code
stringlengths 1
13.8M
|
---|
.runThisTest <- Sys.getenv("RunAllparametersTests") == "yes"
if (.runThisTest &&
requiet("testthat") &&
requiet("parameters") &&
requiet("tripack") &&
requiet("insight") &&
requiet("quantreg")) {
data("CobarOre")
set.seed(123)
CobarOre$w <- rnorm(nrow(CobarOre))
m1 <- rqss(z ~ w + qss(cbind(x, y), lambda = .08), data = CobarOre)
mp <- suppressWarnings(model_parameters(m1))
test_that("mp_rqss", {
expect_identical(mp$Parameter, c("(Intercept)", "w", "cbind(x, y)"))
expect_equal(mp$Coefficient, c(17.63057, 1.12506, NA), tolerance = 1e-3)
expect_equal(mp$df_error, c(15, 15, NA), tolerance = 1e-3)
expect_equal(mp[["df"]], c(NA, NA, 70), tolerance = 1e-3)
})
data(stackloss)
m1 <- rq(stack.loss ~ Air.Flow + Water.Temp, data = stackloss, tau = .25)
mp <- suppressWarnings(model_parameters(m1))
test_that("mp_rq", {
expect_identical(mp$Parameter, c("(Intercept)", "Air.Flow", "Water.Temp"))
expect_equal(mp$Coefficient, c(-36, 0.5, 1), tolerance = 1e-3)
})
set.seed(123)
data("engel")
m1 <- rq(foodexp ~ income, data = engel, tau = 1:9 / 10)
mp <- suppressWarnings(model_parameters(m1))
test_that("mp_rqs", {
expect_identical(mp$Parameter, c(
"(Intercept)", "income", "(Intercept)", "income", "(Intercept)",
"income", "(Intercept)", "income", "(Intercept)", "income", "(Intercept)",
"income", "(Intercept)", "income", "(Intercept)", "income", "(Intercept)",
"income"
))
expect_equal(mp$Coefficient, c(
110.14157, 0.40177, 102.31388, 0.4469, 99.11058, 0.48124, 101.95988,
0.5099, 81.48225, 0.56018, 79.70227, 0.58585, 79.28362, 0.60885,
58.00666, 0.65951, 67.35087, 0.6863
), tolerance = 1e-3)
expect_equal(mp$SE, c(
29.39768, 0.04024, 21.42836, 0.02997, 22.18115, 0.02987, 22.06032,
0.02936, 19.25066, 0.02828, 17.61762, 0.02506, 14.25039, 0.02176,
19.21719, 0.02635, 22.39538, 0.02849
), tolerance = 1e-3)
})
set.seed(123)
n <- 200
x <- rnorm(n)
y <- 5 + x + rnorm(n)
c <- 4 + x + rnorm(n)
d <- (y > c)
dat <- data.frame(y, x, c, d)
m1 <- crq(survival::Surv(pmax(y, c), d, type = "left") ~ x, method = "Portnoy", data = dat)
mp <- model_parameters(m1)
test_that("mp_rq", {
expect_identical(mp$Parameter, c("(Intercept)", "x", "(Intercept)", "x", "(Intercept)", "x", "(Intercept)", "x"))
expect_equal(mp$Coefficient, c(4.26724, 0.97534, 4.84961, 0.92638, 5.21843, 0.98038, 5.91301, 0.97382), tolerance = 1e-3)
})
} |
extractPSSMAcc <- function(pssmmat, lag) {
mat <- 1 / (1 + exp(pssmmat))
accpssm <- function(mat, lag) {
p <- nrow(mat)
n <- ncol(mat)
if (lag > n) {
stop("lag must be smaller than the amino acids in the sequence")
}
acc1 <- matrix(0, nrow = p, ncol = lag)
for (j in 1:p) {
for (i in 1:lag) {
acc1[j, i] <-
sum(mat[j, 1:(n - i)] * mat[j, ((1:(n - i)) + i)]) / (n - i)
}
}
acc1 <- as.vector(acc1)
AADict <- c(
"A", "R", "N", "D", "C", "Q", "E", "G", "H", "I",
"L", "K", "M", "F", "P", "S", "T", "W", "Y", "V"
)
names(acc1) <- as.vector(outer(
AADict, paste0("lag", 1:lag), paste,
sep = "."
))
acc2 <- matrix(0, nrow = p^2 - p, ncol = lag)
idx <- cbind(combn(1:p, 2), combn(1:p, 2)[2:1, ])
for (j in 1:ncol(idx)) {
for (i in 1:lag) {
acc2[j, i] <-
sum(mat[idx[1, j], 1:(n - i)] * mat[idx[2, j], ((1:(n - i)) + i)]) / (n - i)
}
}
acc2 <- as.vector(acc2)
names(acc2) <- as.vector(outer(
paste(AADict[idx[1, ]], AADict[idx[2, ]], sep = "."),
paste0("lag", 1:lag), paste,
sep = "."
))
ACC <- c(acc1, acc2)
ACC
}
res <- accpssm(mat, lag)
res
} |
library(PAFit)
net <- generate_net(N = 50, m = 10, mode = 1, s = 100,
no_new_node_step = 1,
m_no_new_node_step = 1)
net$graph |
setClass("bmerHorseshoeDist",
representation(beta.0 = "numeric",
tau.sq = "numeric"),
contains = "bmerDist")
toString.bmerHorseshoeDist <- function(x, digits = getOption("digits"), ...) {
meanString <- ""
beta.0 <- [email protected]
if (length(beta.0) > 4L) {
meanString <- paste0("mean = c(", toString(round(beta.0[seq_len(4L)], digits)), ", ...)")
} else if (length(beta.0) == 1L) {
meanString <- paste0("mean = ", toString(round(beta.0[1L], digits)))
} else {
meanString <- paste0("mean = c(", toString(round(beta.0, digits)), ")")
}
paste0("horseshoe(", meanString, ", ",
"global.shrinkage = ", round(sqrt([email protected]), digits), ", ",
"common.scale = ", x@commonScale, ")")
}
setMethod("getDFAdjustment", "bmerHorseshoeDist",
function(object) {
if (object@commonScale == TRUE) length([email protected]) else 0
}
)
setMethod("getConstantTerm", "bmerHorseshoeDist",
function(object) {
d <- length([email protected])
d * (3 * log(pi) + log(2) + log([email protected]))
}
)
setMethod("getExponentialTerm", "bmerHorseshoeDist",
function(object, beta, sigma = NULL) {
beta.0 <- [email protected]
tau.sq <- [email protected]
dist <- 0.5 * (beta - beta.0)^2 / tau.sq
if (object@commonScale == TRUE && !is.null(sigma)) dist <- dist / sigma^2
temp <- suppressWarnings(sapply(dist, expint::expint_E1, scale = TRUE))
temp[is.nan(temp)] <- .Machine$double.xmax * .Machine$double.eps
result <- -2 * sum(log(temp))
c(0, result)
}
) |
hullEFA <- function(X, maxQ, extr = "ULS", index_hull = "CAF", display = TRUE, graph = TRUE, details = TRUE){
if (missing(X)){
stop("The argument X is not optional, please provide a valid raw sample scores")
}
if (extr!="ML" && extr!="ULS"){
stop("extr argument has to be ML or ULS")
}
if (index_hull!="CAF" && index_hull!="CFI" && index_hull!="RMSEA"){
stop("index_hull argument has to be one of the availables indices (see documentation)")
}
if (display!=0 && display!=1){
stop("display argument has to be logical (TRUE or FALSE, 0 or 1)")
}
if (graph!=0 && graph!=1){
stop("graph argument has to be logical (TRUE or FALSE, 0 or 1)")
}
corr_char = 'Pearson correlation matrices'
N<-dim(X)[1]
p<-dim(X)[2]
x<-as.matrix(X)
SIGMA<-cor(X)
if (missing(maxQ)){
realevals<-eigen(SIGMA)$values
evals<-matrix(0,p,500)
for (a in 1:500){
evals[,a]<- svd(cor(matrix(x[round(matrix(runif(N*p),N,p)*(N-1)+1)],N,p)))$d
}
means <- apply(evals,1,mean)
for (root in 1:p){
if (realevals[root] < means[root]){
maxQ <- root - 1
break
}
}
}
else {
if (is.numeric(maxQ)){
if (maxQ>p){
stop('The maxQ value has to be equal or lower than the number of variables')
}
maxQ = maxQ - 1
}
else {
stop("The maxQ argument has to be a numeric one, indicating the maximum number of factors to be retained.")
}
}
q<-0
f_CAF <- 1-psych::KMO(SIGMA)$MSA
f_CFI <- 0
f_NNFI <- 0
f_GFI <- 0
f_AGFI <- 0
t<-0
for (i in 1:(p-1)){
for (j in (i+1):p){
t <- t + SIGMA[i,j]^2
}
}
if (Re(t) > (-1)){
RMSEA <- fitchi_zero(SIGMA,N,t)
f_RMSEA <- 1-Re(RMSEA)
}
else {
r_CAF<-(-1)
r_CFI<-(-1)
r_RMSEA<-(-1)
stop("Convergence was not possible, the analysis was stopped.")
}
g <- (1 / 2 * ((p - q) * (p - q + 1)) - p)
again<-1
q<-1
while (again==1){
if (extr=='ML'){
out <- tryCatch(
{
out<-ml77(SIGMA,q,0.001)
},
error=function(cond) {
out<-NA
cat(sprintf('The maximum number of factors available for extraction were %.0f \n\n',q-1))
return(out)
}
)
t<-out$t
A<-out$A
SIGMAREP <- A%*%t(A)
if (Re(t) > 0){
SIGMA_ERROR <- SIGMA - SIGMAREP
CAF <- 1 - psych::KMO(SIGMA_ERROR - diag(diag(SIGMA_ERROR)) + diag(p))$MSA
f_CAF <- rbind(f_CAF,CAF)
OUT<-fitchi(SIGMA,A,N,t)
CFI<-OUT$CFI
RMSEA <- 1 - Re(OUT$RMSEA)
}
else {
r_CAF<-(-1)
r_CFI<-(-1)
r_RMSEA<-(-1)
stop("Convergence was not possible, the analysis was stopped.")
}
}
else {
out_eigen<-eigen(SIGMA)
VV<-out_eigen$vectors[,1:q]
LL<-diag(out_eigen$values[1:q])
if (q==1){
VV<-transpose(VV)
LL<-out_eigen$values[1]
}
A<-VV%*%sqrt(LL)
A <-psych::fa(X, fm="minres",nfactors = q, rotate = "none", min.err = 0.000001)$loadings
SIGMAREP <- A%*%t(A)
RES <- SIGMA - SIGMAREP
t<-0
for (i in 1:(p-1)){
for (j in (i+1):p){
t <- t + RES[i,j]^2
}
}
if (Re(t) > 0){
SIGMA_ERROR <- SIGMA - SIGMAREP
CAF <- 1 - psych::KMO(SIGMA_ERROR - diag(diag(SIGMA_ERROR)) + diag(p))$MSA
f_CAF <- rbind(f_CAF,CAF)
OUT<-fitchi(SIGMA,A,N,t)
CFI<-OUT$CFI
RMSEA <- 1 - Re(OUT$RMSEA)
}
else {
r_CAF<-(-1)
r_CFI<-(-1)
r_RMSEA<-(-1)
stop("Convergence was not possible, the analysis was stopped.")
}
}
f_CFI <- rbind(f_CFI, CFI)
f_RMSEA <- rbind(f_RMSEA, RMSEA)
g<- rbind(g,g <- (1 / 2 * ((p - q) * (p - q + 1)) - p))
q<-q+1
if ((q>maxQ+1)){
again<-0
}
if (q>p){
again<-0
}
}
maxQ<-q-1
if (index_hull == "CAF"){
f_ <- f_CAF
}
if (index_hull == "CFI"){
f_ <- f_CFI
}
if (index_hull == "RMSEA"){
f_ <- f_RMSEA
}
out<-cbind(c(0:maxQ),f_,g)
out_best<-out[1,]
for (i in 2:(maxQ+1)){
if (i==2){
if (max(out_best[2]) < out[i,2]){
out_best <- rbind(out_best, out[i,])
}
}
else {
if (max(out_best[,2]) < out[i,2]){
out_best <- rbind(out_best, out[i,])
}
}
}
out_c <- out
out <- out_best
tmp4<-dim(out)[1]
i<-2
while (i < tmp4-1){
f1 <- out[i-1,2]
f2 <- out[i,2]
f3 <- out[i+1,2]
fp1 <- out[i-1,3]
fp2 <- out[i,3]
fp3 <- out[i+1,3]
if (LineCon(f1,f2,f3,fp1,fp2,fp3)==FALSE){
out <- rbind(out[1:(i-1),],out[(i+1):tmp4,])
tmp4 <- dim(out)[1]
i<-1
}
i<-i+1
}
tmp4<-dim(out)[1]
st<-c(matrix(0,tmp4,1))
for (i in 2:(tmp4-1)){
fi <- out[i,2]
fi_p <- out[i-1,2]
fi_n <- out[i+1,2]
pi <- out[i,3]
pi_p <- out[i-1,3]
pi_n <- out[i+1,3]
st[i] <- ((fi - fi_p) / (pi - pi_p)) / ((fi_n - fi) / (pi_n - pi))
}
out <- cbind(out,st)
j<-which(out[,4]==max(out[,4]))
if (index_hull == "CAF"){
r_CAF<-out[j,1]
}
if (index_hull == "CFI"){
r_CFI<-out[j,1]
}
if (index_hull == "RMSEA"){
r_RMSEA<-out[j,1]
}
r<-out[j,1]
dif<-(dim(out_c)[1])-(dim(out)[1])
out_red <- matrix(0,dif,3)
j<-2
h<-1
k2<-dim(out)[1]
for (i in 2:maxQ){
if (j<=k2){
if (out_c[i,1]==out[j,1]){
j=j+1
}
else {
out_red[h,] <- out_c[i,]
h<-h+1
}
}
else {
if (out_c[i,1]==out[j-1,1]){
}
else {
out_red[h,] <- out_c[i,]
h<-h+1
}
}
}
if (dif>1 && (out_red[dif,1]==0)){
out_red[dif,] <- out_c[(dim(out_c)[1]),]
}
if (index_hull == "CAF"){
t_CAF_red <- out_red
t_CAF<-out
colnames(t_CAF)<-c('q','f','g','st')
rownames(t_CAF)<-NULL
colnames(t_CAF_red)<-c('q','f','g')
rownames(t_CAF_red)<-NULL
OUT<-list('Matrix'=t_CAF,'n_factors'=r_CAF)
}
if (index_hull == "CFI"){
t_CFI_red <- out_red
t_CFI<-out
colnames(t_CFI)<-c('q','f','g','st')
rownames(t_CFI)<-NULL
colnames(t_CFI_red)<-c('q','f','g')
rownames(t_CFI_red)<-NULL
OUT<-list('Matrix'=t_CFI,'n_factors'=r_CFI)
}
if (index_hull == "RMSEA"){
t_RMSEA_red <- out_red
t_RMSEA<-out
colnames(t_RMSEA)<-c('q','f','g','st')
rownames(t_RMSEA)<-NULL
colnames(t_RMSEA_red)<-c('q','f','g')
rownames(t_RMSEA_red)<-NULL
OUT<-list('Matrix'=t_RMSEA,'n_factors'=r_RMSEA)
}
if (display==T){
if (index_hull=="CAF"){
cat('HULL METHOD - CAF INDEX\n')
cat('\n')
cat(' q f g st\n')
if (details==FALSE){
f1<-dim(t_CAF)[1]
for (i in 1:f1){
cat(sprintf(' %2.0f %.4f %4.0f %6.4f \n',t_CAF[i,1],t_CAF[i,2],t_CAF[i,3],t_CAF[i,4]))
}
}
else {
f1<-dim(out_c)[1]
g1<-dim(t_CAF)[1]
j <- 1
h <- 0
for (i in 1:f1){
if ((i-h)<=g1){
if (t_CAF[i-h,1] == (i-j+h)){
cat(sprintf(' %2.0f %.4f %4.0f %6.4f \n',t_CAF[i-h,1],t_CAF[i-h,2],t_CAF[i-h,3],t_CAF[i-h,4]))
}
else {
cat(sprintf(' %2.0f* %.4f %4.0f \n',t_CAF_red[j,1],t_CAF_red[j,2],t_CAF_red[j,3]))
j <- j+1
h <- h+1
}
}
else {
cat(sprintf(' %2.0f* %.4f %4.0f \n',t_CAF_red[j,1],t_CAF_red[j,2],t_CAF_red[j,3]))
j <- j+1
h <- h+1
}
}
}
cat('\n')
cat(sprintf('Number of advised dimensions: %.0f \n',r_CAF))
if (details==TRUE){
if (g1!=f1){
cat(sprintf('* Value outside the convex Hull \n'))
}
}
cat('\n')
cat('-----------------------------------------------\n')
cat('\n')
}
if (index_hull == "CFI"){
cat('HULL METHOD - CFI INDEX\n')
cat('\n')
cat(' q f g st\n')
if (details==FALSE){
f1<-dim(t_CFI)[1]
for (i in 1:f1){
cat(sprintf(' %2.0f %.4f %4.0f %6.4f \n',t_CFI[i,1],t_CFI[i,2],t_CFI[i,3],t_CFI[i,4]))
}
}
else {
f1<-dim(out_c)[1]
g1<-dim(t_CFI)[1]
j <- 1
h <- 0
for (i in 1:f1){
if ((i-h)<=g1){
if (t_CFI[i-h,1] == (i-j+h)){
cat(sprintf(' %2.0f %.4f %4.0f %6.4f \n',t_CFI[i-h,1],t_CFI[i-h,2],t_CFI[i-h,3],t_CFI[i-h,4]))
}
else {
cat(sprintf(' %2.0f* %.4f %4.0f \n',t_CAF_red[j,1],t_CAF_red[j,2],t_CAF_red[j,3]))
j <- j+1
h <- h+1
}
}
else {
cat(sprintf(' %2.0f* %.4f %4.0f \n',t_CFI_red[j,1],t_CFI_red[j,2],t_CFI_red[j,3]))
j <- j+1
h <- h+1
}
}
}
cat('\n')
cat(sprintf('Number of advised dimensions: %.0f \n',r_CFI))
if (details==TRUE){
if (g1!=f1){
cat(sprintf('* Value outside the convex Hull \n'))
}
}
cat('\n')
cat('-----------------------------------------------\n')
cat('\n')
}
if (index_hull == "RMSEA"){
cat('HULL METHOD - RMSEA INDEX\n')
cat('\n')
cat(' q f g st\n')
if (details==FALSE){
f1<-dim(t_RMSEA)[1]
for (i in 1:f1){
cat(sprintf(' %2.0f %.4f %4.0f %6.4f \n',t_RMSEA[i,1],t_RMSEA[i,2],t_RMSEA[i,3],t_RMSEA[i,4]))
}
}
else {
f1<-dim(out_c)[1]
g1<-dim(t_RMSEA)[1]
j <- 1
h <- 0
for (i in 1:f1){
if ((i-h)<=g1){
if (t_RMSEA[i-h,1] == (i-j+h)){
cat(sprintf(' %2.0f %.4f %4.0f %6.4f \n',t_RMSEA[i-h,1],t_RMSEA[i-h,2],t_RMSEA[i-h,3],t_RMSEA[i-h,4]))
}
else {
cat(sprintf(' %2.0f* %.4f %4.0f \n',t_RMSEA_red[j,1],t_RMSEA_red[j,2],t_RMSEA_red[j,3]))
j <- j+1
h <- h+1
}
}
else {
cat(sprintf(' %2.0f* %.4f %4.0f \n',t_RMSEA_red[j,1],t_RMSEA_red[j,2],t_RMSEA_red[j,3]))
j <- j+1
h <- h+1
}
}
}
cat('\n')
cat(sprintf('Number of advised dimensions: %.0f \n',r_RMSEA))
if (details==TRUE){
if (g1!=f1){
cat(sprintf('* Value outside the convex Hull \n'))
}
}
cat('\n')
cat('-----------------------------------------------\n')
cat('\n')
}
invisible(OUT)
}
if (graph==T){
title<-sprintf('Hull Method: %s Index',index_hull)
f1<-dim(out_c)[1]
g1<-dim(out)[1]
out_c<-as.data.frame(out_c)
buff<-character(length = f1)
buff[]<-"f1"
out_c2<-cbind(out_c,buff)
colnames(out_c)<-c('Factors','f','g')
out<-as.data.frame(out)
buff<-character(length = g1)
buff[]<-"g1"
out2<-cbind(out[,1:3],buff)
colnames(out)<-c('Factors','f','g','st')
out_final<-rbind(out_c2,out2)
colnames(out_final)<-c('Factors','f','g','buff')
Factors=f=NULL
p<-ggplot2::ggplot(data=out_final, ggplot2::aes(x=Factors, y=f, colour=buff)) +
ggplot2::geom_line(data=out) +
ggplot2::geom_point() +
ggplot2::ggtitle(title) +
ggplot2::geom_vline(xintercept = r, linetype="dashed") +
ggplot2::scale_x_continuous(breaks=scales::pretty_breaks(n=f1)) +
ggplot2::theme(legend.position="none")
print(p)
}
if (display==F){
invisible(OUT)
}
} |
data(dataADaMCDISCP01)
labelVars <- attr(dataADaMCDISCP01, "labelVars")
dataAE <- dataADaMCDISCP01$ADAE
subjectsSafety <- subset(dataADaMCDISCP01$ADSL, SAFFL == "Y")$USUBJID
tableAE <- stats::aggregate(
formula = USUBJID ~ AESOC:AEDECOD,
data = dataAE,
FUN = function(usubjid) length(unique(usubjid))
)
colnames(tableAE)[colnames(tableAE) == "USUBJID"] <- "N"
tableAE$perc <- round(tableAE$N/length(subjectsSafety)*100, 3)
tableAE <- tableAE[order(tableAE$perc, decreasing = TRUE), ]
tableAELabels <- getLabelVar(
var = colnames(tableAE),
labelVars = labelVars,
label = c(N = '
)
tableAELabelsDT <- setNames(names(tableAELabels), tableAELabels)
getClinDT(
data = tableAE,
barVar = "perc",
colnames = tableAELabelsDT
)
getClinDT(
data = tableAE,
filter = "none",
barVar = "perc",
barRange = c(0, 100),
colnames = tableAELabelsDT
)
getClinDT(
data = tableAE,
filter = "none",
barVar = "perc",
barColorThr = seq(from = 0, to = 100, by = 25),
colnames = tableAELabelsDT
)
tableAESOC <- aggregate(formula = N ~ AESOC, data = tableAE, FUN = sum)
tableAE$AESOC <- factor(tableAE$AESOC,
levels = tableAESOC[order(tableAESOC$N, decreasing = FALSE), "AESOC"]
)
tableAE <- tableAE[order(tableAE$AESOC, tableAE$perc, decreasing = TRUE), ]
getClinDT(
data = tableAE,
filter = "none",
barVar = "perc",
barRange = c(0, 100),
colnames = tableAELabelsDT,
rowGroupVar = "AESOC",
pageLength = Inf
)
getClinDT(
data = tableAE,
barVar = "perc",
colnames = tableAELabelsDT,
expandVar = "USUBJID",
escape = grep("USUBJID", colnames(tableAE))-1
)
getClinDT(
data = tableAE,
colnames = tableAELabelsDT,
fixedColumns = list(leftColumns = 1),
columnsWidth = c(0.1, 0.7, 0.1, 0.1),
width = "350px"
)
getClinDT(
data = tableAE,
colnames = tableAELabelsDT,
filter = "none",
buttons = getClinDTButtons(type = c("csv", "excel", "pdf"))
)
getClinDT(
data = tableAE,
colnames = tableAELabelsDT,
buttons = getClinDTButtons(typeExtra = "colvis")
)
buttons <- getClinDTButtons(
opts = list(pdf = list(orientation = "landscape"))
)
getClinDT(
data = tableAE,
colnames = tableAELabelsDT,
buttons = buttons
)
getClinDT(
data = tableAE,
nonVisibleVar = "AESOC"
)
library(htmltools)
caption <- tags$caption(
"Number of subjects with adverse events grouped by system organ class.",
br(),
paste(
"Percentages are based on the total number of patients having",
"received a first study treatment."
)
)
getClinDT(
data = tableAE,
filter = "none",
barVar = "perc",
barRange = c(0, 100),
pageLength = Inf,
colnames = tableAELabelsDT,
rowGroupVar = "AESOC",
caption = caption
) |
context("Basic function")
test_that("graticule creation is successful", {
expect_that(graticule(seq(100, 240, by = 15), seq(-85, -30, by = 15)), is_a("SpatialLinesDataFrame"))
expect_that(graticule(seq(100, 240, by = 15), seq(-85, -30, by = 15), nverts = 20), is_a("SpatialLinesDataFrame"))
expect_that(graticule(seq(100, 240, by = 15), seq(-85, -30, by = 15), nverts = 100, xlim = c(-180, 180), ylim = c(-60, -30)), is_a("SpatialLinesDataFrame"))
})
test_that("labels work", {
expect_that(graticule_labels(seq(100, 240, by = 15), seq(-85, -30, by = 15)), is_a("SpatialPointsDataFrame"))
}) |
isNegativeNumberOrNaOrNanOrInfScalarOrNull <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) {
checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = 1, zeroAllowed = TRUE, negativeAllowed = TRUE, positiveAllowed = FALSE, nonIntegerAllowed = TRUE, naAllowed = TRUE, nanAllowed = TRUE, infAllowed = TRUE, message = message, argumentName = argumentName)
} |
M13p <-
function(RR, alpha=c(0.333,0.333, 0.333),r=0.1) {
x.m <- RR[1:3]
x.f <- RR[4:6]
AA <- expand.grid(seq(r/2,1-r/2,by=r), seq(r/2,1-r/2,by=r))
paa.m <- AA[,1]
pab.m <- AA[,2]
pp <- cbind(paa.m,pab.m)
matriu <- pp[paa.m < 1 -r/2 -pab.m, ]
ddir <- function (x, alpha, log = T) {
x <- as.vector(x)
alpha <- as.vector(alpha)
if (!identical(length(x), length(alpha)))
stop("x and alpha differ in length.")
dens <- lgamma(sum(alpha)) + sum((alpha-1)*log(x)) -
sum(lgamma(alpha))
if (log == FALSE)
dens <- exp(dens)
return(dens)
}
ff3 <- apply(matriu, 1, function(el){
pAA.m <- el[1]
pAB.m <- el[2]
pBB.m <- 1-pAA.m-pAB.m
pAA.f <- ((2*pAA.m+pAB.m)/2)^2
pAB.f <- 2*((2*pAA.m+pAB.m)/2)*(1-(2*pAA.m+pAB.m)/2)
pBB.f <- 1-pAA.f - pAB.f
aux3 <- dmultinom(x.f, size=sum(x.f), prob=c(pAA.f,pAB.f,pBB.f),log=T) +
dmultinom(x.m, size=sum(x.m), prob=c(pAA.m,pAB.m,pBB.m),log=T) +
ddir(x=c(pAA.m,pAB.m,pBB.m),alpha,log=T)
return(exp(aux3))
})
dens <- sum(ff3)*r*r
return(dens)
} |
sliceSampler_N <- function(c, m, alpha, z, hyperG0, U_mu, U_Sigma, diagVar){
maxCl <- length(m)
ind <- which(m!=0)
w <- numeric(maxCl)
temp <- stats::rgamma(n=(length(ind)+1), shape=c(m[ind], alpha), scale = 1)
temp_norm <- temp/sum(temp)
w[ind] <- temp_norm[-length(temp_norm)]
R <- temp_norm[length(temp_norm)]
u <- stats::runif(length(c))*w[c]
u_star <- min(u)
ind_new <- which(m==0)
if(length(ind_new)>0){
t <- 0
while(R>u_star && (t<length(ind_new))){
t <- t+1
beta_temp <- stats::rbeta(n=1, shape1=1, shape2=alpha)
w[ind_new[t]] <- R*beta_temp
R <- R * (1-beta_temp)
}
ind_new <- ind_new[1:t]
for (i in 1:t){
NiW <- rNiW(hyperG0, diagVar)
U_mu[, ind_new[i]] <- NiW[["mu"]]
U_Sigma[, , ind_new[i]] <- NiW[["S"]]
}
}
fullCl_ind <- which(w != 0)
if(length(fullCl_ind)>1){
U_mu_full <- sapply(fullCl_ind, function(j) U_mu[, j])
U_Sigma_list <- lapply(fullCl_ind, function(j) U_Sigma[, ,j])
l <- mmvnpdfC(z, mean=U_mu_full, varcovM=U_Sigma_list, Log = TRUE)
u_mat <- t(sapply(w[fullCl_ind], function(x){as.numeric(u < x)}))
prob_mat_log <- log(u_mat) + l
c <- fullCl_ind[sampleClassC(probMat = prob_mat_log, Log = TRUE)]
}else{
c <- rep(fullCl_ind, maxCl)
}
m_new <- numeric(maxCl)
m_new[unique(c)] <- table(c)[as.character(unique(c))]
return(list("c"=c, "m"=m_new, "weights"=w,"U_mu"=U_mu,"U_Sigma"=U_Sigma))
} |
calcENT <-
function(rawmat)
{
lnrawmat<-log(rawmat)
size<-dim(lnrawmat)[1]
for(i in 1:size)
{
for(a in 1:size)
{
if(lnrawmat[a,i]=="-Inf")
{
lnrawmat[a,i]<-0
}
}
}
return(sum(rawmat*lnrawmat))
} |
plot.sparsenet=function(x, xvar=c("rsq","lambda","norm"),which.gamma=NULL,label=FALSE,...){
oldpar=par(mar=c(4,4,4,1))
on.exit(par(oldpar))
xvar=match.arg(xvar)
switch(xvar,
rsq={iname="Fraction Training Variance Explained";xvar="dev"},
lambda={iname=expression(log (lambda))},
norm={iname="L1 Norm"}
)
lamax=x$max.lambda
coeflist=x$coefficients
ngamma=length(coeflist)
if(is.null(which.gamma))which.gamma=1:ngamma
coeflistseq=seq(along=coeflist)
which.gamma=coeflistseq[match(which.gamma,coeflistseq,0)]
rsq=x$rsq
ylims=range(sapply(coeflist[which.gamma],function(x)range(x$beta)))
for(i in which.gamma){
x=coeflist[[i]]
beta=x$beta
p=nrow(beta)
beta=cbind2(rep(0,p),beta)
plotCoef(beta,lambda=c(lamax,x$lambda),df=c(0,x$df),dev=c(0,rsq[i,]),label=label,xvar=xvar,xlab=iname,ylim=ylims,...)
if(x$gamma> 1000)mlab="Lasso"
else if (x$gamma<1.001)mlab="Subset"
else mlab=paste("Gamma =",format(round(x$gamma,1)))
mtext(mlab,3,2)
}
invisible()
} |
adrop3d.last <- function(x, d, keepColNames = FALSE) {
if (!is.array(x)) {
x
}
else {
if (d > 1) {
x[,,1:d, drop = FALSE]
}
else {
if (dim(x)[1] == 1) {
rbind(x[,,1, drop = TRUE])
}
else {
if (dim(x)[2] == 1) {
if (keepColNames) {
xnew <- cbind(x[,,1, drop = TRUE])
colnames(xnew) <- colnames(x)
xnew
}
else {
cbind(x[,,1, drop = TRUE])
}
}
else {
x[,,1, drop = TRUE]
}
}
}
}
}
adrop2d.first <- function(x, d, keepColNames = FALSE) {
if (!is.array(x)) {
x
}
else {
if (d > 1) {
x[1:d,, drop = FALSE]
}
else {
x[1, , drop = TRUE]
}
}
}
adrop2d.last <- function(x, d, keepColNames = FALSE) {
if (!is.array(x)) {
x
}
else {
if (d > 1) {
x[,1:d, drop = FALSE]
}
else {
x[,1, drop = TRUE]
}
}
}
amatrix <- function(x, d, names) {
x <- matrix(x, d, dimnames = names)
if (ncol(x) > 1) {
x
}
else {
c(x)
}
}
amatrix.remove.names <- function(x) {
if (!is.null(dim(x)) && ncol(x) == 1) {
unlist(c(x), use.names = FALSE)
}
else {
x
}
}
atmatrix <- function(x, d, names, keep.names = FALSE) {
x <- t(matrix(x, ncol = d, dimnames = names))
if (ncol(x) > 1) {
x
}
else {
if (keep.names == FALSE) {
c(x)
}
else {
x.names <- rownames(x)
x <- c(x)
names(x) <- x.names
x
}
}
}
avector <- function(x, name = FALSE) {
if (!is.null(dim(x)) && nrow(x) > 1 && ncol(x) == 1) {
x.names <- rownames(x)
x <- unlist(c(x))
if (name) names(x) <- x.names else names(x) <- NULL
x
}
else if (!is.null(dim(x)) && nrow(x) == 1 && ncol(x) > 1) {
x.names <- colnames(x)
x <- unlist(c(x))
if (name) names(x) <- x.names else names(x) <- NULL
x
}
else if (!is.null(dim(x)) && nrow(x) == 1 && ncol(x) == 1) {
unlist(c(x))
}
else {
x
}
}
available <- function (package, lib.loc = NULL, quietly = TRUE)
{
package <- as.character(substitute(package))
installed <- find.package(package, quiet = TRUE)
if (length(installed) > 0) {
require(package, quietly = TRUE, character.only = TRUE)
}
else {
return(invisible(FALSE))
}
}
cv.folds <- function (n, folds = 10) {
split(resample(1:n), rep(1:folds, length = n))
}
data.matrix <- function(x) {
as.data.frame(lapply(x, function(xi) {
if (is.integer(xi) || is.numeric(xi)) {
xi
}
else if (is.logical(xi) || is.factor(xi)) {
as.integer(xi)
}
else {
as.numeric(xi)
}
}))
}
family.pretty <- function(x) {
fmly <- x$family
if (!is.null(x$forest$rfq) && x$forest$rfq) {
fmly <- "rfq"
}
switch(fmly,
"surv" = "RSF",
"surv-CR" = "RSF",
"regr" = "RF-R",
"class" = "RF-C",
"unsupv" = "RF-U",
"regr+" = "mRF-R",
"class+" = "mRF-C",
"mix+" = "mRF-RC",
"rfq" = "RFQ"
)
}
finalizeFormula <- function(formula.obj, data) {
yvar.names <- formula.obj$yvar.names
all.names <- formula.obj$all.names
index <- length(yvar.names)
fmly <- formula.obj$family
ytry <- formula.obj$ytry
if (length(all.names) <= index) {
stop("formula is misspecified: total number of variables does not exceed total number of y-variables")
}
if (all.names[index + 1] == ".") {
if(index == 0) {
xvar.names <- names(data)
}
else {
xvar.names <- names(data)[!is.element(names(data), all.names[1:index])]
}
}
else {
if(index == 0) {
xvar.names <- all.names
}
else {
xvar.names <- all.names[-c(1:index)]
}
not.specified <- !is.element(xvar.names, names(data))
if (sum(not.specified) > 0) {
stop("formula is misspecified, object ", xvar.names[not.specified], " not found")
}
}
return (list(family=fmly, yvar.names=yvar.names, xvar.names=xvar.names, ytry=ytry))
}
finalizeData <- function(fnames, data, na.action, miss.flag = TRUE) {
data <- data[ , is.element(names(data), fnames), drop = FALSE]
factor.names <- unlist(lapply(data, is.factor))
if (sum(factor.names) > 0) {
data[, factor.names] <- data.matrix(data[, factor.names, drop = FALSE])
}
if (miss.flag == TRUE && na.action == "na.omit") {
if (any(is.na(data))) {
data <- na.omit(data)
}
}
if (miss.flag == TRUE && na.action != "na.omit") {
nan.names <- sapply(data, function(x){any(is.nan(x))})
if (sum(nan.names) > 0) {
data[, nan.names] <- data.frame(lapply(which(nan.names), function(j) {
x <- data[, j]
x[is.nan(x)] <- NA
x
}))
}
}
if (nrow(data) == 0) {
stop("no records in the NA-processed data: consider using 'na.action=na.impute'")
}
logical.names <- unlist(lapply(data, is.logical))
if (sum(logical.names) > 0) {
data[, logical.names] <- 1 * data[, logical.names, drop = FALSE]
}
character.names <- unlist(lapply(data, is.character))
if (sum(character.names) > 0) {
stop("data types cannot be character: please convert all characters to factors")
}
return (data)
}
get.auc.workhorse <- function(roc.data) {
x <- roc.data[, 1][roc.data[, 2] == 1]
y <- roc.data[, 1][roc.data[, 2] == 0]
if (length(x) > 1 & length(y) > 1) {
AUC <- tryCatch({wilcox.test(x, y, exact=F)$stat/(length(x)*length(y))}, error=function(ex){NA})
}
else {
AUC <- NA
}
AUC
}
get.auc <- function(y, prob) {
if (is.factor(y)) {
y.uniq <- levels(y)
}
else {
y.uniq <- sort(unique(y))
}
nclass <- length(y.uniq)
AUC <- NULL
for (i in 1:(nclass - 1)) {
for (j in (i + 1):nclass) {
pt.ij <- (y == y.uniq[i] | y == y.uniq[j])
if (sum(pt.ij) > 1) {
y.ij <- y[pt.ij]
pij <- prob[pt.ij, j]
pji <- prob[pt.ij, i]
Aij <- get.auc.workhorse(cbind(pij, 1 * (y.ij == y.uniq[j])))
Aji <- get.auc.workhorse(cbind(pji, 1 * (y.ij == y.uniq[i])))
AUC <- c(AUC, (Aij + Aji)/2)
}
}
}
if (is.null(AUC)) {
NA
}
else {
mean(AUC, na.rm = TRUE)
}
}
get.bayes.rule <- function(prob, pi.hat = NULL) {
class.labels <- colnames(prob)
if (is.null(pi.hat)) {
factor(class.labels[apply(prob, 1, function(x) {
if (!all(is.na(x))) {
resample(which(x == max(x, na.rm = TRUE)), 1)
}
else {
NA
}
})], levels = class.labels)
}
else {
minority <- which.min(pi.hat)
majority <- setdiff(1:2, minority)
rfq.rule <- rep(majority, nrow(prob))
rfq.rule[prob[, minority] >= min(pi.hat, na.rm = TRUE)] <- minority
factor(class.labels[rfq.rule], levels = class.labels)
}
}
get.brier.error <- function(y, prob) {
if (is.null(colnames(prob))) {
colnames(prob) <- levels(y)
}
cl <- colnames(prob)
J <- length(cl)
bs <- rep(NA, J)
nullO <- sapply(1:J, function(j) {
bs[j] <<- mean((1 * (y == cl[j]) - prob[, j]) ^ 2, na.rm = TRUE)
NULL
})
norm.const <- (J / (J - 1))
sum(bs * norm.const, na.rm = TRUE)
}
get.misclass.error <- function(y, yhat) {
cl <- sort(unique(y))
err <- rep(NA, length(cl))
for (k in 1:length(cl)) {
cl.pt <- (y == cl[k])
if (sum(cl.pt) > 0) {
err[k] <- mean(y[cl.pt] != yhat[cl.pt])
}
}
err
}
get.confusion <- function(y, class.or.prob) {
if (is.factor(class.or.prob)) {
confusion <- table(y, class.or.prob)
}
else {
if (is.null(colnames(class.or.prob))) {
colnames(class.or.prob) <- levels(y)
}
confusion <- table(y, get.bayes.rule(class.or.prob))
}
class.error <- 1 - diag(confusion) / rowSums(confusion, na.rm = TRUE)
cbind(confusion, class.error = round(class.error, 4))
}
get.cindex <- function (time, censoring, predicted, do.trace = FALSE) {
size <- length(time)
if (size != length(time) |
size != length(censoring) |
size != length(predicted)) {
stop("time, censoring, and predicted must have the same length")
}
miss <- is.na(time) | is.na(censoring) | is.na(predicted)
nmiss <- sum(miss)
if (nmiss == size) {
stop("no valid pairs found, too much missing data")
}
denom <- sapply(miss, function(x) if (x) 0 else 1)
nativeOutput <- .Call("rfsrcCIndex",
as.integer(do.trace),
as.integer(size),
as.double(time),
as.double(censoring),
as.double(predicted),
as.integer(denom))
if (is.null(nativeOutput)) {
stop("An error has occurred in rfsrcCIndex. Please turn trace on for further analysis.")
