code
stringlengths
1
13.8M
LR2 <- function (g1, g2, n.num, n.den=n.num, p, M, kappa.num, kappa.den=c(1,0,0), alpha, theta=0, silent=FALSE, beta=0.5){ num <- lik2(g1, g2, n=n.num, p, M, kappa.num, alpha, theta, beta) den <- lik2(g1, g2, n=n.den, p, M, kappa.den, alpha, theta, beta) if(silent){ homo1 <- g1[1]==g1[2] homo2 <- g2[1]==g2[2] S <- length(p) if(homo1 & !homo2){ num <- num+lik2(c(g1[1],S), g2, n=n.num, p, M, kappa.num, alpha, theta, beta) den <- den+lik2(c(g1[1],S), g2, n=n.den, p, M, kappa.den, alpha, theta, beta) } if(!homo1 & homo2){ num <- num+lik2(g1, c(g2[1],S), n=n.num, p, M, kappa.num, alpha, theta, beta) den <- den+lik2(g1, c(g2[1],S), n=n.den, p, M, kappa.den, alpha, theta, beta) } if(homo1 & homo2){ num <- num+lik2(c(g1[1],S), g2, n=n.num, p, M, kappa.num, alpha, theta, beta)+ lik2(g1, c(g2[1],S), n=n.num, p, M, kappa.num, alpha, theta, beta)+ lik2(c(g1[1],S), c(g2[1],S), n=n.num, p, M, kappa.num, alpha, theta, beta) den <- den+lik2(c(g1[1],S), g2, n=n.den, p, M, kappa.den, alpha, theta, beta)+ lik2(g1, c(g2[1],S), n=n.den, p, M, kappa.den, alpha, theta, beta)+ lik2(c(g1[1],S), c(g2[1],S), n=n.den, p, M, kappa.den, alpha, theta, beta) } } LR <- num/den list(numerator=num, denominator=den, LR=LR) }
.__JOB_REGISTRY__. <- new.env(parent = emptyenv()) "_PACKAGE"
plot.tfer = function(x, ptype = c("density", "freq", "hist"), xlab = "n", main = "", col = "red", ...) { if (is.numeric(ptype)) { ptype = switch(ptype + 1, "d", "f", "h") warning( "This usage is deprecated. Please use ptype = \"density\", ptype = \"freq\", or ptype = \"hist\" in the future" ) } ptype = match.arg(ptype) if (ptype == "density") { probs = tprob(x) nmax = length(probs) - 1 b = barplot( probs, xlab = xlab, ylab = "Probability", main = main, col = col, names.arg = FALSE, xaxs = "i", yaxs = "i", ylim = c(0, max(probs) * 1.05), axes = FALSE, ... ) axis(2) axis( 1, at = c(b[1], b[nmax + 1]), tick = FALSE, labels = c(0, nmax) ) box() } else if (ptype == "freq") { v = getValues(x) m = max(v) counts = tabulate(v + 1, m + 1) nmax = length(counts) - 1 b = barplot( counts, xlab = xlab, ylab = "Frequency", main = main, col = col, names.arg = FALSE, xaxs = "i", yaxs = "i", ylim = c(0, ceiling(max(counts) * 1.05)), axes = FALSE, ... ) axis(2) axis( 1, at = c(b[1], b[nmax + 1]), tick = FALSE, labels = c(0, nmax) ) box() } else { hist(getValues(x), xlab = xlab, col = col, main = main, ...) } }
test_that("check whether the simulation recordes are outputted as required",{ data(en.vir) data<-data.frame(species=rep("Acosmeryx anceus",3), Lon=c(145.380,145.270,135.461), Lat=c(-16.4800,-5.2500,-16.0810)) absent.points<-pseudo.absent.points(data,en.vir=en.vir,outputNum=100) expect_equal(nrow(absent.points$lonlat),100) expect_equal(nrow(absent.points$envir),100) }) test_that("test the expect error throwed when matching bad format",{ data(en.vir) data<-data.frame(species=rep("Acosmeryx anceus",3), Lon=c(145.380,145.270,135.461)) expect_error(pseudo.absent.points(data,en.vir=en.vir,outputNum=100)) })
test_that("compareModelResults() works", { kwb.hantush:::compareModelResults() })
checkParms <- function(mod, se.max = 25, simplify = TRUE, ...) { UseMethod("checkParms", mod) } checkParms.default <- function(mod, se.max = 25, simplify = TRUE, ...) { stop("\nFunction not yet defined for this object class\n") } checkParms.unmarkedFit <- function(mod, se.max = 25, simplify = TRUE, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) parm.names <- sapply(var.names, FUN = function(i) unlist(strsplit(i, split = "\\("))[1], simplify = TRUE) parm.id <- unique(parm.names) matSE <- data.frame(SEs = SEs, variable = var.names, parameter = parm.names) if(identical(simplify, TRUE)) { out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} parmSE <- as.character(matSE[which(matSE$variable == nameSE), "parameter"]) } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) parmSE <- as.character(matSE[which(matSE$SEs == maxSE), "parameter"]) } rownames(out.result) <- parmSE out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) } if(identical(simplify, FALSE)) { out.result <- data.frame(variable = rep(NA, length(parm.id)), max.se = rep(NA, length(parm.id)), n.high.se = rep(NA, length(parm.id))) rownames(out.result) <- parm.id for(j in parm.id) { mat.parm <- matSE[matSE$parameter %in% j, ] maxSE <- max(mat.parm$SEs) out.result[j, "max.se"] <- maxSE nameSE <- as.character(mat.parm[which(mat.parm$SEs == maxSE), "variable"]) if(is.nan(maxSE)) { nan.var <- as.character(mat.parm[is.nan(mat.parm$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } out.result[j, "variable"] <- nameSE out.result[j, "n.high.se"] <- length(which(mat.parm$SEs > se.max)) } } out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.betareg <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.clm <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.clmm <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.coxme <- function(mod, se.max = 25, ...) { SEs <- extractSE(mod) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.coxph <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.glm <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.glmmTMB <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod)$cond)) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.gls <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.gnls <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.hurdle <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.lm <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.lme <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.lmekin <- function(mod, se.max = 25, ...) { SEs <- extractSE(mod) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.maxlikeFit <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.merMod <- function(mod, se.max = 25, ...) { SEs <- extractSE(mod) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.lmerModLmerTest <- function(mod, se.max = 25, ...) { SEs <- extractSE(mod) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.multinom <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.nlme <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.nls <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.polr <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.rlm <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.survreg <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.vglm <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } checkParms.zeroinfl <- function(mod, se.max = 25, ...) { SEs <- sqrt(diag(vcov(mod))) var.names <- names(SEs) matSE <- data.frame(SEs = SEs, variable = var.names) out.result <- data.frame(variable = rep(NA, 1), max.se = rep(NA, 1), n.high.se = rep(NA, 1)) maxSE <- max(SEs) if(is.nan(maxSE)) { nan.var <- as.character(matSE[is.nan(matSE$SEs), "variable"]) if(length(nan.var) == 1) { nameSE <- nan.var } else {nameSE <- nan.var[1]} } else { nameSE <- as.character(matSE[which(matSE$SEs == maxSE), "variable"]) } rownames(out.result) <- "beta" out.result[, "variable"] <- nameSE out.result[, "max.se"] <- maxSE out.result[, "n.high.se"] <- length(which(matSE$SEs > se.max)) out <- list(model.class = class(mod), se.max = se.max, result = out.result) class(out) <- "checkParms" return(out) } print.checkParms <- function(x, digits = 2, ...) { out.frame <- x$result out.frame$max.se <- round(out.frame$max.se, digits = digits) print(out.frame) }
matching <- function(z, score, replace=FALSE){ n <- length(score) nt <- sum(z) nc <- sum(1-z) ind.t <- c(1:n)[z==1] ind.c <- c(1:n)[z==0] cnts <- rep(0, n) cnts[z==1] = rep(1,nt) scorec <- score[z == 0] scoret <- score[z == 1] if (replace){ dist = abs(outer(scoret,scorec,FUN="-")) mins = apply(dist,1,min) matches = dist - mins matches[matches!=0] = 1 matches = 1 - matches if(sum(matches)>nt){ for(i in c(1:nt)[apply(matches,1,sum)>1]){ matches_i <- c(1:nc)[matches[i,]==1] nmi <- length(matches_i) matches[i,matches_i] <- sample(c(1,rep(0,nmi-1)),nmi,replace=FALSE) } } ind.cm <- matches %*% ind.c cnts[z==0] <- apply(matches,2,sum) match.ind <- c(ind.t, ind.cm) out <- list(match.ind = match.ind, cnts = cnts, matches = matches) } if (!replace){ pairs = rep(NA,n) match.ind <- rep(0, n) tally <- 0 for (i in ind.t) { available <- (1:n)[(z == 0) & (match.ind == 0)] j <- available[order(abs(score[available] - score[i]))[1]] cnts[j] <- 1 match.ind[i] <- j match.ind[j] <- i tally <- tally + 1 pairs[c(i, j)] <- tally } out <- list(match.ind = match.ind, cnts = cnts, pairs = pairs) } return(out) }
IF.lmer = function( full, data, B = 100, REML = TRUE, method = c("marginal", "conditional"), cpus = parallel::detectCores(), lftype = c("abscoef", "tvalue")) { lme4 <- NULL rm(lme4) method = match.arg(method) if (method == "marginal") { if(lftype =="abscoef") { return(IF.lm(full, data, B, lftype ="abscoef", cpus)) }else{ return(IF.lm(full, data, B, lftype ="pvalue", cpus)) } } mf = function(formula, data) lmer(formula, data, REML = REML) lftype = match.arg(lftype) lf = switch(lftype, abscoef = function(res) abs(fixef(res))[-1], tvalue = function(res) abs(summary(res)$coefficients[-1,3])) bs = bootstrap.lmer(B, full, data, REML) sfInit(parallel = TRUE, cpus = cpus) sfExportAll() sfLibrary(lme4) invisiblefence_old(mf, full, data, lf, bs) }
ISRaD.getdata <- function(directory, dataset = "full", extra = FALSE, force_download = FALSE) { dataURL <- "https://github.com/International-Soil-Radiocarbon-Database/ISRaD/raw/master/ISRaD_data_files/database/ISRaD_database_files.zip" if (!dataset %in% c("full", "flux", "interstitial", "incubation", "fraction", "layer")) { stop('Dataset parameter not recognized. Options are c("full", "flux", "interstitial", "incubation", "fraction", "layer")') } if (!"ISRaD_database_files" %in% list.files(directory)) { message("\n ISRaD_database_files not found...") message("\n Downloading database files from: ", dataURL, "\n") download.file(dataURL, file.path(directory, "ISRaD_database_files.zip")) message("\n Unzipping database files to", file.path(directory, "ISRaD_database_files"), "...\n") unzip(file.path(directory, "ISRaD_database_files.zip"), exdir = file.path(directory, "ISRaD_database_files")) } if (force_download) { message("\n Replacing ISRaD_database_files ...") message("\n Downloading database files from: ", dataURL, "\n") download.file(dataURL, file.path(directory, "ISRaD_database_files.zip")) message("\n Removing old database files in ", file.path(directory, "ISRaD_database_files"), "...\n") reviewed <- menu(c("Yes", "No"), title = "Are you sure you want to replace these with the newest version? You can copy them to a new directory now if you want keep them.") print(reviewed) if (reviewed == 1) { for (f in list.files(file.path(directory, "ISRaD_database_files"), full.names = TRUE)) { file.remove(f) } } else { stop("Ok, keeping the old files. You can run again without force_download=T to load.") } message("\n Unzipping database files to ", file.path(directory, "ISRaD_database_files"), "...\n") unzip(file.path(directory, "ISRaD_database_files.zip"), exdir = file.path(directory, "ISRaD_database_files")) } database_files <- list.files(file.path(directory, "ISRaD_database_files"), full.names = TRUE) if (extra) { data_type <- "ISRaD_extra_" } else { data_type <- "ISRaD_data_" } if (dataset != "full") { file <- database_files[intersect(grep(data_type, database_files), grep(dataset, database_files))] v <- gsub(".+_(v.+)\\..+", "\\1", file) data <- read.csv(file) attributes(data)$version <- v message("\n Loading ", file, "\n") message("\n This data is from ISRaD ", attributes(data)$version, "\n") } if (dataset == "full") { file <- database_files[intersect(grep(data_type, database_files), grep(".rda", database_files))] data <- load(file) data <- get(data) message("\n Loading ", file, "\n") message("\n This data is from ISRaD ", attributes(data)$version, "\n") } return(data) }
context("check that BioCro output is summarized correctly") ref_output <- mock_run() ref_met <- read.csv("data/US-Bo1.2004.csv", nrows=7*24) ref_leaf1 <- max(ref_output$Leaf[ref_output$DayofYear == 1]) ref_soil5 <- sum(ref_output$SoilEvaporation[ref_output$DayofYear == 5]) ref_mat <- mean(ref_met$Temp) metpath <- "data/US-Bo1" settings <- PEcAn.settings::read.settings("data/pecan.biocro.xml") settings$database$bety <- do.call( PEcAn.DB::get_postgres_envvars, settings$database$bety) config <- PEcAn.settings::prepare.settings(settings) config$pft$type$genus <- "Salix" config$run$start.date <- as.POSIXct("2004-01-01") config$run$end.date <- as.POSIXct("2004-01-07") config$simulationPeriod$dateofplanting <- as.POSIXct("2004-01-01") config$simulationPeriod$dateofharvest <- as.POSIXct("2004-01-07")
roxy_tag_parse.roxy_tag_md <- function(x) tag_toggle(x) roxy_tag_parse.roxy_tag_noMd <- function(x) tag_toggle(x) markdown_env <- new.env(parent = emptyenv()) markdown_on <- function(value = NULL) { if (!is.null(value)) { assign("markdown-support", isTRUE(value), envir = markdown_env) } return(isTRUE(markdown_env$`markdown-support`)) } markdown_activate <- function(tags) { names <- purrr::map_chr(tags, "tag") has_md <- "md" %in% names has_nomd <- "noMd" %in% names if (has_md && has_nomd) { roxy_tag_warning(tags[[1]], "Both @md and @noMd, no markdown parsing") } md <- roxy_meta_get("markdown", FALSE) if (has_md) md <- TRUE if (has_nomd) md <- FALSE markdown_on(md) }
ISIranks <- function(x, sortbyID = TRUE) { foo <- function(X) data.frame(id = colnames(X), ISIrank = 1:length(colnames(X))) temp <- lapply(X = x, FUN = foo) temp <- lapply(temp, function(X) X[order(X[, 1]), ] ) res <- data.frame(ID = temp[[1]][, 1], avg = NA) for (i in 1:length(temp)) { res <- cbind(res, temp[[i]][, 2]) colnames(res)[ncol(res)] <- paste0("rnkg", i) } res$avg <- rowMeans(res[, 3:ncol(res), drop = FALSE]) if (!sortbyID) res <- res[order(res$avg), ] rownames(res) <- NULL return(res) }
context("LITO") test_that("Error handling", { expect_error(lito(30e3, max_lito = c(445, 450))) expect_error(lmito(30e3, fy.year = "2011-12"), regexp = "fy.year.*Only these values are supported") }) test_that("LITO", { expect_equal(lito(income = c(25e3, 30e3), max_lito = c(400, 500), lito_taper = c(0.015, 0.015), min_bracket = c(37000, 37000)), c(400, 500)) expect_equal(lito(30e3, max_lito = 445, min_bracket = 37000), 445) expect_equal(lito(38000, max_lito = 1000, min_bracket = 37000, lito_taper = 0.5), 500) }) test_that("LMITO", { expect_equal(lmito(income = seq(30e3, 130e3, 10e3), fy.year = "2018-19"), c(200, 290, 530, 530, 530, 530, 530, 380, 230, 80, 0)) expect_equal(lmito(income = seq(30e3, 130e3, 10e3), fy.year = "2019-20", first_offset = 255, thresholds = c(37e3, 48e3, 90e3, 126e3), taper = c(0, 0.075, 0, -0.03)), c(255, 480, 1080, 1080, 1080, 1080, 1080, 780, 480, 180, 0) ) }) test_that("WATR: ALP Budget Reply 2018", { expect_equal(watr(seq(20e3, 120e3, by = 5e3)), c(000, 350, 350, 350, 508, 770, 928, 928, 928, 928, 928, 928, 928, 928, 928, 796, 665, 534, 402, 271, 140), tolerance = 2) })
context("DAISIE_sim_core_constant_rate") test_that("Clean run should be silent", { set.seed(42) n_mainland_species <- 1 sim_time <- 10 clado_rate <- 1.0 ext_rate <- 0.1 carr_cap <- 4 imm_rate <- 1.0 ana_rate <- 1.0 area_pars <- DAISIE::create_area_pars( max_area = 1, current_area = 1, proportional_peak_t = 0, total_island_age = 0, sea_level_amplitude = 0, sea_level_frequency = 0, island_gradient_angle = 0) hyper_pars <- create_hyper_pars(d = 0, x = 0) nonoceanic_pars <- c(0, 0) expect_silent( DAISIE:::DAISIE_sim_core_constant_rate( time = sim_time, mainland_n = n_mainland_species, pars = c(clado_rate, ext_rate, carr_cap, imm_rate, ana_rate), area_pars = area_pars, hyper_pars = hyper_pars, nonoceanic_pars = nonoceanic_pars ) ) }) test_that("A non-oceanic run with non-zero sampling should have native species on the island", { area_pars <- DAISIE::create_area_pars( max_area = 1, current_area = 1, proportional_peak_t = 0, total_island_age = 0, sea_level_amplitude = 0, sea_level_frequency = 0, island_gradient_angle = 0) hyper_pars <- create_hyper_pars(d = 0, x = 0) nonoceanic_sim <- DAISIE:::DAISIE_sim_core_constant_rate( time = 0.4, mainland_n = 1000, pars = c( 2.550687345, 2.683454548, 10.0, 0.00933207, 1.010073119), area_pars = area_pars, hyper_pars = hyper_pars, nonoceanic_pars = c(0.1, 0.9) ) expect_gt(nonoceanic_sim$stt_table[1, 2], 0) expect_gt(nonoceanic_sim$stt_table[1, 3], 0) }) test_that("DAISIE_sim_core output is correct", { time <- 1 mainland_n <- 100 set.seed(5) area_pars <- DAISIE::create_area_pars( max_area = 1, current_area = 1, proportional_peak_t = 0, total_island_age = 0, sea_level_amplitude = 0, sea_level_frequency = 0, island_gradient_angle = 0) nonoceanic_pars <- c(0, 0) hyper_pars <- create_hyper_pars(d = 0, x = 0) sim_core <- DAISIE:::DAISIE_sim_core_constant_rate( time = time, mainland_n = mainland_n, pars = c(2, 2, 20, 0.1, 1), area_pars = area_pars, hyper_pars = hyper_pars, nonoceanic_pars = nonoceanic_pars ) expect_true(is.matrix(sim_core$stt_table)) expect_true(sim_core$stt_table[1, 1] == time) expect_true(sim_core$stt_table[nrow(sim_core$stt_table), 1] == 0) expect_true(is.numeric(sim_core$taxon_list[[1]]$branching_times)) expect_true(is.numeric(sim_core$taxon_list[[1]]$stac)) expect_true(is.numeric(sim_core$taxon_list[[1]]$missing_species)) expect_true(length(sim_core$taxon_list) == 2) expect_true("branching_times" %in% names(sim_core$taxon_list[[1]])) expect_true("stac" %in% names(sim_core$taxon_list[[1]])) expect_true("missing_species" %in% names(sim_core$taxon_list[[1]])) }) test_that("DAISIE_sim_core with land-bridge starting at time = 0 for CS uses the second parameter set at time = 0", { area_pars <- DAISIE::create_area_pars( max_area = 1, current_area = 1, proportional_peak_t = 0, total_island_age = 0, sea_level_amplitude = 0, sea_level_frequency = 0, island_gradient_angle = 0) hyper_pars <- create_hyper_pars(d = 0, x = 0) expect_silent( DAISIE:::DAISIE_sim_core_constant_rate_shift( time = 10, mainland_n = 1, pars = c(1, 1, 10, 0.1, 1, 2, 2, 20, 0.2, 1), shift_times = 10, area_pars = area_pars, hyper_pars = hyper_pars ) ) }) test_that("DAISIE_sim_core fails when pars[4] == 0 && nonoceanic_pars[1] == 0", { area_pars <- DAISIE::create_area_pars( max_area = 1, current_area = 1, proportional_peak_t = 0, total_island_age = 0, sea_level_amplitude = 0, sea_level_frequency = 0, island_gradient_angle = 0) nonoceanic_pars <- c(0, 0) hyper_pars <- create_hyper_pars(d = 0, x = 0) expect_error( DAISIE:::DAISIE_sim_core_constant_rate( time = 1, mainland_n = 100, pars = c(2, 2, 20, 0, 1), area_pars = area_pars, hyper_pars = hyper_pars, nonoceanic_pars = nonoceanic_pars ) ) })
test_that("return_results() works when $ego is `srvyr` object", { x <- make_egor(5, 32) x$ego$sampling_weight <- sample(1:10/10, 5, replace = TRUE) ego_design(x) <- list(weight = "sampling_weight") res <- composition(x, age) res <- res$variables expect_error(egor:::return_results(x, res), NA) }) test_that("return_results() works when $ego is NOT a `srvyr` object", { x <- make_egor(5, 32) res <- composition(x, age) expect_error(egor:::return_results(x, res), NA) })
dtt_feb29_to_28 <- function(x) { if (!vld_s3_class(x, "Date") && !vld_s3_class(x, "POSIXct")) { chkor_vld(vld_s3_class(x, "Date"), vld_s3_class(x, "POSIXct")) } wch <- which(dtt_month(x) == 2L & dtt_day(x) == 29L) dtt_day(x[wch]) <- 28L x }
fuzzy.GK<- function(X, K, m, gamma, rho, max.iteration, threshold, member.init, RandomNumber=0, print.result=0) { if(missing(X)) return("Data Unknown\n") if(missing(K)||K<2||!is.numeric(K)) { K<-2 cat("Default K=2\n") } if(missing(gamma)){ gamma<-0 cat("Default Gamma (0) will be used\n") } if(missing(rho)){ rho<-rep(1,K) cat("Default rho will be used\n") } if(missing(m)||m<1||!is.numeric(m)) { m<-1.5 cat("Fuzzyfier unidentified/error/less than 1. Default Fuzzyfier (1.5) will be used.\n") } if(missing(max.iteration)||!is.numeric(max.iteration)) { max.iteration<-1000 cat("Maximum Iteration 1000 will be used.\n") } if(missing(threshold)||!is.numeric(threshold)) { threshold<-1e-9 cat("Default threshold 1e-9 will be used.\n") } data.X <- as.matrix(X) n <- nrow(data.X) p <- ncol(data.X) if(missing(member.init)) { if (RandomNumber <= 0 || !is.numeric(RandomNumber)) { member.init<-membership(K=K,n=n) } else member.init<-membership(K=K,n=n,RandomNumber = RandomNumber) } else if(!is.membership(member.init)) { member.init<-as.matrix(member.init) if(ncol(member.init)!=K || nrow(member.init)!=n) { cat("Membership not applicable with other parameter") if (RandomNumber <= 0 || !is.numeric(RandomNumber)) { member.init<-membership(K=K,n=n) } else member.init<-membership(K=K,n=n,RandomNumber = RandomNumber) } else member.init<-membership(member.init,K=K,n=n) } else { if(ncol(member(member.init))!=K||nrow(member(member.init))!=n) { cat("Membership not applicable with other parameter") if (RandomNumber <= 0 || !is.numeric(RandomNumber)) { member.init<-membership(K=K,n=n) } else member.init<-membership(K=K,n=n,RandomNumber = RandomNumber) } else member.init<-as.membership(member.init) } U<-member(member.init) V <- matrix(0,K,p) D <- matrix(0,n,K) F <- array(0,c(p,p,K)) iteration<-1 cat("\n") repeat{ cat("\r",paste("iteration:\t",iteration)) U.old <- U D.old <-D V.old<-V V <- t(U ^ m) %*% data.X / colSums(U ^ m) for (k in 1:K) { F[,,k] = as.matrix(0,p,p) F.bantu <- F[,,k] for (i in 1:n) { F.bantu = (U[i,k] ^ m) * (data.X[i,] - V[k,]) %*% t((data.X[i,] - V[k,]))+F.bantu } F.bantu = F.bantu / sum(U[,k] ^ m) F.bantu = (1 - gamma) * F.bantu + (gamma * (det(cov(data.X))) ^ (1 / p)) * diag(p) if (kappa(F.bantu) > 10 ^ 15) { eig <- eigen(F.bantu) eig.values <- eig$values eig.vec <- eig$vectors eig.val.max <- max(eig.values) eig.values[eig.values*( 10 ^ 15 ) < eig.val.max]=eig.val.max/ ( 10 ^ 15) F.bantu = eig.vec %*% diag(eig.values) %*% solve(eig.vec) } detMat= det(F.bantu) for (i in 1:n) { D[i,k] = t(data.X[i,] - V[k,]) %*% ( (rho[k] * (detMat ^ (1 / p)))*ginv(F.bantu,tol=0)) %*% (data.X[i,] -V[k,]) } } for (i in 1:n) { U[i,] <- 1 / (((D[i,]) ^ (1 / (m - 1))) * sum((1 / (D[i,])) ^ (1 /(m - 1)))) } if(any(is.na(U))==T||any(is.infinite(U))==T) { U<-U.old V<-V.old D<-D.old } for (i in 1:n) for (k in 1:K) { if (U[i,k] < 0) U[i,k] = 0 else if (U[i,k] > 1) U[i,k] = 1 } func.obj = sum(U ^ m * D) iteration = iteration + 1 if((max(abs(U.old - U)) <= threshold) || (iteration > max.iteration)) break } rownames(U)<-rownames(X) label<-apply(U, 1, function(x) which.max(x)) result<-new("fuzzycluster", member=U, centroid=V, func.obj=func.obj, distance=D, hard.label=label, call.func=as.character(deparse(match.call())), fuzzyfier=m, method.fuzzy="Gustafson Kessel Clustering" ) cat("\nFinish :)\n") if(print.result==1) show(result) return(result) }
make_window_reg <- function() { parsnip::set_new_model("window_reg") parsnip::set_model_mode("window_reg", "regression") parsnip::set_model_engine("window_reg", mode = "regression", eng = "window_function") parsnip::set_dependency("window_reg", eng = "window_function", pkg = "modeltime") parsnip::set_model_arg( model = "window_reg", eng = "window_function", parsnip = "id", original = "id", func = list(pkg = "modeltime", fun = "id"), has_submodel = FALSE ) parsnip::set_model_arg( model = "window_reg", eng = "window_function", parsnip = "window_size", original = "window_size", func = list(pkg = "dials", fun = "window_size"), has_submodel = FALSE ) parsnip::set_encoding( model = "window_reg", eng = "window_function", mode = "regression", options = list( predictor_indicators = "none", compute_intercept = FALSE, remove_intercept = FALSE, allow_sparse_x = FALSE ) ) parsnip::set_fit( model = "window_reg", eng = "window_function", mode = "regression", value = list( interface = "data.frame", protect = c("x", "y"), func = c(fun = "window_function_fit_impl"), defaults = list() ) ) parsnip::set_pred( model = "window_reg", eng = "window_function", mode = "regression", type = "numeric", value = list( pre = NULL, post = NULL, func = c(fun = "predict"), args = list( object = rlang::expr(object$fit), new_data = rlang::expr(new_data) ) ) ) }
test_that("Caching works", { schedule_1 <- get_retrosheet("schedule", 1995, cache = "testdata") schedule_1a <- get_retrosheet("schedule", 1995, cache = "testdata/") roster_1 <- get_retrosheet("roster", 1995, cache = "testdata") game_1 <- get_retrosheet("game", 2012, cache = "testdata") play_1 <- get_retrosheet("play", 2012, "SFN", cache = "testdata") schedule_2 <- get_retrosheet("schedule", 1995) roster_2 <- get_retrosheet("roster", 1995) game_2 <- get_retrosheet("game", 2012) play_2 <- get_retrosheet("play", 2012, "SFN") expect_equal(schedule_1, schedule_2) expect_equal(schedule_1, schedule_1a) expect_equal(roster_1, roster_2) expect_equal(game_1, game_2) expect_equal(play_1, play_2) expect_message(get_retrosheet("schedule", 1995, cache = "testdata"), "Using local cache: testdata/schedule/1995SKED.ZIP") }) test_that("Schedule downloading works", { schedule <- get_retrosheet(type = "schedule", year = 1995, cache = "testdata") schedule_unnamed <- get_retrosheet("schedule", 1995, cache = "testdata") schedule_splits <- get_retrosheet(type = "schedule", year = 1995, schedSplit = "TimeOfDay") schedule_splits_some_named <- get_retrosheet("schedule", 1995, schedSplit = "TimeOfDay") expect_equal(nrow(schedule), 2016) expect_equal(schedule_splits, schedule_splits_some_named) expect_equal(length(schedule_splits), 3) expect_equal(nrow(schedule_splits[[3]]), 1355) expect_equal(sum(unlist(lapply(schedule_splits, nrow), recursive = TRUE)), nrow(schedule)) expect_equal(schedule, schedule_unnamed) }) test_that("Roster downloading works", { roster <- get_retrosheet("roster", 1995, cache = "testdata") expect_equal(length(roster), 28) expect_equal(nrow(roster[[1]]), 40) expect_equal(nrow(roster$TOR), 39) }) test_that("Game downloading works", { game <- get_retrosheet("game", 2012, cache = "testdata") expect_equal(length(game), 161) expect_equal(nrow(game), 2430) }) test_that("Play downloading works", { play <- get_retrosheet("play", 2012, "SFN", cache = "testdata") expect_equal(length(play), 81) expect_equal(nrow(play[[1]]$play), 68) expect_equal(nrow(play[[1]]$sub), 4) expect_equal(nrow(play[[1]]$start), 18) expect_equal(nrow(play[[1]]$info), 26) }) test_that("Data is cleaned up as expected", { game <- get_retrosheet("game", 2012, cache = "testdata") expect_true("data.frame" %in% class(game)) expect_equal(class(game$Date), "Date") expect_false(any(game$Completion == "", na.rm = TRUE)) expect_false(any(game$Forfeit == "", na.rm = TRUE)) expect_false(any(game$Protest == "", na.rm = TRUE)) schedule <- get_retrosheet(type = "schedule", year = 1995, cache = "testdata") expect_true("data.frame" %in% class(schedule)) expect_equal(class(schedule$Date), "Date") expect_equal(class(schedule$GameNo), "integer") expect_warning( get_retrosheet("schedule", 1995, schedSplit = "TimeOfDay", stringsAsFactors = TRUE, cache = "testdata") ) }) unlink("testdata", recursive = TRUE)
Make_main_bar_legend_t <- function(Main_bar_data, Q, show_num, ratios, customQ, number_angles, ebar, ylabel, ymax, scale_intersections, text_scale, attribute_plots, treatment_var, fill.trt){ bottom_margin <- (-1)*0.65 if(is.null(attribute_plots) == FALSE){ bottom_margin <- (-1)*0.45 } if(length(text_scale) > 1 && length(text_scale) <= 6){ y_axis_title_scale <- text_scale[1] y_axis_tick_label_scale <- text_scale[2] intersection_size_number_scale <- text_scale[6] } else{ y_axis_title_scale <- text_scale y_axis_tick_label_scale <- text_scale intersection_size_number_scale <- text_scale } if(is.null(Q) == F){ inter_data <- Q if(nrow(inter_data) != 0){ inter_data <- inter_data[order(inter_data$x), ] } else{inter_data <- NULL} } else{inter_data <- NULL} if(is.null(ebar) == F){ elem_data <- ebar if(nrow(elem_data) != 0){ elem_data <- elem_data[order(elem_data$x), ] } else{elem_data <- NULL} } else{elem_data <- NULL} Main_bar_data_all = data.frame(x= sort(unique(Main_bar_data$x)), freq = tapply(Main_bar_data$freq, Main_bar_data$x, FUN=sum)) if(is.null(ymax) == T){ ten_perc <- ((max(Main_bar_data$freq)) * 0.1) ymax <- max(Main_bar_data_all$freq) + ten_perc } if(ylabel == "Intersection Size" && scale_intersections != "identity"){ ylabel <- paste("Intersection Size", paste0("( ", scale_intersections, " )")) } if(scale_intersections == "log2"){ Main_bar_data$freq <- round(log2(Main_bar_data$freq), 2) ymax <- log2(ymax) } if(scale_intersections == "log10"){ Main_bar_data$freq <- round(log10(Main_bar_data$freq), 2) ymax <- log10(ymax) } Main_bar_data$x = max(Main_bar_data$x) - Main_bar_data$x +1 Main_bar_data_all$x = max(Main_bar_data_all$x) - Main_bar_data_all$x + 1 if (fill.trt){ Main_bar_data$trt = as.factor(Main_bar_data$trt) Main_bar_plot <- (ggplot(data = Main_bar_data, aes_string(x = "x", y = "freq")) + geom_bar(aes_string(fill = "trt"), stat = "identity", width = 0.6) + scale_fill_manual(values = c(" } else{ Main_bar_plot <- (ggplot(data = Main_bar_data, aes_string(x = "x", y = "freq")) + geom_bar(stat = "identity", width = 0.6)) } Main_bar_plot <- (Main_bar_plot + scale_y_continuous(trans = scale_intersections, position = "right", expand = c(0,0)) + coord_flip(ylim = c(0,ymax*1.15)) + scale_x_continuous(limits = c(0,(max(Main_bar_data$x)+1)), expand = c(0,0), breaks = NULL) + xlab(NULL) + ylab(ylabel) + labs(title = NULL, fill = "Treatment") + guides(fill = guide_legend(title.position="top", title.hjust =0.5)) + theme(axis.line.x = element_line(), panel.background = element_rect(fill = "white"), legend.text = element_text(vjust = 0.5, size = 7*y_axis_title_scale), legend.title = element_text(vjust = 0.5, size = 8.3*y_axis_title_scale), legend.direction = "horizontal", legend.key.size = unit(1, "line"), axis.title.x.top = element_text(vjust = 0, size = 8.3*y_axis_title_scale), axis.text.x.top = element_text(vjust = 0.3, size = 7*y_axis_tick_label_scale, color = "gray0"), plot.margin = unit(c(0.5,0.5,0.5,0.5), "lines"), panel.border = element_blank())) legend <- g_legend(Main_bar_plot) return(legend) }
