code
stringlengths
1
13.8M
if (requiet("testthat") && requiet("performance") && requiet("glmmTMB")) { data(Salamanders) m1 <- glm(count ~ spp + mined, family = poisson, data = Salamanders) m2 <- glmmTMB( count ~ mined + spp + (1 | site), family = poisson, data = Salamanders ) test_that("check_overdispersion", { expect_equal( check_overdispersion(m1), structure( list( chisq_statistic = 1873.71012423995, dispersion_ratio = 2.94608510100621, residual_df = 636L, p_value = 3.26607509162498e-122 ), class = "check_overdisp" ), tolerance = 1e-3 ) }) test_that("check_overdispersion", { expect_equal( check_overdispersion(m2), structure( list( chisq_statistic = 1475.87512547128, dispersion_ratio = 2.32421279601777, residual_df = 635L, p_value = 8.41489530177729e-69 ), class = "check_overdisp" ), tolerance = 1e-3 ) }) }
pmc_internal <- function(X, alpha = 0.05){ out <- data.frame( k = integer(), P.R. = integer(), P = numeric(), MESOR = numeric(), CI.M = numeric(), Amplitude = numeric(), Lo.CI.A = numeric(), Hi.CI.A = numeric(), PHI = numeric(), Lo.CI.PHI = numeric(), Hi.CI.PHI = numeric(), errMsg = numeric() ) printP = numeric() sigma_matrix <- matrix(0, nrow = 3, ncol = 3) k <- nrow(X) df <- k - 1 if (df>1){ beta= X$amp*cos(X$phi * pi/180) gamma=-X$amp*sin(X$phi * pi/180) beta_hat <- mean(beta) gamma_hat <- mean(gamma) sigma_matrix[1,1] <- sum((X$mesor - mean(X$mesor))^2)/df sigma_matrix[1,2] <- sum((X$mesor - mean(X$mesor)) %*% (beta - mean(beta)))/df sigma_matrix[1,3] <- sum((X$mesor - mean(X$mesor)) %*% (gamma - mean(gamma)))/df sigma_matrix[2,2] <- sum((beta - mean(beta))^2)/df sigma_matrix[2,3] <- sum((beta - mean(beta)) %*% (gamma - mean(gamma)))/df sigma_matrix[3,3] <- sum((gamma - mean(gamma))^2)/df sigma_matrix[lower.tri(sigma_matrix)] <- sigma_matrix[upper.tri(sigma_matrix)] pr <- mean(X$pr) mesor <- mean(X$mesor) acr <- -phsrd(beta, gamma) amp <- module(beta, gamma) tval <- qt(1-alpha/2, df) cim <- tval * sqrt(sigma_matrix[1,1]/k) c22 <- (sigma_matrix[2,2] * beta_hat^2 + 2*sigma_matrix[2,3]*beta_hat*gamma_hat + sigma_matrix[3,3] * gamma_hat^2) / (k * amp^2) if (c22>0){ cia <- tval*sqrt(c22) } else { cia<--0.1 } c23 <- (-(sigma_matrix[2,2] - sigma_matrix[3,3]) * (beta_hat*gamma_hat) + sigma_matrix[2,3]*(beta_hat^2 - gamma_hat^2)) / (k * amp^2) c33 <- (sigma_matrix[2,2] * gamma_hat^2 - 2 * sigma_matrix[2,3] * beta_hat * gamma_hat + sigma_matrix[3,3]*beta_hat^2) / (k * amp^2) an2 <- amp^2 - (c22*c33 - c23^2) * (tval^2)/c33 if(an2 < 0){ phi1 <- 0 phi2 <- 0 }else{ den<-(amp^2)-c22*(tval^2) an2<-tval*sqrt(c33)*sqrt(an2) an1<-c23*(tval^2) phi1=phase(phix=(an1+an2)/den,c33,c23,acr) phi2=phase(phix=(an1-an2)/den,c33,c23,acr) } r <- sigma_matrix[2,3]/sqrt(sigma_matrix[2,2]*sigma_matrix[3,3]) fval <- k*(k-2)/(2*(k-1) * (1-r^2)) * (beta_hat^2/sigma_matrix[2,2] -2*r*beta_hat*gamma_hat/sqrt(sigma_matrix[2,2]*sigma_matrix[3,3]) +gamma_hat^2/sigma_matrix[3,3] ) p <- pf(fval, df1 = 2, df2 = k - 2, lower.tail = FALSE) out[1,"k"] <- as.integer(k) out[1,"P.R."] <- round(mean(X$pr),1) printP <- round(p, 4) printP[printP<.0005]<-c("<.001") out[1,"P"]<-printP out[1,"MESOR"] <- signif(mesor, 6) out[1,"CI.M"] <- signif(cim, 4) out[1,"Amplitude"] <- signif(amp, 5) amp_cia<-amp - cia out[1,"Lo.CI.A"] <- ifelse(p < alpha, signif(amp_cia, 5), NA) out[1,"Hi.CI.A"] <- ifelse(p < alpha, signif(amp + cia, 5), NA) out[1,"PHI"] <- round(acr, 1) out[1,"Lo.CI.PHI"] <- ifelse(p < alpha, round(phi1, 1), NA) out[1,"Hi.CI.PHI"] <- ifelse(p < alpha, round(phi2, 1), NA) if (amp_cia < 0 && p<=alpha) { out[1,"errMsg"]<-paste("Warn1") } if (amp < .000000000001){ out[1,"PHI"]<-NA out[1,"Lo.CI.PHI"] <- NA out[1,"Hi.CI.PHI"] <- NA out[1,"errMsg"]<-paste(out[1,"errMsg"],"Warn3") } } else { out[1,"k"] <- as.integer(k) out[1,"P.R."] <- NA out[1,"P"]<-NA out[1,"MESOR"] <- NA out[1,"CI.M"] <- NA out[1,"Amplitude"] <- NA out[1,"Lo.CI.A"] <- NA out[1,"Hi.CI.A"] <- NA out[1,"PHI"] <- NA out[1,"Lo.CI.PHI"] <- NA out[1,"Hi.CI.PHI"] <- NA out[1,"errMsg"]<-paste("Warn2") } return(out ) }
LearnerDens = R6::R6Class("LearnerDens", inherit = Learner, public = list( initialize = function(id, param_set = ParamSet$new(), predict_types = "cdf", feature_types = character(), properties = character(), data_formats = "data.table", packages = character(), man = NA_character_) { super$initialize( id = id, task_type = "dens", param_set = param_set, predict_types = predict_types, feature_types = feature_types, properties = properties, data_formats = data_formats, packages = c("mlr3proba", packages), man = man) } ) )
P_Rmask <- function (x, k) { SUM <- 0 * x for (i in 0:floor(k/2)) SUM <- SUM + (-1)^i/2^k * exp(lgamma(2 * k - 2 * i + 1) - lgamma(i + 1) - lgamma(k - i + 1) - lgamma(k - 2 * i + 1)) * x^(k - 2 * i) return(SUM) }
describe("metaObserve", isolate({ it("basically works", { e1 <- environment() x <- 0 mo <- metaObserve({ x <<- 1 }) mo1 <- metaObserve({ e2 <- environment() expect_false(identical(e1, e2)) }) shiny:::flushReact() expect_identical(x, 1) expect_equal(unclass(withMetaMode(mo())), quote( x <<- 1 )) }) it("basically works 2", { e1 <- environment() x <- 0 mo <- metaObserve2({ e2 <- environment() expect_false(identical(e1, e2)) x <<- x + 1 metaExpr({ x <<- ..(x + 1) }) }) shiny:::flushReact() expect_identical(x, 2) res <- withMetaMode(mo()) expect_equal(unclass(res), quote( x <<- 4 )) }) it("obeys scoping rules", { outer <- environment() i <- 0 mo <- metaObserve({ inner <- environment() expect_false(identical(inner, outer)) i <<- i + 1 }) shiny:::flushReact() expect_identical(i, 1) mo2 <- metaObserve2({ inner <- environment() expect_false(identical(inner, outer)) i <<- i + 1 metaExpr({ innermost <- environment() expect_true(identical(innermost, inner)) i <<- i + 1 }) }) shiny:::flushReact() expect_identical(i, 3) withMetaMode(mo2()) expect_identical(i, 4) }) }))
library(CHNOSZ) di <- c("Cu+2", "Ni+2", "Co+2", "Mn+2", "Zn+2", "Cd+2") di1 <- c("Cu(Gly)+", "Ni(Gly)+", "Co(Gly)+", "Mn(Gly)+", "Zn(Gly)+", "Cd(Gly)+") di2 <- c("Cu(Gly)2", "Ni(Gly)2", "Co(Gly)2", "Mn(Gly)2", "Zn(Gly)2", "Cd(Gly)2") mo <- c("Au+", "Ag+", "Na+", "Tl+", "Cu+") mo1 <- c("Au(Gly)", "Ag(Gly)", "Na(Gly)", "Tl(Gly)", "Cu(Gly)") mo2 <- c("Au(Gly)2-", "Ag(Gly)2-", "Na(Gly)2-", "Tl(Gly)2-", "Cu(Gly)2-") T <- seq(0, 150, 10) logK_di1 <- logK_di2 <- logK_mo1 <- logK_mo2 <- list() for(i in 1:length(di1)) logK_di1[[i]] <- subcrt(c(di[i], "glycinate", di1[i]), c(-1, -1, 1), T = T)$out$logK for(i in 1:length(di2)) logK_di2[[i]] <- subcrt(c(di[i], "glycinate", di2[i]), c(-1, -2, 1), T = T)$out$logK for(i in 1:length(mo1)) logK_mo1[[i]] <- subcrt(c(mo[i], "glycinate", mo1[i]), c(-1, -1, 1), T = T)$out$logK for(i in 1:length(mo2)) logK_mo2[[i]] <- subcrt(c(mo[i], "glycinate", mo2[i]), c(-1, -2, 1), T = T)$out$logK add.OBIGT("OldAA") logK_di1_SK95 <- logK_di2_SK95 <- list() for(i in 1:length(di1)) logK_di1_SK95[[i]] <- subcrt(c(di[i], "glycinate", di1[i]), c(-1, -1, 1), T = T)$out$logK for(i in 1:length(di2)) logK_di2_SK95[[i]] <- subcrt(c(di[i], "glycinate", di2[i]), c(-1, -2, 1), T = T)$out$logK reset() opar <- par(no.readonly = TRUE) layout(matrix(1:6, byrow = TRUE, nrow = 2), widths = c(2, 2, 1)) par(mar = c(4, 3.2, 2.5, 0.5), mgp = c(2.1, 1, 0), las = 1, cex = 0.8) xlab <- axis.label("T") ylab <- axis.label("logK") matplot(T, sapply(logK_di1, c), type = "l", lwd = 2, lty = 1, xlab = xlab, ylab = ylab) matplot(T, sapply(logK_di1_SK95, c), type = "l", lwd = 2, lty = 2, add = TRUE) legend(-9, 7.7, c("Azadi et al., 2019", "Shock and Koretsky, 1995"), lty = c(1, 2), bty = "n", cex = 1) mtext(expression(M^"+2" + Gly^"-" == M*(Gly)^"+"), line = 0.5) matplot(T, sapply(logK_di2, c), type = "l", lwd = 2, lty = 1, xlab = xlab, ylab = ylab) matplot(T, sapply(logK_di2_SK95, c), type = "l", lwd = 2, lty = 2, add = TRUE) legend(-9, 14, c("Azadi et al., 2019", "Shock and Koretsky, 1995"), lty = c(1, 2), bty = "n", cex = 1) mtext(expression(M^"+2" + 2*Gly^"-" == M*(Gly)[2]), line = 0.5) plot.new() par(xpd = NA) legend("right", as.expression(lapply(di, expr.species)), lty = 1, col = 1:6, bty = "n", cex = 1.2, lwd = 2) text(0, 1, "metal-\nglycinate\ncomplexes", cex = 1.3, font = 2) par(xpd = FALSE) matplot(T, sapply(logK_mo1, c), type = "l", lwd = 2, lty = 1, xlab = xlab, ylab = ylab) mtext(expression(M^"+" + Gly^"-" == M*(Gly)), line = 0.5) matplot(T, sapply(logK_mo2, c), type = "l", lwd = 2, lty = 1, xlab = xlab, ylab = ylab) mtext(expression(M^"+" + 2*Gly^"-" == M*(Gly)[2]^"-"), line = 0.5) plot.new() par(xpd = NA) legend("right", as.expression(lapply(mo, expr.species)), lty = 1, col = 1:5, bty = "n", cex = 1.2, lwd = 2) par(xpd = FALSE) layout(matrix(1)) par(opar)
tally( ~ cut(Sepal.Length, breaks = 2:10), data = iris)
degross_lpostBasic = function(phi,tau,n.i,degross.data, use.moments=rep(TRUE,4), freq.min=20, diag.only=FALSE, gradient=FALSE, penalize=TRUE,aa=2,bb=1e-6,pen.order=3){ if (missing(n.i)) n.i = NULL K = length(phi) Dd = diff(diag(K),diff=pen.order) Pd = t(Dd) %*% Dd freq.j = degross.data$freq.j m.tot = sum(freq.j) J = length(freq.j) m.j = degross.data$m.j small.to.big = degross.data$small.to.big ui = degross.data$ui delta = diff(ui[1:2]) B.i = degross.data$B.i eta.i = c(B.i %*% phi) temp = exp(eta.i) pi.i = temp / sum(temp) gamma.j = c(rowsum(pi.i,small.to.big)) M.j = matrix(nrow=J,ncol=8) rownames(M.j) = paste("Bin",1:J,sep="") colnames(M.j) = paste("mu",1:8,sep="") M.j[,1] = rowsum(ui*pi.i,small.to.big) / gamma.j for (r in 2:8){ M.j[,r] = rowsum((ui-M.j[small.to.big,1])^r*pi.i,small.to.big) / gamma.j } if (gradient){ Bi.tilde = t(t(B.i) - c(apply(pi.i*B.i,2,sum))) PiBi.tilde = pi.i*Bi.tilde if (!is.null(n.i)) Score.ni = c(t(B.i)%*%(n.i-m.tot*pi.i)) else Score.ni = NULL Score.mj = Score.lprior = rep(0,ncol(B.i)) for (j in 1:J){ idx = which(small.to.big == j) Score.mj = Score.mj + freq.j[j]/gamma.j[j]*c(apply(PiBi.tilde[idx,],2,sum)) } } R = 4 dmujr.k = array(dim=c(J,R,K)) if (sum(use.moments) > 0){ invSigma.j = array(dim=c(J,4,4)) for (j in 1:J){ idx = which(small.to.big == j) if (gradient){ dmujr.k[j,1,] = c(apply((ui[idx]-M.j[j,1])*pi.i[idx]*Bi.tilde[idx,],2,sum)/gamma.j[j]) for (r in 2:4){ dmujr.k[j,r,] = c(apply((ui[idx]-M.j[j,1])^r*pi.i[idx]*Bi.tilde[idx,],2,sum)) / gamma.j[j] temp = sum((ui[idx]-M.j[j,1])^(r-1)*pi.i[idx]) dmujr.k[j,r,] = dmujr.k[j,r,] - r * temp * dmujr.k[j,1,] / gamma.j[j] temp2 = c(apply(pi.i[idx]*Bi.tilde[idx,],2,sum)/gamma.j[j]) dmujr.k[j,r,] = dmujr.k[j,r,] - M.j[j,r] * temp2 } } idx2 = which((freq.j[j] >= freq.min) & (!is.na(m.j[j,])) & use.moments) if (length(idx2) > 0){ Mat = Sigma_fun(M.j[j,1:8]) if (diag.only) Mat = diag(diag(Mat)) invSigma.j[j,,] = freq.j[j] * solve(Mat) if (gradient){ Mat = matrix(invSigma.j[j,idx2,idx2],nrow=length(idx2)) temp2 = matrix(dmujr.k[j,idx2,],nrow=length(idx2)) temp = Mat %*% temp2 Score.lprior = Score.lprior + matrix(m.j[j,idx2]-M.j[j,idx2],nrow=1) %*% temp } } } } if (gradient){ Score.lprior = c(Score.lprior) if (penalize){ Score.lprior = Score.lprior - tau * c(Pd%*%phi) } if (!is.null(n.i)) Score.ni = Score.ni + Score.lprior Score.mj = Score.mj + Score.lprior } llik.ni = NULL if (!is.null(n.i)) llik.ni = sum(n.i*log(pi.i)) llik.mj = sum(freq.j * log(gamma.j)) moments.penalty = 0 if (sum(use.moments) > 0){ for (j in 1:J){ idx2 = which((freq.j[j] >= freq.min) & (!is.na(m.j[j,])) & use.moments) if (sum(idx2) > 0){ temp = matrix(invSigma.j[j,idx2,idx2],nrow=length(idx2)) eig.vals = svd(temp)$d ; eig.vals = eig.vals[eig.vals > 1e-4] moments.penalty = moments.penalty + .5*sum(log(eig.vals)) moments.penalty = moments.penalty -.5 * sum(c(m.j[j,idx2]-M.j[j,idx2]) * c(temp %*% c(m.j[j,idx2]-M.j[j,idx2]))) } } } penalty = 0 if (penalize){ penalty = (aa+.5*nrow(Dd))*log(tau) -tau*(bb+.5*sum(phi*c(Pd%*%phi))) } lpost.ni = llik.ni + moments.penalty + penalty lpost.mj = llik.mj + moments.penalty + penalty res = list() res$lpost.ni = lpost.ni res$lpost.mj = lpost.mj res$llik.ni = llik.ni res$llik.mj = llik.mj res$moments.penalty = moments.penalty res$penalty = penalty if (gradient){ if (!is.null(n.i)) res$Score.ni = Score.ni res$Score.mj = Score.mj res$Score.lprior = Score.lprior } res$M.j = M.j res$pi.i = pi.i res$ui = ui ; res$delta = delta res$gamma.j = gamma.j res$tau = tau res$phi = phi res$n.i = n.i res$freq.j = freq.j return(res) }
context("perform_function") test_that("Apply a calculation", { fit <- lm(mpg ~ qsec + factor(am) + wt + factor(gear), data = mtcars) x <- dust(fit) %>% sprinkle(row = 2, cols = 2:3, fn = quote(round(value * -1, 2))) x <- perform_function(x$body) expect_equal(x$value[x$row == 2 & x$col %in% 2:3], c("-1.24", "-0.38")) }) test_that("Apply a string manipulation", { fit <- lm(mpg ~ qsec + factor(am) + wt + factor(gear), data = mtcars) x <- dust(fit) %>% sprinkle(cols = 1, fn = quote(gsub("factor[(]gear[)]", "Gears: ", value))) x <- perform_function(x$body) expect_equal(x$value[x$row %in% 5:6 & x$col == 1], c("Gears: 4", "Gears: 5")) })
context("Check calculate_covariate_drift() function") test_that("Type of data in the explainer",{ library("DALEX") library("ranger") predict_function <- function(m,x,...) predict(m, x, ...)$predictions model_old <- ranger(m2.price ~ ., data = apartments) d <- calculate_residuals_drift(model_old, apartments_test[1:4000,], apartments_test[4001:8000,], apartments_test$m2.price[1:4000], apartments_test$m2.price[4001:8000], predict_function = predict_function) expect_true("covariate_drift" %in% class(d)) expect_true(all(dim(d) == c(1,2))) })
ecdfmeans.m <- function(x, groups, r) { ecdf.ls <- by(x, INDICES=groups, FUN=stats::ecdf, simplify=FALSE) sapply(ecdf.ls, FUN = function(x) { x(r) }, simplify=TRUE) } ecdfcontrasts.m <- function(x, groups, r) { k <- nlevels(groups) gnames <- levels(groups) ecdf.ls <- by(x, INDICES=groups, FUN=stats::ecdf, simplify=FALSE) cont <- matrix(0, nrow=length(r), ncol=k*(k-1)/2) cont.names <- vector(length=k*(k-1)/2) counter <- 1 for(i in 1:(k-1)) for(j in (i+1):k) { cont[, counter] <- ecdf.ls[[i]](r) - ecdf.ls[[j]](r) cont.names[counter] <- paste(gnames[i], gnames[j], sep="-") counter <- counter+1 } colnames(cont) <- cont.names cont } GET.necdf <- function(x, r = seq(min(unlist((lapply(x, min)))), max(unlist((lapply(x, max)))), length=100), contrasts = FALSE, nsim, ...) { if(!is.list(x) && length(x)<2) stop("At least two groups should be provided.") x.lengths <- as.numeric(lapply(x, FUN = length)) if(!is.null(names(x))) groups <- rep(names(x), times=x.lengths) else groups <- rep(1:length(x), times=x.lengths) groups <- factor(groups, levels=unique(groups)) gnames <- levels(groups) if(missing(nsim)) { if(!contrasts) { nsim <- length(x)*1000 - 1 } else { J <- length(x) nsim <- (J*(J-1)/2)*1000 - 1 } message("Creating ", nsim, " permutations.\n", sep="") } if(!contrasts) fun <- ecdfmeans.m else fun <- ecdfcontrasts.m x <- unlist(x) obs <- fun(x, groups, r) sim <- replicate(nsim, fun(x, sample(groups, size=length(groups), replace=FALSE), r), simplify = "array") complabels <- colnames(obs) csets <- list() for(i in 1:ncol(obs)) { csets[[i]] <- create_curve_set(list(r = r, obs = obs[,i], sim_m = sim[,i,])) } names(csets) <- complabels res <- global_envelope_test(csets, alternative="two.sided", ..., nstep=1) if(!contrasts) res <- envelope_set_labs(res, xlab = expression(italic(x)), ylab = expression(italic(hat(F)(x)))) else res <- envelope_set_labs(res, xlab = expression(italic(x)), ylab = expression(italic(hat(F)[i](x)-hat(F)[j](x)))) attr(res, "contrasts") <- contrasts attr(res, "labels") <- complabels attr(res, "call") <- match.call() res }
blktrace <- function(blk,X,Z,parbarrier=NULL){ if(is.null(parbarrier)){ trXZ <- 0 for(p in 1:nrow(blk)){ if(blk[[p,1]] == "s"){ if(length(blk[[p,2]]) == 1){ trXZ <- trXZ + sum(sum(X[[p,1]] * Z[[p,1]])) }else{ xx <- mexsvec(blk[p,,drop=FALSE],as.matrix(X[[p,1]]),0) zz <- mexsvec(blk[p,,drop=FALSE],as.matrix(Z[[p,1]])) trXZ <- trXZ + sum(xx * zz) } }else{ trXZ <- trXZ + sum(X[[p,1]]*Z[[p,1]]) } } }else{ trXZ <- 0 for(p in 1:nrow(blk)){ if(base::norm(parbarrier[[p,1]], type="2") == 0){ if(blk[[p,1]] == "s"){ if(length(blk[[p,2]]) == 1){ trXZ <- trXZ + sum(sum(X[[p,1]] * Z[[p,1]])) }else{ xx <- mexsvec(blk[p,,drop=FALSE],as.matrix(X[[p,1]]),0) zz <- mexsvec(blk[p,,drop=FALSE],as.matrix(Z[[p,1]])) trXZ <- trXZ + sum(xx * zz) } }else{ trXZ <- trXZ + sum(X[[p,1]]*Z[[p,1]]) } }else{ idx <- which(parbarrier[[p,1]] == 0) if(length(idx) > 0){ if(blk[[p,1]] == "s"){ sumXZ <- colSums(X[[p,1]] * Z[[p,1]]) ss <- c(0,cumsum(blk[[p,2]])) for(k in 1:length(idx)){ idxtmp <- c((ss[idx[k]]+1):ss[idx[k]+1]) trXZ <- trXZ + sum(sumXZ[idxtmp]) } }else if(blk[[p,1]] == "q"){ tmp <- qops(blk,p,X[[p]],Z[[p]],1) trXZ <- trXZ + sum(tmp[idx]) }else if(blk[[p,1]] == "l"){ trXZ <- trXZ + sum(X[[p,1]][idx] * Z[[p,1]][idx]) } } } } } return(trXZ) }
Update_a0 <- function(last.params){ new.params <- last.params gamma_rate_part <- a0_gibbs_rate(last.params$thetas,last.params$covariance,last.params$a0) new.params$a0 <- rgamma(1,shape=(1+(last.params$loci*last.params$k)/2),rate=(1+gamma_rate_part)) new.params$covariance <- Covariance(new.params$a0,last.params$aD,last.params$aE,last.params$a2,last.params$D,last.params$E,last.params$delta) new.params$prior_prob_alpha0 <- Prior_prob_alpha0(new.params$a0) new.params$LnL_thetas_vec <- Likelihood_thetas(last.params$thetas,new.params$covariance) new.params$a0_moves <- last.params$a0_moves + 1 return(new.params) }
jacobi.g.weight <- function( x, p, q ) { n <- length( x ) y <- rep( 0, n ) for ( i in 1:n ) { if ( ( x[i] > 0 ) && ( x[i] < 1 ) ) { t1 <- ( 1 - x[i] ) ^ ( p - q ) t2 <- ( x[i] ) ^ ( q - 1 ) y[i] <- t1 * t2 } } return( y ) }
tenant <- Sys.getenv("AZ_TEST_TENANT_ID") app <- Sys.getenv("AZ_TEST_NATIVE_APP_ID") if(tenant == "" || app == "") skip("OneDrive for Business tests skipped: Microsoft Graph credentials not set") if(!interactive()) skip("OneDrive for Business tests skipped: must be in interactive session") tok <- get_test_token(tenant, app, c("Files.ReadWrite.All", "User.Read")) if(is.null(tok)) skip("OneDrive for Business tests skipped: no access to tenant") drv <- try(call_graph_endpoint(tok, "me/drive"), silent=TRUE) if(inherits(drv, "try-error")) skip("OneDrive for Business tests skipped: service not available") od <- ms_drive$new(tok, tenant, drv) test_that("OneDrive for Business works", { expect_is(od, "ms_drive") lst <- od$list_items() expect_is(lst, "data.frame") newfolder <- make_name() expect_silent(od$create_folder(newfolder)) src <- "../resources/file.json" dest <- file.path(newfolder, basename(src)) newsrc <- tempfile() expect_silent(od$upload_file(src, dest)) expect_silent(od$download_file(dest, newsrc)) expect_true(files_identical(src, newsrc)) item <- od$get_item(dest) expect_is(item, "ms_drive_item") pager <- od$list_files(newfolder, filter=sprintf("name eq '%s'", basename(src)), n=NULL) expect_is(pager, "ms_graph_pager") lst1 <- pager$value expect_is(lst1, "data.frame") expect_identical(nrow(lst1), 1L) expect_silent(od$set_item_properties(dest, name="newname")) expect_silent(item$sync_fields()) expect_identical(item$properties$name, "newname") expect_silent(item$update(name=basename(dest))) expect_identical(item$properties$name, basename(dest)) expect_silent(item$delete(confirm=FALSE)) expect_silent(od$delete_item(newfolder, confirm=FALSE)) }) test_that("Drive item methods work", { root <- od$get_item("/") expect_is(root, "ms_drive_item") rootp <- root$get_parent_folder() expect_is(rootp, "ms_drive_item") expect_equal(rootp$properties$name, "root") tmpname1 <- make_name(10) folder1 <- root$create_folder(tmpname1) expect_is(folder1, "ms_drive_item") expect_true(folder1$is_folder()) folder1p <- folder1$get_parent_folder() expect_equal(rootp$properties$name, "root") tmpname2 <- make_name(10) folder2 <- folder1$create_folder(tmpname2) expect_is(folder2, "ms_drive_item") expect_true(folder2$is_folder()) folder2p <- folder2$get_parent_folder() expect_equal(folder2p$properties$name, folder1$properties$name) src <- write_file() expect_silent(file1 <- root$upload(src)) expect_is(file1, "ms_drive_item") expect_false(file1$is_folder()) expect_error(file1$create_folder("bad")) file1p <- file1$get_parent_folder() expect_equal(file1p$properties$name, "root") file1_0 <- root$get_item(basename(src)) expect_is(file1_0, "ms_drive_item") expect_false(file1_0$is_folder()) expect_identical(file1_0$properties$name, file1$properties$name) dest1 <- tempfile() expect_silent(file1$download(dest1)) expect_true(files_identical(src, dest1)) expect_silent(file2 <- folder1$upload(src)) expect_is(file2, "ms_drive_item") file2p <- file2$get_parent_folder() expect_equal(file2p$properties$name, folder1$properties$name) dest2 <- tempfile() expect_silent(file2$download(dest2)) expect_true(files_identical(src, dest2)) dest3 <- tempfile() expect_silent(file3 <- folder2$upload(src, basename(dest3))) expect_is(file3, "ms_drive_item") expect_identical(file3$properties$name, basename(dest3)) expect_silent(file3$download(dest3)) expect_true(files_identical(src, dest3)) file3_1 <- folder1$get_item(file.path(tmpname2, basename(dest3))) expect_is(file3_1, "ms_drive_item") expect_identical(file3_1$properties$name, file3$properties$name) lst0 <- root$list_files() expect_is(lst0, "data.frame") lst0_f <- root$list_files(info="name", full_names=TRUE) expect_type(lst0_f, "character") expect_true(all(substr(lst0_f, 1, 1) == "/")) lst0_1 <- root$list_files(tmpname1) lst1 <- folder1$list_files() expect_identical(lst0_1, lst1) lst1_f <- folder1$list_files(tmpname2, info="name", full_names=TRUE) expect_type(lst1_f, "character") expect_true(all(grepl(paste0("^", tmpname2), lst1_f))) expect_silent(file3$delete(confirm=FALSE)) expect_silent(folder2$delete(confirm=FALSE)) expect_silent(file2$delete(confirm=FALSE)) expect_silent(folder1$delete(confirm=FALSE)) expect_silent(file1$delete(confirm=FALSE)) }) test_that("Methods work with filenames with special characters", { test_name <- paste(make_name(5), "plus spaces and áccénts") src <- write_file(fname=file.path(tempdir(), test_name)) expect_silent(od$upload_file(src, basename(src))) expect_silent(item <- od$get_item(basename(test_name))) expect_true(item$properties$name == basename(test_name)) expect_silent(item$delete(confirm=FALSE)) }) test_that("Nested folder creation/deletion works", { f1 <- make_name(10) f2 <- make_name(10) f3 <- make_name(10) it12 <- od$create_folder(file.path(f1, f2)) expect_is(it12, "ms_drive_item") it1 <- od$get_item(f1) expect_is(it1, "ms_drive_item") replicate(30, it1$upload(write_file())) it123 <- it1$create_folder(file.path(f2, f3)) expect_is(it123, "ms_drive_item") expect_silent(it1$delete(confirm=FALSE, by_item=TRUE)) })
context("run_solver") if (interactive()) { test_that("run_solver", { x = random_instance(size = 100) for (method in get_solvers()) { res = run_solver(x, method = method) } }) }
globalVariables("func") reduce <- function(x, f, init) { Reduce(f, x, init) } drop_nulls <- function(x) { if (length(x) == 0) { x } else { x[!vapply(x, is.null, logical(1))] } } str_conjoin <- function(x, con = "or") { if (length(x) == 1) { return(as.character(x)) } if (length(x) == 2) { return(paste(x[1], con, x[2])) } paste0(paste(x[-length(x)], collapse = ", "), ", ", con, " ", x[length(x)]) } str_collate <- function(..., collapse = " ") { args <- unique(c(...)) if (is.null(args)) { return(NULL) } args <- args[nzchar(args) & !is_na(args)] if (length(args) == 0) { return(NULL) } paste(args, collapse = collapse) } str_re <- function(string, pattern, len0 = TRUE) { if (length(string) == 0) { return(len0) } grepl(paste0("^(?:", pattern, ")$"), string) } generate_id <- function(prefix) { paste(c(prefix, sample(1000, 2, TRUE)), collapse = "-") } named_values <- function(x) { x[names2(x) != ""] } unnamed_values <- function(x) { x[names2(x) == ""] } s3_class_add <- function(x, new) { class(x) <- unique(c(new, class(x))) x } processDeps <- function(tags, session) { ui <- takeSingletons(tags, session$singletons, desingleton = FALSE)$ui ui <- surroundSingletons(ui) dependencies <- lapply( resolveDependencies(findDependencies(ui)), createWebDependency ) names(dependencies) <- NULL dependencies }
plot.outlier<- function(x,...) { o.outlier<- x neighb<- o.outlier$neigh.dist dmm<- o.outlier$olddim[1] par(omi=c(1,0,1.5,0)) o.h<- hist(neighb,xlab="Nearest neighbour distance",main="",col=gray(0.8),labels=T,ylim=c(0,dmm*0.6),mgp=c(2,0.5,0)) colwidths<- o.h$mids[2]-o.h$mids[1] drange<- range(neighb) ddrange<- range(neighb)[2]-range(neighb)[1] xline<- seq(drange[1],drange[2],ddrange/100) yline<- dnorm(xline,mean=mean(neighb),sd=sd(neighb))*length(neighb)*colwidths lines(xline,yline,col="red3",lwd=1.2) x.c<- o.outlier$pco.points[,1] y.c<- o.outlier$pco.points[,2] thresh<- o.outlier$threshold par(omi=c(0,0,0,0)) plot(x.c,y.c,asp=1,type="n",cex.axis=0.7,cex.lab=1.0,tcl=-0.3,mgp=c(2,0.5,0)) points(x.c[neighb <= thresh],y.c[neighb <= thresh],pch=16,cex=0.6,col=gray(0.85)) points(x.c[neighb > thresh],y.c[neighb > thresh],pch=16,cex=0.6,col="red4") abline(h=0,v=0,lwd=1.0,col="black") legend("bottomleft",c("outliers","other data points"),pch=c(16,16),col=c("red4",gray(0.85)),bty="n",cex=0.8) }
context("compare_stages") DD <- generate_linear_dataset(5, 10) levels(DD$C) <- c("a", "b") levels(DD$X3) <- c("qqqq", "pppp") mod1 <- full(DD, join_unobserved = FALSE) mod2 <- indep(DD, join_unobserved = FALSE) test_that("compare_stages correctly returns TRUE/FALSE", { if (!requireNamespace("pkg", quietly = TRUE)) { methods <- c("naive", "stages") } else { methods <- c("naive", "hamming", "stages") } for (m in methods) { expect_true(compare_stages(mod1, mod1, method = !!m)) expect_true(compare_stages(mod2, mod2, method = !!m)) expect_false(compare_stages(mod1, mod2, method = !!m)) expect_false(compare_stages(mod2, mod1, method = !!m)) } }) test_that("hamming_stages", { expect_true(hamming_stages(mod1, mod2) >= 0) }) test_that("inclusion_stages works properly", { comparison <- inclusions_stages(mod1, mod2) for (i in 2:(NCOL(DD) - 1)) { expect_true(NROW(comparison[[i]]) > NROW(comparison[[i - 1]])) } }) test_that("inclusion_stages works symmetrically", { comparison1 <- inclusions_stages(mod1, mod2) comparison2 <- inclusions_stages(mod2, mod1) for (i in 1:(NCOL(DD) - 1)) { expect_true(NROW(comparison1[[i]]) == NROW(comparison2[[i]])) } })
set.seed(1234) nbNodes <- 90 nbBlocks <- 3 blockProp <- c(.5, .25, .25) test_that("Construction, fields access and other basics work in class SimpleSBM_Sampler (undirected Bernoulli model, no covariate)", { means <- diag(.4, 3) + 0.05 connectParam <- list(mean = means) mySampler <- SimpleSBM$new('bernoulli', nbNodes, FALSE, blockProp, connectParam) expect_error(SimpleSBM$new('bernouilli',nbNodes, FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('bernoulli', -10 , FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('bernoulli', c(1,2) , FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('bernoulli', nbNodes, FALSE, -2, connectParam)) expect_error(SimpleSBM$new('bernoulli', nbNodes, FALSE, c(0,1), connectParam)) expect_error(SimpleSBM$new('bernoulli', nbNodes, FALSE, blockProp, list(mean = matrix( 2, nbBlocks, nbBlocks)))) expect_error(SimpleSBM$new('bernoulli', nbNodes, FALSE, blockProp, list(mean = matrix(-2, nbBlocks, nbBlocks)))) expect_error(SimpleSBM$new('bernoulli', nbNodes, FALSE, blockProp, list(mean = matrix(runif(nbBlocks**2), nbBlocks, nbBlocks)))) expect_error(SimpleSBM$new('bernoulli', nbNodes, FALSE, blockProp, list(mean = matrix(0, nbBlocks - 1, nbBlocks)))) expect_true(inherits(mySampler, "SBM")) expect_true(inherits(mySampler, "SimpleSBM")) expect_equal(mySampler$modelName, 'bernoulli') expect_equal(unname(mySampler$nbNodes), nbNodes) expect_equal(mySampler$nbDyads, nbNodes*(nbNodes - 1)/2) expect_equal(mySampler$connectParam$mean, means) expect_null(mySampler$connectParam$var) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) expect_equal(dim(mySampler$expectation), c(nbNodes, nbNodes)) expect_true(all(mySampler$expectation >= 0, na.rm = TRUE)) expect_true(all(mySampler$expectation <= 1, na.rm = TRUE)) expect_true(isSymmetric(mySampler$networkData)) expect_true(all(is.na(diag(mySampler$networkData)))) expect_true(!mySampler$directed) expect_equal(mySampler$blockProp, blockProp) expect_equal(mySampler$nbBlocks, nbBlocks) expect_equal(dim(mySampler$indMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySampler$memberships)), 1:nbBlocks) expect_equal(length(mySampler$memberships), nbNodes) expect_equal(mySampler$nbCovariates, 0) expect_equal(mySampler$covarList, list()) expect_equal(mySampler$covarParam, numeric(0)) expect_equal(mySampler$covarEffect, numeric(0)) }) test_that("Construction, fields access and other basics work in class SimpleSBM_Sampler (directed Bernoulli model, no covariate)", { means <- matrix(runif(nbBlocks**2), nbBlocks, nbBlocks) connectParam <- list(mean = means) mySampler <- SimpleSBM$new('bernoulli', nbNodes, TRUE, blockProp, connectParam) expect_error(SimpleSBM$new('bernouilli',nbNodes, TRUE, blockProp, connectParam)) expect_error(SimpleSBM$new('bernouilli',nbNodes, FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('bernoulli', -10 , TRUE, blockProp, connectParam)) expect_error(SimpleSBM$new('bernoulli', c(1,2) , TRUE, blockProp, connectParam)) expect_error(SimpleSBM$new('bernoulli', nbNodes, TRUE, -2, connectParam)) expect_error(SimpleSBM$new('bernoulli', nbNodes, TRUE, c(0,1), connectParam)) expect_error(SimpleSBM$new('bernoulli', nbNodes, TRUE, blockProp, list(mean = matrix( 2, nbBlocks, nbBlocks)))) expect_error(SimpleSBM$new('bernoulli', nbNodes, TRUE, blockProp, list(mean = matrix(-2, nbBlocks, nbBlocks)))) expect_error(SimpleSBM$new('bernoulli', nbNodes, TRUE, blockProp, list(mean = matrix(0, nbBlocks - 1, nbBlocks)))) expect_true(inherits(mySampler, "SBM")) expect_true(inherits(mySampler, "SimpleSBM")) expect_equal(mySampler$modelName, 'bernoulli') expect_equal(unname(mySampler$nbNodes), nbNodes) expect_equal(mySampler$nbDyads, nbNodes*(nbNodes - 1)) expect_equal(mySampler$connectParam$mean, means) expect_null(mySampler$connectParam$var) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) expect_equal(dim(mySampler$expectation), c(nbNodes, nbNodes)) expect_true(all(mySampler$expectation >= 0, na.rm = TRUE)) expect_true(all(mySampler$expectation <= 1, na.rm = TRUE)) expect_true(all(is.na(diag(mySampler$networkData)))) expect_true(!isSymmetric(mySampler$networkData)) expect_true(mySampler$directed) expect_equal(mySampler$blockProp, blockProp) expect_equal(mySampler$nbBlocks, nbBlocks) expect_equal(dim(mySampler$indMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySampler$memberships)), 1:nbBlocks) expect_equal(length(mySampler$memberships), nbNodes) expect_equal(mySampler$nbCovariates, 0) expect_equal(mySampler$covarList, list()) expect_equal(mySampler$covarParam, numeric(0)) expect_equal(mySampler$covarEffect, numeric(0)) }) test_that("Construction, fields access and other basics work in class SimpleSBM_Sampler (undirected Poisson model, no covariate)", { means <- diag(15., 3) + 5 connectParam <- list(mean = means) mySampler <- SimpleSBM$new('poisson', nbNodes, FALSE, blockProp, connectParam) expect_error(SimpleSBM$new('poison' , nbNodes, FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('poisson', -10 , FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('poisson', c(1,2) , FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('poisson', nbNodes, FALSE, -2, connectParam)) expect_error(SimpleSBM$new('poisson', nbNodes, FALSE, c(0,1), connectParam)) expect_error(SimpleSBM$new('poisson', nbNodes, FALSE, blockProp, list(mean = matrix(-2, nbBlocks, nbBlocks)))) expect_error(SimpleSBM$new('poisson', nbNodes, FALSE, blockProp, list(mean = round(40 * matrix(runif(nbBlocks**2), nbBlocks, nbBlocks))))) expect_error(SimpleSBM$new('poisson', nbNodes, FALSE, blockProp, list(mean = matrix(2 , nbBlocks - 1, nbBlocks)))) expect_true(inherits(mySampler, "SBM")) expect_true(inherits(mySampler, "SimpleSBM")) expect_equal(mySampler$modelName, 'poisson') expect_equal(unname(mySampler$nbNodes), nbNodes) expect_equal(mySampler$nbDyads, nbNodes*(nbNodes - 1)/2) expect_equal(mySampler$connectParam$mean, means) expect_null(mySampler$connectParam$var) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) expect_equal(dim(mySampler$expectation), c(nbNodes, nbNodes)) expect_true(all(mySampler$expectation >= 0, na.rm = TRUE)) expect_true(all(is.na(diag(mySampler$networkData)))) expect_true(isSymmetric(mySampler$networkData)) expect_equal(mySampler$blockProp, blockProp) expect_equal(mySampler$nbBlocks, nbBlocks) expect_equal(dim(mySampler$indMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySampler$memberships)), 1:nbBlocks) expect_equal(length(mySampler$memberships), nbNodes) expect_equal(mySampler$nbCovariates, 0) expect_equal(mySampler$covarList, list()) expect_equal(mySampler$covarParam, numeric(0)) expect_equal(mySampler$covarEffect, numeric(0)) }) test_that("Construction, fields access and other basics work in class SimpleSBM_Sampler (directed Poisson model, no covariate)", { means <- round(40 * matrix(runif(nbBlocks**2), nbBlocks, nbBlocks)) connectParam <- list(mean = means) mySampler <- SimpleSBM$new('poisson', nbNodes, TRUE, blockProp, connectParam) expect_error(SimpleSBM$new('poison' , nbNodes, TRUE, blockProp, connectParam)) expect_error(SimpleSBM$new('poisson', -10 , TRUE, blockProp, connectParam)) expect_error(SimpleSBM$new('poisson', c(1,2) , TRUE, blockProp, connectParam)) expect_error(SimpleSBM$new('poisson', nbNodes, TRUE, -2, connectParam)) expect_error(SimpleSBM$new('poisson', nbNodes, TRUE, c(0,1), connectParam)) expect_error(SimpleSBM$new('poisson', nbNodes, TRUE, blockProp, list(mean = matrix(-2, nbBlocks, nbBlocks)))) expect_error(SimpleSBM$new('poisson', nbNodes, TRUE, blockProp, list(mean = matrix(2 , nbBlocks - 1, nbBlocks)))) expect_true(inherits(mySampler, "SBM")) expect_true(inherits(mySampler, "SimpleSBM")) expect_equal(mySampler$modelName, 'poisson') expect_equal(unname(mySampler$nbNodes), nbNodes) expect_equal(mySampler$nbDyads, nbNodes*(nbNodes - 1)) expect_equal(mySampler$connectParam$mean, means) expect_null(mySampler$connectParam$var) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) expect_equal(dim(mySampler$expectation), c(nbNodes, nbNodes)) expect_true(all(mySampler$expectation >= 0, na.rm = TRUE)) expect_true(all(is.na(diag(mySampler$networkData)))) expect_true(!isSymmetric(mySampler$networkData)) expect_true(mySampler$directed) expect_equal(mySampler$blockProp, blockProp) expect_equal(mySampler$nbBlocks, nbBlocks) expect_equal(dim(mySampler$indMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySampler$memberships)), 1:nbBlocks) expect_equal(length(mySampler$memberships), nbNodes) expect_equal(mySampler$nbCovariates, 0) expect_equal(mySampler$covarList, list()) expect_equal(mySampler$covarParam, numeric(0)) expect_equal(mySampler$covarEffect, numeric(0)) }) test_that("Construction, fields access and other basics work in class SimpleSBM_Sampler (undirected Gaussian model, no covariate)", { means <- diag(15., 3) + 5 connectParam <- list(mean = means, var = 2) mySampler <- SimpleSBM$new('gaussian', nbNodes, FALSE, blockProp, connectParam) expect_error(SimpleSBM$new('normal' , nbNodes, FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('gaussian', -10 , FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('gaussian', c(1,2) , FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('gaussian', nbNodes, FALSE, -2, connectParam)) expect_error(SimpleSBM$new('gaussian', nbNodes, FALSE, c(0,1), connectParam)) expect_error(SimpleSBM$new('gaussian', nbNodes, FALSE, blockProp, list(mean = means, var = -1))) expect_error(SimpleSBM$new('gaussian', nbNodes, FALSE, blockProp, list(mean = matrix(runif(nbBlocks**2), nbBlocks, nbBlocks)))) expect_error(SimpleSBM$new('gaussian', nbNodes, FALSE, blockProp, list(mean = matrix(2 , nbBlocks - 1, nbBlocks), var = 1))) expect_true(inherits(mySampler, "SBM")) expect_true(inherits(mySampler, "SimpleSBM")) expect_equal(mySampler$modelName, 'gaussian') expect_equal(unname(mySampler$nbNodes), nbNodes) expect_equal(mySampler$nbDyads, nbNodes*(nbNodes - 1)/2) expect_equal(mySampler$connectParam$mean, means) expect_equal(mySampler$connectParam$var, 2) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) expect_equal(dim(mySampler$expectation), c(nbNodes, nbNodes)) expect_true(all(is.na(diag(mySampler$networkData)))) expect_true(isSymmetric(mySampler$networkData)) expect_equal(mySampler$blockProp, blockProp) expect_equal(mySampler$nbBlocks, nbBlocks) expect_equal(dim(mySampler$indMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySampler$memberships)), 1:nbBlocks) expect_equal(length(mySampler$memberships), nbNodes) expect_equal(mySampler$nbCovariates, 0) expect_equal(mySampler$covarList, list()) expect_equal(mySampler$covarParam, numeric(0)) expect_equal(mySampler$covarEffect, numeric(0)) }) test_that("Construction, fields access and other basics work in class SimpleSBM_Sampler (directed Gaussian model, no covariate)", { means <- matrix(runif(nbBlocks**2), nbBlocks, nbBlocks) connectParam <- list(mean = means, var = 2) mySampler <- SimpleSBM$new('gaussian', nbNodes, TRUE, blockProp, connectParam) expect_error(SimpleSBM$new('normal' , nbNodes, TRUE, blockProp, connectParam)) expect_error(SimpleSBM$new('gaussian', nbNodes, FALSE, blockProp, connectParam)) expect_error(SimpleSBM$new('gaussian', -10 , TRUE, blockProp, connectParam)) expect_error(SimpleSBM$new('gaussian', c(1,2) , TRUE, blockProp, connectParam)) expect_error(SimpleSBM$new('gaussian', nbNodes, TRUE, -2, connectParam)) expect_error(SimpleSBM$new('gaussian', nbNodes, TRUE, c(0,1), connectParam)) expect_error(SimpleSBM$new('gaussian', nbNodes, TRUE, blockProp, list(var = -1, mean = means))) expect_error(SimpleSBM$new('gaussian', nbNodes, TRUE, blockProp, list(var = 1, mean = matrix(2 , nbBlocks - 1, nbBlocks)))) expect_true(inherits(mySampler, "SBM")) expect_true(inherits(mySampler, "SimpleSBM")) expect_equal(mySampler$modelName, 'gaussian') expect_equal(unname(mySampler$nbNodes), nbNodes) expect_equal(mySampler$nbDyads, nbNodes*(nbNodes - 1)) expect_equal(mySampler$connectParam$mean, means) expect_equal(mySampler$connectParam$var, 2) mySampler$rMemberships(store = TRUE) mySampler$rEdges(store = TRUE) expect_equal(dim(mySampler$expectation), c(nbNodes, nbNodes)) expect_true(all(is.na(diag(mySampler$networkData)))) expect_true(!isSymmetric(mySampler$networkData)) expect_true(mySampler$directed) expect_equal(mySampler$blockProp, blockProp) expect_equal(mySampler$nbBlocks, nbBlocks) expect_equal(dim(mySampler$indMemberships), c(nbNodes, nbBlocks)) expect_equal(sort(unique(mySampler$memberships)), 1:nbBlocks) expect_equal(length(mySampler$memberships), nbNodes) expect_equal(mySampler$nbCovariates, 0) expect_equal(mySampler$covarList, list()) expect_equal(mySampler$covarParam, numeric(0)) expect_equal(mySampler$covarEffect, numeric(0)) })
Stage1.notebook<-function() { one<-inclus<-samplingtypeFrame<-run1<-NULL initializeDialog(title="Stage 1 Sampling") variables2<-names(get(activeDataSet())) PSUselection<-ifelse(is.na(match("PSU_SN", variables2)), NA, match("PSU_SN", variables2)-1) PSUBox<-variableListBox2(top, variableList=variables2, title="Select the PRIMARY SAMPLING UNIT variable:", initialSelection=PSUselection) tkgrid(getFrame(PSUBox), sticky="w") strataselection<-ifelse(is.na(match("STRATUM_ID", variables2)), NA, match("STRATUM_ID", variables2)-1) strataBox<-variableListBox2(top, variableList=variables2, title="Select the STAGE 1 STRATIFICATION variable:", initialSelection=strataselection) tkblank(top) tkgrid(getFrame(strataBox), sticky="w") inclusselection<-ifelse(is.na(match("ST1_PROB", variables2)), NA, match("ST1_PROB", variables2)-1) inclusBox<-variableListBox2(top, variableList=variables2, title="Select the STAGE 1 INCLUSION PROBABILITY variable:", initialSelection=inclusselection) tkblank(top) tkgrid(getFrame(inclusBox), sticky="w") radioButtons(top, name="samplingtype", buttons=c("Maxentropy","system"), values=c(1,2), labels=c("Maximum entropy sampling (recommended) ","Systematic Sampling"), title="What type of sampling do you want to do?",right.buttons=FALSE) tkblank(top) tkgrid(samplingtypeFrame, sticky="w") RandomValue<-tclVar("1") RandomCB<-tkcheckbutton(top, text="Randomize the PSU order within each stratum") tkconfigure(RandomCB, variable=RandomValue) tkblank(top) tkgrid(RandomCB, sticky="w") onOK<-function(){ stage1df<-activeDataSet() PSU <- as.double(tkcurselection(PSUBox$listbox))+1 strata <- as.double(tkcurselection(strataBox$listbox))+1 inclus<- as.double(tkcurselection(inclusBox$listbox))+1 RandomPSU<-tclvalue(RandomValue) if (tclvalue(samplingtypeVariable)=="1") {samplingtype<-"UPmaxentropy"} else {samplingtype<-"UPsystematic"} if (length(PSU)==0) {check.fn2("Primary Sampling Unit") return()} if (length(strata)==0) {check.fn2("STRATIFICATION") return()} if (length(inclus)==0) {check.fn2("First Stage Inclusion Probability") return()} closeDialog() doItAndPrint(paste("Stage1Sample <- stage1Sample.fn(stage1df=",stage1df,", PSU=",PSU,", strata=",strata,", inclus=",inclus, ", samplingtype=",samplingtype,", randomPSU=", RandomPSU,")\n",sep="")) activeDataSet("Stage1Sample") } OKCancelHelp2(window=top, onHelp=Stage1onHelp) tkgrid(buttonsFrame, columnspan="2", sticky="w") dialogSuffix(rows=3, columns=2, window=top, focus=buttonsFrame) } stage1Sample.fn <-function(stage1df, PSU, strata, inclus, samplingtype, randomPSU){ x<-stage1df x<-x[order(x[,strata],x[,PSU]),] y<-unique(x[,c(PSU,strata,inclus)]) PSU2<-match(names(x)[PSU], names(y)) strata2<-match(names(x)[strata],names(y)) inclus2<-match(names(x)[inclus],names(y)) y$strata.id<-as.numeric(y[,strata2]) y$I<-ifelse(y[,inclus2]==1,1,0) sample<-y[which(y[,inclus2]<1),] if (nrow(y)!=nrow(sample)) { message("Sampling has proceeded, however this dataset contains PSU(s) with inclusion probabilities = 1") } total<-max(sample$strata.id) pb<-tkProgressBar(title = "progress bar", min = 0, max = total, width = 300) selectionI<-matrix(NA, nrow=total, ncol=1) for (i in 1: max(sample$strata.id)){ selectionI[i]<-list(samplingtype(sample[,inclus2][which(sample$strata.id==i)])) setTkProgressBar(pb, i, label=paste( round(i/total*100, 0),"% done")) } close(pb) sample$I<-c(selectionI,recursive=TRUE) sample<-rbind(subset(sample,sample$I==1),y[which(y$I==1),]) Selected.PSU<-x[which(x[,PSU] %in% sample[,PSU2]),] if (randomPSU==1){ Selected.PSU$rand<-runif(nrow(Selected.PSU)) rrr<-tapply(Selected.PSU$rand, FUN=min, INDEX=factor(Selected.PSU[,PSU])) Selected.PSU$rrr<-rrr[match(Selected.PSU[,PSU], rownames(rrr))] Selected.PSU<-Selected.PSU[order(Selected.PSU[,strata], Selected.PSU$rrr),] } row.names(Selected.PSU)<-Selected.PSU$I<-Selected.PSU$strata.id<-Selected.PSU$PSUorder<-Selected.PSU$rand<-Selected.PSU$rrr<-NULL return(Selected.PSU) }