}
return (nativeOutput$err)
}
get.coerced.survival.fmly <- function(fmly, event.type, splitrule = NULL) {
if (grepl("surv", fmly)) {
coerced.fmly <- "surv"
if (!is.null(splitrule)) {
if ((length(event.type) > 1) &&
(splitrule != "l2.impute") &&
(splitrule != "logrankscore")) {
coerced.fmly <- "surv-CR"
}
}
else {
if (length(event.type) > 1) {
coerced.fmly <- "surv-CR"
}
}
}
else {
stop("attempt to coerce a non-survival family")
}
coerced.fmly
}
get.event.info <- function(obj, subset = NULL) {
if (grepl("surv", obj$family)) {
if (!is.null(obj$yvar)) {
if (is.null(subset)) {
subset <- (1:nrow(cbind(obj$yvar)))
}
r.dim <- 2
time <- obj$yvar[subset, 1]
cens <- obj$yvar[subset, 2]
if (!all(floor(cens) == abs(cens), na.rm = TRUE)) {
stop("for survival families censoring variable must be coded as a non-negative integer")
}
event <- na.omit(cens)[na.omit(cens) > 0]
event.type <- sort(unique(event))
}
else {
r.dim <- 0
event <- event.type <- cens <- cens <- time <- NULL
}
time.interest <- obj$time.interest
}
else {
if ((obj$family == "regr+") | (obj$family == "class+")) {
r.dim <- dim(obj$yvar)[2]
}
else {
r.dim <- 1
}
event <- event.type <- cens <- time.interest <- cens <- time <- NULL
}
return(list(event = event, event.type = event.type, cens = cens,
time.interest = time.interest, time = time, r.dim = r.dim))
}
get.gmean <- function(y, prob, rfq = FALSE, robust = FALSE) {
frq <- table(y)
if (length(frq) > 2) {
return(NULL)
}
if (rfq) {
threshold <- min(frq, na.rm = TRUE) / sum(frq, na.rm = TRUE)
}
else {
threshold <- 0.5
}
minority <- which.min(frq)
majority <- setdiff(1:2, minority)
yhat <- factor(1 * (prob[, minority] >= threshold), levels = c(0,1))
confusion.matrix <- table(y, yhat)
if (nrow(confusion.matrix) > 1) {
TN <- confusion.matrix[minority, 2]
FP <- confusion.matrix[minority, 1]
FN <- confusion.matrix[majority, 2]
TP <- confusion.matrix[majority, 1]
if (robust) {
sensitivity <- (1 + TP) / (1 + TP + FN)
specificity <- (1 + TN) / (1 + TN + FP)
}
else {
sensitivity <- TP / (TP + FN)
specificity <- TN / (TN + FP)
}
sqrt(sensitivity * specificity)
}
else {
NA
}
}
get.grow.event.info <- function(yvar, fmly, need.deaths = TRUE, ntime) {
if (grepl("surv", fmly)) {
r.dim <- 2
time <- yvar[, 1]
cens <- yvar[, 2]
if (!all(floor(cens) == abs(cens), na.rm = TRUE)) {
stop("for survival families censoring variable must be coded as a non-negative integer (perhaps the formula is set incorrectly?)")
}
if (need.deaths && (all(na.omit(cens) == 0))) {
stop("no deaths in data!")
}
event.type <- unique(na.omit(cens))
if (sum(event.type >= 0) != length(event.type)) {
stop("censoring variable must be coded as NA, 0, or greater than 0.")
}
event <- na.omit(cens)[na.omit(cens) > 0]
event.type <- unique(event)
nonMissingOutcome <- which(!is.na(cens) & !is.na(time))
nonMissingDeathFlag <- (cens[nonMissingOutcome] != 0)
time.interest <- sort(unique(time[nonMissingOutcome[nonMissingDeathFlag]]))
if (!missing(ntime)) {
if (length(ntime) == 1 && length(time.interest) > ntime) {
time.interest <- time.interest[
unique(round(seq.int(1, length(time.interest), length.out = ntime)))]
}
if (length(ntime) > 1) {
time.interest <- unique(sapply(ntime, function(tt) {
time.interest[max(1, sum(tt >= time.interest, na.rm = TRUE))]
}))
}
}
}
else {
if ((fmly == "regr+") | (fmly == "class+") | (fmly == "mix+")) {
r.dim <- dim(yvar)[2]
}
else {
if (fmly == "unsupv") {
r.dim <- 0
}
else {
r.dim <- 1
}
}
event <- event.type <- cens <- time.interest <- cens <- time <- NULL
}
return(list(event = event, event.type = event.type, cens = cens,
time.interest = time.interest,
time = time, r.dim = r.dim))
}
get.grow.mtry <- function (mtry = NULL, n.xvar, fmly) {
if (!is.null(mtry)) {
mtry <- round(mtry)
if (mtry < 1 | mtry > n.xvar) mtry <- max(1, min(mtry, n.xvar))
}
else {
if (grepl("regr", fmly)) {
mtry <- max(ceiling(n.xvar/3), 1)
}
else {
mtry <- max(ceiling(sqrt(n.xvar)), 1)
}
}
return (mtry)
}
get.grow.nodesize <- function(fmly, nodesize) {
if (fmly == "surv"){
if (is.null(nodesize)) {
nodesize <- 15
}
}
else if (fmly == "surv-CR"){
if (is.null(nodesize)) {
nodesize <- 15
}
}
else if (fmly == "class" | fmly == "class+") {
if (is.null(nodesize)) {
nodesize <- 1
}
}
else if (fmly == "regr" | fmly == "regr+") {
if (is.null(nodesize)) {
nodesize <- 5
}
}
else if (fmly == "mix+") {
if (is.null(nodesize)) {
nodesize <- 3
}
}
else if (fmly == "unsupv") {
if (is.null(nodesize)) {
nodesize <- 3
}
}
else if (is.null(nodesize)) {
stop("family is misspecified")
}
nodesize <- round(nodesize)
}
get.grow.splitinfo <- function (formula.detail, splitrule, hdim, nsplit, event.type) {
splitrule.names <- c("logrank",
"logrankscore",
"logrankCR",
"random",
"mse",
"gini",
"unsupv",
"mv.mse",
"mv.gini",
"mv.mix",
"custom",
"quantile.regr",
"la.quantile.regr",
"bs.gradient",
"auc",
"entropy",
"sg.regr",
"sg.class",
"sg.surv")
fmly <- formula.detail$family
if (hdim > 0) {
if(!is.null(nsplit)) {
nsplit <- round(nsplit)
if (nsplit < 0) {
stop("Invalid nsplit value. Set nsplit >= 0.")
}
}
else {
nsplit = 1
}
}
else {
if(!is.null(nsplit)) {
nsplit <- round(nsplit)
if (nsplit < 0) {
stop("Invalid nsplit value. Set nsplit >= 0.")
}
}
else {
nsplit = 0
}
}
cust.idx <- NULL
splitpass <- FALSE
if (!is.null(splitrule)) {
if(grepl("custom", splitrule)) {
splitrule.idx <- which(splitrule.names == "custom")
cust.idx <- as.integer(sub("custom", "", splitrule))
if (is.na(cust.idx)) cust.idx <- 1
splitpass <- TRUE
}
else if (splitrule == "random") {
splitrule.idx <- which(splitrule.names == "random")
nsplit <- 1
splitpass <- TRUE
}
}
if (!splitpass) {
if (grepl("surv", fmly)) {
if (is.null(splitrule)) {
if (length(event.type) == 1) {
splitrule.idx <- which(splitrule.names == "logrank")
}
else {
splitrule.idx <- which(splitrule.names == "logrankCR")
}
splitrule <- splitrule.names[splitrule.idx]
}
else {
splitrule.idx <- which(splitrule.names == splitrule)
if (length(splitrule.idx) != 1) {
stop("Invalid split rule specified: ", splitrule)
}
if ((length(event.type) == 1) & (splitrule.idx == which(splitrule.names == "logrankCR"))) {
stop("Cannot specify logrankCR splitting for right-censored data")
}
if ((length(event.type) > 1) & (splitrule.idx == which(splitrule.names == "logrank"))) {
splitrule.idx <- which(splitrule.names == "logrankCR")
}
}
}
if (fmly == "class") {
if (is.null(splitrule)) {
splitrule.idx <- which(splitrule.names == "gini")
splitrule <- splitrule.names[splitrule.idx]
}
else {
if ((splitrule != "rps") &
(splitrule != "auc") &
(splitrule != "entropy") &
(splitrule != "gini") &
(splitrule != "sg.class")) {
stop("Invalid split rule specified: ", splitrule)
}
splitrule.idx <- which(splitrule.names == splitrule)
}
}
if (fmly == "regr") {
if (is.null(splitrule)) {
splitrule.idx <- which(splitrule.names == "mse")
splitrule <- splitrule.names[splitrule.idx]
}
else {
if ((splitrule != "mse") &
(splitrule != "sg.regr") &
(splitrule != "la.quantile.regr") &
(splitrule != "quantile.regr")) {
stop("Invalid split rule specified: ", splitrule)
}
splitrule.idx <- which(splitrule.names == splitrule)
}
}
if (fmly == "regr+") {
if (is.null(splitrule)) {
splitrule.idx <- which(splitrule.names == "mv.mse")
splitrule <- splitrule.names[splitrule.idx]
}
else {
if ((splitrule != "mv.mse")) {
stop("Invalid split rule specified: ", splitrule)
}
splitrule.idx <- which(splitrule.names == splitrule)
}
}
if (fmly == "class+") {
if (is.null(splitrule)) {
splitrule.idx <- which(splitrule.names == "mv.gini")
splitrule <- splitrule.names[splitrule.idx]
}
else {
if ((splitrule != "mv.gini")) {
stop("Invalid split rule specified: ", splitrule)
}
splitrule.idx <- which(splitrule.names == splitrule)
}
}
if (fmly == "mix+") {
if (is.null(splitrule)) {
splitrule.idx <- which(splitrule.names == "mv.mse")
splitrule <- "mv.mix"
}
else {
if ((splitrule != "mv.mix")) {
stop("Invalid split rule specified: ", splitrule)
}
splitrule.idx <- which(splitrule.names == splitrule)
}
}
if (fmly == "unsupv") {
if (is.null(splitrule)) {
splitrule.idx <- which(splitrule.names == "unsupv")
splitrule <- splitrule.names[splitrule.idx]
}
else {
if ((splitrule != "unsupv")) {
stop("Invalid split rule specified: ", splitrule)
}
splitrule.idx <- which(splitrule.names == splitrule)
}
}
}
splitinfo <- list(name = splitrule, index = splitrule.idx, cust = cust.idx, nsplit = nsplit)
return (splitinfo)
}
get.importance.xvar <- function(importance.xvar, importance, object) {
if (!is.null(importance)) {
if (missing(importance.xvar) || is.null(importance.xvar)) {
importance.xvar <- object$xvar.names
}
else {
importance.xvar <- unique(importance.xvar)
importance.xvar <- intersect(importance.xvar, object$xvar.names)
}
if (length(importance.xvar) == 0) {
stop("xvar names do not match object xvar matrix")
}
}
else {
importance.xvar <- NULL
}
return (importance.xvar)
}
get.mv.error <- function(obj, standardize = FALSE, pretty = TRUE, block = FALSE) {
nms <- NULL
ynms <- obj$yvar.names
if (obj$family == "surv" || obj$family == "surv-CR") {
ynms <- ynms[1]
}
if (block) {
pretty <- FALSE
}
err <- lapply(ynms, function(nn) {
o.coerce <- coerce.multivariate(obj, nn)
if (!block) {
er <- o.coerce$err.rate
}
else {
er <- o.coerce$err.block.rate
}
if (!is.null(er)) {
if (o.coerce$family != "regr" || !standardize) {
if (pretty && o.coerce$family == "class") {
er <- utils::tail(cbind(er)[, 1], 1)
}
else {
if (!block) {
er <- utils::tail(er, 1)
rownames(er) <- NULL
}
}
}
else {
if (!block) {
er <- utils::tail(er, 1) / var(o.coerce$yvar, na.rm = TRUE)
}
else {
er <- er / var(o.coerce$yvar, na.rm = TRUE)
}
}
}
if (is.null(dim(er))) {
nms <<- c(nms, paste(nn))
}
else {
nms <<- c(nms, colnames(er))
}
er
})
if (is.null(err[[1]])) {
err <- NULL
}
if (!is.null(err)) {
if (pretty) {
err <- unlist(err)
names(err) <- nms
}
else {
names(err) <- ynms
}
}
err
}
get.mv.error.block <- function(obj, standardize = FALSE) {
get.mv.error(obj, standardize = standardize, block = TRUE)
}
get.mv.formula <- function(ynames) {
as.formula(paste("Multivar(", paste(ynames, collapse = ","),paste(") ~ ."), sep = ""))
}
get.mv.predicted <- function(obj, oob = TRUE) {
nms <- NULL
ynms <- obj$yvar.names
if (obj$family == "surv" || obj$family == "surv-CR") {
ynms <- ynms[1]
}
pred <- do.call(cbind, lapply(ynms, function(nn) {
o.coerce <- coerce.multivariate(obj, nn)
if (o.coerce$family == "class" || o.coerce$family == "surv-CR") {
if (!is.null(o.coerce$predicted.oob)) {
nms <<- c(nms, paste(nn, ".", colnames(o.coerce$predicted.oob), sep = ""))
}
else {
nms <<- c(nms, paste(nn, ".", colnames(o.coerce$predicted), sep = ""))
}
}
else {
nms <<- c(nms, paste(nn))
}
if (oob && !is.null(o.coerce$predicted.oob)) {
o.coerce$predicted.oob
}
else {
o.coerce$predicted
}
}))
colnames(pred) <- nms
pred
}
get.mv.vimp <- function(obj, standardize = FALSE, pretty = TRUE) {
ynms <- obj$yvar.names
if (obj$family == "surv" || obj$family == "surv-CR") {
ynms <- ynms[1]
}
vmp <- lapply(ynms, function(nn) {
o.coerce <- coerce.multivariate(obj, nn)
v <- o.coerce$importance
if (!is.null(v)) {
if (o.coerce$family != "regr" || !standardize) {
if (pretty && o.coerce$family == "class") {
v <- v[, 1]
}
}
else {
v <- v / var(o.coerce$yvar, na.rm = TRUE)
}
if (is.null(dim(v))) {
v <- cbind(v)
colnames(v) <- nn
}
}
v
})
if (is.null(vmp[[1]])) {
vmp <- NULL
}
if (!is.null(vmp)) {
if (pretty) {
vmp <- do.call(cbind, vmp)
}
else {
names(vmp) <- ynms
}
}
vmp
}
get.nmiss <- function(xvar, yvar = NULL) {
if (!is.null(yvar)) {
sum(apply(yvar, 1, function(x){any(is.na(x))}) | apply(xvar, 1, function(x){any(is.na(x))}))
}
else {
sum(apply(xvar, 1, function(x){any(is.na(x))}))
}
}
get.outcome.target <- function(family, yvar.names, outcome.target) {
if (family == "regr" | family == "regr+" | family == "class" | family == "class+" | family == "mix+") {
if (is.null(outcome.target)) {
outcome.target <- yvar.names
}
outcome.target <- unique(outcome.target)
outcome.target <- intersect(outcome.target, yvar.names)
if (length(outcome.target) == 0) {
stop("yvar target names do not match object yvar names")
}
outcome.target <- match(outcome.target, yvar.names)
}
else {
outcome.target <- 0
}
}
get.univariate.target <- function(x, outcome.target = NULL) {
if (x$family == "regr+" | x$family == "class+" | x$family == "mix+") {
if (is.null(outcome.target)) {
target <- match(c("regrOutput", "classOutput"), names(x))
target <- target[!is.na(target)]
if(length(target) > 0) {
do.break <- FALSE
for (i in target) {
for (j in 1:length(x[[i]])) {
if (length(x[[i]][[j]]) > 0) {
outcome.target <- names(x[[i]][j])
do.break <- TRUE
break
}
}
if (do.break == TRUE) {
break
}
}
}
else {
stop("No outcomes found in object. Please contact technical support.")
}
}
else {
if (sum(is.element(outcome.target, x$yvar.names)) != 1) {
stop("Specified target was not found or too many target outcomes were supplied (only one is allowed).")
}
target <- match(c("regrOutput", "classOutput"), names(x))
target <- target[!is.na(target)]
found = FALSE
if(length(target) > 0) {
do.break <- FALSE
for (i in target) {
for (j in 1:length(x[[i]])) {
if (length(x[[i]][[j]]) > 0) {
if (outcome.target == names(x[[i]][j])) {
found = TRUE
do.break <- TRUE
break
}
}
}
if (do.break == TRUE) {
break
}
}
}
if (!found) {
stop("Target outcome has been correctly specified but it did not contain outcome statistics.")
}
}
}
outcome.target
}
get.weight <- function(weight, n) {
if (!is.null(weight)) {
if (any(weight < 0) ||
all(weight == 0) ||
length(weight) != n ||
any(is.na(weight))) {
stop("Invalid weight vector specified.")
}
}
else {
weight <- rep(1, n)
}
return (weight)
}
get.ytry <- function(f) {
}
get.xvar.type <- function(generic.types, xvar.names, coerce.factor = NULL) {
xvar.type <- generic.types
if (!is.null(coerce.factor$xvar.names)) {
xvar.type[is.element(xvar.names, coerce.factor$xvar.names)] <- "C"
}
xvar.type
}
get.xvar.nlevels <- function(nlevels, xvar.names, xvar, coerce.factor = NULL) {
xvar.nlevels <- nlevels
if (!is.null(coerce.factor$xvar.names)) {
pt <- is.element(xvar.names, coerce.factor$xvar.names)
xvar.nlevels[pt] <- sapply(coerce.factor$xvar.names, function(nn) {max(xvar[, nn])})
}
xvar.nlevels
}
get.yvar.type <- function(fmly, generic.types, yvar.names, coerce.factor = NULL) {
if (fmly == "unsupv") {
yvar.type <- NULL
}
else {
if (grepl("surv", fmly)) {
yvar.type <- c("T", "S")
}
else {
yvar.type <- generic.types
if (!is.null(coerce.factor$yvar.names)) {
yvar.type[is.element(yvar.names, coerce.factor$yvar.names)] <- "C"
}
}
}
yvar.type
}
get.yvar.nlevels <- function(fmly, nlevels, yvar.names, yvar, coerce.factor = NULL) {
if (fmly == "unsupv") {
yvar.nlevels <- NULL
}
else {
yvar.nlevels <- nlevels
if (!is.null(coerce.factor$yvar.names)) {
pt <- is.element(yvar.names, coerce.factor$yvar.names)
yvar.nlevels[pt] <- sapply(coerce.factor$yvar.names, function(nn) {max(yvar[, nn])})
}
}
yvar.nlevels
}
global.prob.assign <- function(prob, prob.epsilon, gk.quantile, quantile.regr, splitrule, n) {
prob.default <- (1:99) / 100
prob.epsilon.default <- .005
prob.bs.default <- .9
if (quantile.regr || grepl("quantile.regr", splitrule) || gk.quantile) {
if (gk.quantile) {
if (is.null(prob) && is.null(prob.epsilon)) {
n <- max(n, 1)
prob <- (1 : (2 * n)) / (2 * n + 1)
prob.epsilon <- diff(prob)[1] * .99
}
else if (is.null(prob) && !is.null(prob.epsilon)) {
prob <- prob.default
}
else if (!is.null(prob) && is.null(prob.epsilon)) {
prob.epsilon <- mean(diff(sort(prob)), na.rm = TRUE) * .99
}
else {
}
}
else {
prob.epsilon <- prob.epsilon.default
if (is.null(prob)) {
prob <- prob.default
}
}
if (sum(prob > 0 & prob < 1) == 0) {
stop("parameter 'prob' is not between (0,1)", prob)
}
prob <- sort(prob[prob>0 & prob<1])
}
if (splitrule == "bs.gradient") {
if (is.null(prob)) {
prob <- prob.bs.default
}
if (sum(prob > 0 & prob < 1) == 0) {
stop("parameter 'prob' is not between (0,1)", prob)
}
prob <- prob[prob>0 & prob<1][1]
}
return(list(prob = prob, prob.epsilon = prob.epsilon))
}
make.samplesize.function <- function(fraction = 1) {
f <- paste("x * ", paste(eval(fraction)))
expr <- parse(text = f)
function(x) eval(expr, list(x = x))
}
make.holdout.array <- function(vtry = 0, p, ntree, ntree.allvars = NULL) {
if (vtry == 0) {
return(NULL)
}
if (vtry < 0 || vtry >= p) {
stop("vtry must be positive and less than the feature dimension")
}
holdout <- do.call(cbind, lapply(1:ntree, function(b) {
ho <- rep(0, p)
ho[sample(1:p, size = vtry, replace = FALSE)] <- 1
ho
}))
if (is.null(ntree.allvars)) {
holdout
}
else {
cbind(matrix(0, p, ntree.allvars), holdout)
}
}
make.imbalanced.sample <- function(ntree, ratio = 0.5, y, replace = FALSE) {
if (ratio < 0 | ratio > 1) {
stop("undersampling ratio must be between 0 and 1:", ratio)
}
frq <- table(y)
class.labels <- names(frq)
minority <- which.min(frq)
majority <- setdiff(1:2, minority)
n.minority <- min(frq, na.rm = TRUE)
n.majority <- max(frq, na.rm = TRUE)
samp.size <- length(y)
ratio <- max((2 + n.minority) / length(y), ratio)
rbind(sapply(1:ntree, function(bb){
inb <- rep(0, samp.size)
smp.min <- sample(which(y == class.labels[minority]), size = n.minority, replace = TRUE)
smp.maj <- sample(which(y == class.labels[majority]), size = ratio * n.majority, replace = replace)
smp <- c(smp.min, smp.maj)
inb.frq <- tapply(smp, smp, length)
idx <- as.numeric(names(inb.frq))
inb[idx] <- inb.frq
inb
}))
}
make.sample <- function(ntree, samp.size, boot.size = NULL, replace = FALSE) {
if (samp.size < 0) {
stop("samp.size cannot be negative:", samp.size)
}
if (is.null(boot.size)) {
if (replace == TRUE) {
boot.size <- samp.size
}
else {
boot.size <- .632 * samp.size
}
}
rbind(sapply(1:ntree, function(bb){
inb <- rep(0, samp.size)
smp <- sample(1:samp.size, size = boot.size, replace = replace)
frq <- tapply(smp, smp, length)
idx <- as.numeric(names(frq))
inb[idx] <- frq
inb
}))
}
make.size <- function(y) {
frq <- table(y)
min(length(y), min(frq, na.rm = TRUE) * length(frq))
}
make.wt <- function(y) {
frq <- table(y)
class.labels <- names(frq)
wt <- rep(1, length(y))
nullO <- sapply(1:length(frq), function(j) {
wt[y == class.labels[j]] <<- prod(frq[-j], na.rm = TRUE)
NULL
})
wt / max(wt, na.rm = TRUE)
}
parseFormula <- function(f, data, ytry = NULL, coerce.factor = NULL) {
if (!inherits(f, "formula")) {
stop("'formula' is not a formula object.")
}
if (is.null(data)) {
stop("'data' is missing.")
}
if (!is.data.frame(data)) {
stop("'data' must be a data frame.")
}
fmly <- all.names(f, max.names = 1e7)[2]
all.names <- all.vars(f, max.names = 1e7)
yvar.names <- all.vars(formula(paste(as.character(f)[2], "~ .")), max.names = 1e7)
yvar.names <- yvar.names[-length(yvar.names)]
coerce.factor.org <- coerce.factor
coerce.factor <- vector("list", 2)
names(coerce.factor) <- c("xvar.names", "yvar.names")
if (!is.null(coerce.factor.org)) {
coerce.factor$yvar.names <- intersect(yvar.names, coerce.factor.org)
if (length(coerce.factor$yvar.names) == 0) {
coerce.factor$yvar.names <- NULL
}
coerce.factor$xvar.names <- intersect(setdiff(colnames(data), yvar.names), coerce.factor.org)
}
if ((fmly == "Surv")) {
if (sum(is.element(yvar.names, names(data))) != 2) {
stop("Survival formula incorrectly specified.")
}
family <- "surv"
ytry <- 2
}
else if ((fmly == "Multivar" || fmly == "cbind") && length(yvar.names) > 1) {
if (sum(is.element(yvar.names, names(data))) < length(yvar.names)) {
stop("Multivariate formula incorrectly specified: y's listed in formula are not in data.")
}
Y <- data[, yvar.names, drop = FALSE]
logical.names <- unlist(lapply(Y, is.logical))
if (sum(logical.names) > 0) {
Y[, logical.names] <- 1 * Y[, logical.names, drop = FALSE]
}
if ((sum(unlist(lapply(Y, is.factor))) +
length(coerce.factor$yvar.names)) == length(yvar.names)) {
family <- "class+"
}
else if ((sum(unlist(lapply(Y, is.factor))) +
length(coerce.factor$yvar.names)) == 0) {
family <- "regr+"
}
else if (((sum(unlist(lapply(Y, is.factor))) +
length(coerce.factor$yvar.names)) > 0) &&
((sum(unlist(lapply(Y, is.factor))) +
length(coerce.factor$yvar.names)) < length(yvar.names))) {
family <- "mix+"
}
else {
stop("y-outcomes must be either real or factors in multivariate forests.")
}
if (!is.null(ytry)) {
if ((ytry < 1) || (ytry > length(yvar.names))) {
stop("invalid value for ytry: ", ytry)
}
}
else {
ytry <- length(yvar.names)
}
}
else if (fmly == "Unsupervised") {
if (length(yvar.names) != 0) {
stop("Unsupervised forests require no y-responses")
}
family <- "unsupv"
yvar.names <- NULL
temp <- gsub(fmly, "", as.character(f)[2])
temp <- gsub("\\(|\\)", "", temp)
ytry <- as.integer(temp)
if (is.na(ytry)) {
ytry <- 1
}
else {
if (ytry <= 0) {
stop("Unsupervised forests require positive ytry value")
}
}
}
else {
if (sum(is.element(yvar.names, names(data))) != 1) {
stop("formula is incorrectly specified.")
}
Y <- data[, yvar.names]
if (is.logical(Y)) {
Y <- as.numeric(Y)
}
if (!(is.factor(Y) | is.numeric(Y))) {
stop("the y-outcome must be either real or a factor.")
}
if (is.factor(Y) || length(coerce.factor$yvar.names) == 1) {
family <- "class"
}
else {
family <- "regr"
}
ytry <- 1
}
return (list(all.names=all.names, family=family, yvar.names=yvar.names, ytry=ytry,
coerce.factor = coerce.factor))
}
is.all.na <- function(x) {all(is.na(x))}
parseMissingData <- function(formula.obj, data) {
yvar.names <- formula.obj$yvar.names
if (length(yvar.names) > 0) {
resp <- data[, yvar.names, drop = FALSE]
col.resp.na <- unlist(lapply(data[, yvar.names, drop = FALSE], is.all.na))
if (any(col.resp.na)) {
stop("All records are missing for one (or more) yvar(s)")
}
}
colPt <- unlist(lapply(data, is.all.na))
if (sum(colPt) > 0 && sum(colPt) >= (ncol(data) - length(yvar.names))) {
stop("All x-variables have all missing data: analysis not meaningful.")
}
data <- data[, !colPt, drop = FALSE]
rowPt <- apply(data, 1, is.all.na)
if (sum(rowPt) == nrow(data)) {
stop("Rows of the data have all missing data: analysis not meaningful.")
}
data <- data[!rowPt,, drop = FALSE]
return(data)
}
resample <- function(x, size, ...) {
if (length(x) <= 1) {
if (!missing(size) && size == 0) x[FALSE] else x
}
else {
sample(x, size, ...)
}
}
row.col.deleted <- function(dat, r.n, c.n)
{
which.r <- setdiff(r.n, rownames(dat))
if (length(which.r) > 0) {
which.r <- match(which.r, r.n)
}
else {
which.r <- NULL
}
which.c <- setdiff(c.n, colnames(dat))
if (length(which.c) > 0) {
which.c <- match(which.c, c.n)
}
else {
which.c <- NULL
}
return(list(row = which.r, col = which.c))
}
sid.perf.metric <- function(truth,cluster,mode=c("entropy", "gini")){
mode <- match.arg(mode, c("entropy", "gini"))
k=length(unique(truth))
tab=table(truth,cluster)
clustersizes=colSums(tab)
clustersizesnorm=clustersizes/sum(clustersizes)
tabprop=tab
lapply(1:(dim(tab)[2]),function(i){
tabprop[,i]<<-tabprop[,i]/clustersizes[i]
NULL
})
if(mode=="entropy"){
measure=0
maxmeasure=0
lapply(1:(dim(tabprop)[2]),function(i){
clustermeasure=0
maxclustermeasure=0
lapply(1:(dim(tabprop)[1]),function(j){
if(tabprop[j,i]!=0){
clustermeasure<<-clustermeasure+-tabprop[j,i]*log2(tabprop[j,i])
}
maxclustermeasure<<-maxclustermeasure+-1/k*log2(1/k)
NULL
})
measure<<-measure+clustersizesnorm[i]*clustermeasure
maxmeasure<<-maxmeasure+clustersizesnorm[i]*maxclustermeasure
})
}
if(mode=="gini"){
measure=0
maxmeasure=0
lapply(1:(dim(tabprop)[2]),function(i){
clustermeasure=1
maxclustermeasure=1
lapply(1:(dim(tabprop)[1]),function(j){
if(tabprop[j,i]!=0){
clustermeasure<<-clustermeasure+(-tabprop[j,i]^2)
}
maxclustermeasure<<-maxclustermeasure+(-1/k^2)
NULL
})
measure<<-measure+clustersizesnorm[i]*clustermeasure
maxmeasure<<-maxmeasure+clustersizesnorm[i]*maxclustermeasure
NULL
})
}
list(result=measure,measure=mode,normalized_measure=measure/maxmeasure)
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(geneExpressionFromGEO) |
calculate_FSSwind <-
function (findex1, findex2, nvector)
{
if (ncol(findex1) != ncol(findex2) || nrow(findex1) != nrow(findex2)) {
stop("The two input wind class index fields don't have the same dimensions !!!")
}
max_index = max(max(findex1), max(findex2))
min_value = min(min(findex1), min(findex2))
if (identical(findex1, round(findex1)) == FALSE || identical(findex2,
round(findex2)) == FALSE || min_value < 1) {
stop("At least one of the two index fields contains non-integer or non-positive values. Only positive integer values that represent wind classes are allowed in the input index fields! The smallest allowed windclass index is 1 and not 0.")
}
if (identical(nvector, round(nvector)) == FALSE || length(which(nvector%%2 !=
1)) > 0) {
stop("nvector can only contain odd positive integer values representing the neigberhood size!")
}
fsum1enl_list = list()
fsum2enl_list = list()
d = max(ncol(findex1), nrow(findex1))
for (iclass in 1:max_index) {
ftemp = findex1
ftemp[ftemp != iclass] <- 0
ftemp[ftemp == iclass] <- 1
ftemp2 = enlarge_matrix(ftemp, d)
fsum1enl_list[[iclass]] <- calculate_summed_field(ftemp2)
ftemp = findex2
ftemp[ftemp != iclass] <- 0
ftemp[ftemp == iclass] <- 1
ftemp2 = enlarge_matrix(ftemp, d)
fsum2enl_list[[iclass]] <- calculate_summed_field(ftemp2)
}
FSSwind = nvector
for (inn in 1:length(nvector)) {
numerator = 0
denominator = 0
for (iclass in 1:max_index) {
ffrac1 <- calculate_fractions_from_enlarged_summed_field(fsum1enl_list[[iclass]],
nvector[inn], d)
ffrac2 <- calculate_fractions_from_enlarged_summed_field(fsum2enl_list[[iclass]],
nvector[inn], d)
numerator = numerator + sum((ffrac1 - ffrac2)^2)
denominator = denominator + sum(ffrac1^2 + ffrac2^2)
}
FSSwind[inn] = 1 - numerator/denominator
}
return(FSSwind)
} |
NULL
get_elasticities <- function( blp_data, share_info, theta_lin, variable, products , market, printLevel = 1){
if(class(blp_data) != "blp_data")
stop("blp_data has wrong class. Call BLP_data() first.")
if(class(share_info) != "shareInfo")
stop("share_info has wrong class. Call getShareInfo() first.")
if( missing(variable ))
stop("Specify variable for which elasticities should be calculated for.")
if( length(variable) != 1)
stop("Only one variable can be specified.")
if( missing(market ))
stop("Specify mkt in which elasticities should be calculated.")
if( length(market) != 1)
stop("Only one market can be specified.")
