code
stringlengths 1
13.8M
|
---|
try(dev.off(),silent=TRUE)
par(mfrow = c(1, 3), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0))
plot(airquality$Wind, airquality$Ozone, main = "Ozone and Wind")
plot(airquality$Solar.R, airquality$Ozone, main = "Ozone and Solar Radiation")
plot(airquality$Temp, airquality$Ozone, main = "Ozone and Temperature") |
.load_fotmob_leagues <- function() {
read.csv("https://raw.githubusercontent.com/JaseZiv/worldfootballR_data/3c6ff713a08a0ef5f9355b8eba791a899fe68189/raw-data/fotmob-leagues/all_leagues.csv", stringsAsFactors = F)
}
.fotmob_get_league_ids <- function(league_id = NULL, country = NULL, league_name = NULL) {
leagues <- .load_fotmob_leagues()
has_country <- !is.null(country)
has_league_name <- !is.null(league_name)
has_league_id <- !is.null(league_id)
if(!has_league_id & !(has_country & has_league_name)) {
stop(
'Must provide `league_id` or both of `country` and `league_name`.'
)
}
has_country_and_league_name <- has_country & has_league_name
league_urls <- if(has_country_and_league_name) {
n_country <- length(country)
n_league_name <- length(league_name)
if(n_country != n_league_name) {
stop(
sprintf(
'If providing `country` and `league_name`, length of each must be the same (%s != %s).',
n_country,
n_league_name
)
)
}
pairs <- list(
country = country,
league_name = league_name
) %>%
purrr::transpose()
purrr::map_dfr(
pairs,
~dplyr::filter(
leagues,
.data$ccode == .x$country, .data$name == .x$league_name
)
)
} else {
leagues %>%
dplyr::filter(.data$id %in% league_id)
}
n_league_urls <- nrow(league_urls)
if(n_league_urls == 0) {
stop(
'Could not find any leagues matching specified parameters.'
)
}
n_params <- ifelse(
has_country_and_league_name,
n_country,
length(league_id)
)
if(n_league_urls < n_params) {
warning(
sprintf(
'Found less leagues than specified (%s < %s).',
n_league_urls,
n_params
)
)
} else if (n_league_urls > n_params) {
warning(
sprintf(
'Found more leagues than specified (%s > %s).',
n_league_urls,
n_params
)
)
}
league_urls$id
}
.fotmob_get_league_resp <- function(league_id) {
main_url <- "https://www.fotmob.com/leagues?id="
url <- sprintf("%s%s", main_url, league_id)
jsonlite::fromJSON(url)
}
fotmob_get_league_matches <- function(country, league_name, league_id) {
ids <- .fotmob_get_league_ids(
country = rlang::maybe_missing(country, NULL),
league_name = rlang::maybe_missing(league_name, NULL),
league_id = rlang::maybe_missing(league_id, NULL)
)
fp <- purrr::possibly(
.fotmob_get_league_matches,
quiet = FALSE,
otherwise = tibble::tibble()
)
purrr::map_dfr(
ids,
.fotmob_get_league_matches
)
}
.fotmob_get_league_matches <- function(...) {
resp <- .fotmob_get_league_resp(...)
resp$fixtures %>%
janitor::clean_names() %>%
tibble::as_tibble()
}
fotmob_get_league_tables <- function(country, league_name, league_id) {
ids <- .fotmob_get_league_ids(
country = rlang::maybe_missing(country, NULL),
league_name = rlang::maybe_missing(league_name, NULL),
league_id = rlang::maybe_missing(league_id, NULL)
)
fp <- purrr::possibly(
.fotmob_get_league_tables,
quiet = FALSE,
otherwise = tibble::tibble()
)
purrr::map_dfr(
ids,
fp
)
}
.fotmob_get_league_tables <- function(...) {
resp <- .fotmob_get_league_resp(...)
table <- resp$tableData$table %>%
janitor::clean_names() %>%
tibble::as_tibble()
table %>%
tidyr::pivot_longer(
colnames(.),
names_to = "table_type",
values_to = "table"
) %>%
tidyr::unnest_longer(
.data$table
) %>%
tidyr::unnest(
.data$table
)
} |
list_packages <- function() {
all_pkg <- installed.packages() %>%
as.data.frame() %>%
pull(Package)
base_pkg <- installed.packages() %>%
as.data.frame() %>%
filter(Priority == "base") %>%
pull(Package)
all_pkg[!all_pkg %in% base_pkg]
}
restore_packages <- function(status = latest_r_version()) {
versions <- c(status$latest, attr(status, "current"))
versions_split <- strsplit(versions, ".", fixed = TRUE)
names(versions_split) <- c("latest", "current")
if (versions_split$latest[3] != versions_split$current[3]) {
update_type <- "patch"
}
if (versions_split$latest[2] != versions_split$current[2]) {
update_type <- "minor"
}
if (versions_split$latest[1] != versions_split$current[1]) {
update_type <- "major"
}
prompt_msg <- paste(
c("This is a %s update.",
"Choose one of the following options to restore your packages:",
"%s\n"),
collapse = "\n"
)
prompt_options <- switch(update_type,
"major" = "1. Reinstall all the packages\n",
"minor" = paste(
c("1. Reinstall all the packages",
"2. Copy all packages"),
collapse = "\n"),
"patch" = paste(
c("Restoring packages is NOT necessary.",
"Press [Enter] to continue (this is the only option in the list)"),
collapse = "\n"))
prompt_msg <- sprintf(prompt_msg, update_type, prompt_options)
choice <- as.numeric(readline(prompt_msg))
while(!choice %in% c(1, 2, "", NA)) {
message("!Invalid option. Please try again\n")
choice <- as.numeric(readline(prompt_msg))
}
if(choice %in% 1) {
message("list of packages loaded")
cat(sprintf("%s,", list_packages()))
install.packages(list_packages())
} else if (update_type == "minor" & choice %in% 2) {
old_version_path <- paste0(versions_split$current[1:2], collapse = ".")
new_version_path <- paste0(versions_split$latest[1:2], collapse = ".")
for (l in .libPaths()) {
old_lib_path <- l
new_lib_path <- str_replace(l, old_version_path, new_version_path)
message(sprintf(
"Copying from old LibPath\n%s/\nto new LibPath\n%s/\n...",
old_lib_path, new_lib_path
))
system(sprintf("mkdir -p %s", new_lib_path))
system(sprintf("cp -R %s/ %s/", old_lib_path, new_lib_path))
replace_libpath_profile(old_lib_path, new_lib_path)
}
message("Complete.")
} else if(update_type == "patch") {
message("\n")
}
} |
`scores.rda` <-
function (x, choices = c(1, 2), display = c("sp", "wa", "cn"),
scaling = "species", const, correlation = FALSE, ...)
{
if (!is.null(x$na.action) && inherits(x$na.action, "exclude"))
x <- ordiNApredict(x$na.action, x)
tabula <- c("species", "sites", "constraints", "biplot",
"regression", "centroids")
names(tabula) <- c("sp", "wa", "lc", "bp", "reg", "cn")
if (is.null(x$CCA))
tabula <- tabula[1:2]
display <- match.arg(display, c("sites", "species", "wa",
"lc", "bp", "cn", "reg"),
several.ok = TRUE)
if("sites" %in% display)
display[display == "sites"] <- "wa"
if("species" %in% display)
display[display == "species"] <- "sp"
take <- tabula[display]
sumev <- x$tot.chi
eigval <- eigenvals(x)
if (inherits(x, "dbrda") && any(eigval < 0))
eigval <- eigval[eigval > 0]
slam <- sqrt(eigval[choices]/sumev)
nr <- if (is.null(x$CCA))
nrow(x$CA$u)
else
nrow(x$CCA$u)
if (missing(const))
const <- sqrt(sqrt((nr-1) * sumev))
if (length(const) == 1) {
const <- c(const, const)
}
if (inherits(x, "dbrda"))
rnk <- x$CCA$poseig
else
rnk <- x$CCA$rank
sol <- list()
scaling <- scalingType(scaling = scaling, correlation = correlation)
if ("species" %in% take) {
v <- cbind(x$CCA$v, x$CA$v)[, choices, drop=FALSE]
if (scaling) {
scal <- list(1, slam, sqrt(slam))[[abs(scaling)]]
v <- sweep(v, 2, scal, "*")
if (scaling < 0) {
v <- sweep(v, 1, x$colsum, "/")
v <- v * sqrt(sumev / (nr - 1))
}
v <- const[1] * v
}
if (nrow(v) > 0)
sol$species <- v
else
sol$species <- NULL
}
if ("sites" %in% take) {
wa <- cbind(x$CCA$wa, x$CA$u)[, choices, drop=FALSE]
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
wa <- sweep(wa, 2, scal, "*")
wa <- const[2] * wa
}
sol$sites <- wa
}
if ("constraints" %in% take) {
u <- cbind(x$CCA$u, x$CA$u)[, choices, drop=FALSE]
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
u <- sweep(u, 2, scal, "*")
u <- const[2] * u
}
sol$constraints <- u
}
if ("biplot" %in% take && !is.null(x$CCA$biplot)) {
b <- matrix(0, nrow(x$CCA$biplot), length(choices))
b[, choices <= rnk] <- x$CCA$biplot[, choices[choices <= rnk]]
colnames(b) <- c(colnames(x$CCA$u), colnames(x$CA$u))[choices]
rownames(b) <- rownames(x$CCA$biplot)
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
b <- sweep(b, 2, scal, "*")
}
sol$biplot <- b
}
if ("regression" %in% take) {
b <- coef(x, norm = TRUE)
reg <- matrix(0, nrow(b), length(choices))
reg[, choices <= rnk] <- b[, choices[choices <= rnk]]
dimnames(reg) <- list(rownames(b),
c(colnames(x$CCA$u), colnames(x$CA$u))[choices])
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
reg <- sweep(reg, 2, scal, "*")
}
sol$regression <- reg
}
if ("centroids" %in% take) {
if (is.null(x$CCA$centroids))
sol$centroids <- NA
else {
cn <- matrix(0, nrow(x$CCA$centroids), length(choices))
cn[, choices <= rnk] <- x$CCA$centroids[, choices[choices <= rnk]]
colnames(cn) <- c(colnames(x$CCA$u), colnames(x$CA$u))[choices]
rownames(cn) <- rownames(x$CCA$centroids)
if (scaling) {
scal <- list(slam, 1, sqrt(slam))[[abs(scaling)]]
cn <- sweep(cn, 2, scal, "*")
cn <- const[2] * cn
}
sol$centroids <- cn
}
}
if (length(sol)) {
for (i in seq_along(sol)) {
if (is.matrix(sol[[i]]))
rownames(sol[[i]]) <-
rownames(sol[[i]], do.NULL = FALSE,
prefix = substr(names(sol)[i], 1, 3))
}
}
if (length(sol) == 1)
sol <- sol[[1]]
if (identical(const[1], const[2]))
const <- const[1]
attr(sol, "const") <- const
sol
} |
propCI_exact <-
function(x, n, l){
if (x == 0){
lw <- 0
up <- 1 - l[3] ^ (1/n)
} else if (x == n){
lw <- l[3] ^ (1/n)
up <- 1
} else{
lw <- qbeta(l[1], x, n - x + 1, lower.tail = T)
up <- qbeta(l[2], x + 1, n - x, lower.tail = T)
}
return(c(lw, up))
} |
predict.pipelearner <- function(pl) {
if (is.null(pl$fits)) stop ("Models haven't learned yet. See ?learn")
to_pred <- pl %>% recover_fits()
to_pred %>%
dplyr::select(fit, target, train, test, .id) %>%
purrr::pmap_df(make_predictions) %>%
tidyr::gather(key, val, -fits.id) %>%
tidyr::separate(key, into = c("origin", "data")) %>%
tidyr::spread(origin, val) %>%
tidyr::unnest(predicted, true) %>%
dplyr::mutate(
fits_info = purrr::map(fits.id, ~ dplyr::filter(to_pred, .id == .) %>%
dplyr::select(model, target, params, train_p))
) %>%
tidyr::unnest(fits_info) %>%
dplyr::select(model, target, params, train_p,
data, true, predicted, fits.id,
dplyr::everything())
}
make_predictions <- function(fit, target, train, test, .id) {
tibble::tibble(
true_train = list(as.data.frame(train)[[target]]),
true_test = list(as.data.frame(test)[[target]]),
predicted_train = list(predict(fit)),
predicted_test = list(predict(fit, newdata = test)),
fits.id = .id
)
} |
streamParserFromFileName <- function(fileName,encoding = getOption("encoding")) {
if( Sys.info()["sysname"] == "Windows" ) {
fromString <- TRUE
} else {
conn <- file(fileName,"r",encoding =encoding)
if ( ! isOpen(conn) ) stop(paste("Error: file cannot be opened",fileName))
fromString <- tryCatch({ seek(conn) ; FALSE}, error =function(e) TRUE, finally= close(conn) )
}
if ( fromString ) return( streamParserFromString( readLines( fileName, encoding=encoding)) )
else
return( list(
streamParserNextChar = function(stream) {
if ( stream$pos != seek(stream$conn) ) seek(stream$conn,stream$pos)
char <- readChar(stream$conn,nchars=1,useBytes = FALSE)
if (length(char) == 0)
list(status="eof",char="" ,stream=stream)
else {
stream$pos <- seek(stream$conn)
if ( char == "\n" ) {
stream$line <- stream$line + 1
stream$linePos <- 0
} else {
stream$linePos <- stream$linePos + 1
}
list(status="ok" ,char=char,stream=stream)
}
},
streamParserNextCharSeq = function(stream) {
char <- readChar(stream$conn,nchars=1,useBytes = FALSE)
if (length(char) == 0)
list(status="eof",char="" ,stream=stream)
else {
stream$pos <- seek(stream$conn)
if ( char == "\n" ) {
stream$line <- stream$line + 1
stream$linePos <- 0
} else {
stream$linePos <- stream$linePos + 1
}
list(status="ok" ,char=char,stream=stream)
}
},
streamParserClose = function(stream) { close(stream$conn) ; stream$conn <- -1 ; invisible(NULL)
},
streamParserPosition = function(stream) { list(fileName=stream$fileName, line=stream$line, linePos=stream$linePos+1, streamPos=stream$pos+1)
},
conn = local({
conn <- file(fileName,"r",encoding =encoding)
if ( ! isOpen(conn) ) stop(paste("Error: file cannot be opened.",fileName))
tryCatch( seek(conn) , error =function(e) stop(paste("Error: 'seek' not enabled for this connection", fileName)))
conn
}),
pos = 0,
line = 1,
linePos = 0,
fileName = fileName
)
)
} |
shift <- function(x,n){
length <- length(x)
c(rep(NA,n),x)[1:length]
}
tsData <- function(data,
vars =NULL,
beepvar = NULL,
dayvar = NULL,
idvar = NULL,
groupvar = NULL,
lags = 1,
scale = FALSE,
center = FALSE,
centerWithin = FALSE
){
if (!is.null(groupvar)){
groups <- unique(data[[groupvar]])
res <- lapply(seq_along(groups),function(g){
dat <- data[data[[groupvar]] == groups[g],names(data)!=groupvar]
dat <- tsData(dat, vars, beepvar, dayvar, idvar)
dat[[groupvar]] <- groups[g]
dat
})
return(do.call(rbind,res))
}
. <- NULL
deleteMissings = FALSE
data <- as.data.frame(data)
if (is.null(idvar)){
idvar <- "ID"
data[[idvar]] <- 1
}
if (is.null(dayvar)){
dayvar <- "DAY"
data[[dayvar]] <- 1
}
if (is.null(beepvar)){
beepvar <- "BEEP"
data <- data %>% dplyr::group_by(.data[[dayvar]],.data[[idvar]]) %>%
dplyr::mutate(BEEP = seq_len(n()))
}
if (is.null(vars)){
vars <- names(data[!names(data)%in%c(idvar,dayvar,beepvar)])
}
data <- data[,c(vars,idvar,dayvar,beepvar)]
for (v in vars){
data[,v] <- as.numeric(scale(data[,v], center, scale))
}
MeansData <- data %>% dplyr::group_by(.data[[idvar]]) %>% dplyr::summarise_at(funs(mean(.,na.rm=TRUE)),.vars = vars)
if (centerWithin){
if (length(unique(data[[idvar]])) > 1){
data <- data %>% dplyr::group_by(.data[[idvar]]) %>% dplyr::mutate_at(funs(scale(.,center=TRUE,scale=FALSE)),.vars = vars)
}
}
augData <- data
beepsummary <- data %>% group_by(.data[[idvar]],.data[[dayvar]],.data[[beepvar]]) %>% tally
if (any(beepsummary$n!=1)){
print_and_capture <- function(x)
{
paste(capture.output(print(x)), collapse = "\n")
}
warning(paste0("Some beeps are recorded more than once! Results are likely unreliable.\n\n",print_and_capture(
beepsummary %>% filter(.data[["n"]]!=1) %>% select(.data[[idvar]],.data[[dayvar]],.data[[beepvar]]) %>% as.data.frame
)))
}
beepsPerDay <- dplyr::summarize(data %>% group_by(.data[[idvar]],.data[[dayvar]]),
first = min(.data[[beepvar]],na.rm=TRUE),
last = max(.data[[beepvar]],na.rm=TRUE))
allBeeps <- expand.grid(unique(data[[idvar]]),unique(data[[dayvar]]),seq(min(data[[beepvar]],na.rm=TRUE),max(data[[beepvar]],na.rm=TRUE)))
names(allBeeps) <- c(idvar,dayvar,beepvar)
allBeeps <- allBeeps %>% dplyr::left_join(beepsPerDay, by = c(idvar,dayvar)) %>%
dplyr::group_by(.data[[idvar]],.data[[dayvar]]) %>% dplyr::filter(.data[[beepvar]] >= .data$first, .data[[beepvar]] <= .data$last)%>%
dplyr::arrange(.data[[idvar]],.data[[dayvar]],.data[[beepvar]])
augData <- augData %>% dplyr::right_join(allBeeps, by = c(idvar,dayvar,beepvar)) %>%
arrange(.data[[idvar]],.data[[dayvar]],.data[[beepvar]])
data_c <- augData %>% ungroup %>% dplyr::select(all_of(vars))
data_l <- do.call(cbind,lapply(lags, function(l){
data_lagged <- augData %>% dplyr::group_by(.data[[idvar]],.data[[dayvar]]) %>% dplyr::mutate_at(funs(shift),.vars = vars) %>% ungroup %>% dplyr::select(all_of(vars))
names(data_lagged) <- paste0(vars,"_lag",l)
data_lagged
}))
isNA <- rowSums(is.na(data_c)) == ncol(data_c)
data_c <- data_c[!isNA,]
data_l <- data_l[!isNA,]
fulldata <- as.data.frame(cbind(data_l,data_c))
return(fulldata)
} |
library(testthat)
library(OpenMx)
data(demoOneFactor)
factorModel <- mxModel(
"One Factor",
mxMatrix("Full", 5, 1, values=0.2,
free=TRUE, name="A"),
mxMatrix("Symm", 1, 1, values=1,
free=FALSE, name="L"),
mxMatrix("Diag", 5, 5, values=1,
free=TRUE, name="U"),
mxAlgebra(A %*% L %*% t(A) + U, name="R"),
mxExpectationNormal("R", dimnames = names(demoOneFactor)),
mxFitFunctionML(),
mxData(cov(demoOneFactor), type="cov", numObs=500),
mxComputeSequence(list(
mxComputeNumericDeriv(),
mxComputeReportDeriv()))
)
fitModel <- mxRun(factorModel)
fullH <- fitModel$output$hessian
omxCheckEquals(fitModel$compute$steps[[1]]$output$probeCount, 4 * (10^2+10))
kh <- fullH[3:10,3:10]
kh[1,2] <- kh[1,2] + 5
kh[2,1] <- kh[2,1] - 5
kh[3,3] <- NA
limModel <- mxModel(factorModel,
mxComputeSequence(list(
mxComputeNumericDeriv(verbose=0,
knownHessian=kh),
mxComputeReportDeriv())))
limModel <- expect_warning(mxRun(limModel),
"knownHessian[1,2] is not symmetric", fixed=TRUE)
omxCheckCloseEnough(limModel$output$hessian[,1:2], fullH[,1:2], 1e-3)
omxCheckEquals(limModel$compute$steps[[1]]$output$probeCount, 160) |
predict.nft = function(
object,
x.test=object$x.train,
tc=1,
XPtr=TRUE,
K=0,
events=object$events,
FPD=FALSE,
probs=c(0.025, 0.975),
take.logs=TRUE,
na.rm=FALSE,
fmu=object$fmu,
soffset=object$soffset,
drawMuTau=object$drawMuTau,
...)
