code
stringlengths 1
13.8M
|
---|
require(OpenMx)
A <- mxMatrix(nrow = 2, ncol = 2, values = c(1:4), free = TRUE, name = 'A')
squared <- function(x) { x ^ 2 }
objFunction <- function(model, state) {
return(mxEval(squared(A[1,1] - 4) +
squared(A[1,2] - 3) +
squared(A[2,1] - 2) +
squared(A[2,2] - 1), model))
}
objective <- mxFitFunctionR(objFunction)
model <- mxModel('model', A, objective)
modelOut <- mxRun(model)
omxCheckCloseEnough(mxEval(A, modelOut),
rbind(c(4, 3), c(2, 1)),
epsilon = 0.001)
omxCheckCloseEnough(modelOut$output$hessian, diag(2, 4), 1e-9) |
context("Unit tests feistest and bsfeistest")
data("mwp", package = "feisr")
wages.feis <- feis(lnw ~ marry + enrol + yeduc
| exp, data = mwp[mwp$id <= 50, ], id = "id")
art0 <- feistest(wages.feis, robust = TRUE)
art <- feistest(wages.feis, robust = TRUE, terms = c("marry", "enrol"))
bsht0 <- bsfeistest(wages.feis, rep = 10, seed = 133213, prog = FALSE)
bsht <- bsfeistest(wages.feis, rep = 10, seed = 133213, prog = FALSE, terms = c("marry", "enrol"))
test_that("Terms in feistest", {
expect_equal(length(art0$wald_feis$Terms), 3, tolerance = 1e-10)
expect_equal(length(art0$wald_fe$Terms), 4, tolerance = 1e-10)
expect_equal(length(art$wald_feis$Terms), 2, tolerance = 1e-10)
expect_equal(length(art$wald_fe$Terms), 3, tolerance = 1e-10)
})
test_that("Terms in bsfeistest", {
expect_equal(length(bsht0$wald_feis$Terms), 3, tolerance = 1e-10)
expect_equal(length(bsht0$wald_fe$Terms), 4, tolerance = 1e-10)
expect_equal(length(bsht$wald_feis$Terms), 2, tolerance = 1e-10)
expect_equal(length(bsht$wald_fe$Terms), 3, tolerance = 1e-10)
})
art0_1 <- 0.93
art1_1 <- 0.89
art0_2 <- 14.34
art1_2 <- 8.70
art0_3 <- 1.54
art1_3 <- 1.05
test_that("Unit test for feistest", {
expect_equal(art0$wald_feis$result$chi2[1], art0_1, tolerance = 2e-2, check.attributes = FALSE)
expect_equal(art0$wald_fe$result$chi2[1], art0_2, tolerance = 2e-2, check.attributes = FALSE)
expect_equal(art0$wald_re$result$chi2[1], art0_3, tolerance = 2e-2, check.attributes = FALSE)
expect_equal(art$wald_feis$result$chi2[1], art1_1, tolerance = 2e-2, check.attributes = FALSE)
expect_equal(art$wald_fe$result$chi2[1], art1_2, tolerance = 2e-2, check.attributes = FALSE)
expect_equal(art$wald_re$result$chi2[1], art1_3, tolerance = 2e-2, check.attributes = FALSE)
})
bsht0_1 <- 1.03
bsht1_1 <- 0.99
bsht0_2 <- 5.01
bsht1_2 <- 4.05
bsht0_3 <- 1.69
bsht1_3 <- 0.94
test_that("Unit test for feistest", {
expect_equal(bsht0$wald_feis$result$chi2[1], bsht0_1, tolerance = 2e-1, check.attributes = FALSE)
expect_equal(bsht0$wald_fe$result$chi2[1], bsht0_2, tolerance = 2e-1, check.attributes = FALSE)
expect_equal(bsht0$wald_re$result$chi2[1], bsht0_3, tolerance = 2e-1, check.attributes = FALSE)
expect_equal(bsht$wald_feis$result$chi2[1], bsht1_1, tolerance = 5e-1, check.attributes = FALSE)
expect_equal(bsht$wald_fe$result$chi2[1], bsht1_2, tolerance = 5e-1, check.attributes = FALSE)
expect_equal(bsht$wald_re$result$chi2[1], bsht1_3, tolerance = 5e-1, check.attributes = FALSE)
})
test_that("P value for feistest and bsfeistest", {
expect_equal(art$wald_feis$result$chi2[3], 0.64, tolerance = 2e-2, check.attributes = FALSE)
expect_equal(art0$wald_feis$result$chi2[3], 0.82, tolerance = 2e-2, check.attributes = FALSE)
expect_equal(bsht$wald_feis$result$chi2[3], 0.61, tolerance = 2e-2, check.attributes = FALSE)
expect_equal(bsht0$wald_re$result$chi2[3], 0.64, tolerance = 1e-1, check.attributes = FALSE)
}) |
anovaRMOptions <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"anovaRMOptions",
inherit = jmvcore::Options,
public = list(
initialize = function(
rm = list(
list(label="RM Factor 1", levels=list(
"Level 1",
"Level 2"))),
rmCells = NULL,
bs = NULL,
cov = NULL,
effectSize = NULL,
depLabel = "Dependent",
rmTerms = NULL,
bsTerms = NULL,
ss = "3",
spherTests = FALSE,
spherCorr = list(
"none"),
leveneTest = FALSE,
qq = FALSE,
contrasts = NULL,
postHoc = NULL,
postHocCorr = list(
"tukey"),
emMeans = list(
list()),
emmPlots = TRUE,
emmTables = FALSE,
emmWeights = TRUE,
ciWidthEmm = 95,
emmPlotData = FALSE,
emmPlotError = "ci",
groupSumm = FALSE, ...) {
super$initialize(
package="jmv",
name="anovaRM",
requiresData=TRUE,
...)
private$..rm <- jmvcore::OptionArray$new(
"rm",
rm,
default=list(
list(label="RM Factor 1", levels=list(
"Level 1",
"Level 2"))),
template=jmvcore::OptionGroup$new(
"rm",
NULL,
elements=list(
jmvcore::OptionString$new(
"label",
NULL),
jmvcore::OptionArray$new(
"levels",
NULL,
template=jmvcore::OptionString$new(
"levels",
NULL)))))
private$..rmCells <- jmvcore::OptionArray$new(
"rmCells",
rmCells,
default=NULL,
template=jmvcore::OptionGroup$new(
"rmCells",
NULL,
elements=list(
jmvcore::OptionVariable$new(
"measure",
NULL),
jmvcore::OptionArray$new(
"cell",
NULL,
template=jmvcore::OptionString$new(
"cell",
NULL)))))
private$..bs <- jmvcore::OptionVariables$new(
"bs",
bs,
rejectUnusedLevels=TRUE,
suggested=list(
"nominal",
"ordinal"),
permitted=list(
"factor"),
default=NULL)
private$..cov <- jmvcore::OptionVariables$new(
"cov",
cov,
suggested=list(
"continuous"),
permitted=list(
"numeric"),
default=NULL)
private$..effectSize <- jmvcore::OptionNMXList$new(
"effectSize",
effectSize,
options=list(
"eta",
"partEta",
"ges",
"omega"),
default=NULL)
private$..depLabel <- jmvcore::OptionString$new(
"depLabel",
depLabel,
default="Dependent")
private$..rmTerms <- jmvcore::OptionTerms$new(
"rmTerms",
rmTerms,
default=NULL)
private$..bsTerms <- jmvcore::OptionTerms$new(
"bsTerms",
bsTerms,
default=NULL)
private$..ss <- jmvcore::OptionList$new(
"ss",
ss,
options=list(
"2",
"3"),
default="3")
private$..spherTests <- jmvcore::OptionBool$new(
"spherTests",
spherTests,
default=FALSE)
private$..spherCorr <- jmvcore::OptionNMXList$new(
"spherCorr",
spherCorr,
options=list(
"none",
"GG",
"HF"),
default=list(
"none"))
private$..leveneTest <- jmvcore::OptionBool$new(
"leveneTest",
leveneTest,
default=FALSE)
private$..qq <- jmvcore::OptionBool$new(
"qq",
qq,
default=FALSE)
private$..contrasts <- jmvcore::OptionArray$new(
"contrasts",
contrasts,
hidden=TRUE,
items="(bs)",
default=NULL,
template=jmvcore::OptionGroup$new(
"contrasts",
NULL,
elements=list(
jmvcore::OptionString$new(
"var",
NULL,
content="$key"),
jmvcore::OptionList$new(
"type",
NULL,
options=list(
"none",
"deviation",
"simple",
"difference",
"helmert",
"repeated",
"polynomial")))))
private$..postHoc <- jmvcore::OptionArray$new(
"postHoc",
postHoc,
template=jmvcore::OptionArray$new(
"postHoc",
NULL,
template=jmvcore::OptionString$new(
"postHoc",
NULL)),
default=NULL)
private$..postHocCorr <- jmvcore::OptionNMXList$new(
"postHocCorr",
postHocCorr,
options=list(
"none",
"tukey",
"scheffe",
"bonf",
"holm"),
default=list(
"tukey"))
private$..emMeans <- jmvcore::OptionArray$new(
"emMeans",
emMeans,
default=list(
list()),
template=jmvcore::OptionVariables$new(
"emMeans",
NULL))
private$..emmPlots <- jmvcore::OptionBool$new(
"emmPlots",
emmPlots,
default=TRUE)
private$..emmTables <- jmvcore::OptionBool$new(
"emmTables",
emmTables,
default=FALSE)
private$..emmWeights <- jmvcore::OptionBool$new(
"emmWeights",
emmWeights,
default=TRUE)
private$..ciWidthEmm <- jmvcore::OptionNumber$new(
"ciWidthEmm",
ciWidthEmm,
min=50,
max=99.9,
default=95)
private$..emmPlotData <- jmvcore::OptionBool$new(
"emmPlotData",
emmPlotData,
default=FALSE)
private$..emmPlotError <- jmvcore::OptionList$new(
"emmPlotError",
emmPlotError,
options=list(
"none",
"ci",
"se"),
default="ci")
private$..groupSumm <- jmvcore::OptionBool$new(
"groupSumm",
groupSumm,
default=FALSE)
self$.addOption(private$..rm)
self$.addOption(private$..rmCells)
self$.addOption(private$..bs)
self$.addOption(private$..cov)
self$.addOption(private$..effectSize)
self$.addOption(private$..depLabel)
self$.addOption(private$..rmTerms)
self$.addOption(private$..bsTerms)
self$.addOption(private$..ss)
self$.addOption(private$..spherTests)
self$.addOption(private$..spherCorr)
self$.addOption(private$..leveneTest)
self$.addOption(private$..qq)
self$.addOption(private$..contrasts)
self$.addOption(private$..postHoc)
self$.addOption(private$..postHocCorr)
self$.addOption(private$..emMeans)
self$.addOption(private$..emmPlots)
self$.addOption(private$..emmTables)
self$.addOption(private$..emmWeights)
self$.addOption(private$..ciWidthEmm)
self$.addOption(private$..emmPlotData)
self$.addOption(private$..emmPlotError)
self$.addOption(private$..groupSumm)
}),
active = list(
rm = function() private$..rm$value,
rmCells = function() private$..rmCells$value,
bs = function() private$..bs$value,
cov = function() private$..cov$value,
effectSize = function() private$..effectSize$value,
depLabel = function() private$..depLabel$value,
rmTerms = function() private$..rmTerms$value,
bsTerms = function() private$..bsTerms$value,
ss = function() private$..ss$value,
spherTests = function() private$..spherTests$value,
spherCorr = function() private$..spherCorr$value,
leveneTest = function() private$..leveneTest$value,
qq = function() private$..qq$value,
contrasts = function() private$..contrasts$value,
postHoc = function() private$..postHoc$value,
postHocCorr = function() private$..postHocCorr$value,
emMeans = function() private$..emMeans$value,
emmPlots = function() private$..emmPlots$value,
emmTables = function() private$..emmTables$value,
emmWeights = function() private$..emmWeights$value,
ciWidthEmm = function() private$..ciWidthEmm$value,
emmPlotData = function() private$..emmPlotData$value,
emmPlotError = function() private$..emmPlotError$value,
groupSumm = function() private$..groupSumm$value),
private = list(
..rm = NA,
..rmCells = NA,
..bs = NA,
..cov = NA,
..effectSize = NA,
..depLabel = NA,
..rmTerms = NA,
..bsTerms = NA,
..ss = NA,
..spherTests = NA,
..spherCorr = NA,
..leveneTest = NA,
..qq = NA,
..contrasts = NA,
..postHoc = NA,
..postHocCorr = NA,
..emMeans = NA,
..emmPlots = NA,
..emmTables = NA,
..emmWeights = NA,
..ciWidthEmm = NA,
..emmPlotData = NA,
..emmPlotError = NA,
..groupSumm = NA)
)
anovaRMResults <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"anovaRMResults",
inherit = jmvcore::Group,
active = list(
rmTable = function() private$.items[["rmTable"]],
bsTable = function() private$.items[["bsTable"]],
assump = function() private$.items[["assump"]],
contrasts = function() private$.items[["contrasts"]],
postHoc = function() private$.items[["postHoc"]],
emm = function() private$.items[["emm"]],
groupSummary = function() private$.items[["groupSummary"]]),
private = list(),
public=list(
initialize=function(options) {
super$initialize(
options=options,
name="",
title="Repeated Measures ANOVA")
self$add(jmvcore::Table$new(
options=options,
name="rmTable",
title="Within Subjects Effects",
refs="afex",
clearWith=list(
"dependent",
"ss",
"rmCells",
"rmcModelTerms",
"bscModelTerms",
"bs",
"rm",
"cov",
"rmTerms",
"bsTerms"),
columns=list(
list(
`name`="name[none]",
`title`="",
`type`="text",
`combineBelow`=TRUE,
`visible`="(spherCorr:none)"),
list(
`name`="correction[none]",
`title`="Sphericity Correction",
`type`="text",
`content`="None",
`visible`="(spherCorr:none && (spherCorr:GG || spherCorr:HF))"),
list(
`name`="ss[none]",
`title`="Sum of Squares",
`type`="number",
`visible`="(spherCorr:none)"),
list(
`name`="df[none]",
`title`="df",
`type`="integer",
`visible`="(spherCorr:none)"),
list(
`name`="ms[none]",
`title`="Mean Square",
`type`="number",
`visible`="(spherCorr:none)"),
list(
`name`="F[none]",
`title`="F",
`type`="number",
`visible`="(spherCorr:none)"),
list(
`name`="p[none]",
`title`="p",
`type`="number",
`format`="zto,pvalue",
`visible`="(spherCorr:none)"),
list(
`name`="ges[none]",
`title`="\u03B7\u00B2<sub>G</sub>",
`type`="number",
`format`="zto",
`visible`="(effectSize:ges && spherCorr:none)"),
list(
`name`="eta[none]",
`title`="\u03B7\u00B2",
`type`="number",
`format`="zto",
`visible`="(effectSize:eta && spherCorr:none)"),
list(
`name`="partEta[none]",
`title`="\u03B7\u00B2<sub>p</sub>",
`type`="number",
`format`="zto",
`visible`="(effectSize:partEta && spherCorr:none)"),
list(
`name`="omega[none]",
`title`="\u03C9\u00B2",
`type`="number",
`format`="zto",
`visible`="(effectSize:omega && spherCorr:none)"),
list(
`name`="name[GG]",
`title`="",
`type`="text",
`combineBelow`=TRUE,
`visible`="(spherCorr:GG)"),
list(
`name`="correction[GG]",
`title`="Sphericity Correction",
`type`="text",
`content`="Greenhouse-Geisser",
`visible`="(spherCorr:GG)"),
list(
`name`="ss[GG]",
`title`="Sum of Squares",
`type`="number",
`visible`="(spherCorr:GG)"),
list(
`name`="df[GG]",
`title`="df",
`type`="number",
`visible`="(spherCorr:GG)"),
list(
`name`="ms[GG]",
`title`="Mean Square",
`type`="number",
`visible`="(spherCorr:GG)"),
list(
`name`="F[GG]",
`title`="F",
`type`="number",
`visible`="(spherCorr:GG)"),
list(
`name`="p[GG]",
`title`="p",
`type`="number",
`format`="zto,pvalue",
`visible`="(spherCorr:GG)"),
list(
`name`="ges[GG]",
`title`="\u03B7\u00B2<sub>G</sub>",
`type`="number",
`format`="zto",
`visible`="(effectSize:ges && spherCorr:GG)"),
list(
`name`="eta[GG]",
`title`="\u03B7\u00B2",
`type`="number",
`format`="zto",
`visible`="(effectSize:eta && spherCorr:GG)"),
list(
`name`="partEta[GG]",
`title`="\u03B7\u00B2<sub>p</sub>",
`type`="number",
`format`="zto",
`visible`="(effectSize:partEta && spherCorr:GG)"),
list(
`name`="omega[GG]",
`title`="\u03C9\u00B2",
`type`="number",
`format`="zto",
`visible`="(effectSize:omega && spherCorr:GG)"),
list(
`name`="name[HF]",
`title`="",
`type`="text",
`combineBelow`=TRUE,
`visible`="(spherCorr:HF)"),
list(
`name`="correction[HF]",
`title`="Sphericity Correction",
`type`="text",
`content`="Huynh-Feldt",
`visible`="(spherCorr:HF)"),
list(
`name`="ss[HF]",
`title`="Sum of Squares",
`type`="number",
`visible`="(spherCorr:HF)"),
list(
`name`="df[HF]",
`title`="df",
`type`="number",
`visible`="(spherCorr:HF)"),
list(
`name`="ms[HF]",
`title`="Mean Square",
`type`="number",
`visible`="(spherCorr:HF)"),
list(
`name`="F[HF]",
`title`="F",
`type`="number",
`visible`="(spherCorr:HF)"),
list(
`name`="p[HF]",
`title`="p",
`type`="number",
`format`="zto,pvalue",
`visible`="(spherCorr:HF)"),
list(
`name`="ges[HF]",
`title`="\u03B7\u00B2<sub>G</sub>",
`type`="number",
`format`="zto",
`visible`="(effectSize:ges && spherCorr:HF)"),
list(
`name`="eta[HF]",
`title`="\u03B7\u00B2",
`type`="number",
`format`="zto",
`visible`="(effectSize:eta && spherCorr:HF)"),
list(
`name`="partEta[HF]",
`title`="\u03B7\u00B2<sub>p</sub>",
`type`="number",
`format`="zto",
`visible`="(effectSize:partEta && spherCorr:HF)"),
list(
`name`="omega[HF]",
`title`="\u03C9\u00B2",
`type`="number",
`format`="zto",
`visible`="(effectSize:omega && spherCorr:HF)"))))
self$add(jmvcore::Table$new(
options=options,
name="bsTable",
title="Between Subjects Effects",
clearWith=list(
"dependent",
"ss",
"rmCells",
"rmcModelTerms",
"bscModelTerms",
"bs",
"rm",
"cov",
"rmTerms",
"bsTerms"),
columns=list(
list(
`name`="name",
`title`="",
`content`=".",
`type`="text"),
list(
`name`="ss",
`title`="Sum of Squares",
`type`="number"),
list(
`name`="df",
`title`="df",
`type`="integer"),
list(
`name`="ms",
`title`="Mean Square",
`type`="number"),
list(
`name`="F",
`title`="F",
`type`="number"),
list(
`name`="p",
`title`="p",
`type`="number",
`format`="zto,pvalue"),
list(
`name`="ges",
`title`="\u03B7\u00B2<sub>G</sub>",
`type`="number",
`format`="zto",
`visible`="(effectSize:ges)"),
list(
`name`="eta",
`title`="\u03B7\u00B2",
`type`="number",
`format`="zto",
`visible`="(effectSize:eta)"),
list(
`name`="partEta",
`title`="\u03B7\u00B2<sub>p</sub>",
`type`="number",
`format`="zto",
`visible`="(effectSize:partEta)"),
list(
`name`="omega",
`title`="\u03C9\u00B2",
`type`="number",
`format`="zto",
`visible`="(effectSize:omega)"))))
self$add(R6::R6Class(
inherit = jmvcore::Group,
active = list(
spherTable = function() private$.items[["spherTable"]],
leveneTable = function() private$.items[["leveneTable"]],
qq = function() private$.items[["qq"]]),
private = list(),
public=list(
initialize=function(options) {
super$initialize(
options=options,
name="assump",
title="Assumptions")
self$add(jmvcore::Table$new(
options=options,
name="spherTable",
title="Tests of Sphericity",
visible="(spherTests)",
clearWith=list(
"dependent",
"ss",
"rmCells",
"rmcModelTerms",
"bscModelTerms",
"bs",
"rm",
"cov",
"rmTerms",
"bsTerms"),
columns=list(
list(
`name`="name",
`title`="",
`type`="text"),
list(
`name`="mauch",
`title`="Mauchly's W",
`type`="number"),
list(
`name`="p",
`title`="p",
`type`="number",
`format`="zto,pvalue"),
list(
`name`="gg",
`title`="Greenhouse-Geisser \u03B5",
`type`="number"),
list(
`name`="hf",
`title`="Huynh-Feldt \u03B5",
`type`="number"))))
self$add(jmvcore::Table$new(
options=options,
name="leveneTable",
title="Homogeneity of Variances Test (Levene's)",
visible="(leveneTest)",
clearWith=list(
"bs",
"rmCells",
"cov"),
columns=list(
list(
`name`="name",
`title`="",
`type`="text"),
list(
`name`="F",
`type`="number"),
list(
`name`="df1",
`type`="integer"),
list(
`name`="df2",
`type`="integer"),
list(
`name`="p",
`type`="number",
`format`="zto,pvalue"))))
self$add(jmvcore::Image$new(
options=options,
name="qq",
title="Q-Q Plot",
visible="(qq)",
width=450,
height=400,
renderFun=".qqPlot",
clearWith=list(
"dependent",
"ss",
"rmCells",
"rmcModelTerms",
"bscModelTerms",
"bs",
"rm",
"cov",
"rmTerms",
"bsTerms")))}))$new(options=options))
self$add(jmvcore::Array$new(
options=options,
name="contrasts",
title="Contrasts",
items=0,
visible="(contrasts)",
template=jmvcore::Table$new(
options=options,
title="Contrasts - $key",
rows=0,
columns=list(
list(
`name`="contrast",
`title`="",
`type`="text"),
list(
`name`="est",
`title`="Estimate",
`type`="number"),
list(
`name`="se",
`title`="SE",
`type`="number"),
list(
`name`="t",
`type`="number"),
list(
`name`="p",
`title`="p",
`type`="number",
`format`="zto,pvalue")))))
self$add(jmvcore::Array$new(
options=options,
name="postHoc",
title="Post Hoc Tests",
items="(postHoc)",
refs="emmeans",
template=jmvcore::Table$new(
options=options,
title="",
columns=list(),
clearWith=list(
"dependent",
"ss",
"rmCells",
"rmcModelTerms",
"bscModelTerms",
"bs",
"rm",
"cov",
"rmTerms",
"bsTerms"))))
self$add(jmvcore::Array$new(
options=options,
name="emm",
title="Estimated Marginal Means",
refs="emmeans",
clearWith=list(
"emMeans"),
template=R6::R6Class(
inherit = jmvcore::Group,
active = list(
emmPlot = function() private$.items[["emmPlot"]],
emmTable = function() private$.items[["emmTable"]]),
private = list(),
public=list(
initialize=function(options) {
super$initialize(
options=options,
name="undefined",
title="")
self$add(jmvcore::Image$new(
options=options,
name="emmPlot",
title="",
width=450,
height=400,
renderFun=".emmPlot",
visible="(emmPlots)",
clearWith=list(
"ciWidthEmm",
"emmWeights",
"rmCells",
"rmcModelTerms",
"bscModelTerms",
"bs",
"rm",
"cov",
"rmTerms",
"bsTerms",
"emmPlotData",
"emmPlotError",
"depLabel")))
self$add(jmvcore::Table$new(
options=options,
name="emmTable",
title="",
visible="(emmTables)",
columns=list(),
clearWith=list(
"ciWidthEmm",
"emmWeights",
"rmCells",
"rmcModelTerms",
"bscModelTerms",
"bs",
"rm",
"cov",
"rmTerms",
"bsTerms")))}))$new(options=options)))
self$add(jmvcore::Table$new(
options=options,
name="groupSummary",
title="Group Summary",
visible="(groupSumm)",
clearWith=list(
"dep",
"factors",
"covs"),
columns=list(
list(
`name`="n",
`title`="N",
`type`="integer"),
list(
`name`="ex",
`title`="Excluded",
`type`="integer"))))}))
anovaRMBase <- if (requireNamespace("jmvcore", quietly=TRUE)) R6::R6Class(
"anovaRMBase",
inherit = jmvcore::Analysis,
public = list(
initialize = function(options, data=NULL, datasetId="", analysisId="", revision=0) {
super$initialize(
package = "jmv",
name = "anovaRM",
version = c(2,0,0),
options = options,
results = anovaRMResults$new(options=options),
data = data,
datasetId = datasetId,
analysisId = analysisId,
revision = revision,
pause = NULL,
completeWhenFilled = TRUE,
requiresMissings = FALSE)
}))
anovaRM <- function(
data,
rm = list(
list(label="RM Factor 1", levels=list(
"Level 1",
"Level 2"))),
rmCells = NULL,
bs = NULL,
cov = NULL,
effectSize = NULL,
depLabel = "Dependent",
rmTerms = NULL,
bsTerms = NULL,
ss = "3",
spherTests = FALSE,
spherCorr = list(
"none"),
leveneTest = FALSE,
qq = FALSE,
contrasts = NULL,
postHoc = NULL,
postHocCorr = list(
"tukey"),
emMeans = list(
list()),
emmPlots = TRUE,
emmTables = FALSE,
emmWeights = TRUE,
ciWidthEmm = 95,
emmPlotData = FALSE,
emmPlotError = "ci",
groupSumm = FALSE) {
if ( ! requireNamespace("jmvcore", quietly=TRUE))
stop("anovaRM requires jmvcore to be installed (restart may be required)")
if ( ! missing(bs)) bs <- jmvcore::resolveQuo(jmvcore::enquo(bs))
if ( ! missing(cov)) cov <- jmvcore::resolveQuo(jmvcore::enquo(cov))
if (missing(data))
data <- jmvcore::marshalData(
parent.frame(),
`if`( ! missing(bs), bs, NULL),
`if`( ! missing(cov), cov, NULL))
for (v in bs) if (v %in% names(data)) data[[v]] <- as.factor(data[[v]])
if (inherits(rmTerms, "formula")) rmTerms <- jmvcore::decomposeFormula(rmTerms)
if (inherits(bsTerms, "formula")) bsTerms <- jmvcore::decomposeFormula(bsTerms)
if (inherits(emMeans, "formula")) emMeans <- jmvcore::decomposeFormula(emMeans)
options <- anovaRMOptions$new(
rm = rm,
rmCells = rmCells,
bs = bs,
cov = cov,
effectSize = effectSize,
depLabel = depLabel,
rmTerms = rmTerms,
bsTerms = bsTerms,
ss = ss,
spherTests = spherTests,
spherCorr = spherCorr,
leveneTest = leveneTest,
qq = qq,
contrasts = contrasts,
postHoc = postHoc,
postHocCorr = postHocCorr,
emMeans = emMeans,
emmPlots = emmPlots,
emmTables = emmTables,
emmWeights = emmWeights,
ciWidthEmm = ciWidthEmm,
emmPlotData = emmPlotData,
emmPlotError = emmPlotError,
groupSumm = groupSumm)
analysis <- anovaRMClass$new(
options = options,
data = data)
analysis$run()
analysis$results
} |
if (Sys.getenv("_R_CHECK_FULL_") != "") {
library("PSCBS")
data <- PSCBS::exampleData("paired.chr01")
str(data)
data <- data.frame(chromosome=data$chromosome, x=data$x, y=data$CT)
dataS <- dropSegmentationOutliers(data)
dataS <- dataS[seq(from=1, to=nrow(data), by=5),]
str(dataS)
gaps <- findLargeGaps(dataS, minLength=2e6)
knownSegments <- gapsToSegments(gaps)
fit <- segmentByCBS(dataS, knownSegments=knownSegments,
seed=0xBEEF, verbose=-10)
signalType(fit) <- "ratio"
fit1 <- fit
fit2 <- renameChromosomes(fit, from=1, to=2)
fit <- c(fit1, fit2)
report(fit, sampleName="CBS", studyName="CBS-Ex", verbose=-10)
} |
if(!requireNamespace("purrr", quietly = TRUE)) stop("purrr package required.")
library(purrr)
cmuarctic_df <- torchaudio::cmuarctic_dataset(system.file("", package = "torchaudio"))
spectrogram_spec <- torchaudio::transform_spectrogram(n_fft = 255)
spectrograms = map(seq.int(cmuarctic_df), ~{
s <-spectrogram_spec(cmuarctic_df[.x][[1]])
s <- s[..,1:100]
s <- torch::torch_mean(s, 1)
})
spectrograms = torch::torch_stack(spectrograms)
test_that("model_resblock", {
resblock = model_resblock()
expect_no_error(x <- resblock(spectrograms))
expect_tensor(x)
expect_true(x$requires_grad)
})
test_that("model_melresnet", {
melresnet <- model_melresnet()
expect_no_error(x <- melresnet(spectrograms))
expect_tensor(x)
expect_true(x$requires_grad)
})
test_that("model_stretch2d", {
stretch2d <- model_stretch2d(freq_scale = 1L, time_scale = 1L)
expect_no_error(x <- stretch2d(spectrograms))
expect_tensor(x)
expect_false(x$requires_grad)
})
test_that("model_upsample_network", {
upsamplenetwork = model_upsample_network(upsample_scales=c(4, 4, 16))
input = torch::torch_rand (3, 128, 10)
output = upsamplenetwork (input)
expect_equal(dim(output[[1]]), c(3, 128, (10 - 5 + 1)*(4*4*16)))
expect_equal(dim(output[[2]]), c(3, 128, (10 - 5 + 1)*(4*4*16)))
})
test_that("model_wavernn", {
wavernn = model_wavernn(upsample_scales=c(2,2,3), n_classes=5, hop_length=12)
waveform = torch::torch_rand(3,1,(10 - 5 + 1)*12)
spectrogram = torch::torch_rand(3,1,128,10)
expect_no_error(output <- wavernn (waveform, spectrogram))
expect_tensor(output)
expect_equal(dim(output), c(3, 1, (10 - 5 + 1) * 12, 5))
}) |
simulate_modelvariants_ode <- function(U = 1e5, I = 0, V = 10, F=0, A=0, n = 0, dU = 0, dI = 1, dV = 4, b = 1e-5, p = 100, pF=1, dF=1, f1 = 1e-4, f2 = 0, f3 = 0, Fmax = 1e3, sV = 1e-10, k1 = 1e-3, k2 = 0, k3 = 0, a1 = 1e3, a2 = 0, a3 = 0, hV = 1e-10, k4 = 1e-3, k5 = 0, k6 = 0, sA = 1e-10, dA = 0.1, tstart = 0, tfinal = 20, dt = 0.01)
{
modelvariantode <- function(t, y, parms)
{
with(
as.list(c(y,parms)),
{
dUdt = n - dU*U - b*V*U - k1*F*U
dIdt = b*V*U - dI*I - k2*F*I - k4*A*I - k5*A*I/(A+sA)
dVdt = p*I/(1+k3*F) - dV*V - b*V*U - k6*A*V
dFdt = pF - dF*F + f1 *V*(Fmax - F) + f2 * V / (V+sV)*F + f3 *V*I / (V*I+sV)*F
dAdt = a1*F*A + a2*V/(V+hV)*F + a3 * F * V / (F * V + hV) * A - dA * A
list(c(dUdt, dIdt, dVdt, dFdt, dAdt))
}
)
}
Y0 = c(U = U, I = I, V = V, F = F, A = A);
timevec = seq(tstart, tfinal, dt);
pars = c(n=n,dU=dU,dI=dI,dV=dV,b=b,p=p,pF=pF,dF=dF,f1=f1,f2=f2,f3=f3,Fmax=Fmax,sV=sV,k1=k1,k2=k2,k3=k3,a1=a1,a2=a2,a3=a3,hV=hV,k4=k4,k5=k5,k6=k6,sA=sA, dA = dA);
odeoutput = deSolve::ode(y = Y0, times = timevec, func = modelvariantode, parms=pars, atol=1e-12, rtol=1e-12);
result = list()
result$ts = as.data.frame(odeoutput)
return(result)
} |
data{
n <- length(distance)
n.papers <- max(paper)
n.angles <- max(angle)
n.designs <- max(design)
}
model{
for (i in 1:n) {
distance[i] ~ dnorm(b0, tau)
}
for (j in 2:n.papers) {
b1[j] <- paper[j]
}
for (k in 2:n.angles) {
b2[k] <- angle[k]
}
for (m in 2:n.designs) {
b3[m] <- design[m]
}
tau ~ dgamma(0.001, 0.001)
b0 ~ dnorm(0, 1e-09)
} |
sgee.control <- function(maxIt = 200 , epsilon = 0.05,
stoppingThreshold = NULL,
undoThreshold = 0.005,
interceptLimit = NULL,
stochastic = 1,
sampleProb = NULL,
reSample = 1,
withReplacement = FALSE){
if(epsilon <= 0){
stop("epsilon must be >0")
}
if(epsilon >=1){
warning("It is advised that epsilon be sufficiently small")
}
if(maxIt <= 0){
stop("maxIt must be >0")
}
if(!is.null(stoppingThreshold)){
if(stoppingThreshold<1){
stop("stoppingThreshold must be >1")
}
}
if(!is.null(interceptLimit)){
if(interceptLimit<=0){
stop("interceptLimit must be >0")
}
}
if(stochastic>1 | stochastic<=0){
stop("paramter 'stochastic' indicates percentage of data being subsample and must be greater than 0 and less than or equal to 1")
}
if(reSample <0 | reSample %% 1 != 0){
stop("parameter 'reSample' indicates how frequently a subsample is collected (i.e. reSample == 1 implies every iteration, reSample == 2 implies every other iteration). Therefore, reSample must be a non-negative integer")
}
list(maxIt = maxIt,
epsilon = epsilon,
stoppingThreshold = stoppingThreshold,
undoThreshold = undoThreshold,
stochastic = stochastic,
sampleProb = sampleProb,
reSample = reSample,
withReplacement = withReplacement)
} |
library(stringr)
library(tableschema.r)
library(testthat)
library(foreach)
library(lubridate)
library(config)
context("types.castTime")
Time <- function(hour, minute=0, second=0) {
value <- lubridate::as_datetime(lubridate::make_datetime(0, 0, 1, hour, minute, second,tz = "UTC"))
unlist(strsplit(as.character(value), " "))[[2]]
}
TESTS <- list(
list('default', Time(6), Time(6)),
list('default', '06:00:00', Time(6)),
list('default', '09:00', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('default', '3 am', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('default', '3.00', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('default', 'invalid', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('default', TRUE, config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('default', '', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('any', Time(6), Time(6)),
list('any', 'some night', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('any', 'invalid', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('any', TRUE, config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('any', '', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('%H:%M', Time(6), Time(6)),
list('%H:%M', 'some night', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('%H:%M', 'invalid', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('%H:%M', TRUE, config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('%H:%M', '', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('invalid', '', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('fmt:%M:%H', '06:50', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('fmt:%H:%M', 'some night', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('fmt:%H:%M', 'invalid', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('fmt:%H:%M', TRUE, config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r"))),
list('fmt:%H:%M', '', config::get("ERROR", file = system.file("config/config.yml", package = "tableschema.r")))
)
foreach(j = seq_along(TESTS) ) %do% {
TESTS[[j]] <- setNames(TESTS[[j]], c("format", "value", "result"))
test_that(str_interp('format "${TESTS[[j]]$format}" should check "${TESTS[[j]]$value}" as "${TESTS[[j]]$result}"'), {
expect_equal(types.castTime(TESTS[[j]]$format, TESTS[[j]]$value), TESTS[[j]]$result)
})
} |
utility.endnode.cond.create <- function(name.node,
attrib.levels,
nodes,
utility = TRUE,
required = FALSE,
col = "black",
shift.levels = 0)
{
check.ok <- T
if ( !is.data.frame(attrib.levels) )
{
cat("*** Warning: attrib.levels must be a data frame","\n")
check.ok <- F
}
if ( length(names(attrib.levels)) != length(unique(names(attrib.levels))) )
{
cat("*** Warning: Column names of attrib.levels must be different","\n")
check.ok <- F
}
if ( nrow(attrib.levels) != length(nodes) )
{
cat("*** Warning: Number of rows of attrib.levels not equal to",
"number of nodes provided:",nrow(attrib.levels),length(nodes),"\n")
check.ok <- F
}
if ( length(nodes) < 1 )
{
cat("*** Warning: No nodes provided","\n")
check.ok <- F
}
for ( i in 1:length(nodes) )
{
if ( nodes[[i]]$utility != utility )
{
funtype <- "utility"; if ( !utility ) funtype <- "value"
funtype.i <- "utility"; if ( !nodes[[i]]$utility ) funtype.i <- "value"
cat("***Warning: incompatible function types: new node is of type",
funtype,"node",nodes[[i]]$name," is of type",funtype.i,"\n")
check.ok <- F
}
}
if ( ! check.ok )
{
cat("*** Warning: Node \"",name.node,"\" could not be constructed","\n",
sep="")
return(NA)
}
node <- list()
node$name <- name.node
node$description <- "utility/value conditional combination end node"
node$type <- "endnode"
node$attrib.levels <- attrib.levels
for ( i in 1:ncol(attrib.levels) )
{
node$attrib.levels[,i] <- as.character(node$attrib.levels[,i])
}
node$attrib <- names(attrib.levels)
for ( i in 1:length(nodes) )
{
node$attrib <- c(node$attrib,nodes[[i]]$attrib)
}
node$attrib <- unique(node$attrib)
node$nodes <- nodes
node$required <- required
node$utility <- utility
node$col <- col
node$shift.levels <- shift.levels
class(node) <- "utility.endnode.cond"
return(node)
}
updatepar.utility.endnode.cond <- function(x,par=NA,...)
{
node <- x
if ( length(names(par)) == 0 ) return(node)
n <- node
for ( i in 1:length(n$nodes) )
{
n$nodes[[i]] <- updatepar(n$nodes[[i]],par)
}
return(n)
}
evaluate.utility.endnode.cond <- function(x,
attrib,
par=NA,
...)
{
as.character.na <- function(x,...) { return(ifelse(is.na(x),"",as.character(x,...))) }
node <- x
if ( ! is.data.frame(attrib) )
{
warning("Node \"",node$name,"\": attrib must be a data frame",sep="")
return(NA)
}
ind <- match(node$attrib,names(attrib))
if(sum(is.na(ind))>0)
{
ind.na <- is.na(ind)
warning("Node \"",node$name,"\": attribute(s) \"",
paste(node$attrib[ind.na],collapse=","),"\" not found",sep="")
return(rep(NA,nrow(attrib)))
}
n <- updatepar(node,par)
u <- rep(NA,nrow(attrib))
calc <- rep(FALSE,nrow(attrib))
while( TRUE )
{
startind <- match(FALSE,calc)
if ( is.na(startind) ) break
ind.attrib <- as.character.na(attrib[startind,names(n$attrib.levels)[1]]) ==
as.character.na(attrib[,names(n$attrib.levels)[1]])
if ( ncol(n$attrib.levels) > 1 )
{
for ( i in 2:ncol(n$attrib.levels) )
{
ind.attrib <-
ind.attrib &
( as.character.na(attrib[startind,names(n$attrib.levels)[i]]) ==
as.character.na(attrib[,names(n$attrib.levels)[i]]) )
}
}
ind.attrib <- which(ind.attrib)
ind.node <- as.character.na(attrib[startind,names(n$attrib.levels)[1]]) ==
as.character.na(n$attrib.levels[,names(n$attrib.levels)[1]])
if ( ncol(n$attrib.levels) > 1 )
{
for ( i in 2:ncol(n$attrib.levels) )
{
ind.node <-
ind.node &
( as.character.na(n$attrib.levels[,names(n$attrib.levels)[i]]) ==
as.character.na(attrib[startind,names(n$attrib.levels)[i]]) )
}
}
ind.node <- which(ind.node)
if ( length(ind.node) > 0 )
{
u[ind.attrib] <- evaluate(n$nodes[[ind.node[1]]],attrib[ind.attrib,])
if ( length(ind.node) > 1 )
{
cat("*** Warning: multiple combinations of the same",
"attribute levels in node",n$name,"\n")
}
}
calc[ind.attrib] <- T
}
return(u)
}
print.utility.endnode.cond <- function(x,...)
{
cat(paste(rep("-",50),collapse=""),"\n")
summary(x,...)
cat(paste(rep("-",50),collapse=""),"\n")
}
summary.utility.endnode.cond <- function(object,...)
{
node <- object
cat(node$name,"\n")
cat(paste(rep("-",nchar(node$name)),collapse=""),"\n")
cat(node$description,"\n")
funtype <- "utility"; if ( !node$utility ) funtype <- "value"
cat("function type: ",funtype,"\n")
cat("required: ",node$required,"\n")
cat("attribute/node combinations:","\n")
nodes.names <- character(0)
for ( i in 1:length(node$nodes) ) nodes.names[i] <- node$nodes[[i]]$name
print(cbind(node$attrib.levels,node=nodes.names))
for ( i in 1:length(node$nodes) )
{
cat("**","\n")
summary(node$nodes[[i]])
}
}
plot.utility.endnode.cond <-
function(x,
par = NA,
col = utility.calc.colors(),
gridlines = c(0.2,0.4,0.6,0.8),
main = "",
cex.main = 1,
nodes = x$name,
...)
{
node <- x
if ( is.na(nodes[1]) | ! is.na(match(node$name,nodes)) )
{
nrow <- floor(sqrt(length(node$nodes)))
ncol <- floor(length(node$nodes)/nrow+0.999)
par.def <- par(no.readonly=T)
par(mfrow=c(nrow,ncol),mar=c(4.3,3.8,2.8,0.8),oma=c(0,0,2,0))
for ( i in 1:length(node$nodes) )
{
title <- main
for ( j in 1:ncol(node$attrib.levels) )
{
title <- paste(title," ",colnames(node$attrib.levels)[j],"=",
as.character(node$attrib.levels[i,j]),sep="")
}
plot(node$nodes[[i]],par=par,col=col,gridlines=gridlines,main=title,cex.main=cex.main,...)
}
mtext(node$name,outer=TRUE,cex=cex.main)
par(par.def)
}
if ( length(node$nodes) > 0 )
{
for ( i in 1:length(node$nodes) )
{
if ( is.na(nodes[1]) | !is.na(match(node$nodes[[i]]$name,nodes)) )
{
plot(node$nodes[[i]],
par=par,
col=col,
gridlines=gridlines,
cex.main=cex.main,
...)
}
}
}
} |
dfa_fitted <- function(modelfit, conf_level = 0.95, names = NULL) {
pred <- predicted(modelfit)
n_mcmc <- dim(pred)[1]
n_chains <- dim(pred)[2]
n_years <- dim(pred)[3]
n_ts <- dim(pred)[4]
df_pred <- data.frame(
"ID" = rep(seq_len(n_ts), n_years),
"time" = sort(rep(seq_len(n_years), n_ts)),
"estimate" = c(t(apply(pred, c(3, 4), mean))),
"lower" = c(t(apply(pred, c(3, 4), quantile, 1 - (1 - conf_level) / 2))),
"upper" = c(t(apply(pred, c(3, 4), quantile, (1 - conf_level) / 2)))
)
if (modelfit$shape == "wide") {
df_obs <- data.frame(
"ID" = rep(seq_len(n_ts), n_years),
"time" = sort(rep(seq_len(n_years), n_ts)),
"y" = c(modelfit$orig_data)
)
} else {
df_obs <- data.frame(
"ID" = modelfit$orig_data[["ts"]],
"time" = modelfit$orig_data[["time"]],
"y" = modelfit$orig_data[["obs"]]
)
}
df_obs$time <- df_obs$time - min(df_obs$time) + 1
for (i in seq_len(n_ts)) {
indx <- which(df_obs[["ID"]] == i)
df_obs[indx, "y"] <- scale(df_obs[indx, "y"], center = TRUE, scale = TRUE)
}
df_obs <- df_obs[order(df_obs$ID, df_obs$time), ]
df_pred <- df_pred[order(df_pred$ID, df_pred$time), ]
if (!is.null(names)) {
if (length(names) != n_ts) {
warning("bayesdfa: Length of 'names' should match number of time series. Ignoring 'names'.")