summary.dfm <- function(object, ci = .95, ...){ tt <- NROW(object[["x"]]) m <- NCOL(object[["x"]]) n <- NCOL(object[["factor"]]) / tt n_lambda <- m * n p <- object$specifications$lags["p"] measure_names <- dimnames(object$x)[[2]] fac_names <- paste0("Factor.", 1:n) dim_names <- list(measure_names, fac_names) ci_low <- (1 - ci) / 2 ci_high <- 1 - ci_low temp <- summary(object[["lambda"]], quantiles = c(ci_low, .5, ci_high)) means <- matrix(temp$statistics[, "Mean"], m) sds <- matrix(temp$statistics[, "SD"], m) naive_sd <- matrix(temp$statistics[, "Naive SE"], m) ts_sd <- matrix(temp$statistics[, "Time-series SE"], m) q_low <- matrix(temp$quantiles[, 1], m) median <- matrix(temp$quantiles[, 2], m) q_high <- matrix(temp$quantiles[, 3], m) if (!is.null(means)) { dimnames(means) <- dim_names dimnames(sds) <- dim_names dimnames(naive_sd) <- dim_names dimnames(ts_sd) <- dim_names dimnames(q_low) <- dim_names dimnames(median) <- dim_names dimnames(q_high) <- dim_names } result <- list(lambda = list(means = means, median = median, sd = sds, naivesd = naive_sd, tssd = ts_sd, q_lower = q_low, q_upper = q_high)) means <- NULL median <- NULL sds <- NULL naive_sd <- NULL ts_sd <- NULL q_low <- NULL q_high <- NULL temp <- summary(object[["factor"]], quantiles = c(ci_low, .5, ci_high)) for (i in 1:n) { if ("numeric" %in% class(temp$statistics)) { means <- cbind(means, matrix(temp$statistics["Mean"], tt)) sds <- cbind(sds, matrix(temp$statistics["SD"], tt)) naive_sd <- cbind(naive_sd, matrix(temp$statistics["Naive SE"], tt)) ts_sd <- cbind(ts_sd, matrix(temp$statistics["Time-series SE"], tt)) q_low <- cbind(q_low, matrix(temp$quantiles[1], tt)) median <- cbind(median, matrix(temp$quantiles[2], tt)) q_high <- cbind(q_high, matrix(temp$quantiles[3], tt)) } else { means <- cbind(means, matrix(temp$statistics[i + n * 0:(tt - 1), "Mean"], tt)) sds <- cbind(sds, matrix(temp$statistics[i + n * 0:(tt - 1), "SD"], tt)) naive_sd <- cbind(naive_sd, matrix(temp$statistics[i + n * 0:(tt - 1), "Naive SE"], tt)) ts_sd <- cbind(ts_sd, matrix(temp$statistics[i + n * 0:(tt - 1), "Time-series SE"], tt)) q_low <- cbind(q_low, matrix(temp$quantiles[i + n * 0:(tt - 1), 1], tt)) median <- cbind(median, matrix(temp$quantiles[i + n * 0:(tt - 1), 2], tt)) q_high <- cbind(q_high, matrix(temp$quantiles[i + n * 0:(tt - 1), 3], tt)) } } dim_names <- list(1:tt, fac_names) if (!is.null(means)) { dimnames(means) <- dim_names dimnames(sds) <- dim_names dimnames(naive_sd) <- dim_names dimnames(ts_sd) <- dim_names dimnames(q_low) <- dim_names dimnames(median) <- dim_names dimnames(q_high) <- dim_names } result[["factor"]] = list(means = means, median = median, sd = sds, naivesd = naive_sd, tssd = ts_sd, q_lower = q_low, q_upper = q_high) if (!is.null(object$sigma_u)) { temp <- summary(object$sigma_u, quantiles = c(ci_low, .5, ci_high)) means <- matrix(temp$statistics[, "Mean"], m) sds <- matrix(temp$statistics[, "SD"], m) naive_sd <- matrix(temp$statistics[, "Naive SE"], m) ts_sd <- matrix(temp$statistics[, "Time-series SE"], m) q_low <- matrix(temp$quantiles[, 1], m) median <- matrix(temp$quantiles[, 2], m) q_high <- matrix(temp$quantiles[, 3], m) } dim_names <- list(measure_names, NULL) if (!is.null(means)) { dimnames(means) <- dim_names dimnames(sds) <- dim_names dimnames(naive_sd) <- dim_names dimnames(ts_sd) <- dim_names dimnames(q_low) <- dim_names dimnames(median) <- dim_names dimnames(q_high) <- dim_names } result[["sigma_u"]] = list(means = means, median = median, sd = sds, naivesd = naive_sd, tssd = ts_sd, q_lower = q_low, q_upper = q_high) if (p > 0) { temp <- summary(object[["a"]], quantiles = c(ci_low, .5, ci_high)) if ("numeric" %in% class(temp$statistics)) { means <- matrix(temp$statistics["Mean"], n) sds <-matrix(temp$statistics["SD"], n) naive_sd <- matrix(temp$statistics["Naive SE"], n) ts_sd <- matrix(temp$statistics["Time-series SE"], n) q_low <- matrix(temp$quantiles[1], n) median <- matrix(temp$quantiles[2], n) q_high <- matrix(temp$quantiles[3], n) } else { means <- matrix(temp$statistics[, "Mean"], n) sds <- matrix(temp$statistics[, "SD"], n) naive_sd <- matrix(temp$statistics[, "Naive SE"], n) ts_sd <- matrix(temp$statistics[, "Time-series SE"], n) q_low <- matrix(temp$quantiles[, 1], n) median <- matrix(temp$quantiles[, 2], n) q_high <- matrix(temp$quantiles[, 3], n) } } if (!is.null(object$sigma_v)) { temp <- summary(object$sigma_v, quantiles = c(ci_low, .5, ci_high)) if (n == 1) { means <- matrix(temp$statistics["Mean"], n) sds <- matrix(temp$statistics["SD"], n) naive_sd <- matrix(temp$statistics["Naive SE"], n) ts_sd <- matrix(temp$statistics["Time-series SE"], n) q_low <- matrix(temp$quantiles[1], n) median <- matrix(temp$quantiles[2], n) q_high <- matrix(temp$quantiles[3], n) } else { means <- matrix(temp$statistics[, "Mean"], n) sds <- matrix(temp$statistics[, "SD"], n) naive_sd <- matrix(temp$statistics[, "Naive SE"], n) ts_sd <- matrix(temp$statistics[, "Time-series SE"], n) q_low <- matrix(temp$quantiles[, 1], n) median <- matrix(temp$quantiles[, 2], n) q_high <- matrix(temp$quantiles[, 3], n) } } dim_names <- list(fac_names, NULL) if (!is.null(means)) { dimnames(means) <- dim_names dimnames(sds) <- dim_names dimnames(naive_sd) <- dim_names dimnames(ts_sd) <- dim_names dimnames(q_low) <- dim_names dimnames(median) <- dim_names dimnames(q_high) <- dim_names } result[["sigma_v"]] = list(means = means, median = median, sd = sds, naivesd = naive_sd, tssd = ts_sd, q_lower = q_low, q_upper = q_high) result$specifications <- object$specifications result$specifications$ci <- paste(c(ci_low, ci_high) * 100, "%", sep = "") class(result) <- "summary.dfm" return(result) }
context("gen-method") test_that("__and__", { x <- torch_tensor(TRUE) y <- x$`__and__`(x) expect_tensor(y) expect_equal_to_tensor(y, x) x <- torch_tensor(c(TRUE, FALSE)) y <- x$`__and__`(TRUE) expect_tensor(y) expect_equal_to_tensor(y, x) }) test_that("add", { x <- torch_tensor(1L, dtype = torch_long()) expect_equal_to_r(x$add(1L)$to(dtype = torch_int()), 2L) x <- torch_tensor(1) expect_equal_to_r(x$add(1), 2) }) test_that("clamp", { x <- torch_randn(5) expect_error(x$clamp(1), regexp = NA) }) test_that("clone", { x <- torch_randn(10, 10) y <- x$clone() expect_equal_to_tensor(x, y) expect_true(! x$storage()$data_ptr() == y$storage()$data_ptr()) }) test_that("item", { x <- torch_tensor(1) expect_equal(x$item(), 1) x <- torch_tensor(1L) expect_equal(x$item(), 1L) x <- torch_tensor(TRUE) expect_equal(x$item(), TRUE) x <- torch_tensor(1.5) expect_equal(x$item(), 1.5) x <- torch_tensor(1.5, dtype = torch_double()) expect_equal(x$item(), 1.5) }) test_that("new_full", { x <- torch_randn(2,2) expect_equal_to_tensor( x$new_full(c(3,3), 1), torch_ones(3,3) ) }) test_that("permute", { x <- torch_randn(2,3,4) y <- x$permute(c(3,2,1)) expect_tensor_shape(y, c(4,3,2)) expect_error( x$permute(c(2,1, 0)), regex = "Indexing starts at 1 but found a 0.", fixed = TRUE ) })
expected <- eval(parse(text="logical(0)")); test(id=0, code={ argv <- eval(parse(text="list(logical(0), NULL)")); .Internal('comment<-'(argv[[1]], argv[[2]])); }, o=expected);
min_flow = function(MO2, min_pO2 = 90, pO2_in = 100, temp = 25, sal = 35, atm_pres = 1013.25){ o2_conc = as.numeric(marelac::gas_satconc(S = sal, t = temp, P = measurements::conv_unit(atm_pres, 'mbar', 'bar'), species = 'O2')) cO2_in = (pO2_in / 100) * o2_conc return((MO2 / 60) / (cO2_in - o2_conc * (min_pO2 / 100))) }
library(CHNOSZ) T <- 25:125 ntop <- 5 lcex <- 0.8 width <- 380 height <- 380 rubisco <- c("RBL_BRAJA","A6YF84_9PROT","A1E8R4_9CHLO","A8C9T6_9MYCO","A3EQE1_9BACT","A5CKC7_9CHRO", "RBL_SYNJA","Q6JAI0_9RHOD","RBL_METJA","A3DND9_STAMF","A1RZJ5_THEPD","RBL_PYRHO") rubisco.organisms <- c("a-proteobacterium-R","b-proteobacterium","Bracteacoccus","Mycobacterium", "Leptospirillum","Cyanobium","Synechococcus","Cyanidiales", "Methanococcus-R","Desulfurococcus","Thermofilum","Pyrococcus") accoaco <- c("Q9F7M8_PRB01","ACCA_DEIRA","A6CDM2_9PLAN","A4AGS7_9ACTN","ACCA_CAUCR","A1VC70_DESVV", "A6VIX9_METM7","Q2JSS7_SYNJA","A0GZU2_9CHLR","A7WGI1_9AQUI","Q05KD0_HYDTH","ACCA_AQUAE") accoaco.organisms <- c("g-proteobacterium","Deinococcus","Planctomyces","Actinobacterium", "a-proteobacterium-A","d-proteobacterium","Methanococcus-A","Synechococcus", "Chloroflexus","Hydrogenobaculum","Hydrogenobacter","Aquifex") organisms <- c(rubisco.organisms,accoaco.organisms) col <- rep(c(rep("blue",6),rep("red",6)),2) pch <- c(rep(c(0:2,5:7),2),rep(c(15:20),2)) res <- length(T) if(res==1) ido <- 1 else { if(!"png" %in% dir()) stop("directory 'png' not present") else if(length(dir("png")) > 0) stop("directory 'png' not empty") png(filename="png/Rplot%04d.png",width=width,height=height) ido <- c(rep(1,15),1:res,rep(res,20)) } basis(c("CO2","H2O","NH3","H2","H2S","H+"), c("aq","liq","aq","aq","aq","aq"),c(-3,0,-4,-6,-7,-7)) species(c(rubisco,accoaco)) get.logaH2 <- function(T) return(-11+T*3/40) H2 <- get.logaH2(T) if(res==1) { basis("H2",H2) a <- affinity(T=T) } else a <- affinity(T=T,H2=H2) e <- equilibrate(a, normalize=TRUE) rank <- 1:length(e$loga.equil) for(i in 1:length(ido)) { if(i%%20 == 0) cat("\n") else cat(".") loga <- numeric() for(j in 1:length(e$loga.equil)) loga <- c(loga, e$loga.equil[[j]][ido[i]]) if(i > 4) myrank4 <- myrank3 if(i > 3) myrank3 <- myrank2 if(i > 2) myrank2 <- myrank1 if(i > 1) myrank1 <- myrank order <- order(loga,decreasing=TRUE) myrank <- rank(loga) cex <- rep(1.2,24) if(i > 4) { ichanged <- myrank3 != myrank4 cex[ichanged[order]] <- cex[ichanged[order]] + 0.1 } if(i > 3) { ichanged <- myrank2 != myrank3 cex[ichanged[order]] <- cex[ichanged[order]] + 0.2 } if(i > 2) { ichanged <- myrank1 != myrank2 cex[ichanged[order]] <- cex[ichanged[order]] + 0.3 } if(i > 1) { ichanged <- myrank != myrank1 cex[ichanged[order]] <- cex[ichanged[order]] + 0.4 } plot(rank,loga[order],col=col[order],pch=pch[order], ylab=expression(log~italic(a)),cex=cex,cex.main=1,cex.lab=1,cex.axis=1) myT <- format(round(T,1))[ido[i]] myH2 <- format(round(H2,2))[ido[i]] title(main=substitute(list(X~degree*C, log*italic(a)[paste(H2)]==Y), list(X=myT,Y=myH2))) legend("topright",legend=c(paste("top",ntop),organisms[order[1:ntop]]), pch=c(NA,pch[order[1:ntop]]),col=c(NA,col[order[1:ntop]]), pt.cex=c(NA,cex[1:ntop]),cex=lcex) order <- order(loga) legend("bottomleft",legend=c(paste("low",ntop),organisms[order[ntop:1]]), pch=c(NA,pch[order[ntop:1]]),col=c(NA,col[order[ntop:1]]), pt.cex=c(NA,cex[24:(24-ntop+1)]),cex=lcex) } if(res > 1) { cat("\n") dev.off() cat("anim.carboxylase: converting to animated GIF...\n") outfile <- "carboxylase.gif" syscmd <- paste("convert -loop 0 -delay 10 png/*.png png/", outfile, sep = "") cat(paste(syscmd,"\n")) if(.Platform$OS.type=="unix") sres <- system(syscmd) else sres <- shell(syscmd) if(sres==0) cat(paste("anim.carboxylase: animation is at png/",outfile,"\n",sep="")) else { cat("anim.carboxylase: error converting to animated GIF\n") cat("anim.carboxylase: check that 'convert' tool from ImageMagick is in your PATH\n") } }
one_forward <- function(vect) { m <- sum(vect) if (length(vect) == 1) return(vect) for (i in (length(vect) - 1):1) { if (i == 1) { vect[i] <- vect[i] + 1 return(c(vect[1:i], rep(1, m - sum(vect[1:i])))) } else if (vect[i - 1] > vect[i]) { vect[i] <- vect[i] + 1 return(c(vect[1:i], rep(1, m - sum(vect[1:i])))) } } } groups <- function(nelem) { l <- list(vect <- rep(1, nelem)) while (length(vect) > 1) { vect <- one_forward(vect) l <- c(l, list(vect)) } return(l) } perm_categories <- function(powvect) { K <- length(powvect) nall <- sum(powvect) prev_vect <- paste(rep(0, nall), collapse = "") spaces_left <- c(nall - c(0, cumsum(powvect)[-K])) for (k in 1:K) { ind_next <- combn(1:spaces_left[k], powvect[k]) prev_vect <- add_letter(ind_next, prev_vect, letters[k]) } return(prev_vect) } add_letter <- function(ind_next, prev_vect, letter) { next_vect <- matrix(nrow = length(prev_vect), ncol = ncol(ind_next)) for (i in 1:length(prev_vect)) { for (j in 1:ncol(ind_next)) { old <- strsplit(prev_vect[i], split = "")[[1]] not_filled <- which(old == "0") old[not_filled[ind_next[, j]]] <- letter next_vect[i, j] <- paste(old, collapse = "") } } return(as.character(next_vect)) } sort_str <- function(str) { return(paste(sort((strsplit(str, split = "")[[1]])), collapse = "")) } calculate_coef <- function(str_vect, K, excl) { coef_numer(str_vect, K, excl)/coef_denom(str_vect) } coef_numer <- function(str_vect, K, excl) { coefs <- matrix(nrow = K, ncol = length(str_vect)) for (k in 1:K) { nn <- nchar(gsub(excl[k], "", str_vect)) cn <- c(0, cumsum(nn))[- (length(nn) + 1)] coefs[k, ] <- choose(sum(nn) - cn, nn) } return(prod(coefs)) } coef_denom <- function(str_vect) { if (length(str_vect) == 1) return(1) repeats <- duplicated(str_vect) k <- 1 multiples <- NULL for (i in 2:(length(str_vect))) { if (repeats[i]) k <- k + 1 else { multiples <- c(multiples, k) k <- 1 } } multiples <- c(multiples, k) return(prod(factorial(multiples))) } all_groups <- function(powvect) { K <- length(powvect) m <- sum(powvect) groupings <- groups(m) perms <- perm_categories(powvect) excl <- paste("[^", letters[1:K], "]", sep = "") mat <- matrix("", ncol = m + 2) for (g in 1:length(groupings)) { grp <- groupings[[g]] for (p in 1:length(perms)) { permgroup <- substring(perms[p], c(1, cumsum(grp[-length(grp)]) + 1), cumsum(grp)) if (any(permgroup == "a")) next newrow <- sort(sapply(permgroup, sort_str)) mat <- rbind(mat, c(newrow, rep("", m - length(newrow)), length(newrow), calculate_coef(newrow, K, excl))) } } all_empty <- apply(mat, 2, function(s) all(s == "")) mat <- unique(mat[, !all_empty])[-1, ] if (!inherits(mat, "matrix")) mat <- matrix(mat, nrow = 1) colnames(mat) <- c(paste("group", 1:(ncol(mat) - 2)), "d", "coef") return(mat) } combine_coef <- function(char_mat) { if (all(char_mat == "")) return(char_mat) J <- ncol(char_mat) if (all(dim(char_mat) == c(1, 3))) return(data.frame(mu = str_to_moment(char_mat[1, 1]), k = 1, coef = 1)) num_mat <- t(apply(char_mat[, 1:(J-2)], 1, str_to_moment)) mu_vect <- apply(num_mat, 1, vect_to_one) coef_vect <- tapply(char_mat[, "coef"], mu_vect, function(x) sum(as.numeric(x))) d_vect <- tapply(char_mat[, "d"], mu_vect, unique) df_d <- data.frame(mu = names(d_vect), d = d_vect) df_coef <- data.frame(mu = names(coef_vect), coef = coef_vect) return(merge(df_d, df_coef, by = "mu")) } str_to_moment <- function(str_vect) { sapply(str_vect, function(str) { sum(match(strsplit(str, split = "")[[1]], letters)) }) } vect_to_one <- function(vect) { vect <- sort(vect[vect != 0]) return(paste(vect, collapse = ":")) } one_grouping <- function(vect3elem, smpsize) { if (all(vect3elem == "")) return("") mu <- strsplit(vect3elem[1], split = ":") mutab <- rev(table(mu)) muexpr <- paste("mu", names(mutab), "^", mutab, "*", sep = "", collapse = "") muexpr <- substr(muexpr, start = 1, stop = nchar(muexpr) - 1) k <- as.numeric(vect3elem[2]) nexpr <- smpsize if (k > 1) { for (i in 1:(k-1)) { nexpr <- paste(nexpr, "*(", smpsize, "-", i, ")", sep = "", collapse = "") } } coef_n_mu <- paste(vect3elem[3], "*", nexpr, "*", muexpr, " + ", sep = "", collapse = "") return(coef_n_mu) } one_combination <- function(powvect, smpsize = "n") { if (!length(powvect)) return("1") if (powvect[1] == 1 & sum(powvect[-1]) == 0) return("0") if (!sum(powvect)) return("1") res <- all_groups(powvect) combined_res <- combine_coef(res) combined_res[, 1] <- as.character(combined_res[, 1]) vect <- apply(combined_res, 1, one_grouping, smpsize = smpsize) str <- paste(vect, collapse = "") return(paste(" (", substr(str, start = 1, stop = nchar(str) - 2), ") / ", smpsize, "^", sum(powvect), sep = "")) }
context("HttpClient: query") test_that("query works", { skip_on_cran() cli <- HttpClient$new(url = hb()) aa <- cli$get('get', query = list(hello = "world")) expect_is(aa, "HttpResponse") expect_match(aa$url, "hello") expect_match(aa$url, "world") expect_match(jsonlite::fromJSON(aa$parse())$url, "hello") expect_match(jsonlite::fromJSON(aa$parse())$url, "world") }) test_that("query - multiple params of same name work", { skip_on_cran() cli <- HttpClient$new(url = hb()) aa <- cli$get('get', query = list(hello = 5, hello = 6)) expect_is(aa, "HttpResponse") expect_equal(length(gregexpr("hello", aa$url)[[1]]), 2) expect_equal( length(gregexpr("hello", jsonlite::fromJSON(aa$parse())$url)[[1]]), 2) }) test_that("query - length 0 query list works", { skip_on_cran() cli <- HttpClient$new(url = hb()) aa <- cli$get('get', query = list()) expect_is(aa, "HttpResponse") expect_false(grepl("\\?", aa$url)) })
getFittedArima <- function(object, x, y){ arma = object$arma coef = object$coefficients n = length(y) coef_reg = coef[0:ncol(x)] coef_arma = coef[(ncol(x)+1):length(coef)] fitted_regression <- as.numeric(x %*% coef_reg) error_regression = as.numeric(y) - fitted_regression trarma <- ArimaTransf(coef_arma, arma) max.order = arma[1] + arma[5] * arma[3] res <- ArimaEstimation(y - x %*% coef_reg, arma, trarma[[1L]], trarma[[2L]], max.order, T)[[2]] residuals = res fitted_arima = error_regression - residuals list( fitted = fitted_arima + fitted_regression, residuals = residuals, fitted_arima = fitted_arima, fitted_regression = fitted_regression, residuals_regression = error_regression ) }
plotCount <- function(x, ...) { x <- data.frame(x) stopifnot( ncol(x) == 2, is.numeric(x[, 2]), all.equal(as.integer(x[, 2]), x[, 2]), length(x[, 1]) == length(unique(x[, 1])) ) p <- ggplot2::ggplot(x) + ggplot2::aes_string(colnames(x)[1], colnames(x)[2]) + ggplot2::geom_bar(stat = "identity", ...) p }
library(covidcast) library(dplyr) cli <- suppressMessages( covidcast_signal(data_source = "fb-survey", signal = "smoothed_cli", start_day = "2020-05-01", end_day = "2020-05-07", geo_type = "county") ) knitr::kable(head(cli)) summary(cli) cli <- suppressMessages( covidcast_signal(data_source = "fb-survey", signal = "smoothed_cli", start_day = "2020-05-01", end_day = "2020-05-07", geo_type = "state") ) knitr::kable(head(cli)) cli <- suppressMessages( covidcast_signal(data_source = "fb-survey", signal = "smoothed_cli", start_day = "2020-05-01", end_day = "2020-05-07", geo_type = "county", geo_value = "42003") ) knitr::kable(head(cli)) plot(cli, plot_type = "line", title = "Survey results in Allegheny County, PA") name_to_fips("Allegheny") name_to_cbsa("Pittsburgh") county_fips_to_name("42003") cbsa_to_name("38300") meta <- covidcast_meta() knitr::kable(head(meta)) covidcast_signal(data_source = "doctor-visits", signal = "smoothed_cli", start_day = "2020-05-01", end_day = "2020-05-01", geo_type = "state", geo_values = "pa", as_of = "2020-05-07") covidcast_signal(data_source = "doctor-visits", signal = "smoothed_cli", start_day = "2020-05-01", end_day = "2020-05-01", geo_type = "state", geo_values = "pa") covidcast_signal(data_source = "doctor-visits", signal = "smoothed_cli", start_day = "2020-05-01", end_day = "2020-05-01", geo_type = "state", geo_values = "pa", issues = c("2020-05-01", "2020-05-15")) %>% knitr::kable() covidcast_signal(data_source = "doctor-visits", signal = "smoothed_cli", start_day = "2020-05-01", end_day = "2020-05-07", geo_type = "state", geo_values = "pa", lag = 7) %>% knitr::kable() covidcast_signal(data_source = "doctor-visits", signal = "smoothed_cli", start_day = "2020-05-03", end_day = "2020-05-03", geo_type = "state", geo_values = "pa", issues = c("2020-05-09", "2020-05-15")) %>% knitr::kable()
Ohit <- function(X, y, Kn = NULL, c1 = 5, HDIC_Type = "HDBIC", c2 = 2, c3 = 2.01, intercept = TRUE){ if (!is.vector(y)) stop("y should be a vector") if (!is.matrix(X)) stop("X should be a matrix") n = nrow(X) p = ncol(X) if (n != length(y)) stop("the number of observations in y is not equal to the number of rows of X") if (n == 1) stop("the sample size should be greater than 1") if (is.null(Kn)) K = max(1, min(floor(c1 * sqrt(n / log(p))), p)) else{ if ((Kn < 1) | (Kn > p)) stop(paste("Kn should between 1 and ", p, sep = "")) if ((Kn - floor(Kn)) != 0) stop("Kn should be a positive integer") K = Kn } dy = y - mean(y) dX = apply(X, 2, function(x) x - mean(x)) Jhat = sigma2hat = rep(0, K) XJhat = matrix(0, n, K) u = as.matrix(dy) xnorms = sqrt(colSums((dX) ^ 2)) aSSE = (abs(t(u) %*% dX) / xnorms) Jhat[1] = which.max(aSSE) XJhat[, 1] = (dX[, Jhat[1]] / sqrt(sum((dX[, Jhat[1]]) ^ 2))) u = u - XJhat[, 1] %*% t(XJhat[, 1]) %*% u sigma2hat[1] = mean(u ^ 2) if (K > 1){ for (k in 2:K) { aSSE = (abs(t(u) %*% dX) / xnorms) aSSE[Jhat[1:(k-1)]] = 0 Jhat[k] = which.max(aSSE) rq = dX[, Jhat[k]] - XJhat[, 1:(k-1)] %*% t(XJhat[, 1:(k-1)]) %*% dX[, Jhat[k]] XJhat[, k] = (rq / sqrt(sum((rq) ^ 2))) u = u - XJhat[, k] %*% t(XJhat[, k]) %*% u sigma2hat[k] = mean(u ^ 2) } } if ((HDIC_Type != "HDAIC") & (HDIC_Type != "HDBIC") & (HDIC_Type != "HDHQ")) stop("HDIC_Type should be \"HDAIC\", \"HDBIC\" or \"HDHQ\"") if (HDIC_Type == "HDAIC") omega_n = c2 if (HDIC_Type == "HDBIC") omega_n = log(n) if (HDIC_Type == "HDHQ") omega_n = c3 * log(log(n)) hdic = (n * log(sigma2hat))+((1:K) * omega_n * (log(p))) kn_hat = which.min(hdic) benchmark = hdic[kn_hat] J_HDIC = sort(Jhat[1:kn_hat]) J_Trim = Jhat[1:kn_hat] trim_pos = rep(0, kn_hat) if (kn_hat > 1){ for (l in 1:(kn_hat-1)){ JDrop1 = J_Trim[-l] fit = lm(dy~.-1, data = data.frame(dX[, JDrop1])) uDrop1 = fit$residuals HDICDrop1 = (n * log(mean(uDrop1 ^ 2)))+((kn_hat - 1) * omega_n * (log(p))) if (HDICDrop1 > benchmark) trim_pos[l] = 1 } trim_pos[kn_hat] = 1 J_Trim = J_Trim[which(trim_pos==1)] } J_Trim = sort(J_Trim) X_HDIC = as.data.frame(as.matrix(X[, J_HDIC])) X_Trim = as.data.frame(as.matrix(X[, J_Trim])) X = data.frame(X) colnames(X_HDIC) = names(X)[J_HDIC] colnames(X_Trim) = names(X)[J_Trim] if (intercept == TRUE){ fit_HDIC = lm(y~., data = X_HDIC) fit_Trim = lm(y~., data = X_Trim) }else{ fit_HDIC = lm(y~.-1, data = X_HDIC) fit_Trim = lm(y~.-1, data = X_Trim) } betahat_HDIC = summary(fit_HDIC) betahat_Trim = summary(fit_Trim) return(list("n" = n, "p" = p, "Kn" = K, "J_OGA" = Jhat, "HDIC" = hdic, "J_HDIC" = J_HDIC, "J_Trim" = J_Trim, "betahat_HDIC" = betahat_HDIC, "betahat_Trim" = betahat_Trim)) }
require(OpenMx) varNames <- c('x_T1','x_T2') dataMZ <- mxData(matrix(c(1,.8,.8,1), nrow = 2, ncol=2, dimnames = list(varNames,varNames)), type="cov", numObs=100) dataDZ <- mxData(matrix(c(1,.5,.5,1), nrow = 2, ncol=2, dimnames = list(varNames,varNames)), type="cov", numObs=100) h = mxMatrix(name="h", "Full", .5, free=FALSE, nrow=1, ncol=1) a = mxMatrix(name="a", "Full", .6, free=TRUE, labels='a_r1c1', nrow=1, ncol=1) c = mxMatrix(name="c", "Full", .6, free=TRUE, labels='c_r1c1', nrow=1, ncol=1) e = mxMatrix(name="e", "Full", .6, free=TRUE, labels='e_r1c1', nrow=1, ncol=1) A = mxAlgebra(a * t(a), name="A") C = mxAlgebra(c * t(c), name="C") E = mxAlgebra(e * t(e), name="E") cMZ = mxAlgebra(name="cMZ", rbind(cbind(A+C+E,A+C) ,cbind(A+C,A+C+E))) cDZ = mxAlgebra(name="cDZ", rbind(cbind(A+C+E,h%x%A+C),cbind(h%x%A+C,A+C+E))) objMZ <- mxExpectationNormal("cMZ", dimnames = varNames) objDZ <- mxExpectationNormal("cDZ", dimnames = varNames) MZ <- mxModel("MZ", dataMZ, a,c,e, A,C,E, cMZ , objMZ, mxFitFunctionML()) DZ <- mxModel("DZ", dataDZ, a,c,e, A,C,E, cDZ,h, objDZ, mxFitFunctionML()) model <- mxModel("both", MZ, DZ, mxFitFunctionMultigroup(c("MZ", "DZ"))) m1 <- mxRun(model) summary(m1)$parameters expectedACE <- c(.6, .2, .2) * 99/100 observedACE <- c(m1$MZ.A$result, m1$MZ.C$result, m1$MZ.E$result) omxCheckCloseEnough(expectedACE, observedACE, epsilon = 10 ^ -4)
source(file.path(Sys.getenv("DIRNAME"), "needs.R")) needs(jsonlite) run <- function(dataIn) { input <- unname(dataIn[[1]]) .e <- as.environment(list( path = dataIn[[2]], out = modifyList(list(x = NULL, auto_unbox = T), dataIn[[3]], keep.null = T) )) lockBinding(".e", environment()) captured <- tryCatch(capture.output({ temp <- source(.e$path, local = T)$value }), error = function(err) err) unlockBinding(".e", environment()) if (inherits(captured, "error")) { msg <- conditionMessage(captured) cat("Error in R script", .e$path, "\n", sQuote(msg), file = stderr()) return(invisible(F)) } .e$out$x <- if (is.null(temp)) { "" } else { temp } do.call(toJSON, .e$out) } suppressWarnings( run(fromJSON(Sys.getenv("input"))) )
"Batting2016"
psPoisson <- function(x, y, xl = min(x), xr = max(x), nseg = 10, bdeg = 3, pord = 2, lambda = 1, wts = NULL, show = FALSE, iter = 100, xgrid = 100) { m <- length(x) B <- bbase(x, xl = xl, xr = xr, nseg = nseg, bdeg = bdeg) n <- dim(B)[2] P <- sqrt(lambda) * diff(diag(n), diff = pord) nix <- rep(0, n - pord) z <- log(y + 0.01) if (missing(wts)) { wts <- rep(1, m) } for (it in 1:iter) { mu <- exp(z) w <- mu u <- (y - mu) / w + z wtprod <- c(wts * w, (nix + 1)) f <- lsfit(rbind(B, P), c(u, nix), intercept = FALSE, wt = wtprod) beta <- f$coef znew <- B %*% beta dz <- max(abs(z - znew)) z <- znew if (dz < 1e-06) { break } if (show) { print(c(it, dz)) } } if (it > (iter - 1)) { cat(paste("Did NOT converge, iter >", iter)) warning(paste("Did NOT converge")) } dev <- 2 * sum(y * log((y + 1e-09) / mu)) qr <- f$qr h <- hat(qr)[1:m] ed <- sum(h) aic <- dev + 2 * ed dispersion <- dev / (m - ed) if (length(xgrid) == 1) { xgrid <- seq(xl, xr, length = xgrid) } Bu <- bbase(xgrid, xl = xl, xr = xr, nseg = nseg, bdeg = bdeg) zu <- Bu %*% beta ygrid <- zu mugrid <- exp(zu) R <- qr.R(qr) L <- forwardsolve(t(R), t(Bu)) v2 <- colSums(L * L) se_eta <- sqrt(v2) pp <- list( xl = xl, xr = xr, aic = aic, x = x, y = y, B = B, P = P, muhat = mu, nseg = nseg, bdeg = bdeg, dev = dev, pord = pord, pcoef = beta, lambda = lambda, effdim = ed, dispersion = dispersion, aic = aic, family = "poisson", link = "log", wts = wts, xgrid = xgrid, ygrid = ygrid, mugrid = mugrid, se_eta = se_eta ) class(pp) <- "pspfit" return(pp) }
context("substituting_formla") test_that("error checks work", { expect_error( as_substituting_formula(a~b, 1), regexp="`substitutions` must be a list", fixed=TRUE ) expect_error( substituting_formula(a~b, b~1, b~2), regexp="The left hand side of substitution 1 and 2 are identical and no left hand sides may match", fixed=TRUE ) expect_error( substituting_formula(a~b, ~1, b~2), regexp="All substitution formulae must be 2-sided", fixed=TRUE ) expect_equal( substituting_formula(a~b, b~1, c~2), structure( list( base=a~b, substitutions=list(b~1, c~2) ), class="substituting_formula" ) ) }) test_that("formula are created correctly", { expect_equal( formula(substituting_formula(a~b, b~c*d, d~e+f)), a~c*(e+f) ) expect_equal( as.formula(substituting_formula(a~b, b~c*d, d~e+f), env=emptyenv()), `environment<-`(a~c*(e+f), emptyenv()) ) })
test_that("unSurv, colnames default", { df1 <- dataCensored[dataCensored$station=="CB3.3C","chla"][1:30] df2 <- unSurv(df1) qc_col <- c("lo", "hi", "type") expect_equal(colnames(df2), qc_col) }) test_that("unSurv, colnames user", { df1 <- dataCensored[dataCensored$station=="CB3.3C","chla"][1:30] df3 <- unSurv(df1, "LOW", "HIGH") qc_col <- c("LOW", "HIGH", "type") expect_equal(colnames(df3), qc_col) })
addtable2plot<-function(x,y=NULL,table,lwd=par("lwd"),bty="n", bg=par("bg"),cex=1,xjust=0,yjust=1,xpad=0.1,ypad=0.5,box.col=par("fg"), text.col=par("fg"),display.colnames=TRUE,display.rownames=FALSE, hlines=FALSE,vlines=FALSE,title=NULL) { if(dev.cur() == 1) stop("Cannot add table unless a graphics device is open") if(is.null(y)) { if(is.character(x)) { tablepos<-get.tablepos(x) x<-tablepos$x y<-tablepos$y xjust<-tablepos$xjust yjust<-tablepos$yjust } else { if(is.null(x$y)) stop("both x and y coordinates must be given") y<-x$y x<-x$x } } droptop<-ifelse(any(c("topleft","top","topright") %in% x),1,0) tabdim<-dim(table) if(tabdim[1] == 1) hlines<-FALSE if(tabdim[2] == 1) vlines<-FALSE if(is.null(dim(bg))) bg<-matrix(bg,nrow=tabdim[1],ncol=tabdim[2]) column.names<-colnames(table) if(is.null(column.names) && display.colnames) column.names<-1:tabdim[2] row.names<-rownames(table) if(is.null(row.names) && display.rownames) row.names<-1:tabdim[1] if(par("xlog")) x<-log10(x) cellwidth<-rep(0,tabdim[2]) if(display.colnames) { for(column in 1:tabdim[2]) cellwidth[column]<-max(strwidth(c(column.names[column], format(table[,column])),cex=cex))*(1+xpad) nvcells<-tabdim[1]+1 } else { nvcells<-tabdim[1] for(column in 1:tabdim[2]) cellwidth[column]<-max(strwidth(format(table[,column]),cex=cex))*(1+xpad) } if(display.rownames) { nhcells<-tabdim[2]+1 rowname.width<-max(strwidth(row.names,cex=cex))*(1+xpad) } else { nhcells<-tabdim[2] rowname.width<-0 } if(par("ylog")) y<-log10(y) cellheight<- max(strheight(c(column.names,row.names,as.vector(unlist(table))), cex=cex))*(1+ypad) if(!is.null(title) & droptop) y<-y-cellheight ytop<-y+yjust*nvcells*cellheight oldpar<-par(xlog=FALSE,ylog=FALSE,xpd=TRUE) if(display.colnames) { xleft<-x+display.rownames*rowname.width-xjust*(sum(cellwidth)+rowname.width) for(column in 1:tabdim[2]) { text(xleft+cellwidth[column]*0.5, ytop-0.5*cellheight,column.names[column],cex=cex,col=text.col) xleft<-xleft+cellwidth[column] } } for(row in 1:tabdim[1]) { xleft<-x-xjust*(sum(cellwidth)+rowname.width) if(display.rownames) { text(xleft+0.5*rowname.width, ytop-(row+display.colnames-0.5)*cellheight, row.names[row],cex=cex,col=text.col) xleft<-xleft+rowname.width } for(column in 1:tabdim[2]) { rect(xleft,ytop-(row+display.colnames-1)*cellheight, xleft+cellwidth[column],ytop-(row+display.colnames)*cellheight, col=bg[row,column],border=bg[row,column]) text(xleft+0.5*cellwidth[column], ytop-(row+display.colnames-0.5)*cellheight, table[row,column],cex=cex,col=text.col) xleft<-xleft+cellwidth[column] } } if(vlines) { xleft<-x+display.rownames*rowname.width-xjust*(sum(cellwidth)+rowname.width) segments(xleft+cumsum(cellwidth[-tabdim[2]]), ytop-display.colnames*cellheight, xleft+cumsum(cellwidth[-tabdim[2]]), ytop-(display.colnames+tabdim[1])*cellheight) } if(hlines) { xleft<-x+display.rownames*rowname.width-xjust*(sum(cellwidth)+rowname.width) segments(xleft, ytop-display.colnames*cellheight-cumsum(rep(cellheight,tabdim[1]-1)), xleft+sum(cellwidth), ytop-display.colnames*cellheight-cumsum(rep(cellheight,tabdim[1]-1))) } if(!is.null(title)) { xleft<-x-xjust*(sum(cellwidth)+rowname.width) text(xleft+(rowname.width+sum(cellwidth))/2,ytop+cellheight/2,title, cex=cex,col=text.col) } if(bty == "o") { xleft<-x+display.rownames*rowname.width-xjust*(sum(cellwidth)+rowname.width) rect(xleft,ytop-(tabdim[1]+display.colnames)*cellheight, xleft+sum(cellwidth),ytop-display.colnames*cellheight) } par(oldpar) }
covEstimation <- function(rets, control = list()) { if (missing(rets)) { stop("rets is missing") } if (!is.matrix(rets)) { stop("rets must be a (T x N) matrix") } ctr <- .ctrCov(control) if (ctr$type[1] == "naive") { Sigma <- .naiveCov(rets = rets) } else if (ctr$type[1] == "ewma") { Sigma <- .ewmaCov(rets = rets, lambda = ctr$lambda) } else if (ctr$type[1] == "lw") { Sigma <- .lwCov(rets = rets) } else if (ctr$type[1] == "factor") { Sigma <- .factorCov(rets = rets, K = ctr$K) } else if (ctr$type[1] == "const") { Sigma <- .constCov(rets = rets) } else if (ctr$type[1] == "cor") { Sigma <- .corCov(rets = rets) } else if (ctr$type[1] == "oneparm") { Sigma <- .oneparmCov(rets = rets) } else if (ctr$type[1] == "diag") { Sigma <- .diagCov(rets = rets) } else if (ctr$type[1] == "large") { Sigma <- .largeCov(rets = rets) } else if (ctr$type[1] == "bs") { Sigma <- .bsCov(rets = rets) } else { stop("control$type is not well defined") } return(Sigma) } .ctrCov <- function(control = list()) { if (!is.list(control)) { stop("control must be a list") } if (length(control) == 0) { control <- list(type = "naive", lambda = 0.94, K = 1) } nam <- names(control) if (!("type" %in% nam) || is.null(control$type)) { control$type <- c("naive", "ewma", "lw", "factor", "rtm", "const", "cor", "oneparm", "diag", "large", "bs") } if (!("lambda" %in% nam) || is.null(control$lambda)) { control$lambda <- 0.94 } if (!("K" %in% nam) || is.null(control$K)) { control$K <- 1 } return(control) } .naiveCov <- function(rets) { Sigma <- cov(rets) return(Sigma) } .ewmaCov <- function(rets, lambda) { t <- nrow(rets) Sigma <- cov(rets) mu <- colMeans(rets) shiftRets <- sweep(rets, 2, mu, "-") for (i in 1:t) { r <- as.double(shiftRets[i, ]) r2 <- outer(r, r) Sigma <- (1 - lambda)/(1 - lambda^t) * r2 + lambda * Sigma } return(Sigma) } .constCov <- function(rets) { n <- dim(rets)[2] tmpMat <- matrix(rep(1, n^2), ncol = n) rho <- mean(cor(rets)[lower.tri(tmpMat, diag = FALSE)]) R <- rho * tmpMat diag(R) <- 1 std <- apply(rets, 2, sd) diagStd <- diag(std) Sigma <- diagStd %*% R %*% diagStd return(Sigma) } .factorCov <- function(rets, K) { std <- apply(rets, 2, sd) sigma <- cov(rets) loading <- factanal(rets, K)$loadings uniquenesses <- factanal(rets, K)$uniquenesses R <- tcrossprod(loading) + diag(uniquenesses) diagStd <- diag(std) Sigma <- diagStd %*% R %*% diagStd return(Sigma) } .lwCovElement <- function(rets, type) { t <- dim(rets)[1] n <- dim(rets)[2] mu <- colMeans(rets) shiftRets <- sweep(rets, 2, mu, "-") y <- shiftRets^2 if (type == "large" || type == "lw") { mkt <- rowMeans(shiftRets) smple <- cov(cbind(rets, mkt)) * (t - 1)/t covmkt <- smple[1:n, n + 1] covmkt_ <- matrix(rep(covmkt, n), ncol = n, byrow = FALSE) varmkt <- as.numeric(smple[n + 1, n + 1]) smple <- smple[-(n + 1), -(n + 1)] prior <- outer(covmkt, covmkt)/varmkt diag(prior) <- diag(smple) lwCovElement <- list(t = t, n = n, mu = mu, shiftRets = shiftRets, y = y, smple = smple, mkt = mkt, covmkt = covmkt, covmkt_ = covmkt_, varmkt = varmkt, prior = prior) } else { smple <- (1/t) * crossprod(shiftRets) lwCovElement <- list(t = t, n = n, mu = mu, shiftRets = shiftRets, y = y, smple = smple, mkt = NULL, covmkt = NULL, covmkt_ = NULL, varmkt = NULL, prior = NULL) } return(lwCovElement) } .lwCov <- function(rets) { lwCovElement <- .lwCovElement(rets, type = "lw") t <- lwCovElement$t n <- lwCovElement$n mu <- lwCovElement$mu shiftRets <- lwCovElement$shiftRets mkt <- lwCovElement$mkt covmkt <- lwCovElement$covmkt varmkt <- lwCovElement$varmkt smple <- lwCovElement$smple prior <- lwCovElement$prior y <- lwCovElement$y z <- sweep(shiftRets, 1, mkt, "*") phiMat <- crossprod(y)/t - 2 * crossprod(shiftRets) * smple/t + smple^2 phi <- sum(apply(phiMat, 2, sum)) rhoMat1 <- 1/t * sweep(crossprod(y, z), 2, covmkt, "*")/varmkt rhoMat3 <- 1/t * crossprod(z) * outer(covmkt, covmkt)/varmkt^2 rhoMat <- 2 * rhoMat1 - rhoMat3 - prior * smple diag(rhoMat) <- diag(phiMat) rho <- sum(apply(rhoMat, 2, sum)) gamma <- norm(smple - prior, "F")^2 kappa <- (phi - rho)/gamma shrinkage <- pmax(0, pmin(1, kappa/t)) Sigma <- shrinkage * prior + (1 - shrinkage) * smple return(Sigma) } .largeCov <- function(rets) { lwCovElement <- .lwCovElement(rets, type = "large") t <- lwCovElement$t n <- lwCovElement$n mu <- lwCovElement$mu shiftRets <- lwCovElement$shiftRets y <- lwCovElement$y mkt <- lwCovElement$mkt covmkt <- lwCovElement$covmkt covmkt_ <- lwCovElement$covmkt_ varmkt <- lwCovElement$varmkt smple <- lwCovElement$smple prior <- lwCovElement$prior z <- sweep(shiftRets, 1, mkt, "*") d <- 1/n * norm(smple - prior, "F")^2 r2 <- 1/n/t^2 * sum(apply(crossprod(y, y), 2, sum)) - 1/n/t * sum(apply(smple^2, 2, sum)) phidiag <- 1/n/t^2 * sum(apply(y^2, 2, sum)) - 1/n/t * sum(diag(smple)^2) v1 <- 1/t^2 * crossprod(y, z) - 1/t * covmkt_ * smple phioff1 <- 1/n * sum(apply(v1 * t(covmkt_), 2, sum))/varmkt - 1/n * sum(diag(v1) * covmkt)/varmkt v3 <- 1/t^2 * crossprod(z, z) - 1/t * varmkt * smple phioff3 <- 1/n * sum(apply(v3 * tcrossprod(covmkt, covmkt), 2, sum))/varmkt^2 - 1/n * sum(diag(v3) * covmkt^2)/varmkt^2 phioff <- 2 * phioff1 - phioff3 phi <- phidiag + phioff Sigma <- (r2 - phi)/d * prior + (1 - (r2 - phi)/d) * smple return(Sigma) } .corCov <- function(rets) { lwCovElement <- .lwCovElement(rets, type = "cor") t <- lwCovElement$t n <- lwCovElement$n mu <- lwCovElement$mu shiftRets <- lwCovElement$shiftRets y <- lwCovElement$y smple <- lwCovElement$smple var <- diag(smple) sqrtvar <- sqrt(var) outerSqrtVar <- outer(sqrtvar, sqrtvar) rBar <- (sum(sum(smple/outerSqrtVar)) - n)/(n * (n - 1)) prior <- rBar * outerSqrtVar diag(prior) <- var phiMat <- crossprod(y)/t - 2 * crossprod(shiftRets) * smple/t + smple^2 phi <- sum(apply(phiMat, 2, sum)) term1 <- crossprod(shiftRets^3, shiftRets)/t term2 <- sweep(smple, 1, diag(smple), "*") rhoMat <- term1 - term2 diag(rhoMat) <- 0 rho <- sum(diag(phiMat)) + rBar * sum(sum(outer(1/sqrtvar, sqrtvar) * rhoMat)) gamma <- norm(smple - prior, type = "F")^2 kappa <- (phi - rho)/gamma shrinkage <- pmax(0, pmin(1, kappa/t)) Sigma <- shrinkage * prior + (1 - shrinkage) * smple return(Sigma) } .diagCov <- function(rets) { lwCovElement <- .lwCovElement(rets, type = "diag") t <- lwCovElement$t n <- lwCovElement$n mu <- lwCovElement$mu shiftRets <- lwCovElement$shiftRets y <- lwCovElement$y smple <- lwCovElement$smple prior <- diag(diag(smple)) phiMat <- crossprod(y)/t - 2 * (crossprod(shiftRets)) * smple/t + smple^2 phi <- sum(apply(phiMat, 2, sum)) rho <- sum(diag(phiMat)) gamma <- norm(smple - prior, "F")^2 kappa <- (phi - rho)/gamma shrinkage <- pmax(0, pmin(1, kappa/t)) Sigma <- shrinkage * prior + (1 - shrinkage) * smple return(Sigma) } .oneparmCov <- function(rets) { lwCovElement <- .lwCovElement(rets, type = "oneparm") t <- lwCovElement$t n <- lwCovElement$n mu <- lwCovElement$mu shiftRets <- lwCovElement$shiftRets smple <- lwCovElement$smple y <- lwCovElement$y meanvar <- mean(diag(smple)) prior <- meanvar * diag(n) phiMat <- crossprod(y)/t - 2 * (crossprod(shiftRets)) * smple/t + smple^2 phi <- sum(apply(phiMat, 2, sum)) gamma <- norm(smple - prior, type = "F")^2 kappa <- phi/gamma shrinkage <- pmax(0, pmin(1, kappa/t)) Sigma <- shrinkage * prior + (1 - shrinkage) * smple return(Sigma) } .bsCov <- function(rets) { lwCovElement <- .lwCovElement(rets, type = "lw") t <- lwCovElement$t n <- lwCovElement$n mu <- colMeans(rets) Sigma <- cov(rets) invSigma <- solve(Sigma) i <- rep(1, n) invSigmai <- crossprod(invSigma, i) w_min <- (invSigmai)/as.numeric(crossprod(i, invSigmai)) mu_min <- crossprod(mu, w_min) invSigmaMu <- crossprod(invSigma, mu - mu_min) phi <- (n + 2)/((n + 2) + t * crossprod(mu - mu_min, invSigmaMu)) phi <- max(min(phi, 1), 0) tau <- t * phi/(1 - phi) Sigma <- Sigma * (1 + 1/(t + tau)) + tau/(t * (t + 1 + tau)) * outer(i, i)/as.numeric(crossprod(i, invSigmai)) return(Sigma) }
context("size_factor") test_that("size factor works", { m <- matrix(1:16, ncol=4) expect_error(estimateSizeFactorsForMatrix(m, geoMeans=1:5)) expect_error(estimateSizeFactorsForMatrix(m, geoMeans=rep(0,4))) expect_error(estimateSizeFactorsForMatrix(m, controlGenes="foo")) estimateSizeFactorsForMatrix(m, geoMeans=1:4) estimateSizeFactorsForMatrix(m, controlGenes=1:2) nm <- m / exp(rowMeans(log(m))) true.sf <- c(2,1,1,.5) counts <- sweep(2*m, 2, true.sf, "*") dds <- DESeqDataSetFromMatrix(counts, data.frame(x=1:4), ~1) dds <- estimateSizeFactors(dds, normMatrix=nm) expect_equal((normalizationFactors(dds)/nm)[1,], true.sf) set.seed(1) true.sf <- 2^(rep(c(-2,-1,0,0,1,2),each=2)) dmr <- function(x) 0.01 dds <- makeExampleDESeqDataSet(sizeFactors=true.sf, n=100, dispMeanRel=dmr) cts <- counts(dds) idx <- cbind(seq_len(nrow(cts)), sample(ncol(dds), nrow(cts), replace=TRUE)) cts[idx] <- 0L cts[1,1] <- 1000000L counts(dds) <- cts dds <- estimateSizeFactors(dds, type="poscounts") sf <- sizeFactors(dds) coefs <- coef(lm(sf ~ true.sf)) expect_true(abs(coefs[1]) < .1) expect_true(abs(coefs[2] - 1) < .1) dds <- estimateSizeFactors(dds, type="iterate") sf <- sizeFactors(dds) coefs <- coef(lm(sf ~ true.sf)) expect_true(abs(coefs[1]) < .1) expect_true(abs(coefs[2] - 1) < .1) })
on.convex.hull<-function(tri.obj,x,y) { if(!inherits(tri.obj,"tri")) stop("tri.obj must be of class \"tri\"") if(length(x)!=length(y)) stop("x and y must be of same length") n<-length(x) if(n==0) stop("length of x (resp. y) is 0") ans<-.Fortran("onhull", as.double(x), as.double(y), as.integer(n), as.double(tri.obj$x), as.double(tri.obj$y), as.integer(tri.obj$n), as.integer(tri.obj$tlist), as.integer(tri.obj$tlptr), as.integer(tri.obj$tlend), onhull=logical(n), eps=as.double(1E-15), PACKAGE = "tripack") ans$onhull }
belex <- function(ticker, from = NULL, to = NULL) { w <- getOption("warn") options(warn = -1) ticker <- tolower(ticker) urlHTML <- function(ticker) { if (ticker == "belex15") { url.I <- "http://www.belex.rs/trgovanje/indeksi/" url.II <-"/istorijski/3y" url.ticker <- ticker url <- paste(url.I, url.ticker, url.II, sep="") return(url) } else { url.I <- "http://www.belex.rs/trgovanje/istorijski/" url.II <-"/3y" url.ticker <- ticker url <- paste(url.I, url.ticker, url.II, sep="") return(url) } } urlCSV <- function(ticker) { if (ticker == "belex15") { url.csv.I <- "http://www.belex.rs/xml/istorijski_indeks_csv.php?simbol=" url.csv.ticker <- toupper(ticker) url.csv.II <- "&lang=srb" url.csv <- paste(url.csv.I, url.csv.ticker, url.csv.II, sep="") return(url.csv) } else { url.csv.I <- "http://www.belex.rs/xml/istorijski_csv.php?simbol=" url.csv.ticker <- ticker url.csv.II <- "&lang=srb" url.csv <- paste(url.csv.I, url.csv.ticker, url.csv.II, sep="") return(url.csv) } } dataHTML <- function(url.HTML) { if (ticker=="belex15") { tables <- XML::readHTMLTable(url.HTML) data.fac <- tables[[2]] data.mat <- as.matrix(data.fac) data.mat[ ,2:8] <- gsub("[.]","", data.mat[ ,2:8]) data.mat[ ,2:8] <- gsub("[,]",".", data.mat[ ,2:8]) data.mat <- cbind(data.mat[ ,1:2], data.mat[ ,5:8]) colnames(data.mat) <- c("Date", "Close", "Open", "Low", "High", "Volume") data.mat.num <- apply(data.mat[ ,2:6], 2,as.numeric) Date <- as.Date(data.mat[ ,1], format='%d.%m.%Y') data.final <- data.frame(Date, data.mat.num) bool <- data.final$Date > "2012-12-31" data.final <- data.final[bool, 1:6] return(data.final) } else { tables <- XML::readHTMLTable(url.HTML) data.fac <- tables[[2]] data.mat <- as.matrix(data.fac) data.mat[ ,2:14] <- gsub("[.]","", data.mat[ ,2:14]) data.mat <- data.mat[,-c(3,4,10,13,14)] data.mat.num <- apply(data.mat[ ,2:9], 2,as.numeric) Date <- as.Date(data.mat[ ,1], format='%d.%m.%Y') data.final <- data.frame(Date, data.mat.num) bool <- data.final$Date > "2012-12-31" data.final <- data.final[bool, ] colnames(data.final) <- c("Date", "Close", "Transactions", "Volume", "Open", "Low", "High","Total Bid","Total Ask") return(data.final) } } dataCSV <- function(url.CSV) { if (ticker=="belex15") { data.csv <- read.csv(url.CSV, header=TRUE, sep=";") data.csv.mat <- as.matrix(data.csv) data.csv.mat[ ,2:8] <- gsub("[.]","", data.csv.mat[ ,2:8]) data.csv.mat[ ,2:8] <- gsub("[,]",".", data.csv.mat[ ,2:8]) data.csv.mat <- cbind(data.csv.mat[,1:2], data.csv.mat[ ,4:7]) data.csv.mat.num <- apply(data.csv.mat[ ,2:6], 2,as.numeric) Date <- as.Date(data.csv.mat[ ,1], format='%d.%m.%Y') data.csv.final <- data.frame(Date, data.csv.mat.num) colnames(data.csv.final) <- c("Date", "Close", "Open", "Low", "High", "Volume") return(data.csv.final) } else { data.csv <- read.csv(url.CSV, header=TRUE, sep=";") data.csv.mat <- as.matrix(data.csv) data.csv.mat[ ,2:12] <- gsub(",00","", data.csv.mat[ ,2:12]) data.csv.mat[ ,2:12] <- gsub("[.]00","", data.csv.mat[ ,2:12]) data.csv.mat[ ,2:12] <- gsub("[.]","", data.csv.mat[ ,2:12]) data.csv.mat.num <- apply(data.csv.mat[ ,2:12], 2,as.numeric) Date <- as.Date(data.csv.mat[,1], format='%d.%m.%Y') data.csv.final <- data.frame(Date, data.csv.mat.num[,-c(2,10,11)]) colnames(data.csv.final) <- c("Date", "Close", "Transactions", "Volume", "Open", "Low", "High", "Total Bid","Total Ask") return(data.csv.final) } } dataMerge <- function(data.HTML, data.CSV) { data.merge <- rbind(data.HTML, data.CSV) data.merge <- data.merge[with(data.merge, order(Date)), ] return(data.merge) } removeNA <- function(data.merge) { close.na <- is.na(data.merge$Close) datum.na <- is.na(data.merge[ ,1]) data.merge <- data.merge[!close.na, 1:ncol(data.merge)] data.merge <- data.merge[!datum.na, 1:ncol(data.merge)] return(data.merge) } dataSample <- function(data.merge, from, to) { if (is.null(from) & is.null(to)) { data.merge <- removeNA(data.merge) return(data.merge) } else { if (is.null(from) & !is.null(to)) { bool.sample <- data.merge[ ,1] <= to if (ticker=="belex15") { data.sample <- data.merge[bool.sample, 1:ncol(data.merge)] } else { data.sample <- data.merge[bool.sample, 1:ncol(data.merge)] } data.sample <- removeNA(data.sample) return(data.sample) } else { if (!is.null(from) & is.null(to)) { bool.sample <- data.merge[ ,1] >= from if (ticker=="belex15") { data.sample <- data.merge[bool.sample, 1:ncol(data.merge)] } else { data.sample <- data.merge[bool.sample, 1:ncol(data.merge)] } data.sample <- removeNA(data.sample) return(data.sample) } else { bool.sample <- (data.merge[ ,1] >= from & data.merge[ ,1] <= to) if (ticker=="belex15") { data.sample <- data.merge[bool.sample, 1:ncol(data.merge)] } else { data.sample <- data.merge[bool.sample, 1:ncol(data.merge)] } data.sample <- removeNA(data.sample) return(data.sample) } } } } url.HTML <- urlHTML(ticker) url.CSV <- urlCSV(ticker) data.HTML <- dataHTML(url.HTML) data.CSV <- dataCSV(url.CSV) data.Merge <- dataMerge(data.HTML, data.CSV) data.Sample <- dataSample(data.Merge, from, to) data.Sample <- data.Sample[!duplicated(data.Sample$Date), ] row.names(data.Sample) <- 1:dim(data.Sample)[1] cat("Download Complete!\n") cat("\nTicker:", toupper(ticker),"\n") cat("From:", as.character(data.Sample$Date[1]),"\n") cat("To:", as.character(data.Sample$Date[dim(data.Sample)[1]]),"\n") cat("No rows:", dim(data.Sample)[1],"\n") data <- list(ticker = toupper(ticker), from = data.Sample$Date[1], to = data.Sample$Date[dim(data.Sample)[1]], nrows = dim(data.Sample)[1], data = data.Sample) options(warn = w) return(data) }
context("Testing the phylogenetic diversity measures") test_that("Answers match up with Leinster-Cobbold Appendix A", { tree <- ape::read.tree(text = "(A:2,B:2)R:1;") partition <- c(0.6, 0.4) names(partition) <- tree$tip.label partition <- check_partition(partition) ps <- phy_struct(tree, partition) structure_matrix <- ps$structure T_bar <- ps$tbar similarity <- phy2branch(tree, partition) meta <- metacommunity(partition, similarity) expect_equivalent(sum(tree$edge.length) + tree$root.edge, unlist(metadiv(raw_gamma(meta), 0)$diversity * T_bar)) expect_equivalent(c(meta@type_abundance), c(0.4, 0.2, (2 / 3) * 0.4, (1 / 3) * 0.4)) expect_equivalent(meta@similarity, rbind(c(1, 1, 0, 0), rep(1, 4), c(0, 0, 1, 1), rep(1, 4))) tree <- ape::read.tree(text = "(A:1,B:2)R:1;") partition <- c(0.6, 0.4) names(partition) <- tree$tip.label partition <- check_partition(partition) ps <- phy_struct(tree, partition) structure_matrix <- ps$structure T_bar <- ps$tbar similarity <- phy2branch(tree, partition) meta <- metacommunity(partition, similarity) expect_equivalent(sum(tree$edge.length) + tree$root.edge, unlist(metadiv(raw_gamma(meta), 0)$diversity * T_bar)) expect_equivalent(c(meta@type_abundance), c(0.25, 0.25, (2 / 2.4) * 0.4, (1 / 2.4) * 0.4)) expect_equivalent(meta@similarity, rbind(c(1.2, 1.2, 0, 0), c(1.2, 1.2, 0.8, 0.8), c(0, 0, 0.8, 0.8), c(1.2, 1.2, 0.8, 0.8))) }) test_that("pmatrix is correct when tips belong to the same subcommunities", { tree <- ape::read.tree(text="(A:2,B:2)R:1;") partition <- cbind(A = c(1, 1), B = c(1, 0)) partition <- partition / sum(partition) row.names(partition) <- tree$tip.label similarity <- phy2branch(tree, partition) meta <- metacommunity(partition, similarity) expect_equivalent(meta@type_abundance, cbind(A = c(2, 1, 2, 1), B = c(2, 1, 0, 0)) / 9) tree2 <- ape::rtree(10) partition2 <- cbind(A = sample(10), B = sample(10)) partition2 <- partition2 / sum(partition2) row.names(partition2) <- tree2$tip.label similarity2 <- phy2branch(tree2, partition2) meta2 <- metacommunity(partition2, similarity2) expect_equivalent(sum(meta2@type_abundance), 1) })
netstat <- function() { os <- Sys.info()['sysname'] switch(os, Windows = { system("netstat -n -a", intern = TRUE) }, { system("netstat -n -a", intern = TRUE) } ) }
