code
stringlengths 1
13.8M
|
---|
quadFuncModel <- function( yName, xNames, data, shifterNames,
linear, homWeights, regScale ) {
checkNames( c( yName, xNames, shifterNames ), names( data ) )
.quadFuncCheckHomWeights( homWeights, xNames )
result <- list()
result$isPanel <- inherits( data, c( "pdata.frame", "plm.dim" ) )
if( result$isPanel ) {
estData <- data[ , 1:2 ]
estData$y <- data[[ yName ]]
} else {
estData <- data.frame( y = data[[ yName ]] )
}
if( !is.null( homWeights ) ) {
estData$deflator <- 0
for( i in seq( along = homWeights ) ) {
estData$deflator <- estData$deflator +
homWeights[ i ] * data[[ names( homWeights )[ i ] ]]
}
xOmit <- names( homWeights )[ 1 ]
iOmit <- which( xNames == xOmit )
} else {
iOmit <- 0
xOmit <- NULL
}
estFormula <- "y ~ 1"
for( i in seq( along = xNames ) ) {
if( i != iOmit ) {
xName <- paste( "a", as.character( i ), sep = "_" )
estData[[ xName ]] <- .quadFuncVarHom( data, xNames[ i ],
homWeights, estData$deflator, xOmit ) / regScale
estFormula <- paste( estFormula, "+", xName )
}
}
if( !linear ) {
for( i in seq( along = xNames ) ) {
for( j in i:length( xNames ) ) {
if( i != iOmit & j != iOmit ) {
xName <- paste( "b", as.character( i ), as.character( j ),
sep = "_" )
estData[[ xName ]] <- 0.5 *
ifelse( i == j, 1, 2 ) *
.quadFuncVarHom( data, xNames[ i ], homWeights,
estData$deflator, xOmit ) *
.quadFuncVarHom( data, xNames[ j ], homWeights,
estData$deflator, xOmit ) /
regScale
estFormula <- paste( estFormula, "+", xName )
}
}
}
}
for( i in seq( along = shifterNames ) ) {
if( is.factor( data[[ shifterNames[ i ] ]] ) |
is.logical( data[[ shifterNames[ i ] ]] ) ) {
xName <- paste( "d", "_", as.character( i ), "_", sep = "" )
estData[[ xName ]] <- data[[ shifterNames[ i ] ]]
} else {
xName <- paste( "d", as.character( i ), sep = "_" )
estData[[ xName ]] <- data[[ shifterNames[ i ] ]] / regScale
}
estFormula <- paste( estFormula, "+", xName )
}
result$estData <- estData
result$estFormula <- estFormula
result$iOmit <- iOmit
return( result )
} |
processPhotoId <- function(file_path = "", idType = "auto",
imageSource = "auto", correctOrientation = "true",
correctSkew = "true", description = "",
pdfPassword = "", ...) {
if ( !file.exists(file_path)) {
stop("File Doesn't Exist. Please check the path.")
}
querylist <- list(idType = idType,
imageSource = imageSource,
correctOrientation = correctOrientation,
correctSkew = correctSkew,
description = description,
pdfPassword = pdfPassword)
body <- upload_file(file_path)
process_details <- abbyy_POST("processPhotoId",
query = NULL,
body = body, ...)
resdf <- ldply(process_details, rbind, .id = NULL)
row.names(resdf) <- NULL
resdf[] <- lapply(resdf, as.character)
cat("Status of the task: ", resdf$status, "\n")
cat("Task ID: ", resdf$id, "\n")
resdf
} |
ppexp <- function(q, x, cuts) {
if (!is.matrix(x)) {
ppout <- ppexpV(q, x, cuts)
} else if (is.matrix(x)) {
ppout <- ppexpM(q, x, cuts)
} else {
stop("Error: input x is in the wrong format.")
}
return(ppout)
}
.onUnload <- function(libpath) {
library.dynam.unload("bayesDP", libpath)
} |
cmaRs.derivative_more_than_one <- function (BF, DMS, i, j)
{
i.chr <- as.character(i)
j.chr <- as.character(j)
second_part <- paste("xfirst", as.character(i.chr), sep = "")
third_part <- paste("xfirst", as.character(j.chr), sep = "")
first_part <- parse(text = paste(BF, sep = ""))
derv1 <- D(first_part, second_part)
derv2 <- D(derv1, third_part)
derv1.dms <- as.expression(derv2)
DMS[i,j] <- as.character(derv1.dms)
return(list(DMS = DMS, BF = BF))
} |
gates_inf <-
function(dx, dy, marks, par=list(a=1, b=4, smark=1)) {
with(as.list(par),
pmax(0, marks[[smark]]^a - (b * sqrt(dx^2 + dy^2))^a)^(1/a)
)
} |
library(shiny)
library(detect)
library(bSims)
MAXDIS <- 10
EXTENT <- 10
DURATION <- 10
TINT <- list(
"0-3-5-10 min"=c(3, 5, 10),
"0-10 min"=c(10),
"0-1-2-3 min"=c(1, 2, 3),
"0-5-10 min"=c(5, 10),
"0-3 min"=c(3),
"0-1-2-3-4-5 min"=c(1, 2, 3, 4, 5)
)
RINT <- list(
"0-50-100-Inf m"=c(0.5, 1, Inf),
"0-Inf m"=c(Inf),
"0-50-Inf m"=c(0.5, Inf),
"0-50-100-150-Inf m"=c(0.5, 1, 1.5, Inf),
"0-50-100-150-200-Inf m"=c(0.5, 1, 1.5, 2, Inf),
"0-50-100 m"=c(0.5, 1),
"0-50 m"=c(0.5),
"0-50-100-150 m"=c(0.5, 1, 1.5),
"0-50-100-150-200 m"=c(0.5, 1, 1.5, 2)
)
rv <- reactiveValues(seed=0)
estimate_bsims <- function(REM) {
MaxDur <- max(tint)
MaxDis <- max(rint)
Ydur <- matrix(colSums(REM), 1)
Ddur <- matrix(tint, 1)
Ydis <- matrix(rowSums(REM), 1)
Ddis <- matrix(rint, 1)
if (length(tint) > 1 && sum(REM) > 0) {
Mrem <- cmulti.fit(Ydur, Ddur, type="rem")
phi <- exp(Mrem$coef)
p <- 1-exp(-MaxDur*phi)
} else {
Mrem <- NULL
phi <- NA
p <- NA
}
if (length(rint) > 1 && sum(REM) > 0) {
Mdis <- cmulti.fit(Ydis, Ddis, type="dis")
tau <- exp(Mdis$coef)
q <- if (is.infinite(MaxDis))
1 else (tau^2/MaxDis^2) * (1-exp(-(MaxDis/tau)^2))
A <- if (is.infinite(MaxDis))
pi * tau^2 else pi * MaxDis^2
} else {
Mdis <- NULL
tau <- NA
q <- NA
A <- NA
}
D <- sum(REM) / (A * p * q)
list(
Ydur=Ydur, Ddur=Ddur,
Ydis=Ydis, Ddis=Ddis,
Mrem=Mrem,
Mdis=Mdis,
phi=phi, tau=tau,
A=A, p=p, q=q,
D=D)
}
summarize_bsims <- function(res) {
data.frame(
D=sapply(res, "[[", "D"),
phi=sapply(res, "[[", "phi"),
tau=sapply(res, "[[", "tau"))
}
ui <- navbarPage("bSims (HER)",
tabPanel("Initialize",
column(6,
plotOutput(outputId = "plot_ini")),
column(6,
actionButton("seed", "Change random seed"),
sliderInput("road", "Road half width", 0, EXTENT/2, 0, EXTENT/40),
sliderInput("edge", "Edge width", 0, EXTENT/2, 0, EXTENT/40),
sliderInput("offset",
"Offset for road position", -EXTENT/2, EXTENT/2, 0, EXTENT/20)
)
),
tabPanel("Populate",
column(6,
plotOutput(outputId = "plot_pop")
),
column(6,
sliderInput("DH", "Density in habitat stratum", 0, 20, 1, 0.1),
sliderInput("DE", "Density in edge stratum", 0, 20, 1, 0.1),
sliderInput("DR", "Density in road stratum", 0, 20, 1, 0.1),
radioButtons("spfun", "Spatial pattern",
c("Random"="random", "Regular"="regular",
"Clustered"="clustered"))
)
),
tabPanel("Animate",
column(6,
plotOutput(outputId = "plot_ani")),
column(6,
sliderInput("phiH", "Vocal in habitat stratum", 0, 10, 0.5, 0.1),
sliderInput("phiE", "Vocal in edge stratum", 0, 10, 0.5, 0.1),
sliderInput("phiR", "Vocal in road stratum", 0, 10, 0.5, 0.1),
sliderInput("phim", "Movement rate", 0, 10, 1, 0.1),
sliderInput("SDm", "Movement SD", 0, 1, 0, 0.05),
radioButtons("avoid", "Avoid",
c("None"="none",
"Road"="R",
"Edge and road"="ER")),
checkboxInput("overlap", "Territory overlap allowed", TRUE),
checkboxInput("show_tess", "Show tessellation", FALSE),
checkboxInput("init_loc", "Initial location", FALSE)
)
),
tabPanel("Detect",
column(6,
plotOutput(outputId = "plot_det")
),
column(6,
sliderInput("tauH", "EDR in habitat stratum", 0, MAXDIS, 1, MAXDIS/200),
sliderInput("tauE", "EDR in edge stratum", 0, MAXDIS, 1, MAXDIS/200),
sliderInput("tauR", "EDR in road stratum", 0, MAXDIS, 1, MAXDIS/200),
radioButtons("event", "Event type",
c("Vocalization"="vocal",
"Movement"="move",
"Both"="both"))
)
),
tabPanel("Transcribe",
fluidRow(
column(6,
plotOutput(outputId = "plot_tra")
),
column(6,
selectInput("tint", "Time intervals", names(TINT)),
selectInput("rint", "Distance intervals", names(RINT)),
sliderInput("derr", "Distance error", 0, 1, 0, 0.1),
radioButtons("condition", "Condition",
c("1st event"="event1",
"1st detection"="det1",
"All detections"="alldet")),
sliderInput("percept", "Percepted ratio", 0, 2, 1, 0.05),
checkboxInput("oucount", "Over/under count", FALSE)
)
),
fluidRow(
column(6,
tableOutput(outputId = "table_rem")
),
column(6,
plotOutput(outputId = "plot_est")
)
)
),
tabPanel("Settings",
tagList(
singleton(
tags$head(
tags$script(src = 'clipboard.min.js')
)
)
),
column(12,
verbatimTextOutput("settings"),
uiOutput("clip")
)
),
tabPanel("Documentation",
column(12,
tags$iframe(src="https://psolymos.github.io/bSims/",
height=600, width="100%", frameBorder=0)
)
)
)
server <- function(input, output) {
observeEvent(input$seed, {
rv$seed <- rv$seed + 1
})
dis <- seq(0, MAXDIS, MAXDIS/200)
l <- reactive({
set.seed(rv$seed)
bsims_init(extent = EXTENT,
road = input$road,
edge = input$edge,
offset = input$offset)
})
xy_fun <- reactive({
switch(input$spfun,
"random"=function(d) rep(1, length(d)),
"regular"=function(d)
(1-exp(-d^2/1^2) + dlnorm(d, 2)/dlnorm(2,2)) / 2,
"clustered"=function(d)
exp(-d^2/1^2) + 0.5*(1-exp(-d^2/4^2))
)
})
a <- reactive({
margin <- switch(input$spfun,
"random"=0,
"regular"=2,
"clustered"=5)
bsims_populate(l(),
density = c(input$DH, input$DE, input$DR),
xy_fun = xy_fun(),
margin = margin)
})
b <- reactive({
if (input$avoid == "R" && input$DR > 0) {
showNotification("Only 0 abundance stratum can be avoided, set road density to 0", type="error")
return(NULL)
}
if (input$avoid == "ER" && (input$DE > 0 || input$DR > 0)) {
showNotification("Only 0 abundance stratum can be avoided, set road and edge densities to 0", type="error")
return(NULL)
}
bsims_animate(a(),
duration = DURATION,
vocal_rate = c(input$phiH, input$phiE, input$phiR),
move_rate = input$phim,
movement = input$SDm,
mixture = 1,
avoid = input$avoid,
allow_overlap = input$overlap,
initial_location = input$init_loc)
})
o <- reactive({
bsims_detect(b(),
xy = c(0, 0),
tau = c(input$tauH, input$tauE, input$tauR),
dist_fun = NULL,
event_type = input$event)
})
m <- reactive({
pr <- if (!input$oucount)
NULL else input$percept
bsims_transcribe(o(),
tint = TINT[[input$tint]],
rint = RINT[[input$rint]],
error = input$derr,
condition = input$condition,
event_type = input$event,
perception = pr
)
})
e <- reactive({
REM <- get_table(m())
MaxDur <- max(TINT[[input$tint]])
MaxDis <- max(RINT[[input$rint]])
Ydur <- matrix(colSums(REM), 1)
Ddur <- matrix(TINT[[input$tint]], 1)
Ydis <- matrix(rowSums(REM), 1)
Ddis <- matrix(RINT[[input$rint]], 1)
if (length(TINT[[input$tint]]) > 1 && sum(REM) > 0) {
Mrem <- try(cmulti.fit(Ydur, Ddur, type="rem"))
if (!inherits(Mrem, "try-error")) {
phi <- exp(Mrem$coef)
p <- 1-exp(-MaxDur*phi)
} else {
Mrem <- NULL
phi <- NA
p <- NA
}
} else {
Mrem <- NULL
phi <- NA
p <- NA
}
if (length(RINT[[input$rint]]) > 1 && sum(REM) > 0) {
Mdis <- try(cmulti.fit(Ydis, Ddis, type="dis"))
if (!inherits(Mdis, "try-error")) {
tau <- exp(Mdis$coef)
q <- if (is.infinite(MaxDis))
1 else (tau^2/MaxDis^2) * (1-exp(-(MaxDis/tau)^2))
A <- if (is.infinite(MaxDis))
pi * tau^2 else pi * MaxDis^2
} else {
Mdis <- NULL
tau <- NA
q <- NA
A <- NA
}
} else {
Mdis <- NULL
tau <- NA
q <- NA
A <- NA
}
D <- sum(REM) / (A * p * q)
list(
Ydur=Ydur, Ddur=Ddur,
Ydis=Ydis, Ddis=Ddis,
Mrem=Mrem,
Mdis=Mdis,
phi=phi, tau=tau,
A=A, p=p, q=q,
D=D)
})
getset <- reactive({
xc <- function(x) paste0("c(", paste0(x, collapse=", "), ")")
xq <- function(x) paste0("'", x, "'", collapse="")
margin <- switch(input$spfun,
"random"=0,
"regular"=2,
"clustered"=5)
pr <- if (!input$oucount)
"NULL" else input$percept
paste0("bsims_all(",
"\n extent = ", EXTENT,
",\n road = ", input$road,
",\n edge = ", input$edge,
",\n offset = ", input$offset,
",\n density = ", xc(c(input$DH, input$DE, input$DR)),
",\n xy_fun = ", paste0(deparse(xy_fun()), collapse=''),
",\n margin = ", margin,
",\n duration = ", DURATION,
",\n vocal_rate = ", xc(c(input$phiH, input$phiE, input$phiR)),
",\n move_rate = ", input$phim,
",\n movement = ", input$SDm,
",\n mixture = 1",
",\n allow_overlap = ", input$overlap,
",\n initial_location = ", input$init_loc,
",\n tau = ", xc(c(input$tauH, input$tauE, input$tauR)),
",\n xy = c(0, 0)",
",\n event_type = ", xq(input$event),
",\n tint = ", xc(TINT[[input$tint]]),
",\n rint = ", xc(RINT[[input$rint]]),
",\n error = ", input$derr,
",\n condition = ", xq(input$condition),
",\n perception = ", pr,
")", collapse="")
})
output$plot_ini <- renderPlot({
op <- par(mar=c(0,0,0,0))
plot(l())
par(op)
})
output$plot_pop <- renderPlot({
req(a())
op <- par(mar=c(0,0,0,0))
plot(a())
par(op)
})
output$plot_ani <- renderPlot({
req(b())
op <- par(mar=c(0,0,0,0))
plot(b(), event_type=input$event)
if (input$show_tess && !is.null(b()$tess))
plot(b()$tess, add=TRUE, wlines="tess",
showpoints=FALSE, cmpnt_col="grey", cmpnt_lty=1)
par(op)
})
output$plot_det <- renderPlot({
req(o())
op <- par(mar=c(0,0,0,0))
plot(o(),
event_type=input$event,
condition=input$condition)
par(op)
})
output$plot_tra <- renderPlot({
req(m())
op <- par(mar=c(0,0,0,0))
plot(m())
par(op)
})
output$table_rem <- renderTable({
req(m())
tab <- get_table(m())
tab <- cbind(tab, Total=rowSums(tab))
tab <- rbind(tab, Total=colSums(tab))
tab
}, rownames = TRUE, colnames = TRUE, digits = 0)
output$plot_est <- renderPlot({
req(e())
v <- e()
col <- c("
op <- par(mfrow=c(1,3))
barplot(c(True=input$phiH, Estimate=v$phi),
col=col, main=expression(phi))
barplot(c(True=input$tauH, Estimate=v$tau),
col=col, main=expression(tau))
barplot(c(True=input$DH, Estimate=v$D),
col=col, main=expression(D))
par(op)
})
output$settings <- renderText({
getset()
})
output$clip <- renderUI({
tagList(
actionButton("clipbtn",
label = "Copy settings to clipboard",
icon = icon("clipboard"),
`data-clipboard-text` = paste(
getset(),
collapse="")
),
tags$script(
'new ClipboardJS(".btn", document.getElementById("clipbtn") );')
)
})
}
shinyApp(ui = ui, server = server) |
RnpdMAP <- function (Rpop,
Lp = NULL,
NNegEigs = 1,
NSmoothPosEigs = 4,
NSubjects = NULL,
NSamples = 0,
MaxIts = 15000,
PRINT=FALSE,
Seed = NULL)
{
if(NSmoothPosEigs == 0) NSmoothPosEigs <- NULL
prbs2 <- NULL
if(is.null(Seed)){
Seed<- as.integer((as.double(Sys.time())*1000+Sys.getpid()) %% 2^31)
}
set.seed(Seed)
prbs1Fnc <- function(){
prbs <- 1
if(NNegEigs > 1){
prbs <- 1- c(log(sort(runif(NNegEigs-1,1,100), decreasing = TRUE))/log(100),0)
}
prbs
}
if( NSamples > 0 ){
WishartArray <- rWishart(n = NSamples, df = NSubjects-1, Sigma = Rpop)
WishartList <-lapply( seq(dim(WishartArray)[3]), function(x) WishartArray[ , , x] )
corList<-lapply(WishartList,cov2cor)
}
else if (NSamples == 0)
corList <- list(Rpop)
Lpop <- eigen(Rpop, only.values = TRUE)$values
proj.S.Lp <- function(A, Lp, Nvar, prbs1, prbs2){
VLV <- eigen(A)
V <- VLV$vectors
L <- VLV$values
L[L < Lp] <- Lp
if(NNegEigs == 1){
L[Nvar] <- Lp
} else{
L[ (Nvar - (NNegEigs - 1)):Nvar] <- prbs1 * Lp
if(!is.null(NSmoothPosEigs)){
L[(Nvar - (NNegEigs + NSmoothPosEigs )):(Nvar - (NNegEigs + 1 ))] <-
prbs2 * Lpop[(Nvar - (NNegEigs + NSmoothPosEigs )):(Nvar - (NNegEigs + 1 ))]
}
}
A <- V %*% diag(L)%*% t(V)
(A + t(A))/2
}
proj.U <- function(A){
diag(A) <- 1
rc.ind <- which(abs(A) > 1, arr.ind = TRUE)
A[rc.ind] <- sign(A[rc.ind])
A
}
RAPA <- function(R, Lp, MaxIts = 1000){
Nvar <- ncol(R)
EigTest <- FALSE
tries <- 0
converged <- TRUE
EigHx <- rep(0, MaxIts)
Rk <- R
prbs1 <- prbs1Fnc()
if(!is.null(NSmoothPosEigs)){
prbs2 <- log(sort(runif(NSmoothPosEigs,1,100), decreasing = TRUE))/log(100)
}
while (!EigTest)
{
tries <- tries + 1
if (tries > MaxIts) {
converged = FALSE
break
}
Sk <- proj.S.Lp(Rk, Lp, Nvar, prbs1, prbs2)
Uk <- proj.U(Sk)
Rk <- Uk
minEig <- eigen(Rk, symmetric = TRUE, only.values = TRUE)$val[Nvar]
EigHx[tries] <- minEig
if(PRINT){
cat("\nAt iter ", tries, " min eig = ", eigen(Rk)$val[Nvar])
}
if(1e+10*(minEig - Lp)^2 < 1e-12)
EigTest <- TRUE
}
EigHx <- EigHx[1:tries]
colnames(Rk) <- rownames(Rk) <- colnames(R)
feasible <- TRUE
if(max(abs(Rk)) > 1) feasible <- FALSE
list(Rpop = Rpop,
R=R,
Rnpd = Rk,
Lp = Lp,
ObsLp = minEig,
EigHx = EigHx,
converged = converged,
feasible = feasible,
Seed = Seed,
prbs1 = prbs1,
prbs2 = prbs2)
}
lapply(corList, RAPA, Lp, MaxIts)
} |
args <- commandArgs(trailingOnly = TRUE)
packageDir <- args[2]
registryDir <- file.path(getwd(), "inst", "extdata", "cwb", "registry")
for (corpus in list.files(registryDir)){
registryFile <- file.path(registryDir, corpus)
registry <- readLines(registryFile)
homeDir <- file.path(packageDir, "extdata", "cwb", "indexed_corpora", corpus)
infoFileLine <- grep("^INFO", registry)
infoFileBasename <- basename(gsub('^INFO\\s+(.*?)"*\\s*$', "\\1", registry[infoFileLine]))
infoFileNew <- file.path(homeDir, infoFileBasename)
if (.Platform$OS.type == "windows"){
registry[grep("^HOME", registry)] <- sprintf('HOME "%s"', homeDir)
registry[infoFileLine] <- sprintf('INFO "%s"', infoFileNew)
} else {
if (grepl(" ", homeDir)){
registry[grep("^HOME", registry)] <- sprintf('HOME "%s"', homeDir)
registry[infoFileLine] <- sprintf('INFO "%s"', infoFileNew)
} else {
registry[grep("^HOME", registry)] <- sprintf("HOME %s", homeDir)
registry[infoFileLine] <- sprintf("INFO %s", infoFileNew)
}
}
writeLines(text = registry, con = registryFile, sep = "\n")
} |
estimateSiteHRs<-function(tableList,initialHR=1,endpoint=Inf,confidence=0.95){
nDP=length(tableList)
for (k in 1:nDP){
if(dim(tableList[[k]]$ipwTable)[2]==9){
timeK=tableList[[k]]$ipwTable$eventTime
timeInd=which(timeK<=endpoint)
tableList[[k]]$ipwTable=tableList[[k]]$ipwTable[timeInd,]
tableList[[k]]$stabTable= tableList[[k]]$stabTable[timeInd,]
}else if(dim(tableList[[k]]$ipwTable)[2]==8&endpoint!=Inf){
stop('endpoint should be left as default when some riskset tables do not share event times')
}
else{
}
risksetFullShare=tableList[[k]]$ipwTable
risksetFullsShare=tableList[[k]]$stabTable
orderDP=order(risksetFullShare$sumSquareE,risksetFullShare$sumSquareUnE,decreasing=TRUE)
tableList[[k]]$ipwTable=risksetFullShare[orderDP,]
orderDP=order(risksetFullsShare$sumSquareE,risksetFullsShare$sumSquareUnE,decreasing=TRUE)
tableList[[k]]$stabTable=risksetFullsShare[orderDP,]
}
HRest=rep(0, nDP)
HRests=rep(0, nDP)
robuStdErr=rep(0, nDP)
robuStdErrS=rep(0, nDP)
output=NULL
siteTag=NULL
for (k in 1:nDP){
coxScore<-function(HR){
risksetFull=tableList[[k]]$ipwTable
y=sum(risksetFull$sumEC-risksetFull$sumC*(risksetFull$sumE*HR)/
(risksetFull$sumE*HR+risksetFull$sumUnE))
y
}
HRest[k]=nleqslv(initialHR, coxScore)$x
coxScores<-function(HR){
risksetFull=tableList[[k]]$stabTable
y=sum(risksetFull$sumEC-risksetFull$sumC*(risksetFull$sumE*HR)/
(risksetFull$sumE*HR+risksetFull$sumUnE))
y
}
HRests[k]=nleqslv(initialHR, coxScores)$x
risksetFull=tableList[[k]]$ipwTable
S0DP=risksetFull$sumE*HRest[k]+risksetFull$sumUnE
S1DP=risksetFull$sumE*HRest[k]
AA=sum(risksetFull$sumC*(S1DP/S0DP-(S1DP/S0DP)^2))
q1DP=sum((1-S1DP/S0DP)^2*risksetFull$sumSquareEC+(S1DP/S0DP)^2*risksetFull$sumSquareUnEC)
sumSquEdiffDP=risksetFull$sumSquareE-c(risksetFull$sumSquareE[-1],0)
sumSquUnEdiffDP=risksetFull$sumSquareUnE-c(risksetFull$sumSquareUnE[-1],0)
cumsum1EDP=cumsum(risksetFull$sumC/S0DP)
cumsum2EDP=cumsum(risksetFull$sumC*S1DP/(S0DP^2))
q2DP=(exp(2*log(HRest[k])))*sum(sumSquEdiffDP*cumsum1EDP^2)
q3DP=(exp(2*log(HRest[k])))*sum(sumSquEdiffDP*cumsum2EDP^2)+sum(sumSquUnEdiffDP*cumsum2EDP^2)
q4DP=HRest[k]*sum(risksetFull$sumSquareEC*(1-S1DP/S0DP)*cumsum1EDP)
q5DP=HRest[k]*sum(risksetFull$sumSquareEC*(1-S1DP/S0DP)*cumsum2EDP)+sum(risksetFull$sumSquareUnEC*(0-S1DP/S0DP)*cumsum2EDP)
q6DP=(exp(2*log(HRest[k])))*sum(sumSquEdiffDP*cumsum1EDP*cumsum2EDP)
q=q1DP+q2DP+q3DP-2*q4DP+2*q5DP-2*q6DP
robuVar=q/(AA^2)
robuStdErr[k]=robuVar^0.5
risksetFulls=tableList[[k]]$stabTable
S0DP=risksetFulls$sumE*HRests[k]+risksetFulls$sumUnE
S1DP=risksetFulls$sumE*HRests[k]
AA=sum(risksetFulls$sumC*(S1DP/S0DP-(S1DP/S0DP)^2))
q1DP=sum((1-S1DP/S0DP)^2*risksetFulls$sumSquareEC+(S1DP/S0DP)^2*risksetFulls$sumSquareUnEC)
sumSquEdiffDP=risksetFulls$sumSquareE-c(risksetFulls$sumSquareE[-1],0)
sumSquUnEdiffDP=risksetFulls$sumSquareUnE-c(risksetFulls$sumSquareUnE[-1],0)
cumsum1EDP=cumsum(risksetFulls$sumC/S0DP)
cumsum2EDP=cumsum(risksetFulls$sumC*S1DP/(S0DP^2))
q2DP=(exp(2*log(HRests[k])))*sum(sumSquEdiffDP*cumsum1EDP^2)
q3DP=(exp(2*log(HRests[k])))*sum(sumSquEdiffDP*cumsum2EDP^2)+sum(sumSquUnEdiffDP*cumsum2EDP^2)
q4DP=HRests[k]*sum(risksetFulls$sumSquareEC*(1-S1DP/S0DP)*cumsum1EDP)
q5DP=HRests[k]*sum(risksetFulls$sumSquareEC*(1-S1DP/S0DP)*cumsum2EDP)+sum(risksetFulls$sumSquareUnEC*(0-S1DP/S0DP)*cumsum2EDP)
q6DP=(exp(2*log(HRests[k])))*sum(sumSquEdiffDP*cumsum1EDP*cumsum2EDP)
q=q1DP+q2DP+q3DP-2*q4DP+2*q5DP-2*q6DP
robuVar=q/(AA^2)
robuStdErrS[k]=robuVar^0.5
lowProp=log(HRest[k])-qnorm(1-(1-confidence)/2)*robuStdErr[k]
upProp=log(HRest[k])+qnorm(1-(1-confidence)/2)*robuStdErr[k]
lowPropS=log(HRests[k])-qnorm(1-(1-confidence)/2)*robuStdErrS[k]
upPropS=log(HRests[k])+qnorm(1-(1-confidence)/2)*robuStdErrS[k]
est=c(log(HRest[k]),log(HRests[k]))
hrest=exp(est)
se=c(robuStdErr[k],robuStdErrS[k])
low=exp(c(lowProp,lowPropS))
up=exp(c(upProp,upPropS))
outputAdd=cbind(est,se,hrest,low,up)
rownames(outputAdd)=c(paste("Site ",k,"-IPW",sep = ""),paste("Site ",k,"-stabilized",sep = ""))
output=rbind(output,outputAdd)
colnames(output)=c("log HR Estimate","Standard Error","HR Estimate",
paste("HR ", confidence*100,"% CI", "-low", sep =""),
paste("HR ", confidence*100,"% CI", "-up", sep =""))
}
output
} |
effectivemass.cf <- function(cf, Thalf, type="solve", nrObs=1, replace.inf=TRUE, interval=c(0.000001,2.),
weight.factor = NULL, deltat=1, tmax=Thalf-1) {
if(missing(cf)) {
stop("cf must be provided to effectivemass.cf! Aborting...\n")
}
if(length(dim(cf)) == 2) {
Cor <- apply(cf, 2, mean)
}
else {
Cor <- cf
}
if(length(Cor) != nrObs*(tmax+1)) {
stop("cf does not have the correct time extent in effectivemass.cf! Aborting...!\n")
}
tt <- c(1:(nrObs*(tmax+1)))
cutii <- c()
cutii2 <- c()
for(i in 1:nrObs) {
cutii <- c(cutii, (i-1)*(tmax+1)+1, i*(tmax+1))
cutii2 <- c(cutii2, i*(tmax+1))
}
t2 <- tt[-cutii2]
effMass <- rep(NA, nrObs*(tmax+1))
if(type == "acosh" || type == "temporal" || type == "shifted" || type == "weighted") {
t <- tt[-cutii]
if(type == "acosh") effMass[t] <- acosh((Cor[t+1] + Cor[t-1])/2./Cor[t])
else {
if(type == "shifted" || type == "weighted") {
Ratio <- Cor[t+1]/Cor[t]
}
else Ratio <- (Cor[t]-Cor[t+1]) / (Cor[t-1]-Cor[t])
w <- 1
if(type == "weighted") {
stopifnot(!is.null(weight.factor))
w <- weight.factor
}
fn <- function(m, t, Time, Ratio, w) {
return(Ratio - ( ( exp(-m*(t+1))+exp(-m*(Time-t-1)) - w*( exp(-m*(t+1-deltat))+exp(-m*(Time-(t+1-deltat))) ) ) /
( exp(-m*t)+exp(-m*(Time-t)) - w*( exp(-m*(t-deltat))+exp(-m*(Time-(t-deltat))) ) ) ) )
}
for(i in t) {
if(is.na(Ratio[i])) effMass[i] <- NA
else if(fn(interval[1], t=(i %% (tmax+1)), Time=2*Thalf, Ratio = Ratio[i], w=w)*fn(interval[2], t=(i %% (tmax+1)), Time=2*Thalf, Ratio = Ratio[i], w=w) > 0) effMass[i] <- NA
else effMass[i] <- uniroot(fn, interval=interval, t=(i %% (tmax+1)), Time=2*Thalf, Ratio = Ratio[i], w=w)$root
}
}
}
else {
t <- tt[c(1:(length(tt)-1))]
Ratio <- Cor[t]/Cor[t+1]
if(type == "log") {
effMass[t2] <- log(Ratio[t2])
}
else {
for(t in t2) {
effMass[t] <- invcosh(Ratio[t], timeextent=2*Thalf, t=(t %% (tmax+1)))
}
}
}
if(replace.inf) effMass[is.infinite(effMass)] <- NA
return(invisible(effMass[t2]))
}
bootstrap.effectivemass <- function(cf, type="solve") {
stopifnot(inherits(cf, 'cf_meta'))
stopifnot(inherits(cf, 'cf_boot'))
deltat <- 1
if(type == "shifted" && any(names(cf) == "deltat")) {
deltat <- cf$deltat
}
Nt <- length(cf$cf0)
tmax <- cf$Time/2
if(!cf$symmetrised){
tmax <- cf$Time-1
}
nrObs <- floor(Nt/(tmax+1))
effMass <- effectivemass.cf(cf$cf0, Thalf=cf$Time/2, tmax=tmax, type=type, nrObs=nrObs, deltat=deltat, weight.factor = cf$weight.factor)
effMass.tsboot <- t(apply(cf$cf.tsboot$t, 1, effectivemass.cf, Thalf=cf$Time/2, tmax=tmax, type=type, nrObs=nrObs, deltat=deltat, weight.factor = cf$weight.factor))
deffMass=apply(effMass.tsboot, 2, cf$error_fn, na.rm=TRUE)
ret <- list(t.idx=c(1:(tmax)),
effMass=effMass, deffMass=deffMass, effMass.tsboot=effMass.tsboot,
opt.res=NULL, t1=NULL, t2=NULL, type=type, useCov=NULL, CovMatrix=NULL, invCovMatrix=NULL,
boot.R = cf$boot.R, boot.l = cf$boot.l, seed = cf$seed,
massfit.tsboot=NULL, Time=cf$Time, nrObs=nrObs, dof=NULL,
chisqr=NULL, Qval=NULL
)
ret$cf <- cf
ret$t0 <- effMass
ret$t <- effMass.tsboot
ret$se <- apply(ret$t, MARGIN=2L, FUN=cf$error_fn, na.rm=TRUE)
attr(ret, "class") <- c("effectivemass", class(ret))
return(ret)
}
fit.constant <- function(M, y) {
res <- list()
if(is.matrix(M)){
m.eff <- sum(M %*% y)/sum(M)
res$value <- (y-m.eff) %*% M %*% (y-m.eff)
}else{
m.eff <- sum(M*y)/sum(M)
res$value <- sum(M*(y-m.eff)^2)
}
res$par <- c(m.eff)
return(res)
}
fit.effectivemass <- function(cf, t1, t2, useCov=FALSE, replace.na=TRUE, boot.fit=TRUE, autoproceed=FALSE, every) {
stopifnot(inherits(cf, 'effectivemass'))
tmax <- cf$Time/2
if(!cf$cf$symmetrised) {
tmax <- cf$Time-1
}
stopifnot(t1 < t2)
stopifnot(0 <= t1)
stopifnot(t2 <= tmax)
cf$effmassfit <- list()
cf$t1 <- t1
cf$effmassfit$t1 <- t1
cf$t2 <- t2
cf$effmassfit$t2 <- t2
cf$useCov <- useCov
cf$effmassfit$useCov <- useCov
cf$replace.na <- replace.na
cf$effmassfit$replace.na <- replace.na
ii <- c()
if(missing(every)){
for(i in 1:cf$nrObs) {
ii <- c(ii, ((i-1)*tmax+t1+1):((i-1)*tmax+t2+1))
}
}else{
for(i in 1:cf$nrObs) {
ii <- c(ii, seq((i-1)*tmax+t1+1, (i-1)*tmax+t2+1, by=every))
}
}
if(any(is.na(cf$effMass[ii]))) {
ii.na <- which(is.na(cf$t0[ii]))
ii <- ii[-ii.na]
}
CovMatrix <- cf$cf$cov_fn(cf$t[,ii])
M <- diag(1/cf$se[ii]^2)
cf$CovMatrix <- CovMatrix
cf$effmassfit$CovMatrix <- CovMatrix
tb.save <- cf$t
ii.remove <- c()
if(replace.na && any(is.na(cf$t))) {
for(k in ii) {
cf$t[is.nan(cf$t[,k]),k] <- NA
if(any(is.na(cf$t[,k]))) {
jj <- which(is.na(cf$t[,k]))
if( length(cf$t[-jj, k]) > length(jj) ) {
rj <- sample.int(n=length(cf$t[-jj, k]), size=length(jj), replace=FALSE)
cf$t[jj, k] <- cf$t[-jj, k][rj]
}
else {
ii.remove <- c( ii.remove, which( ii == k ) )
}
}
}
}
if( length( ii.remove ) > 0 ) {
ii <- ii[ -ii.remove ]
message("Due to NAs we have removed the time slices ", ii.remove-1, " from the fit\n")
}
cf$ii <- ii
cf$dof <- length(ii)-1
cf$effmassfit$ii <- ii
cf$effmassfit$dof <- length(ii)-1
if(useCov) {
M <- try(invertCovMatrix(cf$t[,ii], boot.samples=TRUE), silent=TRUE)
if(inherits(M, "try-error")) {
if( autoproceed ){
M <- M[ -ii.remove, -ii.remove]
warning("[fit.effectivemass] inversion of variance covariance matrix failed, continuing with uncorrelated chi^2\n")
useCov <- FALSE
} else {
stop("[fit.effectivemass] inversion of variance covariance matrix failed!\n")
}
}
}
else {
if( length( ii.remove ) > 0 ) {
M <- M[ -ii.remove, -ii.remove]
M <- diag(M)
}
}
opt.res <- fit.constant(M=M, y = cf$effMass[ii])
par <- opt.res$par
cf$chisqr <- opt.res$value
cf$Qval <- 1-pchisq(cf$chisqr, cf$dof)
cf$effmassfit$chisqr <- opt.res$value
cf$effmassfit$Qval <- 1-pchisq(cf$chisqr, cf$dof)
if( boot.fit ) {
massfit.tsboot <- array(0, dim=c(cf$boot.R, 2))
for(i in c(1:cf$boot.R)) {
opt <- fit.constant(M=M, y = cf$t[i,ii])
massfit.tsboot[i, 1] <- opt$par[1]
massfit.tsboot[i, 2] <- opt$value
}
cf$massfit.tsboot <- massfit.tsboot
}
else {
cf$massfit.tsboot <- NA
}
cf$effmassfit$t <- cf$massfit.tsboot
cf$effmassfit$t0 <- c(opt.res$par, opt.res$value)
cf$effmassfit$se <- cf$cf$error_fn(massfit.tsboot[c(1:(dim(massfit.tsboot)[1]-1)),1])
cf$effmassfit$cf <- cf$cf
cf$t <- tb.save
if(!is.matrix(M)){
M <- diag(M)
}
cf$invCovMatrix <- M
cf$opt.res <- opt.res
cf$useCov <- useCov
cf$effmassfit$useCov <- useCov
attr(cf, "class") <- c("effectivemassfit", class(cf))
return(invisible(cf))
}
summary.effectivemass <- function (object, ...) {
effMass <- object
cat("\n ** effective mass values **\n\n")
cat("no. measurements\t=\t", effMass$N, "\n")
cat("boot.R\t=\t", effMass$boot.R, "\n")
cat("boot.l\t=\t", effMass$boot.l, "\n")
cat("Time extent\t=\t", effMass$Time, "\n")
cat("total NA count in bootstrap samples:\t", length(which(is.na(effMass$t))), "\n")
cat("values with errors:\n\n")
print(data.frame(t= effMass$t.idx-1, m = effMass$t0, dm = effMass$se))
}
summary.effectivemassfit <- function(object, ..., verbose = FALSE) {
effMass <- object
cat("\n ** Result of effective mass analysis **\n\n")
cat("no. measurements\t=\t", effMass$N, "\n")
cat("type\t=\t", effMass$type, "\n")
cat("boot.R\t=\t", effMass$boot.R, "\n")
cat("boot.l\t=\t", effMass$boot.l, "\n")
cat("Time extent\t=\t", effMass$Time, "\n")
cat("NA count in fitted bootstrap samples:\t", length(which(is.na(effMass$t[,effMass$ii]))),
"(",100*length(which(is.na(effMass$t[,effMass$ii])))/ length(effMass$t[,effMass$ii]), "%)\n")
cat("NAs replaced in fit:", effMass$effmassfit$replace.na, "\n")
cat("time range from", effMass$effmassfit$t1, " to ", effMass$effmassfit$t2, "\n")
cat("No correlation functions", effMass$nrObs, "\n")
if(verbose) {
cat("values with errors:\n\n")
print(data.frame(t= effMass$t, m = effMass$t0, dm = effMass$se))
}
cat("correlated fit\t=\t", effMass$effmassfit$useCov, "\n")
cat("m\t=\t", effMass$effmassfit$t0[1], "\n")
cat("dm\t=\t", effMass$effmassfit$se[1], "\n")
cat("chisqr\t=\t", effMass$effmassfit$chisqr, "\n")
cat("dof\t=\t", effMass$effmassfit$dof, "\n")
cat("chisqr/dof=\t",
effMass$effmassfit$chisqr/effMass$effmassfit$dof, "\n")
cat("Quality of the fit (p-value):", effMass$effmassfit$Qval, "\n")
}
print.effectivemassfit <- function (x, ..., verbose = FALSE) {
effMass <- x
summary(effMass, verbose = verbose, ...)
}
plot.effectivemass <- function (x, ..., ref.value, col, col.fitline) {
effMass <- x
if(missing(col)) {
col <- c("black", rainbow(n=(effMass$nrObs-1)))
}
if(missing(col.fitline)) {
col.fitline <- col[1]
}
t <- effMass$t.idx
suppressWarnings(plotwitherror(x=t-1, y=effMass$effMass[t], dy=effMass$deffMass[t], col=col[1], ...))
if(effMass$nrObs > 1) {
for(i in 1:(effMass$nrObs-1)) {
suppressWarnings(plotwitherror(x=t-1, y=effMass$t0[t+i*length(t)], dy=effMass$se[t+i*length(t)], rep=TRUE, col=col[i+1], ...))
}
}
if(!missing(ref.value)) {
abline(h=ref.value, col=c("darkgreen"), lwd=c(3))
}
if(!is.null(effMass$effmassfit)){
lines(x=c(effMass$t1,effMass$t2),
y=c(effMass$effmassfit$t0[1],effMass$effmassfit$t0[1]),
col=col.fitline,
lwd=1.3)
pcol <- col2rgb(col.fitline,alpha=TRUE)/255
pcol[4] <- 0.65
pcol <- rgb(red=pcol[1],green=pcol[2],blue=pcol[3],alpha=pcol[4])
rect(xleft=effMass$t1, ybottom=effMass$effmassfit$t0[1]-effMass$effmassfit$se[1],
xright=effMass$t2, ytop=effMass$effmassfit$t0[1]+effMass$effmassfit$se[1],
col=pcol,
border=NA)
}
} |
dccTabs <- function(children=NULL, id=NULL, value=NULL, className=NULL, content_className=NULL, parent_className=NULL, style=NULL, parent_style=NULL, content_style=NULL, vertical=NULL, mobile_breakpoint=NULL, colors=NULL, loading_state=NULL, persistence=NULL, persisted_props=NULL, persistence_type=NULL) {
props <- list(children=children, id=id, value=value, className=className, content_className=content_className, parent_className=parent_className, style=style, parent_style=parent_style, content_style=content_style, vertical=vertical, mobile_breakpoint=mobile_breakpoint, colors=colors, loading_state=loading_state, persistence=persistence, persisted_props=persisted_props, persistence_type=persistence_type)
if (length(props) > 0) {
props <- props[!vapply(props, is.null, logical(1))]
}
component <- list(
props = props,
type = 'Tabs',
namespace = 'dash_core_components',
propNames = c('children', 'id', 'value', 'className', 'content_className', 'parent_className', 'style', 'parent_style', 'content_style', 'vertical', 'mobile_breakpoint', 'colors', 'loading_state', 'persistence', 'persisted_props', 'persistence_type'),
package = 'dashCoreComponents'
)
structure(component, class = c('dash_component', 'list'))
} |
set.seed(1234)
test_that("themes look good", {
p <- ggdag(test_dag)
expect_identical(theme_dag, theme_dag_blank)
expect_identical(theme_dag_gray, theme_dag_grey)
expect_identical(theme_dag_gray_grid, theme_dag_grey_grid)
expect_doppelganger("theme_dag()", p + theme_dag())
expect_doppelganger("theme_dag_grid()", p + theme_dag_grid())
expect_doppelganger("theme_dag_gray()", p + theme_dag_gray())
expect_doppelganger("theme_dag_gray_grid()", p + theme_dag_gray_grid())
}) |
sat <- hijack(normal_round,
mean = 1500,
sd = 100,
name = "SAT",
digits = 0,
min = 0,
max = 2400
) |
lmExact <- function(
x = 1:20,
y = NULL,
ny = 1,
intercept = 0,
slope = 0.1,
error = 0.1,
seed = 123,
pval = NULL,
rsq = NULL,
plot = TRUE,
verbose = FALSE,
...)
{
lmEnv <- new.env()
x <- rep(x, each = ny)
if (length(error) == 1) {
set.seed(seed)
errorVec <- rnorm(length(x), 0, error)
} else {
error <- as.numeric(error)
if (length(error) != length(x)) stop("'error' must have same length as 'x'!")
errorVec <- error
}
if (!is.null(y)) {
if (length(x) != length(y)) stop("'x' and 'y' must be of same length!")
}
optFct <- function(slope) {
if (is.null(y)) y <- intercept + slope * x + errorVec
LM <- lm(y ~ x, ...)
RESID <- residuals(LM)
y <- intercept + slope * x + RESID
LM <- lm(y ~ x, ...)
PVAL <- summary(LM)$coefficients[2, 4]
OUT <- abs(PVAL - pval)
assign("LM", LM, envir = lmEnv)
return(OUT)
}
if (!is.null(pval)) {
OPT <- suppressWarnings(optim(slope, optFct, control = list(trace = 0, maxit = 500)))
LM <- get("LM", envir = lmEnv)
if(is.character(all.equal(pval, summary(LM)$coefficients[2, 4], tolerance = 0.01 * pval)))
print("Warning: Optimizer has not converged to the desired p-value! Try a different 'slope' starting value.")
} else
if (!is.null(rsq)) {
if (rsq < 0 | rsq > 1) stop("R-square must be in [0, 1] !")
if (is.null(y)) y <- intercept + slope * x + errorVec
rho <- sqrt(rsq)
theta <- acos(rho)
MAT <- cbind(x, y)
scaleMAT <- scale(MAT, center = TRUE, scale = FALSE)
Id <- diag(length(x))
Q <- qr.Q(qr(scaleMAT[ , 1, drop=FALSE]))
P <- tcrossprod(Q)
x2o <- (Id-P) %*% scaleMAT[ , 2]
Xc2 <- cbind(scaleMAT[ , 1], x2o)
tempY <- Xc2 %*% diag(1/sqrt(colSums(Xc2^2)))
y <- tempY[ , 2] + (1 / tan(theta)) * tempY[ , 1]
LM <- lm(y ~ x, ...)
INTER <- coef(LM)[1]
y <- y + (intercept - coef(LM)[1])
LM <- lm(y ~ x, ...)
assign("LM", LM, envir = lmEnv)
}
else {
if (is.null(y)) y <- intercept + slope * x + errorVec
LM <- lm(y ~ x, ...)