X_rand_colNames <- colnames(blp_data$data$X_rand)
X_lin_colNames <- colnames(blp_data$data$X_lin)
if ( !( variable %in% c(X_lin_colNames, X_rand_colNames ) ) ){
stop( paste( "Provided variable", variable , "is not in the set of variables. Constants must be named (Intercept).") )
}
original_market_id <- blp_data$parameters$market_id_char_in
market <- as.character(market)
if( !any(market %in% original_market_id) )
stop("Market is not available in provided dataset.")
relevant_Obs_Mkt <- which( market == original_market_id)
relevant_Mkt <- which( market == unique(original_market_id))
nobs <- nrow( blp_data$data$X_lin )
amountDraws <- blp_data$integration$amountDraws
K <- blp_data$parameters$K
totalDemographics <- blp_data$parameters$total_demogr
nprod_Mkt <- length( relevant_Obs_Mkt )
implShare_Mkt <- share_info$shares[ relevant_Obs_Mkt ]
product_id_Mkt <- blp_data$parameters$product_id[ relevant_Obs_Mkt ]
if( missing(products) ){
product_selector <- 1:nprod_Mkt
}else{
product_selector <- products
}
if( any(!(product_selector %in% product_id_Mkt ))){
if(printLevel >0) cat("At least one specified product is not available in the market... selecting all.\n")
product_selector <- 1:nprod_Mkt
}
if( length(theta_lin)!=1 || !is.numeric(theta_lin) || is.na( theta_lin ) )
stop( "Provide a valid linear parameter theta_lin. If the variable does not enter linerarly, provide zero.")
if ( !( variable %in% colnames(blp_data$data$X_rand)) ) {
changingVariable_Mkt <- blp_data$data$X_lin[ relevant_Obs_Mkt , variable, drop = F ]
EtaMkt <- - matrix( changingVariable_Mkt * theta_lin * implShare_Mkt ,
nrow = nprod_Mkt,
ncol = nprod_Mkt, byrow = TRUE)
diag(EtaMkt) <- theta_lin * changingVariable_Mkt * (1 - implShare_Mkt)
} else {
changingVariable_Mkt <- blp_data$data$X_rand[ relevant_Obs_Mkt , variable, drop = F ]
drawsRCMktShape_Mkt <- blp_data$integration$drawsRcMktShape[ relevant_Mkt , , drop = FALSE]
drawsRC_tableform_Mkt <- matrix(drawsRCMktShape_Mkt,
nrow = amountDraws,
ncol = K )
colnames(drawsRC_tableform_Mkt) <- X_rand_colNames
if ( totalDemographics > 0 ) {
drawsDemMktShape_Mkt <- blp_data$integration$drawsDemMktShape[ relevant_Mkt, , drop = FALSE]
demographicReshape_Mkt <- matrix( drawsDemMktShape_Mkt ,
ncol = totalDemographics ,
nrow = amountDraws )
} else {
drawsDemMktShape_Mkt <- matrix( NA )
demographicReshape_Mkt <- matrix( NA )
}
sij_Mkt <- share_info$sij[ relevant_Obs_Mkt , ,drop=FALSE]
weights <- blp_data$integration$weights
theta2Mat <- share_info$theta2
sigma <- theta2Mat[ variable , "unobs_sd" ]
unobserved_part <- theta_lin +
sigma * drawsRC_tableform_Mkt[ , variable ]
if ( totalDemographics > 0 ) {
demographic_effects <- matrix( theta2Mat[ variable, -1],
ncol = totalDemographics,
nrow = amountDraws,
byrow = TRUE )
observed_part <- rowSums( demographic_effects *
demographicReshape_Mkt )
} else {
observed_part <- 0
}
beta_i <- observed_part + unobserved_part
Omega <- matrix( NA_real_ ,
nrow = nprod_Mkt,
ncol = nprod_Mkt)
scalar <- - matrix( 1/implShare_Mkt ) %*% matrix( changingVariable_Mkt , nrow = 1)
diag( scalar ) <- - diag( scalar )
Omega[, ] <- ( t( beta_i )[ rep(1, nprod_Mkt) , ] *
t( weights )[ rep( 1 , nprod_Mkt), ] * sij_Mkt ) %*% t( sij_Mkt )
diag( Omega ) <- c(
( t( beta_i )[rep( 1, nprod_Mkt ), ] * sij_Mkt * (1 - sij_Mkt) )
%*% weights
)
EtaMkt <- Omega * scalar
}
rownames( EtaMkt ) <- colnames( EtaMkt ) <- product_id_Mkt
return( EtaMkt[product_selector,product_selector] )
} |
mdes.bird2f1 <- function(score = NULL, dists = "normal", k1 = -6, k2 = 6,
order = 1, interaction = FALSE, treat.lower = TRUE, cutoff = 0, p = NULL,
power = .80, alpha = .05, two.tailed = TRUE,
df = n2 * (n1 - 2) - g1 - order * (1 + interaction),
r21 = 0, g1 = 0, rate.tp = 1, rate.cc = 0, n1, n2 = 1) {
user.parms <- as.list(match.call())
.error.handler(user.parms)
if(df < 1) stop("Insufficient degrees of freedom", call. = FALSE)
if(!is.null(score) & order == 0) warning("Ignoring information from the 'score' object \n", call. = FALSE)
if(order == 0) {
d <- 1
if(is.null(p)) stop("'p' cannot be NULL in random assignment designs", call. = FALSE)
idx.score <- intersect(c("dists", "k1", "k2", "interaction", "treat.lower", "cutoff"), names(user.parms))
if(length(idx.score) > 0) cat("\nCAUTION: Ignoring argument(s):",
sQuote(names(user.parms[idx.score])), "\n")
ifelse(treat.lower, cutoff <- p, cutoff <- 1 - p)
interaction <- FALSE
dists <- "uniform"
k1 <- 0
k2 <- 1
} else if(order %in% 1:8) {
if(is.null(score)) {
score <- inspect.score(order = order, interaction = interaction,
treat.lower = treat.lower, cutoff = cutoff,
p = p, k1 = k1, k2 = k2, dists = dists)
} else {
if("p" %in% names(user.parms)) warning("Using 'p' from the 'score' object, ignoring 'p' in the function call", call. = FALSE)
if(!inherits(score, "score")) {
score <- inspect.score(score = score, order = order, interaction = interaction,
treat.lower = treat.lower, cutoff = cutoff,
p = p, k1 = k1, k2 = k2, dists = dists)
} else {
idx.score <- intersect(c("dists", "k1", "k2", "order", "interaction", "treat.lower", "p", "cutoff"), names(user.parms))
if(length(idx.score) > 0) cat("\nCAUTION: 'score' object overwrites argument(s):",
sQuote(names(user.parms[idx.score])), "\n")
}
}
d <- score$rdde
p <- score$p
cutoff <- score$cutoff
treat.lower <- score$treat.lower
order <- score$order
interaction <- score$interaction
dists <- score$parms$dists
k1 <- score$parms$k1
k2 <- score$parms$k2
} else if(order > 8) {
stop("'order' > 8 is not allowed", call. = FALSE)
}
sse <- (1/(rate.tp - rate.cc)) * sqrt(d * (1 - r21) / (p * (1 - p) * n1 * n2))
mdes <- .mdes(power, alpha, sse, df, two.tailed)
colnames(mdes) <- c("mdes", paste0(100 * (1 - round(alpha, 2)), "%lcl"),
paste0(100 * (1 - round(alpha, 2)), "%ucl"))
mdes.out <- list(parms = list(dists = dists, k1 = k1, k2 = k2,
order = order, interaction = interaction,
treat.lower = treat.lower, p = p, cutoff = cutoff,
power = power, alpha = alpha, two.tailed = two.tailed,
r21 = r21, g1 = g1, rate.tp = rate.tp, rate.cc = rate.cc,
n1 = n1, n2 = n2),
df = df,
sse = sse,
mdes = mdes)
class(mdes.out) <- c("mdes", "bird2f1")
.summary.mdes(mdes.out)
return(invisible(mdes.out))
}
power.bird2f1 <- function(score = NULL, dists = "normal", k1 = -6, k2 = 6,
order = 1, interaction = FALSE, treat.lower = TRUE, cutoff = 0, p = NULL,
es = .25, alpha = .05, two.tailed = TRUE,
df = n2 * (n1 - 2) - g1 - order * (1 + interaction),
r21 = 0, g1 = 0, rate.tp = 1, rate.cc = 0, n1, n2 = 1) {
user.parms <- as.list(match.call())
.error.handler(user.parms)
if(df < 1) stop("Insufficient degrees of freedom", call. = FALSE)
if(!is.null(score) & order == 0) warning("Ignoring information from the 'score' object \n", call. = FALSE)
if(order == 0) {
d <- 1
if(is.null(p)) stop("'p' cannot be NULL in random assignment designs", call. = FALSE)
idx.score <- intersect(c("dists", "k1", "k2", "interaction", "treat.lower", "cutoff"), names(user.parms))
if(length(idx.score) > 0) cat("\nCAUTION: Ignoring argument(s):",
sQuote(names(user.parms[idx.score])), "\n")
ifelse(treat.lower, cutoff <- p, cutoff <- 1 - p)
interaction <- FALSE
dists <- "uniform"
k1 <- 0
k2 <- 1
} else if(order %in% 1:8) {
if(is.null(score)) {
score <- inspect.score(order = order, interaction = interaction,
treat.lower = treat.lower, cutoff = cutoff,
p = p, k1 = k1, k2 = k2, dists = dists)
} else {
if("p" %in% names(user.parms)) warning("Using 'p' from the 'score' object, ignoring 'p' in the function call", call. = FALSE)
if(!inherits(score, "score")) {
score <- inspect.score(score = score, order = order, interaction = interaction,
treat.lower = treat.lower, cutoff = cutoff,
p = p, k1 = k1, k2 = k2, dists = dists)
} else {
idx.score <- intersect(c("dists", "k1", "k2", "order", "interaction", "treat.lower", "p", "cutoff"), names(user.parms))
if(length(idx.score) > 0) cat("\nCAUTION: 'score' object overwrites argument(s):",
sQuote(names(user.parms[idx.score])), "\n")
}
}
d <- score$rdde
p <- score$p
cutoff <- score$cutoff
treat.lower <- score$treat.lower
order <- score$order
interaction <- score$interaction
dists <- score$parms$dists
k1 <- score$parms$k1
k2 <- score$parms$k2
} else if(order > 8) {
stop("'order' > 8 is not allowed", call. = FALSE)
}
sse <- (1/(rate.tp - rate.cc)) * sqrt(d * (1 - r21) / (p * (1 - p) * n1 * n2))
power <- .power(es, alpha, sse, df, two.tailed)
power.out <- list(parms = list(dists = dists, k1 = k1, k2 = k2,
order = order, interaction = interaction,
treat.lower = treat.lower, p = p, cutoff = cutoff,
es = es, alpha = alpha, two.tailed = two.tailed,
r21 = r21, g1 = g1, rate.tp = rate.tp, rate.cc = rate.cc,
n1 = n1, n2 = n2),
df = df,
sse = sse,
power = power)
class(power.out) <- c("power", "bird2f1")
.summary.power(power.out)
return(invisible(power.out))
}
cosa.bird2f1 <- function(score = NULL, dists = "normal", k1 = -6, k2 = 6, rhots = NULL,
order = 1, interaction = FALSE,
treat.lower = TRUE, cutoff = 0, p = NULL,
cn1 = 0, cn2 = 0, cost = NULL,
n1 = NULL, n2 = NULL,
n0 = c(400, 5), p0 = .499,
constrain = "power", round = TRUE, max.power = FALSE,
local.solver = c("LBFGS", "SLSQP"),
power = .80, es = .25, alpha = .05, two.tailed = TRUE,
g1 = 0, r21 = 0) {
user.parms <- as.list(match.call())
.error.handler(user.parms, fun = "cosa")
if(!is.null(rhots)) {
if(rhots == 0) {
if(order != 0) {
order <- 0
warning("'order' argument is ignored, forcing 'order = 0' because 'rhots = 0'", call. = FALSE)
}
} else {
stop("'rhots' argument will be removed in the future, arbitrary correlations are not allowed,
use inspect.score() function instead", call. = FALSE)
}
}
if(!is.null(score) & order == 0) warning("Ignoring information from the 'score' object \n", call. = FALSE)
if(order == 0) {
d <- 1
idx.score <- intersect(c("dists", "k1", "k2", "interaction", "treat.lower", "cutoff"), names(user.parms))
if(length(idx.score) > 0) cat("\nCAUTION: Ignoring argument(s):",
sQuote(names(user.parms[idx.score])), "\n")
cutoff <- NA
interaction <- FALSE
dists <- "uniform"
k1 <- 0
k2 <- 1
} else if(order %in% 1:8) {
if(is.null(score)) {
score <- inspect.score(order = order, interaction = interaction,
treat.lower = treat.lower, cutoff = cutoff,
p = p, k1 = k1, k2 = k2, dists = dists)
} else {
if("p" %in% names(user.parms)) warning("Using 'p' from the 'score' object, ignoring 'p' in the function call", call. = FALSE)
if(!inherits(score, "score")) {
score <- inspect.score(score = score, order = order, interaction = interaction,
treat.lower = treat.lower, cutoff = cutoff,
p = p, k1 = k1, k2 = k2, dists = dists)
} else {
idx.score <- intersect(c("dists", "k1", "k2", "order", "interaction", "treat.lower", "p", "cutoff"), names(user.parms))
if(length(idx.score) > 0) cat("\nCAUTION: 'score' object overwrites argument(s):",
sQuote(names(user.parms[idx.score])), "\n")
}
}
d <- score$rdde
p <- score$p
cutoff <- score$cutoff
treat.lower <- score$treat.lower
order <- score$order
interaction <- score$interaction
dists <- score$parms$dists
k1 <- score$parms$k1
k2 <- score$parms$k2
} else if(order > 8) {
stop("'order' > 8 is not allowed", call. = FALSE)
}
fun <- "cosa.bird2f1"
lb <- c(g1 + order * (1 + interaction) + 3, 1)
if(!is.null(n1)) {
if(n1[1] < lb[1]) warning("Lower bound for 'n1' may violate minimum degrees of freedom requirement", call. = FALSE)
}
.df <- quote(n2 * (n1 - 2) - g1 - order * (1 + interaction))
.sse <- quote(sqrt(d * (1 - r21) / (p * (1 - p) * n2 * n1)))
.cost <- quote(n2 * cn2 +
n2 * n1 * (cn1[2] + p * (cn1[1] - cn1[2])))
.var.jacob <- expression(
c(
-d * (1 - r21) / (p * (1 - p) * n2 * n1^2),
-d * (1 - r21) / (p * (1 - p) * n2^2 * n1),
-(1 - 2 * p) * d * (1 - r21) / ((1 - p)^2 * p^2 * n2 * n1)
)
)
.cost.jacob <- expression(
c(
n2 * (p * cn1[1] + (1 - p) * cn1[2]),
cn2 +
n1 * (p * cn1[1] + (1 - p) * cn1[2]),
n2 * n1 * (cn1[1] - cn1[2])
)
)
if(all(cn1 == 0) & is.null(p)) p <- .50
cosa <- .cosa(order = order, interaction = interaction,
cn1 = cn1, cn2 = cn2, cost = cost,
constrain = constrain, round = round,
max.power = max.power, local.solver = local.solver,
power = power, es = es, alpha = alpha, two.tailed = two.tailed,
r21 = r21, g1 = g1, p0 = p0, p = p, n0 = n0, n1 = n1, n2 = n2)
cosa.out <- list(parms = list(dists = dists, k1 = k1, k2 = k2,
order = order, interaction = interaction,
treat.lower = treat.lower, cutoff = cutoff,
cn1 = cn1, cn2 = cn2, cost = cost,
constrain = constrain, round = round,
max.power = max.power, local.solver = local.solver,
power = power, es = es, alpha = alpha, two.tailed = two.tailed,
r21 = r21, g1 = g1, p0 = p0, p = p, n0 = n0, n1 = n1, n2 = n2),
cosa = cosa)
class(cosa.out) <- c("cosa", "bird2f1")
.summary.cosa(cosa.out)
return(invisible(cosa.out))
} |
context("cytominer integration test")
test_that("cytominer can process dataset with a normalized schema", {
skip_on_os("windows")
futile.logger::flog.threshold(futile.logger::WARN)
fixture <-
system.file(
"extdata", "fixture_intensities_shapes.sqlite",
package = "cytominer"
)
db <- DBI::dbConnect(RSQLite::SQLite(), fixture)
ext_metadata <-
readr::read_csv(system.file(
"extdata", "metadata.csv",
package = "cytominer"
)) %>%
dplyr::rename(g_well = Well)
ext_metadata <- dplyr::copy_to(db, ext_metadata)
futile.logger::flog.info("Creating temp table for intensities")
intensities <-
dplyr::tbl(src = db, "view_intensities") %>%
dplyr::compute()
futile.logger::flog.info("Created temp table for intensities")
measurements <-
intensities %>%
dplyr::filter(g_well %in% c("A01", "A02", "A10", "A11"))
qualities <- c("q_debris")
groupings <-
c(
"g_plate",
"g_well",
"g_image",
"g_pattern",
"g_channel"
)
testthat::expect_true(all(groupings %in% (
colnames(measurements) %>%
stringr::str_subset("^g_")
)))
testthat::expect_true(all(qualities %in% (
colnames(measurements) %>%
stringr::str_subset("^q_")
)))
variables <-
colnames(measurements) %>%
stringr::str_subset("^m_")
measurements %<>%
dplyr::select(c(groupings, qualities, variables))
debris_removed <-
measurements %>%
dplyr::filter(q_debris == 0)
na_rows_removed <-
drop_na_rows(
population = debris_removed,
variables = variables
) %>%
dplyr::compute()
futile.logger::flog.info("Normalizing")
normalized <-
normalize(
population = na_rows_removed,
variables = variables,
strata = c("g_plate", "g_pattern", "g_channel"),
sample =
na_rows_removed %>%
dplyr::inner_join(
ext_metadata %>%
dplyr::filter(Type == "ctrl") %>%
dplyr::select(g_well)
)
)
futile.logger::flog.info("Normalized")
normalized %<>% dplyr::collect()
na_frequency <-
count_na_rows(
population = normalized,
variables = variables
)
cleaned <-
variable_select(
population = normalized,
variables = variables,
operation = "drop_na_columns"
)
transformed <-
transform(
population = cleaned,
variables = variables
)
transformed_whiten <-
transform(
population = cleaned,
sample = cleaned,
variables = variables,
operation = "whiten"
)
expect_error(
transform(
population = transformed,
variables = variables,
operation = "dummy"
),
paste0("undefined operation 'dummy'")
)
aggregated <-
aggregate(
population = transformed,
variables = variables,
strata = groupings
) %>%
dplyr::collect()
variables <-
colnames(aggregated) %>%
stringr::str_subset("^m_")
selected <-
variable_select(
population = transformed,
variables = variables,
operation = "correlation_threshold",
sample = aggregated
) %>%
dplyr::collect()
selected <-
variable_select(
population = transformed,
variables = variables,
operation = "variance_threshold",
sample = aggregated
) %>%
dplyr::collect()
expect_error(
variable_select(
population = transformed,
variables = variables,
sample = aggregated,
operation = "dummy"
),
paste0("undefined operation 'dummy'")
)
expect_error(
variable_importance(
sample = transformed,
variables = variables,
operation = "dummy"
),
paste0("undefined operation 'dummy'")
)
DBI::dbDisconnect(db)
})
test_that("cytominer can process dataset with a CellProfiler schema", {
skip_on_os("windows")
set.seed(123)
futile.logger::flog.threshold(futile.logger::WARN)
fixture <-
system.file(
"extdata", "fixture_htqc.sqlite",
package = "cytominer"
)
db <- DBI::dbConnect(RSQLite::SQLite(), fixture)
ext_metadata <-
readr::read_csv(system.file(
"extdata", "metadata.csv",
package = "cytominer"
)) %>%
dplyr::rename(g_well = Well)
ext_metadata <- dplyr::copy_to(db, ext_metadata)
futile.logger::flog.info("Creating table for objects")
image <- dplyr::tbl(src = db, "image")
object <-
dplyr::tbl(src = db, "cells") %>%
dplyr::inner_join(
dplyr::tbl(src = db, "cytoplasm"),
by = c("TableNumber", "ImageNumber", "ObjectNumber")
) %>%
dplyr::inner_join(
dplyr::tbl(src = db, "nuclei"),
by = c("TableNumber", "ImageNumber", "ObjectNumber")
)
object %<>% dplyr::inner_join(
image %>%
dplyr::select(
"TableNumber",
"ImageNumber",
"image_Metadata_Barcode",
"image_Metadata_Well",
"image_Metadata_isDebris"
),
by = c("TableNumber", "ImageNumber")
)
object %<>% dplyr::rename(g_plate = "image_Metadata_Barcode")
object %<>% dplyr::rename(g_well = "image_Metadata_Well")
object %<>% dplyr::rename(g_table = "TableNumber")
object %<>% dplyr::rename(g_image = "ImageNumber")
object %<>% dplyr::rename(q_debris = "image_Metadata_isDebris")
futile.logger::flog.info("Created table for objects")
measurements <-
object %>%
dplyr::filter(g_well %in% c("A01", "A02", "A10", "A11"))
qualities <- c("q_debris")
groupings <-
c(
"g_plate",
"g_well",
"g_table",
"g_image"
)
variables <-
colnames(measurements) %>%
stringr::str_subset("^Nuclei_|^Cells_|^Cytoplasm_")
testthat::expect_true(all(groupings %in% (
colnames(measurements) %>%
stringr::str_subset("^g_")
)))
testthat::expect_true(all(qualities %in% (
colnames(measurements) %>%
stringr::str_subset("^q_")
)))
variables <-
colnames(measurements) %>%
stringr::str_subset("^Nuclei_|^Cells_|^Cytoplasm_")
variables <- sample(variables, 10)
measurements %<>%
dplyr::select(c(groupings, qualities, variables))
debris_removed <-
measurements %>%
dplyr::filter(q_debris == 0)
na_rows_removed <- debris_removed
futile.logger::flog.info("Normalizing")
normalized <-
normalize(
population = na_rows_removed %>% dplyr::collect(),
variables = variables,
strata = c("g_plate"),
sample =
na_rows_removed %>%
dplyr::inner_join(
ext_metadata %>%
dplyr::filter(Type == "ctrl") %>%
dplyr::select(g_well)
) %>%
dplyr::collect()
)
futile.logger::flog.info("Normalized")
na_frequency <-
count_na_rows(
population = normalized,
variables = variables
)
cleaned <-
variable_select(
population = normalized,
variables = variables,
operation = "drop_na_columns"
)
variables <-
colnames(cleaned) %>%
stringr::str_subset("^Nuclei_|^Cells_|^Cytoplasm_")
transformed <-
transform(
population = cleaned,
variables = variables
)
aggregated <-
aggregate(
population = transformed,
variables = variables,
strata = groupings
) %>%
dplyr::collect()
variables <-
colnames(aggregated) %>%
stringr::str_subset("^m_")
selected <-
variable_select(
population = transformed,
variables = variables,
sample = aggregated,
operation = "correlation_threshold"
) %>%
dplyr::collect()
selected <-
variable_select(
population = transformed,
variables = variables,
sample = aggregated,
operation = "variance_threshold"
) %>%
dplyr::collect()
DBI::dbDisconnect(db)
}) |
modelDisplay <-
function(model, ...) {
funcName <- paste(model$type, "Display", sep="")
if(exists(funcName, mode="function")) {
func <- get(funcName, mode="function")
func(model, ...)
}
} |
.garchRnlminb <-
function(.params, .series, .garchLLH, trace)
{
if(trace) cat("\nR coded nlminb Solver: \n\n")
INDEX = .params$index
parscale = rep(1, length = length(INDEX))
names(parscale) = names(.params$params[INDEX])
parscale["omega"] = var(.series$x)^(.params$delta/2)
parscale["mu"] = abs(mean(.series$x))
TOL1 = .params$control$tol1
fit <- nlminb(
start = .params$params[INDEX],
objective = .garchLLH,
lower = .params$U[INDEX],
upper = .params$V[INDEX],
scale = 1/parscale,
control = list(
eval.max = 2000,
iter.max = 1500,
rel.tol = 1.0e-14 * TOL1,
x.tol = 1.0e-14 * TOL1,
trace = as.integer(trace)),
fGarchEnv = FALSE)
fit$value <- fit.llh <- fit$objective
names(fit$par) = names(.params$params[INDEX])
.garchLLH(fit$par, trace = FALSE, fGarchEnv = TRUE)
fit$coef <- fit$par
fit$llh <- fit$objective
fit
}
.garchRlbfgsb <-
function(.params, .series, .garchLLH, trace)
{
if(trace) cat("\nR coded optim[L-BFGS-B] Solver: \n\n")
INDEX = .params$index
parscale = rep(1, length = length(INDEX))
names(parscale) = names(.params$params[INDEX])
parscale["omega"] = var(.series$x)^((.params$params["delta"])/2)
TOL1 = .params$control$tol1
fit <- optim(
par = .params$params[INDEX],
fn = .garchLLH,
lower = .params$U[INDEX],
upper = .params$V[INDEX],
method = "L-BFGS-B",
control = list(
parscale = parscale,
lmm = 20,
pgtol = 1.0e-11 * TOL1,
factr = 1.0 * TOL1,
trace = as.integer(trace)),
fGarchEnv = FALSE)
names(fit$par) = names(.params$params[INDEX])
.garchLLH(fit$par, trace = FALSE, fGarchEnv = TRUE)
fit$coef = fit$par
fit$llh = fit$value
fit
}
.garchRnm <-
function(.params, .series, .garchLLH, trace)
{
if(trace) cat("\nR coded Nelder-Mead Hybrid Solver: \n\n")
INDEX = .params$index
fnscale = abs(.params$llh)
parscale = abs(.params$params[INDEX])
TOL2 = .params$control$tol2
fit = optim(
par = .params$params[INDEX],
fn = .garchLLH,
method = "Nelder-Mead",
control = list(
ndeps = rep(1e-14*TOL2, length = length(INDEX)),
maxit = 10000,
reltol = 1.0e-11 * TOL2,
fnscale = fnscale,
parscale = c(1, abs((.params$params[INDEX])[-1])),
trace = as.integer(trace)),
hessian = TRUE,
fGarchEnv = FALSE)
names(fit$par) = names(.params$params[INDEX])
.garchLLH(fit$par, trace = FALSE, fGarchEnv = TRUE)
fit$coef = fit$par
fit$llh = fit$value
fit
} |
test_that("ctype() errors for unanticipated inputs", {
expect_error(ctype(NULL))
expect_error(ctype(data.frame(cell = "cell")))
})
test_that("ctype() works on a SHEET_CELL, when it should", {
expect_identical(
ctype(structure(1, class = c("wut", "SHEETS_CELL"))),
NA_character_
)
expect_identical(
ctype(structure(1, class = c("CELL_NUMERIC", "SHEETS_CELL"))),
"CELL_NUMERIC"
)
})
test_that("ctype() works on shortcodes, when it should", {
expect_equal(
unname(ctype(c("?", "-", "n", "z", "D"))),
c("COL_GUESS", "COL_SKIP", "CELL_NUMERIC", NA, "CELL_DATE")
)
})
test_that("ctype() works on lists, when it should", {
list_of_cells <- list(
structure(1, class = c("CELL_NUMERIC", "SHEETS_CELL")),
"nope",
NULL,
structure(1, class = c("wut", "SHEETS_CELL")),
structure(1, class = c("CELL_TEXT", "SHEETS_CELL"))
)
expect_equal(
ctype(list_of_cells),
c("CELL_NUMERIC", NA, NA, NA, "CELL_TEXT")
)
})
test_that("effective_cell_type() doesn't just pass ctype through", {
expect_equal(unname(effective_cell_type("CELL_INTEGER")), "CELL_NUMERIC")
expect_equal(unname(effective_cell_type("CELL_DATE")), "CELL_DATETIME")
expect_equal(unname(effective_cell_type("CELL_TIME")), "CELL_DATETIME")
})
test_that("consensus_col_type() implements our type coercion DAG", {
expect_identical(
consensus_col_type(c("CELL_TEXT", "CELL_TEXT")),
"CELL_TEXT"
)
expect_identical(
consensus_col_type(c("CELL_LOGICAL", "CELL_NUMERIC")),
"CELL_NUMERIC"
)
expect_identical(
consensus_col_type(c("CELL_LOGICAL", "CELL_DATE")),
"COL_LIST"
)
expect_identical(
consensus_col_type(c("CELL_DATE", "CELL_DATETIME")),
"CELL_DATETIME"
)
expect_identical(
consensus_col_type(c("CELL_TEXT", "CELL_BLANK")),
"CELL_TEXT"
)
expect_identical(consensus_col_type("CELL_TEXT"), "CELL_TEXT")
expect_identical(consensus_col_type("CELL_BLANK"), "CELL_LOGICAL")
}) |
tidyverse_update <- function(recursive = FALSE, repos = getOption("repos")) {
deps <- tidyverse_deps(recursive, repos)
behind <- dplyr::filter(deps, behind)
if (nrow(behind) == 0) {
cli::cat_line("All tidyverse packages up-to-date")
return(invisible())
}
cli::cat_line(cli::pluralize(
"The following {cli::qty(nrow(behind))}package{?s} {?is/are} out of date:"
))
cli::cat_line()
cli::cat_bullet(format(behind$package), " (", behind$local, " -> ", behind$cran, ")")
cli::cat_line()
cli::cat_line("Start a clean R session then run:")
pkg_str <- paste0(deparse(behind$package), collapse = "\n")
cli::cat_line("install.packages(", pkg_str, ")")
invisible()
}
tidyverse_sitrep <- function() {
cli::cat_rule("R & RStudio")
if (rstudioapi::isAvailable()) {
cli::cat_bullet("RStudio: ", rstudioapi::getVersion())
}
cli::cat_bullet("R: ", getRversion())
deps <- tidyverse_deps()
package_pad <- format(deps$package)
packages <- ifelse(
deps$behind,
paste0(cli::col_yellow(cli::style_bold(package_pad)), " (", deps$local, " < ", deps$cran, ")"),
paste0(package_pad, " (", deps$cran, ")")
)
cli::cat_rule("Core packages")
cli::cat_bullet(packages[deps$package %in% core])
cli::cat_rule("Non-core packages")
cli::cat_bullet(packages[!deps$package %in% core])
}
tidyverse_deps <- function(recursive = FALSE, repos = getOption("repos")) {
pkgs <- utils::available.packages(repos = repos)
deps <- tools::package_dependencies("tidyverse", pkgs, recursive = recursive)
pkg_deps <- unique(sort(unlist(deps)))
base_pkgs <- c(
"base", "compiler", "datasets", "graphics", "grDevices", "grid",
"methods", "parallel", "splines", "stats", "stats4", "tools", "tcltk",
"utils"
)
pkg_deps <- setdiff(pkg_deps, base_pkgs)
tool_pkgs <- c("cli", "crayon", "rstudioapi")
pkg_deps <- setdiff(pkg_deps, tool_pkgs)
cran_version <- lapply(pkgs[pkg_deps, "Version"], base::package_version)
local_version <- lapply(pkg_deps, packageVersion)
behind <- purrr::map2_lgl(cran_version, local_version, `>`)
tibble::tibble(
package = pkg_deps,
cran = cran_version %>% purrr::map_chr(as.character),
local = local_version %>% purrr::map_chr(as.character),
behind = behind
)
}
packageVersion <- function(pkg) {
if (rlang::is_installed(pkg)) {
utils::packageVersion(pkg)
} else {
0
}
} |
knitr::opts_chunk$set(
echo = TRUE,
python.reticulate = FALSE
) |
formInput <- function(..., id, inline = FALSE) {
assert_id()
dep_attach({
tags$form(
class = str_collate(
"yonder-form",
if (inline) "form-inline"
),
id = id,
...
)
})
}
formSubmit <- function(label, value = label, ...) {
dep_attach({
tags$button(
class = "yonder-form-submit btn btn-blue",
value = value,
label,
...
)
})
}
updateFormInput <- function(id, submit = FALSE,
session = getDefaultReactiveDomain()) {
assert_id()
assert_session()
if (!(is.logical(submit) || is.character(submit)) ||
(is.character(submit) && length(submit) > 1)) {
stop(
"invalid argument in `updateFormInput()`, `submit` must be one of ",
"TRUE or FALSE or a character string",
call. = FALSE
)
}
submit <- coerce_submit(submit)
session$sendInputMessage(id, list(
submit = submit
))
} |
ScaleDiscreteIdentity <- getFromNamespace("ScaleDiscreteIdentity", "ggplot2")
binned_scale <- getFromNamespace("binned_scale", "ggplot2")
discrete_scale <- getFromNamespace("discrete_scale", "ggplot2")
datetime_scale <- getFromNamespace("datetime_scale", "ggplot2")
manual_scale <- getFromNamespace("manual_scale", "ggplot2")
mid_rescaler <- getFromNamespace("mid_rescaler", "ggplot2")
continuous_scale <- getFromNamespace("continuous_scale", "ggplot2")
waiver <- getFromNamespace("waiver", "ggplot2")
muted <- getFromNamespace("muted", "scales")
binned_pal <- getFromNamespace("binned_pal", "ggplot2")
scale_shadowcolour_hue <- function(..., h = c(0, 360) + 15, c = 100, l = 65, h.start = 0,
direction = 1, na.value = "grey50", aesthetics = "shadowcolour") {
discrete_scale(aesthetics, "hue", scales::hue_pal(h, c, l, h.start, direction),
na.value = na.value, ...)
}
scale_shadowcolour_discrete <- scale_shadowcolour_hue
scale_shadowcolour_brewer <- function(..., type = "seq", palette = 1, direction = 1, aesthetics = "shadowcolour") {
discrete_scale(aesthetics, "brewer", scales::brewer_pal(type, palette, direction), ...)
}
scale_shadowcolour_distiller <- function(..., type = "seq", palette = 1, direction = -1, values = NULL, space = "Lab", na.value = "grey50", guide = "colourbar", aesthetics = "shadowcolour") {
type <- match.arg(type, c("seq", "div", "qual"))
if (type == "qual") {
warn("Using a discrete colour palette in a continuous scale.\n Consider using type = \"seq\" or type = \"div\" instead")
}
continuous_scale(aesthetics, "distiller",
scales::gradient_n_pal(scales::brewer_pal(type, palette, direction)(7), values, space), na.value = na.value, guide = guide, ...)
}
scale_shadowcolour_fermenter <- function(..., type = "seq", palette = 1, direction = -1, na.value = "grey50", guide = "coloursteps", aesthetics = "shadowcolour") {
type <- match.arg(type, c("seq", "div", "qual"))
if (type == "qual") {
warn("Using a discrete colour palette in a binned scale.\n Consider using type = \"seq\" or type = \"div\" instead")
}
binned_scale(aesthetics, "fermenter", binned_pal(scales::brewer_pal(type, palette, direction)), na.value = na.value, guide = guide, ...)
}
scale_shadowcolour_identity <- function(..., guide = "none", aesthetics = "shadowcolour") {
sc <- discrete_scale(aesthetics, "identity", scales::identity_pal(), ..., guide = guide,
super = ScaleDiscreteIdentity)
sc
}
scale_shadowcolour_continuous <- function(...,
type = getOption("ggplot2.continuous.colour", default = "gradient")) {
if (is.function(type)) {
type(...)
} else if (identical(type, "gradient")) {
scale_shadowcolour_gradient(...)
} else if (identical(type, "viridis")) {
scale_shadowcolour_viridis_c(...)
} else {
abort("Unknown scale type")
}
}
scale_shadowcolour_binned <- function(...,
type = getOption("ggplot2.binned.colour", default = getOption("ggplot2.continuous.colour", default = "gradient"))) {
if (is.function(type)) {
type(...)
} else if (identical(type, "gradient")) {
scale_shadowcolour_steps(...)
} else if (identical(type, "viridis")) {
scale_shadowcolour_viridis_b(...)
} else {
abort("Unknown scale type")
}
}
scale_shadowcolour_steps <- function(..., low = "
na.value = "grey50", guide = "coloursteps", aesthetics = "shadowcolour") {
binned_scale(aesthetics, "steps", scales::seq_gradient_pal(low, high, space),
na.value = na.value, guide = guide, ...)
}
scale_shadowcolour_steps2 <- function(..., low = muted("red"), mid = "white", high = muted("blue"),
midpoint = 0, space = "Lab", na.value = "grey50", guide = "coloursteps",
aesthetics = "shadowcolour") {
binned_scale(aesthetics, "steps2", scales::div_gradient_pal(low, mid, high, space),
na.value = na.value, guide = guide, rescaler = mid_rescaler(mid = midpoint), ...)
}
scale_shadowcolour_stepsn <- function(..., colours, values = NULL, space = "Lab", na.value = "grey50",
guide = "coloursteps", aesthetics = "shadowcolour", colors) {
colours <- if (missing(colours)) colors else colours
binned_scale(aesthetics, "stepsn",
scales::gradient_n_pal(colours, values, space), na.value = na.value, guide = guide, ...)
}
scale_shadowcolour_gradient <- function(..., low = "
na.value = "grey50", guide = "colourbar", aesthetics = "shadowcolour") {
continuous_scale(aesthetics, "gradient", scales::seq_gradient_pal(low, high, space),
na.value = na.value, guide = guide, ...)
}
scale_shadowcolour_gradient2 <- function(..., low = muted("red"), mid = "white", high = muted("blue"),
midpoint = 0, space = "Lab", na.value = "grey50", guide = "colourbar",
aesthetics = "shadowcolour") {
continuous_scale(aesthetics, "gradient2",
scales::div_gradient_pal(low, mid, high, space), na.value = na.value, guide = guide, ...,
rescaler = mid_rescaler(mid = midpoint))
}
scale_shadowcolour_gradientn <- function(..., colours, values = NULL, space = "Lab", na.value = "grey50",
guide = "colourbar", aesthetics = "shadowcolour", colors) {
colours <- if (missing(colours)) colors else colours
continuous_scale(aesthetics, "gradientn",
scales::gradient_n_pal(colours, values, space), na.value = na.value, guide = guide, ...)
}
scale_shadowcolour_datetime <- function(...,
low = "
high = "
space = "Lab",
na.value = "grey50",
guide = "colourbar") {
datetime_scale(
"shadowcolour",
"time",
palette = scales::seq_gradient_pal(low, high, space),
na.value = na.value,
guide = guide,
...
)
}
scale_shadowcolour_date <- function(...,
low = "
high = "
space = "Lab",
na.value = "grey50",
guide = "colourbar") {
datetime_scale(
"shadowcolour",
"date",
palette = scales::seq_gradient_pal(low, high, space),
na.value = na.value,
guide = guide,
...
)
}
scale_shadowcolour_grey <- function(..., start = 0.2, end = 0.8, na.value = "red", aesthetics = "shadowcolour") {
discrete_scale(aesthetics, "grey", scales::grey_pal(start, end),
na.value = na.value, ...)
}
scale_shadowcolour_viridis_d <- function(..., alpha = 1, begin = 0, end = 1,
direction = 1, option = "D", aesthetics = "shadowcolour") {
discrete_scale(
aesthetics,
"viridis_d",
scales::viridis_pal(alpha, begin, end, direction, option),
...
)
}
scale_shadowcolour_viridis_c <- function(..., alpha = 1, begin = 0, end = 1,
direction = 1, option = "D", values = NULL,
space = "Lab", na.value = "grey50",
guide = "colourbar", aesthetics = "shadowcolour") {
continuous_scale(
aesthetics,
"viridis_c",
scales::gradient_n_pal(
scales::viridis_pal(alpha, begin, end, direction, option)(6),
values,
space
),
na.value = na.value,
guide = guide,
...
)
}
scale_shadowcolour_viridis_b <- function(..., alpha = 1, begin = 0, end = 1,
direction = 1, option = "D", values = NULL,
space = "Lab", na.value = "grey50",
guide = "coloursteps", aesthetics = "shadowcolour") {
binned_scale(
aesthetics,
"viridis_b",
scales::gradient_n_pal(
scales::viridis_pal(alpha, begin, end, direction, option)(6),
values,
space
),
na.value = na.value,
guide = guide,
...