{
ptm <- proc.time()
nd=object$ndpost
m=object$ntree[1]
if(length(object$ntree)==2) mh=object$ntree[2]
else mh=object$ntreeh
xi=object$xicuts
n = nrow(object$x.train)
p = ncol(object$x.train)
np = nrow(x.test)
xp = t(x.test)
if(is.null(object)) stop("No fitted model specified!\n")
if(length(K)==0) {
K=0
take.logs=FALSE
}
if(length(drawMuTau)==0) drawMuTau=0
q.lower=min(probs)
q.upper=max(probs)
if(XPtr) {
res=.Call("cpsambrt_predict",
xp,
m,
mh,
nd,
xi,
tc,
object,
PACKAGE="nftbart"
)
res$f.test.=res$f.test.+fmu
res$f.test.mean.=apply(res$f.test.,2,mean)
res$f.test.lower.=
apply(res$f.test.,2,quantile,probs=q.lower,na.rm=na.rm)
res$f.test.upper.=
apply(res$f.test.,2,quantile,probs=q.upper,na.rm=na.rm)
res$s.test.mean.=apply(res$s.test.,2,mean)
res$s.test.lower.=
apply(res$s.test.,2,quantile,probs=q.lower,na.rm=na.rm)
res$s.test.upper.=
apply(res$s.test.,2,quantile,probs=q.upper,na.rm=na.rm)
} else {
res=list()
}
if(np>0) {
res.=.Call("cprnft",
object,
xp,
tc,
PACKAGE="nftbart"
)
res$f.test=res.$f.test+fmu
res$fmu=fmu
m=length(soffset)
if(m==0) soffset=0
else if(m>1)
soffset=sqrt(mean(soffset^2, na.rm=TRUE))
res$s.test=exp(res.$s.test-soffset)
res$s.test.mean =apply(res$s.test, 2, mean)
res$s.test.lower=apply(res$s.test, 2,
quantile, probs=q.lower, na.rm=na.rm)
res$s.test.upper=apply(res$s.test, 2,
quantile, probs=q.upper, na.rm=na.rm)
res$soffset=soffset
res$f.test.mean =apply(res$f.test, 2, mean)
res$f.test.lower=apply(res$f.test, 2,
quantile,probs=q.lower,na.rm=na.rm)
res$f.test.upper=apply(res$f.test, 2,
quantile,probs=q.upper,na.rm=na.rm)
if(K>0) {
if(length(events)==0) {
events <- unique(quantile(object$z.train.mean,
probs=(1:K)/(K+1)))
attr(events, 'names') <- NULL
} else if(take.logs) events=log(events)
events.matrix=(class(events)[1]=='matrix')
if(events.matrix) K=ncol(events)
else K <- length(events)
if(FPD) {
H=np/n
if(drawMuTau>0) {
for(h in 1:H) {
if(h==1) {
mu. = object$dpmu
sd. = object$dpsd
} else {
mu. = cbind(mu., object$dpmu)
sd. = cbind(sd., object$dpsd)
}
}
mu. = mu.*res$s.test
sd. = sd.*res$s.test
mu. = mu.+res$f.test
} else {
mu. = res$f.test
sd. = res$s.test
}
if(K>1) {
res$f.test = NULL
if(length(res$f.test.)>0) res$f.test. = NULL
res$s.test = NULL
if(length(res$s.test.)>0) res$s.test. = NULL
}
surv.fpd=list()
pdf.fpd =list()
surv.test=list()
pdf.test =list()
for(i in 1:H) {
h=(i-1)*n+1:n
for(j in 1:K) {
if(j==1) {
surv.fpd[[i]]=list()
pdf.fpd[[i]] =list()
surv.test[[i]]=list()
pdf.test[[i]] =list()
}
surv.fpd[[i]][[j]]=
apply(matrix(pnorm(events[j],
mu.[ , h], sd.[ , h], lower.tail=FALSE),
nrow=nd, ncol=n), 1, mean)
pdf.fpd[[i]][[j]]=
apply(matrix(dnorm(events[j], mu.[ , h], sd.[ , h]),
nrow=nd, ncol=n), 1, mean)
if(i==1 && j==1) {
res$surv.fpd=cbind(surv.fpd[[1]][[1]])
res$pdf.fpd =cbind(pdf.fpd[[1]][[1]])
} else {
res$surv.fpd=cbind(res$surv.fpd, surv.fpd[[i]][[j]])
res$pdf.fpd =cbind(res$pdf.fpd, pdf.fpd[[i]][[j]])
}
if(K==1) {
surv.test[[i]][[j]]=matrix(pnorm(events[j],
mu.[ , h], sd.[ , h], lower.tail=FALSE),
nrow=nd, ncol=n)
pdf.test[[i]][[j]] =matrix(dnorm(events[j], mu.[ , h], sd.[ , h]),
nrow=nd, ncol=n)
if(i==1 && j==1) {
res$surv.test=cbind(surv.test[[1]][[1]])
res$pdf.test =cbind(pdf.test[[1]][[1]])
} else {
res$surv.test=cbind(res$surv.test, surv.test[[i]][[j]])
res$pdf.test =cbind(res$pdf.test, pdf.test[[i]][[j]])
}
}
}
}
res$surv.fpd.mean=apply(cbind(res$surv.fpd), 2, mean)
res$surv.fpd.lower=
apply(cbind(res$surv.fpd), 2, quantile, probs=q.lower)
res$surv.fpd.upper=
apply(cbind(res$surv.fpd), 2, quantile, probs=q.upper)
res$pdf.fpd.mean =apply(cbind(res$pdf.fpd), 2, mean)
if(K==1) {
res$surv.test.mean=apply(res$surv.test, 2, mean)
res$pdf.test.mean =apply(res$pdf.test, 2, mean)
}
} else if(drawMuTau>0) {
res$surv.test=matrix(0, nrow=nd, ncol=np*K)
H=max(c(object$dpn.))
events.=events
for(i in 1:np) {
if(events.matrix) events.=events[i, ]
mu.=res$f.test[ , i]
sd.=res$s.test[ , i]
for(j in 1:K) {
k=(i-1)*K+j
for(h in 1:H) {
res$surv.test[ , k]=res$surv.test[ , k]+
object$dpwt.[ , h]*
pnorm(events.[j],
mu.+sd.*object$dpmu.[ , h],
sd.*object$dpsd.[ , h], FALSE)
}
}
}
res$surv.test.mean=apply(res$surv.test, 2, mean)
}
if(take.logs) res$events=exp(events)
else res$events=events
}
res$K=K
} else {
res$f.test=res$f.test.
res$s.test=res$s.test.
}
res$probs=probs
res$elapsed <- (proc.time()-ptm)['elapsed']
attr(res$elapsed, 'names')=NULL
return(res)
} |
jNoComb <-
function(n,k,alpha){
C <- 1
for (i in 1:k){
C <- C * (n-i+1)/i*alpha*(1-alpha)
}
C <- C * (1-alpha)^(n-k-k)
return(C)
} |
context("pd0 and d.prime0 arguments to discrim")
test_that("Expect error if more than one of pd0/d.prime0 has been specified", {
expect_error(
discrim(26, 75, method = "triangle", d.prime0 = 2, pd0=.2, test =
"similarity"),
"Only specify one of")
expect_error(
discrim(26, 75, method = "triangle", test = "similarity")
, "Either 'pd0' or 'd.prime0' has to be specified for a similarity test")
})
test_that("Specification of different scales give the same results:", {
T1 <- discrim(26, 75, method = "triangle", pd0 = .2, test = "similarity")
T2 <- discrim(26, 75, method = "triangle", test = "similarity",
d.prime0 = psyinv(pd2pc(.2, 1/3), "triangle"))
expect_equal(T1$p.value, T2$p.value, tolerance=1e-3)
})
test_that("Test boundary values for d.prime0 (-1, 0, 1, Inf):", {
expect_that(
discrim(26, 75, method = "triangle", d.prime0 = -1, test =
"similarity")
, throws_error("d.prime0 >= 0"))
expect_that(
discrim(26, 75, method = "triangle", d.prime0 = 0, test =
"similarity")
, gives_warning("'d.prime0' should be positive for a similarity test"))
expect_output(
print(discrim(26, 75, method = "triangle", d.prime0 = 1, test =
"similarity"))
, "p-value = 0.1274")
expect_output(
print(discrim(26, 75, method = "triangle", d.prime0 = Inf,
stat="like", test="similarity"))
, "d-prime is less than Inf")
})
test_that("Test boundary values for pd0 (-1, 0, .2. 1. 2):", {
expect_that(
discrim(26, 75, method = "triangle", pd0 = -1, test =
"similarity")
, throws_error("pd0 >= 0 is not TRUE"))
expect_that(
discrim(26, 75, method = "triangle", pd0 = 0, test =
"similarity")
, gives_warning("'pd0' should be positive for a similarity test"))
expect_output(
print(discrim(26, 75, method = "triangle", pd0 = .2, test =
"similarity"))
, "'exact' binomial test: p-value = 0.02377")
expect_output(
print(discrim(26, 75, method = "triangle", pd0 = 1, test = "similarity"))
, "'exact' binomial test: p-value = < 2.2e-16")
expect_error(
discrim(26, 75, method = "triangle", pd0 = 2, test = "similarity")
, "pd0 <= 1 is not TRUE")
})
test_that("Test that all statistics works in the limit of pd0 and d.prime0", {
Stat <- eval(formals(discrim)$statistic)
pvals <- sapply(Stat, function(stat) {
discrim(26, 75, method = "triangle", d.prime0 = Inf,
stat=stat, test="similarity")$p.value
})
expect_equivalent(pvals, rep(0, length(Stat)))
pvals <- sapply(Stat, function(stat) {
discrim(26, 75, method = "triangle", d.prime0 = Inf,
stat=stat, test="diff")$p.value
})
expect_equivalent(pvals, rep(1, length(Stat)))
pvals <- sapply(Stat, function(stat) {
discrim(26, 75, method = "triangle", pd0=1,
stat=stat, test="simi")$p.value
})
expect_equivalent(pvals, rep(0, length(Stat)))
pvals <- sapply(Stat, function(stat) {
discrim(26, 75, method = "triangle", pd0=1,
stat=stat, test="diff")$p.value
})
expect_equivalent(pvals, rep(1, length(Stat)))
})
test_that("Test error at invalid args for pd0 and d.prime0", {
expect_error(
discrim(26, 75, pd0=1:2)
)
expect_error(
discrim(26, 75, pd0="2")
)
expect_error(
discrim(26, 75, d.prime0=1:2)
)
expect_error(
discrim(26, 75, d.prime="2")
)
expect_error(
discrim(26, 75, pd0=list(1))
)
})
test_that("Printing alternative hypothesis in terms of d-prime (default):", {
expect_output(
print(discrim(26, 75, method = "triangle"))
, "Alternative hypothesis: d-prime is greater than 0 ")
expect_equal(
discrim(26, 75, method = "triangle")$pd0
, 0)
expect_equal(
discrim(26, 75, method = "triangle")$alt.scale
, "d-prime")
expect_equal(
discrim(26, 75, method = "triangle", test="simil",
pd0=.2)$alt.scale
, "pd")
expect_equal(
discrim(26, 75, method = "triangle", test="simil",
d.prime0=2)$alt.scale
, "d-prime")
})
test_that("Test that alternative hypothesis uses d.prime/pd", {
expect_output(
print(discrim(26, 75, d.prime=0, method = "triangle"))
, "Alternative hypothesis: d-prime is greater than 0 ")
expect_output(
print(discrim(26, 75, pd0=0, method = "triangle"))
, "Alternative hypothesis: pd is greater than 0 ")
}) |
position_finder <- function(vec) {
if(length(which(vec == 1)) != 0) {
return(min(which(vec == 1)))
} else {
return(999999)
}
} |
"level.setCOP" <-
function(cop=NULL, para=NULL, getlevel=NULL, delu=0.001, lines=FALSE, ...) {
zz <- level.curvesCOP(cop=cop, para=para, getlevel=getlevel, delt=NULL,
ploton=FALSE, plotMW=FALSE, lines=lines, delu=delu, ramp=FALSE, ...)
return(zz)
} |
"ex_node" |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
warning = F,
fig.align = "center"
)
devtools::load_all()
library(tidyverse)
lubridate_download_history <- tidyverse_cran_downloads %>%
filter(package == "lubridate") %>%
ungroup()
lubridate_download_history %>%
head(10) %>%
knitr::kable()
p1 <- lubridate_download_history %>%
time_decompose(count,
method = "stl",
frequency = "1 week",
trend = "3 months") %>%
anomalize(remainder) %>%
plot_anomaly_decomposition() +
ggtitle("STL Decomposition")
p2 <- lubridate_download_history %>%
time_decompose(count,
method = "twitter",
frequency = "1 week",
trend = "3 months") %>%
anomalize(remainder) %>%
plot_anomaly_decomposition() +
ggtitle("Twitter Decomposition")
p1
p2
set.seed(100)
x <- rnorm(100)
idx_outliers <- sample(100, size = 5)
x[idx_outliers] <- x[idx_outliers] + 10
qplot(1:length(x), x,
main = "Simulated Anomalies",
xlab = "Index")
iqr_outliers <- iqr(x, alpha = 0.05, max_anoms = 0.2, verbose = TRUE)$outlier_report
gesd_outliers <- gesd(x, alpha = 0.05, max_anoms = 0.2, verbose = TRUE)$outlier_report
ggsetup <- function(data) {
data %>%
ggplot(aes(rank, value, color = outlier)) +
geom_point() +
geom_line(aes(y = limit_upper), color = "red", linetype = 2) +
geom_line(aes(y = limit_lower), color = "red", linetype = 2) +
geom_text(aes(label = index), vjust = -1.25) +
theme_bw() +
scale_color_manual(values = c("No" = "
expand_limits(y = 13) +
theme(legend.position = "bottom")
}
p3 <- iqr_outliers %>%
ggsetup() +
ggtitle("IQR: Top outliers sorted by rank")
p4 <- gesd_outliers %>%
ggsetup() +
ggtitle("GESD: Top outliers sorted by rank")
p3
p4 |
"HeartRate" |
aic.dof <- function (RSS, n, DoF, sigmahat)
{
aic_temp <- RSS/n + 2 * (DoF/n) * sigmahat^2
return(aic_temp)
} |
cor <- function(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))
{
na.method <-
pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs",
"everything", "na.or.complete"))
if(is.na(na.method)) stop("invalid 'use' argument")
method <- match.arg(method)
if(is.data.frame(y)) y <- as.matrix(y)
if(is.data.frame(x)) x <- as.matrix(x)
if(!is.matrix(x) && is.null(y))
stop("supply both 'x' and 'y' or a matrix-like 'x'")
if(!(is.numeric(x) || is.logical(x))) stop("'x' must be numeric")
stopifnot(is.atomic(x))
if(!is.null(y)) {
if(!(is.numeric(y) || is.logical(y))) stop("'y' must be numeric")
stopifnot(is.atomic(y))
}
Rank <- function(u) {
if(length(u) == 0L) u
else if(is.matrix(u)) {
if(nrow(u) > 1L) apply(u, 2L, rank, na.last="keep") else row(u)
} else rank(u, na.last="keep")
}
if(method == "pearson")
.Call(C_cor, x, y, na.method, FALSE)
else if (na.method %in% c(2L, 5L)) {
if (is.null(y)) {
.Call(C_cor, Rank(na.omit(x)), NULL, na.method,
method == "kendall")
} else {
nas <- attr(na.omit(cbind(x,y)), "na.action")
dropNA <- function(x, nas) {
if(length(nas)) {
if (is.matrix(x)) x[-nas, , drop = FALSE] else x[-nas]
} else x
}
.Call(C_cor, Rank(dropNA(x, nas)), Rank(dropNA(y, nas)),
na.method, method == "kendall")
}
} else if (na.method != 3L) {
x <- Rank(x)
if(!is.null(y)) y <- Rank(y)
.Call(C_cor, x, y, na.method, method == "kendall")
}
else {
if (is.null(y)) {
ncy <- ncx <- ncol(x)
if(ncx == 0) stop("'x' is empty")
r <- matrix(0, nrow = ncx, ncol = ncy)
for (i in seq_len(ncx)) {
for (j in seq_len(i)) {
x2 <- x[,i]
y2 <- x[,j]
ok <- complete.cases(x2, y2)
x2 <- rank(x2[ok])
y2 <- rank(y2[ok])
r[i, j] <- if(any(ok)) .Call(C_cor, x2, y2, 1L, method == "kendall") else NA
}
}
r <- r + t(r) - diag(diag(r))
rownames(r) <- colnames(x)
colnames(r) <- colnames(x)
r
}
else {
if(length(x) == 0L || length(y) == 0L)
stop("both 'x' and 'y' must be non-empty")
matrix_result <- is.matrix(x) || is.matrix(y)
if (!is.matrix(x)) x <- matrix(x, ncol=1L)
if (!is.matrix(y)) y <- matrix(y, ncol=1L)
ncx <- ncol(x)
ncy <- ncol(y)
r <- matrix(0, nrow = ncx, ncol = ncy)
for (i in seq_len(ncx)) {
for (j in seq_len(ncy)) {
x2 <- x[,i]
y2 <- y[,j]
ok <- complete.cases(x2, y2)
x2 <- rank(x2[ok])
y2 <- rank(y2[ok])
r[i, j] <- if(any(ok)) .Call(C_cor, x2, y2, 1L, method == "kendall") else NA
}
}
rownames(r) <- colnames(x)
colnames(r) <- colnames(y)
if(matrix_result) r else drop(r)
}
}
}
cov <- function(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))
{
na.method <-
pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs",
"everything", "na.or.complete"))
if(is.na(na.method)) stop("invalid 'use' argument")
method <- match.arg(method)
if(is.data.frame(y)) y <- as.matrix(y)
if(is.data.frame(x)) x <- as.matrix(x)
if(!is.matrix(x) && is.null(y))
stop("supply both 'x' and 'y' or a matrix-like 'x'")
stopifnot(is.numeric(x) || is.logical(x), is.atomic(x))
if(!is.null(y)) stopifnot(is.numeric(y) || is.logical(y), is.atomic(y))
Rank <- function(u) {
if(length(u) == 0L) u
else if(is.matrix(u)) {
if(nrow(u) > 1L) apply(u, 2L, rank, na.last="keep") else row(u)
} else rank(u, na.last="keep")
}
if(method == "pearson")
.Call(C_cov, x, y, na.method, method == "kendall")
else if (na.method %in% c(2L, 5L)) {
if (is.null(y)) {
.Call(C_cov, Rank(na.omit(x)), NULL, na.method,
method == "kendall")
} else {
nas <- attr(na.omit(cbind(x,y)), "na.action")
dropNA <- function(x, nas) {
if(length(nas)) {
if (is.matrix(x)) x[-nas, , drop = FALSE] else x[-nas]
} else x
}
.Call(C_cov, Rank(dropNA(x, nas)), Rank(dropNA(y, nas)),
na.method, method == "kendall")
}
} else if (na.method != 3L) {
x <- Rank(x)
if(!is.null(y)) y <- Rank(y)
.Call(C_cov, x, y, na.method, method == "kendall")
}
else
stop("cannot handle 'pairwise.complete.obs'")
}
var <- function(x, y = NULL, na.rm = FALSE, use) {
if(missing(use))
use <- if(na.rm) "na.or.complete" else "everything"
na.method <-
pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs",
"everything", "na.or.complete"))
if(is.na(na.method)) stop("invalid 'use' argument")
if (is.data.frame(x)) x <- as.matrix(x) else stopifnot(is.atomic(x))
if (is.data.frame(y)) y <- as.matrix(y) else stopifnot(is.atomic(y))
.Call(C_cov, x, y, na.method, FALSE)
}
cov2cor <- function(V)
{
p <- (d <- dim(V))[1L]
if(!is.numeric(V) || length(d) != 2L || p != d[2L])
stop("'V' is not a square numeric matrix")
Is <- sqrt(1/diag(V))
if(any(!is.finite(Is)))
warning("diag(.) had 0 or NA entries; non-finite result is doubtful")
r <- V
r[] <- Is * V * rep(Is, each = p)
r[cbind(1L:p,1L:p)] <- 1
r
} |
"mls" |
"errormatrix" <-
function(true, predicted, relative=FALSE)
{
stopifnot(length(true)==length(predicted))
tnames <-
if(is.factor(true)) levels(true)
else unique(true)
pnames <-
if(is.factor(predicted)) levels(predicted)
else unique(predicted)
allnames <- sort(union(tnames, pnames))
n <- length(allnames)
true <- factor(true, levels = allnames)
predicted <- factor(predicted, levels = allnames)
tab <- table(true, predicted)
mt <- tab * (matrix(1, ncol = n, nrow = n) - diag( , n, n))
rowsum <- rowSums(mt)
colsum <- colSums(mt)
result <- rbind(cbind(tab, rowsum), c(colsum, sum(colsum)))
dimnames(result) <- list("true" = c(allnames, "-SUM-"),
"predicted" = c(allnames, "-SUM-"))
if(relative){
total <- sum(result[1:n, 1:n])
n1 <- n + 1
result[n1, 1:n] <-
if(result[n1, n1] != 0) result[n1, 1:n] / result[n1, n1]
else 0
rownorm <- function(Row,Length)
{ return( if(any(Row[1:Length]>0)) Row/sum(Row[1:Length])
else rep(0,Length+1) )
}
result[1:n,] <- t(apply(result[1:n,], 1, rownorm, Length=n))
result[n1, n1] <- result[n1, n1] / total
}
return(result)
} |
bbox_from_file <- function(file_path, crs_out) {
if (!file.exists(file_path)) {
stop("Specified file path does not exist. Aborting!")
}
if(suppressWarnings(is.character(crs_out) && !is.na(as.numeric(crs_out)))) {
crs_out <- as.numeric(crs_out)
} else {
if (crs_out == "MODIS Sinusoidal") {
crs_out <- sf::st_crs("+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs")
}
}
if (!inherits(crs_out, "crs")) {
crs_out <- try(sf::st_crs(crs_out))
if (!inherits(crs_out, "crs")) {
stop("`crs_out` is not an object of (or cohercible to) class `crs`.",
" Aborting!")
}
}
if (!inherits(try(vectin <- sf::st_read(file_path, quiet = TRUE),
silent = TRUE), "try-error")) {
crs_in <- st_crs(vectin)
bbox_in <- matrix(as.numeric(sf::st_bbox(vectin)),
ncol = 2,
dimnames = list(c("x", "y"), c("min", "max")))
} else if (!inherits(try(suppressWarnings(rastin <- raster::raster(file_path)),
silent = TRUE), "try-error")) {
crs_in <- sf::st_crs(rastin)
bbox_in <- matrix(as.numeric(sf::st_bbox(rastin)),
ncol = 2,
dimnames = list(c("x", "y"), c("min", "max")))
} else {
stop(file_path, "does not appear to be a valid spatial",
"file. Please check your inputs. Aborting!")