RESID <- residuals(LM)
y <- intercept + slope * x + RESID
LM <- lm(y ~ x, ...)
assign("LM", LM, envir = lmEnv)
}
LM <- get("LM", envir = lmEnv)
if (plot) {
DATA <- LM$model
plot(DATA[, 2], DATA[, 1], pch = 16, xlab = "x", ylab = "y", las = 1, ...)
abline(LM, ...)
grid()
}
if (verbose) print(summary(LM))
return(list(lm = LM, x = LM$model[, 2], y = LM$model[, 1], summary = summary(LM)))
} |
setMethod(
f = "convert",
signature = c(target = "NmModel", source = "ANY", component = "ObsNormalCombined"),
definition = function(target, source, component, options) {
ruv_add_dcl <- declaration(~0)
ruv_prop_dcl <- declaration(~0)
values <- parameter_values(component)
if (component@additive_term) {
target <- target + nm_sigma("add", initial = values["var_add"])
eps_index <- index_of(target@facets$NmSigmaParameterFacet, "add")
ruv_add_dcl <- dcl_substitute(declaration(~eps[i]), c(i = eps_index))
}
if (component@proportional_term) {
target <- target + nm_sigma("prop", initial = values["var_prop"])
eps_index <- index_of(target@facets$NmSigmaParameterFacet, "prop")
ruv_prop_dcl <- dcl_substitute(declaration(~f*eps[i]), c(i = eps_index))
}
ipred_dcl <- component@prediction
if (vec_size(source@facets$CompartmentFacet@entries) > 0) {
ipred_dcl <- replace_compartment_references(ipred_dcl, target, source)
}
f <- dcl_id(ipred_dcl)
if (is.null(f[[1]])) {
f <- dcl_def(ipred_dcl)
ipred_dcl <- NULL
}
ruv_dcl <- vec_c(declaration(y~f), ruv_add_dcl, ruv_prop_dcl) %>%
dcl_sum() %>%
dcl_substitute(
list(
f = f
)
)
d <- vec_c(ipred_dcl,
ruv_dcl)
target <- target + nm_error(statement = as_statement(d))
target
}
)
replace_compartment_references <- function(dcl, target, source){
if (any(c("C","A","dadt") %in% dcl_vars_chr(dcl))) {
conc_dcls <- as.list(generate_concentration_substitutions(source@facets[["CompartmentFacet"]]@entries))
compartment_indicies <- name_index_map(target@facets$NmCompartmentFacet)
dcl <- dcl %>%
dcl_substitute(substitutions = conc_dcls) %>%
dcl_substitute_index("A", compartment_indicies) %>%
dcl_substitute_index("dadt", compartment_indicies)
}
return(dcl)
}
generate_concentration_substitutions <- function(cmps){
names <- names(cmps)
volume <- vec_c(!!!unname(purrr::map(cmps, "volume")))
d <- dcl_substitute(declaration(C[name]~A[name]),
substitutions = list(name = names))
dcl_devide(d, volume)
} |
source("~/repo/instrument-directionality/scripts/simulation-functions.r")
library(devtools)
load_all()
devtools::install_github("MRCIEU/TwoSampleMR")
library(TwoSampleMR)
bp <- read.table(system.file(package="TwoSampleMR", "data/DebbieData_2.txt"))
names(bp) <- c("beta.exposure", "se.exposure", "beta.outcome", "se.outcome")
bp$mr_keep <- TRUE
bp$id.exposure <- bp$id.outcome <- bp$exposure <- bp$outcome <- 1
bp$SNP <- paste0("SNP", 1:nrow(bp))
a <- mr_all(bp)
r1 <- mr_rucker(bp[1:3,])
r2 <- mr_rucker_cooksdistance(bp[1:3,])
r1$selected
r2$selected
a1 <- mr_rucker(bp)
a <- mr_rucker_cooksdistance(bp)
b <- mr_rucker_bootstrap(bp)
bp2 <- subset(bp, ! SNP %in% a$removed_snps)
c <- mr_rucker_bootstrap(bp2)
pdf("rucker_bootstrap.pdf", width=10, height=10)
gridExtra::grid.arrange(
b$q_plot + labs(title="All variants Rucker bootstrap"),
c$q_plot + labs(title="Excluding Cooks D > 4/n Rucker bootstrap"),
b$e_plot + labs(title="All variants Rucker bootstrap"),
c$e_plot + labs(title="Excluding Cooks D > 4/n Rucker bootstrap"),
ncol=2
)
dev.off()
res1 <- array(0, 100)
res2 <- array(0, 100)
res3 <- array(0, 100)
for(i in 1:100)
{
message(i)
bp3 <- bp
index <- sample(1:nrow(bp3), replace=FALSE)
bp3$beta.outcome <- bp3$beta.outcome[index]
bp3$se.outcome <- bp3$se.outcome[index]
r1 <- mr_rucker_cooksdistance(bp3)
r2 <- rucker_bootstrap(bp3)
r3 <- rucker_bootstrap(subset(bp3, ! SNP %in% r1$removed_snps))
res1[i] <- r1$selected$P
res2[i] <- r2$res$P[5]
res3[i] <- r3$res$P[5]
}
res4 <- array(0, 100)
for(i in 1:100)
{
message(i)
bp3 <- bp
index <- sample(1:nrow(bp3), replace=FALSE)
bp3$beta.outcome <- bp3$beta.outcome[index]
bp3$se.outcome <- bp3$se.outcome[index]
res4[i] <- with(bp3, mr_ivw(beta.exposure, beta.outcome, se.exposure, se.outcome))$pval
}
a <- influence.measures(mod)
cooks.distance(mod) > 4/nrow(bp)
max(cooks.distance(mod))
a <- mr_all(bp)
mr_scatter_plot(mr(bp), bp)
mr_scatter_plot(mr(bp2), bp2)
a$rucker$rucker
n1 <- 50000
n2 <- 50000
nsnp <- 50
effs <- make_effs(ninst1=nsnp, var_xy=0.2, var_g1x=0.5, var_g1y=0, mu_g1y=0)
pop1 <- make_pop(effs, n1)
pop2 <- make_pop(effs, n2)
dat1 <- get_effs(pop1$x, pop1$y, pop1$G1)
dat2 <- get_effs(pop2$x, pop2$y, pop2$G1)
datA <- recode_dat(make_dat(dat1, dat2))
a <- mr_all(datA)
datAp <- subset(datA, pval.exposure < 5e-8)
dim(datAp)
b <- mr_all(datAp)
plot(beta.outcome ~ beta.exposure, datA)
plot(beta.outcome ~ beta.exposure, datAp)
a$rucker$q_plot
b$rucker$q_plot
a$rucker$e_plot
a$res
with(datA, mr_mode(beta.exposure, beta.outcome, se.exposure, se.outcome))
effs <- make_effs(ninst1=nsnp, var_xy=0.05, var_g1x=0.2, var_g1y=0.01, mu_g1y=0)
pop1 <- make_pop(effs, n1)
pop2 <- make_pop(effs, n2)
dat1 <- get_effs(pop1$x, pop1$y, pop1$G1)
dat2 <- get_effs(pop2$x, pop2$y, pop2$G1)
datB <- recode_dat(make_dat(dat1, dat2))
b <- mr_all(datB)
b$rucker$q_plot
b$rucker$e_plot
r <- rucker_bootstrap(datB)
plot(beta.outcome ~ beta.exposure, datB)
r$q_plot
mr_pleiotropy_test(datB)
effs <- make_effs(ninst1=nsnp, var_xy=0.5, var_g1x=0.5, var_g1y=0, mu_g1y=0.1)
pop1 <- make_pop(effs, n1)
pop2 <- make_pop(effs, n2)
dat1 <- get_effs(pop1$x, pop1$y, pop1$G1)
dat2 <- get_effs(pop2$x, pop2$y, pop2$G1)
datC <- recode_dat(make_dat(dat1, dat2))
run_rucker(datC)
plot(beta.outcome ~ beta.exposure, datC)
effs <- make_effs(ninst1=nsnp, var_xy=0.5, var_g1x=0.1, var_g1y=0.002, mu_g1y=0.1)
pop1 <- make_pop(effs, n1)
pop2 <- make_pop(effs, n2)
dat1 <- get_effs(pop1$x, pop1$y, pop1$G1)
dat2 <- get_effs(pop2$x, pop2$y, pop2$G1)
datD <- recode_dat(make_dat(dat1, dat2))
plot(beta.outcome ~ beta.exposure, datD)
d <- mr_all(datD)
d$rucker$q_plot
plot(beta.outcome ~ beta.exposure, datD)
param <- expand.grid(
nsim = c(1:50),
nsnp = c(5,20,50),
nid1 = 50000,
nid2 = 50000,
var_xy = c(0, 0.05, 0.1, 0.5),
var_g1x = c(0, 0.025, 0.1),
mu_g1y = c(-0.1, 0, 0.1)
)
dim(param)
out <- list()
for(i in 1:nrow(param))
{
effs <- make_effs(ninst1=param$nsnp[i], var_xy=param$var_xy[i], var_g1x=param$var_g1x[i], mu_g1y=param$mu_g1y[i])
pop1 <- make_pop(effs, param$nid1[i])
pop2 <- make_pop(effs, param$nid2[i])
dat1 <- get_effs(pop1$x, pop1$y, pop1$G1)
dat2 <- get_effs(pop2$x, pop2$y, pop2$G1)
dat <- recode_dat(make_dat(dat1, dat2))
out <- run_rucker(dat)
out$param <- param[i,]
res[[i]] <- out
}
xi <- 1:5
yi <- c(0,2,14,19,30)
mi <- rep(40, 5)
summary(lmI <- glm(cbind(yi, mi -yi) ~ xi, family = binomial))
signif(cooks.distance(lmI), 3)
(imI <- influence.measures(lmI))
for(i in 1:BootSim){
BXG = rnorm(length(BetaXG),BetaXG,seBetaXG)
BYG = rnorm(length(BetaYG),BetaYG,seBetaYG)
if(weights==1){W = BXG^2/seBetaYG^2}
if(weights==2){W = 1/(seBetaYG^2/BXG^2 + (BYG^2)*seBetaXG^2/BXG^4)}
BIVw = BIV*sqrt(W)
sW = sqrt(W)
IR = lm(BIVw ~ -1+sW);IVW[i] = IR$coef[1]
MR = lm(BIVw ~ sW);E[i] = MR$coef[2]
DF1 = length(BetaYG)-1
phi_IVW = summary(IR)$sigma^2
QQ[i] = DF1*phi_IVW
DF2 = length(BetaYG)-2
phi_E = summary(MR)$sigma^2
QQd[i] = DF2*phi_E
Qp = 1-pchisq(Q,DF1)
if(QQ[i] <= qchisq(1-alpha,DF1)){Mod[i]=1}
if(QQ[i] >= qchisq(1-alpha,DF1)){Mod[i]=2}
if(QQ[i] >= qchisq(1-alpha,DF1) & QQ[i] - QQd[i] >= qchisq(1-alpha,1)){Mod[i]=3}
if(QQ[i] >= qchisq(1-alpha,DF1)& QQ[i] - QQd[i] >= qchisq(1-alpha,1)& QQd[i] >=qchisq(1-alpha,DF2)){Mod[i]=4}
} |
gl.report.callrate <- function(x, method="loc", boxplot="adjusted", range=1.5, verbose=NULL) {
funname <- match.call()[[1]]
build <- "Jacob"
if (is.null(verbose)){
if(!is.null(x@other$verbose)){
verbose <- x@other$verbose
} else {
verbose <- 2
}
}
if (verbose < 0 | verbose > 5){
cat(paste(" Warning: Parameter 'verbose' must be an integer between 0 [silent] and 5 [full report], set to 2\n"))
verbose <- 2
}
if (verbose >= 1){
if(verbose==5){
cat("Starting",funname,"[ Build =",build,"]\n")
} else {
cat("Starting",funname,"\n")
}
}
if(class(x)!="genlight") {
stop("Fatal Error: genlight object required!\n")
}
if (all(x@ploidy == 1)){
cat(" Processing Presence/Absence (SilicoDArT) data\n")
} else if (all(x@ploidy == 2)){
cat(" Processing a SNP dataset\n")
} else {
stop("Fatal Error: Ploidy must be universally 1 (fragment P/A data) or 2 (SNP data)!\n")
}
if (!x@other$loc.metrics.flags$monomorphs) {
if(verbose >= 1){cat(" Warning: genlight object contains monomorphic loci which will be factored into Callrate calculations\n")}
}
if (!x@other$loc.metrics.flags$monomorphs){
x <- utils.recalc.callrate(x, verbose=0)
}
p1 <- p2 <- NULL
if(method == "loc") {
callrate <- x@other$loc.metrics$CallRate
if (all(x@ploidy==2)){
title1 <- paste0("SNP data - Call Rate by Locus")
} else {
title1 <- paste0("Fragment P/A data - Call Rate by Locus")
}
p1 <- ggplot(data.frame(callrate), aes(y=callrate))+geom_boxplot() +coord_flip()+theme()+xlim(range=c(-1,1))+ylim(0,1)+ylab(" ")+ggtitle(title1)
p2 <- ggplot(data.frame(callrate), aes(x=callrate))+geom_histogram(bins = 50)+ coord_cartesian(xlim = c(0,1))
grid.arrange(p1,p2)
cat(" Reporting Call Rate by Locus\n")
cat(" No. of loci =", nLoc(x), "\n")
cat(" No. of individuals =", nInd(x), "\n")
cat(" Miniumum Call Rate: ",round(min(x@other$loc.metrics$CallRate),2),"\n")
cat(" Maximum Call Rate: ",round(max(x@other$loc.metrics$CallRate),2),"\n")
cat(" Average Call Rate: ",round(mean(x@other$loc.metrics$CallRate),3),"\n")
cat(" Missing Rate Overall: ",round(sum(is.na(as.matrix(x)))/(nLoc(x)*nInd(x)),2),"\n")
retained <- array(NA,21)
pc.retained <- array(NA,21)
filtered <- array(NA,21)
pc.filtered <- array(NA,21)
percentile <- array(NA,21)
for (index in 1:21) {
i <- (index-1)*5
percentile[index] <- i/100
retained[index] <- length(callrate[callrate>=percentile[index]])
pc.retained[index] <- round(retained[index]*100/nLoc(x),1)
filtered[index] <- nLoc(x) - retained[index]
pc.filtered[index] <- 100 - pc.retained[index]
}
df <- cbind(percentile,retained,pc.retained,filtered,pc.filtered)
df <- data.frame(df)
colnames(df) <- c("Threshold", "Retained", "Percent", "Filtered", "Percent")
df <- df[order(-df$Threshold),]
rownames(df) <- NULL
}
if(method == "ind") {
ind.call.rate <- 1 - rowSums(is.na(as.matrix(x)))/nLoc(x)
if (all(x@ploidy==2)){
title1 <- paste0("SNP data (DArTSeq)\nCall Rate by Individual")
} else {
title1 <- paste0("Fragment P/A data (SilicoDArT)\nCall Rate by Individual")
}
p1 <- ggplot(data.frame(ind.call.rate), aes(y=ind.call.rate))+geom_boxplot() +coord_flip()+theme()+xlim(range=c(-1,1))+ylim(0,1)+ylab(" ")+ggtitle(title1)
p2 <- ggplot(data.frame(ind.call.rate), aes(x=ind.call.rate))+geom_histogram(bins = 50)+ coord_cartesian(xlim = c(0,1))
grid.arrange(p1,p2)
cat(" Reporting Call Rate by Individual\n")
cat(" No. of loci =", nLoc(x), "\n")
cat(" No. of individuals =", nInd(x), "\n")
cat(" Miniumum Call Rate: ",round(min(ind.call.rate),2),"\n")
cat(" Maximum Call Rate: ",round(max(ind.call.rate),2),"\n")
cat(" Average Call Rate: ",round(mean(ind.call.rate),3),"\n")
cat(" Missing Rate Overall: ",round(sum(is.na(as.matrix(x)))/(nLoc(x)*nInd(x)),2),"\n\n")
retained <- array(NA,21)
pc.retained <- array(NA,21)
filtered <- array(NA,21)
pc.filtered <- array(NA,21)
percentile <- array(NA,21)
crate <- ind.call.rate
for (index in 1:21) {
i <- (index-1)*5
percentile[index] <- i/100
retained[index] <- length(crate[crate>=percentile[index]])
pc.retained[index] <- round(retained[index]*100/nInd(x),1)
filtered[index] <- nInd(x) - retained[index]
pc.filtered[index] <- 100 - pc.retained[index]
}
df <- cbind(percentile,retained,pc.retained,filtered,pc.filtered)
df <- data.frame(df)
colnames(df) <- c("Threshold", "Retained", "Percent", "Filtered", "Percent")
df <- df[order(-df$Threshold),]
rownames(df) <- NULL
}
if (verbose >= 1) {
cat("Completed:",funname,"\n")
}
return(list(callrates=df, boxplot=p1, hist=p2))
} |
library(patternplot)
library(png)
library(ggplot2)
group1<-c("Wind", "Hydro", "Solar", "Coal", "Natural Gas", "Oil")
pct1<-c(12, 15, 8, 22, 18, 25)
label1<-paste(group1, " \n ", pct1 , "%", sep="")
group2<-c("Renewable", "Non-Renewable")
pct2<-c(35, 65)
label2<-paste(group2, " \n ", pct2 , "%", sep="")
pattern.type1<-rep(c( "blank"), times=6)
pattern.type2<-c('grid', 'blank')
pattern.type.inner<-"blank"
pattern.color1<-rep('white', length(group1))
pattern.color2<-rep('white', length(group2))
background.color1<-c("darkolivegreen1", "white", "indianred",
"gray81", "white", "sandybrown" )
background.color2<-c("seagreen", "deepskyblue")
density1<-rep(10, length(group1))
density2<-rep(10, length(group2))
pattern.line.size1=rep(6, length(group1))
pattern.line.size2=rep(2, length(group2))
pattern.line.size.inner=1
g<-patternrings2(group1, group2, pct1,pct2, label1, label2,
label.size1=3, label.size2=3.5, label.color1='black', label.color2='black',
label.distance1=0.75, label.distance2=1.4, pattern.type1, pattern.type2,
pattern.color1,pattern.color2,pattern.line.size1, pattern.line.size2,
background.color1, background.color2,density1=rep(10, length(group1)),
density2=rep(15, length(group2)),pixel=10, pattern.type.inner, pattern.color.inner="black",
pattern.line.size.inner, background.color.inner="white", pixel.inner=6,
density.inner=5, frame.color='black',frame.size=1,r1=2.45, r2=4.25, r3=5)
g<-g+annotate(geom="text", x=0, y=0, label="Earth's Energy",color="black",size=5)
g<-g+scale_x_continuous(limits=c(-6, 6))+scale_y_continuous(limits=c(-6, 6))
g
g<-patternrings2(group1, group2, pct1,pct2, label1, label2, label.size1=3, label.size2=3.5,
label.color1='black', label.color2='black', label.distance1=0.7, label.distance2=1.4,
pattern.type1, pattern.type2, pattern.color1,pattern.color2,pattern.line.size1,
pattern.line.size2, background.color1, background.color2,density1=rep(10, length(group1)),
density2=rep(15, length(group2)),pixel=10, pattern.type.inner, pattern.color.inner="black",
pattern.line.size.inner, background.color.inner="white", pixel.inner=1, density.inner=2,
frame.color='black',frame.size=1, r1=0.005, r2=4, r3=4.75)
g<-g+scale_x_continuous(limits=c(-6, 6))+scale_y_continuous(limits=c(-6, 6))
g |
data(gaussplot_sample_data)
samp_dat <-
gaussplot_sample_data[,1:3]
bad_data1 <- cbind(samp_dat[,c(1,3)], yvalz = rnorm(nrow(samp_dat)))
bad_data2 <- cbind(samp_dat[,c(1,2)], Z_values = rnorm(nrow(samp_dat)))
test_that("characterize_gaussian_fits() fails when nonsense is supplied", {
expect_error(characterize_gaussian_fits("steve"))
expect_error(characterize_gaussian_fits(c("a", "b", "c")))
expect_error(characterize_gaussian_fits())
expect_error(characterize_gaussian_fits(samp_dat[,1:2]))
expect_error(characterize_gaussian_fits(bad_data1))
expect_error(characterize_gaussian_fits(bad_data2))
expect_error(characterize_gaussian_fits(samp_dat, method = "steve"))
expect_error(characterize_gaussian_fits(samp_dat, method = 4))
expect_error(characterize_gaussian_fits(data.frame(rnorm(100))))
expect_error(characterize_gaussian_fits(samp_dat,
comparison_method = 2))
expect_error(characterize_gaussian_fits(samp_dat,
comparison_method = "yes"))
expect_error(characterize_gaussian_fits(samp_dat,
comparison_method = c(2, 5)))
expect_error(characterize_gaussian_fits(samp_dat,
maxiter = "2"))
expect_error(characterize_gaussian_fits(samp_dat,
simplify = "yes"))
})
gauss_fit_ue <-
fit_gaussian_2D(samp_dat,
method = "elliptical",
constrain_orientation = "unconstrained")
gauss_fit_uel <-
fit_gaussian_2D(samp_dat,
method = "elliptical_log",
constrain_orientation = "unconstrained")
gauss_fit_uel_CA <-
fit_gaussian_2D(samp_dat,
method = "elliptical_log",
constrain_orientation = "unconstrained",
constrain_amplitude = TRUE)
gauss_fit_cir <-
fit_gaussian_2D(samp_dat,
method = "circular")
bad_models_list1 <-
list(
unconstrained_elliptical = gauss_fit_ue,
unconstrained_elliptical_log = gauss_fit_uel,
circular = gauss_fit_cir
)
bad_models_list2 <-
list(
unconstrained_elliptical_log = gauss_fit_uel,
unconstrained_elliptical_log = gauss_fit_uel,
unconstrained_elliptical_log = gauss_fit_uel
)
bad_models_list3 <-
list(
unconstrained_elliptical_log = gauss_fit_uel
)
bad_models_list4 <-
list(
unconstrained_elliptical_log = gauss_fit_uel,
gauss_fit_uel_CA = gauss_fit_uel_CA
)
bad_models_list5 <-
list(
unconstrained_elliptical_log = gauss_fit_uel,
unconstrained_elliptical_log = gauss_fit_uel,
gauss_fit_uel_CA = gauss_fit_uel_CA
)
test_that("characterize_gaussian_fits() fails bad models are supplied", {
expect_error(characterize_gaussian_fits(bad_models_list1))
expect_error(characterize_gaussian_fits(bad_models_list2))
expect_error(characterize_gaussian_fits(bad_models_list3))
expect_error(characterize_gaussian_fits(bad_models_list4))
expect_error(characterize_gaussian_fits(bad_models_list5))
})
no_models <-
characterize_gaussian_fits(data = samp_dat)
gauss_fit_uel <-
fit_gaussian_2D(samp_dat,
method = "elliptical_log",
constrain_orientation = "unconstrained",
constrain_amplitude = FALSE)
gauss_fit_zer <-
fit_gaussian_2D(samp_dat,
method = "elliptical_log",
constrain_orientation = 0,
constrain_amplitude = FALSE)
gauss_fit_ngo <-
fit_gaussian_2D(samp_dat,
method = "elliptical_log",
constrain_orientation = -1,
constrain_amplitude = FALSE)
good_models <-
list(
gauss_fit_uel = gauss_fit_uel,
gauss_fit_zer = gauss_fit_zer,
gauss_fit_ngo = gauss_fit_ngo
)
with_models <-
characterize_gaussian_fits(good_models) |
pamr.fdr <- function(trained.obj, data, nperms=100, xl.mode=c("regular","firsttime","onetime","lasttime"),
xl.time=NULL, xl.prevfit=NULL){
this.call <- match.call()
xl.mode=match.arg(xl.mode)
if(xl.mode=="regular" | xl.mode=="firsttime"){
y= data$y
m=nrow(data$x)
nclass=length(table(y))
threshold <- trained.obj$threshold
n.threshold=length(threshold)
tt <- scale((trained.obj$centroids - trained.obj$centroid.overall)/trained.obj$sd, FALSE,
trained.obj$threshold.scale * trained.obj$se.scale)
ttstar <- array(NA,c(m,nperms,nclass))
results=NULL
pi0=NULL
}
if(xl.mode=="onetime" | xl.mode=="lasttime"){
y=xl.prevfit$y
m=xl.prevfit$m
nclass=xl.prevfit$nclass
threshold=xl.prevfit$threshold
n.threshold=xl.prevfit$n.threshold
tt=xl.prevfit$tt
ttstar=xl.prevfit$ttstar
nperms=xl.prevfit$nperms
results=xl.prevfit$results
pi0=xl.prevfit$pi0
}
if(xl.mode=="regular"){
first=1;last=nperms
}
if(xl.mode=="firsttime"){
first=1;last=1
}
if(xl.mode=="onetime"){
first=xl.time;last=xl.time
}
if(xl.mode=="lasttime"){
first=nperms;last=nperms
}
for(i in first:last){
cat("",fill=T)
cat(c("perm=",i),fill=T)
ystar <- sample(y)
data2 <- data
data2$y <- ystar
foo<-pamr.train(data2, threshold=0, scale.sd = trained.obj$scale.sd,
threshold.scale = trained.obj$threshold.scale,
se.scale = trained.obj$se.scale, offset.percent = 50, hetero = trained.obj$hetero,
prior = trained.obj$prior, sign.contrast = trained.obj$sign.contrast)
sdstar=foo$sd-foo$offset+trained.obj$offset
ttstar[,i,] =scale((foo$centroids - foo$centroid.overall)/sdstar, FALSE,
foo$threshold.scale * foo$se.scale)
}
if(xl.mode=="regular" | xl.mode=="lasttime"){
fdr=rep(NA,n.threshold)
fdr90=rep(NA,n.threshold)
ngenes=rep(NA,n.threshold)
for(j in 1:n.threshold){
nobs=sum(drop((abs(tt)-threshold[j] > 0) %*% rep(1, ncol(tt))) > 0)
temp=abs(ttstar)-threshold[j] >0
temp2=rowSums(temp, dims=2)
nnull=colSums(temp2>0)
fdr[j]=median(nnull)/nobs
fdr90[j]=quantile(nnull,.9)/nobs
ngenes[j]=nobs
}
q1 <- quantile(ttstar, .25)
q2 <- quantile(ttstar, .75)
pi0 <- min(sum( tt> q1 & tt< q2 )/(.5*m*nclass) ,1 )
fdr <- fdr*pi0
fdr90=fdr90*pi0
fdr=pmin(fdr,1)
fdr90=pmin(fdr90,1)
results <- cbind(threshold, ngenes, fdr*ngenes, fdr, fdr90)
om=is.na(fdr)
results=results[!om,]
dimnames(results) <- list(NULL,c("Threshold", "Number of significant genes", "Median number of null genes",
"Median FDR", "90th percentile of FDR"))
y=NULL;x=NULL;m=NULL;threshold=NULL;n.threshold=NULL;tt=NULL;nperms=NULL;
ttstar=NULL
}
return(list(results=results,pi0=pi0, y=y,m=m,threshold=threshold,n.threshold=n.threshold, tt=tt,ttstar=ttstar, nperms=nperms))
} |
lexicon_loughran <- function(dir = NULL, delete = FALSE, return_path = FALSE,
clean = FALSE, manual_download = FALSE) {
load_dataset(data_name = "loughran", name = "LoughranMcDonald.rds", dir = dir,
delete = delete, return_path = return_path, clean = clean,
manual_download = manual_download)
}
download_loughran <- function(folder_path) {
file_path <- path(folder_path,
"LoughranMcDonald_MasterDictionary_2018 - LoughranMcDonald_MasterDictionary_2018.csv")
if (file_exists(file_path)) {
return(invisible())
}
download.file(url = "https://drive.google.com/uc?id=12ECPJMxV2wSalXG8ykMmkpa1fq_ur0Rf&export=download",
destfile = file_path)
}
process_loughran <- function(folder_path, name_path) {
data <- read_csv(path(folder_path, "LoughranMcDonald_MasterDictionary_2018 - LoughranMcDonald_MasterDictionary_2018.csv"),
col_types = cols_only(Word = col_character(),
Negative = col_double(),
Positive = col_double(),
Uncertainty = col_double(),
Litigious = col_double(),
Constraining = col_double(),
Superfluous = col_double()))
types <- c("Negative", "Positive", "Uncertainty", "Litigious", "Constraining", "Superfluous")
out <- list()
for (type in types) {
out[[type]] <- tibble(word = tolower(as.character(data$Word[data[[type]] != 0])),
sentiment = tolower(type))
}
write_rds(Reduce(rbind, out), name_path)
} |
context("standardisation tests")
d <- c('2019-04-18', '2019-04-14', '2019-03-31', '2019-04-03', '2019-03-30',
'2019-04-05', '2019-03-12', '2019-04-07', '2019-04-02', '2019-03-09',
'2019-04-20', '2019-04-23', '2019-03-07', '2019-03-25', '2019-03-27',
'2019-04-13', '2019-04-15', '2019-04-04', '2019-03-30', '2019-03-19')
test_that("standard will override first_date", {
expect_output(print(incidence(d, interval = "week", standard = TRUE)), "2019-03-04")
expect_output(print(incidence(d, interval = "week", standard = TRUE)), "2019-W10")
expect_output(print(incidence(d, interval = "isoweek", standard = TRUE)), "2019-W10")
expect_output(print(incidence(d, interval = "1 isoweek", standard = TRUE)), "2019-W10")
expect_output(print(incidence(d, interval = "monday week", standard = TRUE)), "2019-W10")
expect_output(print(incidence(d, interval = "week", standard = FALSE)), "2019-03-07")
expect_error(incidence(d, interval = "isoweek", standard = FALSE),
"The interval 'isoweek' implies a standard and cannot be used with `standard = FALSE`")
expect_error(incidence(d, interval = "monday week", standard = FALSE),
"The interval 'monday week' implies a standard and cannot be used with `standard = FALSE`")
expect_output(print(incidence(d, interval = "month", standard = TRUE)), "2019-03-01")
expect_output(print(incidence(d, interval = "month", standard = FALSE)), "2019-03-07")
expect_output(print(incidence(d, interval = "year", standard = TRUE)), "2019-01-01")
expect_output(print(incidence(d, interval = "year", standard = FALSE)), "2019-03-07")
}) |
"psp.weight" <-
function(svals, ips = 1, xk = 1.06){
n <- length(svals)
fvals <- double(n)
storage.mode(svals) <- "double"
f.res <- .Fortran("srpspamm",
n = as.integer(n),
svals = svals,
fvals = fvals,
as.integer(ips),
as.double(xk))
f.res$fvals} |
predict.rem <- function(object,newdata=NULL,compute=FALSE,int.range=NULL,...){
model <- object
if(!is.null(newdata)){
compute <- TRUE
xmat <- newdata
}else{
xmat <- model$mr$data
}
xmat$distance <- 0
ddfobj <- model$ds$ds$aux$ddfobj
if(ddfobj$type=="gamma"){
xmat$distance <- rep(apex.gamma(ddfobj),2)
}
xmat$offsetvalue <- 0
p.0 <- predict(model$mr,newdata=xmat,integrate=FALSE,compute=compute)$fitted
if(is.null(newdata)){
pdot <- predict(model$ds,esw=FALSE,compute=compute,
int.range=int.range)$fitted
}else{
pdot <- predict(model$ds,newdata=newdata[newdata$observer==1,],
esw=FALSE,compute=compute,int.range=int.range)$fitted
}
fitted <- p.0*pdot
if(is.null(newdata)){
names(fitted) <- model$mr$mr$data$object[model$mr$mr$data$observer==1]
}else{
names(fitted) <- newdata$object[newdata$observer==1]
}
return(list(fitted=fitted))
} |
make_seasLAI <- function(method="b90",
year,
maxlai,
winlaifrac = 0,
budburst_doy = 121,
leaffall_doy = 279,
emerge_dur = 28,
leaffall_dur = 58,
shp_optdoy=220,
shp_budburst=0.5,
shp_leaffall=10,
lai_doy = c(1,121,150,280,320,365),
lai_frac = c(0,0,0.5,1,0.5,0)) {
method <- match.arg(method, choices = c("b90", "linear", "Coupmodel"))
if (method %in% c("b90", "Coupmodel")) {
dat <- suppressWarnings(
data.table::data.table(year = year, maxlai = maxlai, winlaifrac = winlaifrac,
budburst_doy = budburst_doy, leaffall_doy = leaffall_doy,
emerge_dur = emerge_dur, leaffall_dur = leaffall_dur,
shp_optdoy = shp_optdoy, shp_budburst = shp_budburst,
shp_leaffall = shp_leaffall)
)
maxdoy <- NULL; minlai <- NULL
dat$maxdoy <- with(dat, ifelse( ((year %% 4 == 0) & (year %% 100 != 0)) | (year %% 400 == 0),
366, 365))
dat$minlai <- with(dat, winlaifrac*maxlai)
if (method == "b90") {
out <- dat[, plant_b90(minval = minlai, maxval = maxlai,
doy.incr = budburst_doy, incr.dur = emerge_dur,
doy.decr = leaffall_doy, decr.dur = leaffall_dur,
maxdoy = maxdoy),
by = year]$V1
}
if (method == "Coupmodel") {
out <- dat[, plant_coupmodel(minval = minlai, maxval = maxlai,
doy.incr = budburst_doy,
doy.max = shp_optdoy,
doy.min = leaffall_doy + leaffall_dur,
shape.incr = shp_budburst, shape.decr = shp_leaffall,
maxdoy = maxdoy),
by = year]$V1
}
} else {
dat <- data.table::data.table(year,
maxdoy = ifelse( ((year %% 4 == 0) & (year %% 100 != 0)) | (year %% 400 == 0),
366, 365),
maxlai = maxlai)
out <- dat[, plant_linear(doys = lai_doy, values = lai_frac*maxlai, maxdoy = maxdoy),
by = year]$V1
}
return(out)
} |
test_that("uses scale limits, not data limits", {
dat <- data_frame(x = c(0.1, 1:100))
dat$y <- dexp(dat$x)
base <- ggplot(dat, aes(x, y)) +
stat_function(fun = dexp)
full <- base +
scale_x_continuous(limits = c(0.1, 100)) +
scale_y_continuous()
ret <- layer_data(full)
full_log <- base +
scale_x_log10(limits = c(0.1, 100)) +
scale_y_continuous()
ret_log <- layer_data(full_log)
expect_equal(ret$y[c(1, 101)], ret_log$y[c(1, 101)])
expect_equal(range(ret$x), c(0.1, 100))
expect_equal(range(ret_log$x), c(-1, 2))
expect_false(any(is.na(ret$y)))
expect_false(any(is.na(ret_log$y)))
})
test_that("works in plots without any data", {
f <- function(x) 2*x
base <- ggplot() + geom_function(fun = f, n = 6)
ret <- layer_data(base)
expect_identical(ret$x, seq(0, 1, length.out = 6))
expect_identical(ret$y, 2*ret$x)
base <- ggplot() + xlim(0, 2) + geom_function(fun = f, n = 6)
ret <- layer_data(base)
expect_identical(ret$x, seq(0, 2, length.out = 6))
expect_identical(ret$y, 2*ret$x)
base <- ggplot() + geom_function(fun = f, n = 6, xlim = c(0, 2))
ret <- layer_data(base)
expect_identical(ret$x, seq(0, 2, length.out = 6))
expect_identical(ret$y, 2*ret$x)
base <- ggplot() +
geom_function(aes(color = "fun"), fun = f, n = 6) +
scale_color_manual(values = c(fun = "
ret <- layer_data(base)
expect_identical(ret$x, seq(0, 1, length.out = 6))
expect_identical(ret$y, 2*ret$x)
expect_identical(ret$colour, rep("
})
test_that("works with discrete x", {
dat <- data_frame(x = c("a", "b"))
base <- ggplot(dat, aes(x, group = 1)) +
stat_function(fun = as.numeric, geom = "point", n = 2)
ret <- layer_data(base)
expect_equal(ret$x, new_mapped_discrete(1:2))
expect_equal(ret$y, 1:2)
})
test_that("works with transformed scales", {
dat <- data_frame(x = 1:10, y = (1:10)^2)
base <- ggplot(dat, aes(x, group = 1)) +
stat_function(fun = ~ .x^2, n = 5)
ret <- layer_data(base)
expect_equal(nrow(ret), 5)
expect_equal(ret$x, seq(1, 10, length.out = 5))
expect_equal(ret$y, ret$x^2)
ret <- layer_data(base + scale_x_log10())
expect_equal(nrow(ret), 5)
expect_equal(ret$x, seq(0, 1, length.out = 5))
expect_equal(ret$y, (10^ret$x)^2)
ret <- layer_data(base + scale_y_log10())
expect_equal(nrow(ret), 5)
expect_equal(ret$x, seq(1, 10, length.out = 5))
expect_equal(10^ret$y, ret$x^2)
ret <- layer_data(base + scale_x_log10() + scale_y_log10())
expect_equal(nrow(ret), 5)
expect_equal(ret$x, seq(0, 1, length.out = 5))
expect_equal(10^ret$y, (10^ret$x)^2)
base <- ggplot(dat, aes(x, y)) + geom_point() +
stat_function(fun = ~ .x^2, n = 5)
ret <- layer_data(base, 2)
expect_equal(nrow(ret), 5)
expect_equal(ret$x, seq(1, 10, length.out = 5))
expect_equal(ret$y, ret$x^2)
ret <- layer_data(base + scale_x_log10(), 2)
expect_equal(nrow(ret), 5)
expect_equal(ret$x, seq(0, 1, length.out = 5))
expect_equal(ret$y, (10^ret$x)^2)
ret <- layer_data(base + scale_y_log10(), 2)
expect_equal(nrow(ret), 5)
expect_equal(ret$x, seq(1, 10, length.out = 5))
expect_equal(10^ret$y, ret$x^2)
ret <- layer_data(base + scale_x_log10() + scale_y_log10(), 2)
expect_equal(nrow(ret), 5)
expect_equal(ret$x, seq(0, 1, length.out = 5))
expect_equal(10^ret$y, (10^ret$x)^2)
})
test_that("works with formula syntax", {
dat <- data_frame(x = 1:10)
base <- ggplot(dat, aes(x, group = 1)) +
stat_function(fun = ~ .x^2, geom = "point", n = 5) +
scale_x_continuous(limits = c(0, 10))
ret <- layer_data(base)
s <- seq(0, 10, length.out = 5)
expect_equal(ret$x, s)
expect_equal(ret$y, s^2)
})
test_that("Warn when drawing multiple copies of the same function", {
df <- data_frame(x = 1:3, y = letters[1:3])
p <- ggplot(df, aes(x, color = y)) + stat_function(fun = identity)
f <- function() {pdf(NULL); print(p); dev.off()}
expect_warning(f(), "Multiple drawing groups")
})
test_that("Line style can be changed via provided data", {
df <- data_frame(fun = "
base <- ggplot(df) +
geom_function(aes(color = fun), fun = identity, n = 6) +
scale_color_identity()
ret <- layer_data(base)
expect_identical(ret$x, seq(0, 1, length.out = 6))
expect_identical(ret$y, ret$x)
expect_identical(ret$colour, rep("
base <- ggplot() +
geom_function(
data = df, aes(color = fun), fun = identity, n = 6
) +
scale_color_identity()
ret <- layer_data(base)
expect_identical(ret$x, seq(0, 1, length.out = 6))
expect_identical(ret$y, ret$x)
expect_identical(ret$colour, rep("
base <- ggplot() +
stat_function(
data = df, aes(color = fun), fun = identity, n = 6
) +
scale_color_identity()
ret <- layer_data(base)
expect_identical(ret$x, seq(0, 1, length.out = 6))
expect_identical(ret$y, ret$x)
expect_identical(ret$colour, rep("
}) |
setMethod("learn.network",
c("BN"),
function(x, y = NULL, algo = "mmhc", scoring.func = "BDeu", initial.network = NULL,
alpha = 0.05, ess = 1, bootstrap = FALSE, layering = c(),
max.fanin = num.variables(y) -1, max.fanin.layers = NULL,
max.parents = num.variables(y) -1, max.parents.layers = NULL,
layer.struct = NULL, cont.nodes = c(), use.imputed.data = FALSE, use.cpc = TRUE,
mandatory.edges = NULL, ...)
{
if (is.null(y) || !inherits(y, "BNDataset"))
stop("A BNDataset must be provided in order to learn a network from it. ",
"Please take a look at the documentation of the method: > ?learn.network")
bn <- x
dataset <- y
if (num.time.steps(dataset) > 1) {
bn <- learn.dynamic.network(bn, dataset, num.time.steps(dataset), algo, scoring.func,
initial.network, alpha, ess, bootstrap, layering,
max.fanin, max.fanin.layers, max.parents, max.parents.layers,
layer.struct, cont.nodes, use.imputed.data, use.cpc,
mandatory.edges, ...)
} else {
bn <- learn.structure(bn, dataset, algo, scoring.func, initial.network, alpha, ess,
bootstrap, layering, max.fanin, max.fanin.layers, max.parents,
max.parents.layers, layer.struct, cont.nodes, use.imputed.data, use.cpc,
mandatory.edges, ...)
if (!bootstrap && algo != "mmpc")
bn <- learn.params(bn, dataset, ess, use.imputed.data)
}
return(bn)
})
setMethod("learn.network",
c("BNDataset"),
function(x, algo = "mmhc", scoring.func = "BDeu", initial.network = NULL,
alpha = 0.05, ess = 1, bootstrap = FALSE, layering = c(),
max.fanin = num.variables(x) - 1, max.fanin.layers = NULL,
max.parents = num.variables(x) - 1, max.parents.layers = NULL,
layer.struct = NULL, cont.nodes = c(), use.imputed.data = FALSE, use.cpc = TRUE,
mandatory.edges = NULL, ...)
{
dataset <- x
bn <- BN(dataset)
if (num.time.steps(dataset) > 1) {
bn <- learn.dynamic.network(bn, dataset, num.time.steps(dataset), algo, scoring.func,
initial.network, alpha, ess, bootstrap, layering,
max.fanin, max.fanin.layers, max.parents, max.parents.layers,
layer.struct, cont.nodes, use.imputed.data, use.cpc,
mandatory.edges, ...)
} else {
bn <- learn.structure(bn, dataset, algo, scoring.func, initial.network, alpha, ess,
bootstrap, layering, max.fanin, max.fanin.layers, max.parents,
max.parents.layers, layer.struct, cont.nodes, use.imputed.data,
use.cpc, mandatory.edges, ...)
if (!bootstrap && algo != "mmpc")
bn <- learn.params(bn, dataset, ess, use.imputed.data)
}
return(bn)
})
setMethod("learn.dynamic.network",
c("BN"),
function(x, y = NULL, num.time.steps = num.time.steps(y), algo = "mmhc", scoring.func = "BDeu", initial.network = NULL,
alpha = 0.05, ess = 1, bootstrap = FALSE, layering = c(),
max.fanin = num.variables(y) - 1, max.fanin.layers = NULL,
max.parents = num.variables(y) - 1, max.parents.layers = NULL,
layer.struct = NULL, cont.nodes = c(), use.imputed.data = FALSE, use.cpc = TRUE,
mandatory.edges = NULL, ...)
{
if (is.null(y) || !inherits(y, "BNDataset"))
stop("A BNDataset must be provided in order to learn a network from it. ",
"Please take a look at the documentation of the method: > ?learn.dynamic.network")
bn <- x
dataset <- y
if (num.variables(dataset) %% num.time.steps != 0) {
stop("There should be the same number of variables in each time step.")
}
nv <- num.variables(dataset) / num.time.steps
nl <- layering
ls <- layer.struct
if (is.null(layering)) {
nl <- rep(1,nv)
} else {
if (length(layering) != nv && length(layering) != num.variables(y)) {
stop("If a layering is provided, it should be either as long as the number of variables in each time step, or as the total number of variables in all the time steps.")
}
}
num.layers <- length(unique(nl))
copynl <- nl
while (length(nl) < num.variables(y)) {
nl <- c(nl, copynl+max(nl))
}
layering <- nl
if (is.null(layer.struct)) {
ls <- matrix(0, num.layers * num.time.steps, num.layers * num.time.steps)
ls[upper.tri(ls, diag=TRUE)] <- 1
layer.struct <- ls
} else {
tmp.ls <- NULL
for (i in 1:num.time.steps) {
if (i == 1)
nr <- ls
else
nr <- matrix(0, num.layers, num.layers)
for (j in 2:num.time.steps) {
if (j < i) {
nr <- cbind(nr, matrix(0, num.layers, num.layers))
} else if (i == j) {
nr <- cbind(nr, ls)
} else {
nr <- cbind(nr, matrix(1, num.layers, num.layers))
}
}
tmp.ls <- rbind(tmp.ls, nr)
}
layer.struct <- tmp.ls
}
bn <- learn.structure(bn, dataset, algo, scoring.func, initial.network, alpha, ess,
bootstrap, layering, max.fanin, max.fanin.layers, max.parents, max.parents.layers,
layer.struct, cont.nodes, use.imputed.data, use.cpc, mandatory.edges, ...)
if (!bootstrap && algo != "mmpc")
bn <- learn.params(bn, dataset, ess, use.imputed.data)
return(bn)
})
setMethod("learn.dynamic.network",
c("BNDataset"),
function(x, num.time.steps = num.time.steps(x), algo = "mmhc", scoring.func = "BDeu", initial.network = NULL,
alpha = 0.05, ess = 1, bootstrap = FALSE, layering = c(),
max.fanin = num.variables(x) - 1, max.fanin.layers = NULL,
max.parents = num.variables(x) - 1, max.parents.layers = NULL,
layer.struct = NULL, cont.nodes = c(), use.imputed.data = FALSE, use.cpc = TRUE,
mandatory.edges = NULL, ...) {
dataset <- x
bn <- BN(dataset)
if (num.variables(x) %% num.time.steps != 0) {
stop("There should be the same number of variables in each time step.")
}
nv <- num.variables(x) / num.time.steps
nl <- layering
ls <- layer.struct
if (is.null(layering)) {
nl <- rep(1,nv)
} else {
if (length(layering) != nv && length(layering) != num.variables(x)) {
stop("If a layering is provided, it should be either as long as the number of variables in each time step, or as the total number of variables in all the time steps.")
}
}
num.layers <- length(unique(nl))
copynl <- nl
while (length(nl) < num.variables(x)) {
nl <- c(nl, copynl+max(nl))
}
layering <- nl
if (is.null(layer.struct)) {
ls <- matrix(0, num.layers * num.time.steps, num.layers * num.time.steps)
ls[upper.tri(ls, diag=TRUE)] <- 1
layer.struct <- ls
} else {
tmp.ls <- NULL
for (i in 1:num.time.steps) {
if (i == 1)
nr <- ls
else
nr <- matrix(0, num.layers, num.layers)
for (j in 2:num.time.steps) {
if (j < i) {
nr <- cbind(nr, matrix(0, num.layers, num.layers))
} else if (i == j) {
nr <- cbind(nr, ls)
} else {
nr <- cbind(nr, matrix(1, num.layers, num.layers))
}
}
tmp.ls <- rbind(tmp.ls, nr)
}
layer.struct <- tmp.ls
}
bn <- learn.structure(bn, dataset, algo, scoring.func, initial.network, alpha, ess,
bootstrap, layering, max.fanin, max.fanin.layers, max.parents,
max.parents.layers, layer.struct, cont.nodes, use.imputed.data,
use.cpc, mandatory.edges, ...)
if (!bootstrap && algo != "mmpc")
bn <- learn.params(bn, dataset, ess, use.imputed.data)
return(bn)
})
setMethod("learn.params",
c("BN", "BNDataset"),
function(bn, dataset, ess = 1, use.imputed.data = FALSE)
{
if (struct.algo(bn) == "mmpc") {
bnstruct.start.log("no parameter learning possible for network learnt using the MMPC algorithm")
return(bn)
}
bnstruct.start.log("learning network parameters ... ")
if (use.imputed.data)
data <- as.matrix(imputed.data(dataset))
else
data <- as.matrix(raw.data(dataset))
node.sizes <- node.sizes(bn)
dag <- dag(bn)
n.nodes <- num.nodes(bn)
variables <- variables(bn)
storage.mode(node.sizes) <- "integer"
cont.nodes <- which(!discreteness(bn))
levels <- rep( 0, n.nodes )
levels[cont.nodes] <- node.sizes[cont.nodes]
out.data <- quantize.matrix( data, levels )
data <- out.data$quant
quantiles(bn) <- out.data$quantiles
quantiles(dataset) <- out.data$quantiles
cpts <- list("list",n.nodes)
var.names <- c(unlist(variables))
d.names <- mapply(function(name,size)(1:size),var.names,node.sizes)
for ( i in 1:n.nodes )
{
family <- c( which(dag[,i]!=0), i )
counts <- .Call( "bnstruct_compute_counts_nas", data[,family], node.sizes[family],
PACKAGE = "bnstruct" )
counts <- array(c(counts), c(node.sizes[family]))
cpts[[i]] <- counts.to.probs( counts + ess / prod(dim(counts)) )
dms <- NULL
dns <- NULL
for (j in 1:length(family))
{
dms[[j]] <- as.list(c(1:node.sizes[family[j]]))
dns[[j]] <- c(var.names[family[j]])
}
dimnames(cpts[[i]]) <- dms
names( dimnames(cpts[[i]]) ) <- dns
}
names(cpts) <- var.names
cpts(bn) <- cpts
bnstruct.end.log("parameter learning done.")
return(bn)
}
)
setMethod("learn.structure",
c("BN", "BNDataset"),
function(bn, dataset, algo = "mmhc", scoring.func = "BDeu", initial.network = NULL,
alpha = 0.05, ess = 1, bootstrap = FALSE, layering = c(),
max.fanin = num.variables(dataset) - 1, max.fanin.layers = NULL,
max.parents = num.variables(dataset) - 1, max.parents.layers = NULL,
layer.struct = NULL, cont.nodes = c(), use.imputed.data = FALSE, use.cpc = TRUE,
mandatory.edges = NULL, ...)
{
num.nodes(bn) <- num.variables(dataset)
node.sizes(bn) <- node.sizes(dataset)
variables(bn) <- variables(dataset)
validObject(bn)
node.sizes <- node.sizes(bn)
num.nodes <- num.nodes(bn)
if (length(cont.nodes) == 0)
cont.nodes <- setdiff(1:num.nodes,which(discreteness(dataset)))
if (bootstrap)
{
if (!has.boots(dataset))
stop("Bootstrap samples not available. Please generate samples before learning with bootstrap.\nSee > ?bootstrap for help.")
if (use.imputed.data && !has.imputed.boots(dataset))
stop("Imputed samples not available. Please generate imputed samples before learning.\nSee > ?bootstrap for help.")
num.boots <- num.boots(dataset)
}
else
{
if (use.imputed.data && has.imputed.data(dataset))
data <- imputed.data(dataset)
else if (use.imputed.data && !has.imputed.data(dataset))
stop("Imputed data not available. Please impute data before learning.\nSee > ?impute for help.")
else
data <- raw.data(dataset)
}
scoring.func <- match(tolower(scoring.func), c("bdeu", "aic", "bic"))
if (is.na(scoring.func))
{
bnstruct.log("scoring function not recognized, using BDeu")
scoring.func <- 0
}
else {
scoring.func <- scoring.func - 1
}
scoring.func(bn) <- c("BDeu", "AIC", "BIC")[scoring.func + 1]
algo <- tolower(algo)
if (!algo %in% c("sm", "mmhc", "sem", "mmpc", "hc")) {
bnstruct.log("structure learning algorithm not recognized, using MMHC")
bnstruct.log("(available options are: SM, MMHC, MMPC, HC, SEM)")
algo <- "mmhc"
}
if (!is.null(initial.network))
{
if (inherits(initial.network, "BN"))
init.net <- initial.network
else if (inherits(initial.network, "matrix"))
{
init.net <- BN(dataset)
dag(init.net) <- initial.network
init.net <- learn.params(init.net, dataset)
}
else if (inherits(initial.network, "character") &&
tolower(initial.network) == "random.chain")
init.net <- sample.chain(dataset)
else
init.net <- NULL
if (!is.null(init.net))
validObject(init.net)
}
else
init.net <- NULL
other.args <- list(...)
if ("tabu.tenure" %in% names(other.args))
tabu.tenure <- as.numeric(other.args$tabu.tenure)
else
tabu.tenure <- 100
if ("seed" %in% names(other.args))
set.seed(as.numeric(other.args$seed))
else
set.seed(0)
if ("wm.max" %in% names(other.args))
wm.max <- as.numeric(other.args$wm.max)
else
wm.max <- 15
if ("initial.cpc" %in% names(other.args))
initial.cpc <- as.numeric(other.args$initial.cpc)
else
initial.cpc <- NULL
if (algo == "sm")
{
if ( max.fanin < max.parents ||
(is.null(max.parents.layers) && !is.null(max.fanin.layers)) ) {
bnstruct.log ("SM uses 'max.parents' and 'max.parents.layers' parameters, ",
"but apparently you set 'max.fanin' and 'max.fanin.layers', ",
"changing accordingly.")
max.parents <- max.fanin
max.parents.layers <- max.fanin.layers
}
bnstruct.start.log("learning the structure using SM ...")
if (bootstrap)
{
finalPDAG <- matrix(0,num.nodes,num.nodes)
for( i in seq_len(num.boots(dataset)) )
{
data <- boot(dataset, i, use.imputed.data = use.imputed.data)
dag <- sm(data, node.sizes, scoring.func, cont.nodes, max.parents, layering,
max.parents.layers, ess, initial.cpc, mandatory.edges)
finalPDAG <- finalPDAG + dag.to.cpdag( dag, layering, layer.struct )
}
wpdag(bn) <- finalPDAG
}
else
{
dag(bn) <- sm(data, node.sizes, scoring.func, cont.nodes,
max.parents, layering, max.parents.layers, ess,
initial.cpc, mandatory.edges)
}
bnstruct.end.log("learning using SM completed.")
}
if (algo == "sem")
{
bnstruct.start.log("learning the structure using SEM ...")
bn <- sem(bn, dataset,
scoring.func = c("BDeu", "AIC", "BIC")[scoring.func + 1],
initial.network = init.net,
alpha = alpha, ess = ess, bootstrap = bootstrap,
layering = layering, max.fanin.layers = max.fanin.layers,
max.fanin = max.fanin,
max.parents = max.parents, cont.nodes = cont.nodes,
use.imputed.data = use.imputed.data,
use.cpc = use.cpc, mandatory.edges = mandatory.edges, ...)
bnstruct.end.log("learning using SEM completed.")
}
if (algo == "mmpc")
{
if ( max.parents < max.fanin) {
bnstruct.log ("MMPC uses 'max.fanin', ",
"but apparently you set 'max.parents', ",
"changing accordingly.")
max.parents <- max.fanin
max.parents.layers <- max.fanin.layers
}
bnstruct.start.log("learning the structure using MMPC ...")
if (bootstrap)
{
finalPDAG <- matrix(0,num.nodes,num.nodes)
for( i in seq_len(num.boots(dataset)) )
{
data <- boot(dataset, i, use.imputed.data=use.imputed.data)
cpc <- mmpc( data, node.sizes, cont.nodes, alpha, layering,
layer.struct, max.fanin=max.fanin, mandatory.edges = mandatory.edges )
finalPDAG <- finalPDAG + cpc
}
wpdag(bn) <- finalPDAG
}
else
{
cpc <- mmpc( data, node.sizes, cont.nodes, alpha, layering,
layer.struct, max.fanin=max.fanin, mandatory.edges = mandatory.edges )
wpdag(bn) <- cpc
}
bnstruct.end.log("learning using MMPC completed.")
}
if (algo == "hc")
{
if ( max.parents < max.fanin ||
(is.null(layer.struct) && !is.null(max.parents.layers)) ) {
bnstruct.log ("HC uses 'max.fanin' and 'layer.struct' parameters, ",
"but apparently you set 'max.parents' and 'max.parents.layers', ",
"changing accordingly.")
max.parents <- max.fanin
max.parents.layers <- max.fanin.layers
}
bnstruct.start.log("learning the structure using HC ...")
if (!is.null(init.net))
in.dag <- dag(init.net)
else
in.dag <- NULL
if (bootstrap)
{
finalPDAG <- matrix(0,num.nodes,num.nodes)
for( i in seq_len(num.boots(dataset)) )
{
data <- boot(dataset, i, use.imputed.data=use.imputed.data)
cpc <- matrix(rep(1, num.nodes*num.nodes), nrow = num.nodes, ncol = num.nodes)
dag <- hc( data, node.sizes, scoring.func, cpc, cont.nodes, ess = ess,
tabu.tenure = tabu.tenure, max.parents = max.parents, init.net = in.dag,
wm.max=wm.max, layering=layering, layer.struct=layer.struct,
mandatory.edges = mandatory.edges)
finalPDAG <- finalPDAG + dag.to.cpdag( dag, layering, layer.struct )
}
wpdag(bn) <- finalPDAG
}
else
{
if (is.null(initial.cpc)) {
cpc <- matrix(rep(1, num.nodes*num.nodes), nrow = num.nodes, ncol = num.nodes)
} else {
cpc <- initial.cpc
}
dag(bn) <- hc( data, node.sizes, scoring.func, cpc, cont.nodes, ess = ess,
tabu.tenure = tabu.tenure, max.parents = max.parents, init.net = in.dag,
wm.max=wm.max, layering=layering, layer.struct=layer.struct,
mandatory.edges = mandatory.edges)
}
bnstruct.end.log("learning using HC completed.")