pbtapply <- function (X, INDEX, FUN = NULL, ..., default = NA, simplify = TRUE, cl = NULL) { FUN <- if (!is.null(FUN)) match.fun(FUN) if (!is.list(INDEX)) INDEX <- list(INDEX) INDEX <- lapply(INDEX, as.factor) nI <- length(INDEX) if (!nI) stop("'INDEX' is of length zero") if (!all(lengths(INDEX) == length(X))) stop("arguments must have same length") namelist <- lapply(INDEX, levels) extent <- lengths(namelist, use.names = FALSE) cumextent <- cumprod(extent) if (cumextent[nI] > .Machine$integer.max) stop("total number of levels >= 2^31") storage.mode(cumextent) <- "integer" ngroup <- cumextent[nI] group <- as.integer(INDEX[[1L]]) if (nI > 1L) for (i in 2L:nI) group <- group + cumextent[i - 1L] * (as.integer(INDEX[[i]]) - 1L) if (is.null(FUN)) return(group) levels(group) <- as.character(seq_len(ngroup)) class(group) <- "factor" ans <- split(X, group) names(ans) <- NULL index <- as.logical(lengths(ans)) ans <- pblapply(X = ans[index], FUN = FUN, ..., cl = cl) ansmat <- array(if (simplify && all(lengths(ans) == 1L)) { ans <- unlist(ans, recursive = FALSE, use.names = FALSE) if (!is.null(ans) && is.na(default) && is.atomic(ans)) vector(typeof(ans)) else default } else vector("list", prod(extent)), dim = extent, dimnames = namelist) if (length(ans)) { ansmat[index] <- ans } ansmat }
plot_cont<-function(sim = temp.interpolated, sim.start = "2017-06-06", sim.end = "2017-06-15", legend.title = "T \u00B0C", min.depth = 0,max.depth = 13,by.value = 0.5, nlevels = 20, plot.save = TRUE, file_name = "Contour_temp.png", height = 5, width = 8, ppi = 150){ date<-seq.Date(from = as.Date(sim.start,format="%Y-%m-%d"), to = as.Date(sim.end,format="%Y-%m-%d"), by="day") index<-match(seq(lubridate::year(date)[1],lubridate::year(date)[length(date)],by=1),lubridate::year(date)) color.palette <- function(n) hcl.colors(n,"RdBu",rev=TRUE) if(plot.save) { png(filename = file_name,height = height*ppi,width = width*ppi) } filled.contour(x=seq(1,ncol(sim),by=1), y=seq(min.depth,max.depth,by=by.value), z=t(sim), ylim = c(max.depth,min.depth), zlim = c(min(sim,na.rm=TRUE),max(sim,na.rm = TRUE)), nlevels = nlevels, color.palette = function(n)hcl.colors(n,"RdBu",rev=TRUE), plot.axes = { axis(3,mgp=c(1,0.25,0),tcl=-0.1, cex.axis=1.8, lwd=0.5, at=seq(1,ncol(sim),by=1)[c(1,index)], labels=lubridate::year(date[c(1,index)])) axis(2,mgp=c(1,0.4,0),tcl=-0.2, cex.axis=1.8, cex.lab=0.8,lwd=0.5) mtext("Depth (m)",side=2,line=1.3,las=0,cex = 1.8)}, key.title = { par(cex.main=1.3); title(main=legend.title) }) if(plot.save){ dev.off() } }
aboot <- function(x, strata = NULL, tree = "upgma", distance = "nei.dist", sample = 100, cutoff = 0, showtree = TRUE, missing = "mean", mcutoff = 0, quiet = FALSE, root = NULL, ...){ if (!is.null(strata)){ if (!is.genind(x)){ warning("Sorry, the strata argument can only be used with genind objects.") } else { x <- genind2genpop(x, pop = strata, quiet = TRUE, process.other = FALSE) } } if (is.matrix(x)){ if (is.null(rownames(x))) rownames(x) <- .genlab("", nrow(x)) if (is.null(colnames(x))) colnames(x) <- .genlab("L", ncol(x)) xboot <- x } else if (!is(x, "genlight") && x@type == "PA") { xboot <- x@tab colnames(xboot) <- locNames(x) rownames(xboot) <- if (is.genpop(x)) popNames(x) else indNames(x) } else if (is(x, "gen")) { if (is.genind(x)) { if (missing %in% c("loci", "geno", "ignore")){ x <- missingno(x, missing, quiet = quiet, cutoff = mcutoff) missing <- "asis" } } distname <- as.character(substitute(distance)) if (length(distname) == 1 && distname %in% "diss.dist"){ if (missing == "mean"){ missing <- "asis" warning("Sorry, missing = 'mean' is incompatible with diss.dist(), setting missing to 'asis'.", call. = FALSE) } xboot <- new("bootgen", x, na = missing, freq = FALSE) } else { xboot <- new("bootgen", x, na = missing, freq = TRUE) } } else if (is(x, "genlight")){ xboot <- x my_dists <- c("diss.dist", "nei.dist", "prevosti.dist", "edwards.dist", "reynolds.dist", "rogers.dist", "provesti.dist") wrong_dist <- any(as.character(substitute(distance)) %in% my_dists) if (wrong_dist){ warning("Sorry, distance from genlight objects can only be calculated by bitwise.dist.") distance <- bitwise.dist } } else { stop("Sorry, x must be a genind, genpop, or genlight object.") } treefunk <- tree_generator(tree, distance, ...) xtree <- treefunk(xboot) if (any(xtree$edge.len < 0)){ xtree <- fix_negative_branch(xtree) warning(negative_branch_warning()) } treechar <- paste(substitute(tree), collapse = "") if (is.null(root)) { root <- ape::is.ultrametric(xtree) } nodelabs <- boot.phylo(xtree, xboot, treefunk, B = sample, rooted = root, quiet = quiet) nodelabs <- (nodelabs/sample)*100 nodelabs <- ifelse(nodelabs >= cutoff, nodelabs, NA) if (!is.genpop(x)){ if (is.matrix(x)){ xtree$tip.label <- rownames(x) } else if (!is.null(indNames(x))) { xtree$tip.label <- indNames(x) } } else { xtree$tip.label <- popNames(x) } xtree$node.label <- nodelabs if (showtree) { poppr.plot.phylo(xtree, treechar, root) } return(xtree) } diversity_stats <- function(z, H = TRUE, G = TRUE, lambda = TRUE, E5 = TRUE, ...){ E.5 <- function(x){ H <- vegan::diversity(x) G <- vegan::diversity(x, "inv") (G - 1)/(exp(H) - 1) } BASIC_FUNS <- list(H = vegan::diversity, G = function(x) vegan::diversity(x, "inv"), lambda = function(x) vegan::diversity(x, "simp"), E.5 = E.5) FUNS <- c(BASIC_FUNS, list(...)) STATS <- names(FUNS) STATS <- STATS[c(H, G, lambda, E5, rep(TRUE, length(list(...))))] boot <- is.null(dim(z)) nrows <- ifelse(boot, 1, nrow(z)) if (boot){ dims <- list(NULL, Index = STATS) } else { dims <- list(Pop = rownames(z), Index = STATS) } mat <- matrix(nrow = nrows, ncol = length(STATS), dimnames = dims) for (i in STATS){ if (i == "E.5" && H && G){ mat[, i] <- (mat[, "G"] - 1)/(exp(mat[, "H"]) - 1) } else { mat[, i] <- FUNS[[i]](z) } } return(drop(mat)) } diversity_boot <- function(tab, n, n.boot = 1L, n.rare = NULL, H = TRUE, G = TRUE, lambda = TRUE, E5 = TRUE, ...){ if (!is.null(n.rare)){ FUN <- rare_sim_boot mle <- n.rare } else { FUN <- multinom_boot mle <- n.boot } res <- apply(tab, 1, boot_per_pop, rg = FUN, n = n, mle = mle, H = H, G = G, lambda = lambda, E5 = E5, ...) return(res) } diversity_ci <- function(tab, n = 1000, n.boot = 1L, ci = 95, total = TRUE, rarefy = FALSE, n.rare = 10, plot = TRUE, raw = TRUE, center = TRUE, ...){ allowed_objects <- c("genind", "genclone", "snpclone") if (!is.matrix(tab) & inherits(tab, allowed_objects)){ tab <- mlg.table(tab, total = total, plot = FALSE) } rareval <- NULL if (rarefy){ rareval <- max(min(rowSums(tab)), n.rare) msg <- paste("\nSamples for rarefaction:", rareval) message(msg) } else { if (center == TRUE){ msg <- paste("\nConfidence Intervals have been centered around observed", "statistic.\nPlease see ?diversity_ci for details.\n") message(msg) } else if (n.boot > 2){ msg <- paste("\nTake caution in interpreting the results.\nWhile sampling", n.boot, "samples will produce a confidence interval,\nit", "might be unclear what the correct interpretation should be.\n") message(msg) } } res <- diversity_boot(tab, n, n.rare = rareval, n.boot = n.boot, ...) orig <- get_boot_stats(res) statnames <- colnames(orig) CI <- get_all_ci(res, ci = ci, index_names = statnames, center = if (rarefy) FALSE else center, btype = if (rarefy) "percent" else "normal", bci = if (rarefy) FALSE else TRUE) est <- get_boot_se(res, "mean") out <- list(obs = orig, est = est, CI = CI, boot = res) if (plot) { boot_plot(res = res, orig = orig, CI = if (rarefy) NULL else CI ) } out <- if (raw) out else do.call("pretty_info", out) return(out) }
all_params_dtrng <- function(station_code, dtrng, param = NULL, trace = TRUE, Max = NULL){ tictoc::tic() serv <- "http://cdmo.baruch.sc.edu/webservices2/requests.cfc?wsdl" tz <- time_vec(station_code = station_code, tz_only = TRUE) obsmin <- as.POSIXct(dtrng[1], format = '%m/%d/%Y', tz = tz) end_obs <- obsmin + 1 out_all <- NULL if(trace) cat('Importing...\n\n') while(end_obs > obsmin){ web_args = list( method = 'exportAllParamsDateRangeXMLNew', station_code = station_code, mindate = dtrng[1], maxdate = dtrng[2] ) if(!is.null(param)) web_args$param <- param dat <- try({ httr::GET( serv, query = web_args ) }, silent = TRUE) if('try-error' %in% class(dat)) stop('Error retrieving data, check metadata for station availability.') out <- parser(dat) if(nrow(out) == 0) stop('Empty data frame, check metadata for station availability') parm <- substring(station_code, 6) nms <- param_names(parm)[[parm]] out[, 'datetimestamp'] <- time_vec(out[, 'datetimestamp'], station_code) out <- out[order(out$datetimestamp), ] out <- data.frame( datetimestamp = out$datetimestamp, out[, tolower(names(out)) %in% nms, drop = FALSE], row.names = 1:nrow(out) ) names(out) <- tolower(names(out)) end_obs <- min(out$datetimestamp) max_obs <- max(out$datetimestamp) if(trace) cat('\t', as.character(as.Date(max_obs) - 1), 'to', as.character(as.Date(end_obs)), '\n') if(!is.null(out_all)){ if(end_obs == min(out_all$datetimestamp)) break } out_all <- rbind(out_all, out) out_all <- unique(out_all[order(out_all$datetimestamp), ]) if(!is.null(Max)){ if(nrow(out_all) >= Max){ out_all <- out_all[(1 + nrow(out_all) - Max):nrow(out_all), ] break } } dtrng[2] <- as.character(as.Date(end_obs)) dtrng[2] <- paste0(substr(dtrng[2], 6, nchar(dtrng[2])), '/', substr(dtrng[2], 1, 4)) dtrng[2] <- gsub('-', '/', dtrng[2]) } parms <- nms[!grepl('^f_', nms)] out <- out_all out[, names(out) %in% parms] <- apply(out[, names(out) %in% parms, drop = FALSE], 2, as.numeric) row.names(out) <- 1:nrow(out) out <- swmpr(out, station_code) if(trace){ cat('\n') cat(nrow(out), 'records, ') tictoc::toc() } return(out) }
library(dplyr) library(reshape2) load("ce.RData") test_that("compute_U", { })
context("Test for lets.addvar") data(PAM) data(temp) tempstack <- stack(temp, temp) test_that("lets.addvar works fine", { PAM_temp_mean <- lets.addvar(PAM, temp) expect_true(is.matrix(PAM_temp_mean)) expect_true(ncol(as.matrix(PAM_temp_mean)) == (ncol(PAM[[1]]) + 1)) }) test_that("lets.addvar works fine, different fun", { PAM_temp_mean <- lets.addvar(PAM, temp, fun = sd) expect_true(is.matrix(PAM_temp_mean)) expect_true(ncol(as.matrix(PAM_temp_mean)) == (ncol(PAM[[1]]) + 1)) }) test_that("lets.addvar works fine, onlyvar = TRUE", { PAM_temp_mean <- lets.addvar(PAM, temp, onlyvar = TRUE) expect_true(is.matrix(PAM_temp_mean)) expect_true(ncol(as.matrix(PAM_temp_mean)) == 1) }) test_that("lets.addvar works fine, multiple rasters", { PAM_temp_mean <- lets.addvar(PAM, tempstack) expect_true(is.matrix(PAM_temp_mean)) expect_true(ncol(as.matrix(PAM_temp_mean)) == (ncol(PAM[[1]]) + 2)) })
jobAdd <- function(name, status = "", progressUnits = 0L, actions = NULL, running = FALSE, autoRemove = TRUE, show = TRUE) { callFun("addJob", name = name, status = status, progressUnits = progressUnits, actions = actions, running = running, autoRemove = autoRemove, show = show) } jobRemove <- function(job) { callFun("removeJob", job = job) } jobSetProgress <- function(job, units) { callFun("setJobProgress", job = job, units = units) } jobAddProgress <- function(job, units) { callFun("addJobProgress", job = job, units = units) } jobSetStatus <- function(job, status) { callFun("setJobStatus", job = job, status = status) } jobSetState <- function(job, state = c("idle", "running", "succeeded", "cancelled", "failed")) { callFun("setJobState", job = job, state = state) } jobAddOutput <- function(job, output, error = FALSE) { callFun("addJobOutput", job = job, output = output, error = error) } jobRunScript <- function(path, name = NULL, encoding = "unknown", workingDir = NULL, importEnv = FALSE, exportEnv = "") { path <- normalizePath(path, winslash = "/", mustWork = TRUE) callFun("runScriptJob", path = path, name = name, encoding = encoding, workingDir = workingDir, importEnv = importEnv, exportEnv = exportEnv) }
mlexp <- function(x, na.rm = FALSE, ...) { if (na.rm) x <- x[!is.na(x)] else assertthat::assert_that(!anyNA(x)) ml_input_checker(x) assertthat::assert_that(min(x) >= 0) rate <- 1 / mean(x) object <- c(rate = rate) class(object) <- "univariateML" attr(object, "model") <- "Exponential" attr(object, "density") <- "stats::dexp" attr(object, "logLik") <- length(x) * (log(rate) - 1) attr(object, "support") <- c(0, Inf) attr(object, "n") <- length(x) attr(object, "call") <- match.call() object }
FindContrasts <- function(x, y, tree, method = "gls", denominator = 1, cores = 1, cl = NULL) { assertthat::assert_that(is.data.frame(x), is.data.frame(y), class(tree) %in% c("phylo", "multiPhylo"), method %in% c("pic", "gls"), is.null(denominator) | is.numeric(denominator), is.null(denominator) | all(denominator > 0)) tmp_x <- x[, 1] names(tmp_x) <- rownames(x) if (method == "pic") { contrast_x <- ape::pic(x = tmp_x, phy = tree) if (!is.null(denominator)) y <- sweep(y, MARGIN = 1, denominator, `/`) message("Computing contrasts") if (.Platform$OS.type == "windows"){ models <- parallel::parLapply(cl = cl, X = y, fun = function(tmpy, tree, cx, nx){ names(tmpy) <- nx cy <- ape::pic(tmpy, phy = tree) mod <- stats::lm(cy ~ cx + 0) return(summary(mod)$coefficients[1, 4])}, tree = tree, cx = contrast_x, nx = rownames(x)) } else { models <- pbmcapply::pbmclapply(y, function(tmpy, tree, cx, nx){ names(tmpy) <- nx cy <- ape::pic(tmpy, phy = tree) mod <- stats::lm(cy ~ cx - 1) return(summary(mod)$coefficients[1, 4])}, tree = tree, cx = contrast_x, nx = rownames(x), mc.preschedule = TRUE, mc.cores = cores) } } else if (method == "gls") { if (!is.null(denominator)) { y <- sweep(y, MARGIN = 1, denominator, `/`) * 10^6 } tmpfun <- function(tmpy, tmpx, nx, tree){ if(any(tmpy == 0)){ model <- nlme::gls(tmp_y ~ tmp_x, data = as.data.frame(cbind(tmpx, tmpy)), correlation = ape::corPagel(value = 1, phy = tree), control = list(singular.ok = TRUE)) return(as.numeric(summary(model)$coefficients[2])) } else { return(1) }} if (.Platform$OS.type == "windows"){ models <- parallel::parLapply(cl = cl, X = y, fun = tmpfun, tmpx = tmp_x, nx = rownames(x), tree = tree) } else { models <- pbmcapply::pbmclapply(X = y, FUN = tmpfun, tmpx = tmp_x, nx = rownames(x), tree = tree, mc.preschedule = TRUE, mc.cores = cores) } } else{ stop("'", method,"' is not a recognized method in CALANGO::FindContrasts()") } models <- unlist(models) return(sort(models, decreasing = FALSE)) }
knitr::opts_chunk$set(collapse = TRUE, comment = " library("mlrCPO") set.seed(123) base = knitr::opts_knit$get("output.dir") file = sys.frame(min(grep("^knitr::knit$|^knit$", sapply(sys.calls(), function(x) as.character(x)[1]))))$input file = basename(file) path = file.path(base, file) rpath = gsub("\\.[^.]*$", ".R", path) knitr::knit_hooks$set(document = function(x) { if (file_test("-f", rpath)) { lines = readLines(rpath) lines = gsub(" *(\n|$)", "\\1", lines) cat(lines, file = rpath, sep = "\n", append = FALSE) } x }) fullfile = file allfiles = list.files(path = base, pattern = ".*\\.Rmd$") stopifnot(file %in% allfiles) fileinfolist = list() for (cf in allfiles) { ismain = TRUE if (grepl("^z_", cf)) { infoslot = gsub("^z_", "", cf) infoslot = gsub("_terse\\.Rmd$", "", infoslot) subslot = "compact" } else { infoslot = gsub("^a_", "", cf) infoslot = gsub("\\.Rmd$", "", infoslot) subslot = "main" } content = scan(paste(base, cf, sep = "/"), what = "character", quiet = TRUE) pos = min(c(which(content == "title:"), Inf)) if (is.infinite(pos)) { stop(sprintf("parsing error: %s", cf)) } infolist = list(title = content[pos + 1], url = cf, iscurrent = cf == file) applist = list(infolist) names(applist) = subslot fileinfolist[[infoslot]] = c(fileinfolist[[infoslot]], applist) } linkify = function(info, title) { if (info$iscurrent) { title } else { sprintf("[%s](%s)", title, gsub("\\.Rmd$", ".html", info$url)) } } for (idx in seq_along(fileinfolist)) { content = fileinfolist[[sort(names(fileinfolist))[idx]]] if (!is.null(content$compact)) { if (paste(sub("[0-9]\\. ", "", content$main$title), "(No Output)") != sub("^z ", "", content$compact$title)) { stop(sprintf("File %s and its compact version %s have incompatible titles\nThe compact version must be paste(main_title, \"(No Output)\"). Is: '%s', expected: '%s'", content$main$url, content$compact$url, content$compact$title, paste(content$main$title, "(No Output)"))) } line = sprintf("%s (%s)", linkify(content$main, content$main$title), linkify(content$compact, "compact version")) } else { line = linkify(content$main, content$main$title) } cat(sprintf("%s. %s\n", idx, line)) if (content$main$iscurrent || content$compact$iscurrent) { fullfile = content$main$url } } fullpath = file.path(base, fullfile) printToc = function(print.level = 3) { owncontent = readLines(fullpath) tripletic = grepl("^```", owncontent) owncontent = owncontent[cumsum(tripletic) %% 2 == 0] headlines = grep("^ headlevels = nchar(gsub(" .*", "", headlines)) headlines = gsub("^[ links = gsub("[^-a-z. ]", "", tolower(headlines)) links = gsub(" +", "-", links) links = gsub("-$", "", links) if (!sum(headlevels <= print.level)) { return(invisible(NULL)) } cat("<h", headlevels[1], ">Table of Contents</h", headlevels[1], ">\n<div id=\"TOC\">\n", sep = "") lastlevel = headlevels[1] - 1 for (idx in seq_along(headlines)) { line = headlines[idx] level = headlevels[idx] link = links[idx] if (level > print.level) { next } if (level < headlevels[1]) { stop("First headline level must be the lowest one used, but '", line, "' is lower.") } lvldiff = level - lastlevel if (lvldiff > 1) { stop("Cannot jump headline levels. Error on: ", line) } if (lvldiff > 0) { cat("<ul>") } else { cat("</li>\n") } if (lvldiff < 0) { for (l in seq_len(-lvldiff)) { cat("</ul></li>") } } cat("<li><a href=\" lastlevel = level } lvldiff = lastlevel - headlevels[1] cat("</li></ul>\n</div>\n") } options(width = 80) replaceprint = function(ofunc) { force(ofunc) function(x, ...) { cu = capture.output({ret = ofunc(x, ...)}) cu = grep("time: [-+e0-9.]{1,6}", cu, value = TRUE, invert = TRUE) cat(paste(cu, collapse = "\n")) if (!grepl("\n$", tail(cu, 1))) { cat("\n") } ret } } for (pfunc in grep("print\\.", ls(asNamespace("mlr")), value = TRUE)) { ofunc = get(pfunc, asNamespace("mlr")) assign(pfunc, replaceprint(ofunc)) } printToc(4) !cpoPca() xmpSample = makeCPORetrafoless("exsample", pSS(fraction: numeric[0, 1]), dataformat = "df.all", cpo.trafo = function(data, target, fraction) { newsize = round(nrow(data) * fraction) row.indices = sample(nrow(data), newsize) data[row.indices, ] }) cpo = xmpSample(0.01) iris %>>% cpo xmpSampleHeadless = makeCPORetrafoless("exsample", pSS(fraction: numeric[0, 1]), dataformat = "df.all", cpo.trafo = { newsize = round(nrow(data) * fraction) row.indices = sample(nrow(data), newsize) data[row.indices, ] }) xmpFilterVar = makeCPO("exemplvar", pSS(n.col: integer[0, ]), dataformat = "numeric", cpo.train = function(data, target, n.col) { cat("*** cpo.train ***\n") sapply(data, var, na.rm = TRUE) }, cpo.retrafo = function(data, control, n.col) { cat("*** cpo.retrafo ***\n") cat("Control:\n") print(control) cat("\n") greatest = order(-control) data[greatest[seq_len(n.col)]] }) cpo = xmpFilterVar(2) (trafd = head(iris) %>>% cpo) head(iris %>>% cpo) head(iris %>>% retrafo(trafd)) getCPOTrainedState(retrafo(trafd)) xmpFilterVarFunc = makeCPO("exemplvar.func", pSS(n.col: integer[0, ]), dataformat = "numeric", cpo.retrafo = NULL, cpo.train = function(data, target, n.col) { cat("*** cpo.train ***\n") ctrl = sapply(data, var, na.rm = TRUE) function(x) { cat("*** cpo.retrafo ***\n") cat("Control:\n") print(ctrl) cat("\ndata:\n") print(data) cat("target:\n") print(target) greatest = order(-ctrl) x[greatest[seq_len(n.col)]] } }) cpo = xmpFilterVarFunc(2) (trafd = head(iris) %>>% cpo) getCPOTrainedState(retrafo(trafd)) xmpAsNum = makeCPO("asnum", cpo.train = NULL, cpo.retrafo = function(data) { data.frame(lapply(data, as.numeric)) }) cpo = xmpAsNum() (trafd = head(iris) %>>% cpo) getCPOTrainedState(retrafo(trafd)) xmpPca = makeCPOExtendedTrafo("simple.pca", pSS(n.col: integer[0, ]), dataformat = "numeric", cpo.trafo = function(data, target, n.col) { cat("*** cpo.trafo ***\n") pcr = prcomp(as.matrix(data), center = FALSE, scale. = FALSE, rank = n.col) control = pcr$rotation pcr$x }, cpo.retrafo = function(data, control, n.col) { cat("*** cpo.retrafo ***\n") as.matrix(data) %*% control }) cpo = xmpPca(2) (trafd = head(iris) %>>% cpo) tail(iris) %>>% retrafo(trafd) getCPOTrainedState(retrafo(trafd)) xmpPcaFunc = makeCPOExtendedTrafo("simple.pca.func", pSS(n.col: integer[0, ]), dataformat = "numeric", cpo.retrafo = NULL, cpo.trafo = function(data, target, n.col) { cat("*** cpo.trafo ***\n") pcr = prcomp(as.matrix(data), center = FALSE, scale. = FALSE, rank = n.col) cpo.retrafo = function(data) { cat("*** cpo.retrafo ***\n") as.matrix(data) %*% pcr$rotation } pcr$x }) cpo = xmpPcaFunc(2) (trafd = head(iris) %>>% cpo) getCPOTrainedState(retrafo(trafd))$pcr$x xmpMetaLearn = makeCPOTargetOp("xmp.meta", pSS(lrn: untyped), dataformat = "task", properties.target = c("classif", "twoclass"), predict.type.map = c(response = "response", prob = "prob"), cpo.train = function(data, target, lrn) { cat("*** cpo.train ***\n") lrn = setPredictType(lrn, "prob") train(lrn, data) }, cpo.retrafo = function(data, target, control, lrn) { cat("*** cpo.retrafo ***\n") prediction = predict(control, target) tname = getTaskTargetNames(target) tdata = getTaskData(target) tdata[[tname]] = factor(prediction$data$response == prediction$data$truth) makeClassifTask(getTaskId(target), tdata, tname, positive = "TRUE", fixup.data = "no", check.data = FALSE) }, cpo.train.invert = function(data, control, lrn) { cat("*** cpo.train.invert ***\n") predict(control, newdata = data)$data }, cpo.invert = function(target, control.invert, predict.type, lrn) { cat("*** cpo.invert ***\n") if (predict.type == "prob") { outmat = as.matrix(control.invert[grep("^prob\\.", names(control.invert))]) revmat = outmat[, c(2, 1)] outmat * target[, "prob.TRUE", drop = TRUE] + revmat * target[, "prob.FALSE", drop = TRUE] } else { stopifnot(levels(target) == c("FALSE", "TRUE")) numeric.prediction = as.numeric(control.invert$response) numeric.res = ifelse(target == "TRUE", numeric.prediction, 3 - numeric.prediction) factor(levels(control.invert$response)[numeric.res], levels(control.invert$response)) } }) cpo = xmpMetaLearn(makeLearner("classif.logreg")) set.seed(12) split = makeResampleInstance(hout, pid.task) train.task = subsetTask(pid.task, split$train.inds[[1]]) test.task = subsetTask(pid.task, split$predict.inds[[1]]) trafd = train.task %>>% cpo attributes(trafd) head(getTaskData(trafd)) model = train(makeLearner("classif.logreg", predict.type = "prob"), train.task) head(predict(model, train.task)$data[c("truth", "response")]) retr = test.task %>>% retrafo(trafd) attributes(retr) retr.df = getTaskData(test.task, target.extra = TRUE)$data %>>% retrafo(trafd) names(attributes(retr.df)) ext.model = train("classif.svm", trafd) ext.pred = predict(ext.model, retr) newpred = invert(inverter(retr), ext.pred) performance(newpred) cpo.learner = cpo %>>% makeLearner("classif.svm") cpo.model = train(cpo.learner, train.task) lrnpred = predict(cpo.model, test.task) performance(lrnpred) xmpMetaLearn = makeCPOTargetOp("xmp.meta.fnc", pSS(lrn: untyped), dataformat = "task", properties.target = c("classif", "twoclass"), predict.type.map = c(response = "response", prob = "prob"), cpo.retrafo = NULL, cpo.train.invert = NULL, cpo.invert = NULL, cpo.train = function(data, target, lrn) { cat("*** cpo.train ***\n") lrn = setPredictType(lrn, "prob") model = train(lrn, data) cpo.retrafo = function(data, target) { cat("*** cpo.retrafo ***\n") prediction = predict(model, target) tname = getTaskTargetNames(target) tdata = getTaskData(target) tdata[[tname]] = factor(prediction$data$response == prediction$data$truth) makeClassifTask(getTaskId(target), tdata, tname, positive = "TRUE", fixup.data = "no", check.data = FALSE) } cpo.train.invert = function(data) { cat("*** cpo.train.invert ***\n") prediction = predict(model, newdata = data)$data function(target, predict.type) { cat("*** cpo.invert ***\n") if (predict.type == "prob") { outmat = as.matrix(prediction[grep("^prob\\.", names(prediction))]) revmat = outmat[, c(2, 1)] outmat * target[, "prob.TRUE", drop = TRUE] + revmat * target[, "prob.FALSE", drop = TRUE] } else { stopifnot(levels(target) == c("FALSE", "TRUE")) numeric.prediction = as.numeric(prediction$response) numeric.res = ifelse(target == "TRUE", numeric.prediction, 3 - numeric.prediction) factor(levels(prediction$response)[numeric.res], levels(prediction$response)) } } } }) xmpRegCenter = makeCPOTargetOp("xmp.center", constant.invert = TRUE, cpo.train.invert = NULL, dataformat = "df.feature", properties.target = "regr", cpo.train = function(data, target) { mean(target[[1]]) }, cpo.retrafo = function(data, target, control) { target[[1]] = target[[1]] - control target }, cpo.invert = function(target, predict.type, control.invert) { target + control.invert }) cpo = xmpRegCenter() train.task = subsetTask(bh.task, 150:155) getTaskTargets(train.task) predict.task = subsetTask(bh.task, 156:160) getTaskTargets(predict.task) trafd = train.task %>>% cpo getTaskTargets(trafd) getTaskTargets(predict.task) retr = retrafo(trafd) predict.traf = predict.task %>>% retr getTaskTargets(predict.traf) model = train("regr.lm", trafd) pred = predict(model, predict.traf) pred invert(inverter(predict.traf), pred) model = train("regr.lm", train.task) predict(model, predict.task) getCPOTrainedCapability(retr) invert(retr, pred) xmpLogRegr = makeCPOTargetOp("log.regr", constant.invert = TRUE, properties.target = "regr", cpo.train = NULL, cpo.train.invert = NULL, cpo.retrafo = function(data, target) { target[[1]] = log(target[[1]]) target }, cpo.invert = function(target, predict.type) { exp(target) }) cpo = xmpLogRegr() trafd = train.task %>>% cpo getTaskTargets(trafd) retr = retrafo(trafd) predict.traf = predict.task %>>% retr getTaskTargets(predict.traf) model = train("regr.lm", trafd) pred = predict(model, predict.traf) pred invert(inverter(predict.traf), pred) invert(retr, pred) xmpSynCPO = makeCPOExtendedTargetOp("syn.cpo", properties.target = "regr", cpo.trafo = function(data, target) { cat("*** cpo.trafo ***\n") target[[1]] = target[[1]] + 1 control = "control created in cpo.trafo" control.invert = "control.invert created in cpo.trafo" target }, cpo.retrafo = function(data, target, control) { cat("*** cpo.retrafo ***", "control is:", deparse(control), sep = "\n") control.invert = "control.invert created in cpo.retrafo" if (!is.null(target)) { cat("target is non-NULL, performing transformation\n") target[[1]] = target[[1]] - 1 return(target) } else { cat("target is NULL, no transformation (but control.invert was created)\n") return(NULL) } }, cpo.invert = function(target, control.invert, predict.type) { cat("*** invert ***", "control.invert is:", deparse(control.invert), sep = "\n") target }) cpo = xmpSynCPO() trafd = train.task %>>% cpo getTaskTargets(trafd) retrafd = train.task %>>% retrafo(trafd) getTaskTargets(retrafd) retrafd = getTaskData(train.task, target.extra = TRUE)$data %>>% retrafo(trafd) inv = invert(inverter(trafd), 1:6) inv = invert(inverter(retrafd), 1:6) oscipen = options("scipen") options(scipen = 10) learners = list( logreg = makeLearner("classif.logreg"), svm = makeLearner("classif.svm"), cpo = xmpMetaLearn(makeLearner("classif.logreg")) %>>% makeLearner("classif.svm") ) configureMlr(show.info = FALSE, show.learner.output = FALSE) perfs = sapply(learners, function(lrn) { unname(replicate(20, resample(lrn, pid.task, cv10)$aggr)) }) configureMlr() boxplot(perfs) pvals = c( logreg = t.test(perfs[, "logreg"], perfs[, "cpo"], "greater")$p.value, svm = t.test(perfs[, "svm"], perfs[, "cpo"], "greater")$p.value ) round(p.adjust(pvals), 3) options(scipen = oscipen$scipen)