}
bbox_out <- reproj_bbox(bbox_in,
crs_in,
crs_out,
enlarge = TRUE)
return(bbox_out)
} |
richJackA1 <- function(cntVec) {
cntVec <- round(cntVec)
if(is.matrix(cntVec) || is.data.frame(cntVec))
cntVec <- rowSums(cntVec)
Sobs <- sum(cntVec > 0)
f1 <- sum(cntVec == 1)
return(Sobs + f1)
}
richJackA2 <- function(cntVec) {
cntVec <- round(cntVec)
if(is.matrix(cntVec) || is.data.frame(cntVec))
cntVec <- rowSums(cntVec)
Sobs <- sum(cntVec > 0)
f1 <- sum(cntVec == 1)
f2 <- sum(cntVec == 2)
return(Sobs + 2 * f1 - f2)
}
richRenLau <- function(cntVec) {
cntVec <- round(cntVec)
if(is.matrix(cntVec) || is.data.frame(cntVec))
cntVec <- rowSums(cntVec)
fk <- table(cntVec[cntVec > 0])
k <- as.numeric(names(fk))
n <- sum(cntVec)
C <- if(is.na(fk["1"])) 1 - fk["1"] / n else 1
pik <- 1 - (1 - (C * k / n))^n
nuk <- 1 / pik - 1
shadows <- round(fk * nuk)
return(sum(fk, shadows))
} |
"genepos" |
cancelOrder = function(token = '', live = FALSE, orderId = '')
{
headers = add_headers("accept" = "application/json","Authorization" = paste("Bearer",token))
url = paste0('https://api-invest.tinkoff.ru/openapi/',ifelse(live == FALSE,'sandbox/',''),'orders/cancel?orderId=',orderId)
raw_data = POST(url, headers)
return(content(raw_data, as = "parsed"))
} |
sparkmat <- function(x,
locs = NULL,
w = NULL,
h = NULL,
lcol = NULL,
yscales = NULL,
tile.shading = NULL,
tile.margin = unit(c(0,0,0,0), 'points'),
tile.pars = NULL,
just = c('right', 'top'),
new = TRUE,
...) {
if (new) grid.newpage()
if (!is.null(x[[1]]) && is.null(yscales)) {
yscales <- vector(mode="list", length=length(x[[1]]))
for (i in 1:length(x)) {
for (j in 1:length(x[[1]])) {
yscales[[j]] <- c(min(yscales[[j]][1], min(x[[i]][,j], na.rm=TRUE)),
max(yscales[[j]][2], max(x[[i]][,j], na.rm=TRUE)))
}
}
}
vectorize <- function(x,y){
x.v <- rep(x, length(y))
y.v <- as.numeric(matrix(y, nrow = length(x),
ncol = length(y), byrow = TRUE))
return(data.frame(x = x.v, y = y.v))
}
if (is.null(locs)) {
mats.down <- floor(sqrt(length(x)))
mats.across <- ceiling(length(x) / mats.down)
locs <- vectorize(x = (1:mats.across) / mats.across,
y = (mats.down:1) / mats.down)
locs$x <- unit(locs$x, 'npc')
locs$y <- unit(locs$y, 'npc')
if (is.null(w)) w <- unit(1/mats.across, 'npc')
if (is.null(h)) h <- unit(1/mats.down, 'npc')
} else {
if (new) {
pushViewport(viewport(x=0.15, y=0.1, width=0.75, height=0.75,
just=c("left", "bottom"),
xscale=range(pretty(locs[,1])),
yscale=range(pretty(locs[,2]))))
grid.xaxis()
grid.yaxis()
}
}
if (!is.unit(w)) w <- unit(w, "native")
if (!is.unit(h)) h <- unit(h, "native")
for (i in 1:length(x)) {
if (is.unit(locs[i,1])) xloc <- locs[i,1]
else xloc <- unit(locs[i,1], "native")
if (is.unit(locs[i,2])) yloc <- locs[i,2]
else yloc <- unit(locs[i,2], "native")
sparklines.viewport <- viewport(x=xloc, y=yloc,
just=just, width=w, height=h)
pushViewport(sparklines.viewport)
if (!is.null(tile.pars)) grid.rect(gp=tile.pars)
sparklines(x[[i]], new=FALSE, lcol=lcol, yscale=yscales,
outer.margin=tile.margin,
outer.margin.pars = gpar(fill = tile.shading[i],
col=tile.shading[i]), xaxis = FALSE, yaxis = FALSE)
popViewport(1)
}
} |
plot_local.multiple.cross.regression <-
function(Lst, lmax, nsig=2, xaxt="s"){
if (xaxt[1]!="s"){
at <- xaxt[[1]]
label <- xaxt[[2]]
xaxt <- "n"
}
val <- Lst$cor$vals
reg.vals <- Lst$reg$rval[,,-1]
reg.stdv <- Lst$reg$rstd[,,-1]
reg.lows <- Lst$reg$rlow[,,-1]
reg.upps <- Lst$reg$rupp[,,-1]
reg.pval <- Lst$reg$rpva[,,-1]
reg.order <- Lst$reg$rord[,,-1]-1
reg.order[reg.order==0] <-
reg.vals[reg.order==0] <-
reg.stdv[reg.order==0] <-
reg.lows[reg.order==0] <-
reg.upps[reg.order==0] <-
reg.pval[reg.order==0] <- NA
lag.max <- trunc((ncol(val)-1)/2)
lag0 <- lag.max+1
YmaxR <- Lst$YmaxR
N <- length(YmaxR)
xxnames <- names(Lst$data)
lag.labs <- c(paste("lead",lag.max:1),paste("lag",0:lag.max))
reg.vars <- t(matrix(xxnames,length(Lst$data),N))
reg.sel <- reg.order<=nsig & reg.pval<=0.05
reg.vals.sig <- reg.vals*reg.sel
reg.lows.sig <- reg.lows*reg.sel
reg.upps.sig <- reg.upps*reg.sel
reg.order.sig <- reg.order*reg.sel
reg.vals.sig[reg.vals.sig==0] <-
reg.lows.sig[reg.lows.sig==0] <-
reg.upps.sig[reg.upps.sig==0] <-
reg.order.sig[reg.order.sig==0] <- NA
mycolors <- RColorBrewer::brewer.pal(n=8, name="Dark2")
par(mfcol=c(lmax+1,2), las=1, pty="m", mar=c(2,3,1,0)+.1, oma=c(1.2,1.2,0,0))
ymin <- min(reg.vals,na.rm=TRUE)
ymax <- max(reg.vals,na.rm=TRUE)
mark <- paste0("\u00A9jfm-wavemulcor3.1.0_",Sys.time()," ")
for(i in c(-lmax:0,lmax:1)+lag0) {
matplot(1:N,reg.vals[,i,], ylim=c(ymin-0.1,ymax+0.1),
type="n", xaxt=xaxt, lty=3, col=8,
xlab="", ylab="", main=lag.labs[i])
for (j in dim(reg.stdv)[3]:1){
shade <- 1.96*reg.stdv[,i,j]
polygon(c(1:N,rev(1:N)),c(-shade,rev(shade)), col=gray(0.8,alpha=0.2), border=NA)
}
matlines(1:N,reg.vals[,i,], lty=1, col=8)
if(abs(ymax-ymin)<3) lo<-2 else lo<-4
abline(h=seq(floor(ymin),ceiling(ymax),length.out=lo),col=8)
matlines(1:N, reg.vals.sig[,i,], lty=1, lwd=2, col=mycolors)
matlines(1:N, reg.lows.sig[,i,], lty=2, col=mycolors)
matlines(1:N, reg.upps.sig[,i,], lty=2, col=mycolors)
mtext(mark, side=1, line=-1, adj=1, col=rgb(0,0,0,.1),cex=.2)
col <- (reg.order[,i,]<=3)*1 +(reg.order[,i,]>3)*8
xvar <- t(t(which(abs(diff(sign(diff(reg.vals[,i,]))))==2,arr.ind=TRUE))+c(1,0))
text(xvar, reg.vals[xvar,i,], labels=reg.vars[xvar,], col=col,cex=.3)
text(xvar, reg.vals[xvar,i,], labels=reg.order[xvar,i,],pos=1, col=col,cex=.3)
if (length(unique(YmaxR))==1) {
mtext(xxnames[YmaxR][1], at=1, side=3, line=-1, cex=.5)
} else {
xvaru <- t(t(which(diff(sign(diff(as.matrix(val[,i]))))==-2))+1)
xvarl <- t(t(which(diff(sign(diff(as.matrix(val[,i]))))==2))+1)
mtext(xxnames[YmaxR][xvaru], at=xvaru, side=3, line=-.5, cex=.3)
mtext(xxnames[YmaxR][xvarl], at=xvarl, side=3, line=-1, cex=.3)
}
if (xaxt!="s") axis(side=1, at=at, labels=label)
}
par(las=0)
mtext('time', side=1, outer=TRUE, adj=0.5)
mtext('Local Multiple Cross-Regression', side=2, outer=TRUE, adj=0.5)
return()
} |
context("REST API")
test_that("testing REST API Functionality", {
n <- 2
object <- "Contact"
prefix <- paste0("REST-", as.integer(runif(1,1,100000)), "-")
new_contacts <- tibble(FirstName = rep("Test", n),
LastName = paste0("REST-Contact-Create-", 1:n),
My_External_Id__c = paste0(prefix, letters[1:n]))
created_records <- sf_create(new_contacts, object_name = object, api_type="REST")
expect_is(created_records, "tbl_df")
expect_equal(names(created_records), c("id", "success"))
expect_equal(nrow(created_records), n)
expect_is(created_records$success, "logical")
new_campaign_members <- tibble(CampaignId = "",
ContactId = "0036A000002C6MbQAK")
create_error_records <- sf_create(new_campaign_members,
object_name = "CampaignMember",
api_type = "REST")
expect_is(create_error_records, "tbl_df")
expect_equal(names(create_error_records), c("success", "errors"))
expect_equal(nrow(create_error_records), 1)
expect_is(create_error_records$errors, "list")
expect_equal(length(create_error_records$errors[1][[1]]), 2)
expect_equal(names(create_error_records$errors[1][[1]][[1]]),
c("statusCode", "message", "fields"))
new_campaign_members <- tibble(CampaignId = "7013s000000j6n1AAA",
ContactId = "0036A000002C6MbQAK")
create_error_records <- sf_create(new_campaign_members,
object_name = "CampaignMember",
api_type = "REST")
expect_is(create_error_records, "tbl_df")
expect_equal(names(create_error_records), c("success", "errors"))
expect_equal(nrow(create_error_records), 1)
expect_is(create_error_records$errors, "list")
expect_equal(length(create_error_records$errors[1][[1]]), 1)
expect_equal(sort(names(create_error_records$errors[1][[1]][[1]])),
c("fields", "message", "statusCode"))
dupe_n <- 3
prefix <- paste0("KEEP-", as.integer(runif(1,1,100000)), "-")
new_contacts <- tibble(FirstName = rep("KEEP", dupe_n),
LastName = paste0("Test-Contact-Dupe", 1:dupe_n),
Email = rep("[email protected]", dupe_n),
Phone = rep("(123) 456-7890", dupe_n),
test_number__c = rep(999.9, dupe_n),
My_External_Id__c = paste0(prefix, 1:dupe_n, "ZZZ"))
dupe_records <- sf_create(new_contacts,
object_name = "Contact",
api_type = "REST",
control = list(allowSave = FALSE,
includeRecordDetails = TRUE,
runAsCurrentUser = TRUE))
expect_is(dupe_records, "tbl_df")
expect_equal(names(dupe_records), c("success", "errors"))
expect_equal(nrow(dupe_records), dupe_n)
expect_is(dupe_records$errors, "list")
expect_equal(length(dupe_records$errors[1][[1]]), 1)
expect_equal(sort(names(dupe_records$errors[1][[1]][[1]])),
c("fields", "message", "statusCode"))
retrieved_records <- sf_retrieve(ids = created_records$id,
fields = c("FirstName", "LastName"),
object_name = object,
api_type = "REST")
expect_is(retrieved_records, "tbl_df")
expect_equal(names(retrieved_records), c("sObject", "Id", "FirstName", "LastName"))
expect_equal(nrow(retrieved_records), n)
my_sosl <- paste("FIND {(336)} in phone fields returning",
"contact(id, firstname, lastname, my_external_id__c),",
"lead(id, firstname, lastname)")
searched_records <- sf_search(my_sosl, is_sosl=TRUE, api_type="REST")
expect_is(searched_records, "tbl_df")
expect_named(searched_records, c("sObject", "Id", "FirstName", "LastName"))
expect_equal(nrow(searched_records), 3)
my_soql <- sprintf("SELECT Id,
FirstName,
LastName,
My_External_Id__c
FROM Contact
WHERE Id in ('%s')",
paste0(created_records$id , collapse="','"))
queried_records <- sf_query(my_soql, object_name = object , api_type="REST")
expect_is(queried_records, "tbl_df")
expect_equal(names(queried_records), c("Id", "FirstName", "LastName", "My_External_Id__c"))
expect_equal(nrow(queried_records), n)
queried_records <- queried_records %>%
mutate(FirstName = "TestTest")
updated_records <- sf_update(queried_records, object_name = object, api_type="REST")
expect_is(updated_records, "tbl_df")
expect_equal(names(updated_records), c("id", "success"))
expect_equal(nrow(updated_records), n)
expect_is(updated_records$success, "logical")
new_record <- tibble(FirstName = "Test",
LastName = paste0("REST-Contact-Upsert-", n+1),
My_External_Id__c=paste0(prefix, letters[n+1]))
upserted_contacts <- bind_rows(queried_records %>% select(-Id), new_record)
upserted_records <- sf_upsert(input_data = upserted_contacts,
object_name = object,
external_id_fieldname = "My_External_Id__c",
api_type = "REST")
expect_is(upserted_records, "tbl_df")
expect_equal(names(upserted_records), c("id", "success", "created"))
expect_equal(nrow(upserted_records), nrow(upserted_records))
expect_equal(upserted_records$success, c(TRUE, TRUE, TRUE))
expect_equal(upserted_records$created, c(FALSE, FALSE, TRUE))
attachment_details <- tibble(Name = c("salesforcer Logo"),
Body = system.file("extdata", "logo.png", package = "salesforcer"),
ContentType = c("image/png"),
ParentId = upserted_records$id[1])
attachment_records <- sf_create_attachment(attachment_details, api_type="REST")
expect_is(attachment_records, "tbl_df")
expect_equal(names(attachment_records), c("id", "success", "errors"))
expect_equal(nrow(attachment_records), 1)
expect_true(attachment_records$success)
temp_f <- tempfile(fileext = ".zip")
zipr(temp_f, system.file("extdata", "logo.png", package = "salesforcer"))
attachment_details2 <- tibble(Id = attachment_records$id[1],
Name = "logo.png.zip",
Body = temp_f)
attachment_records_update <- sf_update_attachment(attachment_details2, api_type="REST")
expect_is(attachment_records_update, "tbl_df")
expect_equal(names(attachment_records_update), c("id", "success", "errors"))
expect_equal(nrow(attachment_records_update), 1)
expect_true(attachment_records_update$success)
deleted_attachments <- sf_delete_attachment(attachment_records$id, api_type = "REST")
expect_is(deleted_attachments, "tbl_df")
expect_equal(names(deleted_attachments), c("id", "success"))
expect_equal(nrow(deleted_attachments), 1)
expect_true(deleted_attachments$success)
ids_to_delete <- unique(c(upserted_records$id[!is.na(upserted_records$id)], queried_records$Id))
deleted_records <- sf_delete(ids_to_delete, object_name = object, api_type = "REST")
expect_is(deleted_records, "tbl_df")
expect_equal(names(deleted_records), c("id", "success"))
expect_equal(nrow(deleted_records), length(ids_to_delete))
expect_is(deleted_records$success, "logical")
expect_true(all(deleted_records$success))
}) |
wassersteinpar <-
function(mean1,var1,mean2,var2,check=FALSE)
{
p <- length(mean1)
d <- mean1-mean2
vars <- var1+var2
if (p == 1)
{
if(check)
{if(abs(var1) < .Machine$double.eps | abs(var2) < .Machine$double.eps)
{stop("At least one variance is zero")
}
}
return(sqrt( d^2 + var1 + var2 - 2*sqrt(var1*var2) ))
} else
{
if(check)
{
if(abs(det(var1)) < .Machine$double.eps | abs(det(var2)) < .Machine$double.eps)
{
stop("One of the sample variances is degenerate")
}
}
sqrtvar2 <- sqrtmatrix(var2)
sqrtvars <- sqrtmatrix(sqrtvar2%*%var1%*%sqrtvar2)
tracevar <- sum(diag(vars - 2*sqrtvars))
return( sqrt( sum(d^2) + tracevar ) )
}
} |
substrev <- function(x, start, stop = 0) {
substr(x, nchar(x) - start, nchar(x) - stop)
} |
test_that("fetch_rstudio_prefs works", {
expect_error(
fetch_rstudio_prefs(),
NA
)
}) |
bfa.boot2fast.ls <- function(z, p, burn = 5, B){
boot1 <- bfa.boot1.ls(z, p, burn = burn, B, boot.est=TRUE, boot.data=TRUE)
boot2 <- apply(boot1$boot.data, 1, bfa.boot1.ls, p, burn = burn, B=1, boot.est=TRUE)
return(list(boot1$boot.est, boot2))
} |
context("nhl_url_conferences")
testthat::test_that(
"nhl_url_teams generates all conference url",
testthat::expect_equal(
nhl_url_conferences(),
paste0(baseurl, "conferences")
)
)
testthat::test_that(
"nhl_url_teams generates single conference url",
testthat::expect_equal(
nhl_url_conferences(1),
paste0(baseurl, "conferences/1")
)
)
testthat::test_that(
"nhl_url_teams generates multiple conference url",
testthat::expect_equal(
nhl_url_conferences(c(1, 2)),
paste0(baseurl, c("conferences/1", "conferences/2"))
)
) |
rfalling_object <- function(n = 14, d_0 = 55.86, v_0 = 0, g = -9.8,
scale = 1,
time = seq(0, 3.25, length.out = n),
error_distribution = c("rnorm", "rt"),
df = 3){
error_distribution <- match.arg(error_distribution)
error_func = get(error_distribution)
if(length(time)!=n) stop("length(time) must be equal to n")
d <- d_0 + v_0 * time + 0.5*g*time^2
if(error_distribution == "rnorm"){
y <- d + rnorm(n)*scale
} else{
y <- d + rt(n, df = df) * scale
}
dat <- data.frame(time = time, distance = pmax(d,0), observed_distance = pmax(y,0))
attr(dat, "params") <- c(d_0 = d_0, v_0 = v_0, g = g, scale = scale)
attr(dat, "error_distribution") <- error_distribution
dat
} |
GeomHollowPolygon <- ggproto("GeomHollowPolygon", Geom,
required_aes = c("x", "y"),
default_aes = aes(
colour = NA,
fill = "grey20",
size = 0.5,
linetype = 1,
alpha = 1,
cover = TRUE),
draw_key = draw_key_polygon,
draw_group = function(data, panel_params, coord) {
n <- nrow(data)
if (n <= 2) return(grid::nullGrob())
coords <- coord$transform(data, panel_params)
coords <- coords[order(coords$piece), ]
first_row <- coords[1, , drop = FALSE]
if (first_row$cover) {
cfill <- scales::alpha(first_row$fill,
first_row$alpha)
} else {
cfill <- NA
}
grid::pathGrob(
coords$x, coords$y,
default.units = "native",
rule = "evenodd",
id = coords$piece,
gp = grid::gpar(
col = scales::alpha(first_row$fill,
first_row$alpha),
fill = cfill,
lwd = first_row$size * .pt,
lty = first_row$linetype
)
)
}
)
geom_hollow_polygon <- function(mapping = NULL,
data = NULL,
stat = "hollow_contour",
position = "identity",
show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
geom = GeomHollowPolygon,
mapping = mapping,
data = data,
stat = stat,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(...)
)
} |
"hist_SA" |
cap_beta <-
function(Y,X,gamma=NULL,beta=NULL,method=c("asmp","LLR"),boot=FALSE,sims=1000,boot.ci.type=c("bca","perc"),conf.level=0.95,verbose=TRUE)
{
n<-length(Y)
p<-ncol(Y[[1]])
Tvec<-rep(NA,n)
q<-ncol(X)
if(is.null(colnames(X)))
{
colnames(X)<-c("Intercept",paste0("X",1:(q-1)))
}
for(i in 1:n)
{
Tvec[i]<-nrow(Y[[i]])
}
if(boot)
{
if(is.null(gamma))
{
stop("Error! Need gamma value.")
}else
{
beta.boot<-matrix(NA,q,sims)
for(b in 1:sims)
{
idx.tmp<-sample(1:n,n,replace=TRUE)
Ytmp<-Y[idx.tmp]
Xtmp<-matrix(X[idx.tmp,],ncol=q)
beta.boot[,b]<-MatReg_QC_beta(Ytmp,Xtmp,gamma=gamma)$beta
if(verbose)
{
print(paste0("Bootstrap sample ",b))
}
}
beta.est<-apply(beta.boot,1,mean,na.rm=TRUE)
beta.se<-apply(beta.boot,1,sd,na.rm=TRUE)
beta.stat<-beta.est/beta.se
pv<-(1-pnorm(abs(beta.stat)))*2
if(boot.ci.type[1]=="bca")
{
beta.ci<-t(apply(beta.boot,1,BC.CI,sims=sims,conf.level=conf.level))
}
if(boot.ci.type[1]=="perc")
{
beta.ci<-t(apply(beta.boot,1,quantile,probs=c((1-conf.level)/2,1-(1-conf.level)/2)))
}
re<-data.frame(Estiamte=beta.est,SE=beta.se,statistic=beta.stat,pvalue=pv,LB=beta.ci[,1],UB=beta.ci[,2])
rownames(re)<-colnames(X)
return(list(Inference=re,beta.boot=beta.boot))
}
}else
{
if(is.null(beta)&is.null(gamma)==FALSE)
{
beta<-MatReg_QC_beta(Y,X,gamma=gamma)$beta
}else
if(is.null(gamma))
{
stop("Error! Need gamma value.")