}
if (algo == "mmhc")
{
if ( max.fanin < max.parents) {
bnstruct.log ("MMHC uses 'max.fanin', ",
"but apparently you set 'max.parents', ",
"changing accordingly.")
max.parents <- max.fanin
max.parents.layers <- max.fanin.layers
}
bnstruct.start.log("learning the structure using MMHC ...")
if (!is.null(init.net))
in.dag <- dag(init.net)
else
in.dag <- NULL
if (bootstrap)
{
finalPDAG <- matrix(0,num.nodes,num.nodes)
for( i in seq_len(num.boots(dataset)) )
{
data <- boot(dataset, i, use.imputed.data=use.imputed.data)
if (use.cpc){
if (!is.null(initial.cpc)) {
cpc <- initial.cpc
} else {
cpc <- mmpc( data, node.sizes, cont.nodes, alpha, layering,
layer.struct, max.fanin=max.fanin, mandatory.edges = mandatory.edges )
}
}
else
{
cpc <- matrix(rep(1, num.nodes*num.nodes), nrow = num.nodes, ncol = num.nodes)
}
dag <- hc( data, node.sizes, scoring.func, cpc, cont.nodes, ess = ess,
tabu.tenure = tabu.tenure, max.parents = max.parents,
init.net = in.dag, wm.max=wm.max, layering=layering, layer.struct=layer.struct,
mandatory.edges = mandatory.edges )
finalPDAG <- finalPDAG + dag.to.cpdag( dag, layering, layer.struct )
}
wpdag(bn) <- finalPDAG
}
else
{
if (use.cpc)
if (!is.null(initial.cpc)) {
cpc <- initial.cpc
} else {
cpc <- mmpc( data, node.sizes, cont.nodes, alpha, layering,
layer.struct, max.fanin=max.fanin, mandatory.edges = mandatory.edges )
}
else
cpc <- matrix(rep(1, num.nodes*num.nodes), nrow = num.nodes, ncol = num.nodes)
dag(bn) <- hc( data, node.sizes, scoring.func, cpc, cont.nodes, ess = ess,
tabu.tenure = tabu.tenure, max.parents = max.parents, init.net = in.dag,
wm.max=wm.max, layering=layering, layer.struct=layer.struct,
mandatory.edges = mandatory.edges )
}
bnstruct.end.log("learning using MMHC completed.")
}
struct.algo(bn) <- algo
return(bn)
})
counts.to.probs <- function( counts )
{
d <- dim(counts)
if( length(d) == 1 )
return( counts / sum(counts) )
else
{
tmp.d <- c( prod(d[1:(length(d)-1)]), d[length(d)] )
dim(counts) <- tmp.d
nor <- rowSums( counts )
nor <- nor + (nor == 0)
counts <- counts / array(nor,tmp.d)
dim(counts) <- d
return( counts )
}
} |
library(carSurv)
checkRes <- carVarSelect(carSurvScores=c(NA, 5, Inf, 6:10))
stopifnot(is.na(checkRes)) |
makeMOP7Function = function() {
fn = function(x) {
assertNumeric(x, len = 2L, any.missing = FALSE, all.missing = FALSE)
return(.Call("mof_MOP7", x))
}
makeMultiObjectiveFunction(
name = "MOP7 function",
id = sprintf("MOP7-%id-%io", 2L, 3L),
description = "MOP7 function",
fn = fn,
par.set = makeNumericParamSet(
len = 2L,
id = "x",
lower = rep(-400, 2L),
upper = rep(400, 2L),
vector = TRUE
),
n.objectives = 3L
)
}
class(makeMOP7Function) = c("function", "smoof_generator")
attr(makeMOP7Function, "name") = c("MOP7")
attr(makeMOP7Function, "type") = c("multi-objective")
attr(makeMOP7Function, "tags") = c("multi-objective") |
HSIplotter <- function(SI, figure.name){
oldpar <- par("mfrow", "mgp", "mar")
on.exit(par(oldpar))
nSI <- length(colnames(SI)) / 2
SI.cont <- c()
for(i in 1:nSI){SI.cont[i] <- is.numeric(SI[1,2*i-1])}
jpeg(filename=figure.name, units="in", width=12, height=4*ceiling(nSI/3), res=400)
par(mfrow=c(ceiling(nSI/3),3), mgp=c(2,0.5,0), mar=c(3.5,3.5,3,1))
for(i in 1:nSI){
if(SI.cont[i] == TRUE){
plot(SI[,2*i-1], SI[,2*i], pch=19, col="black",
xlab=colnames(SI)[2*i-1], ylab="Suitability Index",
ylim=c(0,1))
lines(SI[,2*i-1], SI[,2*i], lwd=2, col="black")
box()
} else {
barplot(SI[,2*i], names.arg=SI[,2*i-1], col="black",
xlab=colnames(SI)[2*i-1], ylab="Suitability Index",
ylim=c(0,1))
box()
}
}
invisible(dev.off())
} |
beaParamVals <- function(beaKey, setName, paramName) {
beaMetaSpecs <- list(
'method' = 'GetParameterValues',
'UserID' = beaKey,
'datasetname'=setName,
'ParameterName'=paramName,
'ResultFormat' = 'json'
)
beaResponse <- bea.R::beaGet(beaMetaSpecs, asList = TRUE, asTable = FALSE, isMeta = TRUE)
return(beaResponse)
} |
context("CollapseCatalog")
test_that("Collapse1536CatalogTo96 block 1", {
skip_if("" == system.file(package = "BSgenome.Hsapiens.1000genomes.hs37d5"))
stopifnot(requireNamespace("BSgenome.Hsapiens.1000genomes.hs37d5"))
cat.SBS1536 <-
ReadCatalog("testdata/regress.cat.sbs.1536.csv", ref.genome = "GRCh37",
region = "genome", catalog.type = "counts")
x1 <- Collapse1536CatalogTo96(cat.SBS1536)
expect_equal(colSums(cat.SBS1536), colSums(x1))
expect_equal("SBS96Catalog", class(x1)[1])
cat.SBS1536.density <-
TransformCatalog(cat.SBS1536, target.ref.genome = "GRCh37",
target.region = "genome",
target.catalog.type = "density")
x2 <- Collapse1536CatalogTo96(cat.SBS1536.density)
expect_equal(colSums(cat.SBS1536.density), colSums(x2))
expect_equal("SBS96Catalog", class(x2)[1])
cat.SBS1536.counts.signature <-
TransformCatalog(cat.SBS1536, target.ref.genome = "GRCh37",
target.region = "genome",
target.catalog.type = "counts.signature")
x3 <- Collapse1536CatalogTo96(cat.SBS1536.counts.signature)
expect_equal(colSums(cat.SBS1536.counts.signature), colSums(x3))
expect_equal("SBS96Catalog", class(x3)[1])
cat.SBS1536.density.signature <-
TransformCatalog(cat.SBS1536, target.ref.genome = "GRCh37",
target.region = "genome",
target.catalog.type = "density.signature")
x4 <- Collapse1536CatalogTo96(cat.SBS1536.density.signature)
expect_equal(colSums(cat.SBS1536.density.signature), colSums(x4))
expect_equal("SBS96Catalog", class(x4)[1])
})
test_that("Collapse192CatalogTo96 block 2", {
skip_if("" == system.file(package = "BSgenome.Hsapiens.1000genomes.hs37d5"))
stopifnot(requireNamespace("BSgenome.Hsapiens.1000genomes.hs37d5"))
cat.SBS192 <-
ReadCatalog("testdata/regress.cat.sbs.192.csv", ref.genome = "GRCh37",
region = "transcript", catalog.type = "counts")
x1 <- Collapse192CatalogTo96(cat.SBS192)
expect_equal(colSums(cat.SBS192), colSums(x1))
expect_equal("SBS96Catalog", class(x1)[1])
cat.SBS192.density <-
TransformCatalog(cat.SBS192, target.ref.genome = "GRCh37",
target.region = "transcript",
target.catalog.type = "density")
x2 <- Collapse192CatalogTo96(cat.SBS192.density)
expect_equal(colSums(cat.SBS192.density), colSums(x2))
expect_equal("SBS96Catalog", class(x2)[1])
cat.SBS192.counts.signature <-
TransformCatalog(cat.SBS192, target.ref.genome = "GRCh37",
target.region = "transcript",
target.catalog.type = "counts.signature")
x3 <- Collapse192CatalogTo96(cat.SBS192.counts.signature)
expect_equal(colSums(cat.SBS192.counts.signature), colSums(x3))
expect_equal("SBS96Catalog", class(x3)[1])
cat.SBS192.density.signature <-
TransformCatalog(cat.SBS192, target.ref.genome = "GRCh37",
target.region = "transcript",
target.catalog.type = "density.signature")
x4 <- Collapse192CatalogTo96(cat.SBS192.density.signature)
expect_equal(colSums(cat.SBS192.density.signature), colSums(x4))
expect_equal("SBS96Catalog", class(x4)[1])
})
test_that("Collapse144CatalogTo78", {
skip_if("" == system.file(package = "BSgenome.Hsapiens.1000genomes.hs37d5"))
stopifnot(requireNamespace("BSgenome.Hsapiens.1000genomes.hs37d5"))
cat.DBS144 <-
ReadCatalog("testdata/regress.cat.dbs.144.csv", ref.genome = "GRCh37",
region = "transcript", catalog.type = "counts")
x1 <- Collapse144CatalogTo78(cat.DBS144)
expect_equal(colSums(cat.DBS144), colSums(x1))
expect_equal("DBS78Catalog", class(x1)[1])
cat.DBS144.density <-
TransformCatalog(cat.DBS144, target.ref.genome = "GRCh37",
target.region = "transcript",
target.catalog.type = "density")
x2 <- Collapse144CatalogTo78(cat.DBS144.density)
expect_equal(colSums(cat.DBS144.density), colSums(x2))
expect_equal("DBS78Catalog", class(x2)[1])
cat.DBS144.counts.signature <-
TransformCatalog(cat.DBS144, target.ref.genome = "GRCh37",
target.region = "transcript",
target.catalog.type = "counts.signature")
x3 <- Collapse144CatalogTo78(cat.DBS144.counts.signature)
expect_equal(colSums(cat.DBS144.counts.signature), colSums(x3))
expect_equal("DBS78Catalog", class(x3)[1])
cat.DBS144.density.signature <-
TransformCatalog(cat.DBS144, target.ref.genome = "GRCh37",
target.region = "transcript",
target.catalog.type = "density.signature")
x4 <- Collapse144CatalogTo78(cat.DBS144.density.signature)
expect_equal(colSums(cat.DBS144.density.signature), colSums(x4))
expect_equal("DBS78Catalog", class(x4)[1])
}) |
check_schema_df <- function(df, schema,
success_msg = "Data is valid against the schema",
fail_msg = "Data is invalid against the schema") {
if (!requireNamespace("jsonvalidate", quietly = TRUE)) {
stop(
"Package \"jsonvalidate\" needed for this function to work. Please install it.",
call. = FALSE
)
}
json_list <- df_to_json_list(df)
results <- purrr::map(json_list, function(x) {
jsonvalidate::json_validate(
json = x,
schema = schema,
verbose = TRUE,
greedy = TRUE,
engine = "ajv"
)
})
behavior <- "Data should conform to the schema"
if (all(purrr::map_lgl(results, function(x) x))) {
check_pass(
msg = success_msg,
behavior = behavior
)
} else {
return_data <- purrr::map(
results,
function(x) {
dat <- attr(x, "errors")
glue::glue("{dat$dataPath} {dat$message}")
}
)
check_fail(
msg = fail_msg,
behavior = behavior,
data = return_data
)
}
} |
test_that("Check bar-sd plots", {
db1 <- plot_bar_sd(data_2w_Tdeath,
Genotype,
PI,
TextXAngle = 45,
ColPal = "muted",
ColRev = T) +
facet_wrap("Time")
db1
expect_equal(db1$data, data_2w_Tdeath)
expect_s3_class(db1, "gg")
expect_equal(db1$theme$text$size, 20)
expect_match(as.character(rlang::quo_get_expr(db1$labels$x)),
"Genotype")
expect_match(as.character(db1$labels$y),
"PI")
expect_match(as.character(rlang::quo_get_expr(db1$labels$fill)),
"Genotype")
expect_equal(db1$guides$x$angle, 45)
})
test_that("Check bar-sd single colour plots", {
db2 <- plot_bar_sd_sc(data_2w_Tdeath,
Genotype,
PI,
TextXAngle = 45,
colour = "
facet_wrap("Time")
db2
expect_equal(db2$data, data_2w_Tdeath)
expect_s3_class(db2, "gg")
expect_equal(db2$theme$text$size, 20)
expect_match(as.character(rlang::quo_get_expr(db2$labels$x)),
"Genotype")
expect_match(as.character(db2$labels$y),
"PI")
expect_equal(db2$guides$x$angle, 45)
}) |
brierScore <- function (dataSet, trainIndices, survModelFormula, linkFunc="logit", censColumn, idColumn=NULL) {
if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")}
if(!is.list(trainIndices)) {stop("Argument *trainIndices* is not in the correct format! Please specify a list.")}
InputCheck1 <- all(sapply(1:length(trainIndices), function (x) is.integer(trainIndices [[x]])))
if(!InputCheck1) {stop("Sublists of *trainIndices* are not all integer values! Please specify a list of integer Indices.")}
if(!("formula" %in% class(survModelFormula))) {stop("*survModelFormula* is not of class formula! Please specify a valid formula, e. g. y ~ x + z.")}
if(!any(names(dataSet)==censColumn)) {stop("Argument *censColumn* is not available in *dataSet*! Please specify the correct column name of the event indicator.")}
B <- function(k) {
probs <- estMargProb (LambdaSplit [[k]] [, "Lambda" ])
if(length(probs [-length(probs)])!=0) {
brierVec <- as.numeric(tail(LambdaSplit [[k]] [, censColumn], 1) * (1 - tail(probs, 1))^2 + sum (probs [-length(probs)]))
}
else {
brierVec <- as.numeric(tail(LambdaSplit [[k]] [, censColumn], 1) * (1 - tail(probs, 1))^2)
}
return(brierVec)
}
RET <- vector("list", length(trainIndices))
for(i in 1:length(trainIndices)) {
TrainSet <- dataSet [trainIndices [[i]], ]
if(length(trainIndices)!=1) {
TestSet <- dataSet [-trainIndices [[i]], ]
}
else {
TestSet <- TrainSet
}
if(!is.null(idColumn)) {
TrainLong <- dataLongTimeDep (dataSet=TrainSet, timeColumn=as.character(survModelFormula) [2], censColumn=censColumn, idColumn=idColumn)
}
else {
TrainLong <- dataLong (dataSet=TrainSet, timeColumn=as.character(survModelFormula) [2], censColumn=censColumn)
}
TrainLong <- dataCensoring (dataSetLong=TrainLong, respColumn="y", timeColumn="timeInt")
if(!is.null(idColumn)) {
TestLong <- dataLongTimeDep (dataSet=TestSet, timeColumn=as.character(survModelFormula) [2], censColumn=censColumn, idColumn=idColumn)
}
else {
TestLong <- dataLong (dataSet=TestSet, timeColumn=as.character(survModelFormula) [2], censColumn=censColumn)
}
SurvnewFormula <- update(survModelFormula, y ~ timeInt + .)
SurvFit <- glm (formula=SurvnewFormula, data=TrainLong, family=binomial(link=linkFunc), control=glm.control(maxit=2500))
Check <- "error" %in% class(tryCatch(predict(SurvFit, TestLong, type="response"), error= function (e) e))
if(Check) {
IndexFactor <- which(sapply(1:dim(TestLong)[2], function (x) is.factor(TestLong [, x]))==TRUE)
TestLevelsFactor <- sapply(IndexFactor, function (x) levels(TestLong [, x]))
TrainLevelsFactor <- sapply(IndexFactor, function (x) levels(TrainLong [, x+1]))
InLevelsFactor <- lapply(1:length(TestLevelsFactor), function (x) which((TestLevelsFactor [[x]] %in% TrainLevelsFactor [[x]])==FALSE))
ExcludeRows <- lapply (1:length(IndexFactor), function (j) which(TestLong [, IndexFactor [j]] %in% TestLevelsFactor [[j]] [InLevelsFactor [[j]]]))
ExcludeRows <- do.call(c, ExcludeRows)
TestLong <- TestLong [-ExcludeRows, ]
}
Lambda <- predict(SurvFit, TestLong, type="response")
LambdaSplit <- split(cbind(Lambda=Lambda, TestLong), TestLong$obj)
RET [[i]] <- sapply(1:length(LambdaSplit), B)
}
RET <- do.call(cbind, RET)
RET <- rowMeans(RET)
return(RET)
}
tprUno <- function(timepoint, dataSet, trainIndices, survModelFormula, censModelFormula, linkFunc="logit", idColumn=NULL, timeAsFactor=TRUE) {
if(length(timepoint)!=1 || !(timepoint==floor(timepoint))) {stop("Argument *timepoint* is not in the correct format! Please specify as integer scalar value.")}
if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")}
if(!is.list(trainIndices)) {stop("Argument *trainIndices* is not in the correct format! Please specify a list.")}
InputCheck1 <- all(sapply(1:length(trainIndices), function (x) is.integer(trainIndices [[x]])))
if(!InputCheck1) {stop("Sublists of *trainIndices* are not all integer values! Please specify a list of integer Indices.")}
if(length(trainIndices)!=1) {
InputCheck2 <- all(sort(as.numeric(do.call(c, lapply(trainIndices, function (x) setdiff(1:dim(dataSet) [1], x)))))==(1:dim(dataSet) [1]))
}
else {
InputCheck2 <- all(trainIndices [[1]]==(1:dim(dataSet) [1]))
}
if(!InputCheck2) {stop("Argument *trainIndices* does not contain cross validation samples! Please ensure that the union of all test indices equals the indices of the complete data set.")}
if(!("formula" %in% class(censModelFormula))) {stop("*censModelFormula* is not of class formula! Please specify a valid formula, e. g. yCens ~ 1")}
if(!("formula" %in% class(survModelFormula))) {stop("*survModelFormula* is not of class formula! Please specify a valid formula, e. g. y ~ x")}
if(!(any(names(dataSet)==idColumn) | is.null(idColumn))) {stop("Argument *idColumn* is not available in *dataSet*! Please specify the correct column name of the identification number.")}
sens <- function(k) {
sensNum <- sum((marker > k) * (newTime == timepoint) * newEvent / GT, na.rm = TRUE)
sensDenom <- sum((newTime == timepoint) * newEvent / GT, na.rm = TRUE)
if (sensDenom > 0)
return(sensNum / sensDenom) else
return(0)
}
markerList <- vector("list", length(trainIndices))
ExcludeRowsCensList <- vector("list", length(trainIndices))
ExcludeRowsDataSetList <- vector("list", length(trainIndices))
oneMinuslambdaList <- vector("list", length(trainIndices))
if(!is.null(idColumn)) {
TrainLongFull <- dataLongTimeDep (dataSet=dataSet, timeColumn=as.character(survModelFormula) [2],
censColumn=as.character(censModelFormula) [2],
idColumn=idColumn, timeAsFactor=timeAsFactor)
}
else {
TrainLongFull <- dataLong (dataSet=dataSet, timeColumn=as.character(survModelFormula) [2],
censColumn=as.character(censModelFormula) [2], timeAsFactor=timeAsFactor)
}
for(i in 1:length(trainIndices)) {
TrainSet <- dataSet [trainIndices [[i]], ]
if(length(trainIndices)!=1) {
TestSet <- dataSet [-trainIndices [[i]], ]
}
else {
TestSet <- TrainSet
}
if(!is.null(idColumn)) {
TrainLong <- dataLongTimeDep (dataSet=TrainSet, timeColumn=as.character(survModelFormula) [2],
censColumn=as.character(censModelFormula) [2], idColumn=idColumn,
timeAsFactor=timeAsFactor)
}
else {
TrainLong <- dataLong (dataSet=TrainSet, timeColumn=as.character(survModelFormula) [2],
censColumn=as.character(censModelFormula) [2], timeAsFactor=timeAsFactor)
}
TrainLong <- dataCensoring (dataSetLong=TrainLong, respColumn="y", timeColumn="timeInt")
if(!is.null(idColumn)) {
TestLong <- dataLongTimeDep (dataSet=TestSet, timeColumn=as.character(survModelFormula) [2],
censColumn=as.character(censModelFormula) [2], idColumn=idColumn,
timeAsFactor=timeAsFactor)
}
else {
TestLong <- dataLong (dataSet=TestSet, timeColumn=as.character(survModelFormula) [2],
censColumn=as.character(censModelFormula) [2], timeAsFactor=timeAsFactor)
}
CensnewFormula <- update(censModelFormula, yCens ~ timeInt + .)
CensFit <- glm (formula=CensnewFormula, data=TrainLong, family=binomial(link=linkFunc), control=glm.control(maxit=2500))
Check <- "error" %in% class(tryCatch(predict(CensFit, TestLong, type="response"), error= function (e) e))
if(Check) {
IndexFactor <- which(sapply(1:dim(TestLong)[2], function (x) is.factor(TestLong [, x]))==TRUE)
TestLevelsFactor <- sapply(IndexFactor, function (x) levels(TestLong [, x]))
TrainLevelsFactor <- sapply(IndexFactor, function (x) levels(TrainLong [, x+1]))
InLevelsFactor <- lapply(1:length(TestLevelsFactor), function (x) which((TestLevelsFactor [[x]] %in% TrainLevelsFactor [[x]])==FALSE))
ExcludeRows <- lapply (1:length(IndexFactor), function (j) which(TestLong [, IndexFactor [j]] %in% TestLevelsFactor [[j]] [InLevelsFactor [[j]]]))
ExcludeRows <- do.call(c, ExcludeRows)
ExcludeRowsConv <- vector("integer", length(ExcludeRows))
for(j in 1:length(ExcludeRows)) {
I1 <- sapply(1:dim(TrainLongFull) [1], function(x) TrainLongFull [x, -1] == TestLong [ExcludeRows [j], -1])
ExcludeRowsConv [j] <- which(sapply(1:dim(I1) [2], function (x) all(I1 [, x]))==TRUE)
}
ExcludeRowsCensList [[i]] <- ExcludeRowsConv
TestLong <- TestLong [-ExcludeRows, ]
}
oneMinuslambdaList [[i]] <- 1 - predict(CensFit, TestLong, type="response")
SurvnewFormula <- update(survModelFormula, y ~ timeInt + .)
SurvFit <- glm (formula=SurvnewFormula, data=TrainLong, family=binomial(link=linkFunc), control=glm.control(maxit=2500))
if(timeAsFactor) {
TestSetExt <- cbind(TestSet, timeInt=factor(TestSet [, as.character(survModelFormula) [2] ]))
TrainSetExt <- cbind(TrainSet, timeInt=factor(TrainSet [, as.character(survModelFormula) [2] ]))
}
else{
TestSetExt <- cbind(TestSet, timeInt=TestSet [, as.character(survModelFormula) [2] ])
TrainSetExt <- cbind(TrainSet, timeInt=TrainSet [, as.character(survModelFormula) [2] ])
}
Check <- "error" %in% class(tryCatch(predict(SurvFit, TestSetExt), error= function (e) e))
if(Check) {
IndexFactor <- which(sapply(1:dim(TestSetExt)[2], function (x) is.factor(TestSetExt [, x]))==TRUE)
TestLevelsFactor <- sapply(IndexFactor, function (x) levels(TestSetExt [, x]))
TrainLevelsFactor <- sapply(IndexFactor, function (x) levels(TrainSetExt [, x]))
InLevelsFactor <- lapply(1:length(TestLevelsFactor), function (x) which((TestLevelsFactor [[x]] %in% TrainLevelsFactor [[x]])==FALSE))
ExcludeRows <- lapply (1:length(IndexFactor), function (j) which(TestSetExt [, IndexFactor [j]] %in% TestLevelsFactor [[j]] [InLevelsFactor [[j]] ]))
ExcludeRows <- do.call(c, ExcludeRows)
ExcludeRowsConvShort <- vector("integer", length(ExcludeRows))
for(j in 1:length(ExcludeRows)) {
I1 <- sapply(1:dim(dataSet) [1], function(x) dataSet [x, ] == TestSetExt [ExcludeRows [j], -dim(TestSetExt) [2] ])
ExcludeRowsConvShort [j] <- which(sapply(1:dim(I1) [2], function (x) all(I1 [, x]))==TRUE)
}
ExcludeRowsDataSetList [[i]] <- ExcludeRowsConvShort
TestSetExt <- TestSetExt [-ExcludeRows, ]
}
markerList [[i]] <- predict(SurvFit, TestSetExt)
}
oneMinuslambda <- do.call(c, oneMinuslambdaList)
ExcludeRowsCens <- do.call(c, ExcludeRowsCensList)
ExcludeRowsDataSet <- do.call(c, ExcludeRowsDataSetList)
if(!is.null(ExcludeRowsCens)) {
TrainLongFullExc <- TrainLongFull [-ExcludeRowsCens, ]
}
else {
TrainLongFullExc <- TrainLongFull
}
G <- aggregate(oneMinuslambda ~ obj, FUN = cumprod, data = TrainLongFullExc, simplify = FALSE)
if(!is.null(ExcludeRowsDataSet)) {
newEvent <- dataSet [-ExcludeRowsDataSet, as.character(censModelFormula) [2]]
newTime <- dataSet [-ExcludeRowsDataSet, as.character(survModelFormula) [2]]
}
else {
newEvent <- dataSet [, as.character(censModelFormula) [2]]
newTime <- dataSet [, as.character(survModelFormula) [2]]
}
n <- length(newEvent)
if(is.null(idColumn)) {
GT <- sapply(1:n, function(u){
if (newTime[u] > 1)
return(G[[2]] [u] [[1]] [newTime[u]-1]) else
return(1) } )
}
else{
GT <- sapply(1:n, function(u){
if (newTime[u] > 1)
return(G[[2]] [TrainLongFullExc [dataSet[u, idColumn], "obj"] ] [[1]] [newTime[u]-1]) else
return(1) } )
}
marker <- do.call(c, markerList)
RET <- sapply(marker, sens)
orderMarker <- order(marker)
tempDat <- data.frame(cutoff = marker[orderMarker], tpr = RET[orderMarker])
rownames(tempDat) <- 1:dim(tempDat) [1]
RET <- list(Output=tempDat,
Input=list(timepoint=timepoint, dataSet=dataSet, trainIndices=trainIndices,
survModelFormula=survModelFormula, censModelFormula=censModelFormula,
linkFunc=linkFunc, idColumn=idColumn, Short=FALSE,
timeAsFactor=timeAsFactor, orderMarker=orderMarker))
class(RET) <- "discSurvTprUno"
return(RET)
}
print.discSurvTprUno <- function (x, ...) {
x$Output[, "cutoff"] <- round(x$Output[, "cutoff"], 4)
if(!any(is.na(x$Output[, "tpr"]))) {
x$Output[, "tpr"] <- round(x$Output[, "tpr"], 4)
}
print(x$Output, ...)
}
plot.discSurvTprUno <- function (x, ...) {
if(any(is.na(x$Output [, "tpr"]))) {
return("No plot available, because there are missing values in tpr!")
}
plot(x=x$Output [, "cutoff"], y=x$Output [, "tpr"], xlab="Cutoff", ylab="Tpr", las=1, type="l", main=paste("Tpr(c, t=", x$Input$timepoint, ")", sep=""), ...)
}
tprUnoShort <- function (timepoint, marker, newTime, newEvent, trainTime, trainEvent) {
dataSetShort <- data.frame(trainTime=trainTime, trainEvent=trainEvent)
dataSetLongCensTrans <- dataCensoringShort (dataSet=dataSetShort,
eventColumns="trainEvent",
timeColumn="trainTime")
markerInput <- marker
newEventInput <- newEvent
newTimeInput <- newTime
selectInd <- newTime %in% intersect(newTime, trainTime)
marker <- marker[selectInd]
newEvent <- newEvent[selectInd]
newTime <- newTime[selectInd]
if(length(newTime)==0){
orderMarker <- order(marker)
tempDat <- data.frame(cutoff = marker[orderMarker], tpr = NA)
rownames(tempDat) <- 1:dim(tempDat) [1]
RET <- list(Output=tempDat, Input=list(timepoint=timepoint, marker=markerInput,
newTime=newTimeInput, newEvent=newEventInput,
trainTime=trainTime, trainEvent=trainEvent,
Short=TRUE, selectInd=selectInd,
orderMarker=orderMarker))
class(RET) <- "discSurvTprUno"
return(RET)
}
tempLifeTab <- lifeTable (dataSet=dataSetLongCensTrans, timeColumn="timeCens",
censColumn="yCens")
preG <- tempLifeTab [[1]] [, "S"]
GT <- c(1, preG)
GT <- GT [newTime]
sens <- function(k) {
sensNum <- sum( (marker > k) * (newTime == timepoint) * newEvent / GT)
sensDenom <- sum( (newTime == timepoint) * newEvent / GT)
if (sensDenom > 0) {
return(sensNum / sensDenom)
} else{
return(NA)
}
}
RET <- sapply(marker, sens)
orderMarker <- order(marker)
tempDat <- data.frame(cutoff = marker[orderMarker], tpr = RET[orderMarker])
rownames(tempDat) <- 1:dim(tempDat) [1]
RET <- list(Output=tempDat, Input=list(timepoint=timepoint, marker=markerInput,
newTime=newTimeInput, newEvent=newEventInput,
trainTime=trainTime, trainEvent=trainEvent,
Short=TRUE, selectInd=selectInd,
orderMarker=orderMarker))
class(RET) <- "discSurvTprUno"
return(RET)
}
fprUno <- function(timepoint, dataSet, trainIndices, survModelFormula, censModelFormula, linkFunc="logit", idColumn=NULL, timeAsFactor=TRUE) {
if(length(timepoint)!=1 || !(timepoint==floor(timepoint))) {stop("Argument *timepoint* is not in the correct format! Please specify as integer scalar value.")}
if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")}
if(!is.list(trainIndices)) {stop("Argument *trainIndices* is not in the correct format! Please specify a list.")}
InputCheck1 <- all(sapply(1:length(trainIndices), function (x) is.integer(trainIndices [[x]])))
if(!InputCheck1) {stop("Sublists of *trainIndices* are not all integer values! Please specify a list of integer Indices.")}
if(length(trainIndices)!=1) {
InputCheck2 <- all(sort(as.numeric(do.call(c, lapply(trainIndices, function (x) setdiff(1:dim(dataSet) [1], x)))))==(1:dim(dataSet) [1]))
}
else {
InputCheck2 <- all(trainIndices [[1]]==(1:dim(dataSet) [1]))
}
if(!InputCheck2) {stop("Argument *trainIndices* does not contain cross validation samples! Please ensure that the union of all test indices equals the indices of the complete data set.")}
if(!("formula" %in% class(censModelFormula))) {stop("*censModelFormula* is not of class formula! Please specify a valid formula, e. g. yCens ~ 1.")}
if(!("formula" %in% class(survModelFormula))) {stop("*survModelFormula* is not of class formula! Please specify a valid formula, e. g. y ~ x")}
if(!(any(names(dataSet)==idColumn) | is.null(idColumn))) {stop("Argument *idColumn* is not available in *dataSet*! Please specify the correct column name of the identification number.")}
spec <- function(k){
specNum <- sum( (marker <= k) * (newTime > timepoint), na.rm = TRUE)
specDenom <- sum(newTime > timepoint, na.rm = TRUE)
if (specDenom > 0)
return(specNum / specDenom) else
return(0)
}
RET <- vector("list", length(trainIndices))
markerList <- vector("list", length(trainIndices))
ExcludeRowsDataSetList <- vector("list", length(trainIndices))
for(i in 1:length(trainIndices)) {
TrainSet <- dataSet [trainIndices [[i]], ]
if(length(trainIndices)!=1) {
TestSet <- dataSet [-trainIndices [[i]], ]
}
else {
TestSet <- TrainSet
}
if(!is.null(idColumn)) {
TrainLong <- dataLongTimeDep (dataSet=TrainSet, timeColumn=as.character(survModelFormula) [2],
censColumn=as.character(censModelFormula) [2], idColumn=idColumn,
timeAsFactor=timeAsFactor)
}
else {
TrainLong <- dataLong (dataSet=TrainSet, timeColumn=as.character(survModelFormula) [2],
censColumn=as.character(censModelFormula) [2], timeAsFactor=timeAsFactor)
}
TrainLong <- dataCensoring (dataSetLong=TrainLong, respColumn="y", timeColumn="timeInt")
if(!is.null(idColumn)) {
TestLong <- dataLongTimeDep (dataSet=TestSet, timeColumn=as.character(survModelFormula) [2],
censColumn=as.character(censModelFormula) [2], idColumn=idColumn, timeAsFactor=timeAsFactor)
}
else {
TestLong <- dataLong (dataSet=TestSet, timeColumn=as.character(survModelFormula) [2],
censColumn=as.character(censModelFormula) [2], timeAsFactor=timeAsFactor)
}
SurvnewFormula <- update(survModelFormula, y ~ timeInt + .)
SurvFit <- glm (formula=SurvnewFormula, data=TrainLong, family=binomial(link=linkFunc), control=glm.control(maxit=2500))
if(timeAsFactor) {
TestSetExt <- cbind(TestSet, timeInt=factor(TestSet [, as.character(survModelFormula) [2] ]))
TrainSetExt <- cbind(TrainSet, timeInt=factor(TrainSet [, as.character(survModelFormula) [2] ]))
}
else{
TestSetExt <- cbind(TestSet, timeInt=TestSet [, as.character(survModelFormula) [2] ])
TrainSetExt <- cbind(TrainSet, timeInt=TrainSet [, as.character(survModelFormula) [2] ])
}
Check <- "error" %in% class(tryCatch(predict(SurvFit, TestSetExt), error= function (e) e))
if(Check) {
IndexFactor <- which(sapply(1:dim(TestSetExt)[2], function (x) is.factor(TestSetExt [, x]))==TRUE)
TestLevelsFactor <- sapply(IndexFactor, function (x) levels(TestSetExt [, x]))
TrainLevelsFactor <- sapply(IndexFactor, function (x) levels(TrainSet [, x]))
InLevelsFactor <- lapply(1:length(TestLevelsFactor), function (x) which((TestLevelsFactor [[x]] %in% TrainLevelsFactor [[x]])==FALSE))
ExcludeRows <- lapply (1:length(IndexFactor), function (j) which(TestSetExt [, IndexFactor [j]] %in% TestLevelsFactor [[j]] [InLevelsFactor [[j]] ]))
ExcludeRows <- do.call(c, ExcludeRows)
ExcludeRowsConvShort <- vector("integer", length(ExcludeRows))
for(j in 1:length(ExcludeRows)) {
I1 <- sapply(1:dim(dataSet) [1], function(x) dataSet [x, ] == TestSetExt [ExcludeRows [j], -dim(TestSetExt) [2] ])
ExcludeRowsConvShort [j] <- which(sapply(1:dim(I1) [2], function (x) all(I1 [, x]))==TRUE)
}
ExcludeRowsDataSetList [[i]] <- ExcludeRowsConvShort
TestSetExt <- TestSetExt [-ExcludeRows, ]
}
markerList [[i]] <- predict(SurvFit, TestSetExt)
}
marker <- do.call(c, markerList)
ExcludeRowsDataSet <- do.call(c, ExcludeRowsDataSetList)
if(!is.null(ExcludeRowsDataSet)) {
newEvent <- dataSet [-ExcludeRowsDataSet, as.character(censModelFormula) [2]]
newTime <- dataSet [-ExcludeRowsDataSet, as.character(survModelFormula) [2]]
}
else {
newEvent <- dataSet [, as.character(censModelFormula) [2]]
newTime <- dataSet [, as.character(survModelFormula) [2]]
}
RET <- sapply(marker, spec)
orderMarker <- order(marker)
tempDat <- data.frame(cutoff = marker[orderMarker], fpr = 1-RET[orderMarker])
rownames(tempDat) <- 1:dim(tempDat) [1]
RET <- list(Output=tempDat,
Input=list(timepoint=timepoint, dataSet=dataSet, trainIndices=trainIndices,
survModelFormula=survModelFormula, censModelFormula=censModelFormula,
linkFunc=linkFunc, idColumn=idColumn, Short=FALSE,
timeAsFactor=timeAsFactor, orderMarker=orderMarker))
class(RET) <- "discSurvFprUno"
return(RET)
}
print.discSurvFprUno <- function (x, ...) {
x$Output[, "cutoff"] <- round(x$Output[, "cutoff"], 4)
if(!any(is.na(x$Output[, "fpr"]))) {
x$Output[, "fpr"] <- round(x$Output[, "fpr"], 4)
}
print(x$Output, ...)
}
plot.discSurvFprUno <- function (x, ...) {
if(any(is.na(x$Output [, "fpr"]))) {
return("No plot available, because there are missing values in tpr!")
}
plot(x=x$Output [, "cutoff"], y=x$Output [, "fpr"], xlab="Cutoff", ylab="Fpr", las=1, type="l", main=paste("Fpr(c, t=", x$Input$timepoint, ")", sep=""), ...)
}
fprUnoShort <- function (timepoint, marker, newTime) {
spec <- function(k){
specNum <- sum( (marker <= k) * (newTime > timepoint) )
specDenom <- sum(newTime > timepoint)
if (specDenom > 0) {
return(specNum / specDenom)
} else {
return(NA)
}
}
RET <- sapply(marker, spec)
orderMarker <- order(marker)
tempDat <- data.frame(cutoff = marker[orderMarker], fpr = 1 - RET[orderMarker])
rownames(tempDat) <- 1:dim(tempDat) [1]
RET <- list(Output=tempDat, Input=list(timepoint=timepoint, marker=marker,
newTime=newTime, Short=TRUE,
orderMarker=orderMarker))
class(RET) <- "discSurvFprUno"
return(RET)
}
aucUno <- function (tprObj, fprObj) {
if(class(tprObj)!="discSurvTprUno") {stop("This object has not the appropriate class! Please specify an object of class *discSurvTprUno*.")}
if(class(fprObj)!="discSurvFprUno") {stop("This object has not the appropriate class! Please specify an object of class *discSurvFprUno*.")}
if(tprObj$Input$Short!=fprObj$Input$Short) {stop("Tpr and fpr were computed using different functions! Please ensure that both are estimated either by the cross validated version or the short version.")}
if(!tprObj$Input$Short) {
InputCheck <- identical(tprObj$Input, fprObj$Input)
if(!InputCheck) {stop("Some input parameters of *tprObj* or *fprObj* are not identical! Please check if both objects were estimated using exact identical input values.")}
}
else {
InputCheck1 <- identical(tprObj$Input$timepoint, fprObj$Input$timepoint)
InputCheck2 <- identical(tprObj$Input$marker, fprObj$Input$marker)
InputCheck <- all(InputCheck1, InputCheck2)
if(!InputCheck) {stop("Some input parameters of *tprObj* or *fprObj* are not identical! Please check if both objects were estimated using exact identical input values.")}
}
if(tprObj$Input$Short){
tpr <- c(1, tprObj$Output$tpr)
fpr <- c(1, fprObj$Output$fpr[ tprObj$Input$selectInd[tprObj$Input$orderMarker] ])
} else{
tpr <- c(1, tprObj$Output$tpr)
fpr <- c(1, fprObj$Output$fpr)
}
trapz <- function (x, y){
idx = 2:length(x)
return(as.double((x[idx] - x[idx - 1]) %*% (y[idx] + y[idx - 1]))/2)
}
Output <- - trapz(fpr, tpr)
names(Output) <- paste("AUC(t=", tprObj$Input$timepoint, ")", sep="")
auc <- list(Output = Output, Input=list(tprObj=tprObj, fprObj=fprObj))
class(auc) <- "discSurvAucUno"
return(auc)
}
print.discSurvAucUno <- function (x, ...) {
print(round(x$Output, 4))
}
plot.discSurvAucUno <- function (x, ...) {
tprVal <- x$Input$tprObj$Output [, "tpr"]
if(x$Input$tprObj$Input$Short) {
fprVal <- x$Input$fprObj$Output [ x$Input$tprObj$Input$selectInd[
x$Input$tprObj$Input$orderMarker], "fpr"]
} else{
fprVal <- x$Input$fprObj$Output [, "fpr"]
}
if(any(is.na(tprVal)) | any(is.na(fprVal))) {
return("No plot available, because either tprVal or fprVal contains missing values!")
}
plot(x=fprVal, y=tprVal, xlab="Fpr", ylab="Tpr", las=1, type="l",
main=paste("ROC(c, t=", x$Input$tprObj$Input$timepoint, ")", sep=""), ...)
lines(x=seq(0, 1, length.out=500), y=seq(0, 1, length.out=500), lty=2)
}
concorIndex <- function (aucObj, printTimePoints=FALSE) {
if(class(aucObj)!="discSurvAucUno") {stop("This object has not the appropriate class! Please specify an object of class *discSurvAucUno*.")}
if(aucObj$Input$tprObj$Input$Short) {
marker <- aucObj$Input$tprObj$Input$marker
newTime <- aucObj$Input$tprObj$Input$newTime
newEvent <- aucObj$Input$tprObj$Input$newEvent
trainTime <- aucObj$Input$tprObj$Input$trainTime
trainEvent <- aucObj$Input$tprObj$Input$trainEvent
MaxTime <- max(trainTime)-1
AUCalltime <- vector("numeric", MaxTime)
for(i in 1:MaxTime) {
tempTPR <- tprUnoShort (timepoint=i, marker=marker, newTime=newTime, newEvent=newEvent,
trainTime=trainTime, trainEvent=trainEvent)
tempFPR <- fprUnoShort (timepoint=i, marker=marker, newTime=newTime)
AUCalltime [i] <- as.numeric(aucUno (tprObj=tempTPR, fprObj=tempFPR)$Output)
if(printTimePoints) {cat("Progress:", round(i/MaxTime*100, 2), "%;", "Timepoint =", i, "\n")}
}
tempLifeTab <- lifeTable (dataSet=data.frame(trainTime=trainTime, trainEvent=trainEvent), timeColumn="trainTime", censColumn="trainEvent")
MargHaz <- tempLifeTab [[1]] [, "hazard"]
MargSurv <- estSurv(MargHaz)
MargProb <- estMargProb(MargHaz)
}
else {
MaxTime <- max(aucObj$Input$tprObj$Input$dataSet [,
as.character(aucObj$Input$tprObj$Input$survModelFormula) [2] ])-1
DataSet <- aucObj$Input$tprObj$Input$dataSet
TrainIndices <- aucObj$Input$tprObj$Input$trainIndices
SurvModelFormula <- aucObj$Input$tprObj$Input$survModelFormula
CensModelFormula <- aucObj$Input$tprObj$Input$censModelFormula
LinkFunc <- aucObj$Input$tprObj$Input$linkFunc
IdColumn <- aucObj$Input$tprObj$Input$idColumn
timeAsFactor <- aucObj$Input$tprObj$Input$timeAsFactor
AUCalltime <- vector("numeric", MaxTime)
for(i in 1:MaxTime) {
tempTPR <- tprUno (timepoint=i, dataSet=DataSet,
trainIndices=TrainIndices,
survModelFormula=SurvModelFormula, censModelFormula=CensModelFormula, linkFunc=LinkFunc, idColumn=IdColumn, timeAsFactor=timeAsFactor)
tempFPR <- fprUno (timepoint=i, dataSet=DataSet,
trainIndices=TrainIndices,
survModelFormula=SurvModelFormula, censModelFormula=CensModelFormula, linkFunc=LinkFunc, idColumn=IdColumn, timeAsFactor=timeAsFactor)
AUCalltime [i] <- as.numeric(aucUno (tprObj=tempTPR,
fprObj=tempFPR)$Output)
if(printTimePoints) {cat("Progress:", round(i/MaxTime*100, 2), "%;", "Timepoint =", i, "\n")}
}
if(!is.null(IdColumn)) {
TrainLongFull <- dataLongTimeDep (dataSet=DataSet,
timeColumn=as.character(
SurvModelFormula) [2],
censColumn=as.character(
CensModelFormula) [2], idColumn=IdColumn, timeAsFactor=timeAsFactor)
}
else {
TrainLongFull <- dataLong (dataSet=DataSet,
timeColumn=as.character(
SurvModelFormula) [2],
censColumn=as.character(
CensModelFormula) [2],
timeAsFactor=timeAsFactor)
}
MargFormula <- y ~ timeInt
MargFit <- glm (formula=MargFormula, data=TrainLongFull,
family=binomial(link=LinkFunc),
control=glm.control(maxit=2500))
if(timeAsFactor) {
PredMargData <- data.frame(timeInt=factor(
min(TrainLongFull [, as.character(SurvModelFormula) [2] ]):
max(TrainLongFull [, as.character(SurvModelFormula) [2] ])))
}
else{
PredMargData <- data.frame(timeInt=min(
TrainLongFull [, as.character(SurvModelFormula) [2] ]):
max(TrainLongFull [, as.character(SurvModelFormula) [2] ]))
}
MargHaz <- as.numeric(predict(MargFit, PredMargData, type="response"))
MargSurv <- estSurv(MargHaz)
MargProb <- estMargProb(MargHaz)
}
weights1 <- MargProb * MargSurv / sum(MargProb * MargSurv)
AUCind <- is.finite(AUCalltime) & is.finite(weights1[-length(weights1)])
Concor <- sum( AUCalltime[AUCind] * weights1[-length(weights1)][AUCind] )/
sum( weights1[-length(weights1)][AUCind] )
names(Concor) <- "C*"
names(AUCalltime) <- paste("AUC(t=", 1:MaxTime, "|x)", sep="")
Output <- list(Output=Concor, Input=list(aucObj=aucObj, AUC=AUCalltime,
MargProb=MargProb, MargSurv=MargSurv))
class(Output) <- "discSurvConcorIndex"
return(Output)
}
print.discSurvConcorIndex <- function (x, ...) {
print(round(x$Output, 4))
}
summary.discSurvConcorIndex <- function (object, ...) {
cat("Concordance: Should be higher than 0.5 (random assignment)", "\n")
print(round(object$Output, 4))
cat("\n", "AUC(t): Should be higher than 0.5 for all time points (random assignment)", "\n")
print(round(object$Input$AUC, 4))
cat("\n", "Marginal P(T=t) without covariates (used in weighting)", "\n")
print(round(object$Input$MargProb, 4))
cat("\n", "Marginal S(T=t) without covariates (used in weighting)", "\n")
print(round(object$Input$MargSurv, 4))
}
print.discSurvPredErrDisc <- function (x, ...) {
print(round(x$Output$predErr, 4))
}
summary.discSurvPredErrDisc <- function (object, ...) {
cat("Prediction error curve: Should be lower than 0.25 (random assignment) for all timepoints", "\n")
print(round(object$Output$predErr, 4))
cat("Corresponding weights given by the censoring survival function", "\n")
tempDat <- lapply(1:length(object$Output$weights), function (x) {round(object$Output$weights [[x]], 4)})
names(tempDat) <- paste("Time interval = ", 1:length(object$Output$weights), sep="")
print(tempDat)
}
predErrDiscShort <- function (timepoints, estSurvList, newTime,
newEvent, trainTime, trainEvent) {
WeightFunction <- function () {
PartialSum1 <- newEventTemp * (1 - Sobs) / GT
PartialSum2 <- Sobs / GTfixed
return(PartialSum1 + PartialSum2)
}
predErr <- function () {
sum(weights1[IncludeInd][finiteCheck] *
(estSurvInd[IncludeInd][finiteCheck] -
Sobs[IncludeInd][finiteCheck])^2) / sum(finiteCheck)
}
dataSetLong <- dataLong (dataSet=data.frame(
trainTime=trainTime, trainEvent=trainEvent),
timeColumn="trainTime", censColumn="trainEvent")
dataSetLongCens <- dataCensoring (dataSetLong=dataSetLong,
respColumn="y", timeColumn="timeInt")
dataSetLongCens <- na.omit(dataSetLongCens)
glmCovariateFree <- glm(yCens ~ timeInt, data=dataSetLongCens,
family=binomial(), control=glm.control(maxit = 2500))
factorPrep <- factor(1:max(as.numeric(as.character(dataSetLongCens$timeInt))))
GT_est <- cumprod(1 - predict(glmCovariateFree,
newdata=data.frame(timeInt=factorPrep),
type="response"))
predErrorValues <- vector("numeric", length(timepoints))
StoreWeights <- vector("list", length(timepoints))
for( k in 1:length(timepoints) ) {
newTimeTemp <- newTime
newEventTemp <- newEvent
IncludeInd <- ifelse(newTimeTemp < timepoints [k] &
newEventTemp == 0, FALSE, TRUE)
GT <- c(1, GT_est)
GT <- GT [newTimeTemp]
GTfixed <- GT_est [timepoints [k] ]
Sobs <- ifelse(timepoints [k] < newTimeTemp, 1, 0)
estSurvInd <- sapply(1:length(estSurvList),
function (x) estSurvList [[x]] [timepoints [k] ])
weights1 <- WeightFunction ()
StoreWeights [[k]] <- weights1
finiteCheck <- is.finite(weights1[IncludeInd]) &
is.finite(estSurvInd[IncludeInd]) &
is.finite(Sobs[IncludeInd])
predErrorValues [k] <- predErr ()
}
names(predErrorValues) <- paste("T=", timepoints, sep="")
RET <- list(Output=list(predErr = predErrorValues, weights = StoreWeights),
Input=list(timepoints=timepoints, estSurvList=estSurvList,
newTime=newTime, newEvent=newEvent,
trainTime=trainTime, trainEvent=trainEvent, Short=TRUE))
class(RET) <- "discSurvPredErrDisc"
return(RET)
}
intPredErrDisc <- function (predErrObj, tmax=NULL) {
if(!(class(predErrObj)=="discSurvPredErrDisc")) {
stop("Object *predErrObj* is not of class *discSurvPredErrDisc*! Please give an appropriate objecte type as input.")}
predErrDiscTime <- function (t) {
predErrDiscShort (timepoints= t, estSurvList=EstSurvList,
newTime=NewTime, newEvent=NewEvent,
trainTime=TrainTime, trainEvent=TrainEvent)
}
MaxTime <- max(predErrObj$Input$trainTime)
if(!is.null(tmax)) {
if(tmax <= MaxTime) {
MaxTime <- tmax
}
else {
warning("Argument *tmax* is higher than the latest observed interval in training data.
Only prediction errors up to the latest observed interval time are given.")