context("classif.matrix") data(centaurea) centaurea = suppressWarnings(naMeanSubst(centaurea)) centaurea = deletePopulation(centaurea, populationName = c("LIP", "PREL")) trainingSet = deletePopulation(centaurea, populationName = "SOK") SOK = keepPopulation(centaurea, populationName = "SOK") test_that("correct input", { c = suppressWarnings(classif.lda(centaurea)) expect_error(classif.matrix(c, level = "ds"), "Invalid level of grouping. Consider using \"taxon\", \"pop\" or \"indiv\"") }) test_that("classif.lda", { c = suppressWarnings(classif.lda(centaurea)) m = classif.matrix(c, level = "taxon") expect_equal(paste(colnames(m), collapse = ","), "Taxon,N,as.hybr,as.ph,as.ps,as.st,correct,correct[%]") expect_equal(paste(rownames(m), collapse = ","), "1,2,3,4,5") expect_equal(paste(m[,1], collapse = ","), "hybr,ph,ps,st,Total") m = classif.matrix(c, level = "pop") expect_equal(paste(colnames(m), collapse = ","), "Population,Taxon,N,as.hybr,as.ph,as.ps,as.st,correct,correct[%]") expect_equal(paste(rownames(m)[1:5], collapse = ","), "1,2,3,4,5") expect_equal(paste(m[,1][1:5], collapse = ","), "BABL,BABU,BOL,BRT,BUK") expect_equal(paste(m[,1][30:32], collapse = ","), "VIT,VOL,Total") m = classif.matrix(c, level = "indiv") expect_equal(paste(colnames(m), collapse = ","), "ID,Population,Taxon,classification,as.hybr,as.ph,as.ps,as.st,correct") expect_equal(paste(rownames(m)[1:5], collapse = ","), "1,2,3,4,5") expect_equal(paste(m[,1][1:5], collapse = ","), "RTE1,RTE2,RTE3,RTE4,RTE5" ) expect_equal(m[,1][612], "KOT2295") }) test_that("classif.knn", { c = suppressWarnings(classif.knn(centaurea, k = 6)) m = classif.matrix(c, level = "taxon") expect_equal(paste(colnames(m), collapse = ","), "Taxon,N,as.hybr,as.ph,as.ps,as.st,correct,correct[%]") expect_equal(paste(rownames(m), collapse = ","), "1,2,3,4,5") expect_equal(paste(m[,1], collapse = ","), "hybr,ph,ps,st,Total") m = classif.matrix(c, level = "pop") expect_equal(paste(colnames(m), collapse = ","), "Population,Taxon,N,as.hybr,as.ph,as.ps,as.st,correct,correct[%]") expect_equal(paste(rownames(m)[1:5], collapse = ","), "1,2,3,4,5") expect_equal(paste(m[,1][1:5], collapse = ","), "BABL,BABU,BOL,BRT,BUK" ) expect_equal(paste(m[,1][30:32], collapse = ","), "VIT,VOL,Total") m = classif.matrix(c, level = "indiv") expect_equal(paste(colnames(m), collapse = ","), "ID,Population,Taxon,classification,Proportion.of.the.votes.for.the.winning.class,correct") expect_equal(paste(rownames(m)[1:5], collapse = ","), "1,2,3,4,5") expect_equal(paste(m[,1][1:5], collapse = ","), "RTE1,RTE2,RTE3,RTE4,RTE5" ) expect_equal(paste(m[,1][612], collapse = ","), "KOT2295") }) test_that("classifSamp.lda", { c = suppressWarnings(classifSample.lda(SOK, trainingSet)) m = classif.matrix(c, level = "taxon") expect_equal(paste(colnames(m), collapse = ","), "Taxon,N,as.hybr,as.ph,as.ps,as.st") expect_equal(paste(rownames(m), collapse = ","), "1,2") expect_equal(paste(m[,1], collapse = ","), "ps,Total") m = classif.matrix(c, level = "pop") expect_equal(paste(colnames(m), collapse = ","), "Population,Taxon,N,as.hybr,as.ph,as.ps,as.st") expect_equal(paste(rownames(m), collapse = ","), "1,2") expect_equal(paste(m[,1], collapse = ","), "SOK,Total" ) m = classif.matrix(c, level = "indiv") expect_equal(paste(colnames(m), collapse = ","), "ID,Population,Taxon,classification,as.hybr,as.ph,as.ps,as.st" ) expect_equal(paste(rownames(m)[1:5], collapse = ","), "1,2,3,4,5") expect_equal(paste(m[,1][1:5], collapse = ","), "SOK388,SOK389,SOK390,SOK391,SOK392") }) test_that("classifSamp.knn", { c = suppressWarnings(classifSample.knn(SOK, trainingSet, k = 1)) m = classif.matrix(c, level = "taxon") expect_equal(paste(colnames(m), collapse = ","), "Taxon,N,as.hybr,as.ph,as.ps,as.st") expect_equal(paste(rownames(m), collapse = ","), "1,2") expect_equal(paste(m[,1], collapse = ","), "ps,Total") m = classif.matrix(c, level = "pop") expect_equal(paste(colnames(m), collapse = ","), "Population,Taxon,N,as.hybr,as.ph,as.ps,as.st" ) expect_equal(paste(rownames(m), collapse = ","), "1,2") expect_equal(paste(m[,1], collapse = ","), "SOK,Total" ) m = classif.matrix(c, level = "indiv") expect_equal(paste(colnames(m), collapse = ","), "ID,Population,Taxon,classification,Proportion.of.the.votes.for.the.winning.class" ) expect_equal(paste(rownames(m)[1:5], collapse = ","), "1,2,3,4,5") expect_equal(paste(m[,1][1:5], collapse = ","), "SOK388,SOK389,SOK390,SOK391,SOK392") })
library(skynet) context("Test Download T100") test_that("Download T100", { skip_on_cran() download_t100(2011, "seg") expect_output(str(nrow(T100_2011_seg)), "250828") expect_length(T100_2011_seg, 17) }) test_that("Download T100", { skip_on_cran() download_t100(2011, "mkt") expect_output(str(nrow(T100_2011_mkt)), "194371") expect_length(T100_2011_mkt, 13) })
checkPairwise = function(x, plot = TRUE, labels = FALSE, LRthreshold = 1000, ...) { kEst = ibdEstimate(x, verbose = FALSE) if(is.ped(x)) { kTrue = kappaIBD(x) } else { kTrue = do.call(rbind, lapply(x, kappaIBD)) nPed = length(x) for(i in seq_len(nPed - 1)) for(j in seq(i+1, nPed)) for(a in labels(x[[i]])) kTrue = rbind(kTrue, data.frame(id1 = a, id2 = labels(x[[j]]), kappa0 = 1, kappa1 = 0, kappa2 = 0, stringsAsFactors = FALSE)) } kMerge = merge(kEst, kTrue, by = 1:2) k0 = kMerge$k0 k2 = kMerge$k2 kappa0 = kMerge$kappa0 kappa2 = kMerge$kappa2 kMerge$LR = vapply(1:nrow(kMerge), function(i) { ids = kMerge[i, 1:2] loglik1 = .IBDlikelihood(x, ids = ids, kappa = c(k0[i], k2[i]), log = TRUE) loglik2 = .IBDlikelihood(x, ids = ids, kappa = c(kappa0[i], kappa2[i]), log = TRUE) exp(loglik1 - loglik2) }, FUN.VALUE = 1) if(plot) { kStr = paste(kappa0, kappa2, sep = "-") kFac = factor(kStr, levels = unique(kStr[order(kappa0, kappa2)])) levels(kFac)[levels(kFac) == "0-0"] = "Parent-offspring" levels(kFac)[levels(kFac) == "0.25-0.25"] = "Full siblings" levels(kFac)[levels(kFac) == "0.5-0"] = "Half/Uncle/Grand" levels(kFac)[levels(kFac) == "0.75-0"] = "First cousins" levels(kFac)[levels(kFac) == "1-0"] = "Unrelated" levels(kFac)[levels(kFac) == "NA-NA"] = "NA (inbred)" cols = pchs = as.integer(kFac) + 1 nlev = nlevels(kFac) legcol = legpch = seq_len(nlev) + 1 legcex = rep(1, nlev) legtxt = levels(kFac) err = kMerge$LR > LRthreshold if(any(err, na.rm = T)) { legcol = c(legcol, NA, 1) legpch = c(legpch, NA, 1) legcex = c(legcex, NA, 3) legtxt = c(legtxt, NA, sprintf("LR > %d", LRthreshold)) } ribd::ibdTriangle(...) ribd::showInTriangle(kMerge[1:6], col = cols, pch = pchs, labels = labels, new = FALSE) points(k0[err], k2[err], pch = 1, lwd = 2, cex = 3) legend("topright", title = " According to pedigree", title.adj = 0, bg = "whitesmoke", legend = legtxt, col = legcol, pch = legpch, pt.cex = legcex, lty = NA, lwd = 2) } kMerge }
read.settings <- function(inputfile = "pecan.xml") { if (inputfile == "") { PEcAn.logger::logger.warn( "settings files specified as empty string;", "\n\t\tthis may be caused by an incorrect argument to system.file.") } loc <- which(commandArgs() == "--settings") if (length(loc) != 0) { for (idx in loc) { if (!is.null(commandArgs()[idx + 1]) && file.exists(commandArgs()[idx + 1])) { PEcAn.logger::logger.info("Loading --settings=", commandArgs()[idx + 1]) xml <- XML::xmlParse(commandArgs()[idx + 1]) break } } } else if (file.exists(Sys.getenv("PECAN_SETTINGS"))) { PEcAn.logger::logger.info( "Loading PECAN_SETTINGS=", Sys.getenv("PECAN_SETTINGS")) xml <- XML::xmlParse(Sys.getenv("PECAN_SETTINGS")) } else if (!is.null(inputfile) && file.exists(inputfile)) { PEcAn.logger::logger.info("Loading inpufile=", inputfile) xml <- XML::xmlParse(inputfile) } else if (file.exists("pecan.xml")) { PEcAn.logger::logger.info("Loading ./pecan.xml") xml <- XML::xmlParse("pecan.xml") } else { PEcAn.logger::logger.severe("Could not find a pecan.xml file") } settings <- XML::xmlToList(xml) settings <- as.Settings(settings) settings <- expandMultiSettings(settings) if (!is.null(settings$Rlib)) { .libPaths(settings$Rlib) } return(invisible(settings)) }
R2JAGS <- function(model, data, nchains, inits, burnin, nodes, update, verbose){ old.pb <- options("jags.pb") on.exit(options(old.pb)) options(jags.pb = "none") wrap(model) if (any(inits == "random")) inits <- NULL mod <- jags.model(file = "modelTempFile.txt", data = data, n.chains = nchains, n.adapt = 1000, quiet = !verbose) unlink("modelTempFile.txt") update(mod, n.iter = burnin, progress.bar = "none") samples <- coda.samples(mod, nodes, n.iter = update, thin = 1, progress.bar = "none") dic <- dic.samples(mod, n.iter = update, thin = 1, type = "pD", progress.bar = "none") return(list(mcmc.list = samples, dic = dic)) }
lologVariational <- function(formula, nReplicates = 5L, dyadInclusionRate = NULL, edgeInclusionRate = NULL, targetFrameSize = 500000) { lolik <- createLatentOrderLikelihood(formula) nReplicates <- as.integer(nReplicates) dyadIndependent <- lolik$getModel()$isIndependent(TRUE, TRUE) dyadIndependentOffsets <- lolik$getModel()$isIndependent(TRUE, FALSE) allDyadIndependent <- all(dyadIndependent) & all(dyadIndependentOffsets) if (allDyadIndependent & nReplicates != 1L) { cat( "\n Model is dyad independent. Replications are redundant. Setting nReplicates <- 1L.\n" ) nReplicates <- 1L } network <- lolik$getModel()$getNetwork() n <- network$size() ndyads <- n * (n - 1) nedges <- lolik$getModel()$getNetwork()$nEdges() if (!network$isDirected()) ndyads <- ndyads / 2 if (is.null(edgeInclusionRate)){ edgeInclusionRate <- min( floor(targetFrameSize / 2), nedges) / nedges } if (is.null(dyadInclusionRate)) { dyadInclusionRate <- min(1, (targetFrameSize - edgeInclusionRate * nedges) / (ndyads - nedges + 1) ) } samples <- lolik$variationalModelFrameMulti(nReplicates, dyadInclusionRate, edgeInclusionRate) predictors <- lapply(samples, function(x) as.data.frame(x[[2]], col.names = 1:length(x[[2]]))) predictors <- do.call(rbind, predictors) outcome <- do.call(c, lapply(samples, function (x) x[[1]])) selectionProb <- do.call(c, lapply(samples, function (x) x[[3]])) logFit <- glm( outcome ~ as.matrix(predictors) - 1, family = "binomial", weights = 1 / selectionProb ) theta <- logFit$coefficients lolik$setThetas(theta) names(theta) <- names(lolik$getModel()$statistics()) result <- list( method = "variational", formula = formula, theta = theta, vcov = vcov(logFit) * nReplicates, nReplicates = nReplicates, dyadInclusionRate = dyadInclusionRate, edgeInclusionRate = edgeInclusionRate, allDyadIndependent = allDyadIndependent, likelihoodModel = lolik, outcome = outcome, predictors = predictors ) class(result) <- c("lologVariationalFit", "lolog", "list") result } print.lologVariationalFit <- function(x, ...) { if (x$allDyadIndependent) cat("MLE Coefficients:\n") else cat("Variational Inference Coefficients:\n") print(x$theta) if (x$dyadInclusionRate != 1) { cat("Inclusion rate:", x$dyadInclusionRate, "\n") } if (!x$allDyadIndependent) cat(" }
d_TE <- function(x, theta, g_scaled, d_V, Lambda, log = FALSE) { if (length(theta) != (sqrt(length(Lambda)) + 1)) { stop(paste("theta and Lambda do not have sizes p and (p - 1) x (p - 1),", "respectively.")) } d_U <- function(x, log) d_ACG(x = x, Lambda = Lambda, log = log) log_dens <- d_tang_norm(x = x, theta = theta, g_scaled = g_scaled, d_V = d_V, d_U = d_U, log = TRUE) return(switch(log + 1, exp(log_dens), log_dens)) } r_TE <- function(n, theta, r_V, Lambda) { if (length(theta) != (sqrt(length(Lambda)) + 1)) { stop(paste("theta and Lambda do not have sizes p and (p - 1) x (p - 1),", "respectively.")) } r_U <- function(x) r_ACG(n = n, Lambda = Lambda) return(r_tang_norm(n = n, theta = theta, r_V = r_V, r_U = r_U)) }
pisaedTable1REF <- c("", "Formula: math ~ st04q01 + st20q01 ", "", "Plausible values: 5", "jrrIMax: 1", "Weight variable: 'w_fstuwt'", "Variance method: jackknife", "JK replicates: 80", "full data n: 4978", "n used: 4873", "", "", "Summary Table:", " st04q01 st20q01 N WTD_N PCT SE(PCT) MEAN SE(MEAN)", " Female Country of test 2234 1575416.5 92.425753 0.8038984 481.1794 4.019205", " Female Other country 180 129104.6 7.574247 0.8038984 463.6272 10.355889", " Male Country of test 2272 1611412.6 91.796017 0.9558501 486.8819 3.853613", " Male Other country 187 144015.0 8.203983 0.9558501 474.1468 9.474347" ) plm1REF <- c(" (Intercept) st29q06Agree st29q06Disagree st29q06Strongly disagree sc01q01Private ", " 506.993125 -21.828757 -32.381549 -52.944871 2.408131 " ) pgap1REF <- c("Call: gap(variable = \"math\", data = usaINT2012, groupA = st04q01 == ", " \"Male\", groupB = st04q01 == \"Female\", weightVar = \"w_fstuwt\")", "", "Labels:", " group definition nFullData nUsed", " A st04q01 == \"Male\" 4978 2525", " B st04q01 == \"Female\" 4978 2453", "", "Percentage:", " pctA pctAse pctB pctBse diffAB covAB diffABse diffABpValue dofAB", " 50.98087 0.7182871 49.01913 0.7182871 1.961734 -0.5159363 1.436574 0.174861 110.0328", "", "Results:", " estimateA estimateAse estimateB estimateBse diffAB covAB diffABse diffABpValue dofAB", " 483.647 3.800262 478.9953 3.92109 4.651662 11.01904 2.789059 0.09911296 83.14098" ) al1REF <- c("", "AchievementVars: cpro", "aggregateBy: st04q01", "", "Achievement Level Cutpoints:", "358.49 423.42 488.35 553.28 618.21 683.14 ", "", "Plausible values: 5", "jrrIMax: 1", "Weight variable: 'w_fstuwt'", "Variance method: jackknife", "JK replicates: 80", "full data n: 5177", "n used: 5177", "", "", "Discrete", " cpro_Level st04q01 N wtdN Percent StandardError", " Below Proficiency Level 1 Female 95.4 1541.697 3.539350 0.7086689", " At Proficiency Level 1 Female 234.2 3815.988 8.760555 0.8224039", " At Proficiency Level 2 Female 524.6 8669.991 19.904132 0.9013387", " At Proficiency Level 3 Female 771.0 12722.017 29.206570 1.3662494", " At Proficiency Level 4 Female 644.6 10711.838 24.591702 1.3001839", " At Proficiency Level 5 Female 300.8 4985.134 11.444621 1.1955623", " At Proficiency Level 6 Female 66.4 1112.086 2.553071 0.5394964", " Below Proficiency Level 1 Male 68.8 1083.360 2.616423 0.5358135", " At Proficiency Level 1 Male 167.6 2578.450 6.227218 0.6980039", " At Proficiency Level 2 Male 383.8 6222.924 15.028992 1.1775214", " At Proficiency Level 3 Male 648.8 10591.764 25.580183 1.3363213", " At Proficiency Level 4 Male 696.6 11515.983 27.812266 1.7109083", " At Proficiency Level 5 Male 430.6 7036.873 16.994760 1.1910320", " At Proficiency Level 6 Male 143.8 2376.777 5.740157 0.6795269" ) pgap2REF <- c("gapList", "Call: gap(variable = \"math\", data = usaINT2012, groupA = st04q01 == ", " \"Male\", groupB = st04q01 == \"Female\", percentiles = c(50, ", " 90), weightVar = \"w_fstuwt\", pctMethod = \"symmetric\")", "", "Labels:", " group definition", " A st04q01 == \"Male\"", " B st04q01 == \"Female\"", "", "Percentage:", " pctA pctAse pctB pctBse diffAB covAB diffABse diffABpValue dofAB", " 50.98087 0.7182871 49.01913 0.7182871 1.961734 -0.5159363 1.436574 0.174861 110.0328", "", "Results:", " percentiles estimateA estimateAse estimateB estimateBse diffAB covAB diffABse diffABpValue dofAB", " 50 480.7124 4.075956 474.6266 4.498829 6.085824 11.494158 3.723515 0.1064350 73.66955", " 90 605.1735 3.942558 595.3941 8.603019 9.779404 7.893203 8.588906 0.2579161 89.16957") pvREF <- c("There are 10 subject scale(s) or subscale(s) in this edsurvey.data.frame:", "'math' subject scale or subscale with 5 plausible values (the default).", " The plausible value variables are: 'pv1math', 'pv2math', 'pv3math', 'pv4math', and 'pv5math'", "", "'macc' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'pv1macc', 'pv2macc', 'pv3macc', 'pv4macc', and 'pv5macc'", "", "'macq' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'pv1macq', 'pv2macq', 'pv3macq', 'pv4macq', and 'pv5macq'", "", "'macs' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'pv1macs', 'pv2macs', 'pv3macs', 'pv4macs', and 'pv5macs'", "", "'macu' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'pv1macu', 'pv2macu', 'pv3macu', 'pv4macu', and 'pv5macu'", "", "'mape' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'pv1mape', 'pv2mape', 'pv3mape', 'pv4mape', and 'pv5mape'", "", "'mapf' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'pv1mapf', 'pv2mapf', 'pv3mapf', 'pv4mapf', and 'pv5mapf'", "", "'mapi' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'pv1mapi', 'pv2mapi', 'pv3mapi', 'pv4mapi', and 'pv5mapi'", "", "'read' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'pv1read', 'pv2read', 'pv3read', 'pv4read', and 'pv5read'", "", "'scie' subject scale or subscale with 5 plausible values.", " The plausible value variables are: 'pv1scie', 'pv2scie', 'pv3scie', 'pv4scie', and 'pv5scie'", "") swREF <- c("There is 1 full sample weight in this edsurvey.data.frame:", " 'w_fstuwt' with 80 JK replicate weights (the default).", " Jackknife replicate weight variables associated with the full sample weight 'w_fstuwt':", " 'w_fstr1', 'w_fstr2', 'w_fstr3', 'w_fstr4', 'w_fstr5', 'w_fstr6', 'w_fstr7', 'w_fstr8', 'w_fstr9', 'w_fstr10', 'w_fstr11', 'w_fstr12', 'w_fstr13', 'w_fstr14', 'w_fstr15', 'w_fstr16', 'w_fstr17', 'w_fstr18', 'w_fstr19', 'w_fstr20', 'w_fstr21', 'w_fstr22', 'w_fstr23', 'w_fstr24', 'w_fstr25', 'w_fstr26', 'w_fstr27', 'w_fstr28', 'w_fstr29', 'w_fstr30', 'w_fstr31', 'w_fstr32', 'w_fstr33', 'w_fstr34', 'w_fstr35', 'w_fstr36', 'w_fstr37',", " 'w_fstr38', 'w_fstr39', 'w_fstr40', 'w_fstr41', 'w_fstr42', 'w_fstr43', 'w_fstr44', 'w_fstr45', 'w_fstr46', 'w_fstr47', 'w_fstr48', 'w_fstr49', 'w_fstr50', 'w_fstr51', 'w_fstr52', 'w_fstr53', 'w_fstr54', 'w_fstr55', 'w_fstr56', 'w_fstr57', 'w_fstr58', 'w_fstr59', 'w_fstr60', 'w_fstr61', 'w_fstr62', 'w_fstr63', 'w_fstr64', 'w_fstr65', 'w_fstr66', 'w_fstr67', 'w_fstr68', 'w_fstr69', 'w_fstr70', 'w_fstr71', 'w_fstr72', 'w_fstr73', 'w_fstr74',", " 'w_fstr75', 'w_fstr76', 'w_fstr77', 'w_fstr78', 'w_fstr79', and 'w_fstr80'", "") scREF <- c("Achievement Levels:", " Mathematics: 357.77, 420.07, 482.38, 544.68, 606.99, 669.3", " Problem Solving: 358.49, 423.42, 488.35, 553.28, 618.21, 683.14", " Reading: 262.04, 334.75, 407.47, 480.18, 552.89, 625.61, 698.32")
context("Testing dCJS-related functions.") test_that("dCJS_ss works", { x <- c(1, 0, 1, 0, 0) probSurvive <- 0.6 probCapture <- 0.4 probX <- dCJS_ss(x, probSurvive, probCapture, len = 5) correctProbX <- probSurvive * (1 - probCapture) * probSurvive * (probCapture) * (probSurvive^2 * (1 - probCapture)^2 + probSurvive * (1 - probCapture) * (1 - probSurvive) + (1 - probSurvive)) expect_equal(probX, correctProbX) lProbX <- dCJS_ss(x, probSurvive, probCapture, log = TRUE, len = 5) lCorrectProbX <- log(correctProbX) expect_equal(lProbX, lCorrectProbX) CdCJS_ss <- compileNimble(dCJS_ss) CprobX <- CdCJS_ss(x, probSurvive, probCapture, len = 5) expect_equal(CprobX, probX) ClProbX <- CdCJS_ss(x, probSurvive, probCapture, log = TRUE, len = 5) expect_equal(ClProbX, lProbX) nc <- nimbleCode({ x[1:5] ~ dCJS_ss(probSurvive, probCapture, len = 5) probSurvive ~ dunif(0,1) probCapture ~ dunif(0,1) }) m <- nimbleModel(nc, data = list(x = x), inits = list(probSurvive = probSurvive, probCapture = probCapture)) m$calculate() MlProbX <- m$getLogProb("x") expect_equal(MlProbX, lProbX) cm <- compileNimble(m) cm$calculate() CMlProbX <- cm$getLogProb("x") expect_equal(CMlProbX, lProbX) xNA <- c(NA, NA, NA, NA, NA) mNA <- nimbleModel(nc, data = list(x = xNA), inits = list(probSurvive = probSurvive, probCapture = probCapture)) mNAConf <- configureMCMC(mNA) mNAConf$addMonitors('x') mNA_MCMC <- buildMCMC(mNAConf) cmNA <- compileNimble(mNA, mNA_MCMC) set.seed(0) cmNA$mNA_MCMC$run(10) expect_true(all(!is.na(as.matrix(cmNA$mNA_MCMC$mvSamples)[,"x[2]"]))) set.seed(1) nSim <- 10 xSim <- array(NA, dim = c(nSim, length(x))) for(i in 1:nSim) xSim[i,] <- rCJS_ss(1, probSurvive, probCapture, len = length(x)) set.seed(1) CrCJS_ss <- compileNimble(rCJS_ss) CxSim <- array(NA, dim = c(nSim, length(x))) for(i in 1:nSim) CxSim[i,] <- CrCJS_ss(1, probSurvive, probCapture, len = length(x)) expect_identical(xSim, CxSim) simNodes <- m$getDependencies(c('probSurvive', 'probCapture'), self = FALSE) mxSim <- array(NA, dim = c(nSim, length(x))) set.seed(1) for(i in 1:nSim) { m$simulate(simNodes, includeData = TRUE) mxSim[i,] <- m$x } expect_identical(mxSim, xSim) CmxSim <- array(NA, dim = c(nSim, length(x))) set.seed(1) for(i in 1:nSim) { cm$simulate(simNodes, includeData = TRUE) CmxSim[i,] <- cm$x } expect_identical(CmxSim, mxSim) }) test_that("dCJS_sv works", { x <- c(1, 0, 1, 0, 0) probSurvive <- 0.6 probCapture <- c(1, 0.25, 0.6, 0.4, 0.8) probX <- dCJS_sv(x, probSurvive, probCapture) correctProbX <- probSurvive * (1 - probCapture[2]) * probSurvive * (probCapture[3]) * (probSurvive^2 * (1 - probCapture[4]) * (1 - probCapture[5]) + probSurvive * (1 - probCapture[4]) * (1 - probSurvive) + (1 - probSurvive)) expect_equal(probX, correctProbX) lProbX <- dCJS_sv(x, probSurvive, probCapture, log = TRUE) lCorrectProbX <- log(correctProbX) expect_equal(lProbX, lCorrectProbX) CdCJS_sv <- compileNimble(dCJS_sv) CprobX <- CdCJS_sv(x, probSurvive, probCapture) expect_equal(CprobX, probX) ClProbX <- CdCJS_sv(x, probSurvive, probCapture, log = TRUE) expect_equal(ClProbX, lProbX) nc <- nimbleCode({ x[1:5] ~ dCJS_sv(probSurvive, probCapture[1:5], len = 5) probSurvive ~ dunif(0,1) for (i in 1:5) { probCapture[i] ~ dunif(0,1) } }) m <- nimbleModel(nc, data = list(x = x), inits = list(probSurvive = probSurvive, probCapture = probCapture)) m$calculate() MlProbX <- m$getLogProb("x") expect_equal(MlProbX, lProbX) cm <- compileNimble(m) cm$calculate() CMlProbX <- cm$getLogProb("x") expect_equal(CMlProbX, lProbX) xNA <- c(NA, NA, NA, NA, NA) mNA <- nimbleModel(nc, data = list(x = xNA), inits = list(probSurvive = probSurvive, probCapture = probCapture)) mNAConf <- configureMCMC(mNA) mNAConf$addMonitors('x') mNA_MCMC <- buildMCMC(mNAConf) cmNA <- compileNimble(mNA, mNA_MCMC) set.seed(10) cmNA$mNA_MCMC$run(5) expect_true(all(!is.na(as.matrix(cmNA$mNA_MCMC$mvSamples)[,"x[1]"]))) set.seed(1) nSim <- 10 xSim <- array(NA, dim = c(nSim, length(x))) for(i in 1:nSim) xSim[i,] <- rCJS_sv(1, probSurvive, probCapture, len = length(x)) set.seed(1) CrCJS_sv <- compileNimble(rCJS_sv) CxSim <- array(NA, dim = c(nSim, length(x))) for(i in 1:nSim) CxSim[i,] <- CrCJS_sv(1, probSurvive, probCapture, len = length(x)) expect_identical(xSim, CxSim) simNodes <- m$getDependencies(c('probSurvive', 'probCapture'), self = FALSE) mxSim <- array(NA, dim = c(nSim, length(x))) set.seed(1) for (i in 1:nSim) { m$simulate(simNodes, includeData = TRUE) mxSim[i,] <- m$x } expect_identical(mxSim, xSim) CmxSim <- array(NA, dim = c(nSim, length(x))) set.seed(1) for (i in 1:nSim) { cm$simulate(simNodes, includeData = TRUE) CmxSim[i,] <- cm$x } expect_identical(CmxSim, mxSim) }) test_that("dCJS_vs works", { x <- c(1, 0, 1, 0, 0) probSurvive <- c(0.8, 0.45, 0.4, 0.7) probCapture <- 0.6 probX <- dCJS_vs(x, probSurvive, probCapture) correctProbX <- probSurvive[1] * (1 - probCapture) * probSurvive[2] * probCapture * (probSurvive[3] * probSurvive[4] * (1 - probCapture)^2 + probSurvive[3] * (1 - probCapture) * (1 - probSurvive[4]) + (1 - probSurvive[3])) expect_equal(probX, correctProbX) lProbX <- dCJS_vs(x, probSurvive, probCapture, log = TRUE) lCorrectProbX <- log(correctProbX) expect_equal(lProbX, lCorrectProbX) CdCJS_vs <- compileNimble(dCJS_vs) CprobX <- CdCJS_vs(x, probSurvive, probCapture) expect_equal(CprobX, probX) ClProbX <- CdCJS_vs(x, probSurvive, probCapture, log = TRUE) expect_equal(ClProbX, lProbX) nc <- nimbleCode({ x[1:5] ~ dCJS_vs(probSurvive[1:4], probCapture, len = 5) probCapture ~ dunif(0,1) for (i in 1:4) { probSurvive[i] ~ dunif(0,1) } }) m <- nimbleModel(nc, data = list(x = x), inits = list(probSurvive = probSurvive, probCapture = probCapture)) m$calculate() MlProbX <- m$getLogProb("x") expect_equal(MlProbX, lProbX) cm <- compileNimble(m) cm$calculate() CMlProbX <- cm$getLogProb("x") expect_equal(CMlProbX, lProbX) xNA <- c(NA, NA, NA, NA, NA) mNA <- nimbleModel(nc, data = list(x = xNA), inits = list(probSurvive = probSurvive, probCapture = probCapture)) mNAConf <- configureMCMC(mNA) mNAConf$addMonitors('x') mNA_MCMC <- buildMCMC(mNAConf) cmNA <- compileNimble(mNA, mNA_MCMC) set.seed(5) cmNA$mNA_MCMC$run(10) expect_true(all(!is.na(as.matrix(cmNA$mNA_MCMC$mvSamples)[,"x[1]"]))) set.seed(1) nSim <- 10 xSim <- array(NA, dim = c(nSim, length(x))) for(i in 1:nSim) xSim[i,] <- rCJS_vs(1, probSurvive, probCapture, len = length(x)) set.seed(1) CrCJS_vs <- compileNimble(rCJS_vs) CxSim <- array(NA, dim = c(nSim, length(x))) for(i in 1:nSim) CxSim[i,] <- CrCJS_vs(1, probSurvive, probCapture, len = length(x)) expect_identical(xSim, CxSim) simNodes <- m$getDependencies(c('probSurvive', 'probCapture'), self = FALSE) mxSim <- array(NA, dim = c(nSim, length(x))) set.seed(1) for(i in 1:nSim) { m$simulate(simNodes, includeData = TRUE) mxSim[i,] <- m$x } expect_identical(mxSim, xSim) CmxSim <- array(NA, dim = c(nSim, length(x))) set.seed(1) for(i in 1:nSim) { cm$simulate(simNodes, includeData = TRUE) CmxSim[i,] <- cm$x } expect_identical(CmxSim, mxSim) }) test_that("dCJS_vv works", { x <- c(1, 0,1,0,0) probSurvive <- c(0.6, 0.5, 0.4, 0.55) probCapture <- c(1, 0.45, 0.5, 0.55, 0.6) len <- 5 probX <- dCJS_vv(x, probSurvive, probCapture, len) correctProbX <- probSurvive[1] * (1 - probCapture[2]) * probSurvive[2] * (probCapture[3]) * ((probSurvive[3] * (1 - probCapture[4]) * probSurvive[4] * (1 - probCapture[5])) + (probSurvive[3] * (1 - probCapture[4]) * (1 - probSurvive[4])) + (1 - probSurvive[3])) expect_equal(probX, correctProbX) lProbX <- dCJS_vv(x, probSurvive, probCapture, log = TRUE) lCorrectProbX <- log(correctProbX) expect_equal(lProbX, lCorrectProbX) CdCJS_vv <- compileNimble(dCJS_vv) CprobX <- CdCJS_vv(x, probSurvive, probCapture) expect_equal(CprobX, probX) ClProbX <- CdCJS_vv(x, probSurvive, probCapture, len = 5, log = TRUE) expect_equal(ClProbX, lProbX) nc <- nimbleCode({ x[1:5] ~ dCJS_vv(probSurvive[1:4], probCapture[1:5], len = 5) for (i in 1:4) { probSurvive[i] ~ dunif(0,1) probCapture[i] ~ dunif(0,1) } }) m <- nimbleModel(nc, data = list(x = x), inits = list(probSurvive = probSurvive, probCapture = probCapture)) m$calculate() MlProbX <- m$getLogProb("x") expect_equal(MlProbX, lProbX) cm <- compileNimble(m) cm$calculate() CMlProbX <- cm$getLogProb("x") expect_equal(CMlProbX, lProbX) xNA <- c(NA, NA, NA, NA, NA) mNA <- nimbleModel(nc, data = list(x = xNA), inits = list(probSurvive = probSurvive, probCapture = probCapture)) mNAConf <- configureMCMC(mNA) mNAConf$addMonitors('x') mNA_MCMC <- buildMCMC(mNAConf) cmNA <- compileNimble(mNA, mNA_MCMC) set.seed(5) cmNA$mNA_MCMC$run(10) expect_true(all(!is.na(as.matrix(cmNA$mNA_MCMC$mvSamples)[,"x[1]"]))) set.seed(1) nSim <- 10 xSim <- array(NA, dim = c(nSim, length(x))) for(i in 1:nSim) xSim[i,] <- rCJS_vv(1, probSurvive, probCapture, len = length(x)) set.seed(1) CrCJS_vv <- compileNimble(rCJS_vv) CxSim <- array(NA, dim = c(nSim, length(x))) for(i in 1:nSim) CxSim[i,] <- CrCJS_vv(1, probSurvive, probCapture, len = length(x)) expect_identical(xSim, CxSim) simNodes <- m$getDependencies(c('probSurvive', 'probCapture'), self = FALSE) mxSim <- array(NA, dim = c(nSim, length(x))) set.seed(1) for(i in 1:nSim) { m$simulate(simNodes, includeData = TRUE) mxSim[i,] <- m$x } expect_identical(mxSim, xSim) CmxSim <- array(NA, dim = c(nSim, length(x))) set.seed(1) for(i in 1:nSim) { cm$simulate(simNodes, includeData = TRUE) CmxSim[i,] <- cm$x } expect_identical(CmxSim, mxSim) }) test_that("dCJS errors", { expect_error( dCJS_ss(x = c(1,0,1,0,0), probCapture = 0.4, probSurvive = 0.5, len = 3) ) expect_error( dCJS_ss(x = c(0,0,1,0,0), probCapture = 0.4, probSurvive = 0.5) ) expect_error( dCJS_vs(x = c(1,0,1,0,0), probCapture = 0.1, probSurvive = c(0.9, 0.9, 0.4, 0.4), len = 2) ) expect_error( dCJS_vs(x = c(1,0,1,0,0), probCapture = 0.1, probSurvive = c(0.9, 0.9, 0.4)) ) expect_error( dCJS_vs(x = c(0,0,1,0,0), probCapture = 0.1, probSurvive = c(0.9, 0.9, 0.4, 0.4)) ) expect_error( dCJS_sv(x = c(1,0,1,0,0), probCapture = c(1,0.9, 0.9, 0.4, 0.4), probSurvive = 0.1, len = 6) ) expect_error( dCJS_sv(x = c(1,0,1,0,0), probCapture = c(1,0.9, 0.9, 0.4), probSurvive = 0.8) ) expect_error( dCJS_sv(x = c(0,0,1,0,0), probCapture = c(1,0.9, 0.9, 0.4, 0.4), probSurvive = 0.1) ) expect_error( dCJS_vv(x = c(1,0,1,0,0), probCapture = c(1,0,1,0.3,0.3), probSurvive = c(0.9, 0.9)) ) expect_error( dCJS_vv(x = c(1,0,1,0,0), probCapture = c(1,0,1), probSurvive = c(0.9, 0.9, 0.1, 0.1)) ) expect_error( dCJS_vv(x = c(1,0,1,0,0), probCapture = c(1,0,1,0,0), probSurvive = c(0.9, 0.9, 0.1, 0.1), len = 2) ) expect_error( dCJS_vv(x = c(0,0,1,0,0), probCapture = c(1,0,1,0,0), probSurvive = c(0.9, 0.9, 0.1, 0.1)) ) CdCJS_ss <- compileNimble(dCJS_ss) CdCJS_sv <- compileNimble(dCJS_sv) CdCJS_vs <- compileNimble(dCJS_vs) CdCJS_vv <- compileNimble(dCJS_vv) expect_error( CdCJS_ss(x = c(1,0,1,0,0), probCapture = 0.4, probSurvive = 0.5, len = 3) ) expect_error( CdCJS_ss(x = c(0,0,1,0,0), probCapture = 0.4, probSurvive = 0.5) ) expect_error( CdCJS_vs(x = c(1,0,1,0,0), probCapture = 0.1, probSurvive = c(0.9, 0.9, 0.4, 0.4), len = 3) ) expect_error( CdCJS_vs(x = c(1,0,1,0,0), probCapture = 0.1, probSurvive = c(0.9, 0.9, 0.4)) ) expect_error( CdCJS_vs(x = c(0,0,1,0,0), probCapture = 0.1, probSurvive = c(0.9, 0.9, 0.4, 0.4)) ) expect_error( CdCJS_sv(x = c(1,0,1,0,0), probCapture = c(1,0.9, 0.9, 0.4, 0.4), probSurvive = 0.1, len = 3) ) expect_error( CdCJS_sv(x = c(1,0,1,0,0), probCapture = c(1,0.9, 0.9, 0.4), probSurvive = 0.8) ) expect_error( CdCJS_sv(x = c(0,0,1,0,0), probCapture = c(1,0.9, 0.9, 0.4, 0.4), probSurvive = 0.1) ) expect_error( CdCJS_vv(x = c(1,0,1,0,0), probCapture = c(1,0,1,0.3,0.3), probSurvive = c(0.9, 0.9)) ) expect_error( CdCJS_vv(x = c(1,0,1,0,0), probCapture = c(0,1), probSurvive = c(0.9, 0.9, 0.1, 0.1)) ) expect_error( CdCJS_vv(x = c(1,0,1,0,0), probCapture = c(1,0,1,0,0), probSurvive = c(0.9, 0.9, 0.1, 0.1), len = 2) ) expect_error( CdCJS_vv(x = c(0,0,1,0,0), probCapture = c(1,0,1,0,0), probSurvive = c(0.9, 0.9, 0.1, 0.1)) ) })
source("ESEUR_config.r") library("foreign") pc7=read.dta(paste0(ESEUR_dir, "ecosystems/Berndt/pc7699a.dta")) pc_1987=subset(pc7, year < 1988) RAPID CHANGE IN THE PERSONAL COMPUTER MARKET A QUALITY-ADJUSTED HEDONIC PRICE INDEX 1976- 1987 by JEREMY MICHAEL COHEN MSc thesis 1) RAM - The amount of Random Access Memory (RAM) standard on each PC model, measured in K (1024) bytes. 2) Maximum RAM - The maximum amount of RAM that can fit on the system board (mother-board) of each PC model, measured in K bytes (logical groupings of eight on/off bits). This figure does not include possible RAM increases due to expansion cards, since RAM access is typically faster on the system board than on expansion cards, placing a premium on the amount of fast system board RAM that the system can have. Also, expansion slots are typically multi-functional and not restricted to just RAM cards, so the amount of expansion card based RAM can be quite variable for most PC models. 3) ROM - The amount of Read Only Memory (ROM) standard in each PC model, measured in K bytes. Since ROM usually contains diagnostics and low-level operating system routines, this variable may well serve as a surrogate for the sophistication of the software packages in the PC. 4) Mhz - The clock speed of each PC mode, measured in Megahertz (million of cycles per second). This is one of the main indicators (along with processor type) of the throughput of a PC. 5) Hard Disk - The amount of storage on the hard disk (if one exists) in each PC, measured in M (1024*1024) bytes. A hard disk is often the dividing line be- tween a home system and an office system, though this distinction has blurred in recent years. 332 of the 1108 models in the data set had hard disks. 6) Hard Disk Access Speed - The average time it takes to retrieve a byte of in- formation from the hard disk, measured in milliseconds. This information would be more useful if it were supplemented by the seek and rotation times of the hard disks, but it was extremely difficult to obtain this data. 7) Floppy Disk - The amount of storage that the floppy disk drives, if any exist, are capable of reading or writing to a floppy disk, measured in K bytes. This includes the flexible 8", 5.25" and 3.5" media and excludes fixed media. 8) Number of Floppy Disk Drives - The number of floppy disk drives standard on each PC model. A variable equivalent to this one for hard disk drives is not necessary, since all of the PC models examined had either zero or one hard disks, while the PCs had either zero, one, or two floppy disk drives. 9) Slots (8 bit) - The number of eight bit expansion slots available within each PC model for expansion boards. 10) Slots (16 bit) - The number of sixteen bit slots available within each PC model for expansion boards. 11) Slots (32 bit) - The number of thirty-two bit slots available within each PC model for expansion boards. Note: The above three "slot" variables posed a few problems. First, both PC ads and reviews often failed to state whether any of the slots mentioned were already filled within the standard setup. To be consistent I have used the total number of slots in the system, irrespective of whether the slots may have been initially filled. This may not be optimal, but it was the best solution given the available data. Since a machine would normally not have more than one or two slots initially filled, this should not cause any major problems. Another problem is that some ads and reviews specified only the number of slots, not the size of the slots. I resolved this problem through the use of multiple data sources (particularly the Dataquest guide). In the few cases where the situation was still unresolved, I assumed that the size of the slots was the same as the size of the PC's processor chip. This is a reasonably safe assumption that should not have any negative effects on the regression analysis. 12) Size - The size of each PC model, measured in cubic inches. This includes the system unit but normally excludes the weight of the monitor or keyboard. These components are included, however, if they are integral to the system unit (i.e., IBM Convertible). 13) Weight - The weight of each PC model, measured in pounds. This includes the system unit but normally does not include the weight of the monitor or keyboard. These components are included, however, if they are integral to the system unit (i.e., Apple Macintosh). 14) Age - The number of years since a given PC model was first introduced. A model has an age of zero its initial year. This variable ranges from zero to seven (for the Radio Shack Color Computer) and provides useful information on the effects of longevity on pricing. Note that while the specifications of many PC models changed over time, as long as the model name remained constant the model was considered to be the same as the model from the previous year. Age Number of Data Points 0 649 1 257 2 118 3 46 4 25 5 9 6 3 7 1 ---- 1108 Note: The hard disk size, number of floppy disk drives, number of slots, and age variables had the value one added to them so that it would be possible to take their natural log during the regression analysis. Dummy Variables The twenty-six dummy variables are divided into eight subdivisions, as described above. The variables and subdivisions are: 1) Processor Type - All of the PCs in my study have either eight bit, sixteen bit or thirty-two bit processors, this being an indication of how much data the system can process at a given time. The higher this number, ceteris paribus, the greater the throughput of the system. A few processor chips, such as the 68000, can manipulate differing amounts of data depending on the operation. In this case I have grouped such multiple-size chips in the lower applicable group, both because this is how these chips are normally viewed and because the throughput of the chip is restricted by its lowest grouping. 15) DProcl6 - 1 if the system has a sixteen bit processor chip, 0 otherwise. 16) DProc32 - 1 if the system has a thirty-two bit processor chip, 0 otherwise. Thus, the base case for this subdivision is having an eight bit processor chip. In my 1108 data point sample, 540 of the PCs had eight bit processor chips, 506 had sixteen bit processor chips, and 62 had thirty-two bit processor chips. 11) Monitor Type - While many PCs are sold without a monitor, they are also sometimes sold either with a black and white (B&W) or a color monitor. 17) DBW - 1 if the system comes with a B&W monitor, 0 otherwise. 18) DColor - 1 if the system comes with a color monitor, 0 otherwise. Thus, the base case for this subdivision is not having a monitor. In my 1108 data point set, 605 of the PCs had no monitor, 478 had a B&W monitor and 25 had a color monitor. III) Portability - Some PCs, often called "portables" or "convertibles," are made small and light enough to be portable. These PCs often also have special features such as battery power capability and an integral monitor. 19) DPortable - 1 if the system is meant to be portable, 0 otherwise. Thus, the base case for this subdivision is not being portable. In my 1108 point data set, 937 of the systems were not portable, while 171 were explicitly portable. IV) Additional Technical Features - Some PCs have extra hardware that is costly enough to have a significant effect on their overall price, yet rare enough not to be considered a standard item. Some examples include modems, printers, or an extra monitor. 20) DExtra - I if the system has a significant piece of additional hardware, 0 otherwise. Thus, the base case for this subdivision is not having any additional equipment. V) Price Type - In my sample I have both list prices and discount prices. This allows an analysis of discount pricing and also provides more overall variability in the pricing data. In particular, it is not unusual to see a PC's list price remain steady over 2-3 years while its discount price may drop steadily over this time. 21) DDiscount - 1 if the system price is discounted, 0 otherwise. The base case for this subdivision is having a list price. In my sample, 841 of the systems had list price information and 267 had discount prices. VI) Manufacturer - In my data set I have PCs from 114 different companies. In this subdivision, I attempt to discover any differences in pricing among seven major PC manufacturers. While any pricing discrepancies may possibly be accounted for by intangibles such as quality and reliability or more tangible items such as warranties and included software, these discrepancies may also be an indicator of a company's overall pricing policy. 22) DApple - I if the PC is made by Apple, 0 otherwise. 23) DCommo - 1 if the PC is made by Commodore, 0 otherwise. 24) DCompa - 1 if the PC is made by Compaq, 0 otherwise. 25) DIBM - 1 if the PC is made by IBM, 0 otherwise. 26) DNEC - I if the PC is made by NEC, 0 otherwise. 27) DPCLim - 1 if the PC is made by PC Limited, 0 otherwise. 28) DRadio - I if the PC is made by Radio Shack, 0 otherwise. The base case for this subdivision is to be manufactured by one of the 107 other PC companies. Of the 1108 PC data points, 62 were made by Apple, 40 by Commodore, 59 by Compaq, 94 by IBM, 36 by NEC, 21 by PC Limited, 85 by Radio Shack, and 711 by other companies. Thus, 35.4% (396 of 1108) of the models were built by these seven manufacturers. VII) Date - The heart of a hedonic pricing study are the yearly dummy variables. The data in my sample runs from 1976 to 1987, resulting in eleven of these dummy variables. The parameter coefficients obtained for these variables will be directly used to construct the hedonic price index. 29) D77 this model/price data point from 1977, otherwise. 30) D78 this model/price data point from 1978, otherwise. 31) D79 this model/price data point from 1979, otherwise. 32) D80 this model/price data point from 1980, otherwise. 33) D81 this model/price data point from 1981, otherwise. 34) D82 this model/price data point from 1982, otherwise. 35) D83 this model/price data point from 1983, otherwise. 36) D84 this model/price data point from 1984, otherwise. 37) D85 this model/price data point from 1985, otherwise. 38) D86 this model/price data point from 1986, otherwise. 39) D87 this model/price data point from 1987, otherwise. The base case for this subdivision is a model/price data point from 1976. The number of data points from each year is as follows: Year 1976 11 1977 17 1978 15 1979 28 1980 45 1981 40 1982 54 1983 85 1984 130 1985 109 1986 178 1987 396 ---- 1108 VIII) Pre/Post IBM Date - IBM revolutionized the PC industry when it released its PC line at the end of 1981. Since this may well have affected overall industry pricing, I examined it using the following dummy variable: 40) DP82 - I if the system data point is from after 1981, 0 otherwise. The base case for this subdivision is for the data point to be from before 1982. Of the 1108 data points, 156 are from before 1982, while 952 are from 1982 or later. Overall Base Case The overall base case (in which all of the dummy variables equal 0) is: a PC model with an eight bit processor, no monitor, non-portable, with no extra hardware features, list price, not from one of the seven specified manufacturers, from 1976, and from before the late 1981 IBM announcement date for its PCs. Omitted Variables There were several independent variables that I considered using in the initial regression equation but eventually chose not to use, for various reasons. These variables are: 1) Hard Disk Seek Speed - This information proved to be very difficult to obtain for the early PC models, since it was rarely reported either in advertisements or in product reviews. However, it should prove to be highly correlated with the hard disk access speed variable, which is included in the regression. Thus, I conjecture that this variable would not have added much new information to the analysis. 2) Floppy Disk Access/Seek Speed - This information was difficult to obtain for recent PC models and often impossible for the earlier models. Thus, I was not able to gather enough entries for this variable to make it worthwhile for inclusion in the regression. 3) Asynchronous (Asynch.) Card - While the information on whether each PC came with an Asynch. card was often available, I decided that this variable would likely not add much to the regression analysis, since the cost/value of an asynch. card is quite low (on the order of $20-40). 4) Clock/Calendar Card - Similar to the asynch. card, the low cost/value of a clock/calendar card (about $20) implied that it was not worth adding it to the regression, even though this information was often available. orig=pc7[, !grepl("^gen", names(pc7))] orig=orig[, !grepl("^d", names(orig))]
context("Test: biomart()") test_that("The biomart() interface works properly..",{ skip_on_cran() skip_on_travis() expect_output(getMarts()) expect_output( biomart( genes = "GUCA2A", mart = "ENSEMBL_MART_ENSEMBL", dataset = "hsapiens_gene_ensembl", attributes = c("start_position", "end_position", "description"), filters = "hgnc_symbol" )[1, 1:3] ) })
summary.ssanova <- function(object,diagnostics=FALSE,...) { y <- model.response(object$mf,"numeric") w <- model.weights(object$mf) offset <- model.offset(object$mf) if (is.null(offset)) offset <- rep(0,length(y)) mf <- object$mf if (!is.null(object$random)) mf$random <- object$random$z res <- y - predict(object,mf) fitted <- as.numeric(y-res) sigma <- sqrt(object$varht) if (!is.null(w)) { r.squared <- sum(w*(fitted-sum(w*fitted)/sum(w))^2) r.squared <- r.squared/sum(w*(y-sum(w*y)/sum(w))^2) } else r.squared <- var(fitted)/var(y) if (is.null(w)) rss <- sum(res^2) else rss <- sum(w*res^2) obj.wk <- object obj.wk$d[] <- 0 if (!is.null(model.offset(obj.wk$mf))) obj.wk$mf[,"(offset)"] <- 0 penalty <- sum(obj.wk$c*predict(obj.wk,obj.wk$mf[object$id.basis,])) penalty <- as.vector(10^object$nlambda*penalty) if (!is.null(object$random)) { p.ran <- t(object$b)%*%object$random$sigma$fun(object$zeta, object$random$sigma$env)%*%object$b penalty <- penalty + p.ran } if (is.null(object$partial)) labels.p <- NULL else labels.p <- labels(object$partial$mt) if (diagnostics) { comp <- NULL p.dec <- NULL for (label in c(object$terms$labels,labels.p)) { if (label=="1") next if (label=="offset") next comp <- cbind(comp,predict(object,object$mf,inc=label)) jk <- sum(obj.wk$c*predict(obj.wk,obj.wk$mf[object$id.basis,],inc=label)) p.dec <- c(p.dec,10^object$nlambda*jk) } term.label <- object$terms$labels[object$terms$labels!="1"] term.label <- term.label[term.label!="offset"] term.label <- c(term.label,labels.p) if (!is.null(object$random)) { comp <- cbind(comp,predict(object,mf,inc=NULL)) p.dec <- c(p.dec,p.ran) term.label <- c(term.label,"random") } fitted.off <- fitted-offset comp <- cbind(comp,yhat=fitted.off,y=fitted.off+res,e=res) if (any(outer(term.label,c("yhat","y","e"),"=="))) warning("gss warning in summary.ssanova: avoid using yhat, y, or e as variable names") colnames(comp) <- c(term.label,"yhat","y","e") if (!is.null(w)) comp <- sqrt(w)*comp - outer(sqrt(w),apply(w*comp,2,sum))/sum(w) else comp <- sweep(comp,2,apply(comp,2,mean)) comp1 <- comp[,c(term.label,"yhat")] decom <- t(comp1) %*% comp1[,"yhat"] names(decom) <- c(term.label,"yhat") decom <- decom[term.label]/decom["yhat"] corr <- t(comp)%*%comp corr <- t(corr/sqrt(diag(corr)))/sqrt(diag(corr)) norm <- apply(comp,2,function(x){sqrt(sum(x^2))}) cosines <- rbind(corr[c("y","e"),],norm) rownames(cosines) <- c("cos.y","cos.e","norm") corr <- corr[term.label,term.label,drop=FALSE] if (qr(corr)$rank<dim(corr)[2]) kappa <- rep(Inf,len=dim(corr)[2]) else kappa <- as.numeric(sqrt(diag(solve(corr)))) rough <- p.dec / penalty names(kappa) <- names(rough) <- term.label } else decom <- kappa <- cosines <- rough <- NULL z <- list(call=object$call,method=object$method,fitted=fitted,residuals=res, sigma=sigma,r.squared=r.squared,rss=rss,penalty=penalty, pi=decom,kappa=kappa,cosines=cosines,roughness=rough) class(z) <- "summary.ssanova" z }
