code
stringlengths
1
13.8M
source("mniw-testfunctions.R") context("Multivariate-Normal Distribution") tol <- 1e-6 test_that("Multivariate Normal simulation is same in C++ as R", { calc.diff <- FALSE case.par <- expand.grid(q = c(1,2,4), mu = c("none", "single", "multi"), Sigma = c("none", "single", "multi"), drop = c(TRUE, FALSE), stringsAsFactors = FALSE) case.par <- case.par[!with(case.par, { mu == "none" & Sigma == "none"}),] ncases <- nrow(case.par) n <- 12 test.seed <- sample(1e6, ncases) if(calc.diff) { MaxDiff <- rep(NA, ncases) } for(ii in 1:ncases) { cp <- case.par[ii,] q <- cp$q args <- list(mu = list(p = 1, q = q, rtype = cp$mu, vtype = "vector"), Sigma = list(q = q, rtype = cp$Sigma, vtype = "matrix")) args <- get_args(n = n, args = args, drop = cp$drop) yR <- matrix(NA, n, q) set.seed(test.seed[ii]) for(jj in 1:n) { yR[jj,] <- rmNormR(mu = args$R$mu[[jj]], V = args$R$Sigma[[jj]]) } set.seed(test.seed[ii]) ycpp <- do.call(rmNorm, args = c(args$cpp, list(n = n))) mx <- arDiff(yR, ycpp) if(calc.diff) { MaxDiff[ii] <- mx } else { expect_Rcpp_equal("rmNorm", ii, mx, tolerance = tol) } } }) test_that("Matrix Normal density is same in C++ as R", { calc.diff <- FALSE case.par <- expand.grid(q = c(1,2,4), x = c("single", "multi"), mu = c("none", "single", "multi"), Sigma = c("none", "single", "multi"), drop = c(TRUE, FALSE), stringsAsFactors = FALSE) ncases <- nrow(case.par) n <- 12 if(calc.diff) { MaxDiff <- rep(NA, ncases) } for(ii in 1:ncases) { cp <- case.par[ii,] q <- cp$q args <- list(x = list(p = 1, q = q, rtype = cp$x, vtype = "vector"), mu = list(p = 1, q = q, rtype = cp$mu, vtype = "vector"), Sigma = list(q = q, rtype = cp$Sigma, vtype = "matrix")) args <- get_args(n = n, args = args, drop = cp$drop) llR <- rep(NA, n) for(jj in 1:n) { llR[jj] <- dmNormR(x = args$R$x[[jj]], mu = args$R$mu[[jj]], V = args$R$Sigma[[jj]], log = TRUE) } llcpp <- do.call(dmNorm, args = c(args$cpp, list(log = TRUE))) if(all_single(cp)) llcpp <- rep(llcpp, n) mx <- arDiff(llR, llcpp) if(calc.diff) { MaxDiff[ii] <- mx } else { expect_Rcpp_equal("dmNorm", ii, mx, tolerance = tol) } } })
plot_plate_summary_for_bursts <- function(s, outputdir, parameters) { for (i in (1:length(s))) { basename <- get_file_basename(s[[i]]$file) burst_plot_path <- paste(outputdir, "/", basename, "_burst_plot.pdf", sep = "") pdf(file = burst_plot_path) p <- .plot_mealayout(s[[i]]$layout, use_names = T, cex = 0.48) title(main = paste(paste("Electrode Layout"), paste("file= ", strsplit(basename(s[[i]]$file), ".RData")[[1]][1], sep = ""), sep = "\n")) if (parameters$burst_distribution_ibi$perform) { feature <- "ibi"; print("Running IBI distribution analysis.") params <- parameters$burst_distribution_ibi p <- calc_burst_distributions(s[[i]], min_vals = params$min_cases, xlimit = params$x_axis_lim, bins_in_sec = params$bins_in_sec, feature = feature, filter_values_by_min = params$filter_by_min, min_values = params$min_values, per_well = params$per_well, outputdir = outputdir, min_electrodes = parameters$well_min_rate, parameters$time_stamp) } if (parameters$burst_distribution_isi$perform) { feature <- "isi"; print("Running ISI distribution analysis.") params <- parameters$burst_distribution_isi p <- calc_burst_distributions(s[[i]], min_vals = params$min_cases, xlimit = params$x_axis_lim, bins_in_sec = params$bins_in_sec, feature = feature, filter_values_by_min = params$filter_by_min, min_values = params$min_values, per_well = params$per_well, outputdir = outputdir, min_electrodes = parameters$well_min_rate, parameters$time_stamp) } if (parameters$burst_distribution_nspikes$perform) { feature <- "nspikes_in_burst" print("Running nSpikes in bursts distribution analysis.") params <- parameters$burst_distribution_nspikes p <- calc_burst_distributions(s[[i]], min_vals = params$min_cases, xlimit = params$x_axis_lim, bins_in_sec = params$bins_in_sec, feature = feature, filter_values_by_min = params$filter_by_min, min_values = params$min_values, per_well = params$per_well, outputdir = outputdir, min_electrodes = parameters$well_min_rate, parameters$time_stamp) } if (parameters$burst_distribution_durn$perform) { feature <- "duration" print("Running duration of bursts distribution analysis.") params <- parameters$burst_distribution_durn p <- calc_burst_distributions(s[[i]], min_vals = params$min_cases, xlimit = params$x_axis_lim, bins_in_sec = params$bins_in_sec, feature = feature, filter_values_by_min = params$filter_by_min, min_values = params$min_values, per_well = params$per_well, outputdir = outputdir, min_electrodes = parameters$well_min_rate, parameters$time_stamp) } if (parameters$burst_distribution_spike_freq$perform) { feature <- "spikes_density_in_burst" print("Running spike density in bursts distribution analysis.") params <- parameters$burst_distribution_spike_freq p <- calc_burst_distributions(s[[i]], min_vals = params$min_cases, xlimit = params$x_axis_lim, bins_in_sec = params$bins_in_sec, feature = feature, filter_values_by_min = params$filter_by_min, min_values = params$min_values, per_well = params$per_well, outputdir = outputdir, min_electrodes = parameters$well_min_rate, parameters$time_stamp) } p <- .plot_meanfiringrate(s[[i]], main = "Mean Firing Rate by Plate (Hz)") p <- .channel_plot_by_well(s[[i]], resp = "meanfiringrate", resp_label = "Mean Firing Rate (Hz)") p <- .channel_plot_by_well(s[[i]], resp = "bs$mean_dur", resp_label = "Mean Duration of Burst (s)") p <- .channel_plot_by_well(s[[i]], resp = "bs$nbursts", resp_label = "Number of Bursts") p <- .channel_plot_by_well(s[[i]], resp = "bs$mean_ibis", resp_label = "Mean IBIs (ms)") p <- .channel_plot_by_well(s[[i]], resp = "bs$mean_isis", resp_label = "Mean ISI w/i Bursts (s)") p <- .channel_plot_by_well(s[[i]], resp = "bs$bursts_per_min", resp_label = "Mean Burst per Minute") p <- .channel_plot_by_well(s[[i]], resp = "bs$mean_spikes", resp_label = "Mean p <- .channel_plot_by_well(s[[i]], resp = "bs$per_spikes_in_burst", resp_label = "% Spikes/Burst") dev.off() } } write_plate_summary_for_bursts <- function(s, outputdir) { master_sum <- .get_mean_burst_info_per_well(s) csvwell <- paste(outputdir, "/", get_project_plate_name(s[[1]]$file), "_well_bursts.csv", sep = "") for (i in 1:length(s)) { div <- .get_div(s[[i]]) basename <- get_file_basename(s[[i]]$file) csvfile <- paste(outputdir, "/", basename, "_bursts.csv", sep = "") tempdf <- c(); tempcolnames <- c() for (j in 2:length(master_sum[[i]])) { tempc <- unlist(master_sum[[i]][j]) tempdf <- cbind(tempdf, tempc) tempcolnames <- c(tempcolnames, names(master_sum[[i]][j])) } if (dim(tempdf)[2] > 20) { if (dim(tempdf)[1] == 1) { df <- cbind(t(tempdf[, 21:25]), t(tempdf[, 1:20])) } else { df <- cbind(tempdf[, 21:25], tempdf[, 1:20]) } colnames <- c(tempcolnames[21:25], tempcolnames[1:20]) colnames(df) <- colnames } wellindex <- which(is.element(names(s[[i]]$treatment), unique(s[[i]]$cw))) well <- c(); file <- c(); file <- rep(strsplit(basename(s[[i]]$file), ".RData")[[1]][1], length(s[[i]]$cw)) well <- s[[i]]$cw df2 <- cbind(file, well, as.data.frame(s[[i]]$bs[1:length(s[[i]]$bs)])) write.table("Burst Analysis Averaged Over Each Well", csvfile, sep = ",", append = FALSE, row.names = FALSE, col.names = FALSE) write.table(paste("file= ", strsplit(basename(s[[i]]$file), ".RData")[[1]][1], sep = ""), csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(paste("recording time (s): [", paste(s[[i]]$rec_time[1], round(s[[i]]$rec_time[2]), sep = " ,"), "]", sep = ""), csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) if (dim(df)[1] == 1) { suppressWarnings(write.table(t(df[, - c(2:3)]), csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = TRUE)) suppressWarnings(write.table(cbind(div, t(df[, - c(2:3)])), csvwell, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE)) } else { suppressWarnings(write.table(df[, - c(2:3)], csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = TRUE)) suppressWarnings(write.table(cbind(div, df[, - c(2:3)]), csvwell, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE)) } write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table("Channel Burst Summary", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(paste("file= ", strsplit(basename(s[[i]]$file), ".RData")[[1]][1], sep = ""), csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) suppressWarnings(write.table(df2, csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = TRUE)) write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) write.table(" ", csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE) } }
tdmClassifyLoop <- function(dset,response.variables,input.variables,opts,tset=NULL) { if (exists(".Random.seed")) SAVESEED<-.Random.seed if (is.null(tset)) { tsetStr = c("Validation", "validation"); } else { tsetStr = c("Test", " test"); } if (class(opts)[1] != "tdmOpts") stop("Class of object opts is not tdmOpts"); if (is.null(opts$PRE.PCA.numericV)) opts$PRE.PCA.numericV <- input.variables; if (opts$NRUN<=0) stop(sprintf("opts$NRUN has to be positive, but it is %d",opts$NRUN)); if (opts$PRE.PCA!="none" & opts$PRE.SFA!="none") stop("It is not allowed to activate opts$PRE.PCA and opts$PRE.SFA simultaneously.") if (!all(response.variables %in% names(dset))) stop(sprintf("Not all response.variables are in names(dset)!\n %s\n response.variables=%s", "Note that response.variables have to be strings (names of columns in dset), not the columns themselves.", paste(response.variables,collapse=","))) if (!is.null(opts$CLS.gainmat)) { for (respVar in response.variables) testit::assert(sprintf("tdmClassifyLoop: Size of opts$CLS.gainmat and number of levels in dset$%s do not match", respVar) , nrow(opts$CLS.gainmat)==length(levels(dset[,respVar])) , ncol(opts$CLS.gainmat)==length(levels(dset[,respVar])) ) } predProbList=list(); C_train <- C_vali <- C_vali2 <- G_train <- G_vali <- NULL R_train <- R_vali <- R_vali2 <- G_vali2 <- NULL Err <- NULL for (i in 1:opts$NRUN) { if (opts$NRUN>1) { if (opts$GD.RESTART) tdmGraphicCloseDev(opts); tdmGraphicInit(opts); } opts$i = i; if (is.null(opts$TST.SEED)) { set.seed(tdmRandomSeed()); } else if (opts$TST.SEED=="algSeed") { newseed=opts$ALG.SEED+(opts$i-1)+opts$NRUN*(opts$rep-1); set.seed(newseed); } else { newseed=opts$TST.SEED+(opts$i-1)+opts$NRUN*(opts$rep-1); set.seed(newseed); } cvi <- tdmModCreateCVindex(dset,response.variables,opts,stratified=TRUE); nfold = max(cvi,1); alltrn = alltst = NULL; predictions <- as.data.frame(dset[,response.variables]); names(predictions) <- response.variables; predProb=list(); for (k in 1:nfold) { opts$k=k; opts$the.nfold = nfold; cat1(opts,"\n") if (any(names(dset)=="IND.dset")) stop("Name clash in dset, which has already a column IND.dset. Please consider renaming it.") if (is.null(tset)) { d_test <- dset[cvi==k, ] d_test <- tdmBindResponse(d_test , "IND.dset", which(cvi==k)); } else { if (opts$TST.kind %in% c("cv")) stop(sprintf("Option opts$TST.kind=\"%s\" together with tset!=NULL is currently not implemented. Consider opts$TST.kind=\"rand\".",opts$TST.kind)); d_test <- tset; d_test <- tdmBindResponse(d_test , "IND.dset", rep(-1,nrow(tset))); } d_train <- dset[cvi!=k & cvi>=0, ] d_dis <- dset[cvi!=k & cvi==-1, ] d_train <- tdmBindResponse(d_train, "IND.dset", which(cvi!=k & cvi>=0)); d_dis <- tdmBindResponse(d_dis , "IND.dset", which(cvi!=k & cvi==-1)); ntst=nrow(d_test); ntrn=nrow(d_train); d_preproc <- NULL; if (opts$PRE.PCA!="none" | opts$PRE.SFA!="none") { if (opts$PRE.allNonVali) { d_preproc <- dset[cvi!=k, ] } else { d_preproc <- d_train } } if (opts$PRE.PCA!="none") { other.variables <- setdiff(input.variables,opts$PRE.PCA.numericV); pca <- tdmPrePCA.train(d_preproc,opts); d_train <- tdmPrePCA.apply(d_train,pca$pcaList,opts,d_train)$dset; d_test <- tdmPrePCA.apply(d_test,pca$pcaList,opts,d_train)$dset; d_dis <- tdmPrePCA.apply(d_dis,pca$pcaList,opts,d_train)$dset; input.variables <- union(pca$numeric.variables,other.variables); if (length(setdiff(input.variables,names(d_train)))>0) stop("Some elements of input.variables are not columns of d_train"); } res <- tdmClassify(d_train,d_test,d_dis,d_preproc,response.variables,input.variables,opts,tsetStr) predProb$Val = rbind(predProb$Val,res$predProb$Val); if (k==1) predProb$Trn = res$predProb$Trn; alltrn = rbind(alltrn,as.data.frame(list(cerr.trn=mean(res$allEVAL$cerr.trn) * ntrn ,gain.trn=mean(res$allEVAL$gain.trn) * ntrn ,rgain.trn=mean(res$allEVAL$rgain.trn) * ntrn ,ntrn=ntrn ))); alltst = rbind(alltst,as.data.frame(list(cerr.tst=mean(res$allEVAL$cerr.tst) * ntst ,gain.tst=mean(res$allEVAL$gain.tst) * ntst ,rgain.tst=mean(res$allEVAL$rgain.tst) * ntst ,cerr.tst2=mean(res$allEVAL$cerr.tst2) * ntst ,gain.tst2=mean(res$allEVAL$gain.tst2) * ntst ,rgain.tst2=mean(res$allEVAL$rgain.tst2) ,ntst=ntst ))); if (is.null(tset)) { predictions[cvi==k,response.variables] <- res$d_test[,paste("pred_",response.variables,sep="")]; predictTest = NULL; } else { predictTest = res$d_test[,paste("pred_",response.variables,sep="")]; } if (!(opts$TST.kind=="cv")) { predictions[cvi!=k & cvi>=0,response.variables] <- res$d_train[1:ntrn,paste("pred_",response.variables,sep="")]; } } Err = rbind(Err,c(colSums(alltrn)/sum(alltrn$ntrn),colSums(alltst)/sum(alltst$ntst))); Err[i,"ntrn"]=ifelse(opts$TST.kind=="cv",nrow(dset),nrow(d_train)); Err[i,"ntst"]=ifelse(opts$TST.kind=="cv",nrow(dset),nrow(d_test)); predProbList[[i]] <- list() predProbList[[i]]$Val <- predProb$Val; predProbList[[i]]$Trn <- predProb$Trn; cat1(opts,"\n",ifelse(opts$TST.kind=="cv","CV","") ,paste0("Relative gain (",opts$rgain.type,") on training set "),Err[i,"rgain.trn"],"%\n") cat1(opts,"", ifelse(opts$TST.kind=="cv","CV","") ,paste0("Relative gain (",opts$rgain.type,") on ",tsetStr[2]," set "),Err[i,"rgain.tst"],"%\n\n") C_train[i] = Err[i,"cerr.trn"] G_train[i] = Err[i,"gain.trn"] R_train[i] = Err[i,"rgain.trn"] C_vali[i] = Err[i,"cerr.tst"] G_vali[i] = Err[i,"gain.tst"] R_vali[i] = Err[i,"rgain.tst"] C_vali2[i] = Err[i,"cerr.tst2"] G_vali2[i] = Err[i,"gain.tst2"] R_vali2[i] = Err[i,"rgain.tst2"] if (opts$GD.DEVICE!="non" & !is.null(opts$gr.fctcall)) { eval(parse(text=opts$gr.fctcall)); } } if (opts$NRUN>1) { cat1(opts,"\nAverage over all ",opts$NRUN," runs: \n") cat1(opts,sprintf("cerr$train: (%7.5f +- %7.5f)%%\n", mean(C_train)*100, sd(C_train)*100)); cat1(opts,sprintf("cerr$vali: (%7.5f +- %7.5f)%%\n", mean(C_vali)*100, sd(C_vali)*100)); cat1(opts,sprintf("gain$train: (%7.2f +- %4.2f)\n", mean(G_train), sd(G_train))); cat1(opts,sprintf("gain$vali: (%7.2f +- %4.2f)\n", mean(G_vali), sd(G_vali))); cat1(opts,sprintf("rgain.train: %7.3f%%\n", mean(R_train))); cat1(opts,sprintf("rgain.vali: %7.3f%%\n\n", mean(R_vali))); } result = list(lastRes = res , C_train = C_train , G_train = G_train , R_train = R_train , C_vali = C_vali , G_vali = G_vali , R_vali = R_vali , C_vali2 = C_vali2 , G_vali2 = G_vali2 , R_vali2 = R_vali2 , Err = Err , predictions = predictions , predictTest = predictTest , predProbList = predProbList ); if (!is.null(opts$TST.COL)) if (opts$TST.COL %in% names(dset)) result$TST = dset[,opts$TST.COL] class(result) <- c("TDMclassifier","TDM") if (exists("SAVESEED")) assign(".Random.seed", SAVESEED, envir=globalenv()); result; } tdmClassifySummary <- function(result,opts,dset=NULL) { res <- result$lastRes; cat1Records <- function (nrow_noCV) { cat1(opts,ifelse(opts$TST.kind=="cv" , sprintf(" (on %d records in %d folds)",nrow(res$d_train)+nrow(res$d_test),opts$TST.NFOLD) , sprintf(" (on %d records)",nrow_noCV) ),"\n"); } y = mean(result$R_vali); ytr = mean(result$R_train); maxScore = result$G_vali[1]/(result$R_vali[1]/100); maxScore.tr = result$G_train[1]/(result$R_train[1]/100); z=data.frame(TYPE=c("rgain","meanCA","minCA","bYouden") ,DESC=c("relative gain, i.e. percent of correctly classified records" ,"mean class accuracy, i.e. average over class levels" ,"minimum class accuracy", "balanced Youden index")); cat1(opts,sprintf("\nRelative gain is \"%s\"",opts$rgain.type)); cat1(opts,sprintf(" (%s)", z$DESC[which(z$TYPE==opts$rgain.type)])); if (opts$MOD.method %in% c("RF","MC.RF") & opts$RF.OOB==TRUE) { cat1(opts,sprintf("\n%sTrain OOB relative gain: %7.3f",ifelse(opts$TST.kind=="cv","CV ",""),ytr)); cat1(opts,ifelse(opts$NRUN>1,sprintf(" +-%7.3f",sd(result$R_train)),"")); cat1Records(nrow(res$d_train)); result$y=-ytr; result$sd.y=sd(result$R_train); } else { cat1(opts,"\n"); result$y=-y; result$sd.y=sd(result$R_vali); } cat1(opts,sprintf("%s Vali relative gain: %7.3f",ifelse(opts$TST.kind=="cv","CV ",""),y)); cat1(opts,ifelse(opts$NRUN>1,sprintf(" +-%7.3f",sd(result$R_vali)),"")); cat1Records(nrow(res$d_test)); cat1(opts,sprintf("%s Vali2 relative gain (predict always with %s): %7.3f" ,ifelse(opts$TST.kind=="cv","CV ",""), res$allEVAL$test2.string, mean(result$R_vali2))); cat1(opts,ifelse(opts$NRUN>1,sprintf(" +-%7.3f",sd(result$R_vali2)),"")); cat1Records(nrow(res$d_test)); if (!is.null(dset)) result$dset=dset; result; }
library(lingtypology) context("Tests for lat.lang function") df <- data.frame(my_langs = c("Adyghe", "Russian"), stringsAsFactors = FALSE) test_that("lat.lang", { expect_equal(lat.lang("Adyghe"), c(Adyghe = 44)) expect_equal(lat.lang(df), c(my_langs1 = 44, my_langs2 = 59)) expect_equal(lat.lang(c("Adyghe", "Russian")), c(Adyghe = 44, Russian = 59)) })
project_gradient <- function(Q, b, maxits, alpha, R, betaOld) { its <- 1 change <- 1 tol <- 1e-4 p <- length(b) while(its <= maxits & change > tol){ grad <- Q %*% betaOld - b betaNew <- project_onto_l1_ball(betaOld - alpha*grad, R) diff <- sum(betaNew^2 - betaOld^2) change <- diff / alpha betaOld <- betaNew its <- its+1 } if(its == maxits+1) print('Max iterations') return(betaNew) }
twsa <- function(sa_obj, param1 = NULL, param2 = NULL, ranges = NULL, nsamp = 100, outcome = c("eff", "cost", "nhb", "nmb", "nhb_loss", "nmb_loss"), wtp = NULL, strategies = NULL, poly.order = 2) { if (inherits(sa_obj, "psa")) { if (is.null(param1) | is.null(param2)) { stop("if using psa object, both param1 and param2 must be provided") } params <- c(param1, param2) outcome <- match.arg(outcome) if (!is.null(sa_obj$other_outcome)) { sa_obj$effectiveness <- sa_obj$other_outcome } mm <- metamodel("twoway", sa_obj, params, strategies, outcome, wtp, "poly", poly.order) tw <- predict(mm, ranges, nsamp) } else if (inherits(sa_obj, "dsa_twoway")) { params <- sa_obj$parameters if (!is.null(sa_obj$other_outcome)) { eff <- sa_obj$other_outcome } else { eff <- sa_obj$effectiveness } cost <- sa_obj$cost strategies <- sa_obj$strategies parnames <- sa_obj$parnames y <- calculate_outcome(outcome, cost, eff, wtp) names(y) <- strategies tw <- NULL for (s in strategies) { new_df <- data.frame("p1" = params[, parnames[1]], "p2" = params[, parnames[2]], "strategy" = s, "outcome_val" = y[, s]) tw <- rbind(tw, new_df, stringsAsFactors = FALSE) } names(tw)[1:2] <- parnames } else { stop("either a psa or dsa_twoway object must be provided") } class(tw) <- c("twsa", "data.frame") return(tw) } plot.twsa <- function(x, maximize = TRUE, col = c("full", "bw"), n_x_ticks = 6, n_y_ticks = 6, txtsize = 12, ...) { params <- names(x)[c(1, 2)] param1 <- params[1] param2 <- params[2] if (maximize) { obj_fn <- which.max } else { obj_fn <- which.min } opt_df <- x %>% group_by(.data[[param1]], .data[[param2]]) %>% slice(obj_fn(.data$outcome_val)) g <- ggplot(opt_df, aes_(x = as.name(param1), y = as.name(param2))) + geom_tile(aes_(fill = as.name("strategy"))) + theme_bw() + xlab(param1) + ylab(param2) col <- match.arg(col) add_common_aes(g, txtsize, col = col, col_aes = "fill", scale_name = "Strategy", continuous = c("x", "y"), n_x_ticks = n_x_ticks, n_y_ticks = n_y_ticks, xexpand = c(0, 0), yexpand = c(0, 0)) }
patternmat2<-function(nobj) { nvar<-nobj*(nobj-1)/2 Y <- matrix(0, 2^nvar, nvar) for (i in 1:nvar) Y[, nvar + 1 - i] <- rep(rep(c(0, 1), c(2^(i - 1), 2^(i - 1))), 2^(nvar - i)) Y }
CLOSE <- function(x) { x/rowSums(x) }
.overlap <- function(l) { .stopIfNotIsMassObjectList(l) leftMass <- .unlist(lapply(l, function(x)x@mass[1L])) rightMass <- .unlist(lapply(l, function(x)x@mass[length(x@mass)])) if (length(rightMass)) { r <- c(max(leftMass, na.rm=TRUE), min(rightMass, na.rm=TRUE)) if (r[1L] < r[2L]) { return(r) } } c(0L, 0L) } .reorderRange <- function(x) { if (x[1L] > x[2L]) { x <- x[2L:1L] } x }
context("arrayize") test_that("it preserves scalar values", { expect_equal(arrayize(c("a"=3)), list("a"=3)) expect_equal(arrayize(c("a"=3, "b"=2)), list("a"=3, "b"=2)) }) test_that("it parses vectors", { expect_equal(arrayize(c("a[1]"=3)), list("a"=3)) expect_equal(arrayize(c("a[1]"=3, "a[2]"=4)), list("a"=c(3,4))) expect_equal(arrayize(c("a[2]"=4)), list("a"=c(NA,4))) }) test_that("it parses matrices", { expect_equal(arrayize(c("m[1,2]"=8,"m[2,1]"=4)), list("m"=rbind(c(NA,8),c(4,NA)))) }) test_that("it handles multiple variables", { result <- arrayize(c("m[1,2]"=8,"a"=1,"beta[2]"=3,"m[2,1]"=4)) expect_equal(result, list("a"=1, "beta"=c(NA,3), "m"=rbind(c(NA,8),c(4,NA)))) })
importCol <- function(res.file, Dev=FALSE, CPUE=FALSE, Survey=FALSE, CAc=FALSE, CAs=FALSE, CLc=FALSE, CLs=FALSE, LA=FALSE, quiet=TRUE) { readVector <- function(keyword, same.line=TRUE, file=res.file, vector=res.vector) { line <- match(keyword, substring(vector,1,nchar(keyword))) v <- if(same.line) as.numeric(scan(file, what="", skip=line-1, nlines=1, quiet=TRUE)[-1]) else as.numeric(scan(file, what="", skip=line, nlines=1, quiet=TRUE)) if(!quiet) cat("vector...") v } readMatrix <- function(keyword, nrow, header=FALSE, stripe=c("no","left","right","upper","lower"), file=res.file, vector=res.vector) { stripe <- match.arg(stripe) line <- match(keyword,substring(vector,1,nchar(keyword))) + as.numeric(header) m <- scan(file, skip=line, nlines=nrow, quiet=TRUE) m <- matrix(m, byrow=TRUE, nrow=nrow) m <- switch(stripe, left=m[,seq(1,ncol(m)/2)], right=m[,seq(ncol(m)/2+1,ncol(m))], upper=m[seq(1,nrow(m)-1,by=2),], lower=m[seq(2,nrow(m),by=2),], m) if(!quiet) cat("matrix...") m } getN <- function(sexes, years, ages) { if(!quiet) cat("N ") nsexes <- length(sexes) nyears <- length(years) nages <- length(ages) if(nsexes == 1) { Nu <- readMatrix("Numbers_at_age_by_Year,sex_and_age", nrow=nyears*nsexes) N <- data.frame(Sex=rep(sexes,nyears*nages), Year=rep(years,each=nages), Age=rep(ages,nyears), N=as.vector(t(Nu)), stringsAsFactors=FALSE) } if(nsexes == 2) { Nf <- readMatrix("Numbers_at_age_by_Year,sex_and_age", nrow=nyears*nsexes, stripe="upper") Nm <- readMatrix("Numbers_at_age_by_Year,sex_and_age", nrow=nyears*nsexes, stripe="lower") N <- data.frame(Sex=rep(sexes,each=nyears*nages), Year=rep(rep(years,each=nages),2), Age=rep(ages,2*nyears), N=as.vector(t(rbind(Nf,Nm))), stringsAsFactors=FALSE) } if(!quiet) cat("OK\n") N } getB <- function(years, gears) { ngears <- length(gears) if(!quiet) cat("B ") vb <- readMatrix("Vulnerable_Biomass_by_Method_and_Year", nrow=ngears) sb <- readVector("Spawning_Biomass_by_Year", same.line=FALSE) y <- c(readVector("Total_Catch_by_Method_and_Year", same.line=FALSE), NA) B <- data.frame(years=years, vb=t(vb), sb=sb, y=y) names(B) <- if(ngears==1) c("Year", "VB", "SB", "Y") else c("Year", paste("VB",gears,sep="."), "SB", "Y") if(!quiet) cat("OK\n") B } getSel <- function(gears, surveys, years, sexes, ages) { if(!quiet) cat("Sel ") ngears <- length(gears) nsurveys <- length(surveys) nyears <- length(years) nsexes <- length(sexes) nages <- length(ages) com <- readMatrix( "Commercial_age-specific_selectivity_by_method,Year,sex_and_age", nrow=ngears*nyears*nsexes) com <- com[seq(1, to=ngears*nyears*nsexes, by=nyears),] srv <- readMatrix( "Survey_age-specific_selectivity_by_survey,Year,sex_and_age", nrow=nsurveys*nsexes) fecundity <- readVector("Fecundity_by_year_and_age", same.line=FALSE) weight <- readVector("Weight_by_year,sex_and_age", same.line=FALSE) mat <- rep(ifelse(weight>0,fecundity/weight,0), nsexes) if(is.numeric(gears)) gears <- paste("Gear", gears) if(is.numeric(surveys)) surveys <- paste("Survey", surveys) Sel <- data.frame(Series= c(rep(gears,each=nsexes*nages), rep(surveys,each=nsexes*nages), rep("Maturity",nsexes*nages)), Sex=rep(rep(sexes,each=nages),ngears+nsurveys+1), Age=rep(ages,(ngears+nsurveys+1)*nsexes), P=c(t(com),t(srv),mat), stringsAsFactors=FALSE) if(!quiet) cat("OK\n") Sel } getDev <- function(ages, years) { if(!quiet) cat("Dev ") Dev <- list() Dev$sigmaR <- c(readVector("p_log_InitialDev",same.line=TRUE)[6], readVector("p_log_RecDev",same.line=TRUE)[6]) names(Dev$sigmaR) <- c("Initial", "Annual") Dev$Initial <- readVector("log_InitialDev", same.line=TRUE) names(Dev$Initial) <- ages[-c(1,length(ages))] Dev$Annual <- readVector("log_RecDev", same.line=TRUE) names(Dev$Annual) <- years[-length(years)] if(!quiet) cat("OK\n") Dev } getCPUE <- function(gears, years) { if(!quiet) cat("CPUE ") nseries <- readVector("NCPUEindex") ngears <- length(gears) nyears <- length(years) obs <- readMatrix("indexmethodyearvaluecv", nrow=readVector("Number_of_CPUE_data",same.line=FALSE)) obs <- data.frame(Series=obs[,1], Gear=obs[,2], Year=obs[,3], Obs=obs[,4], CV=obs[,5], stringsAsFactors=FALSE) fit <- readMatrix("CPUE_Index_Trajectories", nrow=nseries) fit <- data.frame(Series=rep(1:nseries,each=nyears), Year=rep(years,nseries), Fit=as.vector(t(fit)), stringsAsFactors=FALSE) CPUE <- merge(obs[,names(obs)!="Gear"], fit, all=TRUE) sgkey <- unique(obs[,c("Series","Gear")]) CPUE <- merge(sgkey, CPUE) CPUE <- data.frame(Series=paste("Series ",CPUE$Series,"-",CPUE$Gear,sep=""), Year=as.integer(CPUE$Year), Obs=CPUE$Obs, CV=CPUE$CV, Fit=CPUE$Fit, stringsAsFactors=FALSE) if(!quiet) cat("OK\n") CPUE } getSurvey <- function(years) { if(!quiet) cat("Survey ") nyears <- length(years) nseries <- readVector("Nsurveyindex") obs <- readMatrix("indexyearvaluecv", nrow=readVector("Number_of_survey_data",same.line=FALSE)) obs <- data.frame(Series=obs[,1], Year=obs[,2], Obs=obs[,3], CV=obs[,4]) fit <- readMatrix("Survey_Index_Trajectories", nrow=nseries) fit <- data.frame(Series=rep(1:nseries,each=nyears), Year=rep(years,nseries), Fit=as.vector(t(fit)), stringsAsFactors=FALSE) Survey <- merge(obs, fit, all=TRUE) Survey$Series <- as.integer(Survey$Series) Survey$Year <- as.integer(Survey$Year) if(!quiet) cat("OK\n") Survey } getCAc <- function(sexes, ages) { if(!quiet) cat("CAc ") nsexes <- length(sexes) nages <- length(ages) nobs <- readVector("Number_of_Commercial_C@A", same.line=FALSE) obs <- readMatrix("methodyearsamplesizesex1a1sex1a2sex1a3", nrow=nobs) fit <- readMatrix("methodyearsamplesizesex1a1sex1a2sex1a3", nrow=nobs, header=2*(nobs+1)) CAc <- data.frame(Series=rep(obs[,1],each=nsexes*nages), Year=rep(obs[,2],each=nsexes*nages), SS=rep(obs[,3],each=nsexes*nages), Sex=rep(rep(sexes,each=nages),nobs), Age=rep(ages,nsexes*nobs), Obs=as.vector(t(obs[,-(1:3)])), Fit=as.vector(t(fit)), stringsAsFactors=FALSE) CAc$Series <- as.integer(CAc$Series) CAc$Year <- as.integer(CAc$Year) CAc$Age <- as.integer(CAc$Age) if(!quiet) cat("OK\n") CAc } getCAs <- function(sexes, ages) { if(!quiet) cat("CAs ") nsexes <- length(sexes) nages <- length(ages) nobs <- readVector("Number_of_survey_C@A",same.line=FALSE) obs <- readMatrix("surveyyearsamplesizesex1a1sex1a2sex1a3", nrow=nobs) fit <- readMatrix("surveyyearsamplesizesex1a1sex1a2sex1a3", nrow=nobs, header=2*(nobs+1)) CAs <- data.frame(Series=rep(obs[,1],each=nsexes*nages), Year=rep(obs[,2],each=nsexes*nages), SS=rep(obs[,3],each=nsexes*nages), Sex=rep(rep(sexes,each=nages),nobs), Age=rep(ages,nsexes*nobs), Obs=as.vector(t(obs[,-(1:3)])), Fit=as.vector(t(fit)), stringsAsFactors=FALSE) CAs$Series <- as.integer(CAs$Series) CAs$Year <- as.integer(CAs$Year) CAs$Age <- as.integer(CAs$Age) if(!quiet) cat("OK\n") CAs } getCLc <- function(sexes, lengths) { if(!quiet) cat("CLc ") nsexes <- length(sexes) nlengths <- length(lengths) nobs <- readVector("Number_of_Commercial_C@L", same.line=FALSE) obs <- readMatrix("methodyearsamplesizesex1l1sex1l2sex1l3", nrow=nobs) fit <- readMatrix("methodyearsamplesizesex1l1sex1l2sex1l3", nrow=nobs, header=nobs+1) CLc <- data.frame(Series=rep(obs[,1],each=nsexes*nlengths), Year=rep(obs[,2],each=nsexes*nlengths), SS=rep(obs[,3],each=nsexes*nlengths), Sex=rep(rep(sexes,each=nlengths),nobs), Length=rep(lengths,nsexes*nobs), Obs=as.vector(t(obs[,-(1:3)])), Fit=as.vector(t(fit)), stringsAsFactors=FALSE) CLc$Series <- as.integer(CLc$Series) CLc$Year <- as.integer(CLc$Year) CLc$Length <- as.integer(CLc$Length) if(!quiet) cat("OK\n") CLc } getCLs <- function(sexes, lengths) { if(!quiet) cat("CLs ") nsexes <- length(sexes) nlengths <- length(lengths) nobs <- readVector("Number_of_surveyC@L",same.line=FALSE) obs <- readMatrix("surveyyearsamplesizesex1l1sex1l2sex1l3", nrow=nobs) fit <- readMatrix("surveyyearsamplesizesex1l1sex1l2sex1l3", nrow=nobs, header=2*(nobs+1)) CLs <- data.frame(Series=rep(obs[,1],each=nsexes*nlengths), Year=rep(obs[,2],each=nsexes*nlengths), SS=rep(obs[,3],each=nsexes*nlengths), Sex=rep(rep(sexes,each=nlengths),nobs), Length=rep(lengths,nsexes*nobs), Obs=as.vector(t(obs[,-(1:3)])), Fit=as.vector(t(fit)), stringsAsFactors=FALSE) CLs$Series <- as.integer(CLs$Series) CLs$Year <- as.integer(CLs$Year) CLs$Length <- as.integer(CLs$Length) if(!quiet) cat("OK\n") CLs } getLA <- function(sexes, ages) { if(!quiet) cat("LA ") nsexes <- length(sexes) nages <- length(ages) nobs <- readVector(" vector=latage.vector) obs <- readMatrix("VonBertalanfy--Lenght-at-agefit--Likelihood", nrow=sum(nobs), header=8) obs <- data.frame(Sex=rep(sexes,nobs), Age=obs[,1], Obs=obs[,2], stringsAsFactors=FALSE) Linf <- suppressWarnings(readVector("VonBeratalanfy:Linf")[-(1:3)]) K <- suppressWarnings(readVector("VonBeratalanfy:k")[-(1:3)]) t0 <- suppressWarnings(readVector("VonBeratalanfy:to")[-(1:3)]) CV1 <- suppressWarnings(readVector("cvoftheFitbysex")[-(1:5)]) CVratio <- suppressWarnings( readVector("ratioofcv(L_an)/cv(L_a1)oftheFitbysex")[-(1:7)]) sigmaLA <- readVector( " same.line=FALSE, file=txt.file, vector=txt.vector)[1] max.age <- c(max(obs$Age[obs$Sex==sexes[1]]), max(obs$Age[obs$Sex==sexes[2]])) fit <- data.frame(Sex=rep(sexes,max.age), Age=c(1:max.age[1],1:max.age[2]), stringsAsFactors=FALSE) fit$Fit[fit$Sex==sexes[1]] <- Linf[1]* (1-exp(-K[1]*(fit$Age[fit$Sex==sexes[1]]-t0[1]))) fit$Fit[fit$Sex==sexes[2]] <- Linf[2]* (1-exp(-K[2]*(fit$Age[fit$Sex==sexes[2]]-t0[2]))) if(sigmaLA == 1) { A <- rep(max(ages), 2) a <- cbind(fit$Age[fit$Sex==sexes[1]], fit$Age[fit$Sex==sexes[2]]) fit$CV[fit$Sex==sexes[1]] <- CV1[1] + CV1[1]*(CVratio[1]-1)/(A[1]-1)*(a[,1]-1) fit$CV[fit$Sex==sexes[2]] <- CV1[2] + CV1[2]*(CVratio[2]-1)/(A[2]-1)*(a[,2]-1) } if(sigmaLA == 2) { L1 <- Linf*(1-exp(-K*(1-t0))) Ln <- Linf*(1-exp(-K*(max(ages)-t0))) fit$CV[fit$Sex==sexes[1]] <- CV1[1] + CV1[1]*(CVratio[1]-1)/(Ln[1]-L1[1])*(fit$Fit[fit$Sex==sexes[1]]-L1[1]) fit$CV[fit$Sex==sexes[2]] <- CV1[2] + CV1[2]*(CVratio[2]-1)/(Ln[2]-L1[2])*(fit$Fit[fit$Sex==sexes[2]]-L1[2]) } LA <- merge(obs, fit, by=c("Sex","Age"), all=TRUE) LA$Age <- as.integer(LA$Age) LA$Fit <- LA$Fit LA$CV <- LA$CV if(!quiet) cat("OK\n") LA } if(!file.exists(res.file)) stop("file ", res.file, " not found; use / or \\\\ separators") res.vector <- readLines(res.file) res.vector <- gsub("\"","", gsub("\t","",gsub(" ","",res.vector))) if(!quiet) cat("\nParsing text file ", res.file, ":\n\nPreamble ", sep="") sexes <- if(readVector("Nsexes")==1) "Unisex" else c("Female","Male") gears <- seq(1, length.out=readVector("Nmethods")) surveys <- seq(1, length.out=readVector("Nsurveyindex")) years <- seq(from=readVector("StartYear"), to=readVector("EndYear")+1) ages <- seq(from=1, to=readVector("Nages")) lengths <- seq(from=readVector("First_length"), by=readVector("Length_class_increment"), length.out=readVector("Number_of_length_classes")) if(!quiet) cat("OK\n") model <- list() model$N <- getN(sexes, years, ages) model$B <- getB(years, gears) rec <- model$N[model$N$Age==1,] rec <- tapply(rec$N, rec$Year, sum) model$B$R <- c(rec[-1], NA) model$Sel <- getSel(gears, surveys, years, sexes, ages) if(Dev) model$Dev <- getDev(ages, years) if(CPUE) model$CPUE <- getCPUE(gears, years) if(Survey) model$Survey <- getSurvey(years) if(CAc) model$CAc <- getCAc(sexes, ages) if(CAs) model$CAs <- getCAs(sexes, ages) if(CLc) model$CLc <- getCLc(sexes, lengths) if(CLs) model$CLs <- getCLs(sexes, lengths) if(LA) { latage.file <- paste(dirname(res.file),"l_at_age.dat",sep="/") if(!file.exists(latage.file)) stop("file ", latage.file, " not found; use / or \\\\ separators") latage.vector <- readLines(latage.file) latage.vector <- gsub("\"","", gsub("\t","",gsub(" ","",latage.vector))) txt.file <- gsub("\\.res", "\\.txt", res.file) if(!file.exists(txt.file)) stop("file ", txt.file, " not found; use / or \\\\ separators") txt.vector <- readLines(txt.file) txt.vector <- gsub("\"","", gsub("\t","",gsub(" ","",txt.vector))) model$LA <- getLA(sexes, ages) } if(!quiet) cat("\n") attr(model,"call") <- match.call() class(model) <- "scape" model }