} else {
df_pred$ID <- names[df_pred$ID]
df_obs$ID <- names[df_obs$ID]
}
}
df <- merge(df_obs, df_pred, by = c("ID", "time"), sort = FALSE)
return(df)
} |
NULL
qqplotprecWGEN <-
function (measured,simulated,xlab="simulated[mm]",ylab="measured[mm]",title="daily precipitation",station=NULL,diff=FALSE,quantile=0) {
ncols=1
name <- names(as.data.frame(simulated))
if (is.null(station)) {
nrows=ncol(measured)
istation=1:ncols
} else {
istation=which(name %in% station)
nrows=length(istation)
}
par(mfrow=c(nrows,ncols))
xlim <- c(min(simulated,na.rm=TRUE),max(simulated,na.rm=TRUE))
ylim <- c(min(measured,na.rm=TRUE),max(measured,na.rm=TRUE))
for (r in 1:nrows) {
for (c in 1:ncols) {
main=paste(title,name[r],sep=" ")
qqplotWGEN(val=cbind(simulated[,r],measured[,r]),ylab=ylab,xlab=xlab,xlim=xlim,ylim=ylim,main=main,diff=diff,quantile=quantile)
}
}
return(0)
} |
evaluate_model <- function(seminr_model) {
rel <- reliability(seminr_model)
val <- validity(seminr_model)
out <- list(rel,val)
names(out) <- c("reliability", "validity")
return(out)
}
reliability <- function(seminr_model) {
alpha <- cronbachs_alpha(seminr_model)
mat1 <- rhoC_AVE(seminr_model)
mat2 <- rho_A(seminr_model)
table <- cbind(alpha, mat1, mat2)
comment(table) <- "Alpha, rhoC, and rhoA should exceed 0.7 while AVE should exceed 0.5"
class(table) <- append(class(table), c("table_output","reliability_table"))
return(table)
}
validity <- function(seminr_model) {
list(
htmt = HTMT(seminr_model),
cross_loadings = cross_loadings(seminr_model),
item_vifs = item_vifs(seminr_model),
antecedent_vifs = antecedent_vifs(seminr_model$smMatrix, stats::cor(seminr_model$construct_scores)),
fl_criteria = fl_criteria_table(seminr_model)
)
}
cross_loadings <- function(seminr_model) {
ret <- stats::cor(seminr_model$data[, seminr_model$mmVariables], seminr_model$construct_scores)
convert_to_table_output(ret)
}
evaluate_measurement_model <- function(object, na.print=".", digits=3, ...) {
stopifnot(inherits(object, "seminr_model"))
factors <- get_factors(object)
composites <- get_composites(object)
factor_items <- unlist(sapply(factors, items_of_construct, object))
composite_items <- unlist(sapply(composites, items_of_construct, object))
metrics <- evaluate_model(object)
if (length(factors) == 1) {
factor_reliability <- as.matrix(t(metrics$reliability[factors, c("AVE", "rhoA")]))
rownames(factor_reliability) <- factors
factor_indicator_reliability <- as.matrix(object$outer_loadings[factor_items, factors])
colnames(factor_indicator_reliability) <- factors
discriminant_validity <- HTMT(object)
} else if (length(factors) > 1) {
factor_reliability <- metrics$reliability[factors, c("AVE", "rhoA")]
factor_indicator_reliability <- object$outer_loadings[factor_items, factors]
discriminant_validity <- HTMT(object)
} else {
factor_reliability <- NA
factor_indicator_reliability <- NA
discriminant_validity <- NA
}
if (length(composites) == 1) {
composite_indicator_reliability <- as.matrix(object$outer_weights[composite_items, composites])
colnames(composite_indicator_reliability) <- composites
} else if (length(composites) > 1) {
composite_indicator_reliability <- object$outer_weights[composite_items, composites]
} else {
composite_indicator_reliability <- NA
}
message("Measurement Model Evaluation:")
message("------------------Factors:------------------")
message("1. Indicator Reliability:\nLoadings:")
message(factor_indicator_reliability)
message("\n2. Factor Reliability and Convergent Validity:")
message(factor_reliability)
message("\n3. Discriminant Validity")
message("HTMT")
message(discriminant_validity)
message("\n------------------Composites:---------------")
message("1. Indicator Reliability:\nWeights:")
message(composite_indicator_reliability)
message("\n2. Collinearity:\nItem VIFs per Construct:")
message(metrics$validity$item_vifs[composites])
measurement_model_evaluation <- list(factor_reliability = factor_reliability,
factor_indicator_reliability = factor_indicator_reliability,
factor_discriminant_validity = discriminant_validity,
composite_indicator_reliability = composite_indicator_reliability,
composite_collinearity = metrics$validity$item_vifs[composites])
class(measurement_model_evaluation) <- "measurement_model_evaluation.seminr_model"
return(measurement_model_evaluation)
}
boot_evaluate_measurement_model <- function(object, na.print=".", digits=3, ...) {
stopifnot(inherits(object, "boot_seminr_model"))
factors <- get_factors(object)
composites <- get_composites(object)
factor_items <- unlist(sapply(factors, items_of_construct, object))
composite_items <- unlist(sapply(composites, items_of_construct, object))
metrics <- evaluate_model(object)
weights_boot_matrix <- object$weights_descriptives
num_composites <- ncol(weights_boot_matrix) / 3
column_names <- colnames(weights_boot_matrix)[1:num_composites]
weights_boot_mean <- as.matrix(weights_boot_matrix[, c((1*num_composites+1):(2*num_composites))])
weights_boot_SE <- as.matrix(weights_boot_matrix[, c((2*num_composites+1):(3*num_composites))])
weights_boot_t <- abs(weights_boot_mean / weights_boot_SE)
weights_boot_p <- 2*stats::pt(weights_boot_t, df = object$boots-1, lower.tail = FALSE)
colnames(weights_boot_t) <- object$constructs
colnames(weights_boot_p) <- object$constructs
HTMT_boot_matrix <- object$HTMT_descriptives
num_factors <- ncol(HTMT_boot_matrix) / 3
factor_names <- colnames(HTMT_boot_matrix)[1:num_factors]
HTMT_boot_mean <- as.matrix(HTMT_boot_matrix[, c((1*num_factors+1):(2*num_factors))])
HTMT_boot_SE <- as.matrix(HTMT_boot_matrix[, c((2*num_factors+1):(3*num_factors))])
HTMT_boot_t <- abs((HTMT_boot_mean-1) / HTMT_boot_SE)
HTMT_boot_p <- 2*stats::pt(HTMT_boot_t, df = object$boots-1, lower.tail = FALSE)
colnames(HTMT_boot_t) <- colnames(HTMT(object))
colnames(HTMT_boot_p) <- colnames(HTMT(object))
discriminant_validity <- HTMT(object)
discriminant_validity_t <- HTMT_boot_t
discriminant_validity_p <- HTMT_boot_p
if (length(factors) == 1) {
factor_reliability <- as.matrix(t(metrics$reliability[factors, c("AVE", "rhoA")]))
rownames(factor_reliability) <- factors
factor_indicator_reliability <- as.matrix(object$outer_loadings[factor_items, factors])
colnames(factor_indicator_reliability) <- factors
} else if (length(factors) > 1) {
factor_reliability <- metrics$reliability[factors, c("AVE", "rhoA")]
factor_indicator_reliability <- object$outer_loadings[factor_items, factors]
} else {
factor_reliability <- NA
factor_indicator_reliability <- NA
discriminant_validity <- NA
discriminant_validity_t <- NA
discriminant_validity_p <- NA
}
if (length(composites) == 1) {
composite_indicator_reliability <- as.matrix(object$outer_weights[composite_items, composites])
composite_indicator_weights_t <- as.matrix(weights_boot_t[composite_items, composites])
composite_indicator_weights_p <- as.matrix(weights_boot_p[composite_items, composites])
colnames(composite_indicator_reliability) <- composites
} else if (length(composites) > 1) {
composite_indicator_reliability <- object$outer_weights[composite_items, composites]
composite_indicator_weights_t <- weights_boot_t[composite_items, composites]
composite_indicator_weights_p <- weights_boot_p[composite_items, composites]
} else {
composite_indicator_reliability <- NA
composite_indicator_weights_t <- NA
composite_indicator_weights_p <- NA
}
composite_indicator_weights_t[is.nan(composite_indicator_weights_t)] <- NA
composite_indicator_weights_p[is.nan(composite_indicator_weights_p)] <- NA
message("Boot Measurement Model Evaluation:")
message("\n------------------Factors:------------------")
message("1. Indicator Reliability:\nLoadings:")
message(factor_indicator_reliability)
message("\n2. Factor Reliability and Convergent Validity:")
message(factor_reliability)
message("\n3. Discriminant Validity")
message("HTMT")
message(discriminant_validity)
message("HTMT t-values:")
message(discriminant_validity_t)
message("HTMT p-values:")
message(discriminant_validity_p)
message("\n------------------Composites:---------------")
message("1. Indicator Reliability:\nWeights:")
message(composite_indicator_reliability)
message("\n Weights t-values:")
message(composite_indicator_weights_t)
message("\n Weights p-values:")
message(composite_indicator_weights_p)
message("\n2. Collinearity:\nItem VIFs per Construct:")
message(metrics$validity$item_vifs[composites])
boot_measurement_model_evaluation <- list(factor_reliability = factor_reliability,
factor_indicator_reliability = factor_indicator_reliability,
factor_discriminant_validity = discriminant_validity,
factor_discriminant_validity_t_values = discriminant_validity_t,
factor_discriminant_validity_p_values = discriminant_validity_p,
composite_indicator_reliability = composite_indicator_reliability,
composite_indicator_weights_t_values = composite_indicator_weights_t,
composite_indicator_weights_p_values = composite_indicator_weights_p,
composite_collinearity = metrics$validity$item_vifs[composites])
class(boot_measurement_model_evaluation) <- "measurement_model_evaluation.boot_seminr_model"
return(boot_measurement_model_evaluation)
} |
svc <- paws::lightsail() |
context("ml feature bucketizer")
skip_databricks_connect()
test_that("ft_bucketizer() default params", {
test_requires_latest_spark()
sc <- testthat_spark_connection()
test_default_args(sc, ft_bucketizer)
})
test_that("ft_bucketizer() param setting", {
test_requires_latest_spark()
sc <- testthat_spark_connection()
test_args <- list(
input_col = "x",
output_col = "y",
splits = c(-1, 34, 100),
handle_invalid = "keep"
)
test_param_setting(sc, ft_bucketizer, test_args)
test_args2 <- list(
input_cols = c("x1", "x2"),
output_cols = c("y1", "y2"),
splits_array = list(c(-1, 34, 100), c(-5, 0, 2)),
handle_invalid = "keep"
)
test_param_setting(sc, ft_bucketizer, test_args2)
})
test_that("ft_bucketizer() works properly", {
mtcars_tbl <- testthat_tbl("mtcars")
expect_identical(
mtcars_tbl %>%
select(drat) %>%
ft_bucketizer(
"drat", "drat_out",
splits = c(-Inf, 2, 4, Inf)
) %>%
colnames(),
c("drat", "drat_out")
)
})
test_that("ft_bucketizer() can mutate multiple columns", {
test_requires_version("2.3.0", "multiple column support requires 2.3+")
mtcars_tbl <- testthat_tbl("mtcars")
expect_identical(
mtcars_tbl %>%
select(drat, hp) %>%
ft_bucketizer(
input_cols = c("drat", "hp"),
output_cols = c("drat_out", "hp_out"),
splits_array = list(c(-Inf, 2, 4, Inf), c(-Inf, 90, 120, Inf))
) %>%
colnames(),
c("drat", "hp", "drat_out", "hp_out")
)
}) |
field_caps <- function(conn, fields, index = NULL, ...) {
is_conn(conn)
conn$stop_es_version(540, "field_caps")
fields <- paste(fields, collapse = ",")
tt <- es_GET(conn, "_field_caps", index = index,
fields = fields, callopts = list(...))
jsonlite::fromJSON(tt)
} |
T10 <- function(time, nger) {
N <- max(nger)
ni <- max(nger)
ti <- max(time)
nj <- min(nger)
tj <- min(time)
for (i in length(time):1) {
if (ni > ((N)/(100/10))) {
ni = nger[i]
ti = time[i]
}
}
for (j in 1:length(time)) {
if (nj < ((N)/(100/10))) {
nj = nger[j]
tj = time[j]
}
}
result <- ti + (((N)/(100/10) - ni)*(tj - ti))/(nj-ni)
return(result)
} |
aqs_qa_blanks_by_MA <- function(parameter, bdate, edate, MA_code,
cbdate = NA_Date_, cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, MA_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
MA_code = MA_code,
service = "qaBlanks",
cbdate = cbdate,
cedate = cedate
)
blanks <- purrr::pmap(.l = params, .f = aqs_services_by_MA)
if (!return_header) blanks %<>% aqs_removeheader
return(blanks)
}
aqs_qa_collocated_assessments_by_MA <- function(parameter, bdate,
edate, MA_code,
cbdate = NA_Date_,
cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, MA_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
MA_code = MA_code,
service = "qaCollocatedAssessments",
cbdate = cbdate,
cedate = cedate
)
colocatedsummary <- purrr::pmap(.l = params, .f = aqs_services_by_MA)
if (!return_header) colocatedsummary %<>% aqs_removeheader
return(colocatedsummary)
}
aqs_qa_flowrateverification_by_MA <- function(parameter, bdate, edate,
MA_code, cbdate = NA_Date_,
cedate = NA_Date_,
return_header = FALSE)
{
checkaqsparams(parameter, bdate, edate, MA_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
MA_code = MA_code,
service = "qaFlowRateVerifications",
cbdate = cbdate,
cedate = cedate
)
frv <- purrr::pmap(.l = params, .f = aqs_services_by_MA)
if (!return_header) frv %<>% aqs_removeheader
return(frv)
}
aqs_qa_flowrateaudit_by_MA <- function(parameter, bdate, edate, MA_code,
cbdate = NA_Date_,
cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, MA_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
MA_code = MA_code,
service = "qaFlowRateAudits",
cbdate = cbdate,
cedate = cedate
)
fra <- purrr::pmap(.l = params, .f = aqs_services_by_MA)
if (!return_header) fra %<>% aqs_removeheader
return(fra)
}
aqs_qa_one_point_qc_by_MA <- function(parameter, bdate, edate, MA_code,
cbdate = NA_Date_, cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, MA_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
MA_code = MA_code,
service = "qaOnePointQcRawData",
cbdate = cbdate,
cedate = cedate
)
opqcc <- purrr::pmap(.l = params, .f = aqs_services_by_MA)
if (!return_header) opqcc %<>% aqs_removeheader
return(opqcc)
}
aqs_qa_pep_audit_by_MA <- function(parameter, bdate, edate, MA_code,
cbdate = NA_Date_, cedate = NA_Date_,
return_header = FALSE)
{
checkaqsparams(parameter, bdate, edate, MA_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
MA_code = MA_code,
service = "qaPepAudits",
cbdate = cbdate,
cedate = cedate
)
pepaudit <- purrr::pmap(.l = params, .f = aqs_services_by_MA)
if (!return_header) pepaudit %<>% aqs_removeheader
return(pepaudit)
}
aqs_transactionsample_by_MA <- function(parameter, bdate, edate, MA_code,
cbdate = NA_Date_, cedate = NA_Date_,
return_header = FALSE
)
{
checkaqsparams(parameter, bdate, edate, MA_code, cbdate, cedate,
return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
MA_code = MA_code,
service = "transactionsSample"
)
transactionsample <- purrr::pmap(.l = params, .f = aqs_services_by_MA)
if (!return_header) transactionsample %<>% aqs_removeheader
return(transactionsample)
}
aqs_qa_annualpeferomanceeval_by_MA <- function(parameter, bdate, edate,
MA_code,
return_header = FALSE)
{
checkaqsparams(parameter, bdate, edate, MA_code, return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
MA_code = MA_code,
service = "qaAnnualPerformanceEvaluations"
)
qaape <- purrr::pmap(.l = params, .f = aqs_services_by_MA)
if (!return_header) qaape %<>% aqs_removeheader
return(qaape)
}
aqs_qa_annualperformanceevaltransaction_by_MA <- function(parameter, bdate,
edate, MA_code,
return_header = FALSE)
{
checkaqsparams(parameter, bdate, edate, MA_code, return_header)
params <- aqsmultiyearparams(parameter = parameter,
bdate = bdate,
edate = edate,
MA_code = MA_code,
service = "transactionsQaAnnualPerformanceEvaluations"
)
tqaape <- purrr::pmap(.l = params, .f = aqs_services_by_MA)
if (!return_header) tqaape %<>% aqs_removeheader
return(tqaape)
} |
emit_message <- function(...,
.format = NULL,
.f_name = TRUE,
.issue = TRUE) {
calling_fcn <- deparse(sys.call(-1))
if (.issue) {
input_components <- list(...)
named_numeric_input_components <-
get_named_numeric_input_components(
input_components = input_components)
named_nonnumeric_input_components <-
get_named_nonnumeric_input_components(
input_components = input_components)
unnamed_input_components <-
get_unnamed_input_components(
input_components = input_components)
numeric_refs <- names(named_numeric_input_components)
nonnumeric_refs <- names(named_nonnumeric_input_components)
text <- squash_all_text(unnamed_input_components)
format_str <- process_format_str(.format = .format)
.f_name <-
process_function_name(
.f_name = .f_name,
calling_fcn = calling_fcn)
format_str <-
glue::glue(format_str) %>%
as.character()
format_str <-
format_str %>%
reprocess_grammar(
named_numeric_input_components = named_numeric_input_components,
named_nonnumeric_input_components = named_nonnumeric_input_components)
format_str %>%
as.character() %>%
message()
}
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
Sys.setenv(LANGUAGE="en")
library(robust2sls)
p <- generate_param(dx1 = 3, dx2 = 2, dz2 = 3, intercept = TRUE, seed = 10)
library(parallel)
ncores <- 2
cl <- makeCluster(ncores)
invisible(clusterCall(cl = cl, function(x) .libPaths(x), .libPaths()))
library(doParallel)
registerDoParallel(cl)
sim1 <- mc_grid(M = 100, n = c(100, 1000), seed = 42, parameters = p,
formula = p$setting$formula, ref_dist = "normal",
sign_level = 0.05, initial_est = "robustified", iterations = 0,
shuffle = FALSE, shuffle_seed = 42, split = 0.5)
library(doFuture)
registerDoFuture()
plan(cluster, workers = cl)
sim2 <- mc_grid(M = 100, n = c(100, 1000), seed = 42, parameters = p,
formula = p$setting$formula, ref_dist = "normal",
sign_level = 0.05, initial_est = "robustified", iterations = 0,
shuffle = FALSE, shuffle_seed = 42, split = 0.5)
stopCluster(cl)
identical(sim1, sim2)
library(doFuture)
registerDoFuture()
plan(sequential)
sim3 <- mc_grid(M = 100, n = c(100, 1000), seed = 42, parameters = p,
formula = p$setting$formula, ref_dist = "normal",
sign_level = 0.05, initial_est = "robustified", iterations = 0,
shuffle = FALSE, shuffle_seed = 42, split = 0.5)
identical(sim1, sim3) |
test_that("auto item value", {
out <- autoItemValuesMinMaxConstraint(nForms = 2, itemValues = c(1, 1, 1, 1), allowedDeviation = 0, verbose = FALSE, itemIDs = 1:4)
expect_equal(out$A_binary[1, ], c(1, 1, 1, 1, 0, 0, 0, 0))
expect_equal(out$A_binary[4, ], c(0, 0, 0, 0, 1, 1, 1, 1))
expect_equal(out$d, c(min = 2 , min = 2, max = 2, max = 2))
out <- autoItemValuesMinMaxConstraint(nForms = 2, itemValues = c(1, 1, 1, 1), allowedDeviation = .5, verbose = FALSE, itemIDs = 1:4)
expect_equal(out$d, c(min = 1.5, min = 1.5, max = 2.5, max = 2.5))
expect_equal(out$operators, c(">=", ">=", "<=", "<="))
out <- autoItemValuesMinMaxConstraint(nForms = 2, itemValues = c(1, 1, 1, 1), verbose = FALSE, itemIDs = 1:4)
expect_equal(out$d, c(2, 2))
expect_equal(out$operators, c("=", "="))
out <- autoItemValuesMinMaxConstraint(nForms = 2, itemValues = c(1, 1, 1, 1, 1), allowedDeviation = .5, verbose = FALSE, itemIDs = 1:5)
expect_equal(out$A_binary[1, ], c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0))
expect_equal(out$d, c(min = 2, min = 2, max = 3, max = 3))
expect_equal(out$operators, c(">=", ">=", "<=", "<="))
expect_equal(autoItemValuesMinMaxConstraint(nForms = 2, itemValues = c(1, 1, 1, 1), allowedDeviation = 1, verbose = FALSE, itemIDs = 1:4),
autoItemValuesMinMaxConstraint(nForms = 2, itemValues = c(1, 1, 1, 1), allowedDeviation = .5, relative = TRUE, verbose = FALSE, itemIDs = 1:4))
})
test_that("auto item value with specific testlength", {
out <- autoItemValuesMinMaxConstraint(nForms = 2, itemValues = c(1, 1, 1, 1), testLength = 1,
allowedDeviation = 0, verbose = FALSE, itemIDs = 1:4)
expect_equal(out$A_binary[1, ], c(1, 1, 1, 1, 0, 0, 0, 0))
expect_equal(out$A_binary[4, ], c(0, 0, 0, 0, 1, 1, 1, 1))
expect_equal(out$d, c(min = 1 , min = 1, max = 1, max = 1))
})
test_that("auto item value gives the correct messages + warnings", {
expect_message(out <- autoItemValuesMinMaxConstraint(nForms = 2, itemValues = c(1, 1, 1, 1, 1), itemIDs = 1:5),
"The target value per test form is: 2.5")
expect_message(out <- autoItemValuesMinMaxConstraint(nForms = 2, itemValues = c(1, 1, 1, 1, 1), allowedDeviation = .5, itemIDs = 1:5),
"The minimum and maximum values per test form are: min = 2 - max = 3")
out <- capture_output(expect_message(out <- autoItemValuesMinMaxConstraint(nForms = 2, itemValues = factor(rep(1:2, 5)), itemIDs = 1:10),
"The minimum and maximum frequences per test form for each item category are"))
expect_warning(out <- autoItemValuesMinMaxConstraint(nForms = 2, itemValues = c(1, 1, 1, 1), allowedDeviation = 0, verbose = FALSE),
"Argument 'itemIDs' is missing. 'itemIDs' will be generated automatically.")
}) |
knitr::opts_chunk$set(
message = FALSE,
warning = FALSE,
error = FALSE,
tidy = FALSE,
cache = FALSE
)
library(sortable)
library(htmltools)
sortable_js(css_id = "example01")
library(htmltools)
tagList(
tags$ul(
id = "example02",
tags$li("drag me"),
tags$li("sort me"),
tags$li("any way you like")
),
sortable_js("example02")
)
library(base64)
library(withr)
pngfile_1 <- tempfile(fileext = ".png")
with_png(pngfile_1, width = 300, height = 200,{
plot(1:100, rnorm(100), pch = 21, bg = "red")
title(main = "Moves Like Jagger")
})
pngfile_2 <- tempfile(fileext = ".png")
with_png(pngfile_2, width = 300, height = 200,{
barplot(1:9, col = blues9)
title(main = "I Like the Way You Move")
})
tagList(
tags$div(
id = "example03",
HTML(base64::img(pngfile_1)),
HTML(base64::img(pngfile_2))
),
sortable_js(css_id = "example03")
)
knitr::read_chunk(
system.file("shiny-examples/shiny_tabset/app.R", package = "sortable")
) |
betasecond=function(x,n=20){
library(BioFTF)
for (i in 1:ncol(x)) colnames(x)=paste("species",c(1:ncol(x)),sep=" n.")
for (i in 1:nrow(x)) rownames(x)=paste("community",c(1:nrow(x)),sep=" n.")
class(x)
x=as.matrix(x)
nsiti=nrow(x)
nspecie=ncol(x)
xrel=prop.table(x,1)
k=(n-1)/2
b=seq(-1,1,1/k)
b[b==0]=0.001
b[1]=-0.9999
appo.beta=matrix(rep(b),length(b),nsiti)
appo.profile=matrix(NA,length(b),nsiti)
appo.siti=matrix(rep((xrel),each=length(b)),nsiti*length(b),nspecie)
all=length(b)*nsiti
for(i in 1:all) {appo.profile[i]=(1-sum(appo.siti[i,]^(appo.beta[i]+1)))/(appo.beta[i])}
appo.profile[1,]=round(appo.profile[1,])
appo.siti2=log(appo.siti)
appo.siti2[appo.siti2==-Inf]=0
appo.second=matrix(NA,length(b),nsiti)
for (i in 1:all) appo.second[i]=(sum((appo.siti[i,]^(appo.beta[i]+1))*(-(appo.beta[i])^2*((appo.siti2[i,])^2)-2+2*appo.beta[i]*appo.siti2[i,]))+2)/((appo.beta[i])^3)
appo.second
} |
context("Other error messages")
test_that("Error messages on NosoiSim", {
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_exit_param1 <- function(x){rnorm(x,mean = 10,sd=2)}
p_Exit_fct <- function(t,pExit.param1){plogis(t,pExit.param1,2)}
proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)
}
time_contact = function(t){round(rnorm(1, 3, 1), 0)}
expect_error(
test.nosoiC <- nosoiSim(type="triple", popStructure="none",
length=40,
max.infected=100,
init.individuals=3,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,
t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit = list(pExit.param1=p_exit_param1)
),
"Type of transmission should be 'single' or 'dual'-host."
)
expect_error(
test.nosoiC <- nosoiSim(type="single", popStructure="multiple",
length=40,
max.infected=100,
init.individuals=3,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,
t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit = list(pExit.param1=p_exit_param1)
),
"Unrecognized parameters for population structure, should be 'none,'discrete' or 'continuous'."
)
})
test_that("Error messages on SanityCheck", {
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_exit_param1 <- function(x){rnorm(x,mean = 10,sd=2)}
p_Exit_fct <- function(t,pExit.param1){plogis(t,pExit.param1,2)}
proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)
}
time_contact = function(t){round(rnorm(1, 3, 1), 0)}
expect_error(
nosoiSim(type="single", popStructure="none",
length=1,
max.infected=100,
init.individuals=3,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,
t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit = list(pExit.param1=p_exit_param1)
),
"You must specify a length (in time units) for your simulation (bigger than 1).",fixed=TRUE
)
expect_error(
test.nosoiC <- nosoiSim(type="single", popStructure="none",
length=100,
max.infected=NA,
init.individuals=3,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,
t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit = list(pExit.param1=p_exit_param1)
),
"You must specify a maximum number of infected hosts (bigger than 1).",fixed=TRUE
)
expect_error(
test.nosoiC <- nosoiSim(type="single", popStructure="none",
length=100,
max.infected=100,
init.individuals=NA,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,
t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit = list(pExit.param1=p_exit_param1)
),
"The transmission chain should be started by 1 or more (integer) individuals.",fixed=TRUE
)
})
test_that("Error messages on MatrixSanityCheck", {
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Move_fct <- function(t){return(0.1)}
p_Exit_fct <- function(t,current.in){
if(current.in=="A"){return(0)}
if(current.in=="B"){return(0.5)}
if(current.in=="C"){return(1)}}
proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)
}
time_contact = function(t){round(rnorm(1, 3, 1), 0)}
transition.matrix = matrix(c(0,0.2,0.4,0.5,0,0.6,0.5,0.8,0),nrow = 3, ncol = 3,dimnames=list(c("A","B","C"),c("A","B","C")))
set.seed(805)
expect_error(
test.nosoiA <- nosoiSim(type="dual", popStructure="discrete",
length.sim=20,
max.infected.A=1000,
max.infected.B=1000,
init.individuals.A=1,
init.individuals.B=0,
init.structure.A="D",
init.structure.B=NA,
structure.matrix.A=transition.matrix,
structure.matrix.B=transition.matrix,
pExit.A=p_Exit_fct,
param.pExit.A=NA,
timeDep.pExit.A=FALSE,
diff.pExit.A=TRUE,
pMove.A=p_Move_fct,
param.pMove.A=NA,
timeDep.pMove.A=FALSE,
diff.pMove.A=FALSE,
nContact.A=time_contact,
param.nContact.A=NA,
timeDep.nContact.A=FALSE,
diff.nContact.A=FALSE,
pTrans.A=proba,
param.pTrans.A=list(p_max=p_max_fct,
t_incub=t_incub_fct),
timeDep.pTrans.A=FALSE,
diff.pTrans.A=FALSE,
prefix.host.A="H",
pExit.B=p_Exit_fct,
param.pExit.B=NA,
timeDep.pExit.B=FALSE,
diff.pExit.B=TRUE,
pMove.B=p_Move_fct,
param.pMove.B=NA,
timeDep.pMove.B=FALSE,
diff.pMove.B=FALSE,
nContact.B=time_contact,
param.nContact.B=NA,
timeDep.nContact.B=FALSE,
diff.nContact.B=FALSE,
pTrans.B=proba,
param.pTrans.B=list(p_max=p_max_fct,
t_incub=t_incub_fct),
timeDep.pTrans.B=FALSE,
diff.pTrans.B=FALSE,
prefix.host.B="V"),
"init.structure should be a state present in structure.matrix.")
})
test_that("Error messages on RasterSanityCheck", {
library(raster)
set.seed(860)
test.raster <- raster(nrows=100, ncols=100, xmn=-50, xmx=50, ymn=-50,ymx=50)
test.raster[] <- runif(10000, -80, 180)
test.raster <- focal(focal(test.raster, w=matrix(1, 5, 5), mean), w=matrix(1, 5, 5), mean)
bad.raster <- "raster"
t_incub_fct <- function(x){rnorm(x,mean = 5,sd=1)}
p_max_fct <- function(x){rbeta(x,shape1 = 5,shape2=2)}
p_Move_fct <- function(t){return(0.1)}
sdMove_fct = function(t,current.env.value){return(100/(current.env.value+1))}
p_Exit_fct <- function(t){return(0.08)}
proba <- function(t,p_max,t_incub){
if(t <= t_incub){p=0}
if(t >= t_incub){p=p_max}
return(p)
}
time_contact = function(t){round(rnorm(1, 3, 1), 0)}
start.pos <- c(0,0)
bad.start.pos <- c(100,100)
expect_error(nosoiSim(type="single", popStructure="continuous",
length=200,
max.infected=500,
init.individuals=1,
init.structure=start.pos,
structure.raster=bad.raster,
pMove=p_Move_fct,
param.pMove=NA,
diff.sdMove=TRUE,
sdMove=sdMove_fct,
param.sdMove=NA,
attracted.by.raster=TRUE,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,
t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA),
"structure.raster must be a raster (class RasterLayer).", fixed=TRUE)
expect_error(nosoiSim(type="single", popStructure="continuous",
length=200,
max.infected=500,
init.individuals=1,
init.structure=bad.start.pos,
structure.raster=test.raster,
pMove=p_Move_fct,
param.pMove=NA,
diff.sdMove=TRUE,
sdMove=sdMove_fct,
param.sdMove=NA,
attracted.by.raster=TRUE,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,
t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA),
"Your starting position (init.structure) should be on the raster.", fixed=TRUE)
set.seed(805)
expect_error(
nosoiSim(type="dual", popStructure="continuous",
length.sim=200,
max.infected.A=500,
max.infected.B=500,
init.individuals.A=1,
init.individuals.B=0,
init.structure.A=bad.start.pos,
init.structure.B=NA,
structure.raster.A=test.raster,
structure.raster.B=test.raster,
pExit.A=p_Exit_fct,
param.pExit.A=NA,
timeDep.pExit.A=FALSE,
diff.pExit.A=FALSE,
pMove.A=p_Move_fct,
param.pMove.A=NA,
timeDep.pMove.A=FALSE,
diff.pMove.A=FALSE,
diff.sdMove.A=TRUE,
sdMove.A=sdMove_fct,
param.sdMove.A=NA,
attracted.by.raster.A=TRUE,
nContact.A=time_contact,
param.nContact.A=NA,
timeDep.nContact.A=FALSE,
diff.nContact.A=FALSE,
pTrans.A=proba,
param.pTrans.A=list(p_max=p_max_fct,
t_incub=t_incub_fct),
timeDep.pTrans.A=FALSE,
diff.pTrans.A=FALSE,
prefix.host.A="H",
pExit.B=p_Exit_fct,
param.pExit.B=NA,
timeDep.pExit.B=FALSE,
diff.pExit.B=FALSE,
pMove.B=NA,
param.pMove.B=NA,
timeDep.pMove.B=FALSE,
diff.pMove.B=FALSE,
diff.sdMove.B=FALSE,
sdMove.B=NA,
param.sdMove.B=NA,
attracted.by.raster.B=FALSE,
nContact.B=time_contact,
param.nContact.B=NA,
timeDep.nContact.B=FALSE,
diff.nContact.B=FALSE,
pTrans.B=proba,
param.pTrans.B=list(p_max=p_max_fct,
t_incub=t_incub_fct),
timeDep.pTrans.B=FALSE,
diff.pTrans.B=FALSE,
prefix.host.B="V"),
"Your starting position (init.structure) should be on the raster.",fixed=TRUE)
expect_error(
test.nosoiA <- nosoiSim(type="single", popStructure="discrete",
length=100,
max.infected=200,
init.individuals=1,
init.structure="A",
structure.matrix=transition.matrix,
pMove=p_Move_fct,
param.pMove=NA,
diff.nContact=FALSE,
hostCount.nContact=TRUE,
nContact=time_contact,
param.nContact=NA,
pTrans = proba,
param.pTrans = list(p_max=p_max_fct,
t_incub=t_incub_fct),
pExit=p_Exit_fct,
param.pExit=NA
),
"diff.nContact should be TRUE to use hostCount.nContact.")
})
test_that("Error messages on drawBernouilli", {
test = data.frame(A=0.5,B=0.6,C=0.1)
expect_error(drawBernouilli(test),
"Function 'drawBernouilli' should be applied to a vector.")
}) |
sanity_check <- function(pkg = get_golem_wd()) {
all_R_files <- list.files(
path = pkg,
pattern = "\\.R$",
recursive = TRUE
)
to_find <- c("browser()", "
source_markers <- data.frame()
for (file_name in all_R_files) {
file <- readLines(file_name, warn = FALSE)
for (word in to_find) {
line_number <- grep(word, file, fixed = TRUE)
if (length(line_number) > 0) {
df <- data.frame(
type = "warning",
file = file_name,
line = line_number,
message = paste("Found", word, sep = " "),
column = 1
)
source_markers <- rbind.data.frame(source_markers, df)
}
}
}
if (length(source_markers) > 0) {
if (rstudioapi::isAvailable() & rstudioapi::hasFun("sourceMarkers")) {
rstudioapi::sourceMarkers("sanity_check", markers = source_markers)
}
return(source_markers)
} else {
cat_green_tick("Sanity check passed successfully.")
}
} |
`getKnotsBoundaries` <-
function(sgp.iter,
state,
sgp.iter.type="sgp.percentiles",
sgp.year.baseline=NULL) {
kb <- list()
getContent_Areas <- function(sgp.iter, type) {
if (!is.null(my.tmp <- SGP::SGPstateData[[state]][["SGP_Configuration"]][["content_area.projection.sequence"]])) {
tmp.content_areas <- unique(sgp.iter[[type]])
tmp.content_areas <- unique(unlist(my.tmp[unlist(lapply(my.tmp, function(x) any(tmp.content_areas %in% x)))]))
if (is.null(tmp.content_areas)) {
messageSGP(paste0("\n\tNOTE: Content Areas ", paste(unique(sgp.iter[[type]]), collapse=", "), " not in SGPstateData[['",state,"']][['SGP_Configuration']][['content_area.projection.sequence']].\n\t\t Knots and boundaries for only those Content Areas will be used."))
tmp.content_areas <- unique(sgp.iter[[type]])
}
return(tmp.content_areas)
} else {
return(unique(sgp.iter[[type]]))
}
}
if (sgp.iter.type=="sgp.percentiles") {
tmp.content_areas <- getContent_Areas(sgp.iter, 'sgp.content.areas')
}
if (sgp.iter.type=="sgp.percentiles.baseline") {
tmp.content_areas <- getContent_Areas(sgp.iter, 'sgp.baseline.content.areas')
}
if (sgp.iter.type=="sgp.projections") {
tmp.content_areas <- getContent_Areas(sgp.iter, 'sgp.projection.content.areas')
}
if (sgp.iter.type=="sgp.projections.lagged") {
tmp.content_areas <- getContent_Areas(sgp.iter, 'sgp.projection.content.areas')
}
if (sgp.iter.type=="sgp.projections.baseline") {
tmp.content_areas <- getContent_Areas(sgp.iter, 'sgp.projection.baseline.content.areas')
}
if (sgp.iter.type=="sgp.projections.lagged.baseline") {
tmp.content_areas <- getContent_Areas(sgp.iter, 'sgp.projection.baseline.content.areas')
}
if (sgp.iter.type=="sgp.percentiles") {
content_area.label <- tail(sgp.iter[["sgp.content.areas"]], 1)
if (!is.null(sgp.year.baseline)) tmp.year <- sgp.year.baseline else tmp.year <- tail(sgp.iter[["sgp.panel.years"]], 1)
}
if (sgp.iter.type=="sgp.percentiles.baseline") {
content_area.label <- tail(sgp.iter[["sgp.baseline.content.areas"]], 1)
if (!is.null(sgp.year.baseline)) tmp.year <- sgp.year.baseline else tmp.year <- tail(sgp.iter[["sgp.panel.years"]], 1)
}
if (sgp.iter.type=="sgp.projections") {
content_area.label <- tail(sgp.iter[["sgp.projection.content.areas"]], 1)
if (!is.null(sgp.year.baseline)) tmp.year <- sgp.year.baseline else tmp.year <- tail(sgp.iter[["sgp.projection.panel.years"]], 1)
}
if (sgp.iter.type=="sgp.projections.baseline") {
content_area.label <- tail(sgp.iter[["sgp.projection.baseline.content.areas"]], 1)
if (!is.null(sgp.year.baseline)) tmp.year <- sgp.year.baseline else tmp.year <- tail(sgp.iter[["sgp.projection.baseline.panel.years"]], 1)
}
if (sgp.iter.type=="sgp.projections.lagged") {
content_area.label <- tail(sgp.iter[["sgp.content.areas"]], 1)
if (!is.null(sgp.year.baseline)) tmp.year <- sgp.year.baseline else tmp.year <- tail(sgp.iter[["sgp.panel.years"]], 1)
}
if (sgp.iter.type=="sgp.projections.lagged.baseline") {
content_area.label <- tail(sgp.iter[["sgp.baseline.content.areas"]], 1)
if (!is.null(sgp.year.baseline)) tmp.year <- sgp.year.baseline else tmp.year <- tail(sgp.iter[["sgp.panel.years"]], 1)
}
for (j in tmp.content_areas) {
for (i in grep(j, names(SGP::SGPstateData[[state]][["Achievement"]][["Knots_Boundaries"]]), value=TRUE)) {
kb[["Knots_Boundaries"]][[paste(content_area.label, tmp.year, sep=".")]][[i]] <- SGP::SGPstateData[[state]][["Achievement"]][["Knots_Boundaries"]][[i]]
}
}
return(kb[["Knots_Boundaries"]])
} |
sym <- function(x) {
if (is_symbol(x)) {
return(x)
}
if (identical(x, "")) {
return(missing_arg())
}
if (!is_string(x)) {
abort_coercion(x, "a symbol")
}
.Call(ffi_symbol, x)
}
syms <- function(x) {
map(x, sym)
}
data_sym <- function(x) {
call("$", quote(.data), sym(x))
}
data_syms <- function(x) {
map(x, data_sym)
}
is_symbol <- function(x, name = NULL) {
if (typeof(x) != "symbol") {
return(FALSE)
}
if (is_null(name)) {
return(TRUE)
}
as_string(x) %in% name
}
as_string <- function(x) {
if (is_string(x)) {
attributes(x) <- NULL
return(x)
}
if (is_symbol(x)) {
return(.Call(ffi_sym_as_character, x))
}
abort_coercion(x, "a string")
}
namespace_sym <- quote(`::`)
namespace2_sym <- quote(`:::`)
dollar_sym <- quote(`$`)
dot_data_sym <- quote(.data)
dots_sym <- quote(...)
at_sym <- quote(`@`)
tilde_sym <- quote(`~`)
colon_equals_sym <- quote(`:=`)
brace_sym <- quote(`{`)
dots_sym <- quote(...)
function_sym <- quote(`function`)
dot_sym <- quote(.)
pipe_sym <- quote(`%>%`) |
getStatus = function(ids = NULL, reg = getDefaultRegistry()) {
assertRegistry(reg, sync = TRUE)
stats = getStatusTable(convertIds(reg, ids), reg = reg)
setClasses(stats, c("Status", class(stats)))
}
getStatusTable = function(ids = NULL, batch.ids = getBatchIds(reg = reg), reg = getDefaultRegistry()) {
submitted = started = done = error = status = NULL
stats = merge(filter(reg$status, ids), batch.ids, by = "batch.id", all.x = TRUE, all.y = FALSE, sort = FALSE)[, list(
defined = .N,
submitted = count(submitted),
started = sum(!is.na(started) | !is.na(status) & status == "running"),
done = count(done),
error = count(error),
queued = sum(status == "queued", na.rm = TRUE),
running = sum(status == "running", na.rm = TRUE),
expired = sum(!is.na(submitted) & is.na(done) & is.na(status))
)]
stats$done = stats$done - stats$error
stats$system = stats$queued + stats$running
return(stats)
}
print.Status = function(x, ...) {
fmt = sprintf(" %%-13s: %%%ii (%%5.1f%%%%)", stri_width(x$defined))
pr = function(label, h) catf(fmt, label, h, h / x$defined * 100)
catf("Status for %i jobs at %s:", x$defined, strftime(Sys.time()))
pr("Submitted", x$submitted)
pr("-- Queued", x$queued)
pr("-- Started", x$started)
pr("---- Running", x$running)
pr("---- Done", x$done)
pr("---- Error", x$error)
pr("---- Expired", x$expired)
} |
compIdent <- function(x, genome, target=NULL, debug=FALSE, mainLayer=NULL,
covLayer=NULL, out="plot")
{
if(is.null(target))
{
memo <- paste0("Argument not supplied to target, defaulting to",
" predefined identity SNPs from hg19 assembly!")