}
if(method[1]=="asmp")
{
beta.var<-2*solve(t(X)%*%X)/min(Tvec)
beta.se<-sqrt(diag(beta.var))
beta.stat<-beta/beta.se
pv<-(1-pnorm(abs(beta.stat)))*2
LB<-beta-beta.se*qnorm((1-conf.level)/2,lower.tail=FALSE)
UB<-beta+beta.se*qnorm((1-conf.level)/2,lower.tail=FALSE)
re<-data.frame(Estimate=beta,SE=beta.se,statistic=beta.stat,pvalue=pv,LB=LB,UB=UB)
rownames(re)<-colnames(X)
}else
if(method[1]=="LLR")
{
stat=pv<-rep(NA,q)
for(j in 1:q)
{
Xtmp<-matrix(X[,-j],nrow=n)
beta0<-MatReg_QC_beta(Y,Xtmp,gamma=gamma)$beta
stat[j]<-2*((-objfunc(Y,X,gamma,beta))-(-objfunc(Y,Xtmp,gamma,beta0)))
pv[j]<-1-pchisq(stat[j],df=1)
}
re<-data.frame(Estimate=beta,statistic=stat,pvalue=pv)
rownames(re)<-colnames(X)
}
return(re)
}
} |
knn2nb <- function(knn, row.names=NULL, sym=FALSE) {
if (class(knn) != "knn") stop("Not a knn object")
res <- vector(mode="list", length=knn$np)
if (!is.null(row.names)) {
if(length(row.names) != knn$np)
stop("row.names wrong length")
if (length(unique(row.names)) != length(row.names))
stop("non-unique row.names given")
}
if (knn$np < 1) stop("non-positive number of spatial units")
if (is.null(row.names)) row.names <- as.character(1:knn$np)
if(sym){
to<-as.vector(knn$nn)
from<-rep(1:knn$np,knn$k)
for (i in 1:knn$np)res[[i]] <- sort(unique(c(to[from==i],
from[to==i])))
} else {
for (i in 1:knn$np) res[[i]] <- sort(knn$nn[i,])
}
attr(res, "region.id") <- row.names
attr(res, "call") <- attr(knn, "call")
attr(res, "sym") <- sym
attr(res, "type") <- "knn"
attr(res, "knn-k") <- knn$k
class(res) <- "nb"
res
} |
"NO2_2011" |
epi.ssninfc <- function(treat, control, sd, delta, n, r = 1, power, nfractional = FALSE, alpha){
if (delta < 0){
stop("For a non-inferiority trial delta must be greater than or equal to zero.")
}
z.alpha <- qnorm(1 - alpha, mean = 0, sd = 1)
if (!is.na(treat) & !is.na(control) & !is.na(delta) & !is.na(power) & is.na(n)) {
ndelta <- -delta
beta <- (1 - power)
z.beta <- qnorm(1 - beta, mean = 0, sd = 1)
if (sign(z.alpha + z.beta) != sign(treat - control - ndelta)){
stop("Target power is not reachable. Check the exact specification of the hypotheses.")
}
n.control <- (1 + 1 / r) * (sd * (z.alpha + z.beta) / (treat - control - ndelta))^2
n.treat <- n.control * r
if(nfractional == TRUE){
n.control <- n.control
n.treat <- n.treat
n.total <- n.treat + n.control
}
if(nfractional == FALSE){
n.control <- ceiling(n.control)
n.treat <- ceiling(n.treat)
n.total <- n.treat + n.control
}
rval <- list(n.total = n.total, n.treat = n.treat, n.control = n.control, delta = delta, power = power)
}
if (!is.na(treat) & !is.na(control) & !is.na(delta) & !is.na(n) & is.na(power) & !is.na(r) & !is.na(alpha)) {
ndelta <- -delta
if(nfractional == TRUE){
n.control <- 1 / (r + 1) * n
n.treat <- n - n.control
n.total <- n.treat + n.control
}
if(nfractional == FALSE){
n.control <- ceiling(1 / (r + 1) * n)
n.treat <- n - n.control
n.total <- n.treat + n.control
}
z <- (treat - control - ndelta) / (sd * sqrt((1 + 1 / r) / n.control))
power <- pnorm(z - z.alpha, mean = 0, sd = 1)
rval <- list(n.total = n.total, n.treat = n.treat, n.control = n.control, delta = delta, power = power)
}
rval
} |
summarise <- function(.data, ..., .groups = NULL) {
UseMethod("summarise")
}
summarise.data.frame <- function(.data, ..., .groups = NULL) {
fns <- dotdotdot(...)
context$setup(.data)
on.exit(context$clean(), add = TRUE)
groups_exist <- context$is_grouped()
if (groups_exist) {
group <- unique(context$get_columns(group_vars(context$.data)))
}
if (is_empty_list(fns)) {
if (groups_exist) return(group) else return(data.frame())
}
res <- vector(mode = "list", length = length(fns))
eval_env <- c(as.list(context$.data), vector(mode = "list", length = length(fns)))
new_pos <- seq(length(context$.data) + 1L, length(eval_env), 1L)
for (i in seq_along(fns)) {
eval_env[[new_pos[i]]] <- do.call(with, list(eval_env, fns[[i]]))
nms <- if (!is_named(eval_env[[new_pos[i]]])) {
if (!is.null(names(fns)[[i]])) names(fns)[[i]] else deparse(fns[[i]])
} else {
NULL
}
if (!is.null(nms)) names(eval_env)[[new_pos[i]]] <- nms
res[[i]] <- build_data_frame(eval_env[[new_pos[i]]], nms = nms)
}
res <- do.call(cbind, res)
if (groups_exist) res <- cbind(group, res, row.names = NULL)
res
}
summarise.grouped_df <- function(.data, ..., .groups = NULL) {
if (!is.null(.groups)) {
.groups <- match.arg(arg = .groups, choices = c("drop", "drop_last", "keep"), several.ok = FALSE)
}
groups <- group_vars(.data)
res <- apply_grouped_function("summarise", .data, drop = TRUE, ...)
res <- res[arrange_rows(res, as_symbols(groups)), , drop = FALSE]
verbose <- summarise_verbose(.groups)
if (is.null(.groups)) {
all_one <- as.data.frame(table(res[, groups]))
all_one <- all_one[all_one$Freq != 0, ]
.groups <- if (all(all_one$Freq == 1)) "drop_last" else "keep"
}
if (.groups == "drop_last") {
n <- length(groups)
if (n > 1) {
if (verbose) summarise_inform(groups[-n])
res <- groups_set(res, groups[-n], group_by_drop_default(.data))
}
} else if (.groups == "keep") {
if (verbose) summarise_inform(groups)
res <- groups_set(res, groups, group_by_drop_default(.data))
} else if (.groups == "drop") {
attr(res, "groups") <- NULL
}
rownames(res) <- NULL
res
}
summarize <- summarise
summarize.data.frame <- summarise.data.frame
summarize.grouped_df <- summarise.grouped_df
summarise_inform <- function(new_groups) {
message(sprintf(
"`summarise()` has grouped output by %s. You can override using the `.groups` argument.",
paste0("'", new_groups, "'", collapse = ", ")
))
}
summarise_verbose <- function(.groups) {
is.null(.groups) &&
!identical(getOption("poorman.summarise.inform"), FALSE)
} |
test_that("funder searching works", {
skip_on_cran()
search1 <- tsg_search_funders(search = c("bbc", "caBinet"))
expect_true("BBC Children in Need grants" %in% search1$title)
search2 <- tsg_search_funders(
search = c("citybridgetrust", "esmEE"),
search_in = "publisher_website"
)
expect_true(any(grepl("City Bridge", search2$publisher_name)))
search2 <- tsg_specific_df(search1)
expect_true(tibble::is_tibble(search2[[1]]))
expect_equal(length(search2), nrow(search1))
expect_error(tsg_specific_df("search1"))
}) |
predict <- function(object, views = "all", groups = "all", factors = "all", add_intercept = TRUE) {
if (!is(object, "MOFA")) stop("'object' has to be an instance of MOFA")
views <- .check_and_get_views(object, views, non_gaussian=FALSE)
groups <- .check_and_get_groups(object, groups)
if (any(views %in% names(which(object@model_options$likelihoods!="gaussian")))) stop("predict does not work for non-gaussian modalities")
if (paste0(factors, collapse="") == "all") {
factors <- factors_names(object)
} else if (is.numeric(factors)) {
factors <- factors_names(object)[factors]
} else {
stopifnot(all(factors %in% factors_names(object)))
}
W <- get_weights(object, views = views, factors = factors)
Z <- get_factors(object, groups = groups, factors = factors)
Z[is.na(Z)] <- 0
predicted_data <- lapply(views, function(m) { lapply(groups, function(g) {
pred <- t(Z[[g]] %*% t(W[[m]]))
tryCatch( {
if (add_intercept & length(object@intercepts[[1]])>0) {
intercepts <- object@intercepts[[m]][[g]]
intercepts[is.na(intercepts)] <- 0
pred <- pred + object@intercepts[[m]][[g]]
} }, error = function(e) { NULL })
return(pred)
})
})
predicted_data <- .name_views_and_groups(predicted_data, views, groups)
return(predicted_data)
} |
"KitchenhamEtAl.CorrelationsAmongParticipants.Madeyski10"
"KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello15EMSE"
"KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello14TOSEM"
"KitchenhamEtAl.CorrelationsAmongParticipants.Torchiano17JVLC"
"KitchenhamEtAl.CorrelationsAmongParticipants.Abrahao13TSE"
"KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello14EASE"
"KitchenhamEtAl.CorrelationsAmongParticipants.Ricca14TOSEM"
"KitchenhamEtAl.CorrelationsAmongParticipants.Gravino15JVLC"
"KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello14JVLC"
"KitchenhamEtAl.CorrelationsAmongParticipants.Romano18ESEM"
"KitchenhamEtAl.CorrelationsAmongParticipants.Ricca10TSE"
"KitchenhamEtAl.CorrelationsAmongParticipants.Reggio15SSM"
"KitchenhamEtAl.CorrelationsAmongParticipants.Scanniello17TOSEM" |
.tyler.step<-function(V.old,datas,p,n)
{
sqrt.V.old<-mat.sqrt(V.old)
r<-sqrt(rowSums((datas %*% sqrt.V.old)^2))
M.V.old<-p/n*(t(((1/r)*datas%*%sqrt.V.old))%*%((1/r)*datas%*%sqrt.V.old))
M.V.old.inv <- solve(M.V.old)
V.new<-sum(diag(V.old %*% M.V.old.inv))^(-1)*(sqrt.V.old %*% M.V.old.inv %*% sqrt.V.old)
return(V.new)
} |
cen_ecdf <- function(y.var, cen.var, group=NULL, xlim = c(0, max(y.var)), Ylab=varname) {
varname <- deparse(substitute(y.var))
if ( is.null(group) ) {
if (sum(cen.var) != 0 )
{ ecdfPlotCensored(y.var, cen.var, main = "ECDF for Censored Data", xlab = Ylab, ecdf.lwd = 1, type = "s")}
else {ecdfPlot(y.var, main = paste("ECDF for", varname), xlab = Ylab, ecdf.lwd = 1, type = "s")}
}
else {
Factor <- as.factor(group)
factorname <- deparse(substitute(group))
ngp <- length(levels(Factor))
clrs <- c (1:ngp)
groupnames <- as.character(levels(Factor))
if (sum(cen.var[Factor == groupnames[1]]) != 0 )
{ ecdfPlotCensored(y.var[Factor==groupnames[1]], cen.var[Factor==groupnames[1]], main = "ECDF for Censored Data", xlab = Ylab, ecdf.lwd = 2, type = "s", xlim = xlim) }
else {ecdfPlot(y.var[Factor==groupnames[1]], main = "ECDF for Censored Data", xlab = Ylab, ecdf.lwd = 2, type = "s", xlim = xlim) }
for (i in 2:ngp) {
if (sum(cen.var[Factor == groupnames[i]]) != 0)
{ ecdfPlotCensored(y.var[Factor==groupnames[i]], cen.var[Factor==groupnames[i]], add = TRUE, ecdf.col = clrs[i], ecdf.lwd = 2, ecdf.lty = clrs[i], type = "s") }
else {ecdfPlot(y.var[Factor==groupnames[i]], add = TRUE, ecdf.col = clrs[i], ecdf.lwd = 2, ecdf.lty = clrs[i], type = "s") }
}
legend("bottomright",levels(Factor), lty=1:ngp, lwd=2, text.col=clrs, col = clrs, title = factorname)
}
} |
library(ODataQuery)
service <- ODataQuery$new("testurl.org/")
expect_equal(service$url, "testurl.org/")
service <- ODataQuery$new("testurl.org")
expect_equal(service$url, "testurl.org/")
item_resource <- service$path("Items")
expect_equal(item_resource$url, "testurl.org/Items")
item_singleton <- service$path("Items")$get("it0001")
expect_equal(item_singleton$url, "testurl.org/Items('it0001')")
item_singleton <- service$path("Items")$get(ItemId = "it0001")
expect_equal(item_singleton$url, "testurl.org/Items(ItemId='it0001')")
expect_equal(item_resource$select("First", "Second", "Third")$url,
"testurl.org/Items?$select=First,Second,Third")
expect_equal(item_resource$skip(10)$top(5)$url,
"testurl.org/Items?$skip=10&$top=5")
expect_equal(item_resource$expand("Prices")$url,
"testurl.org/Items?$expand=Prices")
expect_equal(item_resource$filter("Quantity > 0", Value.gt = 100)$url,
"testurl.org/Items?$filter=(Quantity%20%3E%200%20and%20Value%20gt%20100)")
expect_equal(item_resource$orderby("Price", "Quality")$url,
"testurl.org/Items?$orderby=Price,Quality") |
NULL
alias_get <- function(conn, index=NULL, alias=NULL, ignore_unavailable=FALSE, ...) {
is_conn(conn)
alias_GET(conn, index, alias, ignore_unavailable, ...)
}
aliases_get <- function(conn, index=NULL, alias=NULL, ignore_unavailable=FALSE, ...) {
is_conn(conn)
alias_GET(conn, index, alias, ignore_unavailable, ...)
}
alias_exists <- function(conn, index=NULL, alias=NULL, ...) {
is_conn(conn)
res <- conn$make_conn(alias_url(conn, index, alias), ...)$head()
if (conn$warn) catch_warnings(res)
if (res$status_code == 200) TRUE else FALSE
}
alias_create <- function(conn, index, alias, filter=NULL, routing=NULL,
search_routing=NULL, index_routing=NULL, ...) {
is_conn(conn)
assert(index, "character")
assert(alias, "character")
assert(routing, "character")
assert(search_routing, "character")
assert(index_routing, "character")
body <- list(actions =
unname(Map(function(a, b) {
list(add = ec(list(index = esc(a), alias = esc(b),
filter = filter, routing = routing, search_routing = search_routing,
index_routing = index_routing)))
}, index, alias))
)
body <- jsonlite::toJSON(body, auto_unbox = TRUE)
out <- conn$make_conn(aliases_url(conn), json_type(), ...)$post(body = body)
if (conn$warn) catch_warnings(out)
geterror(conn, out)
jsonlite::fromJSON(out$parse('UTF-8'), FALSE)
}
alias_rename <- function(conn, index, alias, alias_new, ...) {
is_conn(conn)
body <- list(actions = list(
list(remove = list(index = index, alias = alias)),
list(add = list(index = index, alias = alias_new))
))
body <- jsonlite::toJSON(body, auto_unbox = TRUE)
out <- conn$make_conn(aliases_url(conn), json_type(), ...)$post(body = body)
if (conn$warn) catch_warnings(out)
geterror(conn, out)
jsonlite::fromJSON(out$parse('UTF-8'), FALSE)
}
alias_delete <- function(conn, index=NULL, alias, ...) {
is_conn(conn)
out <- conn$make_conn(alias_url(conn, index, alias), ...)$delete()
if (conn$warn) catch_warnings(out)
geterror(conn, out)
jsonlite::fromJSON(out$parse('UTF-8'), FALSE)
}
alias_GET <- function(conn, index, alias, ignore, ...) {
cli <- conn$make_conn(alias_url(conn, index, alias), ...)
tt <- cli$get(query = ec(list(ignore_unavailable = as_log(ignore))))
if (conn$warn) catch_warnings(tt)
geterror(conn, tt)
jsonlite::fromJSON(tt$parse("UTF-8"), FALSE)
}
alias_url <- function(conn, index, alias) {
url <- conn$make_url()
if (!is.null(index)) {
if (!is.null(alias))
sprintf("%s/%s/_alias/%s", url, cl(index), alias)
else
sprintf("%s/%s/_alias", url, cl(index))
} else {
if (!is.null(alias))
sprintf("%s/_alias/%s", url, alias)
else
sprintf("%s/_alias", url)
}
}
aliases_url <- function(conn) file.path(conn$make_url(), "_aliases") |
DUPbank<-function(Qbank)
{
lens = unlist(lapply(Qbank, "length"))
thelens = as.numeric(lens)
thefiles = names(lens)
allqs = vector()
allind = vector()
internalind = vector()
ifile = vector()
nfile = vector()
for(i in 1:length(Qbank))
{
uq = unlist(Qbank[[i]])
w = which(names(uq)=="Q")
nu = seq(from=1, to=length(w))
allqs =c(allqs, as.vector(uq[w]) )
internalind = c(internalind, nu)
allind = c(allind, w)
ifile = c( ifile, rep( thefiles[i], times=length(w) ))
nfile = c( nfile, rep( i, times=length(w) ))
}
wdup = which( duplicated(allqs) )
if(length(wdup)<1) { return(NULL) }
return(list(A=allqs[wdup], F=ifile[wdup], I=internalind[wdup], N=nfile[wdup] ) )
} |
setMethod(
f = "addsegment",
signature = "ADEg",
definition = function(object, x0 = NULL, y0 = NULL, x1, y1, plot = TRUE, ...) {
xlim <- [email protected]$xlim
ylim <- [email protected]$ylim
aspect <- [email protected]$paxes$aspectratio
sortparameters <- sortparamADEg(...)$adepar
params <- adegpar()
sortparameters <- modifyList(params, sortparameters, keep.null = TRUE)
params <- sortparameters$plines
segmentadded <- xyplot(0 ~ 0, xlim = xlim, ylim = ylim, main = NULL, xlab = NULL, ylab = NULL, aspect = aspect,
myx0 = x0, myy0 = y0, myx1 = x1, myy1 = y1,
panel = function(x, y, ...) panel.segments(x0 = x0, y0 = y0, x1 = x1, y1 = y1, lwd = params$lwd, lty = params$lty, col = params$col), plot = FALSE)
segmentadded$call <- call("xyplot", 0 ~ 0, xlim = substitute(xlim), ylim = substitute(ylim), xlab = NULL, ylab = NULL,
aspect = substitute(aspect), lwd = params$lwd, lty = params$lty, col = params$col,
x0 = substitute(x0), y0 = substitute(y0), x1 = substitute(x1), y1 = substitute(y1),
panel = function(x, y, ...) panel.segments(x0 = x0, y0 = y0, x1 = x1, y1 = y1))
obj <- superpose(object, segmentadded, plot = FALSE)
nn <- all.names(substitute(object))
names(obj) <- c(ifelse(is.na(nn[2]), nn[1], nn[2]), "segmentadded")
if(plot)
print(obj)
invisible(obj)
})
setMethod(
f = "addsegment",
signature = "ADEgS",
definition = function(object, x0 = NULL, y0 = NULL, x1, y1, plot = TRUE, which = 1:length(object), ...) {
ngraph <- length(object)
if(max(which) > ngraph)
stop("Values in 'which' should be lower than the length of object")
if(length(which) == 1) {
object[[which]] <- addsegment(object[[which]], x0 = x0, y0 = y0, x1 = x1, y1 = y1, ..., plot = FALSE)
} else {
if(sum(object@add) != 0)
stop("The 'addsegment' function is not available for superposed objects.", call. = FALSE)
sortparameters <- sortparamADEg(...)$adepar
params <- adegpar()
sortparameters <- modifyList(params, sortparameters, keep.null = TRUE)
params <- sortparameters$plines
params <- rapply(params, function(X) rep(X, length.out = length(which)), how = "list")
if(!is.null(x0)) x0 <- rep_len(x0, length.out = length(which))
if(!is.null(y0)) y0 <- rep_len(y0, length.out = length(which))
x1 <- rep_len(x1, length.out = length(which))
y1 <- rep_len(y1, length.out = length(which))
for (i in which)
object[[i]] <- addsegment(object[[i]], x0 = x0[i], y0 = y0[i], x1 = x1[i], y1 = y1[i], which = 1, plot = FALSE, plines = lapply(params, function(X) X[i]))
}
obj <- object
if(plot)
print(obj)
invisible(obj)
}) |
fileStatus <- function(repo, testPath) {
testStatus <- NULL
repoPath <- ifelse(isS4(repo),
try(repo@path, silent = TRUE),
try(repo$path, silent = TRUE))
if(class(repoPath) == "try-error") {
return(infoNotFound())
}
repoRoot <- sub("/\\.git/*", "", repoPath, fixed = FALSE)
statusVals <- unlist(git2r::status(repo))
hasStatus <- normalizePath(testPath, mustWork = FALSE) ==
normalizePath(paste(repoRoot, statusVals, sep = "/"),
mustWork = FALSE)
if(any(hasStatus)) {
testStatus <- paste(names(statusVals[hasStatus]), collapse = ", ")
} else {
testStatus <- "committed"
}
return(testStatus)
} |
"EUNITE.Loads.cont" |
if (requireNamespace("spelling", quietly = TRUE)) {
spelling::spell_check_test(
vignettes = TRUE, error = FALSE,
skip_on_cran = TRUE
)
} |
mxMI <- function(model, matrices=NA, full=TRUE){
warnModelCreatedByOldVersion(model)
if(single.na(matrices)){
matrices <- names(model$matrices)
if (is(model$expectation, "MxExpectationRAM")) {
matrices <- setdiff(matrices, model$expectation$F)
}
}
if(imxHasWLS(model)){stop("modification indices not implemented for WLS fitfunction")}
param <- omxGetParameters(model)
param.names <- names(param)
gmodel <- omxSetParameters(model, free=FALSE, labels=param.names)
mi.r <- NULL
mi.f <- NULL
a.names <- NULL
new.models <- list()
for(amat in matrices){
matObj <- model[[amat]]
freemat <- matObj$free
sym.sel <- upper.tri(freemat, diag=TRUE)
notSymDiag <- !(is(gmodel[[amat]])[1] %in% c("DiagMatrix", "SymmMatrix"))
for(i in 1:length(freemat)){
if(freemat[i]==FALSE && ( notSymDiag || sym.sel[i]==TRUE )){
tmpLab <- gmodel[[amat]]$labels[i]
plusOneParamModel <- model
if(length(tmpLab) > 0 && !is.na(tmpLab)){
gmodel <- omxSetParameters(gmodel, labels=tmpLab, free=TRUE)
plusOneParamModel <- omxSetParameters(plusOneParamModel, labels=tmpLab, free=TRUE)
} else{
gmodel[[amat]]$free[i] <- TRUE
plusOneParamModel[[amat]]$free[i] <- TRUE
}
if(is(gmodel[[amat]])[1] %in% c("ZeroMatrix")){
cop <- gmodel[[amat]]
newSingleParamMat <- mxMatrix("Full", nrow=nrow(cop),
ncol=ncol(cop), values=cop$values, free=cop$free,
labels=cop$labels, name=cop$name, lbound=cop$lbound,
ubound=cop$ubound, dimnames=dimnames(cop))
bop <- plusOneParamModel[[amat]]
newPlusOneParamMat <- mxMatrix("Full", nrow=nrow(bop),
ncol=ncol(bop), values=bop$values, free=bop$free,
labels=bop$labels, name=bop$name, lbound=bop$lbound,
ubound=bop$ubound, dimnames=dimnames(bop))
} else if(is(gmodel[[amat]])[1] %in% c("DiagMatrix", "SymmMatrix")){
cop <- gmodel[[amat]]
newSingleParamMat <- mxMatrix("Symm", nrow=nrow(cop),
ncol=ncol(cop), values=cop$values,
free=(cop$free | t(cop$free)), labels=cop$labels,
name=cop$name, lbound=cop$lbound, ubound=cop$ubound,
dimnames=dimnames(cop))
bop <- plusOneParamModel[[amat]]
newPlusOneParamMat <- mxMatrix("Symm", nrow=nrow(bop),
ncol=ncol(bop), values=bop$values,
free=(bop$free | t(bop$free)), labels=bop$labels,
name=bop$name, lbound=bop$lbound, ubound=bop$ubound,
dimnames=dimnames(bop))
} else {
newSingleParamMat <- gmodel[[amat]]
newPlusOneParamMat <- plusOneParamModel[[amat]]
}
gmodel[[amat]] <- newSingleParamMat
plusOneParamModel[[amat]] <- newPlusOneParamMat
custom.compute <- mxComputeSequence(list(mxComputeNumericDeriv(checkGradient=FALSE),
mxComputeReportDeriv()))
gmodel <- mxModel(gmodel, custom.compute)
grun <- try(mxRun(gmodel, silent = FALSE, suppressWarnings = FALSE, unsafe=TRUE))
nings =TRUE
if (is(grun, "try-error")) {
gmodel <- omxSetParameters(gmodel, labels=names(omxGetParameters(gmodel)), free=FALSE)
next
}
grad <- grun$output$gradient
hess <- grun$output$hessian
modind <- 0.5*grad^2/hess
if(full==TRUE){
custom.compute.smart <- mxComputeSequence(list(
mxComputeNumericDeriv(knownHessian=model$output$hessian, checkGradient=FALSE),
mxComputeReportDeriv()))
plusOneParamRun <- mxRun(mxModel(plusOneParamModel, custom.compute.smart), silent = FALSE, suppressWarnings = FALSE, unsafe=TRUE)
grad.full <- plusOneParamRun$output$gradient
grad.full[is.na(grad.full)] <- 0
hess.full <- plusOneParamRun$output$hessian
modind.full <- 0.5*t(matrix(grad.full)) %*% solve(hess.full) %*% matrix(grad.full)
} else {
modind.full <- NULL
}
n.names <- names(omxGetParameters(grun))
if(length(modind) > 0){
a.names <- c(a.names, n.names)
mi.r <- c(mi.r, modind)
mi.f <- c(mi.f, modind.full)
new.models <- c(new.models, plusOneParamModel)
}
gmodel <- omxSetParameters(gmodel, labels=names(omxGetParameters(gmodel)), free=FALSE)
}
}
names(mi.r) <- a.names
if(full==TRUE) {names(mi.f) <- a.names}
names(new.models) <- a.names
}
if(length(model$submodels) > 0){
for(asubmodel in names(model$submodels)){
ret <- c(ret, mxMI(asubmodel))
}
}
return(list(MI=mi.r, MI.Full=mi.f, plusOneParamModels=new.models))
} |
expected <- eval(parse(text="c(\"trace\", \"fnscale\", \"parscale\", \"ndeps\", \"maxit\", \"abstol\", \"reltol\", \"alpha\", \"beta\", \"gamma\", \"REPORT\", \"type\", \"lmm\", \"factr\", \"pgtol\", \"tmax\", \"temp\")"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(trace = 0, fnscale = 1, parscale = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), ndeps = c(0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001), maxit = 100L, abstol = -Inf, reltol = 1.49011611938477e-08, alpha = 1, beta = 0.5, gamma = 2, REPORT = 10, type = 1, lmm = 5, factr = 1e+07, pgtol = 0, tmax = 10, temp = 10), .Names = c(\"trace\", \"fnscale\", \"parscale\", \"ndeps\", \"maxit\", \"abstol\", \"reltol\", \"alpha\", \"beta\", \"gamma\", \"REPORT\", \"type\", \"lmm\", \"factr\", \"pgtol\", \"tmax\", \"temp\")))"));
do.call(`names`, argv);
}, o=expected); |
ratioEstimatort <- function(data, tau_x, indices){
d <- data[indices,]
y <- d[,1]
pis <- d[,2]
xsample <- d[, 3]
tyHT <- horvitzThompson(y=y,pi=pis)$pop_total
txHT <- horvitzThompson(y=xsample,pi=pis)$pop_total
return(as.vector(tau_x/txHT*tyHT))
} |
get_graphab_linkset_cost <- function(proj_name,
linkset,
proj_path = NULL){
if(!is.null(proj_path)){
chg <- 1
wd1 <- getwd()
setwd(dir = proj_path)
} else {
chg <- 0
proj_path <- getwd()
}
if(!inherits(proj_name, "character")){
if(chg == 1){setwd(dir = wd1)}
stop("'proj_name' must be a character string")
} else if (!(paste0(proj_name, ".xml") %in% list.files(path = paste0("./", proj_name)))){
if(chg == 1){setwd(dir = wd1)}
stop("The project you refer to does not exist.