}
}
EstSurvList <- predErrObj$Input$estSurvList
NewTime <- predErrObj$Input$newTime
NewEvent <- predErrObj$Input$newEvent
TrainTime <- predErrObj$Input$trainTime
TrainEvent <- predErrObj$Input$trainEvent
TrainLongFull <- dataLong (dataSet=data.frame(TrainTime=TrainTime, TrainEvent=TrainEvent), timeColumn="TrainTime", censColumn="TrainEvent")
MargFormula <- y ~ timeInt
MargFit <- glm (formula=MargFormula, data=TrainLongFull, family=binomial(), control=glm.control(maxit=2500))
PredMargData <- data.frame(timeInt=factor(1:MaxTime))
MargHaz <- as.numeric(predict(MargFit, PredMargData, type="response"))
MargProbs <- estMargProb(MargHaz)
PredsErrorCurve <- predErrDiscTime (1:MaxTime)$Output$predErr
IncludedIndices <- is.finite(PredsErrorCurve) & is.finite(MargProbs)
PredsErrorCurve <- PredsErrorCurve [IncludedIndices]
MargProbs <- as.numeric(MargProbs [IncludedIndices])
Result <- sum(PredsErrorCurve * MargProbs) / sum(MargProbs)
return(c(IntPredErr=Result))
}
martingaleResid <- function (dataSet, survModelFormula, censColumn, linkFunc="logit", idColumn=NULL) {
if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")}
if(!("formula" %in% class(survModelFormula))) {stop("*survModelFormula* is not of class formula! Please specify a valid formula, e. g. y ~ x + z.")}
if(!any(names(dataSet)==censColumn)) {stop("Argument *censColumn* is not available in *dataSet*! Please specify the correct column name of the event indicator.")}
if(!(any(names(dataSet)==idColumn) | is.null(idColumn))) {stop("Argument *idColumn* is not available in *dataSet*! Please specify the correct column name of the identification numbers of persons.")}
if(!is.null(idColumn)) {
dataSetLong <- dataLongTimeDep (dataSet=dataSet, timeColumn=as.character(survModelFormula) [2], censColumn=censColumn, idColumn=idColumn)
}
else {
dataSetLong <- dataLong (dataSet=dataSet, timeColumn=as.character(survModelFormula) [2], censColumn=censColumn)
}
NewFormula <- update(survModelFormula, y ~ timeInt + .)
glmFit <- glm(formula=NewFormula, data=dataSetLong, family=binomial(link=linkFunc), control=glm.control(maxit=2500))
hazards <- predict(glmFit, type="response")
splitHazards <- split(hazards, dataSetLong$obj)
splitY <- split(dataSetLong$y, dataSetLong$obj)
martResid <- sapply(1:length(splitY), function (x) sum(splitY [[x]] - splitHazards [[x]]))
Output <- list(Output=list(MartingaleResid=martResid, GlmFit=glmFit),
Input=list(dataSet=dataSet, survModelFormula=survModelFormula, censColumn=censColumn, linkFunc=linkFunc, idColumn=idColumn))
class(Output) <- "discSurvMartingaleResid"
return(Output)
}
print.discSurvMartingaleResid <- function (x, ...) {
print(round(x$Output$MartingaleResid, 4))
}
plot.discSurvMartingaleResid <- function (x, ...) {
if(!is.null(x$Input$idColumn)) {
dataSetLong <- dataLongTimeDep (dataSet=x$Input$dataSet, timeColumn=as.character(x$Input$survModelFormula) [2], censColumn=x$Input$censColumn, idColumn=x$Input$idColumn)
}
else {
dataSetLong <- dataLong (dataSet=x$Input$dataSet, timeColumn=as.character(x$Input$survModelFormula) [2], censColumn=x$Input$censColumn)
}
splitDataSetLong <- split(dataSetLong, dataSetLong$obj)
tailSplitDataSetLong <- lapply(splitDataSetLong, function (x) tail(x, 1))
tailSplitDataSetLong <- do.call(rbind, tailSplitDataSetLong)
LengthSurvFormula <- length(attr(terms(x$Input$survModelFormula), "term.labels"))
CovarSurvFormula <- attr(terms(x$Input$survModelFormula), "term.labels")
for(i in 1:LengthSurvFormula) {
tempData <- data.frame(x=tailSplitDataSetLong [, CovarSurvFormula [i] ], y=x$Output$MartingaleResid)
tempData <- tempData [order(tempData$x), ]
plot(x=tempData$x, y=tempData$y, las=1, xlab=CovarSurvFormula [i], ylab="Martingale Residuals", ...)
if(is.numeric(tempData$x)) {
loessPred <- predict(loess(formula=y ~ x, data=tempData))
lines(x=tempData$x, y=loessPred)
}
abline(h=0, lty=2)
}
}
devResid <- function (dataSet, survModelFormula, censColumn, linkFunc="logit", idColumn=NULL) {
if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")}
if(!("formula" %in% class(survModelFormula))) {stop("*survModelFormula* is not of class formula! Please specify a valid formula, e. g. y ~ x + z.")}
if(!any(names(dataSet)==censColumn)) {stop("Argument *censColumn* is not available in *dataSet*! Please specify the correct column name of the event indicator.")}
if(!(any(names(dataSet)==idColumn) | is.null(idColumn))) {stop("Argument *idColumn* is not available in *dataSet*! Please specify the correct column name of the identification numbers of persons.")}
SquDevResid <- function (x) {-2*sum(splitY [[x]] * log(splitHazards [[x]]) + (1 - splitY [[x]]) * log(1 - splitHazards [[x]] ))}
if(!is.null(idColumn)) {
dataSetLong <- dataLongTimeDep (dataSet=dataSet, timeColumn=as.character(survModelFormula) [2], censColumn=censColumn, idColumn=idColumn)
}
else {
dataSetLong <- dataLong (dataSet=dataSet, timeColumn=as.character(survModelFormula) [2], censColumn=censColumn)
}
NewFormula <- update(survModelFormula, y ~ timeInt + .)
glmFit <- glm(formula=NewFormula, data=dataSetLong, family=binomial(link=linkFunc), control=glm.control(maxit=2500))
hazards <- predict(glmFit, type="response")
splitHazards <- split(hazards, dataSetLong$obj)
splitY <- split(dataSetLong$y, dataSetLong$obj)
Residuals <- sapply(1:length(splitY), SquDevResid)
Output <- list(Output=list(DevResid=sqrt(Residuals), GlmFit=glmFit),
Input=list(dataSet=dataSet, survModelFormula=survModelFormula, censColumn=censColumn, linkFunc=linkFunc, idColumn=idColumn))
class(Output) <- "discSurvDevResid"
return(Output)
}
print.discSurvDevResid <- function (x, ...) {
print(round(x$Output$DevResid, 4))
}
adjDevResid <- function (dataSet, survModelFormula, censColumn, linkFunc="logit", idColumn=NULL) {
if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")}
if(!("formula" %in% class(survModelFormula))) {stop("*survModelFormula* is not of class formula! Please specify a valid formula, e. g. y ~ x + z.")}
if(!any(names(dataSet)==censColumn)) {stop("Argument *censColumn* is not available in *dataSet*! Please specify the correct column name of the event indicator.")}
if(!(any(names(dataSet)==idColumn) | is.null(idColumn))) {stop("Argument *idColumn* is not available in *dataSet*! Please specify the correct column name of the identification numbers of persons.")}
AdjDevResid <- function (x) {
LogTerm1 <- ifelse(splitY [[x]]==1, -log(splitHazards [[x]]), 0)
LogTerm2 <- ifelse(splitY [[x]]==0, -log (1 - splitHazards [[x]]), 0)
FirstPartialSum <- sum(sign(splitY [[x]] - splitHazards [[x]]) * (sqrt(splitY [[x]] * LogTerm1 + (1 - splitY [[x]]) * LogTerm2)))
SecondPartialSum <- sum( (1 - 2*splitHazards [[x]]) / sqrt (splitHazards [[x]] * (1 - splitHazards [[x]]) * 36) )
return(FirstPartialSum + SecondPartialSum)
}
if(!is.null(idColumn)) {
dataSetLong <- dataLongTimeDep (dataSet=dataSet, timeColumn=as.character(survModelFormula) [2], censColumn=censColumn, idColumn=idColumn)
}
else {
dataSetLong <- dataLong (dataSet=dataSet, timeColumn=as.character(survModelFormula) [2], censColumn=censColumn)
}
NewFormula <- update(survModelFormula, y ~ timeInt + .)
glmFit <- glm(formula=NewFormula, data=dataSetLong, family=binomial(link=linkFunc))
hazards <- predict(glmFit, type="response")
splitHazards <- split(hazards, dataSetLong$obj)
splitY <- split(dataSetLong$y, dataSetLong$obj)
Residuals <- sapply(1:length(splitY), AdjDevResid)
Output <- list(Output=list(AdjDevResid=Residuals, GlmFit=glmFit),
Input=list(dataSet=dataSet, survModelFormula=survModelFormula, censColumn=censColumn, linkFunc=linkFunc, idColumn=idColumn))
class(Output) <- "discSurvAdjDevResid"
return(Output)
}
print.discSurvAdjDevResid <- function (x, ...) {
print(round(x$Output$AdjDevResid, 4))
}
plot.discSurvAdjDevResid <- function (x, ...) {
qqnorm (y=x$Output$AdjDevResid, las=1, ...)
qqline(y=x$Output$AdjDevResid, ...)
}
adjDevResidShort <- function (dataSet, hazards) {
if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")}
if(!all(hazards>=0 & hazards<=1)) {stop("Argument *hazards* must contain probabilities in the closed interval from zero to one. Please verify that *hazards* are estimated hazard rates")}
if(!(dim(dataSet)[1]==length(hazards))) {stop("The length of argument *hazards* must match the number of observations")}
AdjDevResid <- function (x) {
LogTerm1 <- ifelse(splitY [[x]]==1, -log(splitHazards [[x]]), 0)
LogTerm2 <- ifelse(splitY [[x]]==0, -log (1 - splitHazards [[x]]), 0)
FirstPartialSum <- sum(sign(splitY [[x]] - splitHazards [[x]]) * (sqrt(splitY [[x]] * LogTerm1 + (1 - splitY [[x]]) * LogTerm2)))
SecondPartialSum <- sum( (1 - 2*splitHazards [[x]]) / sqrt (splitHazards [[x]] * (1 - splitHazards [[x]]) * 36) )
return(FirstPartialSum + SecondPartialSum)
}
splitHazards <- split(hazards, dataSet$obj)
splitY <- split(dataSet$y, dataSet$obj)
Residuals <- sapply(1:length(splitY), AdjDevResid)
Output <- list(Output=list(AdjDevResid=Residuals),
Input=list(dataSet=dataSet, hazards=hazards))
class(Output) <- "discSurvAdjDevResid"
return(Output)
}
devResidShort <- function (dataSet, hazards) {
if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")}
if(!all(hazards>=0 & hazards<=1)) {stop("Argument *hazards* must contain probabilities in the closed interval from zero to one. Please verify that *hazards* are estimated hazard rates")}
if(!(dim(dataSet)[1]==length(hazards))) {stop("The length of argument *hazards* must match the number of observations")}
SquDevResid <- function (x) {-2*sum(splitY [[x]] * log(splitHazards [[x]]) + (1 - splitY [[x]]) * log(1 - splitHazards [[x]] ))}
splitHazards <- split(hazards, dataSet$obj)
splitY <- split(dataSet$y, dataSet$obj)
Residuals <- sapply(1:length(splitY), SquDevResid)
Output <- list(Output=list(DevResid=sqrt(Residuals)),
Input=list(dataSet=dataSet, hazards=hazards))
class(Output) <- "discSurvDevResid"
return(Output)
}
evalCindex <- function(marker, newTime, newEvent, trainTime, trainEvent){
tprFit <- tprUnoShort (timepoint = 1, marker, newTime,
newEvent, trainTime, trainEvent)
fprFit <- fprUnoShort(timepoint = 1, marker, newTime)
aucFit <- aucUno(tprFit, fprFit)
CFit <- unname(concorIndex(aucFit)$Output)
return(CFit)
}
evalIntPredErr <- function(hazPreds, survPreds=NULL, newTimeInput,
newEventInput, trainTimeInput, trainEventInput,
testDataLong, tmax=NULL){
if( any(is.null(survPreds)) ){
oneMinusPredHaz <- 1 - hazPreds
predSurv <- aggregate(formula=oneMinusPredHaz ~ obj, data=testDataLong,
FUN=cumprod, na.action=NULL)
pecObj <- predErrDiscShort(timepoints=1, estSurvList=predSurv[[2]],
newTime=newTimeInput, newEvent=newEventInput,
trainTime=trainTimeInput, trainEvent=trainEventInput)
ipecVal <- unname(intPredErrDisc(predErrObj=pecObj, tmax=tmax))
return(ipecVal)
} else{
pecObj <- predErrDiscShort(timepoints=1, estSurvList=survPreds,
newTime=newTimeInput, newEvent=newEventInput,
trainTime=trainTimeInput, trainEvent=trainEventInput)
ipecVal <- unname(intPredErrDisc(predErrObj=pecObj, tmax=tmax))
return(ipecVal)
}
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(tidyfst)
library(nycflights13)
flights2 <- flights %>%
select_dt(year,month,day, hour, origin, dest, tailnum, carrier)
flights2 %>%
left_join_dt(airlines)
flights2 %>% left_join_dt(weather)
flights2 %>% left_join_dt(planes, by = "tailnum")
flights2 %>% left_join_dt(airports, c("dest" = "faa"))
flights2 %>% left_join_dt(airports, c("origin" = "faa"))
df1 <- data.table(x = c(1, 2), y = 2:1)
df2 <- data.table(x = c(1, 3), a = 10, b = "a")
df1 %>% inner_join_dt(df2)
df1 %>% left_join_dt(df2)
df1 %>% right_join_dt(df2)
df1 %>% full_join_dt(df2)
df1 <- data.frame(x = c(1, 1, 2), y = 1:3)
df2 <- data.frame(x = c(1, 1, 2), z = c("a", "b", "a"))
df1 %>% left_join_dt(df2)
flights %>%
anti_join_dt(planes, by = "tailnum") %>%
count_dt(tailnum, sort = TRUE)
df1 <- data.frame(x = c(1, 1, 3, 4), y = 1:4)
df2 <- data.frame(x = c(1, 1, 2), z = c("a", "b", "a"))
df1 %>% nrow()
df1 %>% inner_join_dt(df2, by = "x") %>% nrow()
df1 %>% semi_join_dt(df2, by = "x") %>% nrow()
x = iris[c(2,3,3,4),]
x2 = iris[2:4,]
y = iris[c(3:5),]
intersect_dt(x, y)
intersect_dt(x, y, all=TRUE)
setdiff_dt(x, y)
setdiff_dt(x, y, all=TRUE)
union_dt(x, y)
union_dt(x, y, all=TRUE)
setequal_dt(x, x2, all=FALSE)
setequal_dt(x, x2) |
expected <- eval(parse(text="list(1L, 3.14159265358979, 3+5i, \"testit\", TRUE, structure(1L, .Label = \"foo\", class = \"factor\"))"));
test(id=0, code={
argv <- eval(parse(text="list(1L, 3.14159265358979, 3+5i, \"testit\", TRUE, structure(1L, .Label = \"foo\", class = \"factor\"))"));
do.call(`list`, argv);
}, o=expected); |
allmodels_autoDI <- function(y, block, density, prop, treat, FG, data, family, total, estimate_theta,
nSpecies, treat_flag, even_flag, P_int_flag, FGnames) {
if(is.null(FG)) use_FG <- FALSE else use_FG <- TRUE
mod_STR <- DI_STR(y = y, block = block, density = density, data = data, family = family, total = total)$model
mod_ID <- DI_ID(y = y, block = block, density = density, prop = prop, data = data, family = family, total = total)$model
if(!even_flag) {
mod_AV_both <- DI_AV(y = y, block = block, density = density, prop = prop, data = data, family = family,
estimate_theta = estimate_theta, nSpecies = nSpecies, total = total)
mod_AV <- mod_AV_both$model
}
if(use_FG) {
mod_FG_both <- DI_FG(y = y, block = block, density = density, prop = prop, FG = FG, data = data, family = family,
estimate_theta = estimate_theta, nSpecies = nSpecies, total = total, FGnames = FGnames)
mod_FG <- mod_FG_both$model
} else {
if(!P_int_flag) {
mod_ADD_both <- DI_ADD(y = y, block = block, density = density, prop = prop, data = data, family = family,
estimate_theta = estimate_theta, nSpecies = nSpecies, total = total)
mod_ADD <- mod_ADD_both$model
}
}
fmla_FULL <- as.formula(paste("~", block, "+", density, " + (", paste(prop, collapse = "+"),")^2"))
X_FULL <- model.matrix(fmla_FULL, data = data)
X_pairwise <- X_FULL[,grep(":", colnames(X_FULL))]
FULL_flag <- nrow(X_FULL) > ncol(X_FULL)
if(FULL_flag) {
FULL_flag <- DI_matrix_check(X_pairwise)
}
if(!FULL_flag) {
message("Not all pairwise interactions can be estimated.\nTherefore, the FULL model is not included in the selection process.\n")
}
if(FULL_flag) {
mod_FULL_both <- DI_FULL(y = y, block = block, density = density, prop = prop, data = data, family = family,
estimate_theta = estimate_theta, nSpecies = nSpecies, total = total)
mod_FULL <- mod_FULL_both$model
if(even_flag) {
model_list_theta <- list("FULL_model" = mod_FULL_both$theta)
} else if(use_FG) {
model_list_theta <- list("AV_model" = mod_AV_both$theta,
"FG_model" = mod_FG_both$theta,
"FULL_model" = mod_FULL_both$theta)
} else if(P_int_flag) {
model_list_theta <- list("AV_model" = mod_AV_both$theta,
"FULL_model" = mod_FULL_both$theta)
} else {
model_list_theta <- list("AV_model" = mod_AV_both$theta,
"ADD_model" = mod_ADD_both$theta,
"FULL_model" = mod_FULL_both$theta)
}
} else {
if(even_flag) {
model_list_theta <- list()
} else if(use_FG) {
model_list_theta <- list("AV_model" = mod_AV_both$theta,
"FG_model" = mod_FG_both$theta)
} else if(P_int_flag) {
model_list_theta <- list("AV_model" = mod_AV_both$theta)
} else {
model_list_theta <- list("AV_model" = mod_AV_both$theta,
"ADD_model" = mod_ADD_both$theta)
}
}
if(!treat_flag) {
mod_STR_treat <- DI_STR_treat(y = y, block = block, density = density, treat = treat, data = data, family = family, total = total)$model
mod_ID_treat <- DI_ID_treat(y = y, block = block, density = density, prop = prop, treat = treat, data = data, family = family, total = total)$model
if(!even_flag) {
mod_AV_both_treat <- DI_AV_treat(y = y, block = block, density = density, prop = prop, treat = treat, data = data, family = family,
estimate_theta = estimate_theta, nSpecies = nSpecies, total = total)
mod_AV_treat <- mod_AV_both_treat$model
}
if(use_FG) {
mod_FG_both_treat <- DI_FG_treat(y = y, block = block, density = density, prop = prop, FG = FG, treat = treat,
data = data, family = family, estimate_theta = estimate_theta, nSpecies = nSpecies, total = total, FGnames = FGnames)
mod_FG_treat <- mod_FG_both_treat$model
} else {
if(!P_int_flag) {
mod_ADD_both_treat <- DI_ADD_treat(y = y, block = block, density = density, prop = prop, treat = treat, data = data, family = family,
estimate_theta = estimate_theta, nSpecies = nSpecies, total = total)
mod_ADD_treat <- mod_ADD_both_treat$model
}
}
fmla_FULL_treat <- as.formula(paste("~", block, "+", density, "+", treat, " + (", paste(prop, collapse = "+"),")^2"))
X_FULL_treat <- model.matrix(fmla_FULL_treat, data = data)
X_pairwise_treat <- X_FULL_treat[,grep(":", colnames(X_FULL_treat))]
FULL_flag <- nrow(X_FULL_treat) > ncol(X_FULL_treat)
if(FULL_flag) {
FULL_flag <- DI_matrix_check(X_pairwise_treat)
}
if(!FULL_flag) {
message("Not all pairwise interactions can be estimated.\nTherefore, the FULL model is not included in the selection process.\n")
}
if(FULL_flag) {
mod_FULL_both_treat <- DI_FULL_treat(y = y, block = block, density = density, prop = prop, treat = treat, data = data, family = family,
estimate_theta = estimate_theta, nSpecies = nSpecies, total = total)
mod_FULL_treat <- mod_FULL_both_treat$model
if(even_flag) {
model_list_theta_treat <- list("FULL_model_treat" = mod_FULL_both_treat$theta)
} else if(use_FG) {
model_list_theta_treat <- list("AV_model_treat" = mod_AV_both_treat$theta,
"FG_model_treat" = mod_FG_both_treat$theta,
"FULL_model_treat" = mod_FULL_both_treat$theta)
} else if(P_int_flag) {
model_list_theta_treat <- list("AV_model_treat" = mod_AV_both_treat$theta,
"FULL_model_treat" = mod_FULL_both_treat$theta)
} else {
model_list_theta_treat <- list("AV_model_treat" = mod_AV_both_treat$theta,
"ADD_model_treat" = mod_ADD_both_treat$theta,
"FULL_model_treat" = mod_FULL_both_treat$theta)
}
} else {
if(even_flag) {
model_list_theta_treat <- list()
} else if(use_FG) {
model_list_theta_treat <- list("AV_model_treat" = mod_AV_both_treat$theta,
"FG_model_treat" = mod_FG_both_treat$theta)
} else if(P_int_flag) {
model_list_theta_treat <- list("AV_model_treat" = mod_AV_both_treat$theta)
} else {
model_list_theta_treat <- list("AV_model_treat" = mod_AV_both_treat$theta,
"ADD_model_treat" = mod_ADD_both_treat$theta)
}
}
}
model_list <- list("STR_model" = mod_STR,
"ID_model" = mod_ID)
if(!even_flag) {
model_list$AV_model <- mod_AV
}
if(use_FG) {
model_list$FG_model <- mod_FG
} else if(!P_int_flag) {
model_list$ADD_model <- mod_ADD
}
if(FULL_flag) {
model_list$FULL_model <- mod_FULL
}
if(!treat_flag) {
model_list_treat <- list("STR_model_treat" = mod_STR_treat,
"ID_model_treat" = mod_ID_treat)
if(!even_flag) {
model_list_treat$AV_model_treat <- mod_AV_treat
}
if(use_FG) {
model_list_treat$FG_model_treat <- mod_FG_treat
} else if(!P_int_flag) {
model_list_treat$ADD_model_treat <- mod_ADD_treat
}
if(FULL_flag) {
model_list_treat$FULL_model_treat <- mod_FULL_treat
}
}
if(treat_flag) {
return(list("model_list" = model_list, "model_list_theta" = model_list_theta,
"model_list_treat" = list(), "model_list_theta_treat" = list()))
} else {
return(list("model_list" = model_list, "model_list_theta" = model_list_theta,
"model_list_treat" = model_list_treat, "model_list_theta_treat" = model_list_theta_treat))
}
}
namesub_autoDI <- Vectorize(function(name) {
thename <- switch(name,
"STR_model" = "Structural 'STR' DImodel",
"ID_model" = "Species identity 'ID' DImodel",
"FULL_model" = "Separate pairwise interactions 'FULL' DImodel",
"AV_model" = "Average interactions 'AV' DImodel",
"E_model" = "Evenness 'E' DImodel",
"ADD_model" =
"Additive species contributions to interactions 'ADD' DImodel",
"FG_model" = "Functional group effects 'FG' DImodel",
"STR_model_treat" = "Structural 'STR' DImodel with treatment",
"ID_model_treat" = "Species identity 'ID' DImodel with treatment",
"FULL_model_treat" = "Separate pairwise interactions 'FULL' DImodel with treatment",
"AV_model_treat" = "Average interactions 'AV' DImodel with treatment",
"E_model_treat" = "Evenness 'E' DImodel with treatment",
"ADD_model_treat" =
"Additive species contributions to interactions 'ADD' DImodel with treatment",
"FG_model_treat" = "Functional group effects 'FG' DImodel with treatment",
"FULL_model_theta" = "Separate pairwise interactions 'FULL' DImodel, estimating theta",
"AV_model_theta" = "Average interactions 'AV' DImodel, estimating theta",
"E_model_theta" = "Evenness 'E' DImodel, estimating theta",
"ADD_model_theta" =
"Additive species contributions to interactions 'ADD' DImodel, estimating theta",
"FG_model_theta" = "Functional group effects 'FG' DImodel, estimating theta",
"FULL_model_treat_theta" = "Separate pairwise interactions 'FULL' DImodel with treatment, estimating theta",
"AV_model_treat_theta" = "Average interactions 'AV' DImodel with treatment, estimating theta",
"E_model_treat_theta" = "Evenness 'E' DImodel with treatment, estimating theta",
"ADD_model_treat_theta" =
"Additive species contributions to interactions 'ADD' DImodel with treatment, estimating theta",
"FG_model_treat_theta" = "Functional group effects 'FG' DImodel with treatment, estimating theta",
stop("not yet implemented"))
return(thename)
}, "name")
reftest_autoDI <- function(model_to_compare, ref_model, family) {
if(family %in% c("poisson","binomial")) {
ref_test <- "Chisq"
} else {
ref_test <- "F"
}
anovas <- anova(model_to_compare, ref_model, test = ref_test)
anovas_format <- as.data.frame(anovas)
anovas_format <- round(anovas_format, 4)
anovas_format[is.na(anovas_format)] <- ""
names(anovas_format)[c(2,4)] <- c("Resid. SSq","SSq")
anovas_format$"Resid. MSq" <- round(anovas_format[,2]/anovas_format[,1], 4)
anovas_format <- anovas_format[,c(1,2,7,3:6)]
model_tokens <- c("Selected","Reference")
anovas_format$model <- model_tokens
anovas_format <- anovas_format[,c(8,1:7)]
row.names(anovas_format) <- paste("DI Model", row.names(anovas_format))
anovas_format[,8][anovas_format[,8] == 0] <- "<0.0001"
message("\n")
old <- options()
options(scipen = 999)
on.exit(options(old))
print(anovas_format)
}
test_autoDI <- function(model_list, family, treat) {
if(family %in% c("poisson","binomial")) {
message("Selection using X2 tests", "\n")
Test <- "Chisq"
} else {
message("Selection using F tests", "\n")
Test <- "F"
}
model_names <- names(model_list)
treat_flag <- grep("treatment", namesub_autoDI(model_names))
theta_flag <- grep("theta", namesub_autoDI(model_names))
treat_output <- rep("none", length(model_names))
treat_output[treat_flag] <- paste("'", treat, "'", sep = "")
theta_output <- rep(FALSE, length(model_names))
theta_output[theta_flag] <- TRUE
model_tokens <- gsub("_", "", gsub("[:a-z:]", "", names(model_list)))
names(model_list) <- NULL
anovas <- eval(parse(text = paste("anova(",
paste("model_list[[", 1:length(model_list), "]]",
sep = "", collapse = ","),
",test ='", Test, "')", sep = "")
))
if(family %in% c("poisson","binomial")) {
p_values <- anovas$"Pr(>Chi)"
} else {
p_values <- anovas$"Pr(>F)"
}
p_less <- which(p_values < .05)
p_value_selected <- ifelse(length(p_less) == 0, 1, max(p_less))
selected <- model_names[p_value_selected]
anovas_format <- as.data.frame(anovas)
anovas_format <- round(anovas_format, 4)
anovas_format[is.na(anovas_format)] <- ""
names(anovas_format)[c(2,4)] <- c("Resid. SSq","SSq")
anovas_format$"Resid. MSq" <- round(anovas_format[,2]/anovas_format[,1], 4)
anovas_format <- anovas_format[,c(1,2,7,3:6)]
anovas_format$model <- model_tokens
anovas_format$treat <- treat_output
anovas_format$theta <- theta_output
anovas_format <- anovas_format[,c(8:10,1:7)]
names(anovas_format)[1] <- "DI_model"
names(anovas_format)[3] <- "estimate_theta"
row.names(anovas_format) <- paste("DI Model", row.names(anovas_format))
anovas_format[,10][anovas_format[,10] == 0] <- "<0.0001"
desc_table <- data.frame("Description" = namesub_autoDI(model_names))
row.names(desc_table) <- paste("DI Model", 1:nrow(anovas_format))
print(desc_table, right = FALSE)
message("\n")
old <- options()
options(scipen = 999)
on.exit(options(old))
print(anovas_format)
return(selected)
}
AICsel_autoDI <- function(model_list, mAIC, treat) {
message("Selection by AIC\nWarning: DI Model with the lowest AIC will be selected, even if the difference is very small.\nPlease inspect other models to see differences in AIC.", "\n\n", sep = "")
model_names <- names(model_list)
treat_flag <- grep("treatment", namesub_autoDI(model_names))
theta_flag <- grep("theta", namesub_autoDI(model_names))
treat_output <- rep("none", length(model_names))
treat_output[treat_flag] <- paste("'", treat, "'", sep = "")
theta_output <- rep(FALSE, length(model_names))
theta_output[theta_flag] <- TRUE
model_tokens <- gsub("_", "", gsub("[:a-z:]", "", model_names))
model_descriptions <- namesub_autoDI(model_names)
the_table <- data.frame("AIC" = mAIC,
"DI_Model" = model_tokens,
"treat" = treat_output,
"theta" = theta_output,
"Description" = model_descriptions,
row.names = NULL)
print(the_table, right = FALSE)
selected <- names(model_list)[which.min(mAIC)]
return(selected)
}
AICcsel_autoDI <- function(model_list, mAICc, treat) {
message("Selection by AICc\nWarning: DI Model with the lowest AICc will be selected, even if the difference is very small.\nPlease inspect other models to see differences in AICc.", "\n\n", sep = "")
model_names <- names(model_list)
treat_flag <- grep("treatment", namesub_autoDI(model_names))
theta_flag <- grep("theta", namesub_autoDI(model_names))
treat_output <- rep("none", length(model_names))
treat_output[treat_flag] <- paste("'", treat, "'", sep = "")
theta_output <- rep(FALSE, length(model_names))
theta_output[theta_flag] <- TRUE
model_tokens <- gsub("_", "", gsub("[:a-z:]", "", model_names))
model_descriptions <- namesub_autoDI(model_names)
the_table <- data.frame("AICc" = mAICc,
"DI_Model" = model_tokens,
"treat" = treat_output,
"theta" = theta_output,
"Description" = model_descriptions,
row.names = NULL)
print(the_table, right = FALSE)
selected <- names(model_list)[which.min(mAICc)]
return(selected)
}
BICsel_autoDI <- function(model_list, mBIC, treat) {
message("Selection by BIC\nWarning: DI Model with the lowest BIC will be selected, even if the difference is very small.\nPlease inspect other models to see differences in BIC.", "\n\n", sep = "")
model_names <- names(model_list)
treat_flag <- grep("treatment", namesub_autoDI(model_names))
theta_flag <- grep("theta", namesub_autoDI(model_names))
treat_output <- rep("none", length(model_names))
treat_output[treat_flag] <- paste("'", treat, "'", sep = "")
theta_output <- rep(FALSE, length(model_names))
theta_output[theta_flag] <- TRUE
model_tokens <- gsub("_", "", gsub("[:a-z:]", "", model_names))
model_descriptions <- namesub_autoDI(model_names)
the_table <- data.frame("BIC" = mBIC,
"DI_Model" = model_tokens,
"treat" = treat_output,
"theta" = theta_output,
"Description" = model_descriptions,
row.names = NULL)
print(the_table, right = FALSE)
selected <- names(model_list)[which.min(mBIC)]
return(selected)
}
BICcsel_autoDI <- function(model_list, mBICc, treat) {
message("Selection by BICc\nWarning: DI Model with the lowest BICc will be selected, even if the difference is very small.\nPlease inspect other models to see differences in BICc.", "\n\n", sep = "")
model_names <- names(model_list)
treat_flag <- grep("treatment", namesub_autoDI(model_names))
theta_flag <- grep("theta", namesub_autoDI(model_names))
treat_output <- rep("none", length(model_names))
treat_output[treat_flag] <- paste("'", treat, "'", sep = "")
theta_output <- rep(FALSE, length(model_names))
theta_output[theta_flag] <- TRUE
model_tokens <- gsub("_", "", gsub("[:a-z:]", "", model_names))
model_descriptions <- namesub_autoDI(model_names)
the_table <- data.frame("BICc" = mBICc,
"DI_Model" = model_tokens,
"treat" = treat_output,
"theta" = theta_output,
"Description" = model_descriptions,
row.names = NULL)
print(the_table, right = FALSE)
selected <- names(model_list)[which.min(mBICc)]
return(selected)
}
DI_matrix_check <- function(model_matrix) {
n_parms <- ncol(model_matrix)
matrix_rank <- qr(model_matrix)$rank
if(matrix_rank == n_parms) {
return(TRUE)
} else {
return(FALSE)
}
}
autoDI_step0 <- function(y, block, density, treat, family, data) {
if(is.na(block) & is.na(density) & is.na(treat)) {
return(invisible())
}
message("\n", strrep("-", getOption("width")))
message("\nSequential analysis: Investigating only non-diversity experimental design structures\n")
fmla1 <- paste(y, "~", 1)
fit1 <- glm(fmla1, family = family, data = data)
if(!is.na(block) & !is.na(density) & !is.na(treat)) {
fmla2 <- paste(y, "~", block)
fmla3 <- paste(y, "~", block, "+", density)
fmla4 <- paste(y, "~", block, "+", density, "+", treat)
fit2 <- glm(fmla2, family = family, data = data)
fit3 <- glm(fmla3, family = family, data = data)
fit4 <- glm(fmla4, family = family, data = data)
model_list <- list(fit1, fit2, fit3, fit4)
model_tokens <- c("Intercept only","block","block + density","block + density + treat")
}
if(!is.na(block) & !is.na(density) & is.na(treat)) {
fmla2 <- paste(y, "~", block)
fmla3 <- paste(y, "~", block, "+", density)
fit2 <- glm(fmla2, family = family, data = data)
fit3 <- glm(fmla3, family = family, data = data)
model_list <- list(fit1, fit2, fit3)
model_tokens <- c("Intercept only","block","block + density")
}
if(!is.na(block) & is.na(density) & !is.na(treat)) {
fmla2 <- paste(y, "~", block)
fmla3 <- paste(y, "~", block, "+", treat)
fit2 <- glm(fmla2, family = family, data = data)
fit3 <- glm(fmla3, family = family, data = data)
model_list <- list(fit1, fit2, fit3)
model_tokens <- c("Intercept only","block","block + treat")
}
if(is.na(block) & !is.na(density) & !is.na(treat)) {
fmla2 <- paste(y, "~", density)
fmla3 <- paste(y, "~", density, "+", treat)
fit2 <- glm(fmla2, family = family, data = data)
fit3 <- glm(fmla3, family = family, data = data)
model_list <- list(fit1, fit2, fit3)
model_tokens <- c("Intercept only","density","density + treat")
}
if(!is.na(block) & is.na(density) & is.na(treat)) {
fmla2 <- paste(y, "~", block)
fit2 <- glm(fmla2, family = family, data = data)
model_list <- list(fit1, fit2)
model_tokens <- c("Intercept only","block")
}
if(is.na(block) & !is.na(density) & is.na(treat)) {
fmla2 <- paste(y, "~", density)
fit2 <- glm(fmla2, family = family, data = data)
model_list <- list(fit1, fit2)
model_tokens <- c("Intercept only","density")
}
if(is.na(block) & is.na(density) & !is.na(treat)) {
fmla2 <- paste(y, "~", treat)
fit2 <- glm(fmla2, family = family, data = data)
model_list <- list(fit1, fit2)
model_tokens <- c("Intercept only","treat")
}
if(family %in% c("poisson","binomial")) {
Test <- "Chisq"
} else {
Test <- "F"
}
anovas <- eval(parse(text = paste("anova(",
paste("model_list[[", 1:length(model_list), "]]",
sep = "", collapse = ","),
",test ='", Test, "')", sep = "")
))
anovas_format <- as.data.frame(anovas)
anovas_format <- round(anovas_format, 4)
anovas_format[is.na(anovas_format)] <- ""
names(anovas_format)[c(2,4)] <- c("Resid. SSq","SSq")
anovas_format$"Resid. MSq" <- round(anovas_format[,2]/anovas_format[,1], 4)
anovas_format <- anovas_format[,c(1,2,7,3:6)]
anovas_format$model <- model_tokens
anovas_format <- anovas_format[,c(8,1:7)]
anovas_format[,8][anovas_format[,8] == 0] <- "<0.0001"
message("\n")
old <- options()
options(scipen = 999)
on.exit(options(old))
print(anovas_format)
} |
unblanker <-
function(x)subset(x, nchar(x)>0) |
context("Checking Outputs")
test_that("checking value",{
expect_identical(round(pBetaBin(2,4,0.5,0.4),4),
0.5056)
})
test_that("checking class",{
expect_that(pBetaBin(2,4,0.5,0.1),
is_a("numeric"))
})
test_that("checking length of output",{
expect_equal(length(pBetaBin(1:2,4,0.5,1)),2)
}) |
`relative.importance` <-
function(dataset) {
dataset <- prepare.data(dataset)
no_classes <- length(levels(dataset$class))
data_class <- create.classdata(dataset)
n <- rep(as.numeric(NA), each=no_classes)
for (i in 1:no_classes) {
n[i] <- dim(data_class[[i]])[1]
}
n.total <- dim(dataset)[1]
parameters <- matrix(data = NA, nrow = no_classes, ncol = 4)
parameters <- as.data.frame(parameters)
names(parameters) <- c("alpha", "beta", "mu", "sigma")
fit <- list()
for (i in 1:no_classes) {
fit[[i]] <- glm(transition ~ performance, data=data_class[[i]], family="binomial")
}
for (i in 1:no_classes) {
parameters$alpha[i] <- as.numeric(fit[[i]]$coefficients[1])
parameters$beta[i] <- as.numeric(fit[[i]]$coefficients[2])
parameters$mu[i] <- mean(data_class[[i]]$performance)
parameters$sigma[i] <- sd(data_class[[i]]$performance)
}
perc.class <- rep(as.numeric(NA), no_classes)
for (i in 1:no_classes) {
temp1 <- data_class[[i]]
temp2 <- dim(temp1[(temp1$transition==1),])[1]
perc.class[i] <- temp2 / (dim(temp1)[1])
}
perc.total <- (dim(dataset[(dataset$transition==1),])[1]) / (dim(dataset)[1])
fifty.point <- rep(as.numeric(NA), no_classes)
for (i in 1:no_classes) {
fifty.point[i] <- - parameters$alpha[i] / parameters$beta[i]
}
gamma <- rep(as.numeric(NA), no_classes)
for (i in 1:no_classes) {
gamma[i] <- parameters$alpha[i] + (parameters$beta[i] * parameters$mu[i])
}
k <- 0.61
log.odds <- function(g, s, b) as.numeric(g/sqrt(1+(k*s*b)^2))
log_odds <- rep(as.numeric(NA), no_classes)
odds <- rep(as.numeric(NA), no_classes)
for (i in 1:no_classes) {
log_odds[i] <- log.odds(gamma[i], parameters$sigma[i], parameters$beta[i])
}
for (i in 1:no_classes) {
odds[i] <- exp(log_odds[i])
}
no_oddsratios <- function(no_classes) {
N <- no_classes
no_oddsratios <- 0
for (j in 1:(N-1)) {
no_oddsratios <- no_oddsratios + j
}
no_oddsratios
}
oddsratios <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(oddsratios)[1]) {
for (j in 1:dim(oddsratios)[2]) {
if (i < j) {
oddsratios[i, j] <- odds[i] / odds[j]
}
}
}
logistic <- function(x) exp(x)/(1+exp(x))
logit <- function(x) log(x/(1-x))
trans.prob <- rep(as.numeric(NA), no_classes)
for (i in 1:no_classes) {
trans.prob[i] <- logistic(log_odds[i])
}
tr.pr <- function(g, s, b) {
pnorm(as.numeric(k*g / sqrt(1 + (k*s*b)^2)))
}
logodds <- matrix(NA, nrow = no_classes, ncol = no_classes)
for (i in 1:no_classes) {
for (j in 1:no_classes) {
logodds[i, j] <- log.odds(parameters$alpha[j] + (parameters$beta[j] * parameters$mu[i]), parameters$sigma[i], parameters$beta[j])
}
}
transprob <- matrix(NA, nrow = no_classes, ncol = no_classes)
for (i in 1:no_classes) {
for (j in 1:no_classes) {
transprob[i, j] <- tr.pr(parameters$alpha[j] + (parameters$beta[j] * parameters$mu[i]), parameters$sigma[i], parameters$beta[j])
}
}
rel.imp.sec1 <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(rel.imp.sec1)[1]) {
for (j in 1:dim(rel.imp.sec1)[2]) {
if (i < j) {
rel.imp.sec1[i, j] <- (logodds[i, i] - logodds[i, j]) / (logodds[i, i] - logodds[j, j])
}
}
}
rel.imp.sec2 <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(rel.imp.sec2)[1]) {
for (j in 1:dim(rel.imp.sec2)[2]) {
if (i < j) {
rel.imp.sec2[i, j] <- (logodds[j, i] - logodds[j, j]) / (logodds[i, i] - logodds[j, j])
}
}
}
rel.imp.sec.avg <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(rel.imp.sec.avg)[1]) {
for (j in 1:dim(rel.imp.sec.avg)[2]) {
if (i < j) {
rel.imp.sec.avg[i, j] <- (rel.imp.sec1[i, j] + rel.imp.sec2[i, j]) / 2
}
}
}
rel.imp.prim1 <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(rel.imp.prim1)[1]) {
for (j in 1:dim(rel.imp.prim1)[2]) {
if (i < j) {
rel.imp.prim1[i, j] <- 1 - rel.imp.sec1[i, j]
}
}
}
rel.imp.prim2 <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(rel.imp.prim2)[1]) {
for (j in 1:dim(rel.imp.prim2)[2]) {
if (i < j) {
rel.imp.prim2[i, j] <- 1 - rel.imp.sec2[i, j]
}
}
}
rel.imp.prim.avg <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(rel.imp.prim.avg)[1]) {
for (j in 1:dim(rel.imp.prim.avg)[2]) {
if (i < j) {
rel.imp.prim.avg[i, j] <- 1 - rel.imp.sec.avg[i, j]
}
}
}
I <- list()
for (i in 1:no_classes) {
I[[i]] <- vcov(fit[[i]])
}
var.logodds <- function(a, b, m, s, i11, i12, i22, n) {
var1 <- i11/(1 + (k*s*b)^2)
var2 <- 2*i12*(m - (2*a*b*(k*s)^2))/((1+(k*s*b)^2)^2)
var3 <- i22*((m - (2*a*b*(k*s)^2))^2)/((1+(k*s*b)^2)^3)
var4 <- ((s*b)^2) / (n*(1 + (k*s*b)^2))
var5 <- (2*((k*b*s)^4)*((a + b*m)^2) / (n*((1+(k*s*b)^2)^3)))
as.numeric(var1+var2+var3+var4+var5)
}
var.lo <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(var.lo)[1]) {
for (j in 1:dim(var.lo)[2]) {
var.lo[i, j] <- var.logodds(parameters$alpha[j], parameters$beta[j], parameters$mu[i], parameters$sigma[i], I[[j]][1,1], I[[j]][1,2], I[[j]][2,2], n[i])
}
}
se.lo <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(var.lo)[1]) {
for (j in 1:dim(var.lo)[2]) {
se.lo[i, j] <- sqrt(var.lo[i, j])
}
}
cov.logodds.ii.ij <- function(a.i, a.j, b.i, b.j, m.i, s.i, n.i) {
as.numeric((s.i^2*b.i*b.j/(n.i*sqrt(1+(k*s.i*b.i)^2)*sqrt(1+(k*s.i*b.j)^2)) + (s.i*k)^4*(b.i*b.j)^2*(a.i+b.i*m.i)*(a.j +
b.j*m.i)/(2*n.i*((1+(k*s.i*b.i)^2)^(3/2))*((1+(k*s.i*b.j)^2)^(3/2)))))
}
cov.lo.ii.ij <- matrix(NA, nrow=no_classes, ncol=no_classes)
for (i in 1:dim(cov.lo.ii.ij)[1]) {
for (j in 1:dim(cov.lo.ii.ij)[2]) {
if (i != j) {
cov.lo.ii.ij[i, j] <- cov.logodds.ii.ij(parameters$alpha[i], parameters$alpha[j], parameters$beta[i],
parameters$beta[j], parameters$mu[i], parameters$sigma[i], n[i])
}
}
}
cov.logodds.ii.ji <- function(a.i, b.i, m.i, s.i, i11, i12, i22, m.j, s.j) {
var1 <- i11/sqrt(1 + ((k*s.i*b.i)^2)) + ((m.i-(a.i*b.i*(k*s.i)^2))*i12/((1 + (k*s.i*b.i)^2)^(3/2)))
var2 <- i12/sqrt(1 + ((k*s.i*b.i)^2)) + ((m.i-(a.i*b.i*(k*s.i)^2))*i22/((1 + (k*s.i*b.i)^2)^(3/2)))
as.numeric((var1/sqrt(1 + (k*s.j*b.i)^2) ) + (var2 * ((m.j-a.i*b.i*(k*s.j)^2)/((1 + (k*s.j*b.i)^2))^(3/2))))
}
cov.lo.ii.ji <- matrix(NA, nrow=no_classes, ncol=no_classes)
for (i in 1:dim(cov.lo.ii.ji)[1]) {
for (j in 1:dim(cov.lo.ii.ji)[2]) {
if (i != j) {
cov.lo.ii.ji[i, j] <- cov.logodds.ii.ji(parameters$alpha[i], parameters$beta[i], parameters$mu[i],
parameters$sigma[i], I[[i]][1, 1], I[[i]][1, 2], I[[i]][2, 2],
parameters$mu[j], parameters$sigma[j])
}
}
}
var.relimp.1 <- function(fii, fij, fjj, var.fii, var.fij, var.fjj, cov.fii.fij, cov.fij.fjj) {
as.numeric(((fij-fjj)^2*var.fii/((fii-fjj)^4)) + ((fii-fij)^2*var.fjj/((fii-fjj)^4)) + (var.fij/((fii-fjj)^2))
- (2*(fij-fjj)*cov.fii.fij/((fii-fjj)^3)) - (2*(fii-fij)*cov.fij.fjj/((fii-fjj)^3)))
}
var.ri.1 <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(var.ri.1)[1]) {
for (j in 1:dim(var.ri.1)[2]) {
if (i < j) {
var.ri.1[i, j] <- var.relimp.1(logodds[i, i], logodds[i, j], logodds[j, j], var.lo[i, i], var.lo[i, j],
var.lo[j, j], cov.lo.ii.ij[i, j], cov.lo.ii.ij[j, i])
}
}
}
var.relimp.2 <- function(fii, fji, fjj, var.fii, var.fji, var.fjj, cov.fii.fji, cov.fji.fjj) {
as.numeric(((fji-fjj)^2*var.fii/((fii-fjj)^4)) + ((fii-fji)^2*var.fjj/((fii-fjj)^4)) + (var.fji/((fii-fjj)^2))
- (2*(fji-fjj)*cov.fii.fji/((fii-fjj)^3)) - (2*(fii-fji)*cov.fji.fjj/((fii-fjj)^3)))
}
var.ri.2 <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(var.ri.2)[1]) {
for (j in 1:dim(var.ri.2)[2]) {
if (i < j) {
var.ri.2[i, j] <- var.relimp.2(logodds[i, i], logodds[j, i], logodds[j, j], var.lo[i, i], var.lo[j, i],
var.lo[j, j], cov.lo.ii.ji[i, j], cov.lo.ii.ji[j, i])
}
}
}
se.ri.1 <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(se.ri.1)[1]) {
for (j in 1:dim(se.ri.1)[2]) {
if (i < j) {
se.ri.1[i, j] <- sqrt(var.ri.1[i, j])
}
}
}
se.ri.2 <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(se.ri.2)[1]) {
for (j in 1:dim(se.ri.2)[2]) {
if (i < j) {
se.ri.2[i, j] <- sqrt(var.ri.2[i, j])
}
}
}
ci.normal <- function(f, se.f) {
c(f - (1.96 * se.f), f + (1.96 * se.f))
}
ci.lo <- matrix(NA, nrow = no_classes, ncol = 2)
for (i in 1:no_classes) {
ci.lo[i, 1] <- ci.normal(logodds[i, i], se.lo[i, i])[1]
ci.lo[i, 2] <- ci.normal(logodds[i, i], se.lo[i, i])[2]
}
log.oddsratios <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(log.oddsratios)[1]) {
for (j in 1:dim(log.oddsratios)[2]) {
if (i < j) {
log.oddsratios[i, j] <- logodds[i, i] - logodds[j, j]
}
}
}
se.log.oddsratios <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(se.log.oddsratios)[1]) {
for (j in 1:dim(se.log.oddsratios)[2]) {
if (i < j) {
se.log.oddsratios[i, j] <- sqrt(var.lo[i, i] + var.lo[j, j])
}
}
}
ci.log.oddsratios <- matrix(NA, ncol=no_classes, nrow=no_classes)
ci.log.oddsratios <- as.data.frame(ci.log.oddsratios)
ci.log.oddsratios.lower <- matrix(NA, ncol=no_classes, nrow=no_classes)
ci.log.oddsratios.upper <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(ci.log.oddsratios)[1]) {
for (j in 1:dim(ci.log.oddsratios)[2]) {
if (i < j) {
ci.log.oddsratios.lower[i, j] <- ci.normal(log.oddsratios[i, j], se.log.oddsratios[i, j])[1]
ci.log.oddsratios.upper[i, j] <- ci.normal(log.oddsratios[i, j], se.log.oddsratios[i, j])[2]
ci.log.oddsratios[i, j] <- paste("(", format(ci.log.oddsratios.lower[i, j], digits=5), ", ",
format(ci.log.oddsratios.upper[i, j], digits=5), ")", sep="")
}
}
}
ci.ri.1 <- matrix(NA, nrow=no_classes, ncol=no_classes)
ci.ri.1 <- as.data.frame(ci.ri.1)
ci.ri.1.lower <- matrix(NA, nrow=no_classes, ncol=no_classes)
ci.ri.1.upper <- matrix(NA, nrow=no_classes, ncol=no_classes)
for (i in 1:dim(ci.ri.1)[1]) {
for (j in 1:dim(ci.ri.1)[2]) {
if (i < j) {
ci.ri.1.lower[i, j] <- ci.normal(rel.imp.sec1[i, j], se.ri.1[i, j])[1]
ci.ri.1.upper[i, j] <- ci.normal(rel.imp.sec1[i, j], se.ri.1[i, j])[2]
ci.ri.1[i, j] <- paste("(", format(ci.ri.1.lower[i, j], digits=5), ", ", format(ci.ri.1.upper[i, j], digits=5), ")", sep="")
}
}
}
ci.ri.2 <- matrix(NA, nrow=no_classes, ncol=no_classes)
ci.ri.2 <- as.data.frame(ci.ri.2)
ci.ri.2.lower <- matrix(NA, nrow=no_classes, ncol=no_classes)
ci.ri.2.upper <- matrix(NA, nrow=no_classes, ncol=no_classes)
for (i in 1:dim(ci.ri.2)[1]) {
for (j in 1:dim(ci.ri.2)[2]) {
if (i < j) {
ci.ri.2.lower[i, j] <- ci.normal(rel.imp.sec2[i, j], se.ri.2[i, j])[1]
ci.ri.2.upper[i, j] <- ci.normal(rel.imp.sec2[i, j], se.ri.2[i, j])[2]
ci.ri.2[i, j] <- paste("(", format(ci.ri.2.lower[i, j], digits=5), ", ", format(ci.ri.2.upper[i, j], digits=5), ")", sep="")
}
}
}
var.relimp.avg <- function(fji, fij, fii, fjj, var.fji, var.fij, var.fii, var.fjj, cov.fji.fjj, cov.fij.fii, cov.fji.fii, cov.fij.fjj) {
as.numeric(((var.fji + var.fij)/(4*((fii-fjj)^2))) + ((fji-fij)^2*(var.fii+var.fjj)/(4*((fii-fjj)^4)))
+ ((fji-fij)*(cov.fji.fjj+cov.fij.fii-cov.fji.fii-cov.fij.fjj)/(2*((fii-fjj)^3))))
}
var.ri.avg <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(var.ri.avg)[1]) {
for (j in 1:dim(var.ri.avg)[2]) {
if (i < j) {
var.ri.avg[i, j] <- var.relimp.avg(logodds[j, i], logodds[i, j], logodds[i, i], logodds[j, j], var.lo[j, i],
var.lo[i, j], var.lo[i, i], var.lo[j, j], cov.lo.ii.ij[j, i], cov.lo.ii.ij[i, j],
cov.lo.ii.ji[i, j], cov.lo.ii.ji[j, i])
}
}
}
se.ri.avg <- matrix(NA, ncol=no_classes, nrow=no_classes)
for (i in 1:dim(se.ri.avg)[1]) {
for (j in 1:dim(se.ri.avg)[2]) {
if (i < j) {
se.ri.avg[i, j] <- sqrt(var.ri.avg[i, j])
}
}
}
ci.ri.avg <- matrix(NA, nrow=no_classes, ncol=no_classes)
ci.ri.avg <- as.data.frame(ci.ri.avg)
ci.ri.avg.lower <- matrix(NA, nrow=no_classes, ncol=no_classes)
ci.ri.avg.upper <- matrix(NA, nrow=no_classes, ncol=no_classes)
for (i in 1:dim(ci.ri.avg)[1]) {
for (j in 1:dim(ci.ri.avg)[2]) {
if (i < j) {
ci.ri.avg.lower[i, j] <- ci.normal(rel.imp.sec.avg[i, j], se.ri.avg[i, j])[1]
ci.ri.avg.upper[i, j] <- ci.normal(rel.imp.sec.avg[i, j], se.ri.avg[i, j])[2]
ci.ri.avg[i, j] <- paste("(", format(ci.ri.avg.lower[i, j], digits=5), ", ", format(ci.ri.avg.upper[i, j], digits=5), ")", sep="")
}
}
}
return(list("sample_size"=n.total, "no_classes"=no_classes, "class_size"=n, "percentage_overall"=perc.total,
"percentage_class"=perc.class, "fifty_point"=fifty.point, "parameters"=parameters, "transition_prob"=transprob,
"log_odds"=logodds, "se_logodds"=se.lo, "ci_logodds"=ci.lo, "odds"=odds, "log_oddsratios"=log.oddsratios,
"se_logoddsratios"=se.log.oddsratios, "ci_logoddsratios"=ci.log.oddsratios, "oddsratios"=oddsratios,
"rel_imp_prim1"=rel.imp.prim1, "rel_imp_prim2"=rel.imp.prim2, "rel_imp_prim_avg"=rel.imp.prim.avg,
"rel_imp_sec1"=rel.imp.sec1, "rel_imp_sec2"=rel.imp.sec2, "rel_imp_sec_avg"=rel.imp.sec.avg,
"se.ri.1"=se.ri.1, "ci.ri.1"=ci.ri.1, "se.ri.2"=se.ri.2, "ci.ri.2"=ci.ri.2, "se.ri.avg"=se.ri.avg, "ci.ri.avg"=ci.ri.avg))
} |
BB.mod.stab.glm <- function(data, BB.data, s.model, model="linear", maxit.glm=25)
{
if (model == "binomial") {
options(warn=-1)
regmod <- glm(s.model, data=BB.data, family = binomial(link="logit"),
na.action=na.exclude, control=glm.control(maxit = maxit.glm))
options(warn=0)
c.regmod <- glm(s.model, data=data, family = binomial(link="logit"),
na.action=na.exclude, control=glm.control(maxit = maxit.glm))
} else if (model == "linear") {
regmod <- lm(s.model, data=BB.data, na.action=na.exclude)
c.regmod <- lm(s.model, data=data, na.action=na.exclude)
}
c.namen <- names(c.regmod$coefficients)
BB.namen <- names(regmod$coefficients)
mislevpos <- !is.element(c.namen, BB.namen)
if (any(mislevpos == T)) {
help.coeff <- regmod$coefficients
regmod$coefficients <- c.regmod$coefficients
regmod$coefficients[mislevpos==T] <- 0
regmod$coefficients[mislevpos==F] <- help.coeff
regmod$xlevels <- c.regmod$xlevels
regmod$rank <- c.regmod$rank
regmod$assign <- c.regmod$assign
regmod$qr$pivot <- c.regmod$qr$pivot
regmod$qr$rank <- c.regmod$qr$rank
}
x <- list(model=regmod, c.model=c.regmod, mislevpos=mislevpos)
return(x)
} |
GRSin <- function(Species_list,Occurrence_data,Raster_list,Pro_areas=NULL, Gap_Map=FALSE){
par_names <- c("species","latitude","longitude","type")
if(missing(Occurrence_data)){
stop("Please add a valid data frame with columns: species, latitude, longitude, type")
}
if(isFALSE(identical(names(Occurrence_data),par_names))){
stop("Please format the column names in your dataframe as species, latitude, longitude, type")
}
if (isTRUE("RasterStack" %in% class(Raster_list))) {
Raster_list <- raster::unstack(Raster_list)
} else {
Raster_list <- Raster_list
}
if(is.null(Gap_Map) | missing(Gap_Map)){ Gap_Map <- FALSE
} else if(isTRUE(Gap_Map) | isFALSE(Gap_Map)){
Gap_Map <- Gap_Map
} else {
stop("Choose a valid option for GapMap (TRUE or FALSE)")
}
df <- data.frame(matrix(ncol=2, nrow = length(Species_list)))
colnames(df) <- c("species", "GRSin")
if(is.null(Pro_areas) | missing(Pro_areas)){
if(file.exists(system.file("data/preloaded_data/protectedArea/wdpa_reclass.tif",package = "GapAnalysis"))){
Pro_areas <- raster::raster(system.file("data/preloaded_data/protectedArea/wdpa_reclass.tif",package = "GapAnalysis"))
} else {
stop("Protected areas file is not available yet. Please run the function GetDatasets() and try again")
}
} else{
Pro_areas <- Pro_areas
}
if(isTRUE(Gap_Map)){
GapMapIn_list <- list()
}
for(i in seq_len(length(Species_list))){
for(j in seq_len(length(Raster_list))){
if(grepl(j, i, ignore.case = TRUE)){
sdm <- Raster_list[[j]]
}
d1 <- Occurrence_data[Occurrence_data$species == Species_list[i],]
test <- GapAnalysis::ParamTest(d1, sdm)
if(isTRUE(test[1])){
stop(paste0("No Occurrence data exists, but and SDM was provide. Please check your occurrence data input for ", Species_list[i]))
}
};rm(j)
if(isFALSE(test[2])){
df$species[i] <- as.character(Species_list[i])
df$GRSex[i] <- 0
warning(paste0("Either no occurrence data or SDM was found for species ", as.character(Species_list[i]),
" the conservation metric was automatically assigned 0"))
}else{
sdm1 <- sdm
Pro_areas1 <- raster::crop(x = Pro_areas,y = sdm1)
sdm1[sdm1[] != 1] <- NA
if(raster::res(Pro_areas1)[1] != raster::res(sdm)[1]){
Pro_areas1 <- raster::resample(x = Pro_areas1, y = sdm)
}
cell_size <- raster::area(sdm1, na.rm=TRUE, weights=FALSE)
cell_size <- cell_size[!is.na(cell_size)]
thrshold_area <- length(cell_size)*median(cell_size)
Pro_areas1[Pro_areas1[] != 1] <-NA
Pro_areas1 <- Pro_areas1 * sdm1
cell_size <- raster::area(Pro_areas1, na.rm=TRUE, weights=FALSE)
cell_size <- cell_size[!is.na(cell_size)]
protected_area <- length(cell_size)*stats::median(cell_size)
if(!is.na(protected_area)){
GRSin <- min(c(100, protected_area/thrshold_area*100))
df$species[i] <- as.character(Species_list[i])
df$GRSin[i] <- GRSin
}else{
df$species[i] <- as.character(Species_list[i])
df$GRSin[i] <- 0
}
if(isTRUE(Gap_Map)){
message(paste0("Calculating GRSin gap map for ",as.character(Species_list[i])),"\n")
Pro_areas1[is.na(Pro_areas1),] <- 0
gap_map <- sdm - Pro_areas1
gap_map[gap_map[] != 1] <- NA
GapMapIn_list[[i]] <- gap_map
names(GapMapIn_list[[i]] ) <- Species_list[[i]]
}
}
}
if(isTRUE(Gap_Map)){
df <- list(GRSin= df,gap_maps=GapMapIn_list)
} else {
df <- df
}
return(df)
} |
probDistance <- function(result, numSimulations = BLCOPOptions("numSimulations"))
{
monteCarloSample <- rmnorm(numSimulations, result@priorMean, result@priorCovar)
mean(abs(dmnorm(monteCarloSample, result@priorMean, result@priorCovar,log=TRUE) - dmnorm(monteCarloSample, result@posteriorMean,
result@posteriorCovar, log = TRUE)))
}
setGeneric("probDistance")
probDistance.COPResult <- function(result, numSimulations = BLCOPOptions("numSimulations") )
{
show("Not implemented yet...")