ExampleFX =function(JSON = FALSE) { requireNamespace("Trading") tr1 = Trading::FxForward(external_id = "ext_1",Notional=10000,MtM=30,ccyPair="EUR/USD",Si=0,Ei=10,BuySell='Buy') tr2 = Trading::FxForward(external_id = "ext_2",Notional=20000,MtM=-20,ccyPair="EUR/USD",Si=0,Ei=4,BuySell='Sell') tr3 = Trading::FxForward(external_id = "ext_3",Notional=5000,MtM=50,ccyPair="GBP/USD",Si=1,Ei=11,BuySell='Sell') trades= list(tr1,tr2,tr3) csas = list() colls = list() tree = runExampleCalcs(trades, csas, colls) if(JSON==TRUE) { requireNamespace("jsonlite") return(jsonlite::toJSON(as.list(tree[[1]]))) } else { return(tree[[1]])} }
morphomapTri2sects<-function(cp,mp){ mat<-matrix(NA,ncol=3,nrow=dim(cp)[1]*2) totsec<-rbind(cp,mp) extpoi<-1:dim(cp)[1] intpoi<-(dim(mp)[1]+1):dim(totsec)[1] counter<-0 for(i in 1:length(extpoi)){ if(i!=length(extpoi)){ mati<-c(extpoi[i],intpoi[i],extpoi[i+1]) mati2<-c(intpoi[i],intpoi[i+1],extpoi[i+1]) } if(i==length(extpoi)){ mati<-c(extpoi[i],intpoi[i],extpoi[1]) mati2<-c(intpoi[i],intpoi[1],extpoi[1]) } counter<-counter+1 mat[counter,]<-mati counter<-counter+1 mat[counter,]<-mati2 } out<-list("matrix"=totsec,"tri"=mat) return(out) }
"jameson_buchanan" <- as.formula(" LOG10N~(flora==1)*((t<=lag_1)*LOG10N0_1+ ((t>lag_1)&(t<tmax))*(LOG10N0_1 + mumax_1/log(10)*(t-lag_1))+ (t>=tmax)*(LOG10N0_1 +mumax_1/log(10)*(tmax-lag_1)))+ (flora==2)*((t<=lag_2)*LOG10N0_2+ ((t>lag_2)&(t<tmax))*(LOG10N0_2 + mumax_2/log(10)*(t-lag_2))+ (t>=tmax)*(LOG10N0_2 +mumax_2/log(10)*(tmax-lag_2)))") "jameson_baranyi" <- as.formula(" LOG10N ~ (flora==1)* ( (t<=tmax)*(LOG10N0_1 + mumax_1 * t/log(10) + log10(exp(-mumax_1 * t) * (1 - exp(-mumax_1 * lag_1)) + exp(-mumax_1 * lag_1))) + (t>tmax) * (LOG10N0_1 + mumax_1 * tmax/log(10) + log10(exp(-mumax_1 * tmax) * (1 - exp(-mumax_1 * lag_1)) + exp(-mumax_1 * lag_1))) ) + (flora==2)* ( (t<=tmax)*(LOG10N0_2 + mumax_2 * t/log(10) + log10(exp(-mumax_2 * t) * (1 - exp(-mumax_2 * lag_2)) + exp(-mumax_2 * lag_2))) + (t>tmax) * (LOG10N0_2 + mumax_2 * tmax/log(10) + log10(exp(-mumax_2 * tmax) * (1 - exp(-mumax_2 * lag_2)) + exp(-mumax_2 * lag_2))) ) ") "jameson_without_lag" <- as.formula(" LOG10N~(flora==1)*( (t<tmax)*(LOG10N0_1 + mumax_1/log(10)*t)+ (t>=tmax)*(LOG10N0_1 +mumax_1/log(10)*tmax))+ (flora==2)*( (t<tmax)*(LOG10N0_2 + mumax_2/log(10)*t)+ (t>=tmax)*(LOG10N0_2 +mumax_2/log(10)*tmax))")
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(caracas) inline_code <- function(x) { x } if (!has_sympy()) { knitr::opts_chunk$set(eval = FALSE) inline_code <- function(x) { deparse(substitute(x)) } } n_2 <- as_sym("2") n_pi <- as_sym("pi", declare_symbols = FALSE) x <- sqrt(n_2) * n_pi x N(x) N(x, 5) N(x, 50) as.character(N(x, 50)) mpmath <- reticulate::import('mpmath') mpmath$mp$dps <- 30 z <- mpmath$mpc(real = '1.0', imag = '63.453') zeta_z <- mpmath$zeta(z) zeta_z as.character(zeta_z$real) as.character(zeta_z$imag)
gboot_variogram<-function(data,var,model,B=1000){ Distance=Semivariance=NULL if(is.geodata(data) == T){ }else{ stop("Object data is not of the class geodata") } if(isTRUE(class(var) == "variogram")){ }else{ stop("Object var is not of the class variogram") } if(isTRUE(class(model)[1] == "variomodel") & isTRUE(class(model)[2] == "variofit")){ }else{ stop("Object model is not of the class variomodel/variofit") } if(B >0 ){ }else{ stop("Object B must be positive") } model_name<-substr(model$cov.model,1,3) models<-c("sph","exp","gau") if(model_name %in% models){ }else{ stop("This functions only accepts the following models: gaussian, spherical and exponential") } quiet<-function(x){ invisible(capture.output(x))} if(model_name=="gau" ){ gboot_predict<-function(u,c0,c1,a){ ifelse(u==0,0,c0+c1*(1-exp(-3*(u/a)^2))) } } if(model_name=="exp"){ gboot_predict<-function(u,c0,c1,a){ ifelse(u==0,0,c0+c1*(1-exp(-3*u/a))) } } if(model_name=="sph"){ gboot_predict<-function(u,c0,c1,a){ ifelse(u==0,0, ifelse(u>a,c0+c1,c0+c1*(1.5*u/a-.5*(u/a)^3))) } } max_dist<-var$max.dist x<-var$u c0<-model$nugget c1<-model$cov.pars[1] a<-model$cov.pars[2] y<-var$v pars_or<-data.frame(C0=c0, Sill=c0+c1, C1=c1, a=a, PR=model$practicalRange) bin<-length(var$u) var_df<-matrix(0, nrow=B, ncol=bin) pars<-data.frame(C0=rep(0,B), C1=rep(0,B), a=rep(0,B), Sill=rep(0,B), `Pratical Range`=rep(0,B)) error_or<-y-gboot_predict(x,c0,c1,a) var_new<-var for(i in 1:B ){ error_new<-sample((error_or-mean(error_or)),length(error_or),replace = T) var_new$v<-gboot_predict(x,c0,c1,a)+error_new var_df[i,]<-var_new$v quiet(mod_new<-variofit(var_new,ini.cov.pars=c(c1,a), nugget=c0, cov.model=model_name)) pars[i,]<-c(as.numeric(summary(mod_new)$estimated.pars[1]), sum(as.numeric(c(summary(mod_new)$estimated.pars)[1:2])), as.numeric(c(summary(mod_new)$estimated.pars[2:3])), mod_new$practicalRange) } var_df<-as.data.frame(var_df) names(var_df)<-paste("Class",letters[1:bin]) var_df<-gather(var_df,Distance,Semivariance) var_df$B<-rep(1:B,bin) var_aux<-data.frame(Distance=paste("Class",letters[1:bin]),Semivariance=var$v) var_aux$Length<-var$u names(pars)<-c("Nugget","Sill","Contribution","Range","Practical Range") names(pars_or)<-c("Nugget","Sill","Contribution","Range","Practical Range") return(list(variogram_boot=var_df, variogram_or=var_aux, pars_boot=pars, pars_or=pars_or)) }
NMixPlugDensJoint2 <- function(x, ...) { UseMethod("NMixPlugDensJoint2") }
PairPlot <- function(d, meas_vars, title, ..., group_var = NULL, alpha = 1, palette = "Dark2", point_color = 'darkgray') { check_frame_args_list(..., frame = d, name_var_list = c(meas_vars, group_var), title = title, funname = "WVPlots::PairPlot") controlTable <- data.frame(expand.grid(meas_vars, meas_vars, stringsAsFactors = FALSE)) colnames(controlTable) <- c("x", "y") controlTable <- cbind( data.frame(pair_key = paste(controlTable[[1]], controlTable[[2]]), stringsAsFactors = FALSE), controlTable) d_aug = cdata::rowrecs_to_blocks( d, controlTable, columnsToCopy = group_var) splt <- strsplit(d_aug$pair_key, split = " ", fixed = TRUE) d_aug$xv <- vapply(splt, function(si) si[[1]], character(1)) d_aug$yv <- vapply(splt, function(si) si[[2]], character(1)) d_aug$xv <- factor(as.character(d_aug$xv), meas_vars) d_aug$yv <- factor(as.character(d_aug$yv), meas_vars) x <- y <- NULL plt = ggplot2::ggplot(d_aug, ggplot2::aes(x=x, y=y)) if(length(group_var) == 1) { plt = plt + ggplot2::geom_point(ggplot2::aes_string(color=group_var), alpha=alpha) } else { plt = plt + ggplot2::geom_point(alpha=alpha, color=point_color) } plt = plt + ggplot2::facet_grid(yv~xv, scale = "free") + ggplot2::ggtitle(title) + ggplot2::ylab(NULL) + ggplot2::xlab(NULL) if(!is.null(palette)) { plt = plt + ggplot2::scale_color_brewer(palette = palette) } plt }
AORKF_t = function(Y,mu_0,Sigma_0=NULL,A,C,Sigma_Add,Sigma_Inn,s=2,epsilon=0.000001) { p = nrow(Sigma_Add) q = nrow(Sigma_Inn) if (is.null(p)){ stop("Sigma_Add must be a matrix.") } if (is.null(q)){ stop("Sigma_Inn must be a matrix.") } for (ii in 1:length(Y)){ Y[[ii]] = as.matrix(Y[[ii]]) if (nrow( Y[[ii]]) != p){ stop("all observations must be of the same number of rows as Sigma_Add.") } if (ncol( Y[[ii]]) != 1){ stop("all observations must have exactly one column,") } } mu_0 = as.matrix(mu_0) if (nrow(mu_0) != q){ stop("mu_0 must be of the same number of rows as Sigma_Add.") } if (ncol(mu_0) != 1){ stop("mu_0 must have 1 column.") } if (ncol(Sigma_Add) != p){ stop("Sigma_Add needs to be a square matrix.") } if (ncol(Sigma_Inn) != q){ stop("Sigma_Inn needs to be a square matrix.") } if (nrow(C) != p){ stop("C must have the same number of rows as the observations") } if (ncol(C) != q){ stop("The number of columns of C must equal the dimensions of the hidden state") } if (nrow(A) != q){ stop("A must have the same number of rows as the hidden states") } if (ncol(A) != q){ stop("The number of columns of A must equal the dimensions of the hidden state") } if (epsilon <= 0){ stop ("epsilon must be greater than 0.") } if (!isSymmetric(Sigma_Inn)){ stop("Sigma_Inn must be positive definite.") } if (sum(eigen(Sigma_Inn)$values <= 0) > 0 ){ stop("Sigma_Inn must be positive definite.") } if (!isSymmetric(Sigma_Add)){ stop("Sigma_Add must be positive definite.") } if (sum(eigen(Sigma_Add)$values <= 0) > 0 ){ stop("Sigma_Add must be positive definite.") } if(is.null(Sigma_0)){ New_Matrix = C Full_Matrix = C Rank = 0 repeat { Rank = Rank+1 if(Rank > q+5) { break } if( rankMatrix(Full_Matrix) == q ) { break } New_Matrix = New_Matrix %*% A Full_Matrix = rbind(Full_Matrix,New_Matrix) } if (Rank >q){ stop("The system has to be observable to infer Sigma_0.") } Final_Sigma = Sigma_Limit(diag(1,nrow = q),C,A,Sigma_Inn,Sigma_Add,epsilon) Sigma_0 = Final_Sigma } if (nrow(Sigma_0) != q){ stop("Sigma_0 must have the same number of rows as the hidden states.") } if (ncol(Sigma_0) != q){ stop("The number of columns of Sigma_0 must equal the dimensions of the hidden state.") } if (!isSymmetric(Sigma_0)){ stop("Sigma_0 must be positive definite.") } if (sum(eigen(Sigma_0)$values <= 0) > 0 ){ stop("Sigma_0 must be positive definite.") } if (s <= 1){ stop ("s must be greater than 1.") } b = matrix(rep(0,q),ncol=1) d = matrix(rep(0,p),ncol=1) algo_output = aorkf_t_list(mu_0,Sigma_0,Y,A,b,C,d,Sigma_Add,Sigma_Inn,s,epsilon) if (is.null(algo_output)){ stop("User interrupt.") } output = list() output[["Y"]] = Y output[["A"]] = A output[["C"]] = C output[["Sigma_Inn"]] = Sigma_Inn output[["Sigma_Add"]] = Sigma_Add output[["States"]] = algo_output output["Type"] = "AO" return(structure(output,class="rkf")) }
.onAttach <- function(...) { packageStartupMessage('Super Learner') packageStartupMessage('Version: ', utils::packageDescription('SuperLearner')$Version) packageStartupMessage('Package created on ', utils::packageDescription('SuperLearner')$Date, '\n') }
tcplConf <- function (drvr = NULL, user = NULL, pass = NULL, host = NULL, db = NULL) { check <- function(x) length(x) == 1 && is.character(x) setop <- function(x) { xn <- deparse(substitute(x)) if (is.na(x)) x <- NA_character_ if (check(x)) { p <- list(x) names(p) <- paste0("TCPL_", toupper(xn)) do.call(what = options, p) } else { warning("Invalid '", xn, ",' no changes made to TCPL_", toupper(xn)) } } if (!is.null(user)) setop(user) if (!is.null(pass)) setop(pass) if (!is.null(host)) setop(host) if (!is.null(db)) setop(db) if (!is.null(drvr)) { if (!drvr %in% c( "MySQL", "tcplLite")) { stop(drvr, " is not a supported database driver. Must be ", "'MySQL' or 'tcplLite.'") } if (drvr == "MySQL") { options("TCPL_DRVR" = "MySQL") mxp <- tcplQuery("SHOW VARIABLES LIKE 'max_allowed_packet'")$Value mxp <- as.numeric(mxp) if (mxp < 1073741824) { warning("The 'max_allowed_packet' MySQL server setting is set to ", mxp, " bytes. It is recommended that you increase it to ", "1073741824 bytes to ensure larger queries run without error.") } } if (drvr == "tcplLite") { tcplLiteInit() options("TCPL_DRVR" = "tcplLite") } } }
gmdl.dof <- function (sigmahat, n, DoF, yhat) { SS <- sigmahat^2 denominator <- DoF * SS FF <- (yhat)/(DoF * SS) FF[FF == 0] = Inf gmdl_temp <- (n/2) * log(SS) + (DoF/2) * log(FF) + (1/2) * log(n) return(gmdl_temp) }
demo_data demo_data_long <- combiroc_long(data = demo_data)
clr_saturate <- function(col, shift = 0.5) { col <- color(col) if (!(length(shift) == 1 || (length(shift) == length(col)))) { stop("`shift` must be of length 1 or the same length as `col`.") } hsl <- decode_colour(col, to = "hsl") hsl[, 2] <- pro_transform(hsl[, 2], 100, shift) rgb <- convert_colour(hsl, "hsl", "rgb") color(encode_colour(rgb_norm(rgb))) } clr_desaturate <- function(col, shift = 0.5) { col <- color(col) if (!(length(shift) == 1 || (length(shift) == length(col)))) { stop("`shift` must be of length 1 or the same length as `col`.") } hsl <- decode_colour(col, to = "hsl") hsl[, 2] <- pro_transform(hsl[, 2], 0, shift) rgb <- convert_colour(hsl, "hsl", "rgb") color(encode_colour(rgb_norm(rgb))) }
cat(" imput_locf_traj <- function(traj){ if(all(is.na(traj))){ warning("[Imputation:locf] There is only NA on this trajectory, impossible to impute\n") return(traj) }else{ if(all(!is.na(traj))){return(traj)}else{} } nonMissing <- !is.na(traj) valNonMissing <- which(nonMissing) return(traj[c(valNonMissing[1],valNonMissing)][cumsum(nonMissing)+1]) } imput_locf <- function(longData){ return(t(apply(longData,1,imput_locf_traj))) } imput_nocb <- function(longData){ return(imput_locf(longData[,ncol(longData):1,drop=FALSE])[,ncol(longData):1,drop=FALSE]) } imput_trajMean_traj <- function(traj){ if(all(is.na(traj))){ warning("[Imputation:trajMean] There is only NA on this trajectory, impossible to impute\n") return(traj) }else{ if(all(!is.na(traj))){return(traj)}else{} } traj[is.na(traj)] <- mean(traj,na.rm=TRUE) return(traj) } imput_trajMean <- function(longData){ return(t(apply(longData,1,imput_trajMean_traj))) } imput_trajMedian_traj <- function(traj){ if(all(is.na(traj))){ warning("[Imputation:trajMedian] There is only NA on this trajectory, impossible to impute\n") return(traj) }else{ if(all(!is.na(traj))){return(traj)}else{} } traj[is.na(traj)] <- median(traj,na.rm=TRUE) return(traj) } imput_trajMedian <- function(longData){ return(t(apply(longData,1,imput_trajMedian_traj))) } imput_trajHotDeck_traj <- function(traj){ if(all(is.na(traj))){ warning("[Imputation:trajHotDeck] There is only NA on this trajectory, impossible to impute\n") return(traj) }else{ if(all(!is.na(traj))){return(traj)}else{} } missing <- is.na(traj) nbPos <- sum(!missing) alea <- floor(runif(length(traj)-nbPos,min=1,max=nbPos+1)) traj[missing] <- sapply(alea,function(x)traj[cumsum(!missing)==x & !missing]) return(traj) } imput_trajHotDeck <- function(longData){ return(t(apply(longData,1,imput_trajHotDeck_traj))) } imput_spline_traj <- function(traj){ if(all(is.na(traj))){ warning("[Imputation:spline] There is only NA on this trajectory, impossible to impute\n") return(traj) }else{ if(all(!is.na(traj))){return(traj)}else{} } traj <- splinefun(traj)(1:length(traj)) return(traj) } imput_spline <- function(longData){ return(t(apply(longData,1,imput_spline_traj))) }
coxed.gam <- function(cox.model, newdata=NULL, k=-1, coef=NULL, b.ind=NULL, warn=TRUE) { if(!is.null(coef)){ y.bs <- cox.model$y[b.ind,1] failed.bs <- cox.model$y[b.ind,2] cox.model$coefficients <- coef } y <- cox.model$y[,1] failed <- cox.model$y[,2] exp.xb <- exp(predict(cox.model, type="lp")) if(!is.null(coef)) exp.xb.bs <- exp.xb[b.ind] gam.data <- data.frame(y=y, failed=failed, rank.xb = rank(exp.xb)) if(!is.null(coef)){ gam.data.bs <- data.frame(y=y.bs, failed=failed.bs, rank.xb = rank(exp.xb.bs)) gam.model <- gam(y ~ s(rank.xb, bs = "cr", k = k), data = subset(gam.data.bs, failed == 1)) } else { gam.model <- gam(y ~ s(rank.xb, bs = "cr", k = k), data = subset(gam.data, failed == 1)) } gam.data <- dplyr::mutate(gam.data, rank.y = rank(y), gam_fit = predict(gam.model, newdata=gam.data), gam_fit_se = predict(gam.model, newdata=gam.data, se.fit=TRUE)$se.fit, gam_fit_95lb = gam_fit + qnorm(.025)*gam_fit_se, gam_fit_95ub = gam_fit + qnorm(.975)*gam_fit_se) if(!is.null(newdata)){ exp.xb2 <- exp(predict(cox.model, newdata=newdata, type="lp")) rank.xb <- rank.predict(x=exp.xb2, v=exp.xb, warn=warn) } else rank.xb <- rank(exp.xb) expect.duration <- predict(gam.model, newdata = data.frame(rank.xb = rank.xb), type = "response") return(list(gam.model = gam.model, gam.data = gam.data, exp.dur = expect.duration)) }
acontext("mixtureKNN data set") data(mixtureKNN) mixtureKNN$Bayes.error$text.V1.prop <- 0 mixtureKNN$Bayes.error$text.V2.bottom <- -2 mixtureKNN$other.error$text.V1.prop <- 0 mixtureKNN$Bayes.error$text.V1.error <- -2.6 mixtureKNN$other.error$text.V1.error <- -2.6 classifier.linetypes <- c( Bayes="dashed", KNN="solid") label.colors <- c( "0"=" "1"=" set.colors <- c(test=" validation=" Bayes=" train="black") errorPlot <- ggplot()+ ggtitle("Select number of neighbors")+ theme_bw()+ theme_animint(height=500)+ geom_text(aes(min.neighbors, error.prop, color=set, label="Bayes"), showSelected="classifier", hjust=1, data=mixtureKNN$Bayes.segment)+ geom_segment(aes(min.neighbors, error.prop, xend=max.neighbors, yend=error.prop, color=set, linetype=classifier), showSelected="classifier", data=mixtureKNN$Bayes.segment)+ scale_color_manual(values=set.colors, breaks=names(set.colors))+ scale_fill_manual(values=set.colors)+ guides(fill="none", linetype="none")+ scale_linetype_manual(values=classifier.linetypes)+ ylab("Misclassification Errors")+ scale_x_continuous( "Number of Neighbors", limits=c(-1, 30), breaks=c(1, 10, 20, 29))+ geom_ribbon(aes(neighbors, ymin=mean-sd, ymax=mean+sd, fill=set), showSelected=c("classifier","set"), alpha=0.5, data=mixtureKNN$validation.error)+ geom_line(aes(neighbors, mean, color=set, linetype=classifier), showSelected="classifier", data=mixtureKNN$validation.error)+ geom_line(aes(neighbors, error.prop, group=set, color=set, linetype=classifier), showSelected="classifier", data=mixtureKNN$other.error)+ geom_tallrect(aes(xmin=neighbors-1, xmax=neighbors+1), clickSelects="neighbors", alpha=0.5, data=mixtureKNN$validation.error) errorPlot scatterPlot <- ggplot()+ ggtitle("Mis-classification errors in train set")+ theme_bw()+ theme_animint(width=500, height=500)+ xlab("Input feature 1")+ ylab("Input feature 2")+ coord_equal()+ scale_color_manual(values=label.colors)+ scale_linetype_manual(values=classifier.linetypes)+ geom_point(aes(V1, V2, color=label), showSelected="neighbors", size=0.2, data=mixtureKNN$show.grid)+ geom_path(aes(V1, V2, group=path.i, linetype=classifier), showSelected="neighbors", size=1, data=mixtureKNN$pred.boundary)+ geom_path(aes(V1, V2, group=path.i, linetype=classifier), color=set.colors[["test"]], size=1, data=mixtureKNN$Bayes.boundary)+ geom_point(aes(V1, V2, color=label, fill=prediction), showSelected="neighbors", size=3, shape=21, data=mixtureKNN$show.points)+ scale_fill_manual(values=c(error="black", correct="transparent"))+ geom_text(aes(text.V1.error, text.V2.bottom, label=paste(set, "Error:")), data=mixtureKNN$Bayes.error, hjust=0)+ geom_text(aes(text.V1.prop, text.V2.bottom, label=sprintf("%.3f", error.prop)), data=mixtureKNN$Bayes.error, hjust=1)+ geom_text(aes(text.V1.error, V2.bottom, label=paste(set, "Error:")), showSelected="neighbors", data=mixtureKNN$other.error, hjust=0)+ geom_text(aes(text.V1.prop, V2.bottom, label=sprintf("%.3f", error.prop)), showSelected="neighbors", data=mixtureKNN$other.error, hjust=1)+ geom_text(aes(V1, V2, label=paste0( neighbors, " nearest neighbor", ifelse(neighbors==1, "", "s"), " classifier")), showSelected="neighbors", data=mixtureKNN$show.text) scatterPlot+ facet_wrap("neighbors")+ theme(panel.margin=grid::unit(0, "lines")) viz.neighbors <- list( error=errorPlot, data=scatterPlot, first=list(neighbors=7) ) info <- animint2HTML(viz.neighbors) get_nodes <- function(html=getHTML()){ line.list <- getNodeSet(html, "//g[@class='geom2_segment_error']//line") rect.list <- getNodeSet( html, "//svg[@id='plot_error']//rect[@class='border_rect']") rect.attr.mat <- sapply(rect.list, xmlAttrs) rect.x <- as.numeric(rect.attr.mat["x",]) rect.width <- as.numeric(rect.attr.mat["width",]) rect.right <- rect.x + rect.width line.attr.mat <- sapply(line.list, xmlAttrs) list( ribbon=getNodeSet(html, "//g[@class='geom3_ribbon_error']//path"), validation=getNodeSet(html, "//g[@class='geom4_line_error']//path"), train.test=getNodeSet(html, "//g[@class='geom5_line_error']//path"), Bayes=line.list, Bayes.x2=if(is.matrix(line.attr.mat))as.numeric(line.attr.mat["x2",]), border.right=rect.right, boundary.KNN=getNodeSet(html, "//g[@class='geom8_path_data']//path"), boundary.Bayes=getNodeSet(html, "//g[@class='geom9_path_data']//path") ) } before <- get_nodes(info$html) test_that("1 <path> rendered for validation error band", { expect_equal(length(before$ribbon), 1) }) test_that("1 <path> rendered for validation error mean", { expect_equal(length(before$validation), 1) }) test_that("2 <path> rendered for train/test error", { expect_equal(length(before$train.test), 2) }) test_that("1 <line> rendered for Bayes error", { expect_equal(length(before$Bayes), 1) }) test_that("Bayes error <line> inside of border_rect", { expect_less_than(before$Bayes.x2, before$border.right) }) test_that("6 <path> rendered for KNN boundary", { expect_equal(length(before$boundary.KNN), 6) }) test_that("2 <path> rendered for Bayes boundary", { expect_equal(length(before$boundary.Bayes), 2) }) clickID("plot_data_classifier_variable_Bayes") click1 <- get_nodes() test_that("first click, 1 <path> rendered for validation error band", { expect_equal(length(click1$ribbon), 1) }) test_that("first click, 1 <path> rendered for validation error mean", { expect_equal(length(click1$validation), 1) }) test_that("first click, 2 <path> rendered for train/test error", { expect_equal(length(click1$train.test), 2) }) test_that("first click, Bayes error disappears", { expect_equal(length(click1$Bayes), 0) }) test_that("first click, 6 <path> rendered for KNN boundary", { expect_equal(length(click1$boundary.KNN), 6) }) test_that("first click, Bayes boundary disappears", { expect_equal(length(click1$boundary.Bayes), 0) }) clickID("plot_data_classifier_variable_KNN") click2 <- get_nodes() test_that("second click, validation error band disappears", { expect_equal(length(click2$ribbon), 0) }) test_that("second click, validation error mean disappears", { expect_equal(length(click2$validation), 0) }) test_that("second click, train/test error disappears", { expect_equal(length(click2$train.test), 0) }) test_that("second click, Bayes error still gone", { expect_equal(length(click2$Bayes), 0) }) test_that("second click, KNN boundary disappears", { expect_equal(length(click2$boundary.KNN), 0) }) test_that("second click, Bayes boundary still gone", { expect_equal(length(click2$boundary.Bayes), 0) })
library(testthat) source('createTwoKeyData.R') context("DateComparisons") test_that("ComparisonOfEqualDates", { dts <- createDateDataset() dfTableA <- dts[[1]] dfTableB <- dts[[2]] ABcomparison <- rCompare(dfTableA, dfTableB, keys = c("color")) expect_true(ABcomparison$matches[1] == "DATEA") expect_true(names(ABcomparison$mismatches)[1] == "DATEB") expect_true(nrow(ABcomparison$mismatches[[1]]) == 5) expect_true(all(ABcomparison$mismatches$DATEB$diffAB < 0)) expect_true(all(ABcomparison$mismatches$DATEB$diffAB > -21)) }) test_that("ComparisonOfPOSIXDates", { dts <- createDateDataset() dfTableA <- dts[[1]] dfTableB <- dts[[2]] dfTableA$dateA <- as.POSIXct.Date(dfTableA$dateA) dfTableA$dateB <- as.POSIXct.Date(dfTableA$dateB) dfTableB$dateA <- as.POSIXct.Date(dfTableB$dateA) dfTableB$dateB <- as.POSIXct.Date(dfTableB$dateB) ABcomparison <- rCompare(dfTableA, dfTableB, keys = c("color")) expect_true(ABcomparison$matches[1] == "DATEA") expect_true(names(ABcomparison$mismatches)[1] == "DATEB") expect_true(nrow(ABcomparison$mismatches[[1]]) == 5) expect_true(all(ABcomparison$mismatches$DATEB$diffAB < 0)) expect_true(all(ABcomparison$mismatches$DATEB$diffAB > -21)) }) test_that("ComparisonOfMixedDates", { dts <- createDateDataset() dfTableA <- dts[[1]] dfTableB <- dts[[2]] dfTableA$dateA <- as.POSIXct.Date(dfTableA$dateA) dfTableA$dateB <- as.POSIXct.Date(dfTableA$dateB) ABcomparison <- rCompare(dfTableA, dfTableB, keys = c("color")) expect_true(length(ABcomparison$matches) == 0) expect_true(names(ABcomparison$mismatches)[1] == "DATEA") expect_true(names(ABcomparison$mismatches)[2] == "DATEB") expect_true(all(ABcomparison$mismatches$DATEA$diffAB == "")) expect_true(all(ABcomparison$mismatches$DATEB$diffAB == "")) dfTableB$dateA <- as.POSIXct.Date(dfTableB$dateA) ABcomparison <- rCompare(dfTableA, dfTableB, keys = c("color")) expect_true(ABcomparison$matches[1] == "DATEA") expect_true(names(ABcomparison$mismatches)[1] == "DATEB") expect_true(all(ABcomparison$mismatches$DATEB$diffAB == "")) dfTableB$dateB <- as.POSIXct.Date(dfTableB$dateB) ABcomparison <- rCompare(dfTableA, dfTableB, keys = c("color")) expect_true(ABcomparison$matches[1] == "DATEA") expect_true(names(ABcomparison$mismatches)[1] == "DATEB") expect_true(all(ABcomparison$mismatches$DATEB$diffAB < 0)) expect_true(all(ABcomparison$mismatches$DATEB$diffAB > -21)) })
"sequence_table_repl"
register_class("tis") ts_tis_dts <- function(x) { stopifnot(requireNamespace("tis")) x.ts <- ts_ts(x) x.tis <- tis::as.tis(x.ts) colnames(x.tis) <- colnames(x.ts) x.tis } ts_dts.tis <- function(x) { stopifnot(requireNamespace("tis")) ts_dts(as.ts(x)) } ts_tis <- function(x) { stopifnot(ts_boxable(x)) if (relevant_class(x) == "tis") { return(x) } ts_tis_dts(ts_dts(x)) }
expect_bernoulli <- function(object, J, ok, epsilon=1e-3,...) { act <- testthat::quasi_label(rlang::enquo(object), arg = "object") if (is.null(colnames(J))) testthat::fail("J must have column names") if (length(ok)>1) testthat::fail("ok must be one string") if (!any(colnames(J)==ok)) testthat::fail("At least one of the column names of J must match the string in ok") { o <- order(J[1,]) if (J[1,o[1]]>0) testthat::fail("Buckets must cover [0,1]") last <- J[2,o[1]] for (i in 2:(dim(J)[2])){ if (last<=J[1,o[i]]) testthat::fail("Buckets must be overlapping") last <- max(last,J[2,o[i]]) } if (last<1) testthat::fail("Buckets must cover [0,1]") } res <- simctest::mctest(gen=object,J=J, epsilon=epsilon,...) if (res$decision ==ok){ return(invisible(act$val)) } message <- sprintf("Test returned bucket [%g,%g], called '%s', not a bucket called '%s'.",res$decision.interval[1],res$decision.interval[2],res$decision, ok) testthat::fail(message) }
plot_FV_post_beta_kmom=function(data,years=10,lwd=1.5,lty=1){ appo=rep(NA,years) for (i in 1:years) { appo[i]=FV_post_beta_kmom(data,i) } appo[1]=1 anni=c(1:years) plot(appo,type="b",col="red",lwd=lwd, lty=lty, xlim=c(0,years+1),ylim=c(min(appo),max(appo)),xlab="Time", ylab="Final Expexted Value",main="Final Expected Value (annuity-immediate)") if (length(anni)<20) text(anni+0.2, appo, round(appo, 2), cex=0.7) }