)
}
scale_shadowcolour_ordinal <- scale_shadowcolour_viridis_d
scale_shadowcolour_manual <- function(..., values, aesthetics = "shadowcolour", breaks = waiver()) {
manual_scale(aesthetics, values, breaks, ...)
} |
expected <- eval(parse(text="numeric(0)"));
test(id=0, code={
argv <- eval(parse(text="list(logical(0))"));
do.call(`cos`, argv);
}, o=expected); |
if(interactive()){
data(mstData)
data(crtData)
outputSRT <- srtFREQ(Posttest~ Intervention + Prettest,
intervention = "Intervention",data = mstData)
print(outputSRT)
outputSRTB <- srtBayes(Posttest~ Intervention + Prettest,
intervention = "Intervention", data = mstData)
print(outputSRTB)
outputMST <- mstFREQ(Posttest~ Intervention + Prettest,
random = "School", intervention = "Intervention", data = mstData)
print(outputMST)
outputCRT <- crtFREQ(Posttest~ Intervention + Prettest,
random = "School", intervention = "Intervention", data = crtData)
print(outputCRT)
} |
print.earth <- function(x, digits=getOption("digits"), fixed.point=TRUE, ...)
{
form <- function(x, pad)
{
sprint("%-*s", digits+pad,
format(if(abs(x) < 1e-20) 0 else x, digits=digits))
}
check.classname(x, substitute(x), "earth")
warn.if.dots(...)
remind.user.bpairs.expansion <-
!is.null(x$glm.bpairs) && !is.null(x$ncases.after.expanding.bpairs)
if(!is.null(x$glm.list)) {
if(remind.user.bpairs.expansion)
printf("The following stats are for the binomial pairs without expansion (%g cases):\n",
NROW(x$residuals))
print_earth_glm(x, digits, fixed.point,
prefix.space=remind.user.bpairs.expansion)
}
nresp <- NCOL(x$coefficients)
is.cv <- !is.null(x$cv.list)
nselected <- length(x$selected.terms)
if(is.null(x$glm.list)) {
if(remind.user.bpairs.expansion)
printf(" ")
cat("Selected ")
} else {
if(remind.user.bpairs.expansion)
printf("The following stats are for the binomial pairs after expansion (%g cases):\n ",
x$ncases.after.expanding.bpairs)
cat("Earth selected ")
}
cat(length(x$selected.terms), "of", nrow(x$dirs), "terms, and",
get.nused.preds.per.subset(x$dirs, x$selected.terms),
"of", ncol(x$dirs), "predictors")
if(x$pmethod != "backward")
printf(" (pmethod=\"%s\")", x$pmethod)
if(!is.null(x$nprune))
printf(" (nprune=%g)", x$nprune)
cat("\n")
print_termcond(x, remind.user.bpairs.expansion)
print_one_line_evimp(x, remind.user.bpairs.expansion)
try(print_offset(x, digits, remind.user.bpairs.expansion))
try(print_weights(x, digits, remind.user.bpairs.expansion))
nterms.per.degree <- get.nterms.per.degree(x, x$selected.terms)
cat0(if(remind.user.bpairs.expansion) " " else "")
cat("Number of terms at each degree of interaction:", nterms.per.degree)
cat0(switch(length(nterms.per.degree),
" (intercept only model)",
" (additive model)"),
"\n")
if(nresp > 1)
print_earth_multiple_response(x, digits, fixed.point)
else
print_earth_single_response(x, digits, fixed.point, remind.user.bpairs.expansion)
if(x$pmethod == "cv") {
print_would_have(x, if(nresp > 1) digits+1 else digits)
}
invisible(x)
}
print_earth_single_response <- function(x, digits, fixed.point, prefix.space)
{
is.cv <- !is.null(x$cv.list)
spacer <- if(is.cv) " " else " "
nselected <- length(x$selected.terms)
if(prefix.space)
printf(" ")
if(!is.null(x$glm.list))
cat0("Earth ")
if(x$pmethod == "cv") {
ilast <- nrow(x$cv.oof.rsq.tab)
cat0("GRSq ", format(x$grsq, digits=digits),
spacer, "RSq ", format(x$rsq, digits=digits),
spacer, "mean.oof.RSq ",
format(x$cv.oof.rsq.tab[ilast,nselected], digits=digits),
" (sd ",
format(sd(x$cv.oof.rsq.tab[-ilast,nselected], na.rm=TRUE), digits=3),
")\n")
} else {
ilast <- nrow(x$cv.rsq.tab)
cat0("GCV ", format(x$gcv, digits=digits),
spacer, "RSS ", format(x$rss, digits=digits),
spacer, "GRSq ", format(x$grsq, digits=digits),
spacer, "RSq ", format(x$rsq, digits=digits))
if(is.cv)
cat0(spacer, "CVRSq ",
format(x$cv.rsq.tab[ilast,ncol(x$cv.rsq.tab)], digits=digits))
cat("\n")
}
}
print_earth_multiple_response <- function(x, digits, fixed.point)
{
nresp <- NCOL(x$coefficients)
stopifnot(nresp > 1)
is.cv <- !is.null(x$cv.list)
nselected <- length(x$selected.terms)
mat <- matrix(nrow=nresp+1, ncol=4 + is.cv + (x$pmethod == "cv"))
rownames(mat) <- c(colnames(x$fitted.values), "All")
colnames <- c("GCV", "RSS", "GRSq", "RSq")
if(is.cv)
colnames <- c(colnames,
if(x$pmethod=="cv") c(" mean.oof.RSq", "sd(mean.oof.RSq)")
else "CVRSq")
colnames(mat) <- colnames
for(iresp in seq_len(nresp)) {
mat[iresp,1:4] <- c(x$gcv.per.response[iresp],
x$rss.per.response[iresp],
x$grsq.per.response[iresp],
x$rsq.per.response[iresp])
if(is.cv) {
if(x$pmethod == "cv") {
ilast <- nrow(x$cv.oof.rsq.tab)
mat[iresp,5] <- NA
mat[iresp,6] <- NA
} else {
ilast <- nrow(x$cv.rsq.tab)
mat[iresp,5] <- x$cv.rsq.tab[ilast,iresp]
}
}
}
mat[nresp+1,1:4] <- c(x$gcv, x$rss, x$grsq, x$rsq)
if(is.cv) {
if(x$pmethod == "cv") {
mat[nresp+1,5] <- signif(x$cv.oof.rsq.tab[ilast,nselected],
digits=digits)
mat[nresp+1,6] <-
signif(sd(x$cv.oof.rsq.tab[-ilast,nselected], na.rm=TRUE),
digits=digits)
} else
mat[nresp+1,5] <- x$cv.rsq.tab[ilast,ncol(x$cv.rsq.tab)]
}
cat("\n")
if(!is.null(x$glm.list))
cat("Earth\n")
if(fixed.point)
mat <- my.fixed.point(mat, digits)
df <- as.data.frame(mat)
df[is.na(df)] <- ""
print(df, digits=digits)
}
print_termcond <- function(object, prefix.space)
{
if(prefix.space)
printf(" ")
printf("Termination condition: ")
if(is.null(object$termcond)) {
printf("Unknown\n")
return()
}
termcond <- object$termcond
check.numeric.scalar(termcond)
nk <- object$nk
check.numeric.scalar(nk)
nterms.before.pruning <- nrow(object$dirs)
check.numeric.scalar(nterms.before.pruning)
thresh <- object$thresh
check.numeric.scalar(thresh)
terms.string = if(nterms.before.pruning == 1) "term" else "terms"
if(termcond == 1)
printf("Reached nk %d\n", nk)
else if(termcond == 2)
printf("GRSq -Inf at %d %s\n", nterms.before.pruning, terms.string)
else if(termcond == 3)
printf("GRSq -10 at %d %s\n", nterms.before.pruning, terms.string)
else if(termcond == 4)
printf("RSq changed by less than %g at %d %s\n",
thresh, nterms.before.pruning, terms.string)
else if(termcond == 5)
printf("Reached maximum RSq %.4f at %d %s\n",
1-thresh, nterms.before.pruning, terms.string)
else if(termcond == 6)
printf("No new term increases RSq at %d %s\n",
nterms.before.pruning, terms.string)
else if(termcond == 7)
printf("Reached nk %d\n", nk)
else
printf("Unknown (termcond %d)\n", termcond)
}
print.summary.earth <- function(
x = stop("no 'x' argument"),
details = x$details,
decomp = x$decomp,
digits = x$digits,
fixed.point = x$fixed.point,
newdata = x$newdata,
...)
{
nresp <- NCOL(x$coefficients)
warn.if.dots(...)
if(!is.null(newdata)) {
printf("RSq %.3f on newdata (%d cases)\n", x$newrsq, NROW(newdata))
if(!is.null(x$varmod)) {
printf("\n")
print.varmod(x$varmod, newdata=newdata, digits=digits)
}
return(invisible(x))
}
printcall("Call: ", x$call)
cat("\n")
new.order <- reorder.earth(x, decomp=decomp)
if(is.null(x$glm.stats) || details)
print_earth_coefficients(x, digits, fixed.point, new.order)
if(!is.null(x$glm.stats))
print_summary_earth_glm(x, details, digits, fixed.point, new.order)
print.earth(x, digits)
if(!is.null(x$cv.list) && x$pmethod != "cv")
print_cv(x)
if(!is.null(x$varmod)) {
printf("\nvarmod: ")
x$varmod <- print.varmod(x$varmod, digits=digits)
}
invisible(x)
}
print_offset <- function(object, digits, prefix.space)
{
terms <- object$terms
if(is.null(terms))
return()
offset.index <- attr(terms, "offset")
if(is.null(offset.index) || is.null(object$offset))
return()
varnames <- rownames(attr(terms, "factors"))
if(is.null(varnames) || offset.index < 1 || offset.index > length(varnames))
return()
offset.term <- varnames[offset.index]
offset.term.name <- substring(offset.term, 8, nchar(offset.term)-1)
if(prefix.space)
printf(" ")
print_values("Offset", offset.term.name, object$offset, digits)
}
print_weights <- function(object, digits, prefix.space)
{
if(is.null(object$weights))
return()
if(prefix.space)
printf(" ")
print_values("Weights", NULL, object$weights, digits)
}
print_values <- function(name, term.name, values, digits)
{
s <- if(is.null(term.name))
paste0(name, ": ")
else
paste0(name, ": ", strip.space.collapse(term.name), " with values ")
cat0(s)
n <- min(30, length(values))
stopifnot(n > 0)
svalues <- character(n)
maxlen <- max(25, getOption("width") - nchar(s) - 5)
s <- if(!is.null(term.name) && substring(term.name, 1, 4) == "log(") {
for(i in seq_along(svalues))
svalues[i] <- strip.space(format(exp(values[i]), digits=digits))
paste.trunc("log(", svalues, ")",
sep="", collapse=", ", maxlen=maxlen)
} else {
for(i in seq_along(svalues))
svalues[i] <- strip.space(format(values[i], digits=digits))
paste.trunc(svalues, sep="", collapse=", ", maxlen=maxlen)
}
cat0(s, "\n")
}
print_would_have <- function(x, digits)
{
form <- function(x) format(x, digits=digits)
nselected <- length(x$backward.selected.terms)
ilast <- nrow(x$cv.oof.rsq.tab)
cat0("\npmethod=\"backward\" would have selected",
if(nselected == length(x$selected.terms)) " the same model" else "",
":\n ",
nselected,
" terms ",
get.nused.preds.per.subset(x$dirs, x$backward.selected.terms),
" preds, GRSq ",
form(get.rsq(x$gcv.per.subset[nselected], x$gcv.per.subset[1])),
" RSq ",
form(get.rsq(x$rss.per.subset[nselected], x$rss.per.subset[1])),
" mean.oof.RSq ",
form(x$cv.oof.rsq.tab[ilast, nselected]),
"\n")
if(anyNA(x$cv.oof.rsq.tab[ilast, nselected]))
printf(
" (mean.oof.RSq is NA because most fold models have less than %g terms)\n",
nselected)
}
print_earth_coefficients <- function(x, digits, fixed.point, new.order)
{
nresp <- NCOL(x$coefficients)
if(!is.null(x$strings)) {
resp.names <- colnames(x$fitted.values)
for(iresp in seq_len(nresp)) {
cat0(resp.names[iresp], " =\n")
cat(x$strings[iresp])
cat("\n")
}
} else {
rownames(x$coefficients) <- spaceout(rownames(x$coefficients))
coef <- x$coefficients[new.order, , drop=FALSE]
if(fixed.point)
coef <- my.fixed.point(coef, digits)
if(!is.null(x$glm.list))
cat("Earth coefficients\n")
else if(nresp == 1)
colnames(coef) = "coefficients"
print(coef, digits=digits)
cat("\n")
}
}
print_summary_earth_glm <- function(x, details, digits, fixed.point, new.order)
{
nresp <- NCOL(x$coefficients)
resp.names <- colnames(x$fitted.values)
if(!is.null(x$strings)) {
for(iresp in seq_len(nresp)) {
g <- x$glm.list[[iresp]]
cat("GLM ")
cat0(resp.names[iresp], " =\n")
cat(x$strings[nresp+iresp])
cat("\n")
}
} else {
cat("GLM coefficients\n")
rownames(x$glm.coefficients) <- spaceout(rownames(x$glm.coefficients))
coef <- x$glm.coefficients[new.order, , drop=FALSE]
if(fixed.point)
coef <- my.fixed.point(coef, digits)
print(coef, digits=digits)
cat("\n")
}
if(details)
for(iresp in seq_len(nresp))
print_glm_details(x$glm.list[[iresp]], nresp, digits,
my.fixed.point, resp.names[iresp])
}
summary.earth <- function(
object = stop("no 'object' argument"),
details = FALSE,
style = c("h", "pmax", "max", "C", "bf"),
decomp = "anova",
digits = getOption("digits"),
fixed.point = TRUE,
newdata = NULL,
...)
{
check.classname(object, substitute(object), "earth")
details <- check.boolean(details)
fixed.point <- check.boolean(fixed.point)
rval <- object
rval$strings <- switch(match.arg1(style, "style"),
"h" = { stop.if.dots(...) },
"pmax" = format.earth(x=object, style=style, decomp=decomp, digits=digits, ...),
"max" = format.earth(x=object, style=style, decomp=decomp, digits=digits, ...),
"C" = format.earth(x=object, style=style, decomp=decomp, digits=digits, ...),
"bf" = format.earth(x=object, style=style, decomp=decomp, digits=digits, ...))
rval$details <- details
rval$decomp <- decomp
rval$digits <- digits
rval$fixed.point <- fixed.point
if(!is.null(newdata)) {
rval$newdata <- newdata
rval$newrsq <- plotmo::plotmo_rsq(object, newdata, ...)
}
is.glm <- !is.null(object$glm.list)
class(rval) <- c("summary.earth", "earth")
rval
}
spaceout <- function(rownames.)
{
rownames. <- gsub("\\*", " * ", rownames.)
rownames. <- gsub("--", "- -", rownames.)
gsub("`", "", rownames.)
}
get.nterms.per.degree <- function(object, which.terms = object$selected.terms)
{
check.classname(object, substitute(object), "earth")
check.which.terms(object$dirs, which.terms)
degrees.per.term <- get.degrees.per.term(object$dirs[which.terms, , drop=FALSE])
max.degree <- max(degrees.per.term)
nterms.per.degree <- repl(0, max.degree+1)
for(i in 0:max.degree)
nterms.per.degree[i+1] <- sum(degrees.per.term == i)
names(nterms.per.degree) <- 0:max.degree
nterms.per.degree
} |
context("polygon")
test_that("add_polygon accepts multiple objects", {
testthat::skip_on_cran()
geo <- '[{"type":"Feature","properties":{"elevation":0,"fill_colour":"
poly <- '[{"elevation":0,"fill_colour":"
set_token("abc")
m <- mapdeck()
sf <- spatialwidget::widget_melbourne[ spatialwidget::widget_melbourne$SA2_NAME == "South Yarra - West", ]
attr( sf, "class" ) <- c("sf", "data.frame")
df <- sfheaders::sf_to_df( spatialwidget::widget_melbourne, fill = T )
df <- df[ df$SA2_NAME == "South Yarra - West", ]
sf <- sfheaders::sf_polygon( df, polygon_id = "polygon_id", linestring_id = "linestring_id", x = "x", y = "y")
p <- add_polygon(map = m, data = sf, digits = 7)
expect_equal( as.character( p$x$calls[[1]]$args[[2]] ), geo )
}) |
diat_morpho <- function(resultLoad, isRelAb = FALSE){
numcloroplastos.result <- shpcloroplastos.result <- biovol.val.result <- NULL
if(missing(resultLoad)) {
print("Please run the diat_loadData() function first to enter your species data in the correct format")
if (missing(resultLoad)){
stop("Calculations cancelled")
}
}
sampleNames <- resultLoad[[3]]
resultsPath <- resultLoad[[4]]
taxaIn <- resultLoad[[5]]
if (nrow(taxaIn)==0){
print("No species were recognized for morphology calculations")
print("Morphology data will not be available")
morphoresultTable <- NULL
return(morphoresultTable)
}
lastcol <- which(colnames(taxaIn)=="species")
if (isRelAb == FALSE) {
taxaInRA <- taxaIn
setDT(taxaInRA)
setnafill(x = taxaInRA[,1:(lastcol-1)], fill = 0)
rel_abu = apply(taxaInRA[,1:(lastcol-1)], 2, function(x)
round(x / sum(x) * 100, 2))
taxaInRA = cbind(rel_abu, taxaInRA[, lastcol:ncol(taxaInRA)])
} else {
taxaInRA <- taxaIn
}
taxaInRA_samples = taxaInRA[,1:(lastcol-1)]
print("Calculating chloroplasts and biovolume")
pb <- txtProgressBar(min = 1, max = 3, style = 3)
for (i in 1:3){
lp_var = switch(i,
taxaInRA[, "chloroplast_number"],
taxaInRA[, "chloroplast_shape"],
taxaInRA[, "biovolume"])
prefix_name = switch(i, "chloroplasts -",
"shape chloroplasts -",
"Total Biovolume")
final_name = switch(i,
"numcloroplastos.result",
"shpcloroplastos.result",
"biovol.val.result")
if (i == 3){
lp_data = taxaInRA_samples * unlist(lp_var)
lp_data = lp_data[, lapply(.SD, sum, na.rm = T), .SDcols = 1:(lastcol-1)]
} else {
lp_data = taxaInRA_samples[, lapply(.SD, sum, na.rm = T), by = lp_var]
}
lp_data = data.table::transpose(lp_data)
if (i == 3){
names(lp_data) = prefix_name
} else {
names(lp_data) = paste(prefix_name,unlist(lp_data[1,]))
lp_data = lp_data[-1,]
}
if (i < 3) {
lp_data = lp_data[, lapply(.SD, as.numeric)]
lp_data = lp_data[, lapply(.SD, round, 4)]
}
rownames(lp_data) = sampleNames
assign(x = final_name,
value = lp_data)
setTxtProgressBar(pb, i)
}
close(pb)
names(numcloroplastos.result)
morphoresultTable <- list(as.data.frame(numcloroplastos.result),
as.data.frame(shpcloroplastos.result), as.data.frame(if (exists("biovol.val.result")) {
biovol.val.result
}))
names(morphoresultTable) <- c("numcloroplastos.result",
"shpcloroplastos.result", "biovol.val.result")
return(morphoresultTable)
} |
herm_poly_diff_t <- function(t1, t2, pairwise_cors) {
rho_bar1 <- mean(pairwise_cors)
rho_bar2 <- mean(pairwise_cors^2)
rho_bar3 <- mean(pairwise_cors^3)
rho_bar4 <- mean(pairwise_cors^4)
rho_bar5 <- mean(pairwise_cors^5)
rho_bar6 <- mean(pairwise_cors^6)
rho_bar7 <- mean(pairwise_cors^7)
rho_bar8 <- mean(pairwise_cors^8)
rho_bar9 <- mean(pairwise_cors^9)
rho_bar10 <- mean(pairwise_cors^10)
He1 <- (t1) * (t2)
He3 <- (t1^3 - 3*t1) * (t2^3 - 3*t2)
He5 <- (t1^5 - 10*t1^3 + 15*t1) * (t2^5 - 10*t2^3 + 15*t2)
He7 <- (t1^7 - 21*t1^5 + 105*t1^3 - 105*t1) * (t2^7 - 21*t2^5 + 105*t2^3 - 105*t2)
He9 <- (t1^9 - 36*t1^7 + 378*t1^5 - 1260*t1^3 + 945*t1) * (t2^9 - 36*t2^7 + 378*t2^5 - 1260*t2^3 + 945*t2)
He0 <- 1
He2 <- (t1^2 - 1) * (t2^2 - 1)
He4 <- (t1^4 - 6*t1^2 + 3) * (t2^4 - 6*t2^2 + 3)
He6 <- (t1^6 - 15*t1^4 + 45*t1^2 - 15) * (t2^6 - 15*t2^4 + 45*t2^2 - 15)
He8 <- (t1^8 - 28*t1^6 + 210*t1^4 - 420*t1^2 + 105) * (t2^8 - 28*t2^6 + 210*t2^4 - 420*t2^2 + 105)
odds <- ( He1*rho_bar2/2 + He3*rho_bar4/24 + He5*rho_bar6/720 + He7*rho_bar8/40320 + He9*rho_bar10/3628800 )
evens <- ( He0*rho_bar1/1 + He2*rho_bar3/6 + He4*rho_bar5/120 + He6*rho_bar7/5040 + He8*rho_bar9/362880 )
sum_term <- odds + evens
return(sum_term)
} |
topo <- function(nm, simplify = TRUE) {
out <- nm[["topology"]]
if (simplify && length(unique(out)) == 1) {
return(unique(out)[[1]])
}
return(out)
}
prop_family <- function(nm, quiet = FALSE) {
z <- attr(nm, "prop_family")
if (!quiet) {
describe_z_eta("eta", z)
}
z
}
size_family <- function(nm, quiet = FALSE) {
z <- attr(nm, "size_family")
if (!quiet) {
describe_z_eta("zeta", z)
}
z
}
groups.networkModel <- function(x) {
nm_get_groups(x, error = FALSE)
}
priors <- function(nm, fix_set_params = FALSE, quiet = FALSE) {
if (fix_set_params) {
set_params <- attr(nm, "parameterValues")
if (!is.null(set_params)) {
for (i in seq_len(nrow(set_params))) {
myPrior <- constant_p(value = set_params[["value"]][i])
nm <- set_prior(nm, myPrior, param = set_params[["parameter"]][i],
use_regexp = FALSE, quiet = quiet)
}
}
}
out <- attr(nm, "priors")
return(out)
}
missing_priors <- function(nm) {
p <- priors(nm)
p <- p[sapply(p$prior, is.null), ]
return(p)
}
params <- function(nm, simplify = FALSE) {
stopifnot("parameters" %in% colnames(nm))
params <- dplyr::bind_rows(nm[["parameters"]])
if (simplify) {
return(sort(unique(params[["in_model"]])))
}
if (!"value" %in% colnames(params)) {
params[["value"]] <- as.numeric(rep(NA, nrow(params)))
}
params <- unique(params[, c("in_model", "value")])
params <- params[order(params[["in_model"]]), ]
if (!all(table(params[["in_model"]]) == 1)) {
stop("Some parameters have two different values assigned to them.")
}
return(params)
}
comps <- function(nm) {
comps <- nm[, "topology"]
comps$compartments <- lapply(comps$topology, colnames)
return(comps[["compartments"]])
} |
sigmoid <- function(z) {
z <- as.matrix(z)
g <- matrix(0,dim(z)[1],dim(z)[2])
g
} |
source("ESEUR_config.r")
library("VGAM")
plot_layout(3, 2, max_width=6, max_height=11.0)
par(mar=c(1.0, 1.0, 1, 0.5))
pal_col=rainbow(2)
NUM_REPLICATE=4000
plot_sample=function(sample_size, samp_mean, dist_mean, dist_str)
{
samp_den=density(samp_mean)
actual_sd=dist_mean/sqrt(sample_size)
x_bounds=c(dist_mean-4*actual_sd, dist_mean+4*actual_sd)
xpoints=seq(0, max(x_bounds), by=0.01)
norm_sd=dist_mean/sqrt(sample_size)
ypoints=dnorm(xpoints, mean=dist_mean, sd=norm_sd)
y_bounds=range(c(samp_den$y, ypoints))
plot(samp_den, col=pal_col[1], fg="grey", col.axis="grey", yaxt="n",
bty="n", yaxt="n",
main="",
xlab="", ylab="",
xlim=x_bounds, ylim=y_bounds)
q=quantile(samp_mean, c(0.025, 0.975))
lines(c(q[1], q[1]), c(0, max(y_bounds)/3), col=pal_col[1])
lines(c(q[2], q[2]), c(0, max(y_bounds)/3), col=pal_col[1])
lines(xpoints, ypoints, col=pal_col[2], fg="grey")
q=c(dist_mean-norm_sd*1.96, dist_mean+norm_sd*1.96)
lines(c(q[1], q[1]), c(0, max(y_bounds)/3), col=pal_col[2])
lines(c(q[2], q[2]), c(0, max(y_bounds)/3), col=pal_col[2])
legend(x="topright", legend=c(paste0("size=", sample_size)), title=dist_str,
bty="n", cex=1.3)
}
exp_samp_dis=function(sample_size)
{
samp_mean=replicate(NUM_REPLICATE, mean(rexp(sample_size)))
dist_mean=1
plot_sample(sample_size, samp_mean, dist_mean, "Exponential")
}
lnorm_samp_dis=function(sample_size)
{
samp_mean=replicate(NUM_REPLICATE, mean(rlnorm(sample_size)))
dist_mean=exp(0.5)
plot_sample(sample_size, samp_mean, dist_mean, "Lognormal")
}
pareto_samp_dis=function(sample_size)
{
p_shape=2
samp_mean=replicate(NUM_REPLICATE, mean(rpareto(sample_size, scale=1, shape=p_shape)))
dist_mean=1*p_shape/(p_shape-1)
plot_sample(sample_size, samp_mean, dist_mean, "Pareto")
}
exp_samp_dis(10)
lnorm_samp_dis(10)
pareto_samp_dis(20)
exp_samp_dis(20)
lnorm_samp_dis(20)
pareto_samp_dis(200) |
priormul <- function(alpha, PHI, nquad, df, ls){
n<-size(alpha)[1]
mvari <- 0
resi <- matrix(0,n,1)
for (i in 1:n){
tmp <- alpha[i,]
tmp2 <-1 - tmp%*%PHI%*%transpose(tmp)
tmp3 <- tmp%*%transpose(tmp)
resi[i] <- tmp2/tmp3
}
tmpmin <- min(resi)
mvari <- tmpmin
resi <- resi - (mvari*matrix(1,n,1))
if (missing(df)==TRUE || missing(ls)==TRUE){
df <- 5
ls <- round(mvari*3)
if (ls == 0){
ls <- 1
}
}
nodth <- creanodos(-4,4,nquad)
nodichi<- creanchi(0.02,4,nquad,df,ls)
if (df == 5){
var_nodos <- 0.4159
}
if (df == 6){
var_nodos <- 0.3832
}
if (df == 10){
var_nodos <- 0.2631
}
OUT<-list("mvari" = mvari, "resi" = resi, "nodth" = nodth, "nodichi" = nodichi, "var_nodos" = var_nodos)
return(OUT)
} |
txt <- "
abline acf approx arrows axis
box browseURL
capture.output col2rgb colorRamp colors contour contourLines cor
demo density dev.cur dev.new dev.off
extendrange
fix frame
grey
hist
legend lines
make.packages.html median mtext
nlm nlminb
optim
pairs par plot plot.new points polygon
qnorm
rect rgb rnorm runif
segments str strwidth symbols
text
update
vignette
"
txt = gsub("\\n"," ",txt)
imports_for_undefined_globals <-
function(txt, lst, selective = TRUE)
{
if(!missing(txt))
lst <- scan(what = character(), text = txt, quiet = TRUE)
nms <- lapply(lst, find)
ind <- sapply(nms, length) > 0L
imp <- split(lst[ind], substring(unlist(nms[ind]), 9L))
if(selective) {
sprintf("importFrom(%s)",
vapply(Map(c, names(imp), imp),
function(e)
paste0("\"", e, "\"", collapse = ", "),
""))
} else {
sprintf("import(\"%s\")", names(imp))
}
} |
dd_hyperbolic <- hBayesDM_model(
task_name = "dd",
model_name = "hyperbolic",
model_type = "",
data_columns = c("subjID", "delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice"),
parameters = list(
"k" = c(0, 0.1, 1),
"beta" = c(0, 1, 5)
),
regressors = NULL,
postpreds = c("y_pred"),
preprocess_func = dd_preprocess_func) |
globalVariables(c("grp", "for.split", ".", "pos", "prob", "pos2",
"allele","parents.homologs", "progeny.homologs", "homolog"))
globalVariables(c("V1", "V2", "V3", "V4",
"H1_P1", "H1_P2", "H2_P1", "H2_P2",
"P1_H1", "P1_H2", "P2_H1", "P2_H2"))
parents_haplotypes <- function(..., group_names=NULL){
input <- list(...)
if(length(input) == 0) stop("argument '...' missing, with no default")
if(is(input[[1]], "sequence")) input.map <- input else input.map <- unlist(input, recursive = FALSE)
if(!all(sapply(input.map, function(x) is(x, "sequence")))) stop(paste("Input objects must be of 'sequence' class. \n"))
if(is.null(group_names)) group_names <- paste("Group",seq(input.map), sep = " - ")
if(all(sapply(input, function(x) is(x, "sequence")))){
n <- length(sapply(input, function(x) is(x, "sequence")))
} else n <- 1
input_temp <- input
out_dat <- data.frame()
for(z in 1:n){
if(all(sapply(input_temp, function(x) is(x, "sequence")))) input <- input_temp[[z]]
marnames <- colnames(input$data.name$geno)[input$seq.num]
if(length(input$seq.rf) == 1 && input$seq.rf == -1) {
warning("\nParameters not estimated.\n\n")
} else {
link.phases <- matrix(NA,length(input$seq.num),2)
link.phases[1,] <- rep(1,2)
for (i in 1:length(input$seq.phases)) {
switch(EXPR=input$seq.phases[i],
link.phases[i+1,] <- link.phases[i,]*c(1,1),
link.phases[i+1,] <- link.phases[i,]*c(1,-1),
link.phases[i+1,] <- link.phases[i,]*c(-1,1),
link.phases[i+1,] <- link.phases[i,]*c(-1,-1),
)
}
marnumbers <- input$seq.num
distances <- c(0,cumsum(get(get(".map.fun", envir=.onemapEnv))(input$seq.rf)))
if(is(input$data.name, c("outcross", "f2"))){
link.phases <- apply(link.phases,1,function(x) paste(as.character(x),collapse="."))
parents <- matrix("",length(input$seq.num),4)
for (i in 1:length(input$seq.num))
parents[i,] <- return_geno(input$data.name$segr.type[input$seq.num[i]],link.phases[i])
out_dat_temp <- data.frame(group= group_names[z], mk.number = marnumbers, mk.names = marnames, dist = as.numeric(distances),
P1_1 = parents[,1],
P1_2 = parents[,2],
P2_1 = parents[,3],
P2_2 = parents[,4])
out_dat <- rbind(out_dat, out_dat_temp)
}
else if(is(input$data.name, c("backcross", "riself", "risib"))){
warning("There is only a possible phase for this cross type\n")
} else warning("invalid cross type")
}
}
return(out_dat)
}
progeny_haplotypes <- function(...,
ind = 1,
group_names=NULL,
most_likely = FALSE){
input <- list(...)
if(length(input) == 0) stop("argument '...' missing, with no default")
if(is(input[[1]], "sequence")) input.map <- input else input.map <- unlist(input, recursive = FALSE)
if(!all(sapply(input.map, function(x) is(x, "sequence")))) stop(paste("Input objects must be of 'sequence' class. \n"))
if(is.null(group_names)) group_names <- paste("Group",seq(input.map), sep = " - ")
n.mar <- sapply(input.map, function(x) length(x$seq.num))
n.ind <- sapply(input.map, function(x) ncol(x$probs))/n.mar
ind.names <- lapply(input.map, function(x) rownames(x$data.name$geno))
ind.names <- unique(unlist(ind.names))
if(length(unique(n.ind)) != 1) stop("At least one of the sequences have different number of individuals in dataset.")