Please use graphab_project() before.")
}
proj_end_path <- paste0(proj_name, "/", proj_name, ".xml")
if(!inherits(linkset, "character")){
if(chg == 1){setwd(dir = wd1)}
stop("'linkset' must be a character string")
} else if (!(paste0(linkset, "-links.csv") %in% list.files(path = paste0("./", proj_name)))){
if(chg == 1){setwd(dir = wd1)}
stop("The linkset you refer to does not exist.
Please use graphab_link() before.")
}
xml <- tempfile(pattern = ".txt")
file.copy(from = proj_end_path,
to = xml)
file_data <- utils::read.table(xml)
lines_linkset_names <- which(file_data[, 1] == "<Linkset>") + 1
names_linkset <- stringr::str_sub(file_data[lines_linkset_names, 1], 7, -8)
line_linkset <- lines_linkset_names[which(names_linkset == linkset)]
type_dist <- stringr::str_sub(file_data[line_linkset + 2, 1], 13, -14)
if(type_dist == "1"){
message(paste0("Linkset ", linkset, " is a Euclidean linkset without ",
"associated cost values"))
if(chg == 1){
setwd(dir = wd1)
}
} else if(type_dist == "2"){
codes <- graph4lg::get_graphab_raster_codes(proj_name = proj_name,
mode = "all")
lines_costs <- which(file_data[, 1] == "<costs>")
lines_end_costs <- which(file_data[, 1] == "</costs>")
first_cost_line <- min(lines_costs[lines_costs > line_linkset]) + 2
last_cost_line <- min(lines_end_costs[lines_end_costs > first_cost_line]) - 1
cost_values <- file_data[first_cost_line:last_cost_line, 1]
cost_values <- unlist(lapply(cost_values,
FUN = function(x){stringr::str_sub(x, 9, -10)}))
cost_values <- as.numeric(cost_values)
if(length(codes) != length(cost_values)){
cost_values <- cost_values[-which(cost_values == 0)]
message("The number of cost values does not strictly correspond ",
"to the number of code values. Cost values were probably ",
"given for absent code values. Cost values are ",
"returned without sure correspondence with codes.")
}
if(chg == 1){
setwd(dir = wd1)
}
df_cost <- data.frame(code = codes,
cost = cost_values)
return(df_cost)
}
} |
use_gomo <- function(){
htmltools::HTML(glue::glue(
"
<head>
<link
rel='stylesheet'
href='https://cdnjs.cloudflare.com/ajax/libs/animate.css/4.0.0/animate.min.css'
/>
</head>
"
)
)
} |
bootstrap_E <-
function(te, tb, tset_low, tset_up, index, n){
E_bootstrapped <- list()
for(i in 1:n){
te_sample <- sample(te, size = length(te), replace=T)
de <- dplyr::case_when(
te_sample > tset_low & te_sample < tset_up ~ 0,
te_sample < tset_low ~ tset_low - te_sample,
te_sample > tset_up ~ te_sample - tset_up)
mean_de <- mean(de)
tb_sample <- sample(tb, size = length(tb), replace=T)
db <- dplyr::case_when(
tb_sample > tset_low & tb_sample < tset_up ~ 0,
tb_sample < tset_low ~ tset_low - tb_sample,
tb_sample > tset_up ~ tb_sample - tset_up)
mean_db <- mean(db)
if(index=='hertz'){
E <- 1 - (mean_db/mean_de)
} else {
if(index=='blouin'){
E <- (mean_de - mean_db)
}
}
E_bootstrapped[i] <- E
}
E_bootstrapped2 <- unlist(E_bootstrapped)
sd <- sd(E_bootstrapped2)
n <- length(E_bootstrapped2)
mean <- mean(E_bootstrapped2)
error <- stats::qnorm(0.975) * sd / sqrt(n)
E_CI <- as.list(c("mean" = mean,
"lower" = mean - error,
"upper" = mean + error))
E_list <- as.list(c(E_bootstrapped))
returnlist = list("Confidence Interval" = E_CI, "E values"= E_list)
} |
set_info_cols <- function(family, info_cols_list = NULL) {
assert_collection <- checkmate::makeAssertCollection()
checkmate::assert_choice(
x = family,
choices = c("gaussian", "binomial", "multinomial"),
add = assert_collection
)
checkmate::assert_list(
x = info_cols_list,
types = c("logical"),
names = "named",
any.missing = FALSE,
null.ok = TRUE,
add = assert_collection
)
checkmate::reportAssertions(assert_collection)
if (family == "gaussian") {
default_cols <- list(
"Predictions" = TRUE,
"Results" = TRUE,
"Coefficients" = TRUE,
"Preprocess" = TRUE,
"Folds" = TRUE,
"Fold Columns" = TRUE,
"Convergence Warnings" = TRUE,
"Singular Fit Messages" = FALSE,
"Other Warnings" = TRUE,
"Warnings and Messages" = TRUE,
"Process" = TRUE,
"Family" = FALSE,
"HParams" = TRUE,
"Model" = FALSE,
"Dependent" = TRUE,
"Fixed" = TRUE,
"Random" = TRUE
)
} else if (family == "binomial") {
default_cols <- list(
"Predictions" = TRUE,
"ROC" = TRUE,
"Confusion Matrix" = TRUE,
"Results" = TRUE,
"Coefficients" = TRUE,
"Preprocess" = TRUE,
"Folds" = TRUE,
"Fold Columns" = TRUE,
"Convergence Warnings" = TRUE,
"Singular Fit Messages" = FALSE,
"Other Warnings" = TRUE,
"Warnings and Messages" = TRUE,
"Process" = TRUE,
"Positive Class" = FALSE,
"Family" = FALSE,
"HParams" = TRUE,
"Model" = FALSE,
"Dependent" = TRUE,
"Fixed" = TRUE,
"Random" = TRUE
)
} else if (family == "multinomial") {
default_cols <- list(
"Predictions" = TRUE,
"ROC" = TRUE,
"Confusion Matrix" = TRUE,
"Results" = TRUE,
"Class Level Results" = TRUE,
"Coefficients" = TRUE,
"Preprocess" = TRUE,
"Folds" = TRUE,
"Fold Columns" = TRUE,
"Convergence Warnings" = TRUE,
"Other Warnings" = TRUE,
"Warnings and Messages" = TRUE,
"Process" = TRUE,
"Family" = FALSE,
"HParams" = TRUE,
"Model" = FALSE,
"Dependent" = TRUE,
"Fixed" = TRUE,
"Random" = TRUE
)
}
info_cols <- default_cols
if (!is.null(info_cols_list)) {
if (!is.list(info_cols_list) && info_cols_list == "all") {
for (info_col in seq_along(info_cols)) {
info_cols[[info_col]] <- TRUE
}
} else if (length(info_cols_list) > 0) {
unknown_colnames <- setdiff(names(info_cols_list), names(info_cols))
if (length(unknown_colnames) > 0) {
stop(paste0(
"'info_cols_list' contained unknown column names: ",
paste0(unknown_colnames, collapse = ", "),
"."
))
}
if (any(unlist(lapply(info_cols_list, function(x) {
!(is.logical(x) && !is.na(x))
})))) {
stop("The values in 'info_cols_list' must be either TRUE or FALSE.")
}
for (info_col in seq_along(info_cols_list)) {
if (is.null(info_cols_list[[info_col]])) {
stop("info_cols in 'info_cols_list' should be logical (TRUE/FALSE) not NULL.")
}
info_cols[[names(info_cols_list)[[info_col]]]] <- info_cols_list[[info_col]]
}
}
}
names(
which(
sapply(info_cols, function(y) isTRUE(y))
)
)
} |
overlap.indicator <-
function(vstart,vend,wstart,wend){
lw<-length(wstart)
lv<-length(vstart)
z<-cbind(c(wstart,vend),c(rep(0,lw),1:lv),c(1:lw,rep(0,lv)))
z<-z[order(z[,1]),]
endbefore<-cummax(z[,2])[order(z[,3])][sort(z[,3])!=0]
z<-cbind(c(vstart,wend),c(1:lv,rep((lv+1),lw)),c(rep(0,lv),1:lw))
z<-z[order(z[,1]),]
startafter<-rev(cummin(rev(z[,2])))[order(z[,3])][sort(z[,3])!=0]
return(cbind(endbefore+1,startafter-1))
} |
context("apg* functions")
test_that("apgOrders works", {
skip_on_cran()
vcr::use_cassette("apgOrders", {
orders <- apgOrders()
})
expect_is(orders, "data.frame")
expect_is(orders$order, "character")
expect_is(orders$accepted, "logical")
expect_equal(NCOL(orders), 4)
})
test_that("apgFamilies works", {
skip_on_cran()
vcr::use_cassette("apgFamilies", {
families <- apgFamilies()
})
expect_is(families, "data.frame")
expect_is(families$family, "character")
expect_is(families$accepted, "logical")
expect_equal(NCOL(families), 5)
}) |
context("cv2")
test_that("test error catching",{
X<-matrix(runif(10*20)+1,20,20)
expect_error(cv2(X,"test"),"Error in cv2: type must be com, comip, or pop")
})
test_that("test cases where it actually provides results",{
set.seed(401)
X<-matrix(runif(10*20)+1,10,20)
h<-cv2(X, "com")
Xtot<-colSums(X)
expect_equal(h,(sd(Xtot)/mean(Xtot))^2)
h<-cv2(X, "comip")
vars<-apply(FUN=var,X=X,MARGIN=1)
expect_equal(sum(vars)/((mean(Xtot))^2),h)
h<-cv2(X, "pop")
expect_equal(h,(sum(sqrt(vars)))^2/(mean(Xtot)^2))
}) |
species_diversity <- function(df, species, plot=NA, NI_label = "", index="all"){
if( missing(df) ){
stop("df not set", call. = F)
}else if(!is.data.frame(df)){
stop("df must be a dataframe", call.=F)
}else if(length(df)<=1 | nrow(df)<=1){
stop("Length and number of rows of 'df' must be greater than 1", call.=F)
}
if( missing(species) ){
stop("species not set", call. = F)
}else if( !is.character(species) ){
stop("'species' must be a character containing a variable name", call.=F)
}else if(length(species)!=1){
stop("Length of 'species' must be 1", call.=F)
}else if(forestmangr::check_names(df, species)==F){
stop(forestmangr::check_names(df, species, boolean=F), call.=F)
}
if(!is.character( NI_label )){
stop( "'NI_label' must be character", call.=F)
}else if(length(NI_label)!=1){
stop("Length of 'NI_label' must be 1", call.=F)
}
if(!is.character( index )){
stop( "'index' must be character", call.=F)
}else if(length(index)!=1){
stop("Length of 'index' must be 1", call.=F)
}else if(! index %in% c('all', 'H', 'S', 'Hmax', 'J', 'QM') ){
stop("'index' must be equal to 'all', 'H', 'S', 'Hmax', 'j' or 'QM' ", call. = F)
}
df <- as.data.frame(df)
df <- df[!is.na(df[species]),]
if(is.null(NI_label)||NI_label==""){NI_label <- ""}
semNI = df[ ! df %in% NI_label ]
ESPECIES <- semNI[species]
if(missing(plot) || is.null(plot) || is.na(plot) || plot == ""){
PARCELAS <- vector("character", nrow(ESPECIES) )
plot <- NA
}else{
PARCELAS <- semNI[plot]
}
tab_indices <- by(ESPECIES, PARCELAS , function(x){
tableFreq = table(x)
tableP = data.frame(tableFreq)
names(tableP) = c("especie", "freq")
N = sum(tableP$freq)
tableP$p = tableP$freq / N
tableP$lnp = log(tableP$p)
tableP[tableP$lnp == "-Inf", "lnp"] = 0
Sesp = length(tableP[tableP$freq > 0, "especie"])
H = round(- sum(tableP$p * tableP$lnp), 2)
S = round(1 - (sum(tableP$freq*(tableP$freq - 1))/(N*(N-1))), 2)
Hmax = round(log(length(tableP$freq[tableP$freq>0])), 2)
J = round(H / Hmax, 2)
QM = round(Sesp / N, 2)
tab_final <- data.frame(Shannon = H, Simpson = S, EqMaxima = Hmax, Pielou = J, Jentsch = QM)
return(tab_final)
} )
tab_indices <- data.frame(do.call(rbind, tab_indices))
if( !is.na(plot) ){
tab_indices <- cbind(aux = row.names(tab_indices), tab_indices)
names(tab_indices)[names(tab_indices) == "aux"] <- plot
row.names(tab_indices) <- NULL
}
if (missing(index)|index=="all"){
return(dplyr::as_tibble(tab_indices))
} else if (index == "H"){
return( tab_indices$Shannon )
} else if (index == "S"){
return(tab_indices$Simpson)
} else if (index == "Hmax"){
return(tab_indices$EqMaxima)
} else if (index == "J"){
return(tab_indices$Pielou)
} else if (index == "QM"){
return(tab_indices$Jentsch)
} else {
return(dplyr::as_tibble(tab_indices))
}
} |
boundedTransform <-
function (x, transform="atox", bounds) {
eps <- 2.2204e-16
thre <- 36
y <- array(0, dim(as.array(x)))
if ( "atox" == transform ) {
for ( ind in seq_along(as.array(x)) ) {
if ( x[ind] > thre )
y[ind] <- 1-eps
else if ( x[ind] < -thre )
y[ind] <- eps
else
y[ind] <- 1/(1+exp(-x[ind]))
}
y <- (bounds[2] - bounds[1])*y + bounds[1]
} else if ( "xtoa" == transform ) {
x <- (x - bounds[1]) / (bounds[2] - bounds[1])
for ( ind in seq_along(as.array(x)) ) {
y[ind] <- .complexLog(x[ind]/(1-x[ind]))
}
} else if ( "gradfact" == transform ) {
y <- (x-bounds[1])*(1-(x-bounds[1])/(bounds[2] - bounds[1]))
}
return (y)
} |
library(shinypanels)
styles <- "
app-container {
background-color:
}
.top-olive {
border-top: 2px solid
}
.text-olive {
color:
}
.icon-close--olive line {
stroke:
}
"
ui <- panelsPage( styles = styles,
header = p("THIS IS A CUSTOM TITLE"),
panel(title = "First Panel", color = "olive", collapsed = FALSE, width = 400,
body = div(
h2("Body"),
selectizeInput("selector", "Select One", choices = c("First", "Second"), selected = "Fist"),
img(src="https://placeimg.com/640/480/any")
),
footer = h3("This is a footer")
),
panel(title = "Visualize", color = "olive",
head = h2("Head 2"),
body = div(
h2(textOutput("selected")),
img(src="https://placeimg.com/640/480/nature")
),
footer = list(
div(class="panel-title", "Tipos de visualización"),
h3("This is a footer")
)
)
)
server <- function(input, output, session) {
output$selected <- renderText({
input$selector
})
}
shinyApp(ui, server) |
getRefPoints<- function(no_d, int.range){
xlat <- (int.range[2]-int.range[1])/(no_d^1.5)
ref_points <- double(no_d)
for(i in 1:no_d){
ref_points[i] <- (i^1.5) * xlat
}
ref_points <- ref_points+int.range[1]
return(ref_points)
}
flnl.constr<- function(pars, ddfobj, misc.options,...){
if(is.null(ddfobj$adjustment)){
ineq_constr <- rep(10,2*misc.options$mono.points)
}else{
ddfobj <- assign.par(ddfobj,pars)
constr <- misc.options$mono
strict <- misc.options$mono.strict
no_d <- misc.options$mono.points
ref_p <- getRefPoints(no_d, misc.options$int.range)
if(!is.null(ddfobj$scale)){
ddfobj$scale$dm <- rep(1,no_d)
}
if(!is.null(ddfobj$shape)){
ddfobj$shape$dm <- rep(1,no_d)
}
df_v_rp <- as.vector(detfct(ref_p,ddfobj,width=misc.options$width,
standardize=TRUE))
ref_p0 <- 0
if(!is.null(ddfobj$scale)){
ddfobj$scale$dm <- 1
}
if(!is.null(ddfobj$shape)){
ddfobj$shape$dm <- 1
}
df_v_rp0 <- as.vector(detfct(ref_p0,ddfobj,width=misc.options$width,
standardize=TRUE))
ic_m <- NULL
if(constr){
df_v_rp_p <- df_v_rp0
ic_m <- double(no_d)
for(i in 1:no_d){
ic_m[i] <- (df_v_rp_p - df_v_rp[i])
if(strict){
df_v_rp_p <- df_v_rp[i]
}
}
}
ic_p <- double(no_d)
ic_p <- df_v_rp
ineq_constr <- c(ic_m, ic_p)
}
return(ineq_constr)
} |
summary.MangroveORs <-
function(object,K=NULL,...){
x <- object
cat("A Mangrove Odds Ratios object:\nNumber of variants:")
cat(length(x[,1]))
cat("\nMean absolute het OR: ")
cat(round(mean(sapply(x$ORhet,function(i) max(i,1/i))),3))
cat("\nMean absolute hom OR: ")
cat(round(mean(sapply(x$ORhom,function(i) max(i,1/i))),3))
RAF <- x$Freq
RAF[x$ORhet < 1] <- 1 - RAF[x$ORhet < 1]
cat("\nMean risk allele frequency: ")
cat(round(mean(RAF),3))
if (is.null(K)){
cat('\nFor a common (10%) disease, these variants explain ')
cat(round(getVarExp(x,0.1)*100,2))
cat('% of variance\nFor a rare (0.5%) disease, these variants explain ')
cat(round(getVarExp(x,0.005)*100,2))
cat('% of variance\n')
} else {
cat('\nGiven a prevalence of ')
cat(K*100)
cat('% these variants explain ')
cat(round(getVarExp(x,K)*100,2))
cat('% of variance\n')
}
} |
Nonpara.Two.Sample <-
function(alpha, beta,k, p1,p2,p3){
n=(qnorm(1-alpha/2)*sqrt(k*(k+1)/12)+qnorm(1-beta)*sqrt(k^2*(p2-p1^2)+k*(p3-p1^2)))^2/(k^2*(1/2-p1)^2)
} |
x <- seq(0, 3.5, by = 0.5)
y <- x * 0.95
df <- data.frame(x, y)
gg <- ggplot(df, aes(x, y)) + geom_point()
test_that("second trace be the vline", {
p <- gg + geom_vline(xintercept = 1.1, colour = "green", size = 3)
L <- expect_doppelganger_built(p, "vline")
l <- L$data[[2]]
expect_equivalent(length(L$data), 2)
expect_equivalent(l$x[1], 1.1)
expect_true(l$y[1] <= 0)
expect_true(l$y[2] >= 3.325)
expect_true(l$mode == "lines")
expect_true(l$line$color == "rgba(0,255,0,1)")
})
test_that("vector xintercept results in multiple vertical lines", {
p <- gg + geom_vline(xintercept = 1:2, colour = "blue", size = 3)
L <- expect_doppelganger_built(p, "vline-multiple")
expect_equivalent(length(L$data), 2)
l <- L$data[[2]]
xs <- unique(l$x)
ys <- unique(l$y)
expect_identical(xs, c(1, NA, 2))
expect_true(min(ys, na.rm = TRUE) <= min(y))
expect_true(max(ys, na.rm = TRUE) >= max(y))
expect_true(l$mode == "lines")
expect_true(l$line$color == "rgba(0,0,255,1)")
})
test_that("vline works with coord_flip", {
gg <- ggplot() +