NULL deprecated <- function(old, new) { assign(old, new, envir = asNamespace(packageName())) } deprecated("add.edges", add_edges) deprecated("add.vertex.shape", add_shape) deprecated("add.vertices", add_vertices) deprecated("adjacent.triangles", count_triangles) deprecated("articulation.points", articulation_points) deprecated("aging.prefatt.game", sample_pa_age) deprecated("aging.ba.game", sample_pa_age) deprecated("aging.barabasi.game", sample_pa_age) deprecated("alpha.centrality", alpha_centrality) deprecated("are.connected", are_adjacent) deprecated("asPhylo", as_phylo) deprecated("asPhylo.communities", as_phylo.communities) deprecated("asPhylo.igraphHRG", as_phylo.igraphHRG) deprecated("assortativity.degree", assortativity_degree) deprecated("assortativity.nominal", assortativity_nominal) deprecated("asymmetric.preference.game", sample_asym_pref) deprecated("authority.score", authority_score) deprecated("autocurve.edges", curve_multiple) deprecated("average.path.length", mean_distance) deprecated("ba.game", sample_pa) deprecated("barabasi.game", sample_pa) deprecated("betweenness.estimate", estimate_betweenness) deprecated("biconnected.components", biconnected_components) deprecated("bipartite.mapping", bipartite_mapping) deprecated("bipartite.projection", bipartite_projection) deprecated("bipartite.projection.size", bipartite_projection_size) deprecated("bipartite.random.game", sample_bipartite) deprecated("blockGraphs", graphs_from_cohesive_blocks) deprecated("bonpow", power_centrality) deprecated("callaway.traits.game", sample_traits_callaway) deprecated("canonical.permutation", canonical_permutation) deprecated("centralization.betweenness", centr_betw) deprecated("centralization.betweenness.tmax", centr_betw_tmax) deprecated("centralization.closeness", centr_clo) deprecated("centralization.closeness.tmax", centr_clo_tmax) deprecated("centralization.degree", centr_degree) deprecated("centralization.degree.tmax", centr_degree_tmax) deprecated("centralization.evcent", centr_eigen) deprecated("centralization.evcent.tmax", centr_eigen_tmax) deprecated("centralize.scores", centralize) deprecated("cited.type.game", sample_cit_types) deprecated("citing.cited.type.game", sample_cit_cit_types) deprecated("clique.number", clique_num) deprecated("closeness.estimate", estimate_closeness) deprecated("cluster.distribution", component_distribution) deprecated("clusters", components) deprecated("code.length", code_len) deprecated("cohesive.blocks", cohesive_blocks) deprecated("connect.neighborhood", connect) deprecated("contract.vertices", contract) deprecated("convex.hull", convex_hull) deprecated("count.multiple", count_multiple) deprecated("cutat", cut_at) deprecated("decompose.graph", decompose) deprecated("degree.distribution", degree_distribution) deprecated("degree.sequence.game", sample_degseq) deprecated("delete.edges", delete_edges) deprecated("delete.vertices", delete_vertices) deprecated("dendPlot", plot_dendrogram) deprecated("dendPlot.communities", plot_dendrogram.communities) deprecated("dendPlot.igraphHRG", plot_dendrogram.igraphHRG) deprecated("dominator.tree", dominator_tree) deprecated("dyad.census", dyad_census) deprecated("ecount", gsize) deprecated("edge.betweenness", edge_betweenness) deprecated("edge.betweenness.community", cluster_edge_betweenness) deprecated("edge.betweenness.estimate", estimate_edge_betweenness) deprecated("edge.connectivity", edge_connectivity) deprecated("edge.disjoint.paths", edge_disjoint_paths) deprecated("establishment.game", sample_traits) deprecated("evcent", eigen_centrality) deprecated("farthest.nodes", farthest_vertices) deprecated("fastgreedy.community", cluster_fast_greedy) deprecated("forest.fire.game", sample_forestfire) deprecated("get.adjedgelist", as_adj_edge_list) deprecated("get.adjlist", as_adj_list) deprecated("get.adjacency", as_adjacency_matrix) deprecated("get.data.frame", as_data_frame) deprecated("get.edge.attribute", edge_attr) deprecated("get.edgelist", as_edgelist) deprecated("get.graph.attribute", graph_attr) deprecated("get.incidence", as_incidence_matrix) deprecated("get.stochastic", stochastic_matrix) deprecated("get.vertex.attribute", vertex_attr) deprecated("graph.adhesion", adhesion) deprecated("graph.adjacency", graph_from_adjacency_matrix) deprecated("graph.adjlist", graph_from_adj_list) deprecated("graph.atlas", graph_from_atlas) deprecated("graph.automorphisms", automorphisms) deprecated("graph.bfs", bfs) deprecated("graph.bipartite", make_bipartite_graph) deprecated("graph.cohesion", cohesion) deprecated("graph.complementer", complementer) deprecated("graph.compose", compose) deprecated("graph.coreness", coreness) deprecated("graph.data.frame", graph_from_data_frame) deprecated("graph.de.bruijn", make_de_bruijn_graph) deprecated("graph.density", edge_density) deprecated("graph.disjoint.union", disjoint_union) deprecated("graph.dfs", dfs) deprecated("graph.difference", difference) deprecated("graph.diversity", diversity) deprecated("graph.edgelist", graph_from_edgelist) deprecated("graph.eigen", spectrum) deprecated("graph.empty", make_empty_graph) deprecated("graph.extended.chordal.ring", make_chordal_ring) deprecated("graph.formula", graph_from_literal) deprecated("graph.full", make_full_graph) deprecated("graph.full.bipartite", make_full_bipartite_graph) deprecated("graph.full.citation", make_full_citation_graph) deprecated("graph.graphdb", graph_from_graphdb) deprecated("graph.incidence", graph_from_incidence_matrix) deprecated("graph.isocreate", graph_from_isomorphism_class) deprecated("graph.kautz", make_kautz_graph) deprecated("graph.knn", knn) deprecated("graph.laplacian", laplacian_matrix) deprecated("graph.lattice", make_lattice) deprecated("graph.lcf", graph_from_lcf) deprecated("graph.maxflow", max_flow) deprecated("graph.mincut", min_cut) deprecated("graph.motifs", motifs) deprecated("graph.motifs.est", sample_motifs) deprecated("graph.motifs.no", count_motifs) deprecated("graph.neighborhood", make_ego_graph) deprecated("graph.star", make_star) deprecated("graph.strength", strength) deprecated("graph.tree", make_tree) deprecated("graph.union", union.igraph) deprecated("graph.ring", make_ring) deprecated("graphlets.candidate.basis", graphlet_basis) deprecated("graphlets.project", graphlet_proj) deprecated("growing.random.game", sample_growing) deprecated("grg.game", sample_grg) deprecated("has.multiple", any_multiple) deprecated("hrg.consensus", consensus_tree) deprecated("hrg.create", hrg) deprecated("hrg.dendrogram", hrg_tree) deprecated("hrg.game", sample_hrg) deprecated("hrg.fit", fit_hrg) deprecated("hrg.predict", predict_edges) deprecated("hub.score", hub_score) deprecated("igraph.arpack.default", arpack_defaults) deprecated("igraph.console", console) deprecated("igraph.eigen.default", eigen_defaults) deprecated("igraph.sample", sample_seq) deprecated("igraph.version", igraph_version) deprecated("igraphdemo", igraph_demo) deprecated("igraphtest", igraph_test) deprecated("independence.number", ivs_size) deprecated("independent.vertex.sets", ivs) deprecated("infomap.community", cluster_infomap) deprecated("induced.subgraph", induced_subgraph) deprecated("interconnected.islands.game", sample_islands) deprecated("is.bipartite", is_bipartite) deprecated("is.chordal", is_chordal) deprecated("is.connected", is_connected) deprecated("is.dag", is_dag) deprecated("is.degree.sequence", is_degseq) deprecated("is.directed", is_directed) deprecated("is.graphical.degree.sequence", is_graphical) deprecated("is.hierarchical", is_hierarchical) deprecated("is.igraph", is_igraph) deprecated("is.loop", which_loop) deprecated("is.matching", is_matching) deprecated("is.maximal.matching", is_max_matching) deprecated("is.minimal.separator", is_min_separator) deprecated("is.multiple", which_multiple) deprecated("is.mutual", which_mutual) deprecated("is.named", is_named) deprecated("is.separator", is_separator) deprecated("is.simple", is_simple) deprecated("is.weighted", is_weighted) deprecated("k.regular.game", sample_k_regular) deprecated("label.propagation.community", cluster_label_prop) deprecated("largest.cliques", largest_cliques) deprecated("largest.independent.vertex.sets", largest_ivs) deprecated("lastcit.game", sample_last_cit) deprecated("layout.auto", layout_nicely) deprecated("layout.bipartite", layout_as_bipartite) deprecated("layout.davidson.harel", layout_with_dh) deprecated("layout.drl", layout_with_drl) deprecated("layout.gem", layout_with_gem) deprecated("layout.graphopt", layout_with_graphopt) deprecated("layout.grid", layout_on_grid) deprecated("layout.mds", layout_with_mds) deprecated("layout.merge", merge_coords) deprecated("layout.norm", norm_coords) deprecated("layout.star", layout_as_star) deprecated("layout.sugiyama", layout_with_sugiyama) deprecated("leading.eigenvector.community", cluster_leading_eigen) deprecated("line.graph", make_line_graph) deprecated("list.edge.attributes", edge_attr_names) deprecated("list.graph.attributes", graph_attr_names) deprecated("list.vertex.attributes", vertex_attr_names) deprecated("maxcohesion", max_cohesion) deprecated("maximal.cliques", max_cliques) deprecated("maximal.cliques.count", count_max_cliques) deprecated("maximal.independent.vertex.sets", maximal_ivs) deprecated("minimal.st.separators", min_st_separators) deprecated("maximum.bipartite.matching", max_bipartite_match) deprecated("maximum.cardinality.search", max_cardinality) deprecated("minimum.size.separators", min_separators) deprecated("minimum.spanning.tree", mst) deprecated("mod.matrix", modularity_matrix) deprecated("multilevel.community", cluster_louvain) deprecated("neighborhood", ego) deprecated("neighborhood.size", ego_size) deprecated("nexus.get", nexus_get) deprecated("nexus.info", nexus_info) deprecated("nexus.list", nexus_list) deprecated("nexus.search", nexus_search) deprecated("no.clusters", count_components) deprecated("optimal.community", cluster_optimal) deprecated("page.rank", page_rank) deprecated("path.length.hist", distance_table) deprecated("permute.vertices", permute) deprecated("piecewise.layout", layout_components) deprecated("plotHierarchy", plot_hierarchy) deprecated("power.law.fit", fit_power_law) deprecated("preference.game", sample_pref) deprecated("read.graph", read_graph) deprecated("remove.edge.attribute", delete_edge_attr) deprecated("remove.graph.attribute", delete_graph_attr) deprecated("remove.vertex.attribute", delete_vertex_attr) deprecated("running.mean", running_mean) deprecated("sbm.game", sample_sbm) deprecated("scgGrouping", scg_group) deprecated("scgNormEps", scg_eps) deprecated("scgSemiProjectors", scg_semi_proj) deprecated("set.edge.attribute", set_edge_attr) deprecated("set.graph.attribute", set_graph_attr) deprecated("set.vertex.attribute", set_vertex_attr) deprecated("shortest.paths", distances) deprecated("showtrace", show_trace) deprecated("spinglass.community", cluster_spinglass) deprecated("stCuts", st_cuts) deprecated("stMincuts", st_min_cuts) deprecated("static.fitness.game", sample_fitness) deprecated("static.power.law.game", sample_fitness_pl) deprecated("subgraph.centrality", subgraph_centrality) deprecated("tkplot.canvas", tk_canvas) deprecated("tkplot.center", tk_center) deprecated("tkplot.close", tk_close) deprecated("tkplot.export.postscript", tk_postscript) deprecated("tkplot.fit.to.screen", tk_fit) deprecated("tkplot.getcoords", tk_coords) deprecated("tkplot.off", tk_off) deprecated("tkplot.reshape", tk_reshape) deprecated("tkplot.rotate", tk_rotate) deprecated("tkplot.setcoords", tk_set_coords) deprecated("topological.sort", topo_sort) deprecated("triad.census", triad_census) deprecated("unfold.tree", unfold_tree) deprecated("vcount", gorder) deprecated("vertex.connectivity", vertex_connectivity) deprecated("vertex.disjoint.paths", vertex_disjoint_paths) deprecated("walktrap.community", cluster_walktrap) deprecated("watts.strogatz.game", sample_smallworld) deprecated("write.graph", write_graph) deprecated("graph.famous", make_famous_graph) deprecated("igraph.from.graphNEL", graph_from_graphnel) deprecated("igraph.to.graphNEL", as_graphnel) deprecated("getIgraphOpt", igraph_opt) deprecated("igraph.options", igraph_options) deprecated("graph.intersection", intersection) deprecated("exportPajek", export_pajek) deprecated("get.diameter", get_diameter) deprecated("get.all.shortest.paths", all_shortest_paths) deprecated("get.shortest.paths", shortest_paths) deprecated("graph", make_graph) deprecated("vertex.shapes", shapes) deprecated("igraph.shape.noclip", shape_noclip) deprecated("igraph.shape.noplot", shape_noplot) deprecated("create.communities", make_clusters)
tol <- 1e-6 data(minke, package="Distance") minke$Region.Label <- as.factor(minke$Region.Label) whale.trunc <- 1.5 minke_noobj <- minke minke$object <- NA minke$object[!is.na(minke$distance)] <- 1:nrow(minke[!is.na(minke$distance),]) make_old_summ_cluster <- function(object){ object$Region <- as.factor(object$Region) object$CoveredArea <- object$Covered_area object$se.ER <- sqrt(object$ER_var) object$cv.ER <- object$ER_CV object$se.mean <- sqrt(object$group_var) object$mean.size <- object$group_mean class(object) <- "data.frame" summ <- object[, c("Region", "Area", "CoveredArea", "Effort", "n", "k", "ER", "se.ER", "cv.ER")] return(summ) } make_old_abund_individual <- function(object){ object$Label <- as.factor(object$Region) object$Region <- NULL object$Estimate <- object$Abundance object$cv <- object$Abundance_CV object$se <- object$Abundance_se object$lcl <- object$LCI object$ucl <- object$UCI object$df <- object$df class(object) <- "data.frame" object[, c("Label", "Estimate", "se", "cv", "lcl", "ucl", "df")] } context("minke") test_that("South works",{ skip_on_cran() whales <- minke[minke$Region.Label=="South",] dat <- unflatten(whales) dat$obs$Region.Label <- NULL dat$sample$Region <- dat$sample$Region.Label dat$region$Region <- dat$region$Region.Label dat$sample$Region.Label <- NULL dat$region$Region.Label <- NULL whale.full.strat1 <- ds(whales, truncation=whale.trunc, key="hr", adjustment=NULL) whale.full.strat1$ddf$data$Region.Label <- NULL fs_st1 <- with(dat, dht2(whale.full.strat1$ddf, obs, sample, region, strat_formula=~Region)) whale.full.strat1$dht$individuals$summary$k <- whale.full.strat1$dht$individuals$summary$k[1] expect_equal(whale.full.strat1$dht$individuals$summary, make_old_summ_cluster(fs_st1), tolerance=tol) old <- whale.full.strat1$dht$individuals$N old$Estimate <- as.numeric(old$Estimate) old$cv <- as.numeric(old$cv) old$ucl <- as.numeric(old$ucl) old$lcl <- as.numeric(old$lcl) old$df <- as.numeric(old$df) old$Label <- as.factor("South") expect_equal(old, make_old_abund_individual(fs_st1), tolerance=tol) }) test_that("North works",{ skip_on_cran() whales <- minke[minke$Region.Label=="North",] dat <- unflatten(whales) dat$obs$Region.Label <- NULL dat$sample$Region <- dat$sample$Region.Label dat$region$Region <- dat$region$Region.Label dat$sample$Region.Label <- NULL dat$region$Region.Label <- NULL whale.full.strat1 <- ds(whales, truncation=whale.trunc, key="hr", adjustment=NULL) whale.full.strat1$ddf$data$Region.Label <- NULL fs_st1 <- with(dat, dht2(whale.full.strat1$ddf, obs, sample, region, strat_formula=~Region)) whale.full.strat1$dht$individuals$summary$k <- whale.full.strat1$dht$individuals$summary$k[1] expect_equal(whale.full.strat1$dht$individuals$summary, make_old_summ_cluster(fs_st1), tolerance=tol) old <- whale.full.strat1$dht$individuals$N old$Estimate <- as.numeric(old$Estimate) old$cv <- as.numeric(old$cv) old$ucl <- as.numeric(old$ucl) old$lcl <- as.numeric(old$lcl) old$df <- as.numeric(old$df) old$Label <- as.factor("North") expect_equal(old, make_old_abund_individual(fs_st1), tolerance=tol) }) test_that("Combined works",{ skip_on_cran() whales <- minke whales$Region.Label <- as.factor("Total") whales$Area <- sum(unique(whales$Area)) dat <- unflatten(whales) dat$obs$Region.Label <- NULL dat$sample$Region <- dat$sample$Region.Label dat$region$Region <- dat$region$Region.Label dat$sample$Region.Label <- NULL dat$region$Region.Label <- NULL whale.full.strat1 <- ds(whales, truncation=whale.trunc, key="hr", adjustment=NULL) whale.full.strat1$ddf$data$Region.Label <- NULL fs_st1 <- with(dat, dht2(whale.full.strat1$ddf, obs, sample, region, strat_formula=~Region)) whale.full.strat1$dht$individuals$summary$k <- whale.full.strat1$dht$individuals$summary$k[1] expect_equal(whale.full.strat1$dht$individuals$summary, make_old_summ_cluster(fs_st1), tolerance=tol) old <- whale.full.strat1$dht$individuals$N old$Estimate <- as.numeric(old$Estimate) old$cv <- as.numeric(old$cv) old$ucl <- as.numeric(old$ucl) old$lcl <- as.numeric(old$lcl) old$df <- as.numeric(old$df) old$Label <- as.factor(old$Label) expect_equal(old, make_old_abund_individual(fs_st1), tolerance=tol) }) test_that("stratification", { skip_on_cran() whales <- minke cp <- seq(0, 1.5, length=8) expect_warning(wmr <- ds(whales, truncation=whale.trunc, key="hr", adjustment=NULL, cutpoints=cp), "Some distances were outside bins and have been removed.") expect_warning(whale.full.strat1 <- ds(whales, truncation=whale.trunc, key="hr", adjustment=NULL, cutpoints=cp), "Some distances were outside bins and have been removed.") result <- ddf(dsmodel = ~mcds(key = "hr", formula = ~1), data = whale.full.strat1$ddf$data, method = "ds", meta.data = list(width = 1.5, binned=TRUE, breaks=cp), control=list(initial=list(shape=log(2.483188), scale=log(0.7067555)), nofit=TRUE)) whale.full.strat1 <- result fs_st1 <- dht2(whale.full.strat1, flatfile=whales, strat_formula=~Region.Label) expect_equal(fs_st1$Abundance, c(12564, 3768, 16333), tol=1e-3) expect_equal(fs_st1$LCI, c(5658, 2239, 8619), tol=1e-3) expect_equal(fs_st1$UCI, c(27901, 6343, 30949), tol=1e-3) expect_equal(fs_st1$ER_CV[1:2], c(36.54, 22.48)/100, tol=1e-2) expect_equal(fs_st1$Abundance_CV, c(38.31, 25.27, 30.82)/100, tol=1e-2) expect_equal(fs_st1$df, c(13.29, 18.97, 15.83), tol=1e-2) }) test_that("flat minke works", { skip_on_cran() strat.spec <- ds(minke_noobj, key="hr", formula=~Region.Label, tru=1.5) fromdht2 <- dht2(strat.spec, flatfile=minke_noobj, strat_formula=~Region.Label) expect_equal(strat.spec$dht$individuals$N$Estimate, fromdht2$Abundance) expect_equal(strat.spec$dht$individuals$N$se, fromdht2$Abundance_se, tol=1e-4) }) test_that("minke dht vs dht2", { skip_on_cran() uf <- unflatten(minke) mfit <- ds(minke, key="hr", formula=~Region.Label, tru=1.5) dht_old <- dht(mfit$ddf, uf$region.table, uf$sample.table, options=list(ervar="R2", varflag=1)) fromdht2 <- dht2(mfit, flatfile=minke, strat_formula=~Region.Label) expect_equal(dht_old$individuals$N$Estimate, fromdht2$Abundance) expect_equal(dht_old$individuals$N$se, fromdht2$Abundance_se, tol=1e-4) dht_old <- dht(mfit$ddf, uf$region.table, uf$sample.table, options=list(ervar="R2", varflag=2)) fromdht2 <- dht2(mfit, flatfile=minke, strat_formula=~Region.Label, innes=TRUE) expect_equal(dht_old$individuals$N$Estimate, fromdht2$Abundance) expect_equal(dht_old$individuals$N$se, fromdht2$Abundance_se, tol=1e-4) }) test_that("area=0, flat minke works", { skip_on_cran() minke_noobj$Area <- 0 strat.spec <- ds(minke_noobj, key="hr", formula=~Region.Label, tru=1.5) fromdht2 <- dht2(strat.spec, flatfile=minke_noobj, strat_formula=~Region.Label) expect_equal(strat.spec$dht$individuals$D$Estimate, fromdht2$Abundance) expect_equal(strat.spec$dht$individuals$D$se, fromdht2$Abundance_se, tol=1e-4) expect_equal(strat.spec$dht$individuals$summary$se.ER, sqrt(fromdht2$ER_var), tol=1e-3) })
calcul_tx_evol_global <- function(data,var1,var2) { msg_error1<-msg_error2<-msg_error3 <- NULL if(any(class(data)!="data.frame")) msg_error1 <- "Les donnees doivent etre dans un data.frame / " if(!any(names(data) %in% var1)) msg_error2 <- "La variable identifiant les donnees n'existe pas dans la table des donnees / " if(!any(names(data) %in% var2)) msg_error3 <- "La variable identifiant les donnees n'existe pas dans la table des donnees / " if(any(!is.null(msg_error1),!is.null(msg_error2),!is.null(msg_error3))) { stop(simpleError(paste0(msg_error1,msg_error2,msg_error3))) } if(any(data[,var1] %in% 0)) { data[data[,var1] %in% 0,var1] <- 0.0001 } data$TEG <- ((data[,var2]-data[,var1])/data[,var1])*100 return(data) }
getLocData <- function(country=NULL,StudyUnitId=NULL){ if(!is.null(StudyUnitId)&!is.null(country)) stop('Cannot use both StudyUnitId and country at the same time') out <- runURL(paste('?id=', StudyUnitId, '&country=', country, sep=''), 'l') if(length(out)==0){ if(!is.null(StudyUnitId)) warning('No Data returned for this StudyUnitId(s).') if(!is.null(country)) warning('No Data returned for this country(s). Ensure you have capitalised appropriately') } return(out) }
dtt_month_decimal <- function(x, ...) { UseMethod("dtt_month_decimal") } dtt_month_decimal.Date <- function(x, ...) { dtt_month(x) + (dtt_day_decimal(x) - 1) / dtt_days_in_month(x) } dtt_month_decimal.POSIXct <- function(x, ...) { dtt_month(x) + (dtt_day_decimal(x) - 1) / dtt_days_in_month(x) }
getmin=function(lambda,cvm,cvsd){ cvmin=min(cvm,na.rm=TRUE) idmin=cvm<=cvmin lambda.min=max(lambda[idmin],na.rm=TRUE) idmin=match(lambda.min,lambda) semin=(cvm+cvsd)[idmin] idmin=cvm<=semin lambda.1se=max(lambda[idmin],na.rm=TRUE) list(lambda.min=lambda.min,lambda.1se=lambda.1se) }
test_that("can retrieve multiple users", { users <- c("hadleywickham", "jennybryan") out <- get_favorites(users, n = 20) expect_s3_class(out, "data.frame") expect_true(is.character(out$created_at)) expect_equal(unique(out$favorited_by), users) }) test_that("get_favorites returns tweets data", { n <- 100 x <- get_favorites("kearneymw", n = n) expect_equal(is.data.frame(x), TRUE) expect_named(x) expect_true("id" %in% names(x)) expect_gt(nrow(x), 10) expect_gt(ncol(x), 15) expect_true(is.data.frame(users_data(x))) }) test_that("favorites warns on a locked user", { expect_warning(gtf <- get_favorites("515880511"), "Skipping unauthorized account: 515880511") }) test_that("favorites warns on a banned user", { expect_warning(gtf <- get_favorites("realdonaldtrump"), "Skipping unauthorized account: realdonaldtrump") }) test_that("favorites warns on a locked user but continues", { expect_warning(gtf <- get_favorites(c("515880511" = "bhs928", "no_idea" = "Lluis_Revilla")), "Skipping unauthorized account: bhs928") expect_gt(nrow(gtf), 2) expect_true(all(gtf$favorited_by == "Lluis_Revilla")) })
draw.steps = function( slice, start, end, startColumns = "start", endColumns = "end", maxDepth = 100, label = TRUE, labelStrand = FALSE, labelCex = 1, labelSrt = 0, labelAdj = "center", labelOverflow = TRUE, labelFamily = "sans", colorVal = " colorFun = function() NULL, border = " cex.lab = 1, spacing = 0.1, bty = "o", ... ) { if(is.numeric(start)) start <- as.integer(start) if(is.numeric(end)) end <- as.integer(end) if(!is.integer(start)) stop("'start' must be integer or numeric") if(!is.integer(end)) stop("'end' must be integer or numeric") if(!is.data.frame(slice)) stop("'slice' must be a data.frame") if(!"start" %in% names(slice)) stop("'slice' needs a 'start' column") if(!"end" %in% names(slice)) stop("'slice' needs a 'end' column") draw.bg( start = start, end = end, ... ) errorMessage <- NA if(nrow(slice) == 0) { errorMessage <- "No feature in the region" } else { boxes <- data.frame( start.plot = as.integer(slice[[ startColumns[1] ]]), end.plot = as.integer(slice[[ endColumns[1] ]]), label = slice$name, stringsAsFactors = FALSE ) boxes <- yline( boxes = boxes, start = start, end = end, label = label, labelStrand = labelStrand, labelCex = labelCex, labelSrt = labelSrt, labelAdj = labelAdj, labelOverflow = labelOverflow, maxDepth = maxDepth ) if(is(boxes, "error")) { errorMessage <- boxes } else { slice$plotLine <- boxes$yline maxLine <- max(boxes$yline) + 1L if(is.na(colorVal)) { environment(colorFun) <- environment() color <- colorFun() } else { color <- rep(colorVal, nrow(slice)) } if(identical(border, "color")) border <- color x <- NULL for(i in 1:length(startColumns)) x <- cbind(x, slice[[ startColumns[i] ]], slice[[ startColumns[i] ]]) for(i in length(endColumns):1) x <- cbind(x, slice[[ endColumns[i] ]], slice[[ endColumns[i] ]]) y <- NULL step <- 1 / length(startColumns) for(i in 1:length(startColumns)) y <- c(y, step*(i-1), step*i) step <- 1 / length(endColumns) for(i in length(endColumns):1) y <- c(y, step*i, step*(i-1)) for(i in 1:nrow(slice)) { graphics::polygon( x = x[i,], y = (y * (1 - spacing) + spacing / 2 + slice[i,"plotLine"]) / maxLine, border = border, col = color[i] ) } if(isTRUE(label)) { charHeight <- graphics::yinch(graphics::par("cin")[2]) * labelCex graphics::rect( xleft = boxes$start.lab, xright = boxes$end.lab, ybottom = (boxes$yline + 0.1) / maxLine, ytop = (boxes$yline + 0.1) / maxLine + charHeight, col = " border = border ) if(isTRUE(labelStrand)) { boxes[ boxes$strand == "-" , "label" ] <- sprintf("< %s", boxes[ boxes$strand == "-" , "label" ]) boxes[ boxes$strand == "+" , "label" ] <- sprintf("%s >", boxes[ boxes$strand == "+" , "label" ]) } args <- with( boxes[ (isTRUE(label) && isTRUE(labelOverflow)) | !boxes$overflow ,], list( x = (boxes$start.lab + boxes$end.lab) / 2, y = (boxes$yline + 0.1) / maxLine + charHeight/2, label = label, col = " adj = c(0.5, 0.5), cex = labelCex, srt = labelSrt ) ) if(labelFamily == "Hershey") { args$vfont <- c("sans serif", "bold") } else { args$family <- labelFamily } do.call(graphics::text, args) } } } if(!is.na(errorMessage)) { graphics::text( x = mean(graphics::par("usr")[1:2]), y = mean(graphics::par("usr")[3:4]), label = errorMessage, col = " adj = c(0.5, 0.5), cex = cex.lab ) } graphics::box( which = "plot", col = " bty = bty ) }
vis.concurvity <- function(model, type="estimate"){ cc <- concurvity(model, full=FALSE)[[type]] diag(cc) <- NA layout(matrix(1:2, ncol=2), widths=c(5,1)) opar <- par(mar=c(5, 6, 5, 0) + 0.1) image(z=cc, x=1:ncol(cc), y=1:nrow(cc), ylab="", xlab="", axes=FALSE, asp=1, zlim=c(0,1)) axis(1, at=1:ncol(cc), labels = colnames(cc), las=2, lwd=0) axis(2, at=1:nrow(cc), labels = rownames(cc), las=2, lwd=0) opar <- par(mar=c(5, 0, 4, 3) + 0.1) image(t(matrix(rep(seq(0, 1, len=100), 2), ncol=2)), x=1:3, y=1:101, zlim=c(0,1), axes=FALSE, xlab="", ylab="") axis(4, at=seq(1,101,len=5), labels = round(seq(0,1,len=5),1), las=2) par(opar) }
mw_multipart <- function(type = "multipart/form-data") { type function(req, res) { ct <- req$get_header("Content-Type") %||% "" if (!any(vapply( paste0("^", type), function(x) grepl(x, ct), logical(1)))) return("next") parts <- str_trim(strsplit(ct, ";", fixed = TRUE)[[1]]) bnd <- grep("boundary=", parts, value = TRUE)[1] if (is.na(bnd)) return("next") bnd <- sub("^boundary=", "", bnd) tryCatch({ mp <- parse_multipart(req$.body, bnd) req$form <- list() req$files <- list() for (p in mp) { if (is.null(p$filename)) { req$form[[p$name]] <- rawToChar(p$value) } else { req$files[[p$name]] <- list(filename = p$filename, value = p$value) } } }, error = function(err) NULL) "next" } } parse_multipart <- function(body, boundary) { boundary <- paste0("--", boundary) boundary_length <- nchar(boundary) indexes <- grepRaw(boundary, body, fixed = TRUE, all = TRUE) if (!length(indexes)) stop("Boundary was not found in the body.") if (length(indexes) == 1) { if (length(body) < (boundary_length + 5)) { return(list()) } else { stop("The 'boundary' was only found once in the ", "multipart/form-data message. It should appear at ", "least twice. The request-body might be truncated.") } } parts <- list() for (i in seq_along(utils::head(indexes, -1))) { from <- indexes[i] + boundary_length to <- indexes[i + 1] -1 parts[[i]] <- body[from:to] } out <- lapply(parts, multipart_sub) names(out) <- vapply( out, function(x) as.character(x$name), character(1) ) out } multipart_sub <- function(bodydata) { splitchar <- grepRaw("\\r\\n\\r\\n|\\n\\n|\\r\\r", bodydata) if (!length(splitchar)) { stop("Invalid multipart subpart:\n\n", rawToChar(bodydata)) } headers <- bodydata[1:(splitchar-1)] headers <- str_trim(rawToChar(headers)) headers <- gsub("\r\n", "\n", headers) headers <- gsub("\r", "\n", headers) headerlist <- unlist(lapply(strsplit(headers, "\n")[[1]], str_trim)) dispindex <- grep("^Content-Disposition:", headerlist) if (!length(dispindex)) { stop("Content-Disposition header not found:", headers) } dispheader <- headerlist[dispindex] m <- regexpr("; name=\\\"(.*?)\\\"", dispheader) if (m < 0) stop('failed to find the name="..." header') namefield <- unquote(sub( "; name=", "", regmatches(dispheader, m), fixed = TRUE )) m <- regexpr("; filename=\\\"(.*?)\\\"", dispheader) if (m < 0) { filenamefield = NULL } else { filenamefield <- unquote(sub( "; filename=", "", regmatches(dispheader, m), fixed = TRUE )) } splitval <- grepRaw("\\r\\n\\r\\n|\\n\\n|\\r\\r", bodydata, value=TRUE) start <- splitchar + length(splitval) if (identical(utils::tail(bodydata, 2), charToRaw("\r\n"))) { end <- length(bodydata) - 2 } else { end <- length(bodydata) - 1 } list ( name = namefield, value = bodydata[start:end], filename = filenamefield ) }