}
setMethod("probDistance", signature(result = "COPResult"), probDistance.COPResult) |
get_concentrations_from_NASIS_db <- function(SS=TRUE, stringsAsFactors = default.stringsAsFactors(), dsn = NULL) {
q <- "SELECT peiid, phiid,
concpct, concsize, conccntrst, conchardness, concshape, conckind, conclocation, concboundary, phconceniid
FROM
pedon_View_1
INNER JOIN phorizon_View_1 ON pedon_View_1.peiid = phorizon_View_1.peiidref
INNER JOIN phconcs_View_1 ON phorizon_View_1.phiid = phconcs_View_1.phiidref
ORDER BY phiid, conckind;"
q.c <- "SELECT phconceniidref AS phconceniid,
colorpct, colorhue, colorvalue, colorchroma, colormoistst
FROM phconccolor_View_1
ORDER BY phconceniidref, colormoistst;"
channel <- dbConnectNASIS(dsn)
if (inherits(channel, 'try-error'))
return(data.frame())
if (SS == FALSE) {
q <- gsub(pattern = '_View_1', replacement = '', x = q, fixed = TRUE)
q.c <- gsub(pattern = '_View_1', replacement = '', x = q.c, fixed = TRUE)
}
d <- dbQueryNASIS(channel, q, close = FALSE)
d.c <- dbQueryNASIS(channel, q.c)
d <- uncode(d, stringsAsFactors = stringsAsFactors, dsn = dsn)
d.c <- uncode(d.c, stringsAsFactors = stringsAsFactors, dsn = dsn)
d.c$colormoistst <- as.character(d.c$colormoistst)
d.c$colorhue <- as.character(d.c$colorhue)
d.c$colorvalue <- as.numeric(as.character(d.c$colorvalue))
d.c$colorchroma <- as.numeric(as.character(d.c$colorchroma))
return(list(conc = d, conc_colors = d.c))
} |
madauni <- function(x, type = "DOR", method = "DSL", suppress = TRUE, ...){
if(suppress){x <- suppressWarnings(madad(x, ...))
}else{
x <- madad(x, ...)
}
TP <- x$data$TP
FP <- x$data$FP
FN <- x$data$FN
TN <- x$data$TN
number.of.pos<-TP+FN
number.of.neg<-FP+TN
nop <- number.of.pos
non <- number.of.neg
total <- nop + non
naive.tausquared<-function(Q,weights)
{
k<-length(weights)
if(Q<(k-1)){return(0)}
else
return((Q-k+1)/(sum(weights)-(sum(weights^2)/sum(weights))))
}
if(! method %in% c("MH","DSL"))stop("method must be either \"MH\" or \"DSL\"")else
nobs <- x$nobs
theta <-switch(type, "DOR" = x$DOR$DOR, "posLR" = x$posLR$posLR,
"negLR" = x$negLR$negLR)
if(method == "MH")
{
weights<-switch(type, "DOR" = FP*FN/total, "posLR" = FP*nop/total,
"negLR" = TN*nop/total)
coef <- log(sum(weights*theta)/sum(weights))
CQ<-cochran.Q(theta, weights = weights)
tau.squared <- NULL
P <- sum((nop*non*(TP+FP) - TP*FP*total)/total^2)
U <- sum(TP*non/total)
V = sum(FN*nop/total)
Uprime = sum(FP*non/total)
Vprime = sum(TN*nop/total)
R = sum(TP*TN/total)
S = sum(FP*FN/total)
E = sum((TP+TN)*TP*TN/(total^2))
FF = sum((TP+TN)*FN*FP/(total^2))
G = sum((FP+FN)*TP*TN/(total^2))
H = sum((FP+FN)*FP*FN/(total^2))
vcov <- switch(type, "DOR" = 0.5*(E/(R^2) + (F+G)/(R*S) + H/(S^2)),
"posLR" = P/(U*V), "negLR" = P/(Uprime*Vprime))
}
if(method == "DSL")
{
se.lntheta <- switch(type, "DOR" = x$DOR$se.lnDOR, "posLR" = x$posLR$se.lnposLR,
"negLR" = x$negLR$se.lnnegLR)
lntheta <- log(theta)
CQ<-cochran.Q(lntheta, 1/se.lntheta^2)
tau.squared<-naive.tausquared(CQ[1],1/(se.lntheta^2))
weights<-1/(se.lntheta^2+tau.squared)
CQ<-cochran.Q(lntheta, weights)
coef <- sum(weights*lntheta)/sum(weights)
vcov <- 1/sum(weights)
}
names(coef) <- paste("ln", type, collapse ="", sep ="")
vcov <- matrix(vcov, nrow = 1, ncol = 1)
colnames(vcov) <- paste("ln", type, collapse ="", sep ="")
rownames(vcov) <- paste("ln", type, collapse ="", sep ="")
output <- list(coefficients = coef, vcov = vcov, tau_sq = tau.squared, weights = weights,
type = type, method = method, data = x$data, theta = theta, CQ = CQ, nobs = length(theta),
descr = x, call = match.call())
class(output) <- "madauni"
output
}
print.madauni <- function(x, digits = 3, ...){
cat("Call:\n")
print(x$call)
cat("\n")
if(is.null(x$tau_sq)){
ans <- exp(x$coefficients)
names(ans) <- x$type
print(ans)
}else{
ans <- c(exp(x$coefficients),x$tau_sq)
names(ans) <- c(x$type, "tau^2")
print(round(ans, digits))
}
}
vcov.madauni <- function(object, ...){object$vcov}
summary.madauni <- function(object, level = .95, ...){
x <- object
Higgins.Isq<-function(T,df){return(max(0,100*(T-df)/T))}
if(object$method == "DSL"){
Isq <- Higgins.Isq(x$CQ[1], x$CQ[3])}else{
Isq <- NULL
}
CIcoef <- rbind(exp(cbind(coef(x), confint(x, level = level))),
cbind(coef(x), confint(x, level = level)))
rownames(CIcoef) <- c(x$type,paste("ln",x$type, sep ="", collapse = ""))
colnames(CIcoef)[1] <- paste(x$method, "estimate", collapse ="")
Q <- function(tau2){sum(((log(x$theta) - coef(x)[1])^2)/(1/x$weights+tau2))}
CQ <- ifelse(is.null(x$tau_sq), Q(0), Q(x$tau_sq))
if(!is.null(x$tau_sq)){
kappa_up <- qchisq(1-(1-level)/2, x$nobs - 1)
kappa_low <- qchisq((1-level)/2, x$nobs - 1)
if(Q(0) < kappa_up){lower <- 0}else{
lower <- uniroot(function(x){Q(x)-kappa_up}, lower = 0, upper = 10^4)$root}
if(Q(0) < kappa_low){upper <- 0}else{
upper <- uniroot(function(x){Q(x)-kappa_low}, lower = 0, upper = 10^4)$root}
CIcoef <- rbind(CIcoef, c(x$tau_sq, lower, upper), sqrt(c(x$tau_sq, lower, upper)))
rownames(CIcoef)[3:4] <- c("tau^2","tau")
}
output <- list(x=object, Isq = Isq, CIcoef = CIcoef)
class(output) <- "summary.madauni"
output
}
print.summary.madauni <- function(x, digits = 3,...){
cat("Call:\n")
print(x$x$call)
cat("\nEstimates:\n")
print(round(x$CIcoef,digits))
cat("\nCochran's Q: ",round(x$x$CQ[1],digits),
" (",round(x$x$CQ[3])," df, p = ", round(x$x$CQ[2], digits),")", sep = "")
if(!is.null(x$Isq)){cat("\nHiggins' I^2: ",round(x$Isq, digits),"%", sep ="")}
} |
genMod<-function(sequences, modificationPattern, nModification=2){
R<-list()
for (peptideSequence in sequences){
n<-nchar(peptideSequence)
m<-length(modificationPattern)
idx<-1:n
pidx<-1:m
acids<-(strsplit(peptideSequence, ''))[[1]]
hits<-idx[acids %in% modificationPattern]
result<-paste(rep(0,n), collapse="")
if (length(hits) < nModification)
nModification <- length(hits)
if (length(hits) > 1){
for (ii in 1:nModification){
c<-combn(hits, ii)
result<-c(result, (apply(c, 2,
FUN=function(x){
cand=rep(0,n);
cand[x] <- pidx[ modificationPattern %in% acids[x] ] - 1
return(paste(cand, collapse=""))
}) ))
}
}else if (length(hits) == 1){
cand=rep(0,n);
cand[hits]<-1
result<-c(result, paste(cand, collapse=""))
}
R[[length(R)+1]] <- unique(result)
}
return(R)
} |
optimizeSubInts = function(f, interval, ..., lower = min(interval), upper = max(interval),
maximum = FALSE, tol = .Machine$double.eps^0.25, nsub = 50L) {
nsub = asCount(nsub, positive = TRUE)
interval = c(lower, upper)
best = optimize(f = f, interval = interval, maximum = maximum, tol = tol)
if (nsub > 1L) {
mult = ifelse(maximum, -1, 1)
grid = seq(lower, upper, length.out = nsub - 1L)
for (j in seq_len(length(grid)-1L)) {
res = optimize(f = f, interval = c(grid[j], grid[j+1L]), maximum = maximum, tol = tol)
if (mult * res$objective < mult * best$objective)
best = res
}
}
return(best)
} |
nn.search = function(data, query, k = min(10, nrow(data)),
treetype = c("kd", "bd"),
searchtype = c("standard", "priority", "radius"),
radius = 1.0, eps = 0.0) {
dimension = ncol(data)
ND = nrow(data)
NQ = nrow(query)
if (ncol(data) != ncol(query)) {
stop("Query and data tables must have same dimensions")
}
if (k > ND) {
stop("Cannot find more nearest neighbours than there are points")
}
searchtypeInt = pmatch(searchtype[1], c("standard", "priority", "radius"))
if (is.na(searchtypeInt)) {
stop(paste("Unknown search type", searchtype))
}
treetype = match.arg(treetype, c("kd", "bd"))
if (is.data.frame(data)) {
data = unlist(data, use.names = FALSE)
}
if (!is.matrix(query)) {
query = unlist(query, use.names = FALSE)
}
results = .Call(
"_nonlinearTseries_get_NN_2Set_wrapper",
data, query, dimension, ND, NQ, as.integer(k), as.double(eps),
as.integer(searchtypeInt), as.integer(treetype == "bd"),
as.double(radius * radius), nn.idx = integer(k * NQ),
nn = double(k * NQ), PACKAGE = "nonlinearTseries"
)
nn.indexes = matrix(results$nn_index, ncol = k, byrow = TRUE)
nn.dist = matrix(results$distances, ncol = k, byrow = TRUE)
list(nn.idx = nn.indexes, nn.dists = nn.dist ^ 2)
} |
mcrnonneg <- function(D,C,S,stop.threshold=.0001,max.iter=100)
{
D[is.na(D)==T] <- 0
C[is.na(C)==T] <- 0
S[is.na(S)==T] <- 0
C <- as.matrix(C)
S <- as.matrix(S)
RD <- 1
res <- rep(0,nrow(D))
res <- apply(as.matrix(1:nrow(D)),1,function(i) sum((D[i,] - (C[i,] %*% t(S)))^2))
oldrss <- sum(res)
Cd <- dim(C)
Sd <- dim(S)
k <- 0
while(abs(RD)>stop.threshold)
{
if(is.even(k)==T){
S <- t(apply(as.matrix(1:ncol(D)),1,function(i){nnls(C,D[,i])$x}))
if(!all(dim(S)==Sd)) dim(S) <- Sd
S <- normalize(S)
}else{
C <- t(apply(as.matrix(1:nrow(D)),1,function(i){nnls(S,D[i,])$x}))
if(!all(dim(C)==Cd)) dim(C) <- Cd
}
res <- apply(as.matrix(1:nrow(D)),1,function(i) sum((D[i,] - (C[i,] %*% t(S)))^2))
rss <- sum(res)
RD <- ((oldrss - rss)/oldrss)
RD[is.na(RD)] <- 0
oldrss <- rss
k <- k + 1
if(k>=max.iter) break
}
return(list(resC=C,resS=S))
} |
state <- par("mar", "mfrow")
par(mfrow = c(4, 3), mar=c(1,3,3,1))
nms <- names(twelve_from_slant_wide)
for (i in seq(1, 23, by = 2)){
nm <- substr(nms[i], 1, nchar(nms[i]) - 2)
plot(twelve_from_slant_wide[[nms[i]]],
twelve_from_slant_wide[[nms[i+1]]],
xlab = "", ylab = "", main = nm)
}
par(state) |
parse.pde <-
function(card)
{
yr = as.numeric(substr(card,9,12))
mo = as.numeric(substr(card, 15,16))
day = as.numeric(substr(card,18, 19 ))
hr = as.numeric(substr(card, 21,22))
mi = as.numeric(substr(card, 23,24))
sec = as.numeric(substr(card, 25,29))
lat= as.numeric(substr(card, 30, 36))
lon= as.numeric(substr(card, 37, 44))
depth= as.numeric(substr(card, 46, 48))
if(is.numeric(depth)) { z = depth } else { z = 0 }
mag = as.numeric(substr(card, 50, 53))
jd = getjul(yr, mo, day)
locdate = list(yr=yr, jd=jd, mo=mo, dom=day, hr=hr, mi=mi, sec=sec, lat=lat, lon=lon, depth=depth, z=z, mag=mag)
return(locdate)
} |
ettersonEq14 <- function(s,f,J){
pr <- 1-s
pd <- f
q_d <- 1-pd;
q_r <- 1-pr;
n <- length(J);
Svec <- c(q_r,pr,0,0,1,0,0,0,1);
S <- matrix( Svec, ncol=3, byrow=TRUE )
Dvec <- c(q_d,0,pd,0,1,0,0,0,1);
D <- matrix( Dvec, ncol=3, byrow=TRUE )
gfe <- 0;
V1<- matrix( c(1,0,0), ncol=3, byrow=TRUE)
V3<- matrix( c(0,0,1), ncol=3, byrow=TRUE)
for (k in 1:(n-1)){
dk <- J[k];
A <- diag(3);
for (m in (k+1):n){
dm = J[m];
A = A %*% (S %^%dm) %*% D;
}
for (h in 1:dk){
A1 <- (S %^% h) %*% D;
gfe <- gfe + V1 %*% A1 %*% A %*% t(V3);
}
}
dn <- J[n];
for (h in 1:dn){
A1 <- (S %^% h) %*% D;
gfe <- gfe + V1 %*% A1 %*% t(V3);
}
p <- gfe/sum(J)
return(p)
} |
library(testthat)
library(photosynthesis)
context("Fitting pressure volume curves")
df <- data.frame(
psi = c(
-0.14, -0.8, -1.2, -1.75, -2.15,
-2.5, -3, -4
),
mass = c(
3.47, 3.43, 3.39, 3.33, 3.22,
3.15, 3.07, 2.98
),
leaf_mass = c(rep(0.56, 8)),
bag_mass = c(rep(1.53, 8)),
leaf_area = c(rep(95, 8))
)
model <- fit_PV_curve(df)
test_that("Outputs", {
expect_is(object = model[[1]], class = "data.frame")
expect_is(object = model[2], class = "list")
expect_is(object = model[3], class = "list")
expect_length(object = model, 3)
}) |
lavaanify.grep.MEASERR <- function( lavmodel )
{
lavmodel0 <- lavmodel
lavmodel <- gsub( ";", "\n", lavmodel, fixed=TRUE)
lavmodel <- gsub( " ", "", lavmodel )
syn <- strsplit( lavmodel, split="\n", fixed=TRUE )[[1]]
syn <- syn[ syn !="" ]
SS <- length(syn)
dfr <- data.frame( "index"=1:SS, "syn"=syn )
dfr$MEASERR <- 1 * ( substring( dfr$syn, 1, 7 )=="MEASERR" )
dfr$MEASERR1 <- 1 * ( substring( dfr$syn, 1, 8 )=="MEASERR1" )
dfr$MEASERR0 <- 1 * ( substring( dfr$syn, 1, 8 )=="MEASERR0" )
dfr$true <- NA
dfr$obs <- NA
dfr$errvar <- NA
ind <- which( dfr$MEASERR==1 )
if ( length(ind) > 0 ){
for (ii in ind ){
l1 <- paste(dfr$syn[ii] )
l1 <- gsub( "MEASERR1(", "", l1, fixed=TRUE )
l1 <- gsub( "MEASERR0(", "", l1, fixed=TRUE )
l1 <- gsub( ")", "", l1, fixed=TRUE )
l2 <- strsplit( l1, "," )[[1]]
dfr[ ii, "true" ] <- l2[1]
dfr[ ii, "obs" ] <- l2[2]
dfr[ ii, "errvar" ] <- as.numeric( l2[3] )
}
N1 <- nrow(dfr)
lavmodel0 <- ""
for (nn in 1:N1){
if ( dfr$MEASERR[nn]==0 ){
lavmodel0 <- paste0( lavmodel0, "\n", dfr[nn,"syn"] )
}
if ( dfr$MEASERR[nn]==1 ){
lavmodel0 <- paste0( lavmodel0, "\n",
dfr[nn,"true"], "=~1*", dfr[nn,"obs"] )
lavmodel0 <- paste0( lavmodel0, "\n",
dfr[nn,"obs"], "~~", dfr[nn,"errvar"], "*", dfr[nn,"obs"] )
}
if ( dfr$MEASERR0[nn]==1 ){
lavmodel0 <- paste0( lavmodel0, "\n",
dfr[nn,"true"], "~~", dfr[nn,"true"] )
}
}
}
return(lavmodel0)
} |
ISOScale <- R6Class("ISOScale",
inherit = ISOMeasure,
private = list(
xmlElement = "Scale",
xmlNamespacePrefix = "GCO"
),
public = list(
initialize = function(xml = NULL, value, uom, useUomURI = FALSE){
super$initialize(
xml = xml,
value = value,
uom = uom
)
}
)
) |
"_PACKAGE"
NULL |
pocrepath<-function(y, x, delta=0.1, maxvar=dim(x)[1]/2, x.nop=NA, maxcmp=10,
ptype=c('ebtz','ebt','l1','scad','mcp'), lambda.init=1,
maxit=100, tol=1e-6, maxtps=500, gamma=3.7, pval=(dim(y)[2]==1))
{
y <- as.matrix(y)
x <- as.matrix(x)
ptype <- ptype[1]
retRes <- vector("list",length = maxtps)
eps <- .Machine$double.eps
n <- dim(x)[1]
p <- dim(x)[2]
k <- dim(y)[2]
if(n!=dim(y)[1])
stop("x and y should have the same number of rows!")
idxM <- 0
lambda <- lambda.init
while(idxM <= maxtps){
cat(paste("Tuning Parameter:", lambda))
idxM <- idxM + 1
retRes[[idxM]] <- pocre(y,x,lambda,x.nop,maxvar,maxcmp,ptype,maxit,tol,gamma,pval)
if(lambda>=lambda.init){
if((retRes[[idxM]]$nzBeta==0) && (retRes[[idxM]]$bSparse)){
if(retRes[[1]]$bSparse){
lambda <- lambda.init-delta
}else{
break
}
}else{
lambda <- lambda+delta
}
}else if((lambda<lambda.init) && (retRes[[idxM]]$bSparse)){
lambda <- lambda-delta
}else{
break
}
}
lambda <- NULL
for(i in 1:idxM){
lambda <- c(lambda,retRes[[i]]$lambda)
}
tmpL <- sort(lambda, index.return = T)$x
idxL <- sort(lambda, index.return = T)$ix
retRes <- retRes[idxL]
class(retRes) <- c('pocrepath','pocre')
return(retRes)
} |
search_users <- function(q, n = 100,
parse = TRUE,
token = NULL,
verbose = TRUE) {
args <- list(
q = q,
n = n,
parse = parse,
token = token,
verbose = verbose
)
do.call("search_users_call", args)
}
search_users_call <- function(q, n = 20,
parse = TRUE,
token = NULL,
verbose = TRUE) {
query <- "users/search"
stopifnot(is_n(n), is.atomic(q))
token <- check_token(token)
if (n > 1000) {
warning(
paste0("search only returns up to 1,000 users per ",
"unique search. Setting n to 1000..."))
n <- 1000
}
n.times <- ceiling(n / 20)
if (n.times > 50) n.times <- 50
if (n < 20) {
count <- n
} else {
count <- 20
}
if (nchar(q) > 500) {
stop("q cannot exceed 500 characters.", call. = FALSE)
}
if (verbose) message("Searching for users...")
usr <- vector("list", n.times)
k <- 0
nrows <- NULL
for (i in seq_len(n.times)) {
params <- list(
q = q,
count = count,
page = i,
tweet_mode = "extended"
)
url <- make_url(
query = query,
param = params
)
r <- tryCatch(
TWIT(get = TRUE, url, token),
error = function(e) return(NULL))
if (is.null(r)) break
usr[[i]] <- from_js(r)
if (i > 1L) {
if (identical(usr[[i]], usr[[i - 1L]])) {
usr <- usr[-i]
break
}
}
if (identical(length(usr[[i]]), 0)) break
if (isTRUE(is.numeric(NROW(usr[[i]])))) {
nrows <- NROW(usr[[i]])
} else {
if (identical(nrows, 0)) break
nrows <- 0
}
k <- k + nrows
if (k >= n * 20) break
}
if (parse) {
usr <- tweets_with_users(usr)
}
if (verbose) {
message("Finished collecting users!")
}
usr
} |
context("Testing CoBC")
source("wine.R")
require(caret)
test_that(
desc = "coBC works",
code = {
m <- coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3)
expect_is(m, "coBC")
p <- predict(m, wine$xitest)
expect_is(p, "factor")
expect_equal(length(p), length(wine$ytrain))
m <- coBC(x = wine$dtrain, y = wine$ytrain, x.inst = FALSE, learner = knn3)
expect_is(m, "coBC")
p <- predict(m, wine$ditest[, m$instances.index])
expect_is(p, "factor")
expect_equal(length(p), length(wine$ytrain))
}
)
test_that(
desc = "prediction not fail when x is a vector",
code = {
m <- coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3)
p <- predict(m, wine$xitest[1,])
expect_is(p, "factor")
expect_equal(length(p), 1)
}
)
test_that(
desc = "the model structure is correct",
code = {
m <- coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3)
expect_equal(
names(m),
c("model", "model.index", "instances.index", "model.index.map",
"classes", "pred", "pred.pars", "x.inst")
)
}
)
test_that(
desc = "x can be a data.frame",
code = {
expect_is(
coBC(x = as.data.frame(wine$xtrain), y = wine$ytrain, learner = knn3),
"coBC"
)
}
)
test_that(
desc = "y can be a vector",
code = {
expect_is(
coBC(x = wine$xtrain, y = as.vector(wine$ytrain), learner = knn3),
"coBC"
)
}
)
test_that(
desc = "x.inst can be coerced to logical",
code = {
expect_is(
coBC(x = wine$xtrain, y = wine$ytrain, x.inst = TRUE, learner = knn3),
"coBC"
)
expect_is(
coBC(x = wine$xtrain, y = wine$ytrain, x.inst = 1, learner = knn3),
"coBC"
)
expect_error(
coBC(x = wine$xtrain, y = wine$ytrain, x.inst = "a", learner = knn3)
)
}
)
test_that(
desc = "relation between x and y is correct",
code = {
expect_error(
coBC(x = wine$xtrain, y = wine$ytrain[-1], learner = knn3)
)
expect_error(
coBC(x = wine$xtrain[-1,], y = wine$ytrain, learner = knn3)
)
}
)
test_that(
desc = "y has some labeled instances",
code = {
expect_error(
coBC(x = wine$xtrain, y = rep(NA, length(wine$ytrain)), learner = knn3)
)
}
)
test_that(
desc = "y has some unlabeled instances",
code = {
expect_error(
coBC(x = wine$xtrain, y = rep(1, length(wine$ytrain)), learner = knn3)
)
}
)
test_that(
desc = "x is a square matrix when x.inst is FALSE",
code = {
expect_error(
coBC(x = wine$dtrain[-1,], y = wine$ytrain, x.inst = FALSE, learner = knn3)
)
expect_is(
coBC(x = wine$dtrain, y = wine$ytrain, x.inst = FALSE, learner = knn3),
"coBC"
)
}
)
test_that(
desc = "max.iter is a value greather than 0",
code = {
expect_error(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, max.iter = -1)
)
expect_error(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, max.iter = 0)
)
expect_is(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, max.iter = 80),
"coBC"
)
}
)
test_that(
desc = "perc.full is a value between 0 and 1",
code = {
expect_error(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, perc.full = -0.5)
)
expect_error(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, perc.full = 1.5)
)
expect_is(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, perc.full = 0.8),
"coBC"
)
}
)
test_that(
desc = "N is a value greather than 0",
code = {
expect_error(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, N = -1)
)
expect_error(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, N = 0)
)
expect_is(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, N = 2),
"coBC"
)
}
)
test_that(
desc = "u is a value greather than 0",
code = {
expect_error(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, u = -1)
)
expect_error(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, u = 0)
)
expect_is(
coBC(x = wine$xtrain, y = wine$ytrain, learner = knn3, u = 80),
"coBC"
)
}
) |
get_census_api <- function(data_url, key, vars, region, retry = 0) {
if(length(vars) > 50){
vars <- vec_to_chunk(vars)
get <- lapply(vars, function(x) paste(x, sep='', collapse=","))
data <- lapply(vars, function(x) get_census_api_2(data_url, key, x, region, retry))
} else {
get <- paste(vars, sep='', collapse=',')
data <- list(get_census_api_2(data_url, key, get, region, retry))
}
if(all(sapply(data, is.data.frame))){
colnames <- unlist(lapply(data, names))
data <- do.call(cbind,data)
names(data) <- colnames
data <- data[,unique(colnames, fromLast=TRUE)]
data <- data[,c(which(sapply(data, class)!='numeric'), which(sapply(data, class)=='numeric'))]
return(data)
}
else{
print('Unable to create single data.frame in get_census_api')
return(data)
}
} |
library(shiny)
library(adegenet)
shinyServer(function(input, output) {
graphTitle <- reactive({
paste(input$dataset, ": DAPC scatterplot, axes ", input$xax,"-", input$yax, sep="")
})
output$caption <- renderText({
graphTitle()
})
getData <- reactive({
out <- NULL
if(input$datatype=="expl"){
if(input$dataset=="microbov") data("microbov", package="adegenet", envir=environment())
if(input$dataset=="sim2pop") data("sim2pop", package="adegenet", envir=environment())
if(input$dataset=="nancycats") data("nancycats", package="adegenet", envir=environment())
out <- get(input$dataset)
}
if(input$datatype=="file" && !is.null(input$datafile)){
oldName <- input$datafile$datapath
extension <- .readExt(input$datafile$name)
newName <- paste(input$datafile$datapath, extension, sep=".")
file.rename(oldName, newName)
if(extension %in% c("gtx","gen","dat","GTX","GEN","DAT")){
out <- import2genind(newName)
}
if(extension %in% c("RData","Rdata","Rda","rda")){
out <- get(load(newName))
}
if(extension %in% c("fasta","fa","fas","aln","FASTA","FA","FAS","ALN")){
out <- DNAbin2genind(fasta2DNAbin(newName))
}
}
return(out)
})
output$npca <- renderUI({
if(!is.null(x <- getData())) {
nmax <- min(dim(x@tab))
def <- min(10, nmax)
if(input$useoptimnpca){
xval1 <- xvaldapc()
npca <- as.integer(xval1[[6]])
def <- npca}
} else {
nmax <- 1000
def <- 1
}
sliderInput("npca", "Number of PCA axes retained:", min=1, max=nmax, value=def,step=1)
})
output$nda <- renderUI({
if(!is.null(x <- getData())) {
nmax <- max(length(levels(pop(x)))-1,2)
def <- length(levels(pop(x)))-1
} else {
nmax <- 100
def <- 1
}
sliderInput("nda", "Number of DA axes retained:", min=1, max=nmax, value=def,step=1)
})
output$xax <- renderUI({
if(!is.null(x <- getData())) {
nmax <- min(dim(x@tab))
} else {
nmax <- 1000
}
numericInput("xax", "Indicate the x axis", value=1, min=1, max=nmax)
})
output$yax <- renderUI({
def <- 1
nda <- 1
if(!is.null(input$nda)) nda <- input$nda
if(!is.null(x <- getData())) {
nmax <- min(dim(x@tab))
if(nda>1 && length(levels(pop(x)))>1) def <- 2
} else {
nmax <- 1000
}
numericInput("yax", "Indicate the y axis", value=def, min=1, max=nmax)
})
output$doxval <- renderUI({
checkboxInput("doxval", "Perform cross validation (computer intensive)?", input$doxval)
})
output$npcaMax <- renderUI({
if(!is.null(x <- getData())) {
nmax <- min(dim(x@tab))
def <- nmax
} else {
nmax <- 1000
def <- 1
}
sliderInput("npcaMax", "Maximum number of PCs:", min=1, max=nmax, value=def,step=1)
})
xvaldapc <- reactive({
doxval <- FALSE
if(!is.null(input$doxval)) doxval <- input$doxval
if(input$useoptimnpca || doxval){
x <- getData()
mat <- tab(x, NA.method="mean")
grp <- pop(x)
result <- input$result
n.rep <- input$nrep
nda <- 1
if(!is.null(input$nda)) nda <- input$nda
training.set <- input$trainingset
npcaMax <- 1
if(!is.null(input$npcaMax)) npcaMax <- input$npcaMax
out <- xvalDapc(mat, grp, n.pca.max=npcaMax,
result=result, n.rep=n.rep, n.da=nda, training.set=training.set,
xval.plot=FALSE)
}
else{
out <- NULL
}
return(out)
})
output$xvalPlot <- renderPlot({
xval1 <- xvaldapc()
if(!is.null(xval1)){
x <- getData()
mat <- tab(x, NA.method="mean")
grp <- pop(x)
xval2 <- xval1[[1]]
successV <-as.vector(xval2$success)
random <- replicate(300, mean(tapply(sample(grp)==grp, grp, mean)))
q.GRP <- quantile(random, c(0.025,0.5,0.975))
smoothScatter(xval2$n.pca, successV, nrpoints=Inf, pch=20, col=transp("black"),
ylim=c(0,1), xlab="Number of PCA axes retained",
ylab="Proportion of successful outcome prediction",
main="DAPC Cross-Validation")
print(abline(h=q.GRP, lty=c(2,1,2)))
}
})
output$xvalResults1 <-renderPrint({
xval1 <- xvaldapc()
if(!is.null(xval1)){
print(xval1[[1]])
}
})
output$xvalResults2 <-renderPrint({
xval1 <- xvaldapc()
if(!is.null(xval1)){
print(xval1[[2]])
}
})
output$xvalResults3 <-renderPrint({
xval1 <- xvaldapc()
if(!is.null(xval1)){
print(xval1[[3]])
}
})
output$xvalResults4 <-renderPrint({
xval1 <- xvaldapc()
if(!is.null(xval1)){
print(xval1[[4]])
}
})
output$xvalResults5 <-renderPrint({
xval1 <- xvaldapc()
if(!is.null(xval1)){
print(xval1[[5]])
}
})
output$xvalResults6 <-renderPrint({
xval1 <- xvaldapc()
if(!is.null(xval1)){
print(xval1[[6]])
}
})
getDapc <- reactive({
out <- NULL
x <- getData()
npca <- nda <- 1
if(input$useoptimnpca){
xval1 <- xvaldapc()
npca <- as.integer(xval1[[6]])
} else {
if(!is.null(input$npca)) npca <- input$npca
}
if(!is.null(input$nda)) nda <- input$nda
if(!is.null(x)) out <- dapc(x, n.pca=npca, n.da=nda, parallel=FALSE)
return(out)
})
getPlotParam <- reactive({
col.pal <- get(input$col.pal)
return(list(col.pal=col.pal))
})
output$scatterplot <- renderPlot({
dapc1 <- getDapc()
if(!is.null(dapc1)){
K <- length(levels(dapc1$grp))
myCol <- get(input$col.pal)(K)
scree.pca <- ifelse(input$screepca=="none", FALSE, TRUE)
scree.da <- ifelse(input$screeda=="none", FALSE, TRUE)
cellipse <- ifelse(input$ellipses, 1.5, 0)
cstar <- ifelse(input$stars, 1, 0)
scatter(dapc1, xax=input$xax, yax=input$yax, col=myCol,
scree.pca=scree.pca, scree.da=scree.da,
posi.pca=input$screepca, posi.da=input$screeda,
cellipse=cellipse, cstar=cstar, mstree=input$mstree,
cex=input$pointsize, clabel=input$labelsize, solid=1-input$alpha)
} else {
NULL
}
})
output$summary <- renderPrint({
dapc1 <- getDapc()
if(!is.null(dapc1)){
summary(dapc1)
}
})
output$compoplot <- renderPlot({
dapc1 <- getDapc()
if(!is.null(dapc1)){
K <- length(levels(dapc1$grp))
myCol <- get(input$col.pal)(K)
compoplot(dapc1, col=myCol, lab=input$compo.lab, legend=input$compo.legend)
}
})
output$LPax <- renderUI({
def <- 1
nda <- 1
nmax <- 2
if(!is.null(x <- getData())) {
if(!is.null(input$nda)) nda <- input$nda
nmax <- nda
if(!is.null(input$LPax)) def <- input$LPax
}
numericInput("LPax", "Select discriminant axis", value=def, min=1, max=nmax)
})
selector <- reactive({
dimension <- 1
dapc1 <- getDapc()
if(!is.null(dapc1)){
if(!is.null(input$thresholdMethod)) method <- input$thresholdMethod
if(!is.null(input$LPaxis)) dimension <- input$LPaxis
x <- getData()
mat <- tab(x, NA.method="mean")
}
if(method=="quartile"){
x <- dapc1$var.contr[,dimension]
thresh <- quantile(x,0.75)
maximus <- which(x > thresh)
n.snp.selected <- length(maximus)
sel.snps <- mat[,maximus]
}
else{
z <- dapc1$var.contr[,dimension]
xTotal <- dapc1$var.contr[,dimension]
toto <- which(xTotal%in%tail(sort(xTotal), 2000))
z <- sapply(toto, function(e) xTotal[e])
D <- dist(z)
clust <- hclust(D,method)
pop <- factor(cutree(clust,k=2,h=NULL))
m <- which.max(tapply(z,pop,mean))
maximus <- which(pop==m)
maximus <- as.vector(unlist(sapply(maximus, function(e) toto[e])))
popvect <- as.vector(unclass(pop))
n.snp.selected <- sum(popvect==m)
sel.snps <- mat[,maximus]
}
selection <- c((ncol(mat)-ncol(mat[,-maximus])), ncol(mat[,-maximus]))
resultat <- list(selection, maximus, dimnames(sel.snps)[[2]], dapc1$var.contr[maximus, dimension])
return(resultat)
})
output$loadingplot <- renderPlot({
dapc1 <- getDapc()
LPaxis <- 1
if(!is.null(dapc1)){
LPaxis <- 1
if(!is.null(input$LPax)) LPaxis <- input$LPax
if(input$threshold){
if(input$thresholdMethod=="quartile"){
x <- dapc1$var.contr[,LPaxis]
def <- quantile(x,0.75)
}else{
select <- selector()
thresh <- select[[2]]
def <- abs(dapc1$var.contr[thresh][(which.min(dapc1$var.contr[thresh]))])-0.000001}
}
else{
def <- NULL}
loadingplot(dapc1$var.contr[,LPaxis], threshold=def)
}
})
output$FS1 <-renderPrint({
if(input$FS){
fs1 <- selector()
if(!is.null(fs1)){
print(fs1[[1]])
}
}
})
output$FS2 <-renderPrint({
if(input$FS){
fs1 <- selector()
if(!is.null(fs1)){
print(fs1[[2]])
}
}
})
output$FS3 <-renderPrint({
if(input$FS){
fs1 <- selector()
if(!is.null(fs1)){
print(fs1[[3]])
}
}
})
output$FS4 <-renderPrint({
if(input$FS){
fs1 <- selector()
if(!is.null(fs1)){
print(fs1[[4]])
}
}
})
output$systeminfo <- renderPrint({
cat("\n== R version ==\n")
print(R.version)
cat("\n== Date ==\n")
print(date())
cat("\n== adegenet version ==\n")
print(packageDescription("adegenet", fields=c("Package", "Version", "Date", "Built")))
cat("\n== shiny version ==\n")
print(packageDescription("adegenet", fields=c("Package", "Version", "Date", "Built")))
cat("\n== attached packages ==\n")
print(search())
})
}) |
uscores <- function(dat.frame, paired = TRUE, rnk=TRUE) {
cols <- ncol(dat.frame)
if (cols >2) { half <- cols/2
dat.orig <- as.matrix(na.omit (dat.frame))
j=0; uscr=0; DLmax=0; data.1 <- dat.orig; data.0 <- dat.orig
if (paired) { for (i in seq(1, to=(cols-1), by=2)) {j = j+1
data.0[,j] <- dat.orig[,i]
data.0[,j+half] <- dat.orig[,i+1]
nvec <- colnames(data.0)
nvec <- nvec[seq(1, (cols-1), 2)]
nvec <- paste("usc.", nvec, sep="")
} }
else {data.0 <- dat.orig
nvec <- colnames(data.0)
nvec <- nvec[1:half]
nvec <- paste("usc.", nvec, sep="")
}
u.out <- data.0[,1:half]
for (i in 1:half) {u <- Usc(data.0[,i], data.0[,i+half], rnk=rnk)
if (i==1) {u.out <- u}
else {u.out <- cbind(u.out, u)}
}
colnames(u.out) <- nvec
return(u.out)
}
else {
x <- na.omit(dat.frame)
names(x) <- c("y", "ind")
n=length(x$y)
ylo=(1-as.integer(x$ind))*x$y
yadj=x$y-(sign(x$y-ylo)*0.001*x$y)
overlap=x$y
Score=overlap
for (j in 1:n) {
for (i in 1:n ){
overlap[i]=sign(sign(yadj[i]-ylo[j])+sign(ylo[i]-yadj[j]))
}
Score[j] = -1*sum(overlap)
}
if (rnk) {uscore=rank(Score)} else {uscore = Score}
return(uscore)
}
} |
defaultIon<-function(b, y){
Hydrogen <- 1.007825
Oxygen <- 15.994915
Nitrogen <- 14.003074
c <- b + (Nitrogen + (3 * Hydrogen))
z <- y - (Nitrogen + (3 * Hydrogen))
return(cbind(b, y, c ,z))
}
fragmentIon <- function(sequence, FUN=defaultIon, modified=numeric(), modification=numeric(), N_term=1.007825, C_term=17.002740) {
if (!is.character(sequence)) {
R <- list()
input.n <- length(sequence)
out <- .C("_computeFragmentIons", n=input.n,
W_=as.double(sequence),
b_=as.double(rep(0,input.n)),
y_=as.double(rep(0,input.n)))
R[[1]] <- as.data.frame(FUN(out$b, out$y))
}else if (length(modification) > 1) {
FUN <- match.fun(FUN)
R <- list()
pim <- parentIonMass(sequence)
Oxygen <- 15.994915
Carbon <- 12.000000
Hydrogen <- 1.007825
Nitrogen <- 14.003074
Electron <- 0.000549
for (i in 1:length(sequence)){
input.sequence <- sequence[i]
input.n <- nchar(input.sequence)
input.modified <- as.integer(strsplit(modified[i], '')[[1]])
input.pim <- pim[i] + (sum(as.double(as.character(modification[input.modified + 1]))))
if (input.n != length(input.modified))
stop (paste("unvalid argument",i,"- number of AA and modification config differ! stop."))