ValidityCheckDetail <- function(data_in, value) { if (!(value %in% names(data_in))) { stop(paste0("Column ", value), " is missing in data or is not named as defined") }else{ if (!(is.numeric(data_in[[value]]))) { stop(paste0("Non-numeric ", value), " values") } else{ if (!(length(data_in[, 1]) == length(data_in[[value]]))) { stop("Columns in data are not of equal length") } else{ if(sum(is.na(data_in[[value]])) > sum(!(is.na(data_in[[value]])))){ warning(paste0("Column ", value), " contains more NA values than non-NA values") } } } } }
pkgVersion <- packageDescription("RcppEigen")$Version pkgDate <- packageDescription("RcppEigen")$Date prettyDate <- format(Sys.Date(), "%B %e, %Y")
context('logregmulti') test_that('logregmulti works', { suppressWarnings(RNGversion("3.5.0")) set.seed(1337) y <- sample(c('A', 'B', 'C'), 100, replace = TRUE) x1 <- rnorm(100) x2 <- rnorm(100) df <- data.frame(y=y, x1=x1, x2=x2) logReg <- jmv::logRegMulti(data = df, dep = "y", covs = c("x1", "x2"), blocks = list(list("x1", "x2")), refLevels = list(list(var="y", ref="A")), emMeans = ~ x1) modelFit <- logReg$modelFit$asDF coef <- logReg$models[[1]]$coef$asDF expect_equal(0.000870, modelFit$r2mf[1], tolerance = 1e-6) expect_equal(217.714, modelFit$dev[1], tolerance = 1e-3) expect_equal(-0.160, coef$est[1], tolerance = 1e-3) expect_equal(0.242, coef$se[3], tolerance = 1e-3) expect_equal(0.917, coef$p[2], tolerance = 1e-3) })
sum_play_stats <- function(play_Id, stats) { play_stats <- stats %>% filter(.data$playId == play_Id) row <- bind_cols(play_id = as.integer(play_Id), tidy_play_stats_row) for (index in seq_along(play_stats$playId)) { stat_id <- play_stats$statId[index] if (stat_id == 2) { row$punt_blocked <- 1 row$punt_attempt <- 1 row$kick_distance <- play_stats$yards[index] } else if (stat_id == 3) { row$first_down_rush <- 1 } else if (stat_id == 4) { row$first_down_pass <- 1 } else if (stat_id == 5) { row$first_down_penalty <- 1 } else if (stat_id == 6) { row$third_down_converted <- 1 } else if (stat_id == 7) { row$third_down_failed <- 1 } else if (stat_id == 8) { row$fourth_down_converted <- 1 } else if (stat_id == 9) { row$fourth_down_failed <- 1 } else if (stat_id == 10) { row$rush_attempt <- 1 row$rusher_player_id <- play_stats$player.esbId[index] row$rusher_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$rushing_yards <- play_stats$yards[index] row$penalty_fix <- 1 } else if (stat_id == 11) { row$rush_attempt <- 1 row$touchdown <- 1 row$first_down_rush <- 1 row$rush_touchdown <- 1 row$rusher_player_id <- play_stats$player.esbId[index] row$rusher_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$rushing_yards <- play_stats$yards[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$penalty_fix <- 1 } else if (stat_id == 12) { row$rush_attempt <- 1 row$lateral_rush <- 1 row$lateral_rusher_player_id <- play_stats$player.esbId[index] row$lateral_rusher_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$lateral_rushing_yards <- play_stats$yards[index] row$penalty_fix <- 1 } else if (stat_id == 13) { row$rush_attempt <- 1 row$touchdown <- 1 row$rush_touchdown <- 1 row$lateral_rush <- 1 row$lateral_rusher_player_id <- play_stats$player.esbId[index] row$lateral_rusher_player_name <- play_stats$player.displayName[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$lateral_rushing_yards <- play_stats$yards[index] row$penalty_fix <- 1 } else if (stat_id == 14) { row$incomplete_pass <- 1 row$pass_attempt <- 1 row$passer_player_id <- play_stats$player.esbId[index] row$passer_player_name <- play_stats$player.displayName[index] row$penalty_fix <- 1 } else if (stat_id == 15) { row$pass_attempt <- 1 row$complete_pass <- 1 row$passer_player_id <- play_stats$player.esbId[index] row$passer_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$passing_yards <- play_stats$yards[index] row$penalty_fix <- 1 } else if (stat_id == 16) { row$pass_attempt <- 1 row$touchdown <- 1 row$pass_touchdown <- 1 row$complete_pass <- 1 row$passer_player_id <- play_stats$player.esbId[index] row$passer_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$passing_yards <- play_stats$yards[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$penalty_fix <- 1 } else if (stat_id == 19) { row$interception <- 1 row$pass_attempt <- 1 row$passer_player_id <- play_stats$player.esbId[index] row$passer_player_name <- play_stats$player.displayName[index] row$penalty_fix <- 1 } else if (stat_id == 20) { row$pass_attempt <- 1 row$sack <- 1 row$passer_player_id <- play_stats$player.esbId[index] row$passer_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$penalty_fix <- 1 } else if (stat_id == 21) { row$pass_attempt <- 1 row$complete_pass <- 1 row$receiver_player_id <- play_stats$player.esbId[index] row$receiver_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$receiving_yards <- play_stats$yards[index] row$penalty_fix <- 1 } else if (stat_id == 22) { row$pass_attempt <- 1 row$touchdown <- 1 row$pass_touchdown <- 1 row$complete_pass <- 1 row$receiver_player_id <- play_stats$player.esbId[index] row$receiver_player_name <- play_stats$player.displayName[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$receiving_yards <- play_stats$yards[index] row$penalty_fix <- 1 } else if (stat_id == 23) { row$pass_attempt <- 1 row$complete_pass <- 1 row$lateral_reception <- 1 row$lateral_receiver_player_id <- play_stats$player.esbId[index] row$lateral_receiver_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$lateral_receiving_yards <- play_stats$yards[index] row$penalty_fix <- 1 } else if (stat_id == 24) { row$pass_attempt <- 1 row$touchdown <- 1 row$pass_touchdown <- 1 row$complete_pass <- 1 row$lateral_reception <- 1 row$lateral_receiver_player_id <- play_stats$player.esbId[index] row$lateral_receiver_player_name <- play_stats$player.displayName[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$yards_gained <- play_stats$yards[index] row$lateral_receiving_yards <- play_stats$yards[index] row$penalty_fix <- 1 } else if (stat_id == 25) { row$pass_attempt <- 1 row$interception_player_id <- play_stats$player.esbId[index] row$interception_player_name <- play_stats$player.displayName[index] row$return_team <- play_stats$teamAbbr[index] row$return_yards <- play_stats$yards[index] row$return_penalty_fix <- 1 } else if (stat_id == 26) { row$pass_attempt <- 1 row$touchdown <- 1 row$return_touchdown <- 1 row$interception_player_id <- play_stats$player.esbId[index] row$interception_player_name <- play_stats$player.displayName[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$return_team <- play_stats$teamAbbr[index] row$return_yards <- play_stats$yards[index] row$return_penalty_fix <- 1 } else if (stat_id == 27) { row$pass_attempt <- 1 row$lateral_return <- 1 row$lateral_interception_player_id <- play_stats$player.esbId[index] row$lateral_interception_player_name <- play_stats$player.displayName[index] row$return_yards <- play_stats$yards[index] row$return_penalty_fix <- 1 } else if (stat_id == 28) { row$pass_attempt <- 1 row$touchdown <- 1 row$return_touchdown <- 1 row$lateral_return <- 1 row$lateral_interception_player_id <- play_stats$player.esbId[index] row$lateral_interception_player_name <- play_stats$player.displayName[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$return_yards <- play_stats$yards[index] row$return_penalty_fix <- 1 } else if (stat_id == 29) { row$punt_attempt <- 1 row$punter_player_id <- play_stats$player.esbId[index] row$punter_player_name <- play_stats$player.displayName[index] row$kick_distance <- play_stats$yards[index] } else if (stat_id == 30) { row$punt_inside_twenty <- 1 row$punt_attempt <- 1 row$punter_player_id <- play_stats$player.esbId[index] row$punter_player_name <- play_stats$player.displayName[index] } else if (stat_id == 31) { row$punt_in_endzone <- 1 row$punt_attempt <- 1 row$punter_player_id <- play_stats$player.esbId[index] row$punter_player_name <- play_stats$player.displayName[index] row$kick_distance <- play_stats$yards[index] } else if (stat_id == 32) { row$punt_attempt <- 1 row$punter_player_id <- play_stats$player.esbId[index] row$punter_player_name <- play_stats$player.displayName[index] } else if (stat_id == 33) { row$punt_attempt <- 1 row$punt_returner_player_id <- play_stats$player.esbId[index] row$punt_returner_player_name <- play_stats$player.displayName[index] row$return_yards <- play_stats$yards[index] row$return_team <- play_stats$teamAbbr[index] row$return_penalty_fix <- 1 } else if (stat_id == 34) { row$touchdown <- 1 row$return_touchdown <- 1 row$punt_attempt <- 1 row$punt_returner_player_id <- play_stats$player.esbId[index] row$punt_returner_player_name <- play_stats$player.displayName[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$return_team <- play_stats$teamAbbr[index] row$return_yards <- play_stats$yards[index] row$return_penalty_fix <- 1 } else if (stat_id == 35) { row$punt_attempt <- 1 row$lateral_return <- 1 row$lateral_punt_returner_player_id <- play_stats$player.esbId[index] row$lateral_punt_returner_player_name <- play_stats$player.displayName[index] row$return_yards <- play_stats$yards[index] row$return_penalty_fix <- 1 } else if (stat_id == 36) { row$touchdown <- 1 row$return_touchdown <- 1 row$punt_attempt <- 1 row$lateral_return <- 1 row$lateral_punt_returner_player_id <- play_stats$player.esbId[index] row$lateral_punt_returner_player_name <- play_stats$player.displayName[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$return_yards <- play_stats$yards[index] row$return_team <- play_stats$teamAbbr[index] row$return_penalty_fix <- 1 } else if (stat_id == 37) { row$punt_out_of_bounds <- 1 row$punt_attempt <- 1 row$return_yards <- 0 row$return_team <- play_stats$teamAbbr[index] } else if (stat_id == 38) { row$punt_downed <- 1 row$punt_attempt <- 1 row$return_team <- play_stats$teamAbbr[index] } else if (stat_id == 39) { row$punt_fair_catch <- 1 row$punt_attempt <- 1 row$punt_returner_player_id <- play_stats$player.esbId[index] row$punt_returner_player_name <- play_stats$player.displayName[index] row$return_team <- play_stats$teamAbbr[index] } else if (stat_id == 40) { row$punt_attempt <- 1 row$return_team <- play_stats$teamAbbr[index] } else if (stat_id == 41) { row$kickoff_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] row$kick_distance <- play_stats$yards[index] } else if (stat_id == 42) { row$kickoff_inside_twenty <- 1 row$kickoff_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] } else if (stat_id == 43) { row$kickoff_in_endzone <- 1 row$kickoff_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] } else if (stat_id == 44) { row$kickoff_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] } else if (stat_id == 45) { row$kickoff_attempt <- 1 row$kickoff_returner_player_id <- play_stats$player.esbId[index] row$kickoff_returner_player_name <- play_stats$player.displayName[index] row$return_yards <- play_stats$yards[index] row$return_team <- play_stats$teamAbbr[index] row$return_penalty_fix <- 1 } else if (stat_id == 46) { row$touchdown <- 1 row$return_touchdown <- 1 row$kickoff_attempt <- 1 row$kickoff_returner_player_id <- play_stats$player.esbId[index] row$kickoff_returner_player_name <- play_stats$player.displayName[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$return_yards <- play_stats$yards[index] row$return_team <- play_stats$teamAbbr[index] row$return_penalty_fix <- 1 } else if (stat_id == 47) { row$kickoff_attempt <- 1 row$lateral_return <- 1 row$lateral_kickoff_returner_player_id <- play_stats$player.esbId[index] row$lateral_kickoff_returner_player_name <- play_stats$player.displayName[index] row$return_yards <- play_stats$yards[index] row$return_team <- play_stats$teamAbbr[index] row$return_penalty_fix <- 1 } else if (stat_id == 48) { row$touchdown <- 1 row$return_touchdown <- 1 row$kickoff_attempt <- 1 row$lateral_return <- 1 row$lateral_kickoff_returner_player_id <- play_stats$player.esbId[index] row$lateral_kickoff_returner_player_name <- play_stats$player.displayName[index] row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$return_yards <- play_stats$yards[index] row$return_team <- play_stats$teamAbbr[index] row$return_penalty_fix <- 1 } else if (stat_id == 49) { row$kickoff_out_of_bounds <- 1 row$kickoff_attempt <- 1 row$return_team <- play_stats$teamAbbr[index] } else if (stat_id == 50) { row$kickoff_fair_catch <- 1 row$kickoff_attempt <- 1 row$kickoff_returner_player_id <- play_stats$player.esbId[index] row$kickoff_returner_player_name <- play_stats$player.displayName[index] row$return_team <- play_stats$teamAbbr[index] } else if (stat_id == 51) { row$kickoff_attempt <- 1 row$return_team <- play_stats$teamAbbr[index] } else if (stat_id == 52) { row$fumble_forced <- 1 row$fumble <- 1 row$fumbled_1_player_id <- if_else( is.na(row$fumbled_1_player_id), play_stats$player.esbId[index], row$fumbled_1_player_id ) row$fumbled_1_player_name <- if_else( is.na(row$fumbled_1_player_name), play_stats$player.displayName[index], row$fumbled_1_player_name ) row$fumbled_1_team <- if_else( is.na(row$fumbled_1_team), play_stats$teamAbbr[index], row$fumbled_1_team ) row$fumbled_2_player_id <- if_else( is.na(row$fumbled_2_player_id) & row$fumbled_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$fumbled_2_player_id ) row$fumbled_2_player_name <- if_else( is.na(row$fumbled_2_player_name) & row$fumbled_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$fumbled_2_player_name ) row$fumbled_2_team <- if_else( is.na(row$fumbled_2_team) & row$fumbled_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$fumbled_2_team ) } else if (stat_id == 53) { row$fumble_not_forced <- 1 row$fumble <- 1 row$fumbled_1_player_id <- if_else( is.na(row$fumbled_1_player_id), play_stats$player.esbId[index], row$fumbled_1_player_id ) row$fumbled_1_player_name <- if_else( is.na(row$fumbled_1_player_name), play_stats$player.displayName[index], row$fumbled_1_player_name ) row$fumbled_1_team <- if_else( is.na(row$fumbled_1_team), play_stats$teamAbbr[index], row$fumbled_1_team ) row$fumbled_2_player_id <- if_else( is.na(row$fumbled_2_player_id) & row$fumbled_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$fumbled_2_player_id ) row$fumbled_2_player_name <- if_else( is.na(row$fumbled_2_player_name) & row$fumbled_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$fumbled_2_player_name ) row$fumbled_2_team <- if_else( is.na(row$fumbled_2_team) & row$fumbled_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$fumbled_2_team ) } else if (stat_id == 54) { row$fumble_out_of_bounds <- 1 row$fumble <- 1 row$fumbled_1_player_id <- if_else( is.na(row$fumbled_1_player_id), play_stats$player.esbId[index], row$fumbled_1_player_id ) row$fumbled_1_player_name <- if_else( is.na(row$fumbled_1_player_name), play_stats$player.displayName[index], row$fumbled_1_player_name ) row$fumbled_1_team <- if_else( is.na(row$fumbled_1_team), play_stats$teamAbbr[index], row$fumbled_1_team ) row$fumbled_2_player_id <- if_else( is.na(row$fumbled_2_player_id) & row$fumbled_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$fumbled_2_player_id ) row$fumbled_2_player_name <- if_else( is.na(row$fumbled_2_player_name) & row$fumbled_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$fumbled_2_player_name ) row$fumbled_2_team <- if_else( is.na(row$fumbled_2_team) & row$fumbled_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$fumbled_2_team ) } else if (stat_id == 55) { row$fumble <- 1 row$fumble_recovery_1_player_id <- if_else( is.na(row$fumble_recovery_1_player_id), play_stats$player.esbId[index], row$fumble_recovery_1_player_id ) row$fumble_recovery_1_player_name <- if_else( is.na(row$fumble_recovery_1_player_name), play_stats$player.displayName[index], row$fumble_recovery_1_player_name ) row$fumble_recovery_1_team <- if_else( is.na(row$fumble_recovery_1_team), play_stats$teamAbbr[index], row$fumble_recovery_1_team ) row$fumble_recovery_1_yards <- if_else( is.na(row$fumble_recovery_1_yards), play_stats$yards[index], row$fumble_recovery_1_yards ) row$fumble_recovery_2_player_id <- if_else( is.na(row$fumble_recovery_2_player_id) & row$fumble_recovery_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$fumble_recovery_2_player_id ) row$fumble_recovery_2_player_name <- if_else( is.na(row$fumble_recovery_2_player_name) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$fumble_recovery_2_player_name ) row$fumble_recovery_2_team <- if_else( is.na(row$fumble_recovery_2_team) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$fumble_recovery_2_team ) row$fumble_recovery_2_yards <- if_else( is.na(row$fumble_recovery_2_yards) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$yards[index], row$fumble_recovery_2_yards ) } else if (stat_id == 56) { row$touchdown <- 1 row$fumble <- 1 row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$fumble_recovery_1_player_id <- if_else( is.na(row$fumble_recovery_1_player_id), play_stats$player.esbId[index], row$fumble_recovery_1_player_id ) row$fumble_recovery_1_player_name <- if_else( is.na(row$fumble_recovery_1_player_name), play_stats$player.displayName[index], row$fumble_recovery_1_player_name ) row$fumble_recovery_1_team <- if_else( is.na(row$fumble_recovery_1_team), play_stats$teamAbbr[index], row$fumble_recovery_1_team ) row$fumble_recovery_1_yards <- if_else( is.na(row$fumble_recovery_1_yards), play_stats$yards[index], row$fumble_recovery_1_yards ) row$fumble_recovery_2_player_id <- if_else( is.na(row$fumble_recovery_2_player_id) & row$fumble_recovery_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$fumble_recovery_2_player_id ) row$fumble_recovery_2_player_name <- if_else( is.na(row$fumble_recovery_2_player_name) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$fumble_recovery_2_player_name ) row$fumble_recovery_2_team <- if_else( is.na(row$fumble_recovery_2_team) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$fumble_recovery_2_team ) row$fumble_recovery_2_yards <- if_else( is.na(row$fumble_recovery_2_yards) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$yards[index], row$fumble_recovery_2_yards ) } else if (stat_id == 57) { row$fumble <- 1 row$lateral_recovery <- 1 } else if (stat_id == 58) { row$touchdown <- 1 row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$fumble <- 1 row$lateral_recovery <- 1 } else if (stat_id == 59) { row$fumble <- 1 row$fumble_recovery_1_player_id <- if_else( is.na(row$fumble_recovery_1_player_id), play_stats$player.esbId[index], row$fumble_recovery_1_player_id ) row$fumble_recovery_1_player_name <- if_else( is.na(row$fumble_recovery_1_player_name), play_stats$player.displayName[index], row$fumble_recovery_1_player_name ) row$fumble_recovery_1_team <- if_else( is.na(row$fumble_recovery_1_team), play_stats$teamAbbr[index], row$fumble_recovery_1_team ) row$fumble_recovery_1_yards <- if_else( is.na(row$fumble_recovery_1_yards), play_stats$yards[index], row$fumble_recovery_1_yards ) row$fumble_recovery_2_player_id <- if_else( is.na(row$fumble_recovery_2_player_id) & row$fumble_recovery_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$fumble_recovery_2_player_id ) row$fumble_recovery_2_player_name <- if_else( is.na(row$fumble_recovery_2_player_name) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$fumble_recovery_2_player_name ) row$fumble_recovery_2_team <- if_else( is.na(row$fumble_recovery_2_team) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$fumble_recovery_2_team ) row$fumble_recovery_2_yards <- if_else( is.na(row$fumble_recovery_2_yards) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$yards[index], row$fumble_recovery_2_yards ) } else if (stat_id == 60) { row$touchdown <- 1 row$return_touchdown <- 1 row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$fumble <- 1 row$fumble_recovery_1_player_id <- if_else( is.na(row$fumble_recovery_1_player_id), play_stats$player.esbId[index], row$fumble_recovery_1_player_id ) row$fumble_recovery_1_player_name <- if_else( is.na(row$fumble_recovery_1_player_name), play_stats$player.displayName[index], row$fumble_recovery_1_player_name ) row$fumble_recovery_1_team <- if_else( is.na(row$fumble_recovery_1_team), play_stats$teamAbbr[index], row$fumble_recovery_1_team ) row$fumble_recovery_1_yards <- if_else( is.na(row$fumble_recovery_1_yards), play_stats$yards[index], row$fumble_recovery_1_yards ) row$fumble_recovery_2_player_id <- if_else( is.na(row$fumble_recovery_2_player_id) & row$fumble_recovery_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$fumble_recovery_2_player_id ) row$fumble_recovery_2_player_name <- if_else( is.na(row$fumble_recovery_2_player_name) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$fumble_recovery_2_player_name ) row$fumble_recovery_2_team <- if_else( is.na(row$fumble_recovery_2_team) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$fumble_recovery_2_team ) row$fumble_recovery_2_yards <- if_else( is.na(row$fumble_recovery_2_yards) & row$fumble_recovery_1_player_name != play_stats$player.displayName[index], play_stats$yards[index], row$fumble_recovery_2_yards ) } else if (stat_id == 61) { row$fumble <- 1 row$lateral_recovery <- 1 } else if (stat_id == 62) { row$touchdown <- 1 row$return_touchdown <- 1 row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$fumble <- 1 row$lateral_recovery <- 1 } else if (stat_id == 63) { NULL } else if (stat_id == 64) { row$touchdown <- 1 row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] } else if (stat_id == 68) { row$timeout <- 1 row$timeout_team <- play_stats$teamAbbr[index] } else if (stat_id == 69) { row$field_goal_missed <- 1 row$field_goal_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] row$kick_distance <- play_stats$yards[index] } else if (stat_id == 70) { row$field_goal_made <- 1 row$field_goal_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] row$kick_distance <- play_stats$yards[index] } else if (stat_id == 71) { row$field_goal_blocked <- 1 row$field_goal_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] row$kick_distance <- play_stats$yards[index] } else if (stat_id == 72) { row$extra_point_good <- 1 row$extra_point_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] } else if (stat_id == 73) { row$extra_point_failed <- 1 row$extra_point_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] } else if (stat_id == 74) { row$extra_point_blocked <- 1 row$extra_point_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] } else if (stat_id == 75) { row$two_point_rush_good <- 1 row$rush_attempt <- 1 row$two_point_attempt <- 1 row$rusher_player_id <- play_stats$player.esbId[index] row$rusher_player_name <- play_stats$player.displayName[index] } else if (stat_id == 76) { row$two_point_rush_failed <- 1 row$rush_attempt <- 1 row$two_point_attempt <- 1 row$rusher_player_id <- play_stats$player.esbId[index] row$rusher_player_name <- play_stats$player.displayName[index] } else if (stat_id == 77) { row$two_point_pass_good <- 1 row$pass_attempt <- 1 row$two_point_attempt <- 1 row$passer_player_id <- play_stats$player.esbId[index] row$passer_player_name <- play_stats$player.displayName[index] } else if (stat_id == 78) { row$two_point_pass_failed <- 1 row$pass_attempt <- 1 row$two_point_attempt <- 1 row$passer_player_id <- play_stats$player.esbId[index] row$passer_player_name <- play_stats$player.displayName[index] } else if (stat_id == 79) { row$solo_tackle <- 1 row$solo_tackle_1_player_id <- if_else( is.na(row$solo_tackle_1_player_id), play_stats$player.esbId[index], row$solo_tackle_1_player_id ) row$solo_tackle_1_player_name <- if_else( is.na(row$solo_tackle_1_player_name), play_stats$player.displayName[index], row$solo_tackle_1_player_name ) row$solo_tackle_1_team <- if_else( is.na(row$solo_tackle_1_team), play_stats$teamAbbr[index], row$solo_tackle_1_team ) row$solo_tackle_2_player_id <- if_else( is.na(row$solo_tackle_2_player_id) & row$solo_tackle_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$solo_tackle_2_player_id ) row$solo_tackle_2_player_name <- if_else( is.na(row$solo_tackle_2_player_name) & row$solo_tackle_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$solo_tackle_2_player_name ) row$solo_tackle_2_team <- if_else( is.na(row$solo_tackle_2_team) & row$solo_tackle_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$solo_tackle_2_team ) } else if (stat_id == 80) { row$tackle_with_assist <- 1 row$tackle_with_assist_1_player_id <- if_else( is.na(row$tackle_with_assist_1_player_id), play_stats$player.esbId[index], row$tackle_with_assist_1_player_id ) row$tackle_with_assist_1_player_name <- if_else( is.na(row$tackle_with_assist_1_player_name), play_stats$player.displayName[index], row$tackle_with_assist_1_player_name ) row$tackle_with_assist_1_team <- if_else( is.na(row$tackle_with_assist_1_team), play_stats$teamAbbr[index], row$tackle_with_assist_1_team ) row$tackle_with_assist_2_player_id <- if_else( is.na(row$tackle_with_assist_2_player_id) & row$tackle_with_assist_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$tackle_with_assist_2_player_id ) row$tackle_with_assist_2_player_name <- if_else( is.na(row$tackle_with_assist_2_player_name) & row$tackle_with_assist_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$tackle_with_assist_2_player_name ) row$tackle_with_assist_2_team <- if_else( is.na(row$tackle_with_assist_2_team) & row$tackle_with_assist_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$tackle_with_assist_2_team ) } else if (stat_id == 82) { row$assist_tackle <- 1 row$assist_tackle_1_player_id <- if_else( is.na(row$assist_tackle_1_player_id), play_stats$player.esbId[index], row$assist_tackle_1_player_id ) row$assist_tackle_1_player_name <- if_else( is.na(row$assist_tackle_1_player_name), play_stats$player.displayName[index], row$assist_tackle_1_player_name ) row$assist_tackle_1_team <- if_else( is.na(row$assist_tackle_1_team), play_stats$teamAbbr[index], row$assist_tackle_1_team ) row$assist_tackle_2_player_id <- if_else( is.na(row$assist_tackle_2_player_id) & row$assist_tackle_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$assist_tackle_2_player_id ) row$assist_tackle_2_player_name <- if_else( is.na(row$assist_tackle_2_player_name) & row$assist_tackle_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$assist_tackle_2_player_name ) row$assist_tackle_2_team <- if_else( is.na(row$assist_tackle_2_team) & row$assist_tackle_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$assist_tackle_2_team ) row$assist_tackle_3_player_id <- if_else( (is.na(row$assist_tackle_3_player_id) & row$assist_tackle_1_player_id != play_stats$player.esbId[index] & row$assist_tackle_2_player_id != play_stats$player.esbId[index]), play_stats$player.esbId[index], row$assist_tackle_3_player_id ) row$assist_tackle_3_player_name <- if_else( (is.na(row$assist_tackle_3_player_name) & row$assist_tackle_1_player_name != play_stats$player.displayName[index] & row$assist_tackle_2_player_name != play_stats$player.displayName[index]), play_stats$player.displayName[index], row$assist_tackle_3_player_name ) row$assist_tackle_3_team <- if_else( (is.na(row$assist_tackle_3_team) & row$assist_tackle_1_player_name != play_stats$player.displayName[index] & row$assist_tackle_2_player_name != play_stats$player.displayName[index]), play_stats$teamAbbr[index], row$assist_tackle_3_team ) row$assist_tackle_4_player_id <- if_else( (is.na(row$assist_tackle_4_player_id) & row$assist_tackle_1_player_id != play_stats$player.esbId[index] & row$assist_tackle_2_player_id != play_stats$player.esbId[index] & row$assist_tackle_3_player_id != play_stats$player.esbId[index]), play_stats$player.esbId[index], row$assist_tackle_4_player_id ) row$assist_tackle_4_player_name <- if_else( (is.na(row$assist_tackle_4_player_name) & row$assist_tackle_1_player_name != play_stats$player.displayName[index] & row$assist_tackle_2_player_name != play_stats$player.displayName[index] & row$assist_tackle_3_player_name != play_stats$player.displayName[index]), play_stats$player.displayName[index], row$assist_tackle_4_player_name ) row$assist_tackle_4_team <- if_else( (is.na(row$assist_tackle_4_team) & row$assist_tackle_1_player_name != play_stats$player.displayName[index] & row$assist_tackle_2_player_name != play_stats$player.displayName[index] & row$assist_tackle_3_player_name != play_stats$player.displayName[index]), play_stats$teamAbbr[index], row$assist_tackle_4_team ) } else if (stat_id == 83) { row$sack <- 1 row$sack_player_id <- play_stats$player.esbId[index] row$sack_player_name <- play_stats$player.displayName[index] } else if (stat_id == 84) { row$sack <- 1 row$assist_tackle <- 1 row$half_sack_1_player_id <- if_else( is.na(row$half_sack_1_player_id), play_stats$player.esbId[index], row$half_sack_1_player_id ) row$half_sack_1_player_name <- if_else( is.na(row$half_sack_1_player_name), play_stats$player.displayName[index], row$half_sack_1_player_name ) row$half_sack_2_player_id <- if_else( is.na(row$half_sack_2_player_id) & row$half_sack_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$half_sack_2_player_id ) row$half_sack_2_player_name <- if_else( is.na(row$half_sack_2_player_name) & row$half_sack_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$half_sack_2_player_name ) } else if (stat_id == 85) { row$pass_defense_1_player_id <- if_else( is.na(row$pass_defense_1_player_id), play_stats$player.esbId[index], row$pass_defense_1_player_id ) row$pass_defense_1_player_name <- if_else( is.na(row$pass_defense_1_player_name), play_stats$player.displayName[index], row$pass_defense_1_player_name ) row$pass_defense_2_player_id <- if_else( is.na(row$pass_defense_2_player_id) & row$pass_defense_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$pass_defense_2_player_id ) row$pass_defense_2_player_name <- if_else( is.na(row$pass_defense_2_player_name) & row$pass_defense_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$pass_defense_2_player_name ) } else if (stat_id == 86) { row$punt_attempt <- 1 row$blocked_player_id <- play_stats$player.esbId[index] row$blocked_player_name <- play_stats$player.displayName[index] } else if (stat_id == 87) { row$blocked_player_id <- play_stats$player.esbId[index] row$blocked_player_name <- play_stats$player.displayName[index] } else if (stat_id == 88) { row$field_goal_attempt <- 1 row$blocked_player_id <- play_stats$player.esbId[index] row$blocked_player_name <- play_stats$player.displayName[index] } else if (stat_id == 89) { row$safety <- 1 row$safety_player_id <- play_stats$player.esbId[index] row$safety_player_name <- play_stats$player.displayName[index] } else if (stat_id == 91) { row$fumble <- 1 row$forced_fumble_player_1_player_id <- if_else( is.na(row$forced_fumble_player_1_player_id), play_stats$player.esbId[index], row$forced_fumble_player_1_player_id ) row$forced_fumble_player_1_player_name <- if_else( is.na(row$forced_fumble_player_1_player_name), play_stats$player.displayName[index], row$forced_fumble_player_1_player_name ) row$forced_fumble_player_1_team <- if_else( is.na(row$forced_fumble_player_1_team), play_stats$teamAbbr[index], row$forced_fumble_player_1_team ) row$forced_fumble_player_2_player_id <- if_else( is.na(row$forced_fumble_player_2_player_id) & row$forced_fumble_player_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$forced_fumble_player_2_player_id ) row$forced_fumble_player_2_player_name <- if_else( is.na(row$forced_fumble_player_2_player_name) & row$forced_fumble_player_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$forced_fumble_player_2_player_name ) row$forced_fumble_player_2_team <- if_else( is.na(row$forced_fumble_player_2_team) & row$forced_fumble_player_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$forced_fumble_player_2_team ) } else if (stat_id == 93) { row$penalty <- 1 row$penalty_player_id <- play_stats$player.esbId[index] row$penalty_player_name <- play_stats$player.displayName[index] row$penalty_team <- play_stats$teamAbbr[index] row$penalty_yards <- play_stats$yards[index] } else if (stat_id == 95) { row$tackled_for_loss <- 1 } else if (stat_id == 96) { row$extra_point_safety <- 1 row$extra_point_attempt <- 1 } else if (stat_id == 99) { row$two_point_rush_safety <- 1 row$rush_attempt <- 1 row$two_point_attempt <- 1 row$rusher_player_id <- play_stats$player.esbId[index] row$rusher_player_name <- play_stats$player.displayName[index] } else if (stat_id == 100) { row$two_point_pass_safety <- 1 row$pass_attempt <- 1 row$two_point_attempt <- 1 row$passer_player_id <- play_stats$player.esbId[index] row$passer_player_name <- play_stats$player.displayName[index] } else if (stat_id == 102) { row$kickoff_downed <- 1 row$kickoff_attempt <- 1 } else if (stat_id == 103) { row$lateral_sack_player_id <- play_stats$player.esbId[index] row$lateral_sack_player_name <- play_stats$player.displayName[index] } else if (stat_id == 104) { row$two_point_pass_reception_good <- 1 row$pass_attempt <- 1 row$two_point_attempt <- 1 row$receiver_player_id <- play_stats$player.esbId[index] row$receiver_player_name <- play_stats$player.displayName[index] } else if (stat_id == 105) { row$two_point_pass_reception_failed <- 1 row$pass_attempt <- 1 row$two_point_attempt <- 1 row$receiver_player_id <- play_stats$player.esbId[index] row$receiver_player_name <- play_stats$player.displayName[index] } else if (stat_id == 106) { row$fumble_lost <- 1 row$fumble <- 1 row$fumbled_1_player_id <- if_else( is.na(row$fumbled_1_player_id), play_stats$player.esbId[index], row$fumbled_1_player_id ) row$fumbled_1_player_name <- if_else( is.na(row$fumbled_1_player_name), play_stats$player.displayName[index], row$fumbled_1_player_name ) row$fumbled_1_team <- if_else( is.na(row$fumbled_1_team), play_stats$teamAbbr[index], row$fumbled_1_team ) row$fumbled_2_player_id <- if_else( is.na(row$fumbled_2_player_id) & row$fumbled_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$fumbled_2_player_id ) row$fumbled_2_player_name <- if_else( is.na(row$fumbled_2_player_name) & row$fumbled_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$fumbled_2_player_name ) row$fumbled_2_team <- if_else( is.na(row$fumbled_2_team) & row$fumbled_1_player_name != play_stats$player.displayName[index], play_stats$teamAbbr[index], row$fumbled_2_team ) } else if (stat_id == 107) { row$own_kickoff_recovery <- 1 row$kickoff_attempt <- 1 row$own_kickoff_recovery_player_id <- play_stats$player.esbId[index] row$own_kickoff_recovery_player_name <- play_stats$player.displayName[index] } else if (stat_id == 108) { row$own_kickoff_recovery_td <- 1 row$touchdown <- 1 row$td_team <- play_stats$teamAbbr[index] row$td_player_id <- play_stats$player.esbId[index] row$td_player_name <- play_stats$player.displayName[index] row$kickoff_attempt <- 1 row$own_kickoff_recovery_player_id <- play_stats$player.esbId[index] row$own_kickoff_recovery_player_name <- play_stats$player.displayName[index] } else if (stat_id == 110) { row$qb_hit <- 1 row$qb_hit_1_player_id <- if_else( is.na(row$qb_hit_1_player_id), play_stats$player.esbId[index], row$qb_hit_1_player_id ) row$qb_hit_1_player_name <- if_else( is.na(row$qb_hit_1_player_name), play_stats$player.displayName[index], row$qb_hit_1_player_name ) row$qb_hit_2_player_id <- if_else( is.na(row$qb_hit_2_player_id) & row$qb_hit_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$qb_hit_2_player_id ) row$qb_hit_2_player_name <- if_else( is.na(row$qb_hit_2_player_name) & row$qb_hit_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$qb_hit_2_player_name ) } else if (stat_id == 111) { row$pass_attempt <- 1 row$complete_pass <- 1 row$passer_player_id <- play_stats$player.esbId[index] row$passer_player_name <- play_stats$player.displayName[index] row$air_yards <- play_stats$yards[index] } else if (stat_id == 112) { row$pass_attempt <- 1 row$passer_player_id <- play_stats$player.esbId[index] row$passer_player_name <- play_stats$player.displayName[index] row$air_yards <- play_stats$yards[index] } else if (stat_id == 113) { row$pass_attempt <- 1 row$complete_pass <- 1 if (is.na(row$receiver_player_id)) { row$receiver_player_id <- play_stats$player.esbId[index] row$receiver_player_name <- play_stats$player.displayName[index] } if (is.na(row$yards_after_catch)) { row$yards_after_catch <- play_stats$yards[index] } } else if (stat_id == 115) { row$pass_attempt <- 1 row$receiver_player_id <- play_stats$player.esbId[index] row$receiver_player_name <- play_stats$player.displayName[index] } else if (stat_id == 120) { row$tackle_for_loss_1_player_id <- if_else( is.na(row$tackle_for_loss_1_player_id), play_stats$player.esbId[index], row$tackle_for_loss_1_player_id ) row$tackle_for_loss_1_player_name <- if_else( is.na(row$tackle_for_loss_1_player_name), play_stats$player.displayName[index], row$tackle_for_loss_1_player_name ) row$tackle_for_loss_2_player_id <- if_else( is.na(row$tackle_for_loss_2_player_id) & row$tackle_for_loss_1_player_id != play_stats$player.esbId[index], play_stats$player.esbId[index], row$tackle_for_loss_2_player_id ) row$tackle_for_loss_2_player_name <- if_else( is.na(row$tackle_for_loss_2_player_name) & row$tackle_for_loss_1_player_name != play_stats$player.displayName[index], play_stats$player.displayName[index], row$tackle_for_loss_2_player_name ) } else if (stat_id == 301) { row$extra_point_aborted <- 1 row$extra_point_attempt <- 1 } else if (stat_id == 402) { NULL } else if (stat_id == 403) { row$defensive_two_point_attempt <- 1 } else if (stat_id == 404) { row$defensive_two_point_conv <- 1 } else if (stat_id == 405) { row$defensive_extra_point_attempt <- 1 } else if (stat_id == 406) { row$defensive_extra_point_conv <- 1 } else if (stat_id == 410) { row$kickoff_attempt <- 1 row$kicker_player_id <- play_stats$player.esbId[index] row$kicker_player_name <- play_stats$player.displayName[index] } else if (stat_id == 420) { row$two_point_return <- 1 row$two_point_attempt <- 1 } else { NULL } } return(row) }
polyptb <- function(v,y){ stopifnot(length(v)==length(y)) du <- dummy(v) dul <- as.list(data.frame((du))) names(dul) <- colnames(du) erg <- sapply(dul, ptb, y) return(erg) }
"estprod_data"
new_record_update_set <- function() { update_set <- list() structure(update_set, class = "record_update_set") } record_update_set <- function() { new_record_update_set() }
trendLevel <- function(mydata, pollutant = "nox", x = "month", y = "hour", type = "year", rotate.axis = c(90, 0), n.levels = c(10, 10, 4), limits = c(0, 100), cols = "default", auto.text = TRUE, key.header = "use.stat.name", key.footer = pollutant, key.position = "right", key = TRUE, labels = NA, breaks = NA, statistic = c("mean", "max", "frequency"), stat.args = NULL, stat.safe.mode = TRUE, drop.unused.types = TRUE, col.na = "white", ...) { if (length(cols) == 1 && cols == "greyscale") { trellis.par.set(list(strip.background = list(col = "white"))) } current.strip <- trellis.par.get("strip.background") current.font <- trellis.par.get("fontsize") on.exit(trellis.par.set( fontsize = current.font )) category <- FALSE if (!is.na(labels) && !is.na(breaks)) category <- TRUE check.valid <- function(a, x, y) { if (length(x) > 1) x <- x[1] if (is.null(x)) { stop( paste0( "\ttrendLevel does not allow 'NULL' ", a, " option.", "\n\t[suggest one of following: ", paste(y, collapse = ", "), "]" ), call. = FALSE ) } out <- y[pmatch(x, y)] if (is.na(out)) { stop( paste0( "\ttrendLevel could not evaluate ", a, " term '", x, "'.\n\t[suggest one of following: ", paste(y, collapse = ", "), "]" ), call. = FALSE ) } out } extra.args <- list(...) extra.args$xlab <- if ("xlab" %in% names(extra.args)) { quickText(extra.args$xlab, auto.text) } else { quickText(x, auto.text) } extra.args$ylab <- if ("ylab" %in% names(extra.args)) { quickText(extra.args$ylab, auto.text) } else { quickText(y, auto.text) } extra.args$main <- if ("main" %in% names(extra.args)) { quickText(extra.args$main, auto.text) } else { quickText("", auto.text) } if ("fontsize" %in% names(extra.args)) { trellis.par.set(fontsize = list(text = extra.args$fontsize)) } if (length(x) > 1) { warning(paste( "\ttrendLevel does not allow multiple 'x' values.", "\n\t[ignoring all but first]", sep = "" ), call. = FALSE) x <- x[1] xlab <- xlab[1] } if (length(y) > 1) { warning(paste( "\ttrendLevel does not allow multiple 'y' values.", "\n\t[ignoring all but first]", sep = "" ), call. = FALSE) y <- y[1] ylab <- ylab[1] } if (length(type) > 2) { warning(paste( "\ttrendLevel allows up to two 'type' values.", "\n\t[ignoring all but first two]", sep = "" ), call. = FALSE) type <- type[1] } temp <- unique(c(x, y, type)[duplicated(c(x, y, type))]) if (length(temp) > 0) { stop(paste0( "\ttrendLevel could not rationalise plot structure.", "\n\t[duplicate term(s) in pollutant, x, y, type structure]", "\n\t[term(s): ", paste(temp, collapse = ", "), "]" ), call. = FALSE) } ls.check.fun <- function(vector, vector.name, len) { if (!is.numeric(vector)) { warning(paste0( "\ttrendLevel ignored unrecognised '", vector.name, "' option.", "\n\t[check ?trendLevel for details]" ), call. = FALSE) vector <- eval(formals(trendLevel)[[vector.name]]) } if (length(vector) < len) vector <- rep(vector, len)[1:len] ifelse(is.na(vector), eval(formals(trendLevel)[[vector.name]]), vector) } rotate.axis <- ls.check.fun(rotate.axis, "rotate.axis", 2) n.levels <- ls.check.fun(n.levels, "n.levels", 3) if (is.character(statistic) | is.function(statistic)) { if (is.character(statistic)) { statistic <- check.valid( "statistic", statistic, eval(formals(trendLevel)$statistic) ) if (statistic == "mean") { stat.fun <- mean stat.args <- list(na.rm = TRUE) } if (statistic == "max") { stat.fun <- function(x, ...) { if (all(is.na(x))) { NA } else { max(x, ...) } } stat.args <- list(na.rm = TRUE) } if (statistic == "frequency") { stat.fun <- function(x, ...) { if (all(is.na(x))) { NA } else { length(na.omit(x)) } } stat.args <- NULL } stat.name <- statistic } else { stat.name <- substitute(statistic) if (length(stat.name) != 1) stat.name <- "level" if (stat.safe.mode) { stat.fun <- function(x, ...) { if (all(is.na(x))) NA else statistic(x, ...)[1] } } else { stat.fun <- function(x, ...) statistic(x, ...)[1] } } } else { stop( paste0( "\ttrendLevel could not apply statistic option '", substitute(statistic), "'.\n\t[suggest valid function or character vector]", "\n\t[currect character vectors options: '", paste(eval(formals(trendLevel)$statistic), collapse = "', '"), "']" ), call. = FALSE ) } if (!is.null(key.header)) { if (is.character(key.header)) { key.header <- gsub("use.stat.name", stat.name, key.header) } } if (!is.null(key.footer)) { if (is.character(key.footer)) { key.footer <- gsub("use.stat.name", stat.name, key.footer) } } temp <- if ("date" %in% names(mydata)) { c("date", pollutant) } else { pollutant } mydata <- checkPrep(mydata, temp, type = c(x, y, type), remove.calm = FALSE) newdata <- cutData(mydata, x, n.levels = n.levels[1], is.axis = TRUE, ...) newdata <- cutData(newdata, y, n.levels = n.levels[2], is.axis = TRUE, ...) newdata <- cutData(newdata, type, n.levels = n.levels[3], ...) newdata <- newdata[c(pollutant, x, y, type)] calc.stat <- function(...) tapply(newdata[[pollutant]], newdata[c(x, y, type)], stat.fun, ...) if (is.null(stat.args)) { newdata <- try(calc.stat(), silent = TRUE) } else { newdata <- try(do.call(calc.stat, stat.args), silent = TRUE) } if (is(newdata)[1] == "try-error") { stop( paste0( "\ttrendLevel could not complete supplied statistic operation '", stat.name, "'.\n\t[R error below]", "\n\t", temp[1] ), call. = FALSE ) } newdata <- data.frame( expand.grid(dimnames(newdata)), matrix(unlist(newdata), byrow = TRUE) ) pollutant <- paste(pollutant, stat.name, sep = ".") names(newdata)[ncol(newdata)] <- pollutant temp <- paste(type, collapse = "+") myform <- formula(paste0(pollutant, " ~ ", x, " * ", y, " | ", temp)) if (type == "default") myform <- formula(paste0(pollutant, " ~ ", x, " * ", y)) if (length(type) == 1 & type[1] == "wd" & !"layout" %in% names(extra.args)) { wds <- c("NW", "N", "NE", "W", "E", "SW", "S", "SE") newdata$wd <- ordered(newdata$wd, levels = wds) wd.ok <- sapply(wds, function(x) if (x %in% unique(newdata$wd)) FALSE else TRUE) skip <- c(wd.ok[1:4], TRUE, wd.ok[5:8]) newdata$wd <- factor(newdata$wd) extra.args$layout <- c(3, 3) if (!"skip" %in% names(extra.args)) { extra.args$skip <- skip } } temp <- if (is.factor(newdata[, type[1]])) { levels(newdata[, type[1]]) } else { unique(newdata[, type[1]]) } temp <- sapply(temp, function(x) quickText(x, auto.text)) if (is.factor(temp)) temp <- as.character(temp) strip <- strip.custom( factor.levels = temp, strip.levels = c(TRUE, FALSE), strip.names = FALSE ) strip.left <- if (length(type) == 1) { FALSE } else { temp <- sapply(unique(newdata[, type[2]]), function(x) quickText(x, auto.text)) if (is.factor(temp)) temp <- as.character(temp) strip.custom(factor.levels = temp) } suppressWarnings(trellis.par.set(list(strip.background = list(col = "white")))) scales <- list( x = list(rot = rotate.axis[1]), y = list(rot = rotate.axis[2]) ) if (category) { if (length(labels) + 1 != length(breaks)) stop("Need one more break than labels") newdata$cuts <- cut( newdata[, pollutant], breaks = breaks, labels = labels, include.lowest = TRUE ) n <- length(levels(newdata$cuts)) col.regions <- openColours(cols, n) col.scale <- breaks legend <- list( col = col.regions, space = key.position, auto.text = auto.text, labels = levels(newdata$cuts), footer = key.footer, header = key.header, height = 0.8, width = 1.5, fit = "scale", plot.style = "other" ) col.scale <- breaks legend <- makeOpenKeyLegend(key, legend, "windRose") } else { nlev <- 200 if (missing(limits)) { breaks <- seq( min(newdata[, pollutant], na.rm = TRUE), max(newdata[, pollutant], na.rm = TRUE), length.out = nlev ) labs <- pretty(breaks, 7) labs <- labs[labs >= min(breaks) & labs <= max(breaks)] at <- labs } else { breaks <- seq(min(limits), max(limits), length.out = nlev) labs <- pretty(breaks, 7) labs <- labs[labs >= min(breaks) & labs <= max(breaks)] at <- labs if (max(limits) < max(newdata[, pollutant], na.rm = TRUE)) { id <- which(newdata[, pollutant] > max(limits)) newdata[id, pollutant] <- max(limits) labs[length(labs)] <- paste(">", labs[length(labs)]) } if (min(limits) > min(newdata[, pollutant], na.rm = TRUE)) { id <- which(newdata[, pollutant] < min(limits)) newdata[id, pollutant] <- min(limits) labs[1] <- paste("<", labs[1]) } } nlev2 <- length(breaks) col.regions <- openColours(cols, (nlev2 - 1)) col.scale <- breaks legend <- list( col = col.regions, at = col.scale, labels = list(labels = labs, at = at), space = key.position, auto.text = auto.text, footer = key.footer, header = key.header, height = 1, width = 1.5, fit = "all" ) legend <- makeOpenKeyLegend(key, legend, "polarPlot") } colorkey <- FALSE yscale.lp <- function(...) { ans <- yscale.components.default(...) ans$left$labels$check.overlap <- TRUE ans$left$labels$labels <- levels(newdata[, y]) ans$left$labels$at <- seq_along(levels(newdata[, y])) ans } xscale.lp <- function(...) { ans <- xscale.components.default(...) ans$bottom$labels$check.overlap <- TRUE ans$bottom$labels$labels <- levels(newdata[, x]) ans$bottom$labels$at <- seq_along(levels(newdata[, x])) ans } xlim <- range(as.numeric(newdata[, x])) + c(-0.5, 0.5) ylim <- range(as.numeric(newdata[, y])) + c(-0.5, 0.5) if (length(levels(newdata[[y]])) > 25) ylim <- ylim + c(-0.3, 0.3) if (length(levels(newdata[[x]])) > 25) xlim <- xlim + c(-0.3, 0.3) levelplot.args <- list( x = myform, data = newdata, as.table = TRUE, legend = legend, colorkey = colorkey, at = breaks, col.regions = col.regions, scales = scales, yscale.components = yscale.lp, xscale.components = xscale.lp, par.strip.text = list(cex = 0.8), strip = strip, strip.left = strip.left, xlim = xlim, ylim = ylim, panel = function(x, y, ...) { panel.fill(col = col.na) panel.levelplot(x, y, ...) } ) levelplot.args <- listUpdate(levelplot.args, extra.args) plt <- do.call(levelplot, levelplot.args) if (length(type) > 1) { plt <- useOuterStrips(plt, strip = strip, strip.left = strip.left) } plot(plt) output <- list(plot = plt, data = newdata, call = match.call()) class(output) <- "openair" invisible(output) }
cdm_penalty_threshold_ridge <- function(beta, lambda) { y <- beta / ( 1 + 2*lambda ) return(y) }
context("test-classical") test_that("Additive classical decomposition", { tsbl_co2 <- as_tsibble(co2) dcmp <- tsbl_co2 %>% model(classical_decomposition(value)) %>% components() stats_dcmp <- stats::decompose(co2) expect_equivalent( dcmp$trend, unclass(stats_dcmp$trend) ) expect_equivalent( dcmp$seasonal, unclass(stats_dcmp$seasonal) ) expect_equivalent( dcmp$random, unclass(stats_dcmp$random) ) expect_equal( dcmp$value - dcmp$seasonal, dcmp$season_adjust ) }) test_that("Multiplicative classical decomposition", { tsbl_uad <- as_tsibble(USAccDeaths) dcmp <- tsbl_uad %>% model(classical_decomposition(value, type = "multiplicative")) %>% components() stats_dcmp <- stats::decompose(USAccDeaths, type = "multiplicative") expect_equivalent( dcmp$trend, unclass(stats_dcmp$trend) ) expect_equivalent( dcmp$seasonal, unclass(stats_dcmp$seasonal) ) expect_equivalent( dcmp$random, unclass(stats_dcmp$random) ) expect_equal( dcmp$value / dcmp$seasonal, dcmp$season_adjust ) })
ssBasis <- function(x, knots, m=2, d=0, xmin=min(x), xmax=max(x), periodic=FALSE, intercept=FALSE){ k1fun <- function(x) { x - 1/2 } k2fun <- function(x) { (k1fun(x)^2 - (1/12))/2 } k3fun <- function(x){ (4*(k1fun(x)^3) - k1fun(x))/24 } k4fun <- function(x) { (k1fun(x)^4 - ((k1fun(x)^2)/2) + 7/240)/24 } k5fun <- function(x){ ((k1fun(x)^5)/5 - (k1fun(x)^3)/6 + 7*k1fun(x)/240)/24 } k6fun <- function(x) { ( (k1fun(x)^6)/30 - (k1fun(x)^4)/24 + 7*(k1fun(x)^2)/480 - 31/40320 ) / 24 } m <- as.integer(m[1]) if(m < 1L) stop("Input 'm' must be a positive integer between 1 and 3.") if(m > 3L) stop("Input 'm' must be a positive integer between 1 and 3.") d <- as.integer(d[1]) if(d < 0L) stop("Input 'd' must be a positive integer between 0 and 2.") if(d > 2L) stop("Input 'd' must be a positive integer between 0 and 2.") x <- as.matrix(x) knots <- as.matrix(knots) nx <- nrow(x) nknots <- nrow(knots) x <- (x - xmin) / (xmax - xmin) knots <- (knots - xmin) / (xmax - xmin) periodic <- periodic[1] if(!is.logical(periodic)) stop("Input 'periodic' should be a logical (TRUE/FALSE) variable.") if(m == 1L){ if(d == 0L){ Xn <- matrix(1, nx, 1) colnames(Xn) <- "null.0" if(periodic){ Xc <- k2fun( abs( matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) ) ) } else { Xc <- matrix(k1fun(x),nx,nknots) * matrix(k1fun(knots),nx,nknots,byrow=TRUE) + k2fun( abs( matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) ) ) } colnames(Xc) <- paste0("knot.",1:nknots) } else if(d == 1L){ Xn <- matrix(0, nx, 1) colnames(Xn) <- "null.0" dmat <- matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) smat <- sign(dmat) smat[smat==0L] <- 1L if(periodic){ Xc <- smat * k1fun(abs(dmat)) } else { Xc <- matrix(k1fun(knots),nx,nknots,byrow=TRUE) + smat * k1fun(abs(dmat)) } colnames(Xc) <- paste0("knot.",1:nknots) } else { stop("Cannot set 'd=2' when 'm=1' (need d <= m).") } } if(m == 2L){ if(d == 0L){ if(periodic){ Xn <- matrix(1, nx, 1) colnames(Xn) <- "null.0" Xc <- matrix(k2fun(x),nx,nknots) * matrix(k2fun(knots),nx,nknots,byrow=TRUE) - k4fun( abs( matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) ) ) } else { Xn <- cbind(1, k1fun(x)) colnames(Xn) <- paste0("null.",0:1) Xc <- (-1)*k4fun( abs( matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) ) ) } colnames(Xc) <- paste0("knot.",1:nknots) } else if(d == 1L){ dmat <- matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) smat <- sign(dmat) smat[smat==0L] <- 1L if(periodic){ Xn <- matrix(0, nx, 1) colnames(Xn) <- "null.0" Xc <- (-1) * smat * k3fun(abs(dmat)) } else { Xn <- matrix(c(0,1), nx, 2, byrow=TRUE) colnames(Xn) <- paste0("null.",0:1) Xc <- matrix(k1fun(x),nx,nknots) * matrix(k2fun(knots),nx,nknots,byrow=TRUE) - smat * k3fun(abs(dmat)) } colnames(Xc) <- paste0("knot.",1:nknots) } else { if(periodic){ Xn <- matrix(0, nx, 1) colnames(Xn) <- "null.0" Xc <- (-1) * k2fun( abs( matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) ) ) } else { Xn <- matrix(0, nx, 2) colnames(Xn) <- paste0("null.",0:1) Xc <- matrix(k2fun(knots),nx,nknots,byrow=TRUE) - k2fun( abs( matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) ) ) } colnames(Xc) <- paste0("knot.",1:nknots) } } if(m == 3L) { if(d == 0L){ if(periodic){ Xn <- matrix(1, nx, 1) colnames(Xn) <- "null.0" Xc <- k6fun( abs( matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) ) ) } else { Xn <- cbind(1, k1fun(x), k2fun(x)) colnames(Xn) <- paste0("null.",0:2) Xc <- matrix(k3fun(x),nx,nknots) * matrix(k3fun(knots),nx,nknots,byrow=TRUE) + k6fun( abs( matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) ) ) } colnames(Xc) <- paste0("knot.",1:nknots) } else if(d == 1L){ dmat <- matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) smat <- sign(dmat) smat[smat==0L] <- 1L if(periodic){ Xn <- matrix(0, nx, 1) colnames(Xn) <- "null.0" Xc <- smat * k5fun(abs(dmat)) } else { Xn <- cbind(0, 1, k1fun(x)) colnames(Xn) <- paste0("null.",0:2) Xc <- matrix(k2fun(x),nx,nknots) * matrix(k3fun(knots),nx,nknots,byrow=TRUE) + smat * k5fun(abs(dmat)) } colnames(Xc) <- paste0("knot.",1:nknots) } else { if(periodic){ Xn <- matrix(0, nx, 1) colnames(Xn) <- "null.0" Xc <- k4fun( abs( matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) ) ) } else { Xn <- matrix(c(0, 0, 1), nx, 3, byrow=TRUE) colnames(Xn) <- paste0("null.",0:2) Xc <- matrix(k1fun(x),nx,nknots) * matrix(k3fun(knots),nx,nknots,byrow=TRUE) + k4fun( abs( matrix(x,nx,nknots) - matrix(knots,nx,nknots,byrow=TRUE) ) ) } colnames(Xc) <- paste0("knot.",1:nknots) } } if(intercept){ return(list(X=cbind(Xn,Xc), knots=knots, m=m, d=d, xlim=c(xmin,xmax), periodic=periodic, intercept=intercept)) } else { return(list(X=cbind(Xn,Xc)[,-1], knots=knots, m=m, d=d, xlim=c(xmin,xmax), periodic=periodic, intercept=intercept)) } }
get_cpp_api <- function() { pkg_env <- asNamespace("outbreaker2") regxp <- "^cpp_(ll|prior|move)" names_cpp_functions <- sort(ls(envir = pkg_env, pattern = regxp)) out_env <- new.env() for (e in names_cpp_functions) { f <- get(e, envir = pkg_env) assign(e, f, envir = out_env) } return(out_env) }