NULL soccerPitchHalf <- function(lengthPitch = 105, widthPitch = 68, arrow = c("none", "r", "l"), theme = c("light", "dark", "grey", "grass"), title = NULL, subtitle = NULL, data = NULL) { start<-end<-NULL if(theme[1] == "grass") { fill1 <- " fill2 <- " colPitch <- "grey85" arrowCol <- "white" colText <- "white" } else if(theme[1] == "light") { fill1 <- "white" fill2 <- "white" colPitch <- "grey60" arrowCol = "black" colText <- "black" } else if(theme[1] %in% c("grey", "gray")) { fill1 <- " fill2 <- " colPitch <- "white" arrowCol <- "white" colText <- "black" } else { fill1 <- " fill2 <- " colPitch <- " arrowCol <- " colText <- " } lwd <- 0.5 border <- c(12, 6, 1, 6) lines <- (lengthPitch + border[2] + border[4]) / 13 boxes <- data.frame(start = lines * 0:12 - border[4], end = lines * 1:13 - border[2])[seq(2, 12, 2),] p <- ggplot(data) + geom_rect(aes(xmin = -border[4], xmax = widthPitch + border[2], ymin = lengthPitch/2 - border[3], ymax = lengthPitch + border[1]), fill = fill1) + geom_rect(data = boxes, aes(ymin = start, ymax = end, xmin = -border[4], xmax = widthPitch + border[2]), fill = fill2) + geom_rect(aes(xmin = 0, xmax = widthPitch, ymin = lengthPitch/2, ymax = lengthPitch), fill = NA, col = colPitch, lwd = lwd) + geom_arc(aes(x0 = widthPitch/2, y0 = lengthPitch/2, r = 9.15, start = pi/2, end = -pi/2), col = colPitch, lwd = lwd) + geom_circle(aes(x0 = widthPitch/2, y0 = lengthPitch/2, r = 0.25), fill = colPitch, col = colPitch, lwd = lwd) + geom_segment(aes(x = 0, y = lengthPitch/2, xend = widthPitch, yend = lengthPitch/2), col = colPitch, lwd = lwd) + geom_arc(aes(x0 = widthPitch/2, y0 = lengthPitch - 11, r = 9.15, start = pi * 0.705, end = 1.295 * pi), col = colPitch, lwd = lwd) + geom_rect(aes(xmin = widthPitch/2 - 20.15, xmax = widthPitch/2 + 20.15, ymin = lengthPitch - 16.5, ymax = lengthPitch), fill = NA, col = colPitch, lwd = lwd) + geom_circle(aes(x0 = widthPitch/2, y0 = lengthPitch - 11, r = 0.25), fill = colPitch, col = colPitch, lwd = lwd) + geom_rect(aes(xmin = (widthPitch/2) - 9.16, xmax = (widthPitch/2) + 9.16, ymin = lengthPitch - 5.5, ymax = lengthPitch), fill = NA, col = colPitch, lwd = lwd) + geom_rect(aes(xmin = (widthPitch/2) - 3.66, xmax = (widthPitch/2) + 3.66, ymin = lengthPitch, ymax = lengthPitch + 2), fill = NA, col = colPitch, lwd = lwd) + coord_fixed(ylim = c(lengthPitch/2 - border[3], lengthPitch + border[1])) + theme(rect = element_blank(), line = element_blank(), axis.text = element_blank(), axis.title = element_blank()) theme_buffer <- ifelse(theme[1] == "light", 0, 4) if(!is.null(title) & !is.null(subtitle)) { p <- p + draw_text(title, x = widthPitch/2, y = lengthPitch + 10, hjust = 0.5, vjust = 1, size = 15, fontface = 'bold', col = colText) + draw_text(subtitle, x = widthPitch/2, y = lengthPitch + 6.5, hjust = 0.5, vjust = 1, size = 13, col = colText) + theme(plot.margin = unit(c(-0.7,-1.4,-0.7,-1.4), "cm")) } else if(!is.null(title) & is.null(subtitle)) { p <- p + draw_text(title, x = widthPitch/2, y = lengthPitch + 6.5, hjust = 0.5, vjust = 1, size = 15, fontface = 'bold', col = colText) + theme(plot.margin = unit(c(-1.2,-1.4,-0.7,-1.4), "cm")) } else if(is.null(title) & !is.null(subtitle)) { p <- p + draw_text(subtitle, x = widthPitch/2, y = lengthPitch + 6.5, hjust = 0.5, vjust = 1, size = 13, col = colText) + theme(plot.margin = unit(c(-1.2,-1.4,-0.7,-1.4), "cm")) } else if(is.null(title) & is.null(subtitle)){ p <- p + theme(plot.margin = unit(c(-1.85,-1.4,-0.7,-1.4), "cm")) } return(p) }
"inner.prod" <- function(x,y,mass=NULL) { x <- as.matrix(x); y <- as.matrix(y); dx <- dim(x); dy <- dim(y); if(dx[1]!=dy[1]) stop("inner.prod: unequal vector lengths") if(dx[2]>1 && dy[2]>1) { if(dx[2]!=dy[2]) stop("inner.prod: unequal vector lengths") } if(dx[2]==1) x <- as.numeric(x) if(dy[2]==1) y <- as.numeric(y) if(!is.null(mass)) { if (dx[1] != (length(mass)*3)) stop("inner.prod: incorrect length of mass") } if(is.null(mass)) mass <- 1 else mass <- rep(mass,each=3) if(is.matrix(x) || is.matrix(y)) return(colSums((x*y)*mass^2)) else return(sum(x*y*mass^2)) }
print.multcomp_table <- function(x, ...) { cat("Effect: ",attr(x,"effect_name"), ".\n",sep="") cat("Alternative Hypothesis: ",attr(x,"alternative"), ".\n",sep="") cat("Statistic: ",attr(x,"test"),"(",paste(attr(x,"df"),collapse=", "),")", ".\n",sep="") cat("Resampling Method: ",attr(x,"method"), ".\n",sep="") cat("Type of Resampling: ",attr(x,"type"), ".\n",sep="") cat("Number of Dependant Variables: ",attr(x,"nDV"), ".\n",sep="") cat("Number of Resamples: ",attr(x,"np"), ".\n",sep="") cat("Multiple Comparisons Procedure: ",attr(x,"multcomp"), ".\n",sep="") if(attr(x,"multcomp") == "clustermass"){ cat("Threshold: ",attr(x,"threshold"),".\n",sep="") cat("Mass Function: ",attr(x,"fun_name"),".\n",sep="") } if(attr(x,"table_type")=="cluster"){ if(attr(x,"multcomp")=="clustermass"){ cat("Table of clusters.\n") }else if(attr(x,"multcomp")!="clustermass"){ cat("Table of pseudo-clusters.\n") } }else if(attr(x,"table_type")=="full"){ cat("Table of all tests.\n") } cat("\n") if(!is.null(attr(x,"nocluster"))){ if(attr(x,"nocluster")){ cat("No cluster above the threshold.\n")}else{ print.data.frame(x)} }else{ print.data.frame(x)} cat("\n\n") }
mkExcelTsd=function(seerSet,tsdn,outDir="~/Results",outName=NULL,flip=FALSE) { if (length(tsdn)>1) { cat("collapsing brks vector to a tsdn string\n") tsdn=paste0("b",paste(tsdn,collapse="_")) } if (is.null(seerSet$L)) stop("seerSet L field is empty. Please run tsd on your seerSet object!") else L=seerSet$L[[tsdn]] if (!dir.exists(outDir)) dir.create(outDir,recursive=T) unlink(f<-paste0(outDir,"/",ifelse(is.null(outName),paste0(seerSet$bfn,tsdn),outName),ifelse(flip,"Flipped",""),".xlsx")) wb <- createWorkbook() hs1=createStyle(fgFill=" OL=NULL intvs=names(L[[L$trtS[1]]][["Obs"]]) sheetS=L$firstS if (flip) sheetS=seerSet$secondS for (icanc in sheetS) { addWorksheet(wb,icanc) M=NULL for (R in L$trtS) { D=NULL for (intv in intvs) { if (flip) { O=L[[R]][["Obs"]][[intv]][,icanc,drop=FALSE] E=L[[R]][["Exp"]][[intv]][,icanc,drop=FALSE] } else { O=L[[R]][["Obs"]][[intv]][icanc,,drop=FALSE] E=L[[R]][["Exp"]][[intv]][icanc,,drop=FALSE] } RR=O/E LL=qchisq(.025,2*O) /(2*E) UL=qchisq(.975,2*O+2)/(2*E) if (flip) col=as.data.frame(round(cbind(RR,LL,UL,O=O,E=E),2)) else col=as.data.frame(round(cbind(t(RR),t(LL),t(UL),O=t(O),E=t(E)),2)) names(col)=c("RR","LL","UL","O","E") D=cbind(D,paste0(col$RR,"(",col$LL,",",col$UL,") O=",O)) } colnames(D)=paste(intvs,"after",R) rownames(D)=rownames(col) M=cbind(M,D) } if (flip) writeData(wb, icanc,cbind("1st cancer"=L$firstS,M), headerStyle = hs1) else writeData(wb, icanc, cbind("2nd cancer"=seerSet$secondS,M), headerStyle = hs1) OL[[icanc]]=M setColWidths(wb,icanc, cols = 1:(dim(M)[2]+1), widths = "auto") freezePane(wb,icanc,firstRow = TRUE, firstCol = TRUE) } saveWorkbook(wb,file=f,overwrite = TRUE) cat("Workbook was written to",f,"\n") invisible(OL) }
describeC <- function(x, w, data, digits=3, printC=FALSE) { if(missing(x)) stop("Oops. You need to specify the variables to be analyzed. To see how to use this function, try example(descibeC) or help(describeC).") if(!missing(w)) w.name = deparse(substitute(w)) check.value(digits, valuetype="numeric") if(!missing(data)) { variables.list <- as.list(substitute(x)) if(length(variables.list)>1) variables.list <- variables.list[-1] if(is.matrix(data)) data <- data.frame(data) variable.names = NULL variable.set = data.frame(matrix(NA, nrow=nrow(data), ncol=length(variables.list))) for(i in 1:length(variables.list)) { variable.names[i] <- deparse(variables.list[[i]]) variable.set[, i] <- vector.from.data(variables.list[[i]], data) } colnames(variable.set) <- variable.names if(!missing(w)) w <- vector.from.data(substitute(w), data) } if(missing(data)) { if(!is.list(x)) { variables.list <- NULL variables.list[[1]] = substitute(x) } if(is.list(x)) { variables.list <- as.list(substitute(x)) if(length(variables.list)>1) variables.list <- variables.list[-1] } variable.names = NULL variable.set = data.frame(matrix(NA, ncol=length(variables.list), nrow=length(unlist(x)) / length(variables.list))) for(i in 1:length(variables.list)) { variable.names[i] <- deparse(variables.list[[i]]) variable.set[, i] <- eval(variables.list[[i]]) } variable.set <- data.frame(variable.set, stringsAsFactors=TRUE) colnames(variable.set) <- variable.names } if(!missing(w)) { weighted = TRUE w.length <- length(w) if (nrow(variable.set) != w.length) stop(paste(gettext("X variables and", domain = "R-descr"), w.name, gettext("have different lengths.", domain = "R-descr"))) } else { w <- rep(1, nrow(variable.set)) weighted = FALSE } check.variable(w, vartype="numeric") w.full <- w w.rawsum <- sum(w, na.rm=T) descriptives.names = c("Observed values", "Missing values", "Unique values", "Class", "Mean", "Median", "Mode", "Variance", "Standard deviation", "Minimum", "Maximum", "Range", "First quartile (25%)", "Third quartile (75%)", "Interquartile range (IQR)", "Skewness", "Kurtosis") descriptives.df <- data.frame(matrix(NA, nrow=length(descriptives.names), ncol=length(variable.names))) rownames(descriptives.df) <- descriptives.names colnames(descriptives.df) <- variable.names factormessage = NULL for(i in 1: length(variable.names)) { x.name <- variable.names[i] x <- variable.set[, x.name] k <- grep(FALSE, (is.na(x) | is.na(w.full))) x <- x[k] w <- w.full[k] x.nonmissing <- sum(w) x.missing <- w.rawsum - x.nonmissing if(Hmisc::all.is.numeric(x, extras=c(NA)) & !is.numeric(x)) { transform.warning <- paste("Note:", x.name, "is not a numeric (interval-level) variable, but can be analyzed as one. Do you want to analyze", x.name, "as numeric?\nEnter y to analyze", x.name,"as numeric or any other key to leave it as is.") if(tolower(ask(transform.warning))=="y") x = as.numeric(x) } unique <- length(unique(x)) if(unique == length(x)) mode = "None" else { if(is.numeric(x)) mode <- round(as.numeric(wtd.mode(x=x, w=w)), digits) else mode <- wtd.mode(x=x, w=w) } mode <- paste(mode, collapse=", ") if(is.numeric(x)) median <- round(as.numeric(wtd.median(x=x, w=w)), digits) if(is.ordered(x)) median <- wtd.median(x=x, w=w) if(is.numeric(x)) { mean <- stats::weighted.mean(x=x, w=w, na.rm = T) var <- Hmisc::wtd.var(x=x, weights=w) sd <- sqrt(var) min <- min(x) max <- max(x) range <- (max - min) quantiles <- Hmisc::wtd.quantile(x=x, weights=w, probs=c(.10,.25,.50,.75,.90)) Q1 <- quantiles["25%"] Q3 <- quantiles["75%"] IQR <- Q3 - Q1 skewness <- wtd.skewness(x, w) kurtosis <- wtd.kurtosis(x, w) } descriptives.df["Observed values", x.name] <- round(x.nonmissing, digits) descriptives.df["Missing values", x.name] <- round(x.missing, digits) descriptives.df["Unique values", x.name] <- unique descriptives.df["Class", x.name] <- paste(class(x), collapse=", ") if(is.numeric(x)) descriptives.df["Mean", x.name] <- round(mean, digits) if(is.numeric(x) || is.ordered(x)) descriptives.df["Median", x.name] <- median descriptives.df["Mode", x.name] <- mode if(is.numeric(x)) { descriptives.df["Variance", x.name] <- round(var, digits) descriptives.df["Standard deviation", x.name] <- round(sd, digits) descriptives.df["Minimum", x.name] <- round(min, digits) descriptives.df["Maximum", x.name] <- round(max, digits) descriptives.df["Range", x.name] <- round(range, digits) descriptives.df["First quartile (25%)", x.name] <- round(Q1, digits) descriptives.df["Third quartile (75%)", x.name] <- round(Q3, digits) descriptives.df["Interquartile range (IQR)", x.name] <- round(IQR, digits) descriptives.df["Skewness", x.name] <- round(skewness, digits) descriptives.df["Kurtosis", x.name] <- round(kurtosis, digits) } if(is.factor(x) && !is.ordered(x)) factormessage <- paste(factormessage, "Note: ", x.name, " was analyzed as an unordered factor.\nTo evaluate as ordered factor, try x=list(as.ordered(", x.name, "))\n", sep="") } printrows <- NULL for(j in 1:nrow(descriptives.df)) if(!all(is.na(descriptives.df[j, ]))) printrows = c(printrows, j) descriptives.df <- data.frame(descriptives.df[printrows, ]) descriptives.df[is.na(descriptives.df)] <- "" rownames(descriptives.df) <- descriptives.names[printrows] colnames(descriptives.df) <- variable.names main.heading <- headingbox("Descriptive Statistics", width=75, marker="=") if(printC==TRUE) printC(main.heading) variable.names.string <- paste(variable.names, collapse=", ") table_caption <- paste("Descriptive Statistics for", variable.names.string) if(weighted) table_caption <- paste(table_caption, ", weighted by ", w.name, sep="") print(knitr::kable(format(descriptives.df, drop0trailing=F, nsmall=digits, digits=digits), format="simple", align="r", caption=table_caption)) if(printC==TRUE) printC(knitr::kable(format(descriptives.df, drop0trailing=F, nsmall=digits, digits=digits), caption=printCaption(table_caption), format="html")) cat("\n") slightpause() if(!is.null(factormessage)) message(factormessage) if(printC==T) printC(match.call(expand.dots = FALSE)) invisible(descriptives.df) }
pski <- function(binomN, count, Tski, g) { result <- 1.0 if (binomN == -1) { if (any(abs(Tski-1) > 1e-10)) { g <- 1 - (1 - g)^Tski } if (count>0) result <- g else result <- 1 - g } else if (binomN == 0) { if (count == 0) result <- exp(-Tski * g) else result <- dpois(count, Tski * g, FALSE) } else if (binomN == 1) { result <- dbinom (count, round(Tski), g, FALSE) } else if (binomN > 1) { if (abs(Tski-1) > 1e-10) { g <- 1 - (1 - g)^Tski } result <- dbinom (count, binomN, g, FALSE) } else stop("binomN < -1 not allowed") result } convolvemq <- function ( j, kernelp, edgecode, mqarray, pjm ) { mm <- nrow(mqarray) kn <- ncol(mqarray) workpjm <- numeric(mm) for (m in 1:mm) { if (edgecode == 2) { q <- mqarray[m,] + 1 q <- q[q>0] sump <- sum(kernelp[kn * (j-1) + q], na.rm = T) } else { sump <- 1.0 } if (is.na(sump)) browser() if (sump>0) { for (q in 1:kn) { mq <- mqarray[m,q] + 1 if (mq > 0) { if (mq>mm) stop("mq > mm") workpjm[mq] <- workpjm[mq] + pjm[m] * kernelp[q,j] } } } } workpjm } prw <- function (n, j, x, kk, binomN, cumss, w, PIA, Tsk, gk, h, p0, hindex, pjm) { dead <- FALSE for (s in (cumss[j]+1):cumss[j+1]) { if (binomN == -2) { wi <- w[n, s] if (wi < 0) dead <- TRUE k <- abs(wi) if (k < 1) { OK <- h[x,,hindex[n,s]] > 1e-8 pjm[OK] <- pjm[OK] * p0[x,OK,hindex[n,s]] } else { c <- PIA[1,n, s, k, x] if (c >= 1) { pjm <- pjm * Tsk[k,s] * (1-p0[x,,hindex[n,s]]) * gk[c, k, ] / h[x,,hindex[n,s]] } } } else { for (k in 1:kk) { c <- PIA[1,n,s,k,x] if (c >= 1) { count <- w[n,s,k] if (count<0) {count <- -count; dead <- TRUE } pjm <- pjm * pski(binomN,count,Tsk[k,s], gk[c,k,]) } } } if (dead) break; } pjm } prwisecr <- function (type, n, x, nc, jj, kk, mm, nmix, cumss, w, fi, li, gk, openval, PIA, PIAJ, binomN, Tsk, intervals, h, hindex, CJSp1, moveargsi, movementcode, sparsekernel, edgecode, usermodel, kernel = NULL, mqarray = NULL, cellsize = NULL, r0) { p0 <- if (binomN == -2) exp(-h) else 1 phij <- getphij (n, x, openval, PIAJ, intervals) if (movementcode > 1) { moveargsi <- pmax(moveargsi,0) moveargs <- getmoveargs (n, x, openval, PIAJ, intervals, moveargsi) kernelp <- fillkernelC ( jj, movementcode-2, sparsekernel, kernel, usermodel, cellsize, r0, moveargsi, moveargs, normalize = TRUE) } if(type==6) { minb <- fi[n] cjs <- 1 - CJSp1 } else { minb <- 1 cjs <- 0 beta <- getbeta (type, n, x, openval, PIAJ, intervals, phij) } maxb <- fi[n] mind <- abs(li[n]) maxd <- jj if (li[n] < 0) maxd <- mind pdt <- 0 pdotbd <- 1.0 for (b in minb:maxb) { for (d in mind:maxd) { if (type==6) { pbd <- 1 } else { pbd <- beta[b] pdotbd <- 1 } if (b<d) pbd <- pbd * prod(phij[b:(d-1)]) if ((li[n]>0) & (d<jj)) pbd <- pbd * (1-phij[d]) prwi <- 1.0 if (d >= (b+cjs)) { if (movementcode == 0) { alpha <- rep(1.0/mm,mm) for (j in (b+cjs):d) { alpha <- prw(n, j, x, kk, binomN, cumss, w, PIA, Tsk, gk, h, p0, hindex, alpha) } prwi <- sum(alpha) } else if ( movementcode == 1) { prwi <- 1.0 for (j in (b+cjs):d) { alpha <- rep(1.0/mm,mm) alpha <- prw(n, j, x, kk, binomN, cumss, w, PIA, Tsk, gk, h, p0, hindex, alpha) prwi <- prwi * sum(alpha) } } else { alpha <- rep(1.0/mm, mm) alpha <- prw (n, b+cjs, x, kk, binomN, cumss, w, PIA, Tsk, gk, h, p0, hindex, alpha) if (d>(b+cjs)) { for (j in (b+cjs+1):d) { alpha <- convolvemq(j-1, kernelp, edgecode, mqarray, alpha) alpha <- prw(n, j, x, kk, binomN, cumss, w, PIA, Tsk, gk, h, p0, hindex, alpha) } } prwi <- sum(alpha) } } pdt <- pdt + pbd * prwi / pdotbd } } pdt }
acontext("chunk vars") test_that("produce as many chunk files as specified", { viz <- list(iris=ggplot()+ geom_point(aes(Petal.Width, Sepal.Length, showSelected=Species), data=iris, chunk_vars="Species", validate_params = FALSE)) tdir <- tempfile() dir.create(tdir) tsv.files <- Sys.glob(file.path(tdir, "*.tsv")) expect_equal(length(tsv.files), 0) animint2dir(viz, tdir, open.browser=FALSE) tsv.files <- Sys.glob(file.path(tdir, "*.tsv")) expect_equal(length(tsv.files), 3) viz <- list(iris=ggplot()+ geom_point(aes(Petal.Width, Sepal.Length, showSelected=Species), data=iris, chunk_vars=character(), validate_params = FALSE)) tdir <- tempfile() dir.create(tdir) tsv.files <- Sys.glob(file.path(tdir, "*.tsv")) expect_equal(length(tsv.files), 0) animint2dir(viz, tdir, open.browser=FALSE) tsv.files <- Sys.glob(file.path(tdir, "*.tsv")) expect_equal(length(tsv.files), 1) }) test_that("produce informative errors for bad chunk_vars", { viz <- list(iris=ggplot()+ geom_point(aes(Petal.Width, Sepal.Length, showSelected=Species), data=iris, chunk_vars="species", validate_params = FALSE)) expect_error({ animint2dir(viz, open.browser=FALSE) }, "invalid chunk_vars species; possible showSelected variables: Species") viz <- list(iris=ggplot()+ geom_point(aes(Petal.Width, Sepal.Length, showSelected=Species), data=iris, chunk_vars=NA, validate_params = FALSE)) expect_error({ animint2dir(viz, open.browser=FALSE) }, paste("chunk_vars must be a character vector;", "use chunk_vars=character() to specify 1 chunk"), fixed=TRUE) }) data(breakpoints, package = "animint") only.error <- subset(breakpoints$error,type=="E") only.segments <- subset(only.error,bases.per.probe==bases.per.probe[1]) signal.colors <- c(estimate=" latent=" breakpointError <- list(signal=ggplot()+ geom_point(aes(position, signal, showSelected=bases.per.probe), data=breakpoints$signals)+ geom_line(aes(position, signal), colour=signal.colors[["latent"]], data=breakpoints$imprecision)+ geom_segment(aes(first.base, mean, xend=last.base, yend=mean, showSelected=segments, showSelected2=bases.per.probe), colour=signal.colors[["estimate"]], data=breakpoints$segments)+ geom_vline(aes(xintercept=base, showSelected=segments, showSelected2=bases.per.probe), colour=signal.colors[["estimate"]], linetype="dashed", data=breakpoints$breaks), error=ggplot()+ geom_vline(aes(xintercept=segments, clickSelects=segments), data=only.segments, lwd=17, alpha=1/2)+ geom_line(aes(segments, error, group=bases.per.probe, clickSelects=bases.per.probe), data=only.error, lwd=4)) bytes.used <- function(file.vec, apparent.size = FALSE){ file.str <- paste(file.vec, collapse=" ") if(apparent.size){ cmd <- paste("ls -l", file.str, "| awk '{print $5}'") } else{ cmd <- paste("du -k", file.str, "| awk '{print $1 * 1024}'") } tryCatch({ du.lines <- system(cmd, intern=TRUE) as.integer(sub("\t.*", "", du.lines)) }, error=function(e){ rep(NA_integer_, length(file.vec)) }) } test.paths <- c(tempfile=tempfile(), HOME=file.path(Sys.getenv("HOME"), "ANIMINT_TEST_FOO"), getwd=file.path(getwd(),"ANIMINT_TEST_FOO")) for(f in test.paths){ unlink(f) cat("foo", file=f) } du.bytes <- bytes.used(test.paths) apparent.bytes <- bytes.used(test.paths, apparent.size = TRUE) byte.df <- data.frame(du.bytes, apparent.bytes, file.size=file.size(test.paths), test.paths) test_that("default chunks are at least 4KB", { tdir <- tempfile() dir.create(tdir) tsv.files <- Sys.glob(file.path(tdir, "*.tsv")) expect_equal(length(tsv.files), 0) expect_no_warning({ animint2dir(breakpointError, tdir, open.browser=FALSE) }) tsv.files <- Sys.glob(file.path(tdir, ".+chunk[0-9]+.tsv")) geom <- sub("_.*", "", basename(tsv.files)) files.by.geom <- split(tsv.files, geom) for(files in files.by.geom){ if(length(files) > 1){ info <- file.info(files) expect_true(all(4096 < info$size)) } } })
chebyshev.c.quadrature.rules <- function( n, normalized = FALSE ) { if ( n <= 0 ) stop( "highest order is not positive" ) if ( n != round( n ) ) stop( "highest order is not an integer" ) recurrences <- chebyshev.c.recurrences( n, normalized ) inner.products <- chebyshev.c.inner.products( n ) return( quadrature.rules( recurrences, inner.products ) ) }
stochprof.results.rLNLN <- function(prev.result,TY,show.plots=T,plot.title="",pdf.file,fix.mu=F) { if (is.null(prev.result) || (nrow(prev.result)==0)) { print("stochprof.results: File contains only the header.") return(NULL) } results <- prev.result these.names <- colnames(results) m <- ncol(results)/TY - 2 inf.indices <- which(results[,"target"]>=10^7) if (length(inf.indices)>0) { results <- results[-inf.indices,,drop=F] } if (nrow(results)==0) { print("stochprof.results: dataset contains only infinite target values.") return(NULL) } mu.min <- apply(X=results[,TY:((m+1)*TY-1),drop=F],FUN=min,MARGIN=1) mu.max <- apply(X=results[,TY:((m+1)*TY-1),drop=F],FUN=max,MARGIN=1) smallmu.indices <- which(mu.min<(-50)) largemu.indices <- which(mu.max>10) mu.indices <- union(smallmu.indices,largemu.indices) if ((length(mu.indices)>0) && (length(mu.indices)<nrow(results))) { results <- results[-mu.indices,,drop=F] } nod.p <- 4 nod.all <- 3 nod.target <- 4 if (TY>1) { p.indices <- 1:(TY-1) } else { p.indices <- NULL } target.indices <- (m+2)*TY results_dup <- results results_dup[,p.indices] <- round(results_dup[,p.indices],nod.p) results_dup[,-c(p.indices,target.indices)] <- round(results_dup[,-c(p.indices,target.indices)],nod.all) results_dup[,target.indices] <- round(results_dup[,target.indices],nod.target) results <- results[!duplicated(results_dup,MARGIN=1),] results <- results[order(results[,"target"]),,drop=F] indices <- which(results[,"target"]<=log(5) + (results[,"target"])[1]) minlength <- 50 maxlength <- 5000 if (length(indices)<minlength) { indices <- 1:min(minlength,nrow(results)) } else if (length(indices)>maxlength) { indices <- 1:min(maxlength,nrow(results)) } results <- results[indices,,drop=F] if (show.plots) { best <- results[1,,drop=F] index.set <- 1:(ncol(results)-1) if (fix.mu) { index.set <- index.set[-(TY:((m+1)*TY-1))] } if (missing(pdf.file)) { par(ask=T) } else { pdf(pdf.file) } for (i in index.set) { plot(results[,i],-results[,"target"],xlab=these.names[i],ylab="log likelihood",main=plot.title,cex.axis=1.5,cex.lab=1.5,pch=1,lwd=3) abline(v=best[i],lwd=2,col="red") } if (missing(pdf.file)) { par(ask=F) } else { dev.off() } } return(results) }
dt__get <- function(data, key) { data[[key, exact = TRUE]] } dt__set <- function(data, key, value) { data[[key]] <- value data }
library(shiny.fluent) if (interactive()) { shinyApp( ui = div( DefaultButton.shinyInput("toggleCallout", text = "Toggle Callout"), reactOutput("callout") ), server = function(input, output) { show <- reactiveVal(FALSE) observeEvent(input$toggleCallout, show(!show())) output$callout <- renderReact({ if (show()) { Callout( tags$div( style = "margin: 10px", "Callout contents" ) ) } }) } ) }
recreg <- function(formula,data=data,cause=1,death.code=c(2),cens.code=1,cens.model=~1, weights=NULL,offset=NULL,Gc=NULL,...) { cl <- match.call() m <- match.call(expand.dots = TRUE)[1:3] special <- c("strata", "cluster","offset") Terms <- terms(formula, special, data = data) m$formula <- Terms m[[1]] <- as.name("model.frame") m <- eval(m, parent.frame()) Y <- model.extract(m, "response") if (class(Y)!="EventCens") stop("Expected a 'EventCens'-object") if (ncol(Y)==2) { exit <- Y[,1] entry <- NULL status <- Y[,2] } else { entry <- Y[,1] exit <- Y[,2] status <- Y[,3] cens <- Y[,4] } id <- strata <- NULL if (!is.null(attributes(Terms)$specials$cluster)) { ts <- survival::untangle.specials(Terms, "cluster") pos.cluster <- ts$terms Terms <- Terms[-ts$terms] id <- m[[ts$vars]] } else pos.cluster <- NULL if (!is.null(stratapos <- attributes(Terms)$specials$strata)) { ts <- survival::untangle.specials(Terms, "strata") pos.strata <- ts$terms Terms <- Terms[-ts$terms] strata <- m[[ts$vars]] strata.name <- ts$vars } else { strata.name <- NULL; pos.strata <- NULL} if (!is.null(offsetpos <- attributes(Terms)$specials$offset)) { ts <- survival::untangle.specials(Terms, "offset") Terms <- Terms[-ts$terms] offset <- m[[ts$vars]] } X <- model.matrix(Terms, m) if (!is.null(intpos <- attributes(Terms)$intercept)) X <- X[,-intpos,drop=FALSE] if (ncol(X)==0) X <- matrix(nrow=0,ncol=0) res <- c(recreg01(data,X,entry,exit,status,cens,id,strata,offset,weights, strata.name, cens.model=cens.model, cause=cause, death.code=death.code,cens.code=cens.code,Gc=Gc,...), list(call=cl,model.frame=m,formula=formula,strata.pos=pos.strata, cluster.pos=pos.cluster,n=nrow(X),nevent=sum(status==cause)) ) class(res) <- c("phreg","recreg") return(res) } recreg01 <- function(data,X,entry,exit,status,cens,id=NULL,strata=NULL,offset=NULL,weights=NULL, strata.name=NULL,beta,stderr=1,method="NR",no.opt=FALSE,propodds=NULL,profile=0, case.weights=NULL,cause=1,death.code=2,cens.code=1,Gc=NULL,cens.model=~+1,augmentation=0,cox.prep=FALSE,...) { p <- ncol(X) if (missing(beta)) beta <- rep(0,p) if (p==0) X <- cbind(rep(0,length(exit))) cause.jumps <- which(status==cause) max.jump <- max(exit[cause.jumps]) other <- which((status %in% death.code ) & (exit< max.jump)) n <- length(exit) if (is.null(strata)) { strata <- rep(0,length(exit)) nstrata <- 1 strata.level <- NULL } else { strata.level <- levels(strata) ustrata <- sort(unique(strata)) nstrata <- length(ustrata) strata.values <- ustrata if (is.numeric(strata)) strata <- fast.approx(ustrata,strata)-1 else { strata <- as.integer(factor(strata,labels=seq(nstrata)))-1 } } if (is.null(entry)) entry <- rep(0,length(exit)) trunc <- (any(entry>0)) if (is.null(offset)) offset <- rep(0,length(exit)) if (is.null(weights)) weights <- rep(1,length(exit)) if (is.null(case.weights)) case.weights <- rep(1,length(exit)) strata.call <- strata if (!is.null(id)) { ids <- unique(id) nid <- length(ids) if (is.numeric(id)) id <- fast.approx(ids,id)-1 else { id <- as.integer(factor(id,labels=seq(nid)))-1 } } else { id <- as.integer(seq_along(entry))-1; nid <- nrow(X); } id.orig <- id+1; whereC <- which(cens==cens.code) time <- exit statusC <- c(cens==cens.code) data$id <- id data$exit__ <- exit data$entry__ <- entry data$statusC <- statusC cens.strata <- cens.nstrata <- NULL if (length(whereC)>0) { if (is.null(Gc)) { kmt <- TRUE if (class(cens.model)[1]=="formula") { formC <- update.formula(cens.model,Surv(entry__,exit__,statusC)~ . +cluster(id)) cens.model <- phreg(formC,data) } if (cens.model$p>0) kmt <- FALSE Pcens.model <- predict(cens.model,data,times=exit,individual.time=TRUE,se=FALSE,km=kmt) Stime <- Pcens.model$surv <- c(Pcens.model$surv) nCstrata <- cens.model$nstrata cens.strata <- Pcens.model$strata } else { formC <- NULL Stime <- Gc Pcens.model <- list(time=exit,surv=Gc,strata=0) nCstrata <- 1 cens.strata <- rep(0,length(exit)) } } else { formC <- NULL Stime <- Gc <- rep(1,length(exit)) Pcens.model <- list(time=exit,surv=Gc,strata=0) nCstrata <- 1 cens.strata <- rep(0,length(exit)) } Zcall <- cbind(status,cens.strata,Stime,cens) stat1 <- 1*(status==cause) xx2 <- .Call("FastCoxPrepStrata",entry,exit,stat1,X,id,trunc,strata,weights,offset,Zcall,case.weights,PACKAGE="mets") xx2$nstrata <- nstrata jumps <- xx2$jumps+1 jumptimes <- xx2$time[jumps] strata1jumptimes <- xx2$strata[jumps] Xj <- xx2$X[jumps,,drop=FALSE] if (length(whereC)>0) { if (is.null(Gc)) { whereaJ <- fast.approx(c(0,cens.model$cumhaz[,1]),jumptimes,type="left") Gts <- vecAllStrata(cens.model$cumhaz[,2],cens.model$strata.jump,cens.model$nstrata) Gts <- apply(rbind(0,Gts),2,diff) GtsAl<- Gts <- apply(Gts,2,function(x) exp(cumsum(log(1-x)))) Gts <- rbind(1,Gts)[whereaJ,] Gts[is.na(Gts)] <- 0 Gjumps <- Gts } else Gts <- Gjumps <- c(1,Pcens.model$surv)[fast.approx(c(0,Pcens.model$time),jumptimes,type="left")] } else { Gts <- Gjumps <- rep(1,length(jumptimes)) } if (length(other)>=1) { trunc <- TRUE weightso <- weights[other]/Stime[other] timeoo <- rep(max(exit)+1,length(other)) statuso <- rep(1,length(other)) Xo <- X[other,,drop=FALSE] offseto <- offset[other] entryo <- exit[other] ido <- id[other] stratao <- strata[other] if (nCstrata>1) { Cstratao <- cens.strata[other] Zcall <- matrix(Cstratao,length(other),1) } else { Cstratao <- rep(0,length(other)) Zcall <- matrix(0,1,1); } xx <- .Call("FastCoxPrepStrata",entryo,timeoo,statuso,Xo, ido,trunc,stratao,weightso,offseto,Zcall,case.weights[other],PACKAGE="mets") xx$nstrata <- nstrata timeo <- xx$time if (nCstrata>1) xxCstrata <- c(xx$Z) else xxCstrata <- rep(0,length(timeo)) where <- indexstratarightR(timeo,xx$strata,jumptimes,strata1jumptimes,nstrata) } obj <- function(pp,all=FALSE) { if (length(other)>=1) { if (nCstrata==1) { rr <- c(xx$sign*exp(xx$X %*% pp + xx$offset)*xx$weights) S0no <- c(0,revcumsumstrata(rr,xx$strata,xx$nstrata)) S1no <- rbind(0,apply(xx$X*rr,2,revcumsumstrata,xx$strata,xx$nstrata)) S2no <- rbind(0,apply(xx$XX*rr,2,revcumsumstrata,xx$strata,xx$nstrata)); Gjumps <- c(Gjumps) S0no <- Gjumps*S0no[where+1] S1no <- Gjumps*S1no[where+1,,drop=FALSE] S2no <- Gjumps*S2no[where+1,,drop=FALSE] } else { ff <- function(x,strata,nstrata,strata2,nstrata2) { x <- rbind(0,revcumsum2strata(x,strata,nstrata,strata2,nstrata2)$mres) x <- x[where+1,] x <- apply(x*Gts,1,sum) return(x) } rr <- c(xx$sign*exp(xx$X %*% pp + xx$offset)*xx$weights) S0no <- ff(rr,xx$strata,xx$nstrata,xxCstrata,nCstrata) S1no <- apply(xx$X*rr,2,ff,xx$strata,xx$nstrata,xxCstrata,nCstrata); S2no <- apply(xx$XX*rr,2,ff,xx$strata,xx$nstrata,xxCstrata,nCstrata); } } else { Gjumps <- S0no <- S1no <- S2no <- 0} rr2 <- c(xx2$sign*exp(xx2$X %*% pp + xx2$offset)*xx2$weights) rr2now <- c(xx2$sign*exp(xx2$X %*% pp + xx2$offset)) S0oo <- revcumsumstrata(rr2,xx2$strata,xx2$nstrata) S1oo <- apply(xx2$X*rr2,2,revcumsumstrata,xx2$strata,xx2$nstrata); S2oo <- apply(xx2$XX*rr2,2,revcumsumstrata,xx2$strata,xx2$nstrata); S0oo <- S0oo[jumps,] S1oo <- S1oo[jumps,,drop=FALSE] S2oo <- S2oo[jumps,,drop=FALSE] S0 <- c(S0oo+S0no) S1 <- S1oo+S1no E <- S1/S0 weightsJ <- xx2$weights[jumps] caseweightsJ <- xx2$caseweights[jumps] strataJ <- xx2$strata[jumps] rr2now <- rr2now[jumps] U <- (Xj-E) ploglik <- (log(rr2now)-log(S0))*weightsJ*caseweightsJ; if (!is.null(propodds)) { pow <- c(.Call("cumsumstrataPOR",weightsJ,S0,strataJ,nstrata,propodds,rr2now,PACKAGE="mets")$pow); DLam <-.Call("DLambetaR",weightsJ,S0,E,Xj,strataJ,nstrata,propodds,rr2now,PACKAGE="mets")$res; Dwbeta <- DLam*rr2now+(pow-1)*Xj DUadj <- .Call("vecMatMat",Dwbeta,U,PACKAGE="mets")$vXZ } Ut <- caseweightsJ*weightsJ*U Et2 <- .Call("vecMatMat",E,E,PACKAGE="mets")$vXZ S2S0 <- (S2oo+S2no)/S0 DUt <- -(S2S0-Et2) if (!is.null(propodds)) { Ut <- pow*Ut S0 <- S0/pow DUt <- pow*DUt DUt <- DUt+DUadj if (profile==1) { Ut <- Ut+c(ploglik)*Dwbeta DUt <- DUt } ploglik <- pow*ploglik } U <- apply(Ut,2,sum) DUt <- caseweightsJ*weightsJ*DUt DU <- -matrix(apply(DUt,2,sum),p,p) ploglik <- sum(ploglik) U <- U+augmentation out <- list(ploglik=ploglik,gradient=U,hessian=-DU,cox.prep=xx2, hessiantime=DUt,weightsJ=weightsJ,caseweightsJ=caseweightsJ, jumptimes=jumptimes,strata=strataJ,nstrata=nstrata,S0s=cbind(S0oo,S0no), time=jumptimes,S0=S0/(caseweightsJ*weightsJ),S2S0=S2S0,E=E,U=Ut,X=Xj,Gjumps=Gjumps) if (all) return(out) else with(out,structure(-ploglik, gradient=-gradient, hessian=-hessian)) } if (length(jumps)==0) no.opt <- TRUE opt <- NULL if (p>0) { if (no.opt==FALSE) { if (tolower(method)=="nr") { opt <- lava::NR(beta,obj,...) opt$estimate <- opt$par } else { opt <- nlm(obj,beta,...) opt$method <- "nlm" } cc <- opt$estimate; names(cc) <- colnames(X) if (stderr==2) return(cc) val <- c(list(coef=cc),obj(opt$estimate,all=TRUE)) } else val <- c(list(coef=beta),obj(beta,all=TRUE)) } else { no.opt <- TRUE val <- obj(0,all=TRUE) } beta.s <- val$coef if (is.null(beta.s)) beta.s <- 0 opt <- val if (p>0) { S0i <- rep(0,length(xx2$strata)) S0i[jumps] <- 1/opt$S0 Z <- xx2$X U <- E <- matrix(0,nrow(Z),p) E[jumps,] <- opt$E U[jumps,] <- opt$U cumhazA <- cumsumstratasum(S0i,xx2$strata,xx2$nstrata,type="all") cumhaz <- c(cumhazA$sum) rr <- c(xx2$sign*exp(Z %*% beta.s + xx2$offset)) if (!is.null(propodds)) { cumhazm <- c(cumhazA$lagsum) S0star <- cumsumstrata(rr/(1+rr*cumhazm),xx2$strata,xx2$nstrata) } EdLam0 <- apply(E*S0i,2,cumsumstrata,xx2$strata,xx2$nstrata) MGt <- U[,drop=FALSE]-(Z*cumhaz-EdLam0)*rr*c(xx2$weights) mid <- max(xx2$id) UU <- apply(MGt,2,sumstrata,xx2$id,mid+1) if (length(other)>=1) { otherxx2 <- which((xx2$Z[,1] %in% death.code) & xx2$sign==1) statusxx2 <- xx2$Z[,1] rr0 <- xx2$sign jumpsC <- which((xx2$Z[,4]==cens.code) & xx2$sign==1) strataCxx2 <- xx2$Z[,2] S0iC2 <- S0iC <- rep(0,length(xx2$status)) S0rrr <- revcumsumstrata(rr0,strataCxx2,nCstrata) S0iC[jumpsC] <- 1/S0rrr[jumpsC] S0iC2[jumpsC] <- 1/S0rrr[jumpsC]^2 Gcxx2 <- exp(cumsumstrata(log(1-S0iC),strataCxx2,nCstrata)) Gstart <- rep(1,nCstrata) dstrata <- mystrata(data.frame(strataCxx2,xx2$strata)) ndstrata <- attr(dstrata,"nlevel") lastt <- tailstrata(dstrata-1,ndstrata) ll <- cumsum2strata(Gcxx2,S0i,strataCxx2,nCstrata,xx2$strata,xx2$nstrata,Gstart) Htsj <- ll$res[lastt][dstrata]-ll$res fff <- function(x) { cx <- cumsum2strata(Gcxx2,x*S0i,strataCxx2,nCstrata,xx2$strata,xx2$nstrata,Gstart) cx <- cx$res[lastt][dstrata]-cx$res return(cx) } EHtsj <- apply(E,2,fff) rrx2 <- rr[otherxx2]*xx2$weights[otherxx2]/xx2$Z[otherxx2,3] MGt2 <- -(Z[otherxx2,,drop=FALSE]*Htsj[otherxx2,]-EHtsj[otherxx2,,drop=FALSE])*rrx2 UU2 <- apply(MGt2,2,sumstrata,xx2$id[otherxx2],mid+1) UU <- UU+UU2 } if ((stderr==1) & (length(other)>=1) & (length(whereC)>0)) { Xos <- matrix(0,nrow(Z),ncol(Z)); Xos[otherxx2,] <- Z[otherxx2,]*rrx2 rrx <- rep(0,nrow(Z)) rrx[otherxx2] <- rrx2 rrsx <- cumsumstrata(rrx,strataCxx2,nCstrata) Xos <- apply(Xos,2,cumsumstrata,strataCxx2,nCstrata) q2 <- (Xos*c(Htsj)-EHtsj*c(rrsx)) sss <- headstrata(dstrata-1,ndstrata) fff <- function(x) { gtstart <- x[sss] cx <- cumsum2strata(x,S0iC2,dstrata-1,ndstrata,strataCxx2,nCstrata,gtstart)$res return(cx) } EdLam0q2 <- apply(q2,2,fff) MGc <- q2*S0iC-EdLam0q2*c(xx2$sign) MGc <- apply(MGc,2,sumstrata,xx2$id,mid+1) } else MGc <- 0 iH <- - tryCatch(solve(opt$hessian),error=function(e) matrix(0,nrow(opt$hessian),ncol(opt$hessian)) ) Uiid <- (UU+MGc) %*% iH UUiid <- UU %*% iH var1 <- crossprod(UUiid) varmc <- crossprod(Uiid) } else {varmc <- var1 <- 0; MGc <- iH <- UUiid <- Uiid <- NULL} strata <- xx2$strata[jumps] cumhaz <- cbind(opt$time,cumsumstrata(1/opt$S0,strata,nstrata)) colnames(cumhaz) <- c("time","cumhaz") if (no.opt==FALSE & p!=0) { DLambeta.t <- apply(opt$E/c(opt$S0),2,cumsumstrata,strata,nstrata) varbetat <- rowSums((DLambeta.t %*% iH)*DLambeta.t) } else varbetat <- 0 var.cumhaz <- cumsumstrata(1/opt$S0^2,strata,nstrata)+varbetat se.cumhaz <- cbind(jumptimes,(var.cumhaz)^.5) colnames(se.cumhaz) <- c("time","se.cumhaz") out <- list(coef=beta.s,var=varmc,se.coef=diag(varmc)^.5,iid.naive=UUiid, iid=Uiid,ncluster=nid, ihessian=iH,hessian=opt$hessian,var1=var1,se1.coef=diag(var1)^.5, ploglik=opt$ploglik,gradient=opt$gradient, cumhaz=cumhaz, se.cumhaz=se.cumhaz,MGciid=MGc, strata=xx2$strata, nstrata=nstrata,strata.name=strata.name,strata.level=strata.level, propodds=propodds, S0=opt$S0,E=opt$E,S2S0=opt$S2S0,time=opt$time,Ut=opt$U, jumps=jumps,exit=exit,p=p,S0s=val$S0s, no.opt=no.opt, Pcens.model=Pcens.model,Gjumps=Gjumps,cens.code=cens.code,cause=cause ) if (cox.prep) out <- c(out,list(cox.prep=xx2)) return(out) } EventCens <- function(time,time2=TRUE,cause=NULL,cens=NULL,cens.code=0,...) { out <- cbind(time,time2,cause,cens) colnames(out) <- c("entry","exit","cause","cens") class(out) <- "EventCens" attr(out,"cens.code") <- cens.code return(out) } simRecurrentCox <- function(n,cumhaz,cumhaz2,death.cumhaz=NULL,X=NULL,r1=NULL,r2=NULL,rd=NULL,rc=NULL,...) { if (is.null(r1)) r1 <- rep(1,n) if (is.null(r2)) r2 <- rep(1,n) if (is.null(rd)) rd <- rep(1,n) if (is.null(rc)) rc <- rep(1,n) base1 <- cumhaz if (is.null(death.cumhaz)) stop("Modification for death, otherwise use simRecurrentII\n") if (is.null(X)) stop("X must be given to link with simulated data\n"); St <- exp(-Cpred(rbind(c(0,0),death.cumhaz),base1[,1])[,2]) rds <- unique(rd) dtt <- diff(c(0,base1[,1])) dbase1 <- diff(c(0,base1[,2])) data <- c() XX <- c() nks <- 0 for (rdss in rds) { lam1ms <- (dbase1)/St^rdss where <- which(rd==rdss) nk <- length(where) cumhaz1 <- cbind(base1[,1],cumsum(lam1ms)) datss <- simRecurrentII(nk,cumhaz1,cumhaz2,death.cumhaz=t(t(death.cumhaz)*c(1,rdss)), r1=r1[where],r2=NULL,rd=NULL,rc=rc[where],...) Xs <- X[where,,drop=FALSE][datss$id,,drop=FALSE] XX <- rbind(XX,Xs) datss$id <- datss$id+nks nks <- nks+nk data <- rbind(data,as.matrix(datss)) } rownames(XX) <- NULL rownames(data) <- NULL return(list(data=data,X=XX)) } simMarginalMeanCox <- function(n,cens=3/5000,k1=0.1,k2=0,bin=1,Lam1=NULL,Lam2=NULL,LamD=NULL,beta1=rep(0,2),betad=rep(0,2),betac=rep(0,2),...) { revnr <- death <- status <- NULL if (bin==1) X <- matrix(rbinom(n*2,1,0.5),n,2) else X <- matrix(rnorm(n*2),n,2) colnames(X) <- paste("X",1:2,sep="") r1 <- exp( X %*% beta1) rd <- exp( X %*% betad) rc <- exp( X %*% betac) if (is.null(Lam2)) Lam2 <- Lam1; rr <- simRecurrentCox(n,t(t(Lam1)*c(1,k1)),cumhaz2=t(t(Lam1)*c(1,k2)), death.cumhaz=LamD,X=X,cens=cens,r1=r1,rd=rd,rc=rc,...) rr <- as.data.frame(cbind(rr$data,rr$X)) dsort(rr) <- ~id+start nid <- max(rr$id) rr$revnr <- revcumsumstrata(rep(1,nrow(rr)),rr$id-1,nid) rr$cens <- 0 rr <- dtransform(rr,cens=1,revnr==1 & death==0) rr <- dtransform(rr,statusG=status) rr <- dtransform(rr,statusG=0,status==2) rr <- dtransform(rr,statusG=2,death==1) if (bin==0) dcut(rr,breaks=4) <- X1g~X1 else rr$X1g <- rr$X1 if (bin==0) dcut(rr,breaks=4) <- X2g~X2 else rr$X2g <- rr$X2 return(rr) }
capitalizer <- function(text, caps.list = NULL, I.list = TRUE, apostrophe.remove = FALSE) { I_list <- c("I'm", "I'll", "I'd", "I've", "I") idf <- data.frame(from = sapply(I_list, function(x) strip(x, apostrophe.remove = FALSE)), to = I_list) rownames(idf) <- 1:nrow(idf) if (!I.list) { idf <- NULL } names <- data.frame(from = tolower(caps.list), to = gsub("(\\w)(\\w*)", "\\U\\1\\L\\2", tolower(caps.list), perl = T)) names2 <- data.frame(from = paste(names$from, "'s", sep = ""), to = paste(names$to, "'s", sep = "")) idf <- rbind(idf, names, names2) idf$from <- as.character(idf$from) idf$to <- as.character(idf$to) subber <- function(x) ifelse(x %in% idf$from, idf[match(x, idf$from), "to"], x) unlist(lapply(text, subber)) }
library(testthat) require(OpenMx) context("WLS acov") data(Bollen) got <- mxGenerateData(Bollen[, 1:8], nrows=10) omxCheckEquals(nrow(got), 10) manvar <- names(Bollen[, 1:8]) lval <- matrix( c(1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1), byrow=TRUE, ncol=2, nrow=8) lfre <- matrix(as.logical(lval), ncol=2) lfre[1, 1] <- FALSE lfre[5, 2] <- FALSE llab <- matrix(c(paste("lam", 1:4, sep=""), rep(NA, 8), paste("lam", 1:4, sep="")), ncol=2) lx <- mxMatrix(name="Lam", values=lval, free=lfre, ncol=2, nrow=8, labels=llab, dimnames=list(manvar, c("F1", "F2"))) td <- mxMatrix(name="Theta", type="Symm", ncol=8, values= c(.8, 0, 0, 0, .2, 0, 0, 0, .8, 0, .2, 0, .2, 0, 0, .8, 0, 0, 0, .2, 0, .8, 0, 0, 0, .2, .8, 0, 0, 0, .8, 0, .2, .8, 0, .8), free=c(T,F,F,F,T,F,F,F, T,F,T,F,T,F,F, T,F,F,F,T,F, T,F,F,F,T, T,F,F,F, T,F,T, T,F, T), dimnames=list(manvar, manvar) ) diag(td$labels) <- paste("var", 1:8, sep="") selMat <- matrix( c(5,1, 4,2, 6,2, 7,3, 8,4, 8,6), ncol=2, byrow=TRUE) td$labels[selMat] <- paste("cov", c(51, 42, 62, 73, 84, 86), sep="") td$labels[selMat[,2:1]] <- paste("cov", c(51, 42, 62, 73, 84, 86), sep="") ph <- mxMatrix(name="Phi", type="Symm", ncol=2, free=T, values=c(.8, .2, .8), labels=paste("phi", c(1, 12, 2), sep=""), dimnames=list(c("F1", "F2"), c("F1", "F2"))) wlsMod <- mxModel( "Test case for WLS Objective function from Bollen 1989", lx, ph, td, mxExpectationLISREL(LX=lx$name, PH=ph$name, TD=td$name), mxFitFunctionWLS(), mxData(Bollen[, 1:8], 'raw') ) wlsRun <- mxRun(wlsMod) omxCheckTrue(is.null(wlsRun$output$calculatedHessian)) dwlsMod <- mxModel(wlsMod, mxFitFunctionWLS("DWLS")) dwlsRun <- mxRun(dwlsMod) mxdw <- omxAugmentDataWithWLSSummary(mxd=wlsMod$data, type="DWLS") dwlsMod2 <- dwlsMod dwlsMod2$data <- mxData( mxdw$observedStats$cov, numObs = 75, means = NA, type = "acov", fullWeight=mxdw$observedStats$asymCov * 75, acov=mxdw$observedStats$useWeight) dwlsRun2 <- mxRun(dwlsMod2) expect_equivalent(coef(dwlsRun) - coef(dwlsRun2), rep(0, length(coef(wlsRun)))) dwlsMod3 <- dwlsMod dwlsMod3$data <- mxData( observedStats = mxdw$observedStats, numObs = 75) dwlsRun3 <- mxRun(dwlsMod3) expect_equivalent(coef(dwlsRun) - coef(dwlsRun3), rep(0, length(coef(wlsRun)))) mxw <- omxAugmentDataWithWLSSummary(mxd=wlsMod$data) wlsMod2 <- wlsMod wlsMod2$data <- mxData( mxw$observedStats$cov, numObs = 75, means = NA, type = "acov", fullWeight=mxw$observedStats$asymCov * 75, acov=mxw$observedStats$useWeight) wlsRun2 <- mxRun(wlsMod2) expect_equivalent(coef(wlsRun) - coef(wlsRun2), rep(0, length(coef(wlsRun)))) wlsMod3 <- wlsMod wlsMod3$data <- mxData( observedStats = mxw$observedStats, numObs = 75) wlsRun3 <- mxRun(wlsMod3) expect_equivalent(coef(wlsRun) - coef(wlsRun3), rep(0, length(coef(wlsRun))))
QTLModelCIM <- function(x, mppData, trait, cross.mat, Q.eff, VCOV, cof.list, cof.part, plot.gen.eff){ QTL <- inc_mat_QTL(x = x, mppData = mppData, Q.eff = Q.eff, order.MAF = TRUE) QTL.el <- dim(QTL)[2] ref.name <- colnames(QTL) cof.mat <- do.call(cbind, cof.list[which(cof.part[x, ])]) if(is.null(cof.mat)){ cof.mat <- rep(0, length(mppData$geno.id)); cof.el <- 1 } else { cof.el <- dim(cof.mat)[2] } if(VCOV == "h.err"){ model <- tryCatch(expr = lm(trait ~ - 1 + cross.mat + cof.mat + QTL), error = function(e) NULL) if (is.null(model)){ if(plot.gen.eff) { if(Q.eff == "cr"){ results <- c(0, rep(1, mppData$n.cr)) } else { results <- c(0, rep(1, mppData$n.par)) } } else { results <- 0 } } else { if(!("QTL" %in% rownames(anova(model)))){ if(plot.gen.eff) { if(Q.eff == "cr"){ results <- c(0, rep(1, mppData$n.cr)) } else { results <- c(0, rep(1, mppData$n.par)) } } else { results <- 0 } } else { results <- -log10(anova(model)$Pr[which(rownames(anova(model))=="QTL")]) if(plot.gen.eff){ gen.eff <- QTL_pval(mppData = mppData, model = model, Q.eff = Q.eff, x = x) results <- c(results, gen.eff) } } } } else if ((VCOV == "h.err.as") || (VCOV == "cr.err")){ } else if ((VCOV == "pedigree") || (VCOV == "ped_cr.err")){ } return(results) }
set.seed(100) n <- 10000 n_perturb <- n Z_sample <- abs(rnorm(n=n)) Z_sample <- sort(Z_sample, decreasing=TRUE) Z_sample[1:n_perturb] <- Z_sample[1:n_perturb] + rep(0.15, n_perturb) p_values <- 1-pchisq(Z_sample^2, df=1) observed <- sort(-log10(p_values), decreasing=TRUE) expected <- -log10((1:n)/(n+1)) plot(expected, observed) abline(0,1) library(GEint) beta_list <- list(1, 1, 1, 0, c(1,1), 1) rho_list <- list(0.1, c(0.1, 0.1), c(0.1,0.1), 0.1, 0.1, c(0.1, 0.1)) prob_G <- 0.3 cov_Z <- matrix(data=c(1, 0.2, 0.2, 1), nrow=2, ncol=2) cov_W <- 1 normal_assumptions <- GE_bias_normal_squaredmis(beta_list=beta_list, rho_list=rho_list, prob_G=prob_G, cov_Z=cov_Z, cov_W=cov_W) cov_list <- normal_assumptions$cov_list cov_mat_list <- normal_assumptions$cov_mat_list mu_list <- normal_assumptions$mu_list HOM_list <- normal_assumptions$HOM_list no_assumptions <- GE_bias(beta_list, cov_list, cov_mat_list, mu_list, HOM_list) unlist(no_assumptions) unlist(normal_assumptions$alpha_list) set.seed(100) n <- 500 Y_continuous <- rnorm(n=n) Y_binary <- rbinom(n=n, size=1, prob=0.5) E <- rnorm(n=n) G <- rbinom(n=n, size=2, prob=0.3) design_mat <- cbind(1, G, E, G*E) GE_BICS(outcome=Y_continuous, design_mat=design_mat, desired_coef=4, outcome_type='C') GE_BICS(outcome=Y_binary, design_mat=design_mat, desired_coef=4, outcome_type='D')
