format(round(x = x, digits = digits), nsmall = digits) } else { lenX <- nchar(x) if (lenX > width) { digitsMy <- width - (lenX - (lenX - (nchar(round(x)) + 1))) digits <- ifelse(digitsMy > digits, digits, digitsMy) } if (i == 1) digits <- 0 x <- round(x, digits = digits) } paste(x, suffix[i], sep = sep) } sapply(X = x, FUN = ".applyHuman", base = base, suffix = suffix, digits = digits, width = width, sep = sep) }
JackSFRR = function (ysA, ysB, piA, piB, pik_ab_B, pik_ba_A, domainsA, domainsB, N_A, N_B, conf_level, sdA = "srs", sdB = "srs", strA = NULL, strB = NULL, clusA = NULL, clusB = NULL, fcpA = FALSE, fcpB = FALSE){ cnames <- names(ysA) ysA <- as.matrix(ysA) ysB <- as.matrix(ysB) piA <- as.matrix(piA) piB <- as.matrix(piB) c <- ncol(ysA) results <- matrix(NA, nrow = 6, ncol = c) rownames(results) <- c("Total", "Jack Upper End", "Jack Lower End", "Mean", "Jack Upper End", "Jack Lower End") colnames(results) <- cnames estimation <- SFRR(ysA, ysB, piA, piB, pik_ab_B, pik_ba_A, domainsA, domainsB, N_A, N_B) size_estimation <- estimation[[2]][1,1] / estimation[[2]][2,1] if (!is.null(dim(drop(piA)))) pikA <- diag(piA) else pikA <- piA if (!is.null(dim(drop(piB)))) pikB <- diag(piB) else pikB <- piB if (sdA == "str"){ strataA <- unique(strA) nhA <- table(strA) nstrataA <- length(nhA) YcstrataA <- matrix(0, nstrataA, c) nhA <- c(0, nhA) cnhA <- cumsum(nhA) for (i in 1:nstrataA){ k <- 1 YcA <- matrix(0, nhA[i+1], c) for (j in (cnhA[i]+1):cnhA[i+1]){ if (!is.null(dim(drop(piA)))) YcA[k,] <- SFRR(ysA[-j,], ysB, piA[-j,-j], piB, pik_ab_B[-j], pik_ba_A, domainsA[-j], domainsB, N_A, N_B)[[2]][1,] else YcA[k,] <- SFRR(ysA[-j,], ysB, piA[-j], piB, pik_ab_B[-j], pik_ba_A, domainsA[-j], domainsB, N_A, N_B)[[2]][1,] k <- k + 1 } YcAMean <- matrix(colMeans(YcA), nhA[i+1], c, byrow = TRUE) if (fcpA) fA <- 1 - mean(pikA[strA == strataA[i]]) else fA <- 1 YcstrataA[i,] <- (nhA[i+1] - 1) / nhA[i+1] * fA * colSums((YcA - YcAMean)^2) } vjA <- colSums(YcstrataA) } else { if (sdA == "clu"){ clustersA <- unique(clusA) probclustersA <- unique(data.frame(pikA, clusA))[,1] nclustersA <- length(clustersA) if (nclustersA < 3) stop("Number of clusters in frame A is less than 3. Variance cannot be computed.") YcA <- matrix(0, nclustersA, c) for (i in 1:nclustersA){ if (!is.null(dim(drop(piA)))) YcA[i,] <- SFRR(ysA[clusA %in% clustersA[-clustersA[i]],], ysB, piA[clusA %in% clustersA[-clustersA[i]],clusA %in% clustersA[-clustersA[i]]], piB, pik_ab_B[clusA %in% clustersA[-clustersA[i]]], pik_ba_A, domainsA[clusA %in% clustersA[-clustersA[i]]], domainsB, N_A, N_B)[[2]][1,] else YcA[i,] <- SFRR(ysA[clusA %in% clustersA[-clustersA[i]],], ysB, piA[clusA %in% clustersA[-clustersA[i]]], piB, pik_ab_B[clusA %in% clustersA[-clustersA[i]]], pik_ba_A, domainsA[clusA %in% clustersA[-clustersA[i]]], domainsB, N_A, N_B)[[2]][1,] } YcAMean <- matrix(colMeans(YcA), nclustersA, c, byrow = TRUE) if (fcpA) fA <- 1 - mean(probclustersA) else fA <- 1 vjA <- ((nclustersA - 1) / nclustersA) * fA * colSums ((YcA - YcAMean)^2) } else{ if (sdA == "strclu"){ strataA <- unique(strA) nstrataA <- length(strataA) nhA <- table(strA) YcstrataA <- matrix(0, nstrataA, c) nhA <- c(0,nhA) cnhA <- cumsum(nhA) for (i in 1:nstrataA){ clustersA <- unique(clusA[strA == strataA[i]]) probclustersA <- unique(data.frame(pikA[strA == strataA[i]], clusA[strA == strataA[i]]))[,1] nclustersA <- length(clustersA) if (nclustersA < 3) stop("Number of clusters in any stratum from frame A is less than 3. Variance cannot be computed.") k <- 1 YcA <- matrix(0, nclustersA, c) for (j in 1:nclustersA){ if (!is.null(dim(drop(piA)))) YcA[k,] <- SFRR(ysA[clusA %in% clustersA[-clustersA[j]],], ysB, piA[clusA %in% clustersA[-clustersA[j]],clusA %in% clustersA[-clustersA[j]]], piB, pik_ab_B[clusA %in% clustersA[-clustersA[j]]], pik_ba_A, domainsA[clusA %in% clustersA[-clustersA[j]]], domainsB, N_A, N_B)[[2]][1,] else YcA[k,] <- SFRR(ysA[clusA %in% clustersA[-clustersA[j]],], ysB, piA[clusA %in% clustersA[-clustersA[j]]], piB, pik_ab_B[clusA %in% clustersA[-clustersA[j]]], pik_ba_A, domainsA[clusA %in% clustersA[-clustersA[j]]], domainsB, N_A, N_B)[[2]][1,] k <- k + 1 } YcAMean <- matrix(colMeans(YcA), nclustersA, c, byrow = TRUE) if (fcpA) fA <- 1 - mean(probclustersA) else fA <- 1 YcstrataA[i,] <- (nclustersA - 1) / nclustersA * fA * colSums((YcA - YcAMean)^2) } vjA <- colSums(YcstrataA) }else{ nA <- nrow(ysA) YcA <- matrix(0, nA, c) for (i in 1:nA){ if (!is.null(dim(drop(piA)))) YcA[i,] <- SFRR(ysA[-i,], ysB, piA[-i,-i], piB, pik_ab_B[-i], pik_ba_A, domainsA[-i], domainsB, N_A, N_B)[[2]][1,] else YcA[i,] <- SFRR(ysA[-i,], ysB, piA[-i], piB, pik_ab_B[-i], pik_ba_A, domainsA[-i], domainsB, N_A, N_B)[[2]][1,] } YcAMean <- matrix(colMeans(YcA), nA, c, byrow = TRUE) if (fcpA) fA <- 1 - mean(pikA) else fA <- 1 vjA <- ((nA - 1) / nA) * fA * colSums ((YcA - YcAMean)^2) } } } if (sdB == "str"){ strataB <- unique(strB) nhB <- table(strB) nstrataB <- length(nhB) YcstrataB <- matrix(0, nstrataB, c) nhB <- c(0,nhB) cnhB <- cumsum(nhB) for (i in 1:nstrataB){ k <- 1 YcB <- matrix(0, nhB[i+1], c) for (j in (cnhB[i]+1):cnhB[i+1]){ if (!is.null(dim(drop(piB)))) YcB[k,] <- SFRR(ysA, ysB[-j,], piA, piB[-j,-j], pik_ab_B, pik_ba_A[-j], domainsA, domainsB[-j], N_A, N_B)[[2]][1,] else YcB[k,] <- SFRR(ysA, ysB[-j,], piA, piB[-j], pik_ab_B, pik_ba_A[-j], domainsA, domainsB[-j], N_A, N_B)[[2]][1,] k <- k + 1 } YcBMean <- matrix(colMeans(YcB), nhB[i+1], c, byrow = TRUE) if (fcpB) fB <- 1 - mean(pikB[strB == strataB[i]]) else fB <- 1 YcstrataB[i,] <- (nhB[i+1] - 1) / nhB[i+1] * fB * colSums((YcB - YcBMean)^2) } vjB <- colSums(YcstrataB) } else{ if (sdB == "clu"){ clustersB <- unique(clusB) probclustersB <- unique(data.frame(pikB, clusB))[,1] nclustersB <- length(clustersB) if (nclustersB < 3) stop("Number of clusters in frame B is less than 3. Variance cannot be computed.") YcB <- matrix(0, nclustersB, c) for (i in 1:nclustersB){ if (!is.null(dim(drop(piB)))) YcB[i,] <- SFRR(ysA, ysB[clusB %in% clustersB[-clustersB[i]],], piA, piB[clusB %in% clustersB[-clustersB[i]],clusB %in% clustersB[-clustersB[i]]], pik_ab_B, pik_ba_A[clusB %in% clustersB[-clustersB[i]]], domainsA, domainsB[clusB %in% clustersB[-clustersB[i]]], N_A, N_B)[[2]][1,] else YcB[i,] <- SFRR(ysA, ysB[clusB %in% clustersB[-clustersB[i]],], piA, piB[clusB %in% clustersB[-clustersB[i]]], pik_ab_B, pik_ba_A[clusB %in% clustersB[-clustersB[i]]], domainsA, domainsB[clusB %in% clustersB[-clustersB[i]]], N_A, N_B)[[2]][1,] } YcBMean <- matrix(colMeans(YcB), nclustersB, c, byrow = TRUE) if (fcpB) fB <- 1 - mean(probclustersB) else fB <- 1 vjB <- ((nclustersB - 1) / nclustersB) * fB * colSums ((YcB - YcBMean)^2) } else{ if(sdB == "strclu"){ strataB <- unique(strB) nstrataB <- length(strataB) nhB <- table(strB) YcstrataB <- matrix(0, nstrataB, c) nhB <- c(0, nhB) cnhB <- cumsum(nhB) for (i in 1:nstrataB){ clustersB <- unique(clusB[strB == strataB[i]]) probclustersB <- unique(data.frame(pikB[strB == strataB[i]], clusB[strB == strataB[i]]))[,1] nclustersB <- length(clustersB) if (nclustersB < 3) stop("Number of clusters in any stratum from frame B is less than 3. Variance cannot be computed.") k <- 1 YcB <- matrix(0, nclustersB, c) for (j in 1:nclustersB){ if (!is.null(dim(drop(piB)))) YcB[k,] <- SFRR(ysA, ysB[clusB %in% clustersB[-clustersB[j]],], piA, piB[clusB %in% clustersB[-clustersB[j]],clusB %in% clustersB[-clustersB[j]]], pik_ab_B, pik_ba_A[clusB %in% clustersB[-clustersB[j]]], domainsA, domainsB[clusB %in% clustersB[-clustersB[j]]], N_A, N_B)[[2]][1,] else YcB[k,] <- SFRR(ysA, ysB[clusB %in% clustersB[-clustersB[j]],], piA, piB[clusB %in% clustersB[-clustersB[j]]], pik_ab_B, pik_ba_A[clusB %in% clustersB[-clustersB[j]]], domainsA, domainsB[clusB %in% clustersB[-clustersB[j]]], N_A, N_B)[[2]][1,] k <- k + 1 } YcBMean <- matrix(colMeans(YcB), nclustersB, c, byrow = TRUE) if (fcpB) fB <- 1 - mean(probclustersB) else fB <- 1 YcstrataB[i,] <- (nclustersB - 1) / nclustersB * fB * colSums((YcB - YcBMean)^2) } vjB <- colSums(YcstrataB) }else{ nB <- nrow(ysB) YcB <- matrix(0, nB, c) for (i in 1:nB){ if (!is.null(dim(drop(piB)))) YcB[i,] <- SFRR(ysA[-i,], ysB, piA[-i,-i], piB, pik_ab_B[-i], pik_ba_A, domainsA[-i], domainsB, N_A, N_B)[[2]][1,] else YcB[i,] <- SFRR(ysA[-i,], ysB, piA[-i], piB, pik_ab_B[-i], pik_ba_A, domainsA[-i], domainsB, N_A, N_B)[[2]][1,] } YcBMean <- matrix(colMeans(YcB), nB, c, byrow = TRUE) if (fcpB) fB <- 1 - mean(pikB) else fB <- 1 vjB <- ((nB - 1) / nB) * fB * colSums((YcB - YcBMean)^2) } } } VJack_Yhat_SFRR <- vjA + vjB results[1,] <- estimation[[2]][1,] results[2,] <- estimation[[2]][1,] + qnorm(1 - (1 - conf_level) / 2) * sqrt(VJack_Yhat_SFRR) results[3,] <- estimation[[2]][1,] - qnorm(1 - (1 - conf_level) / 2) * sqrt(VJack_Yhat_SFRR) results[4,] <- estimation[[2]][2,] results[5,] <- estimation[[2]][2,] + qnorm(1 - (1 - conf_level) / 2) * sqrt(1/size_estimation^2 * VJack_Yhat_SFRR) results[6,] <- estimation[[2]][2,] - qnorm(1 - (1 - conf_level) / 2) * sqrt(1/size_estimation^2 * VJack_Yhat_SFRR) return(results) }
plot.variogram.SpATS <- function(x, min.length = 30, ...) { values <- matrix(replace(x$data$value, x$data$length < min.length, NA), ncol = length(x$col.displacement), nrow = length(x$row.displacement), byrow = TRUE) plot3Drgl::persp3Drgl(x$row.displacement, x$col.displacement, values, xlab = "Row displacement", ylab = "Col displacement", zlab = "", ticktype = "detailed", col = topo.colors(100)) }
get_predict.clm <- function(model, newdata = insight::get_data(model), type = "response", ...) { checkmate::assert_choice(type, choices = c("response", "prob")) if (type == "response") { type <- "prob" } resp <- insight::find_response(model) newdata <- newdata[, setdiff(colnames(newdata), resp), drop = FALSE] lhs <- names(attr(stats::terms(model), "dataClasses"))[1] if (isTRUE(grepl("^factor\\(", lhs))) { stop("The response variable should not be transformed to a factor in the formula. Please convert the variable to factor before fitting your model.") } pred <- stats::predict(model, newdata = newdata, type = type)$fit out <- data.frame( rowid = rep(1:nrow(pred), times = ncol(pred)), group = rep(colnames(pred), each = nrow(pred)), predicted = c(pred)) return(out) } get_group_names.clm <- get_group_names.polr
pd_get_md <- function(pd) { prism_check_dl_dir() final_txt_full <- normalizePath(file.path( prism_get_dl_dir(), pd, paste0(pd, ".info.txt") )) if (length(final_txt_full) == 0) { stop("No files exist to obtain metadata from.") } out <- lapply(1:length(final_txt_full), function(i) { readin <- tryCatch( utils::read.delim( final_txt_full[i], sep = "\n", header = FALSE, stringsAsFactors = FALSE ), error = function(e) { warning(e) warning(paste0( "Problem opening ", final_txt_full[i], ". The folder may exist without the .info.text file inside it." )) } ) str_spl <- stringr::str_split( as.character(readin[[1]]), ": ", n = 2, simplify = TRUE ) names_md <- str_spl[, 1] data_md <- str_spl[, 2] out <- matrix(data_md, nrow = 1) out <- as.data.frame(out, stringsAsFactors = FALSE) names(out) <- names_md out$file_path <- final_txt_full[i] out$folder_path <- file.path(prism_get_dl_dir(), pd[i]) out }) out <- dplyr::bind_rows(out) if (all(colnames(out) %in% names(normals_name_map()))) { colnames(out) <- normals_name_map()[colnames(out)] out[["PRISM_DATASET_VERSION"]] <- NA message( "Renaming variables for normals to match those for other temporal periods.\n", "See details in ?pd_get_md." ) } out } normals_name_map <- function() { c( "PRISM_FILENAME" = "PRISM_DATASET_FILENAME", "PRISM_CREATE_DATE" = "PRISM_DATASET_CREATE_DATE", "PRISM_DATASET" = "PRISM_DATASET_TYPE", "PRISM_VERSION" = "PRISM_CODE_VERSION", "PRISM_REMARKS" = "PRISM_DATASET_REMARKS", "file_path" = "file_path", "folder_path" = "folder_path" ) }
JRF_network <- function(out.jrf,out.perm,TH) { nclasses<-dim(out.perm)[3] M<-dim(out.perm)[2]; for (net in 1:nclasses) { j.np<-sort(out.jrf[,2+net],decreasing=TRUE) FDR<-matrix(0,dim(out.perm)[1],1); for (s in 1:length(j.np)){ FP<-sum(sum(out.perm[,,net]>=j.np[s]))/M FDR[s]<-FP/s; if (FDR[s]>TH) {th<-j.np[s]; break;} } if (net==1) out<-list(out.jrf[out.jrf[,2+net]>th,seq(1,2)]) if (net>1) out<-list(out, out.jrf[out.jrf[,2+net]>th,seq(1,2)]) } return(out) }
.plotEnv <- new.env() .quantmodEnv <- new.env() quantmodenv <- function() as.environment(".quantmodEnv") print.quantmodEnv <- function(x, ...) { print("<environment: quantmodEnv>") } .onAttach <- function(libname,pkgname) { } options(quantmod.deprecate.as.zoo.data.frame = TRUE) setOldClass("zoo"); setOldClass("Date"); setClassUnion("xtsORzoo", c("xts","zoo")) setClass("quantmod",representation( model.id="character", model.spec="formula", model.formula="formula", model.target="character", model.inputs="character", build.inputs="character", symbols="character", product="character", price.levels="ANY", training.data="ANY", build.date="character", fitted.model="ANY", model.data="ANY", quantmod.version="numeric" ) ); setClass("quantmodReturn",representation( results="xtsORzoo", returns="xtsORzoo", CAGR="numeric", HPR="numeric", accuracy="xtsORzoo", directional.accuracy="list", dist.of.returns="list", returnsBy="ANY" ) ); setMethod("show", "chobTA", function(object) { plot.chobTA(object) } ) setMethod("show","quantmod", function(object) { cat("\nquantmod object: ", [email protected],"\tBuild date: ", paste([email protected]),"\n"); cat("\nModel Specified: \n ", gsub("[ ]+"," ",deparse([email protected])),"\n"); cat("\nModel Target: ",[email protected],"\t\t", "Product: ",object@product,"\n"); cat("Model Inputs: ", paste([email protected],collapse=", "),"\n\n"); cat("Fitted Model: \n\n"); if(class([email protected])[1]=="NULL") { cat("\tNone Fitted\n"); } else { cat("\tModelling procedure: ", class([email protected]),"\n"); cat("\tTraining window: ", length([email protected])," observations from ", paste([email protected][c(1,length([email protected]))], collapse=" to ")); cat("\n") print([email protected]) } } ) setMethod("summary","quantmod", function(object) { cat("\nquantmod object: ", [email protected],"\tBuild date: ", paste([email protected]),"\n"); cat("\nModel Specified: \n ", gsub("[ ]+"," ",deparse([email protected])),"\n"); cat("\nModel Target: ",[email protected],"\t\t", "Product: ",object@product,"\n"); cat("Model Inputs: ", paste([email protected],collapse=", "),"\n\n"); cat("Fitted Model: \n\n"); if(class([email protected])[1]=="NULL") { cat("\tNone Fitted\n"); } else { cat("\tModelling procedure: ", class([email protected]),"\n"); cat("\tTraining window: ", length([email protected])," observations from ", paste([email protected][c(1,length([email protected]))], collapse=" to ")); cat("\n") summary([email protected]) } }) "fittedModel"<-function(object) {[email protected]} setGeneric("fittedModel<-", function(object,value) {standardGeneric("fittedModel<-")}) setReplaceMethod("fittedModel","quantmod", function(object,value) { [email protected] <- value } ) "predictModel" <- function(object,data,...) { UseMethod("predictModel"); } "predictModel.default" <- function(object,data,...) { predict(object,data,...); } 'plot.quantmodResults' <- function(x,...) { ret.by <- x@return@returnsBy plot(ret.by,type=c('l',rep('h',ncol(ret.by)-1)),...) } 'formula.quantmod' <- function(x,...) { [email protected] } 'coef.quantmod' <- function(object,...) { if(!is.null(fittedModel(object))) coef(fittedModel(object),...) } 'coefficients.quantmod' <- coef.quantmod 'fitted.quantmod' <- function(object,...) { if(!is.null(fittedModel(object))) fitted(fittedModel(object),...) } 'fitted.values.quantmod' <- fitted.quantmod 'residuals.quantmod' <- function(object,...) { if(!is.null(fittedModel(object))) residuals(fittedModel(object,...)) } 'resid.quantmod' <- residuals.quantmod 'vcov.quantmod' <- function(object,...) { if(!is.null(fittedModel(object))) vcov(fittedModel(object,...)) } 'logLik.quantmod' <- function(object, ...) { if(!is.null(fittedModel(object))) logLik(fittedModel(object),...) } 'anova.quantmod' <- function(object,...) { if(!is.null(fittedModel(object))) anova(fittedModel(object),...) } 'plot.quantmod' <- function(x,...) { if(!is.null(fittedModel(x))) plot(fittedModel(x),...) }
'dse03bb'
horizon <- function(h, r=6378137) { x = cbind(as.vector(h), as.vector(r)) h = x[,1] r = x[,2] b = 0.8279 sqrt( 2 * r * h / b ) }
distinfo <- function(obj,...){ UseMethod("distinfo") } basehazard <- function(obj,...){ UseMethod("basehazard") } gradbasehazard <- function(obj,...){ UseMethod("gradbasehazard") } hessbasehazard <- function(obj,...){ UseMethod("hessbasehazard") } cumbasehazard <- function(obj,...){ UseMethod("cumbasehazard") } gradcumbasehazard <- function(obj,...){ UseMethod("gradcumbasehazard") } hesscumbasehazard <- function(obj,...){ UseMethod("hesscumbasehazard") } densityquantile <- function(obj,...){ UseMethod("densityquantile") } distinfo.basehazardspec <- function(obj,...){ return(obj$distinfo) } basehazard.basehazardspec <- function(obj,...){ return(obj$basehazard) } gradbasehazard.basehazardspec <- function(obj,...){ return(obj$gradbasehazard) } hessbasehazard.basehazardspec <- function(obj,...){ return(obj$hessbasehazard) } cumbasehazard.basehazardspec <- function(obj,...){ return(obj$cumbasehazard) } gradcumbasehazard.basehazardspec <- function(obj,...){ return(obj$gradcumbasehazard) } hesscumbasehazard.basehazardspec <- function(obj,...){ return(obj$hesscumbasehazard) } densityquantile.basehazardspec <- function(obj,...){ return(obj$densityquantile) }
expect_grouping_works = function(r) { data = insert_named(as.data.table(iris), list(grp = rep_len(letters[1:10], 150))) task = TaskClassif$new("iris-grp", as_data_backend(data), target = "Species") task$col_roles$group = "grp" r$instantiate(task) for (i in seq_len(r$iters)) { expect_integer(r$train_set(i), lower = 1L, upper = 150L, any.missing = FALSE) expect_integer(r$test_set(i), lower = 1L, upper = 150L, any.missing = FALSE) if (!inherits(r, "ResamplingInsample")) { expect_length(intersect(data[r$train_set(i), get("grp")], data[r$test_set(i), get("grp")]), 0L) } } }
test_that("oxford pet dataset", { root <- tempfile() train <- oxford_pet_dataset( root = root, download = TRUE, transform = torchvision::transform_to_tensor, target_transform = torchvision::transform_to_tensor ) valid <- oxford_pet_dataset( root = root, split = "valid", download = FALSE, transform = torchvision::transform_to_tensor, target_transform = torchvision::transform_to_tensor ) expect_tensor_shape(train[1][[1]], c(3, 500, 394)) expect_tensor_shape(train[1][[2]], c(1, 500, 394)) expect_tensor_shape(valid[1][[1]], c(3, 225, 300)) expect_tensor_shape(valid[1][[2]], c(1, 225, 300)) })
context("PL 3: Calculate AUC (ROC) with the U statitics") test_that("calc_auc_with_u() reterns a 'uauc' object", { auc1 <- calc_auc_with_u(scores = c(0.1, 0.2, 0), labels = c(1, 0, 1)) data(P10N10) sdat <- reformat_data(P10N10$scores, P10N10$labels, mode = "aucroc") auc2 <- calc_auc_with_u(sdat) auc3 <- calc_auc_with_u(scores = P10N10$scores, labels = P10N10$labels) expect_true(is(auc1, "uauc")) expect_true(is(auc2, "uauc")) expect_true(is(auc3, "uauc")) }) test_that("'sdat' must be a 'sdat' object", { expect_err_msg <- function(sdat) { err_msg <- "Unrecognized class for .validate()" eval(bquote(expect_error(calc_auc_with_u(sdat), err_msg))) } expect_err_msg(list()) expect_err_msg(data.frame()) }) test_that("calc_auc_with_u() can directly take scores and labels", { sdat <- reformat_data(c(0.1, 0.2, 0.2, 0), c(1, 0, 1, 1), mode = "aucroc") auc1 <- calc_auc_with_u(sdat) auc2 <- calc_auc_with_u(scores = c(0.1, 0.2, 0.2, 0), labels = c(1, 0, 1, 1)) expect_equal(auc1, auc2) }) test_that("calc_auc_with_u() accepts arguments for reformat_data()", { err_msg <- "Invalid arguments: na.rm" expect_error(calc_auc_with_u(scores = c(0.1, 0.2, 0.2, 0), labels = c(1, 0, 1, 1), na.rm = TRUE), err_msg) aucs <- calc_auc_with_u(scores = c(0.1, 0.2, 0), labels = c(1, 0, 1), na_worst = TRUE, ties_method = "first", keep_sdat = TRUE) expect_equal(.get_obj_arg(aucs, "sdat", "na_worst"), TRUE) }) pl3_create_ms_dat <- function() { s1 <- c(1, 2, 3, 4) s2 <- c(5, 6, 7, 8) s3 <- c(2, 4, 6, 8) scores <- join_scores(s1, s2, s3) l1 <- c(1, 0, 1, 1) l2 <- c(0, 1, 1, 1) l3 <- c(1, 1, 0, 1) labels <- join_labels(l1, l2, l3) list(scores = scores, labels = labels) } pl3_create_sm_dat <- function() { s1 <- c(1, 2, 3, 4) s2 <- c(5, 6, 7, 8) s3 <- c(2, 4, 6, 8) scores <- join_scores(s1, s2, s3) l1 <- c(1, 0, 1, 1) l2 <- c(0, 1, 1, 1) l3 <- c(1, 1, 0, 1) labels <- join_labels(l1, l2, l3) list(scores = scores, labels = labels) } pl3_create_mm_dat <- function() { s1 <- c(1, 2, 3, 4) s2 <- c(5, 6, 7, 8) s3 <- c(2, 4, 6, 8) s4 <- c(2, 4, 6, 8) scores <- join_scores(s1, s2, s3, s4) l1 <- c(1, 0, 1, 1) l2 <- c(0, 1, 1, 1) l3 <- c(1, 1, 0, 1) l4 <- c(1, 1, 0, 1) labels <- join_labels(l1, l2, l3, l4) list(scores = scores, labels = labels) } test_that("ss test data", { scores <- c(1, 2, 3, 4) labels <- c(1, 0, 1, 0) curves <- evalmod(scores = scores, labels = labels) aucs <- auc(curves) aucs <- subset(aucs, curvetypes == "ROC")$aucs uaucs1 <- calc_auc_with_u(scores = scores, labels = labels) expect_equal(aucs, uaucs1$auc, tolerance = 1e-4) uaucs2 <- calc_auc_with_u(scores = scores, labels = labels, ustat_method = "sort") expect_equal(aucs, uaucs2$auc, tolerance = 1e-4) }) test_that("ms test data", { msdat <- pl3_create_ms_dat() scores <- msdat[["scores"]] labels <- msdat[["labels"]] curves <- evalmod(scores = scores, labels = labels) aucs <- auc(curves) aucs <- subset(aucs, curvetypes == "ROC")$aucs for (i in seq_along(aucs)) { s <- msdat[["scores"]][[i]] l <- msdat[["labels"]][[i]] uaucs1 <- calc_auc_with_u(scores = s, labels = l) expect_equal(aucs[i], uaucs1$auc, tolerance = 1e-4) uaucs2 <- calc_auc_with_u(scores = s, labels = l, ustat_method = "sort") expect_equal(aucs[i], uaucs2$auc, tolerance = 1e-4) } }) test_that("sm test data", { smdat <- pl3_create_sm_dat() scores <- smdat[["scores"]] labels <- smdat[["labels"]] curves <- evalmod(scores = scores, labels = labels) aucs <- auc(curves) aucs <- subset(aucs, curvetypes == "ROC")$aucs for (i in seq_along(aucs)) { s <- smdat[["scores"]][[i]] l <- smdat[["labels"]][[i]] uaucs1 <- calc_auc_with_u(scores = s, labels = l) expect_equal(aucs[i], uaucs1$auc, tolerance = 1e-4) uaucs2 <- calc_auc_with_u(scores = s, labels = l, ustat_method = "sort") expect_equal(aucs[i], uaucs2$auc, tolerance = 1e-4) } }) test_that("mm test data", { mmdat <- pl3_create_mm_dat() scores <- mmdat[["scores"]] labels <- mmdat[["labels"]] curves <- evalmod(scores = scores, labels = labels) aucs <- auc(curves) aucs <- subset(aucs, curvetypes == "ROC")$aucs for (i in seq_along(aucs)) { s <- mmdat[["scores"]][[i]] l <- mmdat[["labels"]][[i]] uaucs1 <- calc_auc_with_u(scores = s, labels = l) expect_equal(aucs[i], uaucs1$auc, tolerance = 1e-4) uaucs2 <- calc_auc_with_u(scores = s, labels = l, ustat_method = "sort") expect_equal(aucs[i], uaucs2$auc, tolerance = 1e-4) } })
barycenter_lp<-function(pos.list,weights.list,frechet.weights=NULL){ if (!requireNamespace("Rsymphony", quietly = TRUE)) { warning("Package Rsymphony not detected: Please install Rsymphony for optimal performance if you are not using a Mac.") Rsym<-FALSE } else{ Rsym<-TRUE } d<-dim(pos.list[[1]])[2] sizes<-unlist(lapply(weights.list,length)) const<-(gen_constraints_multi(sizes)) bol_const<-const>0 rhs<-unlist(weights.list) N<-length(pos.list) if (is.null(frechet.weights)){ frechet.weights<-rep(1/N,N) } pos.full<-matrix(0,0,d) for (i in 1:N){ pos.full<-rbind(pos.full,pos.list[[i]]) } M<-prod(sizes) cost<-NULL for (k in 1:M){ mat<-pos.full[bol_const[,k],] cost<-c(cost,euclid_bary_func_w(mat,frechet.weights)) } if (Rsym){ out<-Rsymphony::Rsymphony_solve_LP(obj=cost,mat=const,dir=rep("==",length(rhs)),rhs=rhs,max=FALSE) } else{ out<-lpSolve::lp("min",cost,const,rep("==",length(rhs)),rhs) } inds<-out$solution>0 A.sub<-const[,inds] out.pos<-matrix(0,0,d) for (k in 1:(dim(A.sub)[2])){ pos<-A.sub[,k]>0 pos.sub<-diag(frechet.weights)%*%(pos.full[pos,]) out.pos<-rbind(out.pos,colSums(pos.sub)) } weights.out<-out$sol[inds] return(list(positions=out.pos,weights=weights.out)) }
context("Testing extend_with") test_that("Test extend_with", { orig_list <- list(a = 1, b = 2) new_list <- orig_list %>% extend_with( "extension", list(b = "3", c = list(1)) ) testthat::expect_is(new_list, "extension") testthat::expect_is(new_list, "list") testthat::expect_equal(length(new_list), 3) testthat::expect_equal(new_list$a, 1) testthat::expect_equal(new_list$b, "3") testthat::expect_equal(new_list$c, list(1)) }) test_that("Test extend_with with ... functionality", { orig_list <- list(a = 1, b = 2) new_list <- orig_list %>% extend_with( "extension2", b = list(2), c = "10" ) testthat::expect_is(new_list, "extension2") testthat::expect_is(new_list, "list") testthat::expect_equal(length(new_list), 3) testthat::expect_equal(new_list$a, 1) testthat::expect_equal(new_list$b, list(2)) testthat::expect_equal(new_list$c, "10") testthat::expect_error( orig_list %>% extend_with( "extension2", "unnamed_variable" ) ) })
context("heuristics_benchmark") test_that("Benchmark ttbModel on city_population", { ttb <- ttbModel(city_population, 3, c(4:ncol(city_population))) times <- system.time(rowPairApply(city_population, heuristics(ttb))) print("ttb") print(times) expect_lt(times[[2]], 1) }) test_that("Benchmark regModel on city_population", { reg <- regModel(city_population, 3, c(4:ncol(city_population))) times <- system.time(rowPairApply(city_population, heuristics(reg))) print("reg") print(times) expect_lt(times[[2]], 1) })
BUGSmodel <- function(code, name = NULL, constants = list(), dimensions = list(), data = list(), inits = list(), returnModel = FALSE, where = globalenv(), debug = FALSE, check = getNimbleOption('checkModel'), calculate = TRUE, userEnv = parent.frame()) { nimbleModel(code = code, constants = constants, inits = inits, dimensions = dimensions, returnDef = !returnModel, where = where, debug = debug, check = check, calculate = calculate, name = name, userEnv = userEnv) } nimbleModel <- function(code, constants = list(), data = list(), inits = list(), dimensions = list(), returnDef = FALSE, where = globalenv(), debug = FALSE, check = getNimbleOption('checkModel'), calculate = TRUE, name = NULL, userEnv = parent.frame()) { returnModel <- !returnDef if(is.null(name)) name <- paste0(gsub(" ", "_", substr(deparse(substitute(code))[1], 1, 10)), '_', nimbleModelID()) name <- gsub("::", "_cc_", name) if(length(constants) && sum(names(constants) == "")) stop("BUGSmodel: 'constants' must be a named list") if(length(dimensions) && sum(names(dimensions) == "")) stop("BUGSmodel: 'dimensions' must be a named list") if(length(data) && sum(names(data) == "")) stop("BUGSmodel: 'data' must be a named list") if(any(!sapply(data, function(x) { is.numeric(x) || is.logical(x) || (is.data.frame(x) && all(sapply(x, 'is.numeric'))) }))) stop("BUGSmodel: elements of 'data' must be numeric") md <- modelDefClass$new(name = name) if(nimbleOptions('verbose')) message("Defining model") md$setupModel(code=code, constants=constants, dimensions=dimensions, inits = inits, data = data, userEnv = userEnv, debug=debug) if(!returnModel) return(md) if(debug) browser() vars <- names(md$varInfo) dataVarIndices <- names(constants) %in% vars & !names(constants) %in% names(data) if(sum(names(constants) %in% names(data))) message(" [Note] Found the same variable(s) in both 'data' and 'constants'; using variable(s) from 'data'.\n") if(sum(dataVarIndices)) { data <- c(data, constants[dataVarIndices]) } if(nimbleOptions('verbose')) message("Building model") model <- md$newModel(data=data, inits=inits, where=where, check=check, calculate = calculate, debug = debug) return(model) } nimbleCode <- function(code) { code <- substitute(code) return(code) } BUGScode <- nimbleCode processVarBlock <- function(lines) { getDim <- function(vec) { if(length(vec) > 1) return(length(strsplit(vec[2], ";")[[1]])) else return(0) } getSize <- function(vec) { if(length(vec) > 1) return(strsplit(vec[2], ";")) else return("0") } lines <- gsub(" lines <- gsub(";", "", lines) lines <- gsub("[[:space:]]", "", lines) lines <- paste(lines, collapse = "") chars <- strsplit(lines, integer(0))[[1]] nch <- length(chars) inBrackets <- FALSE for(i in seq_len(nch)) { if(inBrackets && chars[i] == ",") chars[i] = ";" if(chars[i] == "[") inBrackets <- TRUE if(chars[i] == "]") inBrackets <- FALSE } lines <- paste(chars, collapse = "") lines <- gsub("\\]", "", lines) pieces <- unlist(strsplit(lines, ",")) pieces <- strsplit(pieces, "\\[") varNames <- sapply(pieces, "[[", 1) dim <- sapply(pieces, getDim) size <- sapply(pieces, getSize) names(dim) <- varNames names(size) <- varNames return(list(varNames = varNames, dim = dim, size = size)) } processModelFile <- function(fileName) { codeLines <- readLines(fileName) codeLines <- paste(codeLines, collapse = "\n") codeLines <- gsub("/\\*.*?\\*/", "", codeLines) codeLines <- gsub(" codeLines <- paste("\n", codeLines, collapse = "") varBlockRegEx = "\n\\s*var\\s*(\n*.*?)(\n+\\s*(data|model|const).*)" dataBlockRegEx = "\n\\s*data\\s*\\{(.*?)\\}(\n+\\s*(var|model|const).*)" modelBlockRegEx = "\n\\s*model\\s*\\{(.*?)\\}\\s*\n+\\s*(var|data|const).*" if(length(grep(varBlockRegEx, codeLines))) { varLines <- gsub(varBlockRegEx, "\\1", codeLines) codeLines <- gsub(varBlockRegEx, "\\2", codeLines) } else varLines = NULL if(length(grep(dataBlockRegEx, codeLines))) { dataLines <- gsub(dataBlockRegEx, "\\1", codeLines) codeLines <- gsub(dataBlockRegEx, "\\2", codeLines) } else dataLines = NULL if(!length(grep(modelBlockRegEx, codeLines))) modelBlockRegEx = "model\\s*\\{(.*?)\\}\\s*\n*\\s*$" modelLines <- gsub(modelBlockRegEx, "\\1", codeLines) modelLines <- paste("{\n", modelLines, "\n}\n", collapse = "") return(list(modelLines = modelLines, varLines = varLines, dataLines = dataLines)) } mergeMultiLineStatements <- function(text) { text <- unlist( strsplit(text, "\n") ) firstNonWhiteSpaceIndex <- regexpr("[^[:blank:]]", text) firstNonWhiteSpaceChar <- substr(text, firstNonWhiteSpaceIndex, firstNonWhiteSpaceIndex) mergeUpward <- firstNonWhiteSpaceChar %in% c('+', '-', '*', '/') if(length(text) > 1) { for(i in seq.int(length(text), 2, by = -1)) { if(mergeUpward[i]) { text[i-1] <- paste(text[i-1], substring(text[i], firstNonWhiteSpaceIndex[i]) ) } } } text <- text[!mergeUpward] return(text) } processNonParseableCode <- function(text) { text <- gsub("([^~]*)*~(.*?)\\)\\s*([TI])\\s*\\((.*)", "\\1~ \\3(\\2\\), \\4", text) return(text) } readBUGSmodel <- function(model, data = NULL, inits = NULL, dir = NULL, useInits = TRUE, debug = FALSE, returnComponents = FALSE, check = getNimbleOption('checkModel'), calculate = TRUE) { doEval <- function(vec, env) { out <- rep(0, length(vec)) if(vec[1] == "0") return(numeric(0)) for(i in seq_along(vec)) out[i] <- eval(parse(text = vec[i]), env) return(out) } skip.file.path <- is.null(dir) || (!is.null(dir) && dir == "") modelFileOutput <- modelName <- NULL if(is.function(model) || is.character(model)) { if(is.function(model)) modelText <- mergeMultiLineStatements(deparse(body(model))) if(is.character(model)) { if(skip.file.path) modelFile <- model else modelFile <- normalizePath(file.path(dir, model), winslash = "\\", mustWork=FALSE) modelName <- gsub("\\..*", "", basename(model)) if(!file.exists(modelFile)) { possibleNames <- c(paste0(modelFile, '.bug'), paste0(modelFile, '.txt')) fileExistence <- file.exists(possibleNames) if(!sum(fileExistence)) { stop("readBUGSmodel: 'model' input does not reference an existing file.") } else { if(sum(fileExistence) > 1) warning("readBUGSmodel: multiple possible model files; using .bug file.") modelFile <- possibleNames[which(fileExistence)[1]] } } modelFileOutput <- processModelFile(modelFile) modelText <- mergeMultiLineStatements(modelFileOutput$modelLines) } modelText <- processNonParseableCode(modelText) model <- parse(text = modelText)[[1]] } if(!inherits(model, "{")) stop("readBUGSmodel: cannot process 'model' input.") if(useInits) { initsFile <- NULL if(is.character(inits)) { initsFile <- if(skip.file.path) inits else normalizePath(file.path(dir, inits), winslash = "\\", mustWork=FALSE) if(!file.exists(initsFile)) stop("readBUGSmodel: 'inits' input does not reference an existing file.") } if(is.null(inits)) { possibleNames <- paste0(modelName, c("-init.R", "-inits.R", "-init.txt", "-inits.txt", "-init", "inits")) if(!Sys.info()['sysname'] %in% c("Darwin", "Windows")) possibleNames <- c(possibleNames, paste0(modelName, c('-init.r','-inits.r'))) if(!skip.file.path) possibleNames <- normalizePath(file.path(dir, possibleNames), winslash = "\\", mustWork=FALSE) fileExistence <- file.exists(possibleNames) if(sum(fileExistence) > 1) stop("readBUGSmodel: multiple possible initial value files; please pass as explicit 'inits' argument.") if(sum(fileExistence)) initsFile <- possibleNames[which(fileExistence)[1]] } if(!is.null(initsFile)) { inits <- new.env() source(initsFile, inits) inits <- as.list(inits) } } else inits <- NULL if(is.null(inits)) inits <- list() if(!is.list(inits)) stop("readBUGSmodel: invalid input for 'inits'.") varInfo <- NULL if(!is.null(modelFileOutput) && !is.null(modelFileOutput$varLines)) varInfo = processVarBlock(strsplit(modelFileOutput$varLines, "\n")[[1]]) dataFile <- NULL if(is.character(data)) { dataFile <- if(skip.file.path) data else normalizePath(file.path(dir, data), winslash = "\\", mustWork=FALSE) if(!file.exists(dataFile)) stop("readBUGSmodel: 'data' input does not reference an existing file.") } if(is.null(data)) { possibleNames <- paste0(modelName, c("-data.R", "-data.txt", "data")) if(!Sys.info()['sysname'] %in% c("Darwin", "Windows")) possibleNames <- c(possibleNames, paste0(modelName, "-data.r")) if(!skip.file.path) possibleNames <- normalizePath(file.path(dir, possibleNames), winslash = "\\", mustWork=FALSE) fileExistence <- file.exists(possibleNames) if(sum(fileExistence) > 1) stop("readBUGSmodel: multiple possible initial value files; please pass as explicit 'data' argument.") if(sum(fileExistence)) dataFile <- possibleNames[which(fileExistence)[1]] } if(!is.null(dataFile)) { data <- new.env() source(dataFile, data) } if(is.list(data)) { if(length(data) && sum(names(data) == "")) stop("readBUGSmodel: 'data' must be a named list") data <- list2env(data) } if(!(is.null(data) || is.environment(data))) stop("readBUGSmodel: invalid input for 'data'.") if(!is.null(modelFileOutput) && !is.null(modelFileOutput$dataLines)) { if(is.null(data)) data = new.env() origVars <- ls(data) vars <- varInfo$varNames[varInfo$dim > 0] vars <- vars[!(vars %in% ls(data))] for(thisVar in vars) { dimInfo <- sapply(varInfo$size[[thisVar]], function(x) eval(parse(text = x), envir = data)) tmp <- 0 length(tmp) <- prod(dimInfo) dim(tmp) <- dimInfo assign(thisVar, tmp, envir = data) } eval(parse(text = modelFileOutput$dataLines), envir = data) newVars <- nf_assignmentLHSvars(parse(text = modelFileOutput$dataLines)[[1]]) data <- as.list(data)[c(origVars, newVars)] } else { data <- as.list(data) } dims <- lapply(data, dimOrLength, scalarize = TRUE) if(!is.null(varInfo)) { env <- data sizeInfo <- lapply(varInfo$size, doEval, env) newNames <- names(sizeInfo)[!(names(sizeInfo) %in% names(data))] dims[newNames] <- sizeInfo[newNames] } if(length(dims) && sum(names(dims) == "")) stop("readBUGSmodel: something is wrong; 'dims' object is not a named list") if(returnComponents){ return( list(modelName = modelName, code = model, dims = dims, data = data, inits = inits) ) } Rmodel <- nimbleModel(code = model, name = ifelse(is.null(modelName), 'model', modelName), constants = data, dimensions = dims, inits = inits, debug = debug, check = check, calculate = calculate) if(FALSE) { dataNodes <- names(data)[(names(data) %in% Rmodel$getVarNames())] data <- data[dataNodes] names(data) <- dataNodes Rmodel$setData(data) if(!is.null(inits)) { varNames <- names(inits)[names(inits) %in% Rmodel$getVarNames()] for(varName in varNames) { Rmodel[[varName]][!Rmodel$isData(varName)] <- inits[[varName]][!Rmodel$isData(varName)] } } } return(Rmodel) } getBUGSexampleDir <- function(example){ dir <- normalizePath(system.file("classic-bugs", package = "nimble"), winslash = "\\", mustWork=FALSE) vol <- NULL if(file.exists(normalizePath(file.path(dir, "vol1", example), winslash = "\\", mustWork=FALSE))) vol <- "vol1" if(file.exists(normalizePath(file.path(dir, "vol2", example), winslash = "\\", mustWork=FALSE))) vol <- "vol2" if(is.null(vol)) stop("Can't find path to ", example, ".\n") dir <- normalizePath(file.path(dir, vol, example), winslash = "\\", mustWork=FALSE) return(dir) }
"random.walk" <- function(n, p = 0.5) { cumsum(rbern(n, p) * 2. - 1.) }
text <- "This is the website for “R for Data Science”. This book will teach you how to do data science with R: You’ll learn how to get your data into R, get it into the most useful structure, transform it, visualise it and model it." test_text_df <- as.data.frame(x = text) test_bigram_df <- saotd::bigram(DataFrame = test_text_df) incorrect_bigram_df <- tibble::tribble( ~word, ~word2, ~n, "data", "science", as.integer(2), "structure", "transform", as.integer(1), "youll", "learn", as.integer(1) ) p <- saotd::bigram_network(BiGramDataFrame = test_bigram_df, number = 1) testthat::test_that("The bigram_network function is working as properly", { testthat::expect_error( object = saotd::bigram_network( BiGramDataFrame = text), "The input for this function is a Bigram data frame.") testthat::expect_error( object = saotd::bigram_network( BiGramDataFrame = test_bigram_df, number = 0), "You must choose number of Bi-Grams greater than 1.") testthat::expect_error( object = saotd::bigram_network( BiGramDataFrame = incorrect_bigram_df), 'The data frame is not properly constructed. The data frame must have three columns: word1, word2 and n.') }) testthat::test_that("The bigram_network plot retunrs ggplot object", { testthat::expect_type(object = p, type = "list") })
source("get_geodata.R") library(swissdd) library(dplyr) library(ggplot2) library(sf) library(tibble) library(purrr) library(transformr) library(tweenr) library(tidyr) library(magick) gd <- get_geodata() %>% mutate(id = as.numeric(mun_id)) %>% arrange(id) %>% select(-id) vd <- get_nationalvotes() %>% mutate(id2 = as.numeric(mun_id)) %>% arrange(id2) %>% select(-id2) %>% filter(id == 6360) start <- gd %>% filter(mun_id %in% vd$mun_id) %>% rename(id = mun_id) start %>% ggplot() + geom_sf() radii <- vd %>% filter(mun_id %in% start$id) %>% select(mun_id, gueltigeStimmen) %>% mutate(radius = sqrt(3000*gueltigeStimmen / pi)) %>% arrange(as.numeric(mun_id)) %>% pull(radius) yes_share <- vd %>% filter(mun_id %in% start$id) %>% select(mun_id, jaStimmenInProzent) %>% arrange(as.numeric(mun_id)) ids <- yes_share$mun_id draw_circle <- function(id, centre_x = 0, centre_y = 0, radius = 1000, detail = 360, st = TRUE) { i <- seq(0, 2 * pi, length.out = detail + 1)[-detail - 1] x <- centre_x + (radius * sin(i)) y <- centre_y + (radius * cos(i)) if (st) { cir <- st_polygon(list(cbind(x, y)[c(seq_len(detail), 1), , drop = FALSE])) d <- st_sf(data.frame(id = id, geom = st_sfc(cir))) } else { d <- tibble(id = id, x = x, y = y) } return(d) } centroids <- as_tibble(st_coordinates(st_centroid(start$geometry))) end <- pmap_dfr(list(ids, centroids$X, centroids$Y, radii), draw_circle) end %>% ggplot() + geom_sf() td <- tween_sf(start, end, ease = "cubic-in-out", nframes = 40, id = id) disperse_around_municipality <- function(data, mun_name, intensity = 40) { centroids <- suppressWarnings(st_centroid(data)) distances <- as_tibble(st_distance(centroids)) names(distances) <- data$id id <- vd$mun_id[vd$mun_name == mun_name] distance <- distances[[id]] / 1000 centroidsXY <- centroids %>% st_coordinates() %>% as_tibble() %>% mutate(id = end$id) direction_x <- (centroidsXY$X - centroidsXY$X[centroidsXY$id == id]) / distance direction_y <- (centroidsXY$Y - centroidsXY$Y[centroidsXY$id == id]) / distance for (i in c(1:nrow(data))[-which(distance == 0)]) { data$geometry[i] <- data$geometry[i] + c( direction_x[i] * (intensity / distance[i]), direction_y[i] * (intensity / distance[i]) ) } return(data) } get_collisions <- function(data) { collisions <- data %>% st_intersects(sparse = F) %>% as_tibble() %>% mutate(id = ids) names(collisions) <- c(ids, "id") collisions <- collisions %>% pivot_longer(cols = -id, names_to = "id2") %>% filter(!id == id2) %>% filter(value) %>% select(id, id2) return(collisions) } solve_collisions <- function(id1, id2, data, stabilize = 5000, stabilize_factor = 0.1) { polygons <- bind_rows(data %>% filter(id == id1), data %>% filter(id == id2)) radii <- ceiling(sqrt(st_area(polygons) / pi)) centroids <- suppressWarnings(st_centroid(polygons)) centroidsXY <- st_coordinates(centroids) distance <- max(st_distance(centroids)) disp_mag <- sum(radii) - distance disp_dir_x <- (centroidsXY[2,1] - centroidsXY[1,1]) / distance disp_dir_y <- (centroidsXY[2,2] - centroidsXY[1,2]) / distance polygon1 <- polygons %>% filter(id == id1) %>% st_geometry() polygon2 <- polygons %>% filter(id == id2) %>% st_geometry() if (max(radii) >= stabilize) { if (radii[1] >= stabilize & radii[2] >= stabilize) { if (radii[1] >= radii[2]) { polygon1_t <- polygon1 + c(-disp_dir_x * disp_mag * stabilize_factor, -disp_dir_y * (disp_mag * stabilize_factor)) polygon2_t <- polygon2 + c(disp_dir_x * disp_mag * (1 - stabilize_factor), disp_dir_y * disp_mag * (1 - stabilize_factor)) } else { polygon1_t <- polygon1 + c(-disp_dir_x * disp_mag * (1 - stabilize_factor), -disp_dir_y * disp_mag * (1 - stabilize_factor)) polygon2_t <- polygon2 + c(disp_dir_x * disp_mag * stabilize_factor, disp_dir_y * disp_mag * stabilize_factor) } } else { if (radii[1] >= stabilize) { polygon1_t <- polygon1 polygon2_t <- polygon2 + c(disp_dir_x * disp_mag, disp_dir_y * disp_mag) } else { polygon1_t <- polygon1 + c(-disp_dir_x * disp_mag, -disp_dir_y * disp_mag / 2) polygon2_t <- polygon2 } } } else { polygon1_t <- polygon1 + c(-disp_dir_x * (disp_mag / 2), -disp_dir_y * (disp_mag / 2)) polygon2_t <- polygon2 + c(disp_dir_x * (disp_mag / 2), disp_dir_y * (disp_mag / 2)) } output <- st_sf(data.frame(id = c(id1, id2), geom = st_sfc(c(polygon1_t, polygon2_t)))) return(output) } end1 <- end if ("261" %in% end$id) end1 <- disperse_around_municipality(end1, "Zürich", 40) if ("230" %in% end$id) end1 <- disperse_around_municipality(end1, "Winterthur", 10) end1 %>% ggplot() + geom_sf() end2 <- end1 num_overlaps <- nrow(get_collisions(end2)) / 2 counter <- 0 while (num_overlaps > 0) { collisions <- get_collisions(end2) num_overlaps <- nrow(collisions) / 2 cat("Improvement attempts:", counter, "|| Collisions found:", num_overlaps, "\n") collisions <- collisions %>% group_by(id2) %>% slice(1) %>% group_by(id) %>% slice(1) %>% mutate(joint_id = ifelse(id < id2, paste0(id, id2), paste0(id2, id))) %>% group_by(joint_id) %>% slice(1) %>% ungroup() solved <- map2_dfr(collisions$id, collisions$id2, solve_collisions, end2) counter <- counter + 1 for (i in 1:nrow(solved)) st_geometry(end2)[end2$id == solved[["id"]][i]] = solved[["geometry"]][i] } end2 %>% ggplot() + geom_sf() td2 <- tween_sf(td, end2, ease = "cubic-in-out", nframes = 20, id = id) %>% keep_state(nframes = 40) td2 <- left_join(td2, yes_share, by = c("id" = "mun_id")) plot_data <- function(data, pos, xlim, ylim) { data <- data %>% mutate( stimmen = factor(case_when( jaStimmenInProzent < 35 ~ "", jaStimmenInProzent >= 35 & jaStimmenInProzent < 40 ~ "35", jaStimmenInProzent >= 40 & jaStimmenInProzent < 45 ~ "40", jaStimmenInProzent >= 45 & jaStimmenInProzent < 50 ~ "45", jaStimmenInProzent >= 50 & jaStimmenInProzent < 55 ~ "50", jaStimmenInProzent >= 55 & jaStimmenInProzent < 60 ~ "55", jaStimmenInProzent >= 60 & jaStimmenInProzent < 65 ~ "60", jaStimmenInProzent >= 65 ~ "65" ), levels = c("", "35", "40", "45", "50", "55", "60", "65") ) ) p <- ggplot(data$geometry) + geom_sf(aes(fill = data$stimmen), color = NA) + coord_sf(xlim = xlim, ylim = ylim) + scale_fill_manual( values = c( " " ) ) + theme_void() + theme(legend.position = "none") if (!pos %% 10 == 0) cat(".") if (pos %% 10 == 0) cat(pos, "frames\n") print(p) } xlim <- c(0.99 * min(st_coordinates(end2$geometry)[,1]), 1.01 * max(st_coordinates(end2$geometry)[,1])) ylim <- c(0.99 * min(st_coordinates(end2$geometry)[,2]), 1.01 * max(st_coordinates(end2$geometry)[,2])) img <- image_graph(res = 96) datalist <- split(td2, td2$.frame) out <- map2(datalist, 1:length(datalist), plot_data, xlim, ylim) dev.off() animation <- image_animate(img, fps = 20) image_write(animation, "animation2.gif") plot_data2 <- function(data, xlim, ylim) { data %>% mutate( stimmen = factor(case_when( jaStimmenInProzent < 35 ~ "", jaStimmenInProzent >= 35 & jaStimmenInProzent < 40 ~ "35", jaStimmenInProzent >= 40 & jaStimmenInProzent < 45 ~ "40", jaStimmenInProzent >= 45 & jaStimmenInProzent < 50 ~ "45", jaStimmenInProzent >= 50 & jaStimmenInProzent < 55 ~ "50", jaStimmenInProzent >= 55 & jaStimmenInProzent < 60 ~ "55", jaStimmenInProzent >= 60 & jaStimmenInProzent < 65 ~ "60", jaStimmenInProzent >= 65 ~ "65" ), levels = c("", "35", "40", "45", "50", "55", "60", "65") ) ) %>% ggplot() + geom_sf(aes(fill = stimmen), color = NA) + coord_sf(xlim = xlim, ylim = ylim) + scale_fill_manual( values = c( " " ), drop = F, name = "Percentage of yes votes", guide = guide_legend( direction = "horizontal", keyheight = unit(2, units = "mm"), keywidth = unit(c(25, rep(7, 6), 25), units = "mm"), title.position = "top", title.hjust = 0.5, label.hjust = 1, nrow = 1, byrow = T, reverse = T, label.position = "bottom", ) ) + theme_void() + theme(legend.position = "bottom") } start %>% left_join(yes_share, by = c("id" = "mun_id")) %>% plot_data2(xlim, ylim) ggsave("start.png", dpi = 500) end %>% left_join(yes_share, by = c("id" = "mun_id")) %>% plot_data2(xlim, ylim) ggsave("end1.png", dpi = 500) end2 %>% left_join(yes_share, by = c("id" = "mun_id")) %>% plot_data2(xlim, ylim) ggsave("end2.png", dpi = 500)