library(mixdir) context("Variational Inference") test_that("VI works for simple models", { X <- create_data() set.seed(1) result <- mixdir(X, n_latent=3, select_latent=FALSE) expect_true(result$converged) assigned_cluster <- result$pred_class expect_equal(assigned_cluster[7], assigned_cluster[2]) expect_equal(assigned_cluster[10], assigned_cluster[9]) expect_true(assigned_cluster[10] != assigned_cluster[7]) }) test_that("VI can handle missign values", { X <- create_data() set.seed(1) X[sample(seq_along(X), 3, replace=FALSE)] <- NA result <- mixdir(X, n_latent=3, select_latent=FALSE) expect_true(result$converged) assigned_cluster <-result$pred_class expect_equal(assigned_cluster[7], assigned_cluster[2]) expect_equal(assigned_cluster[10], assigned_cluster[9]) expect_true(assigned_cluster[10] != assigned_cluster[7]) }) test_that("VI can handle more complex models", { tmp <- generate_categorical_dataset(n_ind=1000, n_quest=5, n_cat=3, n_true_classes=4) set.seed(1) expect_silent(result <- mixdir(tmp$X, n_latent=4, select_latent=FALSE)) }) test_that("VI can handle the mushroom dataset", { data("mushroom") set.seed(4) expect_silent(res <- mixdir(mushroom, n_latent=5)) }) context("Variational Inference DP") test_that("VI DP works for simple models", { X <- create_data() set.seed(1) result <- mixdir(X, n_latent=10, select_latent = TRUE) expect_true(result$converged) assigned_cluster <-result$pred_class expect_equal(assigned_cluster[7], assigned_cluster[2]) expect_equal(assigned_cluster[10], assigned_cluster[9]) expect_true(assigned_cluster[10] != assigned_cluster[7]) }) test_that("VI DP can handle missing values", { X <- create_data() set.seed(1) X[sample(seq_along(X), 3, replace=FALSE)] <- NA result <- mixdir(X, n_latent=10, select_latent = TRUE) expect_true(result$converged) assigned_cluster <- result$pred_class expect_equal(assigned_cluster[7], assigned_cluster[2]) expect_equal(assigned_cluster[10], assigned_cluster[9]) expect_true(assigned_cluster[10] != assigned_cluster[7]) }) test_that("mixdir can handle missing values as category", { X <- create_data() set.seed(1) X[sample(seq_along(X), 3, replace=FALSE)] <- NA result <- mixdir(X, n_latent=10, select_latent = TRUE, na_handle = "category") expect_true(result$converged) assigned_cluster <- result$pred_class expect_equal(assigned_cluster[7], assigned_cluster[2]) expect_equal(assigned_cluster[10], assigned_cluster[9]) expect_true(assigned_cluster[10] != assigned_cluster[7]) }) test_that("mixdir repetitions selects the best run", { X <- create_data() set.seed(1) result <- mixdir(X, n_latent=10, select_latent = TRUE, repetitions = 3) set.seed(1) result1 <- mixdir(X, n_latent=10, select_latent = TRUE) result2 <- mixdir(X, n_latent=10, select_latent = TRUE) result3 <- mixdir(X, n_latent=10, select_latent = TRUE) expect_equal(result$ELBO, max(c(result1$ELBO, result2$ELBO, result3$ELBO))) }) test_that("mixdir fails gracefully with too many columns", { data_set <- generate_categorical_dataset(n_ind = 50, n_quest = 1e3, n_cat = 2, n_true_classes = 2) set.seed(1) expect_error(mixdir(data_set$X, n_latent=2, select_latent = FALSE)) expect_error(mixdir(data_set$X, n_latent=2, select_latent = TRUE)) }) context("Prediction") test_that("predict_class works", { data("mushroom") res <- mixdir(mushroom[1:30, ]) expect_silent(predict_class(mushroom[40, ], res$lambda, res$category_prob)) expect_silent(predict_class(c(`gill-color`="black"), res$lambda, res$category_prob)) expect_warning(predict_class(mushroom[42, ], res$lambda, res$category_prob)) tmp <- mushroom ind <- sapply(tmp, is.character) tmp[ind] <- lapply(tmp[ind], factor) res2 <- mixdir(tmp[1:30, ]) expect_silent(predict_class(mushroom[42, ], res2$lambda, res2$category_prob)) }) test_that("predict.mixdir works", { data("mushroom") res <- mixdir(mushroom[1:30, ]) expect_silent(predict(res, mushroom[40, ])) expect_silent(predict(res, c(`gill-color`="black"))) expect_warning(predict(res, mushroom[42, ])) expect_equal(res$lambda, c(predict(res, c(`edible`=NA)))) expect_equal(res$class_prob, predict(res)) expect_equal(res$class_prob, predict(res, mushroom[1:30, ])) }) test_that("predict.mixdir works with DP", { data("mushroom") res <- mixdir(mushroom[1:30, ], n_latent=10, select_latent = TRUE) expect_silent(predict(res, mushroom[40, ])) expect_silent(predict(res, c(`gill-color`="black"))) expect_warning(predict(res, mushroom[42, ])) expect_equal(res$lambda, c(predict(res, c(`edible`=NA)) * sum(res$lambda))) expect_equal(res$class_prob, predict(res)) expect_equal(res$class_prob, predict(res, mushroom[1:30, ])) }) test_that("finding the most representative answers works", { data("mushroom") res <- mixdir(mushroom[1:30, ], beta=1) find_predictive_features(res, top_n=3) }) test_that("finding the most typical answers works", { data("mushroom") res <- mixdir(mushroom[1:30, ], beta=1) find_typical_features(res, top_n=3) }) test_that("finding the defining answers works", { data("mushroom") res <- mixdir(mushroom[1:30, ], beta=1) def_feats <- find_defining_features(res, mushroom[1:30, ]) expect_equal(length(def_feats$quality), ncol(mushroom)) expect_equal(length(def_feats$features), ncol(mushroom)) def_feats2 <- find_defining_features(res, mushroom[1:30, ], n_features = 2) expect_equal(length(def_feats2$quality), 1) expect_equal(length(def_feats2$features), 2) expect_equal(def_feats2$quality, def_feats$quality[3]) })
summary.ICBayes <- function(object, ...){ coef.table<-cbind(object$coef, object$coef_ssd, object$coef_ci[,1], object$coef_ci[,2]) dimnames(coef.table)<-list(names(object$coef), c('Mean','Std. Dev.', paste(object$conf.int*100,'%CI-Low',sep=''), paste(object$conf.int*100,'%CI-Upp',sep=''))) cat("Call:\n") print(object$call) cat("\nPosterior inference of regression coefficients\n") print.default(coef.table) cat("\nLog pseudo marginal likelihood: LPML=", object$LPML, sep="") cat("\nNegative log-likelihood: NLLK=", -object$LPML, sep="") cat("\nNumber of subjects: n=", object$n, "\n", sep="") }
NULL grade_feedback <- function(...) { deprecate_warn("0.2.0", "grade_feedback()") ret <- feedback(...) class(ret) <- "grader_feedback" ret } grade_conditions <- function( ..., correct = NULL, incorrect = NULL, grader_args = deprecated(), learnr_args = deprecated(), glue_correct = getOption("gradethis.glue_correct_test"), glue_incorrect = getOption("gradethis.glue_incorrect_test") ) { deprecate_warn("0.1.0", "grade_result_strict()") grade_result_strict( ..., correct = correct, incorrect = incorrect, grader_args = grader_args, learnr_args = learnr_args, glue_correct = glue_correct, glue_incorrect = glue_incorrect ) } random_encourage <- function() { lifecycle::deprecate_soft("0.2.1", "random_encourage()", "random_encouragement()") random_encouragement() } grade_learnr <- function(...) { lifecycle::deprecate_soft("0.2.2", "grade_learnr()", "gradethis_exercise_checker()") gradethis_exercise_checker(...) }
context("Four Parameter Beta Distribution") test_that('The density functions provide correct answers', { x <- c(-3, 2, 0, 4, -1) s1 <- 2.0; s2 <- 2.0; a <- -2.5; b <- 2.5; expect_equal(test_d4beta(x, s1, s2, a, b), list( "VectorLog" = c(-Inf, -2.225624051858, -1.203972804326, -Inf, -1.378326191471), "VectorNoLog" = c(0, 0.108, 0.3, 0, 0.252), "DoubleLog" = -Inf, "DoubleNoLog" = 0 ) ) x <- x[-1] expect_equal(test_d4beta(x, s1, s2, a, b), list( "VectorLog" = c(-2.225624051858, -1.203972804326, -Inf, -1.378326191471), "VectorNoLog" = c(0.108, 0.3, 0, 0.252), "DoubleLog" = -2.225624051858, "DoubleNoLog" = 0.108 ) ) }) test_that('The distribution functions provide correct answers', { x <- c(-3, 2, 0, 4, -1) s1 <- 2.0; s2 <- 2.0; a <- -2.5; b <- 2.5; expect_equal(test_p4beta(x, s1, s2, a, b), list( "VectorLog" = c(-Inf, -0.028399474522, -0.693147180560, 0, -1.532476871298), "VectorNoLog" = c(0, 0.972, 0.5, 1, 0.216), "DoubleLog" = -Inf, "DoubleNoLog" = 0, "VectorLogNoLower" = c(0, -3.575550768807, -0.693147180560, -Inf, -0.243346258632), "VectorNoLogNoLower" = c(1, 0.028, 0.5, 0, 0.784), "DoubleLogNoLower" = 0, "DoubleNoLogNoLower" = 1 ) ) x <- x[-1] expect_equal(test_p4beta(x, s1, s2, a, b), list( "VectorLog" = c(-0.028399474522, -0.693147180560, 0, -1.532476871298), "VectorNoLog" = c(0.972, 0.5, 1, 0.216), "DoubleLog" = -0.028399474522, "DoubleNoLog" = 0.972, "VectorLogNoLower" = c(-3.575550768807, -0.693147180560, -Inf, -0.243346258632), "VectorNoLogNoLower" = c(0.028, 0.5, 0, 0.784), "DoubleLogNoLower" = -3.575550768807, "DoubleNoLogNoLower" = 0.028 ) ) }) test_that('The quantile functions provide correct answers', { x <- c(0, 0.5, 1) s1 <- 2.0; s2 <- 2.0; a <- -2.5; b <- 2.5; expect_equal(test_q4beta_nolog(x, s1, s2, a, b), list( "VectorNoLog" = c(-2.5, 0, 2.5), "DoubleNoLog" = -2.5, "VectorNoLogNoLower" = c(2.5, 0, -2.5), "DoubleNoLogNoLower" = 2.5 ) ) x <- c(-1, -2, -10) expect_equal(test_q4beta_log(x, s1, s2, a, b), list( "VectorLog" = c(-0.445104983167, -1.345445414451, -2.480523918142), "DoubleLog" = -0.445104983167, "VectorLogNoLower" = c(0.445104983167, 1.345445414451, 2.480523918142), "DoubleLogNoLower" = 0.445104983167 ) ) })
plot.visreg <- function( x, overlay=FALSE, print.cond=FALSE, whitespace=0.2, partial=identical(x$meta$trans, I), band=TRUE, rug=ifelse(partial, 0, 2), strip.names=is.numeric(x$fit[, x$meta$by]), legend=TRUE, top=c('line', 'points'), gg=FALSE, line.par=NULL, fill.par=NULL, points.par=NULL, ...) { top <- match.arg(top) warn <- FALSE if (missing(print.cond)) { if (!("by" %in% names(x$meta)) & x$meta$hasInteraction) print.cond <- warn <- TRUE } if (print.cond) printCond(x, warn) if (all(is.na(x$res$visregRes))) { partial <- FALSE rug <- FALSE warning(paste0("The generic function residuals() is not set up for this type of model object. To plot partial residuals, you will need to define your own residuals.", x$meta$class[1], "() function.")) } if (gg) { if (!requireNamespace("ggplot2")) stop("You must first install the ggplot2 package: install.packages('ggplot2')", call.=FALSE) if (is.factor(x$fit[, x$meta$x])) { p <- ggFactorPlot(x, partial, band, rug, whitespace, strip.names, overlay, top, line.par, fill.par, points.par, ...) } else { p <- ggContPlot(x, partial, band, rug, whitespace, strip.names, overlay, top, line.par, fill.par, points.par, ...) } return(p) } else { if ("by" %in% names(x$meta)) { if (overlay) { visregOverlayPlot(x, strip.names=strip.names, legend=legend, whitespace=whitespace, partial=partial, band=band, rug=rug, line.par=line.par, fill.par=fill.par, points.par=points.par, ...) } else { p <- visregLatticePlot(x, strip.names=strip.names, whitespace=whitespace, partial=partial, band=band, rug=rug, top=top, line.par=line.par, fill.par=fill.par, points.par=points.par, ...) return(invisible(p)) } } else { visregPlot(x, whitespace=whitespace, partial=partial, band=band, rug=rug, top=top, line.par=line.par, fill.par=fill.par, points.par=points.par, ...) } } }
BayesSurv_AFT <- function(Formula, data, model = "LN", hyperParams, startValues, mcmcParams, na.action = "na.fail", subset=NULL, path = NULL) { mcmcList <- mcmcParams if((mcmcList$run$numReps / mcmcList$run$thin * mcmcList$run$burninPerc) %% 1 == 0) { nChain <- length(startValues) hz.type <- model[1] if(na.action != "na.fail" & na.action != "na.omit") { stop("na.action should be either na.fail or na.omit") } form2 <- as.Formula(paste(Formula[2], Formula[1], Formula[3], sep = "")) if(hz.type == "DPM") { for(i in 1:nChain) { nam1 <- paste("DPM.classch", i, sep = "") data[[nam1]] <- startValues[[i]]$DPM$DPM.class nam2 <- paste("DPM.much", i, sep = "") data[[nam2]] <- startValues[[i]]$DPM$DPM.mu nam3 <- paste("DPM.zetach", i, sep = "") data[[nam3]] <- startValues[[i]]$DPM$DPM.zeta form2 <- as.Formula(paste(form2[2], form2[1], form2[3], "| ", nam1, "| ", nam2, "| ", nam3, sep = "")) } } for(i in 1:nChain) { nam1 <- paste("ych", i, sep = "") data[[nam1]] <- startValues[[i]]$common$y form2 <- as.Formula(paste(form2[2], form2[1], form2[3], "| ", nam1, sep = "")) } data <- model.frame(form2, data=data, na.action = na.action, subset = subset) if(hz.type == "DPM") { for(i in 1:nChain) { nam1 <- paste("DPM.classch", i, sep = "") startValues[[i]]$DPM$DPM.class <- data[[nam1]] nam2 <- paste("DPM.much", i, sep = "") startValues[[i]]$DPM$DPM.mu <- data[[nam2]] nam3 <- paste("DPM.zetach", i, sep = "") startValues[[i]]$DPM$DPM.zeta <- data[[nam3]] } } for(i in 1:nChain) { nam1 <- paste("ych", i, sep = "") startValues[[i]]$common$y <- data[[nam1]] } LT <- model.part(Formula, data=data, lhs=1) y.mat <- model.part(Formula, data=data, lhs=2) Y <- cbind(y.mat, LT) Xmat <- model.frame(formula(Formula, lhs=0, rhs=1), data=data) p <- ncol(Xmat) if(p == 0){ survData <- Y } if(p > 0){ survData <- cbind(Y, Xmat) } n <- dim(survData)[1] Y[,1] <- log(Y[,1]) Y[,2] <- log(Y[,2]) Y[,3] <- log(Y[,3]) yLInf <- rep(0, n) for(i in 1:n) if(Y[i,1] == -Inf) { Y[i,1] <- -9.9e10 yLInf[i] <- 1 } yUInf <- rep(0, n) for(i in 1:n) if(Y[i,2] == Inf) { Y[i,2] <- 9.9e10 yUInf[i] <- 1 } c0Inf <- rep(0, n) for(i in 1:n) if(Y[i,3] == -Inf) { Y[i,3] <- -9.9e10 c0Inf[i] <- 1 } if(!is.null(path)){ dir.create(paste(path), recursive = TRUE, showWarnings = FALSE) } if(hz.type == "DPM") { hyperP <- as.vector(c(hyperParams$DPM$DPM.ab, hyperParams$DPM$Tau.ab, hyperParams$DPM$DPM.mu, hyperParams$DPM$DPM.sigSq)) } if(hz.type == "LN") { hyperP <- as.vector(c(hyperParams$LN$LN.ab)) } mcmcP <- as.vector(c(mcmcParams$tuning$beta.prop.var, mcmcParams$tuning$mu.prop.var, mcmcParams$tuning$zeta.prop.var)) chain = 1 ret <- list() while(chain <= nChain){ cat("chain: ", chain, "\n") nam = paste("chain", chain, sep="") temp <- startValues[[chain]] if(hz.type == "DPM") { startV <- as.vector(c(y=temp$common$y, beta=temp$common$beta, r=temp$DPM$DPM.class, tau=temp$DPM$DPM.tau, mu=temp$DPM$DPM.mu, zeta=temp$DPM$DPM.zeta)) } if(hz.type == "LN") { startV <- as.vector(c(y=temp$common$y, beta=temp$common$beta, mu=temp$LN$LN.mu, sigSq=temp$LN$LN.sigSq)) } if(hz.type == "LN"){ numReps <- mcmcParams$run$numReps thin <- mcmcParams$run$thin burninPerc <- mcmcParams$run$burninPerc nStore <- round(numReps/thin*(1-burninPerc)) mcmcRet <- .C("BAFTunimcmc", Ymat = as.double(as.matrix(Y)), yUInf = as.double(yUInf), c0Inf = as.double(c0Inf), Xmat = as.double(as.matrix(Xmat)), n = as.integer(n), p = as.integer(p), hyperP = as.double(hyperP), mcmcP = as.double(mcmcP), startValues = as.double(startV), numReps = as.integer(numReps), thin = as.integer(thin), burninPerc = as.double(burninPerc), samples_y = as.double(rep(0, nStore*n)), samples_beta = as.double(rep(0, nStore*p)), samples_beta0 = as.double(rep(0, nStore*1)), samples_sigSq = as.double(rep(0, nStore*1)), samples_misc = as.double(rep(0, p+1+1))) y.p <- matrix(as.vector(mcmcRet$samples_y), nrow=nStore, byrow=T) if(p >0) { beta.p <- matrix(as.vector(mcmcRet$samples_beta), nrow=nStore, byrow=T) }else { beta.p <- NULL } mu.p <- matrix(as.vector(mcmcRet$samples_beta0), nrow=nStore, byrow=T) sigSq.p <- matrix(as.vector(mcmcRet$samples_sigSq), nrow=nStore, byrow=T) if(p >0) { accept.beta <- as.vector(mcmcRet$samples_misc[1:p]) }else { accept.beta <- NULL } accept.mu <- as.vector(mcmcRet$samples_misc[p+1]) accept.sigSq <- as.vector(mcmcRet$samples_misc[p+2]) if(p > 0){ covNames = colnames(Xmat) } if(p == 0){ covNames = NULL } ret[[nam]] <- list(y.p = y.p, beta.p = beta.p, mu.p=mu.p, sigSq.p = sigSq.p, accept.beta = accept.beta, accept.mu = accept.mu, accept.sigSq = accept.sigSq, covNames = covNames, model = hz.type) } if(hz.type == "DPM"){ numReps <- mcmcParams$run$numReps thin <- mcmcParams$run$thin burninPerc <- mcmcParams$run$burninPerc nStore <- round(numReps/thin*(1-burninPerc)) mcmcRet <- .C("BAFT_DPunimcmc", Ymat = as.double(as.matrix(Y)), yLInf = as.double(yLInf), yUInf = as.double(yUInf), c0Inf = as.double(c0Inf), Xmat = as.double(as.matrix(Xmat)), n = as.integer(n), p = as.integer(p), hyperP = as.double(hyperP), mcmcP = as.double(mcmcP), startValues = as.double(startV), numReps = as.integer(numReps), thin = as.integer(thin), burninPerc = as.double(burninPerc), samples_y = as.double(rep(0, nStore*n)), samples_beta = as.double(rep(0, nStore*p)), samples_r = as.double(rep(0, nStore*n)), samples_mu = as.double(rep(0, nStore*n)), samples_sigSq = as.double(rep(0, nStore*n)), samples_tau = as.double(rep(0, nStore*1)), samples_misc = as.double(rep(0, p+2))) y.p <- matrix(as.vector(mcmcRet$samples_y), nrow=nStore, byrow=T) if(p >0) { beta.p <- matrix(as.vector(mcmcRet$samples_beta), nrow=nStore, byrow=T) }else { beta.p <- NULL } r.p <- matrix(mcmcRet$samples_r, nrow = nStore, byrow = T) mu.p <- matrix(mcmcRet$samples_mu, nrow = nStore, byrow = T) sigSq.p <- matrix(as.vector(mcmcRet$samples_sigSq), nrow=nStore, byrow=T) tau.p <- matrix(mcmcRet$samples_tau, nrow = nStore, byrow = T) if(p >0) { accept.beta <- as.vector(mcmcRet$samples_misc[1:p]) }else { accept.beta <- NULL } accept.mu <- as.vector(mcmcRet$samples_misc[p+1]) accept.sigSq <- as.vector(mcmcRet$samples_misc[p+2]) if(p > 0){ covNames = colnames(Xmat) } if(p == 0){ covNames = NULL } ret[[nam]] <- list(y.p = y.p, beta.p = beta.p, r.p = r.p, mu.p = mu.p, sigSq.p = sigSq.p, tau.p = tau.p, accept.beta = accept.beta, accept.mu = accept.mu, accept.sigSq=accept.sigSq, covNames = covNames, model = hz.type) } chain = chain + 1 } ret[["setup"]] <- list(hyperParams = hyperParams, startValues = startValues, mcmcParams = mcmcParams, numReps = numReps, thin = thin, path = path, burninPerc = burninPerc, model = hz.type, nChain = nChain) if(hz.type == "LN") { ret$class <- c("Bayes_AFT", "Surv", "Ind", "LN") } if(hz.type == "DPM") { ret$class <- c("Bayes_AFT", "Surv", "Ind", "DPM") } class(ret) <- "Bayes_AFT" return(ret) } else{ warning(" (numReps * burninPerc) must be divisible by (thin)") } }
sc_object <- function(x, ...) UseMethod("sc_object") sc_object.default <- function(x, ...) { as_tibble(x[["object"]]) } .st_set_geometry <- function(x, value = NULL) { x[[attr(x, "sf_column")]] <- NULL as.data.frame(x) } .st_get_geometry <- function(x) { x[[attr(x, "sf_column")]] } sc_object.sf <- function(x, ...) { tibble::as_tibble(.st_set_geometry(x)) } sc_object.sfc <- function(x, ...) { tibble(object_ = sc_uid(length(x))) } sc_object.Spatial <- function(x, ...) { if (!.hasSlot(x, "data")) { out <- setNames(list(seq_along(x)), class(x)) } else { out <- methods::slot(x, "data") } tibble::as_tibble(out) } sc_object.trip <- function(x, ...) { tor <- slot(x, "TOR.columns") tibble::tibble(trip = unique(x[[tor[2L]]])) }
causeSumNoP= function(mtx, nam = colnames(mtx), blksiz=10, ctrl = 0, dig = 6, wt = c(1.2, 1.1, 1.05, 1), sumwt = 4) { p = NCOL(mtx) if (p < 2) stop("stop:too few columns in input mtx to siPairsBlk") pv=rep(NA,p-1) pearson=rep(NA,p-1) for ( i in 2:p){ x=mtx[,1] y=mtx[,i] ok=complete.cases(x,y) c1 = cor.test(x[ok], y[ok]) pv[i] = c1$p.value pearson[i] = c1$estimate } si0 = siPairsBlk(mtx, ctrl = ctrl, dig = dig, wt = wt, blksiz=blksiz, sumwt = sumwt) si = round(100 * as.numeric(si0)/3.175, 3) out = matrix(NA, nrow = (p - 1), ncol = 5) for (i in 2:p) { if (si[i - 1] < 0) { out[i - 1, 1] = nam[i] out[i - 1, 2] = nam[1] out[i - 1, 3] = abs(si[i - 1]) } if (si[i - 1] > 0) { out[i - 1, 1] = nam[1] out[i - 1, 2] = nam[i] out[i - 1, 3] = abs(si[i - 1]) } out[i - 1, 4] = round(pearson[i], 4) out[i - 1, 5] = round(pv[i], 5) } colnames(out) = c("cause","response","strength","corr.","p-value") return(out) }
anova1f_4c<-function(m1=NULL,m2=NULL,m3=NULL,m4=NULL, s1=NULL,s2=NULL,s3=NULL,s4=NULL, n1=NULL,n2=NULL,n3=NULL,n4=NULL, alpha=.05, c1 =0, c2=0, c3=0, c4=0){ x<-stats::rnorm(n1,m1,s1) X<-x MEAN<-m1 SD<-s1 Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD y<-MEAN + Z group<-rep("A1",n1) l1<-data.frame(y, group) x<-stats::rnorm(n2,m2,s2) X<-x MEAN<-m2 SD<-s2 Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD y<-MEAN + Z group<-rep("A2",n2) l2<-data.frame(y, group) x<-stats::rnorm(n3,m3,s3) X<-x MEAN<-m3 SD<-s3 Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD y<-MEAN + Z group<-rep("A3",n3) l3<-data.frame(y, group) x<-stats::rnorm(n4,m4,s4) X<-x MEAN<-m4 SD<-s4 Z <- (((X - mean(X, na.rm = TRUE))/stats::sd(X, na.rm = TRUE))) * SD y<-MEAN + Z group<-rep("A4",n4) l4<-data.frame(y, group) simdat<-rbind(l1,l2,l3,l4) anova<-stats::aov(y~group, data=simdat) anova<-car::Anova(anova, type="III") SSA<-anova[2,1] SSwin<-anova[3,1] dfwin<-anova[3,2] mswin<-SSwin/dfwin dfbg<-anova[2,2] eta2<-SSA/(SSA+SSwin) f2<-eta2/(1-eta2) lambda<-f2*dfwin minusalpha<-1-alpha Ft<-stats::qf(minusalpha, dfbg, dfwin) power<-1-stats::pf(Ft, dfbg,dfwin,lambda) delta=((c1*m1)+(c2*m2)+(c3*m3)+(c4*m4))/((mswin*((c1^2/n1)+(c2^2/n2)+(c3^2/n3)+(c4^2/n4))))^.5 lambda.c=delta^2 Ft.c<-stats::qf(minusalpha, 1, dfwin) power.contrast<-round(1-stats::pf(Ft.c, 1,dfwin,lambda.c),3) message("Power for contrast = ", power.contrast) result <- data.frame(matrix(ncol = 5)) colnames(result) <- c("n1","n2", "n3", "n4","Power") result[, 1]<-n1 result[, 2]<-n2 result[, 3]<-n3 result[, 4]<-n4 result[, 5]<-power.contrast output<-na.omit(result) rownames(output)<- c() invisible(output) }
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(`character(0)` = structure(integer(0), .Label = character(0), class = \"factor\")), .Names = \"character(0)\", row.names = character(0), class = \"data.frame\"))")); do.call(`is.double`, argv); }, o=expected);
eventMaxima <- function(data, delta.y = 200, delta.x = 1, threshold = -1, out.style = "summary") { n.data = length(data) minima = localMin(data) current.stats = calcStats(head(minima, -1), tail(minima, -1), data, f.vec = c("which.max", "max")) maxima.x = c(current.stats$which.max, n.data) maxima.y = c(current.stats$max, data[n.data]) srt.index = c() end.index = c() n.minima = length(minima) i = 1; j = 2 while (j <= n.minima) { current.x.1 = minima[i] current.x.2 = minima[j] current.y.1 = data[current.x.1] current.y.2 = data[current.x.2] current.max = max(maxima.y[i:(j-1)]) if (delta.y > 0) { test.1 = (current.max - max(current.y.1, current.y.2)) > delta.y } else { test.1 = (current.max - max(current.y.1, current.y.2)) > -current.max*delta.y } test.2 = ((maxima.x[j]-maxima.x[j-1]) > delta.x) if (test.1 & test.2) { srt.index = c(srt.index, current.x.1) end.index = c(end.index, current.x.2) i = j j = i + 1 } else { j = j + 1 } } if (threshold > 0) { check.max = calcStats(srt.index, end.index, data, f.vec = c("max")) srt.index = srt.index[check.max >= threshold] end.index = end.index[check.max >= threshold] } n.events = length(srt.index) if (n.events == 0) { return(NULL) } else { if (threshold >= 0) { for (i in 1:n.events) { event.data = data[srt.index[i]:end.index[i]] runs = rle(event.data <= threshold) n.runs = length(runs$values) if (runs$values[1]) { srt.index[i] = srt.index[i] + runs$lengths[1] } if (runs$values[n.runs]) { end.index[i] = end.index[i] - runs$lengths[n.runs] } } } if (out.style == "summary") { event.stats = calcStats(srt.index, end.index, data, f.vec = c("which.max", "max", "sum")) return(data.frame(srt = srt.index, end = end.index, event.stats)) } else { return(data.frame(srt = srt.index, end = end.index)) } } }
setMethod("initialize", "track", function(.Object, x, y, ...) { if(missing(y)) { y <- x; x <- seq(along=y) } callNextMethod(.Object, x = x, y = y, ...) })
enqueueJobs <- function(package, directory, dbfile="", addfailed=FALSE) { if (!is.null(cfg <- getConfig())) { if ("setup" %in% names(cfg)) source(cfg$setup) if ("libdir" %in% names(cfg)) { .libPaths(cfg$libdir) Sys.setenv("R_LIBS_USER"=cfg$libdir) if (!dir.exists(cfg$libdir)) { dir.create(cfg$libdir) } } } runEnqueueSanityChecks() if (dbfile != "") { if (file.exists(dbfile)) { db <- dbfile } else { stop("No file ", dbfile, " found\n", call. = FALSE) } con <- getDatabaseConnection(db) res <- setDT(dbGetQuery(con, "select * from results")) dbDisconnect(con) } AP <- available.packages(filters=list()) pkgset <- dependsOnPkgs(package, recursive=FALSE, installed=AP) if (length(pkgset) == 0) stop("No dependencies for ", package, call. = FALSE) AP <- setDT(as.data.frame(AP)) if (dbfile == "") { pkgset <- data.table(Package=pkgset) } else { newpkgs <- setdiff(pkgset, res$package) if (addfailed) { failed <- res[ result == 1, .(package)] pkgset <- data.table(Package=unique(sort(c(failed$package, newpkgs)))) } else { pkgset <- data.table(Package=newpkgs) } } work <- AP[pkgset, on="Package"][,1:2] db <- getQueueFile(package=package, path=directory) q <- ensure_queue("jobs", db = db) con <- getDatabaseConnection(db) createRunDataTable(con) dat <- data.frame(package=package, version=format(packageVersion(package)), date=format(Sys.Date())) dbWriteTable(con, "metadata", dat, append=TRUE) dbDisconnect(con) n <- nrow(work) for (i in 1:n) { ttl <- paste0(work[i,Package]) msg <- paste(work[i,Package], work[i, Version], sep="_") publish(q, title = ttl, message = msg) } list_messages(q) } enqueueDepends <- function(package, directory) { if (!is.null(cfg <- getConfig())) { if ("setup" %in% names(cfg)) source(cfg$setup) if ("libdir" %in% names(cfg)) { .libPaths(cfg$libdir) Sys.setenv("R_LIBS_USER"=cfg$libdir) if (!dir.exists(cfg$libdir)) { dir.create(cfg$libdir) } } } AP <- available.packages(filters=list()) pkgset <- dependsOnPkgs(package, recursive=FALSE, installed=AP) AP <- setDT(as.data.frame(AP)) pkgset <- setDT(data.frame(Package=pkgset)) work <- AP[pkgset, on="Package"][,1:2] deplst <- package_dependencies(as.character(work[[1]]), db=as.matrix(AP), recursive=TRUE) deppkg <- unique(sort(do.call(c, deplst))) IP <- installed.packages() needed <- setdiff(deppkg, IP[, "Package"]) db <- getQueueFile(package=package, path=directory) q <- ensure_queue("depends", db = db) n <- length(needed) for (i in 1:n) { ttl <- paste0(needed[i]) msg <- paste(needed[i]) publish(q, title = ttl, message = msg) } list_messages(q) } globalVariables(c("Package", "Version"))
statcan <- function(word, maxCodeLen = 4, clean = TRUE) { word <- gsub("\u00C0|\u00C2", "A", word, perl = TRUE) word <- gsub("\u00C8|\u00C9|\u00CA|\u00CB", "E", word, perl = TRUE) word <- gsub("\u00CE|\u00CF", "I", word, perl = TRUE) word <- gsub("\u00D4", "O", word, perl = TRUE) word <- gsub("\u00D9|\u00DB|\u00DC", "U", word, perl = TRUE) word <- gsub("\u0178", "Y", word, perl = TRUE) word <- gsub("\u00C7", "C", word, perl = TRUE) word <- toupper(word) word[is.null(word)] <- NA listNAs <- is.na(word) if(any(nonalpha <- grepl("[^A-Z]", word, perl = TRUE)) && clean) warning("unknown characters found, results may not be consistent") word <- gsub("[^A-Z]*", "", word, perl = TRUE) first <- substr(word, 1, 1) word <- substr(word, 2, nchar(word)) word <- gsub("A|E|I|O|U|Y", "", word, perl = TRUE) word <- paste(first, word, sep = "") word <- gsub("([A-Z])\\1+", "\\1", word, perl = TRUE) word <- substr(word, 1, maxCodeLen) word[listNAs] <- NA if(clean) word[nonalpha] <- NA return(word) }