visBoxplotAdv <- function(formula, data, orientation=c("vertical","horizontal"), method=c("center","hex","square","swarm"), corral=c("none","gutter","wrap","random","omit"), corralWidth, cex=1, spacing=1, breaks=NULL, labels, at=NULL, add=FALSE, log=FALSE, xlim=NULL, ylim=NULL, xlab=NULL, ylab=NULL, pch=c("circles","thermometers","pies")[1], col=graphics::par("col"), bg=NA, pwpch=NULL, pwcol=NULL, pwbg=NULL, pwpie=NULL, do.plot=TRUE, do.boxplot=TRUE, boxplot.notch=FALSE, boxplot.border=" { if(missing(formula) || (length(formula)!=3)){ stop("The input formula is missing or incorrect!") } if(is.null(pwpie) || length(pwpie) != nrow(data)) pwpie <- rep(1, nrow(data)) method <- match.arg(method) corral <- match.arg(corral) orientation <- match.arg(orientation) m <- match.call(expand.dots=FALSE) if (is.matrix(eval(m$data, parent.frame()))){ m$data <- as.data.frame(data) } if(is.null(rownames(data))){ rnames <- 1:nrow(data) }else{ rnames <- rownames(data) } rownames(data) <- rnames m[[1]] <- as.name("model.frame") flag <- names(m) %in% c("pwpch","pwcol","pwbg","pwpie") m <- m[union(1:3,which(flag))] mf <- eval(m, parent.frame()) response <- attr(attr(mf, "terms"), "response") f <- mf[-response] f <- f[names(f) %in% attr(attr(mf, "terms"), "term.labels")] if(!is.null(mf$'(pwpch)')){ pwpch <- split(mf$'(pwpch)', f) } if(!is.null(mf$'(pwcol)')){ pwcol <- split(mf$'(pwcol)', f) } if(!is.null(mf$'(pwbg)')){ pwbg <- split(mf$'(pwbg)',f) } if(!is.null(mf$'(pwpie)')){ pwpie <- split(mf$'(pwpie)',f) } pwrnames <- split(rnames,f) dlab <- as.character(formula)[2] glab <- as.character(formula)[3] x <- split(x=mf[[response]], f=f) n.groups <- length(x) if(length(cex) > 1) { stop('the parameter "cex" must have length 1') } if(missing(labels) || is.null(labels)) { if(is.null(names(x))) { if(n.groups == 1) { labels <- NA }else{ labels <- 1:n.groups } }else{ labels <- names(x) } }else{ labels <- rep(labels, length.out=n.groups) } if (is.null(at)){ at <- 1:n.groups }else if (length(at) != n.groups){ stop(gettextf("'at' must have length equal to %d, the number of groups", n.groups), domain = NA) } unlistGroup <- function(x, nms=names(x)){ rep(nms, sapply(x, length)) } x.val <- unlist(x) x.gp <- unlistGroup(x, nms=labels) if((range(x.val, finite=T)[1] <= 0) && log) warning('values <= 0 omitted from logarithmic plot') n.obs <- length(x.val) n.obs.per.group <- sapply(x, length) if(log) { dlim <- 10 ^ (grDevices::extendrange(log10(x.val[x.val > 0]))) }else{ dlim <- grDevices::extendrange(x.val, f=0.01) } glim <- c(min(at)-0.5, max(at)+0.5) if(orientation=="horizontal") { if(is.null(ylim)){ ylim <- glim } if(is.null(xlim)){ xlim <- dlim } if(is.null(xlab)){ xlab <- dlab } if(is.null(ylab)){ ylab <- glab } }else if(orientation=="vertical"){ if(is.null(xlim)){ xlim <- glim } if(is.null(ylim)){ ylim <- dlim } if(is.null(ylab)){ ylab <- dlab } if(is.null(xlab)){ xlab <- glab } } if(is.null(pwpch)) { pch.out <- unlistGroup(x, nms=rep(pch, length.out=n.groups)) }else{ if(is.list(pwpch)) { names(pwpch) <- names(x) stopifnot(all(sapply(pwpch, length)==n.obs.per.group)) pch.out <- unlist(pwpch) }else{ pch.out <- pwpch } } stopifnot(length(pch.out) == n.obs) if(is.null(pwcol)) { col.out <- unlistGroup(x, nms=rep(col, length.out=n.groups)) } else { if(is.list(pwcol)) { names(pwcol) <- names(x) stopifnot(all(sapply(pwcol, length) == n.obs.per.group)) col.out <- unlist(pwcol) } else { col.out <- pwcol } } stopifnot(length(col.out) == n.obs) if(is.null(pwbg)) { bg.out <- unlistGroup(x, nms=rep(bg, length.out=n.groups)) } else { if(is.list(pwbg)) { names(pwbg) <- names(x) stopifnot(all(sapply(pwbg, length) == n.obs.per.group)) bg.out <- unlist(pwbg) } else { bg.out <- pwbg } } stopifnot(length(bg.out) == n.obs) if(is.null(pwpie)) { pie.out <- unlistGroup(x, nms=rep(1, length.out=n.groups)) } else { if(is.list(pwpie)) { names(pwpie) <- names(x) stopifnot(all(sapply(pwpie, length) == n.obs.per.group)) pie.out <- unlist(pwpie) } else { pie.out <- pwpie } } stopifnot(length(pie.out) == n.obs) names(pwrnames) <- names(x) rnames.out <- unlist(pwrnames) if(do.plot & !add) { plot(xlim, ylim, type='n', axes=F, log=ifelse(log, ifelse(orientation=="horizontal", 'x', 'y'), ''), xlab=xlab, ylab=ylab) } sizeMultiplier <- graphics::par('cex') * cex * spacing if(orientation=="horizontal") { size.g <- graphics::yinch(0.08, warn.log = FALSE) * sizeMultiplier size.d <- graphics::xinch(0.08, warn.log = FALSE) * sizeMultiplier } else { size.g <- graphics::xinch(0.08, warn.log = FALSE) * sizeMultiplier size.d <- graphics::yinch(0.08, warn.log = FALSE) * sizeMultiplier } calculateSwarm <- function(x, dsize, gsize) { if(length(x) == 0) return(numeric(0)) out <- data.frame(x = x / dsize, y = 0, i = seq(along = x)) out <- out[order(out$x), ] if(nrow(out) > 1) { for (i in 2:nrow(out)) { xi <- out$x[i] yi <- out$y[i] pre <- out[1:(i - 1), ] wh <- xi - pre$x < 1 wh[is.na(wh)] <- FALSE if(any(wh)) { pre <- pre[wh, ] pre <- pre[order(abs(pre$y)), ] poty.off <- sqrt(1 - ((xi - pre$x) ^ 2)) poty <- c(0, pre$y + poty.off, pre$y - poty.off) poty.bad <- sapply(poty, function(y) { any(((xi - pre$x) ^ 2 + (y - pre$y) ^ 2) < 0.999) }) poty[poty.bad] <- Inf out$y[i] <- poty[which.min(abs(poty))] } else { out$y[i] <- 0 } } } out <- out[order(out$i), ] out[is.na(out$x), 'y'] <- NA out$y * gsize } swarmX <- function(x, y, xsize = graphics::xinch(0.08, warn.log = FALSE), ysize = graphics::yinch(0.08, warn.log = FALSE), log = NULL, cex = graphics::par("cex")){ if(is.null(log)) { log <- paste(ifelse(graphics::par('xlog'), 'x', ''), ifelse(graphics::par('ylog'), 'y', ''), sep = '') } xlog <- 'x' %in% strsplit(log, NULL)[[1L]] ylog <- 'y' %in% strsplit(log, NULL)[[1L]] xy <- grDevices::xy.coords(x = x, y = y, recycle = TRUE, log = log) stopifnot((length(unique(xy$x)) <= 1)) if(xlog) xy$x <- log10(xy$x) if(ylog) xy$y <- log10(xy$y) x.new <- xy$x + calculateSwarm(xy$y, dsize = ysize * cex, gsize = xsize * cex) out <- data.frame(x = x.new, y = y) if(xlog) out$x <- 10 ^ out$x out } swarmY <- function(x, y, xsize = graphics::xinch(0.08, warn.log = FALSE), ysize = graphics::yinch(0.08, warn.log = FALSE), log = NULL, cex = graphics::par("cex")) { if(is.null(log)) { log <- paste(ifelse(graphics::par('xlog'), 'x', ''), ifelse(graphics::par('ylog'), 'y', ''), sep = '') } xlog <- 'x' %in% strsplit(log, NULL)[[1L]] ylog <- 'y' %in% strsplit(log, NULL)[[1L]] xy <- grDevices::xy.coords(x = x, y = y, recycle = TRUE, log = log) stopifnot((length(unique(xy$y)) <= 1)) if(xlog) xy$x <- log10(xy$x) if(ylog) xy$y <- log10(xy$y) y.new <- xy$y + calculateSwarm(xy$x, dsize = xsize * cex, gsize = ysize * cex) out <- data.frame(x = x, y = y.new) if(ylog) out$y <- 10 ^ out$y out } floating.pie.asp <- function (xpos, ypos, x, edges = 200, radius = 1, col = NULL, startpos = 0, ...){ u <- graphics::par("usr") user.asp <- diff(u[3:4])/diff(u[1:2]) p <- graphics::par("pin") inches.asp <- p[2]/p[1] asp <- user.asp/inches.asp if (!is.numeric(x) || any(is.na(x) | x < 0)) stop("floating.pie: x values must be non-negative") x <- c(0, cumsum(x)/sum(x)) dx <- diff(x) nx <- length(dx) col <- if (is.null(col)) grDevices::rainbow(nx) else rep(col, length.out = nx) if (length(i <- which(dx == 1))) { graphics::symbols(xpos, ypos, circles = radius, inches = FALSE, add = TRUE, bg = col[i], fg = col[which(dx == 0)]) }else { bc <- 2 * pi * (x[1:nx] + dx/2) + startpos for (i in seq_len(nx)) { n <- max(2, floor(edges * dx[i])) t2p <- 2 * pi * seq(x[i], x[i + 1], length = n) + startpos xc <- c(cos(t2p) * radius + xpos, xpos) yc <- c(sin(t2p) * radius * asp + ypos, ypos) graphics::polygon(xc, yc, col = col[i], ...) } } } if(method == 'swarm') { if(orientation=="horizontal") { g.offset <- lapply(x, function(a) swarmY(x = a, y = rep(0, length(a)), cex = sizeMultiplier)$y) } else { g.offset <- lapply(x, function(a) swarmX(x = rep(0, length(a)), y = a, cex = sizeMultiplier)$x) } d.pos <- x } else { if(method == 'hex') size.d <- size.d * sqrt(3) / 2 if(log) { if(is.null(breaks)){ breaks <- 10 ^ seq(log10(dlim[1]), log10(dlim[2]) + size.d, by = size.d) } if(length(breaks) == 1 && is.na(breaks[1])) { d.index <- x d.pos <- x } else { mids <- 10 ^ ((log10(head(breaks, -1)) + log10(tail(breaks, -1))) / 2) d.index <- lapply(x, cut, breaks = breaks, labels = FALSE) d.pos <- lapply(d.index, function(a) mids[a]) } } else { if(is.null(breaks)){ breaks <- seq(dlim[1], dlim[2] + size.d, by = size.d) } if(length(breaks) == 1 && is.na(breaks[1])) { d.index <- x d.pos <- x } else { mids <- (head(breaks, -1) + tail(breaks, -1)) / 2 d.index <- lapply(x, cut, breaks = breaks, labels = FALSE) d.pos <- lapply(d.index, function(a) mids[a]) } } x.index <- lapply(d.index, function(v) { if(length(stats::na.omit(v)) == 0) return(v) v.s <- lapply(split(v, v), seq_along) if(method == 'center') v.s <- lapply(v.s, function(a) a - mean(a)) else if(method == 'square') v.s <- lapply(v.s, function(a) a - floor(mean(a))) else if(method == 'hex') { odd.row <- (as.numeric(names(v.s)) %% 2) == 1 v.s[odd.row] <- lapply(v.s[odd.row], function(a) a - floor(mean(a)) - 0.25) v.s[!odd.row] <- lapply(v.s[!odd.row], function(a) a - ceiling(mean(a)) + 0.25) } unsplit(v.s, v) }) g.offset <- lapply(1:n.groups, function(i) x.index[[i]] * size.g) } if(corral != 'none') { if(missing(corralWidth)) { if(n.groups > 1) { corralWidth <- min(at[-1] - at[-n.groups]) - (2 * size.g) } else { corralWidth <- 2 * (min(diff(c(graphics::par('usr')[1], at, graphics::par('usr')[2]))) - size.g) } } else { stopifnot(length(corralWidth) == 1) stopifnot(corralWidth > 0) } halfCorralWidth <- corralWidth / 2 if(corral == 'gutter') { g.offset <- lapply(g.offset, function(zz) pmin(halfCorralWidth, pmax(-halfCorralWidth, zz))) } if(corral == 'wrap') { g.offset <- lapply(g.offset, function(zz) ((zz + halfCorralWidth) %% (halfCorralWidth * 2)) - halfCorralWidth) } if(corral == 'random') { g.offset <- lapply(g.offset, function(zz) ifelse(zz > halfCorralWidth | zz < -halfCorralWidth, stats::runif(length(zz), -halfCorralWidth, halfCorralWidth), zz)) } if(corral == 'omit') { g.offset <- lapply(g.offset, function(zz) ifelse(zz > halfCorralWidth, NA, ifelse(zz < -halfCorralWidth, NA, zz))) } } g.pos <- lapply(1:n.groups, function(i) at[i] + g.offset[[i]]) out <- data.frame(x = unlist(g.pos), y = unlist(d.pos), pch = pch.out, col = col.out, bg = bg.out, pie = pie.out, x.orig = x.gp, y.orig = x.val, stringsAsFactors = FALSE ) rownames(out) <- rnames.out tmp <- data.frame(ind=1:nrow(out), x.orig=out$x.orig, y=out$y, col=out$col, pie=out$pie) ordering <- tmp[with(tmp, order(x.orig,y,col,pie)),]$ind a <- out[ordering, ] b <- split(a, a$x.orig) for(i in 1:length(b)){ c <- b[[i]] d <- split(c, c$y) for(j in 1:length(d)){ e <- d[[j]] e$x <- sort(e$x) d[[j]] <- e } ttmp <- d[[1]] if(length(d)>=2){ for(k in 2:length(d)){ ttmp <- rbind(ttmp, d[[k]]) } } b[[i]] <- ttmp } out <- b[[1]] if(length(out)>=2){ for(i in 2:length(b)){ out <- rbind(out, b[[i]]) } } ind <- match(rownames(data), rownames(out)) out <- out[ind,] if(do.plot) { if(orientation=="horizontal") { if(is.numeric(out$pch)){ graphics::points(out$y, out$x, pch=out$pch, col=out$col, bg=out$bg, cex=cex) }else{ for(i in 1:length(out$pch)){ pch_tmp <- out$pch[i] if(pch_tmp == 'circles'){ graphics::symbols(out$y[i], out$x[i], circles=min(size.g, size.d)/2, inches=F, fg=out$col[i], bg=out$bg[i], add=T) }else if(pch_tmp == 'thermometers'){ graphics::symbols(out$y[i], out$x[i], thermometers=cbind(0.4*size.d, 0.8*size.g, out$pie[i]), inches=F, fg=out$col[i], bg=out$bg[i], add=T) }else if(pch_tmp == 'pies'){ floating.pie.asp(xpos=out$y[i], ypos=out$x[i], x=cbind(out$pie[i], 1-out$pie[i]), edges=200, radius=0.8*max(size.g, size.d)/2, col=cbind(out$col[i], "transparent"), startpos=0, border=out$col[i]) }else{ graphics::points(out$x[i], out$y[i], pch=out$pch[i], col=out$col[i], bg=out$bg[i], cex=cex) } } } if(!add) { graphics::axis(1, ...) graphics::axis(2, at=at, labels=labels, tick=FALSE, ...) graphics::box(...) } if(do.boxplot){ graphics::boxplot(formula=formula, data=data, at=at, names=labels, outline=F, add=T, horizontal=T, notch=boxplot.notch, border=boxplot.border, col=boxplot.col) } }else if(orientation=="vertical") { if(is.numeric(out$pch)){ graphics::points(out$x, out$y, pch=out$pch, col=out$col, bg=out$bg, cex=cex) }else{ for(i in 1:length(out$pch)){ pch_tmp <- out$pch[i] if(pch_tmp == 'circles'){ graphics::symbols(out$x[i], out$y[i], circles=min(size.g, size.d)/2, inches=F, fg=out$col[i], bg=out$bg[i], add=T) }else if(pch_tmp == 'thermometers'){ graphics::symbols(out$x[i], out$y[i], thermometers=cbind(0.4*size.g, 0.8*size.d, out$pie[i]), inches=F, fg=out$col[i], bg=out$bg[i], add=T) }else if(pch_tmp == 'pies'){ floating.pie.asp(xpos=out$x[i], ypos=out$y[i], x=cbind(out$pie[i], 1-out$pie[i]), edges=200, radius=0.8*min(size.g, size.d)/2, col=cbind(out$col[i], "transparent"), startpos=0, border=out$col[i]) }else{ graphics::points(out$x[i], out$y[i], pch=out$pch[i], col=out$col[i], bg=out$bg[i], cex=cex) } } } if(!add) { graphics::axis(2, ...) graphics::axis(1, at=at, labels=labels, tick=FALSE, ...) graphics::box(...) } if(do.boxplot){ graphics::boxplot(formula=formula, data=data, at=at, names=labels, outline=F, add=T, horizontal=F, notch=boxplot.notch, border=boxplot.border, col=boxplot.col) } } } invisible(out) }
addHooksToPrint <- function(class = "ggplot", repoDir = aoptions("repoDir"), repo = aoptions("repo"), user = aoptions("user"), branch = "master", subdir = aoptions("subdir"), format = "markdown" ){ stopifnot( is.character( class ), is.character( repoDir ), (is.null(repo) || is.character( repo )), is.character( user ) ) for (class1 in class) { namespace <- gsub(grep(getAnywhere(paste0("print.",class1))$where, pattern="namespace:", value=T), pattern="namespace:", replacement="") if (length(namespace) == 0) { stop(paste0("The function print.", class1, " has not been found. Evaluation stopped for further classes.")) } } if (!file.exists( repoDir )) createLocalRepo(repoDir) setLocalRepo(repoDir) for (class1 in class) { namespace <- gsub(grep(getAnywhere(paste0("print.",class1))$where, pattern="namespace:", value=T), pattern="namespace:", replacement="") if (is.null(repo)) { fun <- paste0('function(x, ..., artifactName = deparse(substitute(x))) { hash <- saveToRepo(x, artifactName = artifactName) cat("Load: [",hash,"](", repoDir, "/gallery/",hash,".rda)\n", sep="") ',namespace,':::print.',class1,'(x, ...) }') } else { fun <- paste0('function(x, ..., artifactName = deparse(substitute(x))) { hash <- saveToRepo(x, artifactName = artifactName) al <- alink(hash, repo = "',repo,'", user = "',user,'", subdir = "',subdir,'", format = "',format,'") cat("Load: ", al, "\n", sep="") ',namespace,':::print.',class1,'(x, ...) }') } fun <- eval(parse(text=fun)) veryDirtyHack <- 1 assign(paste0("print.", class1), fun, pos=veryDirtyHack) } invisible(NULL) }
`keyfitz` <- function(b0,nMx){ nax12 <- c(0,0) nax12[1] <- b0[1] + b0[2] *nMx[1] nax12[2] <- 1.5 return(nax12) }
mandel.kh <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, type=c("h", "k"), method=c("classical", "robust"), n=NA, ...) { UseMethod("mandel.kh") } mandel.kh.default <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, type=c("h", "k"), method=c("classical", "robust"), n=NA, ...) { name.g <- .get.mandel.rowname(deparse(substitute(g)), rowname) if( is.vector(x) ) { if( !is.null(m) ) { fm <- factor(m) if( is.null(g) ) { if( !all( (tm<-table(m)) == tm[1] ) ) { stop("g must be present if x is a vector and group sizes in m are unequal") } else { g<-factor( ave(1:length(m), m, FUN=function(x) seq(length(x))) ) xw <- .to.wide(x,g, m) } } else { xw <- .to.wide(x, g, m) } x <- xw[ , 2:ncol(xw), drop=FALSE] g <- xw$g } else { x <- data.frame(x=x) } } else { stop(sprintf("mandel.kh does not support objects of type %s", class(x)) ) } mkh<-mandel.kh(x=x, g=g, m=m, na.rm=na.rm, rowname=rowname, type=type, method=method, n=n, ...) attr(mkh, "grouped.by") <- name.g return(mkh) } mandel.kh.array <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, type=c("h", "k"), method=c("classical", "robust"), n=NA, ...) { name.g <- .get.mandel.rowname(deparse(substitute(g)), rowname) if( length(dim(as.array(x))) ==1 ) { x <- as.vector(x) } else if( length(dim(as.array(x))) ==2 ){ x <- as.data.frame(x) } else { stop("mandel.kh does not support arrays with more than 2 dimensons") } mkh<-mandel.kh(x=x, g=g, m=m, na.rm=na.rm, rowname=rowname, type=type, method=method, n=n, ...) attr(mkh, "grouped.by") <- name.g return(mkh) } mandel.kh.matrix <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, type=c("h", "k"), method=c("classical", "robust"), n=NA, ...) { mkh<-mandel.kh(x=as.data.frame(x), g=g, m=m, na.rm=na.rm, rowname=rowname, type=type, method=method, n=n, ...) name.g <- .get.mandel.rowname(deparse(substitute(g)), rowname) attr(mkh, "grouped.by") <- name.g return(mkh) } mandel.kh.data.frame <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, type=c("h", "k"), method=c("classical", "robust"), n=NA, ...) { method <- match.arg(method) h <- function(y, na.rm=T) { return( (y-mean(y, na.rm=na.rm))/sd(y, na.rm=na.rm) ) } k <- function(y, na.rm=T) { y.omit<-na.omit(y) pooled.sd <- sqrt(sum(y.omit^2)/length(y.omit)) return( y/pooled.sd ) } h.robust <- function(y, na.rm=T, ...) { y.omit<- if(na.rm) na.omit(y) else y H <- hubers(y.omit, ...) return( (y-H$mu)/H$s ) } k.robust <- function(y, degfree, na.rm=T) { y.omit<- if(na.rm) na.omit(y) else y pooled.sd <- algS(y.omit, degfree) return( y/pooled.sd ) } name.g <- .get.mandel.rowname(deparse(substitute(g)), rowname) if( is.null(g) ) { was.null.g <- TRUE if(is.null(rownames(x))) { g <- paste(rowname, format(1:nrow(x)), sep="") g<-factor(g, levels=g) print(g) } else { g <- factor(rownames(x), levels=rownames(x)) } } else { was.null.g <- FALSE } if(type[1]=="k" && is.na(n) ) { if( !was.null.g ) { n.all <- aggregate(x, by=list(g=g), FUN=function(x) sum(!is.na(x)) ) if(ncol(n.all)>2) n.all <- stack(n.all[,2:ncol(n.all)]) else names(n.all) <- c("g", "value") n <- median(n.all$value[n.all$value>0], na.rm=na.rm) } if(is.na(n) || n <=1) { stop("n must be specified and >1 with type=='k' and only one value per group" ) } } if(type[1]=="h") { x <- aggregate(x, by=list(g=g), FUN=mean, na.rm=na.rm) mkh <- if(method=="robust") { as.data.frame( lapply(x[,2:ncol(x), drop=FALSE], h.robust, na.rm=na.rm, ...) ) } else { as.data.frame( lapply(x[,2:ncol(x), drop=FALSE], h, na.rm=na.rm) ) } } else if(type[1]=="k") { x <- aggregate(x, by=list(g=g), FUN=function(x, na.rm) { if(length(x)==1) x else sd(x, na.rm=na.rm) }, na.rm=na.rm ) if(method=="robust") { mkh <- as.data.frame( lapply(x[,2:ncol(x), drop=FALSE], k.robust, na.rm=na.rm, degfree=n-1) ) } else { mkh <- as.data.frame( lapply(x[,2:ncol(x), drop=FALSE], k, na.rm=na.rm) ) } } else { stop("type must be one of 'h' or 'k'") } row.names(mkh) <- as.character(x[[1]]) attr(mkh, "mandel.type") <- type[1] attr(mkh, "mandel.method") <- method[1] attr(mkh, "grouped.by") <- name.g attr(mkh, "n") <- n class(mkh) <- c("mandel.kh", class(mkh)) return(mkh) } mandel.kh.ilab <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, type=c("h", "k"), method=c("classical", "robust"), n=NA, ...) { if(missing(g)) { g<-x$data$org name.g <- if(is.null(rowname)) "Organisation" else rowname } else { name.g <- if(is.null(rowname)) deparse(substitute(g)) else rowname } if(missing(m)||is.null(m)) m <- x$data$measurand mkh<-mandel.kh(x=x$data$x, g=g, m=x$data$measurand, na.rm=na.rm, rowname=rowname, type=type, method=method, n=n, ...) attr(mkh, "grouped.by") <- name.g return(mkh) } mandel.h <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, method=c("classical", "robust"), n=NA, ...) { UseMethod("mandel.h") } mandel.k <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, method=c("classical", "robust"), n=NA, ...) { UseMethod("mandel.k") } mandel.h.default <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, method=c("classical", "robust"), n=NA, ...) { mkh<-mandel.kh(x=x, g=g, m=m, na.rm=na.rm, rowname=rowname, type="h", method=method, n=n, ...) name.g <- .get.mandel.rowname(deparse(substitute(g)), rowname) attr(mkh, "grouped.by") <- name.g return(mkh) } mandel.k.default <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, method=c("classical", "robust"), n=NA, ...) { mkh<-mandel.kh(x=x, g=g, m=m, na.rm=na.rm, rowname=rowname, type="k", method=method, n=n, ...) name.g <- .get.mandel.rowname(deparse(substitute(g)), rowname) attr(mkh, "grouped.by") <- name.g return(mkh) } mandel.h.ilab <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, method=c("classical", "robust"), n=NA, ...) { if(missing(g)) { g<-x$data$org name.g <- if(is.null(rowname)) "Organisation" else rowname } else { name.g <- if(is.null(rowname)) deparse(substitute(g)) else rowname } if(missing(m)||is.null(m)) m <- x$data$measurand mkh<-mandel.kh(x=x$data$x, g=g, m=m, na.rm=na.rm, rowname=rowname, type="h", method=method, n=n, ...) attr(mkh, "grouped.by") <- name.g return(mkh) } mandel.k.ilab <- function(x, g=NULL, m=NULL, na.rm=T, rowname=NULL, method=c("classical", "robust"), n=NA, ...) { if(missing(g)) { g<-x$data$org name.g <- if(is.null(rowname)) "Organisation" else rowname } else { name.g <- if(is.null(rowname)) deparse(substitute(g)) else rowname } if(missing(m)||is.null(m)) m <- x$data$measurand mkh<-mandel.kh(x=x$data$x, g=g, m=m, na.rm=na.rm, rowname=rowname, type="k", method=method, n=n, ...) attr(mkh, "grouped.by") <- name.g return(mkh) } plot.mandel.kh <- function(x, probs=c(0.95, 0.99), main, xlab=attr(x, "grouped.by"), ylab= attr(x, "mandel.type") , ylim=NULL, las=1, axes=TRUE, cex.axis=1, frame.plot = axes, lwd=1, lty=1,col=par("col"), col.ind=1, lty.ind=c(2,1), lwd.ind=1, separators=TRUE, col.sep="lightgrey", lwd.sep=1, lty.sep=1, zero.line=TRUE, lwd.zero=1, col.zero=1, lty.zero=1, p.adjust="none", ...) { if(missing(main) ) main <- paste( deparse(substitute(x)), " - Mandel's", attr(x, "mandel.type"), if(attr(x, "mandel.method") == "robust") "(Robust variant)" ) ni<-ncol(x) ng <- nrow(x) mids <- gplot(x, main=main, xlab=xlab, ylab=ylab, ylim=ylim, las=las, axes=axes, cex.axis=cex.axis, frame.plot=frame.plot, lwd=lwd, lty=lty, col=col, separators=separators, col.sep=col.sep, lwd.sep=lwd.sep, lty.sep=lty.sep, zero.line=zero.line, lwd.zero=lwd.zero, col.zero=col.zero, lty.zero=lty.zero, ...) if( !is.na(probs[1]) ) { if(p.adjust != "none" ) { probs <- 1 - p.adjust(1-probs, method=p.adjust, n = ng * ncol(x)) } if(attr(x, "mandel.type") == "h" ) { probs <- 1 - (1 - probs)/2 probs <- c(probs, 1-probs) if(attr(x, "mandel.method") == "classical" ) { abline(h=qmandelh(probs, ng), lty=lty.ind, col=col.ind, lwd=lwd.ind) } else { abline(h=qnorm(probs), lty=lty.ind, col=col.ind, lwd=lwd.ind) } } else { if(attr(x, "mandel.method") == "classical" ) { abline(h=qmandelk(probs, ng, attr(x, "n")), lty=lty.ind, col=col.ind, lwd=lwd.ind) } else { abline(h=sqrt(qf(probs, attr(x, "n")-1, Inf)), lty=lty.ind, col=col.ind, lwd=lwd.ind) } } } return(invisible(mids)) } barplot.mandel.kh <- function(height, probs=c(0.95, 0.99), main, xlab=attr(height, "grouped.by"), ylab=attr(height, "mandel.type"), separators=TRUE, zero.line=TRUE, ylim, p.adjust="none", frame.plot = TRUE, ... , col.ind=1, lty.ind=c(2,1), lwd.ind=1, col.sep="lightgrey", lwd.sep=1, lty.sep=1, lwd.zero=1, col.zero=1, lty.zero=1) { if(missing(main) ) main <- paste( deparse(substitute(height)), " - Mandel's", attr(height, "mandel.type"), if(attr(height, "mandel.method") == "robust") "(Robust variant)" ) ng <- nrow(height) if(missing(ylim)) ylim <- range(pretty(c(0, na.omit(stack(height))$values))) mids <- barplot(t(as.matrix(height)), beside=TRUE, ylim=ylim, main=main, xlab=xlab, ylab=ylab, ...) if(separators) { mid.max<-mids[nrow(mids), ] abline(v=c(0.5, mid.max+1), col=col.sep, lty=lty.sep, lwd=lwd.sep) } if(zero.line) abline(h=0, col=col.zero, lwd=lwd.zero, lty=lty.zero) if(frame.plot) box() if( !is.na(probs[1]) ) { if(p.adjust != "none" ) { probs <- 1 - p.adjust(1-probs, method=p.adjust, n = ng * ncol(height)) } if(attr(height, "mandel.type") == "h" ) { probs <- 1 - (1 - probs)/2 probs <- c(probs, 1-probs) if(attr(height, "mandel.method") == "classical" ) { abline(h=qmandelh(probs, ng), lty=lty.ind, col=col.ind, lwd=lwd.ind) } else { abline(h=qnorm(probs), lty=lty.ind, col=col.ind, lwd=lwd.ind) } } else { if(attr(height, "mandel.method") == "classical" ) { abline(h=qmandelk(probs, ng, attr(height, "n")), lty=lty.ind, col=col.ind, lwd=lwd.ind) } else { abline(h=qf(probs, attr(height, "n")-1, Inf), lty=lty.ind, col=col.ind, lwd=lwd.ind) } } } return(invisible(mids)) } boxplot.mandel.kh <- function(x, probs=c(0.95, 0.99), main, xlab=attr(x, "grouped.by"), ylab=attr(x, "mandel.type"), separators=FALSE, zero.line=TRUE, ylim, p.adjust="none", frame.plot = TRUE, horizontal=FALSE, at, ... , col.ind=1, lty.ind=c(2,1), lwd.ind=1, col.sep="lightgrey", lwd.sep=1, lty.sep=1, lwd.zero=1, col.zero=1, lty.zero=1, outlier.labels=row.names(x), cex.lab=0.7, col.lab=1, adj=NULL, pos=NULL, srt=0 ) { if(missing(main) ) main <- paste( deparse(substitute(x)), " - Mandel's", attr(x, "mandel.type"), if(attr(x, "mandel.method") == "robust") "(Robust variant)" ) ng <- nrow(x) if(missing(at)) at <- 1:ncol(x) if(missing(ylim)) ylim <- range(pretty(c(0, na.omit(stack(x))$values))) bx <- boxplot(as.matrix(x), horizontal=horizontal, at=at, ylim=ylim, main=main, xlab=xlab, ylab=ylab, ...) if(separators) { if(length(at)> 1 ) { offset.at <- diff(at[1:2])/2 sep.at <-c(at[1]-offset.at, at[1]+offset.at, at[-1]+diff(at)/2) } else { sep.at <- at+c(-0.5,0.5) } if(horizontal) abline(h=sep.at, col=col.sep, lty=lty.sep, lwd=lwd.sep) else abline(v=sep.at, col=col.sep, lty=lty.sep, lwd=lwd.sep) } if(zero.line) abline(h=0, col=col.zero, lwd=lwd.zero, lty=lty.zero) if(frame.plot) box() if( !is.na(probs[1]) ) { if(p.adjust != "none" ) { probs <- 1 - p.adjust(1-probs, method=p.adjust, n = ng * ncol(x)) } if(attr(x, "mandel.type") == "h" ) { probs <- 1 - (1 - probs)/2 probs <- c(probs, 1-probs) if(attr(x, "mandel.method") == "classical" ) { if(horizontal) abline(v=qmandelh(probs, ng), lty=lty.ind, col=col.ind, lwd=lwd.ind) else abline(h=qmandelh(probs, ng), lty=lty.ind, col=col.ind, lwd=lwd.ind) } else { if(horizontal) abline(v=qnorm(probs), lty=lty.ind, col=col.ind, lwd=lwd.ind) else abline(h=qnorm(probs), lty=lty.ind, col=col.ind, lwd=lwd.ind) } } else { if(attr(x, "mandel.method") == "classical" ) { if(horizontal) abline(v=qmandelk(probs, ng, attr(x, "n")), lty=lty.ind, col=col.ind, lwd=lwd.ind) else abline(h=qmandelk(probs, ng, attr(x, "n")), lty=lty.ind, col=col.ind, lwd=lwd.ind) } else { if(horizontal) abline(v=qf(probs, attr(x, "n")-1, Inf), lty=lty.ind, col=col.ind, lwd=lwd.ind) else abline(h=qf(probs, attr(x, "n")-1, Inf), lty=lty.ind, col=col.ind, lwd=lwd.ind) } } } if( ifelse(is.logical(outlier.labels[1]),outlier.labels[1], !is.na(outlier.labels[1]) ) ) { if(is.logical(outlier.labels[1])) { outlier.labels <- row.names(x) } out.index <- rep(NA, length(bx$out)) for(i in 1:length(bx$out)) { out.index[i] <- which.min( abs( x[,bx$group[i]] - bx$out[i] ) ) } if(is.null(pos) && is.null(adj)) pos <- 4 if(horizontal) text(bx$out, at[bx$group], outlier.labels[out.index], cex=cex.lab, col=col.lab, pos=pos, adj=adj, srt=srt) else text(at[bx$group], bx$out, outlier.labels[out.index], cex=cex.lab, col=col.lab, pos=pos, adj=adj, srt=srt) } return(invisible(bx)) } qmandelk <- function(p, g, n, lower.tail = TRUE, log.p = FALSE) { sqrt( g * qbeta( p, (n-1)/2, (g-1)*(n-1)/2, lower.tail=lower.tail, log.p=log.p) ) } pmandelk <- function(q, g, n, lower.tail = TRUE, log.p = FALSE) { pbeta( q^2 / g, (n-1)/2, (g-1)*(n-1)/2, lower.tail=lower.tail, log.p=log.p) } dmandelk <- function(x, g, n, log = FALSE) { 2 * x * dbeta( x^2 / g, (n-1)/2, (g-1)*(n-1)/2, log = FALSE) / g } rmandelk <- function(B, g, n) { sqrt( g * rbeta( B, (n-1)/2, (g-1)*(n-1)/2) ) } qmandelh <- function(p, g, lower.tail = TRUE, log.p = FALSE) { ((g-1)/sqrt(g))*(2*qbeta(p, (g-2)/2, (g-2)/2, lower.tail = TRUE, log.p = FALSE)-1) } pmandelh <- function(q, g, lower.tail = TRUE, log.p = FALSE) { pbeta( (1+q*sqrt(g)/(g-1))/2, (g-2)/2, (g-2)/2, lower.tail = TRUE, log.p = FALSE) } dmandelh <- function(x, g, log = FALSE) { dbeta( (1+x*sqrt(g)/(g-1))/2, (g-2)/2, (g-2)/2, log = FALSE) / (2*(g-1)/sqrt(g)) } rmandelh <- function(B, g) { ((g-1)/sqrt(g))*(2*rbeta(B, (g-2)/2, (g-2)/2)-1) } .get.mandel.rowname <- function(g, rowname=NULL) { rv <- if(g=="NULL" | g=="") { if(is.null(rowname)) "Row" else rowname } else { g } return(rv) } .to.wide <- function(x, g, m) { if(!is.factor(g)) g <- factor(g) if(!is.factor(m)) g <- factor(m) n.per.g <- tapply(x, g:m, length) n <- max(n.per.g, na.rm=TRUE) d <- data.frame(g = factor(rep(levels(g), each=n), levels=levels(g))) row.names(d) <- paste(d$g, rep(1:n, along=d$g), sep=":") n.x <- paste(g, ave(x, g, m, FUN=function(x) 1:length(x)), sep=":") for(nn in levels(m) ) { subx <- x[m==nn] names(subx) <- n.x[m==nn] d[[nn]] <- subx[row.names(d)] } return(d) }
AutoXGBoostFunnelCARMA <- function(data, GroupVariables = NULL, BaseFunnelMeasure = NULL, ConversionMeasure = NULL, ConversionRateMeasure = NULL, CohortPeriodsVariable = NULL, CalendarDate = NULL, CohortDate = NULL, EncodingMethod = "credibility", OutputSelection = c('Importances', 'EvalPlots', 'EvalMetrics', 'Score_TrainData'), WeightsColumnName = NULL, TruncateDate = NULL, PartitionRatios = c(0.70,0.20,0.10), TimeUnit = c("day"), CalendarTimeGroups = c("day","week","month"), CohortTimeGroups = c("day","week","month"), TransformTargetVariable = TRUE, TransformMethods = c("Identity","YeoJohnson"), AnomalyDetection = list(tstat_high = 3, tstat_low = -2), Jobs = c("Evaluate","Train"), SaveModelObjects = TRUE, ModelID = "Segment_ID", ModelPath = NULL, MetaDataPath = NULL, DebugMode = FALSE, CalendarVariables = c("wday","mday","yday","week","isoweek","month","quarter","year"), HolidayGroups = c("USPublicHolidays","EasterGroup","ChristmasGroup","OtherEcclesticalFeasts"), HolidayLookback = NULL, CohortHolidayLags = c(1L, 2L, 7L), CohortHolidayMovingAverages = c(3L, 7L), CalendarHolidayLags = c(1L, 2L, 7L), CalendarHolidayMovingAverages = c(3L, 7L), ImputeRollStats = -0.001, CalendarLags = list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L)), CalendarMovingAverages = list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L)), CalendarStandardDeviations = NULL, CalendarSkews = NULL, CalendarKurts = NULL, CalendarQuantiles = NULL, CalendarQuantilesSelected = "q50", CohortLags = list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L)), CohortMovingAverages = list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L)), CohortStandardDeviations = NULL, CohortSkews = NULL, CohortKurts = NULL, CohortQuantiles = NULL, CohortQuantilesSelected = "q50", PassInGrid = NULL, GridTune = FALSE, BaselineComparison = "default", MaxModelsInGrid = 25L, MaxRunMinutes = 180L, MaxRunsWithoutNewWinner = 10L, GridEvalMetric = 'mae', NumOfParDepPlots = 1L, NThreads = parallel::detectCores(), TreeMethod = 'hist', EvalMetric = 'MAE', LossFunction = 'reg:squarederror', Trees = 1000L, LearningRate = 0.3, MaxDepth = 9L, MinChildWeight = 1.0, SubSample = 1.0, ColSampleByTree = 1.0) { if(!is.null(ModelPath)) if(!dir.exists(file.path(ModelPath))) dir.create(ModelPath) if(!is.null(MetaDataPath)) if(!is.null(MetaDataPath)) if(!dir.exists(file.path(MetaDataPath))) dir.create(MetaDataPath) ArgsList <- list() ArgsList[["Algorithm"]] <- "XGBoost" ArgsList[["GroupVariables"]] <- GroupVariables ArgsList[["BaseFunnelMeasure"]] <- BaseFunnelMeasure ArgsList[["ConversionMeasure"]] <- ConversionMeasure ArgsList[["CohortPeriodsVariable"]] <- CohortPeriodsVariable ArgsList[["CalendarDate"]] <- CalendarDate ArgsList[["CohortDate"]] <- CohortDate ArgsList[["AnomalyDetection"]] <- AnomalyDetection ArgsList[["TimeUnit"]] <- TimeUnit ArgsList[["CalendarTimeGroups"]] <- CalendarTimeGroups ArgsList[["CohortTimeGroups"]] <- CohortTimeGroups ArgsList[["WeightsColumnName"]] <- WeightsColumnName if(is.null(MetaDataPath)) if(!is.null(ModelPath)) MetaDataPath <- ModelPath ArgsList[["NThreads"]] <- NThreads ArgsList[["ModelID"]] <- ModelID ArgsList[["ModelPath"]] <- ModelPath ArgsList[["MetaDataPath"]] <- MetaDataPath ArgsList[["Jobs"]] <- Jobs ArgsList[["EncodingMethod"]] <- EncodingMethod ArgsList[["TransformTargetVariable"]] <- TransformTargetVariable ArgsList[["CalendarVariables"]] <- CalendarVariables ArgsList[["HolidayGroups"]] <- HolidayGroups ArgsList[["HolidayLookback"]] <- HolidayLookback ArgsList[["ImputeRollStats"]] <- ImputeRollStats ArgsList[["CohortHolidayLags"]] <- CohortHolidayLags ArgsList[["CohortHolidayMovingAverages"]] <- CohortHolidayMovingAverages ArgsList[["CalendarHolidayLags"]] <- CalendarHolidayLags ArgsList[["CalendarHolidayMovingAverages"]] <- CalendarHolidayMovingAverages ArgsList[["CalendarLags"]] <- CalendarLags ArgsList[["CalendarMovingAverages"]] <- CalendarMovingAverages ArgsList[["CalendarStandardDeviations"]] <- CalendarStandardDeviations ArgsList[["CalendarSkews"]] <- CalendarSkews ArgsList[["CalendarKurts"]] <- CalendarKurts ArgsList[["CalendarQuantiles"]] <- CalendarQuantiles ArgsList[["CalendarQuantilesSelected"]] <- CalendarQuantilesSelected ArgsList[["CohortLags"]] <- CohortLags ArgsList[["CohortMovingAverages"]] <- CohortMovingAverages ArgsList[["CohortStandardDeviations"]] <- CohortStandardDeviations ArgsList[["CohortSkews"]] <- CohortSkews ArgsList[["CohortKurts"]] <- CohortKurts ArgsList[["CohortQuantiles"]] <- CohortQuantiles ArgsList[["CohortQuantilesSelected"]] <- CohortQuantilesSelected ArgsList[["PartitionRatios"]] <- if(!is.null(PartitionRatios)) PartitionRatios else c(0.70,0.20,0.10) if(tolower(TimeUnit) %chin% c("day","days")) { TimeUnit <- "days" } else if(tolower(TimeUnit) %chin% c("week","weeks")) { TimeUnit <- "weeks" } else if(tolower(TimeUnit) %chin% c("month","months")) { TimeUnit <- "months" } else if(tolower(TimeUnit) %chin% c("quarter","quarters")) { TimeUnit <- "quarters" } else if(tolower(TimeUnit) %chin% c("year","years")) { TimeUnit <- "years" } ArgsList[["PassInGrid"]] <- PassInGrid ArgsList[["GridTune"]] <- GridTune ArgsList[["BaselineComparison"]] <- BaselineComparison ArgsList[["MaxModelsInGrid"]] <- MaxModelsInGrid ArgsList[["MaxRunMinutes"]] <- MaxRunMinutes ArgsList[["MaxRunsWithoutNewWinner"]] <- MaxRunsWithoutNewWinner ArgsList[["LossFunction"]] <- LossFunction ArgsList[["GridEvalMetric"]] <- GridEvalMetric ArgsList[["EvalMetric"]] <- EvalMetric ArgsList[["TreeMethod"]] <- TreeMethod ArgsList[["Trees"]] <- Trees ArgsList[["LearningRate"]] <- LearningRate ArgsList[["MaxDepth"]] <- MaxDepth ArgsList[["MinChildWeight"]] <- MinChildWeight ArgsList[["SubSample"]] <- SubSample ArgsList[["ColSampleByTree"]] <- ColSampleByTree ArgsList[[paste0("Min","-", eval(CalendarDate))]] <- data[, min(get(CalendarDate))][[1L]] ArgsList[[paste0("Max","-", eval(CalendarDate))]] <- data[, max(get(CalendarDate))][[1L]] TimerDataEval <- data.table::data.table(Process = rep("a", 25L), Time = rep(999, 25L)) TimerDataTrain <- data.table::data.table(Process = rep("a", 25L), Time = rep(999, 25L)) if(!data.table::is.data.table(data)) data.table::setDT(data) if(!(tolower(TimeUnit) %chin% c("1min","5min","10min","15min","30min","hour"))) { if(is.character(data[[eval(CalendarDate)]])) { x <- data[1L, get(CalendarDate)] x1 <- lubridate::guess_formats(x, orders = c("mdY", "BdY", "Bdy", "bdY", "bdy", "mdy", "dby", "Ymd", "Ydm")) data[, eval(CalendarDate) := as.Date(get(CalendarDate), tryFormats = x1)] } if(is.character(data[[eval(CohortDate)]])) { x <- data[1L, get(CohortDate)] x1 <- lubridate::guess_formats(x, orders = c("mdY", "BdY", "Bdy", "bdY", "bdy", "mdy", "dby", "Ymd", "Ydm")) data[, eval(CohortDate) := as.Date(get(CohortDate), tryFormats = x1)] } } else { data[, eval(CalendarDate) := as.POSIXct(get(CalendarDate))] data[, eval(CohortDate) := as.POSIXct(get(CohortDate))] } if(is.null(CohortPeriodsVariable)) { data[, CohortPeriods := as.numeric(difftime(time1 = get(CohortDate), time2 = get(CalendarDate), units = eval(TimeUnit)))] CohortPeriodsVariable <- "CohortPeriods" ArgsList[["CohortPeriodsVariable"]] <- CohortPeriodsVariable } if(!is.null(GroupVariables)) { data[, paste0("Temp_", CohortPeriodsVariable) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(GroupVariables, CohortPeriodsVariable)] data[, paste0("Temp_", CalendarDate) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(GroupVariables, CalendarDate)] data[, GroupVar := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(GroupVariables)] ArgsList[[paste0("Temp_", CohortPeriodsVariable)]] <- paste0("Temp_", CohortPeriodsVariable) ArgsList[[paste0("Temp_", CalendarDate)]] <- paste0("Temp_", CalendarDate) ArgsList[["GroupVar"]] <- "GroupVar" } else { data[, paste0("Temp_", CohortPeriodsVariable) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(CohortPeriodsVariable)] data[, paste0("Temp_", CalendarDate) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(CalendarDate)] ArgsList[[paste0("Temp_", CohortPeriodsVariable)]] <- paste0("Temp_", CohortPeriodsVariable) ArgsList[[paste0("Temp_", CalendarDate)]] <- paste0("Temp_", CalendarDate) } if(is.null(ConversionRateMeasure)) { data[, ConversionRate := data.table::fifelse(get(BaseFunnelMeasure[1L]) == 0, 0, get(ConversionMeasure) / get(BaseFunnelMeasure[1L]))] ConversionRateMeasure <- "ConversionRate" ArgsList[["ConversionRateMeasure"]] <- ConversionRateMeasure } else { ArgsList[["ConversionRateMeasure"]] <- ConversionRateMeasure } if("GroupVar" %chin% names(data)) { drop <- setdiff(names(data), c("GroupVar", GroupVariables, paste0("Temp_", CohortPeriodsVariable), paste0("Temp_", CalendarDate), BaseFunnelMeasure, ConversionMeasure, ConversionRateMeasure, CohortPeriodsVariable, CalendarDate, CohortDate)) } else { drop <- setdiff(names(data), c(paste0("Temp_", CohortPeriodsVariable), paste0("Temp_", CalendarDate), BaseFunnelMeasure, ConversionMeasure, ConversionRateMeasure, CohortPeriodsVariable, CalendarDate, CohortDate)) } if(!identical(drop, character(0))) data.table::set(data, j = c(drop), value = NULL) for(proc in Jobs) { proc <- tolower(proc) if(proc %chin% c("evaluate","eval","evaluation")) { data1 <- data.table::copy(data) } else { data <- data1 rm(data1) } if(DebugMode) print("FE: CreateCalendarVariables() CalendarDate and CohortDate ----") x <- system.time(gcFirst = FALSE, data <- RemixAutoML::CreateCalendarVariables(data, DateCols = c(eval(CalendarDate)), AsFactor = FALSE, TimeUnits = CalendarVariables)) data <- RemixAutoML::CreateCalendarVariables(data, DateCols = c(eval(CohortDate)), AsFactor = FALSE, TimeUnits = CalendarVariables) if(proc %chin% c("evaluate","eval","evaluation")) { data.table::set(TimerDataEval, i = 2L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 2L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 2L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 2L, j = "Process", value = " } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) if(DebugMode) print("FE: CreateHolidayVariables() CalendarDate ----") x <- system.time(gcFirst = FALSE, data <- RemixAutoML::CreateHolidayVariables(data, DateCols = eval(CalendarDate), LookbackDays = if(!is.null(HolidayLookback)) HolidayLookback else LB(TimeUnit), HolidayGroups = HolidayGroups, Holidays = NULL, Print = FALSE)) data.table::setnames(data, old = "HolidayCounts", new = paste0(CalendarDate,"HolidayCounts")) if(proc %chin% c("evaluate","eval","evaluation")) { data.table::set(TimerDataEval, i = 3L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 3L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 3L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 3L, j = "Process", value = " } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) if(DebugMode) print("FE: CreateHolidayVariables() CohortDate ----") x <- system.time(gcFirst = FALSE, data <- RemixAutoML::CreateHolidayVariables(data, DateCols = eval(CohortDate), LookbackDays = if(!is.null(HolidayLookback)) HolidayLookback else LB(TimeUnit), HolidayGroups = eval(HolidayGroups), Holidays = NULL, Print = FALSE)) data.table::setnames(data, old = "HolidayCounts", new = paste0(CohortDate, "HolidayCounts")) if(proc %chin% c("evaluate","eval","evaluation")) { data.table::set(TimerDataEval, i = 4L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 4L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 4L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 4L, j = "Process", value = " } if(DebugMode) print("AnomalyDetection for all CohortDates ----") if(!is.null(AnomalyDetection)) { temp <- data[, list(ConversionCheck = sum(get(ConversionMeasure))), by = eval(CohortDate)] data.table::setnames(temp, eval(CohortDate), eval(CalendarDate)) temp1 <- data[, list(Leads = max(get(BaseFunnelMeasure[1]))), by = eval(CalendarDate)] temp <- merge(temp, temp1, by = eval(CalendarDate), all = FALSE); rm(temp1) temp <- temp[, ConversionRate := ConversionCheck / (Leads + 1)][, .SD, .SDcols = c(eval(CalendarDate), "ConversionRate")] temp <- RemixAutoML::CreateCalendarVariables(data = temp, DateCols = eval(CalendarDate), AsFactor = FALSE, TimeUnits = "wday") temp <- RemixAutoML::GenTSAnomVars(data = temp, ValueCol = "ConversionRate", GroupVars = paste0(CalendarDate,"_wday"), DateVar = eval(CalendarDate), HighThreshold = AnomalyDetection$tstat_high, LowThreshold = AnomalyDetection$tstat_low, KeepAllCols = TRUE, IsDataScaled = FALSE) temp <- temp[, .SD, .SDcols = c(eval(CalendarDate), "AnomHigh","AnomLow")] if(!is.null(temp)) { data <- merge(data, temp, by.x = eval(CohortDate), by.y = eval(CalendarDate), all.x = TRUE) data[is.na(AnomHigh), AnomHigh := 0] data[is.na(AnomLow), AnomLow := 0] } else { ArgsList[["AnomalyDetection"]] <- NULL } rm(temp) } if(DebugMode) print("DM: Type Casting CalendarDate to Character to be used as a Grouping Variable ----") x <- system.time(gcFirst = FALSE, data.table::set(data, j = eval(CalendarDate), value = as.character(data[[eval(CalendarDate)]]))) if(proc %chin% c("evaluate","eval","evaluation")) { data.table::set(TimerDataEval, i = 6L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 6L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 6L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 6L, j = "Process", value = " } if(DebugMode) print('Feature Engineering: Add Target Transformation ----') if(TransformTargetVariable) { TransformResults <- AutoTransformationCreate(data, ColumnNames=c(BaseFunnelMeasure[1L], ConversionMeasure), Methods=TransformMethods, Path=NULL, TransID='Trans', SaveOutput=FALSE) data <- TransformResults$Data; TransformResults$Data <- NULL TransformObject <- TransformResults$FinalResults; rm(TransformResults) data[, eval(ConversionRateMeasure) := data.table::fifelse(get(BaseFunnelMeasure[1L]) == 0, 0, get(ConversionMeasure) / get(BaseFunnelMeasure[1L]))] } else { TransformObject <- NULL } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) if(DebugMode) print("DM: Sort data by GroupVariables, CalendarDate and then by CohortPeriodsVariable ----") x <- system.time(gcFirst = FALSE, data.table::setorderv(data, cols = c(GroupVariables, CalendarDate, CohortPeriodsVariable), rep(1L, length(c(GroupVariables, CalendarDate, CohortPeriodsVariable))))) if(proc %chin% c("evaluate","eval","evaluation")) { data.table::set(TimerDataEval, i = 5L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 5L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 5L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 5L, j = "Process", value = " } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) if(DebugMode) print("FE: AutoLagRollStats() ConversionMeasure with CalendarDate as a Grouping Variable ----") if(proc %in% c("evaluate","evaluation","eval","train","training")) { x <- system.time(gcFirst = FALSE, data <- RemixAutoML::AutoLagRollStats( data = data, DateColumn = CohortDate, Targets = c(ConversionMeasure, ConversionRateMeasure), HierarchyGroups = NULL, IndependentGroups = paste0("Temp_", CalendarDate), TimeUnit = TimeUnit, TimeGroups = CohortTimeGroups, TimeUnitAgg = TimeUnit, TimeBetween = NULL, RollOnLag1 = TRUE, Type = "Lag", SimpleImpute = FALSE, Lags = CohortLags, MA_RollWindows = CohortMovingAverages, SD_RollWindows = CohortStandardDeviations, Skew_RollWindows = CohortSkews, Kurt_RollWindows = CohortKurts, Quantile_RollWindows = CohortQuantiles, Quantiles_Selected = CohortQuantilesSelected, Debug = FALSE)) if(proc %chin% c("evaluate","eval")) { data.table::set(TimerDataEval, i = 7L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 7L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 7L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 7L, j = "Process", value = " } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) } if(DebugMode) print("FE: AutoLagRollStats() CohortDate HolidayCounts with CalendarDate as a Grouping Variable ----") if(proc %in% c("evaluate","evaluation","eval","train","training") && !is.null(CohortHolidayLags)) { x <- system.time(gcFirst = FALSE, data <- RemixAutoML::AutoLagRollStats( data = data, DateColumn = CohortDate, Targets = paste0(CohortDate, "HolidayCounts"), HierarchyGroups = NULL, IndependentGroups = paste0("Temp_", CalendarDate), TimeUnit = TimeUnit, TimeGroups = TimeUnit, TimeUnitAgg = TimeUnit, TimeBetween = NULL, RollOnLag1 = TRUE, Type = "Lag", SimpleImpute = FALSE, Lags = CohortHolidayLags, MA_RollWindows = CohortHolidayMovingAverages, SD_RollWindows = NULL, Skew_RollWindows = NULL, Kurt_RollWindows = NULL, Quantile_RollWindows = NULL, Quantiles_Selected = NULL, Debug = FALSE)) if(proc %chin% c("evaluate","eval")) { data.table::set(TimerDataEval, i = 7L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 7L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 7L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 7L, j = "Process", value = " } x <- system.time(gcFirst = FALSE, data.table::set(data, j = eval(CalendarDate), value = as.Date(data[[eval(CalendarDate)]]))) if(proc %chin% c("evaluate","eval")) { data.table::set(TimerDataEval, i = 8L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 8L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 8L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 8L, j = "Process", value = " } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) } if(DebugMode) print("FE: AutoLagRollStats() BaseFunnelMeasure OVER CalendarDate ----") if(proc %chin% c("evaluate","evaluation","eval","training","train")) { for(bfm in seq_along(BaseFunnelMeasure)) { if("GroupVar" %chin% names(data)) { temp <- data[, lapply(.SD, data.table::first), .SDcols = c(BaseFunnelMeasure[bfm]), by = c("GroupVar", eval(CalendarDate))] } else { temp <- data[, lapply(.SD, data.table::first), .SDcols = c(BaseFunnelMeasure[bfm]), by = c(eval(CalendarDate))] } x <- system.time(gcFirst = FALSE, temp <- RemixAutoML::AutoLagRollStats( data = temp, DateColumn = CalendarDate, Targets = BaseFunnelMeasure[bfm], HierarchyGroups = NULL, IndependentGroups = if(!"GroupVar" %chin% names(temp)) NULL else "GroupVar", TimeGroups = CalendarTimeGroups, TimeUnitAgg = TimeUnit, TimeUnit = TimeUnit, TimeBetween = NULL, RollOnLag1 = TRUE, Type = "Lag", SimpleImpute = FALSE, Lags = CalendarLags, MA_RollWindows = CalendarMovingAverages, SD_RollWindows = CalendarStandardDeviations, Skew_RollWindows = CalendarSkews, Kurt_RollWindows = CalendarKurts, Quantile_RollWindows = CalendarQuantiles, Quantiles_Selected = CalendarQuantilesSelected, Debug = FALSE)) if(proc %chin% c("evaluate","eval")) { data.table::set(TimerDataEval, i = 9L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 9L, j = "Process", value = paste0(" } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 9L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 9L, j = "Process", value = paste0(" } if("GroupVar" %chin% names(data)) { data.table::setkeyv(temp, c("GroupVar", CalendarDate)) data.table::setkeyv(data, c("GroupVar", CalendarDate)) } else { data.table::setkeyv(temp, c(CalendarDate)) data.table::setkeyv(data, c(CalendarDate)) } keep <- setdiff(names(temp), names(data)) data[temp, paste0(keep) := mget(paste0("i.", keep))] } } if(DebugMode) print("FE: ModelDataPrep() Impute Numeric Columns from AutoLagRollStats() ----") x <- system.time(gcFirst = FALSE, data <- RemixAutoML::ModelDataPrep( data = data, Impute = TRUE, CharToFactor = FALSE, FactorToChar = FALSE, IntToNumeric = TRUE, DateToChar = FALSE, RemoveDates = FALSE, MissFactor = "0", MissNum = ImputeRollStats, IgnoreCols = NULL)) if(proc %chin% c("evaluate","eval","evaluation")) { data.table::set(TimerDataEval, i = 10L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 10L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 10L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 10L, j = "Process", value = " } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) x <- system.time(gcFirst = FALSE, if(SaveModelObjects) data.table::fwrite(data, file = file.path(MetaDataPath, paste0(ModelID, "_ModelDataReady.csv")))) if(proc %chin% c("evaluate","eval")) { data.table::set(TimerDataEval, i = 12L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 12L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 12L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 12L, j = "Process", value = " } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) if(!exists("data")) data <- data.table::fread(file = file.path(MetaDataPath, paste0(ModelID, "_ModelDataReady.csv"))) if(proc %chin% c("evaluate","eval")) { data.table::set(TimerDataEval, i = 13L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 13L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 13L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 13L, j = "Process", value = " } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) if(!all(class(data[[eval(CohortPeriodsVariable)]]) %chin% "numeric")) data[, eval(CohortPeriodsVariable) := as.numeric(as.character(get(CohortPeriodsVariable)))] if(!all(class(data[[eval(CalendarDate)]]) %chin% "Date")) data[, eval(CalendarDate) := as.Date(get(CalendarDate))] if(!all(class(data[[eval(CohortDate)]]) %chin% "Date")) data[, eval(CohortDate) := as.Date(get(CohortDate))] if(!is.null(TruncateDate)) data <- data[get(CalendarDate) >= eval(TruncateDate)] if(DebugMode) print("DM: Partition Data ----") if(proc %chin% c("evaluate","eval","evaluation")) { x <- system.time(gcFirst = FALSE, DataSets <- RemixAutoML::AutoDataPartition( data = data, NumDataSets = 3L, Ratios = PartitionRatios, PartitionType = "random", StratifyColumnNames = if("GroupVar" %chin% names(data)) "GroupVar" else NULL, TimeColumnName = NULL)) data.table::set(TimerDataEval, i = 15L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 15L, j = "Process", value = " TrainData <- DataSets$TrainData ValidationData <- DataSets$ValidationData TestData <- DataSets$TestData rm(DataSets) } if(DebugMode) print("ML: LightGBMRegression() ----") if(proc %chin% c("evaluate","eval","training","train")) { if(proc %chin% c("evaluate","eval")) { Features <- names(TrainData)[!names(TrainData) %chin% c(eval(CalendarDate),eval(CohortDate),eval(ConversionMeasure),eval(ConversionRateMeasure),paste0("Temp_", CalendarDate),paste0("Temp_", CohortPeriodsVariable))] idcols <- names(TrainData)[!names(TrainData) %in% c(Features, ConversionMeasure, ConversionRateMeasure)] if(ModelID %chin% names(TrainData)) Features <- Features[!Features %chin% ModelID] } else { Features <- names(data)[!names(data) %chin% c(eval(CalendarDate),eval(CohortDate),eval(ConversionMeasure),eval(ConversionRateMeasure),paste0("Temp_", CalendarDate),paste0("Temp_", CohortPeriodsVariable))] idcols <- names(data)[!names(data) %in% c(Features, ConversionMeasure, ConversionRateMeasure)] if(ModelID %chin% names(data)) Features <- Features[!Features %chin% ModelID] } if(proc %chin% c("eval","evaluation","evaluate")) NTrees <- Trees x <- system.time(gcFirst = FALSE, TestModel <- RemixAutoML::AutoXGBoostRegression( ModelID = paste0(ModelID,"_", proc, "_"), model_path = ModelPath, metadata_path = MetaDataPath, SaveModelObjects = FALSE, ReturnModelObjects = TRUE, NThreads = NThreads, WeightsColumnName = WeightsColumnName, OutputSelection = OutputSelection, DebugMode = DebugMode, SaveInfoToPDF = FALSE, ReturnFactorLevels = TRUE, EncodingMethod = EncodingMethod, data = if(proc %chin% c("eval", "evaluate")) TrainData else data, TrainOnFull = if(proc %chin% c("eval", "evaluate")) FALSE else TRUE, ValidationData = if(proc %chin% c("eval", "evaluate")) ValidationData else NULL, TestData = if(proc %chin% c("eval", "evaluate")) TestData else NULL, TargetColumnName = ConversionRateMeasure, FeatureColNames = Features, PrimaryDateColumn = CohortDate, IDcols = idcols, TransformNumericColumns = NULL, Methods = TransformMethods, NumOfParDepPlots = NumOfParDepPlots, PassInGrid = PassInGrid, GridTune = GridTune, MaxModelsInGrid = MaxModelsInGrid, MaxRunsWithoutNewWinner = MaxRunsWithoutNewWinner, MaxRunMinutes = MaxRunMinutes, BaselineComparison = BaselineComparison, grid_eval_metric = GridEvalMetric, eval_metric = EvalMetric, LossFunction = LossFunction, TreeMethod = TreeMethod, Trees = NTrees, eta = LearningRate, max_depth = MaxDepth, min_child_weight = MinChildWeight, subsample = SubSample, colsample_bytree = ColSampleByTree)) if(SaveModelObjects) { if(proc %chin% c("evaluate","eval","evaluation")) { data.table::set(TimerDataEval, i = 16L, j = "Time", value = x[[3L]]) data.table::set(TimerDataEval, i = 16L, j = "Process", value = " } else if(proc %chin% c("training","train")) { data.table::set(TimerDataTrain, i = 16L, j = "Time", value = x[[3L]]) data.table::set(TimerDataTrain, i = 16L, j = "Process", value = " } } if(proc %chin% c("eval","evaluate")) { TreeCount <- TestModel$Model$niter if(!is.null(Trees)) NTrees <- TreeCount else NTrees <- Trees ArgsList[["Trees"]] <- NTrees } else { NTrees <- Trees } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) TestModel[["TransformationResults"]] <- TransformObject if(SaveModelObjects) { if(proc %chin% c("evaluate","eval","evaluation")) { save(TestModel, file = file.path(ModelPath, paste0(ModelID, "_Evaluation.Rdata"))) } else if(proc %chin% c("training","train")) { save(TestModel, file = file.path(ModelPath, paste0(ModelID, "_FinalTrain.Rdata"))) } } if(proc %chin% c("evaluate","eval","evaluation")) { rm(TestModel) } else { for(zz in names(TestModel)) { if(!zz %chin% c("Model", "ColNames", "TransformationResults", "FactorLevelsList")) { TestModel[[zz]] <- NULL } } } gc() } SaveTimers(SaveModelObjectss = SaveModelObjects, procs = proc, TimerDataEvals = TimerDataEval, TimerDataTrains = TimerDataTrain, MetaDataPaths = MetaDataPath, ModelIDs = ModelID) } if(SaveModelObjects) save(ArgsList, file = file.path(ModelPath, paste0(ModelID, "_ArgsList.Rdata"))) return(list(ModelOutput = TestModel, ArgsList = ArgsList)) } AutoXGBoostFunnelCARMAScoring <- function(TrainData, ForwardLookingData = NULL, TrainEndDate = NULL, ForecastEndDate = NULL, ArgsList = NULL, TrainOutput = NULL, ModelPath = NULL, MaxCohortPeriod = NULL, DebugMode = FALSE) { if(!is.null(TrainOutput)) { for(zz in seq_along(TrainOutput)) if(!names(TrainOutput)[zz] %chin% c("Model", "ColNames", "TransformationResults", "FactorLevelsList")) TrainOutput[[zz]] <- NULL } options(warn = -1) TrainData <- ModelDataPrep(data=TrainData, Impute=FALSE, CharToFactor=FALSE, FactorToChar=FALSE, IntToNumeric=FALSE, LogicalToBinary=FALSE, DateToChar=FALSE, IDateConversion=TRUE, RemoveDates=FALSE, MissFactor="0", MissNum=-1, IgnoreCols=NULL) ForwardLookingData <- ModelDataPrep(data = ForwardLookingData, Impute=FALSE, CharToFactor=FALSE, FactorToChar=FALSE, IntToNumeric=FALSE, LogicalToBinary=FALSE, DateToChar=FALSE, IDateConversion=TRUE, RemoveDates=FALSE, MissFactor="0", MissNum=-1, IgnoreCols=NULL) if(DebugMode) print("Forecasting start and end periods ----") if(is.null(TrainEndDate)) TrainEndDate <- TrainData[, max(get(ArgsList$CalendarDate), na.rm = TRUE)] if(is.null(ForecastEndDate)) ForecastEndDate <- ForwardLookingData[, max(get(ArgsList$CalendarDate), na.rm = TRUE)] if(DebugMode) print("DE: Add GroupVar ----") if(!is.null(ArgsList[["GroupVar"]])) { TrainData[, paste0("Temp_", ArgsList$CohortPeriodsVariable) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables, ArgsList$CohortPeriodsVariable)] TrainData[, paste0("Temp_", ArgsList$CalendarDate) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables, ArgsList$CalendarDate)] TrainData[, GroupVar := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables)] } else { TrainData[, paste0("Temp_", ArgsList$CohortPeriodsVariable) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$CohortPeriodsVariable)] TrainData[, paste0("Temp_", ArgsList$CalendarDate) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$CalendarDate)] } if(DebugMode) print('Feature Engineering: Add Target Transformation ----') if(ArgsList$TransformTargetVariable) { TrainData <- AutoTransformationScore(ScoringData = TrainData, FinalResults = TrainOutput$TransformationResults[ColumnName == eval(ArgsList$ConversionMeasure)], Type = "Apply") LeadsData <- AutoTransformationScore(ScoringData = LeadsData, FinalResults = TrainOutput$TransformationResults[ColumnName == eval(ArgsList$BaseFunnelMeasure[1L])], Type = "Apply") } FC_Period <- 0L while(TrainEndDate < ForecastEndDate) { IterationStart <- Sys.time() if(DebugMode) print("Increment FC_Period ----") FC_Period <- FC_Period + 1L for(bla in seq_len(5L)) print(paste0("Working on Forecast for period: ", FC_Period, " ::: Periods left to forecast: ", difftime(ForecastEndDate, TrainEndDate))) if(DebugMode) print("Convert to date ----") if(!all(class(TrainData[[eval(ArgsList$CalendarDate)]]) %chin% "Date")) TrainData[, eval(ArgsList$CalendarDate) := as.Date(get(ArgsList$CalendarDate))] if(!all(class(TrainData[[eval(ArgsList$CohortDate)]]) != "Date")) TrainData[, eval(ArgsList$CohortDate) := as.Date(get(ArgsList$CohortDate))] if(DebugMode) print("Add indicator variable for AutoLagRollStatsScoring() so it knows what to score and what not to. A value of 1 indicates that the record should be scored. All others are not scored----") TrainData[, ScoreRecords := 2] if(DebugMode) print("Type conversion ----") if(class(TrainData[[eval(ArgsList$CohortPeriodsVariable)]]) == "factor") TrainData[, eval(ArgsList$CohortPeriodsVariable) := as.numeric(as.character(get(ArgsList$CohortPeriodsVariable)))] if(DebugMode) print("Create single future value for all cohorts ----") maxct <- TrainData[, list(max(get(ArgsList$CohortPeriodsVariable)), data.table::first(ScoreRecords)), by = c(ArgsList$GroupVariables, ArgsList$CalendarDate)] data.table::setnames(maxct, c("V1","V2"), c(ArgsList$CohortPeriodsVariable, "ScoreRecords")) maxct[, eval(ArgsList$CohortPeriodsVariable) := get(ArgsList$CohortPeriodsVariable) + 1L] maxct[, eval(ArgsList$CohortDate) := as.Date(get(ArgsList$CalendarDate)) + lubridate::days(get(ArgsList$CohortPeriodsVariable))] data.table::setkeyv(maxct, cols = c(ArgsList$GroupVariables, ArgsList$CalendarDate)) if(!is.null(ArgsList[["GroupVar"]])) { maxct[, paste0("Temp_", ArgsList$CohortPeriodsVariable) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables, ArgsList$CohortPeriodsVariable)] maxct[, paste0("Temp_", ArgsList$CalendarDate) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables, ArgsList$CalendarDate)] maxct[, GroupVar := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables)] } else { maxct[, paste0("Temp_", ArgsList$CohortPeriodsVariable) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$CohortPeriodsVariable)] maxct[, paste0("Temp_", ArgsList$CalendarDate) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$CalendarDate)] } if(DebugMode) print("DE: Subset TrainData and update TrainData ----") ForwardLookingData <- ForwardLookingData[get(ArgsList$CalendarDate) > max(maxct[[eval(ArgsList$CalendarDate)]])] if(!is.null(ArgsList$GroupVariables)) { NextFCPeriod <- ForwardLookingData[get(ArgsList$CalendarDate) == min(get(ArgsList$CalendarDate))] } else { NextFCPeriod <- ForwardLookingData[1L] } NextFCPeriod[, eval(ArgsList$CalendarDate) := as.Date(get(ArgsList$CalendarDate))] NextFCPeriod[, eval(ArgsList$CohortDate) := as.Date(get(ArgsList$CalendarDate))] NextFCPeriod[, ScoreRecords := 1] NextFCPeriod[, eval(ArgsList$CohortPeriodsVariable) := 0] NextFCPeriod[, eval(ArgsList$ConversionRateMeasure) := 0.0] if(!is.null(ArgsList[["GroupVar"]])) { NextFCPeriod[, paste0("Temp_", ArgsList$CohortPeriodsVariable) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables, ArgsList$CohortPeriodsVariable)] NextFCPeriod[, paste0("Temp_", ArgsList$CalendarDate) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables, ArgsList$CalendarDate)] NextFCPeriod[, GroupVar := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables)] } else { NextFCPeriod[, paste0("Temp_", ArgsList$CohortPeriodsVariable) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$CohortPeriodsVariable)] NextFCPeriod[, paste0("Temp_", ArgsList$CalendarDate) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$CalendarDate)] } if(!is.null(ArgsList$GroupVariables)) { temp <- data.table::copy(NextFCPeriod) temp <- temp[, .SD, .SDcols = c(ArgsList$GroupVariables, ArgsList$CalendarDate, ArgsList$BaseFunnelMeasure)] ForwardLookingData <- data.table::fsetdiff(x = ForwardLookingData, y = temp) } else { ForwardLookingData <- ForwardLookingData[2L:.N] } if(DebugMode) print("DE: Merge BaseFunnelMeasures to TrainData if they aren't in there ----") if(!all(ArgsList$BaseFunnelMeasure %chin% names(TrainData))) { data.table::setkeyv(x = TrainData, c(ArgsList$GroupVariables, ArgsList$CalendarDate)) data.table::setkeyv(x = LeadsData, c(ArgsList$GroupVariables, ArgsList$CalendarDate)) TrainData[LeadsData, eval(ArgsList$BaseFunnelMeasure) := mget(paste0("i.", ArgsList$BaseFunnelMeasure))] } if(DebugMode) print("DE: Aggregate Data ----") temp <- TrainData[, lapply(.SD, data.table::first), .SDcols = c(ArgsList$BaseFunnelMeasure), keyby = c(ArgsList$GroupVariables, ArgsList$CalendarDate)] if(DebugMode) print("Merge TrainData ----") if(!any(class(temp[[ArgsList$CalendarDate]]) %chin% "Date")) temp[, eval(ArgsList$CalendarDate) := as.Date(get(ArgsList$CalendarDate))] maxct[temp, eval(ArgsList$BaseFunnelMeasure) := mget(paste0("i.", ArgsList$BaseFunnelMeasure))] maxct[, eval(ArgsList$ConversionMeasure) := 0] maxct[, eval(ArgsList$ConversionRateMeasure) := 0] maxct[, ScoreRecords := 1] if(!is.null(ArgsList[["GroupVar"]])) { maxct[, paste0("Temp_", ArgsList$CohortPeriodsVariable) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables, ArgsList$CohortPeriodsVariable)] maxct[, paste0("Temp_", ArgsList$CalendarDate) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables, ArgsList$CalendarDate)] maxct[, GroupVar := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$GroupVariables)] } else { maxct[, paste0("Temp_", ArgsList$CohortPeriodsVariable) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$CohortPeriodsVariable)] maxct[, paste0("Temp_", ArgsList$CalendarDate) := do.call(paste, c(.SD, sep = ' ')), .SDcols = c(ArgsList$CalendarDate)] } maxct <- data.table::rbindlist(list(maxct, NextFCPeriod), use.names = TRUE, fill = TRUE) for(xxxx in seq_len(ncol(maxct))) data.table::set(maxct, i = which(is.na(maxct[[xxxx]])), j = xxxx, value = 0) if(DebugMode) print("DE: Remove CohortPeriods beyond MaxCohortPeriod ----") maxct <- maxct[get(ArgsList$CohortPeriodsVariable) <= MaxCohortPeriod] ScoreDate <- maxct[, max(get(ArgsList$CalendarDate))] if(DebugMode) print("DE: Stack onto modeling TrainData for ArgsList$ModelID ----") TrainData <- data.table::rbindlist(list(TrainData, maxct), fill = TRUE, use.names = TRUE) TrainData[, eval(ArgsList$ConversionRateMeasure) := data.table::fifelse(get(ArgsList$BaseFunnelMeasure[1L]) == 0, 0, get(ArgsList$ConversionMeasure) / get(ArgsList$BaseFunnelMeasure[1L]))] rm(maxct) if(DebugMode) print("FE: Calendar & Holiday Variables ----") TrainData <- RemixAutoML::CreateCalendarVariables(TrainData, DateCols = c(eval(ArgsList$CalendarDate)), AsFactor = FALSE, TimeUnits = ArgsList$CalendarVariables) TrainData <- RemixAutoML::CreateCalendarVariables(TrainData, DateCols = c(eval(ArgsList$CohortDate)), AsFactor = FALSE, TimeUnits = ArgsList$CalendarVariables) TrainData <- RemixAutoML::CreateHolidayVariables(TrainData, DateCols = c(ArgsList$CalendarDate), LookbackDays = if(!is.null(ArgsList$HolidayLookback)) ArgsList$HolidayLookback else LB(ArgsList$TimeUnit), HolidayGroups = ArgsList$HolidayGroups, Holidays = NULL, Print = FALSE) data.table::setnames(TrainData, old = "HolidayCounts", new = paste0(ArgsList$CalendarDate,"HolidayCounts")) TrainData <- RemixAutoML::CreateHolidayVariables(TrainData, DateCols = c(ArgsList$CohortDate), LookbackDays = if(!is.null(ArgsList$HolidayLookback)) ArgsList$HolidayLookback else LB(ArgsList$TimeUnit), HolidayGroups = ArgsList$HolidayGroups, Holidays = NULL, Print = FALSE) data.table::setnames(TrainData, old = "HolidayCounts", new = paste0(ArgsList$CohortDate,"HolidayCounts")) data.table::setorderv(TrainData, cols = c(ArgsList$CalendarDate,eval(ArgsList$CohortPeriodsVariable)), c(1L, 1L)) if(DebugMode) print("Add Anomaly detection zeros ----") if(!is.null(ArgsList[["AnomalyDetection"]])) TrainData[, ":=" (AnomHigh = 0, AnomLow = 0)] if(DebugMode) print("FE: ConversionMeasure OVER CohortDate ----") temp <- data.table::copy(TrainData) data.table::set(temp, j = ArgsList$CalendarDate, value = as.character(temp[[ArgsList$CalendarDate]])) temp <- RemixAutoML::AutoLagRollStatsScoring( data = temp, DateColumn = ArgsList$CohortDate, Targets = c(ArgsList$ConversionMeasure, ArgsList$ConversionRateMeasure), RowNumsID = "ScoreRecords", RowNumsKeep = 1, HierarchyGroups = NULL, IndependentGroups = paste0("Temp_", ArgsList$CalendarDate), TimeUnit = ArgsList$TimeUnit, TimeGroups = ArgsList$CohortTimeGroups, TimeUnitAgg = ArgsList$TimeUnit, TimeBetween = NULL, RollOnLag1 = TRUE, Type = "Lag", SimpleImpute = TRUE, Lags = ArgsList$CohortLags, MA_RollWindows = ArgsList$CohortMovingAverages, SD_RollWindows = ArgsList$CohortStandardDeviations, Skew_RollWindows = ArgsList$CohortSkews, Kurt_RollWindows = ArgsList$Kurts, Quantile_RollWindows = ArgsList$Quantiles, Quantiles_Selected = ArgsList$CohortQuantilesSelected, Debug = TRUE) temp[, eval(ArgsList$CalendarDate) := as.Date(get(ArgsList$CalendarDate))] data.table::setkeyv(temp, c(ArgsList$GroupVariables, ArgsList$CalendarDate)) data.table::setkeyv(TrainData, c(ArgsList$GroupVariables, ArgsList$CalendarDate)) TrainData[temp, paste0(setdiff(names(temp), names(TrainData))) := mget(paste0("i.", setdiff(names(temp), names(TrainData))))] rm(temp) if(DebugMode) print("FE: CohortDateHolidayCounts OVER CohortDate ----") temp <- data.table::copy(TrainData) data.table::set(temp, j = eval(ArgsList$CalendarDate), value = as.character(temp[[eval(ArgsList$CalendarDate)]])) temp <- RemixAutoML::AutoLagRollStatsScoring( data = temp, DateColumn = ArgsList$CohortDate, Targets = paste0(ArgsList$CohortDate,"HolidayCounts"), RowNumsID = "ScoreRecords", RowNumsKeep = 1, HierarchyGroups = NULL, IndependentGroups = paste0("Temp_", ArgsList$CalendarDate), TimeUnit = ArgsList$TimeUnit, TimeGroups = ArgsList$TimeUnit, TimeUnitAgg = ArgsList$TimeUnit, TimeBetween = NULL, RollOnLag1 = TRUE, Type = "Lag", SimpleImpute = TRUE, Lags = ArgsList$CohortHolidayLags, MA_RollWindows = ArgsList$CohortHolidayMovingAverages, SD_RollWindows = NULL, Skew_RollWindows = NULL, Kurt_RollWindows = NULL, Quantile_RollWindows = NULL, Quantiles_Selected = NULL, Debug = TRUE) temp[, eval(ArgsList$CalendarDate) := as.Date(get(ArgsList$CalendarDate))] data.table::setkeyv(temp, c(ArgsList$GroupVariables, ArgsList$CalendarDate)) TrainData[temp, paste0(setdiff(names(temp), names(TrainData))) := mget(paste0("i.", setdiff(names(temp), names(TrainData))))] rm(temp) if(DebugMode) print("FE: BaseFunnelMeasure OVER CalendarDate ----") for(bfm in seq_along(ArgsList$BaseFunnelMeasure)) { if("GroupVar" %chin% names(TrainData)) { temp <- TrainData[, lapply(.SD, data.table::first), .SDcols = c(ArgsList$BaseFunnelMeasure[bfm]), by = c("GroupVar", eval(ArgsList$CalendarDate))] } else { temp <- TrainData[, lapply(.SD, data.table::first), .SDcols = c(ArgsList$BaseFunnelMeasure[bfm]), by = c(eval(ArgsList$CalendarDate))] } temp[, ScoreRecords := data.table::fifelse(get(ArgsList$CalendarDate) == eval(ScoreDate), 1, 2)] if(!any(class(temp[[ArgsList$CalendarDate]]) %chin% "Date")) data.table::set(temp, j = eval(ArgsList$CalendarDate), value = as.Date(temp[[eval(ArgsList$CalendarDate)]])) temp <- RemixAutoML::AutoLagRollStatsScoring( data = temp, DateColumn = ArgsList$CalendarDate, Targets = ArgsList$BaseFunnelMeasure[bfm], HierarchyGroups = NULL, IndependentGroups = if(!"GroupVar" %chin% names(temp)) NULL else "GroupVar", TimeGroups = ArgsList[["CalendarTimeGroups"]], TimeUnit = ArgsList[["TimeUnit"]], TimeUnitAgg = ArgsList[["TimeUnit"]], RowNumsID = "ScoreRecords", RowNumsKeep = 1, TimeBetween = NULL, RollOnLag1 = TRUE, Type = "Lag", SimpleImpute = TRUE, Lags = ArgsList[["CalendarLags"]], MA_RollWindows = ArgsList[["CalendarMovingAverages"]], SD_RollWindows = ArgsList[["CalendarStandardDeviations"]], Skew_RollWindows = ArgsList[["CalendarSkews"]], Kurt_RollWindows = ArgsList[["CalendarKurts"]], Quantile_RollWindows = ArgsList[["CalendarQuantiles"]], Quantiles_Selected = ArgsList[["CalendarQuantilesSelected"]], Debug = TRUE) temp[, eval(ArgsList$CalendarDate) := as.Date(get(ArgsList$CalendarDate))] if("GroupVar" %chin% names(temp)) { data.table::setkeyv(temp, c("GroupVar", ArgsList$CalendarDate)) data.table::setkeyv(TrainData, c("GroupVar", ArgsList$CalendarDate)) } else { data.table::setkeyv(temp, ArgsList$CalendarDate) data.table::setkeyv(TrainData, ArgsList$CalendarDate) } TrainData[temp, paste0(setdiff(names(temp), names(TrainData))) := mget(paste0("i.", setdiff(names(temp), names(TrainData))))] rm(temp) } if(DebugMode) print("DE: Model data prep ----") TrainData <- RemixAutoML::ModelDataPrep( data = TrainData, Impute = TRUE, CharToFactor = FALSE, FactorToChar = FALSE, IntToNumeric = TRUE, DateToChar = FALSE, RemoveDates = FALSE, MissFactor = "0", MissNum = ArgsList$ImputeRollStats, IgnoreCols = NULL) if(DebugMode) print("DE: Type Change: CorhortDaysOut as numeric and the dates as Dates ----") if(!all(class(TrainData[[ArgsList$CohortPeriodsVariable]]) %chin% "numeric")) TrainData[, eval(ArgsList$CohortPeriodsVariable) := as.numeric(as.character(get(ArgsList$CohortPeriodsVariable)))] if(!all(class(TrainData[[ArgsList$CalendarDate]]) %chin% "Date")) TrainData[, eval(ArgsList$CalendarDate) := as.Date(get(ArgsList$CalendarDate))] if(!all(class(TrainData[[ArgsList$CohortDate]]) %chin% "Date")) TrainData[, eval(ArgsList$CohortDate) := as.Date(get(ArgsList$CohortDate))] if(is.null(TrainOutput) && FC_Period == 1L) load(file = file.path(normalizePath(eval(ArgsList$ModelPath)), paste0(ArgsList$ModelID, "_FinalTrain.Rdata"))) if(DebugMode) print("ML: Score Model ----") temp1 <- data.table::copy(TrainData) temp <- temp1[ScoreRecords == 1] Features <- TrainOutput$ColNames[[1L]] temp <- RemixAutoML::AutoXGBoostScoring( FactorLevelsList = TrainOutput$FactorLevelsList, TargetType = "regression", ScoringData = temp, FeatureColumnNames = Features, IDcols = names(temp)[!names(temp) %chin% Features], EncodingMethod = ArgsList$EncodingMethod, ReturnShapValues = FALSE, ModelObject = TrainOutput$Model, ModelPath = if(is.null(TrainOutput)) ArgsList$ModelPath else NULL, ModelID = ArgsList$ModelID, ReturnFeatures = FALSE, TransformNumeric = FALSE, BackTransNumeric = FALSE, TargetColumnName = "Rate", TransformationObject = TestModel$TransformationResults, TransID = NULL, TransPath = NULL, MDP_Impute = FALSE, MDP_CharToFactor = FALSE, MDP_RemoveDates = TRUE, MDP_MissFactor = "0", MDP_MissNum = -1) if(DebugMode) print("DE: Update forecast TrainData ----") temp1[ScoreRecords == 1, eval(ArgsList$ConversionRateMeasure) := temp[which(Predictions < 0), Predictions := 0][[1L]]] temp1[ScoreRecords == 1, eval(ArgsList$ConversionMeasure) := get(ArgsList$ConversionRateMeasure) * get(ArgsList$BaseFunnelMeasure[1L])] if(!is.null(ArgsList$GroupVariables)) { temp1 <- temp1[ScoreRecords == 1, .SD, .SDcols = c("GroupVar", eval(ArgsList$GroupVariables), eval(ArgsList$CalendarDate),eval(ArgsList$CohortDate),eval(ArgsList$CohortPeriodsVariable),eval(ArgsList$BaseFunnelMeasure),eval(ArgsList$ConversionMeasure),eval(ArgsList$ConversionRateMeasure))] TrainData <- data.table::rbindlist(list(TrainData[ScoreRecords != 1, .SD, .SDcols = c("GroupVar", eval(ArgsList$GroupVariables), eval(ArgsList$CalendarDate),eval(ArgsList$CohortDate),eval(ArgsList$CohortPeriodsVariable),eval(ArgsList$BaseFunnelMeasure),eval(ArgsList$ConversionMeasure),eval(ArgsList$ConversionRateMeasure))], temp1), fill = TRUE, use.names = TRUE) } else { temp1 <- temp1[ScoreRecords == 1, .SD, .SDcols = c(eval(ArgsList$CalendarDate),eval(ArgsList$CohortDate),eval(ArgsList$CohortPeriodsVariable),eval(ArgsList$BaseFunnelMeasure),eval(ArgsList$ConversionMeasure),eval(ArgsList$ConversionRateMeasure))] TrainData <- data.table::rbindlist(list(TrainData[ScoreRecords != 1, .SD, .SDcols = c(eval(ArgsList$CalendarDate),eval(ArgsList$CohortDate),eval(ArgsList$CohortPeriodsVariable),eval(ArgsList$BaseFunnelMeasure),eval(ArgsList$ConversionMeasure),eval(ArgsList$ConversionRateMeasure))], temp1), fill = TRUE, use.names = TRUE) } if(!is.null(ModelPath)) data.table::fwrite(TrainData, file = file.path(ArgsList$ModelPath, paste0(ArgsList$ModelID, "_Forecasts.csv"))) TrainEndDate <- TrainData[, max(get(ArgsList$CalendarDate))] IterationEnd <- Sys.time() for(ggg in 1:5) print(difftime(time1 = IterationEnd, time2 = IterationStart, units = "secs")) } if(ArgsList$TransformTargetVariable) { TrainData <- AutoTransformationScore(ScoringData=TrainData, FinalResults=TestModel$ModelOutput$TransformationResults, Type='Inverse', TransID=NULL, Path=NULL) TrainData[, eval(ArgsList$ConversionRateMeasure) := data.table::fifelse(get(ArgsList$BaseFunnelMeasure[1L]) == 0, 0, get(ArgsList$ConversionMeasure) / get(ArgsList$BaseFunnelMeasure[1L]))] } options(warn = 1) return(TrainData) }
find_umax <- function(x , alternative = 'two-sided' , t = 0.05 , confidence = 0.95, common.effect = FALSE ){ if(is.numeric(confidence)){ if ( (confidence >= 1) | (confidence <= 0) ) stop("confidence must be a number between 0 - 1.") }else{ stop("confidence must be a number between 0 - 1.") } if (common.effect){ t <- NULL message( "Performing Replicability analysis with the common-effect assumption" ) }else{ if(is.null(t)){ stop("Error: Must specify truncation threshold t <= 1 . For replicability-analysis with common-effect assumption, set common.effect = TRUE ") } if( (t<= 0)|(t>1) ){ stop("Error: Truncation threshold t must be a positive velue < = 1") } if(t == 1 ) message( "Performing Replicability analysis via original-Pearson's test" ) } na.pvs <- all(is.na(x$pval)) na.zvs <- (sum(!is.na(x$zval))==0 ) if ( na.zvs & na.pvs ){ warning('Please supply valid p-values or zvalues.') return( list ( u_max = NULL , worst.case = NULL , side = NULL , r.value = NULL )[c(2,1,3,4)] ) } alpha = (1 - confidence) Do.truncated.umax = ifelse(is.null(t) , F , t < 1 ) Alpha.tilde = ifelse(is.null(t) , 1 , t ) Comb.random = !common.effect chkclass(x, "meta") twoSided <- (alternative == 'two-sided') nstudlab <- sum(!is.na(x$pval)) nstudlab <- ifelse( na.pvs , sum(!is.na(x$zval)) , nstudlab ) pv.greater <- ifelse(common.effect , x$zval.fixed , x$zval.random ) if(!is.na(pv.greater)){ pv.greater <- pnorm( pv.greater , lower.tail = F ) }else{ pv.greater <- ifelse(common.effect , x$pval.fixed , x$pval.random ) TE.sign <- ifelse(common.effect , x$TE.fixed , x$TE.random ) pv.greater <- ifelse(TE.sign > 0 , pv.greater/2 , 1-pv.greater/2) } pv.less <- 1 - pv.greater rvl <- rvg <- 1 ul <- ug <- u_max <- 0 meta_ug <- meta_ul <- meta_ul_last_sig <- meta_ug_last_sig <- NULL if( !common.effect ){ meta_ul_prev <- meta_ug_prev <- NULL if ( alternative != 'greater' ){ u1 <- 1 meta_ul <- metaRvalue.onesided.U(x,u = u1 ,comb.fixed = F , comb.random = T, alternative = 'less', do.truncated.umax = Do.truncated.umax , alpha.tilde = t ) rvl <- meta_ul$pvalue.onesided while( (u1 < nstudlab ) & ( rvl <= alpha / (1 + twoSided )) ){ meta_ul_prev <- meta_ul u1 <- u1 + 1 meta_ul <- metaRvalue.onesided.U(x,u = u1 ,comb.fixed = F , comb.random = T, alternative = 'less', do.truncated.umax = Do.truncated.umax , alpha.tilde = t ) rvl <- meta_ul$pvalue.onesided } ul <- u1 if ( (rvl > alpha / (1 + twoSided )) ){ if(is.null(meta_ul_prev)){ ul <- 0 }else{ rvl <- meta_ul_prev$pvalue.onesided meta_ul <- meta_ul_prev ul <- u1-1 } } u_max <- ul ; names( u_max) <- 'u^L' rvalue <- rvl worst.case.meta <- meta_ul side = 'less' rep.text <- paste0('out of ' , nstudlab , ' studies, ', ul , ' with decreased effect.') } if ( alternative != 'less' ){ u1 <- 1 meta_ug = metaRvalue.onesided.U(x,u = u1 , comb.fixed = F , comb.random = T, alternative = 'greater', do.truncated.umax = Do.truncated.umax , alpha.tilde = t ) rvg <- meta_ug$pvalue.onesided while((u1 < nstudlab )&( rvg <= alpha / (1 + twoSided )) ){ meta_ug_prev <- meta_ug u1 <- u1 + 1 meta_ug <- metaRvalue.onesided.U(x,u = u1 ,comb.fixed = F , comb.random = T, alternative = 'greater', do.truncated.umax = Do.truncated.umax, alpha.tilde = t ) rvg <- meta_ug$pvalue.onesided } ug <- u1 if (rvg > alpha / (1 + twoSided ) ){ if ( is.null(meta_ug_prev) ){ ug <- 0 }else{ rvg <- meta_ug_prev$pvalue.onesided meta_ug <- meta_ug_prev ug <- u1-1 } } u_max <- ug ; names( u_max) <- 'u^R' rvalue <- rvg worst.case.meta <- meta_ug side <- 'greater' rep.text <- paste0('out of ' , nstudlab , ' studies, ' , ug , ' with increased effect.') } if(is.null(rvl)) { rvl <- 1 ; ul <- 0 } if(is.null(rvg)) { rvg <- 1 ; ug <- 0 } names(rvalue) <- 'r^R' if ( alternative == 'two-sided' ){ if( (ul > ug) | ((ul == ug)&(rvl<rvg)) ){ u_max <- ul worst.case.meta <- meta_ul side <- 'less' names(rvalue) <- 'r^L' names( u_max) <- 'u^L' } u_max <- c(u_max , ul , ug ) names(u_max) <- c('u_max' , 'u^L', 'u^R') rvalue <- 2*min( c( rvl, rvg, 0.5 )) rvalue <- c( rvalue , rvl , rvg ) names( rvalue ) <- c( 'r.value' , 'r^L' , 'r^R') rep.text <- paste0('out of ' , nstudlab , ' studies: ', ul , ' with decreased effect, and ', ug , ' with increased effect.') worst.case.meta$pvalue.onesided <- min( c( 0.5 , rvl , rvg) )*2 } names(side) <- 'Direction of the stronger signal' return(list(worst.case = (worst.case.meta$worst.case)$studlab, side = side , u_max = u_max , r.value = round(rvalue,digits = 4) , Replicability_Analysis = unname(rep.text))) } ul <- 0 ; meta_ul <- NULL if ( alternative != 'greater' ){ u1 <- 1 ; u2 <- nstudlab final_ul <- NULL meta_ul_last_sig <- meta_ul <- metaRvalue.onesided.U(x,u = 1 ,comb.fixed = T , comb.random = F, alternative = 'less', do.truncated.umax = F , alpha.tilde = t ) if( pv.less > alpha / (1 + twoSided )) { meta_ul_last_sig <- NULL final_ul <- list(u_max = 0 , worst.case = (meta_ul$worst.case)$studlab, side = 'less' , r.value = meta_ul$pvalue.onesided ) } meta_ul <- metaRvalue.onesided.U(x,u = u2 ,comb.fixed =T , comb.random = F, alternative = 'less', do.truncated.umax = F , alpha.tilde = t) rvl <- meta_ul$pvalue.onesided if(rvl <= alpha / (1 + twoSided )) { final_ul <- list(u_max = u2 , worst.case = (meta_ul$worst.case)$studlab, side = 'less' , r.value = round( rvl ,digits = 4) ) } if ( is.null(final_ul)){ u_mid <- ceiling( (u1 + u2)/2 ) while ( u_mid != u2 ){ meta_ul <- metaRvalue.onesided.U(x,u = u_mid ,comb.fixed = T , comb.random = F, alternative = 'less', do.truncated.umax = F , alpha.tilde = t) if ( meta_ul$pvalue.onesided < alpha / (1 + twoSided ) ){ u1 <- u_mid meta_ul_last_sig <- meta_ul }else{ u2 <- u_mid } u_mid <- ceiling( (u1 + u2)/2 ) } ul <- u1 meta_ul <- meta_ul_last_sig rvl <- meta_ul$pvalue.onesided side <- 'less' rep.text <- paste0('out of ' , nstudlab , ' studies, ', ul , ' with decreased effect.') final_ul <- list(u_max = ul , worst.case = (meta_ul$worst.case)$studlab, side = 'less' , r.value = round( rvl ,digits = 4) , Replicability_Analysis = unname(rep.text) ) } if( alternative == 'less'){ return(final_ul[c(2,1,3:5)]) } } ug <- 0 ; meta_ug <- NULL if ( alternative != 'less' ){ u1 <- 1 ; u2 <- nstudlab final_ug <- NULL meta_ug <- meta_ug_last_sig <- metaRvalue.onesided.U(x,u = 1 ,comb.fixed = T , comb.random = F, alternative = 'greater', do.truncated.umax = F , alpha.tilde = t ) if( pv.greater > alpha / (1 + twoSided )) { meta_ug_last_sig <- NULL final_ug <- list(u_max = 0 , worst.case = (meta_ug$worst.case)$studlab, side = 'greater' , r.value = meta_ug$pvalue.onesided ) } meta_ug = metaRvalue.onesided.U(x,u = u2 ,comb.fixed = T , comb.random = F, alternative = 'greater', do.truncated.umax = F , alpha.tilde = t ) rvg <- meta_ug$pvalue.onesided if(rvg <= alpha / (1 + twoSided )) { final_ug <- list(u_max = u2 , worst.case = (meta_ug$worst.case)$studlab, side = 'greater' , r.value = round( rvg ,digits = 4) ) } if (is.null(final_ug)) { u_mid <- ceiling( (u1 + u2)/2 ) while ( u_mid != u2 ){ meta_ug <- metaRvalue.onesided.U(x,u = u_mid ,comb.fixed = T , comb.random = F, alternative = 'greater', do.truncated.umax = F , alpha.tilde = t ) if ( meta_ug$pvalue.onesided < alpha / (1 + twoSided ) ){ u1 <- u_mid meta_ug_last_sig <- meta_ug }else{ u2 <- u_mid } u_mid <- ceiling( (u1 + u2)/2 ) } ug <- u1 meta_ug <- meta_ug_last_sig rvg <- meta_ug$pvalue.onesided rep.text <- paste0('out of ' , nstudlab , ' studies, ', ug , ' with increased effect.') final_ug <- list(u_max = ug , worst.case = (meta_ug$worst.case)$studlab, side = 'greater' , r.value = round( rvg ,digits = 4) , Replicability_Analysis = unname(rep.text)) } final <- final_ug side = 'greater' if( alternative == 'greater'){ return(final_ug[c(2,1,3:5)]) } } if(is.null(rvl)) { rvl <- 1 ; ul <- 0 } if(is.null(rvg)) { rvg <- 1 ; ug <- 0 } if ( alternative == 'two-sided' ){ if( (ul > ug) | ((ul == ug)&(rvl<rvg)) ){ final <- final_ul side <- 'less' } final$r.value <- round( min( min(rvl,rvg)*2 ,1 ) ,digits = 4) final <- final[c(2,1,3,4)] return(final) } }
add_l2 <- function(data, data_l2, cvar = "case") { for(i in seq_along(data)) { id <- which(data_l2[[cvar]] == names(data)[i]) if (length(id) > 1) { stop("Multiple matches for a casename in the L1 dataset") } if (length(id) == 1) { data[[i]] <- cbind( data[[i]], data_l2[id, -which(names(data_l2) == cvar)], row.names = NULL ) } } data }
drawGroup <- function(xy, center=FALSE, xyTopLeft=TRUE, bb=FALSE, bbMin=FALSE, bbDiag=FALSE, minCirc=FALSE, maxSpread=FALSE, meanDist=FALSE, confEll=FALSE, CEP=FALSE, ringID=FALSE, valueID=TRUE, doRob=FALSE, level=0.95, scaled=TRUE, caliber=9, dstTarget, conversion, unit="unit", alpha=0.5, target) { UseMethod("drawGroup") } drawGroup.data.frame <- function(xy, center=FALSE, xyTopLeft=TRUE, bb=FALSE, bbMin=FALSE, bbDiag=FALSE, minCirc=FALSE, maxSpread=FALSE, meanDist=FALSE, confEll=FALSE, CEP=FALSE, ringID=FALSE, valueID=TRUE, doRob=FALSE, level=0.95, scaled=TRUE, caliber=9, dstTarget, conversion, unit="unit", alpha=0.5, target) { if(missing(dstTarget)) { dstTarget <- if(hasName(xy, "distance")) { xy[["distance"]] } else { NA_real_ } } if(missing(conversion)) { conversion <- determineConversion(xy) } if(missing(target) && hasName(xy, "target") && length(unique(xy[["target"]])) == 1L) { target <- unique(xy[["target"]]) } xy <- getXYmat(xy, xyTopLeft=xyTopLeft, center=center) xyTopLeft <- FALSE center <- FALSE drawGroup(xy=xy, center=center, xyTopLeft=xyTopLeft, bb=bb, bbMin=bbMin, bbDiag=bbDiag, minCirc=minCirc, maxSpread=maxSpread, meanDist=meanDist, confEll=confEll, CEP=CEP, ringID=ringID, valueID=valueID, doRob=doRob, level=level, scaled=scaled, caliber=caliber, dstTarget=dstTarget, conversion=conversion, unit=unit, alpha=alpha, target=target) } drawGroup.default <- function(xy, center=FALSE, xyTopLeft=TRUE, bb=FALSE, bbMin=FALSE, bbDiag=FALSE, minCirc=FALSE, maxSpread=FALSE, meanDist=FALSE, confEll=FALSE, CEP=FALSE, ringID=FALSE, valueID=TRUE, doRob=FALSE, level=0.95, scaled=TRUE, caliber=9, dstTarget, conversion, unit="unit", alpha=0.5, target) { if(!is.matrix(xy)) { stop("xy must be a matrix") } if(!is.numeric(xy)) { stop("xy must be numeric") } if(ncol(xy) != 2L) { stop("xy must have two columns") } if(!is.numeric(caliber)) { stop("caliber must be numeric") } if(caliber <= 0) { stop("caliber must be > 0") } if(!all(is.numeric(level))) { stop("level must be numeric") } if(any(level <= 0)) { stop("level must be > 0") } if(!is.numeric(alpha)) { stop("alpha must be numeric") } if((alpha < 0) || (alpha > 1)) { stop("alpha must be in [0,1]") } if(center) { warning("Centering only works for data frames, ignored here") } unit <- match.arg(tolower(unit), choices=c("unit", "m", "cm", "mm", "yd", "ft", "in", "deg", "moa", "smoa", "rad", "mrad", "mil")) CEP <- as.character(CEP) if(CEP != "FALSE") { CEPtype <- if(CEP != "TRUE") { CEP } else { "CorrNormal" } } levelTo01 <- function(level) { if(level >= 1) { while(level >= 1) { level <- level / 100 } warning(c("level must be in (0,1) and was set to ", level)) } level } level <- vapply(level, levelTo01, numeric(1)) if(missing(dstTarget)) { dstTarget <- NA_real_ } if(missing(conversion)) { conversion <- NA_character_ } haveTarget <- if(missing(target) || is.null(target) || is.na(target) || (tolower(target) == "none")) { FALSE } else { if(length(unique(target)) > 1L) { warning("will use only 1st target") } target <- target[1] TRUE } N <- nrow(xy) if(N < 4L) { haveRob <- FALSE if(doRob) { warning("We need >= 4 points for robust estimations") } } else { haveRob <- TRUE } res <- vector("list", 0) unitDst <- getUnits(conversion, first=TRUE) unitXY <- getUnits(conversion, first=FALSE) if(xyTopLeft) { xy[ , 2] <- -xy[ , 2] } xyNew <- if(unit == "unit") { unitXYnew <- unitXY convFac <- getConvFac(paste0("mm2", unitXYnew)) calSize <- convFac * caliber/2 xy } else if(tolower(unit) %in% c("deg", "moa", "smoa", "rad", "mrad", "mil")) { unitXYnew <- unit calSize <- getMOA(caliber/2, dst=dstTarget, conversion=paste0(unitDst, "2mm"), type=unit) sign(xy) * getMOA(abs(xy), dst=dstTarget, conversion=conversion, type=unit) } else { unitXYnew <- unit convFac <- getConvFac(paste0("mm2", unitXYnew)) calSize <- convFac * caliber/2 xy2xyNew <- getConvFac(paste0(unitXY, "2", unitXYnew)) xy2xyNew * xy } calSize <- unique(calSize) res$xy <- xyNew X <- xyNew[ , 1] Y <- xyNew[ , 2] if(all(is.na(X)) || all(is.na(Y))) { if(nrow(na.omit(xy)) > 0L) { stop("No non-missing coordinates after unit conversion\n Please supply units via 'conversion'") } else { stop("No non-missing coordinates") } } axisLimsX <- numeric(0) axisLimsY <- numeric(0) if(haveRob && doRob) { rob <- robustbase::covMcd(xyNew, cor=FALSE) ctr <- rob$center } else { ctr <- colMeans(xyNew) } res$ctr <- ctr if(bb) { bBox <- getBoundingBox(xyNew) res$bb <- bBox axisLimsX <- c(axisLimsX, bBox$pts[c(1, 3)]) axisLimsY <- c(axisLimsY, bBox$pts[c(2, 4)]) } if(bbMin) { bBoxMin <- getMinBBox(xyNew) res$bbMin <- bBoxMin axisLimsX <- c(axisLimsX, bBoxMin$pts[ , 1]) axisLimsY <- c(axisLimsY, bBoxMin$pts[ , 2]) } if(bbDiag) { if(bb || !any(c(bb, bbMin))) { bBox <- getBoundingBox(xyNew) res$bbDiag <- bBox$diag } if(bbMin) { res$bbMinDiag <- bBoxMin$diag } } if(minCirc) { mCirc <- getMinCircle(xyNew) res$minCirc <- mCirc axisLimsX <- c(axisLimsX, mCirc$ctr[1] + mCirc$rad, mCirc$ctr[1] - mCirc$rad) axisLimsY <- c(axisLimsY, mCirc$ctr[2] + mCirc$rad, mCirc$ctr[2] - mCirc$rad) } if(maxSpread) { maxPD <- getMaxPairDist(xyNew) res$maxPairDist <- maxPD$d } if(meanDist) { meanDstCtr <- mean(getDistToCtr(xyNew)) res$meanDist <- meanDstCtr } if(confEll) { if(doRob && haveRob) { cEll <- lapply(level, function(x) { getConfEll(xyNew, level=x, dstTarget=dstTarget, conversion=conversion, doRob=TRUE) }) cEll <- lapply(cEll, function(x) { x$ctr <- x$ctrRob x$size <- x$sizeRob x }) } else { cEll <- lapply(level, function(x) { getConfEll(xyNew, level=x, dstTarget=dstTarget, conversion=conversion, doRob=FALSE) }) } cEllCopy <- lapply(cEll, function(x) { x$ctrRob <- NULL x$covRob <- NULL x$sizeRob <- NULL x$shapeRob <- NULL x$size <- x$size["unit", ] axisLimsX <- c(axisLimsX, x$ctr[1] + x$size["semi-major"], x$ctr[1] - x$size["semi-major"]) axisLimsY <- c(axisLimsY, x$ctr[2] + x$size["semi-major"], x$ctr[2] - x$size["semi-major"]) x }) res$confEll <- cEllCopy } if(CEP != "FALSE") { CEPres <- getCEP(xyNew, CEPlevel=level, dstTarget=dstTarget, conversion=conversion, type=CEPtype, accuracy=FALSE) res$CEP <- vapply(CEPres$CEP, function(x) { x["unit", CEPtype] }, numeric(1) ) axisLimsX <- c(axisLimsX, vapply(CEPres$CEP, function(x) { c(CEPres$ctr[1] + x["unit", CEPtype], CEPres$ctr[1] - x["unit", CEPtype]) }, numeric(2))) axisLimsY <- c(axisLimsY, vapply(CEPres$CEP, function(x) { c(CEPres$ctr[2] + x["unit", CEPtype], CEPres$ctr[2] - x["unit", CEPtype]) }, numeric(2))) } xLims <- range(c(X, axisLimsX)) yLims <- range(c(Y, axisLimsY)) cols1 <- c(ctr=rgb(255, 0, 255, maxColorValue=255), bb=rgb(228, 26, 28, maxColorValue=255), bbMin=rgb( 55, 126, 184, maxColorValue=255), bbDiag=rgb( 77, 175, 74, maxColorValue=255), bbMinDiag=rgb(152, 78, 163, maxColorValue=255), minCirc=rgb(255, 127, 0, maxColorValue=255), maxSpread=rgb(255, 255, 51, maxColorValue=255), meanDist=rgb(166, 86, 40, maxColorValue=255), confEll=rgb(247, 129, 191, maxColorValue=255), CEP=rgb(153, 153, 153, maxColorValue=255)) cols2 <- c(ctr=rgb(255, 0, 255, maxColorValue=255), bb=rgb(166, 206, 227, maxColorValue=255), bbMin=rgb( 31, 120, 180, maxColorValue=255), bbDiag=rgb(178, 223, 138, maxColorValue=255), bbMinDiag=rgb( 51, 160, 44, maxColorValue=255), minCirc=rgb(251, 154, 153, maxColorValue=255), maxSpread=rgb(227, 26, 28, maxColorValue=255), meanDist=rgb(253, 191, 111, maxColorValue=255), confEll=rgb(255, 127, 0, maxColorValue=255), CEP=rgb(202, 178, 214, maxColorValue=255)) pointCol <- if(haveTarget) { cols <- cols1 trgt <- getTarget(target, unit="cm", dstTarget=dstTarget, conversion=conversion) if(hasName(trgt, "colPt")) { adjustcolor(trgt$colPt, alpha.f=alpha) } else { if(all(is.na(unlist(trgt$inUnit)))) { cols <- cols2 rgb(0, 0, 0, alpha) } else { rgb(1, 1, 1, alpha) } } } else { cols <- cols2 rgb(0, 0, 0, alpha) } legText <- character(0) legCol <- character(0) legLty <- numeric(0) legLwd <- numeric(0) legPch <- numeric(0) dstTargetPlot <- paste(unique(round(na.omit(dstTarget))), collapse=", ") unitXYnew <- unique(unitXYnew) unitXYnewPlot <- paste(na.omit(unitXYnew), collapse=", ") plot(Y ~ X, asp=1, type="n", main="Group (x,y)-coordinates", xlim=xLims, ylim=yLims, sub=paste("distance:", dstTargetPlot, unitDst), xlab=paste0("X [", na.omit(unitXYnew), "]"), ylab=paste0("Y [", na.omit(unitXYnew), "]")) if(haveTarget) { res$target <- drawTarget(target, unit=unitXYnew, dstTarget=dstTarget, conversion=conversion, add=TRUE, cex=1.5) } else { abline(v=0, h=0, col="lightgray") } if(scaled && !is.na(calSize)) { symbols(Y ~ X, asp=1, main="(x,y)-coordinates", add=TRUE, circles=rep(calSize, N), inches=FALSE, fg=rgb(0.3, 0.3, 0.3, alpha), bg=pointCol) } else { points(Y ~ X, pch=20, col=pointCol) } points(ctr[1], ctr[2], col=cols["ctr"], pch=4, lwd=2, cex=2) legText <- c(legText, "center") legCol <- c(legCol, cols["ctr"]) legLty <- c(legLty, NA) legLwd <- c(legLwd, 2) legPch <- c(legPch, 4) if(bb) { drawBox(bBox, fg=cols["bb"], lwd=2) legText <- c(legText, "bounding box") legCol <- c(legCol, cols["bb"]) legLty <- c(legLty, 1) legLwd <- c(legLwd, 2) legPch <- c(legPch, NA) if(valueID) { txtPosW_X <- bBox$pts["xleft"] + 0.15*(bBox$pts["xright"] - bBox$pts["xleft"]) txtPosW_Y <- bBox$pts["ytop"] + strheight("1234") txtPosH_X <- bBox$pts["xleft"] - strheight("1234") txtPosH_Y <- bBox$pts["ybottom"] + 0.85*(bBox$pts["ytop"] - bBox$pts["ybottom"]) text(x=txtPosW_X, y=txtPosW_Y, labels=round(bBox$width, 2), col=cols["bb"], adj=c(0.5, 0.5)) text(x=txtPosH_X, y=txtPosH_Y, labels=round(bBox$height, 2), col=cols["bb"], adj=c(0.5, 0.5), srt=90) } } if(bbMin) { drawBox2(bBoxMin, fg=cols["bbMin"], lwd=2) legText <- c(legText, "min bounding box") legCol <- c(legCol, cols["bbMin"]) legLty <- c(legLty, 1) legLwd <- c(legLwd, 2) legPch <- c(legPch, NA) if(valueID) { dPts <- diff(bBoxMin$pts) idxMax <- which.max(rowSums(dPts^2)) idxMin <- which.min(rowSums(dPts^2)) eMax <- dPts[idxMax, ] eMin <- dPts[idxMin, ] eMaxUp <- eMax * sign(eMax[2]) eMinUp <- eMin * sign(eMin[2]) degMax <- atan2(eMaxUp[2], eMaxUp[1])*180 / pi degMin <- atan2(eMinUp[2], eMinUp[1])*180 / pi ang <- -bBoxMin$angle * pi/180 rotMat <- matrix(c(cos(ang), sin(ang), -sin(ang), cos(ang)), nrow=2) bbMin90 <- t(rotMat %*% t(bBoxMin$pts)) idxMax <- which.max(rowSums(bbMin90^2)) idxMin <- which.min(rowSums(bbMin90^2)) txtPosW_X <- min(bbMin90[ , 1]) + 0.15*(max(bbMin90[ , 1]) - min(bbMin90[ , 1])) txtPosW_Y <- max(bbMin90[ , 2]) + strheight("1234") txtPosH_X <- min(bbMin90[ , 1]) - strheight("1234") txtPosH_Y <- min(bbMin90[ , 2]) + 0.85*(max(bbMin90[ , 2]) - min(bbMin90[ , 2])) txtPosWH_XY <- matrix(c(txtPosW_X, txtPosW_Y, txtPosH_X, txtPosH_Y), byrow=TRUE, nrow=2) ang <- bBoxMin$angle * pi/180 rotMat <- matrix(c(cos(ang), sin(ang), -sin(ang), cos(ang)), nrow=2) txtPos12_XY <- t(rotMat %*% t(txtPosWH_XY)) text(x=txtPos12_XY[1, 1], y=txtPos12_XY[1, 2], labels=round(bBoxMin$width, 2), col=cols["bbMin"], adj=c(0.5, 0.5), srt=degMax) text(x=txtPos12_XY[2, 1], y=txtPos12_XY[2, 2], labels=round(bBoxMin$height, 2), col=cols["bbMin"], adj=c(0.5, 0.5), srt=degMin) } } if(bbDiag) { if(bb || !any(c(bb, bbMin))) { segments(x0=bBox$pts["xleft"], y0=bBox$pts["ybottom"], x1=bBox$pts["xright"], y1=bBox$pts["ytop"], col=cols["bbDiag"], lwd=2) legText <- c(legText, "bound box diag") legCol <- c(legCol, cols["bbDiag"]) legLty <- c(legLty, 1) legLwd <- c(legLwd, 2) legPch <- c(legPch, NA) if(valueID) { dPts <- c(bBox$pts["xright"]-bBox$pts["xleft"], bBox$pts["ytop"]-bBox$pts["ybottom"]) dPtsU <- dPts / sqrt(sum(dPts^2)) dPtsUO <- c(dPtsU[2], -dPtsU[1]) txtPos_X <- bBox$pts["xleft"] + 0.75*(bBox$pts["xright"] - bBox$pts["xleft"]) + strheight("1234")*dPtsUO[1] txtPos_Y <- bBox$pts["ybottom"] + 0.75*(bBox$pts["ytop"] - bBox$pts["ybottom"]) + strheight("1234")*dPtsUO[2] eUp <- dPts * sign(dPts[2]) deg <- atan2(eUp[2], eUp[1])*180 / pi text(x=txtPos_X, y=txtPos_Y, labels=round(bBox$diag, 2), col=cols["bbDiag"], srt=deg, adj=c(0,0)) } } if(bbMin) { segments(x0=bBoxMin$pts[1, 1], y0=bBoxMin$pts[1, 2], x1=bBoxMin$pts[3, 1], y1=bBoxMin$pts[3, 2], col=cols["bbMinDiag"], lwd=2) legText <- c(legText, "min bound box diag") legCol <- c(legCol, cols["bbMinDiag"]) legLty <- c(legLty, 1) legLwd <- c(legLwd, 2) legPch <- c(legPch, NA) if(valueID) { dPts <- diff(bBoxMin$pts) dPtsU <- dPts / sqrt(sum(dPts^2)) dPtsUO <- c(dPtsU[2], -dPtsU[1]) txtPos_X <- bBoxMin$pts[1, 1] + 0.75*(bBoxMin$pts[3, 1] - bBoxMin$pts[1, 1]) + strheight("1234")*dPtsUO[1] txtPos_Y <- bBoxMin$pts[1, 2] + 0.75*(bBoxMin$pts[3, 2] - bBoxMin$pts[1, 2]) + strheight("1234")*dPtsUO[2] dPts <- diff(bBoxMin$pts[c(1, 3), ]) eUp <- dPts * sign(dPts[2]) deg <- atan2(eUp[2], eUp[1])*180 / pi text(x=txtPos_X, y=txtPos_Y, labels=round(bBoxMin$diag, 2), col=cols["bbDiag"], srt=deg, adj=c(0.5, 0.5)) } } } if(minCirc) { drawCircle(mCirc, fg=cols["minCirc"], lwd=2) legText <- c(legText, "min circle") legCol <- c(legCol, cols["minCirc"]) legLty <- c(legLty, 1) legLwd <- c(legLwd, 2) legPch <- c(legPch, NA) if(valueID) { txtPos_X_top <- 0 txtPos_Y_top <- mCirc$rad + strheight("1234") ang <- pi/4 rotMat <- matrix(c(cos(ang), sin(ang), -sin(ang), cos(ang)), nrow=2) txtPos_XY <- rotMat %*% matrix(c(txtPos_X_top, txtPos_Y_top), nrow=2) txtPos_X <- mCirc$ctr[1] + txtPos_XY[1, 1] txtPos_Y <- mCirc$ctr[2] + txtPos_XY[2, 1] text(x=txtPos_X, y=txtPos_Y, labels=round(mCirc$rad, 2), srt=180*ang/pi, col=cols["minCirc"], adj=c(0.5, 0.5)) } } if(maxSpread) { segments(x0=xyNew[maxPD$idx[1], 1], y0=xyNew[maxPD$idx[1], 2], x1=xyNew[maxPD$idx[2], 1], y1=xyNew[maxPD$idx[2], 2], col=cols["maxSpread"], lwd=2) legText <- c(legText, "max spread") legCol <- c(legCol, cols["maxSpread"]) legLty <- c(legLty, 1) legLwd <- c(legLwd, 2) legPch <- c(legPch, NA) if(valueID) { m <- xyNew[maxPD$idx, ] dPts <- diff(m) dPtsU <- dPts / sqrt(sum(dPts^2)) dPtsUO <- c(dPtsU[2], -dPtsU[1]) txtPos_X <- m[1, 1] + 0.75*dPts[1] + strheight("1234")*dPtsUO[1] txtPos_Y <- m[1, 2] + 0.75*dPts[2] + strheight("1234")*dPtsUO[2] eUp <- dPts * sign(dPts[2]) deg <- atan2(eUp[2], eUp[1])*180 / pi text(x=txtPos_X, y=txtPos_Y, labels=round(maxPD$d, 2), col=cols["maxSpread"], srt=deg, adj=c(0,0)) } } if(meanDist) { drawCircle(ctr, radius=meanDstCtr, fg=cols["meanDist"], lwd=2) legText <- c(legText, "mean dist to ctr") legCol <- c(legCol, cols["meanDist"]) legLty <- c(legLty, 1) legLwd <- c(legLwd, 2) legPch <- c(legPch, NA) if(valueID) { ctr <- colMeans(xy) txtPos_X_top <- 0 txtPos_Y_top <- meanDstCtr + strheight("1234") ang <- -pi/4 rotMat <- matrix(c(cos(ang), sin(ang), -sin(ang), cos(ang)), nrow=2) txtPos_XY <- rotMat %*% matrix(c(txtPos_X_top, txtPos_Y_top), nrow=2) txtPos_X <- ctr[1] + txtPos_XY[1, 1] txtPos_Y <- ctr[2] + txtPos_XY[2, 1] text(x=txtPos_X, y=txtPos_Y, labels=round(meanDstCtr, 2), srt=180*ang/pi, col=cols["meanDist"], adj=c(0.5, 0.5)) } } if(confEll) { ellCtrL <- lapply(cEll, function(x) { drawEllipse(x, pch=4, fg=cols["confEll"], lwd=2) }) legText <- c(legText, paste("conf ellipse", paste(level, collapse=" "))) legCol <- c(legCol, cols["confEll"]) legLty <- c(legLty, 1) legLwd <- c(legLwd, 2) legPch <- c(legPch, NA) if(valueID) { idx <- which.max(ellCtrL[[1]][ , 1]) txtPos_X <- ellCtrL[[1]][idx, 1] + strheight("1234") txtPos_Y <- ellCtrL[[1]][idx, 2] label <- paste0(c(round(cEllCopy[[1]]$size["semi-major"], 2), round(cEllCopy[[1]]$size["semi-minor"], 2)), collapse="; ") text(x=txtPos_X, y=txtPos_Y, labels=label, srt=-90, col=cols["confEll"], adj=c(0.5, 0.5)) } } if(CEP != "FALSE") { lapply(CEPres$CEP, function(x) { drawCircle(CEPres$ctr, x["unit", CEPtype], fg=cols["CEP"], lwd=2) }) legText <- c(legText, paste("CEP", CEPtype, paste(level, collapse=" "))) legCol <- c(legCol, cols["CEP"]) legLty <- c(legLty, 1) legLwd <- c(legLwd, 2) legPch <- c(legPch, NA) if(valueID) { txtPos_X <- CEPres$ctr[1] txtPos_Y <- CEPres$ctr[2] + CEPres$CEP[[1]]["unit", ] + strheight("1234") text(x=txtPos_X, y=txtPos_Y, labels=signif(CEPres$CEP[[1]]["unit", ], 2), col=cols["CEP"], adj=c(0.5, 0.5)) } } if(ringID && haveTarget) { rc <- simRingCount(xy, target=target, caliber=caliber, unit=unique(unitXY)) res$ringCount <- with(rc, c(count=count, max=max)) with(rc, text(xyNew[,1], xyNew[,2], label=levels(rings)[rings], adj=c(0.5, 0.5), col="darkgreen")) } legend(x="bottomleft", legend=legText, col=legCol, lty=legLty, lwd=legLwd, pch=legPch, bg=rgb(1, 1, 1, 0.7)) return(invisible(res)) }