message(memo)
}
if(isTRUE(debug))
{
bams <- list(normal=GenVisR::HCC1395_N, tumor=GenVisR::HCC1395_T)
samplenames <- c('normal','tumor')
count_tables <- lapply(bams,
compIdent_bamRcnt,
genome=genome,
debug=debug,
target=target)
} else {
bams <- as.character(x$bamfile)
samplenames <- as.character(x$sample_name)
names(bams) <- samplenames
count_tables <- lapply(bams,
compIdent_bamRcnt,
genome=genome,
target=target)
}
count_tables <- compIdent_format(count_tables)
plot <- compIdent_buildMain(count_tables, mainLayer=mainLayer,
covLayer=covLayer)
output <- multi_selectOut(data=count_tables, plot=plot, draw=TRUE, out=out)
return(output)
} |
Enders_Siklos_2001 <- function(y,x,case=2,max_lags){
y = as.vector(y)
x = as.vector(x)
res = residuals(lm(y~x))
z=diff(res)
if(case==1){
gfz=embed(res,1)[,1]
}
if(case==2){
gfz=embed(res,2)[,2]
}
if(case==3){
gfz=embed(res,4)[,4]
}
say=99999999999999999999999999999
for(i in 1:max_lags){
model = setar(gfz,m=max_lags,model="MTAR",th=0,type="ADF",common="both", include = "none")
if (AIC(model)<say){
uygun_lag=i
say=AIC(model)
}
model = setar(gfz,m=uygun_lag,model="MTAR",th=0,type="ADF",common="both", include = "none")
}
p1 = linearHypothesis(model, c("phiL.1=0", "phiH.1=0"), test="F")
p2 = linearHypothesis(model, c("phiL.1=phiH.1"), test="F")
tval=p1[,"Chisq"][2]
tval2=p2[,"Chisq"][2]
my_list <- list("Model"=summary(model), "Selected Lag"=uygun_lag, "p1=p2=0 Statistic"=tval/2, "p1=p2 Statistic"=tval2, "p value"=p2[,"Pr(>Chisq)"][2])
return(my_list)
} |
magrittr::`%>%`
sjmisc::typical_value
performance::mse
performance::rmse
bayestestR::ci
bayestestR::equivalence_test
insight::link_inverse |
context("Test toolCountryFill")
test_that("toolCountryFill works as expected", {
x <- new.magpie("DEU",1994,"bla",0)
expect_message(y <- toolCountryFill(x,99), "toolCountryFill set missing values for IMPORTANT")
expect_equal(dim(y)[1], 249)
expect_true(y["DEU",,] == 0)
expect_true(all(y["DEU",,,invert=TRUE] == 99))
x2 <- new.magpie(c("DEU","XYZ"),1994,"bla",0)
expect_warning(y2 <- toolCountryFill(x2,99), "unknown country codes removed: XYZ")
expect_identical(y2,y)
expect_error(toolCountryFill(x,99, HKG="CHN"), "Try to fill a country")
expect_silent(suppressMessages(y3 <- toolCountryFill(x,99, FRA="DEU", verbosity = 2)))
expect_true(all(y3[c("DEU","FRA"),,] == 0))
y4 <- toolCountryFill(x,99, map = c(FRA = "DEU"), verbosity = 2)
expect_identical(y3,y4)
x3 <- new.magpie(c("DEU","FRA"),1994,"bla",0)
x3["FRA",,] <- 42
expect_true(toolCountryFill(x3,99, FRA = "DEU")["FRA",,] == 42)
expect_message(y5 <- toolCountryFill(x3,99, FRA="DEU", overwrite = TRUE), "data overwritten")
expect_true(y5["FRA",,] == 0)
}) |
PandocAll = function(intype="docx", outtype="html"){
FileList=list.files(pattern=paste0(".",intype))
for(i in FileList){
Outfile = sub(paste0(".", intype), paste0(".", outtype), i)
if(file.mtime(i) > file.mtime(Outfile)| !file.exists(Outfile)) {
shell(paste0('pandoc -s "', i, '" -o "', Outfile, '"'))
message(paste("File", i, "converted to", Outfile))
}
}
return(invisible(TRUE))
} |
horizFPCA <- function(warp_data,no,ci=c(-1,0,1),showplot = TRUE){
gam <- warp_data$gam
tmp = SqrtMean(gam)
vec = tmp$vec
mu = tmp$mu
no_pca = 1:no
K = cov(t(vec))
out = svd(K)
s = out$d
U = out$u
TT = nrow(vec) + 1
vm = rowMeans(vec)
gam_pca = array(0,dim=c(length(ci),length(mu)+1,no))
psi_pca = array(0,dim=c(length(ci),length(mu),no))
for (j in no_pca){
cnt = 1
for (k in ci){
v = ci*sqrt(s[j])*U[,j]
vn = pvecnorm(v,2)/sqrt(TT)
if (vn < 0.0001){
psi_pca[cnt,,j] = mu
}else{
psi_pca[cnt,,j] = cos(vn)*mu+sin(vn)*v/vn
}
tmp = rep(0,TT)
tmp[2:TT] = cumsum(psi_pca[cnt,,j]*psi_pca[cnt,,j])
gam_pca[cnt,,j] = (tmp-tmp[1]) / (tmp[length(tmp)] - tmp[1])
cnt = cnt + 1
}
}
N2 = dim(gam)[2]
c = matrix(0,N2,no)
for (k in no_pca){
for (i in 1:N2){
c[i,k] = sum((vec[,i]-vm)*U[,k])
}
}
hfpca = list()
hfpca$gam_pca = gam_pca
hfpca$psi_pca = psi_pca
hfpca$latent = s[no_pca]
hfpca$U = U[,no_pca]
hfpca$coef = c[,no_pca]
hfpca$vec = vec
hfpca$mu = mu
class(hfpca) <- "hfpca"
if (showplot){
plot(hfpca)
}
return(hfpca)
} |
options(width=140)
options(prompt=" ", continue=" ")
options(digits=4) |
context("add_mandatory_allocation_constraints")
test_that("compile (compressed formulation, multiple zones)", {
data(sim_pu_zones_stack, sim_features_zones)
p <- problem(sim_pu_zones_stack, sim_features_zones) %>%
add_min_set_objective() %>%
add_mandatory_allocation_constraints() %>%
add_manual_targets(tibble::tibble(feature = c("feature_1", "feature_2",
"feature_3"),
zone = list("zone_1", "zone_2",
c("zone_1", "zone_3")),
sense = c("<=", ">=", "="),
type = rep("absolute", 3),
target = c(4, 5, 6))) %>%
add_binary_decisions()
o <- compile(p)
n_pu <- length(sim_pu_raster[[1]][!is.na(sim_pu_raster)])
n_zone <- number_of_zones(sim_features_zones)
expect_equal(o$modelsense(), "min")
expect_equal(o$obj(), c(p$planning_unit_costs()))
expect_equal(o$sense(), c("<=", ">=", "=", rep("=", n_pu)))
expect_equal(o$rhs(), c(4, 5, 6, rep(1, n_pu)))
expect_equal(o$row_ids(), c(rep("spp_target", 3), rep("pu_zone", n_pu)))
expect_equal(o$col_ids(), rep("pu", n_pu * n_zone))
expect_true(all(o$lb() == 0))
expect_true(all(o$ub() == 1))
m <- matrix(0, nrow = 3 + n_pu, ncol = n_pu * n_zone)
m[1, seq_len(n_pu)] <- p$data$rij_matrix[[1]][1, ]
m[2, n_pu + seq_len(n_pu)] <- p$data$rij_matrix[[2]][2, ]
m[3, seq_len(n_pu)] <- p$data$rij_matrix[[1]][3, ]
m[3, (n_pu * 2) + seq_len(n_pu)] <- p$data$rij_matrix[[3]][3, ]
for (i in seq_len(n_pu))
m[3 + i, c(i, n_pu + i, n_pu + n_pu + i) ] <- 1
m <- as(m, "dgCMatrix")
expect_true(all(m == o$A()))
})
test_that("compile (expanded formulation, multiple zones)", {
data(sim_pu_zones_stack, sim_features_zones)
p <- problem(sim_pu_zones_stack, sim_features_zones) %>%
add_min_set_objective() %>%
add_mandatory_allocation_constraints() %>%
add_manual_targets(tibble::tibble(feature = c("feature_1", "feature_2",
"feature_3"),
zone = list("zone_1", "zone_2",
c("zone_1", "zone_3")),
sense = c("<=", ">=", "="),
type = rep("absolute", 3),
target = c(4, 5, 6))) %>%
add_binary_decisions()
o <- compile(p, FALSE)
n_pu <- length(sim_pu_raster[[1]][!is.na(sim_pu_raster)])
n_zone <- number_of_zones(sim_features_zones)
n_feature <- number_of_features(sim_features_zones)
expect_equal(o$modelsense(), "min")
expect_equal(o$obj(), c(c(p$planning_unit_costs()),
rep(0, n_pu * n_zone * n_feature)))
expect_equal(o$sense(), c(rep("<=", n_pu * n_zone * n_feature),
"<=", ">=", "=",
rep("=", n_pu)))
expect_equal(o$rhs(), c(rep(0, n_pu * n_zone * n_feature),
4, 5, 6, rep(1, n_pu)))
expect_equal(o$row_ids(), c(rep("pu_ijz", n_pu * n_zone * n_feature),
rep("spp_target", 3),
rep("pu_zone", n_pu)))
expect_equal(o$col_ids(), c(rep("pu", n_pu * n_zone),
rep("pu_ijz", n_pu * n_zone * n_feature)))
expect_true(all(o$lb() == 0))
expect_true(all(o$ub() == 1))
m <- matrix(0, nrow = n_pu * n_feature * n_zone + 3 + n_pu,
ncol = (n_pu * n_zone) + (n_pu * n_zone * n_feature))
r <- 0
for (z in seq_len(n_zone)) {
for (i in seq_len(n_feature)) {
for (j in seq_len(n_pu)) {
r <- r + 1
m[r, ((z - 1) * n_pu) + j] <- -1
m[r, (n_pu * n_zone) +
((z - 1) * n_pu * n_feature) +
((i - 1) * n_pu) +
j] <- 1
}
}
}
r <- r + 1
m[r, (n_pu * n_zone) + seq_len(n_pu)] <- p$data$rij_matrix[[1]][1, ]
r <- r + 1
m[r, (n_pu * n_zone) +
(1 * n_pu * n_feature) +
(1 * n_pu) +
seq_len(n_pu)] <- p$data$rij_matrix[[2]][2, ]
r <- r + 1
m[r, (n_pu * n_zone) +
(0 * n_pu * n_feature) +
(2 * n_pu) +
seq_len(n_pu)] <- p$data$rij_matrix[[1]][3, ]
m[r, (n_pu * n_zone) +
(2 * n_pu * n_feature) +
(2 * n_pu) +
seq_len(n_pu)] <- p$data$rij_matrix[[3]][3, ]
for (i in seq_len(n_pu))
m[r + i, c(i, n_pu + i, n_pu + n_pu + i)] <- 1
m <- as(m, "dgCMatrix")
expect_true(all(m == o$A()))
})
test_that("solve (compressed formulation, multiple zones)", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
costs <- raster::stack(
raster::raster(matrix(c(1, 2, NA, 3, 100, 100, NA), ncol = 7)),
raster::raster(matrix(c(10, 10, 10, 10, 4, 1, NA), ncol = 7)))
spp <- raster::stack(
raster::raster(matrix(c(1, 2, 0, 0, 0, 0, 0), ncol = 7)),
raster::raster(matrix(c(NA, 0, 1, 1, 0, 0, 0), ncol = 7)),
raster::raster(matrix(c(1, 0, 0, 0, 1, 0, 0), ncol = 7)),
raster::raster(matrix(c(0, 0, 0, 0, 0, 10, 0), ncol = 7)))
p <- problem(costs, zones(spp[[1:2]], spp[[3:4]])) %>%
add_min_set_objective() %>%
add_mandatory_allocation_constraints() %>%
add_absolute_targets(matrix(c(1, 1, 1, 0), nrow = 2, ncol = 2)) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0, verbose = FALSE)
s <- p %>% solve()
expect_is(s, "RasterStack")
expect_equal(raster::values(s[[1]]), c(1, 1, NA, 1, 0, 0, NA))
expect_equal(raster::values(s[[2]]), c(0, 0, 1, 0, 1, 1, NA))
})
test_that("solve (expanded formulation, multiple zones)", {
skip_on_cran()
skip_if_no_fast_solvers_installed()
costs <- raster::stack(
raster::raster(matrix(c(1, 2, NA, 3, 100, 100, NA), ncol = 7)),
raster::raster(matrix(c(10, 10, 10, 10, 4, 1, NA), ncol = 7)))
spp <- raster::stack(
raster::raster(matrix(c(1, 2, 0, 0, 0, 0, 0), ncol = 7)),
raster::raster(matrix(c(NA, 0, 1, 1, 0, 0, 0), ncol = 7)),
raster::raster(matrix(c(1, 0, 0, 0, 1, 0, 0), ncol = 7)),
raster::raster(matrix(c(0, 0, 0, 0, 0, 10, 0), ncol = 7)))
p <- problem(costs, zones(spp[[1:2]], spp[[3:4]])) %>%
add_min_set_objective() %>%
add_mandatory_allocation_constraints() %>%
add_absolute_targets(matrix(c(1, 1, 1, 0), nrow = 2, ncol = 2)) %>%
add_binary_decisions() %>%
add_default_solver(gap = 0, verbose = FALSE)
s <- p %>% solve(compressed_formulation = FALSE)
expect_is(s, "RasterStack")
expect_equal(raster::values(s[[1]]), c(1, 1, NA, 1, 0, 0, NA))
expect_equal(raster::values(s[[2]]), c(0, 0, 1, 0, 1, 1, NA))
})
test_that("throws error for problem with single zone", {
data(sim_pu_raster, sim_features)
expect_error(problem(sim_pu_raster, sim_features) %>%
add_mandatory_allocation_constraints())
}) |
add_meta <- function(meta,
nexml=new("nexml"),
level=c("nexml", "otus", "trees", "characters"),
namespaces = NULL,
i = 1,
at_id = NULL){
level <- match.arg(level)
if (is.null(meta))
stop("meta object to add is null, with no default")
if(!is.list(meta))
meta <- list(meta)
if(!all(sapply(meta, is, "meta")))
stop("All elements in list must be of class 'meta' or a subclass")
if(!is.null(at_id)){
stop("function does not yet handle at_id assignments")
} else if(level =="nexml"){
nexml@meta <- c(nexml@meta, meta)
} else if(level =="otus"){
nexml@otus[[i]]@meta <- c(nexml@otus[[i]]@meta, meta)
} else if(level == "trees"){
nexml@trees[[i]]@meta <- c(nexml@trees[[i]]@meta, meta)
} else if(level == "characters"){
nexml@characters[[i]]@meta <- c(nexml@characters[[i]]@meta, meta)
}
nexml <- add_namespaces(namespaces, nexml)
nexml
} |
rm(list = ls())
s <- search()[-1]
s <- s[-match(c("package:base", "package:stats", "package:graphics", "package:grDevices",
"package:utils", "package:datasets", "package:methods", "Autoloads"), s)]
if (length(s) > 0) sapply(s, detach, character.only = TRUE)
if (!file.exists("tables")) dir.create("tables")
if (!file.exists("figures")) dir.create("figures")
set.seed(290875)
options(prompt = "R> ", continue = "+ ",
width = 63,
show.signif.stars = FALSE,
SweaveHooks = list(leftpar = function()
par(mai = par("mai") * c(1, 1.05, 1, 1)),
bigleftpar = function()
par(mai = par("mai") * c(1, 1.7, 1, 1))))
HSAURpkg <- require("HSAUR3")
if (!HSAURpkg) stop("cannot load package ", sQuote("HSAUR3"))
rm(HSAURpkg)
a <- Sys.setlocale("LC_ALL", "C")
book <- TRUE
refs <- cbind(c("AItR", "DAGD", "SI", "CI", "ANOVA", "MLR", "GLM",
"DE", "RP", "GAM", "SA", "ALDI", "ALDII", "SIMC", "MA", "PCA",
"MDS", "CA"), 1:18)
ch <- function(x) {
ch <- refs[which(refs[,1] == x),]
if (book) {
return(paste("Chapter~\\\\ref{", ch[1], "}", sep = ""))
} else {
return(paste("Chapter~", ch[2], sep = ""))
}
}
if (file.exists("deparse.R"))
source("deparse.R")
setHook(packageEvent("lattice", "attach"), function(...) {
lattice.options(default.theme =
function()
standard.theme("pdf", color = FALSE))
})
book <- FALSE
library("wordcloud")
data("weightgain", package = "HSAUR3")
tapply(weightgain$weightgain,
list(weightgain$source, weightgain$type), mean)
tapply(weightgain$weightgain,
list(weightgain$source, weightgain$type), sd)
plot.design(weightgain)
wg_aov <- aov(weightgain ~ source * type, data = weightgain)
summary(wg_aov)
interaction.plot(weightgain$type, weightgain$source, weightgain$weightgain,
legend = FALSE)
legend(1.5, 95, legend = levels(weightgain$source), title = "weightgain$source",
lty = c(2,1), bty = "n")
coef(wg_aov)
options("contrasts")
coef(aov(weightgain ~ source + type + source:type,
data = weightgain, contrasts = list(source = contr.sum)))
data("foster", package = "HSAUR3")
plot.design(foster)
summary(aov(weight ~ litgen * motgen, data = foster))
summary(aov(weight ~ motgen * litgen, data = foster))
foster_aov <- aov(weight ~ litgen * motgen, data = foster)
foster_hsd <- TukeyHSD(foster_aov, "motgen")
foster_hsd
plot(foster_hsd)
data("water", package = "HSAUR3")
summary(manova(cbind(hardness, mortality) ~ location,
data = water), test = "Hotelling-Lawley")
tapply(water$hardness, water$location, mean)
tapply(water$mortality, water$location, mean)
data("skulls", package = "HSAUR3")
means <- aggregate(skulls[,c("mb", "bh", "bl", "nh")],
list(epoch = skulls$epoch), mean)
means
pairs(means[,-1],
panel = function(x, y) {
textplot(x, y, levels(skulls$epoch),
new = FALSE, cex = 0.8)
})
skulls_manova <- manova(cbind(mb, bh, bl, nh) ~ epoch,
data = skulls)
summary(skulls_manova, test = "Pillai")
summary(skulls_manova, test = "Wilks")
summary(skulls_manova, test = "Hotelling-Lawley")
summary(skulls_manova, test = "Roy")
summary.aov(skulls_manova)
summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
subset = epoch %in% c("c4000BC", "c3300BC")))
summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
subset = epoch %in% c("c4000BC", "c1850BC")))
summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
subset = epoch %in% c("c4000BC", "c200BC")))
summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
subset = epoch %in% c("c4000BC", "cAD150"))) |
test_that("plot", {
x <- rnorm(10)
x2 <- cbind(x, x)
expect_error(plotx(x), NA)
expect_error(plotx(x2), NA)
expect_error(plotx(x, main ="rnorm"), NA)
expect_error(plotx(x2, main ="rnorm"), NA)
expect_error(plotx(x, xlab ="nx"), "xlab is not available")
expect_error(plotx(x2, xlab ="nx"), "xlab is not available")
expect_error(plotx(x, ylab ="nx"), "ylab is not available")
expect_error(plotx(x2, ylab ="nx"), "ylab is not available")
}) |
fusePairs <- function(datPair,refDatNames=NULL,inclRepLst=FALSE,maxFuse=NULL,debug=FALSE,silent=TRUE,callFrom=NULL) {
fxNa <- .composeCallName(callFrom,newNa="fusePairs")
msg <- " 'datPair' should be matrix of 2 cols with paired rownames"
if(length(dim(datPair)) !=2) stop(msg) else if(ncol(datPair) <2) stop(msg)
if(!is.matrix(datPair)) datPair <- if(nrow(datPair) >1) as.matrix(datPair) else matrix(datPair,nrow=1,dimnames=dimnames(datPair))
if(is.null(maxFuse)) maxFuse <- nrow(datPair)+1 else {
if(!silent) message(fxNa," use of 'maxFuse' at ",maxFuse," may increase 'artificially' the number of groups/clusters")}
if(!is.null(refDatNames)) { chRef <- unique(as.character(datPair[,1:2])) %in% as.character(refDatNames)
if(sum(!chRef,na.rm=TRUE) >0) { if(!silent) message(fxNa,sum(!chRef,na.rm=TRUE)," names from 'datPair' missing in 'refDatNames', ignore")
refDatNames <- refDatNames } }
refDatNa <- if(is.null(refDatNames)) unique(as.character(datPair[,1:2])) else refDatNames
if(is.null(rownames(datPair))) rownames(datPair) <- 1:nrow(datPair)
nPt <- length(unique(as.character(datPair[,1:2])))
similDat <- list(which(refDatNa %in% datPair[1,1:2]))
if(nrow(datPair) >1) for(i in 2:nrow(datPair)) {
basTest <- datPair[i,1:2] %in% as.character(datPair[1:(i-1),1:2])
chPr <- sapply(similDat,function(x) sum(datPair[i,1:2] %in% refDatNa[x]))
if(debug) message(fxNa," basTest ",pasteC(basTest))
if(any(chPr >0) & length(similDat[[which.max(chPr)]]) < maxFuse) {
if(sum(basTest)==1){
similDat[[which.max(chPr)]] <- unique(sort(c(similDat[[which.max(chPr)]], which(refDatNa %in% datPair[i,1:2]))))
} else {
isMax <- which(chPr==max(chPr))
if(length(isMax) >1) {
if(debug) message(fxNa," iter no ",i," fuse clusters : max ",pasteC(isMax))
similDat[[isMax[1]]] <- unique(unlist(similDat[which(chPr==max(chPr))]))
similDat <- similDat[-isMax[2]]
} else if(debug) message(fxNa," iter no ",i," : loop, already fused")}
} else {
if(debug) message(fxNa," create new cluster no ",length(similDat)+1," for ",pasteC(which(refDatNa %in% datPair[i,1:2])))
similDat[[length(similDat)+1]] <- which(refDatNa %in% datPair[i,1:2])
} }
msg <- " trouble ahead, some elements are indexed more than 1x in 'similDat' !!!"
if(any(table(unlist(similDat)) >1) & maxFuse < nrow(datPair) & !silent) message(fxNa,msg)
out <- rep(1:length(similDat),sapply(similDat,length))
names(out) <- unlist(lapply(similDat,function(x) refDatNa[x]))
if(length(refDatNa) > length(unlist(similDat))) {
tmp <- refDatNa[which(!(refDatNa %in% as.character(as.matrix(datPair[,1:2]))))]
out2 <- (1:length(tmp)) +length(out)
names(out2) <- tmp
out <- c(out,out2) }
out <- out[order(convToNum(.trimFromStart(names(out)),remove=NULL,sciIncl=TRUE))]
if(inclRepLst) list(clu=out, repLst=similDat) else out }
.neigbDis <- function(x,asSum=TRUE) {
if(nrow(x) ==2) sqrt(sum(abs(x[1,]-x[2,]))) else {
x <- x[order(rowMeans(x)),]
out <- sqrt(rowSums((x[-nrow(x),]-x[-1,])^2,na.rm=TRUE))
if(asSum) sum(out,na.rm=TRUE) else out } }
.addDatCol <- function(mainDf,addVect,idCol=c("iniID","uniqID"),newNa=NULL,callFrom=NULL){
fxNa <- .composeCallName(callFrom,newNa=".addDatCol")
namesXY <- c(deparse(substitute(mainDf)),deparse(substitute(addVect)))
iniColNa <- colnames(mainDf)
naAddV <- if(length(dim(addVect)) >1) rownames(addVect) else names(addVect)
if(is.null(naAddV)) {
out <- cbind(mainDf,addVect)
} else {
if(identical(names(mainDf),naAddV)) out <- cbind(mainDf,addVect) else {
out <- merge(mainDf,data.frame(iniID=naAddV,addVect,stringsAsFactors=FALSE),by.x=idCol[1],by.y="iniID",all.x=TRUE)
if(all(is.na(out[,ncol(out)]),idCol[2] %in% colnames(mainDf))) {
out <- merge(mainDf,data.frame(uniqID=naAddV,addVect,stringsAsFactors=FALSE),by=idCol[2],all.x=TRUE)}
if(nrow(out) > nrow(mainDf) | all(is.na(out[,ncol(out)]))) if(length(addVect)==nrow(mainDf)) {
out <- cbind(mainDf,addVect)
out[,ncol(out)] <- as.character(out[,ncol(out)])
message(fxNa,"problem comparing names of '",namesXY[2],"' and '",namesXY[1],"', treat as if no names")
} else { message(fxNa," found no matches !!")}}
}
if(is.null(newNa))newNa <- namesXY[2]
if(length(dim(addVect)) >1) if(length(dim(addVect)) >1) newNa <- paste(newNa,1:ncol(addVect),sep=".")
if(any(newNa %in% colnames(mainDf))) message(fxNa,"NOTE : ",pasteC(newNa[which(newNa %in% colnames(mainDf))])," colnames will be repeated")
colnames(out)[(length(iniColNa)+1):ncol(out)] <- newNa
out }
|
NULL
methods::setClass("RapReliableOpts",
methods::representation(failure.multiplier = "numeric",
max.r.level = "integer"),
prototype = list(failure.multiplier = 1.1, max.r.level = 5L),
contains = "RapOpts",
validity = function(object) {
assertthat::assert_that(
assertthat::is.scalar([email protected]),
msg = "argument to failure.multiplier is not a scalar")
assertthat::assert_that(
is.finite([email protected]),
msg = "argument to failure.multiplier is NA or non-finite value")
assertthat::assert_that(
assertthat::is.scalar(object@BLM),
msg = "argument to BLM is not a scalar")
assertthat::assert_that(
is.finite(object@BLM),
msg = "argument to BLM is NA or non-finite value")
assertthat::assert_that(
is.integer([email protected]), length([email protected]) == 1,
msg = "argument to max.r.level is not a scalar integer")
assertthat::assert_that(
is.finite([email protected]),
msg = "argument to max.r.level is NA or non-finite value")
return(TRUE)
}
)
RapReliableOpts <- function(BLM = 0, failure.multiplier = 1.1,
max.r.level = 5L) {
ro <- methods::new("RapReliableOpts", BLM = BLM,
failure.multiplier = failure.multiplier,
max.r.level = max.r.level)
methods::validObject(ro, test= FALSE)
return(ro)
}
print.RapReliableOpts <- function(x, ..., header=TRUE) {
assertthat::assert_that(assertthat::is.flag(header))
if (header)
message("RapReliableOpts object.")
message(" BLM: ", x@BLM)
message(" failure.multiplier: ", [email protected])
message(" max.r.level: ", [email protected])
}
methods::setMethod("show", "RapReliableOpts",
function(object) print.RapReliableOpts(object))
update.RapReliableOpts <- function(object, BLM = NULL,
failure.multiplier = NULL,
max.r.level = NULL, ...) {
if (!is.null(BLM))
object@BLM <- BLM
if (!is.null(failure.multiplier))
[email protected] <- failure.multiplier
if (!is.null(max.r.level))
[email protected] <- max.r.level
methods::validObject(object, test = FALSE)
return(object)
} |
run.diff.exp <- function (x = NULL,
data.type = "main",
pval.test = "t.test",
p.adjust.method = "hochberg",
de.by = "clusters",
cond.1 = "array",
cond.2 = "array",
base.cond = 0) {
if ("iCellR" != class(x)[1]) {
stop("x should be an object of class iCellR")
}
if (data.type == "main") {
dat <- [email protected]
}
if (data.type == "imputed") {
dat <- [email protected]
}
DATA <- [email protected]
CondA = cond.1
CondB = cond.2
CondAnames = paste(CondA, collapse="_")
CondBnames = paste(CondB, collapse="_")
if (de.by == "clustBase.condComp") {
CondAnames = paste(CondA, collapse="_")
CondAnames = paste(CondAnames,"inClust",base.cond,sep=".")
CondBnames = paste(CondB, collapse="_")
CondBnames = paste(CondBnames,"inClust",base.cond,sep=".")
}
if (de.by == "condBase.clustComp") {
CondAnames = paste(CondA, collapse="_")
CondAnames = paste(CondAnames,"inCond",base.cond,sep=".")
CondBnames = paste(CondB, collapse="_")
CondBnames = paste(CondBnames,"inCond",base.cond,sep=".")
}
if (de.by == "conditions") {
col.legend <- data.frame(do.call('rbind', strsplit(as.character(rownames(DATA)),'_',fixed=TRUE)))[1]
conditions <- as.character(as.matrix(col.legend))
Table <- as.data.frame(cbind(DATA, conditions = conditions))
Cluster0 <- row.names(subset(Table, Table$conditions %in% CondA))
Cluster1 <- row.names(subset(Table, Table$conditions %in% CondB))
}
if (de.by == "clusters") {
if (is.null(DATA$clusters)) {
stop("Clusters are not assigend yet, please run assign.clust fisrt.")
} else {
Table=DATA
Cluster0 <- row.names(subset(Table, Table$clusters %in% CondA))
Cluster1 <- row.names(subset(Table, Table$clusters %in% CondB))
}
}
if (de.by == "clustBase.condComp") {
if (base.cond == 0) {
stop("You should choose a base cluster/clusters to compare the conditions in it/them")
}
my.base.cond = base.cond
col.legend <- data.frame(do.call('rbind', strsplit(as.character(rownames(DATA)),'_',fixed=TRUE)))[1]
conditions <- as.character(as.matrix(col.legend))
Table <- as.data.frame(cbind(DATA, conditions = conditions))
Table <- subset(Table, Table$clusters %in% my.base.cond)
Cluster0 <- row.names(subset(Table, Table$conditions %in% CondA))
Cluster1 <- row.names(subset(Table, Table$conditions %in% CondB))
}
if (de.by == "condBase.clustComp") {
if (base.cond == 0) {
stop("You should choose a base condition/conditions to compare the clusters in it/them")
}
my.base.cond = base.cond
col.legend <- data.frame(do.call('rbind', strsplit(as.character(rownames(DATA)),'_',fixed=TRUE)))[1]
conditions <- as.character(as.matrix(col.legend))
Table <- as.data.frame(cbind(DATA, conditions = conditions))
Table <- subset(Table, Table$conditions %in% my.base.cond)
Cluster0 <- row.names(subset(Table, Table$clusters %in% CondA))
Cluster1 <- row.names(subset(Table, Table$clusters %in% CondB))
}
cond1 <- dat[ , which(names(dat) %in% Cluster0)]
cond2 <- dat[ , which(names(dat) %in% Cluster1)]
mrgd <- cbind(cond1,cond2)
mrgd <- data.matrix(mrgd)
meansCond1 <- apply(cond1, 1, function(cond1) {mean(cond1)})
meansCond2 <- apply(cond2, 1, function(cond2) {mean(cond2)})
baseMean <- apply(mrgd, 1, function(mrgd) {mean(mrgd)})
FC <- meansCond2/meansCond1
FC.log2 <- log2(FC)
Cond1_Start <- 1
Cond1_End <- dim(cond1)[2]
Cond2_Start <- dim(cond1)[2] + 1
Cond2_End <- dim(cond1)[2] + dim(cond2)[2]
FiltData <- subset(FC.log2,FC.log2!="NaN")
mrgd <- subset(mrgd, row.names(mrgd) %in% row.names(as.data.frame(FiltData)))
if (pval.test == "t.test") {
Pval <- apply(mrgd, 1, function(mrgd) {
t.test(x = mrgd[Cond1_Start:Cond1_End], y = mrgd[Cond2_Start:Cond2_End])$p.value
})
}
if (pval.test == "wilcox.test") {
Pval <- apply(mrgd, 1, function(mrgd) {
wilcox.test(x = mrgd[Cond1_Start:Cond1_End], y = mrgd[Cond2_Start:Cond2_End])$p.value
})
}
FDR <- p.adjust(Pval, method = p.adjust.method)
Stats <- cbind(
baseMean = baseMean,
MeanCond1 = meansCond1,
MeanCond2 = meansCond2,
FC=FC,
FC.log2=FC.log2)
Stats1 <- cbind(
pval = Pval,
padj = FDR)
Stats <- as.data.frame(Stats)
Stats1 <- as.data.frame(Stats1)
mrgdall <- merge(Stats, Stats1, by="row.names")
row.names(mrgdall) <- mrgdall$Row.names
mrgdall <- mrgdall[,-1]
colnames(mrgdall) <- c("baseMean",CondAnames, CondBnames,"foldChange","log2FoldChange","pval","padj")
return(mrgdall)
} |
F23Fun<-function(df,model,m_nf){
data<-sapply(df,as.character)
dF23<-data[-1,which(data[1,]=="F23")];F23<-as.numeric(dF23[which(is.na(as.numeric(dF23))==FALSE)]);df<-as.data.frame(F23)
F3colname <- c("Model","Log_Max_likelihood_Value","AIC","mean[1]","mean[2]","mean[3]","mean[4]","mean[5]","mean[6]","mean[7]","mean[8]","mean[9]",
"Var[1]","Var[2]","Var[3]","Var[4]","Var[5]","Var[6]","Var[7]","Var[8]","Var[9]","Proportion[1]","Proportion[2]","Proportion[3]","Proportion[4]","Proportion[5]","Proportion[6]",
"Proportion[7]","Proportion[8]","Proportion[9]","m","da(d)","db","ha(h)","hb","i","jab","jba","l","Major-Gene Var","Heritability(Major-Gene)(%)",
"U1 square","P(U1 square)","U2 square","P(U2 square)","U3 square","P(U3 square)","nW square","P(nW square)","Dn","P(Dn)")
F3ModelFun<-list(NA)
F3ModelFun[[1]] <-function(K1,logL,df,m_nf){
data <- as.matrix(as.numeric(df[,1]))
m_sam <- dim(data)[1]; mean0 <- mean(data); sigma0 <- var(data)
m<-mean0
sigma<-sigma0
mix_pi <- 1
lp<-matrix(0,m_sam,1)
for(j in 1:m_sam){lp[j]<-log(dnorm(data[j],m,sqrt(sigma)))}
abc<-sum(lp)
AIC<--2*abc+2*2
data<-sort(data)
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1)
gg <- (data - m)/sqrt(as.vector(sigma))
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
nn <- dim(as.matrix(unique(bmw)))[1]
if(nn < m_sam){bmw <- bmw+runif(m_sam)/1e4}
dd<-c((sum(bmw)),(sum(bmw^2)),sum((bmw-0.5)^2))
w<-w1+sum((bmw - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u<- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D<-as.numeric(ks.test(bmw,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(w),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("0MG",round(abc,4),round(AIC,4),round(m,4)," "," "," "," "," "," "," "," ",round(sigma,4)," "," "," "," "," "," "," "," ",round(mix_pi,4)," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ",round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(w,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output)
return(OUTPUT)
}
F3ModelFun[[2]] <-function(K1,logL,df,m_nf){
data <- as.matrix(as.numeric(df[,1]))
m_sam <- dim(data)[1]; d2<- 3; m_esp <- 0.0001
mean0 <- mean(data);sigma0 <- var(data)
a1 <- sqrt(sigma0/m_sam)
m <- as.matrix(c((mean0+2*a1),mean0,(mean0-2*a1)))
mi <- as.matrix(c(0.25,0.5,0.25))
sigma <- matrix((sigma0/2),3,1)
L0 <- sum(log(dmixnorm(data,m,sqrt(sigma),mi)))
iteration <- 0; stopa <- 1000
WW <- matrix(0,3,m_sam); swx <- matrix(0,3,1); s0 <- matrix(0,2,1)
while(stopa > m_esp && iteration <= 1000){
iteration <- iteration + 1
for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(data,m[i],sqrt(sigma[i]))/dmixnorm(data,m,sqrt(sigma),mi) }
mix_pi <- as.matrix(rowSums(WW)/m_sam)
sumwx <- WW%*%data
n0 <- m_sam*mix_pi
n0[abs(n0)<0.000001] <- 0.000001
m <- sumwx/n0
hh1 <- matrix(c(1,1,1,1,0,-1,0,0.5,0),3,3)
b_line1 <- m; B1 <- solve(hh1,b_line1)
aa3<-(0.5*B1[2]^2+0.25*B1[3]^2)/m_nf
for(i in 1:d2) { swx[i] <- WW[i,]%*%(data-m[i])^2 }
s0[1]<-swx[1]+swx[3]
s0[2]<-n0[1]+n0[3]
aaa0<-sigma[1]
n_iter<-0
aa5<-1000
while(aa5>0.0001){
n_iter<-n_iter+1.0
aa4<-sigma[1]/(sigma[1]+aa3)
sigma[1]<-(s0[1]+aa4^2*swx[2])/(s0[2]+aa4*n0[2])
aa5<-abs(sigma[1]-aaa0)
aaa0<-sigma[1]
if(n_iter>20)break
}
sigma[2]<-sigma[1]+aa3
sigma[3]<-sigma[1]
L1 <- sum(log(dmixnorm(data,m,sqrt(sigma),mix_pi)))
stopa <- L1 - L0
L0 <- L1
if(stopa < 0) {stopa <- -stopa}
}
abc<-L0
AIC<--2*abc+2*5
jj <- sigma0 - sigma[1]
if(jj < 0) {jj <- 0}
ll <- jj/sigma0
data <- sort(data)
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1); bmwsl <- matrix(0,m_sam,d2)
for(i in 1:d2){
gg <- (data - m[i])/sqrt(sigma[i])
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
bmwsl[,i] <- bmw*mix_pi[i]
}
P2 <- rowSums(bmwsl)
nn <- dim(as.matrix(unique(P2)))[1]
if(nn < m_sam){P2 <- P2+runif(m_sam)/1e4}
dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2)))
WW2 <- 1/(12*m_sam) + sum((P2 - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u <- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D <- as.numeric(ks.test(P2,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("1MG-AD",round(abc,4),round(AIC,4),round(t(m),4)," "," "," "," "," "," ",round(t(sigma),4)," "," "," "," "," "," ",round(t(mix_pi),4)," "," "," "," "," "," ",round(B1[1],4),round(B1[2],4)," ",round(B1[3],4)," "," "," "," "," ",round(jj,4),round(ll*100,4),round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output,mi)
return(OUTPUT)
}
F3ModelFun[[3]] <-function(K1,logL,df,m_nf)
{
data <- as.matrix(as.numeric(as.numeric(df[,1])))
m_sam <- dim(data)[1]; d2 <- 3; m_esp <- 0.0001
mean0 <- mean(data);sigma0 <- var(data)
a1 <- sqrt(sigma0)
m <- as.matrix(c((mean0+2*a1),mean0,(mean0-2*a1)))
mi <- as.matrix(c(0.25,0.5,0.25))
sigma <- matrix((sigma0/2),3,1)
L0 <- sum(log(dmixnorm(data,m,sqrt(sigma),mi)))
iteration <- 0; stopa <- 1000
WW <- matrix(0,3,m_sam); swx <- matrix(0,3,1);s0 <- matrix(0,2,1)
while(stopa > m_esp && iteration <= 1000){
iteration <- iteration + 1
for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(data,m[i],sqrt(sigma[i]))/dmixnorm(data,m,sqrt(sigma),mi) }
mix_pi <- as.matrix(rowSums(WW)/m_sam)
sumwx <- WW%*%data
n0 <- m_sam*mix_pi
n0[abs(n0)<0.000001] <- 0.000001
aa1<-sigma[1]/n0[1]+4*sigma[2]/n0[2]+sigma[3]/n0[3]
aa2<-sumwx[1]/n0[1]-2.0*sumwx[2]/n0[2]+sumwx[3]/n0[3]
aa3<-aa2/aa1
m[1]<-(sumwx[1]-sigma[1]*aa3)/n0[1]
m[2]<-(sumwx[2]+sigma[1]*2*aa3)/n0[2]
m[3]<-(sumwx[3]-sigma[1]*aa3)/n0[3]
hh1 <- matrix(c(1,1,1,1,0,-1),3,2)
B1<-solve(crossprod(hh1,hh1))%*%crossprod(hh1,m)
aa3<-0.5*B1[2]^2/m_nf
for(i in 1:d2) { swx[i] <- WW[i,]%*%(data-m[i])^2 }
s0[1]<-swx[1]+swx[3]
s0[2]<-n0[1]+n0[3]
aaa0<-sigma[1]
n_iter<-0
aa5<-1000
while(aa5>0.0001){
n_iter<-n_iter+1.0
aa4<-sigma[1]/(sigma[1]+aa3)
sigma[1]<-(s0[1]+aa4^2*swx[2])/(s0[2]+aa4*n0[2])
aa5<-abs(sigma[1]-aaa0)
aaa0<-sigma[1]
if(n_iter>20)break
}
sigma[2]<-sigma[1]+aa3
sigma[3]<-sigma[1]
L1 <- sum(log(dmixnorm(data,m,sqrt(sigma),mix_pi)))
stopa <- L1 - L0
L0 <- L1
if(stopa < 0) {stopa <- -stopa}
}
abc<-L0
AIC<--2*abc+2*3
jj <- sigma0 - sigma[1]
if(jj < 0) {jj <- 0}
ll <- jj/sigma0
data <- sort(data)
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1); bmwsl <- matrix(0,m_sam,d2)
for(i in 1:d2){
gg <- (data - m[i])/sqrt(sigma[i])
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
bmwsl[,i] <- bmw*mix_pi[i]
}
P2 <- rowSums(bmwsl)
nn <- dim(as.matrix(unique(P2)))[1]
if(nn < m_sam){P2 <- P2+runif(m_sam)/1e4}
dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2)))
WW2 <- 1/(12*m_sam) + sum((P2 - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u <- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D <- as.numeric(ks.test(P2,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("1MG-A",round(abc,4),round(AIC,4),round(t(m),4)," "," "," "," "," "," ",round(t(sigma),4)," "," "," "," "," "," ",round(t(mix_pi),4)," "," "," "," "," "," ",round(B1[1],4),round(B1[2],4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4),round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output,mi)
return(OUTPUT)
}
F3ModelFun[[4]] <-function(K1,logL,df,m_nf){
data <- as.matrix(as.numeric(as.numeric(df[,1])))
m_sam <- dim(data)[1]; d2 <- 3; m_esp <- 0.0001
mean0 <- mean(data);sigma0 <- var(data)
a1 <- sqrt(sigma0/m_sam)
m <- as.matrix(c((mean0+2*a1),mean0,(mean0-2*a1)))
mi <- as.matrix(c(0.25,0.5,0.25))
sigma <- matrix((sigma0/2),3,1)
L0 <- sum(log(dmixnorm(data,m,sqrt(sigma),mi)))
iteration <- 0; stopa <- 1000
WW <- matrix(0,3,m_sam); swx <- matrix(0,3,1);s0 <- matrix(0,2,1)
while(stopa > m_esp && iteration <= 1000){
iteration <- iteration + 1
for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(data,m[i],sqrt(sigma[i]))/dmixnorm(data,m,sqrt(sigma),mi) }
mix_pi <- as.matrix(rowSums(WW)/m_sam)
sumwx <- WW%*%data
n0 <- m_sam*mix_pi
n0[abs(n0)<0.000001] <- 0.000001
aa1<-3*sumwx[1]/n0[1]-4*sumwx[2]/n0[2]+sumwx[3]/n0[3]
aa2<-9*sigma[1]/n0[1]+16*sigma[2]/n0[2]+sigma[3]/n0[3]
aa3<-aa1/aa2
m[1]<-(sumwx[1]-sigma[1]*3*aa3)/n0[1]
m[2]<-(sumwx[2]+sigma[2]*4*aa3)/n0[2]
m[3]<-(sumwx[3]-sigma[3]*aa3)/n0[3]
hh1 <- matrix(c(1,1,1,1,0.5,-1),3,2)
B1<-solve(crossprod(hh1,hh1))%*%crossprod(hh1,m)
aa3<-0.75*B1[2]^2/m_nf
for(i in 1:d2) { swx[i] <- WW[i,]%*%(data-m[i])^2 }
s0[1]<-swx[1]+swx[3]
s0[2]<-n0[1]+n0[3]
aaa0<-sigma[1]
n_iter<-0
aa5<-1000
while(aa5>0.0001){
n_iter<-n_iter+1.0
aa4<-sigma[1]/(sigma[1]+aa3)
sigma[1]<-(s0[1]+aa4^2*swx[2])/(s0[2]+aa4*n0[2])
aa5<-abs(sigma[1]-aaa0)
aaa0<-sigma[1]
if(n_iter>20)break
}
sigma[2]<-sigma[1]+aa3
sigma[3]<-sigma[1]
L1 <- sum(log(dmixnorm(data,m,sqrt(sigma),mix_pi)))
stopa <- L1 - L0
L0 <- L1
if(stopa < 0) {stopa <- -stopa}
}
abc<-L0
AIC<--2*abc+2*4
jj <- sigma0 - sigma[1]
if(jj < 0) {jj <- 0}
ll <- jj/sigma0
data <- sort(data);
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1); bmwsl <- matrix(0,m_sam,d2)
for(i in 1:d2){
gg <- (data - m[i])/sqrt(sigma[i])
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
bmwsl[,i] <- bmw*mix_pi[i]
}
P2 <- rowSums(bmwsl)
nn <- dim(as.matrix(unique(P2)))[1]
if(nn < m_sam){P2 <- P2+runif(m_sam)/1e4}
dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2)))
WW2 <- 1/(12*m_sam) + sum((P2 - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u <- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D <- as.numeric(ks.test(P2,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("1MG-EAD",round(abc,4),round(AIC,4),round(t(m),4)," "," "," "," "," "," ",round(t(sigma),4)," "," "," "," "," "," ",round(t(mix_pi),4)," "," "," "," "," "," ",round(B1[1],4),round(B1[2],4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4),round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output,mi)