summ.rq <- function(model, scale = FALSE, confint = getOption("summ-confint", FALSE), ci.width = getOption("summ-ci.width", .95), se = c("nid", "rank", "iid", "ker", "boot"), boot.sims = 1000, boot.method = "xy", vifs = getOption("summ-vifs", FALSE), digits = getOption("jtools-digits", 2), pvals = getOption("summ-pvals", TRUE), n.sd = 1, center = FALSE, transform.response = FALSE, data = NULL, model.info = getOption("summ-model.info", TRUE), model.fit = getOption("summ-model.fit", TRUE), which.cols = NULL, ...) { j <- list() dots <- list(...) deps <- dep_checks(dots) any_deps <- sapply(deps, is.null) if (any(!any_deps)) { for (n in names(any_deps)[which(any_deps == FALSE)]) { assign(n, deps[[n]]) } } if ("robust" %in% names(dots)) { warn_wrap("The robust argument is not supported for rq objects. Use the se argument instead.") } if (se[1] == "rank") { confint <- TRUE pvals <- FALSE } the_call <- match.call() the_call[[1]] <- substitute(summ) the_env <- parent.frame(n = 2) alpha <- (1 - ci.width) / 2 missing <- length(model$na.action) if (scale == TRUE) { model <- scale_mod(model, n.sd = n.sd, scale.response = transform.response, data = data, ... ) } else if (center == TRUE && scale == FALSE) { model <- center_mod(model, center.response = transform.response, data = data, ...) } if (se[1] == "boot") { sum <- summary(model, covariance = TRUE, se = se[1], R = boot.sims, bsmethod = boot.method) } else { sum <- summary(model, covariance = TRUE, se = se[1], alpha = alpha) } j <- structure(j, standardize = scale, vifs = vifs, robust = FALSE, digits = digits, model.info = model.info, model.fit = model.fit, n.sd = n.sd, center = center, call = the_call, env = the_env, scale = scale, data = data, transform.response = transform.response, boot.sims = boot.sims, boot.method = boot.method) if (length(attr(model$terms, "order")) != 0) { df.int <- if (attr(model$terms, "intercept")) 1L else 0L } else { df.int <- 1 } n <- length(model$residuals) j <- structure(j, n = n) ivs <- names(coef(model)) coefs <- unname(coef(model)) params <- list("Est." = coefs) r1 <- R1(model) aic = AIC(model) bic = AIC(model, k = log(n)) ivs <- names(coefficients(model)) coefs <- unname(coef(model)) params <- list("Est." = coefs) if (vifs == TRUE) { tvifs <- rep(NA, length(ivs)) the_vifs <- unname(vif(model, vcov = sum$cov, mod.matrix = rq_model_matrix(model))) if (is.matrix(the_vifs)) {the_vifs <- the_vifs[,1]} tvifs[-1] <- the_vifs params[["VIF"]] <- tvifs } if (se[1] != "rank") { ses <- coef(sum)[,2] ts <- coef(sum)[,3] ps <- coef(sum)[,4] } else { ses <- rep(NA, nrow(coef(sum))) ts <- rep(NA, nrow(coef(sum))) ps <- rep(NA, nrow(coef(sum))) } if (length(coefs) > length(ses)) { temp_vec <- rep(NA, times = length(coefs)) temp_vec[which(!is.na(coefs))] <- ses ses <- temp_vec } params[c("S.E.", "t val.", "p")] <- list(ses, ts, ps) if (se[1] != "rank") { tcrit <- abs(qt(alpha, df = sum$rdf)) labs <- make_ci_labs(ci.width) lci <- coefs - (ses * tcrit) uci <- coefs + (ses * tcrit) cis <- list(lci, uci) names(cis) <- labs } else { cis <- list(coef(sum)[, "lower bd"], coef(sum)[, "upper bd"]) names(cis) <- make_ci_labs(ci.width) } params[names(cis)] <- cis which.cols <- which_columns(which.cols = which.cols, confint = confint, ci.labs = make_ci_labs(ci.width), vifs = vifs, pvals = pvals, t.col = "t val.") if (se[1] == "rank") {which.cols <- which.cols[which.cols %nin% "t val."]} mat <- create_table(params = params, which.cols = which.cols, ivs = ivs) j <- structure(j, r1 = r1, dv = names(model$model[1]), lmClass = class(model), missing = missing, use_cluster = FALSE, confint = confint, ci.width = ci.width, pvals = pvals, test.stat = "t val.", standardize.response = transform.response, scale.response = transform.response, transform.response = transform.response, exp = FALSE, se = se[1], aic = aic, bic = bic) j$coeftable <- mat j$model <- model class(j) <- c("summ.rq", "summ") return(j) } print.summ.rq <- function(x, ...) { j <- x x <- attributes(j) ctable <- j$coeftable if (x$model.info == TRUE) { method <- switch(j$model$method, "br" = "Barrodale-Roberts", "fn" = "Frisch-Newton", "pfn" = "Frisch-Newton (after pre-processing)", "sfn" = "Frisch-Newton (sparse algebra)", "lasso" = "lasso", "scad" = "Fan-Li SCAD", "fnc" = "Frisch-Newton (user-specified equality constraints)") type <- paste0("Quantile regression", "\n ", italic("Quantile (tau): "), j$model$tau, "\n ", italic("Method: "), method) print_mod_info(missing = x$missing, n = x$n, dv = x$dv, type = type) } if (x$model.fit == TRUE) { stats <- paste(italic("R\u00B9"), paste0("(", j$model$tau, ")"), " = ", num_print(x$r1, digits = x$digits), sep = "") print_mod_fit(stats) } se_name <- switch(x$se, "iid" = "IID", "nid" = "Sandwich (Huber)", "ker" = "Sandwich (kernel)", "boot" = "bootstrap", "rank" = "Koenker rank test") print_se_info(x$robust, x$use_cluster, manual = se_name) print(md_table(ctable, format = getOption("summ.table.format", "multiline"), sig.digits = FALSE, digits = x$digits)) ss <- scale_statement(x$scale, x$center, x$transform.response, x$n.sd) if (!is.null(ss)) {cat("\n", ss, "\n", sep = "")} } knit_print.summ.rq <- function(x, options = NULL, ...) { if (!nzchar(system.file(package = "kableExtra")) | getOption("summ-normal-print", FALSE)) { return(knitr::normal_print(x)) } j <- x x <- attributes(j) format <- ifelse(knitr::is_latex_output(), yes = "latex", no = "html") o_opt <- getOption("kableExtra.auto_format", NULL) options(kableExtra.auto_format = FALSE) ctable <- round_df_char(df = j$coeftable, digits = x$digits) if (x$model.info == TRUE) { method <- switch(j$model$method, "br" = "Barrodale-Roberts", "fn" = "Frisch-Newton", "pfn" = "Frisch-Newton (after pre-processing)", "sfn" = "Frisch-Newton (sparse algebra)", "lasso" = "lasso", "scad" = "Fan-Li SCAD", "fnc" = "Frisch-Newton (user-specified equality constraints)") mod_info <- mod_info_list(missing = x$missing, n = x$n, dv = x$dv, type = "Quantile regression") obs <- mod_info$n if ("missing" %in% names(mod_info)) { obs <- paste0(obs, " (", mod_info$missing, " missing obs. deleted)") } mod_meta <- data.frame( datum = c("Observations", "Dependent variable", "Type", " Quantile (tau)", " Method" ), value = c(obs, mod_info$dv, mod_info$type, j$model$tau, method) ) mod_meta %<>% to_kable(format = format, row.names = FALSE, col.names = NULL) } else { mod_meta <- NULL } if (x$model.fit == T && !is.null(x$modpval)) { stats <- paste(italic("R\u00B9"), paste0("(", j$model$tau, ")"), " = ", num_print(x$r1, digits = x$digits), sep = "") stats <- data.frame(stat = c(paste0("R\u00B9 ", "(", j$model$tau, ")")), value = c(num_print(x$r1, digits = x$digits)) ) stats %<>% to_kable(format = format, row.names = FALSE, col.names = NULL) } else {stats <- NULL} se_name <- switch(x$se, "iid" = "IID", "nid" = "Sandwich (Huber)", "ker" = "Sandwich (kernel)", "boot" = "bootstrap", "rank" = "Koenker rank test") se_info <- get_se_info(x$robust, x$use_cluster, manual = se_name) ss <- scale_statement(x$scale, x$center, x$transform.response, x$n.sd) ss <- if (!is.null(ss)) {paste(";", ss)} else {ss} cap <- paste0("Standard errors: ", se_info, ss) if (format == "html") {ctable %<>% escape_stars()} ctable %<>% to_kable(format = format, row.names = TRUE, footnote = cap) out <- paste(mod_meta, stats, ctable, collapse = "\n\n") options(kableExtra.auto_format = o_opt) if (format == "latex") { return(knitr::asis_output(out, meta = kableExtra_latex_deps)) } knitr::asis_output(out) } R1 <- function(model) { rho_1 <- model$rho null_resids <- model.frame(model)[[1]] - quantile(model.frame(model)[[1]], model$tau) rho_0 <- sum(null_resids * (model$tau - (null_resids < 0))) return(1 - (rho_1 / rho_0)) } rq_model_matrix <- function(object) { mt <- terms(object) m <- model.frame(object) y <- model.response(m) if (object$method == "sfn") x <- object$model$x else x <- model.matrix(mt, m, contrasts = object$contrasts) return(x) } rq.fit.br <- function(x, y, tau = 0.5, alpha = 0.1, ci = FALSE, iid = TRUE, interp = TRUE, tcrit = TRUE, ...) { rq.fit.br(x, y, tau = tau, alpha = alpha, ci = ci, iid = iid, interp = interp, tcrit = tcrit) } glance.summ.rq <- function(x, ...) { m <- x$model n <- length(fitted(m)) s <- summary(m, se = attr(x, "se")) base <- data.frame(tau = m[["tau"]], logLik = logLik(m), AIC = AIC(m), BIC = AIC(m, k = log(n)), df.residual = rep(s[["rdf"]], times = length(m[["tau"]]))) base$r.1 <- attr(x, "r1") return(base) } nobs.summ.rq <- function(object, ...) { return(length(fitted((object$model)))) } family.rq <- function(object, ...) { gaussian(link = "identity") }
step_hai_hyperbolic <- function(recipe, ..., role = "predictor", trained = FALSE, columns = NULL, scale_type = c("sin","cos","tan", "sincos"), skip = FALSE, id = rand_id("hai_hyperbolic") ){ terms <- recipes::ellipse_check(...) funcs <- c("sin", "cos", "tan", "sincos") if (!(scale_type %in% funcs)) rlang::abort("`func` should be either `sin`, `cos`, `sincos` or `tan`") recipes::add_step( recipe, step_hai_hyperbolic_new( terms = terms, role = role, trained = trained, columns = columns, scale_type = scale_type, skip = skip, id = id ) ) } step_hai_hyperbolic_new <- function(terms, role, trained, columns, scale_type, skip, id){ recipes::step( subclass = "hai_hyperbolic", terms = terms, role = role, trained = trained, columns = columns, scale_type = scale_type, skip = skip, id = id ) } prep.step_hai_hyperbolic <- function(x, training, info = NULL, ...) { col_names <- recipes::recipes_eval_select(x$terms, training, info) value_data <- info[info$variable %in% col_names, ] if(any(value_data$type != "numeric")){ rlang::abort( paste0("All variables for `step_hai_hyperbolic` must be `numeric`", "`integer` `double` classes.") ) } step_hai_hyperbolic_new( terms = x$terms, role = x$role, trained = TRUE, columns = col_names, scale_type = x$scale_type, skip = x$skip, id = x$id ) } bake.step_hai_hyperbolic <- function(object, new_data, ...){ make_call <- function(col, scale_type){ rlang::call2( "hai_hyperbolic_vec", .x = rlang::sym(col) , .scale_type = scale_type , .ns = "healthyR.ai" ) } grid <- expand.grid( col = object$columns , scale_type = object$scale_type , stringsAsFactors = FALSE ) calls <- purrr::pmap(.l = list(grid$col, grid$scale_type), make_call) newname <- paste0("hyperbolic_", grid$col, "_", grid$scale_type) calls <- recipes::check_name(calls, new_data, object, newname, TRUE) tibble::as_tibble(dplyr::mutate(new_data, !!!calls)) } print.step_hai_hyperbolic <- function(x, width = max(20, options()$width - 35), ...) { cat("Hyperbolic transformation on ", sep = "") printer( untr_obj = x$terms, tr_obj = names(x$columns), trained = x$trained, width = width ) invisible(x) } required_pkgs.step_hai_hyperbolic <- function(x, ...) { c("healthyR.ai") }
d_bar.boot <- function(df, d=d){ numerator <- df[d] %>% sum(df[3,]*df[2,]) denominator <- df[d] %>% sum(df[3,]) d_bar1 <- exp(numerator/denominator) return(d_bar1) }
standardize_bounds <- function(percent_df, dir, em_ctl_file, om_ctl_file = "", verbose = FALSE, estimate = NULL, ...) { if (!file.exists(file.path(dir, em_ctl_file))) { stop(paste("The em_ctl_file,", em_ctl_file, "does not exist", "in the directory", dir)) } if (!"Label" %in% colnames(percent_df)) { stop(paste("In percent_df, the first column is currently named", colnames(percent_df)[1], "rename as 'Label'")) } ss_version <- get_ss_ver_file(file.path(dir, em_ctl_file)) em_pars <- SS_parlines(ctlfile = file.path(dir, em_ctl_file), version = ss_version, verbose = verbose) if(nchar(om_ctl_file)>0){ om_pars <- SS_parlines(ctlfile = file.path(dir, om_ctl_file), version = ss_version, verbose = verbose) indices <- sapply(percent_df$Label, function(x) { rmpuncx <- gsub("[[:punct:]]", "", x) rmpuncom <- gsub("[[:punct:]]", "", om_pars$Label) rmpuncem <- gsub("[[:punct:]]", "", em_pars$Label) findinom <- grep(rmpuncx, rmpuncom, ignore.case = TRUE) findinem <- grep(rmpuncx, rmpuncem, ignore.case = TRUE) c(ifelse(is.null(findinom), NA, findinom), ifelse(is.null(findinem), NA, findinem)) }) tochange <- !is.na(indices[1, ]) | !is.na(indices[2, ]) restr_percent_df <- percent_df[tochange, ] if (NROW(restr_percent_df) == 0) { stop(paste("None of the entered parameter labels (,", paste(percent_df[, 1], collapse = ", "), ") are found in both the EM and OM.", sep = "")) } changeem <- cbind(em_pars$Label[indices[2, ]], om_pars$INIT[indices[1, ]], em_pars$INIT[indices[2, ]]) changeem <- changeem[tochange, ] changeinits <- changeem[which(changeem[, 2] != changeem[, 3]), , drop = FALSE] if (NROW(changeinits) > 0) { print.verbose <- SS_changepars(dir = dir, ctlfile = em_ctl_file, newctlfile = em_ctl_file, strings = changeinits[, 1], newvals = changeinits[, 2], verbose = verbose, repeat.vals = FALSE) if (verbose) message(paste(print.verbose, collapse = "\n")) om_pars<-SS_parlines(ctlfile = file.path(dir,om_ctl_file), version = ss_version, verbose = verbose) parsinboth <- which(percent_df$Label %in% om_pars$Label & percent_df$Label %in% em_pars$Label) restr_percent_df <- percent_df[parsinboth, ] if(NROW(restr_percent_df) != 0){ om_indices<-which(om_pars[,"Label"] %in% restr_percent_df[,"Label"]) em_indices<-which(em_pars[,"Label"] %in% restr_percent_df[,"Label"]) whichunequal <- om_pars[om_indices,"INIT"]!= em_pars[em_indices,"INIT"] if(any(whichunequal)){ inits_to_change <- em_pars[which(whichunequal), "Label"] SS_changepars(dir=dir, ctlfile=em_ctl_file,newctlfile = em_ctl_file, strings = inits_to_change, newvals = om_pars[which(whichunequal),"INIT"], verbose = verbose) } }else{ message("None of the entered parameter labels are found in both the EM and OM.") } } } indexem <- sapply(percent_df$Label, function(x) { rmpuncx <- gsub("[[:punct:]]", "", x) rmpuncem <- gsub("[[:punct:]]", "", em_pars$Label) findinem <- grep(rmpuncx, rmpuncem, ignore.case = TRUE) ifelse(is.null(findinem), NA, findinem) }) if (any(is.na(indexem))) { stop(paste("Element(s):", paste(percent_df$Label[which(is.na(indexem))], collapse = ", "), "do not have valid parameter labels.")) }else{ indices_to_standardize<-matrix(ncol=2,nrow=nrow(percent_df)) indices_to_standardize[, 1] <- seq_len(NROW(percent_df)) indices_to_standardize[, 2] <- indexem newlos <- percent_df[indices_to_standardize[, 1], "lo"] * em_pars[indices_to_standardize[, 2], "INIT"] newhis <- percent_df[indices_to_standardize[, 1], "hi"] * em_pars[indices_to_standardize[, 2], "INIT"] newlos[grep("Ln", percent_df$Label, ignore.case = TRUE)] <- percent_df[grep("Ln", percent_df$Label, ignore.case = TRUE), 2] newhis[grep("Ln", percent_df$Label, ignore.case = TRUE)] <- percent_df[grep("Ln", percent_df$Label, ignore.case = TRUE), 3] newlos[grep("CV", percent_df$Label, ignore.case = TRUE)] <- percent_df[grep("CV", percent_df$Label, ignore.case = TRUE), 2] newhis[grep("CV", percent_df$Label, ignore.case = TRUE)] <- percent_df[grep("CV", percent_df$Label, ignore.case = TRUE), 3] SS_changepars(dir=dir,ctlfile=em_ctl_file,newctlfile=em_ctl_file, linenums = em_pars[indexem, "Linenum"], newlos=newlos,newhis=newhis, verbose = verbose, estimate = estimate, ...) } }
eigs_real_sym <- function(A, n, k, which, sigma, opts, mattype, extra_args = list()) { if (!is.null(dim(A))) { if (nrow(A) != ncol(A) | nrow(A) != n) stop("'A' must be a square matrix of size n") } if (n < 3) stop("dimension of 'A' must be at least 3") if (k == n) { warning("all eigenvalues are requested, eigen() is used instead") return(c(eigen(if(extra_args$use_lower) A else t(A), symmetric = TRUE, only.values = identical(opts$retvec, FALSE)), nconv = n, niter = 0)) } if (mattype == "matrix" & typeof(A) != "double") { mode(A) = "double" } if (k <= 0 | k >= n) stop("'k' must satisfy 0 < k < nrow(A)") if (is.null(sigma)) { workmode = "regular" sigma = 0 } else { workmode = "real_shift" if(is.complex(sigma)) warning("only real part of sigma is used") sigma = Re(sigma) } spectra.param = list(which = which, ncv = min(n, max(2 * k + 1, 20)), tol = 1e-10, maxitr = 1000, retvec = TRUE, user_initvec = FALSE, sigma = sigma) eigenv.type = c("LM", "SM", "LA", "SA", "BE") if (!(spectra.param$which %in% eigenv.type)) { stop(sprintf("argument 'which' must be one of\n%s", paste(eigenv.type, collapse = ", "))) } spectra.param[names(opts)] = opts spectra.param$which = EIGS_RULE[spectra.param$which] spectra.param = c(spectra.param, as.list(extra_args)) if (spectra.param$ncv <= k | spectra.param$ncv > n) stop("'opts$ncv' must be > k and <= nrow(A)") if ("initvec" %in% names(spectra.param)) { if(length(spectra.param$initvec) != n) stop("'opt$initvec' must have length n") spectra.param$initvec = as.numeric(spectra.param$initvec) spectra.param$user_initvec = TRUE } fun = switch(workmode, regular = "eigs_sym", real_shift = "eigs_shift_sym", stop("unknown work mode")) dot_call_args = list( fun, A, as.integer(n), as.integer(k), as.list(spectra.param), as.integer(MAT_TYPE[mattype]), PACKAGE = "RSpectra" ) do.call(.Call, args = dot_call_args) }
genCorData <- function(n, mu, sigma, corMatrix = NULL, rho, corstr = "ind", cnames = NULL, idname = "id") { nvars <- length(mu) if (!is.null(cnames)) { nnames <- trimws(unlist(strsplit(cnames, split = ","))) if (length(nnames) != nvars) { stop("Invalid number of variable names") } } corMatrix <- .buildCorMat(nvars, corMatrix, corstr, rho) if (length(sigma) == 1) { varMatrix <- (sigma^2) * corMatrix } else if (length(sigma) > 0) { D <- diag(sigma) if (length(diag(corMatrix)) != length(sigma)) { stop("Improper number of standard deviations") } varMatrix <- (D %*% corMatrix) %*% D } dt <- data.table(mvnfast::rmvn(n = n, mu = mu, sigma = varMatrix)) if (!is.null(cnames)) setnames(dt, nnames) dtid <- data.table(1:nrow(dt)) setnames(dtid, idname) dt <- cbind(dtid, dt) setkeyv(dt, idname) return(dt[]) } genCorFlex <- function(n, defs, rho = 0, tau = NULL, corstr = "cs", corMatrix = NULL) { X <- NULL Unew <- NULL param1 <- NULL param2 <- NULL id <- NULL period <- NULL dist <- NULL formula <- NULL variance <- NULL if (!all(defs[, dist] %in% c("normal", "gamma", "uniform", "binary", "poisson", "negBinomial"))) { stop("Only implemented for the following distributions: binary, uniform, normal, poisson, gamma, and negative binomial") } corDefs <- copy(defs) nvars <- nrow(corDefs) nUniform <- corDefs[dist == "uniform", .N] if (nUniform > 0) { rangeV <- 2 * (1:nUniform) rangeF <- rangeV - 1 range <- corDefs[dist == "uniform", unlist(strsplit(as.character(formula), split = ";", fixed = TRUE))] corDefs[dist == "uniform", formula := range[rangeF]] corDefs[dist == "uniform", variance := as.numeric(range[rangeV])] } chkWarn <- tryCatch(corDefs[, formula := as.numeric(formula)], warning = function(w) { "warning" } ) if (class(chkWarn)[1] == "character") stop("Non-scalar values in definitions") sr1 <- corDefs[dist == "gamma", gammaGetShapeRate(formula, variance)[[1]]] sr2 <- corDefs[dist == "gamma", gammaGetShapeRate(formula, variance)[[2]]] corDefs[dist == "gamma", `:=`(formula = sr1, variance = sr2)] sp1 <- corDefs[dist == "negBinomial", negbinomGetSizeProb(formula, variance)[[1]]] sp2 <- corDefs[dist == "negBinomial", negbinomGetSizeProb(formula, variance)[[2]]] corDefs[dist == "negBinomial", `:=`(formula = sp1, variance = sp2)] if (corDefs[is.na(formula), .N] > 0) stop("Non-scalar values in definitions") if (!is.null(tau)) { rho <- sin(tau * pi / 2) } dx <- .genQuantU(nvars, n, rho, corstr, corMatrix) dx[, dist := rep(corDefs[, dist], length.out = .N)] dx[, param1 := rep(corDefs[, formula], length.out = .N)] dx[, param2 := rep(corDefs[, variance], length.out = .N)] dFinal <- dx[period == 0, list(id)] for (i in 1:nvars) { dTemp <- dx[period == (i - 1)] type <- corDefs[i, dist] if (type == "binary") { V <- dTemp[, stats::qbinom(Unew, 1, param1)] } else if (type == "poisson") { V <- dTemp[, stats::qpois(Unew, param1)] } else if (type == "uniform") { V <- dTemp[, stats::qunif(Unew, param1, param2)] } else if (type == "gamma") { V <- dTemp[, stats::qgamma(Unew, param1, param2)] } else if (type == "normal") { V <- dTemp[, stats::qnorm(Unew, param1, sqrt(param2))] } else if (type == "negBinomial") { V <- dTemp[, stats::qnbinom(Unew, param1, param2)] } dFinal <- cbind(dFinal, V) setnames(dFinal, "V", corDefs$varname[i]) } return(dFinal[]) } genCorGen <- function(n, nvars, params1, params2 = NULL, dist, rho, corstr, corMatrix = NULL, wide = FALSE, cnames = NULL, method = "copula", idname = "id") { param1 <- NULL seqid <- NULL X <- NULL Unew <- NULL param2 <- NULL id <- NULL period <- NULL if (!(dist %in% c("poisson", "binary", "gamma", "uniform", "negBinomial", "normal"))) { stop("Distribution not properly specified.") } if (class(params1) != "numeric") stop("Parameters must be numeric") if (!is.null(params2)) { if (class(params2) != "numeric") stop("Parameters must be numeric") } nparams <- as.numeric(!is.null(params1)) + as.numeric(!is.null(params2)) if (((nparams > 1) & (dist %in% c("poisson", "binary")))) { stop(paste0("Too many parameter vectors (", nparams, ") for ", dist)) } if (((nparams < 2) & (dist %in% c("gamma", "uniform", "normal", "negBinomial")))) { stop(paste0("Too few parameter vectors (", nparams, ") for ", dist)) } if (length(params1) == 1) { params1 <- rep(params1, nvars) } if (!is.null(params2)) { if (length(params2) == 1) { params2 <- rep(params2, nvars) } } if (length(params1) != nvars) { stop(paste0( "Length of vector 1 = ", length(params1), ", not equal to number of correlated variables: ", nvars )) } if (!is.null(params2)) { if (length(params2) != nvars) { stop(paste0( "Length of vector 2 = ", length(params2), ", not equal to number of correlated variables: ", nvars )) } } if (!(method %in% c("copula", "ep"))) { stop(paste(method, "is not a valid method")) } if (dist != "binary" & method == "ep") { stop("Method `ep` applies only to binary data generation") } if (method == "copula") { mu <- rep(0, nvars) dtM <- .genQuantU(nvars, n, rho, corstr, corMatrix) if (dist == "binary") { dtM[, param1 := params1[seq], keyby = seqid] dtM[, X := stats::qbinom(p = Unew, 1, prob = param1)] } else if (dist == "poisson") { dtM[, param1 := params1[seq], keyby = seqid] dtM[, X := stats::qpois(p = Unew, lambda = param1)] } else if (dist == "negBinomial") { sp <- negbinomGetSizeProb(params1, params2) dtM[, param1 := sp[[1]][seq]] dtM[, param2 := sp[[2]][seq]] dtM[, X := stats::qnbinom(p = Unew, size = param1, prob = param2)] } else if (dist == "uniform") { dtM[, param1 := params1[seq], keyby = seqid] dtM[, param2 := params2[seq], keyby = seqid] dtM[, X := stats::qunif(p = Unew, min = param1, max = param2)] } else if (dist == "gamma") { sr <- gammaGetShapeRate(params1, params2) dtM[, param1 := sr[[1]][seq]] dtM[, param2 := sr[[2]][seq]] dtM[, X := stats::qgamma(p = Unew, shape = param1, rate = param2)] } else if (dist == "normal") { dtM[, param1 := params1[seq], keyby = seqid] dtM[, param2 := params2[seq], keyby = seqid] dtM[, X := stats::qnorm(p = Unew, mean = param1, sd = sqrt(param2))] } } else if (method == "ep") { corMatrix <- .buildCorMat(nvars, corMatrix, corstr, rho) dtM <- .genBinEP(n, params1, corMatrix) } setkey(dtM, "id") if (wide == FALSE) { dFinal <- dtM[, list(id, period, X)] if (!is.null(cnames)) setnames(dFinal, "X", cnames) } else { dFinal <- dcast(dtM, id ~ seq, value.var = "X") if (!is.null(cnames)) { nnames <- trimws(unlist(strsplit(cnames, split = ","))) setnames(dFinal, paste0("V", 1:nvars), nnames) } } setnames(dFinal, "id", idname) return(dFinal[]) } .checkBoundsBin <- function(p1, p2, d) { l <- (p1 * p2) / ((1 - p1) * (1 - p2)) L <- max(-sqrt(l), -sqrt(1 / l)) u <- (p1 * (1 - p2)) / (p2 * (1 - p1)) U <- min(sqrt(u), sqrt(1 / u)) if ((d < L & isTRUE(all.equal(d, L)) == FALSE) | (d > U & isTRUE(all.equal(d, U)) == FALSE)) { LU <- paste0("(", round(L, 2), " ... ", round(U, 2), ")") stopText <- paste("Specified correlation", d, "out of range", LU) stop(stopText) } } .findRhoBin <- function(p1, p2, d) { .checkBoundsBin(p1, p2, d) target <- d * sqrt(p1 * p2 * (1 - p1) * (1 - p2)) + p1 * p2 Max <- 1 Min <- -1 test <- 0 found <- FALSE while (!found) { corr <- diag(2) corr[1, 2] <- corr[2, 1] <- test est <- mvtnorm::pmvnorm(lower = rep(-Inf, 2), upper = c(stats::qnorm(p1), stats::qnorm(p2)), mean = c(0, 0), corr = corr) if (round(est, 5) == round(target, 5)) { found <- TRUE rho <- test } else if (est < target) { Min <- test test <- (Min + Max) / 2 } else { Max <- test test <- (Min + Max) / 2 } } return(rho) } .genBinEP <- function(n, p, tcorr) { id <- NULL period <- NULL seqid <- NULL np <- length(p) phicorr <- diag(length(p)) for (i in (1:(np - 1))) { for (j in ((i + 1):np)) { p1 <- p[i] p2 <- p[j] phicorr[j, i] <- phicorr[i, j] <- .findRhoBin(p1, p2, tcorr[i, j]) } } if (!all(eigen(phicorr)$values > 0)) { phicorr <- Matrix::nearPD(phicorr)$mat } normvars <- mvnfast::rmvn(n, mu = rep(0, length(p)), sigma = phicorr) z <- matrix(rep(stats::qnorm(p), nrow(normvars)), nrow = nrow(normvars), byrow = TRUE) binvars <- matrix(as.integer(normvars < z), nrow = nrow(z)) dtX <- data.table(binvars) dtX[, id := .I] dtM <- melt(dtX, id.vars = "id", variable.factor = TRUE, value.name = "X", variable.name = "seq") dtM[, period := as.integer(seq) - 1] setkey(dtM, "id") dtM[, seqid := .I] return(dtM[]) } genCorMat <- function(nvars, cors = NULL) { if (is.null(cors)) { ev <- stats::runif(nvars, 0, 10) Z <- matrix(ncol = nvars, stats::rnorm(nvars^2)) decomp <- qr(Z) Q <- qr.Q(decomp) R <- qr.R(decomp) d <- diag(R) ph <- d / abs(d) O <- Q %*% diag(ph) Z <- t(O) %*% diag(ev) %*% O cm <- stats::cov2cor(Z) } else { if (choose(nvars, 2) != length(cors)) stop("Correlations improperly specified") cmLower <- matrix(0, nrow = nvars, ncol = nvars) cmLower[lower.tri(cmLower)] <- cors cmUpper <- t(cmLower) cm <- cmLower + cmUpper diag(cm) <- 1 } assertPositiveDefinite(corMat = cm) cm } genCorOrdCat <- function(dtName, idname = "id", adjVar = NULL, baseprobs, prefix = "grp", rho, corstr, corMatrix = NULL) { .Deprecated("genOrdCat") genOrdCat( dtName = dtName, adjVar = adjVar, baseprobs = baseprobs, idname = idname, prefix = prefix, rho = rho, corstr = corstr, corMatrix = corMatrix, asFactor = FALSE ) }
`D2ACWmat.d` <- function(J, filter.number = 10., family = "DaubLeAsymm", OPLENGTH = 100000.) { J <- - J P <- D2ACW( - J, filter.number = filter.number, family = family, OPLENGTH = OPLENGTH) nc <- ncol(P[[3. * J]]) nr <- 3. * J * nc nrlocal <- nc m <- matrix(0., nrow = nr, ncol = nc) tmp <- matrix(0., nrow = nrlocal, ncol = nc) tmp <- P[[3. * J]] m[((3. * J - 1.) * nc + 1.):(3. * J * nc), ] <- tmp[1.:nc, ] for(j in (2. * J + 1.):(3. * J - 1.)) { nrj <- nrow(P[[j]]) ncj <- ncol(P[[j]]) ncz <- (nc - ncj)/2. nrz <- (nrlocal - nrj)/2. z1 <- matrix(0., nrow = nrj, ncol = ncz) z2 <- matrix(0., nrow = nrz, ncol = nc) tmp1 <- matrix(0., nrow = nrj, ncol = ncj) tmp1 <- P[[j]] m[((j - 1.) * nc + 1.):(j * nc), ] <- rbind(z2, cbind(z1, tmp1[1.:nrj, ], z1), z2) } tmp <- matrix(0., nrow = nrlocal, ncol = nc) tmp <- P[[2. * J]] m[((2. * J - 1.) * nc + 1.):(2. * J * nc), ] <- tmp[1.:nc, ] for(j in (J + 1.):(2. * J - 1.)) { nrj <- nrow(P[[j]]) ncj <- ncol(P[[j]]) ncz <- (nc - ncj)/2. nrz <- (nrlocal - nrj)/2. z1 <- matrix(0., nrow = nrj, ncol = ncz) z2 <- matrix(0., nrow = nrz, ncol = nc) tmp1 <- matrix(0., nrow = nrj, ncol = ncj) tmp1 <- P[[j]] m[((j - 1.) * nc + 1.):(j * nc), ] <- rbind(z2, cbind(z1, tmp1[1.:nrj, ], z1), z2) } tmp <- matrix(0., nrow = nrlocal, ncol = nc) tmp <- P[[J]] m[((J - 1.) * nc + 1.):(J * nc), ] <- tmp[1.:nc, ] for(j in 1.:(J - 1.)) { nrj <- nrow(P[[j]]) ncj <- ncol(P[[j]]) ncz <- (nc - ncj)/2. nrz <- (nrlocal - nrj)/2. z1 <- matrix(0., nrow = nrj, ncol = ncz) z2 <- matrix(0., nrow = nrz, ncol = nc) tmp1 <- matrix(0., nrow = nrj, ncol = ncj) tmp1 <- P[[j]] m[((j - 1.) * nc + 1.):(j * nc), ] <- rbind(z2, cbind(z1, tmp1[1.:nrj, ], z1), z2) } m }
context("atable_longitudinal") library(atable) DD = atable::test_data set.seed(42) DD = within(DD,{time = sample(paste0("time_", 0:5), size=nrow(DD), replace = TRUE)}) split_cols = "time" group_col = "Group" test_that("call atable_longitudinal", { tab = atable_longitudinal(x = DD, target_cols = "Split1", group_col = group_col, split_cols = split_cols, add_margins = TRUE) expect_true(is.data.frame(tab)) expect_true(ncol(tab)==8) expect_true(nrow(tab)==30) tab = atable_longitudinal(x = DD, target_cols = "Split1", group_col = group_col, split_cols = split_cols, add_margins = FALSE) expect_true(is.data.frame(tab)) expect_true(ncol(tab)==7) expect_true(nrow(tab)==30) }) test_that("target_cols with 2 levels", { tab = atable_longitudinal(x = DD, target_cols = "Split2", group_col = group_col, split_cols = split_cols, add_margins = TRUE) expect_true(is.data.frame(tab)) expect_true(ncol(tab)==7) expect_true(nrow(tab)==6) }) test_that("no group", { tab = atable_longitudinal(x = DD, target_cols = "Numeric", group_col = NULL, split_cols = split_cols) expect_true(is.data.frame(tab)) expect_true(ncol(tab)==2) expect_true(nrow(tab)==6) tab = atable_longitudinal(x = DD, target_cols = "Split1", group_col = NULL, split_cols = split_cols) expect_true(is.data.frame(tab)) expect_true(ncol(tab)==3) expect_true(nrow(tab)==30) }) test_that("wrong arguments", { expect_error( atable_longitudinal(x = DD, target_cols = c("Numeric", "Split1"), group_col = group_col, split_cols = split_cols) ) expect_error( atable_longitudinal(x = DD, target_cols = c("Numeric"), group_col = group_col, split_cols = NULL) ) expect_error( atable_longitudinal(x = DD, target_cols = c("Numeric"), group_col = group_col, split_cols = c("Split1", "Split2")) ) expect_error( atable_longitudinal(x = DD, target_cols = c("Numeric"), group_col = group_col, split_cols = split_cols, blocks = list("block"="Numeric")) ) })
lw_tf <- function(m) { return(m) } lw_logtf <- function(m) { return( log(m+1) ) } lw_bintf <- function(m) { return( (m>0)*1 ) } gw_normalisation <- function(m) { return ( 1 / sqrt( rowSums((m*m), na.rm = TRUE) ) ) } gw_idf <- function(m) { df = rowSums(lw_bintf(m), na.rm=TRUE) return ( ( log2(ncol(m)/df) + 1 ) ) } gw_gfidf <- function(m) { gf = rowSums(m, na.rm = TRUE) df = rowSums(lw_bintf(m), na.rm=TRUE) return ( gf/df ) } entropy <- function (m) { gf = rowSums(m, na.rm = TRUE) p = m / gf ndocs = ncol(m) entropy = - rowSums( (p*log(p)) / log(ndocs), na.rm = TRUE ) return ( entropy ) } gw_entropy <- function(m) { return ( (1 + entropy(m)) ) }
material_column <- function(..., width = 6, offset = 0){ shiny::tags$div( class = paste0("col s12 m", width, " offset-s0 offset-m", offset), ... ) }