cut.folder <- function(x, breaks, labels = NULL, include.lowest = FALSE, right = TRUE, dig.lab = 3L, ordered_result = FALSE, cutcol = NULL, ...) { x <- as.data.frame(x, stringsAsFactors = TRUE) result <- cut.data.frame(x, breaks = breaks, labels = labels, include.lowest = include.lowest, right = right, dig.lab = dig.lab, ordered_result = ordered_result, cutcol = cutcol) return(as.folder(result)) }
SummarySurvey <- function(design = NULL, variables = NULL, conf.level = 0.95, rnd = 3) { if (length(variables) != length(names(design$variables))) { stop('The length of variables argument must be equal to the length of names(design$variables)') } match1 <- names(design$variables) match2 <- c('psu.id', 'ssu.id', 'pop.size', 'psu.size') matches <- which(!is.na(match(match1, match2))) variables[matches] <- '' z <- abs(round(qnorm((1 - conf.level) / 2, 0, 1), 2)) vrs <- design$variables out <- NULL for (i in 1:length(variables)) { if (variables[i] == 'total') { tmp <- svytotal(~ vrs[, i], design, na.rm = T, deff = T) tmp1 <- as.matrix(cbind(tmp, SE(tmp), confint(tmp), deff(tmp), cv(tmp) * z * 100), nr = 1) ci <- attributes(confint(tmp, level = conf.level))$dimnames[[2]] rownames(tmp1) <- paste0('Total_', names(vrs)[i]) out <- rbind(out, tmp1) } if (variables[i] == 'mean') { tmp <- svymean(~ vrs[, i], design, na.rm = T, deff = T) tmp1 <- as.matrix(cbind(tmp, SE(tmp), confint(tmp), deff(tmp), cv(tmp) * z * 100), nr = 1) ci <- attributes(confint(tmp, level = conf.level))$dimnames[[2]] rownames(tmp1) <- paste0('Mean_', names(vrs)[i]) out <- rbind(out, tmp1) } if (variables[i] == 'prop') { tmp <- svymean(~ vrs[, i], design, na.rm = T, deff = T) tmp1 <- as.matrix(cbind(tmp, SE(tmp), confint(tmp), deff(tmp), confint(tmp)[, 2] - tmp[1] * 100), nr = 1) ci <- attributes(confint(tmp, level = conf.level))$dimnames[[2]] rownames(tmp1) <- paste0('Prop_', rownames(tmp1)) rownames(tmp1) <- gsub('vrs\\[, i\\]', paste0(names(vrs)[i]), rownames(tmp1)) out <- rbind(out, tmp1) } } colnames(out) <- c('Estimate', 'SE', ci[1], ci[2], 'Deff', 'Error (%)') if ('simple' %in% names(design)) { out <- out[ , -5] } ifelse (is.na(rnd), return(out), return(round(out, rnd))) }
continuous.LR <- function(raw.pvalues, alpha = 0.05, zeta = 0.5, adaptive = TRUE, critical.values = FALSE){ if(is.null(alpha) || is.na(alpha) || !is.numeric(alpha) || alpha < 0 || alpha > 1) stop("'alpha' must be a probability between 0 and 1!") if(is.null(zeta) || is.na(zeta) || !is.numeric(zeta) || zeta < 0 || zeta > 1) stop("'zeta' must be a probability between 0 and 1!") m <- length(raw.pvalues) a <- floor(alpha * 1:m) + 1 o <- order(raw.pvalues) sorted.pvals <- raw.pvalues[o] if(adaptive){ y <- pmin(1, cummax(sorted.pvals * (m - 1:m + a) / a)) }else{ y <- pmin(1, cummax(sorted.pvals * m / a)) } idx <- which(y > zeta) if(length(idx)){ m.rej <- min(idx) - 1 if (m.rej){ idx <- which(raw.pvalues <= sorted.pvals[m.rej]) pvec.rej <- raw.pvalues[idx] }else{ idx <- numeric(0) pvec.rej <- numeric(0) } }else{ m.rej <- m idx <- 1:m pvec.rej <- raw.pvalues } if(critical.values){ if(adaptive){ crit.constants <- zeta * a / (m - 1:m + a) }else{ crit.constants <- zeta * a / m } } output <- list(Rejected = pvec.rej, Indices = idx, Num.rejected = m.rej) ro <- order(o) output$Adjusted = y[ro] if(critical.values) output$Critical.values = crit.constants alg <- "Continuous Lehmann-Romano procedure" output$Method <- if(!adaptive) paste("Non-Adaptive", alg) else alg output$FDP.threshold <- alpha output$Exceedance.probability <- zeta output$Adaptive <- adaptive output$Data <- list() output$Data$raw.pvalues <- raw.pvalues output$Data$data.name <- deparse(substitute(raw.pvalues)) class(output) <- "FDX" return(output) } LR <- function(raw.pvalues, alpha = 0.05, zeta = 0.5, critical.values = FALSE){ return(continuous.LR(raw.pvalues, alpha, zeta, TRUE, critical.values)) } NLR <- function(raw.pvalues, alpha = 0.05, zeta = 0.5, critical.values = FALSE){ return(continuous.LR(raw.pvalues, alpha, zeta, FALSE, critical.values)) }
library(shiny) library(shiny.semantic) library(shiny.router) menu <- ( div(class = "ui vertical menu", div(class = "item", div(class = "header", "Demo"), div(class = "menu", a(class = "item", href = route_link("/"), icon("home"), "Page"), a(class = "item", href = route_link("other"), icon("clock"), "Other"), a(class = "item", href = route_link("ui"), icon("clock"), "UI") ) ) ) ) page_content <- function(title, content) { div( h1(title), p(content) ) } root_page <- page_content("Home page", actionButton("button", "Click me!")) other_page <- page_content("Some other page", textInput("text", "Type something here")) ui_page <- page_content("UI page", uiOutput("oko")) router <- make_router( route("index", root_page), route("other", other_page), route("ui", ui_page) ) ui <- semanticPage( title = "Router demo", div(class = "ui container", style = "margin-top: 1em", div(class = "ui grid", div(class = "four wide column", menu ), div(class = "twelve wide column", router$ui ) ) ) ) server <- shinyServer(function(input, output, session) { router$server(input, output, session) output$oko <- renderUI({ div("Hello there") }) }) shinyApp(ui, server)
search_openresult_inelan <- function(x, s, resultNr, openOriginalEafFileIfAvailable=FALSE) { if (missing(x)) {stop("Corpus object in parameter 'x' is missing.") } else { if (class(x)[[1]]!="corpus") {stop("Parameter 'x' needs to be a corpus object.") } } if (missing(s)) {stop("Search object in parameter 's' is missing.") } else { if (class(s)[[1]]!="search") {stop("Parameter 's' needs to be a search object.") } } if (missing(resultNr)) {stop("Number of the search result 'resultNr' is missing.") } path.elan<- getOption("act.path.elan", default="") if(path.elan=="") { stop("ELAN not found. Please set the path to the ELAN executable in the option 'act.path.elan' using options(act.path.elan='PATHTOYOURELANEXECUTABLE')") } else { if(!file.exists(path.elan)) { stop("ELAN not found. Please set the path to the ELAN executable in the option 'act.path.elan' using options(act.path.elan='PATHTOYOURELANEXECUTABLE')") } } t <- x@transcripts[[s@results$transcript.name[resultNr]]] if (is.null(t)) { stop("Transcript not found in corpus object'.") } file.path.eaf <- "" file.path.pfsx <- "" if(openOriginalEafFileIfAvailable) { if([email protected]=="eaf") { if(file.exists([email protected])) { file.path.eaf <- [email protected] } } } if (file.path.eaf == "" ) { file.path.eaf <- file.path(tempdir(), stringr::str_c(t@name, ".eaf", collapse="")) act::export_eaf(t, file.path.eaf) if(openOriginalEafFileIfAvailable) { warning("Original .eaf file has not been found. A temporary .eaf file has been created") } } pfsx<- '<?xml version="1.0" encoding="UTF-8"?> <preferences version="1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://www.mpi.nl/tools/elan/Prefs_v1.1.xsd"> <pref key="SelectionBeginTime"> <Long>%s</Long> </pref> <pref key="SelectionEndTime"> <Long>%s</Long> </pref> <pref key="TimeScaleBeginTime"> <Long>%s</Long> </pref> <pref key="MediaTime"> <Long>%s</Long> </pref> </preferences>' startMiliSec <- round(s@results$startSec[resultNr]*1000, 0) endMiliSec <- round(s@results$endSec[resultNr]*1000, 0) pfsx.1 <- sprintf(pfsx, startMiliSec, endMiliSec, max(0, startMiliSec-1000), startMiliSec) file.path.pfsx<- stringr::str_replace(file.path.eaf, pattern='\\.eaf', replacement=".pfsx") fileConn <- file(file.path.pfsx, open="wb") writeBin(charToRaw(pfsx.1), fileConn, endian="little") close(fileConn) for (i in 1:10) { if(file.exists(file.path.pfsx)) { break } Sys.sleep(0.02) } if(file.exists(file.path.pfsx)) { if (helper_detect_os()=="windows" ){ cmd <- sprintf("%s %s", shQuote(path.elan), shQuote(file.path.eaf)) } else { cmd <- sprintf("open %s -a %s", shQuote(file.path.eaf), shQuote(path.elan)) } rslt <- system(cmd, wait=FALSE) } }
rTableICC.RxC <- function(p=NULL,theta,M,row.margins=NULL,col.margins=NULL,sampling="Multinomial",N=1,lambda=NULL,zero.clusters=FALSE,print.regular=TRUE, print.raw=FALSE) UseMethod("rTableICC.RxC")
library(httk) calc_css(chem.name="endrin") calc_stats(dtxsid="DTXSID0020442",days=3) quit("no")
kweights <- function (x, kernel = c("Truncated", "Bartlett", "Parzen", "Tukey-Hanning", "Quadratic Spectral"), normalize = FALSE) { kernel <- match.arg(kernel) if (normalize) { ca <- switch(kernel, Truncated = 2, Bartlett = 2/3, Parzen = 0.539285, `Tukey-Hanning` = 3/4, `Quadratic Spectral` = 1) } else ca <- 1 switch(kernel, Truncated = { ifelse(ca * x > 1, 0, 1) }, Bartlett = { ifelse(ca * x > 1, 0, 1 - abs(ca * x)) }, Parzen = { ifelse(ca * x > 1, 0, ifelse(ca * x < 0.5, 1 - 6 * (ca * x)^2 + 6 * abs(ca * x)^3, 2 * (1 - abs(ca * x))^3)) }, `Tukey-Hanning` = { ifelse(ca * x > 1, 0, (1 + cos(pi * ca * x))/2) }, `Quadratic Spectral` = { y <- 6 * pi * x/5 ifelse(x < 1e-04, 1, 3 * (1/y)^2 * (sin(y)/y - cos(y))) }) }
'BIOMOD_ModelingOptions' <- function( GLM = NULL, GBM = NULL, GAM = NULL, CTA = NULL, ANN = NULL, SRE = NULL, FDA = NULL, MARS = NULL, RF = NULL, MAXENT.Phillips = NULL ){ opt <- new('BIOMOD.Model.Options') if(!is.null(GLM)){ if(!is.null(GLM$type)) { opt@GLM$type <- GLM$type } if(!is.null(GLM$interaction.level)) { opt@GLM$interaction.level <- GLM$interaction.level } if(!is.null(GLM$myFormula)) { opt@GLM$myFormula <- GLM$myFormula } if(!is.null(GLM$test)) { opt@GLM$test <- GLM$test } if(!is.null(GLM$family)) { fam.test <- TRUE if(inherits(GLM$family, 'family')){ opt@GLM$family <- GLM$family } else{ if( is.character(GLM$family)){ if(! unlist(strsplit(GLM$family,"[/(]"))[1] %in% c('binomial', 'gaussian', 'Gamma', 'inverse.gaussian', 'poisson', 'quasi', 'quasibinomial', 'quasipoisson')){ fam.test <- FALSE} if(grepl(')', GLM$family)){ opt@GLM$family <- eval(parse(text=GLM$family)) } else{ opt@GLM$family <- eval(parse(text=paste(GLM$family,"()", sep=""))) } } else{ fam.test <- FALSE } } if(!fam.test){ cat("\n!!! invalid GLM$family given -> binomial(link = 'logit') was automatically set up !!!") opt@GLM$family <- binomial(link = 'logit') } } if(!is.null(GLM$mustart)) { opt@GLM$mustart <- GLM$mustart } if(!is.null(GLM$control)) { opt@GLM$control <- GLM$control } } if(!is.null(GBM)){ if(!is.null(GBM$distribution )) { opt@GBM$distribution <- GBM$distribution } if(!is.null(GBM$n.trees )) { opt@GBM$n.trees <- GBM$n.trees } if(!is.null(GBM$interaction.depth )) { opt@GBM$interaction.depth <- GBM$interaction.depth } if(!is.null(GBM$n.minobsinnode )) { opt@GBM$n.minobsinnode <- GBM$n.minobsinnode } if(!is.null(GBM$shrinkage )) { opt@GBM$shrinkage <- GBM$shrinkage } if(!is.null(GBM$bag.fraction )) { opt@GBM$bag.fraction <- GBM$bag.fraction } if(!is.null(GBM$train.fraction )) { opt@GBM$train.fraction <- GBM$train.fraction } if(!is.null(GBM$cv.folds )) { opt@GBM$cv.folds <- GBM$cv.folds } if(!is.null(GBM$keep.data )) { opt@GBM$keep.data <- GBM$keep.data } if(!is.null(GBM$verbose )) { opt@GBM$verbose <- GBM$verbose } if(!is.null(GBM$perf.method )) { opt@GBM$perf.method <- GBM$perf.method } if(!is.null(GBM$n.cores)) { opt@GBM$n.cores <- GBM$n.cores } else { opt@GBM$n.cores <- NULL } } if(!is.null(GAM)){ if(!is.null(GAM$algo )) { opt@GAM$algo <- GAM$algo } if(!is.null(GAM$type )) { opt@GAM$type <- GAM$type } if(!is.null(GAM$k )) { opt@GAM$k <- GAM$k } else{ if(opt@GAM$algo == 'GAM_gam'){ opt@GAM$k <- 4 } else{ opt@GAM$k <- -1 } } if(!is.null(GAM$interaction.level )) { opt@GAM$interaction.level <- GAM$interaction.level } if(!is.null(GAM$myFormula )) { opt@GAM$myFormula <- GAM$myFormula } if(!is.null(GAM$family)) { fam.test <- TRUE if(inherits(GAM$family, 'family')){ opt@GAM$family <- GAM$family } else{ if( is.character(GAM$family)){ if(! unlist(strsplit(GAM$family,"[/(]"))[1] %in% c('binomial', 'gaussian', 'Gamma', 'inverse.gaussian', 'poisson', 'quasi', 'quasibinomial', 'quasipoisson')){ fam.test <- FALSE} if(grepl(')', GAM$family)){ opt@GAM$family <- eval(parse(text=GAM$family)) } else{ opt@GAM$family <- eval(parse(text=paste(GAM$family,"()", sep=""))) } } else{ fam.test <- FALSE } } if(!fam.test){ cat("\n!!! invalid GAM$family given -> binomial(link = 'logit') was automatically set up !!!") opt@GAM$family <- binomial(link = 'logit') } } if(is.null(GAM$control )) { if(opt@GAM$algo == 'GAM_gam'){ requireNamespace('gam', quietly = TRUE) opt@GAM$control <- gam::gam.control() } else{ opt@GAM$control <- mgcv::gam.control() } } else{ user.control.list <- GAM$control if(opt@GAM$algo == 'GAM_gam'){ default.control.list <- gam::gam.control() } else{ default.control.list <- mgcv::gam.control() } control.list <- lapply(names(default.control.list), function(x){ if(x %in% names(user.control.list)){ return(user.control.list[[x]]) } else { return(default.control.list[[x]]) } }) names(control.list) <- names(default.control.list) opt@GAM$control <- control.list } if(!is.null(GAM$method )) { opt@GAM$method <- GAM$method } if(!is.null(GAM$optimizer )) { opt@GAM$optimizer <- GAM$optimizer } if(!is.null(GAM$select )) { opt@GAM$select <- GAM$select } if(!is.null(GAM$knots )) { opt@GAM$knots <- GAM$knots } if(!is.null(GAM$paraPen )) { opt@GAM$paraPen <- GAM$paraPen } } else{ if(opt@GAM$algo == 'GAM_gam'){ opt@GAM$control <- gam::gam.control() opt@GAM$k <- 4 } else{ opt@GAM$control <- mgcv::gam.control() opt@GAM$k <- -1 } } if(!is.null(CTA)){ if(!is.null(CTA$method )) { opt@CTA$method <- CTA$method } if(!is.null(CTA$parms )) { opt@CTA$parms <- CTA$parms } if(!is.null(CTA$control )) { opt@CTA$control <- CTA$control } if(!is.null(CTA$cost )) { opt@CTA$cost <- CTA$cost } } if(!is.null(ANN)){ if(!is.null(ANN$NbCV )) { opt@ANN$NbCV <- ANN$NbCV } if(!is.null(ANN$size )) { opt@ANN$size <- ANN$size } if(!is.null(ANN$decay )) { opt@ANN$decay <- ANN$decay } if(!is.null(ANN$rang )) { opt@ANN$rang <- ANN$rang } if(!is.null(ANN$maxit )) { opt@ANN$maxit <- ANN$maxit } } if(!is.null(SRE)){ if(!is.null(SRE$quant )) { opt@SRE$quant <- SRE$quant } } if(!is.null(FDA)){ if(!is.null(FDA$method )) { opt@FDA$method <- FDA$method } if(!is.null(FDA$add_args )) { opt@FDA$add_args <- FDA$add_args } } if(!is.null(MARS)){ if(!is.null(MARS$type)) { opt@MARS$type <- MARS$type } if(!is.null(MARS$interaction.level)) { opt@MARS$interaction.level <- MARS$interaction.level } if(!is.null(MARS$myFormula)) { opt@MARS$myFormula <- MARS$myFormula } if(!is.null(MARS$nk )) { opt@MARS$nk <- MARS$nk } if(!is.null(MARS$penalty )) { opt@MARS$penalty <- MARS$penalty } if(!is.null(MARS$thresh )) { opt@MARS$thresh <- MARS$thresh } if(!is.null(MARS$nprune )) { opt@MARS$nprune <- MARS$nprune } if(!is.null(MARS$pmethod )) { opt@MARS$pmethod <- MARS$pmethod } } if(!is.null(RF)){ if(!is.null(RF$type )) { opt@RF$type <- RF$type } if(!is.null(RF$ntree )) { opt@RF$ntree <- RF$ntree } if(!is.null(RF$mtry )) { opt@RF$mtry <- RF$mtry } if(!is.null(RF$nodesize )) { opt@RF$nodesize <- RF$nodesize } if(!is.null(RF$maxnodes )) { opt@RF$maxnodes <- RF$maxnodes } } if(!is.null(MAXENT.Phillips)){ if(!is.null(MAXENT.Phillips$path_to_maxent.jar )) { [email protected]$path_to_maxent.jar <- normalizePath(sub("maxent.jar", "", MAXENT.Phillips$path_to_maxent.jar)) } else {[email protected]$path_to_maxent.jar <- getwd()} if(!is.null(MAXENT.Phillips$memory_allocated )) { [email protected]$memory_allocated <- MAXENT.Phillips$memory_allocated } if(!is.null(MAXENT.Phillips$background_data_dir )) { [email protected]$background_data_dir <- MAXENT.Phillips$background_data_dir } if(!is.null(MAXENT.Phillips$maximumbackground )) { [email protected]$maximumbackground <- MAXENT.Phillips$maximumbackground } if(!is.null(MAXENT.Phillips$maximumiterations )) { [email protected]$maximumiterations <- MAXENT.Phillips$maximumiterations } if(!is.null(MAXENT.Phillips$visible )) { [email protected]$visible <- MAXENT.Phillips$visible } if(!is.null(MAXENT.Phillips$linear )) { [email protected]$linear <- MAXENT.Phillips$linear } if(!is.null(MAXENT.Phillips$quadratic )) { [email protected]$quadratic <- MAXENT.Phillips$quadratic } if(!is.null(MAXENT.Phillips$product )) { [email protected]$product <- MAXENT.Phillips$product } if(!is.null(MAXENT.Phillips$threshold )) { [email protected]$threshold <- MAXENT.Phillips$threshold } if(!is.null(MAXENT.Phillips$hinge )) { [email protected]$hinge <- MAXENT.Phillips$hinge } if(!is.null(MAXENT.Phillips$lq2lqptthreshold )) { [email protected]$lq2lqptthreshold <- MAXENT.Phillips$lq2lqptthreshold } if(!is.null(MAXENT.Phillips$l2lqthreshold )) { [email protected]$l2lqthreshold <- MAXENT.Phillips$l2lqthreshold } if(!is.null(MAXENT.Phillips$hingethreshold )) { [email protected]$hingethreshold <- MAXENT.Phillips$hingethreshold } if(!is.null(MAXENT.Phillips$beta_threshold )) { [email protected]$beta_threshold <- MAXENT.Phillips$beta_threshold } if(!is.null(MAXENT.Phillips$beta_categorical )) { [email protected]$beta_categorical <- MAXENT.Phillips$beta_categorical } if(!is.null(MAXENT.Phillips$beta_lqp )) { [email protected]$beta_lqp <- MAXENT.Phillips$beta_lqp } if(!is.null(MAXENT.Phillips$beta_hinge )) { [email protected]$beta_hinge <- MAXENT.Phillips$beta_hinge } if(!is.null(MAXENT.Phillips$betamultiplier )) { [email protected]$betamultiplier <- MAXENT.Phillips$betamultiplier } if(!is.null(MAXENT.Phillips$defaultprevalence )) { [email protected]$defaultprevalence <- MAXENT.Phillips$defaultprevalence } } else{ [email protected]$path_to_maxent.jar <- getwd() } test <- as.logical(validObject(object = opt, test = TRUE, complete = FALSE)) if(!test){ cat("\n\n!!! NULL object returned because of invalid parameters given !!!") return(NULL) } return(opt) } Print_Default_ModelingOptions <- function(){ cat('\n Defaut modeling options. copy, change what you want paste it as arg to BIOMOD_ModelingOptions\n\n') opt_tmp <- BIOMOD_ModelingOptions() print(opt_tmp) }
options(width = 80) library(knitr) knit_hooks$set(pngquant = hook_pngquant) pngquant <- "--speed=1 --quality=0-25" if (!nzchar(Sys.which("pngquant"))) pngquant <- NULL logK <- "log&thinsp;<i>K</i>" hires <- FALSE res1.lo <- 150 res1.hi <- 256 res1 <- ifelse(hires, res1.hi, res1.lo) res2.lo <- 200 res2.hi <- 400 res2 <- ifelse(hires, res2.hi, res2.lo) library(CHNOSZ) reset() cat("```") cat("\n") cat(paste0(ifelse(hires, " cat("\n") cat(paste0(ifelse(hires, "", " cat("\n") cat(paste0(ifelse(hires, " cat("\n") cat(paste0(ifelse(hires, "", " cat("\n") cat("```") par(mfrow = c(1, 2)) basis("CHNOS+") species(c("CH4", "CO2", "HCO3-", "CO3-2")) aC <- affinity(pH = c(0, 14), O2 = c(-75, -60)) dC <- diagram(aC, dx = c(0, 1, 0, 0), dy = c(0, 1, 0, 0)) species(c("H2S", "HS-", "HSO4-", "SO4-2")) aS <- affinity(aC) dS <- diagram(aS, add = TRUE, col = 4, col.names = 4, dx = c(0, -0.5, 0, 0)) aCS <- mash(dC, dS) srt <- c(0, 0, 90, 0, 0, 0, 90, 0, 0, 0) cex.names <- c(1, 1, 0.8, 1, 1, 1, 1, 1, 1, 1) dy <- c(0, 0, 0, -0.2, 0, 0, 0, 0, 0, 0) diagram(aCS, srt = srt, cex.names = cex.names, dy = dy) legend("topright", legend = lTP(25, 1), bty = "n") Fe.cr <- c(Fe = 0, FeO = -1.72768, Fe3O4 = -1.85838, Fe2O3 = -1.90708) V.cr <- c(V = 0, V2O3 = -2.52787, V3O5 = -2.52516, VO2 = -2.48447, V3O7 = -2.32789, V2O5 = -2.29480) natom.Fe <- sapply(makeup(names(Fe.cr)), sum) Fe.cr <- Fe.cr * natom.Fe natom.V <- sapply(makeup(names(V.cr)), sum) V.cr <- V.cr * natom.V eVtoJ <- function(eV) eV * 1.602176634e-19 * 6.02214076e23 Fe.cr <- eVtoJ(Fe.cr) V.cr <- eVtoJ(V.cr) Fe.aq <- 1000 * c("Fe+2" = -78.90, "Fe+3" = -4.7, "FeO2-2" = -295.3, "FeOH+" = -277.4, "FeOH+2" = -229.41, "HFeO2-" = -377.7, "Fe(OH)2+" = -438.0, "Fe(OH)3" = -659.3, "FeO2-" = -368.2, "FeO4-2" = -322.2 ) V.aq <- 1000 * c("VO+2" = -446.4, "VO2+" = -587.0, "VO3-" = -783.6, "VO4-3" = -899.0, "V2O7-4" = -1719, "HVO4" = -745.1, "HVO4-2" = -974.8, "VOH2O2+3" = -523.4, "VO2H2O2+" = -746.3, "V2HO7-3" = 1792.2, "V2H3O7-" = -1863.8, "HV10O28-5" = -7702, "H2V10O28-4" = -7723 ) Fe3O4 <- 1000 * -1015.4 V3O5 <- 1000 * -1803 Fe.corr <- (Fe.cr["Fe3O4"] - Fe3O4) / 3 V.corr <- (V.cr["V3O5"] - V3O5) / 2 nFe <- sapply(makeup(names(Fe.aq)), "[", "Fe") Fe.aq <- Fe.aq + nFe * Fe.corr nV <- sapply(makeup(names(V.aq)), "[", "V") V.aq <- V.aq + nV * V.corr modfun <- function(x, state) sapply(seq_along(x), function(i) { mod.OBIGT(names(x)[i], formula = names(x)[i], state = state, E_units = "J", G = x[i]) }) iFe.cr <- modfun(Fe.cr, "cr") iFe.aq <- modfun(Fe.aq, "aq") iV.cr <- modfun(V.cr, "cr") iV.aq <- modfun(V.aq, "aq") FeV.cr <- c(FeV = -0.12815, FeV3 = -0.17114, Fe3V = -0.12832, Fe2V4O13 = -2.23967, FeVO4 = -1.75573) natom.FeV <- sapply(makeup(names(FeV.cr)), sum) FeV.cr <- FeV.cr * natom.FeV FeV.cr <- eVtoJ(FeV.cr) iFeV.cr <- modfun(FeV.cr, "cr") par(mfrow = c(1, 3)) loga.Fe <- -5 loga.V <- -5 basis(c("VO+2", "Fe+2", "H2O", "e-", "H+")) species(c(iFe.aq, iFe.cr)) species(1:length(iFe.aq), loga.Fe) aFe <- affinity(pH = c(4, 10, res1), Eh = c(-1.5, 0, res1)) dFe <- diagram(aFe, plot.it = FALSE) species(c(iV.aq, iV.cr)) species(1:length(iV.aq), loga.V) aV <- affinity(aFe) dV <- diagram(aV, plot.it = FALSE) species(iFeV.cr) aFeV <- affinity(aFe) dFeV <- diagram(aFeV, plot.it = FALSE, bold = TRUE) a11 <- mix(dFe, dV, dFeV, c(1, 1)) iV2O3 <- info("V2O3") iFeO <- info("FeO", "cr") iFe3V <- info("Fe3V") srt <- rep(0, nrow(a11$species)) srt[a11$species$ispecies == paste(iFeO, iV2O3, sep = ",")] <- 90 srt[a11$species$ispecies == paste(iV2O3, iFe3V, sep = ",")] <- -13 diagram(a11, min.area = 0.01, srt = srt) title("Fe:V = 1:1") label.figure(lTP(25, 1), xfrac = 0.12) a13 <- mix(dFe, dV, dFeV, c(1, 3)) srt <- rep(0, nrow(a13$species)) srt[a13$species$ispecies == paste(iFeO, iV2O3, sep = ",")] <- 90 srt[a13$species$ispecies == paste(iV2O3, iFe3V, sep = ",")] <- -13 diagram(a13, min.area = 0.01, srt = srt) title("Fe:V = 1:3") a15 <- mix(dFe, dV, dFeV, c(1, 5)) iFeV3 <- info("FeV3") srt <- rep(0, nrow(a15$species)) srt[a15$species$ispecies == paste(iFeO, iV2O3, sep = ",")] <- 90 srt[a15$species$ispecies == paste(iV2O3, iFe3V, sep = ",")] <- -13 srt[a15$species$ispecies == paste(iV2O3, iFeV3, sep = ",")] <- -13 diagram(a15, min.area = 0.01, srt = srt) title("Fe:V = 1:5") layout(t(matrix(1:3)), widths = c(1, 1, 0.2)) par(cex = 1) basis(c("VO+2", "Fe+2", "H2O", "e-", "H+")) species(c(iFe.aq, iFe.cr))$name species(1:length(iFe.aq), loga.Fe) aFe <- affinity(pH = c(0, 14, res2), Eh = c(-1.5, 2, res2)) dFe <- diagram(aFe, plot.it = FALSE) species(c(iV.aq, iV.cr))$name species(1:length(iV.aq), loga.V) aV <- affinity(aFe) dV <- diagram(aV, plot.it = FALSE) species(iFeV.cr) aFeV <- affinity(aFe) dFeV <- diagram(aFeV, plot.it = FALSE, bold = TRUE) a11 <- mix(dFe, dV, dFeV, c(1, 1)) iV2O3 <- info("V2O3") iFe3V <- info("Fe3V") iVO4m3 <- info("VO4-3") iFe2O3 <- info("Fe2O3") srt <- rep(0, nrow(a11$species)) srt[a11$species$ispecies == paste(iV2O3, iFe3V, sep = ",")] <- -13 srt[a11$species$ispecies == paste(iFe2O3, iVO4m3, sep = ",")] <- 90 d11 <- diagram(a11, min.area = 0.01, srt = srt) water.lines(d11, col = "orangered") species("FeVO4") aFeVO4 <- affinity(aFe) aFeVO4_vs_stable <- aFeVO4$values[[1]] - d11$predominant.values diagram(a11, fill = NA, names = FALSE, limit.water = FALSE) opar <- par(usr = c(0, 1, 0, 1)) col <- rev(hcl.colors(128, palette = "YlGnBu", alpha = 0.8)) image(aFeVO4_vs_stable, col = col, add = TRUE) par(opar) diagram(a11, fill = NA, add = TRUE, names = FALSE) water.lines(d11, col = "orangered") thermo.axis() imax <- arrayInd(which.max(aFeVO4_vs_stable), dim(aFeVO4_vs_stable)) pH <- d11$vals$pH[imax[1]] Eh <- d11$vals$Eh[imax[2]] points(pH, Eh, pch = 10, cex = 2, lwd = 2, col = "gold") stable <- d11$names[d11$predominant[imax]] text(pH, Eh, stable, adj = c(0.5, -1), cex = 1.2, col = "gold") par(mar = c(3, 0, 2.5, 2.7)) plot.new() levels <- 1:length(col) plot.window(xlim = c(0, 1), ylim = range(levels), xaxs = "i", yaxs = "i") rect(0, levels[-length(levels)], 1, levels[-1L], col = rev(col), border = NA) box() arange <- rev(range(aFeVO4_vs_stable)) Jrange <- convert(convert(arange, "G"), "J") eVrange <- Jrange / 1.602176634e-19 / 6.02214076e23 / 6 ylim <- formatC(eVrange, digits = 3, format = "f") axis(4, at = range(levels), labels = ylim) mtext(quote(Delta*italic(G)[pbx]*", eV/atom"), side = 4, las = 0, line = 1) plot(1:10) imax <- arrayInd(which.max(aFeVO4_vs_stable), dim(aFeVO4_vs_stable)) pH <- d11$vals$pH[imax[1]] Eh <- d11$vals$Eh[imax[2]] points(pH, Eh, pch = 10, cex = 2, lwd = 2, col = "gold") stable <- d11$names[d11$predominant[imax]] text(pH, Eh, stable, adj = c(0.3, 2), cex = 1.2, col = "gold") range(aFeVO4_vs_stable[d11$predominant == d11$predominant[imax]]) b <- basis(c("Fe2O3", "Fe2V4O13", "O2")) cal_mol <- subcrt("FeVO4", 1, T = 25)$out$G convert(cal_mol, "logK") J_mol <- convert(cal_mol, "J") eV_mol <- J_mol / 1.602176634e-19 eV_atom <- eV_mol / 6.02214076e23 / 6 round(eV_atom, 3) stopifnot(round(eV_atom, 3) == 0.415) reset() logaH2S <- -2 T <- 200 pH <- c(0, 14, res2) O2 <- c(-48, -33, res2) basis(c("Cu+", "pyrite", "H2S", "oxygen", "H2O", "H+")) basis("H2S", logaH2S) S.aq <- c("H2S", "HS-", "HSO4-", "SO4-2") Fe.cr <- c("pyrite", "pyrrhotite", "magnetite", "hematite") Fe.abbrv <- c("Py", "Po", "Mag", "Hem") species(Fe.cr) mFe <- mosaic(S.aq, pH = pH, O2 = O2, T = T) diagram(mFe$A.bases, lty = 2, col = 4, col.names = 4, italic = TRUE, dx = c(0, 1, 0, 0), dy = c(-1.5, 0, 1, 0)) dFe <- diagram(mFe$A.species, add = TRUE, lwd = 2, names = Fe.abbrv, dx = c(0, 0.5, 0, 0), dy = c(-1, 0, 0.5, 0)) FeCu.cr <- c("chalcopyrite", "bornite") Cu.cr <- c("copper", "cuprite", "tenorite", "chalcocite", "covellite") FeCu.abbrv <- c("Ccp", "Bn", "Cu", "Cpr", "Tnr", "Cct", "Cv") species(c(FeCu.cr, Cu.cr)) mFeCu <- mosaic(list(S.aq, Fe.cr), pH = pH, O2 = O2, T = T, stable = list(NULL, dFe$predominant)) diagram(mFeCu$A.species, add = TRUE, col = 2, col.names = 2, bold = TRUE, names = FeCu.abbrv, dy = c(0, 0, 0, 0, 0, 1, 0)) col <- c(" diagram(mFeCu$A.species, add = TRUE, col = col, lwd = 2, col.names = col, bold = TRUE, names = FeCu.abbrv) TPS <- c(describe.property(c("T", "P"), c(T, "Psat")), expression(sum(S) == 0.01*m)) legend("topright", TPS, bty = "n") title("Cu-Fe-S-O-H (minerals only)", font.main = 1) pH <- c(0, 14, res2) O2 <- c(-48, -33, res2) T <- 200 logmS <- -2 m_NaCl <- 0.1 logm_aq <- -6 S.aq <- c("H2S", "HS-", "HSO4-", "SO4-2") Fe.cr <- c("pyrite", "pyrrhotite", "magnetite", "hematite") Fe.abbrv <- c("Py", "Po", "Mag", "Hem") FeCu.cr <- c("chalcopyrite", "bornite") Cu.cr <- c("copper", "cuprite", "tenorite", "chalcocite", "covellite") FeCu.abbrv <- c("Ccp", "Bn", "Cu", "Cpr", "Tnr", "Cct", "Cv") iFe.aq <- retrieve("Fe", c("S", "O", "H", "Cl"), "aq") Fe.aq <- info(iFe.aq)$name iCu.aq <- retrieve("Cu", c("S", "O", "H", "Cl"), "aq") Cu.aq <- info(iCu.aq)$name TPexpr <- describe.property(c("T", "P"), c(T, "Psat")) Sexpr <- as.expression(bquote(sum(S) == .(10^logmS)*m)) NaClexpr <- as.expression(bquote(NaCl == .(m_NaCl)*m)) aqexpr <- as.expression(bquote("("*aq*")"[italic(i)] == 10^.(logm_aq)*m)) basis(c("Cu+", "pyrite", "H2S", "oxygen", "H2O", "H+", "Cl-")) basis("H2S", logmS) nacl <- NaCl(T = T, P = "Psat", m_tot = m_NaCl) basis("Cl-", log10(nacl$m_Cl)) species(Fe.cr) species(iFe.aq, logm_aq, add = TRUE) mFe <- mosaic(S.aq, pH = pH, O2 = O2, T = T, IS = nacl$IS) dFe <- diagram(mFe$A.species, lwd = 0, names = FALSE) species(c(FeCu.cr, Cu.cr)) species(iCu.aq, logm_aq, add = TRUE) DG <- convert(-logm_aq, "G", T = convert(T, "K")) G.orig <- info(iFe.aq)$G G.new <- G.orig + DG mod.OBIGT(iFe.aq, G = G.new) predom <- dFe$predominant ipredom <- sort(unique(as.numeric(predom))) for(i in seq_along(ipredom)) predom[dFe$predominant == ipredom[i]] <- i Fe.predom <- c(Fe.cr, Fe.aq)[ipredom] mFeCu <- mosaic(list(S.aq, Fe.predom), pH = pH, O2 = O2, T = T, stable = list(NULL, predom), IS = nacl$IS) bold <- c(rep(TRUE, length(FeCu.abbrv)), rep(FALSE, length(Cu.aq))) names <- c(FeCu.abbrv, Cu.aq) srt <- dx <- dy <- rep(0, length(names)) cex <- rep(1, length(names)) dx[names == "Cu"] <- -1.5 dx[names == "Bn"] <- 1.4 dx[names == "CuHS"] <- 1 dx[names == "Cu+"] <- -0.5 dy[names == "Cu"] <- 3 dx[names == "Cct"] <- -2 dy[names == "Cct"] <- 4 dy[names == "CuHS"] <- 1 dy[names == "Bn"] <- -0.9 dx[names == "CuCl2-"] <- -1 dy[names == "CuCl2-"] <- 2 cex[names == "Bn"] <- 0.8 srt[names == "Bn"] <- 85 diagram(mFeCu$A.species, add = TRUE, col = 2, col.names = 2, names = names, bold = bold, dx = dx, dy = dy, cex.names = cex, srt = srt) text(12.3, -47, "Cu", col = 2, font = 2) col.names <- col <- rep(NA, nrow(mFeCu$A.species$species)) col[3] <- " col.names[1] <- " diagram(mFeCu$A.species, add = TRUE, col = col, lwd = 2, col.names = col.names, bold = TRUE, names = names, fill = NA) diagram(mFe$A.bases, add = TRUE, lty = 2, col = 4, names = FALSE, fill = NA) bold <- c(rep(TRUE, length(Fe.abbrv)), rep(FALSE, length(Fe.aq))) names <- c(Fe.abbrv, Fe.aq) srt <- dx <- dy <- rep(0, length(names)) cex <- rep(1, length(names)) dy[names == "Hem"] <- 0.5 dy[names == "Mag"] <- -0.8 dx[names == "Hem"] <- -0.5 dx[names == "Mag"] <- 0.25 dx[names == "Fe+2"] <- 0.5 dx[names == "FeO2-"] <- 1 dy[names == "FeO2-"] <- -3 dx[names == "HFeO2-"] <- -0.5 dy[names == "HFeO2-"] <- 1 srt[names == "Mag"] <- 83 srt[names == "FeSO4"] <- 90 diagram(mFe$A.species, add = TRUE, lwd = 2, names = names, bold = bold, dx = dx, dy = dy, cex.names = cex, srt = srt, fill = NA) legend("topright", c(TPexpr, Sexpr, NaClexpr, aqexpr), bty = "n") title("Cu-Fe-S-O-H-Cl (minerals and aqueous species)", font.main = 1) OBIGT() minerals <- list(Fe.cr = Fe.cr, Cu.cr = Cu.cr, FeCu.cr = FeCu.cr) aqueous <- list(S.aq = S.aq, Fe.aq = Fe.aq, Cu.aq = Cu.aq) allspecies <- c(minerals, aqueous) iall <- lapply(allspecies, info) allkeys <- lapply(iall, function(x) thermo.refs(x)$key) allkeys allyears <- lapply(iall, function(x) thermo.refs(x)$year) o <- order(unlist(allyears)) cat(paste(paste0("@", unique(unlist(allkeys)[o])), collapse = "; ")) par(mfrow = c(2, 2)) logaH2S <- -2 T <- 200 pH <- c(0, 14) O2 <- c(-60, -25) basis(c("Cu+", "Fe+2", "H2S", "oxygen", "H2O", "H+")) basis("H2S", logaH2S) S.aq <- c("H2S", "HS-", "HSO4-", "SO4-2") Fe.cr <- c("pyrite", "pyrrhotite", "magnetite", "hematite") Cu.cr <- c("copper", "cuprite", "tenorite", "chalcocite", "covellite") FeCu.cr <- c("chalcopyrite", "bornite") species(Fe.cr) mFe <- mosaic(S.aq, pH = pH, O2 = O2, T = T) diagram(mFe$A.bases, lty = 2, col = 4, col.names = 4, italic = TRUE, dx = c(0, 1, 0, 0), dy = c(-1, 0, -2, 0)) names <- info(info(Fe.cr))$abbrv dFe <- diagram(mFe$A.species, add = TRUE, names = names) species(Cu.cr) mCu <- mosaic(S.aq, pH = pH, O2 = O2, T = T) names <- info(info(Cu.cr))$abbrv col.names <- rep(2, length(names)) col.names[1] <- 0 dCu <- diagram(mCu$A.species, add = TRUE, col = 2, col.names = col.names, names = names) text(12, -55, "Cu", col = 2) legend("topright", legend = lTP(T, "Psat"), bty = "n") title(paste("Fe-S-O-H and Cu-S-O-H; Total S =", 10^logaH2S, "m")) species(FeCu.cr) mFeCu <- mosaic(S.aq, pH = pH, O2 = O2, T = T) names <- info(info(FeCu.cr))$abbrv dFeCu <- diagram(mFeCu$A.species, plot.it = FALSE, names = names) fill <- function(a) { ifelse(grepl("Ccp", a$species$name), " ifelse(grepl("Bn", a$species$name), " )} srt <- function(a) ifelse(a$species$name %in% c("Mag+Bn", "Mag+Ccp"), 80, 0) cex.names <- function(a) ifelse(a$species$name %in% c("Mag+Bn", "Mag+Ccp", "Mag+Cct"), 0.8, 1) dx <- function(a) sapply(a$species$name, switch, "Mag+Bn" = 0.15, "Mag+Cct" = 0.5, 0) dy <- function(a) sapply(a$species$name, switch, "Py+Bn" = -1, "Po+Bn" = -0.8, "Po+Cu" = -0.8, "Mag+Ccp" = -1, 0) a11 <- mix(dFe, dCu, dFeCu) diagram(a11, fill = fill(a11), srt = srt(a11), min.area = 0.01, dx = dx(a11), dy = dy(a11), cex.names = cex.names(a11)) title("Fe:Cu = 1:1") a21 <- mix(dFe, dCu, dFeCu, c(2, 1)) diagram(a21, fill = fill(a21), srt = srt(a21), min.area = 0.01, dx = dx(a21), dy = dy(a21), cex.names = cex.names(a21)) title("Fe:Cu = 2:1") a12 <- mix(dFe, dCu, dFeCu, c(1, 2)) diagram(a12, fill = fill(a12), srt = srt(a12), min.area = 0.01, dx = dx(a12), dy = dy(a12), cex.names = cex.names(a12)) title("Fe:Cu = 1:2") T <- 125 layout(matrix(c(1, 2, 3, 3), nrow = 2), widths = c(1, 1.5)) basis(c("copper", "hematite", "S2", "oxygen", "H2O", "H+", "Cl-")) bFe <- species(c("hematite", "magnetite", "pyrite"))$name aFe <- affinity(S2 = c(-34, -10, res1), O2 = c(-55, -40, res1), T = T) oFe <- order(aFe$species$S2 - aFe$species$O2) fill <- terrain.colors(length(oFe), alpha = 0.2)[oFe] abbrv <- info(aFe$species$ispecies)$abbrv dFe <- diagram(aFe, names = abbrv, fill = fill) title("Fe-S-O-H") bCu <- species(c("copper", "chalcocite", "covellite", "chalcopyrite", "bornite"))$name mCu <- mosaic(bFe, S2 = c(-34, -10, res1), O2 = c(-55, -40, res1), T = T, stable = list(dFe$predominant)) oCu <- order(mCu$A.species$species$S2 - mCu$A.species$species$O2) fill <- terrain.colors(length(oCu), alpha = 0.2)[oCu] abbrv <- info(mCu$A.species$species$ispecies)$abbrv dCu <- diagram(mCu$A.species, names = abbrv, fill = fill, dx = c(0, 0, 0, 0, 1.8)) title("Cu-Fe-S-O-H") aFeCu <- mash(dFe, dCu) names <- aFeCu$species$name dx <- dy <- srt <- rep(0, length(names)) cex <- rep(1, length(names)) cex[names %in% c("Hem+Ccp", "Hem+Cv")] <- 0.8 srt[names %in% c("Mag+Cu", "Hem+Cu")] <- 90 srt[names %in% c("Mag+Bn", "Hem+Bn")] <- 63 srt[names %in% c("Mag+Ccp", "Hem+Ccp")] <- 68 srt[names %in% c("Py+Bn", "Py+Cv")] <- 90 dx[names == "Hem+Ccp"] <- -0.4 dy[names == "Hem+Ccp"] <- -0.5 oFeCu <- order(aFeCu$species$S2 - aFeCu$species$O2) fill <- terrain.colors(length(oFeCu), alpha = 0.2)[oFeCu] diagram(aFeCu, cex.names = cex, srt = srt, dx = dx, dy = dy, fill = fill) legend("topleft", legend = lTP(T, "Psat"), bg = "white") title("Cu-Fe-S-O-H") par(mfrow = c(1, 3)) basis("pH", 6) m_tot <- 80000 / mass("Cl") / 1000 calc <- NaCl(T = T, m_tot = m_tot) basis("Cl-", log10(calc$m_Cl)) species("copper") iaq <- retrieve("Cu", c("O", "H", "Cl", "S"), "aq") mfun <- function() { s <- solubility(iaq, bases = list(bFe, bCu), S2 = c(-34, -10, res1), O2 = c(-55, -40, res1), T = T, IS = calc$IS, stable = list(dFe$predominant, dCu$predominant)) s <- convert(s, "ppm") diagram(aFeCu, names = NA, col = "gray", fill = fill) diagram(s, type = "loga.balance", levels = 10^(-3:3), add = TRUE) diagram(s, type = "loga.balance", levels = 35, add = TRUE, lwd = 3, col = 6, contour.method = NA) } mfun() title("Cu (ppm)") logK <- subcrt(c("CuCl2-", "Cu+", "Cl-"), c(-1, 1, 2), T = T)$out$logK dlogK <- logK - -5.2 dG <- convert(dlogK, "G", T = convert(T, "K")) newG <- info(info("CuCl2-"))$G + dG mod.OBIGT("CuCl2-", G = newG) logK <- subcrt(c("CuCl3-2", "Cu+", "Cl-"), c(-1, 1, 3), T = T)$out$logK dlogK <- logK - -5.6 dG <- convert(dlogK, "G", T = convert(T, "K")) newG <- info(info("CuCl3-2"))$G + dG mod.OBIGT("CuCl3-2", G = newG) mfun() title("Cu (ppm)", line = 1.7) CuCl2 <- expr.species("CuCl2-") CuCl3 <- expr.species("CuCl3-2") title(bquote("Helgeson (1969)"~.(CuCl2)~and~.(CuCl3)), line = 0.9) basis(c("S2", "copper", "hematite", "oxygen", "H2O", "H+", "Cl-")) basis("pH", 6) species("S2") iaq <- info("SO4-2") s <- solubility(iaq, S2 = c(-34, -10, res1), O2 = c(-55, -40, res1), T = T, IS = calc$IS, in.terms.of = "SO4-2") s <- convert(s, "ppm") diagram(aFeCu, names = NA, col = "gray", fill = fill) diagram(s, type = "loga.balance", levels = 10^(-3:3), add = TRUE) diagram(s, type = "loga.balance", levels = 35, add = TRUE, lwd = 3, col = 6, contour.method = NA) title(bquote(bold(.(expr.species("SO4-2"))~"(ppm)"))) calc$IS log10(calc$m_Cl * calc$gam_Cl) subcrt(c("CuCl2-", "Cu+", "Cl-"), c(-1, 1, 2), T = T)$out$logK subcrt(c("CuCl3-2", "Cu+", "Cl-"), c(-1, 1, 3), T = T)$out$logK reset() subcrt(c("CuCl2-", "Cu+", "Cl-"), c(-1, 1, 2), T = T)$out$logK subcrt(c("CuCl3-2", "Cu+", "Cl-"), c(-1, 1, 3), T = T)$out$logK names(iCu.aq) mat <- matrix(c(1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5), byrow = TRUE, nrow = 2) layout(mat) par(font.main = 1) basis(c("Fe+2", "Cu+", "hydrogen sulfide", "oxygen", "H2O", "H+")) xlab <- ratlab("Fe+2", "Cu+") species(c("pyrite", "pyrrhotite", "magnetite", "hematite")) aFe <- affinity("Fe+2" = c(0, 12), O2 = c(-40, -16), T = 400, P = 2000) names <- info(aFe$species$ispecies)$abbrv dFe <- diagram(aFe, xlab = xlab, names = names) title(bquote("Only Fe; 1° balance:" ~ .(expr.species(dFe$balance)))) label.plot("A") species(c("covellite", "chalcocite", "tenorite", "cuprite")) aCu <- affinity(aFe) names <- info(aCu$species$ispecies)$abbrv dCu <- diagram(aCu, xlab = xlab, names = names) title(bquote("Only Cu; 1° balance:" ~ .(expr.species(dCu$balance)))) label.plot("B") species(c("chalcopyrite", "bornite")) aFeCu <- affinity(aFe) names <- info(aFeCu$species$ispecies)$abbrv dFeCu <- diagram(aFeCu, xlab = xlab, balance = "H+", names = names) title(bquote("Only Fe+Cu; 1° balance:" ~ .(expr.species(dFeCu$balance)))) label.plot("C") ad1 <- rebalance(dFe, dCu, balance = "H+") names <- info(ad1$species$ispecies)$abbrv d1 <- diagram(ad1, xlab = xlab, balance = 1, names = names) title(bquote("Only Fe or Cu; 2° balance:" ~ .(expr.species("H+")))) label.plot("D") d1$values <- c(dFe$values, dCu$values) ad2 <- rebalance(d1, dFeCu, balance = "H+") names <- info(ad2$species$ispecies)$abbrv diagram(ad2, xlab = xlab, balance = 1, names = names) title(bquote("Fe and/or Cu; 2° balance:" ~ .(expr.species("H+")))) label.plot("E") db <- describe.basis(ibasis = 3) leg <- lex(lTP(400, 2000), db) legend("bottomleft", legend = leg, bty = "n") basis(c("Fe+2", "Cu+", "hydrogen sulfide", "oxygen", "H2O", "H+")) basis("H2S", 2) species(c("pyrite", "magnetite", "hematite", "covellite", "tenorite", "chalcopyrite", "bornite")) a <- affinity("Cu+" = c(-8, 2, 500), "Fe+2" = c(-4, 12, 500), T = 400, P = 2000) names <- info(a$species$ispecies)$abbrv d <- diagram(a, xlab = ratlab("Cu+"), ylab = ratlab("Fe+2"), balance = "O2", names = names) title(bquote("Cu-Fe-S-O-H; 1° balance:" ~ .(expr.species(d$balance)))) species(c("pyrrhotite", "ferrous-oxide", "chalcocite", "cuprite")) asat <- affinity(a) names <- asat$species$name names[2] <- "ferrous oxide" diagram(asat, type = "saturation", add = TRUE, lty = 2, col = 4, names = names) legend("topleft", legend = lTP(400, 2000), bty = "n") Keff <- function(T = 25, pH = 7) { len <- max(length(T), length(pH)) T <- rep(T, length.out = len) pH <- rep(pH, length.out = len) aH <- 10^(-pH) logK1 <- subcrt(c("acetic acid", "NH3", "acetamide", "H2O"), c(-1, -1, 1, 1), T = T)$out$logK logK2 <- subcrt(c("acetic acid", "acetate", "H+"), c(-1, 1, 1), T = T)$out$logK logK3 <- subcrt(c("NH3", "H+", "NH4+"), c(-1, -1, 1), T = T)$out$logK K1 <- 10^logK1 K2 <- 10^logK2 K3 <- 10^logK3 Keff <- K1 * (1 + K2 / aH) ^ -1 * (1 + K3 * aH) ^ -1 Keff } res <- 128 pH <- seq(0, 14, length.out = res) T <- 100 logKeff <- log10(Keff(pH = pH, T = T)) logAc <- log10(0.01) logAm <- log10(0.001) logAcAm <- logKeff + logAc + logAm a_N <- 0.001 a_C <- 2 * 0.01 loga_N <- log10(a_N) loga_C <- log10(a_C) basis(c("CO2", "NH3", "O2", "H2O", "H+")) basis("NH3", loga_N) species(c("acetamide", "acetic acid", "acetate")) m <- mosaic(c("NH3", "NH4+"), pH = c(0, 14, res), T = T) e <- equilibrate(m, loga.balance = loga_C) diagram(e, ylim = c(-8, -0), lty = 0, names = FALSE) abline(v = 6, col = "gray60", lty = 5) lines(pH, logAcAm, col = 4, lwd = 6, lty = 2) diagram(e, add = TRUE, lty = c(2, 3, 1, 2, 3), lwd = c(1, 1, 2, 1, 1), dx = c(-0.2, 0.2, -2.5, 0, 0), dy = c(0.1, 0.1, -1, 0.1, 0.1), srt = c(0, 0, 52, 0, 0)) tN <- paste("Total N in basis species =", format(a_N, scientific = FALSE), "m") tC <- paste("Total C in formed species =", format(a_C, scientific = FALSE), "m") title(main = paste(tN, tC, sep = "\n"), font.main = 1) legend("topright", legend = lTP(T, "Psat"), bty = "n") stopifnot(all.equal(as.numeric(e$loga.equil[[3]]), logAcAm, tol = 1e-3, scale = 1))