return(OUTPUT)
}
F3ModelFun[[5]] <-function(K1,logL,df,m_nf){
data <- as.matrix(as.numeric(as.numeric(df[,1])))
m_sam <- dim(data)[1]; d2 <- 3; m_esp <- 0.0001
mean0 <- mean(data);sigma0 <- var(data)
a1 <- sqrt(sigma0/m_sam)
m <- as.matrix(c((mean0+2*a1),mean0,(mean0-2*a1)))
mi <- as.matrix(c(0.25,0.5,0.25))
sigma <- matrix((sigma0/2),3,1)
L0 <- sum(log(dmixnorm(data,m,sqrt(sigma),mi)))
iteration <- 0; stopa <- 1000
WW <- matrix(0,3,m_sam); swx <- matrix(0,3,1); s0 <- matrix(0,2,1)
while(stopa > m_esp && iteration <= 1000){
iteration <- iteration + 1
for(i in 1:d2) { WW[i,] <- mi[i]*dnorm(data,m[i],sqrt(sigma[i]))/dmixnorm(data,m,sqrt(sigma),mi) }
mix_pi <- as.matrix(rowSums(WW)/m_sam)
sumwx <- WW%*%data
n0 <- m_sam*mix_pi
n0[abs(n0)<0.000001] <- 0.000001
aa1<-sumwx[1]/n0[1]-4.0*sumwx[2]/n0[2]+3.0*sumwx[3]/n0[3]
aa2<-sigma[1]/n0[1]+16.0*sigma[2]/n0[2]+9.0*sigma[3]/n0[3]
aa3<-aa1/aa2
m[1]<-(sumwx[1]-sigma[1]*aa3)/n0[1]
m[2]<-(sumwx[2]+sigma[2]*aa3*4.0)/n0[2]
m[3]<-(sumwx[3]-sigma[3]*aa3*3.0)/n0[3]
hh1 <- matrix(c(1,1,1,1,-0.5,-1),3,2)
B1<-solve(crossprod(hh1,hh1))%*%crossprod(hh1,m)
aa3<-0.75*B1[2]^2/m_nf
for(i in 1:d2) { swx[i] <- WW[i,]%*%(data-m[i])^2 }
s0[1]<-swx[1]+swx[3]
s0[2]<-n0[1]+n0[3]
aaa0<-sigma[1]
n_iter<-0
aa5<-1000
while(aa5>0.0001){
n_iter<-n_iter+1.0
aa4<-sigma[1]/(sigma[1]+aa3)
sigma[1]<-(s0[1]+aa4^2*swx[2])/(s0[2]+aa4*n0[2])
aa5<-abs(sigma[1]-aaa0)
aaa0<-sigma[1]
if(n_iter>20)break
}
sigma[2]<-sigma[1]+aa3
sigma[3]<-sigma[1]
L1 <- sum(log(dmixnorm(data,m,sqrt(sigma),mix_pi)))
stopa <- L1 - L0
L0 <- L1
if(stopa < 0) {stopa <- -stopa}
}
abc<-L0
AIC<--2*abc+2*4
jj <- sigma0 - sigma[1]
if(jj < 0) {jj <- 0}
ll <- jj/sigma0
data <- sort(data)
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1); bmwsl <- matrix(0,m_sam,d2)
for(i in 1:d2){
gg <- (data - m[i])/sqrt(sigma[i])
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
bmwsl[,i] <- bmw*mix_pi[i]
}
P2 <- rowSums(bmwsl)
nn <- dim(as.matrix(unique(P2)))[1]
if(nn < m_sam){P2 <- P2+runif(m_sam)/1e4}
dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2)))
WW2 <- 1/(12*m_sam) + sum((P2 - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u <- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D <- as.numeric(ks.test(P2,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("1MG-NCD",round(abc,4),round(AIC,4),round(t(m),4)," "," "," "," "," "," ",round(t(sigma),4)," "," "," "," "," "," ",round(t(mix_pi),4)," "," "," "," "," "," ",round(B1[1],4),round(B1[2],4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4),round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output,mi)
return(OUTPUT)
}
F3ModelFun[[6]] <-function(K1,logL,df,m_nf){
data <- as.matrix(as.numeric(as.numeric(df[,1])))
m_sam <- dim(data)[1]; d4 <- 9; m_esp <- 0.0001
mean0 <- mean(data);sigma0 <- var(data)
a1 <- sqrt(sigma0)
sigma <- matrix((sigma0/2),9,1)
m <- as.matrix(c((mean0+3.2*a1),(mean0+2.4*a1),(mean0+1.6*a1),(mean0+0.8*a1),mean0,
(mean0-0.8*a1),(mean0-1.6*a1),(mean0-2.4*a1),(mean0-3.2*a1)))
mi <- as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625))
L0 <- sum(log(dmixnorm(data,m,sqrt(sigma),mi)))
iteration <- 0; stopa <- 1000
WW <- matrix(0,9,m_sam); swx <- matrix(0,9,1);g_a<-matrix(0,5,1);s0 <- matrix(0,2,1)
while(stopa > m_esp && iteration <= 1000){
iteration <- iteration + 1
for(i in 1:d4) { WW[i,] <- mi[i]*dnorm(data,m[i],sqrt(sigma[i]))/dmixnorm(data,m,sqrt(sigma),mi) }
mix_pi <- as.matrix(rowSums(WW)/m_sam)
sumwx <- WW%*%data
n0 <- m_sam*mix_pi
n0[abs(n0)<0.000001] <- 0.000001
m<-sumwx/n0
hh5 <- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,-1,-1,-1,1,0,-1,1,0,-1,1,0,-1,0,0,0,0.5,0.5,0.5,0,0,0,
0,0.5,0,0,0.5,0,0,0.5,0,1,0,-1,0,0,0,-1,0,1,0,0.5,0,0,0,0,0,-0.5,0,0,0,0,0.5,0,-0.5,0,
0,0,0,0,0,0,0.25,0,0,0,0),9,9)
b_line5 <- m; B5 <- solve(hh5,b_line5)
g_a[1]<-(0.5*(B5[3]+B5[6])^2+0.25*(B5[5]+B5[7])^2)/m_nf
g_a[2]<-(0.5*(B5[2]+B5[6])^2+0.25*(B5[4]+B5[8])^2)/m_nf
g_a[3]<-(0.5*(B5[2]-B5[6])^2+0.25*(B5[4]-B5[8])^2)/m_nf
g_a[4]<-(0.5*(B5[3]-B5[6])^2+0.25*(B5[5]-B5[7])^2)/m_nf
g_a[5]<-0.25*(B5[2]^2+B5[3]^2+B5[6]^2+(B5[2]+B5[7])^2+(B5[3]+B5[8])^2+(B5[4]+0.5*B5[9])^2+(B5[5]+0.5*B5[9])^2+0.25*B5[9]^2)/m_nf
for(i in 1:d4) { swx[i] <- WW[i,]%*%(data-m[i])^2 }
s0[1]<-swx[1]+swx[3]+swx[7]+swx[9]
s0[2]<-n0[1]+n0[3]+n0[7]+n0[9]
aaa0<-sigma[1]
n_iter<-0
aa6<-1000
while(aa6>0.0001){
n_iter<-n_iter+1
aa1<-sigma[1]/(sigma[1]+g_a[1]);aa2<-sigma[1]/(sigma[1]+g_a[2])
aa3<-sigma[1]/(sigma[1]+g_a[3]);aa4<-sigma[1]/(sigma[1]+g_a[4])
aa5<-sigma[1]/(sigma[1]+g_a[5])
sigma[1]<-(s0[1]+aa1^2*swx[2]+aa2^2*swx[4]+aa5^2*swx[5]+aa3^2*swx[6]+aa4^2*swx[8])/(s0[2]+aa1*n0[2]+aa2*n0[4]+aa5*n0[5]+aa3*n0[6]+aa4*n0[8])
aa6<-abs(sigma[1]-aaa0)
aaa0<-sigma[1]
if(n_iter>20)break
}
sigma[3]<-sigma[1];sigma[7]<-sigma[1];sigma[9]<-sigma[1]
sigma[2]<-sigma[1]+g_a[1];sigma[4]<-sigma[1]+g_a[2];sigma[5]<-sigma[1]+g_a[5]
sigma[6]<-sigma[1]+g_a[3];sigma[8]<-sigma[1]+g_a[4]
L1 <- sum(log(dmixnorm(data,m,sqrt(sigma),mix_pi)))
stopa <- L1 - L0
L0 <- L1
if(stopa < 0) {stopa <- -stopa}
if(iteration>1000)break
}
abc<-L0
AIC<--2*abc+2*10
jj <- sigma0 - sigma[1]
if(jj < 0) {jj <- 0}
ll <- jj/sigma0
data <- sort(data)
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1); bmwsl <- matrix(0,m_sam,d4)
for(i in 1:d4){
gg <- (data - m[i])/sqrt(sigma[i])
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
bmwsl[,i] <- bmw*mix_pi[i]
}
P2 <- rowSums(bmwsl)
nn <- dim(as.matrix(unique(P2)))[1]
if(nn < m_sam){P2 <- P2+runif(m_sam)/1e4}
dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2)))
WW2 <- 1/(12*m_sam) + sum((P2 - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u <- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D <- as.numeric(ks.test(P2,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("2MG-ADI",round(abc,4),round(AIC,4),round(t(m),4),round(t(sigma),4),round(t(mix_pi),4),round(t(B5),4),round(jj,4),round(ll*100,4),round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output,mi)
return(OUTPUT)
}
F3ModelFun[[7]] <-function(K1,logL,df,m_nf){
data <- as.matrix(as.numeric(as.numeric(df[,1])))
m_sam <- dim(data)[1]; d4 <- 9; m_esp <- 0.0001
mean0 <- mean(data);sigma0 <- var(data)
a1 <- sqrt(sigma0)
sigma <- matrix((sigma0/2),9,1)
m <- as.matrix(c((mean0+3.2*a1),(mean0+2.4*a1),(mean0+1.6*a1),(mean0+0.8*a1),mean0,(mean0-0.8*a1),(mean0-1.6*a1),(mean0-2.4*a1),(mean0-3.2*a1)))
mi <- as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625))
L0 <- sum(log(dmixnorm(data,m,sqrt(sigma),mi)))
iteration <- 0; stopa <- 1000
WW <- matrix(0,9,m_sam); swx <- matrix(0,9,1); hh <- matrix(0,4,4); b_line <- matrix(0,4,1)
g_a<-matrix(0,3,1);s0 <- matrix(0,2,1)
while(stopa > m_esp && iteration <= 1000){
iteration <- iteration + 1
for(i in 1:d4) { WW[i,] <- mi[i]*dnorm(data,m[i],sqrt(sigma[i]))/dmixnorm(data,m,sqrt(sigma),mi) }
mix_pi <- as.matrix(rowSums(WW)/m_sam)
sumwx <- WW%*%data
n0 <- m_sam*mix_pi
n0[abs(n0)<0.000001] <- 0.000001
hh[1,1]<-sigma[1]/n0[1]+sigma[3]/n0[3]+sigma[7]/n0[7]+sigma[9]/n0[9]
hh[1,2]<-sigma[1]/n0[1]+sigma[7]/n0[7]
hh[1,3]<-sigma[1]/n0[1]+sigma[3]/n0[3]
hh[1,4]<-sigma[7]/n0[7]-sigma[9]/n0[9]
hh[2,2]<-sigma[1]/n0[1]+sigma[2]/n0[2]+sigma[7]/n0[7]+sigma[8]/n0[8]
hh[2,3]<-sigma[1]/n0[1]
hh[2,4]<-sigma[7]/n0[7]+2.0*sigma[8]/n0[8]
hh[3,3]<-sigma[1]/n0[1]+sigma[3]/n0[3]+sigma[4]/n0[4]+sigma[6]/n0[6]
hh[3,4]<--sigma[4]/n0[4]+sigma[6]/n0[6]
hh[4,4]<-sigma[4]/n0[4]+4.0*sigma[5]/n0[5]+sigma[6]/n0[6]+sigma[7]/n0[7]+4.0*sigma[8]/n0[8]+sigma[9]/n0[9]
for(i in 2:4)
{
for(j in 1:(i-1))
{
hh[i,j]<-hh[j,i]
}
}
b_line[1]<-sumwx[1]/n0[1]-sumwx[3]/n0[3]-sumwx[7]/n0[7]+sumwx[9]/n0[9]
b_line[2]<-sumwx[1]/n0[1]-sumwx[2]/n0[2]-sumwx[7]/n0[7]+sumwx[8]/n0[8]
b_line[3]<-sumwx[1]/n0[1]-sumwx[3]/n0[3]-sumwx[4]/n0[4]+sumwx[6]/n0[6]
b_line[4]<-sumwx[4]/n0[4]-2.0*sumwx[5]/n0[5]+sumwx[6]/n0[6]-sumwx[7]/n0[7]+2.0*sumwx[8]/n0[8]-sumwx[9]/n0[9]
B6<- solve(hh,b_line)
m[1]<-(sumwx[1]-sigma[1]*(B6[1]+B6[2]+B6[3]))/n0[1]
m[2]<-(sumwx[2]+sigma[2]*B6[2])/n0[2]
m[3]<-(sumwx[3]+sigma[3]*(B6[1]+B6[3]))/n0[3]
m[4]<-(sumwx[4]+sigma[4]*(B6[3]-B6[4]))/n0[4]
m[5]<-(sumwx[5]+sigma[5]*2*B6[4])/n0[5]
m[6]<-(sumwx[6]-sigma[6]*(B6[3]+B6[4]))/n0[6]
m[7]<-(sumwx[7]+sigma[7]*(B6[1]+B6[2]+B6[4]))/n0[7]
m[8]<-(sumwx[8]-sigma[8]*(B6[2]+2*B6[4]))/n0[8]
m[9]<-(sumwx[9]-sigma[9]*(B6[1]-B6[4]))/n0[9]
hh61 <- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,-1,-1,-1,1,0,-1,1,0,-1,1,0,-1,
0,0,0,0.5,0.5,0.5,0,0,0,0,0.5,0,0,0.5,0,0,0.5,0),9,5)
B61<-solve(crossprod(hh61,hh61))%*%crossprod(hh61,m)
g_a[1]<-(0.5*B61[3]^2+0.25*B61[5]^2)/m_nf
g_a[2]<-(0.5*B61[2]^2+0.25*B61[4]^2)/m_nf
g_a[3]<-(0.5*(B61[2]^2+B61[3]^2)+0.25*(B61[4]^2+B61[5]^2))/m_nf
for(i in 1:d4) { swx[i] <- WW[i,]%*%(data-m[i])^2 }
s0[1]<-swx[1]+swx[3]+swx[7]+swx[9]
s0[2]<-n0[1]+n0[3]+n0[7]+n0[9]
aaa0<-sigma[1]
n_iter<-0
aa6<-1000
while(aa6>0.0001){
n_iter<-n_iter+1
aa1<-sigma[1]/(sigma[1]+g_a[1])
aa2<-sigma[1]/(sigma[1]+g_a[2])
aa3<-sigma[1]/(sigma[1]+g_a[3])
sigma[1]<-(s0[1]+aa1^2*(swx[2]+swx[8])+aa2^2*(swx[4]+swx[6])+aa3^2*swx[5])/(s0[2]+aa1*(n0[2]+n0[8])+aa2*(n0[4]+n0[6])+aa3*n0[5])
aa6<-abs(sigma[1]-aaa0)
aaa0<-sigma[1]
if(n_iter>20)break
}
sigma[3]<-sigma[1];sigma[7]<-sigma[1];sigma[9]<-sigma[1]
sigma[2]<-sigma[1]+g_a[1];sigma[4]<-sigma[1]+g_a[2]
sigma[5]<-sigma[1]+g_a[3];sigma[6]<-sigma[1]+g_a[2];sigma[8]<-sigma[1]+g_a[1]
L1 <- sum(log(dmixnorm(data,m,sqrt(sigma),mix_pi)))
stopa <- L1 - L0
L0 <- L1
if(stopa < 0) {stopa <- -stopa}
}
abc<-L0
AIC<--2*abc+2*6
jj <- sigma0 - sigma[1]
if(jj < 0) {jj <- 0}
ll <- jj/sigma0
data <- sort(data)
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1); bmwsl <- matrix(0,m_sam,d4)
for(i in 1:d4){
gg <- (data - m[i])/sqrt(sigma[i])
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
bmwsl[,i] <- bmw*mix_pi[i]
}
P2 <- rowSums(bmwsl)
nn <- dim(as.matrix(unique(P2)))[1]
if(nn < m_sam){P2 <- P2+runif(m_sam)/1e4}
dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2)))
WW2 <- 1/(12*m_sam) + sum((P2 - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u <- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D <- as.numeric(ks.test(P2,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("2MG-AD",round(abc,4),round(AIC,4),round(t(m),4),round(t(sigma),4),round(t(mix_pi),4),round(t(B61),4)," "," "," "," ",round(jj,4),round(ll*100,4),round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output,mi)
return(OUTPUT)
}
F3ModelFun[[8]] <-function(K1,logL,df,m_nf){
data <- as.matrix(as.numeric(as.numeric(df[,1])))
m_sam <- dim(data)[1]; d4 <- 9; m_esp <- 0.0001
mean0 <- mean(data);sigma0 <- var(data)
a1 <- sqrt(sigma0)
sigma <- matrix((sigma0/2),9,1)
m <- as.matrix(c((mean0+3.2*a1),(mean0+2.4*a1),(mean0+1.6*a1),(mean0+0.8*a1),mean0,(mean0-0.8*a1),(mean0-1.6*a1),(mean0-2.4*a1),(mean0-3.2*a1)))
mi <- as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625))
L0 <- sum(log(dmixnorm(data,m,sqrt(sigma),mi)))
iteration <- 0; stopa <- 1000
WW <- matrix(0,9,m_sam); swx <- matrix(0,9,1); hh <- matrix(0,6,6); b_line <- matrix(0,6,1)
g_a<-matrix(0,3,1); s0 <- matrix(0,2,1)
while(stopa > m_esp && iteration <= 1000){
iteration <- iteration + 1
for(i in 1:d4) { WW[i,] <- mi[i]*dnorm(data,m[i],sqrt(sigma[i]))/dmixnorm(data,m,sqrt(sigma),mi) }
mix_pi <- as.matrix(rowSums(WW)/m_sam)
sumwx <- WW%*%data
n0 <- m_sam*mix_pi
n0[abs(n0)<0.000001] <- 0.000001
hh[1,1]<-sigma[1]/n0[1]+sigma[3]/n0[3]+sigma[7]/n0[7]+sigma[9]/n0[9]
hh[1,2]<-sigma[1]/n0[1]+sigma[7]/n0[7]
hh[1,3]<--sigma[3]/n0[3]-sigma[7]/n0[7]
hh[1,4]<-2.0*sigma[3]/n0[3]
hh[1,5]<--sigma[7]/n0[7]+sigma[9]/n0[9]
hh[1,6]<-sigma[1]/n0[1]-sigma[7]/n0[7]
hh[2,2]<-sigma[1]/n0[1]+sigma[2]/n0[2]+sigma[7]/n0[7]+sigma[8]/n0[8]
hh[2,3]<--sigma[7]/n0[7]
hh[2,4]<--2.0*sigma[2]/n0[2]
hh[2,5]<--sigma[7]/n0[7]-2.0*sigma[8]/n0[8]
hh[2,6]<-hh[1,6]
hh[3,3]<-sigma[3]/n0[3]+4.0*sigma[5]/n0[5]+sigma[7]/n0[7]
hh[3,4]<--2.0*sigma[3]/n0[3]
hh[3,5]<-sigma[7]/n0[7]
hh[3,6]<-hh[3,5]
hh[4,4]<-4.0*sigma[2]/n0[2]+4.0*sigma[3]/n0[3]+sigma[4]/n0[4]+sigma[6]/n0[6]
hh[4,5]<-0
hh[4,6]<-2.0*sigma[4]/n0[4]
hh[5,5]<-sigma[7]/n0[7]+4.0*sigma[8]/n0[8]+sigma[9]/n0[9]
hh[5,6]<-hh[3,5]
hh[6,6]<-sigma[1]/n0[1]+4.0*sigma[4]/n0[4]+sigma[7]/n0[7]
for(i in 2:6)
{
for(j in 1:(i-1))
{
hh[i,j]<-hh[j,i]
}
}
b_line[1]<-sumwx[1]/n0[1]-sumwx[3]/n0[3]-sumwx[7]/n0[7]+sumwx[9]/n0[9]
b_line[2]<-sumwx[1]/n0[1]-sumwx[2]/n0[2]-sumwx[7]/n0[7]+sumwx[8]/n0[8]
b_line[3]<-sumwx[3]/n0[3]-2*sumwx[5]/n0[5]+sumwx[7]/n0[7]
b_line[4]<-2*sumwx[2]/n0[2]-2*sumwx[3]/n0[3]-sumwx[4]/n0[4]+sumwx[6]/n0[6]
b_line[5]<-sumwx[7]/n0[7]-2*sumwx[8]/n0[8]+sumwx[9]/n0[9]
b_line[6]<-sumwx[1]/n0[1]-2*sumwx[4]/n0[4]+sumwx[7]/n0[7]
B7<- solve(hh,b_line)
m[1]<-(sumwx[1]-sigma[1]*(B7[1]+B7[2]+B7[6]))/n0[1]
m[2]<-(sumwx[2]+sigma[2]*(B7[2]-2*B7[4]))/n0[2]
m[3]<-(sumwx[3]+sigma[3]*(B7[1]-B7[3]+2*B7[4]))/n0[3]
m[4]<-(sumwx[4]+sigma[4]*(-B7[4]+2*B7[6]))/n0[4]
m[5]<-(sumwx[5]+sigma[5]*(2*B7[3]))/n0[5]
m[6]<-(sumwx[6]-sigma[6]*B7[4])/n0[6]
m[7]<-(sumwx[7]+sigma[7]*(B7[1]+B7[2]-B7[3]-B7[5]-B7[6]))/n0[7]
m[8]<-(sumwx[8]+sigma[8]*(-B7[2]+2*B7[5]))/n0[8]
m[9]<-(sumwx[9]-sigma[9]*(B7[1]+B7[5]))/n0[9]
hh71 <- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,-1,-1,-1,1,0,-1,1,0,-1,1,0,-1),9,3)
B71<-solve(crossprod(hh71,hh71))%*%crossprod(hh71,m)
g_a[1]<-(0.5*B71[3]^2)/m_nf
g_a[2]<-(0.5*B71[2]^2)/m_nf
g_a[3]<-g_a[1]+g_a[2]
for(i in 1:d4) { swx[i] <- WW[i,]%*%(data-m[i])^2 }
s0[1]<-swx[1]+swx[3]+swx[7]+swx[9]
s0[2]<-n0[1]+n0[3]+n0[7]+n0[9]
aaa0<-sigma[1]
n_iter<-0
aa6<-1000
while(aa6>0.0001){
n_iter<-n_iter+1
aa1<-sigma[1]/(sigma[1]+g_a[1])
aa2<-sigma[1]/(sigma[1]+g_a[2])
aa3<-sigma[1]/(sigma[1]+g_a[3])
sigma[1]<-(s0[1]+aa1^2*(swx[2]+swx[8])+aa2^2*(swx[4]+swx[6])+aa3^2*swx[5])/(s0[2]+aa1*(n0[2]+n0[8])+aa2*(n0[4]+n0[6])+aa3*n0[5])
aa6<-abs(sigma[1]-aaa0)
aaa0<-sigma[1]
if(n_iter>20)break
}
sigma[3]<-sigma[1];sigma[7]<-sigma[1];sigma[9]<-sigma[1]
sigma[2]<-sigma[1]+g_a[1];sigma[4]<-sigma[1]+g_a[2]
sigma[5]<-sigma[1]+g_a[3];sigma[6]<-sigma[1]+g_a[2];sigma[8]<-sigma[1]+g_a[1]
L1 <- sum(log(dmixnorm(data,m,sqrt(sigma),mix_pi)))
stopa <- L1 - L0
L0 <- L1
if(stopa < 0) {stopa <- -stopa}
if(iteration>60)break
}
abc<-L0
AIC<--2*abc+2*4
jj <- sigma0 - sigma[1]
if(jj < 0) {jj <- 0}
ll <- jj/sigma0
data <- sort(data)
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1); bmwsl <- matrix(0,m_sam,d4)
for(i in 1:d4){
gg <- (data - m[i])/sqrt(sigma[i])
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
bmwsl[,i] <- bmw*mix_pi[i]
}
P2 <- rowSums(bmwsl)
nn <- dim(as.matrix(unique(P2)))[1]
if(nn < m_sam){P2 <- P2+runif(m_sam)/1e4}
dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2)))
WW2 <- 1/(12*m_sam) + sum((P2 - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u <- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D <- as.numeric(ks.test(P2,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("2MG-A",round(abc,4),round(AIC,4),round(t(m),4),round(t(sigma),4),round(t(mix_pi),4),round(t(B71),4)," "," "," "," "," "," ",round(jj,4),round(ll*100,4),round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output,mi)
return(OUTPUT)
}
F3ModelFun[[9]] <-function(K1,logL,df,m_nf){
data <- as.matrix(as.numeric(as.numeric(df[,1])))
m_sam <- dim(data)[1]; d5 <- 6; m_esp <- 0.0001
mean0 <- mean(data);sigma0 <- var(data)
a1 <- sqrt(sigma0)
sigma <- matrix((sigma0/2),6,1)
m <- as.matrix(c((mean0+3*a1),(mean0+2.4*a1),mean0,
(mean0+1.7*a1),(mean0-0.7*a1),(mean0-3*a1)))
mi <- as.matrix(c(0.0625,0.25,0.125,0.25,0.25,0.0625))
L0 <- sum(log(dmixnorm(data,m,sqrt(sigma),mi)))
iteration <- 0; stopa <- 1000
WW <- matrix(0,6,m_sam); swx <- matrix(0,6,1); hh <- matrix(0,3,3); b_line <- matrix(0,3,1)
g_a<-matrix(0,2,1); s0 <- matrix(0,2,1)
while(stopa > m_esp && iteration <= 1000){
iteration <- iteration + 1
for(i in 1:d5) { WW[i,] <- mi[i]*dnorm(data,m[i],sqrt(sigma[i]))/dmixnorm(data,m,sqrt(sigma),mi) }
mix_pi <- as.matrix(rowSums(WW)/m_sam)
sumwx <- WW%*%data
n0 <- m_sam*mix_pi
n0[abs(n0)<0.000001] <- 0.000001
hh[1,1]<-sigma[1]/n0[1]+4.0*sigma[2]/n0[2]+sigma[3]/n0[3]
hh[1,2]<--2.0*sigma[2]/n0[2]-2.0*sigma[3]/n0[3]
hh[1,3]<-sigma[3]/n0[3]
hh[2,2]<-sigma[2]/n0[2]+4.0*sigma[3]/n0[3]+sigma[5]/n0[5]
hh[2,3]<--2.0*sigma[3]/n0[3]-2.0*sigma[5]/n0[5]
hh[3,3]<-sigma[3]/n0[3]+4.0*sigma[5]/n0[5]+sigma[6]/n0[6]
for(i in 2:3)
{
for(j in 1:(i-1))
{
hh[i,j]<-hh[j,i]
}
}
b_line[1]<-sumwx[1]/n0[1]-2.0*sumwx[2]/n0[2]+sumwx[3]/n0[3]
b_line[2]<-sumwx[2]/n0[2]-2.0*sumwx[3]/n0[3]+sumwx[5]/n0[5]
b_line[3]<-sumwx[3]/n0[3]-2.0*sumwx[5]/n0[5]+sumwx[6]/n0[6]
B8<- solve(hh,b_line)
m[1]<-(sumwx[1]-sigma[1]*B8[1])/n0[1]
m[2]<-(sumwx[2]+sigma[2]*(2.0*B8[1]-B8[2]))/n0[2]
m[3]<-(sumwx[3]+(sigma[3]/sigma[4])*sumwx[4]+sigma[3]*(-B8[1]+2.0*B8[2]-B8[3]))/(n0[3]+(sigma[3]/sigma[4])*n0[4])
m[4]<-m[3]
m[5]<-(sumwx[5]-sigma[5]*(B8[2]-2.0*B8[3]))/n0[5]
m[6]<-(sumwx[6]-sigma[6]*B8[3])/n0[6]
hh81 <- matrix(c(1,1,1,1,1,2,1,0,-1,-2),5,2)
B81<-solve(crossprod(hh81,hh81))%*%crossprod(hh81,m[-4])
g_a[1]<-0.5*B81[2]^2/m_nf
g_a[2]<-B81[2]^2/m_nf
for(i in 1:d5) { swx[i] <- WW[i,]%*%(data-m[i])^2 }
s0[1]<-swx[1]+swx[6]
s0[2]<-n0[1]+n0[6]
aaa0<-sigma[1]
n_iter<-0
aa6<-1000
while(aa6>0.0001){
n_iter<-n_iter+1
aa1<-sigma[1]/(sigma[1]+g_a[1])
aa2<-sigma[1]/(sigma[1]+g_a[2])
sigma[1]<-(s0[1]+aa1^2*(swx[2]+swx[4]+swx[5])+aa2^2*swx[3])/(s0[2]+aa1*(n0[2]+n0[4]+n0[5])+aa2*n0[3])
aa6<-abs(sigma[1]-aaa0)
aaa0<-sigma[1]
if(n_iter>20)break
}
sigma[6]<-sigma[1];sigma[2]<-sigma[1]+g_a[1];sigma[4]<-sigma[1]+g_a[1]
sigma[5]<-sigma[1]+g_a[1];sigma[3]<-sigma[1]+g_a[2]
L1 <- sum(log(dmixnorm(data,m,sqrt(sigma),mix_pi)))
stopa <- L1 - L0
L0 <- L1
if(stopa < 0) {stopa <- -stopa}
if(iteration>600)break
}
abc<-L0
AIC<--2*abc+2*3
jj <- sigma0 - sigma[1]
if(jj < 0) {jj <- 0}
ll <- jj/sigma0
data <- sort(data);
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1); bmwsl <- matrix(0,m_sam,d5)
for(i in 1:d5){
gg <- (data - m[i])/sqrt(sigma[i])
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
bmwsl[,i] <- bmw*mix_pi[i]
}
P2 <- rowSums(bmwsl)
nn <- dim(as.matrix(unique(P2)))[1]
if(nn < m_sam){P2 <- P2+runif(m_sam)/1e4}
dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2)))
WW2 <- 1/(12*m_sam) + sum((P2 - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u <- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D <- as.numeric(ks.test(P2,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("2MG-EA",round(abc,4),round(AIC,4),round(t(m),4)," "," "," ",round(t(sigma),4)," "," "," ",round(t(mix_pi),4)," "," "," ",round(t(B81),4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4),round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output,mi)
return(OUTPUT)
}
F3ModelFun[[10]] <-function(K1,logL,df,m_nf){
data <- as.matrix(as.numeric(as.numeric(df[,1])))
m_sam <- dim(data)[1]; d4 <- 9; m_esp <- 0.0001
mean0 <- mean(data);sigma0 <- var(data)
a1 <- sqrt(sigma0)
sigma <- matrix((sigma0/2),9,1)
m <- as.matrix(c((mean0+3.2*a1),(mean0+2.4*a1),(mean0+1.6*a1),(mean0+0.8*a1),mean0,(mean0-0.8*a1),(mean0-1.6*a1),(mean0-2.4*a1),(mean0-3.2*a1)))
mi <- as.matrix(c(0.0625,0.125,0.0625,0.125,0.25,0.125,0.0625,0.125,0.0625))
L0 <- sum(log(dmixnorm(data,m,sqrt(sigma),mi)))
iteration <- 0; stopa <- 1000
WW <- matrix(0,9,m_sam); swx <- matrix(0,9,1); hh <- matrix(0,6,6); b_line <- matrix(0,6,1)
g_a<-matrix(0,3,1);s0 <- matrix(0,2,1)
while(stopa > m_esp && iteration <= 1000){
iteration <- iteration + 1
for(i in 1:d4) { WW[i,] <- mi[i]*dnorm(data,m[i],sqrt(sigma[i]))/dmixnorm(data,m,sqrt(sigma),mi) }
mix_pi <- as.matrix(rowSums(WW)/m_sam)
sumwx <- WW%*%data
n0 <- m_sam*mix_pi
n0[abs(n0)<0.000001] <- 0.000001
hh[1,1]<-9.0*sigma[1]/n0[1]+16.0*sigma[2]/n0[2]+sigma[3]/n0[3]
hh[1,2]<-0.0
hh[1,3]<--12.0*sigma[2]/n0[2]
hh[1,4]<-3.0*sigma[1]/n0[1]+4.0*sigma[2]/n0[2]
hh[1,5]<-3.0*sigma[1]/n0[1]-sigma[3]/n0[3]
hh[1,6]<-0.0
hh[2,2]<-9.0*sigma[4]/n0[4]+16.0*sigma[5]/n0[5]+sigma[6]/n0[6]
hh[2,3]<-16.0*sigma[5]/n0[5]
hh[2,4]<-0.0
hh[2,5]<--3.0*sigma[4]/n0[4]+sigma[6]/n0[6]
hh[2,6]<--4.0*sigma[5]/n0[5]-sigma[6]/n0[6]
hh[3,3]<-9.0*sigma[2]/n0[2]+16.0*sigma[5]/n0[5]+sigma[8]/n0[8]
hh[3,4]<--3.0*sigma[2]/n0[2]+sigma[8]/n0[8]
hh[3,5]<-0
hh[3,6]<--4.0*sigma[5]/n0[5]-sigma[8]/n0[8]
hh[4,4]<-sigma[1]/n0[1]+sigma[2]/n0[2]+sigma[7]/n0[7]+sigma[8]/n0[8]
hh[4,5]<-sigma[1]/n0[1]
hh[4,6]<--sigma[8]/n0[8]
hh[5,5]<-sigma[1]/n0[1]+sigma[3]/n0[3]+sigma[4]/n0[4]+sigma[6]/n0[6]
hh[5,6]<--sigma[6]/n0[6]
hh[6,6]<-sigma[5]/n0[5]+sigma[6]/n0[6]+sigma[8]/n0[8]+sigma[9]/n0[9]
for(i in 2:6)
{
for(j in 1:(i-1))
{
hh[i,j]<-hh[j,i]
}
}
b_line[1]<-3*sumwx[1]/n0[1]-4*sumwx[2]/n0[2]+sumwx[3]/n0[3]
b_line[2]<-3*sumwx[4]/n0[4]-4*sumwx[5]/n0[5]+sumwx[6]/n0[6]
b_line[3]<-3*sumwx[2]/n0[2]-4*sumwx[5]/n0[5]+sumwx[8]/n0[8]
b_line[4]<-sumwx[1]/n0[1]-sumwx[2]/n0[2]-sumwx[7]/n0[7]+sumwx[8]/n0[8]
b_line[5]<-sumwx[1]/n0[1]-sumwx[3]/n0[3]-sumwx[4]/n0[4]+sumwx[6]/n0[6]
b_line[6]<-sumwx[5]/n0[5]-sumwx[6]/n0[6]-sumwx[8]/n0[8]+sumwx[9]/n0[9]
B9<- solve(hh,b_line)
m[1]<-(sumwx[1]-sigma[1]*(3.0*B9[1]+B9[4]+B9[5]))/n0[1]
m[2]<-(sumwx[2]+sigma[2]*(4.0*B9[1]-3.0*B9[3]+B9[4]))/n0[2]
m[3]<-(sumwx[3]-sigma[3]*(B9[1]-B9[5]))/n0[3]
m[4]<-(sumwx[4]+sigma[4]*(-3.0*B9[2]+B9[5]))/n0[4]
m[5]<-(sumwx[5]+sigma[5]*(4.0*B9[2]+4.0*B9[3]-B9[6]))/n0[5]
m[6]<-(sumwx[6]+sigma[6]*(-B9[2]-B9[5]+B9[6]))/n0[6]
m[7]<-(sumwx[7]+sigma[7]*B9[4])/n0[7]
m[8]<-(sumwx[8]+sigma[8]*(-B9[3]-B9[4]+B9[6]))/n0[8]
m[9]<-(sumwx[9]-sigma[9]*B9[6])/n0[9]
hh91 <- matrix(c(1,1,1,1,1,1,1,1,1,1,1,1,0.5,0.5,0.5,-1,-1,-1,1,0.5,-1,1,0.5,-1,1,0.5,-1),9,3)
B91<-solve(crossprod(hh91,hh91))%*%crossprod(hh91,m)
g_a[1]<-0.75*B91[3]^2/m_nf
g_a[2]<-0.75*B91[2]^2/m_nf
g_a[3]<-g_a[1]+g_a[2]
for(i in 1:d4) { swx[i] <- WW[i,]%*%(data-m[i])^2 }
s0[1]<-swx[1]+swx[3]+swx[7]+swx[9]
s0[2]<-n0[1]+n0[3]+n0[7]+n0[9]
aaa0<-sigma[1]
n_iter<-0
aa6<-1000
while(aa6>0.0001){
n_iter<-n_iter+1
aa1<-sigma[1]/(sigma[1]+g_a[1])
aa2<-sigma[1]/(sigma[1]+g_a[2])
aa3<-sigma[1]/(sigma[1]+g_a[3])
sigma[1]<-(s0[1]+aa1^2*(swx[2]+swx[8])+aa2^2*(swx[4]+swx[6])+aa3^2*swx[5])/(s0[2]+aa1*(n0[2]+n0[8])+aa2*(n0[4]+n0[6])+aa3*n0[5])
aa6<-abs(sigma[1]-aaa0)
aaa0<-sigma[1]
if(n_iter>20)break
}
sigma[3]<-sigma[1];sigma[7]<-sigma[1];sigma[9]<-sigma[1]
sigma[2]<-sigma[1]+g_a[1];sigma[4]<-sigma[1]+g_a[2]
sigma[5]<-sigma[1]+g_a[3];sigma[6]<-sigma[1]+g_a[2];sigma[8]<-sigma[1]+g_a[1]
L1 <- sum(log(dmixnorm(data,m,sqrt(sigma),mix_pi)))
stopa <- L1 - L0
L0 <- L1
if(stopa < 0) {stopa <- -stopa}
}
abc<-L0
AIC<--2*abc+2*4
jj <- sigma0 - sigma[1]
if(jj < 0) {jj <- 0}
ll <- jj/sigma0
data <- sort(data)
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1); bmwsl <- matrix(0,m_sam,d4)
for(i in 1:d4){
gg <- (data - m[i])/sqrt(sigma[i])
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
bmwsl[,i] <- bmw*mix_pi[i]
}
P2 <- rowSums(bmwsl)
nn <- dim(as.matrix(unique(P2)))[1]
if(nn < m_sam){P2 <- P2+runif(m_sam)/1e4}
dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2)))
WW2 <- 1/(12*m_sam) + sum((P2 - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u <- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D <- as.numeric(ks.test(P2,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("2MG-CD",round(abc,4),round(AIC,4),round(t(m),4),round(t(sigma),4),round(t(mix_pi),4),round(t(B91),4)," "," "," "," "," "," ",round(jj,4),round(ll*100,4),round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output,mi)
return(OUTPUT)
}
F3ModelFun[[11]] <-function(K1,logL,df,m_nf){
data <- as.matrix(as.numeric(as.numeric(df[,1])))
m_sam <- dim(data)[1]; d5 <- 6; m_esp <- 0.0001
mean0 <- mean(data);sigma0 <- var(data)
a1 <- sqrt(sigma0/m_sam)
sigma <- matrix((sigma0/2),6,1)
m <- as.matrix(c((mean0+3*a1),(mean0+2.4*a1),(mean0+1.7*a1),mean0,(mean0-0.7*a1),(mean0-3*a1)))
mi <- as.matrix(c(0.0625,0.25,0.25,0.125,0.25,0.0625))
L0 <- sum(log(dmixnorm(data,m,sqrt(sigma),mi)))
iteration <- 0; stopa <- 1000
WW <- matrix(0,6,m_sam); swx <- matrix(0,6,1); hh <- matrix(0,4,4); b_line <- matrix(0,4,1)
g_a<-matrix(0,2,1);s0 <- matrix(0,2,1)
while(stopa > m_esp && iteration <= 1000){
iteration <- iteration + 1
for(i in 1:d5) { WW[i,] <- mi[i]*dnorm(data,m[i],sqrt(sigma[i]))/dmixnorm(data,m,sqrt(sigma),mi) }
mix_pi <- as.matrix(rowSums(WW)/m_sam)
sumwx <- WW%*%data
n0 <- m_sam*mix_pi
n0[abs(n0)<0.000001] <- 0.000001
hh[1,1]<-sigma[1]/n0[1]+4.0*sigma[2]/n0[2]+sigma[3]/n0[3]
hh[1,2]<-sigma[1]/n0[1]
hh[1,3]<--2.0*sigma[2]/n0[2]-sigma[3]/n0[3]
hh[1,4]<-2.0*sigma[3]/n0[3]
hh[2,2]<-sigma[1]/n0[1]+4.0*sigma[4]/n0[4]+sigma[6]/n0[6]
hh[2,3]<-2.0*sigma[4]/n0[4]
hh[2,4]<-6.0*sigma[4]/n0[4]+sigma[6]/n0[6]
hh[3,3]<-sigma[2]/n0[2]+sigma[3]/n0[3]+sigma[4]/n0[4]+sigma[5]/n0[5]
hh[3,4]<--2.0*sigma[3]/n0[3]+3.0*sigma[4]/n0[4]
hh[4,4]<-4.0*sigma[3]/n0[3]+9.0*sigma[4]/n0[4]+sigma[6]/n0[6]
for(i in 2:4)
{
for(j in 1:(i-1))
{
hh[i,j]<-hh[j,i]
}
}
b_line[1]<-sumwx[1]/n0[1]-2.0*sumwx[2]/n0[2]+sumwx[3]/n0[3]
b_line[2]<-sumwx[1]/n0[1]-2.0*sumwx[4]/n0[4]+sumwx[6]/n0[6]
b_line[3]<-sumwx[2]/n0[2]-sumwx[3]/n0[3]-sumwx[4]/n0[4]+sumwx[5]/n0[5]
b_line[4]<-2.0*sumwx[3]/n0[3]-3.0*sumwx[4]/n0[4]+sumwx[6]/n0[6]
B10<- solve(hh,b_line)
m[1]<-(sumwx[1]-sigma[1]*(B10[1]+B10[2]))/n0[1]
m[2]<-(sumwx[2]+sigma[2]*(2.0*B10[1]-B10[3]))/n0[2]
m[3]<-(sumwx[3]-sigma[3]*(B10[1]-B10[3]+2.0*B10[4]))/n0[3]
m[4]<-(sumwx[4]+sigma[4]*(2.0*B10[2]+B10[3]+3.0*B10[4]))/n0[4]
m[5]<-(sumwx[5]-sigma[5]*B10[3])/n0[5]
m[6]<-(sumwx[6]-sigma[6]*(B10[2]+B10[4]))/n0[6]
hh101 <- matrix(c(1,1,1,1,1,1,2,1.5,1,0,-0.5,-2),6,2)
B101<-solve(crossprod(hh101,hh101))%*%crossprod(hh101,m)
g_a[1]<-0.75*B101[2]^2/m_nf
g_a[2]<-1.5*B101[2]^2/m_nf
for(i in 1:d5) { swx[i] <- WW[i,]%*%(data-m[i])^2 }
s0[1]<-swx[1]+swx[4]+swx[6]
s0[2]<-n0[1]+n0[4]+n0[6]
aaa0<-sigma[1]
n_iter<-0
aa6<-1000
while(aa6>0.0001){
n_iter<-n_iter+1
aa1<-sigma[1]/(sigma[1]+g_a[1])
aa2<-sigma[1]/(sigma[1]+g_a[2])
sigma[1]<-(s0[1]+aa1^2*(swx[2]+swx[5])+aa2^2*swx[3])/(s0[2]+aa1*(n0[2]+n0[5])+aa2*n0[3])
aa6<-abs(sigma[1]-aaa0)
aaa0<-sigma[1]
if(n_iter>20)break
}
sigma[4]<-sigma[1];sigma[6]<-sigma[1]
sigma[2]<-sigma[1]+g_a[1];sigma[5]<-sigma[1]+g_a[1]
sigma[3]<-sigma[1]+g_a[2]
L1 <- sum(log(dmixnorm(data,m,sqrt(sigma),mix_pi)))
stopa <- L1 - L0
L0 <- L1
if(stopa < 0) {stopa <- -stopa}
}
abc<-L0
AIC<--2*abc+2*3
jj <- sigma0 - sigma[1]
if(jj < 0) {jj <- 0}
ll <- jj/sigma0
data <- sort(data)
w1<-1/(12*m_sam)
bmw <- matrix(0,m_sam,1); bmwsl <- matrix(0,m_sam,d5)
for(i in 1:d5){
gg <- (data - m[i])/sqrt(sigma[i])
bmw[which(gg>=0)] <- pnorm(gg[gg>=0])
bmw[which(gg<0)] <- 1 - pnorm(abs(gg[gg<0]))
bmwsl[,i] <- bmw*mix_pi[i]
}
P2 <- rowSums(bmwsl)
nn <- dim(as.matrix(unique(P2)))[1]
if(nn < m_sam){P2 <- P2+runif(m_sam)/1e4}
dd <- as.matrix(c(sum(P2),sum(P2^2),sum((P2-0.5)^2)))
WW2 <- 1/(12*m_sam) + sum((P2 - (as.matrix(c(1:m_sam)) - 0.5)/m_sam)^2)
u <- as.matrix(c(12*m_sam*((dd[1]/m_sam-0.5)^2),((45*m_sam)/4)*((dd[2]/m_sam-1/3)^2),180*m_sam*((dd[3]/m_sam-1/12)^2)))
D <- as.numeric(ks.test(P2,"punif")[[1]][1])
tt <- as.matrix(c((1 - pchisq(u[1],1)),(1 - pchisq(u[2],1)),(1 - pchisq(u[3],1)),K1(WW2),(1-pkolm(D,m_sam))))
tt[which(tt>=10e-4)]<-round(tt[which(tt>=10e-4)],4);tt[which(tt<10e-4)]<-format(tt[which(tt<10e-4)],scientific=TRUE,digit=4)
output <- data.frame("2MG-EAD",round(abc,4),round(AIC,4),round(t(m),4)," "," "," ",round(t(sigma),4)," "," "," ",round(t(mix_pi),4)," "," "," ",round(t(B101),4)," "," "," "," "," "," "," ",round(jj,4),round(ll*100,4),round(u[1],4),tt[1],round(u[2],4),tt[2],round(u[3],4),tt[3],round(WW2,4),tt[4],round(D,4),tt[5])
output<-as.matrix(output)
OUTPUT<-list(output,mi)
return(OUTPUT)
}
K1F23 <- function(x){
V0 <- 0
for(j in 0:2)
{I1 <- 0;I2 <- 0
for(k in 0:8)
{I1 <- I1 + (((4*j+1)^2/(32*x))^(-0.25+2*k))/(gamma(k+1)*gamma(0.75+k))
I2 <- I2 + ((4*j+1)^2/(32*x))^(0.25+2*k)/(gamma(k+1)*gamma(1.25+k))}
V0 <- V0 + (gamma(j+0.5)*sqrt(4*j+1)/(gamma(0.5)*gamma(j+1)))*exp(-(4*j+1)^2/(16*x))*(I1-I2)}
V <- (1/sqrt(2*x))*V0
return (1-V)
}
logLF23 <- function(nm,nng,mi,mn,s,d1) { sum2 <- sum(log(dmixnorm(d1,mn,sqrt(s),mi)));return (sum2) }
if(model=="All models"){
cl.cores <- detectCores()
if(cl.cores<=2){
cl.cores<-1
}else if(cl.cores>2){
if(cl.cores>10){
cl.cores<-10
}else {
cl.cores <- detectCores()-1
}
}
cl <- makeCluster(cl.cores)
registerDoParallel(cl)
i<-NULL
allresult=foreach(i=1:11,.combine = 'rbind')%dopar%{
requireNamespace("KScorrect")
requireNamespace("kolmim")
F3ModelFun[[i]](K1F23,logLF23,df,m_nf)[[1]]
}
stopCluster(cl)
mi<-NULL
}else{
allresultq<-switch(model,"0MG" = F3ModelFun[[1]](K1F23,logLF23,df,m_nf),"1MG-AD"=F3ModelFun[[2]](K1F23,logLF23,df,m_nf),"1MG-A"=F3ModelFun[[3]](K1F23,logLF23,df,m_nf),
"1MG-EAD"=F3ModelFun[[4]](K1F23,logLF23,df,m_nf),"1MG-NCD"=F3ModelFun[[5]](K1F23,logLF23,df,m_nf),"2MG-ADI"=F3ModelFun[[6]](K1F23,logLF23,df,m_nf),
"2MG-AD"=F3ModelFun[[7]](K1F23,logLF23,df,m_nf),"2MG-A"=F3ModelFun[[8]](K1F23,logLF23,df,m_nf),"2MG-EA"=F3ModelFun[[9]](K1F23,logLF23,df,m_nf),
"2MG-CD"=F3ModelFun[[10]](K1F23,logLF23,df,m_nf),"2MG-EAD"=F3ModelFun[[11]](K1F23,logLF23,df,m_nf))
allresult<-allresultq[[1]]
if(model!="0MG"){
mi<-allresultq[[2]]
}else{
mi<-NULL
}
}
colnames(allresult) <- F3colname
out<-list(allresult,mi)
return(out)
} |
one2one_fizz <- function(data,
hrvar = "Organization",
mingroup = 5,
return = "plot"){
cleaned_data <-
data %>%
mutate(`Scheduled 1:1 meeting minutes with manager` = Meeting_hours_with_manager_1_on_1 * 60)
create_fizz(data = cleaned_data,
metric = "Scheduled 1:1 meeting minutes with manager",
hrvar = hrvar,
mingroup = mingroup,
return = return)
} |
getSyncModel <- function(inp_sync, silent=TRUE, fine_tune=FALSE, max_iter=100, tmb_smartsearch=TRUE){
inp_sync$inp_params$tmb_smartsearch <- tmb_smartsearch
inp_sync$inp_params$max_iter <- max_iter
dat_tmb <- inp_sync$dat_tmb_sync
params <- inp_sync$params_tmb_sync
random <- inp_sync$random_tmb_sync
inits <- inp_sync$inits_tmb_sync
inp_params <- inp_sync$inp_params
cat(paste0(Sys.time(), " \n"))
cat(". Running optimization of the sync model. Please be patient - this can take a long time. \n")
if(fine_tune){cat(".... fine tuning is enabled, but is getting deprecated in future version. Consider to use the function fineTuneSyncModel() instead. See ?fineTuneSyncModel for info. \n")}
tictoc::tic("Fitting sync model: ")
opt <- c()
pl <- c()
plsd <- c()
obj <- c()
tictoc::tic()
obj <- c()
opt <- c()
report <- c()
gc()
obj <- TMB::MakeADFun(data = dat_tmb, parameters = params, random = random, DLL = "yaps", inner.control = list(maxit = max_iter), silent=silent)
obj$fn(obj$par)
if(!tmb_smartsearch){
TMB::newtonOption(obj, smartsearch=FALSE)
}
if(silent){
opt <- suppressWarnings(stats::nlminb(inits,obj$fn,obj$gr, lower=c(-10), upper=c(-2)))
} else {
opt <- stats::nlminb(inits,obj$fn,obj$gr, lower=c(-10), upper=c(-2))
}
pl <- obj$env$parList()
obj_val <- opt$objective
cat(paste0(".. ", Sys.time()), " \n")
cat(".... obj = ", obj_val, " \n")
report <- obj$report()
crazy_outliers <- which(abs(report$eps_toa)*1450 > 10000)
fine_outliers <- which(abs(report$eps_toa)*1450 > 1000)
if(length(crazy_outliers > 0)){
cat(".... some extreme outliers potentially affecting the model where identified \n Consider to run fineTuneSyncModel(sync_model, eps_threshold=10000). See ?fineTuneSyncModel for more info. \n")
} else if(fine_tune){
cat(".... fine tuning is enabled, but is deprecated. Use the function fineTuneSyncModel() instead. See ?fineTuneSyncModel for info. \n")
}
tictoc::toc()
jointrep <- try(TMB::sdreport(obj, getJointPrecision=TRUE), silent=silent)
param_names <- rownames(summary(jointrep))
sds <- summary(jointrep)[,2]
summ <- data.frame(param=param_names, sd=sds)
plsd <- split(summ[,2], f=summ$param)
pl$TRUE_H[,1] <- pl$TRUE_H[,1] + inp_params$Hx0
pl$TRUE_H[,2] <- pl$TRUE_H[,2] + inp_params$Hy0
eps_long <- getEpsLong(report, pl, inp_sync)
offset_nas <- which(pl$OFFSET == 0)
pl$OFFSET[offset_nas] <- NA
pl$SLOPE1[offset_nas] <- NA
pl$SLOPE2[offset_nas] <- NA
cat("Sync model done \n")
cat("Consider saving the sync model for later use - e.g. save(sync_model, file='path_to_sync_save'). \n")
return(list(pl=pl, plsd=plsd, report=report, obj_val=obj_val, eps_long=eps_long, inp_synced=inp_sync))
} |
AirP <- AirP %>% mutate(
x1 = (loc == 1) + 0.5 * (loc == 3),
x2 = (loc == 2) + 0.5 * (loc == 3))
model3 <- lm(pollution ~ -1 + x1 + x2, data = AirP)
anova(model3, model) |
binom.test(16, 50, 1/6) |
context("Test compile.data")
test_that("Compile genetic and non-genetic data",{
expect_output(str(compile.data(read.Genepop("testData/GenepopEx1.txt"), "testData/varDummy1.csv", skipQ = T)),"List of 5")
expect_output(str(compile.data(read.Structure("testData/StructureEx1.txt"), "testData/varDummy2.csv", skipQ = T)),"List of 5")
}) |
pred.int.norm.k.of.m.on.r.integrand <-
function (v.weird, n.weird, df.weird = n.weird - 1, n.mean = 1,
K.weird, delta.over.sigma, k.weird, m.weird, r.weird)
{
term.1 <- pT(q = sqrt(n.weird) * K.weird, df = df.weird,
ncp = sqrt(n.weird/n.mean) * (qnorm(v.weird) + sqrt(n.mean) *
delta.over.sigma))
term.2 <- r.weird * pbeta(q = v.weird, shape1 = k.weird,
shape2 = m.weird + 1 - k.weird)^(r.weird - 1)
term.3 <- (v.weird^(k.weird - 1) * (1 - v.weird)^(m.weird -
k.weird))/beta(k.weird, m.weird + 1 - k.weird)
term.1 * term.2 * term.3
} |
knitr::opts_chunk$set(echo = TRUE)
library(ALUES)
y <- MarinduqueLT
banana_suit <- suit("banana", terrain=y)
banana_ovsuit <- overall_suit(banana_suit[["soil"]], method="average")
knitr::include_graphics("../vignettes/img/scores1.jpg")
knitr::include_graphics("../vignettes/img/classes1.jpg") |
context("tas data")
test_that("tas_pu", {
expect_is(tas_pu, "SpatialPolygonsDataFrame")
expect_true(rgeos::gIsValid(tas_pu))
expect_is(tas_pu$id, "integer")
expect_is(tas_pu$cost, "numeric")
expect_is(tas_pu$status, "integer")
expect_is(tas_pu$locked_in, "logical")
expect_is(tas_pu$locked_out, "logical")
})
test_that("tas_features", {
expect_is(tas_features, "RasterStack")
}) |
proxfun <- function(graph, ...){
UseMethod("proxfun")
}
proxfun.igraph <- function(graph, method, v1 = NULL, v2 = v1,
value =c("matrix", "edgelist", "graph"), ...){
if (igraph::is.directed(graph) | !igraph::is.connected(graph))
stop("graph has to be undirected and connected")
value <- match.arg(value)
method <- match_method(method)
v1 <- check_vertices(graph, v1)
v2 <- check_vertices(graph, v2)
result <- do.call(method, list(graph = graph, v1 = v1, v2 = v2, ...))
rownames(result) <- v1
colnames(result) <- v2
result <- coerce_result(result, value, graph)
result
}
proxfun.network <- function(graph, method, v1 = NULL, v2 = v1,
value =c("matrix", "edgelist", "graph"), ...){
graph <- intergraph::asIgraph(graph)
proxfun.igraph(graph, method = method , v1 = v1, v2 = v2, value = value, ...)