exchangesStack <- function(x, stack = "default", area = NULL, mcYear = "average", dateRange = NULL, colors = NULL, yMin = NULL, yMax = NULL, customTicks=NULL, main = NULL, ylab = NULL, unit = c("MWh", "GWh", "TWh"), compare = NULL, compareOpts = list(), interactive = getInteractivity(), legend = TRUE, legendId = sample(1e9, 1), groupId = legendId, updateLegendOnMouseOver = TRUE, legendItemsPerRow = 5, width = NULL, height = NULL, xyCompare = c("union", "intersect"), h5requestFiltering = list(), stepPlot = FALSE, drawPoints = FALSE, timeSteph5 = "hourly", mcYearh5 = NULL, tablesh5 = c("areas", "links"), language = "en", hidden = NULL, refStudy = NULL, ...) { exchangesStackValHidden <- c("H5request", "timeSteph5", "mcYearhH5", "mcYear", "main", "dateRange", "unit", "area", "legend", "stepPlot", "drawPoints") exchangesStackValCompare <- c("mcYear", "main", "unit", "area", "legend", "stepPlot", "drawPoints") listParamsCheck <- list( x = x, compare = compare, interactive = interactive, language = language, hidden = hidden, valHidden = exchangesStackValHidden, valCompare = exchangesStackValCompare, mcYear = mcYear, h5requestFiltering = h5requestFiltering, compareOptions = compareOpts ) listParamsCheck <- .check_params_A_get_cor_val(listParamsCheck) x <- listParamsCheck$x compare <- listParamsCheck$compare compareOptions <- listParamsCheck$compareOptions h5requestFiltering <- listParamsCheck$h5requestFiltering mcYear <- listParamsCheck$mcYear xyCompare <- match.arg(xyCompare) unit <- match.arg(unit) init_area <- area init_dateRange <- dateRange processFun <- function(x) { .check_x_antaresData(x) if(!is.null(attributes(x$areas)$hvdcAreas)){ x <- hvdcModification(x, removeHvdcAreas = TRUE, reafectLinks = TRUE) } row <- NULL if (is(x, "antaresDataTable")) { if (!attr(x, "type") == "links") stop("'x' should contain link data") } else if (is(x, "antaresDataList")) { if (is.null(x$links)) stop("'x' should contain link data") if (!is.null(x$areas) && !is.null(x$areas$`ROW BAL.`)) { if ("mcYear" %in% names(x$areas)) { row <- x$areas[, .(area, link = paste(area, " - ROW"), timeId, mcYear, flow = - `ROW BAL.`, to = "ROW", direction = 1)] } else { row <- x$areas[, .(area, link = paste(area, " - ROW"), timeId, flow = - `ROW BAL.`, to = "ROW", direction = 1)] } } x <- x$links } displayMcYear <- !attr(x, "synthesis") && length(unique(x$mcYear)) > 1 timeStep <- attr(x, "timeStep") opts <- simOptions(x) dataDateRange <- as.Date(.timeIdToDate(range(x$timeId), timeStep, opts)) if (length(init_dateRange) < 2) init_dateRange <- dataDateRange linksDef <- getLinks(namesOnly = FALSE, withDirection = TRUE, opts = opts) linksDef <- linksDef[link %in% x$link] areaList <- linksDef[, unique(area)] if (is.null(init_area)) init_area = areaList[1] plotFun <- function(id, area, dateRange, unit, mcYear, legend, stepPlot, drawPoints, main, stack, updateLegendOnMouseOver , yMin, yMax, customTicks) { a <- area linksDef <- getLinks(area, opts = simOptions(x), namesOnly = FALSE, withDirection = TRUE) if(stack != "default") stackOpts <- .aliasToStackExchangesOptions(stack) dt <- x if (mcYear == "average") { dt <- synthesize(dt) if (!is.null(row)) row <- row[, .(flow = mean(flow)), by = .(area, link, timeId, to, direction)] } else if ("mcYear" %in% names(x)) { mcy <- mcYear dt <- dt[mcYear == mcy] if (!is.null(row)) row <- row[mcYear == mcy, .(area, link, timeId, flow, to, direction)] }else{ .printWarningMcYear() } if ("annual" %in% attr(dt, "timeStep")){ dateRange <- NULL } flux_name <- .getColumnsLanguage("FLOW LIN.", language = language) if (!flux_name %in% colnames(dt)){ flux_name <- "FLOW LIN." } if (!is.null(dateRange)){ dt <- merge(dt[as.Date(.timeIdToDate(timeId, timeStep, simOptions(x))) %between% dateRange, .(link, timeId, flow = get(flux_name))], linksDef, by = "link") } else { dt <- merge(dt[, .(link, timeId, flow = get(flux_name))], linksDef, by = "link") } if (!is.null(row)) { if (!is.null(dateRange)){ row <- row[as.Date(.timeIdToDate(timeId, timeStep, simOptions(x))) %between% dateRange] } dt <- rbind(dt, row[area == a]) } dt[, flow := flow * direction / switch(unit, MWh = 1, GWh = 1e3, TWh = 1e6)] if (nrow(dt) == 0){return(combineWidgets(.getLabelLanguage("No data",language)))} dt <- dcast(dt, timeId ~ to, value.var = "flow") if (is.null(main) | isTRUE(all.equal("", main))){ main <- paste(.getLabelLanguage("Flows from/to", language), area) } if (is.null(ylab)){ ylab <- sprintf(.getLabelLanguage("Flows (%s)", language), unit) } if (is.null(colors)) { colors <- substring(rainbow(ncol(dt) - 1, s = 0.7, v = 0.7), 1, 7) } else { colors <- rev(rep(colors, length.out = ncol(dt)- 1)) } if (stack != "default"){ g <- try(.plotExchangesStack(dt, stackOpts$variables, stackOpts$colors, stackOpts$lines, stackOpts$lineColors, stackOpts$lineWidth, opts=simOptions(x), timeStep=timeStep, main = main, unit = unit, legendId = legendId + id - 1, groupId = groupId, updateLegendOnMouseOver = updateLegendOnMouseOver, dateRange = dateRange, yMin=yMin , yMax=yMax , customTicks=customTicks, stepPlot = stepPlot, drawPoints = drawPoints, language = language), silent = TRUE) } else{ g <- .plotStack(dt, timeStep, opts, colors, legendId = legendId + id - 1, groupId = groupId, main = main, ylab = ylab, updateLegendOnMouseOver = updateLegendOnMouseOver, yMin=yMin , yMax=yMax , customTicks=customTicks,,stepPlot = stepPlot, drawPoints = drawPoints, language = language, type = "Exchanges") } if ("try-error" %in% class(g)){ return ( combineWidgets(paste0(.getLabelLanguage("Can't visualize stack", language), " '", stack, "'<br>", g[1])) ) } if (legend & !"ramcharts_base" %in% class(g)) { if (stack != "default"){ legend <- prodStackExchangesLegend(stack, legendItemsPerRow, legendId = legendId + id - 1, language = language)} else{ legend <- tsLegend(names(dt)[-1], colors, types = "area", legendItemsPerRow = legendItemsPerRow, legendId = legendId + id - 1) } } else legend <- NULL combineWidgets(g, footer = legend, width = width, height = height) } list( plotFun = plotFun, areaList = areaList, area = init_area, dataDateRange = dataDateRange, dateRange = init_dateRange, displayMcYear = displayMcYear, x = x ) } if (!interactive) { listParamH5NoInt <- list( timeSteph5 = timeSteph5, mcYearh5 = mcYearh5, tablesh5 = tablesh5, h5requestFiltering = h5requestFiltering ) params <- .getParamsNoInt(x = x, refStudy = refStudy, listParamH5NoInt = listParamH5NoInt, compare = compare, compareOptions = compareOptions, processFun = processFun) L_w <- lapply(seq_along(params$x), function(i){ myData <- params$x[[i]] myData$plotFun(i, myData$area, params$x[[1]]$dateRange, unit, mcYear, legend, stepPlot, drawPoints, main, stack, updateLegendOnMouseOver, yMin, yMax, customTicks) } ) return(combineWidgets(list = L_w)) } table <- NULL mcYearH5 <- NULL paramsH5 <- NULL sharerequest <- NULL timeStepdataload <- NULL timeSteph5 <- NULL x_in <- NULL x_tranform <- NULL meanYearH5 <- NULL manipulateWidget( { .tryCloseH5() if(!is.null(params)){ ind <- .id %% length(params$x) if(ind == 0) ind <- length(params$x) widget <- params$x[[ind]]$plotFun(.id, area, dateRange, unit, mcYear, legend, stepPlot, drawPoints, main, stack, updateLegendOnMouseOver, yMin, yMax, customTicks) controlWidgetSize(widget, language) } else { combineWidgets(.getLabelLanguage("No data for this selection", language)) } }, x = mwSharedValue(x), h5requestFiltering = mwSharedValue({h5requestFiltering}), x_in = mwSharedValue({ .giveListFormat(x) }), paramsH5 = mwSharedValue({ .h5ParamList(X_I = x_in, xyCompare = xyCompare, h5requestFilter = h5requestFiltering) }), H5request = mwGroup( label = .getLabelLanguage("H5request", language), timeSteph5 = mwSelect( { if (length(paramsH5) > 0){ choices = paramsH5$timeStepS names(choices) <- sapply(choices, function(x) .getLabelLanguage(x, language)) choices } else { NULL } }, value = if (.initial) paramsH5$timeStepS[1] else NULL, label = .getLabelLanguage("timeStep", language), multiple = FALSE, .display = !"timeSteph5" %in% hidden ), mcYearH5 = mwSelectize( choices = { ch <- c("Average" = "", paramsH5[["mcYearS"]]) names(ch)[1] <- .getLabelLanguage("Average", language) ch }, value = { if (.initial){paramsH5[["mcYearS"]][1]}else{NULL} }, label = .getLabelLanguage("mcYears to be imported", language), multiple = TRUE, options = list(maxItems = 4), .display = (!"mcYearH5" %in% hidden & !meanYearH5) ), meanYearH5 = mwCheckbox(value = FALSE, label = .getLabelLanguage("Average mcYear", language), .display = !"meanYearH5" %in% hidden), .display = { any(unlist(lapply(x_in, .isSimOpts))) & !"H5request" %in% hidden } ), sharerequest = mwSharedValue({ if (length(meanYearH5) > 0){ if (meanYearH5){ list(timeSteph5_l = timeSteph5, mcYearh_l = NULL, tables_l = NULL) } else { list(timeSteph5_l = timeSteph5, mcYearh_l = mcYearH5, tables_l = NULL) } } else { list(timeSteph5_l = timeSteph5, mcYearh_l = mcYearH5, tables_l = NULL) } }), x_tranform = mwSharedValue({ areas <- "all" links <- "all" if (length(paramsH5$h5requestFilt[[1]]) > 0){ areas <- NULL links <- NULL } resXT <- .get_x_transform(x_in = x_in, sharerequest = sharerequest, refStudy = refStudy, h5requestFilter = paramsH5$h5requestFilter, areas = areas, links = links) resXT }), mcYear = mwSelect({ allMcY <- .compareOperation(lapply(params$x, function(vv){ unique(vv$x$mcYear) }), xyCompare) allMcY=c("average",allMcY) names(allMcY) <- allMcY if (is.null(allMcY)){ allMcY <- "average" names(allMcY) <- .getLabelLanguage("average", language) } allMcY }, value = { if (.initial) mcYear else NULL }, .display = { !"mcYear" %in% hidden }, label = .getLabelLanguage("mcYear to be displayed", language) ), area = mwSelect({ if (!is.null(params)){ as.character(.compareOperation(lapply(params$x, function(vv){ unique(vv$areaList) }), xyCompare)) } }, value = { if (.initial){ if (!is.null(area)){ area } else { if (!is.null(params)){ as.character(.compareOperation(lapply(params$x, function(vv){ unique(vv$areaList) }), xyCompare))[1] } else { NULL } } } else NULL }, label = .getLabelLanguage("area", language), .display = !"area" %in% hidden), dateRange = mwDateRange(value = { if (.initial){ res <- NULL if (!is.null(params)){ res <- c(.dateRangeJoin(params = params, xyCompare = xyCompare, "min", tabl = NULL), .dateRangeJoin(params = params, xyCompare = xyCompare, "max", tabl = NULL)) } if (!is.null(attributes(params$x[[1]]$x)$timeStep)){ if (attributes(params$x[[1]]$x)$timeStep == "hourly"){ if (params$x[[1]]$dateRange[2] - params$x[[1]]$dateRange[1] > 7){ res[1] <- params$x[[1]]$dateRange[2] - 7 } } } res }else{NULL} }, min = { if (!is.null(params)){ if (attributes(params$x[[1]]$x)$timeStep != "annual"){ .dateRangeJoin(params = params, xyCompare = xyCompare, "min", tabl = table) } else { NULL } } }, max = { if (!is.null(params)){ if (attributes(params$x[[1]]$x)$timeStep != "annual"){ .dateRangeJoin(params = params, xyCompare = xyCompare, "max", tabl = table) } else { NULL } } }, language = eval(parse(text = "language")), separator = " : ", .display = timeStepdataload != "annual" & !"dateRange" %in% hidden, label = .getLabelLanguage("dateRange", language) ), stack = mwSelect(c("default",names(pkgEnv$exchangesStackAliases)), stack, label = .getLabelLanguage("stack", language), .display = !"stack" %in% hidden), unit = mwSelect(c("MWh", "GWh", "TWh"), unit, label = .getLabelLanguage("unit", language), .display = !"unit" %in% hidden), yMin= mwNumeric(value=yMin,label="yMin", .display = !"yMin" %in% hidden), yMax= mwNumeric(value=yMax,label="yMax", .display = !"yMax" %in% hidden), legend = mwCheckbox(legend, label = .getLabelLanguage("legend", language), .display = !"legend" %in% hidden), stepPlot = mwCheckbox(stepPlot, label = .getLabelLanguage("stepPlot", language), .display = !"stepPlot" %in% hidden), drawPoints = mwCheckbox(drawPoints, label = .getLabelLanguage("drawPoints", language), .display = !"drawPoints" %in% hidden), updateLegendOnMouseOver = mwCheckbox(updateLegendOnMouseOver, label =.getLabelLanguage("updateLegendOnMouseOver", language), .display = !"updateLegendOnMouseOver" %in% hidden), timeStepdataload = mwSharedValue({ attributes(x_tranform[[1]])$timeStep }), main = mwText(main, label = .getLabelLanguage("title", language), .display = !"main" %in% hidden), params = mwSharedValue({ .getDataForComp(x_tranform, NULL, compare, compareOpts, processFun = processFun) }), .compare = { compare }, .compareOpts = { compareOptions }, ... ) } .aliasToStackExchangesOptions <- function(variables) { if (! variables %in% names(pkgEnv$exchangesStackAliases)) { stop("Unknown alias '", variables, "'.") } pkgEnv$exchangesStackAliases[[variables]] } .plotExchangesStack <- function(x, variables, colors, lines, lineColors, lineWidth, opts, timeStep, main = NULL, unit = "MWh", legendId = "", groupId = legendId, width = NULL, height = NULL, dateRange = NULL, yMin=NULL, yMax=NULL, customTicks = NULL, stepPlot = FALSE, drawPoints = FALSE, updateLegendOnMouseOver=TRUE, language = "en", type = "Exchanges") { formulas <- append(variables, lines) variables <- names(variables) lines <- names(lines) dt <- data.table(timeId = x$timeId) for (n in names(formulas)) { dt[, c(n) := x[, eval(formulas[[n]]) / switch(unit, MWh = 1, GWh = 1e3, TWh = 1e6)]] } p <- .plotStack(dt, timeStep, opts, colors, lines, lineColors, lineWidth, legendId, groupId, main = main, ylab = sprintf("Flows (%s)", unit), width = width, height = height, dateRange = dateRange, yMin = yMin, yMax = yMax, customTicks= customTicks, stepPlot = stepPlot, drawPoints = drawPoints, updateLegendOnMouseOver=updateLegendOnMouseOver , language = language, type = type) p } prodStackExchangesLegend <- function(stack = "default", legendItemsPerRow = 5, legendId = "", language = "en") { stackOpts <- .aliasToStackExchangesOptions(stack) if (!is.null(stackOpts$variables)) { names(stackOpts$variables) <- sapply(names(stackOpts$variables), function(x){ .getColumnsLanguage(x, language) }) } if (!is.null(stackOpts$lines)) { names(stackOpts$lines) <- sapply(names(stackOpts$lines), function(x){ .getColumnsLanguage(x, language) }) } tsLegend( labels = c(names(stackOpts$variables), names(stackOpts$lines)), colors = c(stackOpts$colors, stackOpts$lineColors), types = c(rep("area", length(stackOpts$variables)), rep("line", length(stackOpts$lines))), legendItemsPerRow = legendItemsPerRow, legendId = legendId ) }
is.conformal <- function(h) { is.helly(dual_hypergraph(remove.isolates(h))) } is.bi.conformal <- function(h) { if(!is.conformal(h)) return(FALSE) is.conformal(dual_hypergraph(h)) }
HwdS <- function (x) { n <- length(x) J <- IsPowerOfTwo(n) if (is.na(J)) stop("Length of x is not a power of two") ans <- vector("list", J) for (j in (J - 1):0) { cf <- 2^(-(J - j)/2) f <- c(rep(-cf, 2^(J - j - 1)), rep(cf, 2^(J - j - 1))) ans[[j + 1]] <- getridofendNA(filter(x = x, filter = f, sides = 2)) } ans[[1]] <- rep(0, n) answdS <- wd(rep(0, n), filter.number = 1, family = "DaubExPhase", type = "station") for (j in (J - 1):0) answdS <- putD(answdS, lev = j, ans[[j + 1]]) answdS }
DAMOCLES_all_loglik_choosepar <- function(trparsopt, idparsopt, trparsfix, idparsfix, idparsequal, phy, patrait, edgeTList, locatenode, pchoice, methode, model, verbose) { trpars1 = rep(0,3 * (model == -1) + 2 * (model == 0) + 10 * (model == 0.1 | model == 0.2) + 8 * (model == 1) + 12 * (model == 2 | model == 2.2)) trpars1[idparsopt] = trparsopt if(length(idparsfix) != 0) { trpars1[idparsfix] = trparsfix } if(length(idparsequal) > 0) { trpars1[idparsequal] = trpars1[idparsequal - 1 - (model == 2 | model == 2.2) - (model == 1) * (idparsequal <= 4) + (model == 2 | model == 2.2) * (idparsequal == 10)] } if(max(trpars1) > 1 | min(trpars1) < 0 | ((model == 2 | model == 2.2) & max(trpars1[9:12]) > 0.5)) { loglik = -Inf } else { pars1 = trpars1/(1 - trpars1) if(model < 3) { loglik = DAMOCLES_all_loglik(phy = phy,pa = patrait,pars = pars1,pchoice = pchoice,edgeTList = edgeTList,methode = methode,model = model,Mlist = NULL, verbose = verbose) } else { loglik = DAMOCLES_DD_loglik(phy = phy,pa = patrait,pars = pars1,pchoice = pchoice,locatenode = locatenode,methode = methode,verbose = verbose) } } return(loglik) } DAMOCLES_ML <- DAMOCLES_all_ML <- function( phy, pa, initparsopt, idparsopt = 1:length(initparsopt), parsfix = NULL, idparsfix = NULL, idparsequal = NULL, pars2 = c(1E-3,1E-4,1E-5,1000), optimmethod = 'subplex', pchoice = 0, edgeTList = NULL, methode = 'analytical', model = 0, verbose = FALSE) { locatenode <- NULL if(model < 3) { edgeTList = DAMOCLES_check_edgeTList(phy,edgeTList) } else { locatenode <- DAMOCLES_check_locatenode(phy,locatenode) } patrait = pa if(model == -1) { numpars = 3 namepars = c("mu","gamma_0","gamma_1") } if(model == 0 | model == 0.1 | model == 0.2) { numpars = 2 namepars = c("mu","gamma_0") } if(model == 1) { numpars = 8 namepars = c("mu_0","gamma_0","mu_1","gamma_1","q_0_to_1","q_1_to_0","r_0","r_1") } if(model == 2 | model == 2.2) { numpars = 12 namepars = c("mu_1","gamma_1","mu_2","gamma_2","q_0_to_2","q_2_to_0","q_1_to_2","q_2_to_1","r_0","r_1","r_2","r_3") } if(model == 3) { numpars = 3 namepars = c("mu","gamma_0","K") } if(is.matrix(patrait) == 0) { patrait = matrix(c(phy$tip.label,patrait),nrow = length(patrait),ncol = 2 + (model > 0)) } out2 = -1 idpars = sort(c(idparsopt,idparsfix,idparsequal)) if(length(idpars) != numpars) { stop("Incorrect number of parameters specified.\n") } else { if(prod(idpars == (1:numpars)) != 1) { cat("The parameters to be optimized and fixed are incoherent.\n") } else { cat('\nYou are running model',model,"\n") if(length(namepars[idparsopt]) == 0) { optstr = "nothing" } else { optstr = namepars[idparsopt] } cat("You are optimizing",optstr,"\n") if(length(namepars[idparsfix]) == 0) { fixstr = "nothing" } else { fixstr = namepars[idparsfix] } cat("You are fixing",fixstr,"\n") if(model > 0 & model < 3) { if(length(namepars[idparsequal]) == 0) { fixstr = "nothing" } else { fixstr = namepars[idparsequal] } cat("You are setting",fixstr,"equal to their counterparts.\n") } trparsopt = initparsopt/(1 + initparsopt) if(model == 0.1 | model == 0.2) { parsfix = c(parsfix,0.5,0.5,0.5,0.5,0,0,0,0) idparsfix = c(idparsfix,3:10) } trparsfix = parsfix/(1 + parsfix) trparsfix[parsfix == Inf] = 1 utils::flush.console() initloglik = DAMOCLES_all_loglik_choosepar(trparsopt = trparsopt,trparsfix = trparsfix,idparsopt = idparsopt,idparsfix = idparsfix,idparsequal = idparsequal,phy = phy,patrait = patrait,edgeTList = edgeTList,locatenode = locatenode,methode = methode,pchoice = pchoice,model = model, verbose = verbose) cat("The loglikelihood for the initial parameter values is",initloglik,"\n") utils::flush.console() if(initloglik == -Inf) { cat("The initial parameter values have a likelihood that is equal to 0 or below machine precision. Try again with different initial values.\n") out = -1 return(out) } cat("Optimizing ...\n") optimpars = pars2 utils::flush.console() out = DDD::optimizer(optimmethod = optimmethod, optimpars = optimpars, fun = DAMOCLES_all_loglik_choosepar, trparsopt = trparsopt, trparsfix = trparsfix, idparsopt = idparsopt, idparsfix = idparsfix, idparsequal = idparsequal, phy = phy, patrait = patrait, edgeTList = edgeTList, locatenode = locatenode, methode = methode, pchoice = pchoice, model = model, verbose = verbose) if(out$conv > 0) { cat("Optimization has not converged. Try again with different starting values.\n") } else { MLtrpars = unlist(out$par) MLpars = DDD::roundn(MLtrpars/(1 - MLtrpars),14) out$par = list(MLpars) MLpars1 = rep(0,numpars) MLpars1[idparsopt] = MLpars if(length(idparsfix) != 0) { MLpars1[idparsfix] = parsfix } if(length(idparsequal) != 0) { MLpars1[idparsequal] = MLpars1[idparsequal - 1 - (model == 2 | model == 2.2) - (model == 1) * (idparsequal <= 4) + (model == 2 | model == 2.2) * (idparsequal == 10)] } ML = as.numeric(unlist(out$fvalues)) if(model == -1) { out2 = data.frame(mu = MLpars1[1], gamma_0 = MLpars1[2], gamma_1 = MLpars1[3], loglik = ML, df = length(initparsopt), conv = unlist(out$conv)) s1 = sprintf('Maximum likelihood parameter estimates: mu: %f, gamma_0: %f, gamma_1: %f',MLpars1[1],MLpars1[2],MLpars1[3]) } if(model == 0 | model == 0.1 | model == 0.2) { out2 = data.frame(mu = MLpars1[1], gamma_0 = MLpars1[2], loglik = ML, df = length(initparsopt), conv = unlist(out$conv)) s1 = sprintf('Maximum likelihood parameter estimates: mu: %f, gamma_0: %f',MLpars1[1],MLpars1[2]) } if(model == 1) { out2 = data.frame(mu_0 = MLpars1[1], gamma_0 = MLpars1[2], mu_1 = MLpars1[3], gamma_1 = MLpars1[4], q_0_to_1 = MLpars1[5], q_1_to_0 = MLpars1[6], r_0 = MLpars1[7], r_1 = MLpars1[8], loglik = ML, df = length(initparsopt), conv = unlist(out$conv)) s1 = sprintf('Maximum likelihood parameter estimates: mu_0: %f, gamma_0: %f, mu_1: %f, gamma_1: %f, q_0_to_1: %f, q_1_to_0: %f, r_0: %f, r_1: %f',MLpars1[1],MLpars1[2],MLpars1[3],MLpars1[4],MLpars1[5],MLpars1[6],MLpars1[7],MLpars1[8]) } if(model == 2 | model == 2.2) { out2 = data.frame(mu_1 = MLpars1[1], gamma_1 = MLpars1[2], mu_2 = MLpars1[3], gamma_2 = MLpars1[4], q_0_to_2 = MLpars1[5], q_2_to_0 = MLpars1[6], q_1_to_2 = MLpars1[7], q_2_to_1 = MLpars1[8], r_0 = MLpars1[9], r_1 = MLpars1[10], r_2 = MLpars1[11], r_3 = MLpars1[12], loglik = ML, df = length(initparsopt), conv = unlist(out$conv)) s1 = sprintf('Maximum likelihood parameter estimates: mu_1: %f, gamma_1: %f, mu_2: %f, gamma_2: %f, q_0_to_2: %f, q_2_to_0: %f, q_1_to_2: %f, q_2_to_1: %f, r_0: %f, r_1: %f, r_2: %f, r_3: %f',MLpars1[1],MLpars1[2],MLpars1[3],MLpars1[4],MLpars1[5],MLpars1[6],MLpars1[7],MLpars1[8],MLpars1[9],MLpars1[10],MLpars1[11],MLpars1[12]) } s2 = sprintf('Maximum loglikelihood: %f',out$fvalues) cat("\n",s1,"\n",s2,"\n\n") } } } return(invisible(out2)) }
calibration <- function(formula, data = NULL, blanks = NULL, weights = NULL, model = "lm", check_assumptions = TRUE, ...) { if (missing(formula) || (length(formula) != 3L) || (length(attr(terms(formula[-2L]), "term.labels")) != 1L)) stop("'formula' missing or incorrect") mf <- model.frame(formula, data) newdata <- mf[mf[2L] != 0, ] if (is.null(blanks)) blanks <- mf[mf[2L] == 0, 1] if (!is.null(weights) & length(weights) == 1 & is.character(weights)) { newweights <- with(newdata, eval(parse(text = weights))) } else { if (is.null(weights) | length(weights) == nrow(newdata)) { newweights <- weights } else { stop("'weights' needs to be a single character value or a numeric vector ", "of the same length as non-zero concentration data (without blanks)") } } model <- do.call(model, list(formula = formula, data = newdata, weights = newweights, ...)) model$call <- match.call(expand.dots = F) model$formula <- formula cal <- structure(list(), class = "calibration") cal$model <- model cal$adj.r.squared <- summary(model)$adj.r.squared if (is.null(cal$adj.r.squared)) cal$adj.r.squared <- NA cal$data <- data cal$blanks <- blanks cal$lod <- lod(cal) cal$loq <- loq(cal) cal$relerr <- relerr(cal) if (is.null(weights) & check_assumptions) { swt <- shapiro.test(model$residuals) bpt <- bptest(model) cat("Check for normality of residuals\n") print(swt) cat("Check for homoscedasticity of residuals\n") print(bpt) if (swt$p.value < 0.05 || bpt$p.value < 0.05) warning("model assumptions may not be met; double check graphically and ", "consider using a weighted model instead") } return(cal) } print.calibration <- function(x, ...) { print(x$model, ...) cat(paste0("Adjusted R-squared: ", signif(x$adj.r.squared, 4), "\n")) cat(paste0("Sum relative error: ", signif(sum(abs(x$relerr)), 4), "\n")) cat("\n") cat("Blanks:\n") print(x$blanks) cat("\n") print(signif(rbind(x$lod, x$loq), 3)) } summary.calibration <- function(object, ...) { summary(object$model, ...) } plot.calibration <- function(x, interval = "conf", level = 0.95, ...) { model <- x$model conc <- model$model[,2] new <- data.frame(conc = seq(min(conc), max(conc), length.out = 100 * length(conc))) names(new) <- all.vars(model$formula)[2] pred <- data.frame(new, predict(x$model, new, interval = interval, level = level)) plot(model$formula, data = model$model, ...) lines(pred[, 2] ~ pred[, 1]) tryCatch( { lines(pred[, 3] ~ pred[, 1], lty = 2) lines(pred[, 4] ~ pred[, 1], lty = 2) }, error = function(e) invisible() ) } lod <- function(object, ...) { UseMethod("lod") } lod.default <- function(object, ...) { stop("object needs to be of class 'calibration'") } lod.calibration <- function(object, blanks = NULL, alpha = 0.01, level = 0.05, ...) { model <- object$model conc <- model$model[,2] n <- length(conc) m <- mean(table(conc)) digs <- max(nchar(gsub("(.*\\.)|([0]*$)", "", as.character(conc)))) + 1 if (m != round(m)) warning("measurement replicates of unequal size; ", "LOD estimation might be incorrect") if (n <= model$rank) stop("data points less than degrees of freedom") b <- coef(model)[2] if (is.null(blanks)) blanks <- object$blanks if (length(blanks) > 1) { sl <- sd(blanks) / b val <- sl * -qt(alpha, n - 1) * sqrt(1/n + 1/m) } else { if (length(blanks) == 1) { message("only one blank value supplied; LOD is estimated from the calibration curve") } else { message("no blanks provided; LOD is estimated from the calibration curve") } sx0 <- summary(model)$sigma / b Qx <- sum((conc - mean(conc))^2) / m val <- sx0 * -qt(alpha, n - model$rank) * sqrt(1/n + 1/m + (mean(conc))^2 / Qx) } res <- c(val, .conf(n, level) * val) matrix(round(res, digs), nrow = 1, dimnames = list("LOD", names(res))) } loq <- function(object, ...) UseMethod("loq") loq.default <- function(object, ...) { stop("object needs to be of class 'calibration'") } loq.calibration <- function(object, blanks = NULL, alpha = 0.01, k = 3, level = 0.05, maxiter = 10, ...) { model <- object$model conc <- model$model[,2] n <- length(conc) m <- mean(table(conc)) digs <- max(nchar(gsub("(.*\\.)|([0]*$)", "", as.character(conc)))) + 1 if (m != round(m)) warning("measurement replicates of unequal size; ", "LOQ estimation might be incorrect") if (n <= model$rank) stop("data points less than degrees of freedom") b <- coef(model)[2] sx0 <- summary(model)$sigma / b Qx <- sum((conc - mean(conc))^2) / m if (is.null(blanks)) blanks <- object$blanks val <- k * lod(object, blanks, alpha, level)[1] for (i in 1:maxiter) { prval <- val val <- k * sx0 * -qt(alpha/2, n - model$rank) * sqrt(1/n + 1/m + (val - mean(conc))^2 / Qx) if (round(prval, digs) == round(val, digs)) break } res <- c(val, .conf(n, level) * val) matrix(round(res, digs), nrow = 1, dimnames = list("LOQ", names(res))) } .conf <- function(n, level = 0.05) { kappa <- sqrt((n - 1) / qchisq(c(1 - level/2, level/2), n - 1)) names(kappa) <- c('lwr', 'upr') return(kappa) }
confint.ate <- function(object, parm = NULL, level = 0.95, n.sim = 1e4, estimator = object$estimator, contrasts = object$contrasts, allContrasts = object$allContrasts, meanRisk.transform = "none", diffRisk.transform = "none", ratioRisk.transform = "none", seed = NA, ci = object$inference$se, band = object$inference$band, p.value = TRUE, method.band = "maxT-simulation", alternative = "two.sided", bootci.method = "perc", ...){ if(object$inference$se == FALSE && object$inference$band == FALSE){ message("No confidence interval is computed \n", "Set argument \'se\' to TRUE when calling the ate function \n") return(object) } if(any(contrasts %in% object$contrasts == FALSE)){ stop("Incorrect values for the argument \'contrasts\' \n", "Possible values: \"",paste(object$contrasts,collapse="\" \""),"\" \n") } if(!is.null(allContrasts)){ if(any(allContrasts %in% object$contrasts == FALSE)){ stop("Incorrect values for the argument \'allContrasts\' \n", "Possible values: \"",paste(object$contrasts,collapse="\" \""),"\" \n") } if(any(interaction(allContrasts[1,],allContrasts[2,]) %in% interaction(object$allContrasts[1,],object$allContrasts[2,]) == FALSE)){ stop("Incorrect combinations for the argument \'allContrasts\' \n", "Possible combinations: \"",paste(interaction(object$allContrasts[1,],object$allContrasts[2,]),collapse="\" \""),"\" \n") } if(!is.matrix(allContrasts) || NROW(allContrasts)!