geom_point(aes(5, 6)) +
geom_vline(xintercept = 5) +
coord_flip()
l <- plotly_build(gg)$x
expect_equivalent(l$data[[2]]$x, c(5.95, 6.05))
expect_equivalent(l$data[[2]]$y, c(5, 5))
}) |
data(audit)
test_that("xform_map produces correct mapping for a data point", {
audit_box <- xform_wrap(audit)
t <- list()
m <- data.frame(
c("Sex", "string", "Male", "Female"), c("Employment", "string", "PSLocal", "PSState"),
c("d_sex", "integer", 1, 0)
)
t[[1]] <- m
audit_box <- xform_map(audit_box, xform_info = t, default_value = c(3), map_missing_to = 2)
expect_equal(audit_box$field_data["d_sex", "transform"], "MapValues")
expect_equal(audit_box$field_data["d_sex", "default"], 3)
expect_equal(audit_box$field_data["d_sex", "missingValue"], 2)
expect_true(audit_box$data$d_sex[[1]] == 3)
})
test_that("PMML from xform_map contains correct local transformation", {
audit_box <- xform_wrap(audit)
t <- list()
m <- data.frame(
c("Sex", "string", "Male", "Female"), c("Employment", "string", "PSLocal", "PSState"),
c("d_sex", "integer", 1, 0)
)
t[[1]] <- m
audit_box <- xform_map(audit_box, xform_info = t, default_value = c(3), map_missing_to = 2)
fit <- lm(Adjusted ~ ., data = audit_box$data)
fit_pmml <- pmml(fit, transforms = audit_box)
expect_equal(toString(fit_pmml[[3]][[3]]), "<LocalTransformations>\n <DerivedField name=\"d_sex\" dataType=\"string\" optype=\"categorical\">\n <MapValues mapMissingTo=\"2\" defaultValue=\"3\" outputColumn=\"output\">\n <FieldColumnPair field=\"Sex\" column=\"input1\"/>\n <FieldColumnPair field=\"Employment\" column=\"input2\"/>\n <InlineTable>\n <row>\n <input1>Male</input1>\n <input2>PSLocal</input2>\n <output>1</output>\n </row>\n <row>\n <input1>Female</input1>\n <input2>PSState</input2>\n <output>0</output>\n </row>\n </InlineTable>\n </MapValues>\n </DerivedField>\n</LocalTransformations>")
})
test_that("xform_map uses file with xform_info correctly", {
audit_box <- xform_wrap(audit)
audit_box <- xform_map(audit_box,
xform_info = "[Sex -> d_sex][string->integer]",
table = "map_audit.csv", map_missing_to = "0"
)
expect_equal(audit_box$data$d_sex[1:5], c(2, 1, 1, 1, 1))
f_map <- cbind(c("Sex", "string", "Male", "Female"), c("d_sex", "numeric", "1", "2"))
expect_equal(audit_box$field_data$fieldsMap[[14]], f_map, check.attributes = FALSE)
}) |
library(ggplot2)
this_base <- "fig04-22_mountain-height-data-line-graph"
my_data <- data.frame(
cont = c("Asia", "S.America", "N.America", "Africa",
"Antarctica", "Europe", "Austrailia"),
height = c(29029, 22838, 20322, 19341, 16050, 16024, 7310),
mountain = c("Everest", "Aconcagua", "McKinley", "Kilmanjaro",
"Vinson", "Blanc", "Kosciuszko"),
stringsAsFactors = FALSE
)
p <- ggplot(my_data, aes(x = reorder(cont, -height), y = height,
group = factor(1))) +
geom_line() + geom_point() +
scale_y_continuous(breaks = seq(0, 35000, 5000), limits = c(0, 35000),
expand = c(0, 0)) +
labs(x = "Continent", y = "Height (feet)") +
ggtitle("Fig 4.22 Mountain Height Data: Line Graph") +
theme_bw() +
theme(panel.grid.major.x = element_blank(),
panel.grid.major.y = element_line(colour = "grey50"),
plot.title = element_text(size = rel(1.2), face = "bold", vjust = 1.5),
axis.title = element_text(face = "bold"))
p
ggsave(paste0(this_base, ".png"),
p, width = 6, height = 4) |
ced <- function(x, y, ni){
return(aDist(x, y)/ni)
} |
pcirc <- function(gcol = "black", border = "black", ndiv = 36)
{
if (missing(gcol)) {
gcol = "black"
}
if (missing(border)) {
border = "black"
}
if (missing(ndiv)) {
ndiv = 36
}
phi = seq(0, 2 * pi, by = 2 * pi/ndiv)
y = cos(phi)
x = sin(phi)
lines(x, y, col = border)
lines(c(-1, 1), c(0, 0), col = gcol)
lines(c(0, 0), c(-1, 1), col = gcol)
} |
IWT3_PO <- function(wc, L, qmf) {
c <- cubelength(wc)
n <- c$x
J <- c$y
x <- wc
nc <- 2^(L + 1)
for (jscal in seq(L, J - 1, 1)) {
top <- (nc/2 + 1):nc
bot <- 1:(nc/2)
all <- 1:nc
for (iy in 1:nc) {
for (iz in 1:nc) {
x[all, iy, iz] <- UpDyadLo(x[bot, iy, iz], qmf) + UpDyadHi(x[top,
iy, iz], qmf)
}
}
for (ix in 1:nc) {
for (iy in 1:nc) {
x[ix, iy, all] <- UpDyadLo(x[ix, iy, bot], qmf) + UpDyadHi(x[ix,
iy, top], qmf)
}
}
for (ix in 1:nc) {
for (iz in 1:nc) {
x[ix, all, iz] <- UpDyadLo(x[ix, bot, iz], qmf) + UpDyadHi(x[ix,
top, iz], qmf)
}
}
nc <- 2 * nc
}
return(x)
} |
.calc_DoseRate <- function(
x,
data,
DR_conv_factors = NULL,
ref = NULL,
length_step = 1,
max_time = 500,
mode_optim = FALSE
){
if(is.null(ref)){
Reference_Data <- NULL
data("Reference_Data", envir = environment())
ref <- Reference_Data
rm(Reference_Data)
}
TIMEMAX <- x
STEP1 <- length_step[1]
if(is.null(DR_conv_factors)){
DR_ID <- 1
}else{
DR_ID <- grep(
x = ref[["DR_conv_factors"]][["REFERENCE"]], pattern = DR_conv_factors, fixed = TRUE)
}
handles.UB <- ref[["DR_conv_factors"]][["UB"]][DR_ID]
handles.TB <- ref[["DR_conv_factors"]][["TB"]][DR_ID]
handles.KB <- ref[["DR_conv_factors"]][["KB"]][DR_ID]
handles.UG <- ref[["DR_conv_factors"]][["UG"]][DR_ID]
handles.TG <- ref[["DR_conv_factors"]][["TG"]][DR_ID]
handles.KG <- ref[["DR_conv_factors"]][["KG"]][DR_ID]
KA <- data[["K"]]
UA <- data[["U"]]
TA <- data[["T"]]
K <- KA * (1 + data[["CC"]] / 100)
U <- UA * (1 + data[["CC"]] / 100)
T <- TA * (1 + data[["CC"]] / 100)
C <- c(
rep(1, data[["FINISH"]] / STEP1) * data[["CC"]] / 100,
seq(data[["CC"]] / 100, 1e-05, length.out = (data[["ONSET"]] - data[["FINISH"]]) / STEP1 + 1),
rep(0, (max_time - data[["ONSET"]]) / STEP1) + 1e-05
)
WC <- c(
rep(1, data[["FINISH"]] / STEP1) * data[["WCF"]] / 100,
seq(data[["WCF"]] / 100, data[["WCI"]] / 100, length.out = (data[["ONSET"]] - data[["FINISH"]]) / STEP1 + 1),
rep(0, (max_time - data[["ONSET"]]) / STEP1) + data[["WCI"]] / 100
)
WF <- C + WC
WFA <- data[["WCF"]] / 100
LEN <- length(C)
TIME <- matrix(seq(0, max_time, STEP1), nrow = 1)
TIME_ <- seq(0,round(TIMEMAX * STEP1)/STEP1)
TIME_ <- c(rep(0,max_time - max(TIME_)), TIME_)
lam_u235 <- log(2) / 703800000
lam_u238 <- log(2) / 4.4680e+09
Aa <- .rad_pop_LU(data[["U234_U238"]], TIME_)
Aa <- apply(Aa, 2, rev)
A_u238 <- lam_u238 * 6.022e+023 * 1e-3 / (238 * 31.56e+06)
A_u235 <- lam_u235 * 6.022e+23 * 1e-03 / (235 * 31.56e+06)
conv_const <- 5.056e-03
CONST_Q_U238 <- 0.9927
CONST_Q_U235 <- 1 - CONST_Q_U238
D_b_u238 <- conv_const * A_u238 * 0.8860 * CONST_Q_U238
D_b_u234 <- conv_const * A_u238 * 0.0120 * CONST_Q_U238
D_b_t230 <- conv_const * A_u238 * 1.3850 * CONST_Q_U238
D_b_u235 <- conv_const * A_u235 * 0.1860 * CONST_Q_U235
D_g_u238 <- conv_const * A_u238 * 0.0290 * CONST_Q_U238
D_g_u234 <- conv_const * A_u238 * 0.0020 * CONST_Q_U238
D_g_t230 <- conv_const * A_u238 * 1.7430 * CONST_Q_U238
U238_b_diseq <- D_b_u238 * Aa[,"N_u238"] * data[["U238"]]
U234_b_diseq <- D_b_u234 * Aa[,"N_u234"] * data[["U238"]]
T230_b_diseq <- D_b_t230 * Aa[,"N_t230"] * data[["U238"]]
U238_g_diseq <- D_g_u238 * Aa[,"N_u238"] * data[["U238"]]
U234_g_diseq <- D_g_u234 * Aa[,"N_u234"] * data[["U238"]]
T230_g_diseq <- D_g_t230 * Aa[,"N_t230"] * data[["U238"]]
MK <- 1 - exp(
approx(x = log(ref$mejdahl[[1]]), y = log(ref$mejdahl[[2]]), xout = log(data[["DIAM"]]/1000),
rule = 2)$y)
MT <- 1 - exp(
approx(x = log(ref$mejdahl[[1]]), y = log(ref$mejdahl[[3]]), xout = log(data[["DIAM"]]/1000),
rule = 2)$y)
MU <- 1 - exp(
approx(x = log(ref$mejdahl[[1]]), y = log(ref$mejdahl[[4]]), xout = log(data[["DIAM"]]/1000),
rule = 2)$y)
MU238 <- MU234 <- MT230 <- MU235 <- MP231 <- 1
x_grid <- as.numeric(colnames(ref$DATAek))
y_grid <- x_grid
x_grid <- log(rep(x_grid, length(x_grid)))
y_grid <- log(rep(y_grid, each = length(y_grid)))
xo <- log(WC)
yo <- log(C)
XKB <- .griddata(x_grid, y_grid, ref$DATAek, xo, yo)
XTB <- .griddata(x_grid, y_grid, ref$DATAet, xo, yo)
XUB <- .griddata(x_grid, y_grid, ref$DATAeu, xo, yo)
XU238B <- .griddata(x_grid, y_grid, ref$DATAeu238, xo, yo)
XU234B <- .griddata(x_grid, y_grid, ref$DATAeu234, xo, yo)
XT230B <- .griddata(x_grid, y_grid, ref$DATAet230, xo, yo)
XKG <- .griddata(x_grid, y_grid, ref$DATApk, xo, yo)
XTG <- .griddata(x_grid, y_grid, ref$DATApt, xo, yo)
XUG <- .griddata(x_grid, y_grid, ref$DATApu, xo, yo)
XU238G <- .griddata(x_grid, y_grid, ref$DATApu238, xo, yo)
XU234G <- .griddata(x_grid, y_grid, ref$DATApu234, xo, yo)
XT230G <- .griddata(x_grid, y_grid, ref$DATApt230, xo, yo)
DRKB <- MK * K * handles.KB / (1 + XKB * WF)
DRTB <- MT * T * handles.TB / (1 + XTB * WF)
DRUB <- MU * U * handles.UB / (1 + XUB * WF)
DRU238B <- MU238 * U238_b_diseq / (1 + XU238B * WF)
DRU234B <- MU238 * U234_b_diseq / (1 + XU234B * WF)
DRT230B <- MU238 * T230_b_diseq / (1 + XT230B * WF)
DRKG <- MK * K * handles.KG / (1 + XKG * WF)
DRTG <- MT * T * handles.TG / (1 + XTG * WF)
DRUG <- MU * U * handles.UG / (1 + XUG * WF)
DRU238G <- MU238 * U238_g_diseq / (1 + XU238G * WF)
DRU234G <- MU238 * U234_g_diseq / (1 + XU234G * WF)
DRT230G <- MU238 * T230_g_diseq / (1 + XT230G * WF)
DR <-
DRKB + DRTB + DRUB + DRKG + DRTG + DRUG + data[["COSMIC"]] +
data[["INTERNAL"]] + DRU238B + DRU234B + DRT230B + DRU238G + DRU234G + DRT230G
XKBA <- XTBA <- XUBA <- XU238BA <- XU234BA <- XT230BA <- 1.25
XKGA <- XTGA <- XUGA <- XU238GA <- XU234GA <- XT230GA <- 1.14
DRKBA <- MK * KA * handles.KB / (1 + XKBA * WFA)
DRTBA <- MT * TA * handles.TB / (1 + XTBA * WFA)
DRUBA <- MU * UA * handles.UB / (1 + XUBA * WFA)
DRU238BA <- MU238 * U238_b_diseq / (1 + XU238BA * WFA)
DRU234BA <- MU238 * U234_b_diseq / (1 + XU234BA * WFA)
DRT230BA <- MU238 * T230_b_diseq / (1 + XT230BA * WFA)
DRKGA <- MK * KA * handles.KG / (1 + XKGA * WFA)
DRTGA <- MT * TA * handles.TG / (1 + XTGA * WFA)
DRUGA <- MU * UA * handles.UG / (1 + XUGA * WFA)
DRU238GA <- MU238 * U238_g_diseq / (1 + XU238GA * WFA)
DRU234GA <- MU238 * U234_g_diseq / (1 + XU234GA * WFA)
DRT230GA <- MU238 * T230_g_diseq / (1 + XT230GA * WFA)
DRA <-
DRKBA + DRTBA + DRUBA + DRKGA + DRTGA + DRUGA + data[["COSMIC"]] + data[["INTERNAL"]] +
DRU238BA + DRU234BA + DRT230BA + DRU238GA + DRU234GA + DRT230GA
DR[is.na(DR)] <- 0
DRA[is.na(DRA)] <- 0
CUMDR <- cumsum(c(0, (DR[1:(length(DR) - 1)] + DR[2:length(DR)]) * STEP1 / 2))
CUMDRA <- cumsum(c(0, (DRA[1:(length(DRA) - 1)] + DRA[2:length(DRA)]) * STEP1 / 2))
if(data[["DE"]] > max(CUMDR))
warning("[.calc_DoseRate()] Extrem case detected: DE > max cumulative dose rate!", call. = FALSE)
AGE <- try(
approx(x = CUMDR, y = as.numeric(TIME), xout = data[["DE"]], method = "linear", rule = 2)$y,
silent = TRUE)
AGEA <- try(
approx(x = CUMDRA, y = as.numeric(TIME), xout = data[["DE"]], method = "linear", rule = 2)$y,
silent = TRUE)
if(class(AGE) == 'try-error' || class(AGEA) == 'try-error')
stop("[.calc_DoseRate()] Modelling failed, please check your input data, they may not be meaningful!",
call. = FALSE)
ABS <- abs(AGE - TIMEMAX)
if(mode_optim){
results <- ABS
}else{
results <- list(
ABS = ABS,
AGE = AGE,
AGEA = AGEA,
LEN = LEN,
DR = DR,
DRA = DRA,
CUMDR = CUMDR,
CUMDRA = CUMDRA
)
}
return(results)
} |
getDictionaryEntries <- function(labbcat.url, manager.id, dictionary.id, keys) {
upload.file = "keys.csv"
download.file = "entries.csv"
write.table(keys, upload.file, sep=",", row.names=FALSE, col.names=FALSE)
parameters <- list(managerId=manager.id, dictionaryId=dictionary.id, uploadfile=httr::upload_file(upload.file))
resp <- http.post.multipart(labbcat.url, "dictionary", parameters, download.file)
file.remove(upload.file)
if (is.null(resp)) return()
resp.content <- httr::content(resp, as="text", encoding="UTF-8")
if (httr::status_code(resp) != 200) {
print(paste("ERROR: ", httr::http_status(resp)$message))
print(resp.content)
return()
}
ncol <- max(count.fields(download.file, sep=",", quote="\""))
entries <- read.csv(
download.file, header=F, col.names = paste0("V", seq_len(ncol)), blank.lines.skip=F)
colnames(entries) <- c("key", head(colnames(entries), length(colnames(entries)) - 1))
file.remove(download.file)
return(entries)
} |
Rcppfunction_remove_classes <- function(string, maxlen=70, remove=TRUE)
{
string <- gsub("\n", "", string )
string <- gsub("\t", "", string )
string <- gsub(" ", "", string )
ind1 <- string_find_first(string=string, symbol="(" )
a1 <- c( substring(string,1, ind1-1), substring(string, ind1+1, nchar(string) ) )
s1 <- a1[2]
ind1 <- string_find_last(string=s1, symbol=")" )
s1 <- substring(s1,1, ind1-1)
s1 <- strsplit( s1, split=",", fixed=TRUE )[[1]]
rcpp_classes <- c("double", "bool", "int", "arma::mat", "arma::colvec", "arma::umat",
"Rcpp::NumericVector", "Rcpp::IntegerVector", "Rcpp::LogicalVector",
"Rcpp::CharacterVector", "Rcpp::CharacterMatrix", "Rcpp::List",
"Rcpp::NumericMatrix", "Rcpp::IntegerMatrix", "Rcpp::LogicalMatrix", "char"
)
rcpp_classes1 <- paste0( rcpp_classes, " " )
if (remove){
for (rr in rcpp_classes1 ){
s1 <- gsub( rr, "", s1, fixed=TRUE )
a1[1] <- gsub( rr, "", a1[1], fixed=TRUE )
}
a1[1] <- gsub( " ", "", a1[1] )
}
NS <- length(s1)
s2 <- s1
if (remove){
s2 <- gsub( " ", "", s2 )
}
M0 <- nchar(a1[1])
for (ss in 1:NS){
if (remove){
s2[ss] <- gsub( " ", "", s2[ss] )
}
nss <- nchar(s2[ss])
M0 <- M0 + nss
if (M0 > maxlen ){
s2[ss] <- paste0("\n ", s2[ss] )
M0 <- nss
}
}
s2 <- paste0( a1[1], "( ", paste0( s2, collapse=", " ), " )\n" )
s2 <- gsub( ", ", ", ", s2, fixed=TRUE)
s2 <- gsub( "( ", "( ", s2, fixed=TRUE)
s2 <- gsub( " )", " )", s2, fixed=TRUE)
for (uu in 1:2){
s2 <- gsub("\n ", "\n", s2, fixed=TRUE)
}
return(s2)
} |
colorwig<-function(x1, y1, COL=rainbow(100))
{
if(missing(COL)) COL=rainbow(100)
nlen = length(x1)
ncol = length(COL)
KR = nlen/(ncol-1)
KX = floor(seq(from=1, length=nlen)/(KR))+1
cols=COL[KX]
plot(x1, y1, type='n', xlab="time, s", ylab="Pa" )
abline(h=0)
segments(x1[1:(nlen-1)] , y1[1:(nlen-1)], x1[2:nlen], y1[2:nlen], col=cols)
invisible(cols)
} |
removeNULL <- function (aList){
Filter(Negate(is.null), aList)
} |
source('loadTestDataFunc.R')
test_that('Test assignNAsToMFGs.R',{
loadTestDataFunc(1)
expect_error(assignNAsToMFGs(microbeNames,numPaths,keyRes,resourceNames),NA)
Archea['halfSat','CH4']<<-2
expect_error(assignNAsToMFGs(microbeNames,numPaths,keyRes,resourceNames))
})
test_that("Test checkResInfo",{
loadTestDataFunc(1)
resNames=c('res1')
expect_error(checkResInfo(resNames,resInfo1))
resNames=c('H2')
expect_error(checkResInfo(resNames,resInfo1),NA)
})
test_that("Test checkStoichiom.R",{
loadTestDataFunc(1)
stoiTol=0.1
expect_warning(checkStoichiom(stoichiom, Rtype, microbeNames, numPaths,
stoiTol,reBalanceStoichiom = FALSE),NA)
stoichiom['Archea','H2','path1']=20
expect_warning(checkStoichiom(stoichiom, Rtype, microbeNames, numPaths,
stoiTol,reBalanceStoichiom = FALSE))
})
test_that("Test combineGrowthLimFuncDefault",{
loadTestDataFunc(1)
maxGrowthRate=out$parms$Pmats$maxGrowthRate[[microbeNames[1]]][1,]
growthLim=c(0.5,0.1,NA,NA)
names(growthLim)=resourceNames
x = combineGrowthLimFuncDefault(allStrainNames[1], microbeNames[1], 'path1',
subst=NULL, ess=resourceNames[1:2],
boost=NULL, bio.sub=NULL, maxGrowthRate, growthLim,
keyResName='H2', nonBoostFrac=1)
expect_equal(x,0.5*0.1*maxGrowthRate['H2'],tolerance=0.001)
})
test_that("Test entryRateFuncDefault.R",{
loadTestDataFunc(1)