} |
shape_text <- function(strings, id = NULL, family = '', italic = FALSE,
bold = FALSE, size = 12, res = 72, lineheight = 1,
align = 'left', hjust = 0, vjust = 0, width = NA,
tracking = 0, indent = 0, hanging = 0, space_before = 0,
space_after = 0, path = NULL, index = 0) {
n_strings = length(strings)
if (is.null(id)) id <- seq_len(n_strings)
id <- rep_len(id, n_strings)
id <- match(id, unique(id))
if (anyNA(id)) {
stop('id must be a vector of valid integers', call. = FALSE)
}
ido <- order(id)
id <- id[ido]
strings <- as.character(strings)[ido]
if (is.null(path)) {
if (all(c(length(family), length(italic), length(bold)) == 1)) {
loc <- systemfonts::match_font(family, italic, bold)
path <- loc$path
index <- loc$index
} else {
family <- rep_len(family, n_strings)
italic <- rep_len(italic, n_strings)
bold <- rep_len(bold, n_strings)
loc <- Map(systemfonts::match_font, family = family, italic = italic, bold = bold)
path <- vapply(loc, `[[`, character(1L), 1, USE.NAMES = FALSE)[ido]
index <- vapply(loc, `[[`, integer(1L), 2, USE.NAMES = FALSE)[ido]
}
} else {
if (!all(c(length(path), length(index)) == 1)) {
path <- rep_len(path, n_strings)[ido]
index <- rep_len(index, n_strings)[ido]
}
}
if (length(size) != 1) size <- rep_len(size, n_strings)[ido]
if (length(res) != 1) res <- rep_len(res, n_strings)[ido]
if (length(lineheight) != 1) lineheight <- rep_len(lineheight, n_strings)[ido]
align <- match.arg(align, c('left', 'center', 'right'), TRUE)
align <- match(align, c('left', 'center', 'right'))
if (length(align) != 1) align <- rep_len(align, n_strings)[ido]
if (length(hjust) != 1) hjust <- rep_len(hjust, n_strings)[ido]
if (length(vjust) != 1) vjust <- rep_len(vjust, n_strings)[ido]
if (length(width) != 1) width <- rep_len(width, n_strings)[ido]
width[is.na(width)] <- -1
if (length(tracking) != 1) tracking <- rep_len(tracking, n_strings)[ido]
if (length(indent) != 1) indent <- rep_len(indent, n_strings)[ido]
if (length(hanging) != 1) hanging <- rep_len(hanging, n_strings)[ido]
if (length(space_before) != 1) space_before <- rep_len(space_before, n_strings)[ido]
if (length(space_after) != 1) space_after <- rep_len(space_after, n_strings)[ido]
width <- width * res
indent <- indent * res
hanging <- hanging * res
if (!all(file.exists(path))) stop("path must point to a valid file", call. = FALSE)
shape <- get_string_shape_c(
strings, id, path, as.integer(index), as.numeric(size), as.numeric(res),
as.numeric(lineheight), as.integer(align) - 1L, as.numeric(hjust),
as.numeric(vjust), as.numeric(width), as.numeric(tracking),
as.numeric(indent), as.numeric(hanging), as.numeric(space_before),
as.numeric(space_after)
)
if (nrow(shape$shape) == 0) return(shape)
shape$metrics$string <- vapply(split(strings, id), paste, character(1), collapse = '')
shape$shape$string_id <- ido[shape$shape$string_id]
shape$shape <- shape$shape[order(shape$shape$string_id), , drop = FALSE]
shape$shape$x_offset <- shape$shape$x_offset * (72 / res)
shape$shape$y_offset <- shape$shape$y_offset * (72 / res)
shape$shape$x_midpoint <- shape$shape$x_midpoint * (72 / res)
shape
}
text_width <- function(strings, family = '', italic = FALSE, bold = FALSE,
size = 12, res = 72, include_bearing = TRUE, path = NULL,
index = 0) {
n_strings <- length(strings)
if (is.null(path)) {
if (all(c(length(family), length(italic), length(bold)) == 1)) {
loc <- systemfonts::match_font(family, italic, bold)
path <- loc$path
index <- loc$index
} else {
family <- rep_len(family, n_strings)
italic <- rep_len(italic, n_strings)
bold <- rep_len(bold, n_strings)
loc <- Map(systemfonts::match_font, family = family, italic = italic, bold = bold)
path <- vapply(loc, `[[`, character(1L), 1, USE.NAMES = FALSE)
index <- vapply(loc, `[[`, integer(1L), 2, USE.NAMES = FALSE)
}
} else {
if (!all(c(length(path), length(index)) == 1)) {
path <- rep_len(path, n_strings)
index <- rep_len(index, n_strings)
}
}
if (length(size) != 1) size <- rep_len(size, n_strings)
if (length(res) != 1) res <- rep_len(res, n_strings)
if (length(include_bearing) != 1) include_bearing <- rep_len(include_bearing, n_strings)
if (!all(file.exists(path))) stop("path must point to a valid file", call. = FALSE)
get_line_width_c(
as.character(strings), path, as.integer(index), as.numeric(size),
as.numeric(res), as.logical(include_bearing)
)
} |
predict_MS.rcalibration_MS<-function(object, testing_input, X_testing=as.list(rep(0,object@num_sources)),
testing_output_weights=NULL,
n_thinning=10,
interval_est=NULL,interval_data=rep(F,length(testing_input)),math_model=NULL,...){
if(object@measurement_bias==T){
if(length(testing_input)!=(object@num_sources+1) ){
stop("please specified the testing input for the model discrepancy. \n")
}
}else{
if(length(testing_input)!=object@num_sources){
stop("The number of sources in the testing input should match the number of sources in the object. \n")
}
}
for(i_source in 1:object@num_sources){
testing_input[[i_source]]=as.matrix(testing_input[[i_source]])
testing_input[[i_source]]=matrix(as.numeric(testing_input[[i_source]]), ncol = ncol(testing_input[[i_source]]))
}
if(object@measurement_bias==T){
testing_input[[i_source+1]]=as.matrix( testing_input[[i_source+1]])
testing_input[[i_source+1]]=matrix(as.numeric(testing_input[[i_source+1]]), ncol = ncol(testing_input[[i_source+1]]))
}
if(is.null(testing_output_weights)){
testing_output_weights=list()
for(i_source in 1: object@num_sources){
testing_output_weights[[i_source]]=rep(1,dim(testing_input[[i_source]])[1])
}
}
if(object@measurement_bias==F){
predict_obj=predict_MS_no_measurement_bias(object,testing_input,X_testing,testing_output_weights,interval_est,interval_data,math_model,n_thinning)
}else{
predict_obj=predict_MS_with_measurement_bias(object,testing_input,X_testing,testing_output_weights,interval_est,interval_data,math_model,n_thinning)
}
return(predict_obj)
}
predict_MS_no_measurement_bias<-function(object, testing_input, X_testing=as.list(rep(0,object@num_sources)),
testing_output_weights=NULL,
interval_est=NULL,interval_data=rep(F,length(testing_input)),math_model=NULL,n_thinning=10){
predictobj <- new("predictobj.rcalibration_MS")
emulator=as.list(rep(NA,object@num_sources))
for(i_source in 1:object@num_sources){
if(object@simul_type[[i_source]]==0){
if(length(object@emulator_ppgasp[[i_source]]@p>0)){
emulator=object@emulator_ppgasp[[i_source]]
}else{
emulator=object@emulator_rgasp[[i_source]]
}
}
}
for(i_source in 1:object@num_sources){
if(object@discrepancy_type[i_source]=='no-discrepancy'){
record_cm_pred=0
record_cm_pred_no_mean=0
c_prop=1/4
for(i_S in (1: SS)*n_thinning ){
if(i_S==floor(SS*n_thinning*c_prop)){
cat(c_prop*100, 'percent is completed \n')
c_prop=c_prop+1/4
}
theta=object@post_theta[i_S,]
sigma_2_delta=object@post_individual_par[[i_source]][i_S,1]
mean_cm_test=mathematical_model_eval(testing_input[[i_source]],theta,object@simul_type[i_source],object@emulator[[i_source]],
object@emulator_type[i_source],object@loc_index_emulator[[i_source]], math_model[[i_source]]);
mean_cm_test_no_mean=mean_cm_test
if(object@have_trend[i_source]){
theta_m=as.matrix(object@post_individual_par[[i_source]][i_S,2:(1+object@q[i_source]) ])
mean_cm_test=mean_cm_test+X_testing[[i_source]]%*%theta_m
}
record_cm_pred=record_cm_pred+mean_cm_test
record_cm_pred_no_mean=record_cm_pred_no_mean+mean_cm_test_no_mean
if(!is.null(interval_est)){
qnorm_all=qnorm(interval_est[[i_source]]);
for(i_int in 1:length(interval_est[[i_source]]) ){
record_interval[,i_int]=record_interval[,i_int]+mean_cm_test+qnorm_all[i_int]*sqrt(sigma_2_delta/testing_output_weights[[i_source]])
}
}
}
record_cm_pred=record_cm_pred/SS
record_cm_pred_no_mean=record_cm_pred_no_mean/SS
predictobj@math_model_mean[[i_source]]=record_cm_pred
predictobj@math_model_mean_no_trend[[i_source]]=record_cm_pred_no_mean
if(!is.null(interval_est)){
record_interval=record_interval/SS
predictobj@interval[[i_source]]=record_interval
}
cat('Source',i_source, 'is completed \n')
}else{
if(!is.null(interval_est)){
c_star_record=rep(0,dim(testing_input[[i_source]])[1])
}
N_testing=dim(testing_input[[i_source]])[1]
r0=as.list(1:object@p_x[i_source])
for(i in 1:object@p_x[i_source]){
r0[[i]]=abs(outer(object@input[[i_source]][,i],testing_input[[i_source]][,i],'-'))
}
record_cm_pred=0
record_cm_pred_no_mean=0
record_pred_mean=0
SS=floor(dim(object@post_theta)[1]/n_thinning)
c_prop=1/4
for(i_S in (1: SS)*n_thinning ){
if(i_S==floor(SS*n_thinning*c_prop)){
cat(c_prop*100, 'percent is completed \n')
c_prop=c_prop+1/4
}
theta=object@post_theta[i_S,]
beta_delta=exp(object@post_individual_par[[i_source]][i_S,1:object@p_x[i_source]])
eta_delta=exp(object@post_individual_par[[i_source]][i_S,object@p_x[i_source]+1])
sigma_2_delta=object@post_individual_par[[i_source]][i_S,object@p_x[i_source]+2]
if(object@have_trend[i_source]){
theta_m=as.matrix(object@post_individual_par[[i_source]][i_S,(object@p_x[i_source]+3):(object@p_x[i_source]+2+object@q[i_source])])
}
mean_cm=mathematical_model_eval(object@input[[i_source]],theta,object@simul_type[[i_source]],object@emulator[[i_source]],
object@emulator_type[i_source],object@loc_index_emulator[[i_source]],math_model[[i_source]]);
output_minus_cm=object@output[[i_source]]- mean_cm
if(object@have_trend[i_source]){
output_minus_cm=output_minus_cm-object@X[[i_source]]%*%theta_m
}
if(object@discrepancy_type[i_source]=="GaSP"){
L=Get_R_new( beta_delta, eta_delta,
object@R0[[i_source]], object@kernel_type[[i_source]],object@alpha[[i_source]],
1/object@output_weights[[i_source]])
}else if(object@discrepancy_type[i_source]=="S-GaSP"){
L=Get_R_z_new( beta_delta, eta_delta, object@lambda_z[[i_source]][i_S],
object@R0[[i_source]], object@kernel_type[[i_source]],object@alpha[[i_source]],
1/object@output_weights[[i_source]])
}
R_inv_y=backsolve(t(L),forwardsolve(L,output_minus_cm ))
if(object@discrepancy_type[i_source]=="S-GaSP"){
R_inv_y=Update_R_inv_y(R_inv_y,object@R0[[i_source]],beta_delta,object@kernel_type[i_source],object@alpha[[i_source]],
object@lambda_z[[i_source]][i_S],object@num_obs[i_source])
}
r=separable_kernel(r0,beta_delta,kernel_type=object@kernel_type[i_source],object@alpha[[i_source]])
rt_R_inv_y=t(r)%*%R_inv_y
mean_cm_test=mathematical_model_eval(testing_input[[i_source]],theta,object@simul_type[i_source],object@emulator[[i_source]],
object@emulator_type[i_source],object@loc_index_emulator[[i_source]],math_model[[i_source]]);
mean_cm_test_no_mean=mean_cm_test
if(object@have_trend[i_source]){
mean_cm_test=mean_cm_test+X_testing[[i_source]]%*%theta_m
}
pred_mean=mean_cm_test+rt_R_inv_y
record_cm_pred=record_cm_pred+mean_cm_test
record_cm_pred_no_mean=record_cm_pred_no_mean+mean_cm_test_no_mean
record_pred_mean=record_pred_mean+pred_mean
if(!is.null(interval_est)){
if(object@discrepancy_type[i_source]=="GaSP"){
R_tilde_inv_r=(backsolve(t(L),forwardsolve(L, r )))
for(i_testing in 1:N_testing){
c_star_record[i_testing]=1-r[,i_testing]%*%R_tilde_inv_r[,i_testing]
}
var_gasp_f=sigma_2_delta*c_star_record
if(interval_data[i_source]==T){
var_gasp_f=var_gasp_f+sigma_2_delta*eta_delta/testing_output_weights[[i_source]]
}
qnorm_all=qnorm(interval_est[[i_source]]);
for(i_int in 1:length(interval_est[[i_source]]) ){
record_interval[,i_int]=record_interval[,i_int]+pred_mean+qnorm_all[i_int]*sqrt(var_gasp_f)
}
}else if(object@discrepancy_type[i_source]=="S-GaSP"){
R=separable_kernel(object@R0[[i_source]], beta_delta, object@kernel_type[i_source],
object@alpha[[i_source]])
R_tilde=R+1/object@lambda_z[[i_source]][i_S]*diag(object@num_obs[i_source]);
L_R_tilde=Chol_Eigen(R_tilde)
I_minus_R_R_tilde=diag(object@num_obs[i_source])-t(backsolve(t(L_R_tilde),forwardsolve(L_R_tilde,R )))
R_tilde_inv_r=(backsolve(t(L_R_tilde),forwardsolve(L_R_tilde, r )))
r_z=I_minus_R_R_tilde%*%r
R_z_tilde_inv_r_z=(backsolve(t(L),forwardsolve(L, r_z )))
for(i_testing in 1:N_testing){
c_star_record[i_testing]=1-t(r[,i_testing])%*%R_tilde_inv_r[,i_testing]-r_z[,i_testing]%*%R_z_tilde_inv_r_z[,i_testing]
}
var_gasp_f=sigma_2_delta*c_star_record
if(interval_data[i_source]==T){
var_gasp_f=var_gasp_f+sigma_2_delta*eta_delta/testing_output_weights[[i_source]]
}
qnorm_all=qnorm(interval_est[[i_source]]);
for(i_int in 1:length(interval_est[[i_source]]) ){
record_interval[,i_int]=record_interval[,i_int]+pred_mean+qnorm_all[i_int]*sqrt(var_gasp_f)
}
}
}
}
record_cm_pred=record_cm_pred/SS
record_cm_pred_no_mean=record_cm_pred_no_mean/SS
record_pred_mean=record_pred_mean/SS
predictobj@math_model_mean[[i_source]]=record_cm_pred
predictobj@math_model_mean_no_trend[[i_source]]=record_cm_pred_no_mean
predictobj@mean[[i_source]]=record_pred_mean
if(!is.null(interval_est)){
record_interval=record_interval/SS
predictobj@interval[[i_source]]=record_interval
}
}
}
return(predictobj)
}
predict_MS_with_measurement_bias<-function(object, testing_input, X_testing=as.list(rep(0,object@num_sources)),
testing_output_weights=NULL,
interval_est=NULL,interval_data=rep(F,length(testing_input)),
math_model=NULL, n_thinning=10){
emulator=as.list(rep(NA,object@num_sources))
for(i_source in 1:object@num_sources){
if(object@simul_type[[i_source]]==0){
if(length(object@emulator_ppgasp[[i_source]]@p>0)){
emulator=object@emulator_ppgasp[[i_source]]
}else{
emulator=object@emulator_rgasp[[i_source]]
}
}
}
predictobj <- new("predictobj.rcalibration_MS")
if(!is.null(interval_est)){
c_star_record_delta=rep(0,dim(testing_input[[object@num_sources+1]])[1])
}
SS=dim(object@post_individual_par[[1]])[1]/n_thinning
num_sources_1=object@num_sources+1
num_obs=object@num_obs[1]
for(i_source in 1:object@num_sources){
record_cm_pred=0
record_cm_pred_no_mean=0
N_testing=dim(testing_input[[i_source]])[1]
for(i_S in (1: SS)*n_thinning ){
theta=object@post_theta[i_S,]
mean_cm_test=mathematical_model_eval(testing_input[[i_source]],theta,object@simul_type[i_source],object@emulator[[i_source]],
object@emulator_type[i_source],object@loc_index_emulator[[i_source]],math_model[[i_source]]);
mean_cm_test_no_mean=mean_cm_test
if(object@have_trend[i_source]){
theta_m=as.matrix(object@post_individual_par[[i_source]][i_S,(object@p_x[i_source]+3):(object@p_x[i_source]+2+object@q[i_source])])
mean_cm_test=mean_cm_test+X_testing[[i_source]]%*%theta_m
}
record_cm_pred=record_cm_pred+mean_cm_test
record_cm_pred_no_mean=record_cm_pred_no_mean+mean_cm_test_no_mean
}
record_cm_pred=record_cm_pred/SS
record_cm_pred_no_mean=record_cm_pred_no_mean/SS
predictobj@math_model_mean[[i_source]]=record_cm_pred
predictobj@math_model_mean_no_trend[[i_source]]=record_cm_pred_no_mean
}
cat('Complete the mathematical model prediction \n')
r0=list()
for(i in 1:object@p_x[num_sources_1]){
r0[[i]]=abs(outer(object@input[[num_sources_1]][,i],testing_input[[num_sources_1]][,i],'-'))
}
delta_mean=0
var_delta=0;
for(i_S in (1: SS) ){
par_cur=object@post_individual_par[[num_sources_1]][i_S,]
sigma_2_delta=par_cur[object@p_x[num_sources_1]+1]
L_delta=Get_R_new(exp(par_cur[1:object@p_x[num_sources_1]]),0,
object@R0[[num_sources_1]],object@kernel_type[num_sources_1],object@alpha[[num_sources_1]],
rep(1,num_obs));
Sigma_inv_delta=(backsolve(t(L_delta),forwardsolve(L_delta, object@post_delta[i_S,] )))
r=separable_kernel(r0,exp(par_cur[1:object@p_x[num_sources_1]]),kernel_type=object@kernel_type[num_sources_1],object@alpha[[num_sources_1]])
pred_mean= t(r)%*%Sigma_inv_delta
delta_mean=delta_mean+ pred_mean
if(!is.null(interval_est)){
R_tilde_inv_r=(backsolve(t(L_delta),forwardsolve(L_delta, r )))
for(i_testing in 1:N_testing){
c_star_record_delta[i_testing]=1-r[,i_testing]%*%R_tilde_inv_r[,i_testing]
}
var_delta=var_delta+sigma_2_delta*c_star_record_delta
}
}
delta_mean=delta_mean/SS
var_delta=var_delta/SS
predictobj@delta_mean=delta_mean
cat('Complete the model discrepancy \n')
for(i_source in 1: object@num_sources){
measurement_bias_no_mean=0
for(i in 1:object@p_x[i_source]){
r0[[i]]=abs(outer(object@input[[i_source]][,i],testing_input[[i_source]][,i],'-'))
}
N_testing=dim(testing_input[[i_source]])[1]
if(!is.null(interval_est)){
record_interval=matrix(0,dim(testing_input[[i_source]])[1],length(interval_est[[i_source]]));
c_star_record=rep(0,dim(testing_input[[i_source]])[1])
}
var_meaurement=0;
for(i_S in 1: SS ){
theta=object@post_theta[i_S,]
beta_delta=exp(object@post_individual_par[[i_source]][i_S,1:object@p_x[i_source]])
eta_delta=exp(object@post_individual_par[[i_source]][i_S,object@p_x[i_source]+1])
sigma_2_delta=object@post_individual_par[[i_source]][i_S,object@p_x[i_source]+2]
mean_cm=mathematical_model_eval(object@input[[i_source]],theta,object@simul_type[[i_source]],object@emulator[[i_source]],
object@emulator_type[i_source],object@loc_index_emulator[[i_source]],math_model[[i_source]]);
output_minus_cm=object@output[[i_source]]- mean_cm
if(object@have_trend[i_source]){
theta_m=as.matrix(object@post_individual_par[[i_source]][i_S,(object@p_x[i_source]+3):(object@p_x[i_source]+2+object@q[i_source])])
output_minus_cm=output_minus_cm-object@X[[i_source]]%*%theta_m
}
output_minus_cm_minus_delta=output_minus_cm-object@post_delta[i_S,]
if(object@discrepancy_type[i_source]=="GaSP"){
L=Get_R_new( beta_delta, eta_delta,
object@R0[[i_source]], object@kernel_type[[i_source]],object@alpha[[i_source]],
1/object@output_weights[[i_source]])
}else if(object@discrepancy_type[i_source]=="S-GaSP"){
L=Get_R_z_new( beta_delta, eta_delta, object@lambda_z[[i_source]][i_S],
object@R0[[i_source]], object@kernel_type[[i_source]],object@alpha[[i_source]],
1/object@output_weights[[i_source]])
}
R_inv_y=backsolve(t(L),forwardsolve(L,output_minus_cm_minus_delta ))
if(object@discrepancy_type[i_source]=="S-GaSP"){
R_inv_y=Update_R_inv_y(R_inv_y,object@R0[[i_source]],beta_delta,object@kernel_type[i_source],object@alpha[[i_source]],
object@lambda_z[[i_source]][i_S],object@num_obs[i_source])
}
r=separable_kernel(r0,beta_delta,kernel_type=object@kernel_type[i_source],object@alpha[[i_source]])
rt_R_inv_y=t(r)%*%R_inv_y
measurement_bias_no_mean=measurement_bias_no_mean+rt_R_inv_y
if(!is.null(interval_est)){
if(object@discrepancy_type[i_source]=="GaSP"){
R_tilde_inv_r=(backsolve(t(L),forwardsolve(L, r )))
for(i_testing in 1:N_testing){
c_star_record[i_testing]=1-r[,i_testing]%*%R_tilde_inv_r[,i_testing]
}
var_meaurement=sigma_2_delta*c_star_record
if(interval_data[i_source]==T){
var_meaurement=var_meaurement+sigma_2_delta*eta_delta/testing_output_weights[[i_source]]
}
}else if(object@discrepancy_type[i_source]=="S-GaSP"){
R=separable_kernel(object@R0[[i_source]], beta_delta, object@kernel_type[i_source],
object@alpha[[i_source]])
R_tilde=R+1/object@lambda_z[[i_source]][i_S]*diag(object@num_obs[i_source]);
L_R_tilde=Chol_Eigen(R_tilde)
I_minus_R_R_tilde=diag(object@num_obs[i_source])-t(backsolve(t(L_R_tilde),forwardsolve(L_R_tilde,R )))
R_tilde_inv_r=(backsolve(t(L_R_tilde),forwardsolve(L_R_tilde, r )))
r_z=I_minus_R_R_tilde%*%r
R_z_tilde_inv_r_z=(backsolve(t(L),forwardsolve(L, r_z )))
for(i_testing in 1:N_testing){
c_star_record[i_testing]=1-t(r[,i_testing])%*%R_tilde_inv_r[,i_testing]-r_z[,i_testing]%*%R_z_tilde_inv_r_z[,i_testing]
}
var_meaurement=sigma_2_delta*c_star_record
if(interval_data[i_source]==T){
var_meaurement=var_meaurement+sigma_2_delta*eta_delta/testing_output_weights[[i_source]]
}
}
}
}
measurement_bias_no_mean=measurement_bias_no_mean/SS
var_meaurement=var_meaurement/SS
predictobj@measurement_bias_mean[[i_source]]=measurement_bias_no_mean
if(!is.null(interval_est)){
qnorm_all=qnorm(interval_est[[i_source]]);
for(i_int in 1:length(interval_est[[i_source]]) ){
record_interval[,i_int]=record_interval[,i_int]+measurement_bias_no_mean+qnorm_all[i_int]*sqrt(var_meaurement+var_delta)
}
predictobj@interval[[i_source]]=record_interval
}
predictobj@mean[[i_source]]=predictobj@delta_mean+predictobj@measurement_bias_mean[[i_source]]+predictobj@math_model_mean[[i_source]]
}
return(predictobj)
} |
a()
b |
"xsy" <-
function(x,y,s) {
if (missing(x)) messagena("x")
if (missing(y)) messagena("y")
if (missing(s)) messagena("s")
n <- length(x)
nn <- length(s)
result <- single(1)
f.res <- .Fortran("xsyz",
x=to.single(x),
y=to.single(y),
s=to.single(s),
n=to.integer(n),
nn=to.integer(nn),
result=to.single(result))
list(result=f.res$result)
} |
sgcca <- function (A, C = 1-diag(length(A)), c1 = rep(1, length(A)), ncomp = rep(1, length(A)), scheme = "centroid", scale = TRUE, init = "svd", bias = TRUE, tol = .Machine$double.eps, verbose = FALSE){
ndefl <- ncomp-1
N <- max(ndefl)
J <- length(A)
pjs <- sapply(A,NCOL)
nb_ind <- NROW(A[[1]])
AVE_X = list()
AVE_outer <- rep(NA,max(ncomp))
if ( any(ncomp < 1) ) stop("One must compute at least one component per block!")
if (any(ncomp-pjs > 0)) stop("For each block, choose a number of components smaller than the number of variables!")
if (is.vector(c1)){
if (any(c1 < 1/sqrt(pjs) | c1 > 1 ))
stop("L1 constraints (c1) must vary between 1/sqrt(p_j) and 1.")
}
if (is.matrix(c1)){
if (any(apply(c1, 1, function(x) any(x < 1/sqrt(pjs)))))
stop("L1 constraints (c1) must vary between 1/sqrt(p_j) and 1.")
}
if (mode(scheme) != "function") {
if ((scheme != "horst" ) & (scheme != "factorial") & (scheme != "centroid")) {
stop("Choose one of the three following schemes: horst, centroid, factorial or design the g function")
}
if (verbose) cat("Computation of the SGCCA block components based on the", scheme, "scheme \n")
}
if (mode(scheme) == "function" & verbose) {
cat("Computation of the SGCCA block components based on the g scheme \n")
}
if (scale == TRUE) {
A = lapply(A, function(x) scale2(x, bias = bias))
A = lapply(A, function(x) x/sqrt(NCOL(x)))
}
ndefl <- ncomp-1
N <- max(ndefl)
J <- length(A)
pjs <- sapply(A,NCOL)
nb_ind <- NROW(A[[1]])
AVE_X = list()
AVE_outer <- rep(NA,max(ncomp))
if (N == 0) {
result <- sgccak(A, C, c1, scheme, init = init, bias = bias, tol = tol, verbose = verbose)
Y <- NULL
for (b in 1:J) Y[[b]] <- result$Y[,b, drop = FALSE]
for (j in 1:J) AVE_X[[j]] = mean(cor(A[[j]], Y[[j]])^2)
AVE_outer <- sum(pjs * unlist(AVE_X))/sum(pjs)
AVE <- list(AVE_X = AVE_X,
AVE_outer = AVE_outer,
AVE_inner = result$AVE_inner)
a <- lapply(result$a, cbind)
for (b in 1:J) {
rownames(a[[b]]) = colnames(A[[b]])
rownames(Y[[b]]) = rownames(A[[b]])
colnames(Y[[b]]) = "comp1"
}
out <- list(Y=Y, a=a, astar=a,
C=C, scheme=scheme, c1=c1, ncomp=ncomp,
crit = result$crit[length(result$crit)],
AVE = AVE)
class(out) <- "sgcca"
return(out)
}
Y <- NULL
R <- A
P <- a <- astar <- NULL
crit <- list()
AVE_inner <- rep(NA,max(ncomp))
for (b in 1:J) P[[b]] <- a[[b]] <- astar[[b]] <- matrix(NA,pjs[[b]],N+1)
for (b in 1:J) Y[[b]] <- matrix(NA,nb_ind,N+1)
for (n in 1:N) {
if (verbose) cat(paste0("Computation of the SGCCA block components
if(is.vector(c1)){
sgcca.result <- sgccak(R, C, c1 = c1 , scheme=scheme, init = init, bias = bias, tol = tol, verbose=verbose)
} else{
sgcca.result <- sgccak(R, C, c1 = c1[n, ] , scheme=scheme, init = init, bias = bias, tol = tol, verbose=verbose)
}
AVE_inner[n] <- sgcca.result$AVE_inner
crit[[n]] <- sgcca.result$crit
for (b in 1:J) Y[[b]][,n] <- sgcca.result$Y[ ,b]
for (q in which(n <ndefl)) if(sum(sgcca.result$a[[q]]!=0) <= 1) warning(sprintf("Deflation failed because only one variable was selected for block
defla.result <- defl.select(sgcca.result$Y, R, ndefl, n, nbloc = J)
R <- defla.result$resdefl
for (b in 1:J) {
P[[b]][,n] <- defla.result$pdefl[[b]]
a[[b]][,n] <- sgcca.result$a[[b]]
}
if (n==1) {
for (b in 1:J) astar[[b]][,n] <- sgcca.result$a[[b]]
}
else {
for (b in 1:J) astar[[b]][,n] <- sgcca.result$a[[b]] - astar[[b]][,(1:n-1),drop=F] %*% drop( t(a[[b]][,n]) %*% P[[b]][,1:(n-1),drop=F] )
}
}
if (verbose) cat(paste0("Computation of the SGCCA block components
if(is.vector(c1)) {
sgcca.result <- sgccak(R, C, c1 = c1, scheme=scheme, init = init, bias = bias, tol = tol, verbose=verbose)
} else{
sgcca.result <- sgccak(R, C, c1 = c1[N+1, ], scheme=scheme, init = init, bias = bias, tol = tol, verbose=verbose)
}
AVE_inner[max(ncomp)] <- sgcca.result$AVE_inner
crit[[N+1]] <- sgcca.result$crit
for (b in 1:J) {
Y[[b]][,N+1] <- sgcca.result$Y[, b]
a[[b]][,N+1] <- sgcca.result$a[[b]]
astar[[b]][,N+1] <- sgcca.result$a[[b]] - astar[[b]][,(1:N),drop=F] %*% drop( t(a[[b]][,(N+1)]) %*% P[[b]][,1:(N),drop=F] )
rownames(a[[b]]) = rownames(astar[[b]]) = colnames(A[[b]])
rownames(Y[[b]]) = rownames(A[[b]])
colnames(Y[[b]]) = paste0("comp", 1:max(ncomp))
}
shave.matlist <- function(mat_list, nb_cols) mapply(function(m, nbcomp) m[, 1:nbcomp, drop = FALSE], mat_list, nb_cols, SIMPLIFY=FALSE)
shave.veclist <- function(vec_list, nb_elts) mapply(function(m, nbcomp) m[1:nbcomp], vec_list, nb_elts, SIMPLIFY=FALSE)
for (j in 1:J) AVE_X[[j]] = apply(cor(A[[j]], Y[[j]])^2, 2, mean)
outer = matrix(unlist(AVE_X), nrow = max(ncomp))
for (j in 1:max(ncomp)) AVE_outer[j] <- sum(pjs * outer[j, ])/sum(pjs)
Y = shave.matlist(Y, ncomp)
AVE_X = shave.veclist(AVE_X, ncomp)
AVE <- list(AVE_X = AVE_X,
AVE_outer = AVE_outer,
AVE_inner = AVE_inner)
out <- list(Y = shave.matlist(Y, ncomp),
a = shave.matlist(a, ncomp),
astar = shave.matlist(astar, ncomp),
C = C, c1 = c1, scheme = scheme,
ncomp = ncomp, crit = crit,
AVE = AVE
)
class(out) <- "sgcca"
return(out)
} |
.packageName <- 'mousetrack'
sampenc <- function(y, M, r){
n = length(y)
run = lastrun = vector(mode = "numeric", length = n)
A = B = vector(mode = "numeric", length = M)
for (i in 1:(n-1)){
nj = n-i
y1 = y[i]
for (jj in 1:nj){
j = jj+i
if (abs(y[j] - y1) < r){
run[jj] = lastrun[jj] + 1
M1 = min(M, run[jj])
for (m in 1:M1){
A[m] = A[m] + 1
if (j < n){
B[m] = B[m] + 1
}
}
} else {
run[jj] = 0
}
}
for (j in 1:nj){
lastrun[j] = run[j]
}
}
N = n*(n-1)/2;
B = c(N, B[1:(M-1)])
p = A/B;
e = -log(p);
return ( cbind(e, A, B) )
} |
`sinlogr` <-
function (t)
{
y<-sinlog(t)
y <- c(y, rev(y))
n <- length(y)
y[seq(from=1, to=n, by=2)]
} |
dLRT <-
function(MPRMobj){
eprm <- EPRM_red(MPRMobj$data)
emp_Chi2 <- -2*(eprm$logLikelihood-MPRMobj$logLikelihood)
df <- length(MPRMobj$estpar)-length(eprm$estpar)
pvalue <- 1-pchisq(emp_Chi2,df)
res <- list(emp_Chi2=emp_Chi2, df=df, pvalue=pvalue)
class(res) <- "dLR"
res
} |
setMethod(
f="missingValues",
signature=c("ClusterMixedDataModel"),
function(x)
{
nbData <- length(x@lcomponent)
res <- vector("list", nbData)
if(nbData>0)
{
for (l in 1:nbData)
{
res[[l]] <- cbind(x@lcomponent[[l]]@missing, (x@lcomponent[[l]]@data)[x@lcomponent[[l]]@missing]);
colnames(res[[l]])[3] <- "value";
}
}
return(res)
}
)
setMethod(
f="missingValues",
signature=c("ClusterDiagGaussianComponent"),
function(x)
{ res = cbind(x@missing, x@data[x@missing]);
colnames(res)[3] <- "value";
nmiss <- nrow(x@missing)
if (nmiss > 0) { rownames(res) <- 1:nmiss}
return(res)
}
)
setMethod(
f="missingValues",
signature=c("ClusterDiagGaussian"),
function(x) { return(missingValues(x@component));}
)
setMethod(
f="missingValues",
signature=c("ClusterGammaComponent"),
function(x)
{ res = cbind(x@missing, x@data[x@missing]);
colnames(res)[3] <- "value";
nmiss <- nrow(x@missing)
if (nmiss > 0) { rownames(res) <- 1:nmiss}
return(res)
}
)
setMethod(
f="missingValues",
signature=c("ClusterGamma"),
function(x) { return(missingValues(x@component));}
)
setMethod(
f="missingValues",
signature=c("ClusterCategoricalComponent"),
function(x)
{ res = cbind(x@missing, x@data[x@missing]);
colnames(res)[3] <- "value";
nmiss <- nrow(x@missing)
if (nmiss > 0) { rownames(res) <- 1:nmiss}
return(res)
}
)
setMethod(
f="missingValues",
signature=c("ClusterCategorical"),
function(x) { return(missingValues(x@component));}
)
setMethod(
f="missingValues",
signature=c("ClusterPoissonComponent"),
function(x)
{ res = cbind(x@missing, x@data[x@missing]);
colnames(res)[3] <- "value";
nmiss <- nrow(x@missing)
if (nmiss > 0) { rownames(res) <- 1:nmiss}
return(res)
}
)
setMethod(
f="missingValues",
signature=c("ClusterPoisson"),
function(x) { return(missingValues(x@component));}
)
setMethod(
f="missingValues",
signature=c("ClusterPredict"),
function(x)
{ res = cbind(x@missing, x@data[x@missing])
colnames(res)[3] <- "value"
nmiss <- nrow(x@missing)
if (nmiss > 0) { rownames(res) <- 1:nmiss}
return(res)
}
)
setMethod(
f="missingValues",
signature=c("ClusterPredictMixedData"),
function(x)
{
nbData <- length(x@ldata)
res <- vector("list", nbData)
if(nbData>0)
{
for (l in 1:nbData)
{
res[[l]] <- cbind(x@lmissing[[l]], (x@ldata[[l]])[x@lmissing[[l]]]);
colnames(res[[l]])[3] <- "value";
}
}
return(res)
}
)
setMethod(
f="missingValues",
signature=c("KmmComponent"),
function(x) { return(NULL)}
)
setMethod(
f="missingValues",
signature=c("KmmModel"),
function(x) { return(NULL)}
) |
context("Parameteric Bootstrap Sampling")
set.seed(1234)
n <- 10
p <- 30
Niter <- 10
group <- rep(1:(p/10), each = 10)
Weights <- rep(1, p/10)
X <- matrix(rnorm(n*p), n)
Y <- X%*%rep(1,p) + rnorm(n)
test_that("lasso", {
expect_error(PBsampler(X=X, PE_1=rep(0,p),sig2_1=1, lbd_1 = .5,
weights=rep(1,p), group=1:p, niter=10, type="lasso",
PEtype="coeff", parallel=TRUE), NA)
})
test_that("PE length under two types, \"mu\" and \"coeff\"", {
expect_error(PBsampler(X = X, PE_1 = rep(0, p-1), sig2_1 = 1, lbd_1 = .5,
weights = Weights, group = group, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = FALSE),
"PE must have a same length")
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = Weights, group = group, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = FALSE)
, NA)
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = 1,
weights = Weights, group = group, niter = Niter,
type = "sgrlasso", PEtype = "coeff", parallel = FALSE)
, NA)
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = 1,
niter = Niter, type = "slasso", PEtype = "coeff",
parallel = FALSE)
, NA)
expect_error(PBsampler(X = X, PE_1 = rep(0, n-1), sig2_1 = 1, lbd_1 = .5,
weights = Weights, group = group, niter = Niter,
type = "grlasso", PEtype = "mu", parallel = FALSE),
"PE must have a same length")
expect_error(PBsampler(X = X, PE_1 = rep(0, n), sig2_1 = 1, lbd_1 = .5,
weights = Weights, group = group, niter = Niter,
type = "grlasso", PEtype = "mu", parallel = FALSE)
, NA)
expect_error(PBsampler(X = X, PE_1 = rep(0, n), sig2_1 = 1, lbd_1 = .5,
PE_2 = rep(0, n), sig2_2 = 1, lbd_2 = .5,
weights = Weights, group = group, niter = Niter,
type = "grlasso", PEtype = "mu", parallel = FALSE)
, NA)
})
test_that("missing parameter", {
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1,
weights = Weights, group = group, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = FALSE)
, "provide all the parameters")
expect_error(PBsampler(X = X, PE_1 = rep(0, n), sig2_1 = 1, lbd_1 = .5,
PE_2 = rep(0, n), sig2_2 = 1,
weights = Weights, group = group, niter = Niter,
type = "grlasso", PEtype = "mu", parallel = FALSE)
, "provide all the parameters")
})
test_that("Improper value of parameter, sig2/lbd/weights", {
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = -1, lbd_1 = .5,
weights = Weights, group = group, niter = Niter,
type = "grlasso", parallel = FALSE),
"sig2 should be positive")
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = -1,
weights = Weights, group = group, niter = Niter,
type = "grlasso", parallel = FALSE),
"lbd should be non-negative")
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = c(1,2), lbd_1 = .5,
weights = Weights, group = group, niter = Niter,
type = "grlasso", parallel = FALSE),
"sig2/lbd should be a scalar")
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = c(-1, rep(1, p / 10 - 1)), group = group,
niter = Niter, type = "grlasso", parallel = FALSE),
"weights should be positive")
})
test_that("group argument",{
Group <- rep(1:(p/10), each = 10); Weights <- rep(1, p/10)
Group1 <- rep(1,p); Weights1 <- 1
Group2 <- rep(1,p-1); Weights2 <- 1
Group3 <- rep(c(1,2,4),each=10); Weights3 <- rep(1, 3)
Group4 <- rep(-1,p); Weights4 <- 1
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = Weights, group = Group, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = FALSE)
, NA)
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = Weights1, group = Group1, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = FALSE)
, NA)
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = Weights2, group = Group2, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = FALSE)
, "group must have a same length with the number of X columns")
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = Weights3, group = Group3, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = FALSE)
, "group index has to be a consecutive integer starting from 1"
)
expect_error(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = Weights4, group = Group4, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = FALSE)
, "group index has to be a consecutive integer starting from 1"
)
})
set.seed(1234)
n <- 40
p <- 50
Niter <- 10
group <- rep(1:(p/10), each = 10)
weights <- rep(1, p/10)
parallel <- (.Platform$OS.type != "windows")
X <- matrix(rnorm(n*p), n)
Y <- X %*% c(rep(1,5),rep(0,p-5)) + rnorm(n)
test_that("confidence interval", {
object <- PBsampler(X = X,PE_1 = c(1,1,rep(0,p-2)),sig2_1 = 1,lbd_1 = .5,
weights = rep(1,p), group = 1:p, niter = 100,type="lasso",
PEtype = "coeff", parallel=parallel)
expect_error(PB.CI(object = object, alpha = .05, method = "debias",
parallel=parallel)
, NA)
expect_error(PB.CI(object = object, alpha = .05, method = "none",
parallel=parallel)
, NA)
object <- PBsampler(X = X,PE_1 = c(1,1,rep(0,p-2)),sig2_1 = 1,lbd_1 = 1,
niter=100,type="slasso",parallel=parallel)
expect_error(PB.CI(object = object, alpha = .05, method = "debias",
parallel=parallel)
, NA)
expect_error(PB.CI(object = object, alpha = .05, method = "none")
, NA)
object <- PBsampler(X = X,PE_1 = c(1,1,rep(0,p-2)),sig2_1 = 1,lbd_1 = .5,
group=group,niter=100,type="grlasso",parallel=parallel)
expect_error(PB.CI(object = object, alpha = .05, method = "debias",
parallel=parallel)
, NA)
expect_error(PB.CI(object = object, alpha = .05, method = "none")
, NA)
object <- PBsampler(X = X,PE_1 = c(1,1,rep(0,p-2)),sig2_1 = 1,lbd_1 = 1,
group=group,niter=100,type="sgrlasso",parallel=parallel)
expect_error(PB.CI(object = object, alpha = .05, method = "debias",
parallel=parallel)
, NA)
expect_error(PB.CI(object = object, alpha = .05, method = "none")
, NA)
})
if(.Platform$OS.type != "windows"){
test_that("parallel", {
expect_warning(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = weights, group = group, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = TRUE,
ncores = 1)
, "set ncores to 2")
expect_warning(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = weights, group = group, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = TRUE,
ncores = 2)
, NA)
})
} else {
test_that("parallel", {
expect_warning(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = weights, group = group, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = TRUE,
ncores = 1)
, "Under Windows platform")
expect_warning(PBsampler(X = X, PE_1 = rep(0, p), sig2_1 = 1, lbd_1 = .5,
weights = weights, group = group, niter = Niter,
type = "grlasso", PEtype = "coeff", parallel = TRUE,
ncores = 2)
, "Under Windows platform")
})
} |
library(survival)
test1 <- list(time=c(4,3,1,1,2,2,3),
status=c(1,1,1,0,1,1,0),
x=c(0,2,1,1,1,0,0),
sex=c(0,0,0,0,1,1,1))
fit <- coxph(Surv(time, status) ~ x + strata(sex), test1)
out <- BF(fit, "x > .5")
test_that("BF.coxph returns correct results,", {
expect_true(out$PHP_confirmatory[1] > .5 & out$PHP_confirmatory[2] < .5)
})
test2 <- list(start=c(1,2,5,2,1,7,3,4,8,8),
stop=c(2,3,6,7,8,9,9,9,14,17),
event=c(1,1,1,1,1,1,1,0,0,0),
pred=c(1,0,0,1,0,1,1,1,0,0))
fit <- coxph(Surv(start, stop, event) ~ pred, test2)
out <- BF(fit, hypothesis = "pred > .5; pred = .5")
test_that("BF.coxph returns correct results,", {
expect_true(out$PHP_confirmatory[1] < .5 & out$PHP_confirmatory[2] > .5)
})
out <- BF(fit, hypothesis = "pred > .5; pred = .5",complement = FALSE)
test_that("BF.coxph returns correct results,", {
expect_equivalent(
out$PHP_confirmatory, c(0.194,0.806), tol = .1
)
}) |
"cdfemu" <-
function(x, para, paracheck=TRUE, yacoubsintegral=TRUE) {
if(paracheck == TRUE) {
if(! are.paremu.valid(para)) return()
}
ETA.SMALL <- 1E-3
SMALL <- 1E-10
ONEminusSMALL <- 1 - SMALL
LARGE <- sqrt(.Machine$double.xmax)
names(para$para) <- NULL
E <- para$para[1]
M <- para$para[2]
b <- sqrt( 2*M / (1-E^2) )
Ymuleft <- sqrt(pi)*2^(3/2 - M)*(1 - E^2)^M
Ymuleft <- Ymuleft / (gamma(M) * E^(M-1/2))
if(E >= 1 - ETA.SMALL) {
yacoubsintegral <- FALSE
}
if(E <= ETA.SMALL) {
yacoubsintegral <- FALSE
}
"Ymu" <- function(x=NULL, y=NULL) {
if(y < 0) return(NA)
"afunc" <- function(t) {
B <- vector(mode="numeric", length=length(t))
for(i in 1:length(B)) {
toI <- t[i]^2*x
b <- NULL
try(b <- besselI(toI, nu=M-1/2, expon.scaled=TRUE)/exp(-toI),
silent=TRUE)
if(is.null(b) | is.nan(b) | ! is.finite(b)) b <- LARGE
B[i] <- b
}
B[! is.finite(B)] <- LARGE
z <- exp(-t^2)*t^(2*M) * B
z[! is.finite(z)] <- LARGE
return( z )
}
int1 <- NULL
try( int1 <- integrate(afunc, lower=y, upper=Inf), silent=TRUE )
if(is.null(int1)) return(NA)
val <- int1$value
if(val == 0) return(0)
return(Ymuleft * int1$value)
}
f <- sapply(1:length(x), function(i) {
xi <- x[i]
if(xi == 0) return(0)
if(is.na(xi) || xi < 0) return(NA)
if(yacoubsintegral) {
Y <- Ymu(x=E, y=b*xi)
if(is.na(Y)) {
return(ONEminusSMALL)
} else {
return(1 - Y)
}
} else {
int1 <- NULL
try( int1 <- integrate(pdfemu, 0, xi, para=para, paracheck=FALSE) )
if(is.null(int1)) return(NA)
val <- int1$value
ifelse(val >= ONEminusSMALL, return(ONEminusSMALL),
return(val)) } })
names(f) <- NULL
return(f)
} |
NULL
.ggroup.guiWidgetsToolkittcltk <- function(toolkit, horizontal=TRUE, spacing=5, use.scrollwindow=FALSE, container=NULL, ...) {
GGroup$new(toolkit, horizontal, spacing=spacing, use.scrollwindow=use.scrollwindow, container, ...)