=2){ stop("Argument \'allContrasts\' must be a matrix with 2 rows \n") } } estimator <- match.arg(estimator, object$estimator, several.ok = TRUE) meanRisk.transform <- match.arg(meanRisk.transform, c("none","log","loglog","cloglog")) diffRisk.transform <- match.arg(diffRisk.transform, c("none","atanh")) ratioRisk.transform <- match.arg(ratioRisk.transform, c("none","log")) bootci.method <- match.arg(bootci.method, c("norm","basic","stud","perc","wald","quantile")) bootstrap <- object$inference$bootstrap rm.col <- c("se","lower","upper","p.value","quantileBand","lowerBand","upperBand","adj.p.value") out <- list(meanRisk = data.table::copy(object$meanRisk[,.SD,.SDcols = setdiff(names(object$meanRisk),rm.col)]), diffRisk = data.table::copy(object$diffRisk[,.SD,.SDcols = setdiff(names(object$diffRisk),rm.col)]), ratioRisk = data.table::copy(object$ratioRisk[,.SD,.SDcols = setdiff(names(object$ratioRisk),rm.col)]), inference = object$inference, inference.allContrasts = allContrasts, inference.contrasts = contrasts, transform = c("meanRisk" = meanRisk.transform, "diffRisk" = diffRisk.transform, "ratioRisk" = ratioRisk.transform)) out$inference["conf.level"] <- level out$inference["ci"] <- ci out$inference["p.value"] <- p.value out$inference["alternative"] <- alternative out$inference["band"] <- band if(bootstrap){ out$inference["bootci.method"] <- bootci.method }else if(band){ out$inference["method.band"] <- method.band out$inference["n.sim"] <- n.sim } out$meanRisk[,c("se") := as.numeric(NA)] out$diffRisk[,c("se") := as.numeric(NA)] out$ratioRisk[,c("se") := as.numeric(NA)] if(ci){ out$meanRisk[,c("lower","upper") := as.numeric(NA)] out$diffRisk[,c("lower","upper",if(p.value){"p.value"}) := as.numeric(NA)] out$ratioRisk[,c("lower","upper",if(p.value){"p.value"}) := as.numeric(NA)] } if(band>0){ if(method.band %in% c("bonferroni","maxT-integration","maxT-simulation")){ out$meanRisk[,c("quantileBand","lowerBand","upperBand") := as.numeric(NA)] out$diffRisk[,c("quantileBand","lowerBand","upperBand") := as.numeric(NA)] out$ratioRisk[,c("quantileBand","lowerBand","upperBand") := as.numeric(NA)] } if(p.value){ out$diffRisk[,c("adj.p.value") := as.numeric(NA)] out$ratioRisk[,c("adj.p.value") := as.numeric(NA)] } } if(bootstrap){ if(band && !identical(method.band,"none")){ stop("Adjustment for multiple comparisons not implemented for the boostrap. \n") } if(!identical(alternative,"two.sided")){ stop("Only two sided tests are implemented for the boostrap. \n") } if(!identical(out$inference.contrasts,object$contrasts)){ stop("Argument \'contrast\' is not available when using boostrap. \n") } if(!identical(out$inference.allContrasts,object$allContrasts)){ stop("Argument \'allContrast\' is not available when using boostrap. \n") } out <- confintBoot.ate(object, estimator = estimator, out = out, seed = seed) }else{ out <- confintIID.ate(object, estimator = estimator, out = out, seed = seed) } return(out) } confintBoot.ate <- function(object, estimator, out, seed){ name.estimate <- names(object$boot$t0) n.estimate <- length(name.estimate) contrasts <- out$inference.contrasts n.contrasts <- length(contrasts) allContrasts <- out$inference.allContrasts n.allContrasts <- NCOL(allContrasts) collapse.allContrasts <- interaction(allContrasts[1,],allContrasts[2,]) index <- 1:n.estimate conf.level <- out$inference$conf.level alpha <- 1-conf.level bootci.method <- out$inference$bootci.method p.value <- out$inference$p.value ci <- out$inference$ci slot.boot.ci <- switch(bootci.method, "norm" = "normal", "basic" = "basic", "stud" = "student", "perc" = "percent", "bca" = "bca") index.lowerCI <- switch(bootci.method, "norm" = 2, "basic" = 4, "stud" = 4, "perc" = 4, "bca" = 4) index.upperCI <- switch(bootci.method, "norm" = 3, "basic" = 5, "stud" = 5, "perc" = 5, "bca" = 5) test.NA <- !is.na(object$boot$t) test.Inf <- !is.infinite(object$boot$t) n.boot <- colSums(test.NA*test.Inf) boot.se <- sqrt(apply(object$boot$t, 2, var, na.rm = TRUE)) boot.mean <- colMeans(object$boot$t, na.rm = TRUE) if(ci){ try.CI <- try(ls.CI <- lapply(index, function(iP){ if(n.boot[iP]==0){ return(c(lower = NA, upper = NA)) }else if(bootci.method == "wald"){ return(c(lower = as.double(object$boot$t0[iP] + qnorm(alpha/2) * boot.se[iP]), upper = as.double(object$boot$t0[iP] - qnorm(alpha/2) * boot.se[iP]) )) }else if(bootci.method == "quantile"){ return(c(lower = as.double(quantile(object$boot$t[,iP], probs = alpha/2, na.rm = TRUE)), upper = as.double(quantile(object$boot$t[,iP], probs = 1-(alpha/2), na.rm = TRUE)) )) }else{ if (requireNamespace("boot",quietly=TRUE)){ out <- boot::boot.ci(object$boot, conf = conf.level, type = bootci.method, index = iP)[[slot.boot.ci]][index.lowerCI:index.upperCI] }else{ stop("Package 'boot' requested to obtain confidence intervals, but not installed.") } return(setNames(out,c("lower","upper"))) } }),silent=TRUE) if (class(try.CI)[1]=="try-error"){ warning("Could not construct bootstrap confidence limits") boot.CI <- matrix(rep(NA,2*length(index)),ncol=2) } else{ boot.CI <- do.call(rbind,ls.CI) } } if(p.value){ null <- setNames(rep(NA,length(name.estimate)),name.estimate) null[grep("^diff", name.estimate)] <- 0 null[grep("^ratio", name.estimate)] <- 1 boot.p <- sapply(index, function(iP){ iNull <- null[iP] if(is.na(iNull)){return(NA)} iEstimate <- object$boot$t0[iP] iSE <- boot.se[iP] if(n.boot[iP]==0){ return(NA) }else if(bootci.method == "wald"){ return(2*(1-stats::pnorm(abs((iEstimate-iNull)/iSE)))) }else if(bootci.method == "quantile"){ if(iEstimate > iNull){ return(mean(object$boot$t[,iP] > iNull)) }else if(iEstimate < iNull){ return(mean(object$boot$t[,iP] < iNull)) }else{ return(1) } }else{ p.value <- boot2pvalue(x = object$boot$t[,iP], null = iNull, estimate = iEstimate, alternative = "two.sided", FUN.ci = function(p.value, sign.estimate, ...){ side.CI <- c(index.lowerCI,index.upperCI)[2-sign.estimate] if (requireNamespace("boot",quietly=TRUE)){ boot::boot.ci(object$boot, conf = 1-p.value, type = bootci.method, index = iP)[[slot.boot.ci]][side.CI] }else{ stop("Package 'boot' requested to obtain confidence intervals, but not installed.") } }) return(p.value) } }) } vcov.meanRisk <- setNames(vector(mode = "list", length = length(estimator)), estimator) vcov.diffRisk <- setNames(vector(mode = "list", length = length(estimator)), estimator) vcov.ratioRisk <- setNames(vector(mode = "list", length = length(estimator)), estimator) for(iE in 1:length(estimator)){ iEstimator <- estimator[iE] indexMean <- grep(paste0("^mean.",iEstimator),name.estimate) indexDiff <- grep(paste0("^difference.",iEstimator),name.estimate) indexRatio <- grep(paste0("^ratio.",iEstimator),name.estimate) out$meanRisk[iEstimator, c("estimate.boot") := boot.mean[indexMean], on = "estimator"] out$diffRisk[iEstimator, c("estimate.boot") := boot.mean[indexDiff], on = "estimator"] out$ratioRisk[iEstimator, c("estimate.boot") := boot.mean[indexRatio], on = "estimator"] out$meanRisk[iEstimator, c("se") := boot.se[indexMean], on = "estimator"] out$diffRisk[iEstimator, c("se") := boot.se[indexDiff], on = "estimator"] out$ratioRisk[iEstimator, c("se") := boot.se[indexRatio], on = "estimator"] vcov.meanRisk[[iEstimator]] <- setNames(lapply(contrasts, function(iC){ var(object$boot$t[,grep(paste0(iC,"$"),name.estimate[indexMean], value = TRUE),drop=FALSE]) }), contrasts) vcov.diffRisk[[iEstimator]] <- setNames(lapply(collapse.allContrasts, function(iC){ var(object$boot$t[,grep(paste0(iC,"$"),name.estimate[indexDiff], value = TRUE),drop=FALSE]) }), collapse.allContrasts) vcov.ratioRisk[[iEstimator]] <- setNames(lapply(collapse.allContrasts, function(iC){ var(object$boot$t[,grep(paste0(iC,"$"),name.estimate[indexRatio], value = TRUE),drop=FALSE]) }), collapse.allContrasts) if(ci){ out$meanRisk[iEstimator, c("lower","upper") := list(boot.CI[indexMean,"lower"],boot.CI[indexMean,"upper"]), on = "estimator"] out$diffRisk[iEstimator, c("lower","upper") := list(boot.CI[indexDiff,"lower"],boot.CI[indexDiff,"upper"]), on = "estimator"] out$ratioRisk[iEstimator, c("lower","upper") := list(boot.CI[indexRatio,"lower"],boot.CI[indexRatio,"upper"]), on = "estimator"] } if(p.value){ out$diffRisk[iEstimator, c("p.value") := boot.p[indexDiff], on = "estimator"] out$ratioRisk[iEstimator, c("p.value") := boot.p[indexRatio], on = "estimator"] } } if(attr(object$estimator,"TD")){ setcolorder(out$meanRisk, neworder = c("estimator","time","landmark","treatment","estimate","estimate.boot","se","lower","upper")) setcolorder(out$diffRisk, neworder = c("estimator","time","landmark","A","B","estimate.A","estimate.B","estimate","estimate.boot","se","lower","upper","p.value")) setcolorder(out$ratioRisk, neworder = c("estimator","time","landmark","A","B","estimate.A","estimate.B","estimate","estimate.boot","se","lower","upper","p.value")) }else{ setcolorder(out$meanRisk, neworder = c("estimator","time","treatment","estimate","estimate.boot","se","lower","upper")) setcolorder(out$diffRisk, neworder = c("estimator","time","A","B","estimate.A","estimate.B","estimate","estimate.boot","se","lower","upper","p.value")) setcolorder(out$ratioRisk, neworder = c("estimator","time","A","B","estimate.A","estimate.B","estimate","estimate.boot","se","lower","upper","p.value")) } data.table::setattr(out$meanRisk, name = "vcov", value = vcov.meanRisk) data.table::setattr(out$diffRisk, name = "vcov", value = vcov.diffRisk) data.table::setattr(out$ratioRisk, name = "vcov", value = vcov.ratioRisk) return(out) } confintIID.ate <- function(object, estimator, out, seed){ n.estimator <- length(estimator) if(is.null(object$iid) || any(sapply(object$iid[estimator],is.null))){ stop("Cannot re-compute standard error or confidence bands without the iid decomposition \n", "Set argument \'iid\' to TRUE when calling the ate function \n") } times <- object$eval.times n.times <- length(times) contrasts <- out$inference.contrasts n.contrasts <- length(contrasts) allContrasts <- out$inference.allContrasts n.allContrasts <- NCOL(allContrasts) collapse.allContrasts <- interaction(allContrasts[1,],allContrasts[2,]) n.obs <- max(stats::na.omit(object$n[-1])) conf.level <- out$inference$conf.level alternative <- out$inference$alternative ci <- out$inference$ci band <- out$inference$band method.band <- out$inference$method.band p.value <- out$inference$p.value n.sim <- out$inference$n.sim meanRisk.transform <- out$transform["meanRisk"] diffRisk.transform <- out$transform["diffRisk"] ratioRisk.transform <- out$transform["ratioRisk"] vcov.meanRisk <- setNames(vector(mode = "list", length = length(estimator)), estimator) vcov.diffRisk <- setNames(vector(mode = "list", length = length(estimator)), estimator) vcov.ratioRisk <- setNames(vector(mode = "list", length = length(estimator)), estimator) for(iE in 1:n.estimator){ iEstimator <- estimator[iE] estimate.mR <- matrix(NA, nrow = n.contrasts, ncol = n.times) iid.mR <- array(NA, dim = c(n.obs, n.times, n.contrasts)) for(iC in 1:n.contrasts){ estimate.mR[iC,] <- object$meanRisk[list(iEstimator,contrasts[iC]), .SD$estimate, on = c("estimator","treatment")] iid.mR[,,iC] <- object$iid[[iEstimator]][[contrasts[iC]]] } se.mR <- t(sqrt(apply(iid.mR^2, MARGIN = 2:3, sum))) CIBP.mR <- transformCIBP(estimate = estimate.mR, se = se.mR, iid = iid.mR, null = NA, conf.level = conf.level, alternative = "two.sided", n.sim = n.sim, seed = seed, type = meanRisk.transform, min.value = switch(meanRisk.transform, "none" = 0, "log" = NULL, "loglog" = NULL, "cloglog" = NULL), max.value = switch(meanRisk.transform, "none" = 1, "log" = 1, "loglog" = NULL, "cloglog" = NULL), ci = ci, band = band, method.band = method.band, p.value = FALSE) vcov.meanRisk[[iEstimator]] <- setNames(vector(mode = "list", length = n.contrasts), contrasts) for(iC in 1:n.contrasts){ iRowIndex <- which((out$meanRisk$estimator==iEstimator)*(out$meanRisk$treatment==contrasts[iC])==1) out$meanRisk[iRowIndex, c("se") := se.mR[iC,]] if(ci){ out$meanRisk[iRowIndex, c("lower","upper") := list(CIBP.mR$lower[iC,],CIBP.mR$upper[iC,])] } if((band>0) && (method.band %in% c("bonferroni","maxT-integration","maxT-simulation"))){ out$meanRisk[iRowIndex, c("quantileBand","lowerBand","upperBand") := list(CIBP.mR$quantileBand[iC],CIBP.mR$lowerBand[iC,],CIBP.mR$upperBand[iC,])] } if(n.times==1){ vcov.meanRisk[[iEstimator]][[iC]] <- sum(iid.mR[,,iC]^2) }else{ vcov.meanRisk[[iEstimator]][[iC]] <- crossprod(iid.mR[,,iC]) } } estimate.dR <- matrix(NA, nrow = n.allContrasts, ncol = n.times) iid.dR <- array(NA, dim = c(n.obs, n.times, n.allContrasts)) for(iC in 1:n.allContrasts){ estimate.dR[iC,] <- object$diffRisk[list(iEstimator,allContrasts[1,iC],allContrasts[2,iC]), .SD$estimate, on = c("estimator","A","B")] iid.dR[,,iC] <- object$iid[[iEstimator]][[allContrasts[2,iC]]] - object$iid[[iEstimator]][[allContrasts[1,iC]]] } se.dR <- t(sqrt(apply(iid.dR^2, MARGIN = 2:3, sum))) CIBP.dR <- transformCIBP(estimate = estimate.dR, se = se.dR, iid = iid.dR, null = 0, conf.level = conf.level, alternative = alternative, n.sim = n.sim, seed = seed, type = diffRisk.transform, min.value = switch(diffRisk.transform, "none" = -1, "atanh" = NULL), max.value = switch(diffRisk.transform, "none" = 1, "atanh" = NULL), ci = ci, band = band, method.band = method.band, p.value = p.value) vcov.diffRisk[[iEstimator]] <- setNames(vector(mode = "list", length = n.allContrasts), collapse.allContrasts) for(iC in 1:n.allContrasts){ iRowIndex <- which((out$diffRisk$estimator==iEstimator)*(out$diffRisk$A==allContrasts[1,iC])*(out$diffRisk$B==allContrasts[2,iC])==1) out$diffRisk[iRowIndex, c("se") := se.dR[iC,]] if(ci){ out$diffRisk[iRowIndex, c("lower","upper") := list(CIBP.dR$lower[iC,],CIBP.dR$upper[iC,])] if(p.value){ out$diffRisk[iRowIndex, c("p.value") := CIBP.dR$p.value[iC,]] } } if(band>0){ if(method.band %in% c("bonferroni","maxT-integration","maxT-simulation")){ out$diffRisk[iRowIndex, c("quantileBand","lowerBand","upperBand") := list(CIBP.dR$quantileBand[iC],CIBP.dR$lowerBand[iC,],CIBP.dR$upperBand[iC,])] } if(p.value){ out$diffRisk[iRowIndex, c("adj.p.value") := CIBP.dR$adj.p.value[iC,]] } } if(n.times==1){ vcov.diffRisk[[iEstimator]][[iC]] <- sum(iid.dR[,,iC]^2) }else{ vcov.diffRisk[[iEstimator]][[iC]] <- crossprod(iid.dR[,,iC]) } } estimate.rR <- matrix(NA, nrow = n.allContrasts, ncol = n.times) iid.rR <- array(NA, dim = c(n.obs, n.times, n.allContrasts)) for(iC in 1:n.allContrasts){ estimate.rR[iC,] <- object$ratioRisk[list(iEstimator,allContrasts[1,iC],allContrasts[2,iC]), .SD$estimate, on = c("estimator","A","B")] factor1 <- object$meanRisk[list(iEstimator, allContrasts[1,iC]),.SD$estimate, on = c("estimator","treatment")] factor2 <- object$meanRisk[list(iEstimator, allContrasts[2,iC]),.SD$estimate, on = c("estimator","treatment")] term1 <- rowMultiply_cpp(object$iid[[iEstimator]][[allContrasts[2,iC]]], scale = 1/factor1) term2 <- rowMultiply_cpp(object$iid[[iEstimator]][[allContrasts[1,iC]]], scale = factor2/factor1^2) iid.rR[,,iC] <- term1 - term2 } se.rR <- t(sqrt(apply(iid.rR^2, MARGIN = 2:3, sum))) CIBP.rR <- transformCIBP(estimate = estimate.rR, se = se.rR, iid = iid.rR, null = 1, conf.level = conf.level, alternative = alternative, n.sim = n.sim, seed = seed, type = ratioRisk.transform, min.value = switch(ratioRisk.transform, "none" = 0, "log" = NULL), max.value = NULL, ci = ci, band = band, method.band = method.band, p.value = p.value) vcov.ratioRisk[[iEstimator]] <- setNames(vector(mode = "list", length = n.allContrasts), collapse.allContrasts) for(iC in 1:n.allContrasts){ iRowIndex <- which((out$ratioRisk$estimator==iEstimator)*(out$ratioRisk$A==allContrasts[1,iC])*(out$ratioRisk$B==allContrasts[2,iC])==1) out$ratioRisk[iRowIndex, c("se") := se.rR[iC,]] if(ci){ out$ratioRisk[iRowIndex, c("lower","upper") := list(CIBP.rR$lower[iC,],CIBP.rR$upper[iC,])] if(p.value){ out$ratioRisk[iRowIndex, c("p.value") := CIBP.rR$p.value[iC,]] } } if(band>0){ if(method.band %in% c("bonferroni","maxT-integration","maxT-simulation")){ out$ratioRisk[iRowIndex, c("quantileBand","lowerBand","upperBand") := list(CIBP.rR$quantileBand[iC],CIBP.rR$lowerBand[iC,],CIBP.rR$upperBand[iC,])] } if(p.value){ out$ratioRisk[iRowIndex, c("adj.p.value") := CIBP.rR$adj.p.value[iC,]] } } if(n.times==1){ vcov.ratioRisk[[iEstimator]][[iC]] <- sum(iid.rR[,,iC]^2) }else{ vcov.ratioRisk[[iEstimator]][[iC]] <- crossprod(iid.rR[,,iC]) } } } data.table::setattr(out$meanRisk, name = "vcov", value = vcov.meanRisk) data.table::setattr(out$diffRisk, name = "vcov", value = vcov.diffRisk) data.table::setattr(out$ratioRisk, name = "vcov", value = vcov.ratioRisk) return(out) }
Vardsgr <- function (ndpts,kvar1,kdv1,rdes) { res<-.Fortran("vdg",as.integer(ndpts),as.integer(kvar1),as.integer(kdv1), as.double(rdes),vdgr=double(84)) return(res$vdgr) }
fpeq <- function(xinit, fn, merit, method=c("pure", "UR", "vH", "RRE", "MPE", "SqRRE", "SqMPE"), control=list(), stepfunc, argstep, silent=TRUE, order.method=1, ...) { method <- match.arg(method, c("pure","UR", "vH", "RRE", "MPE", "SqRRE", "SqMPE")) if(method %in% c("SqRRE", "SqMPE")) { order.method <- ifelse(order.method == 1, 2, order.method) method <- substr(method, 3, 5) } if(method == "UR") { if(missing(fn) || missing(xinit) || missing(stepfunc) || missing(merit)) stop("missing parameters for UR method") if(!missing(argstep)) finalstep <- function(x) stepfunc(x, argstep) else finalstep <- stepfunc } if(method == "vH") if(missing(fn) || missing(xinit) || missing(merit)) stop("missing parameters for vH method") noitercount <- FALSE inner.counts.fpfn <- c(0, 0) inner.iter.fpfn <- 0 wrapfn <- function(x) { fx <- fn(x) inner.counts.fpfn <<- inner.counts.fpfn + fx$counts inner.iter.fpfn <<- inner.iter.fpfn + fx$iter fx$par } if(!is.null(merit)) { inner.counts.merit <- c(0, 0) inner.iter.merit <- 0 wrapmerit <- function(x, ...) { vx <- merit(x, ...) inner.counts.merit <<- inner.counts.merit + vx$counts inner.iter.merit <<- inner.iter.merit + vx$iter vx$value } }else { wrapmerit <- NULL inner.counts.merit <- inner.iter.merit <- 0 } con <- list(sigma=9/10, beta=1/2, tol=1e-6, maxit=100, echo=0) namc <- names(con) con[namc <- names(control)] <- control confpiter <- list(tol=1e-6, maxiter=100, trace=FALSE) if(!is.null(control$tol)) confpiter$tol <- control$tol if(!is.null(control$maxit)) confpiter$maxiter <- control$maxit if(!is.null(control$trace)) confpiter$trace <- control$trace consquarem <- list(tol=1e-6, maxiter=100, trace=FALSE, K=order.method, method=ifelse(order.method==1, 1*(method == "RRE")+2*(method == "MPE"), method)) if(!is.null(control$tol)) consquarem$tol <- control$tol if(!is.null(control$maxit)) consquarem$maxiter <- control$maxit if(!is.null(control$trace)) consquarem$trace <- control$trace if(method == "pure" && !is.null(wrapmerit)) { myGNE <- try( pureFP(xinit, wrapfn, wrapmerit, control=con, ...), silent=silent) } if(method == "pure" && is.null(wrapmerit)) { myGNE <- try( fpiter(xinit, wrapfn, wrapmerit, control=confpiter, ...), silent=silent) if(!is(myGNE,"try-error")) { if(!silent) print(myGNE) myGNE$value <- max(abs(fn(myGNE$par)$par)) myGNE$counts <- c(fn=myGNE$fpevals, merit=myGNE$objfevals) myGNE$code <- 1*(myGNE$convergence == 0) + 4*(myGNE$fpevals[1] >= confpiter$maxiter) myGNE$code <- myGNE$code + 2*(myGNE$convergence != 0 & myGNE$fpevals[1] <= consquarem$maxiter) } } if(method == "UR") { myGNE <- try( relaxationAlgoUR(xinit, finalstep, wrapfn, wrapmerit, control=con, ...), silent=silent) } if(method == "vH") { myGNE <- try( relaxationAlgoVH(xinit, wrapfn, wrapmerit, control=con, ...), silent=silent) } if(method %in% c("RRE","MPE","SqRRE","SqMPE") && !is.null(wrapmerit)) { myGNE <- try( extrapolFP(xinit, wrapfn, wrapmerit, control=con, method=method, ...), silent=FALSE) } if(method %in% c("RRE","MPE","SqRRE","SqMPE") && is.null(wrapmerit)) { myGNE <- try( squarem(xinit, wrapfn, control=consquarem, ...), silent=FALSE) if(!is(myGNE,"try-error")) { if(!silent) print(myGNE) myGNE$value <- max(abs(fn(myGNE$par)$par)) myGNE$counts <- c(fn=myGNE$fpevals, merit=myGNE$objfevals) myGNE$code <- 1*(myGNE$convergence == 0) + 4*(myGNE$fpevals[1] > consquarem$maxiter) myGNE$code <- myGNE$code + 2*(myGNE$convergence != 0 & myGNE$fpevals[1] <= consquarem$maxiter) } } if(!is(myGNE,"try-error")) res <- list(par=myGNE$par, value=myGNE$value, outer.counts=myGNE$counts, outer.iter=myGNE$counts[1], code=myGNE$code, inner.iter=inner.iter.fpfn+inner.iter.merit, inner.counts=inner.counts.fpfn+inner.counts.merit, message=myGNE$message) else res <- list(par= NA, value=NA, outer.counts=NA, outer.iter=NA, code=100, message=paste("Error in the fixed-point problem:", myGNE, "."), inner.counts=NA, inner.iter=NA) res } pureFP <- function(xinit, fn, merit, control, ...) { echo <- control$echo maxit <- control$maxit tol <- control$tol k <- 1 xk_1 <- xinit xk <- fn(xk_1) xkp1 <- fn(xk) merit_xk <- merit(xk, y=xkp1) if(echo >= 1) cat("**** k", k, "\n x_k", xk, "\n") if(echo >= 2) cat(" m(x_k)", merit_xk, "\n") while( abs( merit_xk ) > tol && k < maxit) { xk_1 <- xk k <- k+1 xk <- xkp1 xkp1 <- fn(xk) merit_xk <- merit(xk, y=xkp1) if(echo >= 1) cat("**** k", k, "\n x_k", xk, "\n") if(echo >= 2) cat(" m(x_k)", merit_xk, "\n") } list(par = xk, value=merit_xk , counts=c(fn=k+1, merit=k+1), iter = k, code=(k >= maxit)*4 + (abs(merit_xk) <= tol)*1 + (max(abs(xk - xk_1)/abs(xk)) <= tol)*2) } relaxationAlgoUR <- function(xinit, stepfunc, fn, merit, control, ...) { echo <- control$echo maxit <- control$maxit tol <- control$tol k <- 1 xk_1 <- xinit alphak <- stepfunc(k) xk <- (1-alphak) * xk_1 + alphak * fn(xk_1) if(!is.null(merit)) merit_xk <- merit(xk) else merit_xk <- max(abs(xk - xk_1)) if(echo >= 1) cat("**** k", k, "\n x_k", xk, "\n") if(echo >= 2) cat(" m(x_k)", merit_xk, "\n") if(echo >= 3) cat("step size", alphak, "\n\n") while( abs( merit_xk ) > tol && k < maxit) { xk_1 <- xk k <- k+1 alphak <- stepfunc(k) xk <- (1-alphak) * xk_1 + alphak * fn(xk_1) if(!is.null(merit)) merit_xk <- merit(xk) else merit_xk <- max(abs(xk - xk_1)) if(echo >= 1) cat("**** k", k, "\n x_k", xk, "\n") if(echo >= 2) cat(" m(x_k)", merit_xk, "\n") if(echo >= 3) cat("step size", alphak, "\n\n") } list(par = xk, value=merit_xk , counts=c(fn=k+1, merit=k+1), iter = k, code=(k >= maxit)*4 + (abs(merit_xk) <= tol)*1 + (max(abs(xk - xk_1)/abs(xk)) <= tol)*2) } relaxationAlgoVH <- function(xinit, fn, merit, control, ...) { sigma <- control$sigma beta <- control$beta tol <- control$tol echo <- control$echo maxit <- control$maxit k <- 0 xk_1 <- xinit xk <- fn(xk_1) merit_xk <- merit(xk) counts <- c(fn=1, merit=1) if(echo >= 1) cat("**** k", k, "\n x_k", xk, "\n") if(echo >= 2) cat(" m(x_k)", merit_xk, "\n") while( abs( merit_xk ) > tol && k < maxit) { k <- k+1 xk_1 <- xk dk <- fn(xk) - xk normdk <- sqrt(sum(dk^2)) merit_xk <- merit(xk) tk <- 1 l <- 0 merit_xktkdk <- merit(xk + tk*dk) while( merit_xktkdk > merit_xk - sigma * tk^2 * normdk^2 ) { tk <- tk * beta merit_xktkdk <- merit(xk + tk*dk) if(echo >= 3) { cat(l, "\t", merit_xktkdk, "\t <= ") cat(merit_xk - sigma * tk^2 * normdk^2, "?\t") cat("tk", tk, "\n\n") } l <- l+1 } xk <- xk_1 + tk * dk merit_xk <- merit_xktkdk if(echo >= 1) cat("**** k", k, "\n x_k", xk, "\n") if(echo >= 2) cat(" m(x_k)", merit_xk, "\n") counts <- counts+1 counts[2] <- counts[2]+l } list(par = xk, value=merit_xk , counts=counts, iter = k, code=(k >= maxit)*4 + (abs(merit_xk) <= tol)*1 + (max(abs(xk - xk_1)/abs(xk)) <= tol)*2) } extrapolFP <- function(xinit, fn, merit, control, method, ...) { echo <- control$echo maxit <- control$maxit tol <- control$tol k <- 1 xk_1 <- xinit xk <- fn(xk_1) merit_xk <- merit(xk) counts <- c(fn=1, merit=1) if(echo >= 1) cat("**** k", k, "\n x_k", xk, "\n") if(echo >= 2) cat(" m(x_k)", merit_xk, "\n") while( abs( merit_xk ) > tol && k < maxit) { xk_1 <- xk k <- k+1 xk <- fn(xk_1) xkp1 <- fn(xk) Delta1_xk <- xk - xk_1 Delta2_xk <- xkp1 - 2*xk + xk_1 if(method == "RRE" || method == "SqRRE") mystep <- crossprod(Delta2_xk, Delta1_xk) / crossprod(Delta2_xk, Delta2_xk) if(method == "MPE" || method == "SqMPE") mystep <- crossprod(Delta1_xk, Delta1_xk) / crossprod(Delta1_xk, Delta2_xk) if(is.nan(mystep) || is.infinite(mystep)) { warning("Delta square xk is too small: Use the last iterate.") xk <- xkp1 }else if(substr(method, 1, 2) == "Sq") { xk <- xk_1 - 2*Delta1_xk * mystep + Delta2_xk * mystep^2 }else { xk <- xk_1 - Delta1_xk * mystep } merit_xk <- merit(xk) if(echo >= 1) cat("**** k", k, "\n x_k", xk, "\n") if(echo >= 2) cat(" m(x_k)", merit_xk, "\n") if(echo >= 3) cat(" Delta(xk)", Delta1_xk, "\n", "Delta^2(xk)", Delta2_xk, "\n\n") counts <- counts + c(2,1) } list(par = xk, value=merit_xk , counts=counts, iter = k, code=(k >= maxit)*4 + (abs(merit_xk) <= tol)*1 + (max(abs(xk - xk_1)/abs(xk)) <= tol)*2) }
so_PharmMLRef_new <- function() { obj = .Call("r_so_PharmMLRef_new") } so_PharmMLRef_copy <- function(self) { .Call("r_so_PharmMLRef_copy", self) } so_PharmMLRef_free <- function(self) { .Call("r_so_PharmMLRef_free", self) } so_PharmMLRef_ref <- function(self) { .Call("r_so_PharmMLRef_ref", self) } so_PharmMLRef_unref <- function(self) { .Call("r_so_PharmMLRef_unref", self) } so_PharmMLRef_get_name <- function(self) { .Call("r_so_PharmMLRef_get_name", self) } so_PharmMLRef_set_name <- function(self, value) { .Call("r_so_PharmMLRef_set_name", self, value) } so_PharmMLRef_get_id <- function(self) { .Call("r_so_PharmMLRef_get_id", self) } so_PharmMLRef_set_id <- function(self, value) { .Call("r_so_PharmMLRef_set_id", self, value) } so_PharmMLRef_get_Description <- function(self) { .Call("r_so_PharmMLRef_get_Description", self) } so_PharmMLRef_set_Description <- function(self, value) { .Call("r_so_PharmMLRef_set_Description", self, value) } name_acc <- function(value) { if (!isnull(.self$.cobj)) { if (missing(value)) { so_PharmMLRef_get_name(.self$.cobj) } else { stopifnot(is.character(value), length(value) == 1) so_PharmMLRef_set_name(.self$.cobj, value) } } } id_acc <- function(value) { if (!isnull(.self$.cobj)) { if (missing(value)) { so_PharmMLRef_get_id(.self$.cobj) } else { stopifnot(is.character(value), length(value) == 1) so_PharmMLRef_set_id(.self$.cobj, value) } } } Description_acc <- function(value) { if (!isnull(.self$.cobj)) { if (missing(value)) { so_PharmMLRef_get_Description(.self$.cobj) } else { if (!is(value, "character")) { stop("object must be of type 'character'") } so_PharmMLRef_set_Description(.self$.cobj, value) } } } so_PharmMLRef = setRefClass("so_PharmMLRef", fields=list( name = name_acc, id = id_acc, Description = Description_acc, .cobj = "externalptr" ), methods=list( copy = function() { copy = so_PharmMLRef_copy(.self$.cobj) so_PharmMLRef$new(cobj=copy) }, initialize = function(cobj) { if (missing(cobj)) { .cobj <<- so_PharmMLRef_new() } else { .cobj <<- cobj } }, finalize = function() { so_PharmMLRef_unref(.self$.cobj) } ) )
forcingsSymb <- function(type =c("Gauss", "Fermi", "1-Fermi", "MM", "Signal", "Dose"), parameters = NULL) { type <- match.arg(type) fn1 <- "(.5*(1.-tanh(.5*k*(time-T1))))" fn2 <- "(.5*(1.+tanh(.5*k*(time-T2))))" integral <- "(Tduration/(exp(20)-1))" k <- "(20/Tduration)" T1 <- "(Tlag+Tinit)" T2 <- "(Tlag+Tinit+Tduration)" INPUT <- paste0("Dose*(", fn1, ")*(", fn2, ")/", integral) INPUT <- replaceSymbols(c("k", "T1", "T2"), c(k, T1, T2), INPUT) INPUT <- paste0("(", INPUT, ")") fun <- switch(type, "Gauss" = "(scale*exp(-(time-mu)^2/(2*tau^2))/(tau*2.506628))", "Fermi" = "(scale/(exp((time-mu)/tau)+1))", "1-Fermi" = "(scale*exp((time-mu)/tau)/(exp((time-mu)/tau)+1))", "MM" = "(slope*time/(1 + slope*time/vmax))", "Signal" = "(max1*max2*(1-exp(-time/tau1))*exp(-time*tau2))", "Dose" = INPUT ) if(!is.null(parameters)) { fun <- replaceSymbols(names(parameters), parameters, fun) } return(fun) } getCoefficients <- function(char, symbol) { pdata <- getParseData(parse(text = char, keep.source = TRUE)) pdata <- pdata[pdata$terminal == TRUE, ] symbolPos <- which(pdata$text == symbol) coefficients <- rep(1, length(symbolPos)) hasCoefficient <- rep(FALSE, length(symbolPos)) hasCoefficient[symbolPos > 1] <- (pdata$text[symbolPos[symbolPos > 1] - 1] == "*") coefficients[hasCoefficient] <- pdata$text[symbolPos[hasCoefficient]-2] return(as.numeric(coefficients)) } resolveRecurrence <- function (variables) { if(length(variables) > 1) { for (i in 1:(length(variables) - 1)) { newvariables <- c(variables[1:i], unlist(replaceSymbols(names(variables)[i], paste("(", variables[i], ")", sep = ""), variables[(i + 1):length(variables)]))) names(newvariables) <- names(variables) variables <- newvariables } } return(variables) } nullZ <- function(A, tol=sqrt(.Machine$double.eps)) { ret <- rref(A) ret[[1]] -> R ret[[2]] -> pivcol n <- ncol(A) r <- length(pivcol) nopiv <- 1:n nopiv <- nopiv[-pivcol] Z <- mat <- matrix(0, nrow = n, ncol = n-r) if ( n>r ) { Z[nopiv,] <- diag(1, n-r, n-r) if ( r>0 ) { Z[pivcol,] <- -R[1:r,nopiv] } } return (Z) } rref <- function(A, tol=sqrt(.Machine$double.eps), verbose=FALSE, fractions=FALSE){ if ((!is.matrix(A)) || (!is.numeric(A))) stop("argument must be a numeric matrix") m <- nrow(A) n <- ncol(A) i <- 1 j <- 1 pivcol <- c() while ((i <= m) & (j <= n)){ which <- which.max(abs(A[i:m,j])) k <- i+which-1 pivot <- A[k, j] if ( abs(pivot) <= tol ) { A[i:m,j] =matrix(0,m-i+1,1) j <- j+1 } else { pivcol <- cbind(pivcol,j) A[cbind(i,k),j:n] = A[cbind(k, i),j:n]; A[i,j:n] = A[i,j:n]/A[i,j]; otherRows <- 1:m otherRows <- otherRows[-i] for (u in otherRows) { A[u,j:n] = A[u,j:n] - A[u,j]*A[i,j:n]; } i = i + 1; j = j + 1; } } return (list(A,pivcol)) }
besag_newell <- function(geo, population, cases, expected.cases=NULL, k, alpha.level){ if(is.null(expected.cases)){ p <- sum(cases)/sum(population) expected.cases <- population*p } geo.results <- zones(geo, population, 1) nearest.neighbors <- geo.results$nearest.neighbors distance <- geo.results$dist n.zones <- length(unlist(nearest.neighbors)) results <- besag_newell_internal(cases, expected.cases, nearest.neighbors, n.zones, k) p.values <- results$observed.p.values m.values <- results$observed.m.values k.values <- results$observed.k.values signif.indices <- order(p.values)[1:sum(p.values <= alpha.level)] signif.p.values <- p.values[signif.indices] signif.m.values <- m.values[signif.indices] signif.k.values <- k.values[signif.indices] if(length(signif.indices) == 0){ clusters <- NULL } else { clusters <- vector("list", length=length(signif.indices)) for( i in 1:length(clusters) ){ cluster <- order(distance[signif.indices[i],])[1:signif.m.values[i]] new.cluster <- list( location.IDs.included = cluster, population = sum(population[cluster]), number.of.cases = sum(cases[cluster]), expected.cases = sum(expected.cases[cluster]), SMR = sum(cases[cluster])/sum(expected.cases[cluster]), p.value = signif.p.values[i] ) clusters[[i]] <- new.cluster } } results <- list( clusters=clusters, p.values=p.values, m.values=m.values, observed.k.values=k.values ) return(results) }