otp_routing_options <- function() { opts <- list( alightSlack = NULL, bannedAgencies = NULL, bannedRoutes = NULL, bannedStops = NULL, bannedStopsHard = NULL, bannedTrips = NULL, batch = NULL, bikeBoardCost = NULL, bikeSpeed = NULL, bikeSwitchCost = NULL, bikeSwitchTime = NULL, boardSlack = NULL, clampInitialWait = NULL, disableAlertFiltering = NULL, disableRemainingWeightHeuristic = NULL, flexFlagStopBufferSize = NULL, flexIgnoreDrtAdvanceBookMin = NULL, flexUseEligibilityServices = NULL, flexUseReservationServices = NULL, geoidElevation = NULL, ignoreRealtimeUpdates = NULL, maxHours = NULL, maxPreTransitTime = NULL, maxTransfers = NULL, minTransferTime = NULL, nonpreferredTransferPenalty = NULL, optimize = NULL, otherThanPreferredRoutesPenalty = NULL, preferredAgencies = NULL, preferredRoutes = NULL, reverseOptimizeOnTheFly = NULL, showIntermediateStops = NULL, startTransitStopId = NULL, startTransitTripId = NULL, transferPenalty = NULL, triangleSafetyFactor = NULL, triangleSlopeFactor = NULL, triangleTimeFactor = NULL, unpreferredAgencies = NULL, unpreferredRoutes = NULL, useRequestedDateTimeInMaxHours = NULL, waitAtBeginningFactor = NULL, waitReluctance = NULL, walkBoardCost = NULL, walkReluctance = NULL, walkSpeed = NULL, wheelchair = NULL, whiteListedAgencies = NULL, whiteListedRoutes = NULL ) return(opts) } otp_validate_routing_options <- function(opts) { checkmate::assert_list(opts) names_list <- c( "alightSlack", "bannedAgencies", "bannedRoutes", "bannedStops", "bannedStopsHard", "bannedTrips", "batch", "bikeBoardCost", "bikeSpeed", "bikeSwitchCost", "bikeSwitchTime", "boardSlack", "clampInitialWait", "disableAlertFiltering", "disableRemainingWeightHeuristic", "flexFlagStopBufferSize", "flexIgnoreDrtAdvanceBookMin", "flexUseEligibilityServices", "flexUseReservationServices", "geoidElevation", "ignoreRealtimeUpdates", "maxHours", "maxPreTransitTime", "maxTransfers", "minTransferTime", "nonpreferredTransferPenalty", "optimize", "otherThanPreferredRoutesPenalty", "preferredAgencies", "preferredRoutes", "reverseOptimizeOnTheFly", "showIntermediateStops", "startTransitStopId", "startTransitTripId", "transferPenalty", "triangleSafetyFactor", "triangleSlopeFactor", "triangleTimeFactor", "unpreferredAgencies", "unpreferredRoutes", "useRequestedDateTimeInMaxHours", "waitAtBeginningFactor", "waitReluctance", "walkBoardCost", "walkReluctance", "walkSpeed", "wheelchair", "whiteListedAgencies", "whiteListedRoutes" ) names_unknown <- names(opts)[!names(opts) %in% names_list] if (length(names_unknown) > 0) { stop("Unknown routeOptions: ", paste(names_unknown, collapse = ", ")) } checkmate::assert_logical(opts$batch, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$disableAlertFiltering, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$disableRemainingWeightHeuristic, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$geoidElevation, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$ignoreRealtimeUpdates, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$maxTransfers, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$reverseOptimizeOnTheFly, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$showIntermediateStops, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$useRequestedDateTimeInMaxHours, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$wheelchair, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$flexIgnoreDrtAdvanceBookMin, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$flexUseEligibilityServices, len = 1, null.ok = TRUE ) checkmate::assert_logical(opts$flexUseReservationServices, len = 1, null.ok = TRUE ) checkmate::assert_integer(opts$alightSlack, len = 1, null.ok = TRUE ) checkmate::assert_integer(opts$bikeBoardCost, len = 1, null.ok = TRUE ) checkmate::assert_integer(opts$bikeSwitchCost, len = 1, null.ok = TRUE ) checkmate::assert_integer(opts$bikeSwitchTime, len = 1, null.ok = TRUE, lower = 0 ) checkmate::assert_integer(opts$maxPreTransitTime, len = 1, null.ok = TRUE ) checkmate::assert_integer(opts$nonpreferredTransferPenalty, len = 1, null.ok = TRUE ) checkmate::assert_integer(opts$otherThanPreferredRoutesPenalty, len = 1, null.ok = TRUE ) checkmate::assert_integer(opts$transferPenalty, len = 1, null.ok = TRUE ) checkmate::assert_integer(opts$walkBoardCost, len = 1, null.ok = TRUE ) checkmate::assert_integer(opts$minTransferTime, len = 1, null.ok = TRUE ) checkmate::assert_character(opts$bannedAgencies, null.ok = TRUE, len = 1 ) checkmate::assert_character(opts$bannedRoutes, null.ok = TRUE, len = 1 ) checkmate::assert_character(opts$bannedStops, null.ok = TRUE, len = 1 ) checkmate::assert_character(opts$bannedStopsHard, null.ok = TRUE, len = 1 ) checkmate::assert_character(opts$bannedTrips, null.ok = TRUE, len = 1 ) checkmate::assert_character(opts$boardSlack, null.ok = TRUE, len = 1 ) checkmate::assert_character(opts$preferredAgencies, null.ok = TRUE, len = 1 ) checkmate::assert_character(opts$preferredRoutes, null.ok = TRUE, len = 1 ) checkmate::assert_character(opts$optimize, len = 1, null.ok = TRUE ) checkmate::assert_choice(opts$optimize, choices = c( "FLAT", "GREENWAYS", "QUICK", "SAFE", "TRANSFERS", "TRIANGLE" ), null.ok = TRUE ) checkmate::assert_character(opts$startTransitStopId, len = 1, null.ok = TRUE ) checkmate::assert_character(opts$startTransitTripId, len = 1, null.ok = TRUE ) checkmate::assert_character(opts$unpreferredAgencies, len = 1, null.ok = TRUE ) checkmate::assert_character(opts$unpreferredRoutes, len = 1, null.ok = TRUE ) checkmate::assert_character(opts$whiteListedAgencies, len = 1, null.ok = TRUE ) checkmate::assert_character(opts$whiteListedRoutes, len = 1, null.ok = TRUE ) checkmate::assert_numeric(opts$bikeSpeed, len = 1, null.ok = TRUE, lower = 0 ) checkmate::assert_numeric(opts$clampInitialWait, len = 1, null.ok = TRUE ) checkmate::assert_numeric(opts$maxHours, len = 1, null.ok = TRUE, lower = 0 ) checkmate::assert_numeric(opts$triangleSafetyFactor, len = 1, null.ok = TRUE ) checkmate::assert_numeric(opts$triangleSlopeFactor, len = 1, null.ok = TRUE ) checkmate::assert_numeric(opts$triangleTimeFactor, len = 1, null.ok = TRUE ) checkmate::assert_numeric(opts$waitAtBeginningFactor, len = 1, null.ok = TRUE ) checkmate::assert_numeric(opts$waitReluctance, len = 1, null.ok = TRUE ) checkmate::assert_numeric(opts$walkReluctance, len = 1, null.ok = TRUE ) checkmate::assert_numeric(opts$walkSpeed, len = 1, null.ok = TRUE ) checkmate::assert_numeric(opts$flexFlagStopBufferSize, len = 1, null.ok = TRUE ) opts <- opts[lengths(opts) > 0] if (length(opts) == 0) { opts <- NULL } return(opts) }
testthat::test_that( "methods for fhir_columns() create identical results", { c1 <- fhir_columns(xpaths = c(code="code/coding/code", id = "id")) c2 <- fhir_columns(xpaths = c("code/coding/code", "id"), colnames = c("code", "id")) c3 <- fhir_columns(xpaths = list(code="code/coding/code", id = "id")) testthat::expect_identical(c1, c2) testthat::expect_identical(c3, c2) } ) testthat::test_that( "names() works on fhir_columns", { c <- fhir_columns(xpaths = c(code="code/coding/code", id = "id")) testthat::expect_identical(names(c), c("code", "id")) } ) testthat::test_that( "errors are thrown for incorrect input", { testthat::expect_error(fhir_columns(xpaths = list(c("a", "b"), c("a")))) testthat::expect_error(fhir_columns(xpaths = list(c(1, 2)))) } )
GaudinskiModel14<- function (t, ks=c(kr=1/1.5,koi=1/1.5,koeal=1/4,koeah=1/80,kA1=1/3,kA2=1/75,kM=1/110), C0=c(FR0=390, C10=220, C20=390, C30=1370, C40=90, C50=1800, C60=560), F0_Delta14C=rep(0,7), LI=150, RI=255, xi=1, inputFc, lambda=-0.0001209681, lag=0, solver=deSolve.lsoda.wrapper, pass=FALSE ) { t_start=min(t) t_stop=max(t) if(length(ks)!=7) stop("ks must be of length = 7") if(length(C0)!=7) stop("the vector with initial conditions must be of length = 7") if(length(LI)==1) inputFluxes=BoundInFluxes( function(t){ matrix( nrow=7,ncol=1, c(RI,LI,0,0,0,0,0)) }, t_start, t_stop ) if(class(LI)=="data.frame"){ x1=LI[,1] y1=LI[,2] x2=RI[,1] y2=RI[,2] LitterFlux=function(t0){as.numeric(spline(x1,y1,xout=t0)[2])} RootFlux=function(t0){as.numeric(spline(x2,y2,xout=t0)[2])} inputFluxes= BoundInFluxes(map=function(t){matrix(nrow=7,ncol=1,c(RootFlux(t),LitterFlux(t),0,0,0,0,0))}, t_start, t_stop ) } if(length(xi)==1) fX=function(t){xi} if(class(xi)=="data.frame"){ X=xi[,1] Y=xi[,2] fX=function(t){as.numeric(spline(X,Y,xout=t)[2])} } A=-abs(diag(ks)) A[3,2]=ks[2]*(98/(3+98+51)) A[4,3]=ks[3]*(4/(94+4)) A[6,5]=ks[5]*(24/(6+24)) A[7,6]=ks[6]*(3/(22+3)) A[7,2]=ks[2]*(3/(3+98+51)) A[4,1]=ks[1]*(35/(35+190+30)) A[5,1]=ks[1]*(30/(35+190+30)) At=BoundLinDecompOp( map=function(t){ fX(t)*A }, t_start, t_stop ) Fc=BoundFc(inputFc,lag=lag,format="Delta14C") mod=Model_14(t, At, ivList=C0, initialValF=ConstFc(F0_Delta14C,"Delta14C"), inputFluxes=inputFluxes, inputFc=Fc, c14DecayRate=lambda, pass=pass ) }
context("pkg-options") source("setup.R") skip_on_cran_windows() test_that("workflowr does not overwrite user-defined package options", { sysgit <- callr::r_safe(function() { options(workflowr.sysgit = "/git") library(workflowr) getOption("workflowr.sysgit") }) expect_identical(sysgit, "/git") }) test_that("workflowr does not overwrite user-defined package options in .Rprofile", { if (!interactive()) skip("These tests don't work in R CMD check") path <- test_setup() on.exit(test_teardown(path)) cwd <- setwd(path) on.exit(setwd(cwd), add = TRUE) writeLines(c("options(workflowr.autosave = FALSE)", "options(workflowr.sysgit = \"/git\")", "options(workflowr.view = \"bananas\")", "library(workflowr)"), con = ".Rprofile") autosave <- callr::r_safe(function() getOption("workflowr.autosave"), user_profile = TRUE) expect_false(autosave) sysgit <- callr::r_safe(function() getOption("workflowr.sysgit"), user_profile = TRUE) expect_identical(sysgit, "/git") view <- callr::r_safe(function() getOption("workflowr.view"), user_profile = TRUE) expect_identical(view, "bananas") }) test_that("Invalid workflowr.autosave does not crash workflowr", { path <- test_setup() on.exit(test_teardown(path)) expect_silent( callr::r_safe(function(path) { options(workflowr.autosave = "not-a-logical") library(workflowr) wflow_status(project = path) }, args = list(path = path)) ) })
mrbj <- function(formula, data, subset, trace=FALSE, gehanonly=FALSE, cov=FALSE, na.action=na.exclude, residue=FALSE, mcsize=100) { lss.betag<-function(x,y,delta,z) { row=ncol(x) col=ncol(z) betagm<-matrix(0,ncol=col,nrow=row) dimnum<-dim(x) n1<-dimnum[1] n2<-dimnum[2] yy0<-rep(y,rep(n1,n1)) delta1<-rep(delta,rep(n1,n1)) yy1<-rep(y,n1) yy2<-delta1*(yy0-yy1) xx0<-matrix(rep(as.vector(x),rep(n1,n1*n2)),nrow=n1*n1) xx1<-t(matrix(rep(as.vector(t(x)),n1),nrow=n2)) xx2<-xx0-xx1 for(i in 1:col) { zz=rep(z[,i],rep(n1,n1))*rep(z[,i],n1) xxdif<-xx2*zz*delta1 xnew<-apply(xxdif,2,sum) xnew<-rbind(xxdif) yynew<-c(yy2*zz) fit <- Enet.wls(xnew, yynew, delta1)$beta betagm[,i] <- fit } betagm } eps <- .Machine$double.eps^(2/3) call <- match.call() mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0) mf <- mf[c(1, m)] mf$drop.unused.levels <- TRUE mf[[1]] <- as.name("model.frame") mf <- eval(mf, sys.parent()) Terms <- attr(mf, "terms") xvars <- as.character(attr(Terms, "variables")) yvar <- attr(Terms, "response") if((yvar <- attr(Terms, "response")) > 0) xvars <- xvars[ - yvar] else xlevels <- NULL y <- model.extract(mf, "response") x <- model.matrix(Terms, mf) if(all(x[, 1] == 1)) x <- x[, -1] if(ncol(as.matrix(y)) != 2) stop("Response must be a right-censored survival object!") nobs <- nrow(y) nvar1 <- ncol(x) fit <- list(converged = FALSE, gehanonly=gehanonly, cov=cov, mcsize=mcsize) fit$call <- call fit$nobs <- nobs fit$censored <- nobs - sum(y[,2]) fit$niter <- 0 fit$printkm <- residue if(gehanonly) { z <- matrix(rexp(nobs*mcsize), ncol=mcsize) zdummy <- matrix(rep(1,nobs), ncol=1) beta <- lss.betag(x, y[,1], y[,2], zdummy) betastar <- lss.betag(x, y[,1], y[,2], z) fit$betag <- beta beta <- lss.betag(x, y[,1], y[,2], zdummy) betastar <- lss.betag(x, y[,1], y[,2], z) fit$cnames <- dimnames(x)[[2]] nvar <- ncol(x) bbar <- apply(betastar, 1, mean) tmp <- betastar - bbar fit$gehancov <- tmp %*% t(tmp)/(mcsize - 1) fit$gehansd <- sqrt(diag(fit$gehancov)) fit$gehanzvalue <- beta/fit$gehansd fit$gehanpvalue <- (1 - pnorm(abs(fit$gehanzvalue))) * 2 dimnames(fit$gehancov) <- list(fit$cnames,fit$cnames) if(trace) cat("\nbetag: ", format(beta), "\n\n") } gnet<-Enet.wls(x, y[,1], y[,2]) fit$enet <- gnet$beta fit$fit <- gnet$fit fit }
gkcov<-function(x,y,gk.sigmamu=taulc,...){ val<-.25*(gk.sigmamu(x+y,...)-gk.sigmamu(x-y,...)) val }
ldArgument<- function(obj, ...) { UseMethod("ldArgument") } ldArgument.HRMtree<- function(obj, J, ...) { g<- getGraph(obj) params<- getParams(obj) if (length(J)!=2) stop("The set J must contain only two elements") if (sum(J %in% get.vertex.attribute(g, "name", V(g)))<2) stop("Incorrect vertex set J") ep<- edge_names_along_path(obj, rt=J[1], id=J[2], edge_names = TRUE) s<- sum(params[ep]^2) ld<- pnorm(sqrt(s)/2) return(ld) } ldArgument.Tree<- function(obj, x, k_ratio, ...) { J<- names(which(x>0)) ld<- rep(0, length(J)) names(ld)<- J for(j in J) { x_up<- x x_down<- x dt<- 10^{-5} dtt<- dt repeat { x_up[j]<- x[j]+dt x_down[j]<- x[j]-dt ld[j]<- (stdf(obj, x_up, k_ratio ) - stdf(obj, x_down, k_ratio ))/(2*dt) if (ld[j]>0) { break } dt<- dt+dtt } } return(ld) }
setMethod("getvcov", signature(object = "cold"), function (object) { cov<-object@covariance cnames <- rownames(cov) r1<-nrow(cov) c1<-ncol(cov) if(all(is.na(match(cnames, "omega1"))) ) { cov } else if (!all(is.na(match(cnames, "omega1"))) && all(is.na(match(cnames, "omega2"))) ) { cov.aux<-cov[1:(r1-1),1:(c1-1)] cov.aux } else if (!all(is.na(match(cnames, "omega2"))) ) { cov.aux<-cov[1:(r1-2),1:(c1-2)] cov.aux } } )
repo_adapter_create_s3 <- function(name) { result <- repo_adapter_create_url(name) class(result) <- c("rsuite_repo_adapter_s3", class(result)) return(result) } repo_adapter_get_path.rsuite_repo_adapter_s3 <- function(repo_adapter, params, ix = NA) { url <- repo_adapter_get_path.rsuite_repo_adapter_url(repo_adapter, params, ix) assert(all(grepl("^https?://[\\w\\d\\._-]+\\.s3\\.amazonaws\\.com(/.*)?$", url, perl = TRUE)), paste0("Invalid url specified for %s repository in project PARAMETERS file.", " Amazon S3 url should have <schema>://<bucket>.s3.amazonaws.com[/<path>] form;", " Url does not have required form: %s"), repo_adapter$name, url) return(url) } repo_adapter_create_manager.rsuite_repo_adapter_s3 <- function(repo_adapter, ...) { dots <- list(...) if ("prj" %in% names(dots)) { prj <- dots$prj assert(!is.null(prj) && is_prj(prj), "rsuite_project expected for prj") dots$params <- prj$load_params() } if ("params" %in% names(dots)) { params <- dots$params assert(!is.null(params) && "rsuite_project_params" %in% class(params), "rsuite_project_params expected for params") assert("ix" %in% names(dots), paste0("Either prj/params and ix or url and rver must be provided to", " repo_adapter_start_management.rsuite_repo_adapter_s3")) ix <- dots$ix url <- repo_adapter_get_path.rsuite_repo_adapter_s3(repo_adapter, params, ix = ix) types <- c(params$pkgs_type, params$aux_pkgs_type) rver <- params$r_ver } else { assert(all(c("url", "rver") %in% names(dots)), paste0("Either prj/params and ix or url and rver must be provided to", " repo_adapter_start_management.rsuite_repo_adapter_s3")) url <- dots$url rver <- dots$rver if ("types" %in% names(dots)) { types <- dots$types assert(is.character(types) & length(types) > 0, "Non empty character(N) expected for types") exp_types <- unique(c("win.binary", "mac.binary", "binary", "source", .Platform$pkgType)) assert(all(types %in% exp_types), "Invalid types management requested. Supported types are %s", paste(exp_types, collapse = ", ")) } else { types <- .Platform$pkgType } } repo_manager <- repo_manager_s3_create(url, types, rver, dots$s3_profile) return(repo_manager) }
count_quasi_exts <- function(dat, quasi_thresh, ignore_pops_thresh = 5, duration = 1) { subpop_qe <- plyr::llply(dat, function(x) { plyr::laply(x, function(y) { conserved_pops <- which(y$A[1, ] > ignore_pops_thresh) out <- apply(y$A[, conserved_pops], 2, function(z) { temp <- is_quasi_ext(z, thresh = quasi_thresh, duration = duration)$first_qe temp }) out }) }) return(subpop_qe) }
ui_pca <- function() { ns <- NS("pca") tabPanel("PCA", value = "pca", splitLayout( verticalLayout( fluidRow( column(6,selectizeInput(ns("pca_xaxis"), label = "X axis:", choices = NULL)), column(6,selectizeInput(ns("pca_yaxis"), label = "Y axis:", choices = NULL))), plotOutput(ns("pca_plot"), width = "100%", height = "400px") ), plotOutput(ns("drivers_plot"), width = "100%", height = "auto"), cellWidths = c("40%", "60%") ) %>% shinyhelper::helper(type = "markdown", content = "pca_help") ) } server_pca <- function(id, selected_data, cluster_labels, cluster_colors) { moduleServer(id, function(input, output, session) { pca_data <- reactive({ df <- selected_data() stats::prcomp(df) }) observeEvent(pca_data(), { pca_res <- pca_data() pca_dims <- colnames(pca_res$x) updateSelectizeInput(session, "pca_xaxis", choices = pca_dims, selected = "PC1") updateSelectizeInput(session, "pca_yaxis", choices = pca_dims, selected = "PC2") }) output$pca_plot <- renderPlot({ req(input$pca_xaxis) req(input$pca_yaxis) pca_scatterplot(pca_data(), cluster_labels(), cluster_colors, input$pca_xaxis, input$pca_yaxis) }) output$drivers_plot <- renderPlot({ drivers_df <- pca_drivers_df(selected_data(), pca_data()) pca_driversplot(drivers_df) }, height = function() max(300, ncol(selected_data()) * 25)) }) }
stratifyvegdata<-function(x,sizes1, sizes2 = NULL, treeSel=NULL, spcodes=NULL, plotColumn="plot", speciesColumn = "species", abundanceColumn="abundance", size1Column = "size", size2Column = NULL, cumulative = FALSE, counts=FALSE, mergeSpecies=FALSE, verbose=FALSE) { treeData = as.data.frame(x) plotColumnId = which(names(treeData)==plotColumn) abundanceColumnId = which(names(treeData)==abundanceColumn) size1ColumnId = which(names(treeData)==size1Column) doublestratify = FALSE if(!is.null(size2Column) || (!is.null(sizes2))) { doublestratify = TRUE if(is.null(sizes2)) stop("sizes2 must be specified for double stratification") if(is.null(size2Column)) stop("size2Column must be specified for double stratification") size2ColumnId = which(names(treeData)==size2Column) } speciesColumnId = which(names(treeData)==speciesColumn) if(mergeSpecies) treeData[,speciesColumnId] = "allspecies" if(is.null(spcodes)) spcodes =sort(unique(treeData[,speciesColumnId])) if(!is.null(treeSel)) { treeData = treeData[treeSel,] } stratify<-function(treeDataPlot, sizes, spcodes=NULL, speciesColumnId, abundanceColumnId, sizeColumnId, cumulative=FALSE, counts=FALSE, verbose=FALSE) { if(is.null(spcodes)) spcodes = unique(treeData[,speciesColumnId]) nsp = length(spcodes) nstrata = length(sizes)-1 m = matrix(0,nrow=nsp, ncol=nstrata) rownames(m) = spcodes c1 = cut(treeDataPlot[,sizeColumnId], sizes, include.lowest = TRUE) if(sum(is.na(c1))>0) stop("Some values are not included within size classes. Revise size class definition") colnames(m) = levels(c1) c1 = as.numeric(c1) for(i in 1:nrow(treeDataPlot)) { isp = which(spcodes==treeDataPlot[i,speciesColumnId]) if(verbose) cat(paste(i,"_",isp,"_",c1[i],"_",m[isp, c1[i]], ": ", treeDataPlot[i,abundanceColumnId],"\n")) if(!cumulative) { if(!counts) m[isp, c1[i]] = m[isp,c1[i]]+ as.numeric(treeDataPlot[i,abundanceColumnId]) else m[isp,c1[i]] = m[isp,c1[i]]+1 } else { if(!counts) m[isp,1:c1[i]] = m[isp,1:c1[i]]+as.numeric(treeDataPlot[i,abundanceColumnId]) else m[isp,1:c1[i]] = m[isp,1:c1[i]]+1 } } return(m) } doublestratify<-function(treeDataPlot, sizes1, sizes2, spcodes=NULL, speciesColumnId, abundanceColumnId, size1ColumnId, size2ColumnId, cumulative=FALSE, counts=FALSE, verbose=FALSE) { if(is.null(spcodes)) spcodes = unique(treeData[,speciesColumnId]) nsp = length(spcodes) nstrata1 = length(sizes1)-1 nstrata2 = length(sizes2)-1 m = array(0,dim=c(nsp, nstrata1, nstrata2)) c1 = cut(treeDataPlot[,size1ColumnId], sizes1, include.lowest = TRUE) if(sum(is.na(c1))>0) stop("Some values are not included within size1 classes. Revise size1 class definition") c2 = cut(treeDataPlot[,size2ColumnId], sizes2, include.lowest = TRUE) if(sum(is.na(c2))>0) stop("Some values are not included within size2 classes. Revise size2 class definition") dimnames(m) = list(spcodes, levels(c1), levels(c2)) c1 = as.numeric(c1) c2 = as.numeric(c2) for(i in 1:nrow(treeDataPlot)) { if(verbose) cat(paste(i,"\n")) isp = which(spcodes==treeDataPlot[i,speciesColumnId]) if(!cumulative){ if(!counts) m[isp,c1[i],c2[i]] = m[isp,c1[i],c2[i]]+as.numeric(treeDataPlot[i,abundanceColumnId]) else m[isp,c1[i],c2[i]] = m[isp,c1[i],c2[i]]+1 } else { if(!counts) m[isp,1:c1[i],1:c2[i]] = m[isp,1:c1[i],1:c2[i]]+as.numeric(treeDataPlot[i,abundanceColumnId]) else m[isp,1:c1[i],1:c2[i]] = m[isp,1:c1[i],1:c2[i]]+1 } } return(m) } if(!is.null(size2Column)){ X = lapply(split(treeData,treeData[,plotColumnId]), FUN=doublestratify,sizes1=sizes1, sizes2 =sizes2, spcodes=spcodes, speciesColumnId = speciesColumnId, abundanceColumnId =abundanceColumnId, size1ColumnId=size1ColumnId,size2ColumnId=size2ColumnId, cumulative=cumulative, counts=counts, verbose=verbose) if(!cumulative) class(X)<-c("doublestratifiedvegdata","list") else class(X)<-c("CAS","list") } else { X = lapply(split(treeData,treeData[,plotColumnId]), FUN=stratify,sizes=sizes1, spcodes=spcodes, speciesColumnId = speciesColumnId, abundanceColumnId =abundanceColumnId, sizeColumnId=size1ColumnId, cumulative = cumulative, counts=counts, verbose=verbose) if(!cumulative) class(X)<-c("stratifiedvegdata","list") else class(X)<-c("CAP","list") } return(X) }
svc <- paws::timestreamquery() test_that("describe_endpoints", { expect_error(svc$describe_endpoints(), NA) })
read_server_directory1 <- function(dirs_or_files, sample_set_name = NULL, existing_sample_set_names = NULL, unique_sample_set_name = FALSE, include_base_dir = T, display_messages = TRUE, glob_files = FALSE) { new_sample_sets <- list() read_error_msg <- list(val_neg=NULL, val_pos=NULL) msg1 <- function(msg) { read_error_msg$val_neg <- msg } get_sampleset_name <- function(data_dir, my_set_name = sample_set_name) { if (is.null(my_set_name)) { if (isTRUE(glob_files)) { my_set_name <- "Server files" } else { my_set_name <- basename(data_dir) } } if (unique_sample_set_name) { counter <- 1 if (!is.null(existing_sample_set_names)) { while (paste(my_set_name, counter) %in% existing_sample_set_names) { counter <- counter + 1 } } my_set_name <- paste(my_set_name, counter) } my_set_name } file_infos <- file.info(dirs_or_files) file_sel <- !is.na(file_infos$isdir) & !file_infos$isdir if (any(file_sel)) { my_set_name <- get_sampleset_name("Server files") new_sample_sets[[my_set_name]] <- read_sample_data(rownames(file_infos)[file_sel], ext=NULL, is_files=TRUE) } if (any(!file_sel)) { for (data_dir in dirs_or_files[!file_sel]) { my_set_name <- get_sampleset_name(data_dir, sample_set_name) bad_files <- c() if (isTRUE(glob_files)) { new_sample_sets[[my_set_name]] <- read_sample_data(data_dir, ext=NULL, glob_files=TRUE) } else { dmessage("Reading files in ", data_dir) if (!dir.exists(data_dir)) { msg1(paste("Directory ", data_dir, "does not exist.")) next } if (length(list.files(data_dir)) == 0) { msg1(paste("No files in directory ", data_dir, ".")) next } n_files <- length(list.files(data_dir)) max_files <- getOption("pavian.maxFiles", 100) if (n_files > max_files) { msg1(paste("There are ",n_files," files in the directory, but the highest allowed number is ",max_files," files ", data_dir, " - please subdivide the data into smaller directories, or set the option 'pavian.maxFiles' to a higher number (e.g. 'options(pavian.maxFiles=250)').")) next } if (include_base_dir) { new_sample_sets[[my_set_name]] <- read_sample_data(data_dir, ext=NULL) } dirs <- grep("^\\.", list.dirs(data_dir, recursive = FALSE), invert = TRUE, value = TRUE) n_dirs <- length(dirs) max_dirs <- getOption("pavian.maxSubDirs", 10) if (n_dirs > max_dirs) { read_error_msg$val_neg <- c(read_error_msg$val_neg, paste("There are ",n_dirs," sub-directories in ", data_dir, " but the highest allowed number is ",max_dirs," - specify individual directories with reports one at a time to load data or set the option 'pavian.maxSubDirs' to a higher number (e.g. 'options(pavian.maxSubDirs=50)').")) } else if (length(dirs) > 0) { sub_dir_sets <- lapply(dirs, read_sample_data, ext=NULL) names(sub_dir_sets) <- paste0(my_set_name,"/",basename(dirs)) new_sample_sets <- c(new_sample_sets, sub_dir_sets) } } } } paste_last <- function(x, ..., collapse_last) { if (length(x) ==1) return(x) y <- paste(x[-length(x)], ...) paste(y, x[length(x)], sep=collapse_last) } sel_bad_sets <- sapply(new_sample_sets, function(x) is.null(x) || nrow(x) == 0) bad_files <- unlist(sapply(new_sample_sets, attr, "bad_files")) new_sample_sets <- new_sample_sets[!sel_bad_sets] if (length(new_sample_sets) > 0) { read_error_msg$val_pos <- sprintf("Added sample set%s <b>%s</b> with <b>%s</b> valid reports in total.", ifelse(length(new_sample_sets) == 1, "", "s"), paste_last(names(new_sample_sets), collapse="</b>, <b>", collapse_last="</b> and <b>"), sum(unlist(sapply(new_sample_sets, function(x) sum(x$FormatOK))))) } if (length(bad_files) > 0) { read_error_msg$val_neg <- c(read_error_msg$val_neg, sprintf("The following files did not conform the report format: <br/> - <b>%s</b>", paste(bad_files, collapse="</b><br/> - <b>"))) } if (isTRUE(display_messages)) { if (!is.null(read_error_msg$val_neg)) { warning(read_error_msg$val_neg) } if (!is.null(read_error_msg$val_pos)) { dmessage(read_error_msg$val_pos) } } return(list( sample_sets = new_sample_sets, error_msg = read_error_msg)) }
new_tibble <- function(x, ..., nrow = NULL, class = NULL, subclass = NULL) { if (is.null(class) && !is.null(subclass)) { deprecate_soft("2.0.0", "tibble::new_tibble(subclass = )", "new_tibble(class = )") class <- subclass } x <- unclass(x) if (!is.list(x)) { cnd_signal(error_new_tibble_must_be_list()) } if (!is.null(nrow)) { if (!is.numeric(nrow) || length(nrow) != 1 || nrow < 0 || !is_integerish(nrow, 1) || nrow >= 2147483648) { cnd_signal(error_new_tibble_nrow_must_be_nonnegative()) } nrow <- as.integer(nrow) } args <- attributes(x) if (is.null(args)) { args <- list() } new_attrs <- pairlist2(...) nms <- names(new_attrs) for (i in seq_along(nms)) { nm <- nms[[i]] if (nm == "") { next } args[[nm]] <- new_attrs[[i]] } if (length(x) == 0) { args[["names"]] <- character() } else if (is.null(args[["names"]])) { cnd_signal(error_names_must_be_non_null()) } if (is.null(class)) { class <- tibble_class_no_data_frame } else { class <- c(class[!class %in% tibble_class], tibble_class_no_data_frame) } slots <- c("x", "n", "class") args[slots] <- list(x, nrow, class) args[["row.names"]] <- NULL exec(new_data_frame, !!!args) } validate_tibble <- function(x) { check_minimal_names(x) check_valid_cols(unclass(x)) validate_nrow(names(x), col_lengths(x), vec_size(x)) x } cnd_signal_if <- function(x) { if (!is.null(x)) { cnd_signal(x) } } check_minimal <- function(name) { cnd_signal_if(cnd_names_non_null(name)) cnd_signal_if(cnd_names_non_na(name)) } check_minimal_names <- function(x) { check_minimal(names(x)) invisible(x) } col_lengths <- function(x) { map_int(x, vec_size) } validate_nrow <- function(names, lengths, nrow) { bad_len <- which(lengths != nrow) if (has_length(bad_len)) { cnd_signal(error_incompatible_size(nrow, names, lengths, "Requested with `nrow` argument")) } } tibble_class <- c("tbl_df", "tbl", "data.frame") tibble_class_no_data_frame <- c("tbl_df", "tbl") error_new_tibble_must_be_list <- function() { tibble_error("`x` must be a list.") } error_new_tibble_nrow_must_be_nonnegative <- function() { tibble_error("`nrow` must be a nonnegative whole number smaller than 2^31.") }
gdm_calc_deviance <- function(G, use.freqpatt, ind.group, p.xi.aj, pi.k, weights) { ll <- 0 for (gg in 1:G){ if ( ! use.freqpatt ){ ind.gg <- ind.group[[gg]] ll <- ll + sum( weights[ind.gg] * log( rowSums( p.xi.aj[ind.gg,] * matrix( pi.k[,gg], nrow=length(ind.gg), ncol=nrow(pi.k), byrow=TRUE ) ) ) ) } if ( use.freqpatt ){ if (G>1){ wgg <- weights[,gg] } if (G==1){ wgg <- weights } ll <- ll + sum( wgg * log( rowSums( p.xi.aj * matrix( pi.k[,gg], nrow=nrow(p.xi.aj), ncol=nrow(pi.k), byrow=TRUE ) ) ) ) } } dev <- -2*ll res <- list( ll=ll, dev=dev) return(res) }
makeTransparent<-function(someColor, alpha=100) { newColor<-col2rgb(someColor) apply(newColor, 2, function(curcoldata){ rgb(red=curcoldata[1], green=curcoldata[2], blue=curcoldata[3], alpha=alpha, maxColorValue=255)}) }
fget_A_RothC <- function(clay = 23.4) { if ((clay < 0) | (clay > 100)) stop("Invalid clay value. Must be >= 0 AND <= 100.") ks <- c(10,0.3,0.66,0.02,0) x <- 1.67 * (1.85 + 1.6 * exp(-0.0786 * clay)) B <- 0.46/(x + 1) H <- 0.54/(x + 1) ai3 <- B * ks ai4 <- H * ks A <- diag(-ks) A[3, ] <- A[3, ] + ai3 A[4, ] <- A[4, ] + ai4 A }
assign("identify.point", function(x,v="",...) { v <- x[[match(v,names(x))]] if(!is.null(v)) identify(x$x,x$y,v,...) else identify(x$x,x$y,...) })
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(y = c(1.08728092481538, 0.0420572471552261, 0.787502161306819, 0.512717751544676, 3.35376639535311, 0.204341510750309, -0.334930602487435, 0.80049208412789, -0.416177803375218, -0.777970346246018, 0.934996808181635, -0.678786709127108, 1.52621589791412, 0.5895781228122, -0.744496121210548, -1.99065153885627, 1.51286447692396, -0.750182409847851), A = c(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1), U = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c(\"a\", \"b\", \"c\"), class = \"factor\"), V = structure(c(1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L, 1L, 1L, 2L, 2L, 3L, 3L), .Label = c(\"a\", \"b\", \"c\"), class = \"factor\")), .Names = c(\"y\", \"A\", \"U\", \"V\"), terms = quote(y ~ A:U + A:V - 1), row.names = c(NA, 18L), class = \"data.frame\"), \"any\")")); .Internal(`is.vector`(argv[[1]], argv[[2]])); }, o=expected);