stateVarValues=c(seq(1,length(microbeNames)),seq(1,length(resourceNames)))
names(stateVarValues)=c(microbeNames,resourceNames)
inflowRate=rep(10,length(stateVarValues))
names(inflowRate)=names(stateVarValues)
x=entryRateFuncDefault(varName=resourceNames[1], varValue=0.1, stateVarValues, time=1,
inflowRate,parms=out$parms)
expect_true(is.numeric(x))
expect_equal(length(x),1)
x=entryRateFuncDefault(varName=microbeNames[1], varValue=0.1, stateVarValues, time=1,
inflowRate,parms=out$parms)
expect_true(is.numeric(x))
expect_equal(length(x),1)
})
test_that("Test getAllResources.R",{
loadTestDataFunc(1)
x=getAllResources('Archea')
expect_true(all(is.character(x)))
expect_true(is.vector(x))
expect_equal(length(x),4)
expect_equal(x,resourceNames)
file=paste(system.file("testdata",package="microPop"),'/MFG1.csv',sep='')
M1<<-createDF(file)
x=getAllResources('M1')
expect_true(is.vector(x))
expect_equal(length(x),2)
expect_equal(x,c('S1','P1'))
})
test_that("Test getKeyRes.R",{
loadTestDataFunc(1)
x=getKeyRes(microbeNames,numPaths)
expect_true(is.list(x))
expect_equal(x$Archea[[1]],'H2')
})
test_that("Test getNonBoostFrac.R",{
loadTestDataFunc(1)
x=getNonBoostFrac(microbeNames,resourceNames,numPaths)
expect_true(is.array(x))
expect_equal(x['Archea',1,'path1'],1)
})
test_that("Test getNumPaths.R",{
loadTestDataFunc(1)
x=getNumPaths(microbeNames)
expect_true(is.vector(x))
expect_equal(x,round(x))
expect_equal(names(x),microbeNames)
})
test_that('Test getValues.R',{
loadTestDataFunc(1)
x=getValues(micInfo1, resInfo1, c(microbeNames, resourceNames),
'startValue',allStrainNames,microbeNames, resourceNames, 1)
expect_equal(names(x),c(microbeNames,resourceNames))
expect_equal(length(x),length(microbeNames)+length(resourceNames))
expect_true(x[1]-micInfo1['startValue','Archea']==0)
})
test_that("Test growthLimFuncDefault.R",{
loadTestDataFunc(1)
resVal=seq(1,length(resourceNames))
names(resVal)=resourceNames
allSubType=Rtype[1,,1]
strainHalfSat=halfSat[[microbeNames[1]]][1,]
stateVarValues=c(1,resVal)
names(stateVarValues)=c(microbeNames,resourceNames)
x=growthLimFuncDefault(strainName=allStrainNames[1], groupName=microbeNames[1],
pathName='path1', varName=resourceNames[1],
resourceValues=resVal, allSubType, strainHalfSat, stateVarValues)
expect_true(x<=1)
expect_true(x>=0)
})
test_that('Test makeParamMatrixG.R',{
loadTestDataFunc(1)
expect_error(makeParamMatrixG(microbeNames, 'Rtype', numPaths,
resInfo1, 113, resourceNames),NA)
x=makeParamMatrixG('Archea', 'Rtype', numPaths,
resInfo1, 113, resourceNames)
expect_true(is.array(x))
expect_equal(dim(x),c(length(microbeNames),length(resourceNames),length(numPaths)))
expect_equal(names(x['Archea',,'path1']),resourceNames)
expect_error(makeParamMatrixG(microbeNames, 'stoichiom', numPaths,
resInfo1, 113, resourceNames),NA)
x=makeParamMatrixG('Archea', 'stoichiom', numPaths,
resInfo1, 113, resourceNames)
expect_true(is.array(x))
expect_equal(dim(x),c(length(microbeNames),length(resourceNames),length(numPaths)))
expect_equal(names(x['Archea',,'path1']),resourceNames)
MFG1=Archea
rownames(MFG1)[1]='rtype'
numPaths1=numPaths
names(numPaths1)='MFG1'
expect_error(makeParamMatrixG('MFG1', 'Rtype', numPaths1,
resInfo1, 113, resourceNames))
rownames(MFG1)[5]='Stoichiom'
expect_error(makeParamMatrixG('MFG1', 'Rtype', numPaths1,
resInfo1, 113, resourceNames))
})
test_that('Test productionFuncDefault.R',{
loadTestDataFunc(1)
uptake=c(1,2,NA,NA)
names(uptake)=resourceNames
growthRate=1
varName='CH4'
products=c('CH4','H2O')
all.substrates=c('H2','CO2')
bio.products=NULL
water=NULL
stoi=stoichiom[,,'path1']
x=productionFuncDefault('Archea', 'Archea', 'path1',varName,
all.substrates, 'H2',stoichiom=stoi, products,bio.products,
uptake, growthRate, yield, parms, water)
expect_true(x>=0)
expect_true(is.finite(x))
expect_equal(length(x),1)
})
test_that('Test uptakeFuncDefault.R',{
loadTestDataFunc(1)
varName='CO2'
growthLim=c(0.4,0.9,NA,NA)
names(growthLim)=resourceNames
stoi=stoichiom[,,'path1']
x=uptakeFuncDefault('Archea', 'Archea', 'path1',varName,keyResName='H2',
subst=NULL, ess=c('H2','CO2'),boost=NULL,
maxGrowthRate=maxGrowthRate$Archea[1,],
growthLim,yield$Archea[1,],nonBoostFrac=parms$nonBoostFrac[,,'path1'],
stoichiom=stoi,parms)
expect_true(x>=0)
expect_true(is.finite(x))
expect_equal(length(x),1)
})
test_that('Test waterUptakeRatio.R',{
loadTestDataFunc(1)
x=waterUptakeRatio(microbeNames, stoichiom, Rtype, numPaths)
expect_equal(rownames(x),microbeNames)
expect_true(x-0==0)
Rtype1=Rtype
Rtype1['Archea','CO2',]='Sw'
x=waterUptakeRatio(microbeNames, stoichiom, Rtype1, numPaths)
expect_equal(rownames(x),microbeNames)
expect_true(x-44/8==0)
})
test_that('Test makeParamMatrixS.R',{
loadTestDataFunc(0)
expect_error(makeParamMatrixS(resourceNames,microbeNames, 'halfSat', numPaths,
out$parms$numStrains,strainOptions=list(),
oneStrainRandomParams=FALSE),NA)
expect_error(makeParamMatrixS(resourceNames,microbeNames, 'yield', numPaths,
out$parms$numStrains,strainOptions=list(),
oneStrainRandomParams=FALSE),NA)
expect_error(makeParamMatrixS(resourceNames,microbeNames, 'maxGrowthRate',
numPaths, out$parms$numStrains,strainOptions=list(),
oneStrainRandomParams=FALSE),NA)
expect_error(makeParamMatrixS(resourceNames,microbeNames, 'HalfSat', numPaths,
out$parms$numStrains,strainOptions=list(),
oneStrainRandomParams=FALSE))
expect_error(makeParamMatrixS(resourceNames,microbeNames, 'Yield', numPaths,
out$parms$numStrains,strainOptions=list(),
oneStrainRandomParams=FALSE))
expect_error(makeParamMatrixS(resourceNames,microbeNames, 'MaxGrowthRate',
numPaths, out$parms$numStrains,strainOptions=list(),
oneStrainRandomParams=FALSE))
x=makeParamMatrixS(resourceNames,microbeNames, 'halfSat', numPaths,
out$parms$numStrains,strainOptions=list(),oneStrainRandomParams=FALSE)
expect_true(is.list(x))
expect_equal(dim(x[[microbeNames[1]]]),c(length(numPaths),length(resourceNames)))
expect_equal(names(x[[microbeNames[1]]]['path1',]),resourceNames)
}) |
InventoryGrowthFusionDiagnostics <- function(jags.out, combined=NULL) {
out <- as.matrix(jags.out)
x.cols <- which(substr(colnames(out), 1, 1) == "x")
if(length(x.cols) > 0){
ci <- apply(out[, x.cols], 2, quantile, c(0.025, 0.5, 0.975))
ci.names <- parse.MatrixNames(colnames(ci), numeric = TRUE)
if(length(x.cols) > 0){
layout(matrix(1:8, 4, 2, byrow = TRUE))
ci <- apply(out[, x.cols], 2, quantile, c(0.025, 0.5, 0.975))
ci.names <- parse.MatrixNames(colnames(ci), numeric = TRUE)
smp <- sample.int(data$ni, min(8, data$ni))
for (i in smp) {
sel <- which(ci.names$row == i)
rng <- c(range(ci[, sel], na.rm = TRUE), range(data$z[i, ], na.rm = TRUE))
plot(data$time, ci[2, sel], type = "n",
ylim = range(rng), ylab = "DBH (cm)", main = i)
PEcAn.visualization::ciEnvelope(data$time, ci[1, sel], ci[3, sel], col = "lightBlue")
points(data$time, data$z[i, ], pch = "+", cex = 1.5)
sel <- which(ci.names$row == i)
inc.mcmc <- apply(out[, x.cols[sel]], 1, diff)
inc.ci <- apply(inc.mcmc, 1, quantile, c(0.025, 0.5, 0.975)) * 5
plot(data$time[-1], inc.ci[2, ], type = "n",
ylim = range(inc.ci, na.rm = TRUE), ylab = "Ring Increment (mm)")
PEcAn.visualization::ciEnvelope(data$time[-1], inc.ci[1, ], inc.ci[3, ], col = "lightBlue")
points(data$time, data$y[i, ] * 5, pch = "+", cex = 1.5, type = "b", lty = 2)
}
}
}
if (FALSE) {
plot(out[, which(colnames(out) == "x[3,31]")])
abline(h = z[3, 31], col = 2, lwd = 2)
hist(out[, which(colnames(out) == "x[3,31]")])
abline(v = z[3, 31], col = 2, lwd = 2)
}
vars <- (1:ncol(out))[-c(which(substr(colnames(out), 1, 1) == "x"),
grep("tau", colnames(out)),
grep("year", colnames(out)),
grep("ind", colnames(out)),
grep("alpha",colnames(out)),
grep("deviance",colnames(out)))]
par(mfrow = c(1, 1))
for (i in vars) {
hist(out[, i], main = colnames(out)[i])
abline(v=0,lwd=3)
}
if (length(vars) > 1 && length(vars) < 10) {
pairs(out[, vars])
}
if("deviance" %in% colnames(out)){
hist(out[,"deviance"])
vars <- c(vars,which(colnames(out)=="deviance"))
}
var.out <- as.mcmc.list(lapply(jags.out,function(x){ x[,vars]}))
gelman.diag(var.out)
plot(var.out)
if("deviance" %in% colnames(out)){
hist(out[,"deviance"])
vars <- c(vars,which(colnames(out)=="deviance"))
}
var.out <- as.mcmc.list(lapply(jags.out,function(x){ x[,vars]}))
gelman.diag(var.out)
plot(var.out)
par(mfrow = c(2, 3))
prec <- out[, grep("tau", colnames(out))]
for (i in seq_along(colnames(prec))) {
hist(1 / sqrt(prec[, i]), main = colnames(prec)[i])
}
cor(prec)
par(mfrow = c(1, 1))
alpha.cols <- grep("alpha", colnames(out))
if (length(alpha.cols) > 0) {
alpha.ord <- 1:length(alpha.cols)
ci.alpha <- apply(out[, alpha.cols], 2, quantile, c(0.025, 0.5, 0.975))
plot(alpha.ord, ci.alpha[2, ], type = "n",
ylim = range(ci.alpha, na.rm = TRUE), ylab = "Random Effects")
PEcAn.visualization::ciEnvelope(alpha.ord, ci.alpha[1, ], ci.alpha[3, ], col = "lightBlue")
lines(alpha.ord, ci.alpha[2, ], lty = 1, lwd = 2)
abline(h = 0, lty = 2)
}
par(mfrow = c(1, 1))
alpha.cols <- grep("alpha", colnames(out))
if (length(alpha.cols) > 0) {
alpha.ord <- 1:length(alpha.cols)
ci.alpha <- apply(out[, alpha.cols], 2, quantile, c(0.025, 0.5, 0.975))
plot(alpha.ord, ci.alpha[2, ], type = "n",
ylim = range(ci.alpha, na.rm = TRUE), ylab = "Random Effects")
PEcAn.visualization::ciEnvelope(alpha.ord, ci.alpha[1, ], ci.alpha[3, ], col = "lightBlue")
lines(alpha.ord, ci.alpha[2, ], lty = 1, lwd = 2)
abline(h = 0, lty = 2)
}
year.cols <- grep("year", colnames(out))
if (length(year.cols > 0)) {
ci.yr <- apply(out[, year.cols], 2, quantile, c(0.025, 0.5, 0.975))
plot(data$time, ci.yr[2, ], type = "n",
ylim = range(ci.yr, na.rm = TRUE), ylab = "Year Effect")
PEcAn.visualization::ciEnvelope(data$time, ci.yr[1, ], ci.yr[3, ], col = "lightBlue")
lines(data$time, ci.yr[2, ], lty = 1, lwd = 2)
abline(h = 0, lty = 2)
}
ind.cols <- which(substr(colnames(out), 1, 3) == "ind")
if (length(ind.cols) > 0 & !is.null(combined)) {
boxplot(out[, ind.cols], horizontal = TRUE, outline = FALSE, col = as.factor(combined$PLOT))
abline(v = 0, lty = 2)
tapply(apply(out[, ind.cols], 2, mean), combined$PLOT, mean)
table(combined$PLOT)
spp <- combined$SPP
boxplot(out[, ind.cols], horizontal = TRUE, outline = FALSE, col = spp)
abline(v = 0, lty = 2)
spp.code <- levels(spp)[table(spp) > 0]
legend("bottomright", legend = rev(spp.code), col = rev(which(table(spp) > 0)), lwd = 4)
tapply(apply(out[, ind.cols], 2, mean), combined$SPP, mean)
}
} |
NULL
PrestoDETest <- function(
data.use,
cells.1,
cells.2,
verbose = TRUE,
...
) {
data.use <- data.use[, c(cells.1, cells.2), drop = FALSE]
group.info <- factor(
c(rep(x = "Group1", length = length(x = cells.1)),
rep(x = "Group2", length = length(x = cells.2))),
levels = c("Group1", "Group2"))
names(x = group.info) <- c(cells.1, cells.2)
data.use <- data.use[, names(x = group.info), drop = FALSE]
res <- presto::wilcoxauc(X = data.use, y = group.info)
res <- res[1:(nrow(x = res)/2), c('pval','auc')]
colnames(x = res)[1] <- 'p_val'
return(as.data.frame(x = res, row.names = rownames(x = data.use)))
}
RunPresto <- function(
object,
ident.1 = NULL,
ident.2 = NULL,
group.by = NULL,
subset.ident = NULL,
assay = NULL,
slot = 'data',
reduction = NULL,
features = NULL,
logfc.threshold = 0.25,
test.use = "wilcox",
min.pct = 0.1,
min.diff.pct = -Inf,
verbose = TRUE,
only.pos = FALSE,
max.cells.per.ident = Inf,
random.seed = 1,
latent.vars = NULL,
min.cells.feature = 3,
min.cells.group = 3,
pseudocount.use = 1,
mean.fxn = NULL,
fc.name = NULL,
base = 2,
...
) {
if (test.use != 'wilcox') {
stop("Differential expression test must be `wilcox`")
}
CheckPackage(package = 'immunogenomics/presto', repository = 'github')
orig.fxn <- rlang::duplicate(x = Seurat:::WilcoxDETest)
assignInNamespace(
x = "WilcoxDETest",
value = PrestoDETest,
ns = "Seurat")
tryCatch(
expr = res <- FindMarkers(
object,
ident.1,
ident.2,
group.by,
subset.ident,
assay,
slot,
reduction,
features,
logfc.threshold,
test.use,
min.pct,
min.diff.pct,
verbose,
only.pos,
max.cells.per.ident,
random.seed,
latent.vars,
min.cells.feature,
min.cells.group,
pseudocount.use,
mean.fxn,
fc.name,
base,
...
),
finally = assignInNamespace(
x = "WilcoxDETest",
value = orig.fxn,
ns = "Seurat")
)
return(res)
}
RunPrestoAll <- function(
object,
assay = NULL,
features = NULL,
logfc.threshold = 0.25,
test.use = 'wilcox',
slot = 'data',
min.pct = 0.1,
min.diff.pct = -Inf,
node = NULL,
verbose = TRUE,
only.pos = FALSE,
max.cells.per.ident = Inf,
random.seed = 1,
latent.vars = NULL,
min.cells.feature = 3,
min.cells.group = 3,
pseudocount.use = 1,
mean.fxn = NULL,
fc.name = NULL,
base = 2,
return.thresh = 1e-2,
...
) {
if (test.use != 'wilcox') {
stop("Differential expression test must be `wilcox`")
}
CheckPackage(package = 'immunogenomics/presto', repository = 'github')
orig.fxn <- rlang::duplicate(x = Seurat:::WilcoxDETest)
assignInNamespace(
x = "WilcoxDETest",
value = PrestoDETest,
ns = "Seurat")
tryCatch(
expr = res <- FindAllMarkers(
object,
assay,
features,
logfc.threshold,
test.use,
slot,
min.pct,
min.diff.pct,
node,
verbose,
only.pos,
max.cells.per.ident,
random.seed,
latent.vars,
min.cells.feature,
min.cells.group,
pseudocount.use,
mean.fxn,
fc.name,
base,
return.thresh,
...
),
finally = assignInNamespace(
x = "WilcoxDETest",
value = orig.fxn,
ns = "Seurat")
)
return(res)
} |
lento <- function(obj, xlim = NULL, ylim = NULL, main = "Lento plot",
sub = NULL, xlab = NULL, ylab = NULL, bipart = TRUE,
trivial = FALSE, col = rgb(0, 0, 0, .5), ...) {
if (inherits(obj, "phylo")) {
if (inherits(obj, "phylo", TRUE) == 1) obj <- as.splits(obj)[obj$edge[, 2]]
obj <- as.splits(obj)
}
if (inherits(obj, "multiPhylo"))
obj <- as.splits(obj)
labels <- attr(obj, "labels")
l <- length(labels)
if (!trivial) {
triv <- lengths(obj)
ind <- logical(length(obj))
ind[(triv > 1) & (triv < (l - 1))] <- TRUE
if (length(col) == length(obj)) col <- col[ind]
obj <- obj[ind]
}
CM <- compatible(obj)
support <- attr(obj, "weights")
if (is.null(support))
support <- rep(1, length(obj))
conflict <- -as.matrix(CM) %*% support
n <- length(support)
if (is.null(ylim)) {
eps <- (max(support) - min(conflict)) * 0.05
ylim <- c(min(conflict) - eps, max(support) + eps)
}
if (is.null(xlim)) {
xlim <- c(0, n + 1)
}
ord <- order(support, decreasing = TRUE)
support <- support[ord]
conflict <- conflict[ord]
if (length(col) == length(obj)) col <- col[ord]
plot.new()
plot.window(xlim, ylim)
title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...)
segments(0:(n - 1), support, y1 = conflict, ...)
segments(1:n, support, y1 = conflict, ...)
segments(0:(n - 1), support, x1 = 1:n, ...)
segments(0:(n - 1), conflict, x1 = 1:n, ...)
abline(h = 0)
axis(2, ...)
aty <- diff(ylim) / (l + 1)
at <- min(ylim) + (1:l) * aty
if (bipart) {
Y <- rep(at, n)
X <- rep( (1:n) - .5, each = l)
Circles <- matrix(1, l, n)
for (i in 1:n) Circles[obj[[ord[i]]], i] <- 19
col <- rep(col, each = l)
text(x = n + .1, y = at, labels, pos = 4, ...)
points(X, Y, pch = as.numeric(Circles), col = col, ...)