checkArgument <- function(argumentCheckMode, checkDataTypes, className, methodName, argumentValue, isMissing, allowMissing=FALSE, allowNull=FALSE, allowedClasses=NULL, mustBeAtomic=FALSE, allowedListElementClasses=NULL, listElementsMustBeAtomic=FALSE, allowedValues=NULL, minValue=NULL, maxValue=NULL, maxLength=NULL) { if(argumentCheckMode==0) return(invisible()) argumentName <- substitute(argumentValue) if(is.null(className)||(length(className)==0)) classPrefix <- "" else classPrefix <- paste0(className, "$") if(isMissing&(!allowMissing)) stop(paste0(classPrefix, methodName, "(): ", argumentName, " must be specified"), call. = FALSE) if(is.null(argumentValue)&&(!allowNull)) stop(paste0(classPrefix, methodName, "(): ", argumentName, " must not be null"), call. = FALSE) if(argumentCheckMode==1) return(invisible()) if((argumentCheckMode==4)||((argumentCheckMode==3)&&(checkDataTypes==TRUE))) { if((!is.null(argumentValue))&&(!is.null(allowedClasses))&&(length(allowedClasses)>0)) { cls <- class(argumentValue) if(length(intersect(allowedClasses, cls)) == 0) { if(length(allowedClasses) > 1) { stop(paste0(classPrefix, methodName, "(): ", argumentName, " must be one of the following types: (", paste(allowedClasses, sep="", collapse = ", "), "). Type encountered: ", paste(cls, collapse=", "), "."), call. = FALSE) } else { stop(paste0(classPrefix, methodName, "(): ", argumentName, " must be of type ", allowedClasses, ". ", "Type encountered: ", paste(cls, sep="", collapse=", "), "."), call. = FALSE) } } if(("list" %in% allowedClasses)&&("list" %in% cls)) { if(!is.null(allowedListElementClasses)) { invalidTypes <- list() nonAtomicTypes <- list() if(length(argumentValue)>0) { for(i in 1:length(argumentValue)) { if(is.null(argumentValue[[i]])) next if(length(allowedListElementClasses)>0) { elementTypes <- class(argumentValue[[i]]) if(length(intersect(allowedListElementClasses, elementTypes)) == 0) { invalidTypes[[length(invalidTypes)+1]] <- elementTypes } } if(listElementsMustBeAtomic==TRUE) { if(!is.atomic(argumentValue[[i]])) nonAtomicTypes[[length(nonAtomicTypes)+1]] <- class(argumentValue[[i]]) } } if(length(invalidTypes)>0) stop(paste0(classPrefix, methodName, "(): [", paste(unlist(invalidTypes), collapse=", "), "] is/are invalid data types for the ", argumentName, " argument. Elements of the ", argumentName, " list must be one of the following types: [", paste(allowedListElementClasses, collapse=", "), "]"), call. = FALSE) if(length(nonAtomicTypes>0)) stop(paste0(classPrefix, methodName, "(): [", paste(unlist(invalidTypes), collapse=", "), "] is/are invalid data types for the ", argumentName, " argument. Elements of the ", argumentName, " list must be atomic."), call. = FALSE) } } } } if((mustBeAtomic==TRUE)&&!(is.atomic(argumentValue))) { stop(paste0(classPrefix, methodName, "(): ", argumentName, " must be one of the atomic data types"), call. = FALSE) } } if(argumentCheckMode>=2) { if(!is.null(allowedValues)) { invalidValues <- setdiff(argumentValue, allowedValues) if(length(invalidValues)>0) stop(paste0(classPrefix, methodName, "(): [", paste(invalidValues, collapse=", "), "] is/are invalid values for the ", argumentName, " argument. ", argumentName, " must be one of the following values: [", paste(allowedValues, collapse=", "), "]"), call. = FALSE) } if((!is.null(minValue))&&(!is.null(argumentValue))) { if(any(argumentValue < minValue)) { stop(paste0(classPrefix, methodName, "(): ", argumentName, " must be greater than or equal to ", minValue), call. = FALSE) } } if((!is.null(maxValue))&&(!is.null(argumentValue))) { if(any(argumentValue > maxValue)) { stop(paste0(classPrefix, methodName, "(): ", argumentName, " must be less than or equal to ", maxValue), call. = FALSE) } } if(!is.null(allowedClasses)) { if("character" %in% allowedClasses) { if(!is.null(maxLength)) { if(any(nchar(argumentValue)>maxLength)) { stop(paste0(classPrefix, methodName, "(): ", argumentName, " must have length less than or equal to ", maxLength, " characters"), call. = FALSE) } } } } } return(invisible()) }
library(testthat) library(rly) context("Bad state declaration") Lexer <- R6::R6Class("Lexer", public = list( tokens = c('NUMBER', 'PLUS','MINUS'), states = list(c('comment')), t_PLUS = '\\+', t_MINUS = '-', t_NUMBER = '\\d+', t_ignore = " \t", t_comment = function(re='/\\*', t) { cat('comment\n') t$lexer$begin('Entering comment state') }, t_comment_body_part = function(re='(.|\\n)*\\*/', t) { cat(sprintf("comment body %s\n", t$value)) t$lexer$begin('INITIAL') }, t_error = function(t) { } ) ) test_that("comment", { expect_output(expect_error(rly::lex(Lexer), "Can't build lexer"), "ERROR .* Invalid state specifier\\. Must be a tuple \\(statename,'exclusive\\|inclusive'\\)") })
`maesparunall` <- function(whichrows=NA, runfile=NA, whichcols=NA, quiet=FALSE, extrafiles="", ...){ if(is.na(runfile))runfile <- file.choose() inputdat <- read.csv(runfile) if(all(is.na(whichrows)))whichrows <- 1:nrow(inputdat) returnlist <- list() for(i in 1:length(whichrows)){ runmaespa(whichrow=whichrows[i], whichcols=whichcols, runfile=runfile, ...) returnlist$dayresult[[i]] <- readdayflux() returnlist$hrresult[[i]] <- readhrflux() if(file.exists("watbal.dat"))returnlist$watbal[[i]] <- readwatbal() for(j in 1:length(extrafiles)){ if(!file.exists(extrafiles[j]))next if(extrafiles[j]=="watbal.dat")next dat <- read.table(extrafiles[j]) datname <- gsub(".[a-z]*$", "", extrafiles[j]) returnlist[[datname]][[i]] <- dat } if(!quiet)cat("Row", i, "out of", length(whichrows), "completed\n") } return(returnlist) }
dust <- function(object, ...) { UseMethod("dust") } dust.default <- function(object, ..., tidy_df = FALSE, keep_rownames = FALSE, glance_foot = FALSE, glance_stats = NULL, col_pairs = 2, byrow = FALSE, descriptors = "term", numeric_level = c("term", "term_plain", "label"), label = NULL, caption = NULL, caption_number = getOption("pixied_caption_number", TRUE), justify = getOption("pixie_justify", "center"), float = getOption("pixie_float", TRUE), longtable = getOption("pixie_longtable", FALSE), hhline = getOption("pixie_hhline", FALSE), bookdown = getOption("pixie_bookdown", FALSE), border_collapse = getOption("pixie_border_collapse", "collapse"), tabcolsep = getOption("pixie_tabcolsep", 6), fixed_header = getOption("pixie_fixed_header", FALSE), html_preserve = getOption("pixie_html_preserve", TRUE)) { coll <- checkmate::makeAssertCollection() descriptors <- checkmate::matchArg(x = descriptors, choices = c("term", "term_plain", "label", "level", "level_detail"), several.ok = TRUE, add = coll) if (!inherits(object, "data.frame") | tidy_df) { tidy_object <- broom::tidy(object, ...) } else if (inherits(object, "data.frame")) { if (inherits(object, "data.table")) { object <- as.data.frame(object) } if (keep_rownames) { tidy_object <- cbind(rownames(object), object) rownames(tidy_object) <- NULL tidy_object[, 1] <- as.character(tidy_object[, 1]) names(tidy_object)[1] <- ".rownames" } else { tidy_object <- object } } if (!inherits(object, "data.frame") & any(!descriptors %in% "term")) { nms <- names(tidy_object) tidy_object <- tidy_levels_labels(object, descriptors = descriptors, numeric_level = numeric_level, argcheck = coll) %>% dplyr::left_join(x = tidy_object, y = ., by = c("term" = "term")) if ("label" %in% names(tidy_object)) { is_intercept <- grepl(pattern = "([(]|)Intercept([)]|)", x = tidy_object[["term"]]) tidy_object[["label"]][is_intercept] <- tidy_object[["term"]][is_intercept] } if ("term_plain" %in% names(tidy_object)) { is_intercept <- grepl(pattern = "([(]|)Intercept([)]|)", x = tidy_object[["term"]]) tidy_object[["label"]][is_intercept] <- tidy_object[["term_plain"]][is_intercept] } if (!"term" %in% descriptors) { nms <- nms[!nms %in% "term"] } tidy_object <- tidy_object[unique(c(descriptors, nms))] } checkmate::reportAssertions(coll) head <- as.data.frame(t(names(tidy_object)), stringsAsFactors=FALSE) names(head) <- names(tidy_object) if (glance_foot) { foot <- glance_foot(object, col_pairs = col_pairs, total_cols = ncol(tidy_object), glance_stats = glance_stats, byrow = byrow) %>% component_table() } else { foot <- NULL } structure(list(head = component_table(head, tidy_object), body = component_table(tidy_object), interfoot = NULL, foot = foot, border_collapse = border_collapse, caption = caption, caption_number = caption_number, label = label, justify = justify, float = float, longtable = longtable, table_width = 6, tabcolsep = tabcolsep, hhline = hhline, bookdown = bookdown, fixed_header = fixed_header, include_fixed_header_css = FALSE, fixed_header_param = list( fixed_header_class_name = "pixie-fixed", scroll_body_height = 300, scroll_body_height_units = "px", scroll_body_background_color = "white", fixed_header_height = 20, fixed_header_height_units = "px", fixed_header_text_height = 10, fixed_header_text_height_units = "px", fixed_header_background_color = "white" ), html_preserve = html_preserve, print_method = pixiedust_print_method()), class = "dust") } dust.grouped_df <- function(object, ungroup = TRUE, ...) { if (ungroup) { dust.default(as.data.frame(object), ...) } else { split_var <- attr(object, "var") object <- as.data.frame(object) object <- split(object, object[, as.character(split_var)]) dust.list(object, ...) } } dust.list <- function(object, ...) { structure( lapply(X = object, FUN = dust, ...), class = "dust_list" ) } component_table <- function(tbl, object) { if (missing(object)) object <- tbl Classes <- data.frame(col_name = colnames(object), col_class = vapply(object, primaryClass, character(1)), stringsAsFactors=FALSE) tab <- gather_tbl(tbl) tab <- dplyr::left_join(tab, cell_attributes_frame(nrow(tbl), ncol(tbl)), by = c("row" = "row", "col" = "col")) tab <- dplyr::left_join(tab, Classes, by = c("col_name" = "col_name")) return(tab) } gather_tbl <- function(tbl) { tbl_name <- names(tbl) tbl[["row"]] <- seq_len(nrow(tbl)) dplyr::mutate_(tbl, row = ~1:n()) %>% tidyr::gather_("col", "value", gather_cols=names(tbl)[!names(tbl) %in% "row"]) %>% dplyr::mutate_(col_name = ~factor(col, colnames(tbl)), col = ~as.numeric(col_name), col_name = ~as.character(col_name), value = ~as.character(value)) } cell_attributes_frame <- function(nrow, ncol) { frame <- expand.grid(row = 1:nrow, col = 1:ncol, fn = NA, round = "", bold = FALSE, italic = FALSE, halign = "", valign = "", bg = "", font_family = "", font_color = "", font_size = "", font_size_units = "", left_border = "", right_border = "", top_border = "", bottom_border = "", height = "", height_units = "", width = "", width_units = "", replace = NA, rotate_degree = "", sanitize = FALSE, sanitize_args = "", pad = "", rowspan = 1L, colspan = 1L, na_string = NA, stringsAsFactors=FALSE) frame[["html_row"]] <- frame[["row"]] frame[["html_col"]] <- frame[["col"]] frame[["merge_rowval"]] <- frame[["row"]] frame[["merge_colval"]] <- frame[["col"]] frame[["merge"]] <- FALSE frame } primaryClass <- function(x) { acceptedClasses <- c("integer", "double", "numeric", "character", "factor", "logical") class_vector <- class(x) class_vector[class_vector %in% acceptedClasses][1] }
testthat::context("test run HMC-v4") library(testthat) suppressMessages(library(magi)) set.seed(Sys.time()) kerneltype <- sample(c("compact1","rbf","matern"),1) nobs <- 26 noise <- 0.05 VRtrue <- read.csv(system.file("testdata/FN.csv", package="magi")) pram.true <- list( abc=c(0.2,0.2,3), rphi=c(0.9486433, 3.2682434), vphi=c(1.9840824, 1.1185157), sigma=noise ) fn.true <- VRtrue[seq(1,401,by=2),] fn.true$time <- seq(0,20,0.1) fn.sim <- fn.true myseed <- sample(1e10, 1) myseed <- 123 set.seed(myseed) fn.sim[,1:2] <- fn.sim[,1:2]+rnorm(length(unlist(fn.sim[,1:2])), sd=noise) tvec.full <- fn.sim$time fn.sim.all <- fn.sim fn.sim[-seq(1,nrow(fn.sim), length=nobs),] <- NaN fn.sim.obs <- fn.sim[seq(1,nrow(fn.sim), length=nobs),] tvec.nobs <- fn.sim$time[seq(1,nrow(fn.sim), length=nobs)] config <- list( nobs = nobs, noise = noise, kernel = kerneltype, seed = myseed, npostplot = 5 ) foo <- outer(tvec.full, t(tvec.full),'-')[,1,] r <- abs(foo) r2 <- r^2 signr <- -sign(foo) foo <- outer(tvec.nobs, t(tvec.nobs),'-')[,1,] r.nobs <- abs(foo) r2.nobs <- r.nobs^2 signr.nobs <- -sign(foo) magi:::phisigllikC( c(1.9840824, 1.1185157, 0.9486433, 3.2682434, noise), data.matrix(fn.sim[!is.nan(fn.sim[,1]),1:2]), r.nobs, kerneltype) fn <- function(par) -magi:::phisigllikC( par, data.matrix(fn.sim[!is.nan(fn.sim[,1]),1:2]), r.nobs, kerneltype)$value gr <- function(par) -as.vector(magi:::phisigllikC( par, data.matrix(fn.sim[!is.nan(fn.sim[,1]),1:2]), r.nobs, kerneltype)$grad) marlikmap <- optim(rep(1,5), fn, gr, method="L-BFGS-B", lower = 0.0001) cursigma <- marlikmap$par[5] testthat::test_that("phisigllik in R is the same as phisigllikC in C", { phisigllikOutR <- magi:::phisigllik(marlikmap$par, data.matrix(fn.sim.obs[,1:2]), r.nobs, signr.nobs, TRUE, kerneltype) phisigllikOutC <- magi:::phisigllikC( marlikmap$par, data.matrix(fn.sim.obs[,1:2]), r.nobs, kerneltype) testthat::expect_equal(as.numeric(phisigllikOutR), phisigllikOutC$value, tolerance = 1e-5) testthat::expect_equal(attr(phisigllikOutR,"grad"), as.numeric(phisigllikOutC$grad), tolerance = 1e-5) }) testthat::test_that("xthetallik in R is the same as in C", { xthetallikOurR <- magi:::xthetallik( data.matrix(fn.true[seq(1,nrow(fn.true), length=nobs), 1:2]), c(0.2, 0.2, 3), calCov(marlikmap$par[1:2], r.nobs, signr.nobs, kerneltype=kerneltype), calCov(marlikmap$par[3:4], r.nobs, signr.nobs, kerneltype=kerneltype), cursigma, data.matrix(fn.sim.obs[,1:2]), T) xthetallikOurC <- magi:::xthetallikC( data.matrix(fn.sim.obs[,1:2]), calCov(marlikmap$par[1:2], r.nobs, signr.nobs, kerneltype=kerneltype), calCov(marlikmap$par[3:4], r.nobs, signr.nobs, kerneltype=kerneltype), cursigma, c(data.matrix(fn.true[seq(1,nrow(fn.true), length=nobs), 1:2]), 0.2, 0.2, 3)) logliknoODEOutR <- magi:::logliknoODE( data.matrix(fn.true[seq(1,nrow(fn.true), length=nobs), 1:2]), calCov(marlikmap$par[1:2], r.nobs, signr.nobs, kerneltype=kerneltype), calCov(marlikmap$par[3:4], r.nobs, signr.nobs, kerneltype=kerneltype), cursigma, data.matrix(fn.sim.obs[,1:2])) loglikOutR <- magi:::loglik( data.matrix(fn.true[seq(1,nrow(fn.true), length=nobs), 1:2]), c(0.2, 0.2, 3), calCov(marlikmap$par[1:2], r.nobs, signr.nobs, kerneltype=kerneltype), calCov(marlikmap$par[3:4], r.nobs, signr.nobs, kerneltype=kerneltype), cursigma, data.matrix(fn.sim.obs[,1:2])) testthat::expect_equal(as.numeric(xthetallikOurR), xthetallikOurC$value, tolerance = 1e-5) testthat::expect_equal(attr(xthetallikOurR, "grad"), as.numeric(xthetallikOurC$grad), tolerance = 1e-5) testthat::expect_equal(attr(logliknoODEOutR,"components")[,-2], attr(loglikOutR,"components")[,-2], tolerance = 1e-5) }) if(interactive()){ curCovV <- calCov(marlikmap$par[1:2], r, signr, bandsize=20, kerneltype=kerneltype) curCovR <- calCov(marlikmap$par[3:4], r, signr, bandsize=20, kerneltype=kerneltype) cursigma <- marlikmap$par[5] startVR <- rbind(magi:::getMeanCurve(fn.sim.obs$time, fn.sim.obs$Vtrue, fn.sim.obs$time, t(marlikmap$par[1:2]), sigma.mat=rep(cursigma,nrow(fn.sim.obs)), kerneltype), magi:::getMeanCurve(fn.sim.obs$time, fn.sim.obs$Rtrue, fn.sim.obs$time, t(marlikmap$par[3:4]), sigma.mat=rep(cursigma,nrow(fn.sim.obs)), kerneltype)) startVR <- t(startVR) nfold.pilot <- ceiling(nobs/40) nobs.pilot <- nobs%/%nfold.pilot numparam.pilot <- nobs.pilot*2+3 n.iter.pilot <- 50 if(kerneltype=="matern"){ pilotstepsize <- 0.001 }else if(kerneltype=="rbf"){ pilotstepsize <- 0.00001 }else if(kerneltype=="compact1"){ pilotstepsize <- 0.0001 } stepLow.scaler.pilot <- matrix(NA, n.iter.pilot, nfold.pilot) stepLow.scaler.pilot[1,] <- pilotstepsize apr.pilot <- accepts.pilot <- matrix(NA, n.iter.pilot, nfold.pilot) apr.pilot[1,] <- accepts.pilot[1,] <- 0 rstep.pilot <- array(NA, dim=c(numparam.pilot, n.iter.pilot, nfold.pilot)) rstep.pilot[,1,] <- stepLow.scaler.pilot[1,] xth.pilot <- array(NA, dim=c(numparam.pilot, n.iter.pilot, nfold.pilot)) lliklist.pilot <- matrix(NA, n.iter.pilot, nfold.pilot) id.pilot <- matrix(1:(nfold.pilot*nobs.pilot), nobs.pilot, byrow = T) it.pilot <- 1 for(it.pilot in 1:nfold.pilot){ accepts <- c() stepLow <- rep(stepLow.scaler.pilot[1,it.pilot], nobs.pilot*2+3) fn.sim.pilot <- fn.sim.obs[id.pilot[,it.pilot],] pilotSignedDist <- outer(fn.sim.pilot$time, t(fn.sim.pilot$time),'-')[,1,] xth.pilot[,1,it.pilot] <- c(startVR[id.pilot[,it.pilot],],rep(1,3)) pilotCovV <- calCov(marlikmap$par[1:2], abs(pilotSignedDist), -sign(pilotSignedDist), kerneltype=kerneltype) pilotCovR <- calCov(marlikmap$par[3:4], abs(pilotSignedDist), -sign(pilotSignedDist), kerneltype=kerneltype) t <- 2 for (t in 2:n.iter.pilot) { rstep <- runif(length(stepLow), stepLow, 2*stepLow) foo <- magi:::xthetaSample(data.matrix(fn.sim.pilot[,1:2]), list(pilotCovV, pilotCovR), cursigma, xth.pilot[,t-1,it.pilot], rstep, 20, T) xth.pilot[,t,it.pilot] <- foo$final accepts.pilot[t,it.pilot] <- foo$acc apr.pilot[t,it.pilot] <- foo$apr stepLow.scaler.pilot[t,it.pilot] <- tail(stepLow,1) rstep.pilot[,t,it.pilot] <- rstep if (mean(tail(accepts.pilot[1:t,it.pilot],100)) > 0.9) { stepLow <- stepLow * 1.01 }else if (mean(tail(accepts.pilot[1:t,it.pilot],100)) < 0.6) { stepLow <- stepLow * .99 } lliklist.pilot[t,it.pilot] <- foo$lpr } } x <- apply(xth.pilot[-(1:(2*nobs.pilot)),,,drop=FALSE], c(1,3), plot) startTheta <- apply(xth.pilot[(nobs.pilot*2+1):(nobs.pilot*2+3),-(1:(dim(xth.pilot)[[2]]/2)),], 1, mean) stepLow <- mean(stepLow.scaler.pilot[rbind(0,diff(accepts.pilot))==1])/nfold.pilot^2 steptwopart <- apply(rstep.pilot, 1, function(x) sum(x*(apr.pilot>0.8))/sum(apr.pilot>0.8)) mean(steptwopart[1:(2*nobs.pilot)]) mean(tail(steptwopart,3)) scalefac <- apply(xth.pilot[,-(1:(dim(xth.pilot)[[2]]/2)),,drop=FALSE], c(1,3), sd) scalefacV <- as.vector(t(scalefac[1:nobs.pilot,])) scalefacV <- c(scalefacV, rep(mean(scalefacV), nobs-nobs.pilot*nfold.pilot)) scalefacR <- as.vector(t(scalefac[(nobs.pilot+1):(2*nobs.pilot),])) scalefacR <- c(scalefacR, rep(mean(scalefacR), nobs-nobs.pilot*nfold.pilot)) scalefacTheta <- rowMeans(tail(scalefac,3)) scalefac <- c(scalefacV, scalefacR, scalefacTheta) scalefac <- scalefac/mean(scalefac) nall <- nrow(fn.sim) numparam <- nall*2+3 n.iter <- 50 xth.formal <- matrix(NA, n.iter, numparam) obs.ind <- seq(1,nrow(fn.sim),length=nobs) C.Vxx <- curCovV$C[obs.ind,obs.ind] C.Vxmx <- curCovV$C[-obs.ind,obs.ind] C.Vxmxm <- curCovV$C[-obs.ind,-obs.ind] C.Rxx <- curCovR$C[obs.ind,obs.ind] C.Rxmx <- curCovR$C[-obs.ind,obs.ind] C.Rxmxm <- curCovR$C[-obs.ind,-obs.ind] CV <- C.Vxmxm - C.Vxmx %*% solve(C.Vxx) %*% t(C.Vxmx) CR <- C.Rxmxm - C.Rxmx %*% solve(C.Rxx) %*% t(C.Rxmx) CV[upper.tri(CV)] <- t(CV)[upper.tri(CV)] CR[upper.tri(CR)] <- t(CR)[upper.tri(CR)] V_upsamp <- MASS::mvrnorm(1,C.Vxmx %*% solve(C.Vxx) %*% startVR[,1], CV) R_upsamp <- MASS::mvrnorm(1,C.Rxmx %*% solve(C.Rxx) %*% startVR[,2], CR) fullstartVR <- rep(NA, numparam-3) fullstartVR[c(obs.ind,nall+obs.ind)] <- startVR fullstartVR[-c(obs.ind,nall+obs.ind)] <- c(V_upsamp, R_upsamp) xth.formal[1,] <- c(fullstartVR,startTheta) xth.formal[1,] <- c(fn.true$Vtrue,fn.true$Rtrue, pram.true$abc) lliklist <- stepLow.scaler <- accepts <- rep(NA, n.iter) accepts[1] <- 0 stepLow.scaler[1] <- stepLow fullscalefac <- rep(NA, numparam) fullscalefac[c(obs.ind,nall+obs.ind,(2*nall+1):(2*nall+3))] <- scalefac for (ii in 2:numparam) { if (is.na(fullscalefac[ii])) { fullscalefac[ii] <- fullscalefac[ii-1] } } stepLow <- stepLow.scaler[1]*fullscalefac * nobs/nall if(kerneltype=="matern"){ stepLow <- stepLow*0.4 }else if(kerneltype=="rbf"){ stepLow <- stepLow*0.08 }else if(kerneltype=="compact1"){ stepLow <- stepLow*0.3 } burnin <- as.integer(n.iter*0.3) n.iter.approx <- n.iter*0.9 for (t in 2:n.iter) { rstep <- runif(length(stepLow), stepLow, 2*stepLow) if(t < n.iter.approx){ foo <- magi:::xthetaSample(data.matrix(fn.sim[,1:2]), list(curCovV, curCovR), cursigma, xth.formal[t-1,], rstep, 1000, T, loglikflag = "band") }else{ foo <- magi:::xthetaSample(data.matrix(fn.sim[,1:2]), list(curCovV, curCovR), cursigma, xth.formal[t-1,], rstep, 1000, T, loglikflag = "usual") } xth.formal[t,] <- foo$final accepts[t] <- foo$acc stepLow.scaler[t] <- mean(stepLow) if (t < burnin & t > 10) { if (mean(tail(accepts[1:t],100)) > 0.9) { stepLow <- stepLow * 1.005 } else if (mean(tail(accepts[1:t],100)) < 0.6) { stepLow <- stepLow * .995 } } lliklist[t] <- foo$lpr } gpode <- list(abc=xth.formal[-(1:burnin), (nall*2+1):(nall*2+3)], sigma=rep(marlikmap$par[5], n.iter-burnin), rphi=matrix(marlikmap$par[3:4], ncol=2,nrow=n.iter-burnin,byrow=T), vphi=matrix(marlikmap$par[1:2], ncol=2,nrow=n.iter-burnin,byrow=T), rtrue=xth.formal[-(1:burnin), (nall+1):(nall*2)], vtrue=xth.formal[-(1:burnin), 1:nall], lp__=lliklist[-(1:burnin)], lglik=lliklist[-(1:burnin)]) gpode$fode <- sapply(1:length(gpode$lp__), function(t) with(gpode, magi:::fODE(abc[t,], cbind(vtrue[t,],rtrue[t,]))), simplify = "array") fn.true$dVtrue = with(c(fn.true,pram.true), abc[3] * (Vtrue - Vtrue^3/3.0 + Rtrue)) fn.true$dRtrue = with(c(fn.true,pram.true), -1.0/abc[3] * (Vtrue - abc[1] + abc[2]*Rtrue)) fn.sim$time <- fn.sim.all$time magi:::plotPostSamples(paste0(tempdir(), "/test-run-HMCv4-",kerneltype,".pdf"), fn.true, fn.sim, gpode, pram.true, config) }
context("test-sc_within") test_that("sc_within defaults to vector", { x <- sc_within( hue = "red", light = 1:2 ) expect_equal(class(x), "character") expect_equal(length(x), 2) }) test_that("sc_within returns ggplot", { x <- sc_within( hue = "red", light = 1:2, return = "plot" ) expect_equal(is(x), "gg") }) test_that("sc_within returns table", { x <- sc_within( hue = "red", light = 1:2, return = "table" ) expect_true(is.data.frame(x)) }) test_that("sc_* match sc_within", { expect_equal(sc_red(), sc_within("red")) expect_equal(sc_orange(), sc_within("orange")) expect_equal(sc_yellow(), sc_within("yellow")) expect_equal(sc_green(), sc_within("green")) expect_equal(sc_teal(), sc_within("teal")) expect_equal(sc_blue(), sc_within("blue")) expect_equal(sc_violet(), sc_within("violet")) expect_equal(sc_pink(), sc_within("pink")) expect_equal(sc_grey(), sc_within("grey")) })
act.options.default <- list ( act.excamplecorpusURL = " http://www.romanistik.uni-freiburg.de/ehmer/files/digitalhumanities/act_examplecorpus.zip", act.updateX = TRUE, act.showprogress = TRUE, act.path.praat = "", act.path.sendpraat = "", act.path.elan = "", act.fileformats.video = c("mp4", "mov"), act.fileformats.audio = c("wav", "aif", "aiff", "mp3"), act.ffmpeg.command.main = 'ffmpeg -i "INFILEPATH" -ss TIMESTART -t TIMEDURATION OPTIONS -y "OUTFILEPATH" -hide_banner', act.ffmpeg.command.fastVideoPostioning = 'ffmpeg -ss TIMESTARTMINUS10SECONDS -i "INFILEPATH" -ss 10.000 -t TIMEDURATION OPTIONS -y "OUTFILEPATH" -hide_banner', act.ffmpeg.command.audioCutsAsMP3 = 'ffmpeg -i "INFILEPATH" -ss TIMESTART -t TIMEDURATION OPTIONS -y "OUTFILEPAT" -hide_banner', act.ffmpeg.exportchannels.fromColumnName = "channels", act.import.readEmptyIntervals = FALSE, act.import.scanSubfolders = TRUE, act.import.storeFileContentInTranscript = TRUE, act.export.foldergrouping1.fromColumnName = "resultID", act.export.foldergrouping2.fromColumnName = "", act.export.filename.fromColumnName = "resultID", act.separator_between_intervals = "&", act.separator_between_tiers = " act.separator_between_words = "^\\s|\\|\\'|\\ act.wordCountRegEx = '(?<=[^|\\b])[A-z\\u00C0-\\u00FA\\-\\:]+(?=\\b|\\s|_|$)' ) options_show <- function () { cat("options", fill=TRUE) cat(" Program", fill=TRUE) cat(" act.excamplecorpusURL : ",paste("'", options()$act.excamplecorpusURL,"'",sep="", collapse=""), fill=TRUE) cat(" act.showprogress : ",paste("'", options()$act.showprogress,"'",sep="", collapse=""), fill=TRUE) cat(" act.updateX : ",paste("'", options()$act.updateX,"'",sep="", collapse=""), fill=TRUE) cat(" Paths", fill=TRUE) cat(" act.path.praat : ",paste("'", options()$act.path.praat,"'",sep="", collapse=""), fill=TRUE) cat(" act.path.sendpraat : ",paste("'", options()$act.path.sendpraat, "'",sep="", collapse=""),fill=TRUE) cat(" act.path.elan : ",paste("'", options()$act.path.elan, "'",sep="", collapse=""),fill=TRUE) cat("", fill=TRUE) cat(" File formats", fill=TRUE) cat(" act.fileformats.video : ",paste("'", options()$act.fileformats.video, "'",sep="", collapse=""),fill=TRUE) cat(" act.fileformats.audio : ",paste("'", options()$act.fileformats.audio, "'",sep="", collapse=""),fill=TRUE) cat("", fill=TRUE) cat(" FFMPEG commands and options", fill=TRUE) cat(" act.ffmpeg.command : ",paste("'", options()$act.ffmpeg.command,"'",sep="", collapse=""), fill=TRUE) cat(" act.ffmpeg.command.fastVideoPostioning : ",paste("'", options()$act.ffmpeg.command.fastVideoPostioning, "'",sep="", collapse=""),fill=TRUE) cat(" act.ffmpeg.command.audio : ",paste("'", options()$act.ffmpeg.command.audio, "'",sep="", collapse=""),fill=TRUE) cat(" act.ffmpeg.command.UsefastVideoPostioning : ",paste("'", options()$act.ffmpeg.command.UsefastVideoPostioning, "'",sep="", collapse=""),fill=TRUE) cat(" act.ffmpeg.exportchannels.fromColumnName : ",paste("'", options()$act.ffmpeg.exportchannels.fromColumnName, "'",sep="", collapse=""),fill=TRUE) cat("", fill=TRUE) cat(" Import annotation files", fill=TRUE) cat(" act.import.readEmptyIntervals : ", options()$act.import.readEmptyIntervals, fill=TRUE) cat(" act.import.scanSubfolders : ", options()$act.import.scanSubfolders, fill=TRUE) cat(" act.import.storeFileContentInTranscript : ", options()$act.import.scanSubfolders, fill=TRUE) cat("", fill=TRUE) cat(" Export", fill=TRUE) cat(" act.export.foldergrouping1.fromColumnName : ",paste("'", options()$act.export.foldergrouping1.fromColumnName,"'",sep="", collapse=""), fill=TRUE) cat(" act.export.foldergrouping2.fromColumnName : ",paste("'", options()$act.export.foldergrouping2.fromColumnName,"'",sep="", collapse=""), fill=TRUE) cat(" act.export.filename.fromColumnName : ",paste("'", options()$act.export.filename.fromColumnName, "'",sep="", collapse=""),fill=TRUE) cat("", fill=TRUE) cat(" Miscellaneous", fill=TRUE) cat(" act.separator_between_intervals : ",paste("'", options()$act.separator_between_intervals, "'",sep="", collapse=""),fill=TRUE) cat(" act.separator_between_tiers : ",paste("'", options()$act.separator_between_tiers, "'",sep="", collapse=""),fill=TRUE) cat(" act.separator_between_words : ",paste("'", options()$act.separator_between_words, "'",sep="", collapse=""),fill=TRUE) cat(" act.wordCountRegEx : ",paste("'", options()$act.wordCountRegEx, "'",sep="", collapse=""), fill=TRUE) } options_delete <- function() { options(act.excamplecorpusURL = NULL) options(act.showprogress = NULL) options(act.updateX = NULL) options(act.path.praat = NULL) options(act.path.sendpraat = NULL) options(act.path.elan = NULL) options(act.fileformats.video = NULL) options(act.fileformats.audio = NULL) options(act.ffmpeg.command.main = NULL) options(act.ffmpeg.command.fastVideoPostioning = NULL) options(act.ffmpeg.command.audioCutsAsMP3 = NULL) options(act.ffmpeg.exportchannels.fromColumnName= NULL) options(act.import.readEmptyIntervals = NULL) options(act.import.scanSubfolders = NULL) options(act.import.storeFileContentInTranscript = NULL) options(act.export.foldergrouping1.fromColumnName= NULL) options(act.export.foldergrouping2.fromColumnName= NULL) options(act.export.filename.fromColumnName = NULL) options(act.separator_between_intervals = NULL) options(act.separator_between_tiers = NULL) options(act.separator_between_words = NULL) options(act.wordCountRegEx = NULL) } options_reset <- function () { options(act.options.default[2:length(act.options.default)]) }
test_that("got_chars list hasn't changed", { expect_known_value(got_chars, reference_file("got_chars.rds")) }) test_that("got_chars JSON gives rise to same list as the built-in", { skip_if_not_installed("jsonlite") expect_identical( got_chars, jsonlite::fromJSON(got_chars_json(), simplifyDataFrame = FALSE ) ) })
eqsCorr <- function(eqs) { options(warn=-1) eqs <- eqsCov(eqs) eqs <- cov2cor(eqs) return(eqs) }
"xSub_census_multiple_raw"
.isMissing_str <- function(x) { any(is.na(x) | x == "") } .isMissing_num <- function(x) { any(is.na(x) | is.nan(x) | is.infinite(x)) } .countUnique <- function(x) { length(unique(x)) }