context("Test numberimported and logical") test_that("Logical equivalence", { x <- TRUE expect_that(x, equals(TRUE)) }) test_that("Numerical equivalence", { x <- 1 expect_that(x, equals(1)) })
library(HRW) ; data(BostonMortgages) ; library(mgcv) BostonMortgages$denyBinary <- as.numeric(BostonMortgages$deny == "yes") fitInt <- gam(denyBinary ~ black + s(dir,by = factor(self),k = 27) + s(lvr,by = factor(self),k = 27) + pbcr + self + single + s(ccs,k = 4), family = binomial, data = BostonMortgages) ng <- 1001 dirLow <- 0 ; dirUpp <- 1 dirg <- seq(dirLow,dirUpp,length = ng) lvrLow <- 0 ; lvrUpp <- 1 lvrg <- seq(lvrLow,lvrUpp,length = ng) dirAveg <- rep(mean(BostonMortgages$dir),ng) lvrAveg <- rep(mean(BostonMortgages$lvr),ng) selfNog <- as.factor(rep("no",ng)) selfYesg <- as.factor(rep("yes",ng)) blackYesg <- as.factor(rep("yes",ng)) singleYesg <- as.factor(rep("yes",ng)) pbcrYesg <- as.factor(rep("yes",ng)) ccsAveg <- rep(mean(BostonMortgages$ccs),ng) nonSelfCol <- "indianred3" selfCol <- "darkgreen" par(mfrow = c(1,2),mai = c(1.02,0.9,0.3,0.2)) ; cex.labVal <- 1.4 fdirNog <- predict(fitInt,type = "response", newdata = data.frame(self = selfNog,dir = dirg, lvr = lvrAveg,pbcr = pbcrYesg,black = blackYesg, single = singleYesg,ccs = ccsAveg),se = TRUE) fdirYesg <- predict(fitInt,type = "response", newdata = data.frame(self = selfYesg,dir = dirg, lvr = lvrAveg,pbcr = pbcrYesg,black = blackYesg, single = singleYesg,ccs = ccsAveg),se = TRUE) probdirNog <- fdirNog$fit sdprobNog <- fdirNog$se.fit lowprobdirNog <- probdirNog - 2*sdprobNog uppprobdirNog <- probdirNog + 2*sdprobNog lowprobdirNog[lowprobdirNog<0] <- 0 uppprobdirNog[uppprobdirNog>1] <- 1 probdirYesg <- fdirYesg$fit sdprobYesg <- fdirYesg$se.fit lowprobdirYesg <- probdirYesg - 2*sdprobYesg uppprobdirYesg <- probdirYesg + 2*sdprobYesg lowprobdirYesg[lowprobdirYesg<0] <- 0 uppprobdirYesg[uppprobdirYesg>1] <- 1 plot(0,type = "n",bty = "l",xlim = range(dirg),ylim = c(0,1), xlab = "debt to income ratio",ylab = "probability of mortgage application denied", cex.lab = cex.labVal) rug(BostonMortgages$dir,col = "dodgerblue",quiet = TRUE) lines(dirg,probdirNog,col = nonSelfCol,lwd = 2) lines(dirg,lowprobdirNog,col = nonSelfCol,lwd = 2,lty = 2) lines(dirg,uppprobdirNog,col = nonSelfCol,lwd = 2,lty = 2) lines(dirg,probdirYesg,col = selfCol,lwd = 2) lines(dirg,lowprobdirYesg,col = selfCol,lwd = 2,lty = 2) lines(dirg,uppprobdirYesg,col = selfCol,lwd = 2,lty = 2) abline(h = 0,col = "slateblue",lty = 2) abline(h = 1,col = "slateblue",lty = 2) legend(0.42,0.25,legend = c("self employed","not self-employed"), lty = rep(1,2),lwd = rep(2,2),col = c(selfCol,nonSelfCol),cex = 0.8) flvrNog <- predict(fitInt,type = "response", newdata = data.frame(self = selfNog,dir = dirAveg, lvr = lvrg,pbcr = pbcrYesg,black = blackYesg, single = singleYesg,ccs = ccsAveg),se = TRUE) flvrYesg <- predict(fitInt,type = "response", newdata = data.frame(self = selfYesg,dir = dirAveg, lvr = lvrg,pbcr = pbcrYesg,black = blackYesg, single = singleYesg,ccs = ccsAveg),se = TRUE) problvrNog <- flvrNog$fit sdprobNog <- flvrNog$se.fit lowproblvrNog <- problvrNog - 2*sdprobNog uppproblvrNog <- problvrNog + 2*sdprobNog lowproblvrNog[lowproblvrNog<0] <- 0 uppproblvrNog[uppproblvrNog>1] <- 1 problvrYesg <- flvrYesg$fit sdprobYesg <- flvrYesg$se.fit lowproblvrYesg <- problvrYesg - 2*sdprobYesg uppproblvrYesg <- problvrYesg + 2*sdprobYesg lowproblvrYesg[lowproblvrYesg<0] <- 0 uppproblvrYesg[uppproblvrYesg>1] <- 1 plot(0,type = "n",bty = "l",xlim = range(lvrg),ylim = c(0,1), xlab = "loan size to property value ratio", ylab = "probability of mortgage application denied", cex.lab = cex.labVal) rug(BostonMortgages$lvr,col = "dodgerblue",quiet = TRUE) lines(lvrg,problvrNog,col = nonSelfCol,lwd = 2) lines(lvrg,lowproblvrNog,col = nonSelfCol,lwd = 2,lty = 2) lines(lvrg,uppproblvrNog,col = nonSelfCol,lwd = 2,lty = 2) lines(lvrg,problvrYesg,col = selfCol,lwd = 2) lines(lvrg,lowproblvrYesg,col = selfCol,lwd = 2,lty = 2) lines(lvrg,uppproblvrYesg,col = selfCol,lwd = 2,lty = 2) abline(h = 0,col = "slateblue",lty = 2) abline(h = 1,col = "slateblue",lty = 2)
allfaces <- function(hrep) { stopifnot(is.character(hrep) || is.numeric(hrep)) validcdd(hrep, representation = "H") if (is.character(hrep)) { .Call(C_allfaces, hrep) } else { storage.mode(hrep) <- "double" .Call(C_allfaces_f, hrep) } }
test_no_context <- function() { .Call(ptr_test_return, pairlist(NULL)) } test_return <- function(node) { call_with_cleanup(ptr_test_return, node) } test_jump <- function(node) { call_with_cleanup(ptr_test_jump, node) } test_jumpy_cb <- function(node) { call_with_cleanup(ptr_test_jumpy_cb, node) } test_no_cb <- function() { call_with_cleanup(ptr_test_no_cb) } test_early_ok <- function(node) { call_with_cleanup(ptr_test_early_ok, node) } test_early_jump <- function(node) { call_with_cleanup(ptr_test_early_jump, node) } test_mixed <- function(node) { call_with_cleanup(ptr_test_mixed, node) }
cli::test_that_cli("ui_todo() works", { expect_snapshot(ui_todo("This is a todo.")) }) cli::test_that_cli("ui_info() works on Linux, Mac, and Solaris", { skip_on_os("windows") expect_snapshot(ui_info("This is an information.")) }) cli::test_that_cli("ui_done() works", { expect_snapshot(ui_done("This is a task that was executed.")) }) cli::test_that_cli("ui_nope() works", { expect_snapshot(ui_nope("This is something important that you must read.")) }) cli::test_that_cli("ui_ask() works", { expect_snapshot(ui_ask("This is a question.")) }) cli::test_that_cli("ui_input() messages works", { skip_if(interactive()) expect_snapshot(ui_input("Some input can be typed.")) }) cli::test_that_cli("ui_menu() messages works", { skip_if(interactive()) expect_snapshot(ui_menu("Some choice can be typed")) }) cli::test_that_cli("ui_warn() works", { expect_snapshot( ui_warn( "this is a warning.", ui_todo("this is a {.fn ui_*} call that follows the warning.") ) ) }) cli::test_that_cli("ui_stop() works", { expect_snapshot( ui_stop( "this is an error.", ui_todo("this is a {.fn ui_*} call that follows the error.") ), error = TRUE ) }) cli::test_that_cli("ui_theme() works", { expect_snapshot(ui_theme()) }) test_that("ui_input() returns an empty string in non-interactive mode", { skip_if(interactive()) expect_identical(ui_input(), "") }) test_that("ui_input() returns user's input in interactive mode", { skip_on_ci() skip_on_covr() skip_on_cran() skip_if(is_parallel()) cat("\n") expect_identical(ui_input("What is the name of this package?"), "dotprofile") }) test_that("ui_menu() validates argument answers", { expect_error(ui_menu(answers = list())) expect_snapshot_error(ui_menu(answers = NULL)) }) test_that("ui_menu() returns NA of a matching type in non-interactive mode", { skip_if(interactive()) expect_identical(ui_menu(answers = "1"), NA_character_) expect_identical(ui_menu(answers = 1+1i), NA_complex_) expect_identical(ui_menu(answers = 1.0), NA_real_) expect_identical(ui_menu(answers = 1L), NA_integer_) expect_identical(ui_menu(answers = TRUE), NA) }) test_that("ui_menu() returns user's choice in interactive mode", { skip_on_ci() skip_on_covr() skip_on_cran() skip_if(is_parallel()) cat("\n") expect_identical(ui_menu("Choose between yes or no."), "yes") })
plotSymDevFun <- function(CPF, n.grid = 100){ flim1 <- range(CPF$x) flim2 <- range(CPF$y) SymDevGraph = matrix(0,n.grid, n.grid) for(i in 1:dim(CPF$fun1sims)[1]){ SymDevGraph = SymDevGraph + SymDiffRaw(nondominated_points(cbind(rbind(CPF$fun1sims[i,], CPF$fun2sims[i,]), t(CPF$PF))), nondominated_points(t(CPF$VE)),c(flim1[1],flim1[2]), c(flim2[1],flim2[2]),n.grid) } filled.contour(seq(flim1[1], flim1[2],,n.grid), seq(flim2[1], flim2[2],,n.grid), matrix(SymDevGraph/dim(CPF$fun1sims)[1],n.grid,n.grid), col = gray(11:0/11), levels=seq(0,1,,11), main ="Symmetric deviation function", xlab=expression(f[1]),ylab=expression(f[2]), plot.axes={axis(1);axis(2); points(CPF$responses[,1], CPF$responses[,2], pch = 17, col = "red") plotParetoEmp(CPF$VE, col="blue", lwd=2) plotParetoEmp(CPF$PF, col="red", lwd=2); } ) } SymDiffRaw <- function(set1,set2, xlim, ylim, resGrid){ grille <- as.matrix(expand.grid(seq(xlim[1],xlim[2],,resGrid),seq(ylim[1],ylim[2],,resGrid))) matRes <- rep(0,resGrid*resGrid) for (i in 1:dim(grille)[1]){ a = is_dominated(cbind(grille[i,], set1))[1] b = is_dominated(cbind(grille[i,], set2))[1] if(a != b) matRes[i] = 1 } return(matRes) }
source("ESEUR_config.r") maint=read.csv(paste0(ESEUR_dir, "maintenance/10.1.1.37.38.csv.xz"), as.is=TRUE) maint$TASK.ID=NULL maint$UNEXPEC=as.factor(maint$UNEXPEC) maint$CONFIDENCE=as.factor(maint$CONFIDENCE) pairs(~LOC+MEXPTOT+MEXPAPP, col=point_col, cex.labels=1.3, cex.axis=1.2, data=maint) unexpect_mod=glm(UNEXPEC ~ ., data=maint, family="binomial") summary(unexpect_mod) unexpect_mod=glm(UNEXPEC ~ LOC, data=maint, family="binomial") summary(unexpect_mod) unexpect_mod=glm(CONFIDENCE ~ .-UNEXPEC, data=maint, family="binomial") summary(unexpect_mod)
append_geoid <- function(address, geoid_type = 'bl') { if ("lat" %in% colnames(address) && "lon" %in% colnames(address)) { geoids <- vector(mode="character", length = nrow(address)) for (i in 1:nrow(address)) { geoids[i] <- call_geolocator_latlon(address$lat[i], address$lon[i]) } } else { geoids <- vector(mode="character", length = nrow(address)) for (i in 1:nrow(address)) { geoids[i] <- call_geolocator( as.character(address$street[i]), as.character(address$city[i]), as.character(address$state[i]) ) } } address <- dplyr::mutate(address, geoid = geoids) if (geoid_type == 'co') { end <- 5 } else if (geoid_type == 'tr') { end <- 11 } else if (geoid_type == 'bg') { end <- 12 } else { end <- 15 } address <- dplyr::mutate(address, geoid = ifelse(is.na(geoid), NA_character_, substr(geoid, 1, end))) return(address) } call_geolocator <- function(street, city, state) { call_start <- "https://geocoding.geo.census.gov/geocoder/geographies/address?" url <- paste0( "street=", utils::URLencode(street), "&city=", utils::URLencode(city), "&state=", state ) call_end <- "&benchmark=Public_AR_Census2010&vintage=Census2010_Census2010&layers=14&format=json" url_full <- paste0(call_start, url, call_end) r <- httr::GET(url_full) httr::stop_for_status(r) response <- httr::content(r) if (length(response$result$addressMatches) == 0) { message(paste0("Address (", street, " ", city, " ", state, ") returned no address matches. An NA was returned.")) return(NA_character_) } else { if (length(response$result$addressMatches) > 1) { message(paste0("Address (", street, " ", city, " ", state, ") returned more than one address match. The first match was returned.")) } return(response$result$addressMatches[[1]]$geographies$`Census Blocks`[[1]]$GEOID) } } call_geolocator_latlon <- function(lat, lon) { call_start <- "https://geocoding.geo.census.gov/geocoder/geographies/coordinates?" url <- paste0( "x=", lon, "&y=", lat ) call_end <- "&benchmark=Public_AR_Census2010&vintage=Census2010_Census2010&layers=14&format=json" url_full <- paste0(call_start, url, call_end) r <- httr::GET(url_full) httr::stop_for_status(r) response <- httr::content(r) if (length(response$result$geographies$`Census Blocks`) == 0) { message(paste0("Lat/lon (", lat, ", ", lon, ") returned no geocodes. An NA was returned.")) return(NA_character_) } else { if (length(response$result$geographies$`Census Blocks`) > 1) { message(paste0("Lat/lon (", lat, ", ", lon, ") returned more than geocode. The first match was returned.")) } return(response$result$geographies$`Census Blocks`[[1]]$GEOID) } }
NNS.dep = function(x, y = NULL, asym = FALSE, p.value = FALSE, print.map = FALSE){ if(any(class(x)==c("tbl", "data.table"))) x <- as.vector(unlist(x)) if(sum(is.na(x)) > 0) stop("You have some missing values, please address.") if(p.value){ y_p <- replicate(100, sample.int(length(y))) x <- cbind(x, y, matrix(y[y_p], ncol = dim(y_p)[2], byrow = F)) y <- NULL } if(!is.null(y)){ x <- as.numeric(x) l <- length(x) y <- as.numeric(y) obs <- max(10, l/5) if(print.map) PART <- NNS.part(x, y, order = NULL, obs.req = obs, min.obs.stop = TRUE, type = "XONLY", Voronoi = TRUE) else PART <- NNS.part(x, y, order = NULL, obs.req = obs, min.obs.stop = TRUE, type = "XONLY", Voronoi = FALSE) if(dim(PART$regression.points)[1]==0) return(list("Correlation" = 0, "Dependence" = 0)) PART <- PART$dt PART <- PART[complete.cases(PART),] PART[, weights := .N/l, by = prior.quadrant] weights <- PART[, weights[1], by = prior.quadrant]$V1 ll <- expression(max(min(100, .N), 8)) res <- suppressWarnings(tryCatch(PART[, sign(cor(x[1:eval(ll)],y[1:eval(ll)]))*summary(lm(y[1:eval(ll)]~poly(x[1:eval(ll)], max(1, min(10, as.integer(sqrt(.N))-1)), raw = TRUE)))$r.squared, by = prior.quadrant], error = function(e) PART[, NNS.copula(cbind(x,y)), by = prior.quadrant])) if(sum(is.na(res))>0) res[is.na(res)] <- NNS.copula(cbind(x,y)) res_xy <- suppressWarnings(tryCatch(PART[, sign(cor(x[1:eval(ll)],(y[1:eval(ll)])))*summary(lm(abs(y[1:eval(ll)])~poly(x[1:eval(ll)], max(1, min(10, as.integer(sqrt(.N))-1)), raw = TRUE)))$r.squared, by = prior.quadrant], error = function(e) PART[, NNS.copula(cbind(x,y)), by = prior.quadrant])) res_yx <- suppressWarnings(tryCatch(PART[, sign(cor(y[1:eval(ll)],(x[1:eval(ll)])))*summary(lm(abs(x[1:eval(ll)])~poly(y[1:eval(ll)], max(1, min(10, as.integer(sqrt(.N))-1)), raw = TRUE)))$r.squared, by = prior.quadrant], error = function(e) PART[, NNS.copula(cbind(x,y)), by = prior.quadrant])) if(sum(is.na(res_xy))>0) res_xy[is.na(res_xy)] <- NNS.copula(cbind(x,y)) if(sum(is.na(res_yx))>0) res_yx[is.na(res_yx)] <- NNS.copula(cbind(x,y)) if(asym) dependence <- sum(abs(res_xy$V1) * weights) else dependence <- max(sum(abs(res$V1) * weights), sum(abs(res_xy$V1) * weights), sum(abs(res_yx$V1) * weights)) lx <- PART[, length(unique(x))] ly <- PART[, length(unique(y))] degree_x <- min(10, max(1,lx-1), max(1,ly-1)) I_x <- lx > sqrt(l) I_y <- ly > sqrt(l) I <- I_x * I_y poly_base <- dependence if(I == 1) poly_base <- suppressWarnings(tryCatch(summary(lm(abs(y)~poly(x, degree_x), raw = TRUE))$r.squared, warning = function(w) dependence, error = function(e) dependence)) dependence <- mean(c(rep(dependence,3), poly_base)) corr <- mean(c(sum(res$V1 * weights), sum(res_xy$V1 * weights), sum(res_yx$V1 * weights))) return(list("Correlation" = corr, "Dependence" = dependence)) } else { if(p.value){ original.par <- par(no.readonly = TRUE) nns.mc <- apply(x, 2, function(g) NNS.dep(x[,1], g)) cors <- unlist(lapply(nns.mc, "[[", 1)) deps <- unlist(lapply(nns.mc, "[[", 2)) cor_lower_CI <- LPM.VaR(.025, 0, cors[-c(1,2)]) cor_upper_CI <- UPM.VaR(.025, 0, cors[-c(1,2)]) dep_lower_CI <- LPM.VaR(.025, 0, deps[-c(1,2)]) dep_upper_CI <- UPM.VaR(.025, 0, deps[-c(1,2)]) if(print.map){ par(mfrow = c(1, 2)) hist(cors[-c(1,2)], main = "NNS Correlation", xlab = NULL, xlim = c(min(cors), max(cors[-1]))) abline(v = cors[2], col = "red", lwd = 2) mtext("Result", side = 3, col = "red", at = cors[2]) abline(v = cor_lower_CI, col = "red", lwd = 2, lty = 3) abline(v = cor_upper_CI , col = "red", lwd = 2, lty = 3) hist(deps[-c(1,2)], main = "NNS Dependence", xlab = NULL, xlim = c(min(deps), max(deps[-1]))) abline(v = deps[2], col = "red", lwd = 2) mtext("Result", side = 3, col = "red", at = deps[2]) abline(v = dep_lower_CI , col = "red", lwd = 2, lty = 3) abline(v = dep_upper_CI , col = "red", lwd = 2, lty = 3) par(mfrow = original.par) } return(list("Correlation" = as.numeric((cors)[2]), "Correlation p.value" = min(LPM(0, cors[2], cors[-c(1,2)]), UPM(0, cors[2], cors[-c(1,2)])), "Correlation 95% CIs" = c(cor_lower_CI, cor_upper_CI), "Dependence" = as.numeric((deps)[2]), "Dependence p.value" = min(LPM(0, deps[2], deps[-c(1,2)]), UPM(0, deps[2], deps[-c(1,2)])), "Dependence 95% CIs" = c(dep_lower_CI, dep_upper_CI))) } else return(NNS.dep.matrix(x, asym = asym)) } }
test_that("testing the cuts points", { expect_error(alphabet_to_cuts(0)) expect_error(alphabet_to_cuts(33)) expect_equal(length(alphabet_to_cuts(3)), 3) expect_equal(alphabet_to_cuts(4)[3], 0) for (i in c(2:20)) { cuts <- alphabet_to_cuts(i) expect_equal(cuts[1], -Inf) expect_equal(length(cuts), i) expect_true(cuts[length(cuts)] < 2.0) } })
CNOT5_34 <- function(a){ cnot5_34=TensorProd(diag(2), CNOT4_23(diag(16))) result = cnot5_34 %*% a result }
PKshow <- function(nonmemObj=NULL, table.Rowv=FALSE, table.Colv=FALSE) { PKoutput(nonmemObj, table.Rowv, table.Colv) PKcode() file.location <- paste("file://", getwd(),"/PKindex.html", sep="") browseURL(file.location, browser = getOption("browser")) }
ts_default <- function(x) { if (inherits(x, "ts")) return(x) z <- ts_dts(x) cname <- dts_cname(z) if (identical(cname$time, "time") && identical(cname$value, "value")) { return(x) } setnames(z, cname$time, "time") setnames(z, cname$value, "value") cname$time <- "time" cname$value <- "value" setcolorder(z, c(setdiff(names(z), c("time", "value")), c("time", "value"))) setattr(z, "cname", cname) copy_class(z, x) }
plot_gamma = function(result, title = "") { gamma = result$gamma nniter = nrow(gamma) colors <- c("lightblue", "darkblue") datgamma = as.data.frame(gamma[1:nniter, ]) T = ncol(gamma) colnames(datgamma) = paste0("v", 1:T) rownames(datgamma) = paste0("iter", 1:nniter) datgamma$id = rownames(datgamma) datgamma$id = factor(datgamma$id, levels = datgamma$id) colnames(datgamma) = factor(colnames(datgamma), levels = colnames(datgamma)) mdatgamma = reshape2::melt(datgamma, id = "id") colnames(mdatgamma)[3] = "gamma" mdatgamma$gamma = as.factor(mdatgamma$gamma) g = ggplot2::ggplot(mdatgamma, aes(x = .data$variable, y = .data$id, fill = .data$gamma)) + geom_tile(color = "white") + scale_fill_discrete() + ylab("iterations") + xlab("gamma") + ggtitle(title) return(g) } plot_beta = function(result, title = "") { beta = result$beta T = ncol(beta) nniter = nrow(beta) datbeta = as.data.frame(beta[1:nniter, ]) colnames(datbeta) = paste0("v", 1:T) rownames(datbeta) = paste0("iter", 1:nniter) datbeta$id = rownames(datbeta) datbeta$id = factor(datbeta$id, levels = datbeta$id) datbeta2 = reshape::melt(datbeta, id = "id") datbeta2$xx = rep(1:nniter, T) g = ggplot2::ggplot(datbeta2, aes(x = .data$xx, y = .data$value, col = .data$variable)) + ggplot2::geom_line(alpha = 0.7) + ggplot2::ylab("beta") + ggplot2::xlab("iteration") + ggplot2::ggtitle(title) plot(g) return(g) } beta_dist = function(result, title = "") { beta = result$beta[-1, ] T = ncol(beta) nniter = nrow(beta) datbeta = as.data.frame(beta[1:nniter, ]) colnames(datbeta) = paste0("v", 1:T) rownames(datbeta) = paste0("iter", 1:nniter) datbeta$id = rownames(datbeta) datbeta$id = factor(datbeta$id, levels = datbeta$id) datbeta2 = reshape::melt(datbeta, id = "id") datbeta2$xx = rep(1:nniter, T) g = ggplot2::ggplot(datbeta2, aes(x = .data$variable, y = .data$value)) + ggplot2::geom_violin() return(g) } plot_sigma = function(result, title = "") { Sigma = apply(result$Sigma, c(1, 2), mean) T = nrow(Sigma) Sigma = as.data.frame(Sigma) colnames(Sigma) = paste0("v", 1:T) Sigma$id = paste0("v", 1:T) msig = reshape2::melt(Sigma, id = "id") msig$id = factor(msig$id, levels = paste0("v", 1:10)) msig$variable = factor(msig$variable, levels = paste0("v", 1:10)) g = ggplot2::ggplot(msig, aes(x = .data$id, y = .data$variable, fill = .data$value)) + ggplot2::geom_tile() + ggplot2::scale_fill_gradient(limits = c(0, 1.2)) + ggplot2::ylab("") + ggplot2::xlab("") + ggplot2::geom_text(aes(label = round(.data$value, 2))) plot(g) return(g) }
isNegativeNumberVectorOrNull <- function(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = NA, zeroAllowed = TRUE, negativeAllowed = TRUE, positiveAllowed = FALSE, nonIntegerAllowed = TRUE, naAllowed = FALSE, nanAllowed = FALSE, infAllowed = FALSE, message = message, argumentName = argumentName) }
yy <- function(a=4){ utils::head(stats::runif(10),a) } zz <- function(v=10,a=8){ utils::head(stats::runif(v),a) } yy(6) zz(30,3)
par.opt <- function(sens.results, ts, target.data, par.range) { iteration <- dim(sens.results)[1] res <- array(NA, dim=c(length(par.range), iteration, 2), dimnames=list(paste("par.val", par.range), paste("Iteration", seq(1:iteration), sep=" "), c("Residuals of mean", "Residuals of variance"))) for(p in 1:length(par.range)){ res[p,,1] <- abs(mean(target.data)-sens.results[, ts, "trait.pop.mean", p]) res[p,,2] <- abs(var(target.data)-sens.results[, ts, "trait.pop.variance", p]) } boot_curr <- boot(target.data, statistic=sample.mean, R=100) ci.curr <- boot.ci(boot_curr, conf=0.95, type="basic") low <- ci.curr$basic[4] high <- ci.curr$basic[5] cont <- array(NA, dim=c(length(par.range), 2), dimnames=list(paste("par.val", par.range), c("Difference in means", "Proportion contained"))) for(p in 1:length(par.range)){ cont[,1] <- abs(mean(target.data)-apply(sens.results[, ts, "trait.pop.mean", ], 2, mean, na.rm=TRUE)) cont[,2] <- apply(sens.results[, ts, "trait.pop.mean", ], 2, function(x)sum(x > low & x < high, na.rm=TRUE))/iteration } list("Residuals"=res, "Target.match"=cont) }
x <- c("spam, spam, bacon, and spam", "eggs and spam") E(substr(x, -4), c("spam", "spam")) E(substr(x, -4, -4), c("s", "s")) E(substr(x, -4, -5), c("", "")) E( `substr<-`(x, -4, -5, value="spammity "), c("spam, spam, bacon, and spammity spam", "eggs and spammity spam") ) E(substrl(x, -4, 4), c("spam", "spam")) E(substrl(x, -4, c(-1, 0, 1, 3)), c(NA, "", "s", "spa")) E(`substrl<-`(x, -4, 0, value="spammity "), c("spam, spam, bacon, and spammity spam", "eggs and spammity spam")) E(`substrl<-`(x, -4, 2, value="j"), c("spam, spam, bacon, and jam", "eggs and jam")) E(`substrl<-`(x, -4, -1, value="spammity "), x) E(gsubstr(x, 1, 4), list("spam", "eggs")) E(gsubstr(x, c(13, 1), c(17, 4)), list("bacon", "eggs")) E(gsubstr(x, list(c(13, 1), 1), list(c(17, 4), 4)), list(c("bacon", "spam"), "eggs")) E(`gsubstr<-`(x, -4, -1, value="buckwheat"), c("spam, spam, bacon, and buckwheat", "eggs and buckwheat")) x <- c("aaa", "1aa2aaa3", "a", "bb", "\u0105\U0001F64Baaaaaaaa", NA) p <- c("(?<x>a)(?<y>a)?(?<z>a)?", "a+") E(substrl(x, regexpr2(x, p)), c("aaa", "aa", "a", NA, "aaa", NA)) E(`substrl<-`(x, regexpr2(x, p), value="!"), c("!", "1!2aaa3", "!", "bb", "\u0105\U0001F64B!aaaaa", NA)) E(gsubstrl(x, gregexpr2(x, p)), list("aaa", c("aa", "aaa"), "a", character(0), c("aaa", "aaa", "aa"), NA_character_)) E(`gsubstrl<-`(x, gregexpr2(x, p), value="!"), c("!", "1!2!3", "!", "bb", "\u0105\U0001F64B!!!", NA)) E(`gsubstrl<-`(x, gregexpr2(x, p), value=list(c("!", "?", "@"))), P(c("!", "1!2?3", "!", "bb", "\u0105\U0001F64B!?@", NA), warning=TRUE))
poppr.amova <- function(x, hier = NULL, clonecorrect = FALSE, within = TRUE, dist = NULL, squared = TRUE, freq = TRUE, correction = "quasieuclid", sep = "_", filter = FALSE, threshold = 0, algorithm = "farthest_neighbor", threads = 1L, missing = "loci", cutoff = 0.05, quiet = FALSE, method = c("ade4", "pegas"), nperm = 0){ if (!inherits(x, c("genind", "genlight"))) stop(paste(substitute(x), "must be a genind object.")) if (is.null(hier)) stop("A population hierarchy must be specified") methods <- c("ade4", "pegas") method <- match.arg(method, methods) setPop(x) <- hier is_genind <- is.genind(x) haploid <- all(ploidy(x) == 1) within <- if (haploid) FALSE else within heterozygous <- if (is_genind) check_Hs(x) else TRUE codominant <- if (is_genind) x@type != "PA" else TRUE freq <- freq & codominant & !haploid if (!is.clone(x)) { x <- if (is_genind) as.genclone(x) else as.snpclone(x) } if (filter && within && !haploid) { msg <- paste("`filter = TRUE` overrides `within = TRUE`.\n", "The calculations will run with the option `within = FALSE`.\n", "To remove this warning, set either `filter` or `within` to `FALSE`.") warning(msg) within <- FALSE } if (filter && (haploid | !within | !heterozygous | !codominant)) { if (!is(x@mlg, "MLG")) { x@mlg <- new("MLG", x@mlg) } if (!quiet) { message("Filtering ...") message("Original multilocus genotypes ... ", nmll(x, "original")) } if (is.null(dist)) { if (is_genind) { dist <- dist(tab(x, freq = freq)) } else { dist <- bitwise.dist(x, euclidean = TRUE, scale_missing = TRUE, threads = threads) } squared <- FALSE } filt_stats <- mlg.filter(x, threshold = threshold, algorithm = algorithm, distance = dist, stats = "ALL", threads = threads) dist <- as.dist(filt_stats$DISTANCE) x@mlg@mlg["contracted"] <- filt_stats$MLGS distname(x@mlg) <- "dist" distalgo(x@mlg) <- algorithm cutoff(x@mlg)["contracted"] <- threshold mll(x) <- "contracted" if (!quiet) message("Contracted multilocus genotypes ... ", nmll(x)) } if (clonecorrect) { x <- clonecorrect(x, strata = hier, keep = seq(all.vars(hier))) } if (is_genind) { x <- missingno(x, type = missing, cutoff = cutoff, quiet = quiet) } else { if (!all(lengths(NA.posi(x)) == 0L)) warning("Missing data are not filtered from genlight data.") } full_ploidy <- if (is_genind) codominant && sum(tabulate(get_local_ploidy(x)) > 0) == 1 else TRUE if (within && heterozygous && codominant && !haploid && full_ploidy) { hier <- update(hier, ~./Individual) x <- make_haplotypes(x) x <- if (is_genind) as.genclone(x) else as.snpclone(x) } else if (within && codominant && !full_ploidy && is.null(dist)) { warning(paste("Data with mixed ploidy or ambiguous allele dosage cannot have", "within-individual variance calculated until the dosage is correctly", "estimated.\n\n", "This function will return the summary statistic, rho (Ronfort et al 1998)", "but be aware that this estimate will be skewed due to ambiguous dosage.", if (test_zeroes(x)) "If you have zeroes encoded in your data, you may wish to remove them.\n", "To remove this warning, use within = FALSE") ) } hierdf <- strata(x, formula = hier) if (method == "ade4") xstruct <- make_ade_df(hier, hierdf) if (is.null(dist)) { squared <- FALSE if (method == "ade4") { if (is_genind) { xdist <- dist(tab(clonecorrect(x, strata = NA), freq = freq)) } else { xdist <- bitwise.dist(clonecorrect(x, strata = NA), euclidean = TRUE, scale_missing = TRUE, threads = threads) } } else { if (is_genind) { xdist <- dist(tab(x, freq = freq)) } else { xdist <- bitwise.dist(x, euclidean = TRUE, scale_missing = TRUE, threads = threads) } } } else { datalength <- choose(nInd(x), 2) mlgs <- mlg(x, quiet = TRUE) mlglength <- choose(mlgs, 2) if (length(dist) > mlglength & length(dist) == datalength) { corrected <- if (method == "ade4") .clonecorrector(x) else TRUE xdist <- as.dist(as.matrix(dist)[corrected, corrected]) } else if (length(dist) == mlglength) { xdist <- dist } else { distobs <- ceiling(sqrt(length(dist)*2)) msg <- paste("\nDistance matrix does not match the data.\n", "\n\tUncorrected observations expected..........", nInd(x), "\n\tClone corrected observations expected......", mlgs, "\n\tObservations in provided distance matrix...", distobs, ifelse(within == TRUE, "\n\n\tTry setting within = FALSE.", "\n")) stop(msg) } if (squared) { xdist <- sqrt(xdist) } } if (!is.euclid(xdist)) { CORRECTIONS <- c("cailliez", "quasieuclid", "lingoes") try(correct <- match.arg(correction, CORRECTIONS), silent = TRUE) if (!exists("correct")){ stop(not_euclid_msg(correction)) } else { correct_fun <- match.fun(correct) if (correct == CORRECTIONS[2]){ message("Distance matrix is non-euclidean.") message(c("Using quasieuclid correction method.", " See ?quasieuclid for details.")) xdist <- correct_fun(xdist) } else { xdist <- correct_fun(xdist, print = TRUE, cor.zero = FALSE) } } } if (method == "ade4") { allmlgs <- unique(mlg.vector(x)) xtab <- t(mlg.table(x, plot = FALSE, quiet = TRUE, mlgsub = allmlgs)) xtab <- as.data.frame(xtab) return(ade4::amova(samples = xtab, distances = xdist, structures = xstruct)) } else { form <- paste(all.vars(hier), collapse = "/") hier <- as.formula(paste("xdist ~", form)) return(pegas::amova(hier, data = hierdf, nperm = nperm, is.squared = FALSE)) } }
TIRTfit <- function(fit, data) { version <- utils::packageVersion("thurstonianIRT") structure(nlist(fit, data, version), class = "TIRTfit") } is.TIRTfit <- function(x) { inherits(x, "TIRTfit") } print.TIRTfit <- function(x, ...) { print(x$fit, ...) } summary.TIRTfit <- function(object, ...) { summary(object$fit, ...) } predict.TIRTfit <- function(object, newdata = NULL, ...) { if (inherits(object$fit, "stanfit")) { out <- predict_stan(object, newdata = newdata, ...) } else if (inherits(object$fit, "mplusObjectTIRT")) { out <- predict_mplus(object, newdata = newdata, ...) } else if (inherits(object$fit, "lavaan")) { out <- predict_lavaan(object, newdata = newdata, ...) } out } gof.TIRTfit <- function(object, ...) { if (!inherits(object$fit, "lavaan")) { stop("gof.TIRTfit currently only works for lavaan fitted TIRT models.") } N <- length(unique(object$data$person)) chi_sq <- object$fit@test$scaled.shifted$stat if (is.null(chi_sq)) { chi_sq <- NA } df <- object$fit@test$scaled.shifted$df if (is.null(df)) { df <- NA } blocks <- unique(object$data$block) redundancies <- rep(NA, length(blocks)) for (i in seq_along(blocks)) { sel_items <- unique(object$data$itemC[object$data$block == blocks[i]]) n_items <- length(sel_items) redundancies[i] <- n_items * (n_items - 1) * (n_items - 2) / 6 } df <- df - sum(redundancies) p_val <- 1 - stats::pchisq(chi_sq, df) RMSEA <- ifelse(df > chi_sq, 0, sqrt((chi_sq - df)/(df * (N - 1)))) gof <- c(chi_sq = chi_sq, df = df, p_val = p_val, RMSEA = RMSEA) gof } gof <- function(object, ...) { UseMethod("gof") }
xvalDapc <- function (x, ...) UseMethod("xvalDapc") .group_sampler <- function(e, grp, training.set){ group_e <- grp == e N_group_e <- sum(group_e) if (N_group_e < 2){ return(which(group_e)) } else { samp_group <- which(group_e) samp_size <- round(training.set * N_group_e) return(sample(samp_group, size = samp_size)) } } .boot_group_sampler <- function(dat = list(DATA = NULL, GRP = NULL, PCA = NULL, KEEP = NULL), mle = NULL){ to_keep <- unlist(lapply(levels(dat$GRP), .group_sampler, dat$GRP, mle)) dat$PCA$li <- dat$PCA$li[to_keep, , drop = FALSE] dat$KEEP <- to_keep return(dat) } .boot_dapc_pred <- function(x, n.pca = n.pca, n.da = n.da, result = "overall"){ if (length(x$KEEP) == nrow(x$DATA)){ out <- 1 } else { new_dat <- x$DATA[-x$KEEP, ,drop = FALSE] train_dat <- x$DATA[x$KEEP, ,drop = FALSE] new_grp <- x$GRP[-x$KEEP] train_grp <- x$GRP[x$KEEP] dapclist <- list(train_dat, train_grp, n.pca = n.pca, n.da = n.da, dudi = x$PCA) temp.dapc <- suppressWarnings(do.call("dapc", dapclist)) temp.dapc <- suppressWarnings(dapc(train_dat, train_grp, dudi = x$PCA, n.pca = n.pca, n.da = n.da)) temp.pred <- predict.dapc(temp.dapc, newdata = new_dat) if (identical(result, "overall")){ out <- mean(temp.pred$assign == new_grp) } if (identical(result, "groupMean")){ out <- mean(tapply(temp.pred$assign == new_grp, new_grp, mean), na.rm = TRUE) } } return(out) } .get.prop.pred <- function(n.pca, x, n.da, groups, grp, training.set, pcaX, result = "overall", reps = 100, ...){ bootlist <- list(DATA = x, GRP = grp, PCA = pcaX, KEEP = 1:nrow(x)) out <- boot::boot(bootlist, .boot_dapc_pred, sim = "parametric", R = reps, ran.gen = .boot_group_sampler, mle = training.set, n.pca = n.pca, n.da = n.da, result = result, ...)$t return(as.vector(out)) } xvalDapc.default <- function(x, grp, n.pca.max = 300, n.da = NULL, training.set = 0.9, result = c("groupMean", "overall"), center = TRUE, scale = FALSE, n.pca = NULL, n.rep = 30, xval.plot = TRUE, ...){ grp <- factor(grp) n.pca <- n.pca[n.pca > 0] if(!is.null(n.da)){ n.da <- n.da }else{ n.da <- length(levels(grp))-1} if(missing(training.set)){ training.set <- 0.9 }else{ training.set <- training.set} if(missing(n.rep)){ n.rep <- 30 }else{ n.rep <- n.rep} if(missing(result)){ result <- "groupMean" }else{ if(length(result) > 1) result <- result[1] result <- result} N <- nrow(x) groups <- levels(grp) group.n <- as.vector(table(grp)) popmin <- min(group.n) if(popmin == 1){ singles <- which(group.n == 1) counter <- length(singles) if(counter == 1){ msg <- "1 group has only 1 member so it cannot be represented in both training and validation sets." }else{ msg <- paste(counter, "groups have only 1 member: these groups cannot be represented in both training and validation sets.") } warning(msg) popmin <- min(group.n[-which(group.n==1)]) } training.set2 <- (popmin - 1)/popmin if(training.set2 < training.set) training.set <- training.set2 N.training <- round(N*training.set) if(missing(n.pca.max)) n.pca.max <- min(dim(x)) pcaX <- dudi.pca(x, nf=n.pca.max, scannf=FALSE, center=center, scale=scale) n.pca.max <- min(n.pca.max, pcaX$rank, N.training-1) if(n.pca.max < 10){ runs <- n.pca.max }else{ runs <- 10} if(is.null(n.pca)){ n.pca <- round(pretty(1:n.pca.max, runs)) } n.pca <- n.pca[n.pca>0 & n.pca<(N.training-1) & n.pca<n.pca.max] res.all <- unlist(lapply(n.pca, .get.prop.pred, x, n.da, groups, grp, training.set, pcaX, result, n.rep, ...)) xval <- data.frame(n.pca=rep(n.pca, each=n.rep), success=res.all) n.pcaF <- as.factor(xval$n.pca) successV <- as.vector(xval$success) pca.success <- tapply(successV, n.pcaF, mean) n.opt <- which.max(tapply(successV, n.pcaF, mean)) temp <- seq(from=1, to=length(xval$n.pca), by=n.rep) orary <-c(temp+(n.rep-1)) index <-c(1:length(temp)) lins <-sapply(index, function(e) seq(from=temp[e], to=orary[e])) lin <-c(1:ncol(lins)) col <-successV cait<-sapply(lin, function(e) ((col[lins[,e]])-1)^2) FTW <-sapply(lin, function(e) sum(cait[,e])/n.rep) RMSE <- sqrt(FTW) names(RMSE) <- xval$n.pca[temp] best.n.pca <- names(which(RMSE == min(RMSE))) if(length(best.n.pca) > 1) best.n.pca <- best.n.pca[length(best.n.pca)] n.pca <- as.integer(best.n.pca) n.da <- nlevels(grp)-1 dapc1 <- suppressWarnings(dapc(x, grp, n.pca=n.pca, n.da=n.da)) snps <- x phen <- grp random <- replicate(300, mean(tapply(sample(phen)==phen, phen, mean))) q.phen <- quantile(random, c(0.025,0.5,0.975)) if(xval.plot==TRUE){ smoothScatter(xval$n.pca, successV, nrpoints=Inf, pch=20, col=transp("black"), ylim=c(0,1), xlab="Number of PCA axes retained", ylab="Proportion of successful outcome prediction", main="DAPC Cross-Validation") abline(h=q.phen, lty=c(2,1,2)) } xvalResults <- list(xval, q.phen, pca.success, (names(n.opt)), RMSE, best.n.pca, dapc1) names(xvalResults)[[1]] <- "Cross-Validation Results" names(xvalResults)[[2]] <- "Median and Confidence Interval for Random Chance" names(xvalResults)[[3]] <- "Mean Successful Assignment by Number of PCs of PCA" names(xvalResults)[[4]] <- "Number of PCs Achieving Highest Mean Success" names(xvalResults)[[5]] <- "Root Mean Squared Error by Number of PCs of PCA" names(xvalResults)[[6]] <- "Number of PCs Achieving Lowest MSE" names(xvalResults)[[7]] <- "DAPC" return(xvalResults) } xvalDapc.data.frame <- xvalDapc.default xvalDapc.matrix <- xvalDapc.data.frame xvalDapc.genlight <- function(x, ...){ xvalDapc.matrix(as.matrix(x), ...) } xvalDapc.genind <- function(x, ...){ xvalDapc.matrix(tab(x), ...) }
distinctiveness_range = function(pres_matrix, dist_matrix, given_range, relative = FALSE) { full_matrix_checks(pres_matrix, dist_matrix) if (!is.numeric(given_range) | is.na(given_range)) { stop("'given_range' argument should be non-null and numeric") } if (!is.logical(relative) | is.na(relative) | length(relative) != 1) { stop("'relative' argument should be either TRUE or FALSE") } common = species_in_common(pres_matrix, dist_matrix) pres_matrix = pres_matrix[, common, drop = FALSE] dist_matrix = dist_matrix[common, common] if (!is_relative(pres_matrix)) { warning("Provided object may not contain relative abundances nor ", "presence-absence\n", "Have a look at the make_relative() function if it is the case") } corr_matrix = dist_matrix corr_matrix[dist_matrix > given_range] = 0 corr_matrix[dist_matrix <= given_range] = 1 diag(corr_matrix) = 0 index_matrix = pres_matrix %*% (dist_matrix * corr_matrix) if (requireNamespace("Matrix", quietly = TRUE) & is(pres_matrix, "sparseMatrix")) { index_matrix[Matrix::which(pres_matrix == 0)] = NA total_sites = Matrix::rowSums(pres_matrix) } else { index_matrix[which(pres_matrix == 0)] = NA total_sites = rowSums(pres_matrix) } denom_matrix = pres_matrix %*% corr_matrix max_dist = 1 if (relative) { max_dist = apply(pres_matrix, 1, function(row, d_mat = dist_matrix) { non_null_sp = names(row[row != 0]) non_null_dist = d_mat[non_null_sp, non_null_sp] max(non_null_dist) }) } right_term = 1 if (is_relative(pres_matrix) & !all(unique(as.vector(pres_matrix)) %in% c(1, 0))) { right_term = 1 - denom_matrix } index_matrix = ((index_matrix / denom_matrix) * right_term) / max_dist index_matrix[denom_matrix == 0 & pres_matrix != 0] = 1 dimnames(index_matrix) = dimnames(pres_matrix) return(index_matrix) }
source("incl/start.R") maxCores <- min(2L, availableCores(methods = "system")) plan("default") strategy0 <- plan() message("*** parseCmdArgs() ...") args <- parseCmdArgs() str(args) options(future.plan = NULL, future.cmdargs = c("-p", 1L)) args <- parseCmdArgs() str(args) stopifnot(args$p == 1L) options(future.plan = NULL, future.cmdargs = c(sprintf("--parallel=%d", maxCores))) args <- parseCmdArgs() str(args) stopifnot(args$p == maxCores) options(future.plan = NULL, future.cmdargs = c("-p", 1L, sprintf("--parallel=%d", maxCores))) args <- parseCmdArgs() str(args) stopifnot(args$p == maxCores) options(future.plan = NULL, future.cmdargs = c("-p", 0L)) args <- parseCmdArgs() stopifnot(is.null(args$p)) res <- tryCatch(parseCmdArgs(), warning = function(w) w) stopifnot(inherits(res, "warning")) options(future.plan = NULL, future.cmdargs = c("-p", .Machine$integer.max)) args <- parseCmdArgs() stopifnot(is.null(args$p)) res <- tryCatch(parseCmdArgs(), warning = function(w) w) stopifnot(inherits(res, "warning")) options(future.plan = NULL, future.cmdargs = NULL) message("*** parseCmdArgs() ... DONE") message("*** .onLoad() ...") plan("default") pkgname <- "future" message("- .onLoad() w/out command-line options ...") options(future.plan = NULL, future.cmdargs = NULL) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) stopifnot(all(class(strategy) == class(strategy0))) plan("default") message("- .onLoad() w/out command-line options ... DONE") message("- .onLoad() w/ -p 1 ...") options(future.plan = NULL, future.cmdargs = c("-p", 1)) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) default <- getOption("future.plan", "sequential") if (is.function(default)) default <- class(default) stopifnot(inherits(strategy, default)) plan("default") message("- .onLoad() w/ -p 1 ... DONE") message("- .onLoad() w/ --parallel=1 ...") plan("default") options(future.plan = NULL, future.cmdargs = "-parallel=1") .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) default <- getOption("future.plan", "sequential") if (is.function(default)) default <- class(default) stopifnot(inherits(strategy, default)) plan("default") message("- .onLoad() w/ --parallel=1 ... DONE") message("- .onLoad() w/ -p 2 ...") options(future.plan = NULL, future.cmdargs = c("-p", 2)) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) if (maxCores >= 2) { stopifnot(inherits(strategy, "multiprocess")) } else { stopifnot(all(class(strategy) == class(strategy0))) } plan("default") message("- .onLoad() w/ -p 2 ... DONE") message("- .onLoad() w/ -p 0 ...") options(future.plan = NULL, future.cmdargs = c("-p", 0)) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) stopifnot(all(class(strategy) == class(strategy0))) plan("default") message("- .onLoad() w/ -p 0 ... DONE") message("- .onLoad() w/ -p -1 ...") options(future.plan = NULL, future.cmdargs = c("-p", -1)) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) stopifnot(all(class(strategy) == class(strategy0))) plan("default") message("- .onLoad() w/ -p -1 ... DONE") message("- .onLoad() w/ -p foo ...") options(future.plan = NULL, future.cmdargs = c("-p", "foo")) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) stopifnot(all(class(strategy) == class(strategy0))) plan("default") message("- .onLoad() w/ -p foo ... DONE") message("- .onLoad() w/ R_FUTURE_PLAN = 'multisession' ...") Sys.setenv(R_FUTURE_PLAN = "multisession") options(future.plan = NULL, future.cmdargs = NULL) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) stopifnot(inherits(strategy, "multisession")) plan("default") Sys.setenv(R_FUTURE_PLAN = "") message("- .onLoad() w/ R_FUTURE_PLAN = 'multisession' ... DONE") message("- .onLoad() w/ future.plan = 'multisession' ...") options(future.plan = NULL, future.plan = 'multisession', future.cmdargs = NULL) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) stopifnot(inherits(strategy, "multisession")) plan("default") message("- .onLoad() w/ future.plan = 'multisession' ... DONE") message("- .onLoad() w/ R_FUTURE_PLAN = 'multisession' & -p 1 ...") Sys.setenv(R_FUTURE_PLAN = "multisession") options(future.plan = NULL, future.cmdargs = c("-p", 1)) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) stopifnot(inherits(strategy, "multisession")) plan("default") Sys.setenv(R_FUTURE_PLAN = "") message("- .onLoad() w/ R_FUTURE_PLAN = 'multisession' & -p 1 ... DONE") message("- .onLoad() w/ future.plan = 'multisession' & -p 1 ...") options(future.plan = 'multisession', future.cmdargs = c("-p", "1")) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) stopifnot(inherits(strategy, "multisession")) plan("default") message("- .onLoad() w/ future.plan = 'multisession' & -p 1 ... DONE") message("- .onLoad() w/ future.plan = 'multisession' & -p 1 ...") options(future.plan = multisession, future.cmdargs = c("-p", "1")) .onLoad(pkgname, pkgname) strategy <- plan("next") print(strategy) stopifnot(inherits(strategy, "multisession")) plan("default") message("- .onLoad() w/ future.plan = 'multisession' & -p 1 ... DONE") options(future.plan = NULL, future.cmdargs = NULL, future.availableCores.system = NULL, future.availableCores.fallback = NULL) message("*** .onLoad() ... DONE") message("*** .onAttach() ...") pkgname <- "future" message("- .onAttach() w/ option future.startup.loadScript ...") for (value in list(NULL, FALSE, TRUE)) { options(future.startup.loadScript = value) .onAttach(pkgname, pkgname) } message("- .onAttach() w/ option future.startup.loadScript ... DONE") message("- .onAttach() with ./.future.R ...") pathname <- ".future.R" xyz <- 0L cat("xyz <- 42L; cat('ping\n')\n", file = pathname) .onAttach(pkgname, pkgname) print(xyz) stopifnot(is.integer(xyz), xyz >= 0, xyz == 42L) file.remove(pathname) message("- .onAttach() with ./.future.R ... DONE") message("*** .onAttach() ... DONE") source("incl/end.R")