out <- .C("computeFragmentIonsModification",
n=as.integer(input.n),
pepSeq=as.character(input.sequence),
pim=as.double(input.pim),
b=as.double(rep(0.0, input.n)),
y=as.double(rep(0.0, input.n)),
modified=input.modified,
modification=as.double(as.character(modification)))
R[[length(R)+1]] <- as.data.frame(FUN(out$b, out$y))
attributes(R[[length(R)]])$sequence <- sequence[i]
class(R[[length(R)]]) <- c('fragmentIon', class(R[[length(R)]]))
}
} else{
FUN<-match.fun(FUN)
R <- list()
pim <- parentIonMass(sequence)
Oxygen <- 15.994915
Carbon <- 12.000000
Hydrogen <- 1.007825
Nitrogen <- 14.003074
Electron <- 0.000549
for (i in 1:length(sequence)){
pepseq<-sequence[i]
pepseq.pim<-pim[i]
out <- .C("computeFragmentIons",
n=as.integer(nchar(pepseq)),
pepSeq=as.character(pepseq),
pim=as.double(pepseq.pim),
b=as.double(rep(0.0,nchar(pepseq))),
y=as.double(rep(0.0,nchar(pepseq))))
R[[length(R)+1]] <- as.data.frame(FUN(out$b, out$y))
attributes(R[[length(R)]])$sequence <- sequence[i]
class(R[[length(R)]]) <- c('fragmentIon', class(R[[length(R)]]))
}
}
class(R) <- c('fragmentIonSet', class(R))
return(R)
}
as.data.frame.fragmentIon <- function(x, ...){
long <- reshape(x,
idvar = "pos",
ids = row.names(x),
times = names(x),
timevar = "type",
varying = list(names(x)),
direction = "long")
long$pos <- as.numeric(long$pos)
names(long)[2] <- "mass"
long <- long[order(long$mass), ]
if ('sequence' %in% names(attributes(x))){
attr(long, 'sequence') <- attr(x, 'sequence')
sequence <- attributes(long)$sequence
sequence.n <- nchar(sequence)
abc.idx <- grep("[abc]", long$type)
xyz.idx <- grep("[xyz]", long$type)
long$fragment <- NA
long$sequence <- sequence
long$fragment[abc.idx] <- substr(rep(sequence, length(abc.idx)), 1, long$pos[abc.idx])
long$fragment[xyz.idx] <- substr(rep(sequence, length(xyz.idx)),
sequence.n - long$pos[xyz.idx] + 1,
sequence.n)
}
row.names(long) <- paste(long$type, long$pos, sep='')
long[long$pos != max(long$pos),]
}
as.data.frame.fragmentIonSet <- function(x, ...){
do.call('rbind', lapply(x, as.data.frame.fragmentIon))
} |
"hmmer" <- function(seq, type='phmmer', db=NULL, verbose=TRUE, timeout=90) {
cl <- match.call()
oopsa <- requireNamespace("XML", quietly = TRUE)
oopsb <- requireNamespace("RCurl", quietly = TRUE)
if(!all(c(oopsa, oopsb)))
stop("Please install the XML and RCurl package from CRAN")
seqToStr <- function(seq) {
if(inherits(seq, "fasta"))
seq <- seq$ali
if(is.matrix(seq)) {
if(nrow(seq)>1)
warning(paste("Alignment with multiple sequences detected. Using only the first sequence"))
seq <- as.vector(seq[1,!is.gap(seq[1,])])
}
else
seq <- as.vector(seq[!is.gap(seq)])
return(paste(seq, collapse=""))
}
alnToStr <- function(seq) {
if(!inherits(seq, "fasta"))
stop("seq must be of type 'fasta'")
tmpfile <- tempfile()
write.fasta(seq, file=tmpfile)
rawlines <- paste(readLines(tmpfile), collapse="\n")
unlink(tmpfile)
return(rawlines)
}
types.allowed <- c("phmmer", "hmmscan", "hmmsearch", "jackhmmer")
if(! type%in%types.allowed )
stop(paste("Input type should be either of:", paste(types.allowed, collapse=", ")))
if(type=="phmmer") {
seq <- seqToStr(seq)
if(is.null(db))
db="pdb"
db.allowed <- c("env_nr", "nr", "refseq", "pdb", "rp15", "rp35", "rp55",
"rp75", "swissprot", "unimes", "uniprotkb",
"uniprotrefprot", "pfamseq")
db <- tolower(db)
if(!db%in%db.allowed)
stop(paste("db must be either:", paste(db.allowed, collapse=", ")))
seqdb <- db
hmmdb <- NULL
iter <- NULL
rcurl <- TRUE
}
if(type=="hmmscan") {
seq <- seqToStr(seq)
if(is.null(db))
db="pfam"
db.allowed <- tolower(c("pfam", "gene3d", "superfamily", "tigrfam"))
db <- tolower(db)
if(!db%in%db.allowed)
stop(paste("db must be either:", paste(db.allowed, collapse=", ")))
seqdb <- NULL
hmmdb <- db
iter <- NULL
rcurl <- TRUE
}
if(type=="hmmsearch") {
if(!inherits(seq, "fasta"))
stop("please provide 'seq' as a 'fasta' object")
seq <- alnToStr(seq)
if(is.null(db))
db="pdb"
db.allowed <- tolower(c("pdb", "swissprot"))
db <- tolower(db)
if(!db%in%db.allowed)
stop(paste("db must be either:", paste(db.allowed, collapse=", ")))
seqdb <- db
hmmdb <- NULL
iter <- NULL
rcurl <- TRUE
}
if(type=="jackhmmer") {
if(!inherits(seq, "fasta"))
stop("please provide 'seq' as a 'fasta' object")
seq <- alnToStr(seq)
if(is.null(db))
db="pdb"
db.allowed <- tolower(c("pdb", "swissprot"))
db.allowed <- c("env_nr", "nr", "refseq", "pdb", "rp15", "rp35", "rp55",
"rp75", "swissprot", "unimes", "uniprotkb",
"uniprotrefprot", "pfamseq")
db <- tolower(db)
if(!db%in%db.allowed)
stop(paste("db must be either:", paste(db.allowed, collapse=", ")))
seqdb <- db
hmmdb <- NULL
iter <- NULL
rcurl <- TRUE
}
url <- paste("https://www.ebi.ac.uk/Tools/hmmer/search/", type, sep="")
curl.opts <- list(httpheader = "Expect:",
httpheader = "Accept:text/xml",
verbose = verbose,
followlocation = TRUE
)
hmm <- RCurl::postForm(url, hmmdb=hmmdb, seqdb=seqdb, seq=seq,
style = "POST",
.opts = curl.opts,
.contentEncodeFun=RCurl::curlPercentEncode, .checkParams=TRUE )
if(!grepl("results", hmm)) {
if(verbose) {
message("Content from HMMER server:")
message(" ", hmm)
}
stop("Request to HMMER server failed")
}
add.pdbs <- function(x, ...) {
hit <- XML::xpathSApply(x, '@*')
pdbs <- unique(XML::xpathSApply(x, 'pdbs', XML::xmlToList))
new <- as.matrix(hit, ncol=1)
if(length(pdbs) > 1) {
for(i in 1:length(pdbs)) {
hit["acc"]=pdbs[i]
new=cbind(new, hit)
}
colnames(new)=NULL
}
return(new)
}
if(grepl("act_site", hmm)) {
lines <- unlist(strsplit(hmm, "\n"))
actsite.inds <- grep("act_site", lines)
actlen <- length(actsite.inds)
if(actlen>2) {
if(actlen%%2 != 0) {
stop("Bad XML format")
}
rm.inds <- NULL
for(i in seq(1, actlen, 2)) {
rm.inds <- c(rm.inds, seq(actsite.inds[i], actsite.inds[i+1]))
}
hmm <- paste(lines[-rm.inds], collapse="\n")
}
else {
hmm <- paste(lines[-seq(actsite.inds[1], actsite.inds[2])],
collapse="\n")
}
}
xml <- XML::xmlParse(hmm)
resurl <- XML::xpathSApply(xml, '//data', XML::xpathSApply, '@*')
resurl <- paste0("http://www.ebi.ac.uk/Tools/hmmer/results/", resurl["uuid", 1])
data <- XML::xpathSApply(xml, '///hits', XML::xpathSApply, '@*')
pdb.ids <- NULL
if(db=="pdb") {
tmp <- XML::xpathSApply(xml, '///hits', add.pdbs)
data <- as.data.frame(tmp, stringsAsFactors=FALSE)
colnames(data) <- NULL
}
data <- as.data.frame(t(data), stringsAsFactors=FALSE)
data <- data[!duplicated(data$acc), ]
fieldsToNumeric <- c("evalue", "pvalue", "score", "archScore", "ndom", "nincluded",
"niseqs", "nregions", "nreported", "bias", "dcl", "hindex")
inds <- which(names(data) %in% fieldsToNumeric)
for(i in 1:length(inds)) {
tryCatch({
data[[inds[i]]] = as.numeric(data[[inds[i]]])
},
warning = function(w) {
return(data[[inds[i]]])
},
error = function(e) {
return(data[[inds[i]]])
}
)
}
data$pdb.id <- data$acc
data$bitscore <- data$score
data$mlog.evalue <- -log(data$evalue)
data$mlog.evalue[is.infinite(data$mlog.evalue)] <- -log(.Machine$double.xmin)
out <- list(hit.tbl = data,
url = resurl)
class(out) <- c("hmmer", type)
return(out)
} |
library(MetaLandSim)
data(occ.landscape)
data(occ.landscape2)
param1 <- parameter.estimate (occ.landscape, method='Rsnap_1')
param1
param2 <- parameter.estimate (occ.landscape2, method='Rsnap_x',
nsnap=10)
param2 |
context("WellSVM")
data(diabetes)
test_that("Implementation gives same result as Matlab implementation",{
acc <- RSSL:::wellsvm_direct(rbind(diabetes$data[diabetes$idxLabs[1,],],diabetes$data[diabetes$idxUnls[1,],]),
rbind(diabetes$target[diabetes$idxLabs[1,],,drop=FALSE],matrix(0,length(diabetes$idxUnls[1,]),1)),
diabetes$data[diabetes$idxTest[1,],],
diabetes$target[diabetes$idxTest[1,],,drop=FALSE],
C = 1,C2=0.1,gamma=1)$accuracy
expect_equal(acc, 0.7864583,tolerance=10e-6)
})
test_that("svmd does not throw an error",{
library(RSSL)
library(kernlab)
K <- kernelMatrix(rbfdot(),as.matrix(iris[1:100,1:2]))
RSSL:::svmd(iris[1:100,1:2],y=iris$Species[1:100],fitted=FALSE)
expect_silent(RSSL:::svmd(K,y=iris$Species[1:100],type="one-classification"))
})
test_that("WellSVM interface result equal to direct result",{
data <- iris[1:100,]
x <- as.matrix(data[,1:3])
y <- model.matrix(~Species,data)[,2]*2-1
g_train <- WellSVM(x,factor(y),x,gamma=1,x_center=TRUE)
expect_equal(predict(g_train,x),
factor(RSSL:::wellsvm_direct(rbind(x,x),
rbind(matrix(y,ncol=1),
matrix(0,nrow=nrow(x))),
x,y,gamma=1)$prediction))
}) |
if (!at_home() || !bspm:::root())
exit_file("not in a CI environment")
sudo.avail <- unname(nchar(Sys.which("sudo")) > 0)
in.toolbox <- file.exists("/run/.toolboxenv")
if (sudo.avail || in.toolbox) {
expect_true(bspm:::sudo_available())
} else {
expect_false(bspm:::sudo_available())
file.create("/run/.toolboxenv")
expect_true(bspm:::sudo_available())
}
if (requireNamespace("Rcpp", quietly=TRUE))
exit_file("not in a clean environment")
bspm.pref <- system.file("service/bspm.pref", package="bspm")
bspm.excl <- system.file("service/bspm.excl", package="bspm")
expect_true(all(c(bspm.pref, bspm.excl) == ""))
discover()
bspm.pref <- system.file("service/bspm.pref", package="bspm")
bspm.excl <- system.file("service/bspm.excl", package="bspm")
expect_true(all(c(bspm.pref, bspm.excl) != ""))
pkgs <- install_sys(c("Rcpp", "NOTAPACKAGE"))
expect_true(requireNamespace("Rcpp", quietly=TRUE))
expect_equal(pkgs, "NOTAPACKAGE")
unloadNamespace("Rcpp")
pkgs <- remove_sys(c("Rcpp", "NOTAPACKAGE"))
expect_false(requireNamespace("Rcpp", quietly=TRUE))
expect_equal(pkgs, "NOTAPACKAGE") |
MAPE_P_gene_KS <-
function(study,label,censoring.status,DB.matrix,size.min=15,size.max=500,nperm=500,stat=NULL,rth.value=NULL,resp.type){
if (is.null(names(study))) names(study)=paste('study.',1:length(study),sep="")
out=list()
for(t1 in 1:length(study)){
madata=study[[t1]]
testlabel=madata[[label]]
out[[t1]]=list()
if (resp.type=="survival") {
censoring=madata[[censoring.status]]
}
out[[t1]]=Enrichment_KS_gene(madata=madata,label=testlabel,censoring=censoring,DB.matrix=DB.matrix,size.min=size.min,size.max=size.max,nperm=nperm,resp.type=resp.type)
}
set.common=rownames(out[[1]]$pvalue.set.0)
for(t1 in 2:length(study)){
set.common=intersect(set.common,rownames(out[[t1]]$pvalue.set.0))
}
if (is.null(names(study))) names(study)=paste('study.',1:length(study),sep="")
pvalue.B.array=array(data=NA,dim=c(length(set.common),nperm,length(study)),dimnames=names(study))
pvalue.0.mtx=matrix(NA,length(set.common),length(study))
qvalue.0.mtx=matrix(NA,length(set.common),length(study))
for(t1 in 1:length(study)){
pvalue.B.array[,,t1]=out[[t1]]$pvalue.set.B[set.common,]
pvalue.0.mtx[,t1]=out[[t1]]$pvalue.set.0[set.common,]
qvalue.0.mtx[,t1]=out[[t1]]$qvalue.set.0[set.common,]
}
rownames(qvalue.0.mtx)=set.common
rownames(pvalue.0.mtx)=set.common
rm(out)
if(stat=='maxP'){
P.0=as.matrix(apply(pvalue.0.mtx,1,max))
rownames(P.0)=rownames(qvalue.0.mtx)
P.B=apply(pvalue.B.array,c(1,2),max)
rownames(P.B)=rownames(qvalue.0.mtx)
} else if (stat=='minP'){
P.0=as.matrix(apply(pvalue.0.mtx,1,min))
rownames(P.0)=rownames(qvalue.0.mtx)
P.B=apply(pvalue.B.array,c(1,2),min)
rownames(P.B)=rownames(qvalue.0.mtx)
} else if (stat=='rth'){
P.0=as.matrix(apply(pvalue.0.mtx,1,function(x) sort(x)[ceiling(rth.value*ncol(pvalue.0.mtx))]))
rownames(P.0)=rownames(qvalue.0.mtx)
P.B=apply(pvalue.B.array,c(1,2),function(x) sort(x)[ceiling(rth.value*dim(pvalue.B.array)[3])])
rownames(P.B)=rownames(qvalue.0.mtx)
} else if (stat=='Fisher'){
DF=2*length(study)
P.0=as.matrix(apply(pvalue.0.mtx,1,function(x) pchisq(-2*sum(log(x)),DF,lower.tail=T) ))
rownames(P.0)=rownames(qvalue.0.mtx)
P.B=apply(pvalue.B.array,c(1,2),function(x) pchisq(-2*sum(log(x)),DF,lower.tail=T) )
rownames(P.B)=rownames(qvalue.0.mtx)
} else { stop("Please check: the selection of stat should be one of the following options: maxP,minP,rth and Fisher") }
meta.out=pqvalues.compute(P.0,P.B,Stat.type='Pvalue')
return(list(pvalue.meta=meta.out$pvalue.0, qvalue.meta=meta.out$qvalue.0, pvalue.meta.B=meta.out$pvalue.B,qvalue.set.study=qvalue.0.mtx,pvalue.set.study=pvalue.0.mtx))
} |
if (requiet("testthat") && requiet("parameters")) {
data(iris)
dat <- iris
m <- lm(Sepal.Length ~ Species, data = dat)
test_that("parameters_type default contrasts", {
p_type <- parameters_type(m)
expect_equal(p_type$Type, c("intercept", "factor", "factor"))
expect_equal(p_type$Level, c(NA, "versicolor", "virginica"))
})
data(iris)
dat <- iris
dat$Species <- as.ordered(dat$Species)
m <- lm(Sepal.Length ~ Species, data = dat)
test_that("parameters_type ordered factor", {
p_type <- parameters_type(m)
expect_equal(p_type$Type, c("intercept", "ordered", "ordered"))
expect_equal(p_type$Level, c(NA, "[linear]", "[quadratic]"))
})
data(iris)
dat <- iris
dat$Species <- as.ordered(dat$Species)
contrasts(dat$Species) <- contr.treatment(3)
m <- lm(Sepal.Length ~ Species, data = dat)
test_that("parameters_type ordered factor", {
p_type <- parameters_type(m)
expect_equal(p_type$Type, c("intercept", "factor", "factor"))
expect_equal(p_type$Level, c(NA, "2", "3"))
})
data(iris)
dat <- iris
contrasts(dat$Species) <- contr.poly(3)
m <- lm(Sepal.Length ~ Species, data = dat)
test_that("parameters_type poly contrasts", {
p_type <- parameters_type(m)
expect_equal(p_type$Type, c("intercept", "factor", "factor"))
expect_equal(p_type$Level, c(NA, ".L", ".Q"))
})
data(iris)
dat <- iris
contrasts(dat$Species) <- contr.treatment(3)
m <- lm(Sepal.Length ~ Species, data = dat)
test_that("parameters_type treatment contrasts", {
p_type <- parameters_type(m)
expect_equal(p_type$Type, c("intercept", "factor", "factor"))
expect_equal(p_type$Level, c(NA, "2", "3"))
})
data(iris)
dat <- iris
contrasts(dat$Species) <- contr.sum(3)
m <- lm(Sepal.Length ~ Species, data = dat)
test_that("parameters_type sum contrasts", {
p_type <- parameters_type(m)
expect_equal(p_type$Type, c("intercept", "factor", "factor"))
expect_equal(p_type$Level, c(NA, "1", "2"))
})
data(iris)
dat <- iris
contrasts(dat$Species) <- contr.helmert(3)
m <- lm(Sepal.Length ~ Species, data = dat)
test_that("parameters_type helmert contrasts", {
p_type <- parameters_type(m)
expect_equal(p_type$Type, c("intercept", "factor", "factor"))
expect_equal(p_type$Level, c(NA, "1", "2"))
})
data(iris)
dat <- iris
contrasts(dat$Species) <- contr.SAS(3)
m <- lm(Sepal.Length ~ Species, data = dat)
test_that("parameters_type SAS contrasts", {
p_type <- parameters_type(m)
expect_equal(p_type$Type, c("intercept", "factor", "factor"))
expect_equal(p_type$Level, c(NA, "1", "2"))
})
} |
fusco.test <- function(phy, data , names.col , rich , tipsAsSpecies=FALSE,
randomise.Iprime=TRUE, reps=1000, conf.int = 0.95){
if(inherits(phy, 'phylo') & missing(data)){
tipsAsSpecies <- TRUE
data <- data.frame(nSpp = rep(1, length(phy$tip.label)), tips=phy$tip.label)
phy <- comparative.data(phy = phy, data = data, names.col = 'tips')
} else if(inherits(phy, "phylo" ) & ! missing(data)){
if(missing(names.col)) stop('Names column not specified')
names.col <- deparse(substitute(names.col))
phy <- eval(substitute(comparative.data(phy = phy, data = data, names.col = XXX), list(XXX=names.col)))
} else if(! inherits(phy, 'comparative.data')) {
stop('phy must be a phylo or comparative.data object.')
}
if( ! tipsAsSpecies){
if(missing(rich)) {
stop('The name of a column of richness values must be provided')
} else {
rich <- deparse(substitute(rich))
if(! rich %in% names(phy$data)) stop("The column '", rich, "' was not found in the data from '", phy$data.name,"'.")
}
}
phy <- reorder(phy, "pruningwise")
if(tipsAsSpecies){
rich <- rep(1, length(phy$phy$tip.label))
} else {
rich <- phy$data[,rich,drop=TRUE]
}
nSpecies <- sum(rich)
nTips <- length(rich)
intNodes <- unique(phy$phy$edge[,1])
nTip <- length(phy$phy$tip.label)
nNode <- phy$phy$Nnode
rich <- c(rich, rep(NA, nNode))
observed <- data.frame(polytomy=logical(nNode), N1 = numeric(nNode),
N2 = numeric(nNode), row.names=intNodes)
for(ind in seq(along=intNodes)){
daughters <- phy$phy$edge[,2][phy$phy$edge[,1] == intNodes[ind]]
richD <- rich[daughters]
if(length(daughters) > 2){
observed$polytomy[ind] <- TRUE
} else {
observed[ind, 2:3] <- richD
}
rich[intNodes[ind]] <- sum(richD)
}
observed$S <- with(observed, N1 + N2)
observed <- observed[! observed$polytomy & observed$S > 3, names(observed) != 'polytomy']
observed$B <- with(observed, pmax(N1, N2))
observed$M <- observed$S - 1
observed$m <- ceiling(observed$S/2)
observed$I <- with(observed, (B - m)/(M - m))
observed$S.odd <- (observed$S %% 2) == 1
observed$w <- with(observed, ifelse(S.odd, 1, ifelse(I > 0, M/S, 2*M/S)))
observed$I.w <- with(observed, (I*w)/mean(w))
observed$I.prime <- with(observed, ifelse(S.odd, I, I * M/S))
if(! is.null(phy$phy$node.label)){
observed$node <- phy$phy$node.label[as.numeric(rownames(observed)) - nTip]
}
obsStats <- with(observed, c(median(I), IQR(I)/2))
ret <- list(observed=observed, median.I=median(observed$I), mean.Iprime=mean(observed$I.prime),
qd=IQR(observed$I)/2, tipsAsSpecies=tipsAsSpecies,
nInformative=dim(observed)[1], nSpecies=nSpecies, nTips=nTips)
class(ret) <- "fusco"
if(randomise.Iprime){
expFun <- function(x){
y <- runif(length(x))
rand.I.prime <- ifelse(y>0.5,x,1-x)
ret <- mean(rand.I.prime)
return(ret)
}
randomised <- with(ret, replicate(reps, expFun(observed$I.prime)))
randomised <- as.data.frame(randomised)
names(randomised) <- "mean"
rand.twotail <- c((1 - conf.int)/2, 1 - (1 - conf.int)/2)
rand.mean <- quantile(randomised$mean, rand.twotail)
ret <- c(ret, list(randomised=randomised, rand.mean=rand.mean, reps=reps, conf.int=conf.int))
}
class(ret) <- "fusco"
return(ret)
}
print.fusco <- function(x, ...){
print(x$observed)
}
summary.fusco <- function(object, ...){
cat("Fusco test for phylogenetic imbalance\n\n")
cat(" Tree with", object$nInformative, "informative nodes and", object$nTips, "tips.\n")
if(object$tipsAsSpecies){
cat(" Tips are treated as species.\n\n")
} else {
cat(" Tips are higher taxa containing", object$nSpecies, "species.\n")
}
if(! is.null(object$randomised) | ! is.null(object$simulated)){
cat(" ", sprintf("%2.1f%%", object$conf.int*100), "confidence intervals around 0.5 randomised using", object$reps, "replicates.\n" )
}
cat("\n")
cat(" Mean I prime:", round(object$mean.Iprime,3))
if(! is.null(object$randomised)){
cat(sprintf(" [%1.3f,%1.3f]", object$rand.mean[1],object$rand.mean[2]))
}
cat("\n")
cat(" Median I:", round(object$median.I,3))
if(! is.null(object$simulated)){
cat(sprintf(" [%1.3f,%1.3f]", object$sim.median[1],object$sim.median[2]))
}
cat("\n")
cat(" Quartile deviation in I:", round(object$qd,3))
if(! is.null(object$simulated)){
cat(sprintf(" [%1.3f,%1.3f]", object$sim.qd[1],object$sim.qd[2]))
}
cat("\n")
print(wilcox.test(object$observed$I.prime, mu=0.5))
}
plot.fusco <- function(x, correction=TRUE, nBins=10, right=FALSE, I.prime=TRUE, plot=TRUE, ...){
breaks <- seq(0,1,length=nBins+1)
if(I.prime){
fuscoDist <- hist(x$observed$I.prime, breaks=breaks, plot=FALSE, right=right)
xLab <- "Nodal imbalance score (I')"
} else {
fuscoDist <- hist(x$observed$I, breaks=breaks, plot=FALSE, right=right)
xLab <- "Nodal imbalance score (I)"
}
interv <- levels(cut(0.5, breaks=breaks, right=right))
RET <- data.frame(imbalance=interv, observedFrequency=fuscoDist$density/nBins)
if(correction==TRUE){
allPossI <- function(S, I.prime){
m <- ceiling(S/2)
RET <- (seq(from=m, to=S-1) - m)/((S - 1) - m)
if(I.prime & (S%%2) == 1) RET <- RET * (S-1) / S
return(RET)
}
distrib <- sapply(x$observed$S, FUN=allPossI, I.prime=I.prime)
distrib <- sapply(distrib, function(x) hist(x, breaks=breaks, plot=FALSE, right=right)$density)
distrib <- distrib/nBins
correction <- 1/nBins - distrib
correction <- rowMeans(correction)
RET$correction <- correction
RET$correctedFrequency <- with(RET, observedFrequency + correction)
if(plot){
plot(structure(list(density=RET$correctedFrequency, breaks=breaks),
class="histogram"), freq=FALSE, ylab="Corrected Frequency", main="",
xlab=xLab)}
} else {
if(plot){
plot(structure(list(density=RET$observedFrequency, breaks=breaks),
class="histogram"), freq=FALSE, ylab="Observed Frequency", main="",
xlab=xLab)}
}
if(plot){
if(I.prime){
abline(v=x$mean.Iprime)
if(! is.null(x$rand.mean)) abline(v=x$rand.mean, col="red")
} else {
abline(v=median(x$observed$I))
if(! is.null(x$sim.median)) abline(v=x$sim.median, col="red")
}}
invisible(RET)
} |
spflow_mle <- function(
ZZ,
ZY,
TSS,
N,
n_d,
n_o,
DW_traces,
OW_traces,
flow_control) {
model <- flow_control$model
hessian_method <- flow_control$mle_hessian_method
delta_t <- solve(ZZ,ZY)
RSS <- TSS - crossprod(ZY,delta_t)
calc_log_det <-
derive_log_det_calculator(OW_traces, DW_traces, n_o, n_d, model)
optim_part_LL <- function(rho) {
tau <- c(1, -rho)
rss_part <- N * log(tau %*% RSS %*% tau) / 2
return(rss_part - calc_log_det(rho))
}
nb_rho <- ncol(ZY) - 1
rho_tmp <- draw_initial_guess(nb_rho)
optim_results <- structure(rho_tmp,class = "try-error")
optim_count <- 1
optim_limit <- flow_control[["mle_optim_limit"]]
while (is(optim_results,"try-error") & (optim_count < optim_limit)) {
optim_results <- try(silent = TRUE, expr = {
optim(rho_tmp, optim_part_LL, gr = NULL, method = "L-BFGS-B",
lower = rep(-0.99, nb_rho), upper = rep(0.99, nb_rho),
hessian = TRUE)})
optim_count <- optim_count + 1
rho_tmp <- draw_initial_guess(nb_rho)
}
assert(optim_count < optim_limit,
"Optimization of the likelihood failed to converge within %s tries.",
optim_limit)
rho <- lookup(optim_results$par, define_spatial_lag_params(model))
tau <- c(1, -rho)
delta <- (delta_t %*% tau)[,1]
sigma2 <- as.numeric(1 / N * (tau %*% RSS %*% tau))
hessian_inputs <- collect(c("ZZ","ZY","TSS","rho","delta","sigma2","N"))
if ( hessian_method == "mixed" ) {
mixed_specific <- list("numerical_hess" = -optim_results$hessian)
hessian_inputs <- c(hessian_inputs,mixed_specific)
}
if ( hessian_method == "f2" ) {
f2_specific <- list("delta_t" = delta_t, "calc_log_det" = calc_log_det)
hessian_inputs <- c(hessian_inputs,f2_specific)
}
hessian <- spflow_hessian(hessian_method, hessian_inputs)
mu <- c(rho, delta)
varcov <- -solve(hessian)
sd_mu <- sqrt(diag(varcov))
ll_const_part <- -(N/2)*log(2*pi) + (N/2)*log(N) - N/2
ll_partial <- -optim_results$value
loglik_value <- ll_partial + ll_const_part
drop_sigma <- length(sd_mu)
results_df <- data.frame(
"est" = mu,
"sd" = sd_mu[-drop_sigma])
estimation_results <- spflow_model(
varcov = varcov,
ll = loglik_value,
estimation_results = results_df,
estimation_control = flow_control,
sd_error = sqrt(sigma2),
N = N)
return(estimation_results)
} |
source("ESEUR_config.r")
pooled_mean=function(df)
{
return(sum(df$s_n*df$s_mean)/sum(df$s_mean))
}
pooled_sd=function(df)
{
return(sqrt(sum(df$s_sd^2*(df$s_n-1))/sum(df$s_n-1)))
}
studies=data.frame(s_n=c(5, 10, 20),
s_mean=c(30, 31, 32),
s_sd=c(5, 4, 3))
pooled_mean(studies)
pooled_sd(studies) |
bp_maxmin <-
function(x, probs = c(0,0,.5,1,1)) {
r <- quantile(x, probs = probs, na.rm = TRUE)
names(r) <- c("ymin","lower","middle","upper","ymax")
r
} |
"amnesia" |
"metadata_uk_2010" |
plan(multisession)
x <- rnorm(100)
y <- 2 * x + 0.2 + rnorm(100)
w <- 1 + x ^ 2
fitA <- lm(y ~ x, weights = w)
fitB <- lm(y ~ x - 1, weights = w)
fitC <- {
w <- 1 + abs(x)
lm(y ~ x, weights = w)
}
print(fitA)
print(fitB)
print(fitC)
fitA %<-% lm(y ~ x, weights = w)
fitB %<-% lm(y ~ x - 1, weights = w)
fitC %<-% {
w <- 1 + abs(x)
lm(y ~ x, weights = w)
}
print(fitA)
print(fitB)
print(fitC)
fA <- future( lm(y ~ x, weights = w) )
fB <- future( lm(y ~ x - 1, weights = w) )
fC <- future({
w <- 1 + abs(x)
lm(y ~ x, weights = w)
})
fitA <- value(fA)
fitB <- value(fB)
fitC <- value(fC)
print(fitA)
print(fitB)
print(fitC)
\dontshow{
plan(sequential)
} |
openbugs <- function(data, inits, parameters.to.save, model.file="model.txt",
n.chains = 3, n.iter = 2000, n.burnin = floor(n.iter/2),
n.thin = max(1, floor(n.chains *(n.iter - n.burnin) / n.sims)), n.sims = 1000,
DIC = TRUE, bugs.directory = "c:/Program Files/OpenBUGS/",
working.directory=NULL, digits = 5, over.relax = FALSE, seed=NULL)
{
if(!is.R())
stop("OpenBUGS is not yet available in S-PLUS")
if(!requireNamespace("BRugs"))
stop("BRugs is required")
modelFile <- model.file
numChains <- n.chains
nBurnin <- n.burnin
nIter <- n.iter - n.burnin
nThin <- n.thin
if(DIC) parameters.to.save <- c(parameters.to.save, "deviance")
parametersToSave <- parameters.to.save
inTempDir <- FALSE
if(is.null(working.directory)) {
working.directory <- tempdir()
inTempDir <- TRUE
}
savedWD <- getwd()
setwd(working.directory)
on.exit(setwd(savedWD))
if(inTempDir && basename(model.file) == model.file)
try(file.copy(file.path(savedWD, model.file), model.file, overwrite = TRUE))
if(!file.exists(modelFile)) {
stop(modelFile, " does not exist")
}
if(file.info(modelFile)$isdir) {
stop(modelFile, " is a directory, but a file is required")
}
if(!length(grep("\r\n", readChar(modelFile, 10^3)))) {
message("Carriage returns added to model file ", modelFile)
model <- readLines(modelFile)
try(writeLines(model, modelFile))
}
BRugs::modelCheck(modelFile)
if(!(is.vector(data) && is.character(data) && all(file.exists(data)))) {
data <- BRugs::bugsData(data, digits = digits)
}
if(inTempDir && all(basename(data) == data))
try(file.copy(file.path(savedWD, data), data, overwrite = TRUE))
BRugs::modelData(data)
BRugs::modelCompile(numChains)
if(!is.null(seed)) BRugs::modelSetRN(seed)
if(missing(inits) || is.null(inits)) {
BRugs::modelGenInits()
} else {
if(is.list(inits) || is.function(inits) || (is.character(inits) &&
!any(file.exists(inits)))) {
inits <- BRugs::bugsInits(inits = inits, numChains = numChains,
digits = digits)
}
if(inTempDir && all(basename(inits) == inits))
try(file.copy(file.path(savedWD, inits), inits, overwrite = TRUE))
BRugs::modelInits(inits)
BRugs::modelGenInits()
}
BRugs::samplesSetThin(nThin)
if(getOption("BRugsVerbose")){
cat("Sampling has been started ...\n")
flush.console()
}
BRugs::modelUpdate(nBurnin, overRelax = over.relax)
if(DIC) {
BRugs::dicSet()
on.exit(BRugs::dicClear(), add = TRUE)
}
BRugs::samplesSet(parametersToSave)
BRugs::modelUpdate(nIter, overRelax = over.relax)
params <- sort.name(BRugs::samplesMonitors("*"), parametersToSave)
samples <- sapply(params, BRugs::samplesSample)
n.saved.per.chain <- nrow(samples)/numChains
samples.array <- array(samples, c(n.saved.per.chain, numChains, ncol(samples)))
dimnames(samples.array)[[3]] <- dimnames(samples)[[2]]
if(DIC) {
DICOutput <- BRugs::dicStats()
} else {
DICOutput <- NULL
}
bugs.output <- as.bugs.array(sims.array=samples.array,
model.file=modelFile, program="OpenBUGS",
DIC=DIC, DICOutput=DICOutput,
n.iter=n.iter, n.burnin=n.burnin, n.thin=n.thin)
bugs.output
}
sort.name <- function(a, b){
bracket.pos <- regexpr("\\[", a)
a.stem <- substr(a, 1, ifelse(bracket.pos>0, bracket.pos-1, nchar(a)))
a[order(match(a.stem, b))]
} |
"find.ab" <-
function(n=100000,ALPHA=.05,BETA=.2,higha=100){
higha<-100
H<-function(x,alpha=.05,beta=.2){
1-pnorm(
qnorm(1-x)-qnorm(1-alpha) - qnorm(1-beta) )
}
x<-(0:n)/n
Hx<- H(x,alpha=ALPHA,beta=BETA)
ex0<-sum( x[-(n+1)]*( Hx[-1] - Hx[-(n+1)] ) )
ex1<-sum( x[-1]*( Hx[-1] - Hx[-(n+1)] ) )
EH<-(ex0+ex1)/2
rootfunc<-function(x,beta,alpha,EH){
1-beta - pbeta(alpha,x,x*(1-EH)/EH)
}
x<-c((1:higha),1/(1:higha))
px<-pbeta(ALPHA,x,x*(1-EH)/EH)
if (sign(rootfunc(higha,beta=BETA,alpha=ALPHA,EH=EH))==
sign(rootfunc(1/higha,beta=BETA,alpha=ALPHA,EH=EH))
){
mina<- x[px==min(px)]
uroot1<-uniroot(rootfunc,c(1/higha,mina),beta=BETA,
alpha=ALPHA,EH=EH)
a1<-uroot1$root
b1<- a1*(1-EH)/EH
uroot2<-uniroot(rootfunc,c(mina,higha),beta=BETA,alpha=ALPHA,EH=EH)
a2<-uroot2$root
b2<- a2*(1-EH)/EH
x<-(0:n)/n
var1<- var(Hx-pbeta(x,a1,b1))
var2<-var(Hx-pbeta(x,a2,b2))
if (var1<var2){ a<-a1 ; b<-b1 }
else { a<-a2 ; b<-b2 }
}
else {
uroot<-uniroot(rootfunc,c(1/higha,higha),beta=BETA,
alpha=ALPHA,EH=EH)
a<-uroot$root
b<- a*(1-EH)/EH
}
out<-list(a=a,b=b)
out
} |
generalAxis <- function(x,
maxVal,
minVal,
units = NA,
logScale = FALSE,
tinyPlot = FALSE,
padPercent = 5,
concentration = TRUE,
usgsStyle = FALSE,
prettyDate = TRUE) {
nTicks<-if(tinyPlot) 5 else 8
upperMagnification <- 1 + (padPercent / 100)
lowerMagnification <- 1 - (padPercent / 100)
if (max(x,na.rm=TRUE) > 0){
high <- if(is.na(maxVal)) {upperMagnification*max(x,na.rm=TRUE)} else {maxVal}
} else {
high <- if(is.na(maxVal)) {lowerMagnification*max(x,na.rm=TRUE)} else {maxVal}
}
if (min(x,na.rm=TRUE) > 0){
low <- if(is.na(minVal)) {lowerMagnification*min(x,na.rm=TRUE)} else {minVal}
} else {
low <- if(is.na(minVal)) {upperMagnification*min(x,na.rm=TRUE)} else {minVal}
}
if(concentration){
if (tinyPlot){
label <- paste("Conc. (",units,")",sep="")
} else {
if(usgsStyle){
localUnits <- toupper(units)
possibleGoodUnits <- c("mg/l","mg/l as N", "mg/l as NO2",
"mg/l as NO3","mg/l as P","mg/l as PO3","mg/l as PO4","mg/l as CaCO3",
"mg/l as Na","mg/l as H","mg/l as S","mg/l NH4" )
allCaps <- toupper(possibleGoodUnits)
if(localUnits %in% allCaps){
label <- "Concentration, in milligrams per liter"
} else {
label <- paste("Concentration, in",units)
}
} else {
label <- paste("Concentration in", units)
}
}
} else {
label <- ""
}
span <- c(low, high)
ticks <- if (logScale) {
if (tinyPlot) {
logPretty1(low, high)
} else {
logPretty3(low, high)
}
} else {
pretty(span, n = nTicks)
}
numTicks <- length(ticks)
bottom <- ticks[1]
top <- ticks[numTicks]
if(!prettyDate){
bottom <- minVal
top <- maxVal
ticks[1] <- minVal
ticks[length(ticks)] <- maxVal
}
return(list(ticks=ticks, bottom=bottom, top=top, label=label))
} |
context("docker_available")
test_that("invalid url", {
expect_false(docker_available(host = "~", http_client_type = "null"))
expect_silent(docker_available(host = "~", http_client_type = "null"))
expect_message(
docker_available(host = "~", http_client_type = "null", verbose = TRUE),
"Failed to create docker client")
})
test_that("Nonexistent socket", {
skip_on_windows()
tmp <- tempfile_test()
expect_false(docker_available(host = tmp, http_client_type = "null"))
expect_silent(docker_available(host = tmp, http_client_type = "null"))
expect_message(
docker_available(host = tmp, http_client_type = "null", verbose = TRUE),
"Failed to connect to docker daemon")
}) |
context("testing openmp parallelization")
test_that("gbm refuses to work with insane numbers of threads", {
N <- 1000
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- factor(sample(letters[1:4],N,replace=T))
X4 <- ordered(sample(letters[1:6],N,replace=T))
X5 <- factor(sample(letters[1:3],N,replace=T))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]
SNR <- 10
Y <- X1**1.5 + 2 * (X2**.5) + mu
sigma <- sqrt(var(Y)/SNR)
Y <- Y + rnorm(N, 0, sigma)
X1[sample(1:N,size=100)] <- NA
X3[sample(1:N,size=300)] <- NA
w <- rep(1,N)
data <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)
expect_error(gbmt(Y~X1+X2+X3+X4+X5+X6,
data=data,
var_monotone=c(0,0,0,0,0,0),
keep_gbm_data=TRUE,
cv_folds=10,
par_details=gbmParallel(num_threads=-1)),
"number of threads must be strictly positive",
fixed=TRUE)
})
test_that("gbm refuses to work with insane array chunk size - old api", {
N <- 1000
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- factor(sample(letters[1:4],N,replace=T))
X4 <- ordered(sample(letters[1:6],N,replace=T))
X5 <- factor(sample(letters[1:3],N,replace=T))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]
SNR <- 10
Y <- X1**1.5 + 2 * (X2**.5) + mu
sigma <- sqrt(var(Y)/SNR)
Y <- Y + rnorm(N,0,sigma)
X1[sample(1:N,size=100)] <- NA
X3[sample(1:N,size=300)] <- NA
w <- rep(1,N)
data <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)
expect_error(gbmt(Y~X1+X2+X3+X4+X5+X6,
data=data,
var_monotone=c(0,0,0,0,0,0),
keep_gbm_data=TRUE,
cv_folds=10,
par_details=gbmParallel(num_threads=1, array_chunk_size=0)),
"array chunk size must be strictly positive", fixed=TRUE)
})
test_that("gbm refuses to work with insane numbers of threads - old API", {
N <- 1000
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- factor(sample(letters[1:4],N,replace=T))
X4 <- ordered(sample(letters[1:6],N,replace=T))
X5 <- factor(sample(letters[1:3],N,replace=T))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]
SNR <- 10
Y <- X1**1.5 + 2 * (X2**.5) + mu
sigma <- sqrt(var(Y)/SNR)
Y <- Y + rnorm(N,0,sigma)
X1[sample(1:N,size=100)] <- NA
X3[sample(1:N,size=300)] <- NA
w <- rep(1,N)
data <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)
expect_error(gbm(Y~X1+X2+X3+X4+X5+X6,
data=data,
var.monotone=c(0,0,0,0,0,0),
distribution="Gaussian",
n.trees=2000,
shrinkage=0.005,
interaction.depth=3,
bag.fraction = 0.5,
train.fraction = 0.5,
n.minobsinnode = 10,
keep.data=TRUE,
cv.folds=10,
par.details=gbmParallel(num_threads=-1)),
"number of threads must be strictly positive",
fixed=TRUE)
})
test_that("gbm refuses to work with insane array chunk size - old api", {
N <- 1000
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- factor(sample(letters[1:4],N,replace=T))
X4 <- ordered(sample(letters[1:6],N,replace=T))
X5 <- factor(sample(letters[1:3],N,replace=T))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]
SNR <- 10
Y <- X1**1.5 + 2 * (X2**.5) + mu
sigma <- sqrt(var(Y)/SNR)
Y <- Y + rnorm(N,0,sigma)
X1[sample(1:N,size=100)] <- NA
X3[sample(1:N,size=300)] <- NA
w <- rep(1,N)
data <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)
expect_error(gbm(Y~X1+X2+X3+X4+X5+X6,
data=data,
var.monotone=c(0,0,0,0,0,0),
distribution="Gaussian",
n.trees=2000,
shrinkage=0.005,
interaction.depth=3,
bag.fraction = 0.5,
train.fraction = 0.5,
n.minobsinnode = 10,
keep.data=TRUE,
cv.folds=10,
par.details=gbmParallel(num_threads=2, array_chunk_size=0)),
"array chunk size must be strictly positive", fixed=TRUE)
}) |
CCorDistance <- function(x, y, lag.max=(min(length(x), length(y)) - 1)){
if (class(try(CCInitialCheck(x, y, lag.max))) == "try-error") {
return(NA)
}
cc <- ccf(x, y, lag.max=lag.max, type="correlation", plot="FALSE")
d <- sqrt((1 - round(cc$acf[, , 1][which(cc$lag == 0)] ^ 2, digits=5)) /
sum(cc$acf[, , 1][which(cc$lag < 0)] ^ 2))
return(d)
}
CCInitialCheck <- function(x, y, lag.max){
if (! is.numeric(x) | ! is.numeric(y)) {
stop('The series must be numeric', call.=FALSE)
}
if (! is.vector(x) | ! is.vector(y)) {
stop('The series must be univariate vectors', call.=FALSE)
}
if (length(x) <= 1 | length(y) <= 1) {
stop('The series must have more than one point', call.=FALSE)
}
if (lag.max < 0) {
stop ('The maximum lag value must be positive', call.=FALSE)
}
if (lag.max >= length(x)) {
stop ('The maximum lag value exceeds the length of the first series', call.=FALSE)
}
if (lag.max >= length(y)) {
stop ('The maximum lag value exceeds the length of the second series', call.=FALSE)
}
if (any(is.na(x)) | any(is.na(y))) {
stop('There are missing values in the series', call.=FALSE)
}
} |
isNumberOrInfVectorOrNull <- function(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) {
checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = NA, zeroAllowed = TRUE, negativeAllowed = TRUE, positiveAllowed = TRUE, nonIntegerAllowed = TRUE, naAllowed = FALSE, nanAllowed = FALSE, infAllowed = TRUE, message = message, argumentName = argumentName)
} |
context("writeNetworkModel")
Net <- HydeNetwork(~ wells +
pe | wells +
d.dimer | pregnant*pe +
angio | pe +
treat | d.dimer*angio +
death | pe*treat,
data = PE)
test_that("writeNetworkModel with pretty output succeeds",
{
expect_output(writeNetworkModel(Net, pretty = TRUE))
})
test_that("writeNetworkModel with non-pretty output succeeds",
{
expect_silent(writeNetworkModel(Net, pretty = FALSE))
}) |
soilStrength5 <- function(bulk.density, water.content, clay.content) {
out <- -566.8 + 443* bulk.density + 4.34*clay.content - 773*water.content
for (j in 1: length(out)) {
if (out[j] < 0) {out[j] <- 0}
}
return(out)
} |
context("status")
make_testdir <- function() {
td <- tempfile()
dir.create(td)
teardown(unlink(td, recursive = TRUE, force = TRUE))
td
}
test_that("status functions accept explicit filename", {
d <- make_testdir()
f <- file.path(d, "MY_STATUS")
expect_silent(status.start("TRAITS", f))
expect_silent(status.end("DONE", f))
expect_silent(status.skip("MET", f))
expect_silent(status.start("ENSEMBLE", f))
expect_silent(status.end("ERROR", f))
res <- readLines(f)
expect_length(res, 3)
expect_match(res[[1]], "^TRAITS.*DONE\\s*$")
expect_match(res[[2]], "^MET.*SKIPPED\\s*$")
expect_match(res[[3]], "^ENSEMBLE.*ERROR\\s*$")
expect_equal(status.check("TRAITS", f), 1L)
expect_equal(status.check("MET", f), 0L)
expect_equal(status.check("ENSEMBLE", f), -1L)
})
test_that("status handles file = dir/", {
d <- make_testdir()
status.start("NONE", d)
status.end("DONE", d)
expect_equal(status.check("NONE", file.path(d, "STATUS")), 1L)
})
test_that("status functions read from local settings", {
settings <- list(outdir = make_testdir())
expect_silent(status.skip("auto"))
expect_match(
readLines(file.path(settings$outdir, "STATUS"))[[1]],
"^auto.*SKIPPED\\s*$")
})
test_that("status finds settings defined outside immediate calling scope", {
settings <- list(outdir = make_testdir())
f <- function(name) {
status.start(name)
status.end()
}
g <- function(name) {
f(name)
}
expect_silent(g("WRAPPED"))
expect_equal(
status.check("WRAPPED", file.path(settings$outdir, "STATUS")),
1L)
})
test_that("status writes to stdout on bad filename", {
expect_output(status.start("NOFILE"), "NOFILE")
settings <- list(outdir = file.path(make_testdir(), "fake", "path"))
expect_output(status.end(), "\\d{4}-\\d{2}-\\d{2}.*DONE")
})
test_that("status.check returns 0 on bad filename", {
expect_equal(status.check("NOFILE"), 0L)
expect_equal(status.check("NOFILE", file.path(make_testdir(), "fake")), 0L)
}) |
github_api_get_user = function(user) {
arg_is_chr_scalar(user)
ghclass_api_v3_req(
endpoint = "/users/:username",
username = user
)
}
user_exists = function(user) {
arg_is_chr(user)
res = purrr::map(user, purrr::safely(github_api_get_user))
purrr::map_lgl(res, succeeded)
} |
NULL
setClass(
"spect_match_objfun",
contains="function",
slots=c(
env="environment",
est="character"
)
)
setGeneric(
"spect_objfun",
function (data, ...)
standardGeneric("spect_objfun")
)
setMethod(
"spect_objfun",
signature=signature(data="missing"),
definition=function (...) {
reqd_arg("spect_objfun","data")
}
)
setMethod(
"spect_objfun",
signature=signature(data="ANY"),
definition=function (data, ...) {
undef_method("spect_objfun",data)
}
)
setMethod(
"spect_objfun",
signature=signature(data="data.frame"),
definition=function(data,
est = character(0), weights = 1, fail.value = NA,
vars, kernel.width, nsim, seed = NULL, transform.data = identity,
detrend = c("none","mean","linear","quadratic"),
params, rinit, rprocess, rmeasure, partrans,
..., verbose = getOption("verbose", FALSE)) {
tryCatch(
smof.internal(
data,
est=est,
weights=weights,
fail.value=fail.value,
vars=vars,
kernel.width=kernel.width,
nsim=nsim,
seed=seed,
transform.data=transform.data,
detrend=detrend,
params=params,
rinit=rinit,
rprocess=rprocess,
rmeasure=rmeasure,
partrans=partrans,
...,
verbose=verbose
),
error = function (e) pStop("spect_objfun",conditionMessage(e))
)
}
)
setMethod(
"spect_objfun",
signature=signature(data="pomp"),
definition=function(data,
est = character(0), weights = 1, fail.value = NA,
vars, kernel.width, nsim, seed = NULL, transform.data = identity,
detrend = c("none","mean","linear","quadratic"),
..., verbose = getOption("verbose", FALSE)) {
tryCatch(
smof.internal(
data,
est=est,
weights=weights,
fail.value=fail.value,
vars=vars,
kernel.width=kernel.width,
nsim=nsim,
seed=seed,
transform.data=transform.data,
detrend=detrend,
...,
verbose=verbose
),
error = function (e) pStop("spect_objfun",conditionMessage(e))
)
}
)
setMethod(
"spect_objfun",
signature=signature(data="spectd_pomp"),
definition=function(data,
est = character(0), weights = 1, fail.value = NA,
vars, kernel.width, nsim, seed = NULL, transform.data = identity,
detrend,
..., verbose = getOption("verbose", FALSE)) {
if (missing(vars)) vars <- data@vars
if (missing(kernel.width)) kernel.width <- [email protected]
if (missing(nsim)) nsim <- data@nsim
if (missing(transform.data)) transform.data <- [email protected]
if (missing(detrend)) detrend <- data@detrend
spect_objfun(
as(data,"pomp"),
est=est,
weights=weights,
fail.value=fail.value,
vars=vars,
kernel.width=kernel.width,
nsim=nsim,
seed=seed,
transform.data=transform.data,
detrend=detrend,
...,
verbose=verbose
)
}
)
setMethod(
"spect_objfun",
signature=signature(data="spect_match_objfun"),
definition=function(data,
est, weights, fail.value, seed = NULL,
..., verbose = getOption("verbose", FALSE)) {
if (missing(est)) est <- data@est
if (missing(weights)) weights <-data@env$weights
if (missing(fail.value)) fail.value <- data@env$fail.value
spect_objfun(
data@env$object,
est=est,
weights=weights,
fail.value=fail.value,
seed=seed,
...,
verbose=verbose
)
}
)
smof.internal <- function (object,
est, weights, fail.value,
vars, kernel.width, nsim, seed, transform.data, detrend,
..., verbose) {
verbose <- as.logical(verbose)
object <- spect(object,vars=vars,kernel.width=kernel.width,
nsim=nsim,seed=seed, transform.data=transform.data,detrend=detrend,
...,verbose=verbose)
fail.value <- as.numeric(fail.value)
if (is.numeric(weights)) {
if (length(weights)==1) {
weights <- rep(weights,length(object@freq))
} else if ((length(weights) != length(object@freq)))
pStop_("if ",sQuote("weights"),
" is provided as a vector, it must have length ",
length(object@freq))
} else if (is.function(weights)) {
weights <- tryCatch(
vapply(object@freq,weights,numeric(1)),
error = function (e)
pStop_(sQuote("weights")," function: ",conditionMessage(e))
)
} else {
pStop_(sQuote("weights"),
" must be specified as a vector or as a function")
}
if (any(!is.finite(weights) | weights<0))
pStop_(sQuote("weights")," should be nonnegative and finite")
weights <- weights/mean(weights)
params <- coef(object,transform=TRUE)
est <- as.character(est)
est <- est[nzchar(est)]
idx <- match(est,names(params))
if (any(is.na(idx))) {
missing <- est[is.na(idx)]
pStop_(ngettext(length(missing),"parameter","parameters")," ",
paste(sQuote(missing),collapse=","),
" not found in ",sQuote("params"))
}
pompLoad(object)
ker <- reuman.kernel(kernel.width)
discrep <- spect.discrep(object,ker=ker,weights=weights)
ofun <- function (par = numeric(0)) {
params[idx] <- par
coef(object,transform=TRUE) <<- params
object@simspec <- compute.spect.sim(
object,
vars=object@vars,
params=object@params,
nsim=object@nsim,
seed=object@seed,
[email protected],
detrend=object@detrend,
ker=ker
)
discrep <<- spect.discrep(object,ker=ker,weights=weights)
if (is.finite(discrep) || is.na(fail.value)) discrep else fail.value
}
environment(ofun) <- list2env(
list(object=object,fail.value=fail.value,
params=params,idx=idx,discrep=discrep,seed=seed,ker=ker,
weights=weights),
parent=parent.frame(2)
)
new("spect_match_objfun",ofun,env=environment(ofun),est=est)
}
spect.discrep <- function (object, ker, weights) {
discrep <- array(dim=c(length(object@freq),length(object@vars)))
sim.means <- colMeans(object@simspec)
for (j in seq_along(object@freq)) {
for (k in seq_along(object@vars)) {
discrep[j,k] <- ((object@datspec[j,k]-sim.means[j,k])^2)/
mean((object@simspec[,j,k]-sim.means[j,k])^2)
}
discrep[j,] <- weights[j]*discrep[j,]
}
sum(discrep)
}
setMethod(
"spect",
signature=signature(data="spect_match_objfun"),
definition=function (data, seed,
..., verbose=getOption("verbose", FALSE)) {
if (missing(seed)) seed <- data@env$seed
spect(
data@env$object,
seed=seed,
...,
verbose=verbose
)
}
)
setAs(
from="spect_match_objfun",
to="spectd_pomp",
def = function (from) {
from@env$object
}
)
setMethod(
"plot",
signature=signature(x="spect_match_objfun"),
definition=function (x, ...) {
plot(as(x,"spectd_pomp"),...)
}
) |
test_that("Columns are of correct type in character data", {
expect_type(qualtrics_text$Status, "character")
expect_type(qualtrics_text$Finished, "logical")
})
test_that("Data sets include exclusion criteria", {
expect_true(any(qualtrics_raw$Status == "Survey Preview"))
expect_true(any(qualtrics_raw$Finished == FALSE))
suppressWarnings(
expect_true(any(as.numeric(qualtrics_raw$`Duration (in seconds)`) < 100))
)
suppressWarnings(
expect_true(any(as.numeric(stringr::str_split(
qualtrics_raw$Resolution, "x",
simplify = TRUE
)[, 1]) < 1000))
)
expect_true(nrow(janitor::get_dupes(qualtrics_raw, IPAddress)) > 0)
expect_true(
nrow(janitor::get_dupes(
qualtrics_raw,
dplyr::any_of(
c("LocationLatitude", "LocationLongitude")
)
)) > 0
)
})
test_that("Columns are of correct type in numeric data", {
expect_type(qualtrics_numeric$Status, "double")
expect_type(qualtrics_numeric$Finished, "double")
})
test_that("Data sets include exclusion criteria", {
expect_true(any(qualtrics_numeric$Status == 1))
expect_true(any(qualtrics_numeric$Finished == 0))
expect_true(any(qualtrics_numeric$`Duration (in seconds)` < 100))
expect_true(any(as.numeric(stringr::str_split(qualtrics_numeric$Resolution,
"x",
simplify = TRUE
)[, 1]) < 1000))
expect_true(nrow(janitor::get_dupes(qualtrics_numeric, IPAddress)) > 0)
expect_true(
nrow(janitor::get_dupes(
qualtrics_numeric,
dplyr::any_of(
c("LocationLatitude", "LocationLongitude")
)
)) > 0
)
})
test_that("Columns are of correct type in character data", {
expect_type(qualtrics_text$Status, "character")
expect_type(qualtrics_text$Finished, "logical")
})
test_that("Data sets include exclusion criteria", {
expect_true(any(qualtrics_text$Status == "Survey Preview"))
expect_true(any(qualtrics_text$Finished == FALSE))
expect_true(any(qualtrics_text$`Duration (in seconds)` < 100))
expect_true(any(as.numeric(stringr::str_split(qualtrics_text$Resolution,
"x",
simplify = TRUE
)[, 1]) < 1000))
expect_true(nrow(janitor::get_dupes(qualtrics_text, IPAddress)) > 0)
expect_true(
nrow(janitor::get_dupes(
qualtrics_text,
dplyr::any_of(
c("LocationLatitude", "LocationLongitude")
)
)) > 0
)
}) |
pt.btavg <- function(ar,br){
n <- length(ar)
dirt <- ar - br
outperform <- length(dirt[dirt > 0])
bta <- outperform/n
return(bta)
} |
NestedRegression <- function(response,
predictors,
group.id,
residual.precision.prior = NULL,
coefficient.prior = NULL,
coefficient.mean.hyperprior = NULL,
coefficient.variance.hyperprior = NULL,
suf = NULL,
niter,
ping = niter / 10,
sampling.method = c("ASIS", "DA"),
seed = NULL) {
if (is.null(suf)) {
if (missing(response) || missing(predictors) || missing(group.id)) {
stop("NestedRegression either needs a list of sufficient statistics,",
" or a predictor matrix, response vector, and group indicators.")
}
suf <- .RegressionSufList(predictors, response, group.id)
}
stopifnot(is.list(suf))
stopifnot(length(suf) > 0)
stopifnot(all(sapply(suf, inherits, "RegressionSuf")))
if (length(unique(sapply(suf, function(x) ncol(x$xtx)))) != 1) {
stop("All RegressionSuf objects must have the same dimensions.")