}
GGroup <- setRefClass("GGroup",
contains="GBoxContainer",
fields=list(
use_scrollwindow="character"
),
methods=list(
initialize=function(toolkit=NULL,
horizontal=TRUE, spacing=5,
use.scrollwindow=FALSE,
container=NULL, ...) {
initFields(horizontal=horizontal,
use_scrollwindow=as.character(use.scrollwindow))
if(use_scrollwindow != FALSE) {
init_scrollwindow(container)
tkconfigure(block, width=400, height=400)
tkgrid.propagate(block, "FALSE")
} else {
widget <<- ttkframe(getWidget(container))
block <<- widget
}
set_spacing(spacing)
add_to_parent(container, .self, ...)
callSuper(toolkit)
},
init_scrollwindow=function(container) {
block <<- ttkframe(container$get_widget())
cnv <- tkcanvas(block)
xscr <- ttkscrollbar(block, orient="horizontal",
command=function(...)tkxview(cnv,...))
yscr <- ttkscrollbar(block,
command=function(...)tkyview(cnv,...))
do_x <- horizontal
do_y <- !horizontal
tkconfigure(cnv,
xscrollcommand = function(...) tkset(xscr,...))
tkconfigure(cnv,
yscrollcommand = function(...) tkset(yscr,...))
tkgrid(cnv,row=0,column=0, sticky="news")
if(do_x)
tkgrid(xscr,row=1,column=0, sticky="ew")
if(do_y)
tkgrid(yscr,row=0,column=1, sticky="ns")
tkgrid.columnconfigure(cnv, 0, weight=1)
tkgrid.rowconfigure(cnv, 0, weight=1)
widget <<- ttkframe(cnv)
widgetID <- tcl(cnv,"create","window",0,0,anchor="nw",window=widget)
tkbind(block, "<Map>", function() {
width <- tkwinfo("width", block)
height <- tkwinfo("height", block)
if(do_x) tkconfigure(cnv, width=width)
if(do_y) tkconfigure(cnv, height=height)
})
tkbind(block, "<Configure>", function(W) {
width <- as.numeric(tkwinfo("width", W))
height <- as.numeric(tkwinfo("height", W))
if(do_x) {
scroll_size <- as.numeric(tkwinfo("height", xscr))
tkconfigure(cnv, height=height - scroll_size, width=width)
tkitemconfigure(cnv, widgetID, height=height - scroll_size - 2)
}
if(do_y) {
scroll_size <- as.numeric(tkwinfo("width", yscr))
tkconfigure(cnv, height=height, width=width - scroll_size)
tkitemconfigure(cnv, widgetID, width=width - scroll_size - 2)
}
})
tkbind(widget,"<Configure>",function() {
bbox <- tcl(cnv,"bbox","all")
tcl(cnv,"config",scrollregion=bbox)
})
}
)) |
dmsparsefmt <-
function (x, fmt)
{
z <- {
}
for (i in 1:length(x)) {
z1 <- dmsabs(x[i], fmt)
mm <- ifelse(is.na(z1$mm), 0, z1$mm)
ss <- ifelse(is.na(z1$ss), 0, z1$ss)
decdeg <- dms2dd(z1$dd, mm, ss, z1$L)
z2 <- data.frame(z1, decdeg, stringsAsFactors = F)
z <- rbind(z, z2)
}
z <- data.frame(coord = x, z, stringsAsFactors = F)
return(z)
} |
plotpar <- function(qp, x = NULL, panel = NULL, xpanel = NULL,
ypanel = NULL, color = NULL, geom = 'bar', ci = T) {
if (!missing(x)) x <- deparse(substitute(x))
if (!missing(panel)) panel <- deparse(substitute(panel))
if (!missing(xpanel)) xpanel <- deparse(substitute(xpanel))
if (!missing(ypanel)) ypanel <- deparse(substitute(ypanel))
if (!missing(color)) color <- deparse(substitute(color))
plotpar_(qp, x, panel, xpanel, ypanel, color, geom)
} |
EqRSintra <-
function(comm, dis = NULL, structures = NULL,
option=c("eq", "normed1", "normed2"), formula = c("QE", "EDI"), tol = 1e-8, metmean = c("harmonic", "arithmetic")){
df <- comm
metmean <- metmean[1]
if(!option[1]%in%c("eq", "normed1", "normed2")) stop("unavailable option, please modify; option can be eq, normed1, or normed2")
if(!(is.data.frame(df) | is.matrix(df))) stop("df must be a matrix or a data frame")
if(!(is.data.frame(df))) df <- as.data.frame(df)
if(is.null(colnames(df)) | is.null(rownames(df))) stop("df must have both row names and column names")
if(length(colnames(df)[colSums(df)>0])==1) stop("df must contain at least two species with positive occurrence in at least one site")
if (is.null(dis)){
dis <- as.dist((matrix(1, ncol(df), ncol(df)) - diag(rep(1, ncol(df)))))
attributes(dis)$Labels <- colnames(df)
formula <- "QE"
}
if(!inherits(dis, "dist")) stop("dis must be of class dist")
if(!formula[1]%in%c("QE","EDI")) stop("formula can be either QE or EDI")
if(any(!colnames(df)%in%attributes(dis)$Labels)) stop("column names in df are missing in dis")
else{
d <- as.matrix(dis)[colnames(df), colnames(df)]
if(formula[1]=="EDI"){
op <- options()$warn
options(warn=-1)
if(!is.euclid(as.dist(d))) stop("dis should be Euclidean")
options(warn=op)
d <- d^2/2
}
else{
op <- options()$warn
options(warn=-1)
if(!is.euclid(sqrt(as.dist(d)))) stop("dis should be squared Euclidean")
options(warn=op)
}
if(any(d>1)) d <- d/max(d)
}
nsp <- ncol(df)
if(any(rowSums(df)<tol)) warnings("empty sites have been removed")
if(sum(df)<tol) stop("df must contain nonnegative values and the sum of its values must be positive")
dfold <- df
df <- df[rowSums(df)>tol, ]
ncomm <- nrow(df)
if(nrow(df)==1) stop("df must contain at least two non-empty sites")
if(!is.null(structures)){
if(!inherits(structures, "data.frame")) stop("structures should be a data frame or NULL")
if(!nrow(structures)==nrow(dfold)) stop("incorrect number of rows in structures")
structures <- structures[rowSums(dfold)>0, , drop=FALSE]
for(i in 1:ncol(structures)) structures[,i] <-factor(structures[,i])
if(!is.null(rownames(structures)) & !is.null(rownames(df))){
e <- sum(abs(match(rownames(df), rownames(structures))-(1:ncomm)))
if(e>1e-8) warning("be careful that rownames in df should be in the same order as rownames in structures")
}
checknested <- function(forstru){
n <- ncol(forstru)
for (i in 1:(n - 1)) {
tf <- table(forstru[, c(i, i + 1)])
niv <- apply(tf, 1, function(x) sum(x != 0))
if (any(niv != 1)) {
stop(paste("non hierarchical design for structures, column", i, "is not nested in column", i + 1))
}
}
}
if(ncol(structures)> 1) checknested(structures)
}
P <- as.data.frame(sweep(df, 1, rowSums(df), "/"))
if(is.null(structures)) w <- rep(1/nrow(df), nrow(df))
else{
nc <- ncol(structures)
fun <- function(i){
x <- table(structures[, i], structures[, i-1])
x[x>0] <- 1
x <- rowSums(x)
v <- x[structures[, i]]
v <- 1/v
return(v)
}
if(ncol(structures)==1){
firstw <- table(structures[, 1])
w <- 1/firstw[structures[, 1]]/length(unique(structures[, 1]))
}
else {
listw <- lapply(2:nc, fun)
firstw <- table(structures[, 1])
firstw <- 1/firstw[structures[, 1]]
finalw <- 1/length(unique(structures[, ncol(structures)]))
forw <- cbind.data.frame(as.vector(firstw), as.vector(listw), as.vector(rep(finalw, nrow(structures))))
w <- apply(forw, 1, prod)
}
}
df <- P * w
if(!is.null(structures)){
if(length(levels(factor(structures[, 1])))==1) stop("All sites belong to a unique level in the first column of structures, remove this first column in structures")
if(length(levels(factor(structures[, 1])))==nrow(df)) stop("Each site belongs to a distinct level in the first column of structures, this first column is useless, remove it and re-run")
}
diversity <- function(x){
if(sum(x)==0) return(0)
else return(t(x)%*%d%*%x)
}
op <- options()$warn
options(warn=-1)
a <- apqe(as.data.frame(t(df)), sqrt(2*as.dist(d)), structures)
options(warn=op)
dfprop <- sweep(df, 1, rowSums(df), "/")
divsites <- sapply(as.data.frame(t(dfprop)), diversity)
if(metmean=="arithmetic")
alphaEQ <- sum(w*(1/(1-divsites)))
else
alphaEQ <- 1/(1-sum(w*divsites))
nlev <- nrow(a$results)
beta1 <- (1-sum(a$results[-c(1, nlev), 1]))/(1-a$results[nlev ,1])
if(nlev==3){
gamma <- beta1*alphaEQ
if(option[1]=="eq"){
res <- cbind.data.frame(c(beta1, alphaEQ, gamma))
rownames(res) <- c("Inter-sites", "Intra-sites", "Gamma")
colnames(res) <- "Equivalent numbers"
}
else if(option[1]=="normed1"){
beta1 <- (1-1/beta1)/(1-1/ncomm)
res <- cbind.data.frame(beta1)
rownames(res) <- c("Inter-sites")
colnames(res) <- "Normed inter-site diversity"
}
else if(option[1]=="normed2"){
beta1 <- (beta1-1)/(ncomm-1)
res <- cbind.data.frame(beta1)
rownames(res) <- c("Inter-sites")
colnames(res) <- "Normed inter-site diversity"
}
return(res)
}
else{
nc <- ncol(structures)
funnc <- function(i){
dfilist <- split(df, as.factor(structures[, i]))
if(i > 1){
strulist <- split(structures, as.factor(structures[, i]))
strulist <- lapply(strulist, function(x) x[, -(i:nc), drop=FALSE])
}
wi <- tapply(w, as.factor(structures[, i]), sum)
fun <- function(j){
tab <- dfilist[[j]]
if(i > 1)
thestru <- strulist[[j]]
else
thestru <- NULL
op <- options()$warn
options(warn=-1)
ai <- apqe(as.data.frame(t(tab)), sqrt(2*as.dist(d)), thestru)
nlev <- nrow(ai$results)
numi <- ai$results[nlev, 1] - ai$results[1, 1]
gammai <- ai$results[nlev, 1]
options(warn=op)
ratioi <- (1-numi)/(1-gammai)
if(option[1]=="eq"){
return(ratioi)
}
else if(option[1]=="normed1"){
if(!is.null(thestru)) len <- length(levels(factor(thestru[, ncol(thestru)])))
else len <- nrow(tab)
if((ratioi-1)<1e-10) res <-0
else
res <- (1 - 1/ratioi)/(1 - 1/len)
return(res)
}
else if(option[1]=="normed2"){
if(!is.null(thestru)) len <- length(levels(factor(thestru[, ncol(thestru)])))
else len <- nrow(tab)
if((ratioi-1)<1e-10) res <-0
else
res <- (ratioi - 1)/(len - 1)
return(res)
}
}
resi <- unlist(lapply(1:length(dfilist), fun))
if(metmean=="arithmetic")
res <- sum(wi*resi)
else
res <- 1/sum(wi*(1/resi))
return(res)
}
resbeta <- sapply(nc:1, funnc)
if(option[1]=="eq"){
gamma <- beta1*prod(resbeta)*alphaEQ
res <- cbind.data.frame(c(beta1, resbeta, alphaEQ, gamma))
inter <- c("Inter-sites", paste("Inter-", colnames(structures), sep=""))
intra <- c("Intra-sites", paste("Intra-", colnames(structures), sep=""))
intrainter <- paste(inter[-(nc+1)], intra[-1])
rownames(res) <- c(inter[nc+1], rev(intrainter), intra[1], "Gamma")
colnames(res) <- "Equivalent numbers"
}
else if(option[1]=="normed1"){
beta1N <- (1 - 1/beta1) / (1 - 1/length(unique(structures[, nc])))
res <- cbind.data.frame(c(beta1N, resbeta))
inter <- c("Inter-sites", paste("Inter-", colnames(structures), sep=""))
intra <- c("Intra-sites", paste("Intra-", colnames(structures), sep=""))
intrainter <- paste(inter[-(nc+1)], intra[-1])
rownames(res) <- c(inter[nc+1], rev(intrainter))
colnames(res) <- "Normed contributions to beta diversity"
}
else if(option[1]=="normed2"){
beta1N <- (beta1 - 1) / (length(unique(structures[, nc])) - 1)
res <- cbind.data.frame(c(beta1N, resbeta))
inter <- c("Inter-sites", paste("Inter-", colnames(structures), sep=""))
intra <- c("Intra-sites", paste("Intra-", colnames(structures), sep=""))
intrainter <- paste(inter[-(nc+1)], intra[-1])
rownames(res) <- c(inter[nc+1], rev(intrainter))
colnames(res) <- "Normed contributions to beta diversity"
}
return(res)
}
} |
Nam03 <-
structure(list(ID = c(3, 4, 6, 8, 10, 11, 14, 16, 17, 19, 20,
22, 24, 25, 26, 28, 29, 32, 36, 37, 38, 40, 43, 44, 49, 50, 51,
52, 54, 56, 57, 59, 61, 63, 65, 69, 71, 75, 76, 78, 79, 80, 81,
82, 83, 84, 85, 88, 89, 93, 105, 109, 111, 113, 114, 122, 601,
603, 603), Size = c(1285, 470, 1077, 550, 850, 892, 1232, 3048,
2216, 535, 5953, 159, 9678, 318, 343, 11534, 10106, 443, 12727,
257, 511, 253, 1503, 7677, 1001, 961, 1138, 5412, 925, 2554,
4665, 1501, 1143, 483, 8154, 2077, 8585, 301, 153, 3072, 4331,
1215, 708, 620, 126, 228, 914, 16562, 15712, 3482, 192, 726,
372, 684, 207, 700, 9653, 3769, 2540), Age = c(1.1, 9, 6.7, 1.7,
9.4, 10.9, 9.5, 1, 8.6, 6.5, 0.5, 1, 5, 8.2, 9.5, 9.5, 7.5, 3.8,
2.5, 7.5, 2.5, 1, 13, 14, 7, 13.5, 9, 9.2, 7, 9.5, 13.5, 9.5,
1, 1, 4.6, 0.5, 7, 1, 10.9, 8.5, 2.5, 2, 10.5, 10, 9, 8.5, 3.5,
8, 5, 8.4, 0.8, 16.3, 7, 9, 9.3, 7.9, 9, 9, 9), Year = c(1987,
1994, 1995, 1995, 1996, 1996, 1996, 1997, 1997, 1995, 1987, 1986,
1989, 1995, 1995, 1996, 1984, 1992, 1987, 1989, 1995, 1995, 1997,
1995, 1988, 1995, 1983, 1997, 1997, 1995, 1997, 1991, 1981, 1989,
1995, 1974, 1993, 1988, 1989, 1982, 1990, 1993, 1994, 1995, 1991,
1992, 1993, 1991, 1995, 1986, 1992, 1996, 1980, 1988, 1992, 1992,
1997, 1997, 1997), Country = c("English or Scotland", "Scandanavia or Netherlands",
"English or Scotland", "Scandanavia or Netherlands", "Other (Israel, Turkey, South Africa, Mexico or U. Arab Emirates",
"USA or Canada", "Japan, Hong Kong or Malaysia", "Scandanavia or Netherlands",
"English or Scotland", "Japan, Hong Kong or Malaysia", "Scandanavia or Netherlands",
"USA or Canada", "English or Scotland", "Other (Israel, Turkey, South Africa, Mexico or U. Arab Emirates",
"USA or Canada", "USA or Canada", "USA or Canada", "New Zealand or Australia",
"English or Scotland", "English or Scotland", "Scandanavia or Netherlands",
"New Zealand or Australia", "English or Scotland", "Other (Israel, Turkey, South Africa, Mexico or U. Arab Emirates",
"English or Scotland", "English or Scotland", "USA or Canada",
"Other (Israel, Turkey, South Africa, Mexico or U. Arab Emirates",
"USA or Canada", "Scandanavia or Netherlands", "Japan, Hong Kong or Malaysia",
"Japan, Hong Kong or Malaysia", "New Zealand or Australia", "English or Scotland",
"New Zealand or Australia", "English or Scotland", "New Zealand or Australia",
"USA or Canada", "USA or Canada", "USA or Canada", "USA or Canada",
"English or Scotland", "New Zealand or Australia", "Scandanavia or Netherlands",
"Scandanavia or Netherlands", "USA or Canada", "USA or Canada",
"English or Scotland", "English or Scotland", "USA or Canada",
"Scandanavia or Netherlands", "Other (Israel, Turkey, South Africa, Mexico or U. Arab Emirates",
"USA or Canada", "Scandanavia or Netherlands", "USA or Canada",
"USA or Canada", "Scandanavia or Netherlands", "Scandanavia or Netherlands",
"Scandanavia or Netherlands"), Smoke = c("Parental exposure",
"Parental exposure", "Parental exposure", "Parental exposure",
"Parental exposure", "Parental exposure", "Parental exposure",
"Parental exposure", "Household exposure", "Parental exposure",
"Parental exposure", "Parental exposure", "Parental exposure",
"Parental exposure", "Parental exposure", "Household exposure",
"Parental exposure", "Parental exposure", "Parental exposure",
"Household exposure", "Parental exposure", "Parental exposure",
"Parental exposure", "Parental exposure", "Household exposure",
"Parental exposure", "Parental exposure", "Household exposure",
"Household exposure", "Household exposure", "Household exposure",
"Household exposure", "Parental exposure", "Parental exposure",
"Parental exposure", "Parental exposure", "Parental exposure",
"Household exposure", "Parental exposure", "Parental exposure",
"Parental exposure", "Household exposure", "Household exposure",
"Parental exposure", "Parental exposure", "Household exposure",
"Parental exposure", "Parental exposure", "Parental exposure",
"Parental exposure", "Parental exposure", "Parental exposure",
"Parental exposure", "Household exposure", "Household exposure",
"Parental exposure", "Household exposure", "Household exposure",
"Household exposure"), Adj = c(0, 1, 0, 0, 0, 1, 1, 1, 0, 0,
1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1,
0, 1, 0, 0, 1, 1, 1), Asthma_logOR = c(0.385262400790645, NA,
0.350656871613169, NA, 0.246860077931526, -0.0202027073175195,
-0.0943106794712413, NA, -0.27443684570176, 0.300104592450338,
NA, NA, -0.0408219945202552, 0.336472236621213, NA, -0.0202027073175195,
NA, NA, NA, NA, 0.524728528934982, NA, NA, 0.157003748809665,
NA, NA, NA, 0.300104592450338, 0.470003629245736, -0.562118918153541,
NA, 0.0953101798043249, NA, NA, NA, NA, 0.19062035960865, NA,
NA, 0.398776119957368, 0.741937344729377, 0.78845736036427, 0.336472236621213,
1.02961941718116, 0.940007258491471, 0.693147180559945, 0.357674444271816,
NA, NA, 0.139761942375159, NA, NA, NA, -0.0725706928348354, 0.357674444271816,
0.350656871613169, 0.444685821261446, 0.0953101798043249, -0.356674943938732
), LRD_logOR = c(NA, 0.0392207131532813, NA, 0.609765571620894,
NA, NA, NA, 0.418710334858185, NA, NA, 0.993251773010283, 0.693147180559945,
0.048790164169432, NA, 0.85015092936961, 0.122217632724249, -0.0202027073175195,
1.93296963777958, 0.378436435720245, 0.993251773010283, NA, -0.328504066972036,
0.122217632724249, 0.139761942375159, 0.0392207131532813, 0.0198026272961797,
0.00995033085316809, 0.22314355131421, 0.53062825106217, NA,
0.0392207131532813, 0.182321556793955, 0.0392207131532813, 0.476234178996372,
0.198850858745165, 0.500775287912489, NA, 0.688134638736401,
0.924258901523332, NA, NA, NA, NA, NA, NA, NA, NA, 0.300104592450338,
0.285178942233662, 0.215111379616945, 1.18784342239605, 1.47247205736094,
1.7732559976635, 0.22314355131421, NA, NA, NA, NA, NA), Asthma_v = c(0.0729,
NA, 0.0225, NA, 0.0529, 0.0484, 0.0729, NA, 0.0225, 0.36, NA,
NA, 0.0144, 0.1296, NA, 0.0121, NA, NA, NA, NA, 0.0289, NA, NA,
0.0036, NA, NA, NA, 0.0081, 0.0784, 0.1089, NA, 0.0121, NA, NA,
NA, NA, 0.0016, NA, NA, 0.0256, 0.0529, 0.0441, 0.0361, 0.1521,
0.1369, 0.0841, 0.0324, NA, NA, 0.0169, NA, NA, NA, 0.0016, 0.1089,
0.0361, 0.0196, 0.0529, 0.1849), AsthmaLRD_cov_05 = c(NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.0054, NA, NA, 0.0033,
NA, NA, NA, NA, NA, NA, NA, 6e-04, NA, NA, NA, 0.00405, 0.0448,
NA, NA, 0.00825, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0.0052, NA, NA, NA, 0.0022, NA, NA, NA,
NA, NA), LRD_v = c(NA, 0.04, NA, 0.0324, NA, NA, NA, 0.0144,
NA, NA, 0.04, 0.0576, 0.0081, NA, 0.0784, 0.0036, 0.0036, 0.2116,
0.01, 0.1369, NA, 0.2601, 0.0196, 4e-04, 0.0361, 0.0169, 0.0121,
0.0081, 0.1024, NA, 0.0049, 0.0225, 1e-04, 0.0529, 0.0016, 0.0441,
NA, 0.1225, 0.1521, NA, NA, NA, NA, NA, NA, NA, NA, 0.09, 0.0361,
0.0064, 0.25, 0.2209, 1.0609, 0.0121, NA, NA, NA, NA, NA)), .Names = c("ID",
"Size", "Age", "Year", "Country", "Smoke", "Adj", "Asthma_logOR",
"LRD_logOR", "Asthma_v", "AsthmaLRD_cov_05", "LRD_v"), class = "data.frame", row.names = c(NA,
-59L)) |
partial_bundle <- function(p, type = "auto", local = TRUE, minified = TRUE) {
if (!is.plotly(p)) stop("The first argument to `partial_bundle()` must be a plotly object", call. = FALSE)
idx <- plotlyjsBundleIDX(p)
p$dependencies[[idx]]$local <- local
p$dependencies[[idx]]$minified <- minified
p$dependencies[[idx]]$partial_bundle <- match.arg(type, c("auto", "main", names(bundleTraceMap)))
plotly_build(p)
}
verify_partial_bundle <- function(p) {
currentBundle <- plotlyjsBundle(p)
bundleType <- currentBundle$partial_bundle %||% "main"
if (identical(bundleType, "main")) return(p)
types <- unique(vapply(p$x$data, function(x) x[["type"]] %||% "scatter", character(1)))
if (identical(bundleType, "auto")) {
for (i in seq_along(bundleTraceMap)) {
if (all(types %in% bundleTraceMap[[i]])) {
bundleType <- names(bundleTraceMap)[[i]]
break
}
}
if (identical(bundleType, "auto")) {
warning(
"Couldn't find a single partial bundle that would support this plotly ",
"visualization. Using the main (full) bundle instead."
)
p$dependencies[[plotlyjsBundleIDX(p)]] <- plotlyMainBundle()
return(p)
}
}
missingTypes <- setdiff(types, bundleTraceMap[[bundleType]])
if (length(missingTypes)) {
msg <- sprintf(
"The '%s' bundle supports the following trace types: '%s'.\n\n This plotly visualization contains the following trace types: '%s'",
bundleType, paste(bundleTraceMap[[bundleType]], collapse = "', '"), paste(missingTypes, collapse = "', '")
)
stop(msg, call. = FALSE)
}
idx <- plotlyjsBundleIDX(p)
bundle_name <- sprintf("plotly-%s", bundleType)
bundle_script <- sprintf(
"plotly-%s-%s.%sjs",
bundleType, currentBundle$version,
if (isTRUE(currentBundle$minified)) "min." else ""
)
p$dependencies[[idx]]$name <- bundle_name
p$dependencies[[idx]]$script <- bundle_script
p$dependencies[[idx]]$src <- list(href = "https://cdn.plot.ly")
if (isTRUE(p$dependencies[[idx]]$local)) {
try_library("curl", "partial_bundle")
tmpfile <- file.path(tempdir(), bundle_script)
p$dependencies[[idx]]$src$file <- dirname(tmpfile)
if (!file.exists(tmpfile)) {
curl::curl_download(paste0("https://cdn.plot.ly/", bundle_script), tmpfile)
}
p$dependencies[[idx]]$package <- NULL
}
p
}
plotlyjsBundleIDX <- function(p) {
depNames <- sapply(p$dependencies, "[[", "name")
bundleNames <- paste0("plotly-", c("main", "auto", names(bundleTraceMap)))
idx <- which(depNames %in% bundleNames)
if (length(idx) != 1) stop("Couldn't find the plotlyjs bundle")
idx
}
plotlyjsBundle <- function(p) {
p$dependencies[[plotlyjsBundleIDX(p)]]
}
bundleTraceMap <- list(
basic = c(
"scatter",
"bar",
"pie"
),
cartesian = c(
"scatter",
"bar",
"pie",
"box",
"heatmap",
"histogram",
"histogram2d",
"histogram2dcontour",
"contour",
"scatterternary",
"violin"
),
geo = c(
"scatter",
"scattergeo",
"choropleth"
),
gl3d = c(
"scatter",
"scatter3d",
"surface",
"mesh3d",
"cone"
),
gl2d = c(
"scatter",
"scattergl",
"splom",
"pointcloud",
"heatmapgl",
"contourgl",
"parcoords"
),
mapbox = c(
"scatter",
"scattermapbox"
),
finance = c(
"scatter",
"bar",
"pie",
"histogram",
"ohlc",
"candlestick",
"waterfall"
)
) |
spec_all <- c(
spec_getting_started,
spec_driver,
spec_connection,
spec_result,
spec_sql,
spec_meta,
spec_transaction,
spec_compliance,
spec_stress
) |
indexMatrix<-function(dimension,symmetrical=FALSE,upper=FALSE,lowerTriangular=FALSE, sep=NULL,starttext=NULL,endtext=NULL,
unique=FALSE,rowoffset=0,coloffset=0,indices=FALSE,diagonal=TRUE,namesvector=NULL,shortdiag=FALSE){
if(is.null(namesvector)) namesvector=1:9999
if(indices==TRUE) sep<-c(",")
tempmatrix<-matrix(paste0(starttext,rep(namesvector[1:dimension+coloffset],dimension)),nrow=dimension,ncol=dimension)
for(i in 1:nrow(tempmatrix)){
for(j in 1:ncol(tempmatrix)){
if(i!=j || !shortdiag) tempmatrix[i,j] <- paste0(tempmatrix[i,j],sep,namesvector[1:dimension+rowoffset][j])
}
}
tempmatrix[,]<-paste0(tempmatrix[,],endtext)
if(upper==TRUE) tempmatrix<-t(tempmatrix)
if(symmetrical==TRUE) tempmatrix[col(tempmatrix)>row(tempmatrix)] <-t(tempmatrix)[col(tempmatrix)>row(tempmatrix)]
if(unique==TRUE && symmetrical==TRUE) tempmatrix<-tempmatrix[lower.tri(tempmatrix,diag=diagonal)]
if(lowerTriangular==TRUE) tempmatrix[col(tempmatrix) > row(tempmatrix)] <- 0
if(indices==TRUE){
tempmatrix<-matrix(c(unlist(strsplit(tempmatrix,","))[seq(1,length(tempmatrix)*2,2)],
unlist(strsplit(tempmatrix,","))[seq(2,length(tempmatrix)*2,2)]),ncol=2)
}
return(tempmatrix)
}
rl<-function(x) {
x[is.na(x)] <- FALSE
return(x)
}
cseq <- function(from, to, by){
temp<-c()
for(i in from){
temp<-c(temp,seq(i,to,by))
}
temp<-sort(temp)
return(temp)
} |
extractS3ObjectInformation <- function(object_o_1) {
on <- getObjectClassKind(object_o_1)
stopifnot(on == 'S3')
getFields <- function() {
l <- ls(object_o_1)
if (length(l) == 0) return(NULL)
f <- sapply(l, function(e) !typeof(object_o_1[[e]]) %in% c('closure'))
fields <- l[f]
generatePublicFieldParagraph(object_o_1, fields)
}
getMethods <- function() {
methods <- getObjectFunctionNames(object_o_1)
if (is.null(methods) || length(methods) == 0) return(NULL)
generatePublicMethodParagraph(object_o_1, methods)
}
l <- list(
'S3 fields' = getFields(),
'S3 methods' = getMethods()
)
Filter(Negate(is.null), l)
} |
Harvey_Mills_2002_unit_root<-function(x,model,max_lags,lsm){
res<-Harvey_Mills_2002_unit_root_first_step(x,model,max_lags)$res
ADF_unit_root(res,max_lags,lsm)
}
Harvey_Mills_2002_unit_root_first_step <- function(x,model,max_lags){
if (model==1){
try({
n=length(x)
trend<-seq(0,length(x)-1,1)
nonlin_model=nlsLM(x ~ a1 + a2*(1/(1+exp(-a3*(trend-(a4*n))))) + a5*(1/(1+exp(-a6*(trend-(a7*n))))),start=list(a1=0,a2=0,a3=1,a4=0.3,a5=0,a6=1,a7=0.7),control = nls.control(maxiter = 500))
res=residuals(nonlin_model)
},silent = T)
}
if (model==2){
try({
n=length(x)
trend<-seq(0,length(x)-1,1)
nonlin_model=nlsLM(x ~ a1 + a2*(1/(1+exp(-a3*(trend-(a4*n))))) + a5*(1/(1+exp(-a6*(trend-(a7*n))))) + a8*trend ,start=list(a1=0,a2=0,a3=1,a4=0.3,a5=0,a6=1,a7=0.7,a8=0),control = nls.control(maxiter = 500))
res=residuals(nonlin_model)
},silent = T)
}
if (model==3){
try({
n=length(x)
trend<-seq(0,length(x)-1,1)
nonlin_model=nlsLM(x ~ a1 + a2*(1/(1+exp(-a3*(trend-(a4*n))))) + a5*trend + a6*trend*(1/(1+exp(-a3*(trend-(a4*n))))) + a7*(1/(1+exp(-a8*(trend-(a9*n))))) + a10*trend*(1/(1+exp(-a8*(trend-(a9*n))))), start=list(a1=0,a2=0,a3=1,a4=0.3,a5=0,a6=0,a7=0,a8=1,a9=0.7,a10=0),control = nls.control(maxiter = 500))
res=residuals(nonlin_model)
},silent = T)
}
my_list = list("res"=res)
return(my_list)
}
ADF_unit_root<-function(x,max_lags,lsm){
AICs = NULL
BICs = NULL
for(i in 1:max_lags){
z=diff(x)
n=length(z)
z.diff=embed(z, i+1)[,1]
z.lag.1=x[(i+1):n]
k=i+1
z.diff.lag = embed(z, i+1)[, 2:k]
model<-lm(z.diff~z.lag.1+0+z.diff.lag )
son<-summary(lm(z.diff~z.lag.1+0+z.diff.lag ))$coefficients[1,3]
AICs[i+1] = AIC(model)
BICs[i+1] = BIC(model)
z.diffzero=embed(z, 2)[,1]
z.lag.zero.1=x[2:n]
model0<-lm(z.diffzero~z.lag.zero.1+0)
AICs[1] = AIC(model0)
BICs[1] = BIC(model0)
if(lsm == 1){
uygun_lag=which.min(AICs)-1
} else {
uygun_lag=which.min(BICs)-1
}
z.diff=embed(z, uygun_lag+1)[,1]
z.lag.1=x[(uygun_lag+1):n]
if(uygun_lag == 0){
model = lm(z.diff~z.lag.1+0)
son<-summary(lm(z.diff~z.lag.1+0 ))$coefficients[1,3]
} else {
z.diff.lag = embed(z, uygun_lag+1)[, 2:k]
model = lm(z.diff~z.lag.1+0+z.diff.lag)
son<-summary(lm(z.diff~z.lag.1+0+z.diff.lag ))$coefficients[1,3]
}
}
my_list <- list("Model" = summary(model),"Selected Lag"=uygun_lag, "Test Statistic"=son)
return(my_list)
} |
clikcorr_n <-
function(data, lower1, upper1, lower2, upper2, cp=.95, starVal=NA, nlm=FALSE, ...) {
F <- prepare_data(data, lower1, upper1, lower2, upper2)
m <- suppressWarnings(estimate(F, starVal=starVal, nlm=nlm, ...))
r_est <- m$C[1,2] / sqrt(m$C[1,1]*m$C[2,2])
ci <- suppressWarnings(profile_ci(data, lower1, upper1, lower2, upper2, cp, starVal=starVal, nlm=nlm, ...))
p0 <- suppressWarnings(correlation_lrt(F, 0, starVal=starVal, ...))
result <- list(Cor=r_est, Cov=m$C, Mean=m$Mu, P0=p0,
LCL=ci$lcl, UCL=ci$ucl, Loglike=m$loglike)
return(result)
} |
get_cor_grouping <- function(mod, levels = NULL) {
if (!is.null(mod$groups)) {
struct <- mod$modelStruct$corStruct
if (is.null(struct)) struct <- mod
mod_formula <- nlme::getGroupsFormula(struct)
dat <- nlme::getData(mod)
if (inherits(na.action(mod), "exclude")) dat <- dat[-as.integer(na.action(mod)),,drop=FALSE]
grps <- stats::model.frame(mod_formula, data = dat)
grps <- apply(grps, 1, paste, collapse = "/")
if (is.null(levels)) levels <- unique(grps)
grps <- factor(grps, levels = levels)
} else if (!is.null(mod$modelStruct$corStruct)) {
grps <- factor(rep("A",mod$dims$N))
} else {
grps <- factor(1:mod$dims$N)
}
grps
}
build_corr_mats <- function(mod) {
if (is.null(mod$modelStruct$corStruct)) {
return(NULL)
} else {
R_list <- nlme::corMatrix(mod$modelStruct$corStruct)
grps <- get_cor_grouping(mod, levels = names(R_list))
if (!is.list(R_list)) R_list <- list(A = R_list)
attr(R_list, "groups") <- grps
return(R_list)
}
}
get_sort_order <- function(mod) {
groups <- mod$groups
if (is.data.frame(groups)) {
order(do.call(order, groups))
} else if (!is.null(groups)) {
order(order(groups))
} else {
1:mod$dims$N
}
}
build_var_cor_mats <- function(mod, R_list = build_corr_mats(mod), sigma_scale = FALSE) {
sigma <- if (sigma_scale) mod$sigma else 1
if (is.null(R_list)) {
if (is.null(mod$groups)) {
if (is.null(mod$modelStruct$varStruct)) {
V_list <- as.list(rep(sigma^2, mod$dims$N))
} else {
sd_vec <- sigma / as.numeric(nlme::varWeights(mod$modelStruct$varStruct))
V_list <- as.list(sd_vec^2)
}
grps <- factor(1:mod$dims$N)
attr(V_list, "groups") <- grps
names(V_list) <- levels(grps)
} else {
if (is.null(mod$modelStruct$varStruct)) {
grps <- mod$groups[[1]]
V_list <- tapply(rep(sigma^2, length(grps)), grps, function(x) diag(x, nrow = length(x)))
} else {
sort_order <- get_sort_order(mod)
sd_vec <- sigma / as.numeric(nlme::varWeights(mod$modelStruct$varStruct))[sort_order]
V_list <- tapply(sd_vec^2, mod$groups[[1]], function(x) diag(x, nrow = length(x)))
}
attr(V_list, "groups") <- mod$groups[[1]]
}
} else {
if (is.null(mod$modelStruct$varStruct)) {
V_list <- if (sigma_scale) lapply(R_list, function(x) x * mod$sigma^2) else R_list
} else {
sort_order <- get_sort_order(mod)
sd_vec <- sigma / as.numeric(nlme::varWeights(mod$modelStruct$varStruct))[sort_order]
sd_list <- split(sd_vec, attr(R_list, "groups"))
V_list <- Map(function(R, s) tcrossprod(s) * R, R = R_list, s = sd_list)
}
attr(V_list, "groups") <- attr(R_list, "groups")
}
return(V_list)
}
ZDZt <- function(D, Z_list) {
lapply(Z_list, function(z) z %*% D %*% t(z))
}
build_RE_mats <- function(mod, sigma_scale = FALSE) {
all_groups <- rev(mod$groups)
if (length(all_groups) == 1) {
D_mat <- as.matrix(mod$modelStruct$reStruct[[1]])
if (sigma_scale) D_mat <- mod$sigma^2 * D_mat
data <- nlme::getData(mod)
Z_mat <- model.matrix(mod$modelStruct$reStruc, data[complete.cases(data), ])
row.names(Z_mat) <- NULL
Z_list <- matrix_list(Z_mat, all_groups[[1]], "row")
ZDZ_list <- ZDZt(D_mat, Z_list)
attr(ZDZ_list, "groups") <- all_groups[[1]]
} else {
if (sigma_scale) {
D_list <- lapply(mod$modelStruct$reStruct, function(x) mod$sigma^2 * as.matrix(x))
} else {
D_list <- lapply(mod$modelStruct$reStruct, as.matrix)
}
data <- nlme::getData(mod)
Z_mat <- model.matrix(mod$modelStruct$reStruc, data[complete.cases(data), ])
Z_names <- sapply(strsplit(colnames(Z_mat), ".", fixed=TRUE), function(x) x[1])
row.names(Z_mat) <- NULL
Z_levels <- lapply(names(all_groups), function(x) Z_mat[,x==Z_names,drop=FALSE])
Z_levels <- Map(matrix_list, x = Z_levels, fac = all_groups, dim = "row")
ZDZ_lists <- Map(ZDZt, D = D_list, Z_list = Z_levels)
for (i in 2:length(all_groups)) {
ZDZ_lists[[i]] <- add_bdiag(small_mats = ZDZ_lists[[i-1]],
big_mats = ZDZ_lists[[i]],
crosswalk = all_groups[c(i-1,i)])
}
ZDZ_list <- ZDZ_lists[[i]]
attr(ZDZ_list, "groups") <- all_groups[[i]]
}
ZDZ_list
}
build_Sigma_mats <- function(mod, invert = FALSE, sigma_scale = FALSE) UseMethod("build_Sigma_mats")
build_Sigma_mats.default <- function(mod, invert = FALSE, sigma_scale = FALSE) {
mod_class <- paste(class(mod), collapse = "-")
stop(paste0("Sigma matrices not available for models of class ", mod_class, "."))
}
build_Sigma_mats.gls <- function(mod, invert = FALSE, sigma_scale = FALSE) {
V_list <- build_var_cor_mats(mod, sigma_scale = sigma_scale)
V_grps <- attr(V_list, "groups")
if (invert) {
V_list <- lapply(V_list, function(x) chol2inv(chol(x)))
attr(V_list, "groups") <- V_grps
}
return(V_list)
}
build_Sigma_mats.lme <- function(mod, invert = FALSE, sigma_scale = FALSE) {
if (inherits(mod, "nlme")) stop("not implemented for \"nlme\" objects")
V_list <- build_var_cor_mats(mod, sigma_scale = sigma_scale)
ZDZ_list <- build_RE_mats(mod, sigma_scale = sigma_scale)
V_grps <- attr(V_list, "groups")
ZDZ_grps <- attr(ZDZ_list, "groups")
group_mapping <- tapply(ZDZ_grps, V_grps, function(x) length(unique(x)))
nested <- all(group_mapping == 1L)
if (nested) {
Sigma_list <- add_bdiag(V_list, ZDZ_list, data.frame(V_grps, ZDZ_grps))
Sigma_grps <- attr(ZDZ_list, "groups")
} else {
V_mat <- unblock(V_list, block = V_grps)
ZDZ_mat <- unblock(ZDZ_list, block = ZDZ_grps)
Sigma_list <- V_mat + ZDZ_mat
Sigma_grps <- factor(rep("A", nrow(Sigma_list)))
}
if (invert) {
Sigma_list <- lapply(Sigma_list, function(x) chol2inv(chol(x)))
}
attr(Sigma_list, "groups") <- Sigma_grps
return(Sigma_list)
} |
as.binary.hypergraph <- function(h)
{
M <- incidence_matrix(h)
M[M!=0] <- 1
hypergraph_from_incidence_matrix(M)
}
equivalent.hypergraphs <- function(h1,h2,vertex.names=FALSE,edge.names=FALSE,
strip.names=FALSE,
method=c('any','exact','binary'))
{
m <- from_igraph.match.arg(method)
if(is.null(m)) stop("invalid method")
if(m != "any"){
M1 <- incidence_matrix(h1)
M2 <- incidence_matrix(h2)
if(strip.names){
if(!is.null(colnames(M1))){
if(vertex.names){
M1 <- M1[,order(colnames(M1))]
}
colnames(M1) <- 1:ncol(M1)
}
if(!is.null(colnames(M2))){
if(vertex.names){
M2 <- M2[,order(colnames(M2))]
}
colnames(M2) <- 1:ncol(M2)
}
if(!is.null(rownames(M1))){
if(edge.names){
M1 <- M1[order(rownames(M1)),]
}
rownames(M1) <- 1:nrow(M1)
}
if(!is.null(rownames(M2))){
if(edge.names){
M2 <- M2[order(rownames(M2)),]
}
rownames(M2) <- 1:nrow(M2)
}
} else {
if(vertex.names){
v1 <- colnames(M1)
v2 <- colnames(M2)
if(!all(sort(v1) == sort(v2))) return(FALSE)
M1 <- M1[,order(v1)]
M2 <- M2[,order(v2)]
}
if(edge.names){
e1 <- rownames(M1)
e2 <- rownames(M2)
if(!all(sort(e1) == sort(e2))) return(FALSE)
M1 <- M1[order(e1),]
M2 <- M2[order(e2),]
}
}
if(m != "exact"){
h1 <- hypergraph_from_incidence_matrix(M1)
h2 <- hypergraph_from_incidence_matrix(M1)
}
}
switch(m,
exact=all(M1==M2),
any=equivalent.hypergraphs(h1,h2,method='binary',strip.names=TRUE) ||
equivalent.hypergraphs(h1,h2,method='binary',strip.names=TRUE,
vertex.names=TRUE) ||
equivalent.hypergraphs(h1,h2,method='binary',strip.names=TRUE,
edge.names=TRUE) ||
equivalent.hypergraphs(h1,h2,method='binary',strip.names=TRUE,
vertex.names=TRUE,
edge.names=TRUE),
binary=all(incidence_matrix(as.binary.hypergraph(h1))==
incidence_matrix(as.binary.hypergraph(h2)))
)
} |
function(){
} |
spatial_distance <- function(
stations,
dem,
topography = TRUE,
cores = 1,
dmap = TRUE,
dstation = TRUE,
aoi
) {
if(dmap == TRUE) {
if(cores == 1) {
maps <- vector(mode = "list", length = nrow(stations))
dem <- methods::as(dem, "SpatialGridDataFrame")
mean_cell_size <- mean(dem@grid@cellsize, na.rm = TRUE)
xy <- sp::SpatialPoints(coords = stations[,1:2],
proj4string = sp::CRS(raster::projection(dem)))
z <- as.numeric(sp::over(x = xy, y = dem)[,1])
if(missing(aoi) == TRUE) {
map_coords <- sp::coordinates(obj = dem)
aoi <- c(min(map_coords[,1]),
max(map_coords[,1]),
min(map_coords[,2]),
max(map_coords[,2]))
}
aoi_flag <- dem
aoi_flag@data <- aoi_flag@data * 0
aoi_xy <- sp::coordinates(aoi_flag)
aoi_flag@data[[1]][aoi_xy[,1] >= aoi[1] & aoi_xy[,1] <= aoi[2] &
aoi_xy[,2] >= aoi[3] & aoi_xy[,2] <= aoi[4]] <- 1
map_i <- dem
for(i in 1:length(xy)) {
print(paste("Processing station", i))
dem_x <- sp::coordinates(dem)[,1]
dem_y <- sp::coordinates(dem)[,2]
dx <- dem_x - sp::coordinates(xy)[i,1]
dy <- dem_y - sp::coordinates(xy)[i,2]
dt <- sqrt(dx^2 + dy^2)
for(j in 1:length(dt)) {
if(aoi_flag@data[[1]][j] == 1) {
n_i <- round(x = dt[j] / (0.1 * mean_cell_size), digits = 0)
n_i <- ifelse(n_i == 0, 1, n_i)
x_i <- seq(from = sp::coordinates(xy)[i,1],
to = sp::coordinates(dem)[j,1],
length.out = n_i)
y_i <- seq(from = sp::coordinates(xy)[i,2],
to = sp::coordinates(dem)[j,2],
length.out = n_i)
xy_i <- sp::SpatialPoints(
coords = cbind(x_i, y_i),
proj4string = sp::CRS(raster::projection(dem)))
z_i <- sp::over(x = xy_i, y = dem)[,1]
z_d <- seq(from = z[i],
to = dem@data[[1]][j],
length.out = length(z_i))
d_e <- z_d - z_i
if(topography == TRUE) {
z_e <- ifelse(d_e < 0, z_i, z_d)
} else {
z_e <- z_d
}
l <- sqrt((x_i[length(x_i)] - x_i[1])^2 +
(y_i[length(x_i)] - y_i[1])^2 +
sum(diff(z_e))^2)
map_i@data[[1]][j] <- l
} else {
map_i@data[[1]][j] <- NA
}
}
maps[[i]] <- map_i
}
} else {
n_cores <- parallel::detectCores()
n_cores <- ifelse(n_cores < cores, n_cores, cores)
cl <- parallel::makeCluster(getOption("mc.cores", n_cores))
maps <- vector(mode = "list",
length = nrow(stations))
dem <- as(dem, "SpatialGridDataFrame")
xy <- sp::SpatialPoints(coords = stations[,1:2],
proj4string = sp::CRS(raster::projection(dem)))
z <- as.numeric(sp::over(x = xy, y = dem)[,1])
map_i <- dem
work_parallel <- function(x, dem) {
x_sep <- strsplit(x = x, split = "__", fixed = TRUE)
topo_option <- as.numeric(x_sep[[1]][1])
dt <- as.numeric(x_sep[[1]][2])
dem_cellsize <- as.numeric(x_sep[[1]][3])
dem_projection <- as.character(x_sep[[1]][4])
x_station <- as.numeric(x_sep[[1]][5])
y_station <- as.numeric(x_sep[[1]][6])
z_station <- as.numeric(x_sep[[1]][7])
x_dem <- as.numeric(x_sep[[1]][8])
y_dem <- as.numeric(x_sep[[1]][9])
z_dem <- as.numeric(x_sep[[1]][10])
n_i <- round(x = dt / (0.1 * dem_cellsize),
digits = 0)
n_i <- ifelse(n_i == 0, 1, n_i)
x_i <- seq(from = x_station,
to = x_dem,
length.out = n_i)
y_i <- seq(from = y_station,
to = y_dem,
length.out = n_i)
xy_i <- sp::SpatialPoints(coords = cbind(x_i, y_i),
proj4string = sp::CRS(dem_projection))
z_i <- sp::over(x = xy_i, y = dem)[,1]
z_d <- seq(from = z_station,
to = z_dem,
length.out = length(z_i))
d_e <- z_d - z_i
if(topo_option == 1) {
z_e <- ifelse(d_e < 0, z_i, z_d)
} else {
z_e <- z_d
}
l <- sqrt((x_i[length(x_i)] - x_i[1])^2 +
(y_i[length(x_i)] - y_i[1])^2 +
sum(diff(z_e))^2)
return(l)
}
for(i in 1:length(xy)) {
print(paste("Processing map for station", i))
dx <- sp::coordinates(dem)[,1] - sp::coordinates(xy)[i,1]
dy <- sp::coordinates(dem)[,2] - sp::coordinates(xy)[i,2]
n_data <- nrow(dem)
topo_option <- rep(x = as.numeric(topography),
times = n_data)
dt <- sqrt(dx^2 + dy^2)
dem_cellsize <- rep(x = mean(dem@grid@cellsize, na.rm = TRUE),
times = n_data)
dem_projection <- rep(x = as.character(
sp::CRS(raster::projection(dem))),
times = n_data)
x_station <- rep(x = as.numeric(sp::coordinates(xy)[i,1]),
times = n_data)
y_station <- rep(x = as.numeric(sp::coordinates(xy)[i,2]),
times = n_data)
z_station <- rep(x = z[i],
times = n_data)
x_dem <- as.numeric(sp::coordinates(dem)[,1])
y_dem <- as.numeric(sp::coordinates(dem)[,2])
z_dem <- as.numeric(dem@data[[1]])
input_parallel <- paste(topo_option,
dt,
dem_cellsize,
dem_projection,
x_station,
y_station,
z_station,
x_dem,
y_dem,
z_dem,
sep = "__")
l <- parallel::parLapply(cl,
X = input_parallel,
fun = work_parallel,
dem = dem)
map_i@data[[1]] <- unlist(l)
maps[[i]] <- map_i
}
parallel::stopCluster(cl)
}
} else {
maps <- vector(mode = "list", length = nrow(stations))
}
if(dstation == TRUE) {
print("Processing station distances")
distances <- matrix(nrow = nrow(stations),
ncol = nrow(stations))
rownames(distances) <- rownames(stations)
colnames(distances) <- rownames(stations)
xy <- sp::SpatialPoints(coords = stations[,1:2],
proj4string = sp::CRS(raster::projection(dem)))
dem <- methods::as(dem, "SpatialGridDataFrame")
for(i in 1:length(xy)) {
dx_stations <- sp::coordinates(xy)[,1] - sp::coordinates(xy)[i,1]
dy_stations <- sp::coordinates(xy)[,2] - sp::coordinates(xy)[i,2]
dt_stations <- sqrt(dx_stations^2 + dy_stations^2)
z <- sp::over(x = xy, y = dem)
for(j in 1:length(dt_stations)) {
n_i <- round(x = dt_stations[j] / (0.1 * mean(
dem@grid@cellsize, na.rm = TRUE)),
digits = 0)
n_i <- ifelse(n_i == 0, 1, n_i)
x_i <- seq(from = sp::coordinates(xy)[i,1],
to = sp::coordinates(xy)[j,1],
length.out = n_i)
y_i <- seq(from = sp::coordinates(xy)[i,2],
to = sp::coordinates(xy)[j,2],
length.out = length(x_i))
xy_i <- sp::SpatialPoints(coords = cbind(x_i, y_i),
proj4string = sp::CRS(raster::projection(dem)))
z_i <- as.numeric(unlist(sp::over(x = xy_i, y = dem)))
z_d <- seq(from = z[i,], to = z[j,], length.out = length(z_i))
d_e <- z_d - z_i
z_e <- ifelse(d_e < 0, z_i, z_d)
distances[i,j] <- sum(sqrt(diff(x_i)^2 + diff(y_i)^2 + diff(z_e)^2))
}
}
} else {
distances <- matrix(nrow = nrow(stations),
ncol = nrow(stations))
rownames(distances) <- rownames(stations)
colnames(distances) <- rownames(stations)
}
return(list(maps = maps,
stations = distances))
} |
"diagCOP" <-
function(cop=NULL, para=NULL, secondary=FALSE,
ploton=TRUE, lines=TRUE, delt=0.005, ...) {
if(ploton) {
plot(c(0,1), c(0,1), type="n",
xlab="U=V, NONEXCEEDANCE PROBABILITY",
ylab="H, NONEXCEEDANCE PROBABILITY")
}
T <- seq(0+delt,1-delt,delt)
C <- sapply(T, function(x) {
y <- x
if(secondary) y <- 1 - y
return( cop(x,y, para=para, ...)) } )
if(lines & ! is.null(dev.list())) lines(T,C, ...)
txt <- "primary"
if(secondary) txt <- "secondary"
return(list(t=T, diagcop=C, diagtype=txt))
} |
penhdfeppml_int <- function(y, x, fes, lambda, tol = 1e-8, hdfetol = 1e-4, glmnettol = 1e-12,
penalty = "lasso", penweights = NULL, saveX = TRUE, mu = NULL, colcheck = TRUE,
init_z = NULL, post = FALSE, verbose = FALSE, standardize = TRUE,
method = "placeholder", cluster = NULL, debug = FALSE) {
if (method == "plugin") {
penreg <- penhdfeppml_cluster_int(y = y, x = x, fes = fes, cluster = cluster, tol = tol,
hdfetol = hdfetol, glmnettol = glmnettol, penalty = penalty,
penweights = penweights, saveX = saveX,
mu = mu, colcheck = colcheck, K = 15, init_z = init_z, post = FALSE,
verbose = verbose, lambda = NULL)
}
else {
b <- matrix(NA, nrow = ncol(x), ncol = 1)
rownames(b) <- colnames(x)
include_x <- 1:ncol(x)
if (is.null(penweights)) {
penweights <- rep(1, length(include_x))
}
if (length(penweights) > length(include_x)){
print("penweights needs to be same length as number of x variables")
stop()
}
if (colcheck == TRUE) {
include_x <- collinearity_check(y, x, fes, 1e-6)
x <- x[, include_x]
if (!is.null(penweights)) {
penweights = penweights[include_x]
}
}
n <- length(y)
crit <- 1
old_deviance <-0
iter <-0
while (crit > tol) {
iter <- iter + 1
if (iter == 1) {
if (is.null(mu)) mu <- (y + mean(y))/2
z <- (y - mu)/mu + log(mu)
eta <- log(mu)
last_z <- z
if (is.null(init_z)) {
reg_z <- matrix(z)
} else {
reg_z <- init_z
}
reg_x <- x
} else {
last_z <- z
z <- (y - mu)/mu + log(mu)
reg_z <- matrix(z - last_z + z_resid)
reg_x <- x_resid
}
z_resid <- collapse::fhdwithin(reg_z, fes, w = mu)
x_resid <- collapse::fhdwithin(reg_x, fes, w = mu)
if (is.null(penweights)) {
}
else{
if(debug) {
print(sum(penweights))
}
if(debug) {
print(penweights)
}
penweights = penweights * length(include_x) / sum(penweights)
if(debug) {
print(sum(penweights))
}
}
if (penalty == "ridge") {
penreg <- fastridge(x = x_resid, y = z_resid, weights = mu/sum(mu), lambda = n * lambda,
standardize = standardize)
} else {
if (penalty != "lasso" & iter == 1) {
warning(penalty, " penalty is not supported. Lasso is used by default.")