n.ind <- unique(n.ind)
if(is.null(ind.names)) ind.names <- 1:n.ind
if(ind[1] == "all"){
ind <- 1:n.ind
}
probs <- lapply(1:length(input.map), function(x) cbind(ind = rep(1:n.ind, each = n.mar[x]),
grp = group_names[x],
marker = input.map[[x]]$seq.num,
pos = c(0,cumsum(kosambi(input.map[[x]]$seq.rf))),
as.data.frame(t(input.map[[x]]$probs))))
probs <- lapply(probs, function(x) split.data.frame(x, x$ind)[ind])
if(is(input.map[[1]]$data.name, "outcross") | is(input.map[[1]]$data.name, "f2")){
phase <- list('1' = c(1,2,3,4),
'2' = c(2,1,4,3),
'3' = c(3,4,1,2),
"4" = c(4,3,2,1))
seq.phase <- lapply(input.map, function(x) c(1,x$seq.phases))
for(g in seq_along(input.map)){
for(i in seq_along(ind)){
for(m in seq(n.mar[g])){
probs[[g]][[i]][m:n.mar[g],5:8] <- probs[[g]][[i]][m:n.mar[g],phase[[seq.phase[[g]][m]]]+4]
}
}
}
probs <- do.call(rbind,lapply(probs, function(x) do.call(rbind, x)))
if(most_likely){
probs[,5:8] <- t(apply(probs[,5:8], 1, function(x) as.numeric(x == max(x))/sum(x == max(x))))
}
if(is(input.map[[1]]$data.name, "outcross")){
probs <- probs %>%
mutate(P1_H1 = V1 + V2,
P1_H2 = V3 + V4,
P2_H1 = V1 + V3,
P2_H2 = V2 + V4) %>%
select(ind, marker, grp, pos, P1_H1, P1_H2, P2_H1, P2_H2) %>%
gather(parents, prob, P1_H1, P1_H2, P2_H1, P2_H2)
new.col <- t(sapply(strsplit(probs$parents, "_"), "[", 1:2))
colnames(new.col) <- c("parents", "parents.homologs")
cross <- "outcross"
} else {
probs <- probs %>%
mutate(H1_P1 = V1 + V2,
H1_P2 = V3 + V4,
H2_P1 = V1 + V3,
H2_P2 = V2 + V4) %>%
select(ind, marker, grp, pos, H1_P1, H1_P2, H2_P1, H2_P2) %>%
gather(parents, prob, H1_P1, H1_P2, H2_P1, H2_P2)
new.col <- t(sapply(strsplit(probs$parents, "_"), "[", 1:2))
colnames(new.col) <- c("progeny.homologs", "parents")
cross <- "f2"
}
} else {
probs <- do.call(rbind,lapply(probs, function(x) do.call(rbind, x)))
if(most_likely){
probs[,5:6] <- t(apply(probs[,5:6], 1, function(x) as.numeric(x == max(x))/sum(x == max(x))))
}
if (is(input.map[[1]]$data.name, c("backcross")) | is(input.map[[1]]$data.name, c("riself", "risib"))){
if(is(input.map[[1]]$data.name, c("backcross"))){
cross <- "backcross"
probs <- probs %>%
mutate(H1_P1 = V1 + V2,
H1_P2 = 0,
H2_P1 = V2,
H2_P2 = V1)
} else if (is(input.map[[1]]$data.name, c("riself", "risib"))){
cross <- "rils"
probs <- probs %>%
mutate(H1_P1 = V1,
H1_P2 = V2,
H2_P1 = V1,
H2_P2 = V2)
}
probs <- probs %>% select(ind, marker, grp, pos, H1_P1, H1_P2, H2_P1, H2_P2) %>%
gather(parents, prob, H1_P1, H1_P2, H2_P1, H2_P2)
new.col <- t(sapply(strsplit(probs$parents, "_"), "[", 1:2))
colnames(new.col) <- c("progeny.homologs", "parents")
}
}
probs <- cbind(probs, new.col)
probs <- cbind(probs[,-5], allele = probs[,5])
probs <- as.data.frame(probs)
probs$marker = colnames(input.map[[1]]$data.name$geno)[probs$marker]
probs$ind <- ind.names[probs$ind]
if(most_likely) flag <- "most.likely" else flag <- "by.probs"
class(probs) <- c("onemap_progeny_haplotypes", cross, "data.frame", flag)
return(probs)
}
plot.onemap_progeny_haplotypes <- function(x,
col = NULL,
position = "stack",
show_markers = TRUE,
main = "Genotypes", ncol=4, ...){
if(is(x, "outcross")){
n <- c("H1" = "P1", "H2" = "P2")
progeny.homologs <- names(n)[match(x$parents, n)]
probs <- cbind(x, progeny.homologs)
} else {
probs <- x
}
probs <- probs %>% group_by(ind, grp, allele) %>%
do(rbind(.,.[nrow(.),])) %>%
do(mutate(.,
pos2 = c(0,pos[-1]-diff(pos)/2),
pos = c(pos[-nrow(.)], NA)))
if(is(x, "outcross")){
p <- ggplot(probs, aes(x = pos, col=allele, alpha = prob)) + ggtitle(main)
} else {
p <- ggplot(probs, aes(x = pos, col=parents, alpha = prob)) + ggtitle(main)
}
p <- p + facet_wrap(~ ind + grp , ncol = ncol) +
scale_alpha_continuous(range = c(0,1)) +
guides(fill = guide_legend(reverse = TRUE)) +
labs(alpha = "Prob", col = "Allele", x = "position (cM)")
if(is.null(col)) p <- p + scale_color_brewer(palette="Set1")
else p <- p + scale_color_manual(values = rev(col))
if(position == "stack"){
p <- p + geom_line(aes(x = pos2, y = progeny.homologs), size = ifelse(show_markers, 4, 5)) + labs(y = "progeny homologs")
if(show_markers) p <- p + geom_point(aes(y = progeny.homologs), size = 5, stroke = 2, na.rm = T, shape = "|")
}
if(position == "split"){
p <- p + geom_line(aes(x = pos2, y = allele), size = ifelse(show_markers, 4, 5))
if(show_markers) p <- p + geom_point(aes(y = allele), size = 5, stroke = 2, na.rm = T, shape = "|")
}
return(p)
}
progeny_haplotypes_counts <- function(x){
if(!is(x, "onemap_progeny_haplotypes")) stop("Input need is not of class onemap_progeny_haplotyes")
if(!is(x, "most.likely")) stop("The most likely genotypes must receive maximum probability (1)")
cross <- class(x)[2]
doubt <- x[which(x$prob == 0.5),]
if(dim(doubt)[1] > 0){
repl <- x[which(x$prob == 0.5)-1,"prob"]
x[which(x$prob == 0.5),"prob"] <- repl
}
x <- x[which(x$prob == 1),]
x <- x[order(x$ind, x$grp, x$prob, x$parents,x$pos),]
if(is(x, "outcross")){
counts <- x %>% group_by(ind, grp, parents.homologs) %>%
mutate(seq = sequence(rle(as.character(parents))$length) == 1) %>%
summarise(counts = sum(seq) -1) %>% ungroup()
} else {
counts <- x %>% group_by(ind, grp, progeny.homologs) %>%
mutate(seq = sequence(rle(as.character(parents))$length) == 1) %>%
summarise(counts = sum(seq) -1) %>% ungroup()
}
colnames(counts)[3] <- "homolog"
class(counts) <- c("onemap_progeny_haplotypes_counts", cross, "data.frame")
return(counts)
}
globalVariables(c("counts", "colorRampPalette", "alleles"))
plot.onemap_progeny_haplotypes_counts <- function(x,
by_homolog = FALSE,
n.graphics =NULL,
ncol=NULL, ...){
if(!is(x, "onemap_progeny_haplotypes_counts")) stop("Input need is not of class onemap_progeny_haplotyes_counts")
p <- list()
n.ind <- length(unique(x$ind))
nb.cols <- n.ind
mycolors <- colorRampPalette(brewer.pal(12, "Paired"))(nb.cols)
set.seed(20)
mycolors <- sample(mycolors)
if(by_homolog){
if(is.null(n.graphics) & is.null(ncol)){
n.ind <- dim(x)[1]/2
if(n.ind/25 <= 1) {
n.graphics = 1
ncol=1
}else { n.graphics = round(n.ind/25,0)
ncol=round(n.ind/25,0)
}
}
size <- dim(x)[1]
if(size%%n.graphics == 0){
div.n.graphics <- rep(1:n.graphics, each= size/n.graphics)
} else {
div.n.graphics <- c(rep(1:n.graphics, each = round(size/n.graphics,0)), rep(n.graphics, size%%n.graphics))
}
y_lim_counts <- max(x$counts)
div.n.graphics <- div.n.graphics[1:size]
p <- x %>% mutate(div.n.graphics = div.n.graphics) %>%
split(., .$div.n.graphics) %>%
lapply(., function(x) ggplot(x, aes(x=homolog, y=counts)) +
geom_bar(stat="identity", aes(fill=grp)) + theme_minimal() +
coord_flip() +
scale_fill_manual(values=mycolors) +
facet_grid(ind ~ ., switch = "y") +
theme(axis.title.y = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
strip.text.y.left = element_text(angle = 0)) +
labs(fill="groups") +
ylim(0,y_lim_counts)
)
} else {
x <- x %>% ungroup %>% group_by(ind, grp) %>%
summarise(counts = sum(counts))
if(is.null(n.graphics) & is.null(ncol)){
if(n.ind/25 <= 1) {
n.graphics = 1
ncol=1
}else {
n.graphics = round(n.ind/25,0)
ncol=round(n.ind/25,0)
}
}
size <-n.ind
if(size%%n.graphics == 0){
div.n.graphics <- rep(1:n.graphics, each= size/n.graphics)
} else {
div.n.graphics <- c(rep(1:n.graphics, each = round(size/n.graphics,0)),rep(n.graphics, size%%n.graphics))
}
div.n.graphics <- div.n.graphics[1:n.ind]
div.n.graphics <- rep(div.n.graphics, each = length(unique(x$grp)))
x$ind <- factor(as.character(x$ind), levels = sort(as.character(unique(x$ind))))
temp <- x %>% ungroup() %>% group_by(ind) %>%
summarise(total = sum(counts))
y_lim_counts <- max(temp$total)
p <- x %>% ungroup() %>% mutate(div.n.graphics = div.n.graphics) %>%
split(., .$div.n.graphics) %>%
lapply(., function(x) ggplot(x, aes(x=ind, y=counts, fill=grp)) +
geom_bar(stat="identity") + coord_flip() +
scale_fill_manual(values=mycolors) +
theme(axis.title.y = element_blank(),
axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs(fill="groups") +
ylim(0,y_lim_counts)
)
}
p <- ggarrange(plotlist = p, common.legend = T, label.x = 1, ncol = ncol, nrow = round(n.graphics/ncol,0))
return(p)
} |
setClass(
"system_equilibrium",
contains = "system_base",
representation(
delta = "numeric",
mu_P = "matrix",
var_P = "numeric",
sigma_P = "numeric",
h_P = "matrix",
mu_Q = "matrix",
var_Q = "numeric",
sigma_Q = "numeric",
h_Q = "matrix",
rho_QP = "numeric",
rho_1QP = "numeric",
rho_2QP = "numeric",
z_QP = "matrix",
z_PQ = "matrix",
llh = "matrix"
),
prototype(
llh = matrix(NA_real_)
)
)
setMethod(
"initialize", "system_equilibrium",
function(
.Object, specification, data, correlated_shocks,
demand_initializer = NULL, supply_initializer = NULL) {
.Object <- callNextMethod(
.Object, specification, data, correlated_shocks,
ifelse(is.null(demand_initializer),
function(...) new("equation_basic", ...), demand_initializer
),
ifelse(is.null(supply_initializer),
function(...) new("equation_basic", ...), supply_initializer
)
)
}
)
setMethod(
"show_implementation", signature(object = "system_equilibrium"),
function(object) {
callNextMethod(object)
cat(sprintf(
" %-18s: %s\n", "Market Clearing", paste0(
quantity_variable(object@demand), " = ",
prefixed_quantity_variable(object@demand), " = ",
prefixed_quantity_variable(object@supply)
)
))
}
)
setMethod("set_parameters", signature(object = "system_equilibrium"),
function(object, parameters) {
object <- callNextMethod(object, parameters)
object@delta <- object@supply@alpha - object@demand@alpha
object <- calculate_system_moments(object)
object@llh <- calculate_system_loglikelihood(object)
object
}) |
gjamPoints2Grid <- function(specs, xy, nxy = NULL, dxy = NULL,
predGrid = NULL, effortOnly = TRUE){
dx <- dy <- nx <- ny <- NULL
wna <- which(is.na(xy),arr.ind=T)
if(length(wna) > 0){
wna <- unique(wna[,1])
}
wna <- c(wna,which(is.na(specs)))
if(length(wna) > 0){
specs <- specs[-wna]
xy <- xy[-wna,]
}
if(length(nxy) == 1) nx <- ny <- nxy
if(length(dxy) == 1) dx <- dy <- dxy
if(is.null(nxy) & is.null(dxy) & is.null(predGrid)){
stop('must supply nxy or dxy or predGrid')
}
if(length(nxy) == 2) nx <- nxy[1]; ny <- nxy[2]
if(length(dxy) == 2) dx <- dxy[1]; dy <- dxy[2]
if(length(specs) != nrow(xy))stop('specs must have length = nrow(xy)')
mr <- apply( apply(xy,2,range, na.rm=T), 2, diff )
if(!is.null(dxy)){
if(mr[1] < (3*dx) | mr[2] < (3*dy))stop('dxy too small')
}
.incidence2Grid(specs, lonLat = xy, nx, ny, dx, dy, predGrid, effortOnly)
} |
appendToCSV <- function(existing.csv, row.frame, append = TRUE, sep=",", row.names=FALSE, col.names=FALSE) {
if (is.null(existing.csv) || file.exists(existing.csv) == FALSE) {
warning("The file was not found or path was wrong, \"file.name=" + existing.csv+ "\"")
return(FALSE)
}
row.names(row.frame) <- NULL
write.table(row.frame,
file = existing.csv,
append=append,
sep=sep, row.names=FALSE,
col.names = FALSE)
return(TRUE)
} |
yuima.PhamBreton.Alg<-function(a){
p<-length(a)
gamma<-a[p:1]
if(p>2){
gamma[p]<-a[1]
alpha<-matrix(NA,p,p)
for(j in 1:p){
if(is.integer(as.integer(j)/2)){
alpha[p,j]<-0
alpha[p-1,j]<-0
}else{
alpha[p,j]<-a[j]
alpha[p-1,j]<-a[j+1]/gamma[p]
}
}
for(n in (p-1):1){
gamma[n]<-alpha[n+1,2]-alpha[n,2]
for(j in 1:n-1){
alpha[n-1,j]<-(alpha[n+1,j+2]-alpha[n,j+2])/gamma[n]
}
alpha[n-1,n-1]<-alpha[n+1,n+1]/gamma[n]
}
gamma[1]<-alpha[2,2]
}
return(gamma)
}
Diagnostic.Carma<-function(carma){
if(!is(carma@model,"yuima.carma"))
yuima.stop("model is not a carma")
if(!is(carma,"mle"))
yuima.stop("object does not belong
to yuima.qmle-class or yuima.carma.qmle-class ")
param<-coef(carma)
info <- carma@model@info
numb.ar<-info@p
name.ar<-paste([email protected],c(numb.ar:1),sep="")
ar.par<-param[name.ar]
statCond<-FALSE
if(min(yuima.PhamBreton.Alg(ar.par[numb.ar:1]))>=0)
statCond<-TRUE
return(statCond)
} |
expected <- eval(parse(text="structure(integer(0), .Dim = c(0L, 2L))"));
test(id=0, code={
argv <- eval(parse(text="list(structure(integer(0), .Dim = c(0L, 2L), .Dimnames = list(NULL, c(\"row\", \"col\"))), 0, 2, FALSE, NULL, FALSE, FALSE)"));
.Internal(matrix(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]], argv[[7]]));
}, o=expected); |
print.vandeWielTest <- function(x,eps=0.0001,pdigits=4,...){
cat("\nvan de Wiel test based on ",x$B," data splits\n")
cat("\nTraining sample size: ",x$M,"\n")
cat("\nTest sample size: ",x$N-x$M,"\n")
if (length(x$testIBS)==2){
cat("\nP-values based on integrated Brier score residuals:")
cat("\nRange of integration: [",x$testIBS[1],"--",x$testIBS[2],"]\n\n")
ibsP <- sapply(x$Comparisons,function(x)x$pValueIBS)
ibsP <- format.pval(ibsP,digits=pdigits,eps=eps)
ibsMat <- matrix(ibsP,ncol=1)
rownames(ibsMat) <- names(x$Comparisons)
colnames(ibsMat) <- "p-value (IBS)"
print(ibsMat,quote=FALSE,...)
}
NT <- length(x$testTimes)
if (NT>0){
cat("\nMatrix of time point wise p-values:\n\n")
if (NT>5){
showTimes <- sort(sample(x$testTimes))
showTimePos <- prodlim::sindex(jump.times=x$testTimes,eval.times=showTimes)
}
else{
showTimes <- x$testTimes
showTimePos <- 1:NT
}
mat <- do.call("rbind",lapply(x$Comparisons,function(comp){
format.pval(comp$pValueTimes[showTimePos],digits=pdigits,eps=eps)
}))
colnames(mat) <- paste("t=",showTimes)
print(mat,quote=FALSE,...)
}
invisible(mat)
} |
sampleOccurrences <- function(x, n,
type = "presence only",
extract.probability = FALSE,
sampling.area = NULL,
detection.probability = 1,
correct.by.suitability = FALSE,
error.probability = 0,
bias = "no.bias",
bias.strength = 50,
bias.area = NULL,
weights = NULL,
sample.prevalence = NULL,
replacement = FALSE,
plot = TRUE)
{
results <- list(type = type,
detection.probability = list(
detection.probability = detection.probability,
correct.by.suitability = correct.by.suitability),
error.probability = error.probability,
bias = NULL,
replacement = replacement,
original.distribution.raster = NULL,
sample.plot = NULL)
if(is.null(.Random.seed)) {stats::runif(1)}
attr(results, "RNGkind") <- RNGkind()
attr(results, "seed") <- .Random.seed
if(inherits(x, "virtualspecies"))
{
if(inherits(x$occupied.area, "RasterLayer"))
{
sp.raster <- x$occupied.area
} else if(inherits(x$pa.raster, "RasterLayer"))
{
sp.raster <- x$pa.raster
} else stop("x must be:\n- a raster layer object\nor\n- the output list from
functions generateRandomSp(), convertToPA() or
limitDistribution()")
} else if (inherits(x, "RasterLayer"))
{
sp.raster <- x
if(extract.probability)
{
stop("Cannot extract probability when x is not a virtualspecies object. Set
extract.probability = FALSE")
}
} else stop("x must be:\n- a raster layer object\nor\n- the output list from
functions generateRandomSp(), convertToPA() or
limitDistribution()")
if(sp.raster@data@max > 1 | sp.raster@data@min < 0)
{
stop("There are values above 1 or below 0 in your presence/absence raster.
Please make sure that the provided raster is a correct P/A raster and not a suitability raster.")
}
results$original.distribution.raster <- original.raster <- sp.raster
if(!is.null(sample.prevalence))
{
if(sample.prevalence < 0 | sample.prevalence > 1)
{
stop("Sample prevalence must be a numeric between 0 and 1")
}
}
if(!is.null(sampling.area))
{
if(is.character(sampling.area))
{
worldmap <- rworldmap::getMap()
if (any(!(sampling.area %in% c(levels(worldmap@data$SOVEREIGNT),
levels(worldmap@data$REGION),
levels(worldmap@data$continent)))))
{
stop("The choosen sampling.area is incorrectly spelled.\n Type 'levels(getMap()@data$SOVEREIGNT)', 'levels(worldmap@data$REGION)' and levels(worldmap@data$continent) to obtain valid names.")
}
sampling.area <- worldmap[which(
worldmap@data$SOVEREIGNT %in% sampling.area |
worldmap@data$REGION %in% sampling.area |
worldmap@data$continent %in% sampling.area), ]
} else if(!(inherits(sampling.area, c("SpatialPolygons",
"SpatialPolygonsDataFrame",
"Extent"))))
{
stop("Please provide to sampling.area either \n
- the names of countries, region and/or continents in which to sample\n
- a SpatialPolygons or SpatialPolygonsDataFrame\n
- an extent\n
in which the sampling will take place")
}
sample.area.raster1 <- rasterize(sampling.area,
sp.raster,
field = 1,
background = NA,
silent = TRUE)
sp.raster <- sp.raster * sample.area.raster1
}
if(correct.by.suitability)
{
if(!(inherits(x, "virtualspecies")) | !("suitab.raster" %in% names(x)))
{
stop("If you choose to weight the probability of detection by the suitability of the species (i.e., correct.by.suitability = TRUE),
then you need to provide an appropriate virtual species containing a suitability raster to x.")
}
}
if(!is.numeric(detection.probability) | detection.probability > 1 |
detection.probability < 0)
{
stop("detection.probability must be a numeric value between 0 and 1")
}
if(!is.numeric(error.probability) | error.probability > 1 |
error.probability < 0)
{
stop("error.probability must be a numeric value between 0 and 1")
}
if(length(bias) > 1)
{
stop('Only one bias can be applied at a time')
}
if (!(bias %in% c("no.bias", "country", "region", "continent", "extent",
"polygon", "manual")))
{
stop('Argument bias must be one of : "no.bias", "country", "region",
"continent", "extent", "polygon", "manual"')
}
if(!is.numeric(bias.strength) & bias != "no.bias")
{
stop("Please provide a numeric value for bias.strength")
}
if (bias %in% c("country", "region", "continent"))
{
if(!("rworldmap" %in% rownames(installed.packages())))
{
stop('You need to install the package "rworldmap" in order to use bias =
"region" or bias = "country"')
}
worldmap <- rworldmap::getMap()
if(bias == "country")
{
if (any(!(bias.area %in% levels(worldmap@data$SOVEREIGNT))))
{
stop("country name(s) must be correctly spelled. Type
'levels(getMap()@data$SOVEREIGNT)' to obtain valid names.")
}
results$bias <- list(bias = bias,
bias.strength = bias.strength,
bias.area = bias.area)
} else if (bias == "region")
{
if (any(!(bias.area %in% levels(worldmap@data$REGION))))
{
stop(paste("region name(s) must be correctly spelled, according to one
of the following : ",
paste(levels(worldmap@data$REGION), collapse = ", "),
sep = "\n"))
}
results$bias <- list(bias = bias,
bias.strength = bias.strength,
bias.area = bias.area)
} else if (bias == "continent")
{
if (any(!(bias.area %in% levels(worldmap@data$continent))))
{
stop(paste("region name(s) must be correctly spelled,
according to one of the following : ",
paste(levels(worldmap@data$continent), collapse = ", "),
sep = "\n"))
}
results$bias <- list(bias = bias,
bias.strength = bias.strength,
bias.area = bias.area)
}
}
if (bias == "polygon")
{
if(!(inherits(bias.area, c("SpatialPolygons",
"SpatialPolygonsDataFrame"))))
{
stop("If you choose bias = 'polygon', please provide a polygon of class
SpatialPolygons or SpatialPolygonsDataFrame to argument bias.area")
}
warning("Polygon projection is not checked. Please make sure you have the
same projections between your polygon and your presence-absence
raster")
results$bias <- list(bias = bias,
bias.strength = bias.strength,
bias.area = bias.area)
}
if (bias == "extent")
{
results$bias <- list(bias = bias,
bias.strength = bias.strength,
bias.area = bias.area)
}
if(type == "presence-absence")
{
sample.raster <- sp.raster
sample.raster[!is.na(sample.raster)] <- 1
} else if (type == "presence only")
{
sample.raster <- sp.raster
} else stop("type must either be 'presence only' or 'presence-absence'")
if (bias == "manual")
{
if(!(inherits(weights, "RasterLayer")))
{
stop("You must provide a raster layer of weights (to argument weights)
if you choose bias == 'manual'")
}
bias.raster <- weights
results$bias <- list(bias = bias,
bias.strength = "Defined by raster weights",
weights = weights)
} else
{
bias.raster <- sample.raster
}
if(bias == "country")
{
bias.raster1 <- rasterize(
worldmap[which(worldmap@data$SOVEREIGNT %in% bias.area), ],
bias.raster,
field = bias.strength,
background = 1,
silent = TRUE)
bias.raster <- bias.raster * bias.raster1
} else if(bias == "region")
{
bias.raster1 <- rasterize(
worldmap[which(worldmap@data$REGION %in% bias.area), ],
bias.raster,
field = bias.strength,
background = 1,
silent = TRUE)
bias.raster <- bias.raster * bias.raster1
} else if(bias == "continent")
{
bias.raster1 <- rasterize(
worldmap[which(levels(worldmap@data$continent) %in% bias.area), ],
bias.raster,
field = bias.strength,
background = 1,
silent = TRUE)
bias.raster <- bias.raster * bias.raster1
} else if(bias == "extent")
{
if(!(inherits(bias.area, "Extent")))
{
message("No object of class extent provided: click twice on the map to draw the extent in which presence points will be sampled")
plot(sp.raster)
bias.area <- drawExtent(show = TRUE)
}
bias.raster <- bias.raster * rasterize(bias.area, sp.raster,
field = bias.strength,
background = 1)
results$bias <- list(bias = bias,
bias.strength = bias.strength,
bias.area = bias.area)
} else if(bias == "polygon")
{
bias.raster1 <- rasterize(bias.area,
bias.raster,
field = bias.strength,
background = 1,
silent = TRUE)
bias.raster <- bias.raster * bias.raster1
}
if(bias != "no.bias")
{
if(type == "presence only")
{
number.errors <- stats::rbinom(n = 1, size = 50, prob = error.probability)
sample.points <- .randomPoints(sample.raster * bias.raster,
n = number.errors,
prob = TRUE, tryf = 1,
replaceCells = replacement)
sample.points <- rbind(sample.points,
.randomPoints(sample.raster * bias.raster,
n = n - number.errors,
prob = TRUE, tryf = 1,
replaceCells = replacement))
} else
{
if(is.null(sample.prevalence))
{
sample.points <- .randomPoints(sample.raster * bias.raster, n = n,
prob = TRUE, tryf = 1,
replaceCells = replacement)
} else
{
if(replacement)
{
message("Argument replacement = TRUE implies that sample prevalence
may not necessarily be respected in geographical space. Sample
prevalence will be respected, but multiple samples can occur
in the same cell so that spatial prevalence will be different.
")
}
tmp1 <- sample.raster
tmp1[sp.raster != 1] <- NA
sample.points <- .randomPoints(tmp1 * bias.raster,
n = sample.prevalence * n,
prob = TRUE, tryf = 1,
replaceCells = replacement)
tmp1 <- sample.raster
tmp1[sp.raster != 0] <- NA
sample.points <- rbind(sample.points,
.randomPoints(tmp1 * bias.raster,
n = (1 - sample.prevalence) * n,
prob = TRUE, tryf = 1,
replaceCells = replacement))
rm(tmp1)
}
}
} else
{
if(type == "presence only")
{
number.errors <- stats::rbinom(n = 1, size = n, prob = error.probability)
sample.points <- .randomPoints(sample.raster, n = number.errors,
prob = TRUE, tryf = 1,
replaceCells = replacement)
sample.points <- rbind(sample.points,
.randomPoints(sample.raster, n = n - number.errors,
prob = TRUE, tryf = 1,
replaceCells = replacement))
} else
{
if(is.null(sample.prevalence))
{
sample.points <- .randomPoints(sample.raster, n = n,
prob = TRUE, tryf = 1,
replaceCells = replacement)
} else
{
tmp1 <- sample.raster
tmp1[sp.raster != 1] <- NA
sample.points <- .randomPoints(tmp1, n = sample.prevalence * n,
prob = TRUE, tryf = 1,
replaceCells = replacement)
tmp1 <- sample.raster
tmp1[sp.raster != 0] <- NA
sample.points <- rbind(sample.points,
.randomPoints(tmp1,
n = (1 - sample.prevalence) * n,
prob = TRUE, tryf = 1,
replaceCells = replacement))
rm(tmp1)
}
}
}
if(type == "presence only")
{
sample.points <- data.frame(sample.points,
Real = extract(sp.raster, sample.points),
Observed = sample(
c(NA, 1),
size = nrow(sample.points),
prob = c(1 - detection.probability,
detection.probability),
replace = TRUE))
} else if(type == "presence-absence")
{
sample.points <- data.frame(sample.points,
Real = extract(sp.raster, sample.points))
if(correct.by.suitability)
{
suitabs <- extract(x$suitab.raster, sample.points[, c("x", "y")])
} else { suitabs <- rep(1, nrow(sample.points)) }
sample.points$Observed <- NA
if(correct.by.suitability)
{
sample.points$Observed[which(sample.points$Real == 1)] <-
sapply(detection.probability * suitabs[
which(sample.points$Real == 1)
],
function(y)
{
sample(c(0, 1),
size = 1,
prob = c(1 - y, y))
})
} else
{
sample.points$Observed[which(sample.points$Real == 1)] <-
sample(c(0, 1), size = length(which(sample.points$Real == 1)),
prob = c(1 - detection.probability, detection.probability),
replace = TRUE)
}
sample.points$Observed[which(sample.points$Real == 0 |
sample.points$Observed == 0)] <-
sample(c(0, 1), size = length(which(sample.points$Real == 0 |
sample.points$Observed == 0)),
prob = c(1 - error.probability, error.probability),
replace = TRUE)
}
if(plot)
{
plot(original.raster)
if(type == "presence only")
{
points(sample.points[, c("x", "y")], pch = 16, cex = .5)
} else
{
points(sample.points[sample.points$Observed == 1, c("x", "y")],
pch = 16, cex = .8)
points(sample.points[sample.points$Observed == 0, c("x", "y")],
pch = 1, cex = .8)
}
results$sample.plot <- grDevices::recordPlot()
}
if(extract.probability)
{
sample.points <- data.frame(sample.points,
true.probability = extract(x$probability.of.occurrence,
sample.points[, c("x", "y")]))
}
results$sample.points <- sample.points
if(type == "presence-absence")
{
true.prev <- length(sample.points$Real[which(
sample.points$Real == 1)]) / nrow(sample.points)
obs.prev <- length(sample.points$Real[which(
sample.points$Observed == 1)]) / nrow(sample.points)
results$sample.prevalence <- c(true.sample.prevalence = true.prev,
observed.sample.prevalence = obs.prev)
}
class(results) <- append("VSSampledPoints", class(results))
return(results)
} |
useWaitress <- function(color = "
dep <- htmltools::htmlDependency(
name = "waitress",
version = utils::packageVersion("waiter"),
src = "packer",
package = "waiter",
script = "waitress.js"
)
singleton(
tags$head(
tags$style(
paste0(".progressjs-theme-blue .progressjs-inner{background-color:", color, ";}"),
paste0(".progressjs-theme-blueOverlay .progressjs-inner{background-color:", color, ";}"),
paste0(".progressjs-theme-blueOverlayRadius .progressjs-inner{background-color:", color, ";}"),
paste0(".progressjs-theme-blueOverlayRadiusHalfOpacity .progressjs-inner{background-color:", color, ";}"),
paste0(".progressjs-theme-blueOverlayRadiusWithPercentBar .progressjs-inner{background-color:", color, ";}"),
paste0(".progressjs-percent{color:", percent_color, ";}")
),
dep
)
)
}
use_waitress <- function(color = "
useWaitress(color, percent_color)
}
Waitress <- R6::R6Class(
"waitress",
public = list(
initialize = function(selector = NULL, theme = c("line", "overlay", "overlay-radius", "overlay-opacity", "overlay-percent"),
min = 0, max = 100, infinite = FALSE, hide_on_render = FALSE){
name <- .random_name()
theme <- match.arg(theme)
overlay <- ifelse(grepl("overlay", theme), TRUE, FALSE)
theme <- themes_to_js(theme)
if(infinite){
min <- 0
max <- 100
}
if(!is.null(selector))
if(!grepl("^
stop("`hide_on_render` will only work if the `selector` is an
private$.hide_on_render <- hide_on_render
private$.name <- name
private$.theme <- theme
private$.overlay <- overlay
private$.dom <- selector
private$.min <- min
private$.max <- max
private$.infinite <- infinite
invisible(self)
},
start = function(html = NULL, background_color = "transparent",
text_color = "black"){
id <- private$.dom
if(!private$.initialised)
private$.initialised <- private$init()
if(!is.null(html)){
if(!is.null(id))
if(!grepl("^
stop("`html` will only work when the `selector` is an
if(is.character(html))
html <- span(html)
html <- as.character(html)
}
id <- gsub("^
private$.started <- TRUE
opts <- list(
name = private$.name,
infinite = private$.infinite,
id = id,
html = html,
hideOnRender = private$.hide_on_render,
backgroundColor = background_color,
textColor = text_color,
isNotification = FALSE
)
private$get_session()
private$.session$sendCustomMessage("waitress-start", opts)
invisible(self)
},
notify = function(html = NULL, background_color = "white",
text_color = "black", position = c("br", "tr", "bl", "tl")){
id <- private$.dom
private$.is_notification <- TRUE
if(!is.null(html)){
if(is.character(html))
html <- p(html)
} else {
html <- p(style = "width:200px;")
}
html <- as.character(html)
if(!private$.initialised)
private$.initialised <- private$init(
id = private$.name,
html = html,
backgroundColor = background_color,
textColor = text_color,
position = match.arg(position),
notify = TRUE
)
if(!is.null(id))
if(grepl("^
id <- gsub("^
private$.started <- TRUE
opts <- list(
name = private$.name,
infinite = private$.infinite,
id = id,
hideOnRender = private$.hide_on_render,
isNotification = TRUE
)
private$get_session()
private$.session$sendCustomMessage("waitress-start", opts)
invisible(self)
},
set = function(value){
if(missing(value))
stop("Missing `value`", call. = FALSE)
private$get_session()
private$.value <- value
if(!private$.started)
self <- self$start()
value <- private$rescale(value)
opts <- list(name = private$.name, percent = value)
private$.session$sendCustomMessage("waitress-set", opts)
invisible(self)
},
auto = function(value, ms){
private$get_session()
private$.value <- value
if(!private$.started)
self <- self$start()
value <- private$rescale(value)
opts <- list(name = private$.name, percent = value, ms = ms)
private$.session$sendCustomMessage("waitress-auto", opts)
invisible(self)
},
inc = function(value){
private$get_session()
private$.value <- value
if(!private$.started)
self <- self$start()
value <- private$rescale(value)
opts <- list(name = private$.name, percent = value)
private$.session$sendCustomMessage("waitress-increase", opts)
invisible(self)
},
close = function(){
opts <- list(
name = private$.name,
infinite = private$.infinite,
is_notification = private$.is_notification
)
if(!is.null(private$.dom))
if(grepl("^
opts$id <- gsub("^
private$get_session()
private$.session$sendCustomMessage("waitress-end", opts)
invisible(self)
},
getMin = function(){
private$.min
},
getMax = function(){
private$.max
},
getValue = function(){
private$.value
},
print = function(){
if(!is.null(private$.dom))
cat("A waitress applied to", private$.dom, "\n")
else if(!private$.is_notification)
cat("A waitress applied to the whole page\n")
else if (private$.is_notification)
cat("A waitress notification\n")
}
),
active = list(
max = function(value) {
if(missing(value))
return(private$.max)
private$.max <- value
},
min = function(value) {
if(missing(value))
return(private$.min)
private$.min <- value
}
),
private = list(
.name = NULL,
.theme = NULL,
.overlay = NULL,
.dom = NULL,
.session = NULL,
.started = FALSE,
.initialised = FALSE,
.min = 0,
.max = 100,
.value = 0,
.infinite = FALSE,
.hide_on_render = FALSE,
.is_notification = FALSE,
rescale = function(value){
floor(((value-private$.min)/(private$.max - private$.min)) * 100)
},
get_session = function(){
private$.session <- shiny::getDefaultReactiveDomain()
},
init = function(id = NULL, ...){
if(is.null(id))
id <- private$.dom
opts <- list(
id = id,
name = private$.name,
options = list(
theme = private$.theme,
overlayMode = private$.overlay
)
)
additional_options <- list(...)
opts <- append(opts, additional_options)
private$get_session()
private$.session$sendCustomMessage("waitress-init", opts)
return(TRUE)
}
)
) |
define_shapefiles <- function(limits) {
if(length(limits) == 1) {
if(limits >= 30 & limits <= 89) {
shapefiles <- "ArcticStereographic"
decLimits <- TRUE
} else if (limits <= -30 & limits >= -89) {
shapefiles <- "AntarcticStereographic"
decLimits <- TRUE
} else {
stop("limits argument has to be between 30 and 89 or -30 and -89 when numeric and length == 1 (polar stereographic maps).")
}
} else if(length(limits) == 4) {
if(is_decimal_limit(limits)) {
decLimits <- TRUE
if(max(limits[3:4]) > 90) stop("limits[3:4] must be <= 90")
if(min(limits[3:4]) < -90) stop("limits[3:4] must be >= -90")
if(max(limits[3:4]) >= 60) {
if(min(limits[3:4]) < 30) {
shapefiles <- "DecimalDegree"
} else {
shapefiles <- "ArcticStereographic"
}
} else if(min(limits[3:4]) <= -60) {
if(max(limits[3:4]) > 30) {
shapefiles <- "DecimalDegree"
} else {
shapefiles <- "AntarcticStereographic"
}
} else if(all(limits[3:4] >= 40)) {
shapefiles <- "ArcticStereographic"
} else if(all(limits[3:4] <= -40)) {
shapefiles <- "AntarcticStereographic"
} else {
shapefiles <- "DecimalDegree"
}
} else {
decLimits <- FALSE
shapefiles <- NA
}
}
list(shapefile.name = shapefiles, decimal.degree.limits = decLimits)
} |
normlog.fsreg_2 <- function(target, dataset, iniset = NULL, wei = NULL, threshold = 0.05, tol = 2, ncores = 1) {
dm <- dim(dataset)
if ( is.null(dm) ) {
n <- length(target)
p <- 1
} else {
n <- dm[1]
p <- dm[2]
}
devi <- dof <- numeric( p )
moda <- list()
k <- 1
tool <- numeric( min(n, p) )
threshold <- log(threshold)
pa <- NCOL(iniset)
da <- 1:pa
dataset <- cbind(iniset, dataset)
dataset <- as.data.frame(dataset)
runtime <- proc.time()
devi <- dof <- phi <- numeric(p)
mi <- glm(target ~., data = as.data.frame( iniset ), weights = wei, family = gaussian(link = log), y = FALSE, model = FALSE )
do <- length( mi$coefficients )
ini <- mi$deviance
if (ncores <= 1) {
for (i in 1:p) {
mi <- glm( target ~ . , data = dataset[, c(da, pa + i)], weights = wei, family = gaussian(link = log), y = FALSE, model = FALSE )
devi[i] <- mi$deviance
dof[i] <- length( mi$coefficients )
phi[i] <- summary(mi)[[ 14 ]]
}
stat <- (ini - devi)/(dof - do) / phi
pval <- pf( stat, dof - do, n - dof, lower.tail = FALSE, log.p = TRUE )
} else {
cl <- makePSOCKcluster(ncores)
registerDoParallel(cl)
mod <- foreach( i = 1:p, .combine = rbind) %dopar% {
ww <- glm( target ~., data = dataset[, c(da, pa + i)], weights = wei, family = gaussian(link = log) )
return( c( ww$deviance, length( ww$coefficients ), summary(ww)[[ 14 ]] ) )
}
stopCluster(cl)
stat <- (ini - mod[, 1])/(mod[, 2] - do) /mod[, 3]
pval <- pf( stat, mod[, 2] - do, n - mod[, 2], lower.tail = FALSE, log.p = TRUE )
}
mat <- cbind(1:p, pval, stat)
colnames(mat)[1] <- "variables"
rownames(mat) <- 1:p
sel <- which.min(pval)
info <- matrix( c( 1e300, 0, 0 ), ncol = 3 )
sela <- pa + sel
if ( mat[sel, 2] < threshold ) {
info[k, ] <- mat[sel, ]
mat <- mat[-sel, , drop = FALSE]
mi <- glm( target ~., data = dataset[, c(da, sela) ], weights = wei, family = gaussian(link = log), y = FALSE, model = FALSE )
tool[k] <- BIC( mi )
moda[[ k ]] <- mi
}
if ( info[k, 2] < threshold & nrow(mat) > 0 ) {
k <- k + 1
pn <- p - k + 1
ini <- 2 * as.numeric( logLik(moda[[ 1 ]]) )
do <- length( coef( moda[[ 1 ]] ) )
devi <- dof <- phi <- numeric( pn )
if ( ncores <= 1 ) {
for ( i in 1:pn ) {
ww <- glm( target ~., data = dataset[, c(da, sela, pa + mat[i, 1]) ], weights = wei, family = gaussian(link = log), y = FALSE, model = FALSE )
devi[i] <- ww$deviance
dof[i] <- length( ww$coefficients )
phi[i] <- summary(ww)[[ 14 ]]
}
stat <- (ini - devi)/(dof - do) / phi
pval <- pf( stat, dof - do, n - dof, lower.tail = FALSE, log.p = TRUE )
} else {
cl <- makePSOCKcluster(ncores)
registerDoParallel(cl)
mod <- foreach( i = 1:pn, .combine = rbind) %dopar% {
ww <- glm( target ~., data = dataset[, c(da, sela, pa + mat[i, 1]) ], weights = wei, family = gaussian(link = log) )
return( c( ww$deviance, length( ww$coefficients ), summary(ww)[[ 14 ]] ) )
}
stopCluster(cl)
stat <- (ini - mod[, 1])/(mod[, 2] - do) / mod[, 3]
pval <- pf( stat, mod[, 2] - do, n - mod[, 2], lower.tail = FALSE, log.p = TRUE )
}
mat[, 2:3] <- cbind(pval, stat)
ina <- which.min(mat[, 2])
sel <- pa + mat[ina, 1]
if ( mat[ina, 2] < threshold ) {
ma <- glm( target ~., data = dataset[, c(da, sela, sel) ], weights = wei, family = gaussian(link = log), y = FALSE, model = FALSE )
tool[k] <- BIC( ma )
if ( tool[ k - 1 ] - tool[ k ] <= tol ) {
info <- info
} else {
info <- rbind(info, c( mat[ina, ] ) )
sela <- c(sela, sel)
mat <- mat[-ina , , drop = FALSE]
moda[[ k ]] <- ma
}
} else info <- info
}
if ( nrow(info) > 1 & nrow(mat) > 0 ) {
while ( info[k, 2] < threshold & k < n - 15 & tool[ k - 1 ] - tool[ k ] > tol & nrow(mat) > 0 ) {
ini <- 2 * as.numeric( logLik(moda[[ k ]]) )
do <- length( coef( moda[[ k ]] ) )
k <- k + 1
pn <- p - k + 1
devi <- dof <- phi <- numeric( pn )
if (ncores <= 1) {
for ( i in 1:pn ) {
ma <- glm( target ~., data = dataset[, c(da, sela, pa + mat[i, 1] ) ], weights = wei, family = gaussian(link = log), y = FALSE, model = FALSE )
devi[i] <- ma$deviance
dof[i] <- length( ma$coefficients )
phi[i] <- summary(ma)[[ 14 ]]
}
stat <- (ini - devi)/(dof - do) /phi
pval <- pf( stat, dof - do, n - dof, lower.tail = FALSE, log.p = TRUE )
} else {
cl <- makePSOCKcluster(ncores)
registerDoParallel(cl)
mod <- foreach( i = 1:pn, .combine = rbind) %dopar% {
ww <- glm( target ~., data = dataset[, c(da, sela, pa + mat[i, 1]) ], weights = wei, family = gaussian(link = log), y = FALSE, model = FALSE )
return( c( ww$deviance, length( ww$coefficients ), summary(ww)[[ 14 ]] ) )
}
stopCluster(cl)
stat <- (ini - mod[, 1])/(mod[, 2] - do)/mod[, 3]
pval <- pf( stat, mod[, 2] - do, n - mod[, 2], lower.tail = FALSE, log.p = TRUE )
}
mat[, 2:3] <- cbind(pval, stat)
ina <- which.min(mat[, 2])
sel <- pa + mat[ina, 1]
if ( mat[ina, 2] < threshold ) {
ma <- glm( target ~., data = dataset[, c(da, sela, sel) ], weights = wei, family = gaussian(link = log), y = FALSE, model = FALSE )
tool[k] <- BIC( ma )
if ( tool[ k - 1 ] - tool[ k ] < tol ) {
info <- rbind(info, c( 1e300, 0, 0 ) )
} else {
info <- rbind( info, mat[ina, ] )
sela <- c(sela, sel)
mat <- mat[-ina, , drop = FALSE]
moda[[ k ]] <- ma
}
} else info <- rbind(info, c( 1e300, 0, 0 ) )
}
}
runtime <- proc.time() - runtime
d <- length(moda)
final <- NULL
if ( d == 0 ) {
final <- glm( target ~., data = as.data.frame( iniset ), weights = wei, family = gaussian(link = log), y = FALSE, model = FALSE )
info <- NULL
} else {
final <- glm( target ~., data = dataset[, c(da, sela) ], weights = wei, family = gaussian(link = log), y = FALSE, model = FALSE )
info <- info[1:d, , drop = FALSE]
info <- cbind( info, tool[ 1:d ] )
colnames(info) <- c( "variables", "log.p-value", "stat", "BIC" )
rownames(info) <- info[, 1]
}
list( runtime = runtime, mat = t(mat), info = info, ci_test = "testIndNormLog", final = final )
} |
scaleByGroup <- function(data , protGroup, plot=FALSE, scale=TRUE, center=TRUE){
reference = data[rownames(data) %in% protGroup,]
noReference = data[!rownames(data) %in% protGroup,]
referenceScaled = robustscale(reference,scale=scale, center=center)
if(center){
noReference = sweep(noReference,2,referenceScaled$medians,"-")
}
if(scale){
noReference = sweep(noReference,2,referenceScaled$mads,"/")
}
if(plot){
graphics::par(mfrow=c(1,2))
graphics::boxplot(noReference,main="noReference",ylim=c(-8,6), pch=".", las=2,cex.axis=0.5)
abline(h=0,col=2)
graphics::boxplot(referenceScaled$data,main="reference",ylim=c(-8,6),las=2,pch=".",cex.axis=0.5)
abline(h=0,col=2)
}
return(list(reference = referenceScaled$data, noReference = noReference))
} |
simulate.glm <- function(object, nsim = 1,
seed = NULL, newdata=NULL,
type = c("coef", "link", "response"), ...){
if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
runif(1)
if (is.null(seed)){
RNGstate <- get(".Random.seed", envir = .GlobalEnv)
} else {
R.seed <- get(".Random.seed", envir = .GlobalEnv)
set.seed(seed)
RNGstate <- structure(seed, kind = as.list(RNGkind()))
on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv))
}
cl <- as.list(object[['call']])
if(is.null(newdata)){
if('x' %in% names(object)){
newMat <- object$x
} else {
if(is.null(cl$data)){
newMat <- model.matrix(cl$formula,
data = environment(object), ...)