transf.rtoz <- function(xi, ...) atanh(xi) transf.ztor <- function(xi, ...) tanh(xi) transf.logit <- function(xi, ...) qlogis(xi) transf.ilogit <- function(xi, ...) plogis(xi) transf.arcsin <- function(xi, ...) asin(sqrt(xi)) transf.iarcsin <- function(xi, ...) { zi <- sin(xi)^2 zi[xi < 0] <- 0 zi[xi > asin(1)] <- 1 return(c(zi)) } transf.pft <- function(xi, ni, ...) { xi <- xi*ni zi <- 1/2*(asin(sqrt(xi/(ni+1))) + asin(sqrt((xi+1)/(ni+1)))) return(c(zi)) } transf.ipft <- function(xi, ni, ...) { zi <- suppressWarnings(1/2 * (1 - sign(cos(2*xi)) * sqrt(1 - (sin(2*xi)+(sin(2*xi)-1/sin(2*xi))/ni)^2))) zi <- ifelse(is.nan(zi), NA, zi) zi[xi > transf.pft(1,ni)] <- 1 zi[xi < transf.pft(0,ni)] <- 0 return(c(zi)) } transf.ipft.hm <- function(xi, targs, ...) { if (is.null(targs) || (is.list(targs) && is.null(targs$ni))) stop("Need to specify the sample sizes via the 'targs' argument.", call.=FALSE) if (is.list(targs)) { ni <- targs$ni } else { ni <- ni } nhm <- 1/(mean(1/ni, na.rm=TRUE)) zi <- suppressWarnings(1/2 * (1 - sign(cos(2*xi)) * sqrt(1 - (sin(2*xi)+(sin(2*xi)-1/sin(2*xi))/nhm)^2))) zi <- ifelse(is.nan(zi), NA, zi) zi[xi > transf.pft(1,nhm)] <- 1 zi[xi < transf.pft(0,nhm)] <- 0 return(c(zi)) } transf.isqrt <- function(xi, ...) { zi <- xi*xi zi[xi < 0] <- 0 return(c(zi)) } transf.irft <- function(xi, ti, ...) { zi <- 1/2*(sqrt(xi) + sqrt(xi + 1/ti)) return(c(zi)) } transf.iirft <- function(xi, ti, ...) { zi <- (1/ti - 8*xi^2 + 16*ti*xi^4)/(16*xi^2*ti) zi <- ifelse(is.nan(zi), NA, zi) zi[xi < transf.irft(0,ti)] <- 0 zi[zi <= .Machine$double.eps] <- 0 return(c(zi)) } transf.ahw <- function(xi, ...) { zi <- 1 - (1-xi)^(1/3) return(c(zi)) } transf.iahw <- function(xi, ...) { zi <- 1 - (1-xi)^3 zi <- ifelse(is.nan(zi), NA, zi) zi[xi > 1] <- 1 zi[xi < 0] <- 0 return(c(zi)) } transf.abt <- function(xi, ...) { zi <- -log(1-xi) return(c(zi)) } transf.iabt <- function(xi, ...) { zi <- 1 - exp(-xi) zi <- ifelse(is.nan(zi), NA, zi) zi[xi < 0] <- 0 return(c(zi)) } transf.ztor.int <- function(xi, targs=NULL, ...) { if (is.null(targs$tau2)) targs$tau2 <- 0 if (is.null(targs$lower)) targs$lower <- xi-5*sqrt(targs$tau2) if (is.null(targs$upper)) targs$upper <- xi+5*sqrt(targs$tau2) toint <- function(zval, xi, tau2) tanh(zval) * dnorm(zval, mean=xi, sd=sqrt(tau2)) cfunc <- function(xi, tau2, lower, upper) integrate(toint, lower=lower, upper=upper, xi=xi, tau2=tau2)$value if (targs$tau2 == 0) { zi <- transf.ztor(xi) } else { zi <- mapply(xi, FUN=cfunc, tau2=targs$tau2, lower=targs$lower, upper=targs$upper) } return(c(zi)) } transf.exp.int <- function(xi, targs=NULL, ...) { if (is.null(targs$tau2)) targs$tau2 <- 0 if (is.null(targs$lower)) targs$lower <- xi-5*sqrt(targs$tau2) if (is.null(targs$upper)) targs$upper <- xi+5*sqrt(targs$tau2) toint <- function(zval, xi, tau2) exp(zval) * dnorm(zval, mean=xi, sd=sqrt(tau2)) cfunc <- function(xi, tau2, lower, upper) integrate(toint, lower=lower, upper=upper, xi=xi, tau2=tau2)$value if (targs$tau2 == 0) { zi <- exp(xi) } else { zi <- mapply(xi, FUN=cfunc, tau2=targs$tau2, lower=targs$lower, upper=targs$upper) } return(c(zi)) } transf.ilogit.int <- function(xi, targs=NULL, ...) { if (is.null(targs$tau2)) targs$tau2 <- 0 if (is.null(targs$lower)) targs$lower <- xi-5*sqrt(targs$tau2) if (is.null(targs$upper)) targs$upper <- xi+5*sqrt(targs$tau2) toint <- function(zval, xi, tau2) plogis(zval) * dnorm(zval, mean=xi, sd=sqrt(tau2)) cfunc <- function(xi, tau2, lower, upper) integrate(toint, lower=lower, upper=upper, xi=xi, tau2=tau2)$value if (targs$tau2 == 0) { zi <- transf.ilogit(xi) } else { zi <- mapply(xi, FUN=cfunc, tau2=targs$tau2, lower=targs$lower, upper=targs$upper) } return(c(zi)) } transf.dtou1 <- function(xi, ...) { u2i <- pnorm(abs(xi)/2) return((2*u2i - 1) / u2i) } transf.dtou2 <- function(xi, ...) pnorm(xi/2) transf.dtou3 <- function(xi, ...) pnorm(xi) transf.dtocles <- function(xi, ...) pnorm(xi/sqrt(2)) transf.dtorpb <- function(xi, n1i, n2i, ...) { if (missing(n1i) || missing(n2i)) { hi <- 4 } else { if (length(n1i) != length(n2i)) stop("Length of 'n1i' does not match length of 'n2i'.", call.=FALSE) if (length(n1i) != length(xi)) stop("Length of 'n1i' and 'n2i' does not match length of 'xi'.", call.=FALSE) mi <- n1i + n2i - 2 hi <- mi / n1i + mi / n2i } return(xi / sqrt(xi^2 + hi)) } transf.dtobesd <- function(xi, ...) { rpbi <- xi / sqrt(xi^2 + 4) return(0.50 + rpbi/2) } transf.dtomd <- function(xi, targs=NULL, ...) { if (is.null(targs) || (is.list(targs) && is.null(targs$sd))) stop("Need to specify a standard deviation value via the 'targs' argument.", call.=FALSE) if (is.list(targs)) { sd <- targs$sd } else { sd <- targs } if (length(sd) != 1L) stop("Specify a single standard deviation value via the 'targs' argument.", call.=FALSE) return(xi * sd) } transf.logortord <- function(xi, pc, ...) { if (length(pc) == 1L) pc <- rep(pc, length(xi)) if (length(xi) != length(pc)) stop("Length of 'xi' does not match length of 'pc'.", call.=FALSE) if (any(pc < 0) || any(pc > 1)) stop("The control group risk 'pc' must be between 0 and 1.", call.=FALSE) return(exp(xi)*pc / (1 - pc + pc * exp(xi)) - pc) } transf.logortorr <- function(xi, pc, ...) { if (length(pc) == 1L) pc <- rep(pc, length(xi)) if (length(xi) != length(pc)) stop("Length of 'xi' does not match length of 'pc'.", call.=FALSE) if (any(pc < 0) || any(pc > 1)) stop("The control group risk 'pc' must be between 0 and 1.", call.=FALSE) return(exp(xi) / (pc * (exp(xi) - 1) + 1)) }
library(testthat) library(alluvial) test_check("alluvial")
library(ptm) context("Abundance DB") test_that("abundance() works properly", { skip_on_cran() skip_on_travis() a <- abundance(id = 'A0AVT1') b <- abundance(id = 'A0AVT1', 'jurkat') c <- abundance(id = 'A0AVT1', 'hela') d <- abundance(id = 'P30034') e <- abundance(id = 'P010091') f <- abundance(id = 'G1T1T4') if (!is.null(a)){ expect_is(a, 'numeric') expect_equal(attributes(a)$units, "ppm") expect_equal(attributes(a)$species, "Homo sapiens") expect_equal(attributes(a)$string, "A0AVT1") expect_equivalent(a, 63.7) } if (!is.null(b)){ expect_is(b, 'numeric') expect_equal(attributes(b)$units, "ppm") expect_equal(attributes(b)$species, "Homo sapiens") expect_equal(attributes(b)$string, "A0AVT1") expect_equivalent(b, 27.4) } if (!is.null(c)){ expect_is(c, 'numeric') expect_equal(attributes(c)$units, "ppm") expect_equal(attributes(c)$species, "Homo sapiens") expect_equal(attributes(c)$string, "A0AVT1") expect_equivalent(c, 29.3) } if (!is.null(d)){ expect_is(d, 'numeric') expect_equal(attributes(d)$units, "ppm") expect_equal(attributes(d)$species, "Sus scrofa") expect_equal(attributes(d)$string, "P30034") expect_equivalent(d, 26.9) } expect_is(e, 'NULL') expect_is(f, 'NULL') })
QTLModelSIM <- function(x, mppData, trait, cross.mat, Q.eff, VCOV, plot.gen.eff){ QTL <- inc_mat_QTL(x = x, mppData = mppData, Q.eff = Q.eff, order.MAF = TRUE) QTL.el <- dim(QTL)[2] ref.name <- colnames(QTL) if(VCOV == "h.err"){ model <- tryCatch(expr = lm(trait ~ - 1 + cross.mat + QTL), error = function(e) NULL) if (is.null(model)){ if(plot.gen.eff) { if(Q.eff == "cr"){ results <- c(0, rep(1, mppData$n.cr)) } else { results <- c(0, rep(1, mppData$n.par)) } } else { results <- 0 } } else { if(!("QTL" %in% rownames(anova(model)))){ if(plot.gen.eff) { if(Q.eff == "cr"){ results <- c(0, rep(1, mppData$n.cr)) } else { results <- c(0, rep(1, mppData$n.par)) } } else { results <- 0 } } else { if(plot.gen.eff){ gen.eff <- QTL_pval(mppData = mppData, model = model, Q.eff = Q.eff, x = x) results <- c(-log10(anova(model)$Pr[2]), gen.eff) } else { results <- -log10(anova(model)$Pr[2]) } } } } else if ((VCOV == "h.err.as") || (VCOV == "cr.err")){ } else if ((VCOV == "pedigree") || (VCOV == "ped_cr.err")){ } return(results) }
{} newdeducorrect <- function(corrected, corrections, status, Call=sys.call(-1) ){ if ( missing(corrections) ){ corrections <- data.frame( row=numeric(0), variable=character(0), old=character(0), new=character(0) ) } if (missing(status)){ status <- data.frame( status = rep(NA,nrow(corrected)) ) } corrsummary <- array(0,dim=c(1,ncol(corrected)+1),dimnames=list(NULL,c(colnames(corrected),'sum'))) if (nrow(corrections) > 0){ corrsummary <- addmargins(table(corrections$variable, useNA="no")) rownames(corrections) <- NULL } structure( list( corrected = corrected, corrections = corrections, status = status, timestamp = date(), call = Call, generatedby = if ( is.list(Call) ) { Call[[1]][[1]] } else { Call[[1]] }, user = getUsername() ), class = c("deducorrect","list"), statsummary = addmargins(table(status$status, useNA="ifany")), corrsummary = corrsummary ) } print.deducorrect <- function(x, ...){ cat(paste(" deducorrect object generated by '", x$generatedby, "'", " on ",x$timestamp, sep="")) cat(paste("\n slots: ",paste(paste("$",names(x),sep=""), collapse=", "))) cat("\n\n Record status:") print(attr(x,"statsummary")) cat("\n Variables corrected:\n") print(attr(x,"corrsummary")) }
divide <- function(data, bounds = bound(), divider = list(hbar), level = 1, cascade = 0, max_wt = NULL) { d <- partd(divider[[1]]) if (ncol(data) == d + 1) { return(divide_once(data, bounds, divider[[1]], level, max_wt)) } parent_data <- margin(data, rev(seq_len(d))) parent_data <- parent_data[, c(rev(seq_len(d)), d + 1)] parent <- divide_once(parent_data, bounds, divider[[1]], level, max_wt) parentc <- parent parentc$l <- parent$l + cascade parentc$b <- parent$b + cascade parentc$r <- parent$r + cascade parentc$t <- parent$t + cascade if (is.null(max_wt)) { max_wt <- max(margin(data, d + 1, seq_len(d))$.wt, na.rm = TRUE) } pieces <- as.list(dlply(data, seq_len(d))) children <- ldply(seq_along(pieces), function(i) { piece <- pieces[[i]] partition <- divide(piece[, -seq_len(d)], parentc[i, ], divider[-1], level = level + 1, cascade = cascade, max_wt = max_wt) labels <- piece[rep(1, nrow(partition)), 1:d, drop = FALSE] cbind(labels, partition) }) rbind.fill(parent, children) } divide_once <- function(data, bounds, divider, level = 1, max_wt = NULL) { d <- partd(divider) if (d > 1) { data[-ncol(data)] <- lapply(data[-ncol(data)], addNA, ifany = TRUE) wt <- tapply(data$.wt, data[-ncol(data)], identity) data <- as.data.frame.table(wt, responseName = ".wt") } else { wt <- data$.wt } wt <- prop(wt) if (is.null(max_wt)) max_wt <- max(wt, na.rm = TRUE) partition <- divider(wt, bounds, max = max_wt) cbind(data, partition, level = level) }
write_sol <- function(sol,file_name,title=NULL,append=TRUE,force_std_fmt=TRUE){ if(is.null(title)) title <- attr(sol,'title') if(is.null(title)) title <- 'General DSSAT Soil Input File' comments <- attr(sol,'comments') if(force_std_fmt | is.null(attr(sol,'v_fmt'))){ attr(sol,'v_fmt') <- v_fmt_sol() } if(is.null(attr(sol,'tier_info'))){ attr(sol,'tier_info') <- tier_info_sol() %>% {.[map_lgl(.,~{any(. != "SLB" & . %in% names(sol))})]} } sol_out <- 1:nrow(sol) %>% map(~{sol[.,]}) %>% map(write_soil_profile) %>% unlist() if(!append){ sol_out <- title %>% str_c('*SOILS: ',.) %>% c(.,comments,sol_out) } write(sol_out,file_name,append = append) return(invisible()) }
library(testthat) library(recipes) library(dplyr) iris_rec <- recipe( ~ ., data = iris) test_that('basic usage', { rec <- iris_rec %>% step_arrange(desc(Sepal.Length), 1/Petal.Length) prepped <- prep(rec, training = iris %>% slice(1:75)) dplyr_train <- iris %>% as_tibble() %>% slice(1:75) %>% dplyr::arrange(desc(Sepal.Length), 1/Petal.Length) rec_train <- juice(prepped) expect_equal(dplyr_train, rec_train) dplyr_test <- iris %>% as_tibble() %>% slice(76:150) %>% dplyr::arrange(desc(Sepal.Length), 1/Petal.Length) rec_test <- bake(prepped, iris %>% slice(76:150)) expect_equal(dplyr_test, rec_test) }) test_that('quasiquotation', { sort_vars <- c("Sepal.Length", "Petal.Length") sort_vars <- syms(sort_vars) rec_1 <- iris_rec %>% step_arrange(!!!sort_vars) prepped_1 <- prep(rec_1, training = iris %>% slice(1:75)) dplyr_train <- iris %>% as_tibble() %>% slice(1:75) %>% arrange(Sepal.Length, Petal.Length) rec_1_train <- juice(prepped_1) expect_equal(dplyr_train, rec_1_train) }) test_that('no input', { no_inputs <- iris_rec %>% step_arrange() %>% prep(training = iris) %>% juice(composition = "data.frame") expect_equal(no_inputs, iris) }) test_that('printing', { rec <- iris_rec %>% step_arrange(Sepal.Length) expect_output(print(rec)) expect_output(prep(rec, training = iris, verbose = TRUE)) })
mlnormal_ic <- function( dev, beta, theta, N, G, posterior_obj ) { ic <- list( "deviance"=as.vector(dev), N=N, G=G) ic$loglike <- - dev / 2 ic$np.beta <- length(beta) ic$np.theta <- length(theta) ic$np <- ic$np.beta + ic$np.theta ic$AIC <- dev + 2*ic$np ic$log_prior <- posterior_obj$log_prior ic$log_posterior <- posterior_obj$log_posterior return(ic) }
context("Test clmi") test_that("clmi throws errors correctly", { lod.var <- toy_data$lod expect_error(clmi("poll ~ case_cntrl + smoking + gender, toy_data", lod, 1)) expect_error(clmi(poll ~ case_cntrl + smoking + gender, toy_data, lodu, 1)) expect_error(clmi(poll ~ case_cntrl + smoking + gender, toy_data, NULL, 1)) expect_error(clmi(a * poll ~ case_cntrl + smoking + gender, toy_data, lod, 1)) a <- 2 fn <- function(x) a * x expect_true(!is.null(clmi(fn(poll) ~ case_cntrl + smoking + gender, toy_data, lod, 1))) expect_error(clmi(poll ~ case_cntrl + smoking + gender, "toy_data", lod, 1)) expect_error(clmi(poll ~ case_cntrl + smoking + gender, toy_data, lod, "a")) expect_error(clmi(poll ~ case_cntrl + smoking + gender, toy_data, lod, 1, 0)) expect_error(clmi(poll ~ case_cntrl + smoking + gender, toy_data, lod, 1, c(2, 4))) df <- toy_data df$lod <- NULL expect_error(clmi(poll ~ case_cntrl + smoking + gender, df, lod, 1)) df <- toy_data df$poll <- log(df$poll) expect_error(clmi(poll ~ case_cntrl + smoking + gender, df, lod, 1)) df <- toy_data df$smoking[1] <- NA expect_error(clmi(poll ~ case_cntrl + smoking + gender, df, lod, 1)) df <- toy_data df$gender <- as.factor(df$gender) expect_error(clmi(poll ~ case_cntrl + smoking + gender, df, lod, 1)) })
context("expectedVariables") test_that("expectedVariables", { Net <- HydeNetwork(~ wells + pe | wells + d.dimer | pregnant*pe + angio | pe + treat | d.dimer*angio + death | pe*treat, data = PE) %>% setDecisionNodes(treat, angio) expect_equal(expectedVariables(Net, treat, TRUE), c("d.dimer", "angio")) })
expected <- eval(parse(text="TRUE")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30), .Tsp = c(1960.08333333333, 1961.66666666667, 12), class = \"ts\"), \"ts\", FALSE)")); .Internal(`inherits`(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
if (require("rstanarm") && require("testthat") && require("bayestestR") && require("emmeans")) { set.seed(300) model <- stan_glm(extra ~ group, data = sleep, refresh = 0) em_ <- emmeans(model, ~group) c_ <- pairs(em_) emc_ <- emmeans(model, pairwise ~ group) all_ <- rbind(em_, c_) all_summ <- summary(all_) set.seed(4) model_p <- unupdate(model, verbose = FALSE) set.seed(300) test_that("emmGrid hdi", { xhdi <- hdi(all_, ci = 0.95) expect_equal(xhdi$CI_low, all_summ$lower.HPD, tolerance = 0.1) expect_equal(xhdi$CI_high, all_summ$upper.HPD, tolerance = 0.1) xhdi2 <- hdi(emc_, ci = 0.95) expect_equal(xhdi$CI_low, xhdi2$CI_low) }) test_that("emmGrid point_estimate", { xpest <- point_estimate(all_, centrality = "all", dispersion = TRUE) expect_equal(xpest$Median, all_summ$emmean, tolerance = 0.1) xpest2 <- point_estimate(emc_, centrality = "all", dispersion = TRUE) expect_equal(xpest$Median, xpest2$Median) }) test_that("emmGrid ci", { xci <- ci(all_, ci = 0.9) expect_equal(length(xci$CI_low), 3) expect_equal(length(xci$CI_high), 3) }) test_that("emmGrid equivalence_test", { xeqtest <- equivalence_test(all_, ci = 0.9, range = c(-0.1, 0.1)) expect_equal(length(xeqtest$ROPE_Percentage), 3) expect_equal(length(xeqtest$ROPE_Equivalence), 3) }) test_that("emmGrid estimate_density", { xestden <- estimate_density(c_, method = "logspline", precision = 5) expect_equal(length(xestden$x), 5) }) test_that("emmGrid map_estimate", { xmapest <- map_estimate(all_, method = "kernel") expect_equal(length(xmapest$MAP_Estimate), 3) }) test_that("emmGrid p_direction", { xpd <- p_direction(all_, method = "direct") expect_equal(length(xpd$pd), 3) }) test_that("emmGrid p_map", { xpmap <- p_map(all_, precision = 2^9) expect_equal(length(xpmap$p_MAP), 3) }) test_that("emmGrid p_rope", { xprope <- p_rope(all_, range = c(-0.1, 0.1)) expect_equal(length(xprope$p_ROPE), 3) }) test_that("emmGrid p_significance", { xsig <- p_significance(all_, threshold = c(-0.1, 0.1)) expect_equal(length(xsig$ps), 3) }) test_that("emmGrid rope", { xrope <- rope(all_, range = "default", ci = .9) expect_equal(length(xrope$ROPE_Percentage), 3) }) test_that("emmGrid describe_posterior", { expect_equal( describe_posterior(all_)$median, describe_posterior(emc_)$median ) expect_equal( describe_posterior(all_, bf_prior = model_p, test = "bf")$log_BF, describe_posterior(emc_, bf_prior = model_p, test = "bf")$log_BF ) }) test_that("emmGrid bayesfactor_parameters", { skip_on_cran() set.seed(4) expect_equal( bayesfactor_parameters(all_, prior = model, verbose = FALSE), bayesfactor_parameters(all_, prior = model_p, verbose = FALSE) ) emc_p <- emmeans(model_p, pairwise ~ group) xbfp <- bayesfactor_parameters(all_, prior = model_p, verbose = FALSE) xbfp2 <- bayesfactor_parameters(emc_, prior = model_p, verbose = FALSE) xbfp3 <- bayesfactor_parameters(emc_, prior = emc_p, verbose = FALSE) expect_equal(xbfp$log_BF, xbfp2$log_BF) expect_equal(xbfp$log_BF, xbfp3$log_BF) w <- capture_warnings(bayesfactor_parameters(all_)) expect_match(w[1], "Prior") expect_match(w[2], "40") expect_error(bayesfactor_parameters(regrid(all_), prior = model)) }) test_that("emmGrid bayesfactor_restricted", { skip_on_cran() skip_on_ci() set.seed(4) hyps <- c("`1` < `2`", "`1` < 0") xrbf <- bayesfactor_restricted(em_, prior = model_p, hypothesis = hyps) expect_equal(length(xrbf$log_BF), 2) expect_equal(length(xrbf$p_prior), 2) expect_equal(length(xrbf$p_posterior), 2) expect_warning(bayesfactor_restricted(em_, hypothesis = hyps)) xrbf2 <- bayesfactor_restricted(emc_, prior = model_p, hypothesis = hyps) expect_equal(xrbf, xrbf2) }) test_that("emmGrid si", { skip_on_cran() set.seed(4) xrsi <- si(all_, prior = model_p, verbose = FALSE) expect_equal(length(xrsi$CI_low), 3) expect_equal(length(xrsi$CI_high), 3) xrsi2 <- si(emc_, prior = model_p, verbose = FALSE) expect_equal(xrsi$CI_low, xrsi2$CI_low) expect_equal(xrsi$CI_high, xrsi2$CI_high) }) set.seed(333) df <- data.frame( G = rep(letters[1:3], each = 2), Y = rexp(6) ) fit_bayes <- stan_glm(Y ~ G, data = df, family = Gamma(link = "identity"), refresh = 0 ) fit_bayes_prior <- unupdate(fit_bayes, verbose = FALSE) bayes_sum <- emmeans(fit_bayes, ~G) bayes_sum_prior <- emmeans(fit_bayes_prior, ~G) test_that("emmGrid bayesfactor_parameters", { set.seed(333) xsdbf1 <- bayesfactor_parameters(bayes_sum, prior = fit_bayes, verbose = FALSE) xsdbf2 <- bayesfactor_parameters(bayes_sum, prior = bayes_sum_prior, verbose = FALSE) expect_equal(xsdbf1$log_BF, xsdbf2$log_BF, tolerance = 0.1) }) test_that("emmGrid bayesfactor_parameters / describe w/ nonlinear models", { skip_on_cran() model <- stan_glm(vs ~ mpg, data = mtcars, family = "binomial", refresh = 0 ) probs <- emmeans(model, "mpg", type = "resp") link <- emmeans(model, "mpg") probs_summ <- summary(probs) link_summ <- summary(link) xhdi <- hdi(probs, ci = 0.95) xpest <- point_estimate(probs, centrality = "median", dispersion = TRUE) expect_equal(xhdi$CI_low, probs_summ$lower.HPD, tolerance = 0.1) expect_equal(xhdi$CI_high, probs_summ$upper.HPD, tolerance = 0.1) expect_equal(xpest$Median, probs_summ$prob, tolerance = 0.1) xhdi <- hdi(link, ci = 0.95) xpest <- point_estimate(link, centrality = "median", dispersion = TRUE) expect_equal(xhdi$CI_low, link_summ$lower.HPD, tolerance = 0.1) expect_equal(xhdi$CI_high, link_summ$upper.HPD, tolerance = 0.1) expect_equal(xpest$Median, link_summ$emmean, tolerance = 0.1) }) }
rotateScale3D <- function(rot_angles = c(0,0,0), scale_factors = c(1,1,1)){ rot_angles <- unlist(rot_angles) yaw <- rot_angles[1] pitch <- rot_angles[2] roll <- rot_angles[3] scale_factors <- unlist(scale_factors) V <- diag(scale_factors, nrow = 3, ncol = 3) rotate3D(yaw, pitch, roll) %*% V }
makeMAList <- function(mat, MAfac, useF=c("R","G"), isLog=TRUE, silent=FALSE, callFrom=NULL){ fxNa <- .composeCallName(callFrom, newNa="makeMAList") chPa <- requireNamespace("limma", quietly=TRUE) if(!chPa) {return(NULL); warning(fxNa,"Package 'limma' not found ! Please install from Bioconductor") } else { if(!all(useF %in% MAfac & length(useF) ==2 & length(MAfac) >1)) stop(" Argument 'useF' should describe 2 elements of 'MAfac'") if(!isLog) { if(any(mat <0) & !silent) message(fxNa,"Negative values will create NAs at log2-transformation !") } out <- try(limma::MA.RG(if(isLog) list(R=2^mat[,which(MAfac==useF[1])], G=2^mat[,which(MAfac==useF[2])]) else { list(R=mat[,which(MAfac==useF[1])], G=mat[,which(MAfac==useF[2])])}, bc.method="subtract", offset=0), silent=TRUE) if("try-error" %in% class(out)) {warning("UNABLE to run limma::MA.RG() '!"); out <- NULL} out } } .allRatios <- function(dat,ty="log2",colNaSep="_") { out <- matrix(nrow=nrow(dat), ncol=choose(ncol(dat),2)) pwCoor <- upperMaCoord(ncol(dat)) out <- apply(pwCoor, 1, function(x) dat[,x[1]]/dat[,x[2]]) colnames(out) <- apply(pwCoor,1,function(x) paste(colnames(dat)[x[1]],colnames(dat)[x[2]], sep=colNaSep)) if(identical(ty,"log2")) out <- log2(out) if(identical(ty,"log10")) out <- log10(out) if(identical(ty,"log")) out <- log(out) out } .allRatioMatr1to2 <- function(x, y, asLog2=TRUE, sumMeth="mean", callFrom=NULL){ fxNa <- .composeCallName(callFrom,newNa=".allRatioMatr1to2") xDimNa <- dimnames(x) yDimNa <- dimnames(y) if(length(xDimNa) <1) x <- matrix(x, ncol=1, dimnames=list(rownames(x),"x1")) if(length(yDimNa) <1) y <- matrix(y, ncol=1, dimnames=list(rownames(y),"y1")) if(nrow(x) != nrow(y)) stop(fxNa," number of rows in 'x' and 'y' must be equal !") out <- apply(x, 2, function(da,re) matrix(rep(da,ncol(re)), ncol=ncol(re))/re, re=y) if(!is.list(out)) out <- list(out) if(asLog2) out <- lapply(out,log2) out <- if(identical(sumMeth,"mean")) lapply(out,rowMeans) else lapply(out,function(x) apply(x, 1, stats::median,na.rm=TRUE)) nLen <- sapply(out,length) if(length(unique(nLen)) >1 | any(nLen <1)) message(fxNa," strange format of results, length of lists: ", paste(nLen,collapse=" ")) out <- out[which(nLen >0)] out <- if(length(out) >1) matrix(unlist(out), nrow=nrow(x), dimnames=xDimNa) else out[[1]] out } .getAmean <- function(dat,grp) { if(length(levels(grp)) <2) stop(" problem: 'grp' as factor should have at least 2 levels") if(length(grp) != ncol(dat)) stop(" problem: length of 'grp' should match numbe of columns in 'dat'") if(!is.factor(grp)) grp <- as.factor(grp) out <- matrix(nrow=nrow(dat), ncol=length(levels(grp)), dimnames=list(rownames(dat), levels(grp))) for(i in 1:length(levels(grp))) out[,i] <- rowMeans(dat[,which(grp==levels(grp)[i])],na.rm=TRUE) out } .getAmean2 <- function(dat,comp) as.matrix(apply(comp,1,function(co,x) rowMeans(x[,co],na.rm=TRUE),dat)) .getMvalue2 <- function(dat,comp) as.matrix(apply(comp,1,function(co,x) diff(t(x[,co])),dat))
dhist <- function(x, a = 5 * iqr(x), nbins = grDevices::nclass.Sturges(x), rx = range(x, na.rm = TRUE), eps = 0.15, xlab = "x", plot = TRUE, lab.spikes = TRUE) { if (is.character(nbins)) { nbins <- switch(casefold(nbins), sturges = grDevices::nclass.Sturges(x), fd = grDevices::nclass.FD(x), scott = grDevices::nclass.scott(x), stop("Nclass method not recognized")) } else { if (is.function(nbins)) { nbins <- nbins(x) } } x <- sort(x[!is.na(x)]) if (a == 0) { a <- diff(range(x)) / 1e+08 } if (a != 0 & a != Inf) { n <- length(x) h <- (rx[2] + a - rx[1]) / nbins ybr <- rx[1] + h * (0:nbins) yupper <- x + (a * seq_len(n)) / n ylower <- yupper - a / n cmtx <- cbind(cut(yupper, breaks = ybr), cut(yupper, breaks = ybr, left.include = TRUE), cut(ylower, breaks = ybr), cut(ylower, breaks = ybr, left.include = TRUE)) cmtx[1, 3] <- cmtx[1, 4] <- 1 cmtx[n, 1] <- cmtx[n, 2] <- nbins checksum <- (cmtx[, 1] + cmtx[, 2] + cmtx[, 3] + cmtx[, 4]) %% 4 straddlers <- (1:n)[checksum == 2] if (length(straddlers) > 0) { counts <- table(c(1:nbins, cmtx[-straddlers, 1])) } else { counts <- table(c(1:nbins, cmtx[, 1])) } counts <- counts - 1 if (length(straddlers) > 0) { for (i in straddlers) { binno <- cmtx[i, 1] theta <- ((yupper[i] - ybr[binno]) * n) / a counts[binno - 1] <- counts[binno - 1] + (1 - theta) counts[binno] <- counts[binno] + theta } } xbr <- ybr xbr[-1] <- ybr[-1] - (a * cumsum(counts)) / n spike <- eps * diff(rx)/nbins flag.vec <- c(diff(xbr) < spike, FALSE) if (sum(abs(diff(xbr)) <= spike) > 1) { xbr.new <- xbr counts.new <- counts diff.xbr <- abs(diff(xbr)) amt.spike <- diff.xbr[length(diff.xbr)] for (i in rev(2:length(diff.xbr))) { if (diff.xbr[i - 1] <= spike & diff.xbr[i] <= spike & !is.na(diff.xbr[i])) { amt.spike <- amt.spike + diff.xbr[i - 1] counts.new[i - 1] <- counts.new[i - 1] + counts.new[i] xbr.new[i] <- NA counts.new[i] <- NA flag.vec[i - 1] <- TRUE } else { amt.spike <- diff.xbr[i - 1] } } flag.vec <- flag.vec[!is.na(xbr.new)] flag.vec <- flag.vec[-length(flag.vec)] counts <- counts.new[!is.na(counts.new)] xbr <- xbr.new[!is.na(xbr.new)] } else { flag.vec <- flag.vec[-length(flag.vec)] } widths <- abs(diff(xbr)) heights <- counts/widths } bin.size <- length(x) / nbins cut.pt <- unique(c(min(x) - abs(min(x)) / 1000, stats::approx(seq(length(x)), x, seq_len(nbins - 1) * bin.size, rule = 2)$y, max(x))) aa <- graphics::hist(x, breaks = cut.pt, plot = FALSE, probability = TRUE) if (a == Inf) { heights <- aa$counts xbr <- aa$breaks } amt.height <- 3 q75 <- stats::quantile(heights, 0.75) if (sum(flag.vec) != 0) { amt <- max(heights[!flag.vec]) ylim.height <- amt * amt.height ind.h <- flag.vec & heights > ylim.height flag.vec[heights < ylim.height * (amt.height - 1) / amt.height] <- FALSE heights[ind.h] <- ylim.height } amt.txt <- 0 end.y <- (-10000) if (plot) { graphics::barplot(heights, abs(diff(xbr)), space = 0, density = -1, xlab = xlab, plot = TRUE, xaxt = "n", yaxt = "n") at <- pretty(xbr) graphics::axis(1, at = at - xbr[1], labels = as.character(at)) if (lab.spikes) { if (sum(flag.vec) >= 1) { usr <- graphics::par("usr") for (i in seq(length(xbr) - 1)) { if (!flag.vec[i]) { amt.txt <- 0 if (xbr[i] - xbr[1] < end.y) { amt.txt <- 1 } } else { amt.txt <- amt.txt + 1 end.y <- xbr[i] - xbr[1] + 3 * graphics::par("cxy")[1] } if (flag.vec[i]) { txt <- paste0(" ", format(round(counts[i]/sum(counts) * 100)), "%") graphics::par(xpd = TRUE) graphics::text(xbr[i + 1] - xbr[1], ylim.height - graphics::par("cxy")[2] * (amt.txt -1), txt, adj = 0) } } } else print("no spikes or more than one spike") } return(invisible(list(heights = heights, xbr = xbr))) } else { return(list(heights = heights, xbr = xbr, counts = counts)) } } iqr <- function(x) { return(diff(stats::quantile(x, c(0.25, 0.75), na.rm = TRUE))) } plot_data <- function(trait.data, base.plot = NULL, ymax) { if (is.null(base.plot)) { base.plot <- ggplot2::ggplot() } n.pts <- nrow(trait.data) if (n.pts == 1) { ymax <- ymax / 16 } else if (n.pts < 5) { ymax <- ymax / 8 } else { ymax <- ymax / 4 } y.pts <- seq(0, ymax, length.out = 1 + n.pts)[-1] if (!"ghs" %in% names(trait.data)) { trait.data$ghs <- 1 } plot.data <- data.frame(x = trait.data$Y, y = y.pts, se = trait.data$se, control = !trait.data$trt == 1 & trait.data$ghs == 1) new.plot <- base.plot + ggplot2::geom_point( data = plot.data, ggplot2::aes(x = .data$x, y = .data$y, color = .data$control)) + ggplot2::geom_segment( data = plot.data, ggplot2::aes( x = .data$x - .data$se, y = .data$y, xend = .data$x + .data$se, yend = .data$y, color = .data$control)) + ggplot2::scale_color_manual(values = c("black", "grey")) + ggplot2::theme(legend.position = "none") return(new.plot) } theme_border <- function(type = c("left", "right", "bottom", "top", "none"), colour = "black", size = 1, linetype = 1) { type <- match.arg(type, several.ok = TRUE) structure(function(x = 0, y = 0, width = 1, height = 1, ...) { xlist <- c() ylist <- c() idlist <- c() if ("bottom" %in% type) { xlist <- append(xlist, c(x, x + width)) ylist <- append(ylist, c(y, y)) idlist <- append(idlist, c(1, 1)) } if ("top" %in% type) { xlist <- append(xlist, c(x, x + width)) ylist <- append(ylist, c(y + height, y + height)) idlist <- append(idlist, c(2, 2)) } if ("left" %in% type) { xlist <- append(xlist, c(x, x)) ylist <- append(ylist, c(y, y + height)) idlist <- append(idlist, c(3, 3)) } if ("right" %in% type) { xlist <- append(xlist, c(x + width, x + width)) ylist <- append(ylist, c(y, y + height)) idlist <- append(idlist, c(4, 4)) } grid::polylineGrob(x = xlist, y = ylist, id = idlist, ..., default.units = "npc", gp = grid::gpar(lwd = size, col = colour, lty = linetype), ) }, class = "theme", type = "box", call = match.call()) }
pictogram<-function(icon,n,grouplabels="", hicons=20,vspace=0.5,labprop=0.2,labelcex=1) { if(is.list(icon)) { licon<-icon } else { licon<-list(icon) for (i in 2:length(n)) { licon[[i]]<-icon } } library(reshape) sumn<-sum(n) group<-untable(df=matrix((1:length(n)),ncol=1),num=n) vicons<-ceiling(n/hicons) allv<-sum(vicons) tail<-n%%hicons devaspect<-dev.size(units="px")[1]/dev.size(units="px")[2] xlength<-1 getdim<-function(z) { aspect<-dim(z)[1]/dim(z)[2] return(aspect) } all.ylengths<-unlist(lapply(licon,getdim)) ylength<-max(all.ylengths) all.ylengths<-untable(df=matrix(all.ylengths,ncol=1),num=n) ytop<-allv*ylength if(devaspect*hicons<allv) warning("Icons may extend above the top of the graph") iconrow<-as.vector(as.matrix(rbind(rep(hicons,length(vicons)),tail))) reprow<-as.vector(as.matrix(rbind((vicons-1),rep(1,length(vicons))))) perrow<-untable(df=matrix(iconrow,ncol=1),num=reprow) spacing<-NULL for (i in 1:(length(n))) { spacing<-c(spacing,rep((i-1)*vspace*ylength,n[i])) } y0<-spacing+(ylength*untable(df=matrix((1:allv)-1,ncol=1),num=perrow)) y1<-y0+all.ylengths x0<-NULL for (i in 1:(length(perrow))) { x0<-c(x0,(0:(perrow[i]-1))) } x1<-x0+xlength leftplot<-floor(-(labprop*hicons)) plot(c(leftplot,hicons),c(0,(devaspect*hicons)), type="n",bty="n",ylab="",xlab="",xaxt="n",yaxt="n") lines(x=c(0,0),y=c(min(y0)-(ylength/2),max(y1)+(ylength/2))) for (i in 1:sumn) { rasterImage(image=licon[[group[i]]],xleft=x0[i],xright=x1[i], ytop=y1[i],ybottom=y0[i]) } ylabpos<-rep(NA,length(n)) for (i in 1:length(n)) { ylabpos[i]<-(max(y1[group==i])+min(y0[group==i]))/2 } text(x=leftplot/2,y=ylabpos,labels=grouplabels,cex=labelcex) }