gc_heatmap <- function(object = NULL, algorithm_step = c('aligned','shifted','input'), substance_subset = NULL, legend_type = c('legend','colourbar'), samples_subset = NULL, type = c("binary","discrete"), threshold = NULL, label_size = NULL, show_legend = TRUE, main_title = NULL, label = c("y","xy","x","none")) { algorithm_step <- match.arg(algorithm_step) if (algorithm_step == "aligned") algorithm_step <- "aligned_rts" if (algorithm_step == "shifted") algorithm_step <- "linear_transformed_rts" if (algorithm_step == "input") algorithm_step <- "input_rts" if (is.null(threshold)) threshold <- object[["Logfile"]][["Call"]][["max_diff_peak2mean"]] type <- match.arg(type) legend_type <- match.arg(legend_type) label <- match.arg(label) rt_df <- object[['heatmap_input']][[algorithm_step]] rt_df[,'id'] <- as.character(rt_df[,'id']) if (is.null(label_size)) { lab_thresh <- c(20,40,60,80,100,120,140, Inf) lab_size <- c(12,10,8,8,6,5,4,4) samples_size <- nrow(rt_df) temp <- which(lab_thresh > samples_size) if (min(temp) == 1) { label_size <- lab_size[1] } else { label_size <- lab_size[min(temp) - 1] } } if (!is.null(substance_subset)) { rt_df <- rt_df[,c(1,substance_subset + 1)] } if (!is.null(samples_subset)) { if (is.character(samples_subset)) { rt_df <- rt_df[rt_df[,1] %in% samples_subset,] } else if (is.numeric(samples_subset)) { rt_df <- rt_df[samples_subset,] } } heat_matrix <- reshape2::melt(data = rt_df,id.vars = 'id') names(heat_matrix) <- c('id','substance','rt') heat_matrix[,'substance'] <- as.numeric(as.character(heat_matrix[,'substance'])) heat_matrix[,'diff'] <- (as.numeric(heat_matrix[,'rt']) - heat_matrix[,'substance']) heat_matrix['diff'][heat_matrix['rt'] == 0] <- 0 heat_matrix[,'id'] <- ordered( heat_matrix[,'id'], levels = as.factor(rt_df[,'id'])) heat_matrix[,'substance'] <- ordered( heat_matrix[,'substance'], levels = as.factor(colnames(rt_df)[2:ncol(rt_df)])) if (type == "binary") { heat_matrix['diff'][abs(heat_matrix['diff']) > threshold] <- 1 heat_matrix['diff'][abs(heat_matrix['diff']) < threshold] <- 0 } heat_matrix['diff'][heat_matrix['rt'] == 0] <- NA heat_matrix['substance'] <- as.factor(round(as.numeric(as.character(heat_matrix[['substance']])),digits = 2)) if (type == "binary") { if (max(heat_matrix['diff'],na.rm = T) == 0) { hm <- ggplot(heat_matrix, aes_string(x = 'substance', y = 'id',fill = 'diff'),colour = "Blue") hm <- hm + geom_tile(color = "transparent", size = 0.001) hm <- hm + scale_fill_gradientn(colours = 'blue',na.value = "white") hm <- hm + labs(x = "substance", y = "sample", title = ifelse(is.null(main_title),paste("No deviations exceeding a threshold of",as.character(threshold)),main_title)) hm <- hm + guides(fill = FALSE) } else { hm <- ggplot(heat_matrix, aes_string(x = 'substance', y = 'id',fill = 'diff')) hm <- hm + geom_tile(color = "transparent", size = 0.001) hm <- hm + scale_fill_continuous(low = "blue",high = "red",breaks = c(0,1),na.value = "white", guide = 'legend',name = paste('Deviation\n','>',as.character(threshold)),labels = c('NO','YES')) hm <- hm + labs(x = "substance", y = "sample", title = ifelse(is.null(main_title),paste("Deviation from substance mean retention time\n(Threshold = ",as.character(threshold),")"),main_title)) } } else { col_pal <- c(" r <- c(min(heat_matrix[["diff"]],na.rm = T),max(heat_matrix[["diff"]],na.rm = T)) hm <- ggplot(heat_matrix, aes_string(x = 'substance', y = 'id', fill = 'diff')) hm <- hm + geom_tile(color = "white", size = 0.01) hm <- hm + scale_fill_gradientn(colours = col_pal,guide = "legend",name = 'Deviation',na.value = "white", limits = c(-round(max(abs(r)),2) - 0.01,round(max(abs(r)),2) + 0.01) ) hm <- hm + labs(x = "substance", y = "sample", title = ifelse(is.null(main_title),"Variation of retention times",main_title)) } hm <- hm + theme(plot.title = element_text(hjust = 0.5,vjust = 1,size = 10,face = 'bold')) theme(axis.text.x = element_text(size = label_size, hjust = 0.5,angle = 90), axis.ticks.y = element_line(size = 0.3, colour = "grey60"), axis.ticks.x = element_line(size = 0.3, colour = "grey60"), axis.text.y = element_text(size = label_size,hjust = 0.5)) if (label == "xy") { hm <- hm + theme(axis.title.x = element_text(size = 10), axis.title.y = element_text(size = 10), axis.text.x = element_text(size = label_size, vjust = 0.5,angle = 90), axis.ticks.y = element_line(size = 0.3, colour = "grey60"), axis.ticks.x = element_line(size = 0.3, colour = "grey60"), axis.text.y = element_text(size = label_size,hjust = 0.5)) } else if (label == "y") { hm <- hm + theme(axis.title.x = element_text(size = 10), axis.title.y = element_text(size = 10), axis.text.x = element_blank(), axis.ticks.y = element_line(size = 0.3, colour = "grey60"), axis.ticks.x = element_line(size = 0.3, colour = "grey60"), axis.text.y = element_text(size = label_size,hjust = 0.5)) } else if (label == "x") { hm <- hm + theme(axis.title.x = element_text(size = 10), axis.title.y = element_text(size = 10), axis.text.x = element_text(size = label_size, vjust = 0.5,angle = 90), axis.ticks.y = element_line(size = 0.3, colour = "grey60"), axis.ticks.x = element_line(size = 0.3, colour = "grey60"), axis.text.y = element_blank()) } else if (label == "none") { hm <- hm + theme(axis.title.x = element_text(size = 10), axis.title.y = element_text(size = 10), axis.text.x = element_blank(), axis.ticks.y = element_line(size = 0.3, colour = "grey40"), axis.ticks.x = element_line(size = 0.3, colour = "grey40"), axis.text.y = element_blank()) } hm <- hm + theme(plot.background = element_rect(fill = "grey95")) y <- 1:nrow(rt_df) + 0.5 x <- rep(0,nrow(rt_df)) yend <- 1:nrow(rt_df) + 0.5 xend <- rep(ncol(rt_df),nrow(rt_df)) my.lines <- data.frame(y = y,x = x,xend = xend, yend = yend) hm <- hm + geom_segment(data = my.lines, aes(x,y,xend = xend, yend = yend),color = "grey", size = 0.35,show.legend = FALSE, inherit.aes = F) y <- rep(0,ncol(rt_df)) x <- 1:ncol(rt_df) + 0.5 xend <- 1:ncol(rt_df) + 0.5 yend <- rep(nrow(rt_df) + 0.5,ncol(rt_df)) my.lines <- data.frame(y = y,x = x, xend = xend,yend = yend) hm <- hm + geom_segment(data = my.lines, aes(x,y,xend = xend, yend = yend),color = "grey", size = 0.35,show.legend = FALSE, inherit.aes = F) if (is.null(label)) { if ((!is.null(substance_subset) & ncol(rt_df) < 151) || ncol(rt_df) < 151 ) { hm <- hm + theme(axis.text.x = element_text(size = label_size, vjust = 0.5,angle = 90), axis.ticks.y = element_line(size = 0.3, colour = "grey60"), axis.ticks.x = element_line(size = 0.3, colour = "grey60"), axis.text.y = element_text(size = label_size,hjust = 0.5)) } } if (!show_legend) hm <- hm + theme(legend.position = "none") return(hm) }
boolSkip=F test_that("Check 26.1 - test deeganPackelIndex4Vector Holler & Illing 6.3.3 example",{ if(boolSkip){ skip("Test was skipped") } v=weightedVotingGameVector(n=5, w=c(35,20,15,15,15),q=51) dp=deeganPackelIndex(v) expect_equal(dp,c(18/60,9/60,11/60,11/60,11/60)) })
rescale_weights <- function(data, group, probability_weights, nest = FALSE) { if (inherits(group, "formula")) { group <- all.vars(group) } weight_missings <- which(is.na(data[[probability_weights]])) weight_non_na <- which(!is.na(data[[probability_weights]])) if (length(weight_missings) > 0) { data_tmp <- data[weight_non_na, ] } else { data_tmp <- data } data_tmp$.bamboozled <- 1:nrow(data_tmp) if (nest && length(group) < 2) { warning(insight::format_message(sprintf("Only one group variable selected, no nested structure possible. Rescaling weights for grout '%s' now.", group)), call. = FALSE) nest <- FALSE } if (nest) { out <- .rescale_weights_nested(data_tmp, group, probability_weights, nrow(data), weight_non_na) } else { out <- lapply(group, function(i) { x <- .rescale_weights(data_tmp, i, probability_weights, nrow(data), weight_non_na) if (length(group) > 1) { colnames(x) <- sprintf(c("pweight_a_%s", "pweight_b_%s"), i) } x }) } do.call(cbind, list(data, out)) } .rescale_weights <- function(x, group, probability_weights, n, weight_non_na) { design_weights <- .data_frame( group = sort(unique(x[[group]])), sum_weights_by_group = tapply(x[[probability_weights]], as.factor(x[[group]]), sum), sum_squared_weights_by_group = tapply(x[[probability_weights]]^2, as.factor(x[[group]]), sum), n_per_group = as.vector(table(x[[group]])) ) colnames(design_weights)[1] <- group x <- merge(x, design_weights, by = group, sort = FALSE) x <- x[order(x$.bamboozled), ] x$.bamboozled <- NULL w_a <- x[[probability_weights]] * x$n_per_group / x$sum_weights_by_group w_b <- x[[probability_weights]] * x$sum_weights_by_group / x$sum_squared_weights_by_group out <- data.frame( pweights_a = rep(as.numeric(NA), times = n), pweights_b = rep(as.numeric(NA), times = n) ) out$pweights_a[weight_non_na] <- w_a out$pweights_b[weight_non_na] <- w_b out } .rescale_weights_nested <- function(x, group, probability_weights, n, weight_non_na) { groups <- expand.grid(lapply(group, function(i) sort(unique(x[[i]])))) colnames(groups) <- group design_weights <- cbind( groups, .data_frame( sum_weights_by_group = unlist(as.list(tapply(x[[probability_weights]], lapply(group, function(i) as.factor(x[[i]])), sum))), sum_squared_weights_by_group = unlist(as.list(tapply(x[[probability_weights]]^2, lapply(group, function(i) as.factor(x[[i]])), sum))), n_per_group = unlist(as.list(table(x[, group]))) ) ) x <- merge(x, design_weights, by = group, sort = FALSE) x <- x[order(x$.bamboozled), ] x$.bamboozled <- NULL w_a <- x[[probability_weights]] * x$n_per_group / x$sum_weights_by_group w_b <- x[[probability_weights]] * x$sum_weights_by_group / x$sum_squared_weights_by_group out <- data.frame( pweights_a = rep(as.numeric(NA), times = n), pweights_b = rep(as.numeric(NA), times = n) ) out$pweights_a[weight_non_na] <- w_a out$pweights_b[weight_non_na] <- w_b out }
(colorset = c('Red','Green', 'Blue')) set.seed(1234) tshirts = sample(colorset, size=50, replace=T, prob=c(.5, .3,.2)) table(tshirts) prop.table(table(tshirts)) class(tshirts) summary(tshirts) FactorTshirts = factor(tshirts, ordered=F) FactorTshirts class(FactorTshirts) summary(FactorTshirts) likertScale = c('Excellent','Good','Satisfactory','Poor') feedback = sample(likertScale, size=50, replace=T, prob=c(.4, .3,.2,.1)) feedback summary(feedback) table(feedback) barplot(table(feedback)) FactorFeedback = factor(feedback, ordered=T, levels = c('Excellent', 'Good','Satisfactory','Poor')) barplot(table(FactorFeedback)) summary(FactorFeedback)
svec.irf <- irf(svec, response = "U", n.ahead = 48, boot = TRUE) svec.irf plot(svec.irf)
source(testthat::test_path("test_helpers.R")) data(cells, package = "modeldata") cells$case <- cells$class <- NULL cells <- as.data.frame(scale(cells)) split <- seq.int(1, 2019, by = 10) tr <- cells[-split, ] te <- cells[ split, ] test_that("step_pca_sparse_bayes", { skip_if_not_installed("VBsparsePCA") rec <- recipe(~ ., data = tr) %>% step_pca_sparse_bayes( all_predictors(), num_comp = 4, prior_slab_dispersion = 1/2, prior_mixture_threshold = 1/15 ) %>% prep() direct_mod <- VBsparsePCA::VBsparsePCA(as.matrix(tr), lambda = 1/2, r = 4, threshold = 1/15) direct_coef <- svd(direct_mod$loadings)$u embed_coef <- rec$steps[[1]]$res vars <- rownames(embed_coef) dimnames(embed_coef) <- NULL expect_equal(abs(direct_coef), abs(embed_coef), tolerance = 0.1) tidy_coef <- tidy(rec, number = 1) expect_equal( tidy_coef$value[tidy_coef$terms == "angle_ch_1" & tidy_coef$component == "PC1"], embed_coef[which(vars == "angle_ch_1"), 1] ) expect_equal( tidy_coef$value[tidy_coef$terms == "total_inten_ch_3" & tidy_coef$component == "PC3"], embed_coef[which(vars == "total_inten_ch_3"), 3] ) expect_snapshot(print(rec)) }) test_that("step_pca_sparse", { skip_if_not_installed("irlba") rec <- recipe(~ ., data = tr) %>% step_pca_sparse( all_predictors(), num_comp = 4, predictor_prop = 1/2 ) %>% prep() direct_mod <- irlba::ssvd(as.matrix(tr), k = 4, n = ncol(tr)/2) direct_coef <- direct_mod$v embed_coef <- rec$steps[[1]]$res vars <- rownames(embed_coef) dimnames(embed_coef) <- NULL dimnames(direct_coef) <- NULL expect_equal(abs(direct_coef), abs(embed_coef), tolerance = 0.1) tidy_coef <- tidy(rec, number = 1) expect_equal( tidy_coef$value[tidy_coef$terms == "angle_ch_1" & tidy_coef$component == "PC1"], embed_coef[which(vars == "angle_ch_1"), 1] ) expect_equal( tidy_coef$value[tidy_coef$terms == "total_inten_ch_3" & tidy_coef$component == "PC3"], embed_coef[which(vars == "total_inten_ch_3"), 3] ) expect_snapshot(print(rec)) }) test_that("empty selections", { data(ad_data, package = "modeldata") expect_error( rec <- recipe(Class ~ Genotype + tau, data = ad_data) %>% step_pca_sparse(starts_with("potato")) %>% prep(), regexp = NA ) expect_equal( bake(rec, new_data = NULL), ad_data %>% select(Genotype, tau, Class) ) expect_error( rec <- recipe(Class ~ Genotype + tau, data = ad_data) %>% step_pca_sparse_bayes(starts_with("potato")) %>% prep(), regexp = NA ) expect_equal( bake(rec, new_data = NULL), ad_data %>% select(Genotype, tau, Class) ) })
plot_roc_data <- function(roc_res) { n_method <- length(unique(roc_res$Methods)) n_group <- length(unique(roc_res$Groups)) roc_res_df <- data.frame(Specificity= numeric(0), Sensitivity= numeric(0), Group = character(0), AUC = numeric(0), Method = character(0)) for (i in 1:n_method) { for (j in 1:n_group) { temp_data_1 <- data.frame(Specificity=roc_res$Specificity[[i]][j], Sensitivity=roc_res$Sensitivity[[i]][j], Group=unique(roc_res$Groups)[j], AUC=roc_res$AUC[[i]][j], Method = unique(roc_res$Methods)[i]) colnames(temp_data_1) <- c("Specificity", "Sensitivity", "Group", "AUC", "Method") roc_res_df <- rbind(roc_res_df, temp_data_1) } temp_data_2 <- data.frame(Specificity=roc_res$Specificity[[i]][n_group+1], Sensitivity=roc_res$Sensitivity[[i]][n_group+1], Group= "Macro", AUC=roc_res$AUC[[i]][n_group+1], Method = unique(roc_res$Methods)[i]) temp_data_3 <- data.frame(Specificity=roc_res$Specificity[[i]][n_group+2], Sensitivity=roc_res$Sensitivity[[i]][n_group+2], Group= "Micro", AUC=roc_res$AUC[[i]][n_group+2], Method = unique(roc_res$Methods)[i]) colnames(temp_data_2) <- c("Specificity", "Sensitivity", "Group", "AUC", "Method") colnames(temp_data_3) <- c("Specificity", "Sensitivity", "Group", "AUC", "Method") roc_res_df <- rbind(roc_res_df, temp_data_2) roc_res_df <- rbind(roc_res_df, temp_data_3) } return(roc_res_df) }
has_color <- function() { num_ansi_colors() > 1L } num_colors <- function(forget = FALSE) { cray_opt_num <- getOption("crayon.colors", NULL) if (!is.null(cray_opt_num)) return(as.integer(cray_opt_num)) num_ansi_colors() }
group_center <- function(x, grp) { grp <- as.numeric(as.factor(grp)) return(x - tapply(x, grp, mean, na.rm = TRUE)[grp]) }
tam_pv_mcmc_proposal_theta <- function(theta, nstud, variance, adj_MH, D, G, group_index) { nstud <- nrow(theta) theta_new <- matrix( NA, nrow=nstud, ncol=D) for (gg in 1:G){ ind_gg <- group_index[[gg]] nstud_gg <- attr( group_index, "N_groups")[gg] variance_gg <- variance[[gg]] mean_gg <- rep(0, D ) samp_values <- matrix( CDM::CDM_rmvnorm( nstud_gg, mean=mean_gg, sigma=variance_gg ), ncol=D ) theta_new[ind_gg,] <- theta[ind_gg,] + adj_MH[ind_gg] * samp_values } return(theta_new) }
NDVI <- function(spct, imager = "LandsatOLI", wb.trim = FALSE) { if (is.generic_mspct(spct)) { msaply(spct, .fun = NDVI, imager = imager, wb.trim = wb.trim) } else if (is.reflector_spct(spct) || is.object_spct(spct)) { Red.band <- Red(std = imager) NIR.band <- NIR(std = imager) if (wl_min(spct) > wl_min(Red.band) || wl_max(spct) < wl_max(NIR.band)) { NA_real_ } else { Rfr.Red <- as.numeric(reflectance(spct, Red.band)) Rfr.NIR <- as.numeric(reflectance(spct, NIR.band)) (Rfr.NIR - Rfr.Red) / (Rfr.NIR + Rfr.Red) } } else { warning("'NDVI' is not defined for ", class(spct)) NA_real_ } }
rm_determine_fixed_tau_parameters <- function( K, maxK, VV, tau.item.fixed=NULL, val=99) { if ( min(maxK) < K ){ for (vv in 1:VV){ K.vv <- maxK[vv] if ( K.vv < K ){ for (zz in (K.vv+1):K ){ d1 <- data.frame( "item"=vv, "categ"=zz, "val"=val) tau.item.fixed <- rbind( tau.item.fixed, d1 ) } } } tau.item.fixed <- as.matrix(tau.item.fixed ) } return(tau.item.fixed) }
feglmControl <- function(dev.tol = 1.0e-08, center.tol = 1.0e-05, iter.max = 25L, limit = 10L, trace = FALSE, drop.pc = TRUE, conv.tol = NULL, rho.tol = NULL, pseudo.tol = NULL, step.tol = NULL) { if (!is.null(conv.tol)) { warning("'conv.tol' is deprecated;", call. = FALSE) } if (!is.null(rho.tol)) { warning("'rho.tol' is deprecated;", call. = FALSE) } if (!is.null(pseudo.tol)) { warning("'pseudo.tol' is deprecated; please use 'center.tol' instead.", call. = FALSE) center.tol <- pseudo.tol } if (!is.null(step.tol)) { warning("'step.tol' is deprecated;", call. = FALSE) } if (dev.tol <= 0.0 || center.tol <= 0.0) { stop("All tolerance paramerters should be greater than zero.", call. = FALSE) } iter.max <- as.integer(iter.max) if (iter.max < 1L) { stop("Maximum number of iterations should be at least one.", call. = FALSE) } limit <- as.integer(limit) if (limit < 1L) { stop("Maximum number of iterations should be at least one.", call. = FALSE) } list(dev.tol = dev.tol, center.tol = center.tol, iter.max = iter.max, limit = limit, trace = as.logical(trace), drop.pc = as.logical(drop.pc)) } feglm.control <- function(...) { .Deprecated("feglmControl") do.call(feglmControl, list(...)) }
material_text_box <- function(input_id, label, value = "", color = NULL, icon = NULL){ if (!is.null(color)) { if (!is.null(icon)) { icon_style_color <- paste0( " color: ", color, "; }" ) } else { icon_style_color <- "" } text_box_style <- shiny::tagList( shiny::tags$head( shiny::tags$style( paste0( " color: ", color, "; } border-bottom: 1px solid ", color, "; box-shadow: 0 1px 0 0 ", color, "; } ", icon_style_color ) ) ) ) } else { text_box_style <- shiny::tags$div() } if (!is.null(icon)) { text_box_icon <- shiny::tags$i(class = "material-icons prefix", icon) } else { text_box_icon <- shiny::tags$div() } create_material_object( js_file = "shiny-material-text-box.js", material_tag_list = shiny::tagList( shiny::tags$div( class = "input-field", id = paste0(input_id, "_text_box"), text_box_icon, shiny::tags$input( id = input_id, type = "text", class = "validate", value = value ), shiny::tags$label( `for` = input_id, label ) ), text_box_style ) ) }
laymanMetrics <- function(x,y){ out <- list() metrics <- double(length=6) names(metrics) <- c("dY_range","dX_range", "TA","CD","NND","SDNND") metrics[1] <- max(y) - min(y) metrics[2] <- max(x) - min(x) hull <- siberConvexhull(x,y) metrics[3] <- hull$TA mean_y <- mean(y) mean_x <- mean(x) metrics[4] <- mean( ( (mean_x - x)^2 + (mean_y - y)^2 ) ^ 0.5 ) NNDs <- numeric(length(x)) for (j in 1:length(x)){ tmp <- ( (x[j] - x)^2 + (y[j] - y)^2 ) ^ 0.5 tmp[j] <- max(tmp) NNDs[j] <- min(tmp) } metrics[5] <- mean(NNDs) metrics[6] <- stats::sd(NNDs) out$metrics <- metrics out$hull <- hull return(out) }
group_nest_impl <- function(.tbl, .key, keep = FALSE){ mutate(group_keys(.tbl), !!.key := group_split(.tbl, .keep = keep)) } group_nest <- function(.tbl, ..., .key = "data", keep = FALSE){ lifecycle::signal_stage("experimental", "group_nest()") UseMethod("group_nest") } group_nest.data.frame <- function(.tbl, ..., .key = "data", keep = FALSE) { if (dots_n(...)) { group_nest_impl(group_by(.tbl, ...), .key = .key, keep = keep) } else { tibble(!!.key := list(.tbl)) } } group_nest.grouped_df <- function(.tbl, ..., .key = "data", keep = FALSE) { if (dots_n(...)) { warn("... is ignored in group_nest(<grouped_df>), please use group_by(..., .add = TRUE) %>% group_nest()") } group_nest_impl(.tbl, .key = .key, keep = keep) }
bh=function(p) { q=p; q[!is.na(p)]=p.adjust(pmin(p[!is.na(p)],1),method="fdr"); q } bfc=function(p) min(p,na.rm=T)*sum(!is.na(p)) logistic=function(g) 1/(1+exp(-g)) robustSolve=function(si, eigenThreshold=0.01){ svdSigma=eigen(si) svdSigma$values=pmax(svdSigma$values,eigenThreshold) svdSigma$vectors %*% diag(1/svdSigma$values) %*% t(svdSigma$vectors) } fisherCombined=function(p) pchisq( -2*sum(log(p),na.rm=T), df=2*sum(!is.na(p)), lower.tail = F) pqplotHelper=function(p, ...) qqplot(-log10(runif(length(p))), -log10(p), pch=16, ...) pqplot=function(p, ...) { pqplotHelper(p); abline(0,1) } multiqq=function(pvalues) { punif=-log10(runif(max(sapply(pvalues,length)))) df=do.call(rbind, foreach( i=seq_len(length(pvalues))) %do% { df=as.data.frame( qqplot(punif[1:length(pvalues[[i]])], -log10(pvalues[[i]]), plot.it=F) ) df$group=names(pvalues)[i] df } ) df$group=factor(df$group, names(pvalues)) ggplot(df, aes(x,y,col=group)) + geom_point() + geom_abline(intercept=0,slope=1) + theme_bw(base_size=18) + xlab("Expected -log10(p)") + ylab("Observed -log10(p)") } get_intron_meta=function(introns){ intron_meta=do.call(rbind,strsplit(introns,":")) colnames(intron_meta)=c("chr","start","end","clu") intron_meta=as.data.frame(intron_meta,stringsAsFactors = F) intron_meta$start=as.numeric(intron_meta$start) intron_meta$end=as.numeric(intron_meta$end) intron_meta$middle=.5*(intron_meta$start+intron_meta$end) intron_meta } mahalanobis_outlier=function(x) { ei=eigen(cov(x)) if (any(ei$values<=0.0)) return(numeric(nrow(x))+1) prec=ei$vectors %*% diag(1/ei$values) %*% t(ei$vectors) mah_dist=mahalanobis( x, colMeans(x), prec, inverted=T ) pchisq(mah_dist, df=ncol(x), lower.tail=F) * nrow(x) } sanitize_simplex=function(x, eps=1e-6) { x[x<eps]=eps x[x>(1.0-eps)]=(1.0-eps) x/sum(x) } map_clusters_to_genes=function(intron_meta, exons_table) { gene_df=foreach (chr=sort(unique(intron_meta$chr)), .combine=rbind) %dopar% { intron_chr=intron_meta[ intron_meta$chr==chr, ] exons_chr=exons_table[exons_table$chr==chr, ] exons_chr$temp=exons_chr$start intron_chr$temp=intron_chr$end three_prime_matches=inner_join( intron_chr, exons_chr, by="temp") exons_chr$temp=exons_chr$end intron_chr$temp=intron_chr$start five_prime_matches=inner_join( intron_chr, exons_chr, by="temp") all_matches=rbind(three_prime_matches, five_prime_matches)[ , c("clu", "gene_name")] all_matches=all_matches[!duplicated(all_matches),] if (nrow(all_matches)==0) return(NULL) all_matches$clu=paste(chr,all_matches$clu,sep=':') all_matches } clu_df=gene_df %>% group_by(clu) %>% summarize(genes=paste(gene_name, collapse = ",")) class(clu_df)="data.frame" clu_df } add_chr=function(chrs) if (!grepl("chr",chrs[1])) paste0("chr",chrs) else chrs
prettymap <- function(plotexpression, oma=c(0, 0, 0, 0), mai=c(0, 0, 0, 0), drawbox=FALSE, box.lwd=1, drawscale=TRUE, scale.pos="bottomleft", scale.htin=0.1, scale.widthhint=0.25, scale.unitcategory="metric", scale.style="bar", scale.bar.cols=c("black", "white"), scale.lwd=1, scale.linecol="black", scale.padin=c(0.15, 0.15), scale.labelpadin=0.08, scale.label.cex=0.8, scale.label.col="black", scale.plotunit=NULL, scale.plotepsg=NULL, scale.tick.cex=0.8, drawarrow=FALSE, arrow.pos="topright", arrow.scale=1, arrow.padin=c(0.15, 0.15), arrow.lwd=1, arrow.cols=c("white", "black"), arrow.border="black", arrow.text.col="black", title=NULL, ...) { prevpars <- graphics::par(oma=oma, mai=mai, ...) tryCatch(expr={ force(plotexpression) if(drawbox) graphics::box(lwd=box.lwd) if(drawscale) addscalebar(plotunit=scale.plotunit, pos=scale.pos, htin=scale.htin, widthhint=scale.widthhint, unitcategory=scale.unitcategory, style=scale.style, bar.cols=scale.bar.cols, lwd=scale.lwd, linecol=scale.linecol, padin=scale.padin, labelpadin=scale.labelpadin, label.cex=scale.label.cex, label.col=scale.label.col, plotepsg=scale.plotepsg, tick.cex=scale.tick.cex) if(drawarrow) addnortharrow(pos=arrow.pos, padin=arrow.padin, scale=arrow.scale, lwd=arrow.lwd, cols=arrow.cols, border=arrow.border, text.col=arrow.text.col) }, error=function(e) { message(paste("Error occured while plotting: ", e)) }, finally={graphics::par(prevpars)}) if(!is.null(title)) { prevpars <- graphics::par(mar=c(0,0,1,0)) graphics::title(title) graphics::par(prevpars) } }
calculateIIF <- function(A = rep(1, length(B)), B, C = rep(0, length(B)), theta, D = 1.7) { if(!is.numeric(theta)) stop("'theta' must be a numeric vector.") if(!is.numeric(A)) stop("'A' must be a numeric vector.") if(!is.numeric(B)) stop("'B' must be a numeric vector.") if(!is.numeric(C)) stop("'C' must be a numeric vector.") if(length(A) != length(B) || length(A) != length(C)) stop("'A', 'B', and 'C' must be of the same length.") nP <- length(theta) Am <- rep(D, nP) %o% A Cm <- rep(1, nP) %o% C P <- Cm + (1 - Cm) / (1 + exp(- Am * outer(theta, B, "-"))) IIFs <- t(Am^2 * ((P - Cm)/(1 - Cm))^2 * (1 - P)/P) colnames(IIFs) <- paste0("theta=", theta) return(IIFs) }
runmed <- function(x, k, endrule = c("median","keep","constant"), algorithm = NULL, print.level = 0) { n <- as.integer(length(x)) if(is.na(n)) stop("invalid value of length(x)") k <- as.integer(k) if(is.na(k)) stop("invalid value of 'k'") if(k < 0L) stop("'k' must be positive") if(k %% 2L == 0L) warning(gettextf("'k' must be odd! Changing 'k' to %d", k <- as.integer(1+ 2*(k %/% 2))), domain = NA) if(n == 0L) { x <- double(); attr(x, "k") <- k return(x) } if (k > n) warning(gettextf("'k' is bigger than 'n'! Changing 'k' to %d", k <- as.integer(1+ 2*((n - 1)%/% 2))), domain = NA) algorithm <- if(missing(algorithm)) { if(k < 20L || n < 300L) "Stuetzle" else "Turlach" } else match.arg(algorithm, c("Stuetzle", "Turlach")) endrule <- match.arg(endrule) iend <- switch(endrule, "median" =, "keep" = 0L, "constant" = 1L) if(print.level) cat("runmed(*, endrule=", endrule,", algorithm=",algorithm, ", iend=",iend,")\n") res <- switch(algorithm, Turlach = .Call(C_runmed, as.double(x), 1, k, iend, print.level), Stuetzle = .Call(C_runmed, as.double(x), 0, k, iend, print.level)) if(endrule == "median") res <- smoothEnds(res, k = k) attr(res,"k") <- k res } smoothEnds <- function(y, k = 3) { med3 <- function(a,b,c) { m <- b if (a < b) { if (c < b) m <- if (a >= c) a else c } else { if (c > b) m <- if (a <= c) a else c } m } med.odd <- function(x, n = length(x)) { half <- (n + 1) %/% 2 sort(x, partial = half)[half] } k <- as.integer(k) if (k < 0L || k %% 2L == 0L) stop("bandwidth 'k' must be >= 1 and odd!") k <- k %/% 2L if (k < 1L) return(y) n <- length(y) sm <- y if (k >= 2L) { sm [2L] <- med3(y[1L],y [2L], y [3L]) sm[n-1L] <- med3(y[n],y[n-1L],y[n-2L]) if (k >= 3L) { for (i in 3:k) { j <- 2L*i - 1L sm [i] <- med.odd( y[1L:j] , j) sm[n-i+1L] <- med.odd( y[(n+1L-j):n], j) } } } sm[1L] <- med3(y[1L], sm [2L] , 3*sm [2L] - 2*sm [3L]) sm[n] <- med3(y[n], sm[n-1L], 3*sm[n-1L] - 2*sm[n-2L]) sm }
setMethod('compare', signature(numerator = "BFlinearModel", denominator = "missing", data = "data.frame"), function(numerator, data, ...){ if(!.hasSlot(numerator,"analysis")) numerator@analysis = list() old.numerator = numerator rscaleFixed = rpriorValues("allNways","fixed",numerator@prior$rscale[['fixed']]) rscaleRandom = rpriorValues("allNways","random",numerator@prior$rscale[['random']]) rscaleCont = rpriorValues("regression",,numerator@prior$rscale[['continuous']]) rscaleEffects = numerator@prior$rscale[['effects']] formula = formula(numerator@identifier$formula) checkFormula(formula, data, analysis = "lm") factors = fmlaFactors(formula, data)[-1] nFactors = length(factors) dataTypes = numerator@dataTypes relevantDataTypes = dataTypes[names(dataTypes) %in% factors] dv = stringFromFormula(formula[[2]]) dv = composeTerm(dv) if(numerator@type != "JZS") stop("Unknown model type.") denominator = BFlinearModel(type = "JZS", identifier = list(formula = paste(dv,"~ 1")), prior=list(), dataTypes = dataTypes, shortName = paste("Intercept only",sep=""), longName = paste("Intercept only", sep=""), analysis = list(method="trivial") ) bf <- list(bf=NA, properror=NA, method=NA) BFtry({ if( nFactors == 0 ){ numerator = denominator bf = list(bf = 0, properror = 0, method = "trivial") }else if(all(relevantDataTypes == "continuous")){ reg = summary(lm(formula,data=data)) R2 = reg[[8]] N = nrow(data) p = length(attr(terms(formula),"term.labels")) if( any( names( rscaleEffects ) %in% attr(terms(formula),"term.labels")) ){ stop("Continuous prior settings set from rscaleEffects; use rscaleCont instead.") } bf = linearReg.R2stat(N,p,R2,rscale=rscaleCont) }else if(all(relevantDataTypes != "continuous")){ freqs <- table(data[[factors[1]]]) if(all(freqs==1)) stop("not enough observations") nLvls <- length(freqs) rscale = ifelse(dataTypes[factors[1]] == "fixed", rscaleFixed, rscaleRandom) if(length(rscaleEffects)>0) if(!is.na(rscaleEffects[factors[1]])) rscale = rscaleEffects[factors[1]] if( (nFactors==1) & (nLvls==2) ){ t = t.test(formula = formula,data=data, var.eq=TRUE)$statistic bf = ttest.tstat(t=t, n1=freqs[1], n2=freqs[2],rscale=rscale*sqrt(2)) }else if( (nFactors==1) & (nLvls>2) & all(freqs==freqs[1])){ Fstat = summary(aov(formula, data=data))[[1]]["F value"][1,] J = length(freqs) N = freqs[1] bf = oneWayAOV.Fstat(Fstat, N, J, rscale) }else if( (nFactors > 1) | ( (nFactors == 1) & any(freqs!=freqs[1]))){ bf = nWayFormula(formula=formula, data = data, dataTypes = dataTypes, rscaleFixed = rscaleFixed, rscaleRandom = rscaleRandom, rscaleEffects = rscaleEffects, posterior = FALSE, ...) }else{ stop("Too few levels in independent variable: ",factors[1]) } }else{ bf = nWayFormula(formula=formula, data = data, dataTypes = dataTypes, rscaleFixed = rscaleFixed, rscaleRandom = rscaleRandom, rscaleCont = rscaleCont, rscaleEffects = rscaleEffects, posterior = FALSE, ...) } }) numerator@analysis = as.list(bf) numerator = combineModels(list(numerator,old.numerator)) bf_df = data.frame(bf = numerator@analysis[['bf']], error = numerator@analysis[['properror']], time = date(), code = randomString(1) ) rownames(bf_df) <- numerator@shortName newBF = BFBayesFactor(numerator = list(numerator), denominator = denominator, data = data, bayesFactor = bf_df ) return(newBF) } )
Transpose_graph <- function(vgraph) { edges <- get.edgelist(vgraph, names=F) edges <- edges[,2:1] vgraph <- delete.edges(vgraph, E(vgraph)) vgraph <- add.edges(vgraph, t(edges)) return(vgraph) }