inset_element <- function(p, left, bottom, right, top, align_to = 'panel', on_top = TRUE, clip = TRUE, ignore_tag = FALSE) { align_to <- match.arg(align_to, c('panel', 'plot', 'full')) if (!is.unit(left)) { left <- unit(left, 'npc') } if (!is.unit(bottom)) { bottom <- unit(bottom, 'npc') } if (!is.unit(right)) { right <- unit(right, 'npc') } if (!is.unit(top)) { top <- unit(top, 'npc') } if (!is.ggplot(p)) { p <- wrap_elements(full = p, clip = FALSE) } if (!is.ggplot(p)) { p <- wrap_elements(full = p, clip = clip) } clip <- if (clip) 'on' else 'off' attr(p, 'settings') <- list(left = left, bottom = bottom, right = right, top = top, align_to = align_to, on_top = on_top, clip = clip, ignore_tag = ignore_tag) class(p) <- c('inset_patch', class(p)) p } is_inset_patch <- function(x) inherits(x, 'inset_patch') print.inset_patch <- function(x, newpage = is.null(vp), vp = NULL, ...) { print(plot_spacer() + x, newpage = newpage, vp = vp, ...) } plot.inset_patch <- print.inset_patch has_tag.inset_patch <- function(x) !attr(x, 'settings')$ignore_tag
context("elevation: geonames_conn internal fxn") test_that("geonames_conn internal fxn works", { skip_on_cran() latitude <- c(50.01, 51.01) longitude <- c(10.2, 11.2) vcr::use_cassette("elevation_geonames_conn", { aa <- geonames_conn("srtm3", latitude, longitude) }) expect_is(aa, "numeric") expect_equal(length(aa), 2) }) test_that("geonames_conn fails well", { skip_on_cran() expect_error(geonames_conn(), "argument \"elevation_model\" is missing") expect_error(geonames_conn("foobar"), "argument \"latitude\" is missing") expect_error(geonames_conn("foobar", 4), "argument \"longitude\" is missing") vcr::use_cassette("elevation_geonames_conn_unauthorized", { expect_error(geonames_conn("srtm3", 4, 5, "cheesemonkey"), "Unauthorized", class = "error") expect_error(geonames_conn("srtm3", "a", "a"), "invalid number") }) }) context("elevation") test_that("elevation", { skip_on_cran() load("elevation_test_data.rda") vcr::use_cassette("elevation", { aa <- elevation(elevation_test_data) bb <- elevation(latitude = elevation_test_data$decimalLatitude, longitude = elevation_test_data$decimalLongitude) pairs <- list(c(31.8496, -110.576060), c(29.15503, -103.59828)) cc <- elevation(latlong = pairs) }) expect_is(aa, "data.frame") expect_is(bb, "data.frame") expect_is(cc, "data.frame") expect_is(aa$elevation, "numeric") expect_is(bb$elevation, "numeric") expect_is(cc$elevation, "numeric") }) context("elevation: different elevation models work") test_that("elevation models work", { skip_on_cran() load("elevation_test_data.rda") eltest_small <- elevation_test_data[1:5, ] vcr::use_cassette("elevation_models", { srtm3 <- elevation(eltest_small, elevation_model = "srtm3") srtm1 <- elevation(eltest_small, elevation_model = "srtm1") astergdem <- elevation(eltest_small, elevation_model = "astergdem") gtopo30 <- elevation(eltest_small, elevation_model = "gtopo30") }) expect_is(srtm3, "data.frame") expect_is(srtm3$elevation_geonames, "numeric") expect_is(srtm1, "data.frame") expect_is(srtm1$elevation_geonames, "numeric") expect_is(astergdem, "data.frame") expect_is(astergdem$elevation_geonames, "numeric") expect_is(gtopo30, "data.frame") expect_is(gtopo30$elevation_geonames, "numeric") }) context("elevation: fails well") test_that("fails correctly", { skip_on_cran() expect_error(elevation("aa"), "input must be a data.frame") expect_error(elevation(), "one of input, lat & long, or latlong must be given") dat <- data.frame(decimalLatitude = c(6, NA), decimalLongitude = c(120, -120)) expect_error(elevation(dat), "Input data has some missing values") dat <- data.frame(decimalLatitude = c(6, 600), decimalLongitude = c(120, -120)) expect_error(elevation(dat), "Input data has some impossible values") dat <- data.frame(decimalLatitude = c(0, 45), decimalLongitude = c(0, -120)) vcr::use_cassette("elevation_warning_zero_zero", { expect_warning(elevation(dat), "Input data has some points at 0,0") }) pairs <- list(c(31.8496, -110.576060), c(29.15503, -103.59828)) vcr::use_cassette("elevation_unauthorized", { expect_error(elevation(latlong = pairs, username = "bad_user"), "Unauthorized", class = "error") }) })
check.arg <- function(arg, choices, what = "", n = length(arg), value = T){ index <- T if(length(arg) > n) { warning(paste("Only the first", n, "values tested in", deparse(substitute(arg)), "!\n")) arg <- arg[1:n] } while(index) { index <- pmatch(arg, choices, F, duplicates.ok = T) if(!all(index)) { cat("Sorry, it seems you have wrong argument(s)! in ", deparse(substitute(arg)), " ...\n") arg <- enter(deparse(substitute(arg)), choices, what = what, n = n) index <- 1 } else break } if(value) choices[index] else index }
slca_calc_ic <- function( dev, dat, G, K, TP,I, delta.designmatrix, delta.fixed, Xlambda, Xlambda.fixed, data0, deltaNULL, Xlambda.constr.V, regularization, regular_indicator_parameters, Xlambda_positive) { ic <- list( "deviance"=dev, "n"=nrow(data0) ) ic$traitpars <- 0 ic$itempars <- 0 ic$itempars <- length(Xlambda) if ( ! is.null(Xlambda.fixed ) ){ ic$itempars <- ic$itempars - nrow(Xlambda.fixed ) } ind_regular <- ( Xlambda==0 ) * regular_indicator_parameters ind_positive <- ( Xlambda==0 ) * Xlambda_positive ind_nonactive <- 1 * ( ind_regular | ind_positive ) ic$nonactive <- sum(ind_nonactive) ic$itempars <- ic$itempars - ic$nonactive if ( ! is.null( Xlambda.constr.V ) ){ ic$itempars <- ic$itempars - ncol(Xlambda.constr.V ) } ic$traitpars <- G * ncol(delta.designmatrix ) - G*deltaNULL if ( ! is.null(delta.fixed ) ){ ic$traitpars <- ic$traitpars - nrow(delta.fixed ) } ic$np <- ic$itempars + ic$traitpars ic <- cdm_calc_information_criteria(ic=ic) return(ic) } .slca.calc.ic <- slca_calc_ic
summary.fit.linERR <- function (object, ...) { call <- attr(object, "Call") coef.p <- attr(object,"details")$par var.cf <- diag(attr(object, "vcov")) dn <- c("Estimate", "Std. Error") s.err <- vector() tvalue <- vector() pvalue <- vector() names.covs <- c(colnames(attr(object, "covariates1")), attr(object, "covs_names")) if (!all(var.cf > 0)) { warning("Hessian is not positive definite") } for (i in 1:length(coef.p)) { if (var.cf[i] > 0) { s.err[i] <- sqrt(var.cf[i]) tvalue[i] <- coef.p[i]/s.err[i] pvalue[i] <- 2 * pnorm(-abs(tvalue[i])) }else{ s.err[i] <- NA tvalue[i] <- NA pvalue[i] <- NA } } coef.table <- cbind(coef.p, s.err, tvalue, pvalue) dimnames(coef.table) <- list(names(coef.p), c(dn, "Test Stat.", "p-value")) rownames(coef.table) <- c("dose", names.covs) aic <- attr(object, "aic") dev <- attr(object, "deviance") inf.rsets <- length(attr(object, "rsets_2")) - 1 ans <- list(coefficients=coef.table, aic=aic, dev=dev, call=call, inf.rsets=inf.rsets) class(ans) <- "summary.fit.linERR" return(ans) }
rMVNmixture2 <- function(n, weight, mean, Q, Sigma) { thispackage <- "mixAK" if (n <= 0) stop("n must be positive") if (any(weight < 0)) stop("weights must be non-negative") K <- length(weight) if (K == 0) stop("weight is of zero length") weight <- weight/sum(weight) UNIVARIATE <- FALSE if (!is.matrix(mean)) UNIVARIATE <- TRUE else if (ncol(mean) == 1) UNIVARIATE <- TRUE if (UNIVARIATE){ p <- 1 if (length(mean) != K) stop(paste("mean must be of length ", K, sep="")) if (missing(Sigma)){ if (missing(Q)) stop("Sigma or Q must be given") if (length(Q) != K) stop(paste("Q must be of length ", K, sep="")) if (is.list(Q)){ lQ <- sapply(Q, length) if (any(lQ != 1)) stop("all Q elements must be of length 1") Q <- unlist(Q) } if (any(Q <= 0)) stop("all Q elements must be positive") degener <- is.infinite(Q) Sigma <- 1/Q }else{ if (length(Sigma) != K) stop(paste("Sigma must be of length ", K, sep="")) if (is.list(Sigma)){ lSigma <- sapply(Sigma, length) if (any(lSigma != 1)) stop("all Sigma elements must be of length 1") Sigma <- unlist(Sigma) } if (any(Sigma < 0)) stop("all Sigma elements must be nonnegative") degener <- (Sigma==0) Q <- 1/Sigma } }else{ p <- ncol(mean) if (nrow(mean) != K) stop(paste("mean must have ", K, " rows", sep="")) if (missing(Sigma)){ if (missing(Q)) stop("Sigma or Q must be given") if (is.matrix(Q)){ if (K != 1) stop("Q must be a list of matrices") Q <- list(Q) } if (length(Q) != K) stop(paste("Q must be of length ", K, sep="")) Sigma <- list() QLT <- numeric(0) for (j in 1:K){ if (!is.matrix(Q[[j]])) stop("all elements of Q must be matrices") if (nrow(Q[[j]]) != p | ncol(Q[[j]]) != p) stop(paste("all elements of Q must be squared matrices with ", p, " rows and columns", sep="")) Sigma[[j]] <- chol2inv(chol(Q[[j]])) QLT <- c(QLT, Q[[j]][lower.tri(Q[[j]], diag=TRUE)]) } }else{ if (is.matrix(Sigma)){ if (K != 1) stop("Sigma must be a list of matrices") Sigma <- list(Sigma) } if (length(Sigma) != K) stop(paste("Sigma must be of length ", K, sep="")) Q <- list() QLT <- numeric(0) for (j in 1:K){ if (!is.matrix(Sigma[[j]])) stop("all elements of Sigma must be matrices") if (nrow(Sigma[[j]]) != p | ncol(Sigma[[j]]) != p) stop(paste("all elements of Sigma must be squared matrices with ", p, " rows and columns", sep="")) Q[[j]] <- chol2inv(chol(Sigma[[j]])) QLT <- c(QLT, Q[[j]][lower.tri(Q[[j]], diag=TRUE)]) } } } if (p == 1){ SAMPLE <- .C(C_rmixNorm_R, x = double(n), dens = double(n), cumw = double(K), K = as.integer(K), w = as.double(weight), mu = as.double(mean), sigma = as.double(sqrt(Sigma)), npoints= as.integer(n), PACKAGE=thispackage) x <- SAMPLE$x }else{ SAMPLE <- .C(C_rmixMVN_R, x = double(p*n), dens = double(n), w.dets = as.double(weight), cumw = double(K), Li = as.double(QLT), work = double(p), err = integer(1), K = as.integer(K), mu = as.double(t(mean)), nx = as.integer(p), npoints= as.integer(n), PACKAGE=thispackage) if (SAMPLE$err) stop("Something went wrong.") x <- matrix(SAMPLE$x, nrow=n, ncol=p, byrow=TRUE) } return(list(x=x, dens=SAMPLE$dens)) }
`XY.GLOB` <- function(x, y, PROJ.DATA) { if(PROJ.DATA$type==0) { LL = list(lon=x , lat=y) } if(PROJ.DATA$type==1) { LL = merc.sphr.ll(PROJ.DATA$LON0 , x , y) } if(PROJ.DATA$type==2) { LL = utm.sphr.ll( x , y, PROJ.DATA) } if(PROJ.DATA$type==3) { LL = lambert.cc.ll( x , y, PROJ.DATA) } if(PROJ.DATA$type==4) { LL = stereo.sphr.ll( x , y, PROJ.DATA) } if(PROJ.DATA$type==5) { LL = utm.elps.ll( x , y, PROJ.DATA) } if(PROJ.DATA$type==6) { LL = equid.cyl.ll(PROJ.DATA$LON0 ,PROJ.DATA$LAT0 , x , y) } if(PROJ.DATA$type==7) { LL = utm.wgs84.ll( x , y, PROJ.DATA) } if(PROJ.DATA$type==99) { LL = lcgc(PROJ.DATA$LAT0, PROJ.DATA$LON0, x , y) } return(LL) }
structure(list(url = "https://api.twitter.com/2/users?ids=1085578910853746688%2C2758518175%2C34739420&user.fields=created_at%2Cdescription%2Centities%2Cid%2Clocation%2Cname%2Cpinned_tweet_id%2Cprofile_image_url%2Cprotected%2Cpublic_metrics%2Curl%2Cusername%2Cverified%2Cwithheld", status_code = 200L, headers = structure(list(date = "Wed, 16 Jun 2021 19:52:44 UTC", server = "tsa_o", `content-type` = "application/json; charset=utf-8", `cache-control` = "no-cache, no-store, max-age=0", `content-length` = "1014", `x-access-level` = "read", `x-frame-options` = "SAMEORIGIN", `content-encoding` = "gzip", `x-xss-protection` = "0", `x-rate-limit-limit` = "900", `x-rate-limit-reset` = "1623874064", `content-disposition` = "attachment; filename=json.json", `x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "899", `strict-transport-security` = "max-age=631138519", `x-connection-hash` = "6a7945024491d2dfb78c94f690b6bff88f3d5503d394391ff4122326cd6e676b"), class = c("insensitive", "list")), all_headers = list(list(status = 200L, version = "HTTP/2", headers = structure(list(date = "Wed, 16 Jun 2021 19:52:44 UTC", server = "tsa_o", `content-type` = "application/json; charset=utf-8", `cache-control` = "no-cache, no-store, max-age=0", `content-length` = "1014", `x-access-level` = "read", `x-frame-options` = "SAMEORIGIN", `content-encoding` = "gzip", `x-xss-protection` = "0", `x-rate-limit-limit` = "900", `x-rate-limit-reset` = "1623874064", `content-disposition` = "attachment; filename=json.json", `x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "899", `strict-transport-security` = "max-age=631138519", `x-connection-hash` = "6a7945024491d2dfb78c94f690b6bff88f3d5503d394391ff4122326cd6e676b"), class = c("insensitive", "list")))), cookies = structure(list(domain = c(".twitter.com", ".twitter.com"), flag = c(TRUE, TRUE), path = c("/", "/"), secure = c(TRUE, TRUE), expiration = structure(c(1686941991, 1686941991), class = c("POSIXct", "POSIXt")), name = c("personalization_id", "guest_id"), value = c("REDACTED", "REDACTED")), row.names = c(NA, -2L), class = "data.frame"), content = charToRaw("{\"data\":[{\"description\":\"Doctoral student @IWMtue. Research on mobile & social media use, coping with stress & media use in the family. Tweets about research and academic parenting.\",\"name\":\"Lara Wolfers\",\"public_metrics\":{\"followers_count\":363,\"following_count\":499,\"tweet_count\":438,\"listed_count\":4},\"id\":\"1085578910853746688\",\"profile_image_url\":\"https://pbs.twimg.com/profile_images/1085579140911296512/q488WZrd_normal.jpg\",\"pinned_tweet_id\":\"1287691621010636803\",\"username\":\"LaraWolfers\",\"protected\":false,\"entities\":{\"url\":{\"urls\":[{\"start\":0,\"end\":23,\"url\":\"https://t.co/I6inXyQHR2\",\"expanded_url\":\"https://www.iwm-tuebingen.de/www/en/personen/ma.html?uid=lwolfers\",\"display_url\":\"iwm-tuebingen.de/www/en/persone…\"}]},\"description\":{\"mentions\":[{\"start\":17,\"end\":24,\"username\":\"IWMtue\"}]}},\"verified\":false,\"created_at\":\"2019-01-16T16:45:56.000Z\",\"url\":\"https://t.co/I6inXyQHR2\"},{\"description\":\"Asst. Prof at S3H @Official_NUST | Alum @IfMk | Tweets about date = structure(1623873164, class = c("POSIXct", "POSIXt" ), tzone = "GMT"), times = c(redirect = 0, namelookup = 0.04271, connect = 0.055917, pretransfer = 0.092674, starttransfer = 0.352535, total = 0.352721)), class = "response")
context("createLocalList") test_that("everything works when arguments are given", { testy <- rnorm(50) testfilter <- lowpassFilter::lowpassFilter(type = "bessel", param = list(pole = 4, cutoff = 0.1), sr = 1e4) testlengths <- 3:4 testlocalList <- createLocalList(filter = testfilter, method = "LR", lengths = testlengths) expect_is(testlocalList, "localList") expect_true(is.list(testlocalList)) expect_identical(length(testlocalList), length(testlengths)) expect_identical(attr(testlocalList, "method"), "LR") expect_identical(attr(testlocalList, "filter"), testfilter) expect_identical(attr(testlocalList, "lengths"), testlengths) expect_error(stepR::critVal(50L, alpha = 0.1, stat = teststat, family = "LR", filter = testfilter, lengths = testlengths, localList = 1)) expect_error(stepR::computeStat(testy, family = "LR", filter = testfilter, lengths = testlengths, localList = list())) expect_identical(stepR::computeStat(testy, family = "LR", filter = testfilter, lengths = testlengths), stepR::computeStat(testy, family = "LR", filter = testfilter, lengths = testlengths, localList = testlocalList)) expect_identical(stepR::monteCarloSimulation(family = "LR", n = 50L, r = 2L, filter = testfilter, lengths = testlengths, output = "maximum"), stepR::monteCarloSimulation(family = "LR", n = 50L, r = 2L, filter = testfilter, lengths = testlengths, output = "maximum", localList = testlocalList)) testlocalList <- createLocalList(filter = testfilter, method = "LR") expect_identical(stepR::monteCarloSimulation(family = "LR", n = 35L, r = 2L, filter = testfilter), stepR::monteCarloSimulation(family = "LR", n = 35L, r = 2L, filter = testfilter, localList = testlocalList)) teststat <- stepR::monteCarloSimulation(35L, r = 10L, family = "LR", filter = testfilter) expect_identical(stepR::critVal(35L, alpha = 0.1, stat = teststat, family = "LR", filter = testfilter), stepR::critVal(35L, alpha = 0.1, stat = teststat, family = "LR", filter = testfilter, localList = testlocalList)) expect_equal(stepR::critVal(35L, alpha = 0.1, stat = teststat, family = "LR", filter = testfilter), stepR::critVal(35L, alpha = 0.1, r = 10, family = "LR", filter = testfilter, localList = testlocalList)) testfilter <- lowpassFilter::lowpassFilter(type = "bessel", param = list(pole = 4, cutoff = 0.1), sr = 1e4) testlocalList <- clampSeg::createLocalList(filter = testfilter, method = "LR") teststat <- stepR::monteCarloSimulation(35L, r = 10L, family = "LR", filter = testfilter) expect_equal(stepR::critVal(35L, alpha = 0.1, stat = teststat, family = "LR", filter = testfilter, options = list(load = list())), stepR::critVal(35L, alpha = 0.1, r = 10, family = "LR", filter = testfilter, localList = testlocalList, options = list(load = list(), simulation = "matrix"))) testlocalList <- createLocalList(filter = testfilter, method = "2Param", lengths = testlengths) expect_is(testlocalList, "localList") expect_true(is.list(testlocalList)) expect_identical(length(testlocalList), length(testlengths)) expect_identical(attr(testlocalList, "method"), "2Param") expect_identical(attr(testlocalList, "filter"), testfilter) expect_identical(attr(testlocalList, "lengths"), testlengths) expect_identical(stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths), stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths, localList = testlocalList)) expect_identical(stepR::monteCarloSimulation(family = "2Param", n = 50L, r = 2L, filter = testfilter, lengths = testlengths, output = "maximum"), stepR::monteCarloSimulation(family = "2Param", n = 50L, r = 2L, filter = testfilter, lengths = testlengths, output = "maximum", localList = testlocalList)) expect_error(stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths, localList = 1)) expect_error(stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths, localList = list())) expect_error(stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths, localList = unclass(testlocalList))) }) test_that("filter is tested and works", { testy <- rnorm(50) testfilter <- lowpassFilter::lowpassFilter(type = "bessel", param = list(pole = 6, cutoff = 0.2), sr = 1e4) testlengths <- 5 expect_error(createLocalList()) expect_error(createLocalList(method = "LR", lengths = testlengths)) expect_error(createLocalList(filter = list(test = 1), method = "LR", lengths = testlengths)) expect_error(createLocalList(filter = unclass(testfilter), method = "LR", lengths = testlengths)) testlocalList <- createLocalList(filter = testfilter, method = "LR", lengths = testlengths) expect_identical(attr(testlocalList, "filter"), testfilter) testfilter2 <- lowpassFilter::lowpassFilter(type = "bessel", param = list(pole = 4, cutoff = 0.1), sr = 1e4) expect_error(stepR::computeStat(testy, family = "LR", filter = testfilter2, lengths = testlengths, localList = testlocalList)) expect_identical(stepR::computeStat(testy, family = "LR", filter = testfilter, lengths = testlengths), stepR::computeStat(testy, family = "LR", filter = testfilter, lengths = testlengths, localList = testlocalList)) testlocalList <- createLocalList(filter = testfilter, method = "2Param", lengths = testlengths) expect_error(stepR::computeStat(testy, family = "2Param", filter = testfilter2, lengths = testlengths, localList = testlocalList)) expect_identical(stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths), stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths, localList = testlocalList)) }) test_that("method is tested and works", { testy <- rnorm(50) testfilter <- lowpassFilter::lowpassFilter(type = "bessel", param = list(pole = 4, cutoff = 0.075), sr = 1e4) testlengths <- c(2, 7) expect_error(createLocalList(filter = testfilter, method = Inf, lengths = testlengths)) expect_error(createLocalList(filter = testfilter, method = "s", lengths = testlengths)) expect_error(createLocalList(filter = testfilter, method = "2L", lengths = testlengths)) expect_error(createLocalList(filter = testfilter, method = "", lengths = testlengths)) testlocalList <- createLocalList(filter = testfilter, method = "LR", lengths = testlengths) expect_error(stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths, localList = testlocalList)) testlocalList <- createLocalList(filter = testfilter, lengths = testlengths) expect_error(stepR::computeStat(testy, family = "LR", filter = testfilter, lengths = testlengths, localList = testlocalList)) expect_identical(stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths), stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths, localList = testlocalList)) }) test_that("lengths is tested and works", { testy <- rnorm(50) testfilter <- lowpassFilter::lowpassFilter(type = "bessel", param = list(pole = 6, cutoff = 0.2), sr = 1e4) testlengths <- c(3, 8:9) testlocalList <- createLocalList(filter = testfilter, method = "LR", lengths = testlengths) expect_error(createLocalList(filter = testfilter, method = "LR", lengths = NULL)) expect_error(createLocalList(filter = testfilter, method = "LR", lengths = c(3, "s", 4))) expect_error(createLocalList(filter = testfilter, method = "LR", lengths = 0L)) expect_error(createLocalList(filter = testfilter, method = "LR", lengths = c(-1L, 10L))) expect_error(createLocalList(filter = testfilter, method = "LR", lengths = c(5L, Inf))) expect_identical(createLocalList(filter = testfilter, method = "LR", lengths = c(9, 3, 8)), testlocalList) expect_identical(createLocalList(filter = testfilter, method = "LR", lengths = c(3.2, 8.1, 9.3)), testlocalList) expect_warning(ret <- createLocalList(filter = testfilter, method = "LR", lengths = c(3.2, 8.1, 9.1, 9.3, 3.6))) expect_identical(ret, testlocalList) expect_identical(createLocalList(filter = testfilter, method = "LR", lengths = 1:20), createLocalList(filter = testfilter, method = "LR")) expect_error(stepR::computeStat(testy, family = "LR", filter = testfilter, lengths = c(4, 5), localList = testlocalList)) expect_identical(stepR::computeStat(testy, family = "LR", filter = testfilter, lengths = testlengths), stepR::computeStat(testy, family = "LR", filter = testfilter, lengths = testlengths, localList = testlocalList)) testlocalList <- createLocalList(filter = testfilter, method = "2Param", lengths = testlengths) expect_error(stepR::computeStat(testy, family = "2Param", filter = testfilter, localList = testlocalList)) expect_identical(stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths), stepR::computeStat(testy, family = "2Param", filter = testfilter, lengths = testlengths, localList = testlocalList)) }) test_that("it is compatibel with other arguments when passed to stepR functions", { testn <- 100L testfilter <- lowpassFilter::lowpassFilter(type = "bessel", param = list(pole = 4, cutoff = 0.1), sr = 1) testy <- lowpassFilter::randomGenerationMA(n = testn, filter = testfilter, seed = "no") testlengths <- c(1, 2, 4, 8, 16) testlocalList <- createLocalList(filter = testfilter, method = "LR", lengths = testlengths) testfit <- stepR::stepblock(c(0, 1), leftEnd = c(0, 50 / testfilter$sr) - 10, rightEnd = c(50 / testfilter$sr, testn / testfilter$sr) -10, x0 = -10) expect_identical(stepR::computeStat(testy, family = "LR", filter = testfilter, fit = testfit, intervalSystem = "dyaLen", penalty = "sqrt", nq = 120L, thresholdLongSegment = 8L, localValue = mean, startTime = -10, regularization = c(1, 0.5), suppressWarningNoDeconvolution = TRUE), stepR::computeStat(testy, family = "LR", filter = testfilter, fit = testfit, intervalSystem = "dyaLen", penalty = "sqrt", nq = 120L, thresholdLongSegment = 8L, localValue = mean, startTime = -10, regularization = c(1, 0.5), suppressWarningNoDeconvolution = TRUE, localList = testlocalList)) expect_identical(stepR::monteCarloSimulation(family = "LR", n = 35L, r = 2L, filter = testfilter, seed = 34L, intervalSystem = "dyaLen", rand.gen = function(data) rnorm(data$n), thresholdLongSegment = 5L, localValue = mean, startTime = -10, regularization = c(0.5), suppressWarningNoDeconvolution = TRUE), stepR::monteCarloSimulation(family = "LR", n = 35L, r = 2L, filter = testfilter, seed = 34L, intervalSystem = "dyaLen", rand.gen = function(data) rnorm(data$n), thresholdLongSegment = 5L, localValue = mean, startTime = -10, suppressWarningNoDeconvolution = TRUE, regularization = c(0.5), localList = testlocalList)) teststat <- stepR::monteCarloSimulation(n = 100L, r = 10L, family = "LR", filter = testfilter) expect_equal(stepR::critVal(alpha = 0.125, n = 80L, stat = teststat, nq = 100L, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, thresholdLongSegment = 5L, localValue = mean, startTime = -10, regularization = c(0.5), penalty = "sqrt", output = "value"), stepR::critVal(alpha = 0.125, n = 80L, stat = teststat, nq = 100L, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, thresholdLongSegment = 5L, localValue = mean, startTime = -10, regularization = c(0.5), penalty = "sqrt", output = "value", localList = testlocalList)) expect_equal(stepR::critVal(alpha = 0.075, n = 90L, stat = teststat, nq = 100L, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, penalty = "log", output = "value", startTime = -10), stepR::critVal(alpha = 0.075, n = 90L, r = 10L, nq = 100L, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, options = list(simulation = "vectorIncreased", save = list(), load = list()), penalty = "log", output = "value", startTime = -10, localList = testlocalList)) testy <- lowpassFilter::randomGenerationMA(n = testn, filter = testfilter, seed = "no") testfit <- stepR::stepblock(c(0, 1, 0), leftEnd = c(0, 50 / testfilter$sr, 53 / testfilter$sr), rightEnd = c(50 / testfilter$sr, 53 / testfilter$sr, testn / testfilter$sr), x0 = 0) compare <- stepR::computeStat(y = testy, family = "LR", filter = testfilter, fit = testfit, lengths = testlengths) expect_identical(stepR::computeStat(y = testy, filter = testfilter, family = "LR", fit = testfit, lengths = testlengths, localList = testlocalList), compare) expect_identical(stepR::computeStat(y = testy, filter = testfilter, family = "LR", fit = testfit, lengths = testlengths, localList = testlocalList, output = "maximum"), compare$maximum) expect_identical(stepR::computeStat(y = testy, filter = testfilter, family = "LR", fit = testfit, lengths = testlengths, localList = testlocalList, output = "vector"), compare$stat) testlengths <- c(3, 5) testlocalList <- createLocalList(filter = testfilter, method = "2Param", lengths = testlengths) expect_identical(stepR::computeStat(testy, family = "2Param", filter = testfilter, fit = testfit, intervalSystem = "all", penalty = "log", nq = 120L, lengths = testlengths, thresholdLongSegment = 13L, localValue = function(x) 1, localVar = sd, regularization = c(0.8), suppressWarningNoDeconvolution = TRUE), stepR::computeStat(testy, family = "2Param", filter = testfilter, fit = testfit, penalty = "log", nq = 120L, lengths = testlengths, thresholdLongSegment = 13L, localValue = function(x) 1, localVar = sd, regularization = c(0.8), suppressWarningNoDeconvolution = TRUE, localList = testlocalList)) expect_identical(stepR::monteCarloSimulation(family = "2Param", n = 75L, r = 2L, filter = testfilter, seed = 14L, output = "maximum", penalty = "log", lengths = testlengths, intervalSystem = "all", rand.gen = function(data) rnorm(data$n) + 1, thresholdLongSegment = 7L, localValue = function(x) mean(x) - 1, suppressWarningNoDeconvolution = TRUE), stepR::monteCarloSimulation(family = "2Param", n = 75L, r = 2L, filter = testfilter, seed = 14L, output = "maximum", penalty = "log", lengths = testlengths, rand.gen = function(data) rnorm(data$n) + 1, thresholdLongSegment = 7L, localValue = function(x) mean(x) - 1, suppressWarningNoDeconvolution = TRUE, localList = testlocalList)) teststat <- stepR::monteCarloSimulation(n = 100L, r = 2L, family = "2Param", filter = testfilter, output = "maximum", lengths = testlengths, localList = testlocalList, penalty = "log") expect_equal(stepR::critVal(alpha = 0.33, n = 80L, r = 2L, nq = 100L, family = "2Param", filter = testfilter, intervalSystem = "all", lengths = testlengths, penalty = "log"), stepR::critVal(alpha = 0.335, n = 80L, stat = teststat, nq = 100L, family = "2Param", filter = testfilter, intervalSystem = "all", lengths = testlengths, penalty = "log", localList = testlocalList)) testn <- 100L testfilter <- lowpassFilter::lowpassFilter(type = "bessel", param = list(pole = 4, cutoff = 0.1), sr = 1e4) testy <- lowpassFilter::randomGenerationMA(n = testn, filter = testfilter, seed = "no") testfit <- stepR::stepblock(0, leftEnd = 0, rightEnd = testn / testfilter$sr, x0 = 0) testlengths <- c(1, 2, 4, 8, 16) testlocalList <- createLocalList(filter = testfilter, method = "LR", lengths = testlengths) teststat <- stepR::monteCarloSimulation(n = 100L, r = 10L, family = "LR", filter = testfilter) expect_equal(stepR::critVal(alpha = 0.075, n = 90L, stat = teststat, nq = 100L, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, penalty = "log", output = "value"), stepR::critVal(alpha = 0.075, n = 90L, r = 10L, nq = 100L, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, options = list(simulation = "matrixIncreased", save = list(), load = list()), penalty = "log", output = "value", localList = testlocalList)) expect_equal(stepR::critVal(alpha = 0.175, n = 100L, stat = teststat, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, penalty = "sqrt", output = "value"), stepR::critVal(alpha = 0.175, n = 100L, r = 10L, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, options = list(simulation = "matrix", save = list(), load = list()), penalty = "sqrt", output = "value", localList = testlocalList)) expect_equal(stepR::critVal(alpha = 0.075, n = 90L, stat = teststat, nq = 100L, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, output = "vector"), stepR::critVal(alpha = 0.075, n = 90L, r = 10L, nq = 100L, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, options = list(simulation = "matrixIncreased", save = list(), load = list()), output = "vector", localList = testlocalList)) expect_equal(stepR::critVal(alpha = 0.175, n = 100L, stat = teststat, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, output = "vector"), stepR::critVal(alpha = 0.175, n = 100L, r = 10L, family = "LR", filter = testfilter, intervalSystem = "all", lengths = testlengths, options = list(simulation = "matrix", save = list(), load = list()), output = "vector", localList = testlocalList)) })
summary.rocit<- function(object, ... = NULL) { msg <- NULL msg <- c(msg, paste("Method used:", object$method)) msg <- c(msg, paste("Number of positive(s):", object$pos_count)) msg <- c(msg, paste("Number of negative(s):", object$neg_count)) msg <- c(msg, paste("Area under curve:", round(object$AUC, 4))) pdf <- data.frame(msg) names(pdf) <- NULL print(pdf, row.names = FALSE, right = FALSE, quote = FALSE) }
install_theme <- function(menus = TRUE) { if(!rstudioapi::isAvailable()) stop("RSCodeio must be installed from within RStudio.") if(utils::compareVersion(as.character(rstudioapi::versionInfo()$version), "1.2.0") < 0) stop("You need RStudio 1.2 or greater to get theme support") if(rscodeio_installed()){ uninstall_theme() } rscodeio_default_theme <- rstudioapi::addTheme(fs::path_package(package = "rscodeio", "resources","rscodeio.rstheme")) rstudioapi::addTheme(fs::path_package(package = "rscodeio", "resources","rscodeio_tomorrow_night_bright.rstheme")) if (menus) activate_menu_theme() rstudioapi::applyTheme(rscodeio_default_theme) } uninstall_theme <- function(){ deactivate_menu_theme() installed_rscodeio_themes <- grep(x = purrr::map_depth(.x = rstudioapi::getThemes(), .depth = 1L, .f = purrr::pluck("name")), pattern = "rscodeio", value = TRUE) for (theme in installed_rscodeio_themes) { rstudioapi::removeTheme(theme) } } activate_menu_theme <- function() { if(host_os_is_mac() | is_rstudio_server()) return(NULL) if(file.exists(gnome_theme_dark_backup()) | file.exists(windows_theme_dark_backup())) { message("RSCodeio menu theme already activated. Deactivate first.") return(FALSE) } file.copy(from = gnome_theme_dark(), to = gnome_theme_dark_backup()) file.copy(from = windows_theme_dark(), to = windows_theme_dark_backup()) file.copy(from = system.file(fs::path("resources","stylesheets","rstudio-gnome-dark.qss"), package = "rscodeio"), to = gnome_theme_dark(), overwrite = TRUE) file.copy(from = system.file(fs::path("resources","stylesheets","rstudio-windows-dark.qss"), package = "rscodeio"), to = windows_theme_dark(), overwrite = TRUE) } deactivate_menu_theme <- function(){ if(host_os_is_mac()) return(NULL) if(!file.exists(gnome_theme_dark_backup()) | !file.exists(windows_theme_dark_backup())) { message("RStudio theme backups not found. rscodeio already deactivated?") return(FALSE) } file.copy(from = gnome_theme_dark_backup(), to = gnome_theme_dark(), overwrite = TRUE) file.copy(from = windows_theme_dark_backup(), to = windows_theme_dark(), overwrite = TRUE) unlink(gnome_theme_dark_backup()) unlink(windows_theme_dark_backup()) }
dbetapr <- function(x, shape1, shape2, scale = 1, log = FALSE) { cpp_dbetapr(x, shape1, shape2, scale, log[1L]) } pbetapr <- function(q, shape1, shape2, scale = 1, lower.tail = TRUE, log.p = FALSE) { cpp_pbetapr(q, shape1, shape2, scale, lower.tail[1L], log.p[1L]) } qbetapr <- function(p, shape1, shape2, scale = 1, lower.tail = TRUE, log.p = FALSE) { cpp_qbetapr(p, shape1, shape2, scale, lower.tail[1L], log.p[1L]) } rbetapr <- function(n, shape1, shape2, scale = 1) { if (length(n) > 1) n <- length(n) cpp_rbetapr(n, shape1, shape2, scale) }
regzip <- function(pa, y1, x, n1, poia) { a <- exp(pa[1]) / ( 1 + exp(pa[1]) ) ; b <- pa[-1] es <- tcrossprod(b, x) - sum( log( a + (1 - a) * exp( - exp( es[poia]) ) ) ) - n1 * log( 1 - a ) - sum( y1 * es[ -poia ] - exp(es[ -poia ]) ) }
JackMLSW = function (ysA, ysB, pik_A, pik_B, pik_ab_B, pik_ba_A, domains_A, domains_B, xsA, xsB, x, ind_sam, conf_level, sdA = "srs", sdB = "srs", strA = NULL, strB = NULL, clusA = NULL, clusB = NULL, fcpA = FALSE, fcpB = FALSE){ ysA <- as.data.frame(ysA) ysB <- as.data.frame(ysB) xsA <- as.matrix(xsA) xsB <- as.matrix(xsB) x <- as.matrix(x) cl <- match.call() results <- list() N <- nrow(x) c <- ncol(ysA) estimation <- MLSW(ysA, ysB, pik_A, pik_B, pik_ab_B, pik_ba_A, domains_A, domains_B, xsA, xsB, x, ind_sam)[[2]] for (l in 1:c) { ys <- factor(c(as.character(ysA[,l]),as.character(ysB[,l]))) lev <- levels(ys) m <- length(lev) nA <- nrow(ysA) nB <- nrow(ysB) mat <- matrix(NA, 6, m) if (sdA == "str"){ strataA <- unique(sort(strA)) nhA <- table(strA) nstrataA <- length(nhA) YcstrataA <- matrix(0, nstrataA, m) nhA <- c(0, nhA) cnhA <- cumsum(nhA) for (i in 1:nstrataA){ k <- 1 YcA <- matrix(0, nhA[i+1], m) for (j in (cnhA[i]+1):cnhA[i+1]){ YcA[k,] <- MLSW(ysA[-j,], ysB, pik_A[-j], pik_B, pik_ab_B[-j], pik_ba_A, domains_A[-j], domains_B, xsA[-j,], xsB, x, ind_sam[-j])[[2]][[l]][1,] k <- k + 1 } YcAMean <- matrix(colMeans(YcA), nhA[i+1], m, byrow = TRUE) if (fcpA) fA <- 1 - mean(pik_A[strA == strataA[i]]) else fA <- 1 YcstrataA[i,] <- (nhA[i+1] - 1) / nhA[i+1] * fA * colSums((YcA - YcAMean)^2) } vjA <- colSums(YcstrataA) } else { if (sdA == "clu"){ clustersA <- unique(clusA) probclustersA <- unique(data.frame(pik_A, clusA))[,1] nclustersA <- length(clustersA) if (nclustersA < 3) stop("Number of clusters from frame A is less than 3. Variance cannot be computed.") YcA <- matrix(0, nclustersA, m) for (i in 1:nclustersA) YcA[i,] <- MLSW(ysA[clusA %in% clustersA[-clustersA[i]],], ysB, pik_A[clusA %in% clustersA[-clustersA[i]]], pik_B, pik_ab_B[clusA %in% clustersA[-clustersA[i]]], pik_ba_A, domains_A[clusA %in% clustersA[-clustersA[i]]], domains_B, xsA[clusA %in% clustersA[-clustersA[i]],], xsB, x, ind_sam[c(clusA %in% clustersA[-clustersA[i]], rep(TRUE, nB))])[[2]][[l]][1,] YcAMean <- matrix(colMeans(YcA), nclustersA, m, byrow = TRUE) if (fcpA) fA <- 1 - mean(probclustersA) else fA <- 1 vjA <- ((nclustersA - 1) / nclustersA) * fA * colSums ((YcA - YcAMean)^2) } else{ if (sdA == "strclu"){ strataA <- unique(sort(strA)) nstrataA <- length(strataA) YcstrataA <- matrix(0, nstrataA, m) for (i in 1:nstrataA){ clustersA <- unique(clusA[strA == strataA[i]]) probclustersA <- unique(data.frame(pik_A[strA == strataA[i]], clusA[strA == strataA[i]]))[,1] nclustersA <- length(clustersA) if (nclustersA < 3) stop("Number of clusters in any stratum from frame A is less than 3. Variance cannot be computed.") k <- 1 YcA <- matrix(0, nclustersA, m) for (j in 1:nclustersA){ YcA[k,] <- MLSW(ysA[clusA %in% clustersA[-clustersA[j]],], ysB, pik_A[clusA %in% clustersA[-clustersA[j]]], pik_B, pik_ab_B[clusA %in% clustersA[-clustersA[j]]], pik_ba_A, domains_A[clusA %in% clustersA[-clustersA[j]]], domains_B, xsA[clusA %in% clustersA[-clustersA[j]],], xsB, x, ind_sam[c(clusA %in% clustersA[-clustersA[j]], rep(TRUE, nrow(ysB)))])[[2]][[l]][1,] k <- k + 1 } YcAMean <- matrix(colMeans(YcA), nclustersA, m, byrow = TRUE) if (fcpA) fA <- 1 - mean(probclustersA) else fA <- 1 YcstrataA[i,] <- (nclustersA - 1) / nclustersA * fA * colSums((YcA - YcAMean)^2) } vjA <- colSums(YcstrataA) }else{ YcA <- matrix(0, nA, m) for (i in 1:nA) YcA[i,] <- MLSW(ysA[-i,], ysB, pik_A[-i], pik_B, pik_ab_B[-i], pik_ba_A, domains_A[-i], domains_B, xsA[-i,], xsB, x, ind_sam[-i])[[2]][[l]][1,] YcAMean <- matrix(colMeans(YcA), nA, m, byrow = TRUE) if (fcpA) fA <- 1 - mean(pik_A) else fA <- 1 vjA <- ((nA - 1) / nA) * fA * colSums ((YcA - YcAMean)^2) } } } if (sdB == "str"){ strataB <- unique(sort(strB)) nhB <- table(strB) nstrataB <- length(nhB) YcstrataB <- matrix(0, nstrataB, m) nhB <- c(0,nhB) cnhB <- cumsum(nhB) for (i in 1:nstrataB){ k <- 1 YcB <- matrix(0, nhB[i+1], m, byrow = TRUE) for (j in (cnhB[i]+1):cnhB[i+1]){ YcB[k,] <- MLSW(ysA, ysB[-j,], pik_A, pik_B[-j], pik_ab_B, pik_ba_A[-j], domains_A, domains_B[-j], xsA, xsB[-j,], x, ind_sam[-(nA + j)])[[2]][[l]][1,] k <- k + 1 } YcBMean <- matrix(colMeans(YcB), nhB[i+1], m, byrow = TRUE) if (fcpB) fB <- 1 - mean(pik_B[strB == strataB[i]]) else fB <- 1 YcstrataB[i,] <- (nhB[i+1] - 1) / nhB[i+1] * fB * colSums((YcB - YcBMean)^2) } vjB <- colSums(YcstrataB) } else{ if (sdB == "clu"){ clustersB <- unique(clusB) probclustersB <- unique(data.frame(pik_B, clusB))[,1] nclustersB <- length(clustersB) if (nclustersB < 3) stop("Number of clusters from frame B is less than 3. Variance cannot be computed.") YcB <- matrix(0, nclustersB, m) for (i in 1:nclustersB) YcB[i,] <- MLSW(ysA, ysB[clusB %in% clustersB[-clustersB[i]],], pik_A, pik_B[clusB %in% clustersB[-clustersB[i]]], pik_ab_B, pik_ba_A[clusB %in% clustersB[-clustersB[i]]], domains_A, domains_B[clusB %in% clustersB[-clustersB[i]]], xsA, xsB[clusB %in% clustersB[-clustersB[i]],], x, ind_sam[c(rep(TRUE, nA), clusB %in% clustersB[-clustersB[i]])])[[2]][[l]][1,] YcBMean <- matrix(colMeans(YcB), nclustersB, m, byrow = TRUE) if (fcpB) fB <- 1 - mean(probclustersB) else fB <- 1 vjB <- ((nclustersB - 1) / nclustersB) * fB * colSums ((YcB - YcBMean)^2) } else{ if (sdB == "strclu"){ strataB <- unique(sort(strB)) nstrataB <- length(strataB) YcstrataB <- matrix(0, nstrataB, m) for (i in 1:nstrataB){ clustersB <- unique(clusB[strB == strataB[i]]) probclustersB <- unique(data.frame(pik_B[strB == strataB[i]], clusA[strB == strataB[i]]))[,1] nclustersB <- length(clustersB) if (nclustersB < 3) stop("Number of clusters in any stratum from frame B is less than 3. Variance cannot be computed.") k <- 1 YcB <- matrix(0, nclustersB, m) for (j in 1:nclustersB){ YcB[k,] <- MLSW(ysA, ysB[clusB %in% clustersB[-clustersB[j]],], pik_A, pik_B[clusB %in% clustersB[-clustersB[j]]], pik_ab_B, pik_ba_A[clusB %in% clustersB[-clustersB[j]]], domains_A, domains_B[clusB %in% clustersB[-clustersB[j]]], xsA, xsB[clusB %in% clustersB[-clustersB[j]],], x, ind_sam[c(rep(TRUE, nrow(ysA)), clusB %in% clustersB[-clustersB[j]])])[[2]][[l]][1,] k <- k + 1 } YcBMean <- matrix(colMeans(YcB), nclustersB, m, byrow = TRUE) if (fcpB) fB <- 1 - mean(probclustersB) else fB <- 1 YcstrataB[i,] <- (nclustersB - 1) / nclustersB * fB * colSums((YcB - YcBMean)^2) } vjB <- colSums(YcstrataB) } else{ YcB <- matrix(0, nB, m) for (i in 1:nB) YcB[i,] <- MLSW(ysA, ysB[-i,], pik_A, pik_B[-i], pik_ab_B, pik_ba_A[-i], domains_A, domains_B[-i], xsA, xsB[-i,], x, ind_sam[-(nA + i)])[[2]][[l]][1,] YcBMean <- matrix(colMeans(YcB), nB, m, byrow = TRUE) if (fcpB) fB <- 1 - mean(pik_B) else fB <- 1 vjB <- ((nB - 1) / nB) * fB * colSums((YcB - YcBMean)^2) } } } VJack_Phat_MLSW <- vjA + vjB mat[1,] <- estimation[[l]][1,] mat[2,] <- estimation[[l]][1,] + qnorm(1 - (1 - conf_level) / 2) * sqrt(VJack_Phat_MLSW) mat[3,] <- estimation[[l]][1,] - qnorm(1 - (1 - conf_level) / 2) * sqrt(VJack_Phat_MLSW) mat[4,] <- estimation[[l]][2,] mat[5,] <- estimation[[l]][2,] + qnorm(1 - (1 - conf_level) / 2) * sqrt(1/N^2 * VJack_Phat_MLSW) mat[6,] <- estimation[[l]][2,] - qnorm(1 - (1 - conf_level) / 2) * sqrt(1/N^2 * VJack_Phat_MLSW) results[[l]] <- mat } return(results) }
lav_mvnorm_missing_h1_estimate_moments <- function(Y = NULL, Mp = NULL, Yp = NULL, wt = NULL, Sinv.method = "eigen", verbose = FALSE, max.iter = 500L, tol = 1e-05, warn = FALSE) { Y <- as.matrix(Y); P <- NCOL(Y) if(!is.null(wt)) { N <- sum(wt) } else { N <- NROW(Y) } if(is.null(Mp)) { Mp <- lav_data_missing_patterns(Y) } if(is.null(Yp)) { Yp <- lav_samplestats_missing_patterns(Y = Y, Mp = Mp, wt = wt) } if(is.null(max.iter)) { max.iter <- 500L } if(is.null(tol)) { tol <- 1e-05 } if(is.null(warn)) { warn <- FALSE } N.full <- N if(length(Mp$empty.idx) > 0L) { if(!is.null(wt)) { N <- N - sum(wt[Mp$empty.idx]) } else { N <- N - length(Mp$empty.idx) } } if(verbose) { cat("\n") cat("lav_mvnorm_missing_h1_estimate_moments: start EM steps\n") } if(!is.null(wt)) { tmp <- na.omit(cbind(wt, Y)) if(nrow(tmp) > 2L) { Y.tmp <- tmp[,-1, drop = FALSE] wt.tmp <- tmp[,1] out <- stats::cov.wt(Y.tmp, wt = wt.tmp, method = "ML") Mu0 <- out$center var0 <- diag(out$cov) } else { Mu0 <- base::.colMeans(Y, m = N.full, n = P, na.rm = TRUE) Yc <- t( t(Y) - Mu0 ) var0 <- base::.colMeans(Yc*Yc, m = N.full, n = P, na.rm = TRUE) } } else { Mu0 <- base::.colMeans(Y, m = N.full, n = P, na.rm = TRUE) Yc <- t( t(Y) - Mu0 ) var0 <- base::.colMeans(Yc*Yc, m = N.full, n = P, na.rm = TRUE) } bad.idx <- which(!is.finite(var0) | var0 == 0) if(length(bad.idx) > 0L) { var0[bad.idx] <- 1 } bad.idx <- which(!is.finite(Mu0)) if(length(bad.idx) > 0L) { } Sigma0 <- diag(x = var0, nrow = P) Mu <- Mu0; Sigma <- Sigma0 if(verbose) { fx0 <- lav_mvnorm_missing_loglik_samplestats(Yp = Yp, Mu = Mu, Sigma = Sigma, log2pi = FALSE, minus.two = TRUE)/N cat(" EM iteration:", sprintf("%4d", 0), " fx = ", sprintf("%15.10f", fx0), "\n") } for(i in 1:max.iter) { Estep <- lav_mvnorm_missing_estep(Y = Y, Mp = Mp, wt = wt, Mu = Mu, Sigma = Sigma, Sinv.method = Sinv.method) T1 <- Estep$T1 T2 <- Estep$T2 Mu <- T1/N Sigma <- T2/N - tcrossprod(Mu) ev <- eigen(Sigma, symmetric = TRUE, only.values = TRUE) evtol <- 1e-6 if(any(ev$values < evtol)) { diag(Sigma) <- diag(Sigma) + max(diag(Sigma))*1e-08 } DELTA <- max(abs(c(Mu, lav_matrix_vech(Sigma)) - c(Mu0, lav_matrix_vech(Sigma0)))) if(verbose) { fx <- lav_mvnorm_missing_loglik_samplestats(Yp = Yp, Mu = Mu, Sigma = Sigma, log2pi = FALSE, minus.two = TRUE)/N cat(" EM iteration:", sprintf("%4d", i), " fx = ", sprintf("%15.10f", fx), " delta par = ", sprintf("%9.8f", DELTA), "\n") } if(DELTA < tol) break Mu0 <- Mu; Sigma0 <- Sigma } if(verbose) { cat("\nSigma:\n"); print(Sigma) cat("\nMu:\n"); print(Mu) cat("\n") } if(!verbose) { fx <- lav_mvnorm_missing_loglik_samplestats(Yp = Yp, Mu = Mu, Sigma = Sigma, log2pi = FALSE, minus.two = TRUE)/N } if(warn && i == max.iter) { txt <- c("Maximum number of iterations reached when ", "computing the sample moments using EM; ", "use the em.h1.iter.max= argument to increase the number of ", "iterations") warning(lav_txt2message(txt)) } if(warn) { ev <- eigen(Sigma, symmetric = TRUE, only.values = TRUE)$values if(any(ev < 1e-05)) { txt <- c("The smallest eigenvalue of the EM estimated ", "variance-covariance matrix (Sigma) is smaller than ", "1e-05; this may cause numerical instabilities; ", "interpret the results with caution.") warning(lav_txt2message(txt)) } } list(Sigma = Sigma, Mu = Mu, fx = fx) } lav_mvnorm_missing_h1_omega_sw <- function(Y = NULL, Mp = NULL, wt = NULL, cluster.idx = NULL, Yp = NULL, Sinv.method = "eigen", Mu = NULL, Sigma = NULL, x.idx = NULL, Sigma.inv = NULL, information = "observed") { if(is.null(Mp)) { Mp <- lav_data_missing_patterns(Y) } if(is.null(Yp) && (information == "observed" || is.null(Sigma))) { Yp <- lav_samplestats_missing_patterns(Y = Y, Mp = Mp, wt = wt) } if(is.null(Sigma) || is.null(Mu)) { out <- lav_mvnorm_missing_h1_estimate_moments(Y = Y, Mp = Mp, Yp = Yp) Mu <- out$Mu Sigma <- out$Sigma } info <- lav_mvnorm_missing_information_both(Y = Y, Mp = Mp, Mu = Mu, wt = wt, cluster.idx = cluster.idx, Sigma = Sigma, x.idx = x.idx, Sinv.method = Sinv.method, Sigma.inv = Sigma.inv, information = information) A <- info$Abeta A.inv <- lav_matrix_symmetric_inverse(S = A, logdet = FALSE, Sinv.method = Sinv.method) B <- info$Bbeta SW <- A.inv %*% B %*% A.inv SW }