}
xdim <- ncol(suf[[1]]$xtx)
sampling.method <- match.arg(sampling.method)
if (is.null(residual.precision.prior)) {
residual.precision.prior <- .DefaultNestedRegressionResidualSdPrior(suf)
}
stopifnot(inherits(residual.precision.prior, "SdPrior"))
if (is.logical(coefficient.mean.hyperprior) &&
coefficient.mean.hyperprior == FALSE) {
sampling.method <- "DA"
coefficient.mean.hyperprior <- NULL
} else {
if (is.null(coefficient.mean.hyperprior)) {
coefficient.mean.hyperprior <- .DefaultNestedRegressionMeanHyperprior(suf)
}
stopifnot(inherits(coefficient.mean.hyperprior, "MvnPrior"))
stopifnot(length(coefficient.mean.hyperprior$mean) == xdim)
}
if (is.logical(coefficient.variance.hyperprior) &&
coefficient.variance.hyperprior == FALSE) {
coefficient.variance.hyperprior <- NULL
sampling.method <- "DA"
} else if (is.null(coefficient.variance.hyperprior)) {
coefficient.variance.hyperprior <-
.DefaultNestedRegressionVarianceHyperprior(suf)
stopifnot(inherits(coefficient.variance.hyperprior, "InverseWishartPrior"),
ncol(coefficient.variance.hyperprior$variance.guess) == xdim)
}
if (!is.null(coefficient.mean.hyperprior) &&
!is.null(coefficient.variance.hyperprior)) {
if (is.null(coefficient.prior)) {
coefficient.prior <- MvnPrior(rep(0, xdim), diag(rep(1, xdim)))
}
}
stopifnot(inherits(coefficient.prior, "MvnPrior"))
stopifnot(is.numeric(niter),
length(niter) == 1,
niter > 0)
stopifnot(is.numeric(ping),
length(ping) == 1)
if (!is.null(seed)) {
seed <- as.integer(seed)
}
ans <- .Call("boom_nested_regression_wrapper",
suf,
coefficient.prior,
coefficient.mean.hyperprior,
coefficient.variance.hyperprior,
residual.precision.prior,
as.integer(niter),
as.integer(ping),
sampling.method,
seed)
ans$priors <- list(
coefficient.prior = coefficient.prior,
coefficient.mean.hyperprior = coefficient.mean.hyperprior,
coefficient.variance.hyperprior = coefficient.variance.hyperprior,
residual.precision.prior = residual.precision.prior)
class(ans) <- "NestedRegression"
return(ans)
}
.RegressionSufList <- function(predictors, response, group.id) {
stopifnot(is.numeric(response))
stopifnot(is.matrix(predictors),
nrow(predictors) == length(response))
group.id <- as.factor(group.id)
stopifnot(length(group.id) == length(response))
MakeRegSuf <- function(data) {
return(RegressionSuf(X = as.matrix(data[,-1]),
y = as.numeric(data[,1])))
}
return(by(as.data.frame(cbind(response, predictors)),
group.id,
MakeRegSuf))
}
.CollapseRegressionSuf <- function(reg.suf.list) {
stopifnot(is.list(reg.suf.list),
length(reg.suf.list) > 0,
all(sapply(reg.suf.list, inherits, "RegressionSuf")))
if (length(reg.suf.list) == 1){
return(reg.suf.list[[1]])
}
xtx <- reg.suf.list[[1]]$xtx
xty <- reg.suf.list[[1]]$xty
yty <- reg.suf.list[[1]]$yty
n <- reg.suf.list[[1]]$n
xsum <- reg.suf.list[[1]]$xbar * n
for (i in 2:length(reg.suf.list)) {
xtx <- xtx + reg.suf.list[[i]]$xtx
xty <- xty + reg.suf.list[[i]]$xty
yty <- yty + reg.suf.list[[i]]$yty
n <- n + reg.suf.list[[i]]$n
xsum <- xsum + reg.suf.list[[i]]$xbar * reg.suf.list[[i]]$n
}
xbar <- xsum / n
return(RegressionSuf(xtx = xtx, xty = xty, yty = yty, n = n, xbar = xbar))
}
.ResidualVariance <- function(suf) {
stopifnot(inherits(suf, "RegressionSuf"))
sse <- as.numeric(suf$yty - t(suf$xty) %*% solve(suf$xtx, suf$xty))
df.model <- ncol(suf$xtx)
return(sse / (suf$n - df.model))
}
.DefaultNestedRegressionMeanHyperprior <- function(suf) {
suf <- .CollapseRegressionSuf(suf)
beta.hat <- tryCatch(solve(suf$xtx, suf$xty))
if (is.numeric(beta.hat)) {
return(MvnPrior(beta.hat, .ResidualVariance(suf) * solve(suf$xtx / suf$n)))
} else {
xdim <- length(suf$xty)
zero <- rep(0, xdim);
V <- diag(rep(1000), xdim)
return(MvnPrior(zero, V))
}
}
.DefaultNestedRegressionVarianceHyperprior <- function(suf) {
number.of.groups <- length(suf)
suf <- .CollapseRegressionSuf(suf)
variance.guess <- .ResidualVariance(suf) * number.of.groups * solve(suf$xtx)
variance.guess.weight <- ncol(variance.guess) + 1
return(InverseWishartPrior(variance.guess, variance.guess.weight))
}
.DefaultNestedRegressionResidualSdPrior <- function(suf) {
suf <- .CollapseRegressionSuf(suf)
variance.guess <- .ResidualVariance(suf)
return(SdPrior(sqrt(variance.guess), 1))
} |
smosaic <- function(data, xvar=character(0), yvar=character(0), ...) {
main <- paste(deparse(substitute(data), 500), collapse = "\n")
obj <- c("matrix", "data.frame", "table") %in% class(data)
stopifnot(any(obj))
totab <- main
if (!obj[3]) {
if (!obj[2]) {
totab <- sprintf("as.data.frame(%s)", totab)
data <- as.data.frame(data)
}
totab <- sprintf("table(%s)", totab)
data <- table(data)
}
if (is.null(dimnames(data))) dimnames(data) <- sapply(dim(data), seq)
if (is.null(names(dimnames(data)))) names(dimnames(data)) <- sprintf("%s[,%.0f]", main, seq(length(dim(data))))
dvar <- names(dimnames(data))
stopifnot(length(dvar)>1)
ivar <- intersect(xvar, yvar)
xvar <- setdiff(xvar, ivar)
yvar <- setdiff(yvar, ivar)
xvar <- xvar[xvar %in% dvar]
if (length(xvar)==0) xvar <- setdiff(dvar, yvar)[1]
yvar <- yvar[yvar %in% dvar]
if (length(yvar)==0) yvar <- setdiff(dvar, xvar)[1]
dvar <- setdiff(dvar, c(xvar, yvar))
shinyApp(
ui = dashboardPage(
dashboardHeader(title="Mosaicplot"),
dashboardSidebar(
tags$style( HTML(".black-text .rank-list-item { color:
bucket_list(
header = NULL,
group_name = "bucket_var_group",
orientation = "vertical",
class = c("default-sortable", "black-text"),
add_rank_list(
text = "Variable(s)",
labels = dvar,
input_id = "dvar"
),
add_rank_list(
text = "X",
labels = xvar,
input_id = "xvar"
),
add_rank_list(
text = "Y",
labels = yvar,
input_id = "yvar"
)
)
),
dashboardBody(
fluidRow(
box(plotOutput("mosaic")),
box(verbatimTextOutput("command"), title="Basic R code")
))
),
server = function(input, output, session) {
output$mosaic <- renderPlot({
if ((length(input$xvar)>0) && (length(input$yvar)>0)) {
args <- list(...)
args$x <- apply(data, c(input$xvar, input$yvar), sum)
args$dir <- c(rep("v", length(input$xvar)), rep("h", length(input$yvar)))
if (is.null(args$main)) args$main <- main
do.call("mosaicplot", args)
}
})
output$command <- renderText({
txt <- "At least two variables are required for a plot!"
if ((length(input$xvar)>0) && (length(input$yvar)>0)) {
txt <- c(paste0(" tab <- ", totab, "\n"),
paste0("x <- c(", paste0('"', input$xvar, '"', collapse=", "), ")\n"),
paste0("y <- c(", paste0('"', input$yvar, '"', collapse=", "), ")\n"),
"tab <- apply(tab, c(x, y), sum)\n",
"dir <- c(rep(\"v\", length(x)), rep(\"h\", length(y)))\n",
"mosaicplot(tab, dir=dir)\n")
}
txt
})
}
)
} |
cima <- function(y, se, v = NULL, alpha = 0.05,
method = c("boot", "DL", "HK", "SJ", "KR", "APX", "PL", "BC"),
B = 25000, parallel = FALSE, seed = NULL, maxit1 = 100000,
eps = 10^(-10), lower = 0, upper = 1000, maxit2 = 1000,
tol = .Machine$double.eps^0.25, rnd = NULL, maxiter = 100) {
lstm <- c("boot", "DL", "HK", "SJ", "KR", "APX", "PL", "BC")
method <- match.arg(method)
if (missing(se) & missing(v)) {
stop("Either 'se' or 'v' must be specified.")
} else if (missing(se)) {
se <- sqrt(v)
}
util_check_num(y)
util_check_nonneg(se)
util_check_inrange(alpha, 0.0, 1.0)
util_check_gt(B, 1)
util_check_gt(maxit1, 1)
util_check_gt(eps, 0)
util_check_ge(lower, 0)
util_check_gt(upper, 0)
util_check_gt(maxit2, 1)
util_check_gt(tol, 0)
util_check_gt(maxiter, 1)
if (length(se) != length(y)) {
stop("'y' and 'se' should have the same length.")
} else if (!is.element(method, lstm)) {
stop("Unknown 'method' specified.")
} else if (lower >= upper) {
stop("'upper' should be greater than 'lower'.")
}
if (method == "boot") {
res <- pima_boot(y = y,
sigma = se,
alpha = alpha,
B = B,
maxit1 = maxit1,
eps = eps,
lower = lower,
upper = upper,
maxit2 = maxit2,
rnd = rnd,
parallel = parallel,
seed = seed)
} else if (method == "DL") {
res <- pima_hts(y = y,
sigma = se,
alpha = alpha)
} else if (method == "HK") {
res <- pima_htsreml(y = y,
sigma = se,
alpha = alpha,
vartype = "HK",
maxiter = maxiter)
} else if (method == "SJ") {
res <- pima_htsreml(y = y,
sigma = se,
alpha = alpha,
vartype = "SJBC",
maxiter = maxiter)
} else if (method == "KR") {
res <- pima_htsreml(y = y,
sigma = se,
alpha = alpha,
vartype = "KR",
maxiter = maxiter)
} else if (method == "APX") {
res <- pima_htsreml(y = y,
sigma = se,
alpha = alpha,
vartype = "APX",
maxiter = maxiter)
} else if (method == "PL") {
res <- cima_pl(y = y,
se = se,
alpha = alpha)
} else if (method == "BC") {
res <- cima_bc(y = y,
se = se,
alpha = alpha)
}
res <- append(list(K = length(y)), res)
res <- append(res, list(i2h = i2h(se, res$tau2h)))
class(res) <- "cima"
return(res)
}
print.cima <- function(x, digits = 4, trans = c("identity", "exp"), ...) {
lstt <- c("identity", "exp")
trans <- match.arg(trans)
if (!is.element(trans, lstt)) {
stop("Unknown 'trans' specified.")
}
nuc <- x$nuc
cat("\nConfidence Interval for Random-Effects Meta-Analysis\n\n")
if (x$method == "boot") {
cat(paste0("A parametric bootstrap confidence interval\n",
" Heterogeneity variance: DerSimonian-Laird\n",
" Variance for average treatment effect: Hartung\n\n"))
} else if (x$method == "DL") {
cat(paste0("A Wald-type confidence interval\n",
" Heterogeneity variance: DerSimonian-Laird\n",
" Variance for average treatment effect: approximate\n\n"))
} else if (x$method == "HK") {
cat(paste0("A Wald-type t-distribution confidence interval\n",
" Heterogeneity variance: REML\n",
" Variance for average treatment effect: Hartung-Knapp\n\n"))
} else if (x$method == "SJ") {
cat(paste0("A Wald-type t-distribution confidence interval\n",
" Heterogeneity variance: REML\n",
" Variance for average treatment effect: bias corrected Sidik-Jonkman\n\n"))
} else if (x$method == "KR") {
cat(paste0("A Wald-type t-distribution confidence interval\n",
" Heterogeneity variance: REML\n",
" Variance for average treatment effect: Kenward-Roger\n\n"))
nuc <- format(round(nuc, digits))
} else if (x$method == "PL") {
cat(paste0("A profile likelihood confidence interval\n",
" Heterogeneity variance: ML\n",
" Variance for average treatment effect: ML\n\n"))
} else if (x$method == "BC") {
cat(paste0("A profile likelihood confidence interval with a Bartlett-type correction\n",
" Heterogeneity variance: ML\n",
" Variance for average treatment effect: ML\n\n"))
}
cat(paste0("No. of studies: ", length(x$y), "\n\n"))
ftrans <- function(x) {
if (trans == "identity") {
return(x)
} else if (trans == "exp") {
return(exp(x))
}
}
cat(paste0("Average treatment effect [", (1 - x$alpha)*100, "% confidence interval]:\n"))
cat(paste0(" ", format(round(ftrans(x$muhat), digits), nsmall = digits), " [",
format(round(ftrans(x$lci), digits), nsmall = digits), ", ",
format(round(ftrans(x$uci), digits), nsmall = digits), "]\n"))
if (!is.na(nuc)) {
cat(paste0(" d.f.: ", nuc, "\n"))
}
if (trans == "exp") {
cat(paste0(" Scale: exponential transformed\n"))
}
cat("\n")
cat(paste0("Heterogeneity measure\n"))
cat(paste0(" tau-squared: ", format(round(x$tau2, digits), nsmall = digits), "\n"))
cat(paste0(" I-squared: ", format(round(x$i2h, 1), nsmall = 1), "%\n\n"))
invisible(x)
}
plot.cima <- function(x, y = NULL, title = "Forest plot", base_size = 16,
base_family = "", digits = 3, studylabel = NULL,
ntick = NULL, trans = c("identity", "exp"), ...) {
lstt <- c("identity", "exp")
trans <- match.arg(trans)
if (!is.element(trans, lstt)) {
stop("Unknown 'trans' specified.")
}
ftrans <- function(x) {
if (trans == "identity") {
return(x)
} else if (trans == "exp") {
return(exp(x))
}
}
idodr <- lcl <- limits <- lx <- shape <- size <- ucl <- ymax <- ymin <- NULL
k <- length(x$y)
if (is.null(studylabel)) {
studylabel <- 1:k
} else {
if (k != length(studylabel)) {
stop("`studylabel` and the number of studies must have the same length.")
}
}
id <- c(
paste0(" ", studylabel),
paste0(" 95%CI")
)
df1 <- data.frame(
id = id,
idodr = c((k + 2):3, 1),
y = c(x$y, NA),
lcl = c(x$y + stats::qnorm(x$alpha*0.5)*x$se, NA),
ucl = c(x$y + stats::qnorm(1 - x$alpha*0.5)*x$se, NA),
shape = c(rep(15, k), 18),
swidth = c(rep(1, k), 3)
)
xmin <- min(ftrans(df1$lcl[1:k]))
xmax <- max(ftrans(df1$ucl[1:k]))
df1 <- data.frame(
df1,
size = c(1/x$se, 1),
limits = c(paste0(format(round(ftrans(df1$y[1:k]), digits), nsmall = digits), " (",
format(round(ftrans(df1$lcl[1:k]), digits), nsmall = digits), ", ",
format(round(ftrans(df1$ucl[1:k]), digits), nsmall = digits), ")"),
paste0(format(round(ftrans(x$muhat), digits), nsmall = digits), " (",
format(round(ftrans(x$lci), digits), nsmall = digits), ", ",
format(round(ftrans(x$uci), digits), nsmall = digits), ")")
)
)
df2 <- data.frame(id = "Study", idodr = k + 3, y = NA, lcl = NA, ucl = NA,
shape = NA, swidth = NA, size = NA, limits = NA)
df3 <- data.frame(id = "Overall", idodr = 2, y = NA, lcl = NA, ucl = NA,
shape = NA, swidth = NA, size = NA, limits = NA)
df4 <- data.frame(x = c(x$lci, x$muhat, x$uci), ymax = c(1, 1 + 0.25, 1),
ymin = c(1, 1 - 0.25, 1), y = c(1, 1, 1))
df1 <- rbind(df3, df2, df1)
ggplot <- ggplot2::ggplot
aes <- ggplot2::aes
geom_errorbarh <- ggplot2::geom_errorbarh
geom_point <- ggplot2::geom_point
geom_ribbon <- ggplot2::geom_ribbon
geom_vline <- ggplot2::geom_vline
scale_y_continuous <- ggplot2::scale_y_continuous
scale_x_continuous <- ggplot2::scale_x_continuous
scale_shape_identity <- ggplot2::scale_shape_identity
ylab <- ggplot2::ylab
xlab <- ggplot2::xlab
ggtitle <- ggplot2::ggtitle
theme_classic <- ggplot2::theme_classic
theme <- ggplot2::theme
element_text <- ggplot2::element_text
element_line <- ggplot2::element_line
element_blank <- ggplot2::element_blank
element_blank <- ggplot2::element_blank
rel <- ggplot2::rel
labs <- ggplot2::labs
sec_axis <- ggplot2::sec_axis
y1labels <- df1[order(df1$idodr),]$id
y2labels <- df1[order(df1$idodr),]$limits
y2labels[is.na(y2labels)] <- ""
if (trans == "exp") {
if (is.null(ntick)) {
ntick <- 6
}
breaks <- log(2^seq.int(ceiling(log2(xmin)), ceiling(log2(xmax)), length.out = ntick))
scalex <- scale_x_continuous(
labels = scales::trans_format("exp", format = scales::number_format(big.mark = "", accuracy = 10^(-digits))),
breaks = breaks)
} else if (trans == "identity") {
if (is.null(ntick)) {
scalex <- scale_x_continuous()
} else {
scalex <- scale_x_continuous(breaks = scales::pretty_breaks(n = ntick))
}
}
suppressWarnings(
print(
p <- ggplot(df1, aes(x = y, y = idodr)) +
geom_errorbarh(aes(xmin = lcl, xmax = ucl), height = 0, size = 1) +
geom_point(aes(size = size, shape = shape), fill = "black", show.legend = FALSE) +
geom_ribbon(data = df4, aes(x = x, y = y, ymin = ymin, ymax = ymax), alpha = 1,
colour = "black", fill = "black") +
geom_vline(xintercept = x$muhat, lty = 2) +
geom_vline(xintercept = 0, lty = 1) +
scale_y_continuous(breaks = 1:length(y1labels), labels = y1labels,
sec.axis = sec_axis( ~ ., breaks = 1:length(y2labels), labels = y2labels)) +
scalex +
scale_shape_identity() +
ylab(NULL) +
xlab(" ") +
labs(caption = parse(
text = sprintf('list(hat(tau)^{2}=="%s", I^{2}=="%s"*"%%")',
format(round(x$tau2h, digits), nsmall = digits),
format(round(x$i2h, 1), nsmall = 1)))
) +
ggtitle(title) +
theme_classic(base_size = base_size, base_family = base_family) +
theme(axis.text.y = element_text(hjust = 0), axis.ticks.y = element_blank()) +
theme(axis.line.x = element_line(), axis.line.y = element_blank(),
plot.title = element_text(hjust = 0.5, size = rel(0.8)))
)
)
} |
context("Convert Vietnamese Unicode to ASCII")
test_that("Converts Unicode to ASCII", {
expect_equal(convert_unicode_to_ascii("\u00C0"), "A")
expect_equal(convert_unicode_to_ascii("\u1EF9"), "y")
expect_equal(convert_unicode_to_ascii("\u00d0"), "D")
}) |
qacf <- function(x, conf_level = 0.95, show_sig = FALSE, ...) {
UseMethod("qacf")
}
qacf.default <- function(x, conf_level = 0.95, show_sig = FALSE, ...) {
do.call(qacf.data.frame, list(x = data.frame(x), conf_level = conf_level, show_sig = show_sig, ...))
}
qacf.data.frame <- function(x, conf_level = 0.95, show_sig = FALSE, ...) {
acf_data <- stats::acf(x, plot = FALSE, ...)
ciline <- stats::qnorm((1 - conf_level) / 2) / sqrt(acf_data$n.used)
lags <- as.data.frame(acf_data$lag)
acfs <- as.data.frame(acf_data$acf)
lags <- utils::stack(lags)
acfs <- utils::stack(acfs)
names(lags) <- c("lag", "variable")
names(acfs) <- c("value", "variable")
acf_df <- cbind(lags, value = acfs[["value"]])
acf_df$significant <- factor(abs(acf_df$value) > abs(ciline))
g <-
ggplot2::ggplot() +
ggplot2::aes_string(x = "lag", y = "value") +
ggplot2::geom_bar(stat = "identity", position = "identity") +
ggplot2::ylab(acf_data$type)
if (ncol(x) > 1) {
facets <- rep(apply(expand.grid(acf_data$snames, acf_data$snames),
1, function(x) {if(x[1] == x[2]) x[1] else paste(x, collapse = " & ")}),
each = dim(acf_data$acf)[1])
facets_levels <-
apply(expand.grid(acf_data$snames, acf_data$snames)[, 2:1],
1, function(x) {if(x[1] == x[2]) x[1] else paste(x, collapse = " & ")})
acf_df$facets <- factor(facets, levels = facets_levels)
g <- g + ggplot2::facet_wrap( ~ facets, scales = "free_x")
}
if(show_sig) {
if (ncol(x) > 1) {
g <- g +
ggplot2::geom_hline(yintercept = ciline) +
ggplot2::geom_hline(yintercept = -ciline) +
ggplot2::aes_string(fill = "significant")
} else {
g <- g +
ggplot2::geom_hline(yintercept = -ciline) +
ggplot2::aes_string(fill = "significant")
}
}
g <- ggplot2::`%+%`(g, acf_df)
g
} |
.Random.seed <-
c(403L, 105L, -1687518201L, -1894374947L, -1902051628L, 1300177402L,
-762966715L, -1801504353L, 1500850982L, -1023028304L, -1414291373L,
-1976624271L, 133466784L, -1286021570L, -1526819511L, -1194603525L,
573321162L, -730840788L, 516545839L, -99646491L, 942619292L,
-469418254L, 1271041901L, 1551427751L, 389475022L, -1423181784L,
-1943837653L, -325892535L, 427880280L, 1512327686L, -1634896927L,
-222867085L, -581787166L, 2141312340L, 1934175319L, 113578061L,
-1410919452L, 1421889994L, 861198389L, -986368369L, 1914873750L,
781880128L, 486729219L, -1646797791L, 360992528L, 1410409710L,
323841177L, 1858840875L, -1249230822L, -1308034340L, 1746528991L,
1805661365L, -1969233332L, 403377826L, 832558589L, -649986313L,
-2087880674L, -859374888L, 1743826491L, 309296089L, -1284593304L,
-1158020970L, 1519771153L, 1338677187L, -529495086L, -1791666588L,
-119290457L, -1798612227L, -2103558412L, 686422490L, 2012962085L,
-344978369L, -1702437946L, 1690163280L, 2020627571L, -957187951L,
-1794438976L, 989176478L, -1813053847L, -1786466661L, -1873607766L,
-1954764852L, 96107151L, 1623773893L, -710116740L, -1010968878L,
689349197L, -2050429177L, -745082130L, 1992574920L, 1642121419L,
1714788649L, 1960231288L, -691550554L, -1711599423L, -1402734253L,
-1534040574L, -1036476620L, -694596425L, 1287855277L, 268700100L,
673507818L, 1219221077L, 1309181935L, 837507062L, 102191392L,
2113642211L, 1618495361L, 1522401776L, 1343946894L, -1564596231L,
836173195L, 801352122L, 811722940L, -1228420097L, 1059731797L,
-71499156L, 1219585730L, -1251577571L, 1568262039L, -88964354L,
-253683528L, 716112539L, 349868281L, 706081352L, -1265246858L,
-317862735L, 922427619L, -1524858958L, -882819068L, 1844605767L,
1600432669L, 1668497556L, -446255046L, -1577717115L, -424103073L,
-1503736858L, 1433683568L, -1802425965L, 1119129137L, -75029280L,
175281534L, 1398638601L, 682780731L, -46811638L, -1785010708L,
812755567L, 1790829989L, -1089088164L, 532564274L, 2093324333L,
876672743L, 1720507406L, 347817448L, -1536446485L, 275583113L,
1034224664L, 841732934L, 108581281L, -67141581L, 195120546L,
-1093338988L, -1215353065L, 1699383565L, 194355236L, -1356374006L,
-2128247435L, -1796438833L, 686991318L, -1343821952L, 2078882755L,
-1409847967L, -187124784L, -1712323794L, 681926361L, -1668928277L,
-1812124326L, 1971633948L, -506168801L, -1515058571L, 1081788172L,
-797287710L, 731652029L, 678996023L, -859757858L, 159366680L,
670450043L, -1348708071L, 1400169896L, 1618331990L, 1847810513L,
253974915L, -1672656878L, 1625754532L, 155523943L, 1650475197L,
42686516L, 137386906L, -1508419611L, 26674047L, 1921073926L,
-1358140272L, -693166797L, 475167441L, 771104896L, -1902413474L,
1878060713L, 1724135771L, 1163694954L, 1526389260L, -3470769L,
1483122437L, 1143566268L, -2103489902L, -225586803L, -612189753L,
1545013934L, -2073574648L, -1511112437L, -100646935L, -615176008L,
-1262510234L, -1663685631L, -120391021L, 837619010L, 1768620788L,
-1122750729L, -746115347L, -1716659836L, 1831373624L, -1519604582L,
1564406480L, 1381548220L, 288050836L, -1546197374L, -437995328L,
-2036239556L, 1933360272L, -1018044894L, -1860173816L, -275596020L,
1169874076L, -812073454L, -1147150464L, -859861484L, -51926488L,
-1543305926L, -655894064L, -1294871444L, -775038668L, 1727399570L,
-1694749856L, -1681726644L, 1230559200L, -1899673694L, -563402840L,
1532325260L, 1236101308L, -1602344590L, 976499952L, 72147012L,
-1745563304L, 1781954106L, 863746928L, 903780412L, -1249681644L,
-1767672382L, -1088300320L, 1511278460L, -1493250352L, -1670039390L,
-1258136536L, 761439500L, -1430476868L, 566569266L, 1739860416L,
-1359058380L, -156988472L, 296261818L, 1177213328L, 1272050156L,
-332135852L, -1278173038L, 203259680L, -1656370740L, -1673267744L,
335648450L, 1604265000L, -458427732L, -1413774148L, 72260082L,
47243568L, -1497615196L, 1076668088L, -1840345766L, 123643280L,
1255601020L, -1000859372L, -144592062L, 1675811584L, 145627068L,
-1138712752L, -1127095518L, 891125064L, 1777687052L, 1981691996L,
-227603246L, 409737728L, -1914729132L, -656926232L, 1791802362L,
616280272L, -1218593492L, -651267340L, -725612142L, 1962243168L,
355099916L, -1194216736L, 247458146L, -1023096152L, -1921985972L,
308674940L, -1341831886L, 263065712L, -962988220L, 7319000L,
1186921594L, -1526575568L, 697322172L, -51687596L, 1489032258L,
-1766576736L, 705231548L, -128157232L, 1471458658L, -1034014744L,
1711654860L, 1437826812L, 1621107186L, -686643072L, 723547380L,
1796126344L, 190940986L, 360158032L, 1822447212L, 495194260L,
712524114L, 91217632L, -1812663604L, -1404104544L, 346954626L,
-1593920792L, -978824468L, 1781902396L, 17212018L, 1143415920L,
-2067790300L, -1909586888L, 1833117722L, -683701552L, -775084996L,
252875924L, -1451406206L, 272590784L, 2146048316L, 1198305936L,
668884002L, 1472701448L, 252344460L, -108467172L, 1234060946L,
1040577664L, -2086207468L, -212884184L, 1872186938L, 530375888L,
2116486252L, -1681681740L, 533186578L, -940525600L, 1801310156L,
396848608L, 2073308706L, -102930136L, 1589489932L, -423356868L,
-1389633294L, -1558856976L, -736099516L, 2084612696L, 2038706746L,
-556161296L, -1452753732L, 552848916L, -839237438L, -1295601568L,
-1130558084L, -1295745840L, -1203880926L, 256473768L, -1605668980L,
-577644100L, -297683918L, 1870985024L, 1551939764L, 1821991752L,
-1956693318L, -1991512304L, -740386580L, -1202932652L, 736012050L,
1009619872L, 674480076L, -1187525792L, -2122788670L, -73279960L,
1360545196L, -956858564L, 945033074L, 363733808L, 66028068L,
-1776537544L, 1843383514L, -110607984L, 536684284L, 55476116L,
1263641410L, -1125672448L, -1482153412L, 496637520L, 1709576866L,
-1278809272L, -284607988L, -1541059364L, 23142994L, -523552640L,
1643830100L, 1722364392L, 297396986L, -773343408L, -1262435284L,
1476892020L, -2115285358L, -90121632L, -531262836L, 1729366880L,
-922594590L, 1742239912L, -841969460L, 1958457852L, -1499422798L,
-1120201232L, 1395453380L, 1710450520L, -440214662L, 967851440L,
226032942L, 1357361627L, 1608476349L, -590736342L, 1932051656L,
1340482033L, -702763165L, 1361639268L, 1385549458L, 455412583L,
-163531471L, 1346637430L, 1814499220L, 1018260389L, -271393617L,
2075447656L, -955115194L, 1279324403L, -2009518507L, 1736151602L,
-901210112L, -1245510423L, -1830632613L, 940549548L, 488521146L,
1455934319L, -935678727L, -856854130L, 1622295644L, 1231607501L,
1536803383L, -1713772352L, -84928610L, -493880213L, 369630189L,
-779436454L, -1744387816L, 1421471361L, -1170111437L, -1831644588L,
-766364062L, 715897079L, -360432831L, -1927269946L, -487204092L,
-1574195531L, 355891615L, 389608952L, -1707623466L, -1815271837L,
138139173L, -1544321598L, -1140491600L, 427651801L, 1746437195L,
1706343100L, -69015318L, -896604897L, 809495977L, 718908222L,
-163461588L, -467749763L, 194211527L, 383014832L, 557500878L,
424674043L, 467034461L, -2087763318L, -1420914520L, 229626897L,
1968956675L, -1982240764L, -681031630L, 377430151L, 918506705L,
-1509779882L, 1450231348L, 827505989L, 1990668175L, 1423317768L,
-1363403482L, -1797241389L, 1538756405L, 900187794L, -1744035232L,
988722121L, 1450627835L, -1252025140L, -671607462L, -567371697L,
-2081893095L, 236601134L, 1864577340L, 756487853L, 1174196567L,
648798368L, 1977540094L, -296161077L, -47231283L, -1769252358L,
-599195080L, -325443615L, -1602578285L, -454165836L, -1804240958L,
-837471273L, -820102111L, -1911063578L, 1690904292L, -736013803L,
-295626177L, -1504701992L, 1989838838L, -171692029L, 61545285L,
-62918814L, 1052774608L, -1026860039L, 1074542379L, 1196475548L,
-1866229046L, -1537567809L, -2042544375L, 1406855198L, 190732748L,
-319868003L, 738242087L, 701465680L, -1271935762L, -415422053L,
-1722556419L, 1787161322L, 2097577352L, 1673849649L, 1246995363L,
-711466076L, 882191954L, -1773367897L, 741059057L, -793305802L,
-1990236716L, -924415131L, 381825903L, 1337888168L, -1895820538L,
-119749069L, 286330005L, -476302094L, -96398016L, -1196606807L,
-1283296485L, -1430911764L, 1624418554L, -872957649L, -92635847L,
-1151996082L, -65108580L, 436471565L, -1357360777L, 176866688L,
1869861854L, -1771660117L, -443848787L, 1175690266L, 698979032L,
1680628545L, -291906573L, 1508320788L, -1482489950L, 1820577534L
) |
semdiag.combinations<-
function (n, r)
{
v<-1:n
v0 <- vector(mode(v), 0)
sub <- function(n, r, v) {
if (r == 0)
v0
else if (r == 1)
matrix(v, n, 1)
else if (n == 1)
matrix(v, 1, r)
else rbind(cbind(v[1], Recall(n, r - 1, v)), Recall(n - 1, r, v[-1]))
}
sub(n, r, v[1:n])
}
semdiag.read.eqs<-function (file)
{
file.ets <- file
file.split <- strsplit(file.ets, "\\.")
if (length(file.split[[1]]) > 2)
stop("File name or folders should not contain '.'")
if (file.split[[1]][2] != "ets")
stop("File should be of the form 'xxxxxx.ets'")
file.cbk <- paste(file.split[[1]][1], ".CBK", sep = "")
file.etp <- paste(file.split[[1]][1], ".ETP", sep = "")
cbk.info1 <- scan(file.cbk, skip = 2, nlines = 2, quiet = TRUE)
cbk.info2 <- scan(file.cbk, skip = 4, nlines = 2, quiet = TRUE)
endfile <- scan(file.cbk, nlines = 1, quiet = TRUE)
cbk.info.mat <- cbind(cbk.info2, cbk.info1)
rownames(cbk.info.mat) <- c("Parameter estimates", "Standard errors",
"Robust standard errors", "Corrected standard errors",
"Gradients", "Sample covariance matrix", "Model Covariance Matrix (Sigma hat)",
"Inverted Information matrix", "Robust inverted information matrix",
"Corrected inverted information matrix", "First derivatives",
"4th Moment weight matrix", "Standardized Elements",
"R-squares", "Factor means", "Univariate statistics (means)",
"Univariate statistics (standard deviations)", "Univariate statistics (skewness)",
"Univariate statistics (kurtosis)", "Univariate statistics (sample size)",
"Dependent variable standardization vector", "Independent variable standardization vector")
colnames(cbk.info.mat) <- c("Line Number", "Number of Elements")
cbk.base <- read.fwf(file.cbk, widths = c(13, 3), skip = 6,
col.names = c("variable", "line"), buffersize = 1, n = 98)
nminfo <- length(which(cbk.base[, 2] == 2))
minfo.val <- scan(file.ets, skip = 1, nlines = 1, quiet = TRUE)
minfo.dframe <- data.frame(minfo.val)
colnames(minfo.dframe) <- "values"
rownames(minfo.dframe) <- cbk.base[1:nminfo, 1]
start.cbk <- nminfo + 1
ntprobs <- length(c(which(cbk.base[, 2] == 3), which(cbk.base[,
2] == 4)))
probs.val <- scan(file.ets, skip = 2, nlines = 2, quiet = TRUE)
probs.val[which(probs.val == -1)] <- NA
probs.dframe <- data.frame(probs.val, row.names = cbk.base[start.cbk:(start.cbk +
ntprobs - 1), 1])
colnames(probs.dframe) <- "p-values"
start.cbk <- start.cbk + ntprobs
nfit <- 60
fit.val <- scan(file.ets, skip = 4, nlines = 6, quiet = TRUE)
fit.val[which(fit.val == -9)] <- NA
fit.dframe <- data.frame(fit.val, row.names = cbk.base[start.cbk:(start.cbk +
nfit - 1), 1])
colnames(fit.dframe) <- "fit values"
start.cbk <- start.cbk + nfit
ndesc <- 9
desc.val <- scan(file.ets, skip = 11 - 1, nlines = 1, quiet = TRUE)
desc.dframe <- data.frame(desc.val, row.names = cbk.base[start.cbk:(start.cbk +
ndesc - 1), 1])
colnames(desc.dframe) <- "values"
n.ind <- desc.dframe[8, 1]
n.dep <- desc.dframe[9, 1]
n.fac <- desc.dframe[3, 1]
n.tot <- n.ind + n.dep
if (n.ind%%32 == 0) {
skiplines <- n.ind/32
}else {
skiplines <- trunc(n.ind/32) + 1
}
if (n.dep%%32 == 0) {
skiplines <- skiplines + n.dep/32
}else {
skiplines <- skiplines + trunc(n.dep/32) + 1
}
parindvec <- scan(file.etp, skip = skiplines, quiet = TRUE)
varnames.string <- readLines(file.etp, n = skiplines, warn=FALSE)
varnames.chvec <- unlist(strsplit(varnames.string, split = " "))
varnames.vec <- varnames.chvec[which(varnames.chvec != "")]
nout <- dim(cbk.info.mat)[1]
model.list <- as.list(rep(NA, nout))
for (i in 1:nout) {
startline <- cbk.info.mat[i, 1]
if (i != nout) {
endlinevec <- cbk.info.mat[(i + 1):nout, 1]
endline <- (endlinevec[endlinevec > 0])[1]
nlines <- endline - startline
}else {
if ((cbk.info.mat[i, 2]) > 0)
nlines <- endfile - startline
else nlines <- 0
}
if (startline != 0) {
vals <- scan(file.ets, skip = startline - 1, nlines = nlines,
quiet = TRUE)
}else {
vals <- NA
}
model.list[[i]] <- vals
}
par.val <- model.list[[1]]
par.pos <- which(parindvec > 0)
phi.dim <- n.ind * n.ind
gamma.dim <- n.dep * n.ind
indpos1 <- (par.pos > (phi.dim)) + (par.pos < (phi.dim +
gamma.dim))
cumpos1 <- par.pos[indpos1 == 2]
cumpos2 <- par.pos[par.pos > (phi.dim + gamma.dim)]
if (length(cumpos1) > 0)
parindvec[cumpos1] <- parindvec[cumpos1] + max(parindvec)
if (length(cumpos2) > 0)
parindvec[cumpos2] <- parindvec[cumpos2] + max(parindvec)
negpos <- which(parindvec == -1)
parindvec[parindvec <= 0] <- NA
parvec <- par.val[parindvec]
parvec[negpos] <- -1
parvec[is.na(parvec)] <- 0
cuts <- c(n.ind * n.ind, n.dep * n.ind, n.dep * n.dep)
dimlist <- list(c(n.ind, n.ind), c(n.dep, n.ind), c(n.dep,
n.dep))
cutfac <- rep(1:3, cuts)
parlist <- split(parvec, cutfac)
parmat <- mapply(function(xx, dd) {
matrix(xx, nrow = dd[1], ncol = dd[2], byrow = TRUE)
}, parlist, dimlist)
names(parmat) <- c("Phi", "Gamma", "Beta")
colnames(parmat$Phi) <- rownames(parmat$Phi) <- colnames(parmat$Gamma) <- varnames.vec[1:n.ind]
rownames(parmat$Gamma) <- rownames(parmat$Beta) <- colnames(parmat$Beta) <- varnames.vec[(n.ind +
1):length(varnames.vec)]
parse.mat <- NULL
for (i in 1:5) parse.mat <- cbind(parse.mat, model.list[[i]])
colnames(parse.mat) <- c("Parameter", "SE", "RSE", "CSE",
"Gradient")
npar <- dim(parse.mat)[1]
namesvec <- NULL
partable<-NULL
for (i in 1:3) {
if (i == 1) {
combmat <- semdiag.combinations(dim(parmat[[i]])[1], 2)
comb.names <- apply(combmat, 2, function(rn) rownames(parmat[[i]])[rn])
par.val0 <- parmat[[i]][lower.tri(parmat[[i]], diag = TRUE)]
partable<-rbind(partable, cbind(comb.names, par.val0))
}
if (i==2) {
comb.names <- as.matrix(expand.grid(rownames(parmat[[i]]),
colnames(parmat[[i]])))
par.val0 <- as.vector(parmat[[i]])
partable<-rbind(partable, cbind(comb.names, par.val0))
}
if (i ==3){
comb.names <- as.matrix(expand.grid(rownames(parmat[[i]]),
colnames(parmat[[i]])))
par.val0 <- as.vector(t(parmat[[i]]))
partable<-rbind(partable, cbind(comb.names, par.val0))
}
par.val.ind <- which(((par.val0 != 0) + (par.val0 !=
-1)) == 2)
names.mat <- rbind(comb.names[par.val.ind, ])
if (i==3) {names <- apply(names.mat, 1, function(ss) paste("(", ss[2], ",", ss[1], ")", sep = ""))
}else{
names <- apply(names.mat, 1, function(ss) paste("(", ss[1], ",", ss[2], ")", sep = ""))
}
namesvec <- c(namesvec, names)
}
if ((dim(parse.mat)[1]) != (length(namesvec))) {
parse.mat <- parse.mat[parse.mat[, 1] != 0, ]
if ((dim(parse.mat)[1]) == (length(namesvec)))
rownames(parse.mat) <- namesvec
}else {
rownames(parse.mat) <- namesvec
}
meanjn <- scan(file.cbk, skip = 1, nlines = 1, quiet = TRUE)[3]
Vcheckstr <- colnames(parmat$Phi)
compstr <- paste("V", 1:999, sep = "")
TFVcheck <- Vcheckstr %in% compstr
if (any(TFVcheck))
depnames.add <- Vcheckstr[TFVcheck]
else depnames.add <- NULL
VBcheckstr <- colnames(parmat$Beta)
TFVBcheck <- VBcheckstr %in% compstr
if (any(TFVBcheck))
depnames.addB <- VBcheckstr[TFVBcheck]
else depnames.addB <- NULL
depnames <- c(depnames.addB, depnames.add)
rm(compstr)
if (meanjn == 0)
p <- n.dep
else p <- n.dep + 1
cov.list <- as.list(rep(NA, 5))
names(cov.list) <- c("sample.cov", "sigma.hat", "inv.infmat",
"rinv.infmat", "cinv.infmat")
for (i in 6:10) {
if (length(model.list[[i]]) > 1) {
cov.list[[i - 5]] <- matrix(model.list[[i]], nrow = sqrt(length(model.list[[i]])))
if (i <= 7) {
dimnames(cov.list[[i - 5]]) <- list(depnames[1:dim(cov.list[[i -
5]])[1]], depnames[1:dim(cov.list[[i - 5]])[2]])
order.V <- order(depnames)
cov.list[[i - 5]] <- cov.list[[i - 5]][order.V,
order.V]
}
if (i >= 8)
dimnames(cov.list[[i - 5]]) <- list(namesvec,
namesvec)
}
}
pstar <- p * (p + 1)/2
if (length(model.list[[11]]) > 1) {
deriv1 <- matrix(model.list[[11]], nrow = npar, ncol = pstar)
}
else {
deriv1 <- NA
}
if (length(model.list[[12]]) > 1) {
moment4 <- matrix(model.list[[12]], nrow = pstar, ncol = pstar)
}
else {
moment4 <- NA
}
ustatmat <- cbind(model.list[[16]], model.list[[17]], model.list[[18]],
model.list[[19]], model.list[[20]])
if (dim(ustatmat)[1] == 1)
ustatmat <- NA
else colnames(ustatmat) <- c("means", "sd", "skewness", "kurtosis",
"n")
result <- c(list(model.info = minfo.dframe), list(pval = probs.dframe),
list(fit.indices = fit.dframe), list(model.desc = desc.dframe),
parmat, list(par.table = parse.mat), cov.list, list(derivatives = deriv1),
list(moment4 = moment4), list(ssolution = model.list[[13]]),
list(Rsquared = model.list[[14]]), list(fac.means = model.list[[15]]),
list(var.desc = ustatmat), list(depstd = model.list[[21]]),
list(indstd = model.list[[22]]))
result
}
semdiag.run.eqs<-function (EQSpgm, EQSmodel, serial, Rmatrix = NA, datname = NA,
LEN = 2e+06)
{
res <- semdiag.call.eqs(EQSpgm = EQSpgm, EQSmodel = EQSmodel, serial = serial,
Rmatrix = Rmatrix, datname = datname, LEN = LEN)
if (!res)
warning("EQS estimation not successful!")
filedir.split <- strsplit(EQSmodel, "/")[[1]]
n <- length(filedir.split)
etsname <- strsplit(filedir.split[n], "\\.")[[1]][1]
etsfile <- paste(etsname, ".ets", sep = "")
reslist <- semdiag.read.eqs(etsfile)
return(c(list(success = res), reslist))
}
semdiag.call.eqs<-function (EQSpgm, EQSmodel, serial, Rmatrix = NA, datname = NA,
LEN = 2e+06)
{
if (!file.exists(EQSmodel))
stop("The .eqs file not found in the current folder!")
filedir.split <- strsplit(EQSmodel, "/")[[1]]
n <- length(filedir.split)
filedir <- paste(filedir.split[1:(n - 1)], collapse = "/")
if (n > 1)
setwd(filedir)
outname <- strsplit(filedir.split[n], "\\.")[[1]][1]
file.out <- paste(outname, ".out", sep = "")
lenstring <- paste("LEN=", as.integer(LEN), sep = "")
filepathin <- paste("IN=", EQSmodel, sep = "")
fileout <- paste("OUT=", file.out, sep = "")
serstring <- paste("SER=", serial, "\n", sep = "")
if (length(Rmatrix) > 1) {
if (is.na(datname)) {
warning(paste("No filename for data specified! ",
outname, ".dat is used", sep = ""))
datname <- paste(outname, ".dat", sep = "")
}
write.table(as.matrix(Rmatrix), file = datname, col.names = FALSE,
row.names = FALSE)
}
EQScmd <- paste(deparse(EQSpgm), filepathin, fileout, lenstring,
serstring)
RetCode <- system(EQScmd, intern = FALSE, ignore.stderr = TRUE,
wait = TRUE, input = NULL)
if (RetCode == 0) {
success <- TRUE
}
else {
success <- FALSE
}
return(success = success)
}
rsem.pattern<-function(x,print=FALSE){
if (missing(x)) stop("A data set has to be provided!")
if (!is.matrix(x)) x<-as.matrix(x)
y<-x
M<-is.na(x)
nM<-max(apply(M,1,sum))
n<-dim(x)[1]
p<-dim(x)[2]
if (nM==p) stop("Some cases have missing data on all variables. Please delete them first.")
misorder<-rep(0,n)
for (i in 1:n){
misorderj<-0
for (j in 1:p){
if (is.na(x[i,j])) misorderj<-misorderj+2^(j-1)
}
misorder[i]<-misorderj
}
temp<-order(misorder)
x<-x[temp,]
misn<-misorder[temp]
mi<-0; nmi<-0;oi<-0; noi<-0;
for (j in 1:p){
if (is.na(x[1,j])){
mi<-c(mi,j)
nmi<-nmi+1
}else{
oi<-c(oi,j)
noi<-noi+1
}
}
oi<-oi[2:(noi+1)]
if (nmi==0){
misinfo_0 = c(noi, oi)
}else{
mi<-mi[2:(nmi+1)]
misinfo_0<-c(noi,oi,mi)
}
patnobs <- 0
totpat<-1; ncount<-1;
t1<-misn[1]
for (i in 2:n){
if (misn[i]==t1){
ncount<-ncount+1
}else{
patnobs<-c(patnobs,ncount)
t1<-misn[i]
ncount<-1
totpat<-totpat+1
mi<-0; nmi<-0;oi<-0; noi<-0;
for (j in 1:p){
if (is.na(x[i,j])){
mi<-c(mi,j)
nmi<-nmi+1
}else{
oi<-c(oi,j)
noi<-noi+1
}
}
oi<-oi[2:(noi+1)]
mi<-mi[2:(nmi+1)]
misinfo_0 <- rbind(misinfo_0, c(noi,oi,mi))
}
}
patnobs<-c(patnobs, ncount)
patnobs<-patnobs[2:(totpat+1)]
if (is.vector(misinfo_0)){
misinfo<-c(patnobs, misinfo_0)
}else{
misinfo<-cbind(patnobs, misinfo_0)
}
if (!is.matrix(misinfo)){
misinfo<-matrix(misinfo, nrow=1)
}
nr<-nrow(misinfo)
mispat<-matrix(1, nrow=nr, ncol=p)
for (i in 1:nr){
if (misinfo[i,2]<p){
ind<-misinfo[i, (misinfo[i,2]+3):(p+2)]
mispat[i, ind]<-0
}
}
mispat<-cbind(misinfo[,1:2, drop=FALSE], mispat)
rownames(mispat)<-paste('Pattern ', 1:nr, sep="")
colnames(mispat)<-c('n','nvar',colnames(x))
if (print) print(mispat)
invisible(list(misinfo=misinfo, mispat=mispat, x=x, y=y))
}
rsem.weight<-function(x, varphi, mu0, sig0){
if (!is.matrix(x)) x<-as.matrix(x)
n<-dim(x)[1]
p<-dim(x)[2]
prob<-1-varphi
wi1all<-wi2all<-NULL
if (varphi==0){
wi1all<-wi2all<-rep(1, n)
}else{
for (i in 1:n){
xi<-x[i, ]
xid<-which(!is.na(xi))
xic<-xi[xid]
ximu<-mu0[xid]
xisig<-as.matrix(sig0[xid, xid])
xidiff<-as.matrix(xic-ximu)
di2<-t(xidiff)%*%solve(xisig)%*%xidiff
di<-sqrt(di2)
pi<-length(xic)
chip<-qchisq(prob, pi)
ck<-sqrt(chip)
cbeta<-( pi*pchisq(chip,pi+2) + chip*(1-prob) )/pi
if (di <= ck){
wi1all<-c(wi1all, 1)
wi2all<-c(wi2all, 1/cbeta)
}else{
wi1<-ck/di
wi1all<-c(wi1all, wi1)
wi2all<-c(wi2all, wi1*wi1/cbeta)
}
}
}
return(list(w1=wi1all, w2=wi2all))
}
rsem.ssq<-function(x){
sum(x^2)
}
rsem.emmusig<-function(xpattern, varphi=.1, max.it=1000, st='i'){
if (is.null(xpattern$mispat)) stop("The output from the function rsem.pattern is required")
x<-xpattern$x
misinfo<-xpattern$misinfo
ep <- 1e-6
n<-dim(x)[1]
p<-dim(x)[2]
mu0<-rep(0,p)
sig0<-diag(p)
if (st=='mcd'){
y<-na.omit(x)
ny<-nrow(y)
par.st<-cov.rob(y, method='mcd')
mu0<-par.st$center
sig0<-par.st$cov
}
n_it<-0;
dt<-1;
if (varphi==0){
ck<-10e+10
cbeta<-1
}else{
prob<-1-varphi
chip<-qchisq(prob, p)
ck<-sqrt(chip)
cbeta<-( p*pchisq(chip, p+2) + chip*(1-prob) )/p
}
while (dt>ep && n_it <= max.it){
sumx<-rep(0,p); sumxx<-array(0,dim=c(p,p)); sumw1<-0; sumw2<-0;
npat<-dim(misinfo)[1]
p1<-misinfo[1,2]
n1<-misinfo[1,1]
if (p1==p){
sigin <- solve(sig0)
for (i in 1:n1){
xi<-x[i,]
xi0<-xi-mu0
di2<-as.numeric(xi0%*%sigin%*%xi0)
di<-sqrt(di2)
if (di<=ck){
wi1<-1
wi2<-1/cbeta
}else{
wi1<-ck/di
wi2<-wi1*wi1/cbeta
}
sumw1<-sumw1+wi1;
xxi0<-xi0%*%t(xi0)
sumx<-sumx+wi1*c(xi)
sumxx<-sumxx+c(wi2)*xxi0
sumw2<-sumw2+wi2
}
}else{
if (varphi==0){
ck1<-1e+10
cbeta1<-1
}else{
chip1<-qchisq(prob, p1)
ck1<-sqrt(chip1)
cbeta1<-( p1*pchisq(chip1,p1+2) + chip1*(1-prob) )/p1
}
o1<-misinfo[1,3:(2+p1)]
m1<-misinfo[1,(2+p1+1):(p+2)]
mu_o<-mu0[o1]; mu_m<-mu0[m1]
sig_oo<-sig0[o1,o1]; sig_om<-sig0[o1,m1];
if (p1==1) {sig_mo<-sig_om}else{sig_mo<-t(sig_om)}
sig_mm<-sig0[m1,m1];
sigin_oo<-solve(sig_oo)
beta_mo<-sig_mo%*%sigin_oo
delt <- array(0, dim=c(p,p))
delt[m1,m1]<-sig_mm - beta_mo%*%sig_om
for (i in 1:n1){
xi<-x[i,]
xi_o<-xi[o1]
xi0_o<-xi_o-mu_o
stdxi_o<-sigin_oo%*%xi0_o
di2<-as.numeric(xi0_o%*%stdxi_o)
di<-sqrt(di2)
if (di<=ck1){
wi1<-1
wi2<-1/cbeta1
}else{
wi1<-ck1/di
wi2<-wi1*wi1/cbeta1
}
sumw1<-sumw1+wi1
xm1<-mu_m+sig_mo%*%stdxi_o
xi[m1]<-xm1
xi0<-xi-mu0
xxi0<-xi0%*%t(xi0)
sumx<-sumx+wi1*c(xi)
sumxx<-sumxx+c(wi2)*xxi0+delt
sumw2<-sumw2+wi2
}
}
if (npat>1){
snj<-n1
for (j in 2:npat){
nj<-misinfo[j,1]; pj<-misinfo[j,2];
oj<-misinfo[j, 3:(2+pj)]; mj<-misinfo[j, (2+pj+1):(p+2)];
mu_o<-mu0[oj]; mu_m<-mu0[mj];
sig_oo<-sig0[oj,oj]; sig_om<-sig0[oj,mj];
if (pj==1) {sig_mo<-sig_om}else{sig_mo<-t(sig_om)}
sig_mm<-sig0[mj,mj];
sigin_oo<-solve(sig_oo)
beta_mo<-sig_mo%*%sigin_oo
delt <- array(0, dim=c(p,p))
delt[mj,mj]<-sig_mm - beta_mo%*%sig_om
if (varphi==0){
ckj<-10e+10
cbetaj<-1
}else{
chipj<-qchisq(prob,pj)
ckj<-sqrt(chipj)
cbetaj<- ( pj*pchisq(chipj, pj+2) + chipj*(1-prob) )/pj
}
for (i in ((snj+1):(snj+nj))){
xi<-x[i,]
xi_o<-xi[oj]
xi0_o<-xi_o - mu_o
stdxi_o<-sigin_oo%*%xi0_o
di2<-as.numeric(xi0_o%*%stdxi_o)
di<-sqrt(di2)
if (di<=ckj){
wi1<-1
wi2<-1/cbetaj
}else{
wi1<-ckj/di
wi2<-wi1*wi1/cbetaj
}
sumw1<-sumw1+wi1
xmj<-mu_m+sig_mo%*%stdxi_o
xi[mj]<-xmj
xi0<-xi-mu0
xxi0<-xi0%*%t(xi0)
sumx<-sumx+wi1*c(xi)
sumxx<-sumxx+c(wi2)*xxi0+delt
sumw2<-sumw2+wi2
}
snj<-snj+nj
}
}
mu1<-sumx/sumw1
sig1<-sumxx/n
dt<-max(c(max(abs(mu1-mu0)), max(abs(sig1-sig0))));
mu0<-mu1;
sig0<-sig1;
n_it<-n_it+1;
}
if (n_it>=max.it) warning("The maximum number of iteration was exceeded. Please increase max.it in the input.")