} else {
fmla <- eval(cl$formula)
dat <- eval(cl$data)
newMat <- model.matrix(fmla, data = dat, ...)
}
}
} else newMat <- model.matrix(~., newdata)
nobs <- NROW(newdata)
vc <- vcov(object)
simCoef <- mvtnorm::rmvnorm(nsim,
coef(object), vc)
rownames(simCoef) <- paste0('sim_', 1:nsim)
sims <- tcrossprod(newMat, simCoef)
if(any(!is.na(pmatch(type, 'response')))){
fam <- cl$family
if(is.character(fam)){
fam <- get(fam, mode = "function",
envir = parent.frame())
}
if(class(fam) %in% c('call', 'name')) fam <- eval(fam)
if(is.function(fam))
fam <- fam()
if(is.null(fam$family)) {
print(fam)
stop("'family' not recognized")
}
linkinv <- fam$linkinv
if(!is.function(linkinv)){
print(fam)
stop("linkinv from 'family' is not a function.")
}
}
if(length(type)<1)stop('No "type" requested.')
if(length(type)<2){
if(!is.na(pmatch(type, 'coef'))){
out <- data.frame(t(simCoef))
attr(out, 'seed') <- RNGstate
return(out)
} else if(!is.na(pmatch(type, 'link'))){
out <- data.frame(sims)
attr(out, 'seed') <- RNGstate
return(out)
} else if(is.na(pmatch(type, 'response'))){
stop('Not a recognized type. type = ', type)
} else {
out <- data.frame(linkinv(sims))
attr(out, 'seed') <- RNGstate
return(out)
}
}
out <- vector('list', length(type))
names(out) <- type
if(any(!is.na(pmatch(type, 'coef')))){
out[['coef']] <- data.frame(t(simCoef))
}
if(any(!is.na(pmatch(type, 'link')))){
out[['link']] <- data.frame(sims)
}
if(any(!is.na(pmatch(type, 'response')))){
out[['response']] <- data.frame(linkinv(sims))
}
attr(out, 'seed') <- RNGstate
out
} |
toucrec<-function(atoms,alkublokki,blokki){
if (dim(t(atoms))[1]==1) m<-1 else m<-length(atoms[,1])
len<-alkublokki
links<-matrix(NA,m,len)
maara<-matrix(0,m,1)
i<-1
while (i<=m){
j<-i+1
while (j<=m){
rec1<-atoms[i,]
rec2<-atoms[j,]
crit<-touch(rec1,rec2)
if (crit){
maari<-maara[i]+1
maarj<-maara[j]+1
if ((maari>len) || (maarj>len)){
links<-blokitus2(links,blokki)
len<-len+blokki
}
links[i,maari]<-j
maara[i]<-maari
links[j,maarj]<-i
maara[j]<-maarj
}
j<-j+1
}
i<-i+1
}
return(links)
} |
process_tags <- function(node, drawing_context) {
new <- lapply(seq_along(node), function(i) {
dispatch_tag(node[[i]], names(node)[i], drawing_context)
})
rbind_dfs(new)
}
dispatch_tag <- function(node, tag, drawing_context) {
if (is.null(tag) || tag == "") return(process_text(node, drawing_context))
call_name <- paste("process_tag", tag, sep = "_")
if(!exists(call_name)) {
abort(paste0(
"The rich-text has a tag that isn't supported (yet): <", tag, ">\n",
"Only a very limited number of tags are currently supported."
))
}
dc <- set_style(drawing_context, attr(node, "style"))
call(call_name, node = node, drawing_context = dc)
}
process_text <- function(node, drawing_context) {
cbind(list(unlist(node)),
list(drawing_context$gp),
list(drawing_context$yoff))
}
process_tag_p <- process_tag_span <- function(node, drawing_context) {
process_tags(node, drawing_context)
}
process_tag_b <- process_tag_strong <- function(node, drawing_context) {
drawing_context <- set_context_font(drawing_context, 2)
process_tags(node, drawing_context)
}
process_tag_i <- process_tag_em <- function(node, drawing_context) {
drawing_context <- set_context_font(drawing_context, 3)
process_tags(node, drawing_context)
}
process_tag_sub <- function(node, drawing_context) {
drawing_context <- set_context_size(drawing_context, 0.8)
drawing_context <- set_context_offset(drawing_context, -0.5)
process_tags(node, drawing_context)
}
process_tag_sup <- function(node, drawing_context) {
drawing_context <- set_context_size(drawing_context, 0.8)
drawing_context <- set_context_offset(drawing_context, 0.5)
process_tags(node, drawing_context)
}
setup_context <- function(
fontsize = 12,
fontfamily = "",
fontface = "plain",
colour = "black",
lineheight = 1.2,
gp = NULL
) {
if (is.null(gp)) {
gp <- gpar(
fontsize = fontsize,
fontfamily = fontfamily,
fontface = fontface,
col = colour,
cex = 1,
lineheight = lineheight
)
}
gp <- update_gpar(get.gpar(), gp)
set_context_gp(list(yoff = 0), gp)
}
update_gpar <- function(gp, gp_new) {
names_new <- names(gp_new)
names_old <- names(gp)
gp[c(intersect(names_old, names_new), "fontface")] <- NULL
gp_new["fontface"] <- NULL
do.call(gpar, c(gp, gp_new))
}
set_context_gp <- function(drawing_context, gp = NULL) {
gp <- update_gpar(drawing_context$gp, gp)
update_context(drawing_context, ascent = x_height(gp), gp = gp)
}
set_context_font <- function(drawing_context, font = 1, overwrite = FALSE) {
font_old <- drawing_context$gp$font
old_bold <- font_old %in% c(2, 4)
new_bold <- font %in% c(2, 4)
old_ital <- font_old %in% c(3, 4)
new_ital <- font %in% c(3, 4)
if (!isTRUE(overwrite)) {
if (isTRUE(new_ital) && isTRUE(old_bold)) {
font <- 4
} else if (isTRUE(new_bold) && isTRUE(old_ital)) {
font <- 4
}
}
set_context_gp(drawing_context, gpar(font = font))
}
set_context_size <- function(drawing_context, size = 1) {
fontsize <- size * drawing_context$gp$fontsize
set_context_gp(drawing_context, gpar(fontsize = fontsize))
}
set_context_offset <- function(drawing_context, offset = 0) {
drawing_context$yoff <- drawing_context$yoff + drawing_context$ascent * offset
drawing_context
}
update_context <- function(drawing_context, ...) {
dc_new <- list(...)
names_new <- names(dc_new)
names_old <- names(drawing_context)
drawing_context[intersect(names_old, names_new)] <- NULL
c(drawing_context, dc_new)
}
set_style <- function(drawing_context, style = NULL) {
if (is.null(style)) return(drawing_context)
css <- parse_css(style)
if (!is.null(css$`font-size`)) {
font_size <- convert_css_unit_pt(css$`font-size`)
} else {
font_size <- NULL
}
drawing_context <- set_context_gp(
drawing_context,
gpar(col = css$color, fontfamily = css$`font-family`, fontsize = font_size)
)
}
parse_css <- function(text) {
lines <- strsplit(text, ";", fixed = TRUE)[[1]]
unlist(lapply(lines, parse_css_line), FALSE)
}
parse_css_line <- function(line) {
pattern <- "\\s*(\\S+)\\s*:\\s*(\"(.*)\"|'(.*)'|(\\S*))\\s*"
m <- attributes(regexpr(pattern, line, perl = TRUE))
start <- m$capture.start
end <- start + m$capture.length - 1
if (start[1] > 0) {
key <- substr(line, start[1], end[1])
key <- as_lower(key)
} else {
key <- NULL
}
if (start[3] > 0) {
value <- substr(line, start[3], end[3])
} else if (start[4] > 0) {
value <- substr(line, start[4], end[4])
} else if (start[5] > 0) {
value <- substr(line, start[5], end[5])
} else value <- NULL
if (is.null(key)) list()
else rlang::list2(!!key := value)
}
parse_css_unit <- function(x) {
pattern <- "^((-?\\d+\\.?\\d*)(%|[a-zA-Z]+)|(0))$"
m <- attributes(regexpr(pattern, x, perl = TRUE))
start <- m$capture.start
end <- start + m$capture.length - 1
if (start[4] > 0) {
return(list(value = 0, unit = "pt"))
} else {
if (start[2] > 0) {
value <- as.numeric(substr(x, start[2], end[2]))
if (start[3] > 0) {
unit <- substr(x, start[3], end[3])
return(list(value = value, unit = unit))
}
}
}
abort(paste0("The string '", x, "' does not represent a valid CSS unit."))
}
convert_css_unit_pt <- function(x) {
u <- parse_css_unit(x)
switch(
u$unit,
pt = u$value,
px = (72 / 96) * u$value,
`in` = 72 * u$value,
cm = (72 / 2.54) * u$value,
mm = (72 / 25.4) * u$value,
abort(paste0("Cannot convert ", u$value, u$unit, " to pt."))
)
} |
OutputExcelFileDBMH <- function(dataset,
method,
methodTxt,
ReportFileName,
covEstMethod,
summaryInfo,
alpha,
FOM,
analysisOption,
StResult)
{
I <- dim(dataset$ratings$NL)[1]
J <- dim(dataset$ratings$NL)[2]
K <- dim(dataset$ratings$NL)[3]
K2 <- dim(dataset$ratings$LL)[3]
K1 <- K - K2
wb <- createWorkbook()
addWorksheet(wb, "Summary")
writeData(wb, sheet = "Summary", x = summaryInfo, rowNames = TRUE, colNames = FALSE)
modalityID <- data.frame(output = dataset$descriptions$modalityID, input = names(dataset$descriptions$modalityID))
colnames(modalityID) <- c("Modality ID in output file", "Modality ID in input file")
writeData(wb, sheet = "Summary", x = modalityID, startRow = 5, colNames = TRUE)
readerID <- data.frame(output = dataset$descriptions$readerID, input = names(dataset$descriptions$readerID))
colnames(readerID) <- c("Reader ID in output file", "Reader ID in input file")
writeData(wb, sheet = "Summary", x = readerID, startRow = 5, startCol = 3, colNames = TRUE)
analysisInfo <- data.frame(info = c(K1, K2, FOM, method, covEstMethod))
rownames(analysisInfo) <- c("Number of non-diseased cases",
"Number of diseased cases",
"FOM",
"Significance testing",
"Variability estimation method")
writeData(wb, sheet = "Summary",
x = analysisInfo,
startRow = 7 + max(I, J),
startCol = 1,
rowNames = TRUE,
colNames = FALSE)
sty <- createStyle(halign = "center", valign = "center")
addStyle(wb, sheet = "Summary",
style = sty, rows = seq(1, 11 + max(I, J)), cols = 1:4, gridExpand = TRUE)
setColWidths(wb, sheet = "Summary",
cols = 1:4, widths = "auto", ignoreMergedCells = TRUE)
sheet <- "FOMs"
addWorksheet(wb, sheet)
setColWidths(wb, sheet = sheet, cols = 1:(J + 3), widths = "auto", ignoreMergedCells = TRUE)
setColWidths(wb, sheet = sheet, cols = 1, widths = 10)
startRow <- 1
df <- StResult$FOMs$foms
hdr <- "FOMs: reader vs. treatment"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <- StResult$FOMs$trtMeans
hdr <- "treatment means"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <- StResult$FOMs$trtMeanDiffs
hdr <- "treatment differences"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
sheet <- "ANOVA"
addWorksheet(wb, sheet)
setColWidths(wb, sheet = sheet, cols = 1:8, widths = "auto", ignoreMergedCells = TRUE)
setColWidths(wb, sheet = sheet, cols = 1, widths = 10)
startRow <- 1
df <- StResult$ANOVA$TRCanova
hdr <- "DBM treatment reader case ANOVA"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <- StResult$ANOVA$VarCom
hdr <- "DBM Variance Components"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <- UtilDBM2ORVarCom(K, df)
hdr <- "OR Variance Components"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <-StResult$ANOVA$IndividualTrt
hdr <- "Reader x Case Anova for each treatment"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <-StResult$ANOVA$IndividualRdr
hdr <- "Treatment x Case Anova for each reader"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
sheet <- "RRRC"
addWorksheet(wb, sheet)
setColWidths(wb, sheet = sheet, cols = 1:8, widths = "auto", ignoreMergedCells = TRUE)
setColWidths(wb, sheet = sheet, cols = 1, widths = 10)
startRow <- 1
df <- StResult$RRRC$FTests
hdr <- "(a) F-Tests of NH"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <- StResult$RRRC$ciDiffTrt
hdr <- "(b) 95% confidence interval for treatment differences"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <-StResult$RRRC$ciAvgRdrEachTrt
hdr <- "(c) 95% confidence interval for each treatment"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
sheet <- "FRRC"
addWorksheet(wb, sheet)
setColWidths(wb, sheet = sheet, cols = 1:8, widths = "auto", ignoreMergedCells = TRUE)
setColWidths(wb, sheet = sheet, cols = 1, widths = 10)
startRow <- 1
df <- StResult$FRRC$FTests
hdr <- "(a) F-Tests of NH"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <- StResult$FRRC$ciDiffTrt
hdr <- "(b) 95% confidence interval for treatment differences"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <-StResult$FRRC$ciAvgRdrEachTrt
hdr <- "(c) 95% confidence interval for each treatment"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <-StResult$FRRC$ciDiffTrtEachRdr
hdr <- "(d) 95% confidence interval treatment differences, each reader"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
sheet <- "RRFC"
addWorksheet(wb, sheet)
setColWidths(wb, sheet = sheet, cols = 1:8, widths = "auto", ignoreMergedCells = TRUE)
setColWidths(wb, sheet = sheet, cols = 1, widths = 10)
startRow <- 1
df <- StResult$RRFC$FTests
hdr <- "(a) F-Tests of NH"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <- StResult$RRFC$ciDiffTrt
hdr <- "(b) 95% confidence interval for treatment differences"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
df <-StResult$RRFC$ciAvgRdrEachTrt
hdr <- "(c) 95% confidence interval for each treatment"
startRow <- OutputDataFrame (wb, sheet, startRow, df, sty, hdr)
saveWorkbook(wb, ReportFileName, overwrite = TRUE)
sucessfulOutput <- sprintf("The report has been saved to %s.", ReportFileName)
return(sucessfulOutput)
}
OutputDataFrame <- function (wb, sheet, startRow, df, sty, hdr) {
addStyle(wb,
sheet = sheet,
style = sty,
rows = startRow:(startRow + nrow(df) + 1),
cols = 1:(ncol(df) + 1),
gridExpand = TRUE)
mergeCells(wb, sheet, rows = startRow, cols = 1:(ncol(df)+1))
writeData(wb, sheet = sheet,
startRow = startRow,
x = hdr,
rowNames = FALSE, colNames = FALSE)
startRow <- startRow + 1
writeData(wb, sheet = sheet,
startRow = startRow,
x = df,
rowNames = TRUE, colNames = TRUE)
startRow <- startRow + nrow(df) + 2
return(startRow)
} |
get_split_names = function(tree,data){
paths <- eval(parse(text = "pre:::list.rules(tree, removecomplements = FALSE)"))
vnames = names(data)
split_names = vnames[sapply(sapply(vnames, FUN = function(var) grep(paste(paste(var,"<="),"|",paste(var,">"),sep=""), paths)), length) > 0]
return (split_names)
} |
expected <- eval(parse(text="\"utils\""));
test(id=0, code={
argv <- eval(parse(text="list(structure(\"/home/lzhao/hg/r-instrumented/library/utils\", .Names = \"Dir\"))"));
.Internal(basename(argv[[1]]));
}, o=expected); |
valcam=function(trat,
resp,
error = "SE",
ylab = "Dependent",
xlab = "Independent",
theme = theme_classic(),
legend.position = "top",
r2 = "mean",
point = "all",
width.bar = NA,
scale = "none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
pointshape = 21,
round = NA,
yname.formula="y",
xname.formula="x",
comment = NA,
fontfamily="sans") {
if(is.na(width.bar)==TRUE){width.bar=0.01*mean(trat)}
requireNamespace("ggplot2")
ymean=tapply(resp,trat,mean)
if(error=="SE"){ysd=tapply(resp,trat,sd)/sqrt(tapply(resp,trat,length))}
if(error=="SD"){ysd=tapply(resp,trat,sd)}
if(error=="FALSE"){ysd=0}
desvio=ysd
xmean=tapply(trat,trat,mean)
theta.0 <- min(resp) * 0.5
model <- lm(resp ~ trat+I(trat^1.5)+I(trat^2))
coef=summary(model)
if(is.na(round)==TRUE){
a=coef$coefficients[,1][1]
b=coef$coefficients[,1][2]
c=coef$coefficients[,1][3]
d=coef$coefficients[,1][4]}
if(is.na(round)==FALSE){
a=round(coef$coefficients[,1][1],round)
b=round(coef$coefficients[,1][2],round)
c=round(coef$coefficients[,1][3],round)
d=round(coef$coefficients[,1][4],round)}
modm=lm(ymean~xmean+I(xmean^1.5)+I(xmean^2))
if(r2=="all"){r2=round(summary(model)$r.squared,2)}
if(r2=="mean"){r2=round(summary(modm)$r.squared,2)}
r2=floor(r2*100)/100
equation=sprintf("~~~%s == %e %s %e * %s %s %e * %s^1.5 %s %0.e * %s^2 ~~~~~ italic(R^2) == %0.2f",
yname.formula,
coef(modm)[1],
ifelse(coef(modm)[2] >= 0, "+", "-"),
abs(coef(modm)[2]),
xname.formula,
ifelse(coef(modm)[3] >= 0, "+", "-"),
abs(coef(modm)[3]),
xname.formula,
ifelse(coef(modm)[4] >= 0, "+", "-"),
abs(coef(modm)[4]),
xname.formula,
r2)
if(is.na(comment)==FALSE){equation=paste(equation,"~\"",comment,"\"")}
xp=seq(min(trat),max(trat),length.out = 1000)
preditos=data.frame(x=xp,
y=predict(model,newdata = data.frame(trat=xp)))
predesp=predict(model)
predobs=resp
rmse=sqrt(mean((predesp-predobs)^2))
x=preditos$x
y=preditos$y
s=equation
data=data.frame(xmean,ymean)
data1=data.frame(trat=xmean,resp=ymean)
if(point=="mean"){
graph=ggplot(data,aes(x=xmean,y=ymean))
if(error!="FALSE"){graph=graph+geom_errorbar(aes(ymin=ymean-ysd,ymax=ymean+ysd),
width=width.bar,
size=linesize)}
graph=graph+
geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill="gray")}
if(point=="all"){
graph=ggplot(data.frame(trat,resp),aes(x=trat,y=resp))
graph=graph+
geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill="gray")}
graph=graph+theme+geom_line(data=preditos,aes(x=x,
y=y,color="black"),size=linesize)+
scale_color_manual(name="",values=1,label=parse(text = equation))+
theme(axis.text = element_text(size=textsize,color="black",family = fontfamily),
axis.title = element_text(size=textsize,color="black",family = fontfamily),
legend.position = legend.position,
legend.text = element_text(size=textsize,family = fontfamily),
legend.direction = "vertical",
legend.text.align = 0,
legend.justification = 0)+
ylab(ylab)+xlab(xlab)
if(scale=="log"){graph=graph+scale_x_log10()}
temp1=seq(min(trat),max(trat),length.out=10000)
result=predict(model,newdata = data.frame(trat=temp1),type="response")
maximo=temp1[which.max(result)]
respmax=result[which.max(result)]
minimo=temp1[which.min(result)]
respmin=result[which.min(result)]
aic=AIC(model)
bic=BIC(model)
graphs=data.frame("Parameter"=c("X Maximum",
"Y Maximum",
"X Minimum",
"Y Minimum",
"AIC",
"BIC",
"r-squared",
"RMSE"),
"values"=c(maximo,
respmax,
minimo,
respmin,
aic,
bic,
r2,
rmse))
graficos=list("Coefficients"=coef,
"values"=graphs,
graph)
print(graficos)
} |
get_pairwise_mrcas = function(tree, A, B, check_input=TRUE){
Ntips = length(tree$tip.label);
Nnodes = tree$Nnode;
if((!is.character(A)) && (!is.numeric(A))) stop("ERROR: List of tips/nodes A must be a character or integer vector")
if((!is.character(B)) && (!is.numeric(B))) stop("ERROR: List of tips/nodes B must be a character or integer vector")
if(length(A)!=length(B)) stop(sprintf("ERROR: Lists A & B must have equal lengths; instead, A has length %d and B has length %d",length(A),length(B)))
if(is.character(A) || is.character(B)){
name2clade = 1:(Ntips+Nnodes);
names(name2clade) = c(tree$tip.label,tree$node.label);
}
if(is.character(A)){
Ai = name2clade[A];
if(check_input && any(is.na(Ai))) stop(sprintf("ERROR: Unknown tip or node name '%s'",A[which(is.na(Ai))[1]]));
A = Ai;
}else if(check_input){
minA = min(A); maxA = max(A);
if(minA<1 || maxA>(Ntips+Nnodes)) stop(sprintf("ERROR: List A must contain values between 1 and Ntips+Nnodes (%d); instead, found values from %d to %d",Ntips+Nnodes,minA,maxA));
}
if(is.character(B)){
Bi = name2clade[B];
if(check_input && any(is.na(Bi))) stop(sprintf("ERROR: Unknown tip or node name '%s'",B[which(is.na(Bi))[1]]))
B = Bi;
}else if(check_input){
minB = min(B); maxB = max(B);
if(minB<1 || maxB>(Ntips+Nnodes)) stop(sprintf("ERROR: List B must contain values between 1 and Ntips+Nnodes (%d); instead, found values from %d to %d",Ntips+Nnodes,minB,maxB))
}
mrcas = get_most_recent_common_ancestors_CPP(Ntips = Ntips,
Nnodes = tree$Nnode,
Nedges = nrow(tree$edge),
tree_edge = as.vector(t(tree$edge))-1,
cladesA = A-1,
cladesB = B-1,
verbose = FALSE,
verbose_prefix = "");
return(as.integer(mrcas+1));
} |
if(TRUE) x else y |
test_that("illegal initializations are rejected", {
k <- 9
theta <- 0.5
expect_silent(GammaDistribution$new(k,theta))
expect_error(GammaDistribution$new("9",theta), class="shape_not_numeric")
expect_error(GammaDistribution$new(k,"0.5"), class="scale_not_numeric")
expect_error(GammaDistribution$new(-1,theta), class="shape_not_supported")
expect_error(GammaDistribution$new(k,0), class="scale_not_supported")
})
test_that("distribution name is correct", {
k <- 9
theta <- 0.5
g <- GammaDistribution$new(k, theta)
expect_identical(g$distribution(), "Ga(9,0.5)")
})
test_that("mean, mode, sd and quantiles are returned correctly", {
k <- 9
theta <- 0.5
g <- GammaDistribution$new(k, theta)
expect_intol(g$mean(), k*theta, 0.01)
expect_intol(g$SD(), sqrt(k)*theta, 0.01)
expect_intol(g$mode(), (k-1)*theta, 0.01)
probs <- c(0.025, 0.975)
q <- g$quantile(probs)
expect_intol(q[1], 2.06, 0.01)
expect_intol(q[2], 7.88, 0.01)
})
test_that("quantile function checks inputs and has correct output", {
k <- 9
theta <- 0.5
g <- GammaDistribution$new(k, theta)
probs <- c(0.1, 0.2, 0.5)
expect_silent(g$quantile(probs))
probs <- c(0.1, NA, 0.5)
expect_error(g$quantile(probs), class="probs_not_defined")
probs <- c(0.1, "boo", 0.5)
expect_error(g$quantile(probs), class="probs_not_numeric")
probs <- c(0.1, 0.4, 1.5)
expect_error(g$quantile(probs), class="probs_out_of_range")
probs <- c(0.1, 0.2, 0.5)
expect_length(g$quantile(probs),3)
})
test_that("random sampling is from a Gamma distribution", {
k <- 9
theta <- 0.5
n <- 1000
g <- GammaDistribution$new(k, theta)
g$sample(TRUE)
expect_equal(g$r(), 4.5)
samp <- sapply(1:n, FUN=function(i) {
g$sample()
rv <- g$r()
return(rv)
})
expect_length(samp, n)
skip_on_cran()
ht <- ks.test(samp, stats::rgamma(n,shape=k,scale=theta))
expect_true(ht$p.value > 0.001)
}) |
NULL
readPagoda2SelectionFile <- function(filepath) {
returnList <- list()
con <- file(filepath, "r")
while (TRUE) {
suppressWarnings(line <- readLines(con, n = 1))
if ( length(line) == 0 ) {
break
}
fields <- unlist(strsplit(line, split=',', fixed=TRUE))
name <- make.names(fields[2])
color <- fields[1]
cells <- fields[-c(1:2)]
returnList[[name]] <- list(name=fields[2], color = color, cells = cells)
}
close(con)
invisible(returnList)
}
writePagoda2SelectionFile <- function(sel, filepath) {
fileConn <- file(filepath)
lines <- c()
for (l in names(sel)) {
cells <- sel[[l]]$cells
cellsString <- paste0(cells,collapse=',')
ln <- paste(sel[[l]]$color,as.character(l),cellsString,sep=',')
lines <- c(lines,ln)
}
writeLines(lines, con=fileConn)
close(fileConn)
}
writeGenesAsPagoda2Selection <- function(name, genes, filename) {
con <- file(filename, 'w')
cat(name, file=con)
cat(',',file=con)
cat(paste(genes, collapse=','), file=con)
cat('\n', file=con)
close(con)
}
calcMulticlassified <- function(sel) {
selectionCellsFlat <- unname(unlist(sapply(sel, function(x) x$cells)))
multiClassified <- selectionCellsFlat[duplicated(selectionCellsFlat)]
sort(sapply(sel, function(x) { sum(x$cells %in% multiClassified) / length(x$cells) }))
}
factorFromP2Selection <- function (sel, use.internal.name=FALSE, flatten=FALSE){
if (!flatten && !all(calcMulticlassified(sel) == 0)) {
stop("The selections provided are not mutually exclusive. Use flatten=TRUE to overwrite")
}
x <- mapply(function(x,n) {
if (length(x$cells) > 0) {
data.frame(cellid = x$cells, label = c(x$name), internal.name = c(n))
}
}, sel, names(sel), SIMPLIFY = FALSE)
d <- do.call(rbind, x)
if(flatten) d <- d[!duplicated(d$cell),]
if (use.internal.name) {
f <- as.factor(d$internal.name)
} else {
f <- as.factor(d$label)
}
names(f) <- d$cellid
invisible(f)
}
getColorsFromP2Selection <- function(sel) {
unlist(lapply(sel, function(x) { paste0('
}
factorToP2selection <- function(cl, col=NULL) {
if(!is.factor(cl)) {
stop('cl is not a factor');
}
if(is.null(col)) {
col=substr(rainbow(nlevels(cl)),2,7)
names(col) <- levels(cl)
}
ns <- list()
for (l in levels(cl)) {
ns[[l]] <- list(
name = l,
cells = names(cl)[which(cl == l)],
color=col[l]
)
}
invisible(ns)
}
removeSelectionOverlaps <- function(selections) {
selectionsCellsFlat <- unname(unlist(sapply(selections, function(x) x$cells)))
multiClassified <- selectionsCellsFlat[duplicated(selectionsCellsFlat)]
lapply(selections, function(x) {
r <- list()
r$name = x$name
r$color = x$color
r$cells = x$cells[!x$cells %in% multiClassified]
r
})
}
cellsPerSelectionGroup <- function(selection) {
unlist(lapply(selection, function(x) length(x$cells)))
}
validateSelectionsObject <- function(selections) {
t <- lapply(selections, function(x) {
isvalidentry <- TRUE
if (!is.character(x$name)) {
isvalidentry <- FALSE
}
if (!is.character(x$color)) {
isvalidentry <- FALSE
}
if (!is.character(x$cells)) {
isvalidentry <- FALSE
}
isvalidentry
})
all(unlist(t))
}
getClusterLabelsFromSelection <- function(clustering, selections, multiClassCutoff=0.3, ambiguous.ratio=0.5) {
if (!is.factor(clustering)) {
stop('clustering is not a factor')
}
if (!validateSelectionsObject(selections)) {
stop('selections is not a valid selection object')
}
multiClass <- calcMulticlassified(selections)
if(!all(multiClass < multiClassCutoff)) {
msg <- paste0('The following selections have a very high number of multiclassified cells: ',
paste(names(multiClass)[!multiClass < multiClassCutoff], collapse = ', '),
'. Please reduce the overlaps and try again. You can use calcMulticlassified() to see more details.')
stop(msg)
}
sel.clean <- removeSelectionOverlaps(selections)
sel.clean.vector <- factorFromP2Selection(sel.clean)
shared.names <- intersect(names(sel.clean.vector), names(clustering))
confusion.table <- table(data.frame(sel.clean.vector[shared.names],clustering[shared.names]))
tmp1 <- plyr::adply(.data = confusion.table, .margins = 2, .fun = function(x) {
rv <- NA
x.sort <- sort(x, decreasing=TRUE)
if((x.sort[1] * ambiguous.ratio) >= x.sort[2]) {
rv <- names(x.sort)[1]
}
rv
})
labels <- tmp1[,2]
names(labels) <- tmp1[,1]
colnames(tmp1) <- c('cluster', 'selection')
invisible(tmp1)
}
generateClassificationAnnotation <- function(clustering, selections) {
clAnnotation <- getClusterLabelsFromSelection(clustering, selections)
rownames(clAnnotation) <- clAnnotation$cluster
r <- as.factor(clAnnotation[as.character(clustering),]$selection)
names(r) <- names(clustering)
invisible(r)
}
getCellsInSelections <- function(p2selections, selectionNames) {
if(!is.character(selectionNames)) {
stop('selectionNames needs to be a character vector of cell names')
}
if(!validateSelectionsObject(p2selections)) {
stop('p2selections is not a valid p2 selection object')
}
if(any(!selectionNames %in% names(p2selections))) {
stop('Some selection names were not found in the pagoda2 selections object')
}
cells <- unique(unname(unlist(lapply(p2selections[selectionNames], function(x) x$cells))))
invisible(cells)
}
plotSelectionOverlaps <- function(sel) {
if (!requireNamespace("ggplot2", quietly = TRUE)) {
stop("Package \"ggplot2\" needed for this function to work. Please install it.", call. = FALSE)
}
n1s = c()
n2s = c()
overlaps = c()
for (n1 in names(sel)) {
for (n2 in names(sel)) {
if (n1 != n2) {
overlapC = length(which(sel[[n1]]$cells %in% sel[[n2]]$cells))
} else {
overlapC = 0
}
n1s <- c(n1s, n1)
n2s <- c(n2s, n2)
overlaps = c(overlaps,overlapC)
}
}
res <- data.frame(cbind(n1s, n2s, overlaps),stringsAsFactors=FALSE)
res$overlaps <- as.numeric(res$overlaps)
p <- ggplot2::ggplot(res, ggplot2::aes(n1s, n2s)) + ggplot2::geom_tile(ggplot2::aes(fill=log10(overlaps))) +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, hjust = 1)) +
ggplot2::geom_text(ggplot2::aes(label=(overlaps))) +
ggplot2::scale_fill_gradient(low = "yellow", high = "red")
invisible(list(results=res, plot=p))
}
plotMulticlassified <- function(sel) {
if (!requireNamespace("ggplot2", quietly = TRUE)) {
stop("Package \"ggplot2\" needed for this function to work. Please install it.", call. = FALSE)
}
multiclassified <- calcMulticlassified(sel)
tmp1 <- as.data.frame(multiclassified)
tmp1$lab <- rownames(tmp1)
p <- ggplot2::ggplot(tmp1, ggplot2::aes(x=.data$lab, y= multiclassified)) + ggplot2::geom_bar(stat='identity') +
ggplot2::theme_bw() + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, hjust = 1)) +
ggplot2::scale_y_continuous(name='% multiclassified') +
ggplot2::scale_x_discrete(name='Selection Label')
invisible(p)
}
compareClusterings <- function(cl1, cl2, filename = NA) {
if (!requireNamespace("pheatmap", quietly = TRUE)) {
stop("Package \"pheatmap\" needed for this function to work. Please install it.", call. = FALSE)
}
n1 <- names(cl1)
n2 <- names(cl2)
if(!all(n1 %in% n2) || !all(n2 %in% n1)) {
warning('Clusterings do not completely overlap!')
ns <- intersect(n1,n2)
} else {
ns <- n1
}
tbl <- table(data.frame(cl1[ns],cl2[ns]))
tblNorm <- sweep(tbl, 2, colSums(tbl), FUN=`/`)
pheatmap::pheatmap(tblNorm, file=filename)
invisible(tblNorm)
}
diffExprOnP2FromWebSelection <- function(p2, sel, group1name, group2name) {
grp1cells <- sel[[group1name]]$cells
grp2cells <- sel[[group2name]]$cells
t1 <- rep(NA, length(rownames(p2$counts)))
names(t1) <- rownames(p2$counts)
t1[grp1cells] <- c(group1name)
t1[grp2cells] <- c(group2name)
p2$getDifferentialGenes(groups=t1)
}
diffExprOnP2FromWebSelectionOneGroup <- function(p2, sel, groupname) {
grp1cells <- sel[[groupname]]$cells
t1 <- rep('other', length(rownames(p2$counts)))
names(t1) <- rownames(p2$counts)
t1[grp1cells] <- c(groupname)
p2$getDifferentialGenes(groups=t1)
}
getIntExtNamesP2Selection <- function(x){
unlist(lapply(x, function(y) {y$name}))
}
readPagoda2SelectionAsFactor <- function(filepath, use.internal.name=FALSE) {
factorFromP2Selection(removeSelectionOverlaps(
readPagoda2SelectionFile(filepath)
),use.internal.name=use.internal.name)
} |
timssg4.var.label <-
function(folder=getwd(), name="Variable labels", output=getwd()) {
intsvy.var.label(folder=folder, name=name, output=output,
config = timss4_conf)
} |
setClass(Class = "CVInfo2Par",
slots = c(value = "matrix"),
contains = c("CVInfo"))
NULL
setMethod(f = ".newCVInfo",
signature = c(lambdas = "array",
kernel = "MultiRadialKernel"),
definition = function(lambdas,
kernel,
methodObject,
cvObject,
suppress, ...) {
nl <- length(x = lambdas)
nk <- length(x = kernel@kparam)
valuePairs <- matrix(data = 0.0,
nrow = nk,
ncol = nl,
dimnames = list(round(x = kernel@kparam,
digits = 3L),
round(x = lambdas,
digits = 3L)))
for (j in 1L:nk) {
methodObject@kernel <- new("RadialKernel",
model = kernel@model,
kparam = kernel@kparam[j])
methodObject@kernel@X <- kernel@X
for (k in 1L:nl) {
if (suppress != 0L) {
cat("Cross-validation for kparam =", kernel@kparam[j],
"lambda =", lambdas[k], "\n")
}
res <- .newCVStep(cvObject = cvObject,
methodObject = methodObject,
lambda = lambdas[k],
suppress = suppress, ...)