}
if (debug) {
penreg <- glmnet::glmnet(x = x_resid, y = z_resid, weights = mu/sum(mu), lambda = lambda,
thresh = glmnettol, standardize = standardize)
print((penreg$beta))
print(penweights)
}
if (debug) {
penreg <- glmnet::glmnet(x = x_resid, y = z_resid, weights = mu/sum(mu), lambda = lambda,
thresh = glmnettol, standardize = standardize)
print((penreg$beta))
print(penweights)
}
penreg <- glmnet::glmnet(x = x_resid, y = z_resid, weights = mu/sum(mu), lambda = lambda,
thresh = glmnettol, penalty.factor = penweights, standardize = standardize)
if (debug) {
print((penreg$beta))
stop()
}
}
b[include_x] <- penreg$beta
residuals <- z_resid - x_resid %*% b[include_x]
mu <- as.numeric(exp(z - residuals))
temp <- -(y * log(y/mu) - (y-mu))
temp[which(y == 0)] <- -mu[which(y == 0)]
deviance <- -2 * sum(temp)/n
if(deviance<0) deviance = 0
delta_deviance <- old_deviance - deviance
if (!is.na(delta_deviance) & (deviance < 0.1 * delta_deviance)) {
delta_deviance = deviance
}
denom_crit = max(c( min(c(deviance, old_deviance)) , 0.1 ))
crit = abs(delta_deviance) / denom_crit
if (verbose == TRUE) {
print(crit)
}
old_deviance <- deviance
}
k <- ncol(matrix(x))
n <- length(y)
select_x <- which(b != 0)
k <- length(select_x)
bic <- deviance + k * log(n)/n
if (post) {
x_select <- x_resid[, as.numeric(penreg$beta) != 0]
if (length(x_select) != 0){
ppml_temp <- hdfeppml_int(y = y, x = x_select, fes = fes, tol = tol, hdfetol = hdfetol,
mu = penreg$mu, colcheck = FALSE)
penreg$pencoefs <- penreg$beta
penreg$beta[which(penreg$beta != 0), 1] <- ppml_temp$coefficients
b[include_x] <- penreg$beta
mu <- ppml_temp$mu
bic <- ppml_temp$bic
deviance <- ppml_temp$deviance
}
else{
print("no covariates selected!")
}
}
penreg[["beta"]] <- b
penreg[["mu"]] <- mu
penreg[["bic"]] <- bic
penreg[["deviance"]] <- deviance
if (saveX == TRUE) {
penreg[["x_resid"]] <- x_resid
penreg[["z_resid"]] <- z_resid
}
}
return(penreg)
} |
summarizeExperiments = function(reg, ids, show = c("prob", "algo")) {
checkExperimentRegistry(reg, strict = TRUE, writeable = FALSE)
syncRegistry(reg)
assertCharacter(show, min.len = 1, any.missing = FALSE)
dbSummarizeExperiments(reg, ids, show)
} |
get_api = function(api = NULL) {
if (is.null(api)) api = Sys.getenv("typeform_api2")
if (inherits(api, "Token2.0")) api = api$credentials$access_token
if (is.character(api) && nchar(api) != 0) return(api)
if (nchar(Sys.getenv("typeform_api")) > 0)
stop("Old key")
stop("Invalid api key.", call. = FALSE)
} |
del.miss <- function (x)
{
deleteMissing <- function(x) {
i <- which(x %in% as.raw(c(240, 2, 4)))
if (length(i))
x[-i]
else x
}
if (!inherits(x, "DNAbin"))
x <- as.DNAbin(x)
if (is.matrix(x)) {
n <- dim(x)[1]
y <- vector("list", n)
for (i in 1:n) y[[i]] <- x[i, ]
names(y) <- rownames(x)
x <- y
rm(y)
}
if (!is.list(x))
return(deleteMissing(x))
x <- lapply(x, deleteMissing)
class(x) <- "DNAbin"
x
} |
model_basic <-
function(datadea,
dmu_eval = NULL,
dmu_ref = NULL,
orientation = c("io", "oo", "dir"),
dir_input = NULL,
dir_output = NULL,
rts = c("crs", "vrs", "nirs", "ndrs", "grs"),
L = 1,
U = 1,
maxslack = TRUE,
weight_slack_i = 1,
weight_slack_o = 1,
vtrans_i = NULL,
vtrans_o = NULL,
compute_target = TRUE,
compute_multiplier = FALSE,
returnlp = FALSE,
...) {
if (!is.deadata(datadea)) {
stop("Data should be of class deadata. Run read_data function first!")
}
orientation <- tolower(orientation)
orientation <- match.arg(orientation)
rts <- tolower(rts)
rts <- match.arg(rts)
if (!is.null(datadea$ud_inputs) || !is.null(datadea$ud_outputs)) {
if (orientation == "dir") {
warning("Model proposed by Fare and Grosskopf (2004) is applied for undesirable inputs/outputs.")
} else {
warning("Model proposed by Seiford and Zhu (2002) is applied for undesirable inputs/outputs.")
datadea_old <- datadea
res_und <- undesirable_basic(datadea = datadea, vtrans_i = vtrans_i, vtrans_o = vtrans_o)
datadea <- res_und$u_datadea
if (orientation == "oo") {
vtrans_i <- res_und$vtrans_o
vtrans_o <- res_und$vtrans_i
} else {
vtrans_i <- res_und$vtrans_i
vtrans_o <- res_und$vtrans_o
}
if (!is.null(datadea$ud_inputs) && (orientation != "io")) {
warning("Undesirable (good) inputs with no input-oriented model.")
}
if (!is.null(datadea$ud_outputs) && (orientation != "oo")) {
warning("Undesirable (bad) outputs with no output-oriented model.")
}
if (rts != "vrs") {
rts <- "vrs"
warning("Returns to scale changed to variable (vrs) because there are data with undesirable inputs/outputs.")
}
}
}
if (rts == "grs") {
if (L > 1) {
stop("L must be <= 1.")
}
if (U < 1) {
stop("U must be >= 1.")
}
}
dmunames <- datadea$dmunames
nd <- length(dmunames)
if (is.null(dmu_eval)) {
dmu_eval <- 1:nd
} else if (!all(dmu_eval %in% (1:nd))) {
stop("Invalid set of DMUs to be evaluated (dmu_eval).")
}
names(dmu_eval) <- dmunames[dmu_eval]
nde <- length(dmu_eval)
if (is.null(dmu_ref)) {
dmu_ref <- 1:nd
} else if (!all(dmu_ref %in% (1:nd))) {
stop("Invalid set of reference DMUs (dmu_ref).")
}
names(dmu_ref) <- dmunames[dmu_ref]
ndr <- length(dmu_ref)
if (orientation == "dir") {
input <- datadea$input
output <- datadea$output
nc_inputs <- datadea$nc_inputs
nc_outputs <- datadea$nc_outputs
nd_inputs <- datadea$nd_inputs
nd_outputs <- datadea$nd_outputs
ud_inputs <- datadea$ud_inputs
ud_outputs <- datadea$ud_outputs
inputnames <- rownames(input)
outputnames <- rownames(output)
ni <- nrow(input)
no <- nrow(output)
obj <- "max"
if (is.null(dir_input)) {
dir_input <- matrix(input[, dmu_eval], nrow = ni)
} else {
if (is.matrix(dir_input)) {
if ((nrow(dir_input) != ni) || (ncol(dir_input) != nde)) {
stop("Invalid input direction matrix (number of inputs x number of evaluated DMUs).")
}
} else if ((length(dir_input) == 1) || (length(dir_input) == ni)) {
dir_input <- matrix(dir_input, nrow = ni, ncol = nde)
} else {
stop("Invalid input direction vector.")
}
}
rownames(dir_input) <- inputnames
colnames(dir_input) <- dmunames[dmu_eval]
if (is.null(dir_output)) {
dir_output <- matrix(output[, dmu_eval], nrow = no)
} else {
if (is.matrix(dir_output)) {
if ((nrow(dir_output) != no) || (ncol(dir_output) != nde)) {
stop("Invalid output direction matrix (number of outputs x number of evaluated DMUs).")
}
} else if ((length(dir_output) == 1) || (length(dir_output) == no)) {
dir_output <- matrix(dir_output, nrow = no, ncol = nde)
} else {
stop("Invalid output direction vector.")
}
}
rownames(dir_output) <- outputnames
colnames(dir_output) <- dmunames[dmu_eval]
} else {
if (orientation == "io") {
input <- datadea$input
output <- datadea$output
nc_inputs <- datadea$nc_inputs
nc_outputs <- datadea$nc_outputs
nd_inputs <- datadea$nd_inputs
nd_outputs <- datadea$nd_outputs
ud_inputs <- datadea$ud_inputs
ud_outputs <- datadea$ud_outputs
obj <- "min"
orient <- 1
} else {
input <- -datadea$output
output <- -datadea$input
nc_inputs <- datadea$nc_outputs
nc_outputs <- datadea$nc_inputs
nd_inputs <- datadea$nd_outputs
nd_outputs <- datadea$nd_inputs
ud_inputs <- datadea$ud_outputs
ud_outputs <- datadea$ud_inputs
aux <- weight_slack_i
weight_slack_i <- weight_slack_o
weight_slack_o <- aux
obj <- "max"
orient <- -1
}
inputnames <- rownames(input)
outputnames <- rownames(output)
ni <- nrow(input)
no <- nrow(output)
}
inputref <- matrix(input[, dmu_ref], nrow = ni)
outputref <- matrix(output[, dmu_ref], nrow = no)
ncd_inputs <- c(nc_inputs, nd_inputs)
target_input <- NULL
target_output <- NULL
multiplier_input <- NULL
multiplier_output <- NULL
multiplier_rts <- NULL
orientation_param <- NULL
DMU <- vector(mode = "list", length = nde)
names(DMU) <- dmunames[dmu_eval]
f.obj <- c(1, rep(0, ndr))
if (rts == "crs") {
f.con.rs <- NULL
f.con2.rs <- NULL
f.dir.rs <- NULL
f.rhs.rs <- NULL
} else {
f.con.rs <- cbind(0, matrix(1, nrow = 1, ncol = ndr))
f.con2.rs <- cbind(matrix(1, nrow = 1, ncol = ndr), matrix(0, nrow = 1, ncol = ni + no))
f.rhs.rs <- 1
if (rts == "vrs") {
f.dir.rs <- "="
} else if (rts == "nirs") {
f.dir.rs <- "<="
} else if (rts == "ndrs") {
f.dir.rs <- ">="
} else {
f.con.rs <- rbind(f.con.rs, f.con.rs)
f.con2.rs <- rbind(f.con2.rs, f.con2.rs)
f.dir.rs <- c(">=", "<=")
f.rhs.rs <- c(L, U)
}
}
f.dir <- c(rep("<=", ni), rep(">=", no), f.dir.rs)
f.dir[c(nc_inputs, ni + nc_outputs)] <- "="
if (maxslack && (!returnlp)) {
if (is.matrix(weight_slack_i)) {
if ((nrow(weight_slack_i) != ni) || (ncol(weight_slack_i) != nde)) {
stop("Invalid weight input matrix (number of inputs x number of evaluated DMUs).")
}
} else if ((length(weight_slack_i) == 1) || (length(weight_slack_i) == ni)) {
weight_slack_i <- matrix(weight_slack_i, nrow = ni, ncol = nde)
} else {
stop("Invalid weight input vector (number of inputs).")
}
rownames(weight_slack_i) <- inputnames
colnames(weight_slack_i) <- dmunames[dmu_eval]
weight_slack_i[nd_inputs, ] <- 0
if (is.matrix(weight_slack_o)) {
if ((nrow(weight_slack_o) != no) || (ncol(weight_slack_o) != nde)) {
stop("Invalid weight output matrix (number of outputs x number of evaluated DMUs).")
}
} else if ((length(weight_slack_o) == 1) || (length(weight_slack_o) == no)) {
weight_slack_o <- matrix(weight_slack_o, nrow = no, ncol = nde)
} else {
stop("Invalid weight output vector (number of outputs).")
}
rownames(weight_slack_o) <- outputnames
colnames(weight_slack_o) <- dmunames[dmu_eval]
weight_slack_o[nd_outputs, ] <- 0
nnci <- length(nc_inputs)
nnco <- length(nc_outputs)
f.con2.1 <- cbind(inputref, diag(ni), matrix(0, nrow = ni, ncol = no))
f.con2.1[nc_inputs, (ndr + 1) : (ndr + ni)] <- 0
f.con2.2 <- cbind(outputref, matrix(0, nrow = no, ncol = ni), -diag(no))
f.con2.2[nc_outputs, (ndr + ni + 1) : (ndr + ni + no)] <- 0
f.con2.nc <- matrix(0, nrow = (nnci + nnco), ncol = (ndr + ni + no))
f.con2.nc[, ndr + c(nc_inputs, ni + nc_outputs)] <- diag(nnci + nnco)
f.con2 <- rbind(f.con2.1, f.con2.2, f.con2.nc, f.con2.rs)
f.dir2 <- c(rep("=", ni + no + nnci + nnco), f.dir.rs)
if (orientation == "dir") {
nudi <- length(ud_inputs)
nudo <- length(ud_outputs)
if ((nudi + nudo) > 0) {
f.con2.s0.1 <- cbind(matrix(0, nrow = nudi, ncol = ndr),
matrix(diag(ni)[ud_inputs, ], nrow = nudi, ncol = ni),
matrix(0, nrow = nudi, ncol = no))
f.con2.s0.2 <- cbind(matrix(0, nrow = nudo, ncol = ndr + ni),
matrix(diag(no)[ud_outputs, ], nrow = nudo, ncol = no))
f.con2 <- rbind(f.con2, f.con2.s0.1, f.con2.s0.2)
f.dir2 <- c(f.dir2, rep("=", nudi + nudo))
}
}
}
if (orientation != "dir") {
f.con.2 <- cbind(matrix(0, nrow = no, ncol = 1), outputref)
for (i in 1:nde) {
ii <- dmu_eval[i]
f.con.1 <- cbind(-input[, ii], inputref)
f.con.1[ncd_inputs, 1] <- 0
f.con <- rbind(f.con.1, f.con.2, f.con.rs)
f.rhs <- c(rep(0, ni), output[, ii], f.rhs.rs)
f.rhs[ncd_inputs] <- input[ncd_inputs, ii]
if (returnlp) {
lambda <- rep(0, ndr)
names(lambda) <- dmunames[dmu_ref]
var <- list(efficiency = 0, lambda = lambda)
DMU[[i]] <- list(direction = obj, objective.in = f.obj, const.mat = f.con, const.dir = f.dir, const.rhs = f.rhs,
var = var)
} else {
if (compute_multiplier) {
res <- lp(obj, f.obj, f.con, f.dir, f.rhs, compute.sens = TRUE)
if (res$status == 0) {
multiplier_input <- -orient * res$duals[1 : ni]
names(multiplier_input) <- inputnames
multiplier_output <- orient * res$duals[(ni + 1) : (ni + no)]
names(multiplier_output) <- outputnames
if (rts == "grs") {
multiplier_rts <- res$duals[(ni + no + 1):(ni + no + 2)]
names(multiplier_rts) <- c("grs_L", "grs_U")
} else if (rts != "crs") {
multiplier_rts <- res$duals[ni + no + 1]
names(multiplier_rts) <- rts
}
} else {
multiplier_input <- NA
multiplier_output <- NA
multiplier_rts <- NA
}
} else {
res <- lp(obj, f.obj, f.con, f.dir, f.rhs)
}
if(res$status == 0) {
res <- res$solution
efficiency <- res[1]
if (maxslack) {
f.obj2 <- c(rep(0, ndr), weight_slack_i[, i], weight_slack_o[, i])
f.rhs2 <- c(efficiency * input[, ii], output[, ii], rep(0, nnci + nnco), f.rhs.rs)
f.rhs2[ncd_inputs] <- input[ncd_inputs, ii]
res <- lp("max", f.obj2, f.con2, f.dir2, f.rhs2)$solution
lambda <- res[1 : ndr]
names(lambda) <- dmunames[dmu_ref]
slack_input <- res[(ndr + 1) : (ndr + ni)]
names(slack_input) <- inputnames
slack_output <- res[(ndr + ni + 1) : (ndr + ni + no)]
names(slack_output) <- outputnames
if (compute_target) {
target_input <- orient * as.vector(inputref %*% lambda)
target_output <- orient * as.vector(outputref %*% lambda)
names(target_input) <- inputnames
names(target_output) <- outputnames
target_input[ud_inputs] <- vtrans_i - target_input[ud_inputs]
target_output[ud_outputs] <- vtrans_o - target_output[ud_outputs]
}
} else {
lambda <- res[2 : (ndr + 1)]
names(lambda) <- dmunames[dmu_ref]
target_input <- orient * as.vector(inputref %*% lambda)
names(target_input) <- inputnames
target_output <- orient * as.vector(outputref %*% lambda)
names(target_output) <- outputnames
slack_input <- efficiency * input[, ii] - orient * target_input
slack_input[ncd_inputs] <- input[ncd_inputs, ii] - orient * target_input[ncd_inputs]
names(slack_input) <- inputnames
slack_output <- orient * target_output - output[, ii]
names(slack_output) <- outputnames
target_input[ud_inputs] <- vtrans_i - target_input[ud_inputs]
target_output[ud_outputs] <- vtrans_o - target_output[ud_outputs]
}
} else {
efficiency <- NA
lambda <- NA
slack_input <- NA
slack_output <- NA
if (compute_target) {
target_input <- NA
target_output <- NA
}
}
if (orientation == "io") {
if (rts == "crs") {
DMU[[i]] <- list(efficiency = efficiency,
lambda = lambda,
slack_input = slack_input, slack_output = slack_output,
target_input = target_input, target_output = target_output,
multiplier_input = multiplier_input, multiplier_output = multiplier_output)
} else {
DMU[[i]] <- list(efficiency = efficiency,
lambda = lambda,
slack_input = slack_input, slack_output = slack_output,
target_input = target_input, target_output = target_output,
multiplier_input = multiplier_input, multiplier_output = multiplier_output, multiplier_rts = multiplier_rts)
}
} else {
aux <- weight_slack_i
weight_slack_i <- weight_slack_o
weight_slack_o <- aux
if (rts == "crs") {
DMU[[i]] <- list(efficiency = efficiency,
lambda = lambda,
slack_input = slack_output, slack_output = slack_input,
target_input = target_output, target_output = target_input,
multiplier_input = multiplier_output, multiplier_output = multiplier_input)
} else {
DMU[[i]] <- list(efficiency = efficiency,
lambda = lambda,
slack_input = slack_output, slack_output = slack_input,
target_input = target_output, target_output = target_input,
multiplier_input = multiplier_output, multiplier_output = multiplier_input, multiplier_rts = multiplier_rts)
}
}
}
}
} else {
ncd_outputs <- c(nc_outputs, nd_outputs)
for (i in 1:nde) {
ii <- dmu_eval[i]
f.con.1 <- cbind(dir_input[, i], inputref)
f.con.1[ud_inputs, 1] <- -dir_input[ud_inputs, i]
f.con.1[ncd_inputs, 1] <- 0
f.con.2 <- cbind(-dir_output[, i], outputref)
f.con.2[ud_outputs, 1] <- dir_output[ud_outputs, i]
f.con.2[ncd_outputs, 1] <- 0
f.con <- rbind(f.con.1, f.con.2, f.con.rs)
f.dir[c(ud_inputs, ni + ud_outputs)] <- "="
f.rhs <- c(input[, ii], output[, ii], f.rhs.rs)
if (returnlp) {
lambda <- rep(0, ndr)
names(lambda) <- dmunames[dmu_ref]
var <- list(efficiency = 0, lambda = lambda)
DMU[[i]] <- list(direction = obj, objective.in = f.obj, const.mat = f.con, const.dir = f.dir, const.rhs = f.rhs,
var = var)
} else {
res <- lp(obj, f.obj, f.con, f.dir, f.rhs)
if (res$status == 0) {
res <- res$solution
beta <- res[1]
if (maxslack) {
f.obj2 <- c(rep(0, ndr), weight_slack_i[, i], weight_slack_o[, i])
f.rhs2 <- c(input[, ii] - beta * dir_input[, i], output[, ii] + beta * dir_output[, i],
rep(0, nnci + nnco), f.rhs.rs, rep(0, nudi + nudo))
f.rhs2[ud_inputs] <- input[ud_inputs, ii] + beta * dir_input[ud_inputs, i]
f.rhs2[ni + ud_outputs] <- output[ud_outputs, ii] - beta * dir_output[ud_outputs, i]
f.rhs2[ncd_inputs] <- input[ncd_inputs, ii]
f.rhs2[ni + ncd_outputs] <- output[ncd_outputs, ii]
res <- lp("max", f.obj2, f.con2, f.dir2, f.rhs2)$solution
lambda <- res[1 : ndr]
names(lambda) <- dmunames[dmu_ref]
slack_input <- res[(ndr + 1) : (ndr + ni)]
names(slack_input) <- inputnames
slack_output <- res[(ndr + ni + 1) : (ndr + ni + no)]
names(slack_output) <- outputnames
if (compute_target) {
target_input <- as.vector(inputref %*% lambda)
target_output <- as.vector(outputref %*% lambda)
names(target_input) <- inputnames
names(target_output) <- outputnames
}
} else {
lambda <- res[2 : (ndr + 1)]
names(lambda) <- dmunames[dmu_ref]
target_input <- as.vector(inputref %*% lambda)
names(target_input) <- inputnames
target_output <- as.vector(outputref %*% lambda)
names(target_output) <- outputnames
slack_input <- input[, ii] - beta * dir_input[, i] - target_input
slack_input[ud_inputs] <- input[ud_inputs, ii] + beta * dir_input[ud_inputs, i] - target_input[ud_inputs]
slack_input[ncd_inputs] <- input[ncd_inputs, ii] - target_input[ncd_inputs]
names(slack_input) <- inputnames
slack_output <- target_output - output[, ii] - beta * dir_output[, i]
slack_output[ud_outputs] <- target_output[ud_outputs] - output[ud_outputs, ii] + beta * dir_output[ud_outputs, i]
slack_output[ncd_outputs] <- target_output[ncd_outputs] - output[ncd_outputs, ii]
names(slack_output) <- outputnames
}
} else {
beta <- NA
lambda <- NA
slack_input <- NA
slack_output <- NA
if (compute_target) {
target_input <- NA
target_output <- NA
}
}
DMU[[i]] <- list(beta = beta,
lambda = lambda,
slack_input = slack_input, slack_output = slack_output,
target_input = target_input, target_output = target_output
)
}
}
orientation_param <- list(
dir_input = dir_input,
dir_output = dir_output)
}
if ((!is.null(datadea$ud_inputs) || !is.null(datadea$ud_outputs)) && (orientation != "dir")) {
datadea <- datadea_old
vtrans_i <- res_und$vtrans_i
vtrans_o <- res_und$vtrans_o
}
if (rts == "grs") {
eps <- 1e-6
for (i in 1:nde) {
j <- which(dmu_ref == dmu_eval[i])
if (length(j) == 1) {
kk <- DMU[[i]]$lambda[j]
kk2 <- sum(DMU[[i]]$lambda[-j])
if ((kk > eps) && (kk2 > eps)) {
warning(paste("Under generalized returns to scale,", dmunames[dmu_eval[i]], "appears in its own reference set."))
}
}
}
}
deaOutput <- list(modelname = "basic",
orientation = orientation,
orientation_param = orientation_param,
rts = rts,
L = L,
U = U,
DMU = DMU,
data = datadea,
dmu_eval = dmu_eval,
dmu_ref = dmu_ref,
vtrans_i = vtrans_i,
vtrans_o = vtrans_o,
maxslack = maxslack,
weight_slack_i = weight_slack_i,
weight_slack_o = weight_slack_o)
return(structure(deaOutput, class = "dea"))
} |
"openintro_palettes" |
"SPtimeline" |
rm(list = ls())
testthat::context("Miscellaneous")
library("gamlss")
library("distreg.vis")
library("bamlss")
library("testthat")
cssfile <-
system.file("srcjs/solarized-dark.css", package = "distreg.vis")
jsfile <-
system.file("srcjs/highlight.pack.js", package = "distreg.vis")
expect_true(file.exists(cssfile))
expect_true(file.exists(jsfile))
DF <-
structure(
list(
race = structure(
c(1L, 1L, 1L, 1L, 1L),
.Label = c("1. White",
"2. Black", "3. Asian", "4. Other"),
class = c("ordered", "factor")
),
year = c(2006L, 2006L, 2006L, 2006L, 2006L),
education = structure(
1:5,
.Label = c(
"1. < HS Grad",
"2. HS Grad",
"3. Some College",
"4. College Grad",
"5. Advanced Degree"
),
class = c("ordered", "factor")
),
health = structure(
c(1L,
1L, 1L, 1L, 1L),
.Label = c("1. <=Good", "2. >=Very Good"),
class = c("ordered",
"factor")
),
age = c(42L, 42L, 42L, 42L, 42L),
intercept = c(TRUE,
TRUE, TRUE, TRUE, TRUE)
),
.Names = c("race", "year", "education",
"health", "age", "intercept"),
row.names = c("P1", "P2", "P3",
"P4", "P5"),
class = "data.frame"
)
DF <- distreg.vis:::fac_check(DF)
expect_false("ordered" %in% unlist(sapply(DF, class)))
fam_name <- "GA"
art_data <- model_fam_data(fam_name = fam_name)
ndata <- art_data[sample(seq_len(nrow(art_data)), 5),
!colnames(art_data) %in% fam_name]
form <- as.formula(paste0(fam_name, "~ norm2 + binomial1"))
ga <- gamlss(form, sigma.formula = ~ .,
data = art_data, family = fam_name, trace = FALSE)
ba <- bamlss(list(GA ~ s(norm2) + binomial1,
sigma ~ s(norm2) + binomial1),
data = art_data, family = gamma_bamlss(),
verbose = FALSE)
ba_pred_samples_5 <- preds(ba, newdata = ndata, what = "samples")
ba_pred_samples_1 <- preds(ba, newdata = ndata[1, , drop = FALSE], what = "samples")
ba_pred_mean_5 <- preds(ba, newdata = ndata, what = "mean")
ba_pred_mean_1 <- preds(ba, newdata = ndata[1, , drop = FALSE], what = "mean")
ga_pred_mean_5 <- preds(ga, newdata = ndata, what = "mean")
ba_mom_samples_5_mean <-
moments(ba_pred_samples_5, fam_name = "gaussian", what = "mean")
ba_mom_samples_5_ll <-
moments(ba_pred_samples_5, fam_name = "gaussian", what = "lowerlimit")
ba_mom_samples_5_ul <-
moments(ba_pred_samples_5, fam_name = "gaussian", what = "upperlimit")
ba_mom_samples_1_ul <-
moments(ba_pred_samples_1, fam_name = "gaussian", what = "upperlimit")
ba_mom_mean_5_ul <-
moments(ba_pred_mean_5, fam_name = "gaussian", what = "mean")
dat <- model_fam_data(fam_name = "GA")
dat$norma <- dat$norm2 - min(dat$norm2) + 0.01
dat$lognorma <- log(dat$norma)
m1 <-
gamlss(
GA ~ factor(binomial1) + log(norma),
sigma.fo = ~ factor(binomial1),
nu.fo = ~ log(norma),
tau.fo = ~ factor(binomial1) + log(norma),
data = dat,
family = GA
)
m2 <-
gamlss(
GA ~ factor(binomial1) + lognorma,
sigma.fo = ~ factor(binomial1),
nu.fo = ~ lognorma,
tau.fo = ~ factor(binomial1) + lognorma,
data = dat,
family = GA
)
expect_error(preds(m1, newdata = data.frame(binomial1 = "yes", norma = 50)))
expect_error(preds(m2, newdata = data.frame(binomial1 = "yes", lognorma = log(50)))) |
test_that("Epw Header", {
expect_is(idd <- get_epw_idd(), "Idd")
expect_error(parse_epw_header("Wrong\n"), class = "eplusr_error_parse_epw_header_name")
expect_error(parse_epw_header("LOCATION,;;\n"), class = "eplusr_error_parse_epw_header_line")
expect_error(parse_epw_header(paste0("LOCATION", strrep(",", 11), "\n")), class = "eplusr_error_parse_epw_header_field")
expect_is(err <- catch_cnd(parse_epw_header("LOCATION\n")), "eplusr_error_validity_check")
expect_equal(err$data$missing_object, c(
"DESIGN CONDITIONS",
"TYPICAL/EXTREME PERIODS",
"GROUND TEMPERATURES",
"HOLIDAYS/DAYLIGHT SAVINGS",
"COMMENTS 1",
"COMMENTS 2",
"DATA PERIODS"
))
expect_is(err <- catch_cnd(parse_epw_header("DESIGN CONDITIONS,a\n")), "eplusr_error_validity_check")
expect_equal(err$data$invalid_numeric$class_name, "DESIGN CONDITIONS")
expect_equal(err$data$invalid_numeric$field_index, 1L)
expect_is(class = "list",
h <- parse_epw_header(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1, Data, Friday, 2016/01/01, 2016/12/31
"
)
)
expect_equal(h$value[object_id %in% c(2, 3, 4), value_num], rep(0, 3))
expect_equal(h$value[object_id %in% c(6, 7), value_chr], rep(NA_character_, 2))
get_idf_value(get_epw_idd_env(), h, EPW_CLASS[[paste0("comment", 1)]])
expect_warning(
{
DC <- function (n = 1, m = n) {
htg <- c("heating", 1:15)
clg <- c("cooling", 1:32)
ext <- c("extremes", 1:16)
grp <- paste0(rep(c(htg, clg, ext), m), collapse = ",")
paste("DESIGN CONDITIONS", n, "src", "", grp, sep = ",", collapse = ",")
}
h <- parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
", DC(0, 1), "
TYPICAL/EXTREME PERIODS,0,period,typical,1/1,1/2
GROUND TEMPERATURES,0,0.5,,,,", paste0(1:12, collapse = ","), "
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0,New year,1/1
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,2016/01/01,2016/12/31,Data1,Friday,2017/01/01,2017/12/31
"
))
},
"Number of Design Conditions"
)
expect_equal(h$value[object_id == 2, value_num][1], 1L)
expect_equal(h$value[object_id == 3, value_num][1], 1L)
expect_equal(h$value[object_id == 4, value_num][1], 1L)
expect_equal(h$value[object_id == 5, value_num][4], 1L)
expect_equal(h$value[object_id == 8, value_num][1], 2L)
expect_error(
parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS,1,period,typical,a,1/2
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,2016/01/01,2016/12/31
"
)),
class = "eplusr_error_parse_epw"
)
expect_error(
parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS,1,period,typical,1/1,a
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,2016/01/01,2016/12/31
"
)),
class = "eplusr_error_parse_epw"
)
expect_error(
parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,1/1,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,2016/01/01,2016/12/31
"
)),
class = "eplusr_error_parse_epw"
)
expect_error(
parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,1,new year, 2020/01/01
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,2016/01/01,2016/12/31
"
)),
class = "eplusr_error_parse_epw"
)
expect_error(
parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,7,Data,Friday,2016/01/01,2016/12/31
"
)),
class = "eplusr_error_parse_epw"
)
expect_error(
parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,2,1,Data,Friday,2016/01/01,2016/1/31,Data,Friday,2016/2/01,2016/12/31
"
)),
class = "eplusr_error_parse_epw"
)
expect_error(
parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,2nd Mon in December,2016/12/31
"
)),
class = "eplusr_error_parse_epw"
)
expect_error(
parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,12/1,0
"
)),
class = "eplusr_error_parse_epw"
)
expect_warning(
h <- parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,2016/01/01,12/31
"
))
)
expect_equal(h$value[object_id == 8L, value_chr][6], "2016/12/31")
expect_error(
parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,2017/01/01,2/29
"
)),
class = "eplusr_error_parse_epw"
)
expect_warning(
h <- parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,01/29,2016/3/21
"
)),
class = "eplusr_error_parse_epw"
)
expect_equal(h$value[object_id == 8L, value_chr][6], " 3/21")
expect_warning(
h <- parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,2015/01/29,2015/3/21
"
))
)
expect_error(
h <- parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,1/2,1/1
"
)),
class = "eplusr_error_parse_epw"
)
expect_error(
suppressWarnings(h <- parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,no,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1,Data,Friday,2016/2/29,2016/3/1
"
))),
class = "eplusr_error_parse_epw"
)
expect_error(
parse_epw_header(paste0(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,yes,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,2,1,Data,Friday,2016/01/01,2016/1/31,Data1,Friday,2016/1/1,2016/12/31
"
)),
class = "eplusr_error_parse_epw"
)
idd <- get_epw_idd()
idd_env <- get_priv_env(idd)$idd_env()
idf_env <- parse_epw_header(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,no,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1, Data, Friday, 01/01, 12/31
"
)
idd_env <- get_priv_env(idd)$idd_env()
expect_is(class = "list",
h <- parse_epw_header(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,no,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1, Data, Friday, 01/01, 12/31
"
)
)
expect_equal(format_epw_header(h),
c("LOCATION,city,state,country,type,wmo,1.00,2.00,3.0,4.0",
"DESIGN CONDITIONS,0",
"TYPICAL/EXTREME PERIODS,0",
"GROUND TEMPERATURES,0",
"HOLIDAYS/DAYLIGHT SAVINGS,No,0,0,0",
"COMMENTS 1,",
"COMMENTS 2,",
"DATA PERIODS,1,1,Data,Friday, 1/ 1,12/31"
)
)
expect_equal(format_epw_meta(h),
c("[Location ]: city, state, country",
" {N 1\u00B00'}, {E 2\u00B00'}, {UTC+03:00}",
"[Elevation]: 4m above see level",
"[Data Src ]: type",
"[WMO Stat ]: wmo",
"[Leap Year]: No",
"[Interval ]: 60 mins"
)
)
})
test_that("Epw Data", {
idd <- get_epw_idd()
idd_env <- get_priv_env(idd)$idd_env()
idf_env <- parse_epw_header(
"
LOCATION,city,state,country,type,wmo,1,2,3,4
DESIGN CONDITIONS
TYPICAL/EXTREME PERIODS
GROUND TEMPERATURES
HOLIDAYS/DAYLIGHT SAVINGS,no,0,0,0
COMMENTS 1
COMMENTS 2
DATA PERIODS,1,1, Data, Friday, 01/01, 12/31
"
)
expect_error(parse_epw_data("\n\n\n\n\n\n\n\n,,,"), class = "eplusr_error_parse_epw_data_column")
hd <- "1\n2\n3\n4\n5\n6\n7\n8"
dh <- paste0(rep("a", 35), collapse = ",")
rw <- init_idf_value(idd_env, idf_env, "WEATHER DATA", property = "type")
val <- paste0(copy(rw)[type == "integer", value_chr := "a"]$value_chr, collapse = ",")
expect_error(parse_epw_data(paste(hd, dh, val, sep = "\n")), class = "eplusr_error_parse_epw_data_type")
val <- paste0(copy(rw)[type == "real", value_chr := "a"]$value_chr, collapse = ",")
expect_error(parse_epw_data(paste(hd, dh, val, sep = "\n")), class = "eplusr_error_parse_epw_data_type")
skip_on_cran()
path_epw <- file.path(eplus_config(8.8)$dir, "WeatherData", "USA_CA_San.Francisco.Intl.AP.724940_TMY3.epw")
expect_is(parsed <- parse_epw_file(path_epw), "list")
expect_equal(names(parsed), c("header", "data", "matched"))
expect_equal(ncol(parsed$data), 36L)
expect_equal(parsed$matched, data.table(index = 1L, row = 1L, num = 8760L))
expect_equal(find_nearst_wday_year(make_date(2019, 1, 14), 1, 2019), 2019)
expect_equal(find_nearst_wday_year(make_date(2019, 1, 14), 2, 2019), 2014)
})
test_that("EpwDate Class", {
expect_equal(get_epw_wday(1), 1)
expect_equal(get_epw_wday(1, label = TRUE), "Monday")
expect_equal(get_epw_wday(1, label = TRUE, abbr = TRUE), "Mon")
expect_equal(get_epw_wday("mon"), 1)
expect_equal(get_epw_wday("mon", label = TRUE), "Monday")
expect_equal(get_epw_wday("mon", label = TRUE, abbr = TRUE), "Mon")
expect_error(epw_date(list()), "Missing method to convert")
expect_equal(epw_date(""), init_epwdate_vctr(1))
expect_equal(format(epw_date("")), NA_character_)
expect_output(print(epw_date("")), "NA")
expect_equal(epw_date(0L), init_epwdate_vctr(1, "0-01-01"))
expect_equal(epw_date("0"), init_epwdate_vctr(1, "0-01-01"))
expect_equal(epw_date(367), init_epwdate_vctr(1))
expect_equal(format(epw_date(367)), NA_character_)
expect_output(print(epw_date(367)), "NA")
expect_equal(epw_date(366), init_epwdate_vctr(1, "4-12-31"))
expect_equal(format(epw_date(366)), "366")
expect_output(print(epw_date(366)), "366th day")
expect_equal(epw_date(3), init_epwdate_vctr(1, "4-01-03"))
expect_equal(format(epw_date(3)), "3")
expect_output(print(epw_date(3)), "3rd day")
expect_equal(epw_date("3.10"), init_epwdate_vctr(1, "8-03-10"))
expect_equal(epw_date("01/03"), init_epwdate_vctr(1, "8-01-03"))
expect_equal(format(epw_date("Apr-01")), " 4/ 1")
expect_output(print(epw_date("Apr-01")), "Apr 01")
expect_equal(epw_date("01-Apr"), init_epwdate_vctr(1, "8-04-01"))
expect_equal(format(epw_date("01-Apr")), " 4/ 1")
expect_output(print(epw_date("01-Apr")), "Apr 01")
expect_equal(epw_date("2019-01-Apr"), init_epwdate_vctr(1))
expect_equal(format(epw_date("2019-01-Apr")), NA_character_)
expect_output(print(epw_date("2019-01-Apr")), "NA")
expect_equal(epw_date("2019-Apr-01"), init_epwdate_vctr(1))
expect_equal(format(epw_date("2019-Apr-01")), NA_character_)
expect_output(print(epw_date("2019-Apr-01")), "NA")
expect_equal(epw_date("4-01-2019"), init_epwdate_vctr(1, "2019-04-01"))
expect_equal(format(epw_date("4-01-2019")), "2019/ 4/ 1")
expect_output(print(epw_date("4-01-2019")), "2019-04-01")
expect_equal(epw_date("last Mon in Jan"), init_epwdate_vctr(1, "16-01-25"))
expect_equal(format(epw_date("last Mon in Jan")), "Last Monday in January")
expect_output(print(epw_date("last Mon in Jan")), "Last Monday in January")
expect_equal(epw_date("1st Mon in Jan"), init_epwdate_vctr(1, "12-01-02"))
expect_equal(format(epw_date("1st Mon in Jan")), "1st Monday in January")
expect_output(print(epw_date("1st Mon in Jan")), "1st Monday in January")
expect_equal(format(epw_date(c("2nd Sunday in March", "1st Sunday in November"))),
c("2nd Sunday in March", "1st Sunday in November")
)
expect_equal(epw_date("6 Mon in Jan"), init_epwdate_vctr(1))
expect_equal(format(epw_date("6 Mon in Jan")), NA_character_)
expect_output(print(epw_date("6 Mon in Jan")), "NA")
expect_equal(c(epw_date("1/3"), epw_date("3")), epw_date(c("1/3", "3")))
d <- epw_date(c("1/3", "4"))
expect_equal(c(d[2], d[1], epw_date(1.1)), epw_date(c("4", "1/3", "1.1")))
expect_true(is_EpwDate(epw_date("1")))
expect_false(is_EpwDate(Sys.Date()))
expect_equal(epw_date(1), as_EpwDate("1"))
expect_true(is.na(epw_date("")))
expect_false(is.na(epw_date(1)))
expect_equal(length(epw_date(1:5)), 5L)
expect_equal(epw_date(1:5)[2L], epw_date(2))
expect_equal(epw_date(1:5)[[3L]], epw_date(3))
expect_equal({d <- epw_date(1:2);d[1] <- epw_date(3);d}, epw_date(c(3, 2)))
expect_equal({d <- epw_date(1:2);d[[1]] <- epw_date(3);d}, epw_date(c(3, 2)))
}) |
simulate_data <- function(N,
t_data,
covariates = c(),
names = NULL,
relevances = c(1, 1, rep(1, length(covariates))),
n_categs = rep(2, sum(covariates %in% c(2, 3))),
t_jitter = 0,
lengthscales =
rep(12, 2 + sum(covariates %in% c(0, 1, 2))),
f_var = 1,
noise_type = "gaussian",
snr = 3,
phi = 1,
gamma = 0.2,
N_affected = round(N / 2),
t_effect_range = "auto",
t_observed = "after_0",
c_hat = 0,
dis_fun = "gp_warp_vm",
bin_kernel = FALSE,
steepness = 0.5,
vm_params = c(0.025, 1),
continuous_info = list(
mu = c(pi / 8, pi, -0.5),
lambda = c(pi / 8, pi, 1)
),
N_trials = 1,
force_zeromean = TRUE) {
noise_type <- tolower(noise_type)
check_length_geq(t_data, 3)
names <- sim.check_covariates(covariates, relevances, names, n_categs)
bad <- N_affected > round(N / 2)
if (bad) stop("N_affected cannot be greater than round(N/2)!")
bad <- is.unsorted(covariates)
if (bad) stop("The covariates vector must be increasing!")