delete_object <- function(object, bucket, quiet = TRUE, ...) { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) if (length(object) == 1) { r <- s3HTTP(verb = "DELETE", bucket = bucket, path = paste0("/", object), ...) return(TRUE) } else { xml <- xml2::read_xml(paste0('<?xml version="1.0" encoding="UTF-8"?><Delete><Quiet>', tolower(quiet),'</Quiet></Delete>')) for (i in seq_along(object)) { xml2::xml_add_child(xml, xml2::read_xml(paste0("<Object><Key>", get_objectkey(object[[i]]), "</Key></Object>"))) } tmpfile <- tempfile() on.exit(unlink(tmpfile)) xml2::write_xml(xml, tmpfile) md <- base64enc::base64encode(digest::digest(file = tmpfile, raw = TRUE)) r <- s3HTTP(verb = "POST", bucket = bucket, query = list(delete = ""), request_body = tmpfile, headers = list(`Content-Length` = formatSize(file.size(tmpfile)), `Content-MD5` = md), ...) return(TRUE) } }
originize_dir <- function( path = getwd(), pkgs = getOption("origin.pkgs", .packages()), recursive = TRUE, exclude_files = NULL, overwrite = getOption("origin.overwrite", TRUE), ask_before_applying_changes = getOption("origin.ask_before_applying_changes", TRUE), ignore_comments = getOption("origin.ignore_comments", TRUE), check_conflicts = getOption("origin.check_conflicts", TRUE), check_base_conflicts = getOption("origin.check_base_conflicts", TRUE), path_to_local_functions = getOption("origin.path_to_local_functions", NULL), check_local_conflicts = getOption("origin.check_local_conflicts", TRUE), add_base_packages = getOption("origin.add_base_packages", FALSE), excluded_functions = getOption("origin.excluded_functions", list()), verbose = getOption("origin.verbose", FALSE), use_markers = getOption("origin.use_markers_for_logging", TRUE) ) { if (!check_base_conflicts && add_base_packages) { stop("When adding base packages checking for ", "potential conflicts is required!") } files <- list_files(path = path, exclude_folders = c("renv", "packrat", ".git", ".Rproj"), full.names = TRUE, include.dirs = FALSE, recursive = recursive, pattern = "\\.R$", ignore.case = TRUE) if (!is.null(exclude_files)) { if (any(!exclude_files %in% files)) { stop("File to exclude not in given path\n", exclude_files[!exclude_files %in% files]) } files <- files[!files %in% exclude_files] } n_files <- length(files) if (n_files > 20) { cat(sprintf("You are about to originize %s files.\nProceed?", n_files)) if (interactive()) { answer <- utils::menu(choices = c("YES", "NO", "Show files")) } else { answer <- 1 } if (answer == 2) { stop("Execution halted") } else if (answer == 3) { print(files) cat("\nProceed?") if (interactive()) { answer2 <- utils::menu(choices = c("YES", "NO")) } else { answer2 <- 1 } if (answer2 == 2) { stop("Execution halted") } } } scripts <- suppressWarnings(lapply(files, readLines)) empty_scripts <- vapply(X = scripts, FUN = length, FUN.VALUE = integer(1)) == 0 if (all(empty_scripts)) { message("All provided scripts are empty") return(invisible(NULL)) } else if (any(empty_scripts)) { scripts <- scripts[!empty_scripts] files <- files[!empty_scripts] } originize_wrap(scripts = scripts, files = files, type = "writeLines", pkgs = pkgs, overwrite = overwrite, ask_before_applying_changes = ask_before_applying_changes, ignore_comments = ignore_comments, check_conflicts = check_conflicts, check_base_conflicts = check_base_conflicts, add_base_packages = add_base_packages, excluded_functions = excluded_functions, verbose = verbose, use_markers = use_markers, path_to_local_functions = path_to_local_functions, check_local_conflicts = check_local_conflicts) return(invisible(NULL)) }
context("helper functions") if (exists("iris") == TRUE) { dataset = iris[,1:4] } else { dataset <- rbind(matrix(rnorm(200, mean = 1, sd = 0.3), ncol = 4), matrix(rnorm(200, mean = 2, sd = 0.3), ncol = 4), matrix(rnorm(200, mean = 3, sd = 0.3), ncol = 4)) } k = 4 l = 3 C = dataset[sample(nrow(dataset),k),] x = dataset[sample(nrow(dataset),1),] dXC = dist_sqr_XC(dataset,C) Q = Q_reorder(dXC) test_that("C_zero is same width as dataset", { Cz = C_zero(dataset, k, method = "random", c_type = "clustroid") expect_equal(ncol(Cz),ncol(dataset)) }) test_that("C_zero is length k", { Cz = C_zero(dataset, k, method = "random", c_type = "clustroid") expect_equal(nrow(Cz),k) }) test_that("dist_sqr_xC is length 1", { dsxC = dist_sqr_xC(x, C) expect_equal(nrow(dsxC), 1) }) test_that("dist_sqr_xC is width 2", { dsxC = dist_sqr_xC(x, C) expect_equal(ncol(dsxC), 2) }) test_that("dist_sqr_XC is same length as dataset", { dsXC = dist_sqr_XC(dataset, C) expect_equal(nrow(dsXC), nrow(dataset)) }) test_that("dist_sqr_xC is width 2", { dsXC = dist_sqr_XC(dataset, C) expect_equal(ncol(dsXC), 2) })
NBSI2<-function(ref.infor=NULL,que.infor=NULL,ref.env=NULL,que.env=NULL, barcode.identi.result,model="RF",variables="ALL", en.vir=NULL,bak.vir=NULL){ spe.identified<-as.character(barcode.identi.result[,2]) spe.identified.uniq<-unique(spe.identified);length(spe.identified.uniq) if (is.null(ref.infor) & is.null(ref.env) | is.null(que.infor) & is.null(que.env)){ stop("Please check the input data!") }else if (is.null(ref.env) == FALSE & is.null(que.env) == FALSE){ eff.samp.env<-ref.env[,-c(1:2)] que.vari<-que.env[,-c(1:3)] if (nrow(que.vari) == 1){ que.vari<-que.vari[,colnames(que.vari) %in% colnames(eff.samp.env)] que.vari<-as.data.frame(que.vari) }else{ que.vari<-apply(que.vari,MARGIN=2,as.integer) que.vari<-que.vari[,colnames(que.vari) %in% colnames(eff.samp.env)] } }else if (is.null(ref.env) == TRUE & is.null(que.env) == TRUE){ spe.identified.uniq<-unique(ref.infor$species) ref.range<-data.frame() for (su in 1:length(spe.identified.uniq)){ prese.lonlat<-ref.infor[ref.infor$species %in% spe.identified.uniq[su],] range.lon=min(diff(range(prese.lonlat[,4])),(abs(min(prese.lonlat[,4])-(-180))+abs(max(prese.lonlat[,4])-180))) range.lat=diff(range(prese.lonlat[,5])) ref.range<-rbind(ref.range,cbind(range.lon,range.lat)) } lon.mean<-mean(ref.range[-which(ref.range[,1] == 0),1]) lat.mean<-mean(ref.range[-which(ref.range[,2] == 0),2]) if (is.null(en.vir) == T){ cat("Environmental layers downloading ... ") envir<-raster::getData("worldclim",download=TRUE, var="bio",res=10) en.vir<-raster::brick(envir) cat("Done!\n") if (is.null(bak.vir) != T){ warning("The random background points and their environmental variables will be recreated from the downloaded environmental layer!") } cat("Background extracting ... ") back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1, excludep=TRUE,prob=FALSE,cellnumbers=FALSE,tryf=3,warn=2, lonlatCorrection=TRUE) bak.vir<-raster::extract(en.vir,back) cat("Done!\n") }else{ if (is.null(bak.vir) == T){ cat("Background extracting ... ") back<-dismo::randomPoints(mask=en.vir,n=5000,ext=NULL,extf=1.1,excludep=TRUE, prob=FALSE,cellnumbers=FALSE,tryf=3,warn=2, lonlatCorrection=TRUE) bak.vir<-raster::extract(en.vir,back) cat("Done!\n") } } samp.env<-data.frame() samp.points<-data.frame() for (su in 1:length(spe.identified.uniq)){ prese.lonlat<-ref.infor[ref.infor$species %in% spe.identified.uniq[su],] present.points<-pseudo.present.points(prese.lonlat[,3:5],10,lon.mean,lat.mean,en.vir,map=F) present.points[,1]<-gsub("Simulation",present.points[1,1],present.points[,1]);present.points samp.points<-rbind(samp.points,present.points) prese.env<-raster::extract(en.vir,present.points[,2:3]) if (!all(is.na(prese.env[,1])==FALSE)){ nonerr.env<-prese.env[-which(is.na(prese.env[,1])==TRUE),] if (is.null(dim(nonerr.env))==TRUE){ prese.env<-t(as.data.frame(nonerr.env)) row.names(prese.env)=NULL }else if (dim(nonerr.env)[1]==0){ stop ("Please check the coordinate of ",spe.identified.uniq[su]," !\n") }else{ prese.env<-nonerr.env } } spe.env<-cbind(Species=as.character(spe.identified.uniq[su]),prese.env) samp.env<-rbind(samp.env,spe.env) } samp.env[,2:ncol(samp.env)]<-apply(samp.env[,2:ncol(samp.env)],FUN=as.integer,MARGIN=2) eff.samp.env<-samp.env if (variables == "SELECT"){ for (eff in 1:ncol(eff.samp.env)){ rs<-abs(stats::cor(eff.samp.env[,-1])) cor.vir<-c() for (r in 1:nrow(rs)){ tmp<-rs[r,which(rs[r,] >= 0.9 & rs[r,] != 1)] if (length(tmp) != 0){ cor.vir<-c(cor.vir,names(tmp)) } } freq.vir<-table(cor.vir);freq.vir if (length(freq.vir) != 0){ max.freq.vir<-names(freq.vir[freq.vir == max(freq.vir)]) max.freq.vir<-max.freq.vir[sample(1:length(max.freq.vir),size=1)] eff.samp.env<-eff.samp.env[,-which(colnames(eff.samp.env)==max.freq.vir)] }else{ break } } colnames(eff.samp.env) eff.list<-colnames(eff.samp.env)[-1] } que.vari<-raster::extract(en.vir,que.infor[,4:5]) if (nrow(que.vari) == 1){ que.vari<-que.vari[,colnames(que.vari) %in% colnames(eff.samp.env)] que.vari<-as.data.frame(t(que.vari)) }else{ que.vari<-apply(que.vari,MARGIN=2,as.integer) que.vari<-que.vari[,colnames(que.vari) %in% colnames(eff.samp.env)] } }else{ stop("There is no matching ecological variable information between REF and QUE!") } model<-gsub("randomforest|RandomForest|randomForest","RF",model) model<-gsub("maxent|Maxent","MAXENT",model) spe.niche<-list() niche.ref.prob<-list() for (siu in 1:length(spe.identified.uniq)){ prese.env<-eff.samp.env[gsub(".+,","",eff.samp.env[,1]) %in% spe.identified.uniq[siu],-1] prese.env<-stats::na.omit(prese.env) if (dim(prese.env)[1]==1){ prese.env<-rbind(prese.env,prese.env) warning ("The model may not be accurate because there is only one record of ",spe.identified.uniq[siu],"!\n") } if (is.null(ref.env) == FALSE & is.null(que.env) == FALSE){ ref.mean<-apply(prese.env,FUN=mean,MARGIN=2) ref.sd<-apply(prese.env,FUN=stats::sd,MARGIN=2) ref.range<-apply(prese.env,FUN=max,MARGIN=2)-apply(prese.env,FUN=min,MARGIN=2) for (rs in 1:length(ref.sd)){ if (ref.sd[rs] == 0){ ref.sd[rs]<-apply(eff.samp.env[,-1],FUN=stats::sd,MARGIN=2)[rs] } if (ref.range[rs] == 0){ ref.range[rs]<-ref.sd[rs]*2 } } q.01<-stats::qnorm(0.01,mean=ref.mean,sd=ref.sd) q.99<-stats::qnorm(0.99,mean=ref.mean,sd=ref.sd) bak.env<-matrix(nrow=5000,ncol=ncol(prese.env)) for (en in 1:ncol(prese.env)){ tmp.left<-stats::runif(2500, min=(q.01[en]-2*ref.range[en]), max=q.01[en]-ref.range[en]) tmp.right<-stats::runif(2500, min=q.99[en]+ref.range[en], max=q.99[en]+2*ref.range[en]) tmp.ab<-c(tmp.left,tmp.right) bak.env[,en]<-tmp.ab } colnames(bak.env)<-colnames(prese.env) if (model == "RF"){ mod<-niche.Model.Build(prese=NULL,absen=NULL, prese.env=prese.env,absen.env=NULL, model="RF", bak.vir=bak.env) }else if (model == "MAXENT"){ mod<-niche.Model.Build(prese=NULL,absen=NULL, prese.env=prese.env,absen.env=NULL, model="MAXENT", bak.vir=bak.env) } }else if (is.null(ref.env) == TRUE & is.null(que.env) == TRUE){ if (model == "RF"){ mod<-niche.Model.Build(prese=NULL,absen=NULL, prese.env=prese.env,absen.env=NULL, model="RF", bak.vir=bak.vir,en.vir=en.vir) }else if (model == "MAXENT"){ mod<-niche.Model.Build(prese=NULL,absen=NULL, prese.env=prese.env,absen.env=NULL, model="MAXENT", bak.vir=bak.vir,en.vir=en.vir) } } spe.niche[[siu]]<-mod$model spe.var<-apply(prese.env,FUN=as.numeric,MARGIN=2) spe.var<-as.data.frame(spe.var) if (model == "RF"){ ref.HSI<-stats::predict(mod$model,spe.var,type="prob") niche.ref.prob[[siu]]<-min(ref.HSI[,2]) }else if (model == "MAXENT"){ ref.HSI<-dismo::predict(mod$model,spe.var,args='outputformat=logistic') niche.ref.prob[[siu]]<-min(ref.HSI) } } niche.ref.prob result<-data.frame() for(n in 1:nrow(que.vari)){ if (is.null(ref.env) == FALSE & is.null(que.env) == FALSE){ que.ID<-as.character(que.env[n,2]) ref.index<-grep(que.ID,barcode.identi.result[,1]) target.spe<-as.character(barcode.identi.result[ref.index,2]) spe_in_ref<-as.character(ref.env[grep(target.spe,ref.env$species),]$species) }else{ que.ID<-as.character(que.infor[n,2]) ref.index<-grep(que.ID,barcode.identi.result[,1]) target.spe<-as.character(barcode.identi.result[ref.index,2]) spe_in_ref<-as.character(ref.infor[grep(target.spe,ref.infor$species),]$species) } if (length(spe_in_ref) == 0){ warning ("The identified species ",target.spe, " doesn't exist in ref.infor!", " Skipping the niche-based procedure ", que.ID," ...\n") Pb<-as.numeric(as.character(barcode.identi.result[n,3])) res0<-cbind(Pb,ref.prob=NA,que.prob=NA,CF=NA,Pbe=NA,NicoB.prob=NA) res0<-cbind(as.character(barcode.identi.result[n,1]),target.spe,res0) result<-rbind(result,res0) }else{ spe.index<-grep(paste(target.spe,"$",sep=""),spe.identified.uniq,fixed=F) model.spe<-spe.niche[[spe.index]] if (nrow(que.vari) == 1){ que.niche<-as.data.frame(que.vari) }else{ que.niche<-t(as.matrix(que.vari[n,])) que.niche<-as.data.frame(que.niche) } if (all(is.na(que.niche)) == TRUE){ stop ("Please check the coordinate of ",que.ID," !\n") }else{ if (model == "RF"){ que.HSI<-stats::predict(model.spe,que.niche,type="prob") que.prob<-que.HSI[,2] ref.prob<-niche.ref.prob[[spe.index]] }else if (model == "MAXENT"){ que.HSI<-dismo::predict(model.spe,que.niche,args='outputformat=logistic') que.prob<-que.HSI ref.prob<-niche.ref.prob[[spe.index]] } } Pb<-as.numeric(as.character(barcode.identi.result[n,3])) CF=que.prob/ref.prob NicoB.prob=Pb*CF if (CF > 1){ CF=1 } if (NicoB.prob > 1){ NicoB.prob=1 } res0<-cbind(Pb,ref.prob,que.prob,CF,Pbe=NA,NicoB.prob) res0<-cbind(as.character(barcode.identi.result[n,1]),target.spe,round(res0,4)) result<-rbind(result,res0) } } colnames(result)<-c("queID","species.identified","P(Bk)","min(P(EK))","P(Ek)", "Prob(Sid).TSI","Prob(Sid).CI.cor","Prob(Sid).CI.unc") result<-as.data.frame(result[,-7]) return(result) }
.msg <- function(verbose, ...) { if (verbose) { message(...) } }
get_daymet <- function(template, label, elements = NULL, years = NULL, raw.dir = "./RAW/DAYMET", extraction.dir = paste0("./EXTRACTIONS/", label, "/DAYMET"), force.redo = F) { raw.dir <- normalizePath(paste0(raw.dir,"/."), mustWork = FALSE) extraction.dir <- normalizePath(paste0(extraction.dir,"/."), mustWork = FALSE) dir.create(raw.dir, showWarnings = FALSE, recursive = TRUE) dir.create(extraction.dir, showWarnings = FALSE, recursive = TRUE) all.elements <- c("dayl", "prcp", "srad", "swe", "tmax", "tmin", "vp") if (is.null(elements)) elements <- all.elements elements <- tolower(elements) missing.elements <- setdiff(elements, all.elements) if (length(missing.elements) > 0) warning("Elements not available: ", paste(missing.elements, collapse = ", ")) elements <- setdiff(elements, missing.elements) if (length(elements) == 0) stop("No elements available") all.years <- 1980:(lubridate::year(Sys.time()) - 1) if (is.null(years)) years <- all.years missing.years <- setdiff(years, all.years) if (length(missing.years) > 0) warning("Years not available: ", paste(missing.years, collapse = ", ")) years <- setdiff(years, missing.years) if (length(years) == 0) stop("No years available") out.files <- paste0(extraction.dir, "/", label, "_DAYMET_", elements, "_", min(years), "-", max(years), ".tif") if (!force.redo & all(file.exists(out.files)) & file.exists(paste0(extraction.dir, "/", label, "_DAYMET_layer_names.Rds"))) { extracted.DAYMET <- out.files %>% lapply(FUN = function(x) { out <- raster::brick(x) names(out) <- readr::read_rds(paste0(extraction.dir, "/", label, "_DAYMET_layer_names.Rds")) return(out) }) names(extracted.DAYMET) <- elements return(extracted.DAYMET) } daymet_tiles <- FedData::daymet_tiles template.latlon <- template %>% sp::spTransform(raster::projection(daymet_tiles)) tile.ids <- daymet_tiles$TileID[!is.na(daymet_tiles %over% template.latlon)] tile.ids <- tile.ids[!is.na(tile.ids)] tile.ids <- unique(tile.ids) message("Area of interest includes ", length(tile.ids), " DAYMET tile(s).") tiles <- lapply(tile.ids, function(tile) { return(FedData::get_daymet_tile(template = template, elements = elements, years = years, tileID = tile, raw.dir = raw.dir)) }) names(tiles) <- tile.ids if (length(tiles) > 1) { message("Mosaicking DAYMET tiles.") tiles <- foreach::foreach(element = elements) %do% { utils::flush.console() these.tiles <- lapply(tiles, "[[", element) these.tiles$fun <- mean names(these.tiles)[1:2] <- c("x", "y") out.tiles <- do.call(raster::mosaic, these.tiles) names(out.tiles) <- names(these.tiles$x) out.tiles } } else { tiles <- tiles[[1]] } names(tiles) <- elements tiles %>% mapply(x = ., y = names(tiles), FUN = function(x, y) { raster::writeRaster(x, paste0(extraction.dir, "/", label, "_DAYMET_", y, "_", min(years), "-", max(years), ".tif"), datatype = "FLT4S", options = c("COMPRESS=DEFLATE", "ZLEVEL=9", "INTERLEAVE=BAND"), overwrite = T, setStatistics = FALSE) }) tiles[[1]] %>% names() %>% readr::write_rds(paste0(extraction.dir, "/", label, "_DAYMET_layer_names.Rds")) return(tiles) } download_daymet_tile <- function(tileID, elements, years, raw.dir) { out <- foreach::foreach(element = elements) %:% foreach::foreach(year = sort(years), .combine = "c") %do% { destdir <- paste0(raw.dir, "/", tileID, "/", year) dir.create(destdir, recursive = TRUE, showWarnings = FALSE) url <- paste0("https://thredds.daac.ornl.gov/thredds/fileServer/ornldaac/1328/tiles/", year, "/", tileID, "_", year, "/", element, ".nc") download_data(url = url, destdir = destdir, timestamping = FALSE, nc = TRUE) %>% normalizePath(mustWork = T) } names(out) <- elements return(out) } get_daymet_tile <- function(template, tileID, elements = NULL, years = NULL, raw.dir) { tmpdir <- tempfile() if (!dir.create(tmpdir)) stop("failed to create my temporary directory") message("(Down)Loading DAYMET tile ", tileID) all.elements <- c("dayl", "prcp", "srad", "swe", "tmax", "tmin", "vp") elements <- tolower(elements) if (is.null(elements)) elements <- all.elements missing.elements <- setdiff(elements, all.elements) if (length(missing.elements) > 0) warning("Elements not available: ", paste(missing.elements, collapse = ", ")) elements <- setdiff(elements, missing.elements) if (length(elements) == 0) stop("No elements available") all.years <- 1980:(lubridate::year(Sys.time()) - 1) if (is.null(years)) years <- all.years missing.years <- setdiff(years, all.years) if (length(missing.years) > 0) warning("Years not available: ", paste(missing.years, collapse = ", ")) years <- setdiff(years, missing.years) if (length(years) == 0) stop("No years available") files <- download_daymet_tile(tileID = tileID, elements = elements, years = years, raw.dir = raw.dir) tiles <- foreach::foreach(element = files) %do% { tile <- foreach::foreach(file = element) %do% raster::brick(file) tile %<>% raster::stack(quick = TRUE) if (!is.null(template)) { tile <- tryCatch(tile %>% raster::crop(template %>% sp::spTransform(tile %>% raster::projection() %>% sp::CRS()), snap = "out"), error = function(e) { tile %>% raster::crop(template %>% sp::spTransform(tile %>% raster::projection() %>% sp::CRS())) }) } } names(tiles) <- elements unlink(tmpdir, recursive = TRUE) return(tiles) } "daymet_tiles"
members <- function(x,...) UseMethod("members")
SRE.fit <- function(object, n_EM = 100L, tol = 0.01, method = c("EM", "TMB"), lambda = 0, print_lik = FALSE, optimiser = nlminb, known_sigma2fs = NULL, taper = NULL, simple_kriging_fixed = TRUE, ...) { tmp <- list(...) if(!is.null(tmp$SRE_model)) { object <- tmp$SRE_model warning("The argument 'SRE_model' is deprecated: Please use 'object'") } method <- match.arg(method) optimiser <- match.fun(optimiser) if (!is.null(known_sigma2fs)) object@sigma2fshat <- known_sigma2fs if (method == "TMB" & object@K_type == "block-exponential") { answer <- user_decision("You have selected method = 'TMB' and K_type = 'block-exponential'. While this combination is allowed, it is significantly more computationally demanding than K_type = 'precision'. Please enter Y if you would like to continue with the block-exponential formulation, or N if you would like to change to the sparse precision matrix formulation.\n") if (answer == "N") { object@K_type <- "precision" cat("Setting K-type = 'precision'.\n") } } .check_args2(n_EM = n_EM, tol = tol, lambda = lambda, method = method, print_lik = print_lik, fs_by_spatial_BAU = object@fs_by_spatial_BAU, response = object@response, K_type = object@K_type, link = object@link, known_sigma2fs = known_sigma2fs, BAUs = object@BAUs, optimiser = optimiser, taper = taper, simple_kriging_fixed = simple_kriging_fixed, ...) object@simple_kriging_fixed <- simple_kriging_fixed object <- .SRE.fit(object = object, n_EM = n_EM, tol = tol, method = method, lambda = lambda, print_lik = print_lik, optimiser = optimiser, known_sigma2fs = known_sigma2fs, taper = taper, ...) return(object) } .SRE.fit <- function(object, n_EM, tol, method, lambda, print_lik, optimiser, known_sigma2fs, taper, ...) { if(method == "EM") { object <- .EM_fit(object = object, n_EM = n_EM, lambda = lambda, tol = tol, print_lik = print_lik, known_sigma2fs = known_sigma2fs, taper = taper) } else if (method == "TMB") { object <- .TMB_fit(object, optimiser = optimiser, known_sigma2fs = known_sigma2fs, taper = taper, ...) } else { stop("No other estimation method implemented yet. Please use method = 'EM' or method = 'TMB'.") } object@method <- method return(object) } .EM_fit <- function(object, n_EM, lambda, tol, print_lik, known_sigma2fs, taper) { info_fit <- list() info_fit$time <- system.time({ n <- nbasis(object) X <- object@X info_fit$method <- "EM" llk <- rep(0,n_EM) if(opts_FRK$get("progress")) pb <- utils::txtProgressBar(min = 0, max = n_EM, style = 3) if (!is.null(taper)) { beta <- .tapering_params(D_matrices = object@D_basis, taper = taper) T_beta <- .T_beta_taper_matrix(D_matrices = object@D_basis, beta = beta) info_fit$taper <- "NULL" } else { T_beta <- 1 } for(i in 1:n_EM) { llk[i] <- loglik(object) object <- .SRE.Estep(object) object <- .SRE.Mstep(object, lambda, known_sigma2fs, T_beta) if(opts_FRK$get("progress")) utils::setTxtProgressBar(pb, i) if(i>1) if(abs(llk[i] - llk[i-1]) < tol) { cat("Minimum tolerance reached\n") break } } if(opts_FRK$get("progress")) close(pb) info_fit$num_iterations <- i if(object@sigma2fshat == 0) { info_fit$sigma2fshat_equal_0 <- 1 if(opts_FRK$get("verbose") > 0) message("sigma2fs is being estimated to zero. This might because of an incorrect binning procedure or because too much measurement error is being assumed (or because the latent field is indeed that smooth, but unlikely).") } else { info_fit$sigma2fshat_equal_0 <- 0 } if(i == n_EM) { cat("Maximum EM iterations reached\n") info_fit$converged <- 0 } else { info_fit$converged <- 1 } info_fit$plot_lik <- list(x = 1:i, llk = llk[1:i], ylab = "log likelihood", xlab = "EM iteration") if(print_lik & !is.na(tol)) { plot(1:i, llk[1:i], ylab = "log likelihood", xlab = "EM iteration") } }) object@info_fit <- info_fit return(object) } .SRE.Estep <- function(Sm) { if(Sm@fs_model == "ind") Sm <- .SRE.Estep.ind(Sm) else stop("E-step only for independent fs-variation model currently implemented") } .loglik.ind <- function(Sm) { S <- Sm@S K <- Sm@Khat chol_K <- chol(K) Kinv <- chol2inv(chol_K) resid <- Sm@Z - Sm@X %*% Sm@alphahat N <- length(Sm@Z) D <- Sm@sigma2fshat*Sm@Vfs + Sm@Ve if(isDiagonal(D)) { D <- Diagonal(x = D@x) cholD <- sqrt(D) cholDinvT <- solve(cholD) } else { cholD <- chol(D) cholDinvT <- t(solve(cholD)) } S_Dinv_S <- crossprod(cholDinvT %*% S) R <- chol(Kinv + S_Dinv_S) log_det_SigmaZ <- logdet(R) + determinant(K,logarithm = TRUE)$modulus + logdet(cholD) rDinv <- crossprod(cholDinvT %*% resid,cholDinvT) quad_bit <- crossprod(cholDinvT %*% resid) - tcrossprod(rDinv %*% S %*% solve(R)) llik <- -0.5 * N * log(2*pi) - 0.5 * log_det_SigmaZ - 0.5 * quad_bit return(as.numeric(llik)) } .SRE.Mstep <- function(Sm, lambda = 0, known_sigma2fs, T_beta) { if(Sm@fs_model == "ind") Sm <- .SRE.Mstep.ind(Sm, lambda = lambda, known_sigma2fs = known_sigma2fs, T_beta = T_beta) else stop("M-step only for independent fs-variation model currently implemented") } .SRE.Estep.ind <- function(Sm, known_sigma2fs) { alpha <- Sm@alphahat K <- Sm@Khat Kinv <- Sm@Khat_inv sigma2fs <- Sm@sigma2fshat D <- sigma2fs*Sm@Vfs + Sm@Ve if(isDiagonal(D)) { D <- Diagonal(x=D@x) cholD <- sqrt(D) cholDinv <- solve(cholD) Dinv <- solve(D) } else { cholD <- Matrix::chol(D) cholDinv <- solve(cholD) Dinv <- chol2inv(cholD) } Q_eta <- (crossprod(t(cholDinv) %*% Sm@S) + Kinv) S_eta <- chol2inv(chol(Q_eta)) mu_eta <- (S_eta) %*%(t(Sm@S) %*% Dinv %*% (Sm@Z - Sm@X %*% alpha)) Sm@mu_eta <- mu_eta Sm@S_eta <- S_eta Sm@Q_eta <- Q_eta Sm } .SRE.Mstep.ind <- function(Sm, lambda = 0, known_sigma2fs, T_beta) { mu_eta <- Sm@mu_eta S_eta <- Sm@S_eta alpha <- Sm@alphahat sigma2fs <- Sm@sigma2fshat K <- .update_K(Sm,method=Sm@K_type, lambda = lambda) K <- K * T_beta Khat_inv <- chol2inv(chol(K)) homoscedastic <- all((a <- diag(Sm@Ve)) == a[1]) & all((b <- diag(Sm@Vfs)) == b[1]) & isDiagonal(Sm@Vfs) diagonal_mats <- isDiagonal(Sm@Ve) & isDiagonal(Sm@Vfs) if(!is.null(known_sigma2fs)) { est_sigma2fs <- FALSE sigma2fs_new <- known_sigma2fs } else { est_sigma2fs <- TRUE } if(!all(diag(Sm@Vfs) == 0)) if(!diagonal_mats) { J <- function(sigma2fs) { if(sigma2fs < 0) { return(Inf) } else { D <- sigma2fs*Sm@Vfs + Sm@Ve Dinv <- chol2inv(chol(D)) DinvV <- Dinv %*% Sm@Vfs DinvVDinv <- Dinv %*% Sm@Vfs %*% Dinv alpha <- solve(t(Sm@X) %*% Dinv %*% Sm@X) %*% t(Sm@X) %*% Dinv %*% (Sm@Z - Sm@S %*% mu_eta) resid <- Sm@Z - Sm@X %*% alpha Dinvr <- DinvVDinv %*% resid DinvS <- DinvVDinv %*% Sm@S tr1 <- tr(DinvV) tr2 <- sum(diag2(DinvS %*% (S_eta + tcrossprod(mu_eta)),t(Sm@S)) - 2*diag2(DinvS %*% mu_eta,t(resid)) + diag2(Dinvr,t(resid))) -(-0.5*tr1 +0.5*tr2) } } } else { R_eta <- chol(S_eta + tcrossprod(mu_eta)) S_R_eta <- Sm@S %*% t(R_eta) Omega_diag1 <- rowSums(S_R_eta^2) J <- function(sigma2fs) { if(sigma2fs < 0) { return(Inf) } else { D <- sigma2fs*Sm@Vfs + Sm@Ve Dinv <- solve(D) DinvV <- Dinv %*% Sm@Vfs alpha <- solve(t(Sm@X) %*% Dinv %*% Sm@X) %*% t(Sm@X) %*% Dinv %*% (Sm@Z - Sm@S %*% mu_eta) resid <- Sm@Z - Sm@X %*% alpha Omega_diag <- Omega_diag1 - 2*diag2(Sm@S %*% mu_eta, t(resid)) + diag2(resid,t(resid)) Omega_diag <- Diagonal(x=Omega_diag) return(-(-0.5*tr(DinvV) + 0.5*tr(DinvV %*% Dinv %*% Omega_diag))) } } } if(!all(diag(Sm@Vfs) == 0)) { if(!homoscedastic) { if(est_sigma2fs) { amp_factor <- 10; OK <- 0 while(!OK) { amp_factor <- amp_factor * 10 if(!(sign(J(sigma2fs/amp_factor)) == sign(J(sigma2fs*amp_factor)))) OK <- 1 if(amp_factor > 1e9) { OK <- 1 } } if(amp_factor > 1e9) { sigma2fs_new <- 0 } else { sigma2fs_new <- stats::uniroot(f = J, interval = c(sigma2fs/amp_factor, sigma2fs*amp_factor))$root } } D <- sigma2fs_new*Sm@Vfs + Sm@Ve if(isDiagonal(D)) { D <- Diagonal(x=D@x) Dinv <- solve(D) } else { Dinv <- chol2inv(chol(D)) } alpha <- solve(t(Sm@X) %*% Dinv %*% Sm@X) %*% t(Sm@X) %*% Dinv %*% (Sm@Z - Sm@S %*% mu_eta) } else { alpha <- solve(t(Sm@X) %*% Sm@X) %*% t(Sm@X) %*% (Sm@Z - Sm@S %*% mu_eta) resid <- Sm@Z - Sm@X %*% alpha if(est_sigma2fs) { Omega_diag <- Omega_diag1 - 2*diag2(Sm@S %*% mu_eta, t(resid)) + diag2(resid,t(resid)) Omega_diag <- Diagonal(x=Omega_diag) sigma2fs_new <- 1/b[1]*(sum(Omega_diag)/length(Sm@Z) - a[1]) if(sigma2fs_new < 0) { sigma2fs_new = 0 } } } } if(all(diag(Sm@Vfs) == 0)) { alpha <- solve(t(Sm@X) %*% solve(Sm@Ve) %*% Sm@X) %*% t(Sm@X) %*% solve(Sm@Ve) %*% (Sm@Z - Sm@S %*% mu_eta) if(est_sigma2fs) sigma2fs_new <- 0 } Sm@Khat <- K Sm@Khat_inv <- Khat_inv Sm@alphahat <- alpha Sm@sigma2fshat <- sigma2fs_new return(Sm) } .update_K <- function(Sm,method="unstructured", S_eta= NULL,mu_eta = NULL, lambda = 0) { if (is.null(S_eta)) S_eta <- Sm@S_eta if (is.null(mu_eta)) mu_eta <- Sm@mu_eta if(method == "unstructured") { K <- .regularise_K(Sm, lambda = lambda) } else if (method == "block-exponential") { all_res <- count_res(Sm) eta2 <- lapply(1:nrow(all_res),function(i) { idx <- which(data.frame(Sm@basis)$res == i) S_eta[idx,idx] + tcrossprod(mu_eta[idx]) }) omega <- lapply(1:nrow(all_res), function(i) { ni <- all_res[i,]$n idx <- which(data.frame(Sm@basis)$res == i) Ki <- Sm@Khat[idx,idx]/Sm@Khat[idx[1],idx[1]] Ki_inv <- chol2inv(chol(Ki)) ni / sum(diag2(Ki_inv,eta2[[i]])) }) f_tau <- function(tau_i,i) { if(any(tau_i <= 1e-10)) { Inf } else { idx <- which(data.frame(Sm@basis)$res == i) if(is(Sm@basis,"TensorP_Basis")) { Ki1 <- exp(-Sm@D_basis$Basis2[[1]]/tau_i[2]) Ki2 <- exp(-Sm@D_basis$Basis1[[i]]/tau_i[1]) Ki <- kronecker(Ki1,Ki2) Qi1 <- chol2inv(chol(Ki1)) Qi2 <- chol2inv(chol(Ki2)) Ki_inv <- kronecker(Qi1,Qi2) R1 <- chol(Qi1) R2 <- chol(Qi2) det_part <- 0.5*(nrow(R2)*logdet(R1) + nrow(R1)*logdet(R2)) -as.numeric(det_part - omega[[i]]/2*sum(diag2(Ki_inv,eta2[[i]],symm=TRUE))) } else { Ki <- exp(-Sm@D_basis[[i]]/tau_i) Ki_inv <- chol2inv(chol(Ki)) -as.numeric(0.5*determinant(Ki_inv)$modulus - omega[[i]]/2*sum(diag2(Ki_inv,eta2[[i]],symm=TRUE))) } } } gr_f_tau <- function(tau_i,i) { idx <- which(Sm@basis@df$res == i) if(is(Sm@basis,"TensorP_Basis")) { Ki1 <- exp(-Sm@D_basis$Basis2[[1]]/tau_i[2]) Ki2 <- exp(-Sm@D_basis$Basis1[[i]]/tau_i[1]) Ki <- kronecker(Ki1,Ki2) Qi1 <- chol2inv(chol(Ki1)) Qi2 <- chol2inv(chol(Ki2)) Ki_inv <- kronecker(Qi1,Qi2) dKi <- kronecker(Ki1,(Sm@D_basis$Basis1[[i]]/(tau_i[1]^2))*Ki2) dKit <- kronecker((Sm@D_basis$Basis2[[1]]/(tau_i[2]^2))*Ki1,Ki2) } else { Ki <- exp(-Sm@D_basis[[i]]/tau_i) dKi <- (Sm@D_basis[[i]]/(tau_i^2))*exp(-Sm@D_basis[[i]]/tau_i) Ki_inv <- chol2inv(chol(Ki)) } tau_i1 <- -(-0.5*sum(diag2(dKi,Ki_inv)) + 0.5*omega[[i]]*sum(diag2(eta2[[i]]%*% Ki_inv, dKi %*% Ki_inv))) tau_i1 <- as.numeric(tau_i1) if(length(tau_i) == 1) { return(tau_i1) } else { tau_i2 <- -(-0.5*sum(diag2(dKit,Ki_inv)) + 0.5*omega[[i]]*sum(diag2(eta2[[i]]%*% Ki_inv, dKit %*% Ki_inv))) tau_i2 <- as.numeric(tau_i2) return(c(tau_i1,tau_i2)) } } max_l <- max(unlist(Sm@D_basis[[1]])) tau <- lapply(1:nrow(all_res), function(i) { idx <- which(Sm@basis@df$res == i) Ki <- Sm@Khat[idx,idx]/Sm@Khat[idx[1],idx[1]] if(is(Sm@basis,"TensorP_Basis")) { par_init <- ifelse(all_res$n[i]>1, max(-Sm@D_basis$Basis1[[i]][1,2]/log(Ki[1,2]),1e-9), 1e-9) par_init[2] <- max(-Sm@D_basis$Basis2[[1]][1,2]/log(Ki[1,1+count_res(Sm@basis@Basis1)$n[i]]),1e-9) if(par_init[2] == 1e-9) par_init[2] <- 1 } else { par_init <- ifelse(all_res$n[i]>1, max(-Sm@D_basis[[i]][1,2]/log(Ki[1,2]),1e-9), 1e-9) } if(par_init[1] == 1e-9) par_init[1] <- max_l/10 suppressWarnings(optim(par = par_init, fn = f_tau, gr = gr_f_tau, i=i,control=list(maxit=100L,reltol=1e-4))$par) }) K <- lapply(1:nrow(all_res), function(i) { if(is(Sm@basis,"TensorP_Basis")) { Ki <- kronecker(exp(-Sm@D_basis$Basis2[[1]]/tau[[i]][2]), exp(-Sm@D_basis$Basis1[[i]]/tau[[i]][1]))/omega[[i]] } else { Ki <- exp(-Sm@D_basis[[i]]/tau[[i]])/omega[[i]] } }) K <- do.call("bdiag",K) idx_all <- unlist(lapply(1:nrow(all_res), function(i) which(Sm@basis@df$res == i))) K <- reverse_permute(K,idx_all) if( opts_FRK$get("verbose") > 0) { cat(" Estimates of omega: ",unlist(omega)," ") cat(" Estimates of tau: ",unlist(tau)," ") } } return(K) } .regularise_K <- function(Sm,S_eta= NULL,mu_eta = NULL, lambda = 0) { if (is.null(S_eta)) S_eta <- Sm@S_eta if (is.null(mu_eta)) mu_eta <- Sm@mu_eta if(any(lambda > 0)) { if(length(lambda) == 1) { reg_matrix <- lambda*Diagonal(nrow(S_eta)) } else { reg_matrix <- Diagonal(x = do.call("c", apply(count_res(Sm),1, function(x) rep(lambda[x[1]],x[2])))) } Q <- chol2inv(chol(S_eta + tcrossprod(mu_eta))) + reg_matrix K <- chol2inv(chol(Q)) } else { K <- S_eta + tcrossprod(mu_eta) } K } .TMB_fit <- function(object, optimiser, known_sigma2fs, taper, ...) { C_O <- .constructC_O(object) X_O <- .constructX_O(object) S_O <- .constructS_O(object) info_fit <- list() info_fit$time <- system.time({ info_fit$method <- "TMB" K_type <- object@K_type if (K_type == "precision") { sp_basis <- if (is(object@basis,"TensorP_Basis")) object@basis@Basis1 else object@basis if (!sp_basis@regular || is(manifold(sp_basis), "sphere")) { K_type <- "precision-block-exponential" } else { K_type <- "neighbour" } } if (is.null(taper) && (K_type %in% c("block-exponential", "precision-block-exponential"))) { cat("The argument taper was not specified. Since we are using method = 'TMB' with either i) a covariance matrix (K_type = 'block-exponential') or ii) irregular basis functions (object@basis@regular = 0) or iii) a non-plane manifold, we must use tapering for computational reasons. Setting taper = 3.\n") taper <- 3 info_fit$taper <- taper } parameters <- .TMB_initialise(object, K_type = K_type, C_O = C_O, X_O = X_O, S_O = S_O) data <- .TMB_data_prep(object, sigma2fs_hat = exp(parameters$logsigma2fs), K_type = K_type, taper = taper, C_O = C_O, X_O = X_O, S_O = S_O) ns <- dim(object@BAUs)[1] if (object@fs_by_spatial_BAU) { data$sigma2fs_hat <- rep(data$sigma2fs_hat, ns) parameters$logsigma2fs <- rep(parameters$logsigma2fs, ns) } if (!is.null(known_sigma2fs)) { data$fix_sigma2fs <- 1 data$sigma2fs_hat <- known_sigma2fs parameters$logsigma2fs <- log(known_sigma2fs) } parameters$logsigma2 <- pmin(pmax(parameters$logsigma2, -4), 8) parameters$logtau <- pmin(pmax(parameters$logtau, -4), 8) parameters$logdelta <- pmin(pmax(parameters$logdelta, -4), 8) parameters$logsigma2_t <- pmin(pmax(parameters$logsigma2_t, -4), 8) if (any(sapply(data, function(x) any(length(x) == 0) || any(is.na(x)) || any(is.null(x))))) stop("Something has gone wrong in the data preparation for TMB: Some entries are numeric(0), NA, or NULL. Please contact the package maintainer.") if (any(sapply(parameters, function(x) any(length(x) == 0) || any(is.na(x)) || any(is.null(x))))) stop("Something has gone wrong in the parameter initialisation for TMB: Some entries are numeric(0), NA, or NULL. Please contact the package maintainer.") if (any(data$nnz < 0) || any(data$col_indices < 0) || any(data$row_indices < 0)) stop("Something has gone wrong in construction of the precision matrix of the basis-function coefficients: We have negative row-indices, col-indices, or total non-zeros: Please contact the package maintainer. ") if (!.zero_range(c(length(data$x), length(data$col_indices), length(data$row_indices), sum(data$nnz)))) stop("Something has gone wrong in construction of the precision matrix of the basis-function coefficients: The number of row-indices, col-indices, or non-zeros is inconsistent. Please contact the package maintainer. ") if(!.zero_range(c(length(object@Z), length(data$Z), nrow(data$C_O), nrow(data$X_O) , nrow(data$S_O)))) stop("Something has gone wrong in the data preparation for TMB: The dimensions of the C, X, or S matrix is inconsistent with the number of observations. Please contact the package maintainer.") spatial_basis <- if (is(object@basis, "TensorP_Basis")) object@basis@Basis1 else object@basis if(!.zero_range(c(nbasis(spatial_basis), max(data$row_indices + 1), max(data$col_indices + 1), sum(data$r_si)))) stop("Something has gone wrong in the data preparation for TMB: The number of basis functions and the matrix indices are inconsistent. Please contact the package maintainer.") if (!(K_type %in% c("neighbour", "block-exponential", "precision-block-exponential"))) stop("Internal error: K_type is not one of neighbour, block-exponential, or precision-block-exponential. Please contact the package maintainer.") obj <- MakeADFun(data = data, parameters = parameters, random = c("random_effects"), DLL = "FRK", silent = !opts_FRK$get("verbose")) obj$env$tracepar <- opts_FRK$get("verbose") cat("Optimising with TMB...\n") fit <- optimiser(obj$par, obj$fn, obj$gr, ...) info_fit$iterations <- fit$iterations info_fit$convergence <- fit$convergence info_fit$message <- fit$message cat("Optimisation completed.\n") cat("Extracting estimates of the parameters and the joint precision matrix of the random effects from TMB...\n") par <- obj$env$last.par.best estimates <- split(par, names(par)) s <- length(estimates$random_effects) if (object@simple_kriging_fixed) { Q_posterior <- obj$env$spHess(par = obj$env$last.par.best, random = TRUE) } else { Q_posterior <- sdreport(obj, getJointPrecision = TRUE)$jointPrecision retain_idx <- rownames(Q_posterior) %in% c("alpha", "random_effects") Q_posterior <- Q_posterior[retain_idx, retain_idx] } cat("Extraction completed.\n") r <- nbasis(object) mstar <- ncol(C_O) object@alphahat <- as(estimates$alpha, "Matrix") object@mu_eta <- as(estimates$random_effects[1:r], "Matrix") if (object@include_fs) { object@mu_xi <- as(estimates$random_effects[(r+1):(r + mstar)], "Matrix") } else { object@mu_xi <- as(rep(0, mstar), "Matrix") } object@sigma2fshat <- unname(exp(estimates$logsigma2fs)) object@Q_posterior <- Q_posterior object@phi <- unname(exp(estimates$logphi)) object@log_likelihood <- -obj$fn() if(object@sigma2fshat == 0) { info_fit$sigma2fshat_equal_0 <- 1 if(opts_FRK$get("verbose") > 0) message("sigma2fs is being estimated to zero. This might because of an incorrect binning procedure or because too much measurement error is being assumed (or because the latent field is indeed that smooth, but unlikely).") } else { info_fit$sigma2fshat_equal_0 <- 0 } }) object@info_fit <- info_fit return(object) } .TMB_initialise <- function(object, K_type, C_O, X_O, S_O) { cat("Initialising parameters and random effects...\n") nres <- max(object@basis@df$res) r <- object@basis@n Y_O <- .compute_Y_O(object, C_O = C_O) l <- list() l$alpha <- solve(t(X_O) %*% X_O) %*% t(X_O) %*% Y_O if (object@response %in% c("poisson", "binomial", "negative-binomial")) { l$phi <- 1 } else if (object@response == "gaussian") { l$phi <- mean(diag(object@Ve)) } else { l$phi <- var(as.numeric(object@Z)) } l$sigma2 <- var(as.vector(Y_O)) * (0.1)^(0:(nres - 1)) l$tau <- (1 / 3)^(1:nres) if (K_type != "block-exponential") { l$sigma2 <- 1 / l$sigma2 l$tau <- 1 / l$tau } if (K_type == "separable") { l$sigma2 <- rep(l$sigma2, 2) l$tau <- rep(l$tau, 2) l$logdelta <- 1 } else if (K_type == "precision-block-exponential") { l$logdelta <- rnorm(nres) } else { l$logdelta <- 1 } l$sigma2_t <- 1 l$rho_t <- 0.1 simple_init <- TRUE if (simple_init) { l$sigma2fs <- 0.05 mstar <- length(Y_O) l$xi_O <- rnorm(mstar, 0, sqrt(l$sigma2fs)) if (K_type != "block-exponential") { sigma2 <- 1 / l$sigma2 } temporal <- is(object@basis,"TensorP_Basis") if (temporal) { spatial_basis <- object@basis@Basis1 temporal_basis <- object@basis@Basis2 r_ti <- as.vector(table(temporal_basis@df$res)) } else { spatial_basis <- object@basis r_ti <- 1 } r_si <- as.vector(table(spatial_basis@df$res)) sigma2_long <- rep(rep(sigma2, times = r_si), r_ti) l$eta <- rnorm(r, 0, sqrt(sigma2_long)) } else { for (iteration_dummy in 1:5) { l <- .TMB_initialise_MAP_estimates(l, object, S_O, r, Y_O, X_O) } } transform_minus_one_to_one_inverse <- function(x) -0.5 * log(2 / (x + 1) - 1) return(list( alpha = as.vector(l$alpha), logphi = log(l$phi), logsigma2 = log(l$sigma2), logtau = log(l$tau), logdelta = l$logdelta, logsigma2_t = log(l$sigma2_t), frho_t = transform_minus_one_to_one_inverse(l$rho_t), logsigma2fs = log(l$sigma2fs), random_effects = c(as.vector(l$eta), if(object@include_fs) as.vector(l$xi_O)) )) } .TMB_initialise_MAP_estimates <- function(l, object, S_O, r, Y_O, X_O) { regularising_weight <- if (!is.null(l$sigma2fs)) l$sigma2fs else l$sigma2[1] QInit <- .sparse_Q_block_diag(object@basis@df, kappa = l$sigma2, rho = l$tau)$Q mat <- Matrix::t(S_O) %*% S_O / regularising_weight + QInit mat_inv <- tryCatch(expr = { if (r > 4000) { mat_L <- sparseinv::cholPermute(Q = mat) sparseinv::Takahashi_Davis(Q = mat, cholQp = mat_L$Qpermchol, P = mat_L$P) } else { solve(mat) }}, error = function(w){ cat("Initialisation phase: could not invert mat, just using diag(r)\n") diag(r) } ) if (regularising_weight == 0) { warning("In initialisation stage, the regularising_weight is 0; setting it to 1. This is probably not an issue, but feel free to contact the package maintainer.") regularising_weight <- 1 } l$eta <- (1 / regularising_weight) * mat_inv %*% Matrix::t(S_O) %*% (Y_O - X_O %*% l$alpha) l$xi_O <- Y_O - X_O %*% l$alpha - S_O %*% l$eta l$sigma2fs <- var(as.vector(l$xi_O)) return(l) } .compute_Y_O <- function(object, C_O) { Z <- as.vector(object@Z) k_Z <- object@k_Z k_BAU_O <- object@k_BAU_O if (object@response %in% c("binomial", "negative-binomial") & object@link %in% c("logit", "probit", "cloglog")) { f <- .link_fn(kind = "prob_to_Y", link = object@link) h <- .link_fn(kind = "mu_to_prob", response = object@response) } else { g <- .link_fn(kind = "mu_to_Y", link = object@link) } Z0 <- Z if (object@link %in% c("log", "sqrt")) { Z0[Z <= 0] <- 0.1 } else if (object@response == "negative-binomial" & object@link %in% c("logit", "probit", "cloglog")) { Z0[Z == 0] <- 0.1 } else if (object@response == "binomial" & object@link %in% c("logit", "probit", "cloglog")) { Z0 <- Z + 0.1 * (Z == 0) - 0.1 * (Z == k_Z) } else if (object@link %in% c("inverse-squared", "inverse")) { Z0[Z == 0] <- 0.05 } mu_Z <- Z0 mu_O <- .compute_mu_O(object, C_O, mu_Z) k_BAU_O[k_BAU_O == 0] <- 1 mu_O <- mu_O + 0.05 * (mu_O == 0) - 0.05 * (mu_O == k_BAU_O) if (object@response %in% c("binomial", "negative-binomial") & object@link %in% c("logit", "probit", "cloglog")) { Y_O <- f(h(mu_O, k_BAU_O)) } else if (object@response == "negative-binomial" & object@link %in% c("log", "sqrt")) { Y_O <- g(mu_O / k_BAU_O) } else { Y_O <- g(mu_O) } return(Y_O) } .compute_mu_O <- function(object, C_O, mu_Z) { m <- nrow(C_O) mstar <- ncol(C_O) obs_BAUs_df <- object@BAUs@data[object@obsidx, ] mu_O <- vector(mode = "list", length = mstar) for (Bj in 1:m) { w_j <- C_O[Bj, ] idx <- which(w_j > 0) if (object@response %in% c("binomial", "negative-binomial")) { w_j <- obs_BAUs_df$k_BAU[idx] } else { w_j <- w_j[idx] } mu_O_j <- w_j / sum(w_j) * mu_Z[Bj] for (i in 1:length(idx)) { mu_O[[idx[i]]] <- c(mu_O[[idx[i]]], mu_O_j[i]) } } if (object@response %in% c("binomial", "negative-binomial")) { mu_O <- sapply(mu_O, min) } else { mu_O <- sapply(mu_O, mean) } return(mu_O) } .TMB_data_prep <- function (object, sigma2fs_hat, K_type, taper, C_O, X_O, S_O) { cat("Preparing data for TMB...\n") obsidx <- observed_BAUs(object) sigma2e <- if (object@response == "gaussian") diag(object@Ve) else -1 data <- list(Z = as.vector(object@Z), X_O = X_O, S_O = S_O, C_O = C_O, K_type = K_type, response = object@response, link = object@link, k_BAU_O = object@k_BAU_O, k_Z = object@k_Z, temporal = as.integer(is(object@basis,"TensorP_Basis")), fs_by_spatial_BAU = object@fs_by_spatial_BAU, sigma2e = sigma2e, BAUs_fs = object@BAUs$fs[obsidx]) ns <- dim(object@BAUs)[1] if (data$temporal) { spatial_dist_matrix <- object@D_basis[[1]] spatial_basis <- object@basis@Basis1 data$r_t <- object@basis@Basis2@n } else { spatial_dist_matrix <- object@D_basis spatial_basis <- object@basis data$r_t <- 1 } data$spatial_BAU_id <- (obsidx - 1) %% ns data$r_si <- as.vector(table(spatial_basis@df$res)) data$beta <- data$nnz <- data$row_indices <- data$col_indices <- data$x <- data$n_r <- data$n_c <- -1 if (K_type %in% c("block-exponential", "precision-block-exponential")) { tmp <- .cov_tap(spatial_dist_matrix, taper = taper) data$beta <- tmp$beta R <- as(tmp$D_tap, "dgTMatrix") data$nnz <- tmp$nnz data$row_indices <- R@i data$col_indices <- R@j data$x <- R@x } else if (K_type == "neighbour") { tmp <- .sparse_Q_block_diag(spatial_basis@df, kappa = 0, rho = 1) R <- as(tmp$Q, "dgTMatrix") data$nnz <- tmp$nnz data$row_indices <- R@i data$col_indices <- R@j data$x <- R@x } else if (K_type == "separable") { for (i in unique(spatial_basis@df$res)) { tmp <- spatial_basis@df[spatial_basis@df$res == i, ] data$n_r[i] <- length(unique(tmp$loc1)) data$n_c[i] <- length(unique(tmp$loc2)) } } data$sigma2fs_hat <- sigma2fs_hat if (!any(tabulate(object@Cmat@i + 1) == 1)) { cat("There no observations are associated with a single BAU (i.e., all observations are associated with multiple BAUs). This makes the fine-scale variance parameter very difficult to estimate, so we will estimate it offline and fix for the remainder of model fitting; this estimate may be inaccurate.\n") data$fix_sigma2fs <- as.integer(1) if (object@fs_by_spatial_BAU) stop("We do not allow each spatial BAU to have its own fine-scale variance parameter when there no observations associated with a single BAU (i.e., all observations are associated with multiple BAUs).") } else { data$fix_sigma2fs <- as.integer(0) if (!all(tabulate(object@Cmat@i + 1) == 1)) cat("Some (but not all) observations are associated with multiple BAUs. Estimation of the fine-scale variance parameter will be done using TMB, but there should be a reasonable number of observations associated with a single BAU so that the fine-scale variance parameter can be estimated accurately.\n") } data$include_fs <- as.integer(object@include_fs) return(data) }
n <- 100; p1 <- 15; p2 <- 10 maxcancor <- 0.9 set.seed(0) perm1 <- sample(1:p1, size = p1); Sigma1 <- autocor(p1, 0.7)[perm1, perm1] blockind <- sample(1:3, size = p2, replace = TRUE); Sigma2 <- blockcor(blockind, 0.7) mu <- rbinom(p1+p2, 1, 0.5) trueidx1 <- c(rep(1, 3), rep(0, p1-3)) trueidx2 <- c(rep(1, 2), rep(0, p2-2)) simdata <- GenerateData(n=n, trueidx1 = trueidx1, trueidx2 = trueidx2, maxcancor = maxcancor, Sigma1 = Sigma1, Sigma2 = Sigma2, copula1 = "exp", copula2 = "cube", muZ = mu, type1 = "trunc", type2 = "trunc", c1 = rep(1, p1), c2 = rep(0, p2) ) X1 <- simdata$X1 X2 <- simdata$X2 range(colMeans(X1 == 0)) range(colMeans(X2 == 0))