if (is.null(x = res)) {
valuePairs[j,k] <- NA
} else {
valuePairs[j,k] <- res
}
}
}
if (all(is.na(x = valuePairs)) ) return( NA )
bestKparam <- apply(X = valuePairs,
MARGIN = 2L,
FUN = function(x) {
res <- length(x = x) - which.max(x = rev(x = x)) + 1L
return( res )
})
ivl <- which.max(x = apply(X = valuePairs,
MARGIN = 2L,
FUN = max,
na.rm = TRUE))
lambda <- lambdas[ivl]
kparam <- kernel@kparam[bestKparam[ivl]]
if (suppress != 0L) {
cat("Selected parameters\n")
cat("lambda =", lambda, "kparam =", kparam, "\n")
}
optKernel <- as(object = kernel, Class = "Kernel")
optKernel@kparam <- kparam
optKernel <- as(object = optKernel, Class = "RadialKernel")
result <- new(Class = "CVInfo2Par",
"value" = valuePairs,
"params" = list("lambda" = lambdas,
"kparam" = kernel@kparam),
"optimal" = list("lambda" = lambda,
"kernel" = optKernel))
return( result )
}) |
new_llr_boolean <- function(value = logical()) {
vec_assert(value, logical())
stopifnot(!is.na(value), length(value) == 1)
new_vctr(value, class = "llr_boolean", inherit_base_type = TRUE)
}
methods::setOldClass(c("llr_boolean", "vctrs_vctr"))
format.llr_boolean <- function(x, ...) {
if (isTRUE(x)) {
"true"
} else {
"false"
}
}
print.llr_boolean <- default_print
vec_cast.logical.llr_boolean <- function(x, to, ...) {
vec_data(x)
}
vec_arith.llr_boolean <- function(op, x, y, ...) {
UseMethod("vec_arith.llr_boolean", y)
}
vec_arith.llr_boolean.default <- function(op, x, y, ...) {
stop_incompatible_op(op, x, y)
}
vec_arith.llr_boolean.MISSING <- function(op, x, y, ...) {
switch(
op,
"!" = new_llr_boolean(!vec_data(x)),
stop_incompatible_op(op, x, y)
)
} |
IAT <- function(x)
{
if(missing(x)) stop("The x argument is required.")
if(!is.vector(x)) x <- as.vector(x)
dt <- x
n <- length(x)
mu <- mean(dt)
s2 <- var(dt)
maxlag <- max(3, floor(n/2))
Ga <- rep(0,2)
Ga[1] <- s2
lg <- 1
Ga[1] <- Ga[1] + sum((dt[1:(n-lg)]-mu)*(dt[(lg+1):n]-mu)) / n
m <- 1
lg <- 2*m
Ga[2] <- sum((dt[1:(n-lg)]-mu)*(dt[(lg+1):n]-mu)) / n
lg <- 2*m + 1
Ga[2] <- Ga[2] + sum((dt[1:(n-lg)]-mu)*(dt[(lg+1):n]-mu)) / n
IAT <- Ga[1]/s2
while ((Ga[2] > 0.0) & (Ga[2] < Ga[1])) {
m <- m + 1
if(2*m + 1 > maxlag) {
cat("Not enough data, maxlag=", maxlag, "\n")
break}
Ga[1] <- Ga[2]
lg <- 2*m
Ga[2] <- sum((dt[1:(n-lg)]-mu)*(dt[(lg+1):n]-mu)) / n
lg <- 2*m + 1
Ga[2] <- Ga[2] + sum((dt[1:(n-lg)]-mu)*(dt[(lg+1):n]-mu)) / n
IAT <- IAT + Ga[1] / s2
}
IAT <- -1 + 2*IAT
return(IAT)
} |
library(testthat)
library(dplyr)
library(mrgsim.sa)
context("test-lsa")
mod <- mrgsolve::house()
test_that("lsa", {
mod <- mrgsolve::ev(mod, mrgsolve::ev(amt = 100))
out <- lsa(mod, par = "CL,VC", var = "CP")
expect_is(out, "lsa")
expect_is(out, "tbl_df")
expect_equal(names(out), c("time", "dv_name", "dv_value", "p_name", "sens"))
expect_equal(unique(out$dv_name), "CP")
expect_equal(unique(out$p_name), c("CL", "VC"))
})
test_that("lsa input and output errors", {
expect_error(lsa(mod, par = "a,b,c"), regex = "invalid parameter")
expect_error(
lsa(mod, par = "CL", var = "a,b,c"),
regex = "invalid output name"
)
fun <- function(p, ...) {
out <- mrgsim_df(mod)
out$time <- NULL
out
}
expect_error(
lsa(mod, par = "CL", var = "CP", fun = fun),
regex = "output from `fun` must contain"
)
})
test_that("lsa plot", {
out <- lsa(mod, par = "CL", var = "CP")
ans <- lsa_plot(out)
expect_is(ans, "gg")
}) |
ORAnalysisFactorial <- function(dataset, FOM, FPFValue, alpha = 0.05, covEstMethod = "jackknife",
nBoots = 200, analysisOption = "ALL")
{
RRRC <- NULL
FRRC <- NULL
RRFC <- NULL
modalityID <- dataset$descriptions$modalityID
I <- length(modalityID)
foms <- UtilFigureOfMerit(dataset, FOM, FPFValue)
ret <- UtilORVarComponentsFactorial(dataset, FOM, FPFValue, covEstMethod, nBoots)
TRanova <- ret$TRanova
VarCom <- ret$VarCom
IndividualTrt <- ret$IndividualTrt
IndividualRdr <- ret$IndividualRdr
ANOVA <- list()
ANOVA$TRanova <- TRanova
ANOVA$VarCom <- VarCom
ANOVA$IndividualTrt <- IndividualTrt
ANOVA$IndividualRdr <- IndividualRdr
trtMeans <- rowMeans(foms)
trtMeans <- as.data.frame(trtMeans)
colnames(trtMeans) <- "Estimate"
trtMeanDiffs <- array(dim = choose(I, 2))
diffTRName <- array(dim = choose(I, 2))
ii <- 1
for (i in 1:I) {
if (i == I)
break
for (ip in (i + 1):I) {
trtMeanDiffs[ii] <- trtMeans[i,1] - trtMeans[ip,1]
diffTRName[ii] <- paste0("trt", modalityID[i], sep = "-", "trt", modalityID[ip])
ii <- ii + 1
}
}
trtMeanDiffs <- data.frame("Estimate" = trtMeanDiffs,
row.names = diffTRName,
stringsAsFactors = FALSE)
FOMs <- list(
foms = foms,
trtMeans = trtMeans,
trtMeanDiffs = trtMeanDiffs
)
if (analysisOption == "RRRC") {
RRRC <- ORSummaryRRRC(dataset, FOMs, ANOVA, alpha, diffTRName)
return(list(
FOMs = FOMs,
ANOVA = ANOVA,
RRRC = RRRC
))
}
if (analysisOption == "FRRC") {
FRRC <- ORSummaryFRRC(dataset, FOMs, ANOVA, alpha, diffTRName)
return(list(
FOMs = FOMs,
ANOVA = ANOVA,
FRRC = FRRC
))
}
if (analysisOption == "RRFC") {
RRFC <- ORSummaryRRFC(dataset, FOMs, ANOVA, alpha, diffTRName)
return(list(
FOMs = FOMs,
ANOVA = ANOVA,
RRFC = RRFC
))
}
if (analysisOption == "ALL") {
RRRC <- ORSummaryRRRC(dataset, FOMs, ANOVA, alpha, diffTRName)
FRRC <- ORSummaryFRRC(dataset, FOMs, ANOVA, alpha, diffTRName)
RRFC <- ORSummaryRRFC(dataset, FOMs, ANOVA, alpha, diffTRName)
return(list(
FOMs = FOMs,
ANOVA = ANOVA,
RRRC = RRRC,
FRRC = FRRC,
RRFC = RRFC
))
} else stop("Incorrect analysisOption: must be `RRRC`, `FRRC`, `RRFC` or `ALL`")
}
FOMijk2VarCov <- function(resampleFOMijk, varInflFactor) {
I <- dim(resampleFOMijk)[1]
J <- dim(resampleFOMijk)[2]
K <- dim(resampleFOMijk)[3]
covariances <- array(dim = c(I, I, J, J))
for (i in 1:I) {
for (ip in 1:I) {
for (j in 1:J) {
for (jp in 1:J) {
covariances[i, ip, j, jp] <- cov(resampleFOMijk[i, j, ], resampleFOMijk[ip, jp, ])
}
}
}
}
Var <- 0
count <- 0
I <- dim(covariances)[1]
J <- dim(covariances)[3]
for (i in 1:I) {
for (j in 1:J) {
Var <- Var + covariances[i, i, j, j]
count <- count + 1
}
}
if (count > 0) Var <- Var/count else Var <- 0
Cov1 <- 0
count <- 0
for (i in 1:I) {
for (ip in 1:I) {
for (j in 1:J) {
if (ip != i) {
Cov1 <- Cov1 + covariances[i, ip, j, j]
count <- count + 1
}
}
}
}
if (count > 0) Cov1 <- Cov1/count else Cov1 <- 0
Cov2 <- 0
count <- 0
for (i in 1:I) {
for (j in 1:J) {
for (jp in 1:J) {
if (j != jp) {
Cov2 <- Cov2 + covariances[i, i, j, jp]
count <- count + 1
}
}
}
}
if (count > 0) Cov2 <- Cov2/count else Cov2 <- 0
Cov3 <- 0
count <- 0
for (i in 1:I) {
for (ip in 1:I) {
if (i != ip) {
for (j in 1:J) {
for (jp in 1:J) {
if (j != jp) {
Cov3 <- Cov3 + covariances[i, ip, j, jp]
count <- count + 1
}
}
}
}
}
}
if (count > 0) Cov3 <- Cov3/count else Cov3 <- 0
if (varInflFactor) {
Var <- Var * (K - 1)^2/K
Cov1 <- Cov1 * (K - 1)^2/K
Cov2 <- Cov2 * (K - 1)^2/K
Cov3 <- Cov3 * (K - 1)^2/K
}
return(list(
Var = Var,
Cov1 = Cov1,
Cov2 = Cov2,
Cov3 = Cov3
))
}
FOMijk2VarCovSpA <- function(resampleFOMijk, varInflFactor) {
I <- dim(resampleFOMijk)[1]
J <- dim(resampleFOMijk)[2]
K <- dim(resampleFOMijk)[3]
covariances <- array(dim = c(I, I, J, J))
for (i in 1:I) {
for (ip in 1:I) {
for (j in 1:J) {
for (jp in 1:J) {
if (any(is.na(resampleFOMijk[i, j, ])) || any(is.na(resampleFOMijk[ip, jp, ]))) next
covariances[i, ip, j, jp] <- cov(resampleFOMijk[i, j, ], resampleFOMijk[ip, jp, ])
}
}
}
}
Var_i <- rep(0,I)
count_i <- rep(0,I)
for (i in 1:I) {
rdr_i <- which(!is.na(resampleFOMijk[i,,1]))
for (j in 1:length(rdr_i)) {
if (is.na(covariances[i, i, rdr_i[j], rdr_i[j]])) next
Var_i[i] <- Var_i[i] + covariances[i, i, rdr_i[j], rdr_i[j]]
count_i[i] <- count_i[i] + 1
}
if (count_i[i] > 0) Var_i[i] <- Var_i[i]/count_i[i] else Var_i[i] <- 0
}
Cov2_i <- rep(0,I)
count_i <- rep(0,I)
for (i in 1:I) {
rdr_i <- which(!is.na(resampleFOMijk[i,,1]))
for (j in 1:length(rdr_i)) {
for (jp in 1:length(rdr_i)) {
if (rdr_i[j] != rdr_i[jp]) {
if (is.na(covariances[i, i, rdr_i[j], rdr_i[jp]])) next
Cov2_i[i] <- Cov2_i[i] + covariances[i, i, rdr_i[j], rdr_i[jp]]
count_i[i] <- count_i[i] + 1
}
}
}
if (count_i[i] > 0) Cov2_i[i] <- Cov2_i[i]/count_i[i] else Cov2_i[i] <- 0
}
Cov3_i <- rep(0,I)
count_i <- rep(0,I)
for (i in 1:I) {
for (ip in 1:I) {
rdr_i <- which(!is.na(resampleFOMijk[i,,1]))
rdr_ip <- which(!is.na(resampleFOMijk[ip,,1]))
if (i != ip) {
for (j in 1:length(rdr_i)) {
for (jp in 1:length(rdr_ip)) {
if (rdr_i[j] != rdr_ip[jp]) {
if (is.na(covariances[i, ip, rdr_i[j], rdr_ip[jp]])) next
Cov3_i[i] <- Cov3_i[i] + covariances[i, ip, rdr_i[j], rdr_ip[jp]]
count_i[i] <- count_i[i] + 1
}
}
}
}
}
if (count_i[i] > 0) Cov3_i[i] <- Cov3_i[i]/count_i[i] else Cov3_i[i] <- 0
}
if (varInflFactor) {
Var_i <- Var_i * (K - 1)^2/K
Cov2_i <- Cov2_i * (K - 1)^2/K
Cov3_i <- Cov3_i * (K - 1)^2/K
}
return(list(Var_i = Var_i,
Cov2_i = Cov2_i,
Cov3_i = Cov3_i
))
}
varComponentsJackknifeFactorial <- function(dataset, FOM, FPFValue) {
if (dataset$descriptions$design != "FCTRL") stop("This functions requires a factorial dataset")
K <- length(dataset$ratings$NL[1,1,,1])
ret <- UtilPseudoValues(dataset, FOM, FPFValue)
CovTemp <- FOMijk2VarCov(ret$jkFomValues, varInflFactor = TRUE)
Cov <- list(
Var = CovTemp$Var,
Cov1 = CovTemp$Cov1,
Cov2 = CovTemp$Cov2,
Cov3 = CovTemp$Cov3
)
return(Cov)
}
varComponentsBootstrapFactorial <- function(dataset, FOM, FPFValue, nBoots, seed)
{
if (dataset$descriptions$design != "FCTRL") stop("This functions requires a factorial dataset")
set.seed(seed)
NL <- dataset$ratings$NL
LL <- dataset$ratings$LL
perCase <- dataset$lesions$perCase
IDs <- dataset$lesions$IDs
weights <- dataset$lesions$weights
I <- length(NL[,1,1,1])
J <- length(NL[1,,1,1])
K <- length(NL[1,1,,1])
K2 <- length(LL[1,1,,1])
K1 <- (K - K2)
maxNL <- length(NL[1,1,1,])
maxLL <- length(LL[1,1,1,])
if (FOM %in% c("MaxNLF", "ExpTrnsfmSp", "HrSp")) {
stop("This needs fixing")
fomBsArray <- array(dim = c(I, J, nBoots))
for (b in 1:nBoots) {
kBs <- ceiling(runif(K1) * K1)
for (i in 1:I) {
for (j in 1:J) {
NLbs <- NL[i, j, kBs, ]
LLbs <- LL[i, j, , ]
dim(NLbs) <- c(K1, maxNL)
dim(LLbs) <- c(K2, maxLL)
fomBsArray[i, j, b] <- MyFom_ij(NLbs, LLbs,
perCase, IDs,
weights, maxNL,
maxLL, K1, K2,
FOM, FPFValue)
}
}
}
} else if (FOM %in% c("MaxLLF", "HrSe")) {
stop("This needs fixing")
fomBsArray <- array(dim = c(I, J, nBoots))
for (b in 1:nBoots) {
kBs <- ceiling(runif(K2) * K2)
for (i in 1:I) {
for (j in 1:J) {
NLbs <- NL[i, j, c(1:K1, (kBs + K1)), ]
LLbs <- LL[i, j, kBs, ]
dim(NLbs) <- c(K, maxNL)
dim(LLbs) <- c(K2, maxLL)
lesionIDBs <- IDs[kBs, ]
dim(lesionIDBs) <- c(K2, maxLL)
lesionWeightBs <- weights[kBs, ]
dim(lesionWeightBs) <- c(K2, maxLL)
fomBsArray[i, j, b] <- MyFom_ij(NLbs, LLbs,
perCase[kBs], lesionIDBs,
lesionWeightBs, maxNL, maxLL,
K1, K2, FOM, FPFValue)
}
}
}
} else {
fomBsArray <- array(dim = c(I, J, nBoots))
for (b in 1:nBoots) {
k1bs <- ceiling(runif(K1) * K1)
k2bs <- ceiling(runif(K2) * K2)
for (i in 1:I) {
for (j in 1:J) {
NLbs <- NL[i, j, c(k1bs, k2bs + K1), ]
lesionVectorbs <- perCase[k2bs]
LLbs <- LL[i, j, k2bs,1:max(lesionVectorbs)]
dim(NLbs) <- c(K, maxNL)
dim(LLbs) <- c(K2, max(lesionVectorbs))
lesionIDBs <- IDs[k2bs, ]
dim(lesionIDBs) <- c(K2, maxLL)
lesionWeightBs <- weights[k2bs, ]
dim(lesionWeightBs) <- c(K2, maxLL)
fomBsArray[i, j, b] <- MyFom_ij(NLbs, LLbs, lesionVectorbs, lesionIDBs,
lesionWeightBs, maxNL, maxLL, K1, K2, FOM, FPFValue)
}
}
}
}
Cov <- FOMijk2VarCov(fomBsArray, varInflFactor = FALSE)
Var <- Cov$Var
Cov1 <- Cov$Cov1
Cov2 <- Cov$Cov2
Cov3 <- Cov$Cov3
return(list(
Var = Var,
Cov1 = Cov1,
Cov2 = Cov2,
Cov3 = Cov3
))
}
varComponentsDeLongFactorial <- function(dataset, FOM)
{
if (dataset$descriptions$design != "FCTRL") stop("This functions requires a factorial dataset")
UNINITIALIZED <- RJafrocEnv$UNINITIALIZED
NL <- dataset$ratings$NL
LL <- dataset$ratings$LL
perCase <- dataset$lesions$perCase
I <- length(NL[,1,1,1])
J <- length(NL[1,,1,1])
K <- length(NL[1,1,,1])
K2 <- length(LL[1,1,,1])
K1 <- (K - K2)
maxNL <- length(NL[1,1,1,])
maxLL <- length(LL[1,1,1,])
fomArray <- UtilFigureOfMerit(dataset, FOM)
if (!FOM %in% c("Wilcoxon", "HrAuc", "ROI"))
stop("DeLong\"s method can only be used for trapezoidal figures of merit.")
if (FOM == "ROI") {
kI01 <- which(apply((NL[1, 1, , ] != UNINITIALIZED), 1, any))
numKI01 <- rowSums((NL[1, 1, , ] != UNINITIALIZED))
I01 <- length(kI01)
I10 <- K2
N <- sum((NL[1, 1, , ] != UNINITIALIZED))
M <- sum(perCase)
V01 <- array(dim = c(I, J, I01, maxNL))
V10 <- array(dim = c(I, J, I10, maxLL))
for (i in 1:I) {
for (j in 1:J) {
for (k in 1:I10) {
for (el in 1:perCase[k]) {
V10[i, j, k, el] <- (sum(as.vector(NL[i, j, , ][NL[i, j, , ] != UNINITIALIZED]) < LL[i, j, k, el])
+ 0.5 * sum(as.vector(NL[i, j, , ][NL[i, j, , ] != UNINITIALIZED]) == LL[i, j, k, el]))/N
}
}
for (k in 1:I01) {
for (el in 1:maxNL) {
if (NL[i, j, kI01[k], el] == UNINITIALIZED)
next
V01[i, j, k, el] <- (sum(NL[i, j, kI01[k], el] < as.vector(LL[i, j, , ][LL[i, j, , ] != UNINITIALIZED]))
+ 0.5 * sum(NL[i, j, kI01[k], el] == as.vector(LL[i, j, , ][LL[i, j, , ] != UNINITIALIZED])))/M
}
}
}
}
s10 <- array(0, dim = c(I, I, J, J))
s01 <- array(0, dim = c(I, I, J, J))
s11 <- array(0, dim = c(I, I, J, J))
for (i in 1:I) {
for (ip in 1:I) {
for (j in 1:J) {
for (jp in 1:J) {
for (k in 1:I10) {
s10[i, ip, j, jp] <- (s10[i, ip, j, jp]
+ (sum(V10[i, j, k, !is.na(V10[i, j, k, ])])
- perCase[k] * fomArray[i, j])
* (sum(V10[ip, jp, k, !is.na(V10[ip, jp, k, ])])
- perCase[k] * fomArray[ip, jp]))
}
for (k in 1:I01) {
s01[i, ip, j, jp] <- (s01[i, ip, j, jp]
+ (sum(V01[i, j, k, !is.na(V01[i, j, k, ])])
- numKI01[kI01[k]] * fomArray[i, j])
* (sum(V01[ip, jp, k, !is.na(V01[ip, jp, k, ])])
- numKI01[kI01[k]] * fomArray[ip, jp]))
}
allAbn <- 0
for (k in 1:K2) {
if (all(NL[ip, jp, k + K1, ] == UNINITIALIZED)) {
allAbn <- allAbn + 1
next
}
s11[i, ip, j, jp] <- (s11[i, ip, j, jp]
+ (sum(V10[i, j, k, !is.na(V10[i, j, k, ])])
- perCase[k] * fomArray[i, j])
* (sum(V01[ip, jp, k + K1 - allAbn, !is.na(V01[ip, jp, k + K1 - allAbn, ])])
- numKI01[K1 + k] * fomArray[ip, jp]))
}
}
}
}
}
s10 <- s10 * I10/(I10 - 1)/M
s01 <- s01 * I01/(I01 - 1)/N
s11 <- s11 * K/(K - 1)
S <- array(0, dim = c(I, I, J, J))
for (i in 1:I) {
for (ip in 1:I) {
for (j in 1:J) {
for (jp in 1:J) {
S[i, ip, j, jp] <- s10[i, ip, j, jp]/M + s01[i, ip, j, jp]/N + s11[i, ip, j, jp]/(M * N) + s11[ip, i, jp, j]/(M * N)
}
}
}
}
} else {
V10 <- array(dim = c(I, J, K2))
V01 <- array(dim = c(I, J, K1))
for (i in 1:I) {
for (j in 1:J) {
nl <- NL[i, j, 1:K1, ]
ll <- cbind(NL[i, j, (K1 + 1):K, ], LL[i, j, , ])
dim(nl) <- c(K1, maxNL)
dim(ll) <- c(K2, maxNL + maxLL)
fp <- apply(nl, 1, max)
tp <- apply(ll, 1, max)
for (k in 1:K2) {
V10[i, j, k] <- (sum(fp < tp[k]) + 0.5 * sum(fp == tp[k]))/K1
}
for (k in 1:K1) {
V01[i, j, k] <- (sum(fp[k] < tp) + 0.5 * sum(fp[k] == tp))/K2
}
}
}
s10 <- array(dim = c(I, I, J, J))
s01 <- array(dim = c(I, I, J, J))
for (i in 1:I) {
for (ip in 1:I) {
for (j in 1:J) {
for (jp in 1:J) {
s10[i, ip, j, jp] <- sum((V10[i, j, ] - fomArray[i, j]) * (V10[ip, jp, ] - fomArray[ip, jp]))/(K2 - 1)
s01[i, ip, j, jp] <- sum((V01[i, j, ] - fomArray[i, j]) * (V01[ip, jp, ] - fomArray[ip, jp]))/(K1 - 1)
}
}
}
}
S <- s10/K2 + s01/K1
}
covariances <- S
Var <- 0
count <- 0
for (i in 1:I) {
for (j in 1:J) {
Var <- Var + covariances[i, i, j, j]
count <- count + 1
}
}
if (count > 0) Var <- Var/count else Var <- 0
Cov1 <- 0
count <- 0
for (i in 1:I) {
for (ip in 1:I) {
for (j in 1:J) {
if (ip != i) {
Cov1 <- Cov1 + covariances[i, ip, j, j]
count <- count + 1
}
}
}
}
if (count > 0) Cov1 <- Cov1/count else Cov1 <- 0
Cov2 <- 0
count <- 0
for (i in 1:I) {
for (j in 1:J) {
for (jp in 1:J) {
if (j != jp) {
Cov2 <- Cov2 + covariances[i, i, j, jp]
count <- count + 1
}
}
}
}
if (count > 0) Cov2 <- Cov2/count else Cov2 <- 0
Cov3 <- 0
count <- 0
for (i in 1:I) {
for (ip in 1:I) {
if (i != ip) {
for (j in 1:J) {
for (jp in 1:J) {
if (j != jp) {
Cov3 <- Cov3 + covariances[i, ip, j, jp]
count <- count + 1
}
}
}
}
}
}
if (count > 0) Cov3 <- Cov3/count else Cov3 <- 0
return(list(
Var = Var,
Cov1 = Cov1,
Cov2 = Cov2,
Cov3 = Cov3))
} |
start_activities <- function(eventlog, level, append, ...) {
UseMethod("start_activities")
}
start_activities.eventlog <- function(eventlog,
level = c("log","case","activity","resource","resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...) {
level <- match.arg(level)
level <- deprecated_level(level, ...)
absolute <- NULL
if(is.null(append_column)) {
append_column <- case_when(level == "activity" ~ "absolute",
level == "resource" ~ "absolute",
level == "resource-activity" ~ "absolute",
level == "case" ~ activity_id(eventlog),
T ~ "NA")
}
FUN <- switch(level,
log = start_activities_log,
case = start_activities_case,
activity = start_activities_activity,
resource = start_activities_resource,
"resource-activity" = start_activities_resource_activity)
output <- FUN(eventlog = eventlog)
if(sort && level %in% c("activity", "resource","resource-activity")) {
output %>%
arrange(-absolute) -> output
}
return_metric(eventlog, output, level, append, append_column, "start_activities", ifelse(level == "case",1,3))
}
start_activities.grouped_eventlog <- function(eventlog,
level = c("log","case","activity","resource","resource-activity"),
append = FALSE,
append_column = NULL,
sort = TRUE,
...) {
absolute <- NULL
level <- match.arg(level)
level <- deprecated_level(level, ...)
FUN <- switch(level,
log = start_activities_log,
case = start_activities_case,
activity = start_activities_activity,
resource = start_activities_resource,
"resource-activity" = start_activities_resource_activity)
grouped_metric(eventlog, FUN) -> output
if(sort && level %in% c("activity", "resource","resource-activity")) {
output %>%
arrange(-absolute) -> output
}
return_metric(eventlog, output, level, append,append_column, "start_activities", ifelse(level == "case",1,3))
} |
d = read.csv('http://www.nd.edu/~mclark19/learn/data/pisasci2006.csv')
library(psych)
describe(d)[-1,1:9]
library(mgcv)
mod_lm <- gam(Overall ~ Income, data=d)
summary(mod_lm)
mod_gam1 <- gam(Overall ~ s(Income, bs="cr"), data=d)
summary(mod_gam1)
AIC(mod_lm)
summary(mod_lm)$sp.criterion
summary(mod_lm)$r.sq
anova(mod_lm, mod_gam1, test="Chisq")
mod_lm2 <- gam(Overall ~ Income + Edu + Health, data=d)
summary(mod_lm2)
mod_gam2 <- gam(Overall ~ s(Income) + s(Edu) + s(Health), data=d)
summary(mod_gam2)
mod_gam2B = update(mod_gam2, .~.-s(Health) + Health)
summary(mod_gam2B)
mod_gam3 <- gam(Overall ~ te(Income,Edu), data=d)
summary(mod_gam3)
anova(mod_lm2, mod_gam2, test="Chisq")
gam.check(mod_gam2, k.rep=1000)
mod_1d = gam(Overall ~ s(Income) + s(Edu), data=d)
mod_2d = gam(Overall ~ te(Income,Edu, bs="tp"), data=d)
AIC(mod_1d, mod_2d)
mod_A = gam(Overall ~ s(Income, bs="cr", k=5) + s(Edu, bs="cr", k=5), data=d)
mod_B = gam(Overall ~ s(Income, bs="cr", k=5) + s(Edu, bs="cr", k=5) + te(Income, Edu), data=d)
anova(mod_A,mod_B, test="Chi") |
get_col_values <-
function(lpt,
col = 1,
start_row = 2,
rows_left = 0) {
label <- c()
table <- c()
for (i in seq_along(lpt)) {
label <-
c(label, lpt[[i]][start_row:(nrow(lpt[[i]]) - rows_left), col])
table <- c(table, rep(i, nrow(lpt[[i]]) - rows_left - start_row + 1))
}
data.frame(table, label, stringsAsFactors = FALSE)
} |
testarggapVIR <- function(z, dimx,
grobj, arggrobj,
echo=FALSE)
{
nplayer <- length(dimx)
if(!is.function(grobj))
stop("argument grobj must be a function.")
if(echo)
{
print(dimx)
print(length(z))
}
if(length(z) != sum(dimx))
stop("CER: incompatible dimension for dimx.")
if(!missing(arggrobj) && !is.null(arggrobj))
grobjfinal <- grobj
else
{
grobjfinal <- function(z, i, j, ...) grobj(z, i, j)
arggrobj <- list()
}
str <- paste("the call to obj(z, 1, argobj) does not work.", "arguments are",
paste(names(formals(grobj)), collapse=","), ".")
testfunc(grobjfinal, z, arg=arggrobj, echo=echo, errmess=str)
list(grobj=grobjfinal, arggrobj=arggrobj, dimx=dimx, nplayer=nplayer)
}
testarggradygapVIR <- function(z, dimx,
grobj, arggrobj,
echo=FALSE)
{
nplayer <- length(dimx)
if(!is.function(grobj))
stop("argument grobj must be a function.")
if(echo)
{
print(dimx)
print(length(z))
}
if(length(z) != sum(dimx))
stop("CER: incompatible dimension for dimx.")
if(!missing(arggrobj) && !is.null(arggrobj))
grobjfinal <- grobj
else
{
grobjfinal <- function(z, i, j, ...) grobj(z, i, j)
arggrobj <- list()
}
str <- paste("the call to grobj(z, 1, 1, arggrobj) does not work.", "arguments are",
paste(names(formals(grobj)), collapse=","), ".")
testfunc(grobjfinal, z, arg=arggrobj, echo=echo, errmess=str)
list(grobj=grobjfinal, arggrobj=arggrobj, dimx=dimx, nplayer=nplayer)
}
testarggradxgapVIR <- function(z, dimx,
grobj, arggrobj,
heobj, argheobj,
echo=FALSE)
{
nplayer <- length(dimx)
if(!is.function(grobj))
stop("argument grobj must be a function.")
if(echo)
{
print(dimx)
print(length(z))
}
if(length(z) != sum(dimx))
stop("CER: incompatible dimension for dimx.")
if(!missing(arggrobj) && !is.null(arggrobj))
grobjfinal <- grobj
else
{
grobjfinal <- function(z, i, j, ...) grobj(z, i, j)
arggrobj <- list()
}
str <- paste("the call to grobj(z, 1, 1, arggrobj) does not work.", "arguments are",
paste(names(formals(grobj)), collapse=","), ".")
testfunc(grobjfinal, z, arg=arggrobj, echo=echo, errmess=str)
if(!missing(argheobj) && !is.null(argheobj))
heobjfinal <- heobj
else
{
heobjfinal <- function(z, i, j, k, ...) heobj(z, i, j, k)
argheobj <- list()
}
str <- paste("the call to heobj(z, 1, 1, 1, argheobj) does not work.", "arguments are",
paste(names(formals(heobj)), collapse=","), ".")
testfunc(heobjfinal, z, arg=argheobj, echo=echo, errmess=str)
list(grobj=grobjfinal, arggrobj=arggrobj, heobj=heobjfinal, argheobj=argheobj,
dimx=dimx, nplayer=nplayer)
}
testargfpVIR <- function(z, dimx,
obj, argobj,
joint, argjoint,
grobj, arggrobj,
jacjoint, argjacjoint,
echo=FALSE)
{
nplayer <- length(dimx)
if(!is.function(obj))
stop("argument obj must be a function.")
if(missing(joint))
joint <- NULL
else if(!is.function(joint) && !is.null(joint))
stop("argument joint must be a function.")
if(length(z) != sum(dimx))
stop("incompatible dimension for dimx.")
if(missing(grobj))
grobj <- NULL
if(missing(jacjoint))
jacjoint <- NULL
if(!is.null(jacjoint) && is.null(grobj))
stop("missing grobj argument.")
if(!missing(argobj) && !is.null(argobj))
objfinal <- obj
else
{
objfinal <- function(z, i, ...) obj(z, i)
argobj <- list()
}
str <- paste("the call to obj(z, 1, argobj) does not work.", "arguments are",
paste(names(formals(obj)), collapse=","), ".")
testfunc(objfinal, z, arg=argobj, echo=echo, errmess=str)
if(!is.null(joint))
{
if(!missing(argjoint) && !is.null(argjoint))
jointfinal <- joint
else
{
jointfinal <- function(z, ...) joint(z)
argjoint <- list()
}
str <- paste("the call to joint(z, argconstr) does not work.", "arguments are",
paste(names(formals(joint)), collapse=","), ".")
testfunc(jointfinal, z, arg=argjoint, echo=echo, errmess=str)
}else
jointfinal <- argjoint <- NULL
if(!is.null(grobj))
{
if(!missing(arggrobj) && !is.null(arggrobj))
grobjfinal <- grobj
else
{
grobjfinal <- function(z, i, j, ...) grobj(z, i, j)
arggrobj <- list()
}
str <- paste("the call to grobj(z, 1, 1, arggrobj) does not work.", "arguments are",
paste(names(formals(grobj)), collapse=","), ".")
testfunc(grobjfinal, z, arg=arggrobj, echo=echo, errmess=str)
}else
grobjfinal <- arggrobj <- NULL
if(!is.null(jacjoint))
{
if(!missing(argjacjoint) && !is.null(argjacjoint))
jacjointfinal <- jacjoint
else
{
jacjointfinal <- function(z, ...) jacjoint(z)
argjacjoint <- list()
}
str <- paste("the call to jacjoint(z, argjacjoint) does not work.", "arguments are",
paste(names(formals(jacjoint)), collapse=","), ".")