}
invisible(list(support = cbind(support, conflict), splits = obj[ord]))
} |
score_coefficient_evaluation <- function (PARAM_SFT) {
print("Started evaluating score coefficients optimization!!!")
output_path <- PARAM_SFT[which(PARAM_SFT[, 1] == "SFT0010"), 2]
output_path_score_function_calculations <- paste0(output_path, "/score_function_calculations")
Entire_final_list_unoptimized <- loadRdata(paste0(output_path_score_function_calculations, "/Entire_final_list_unoptimized.Rdata"))
GA_score <- loadRdata(paste0(output_path_score_function_calculations, "/GA_score.Rdata"))
GA_score <- summary(GA_score)
Score_coeff <- GA_score$solution
Score_coeff <- Score_coeff[1, ]
maxNEME <- as.numeric(PARAM_SFT[which(PARAM_SFT[, 1] == "SFT0014"), 2])
PCS <- as.numeric(Entire_final_list_unoptimized[, 11])
RCS <- as.numeric(Entire_final_list_unoptimized[, 15])
NEME <- as.numeric(Entire_final_list_unoptimized[, 10])
R13C_PL <- as.numeric(Entire_final_list_unoptimized[, 12])
R13C_IP <- as.numeric(Entire_final_list_unoptimized[, 13])
size_IP <- as.numeric(Entire_final_list_unoptimized[, 9])
N_compounds <- max(as.numeric(Entire_final_list_unoptimized$CompoundID))
x_c <- lapply(1:N_compounds, function(i) {
which(Entire_final_list_unoptimized$CompoundID == i)
})
N_candidate <- as.numeric(sapply(1:N_compounds, function(i) {
Entire_final_list_unoptimized$CandidateCount[x_c[[i]][1]]
}))
IdentificationScore <- identification_score(Score_coeff, size_IP, PCS, RCS, NEME, maxNEME, R13C_PL, R13C_IP)
Entire_final_list_unoptimized <- cbind(Entire_final_list_unoptimized, IdentificationScore)
progressBARboundaries <- txtProgressBar(min = 1, max = N_compounds, initial = 1, style = 3)
Entire_final_list_optimized <- do.call(rbind, lapply(1:N_compounds, function(i) {
setTxtProgressBar(progressBARboundaries, i)
A <- Entire_final_list_unoptimized[x_c[[i]], ]
A <- A[order(A[, 20], decreasing = TRUE), ]
A$Rank <- seq(1, N_candidate[i])
A[, -20]
}))
close(progressBARboundaries)
names(Entire_final_list_optimized) <- c("FileName", "PeakID",
"ID_IonFormula", "IonFormula", "m/z Isotopic Profile",
"m/z peaklist", "RT(min)", "PeakHeight", "size IP",
"NEME(mDa)", "PCS", "R13C peakList", "R13C Isotopic Profile",
"NDCS", "RCS(%)", "Rank", "CandidateCount", "CompoundID", "MolFMatch")
rownames(Entire_final_list_optimized) <- c()
save(Entire_final_list_optimized, file = paste0(output_path_score_function_calculations, "/Entire_final_list_optimized.Rdata"))
obj_function <- gsub(" ", "", tolower(PARAM_SFT[which(PARAM_SFT[, 1] == "SFT0018"), 2]))
if (obj_function == "toprank") {
max_rank <- as.numeric(PARAM_SFT[which(PARAM_SFT[, 1] == "SFT0019"), 2])
x <- which(as.numeric(Entire_final_list_unoptimized$MolFMatch) == 1)
print(paste0("There detected totally ", length(x), " compounds for score coefficients optimization!!!"))
r_unop <- length(which(as.numeric(Entire_final_list_unoptimized$Rank[x]) <= max_rank))
print(paste0("There met ", r_unop, " peaks the <=", max_rank, " ranking with score coefficients of 1!!!"))
x <- which(as.numeric(Entire_final_list_optimized$MolFMatch) == 1)
r_op <- length(which(as.numeric(Entire_final_list_optimized$Rank[x]) <= max_rank))
print(paste0("There met ", r_op, " peaks the <=", max_rank, " ranking after score coefficients optimization!!!"))
R <- round((r_unop - r_op)/(r_unop - length(x)) * 100, 2)
}
if (obj_function == "overalrank") {
x <- which(as.numeric(Entire_final_list_unoptimized$MolFMatch) == 1)
NC <- as.numeric(Entire_final_list_optimized$CandidateCount[x])
F_min <- sum(1/NC)
print(paste0("The minimum value of objective function is ", round(F_min, 2), " for a perfect score coefficients optimization!!!"))
r_unop <- as.numeric(Entire_final_list_unoptimized$Rank[x])
F_unop <- sum(r_unop/NC)
print(paste0("The objective function was ", round(F_unop, 2), " with score coefficients of 1!!!"))
x <- which(as.numeric(Entire_final_list_optimized$MolFMatch) == 1)
r_op <- as.numeric(Entire_final_list_unoptimized$Rank[x])
F_op <- sum(r_op/NC)
print(paste0("The objective function became ", round(F_op, 2), " after score coefficients optimization!!!"))
R <- round((F_unop - F_op)/(F_unop - F_min) * 100, 2)
}
print(paste0("The score coefficient optimization was ", R, "% successful with respect to score coefficients of 1 !!!"))
} |
ipdwInterp <- function(spdf, rstack, paramlist, overlapped = FALSE,
yearmon = "default", removefile = TRUE, dist_power = 1,
trim_rstack = FALSE){
if(missing(paramlist)){
stop("Must pass a specific column name to the paramlist argument.")
}
if(any(!(paramlist %in% names(spdf)))){
stop(
paste0("Variable(s) '",
paste0(paramlist[!(paramlist %in% names(spdf))],
collapse = "', '"), "' does not exist in spdf object."))
}
range <- slot(rstack, "range")
if(trim_rstack){
rstack <- raster::mask(rstack, rgeos::gConvexHull(spdf), inverse = FALSE)
}
for(k in seq_len(length(paramlist))){
points_layers <- rm_na_pointslayers(param_name = paramlist[k],
spdf = spdf, rstack = rstack)
spdf <- points_layers$spdf
rstack <- points_layers$rstack
rstack.sum <- raster::calc(rstack, fun = function(x){
sum(x^dist_power, na.rm = TRUE)
})
rstack.sum <- raster::reclassify(rstack.sum, cbind(0, NA))
for(i in 1:dim(rstack)[3]){
ras.weight <- rstack[[i]]^dist_power / rstack.sum
param.value <- data.frame(spdf[i, paramlist[k]])
param.value2 <- as.vector(unlist(param.value[1]))
ras.mult <- ras.weight * param.value2
rf <- raster::writeRaster(ras.mult,
filename = file.path(tempdir(), paste(paramlist[k],
"A5ras", i, ".grd", sep = "")), overwrite = TRUE)
}
raster_data_full <- list.files(path = file.path(tempdir()),
pattern = paste(paramlist[k], "A5ras*", sep = ""),
full.names = TRUE)
raster_data <- raster_data_full[grep(".grd", raster_data_full,
fixed = TRUE)]
as.numeric(gsub('.*A5ras([0123456789]*)\\.grd$', '\\1',
raster_data)) -> fileNum
raster_data <- raster_data[order(fileNum)]
rstack.mult <- raster::stack(raster_data)
finalraster <- raster::calc(rstack.mult, fun = function(x){
sum(x, na.rm = TRUE)
})
if(overlapped == TRUE){
finalraster <- raster::reclassify(finalraster, cbind(0, NA))
}
r <- raster::rasterize(spdf, rstack[[1]], paramlist[k])
finalraster <- raster::cover(r, finalraster)
finalraster <- new("ipdwResult", finalraster,
range = range,
dist_power = dist_power)
file.remove(raster_data_full)
return(finalraster)
}
if(removefile == TRUE){
file.remove(list.files(path = file.path(tempdir()),
pattern = paste(yearmon, "A4ras*", sep = "")))
file.remove(list.files(path = file.path(tempdir()),
pattern = paste(paramlist[k], "A5ras*", sep = ""), full.names = TRUE))
}
}
rm_na_pointslayers <- function(param_name, spdf, rstack){
param_index_x <- which(names(spdf) == param_name)
param_na_y <- which(is.na(spdf@data[,param_index_x]))
if(length(param_na_y) > 0){
spdf <- spdf[-which(is.na(spdf@data[,param_index_x])),]
rstack <- raster::dropLayer(rstack, param_na_y)
}
list(spdf = spdf, rstack = rstack)
}
ipdwResult <- setClass("ipdwResult",
slots = c(range = "numeric", dist_power = "numeric"),
contains = "RasterLayer") |
CIlppvak <-
function(x0, x1, p, conf.level=0.95,
alternative=c("two.sided", "less", "greater"))
{
alternative<-match.arg(alternative)
expit<-function(p){exp(p)/(1+exp(p))}
switch(alternative,
two.sided={
z <- qnorm(p=1-(1-conf.level)/2)
seest <- setil(x1=x1, k=z)
spest <- sptil(x0=x0, k=z)
varestlppv <- varlppv(x0=x0, x1=x1, k=z)
estlppv <- logitppv(p=p, se=seest[1], sp=spest[1])
llwr<-estlppv - z*sqrt(varestlppv[1])
lupr<-estlppv + z*sqrt(varestlppv[1])
},
less={
z<-qnorm(p=conf.level)
seest <- setil(x1=x1, k=z)
spest <- sptil(x0=x0, k=z)
varestlppv <- varlppv(x0=x0, x1=x1, k=z)
estlppv <- logitppv(p=p, se=seest[1], sp=spest[1])
llwr <- (-Inf)
lupr <- estlppv + z*sqrt(varestlppv[1])
},
greater={
z<-qnorm(p=conf.level)
seest <- setil(x1=x1, k=z)
spest <- sptil(x0=x0, k=z)
varestlppv <- varlppv(x0=x0, x1=x1, k=z)
estlppv <- logitppv(p=p, se=seest[1], sp=spest[1])
llwr <- estlppv - z*sqrt(varestlppv[1])
lupr <- Inf
}
)
conf.int <- c(expit(llwr), expit(lupr))
names(conf.int)<-c("lower","upper")
estimate <- expit(estlppv)
names(estimate)<-NULL
return(list(conf.int=conf.int, estimate=estimate))
} |
test_that("hotspot_cluster() works", {
temp_hotspots <- hotspots
temp_hotspots$obsTime <- transform_time_id(temp_hotspots$obsTime, "h", 1)
result <- hotspot_cluster(temp_hotspots,
lon = "lon",
lat = "lat",
obsTime = "obsTime",
activeTime = 24,
adjDist = 3000,
minPts = 4,
minTime = 3,
ignitionCenter = "mean")
expect_invisible(print(result))
expect_invisible(summary(result))
expect_invisible(summary(result, cluster = c(1,3)))
expect_silent(plot(result))
}) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
required <- c("viridis")
if (!all(sapply(required, requireNamespace, quietly = TRUE))) {
knitr::opts_chunk$set(eval = FALSE)
}
library("raster")
library("samc")
library("viridisLite") |
norm.1972SF <- function(x){
check_1d(x)
DNAME <- deparse(substitute(x))
x = sort(x)
n = length(x)
n <- length(x)
if ((n < 5 || n > 5000)){
stop("* norm.1972SF : we only take care of sample size between (5,5000).")
}
y = qnorm(ppoints(n, a = 3/8))
W = cor(x, y)^2
u = log(n)
v = log(u)
mu = -1.2725 + 1.0521 * (v - u)
sig = 1.0308 - 0.26758 * (v + 2/u)
z = (log(1 - W) - mu)/sig
thestat = W
hname = "Univariate Test of Normality by Shapiro and Francia (1972)"
Ha = paste("Sample ", DNAME, " does not follow normal distribution.",sep="")
names(thestat) = "W"
pvalue = stats::pnorm(z, lower.tail = FALSE)
res = list(statistic=thestat, p.value=pvalue, alternative = Ha, method=hname, data.name = DNAME)
class(res) = "htest"
return(res)
} |
jPofTest <-
function(n,k,p,test_significant){
statistic <- -2*log(((1-p)^(n-k)*p^k)/((1-k/n)^(n-k)*(k/n)^k))
Quantile <- qchisq(1-test_significant,1)
rslt <- statistic <= Quantile
return(c(statistic,Quantile,rslt))
} |
FeatureSetCalculationComponent = function(id) {
ns = shiny::NS(id)
shiny::div(
shiny::selectInput(ns("FeatureSet_function"), label = "Feature Set",
choices = c("all Features", listAvailableFeatureSets()), selected = "cm_angle"),
shiny::tableOutput(ns("FeatureTable_function")),
shiny::downloadButton(ns('downloadData_function'), 'Download'))
}
FeatureSetCalculation = function(input, output, session, stringsAsFactors, feat.object) {
features = shiny::reactive({
if (input$FeatureSet_function == "all Features") {
features = calculateFeatures(feat.object(), control = list(ela_curv.sample_size = min(200L, feat.object()$n.obs)))
features = data.frame(t(data.frame(features)), stringsAsFactors = stringsAsFactors)
} else {
print(feat.object)
features = calculateFeatureSet(feat.object(), set = input$FeatureSet_function,
control = list(ela_curv.sample_size = min(200L, feat.object()$n.obs)))
features = data.frame(t(data.frame(features)), stringsAsFactors = stringsAsFactors)
}
return(features)
})
output$FeatureTable_function = shiny::renderTable({
features()
}, rownames = TRUE, colnames = FALSE)
output$downloadData_function = shiny::downloadHandler(
filename = function() {
paste0(input$FeatureSet_function, '.csv')
},
content = function(file) {
utils::write.csv(features(), file)
}
)
} |
tw_create_cache_folder <- function(ask = TRUE) {
if (fs::file_exists(tidywikidatar::tw_get_cache_folder()) == FALSE) {
if (ask == FALSE) {
fs::dir_create(path = tidywikidatar::tw_get_cache_folder(), recurse = TRUE)
} else {
usethis::ui_info(glue::glue("The cache folder {{usethis::ui_path(tw_get_cache_folder())}} does not exist. If you prefer to cache files elsewhere, reply negatively and set your preferred cache folder with `tw_set_cache_folder()`"))
check <- usethis::ui_yeah(glue::glue("Do you want to create {{usethis::ui_path(tw_get_cache_folder())}} for caching data?"))
if (check == TRUE) {
fs::dir_create(path = tidywikidatar::tw_get_cache_folder(), recurse = TRUE)
}
}
if (fs::file_exists(tidywikidatar::tw_get_cache_folder()) == FALSE) {
usethis::ui_stop("This function requires a valid cache folder.")
}
}
}
tw_set_cache_folder <- function(path = NULL) {
if (is.null(path)) {
path <- Sys.getenv("tw_cache_folder")
} else {
Sys.setenv(tw_cache_folder = path)
}
if (path == "") {
path <- fs::path("tw_data")
}
invisible(path)
}
tw_get_cache_folder <- tw_set_cache_folder
tw_set_cache_db <- function(db_settings = NULL,
driver = NULL,
host = NULL,
port,
database,
user,
pwd) {
if (is.null(db_settings) == TRUE) {
if (is.null(driver) == FALSE) Sys.setenv(tw_db_driver = driver)
if (is.null(host) == FALSE) Sys.setenv(tw_db_host = host)
if (is.null(port) == FALSE) Sys.setenv(tw_db_port = port)
if (is.null(database) == FALSE) Sys.setenv(tw_db_database = database)
if (is.null(user) == FALSE) Sys.setenv(tw_db_user = user)
if (is.null(pwd) == FALSE) Sys.setenv(tw_db_pwd = pwd)
return(invisible(
list(
driver = driver,
host = host,
port = port,
database = database,
user = user,
pwd = pwd
)
))
} else {
Sys.setenv(tw_db_driver = db_settings$driver)
Sys.setenv(tw_db_host = db_settings$host)
Sys.setenv(tw_db_port = db_settings$port)
Sys.setenv(tw_db_database = db_settings$database)
Sys.setenv(tw_db_user = db_settings$user)
Sys.setenv(tw_db_pwd = db_settings$pwd)
return(invisible(db_settings))
}
}
tw_get_cache_db <- function() {
list(
driver = Sys.getenv("tw_db_driver"),
host = Sys.getenv("tw_db_host"),
port = Sys.getenv("tw_db_port"),
database = Sys.getenv("tw_db_database"),
user = Sys.getenv("tw_db_user"),
pwd = Sys.getenv("tw_db_pwd")
)
}
tw_enable_cache <- function(SQLite = TRUE) {
Sys.setenv(tw_cache = TRUE)
Sys.setenv(tw_cache_SQLite = SQLite)
}
tw_disable_cache <- function() {
Sys.setenv(tw_cache = FALSE)
}
tw_check_cache <- function(cache = NULL) {
if (is.null(cache) == FALSE) {
return(as.logical(cache))
}
current_cache <- Sys.getenv("tw_cache")
if (current_cache == "") {
as.logical(FALSE)
} else {
as.logical(current_cache)
}
}
tw_check_cache_folder <- function() {
if (fs::file_exists(tw_get_cache_folder()) == FALSE) {
usethis::ui_stop(paste(
"Cache folder does not exist. Set it with",
usethis::ui_code("tw_get_cache_folder()"),
"and create it with",
usethis::ui_code("tw_create_cache_folder()")
))
}
TRUE
}
tw_disconnect_from_cache <- function(cache = NULL,
cache_connection = NULL,
disconnect_db = TRUE,
language = tidywikidatar::tw_get_language()) {
if (isFALSE(disconnect_db)) {
return(invisible(NULL))
}
if (isTRUE(tw_check_cache(cache))) {
db <- tw_connect_to_cache(
connection = cache_connection,
language = language,
cache = cache
)
if (pool::dbIsValid(dbObj = db)) {
if ("Pool" %in% class(db)) {
pool::poolClose(db)
} else {
DBI::dbDisconnect(db)
}
}
}
} |
with_groups <- function(.data, .groups, .f, ...) {
cur_groups <- group_vars(.data)
.groups <- eval_select_pos(.data = .data, .cols = substitute(.groups))
val <- as_symbols(names(.data)[.groups])
out <- do.call(group_by, c(list(.data = .data), val))
.f <- as_function(.f)
out <- .f(out, ...)
reconstruct_attrs(out, .data)
} |
fill <- function(data, ..., .direction = c("down", "up", "downup", "updown")) {
check_dots_unnamed()
UseMethod("fill")
}
fill.data.frame <- function(data, ..., .direction = c("down", "up", "downup", "updown")) {
vars <- tidyselect::eval_select(expr(c(...)), data)
.direction <- arg_match0(
arg = .direction,
values = c("down", "up", "downup", "updown"),
arg_nm = ".direction"
)
fn <- function(col) {
vec_fill_missing(col, direction = .direction)
}
dplyr::mutate_at(data, .vars = dplyr::vars(any_of(vars)), .funs = fn)
} |
context("Split and rephase")
test_that("split and rephase the map correctly", {
map<-get_submap(solcap.err.map[[1]], 1:20)
tpt<-est_pairwise_rf(make_seq_mappoly(map))
map2<-split_and_rephase(map, tpt, gap.threshold = 2)
expect_is(map2, "mappoly.map")
}) |
library(checkargs)
context("isStrictlyPositiveNumberOrNanScalarOrNull")
test_that("isStrictlyPositiveNumberOrNanScalarOrNull works for all arguments", {
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isStrictlyPositiveNumberOrNanScalarOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isStrictlyPositiveNumberOrNanScalarOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
}) |
toLabelEdge <- function(adjMat, consMatrix) {
edge.df <- orderEdge(adjMat)
lab <- rep(NA, dim(edge.df)[1])
edge.df <- edge.df[order(edge.df$order), ]
Head <- edge.df$head
Tail <- edge.df$tail
for (i in 1:nrow(consMatrix)) {
consTail <- consMatrix[i, 1]
consHead <- consMatrix[i, 2]
ind <- which(edge.df$tail == consTail & edge.df$head == consHead)
lab[ind] <- TRUE
lab[which(lab != TRUE)] <- NA
}
while (any(ina <- is.na(lab))) {
x.y <- which(ina)[1]
x <- Tail[x.y]
y <- Head[x.y]
y.is.head <- Head == y
e1 <- which(Head == x & lab)
for (ee in e1) {
w <- Tail[ee]
if (any(wt.yh <- w == Tail & y.is.head))
lab[wt.yh] <- TRUE
else {
lab[y.is.head] <- TRUE
break
}
}
cand <- which(y.is.head & Tail != x)
if (length(cand) > 0) {
valid.cand <- rep(FALSE, length(cand))
for (iz in seq_along(cand)) {
z <- Tail[cand[iz]]
if (!any(Tail == z & Head == x))
valid.cand[iz] <- TRUE
}
cand <- cand[valid.cand]
}
lab[which(y.is.head & is.na(lab))] <- (length(cand) > 0)
}
edge.df$label <- lab
return(edge.df)
} |
conflicts <- function(where = search(), detail = FALSE)
{
if(length(where) < 1L) stop("argument 'where' of length 0")
z <- vector(length(where), mode="list")
names(z) <- where
for(i in seq_along(where)) z[[i]] <- objects(pos = where[i])
all <- unlist(z, use.names=FALSE)
dups <- duplicated(all)
dups <- all[dups]
if(detail) {
for(i in where) z[[i]] <- z[[i]][match(dups, z[[i]], 0L)]
z[vapply(z, function(x) length(x) == 0L, NA)] <- NULL
z
} else dups
} |
x=rnorm(10,mean=50,sd=10)
y=rnorm(10,mean=50,sd=10)
m=length(x)
n=length(y)
sp=sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))
t.stat=(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))
tstatistic=function(x,y)
{
m=length(x)
n=length(y)
sp=sqrt(((m-1)*sd(x)^2+(n-1)*sd(y)^2)/(m+n-2))
t.stat=(mean(x)-mean(y))/(sp*sqrt(1/m+1/n))
return(t.stat)
}
data.x=c(1,4,3,6,5)
data.y=c(5,4,7,6,10)
tstatistic(data.x, data.y)
S=readline(prompt="Type <Return> to continue : ")
alpha=.1; m=10; n=10
N=10000
n.reject=0
for (i in 1:N)
{
x=rnorm(m,mean=0,sd=1)
y=rnorm(n,mean=0,sd=1)
t.stat=tstatistic(x,y)
if (abs(t.stat)>qt(1-alpha/2,n+m-2))
n.reject=n.reject+1
}
true.sig.level=n.reject/N
s=readline(prompt="Type <Return> to continue : ")
m=10; n=10
my.tsimulation=function()
tstatistic(rnorm(m,mean=10,sd=2), rexp(n,rate=1/10))
tstat.vector=replicate(10000, my.tsimulation())
plot(density(tstat.vector),xlim=c(-5,8),ylim=c(0,.4),lwd=3)
curve(dt(x,df=18),add=TRUE) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.