IN <- sim.create_x(
N = N,
covariates = covariates,
names = names,
n_categs = n_categs,
t_data = t_data,
t_jitter = t_jitter,
t_effect_range = t_effect_range,
continuous_info = continuous_info
)
k <- length(t_data)
X_affected <- c(rep(1, N_affected * k), rep(0, (N - N_affected) * k))
COMP <- sim.create_f(
dollar(IN, "X"),
covariates,
relevances,
lengthscales,
X_affected,
dis_fun,
bin_kernel,
steepness,
vm_params,
force_zeromean
)
FFF <- dollar(COMP, "FFF")
f <- rowSums(FFF)
SD <- stats::sd(f)
f <- if (SD > 0) sqrt(f_var) / SD * f else stats::rnorm(n = length(f))
f <- f + c_hat
NOISY <- sim.create_y(noise_type, f,
snr = snr, phi = phi, gamma = gamma,
N_trials = N_trials
)
h <- dollar(NOISY, "h")
y <- dollar(NOISY, "y")
noise <- y - h
dat <- cbind(dollar(IN, "X"), y)
rownames(dat) <- 1:(N * k)
comp <- cbind(FFF, f, h, noise, y)
OBSERVED <- sim.data_to_observed(dat, t_observed)
SSR <- sum((h - mean(h))^2)
SSE <- sum(noise^2)
teff_true <- dollar(IN, "onsets")
teff_obs <- dollar(OBSERVED, "onsets_observed")
teff <- list(true = teff_true, observed = teff_obs)
info <- list(
par_ell = lengthscales,
par_cont = dollar(IN, "par_cont"),
p_signal = SSR / (SSR + SSE),
msg = dollar(IN, "info"),
noise_type = noise_type
)
new("lgpsim",
data = dollar(OBSERVED, "dat"),
response = "y",
components = comp,
kernel_matrices = dollar(COMP, "KKK"),
effect_times = teff,
info = info
)
}
sim.create_y <- function(noise_type, f, snr, phi, gamma, N_trials) {
L <- length(f)
y <- rep(0, L)
h <- link_inv(f, noise_type)
if (noise_type == "gaussian") {
sf <- stats::var(f)
sigma_n <- 1 / sqrt(snr) * sqrt(sf)
y_n <- stats::rnorm(n = L, mean = 0, sd = 1)
y_n <- sigma_n * (y_n - mean(y_n)) / stats::sd(y_n)
y <- h + y_n
} else if (noise_type == "poisson") {
y <- stats::rpois(n = L, lambda = h)
} else if (noise_type == "nb") {
y <- stats::rnbinom(n = L, mu = h, size = phi)
} else if (noise_type == "binomial") {
y <- stats::rbinom(n = L, size = N_trials, prob = h)
h <- N_trials * h
} else if (noise_type == "bb") {
check_interval(gamma, 0, 1)
gam_t <- (1 - gamma) / gamma
alpha <- gam_t * h
beta <- gam_t * (1.0 - h)
prob <- stats::rbeta(n = L, alpha, beta)
y <- stats::rbinom(n = L, size = N_trials, prob = prob)
h <- N_trials * h
} else {
stop("Unknown noise_type! Please report a bug.")
}
NOISY <- list(h = h, y = y)
return(NOISY)
}
sim.create_x <- function(N,
covariates,
names,
n_categs,
t_data,
t_jitter,
t_effect_range,
continuous_info) {
D <- sim.create_x_D(covariates)
checked <- sim.create_x_check(n_categs, D, t_data, t_effect_range)
k <- length(t_data)
id <- rep(1:N, each = k)
id <- as.factor(id)
age <- sim.draw_measurement_times(N, t_data, t_jitter)
X <- data.frame(id, age)
et_range <- dollar(checked, "t_effect_range")
parsed_dis <- sim.create_x_dis_age(X, k, N, D, age, et_range)
dis_age <- parsed_dis$dis_age
X <- parsed_dis$X
cinfo <- continuous_info
parsed_x <- sim.create_x_other(X, k, N, D, n_categs, dis_age, cinfo)
X <- dollar(parsed_x, "X")
colnames(X) <- names
list(
info = dollar(checked, "info"),
onsets = dollar(parsed_dis, "teff"),
N_cases = dollar(parsed_dis, "N_cases"),
par_cont = dollar(parsed_x, "par_cont"),
X = X
)
}
sim.create_f <- function(X,
covariates,
relevances,
lengthscales,
X_affected,
dis_fun,
bin_kernel,
steepness,
vm_params,
force_zeromean) {
i4 <- which(covariates == 4)
covariates[i4] <- 3
D <- c(1, 2, covariates + 3)
useMaskedVarianceKernel <- TRUE
if (is.character(dis_fun)) {
if (dis_fun == "gp_warp_vm") {
useMaskedVarianceKernel <- TRUE
} else if (dis_fun == "gp_warp") {
useMaskedVarianceKernel <- FALSE
} else {
msg <- paste0("dis_fun must be gp_warp or gp_warp_vm! found = ", dis_fun)
stop(msg)
}
}
KK <- sim.kernels(
X, D, lengthscales,
X_affected, bin_kernel,
useMaskedVarianceKernel,
steepness, vm_params
)
labs <- sim.name_components(D, colnames(X))
FFF <- sim.draw_components(KK)
if (sum(D == 3) == 1) {
i_dis <- which(labs == "diseaseAge")
} else {
i_dis <- -1
}
if (i_dis > 0 && is.function(dis_fun)) {
FFF[, i_dis] <- sim.disease_effect(X[, 1], X[, 3], dis_fun)
} else {
}
if (!bin_kernel) {
i_zm <- c(which(D == 1), which(D == 5))
i_skip <- c(i_dis, i_zm)
} else {
i_skip <- c(i_dis)
}
FFF <- sim.scale_relevances(FFF, relevances,
force_zeromean = force_zeromean, i_skip
)
colnames(FFF) <- labs
ret <- list(FFF = data.frame(FFF), KKK = KK)
return(ret)
}
sim.kernels <- function(X,
types,
lengthscales,
X_affected,
bin_kernel,
useMaskedVarianceKernel,
steepness,
vm_params) {
pos_class <- 1
n <- dim(X)[1]
d <- length(types)
KK <- array(0, c(n, n, d))
t <- X[, which(types == 2)]
id <- X[, which(types == 1)]
n_ell <- sum(types != 6)
d_ell <- length(lengthscales)
if (d_ell != n_ell) {
stop("lengthscales has length ", d_ell, ", should be ", n_ell)
}
j_ell <- 0
ell <- lengthscales
for (j in 1:d) {
xj <- X[, j]
if (types[j] == 1) {
j_ell <- j_ell + 1
N_tot <- length(unique(xj))
Kj <- kernel_zerosum(id, id, N_tot) * kernel_eq(t, t, ell = ell[j_ell])
} else if (types[j] == 2) {
j_ell <- j_ell + 1
Kj <- kernel_eq(t, t, ell = ell[j_ell])
} else if (types[j] == 3) {
j_ell <- j_ell + 1
ell_ns <- ell[j_ell]
Kj <- kernel_bin(X_affected, X_affected, pos_class) *
kernel_ns(xj, xj, ell = ell_ns, a = steepness)
if (useMaskedVarianceKernel) {
M <- kernel_varmask(xj, xj, steepness, vm_params)
Kj <- Kj * M
}
} else if (types[j] == 4) {
j_ell <- j_ell + 1
Kj <- kernel_eq(xj, xj, ell = ell[j_ell])
} else if (types[j] == 5) {
j_ell <- j_ell + 1
if (bin_kernel) {
Kj <- kernel_bin(xj, xj, pos_class) * kernel_eq(t, t, ell = ell[j_ell])
} else {
N_cat <- length(unique(xj))
Kj <- kernel_zerosum(xj, xj, N_cat) * kernel_eq(t, t, ell = ell[j_ell])
}
} else if (types[j] == 6) {
if (bin_kernel) {
Kj <- kernel_bin(xj, xj, pos_class)
} else {
N_cat <- length(unique(xj))
Kj <- kernel_zerosum(xj, xj, N_cat)
}
} else {
stop("types contains invalid values")
}
KK[, , j] <- Kj
}
return(KK)
}
sim.check_covariates <- function(covariates, relevances, names, n_cat) {
d0 <- sum(covariates == 0)
if (d0 > 1) stop("There can be only one diseaseAge component!")
L1 <- length(covariates)
L2 <- length(relevances)
L3 <- sum(covariates %in% c(2, 3))
if ((L1 + 2) != L2) stop("length(relevances) must be length(covariates) + 2")
if (L3 != length(n_cat)) stop("The argument n_cat has invalid length!")
if (!is.null(names)) {
check_lengths(names, covariates)
names <- c("id", "age", names)
} else {
names <- sim.generate_names(covariates)
}
check_non_negative_all(relevances)
return(names)
}
sim.generate_names <- function(covariates) {
names <- c("id", "age")
def <- c("x", "z", "offset", "group")
D <- sim.create_x_D(covariates)
if (D[1] == 1) {
names <- c(names, "diseaseAge")
}
if (D[2] > 0) {
str <- paste0(def[1], 1:D[2])
names <- if (D[2] > 1) c(names, str) else c(names, def[1])
}
if (D[3] > 0) {
str <- paste0(def[2], 1:D[3])
names <- if (D[3] > 1) c(names, str) else c(names, def[2])
}
if (D[4] > 0) {
str <- paste0(def[3], 1:D[4])
names <- if (D[4] > 1) c(names, str) else c(names, def[3])
}
if (D[5] > 0) {
names <- c(names, "group")
}
return(names)
}
sim.data_to_observed <- function(dat, t_observed) {
flag <- !("diseaseAge" %in% colnames(dat))
id <- dollar(dat, "id")
uid <- unique(id)
N <- length(uid)
onsets_observed <- rep(NaN, N)
names(onsets_observed) <- c(1:N)
if (flag) {
ret <- list(dat = dat, onsets_observed = onsets_observed)
return(ret)
} else {
age <- dollar(dat, "age")
dis_age <- dollar(dat, "diseaseAge")
j <- 0
for (ID in uid) {
j <- j + 1
inds <- which(id == ID)
age_i <- age[inds]
dag_i <- dis_age[inds]
if (is.nan(dag_i[1])) {
} else {
irem <- which(dag_i > 0)
rem <- age_i[irem]
t0_real <- -dag_i[1] + age_i[1]
if (is.function(t_observed)) {
oo <- sim.apply_obs_onset_fun(t_observed, t0_real, rem)
t0 <- dollar(oo, "t0")
idx0 <- dollar(oo, "idx0")
} else {
parsed <- sim.parse_t_obs(t_observed)
typ <- dollar(parsed, "type")
val <- dollar(parsed, "value")
if (typ == "random") {
idx0 <- sim.rtgeom(length(irem), val)
sim.check_too_far(idx0, rem)
t0 <- rem[idx0]
} else if (typ == "after") {
idx0 <- val + 1
sim.check_too_far(idx0, rem)
t0 <- rem[idx0]
} else {
t0 <- t0_real
}
}
onsets_observed[j] <- t0
dat$diseaseAge[inds] <- age_i - t0
}
}
ret <- list(dat = dat, onsets_observed = onsets_observed)
return(ret)
}
}
sim.apply_obs_onset_fun <- function(fun_obs, t0_real, rem) {
t_possible <- fun_obs(t0_real)
inds0 <- which(rem > t_possible)
if (length(inds0) < 1) {
stop("There are no data points after t = ", t_possible, "!")
} else {
idx0 <- inds0[1]
t0 <- rem[idx0]
}
list(idx0 = idx0, t0 = t0)
}
sim.check_too_far <- function(idx, rem) {
check_length(idx, 1)
if (idx > length(rem)) {
stop("Not enough data points to go that far!")
}
TRUE
}
sim.rtgeom <- function(s, p, n = 1) {
s_seq <- 0:(s - 1)
prob <- p^s_seq
r <- sample.int(n = s, size = n, prob = prob, replace = TRUE)
return(r)
}
sim.parse_t_obs <- function(t_observed) {
parts <- strsplit(t_observed, "_")[[1]]
if (parts[1] == "after") {
type <- "after"
} else if (parts[1] == "random") {
type <- "random"
} else if (parts[1] == "exact") {
type <- "exact"
} else {
stop("unknown keyword ", parts[1])
}
value <- as.numeric(parts[2])
return(list(type = type, value = value))
}
sim.name_components <- function(types, names) {
d <- length(types)
componentNames <- rep("foo", d)
for (j in 1:d) {
if (types[j] == 1) {
lab <- "id*age"
} else if (types[j] == 5) {
lab <- paste(names[j], "*age", sep = "")
} else {
lab <- names[j]
}
componentNames[j] <- lab
}
return(componentNames)
}
sim.scale_relevances <- function(FFF, relevances,
force_zeromean, i_skip) {
d <- dim(FFF)[2]
check_non_negative_all(relevances)
for (j in 1:d) {
std <- stats::sd(FFF[, j])
if (std > 0) {
FFF[, j] <- sqrt(relevances[j]) / std * FFF[, j]
if (force_zeromean && !(j %in% i_skip)) {
FFF[, j] <- FFF[, j] - mean(FFF[, j])
}
}
}
return(FFF)
}
sim.draw_components <- function(KK) {
n <- dim(KK)[1]
d <- dim(KK)[3]
mu0 <- rep(0, n)
FFF <- matrix(0, n, d)
for (j in 1:d) {
K <- KK[, , j]
fj <- MASS::mvrnorm(1, mu0, K)
FFF[, j] <- fj
}
return(FFF)
}
sim.disease_effect <- function(X_id, X_disAge, dis_fun) {
n <- length(X_id)
uid <- unique(X_id)
F_disAge <- rep(0, n)
for (id in uid) {
inds <- which(X_id == id)
da <- X_disAge[inds]
if (!is.nan(da[1])) {
F_disAge[inds] <- dis_fun(da)
}
}
return(F_disAge)
}
sim.create_x_D <- function(covariates) {
D <- rep(0, 5)
D[1] <- sum(covariates == 0)
D[2] <- sum(covariates == 1)
D[3] <- sum(covariates == 2)
D[4] <- sum(covariates == 3)
D[5] <- sum(covariates == 4)
return(D)
}
sim.create_x_check <- function(n_categs, D, t_data, t_effect_range) {
L1 <- length(n_categs)
L2 <- sum(D[3:4])
msg <- paste0(
"Length of <n_categs> must be same as the number of 2's",
" and 3's in the <covariates> vector!",
" Found = ", L1, ", should be = ", L2, "."
)
if (L1 != L2) {
stop(msg)
}
n_invalid <- sum(n_categs <= 1)
if (n_invalid > 0) {
stop("<n_categs> must only contain integers larger than 1!")
}
info <- ""
if (is.character(t_effect_range)) {
if (t_effect_range == "auto") {
ran <- range(t_data)
mrn <- mean(ran)
t_effect_range <- c(mrn, mrn)
if (D[1] == 1) {
info <- paste0(
"Disease effect time range set to [",
t_effect_range[1], ", ", t_effect_range[2], "].\n"
)
}
} else {
stop("invalid t_effect_range!")
}
}
list(
t_effect_range = t_effect_range,
info = info
)
}
sim.create_x_dis_age <- function(X, k, N, D, age, t_effect_range) {
if (D[1] > 0) {
N_cases <- round(N / 2)
if (is.function(t_effect_range)) {
teff <- rep(0, N_cases)
for (j in 1:N_cases) {
teff[j] <- t_effect_range()
}
} else {
teff <- stats::runif(N_cases,
min = t_effect_range[1],
max = t_effect_range[2]
)
}
teff <- c(teff, rep(NaN, N - N_cases))
dis_age <- sim.onsets_to_dis_age(teff, age, k)
X <- cbind(X, dis_age)
} else {
dis_age <- NULL
teff <- rep(NaN, N)
N_cases <- NaN
}
lt <- length(teff)
names(teff) <- seq_len(lt)
list(
X = X,
teff = teff,
N_cases = N_cases,
dis_age = dis_age
)
}
sim.create_x_other <- function(X, k, N, D, n_categs, dis_age, continuous_info) {
if (D[2] > 0) {
mu <- dollar(continuous_info, "mu")
lambda <- dollar(continuous_info, "lambda")
CONT <- sim.draw_continuous(N, k, D[2], mu, lambda)
cont <- dollar(CONT, "C")
par_cont <- list(
a = dollar(CONT, "A"),
b = dollar(CONT, "B"),
offset = dollar(CONT, "OFS")
)
X <- cbind(X, cont)
} else {
par_cont <- list(a = NULL, b = NULL, offset = NULL)
}
if ((D[3] + D[4]) > 0) {
categ <- sim.draw_categorical(N, k, n_categs)
X <- cbind(X, categ)
}
if (D[5] > 0) {
if (D[1] == 0) {
stop("cannot include a 4 in covariates if 0 is not included!")
}
if (D[5] == 1) {
group <- as.factor(as.numeric(!is.nan(dis_age)))
X <- cbind(X, group)
} else {
stop("only one 4 can be included in the covariates vector")
}
}
list(X = X, par_cont = par_cont)
}
sim.draw_measurement_times <- function(N, t_data, t_jitter) {
k <- length(t_data)
age <- rep(0, N * k)
check_non_negative(t_jitter)
for (i in 1:N) {
idx <- (1 + (i - 1) * k):(i * k)
t <- t_data + stats::rnorm(k, mean = 0, sd = t_jitter)
age[idx] <- sort(t)
}
return(age)
}
sim.onsets_to_dis_age <- function(onsets, age, k) {
N <- length(onsets)
n <- N * k
diseaseAge <- rep(0, n)
for (i in 1:N) {
inds <- ((i - 1) * k + 1):(i * k)
if (!is.nan(onsets[i])) {
diseaseAge[inds] <- age[inds] - onsets[i]
} else {
diseaseAge[inds] <- NaN
}
}
return(diseaseAge)
}
sim.draw_continuous <- function(N, k, D, mu, lambda) {
C <- matrix(0, N * k, D)
A <- matrix(0, N, D)
B <- matrix(0, N, D)
OFS <- matrix(0, N, D)
for (j in 1:D) {
for (i in c(1:N)) {
inds <- ((i - 1) * k + 1):(i * k)
ttt <- seq(0, 2 * pi, length.out = k)
a <- mu[1] + lambda[1] * stats::runif(1)
b <- mu[2] + lambda[2] * stats::runif(1)
ofs <- mu[3] + lambda[3] * stats::runif(1)
A[i, j] <- a
B[i, j] <- b
OFS[i, j] <- ofs
C[inds, j] <- sin(a * ttt + b) + ofs
}
}
return(list(A = A, B = B, OFS = OFS, C = C))
}
sim.draw_categorical <- function(N, k, v) {
D <- length(v)
C <- matrix(0, N, D)
for (i in seq_len(D)) {
C[, i] <- sample.int(v[i], N, replace = TRUE)
}
C_seq <- seq_len(nrow(C))
rows <- rep(C_seq, each = k)
C <- data.frame(C[rows, ])
for (i in seq_len(D)) {
C[, i] <- as.factor(C[, i])
}
return(C)
} |
\donttest{
data( 'ticks' )
strategy_source = system.file( package = 'QuantTools', 'examples/bbands.cpp' )
Rcpp::sourceCpp( strategy_source )
parameters = data.table(
n = 100,
k = 0.5,
timeframe = 60
)
options = list(
cost = list( tradeAbs = -0.01 ),
latency = 0.1
)
test_summary = bbands( ticks, parameters, options, fast = TRUE )
print( test_summary )
test = bbands( ticks, parameters, options, fast = FALSE )
indicators = plot_dts(
test$indicators,
test$orders[ side == 'buy' , .( time_processed, buy = price_exec ) ],
test$orders[ side == 'sell', .( time_processed, sell = price_exec ) ] )$
lines( c( 'lower', 'sma', 'upper' ) )$
lines( c( 'buy', 'sell' ), type = 'p', pch = c( 24, 25 ), col = c( 'blue', 'red' ) )
performance = plot_dts( test$indicators[, .( time, pnl = pnl * 100, drawdown = drawdown * 100 ) ] )$
lines( c( 'pnl', 'drawdown' ), c( '% pnl', '% drawdown' ), col = c( 'darkolivegreen', 'darkred' ) )
interval = '2016-01-19 12/13'
par( mfrow = c( 2, 1 ), oma = c( 5, 4, 2, 4 ) + 0.1, mar = c( 0, 0, 0, 0 ) )
indicators $limits( tlim = interval )$style( time = list( visible = FALSE ) )
performance$limits( tlim = interval )
title( 'Bollinger Bands', outer = TRUE )
par( mfrow = c( 1, 1 ), oma = c( 0, 0, 0, 0 ), mar = c( 5, 4, 4, 2 ) + 0.1 )
} |
el.test.wt2 <- function(x, wt, mu, maxit=25, gradtol=1e-7, Hessian = FALSE,
svdtol = 1e-9, itertrace=FALSE ){
x <- as.matrix(x)
n <- nrow(x)
p <- ncol(x)
mu <- as.vector(mu)
if( length(mu) !=p )
stop("mu must have same dimension as observation vectors.")
if( n <= p )
stop("Need more observations than length(mu) in el.test.wt2().")
z <- t( t(x) -mu )
wt <- as.vector(wt)
if( length(wt) != n ) stop("length of wt must be n=nrow(x)")
if( any(wt < 0) ) stop("wt must be >= 0")
allw <- sum(wt)
TINY <- sqrt( .Machine$double.xmin )
scale <- mean( abs(z) ) + TINY
z <- z/scale
lam <- rep(0,p)
if(svdtol < TINY ) svdtol <- TINY
if(gradtol < TINY) gradtol <- TINY
nwts <- c( 3^-c(0:3), rep(0,12) )
gwts <- 2^( -c(0:(length(nwts)-1)))
gwts <- (gwts^2 - nwts^2)^.5
gwts[12:16] <- gwts[12:16] * 10^-c(1:5)
nits <- 0
gsize <- gradtol + 1
while( nits<maxit && gsize > gradtol ){
arg <- allw + z %*% lam
wts2 <- as.vector( -llogpp(arg, 1/n) )^.5
grad <- gradf(z, wt, lam)
gsize <- mean( abs(grad) )
wtwts2 <- sqrt(wt)*wts2
hess <- z*wtwts2
svdh <- svd( hess, nu=0 )
if( min(svdh$d) < max(svdh$d)*svdtol )
svdh$d <- svdh$d + max(svdh$d)*svdtol
nstep <- as.vector( svdh$v %*% (t(svdh$v)/(svdh$d)^2) %*% grad )
gstep <- grad
if( sum(nstep^2) < sum(gstep^2) )
gstep <- gstep*(sum(nstep^2)^.5/sum(gstep^2)^.5)
ninner <- 0
for( i in 1:length(nwts) ){
ngrad <- gradf(z,wt, lam+nwts[i]*nstep+gwts[i]*gstep )
ngsize <- mean( abs(ngrad) )
if( ngsize < gsize ){
lam <- lam+nwts[i]*nstep+gwts[i]*gstep
ninner <- i
break
}
}
nits <- nits+1
if( ninner==0 )nits <- maxit
if( itertrace )
print( c(lam, ngrad, gsize, ninner) )
}
Hess <- NA
if( Hessian ) Hess <- t(hess)%*%hess*scale^2
list( prob= as.vector(wt/as.vector(allw + z %*% lam)),
lambda = lam/scale, grad=grad*scale, hess=Hess, nits=nits )
}
gradf <- function(z,wt,lam) {
allw <- sum(wt)
arg <- allw + z %*% lam
n <- length(wt)
wts1 <- as.vector( llogp(arg, 1/n) )
wtwts1<- wt*wts1
grad <- as.matrix(z*wtwts1)
colSums(grad)
} |
context("text and number input")
test_that("id argument", {
expect_silent(textInput(id = "id"))
expect_silent(textInput(id = NULL))
expect_silent(numberInput(id = "id"))
expect_silent(numberInput(id = NULL))
expect_error(textInput(id = NA))
expect_error(numberInput(id = NA))
})
test_that("min, max, step added to <input> child element", {
element <- numberInput(id = "ID", min = 1, max = 10, step = 2)
expect_equal(element$children[[1]]$attribs$min, 1)
expect_equal(element$children[[1]]$attribs$max, 10)
expect_equal(element$children[[1]]$attribs$step, 2)
expect_match(as.character(element), 'min="1" max="10" step="2"')
})
test_that("has dependencies", {
expect_dependencies(textInput(id = "ID"))
}) |
set.seed(1234)
n = 1000
p = 1000
k = 60
amplitude = 4.5
mu = rep(0,p)
rho = 0.25
Sigma = toeplitz(rho^(0:(p-1)))
X = matrix(rnorm(n*p),n) %*% chol(Sigma)
nonzero = sample(p, k)
beta = amplitude * (1:p %in% nonzero) / sqrt(n)
y.sample = function(X) X %*% beta + rnorm(n)
y = y.sample(X)
library(knockoff)
result = knockoff.filter(X, y)
print(result)
fdp = function(selected) sum(beta[selected] == 0) / max(1, length(selected))
fdp(result$selected)
gaussian_knockoffs = function(X) create.gaussian(X, mu, Sigma)
result = knockoff.filter(X, y, knockoffs=gaussian_knockoffs)
print(result)
fdp(result$selected)
result = knockoff.filter(X, y, knockoffs = gaussian_knockoffs, statistic = stat.random_forest, fdr=0.2)
print(result)
fdp(result$selected)
my_knockoff_stat = function(X, X_k, y) {
abs(t(X) %*% y) - abs(t(X_k) %*% y)
}
result = knockoff.filter(X, y, knockoffs = gaussian_knockoffs, statistic = my_knockoff_stat)
print(result)
fdp(result$selected)
my_lasso_stat = function(...) stat.glmnet_coefdiff(..., nlambda=100)
result = knockoff.filter(X, y, knockoffs = gaussian_knockoffs, statistic = my_lasso_stat)
print(result)
fdp(result$selected)
create_knockoffs = function(X) {
create.second_order(X, shrink=T)
}
result = knockoff.filter(X, y, knockoffs=create_knockoffs)
print(result)
fdp(result$selected)
gaussian_knockoffs = function(X) create.second_order(X, method='sdp', shrink=T)
result = knockoff.filter(X, y, knockoffs = gaussian_knockoffs)
print(result)
fdp(result$selected)
gaussian_knockoffs = function(X) create.second_order(X, method='equi', shrink=T)
result = knockoff.filter(X, y, knockoffs = gaussian_knockoffs)
print(result)
fdp(result$selected) |
context("Compiled")
test_that("Compiled code coverage is reported including code in headers", {
skip_on_cran()
cov <- as.data.frame(package_coverage("TestCompiled", relative_path = TRUE))
simple_cc <- cov[cov$filename == "src/simple.cc", ]
expect_equal(simple_cc[simple_cc$first_line == "10", "value"], 4)
expect_equal(simple_cc[simple_cc$first_line == "16", "value"], 3)
expect_equal(simple_cc[simple_cc$first_line == "19", "value"], 0)
expect_equal(simple_cc[simple_cc$first_line == "21", "value"], 1)
expect_equal(simple_cc[simple_cc$first_line == "23", "value"], 4)
simple_h <- cov[cov$filename == "src/simple-header.h", ]
expect_equal(simple_h[simple_h$first_line == "12", "value"], 4)
expect_equal(simple_h[simple_h$first_line == "18", "value"], 3)
expect_equal(simple_h[simple_h$first_line == "21", "value"], 0)
expect_equal(simple_h[simple_h$first_line == "23", "value"], 1)
expect_equal(simple_h[simple_h$first_line == "25", "value"], 4)
expect_true(all(unique(cov$filename) %in% c("R/TestCompiled.R", "src/simple-header.h", "src/simple.cc", "src/simple4.cc")))
})
test_that("Source code subdirectories are found", {
skip_on_cran()
cov <- as.data.frame(package_coverage("TestCompiledSubdir", relative_path = TRUE))
expect_equal(cov[cov$first_line == "9", "value"], 4)
expect_equal(cov[cov$first_line == "15", "value"], 3)
expect_equal(cov[cov$first_line == "18", "value"], 0)
expect_equal(cov[cov$first_line == "20", "value"], 1)
expect_equal(cov[cov$first_line == "22", "value"], 4)
}) |
library(RXMCDA)
tree = newXMLDoc()
newXMLNode("xmcda:XMCDA", namespace = c("xsi" = "http://www.w3.org/2001/XMLSchema-instance", "xmcda" = "http://www.decision-deck.org/2009/XMCDA-2.0.0"), parent=tree)
root<-getNodeSet(tree, "/xmcda:XMCDA")
criteria<-newXMLNode("criteria", parent=root[[1]], namespace=c())
newXMLNode("criterion",attrs = c(id="g1"), parent=criteria, namespace=c())
newXMLNode("criterion",attrs = c(id="g2"), parent=criteria, namespace=c())
y<-getNodeSet(tree,"//criteria")
stopifnot(getCriteriaIDs(y[[1]])[[1]] == c("g1","g2")) |
ordinal_ppmx <- function(y, co, X=NULL,Xpred=NULL,
meanModel=1,
cohesion=1, M=1,
PPM = FALSE,
similarity_function=1, consim=1,
calibrate=0,
simParms=c(0.0, 1.0, 0.1, 1.0, 2.0, 0.1, 1),
modelPriors=c(0, 10, 1, 1),
mh=c(0.5, 0.5),
draws=1100,burn=100,thin=1, verbose=FALSE){
out <- NULL
if(!is.data.frame(X) & !is.null(X)) X <- data.frame(X)
if(!is.data.frame(Xpred) & !is.null(Xpred)){
Xpred <- data.frame(Xpred);
colnames(Xpred) <- colnames(X)
}
cnames <- colnames(X)
if(is.null(X) & meanModel != 1){
stop("No training covariates are provided and a regression is included in the mean model")
}
nout <- (draws-burn)/thin
nobs <- length(y)
Xcon <- cbind(rep(0,1));
Xconp <- cbind(rep(0,1));
ncon <- 0
Mcon <- cbind(rep(0,1))
Mconp <- cbind(rep(0,1));
Xcat <- cbind(rep(0,1));
Xcatp <- cbind(rep(0,1));
Cvec <- 0
ncat <- 0
Mcat <- cbind(rep(0,1))
Mcatp <- cbind(rep(0,1))
nmissing <- 0
npred <- 0
if(!(is.null(X) & is.null(Xpred))){
nxobs <- ifelse(is.null(X), 0, nrow(X))
npred <- ifelse(is.null(Xpred), 0, nrow(Xpred))
Xall <- rbind(X, Xpred)
nmissing <- sum(is.na(Xall))
if(nmissing > 0){
Mall <- 1*is.na(Xall)
}
relab <- function(x) as.numeric(as.factor(as.character(x))) - 1
classes <- sapply(Xall, class)
catvars <- classes %in% c("factor","character")
if(nxobs > 0){
if(sum(!catvars) > 0){
mn <- apply(Xall[,!catvars, drop=FALSE],2,mean, na.rm=TRUE)
sd <- apply(Xall[,!catvars, drop=FALSE],2,sd, na.rm=TRUE)
if(sum(round(mn + sd,10) == 1) != length(mn)){
message("Continuous covariates are not standardized.")
}
Xconstd <- apply(Xall[,!catvars, drop=FALSE], 2, scale)
Xcon <- Xconstd[1:nobs,,drop=FALSE];
ncon <- ncol(Xcon)
if(nmissing > 0) Mcon <- Mall[1:nobs, !catvars, drop=FALSE]
}else{
Xcon <- cbind(rep(0,nobs));
ncon <- 0
if(nmissing > 0) Mcon <- cbind(rep(0,nobs))
}
if(sum(catvars) > 0){
Xcatall <- apply(Xall[, catvars,drop=FALSE], 2, relab)
if(nmissing > 0) Mcat <- Mall[1:nobs, catvars, drop=FALSE]
Xcat <- Xcatall[1:nobs,,drop=FALSE];
Cvec <- apply(Xcat,2,function(x)length(unique(x)))
ncat <- ncol(Xcat)
}else{
Xcat <- cbind(rep(0,nobs));
if(nmissing > 0) Mcat <- cbind(rep(0,nobs))
Cvec <- 0
ncat <- 0
}
}
if(npred > 0){
if(sum(!catvars) > 0){
Xconstd <- apply(Xall[,!catvars, drop=FALSE], 2, scale)
Xconp <- Xconstd[(nrow(Xall)-npred+1):nrow(Xall),,drop=FALSE];
if(nmissing > 0) Mconp <- Mall[(nrow(Xall)-npred+1):nrow(Xall), !catvars, drop=FALSE]
ncon <- ncol(Xconp)
} else {
Xconp <- cbind(rep(0,npred));
if(nmissing > 0) Mconp <- cbind(rep(0,npred));
ncon <- 0
}
if(sum(catvars) > 0){
Xcatall <- apply(Xall[, catvars,drop=FALSE], 2, relab)
Xcatp <- Xcatall[(nrow(Xall)-npred+1):nrow(Xall),,drop=FALSE];
if(nmissing > 0) Mcatp <- Mall[(nrow(Xall)-npred+1):nrow(Xall), catvars, drop=FALSE]
ncat <- ncol(Xcatp)
Cvec <- apply(Xcatall,2,function(x)length(unique(x)))
} else {
Xcatp <- cbind(rep(0,npred));
ncat <- 0
Cvec <- 0
if(nmissing > 0) Mcatp <- cbind(rep(0,npred));
}
}
}
if(nmissing > 0 & similarity_function == 4){
stop("Gower's dissimilarity similarity function cannot be used with missing covariates")
}
if(nmissing == 0 & similarity_function == 4){
dissim <- as.matrix(cluster::daisy(Xall, metric="gower"))
dissimtn <- dissim[1:nobs, 1:nobs]
dissimtt <- dissim[-c(1:nobs), 1:nobs]
}else{
dissimtn <- 0
dissimtt <- 0
}
mu <- sig2 <- Si <- like <- ispred <- zi <- isordpred <- matrix(1,nrow=nout,ncol=nobs)
mu0 <- sig20 <- nclus <- rep(1,nout)
ppred <- predclass <- ordppred <- rbpred <- rbordpred <- matrix(1, nrow=nout, ncol=npred)
predclass_prob <- matrix(1, nrow=nout, ncol=npred*nobs)
WAIC <- lpml <- rep(1,1)
beta <- matrix(0, nrow=nout, ncol=ncon+ncat)
nordcat <- length(co)
if(nmissing > 0){
Xcon[is.na(Xcon)] <- 999;Xconp[is.na(Xconp)] <- 999;
Xcat[is.na(Xcat)] <- 999;Xcatp[is.na(Xcatp)] <- 999;
message(" There are a total of ", nmissing, " missing covariate values. \n They will be accommodated using extentions to the ppmx model detailed in Page et. al (2020).")
run <- .Call("ORDINAL_PPMX_MISSING",
as.integer(y), as.double(co), as.integer(nobs), as.integer(nordcat),
as.double(t(Xcon)), as.integer(t(Mcon)), as.integer(ncon),
as.integer(t(Xcat)), as.integer(t(Mcat)), as.integer(ncat), as.integer(Cvec),
as.integer(npred),
as.double(t(Xconp)), as.integer(t(Mconp)),
as.integer(t(Xcatp)), as.integer(t(Mcatp)),
as.double(M), as.integer(meanModel), as.double(modelPriors), as.double(simParms),
as.integer(PPM), as.integer(cohesion), as.integer(similarity_function), as.integer(consim),
as.double(dissimtn), as.double(dissimtt), as.integer(calibrate), as.double(mh),
as.integer(verbose), as.integer(draws), as.integer(burn), as.integer(thin))
} else {
run <- .Call("ORDINAL_PPMX",
as.integer(y), as.double(co), as.integer(nobs), as.integer(nordcat),
as.double(t(Xcon)), as.integer(ncon),
as.integer(t(Xcat)), as.integer(ncat), as.integer(Cvec),
as.integer(npred),
as.double(t(Xconp)),
as.integer(t(Xcatp)),
as.double(M), as.integer(meanModel), as.double(modelPriors), as.double(simParms),
as.integer(PPM), as.integer(cohesion), as.integer(similarity_function), as.integer(consim),
as.double(dissimtn), as.double(dissimtt), as.integer(calibrate), as.double(mh),
as.integer(verbose), as.integer(draws), as.integer(burn), as.integer(thin))
}
if(meanModel == 2) colnames(run$beta) <- c(cnames[!catvars], cnames[catvars])
if(meanModel == 1) run <- run[-3]
out <- run
if(nmissing > 0) out$Missmat <- Mall
out
} |
balances <- function(x, y) {
validate <- function(y) {
if (any(dim(y) != c(dim(x)[2],dim(x)[2] - 1)) ||
any(abs(y) > 1))
stop("Size of partition matrix does not match or invalid entry!")
act <- 1:nrow(y)
for (i in 1:ncol(y)) {
if (any(y[act,i] == 0)) {
tmp <- which(apply(y[act,], 2,function(x)
all(x != 0)))
tmp <- tmp[tmp > i]
if (length(tmp) != 1)
stop("Binary Partition not valid!")
y[, c(i, tmp)] <- y[, c(tmp, i)]
}
if (length(unique((y[act, i]))) == 1 ||
any(y[-act, i] != 0))
stop("Binary Partition not valid!")
y[act,] <- y[act[order(y[act, i], decreasing = TRUE)],]
count <- 0
act <- 1
for (j in 2:nrow(y)) {
if (all(y[(j - 1), 1:i] == y[j, 1:i])) {
count <- count + 1
act <- c(act, j)
} else if (count == 0)
act <- j
else
break
}
}
return(TRUE)
}
createv <- function(x) {
for (i in 1:ncol(x)) {
p_ind <- which(x[,i] > 0)
m_ind <- which(x[,i] < 0)
p <- length(p_ind)
m <- length(m_ind)
x[p_ind, i] <- 1 / p * sqrt((m * p) / (m + p))
x[m_ind, i] <- (-1 / m * sqrt((m * p) / (m + p)))
}
colnames(x) <- paste("v", 1:ncol(x))
return(x)
}
if (validate(y)) {
V <- as.matrix(createv(y))
balance <- as.matrix(cenLR(x)$x.clr) %*% V
colnames(balance) <- paste("z", 2:ncol(x) - 1)
}
res <- list(balances = balance, V = as.matrix(V))
return(res)
} |
emcljgl = function(Y, p, ncluster, lambda1, lambda2, threshold, MAX_iter, tau, graph,seed){
L=ncluster
n=nrow(Y)
set.seed(seed)
memship_ini = sample(seq(1,ncluster),n, replace =T)
clust_size = as.numeric(table(memship_ini))
center_ini = matrix(0,nrow =ncluster, ncol=p)
for(l in 1:L){
center_ini[l,] = apply(Y[memship_ini==l,], 2, mean)
}
pie = clust_size/n
dat1 = list()
temp_num_cluster = length(unique(memship_ini))
for(l in 1:temp_num_cluster){
dat1[[l]] = Y[memship_ini == l,]
}
mu = center_ini
sol_path <- JGL(dat1 , penalty = "fused", lambda1, lambda2, 0.1, return.whole.theta=T)
covinv_est = matrix(0, nrow = p, ncol = temp_num_cluster*p)
S_bar = matrix(0, p, L*p)
for (l in 1:temp_num_cluster){
covinv_est[,((l-1)*p+1):(l*p)] = sol_path$theta[[l]]
temp_Y = dat1[[l]]
mu_temp = apply(temp_Y, 2, mean)
stemp = t(t(temp_Y)-mu_temp)
S_bar[,((l-1)*p+1):(l*p)] <- (t(stemp) %*% stemp) / clust_size[l]
}
npie = pie
nmu = mu
ncovinv_est = covinv_est
z = 1
diff = 100
nplog = obj_L12(Y, mu, p, L, covinv_est, S_bar, graph, lambda1, lambda2, pie)
rho = matrix(0, L, n)
while(diff>threshold && z<MAX_iter){
for(j in 1:n){
sm = rep(0, n)
for(l in 1:L){
sm[j] = sm[j] + pie[l] * exp(fmvnorm(p, covinv_est[,((l-1)*p+1):(l*p)], Y[j,], mu[l,]))
}
for(l in 1:L){
rho[l,j] = pie[l] * exp(fmvnorm(p, covinv_est[,((l-1)*p+1):(l*p)], Y[j,], mu[l,])) / sm[j]
}
}
pie = apply(rho, 1, mean)
mu = rho %*% Y/ (pie * n)
temp_memship = apply(rho, 2, which.max)
dat1 = list()
temp_num_cluster = length(unique(temp_memship))
for(l in 1:temp_num_cluster){
dat1[[l]] = Y[temp_memship==l,]
}
sol_path <- JGL(dat1, penalty = "fused", lambda1, lambda2, 0.1, return.whole.theta=T)
covinv_est = matrix(0, nrow = p, ncol = temp_num_cluster*p)
S_bar = matrix(0, p, L*p)
for (l in 1:L){
covinv_est[,((l-1)*p+1):(l*p)] = sol_path$theta[[l]]
S = matrix(0,p,p)
for(j in 1:n){
S = S + rho[l,j] * outer((Y[j,]-mu[l,]), (Y[j,]-mu[l,]), "*")
}
S_bar[,((l-1)*p+1):(l*p)] <- S/(pie[l]*n)
}
plog = obj_L12(Y, mu, p, L, covinv_est, S_bar, graph, lambda1, lambda2, pie)
diff = plog-nplog
nplog = plog
z = z+1
}
class_memship = apply(rho, 2, which.max)
output = list(pie = pie, mu = mu, covinv = covinv_est, membership = class_memship, par=c(lambda1, lambda2, ncluster))
} |
targets::tar_test("tar_render_rep() manifest", {
skip_pandoc()
lines <- c(
"---",
"title: report",
"output_format: html_document",
"params:",
" par: \"default value\"",
"---",
"",
"```{r}",
"print(params$par)",
"print(targets::tar_read(x))",
"```"
)
writeLines(lines, "report.Rmd")
targets::tar_script({
library(tarchetypes)
list(
tar_target(x, "value_of_x"),
tar_render_rep(
report,
"report.Rmd",
params = data.frame(
par = c("parval1", "parval2", "parval3", "parval4"),
stringsAsFactors = FALSE
),
batches = 2
)
)
})
out <- targets::tar_manifest(callr_function = NULL)
expect_equal(nrow(out), 3L)
expect_equal(sort(out$name), sort(c("x", "report_params", "report")))
expect_equal(sum(is.na(out$pattern)), 2L)
expect_equal(out$pattern[out$name == "report"], "map(report_params)")
})
targets::tar_test("tar_render_rep() graph", {
skip_pandoc()
lines <- c(
"---",
"title: report",
"output_format: html_document",
"params:",
" par: \"default value\"",
"---",
"",
"```{r}",
"print(params$par)",
"print(targets::tar_read(x))",
"```"
)
writeLines(lines, "report.Rmd")
targets::tar_script({
library(tarchetypes)
list(
tar_target(x, "value_of_x"),
tar_render_rep(
report,
"report.Rmd",
params = data.frame(
par = c("parval1", "parval2", "parval3", "parval4"),
stringsAsFactors = FALSE
),
batches = 2
)
)
})
out <- targets::tar_network(callr_function = NULL)$edges
expect_equal(nrow(out), 2L)
expect_true(any(out$from == "report_params" & out$to == "report"))
expect_true(any(out$from == "x" & out$to == "report"))
})
targets::tar_test("tar_render_rep() run", {
skip_on_cran()
skip_pandoc()
lines <- c(
"---",
"title: report",
"output_format: html_document",
"params:",
" par: \"default value\"",
"---",
"",
"```{r}",
"print(params$par)",
"print(targets::tar_read(x))",
"```"
)
writeLines(lines, "report.Rmd")
targets::tar_script({
library(tarchetypes)
list(
tar_target(x, "value_of_x"),
tar_render_rep(
report,
"report.Rmd",
params = data.frame(
par = c("parval1", "parval2", "parval3", "parval4"),
stringsAsFactors = FALSE
),
batches = 2
)
)
})
targets::tar_make(callr_function = NULL)
out <- targets::tar_read(report_params)
exp <- data.frame(
par = c("parval1", "parval2", "parval3", "parval4"),
tar_group = c(1L, 1L, 2L, 2L),
stringsAsFactors = FALSE
)
expect_equal(out, exp)
out <- targets::tar_read(report, branches = 1)
out <- grep(pattern = "\\.html$", x = out, value = TRUE)
expect_equal(length(out), 2L)
expect_true(all(file.exists(out)))
skip_if_not_installed("xml2")
read_code <- function(path) {
file <- xml2::read_html(path)
out <- xml2::xml_find_all(file, xpath = ".//code")
as.character(unlist(xml2::as_list(out)))
}
out_file <- read_code(out[1])
expect_true(any(grepl("value_of_x", out_file)))
expect_true(any(grepl("parval1", out_file)))
expect_false(any(grepl("parval2", out_file)))
expect_false(any(grepl("parval3", out_file)))
expect_false(any(grepl("parval4", out_file)))
out_file <- read_code(out[2])
expect_true(any(grepl("value_of_x", out_file)))
expect_false(any(grepl("parval1", out_file)))
expect_true(any(grepl("parval2", out_file)))
expect_false(any(grepl("parval3", out_file)))
expect_false(any(grepl("parval4", out_file)))
out <- targets::tar_read(report, branches = 2)
out <- grep(pattern = "\\.html$", x = out, value = TRUE)
expect_equal(length(out), 2L)
expect_true(all(file.exists(out)))
out_file <- read_code(out[1])
expect_true(any(grepl("value_of_x", out_file)))
expect_false(any(grepl("parval1", out_file)))
expect_false(any(grepl("parval2", out_file)))
expect_true(any(grepl("parval3", out_file)))
expect_false(any(grepl("parval4", out_file)))
out_file <- read_code(out[2])
expect_true(any(grepl("value_of_x", out_file)))
expect_false(any(grepl("parval1", out_file)))
expect_false(any(grepl("parval2", out_file)))
expect_false(any(grepl("parval3", out_file)))
expect_true(any(grepl("parval4", out_file)))
out <- targets::tar_outdated(callr_function = NULL)
expect_equal(out, character(0))
targets::tar_script({
library(tarchetypes)
list(
tar_target(x, "value_of_x"),
tar_render_rep(
report,
"report.Rmd",
params = data.frame(
par = c("parval1", "parval2", "parval3-modified", "parval4"),
stringsAsFactors = FALSE
),
batches = 2
)
)
})
targets::tar_make(callr_function = NULL)
out <- targets::tar_progress()
out <- out[out$progress != "skipped", ]
out <- out[grepl("^report", out$name), ]
expect_equal(nrow(out), 3)
out <- out$progress[!(out$name %in% c("report", "report_params"))]
expect_equal(out, "built")
})
targets::tar_test("tar_render_rep() run with output_file specified", {
skip_on_cran()
skip_pandoc()
lines <- c(
"---",
"title: report",
"output_format: html_document",
"params:",
" par: \"default value\"",
"---",
"",
"```{r}",
"print(params$par)",
"print(targets::tar_read(x))",
"```"
)
writeLines(lines, "report.Rmd")
targets::tar_script({
library(tarchetypes)
list(
tar_target(x, "value_of_x"),
tar_render_rep(
report,
"report.Rmd",
params = data.frame(
par = c("parval1", "parval2", "parval3", "parval4"),
output_file = c("f1.html", "f2.html", "f3.html", "f4.html"),
stringsAsFactors = FALSE
)
)
)
})
expect_false(any(file.exists(c("f1.html", "f2.html", "f3.html", "f4.html"))))
targets::tar_make(callr_function = NULL)
expect_true(all(file.exists(c("f1.html", "f2.html", "f3.html", "f4.html"))))
out <- unlist(targets::tar_meta(report, children)$children)
expect_equal(length(out), 4L)
expect_equal(length(unique(out)), 4L)
})
targets::tar_test("tar_render_rep() with output_file and _files", {
skip_on_cran()
skip_pandoc()
lines <- c(
"---",
"title: report",
"output_format: html_document",
"params:",
" par: \"default value\"",
"---",
"",
"```{r}",
"print(params$par)",
"print(targets::tar_read(x))",
"plot(sample.int(1e9, 4))",
"```"
)
writeLines(lines, "report.Rmd")
targets::tar_script({
library(tarchetypes)
list(
tar_target(x, "value_of_x"),
tar_render_rep(
report,
"report.Rmd",
params = data.frame(
par = c("parval1", "parval2", "parval3", "parval4"),
output_file = c("f1.html", "f2.html", "f3.html", "f4.html"),
stringsAsFactors = FALSE
),
clean = FALSE
)
)
})
targets::tar_make(callr_function = NULL)
for (branch in seq_len(4)) {
out <- basename(targets::tar_read_raw("report", branches = branch))
base <- paste0("f", branch)
report <- fs::path_ext_set(base, "html")
exp <- c(report, "report.Rmd", paste0(base, "_files"))
expect_equal(out, exp)
}
}) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.