unloadNamespace("gam") if (require("testthat") && require("ggeffects") && require("VGAM")) { data("hunua") m1 <- vgam(agaaus ~ vitluc + s(altitude, df = 2), binomialff, data = hunua) test_that("ggpredict", { p <- ggpredict(m1, "vitluc") expect_equal(p$predicted[1], 0.2745789, tolerance = 1e-3) }) }
NULL .sagemaker$add_association_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), DestinationArn = structure(logical(0), tags = list(type = "string")), AssociationType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$add_association_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), DestinationArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$add_tags_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceArn = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$add_tags_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$associate_trial_component_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$associate_trial_component_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentArn = structure(logical(0), tags = list(type = "string")), TrialArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_action_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ActionName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string")), SourceId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ActionType = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), Properties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_action_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ActionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_algorithm_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AlgorithmName = structure(logical(0), tags = list(type = "string")), AlgorithmDescription = structure(logical(0), tags = list(type = "string")), TrainingSpecification = structure(list(TrainingImage = structure(logical(0), tags = list(type = "string")), TrainingImageDigest = structure(logical(0), tags = list(type = "string")), SupportedHyperParameters = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Range = structure(list(IntegerParameterRangeSpecification = structure(list(MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ContinuousParameterRangeSpecification = structure(list(MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CategoricalParameterRangeSpecification = structure(list(Values = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), IsTunable = structure(logical(0), tags = list(type = "boolean")), IsRequired = structure(logical(0), tags = list(type = "boolean")), DefaultValue = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), SupportedTrainingInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportsDistributedTraining = structure(logical(0), tags = list(type = "boolean")), MetricDefinitions = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Regex = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), TrainingChannels = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), IsRequired = structure(logical(0), tags = list(type = "boolean")), SupportedContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedCompressionTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedInputModes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), SupportedTuningJobObjectiveMetrics = structure(list(structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), InferenceSpecification = structure(list(Containers = structure(list(structure(list(ContainerHostname = structure(logical(0), tags = list(type = "string")), Image = structure(logical(0), tags = list(type = "string")), ImageDigest = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), SupportedTransformInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedRealtimeInferenceInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedResponseMIMETypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), ValidationSpecification = structure(list(ValidationRole = structure(logical(0), tags = list(type = "string")), ValidationProfiles = structure(list(structure(list(ProfileName = structure(logical(0), tags = list(type = "string")), TrainingJobDefinition = structure(list(TrainingInputMode = structure(logical(0), tags = list(type = "string")), HyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), InputDataConfig = structure(list(structure(list(ChannelName = structure(logical(0), tags = list(type = "string")), DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), AttributeNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), FileSystemDataSource = structure(list(FileSystemId = structure(logical(0), tags = list(type = "string")), FileSystemAccessMode = structure(logical(0), tags = list(type = "string")), FileSystemType = structure(logical(0), tags = list(type = "string")), DirectoryPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), RecordWrapperType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string")), ShuffleConfig = structure(list(Seed = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceConfig = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure")), TransformJobDefinition = structure(list(MaxConcurrentTransforms = structure(logical(0), tags = list(type = "integer")), MaxPayloadInMB = structure(logical(0), tags = list(type = "integer")), BatchStrategy = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), TransformInput = structure(list(DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), SplitType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformOutput = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), Accept = structure(logical(0), tags = list(type = "string")), AssembleWith = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformResources = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), CertifyForMarketplace = structure(logical(0), tags = list(type = "boolean")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_algorithm_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AlgorithmArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_app_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), AppType = structure(logical(0), tags = list(type = "string")), AppName = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_app_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AppArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_app_image_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AppImageConfigName = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), KernelGatewayImageConfig = structure(list(KernelSpecs = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), FileSystemConfig = structure(list(MountPath = structure(logical(0), tags = list(type = "string")), DefaultUid = structure(logical(0), tags = list(box = TRUE, type = "integer")), DefaultGid = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_app_image_config_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AppImageConfigArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ArtifactName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), SourceTypes = structure(list(structure(list(SourceIdType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ArtifactType = structure(logical(0), tags = list(type = "string")), Properties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ArtifactArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_auto_ml_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AutoMLJobName = structure(logical(0), tags = list(type = "string")), InputDataConfig = structure(list(structure(list(DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), CompressionType = structure(logical(0), tags = list(type = "string")), TargetAttributeName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProblemType = structure(logical(0), tags = list(type = "string")), AutoMLJobObjective = structure(list(MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), AutoMLJobConfig = structure(list(CompletionCriteria = structure(list(MaxCandidates = structure(logical(0), tags = list(type = "integer")), MaxRuntimePerTrainingJobInSeconds = structure(logical(0), tags = list(type = "integer")), MaxAutoMLJobRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), SecurityConfig = structure(list(VolumeKmsKeyId = structure(logical(0), tags = list(type = "string")), EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), GenerateCandidateDefinitionsOnly = structure(logical(0), tags = list(type = "boolean")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_auto_ml_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AutoMLJobArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_code_repository_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeRepositoryName = structure(logical(0), tags = list(type = "string")), GitConfig = structure(list(RepositoryUrl = structure(logical(0), tags = list(type = "string")), Branch = structure(logical(0), tags = list(type = "string")), SecretArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_code_repository_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeRepositoryArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_compilation_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CompilationJobName = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), InputConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), DataInputConfig = structure(logical(0), tags = list(type = "string")), Framework = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OutputConfig = structure(list(S3OutputLocation = structure(logical(0), tags = list(type = "string")), TargetDevice = structure(logical(0), tags = list(type = "string")), TargetPlatform = structure(list(Os = structure(logical(0), tags = list(type = "string")), Arch = structure(logical(0), tags = list(type = "string")), Accelerator = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CompilerOptions = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_compilation_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CompilationJobArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_context_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContextName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string")), SourceId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ContextType = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Properties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_context_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContextArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_data_quality_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string")), DataQualityBaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StatisticsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), DataQualityAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RecordPreprocessorSourceUri = structure(logical(0), tags = list(type = "string")), PostAnalyticsProcessorSourceUri = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")), DataQualityJobInput = structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), DataQualityJobOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JobResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_data_quality_job_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_device_fleet_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetName = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), OutputConfig = structure(list(S3OutputLocation = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_device_fleet_output <- function(...) { list() } .sagemaker$create_domain_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainName = structure(logical(0), tags = list(type = "string")), AuthMode = structure(logical(0), tags = list(type = "string")), DefaultUserSettings = structure(list(ExecutionRole = structure(logical(0), tags = list(type = "string")), SecurityGroups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SharingSettings = structure(list(NotebookOutputOption = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), S3KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JupyterServerAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), KernelGatewayAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CustomImages = structure(list(structure(list(ImageName = structure(logical(0), tags = list(type = "string")), ImageVersionNumber = structure(logical(0), tags = list(box = TRUE, type = "integer")), AppImageConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), TensorBoardAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), SubnetIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), VpcId = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), AppNetworkAccessType = structure(logical(0), tags = list(type = "string")), HomeEfsFileSystemKmsKeyId = structure(logical(0), tags = list(deprecated = TRUE, deprecatedMessage = "This property is deprecated, use KmsKeyId instead.", type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_domain_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainArn = structure(logical(0), tags = list(type = "string")), Url = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_edge_packaging_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EdgePackagingJobName = structure(logical(0), tags = list(type = "string")), CompilationJobName = structure(logical(0), tags = list(type = "string")), ModelName = structure(logical(0), tags = list(type = "string")), ModelVersion = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), OutputConfig = structure(list(S3OutputLocation = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceKey = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_edge_packaging_job_output <- function(...) { list() } .sagemaker$create_endpoint_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), EndpointConfigName = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_endpoint_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_endpoint_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointConfigName = structure(logical(0), tags = list(type = "string")), ProductionVariants = structure(list(structure(list(VariantName = structure(logical(0), tags = list(type = "string")), ModelName = structure(logical(0), tags = list(type = "string")), InitialInstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), InitialVariantWeight = structure(logical(0), tags = list(type = "float")), AcceleratorType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), DataCaptureConfig = structure(list(EnableCapture = structure(logical(0), tags = list(type = "boolean")), InitialSamplingPercentage = structure(logical(0), tags = list(type = "integer")), DestinationS3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), CaptureOptions = structure(list(structure(list(CaptureMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CaptureContentTypeHeader = structure(list(CsvContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), JsonContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_endpoint_config_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointConfigArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_experiment_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_experiment_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_feature_group_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FeatureGroupName = structure(logical(0), tags = list(type = "string")), RecordIdentifierFeatureName = structure(logical(0), tags = list(type = "string")), EventTimeFeatureName = structure(logical(0), tags = list(type = "string")), FeatureDefinitions = structure(list(structure(list(FeatureName = structure(logical(0), tags = list(type = "string")), FeatureType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), OnlineStoreConfig = structure(list(SecurityConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), EnableOnlineStore = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), OfflineStoreConfig = structure(list(S3StorageConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DisableGlueTableCreation = structure(logical(0), tags = list(type = "boolean")), DataCatalogConfig = structure(list(TableName = structure(logical(0), tags = list(type = "string")), Catalog = structure(logical(0), tags = list(type = "string")), Database = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_feature_group_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FeatureGroupArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_flow_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FlowDefinitionName = structure(logical(0), tags = list(type = "string")), HumanLoopRequestSource = structure(list(AwsManagedHumanLoopRequestSource = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), HumanLoopActivationConfig = structure(list(HumanLoopActivationConditionsConfig = structure(list(HumanLoopActivationConditions = structure(logical(0), tags = list(jsonvalue = TRUE, type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), HumanLoopConfig = structure(list(WorkteamArn = structure(logical(0), tags = list(type = "string")), HumanTaskUiArn = structure(logical(0), tags = list(type = "string")), TaskTitle = structure(logical(0), tags = list(type = "string")), TaskDescription = structure(logical(0), tags = list(type = "string")), TaskCount = structure(logical(0), tags = list(type = "integer")), TaskAvailabilityLifetimeInSeconds = structure(logical(0), tags = list(type = "integer")), TaskTimeLimitInSeconds = structure(logical(0), tags = list(type = "integer")), TaskKeywords = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), PublicWorkforceTaskPrice = structure(list(AmountInUsd = structure(list(Dollars = structure(logical(0), tags = list(type = "integer")), Cents = structure(logical(0), tags = list(type = "integer")), TenthFractionsOfACent = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), OutputConfig = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_flow_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FlowDefinitionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_human_task_ui_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HumanTaskUiName = structure(logical(0), tags = list(type = "string")), UiTemplate = structure(list(Content = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_human_task_ui_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HumanTaskUiArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_hyper_parameter_tuning_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HyperParameterTuningJobName = structure(logical(0), tags = list(type = "string")), HyperParameterTuningJobConfig = structure(list(Strategy = structure(logical(0), tags = list(type = "string")), HyperParameterTuningJobObjective = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceLimits = structure(list(MaxNumberOfTrainingJobs = structure(logical(0), tags = list(type = "integer")), MaxParallelTrainingJobs = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), ParameterRanges = structure(list(IntegerParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ContinuousParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CategoricalParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Values = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), TrainingJobEarlyStoppingType = structure(logical(0), tags = list(type = "string")), TuningJobCompletionCriteria = structure(list(TargetObjectiveMetricValue = structure(logical(0), tags = list(type = "float"))), tags = list(type = "structure"))), tags = list(type = "structure")), TrainingJobDefinition = structure(list(DefinitionName = structure(logical(0), tags = list(type = "string")), TuningObjective = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), HyperParameterRanges = structure(list(IntegerParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ContinuousParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CategoricalParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Values = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), StaticHyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), AlgorithmSpecification = structure(list(TrainingImage = structure(logical(0), tags = list(type = "string")), TrainingInputMode = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string")), MetricDefinitions = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Regex = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), InputDataConfig = structure(list(structure(list(ChannelName = structure(logical(0), tags = list(type = "string")), DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), AttributeNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), FileSystemDataSource = structure(list(FileSystemId = structure(logical(0), tags = list(type = "string")), FileSystemAccessMode = structure(logical(0), tags = list(type = "string")), FileSystemType = structure(logical(0), tags = list(type = "string")), DirectoryPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), RecordWrapperType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string")), ShuffleConfig = structure(list(Seed = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceConfig = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableManagedSpotTraining = structure(logical(0), tags = list(type = "boolean")), CheckpointConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), TrainingJobDefinitions = structure(list(structure(list(DefinitionName = structure(logical(0), tags = list(type = "string")), TuningObjective = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), HyperParameterRanges = structure(list(IntegerParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ContinuousParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CategoricalParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Values = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), StaticHyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), AlgorithmSpecification = structure(list(TrainingImage = structure(logical(0), tags = list(type = "string")), TrainingInputMode = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string")), MetricDefinitions = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Regex = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), InputDataConfig = structure(list(structure(list(ChannelName = structure(logical(0), tags = list(type = "string")), DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), AttributeNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), FileSystemDataSource = structure(list(FileSystemId = structure(logical(0), tags = list(type = "string")), FileSystemAccessMode = structure(logical(0), tags = list(type = "string")), FileSystemType = structure(logical(0), tags = list(type = "string")), DirectoryPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), RecordWrapperType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string")), ShuffleConfig = structure(list(Seed = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceConfig = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableManagedSpotTraining = structure(logical(0), tags = list(type = "boolean")), CheckpointConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), WarmStartConfig = structure(list(ParentHyperParameterTuningJobs = structure(list(structure(list(HyperParameterTuningJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), WarmStartType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_hyper_parameter_tuning_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HyperParameterTuningJobArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_image_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Description = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), ImageName = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_image_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ImageArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_image_version_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(BaseImage = structure(logical(0), tags = list(type = "string")), ClientToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string")), ImageName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_image_version_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ImageVersionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_labeling_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(LabelingJobName = structure(logical(0), tags = list(type = "string")), LabelAttributeName = structure(logical(0), tags = list(type = "string")), InputConfig = structure(list(DataSource = structure(list(S3DataSource = structure(list(ManifestS3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), SnsDataSource = structure(list(SnsTopicArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), DataAttributes = structure(list(ContentClassifiers = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), OutputConfig = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), SnsTopicArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), LabelCategoryConfigS3Uri = structure(logical(0), tags = list(type = "string")), StoppingConditions = structure(list(MaxHumanLabeledObjectCount = structure(logical(0), tags = list(type = "integer")), MaxPercentageOfInputDatasetLabeled = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), LabelingJobAlgorithmsConfig = structure(list(LabelingJobAlgorithmSpecificationArn = structure(logical(0), tags = list(type = "string")), InitialActiveLearningModelArn = structure(logical(0), tags = list(type = "string")), LabelingJobResourceConfig = structure(list(VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), HumanTaskConfig = structure(list(WorkteamArn = structure(logical(0), tags = list(type = "string")), UiConfig = structure(list(UiTemplateS3Uri = structure(logical(0), tags = list(type = "string")), HumanTaskUiArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), PreHumanTaskLambdaArn = structure(logical(0), tags = list(type = "string")), TaskKeywords = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), TaskTitle = structure(logical(0), tags = list(type = "string")), TaskDescription = structure(logical(0), tags = list(type = "string")), NumberOfHumanWorkersPerDataObject = structure(logical(0), tags = list(type = "integer")), TaskTimeLimitInSeconds = structure(logical(0), tags = list(type = "integer")), TaskAvailabilityLifetimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxConcurrentTaskCount = structure(logical(0), tags = list(type = "integer")), AnnotationConsolidationConfig = structure(list(AnnotationConsolidationLambdaArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), PublicWorkforceTaskPrice = structure(list(AmountInUsd = structure(list(Dollars = structure(logical(0), tags = list(type = "integer")), Cents = structure(logical(0), tags = list(type = "integer")), TenthFractionsOfACent = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_labeling_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(LabelingJobArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelName = structure(logical(0), tags = list(type = "string")), PrimaryContainer = structure(list(ContainerHostname = structure(logical(0), tags = list(type = "string")), Image = structure(logical(0), tags = list(type = "string")), ImageConfig = structure(list(RepositoryAccessMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Mode = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), ModelPackageName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Containers = structure(list(structure(list(ContainerHostname = structure(logical(0), tags = list(type = "string")), Image = structure(logical(0), tags = list(type = "string")), ImageConfig = structure(list(RepositoryAccessMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Mode = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), ModelPackageName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ExecutionRoleArn = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_bias_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string")), ModelBiasBaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelBiasAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ConfigUri = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")), ModelBiasJobInput = structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), GroundTruthS3Input = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelBiasJobOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JobResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_bias_job_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_explainability_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string")), ModelExplainabilityBaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelExplainabilityAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ConfigUri = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")), ModelExplainabilityJobInput = structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelExplainabilityJobOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JobResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_explainability_job_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_package_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageName = structure(logical(0), tags = list(type = "string")), ModelPackageGroupName = structure(logical(0), tags = list(type = "string")), ModelPackageDescription = structure(logical(0), tags = list(type = "string")), InferenceSpecification = structure(list(Containers = structure(list(structure(list(ContainerHostname = structure(logical(0), tags = list(type = "string")), Image = structure(logical(0), tags = list(type = "string")), ImageDigest = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), SupportedTransformInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedRealtimeInferenceInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedResponseMIMETypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), ValidationSpecification = structure(list(ValidationRole = structure(logical(0), tags = list(type = "string")), ValidationProfiles = structure(list(structure(list(ProfileName = structure(logical(0), tags = list(type = "string")), TransformJobDefinition = structure(list(MaxConcurrentTransforms = structure(logical(0), tags = list(type = "integer")), MaxPayloadInMB = structure(logical(0), tags = list(type = "integer")), BatchStrategy = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), TransformInput = structure(list(DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), SplitType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformOutput = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), Accept = structure(logical(0), tags = list(type = "string")), AssembleWith = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformResources = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), SourceAlgorithmSpecification = structure(list(SourceAlgorithms = structure(list(structure(list(ModelDataUrl = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), CertifyForMarketplace = structure(logical(0), tags = list(type = "boolean")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ModelApprovalStatus = structure(logical(0), tags = list(type = "string")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ModelMetrics = structure(list(ModelQuality = structure(list(Statistics = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Constraints = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelDataQuality = structure(list(Statistics = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Constraints = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), Bias = structure(list(Report = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), Explainability = structure(list(Report = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), ClientToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_package_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_package_group_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageGroupName = structure(logical(0), tags = list(type = "string")), ModelPackageGroupDescription = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_package_group_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageGroupArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_quality_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string")), ModelQualityBaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelQualityAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RecordPreprocessorSourceUri = structure(logical(0), tags = list(type = "string")), PostAnalyticsProcessorSourceUri = structure(logical(0), tags = list(type = "string")), ProblemType = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")), ModelQualityJobInput = structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), GroundTruthS3Input = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelQualityJobOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JobResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_model_quality_job_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_monitoring_schedule_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string")), MonitoringScheduleConfig = structure(list(ScheduleConfig = structure(list(ScheduleExpression = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringJobDefinition = structure(list(BaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StatisticsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), MonitoringInputs = structure(list(structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), MonitoringOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), MonitoringAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RecordPreprocessorSourceUri = structure(logical(0), tags = list(type = "string")), PostAnalyticsProcessorSourceUri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_monitoring_schedule_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_notebook_instance_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceName = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), SubnetId = structure(logical(0), tags = list(type = "string")), SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RoleArn = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LifecycleConfigName = structure(logical(0), tags = list(type = "string")), DirectInternetAccess = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), AcceleratorTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), DefaultCodeRepository = structure(logical(0), tags = list(type = "string")), AdditionalCodeRepositories = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RootAccess = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_notebook_instance_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_notebook_instance_lifecycle_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceLifecycleConfigName = structure(logical(0), tags = list(type = "string")), OnCreate = structure(list(structure(list(Content = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), OnStart = structure(list(structure(list(Content = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_notebook_instance_lifecycle_config_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceLifecycleConfigArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_pipeline_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineName = structure(logical(0), tags = list(type = "string")), PipelineDisplayName = structure(logical(0), tags = list(type = "string")), PipelineDefinition = structure(logical(0), tags = list(type = "string")), PipelineDescription = structure(logical(0), tags = list(type = "string")), ClientRequestToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_pipeline_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_presigned_domain_url_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), SessionExpirationDurationInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_presigned_domain_url_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AuthorizedUrl = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_presigned_notebook_instance_url_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceName = structure(logical(0), tags = list(type = "string")), SessionExpirationDurationInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_presigned_notebook_instance_url_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AuthorizedUrl = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_processing_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProcessingInputs = structure(list(structure(list(InputName = structure(logical(0), tags = list(type = "string")), AppManaged = structure(logical(0), tags = list(type = "boolean")), S3Input = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3DataType = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), S3CompressionType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DatasetDefinition = structure(list(AthenaDatasetDefinition = structure(list(Catalog = structure(logical(0), tags = list(type = "string")), Database = structure(logical(0), tags = list(type = "string")), QueryString = structure(logical(0), tags = list(type = "string")), WorkGroup = structure(logical(0), tags = list(type = "string")), OutputS3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), OutputFormat = structure(logical(0), tags = list(type = "string")), OutputCompression = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RedshiftDatasetDefinition = structure(list(ClusterId = structure(logical(0), tags = list(type = "string")), Database = structure(logical(0), tags = list(type = "string")), DbUser = structure(logical(0), tags = list(type = "string")), QueryString = structure(logical(0), tags = list(type = "string")), ClusterRoleArn = structure(logical(0), tags = list(type = "string")), OutputS3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), OutputFormat = structure(logical(0), tags = list(type = "string")), OutputCompression = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LocalPath = structure(logical(0), tags = list(type = "string")), DataDistributionType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), ProcessingOutputConfig = structure(list(Outputs = structure(list(structure(list(OutputName = structure(logical(0), tags = list(type = "string")), S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), FeatureStoreOutput = structure(list(FeatureGroupName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), AppManaged = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProcessingJobName = structure(logical(0), tags = list(type = "string")), ProcessingResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), AppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ExperimentConfig = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), TrialComponentDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_processing_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProcessingJobArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_project_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProjectName = structure(logical(0), tags = list(type = "string")), ProjectDescription = structure(logical(0), tags = list(type = "string")), ServiceCatalogProvisioningDetails = structure(list(ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), ProvisioningParameters = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_project_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProjectArn = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_training_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrainingJobName = structure(logical(0), tags = list(type = "string")), HyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), AlgorithmSpecification = structure(list(TrainingImage = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string")), TrainingInputMode = structure(logical(0), tags = list(type = "string")), MetricDefinitions = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Regex = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), EnableSageMakerMetricsTimeSeries = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), InputDataConfig = structure(list(structure(list(ChannelName = structure(logical(0), tags = list(type = "string")), DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), AttributeNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), FileSystemDataSource = structure(list(FileSystemId = structure(logical(0), tags = list(type = "string")), FileSystemAccessMode = structure(logical(0), tags = list(type = "string")), FileSystemType = structure(logical(0), tags = list(type = "string")), DirectoryPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), RecordWrapperType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string")), ShuffleConfig = structure(list(Seed = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceConfig = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableManagedSpotTraining = structure(logical(0), tags = list(type = "boolean")), CheckpointConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DebugHookConfig = structure(list(LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), HookParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), CollectionConfigurations = structure(list(structure(list(CollectionName = structure(logical(0), tags = list(type = "string")), CollectionParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), DebugRuleConfigurations = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), RuleEvaluatorImage = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), RuleParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list")), TensorBoardOutputConfig = structure(list(LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ExperimentConfig = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), TrialComponentDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProfilerConfig = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), ProfilingIntervalInMilliseconds = structure(logical(0), tags = list(type = "long")), ProfilingParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")), ProfilerRuleConfigurations = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), RuleEvaluatorImage = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), RuleParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_training_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrainingJobArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_transform_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TransformJobName = structure(logical(0), tags = list(type = "string")), ModelName = structure(logical(0), tags = list(type = "string")), MaxConcurrentTransforms = structure(logical(0), tags = list(type = "integer")), ModelClientConfig = structure(list(InvocationsTimeoutInSeconds = structure(logical(0), tags = list(type = "integer")), InvocationsMaxRetries = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), MaxPayloadInMB = structure(logical(0), tags = list(type = "integer")), BatchStrategy = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), TransformInput = structure(list(DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), SplitType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformOutput = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), Accept = structure(logical(0), tags = list(type = "string")), AssembleWith = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformResources = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DataProcessing = structure(list(InputFilter = structure(logical(0), tags = list(type = "string")), OutputFilter = structure(logical(0), tags = list(type = "string")), JoinSource = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ExperimentConfig = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), TrialComponentDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_transform_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TransformJobArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_trial_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialName = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), ExperimentName = structure(logical(0), tags = list(type = "string")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_trial_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_trial_component_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentName = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Status = structure(list(PrimaryStatus = structure(logical(0), tags = list(type = "string")), Message = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StartTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), Parameters = structure(list(structure(list(StringValue = structure(logical(0), tags = list(type = "string")), NumberValue = structure(logical(0), tags = list(type = "double"))), tags = list(type = "structure"))), tags = list(type = "map")), InputArtifacts = structure(list(structure(list(MediaType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "map")), OutputArtifacts = structure(list(structure(list(MediaType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "map")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_trial_component_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_user_profile_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), SingleSignOnUserIdentifier = structure(logical(0), tags = list(type = "string")), SingleSignOnUserValue = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), UserSettings = structure(list(ExecutionRole = structure(logical(0), tags = list(type = "string")), SecurityGroups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SharingSettings = structure(list(NotebookOutputOption = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), S3KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JupyterServerAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), KernelGatewayAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CustomImages = structure(list(structure(list(ImageName = structure(logical(0), tags = list(type = "string")), ImageVersionNumber = structure(logical(0), tags = list(box = TRUE, type = "integer")), AppImageConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), TensorBoardAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_user_profile_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_workforce_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CognitoConfig = structure(list(UserPool = structure(logical(0), tags = list(type = "string")), ClientId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OidcConfig = structure(list(ClientId = structure(logical(0), tags = list(type = "string")), ClientSecret = structure(logical(0), tags = list(type = "string", sensitive = TRUE)), Issuer = structure(logical(0), tags = list(type = "string")), AuthorizationEndpoint = structure(logical(0), tags = list(type = "string")), TokenEndpoint = structure(logical(0), tags = list(type = "string")), UserInfoEndpoint = structure(logical(0), tags = list(type = "string")), LogoutEndpoint = structure(logical(0), tags = list(type = "string")), JwksUri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), SourceIpConfig = structure(list(Cidrs = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), WorkforceName = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_workforce_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkforceArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_workteam_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkteamName = structure(logical(0), tags = list(type = "string")), WorkforceName = structure(logical(0), tags = list(type = "string")), MemberDefinitions = structure(list(structure(list(CognitoMemberDefinition = structure(list(UserPool = structure(logical(0), tags = list(type = "string")), UserGroup = structure(logical(0), tags = list(type = "string")), ClientId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OidcMemberDefinition = structure(list(Groups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), Description = structure(logical(0), tags = list(type = "string")), NotificationConfiguration = structure(list(NotificationTopicArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$create_workteam_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkteamArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_action_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ActionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_action_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ActionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_algorithm_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AlgorithmName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_algorithm_output <- function(...) { list() } .sagemaker$delete_app_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), AppType = structure(logical(0), tags = list(type = "string")), AppName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_app_output <- function(...) { list() } .sagemaker$delete_app_image_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AppImageConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_app_image_config_output <- function(...) { list() } .sagemaker$delete_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ArtifactArn = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), SourceTypes = structure(list(structure(list(SourceIdType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ArtifactArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_association_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), DestinationArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_association_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), DestinationArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_code_repository_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeRepositoryName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_code_repository_output <- function(...) { list() } .sagemaker$delete_context_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContextName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_context_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContextArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_data_quality_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_data_quality_job_definition_output <- function(...) { list() } .sagemaker$delete_device_fleet_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_device_fleet_output <- function(...) { list() } .sagemaker$delete_domain_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), RetentionPolicy = structure(list(HomeEfsFileSystem = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_domain_output <- function(...) { list() } .sagemaker$delete_endpoint_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_endpoint_output <- function(...) { list() } .sagemaker$delete_endpoint_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_endpoint_config_output <- function(...) { list() } .sagemaker$delete_experiment_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_experiment_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_feature_group_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FeatureGroupName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_feature_group_output <- function(...) { list() } .sagemaker$delete_flow_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FlowDefinitionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_flow_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_human_task_ui_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HumanTaskUiName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_human_task_ui_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_image_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ImageName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_image_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_image_version_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ImageName = structure(logical(0), tags = list(type = "string")), Version = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_image_version_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_model_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_model_output <- function(...) { list() } .sagemaker$delete_model_bias_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_model_bias_job_definition_output <- function(...) { list() } .sagemaker$delete_model_explainability_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_model_explainability_job_definition_output <- function(...) { list() } .sagemaker$delete_model_package_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_model_package_output <- function(...) { list() } .sagemaker$delete_model_package_group_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageGroupName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_model_package_group_output <- function(...) { list() } .sagemaker$delete_model_package_group_policy_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageGroupName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_model_package_group_policy_output <- function(...) { list() } .sagemaker$delete_model_quality_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_model_quality_job_definition_output <- function(...) { list() } .sagemaker$delete_monitoring_schedule_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_monitoring_schedule_output <- function(...) { list() } .sagemaker$delete_notebook_instance_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_notebook_instance_output <- function(...) { list() } .sagemaker$delete_notebook_instance_lifecycle_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceLifecycleConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_notebook_instance_lifecycle_config_output <- function(...) { list() } .sagemaker$delete_pipeline_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineName = structure(logical(0), tags = list(type = "string")), ClientRequestToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_pipeline_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_project_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProjectName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_project_output <- function(...) { list() } .sagemaker$delete_tags_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceArn = structure(logical(0), tags = list(type = "string")), TagKeys = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_tags_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_trial_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_trial_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_trial_component_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_trial_component_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_user_profile_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_user_profile_output <- function(...) { list() } .sagemaker$delete_workforce_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkforceName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_workforce_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_workteam_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkteamName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$delete_workteam_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Success = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$deregister_devices_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetName = structure(logical(0), tags = list(type = "string")), DeviceNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$deregister_devices_output <- function(...) { list() } .sagemaker$describe_action_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ActionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_action_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ActionName = structure(logical(0), tags = list(type = "string")), ActionArn = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string")), SourceId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ActionType = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), Properties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_algorithm_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AlgorithmName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_algorithm_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AlgorithmName = structure(logical(0), tags = list(type = "string")), AlgorithmArn = structure(logical(0), tags = list(type = "string")), AlgorithmDescription = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TrainingSpecification = structure(list(TrainingImage = structure(logical(0), tags = list(type = "string")), TrainingImageDigest = structure(logical(0), tags = list(type = "string")), SupportedHyperParameters = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Type = structure(logical(0), tags = list(type = "string")), Range = structure(list(IntegerParameterRangeSpecification = structure(list(MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ContinuousParameterRangeSpecification = structure(list(MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CategoricalParameterRangeSpecification = structure(list(Values = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), IsTunable = structure(logical(0), tags = list(type = "boolean")), IsRequired = structure(logical(0), tags = list(type = "boolean")), DefaultValue = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), SupportedTrainingInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportsDistributedTraining = structure(logical(0), tags = list(type = "boolean")), MetricDefinitions = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Regex = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), TrainingChannels = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), IsRequired = structure(logical(0), tags = list(type = "boolean")), SupportedContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedCompressionTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedInputModes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), SupportedTuningJobObjectiveMetrics = structure(list(structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), InferenceSpecification = structure(list(Containers = structure(list(structure(list(ContainerHostname = structure(logical(0), tags = list(type = "string")), Image = structure(logical(0), tags = list(type = "string")), ImageDigest = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), SupportedTransformInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedRealtimeInferenceInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedResponseMIMETypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), ValidationSpecification = structure(list(ValidationRole = structure(logical(0), tags = list(type = "string")), ValidationProfiles = structure(list(structure(list(ProfileName = structure(logical(0), tags = list(type = "string")), TrainingJobDefinition = structure(list(TrainingInputMode = structure(logical(0), tags = list(type = "string")), HyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), InputDataConfig = structure(list(structure(list(ChannelName = structure(logical(0), tags = list(type = "string")), DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), AttributeNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), FileSystemDataSource = structure(list(FileSystemId = structure(logical(0), tags = list(type = "string")), FileSystemAccessMode = structure(logical(0), tags = list(type = "string")), FileSystemType = structure(logical(0), tags = list(type = "string")), DirectoryPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), RecordWrapperType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string")), ShuffleConfig = structure(list(Seed = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceConfig = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure")), TransformJobDefinition = structure(list(MaxConcurrentTransforms = structure(logical(0), tags = list(type = "integer")), MaxPayloadInMB = structure(logical(0), tags = list(type = "integer")), BatchStrategy = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), TransformInput = structure(list(DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), SplitType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformOutput = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), Accept = structure(logical(0), tags = list(type = "string")), AssembleWith = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformResources = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), AlgorithmStatus = structure(logical(0), tags = list(type = "string")), AlgorithmStatusDetails = structure(list(ValidationStatuses = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ImageScanStatuses = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ProductId = structure(logical(0), tags = list(type = "string")), CertifyForMarketplace = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_app_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), AppType = structure(logical(0), tags = list(type = "string")), AppName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_app_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AppArn = structure(logical(0), tags = list(type = "string")), AppType = structure(logical(0), tags = list(type = "string")), AppName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), LastHealthCheckTimestamp = structure(logical(0), tags = list(type = "timestamp")), LastUserActivityTimestamp = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string")), ResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_app_image_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AppImageConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_app_image_config_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AppImageConfigArn = structure(logical(0), tags = list(type = "string")), AppImageConfigName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), KernelGatewayImageConfig = structure(list(KernelSpecs = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), FileSystemConfig = structure(list(MountPath = structure(logical(0), tags = list(type = "string")), DefaultUid = structure(logical(0), tags = list(box = TRUE, type = "integer")), DefaultGid = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ArtifactArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ArtifactName = structure(logical(0), tags = list(type = "string")), ArtifactArn = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), SourceTypes = structure(list(structure(list(SourceIdType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ArtifactType = structure(logical(0), tags = list(type = "string")), Properties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_auto_ml_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AutoMLJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_auto_ml_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AutoMLJobName = structure(logical(0), tags = list(type = "string")), AutoMLJobArn = structure(logical(0), tags = list(type = "string")), InputDataConfig = structure(list(structure(list(DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), CompressionType = structure(logical(0), tags = list(type = "string")), TargetAttributeName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), AutoMLJobObjective = structure(list(MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProblemType = structure(logical(0), tags = list(type = "string")), AutoMLJobConfig = structure(list(CompletionCriteria = structure(list(MaxCandidates = structure(logical(0), tags = list(type = "integer")), MaxRuntimePerTrainingJobInSeconds = structure(logical(0), tags = list(type = "integer")), MaxAutoMLJobRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), SecurityConfig = structure(list(VolumeKmsKeyId = structure(logical(0), tags = list(type = "string")), EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string")), BestCandidate = structure(list(CandidateName = structure(logical(0), tags = list(type = "string")), FinalAutoMLJobObjectiveMetric = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "float"))), tags = list(type = "structure")), ObjectiveStatus = structure(logical(0), tags = list(type = "string")), CandidateSteps = structure(list(structure(list(CandidateStepType = structure(logical(0), tags = list(type = "string")), CandidateStepArn = structure(logical(0), tags = list(type = "string")), CandidateStepName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CandidateStatus = structure(logical(0), tags = list(type = "string")), InferenceContainers = structure(list(structure(list(Image = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), AutoMLJobStatus = structure(logical(0), tags = list(type = "string")), AutoMLJobSecondaryStatus = structure(logical(0), tags = list(type = "string")), GenerateCandidateDefinitionsOnly = structure(logical(0), tags = list(type = "boolean")), AutoMLJobArtifacts = structure(list(CandidateDefinitionNotebookLocation = structure(logical(0), tags = list(type = "string")), DataExplorationNotebookLocation = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResolvedAttributes = structure(list(AutoMLJobObjective = structure(list(MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProblemType = structure(logical(0), tags = list(type = "string")), CompletionCriteria = structure(list(MaxCandidates = structure(logical(0), tags = list(type = "integer")), MaxRuntimePerTrainingJobInSeconds = structure(logical(0), tags = list(type = "integer")), MaxAutoMLJobRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_code_repository_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeRepositoryName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_code_repository_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeRepositoryName = structure(logical(0), tags = list(type = "string")), CodeRepositoryArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), GitConfig = structure(list(RepositoryUrl = structure(logical(0), tags = list(type = "string")), Branch = structure(logical(0), tags = list(type = "string")), SecretArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_compilation_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CompilationJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_compilation_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CompilationJobName = structure(logical(0), tags = list(type = "string")), CompilationJobArn = structure(logical(0), tags = list(type = "string")), CompilationJobStatus = structure(logical(0), tags = list(type = "string")), CompilationStartTime = structure(logical(0), tags = list(type = "timestamp")), CompilationEndTime = structure(logical(0), tags = list(type = "timestamp")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string")), ModelArtifacts = structure(list(S3ModelArtifacts = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ModelDigests = structure(list(ArtifactDigest = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), InputConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), DataInputConfig = structure(logical(0), tags = list(type = "string")), Framework = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OutputConfig = structure(list(S3OutputLocation = structure(logical(0), tags = list(type = "string")), TargetDevice = structure(logical(0), tags = list(type = "string")), TargetPlatform = structure(list(Os = structure(logical(0), tags = list(type = "string")), Arch = structure(logical(0), tags = list(type = "string")), Accelerator = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CompilerOptions = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_context_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContextName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_context_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContextName = structure(logical(0), tags = list(type = "string")), ContextArn = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string")), SourceId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ContextType = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Properties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_data_quality_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_data_quality_job_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionArn = structure(logical(0), tags = list(type = "string")), JobDefinitionName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), DataQualityBaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StatisticsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), DataQualityAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RecordPreprocessorSourceUri = structure(logical(0), tags = list(type = "string")), PostAnalyticsProcessorSourceUri = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")), DataQualityJobInput = structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), DataQualityJobOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JobResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_device_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), DeviceName = structure(logical(0), tags = list(type = "string")), DeviceFleetName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_device_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceArn = structure(logical(0), tags = list(type = "string")), DeviceName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), DeviceFleetName = structure(logical(0), tags = list(type = "string")), IotThingName = structure(logical(0), tags = list(type = "string")), RegistrationTime = structure(logical(0), tags = list(type = "timestamp")), LatestHeartbeat = structure(logical(0), tags = list(type = "timestamp")), Models = structure(list(structure(list(ModelName = structure(logical(0), tags = list(type = "string")), ModelVersion = structure(logical(0), tags = list(type = "string")), LatestSampleTime = structure(logical(0), tags = list(type = "timestamp")), LatestInference = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), MaxModels = structure(logical(0), tags = list(type = "integer")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_device_fleet_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_device_fleet_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetName = structure(logical(0), tags = list(type = "string")), DeviceFleetArn = structure(logical(0), tags = list(type = "string")), OutputConfig = structure(list(S3OutputLocation = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Description = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), RoleArn = structure(logical(0), tags = list(type = "string")), IotRoleAlias = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_domain_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_domain_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainArn = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string")), DomainName = structure(logical(0), tags = list(type = "string")), HomeEfsFileSystemId = structure(logical(0), tags = list(type = "string")), SingleSignOnManagedApplicationInstanceId = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string")), AuthMode = structure(logical(0), tags = list(type = "string")), DefaultUserSettings = structure(list(ExecutionRole = structure(logical(0), tags = list(type = "string")), SecurityGroups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SharingSettings = structure(list(NotebookOutputOption = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), S3KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JupyterServerAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), KernelGatewayAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CustomImages = structure(list(structure(list(ImageName = structure(logical(0), tags = list(type = "string")), ImageVersionNumber = structure(logical(0), tags = list(box = TRUE, type = "integer")), AppImageConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), TensorBoardAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), AppNetworkAccessType = structure(logical(0), tags = list(type = "string")), HomeEfsFileSystemKmsKeyId = structure(logical(0), tags = list(deprecated = TRUE, deprecatedMessage = "This property is deprecated, use KmsKeyId instead.", type = "string")), SubnetIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Url = structure(logical(0), tags = list(type = "string")), VpcId = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_edge_packaging_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EdgePackagingJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_edge_packaging_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EdgePackagingJobArn = structure(logical(0), tags = list(type = "string")), EdgePackagingJobName = structure(logical(0), tags = list(type = "string")), CompilationJobName = structure(logical(0), tags = list(type = "string")), ModelName = structure(logical(0), tags = list(type = "string")), ModelVersion = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), OutputConfig = structure(list(S3OutputLocation = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceKey = structure(logical(0), tags = list(type = "string")), EdgePackagingJobStatus = structure(logical(0), tags = list(type = "string")), EdgePackagingJobStatusMessage = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), ModelArtifact = structure(logical(0), tags = list(type = "string")), ModelSignature = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_endpoint_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_endpoint_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), EndpointArn = structure(logical(0), tags = list(type = "string")), EndpointConfigName = structure(logical(0), tags = list(type = "string")), ProductionVariants = structure(list(structure(list(VariantName = structure(logical(0), tags = list(type = "string")), DeployedImages = structure(list(structure(list(SpecifiedImage = structure(logical(0), tags = list(type = "string")), ResolvedImage = structure(logical(0), tags = list(type = "string")), ResolutionTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), CurrentWeight = structure(logical(0), tags = list(type = "float")), DesiredWeight = structure(logical(0), tags = list(type = "float")), CurrentInstanceCount = structure(logical(0), tags = list(type = "integer")), DesiredInstanceCount = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "list")), DataCaptureConfig = structure(list(EnableCapture = structure(logical(0), tags = list(type = "boolean")), CaptureStatus = structure(logical(0), tags = list(type = "string")), CurrentSamplingPercentage = structure(logical(0), tags = list(type = "integer")), DestinationS3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), EndpointStatus = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastDeploymentConfig = structure(list(BlueGreenUpdatePolicy = structure(list(TrafficRoutingConfiguration = structure(list(Type = structure(logical(0), tags = list(type = "string")), WaitIntervalInSeconds = structure(logical(0), tags = list(type = "integer")), CanarySize = structure(list(Type = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure")), TerminationWaitInSeconds = structure(logical(0), tags = list(type = "integer")), MaximumExecutionTimeoutInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), AutoRollbackConfiguration = structure(list(Alarms = structure(list(structure(list(AlarmName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_endpoint_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_endpoint_config_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointConfigName = structure(logical(0), tags = list(type = "string")), EndpointConfigArn = structure(logical(0), tags = list(type = "string")), ProductionVariants = structure(list(structure(list(VariantName = structure(logical(0), tags = list(type = "string")), ModelName = structure(logical(0), tags = list(type = "string")), InitialInstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), InitialVariantWeight = structure(logical(0), tags = list(type = "float")), AcceleratorType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), DataCaptureConfig = structure(list(EnableCapture = structure(logical(0), tags = list(type = "boolean")), InitialSamplingPercentage = structure(logical(0), tags = list(type = "integer")), DestinationS3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), CaptureOptions = structure(list(structure(list(CaptureMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CaptureContentTypeHeader = structure(list(CsvContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), JsonContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), KmsKeyId = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_experiment_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_experiment_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), ExperimentArn = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Description = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_feature_group_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FeatureGroupName = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_feature_group_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FeatureGroupArn = structure(logical(0), tags = list(type = "string")), FeatureGroupName = structure(logical(0), tags = list(type = "string")), RecordIdentifierFeatureName = structure(logical(0), tags = list(type = "string")), EventTimeFeatureName = structure(logical(0), tags = list(type = "string")), FeatureDefinitions = structure(list(structure(list(FeatureName = structure(logical(0), tags = list(type = "string")), FeatureType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), OnlineStoreConfig = structure(list(SecurityConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), EnableOnlineStore = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), OfflineStoreConfig = structure(list(S3StorageConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DisableGlueTableCreation = structure(logical(0), tags = list(type = "boolean")), DataCatalogConfig = structure(list(TableName = structure(logical(0), tags = list(type = "string")), Catalog = structure(logical(0), tags = list(type = "string")), Database = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), FeatureGroupStatus = structure(logical(0), tags = list(type = "string")), OfflineStoreStatus = structure(list(Status = structure(logical(0), tags = list(type = "string")), BlockedReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), FailureReason = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_flow_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FlowDefinitionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_flow_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FlowDefinitionArn = structure(logical(0), tags = list(type = "string")), FlowDefinitionName = structure(logical(0), tags = list(type = "string")), FlowDefinitionStatus = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), HumanLoopRequestSource = structure(list(AwsManagedHumanLoopRequestSource = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), HumanLoopActivationConfig = structure(list(HumanLoopActivationConditionsConfig = structure(list(HumanLoopActivationConditions = structure(logical(0), tags = list(jsonvalue = TRUE, type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), HumanLoopConfig = structure(list(WorkteamArn = structure(logical(0), tags = list(type = "string")), HumanTaskUiArn = structure(logical(0), tags = list(type = "string")), TaskTitle = structure(logical(0), tags = list(type = "string")), TaskDescription = structure(logical(0), tags = list(type = "string")), TaskCount = structure(logical(0), tags = list(type = "integer")), TaskAvailabilityLifetimeInSeconds = structure(logical(0), tags = list(type = "integer")), TaskTimeLimitInSeconds = structure(logical(0), tags = list(type = "integer")), TaskKeywords = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), PublicWorkforceTaskPrice = structure(list(AmountInUsd = structure(list(Dollars = structure(logical(0), tags = list(type = "integer")), Cents = structure(logical(0), tags = list(type = "integer")), TenthFractionsOfACent = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), OutputConfig = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_human_task_ui_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HumanTaskUiName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_human_task_ui_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HumanTaskUiArn = structure(logical(0), tags = list(type = "string")), HumanTaskUiName = structure(logical(0), tags = list(type = "string")), HumanTaskUiStatus = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), UiTemplate = structure(list(Url = structure(logical(0), tags = list(type = "string")), ContentSha256 = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_hyper_parameter_tuning_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HyperParameterTuningJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_hyper_parameter_tuning_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HyperParameterTuningJobName = structure(logical(0), tags = list(type = "string")), HyperParameterTuningJobArn = structure(logical(0), tags = list(type = "string")), HyperParameterTuningJobConfig = structure(list(Strategy = structure(logical(0), tags = list(type = "string")), HyperParameterTuningJobObjective = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceLimits = structure(list(MaxNumberOfTrainingJobs = structure(logical(0), tags = list(type = "integer")), MaxParallelTrainingJobs = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), ParameterRanges = structure(list(IntegerParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ContinuousParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CategoricalParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Values = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), TrainingJobEarlyStoppingType = structure(logical(0), tags = list(type = "string")), TuningJobCompletionCriteria = structure(list(TargetObjectiveMetricValue = structure(logical(0), tags = list(type = "float"))), tags = list(type = "structure"))), tags = list(type = "structure")), TrainingJobDefinition = structure(list(DefinitionName = structure(logical(0), tags = list(type = "string")), TuningObjective = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), HyperParameterRanges = structure(list(IntegerParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ContinuousParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CategoricalParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Values = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), StaticHyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), AlgorithmSpecification = structure(list(TrainingImage = structure(logical(0), tags = list(type = "string")), TrainingInputMode = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string")), MetricDefinitions = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Regex = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), InputDataConfig = structure(list(structure(list(ChannelName = structure(logical(0), tags = list(type = "string")), DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), AttributeNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), FileSystemDataSource = structure(list(FileSystemId = structure(logical(0), tags = list(type = "string")), FileSystemAccessMode = structure(logical(0), tags = list(type = "string")), FileSystemType = structure(logical(0), tags = list(type = "string")), DirectoryPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), RecordWrapperType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string")), ShuffleConfig = structure(list(Seed = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceConfig = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableManagedSpotTraining = structure(logical(0), tags = list(type = "boolean")), CheckpointConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), TrainingJobDefinitions = structure(list(structure(list(DefinitionName = structure(logical(0), tags = list(type = "string")), TuningObjective = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), HyperParameterRanges = structure(list(IntegerParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ContinuousParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), MinValue = structure(logical(0), tags = list(type = "string")), MaxValue = structure(logical(0), tags = list(type = "string")), ScalingType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CategoricalParameterRanges = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Values = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), StaticHyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), AlgorithmSpecification = structure(list(TrainingImage = structure(logical(0), tags = list(type = "string")), TrainingInputMode = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string")), MetricDefinitions = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Regex = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), InputDataConfig = structure(list(structure(list(ChannelName = structure(logical(0), tags = list(type = "string")), DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), AttributeNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), FileSystemDataSource = structure(list(FileSystemId = structure(logical(0), tags = list(type = "string")), FileSystemAccessMode = structure(logical(0), tags = list(type = "string")), FileSystemType = structure(logical(0), tags = list(type = "string")), DirectoryPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), RecordWrapperType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string")), ShuffleConfig = structure(list(Seed = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceConfig = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableManagedSpotTraining = structure(logical(0), tags = list(type = "boolean")), CheckpointConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), HyperParameterTuningJobStatus = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), HyperParameterTuningEndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), TrainingJobStatusCounters = structure(list(Completed = structure(logical(0), tags = list(type = "integer")), InProgress = structure(logical(0), tags = list(type = "integer")), RetryableError = structure(logical(0), tags = list(type = "integer")), NonRetryableError = structure(logical(0), tags = list(type = "integer")), Stopped = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), ObjectiveStatusCounters = structure(list(Succeeded = structure(logical(0), tags = list(type = "integer")), Pending = structure(logical(0), tags = list(type = "integer")), Failed = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), BestTrainingJob = structure(list(TrainingJobDefinitionName = structure(logical(0), tags = list(type = "string")), TrainingJobName = structure(logical(0), tags = list(type = "string")), TrainingJobArn = structure(logical(0), tags = list(type = "string")), TuningJobName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TrainingStartTime = structure(logical(0), tags = list(type = "timestamp")), TrainingEndTime = structure(logical(0), tags = list(type = "timestamp")), TrainingJobStatus = structure(logical(0), tags = list(type = "string")), TunedHyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), FailureReason = structure(logical(0), tags = list(type = "string")), FinalHyperParameterTuningJobObjectiveMetric = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "float"))), tags = list(type = "structure")), ObjectiveStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OverallBestTrainingJob = structure(list(TrainingJobDefinitionName = structure(logical(0), tags = list(type = "string")), TrainingJobName = structure(logical(0), tags = list(type = "string")), TrainingJobArn = structure(logical(0), tags = list(type = "string")), TuningJobName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TrainingStartTime = structure(logical(0), tags = list(type = "timestamp")), TrainingEndTime = structure(logical(0), tags = list(type = "timestamp")), TrainingJobStatus = structure(logical(0), tags = list(type = "string")), TunedHyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), FailureReason = structure(logical(0), tags = list(type = "string")), FinalHyperParameterTuningJobObjectiveMetric = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "float"))), tags = list(type = "structure")), ObjectiveStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), WarmStartConfig = structure(list(ParentHyperParameterTuningJobs = structure(list(structure(list(HyperParameterTuningJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), WarmStartType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_image_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ImageName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_image_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTime = structure(logical(0), tags = list(type = "timestamp")), Description = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), ImageArn = structure(logical(0), tags = list(type = "string")), ImageName = structure(logical(0), tags = list(type = "string")), ImageStatus = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), RoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_image_version_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ImageName = structure(logical(0), tags = list(type = "string")), Version = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_image_version_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(BaseImage = structure(logical(0), tags = list(type = "string")), ContainerImage = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string")), ImageArn = structure(logical(0), tags = list(type = "string")), ImageVersionArn = structure(logical(0), tags = list(type = "string")), ImageVersionStatus = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), Version = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_labeling_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(LabelingJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_labeling_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(LabelingJobStatus = structure(logical(0), tags = list(type = "string")), LabelCounters = structure(list(TotalLabeled = structure(logical(0), tags = list(type = "integer")), HumanLabeled = structure(logical(0), tags = list(type = "integer")), MachineLabeled = structure(logical(0), tags = list(type = "integer")), FailedNonRetryableError = structure(logical(0), tags = list(type = "integer")), Unlabeled = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), FailureReason = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), JobReferenceCode = structure(logical(0), tags = list(type = "string")), LabelingJobName = structure(logical(0), tags = list(type = "string")), LabelingJobArn = structure(logical(0), tags = list(type = "string")), LabelAttributeName = structure(logical(0), tags = list(type = "string")), InputConfig = structure(list(DataSource = structure(list(S3DataSource = structure(list(ManifestS3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), SnsDataSource = structure(list(SnsTopicArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), DataAttributes = structure(list(ContentClassifiers = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), OutputConfig = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), SnsTopicArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), LabelCategoryConfigS3Uri = structure(logical(0), tags = list(type = "string")), StoppingConditions = structure(list(MaxHumanLabeledObjectCount = structure(logical(0), tags = list(type = "integer")), MaxPercentageOfInputDatasetLabeled = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), LabelingJobAlgorithmsConfig = structure(list(LabelingJobAlgorithmSpecificationArn = structure(logical(0), tags = list(type = "string")), InitialActiveLearningModelArn = structure(logical(0), tags = list(type = "string")), LabelingJobResourceConfig = structure(list(VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), HumanTaskConfig = structure(list(WorkteamArn = structure(logical(0), tags = list(type = "string")), UiConfig = structure(list(UiTemplateS3Uri = structure(logical(0), tags = list(type = "string")), HumanTaskUiArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), PreHumanTaskLambdaArn = structure(logical(0), tags = list(type = "string")), TaskKeywords = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), TaskTitle = structure(logical(0), tags = list(type = "string")), TaskDescription = structure(logical(0), tags = list(type = "string")), NumberOfHumanWorkersPerDataObject = structure(logical(0), tags = list(type = "integer")), TaskTimeLimitInSeconds = structure(logical(0), tags = list(type = "integer")), TaskAvailabilityLifetimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxConcurrentTaskCount = structure(logical(0), tags = list(type = "integer")), AnnotationConsolidationConfig = structure(list(AnnotationConsolidationLambdaArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), PublicWorkforceTaskPrice = structure(list(AmountInUsd = structure(list(Dollars = structure(logical(0), tags = list(type = "integer")), Cents = structure(logical(0), tags = list(type = "integer")), TenthFractionsOfACent = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LabelingJobOutput = structure(list(OutputDatasetS3Uri = structure(logical(0), tags = list(type = "string")), FinalActiveLearningModelArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelName = structure(logical(0), tags = list(type = "string")), PrimaryContainer = structure(list(ContainerHostname = structure(logical(0), tags = list(type = "string")), Image = structure(logical(0), tags = list(type = "string")), ImageConfig = structure(list(RepositoryAccessMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Mode = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), ModelPackageName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Containers = structure(list(structure(list(ContainerHostname = structure(logical(0), tags = list(type = "string")), Image = structure(logical(0), tags = list(type = "string")), ImageConfig = structure(list(RepositoryAccessMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Mode = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), ModelPackageName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ExecutionRoleArn = structure(logical(0), tags = list(type = "string")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), ModelArn = structure(logical(0), tags = list(type = "string")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_bias_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_bias_job_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionArn = structure(logical(0), tags = list(type = "string")), JobDefinitionName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), ModelBiasBaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelBiasAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ConfigUri = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")), ModelBiasJobInput = structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), GroundTruthS3Input = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelBiasJobOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JobResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_explainability_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_explainability_job_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionArn = structure(logical(0), tags = list(type = "string")), JobDefinitionName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), ModelExplainabilityBaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelExplainabilityAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ConfigUri = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")), ModelExplainabilityJobInput = structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelExplainabilityJobOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JobResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_package_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_package_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageName = structure(logical(0), tags = list(type = "string")), ModelPackageGroupName = structure(logical(0), tags = list(type = "string")), ModelPackageVersion = structure(logical(0), tags = list(type = "integer")), ModelPackageArn = structure(logical(0), tags = list(type = "string")), ModelPackageDescription = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), InferenceSpecification = structure(list(Containers = structure(list(structure(list(ContainerHostname = structure(logical(0), tags = list(type = "string")), Image = structure(logical(0), tags = list(type = "string")), ImageDigest = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), SupportedTransformInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedRealtimeInferenceInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedResponseMIMETypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), SourceAlgorithmSpecification = structure(list(SourceAlgorithms = structure(list(structure(list(ModelDataUrl = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ValidationSpecification = structure(list(ValidationRole = structure(logical(0), tags = list(type = "string")), ValidationProfiles = structure(list(structure(list(ProfileName = structure(logical(0), tags = list(type = "string")), TransformJobDefinition = structure(list(MaxConcurrentTransforms = structure(logical(0), tags = list(type = "integer")), MaxPayloadInMB = structure(logical(0), tags = list(type = "integer")), BatchStrategy = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), TransformInput = structure(list(DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), SplitType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformOutput = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), Accept = structure(logical(0), tags = list(type = "string")), AssembleWith = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformResources = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ModelPackageStatus = structure(logical(0), tags = list(type = "string")), ModelPackageStatusDetails = structure(list(ValidationStatuses = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ImageScanStatuses = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), CertifyForMarketplace = structure(logical(0), tags = list(type = "boolean")), ModelApprovalStatus = structure(logical(0), tags = list(type = "string")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ModelMetrics = structure(list(ModelQuality = structure(list(Statistics = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Constraints = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelDataQuality = structure(list(Statistics = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Constraints = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), Bias = structure(list(Report = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), Explainability = structure(list(Report = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ApprovalDescription = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_package_group_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageGroupName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_package_group_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageGroupName = structure(logical(0), tags = list(type = "string")), ModelPackageGroupArn = structure(logical(0), tags = list(type = "string")), ModelPackageGroupDescription = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ModelPackageGroupStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_quality_job_definition_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_model_quality_job_definition_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionArn = structure(logical(0), tags = list(type = "string")), JobDefinitionName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), ModelQualityBaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelQualityAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RecordPreprocessorSourceUri = structure(logical(0), tags = list(type = "string")), PostAnalyticsProcessorSourceUri = structure(logical(0), tags = list(type = "string")), ProblemType = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")), ModelQualityJobInput = structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), GroundTruthS3Input = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelQualityJobOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JobResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_monitoring_schedule_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_monitoring_schedule_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleArn = structure(logical(0), tags = list(type = "string")), MonitoringScheduleName = structure(logical(0), tags = list(type = "string")), MonitoringScheduleStatus = structure(logical(0), tags = list(type = "string")), MonitoringType = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), MonitoringScheduleConfig = structure(list(ScheduleConfig = structure(list(ScheduleExpression = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringJobDefinition = structure(list(BaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StatisticsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), MonitoringInputs = structure(list(structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), MonitoringOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), MonitoringAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RecordPreprocessorSourceUri = structure(logical(0), tags = list(type = "string")), PostAnalyticsProcessorSourceUri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), EndpointName = structure(logical(0), tags = list(type = "string")), LastMonitoringExecutionSummary = structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string")), ScheduledTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), MonitoringExecutionStatus = structure(logical(0), tags = list(type = "string")), ProcessingJobArn = structure(logical(0), tags = list(type = "string")), EndpointName = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_notebook_instance_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_notebook_instance_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceArn = structure(logical(0), tags = list(type = "string")), NotebookInstanceName = structure(logical(0), tags = list(type = "string")), NotebookInstanceStatus = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), Url = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), SubnetId = structure(logical(0), tags = list(type = "string")), SecurityGroups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RoleArn = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), NetworkInterfaceId = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), NotebookInstanceLifecycleConfigName = structure(logical(0), tags = list(type = "string")), DirectInternetAccess = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), AcceleratorTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), DefaultCodeRepository = structure(logical(0), tags = list(type = "string")), AdditionalCodeRepositories = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RootAccess = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_notebook_instance_lifecycle_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceLifecycleConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_notebook_instance_lifecycle_config_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceLifecycleConfigArn = structure(logical(0), tags = list(type = "string")), NotebookInstanceLifecycleConfigName = structure(logical(0), tags = list(type = "string")), OnCreate = structure(list(structure(list(Content = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), OnStart = structure(list(structure(list(Content = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_pipeline_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_pipeline_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineArn = structure(logical(0), tags = list(type = "string")), PipelineName = structure(logical(0), tags = list(type = "string")), PipelineDisplayName = structure(logical(0), tags = list(type = "string")), PipelineDefinition = structure(logical(0), tags = list(type = "string")), PipelineDescription = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), PipelineStatus = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastRunTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_pipeline_definition_for_execution_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_pipeline_definition_for_execution_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineDefinition = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_pipeline_execution_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_pipeline_execution_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineArn = structure(logical(0), tags = list(type = "string")), PipelineExecutionArn = structure(logical(0), tags = list(type = "string")), PipelineExecutionDisplayName = structure(logical(0), tags = list(type = "string")), PipelineExecutionStatus = structure(logical(0), tags = list(type = "string")), PipelineExecutionDescription = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_processing_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProcessingJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_processing_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProcessingInputs = structure(list(structure(list(InputName = structure(logical(0), tags = list(type = "string")), AppManaged = structure(logical(0), tags = list(type = "boolean")), S3Input = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3DataType = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), S3CompressionType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DatasetDefinition = structure(list(AthenaDatasetDefinition = structure(list(Catalog = structure(logical(0), tags = list(type = "string")), Database = structure(logical(0), tags = list(type = "string")), QueryString = structure(logical(0), tags = list(type = "string")), WorkGroup = structure(logical(0), tags = list(type = "string")), OutputS3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), OutputFormat = structure(logical(0), tags = list(type = "string")), OutputCompression = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RedshiftDatasetDefinition = structure(list(ClusterId = structure(logical(0), tags = list(type = "string")), Database = structure(logical(0), tags = list(type = "string")), DbUser = structure(logical(0), tags = list(type = "string")), QueryString = structure(logical(0), tags = list(type = "string")), ClusterRoleArn = structure(logical(0), tags = list(type = "string")), OutputS3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), OutputFormat = structure(logical(0), tags = list(type = "string")), OutputCompression = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LocalPath = structure(logical(0), tags = list(type = "string")), DataDistributionType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), ProcessingOutputConfig = structure(list(Outputs = structure(list(structure(list(OutputName = structure(logical(0), tags = list(type = "string")), S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), FeatureStoreOutput = structure(list(FeatureGroupName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), AppManaged = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProcessingJobName = structure(logical(0), tags = list(type = "string")), ProcessingResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), AppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), ExperimentConfig = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), TrialComponentDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProcessingJobArn = structure(logical(0), tags = list(type = "string")), ProcessingJobStatus = structure(logical(0), tags = list(type = "string")), ExitMessage = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), ProcessingEndTime = structure(logical(0), tags = list(type = "timestamp")), ProcessingStartTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), MonitoringScheduleArn = structure(logical(0), tags = list(type = "string")), AutoMLJobArn = structure(logical(0), tags = list(type = "string")), TrainingJobArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_project_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProjectName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_project_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProjectArn = structure(logical(0), tags = list(type = "string")), ProjectName = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string")), ProjectDescription = structure(logical(0), tags = list(type = "string")), ServiceCatalogProvisioningDetails = structure(list(ProductId = structure(logical(0), tags = list(type = "string")), ProvisioningArtifactId = structure(logical(0), tags = list(type = "string")), PathId = structure(logical(0), tags = list(type = "string")), ProvisioningParameters = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ServiceCatalogProvisionedProductDetails = structure(list(ProvisionedProductId = structure(logical(0), tags = list(type = "string")), ProvisionedProductStatusMessage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProjectStatus = structure(logical(0), tags = list(type = "string")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_subscribed_workteam_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkteamArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_subscribed_workteam_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SubscribedWorkteam = structure(list(WorkteamArn = structure(logical(0), tags = list(type = "string")), MarketplaceTitle = structure(logical(0), tags = list(type = "string")), SellerName = structure(logical(0), tags = list(type = "string")), MarketplaceDescription = structure(logical(0), tags = list(type = "string")), ListingId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_training_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrainingJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_training_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrainingJobName = structure(logical(0), tags = list(type = "string")), TrainingJobArn = structure(logical(0), tags = list(type = "string")), TuningJobArn = structure(logical(0), tags = list(type = "string")), LabelingJobArn = structure(logical(0), tags = list(type = "string")), AutoMLJobArn = structure(logical(0), tags = list(type = "string")), ModelArtifacts = structure(list(S3ModelArtifacts = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TrainingJobStatus = structure(logical(0), tags = list(type = "string")), SecondaryStatus = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), HyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), AlgorithmSpecification = structure(list(TrainingImage = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string")), TrainingInputMode = structure(logical(0), tags = list(type = "string")), MetricDefinitions = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Regex = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), EnableSageMakerMetricsTimeSeries = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), InputDataConfig = structure(list(structure(list(ChannelName = structure(logical(0), tags = list(type = "string")), DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), AttributeNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), FileSystemDataSource = structure(list(FileSystemId = structure(logical(0), tags = list(type = "string")), FileSystemAccessMode = structure(logical(0), tags = list(type = "string")), FileSystemType = structure(logical(0), tags = list(type = "string")), DirectoryPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), RecordWrapperType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string")), ShuffleConfig = structure(list(Seed = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceConfig = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TrainingStartTime = structure(logical(0), tags = list(type = "timestamp")), TrainingEndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), SecondaryStatusTransitions = structure(list(structure(list(Status = structure(logical(0), tags = list(type = "string")), StartTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), StatusMessage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), FinalMetricDataList = structure(list(structure(list(MetricName = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "float")), Timestamp = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableManagedSpotTraining = structure(logical(0), tags = list(type = "boolean")), CheckpointConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TrainingTimeInSeconds = structure(logical(0), tags = list(type = "integer")), BillableTimeInSeconds = structure(logical(0), tags = list(type = "integer")), DebugHookConfig = structure(list(LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), HookParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), CollectionConfigurations = structure(list(structure(list(CollectionName = structure(logical(0), tags = list(type = "string")), CollectionParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ExperimentConfig = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), TrialComponentDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DebugRuleConfigurations = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), RuleEvaluatorImage = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), RuleParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list")), TensorBoardOutputConfig = structure(list(LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DebugRuleEvaluationStatuses = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), RuleEvaluationJobArn = structure(logical(0), tags = list(type = "string")), RuleEvaluationStatus = structure(logical(0), tags = list(type = "string")), StatusDetails = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), ProfilerConfig = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), ProfilingIntervalInMilliseconds = structure(logical(0), tags = list(type = "long")), ProfilingParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")), ProfilerRuleConfigurations = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), RuleEvaluatorImage = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), RuleParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list")), ProfilerRuleEvaluationStatuses = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), RuleEvaluationJobArn = structure(logical(0), tags = list(type = "string")), RuleEvaluationStatus = structure(logical(0), tags = list(type = "string")), StatusDetails = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), ProfilingStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_transform_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TransformJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_transform_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TransformJobName = structure(logical(0), tags = list(type = "string")), TransformJobArn = structure(logical(0), tags = list(type = "string")), TransformJobStatus = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), ModelName = structure(logical(0), tags = list(type = "string")), MaxConcurrentTransforms = structure(logical(0), tags = list(type = "integer")), ModelClientConfig = structure(list(InvocationsTimeoutInSeconds = structure(logical(0), tags = list(type = "integer")), InvocationsMaxRetries = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), MaxPayloadInMB = structure(logical(0), tags = list(type = "integer")), BatchStrategy = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), TransformInput = structure(list(DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), SplitType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformOutput = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), Accept = structure(logical(0), tags = list(type = "string")), AssembleWith = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformResources = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TransformStartTime = structure(logical(0), tags = list(type = "timestamp")), TransformEndTime = structure(logical(0), tags = list(type = "timestamp")), LabelingJobArn = structure(logical(0), tags = list(type = "string")), AutoMLJobArn = structure(logical(0), tags = list(type = "string")), DataProcessing = structure(list(InputFilter = structure(logical(0), tags = list(type = "string")), OutputFilter = structure(logical(0), tags = list(type = "string")), JoinSource = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ExperimentConfig = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), TrialComponentDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_trial_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_trial_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialName = structure(logical(0), tags = list(type = "string")), TrialArn = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), ExperimentName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_trial_component_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_trial_component_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentName = structure(logical(0), tags = list(type = "string")), TrialComponentArn = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Status = structure(list(PrimaryStatus = structure(logical(0), tags = list(type = "string")), Message = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StartTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Parameters = structure(list(structure(list(StringValue = structure(logical(0), tags = list(type = "string")), NumberValue = structure(logical(0), tags = list(type = "double"))), tags = list(type = "structure"))), tags = list(type = "map")), InputArtifacts = structure(list(structure(list(MediaType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "map")), OutputArtifacts = structure(list(structure(list(MediaType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "map")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Metrics = structure(list(structure(list(MetricName = structure(logical(0), tags = list(type = "string")), SourceArn = structure(logical(0), tags = list(type = "string")), TimeStamp = structure(logical(0), tags = list(type = "timestamp")), Max = structure(logical(0), tags = list(type = "double")), Min = structure(logical(0), tags = list(type = "double")), Last = structure(logical(0), tags = list(type = "double")), Count = structure(logical(0), tags = list(type = "integer")), Avg = structure(logical(0), tags = list(type = "double")), StdDev = structure(logical(0), tags = list(type = "double"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_user_profile_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_user_profile_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), HomeEfsFileSystemUid = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string")), SingleSignOnUserIdentifier = structure(logical(0), tags = list(type = "string")), SingleSignOnUserValue = structure(logical(0), tags = list(type = "string")), UserSettings = structure(list(ExecutionRole = structure(logical(0), tags = list(type = "string")), SecurityGroups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SharingSettings = structure(list(NotebookOutputOption = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), S3KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JupyterServerAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), KernelGatewayAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CustomImages = structure(list(structure(list(ImageName = structure(logical(0), tags = list(type = "string")), ImageVersionNumber = structure(logical(0), tags = list(box = TRUE, type = "integer")), AppImageConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), TensorBoardAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_workforce_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkforceName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_workforce_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Workforce = structure(list(WorkforceName = structure(logical(0), tags = list(type = "string")), WorkforceArn = structure(logical(0), tags = list(type = "string")), LastUpdatedDate = structure(logical(0), tags = list(type = "timestamp")), SourceIpConfig = structure(list(Cidrs = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), SubDomain = structure(logical(0), tags = list(type = "string")), CognitoConfig = structure(list(UserPool = structure(logical(0), tags = list(type = "string")), ClientId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OidcConfig = structure(list(ClientId = structure(logical(0), tags = list(type = "string")), Issuer = structure(logical(0), tags = list(type = "string")), AuthorizationEndpoint = structure(logical(0), tags = list(type = "string")), TokenEndpoint = structure(logical(0), tags = list(type = "string")), UserInfoEndpoint = structure(logical(0), tags = list(type = "string")), LogoutEndpoint = structure(logical(0), tags = list(type = "string")), JwksUri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreateDate = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_workteam_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkteamName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$describe_workteam_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Workteam = structure(list(WorkteamName = structure(logical(0), tags = list(type = "string")), MemberDefinitions = structure(list(structure(list(CognitoMemberDefinition = structure(list(UserPool = structure(logical(0), tags = list(type = "string")), UserGroup = structure(logical(0), tags = list(type = "string")), ClientId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OidcMemberDefinition = structure(list(Groups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), WorkteamArn = structure(logical(0), tags = list(type = "string")), WorkforceArn = structure(logical(0), tags = list(type = "string")), ProductListingIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Description = structure(logical(0), tags = list(type = "string")), SubDomain = structure(logical(0), tags = list(type = "string")), CreateDate = structure(logical(0), tags = list(type = "timestamp")), LastUpdatedDate = structure(logical(0), tags = list(type = "timestamp")), NotificationConfiguration = structure(list(NotificationTopicArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$disable_sagemaker_servicecatalog_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$disable_sagemaker_servicecatalog_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$disassociate_trial_component_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$disassociate_trial_component_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentArn = structure(logical(0), tags = list(type = "string")), TrialArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$enable_sagemaker_servicecatalog_portfolio_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$enable_sagemaker_servicecatalog_portfolio_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$get_device_fleet_report_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$get_device_fleet_report_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetArn = structure(logical(0), tags = list(type = "string")), DeviceFleetName = structure(logical(0), tags = list(type = "string")), OutputConfig = structure(list(S3OutputLocation = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Description = structure(logical(0), tags = list(type = "string")), ReportGenerated = structure(logical(0), tags = list(type = "timestamp")), DeviceStats = structure(list(ConnectedDeviceCount = structure(logical(0), tags = list(type = "long")), RegisteredDeviceCount = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")), AgentVersions = structure(list(structure(list(Version = structure(logical(0), tags = list(type = "string")), AgentCount = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "list")), ModelStats = structure(list(structure(list(ModelName = structure(logical(0), tags = list(type = "string")), ModelVersion = structure(logical(0), tags = list(type = "string")), OfflineDeviceCount = structure(logical(0), tags = list(type = "long")), ConnectedDeviceCount = structure(logical(0), tags = list(type = "long")), ActiveDeviceCount = structure(logical(0), tags = list(type = "long")), SamplingDeviceCount = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$get_model_package_group_policy_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageGroupName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$get_model_package_group_policy_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourcePolicy = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$get_sagemaker_servicecatalog_portfolio_status_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$get_sagemaker_servicecatalog_portfolio_status_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Status = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$get_search_suggestions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Resource = structure(logical(0), tags = list(type = "string")), SuggestionQuery = structure(list(PropertyNameQuery = structure(list(PropertyNameHint = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$get_search_suggestions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PropertyNameSuggestions = structure(list(structure(list(PropertyName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_actions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), ActionType = structure(logical(0), tags = list(type = "string")), CreatedAfter = structure(logical(0), tags = list(type = "timestamp")), CreatedBefore = structure(logical(0), tags = list(type = "timestamp")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_actions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ActionSummaries = structure(list(structure(list(ActionArn = structure(logical(0), tags = list(type = "string")), ActionName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string")), SourceId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ActionType = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_algorithms_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_algorithms_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AlgorithmSummaryList = structure(list(structure(list(AlgorithmName = structure(logical(0), tags = list(type = "string")), AlgorithmArn = structure(logical(0), tags = list(type = "string")), AlgorithmDescription = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), AlgorithmStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_app_image_configs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MaxResults = structure(logical(0), tags = list(type = "integer")), NextToken = structure(logical(0), tags = list(type = "string")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), ModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), ModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_app_image_configs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), AppImageConfigs = structure(list(structure(list(AppImageConfigArn = structure(logical(0), tags = list(type = "string")), AppImageConfigName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), KernelGatewayImageConfig = structure(list(KernelSpecs = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), FileSystemConfig = structure(list(MountPath = structure(logical(0), tags = list(type = "string")), DefaultUid = structure(logical(0), tags = list(box = TRUE, type = "integer")), DefaultGid = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_apps_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), SortOrder = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), DomainIdEquals = structure(logical(0), tags = list(type = "string")), UserProfileNameEquals = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_apps_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Apps = structure(list(structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), AppType = structure(logical(0), tags = list(type = "string")), AppName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_artifacts_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), ArtifactType = structure(logical(0), tags = list(type = "string")), CreatedAfter = structure(logical(0), tags = list(type = "timestamp")), CreatedBefore = structure(logical(0), tags = list(type = "timestamp")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_artifacts_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ArtifactSummaries = structure(list(structure(list(ArtifactArn = structure(logical(0), tags = list(type = "string")), ArtifactName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), SourceTypes = structure(list(structure(list(SourceIdType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ArtifactType = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_associations_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), DestinationArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string")), DestinationType = structure(logical(0), tags = list(type = "string")), AssociationType = structure(logical(0), tags = list(type = "string")), CreatedAfter = structure(logical(0), tags = list(type = "timestamp")), CreatedBefore = structure(logical(0), tags = list(type = "timestamp")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_associations_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AssociationSummaries = structure(list(structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), DestinationArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string")), DestinationType = structure(logical(0), tags = list(type = "string")), AssociationType = structure(logical(0), tags = list(type = "string")), SourceName = structure(logical(0), tags = list(type = "string")), DestinationName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_auto_ml_jobs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), NameContains = structure(logical(0), tags = list(type = "string")), StatusEquals = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_auto_ml_jobs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AutoMLJobSummaries = structure(list(structure(list(AutoMLJobName = structure(logical(0), tags = list(type = "string")), AutoMLJobArn = structure(logical(0), tags = list(type = "string")), AutoMLJobStatus = structure(logical(0), tags = list(type = "string")), AutoMLJobSecondaryStatus = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_candidates_for_auto_ml_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AutoMLJobName = structure(logical(0), tags = list(type = "string")), StatusEquals = structure(logical(0), tags = list(type = "string")), CandidateNameEquals = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_candidates_for_auto_ml_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Candidates = structure(list(structure(list(CandidateName = structure(logical(0), tags = list(type = "string")), FinalAutoMLJobObjectiveMetric = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "float"))), tags = list(type = "structure")), ObjectiveStatus = structure(logical(0), tags = list(type = "string")), CandidateSteps = structure(list(structure(list(CandidateStepType = structure(logical(0), tags = list(type = "string")), CandidateStepArn = structure(logical(0), tags = list(type = "string")), CandidateStepName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CandidateStatus = structure(logical(0), tags = list(type = "string")), InferenceContainers = structure(list(structure(list(Image = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_code_repositories_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_code_repositories_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeRepositorySummaryList = structure(list(structure(list(CodeRepositoryName = structure(logical(0), tags = list(type = "string")), CodeRepositoryArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), GitConfig = structure(list(RepositoryUrl = structure(logical(0), tags = list(type = "string")), Branch = structure(logical(0), tags = list(type = "string")), SecretArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_compilation_jobs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), NameContains = structure(logical(0), tags = list(type = "string")), StatusEquals = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_compilation_jobs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CompilationJobSummaries = structure(list(structure(list(CompilationJobName = structure(logical(0), tags = list(type = "string")), CompilationJobArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CompilationStartTime = structure(logical(0), tags = list(type = "timestamp")), CompilationEndTime = structure(logical(0), tags = list(type = "timestamp")), CompilationTargetDevice = structure(logical(0), tags = list(type = "string")), CompilationTargetPlatformOs = structure(logical(0), tags = list(type = "string")), CompilationTargetPlatformArch = structure(logical(0), tags = list(type = "string")), CompilationTargetPlatformAccelerator = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), CompilationJobStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_contexts_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), ContextType = structure(logical(0), tags = list(type = "string")), CreatedAfter = structure(logical(0), tags = list(type = "timestamp")), CreatedBefore = structure(logical(0), tags = list(type = "timestamp")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_contexts_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContextSummaries = structure(list(structure(list(ContextArn = structure(logical(0), tags = list(type = "string")), ContextName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceUri = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string")), SourceId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ContextType = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_data_quality_job_definitions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_data_quality_job_definitions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionSummaries = structure(list(structure(list(MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringJobDefinitionArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), EndpointName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_device_fleets_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), NameContains = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_device_fleets_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetSummaries = structure(list(structure(list(DeviceFleetArn = structure(logical(0), tags = list(type = "string")), DeviceFleetName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_devices_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer")), LatestHeartbeatAfter = structure(logical(0), tags = list(type = "timestamp")), ModelName = structure(logical(0), tags = list(type = "string")), DeviceFleetName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_devices_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceSummaries = structure(list(structure(list(DeviceName = structure(logical(0), tags = list(type = "string")), DeviceArn = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), DeviceFleetName = structure(logical(0), tags = list(type = "string")), IotThingName = structure(logical(0), tags = list(type = "string")), RegistrationTime = structure(logical(0), tags = list(type = "timestamp")), LatestHeartbeat = structure(logical(0), tags = list(type = "timestamp")), Models = structure(list(structure(list(ModelName = structure(logical(0), tags = list(type = "string")), ModelVersion = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_domains_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_domains_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Domains = structure(list(structure(list(DomainArn = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string")), DomainName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), Url = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_edge_packaging_jobs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), NameContains = structure(logical(0), tags = list(type = "string")), ModelNameContains = structure(logical(0), tags = list(type = "string")), StatusEquals = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_edge_packaging_jobs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EdgePackagingJobSummaries = structure(list(structure(list(EdgePackagingJobArn = structure(logical(0), tags = list(type = "string")), EdgePackagingJobName = structure(logical(0), tags = list(type = "string")), EdgePackagingJobStatus = structure(logical(0), tags = list(type = "string")), CompilationJobName = structure(logical(0), tags = list(type = "string")), ModelName = structure(logical(0), tags = list(type = "string")), ModelVersion = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_endpoint_configs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_endpoint_configs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointConfigs = structure(list(structure(list(EndpointConfigName = structure(logical(0), tags = list(type = "string")), EndpointConfigArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_endpoints_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), StatusEquals = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_endpoints_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Endpoints = structure(list(structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), EndpointArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), EndpointStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_experiments_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreatedAfter = structure(logical(0), tags = list(type = "timestamp")), CreatedBefore = structure(logical(0), tags = list(type = "timestamp")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_experiments_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentSummaries = structure(list(structure(list(ExperimentArn = structure(logical(0), tags = list(type = "string")), ExperimentName = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), ExperimentSource = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_feature_groups_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NameContains = structure(logical(0), tags = list(type = "string")), FeatureGroupStatusEquals = structure(logical(0), tags = list(type = "string")), OfflineStoreStatusEquals = structure(logical(0), tags = list(type = "string")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), SortOrder = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_feature_groups_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FeatureGroupSummaries = structure(list(structure(list(FeatureGroupName = structure(logical(0), tags = list(type = "string")), FeatureGroupArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), FeatureGroupStatus = structure(logical(0), tags = list(type = "string")), OfflineStoreStatus = structure(list(Status = structure(logical(0), tags = list(type = "string")), BlockedReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_flow_definitions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_flow_definitions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(FlowDefinitionSummaries = structure(list(structure(list(FlowDefinitionName = structure(logical(0), tags = list(type = "string")), FlowDefinitionArn = structure(logical(0), tags = list(type = "string")), FlowDefinitionStatus = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_human_task_uis_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_human_task_uis_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HumanTaskUiSummaries = structure(list(structure(list(HumanTaskUiName = structure(logical(0), tags = list(type = "string")), HumanTaskUiArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_hyper_parameter_tuning_jobs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), StatusEquals = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_hyper_parameter_tuning_jobs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HyperParameterTuningJobSummaries = structure(list(structure(list(HyperParameterTuningJobName = structure(logical(0), tags = list(type = "string")), HyperParameterTuningJobArn = structure(logical(0), tags = list(type = "string")), HyperParameterTuningJobStatus = structure(logical(0), tags = list(type = "string")), Strategy = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), HyperParameterTuningEndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), TrainingJobStatusCounters = structure(list(Completed = structure(logical(0), tags = list(type = "integer")), InProgress = structure(logical(0), tags = list(type = "integer")), RetryableError = structure(logical(0), tags = list(type = "integer")), NonRetryableError = structure(logical(0), tags = list(type = "integer")), Stopped = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), ObjectiveStatusCounters = structure(list(Succeeded = structure(logical(0), tags = list(type = "integer")), Pending = structure(logical(0), tags = list(type = "integer")), Failed = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), ResourceLimits = structure(list(MaxNumberOfTrainingJobs = structure(logical(0), tags = list(type = "integer")), MaxParallelTrainingJobs = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_image_versions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), ImageName = structure(logical(0), tags = list(type = "string")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), MaxResults = structure(logical(0), tags = list(type = "integer")), NextToken = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_image_versions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ImageVersions = structure(list(structure(list(CreationTime = structure(logical(0), tags = list(type = "timestamp")), FailureReason = structure(logical(0), tags = list(type = "string")), ImageArn = structure(logical(0), tags = list(type = "string")), ImageVersionArn = structure(logical(0), tags = list(type = "string")), ImageVersionStatus = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), Version = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_images_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_images_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Images = structure(list(structure(list(CreationTime = structure(logical(0), tags = list(type = "timestamp")), Description = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), ImageArn = structure(logical(0), tags = list(type = "string")), ImageName = structure(logical(0), tags = list(type = "string")), ImageStatus = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_labeling_jobs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), MaxResults = structure(logical(0), tags = list(type = "integer")), NextToken = structure(logical(0), tags = list(type = "string")), NameContains = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), StatusEquals = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_labeling_jobs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(LabelingJobSummaryList = structure(list(structure(list(LabelingJobName = structure(logical(0), tags = list(type = "string")), LabelingJobArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LabelingJobStatus = structure(logical(0), tags = list(type = "string")), LabelCounters = structure(list(TotalLabeled = structure(logical(0), tags = list(type = "integer")), HumanLabeled = structure(logical(0), tags = list(type = "integer")), MachineLabeled = structure(logical(0), tags = list(type = "integer")), FailedNonRetryableError = structure(logical(0), tags = list(type = "integer")), Unlabeled = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), WorkteamArn = structure(logical(0), tags = list(type = "string")), PreHumanTaskLambdaArn = structure(logical(0), tags = list(type = "string")), AnnotationConsolidationLambdaArn = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), LabelingJobOutput = structure(list(OutputDatasetS3Uri = structure(logical(0), tags = list(type = "string")), FinalActiveLearningModelArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), InputConfig = structure(list(DataSource = structure(list(S3DataSource = structure(list(ManifestS3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), SnsDataSource = structure(list(SnsTopicArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), DataAttributes = structure(list(ContentClassifiers = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_labeling_jobs_for_workteam_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkteamArn = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NextToken = structure(logical(0), tags = list(type = "string")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), JobReferenceCodeContains = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_labeling_jobs_for_workteam_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(LabelingJobSummaryList = structure(list(structure(list(LabelingJobName = structure(logical(0), tags = list(type = "string")), JobReferenceCode = structure(logical(0), tags = list(type = "string")), WorkRequesterAccountId = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LabelCounters = structure(list(HumanLabeled = structure(logical(0), tags = list(type = "integer")), PendingHuman = structure(logical(0), tags = list(type = "integer")), Total = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), NumberOfHumanWorkersPerDataObject = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_model_bias_job_definitions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_model_bias_job_definitions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionSummaries = structure(list(structure(list(MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringJobDefinitionArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), EndpointName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_model_explainability_job_definitions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_model_explainability_job_definitions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionSummaries = structure(list(structure(list(MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringJobDefinitionArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), EndpointName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_model_package_groups_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_model_package_groups_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageGroupSummaryList = structure(list(structure(list(ModelPackageGroupName = structure(logical(0), tags = list(type = "string")), ModelPackageGroupArn = structure(logical(0), tags = list(type = "string")), ModelPackageGroupDescription = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), ModelPackageGroupStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_model_packages_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), ModelApprovalStatus = structure(logical(0), tags = list(type = "string")), ModelPackageGroupName = structure(logical(0), tags = list(type = "string")), ModelPackageType = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_model_packages_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageSummaryList = structure(list(structure(list(ModelPackageName = structure(logical(0), tags = list(type = "string")), ModelPackageGroupName = structure(logical(0), tags = list(type = "string")), ModelPackageVersion = structure(logical(0), tags = list(type = "integer")), ModelPackageArn = structure(logical(0), tags = list(type = "string")), ModelPackageDescription = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), ModelPackageStatus = structure(logical(0), tags = list(type = "string")), ModelApprovalStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_model_quality_job_definitions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_model_quality_job_definitions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(JobDefinitionSummaries = structure(list(structure(list(MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringJobDefinitionArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), EndpointName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_models_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_models_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Models = structure(list(structure(list(ModelName = structure(logical(0), tags = list(type = "string")), ModelArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_monitoring_executions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string")), EndpointName = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), ScheduledTimeBefore = structure(logical(0), tags = list(type = "timestamp")), ScheduledTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), StatusEquals = structure(logical(0), tags = list(type = "string")), MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringTypeEquals = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_monitoring_executions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringExecutionSummaries = structure(list(structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string")), ScheduledTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), MonitoringExecutionStatus = structure(logical(0), tags = list(type = "string")), ProcessingJobArn = structure(logical(0), tags = list(type = "string")), EndpointName = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_monitoring_schedules_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), StatusEquals = structure(logical(0), tags = list(type = "string")), MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringTypeEquals = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_monitoring_schedules_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleSummaries = structure(list(structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string")), MonitoringScheduleArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), MonitoringScheduleStatus = structure(logical(0), tags = list(type = "string")), EndpointName = structure(logical(0), tags = list(type = "string")), MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_notebook_instance_lifecycle_configs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_notebook_instance_lifecycle_configs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), NotebookInstanceLifecycleConfigs = structure(list(structure(list(NotebookInstanceLifecycleConfigName = structure(logical(0), tags = list(type = "string")), NotebookInstanceLifecycleConfigArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_notebook_instances_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NameContains = structure(logical(0), tags = list(type = "string")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), StatusEquals = structure(logical(0), tags = list(type = "string")), NotebookInstanceLifecycleConfigNameContains = structure(logical(0), tags = list(type = "string")), DefaultCodeRepositoryContains = structure(logical(0), tags = list(type = "string")), AdditionalCodeRepositoryEquals = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_notebook_instances_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), NotebookInstances = structure(list(structure(list(NotebookInstanceName = structure(logical(0), tags = list(type = "string")), NotebookInstanceArn = structure(logical(0), tags = list(type = "string")), NotebookInstanceStatus = structure(logical(0), tags = list(type = "string")), Url = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), NotebookInstanceLifecycleConfigName = structure(logical(0), tags = list(type = "string")), DefaultCodeRepository = structure(logical(0), tags = list(type = "string")), AdditionalCodeRepositories = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_pipeline_execution_steps_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionArn = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_pipeline_execution_steps_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionSteps = structure(list(structure(list(StepName = structure(logical(0), tags = list(type = "string")), StartTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), StepStatus = structure(logical(0), tags = list(type = "string")), CacheHitResult = structure(list(SourcePipelineExecutionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), FailureReason = structure(logical(0), tags = list(type = "string")), Metadata = structure(list(TrainingJob = structure(list(Arn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProcessingJob = structure(list(Arn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformJob = structure(list(Arn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Model = structure(list(Arn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RegisterModel = structure(list(Arn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Condition = structure(list(Outcome = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_pipeline_executions_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineName = structure(logical(0), tags = list(type = "string")), CreatedAfter = structure(logical(0), tags = list(type = "timestamp")), CreatedBefore = structure(logical(0), tags = list(type = "timestamp")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_pipeline_executions_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionSummaries = structure(list(structure(list(PipelineExecutionArn = structure(logical(0), tags = list(type = "string")), StartTime = structure(logical(0), tags = list(type = "timestamp")), PipelineExecutionStatus = structure(logical(0), tags = list(type = "string")), PipelineExecutionDescription = structure(logical(0), tags = list(type = "string")), PipelineExecutionDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_pipeline_parameters_for_execution_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionArn = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_pipeline_parameters_for_execution_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineParameters = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_pipelines_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineNamePrefix = structure(logical(0), tags = list(type = "string")), CreatedAfter = structure(logical(0), tags = list(type = "timestamp")), CreatedBefore = structure(logical(0), tags = list(type = "timestamp")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_pipelines_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineSummaries = structure(list(structure(list(PipelineArn = structure(logical(0), tags = list(type = "string")), PipelineName = structure(logical(0), tags = list(type = "string")), PipelineDisplayName = structure(logical(0), tags = list(type = "string")), PipelineDescription = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastExecutionTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_processing_jobs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), NameContains = structure(logical(0), tags = list(type = "string")), StatusEquals = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_processing_jobs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProcessingJobSummaries = structure(list(structure(list(ProcessingJobName = structure(logical(0), tags = list(type = "string")), ProcessingJobArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), ProcessingEndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), ProcessingJobStatus = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), ExitMessage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_projects_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), MaxResults = structure(logical(0), tags = list(type = "integer")), NameContains = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_projects_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProjectSummaryList = structure(list(structure(list(ProjectName = structure(logical(0), tags = list(type = "string")), ProjectDescription = structure(logical(0), tags = list(type = "string")), ProjectArn = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), ProjectStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_subscribed_workteams_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NameContains = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_subscribed_workteams_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SubscribedWorkteams = structure(list(structure(list(WorkteamArn = structure(logical(0), tags = list(type = "string")), MarketplaceTitle = structure(logical(0), tags = list(type = "string")), SellerName = structure(logical(0), tags = list(type = "string")), MarketplaceDescription = structure(logical(0), tags = list(type = "string")), ListingId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_tags_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ResourceArn = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_tags_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_training_jobs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer")), CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), NameContains = structure(logical(0), tags = list(type = "string")), StatusEquals = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_training_jobs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrainingJobSummaries = structure(list(structure(list(TrainingJobName = structure(logical(0), tags = list(type = "string")), TrainingJobArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TrainingEndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), TrainingJobStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_training_jobs_for_hyper_parameter_tuning_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HyperParameterTuningJobName = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), StatusEquals = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_training_jobs_for_hyper_parameter_tuning_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrainingJobSummaries = structure(list(structure(list(TrainingJobDefinitionName = structure(logical(0), tags = list(type = "string")), TrainingJobName = structure(logical(0), tags = list(type = "string")), TrainingJobArn = structure(logical(0), tags = list(type = "string")), TuningJobName = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TrainingStartTime = structure(logical(0), tags = list(type = "timestamp")), TrainingEndTime = structure(logical(0), tags = list(type = "timestamp")), TrainingJobStatus = structure(logical(0), tags = list(type = "string")), TunedHyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), FailureReason = structure(logical(0), tags = list(type = "string")), FinalHyperParameterTuningJobObjectiveMetric = structure(list(Type = structure(logical(0), tags = list(type = "string")), MetricName = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "float"))), tags = list(type = "structure")), ObjectiveStatus = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_transform_jobs_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CreationTimeAfter = structure(logical(0), tags = list(type = "timestamp")), CreationTimeBefore = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeAfter = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTimeBefore = structure(logical(0), tags = list(type = "timestamp")), NameContains = structure(logical(0), tags = list(type = "string")), StatusEquals = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_transform_jobs_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TransformJobSummaries = structure(list(structure(list(TransformJobName = structure(logical(0), tags = list(type = "string")), TransformJobArn = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TransformEndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), TransformJobStatus = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_trial_components_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), SourceArn = structure(logical(0), tags = list(type = "string")), CreatedAfter = structure(logical(0), tags = list(type = "timestamp")), CreatedBefore = structure(logical(0), tags = list(type = "timestamp")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_trial_components_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentSummaries = structure(list(structure(list(TrialComponentName = structure(logical(0), tags = list(type = "string")), TrialComponentArn = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), TrialComponentSource = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Status = structure(list(PrimaryStatus = structure(logical(0), tags = list(type = "string")), Message = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StartTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_trials_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialComponentName = structure(logical(0), tags = list(type = "string")), CreatedAfter = structure(logical(0), tags = list(type = "timestamp")), CreatedBefore = structure(logical(0), tags = list(type = "timestamp")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_trials_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialSummaries = structure(list(structure(list(TrialArn = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), TrialSource = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_user_profiles_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(type = "integer")), SortOrder = structure(logical(0), tags = list(type = "string")), SortBy = structure(logical(0), tags = list(type = "string")), DomainIdEquals = structure(logical(0), tags = list(type = "string")), UserProfileNameContains = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_user_profiles_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(UserProfiles = structure(list(structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_workforces_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NameContains = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_workforces_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Workforces = structure(list(structure(list(WorkforceName = structure(logical(0), tags = list(type = "string")), WorkforceArn = structure(logical(0), tags = list(type = "string")), LastUpdatedDate = structure(logical(0), tags = list(type = "timestamp")), SourceIpConfig = structure(list(Cidrs = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), SubDomain = structure(logical(0), tags = list(type = "string")), CognitoConfig = structure(list(UserPool = structure(logical(0), tags = list(type = "string")), ClientId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OidcConfig = structure(list(ClientId = structure(logical(0), tags = list(type = "string")), Issuer = structure(logical(0), tags = list(type = "string")), AuthorizationEndpoint = structure(logical(0), tags = list(type = "string")), TokenEndpoint = structure(logical(0), tags = list(type = "string")), UserInfoEndpoint = structure(logical(0), tags = list(type = "string")), LogoutEndpoint = structure(logical(0), tags = list(type = "string")), JwksUri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreateDate = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_workteams_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NameContains = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$list_workteams_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Workteams = structure(list(structure(list(WorkteamName = structure(logical(0), tags = list(type = "string")), MemberDefinitions = structure(list(structure(list(CognitoMemberDefinition = structure(list(UserPool = structure(logical(0), tags = list(type = "string")), UserGroup = structure(logical(0), tags = list(type = "string")), ClientId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OidcMemberDefinition = structure(list(Groups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), WorkteamArn = structure(logical(0), tags = list(type = "string")), WorkforceArn = structure(logical(0), tags = list(type = "string")), ProductListingIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Description = structure(logical(0), tags = list(type = "string")), SubDomain = structure(logical(0), tags = list(type = "string")), CreateDate = structure(logical(0), tags = list(type = "timestamp")), LastUpdatedDate = structure(logical(0), tags = list(type = "timestamp")), NotificationConfiguration = structure(list(NotificationTopicArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$put_model_package_group_policy_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageGroupName = structure(logical(0), tags = list(type = "string")), ResourcePolicy = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$put_model_package_group_policy_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageGroupArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$register_devices_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetName = structure(logical(0), tags = list(type = "string")), Devices = structure(list(structure(list(DeviceName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), IotThingName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$register_devices_output <- function(...) { list() } .sagemaker$render_ui_template_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(UiTemplate = structure(list(Content = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Task = structure(list(Input = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), HumanTaskUiArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$render_ui_template_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RenderedContent = structure(logical(0), tags = list(type = "string")), Errors = structure(list(structure(list(Code = structure(logical(0), tags = list(type = "string")), Message = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$search_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Resource = structure(logical(0), tags = list(type = "string")), SearchExpression = structure(list(Filters = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Operator = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NestedFilters = structure(list(structure(list(NestedPropertyName = structure(logical(0), tags = list(type = "string")), Filters = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Operator = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), SubExpressions = structure(list(structure(logical(0), tags = list(type = "structure"))), tags = list(type = "list")), Operator = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), SortBy = structure(logical(0), tags = list(type = "string")), SortOrder = structure(logical(0), tags = list(type = "string")), NextToken = structure(logical(0), tags = list(type = "string")), MaxResults = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$search_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Results = structure(list(structure(list(TrainingJob = structure(list(TrainingJobName = structure(logical(0), tags = list(type = "string")), TrainingJobArn = structure(logical(0), tags = list(type = "string")), TuningJobArn = structure(logical(0), tags = list(type = "string")), LabelingJobArn = structure(logical(0), tags = list(type = "string")), AutoMLJobArn = structure(logical(0), tags = list(type = "string")), ModelArtifacts = structure(list(S3ModelArtifacts = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TrainingJobStatus = structure(logical(0), tags = list(type = "string")), SecondaryStatus = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), HyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), AlgorithmSpecification = structure(list(TrainingImage = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string")), TrainingInputMode = structure(logical(0), tags = list(type = "string")), MetricDefinitions = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Regex = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), EnableSageMakerMetricsTimeSeries = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), InputDataConfig = structure(list(structure(list(ChannelName = structure(logical(0), tags = list(type = "string")), DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), AttributeNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), FileSystemDataSource = structure(list(FileSystemId = structure(logical(0), tags = list(type = "string")), FileSystemAccessMode = structure(logical(0), tags = list(type = "string")), FileSystemType = structure(logical(0), tags = list(type = "string")), DirectoryPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), RecordWrapperType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string")), ShuffleConfig = structure(list(Seed = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceConfig = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TrainingStartTime = structure(logical(0), tags = list(type = "timestamp")), TrainingEndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), SecondaryStatusTransitions = structure(list(structure(list(Status = structure(logical(0), tags = list(type = "string")), StartTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), StatusMessage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), FinalMetricDataList = structure(list(structure(list(MetricName = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "float")), Timestamp = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableManagedSpotTraining = structure(logical(0), tags = list(type = "boolean")), CheckpointConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TrainingTimeInSeconds = structure(logical(0), tags = list(type = "integer")), BillableTimeInSeconds = structure(logical(0), tags = list(type = "integer")), DebugHookConfig = structure(list(LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), HookParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), CollectionConfigurations = structure(list(structure(list(CollectionName = structure(logical(0), tags = list(type = "string")), CollectionParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ExperimentConfig = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), TrialComponentDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DebugRuleConfigurations = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), RuleEvaluatorImage = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), RuleParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list")), TensorBoardOutputConfig = structure(list(LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DebugRuleEvaluationStatuses = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), RuleEvaluationJobArn = structure(logical(0), tags = list(type = "string")), RuleEvaluationStatus = structure(logical(0), tags = list(type = "string")), StatusDetails = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), Experiment = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), ExperimentArn = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Description = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), Trial = structure(list(TrialName = structure(logical(0), tags = list(type = "string")), TrialArn = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), ExperimentName = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), TrialComponentSummaries = structure(list(structure(list(TrialComponentName = structure(logical(0), tags = list(type = "string")), TrialComponentArn = structure(logical(0), tags = list(type = "string")), TrialComponentSource = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), TrialComponent = structure(list(TrialComponentName = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), TrialComponentArn = structure(logical(0), tags = list(type = "string")), Source = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), SourceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Status = structure(list(PrimaryStatus = structure(logical(0), tags = list(type = "string")), Message = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StartTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Parameters = structure(list(structure(list(StringValue = structure(logical(0), tags = list(type = "string")), NumberValue = structure(logical(0), tags = list(type = "double"))), tags = list(type = "structure"))), tags = list(type = "map")), InputArtifacts = structure(list(structure(list(MediaType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "map")), OutputArtifacts = structure(list(structure(list(MediaType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "map")), Metrics = structure(list(structure(list(MetricName = structure(logical(0), tags = list(type = "string")), SourceArn = structure(logical(0), tags = list(type = "string")), TimeStamp = structure(logical(0), tags = list(type = "timestamp")), Max = structure(logical(0), tags = list(type = "double")), Min = structure(logical(0), tags = list(type = "double")), Last = structure(logical(0), tags = list(type = "double")), Count = structure(logical(0), tags = list(type = "integer")), Avg = structure(logical(0), tags = list(type = "double")), StdDev = structure(logical(0), tags = list(type = "double"))), tags = list(type = "structure"))), tags = list(type = "list")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), SourceDetail = structure(list(SourceArn = structure(logical(0), tags = list(type = "string")), TrainingJob = structure(list(TrainingJobName = structure(logical(0), tags = list(type = "string")), TrainingJobArn = structure(logical(0), tags = list(type = "string")), TuningJobArn = structure(logical(0), tags = list(type = "string")), LabelingJobArn = structure(logical(0), tags = list(type = "string")), AutoMLJobArn = structure(logical(0), tags = list(type = "string")), ModelArtifacts = structure(list(S3ModelArtifacts = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TrainingJobStatus = structure(logical(0), tags = list(type = "string")), SecondaryStatus = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), HyperParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), AlgorithmSpecification = structure(list(TrainingImage = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string")), TrainingInputMode = structure(logical(0), tags = list(type = "string")), MetricDefinitions = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Regex = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), EnableSageMakerMetricsTimeSeries = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), InputDataConfig = structure(list(structure(list(ChannelName = structure(logical(0), tags = list(type = "string")), DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), AttributeNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), FileSystemDataSource = structure(list(FileSystemId = structure(logical(0), tags = list(type = "string")), FileSystemAccessMode = structure(logical(0), tags = list(type = "string")), FileSystemType = structure(logical(0), tags = list(type = "string")), DirectoryPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), RecordWrapperType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string")), ShuffleConfig = structure(list(Seed = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), OutputDataConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ResourceConfig = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer")), MaxWaitTimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TrainingStartTime = structure(logical(0), tags = list(type = "timestamp")), TrainingEndTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), SecondaryStatusTransitions = structure(list(structure(list(Status = structure(logical(0), tags = list(type = "string")), StartTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), StatusMessage = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), FinalMetricDataList = structure(list(structure(list(MetricName = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "float")), Timestamp = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableManagedSpotTraining = structure(logical(0), tags = list(type = "boolean")), CheckpointConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TrainingTimeInSeconds = structure(logical(0), tags = list(type = "integer")), BillableTimeInSeconds = structure(logical(0), tags = list(type = "integer")), DebugHookConfig = structure(list(LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), HookParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), CollectionConfigurations = structure(list(structure(list(CollectionName = structure(logical(0), tags = list(type = "string")), CollectionParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ExperimentConfig = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), TrialComponentDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DebugRuleConfigurations = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), RuleEvaluatorImage = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), RuleParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list")), TensorBoardOutputConfig = structure(list(LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DebugRuleEvaluationStatuses = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), RuleEvaluationJobArn = structure(logical(0), tags = list(type = "string")), RuleEvaluationStatus = structure(logical(0), tags = list(type = "string")), StatusDetails = structure(logical(0), tags = list(type = "string")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ProcessingJob = structure(list(ProcessingInputs = structure(list(structure(list(InputName = structure(logical(0), tags = list(type = "string")), AppManaged = structure(logical(0), tags = list(type = "boolean")), S3Input = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3DataType = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), S3CompressionType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DatasetDefinition = structure(list(AthenaDatasetDefinition = structure(list(Catalog = structure(logical(0), tags = list(type = "string")), Database = structure(logical(0), tags = list(type = "string")), QueryString = structure(logical(0), tags = list(type = "string")), WorkGroup = structure(logical(0), tags = list(type = "string")), OutputS3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), OutputFormat = structure(logical(0), tags = list(type = "string")), OutputCompression = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RedshiftDatasetDefinition = structure(list(ClusterId = structure(logical(0), tags = list(type = "string")), Database = structure(logical(0), tags = list(type = "string")), DbUser = structure(logical(0), tags = list(type = "string")), QueryString = structure(logical(0), tags = list(type = "string")), ClusterRoleArn = structure(logical(0), tags = list(type = "string")), OutputS3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string")), OutputFormat = structure(logical(0), tags = list(type = "string")), OutputCompression = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LocalPath = structure(logical(0), tags = list(type = "string")), DataDistributionType = structure(logical(0), tags = list(type = "string")), InputMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), ProcessingOutputConfig = structure(list(Outputs = structure(list(structure(list(OutputName = structure(logical(0), tags = list(type = "string")), S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), FeatureStoreOutput = structure(list(FeatureGroupName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), AppManaged = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProcessingJobName = structure(logical(0), tags = list(type = "string")), ProcessingResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), AppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), ExperimentConfig = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), TrialComponentDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ProcessingJobArn = structure(logical(0), tags = list(type = "string")), ProcessingJobStatus = structure(logical(0), tags = list(type = "string")), ExitMessage = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), ProcessingEndTime = structure(logical(0), tags = list(type = "timestamp")), ProcessingStartTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), MonitoringScheduleArn = structure(logical(0), tags = list(type = "string")), AutoMLJobArn = structure(logical(0), tags = list(type = "string")), TrainingJobArn = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), TransformJob = structure(list(TransformJobName = structure(logical(0), tags = list(type = "string")), TransformJobArn = structure(logical(0), tags = list(type = "string")), TransformJobStatus = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), ModelName = structure(logical(0), tags = list(type = "string")), MaxConcurrentTransforms = structure(logical(0), tags = list(type = "integer")), ModelClientConfig = structure(list(InvocationsTimeoutInSeconds = structure(logical(0), tags = list(type = "integer")), InvocationsMaxRetries = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), MaxPayloadInMB = structure(logical(0), tags = list(type = "integer")), BatchStrategy = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), TransformInput = structure(list(DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), SplitType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformOutput = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), Accept = structure(logical(0), tags = list(type = "string")), AssembleWith = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformResources = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), TransformStartTime = structure(logical(0), tags = list(type = "timestamp")), TransformEndTime = structure(logical(0), tags = list(type = "timestamp")), LabelingJobArn = structure(logical(0), tags = list(type = "string")), AutoMLJobArn = structure(logical(0), tags = list(type = "string")), DataProcessing = structure(list(InputFilter = structure(logical(0), tags = list(type = "string")), OutputFilter = structure(logical(0), tags = list(type = "string")), JoinSource = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ExperimentConfig = structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), TrialName = structure(logical(0), tags = list(type = "string")), TrialComponentDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), Parents = structure(list(structure(list(TrialName = structure(logical(0), tags = list(type = "string")), ExperimentName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), Endpoint = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), EndpointArn = structure(logical(0), tags = list(type = "string")), EndpointConfigName = structure(logical(0), tags = list(type = "string")), ProductionVariants = structure(list(structure(list(VariantName = structure(logical(0), tags = list(type = "string")), DeployedImages = structure(list(structure(list(SpecifiedImage = structure(logical(0), tags = list(type = "string")), ResolvedImage = structure(logical(0), tags = list(type = "string")), ResolutionTime = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "list")), CurrentWeight = structure(logical(0), tags = list(type = "float")), DesiredWeight = structure(logical(0), tags = list(type = "float")), CurrentInstanceCount = structure(logical(0), tags = list(type = "integer")), DesiredInstanceCount = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "list")), DataCaptureConfig = structure(list(EnableCapture = structure(logical(0), tags = list(type = "boolean")), CaptureStatus = structure(logical(0), tags = list(type = "string")), CurrentSamplingPercentage = structure(logical(0), tags = list(type = "integer")), DestinationS3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), EndpointStatus = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), MonitoringSchedules = structure(list(structure(list(MonitoringScheduleArn = structure(logical(0), tags = list(type = "string")), MonitoringScheduleName = structure(logical(0), tags = list(type = "string")), MonitoringScheduleStatus = structure(logical(0), tags = list(type = "string")), MonitoringType = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), MonitoringScheduleConfig = structure(list(ScheduleConfig = structure(list(ScheduleExpression = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringJobDefinition = structure(list(BaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StatisticsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), MonitoringInputs = structure(list(structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), MonitoringOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), MonitoringAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RecordPreprocessorSourceUri = structure(logical(0), tags = list(type = "string")), PostAnalyticsProcessorSourceUri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), EndpointName = structure(logical(0), tags = list(type = "string")), LastMonitoringExecutionSummary = structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string")), ScheduledTime = structure(logical(0), tags = list(type = "timestamp")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), MonitoringExecutionStatus = structure(logical(0), tags = list(type = "string")), ProcessingJobArn = structure(logical(0), tags = list(type = "string")), EndpointName = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string")), MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "list")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ModelPackage = structure(list(ModelPackageName = structure(logical(0), tags = list(type = "string")), ModelPackageGroupName = structure(logical(0), tags = list(type = "string")), ModelPackageVersion = structure(logical(0), tags = list(type = "integer")), ModelPackageArn = structure(logical(0), tags = list(type = "string")), ModelPackageDescription = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), InferenceSpecification = structure(list(Containers = structure(list(structure(list(ContainerHostname = structure(logical(0), tags = list(type = "string")), Image = structure(logical(0), tags = list(type = "string")), ImageDigest = structure(logical(0), tags = list(type = "string")), ModelDataUrl = structure(logical(0), tags = list(type = "string")), ProductId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), SupportedTransformInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedRealtimeInferenceInstanceTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedContentTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SupportedResponseMIMETypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), SourceAlgorithmSpecification = structure(list(SourceAlgorithms = structure(list(structure(list(ModelDataUrl = structure(logical(0), tags = list(type = "string")), AlgorithmName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ValidationSpecification = structure(list(ValidationRole = structure(logical(0), tags = list(type = "string")), ValidationProfiles = structure(list(structure(list(ProfileName = structure(logical(0), tags = list(type = "string")), TransformJobDefinition = structure(list(MaxConcurrentTransforms = structure(logical(0), tags = list(type = "integer")), MaxPayloadInMB = structure(logical(0), tags = list(type = "integer")), BatchStrategy = structure(logical(0), tags = list(type = "string")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), TransformInput = structure(list(DataSource = structure(list(S3DataSource = structure(list(S3DataType = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ContentType = structure(logical(0), tags = list(type = "string")), CompressionType = structure(logical(0), tags = list(type = "string")), SplitType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformOutput = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), Accept = structure(logical(0), tags = list(type = "string")), AssembleWith = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), TransformResources = structure(list(InstanceType = structure(logical(0), tags = list(type = "string")), InstanceCount = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ModelPackageStatus = structure(logical(0), tags = list(type = "string")), ModelPackageStatusDetails = structure(list(ValidationStatuses = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), ImageScanStatuses = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), FailureReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), CertifyForMarketplace = structure(logical(0), tags = list(type = "boolean")), ModelApprovalStatus = structure(logical(0), tags = list(type = "string")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MetadataProperties = structure(list(CommitId = structure(logical(0), tags = list(type = "string")), Repository = structure(logical(0), tags = list(type = "string")), GeneratedBy = structure(logical(0), tags = list(type = "string")), ProjectId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ModelMetrics = structure(list(ModelQuality = structure(list(Statistics = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Constraints = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ModelDataQuality = structure(list(Statistics = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Constraints = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), Bias = structure(list(Report = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), Explainability = structure(list(Report = structure(list(ContentType = structure(logical(0), tags = list(type = "string")), ContentDigest = structure(logical(0), tags = list(type = "string")), S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ApprovalDescription = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), ModelPackageGroup = structure(list(ModelPackageGroupName = structure(logical(0), tags = list(type = "string")), ModelPackageGroupArn = structure(logical(0), tags = list(type = "string")), ModelPackageGroupDescription = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), ModelPackageGroupStatus = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), Pipeline = structure(list(PipelineArn = structure(logical(0), tags = list(type = "string")), PipelineName = structure(logical(0), tags = list(type = "string")), PipelineDisplayName = structure(logical(0), tags = list(type = "string")), PipelineDescription = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), PipelineStatus = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), LastRunTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), PipelineExecution = structure(list(PipelineArn = structure(logical(0), tags = list(type = "string")), PipelineExecutionArn = structure(logical(0), tags = list(type = "string")), PipelineExecutionDisplayName = structure(logical(0), tags = list(type = "string")), PipelineExecutionStatus = structure(logical(0), tags = list(type = "string")), PipelineExecutionDescription = structure(logical(0), tags = list(type = "string")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), LastModifiedTime = structure(logical(0), tags = list(type = "timestamp")), CreatedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), LastModifiedBy = structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), DomainId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), PipelineParameters = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), FeatureGroup = structure(list(FeatureGroupArn = structure(logical(0), tags = list(type = "string")), FeatureGroupName = structure(logical(0), tags = list(type = "string")), RecordIdentifierFeatureName = structure(logical(0), tags = list(type = "string")), EventTimeFeatureName = structure(logical(0), tags = list(type = "string")), FeatureDefinitions = structure(list(structure(list(FeatureName = structure(logical(0), tags = list(type = "string")), FeatureType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), CreationTime = structure(logical(0), tags = list(type = "timestamp")), OnlineStoreConfig = structure(list(SecurityConfig = structure(list(KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), EnableOnlineStore = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), OfflineStoreConfig = structure(list(S3StorageConfig = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), DisableGlueTableCreation = structure(logical(0), tags = list(type = "boolean")), DataCatalogConfig = structure(list(TableName = structure(logical(0), tags = list(type = "string")), Catalog = structure(logical(0), tags = list(type = "string")), Database = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string")), FeatureGroupStatus = structure(logical(0), tags = list(type = "string")), OfflineStoreStatus = structure(list(Status = structure(logical(0), tags = list(type = "string")), BlockedReason = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), FailureReason = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Tags = structure(list(structure(list(Key = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$start_monitoring_schedule_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$start_monitoring_schedule_output <- function(...) { list() } .sagemaker$start_notebook_instance_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$start_notebook_instance_output <- function(...) { list() } .sagemaker$start_pipeline_execution_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineName = structure(logical(0), tags = list(type = "string")), PipelineExecutionDisplayName = structure(logical(0), tags = list(type = "string")), PipelineParameters = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), PipelineExecutionDescription = structure(logical(0), tags = list(type = "string")), ClientRequestToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$start_pipeline_execution_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_auto_ml_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AutoMLJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_auto_ml_job_output <- function(...) { list() } .sagemaker$stop_compilation_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CompilationJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_compilation_job_output <- function(...) { list() } .sagemaker$stop_edge_packaging_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EdgePackagingJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_edge_packaging_job_output <- function(...) { list() } .sagemaker$stop_hyper_parameter_tuning_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(HyperParameterTuningJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_hyper_parameter_tuning_job_output <- function(...) { list() } .sagemaker$stop_labeling_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(LabelingJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_labeling_job_output <- function(...) { list() } .sagemaker$stop_monitoring_schedule_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_monitoring_schedule_output <- function(...) { list() } .sagemaker$stop_notebook_instance_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_notebook_instance_output <- function(...) { list() } .sagemaker$stop_pipeline_execution_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionArn = structure(logical(0), tags = list(type = "string")), ClientRequestToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_pipeline_execution_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_processing_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProcessingJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_processing_job_output <- function(...) { list() } .sagemaker$stop_training_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrainingJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_training_job_output <- function(...) { list() } .sagemaker$stop_transform_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TransformJobName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$stop_transform_job_output <- function(...) { list() } .sagemaker$update_action_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ActionName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Status = structure(logical(0), tags = list(type = "string")), Properties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), PropertiesToRemove = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_action_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ActionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_app_image_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AppImageConfigName = structure(logical(0), tags = list(type = "string")), KernelGatewayImageConfig = structure(list(KernelSpecs = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), FileSystemConfig = structure(list(MountPath = structure(logical(0), tags = list(type = "string")), DefaultUid = structure(logical(0), tags = list(box = TRUE, type = "integer")), DefaultGid = structure(logical(0), tags = list(box = TRUE, type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_app_image_config_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AppImageConfigArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_artifact_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ArtifactArn = structure(logical(0), tags = list(type = "string")), ArtifactName = structure(logical(0), tags = list(type = "string")), Properties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), PropertiesToRemove = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_artifact_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ArtifactArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_code_repository_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeRepositoryName = structure(logical(0), tags = list(type = "string")), GitConfig = structure(list(SecretArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_code_repository_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeRepositoryArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_context_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContextName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), Properties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), PropertiesToRemove = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_context_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ContextArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_device_fleet_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetName = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), OutputConfig = structure(list(S3OutputLocation = structure(logical(0), tags = list(type = "string")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_device_fleet_output <- function(...) { list() } .sagemaker$update_devices_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeviceFleetName = structure(logical(0), tags = list(type = "string")), Devices = structure(list(structure(list(DeviceName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string")), IotThingName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_devices_output <- function(...) { list() } .sagemaker$update_domain_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), DefaultUserSettings = structure(list(ExecutionRole = structure(logical(0), tags = list(type = "string")), SecurityGroups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SharingSettings = structure(list(NotebookOutputOption = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), S3KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JupyterServerAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), KernelGatewayAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CustomImages = structure(list(structure(list(ImageName = structure(logical(0), tags = list(type = "string")), ImageVersionNumber = structure(logical(0), tags = list(box = TRUE, type = "integer")), AppImageConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), TensorBoardAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_domain_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_endpoint_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), EndpointConfigName = structure(logical(0), tags = list(type = "string")), RetainAllVariantProperties = structure(logical(0), tags = list(type = "boolean")), ExcludeRetainedVariantProperties = structure(list(structure(list(VariantPropertyType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), DeploymentConfig = structure(list(BlueGreenUpdatePolicy = structure(list(TrafficRoutingConfiguration = structure(list(Type = structure(logical(0), tags = list(type = "string")), WaitIntervalInSeconds = structure(logical(0), tags = list(type = "integer")), CanarySize = structure(list(Type = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "structure")), TerminationWaitInSeconds = structure(logical(0), tags = list(type = "integer")), MaximumExecutionTimeoutInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), AutoRollbackConfiguration = structure(list(Alarms = structure(list(structure(list(AlarmName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_endpoint_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_endpoint_weights_and_capacities_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), DesiredWeightsAndCapacities = structure(list(structure(list(VariantName = structure(logical(0), tags = list(type = "string")), DesiredWeight = structure(logical(0), tags = list(type = "float")), DesiredInstanceCount = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_endpoint_weights_and_capacities_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(EndpointArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_experiment_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentName = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_experiment_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ExperimentArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_image_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DeleteProperties = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Description = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), ImageName = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_image_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ImageArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_model_package_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageArn = structure(logical(0), tags = list(type = "string")), ModelApprovalStatus = structure(logical(0), tags = list(type = "string")), ApprovalDescription = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_model_package_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ModelPackageArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_monitoring_schedule_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleName = structure(logical(0), tags = list(type = "string")), MonitoringScheduleConfig = structure(list(ScheduleConfig = structure(list(ScheduleExpression = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringJobDefinition = structure(list(BaselineConfig = structure(list(BaseliningJobName = structure(logical(0), tags = list(type = "string")), ConstraintsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StatisticsResource = structure(list(S3Uri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), MonitoringInputs = structure(list(structure(list(EndpointInput = structure(list(EndpointName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3InputMode = structure(logical(0), tags = list(type = "string")), S3DataDistributionType = structure(logical(0), tags = list(type = "string")), FeaturesAttribute = structure(logical(0), tags = list(type = "string")), InferenceAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityAttribute = structure(logical(0), tags = list(type = "string")), ProbabilityThresholdAttribute = structure(logical(0), tags = list(type = "double")), StartTimeOffset = structure(logical(0), tags = list(type = "string")), EndTimeOffset = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), MonitoringOutputConfig = structure(list(MonitoringOutputs = structure(list(structure(list(S3Output = structure(list(S3Uri = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3UploadMode = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringResources = structure(list(ClusterConfig = structure(list(InstanceCount = structure(logical(0), tags = list(type = "integer")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), VolumeKmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), MonitoringAppSpecification = structure(list(ImageUri = structure(logical(0), tags = list(type = "string")), ContainerEntrypoint = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), ContainerArguments = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), RecordPreprocessorSourceUri = structure(logical(0), tags = list(type = "string")), PostAnalyticsProcessorSourceUri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StoppingCondition = structure(list(MaxRuntimeInSeconds = structure(logical(0), tags = list(type = "integer"))), tags = list(type = "structure")), Environment = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), NetworkConfig = structure(list(EnableInterContainerTrafficEncryption = structure(logical(0), tags = list(type = "boolean")), EnableNetworkIsolation = structure(logical(0), tags = list(type = "boolean")), VpcConfig = structure(list(SecurityGroupIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Subnets = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure")), RoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), MonitoringJobDefinitionName = structure(logical(0), tags = list(type = "string")), MonitoringType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_monitoring_schedule_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(MonitoringScheduleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_notebook_instance_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceName = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string")), LifecycleConfigName = structure(logical(0), tags = list(type = "string")), DisassociateLifecycleConfig = structure(logical(0), tags = list(type = "boolean")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), DefaultCodeRepository = structure(logical(0), tags = list(type = "string")), AdditionalCodeRepositories = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), AcceleratorTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), DisassociateAcceleratorTypes = structure(logical(0), tags = list(type = "boolean")), DisassociateDefaultCodeRepository = structure(logical(0), tags = list(type = "boolean")), DisassociateAdditionalCodeRepositories = structure(logical(0), tags = list(type = "boolean")), RootAccess = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_notebook_instance_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_notebook_instance_lifecycle_config_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NotebookInstanceLifecycleConfigName = structure(logical(0), tags = list(type = "string")), OnCreate = structure(list(structure(list(Content = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), OnStart = structure(list(structure(list(Content = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_notebook_instance_lifecycle_config_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_pipeline_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineName = structure(logical(0), tags = list(type = "string")), PipelineDisplayName = structure(logical(0), tags = list(type = "string")), PipelineDefinition = structure(logical(0), tags = list(type = "string")), PipelineDescription = structure(logical(0), tags = list(type = "string")), RoleArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_pipeline_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_pipeline_execution_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionArn = structure(logical(0), tags = list(type = "string")), PipelineExecutionDescription = structure(logical(0), tags = list(type = "string")), PipelineExecutionDisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_pipeline_execution_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(PipelineExecutionArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_training_job_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrainingJobName = structure(logical(0), tags = list(type = "string")), ProfilerConfig = structure(list(S3OutputPath = structure(logical(0), tags = list(type = "string")), ProfilingIntervalInMilliseconds = structure(logical(0), tags = list(type = "long")), ProfilingParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map")), DisableProfiler = structure(logical(0), tags = list(type = "boolean"))), tags = list(type = "structure")), ProfilerRuleConfigurations = structure(list(structure(list(RuleConfigurationName = structure(logical(0), tags = list(type = "string")), LocalPath = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), RuleEvaluatorImage = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string")), VolumeSizeInGB = structure(logical(0), tags = list(type = "integer")), RuleParameters = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_training_job_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrainingJobArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_trial_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialName = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_trial_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_trial_component_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentName = structure(logical(0), tags = list(type = "string")), DisplayName = structure(logical(0), tags = list(type = "string")), Status = structure(list(PrimaryStatus = structure(logical(0), tags = list(type = "string")), Message = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), StartTime = structure(logical(0), tags = list(type = "timestamp")), EndTime = structure(logical(0), tags = list(type = "timestamp")), Parameters = structure(list(structure(list(StringValue = structure(logical(0), tags = list(type = "string")), NumberValue = structure(logical(0), tags = list(type = "double"))), tags = list(type = "structure"))), tags = list(type = "map")), ParametersToRemove = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), InputArtifacts = structure(list(structure(list(MediaType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "map")), InputArtifactsToRemove = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), OutputArtifacts = structure(list(structure(list(MediaType = structure(logical(0), tags = list(type = "string")), Value = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "map")), OutputArtifactsToRemove = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_trial_component_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(TrialComponentArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_user_profile_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(DomainId = structure(logical(0), tags = list(type = "string")), UserProfileName = structure(logical(0), tags = list(type = "string")), UserSettings = structure(list(ExecutionRole = structure(logical(0), tags = list(type = "string")), SecurityGroups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), SharingSettings = structure(list(NotebookOutputOption = structure(logical(0), tags = list(type = "string")), S3OutputPath = structure(logical(0), tags = list(type = "string")), S3KmsKeyId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), JupyterServerAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), KernelGatewayAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CustomImages = structure(list(structure(list(ImageName = structure(logical(0), tags = list(type = "string")), ImageVersionNumber = structure(logical(0), tags = list(box = TRUE, type = "integer")), AppImageConfigName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list"))), tags = list(type = "structure")), TensorBoardAppSettings = structure(list(DefaultResourceSpec = structure(list(SageMakerImageArn = structure(logical(0), tags = list(type = "string")), SageMakerImageVersionArn = structure(logical(0), tags = list(type = "string")), InstanceType = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_user_profile_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(UserProfileArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_workforce_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkforceName = structure(logical(0), tags = list(type = "string")), SourceIpConfig = structure(list(Cidrs = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), OidcConfig = structure(list(ClientId = structure(logical(0), tags = list(type = "string")), ClientSecret = structure(logical(0), tags = list(type = "string", sensitive = TRUE)), Issuer = structure(logical(0), tags = list(type = "string")), AuthorizationEndpoint = structure(logical(0), tags = list(type = "string")), TokenEndpoint = structure(logical(0), tags = list(type = "string")), UserInfoEndpoint = structure(logical(0), tags = list(type = "string")), LogoutEndpoint = structure(logical(0), tags = list(type = "string")), JwksUri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_workforce_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Workforce = structure(list(WorkforceName = structure(logical(0), tags = list(type = "string")), WorkforceArn = structure(logical(0), tags = list(type = "string")), LastUpdatedDate = structure(logical(0), tags = list(type = "timestamp")), SourceIpConfig = structure(list(Cidrs = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")), SubDomain = structure(logical(0), tags = list(type = "string")), CognitoConfig = structure(list(UserPool = structure(logical(0), tags = list(type = "string")), ClientId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OidcConfig = structure(list(ClientId = structure(logical(0), tags = list(type = "string")), Issuer = structure(logical(0), tags = list(type = "string")), AuthorizationEndpoint = structure(logical(0), tags = list(type = "string")), TokenEndpoint = structure(logical(0), tags = list(type = "string")), UserInfoEndpoint = structure(logical(0), tags = list(type = "string")), LogoutEndpoint = structure(logical(0), tags = list(type = "string")), JwksUri = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), CreateDate = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_workteam_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(WorkteamName = structure(logical(0), tags = list(type = "string")), MemberDefinitions = structure(list(structure(list(CognitoMemberDefinition = structure(list(UserPool = structure(logical(0), tags = list(type = "string")), UserGroup = structure(logical(0), tags = list(type = "string")), ClientId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OidcMemberDefinition = structure(list(Groups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), Description = structure(logical(0), tags = list(type = "string")), NotificationConfiguration = structure(list(NotificationTopicArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .sagemaker$update_workteam_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Workteam = structure(list(WorkteamName = structure(logical(0), tags = list(type = "string")), MemberDefinitions = structure(list(structure(list(CognitoMemberDefinition = structure(list(UserPool = structure(logical(0), tags = list(type = "string")), UserGroup = structure(logical(0), tags = list(type = "string")), ClientId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), OidcMemberDefinition = structure(list(Groups = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), WorkteamArn = structure(logical(0), tags = list(type = "string")), WorkforceArn = structure(logical(0), tags = list(type = "string")), ProductListingIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), Description = structure(logical(0), tags = list(type = "string")), SubDomain = structure(logical(0), tags = list(type = "string")), CreateDate = structure(logical(0), tags = list(type = "timestamp")), LastUpdatedDate = structure(logical(0), tags = list(type = "timestamp")), NotificationConfiguration = structure(list(NotificationTopicArn = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) }