rownames(sig1)<-colnames(sig1)
names(mu1)<-colnames(sig1)
weight<-rsem.weight(xpattern$y, varphi, mu1, sig1)
list(mu=mu1, sigma=sig1, max.it=n_it, weight=weight)
}
rsem.vec<-function(x){
t(t(as.vector(x)))
}
rsem.vech<-function(x){
t(x[!upper.tri(x)])
}
rsem.DP <- function(x){
mat <- diag(x)
index <- seq(x*(x+1)/2)
mat[ lower.tri( mat , TRUE ) ] <- index
mat[ upper.tri( mat ) ] <- t( mat )[ upper.tri( mat ) ]
outer(c(mat), index , function( x , y ) ifelse(x==y, 1, 0 ) )
}
rsem.index<-function(p,oj){
temp<-1:(p*p)
index<-array(temp, dim=c(p,p))
indexoj<-index[oj,oj]
nj<-length(oj)
rsem.vec(indexoj)
}
rsem.indexv<-function(p, select){
pv<-length(select)
pvs<-pv*(pv+1)/2
index_s<-rep(0,pvs)
count<-p
countv<-0
for (i in 1:p){
for (j in i:p){
count<-count+1
for (iv in 1:pv){
for (jv in iv:pv){
if (i==select[iv] && j==select[jv]){
countv<-countv+1
index_s[countv]<-count
}
}
}
}
}
c(select, index_s)
}
rsem.indexvc<-function(p, select){
pv<-length(select)
pvs<-pv*(pv+1)/2
index_s<-rep(0,pvs)
count<-0
countv<-0
for (i in 1:p){
for (j in i:p){
count<-count+1
for (iv in 1:pv){
for (jv in iv:pv){
if (i==select[iv] && j==select[jv]){
countv<-countv+1
index_s[countv]<-count
}
}
}
}
}
index_s + rep(p,pvs)
}
rsem.switch<-function(p){
ps<-p*(p+1)/2
bmat<-array(0,c(p,p))
nb<-0
for (i in 1:p){
for (j in 1:i){
nb<-nb+1
bmat[i,j]<-nb
}
}
vb<-rsem.vech(bmat)
Imatc<-diag(ps)
permuc<-Imatc[,vb]
iMat<-diag(p+ps)
vp<-1:p
vs<-c(vp, (vb+rep(p,ps)))
permu<-iMat[,vs]
permu<-rbind(permu[(p+1):(p+ps), ], permu[1:p, ])
list(mu=permu, sigma=permuc)
}
rsem.gname<-function(name){
temp.name<-NULL
k<-length(name)
for (i in 1:k){
for (j in i:k){
temp.name<-c(temp.name, paste(name[i], ".", name[j], sep=""))
}
}
temp.name
}
rsem.Ascov<-function(xpattern, musig, varphi=.1){
if (is.null(xpattern$mispat)) stop("The output from the function rsem.pattern is required")
x<-xpattern$x
misinfo<-xpattern$misinfo
mu0<-musig$mu
sig0<-musig$sig
n<-dim(x)[1]; p<-dim(x)[2];
ps<-p*(p+1)/2; pps<-p+ps;
dup<-rsem.DP(p)
dupt<-t(dup)
i_p<-diag(p)
B11<-array(0, c(p,p)); B12<-array(0,c(p,ps)); B22<-array(0,c(ps,ps));
ddl11<-array(0,c(p,p)); ddl12<-array(0,c(p,ps));
ddl21<-array(0,c(ps,p)); ddl22<-array(0,c(ps,ps));
if (varphi==0){
ck<-1e+10
cbeta<-1
}else{
prob<-1-varphi
chip<-qchisq(prob,p);
ck<-sqrt(chip);
cbeta<-( p*pchisq(chip,p+2)+ chip*(1-prob) )/p;
}
dl<-rep(0,pps)
npat<-dim(misinfo)[1]
n1<-misinfo[1,1]; p1<-misinfo[1,2];
if (p1==p){
sigin<-solve(sig0)
vecsig<-rsem.vec(sig0)
Wmat<-kronecker(sigin,sigin)/2
for (i in 1:n1){
xi<-x[i,]
xi0<-xi-mu0;
stdxi<-sigin%*%xi0
stdxit<-t(stdxi)
di2<-xi0%*%stdxi
di<-sqrt(di2)
if (di<=ck){
wi1<-1
wi2<-1/cbeta
dwi1<-0
dwi2<-0
}else{
wi1<-ck/di
wi2<-wi1*wi1/cbeta
dwi1<-wi1/di2
dwi2<-wi2/di2
}
dlimu<-c(wi1)*stdxi
xixi0<-xi0%*%t(xi0)
vecyi<-rsem.vec(xixi0)
wvecyi<-c(wi2)*vecyi
dlisig<-dupt%*%Wmat%*%(wvecyi-vecsig)
B11<-B11+dlimu%*%t(dlimu)
B12<-B12+dlimu%*%t(dlisig)
B22<-B22+dlisig%*%t(dlisig)
dl_i<-c(dlimu, dlisig)
dl<-dl+dl_i
Hi<-stdxi%*%stdxit
tti<-c(wi1)*sigin
uui<-c(wi2)*sigin
ddl11<-ddl11 + (-tti+c(dwi1)*Hi)
ddl22<-ddl22 + dupt%*%( Wmat - kronecker(Hi, (uui-.5*c(dwi2)*Hi) ) )%*%dup
ddl12<-ddl12 + kronecker( (-tti+.5*c(dwi1)*Hi) ,stdxit)%*%dup
ddl21<-ddl21 + dupt%*%kronecker( (-uui+c(dwi2)*Hi), stdxi )
}
}else{
if (varphi==0){
ck1<-1e+10
cbeta1<-1
}else{
chip1<-qchisq(prob,p1)
ck1<-sqrt(chip1)
cbeta1<-( p1*pchisq(chip1,p1+2) + chip1*(1-prob) )/p1
}
o1<-misinfo[1,3:(2+p1)]
mu_o<-mu0[o1]
sig_oo<-sig0[o1,o1]
vecsig_oo<-rsem.vec(sig_oo)
sigin_oo<-solve(sig_oo)
E1<-i_p[o1,];
if (o1==1){Et1=E1}else{Et1<-t(E1)}
F1<-kronecker(E1, E1)%*%dup;
Ft1<-t(F1)
Wmat1<-.5*kronecker(sigin_oo, sigin_oo)
for (i in 1:n1){
xi<-x[i,]
xi_o<-xi[o1]
xi0_o<-xi_o-mu_o
xi0_ot<-t(xi0_o)
stdxi_o<-sigin_oo%*%xi0_o
stdxit_o<-t(stdxi_o)
di2<-xi0_o%*%stdxi_o
di<-sqrt(di2)
if (di<=ck){
wi1<-1
wi2<-1/cbeta
dwi1<-0
dwi2<-0
}else{
wi1<-ck/di
wi2<-wi1*wi1/cbeta
dwi1<-wi1/di2
dwi2<-wi2/di2
}
dlimu<-c(wi1)*Et1%*%stdxi_o
xixi0_o<-xi0_o%*%t(xi0_o)
vecyi<-rsem.vec(xixi0_o)
wvecyi<-c(wi2)*vecyi
dlisig<-Ft1%*%Wmat1%*%(wvecyi-vecsig_oo)
B11<-B11+dlimu%*%t(dlimu)
B12<-B12+dlimu%*%t(dlisig)
B22<-B22+dlisig%*%t(dlisig)
dl_i<-c(dlimu, dlisig)
dl<-dl+dl_i
Hi<-stdxi_o%*%stdxit_o
tti<-c(wi1)*sigin_oo
uui<-c(wi2)*sigin_oo
ddl11<-ddl11 + Et1%*%(-tti+c(dwi1)*Hi)%*%E1
ddl22<-ddl22 + Ft1%*%( Wmat1 - kronecker(Hi, (uui-.5*c(dwi2)*Hi) ) )%*%F1
ddl12<-ddl12 + Et1%*%kronecker( (-tti+.5*c(dwi1)*Hi) ,stdxit_o)%*%F1
ddl21<-ddl21 + Ft1%*%kronecker( (-uui+c(dwi2)*Hi), stdxi_o )%*%E1
}
}
if (npat>1){
snj<-n1
for (j in 2:npat){
nj<-misinfo[j,1]
pj<-misinfo[j,2]
if (varphi==0){
ckj<-1e+10
cbetaj<-1
}else{
chipj<-qchisq(prob, pj)
ckj<-sqrt(chipj)
cbetaj<-( pj*pchisq(chipj,pj+2) + chipj*(1-prob) )/pj
}
oj<-misinfo[j, 3:(2+pj)]
mu_o<-mu0[oj]
sig_oo<-sig0[oj,oj]
sigin_oo<-solve(sig_oo)
vecsig_oo<-rsem.vec(sig_oo)
Ej<-i_p[oj, ]
if (pj==1){Etj<-Ej}else{Etj<-t(Ej)}
Fj<-kronecker(Ej, Ej)%*%dup
Ftj<-t(Fj)
Wmati<-0.5*kronecker(sigin_oo, sigin_oo)
for (i in (snj+1):(snj+nj)){
xi<-x[i,]
xi_o<-xi[oj]
xi0_o<-xi_o-mu_o
xi0_ot<-t(xi0_o)
stdxi_o<-sigin_oo%*%xi0_o
stdxit_o<-t(stdxi_o)
di2<-xi0_o%*%stdxi_o
di<-sqrt(di2)
if (di<=ckj){
wi1<-1
wi2<-1/cbetaj
dwi1<-0
dwi2<-0
}else{
wi1<-ckj/di
wi2<-wi1*wi1/cbetaj
dwi1<-wi1/di2
dwi2<-wi2/di2
}
dlimu<-c(wi1)*Etj%*%stdxi_o
xixi0_o<-xi0_o%*%t(xi0_o)
vecyi<-rsem.vec(xixi0_o)
wvecyi<-c(wi2)*vecyi
dlisig<-Ftj%*%Wmati%*%(wvecyi-vecsig_oo)
B11<-B11+dlimu%*%t(dlimu)
B12<-B12+dlimu%*%t(dlisig)
B22<-B22+dlisig%*%t(dlisig)
dl_i<-c(dlimu, dlisig)
dl<-dl+dl_i
Hi<-stdxi_o%*%stdxit_o
tti<-c(wi1)*sigin_oo
uui<-c(wi2)*sigin_oo
ddl11<-ddl11 + Etj%*%(-tti+c(dwi1)*Hi)%*%Ej
ddl22<-ddl22 + Ftj%*%( Wmati - kronecker(Hi, (uui-.5*c(dwi2)*Hi) ) )%*%Fj
ddl12<-ddl12 + Etj%*%kronecker( (-tti+.5*c(dwi1)*Hi) ,stdxit_o)%*%Fj
ddl21<-ddl21 + Ftj%*%kronecker( (-uui+c(dwi2)*Hi), stdxi_o )%*%Ej
}
snj<-snj+nj
}
}
Bbeta<-rbind( cbind(B11, B12), cbind(t(B12), B22) )
Abeta<-rbind( cbind(ddl11, ddl12), cbind(ddl21, ddl22) )
Abin<-solve(Abeta)
Omega<-n*Abin%*%Bbeta%*%t(Abin)
Gamma<-Omega
xnames<-colnames(x)
if (is.null(xnames)) xnames<-paste('V', 1:p)
mnames<-rsem.gname(xnames)
colnames(Abeta)<-colnames(Bbeta)<-colnames(Gamma)<-rownames(Abeta)<-rownames(Bbeta)<-rownames(Gamma)<-c(xnames, mnames)
list(Abeta=Abeta, Bbeta=Bbeta, Gamma=Gamma)
}
rsem<-function(dset, select, EQSmodel, moment=TRUE, varphi=.1, st='i', max.it=1000, eqsdata='data.txt', eqsweight='weight.txt', EQSpgm="C:/Progra~1/EQS61/WINEQS.EXE", serial="1234"){
if (missing(dset)) stop("A data set is needed!")
if (!is.matrix(dset)) dset<-data.matrix(dset)
n<-dim(dset)[1]
p<-dim(dset)[2]
cat("Sample size n =", n, "\n")
cat("Total number of variables q =", p, "\n\n")
if (missing(select)) select<-c(1:p)
cat("The following",length(select),"variables are selected for SEM models \n")
cat(colnames(dset)[select], "\n\n")
p_v<-length(select)
pvs<-p_v+p_v*(p_v+1)/2
miss_pattern<-rsem.pattern(dset)
x<-miss_pattern$x
misinfo<-miss_pattern$misinfo
totpat<-dim(misinfo)[1]
cat("There are", totpat, "missing data patterns. They are \n")
print(misinfo)
cat("\n")
em_results<-rsem.emmusig(miss_pattern, varphi=varphi)
if (em_results$max.it >= max.it){ warning("\nMaximum iteration for EM is exceeded and the results may not be trusted. Change max.it to a greater number.\n") }
hmu1<-em_results$mu
hsigma1<-em_results$sigma
ascov_results<-rsem.Ascov(miss_pattern, em_results, varphi=varphi)
Abeta<-ascov_results$Abeta
Bbeta<-ascov_results$Bbeta
hupsilon<-ascov_results$Gamma
index_beta<-rsem.indexv(p, select)
index_sig<-rsem.indexvc(p,select)
index_other<-c(select, index_sig)
gamma_other<-hupsilon[index_other,index_other]
hmu<-hmu1[select]
hsigma<-hsigma1[select, select]
cat("Estimated means: \n")
print(hmu)
if (missing(EQSmodel)){
se.hup<-sqrt(diag(hupsilon/n))
se.hmu1<-se.hup[1:p]
se.hsig1<-se.hup[(p+1):(p*(p+3)/2)]
se.matrix.hsig1<-array(0, c(p,p))
se.matrix.hsig1[lower.tri(se.matrix.hsig1,TRUE)]<-se.hsig1
se.matrix.hsig1[upper.tri(se.matrix.hsig1)]<-se.matrix.hsig1[lower.tri(se.matrix.hsig1)]
se.hmu<-se.hmu1[select]
se.matrix.hsig<-se.matrix.hsig1[select,select]
cat("Standard errors for estimated means:\n");
print(se.hmu)
}
cat("\nEstimated covariance matrix: \n")
print(hsigma)
if (missing(EQSmodel)){
cat("Standard errors for estimated covariance matrix: \n")
print(se.matrix.hsig)
}
cat("\n")
if (!missing(EQSmodel)){
permu_sig<-rsem.switch(p_v)$sigma
permu_beta<-rsem.switch(p_v)$mu
hgamma_sig<-hupsilon[index_sig,index_sig]
hgamma_sig<-permu_sig%*%hgamma_sig%*%t(permu_sig)
hgamma_beta<-hupsilon[index_beta,index_beta]
hgamma_beta_eqs<-rbind( cbind(permu_beta%*%hgamma_beta%*%t(permu_beta), rep(0,pvs)), c(rep(0,pvs), 1) )
hgamma_beta<-permu_beta%*%hgamma_beta%*%t(permu_beta)
if (moment){
write.table(rbind(hsigma,hmu), 'data.txt', row.names=FALSE,col.names=FALSE)
write.table(hgamma_beta_eqs, 'weight.txt', row.names=FALSE,col.names=FALSE)
}else{
write.table(rbind(hsigma), 'data.txt', row.names=FALSE,col.names=FALSE)
write.table(hgamma_sig, 'weight.txt', row.names=FALSE,col.names=FALSE)
}
res <- semdiag.run.eqs(EQSpgm = EQSpgm, EQSmodel = EQSmodel, serial = serial)
fit<-res$fit.indices
pval<-res$pval
fit.stat<-rbind(
c(fit[sub(' +','',row.names(fit))=='SBCHI',1], pval[sub(' +','',row.names(pval))=='SBPVAL',1]),
c(fit[sub(' +','',row.names(fit))=='MVADJCHI',1], pval[sub(' +','',row.names(pval))=='TPADJCHI',1]),
c(fit[sub(' +','',row.names(fit))=='YBRESTST',1], pval[sub(' +','',row.names(pval))=='TPYBRTST',1]),
c(fit[sub(' +','',row.names(fit))=='YBRESF',1], pval[sub(' +','',row.names(pval))=='TPYBRESF',1])
)
colnames(fit.stat)<-c('T','p')
rownames(fit.stat)<-c('RML','AML','CRADF','RF')
cat('Test statistics:\n')
print(fit.stat)
cat('\nParameter estimates:\n')
z<-res$par.table[,1]/res$par.table[,3]
par.est<-cbind(res$par.table[,c(1,3)], z)
colnames(par.est)<-c('Parameter', 'SE', 'z-score')
print(par.est)
invisible(list(fit.stat=fit.stat, para=par.est, sem=list(mu=hmu, sigma=hsigma, gamma_eqs_cov=hgamma_sig, gammam_eqs_mcov=hgamma_beta_eqs), misinfo=miss_pattern, em=em_results, ascov=ascov_results, eqs=res))
}else{
invisible(list(sem=list(mu=hmu, sigma=hsigma, gamma=gamma_other), misinfo=miss_pattern, em=em_results, ascov=ascov_results))
}
}
rsem.print<-function(object, robust.se, robust.fit, estimates=TRUE, fit.measures=FALSE, standardized=FALSE,
rsquare=FALSE, std.nox=FALSE, modindices=FALSE) {
test <- lavInspect(object, "test")
lavpartable <- parTable(object)
lavoptions <- lavInspect(object, "options")
t0.txt <- sprintf(" %-40s", "Statistic")
t1.txt <- sprintf(" %10s", "ML")
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Value")
t1.txt <- sprintf(" %10.3f", test[[1]]$stat)
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Degrees of freedom")
t1.txt <- sprintf(" %10i", test[[1]]$df);
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "P-value")
t1.txt <- sprintf(" %10.3f", test[[1]]$pvalue)
cat(t0.txt, t1.txt, "\n\n", sep="")
t0.txt <- sprintf(" %-40s", "Statistic")
t1.txt <- sprintf(" %10s", "RML")
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Value")
t1.txt <- sprintf(" %10.3f", robust.fit$TRML[[1]][1])
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Degrees of freedom")
t1.txt <- sprintf(" %10i", robust.fit$TRML[[1]][2]);
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "P-value")
t1.txt <- sprintf(" %10.3f", robust.fit$TRML[[1]][3])
cat(t0.txt, t1.txt, "\n\n", sep="")
t0.txt <- sprintf(" %-40s", "Statistic")
t1.txt <- sprintf(" %10s", "AML")
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Value")
t1.txt <- sprintf(" %10.3f", robust.fit$TAML[[1]][1])
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Degrees of freedom")
t1.txt <- sprintf(" %10.3f", robust.fit$TAML[[1]][2]);
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "P-value")
t1.txt <- sprintf(" %10.3f", robust.fit$TAML[[1]][3])
cat(t0.txt, t1.txt, "\n\n", sep="")
t0.txt <- sprintf(" %-40s", "Statistic")
t1.txt <- sprintf(" %10s", "CRADF")
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Value")
t1.txt <- sprintf(" %10.3f", robust.fit$TCRADF[[1]][1])
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Degrees of freedom")
t1.txt <- sprintf(" %10i", robust.fit$TCRADF[[1]][2]);
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "P-value")
t1.txt <- sprintf(" %10.3f", robust.fit$TCRADF[[1]][3])
cat(t0.txt, t1.txt, "\n\n", sep="")
t0.txt <- sprintf(" %-40s", "Statistic")
t1.txt <- sprintf(" %10s", "RF")
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Value")
t1.txt <- sprintf(" %10.3f", robust.fit$TRF[[1]][1])
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Degrees of freedom 1")
t1.txt <- sprintf(" %10.3f", robust.fit$TRF[[1]][2]);
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "Degrees of freedom 2")
t1.txt <- sprintf(" %10.3f", robust.fit$TRF[[1]][3]);
cat(t0.txt, t1.txt, "\n", sep="")
t0.txt <- sprintf(" %-40s", "P-value")
t1.txt <- sprintf(" %10.3f", robust.fit$TRF[[1]][4])
cat(t0.txt, t1.txt, "\n\n", sep="")
if(std.nox) standardized <- TRUE
if(estimates) {
print.estimate <- function(name="ERROR", i=1, z.stat=TRUE) {
name <- substr(name, 1, 13)
if(!standardized) {
if(is.na(se[i])) {
txt <- sprintf(" %-13s %9.3f %8.3f\n", name, est[i], se[i])
} else if(se[i] == 0) {
txt <- sprintf(" %-13s %9.3f\n", name, est[i])
} else if(est[i]/se[i] > 9999.999) {
txt <- sprintf(" %-13s %9.3f %8.3f\n", name, est[i], se[i])
} else if(!z.stat) {
txt <- sprintf(" %-13s %9.3f %8.3f\n", name, est[i], se[i])
} else {
z <- est[i]/se[i]
pval <- 2 * (1 - pnorm( abs(z) ))
txt <- sprintf(" %-13s %9.3f %8.3f %8.3f %8.3f\n",
name, est[i], se[i], z, pval)
}
}
cat(txt)
}
est <- lavpartable$est
se <- lavpartable$se
se[lavpartable$free != 0] <- robust.se$se[[1]]
ngroups <- lavInspect(object, "ngroups")
group.label <- lavInspect(object, "group.label")
for(g in 1:ngroups) {
ov.names <- lavNames(object, "ov", group=g)
lv.names <- lavNames(object, "lv", group=g)
if(ngroups > 1) {
if(g > 1) cat("\n\n")
cat("Group ", g,
" [", group.label[[g]], "]:\n\n", sep="")
}
if(!standardized) {
cat(" Estimate SE Z-value P-value\n")
} else {
if(std.nox) {
cat(" Estimate Std.err Z-value P(>|z|) Std.lv Std.nox\n")
}
else {
cat(" Estimate Std.err Z-value P(>|z|) Std.lv Std.all\n")
}
}
makeNames <- function(NAMES, LABELS) {
l.idx <- which(nchar(LABELS) > 0L)
if(length(l.idx) > 0L) {
LABELS <- abbreviate(LABELS, 4)
LABELS[l.idx] <- paste(" (", LABELS[l.idx], ")", sep="")
MAX.L <- max(nchar(LABELS))
NAMES <- abbreviate(NAMES, minlength = (13 - MAX.L),
strict = TRUE)
NAMES <- sprintf(paste("%-", (13 - MAX.L), "s%", MAX.L, "s",
sep=""), NAMES, LABELS)
} else {
NAMES <- abbreviate(NAMES, minlength = 13, strict = TRUE)
}
}
NAMES <- lavpartable$rhs
mm.idx <- which( lavpartable$op == "=~" &
!lavpartable$lhs %in% ov.names &
lavpartable$group == g)
if(length(mm.idx)) {
cat("Latent variables:\n")
lhs.old <- ""
NAMES[mm.idx] <- makeNames( lavpartable$rhs[mm.idx],
lavpartable$label[mm.idx] )
for(i in mm.idx) {
lhs <- lavpartable$lhs[i]
if(lhs != lhs.old) cat(" ", lhs, " =~\n", sep="")
print.estimate(name=NAMES[i], i)
lhs.old <- lhs
}
cat("\n")
}
fm.idx <- which( lavpartable$op == "<~" &
lavpartable$group == g)
if(length(fm.idx)) {
cat("Composites:\n")
lhs.old <- ""
NAMES[fm.idx] <- makeNames( lavpartable$rhs[fm.idx],
lavpartable$label[fm.idx])
for(i in fm.idx) {
lhs <- lavpartable$lhs[i]
if(lhs != lhs.old) cat(" ", lhs, " <~\n", sep="")
print.estimate(name=NAMES[i], i)
lhs.old <- lhs
}
cat("\n")
}
eqs.idx <- which(lavpartable$op == "~" & lavpartable$group == g)
if(length(eqs.idx) > 0) {
cat("Regressions:\n")
lhs.old <- ""
NAMES[eqs.idx] <- makeNames( lavpartable$rhs[eqs.idx],
lavpartable$label[eqs.idx])
for(i in eqs.idx) {
lhs <- lavpartable$lhs[i]
if(lhs != lhs.old) cat(" ", lhs, " ~\n", sep="")
print.estimate(name=NAMES[i], i)
lhs.old <- lhs
}
cat("\n")
}
cov.idx <- which(lavpartable$op == "~~" &
!lavpartable$exo &
lavpartable$lhs != lavpartable$rhs &
lavpartable$group == g)
if(length(cov.idx) > 0) {
cat("Covariances:\n")
lhs.old <- ""
NAMES[cov.idx] <- makeNames( lavpartable$rhs[cov.idx],
lavpartable$label[cov.idx])
for(i in cov.idx) {
lhs <- lavpartable$lhs[i]
if(lhs != lhs.old) cat(" ", lhs, " ~~\n", sep="")
print.estimate(name=NAMES[i], i)
lhs.old <- lhs
}
cat("\n")
}
int.idx <- which(lavpartable$op == "~1" &
!lavpartable$exo &
lavpartable$group == g)
if(length(int.idx) > 0) {
cat("Intercepts:\n")
NAMES[int.idx] <- makeNames( lavpartable$lhs[int.idx],
lavpartable$label[int.idx])
for(i in int.idx) {
print.estimate(name=NAMES[i], i)
}
cat("\n")
}
var.idx <- which(lavpartable$op == "~~" &
!lavpartable$exo &
lavpartable$lhs == lavpartable$rhs &
lavpartable$group == g)
if(length(var.idx) > 0) {
cat("Variances:\n")
NAMES[var.idx] <- makeNames( lavpartable$rhs[var.idx],
lavpartable$label[var.idx])
for(i in var.idx) {
if(lavoptions$mimic == "lavaan") {
print.estimate(name=NAMES[i], i, z.stat=TRUE)
} else {
print.estimate(name=NAMES[i], i, z.stat=TRUE)
}
}
cat("\n")
}
}
def.idx <- which(lavpartable$op == ":=")
if(length(def.idx) > 0) {
if(ngroups > 1) cat("\n")
cat("Defined parameters:\n")
NAMES[def.idx] <- makeNames( lavpartable$lhs[def.idx], "")
for(i in def.idx) {
print.estimate(name=NAMES[i], i)
}
cat("\n")
}
cin.idx <- which((lavpartable$op == "<" |
lavpartable$op == ">"))
ceq.idx <- which(lavpartable$op == "==")
if(length(cin.idx) > 0L || length(ceq.idx) > 0L) {
slack <- ifelse(abs(est) < 1e-5, 0, est)
if(ngroups > 1 && length(def.idx) == 0L) cat("\n")
cat("Constraints: Slack (>=0)\n")
for(i in c(cin.idx,ceq.idx)) {
lhs <- lavpartable$lhs[i]
op <- lavpartable$op[i]
rhs <- lavpartable$rhs[i]
if(rhs == "0" && op == ">") {
con.string <- paste(lhs, " - 0", sep="")
} else if(rhs == "0" && op == "<") {
con.string <- paste(rhs, " - (", lhs, ")", sep="")
} else if(rhs != "0" && op == ">") {
con.string <- paste(lhs, " - (", rhs, ")", sep="")
} else if(rhs != "0" && op == "<") {
con.string <- paste(rhs, " - (", lhs, ")", sep="")
} else if(rhs == "0" && op == "==") {
con.string <- paste(lhs, " - 0", sep="")
} else if(rhs != "0" && op == "==") {
con.string <- paste(lhs, " - (", rhs, ")", sep="")
}
con.string <- abbreviate(con.string, 41, strict = TRUE)
txt <- sprintf(" %-41s %8.3f\n",
con.string, slack[i])
cat(txt)
}
cat("\n")
}
}
if(modindices) {
cat("Modification Indices:\n\n")
print( modificationIndices(object, standardized=TRUE) )
}
}
rsem.switch.gamma<-function(gamma, ov.names){
gamma.old.names<-rownames(gamma)
gamma.new.name<-ov.names
k<-length(ov.names)
for (i in 1:k){
for (j in i:k){
temp.name<-paste(ov.names[i], ".", ov.names[j], sep="")
if (temp.name %in% gamma.old.names){
gamma.new.name <- c(gamma.new.name, temp.name)
}else{
gamma.new.name <- c(gamma.new.name, paste(ov.names[j], ".", ov.names[i], sep=""))
}
}
}
gamma.new<-gamma[gamma.new.name, gamma.new.name]
gamma.new
}
rsem.se<-function(object, gamma){
if (!is.list(gamma)){
temp<-gamma
gamma<-NULL
gamma[[1]]<-temp
}
Delta <- lavTech(object, "delta")
WLS.V <- lavTech(object, "wls.v")
ngroups <- lavInspect(object, "ngroups")
nobs <- lavInspect(object, "nobs")
vcov <- vector("list", length=ngroups)
se <- vector("list", length=ngroups)
for(g in 1:ngroups) {
OV.NAMES <- lavNames(object, "ov", group = g)
gamma[[g]]<-rsem.switch.gamma(gamma[[g]], OV.NAMES)
A<-t(Delta[[g]])%*%WLS.V[[g]]%*%Delta[[g]]
B<-t(Delta[[g]])%*%WLS.V[[g]]%*%gamma[[g]]%*%WLS.V[[g]]%*%Delta[[g]]
D<-solve(A)
vcov[[g]] <- D%*%B%*%D
se[[g]]<-sqrt(diag(vcov[[g]])/(nobs[g]-1))
}
list(se=se, vcov=vcov, delta=Delta, W=WLS.V)
}
rsem.fit<-function(object, gamma, musig){
if (!is.list(gamma)){
temp<-gamma
gamma<-NULL
gamma[[1]]<-temp
}
ngroups <- lavInspect(object, "ngroups")
nobs <- lavInspect(object, "nobs")
test <- lavInspect(object, "test")
meanstructure <- lavInspect(object, "meanstructure")
lavimplied <- lavTech(object, "implied")
for(g in 1:ngroups) {
OV.NAMES <- lavNames(object, "ov", group = g)
gamma[[g]]<-rsem.switch.gamma(gamma[[g]], OV.NAMES)
}
Delta <- lavTech(object, "delta")
WLS.V <- lavTech(object, "wls.v")
TRML<-TAML<-TCRADF<-TRF <- vector("list", length=ngroups)
for (g in 1:ngroups){
A<-t(Delta[[g]])%*%WLS.V[[g]]%*%Delta[[g]]
D<-solve(A)
U<-WLS.V[[g]] - WLS.V[[g]]%*%Delta[[g]]%*%D%*%t(Delta[[g]])%*%WLS.V[[g]]
df<-test[[g]]$df
n<-nobs[g]
n1<-n-1
trUT<-sum(diag(U%*%gamma[[g]]))
m<-df/trUT
trml<-m*test[[g]]$stat
df.rml<-df
p.rml<-1-pchisq(trml, df)
temp<-c(trml, df.rml, p.rml)
names(temp)<-c('Statistic','df','p-value')
TRML[[g]]<-temp
trUT2<-sum(diag(U%*%gamma[[g]]%*%U%*%gamma[[g]]))
m1<-trUT/trUT2
m2<-(trUT)^2/trUT2
taml<-m1*test[[g]]$stat
p.aml<-1-pchisq(taml, m2)
temp<-c(taml, m2, p.aml)
names(temp)<-c('Statistic','df','p-value')
TAML[[g]]<-temp
}
for (g in 1:ngroups){
D<-solve(gamma[[g]])
B<-solve(t(Delta[[g]])%*%D%*%Delta[[g]])
Q<-D - D%*%Delta[[g]]%*%B%*%t(Delta[[g]])%*%D
ovnames<-lavNames(object, "ov", group = g)
sigmahat<-musig$sigma[ovnames,ovnames]
muhat<-musig$mu[ovnames]
if (meanstructure){
r<-c(muhat-lavimplied[[g]]$mean, lav_matrix_vech(sigmahat-lavimplied[[g]]$cov))
}else{
r<-lav_matrix_vech(sigmahat-lavimplied[[g]]$cov)
}
r<-matrix(r, length(r), 1)
radf<-t(r)%*%Q%*%r
n<-nobs[g]
tcradf<-radf*n1/(1+radf)
df<-test[[g]]$df
p.cradf<-1-pchisq(tcradf, df)
temp<-c(tcradf, df, p.cradf)
names(temp)<-c('Statistic','df','p-value')
TCRADF[[g]]<-temp
trf<-(n-df)*n1*radf/(n1*df)
p.rf<-1-pf(trf, df, n-df)
temp<-c(trf, df, n-df, p.rf)
names(temp)<-c('Statistic','df1','df2','p-value')
TRF[[g]]<-temp
}
return(list(TRML=TRML, TAML=TAML, TCRADF=TCRADF, TRF=TRF))
}
rsem.lavaan<-function(dset, model, select, varphi=.1, max.it=1000){
if (missing(dset)) stop("A data set is needed!")
if (!is.matrix(dset)) dset<-data.matrix(dset)
n<-dim(dset)[1]
p<-dim(dset)[2]
cat("Sample size n =", n, "\n")
cat("Total number of variables q =", p, "\n\n")
if (missing(select)) select<-c(1:p)
cat("The following",length(select),"variables are selected for SEM models \n")
cat(colnames(dset)[select], "\n\n")
p_v<-length(select)
pvs<-p_v+p_v*(p_v+1)/2
miss_pattern<-rsem.pattern(dset)
x<-miss_pattern$x
misinfo<-miss_pattern$misinfo
totpat<-dim(misinfo)[1]
cat("There are", totpat, "missing data patterns. They are \n")
print(misinfo)
cat("\n")
musig<-rsem.emmusig(miss_pattern, varphi=varphi)
if (musig$max.it >= max.it){ warning("\nMaximum iteration for EM is exceeded and the results may not be trusted. Change max.it to a greater number.\n") }
res.lavaan<-sem(model, sample.cov=musig$sigma, sample.mean=musig$mu, sample.nobs=n,mimic='EQS')
ascov<-rsem.Ascov(miss_pattern, musig, varphi=varphi)
robust.se<-rsem.se(res.lavaan, ascov$Gamma)
robust.fit <- rsem.fit(res.lavaan, ascov$Gamma, musig)
cat("\nFit statistics\n")
rsem.print(res.lavaan, robust.se, robust.fit)
invisible(list(musig=musig, lavaan=res.lavaan, ascov=ascov, se=robust.se, fit=robust.fit))
} |
setMethod("as.matrix", "dcmle", function(x, ...)
as.matrix(as(x, "MCMClist"), ...))
setMethod("as.matrix", "codaMCMC", function(x, ...)
as.matrix(as(x, "MCMClist"), ...))
setMethod("as.array", "dcmle", function(x, ...)
array(x@details@values,
dim=c(x@details@niter, x@details@nvar, x@details@nchains),
dimnames=list(NULL, x@details@varnames, NULL)))
setMethod("as.array", "codaMCMC", function(x, ...)
array(x@values,
dim=c(x@niter, x@nvar, x@nchains),
dimnames=list(NULL, x@varnames, NULL)))
setMethod("dcdiag", "dcmle", function(x, ...) x@details@dcdiag)
setMethod("dcdiag", "dcCodaMCMC", function(x, ...) x@dcdiag)
setMethod("dcdiag", "codaMCMC", function(x, ...) {
dcdiag(as(x, "MCMClist"), ...)
})
setMethod("dctable", "dcmle", function(x, ...) x@details@dctable)
setMethod("dctable", "dcCodaMCMC", function(x, ...) x@dctable)
setMethod("dctable", "codaMCMC", function(x, ...) {
dctable(as(x, "MCMClist"), ...)
})
setMethod("dcsd", "dcmle", function(object, ...) {
sqrt(diag(vcov(object)))
})
setMethod("dcsd", "codaMCMC", function(object, ...) {
dcsd(as(object, "MCMClist"), ...)
})
setMethod("nclones", "dcmle", function(x, ...) x@details@nclones)
setMethod("nclones", "dcCodaMCMC", function(x, ...) x@nclones)
setMethod("nclones", "codaMCMC", function(x, ...) NULL)
setGeneric("nvar", function(x) standardGeneric("nvar"))
setGeneric("varnames", function(x, ...) standardGeneric("varnames"))
setGeneric("chanames", function(x, ...)
standardGeneric("chanames"))
setGeneric("nchain", function(x) standardGeneric("nchain"))
setGeneric("niter", function(x) standardGeneric("niter"))
setGeneric("crosscorr", function(x) standardGeneric("crosscorr"))
setGeneric("mcpar", function(x) standardGeneric("mcpar"))
setMethod("nvar", "dcmle", function(x) x@details@nvar)
setMethod("varnames", "dcmle", function(x, ...) x@details@varnames)
setMethod("chanames", "dcmle", function(x, ...)
chanames(as(x, "MCMClist"), ...))
setMethod("nchain", "dcmle", function(x) x@details@nchains)
setMethod("niter", "dcmle", function(x) x@details@niter)
setMethod("thin", "dcmle", function(x) x@details@thin)
setMethod("crosscorr", "dcmle", function(x)
crosscorr(as(x, "MCMClist")))
setMethod("mcpar", "dcmle", function(x) c(start(x), end(x), thin(x)))
setMethod("nvar", "codaMCMC", function(x) x@nvar)
setMethod("varnames", "codaMCMC", function(x, ...) x@varnames)
setMethod("chanames", "codaMCMC", function(x, ...)
chanames(as(x, "MCMClist"), ...))
setMethod("nchain", "codaMCMC", function(x) x@nchains)
setMethod("niter", "codaMCMC", function(x) x@niter)
setMethod("thin", "codaMCMC", function(x) x@thin)
setMethod("crosscorr", "codaMCMC", function(x)
crosscorr(as(x, "MCMClist")))
setMethod("mcpar", "codaMCMC", function(x) c(start(x), end(x), thin(x)))
setMethod("nvar", "MCMClist", function(x) coda::nvar(x))
setMethod("varnames", "MCMClist", function(x, ...) coda::varnames(x, ...))
setMethod("chanames", "MCMClist", function(x, ...)
coda::chanames(as(x, "MCMClist"), ...))
setMethod("nchain", "MCMClist", function(x) coda::nchain(x))
setMethod("niter", "MCMClist", function(x) coda::niter(x))
setMethod("thin", "MCMClist", function(x) coda::thin(x))
setMethod("crosscorr", "MCMClist", function(x)
coda::crosscorr(x))
setMethod("mcpar", "MCMClist", function(x) c(start(x), end(x), thin(x)))
setMethod("coef", "dcmle", function(object, ...) object@coef)
setMethod("coef", "codaMCMC", function(object, ...)
coef(as(object, "MCMClist"), ...))
setMethod("vcov", "dcmle", function(object, ...) object@vcov)
setMethod("vcov", "codaMCMC", function(object, ...)
vcov(as(object, "MCMClist"), ...))
setMethod("confint", "dcmle", function(object, parm, level = 0.95, ...) {
if (is.null(nclones(object)) || nclones(object) < 2)
stop("'confint' method not defined for k=1")
confint(as(object, "MCMClist"), parm, level, ...)
})
setMethod("confint", "dcCodaMCMC", function(object, parm, level = 0.95, ...) {
if (is.null(nclones(object)) || nclones(object) < 2)
stop("'confint' method not defined for k=1")
confint(as(object, "MCMClist"), parm, level, ...)
})
setMethod("confint", "MCMClist", function(object, parm, level = 0.95, ...) {
if (is.null(nclones(object)) || nclones(object) < 2)
stop("'confint' method not defined for k=1")
dclone::confint.mcmc.list.dc(object, parm, level, ...)
})
setMethod("confint", "codaMCMC", function(object, parm, level = 0.95, ...) {
stop("'confint' method not defined for k=1")
})
setMethod("quantile", "MCMClist", function(x, ...) {
dclone::quantile.mcmc.list(x, ...)
})
setMethod("quantile", "dcmle", function(x, ...) {
quantile(as(x, "MCMClist"), ...)
})
setMethod("quantile", "codaMCMC", function(x, ...) {
quantile(as(x, "MCMClist"), ...)
})
setMethod("start", "dcmle", function(x, ...) x@details@start)
setMethod("start", "codaMCMC", function(x, ...) x@start)
setMethod("end", "dcmle", function(x, ...) x@details@end)
setMethod("end", "codaMCMC", function(x, ...) x@end)
setMethod("frequency", "dcmle", function(x, ...) 1/thin(x))
setMethod("frequency", "codaMCMC", function(x, ...) 1/thin(x))
setMethod("frequency", "MCMClist", function(x, ...) 1/thin(x))
setMethod("time", "dcmle", function(x, ...) {
val <- seq(start(x), end(x), by = thin(x))
time(ts(data = val,
start = start(x), end = end(x), frequency = thin(x)), ...)
})
setMethod("time", "codaMCMC", function(x, ...) {
val <- seq(start(x), end(x), by = thin(x))
time(ts(data = val,
start = start(x), end = end(x), frequency = thin(x)), ...)
})
setMethod("window", "dcmle", function(x, ...) {
as(window(as(x, "MCMClist"), ...), "dcmle")
})
setMethod("window", "codaMCMC", function(x, ...) {
as(window(as(x, "MCMClist"), ...), "codaMCMC")
})
setMethod("update", "dcmle", function (object, ..., evaluate = TRUE) {
call <- object@call
extras <- match.call(expand.dots = FALSE)$...
if (length(extras)) {
existing <- !is.na(match(names(extras), names(call)))
for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
if (any(!existing)) {
call <- c(as.list(call), extras[!existing])
call <- as.call(call)
}
}
if (evaluate) {
out <- eval(call, parent.frame())
out@call <- call
out
} else call
})
setMethod("stack", "dcmle", function(x, ...) {
data.frame(
iter=rep(time(x), nvar(x)*nchain(x)),
variable=rep(rep(varnames(x), each=niter(x)), nchain(x)),
chain=as.factor(rep(seq_len(nchain(x)), each=niter(x)*nvar(x))),
value=x@details@values)
})
setMethod("stack", "codaMCMC", function(x, ...) {
data.frame(
iter=rep(time(x), nvar(x)*nchain(x)),
variable=rep(rep(varnames(x), each=niter(x)), nchain(x)),
chain=as.factor(rep(seq_len(nchain(x)), each=niter(x)*nvar(x))),
value=x@values)
})
setMethod("str", "dcmle", function(object, max.level=5L, ...)
utils::str(object, max.level=max.level, ...))
setMethod("str", "dcCodaMCMC", function(object, max.level=3L, ...)
utils::str(object, max.level=max.level, ...))
setMethod("head", "dcmle", function(x, ...)
head(as(x, "MCMClist"), ...))
setMethod("tail", "dcmle", function(x, ...)
tail(as(x, "MCMClist"), ...))
setMethod("head", "codaMCMC", function(x, ...)
head(as(x, "MCMClist"), ...))
setMethod("tail", "codaMCMC", function(x, ...)
tail(as(x, "MCMClist"), ...))
setMethod("show", "codaMCMC", function(object) {
str(object)
invisible(object)
})
setMethod("show", "dcmle", function(object) {
cat("Call:\n")
print(object@call)
cat("\nCoefficients:\n")
print(coef(object))
})
setClass("summary.codaMCMC",
representation(
settings = "integer",
coef = "matrix"))
setClass("summary.dcCodaMCMC",
contains="summary.codaMCMC",
representation(
settings = "integer",
coef = "matrix",
convergence = "dcDiag"))
setClass("summary.dcmle",
contains="summary.dcCodaMCMC",
representation(
title="character",
call = "language"))
setMethod("summary", "codaMCMC", function(object, ...) {
k <- nclones(object)
if (is.null(k))
k <- 1L
attributes(k) <- NULL
settings <- c(
start=start(object),
end=end(object),
thin=thin(object),
n.iter=end(object)-start(object)+1,
n.chains=nchain(object),
n.clones=k)
storage.mode(settings) <- "integer"
coefs <- coef(object)
se <- dcsd(object)
cmat <- cbind(coefs, se)
colnames(cmat) <- c("Estimate", "Std. Deviation")
new("summary.codaMCMC",
settings=settings,
coef = cmat)
})
setMethod("summary", "dcCodaMCMC", function(object, ...) {
k <- nclones(object)
if (is.null(k))
k <- 1L
attributes(k) <- NULL
settings <- c(
start=start(object),
end=end(object),
thin=thin(object),
n.iter=end(object)-start(object)+1,
n.chains=nchain(object),
n.clones=k)
storage.mode(settings) <- "integer"
coefs <- coef(object)
se <- dcsd(object)
zstat <- coefs/se
pval <- 2 * pnorm(-abs(zstat))
cmat <- cbind(coefs, se, zstat, pval)
colnames(cmat) <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)")
new("summary.dcCodaMCMC",
settings=settings,
coef = cmat,
convergence=dcdiag(object))
})
setMethod("summary", "dcmle", function(object, title, ...) {
k <- nclones(object)
if (is.null(k))
k <- 1L
attributes(k) <- NULL
if (missing(title)) {
title <- if (k > 1) {
"Maximum likelihood estimation with data cloning\n\n"
} else {
"Bayesian estimation\n\n"
}
} else {
title <- paste(title, "\n\n", sep="")
}
settings <- c(
start=start(object),
end=end(object),
thin=thin(object),
n.iter=end(object)-start(object)+1,
n.chains=nchain(object),
n.clones=k)
storage.mode(settings) <- "integer"
coefs <- coef(object)
se <- dcsd(object)
zstat <- coefs/se
pval <- 2 * pnorm(-abs(zstat))
cmat <- cbind(coefs, se, zstat, pval)
colnames(cmat) <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)")
new("summary.dcmle",
title=title,
call = object@call,
settings=settings,
coef = cmat,
convergence=dcdiag(object))
})
setMethod("show", "summary.codaMCMC", function(object) {
digits <- max(3, getOption("digits") - 3)
cat("'codaMCMC' object\n")
cat("\nSettings:\n")
print(data.frame(t(object@settings)),
digits=digits, row.names=FALSE)
cat("\nCoefficients:\n")
printCoefmat(object@coef,
digits = digits, signif.legend = TRUE)
invisible(object)
})
setMethod("show", "summary.dcCodaMCMC", function(object) {
digits <- max(3, getOption("digits") - 3)
cat("'dcCodaMCMC' object\n")
cat("\nSettings:\n")
print(data.frame(t(object@settings)),
digits=digits, row.names=FALSE)
cat("\nCoefficients:\n")
printCoefmat(object@coef,
digits = digits, signif.legend = TRUE)
cat("\nConvergence:\n")
print(object@convergence,
digits=digits, row.names=FALSE)
invisible(object)
})
setMethod("show", "summary.dcmle", function(object) {
digits <- max(3, getOption("digits") - 3)
cat(object@title)
cat("Call:\n")
print(object@call)
cat("\nSettings:\n")
print(data.frame(t(object@settings)),
digits=digits, row.names=FALSE)
cat("\nCoefficients:\n")
printCoefmat(object@coef,
digits = digits, signif.legend = TRUE)
cat("\nConvergence:\n")
print(object@convergence,
digits=digits, row.names=FALSE)
invisible(object)
})
setMethod("[[", signature(x = "codaMCMC"), function (x, i, j, ...)
as(as.mcmc.list(x)[i], "codaMCMC"))
setMethod("[[", signature(x = "dcCodaMCMC"), function (x, i, j, ...)
as(as.mcmc.list(x)[i], "dcCodaMCMC"))
setMethod("[[", signature(x = "dcmle"), function (x, i, j, ...)
as(as.mcmc.list(x)[i], "dcmle"))
setMethod("[",
signature(x = "codaMCMC"),
function (x, i, j, ..., drop = TRUE)
{
if (missing(j))
return(x[[i]])
y <- as.mcmc.list(x)[i, j, drop]
if (!inherits(y, "mcmc.list"))
y else as(y, "codaMCMC")
})
setMethod("[",
signature(x = "dcCodaMCMC"),
function (x, i, j, ..., drop = TRUE)
{
if (missing(j))
return(x[[i]])
y <- as.mcmc.list(x)[i, j, drop]
if (!inherits(y, "mcmc.list"))
y else as(y, "dcCodaMCMC")
})
setMethod("[",
signature(x = "dcmle"),
function (x, i, j, ..., drop = TRUE)
{
if (missing(j))
return(x[[i]])
y <- as.mcmc.list(x)[i, j, drop]
if (!inherits(y, "mcmc.list"))
y else as(y, "dcmle")
})
setGeneric("gelman.diag", function(x, ...)
standardGeneric("gelman.diag"))
setMethod("gelman.diag", "MCMClist", function(x, ...)
coda::gelman.diag(x, ...))
setMethod("gelman.diag", "codaMCMC", function(x, ...)
gelman.diag(as(x, "MCMClist"), ...))
setMethod("gelman.diag", "dcmle", function(x, ...)
gelman.diag(as(x, "MCMClist"), ...))
setGeneric("geweke.diag", function(x, ...)
standardGeneric("geweke.diag"))
setMethod("geweke.diag", "MCMClist", function(x, ...)
coda::geweke.diag(x, ...))
setMethod("geweke.diag", "codaMCMC", function(x, ...)
geweke.diag(as(x, "MCMClist"), ...))
setMethod("geweke.diag", "dcmle", function(x, ...)
geweke.diag(as(x, "MCMClist"), ...))
setGeneric("raftery.diag", function(x, ...)
standardGeneric("raftery.diag"))
setMethod("raftery.diag", "MCMClist", function(x, ...)
coda::raftery.diag(x, ...))
setMethod("raftery.diag", "codaMCMC", function(x, ...)
raftery.diag(as(x, "MCMClist"), ...))
setMethod("raftery.diag", "dcmle", function(x, ...)
raftery.diag(as(x, "MCMClist"), ...))
setGeneric("heidel.diag", function(x, ...)
standardGeneric("heidel.diag"))
setMethod("heidel.diag", "MCMClist", function(x, ...)
coda::heidel.diag(x, ...))
setMethod("heidel.diag", "codaMCMC", function(x, ...)
heidel.diag(as(x, "MCMClist"), ...))
setMethod("heidel.diag", "dcmle", function(x, ...)
heidel.diag(as(x, "MCMClist"), ...))
setMethod("autocorr.diag", "MCMClist", function(mcmc.obj, ...)
coda::autocorr.diag(as(mcmc.obj, "mcmc.list"), ...))
setMethod("autocorr.diag", "codaMCMC", function(mcmc.obj, ...)
autocorr.diag(as(mcmc.obj, "MCMClist"), ...))
setMethod("autocorr.diag", "dcmle", function(mcmc.obj, ...)
autocorr.diag(as(mcmc.obj, "MCMClist"), ...))
setMethod("chisq.diag", "MCMClist", function(x, ...)
dclone::chisq.diag(x))
setMethod("chisq.diag", "codaMCMC", function(x, ...)
chisq.diag(as(x, "MCMClist"), ...))
setMethod("chisq.diag", "dcmle", function(x, ...)
chisq.diag(as(x, "MCMClist"), ...))
setMethod("lambdamax.diag", "MCMClist", function(x, ...)
dclone::lambdamax.diag(x))
setMethod("lambdamax.diag", "codaMCMC", function(x, ...)
lambdamax.diag(as(x, "MCMClist"), ...))
setMethod("lambdamax.diag", "dcmle", function(x, ...)
lambdamax.diag(as(x, "MCMClist"), ...)) |
PlotMarginals <- function(marginals, groups=NULL) {
nms <- names(marginals$marginals)
discrete.nodes <- nms[marginals$types]
continuous.nodes <- nms[!marginals$types]
posteriors <- marginals$marginals
group.disc <- NULL
group.cont <- NULL
if(!is.null(groups)) {
if(length(groups)!=length(posteriors)) {
warning("Group and marginal lengths do not match.")
groups <- NULL
} else {
group.disc <- groups[which(marginals$types)]
group.cont <- groups[which(!marginals$types)]
}
}
if(length(discrete.nodes)==0){
PlotPosteriorContinuous(posteriors, groups=group.cont)
}
if(length(continuous.nodes)==0){
par(mfrow=c(1,length(discrete.nodes)))
for (i in 1:length(discrete.nodes)) {
this.node <- discrete.nodes[i]
PlotPosteriorDiscrete(posteriors[i], group=group.disc[i])
}
par(mfrow=c(1,1))
}
if(length(discrete.nodes)!=0 & length(continuous.nodes)!=0){
par(mfrow=c(1,length(discrete.nodes)+1))
PlotPosteriorContinuous(posteriors[continuous.nodes], groups=group.cont)
for (i in 1:length(discrete.nodes)) {
this.node <- discrete.nodes[i]
PlotPosteriorDiscrete(posteriors[this.node], group=group.disc[i])
}
par(mfrow=c(1,1))
}
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.