context("Test for lets.presab.birds") path.Ramphastos <- system.file("extdata", package = "letsR") test_that("lets.presab.birds return a correct PresenceAbsence object", { skip_on_cran() PAM <- lets.presab.birds(path.Ramphastos, xmn=-93, xmx=-29, ymn= -57, ymx=25, resol=1, remove.cells=TRUE, remove.sp=TRUE, show.matrix=FALSE, crs=CRS("+proj=longlat +datum=WGS84"), cover=0, presence=NULL, origin=NULL, seasonal=NULL, count=FALSE) expect_equal(class(PAM)[1], "PresenceAbsence") expect_true(is.matrix(PAM[[1]])) expect_true(inherits(PAM[[2]], "RasterLayer")) expect_equal(class(PAM[[3]])[1], "character") }) test_that("lets.presab.birds return a correct PresenceAbsence object for the world", { skip_on_cran() PAM <- lets.presab.birds(path.Ramphastos, resol=5, remove.cells=TRUE, remove.sp=TRUE, show.matrix=FALSE, crs=CRS("+proj=longlat +datum=WGS84"), cover=0.2, presence=NULL, origin=NULL, seasonal=NULL, count=FALSE) expect_equal(class(PAM), "PresenceAbsence") expect_true(is.matrix(PAM[[1]])) expect_true(inherits(PAM[[2]], "RasterLayer")) expect_equal(class(PAM[[3]]), "character") }) test_that("lets.presab.birdsreturn a correct PresenceAbsence object for cover different projection", { skip_on_cran() pro <- paste("+proj=eqdc +lat_0=-32 +lon_0=-60 +lat_1=-5", "+lat_2=-42 +x_0=0 +y_0=0 +ellps=aust_SA", "+units=m +no_defs") SA_EC <- CRS(pro) PAM3 <- lets.presab.birds(path.Ramphastos, xmn = -4135157, xmx = 4707602, ymn = -450000, ymx = 5774733, resol = 100000, crs.grid = SA_EC, cover = .9) expect_equal(class(PAM3), "PresenceAbsence") expect_true(is.matrix(PAM3[[1]])) expect_true(inherits(PAM3[[2]], "RasterLayer")) expect_equal(class(PAM3[[3]]), "character") }) test_that("lets.presab.birdsreturn a correct PresenceAbsence object (count=TRUE)", { skip_on_cran() PAM <- lets.presab.birds(path.Ramphastos, xmn=-93, xmx=-29, ymn= -57, ymx=25, resol=1, remove.cells=TRUE, remove.sp=TRUE, show.matrix=FALSE, crs=CRS("+proj=longlat +datum=WGS84"), cover=0, presence=NULL, origin=NULL, seasonal=NULL, count=TRUE) expect_equal(class(PAM), "PresenceAbsence") expect_true(is.matrix(PAM[[1]])) expect_true(inherits(PAM[[2]], "RasterLayer")) expect_equal(class(PAM[[3]]), "character") }) test_that("lets.presab.birdsreturn a correct PresenceAbsence object, cover=0.2", { skip_on_cran() PAM <- lets.presab.birds(path.Ramphastos, xmn=-93, xmx=-29, ymn= -57, ymx=25, resol=1, remove.cells=TRUE, remove.sp=TRUE, show.matrix=FALSE, crs=CRS("+proj=longlat +datum=WGS84"), cover=0.2, presence=NULL, origin=NULL, seasonal=NULL, count=FALSE) expect_equal(class(PAM), "PresenceAbsence") expect_true(is.matrix(PAM[[1]])) expect_true(inherits(PAM[[2]], "RasterLayer")) expect_equal(class(PAM[[3]]), "character") }) test_that("lets.presab.birds return a correct PresenceAbsence object, remove.sp=FALSE", { skip_on_cran() PAM <- lets.presab.birds(path.Ramphastos, xmn=-93, xmx=-29, ymn= -57, ymx=25, resol=1, remove.cells=TRUE, remove.sp=FALSE, show.matrix=FALSE, crs=CRS("+proj=longlat +datum=WGS84"), cover=1, presence=NULL, origin=NULL, seasonal=NULL, count=FALSE) expect_equal(class(PAM), "PresenceAbsence") expect_true(is.matrix(PAM[[1]])) expect_true(inherits(PAM[[2]], "RasterLayer")) expect_equal(class(PAM[[3]]), "character") }) test_that("lets.presab.birdsreturn a correct PresenceAbsence object, remove.cells=FALSE", { skip_on_cran() PAM <- lets.presab.birds(path.Ramphastos, xmn=-93, xmx=-29, ymn= -57, ymx=25, resol=1, remove.cells=FALSE, remove.sp=TRUE, show.matrix=FALSE, crs=CRS("+proj=longlat +datum=WGS84"), cover=0, presence=NULL, origin=NULL, seasonal=NULL, count=FALSE) expect_equal(class(PAM), "PresenceAbsence") expect_true(is.matrix(PAM[[1]])) expect_true(inherits(PAM[[2]], "RasterLayer")) expect_equal(class(PAM[[3]]), "character") response <- summary(PAM) expect_true(response$Cellswithoutanypresence > 0) }) test_that("lets.presab.birds new projection", { skip_on_cran() desiredcrs <- CRS("+proj=laea +lat_0=0 +lon_0=-80 +x_0=180 +y_0=70 +units=km") PAM <- lets.presab.birds(path.Ramphastos, xmn = -3000, xmx = 6000, ymn = -5000, ymx = 3000, res = 100, remove.cells=TRUE, remove.sp=TRUE, show.matrix=FALSE, crs=CRS("+proj=longlat +datum=WGS84"), cover=0, presence=NULL, crs.grid = desiredcrs, origin=NULL, seasonal=NULL, count=TRUE) expect_equal(class(PAM), "PresenceAbsence") expect_true(is.matrix(PAM[[1]])) expect_true(inherits(PAM[[2]], "RasterLayer")) expect_equal(class(PAM[[3]]), "character") })
`$.python.builtin.dict` <- function(x, name) { if (py_is_null_xptr(x) || !py_available()) return(NULL) if (py_has_attr(x, name)) { item <- py_get_attr(x, name) return(py_maybe_convert(item, py_has_convert(x))) } `[.python.builtin.dict`(x, name) } `[.python.builtin.dict` <- function(x, name) { if (py_is_null_xptr(x) || !py_available()) return(NULL) item <- py_dict_get_item(x, name) py_maybe_convert(item, py_has_convert(x)) } `[[.python.builtin.dict` <- `[.python.builtin.dict` `$<-.python.builtin.dict` <- function(x, name, value) { if (!py_is_null_xptr(x) && py_available()) py_dict_set_item(x, name, value) else stop("Unable to assign value (dict reference is NULL)") x } `[<-.python.builtin.dict` <- `$<-.python.builtin.dict` `[[<-.python.builtin.dict` <- `$<-.python.builtin.dict` length.python.builtin.dict <- function(x) { if (py_is_null_xptr(x) || !py_available()) 0L else py_dict_length(x) }
context("jagsOneBaseline") test_that("function return a character class", { expect_equal(typeof(jagsOneBaseline()), "character") }) test_that("function return a ihnerited oneBaseline class", { expect_equal(class(jagsOneBaseline())[2], "oneBaseline") }) test_that("function send a warning/error when priors are not correctly written", { expect_warning(jagsOneBaseline(TP = "dnorm(3, 1")) expect_warning(jagsOneBaseline(TP = "dnorm(3, 1"), muB = "duni(3,3)") expect_warning(jagsOneBaseline(sigmaB = "dnorn(3, 1)")) expect_warning(jagsOneBaseline(TP = "dnorm(3, 1)", sigmaDeltaN = "dbeta(1,1")) expect_error(jagsOneBaseline(TP = "dnorm(3, 1)", sigma = "dbeta(1, 1)", lambda = "5")) })
cpt.reg <- function(data, penalty="MBIC", pen.value=0, method="AMOC", dist="Normal", class=TRUE, param.estimates=TRUE, minseglen=3, shape = 0, tol = 1e-07){ MBIC=0 if(!is.array(data) || !is.numeric(data)) stop("Argument 'data' must be a numerical matrix/array.") if(!is.character(penalty) || length(penalty)>1) stop("Argument 'penelty' is invalid.") if(!is.character(method) || length(method)>1) stop("Argument 'method' is invalid.") if(method!="AMOC" && method != "PELT") stop("Invalid method, must be AMOC or PELT.") if(!is.character(dist) || length(dist)>1) stop("Argument 'dist' is invalid.") if(dist != "Normal"){ warning(paste0("dist = ",dist," is not supported. Converted to dist='Normal'")) dist <- "Normal" } if(!is.logical(class) || length(class)>1) stop("Argument 'class' is invalid.") if(!is.logical(param.estimates) || length(param.estimates)>1) stop("Argument 'param.estimates' is invalid.") if(!is.numeric(minseglen) || length(minseglen)>1) stop("Argument 'minseglen' is invalid.") if(minseglen <= 0 || minseglen%%1 != 0) stop("Argument 'minseglen' must be positive integer.") if(!is.numeric(tol) || length(tol)!=1) stop("Argument 'tol' is invalid.") if(tol<0) stop("Argument 'tol' must be positive.") if(length(dim(data)) == 2) data <- array(data,dim=c(1,dim(data))) ans <- vector("list",dim(data)[1]) for(i in 1:dim(data)[1]){ datai <- check_data(data[i,,]) pen.value <- changepoint::penalty_decision(penalty=penalty, pen.value=pen.value, n=nrow(datai), diffparam=ncol(datai), asymcheck="cpt.reg", method=method) if(penalty=="MBIC"){MBIC=1} if(minseglen < (ncol(datai)-1)){ warning(paste("minseglen is too small, set to:",ncol(datai))) minsegleni <- ncol(datai) }else if(nrow(datai) < (2*minseglen)){ stop("Minimum segment length is too large to include a change in this data.") }else{ minsegleni <- minseglen } CPTS <- ChangepointRegression(data=datai, penalty=penalty, penalty.value=pen.value, method=method, dist=dist, minseglen=minseglen, shape = shape, tol=tol, cpts.only=class, MBIC=MBIC) if(class){ ansi <- new("cpt.reg") data.set(ansi) <- datai cpttype(ansi) <- "regression" method(ansi) <- method distribution(ansi) <- dist pen.type(ansi) <- penalty pen.value(ansi) <- pen.value cpts(ansi) <- CPTS if(method=="PELT") ncpts.max(ansi) <- Inf if(param.estimates) ansi = param(ansi) ans[[i]] <- ansi }else{ ans[[i]] <- CPTS } } if(dim(data)[1]==1){ return(ans[[1]]) }else{ return(ans) } } check_data <- function(data, minseglen=3){ if(!is.array(data) || !is.numeric(data)) stop("Argument 'data' must be a numerical matrix.") if(length(dim(data))!=2) stop("Argument 'data' must be a numerical matrix.") if(!is.numeric(minseglen) || length(minseglen)>1) stop("Argument 'minseglen' is invalid.") n <- nrow(data) p <- ncol(data)-1 if(p==0) stop("Dimension of data is 1, no regressors found.") if(n<p) stop("More regressors than observations.") intercept <- apply(as.matrix(data[,2]),2,function(a){all(a[1]==a)}) if(sum(intercept)<1){ warning("Missing intercept regressor. Append 1's to right of data.") data <- cbind(data,1) p <- p+1 }else if(sum(intercept)>1){ i <- which(intercept)[-1]+1 warning("Multiple intercepts found. Keeping only first instance.") data <- data[,-i] } return(data) } ChangepointRegression <- function(data, penalty="MBIC", penalty.value=0, method="AMOC", dist="Normal", minseglen=3, cpts.only=TRUE, shape=0, MBIC=0, tol=1e-07){ if(!is.logical(cpts.only) && length(cpts.only)>1) stop("Argument 'cpts.only' is invalid.") if(method=="AMOC" && dist=="Normal"){ out <- CptReg_AMOC_Normal(data, penalty, penalty.value, minseglen, shape, MBIC, tol) }else if(method=="PELT" && dist=="Normal"){ out <- CptReg_PELT_Normal(data, penalty.value, minseglen, shape,MBIC, tol) }else{ stop("Changepoint in regression method not recognised.") } if(cpts.only){ return(sort(out$cpts)) }else{ return(out) } } CptReg_AMOC_Normal <- function(data, penalty="MBIC", penalty.value=0, minseglen=3, shape=0, MBIC=0, tol=1e-07){ n <- as.integer(nrow(data)) p <- as.integer(ncol(data)-1) if(p<1 || n<p) stop("Invalid data dimensions.") if(!is.numeric(shape) || length(shape)!=1) stop("Argument 'shape' is invalid.") answer=list() answer[[5]]=1 on.exit(.C("Free_CptReg_Normal_AMOC",answer[[6]],PACKAGE="EnvCpt")) answer <- .C("CptReg_Normal_AMOC", data=as.double(data), n=as.integer(n), m=as.integer(p+1), pen=as.double(penalty.value), err=0L, shape=as.double(shape), minseglen=as.integer(minseglen), tol=as.double(tol), tau=0L, nulllike=vector("double",1), taulike=vector("double",1), tmplike=vector("double",n), MBIC=as.integer(MBIC),PACKAGE="EnvCpt") if(answer$err!=0) stop("C code error:",answer$err,call.=F) tmp <- c(answer$tau,answer$nulllike,answer$taulike) out <- changepoint::decision(tau = tmp[1], null = tmp[2], alt = tmp[3], penalty = penalty, n=n, diffparam=p, pen.value = penalty.value) names(out) <- c("cpts","pen.value") return(out) } CptReg_PELT_Normal <- function(data, penalty.value=0, minseglen=3, shape=0, MBIC=0, tol=1e-07){ n <- as.integer(nrow(data)) p <- as.integer(ncol(data)-1) if(!is.numeric(shape) || length(shape)!=1) stop("Argument 'shape' is invalid.") answer=list() answer[[6]]=1 on.exit(.C("Free_CptReg_Normal_PELT",answer[[6]],PACKAGE="EnvCpt")) answer <- .C("CptReg_Normal_PELT", data=as.double(data), n=n, m=as.integer(p+1), pen=as.double(penalty.value), cpt=vector("integer",n), err=0L, shape=as.double(shape), minseglen=as.integer(minseglen), tol=as.double(tol), lastchangelike=vector("double",n+1), lastchangecpts=vector("integer",n+1), numchangecpts=vector("integer",n+1), MBIC=as.integer(MBIC), PACKAGE="EnvCpt") if(answer$err!=0){ stop("C code error:",answer$err,call.=F) } return(list(lastchangecpts=answer$lastchangecpts, cpts=sort(answer$cpt[answer$cpt>0]), lastchangelike=answer$lastchangelike, ncpts=answer$numchangecpts)) }
context("Checking r_data") test_that("r_data ...",{ })
structure(list(url = "https://api.twitter.com/2/tweets?tweet.fields=attachments%2Cauthor_id%2Cconversation_id%2Ccreated_at%2Centities%2Cgeo%2Cid%2Cin_reply_to_user_id%2Clang%2Cpublic_metrics%2Cpossibly_sensitive%2Creferenced_tweets%2Csource%2Ctext%2Cwithheld&user.fields=created_at%2Cdescription%2Centities%2Cid%2Clocation%2Cname%2Cpinned_tweet_id%2Cprofile_image_url%2Cprotected%2Cpublic_metrics%2Curl%2Cusername%2Cverified%2Cwithheld&expansions=author_id%2Centities.mentions.username%2Cgeo.place_id%2Cin_reply_to_user_id%2Creferenced_tweets.id%2Creferenced_tweets.id.author_id&place.fields=contained_within%2Ccountry%2Ccountry_code%2Cfull_name%2Cgeo%2Cid%2Cname%2Cplace_type&ids=1266841835626024964", status_code = 200L, headers = structure(list(date = "Sun, 19 Dec 2021 10:36:55 UTC", server = "tsa_o", `api-version` = "2.32", `content-type` = "application/json; charset=utf-8", `cache-control` = "no-cache, no-store, max-age=0", `content-length` = "1378", `x-access-level` = "read", `x-frame-options` = "SAMEORIGIN", `content-encoding` = "gzip", `x-xss-protection` = "0", `x-rate-limit-limit` = "300", `x-rate-limit-reset` = "1639910865", `content-disposition` = "attachment; filename=json.json", `x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "296", `strict-transport-security` = "max-age=631138519", `x-response-time` = "156", `x-connection-hash` = "244c25d8369406ebe1736b071cb6dbbc1f610fcb6b5dee6b60cd76860eaeab36"), class = c("insensitive", "list")), all_headers = list(list(status = 200L, version = "HTTP/2", headers = structure(list(date = "Sun, 19 Dec 2021 10:36:55 UTC", server = "tsa_o", `api-version` = "2.32", `content-type` = "application/json; charset=utf-8", `cache-control` = "no-cache, no-store, max-age=0", `content-length` = "1378", `x-access-level` = "read", `x-frame-options` = "SAMEORIGIN", `content-encoding` = "gzip", `x-xss-protection` = "0", `x-rate-limit-limit` = "300", `x-rate-limit-reset` = "1639910865", `content-disposition` = "attachment; filename=json.json", `x-content-type-options` = "nosniff", `x-rate-limit-remaining` = "296", `strict-transport-security` = "max-age=631138519", `x-response-time` = "156", `x-connection-hash` = "244c25d8369406ebe1736b071cb6dbbc1f610fcb6b5dee6b60cd76860eaeab36"), class = c("insensitive", "list")))), cookies = structure(list(domain = c(".twitter.com", ".twitter.com", ".twitter.com", ".twitter.com"), flag = c(TRUE, TRUE, TRUE, TRUE), path = c("/", "/", "/", "/"), secure = c(TRUE, TRUE, TRUE, TRUE), expiration = structure(c(1702744284, 1702744284, 1702744284, 1702744284), class = c("POSIXct", "POSIXt")), name = c("guest_id_marketing", "guest_id_ads", "personalization_id", "guest_id"), value = c("REDACTED", "REDACTED", "REDACTED", "REDACTED")), row.names = c(NA, -4L), class = "data.frame"), content = charToRaw("{\"data\":[{\"possibly_sensitive\":false,\"created_at\":\"2020-05-30T21:20:05.000Z\",\"entities\":{\"urls\":[{\"start\":200,\"end\":223,\"url\":\"https://t.co/Zt7xl7gsz4\",\"expanded_url\":\"https://twitter.com/MarcelFckNzs/status/1266841835626024964/photo/1\",\"display_url\":\"pic.twitter.com/Zt7xl7gsz4\"}],\"hashtags\":[{\"start\":110,\"end\":124,\"tag\":\"ClimateCrisis\"},{\"start\":125,\"end\":140,\"tag\":\"ClimateJustice\"},{\"start\":141,\"end\":150,\"tag\":\"Datteln4\"},{\"start\":151,\"end\":168,\"tag\":\"FridaysForFuture\"}],\"mentions\":[{\"start\":169,\"end\":183,\"username\":\"FutureDatteln\",\"id\":\"1159451223344525313\"},{\"start\":184,\"end\":199,\"username\":\"Ende__Gelaende\",\"id\":\"3232960847\"}]},\"public_metrics\":{\"retweet_count\":1,\"reply_count\":1,\"like_count\":7,\"quote_count\":0},\"conversation_id\":\"1266841835626024964\",\"lang\":\"de\",\"text\":\"Heute war ich wieder in Datteln demonstrieren. Traurig zu sehen, wie diesmal Datteln 4 leider im Betrieb war. date = structure(1639910215, class = c("POSIXct", "POSIXt" ), tzone = "GMT"), times = c(redirect = 0, namelookup = 0.000132, connect = 0.000137, pretransfer = 0.000489, starttransfer = 0.17225, total = 0.172573)), class = "response")
cff2zenodo <- function(x) { folder <- NULL if(is.character(x) && file.exists(x)) { folder <- dirname(x) x <- read_cff(x) } tmp <- function(x) { name <- paste(x[["family-names"]], x[["given-names"]], sep=", ") out <- list(name=name) if(!is.null(x[["affiliation"]])) out$affiliation <- x[["affiliation"]] if(!is.null(x[["orcid"]])) out$orcid <- sub("^.*/","",x[["orcid"]]) return(out) } json <- list(title=x$title, version=x$version, creators=lapply(x$authors,tmp), keywords=x$keywords, license=list(id=x$license), publication_date=x$`date-released`) out <- toJSON(json,pretty=TRUE,auto_unbox = TRUE) if(!is.null(folder)) { zenodofile <- paste0(folder,"/.zenodo.json") if(file.exists(zenodofile)) message("Updated .zenodo.json file") else message("Added .zenodo.json file") writeLines(out,zenodofile) rbuildignore <- paste0(folder,"/.Rbuildignore") if(file.exists(rbuildignore)) { a <- readLines(rbuildignore) if(all(!grepl("zenodo.json",a,fixed = TRUE))) { a <- c(a,"^.*\\.zenodo.json$") writeLines(a,rbuildignore) message("Added .zenodo.json to .Rbuildignore") } } invisible(out) } else { return(out) } }
KCC <- function(model,GRR,p1,K) { model.idx <- charmatch(model,c("multiplicative","additive","recessive","dominant","overdominant")) if(is.na(model.idx)) stop("Invalid model type") if(model.idx == 0) stop("Ambiguous model type") multiplicative <- c(1,GRR,GRR*GRR) additive <- c(1,GRR,2*GRR-1) recessive <- c(1,1,GRR) dominant <- c(1,GRR,GRR) overdominant <- c(GRR,1,GRR) f <- switch(model.idx,multiplicative,additive,recessive,dominant,overdominant) scale <- K/(f[1]*(1-p1)^2+f[2]*2*p1*(1-p1)+f[3]*p1^2) f <- f*scale pprime <- (f[3]*p1^2+f[2]*p1*(1-p1))/K p <- ((1-f[3])*p1^2+(1-f[2])*p1*(1-p1))/(1-K) invisible(list(pprime=pprime,p=p)) }
frames_init <- function(imports = memory_init()) { targets <- memory_init(new.env(parent = imports$envir)) frames_new(imports, targets) } frames_new <- function(imports = NULL, targets = NULL) { force(imports) force(targets) environment() } frames_get_envir <- function(frames) { frames$targets$envir } frames_set_object <- function(frames, name, object) { memory_set_object(frames$targets, name, object) } frames_clear_objects <- function(frames) { frames$targets <- memory_init(new.env(parent = frames$imports$envir)) } frames_set_dep <- function(frames, dep, pipeline) { value <- dep$value if (!is.null(value)) { object <- dep$value$object frames_set_object(frames, target_get_parent(dep), object) } } frames_set_deps <- function(frames, target, pipeline) { map( target_deps_shallow(target, pipeline), ~frames_set_dep(frames, pipeline_get_target(pipeline, .x), pipeline) ) } frames_produce <- function(envir, target, pipeline) { frames <- frames_init(memory_init(new.env(parent = envir))) frames_set_deps(frames = frames, target = target, pipeline = pipeline) frames } frames_validate_inheritance <- function(frames) { envir1 <- parent.env(frames$targets$envir) envir2 <- frames$imports$envir if (!identical(envir1, envir2)) { tar_throw_validate("broken inheritance in the frames.") } } frames_validate <- function(frames) { tar_assert_correct_fields(frames, frames_new) memory_validate(frames$imports) memory_validate(frames$targets) frames_validate_inheritance(frames) invisible() }
write.px <- function ( obj.px, filename, heading = NULL, stub = NULL, keys = NULL , write.na = FALSE, write.zero = FALSE , fileEncoding = "ISO-8859-1" ) { if ( ! inherits( obj.px, "px" ) ) stop("Error: object needs to have class 'px'") unquote <- function(x) gsub( '^"|"$', "", x) requote <- function(x) paste( '"', unquote(x), '"', sep = "") wf <- function(...){ cadena <- paste(..., sep = "") cat(cadena, file = con, sep = "") } obj.px[['LAST.UPDATED']]$value <- format(Sys.time(), "%Y%m%d %H:%M:%S") obj.px[['CHARSET']]$value <- ifelse(fileEncoding == "ISO-8859-1", 'ANSI', fileEncoding) obj.px$INFO$value <- "File generated using R and package pxR (http://pxr.r-forge.r-project.org/)" if (!is.null(keys)) { obj.px$KEYS <- NULL if ( ! all(keys %in% names(obj.px$VALUES))) { c('Error: Some keys are not in VALUES') } kk <- lapply(keys,function(e) { 'VALUES' }) names(kk) <- keys for (i in keys[keys %in% names(obj.px$COD)]) { kk[[i]]<- 'CODES' levels(obj.px$DATA[[1]][,i]) <- obj.px$CODES[[i]] } obj.px$KEYS <- kk } if ( is.null(obj.px$'CREATION-DATE') | is.null(obj.px$'CREATION.DATE') ) { obj.px$'CREATION-DATE'$value <- format(Sys.time(),'%Y%m%d %H:%m') } names(obj.px) <- gsub("\\.", "-", names(obj.px)) order.kw <- c("CHARSET", "AXIS-VERSION", "CODEPAGE", "LANGUAGE", "LANGUAGES", "CREATION-DATE", "NEXT-UPDATE", "PX-SERVER", "DIRECTORY-PATH", "UPDATE-FREQUENCY", "TABLEID", "SYNONYMS", "DEFAULT-GRAPH", "DECIMALS", "SHOWDECIMALS", "ROUNDING", "MATRIX", "AGGREGALLOWED", "AUTOPEN", "SUBJECT-CODE", "SUBJECT-AREA", "CONFIDENTIAL", "COPYRIGHT", "DESCRIPTION", "TITLE", "DESCRIPTIONDEFAULT", "CONTENTS", "UNITS", "STUB", "HEADING", "CONTVARIABLE", "VALUES", "TIMEVAL", "CODES", "DOUBLECOLUMN", "PRESTEXT", "DOMAIN", "VARIABLE-TYPE", "HIERARCHIES", "HIERARCHYLEVELS", "HIERARCHYLEVELSOPEN", "HIERARCHYNAMES", "MAP", "PARTITIONED", "ELIMINATION", "PR", "ECISION", "LAST-UPDATED", "STOCKFA", "CFPRICES", "DAYADJ", "SEASADJ", "CONTACT", "REFPERIOD", "BASEPERIOD", "DATABASE", "SOURCE", "SURVEY", "LINK", "INFOFILE", "FIRST-PUBLISHED", "META-ID", "OFFICIAL-STATISTICS", "INFO", "NOTEX", "NOTE", "VALUENOTEX", "VALUENOTE", "CELLNOTEX", "CELLNOTE", "DATASYMBOL1", "DATASYMBOL2", "DATASYM", "BOL3", "DATASYMBOL4", "DATASYMBOL5", "DATASYMBOL6", "DATASYMBOLSUM", "DATASYMBOLNIL", "DATANOTECELL", "DATANOTESUM", "DATANOTE", "KEYS", "ATTRIBUTE-ID", "ATTRIBUTE-TEXT", "ATTRIBUTES", "PRECISION","DATA") order.px <- charmatch(names(obj.px), order.kw, nomatch=999) new.order <- setdiff( names(obj.px)[order(order.px)], "DATA" ) if(! is.null(heading)){ if(is.null(stub)) stop("If heading is specified, you need also specify the stub parameter.") if(! setequal(c(heading, stub), c(obj.px$HEADING$value, obj.px$STUB$value)) ) stop("Specified heading and stub parameters differ from those in the px object") obj.px$HEADING$value <- heading obj.px$STUB$value <- stub } if (! is.null(obj.px$KEYS)) { keys <- names(obj.px$KEYS) values <- names(obj.px$VALUES) no.keys <- values[! (values %in% keys) ] obj.px$STUB$value <- keys obj.px$HEADING$value <- no.keys } con <- file( description = filename, open = "w", encoding = ifelse(fileEncoding == "ISO-8859-1", "latin1", fileEncoding)) on.exit(close(con)) for (key in new.order ) { if (length(obj.px[[key]]) == 0) next if (key %in% c('DECIMALS', 'SHOWDECIMALS', 'COPYRIGHT', 'DESCRIPTIONDEFAULT', 'DAYADJ', 'SEASADJ')){ wf( key, "=") wf( unquote(obj.px[[key]]$value) ) wf(';\n') next } if ( names(obj.px[[key]])[1] == 'value' ) { wf( key, "=") wf( paste( requote(obj.px[[key]]$value), collapse = ',') ) wf(';\n') next } for (subkey in names(obj.px[[key]])){ wf( key, '("', subkey, '")=' ) if ( (key =='ELIMINATION' && obj.px[[key]][[subkey]] %in% c('YES','NO')) || key == 'KEYS' ) wf(obj.px[[key]][[subkey]]) else wf(paste(requote(obj.px[[key]][[subkey]]), collapse = ',')) wf ( ';\n' ) } } wf('DATA=\n') if (!is.null(obj.px$KEYS)) { keys <- names(obj.px$KEYS) values <- names(obj.px$VALUES) fm <- formula( paste( paste(keys, collapse = '+'),'~', paste(values[!values %in% keys], collapse = '+'), sep='')) for (i in keys) { if (obj.px$KEYS[[i]]=='CODES') { levels(obj.px$DATA[[1]][,i]) <- obj.px$CODES[[i]] } else levels(obj.px$DATA[[1]][,i]) <- obj.px$VALUES[[i]] } res <- dcast(obj.px$DATA[[1]], fm, sum) with.data <- rep(TRUE, nrow(res)) no.keys <- names(res)[!names(res) %in% keys] data.no.keys <- as.matrix(res[,no.keys]) if (!write.na) with.data <- with.data & ! apply(data.no.keys, 1, function(x) all(is.na(x))) if (!write.zero) with.data <- with.data & ! apply(data.no.keys, 1, function(x) all(x == 0)) res <- res[with.data, ] zz <- res[, keys[1]] for (i in keys[-1]) { zz <- paste(zz, res[,i],sep='","') } zz <- paste('"',zz,'",',sep='') for (i in names(res)[!names(res) %in% keys] ) { column.num <- formatC(res[,i], format = 'f', digits = as.numeric(obj.px$DECIMALS$value), drop0trailing = T, flag = '-') column.num <- gsub("NA", '".."', column.num) zz <- paste(zz, column.num, sep=' ') } write(zz, file = con, ncolumns = 1, append = T ) } else { zz <- formatC(as.array(obj.px), format = 'f', digits = as.numeric(obj.px$DECIMALS$value), drop0trailing = T, flag = '-') zz <- gsub("NA", '".."', zz) zz <- aperm(zz, c(rev(obj.px$HEADING$value), rev(obj.px$STUB$value))) write(zz, file = con, ncolumns = sum( dim(zz)[1:length(obj.px$HEADING$value)] ), append = T ) } wf(";\n") invisible(NULL) }
NULL tbl_json <- function(df, json.list, drop.null.json = FALSE, ..., .column_order = NULL) { assertthat::assert_that(is.data.frame(df)) assertthat::assert_that(is.list(json.list) || is.vector(json.list)) assertthat::assert_that(nrow(df) == length(json.list)) row.names(df) <- NULL if (drop.null.json) { nulls <- purrr::map_lgl(json.list, is.null) df <- df[!nulls, , drop = FALSE] json.list <- json.list[!nulls] } df <- reorder_json_column(df, json.list, .preserve_column_order = .column_order) structure(df, class = c("tbl_json", "tbl_df", "tbl", "data.frame")) } reorder_json_column <- function(.data, .json, .preserve_column_order = NULL) { if (is.null(.preserve_column_order)) { .data[["..JSON"]] <- NULL .data[["..JSON"]] <- .json } else { .data[["..JSON"]] <- .json } return(.data) } as.tbl_json <- function(.x, ...) UseMethod("as.tbl_json") as_tbl_json <- function(.x, ...) UseMethod("as.tbl_json") as.tbl_json.tbl_json <- function(.x, ...) reorder_json_column(.x, json_get(.x)) as.tbl_json.character <- function(.x, ...) { json <- purrr::map(.x, jsonlite::fromJSON, simplifyVector = FALSE) ids <- data.frame(document.id = seq_along(json)) tbl_json(ids, json) } as.tbl_json.list <- function(.x, ...) { ids <- data.frame(document.id = seq_along(.x)) tbl_json(ids, .x) } as.tbl_json.data.frame <- function(.x, json.column, ...) { assertthat::assert_that(is.character(json.column)) assertthat::assert_that(json.column %in% names(.x)) jcol <- .x[[json.column]] if (is.list(jcol)) { json <- jcol } else { json <- purrr::map(jcol, jsonlite::fromJSON, simplifyVector = FALSE) } .x <- .x[, setdiff(names(.x), json.column), drop = FALSE] tbl_json(.x, json) } is.tbl_json <- function(.x) inherits(.x, "tbl_json") `[.tbl_json` <- function(.x, i, j, drop = FALSE) { n_real_args <- nargs() - !missing(drop) json <- json_get(.x) if (n_real_args <= 2L) { if (!missing(drop)) warning("drop ignored") if (missing(i)) { return(.x) } .x <- NextMethod('[') } else { .x <- NextMethod('[') if (!missing(i)) { json <- json[i] } } tbl_json(.x, json, .column_order = TRUE) } `$<-.tbl_json` <- function(x, name, value) { y <- NextMethod("$<-", x) reorder_json_column(y, json_get(y)) } json_get <- function(.data) { .data[["..JSON"]] } json_get_column <- function(.data, column_name = "json") { qnm <- rlang::enquo(column_name) colnm <- rlang::as_name(qnm) if ("json" %in% names(.data)) { warning(paste0("Column `", colnm, "` already exists. It will be overwritten by `json_get_column()`")) } .data[[colnm]] <- json_get(.data) return(.data) } wrap_dplyr_verb <- function(dplyr.verb, generic) { function(.data, ...) { json <- json_get(.data) if (generic %in% c("select")) { .data <- tibble::as_tibble(.data) vars <- rlang::enquos(...) vars_lgl <- purrr::map_lgl( vars, ~ any(as.character(rlang::get_expr(.x)) %in% "..JSON") ) vars[vars_lgl] <- NULL y <- dplyr::select(.data, !!!vars) } else if (generic %in% c("transmute")) { .data <- tibble::as_tibble(.data) y <- NextMethod(generic, .data) } else { y <- NextMethod(generic, .data) } if ("..JSON" %in% names(y)) { return(tbl_json(tibble::as_tibble(y), json_get(y))) } else { return(tbl_json(y, json)) } } } select.tbl_json <- wrap_dplyr_verb(dplyr::select, "select") filter_.tbl_json <- wrap_dplyr_verb(dplyr::filter_, "filter_") filter.tbl_json <- wrap_dplyr_verb(dplyr::filter, "filter") arrange_.tbl_json <- wrap_dplyr_verb(dplyr::arrange_, "arrange_") arrange.tbl_json <- wrap_dplyr_verb(dplyr::arrange, "arrange") mutate_.tbl_json <- wrap_dplyr_verb(dplyr::mutate_, "mutate_") mutate.tbl_json <- wrap_dplyr_verb(dplyr::mutate, "mutate") transmute.tbl_json <- wrap_dplyr_verb(dplyr::transmute, "transmute") slice_.tbl_json <- wrap_dplyr_verb(dplyr::slice_, "slice_") slice.tbl_json <- wrap_dplyr_verb(dplyr::slice, "slice") inner_join.tbl_json <- function(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...) { x <- as_tibble(x) y <- as_tibble(y) NextMethod("inner_join", x) } full_join.tbl_json <- function(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ..., keep = FALSE) { x <- as_tibble(x) y <- as_tibble(y) NextMethod("full_join", x) } left_join.tbl_json <- function(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ..., keep = FALSE) { x <- as_tibble(x) y <- as_tibble(y) NextMethod("left_join", x) } right_join.tbl_json <- function(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ..., keep = FALSE) { x <- as_tibble(x) y <- as_tibble(y) NextMethod("right_join", x) } dplyr_reconstruct.tbl_json <- function(data, template) { if ("..JSON" %in% names(data)) { as_tbl_json(data, json.column = "..JSON") } else { tibble::as_tibble(data) } } dplyr::bind_rows as.character.tbl_json <- function(x, ...) { json <- json_get(x) if (is.null(json)) { warning("the ..JSON column has been removed from this tbl_json object") json <- list() } json %>% purrr::map_chr(jsonlite::toJSON, null = "null", auto_unbox = TRUE) } as_tibble.tbl_json <- function(x, ...) { x$..JSON <- NULL as_tibble( structure(x, class = class(tibble::tibble())) ) } as_data_frame.tbl_json <- function(x, ...) { as_tibble.tbl_json(x,...) } print.tbl_json <- function(x, ..., json.n = 20, json.width = 15) { json <- x %>% as.character json <- json[seq_len(min(json.n, nrow(x)))] lengths <- dplyr::coalesce(json %>% nchar,0L) json <- json %>% strtrim(json.width) json[lengths > json.width] <- paste0(json[lengths > json.width], "...") .y <- dplyr::as_tibble(x) json_name <- '..JSON' .y[json_name] <- rep("...", nrow(x)) .y[[json_name]][seq_len(length(json))] <- json ncol_y <- ncol(.y) .y <- .y[, c("..JSON", names(.y)[names(.y) != "..JSON"])] out <- capture.output(print(.y)) out <- gsub("^\\ "\\ sprintf(nrow(x) %>% format(big.mark = ','), ncol(x) %>% format(big.mark = ',')), out) writeLines(out) invisible(x) }