testfunc(jacjointfinal, z, arg=argjacjoint, echo=echo, errmess=str)
}else
jacjointfinal <- argjacjoint <- NULL
list(obj=objfinal, argobj=argobj,
grobj=grobjfinal, arggrobj=arggrobj,
joint=jointfinal, argjoint=argjoint,
jacjoint=jacjointfinal, argjacjoint=argjacjoint,
dimx=dimx, nplayer=nplayer)
} |
archetypoids_funct_multiv <- function(numArchoid, data, huge = 200, ArchObj, PM){
x11 <- t(data[,,1])
x12 <- t(data[,,2])
x1 <- rbind(x11 ,x12)
data <- t(x1)
N <- dim(data)[1]
ai <- archetypes::bestModel(ArchObj[[1]])
if (is.null(archetypes::parameters(ai))) {
stop("No archetypes computed")
}
dime <- dim(archetypes::parameters(ai))
ar <- archetypes::parameters(ai)
R <- matrix(0, nrow = dime[1], ncol = N)
for (di in 1:dime[1]) {
Raux <- matrix(ar[di,], byrow = FALSE, ncol = N, nrow = dime[2]) - t(data)
dii <- dim(Raux)
R[di,] <- apply(Raux[1:(dii[1]/2),], 2, int_prod_mat_funct, PM = PM) +
apply(Raux[(dii[1]/2 + 1):dii[1],], 2, int_prod_mat_funct, PM = PM)
}
ini_arch <- apply(R, 1, which.min)
if (all(ini_arch > numArchoid) == FALSE) {
k = 1
neig <- knn(data, archetypes::parameters(ai), 1:N, k = k)
indices1 <- attr(neig, "nn.index")
ini_arch <- indices1[,k]
while (any(duplicated(ini_arch))) {
k = k + 1
neig <- knn(data, archetypes::parameters(ai), 1:N, k = k)
indicesk <- attr(neig, "nn.index")
dupl <- anyDuplicated(indices1[,1])
ini_arch <- c(indices1[-dupl,1],indicesk[dupl,k])
}
}
n <- ncol(t(data))
x_gvv <- rbind(t(data), rep(huge, n))
zs <- x_gvv[,ini_arch]
zs <- as.matrix(zs)
alphas <- matrix(0, nrow = numArchoid, ncol = n)
for (j in 1:n) {
alphas[, j] = coef(nnls(zs, x_gvv[,j]))
}
resid <- zs[1:(nrow(zs) - 1),] %*% alphas - x_gvv[1:(nrow(x_gvv) - 1),]
rss_ini <- frobenius_norm_funct_multiv(resid, PM) / n
res_def <- swap_funct_multiv(ini_arch, rss_ini, huge, numArchoid, x_gvv, n, PM)
return(res_def)
} |
success <- c(158, 109)
n <- c(444,922) |
library(testthat)
context('General tests')
x <- runif(1000)*10^runif(1000, min=1e-20, max=20)
test_that('Zero values are left alone', {
expect_equal(0, squeeze_bits(0, 1, method='trim'))
expect_equal(0, squeeze_bits(0, 1, method='pad'))
})
test_that('Infinite values are left alone', {
expect_equal(Inf, squeeze_bits(Inf, 1, method='trim'))
expect_equal(Inf, squeeze_bits(Inf, 1, method='pad'))
expect_equal(-Inf, squeeze_bits(-Inf, 1, method='trim'))
expect_equal(-Inf, squeeze_bits(-Inf, 1, method='pad'))
})
test_that('NA values are left alone', {
expect_equal(NA_real_, squeeze_bits(NA_real_, 1, method='trim'))
expect_equal(NA_real_, squeeze_bits(NA_real_, 1, method='pad'))
})
test_that('We ignore trimming when the tolerance is too small', {
z <- pi*1e15
expect_equal(z, squeeze_bits(z, 3, method='trim', decimal=TRUE))
expect_equal(x, squeeze_bits(x, 17, method='trim', decimal=FALSE))
})
test_that('Trimmed values biased low and within specified tolerance', {
for (i in 1:15) {
trimmed <- squeeze_bits(x, i, method='trim', decimal=FALSE)
expect_true(all(trimmed <= x))
expect_true(all(abs(trimmed - x)/x < 10^-i))
}
})
test_that('Values can be trimmed using a decimal digits tolerance', {
for (i in -15:15) {
trimmed <- squeeze_bits(x, i, method='trim', decimal=TRUE)
expect_true(all(trimmed <= x))
expect_true(all(abs(trimmed - x) < 10^-i))
}
})
test_that('Values can be padded using a decimal digits tolerance', {
for (i in -15:15) {
padded <- squeeze_bits(x, i, method='pad', decimal=TRUE)
expect_true(all(padded >= x))
expect_true(all(abs(padded - x) < 10^-i))
}
})
test_that('Padded values biased high and within specified tolerance', {
for (i in 1:15) {
padded <- squeeze_bits(x, i, method='pad', decimal=FALSE)
expect_true(all(padded >= x))
expect_true(all(abs(padded-x)/x < 10^-i))
}
})
test_that('Groomed values are within specified tolerance', {
for (i in 1:15) {
groomed <- squeeze_bits(x, i, method='groom', decimal=FALSE)
expect_true(all(abs(groomed-x)/x < 10^-i))
}
}) |
args <- commandArgs(TRUE)
if("--fresh" %in% args)
unlink(reticulate::miniconda_path(), recursive = TRUE)
tf_vers <- c("2.1", "2.2", "2.3", "2.4", "2.5", "2.6", "2.7", "nightly")
tf_vers <- paste0(tf_vers, "-cpu")
py_vers <- c("3.6", "3.6", "3.7", "3.8", "3.8", "3.9", "3.9", "3.9")
names(tf_vers) <- paste0("tf-", tf_vers)
names(tf_vers) <- sub(".0rc[0-9]+", "", names(tf_vers))
if(!reticulate:::miniconda_exists())
reticulate::install_miniconda()
for (i in seq_along(tf_vers))
keras::install_keras(
version = tf_vers[i],
envname = names(tf_vers)[i],
conda_python_version = py_vers[i],
pip_ignore_installed = TRUE,
method = "conda", restart_session = FALSE) |
test_that("a non-function option fails", {
expect_error(trajectory() %>% branch(1, TRUE, trajectory()))
})
test_that("the wrong number of elements fails, but continue is recycled", {
expect_error(trajectory() %>% branch(function() 1, c(TRUE, TRUE), trajectory()))
expect_silent(trajectory() %>% branch(function() 1, TRUE, trajectory(), trajectory()))
})
test_that("an index equal to 0 skips the branch", {
t0 <- trajectory() %>%
branch(function() 0, TRUE,
trajectory() %>% timeout(1)
) %>%
timeout(2)
env <- simmer(verbose = TRUE) %>%
add_generator("entity", t0, at(0)) %>%
run()
expect_equal(env %>% now(), 2)
})
test_that("an index out of range fails", {
t1 <- trajectory() %>%
branch(function() 1, TRUE,
trajectory() %>% timeout(1)
)
t2 <- trajectory() %>%
branch(function() 2, TRUE,
trajectory() %>% timeout(1)
)
env <- simmer(verbose = TRUE) %>%
add_generator("entity", t2, at(0))
expect_error(env %>% run())
env <- simmer(verbose = TRUE) %>%
add_generator("entity", t1, at(0)) %>%
run()
expect_equal(env %>% now(), 1)
})
test_that("accepts a list of trajectories", {
t1 <- trajectory() %>% timeout(1)
t2 <- trajectory() %>%
branch(function() 1, continue=TRUE, replicate(10, t1))
expect_equal(length(t2), 1)
expect_equal(get_n_activities(t2), 11)
})
test_that("the continue argument works as expected", {
sequential <- function(n) {
i <- 0
function() {
i <<- i + 1
if (i > n) i <<- 1
i
}
}
t0 <- trajectory()
t1 <- trajectory() %>% timeout(1)
t <- trajectory() %>%
branch(
sequential(4),
continue=c(FALSE, TRUE, FALSE, TRUE),
t0, t0, t1, t1
) %>%
timeout(1)
arr <- simmer(verbose = TRUE) %>%
add_generator("dummy", t, at(0:3)) %>%
run() %>%
get_mon_arrivals()
expect_equal(arr$start_time, 0:3)
expect_equal(arr$activity_time, c(0, 1, 1, 2))
}) |
NULL
scale_x_units <- function(..., position = "bottom", unit = NULL) {
if (!requireNamespace("ggplot2", quietly=TRUE))
stop("package 'ggplot2' is required for this functionality", call.=FALSE)
sc <- ggplot2::continuous_scale(
c("x", "xmin", "xmax", "xend", "xintercept", "xmin_final", "xmax_final",
"xlower", "xmiddle", "xupper"),
"position_c", identity, ...,
position = position,
guide = ggplot2::waiver(),
super = MakeScaleContinuousPositionUnits()
)
sc$units <- as_units(unit)
sc
}
scale_y_units <- function(..., unit = NULL) {
if (!requireNamespace("ggplot2", quietly=TRUE))
stop("package 'ggplot2' is required for this functionality", call.=FALSE)
sc <- ggplot2::continuous_scale(
c("y", "ymin", "ymax", "yend", "yintercept", "ymin_final", "ymax_final",
"lower", "middle", "upper"),
"position_c", identity, ...,
guide = ggplot2::waiver(),
super = MakeScaleContinuousPositionUnits()
)
sc$units <- as_units(unit)
sc
}
MakeScaleContinuousPositionUnits <- function() {
ggplot2::ggproto(
"ScaleContinuousPositionUnits",
ggplot2::ScaleContinuousPosition,
units = NULL,
train = function(self, x) {
if (length(x) == 0) return()
if (!is.null(self$units))
units(x) <- as_units(1, self$units)
self$range$train(x)
},
map = function(self, x, limits = self$get_limits()) {
if (inherits(x, "units")) {
if (is.null(self$units))
self$units <- units(x)
else units(x) <- as_units(1, self$units)
x <- drop_units(x)
}
ggplot2::ggproto_parent(
ggplot2::ScaleContinuousPosition, self)$map(x, limits)
},
make_title = function(self, title) {
if (!is.null(title))
title <- make_unit_label(title, as_units(1, self$units))
title
}
)
}
scale_type.units <- function(x) {
if (!"units" %in% .packages())
stop("Variable of class 'units' found, but 'units' package is not attached.\n",
" Please, attach it using 'library(units)' to properly show scales with units.")
c("units", "continuous")
} |
fairProportions <- function (phy, nodeCount=FALSE) {
treeMatrix <- caper::clade.matrix(phy)
fpEdgeVals <- treeMatrix$edge.length / apply(treeMatrix$clade.matrix, 1, sum)
fpTips <- as.matrix(apply(fpEdgeVals * treeMatrix$clade.matrix, 2, sum))
if (nodeCount == TRUE) {
nodeCount <- apply(treeMatrix$clade.matrix, 2, sum) - 1
fpTips <- cbind(fpTips, nodeCount)
colnames(fpTips) <- c("FP", "NodeCount")
rownames(fpTips) <- phy$tip.label
} else {
rownames(fpTips) <- phy$tip.label
}
rm(treeMatrix)
return(fpTips)
} |
tableplot_jpg <- function(data, target, nBins = 100, folder = "./autoplots/plot_", ID = FALSE, width = 960, height = 960, pointsize = 12) {
data <- tablePrepare(data.frame(target = target, data))
for (i in 2:ncol(data)) {
jpeg(filename = paste(folder, ifelse(ID == FALSE, colnames(data)[i], i-1), ".jpg", sep = ""), width = width, height = height, units = "px", pointsize = pointsize)
tableplot(dat = data, select = c(1,i), sortCol = target, sample = FALSE, nBins = nBins)
dev.off()
}
} |
source("testthat/helper-common.R")
pdf(file = "eafplot.pdf", title = "eafplot.pdf", width = 6, height = 6)
data(gcp2x2)
tabucol <- subset(gcp2x2, alg != "TSinN1")
tabucol$alg <- tabucol$alg[drop = TRUE]
eafplot(time + best ~ run, data = tabucol, subset = tabucol$inst == "DSJC500.5")
eafplot(time + best ~ run | inst, groups = alg, data = gcp2x2)
eafplot(time + best ~ run | inst, groups = alg, data = gcp2x2, percentiles = c(0,
50, 100), include.extremes = TRUE, cex = 1.4, lty = c(2, 1, 2), lwd = c(2, 2,
2), col = c("black", "blue", "grey50"))
A1 <- read_extdata("ALG_1_dat.xz")
A2 <- read_extdata("ALG_2_dat.xz")
eafplot(list(A1 = A1, A2 = A2), percentiles = 50)
eafplot(A1, type="area", legend.pos="bottomleft")
data(HybridGA)
data(SPEA2relativeVanzyl)
eafplot(SPEA2relativeVanzyl, percentiles = c(25, 50, 75), xlab = expression(C[E]),
ylab = "Total switches", xlim = c(320, 400), extra.points = HybridGA$vanzyl,
extra.legend = "Hybrid GA")
data(SPEA2relativeRichmond)
eafplot(SPEA2relativeRichmond, percentiles = c(25, 50, 75), xlab = expression(C[E]),
ylab = "Total switches", xlim = c(90, 140), ylim = c(0, 25), extra.points = HybridGA$richmond,
extra.lty = "dashed", extra.legend = "Hybrid GA")
data(SPEA2minstoptimeRichmond)
SPEA2minstoptimeRichmond[, 2] <- SPEA2minstoptimeRichmond[, 2] / 60
eafplot(SPEA2minstoptimeRichmond, xlab = expression(C[E]), ylab = "Minimum idle time (minutes)",
las = 1, log = "y", maximise = c(FALSE, TRUE), main = "SPEA2 (Richmond)")
dev.off() |
assort_rvalues <- reactiveValues(
mixmat_message = NULL
)
output$assortativity_details_output <- renderText({
assortativityPrelimOutput()
})
output$mixing_matrix <- DT::renderDataTable({
DT::datatable(assortativityMMOutput(), options = list(paging = F, searching = F, bInfo = F, ordering = F))
})
output$assortativity_homophily_output <- renderText({
homophilyOutput()
})
output$mixing_matrix_details_output <- renderText({
assort_rvalues$mixmat_message
})
assortativityPrelimOutput <- reactive({
g <- graphFilters()
output <- c()
if (!is.null(g)) {
CA_sel <- ng_rv$graph_cat_selected
if (nchar(CA_sel) && CA_sel != "All") {
output <- append(output, paste0("Selected categorical attribute is: ", CA_sel))
output <- append(output, "")
} else { return(NULL) }
} else { return(NULL) }
paste0(output, collapse = '\n')
})
assortativityMMOutput <- reactive({
g <- graphFilters()
if (!is.null(g)) {
CA_sel <- ng_rv$graph_cat_selected
if (nchar(CA_sel) && CA_sel != "All") {
assort_rvalues$mixmat_message <- NULL
df <- VOSONDash::mixmat(g, paste0("vosonCA_", CA_sel), use_density = FALSE)
return(df)
} else {
assort_rvalues$mixmat_message <- "Categorical attribute not present, or not selected."
return(NULL)
}
} else {
assort_rvalues$mixmat_message <- "No Data."
return(NULL)
}
})
homophilyOutput <- reactive({
g <- graphFilters()
output <- c()
if (!is.null(g)) {
CA_sel <- ng_rv$graph_cat_selected
if (nchar(CA_sel) && CA_sel != "All") {
vattr <- paste0('vosonCA_', CA_sel)
mm <- VOSONDash::mixmat(g, paste0("vosonCA_", CA_sel), use_density = FALSE)
attr_list <- ng_rv$graph_cats[[CA_sel]]
if (input$graph_sub_cats_select[1] != "All") {
attr_list <- input$graph_sub_cats_select
}
for (i in attr_list) {
output <- append(output, paste0("Category: ", i))
w_i <- length(which(vertex_attr(g, vattr) == i)) / length(V(g))
output <- append(output, paste0(" Population share: ", sprintf("%.3f", w_i)))
if (w_i > 0) {
H_i <- mm[i, i] / rowSums(mm)[i]
output <- append(output, paste0(" Homogeneity index: ", sprintf("%.3f", H_i)))
Hstar_i <- (H_i - w_i) / (1 - w_i)
output <- append(output, paste0(" Homophily index: ", sprintf("%.3f", Hstar_i)))
}
output <- append(output, "")
}
output <- append(output, "")
}else{
output <- append(output, paste0("Categorical attribute not present, or not selected."))
}
}else{
output <- append(output, paste0("No data."))
}
paste0(output, collapse = '\n')
}) |
mark_my_file <- function(tasks = NULL, mark_file=file.choose(), assignment_path = NULL, force_get_tests = FALSE, quiet = FALSE, ...){
checkmate::assert_character(tasks, null.ok = TRUE)
checkmate::assert_file_exists(mark_file)
checkmate::assert_string(assignment_path, null.ok = TRUE)
checkmate::assert_flag(force_get_tests)
checkmate::assert_flag(quiet)
if(force_get_tests){
.Deprecated("set_assignment()", old = "force_get_tests")
}
if(!is.null(assignment_path)) {
old_warn_opt <- options(warn = 2)
set_assgn_result <- try(suppressMessages(set_assignment(assignment_path)), silent = TRUE)
options(warn = old_warn_opt$warn)
if(methods::is(set_assgn_result, "try-error"))
stop(set_assgn_result[1])
}
if(quiet){
testthat::capture_output(test_results <- suppressMessages(run_test_suite(caller = "mark_my_file", tasks, mark_file, quiet, ...)))
} else {
test_results <- run_test_suite(caller = "mark_my_file", tasks, mark_file, quiet, ...)
}
test_results_df <- as.data.frame(test_results)
if(!any(test_results_df$error) & sum(test_results_df$failed) == 0 & is.null(tasks) & !quiet) cheer()
if(!is.null(assignment_path)) remove_assignment()
return(invisible(test_results))
} |
simulateVARX <- function(N = 40, K = 10, p = 1, m = 1, nobs = 250, rho = 0.5,
sparsityA1 = 0.05, sparsityA2 = 0.5, sparsityA3 = 0.5,
mu = 0, method = "normal", covariance = "Toeplitz", ...) {
opt <- list(...)
fixedMat <- opt$fixedMat
SNR <- opt$SNR
out <- list()
attr(out, "class") <- "varx"
attr(out, "type") <- "simulation"
out$A <- list()
out$A1 <- list()
out$A2 <- list()
out$A3 <- list()
out$A4 <- list()
pX <- max(p, m)
for (i in 1:pX) {
out$A4[[i]] <- matrix(0, nrow = K, ncol = N)
}
stable <- FALSE
while (!stable) {
s <- sample(1:pX, 1)
for (i in 1:s) {
out$A3[[i]] <- createSparseMatrix(sparsity = sparsityA3, N = K, method = method, stationary = TRUE, p = 1, ...)
l <- max(Mod(eigen(out$A3[[i]])$values))
while ((l > 1) | (l == 0)) {
out$A3[[i]] <- createSparseMatrix(sparsity = sparsityA3, N = K, method = method, stationary = TRUE, p = 1, ...)
l <- max(Mod(eigen(out$A3[[i]])$values))
}
}
if (s < pX) {
for (i in (s + 1):pX) {
out$A3[[i]] <- matrix(0, nrow = K, ncol = K)
}
}
for (i in 1:p) {
out$A1[[i]] <- createSparseMatrix(sparsity = sparsityA1, N = N, method = method, stationary = TRUE, p = p, ...)
l <- max(Mod(eigen(out$A1[[i]])$values))
while ((l > 1) | (l == 0)) {
out$A1[[i]] <- createSparseMatrix(sparsity = sparsityA1, N = N, method = method, stationary = TRUE, p = p, ...)
l <- max(Mod(eigen(out$A1[[i]])$values))
}
}
if (p < pX) {
for (i in (p + 1):pX) {
out$A1[[i]] <- matrix(0, nrow = N, ncol = N)
}
}
for (i in 1:m) {
R <- max(K, N)
tmp <- createSparseMatrix(sparsity = sparsityA2, N = R, method = method, stationary = TRUE, p = p, ...)
out$A2[[i]] <- tmp[1:N, 1:K]
}
if (m < pX) {
for (i in (m + 1):pX) {
out$A2[[i]] <- matrix(0, nrow = N, ncol = K)
}
}
for (i in 1:pX) {
tmp1 <- cbind(out$A1[[i]], out$A2[[i]])
tmp2 <- cbind(out$A4[[i]], out$A3[[i]])
out$A[[i]] <- rbind(tmp1, tmp2)
}
cVAR <- as.matrix(companionVAR(out))
if (max(Mod(eigen(cVAR)$values)) < 1) {
stable <- TRUE
}
}
N <- N + K
if (covariance == "block1") {
l <- floor(N / 2)
I <- diag(1 - rho, nrow = N)
r <- matrix(0, nrow = N, ncol = N)
r[1:l, 1:l] <- rho
r[(l + 1):N, (l + 1):N] <- diag(rho, nrow = (N - l))
C <- I + r
} else if (covariance == "block2") {
l <- floor(N / 2)
I <- diag(1 - rho, nrow = N)
r <- matrix(0, nrow = N, ncol = N)
r[1:l, 1:l] <- rho
r[(l + 1):N, (l + 1):N] <- rho
C <- I + r
} else if (covariance == "Toeplitz") {
r <- rho^(1:N)
C <- Matrix::toeplitz(r)
} else if (covariance == "Wishart") {
r <- rho^(1:N)
S <- Matrix::toeplitz(r)
C <- stats::rWishart(1, 2 * N, S)
C <- as.matrix(C[, , 1])
} else if (covariance == "diagonal") {
C <- diag(x = rho, nrow = N, ncol = N)
} else {
stop("Unknown covariance matrix type. Possible choices are: toeplitz, block1, block2 or diagonal")
}
if (!is.null(SNR)) {
if (SNR == 0) {
stop("Signal to Noise Ratio must be greater than 0.")
}
s <- max(abs(cVAR)) / opt$SNR
C <- diag(s, N, N) %*% C %*% diag(s, N, N)
}
theta <- matrix(0, N, N)
data <- generateVARseries(nobs = nobs, mu, AR = out$A, sigma = C, skip = 200)
out$series <- data$series[, 1:(N - K)]
out$Xt <- data$series[, (N - K + 1):N]
out$noises <- data$noises
out$sigma <- C
return(out)
}
generateVARXseries <- function(nobs, mu, AR, sigma, skip = 200) {
N <- nrow(sigma)
nT <- nobs + skip
at <- mvtnorm::rmvnorm(nT, rep(0, N), sigma)
p <- length(AR)
ist <- p + 1
zt <- matrix(0, nT, N)
if (length(mu) == 0) {
mu <- rep(0, N)
}
for (it in ist:nT) {
tmp <- matrix(at[it, ], 1, N)
for (i in 1:p) {
ph <- AR[[i]]
ztm <- matrix(zt[it - i, ], 1, N)
tmp <- tmp + ztm %*% t(ph)
}
zt[it, ] <- mu + tmp
}
zt <- zt[(1 + skip):nT, ]
at <- at[(1 + skip):nT, ]
out <- list()
out$series <- zt
out$noises <- at
return(out)
}
checkMatricesX <- function(A) {
if (!is.list(A)) {
stop("The matrices must be passed in a list")
} else {
l <- length(A)
if (l > 1) {
for (i in 1:(l - 1)) {
if (sum(1 - (dim(A[[i]]) == dim(A[[i + 1]]))) != 0) {
return(FALSE)
}
}
return(TRUE)
} else {
return(TRUE)
}
}
} |
if (packageVersion("FisPro") == "1.0") {
setClass("AggregFis", slots = c(fis = "envRefClass", output_index = "numeric"))
} else {
setClass("AggregFis", slots = c(fis = "Rcpp_Fis", output_index = "numeric"))
}
.CheckAggregFisRange <- function(type, name, range) {
if ((range["min"] < 0) || (range["max"] > 1)) {
stop(sprintf("%s '%s' must be in range [0, 1]", type, name))
}
}
.CheckAggregFisInput <- function(input) {
.CheckAggregFisRange("input", input$name, input$range())
}
.CheckAggregFisOutput <- function(output) {
.CheckAggregFisRange("output", output$name, output$range())
}
setGeneric(name = ".CheckAggregFisConclusion", def = function(output, conclusion) {
standardGeneric(".CheckAggregFisConclusion")
})
setMethod(f = ".CheckAggregFisConclusion", signature = c("Rcpp_FisOutCrisp", "numeric"), definition = function(output, conclusion) {
if ((conclusion < 0) || (conclusion > 1)) {
stop(sprintf("crisp output '%s' conclusion must be in range [0, 1]", output$name))
}
})
setMethod(f = ".CheckAggregFisConclusion", signature = c("Rcpp_FisOutFuzzy", "numeric"), definition = function(output, conclusion) {})
.CheckAggregFisRule <- function(rule, outputs) {
output <- conclusion <- NULL
foreach(output = outputs, conclusion = rule$conclusions) %do% {
.CheckAggregFisConclusion(output, conclusion)
}
}
.CheckAggregFis <- function(fis, output_index) {
for (input in fis$get_inputs()) {
.CheckAggregFisInput(input)
}
if (fis$output_size() < output_index) {
stop(sprintf("output '%d' not found", output_index))
}
for (output in fis$get_outputs()) {
.CheckAggregFisOutput(output)
}
for (rule in fis$get_rules()) {
.CheckAggregFisRule(rule, fis$get_outputs())
}
}
setMethod("initialize", "AggregFis", function(.Object, ...) {
.Object <- callNextMethod()
if (packageVersion("FisPro") != "1.0") {
.CheckAggregFis(.Object@fis, .Object@output_index)
}
return(.Object)
})
NewAggregFis <- function(fis, output_index = 1) {
return(new("AggregFis", fis = fis, output_index = output_index))
}
setMethod(f = ".CheckAggreg", signature = c("AggregFis", "integer"), definition = function(aggreg, aggregate_length) {
if (aggreg@fis$input_size() != aggregate_length) {
stop("the Fis must have the same number of inputs as the aggregate nodes")
}
})
setMethod(f = "Aggreg", signature = "AggregFis", definition = function(object, node, attribute) {
return(Aggregate(node, attribute, aggFun = function(x) object@fis$infer_output(x, object@output_index)))
})
toString.AggregFis <- function(x, ...) {
return(sprintf("fis(\"%s\", %d)", x@fis$name, x@output_index))
} |
library(distr)
library(RobLox)
library(Biobase)
rowRoblox1 <- function(x, r, k = 1L){
mean <- rowMedians(x, na.rm = TRUE)
sd <- rowMedians(abs(x-mean), na.rm = TRUE)/qnorm(0.75)
if(r > 10){
b <- sd*1.618128043
const <- 1.263094656
A2 <- b^2*(1+r^2)/(1+const)
A1 <- const*A2
a <- -0.6277527697*A2/sd
mse <- A1 + A2
}else{
A1 <- sd^2*RobLox:::.getA1.locsc(r)
A2 <- sd^2*RobLox:::.getA2.locsc(r)
a <- sd*RobLox:::.geta.locsc(r)
b <- sd*RobLox:::.getb.locsc(r)
mse <- A1 + A2
}
robEst <- .kstep.locsc.matrix(x = x, initial.est = cbind(mean, sd),
A1 = A1, A2 = A2, a = a, b = b, k = k)
colnames(robEst$est) <- c("mean", "sd")
return(robEst$est)
}
n <- 10
M <- 1e5
eps <- 0.01
D <- 0.1
fun <- function(r, x, n){
RadMinmax <- rowRoblox1(x, r = r)
n*(mean(RadMinmax[,1]^2) + mean((RadMinmax[,2]-1)^2))
}
r <- rbinom(n*M, prob = eps, size = 1)
Mid <- rnorm(n*M)
Mcont <- rep(D, n*M)
Mre <- matrix((1-r)*Mid + r*Mcont, ncol = n)
ind <- rowSums(matrix(r, ncol = n)) >= n/2
while(any(ind)){
M1 <- sum(ind)
cat("M1:\t", M1, "\n")
r <- rbinom(n*M1, prob = eps, size = 1)
Mid <- rnorm(n*M1)
Mcont <- r(contD)(n*M1)
Mre[ind,] <- (1-r)*Mid + r*Mcont
ind[ind] <- rowSums(matrix(r, ncol = n)) >= n/2
}
fun(r = 1, x = Mre, n = n)
fun1 <- function(D){
Mcont <- rep(D, n*M)
Mre <- matrix((1-r)*Mid + r*Mcont, ncol = n)
fun(r = 1, x = Mre, n = n)
}
sapply(c(seq(0.1, 10, length = 20), 20, 50, 100, 1000, 1e4, 1e6), fun1)
n <- c(3:50, seq(55, 100, by = 5), seq(110, 200, by = 10), seq(250, 500, by = 50))
eps <- c(seq(0.001, 0.01, by = 0.001), seq(0.02, to = 0.5, by = 0.01))
M <- 1e5
contD <- Dirac(1e6)
r.fi <- matrix(NA, nrow = length(eps), ncol = length(n))
colnames(r.fi) <- n
rownames(r.fi) <- eps
r.as <- r.fi
for(j in seq(along = n)){
ptm <- proc.time()
cat("aktuelles n:\t", n[j], "\n")
i <- 0
repeat{
i <- i + 1
cat("aktuelles eps:\t", eps[i], "\n")
r <- rbinom(n[j]*M, prob = eps[i], size = 1)
Mid <- rnorm(n[j]*M)
Mcont <- r(contD)(n[j]*M)
Mre <- matrix((1-r)*Mid + r*Mcont, ncol = n[j])
rm(Mid, Mcont)
gc()
ind <- rowSums(matrix(r, ncol = n[j])) >= n[j]/2
rm(r)
gc()
while(any(ind)){
M1 <- sum(ind)
cat("M1:\t", M1, "\n")
r <- rbinom(n[j]*M1, prob = eps[i], size = 1)
Mid <- rnorm(n[j]*M1)
Mcont <- r(contD)(n[j]*M1)
Mre[ind,] <- (1-r)*Mid + r*Mcont
ind[ind] <- rowSums(matrix(r, ncol = n[j])) >= n[j]/2
rm(Mid, Mcont, r)
gc()
}
fun <- function(r, x, n){
RadMinmax <- rowRoblox1(x, r = r)
n*(mean(RadMinmax[,1]^2) + mean((RadMinmax[,2]-1)^2))
}
r.fi[i,j] <- optimize(fun, interval = c(eps[i], min(max(2, n[j]*eps[i]*25), 10)), x = Mre, n = n[j])$minimum
r.as[i,j] <- sqrt(n[j])*eps[i]
cat("finit:\t", r.fi[i,j], "\t asympt:\t", r.as[i,j], "\n")
rm(Mre)
gc()
if(round(r.fi[i,j], 2) == 1.74 | i == length(eps)) break
}
save.image(file = "FiniteSample1.RData")
cat("Dauer:\t", proc.time() - ptm, "\n")
}
r.as <- outer(eps, sqrt(n))
r.fi[is.na(r.fi)] <- 1.74
r.finite <- round(pmax(r.fi, r.as, na.rm = TRUE), 4)
finiteSampleCorrection <- function(r, n){
if(r >= 1.74) return(r)
eps <- r/sqrt(n)
ns <- c(3:50, seq(55, 100, by = 5), seq(110, 200, by = 10),
seq(250, 500, by = 50))
epss <- c(seq(0.001, 0.01, by = 0.001), seq(0.02, to = 0.5, by = 0.01))
if(n %in% ns){
ind <- ns == n
}else{
ind <- which.min(abs(ns-n))
}
return(approx(x = epss, y = finiteSampleRadius[,ind], xout = eps, rule = 2)$y)
} |
local_unexport_signal_abort()
test_that("try_fetch() catches or declines values", {
f <- function() g()
g <- function() h()
h <- function() abort("foo")
expect_error(try_fetch(f(), warning = function(cnd) NULL), "foo")
expect_error(try_fetch(f(), error = function(cnd) zap()), "foo")
expect_null(try_fetch(f(), error = function(cnd) NULL))
fns <- list(error = function(cnd) NULL)
expect_null(try_fetch(f(), !!!fns))
})
test_that("try_fetch() checks inputs", {
expect_snapshot({
(expect_error(try_fetch(NULL, function(...) NULL)))
})
expect_true(try_fetch(TRUE))
})
test_that("can rethrow from `try_fetch()`", {
local_options(
rlang_trace_top_env = current_env(),
rlang_trace_format_srcrefs = FALSE
)
f <- function() g()
g <- function() h()
h <- function() abort("foo")
high1 <- function(...) high2(...)
high2 <- function(...) high3(...)
high3 <- function(..., chain) {
if (chain) {
try_fetch(f(), error = function(cnd) abort("bar", parent = cnd))
} else {
try_fetch(f(), error = function(cnd) abort("bar", parent = NA))
}
}
expect_snapshot({
err <- catch_error(
try_fetch(f(), error = function(cnd) abort("bar", parent = cnd))
)
print(err)
print(err, simplify = "none")
err <- catch_error(high1(chain = TRUE))
print(err)
print(err, simplify = "none")
err <- catch_error(high1(chain = FALSE))
print(err)
print(err, simplify = "none")
})
})
test_that("can catch condition of specific classes", {
expect_null(catch_cnd(signal("", "bar"), "foo"))
expect_s3_class(catch_cnd(signal("", "bar"), "bar"), "bar")
expect_s3_class(catch_cnd(stop(""), "error"), "error")
expect_s3_class(catch_cnd(stop("tilt")), "error")
expect_error(catch_cnd(stop("tilt"), "foo"), "tilt")
classes <- c("foo", "bar")
expect_s3_class(catch_cnd(signal("", "bar"), classes), "bar")
expect_s3_class(catch_cnd(signal("", "foo"), classes), "foo")
})
test_that("cnd_muffle() returns FALSE if the condition is not mufflable", {
value <- NULL
expect_error(withCallingHandlers(
stop("foo"),
error = function(cnd) value <<- cnd_muffle(cnd)
))
expect_false(value)
})
test_that("drop_global_handlers() works and is idempotent", {
skip_if_not_installed("base", "4.0.0")
code <- '{
library(testthat)
globalCallingHandlers(NULL)
handler <- function(...) "foo"
globalCallingHandlers(foo = handler)
rlang:::drop_global_handlers(bar = handler)
expect_equal(globalCallingHandlers(), list(foo = handler))
rlang:::drop_global_handlers(foo = handler, bar = function() "bar")
expect_equal(globalCallingHandlers(), list())
rlang:::drop_global_handlers(foo = handler, bar = function() "bar")
expect_equal(globalCallingHandlers(), list())
}'
out <- Rscript(shQuote(c("--vanilla", "-e", code)))
expect_equal(out$out, chr())
})
test_that("stackOverflowError are caught", {
overflow <- function() signal("", "stackOverflowError")
handled <- FALSE
try_fetch(
overflow(),
error = function(cnd) handled <<- TRUE
)
expect_true(handled)
handled <- FALSE
try_fetch(
overflow(),
warning = identity,
error = function(cnd) handled <<- TRUE
)
expect_true(handled)
handled <- NULL
try_fetch(
overflow(),
error = function(cnd) {
handled <<- c(handled, 1)
cnd_signal(cnd)
},
warning = identity,
error = function(cnd) handled <<- c(handled, 2)
)
expect_equal(handled, c(1, 2))
}) |
plot.ltm <-
function (x, type = c("ICC", "IIC", "loadings"), items = NULL, zrange = c(-3.8, 3.8),
z = seq(zrange[1], zrange[2], length = 100), annot,
labels = NULL, legend = FALSE, cx = "topleft", cy = NULL, ncol = 1, bty = "n",
col = palette(), lty = 1, pch, xlab, ylab, zlab, main, sub = NULL, cex = par("cex"),
cex.lab = par("cex.lab"), cex.main = par("cex.main"), cex.sub = par("cex.sub"),
cex.axis = par("cex.axis"), plot = TRUE, ...) {
if (!inherits(x, "ltm"))
stop("Use only with 'ltm' objects.\n")
type <- match.arg(type)
if (type == "IIC" && any(x$ltst$factors == 2, x$ltst$inter, x$ltst$quad.z1, x$ltst$quad.z2))
stop("Item Information Curves are currently plotted only for the one-factor model.\n")
if (type == "loadings" && x$ltst$factors == 1)
stop("type = 'loadings' is only valid for the linear two-factor model.\n")
betas <- x$coefficients
p <- nrow(betas)
itms <- if (!is.null(items)) {
if (!is.numeric(items) || length(items) > p)
stop("'items' must be a numeric vector of length at most ", p)
if (type == "ICC" && any(items < 1 | items > p))
stop("'items' must contain numbers between 1 and ", p, " denoting the items.\n")
if (type == "IIC" && any(items < 0 | items > p))
stop("'items' must contain numbers between 0 and ", p)
items
} else
1:p
if (x$ltst$factors == 1){
Z <- if (x$ltst$quad.z1) cbind(1, z, z * z) else cbind(1, z)
pr <- if (type == "ICC") {
plogis(Z %*% t(betas))
} else {
pr <- plogis(Z %*% t(betas))
pqr <- pr * (1 - pr)
t(t(pqr) * betas[, 2]^2)
}
plot.items <- type == "ICC" || (type == "IIC" & (is.null(items) || all(items > 0)))
plot.info <- !plot.items
col <- if (plot.items) rep(col, length.out = length(itms)) else col[1]
lty <- if (plot.items) rep(lty, length.out = length(itms)) else lty[1]
if(!missing(pch)) {
pch <- if (plot.items) rep(pch, length.out = length(itms)) else pch[1]
pch.ind <- round(seq(15, 85, length = 4))
}
if (missing(main)) {
main <- if (type == "ICC") "Item Characteristic Curves" else {
if (plot.items) "Item Information Curves" else "Test Information Function"
}
}
if (missing(xlab)) {
xlab <- "Ability"
}
if (missing(ylab)) {
ylab <- if (type == "ICC") "Probability" else "Information"
}
r <- if (type == "ICC") c(0, 1) else { if (plot.info) range(rowSums(pr)) else range(pr[, itms]) }
if (plot) {
plot(range(z), r, type = "n", xlab = xlab, ylab = ylab, main = main, sub = sub, cex = cex,
cex.lab = cex.lab, cex.main = cex.main, cex.axis = cex.axis, cex.sub = cex.sub, ...)
if (missing(annot)) {
annot <- !legend
}
if (legend) {
legnd <- if (is.null(labels)) {
if (plot.info) "Information" else rownames(betas)[itms]
} else {
if (length(labels) < length(itms))
warning("the length of 'labels' is smaller than the length of 'items'.\n")
labels
}
legend(cx, cy, legend = legnd, col = col, lty = lty, bty = bty, ncol = ncol, cex = cex, pch = pch, ...)
}
if (annot) {
pos <- round(seq(10, 90, length = length(itms)))
nams <- if (is.null(labels)) {
nms <- if (rownames(betas)[1] == "Item 1") 1:p else rownames(betas)
nms[itms]
} else {
if (length(labels) < length(itms))
warning("the length of 'labels' is smaller than the length of 'items'.\n")
labels
}
}
if (plot.items) {
for (it in seq(along = itms)) {
lines(z, pr[, itms[it]], lty = lty[it], col = col[it], ...)
if (!missing(pch))
points(z[pch.ind], pr[pch.ind, itms[it]], pch = pch[it], col = col[it], cex = cex, ...)
if (annot)
text(z[pos[it]], pr[pos[it], itms[it]], labels = nams[it], adj = c(0, 2), col = col[it],
cex = cex, ...)
}
}
if (plot.info)
lines(z, rowSums(pr), lty = lty, col = col, ...)
return.value <- if (plot.items) cbind(z = z, pr[, itms]) else cbind(z = z, info = rowSums(pr))
} else {
return(if (plot.items) cbind(z = z, pr[, itms]) else cbind(z = z, info = rowSums(pr)))
}
}
if (x$ltst$factors == 2) {
nams <- rownames(x$coef)
if (type == "loadings") {
if (any(unlist(x$ltst[2:4])))
stop("the plot of standardized loadings is produced only for the linear two-factor model.\n")
cof <- coef(x, TRUE)
z1 <- cof[itms, 3]
z2 <- cof[itms, 5]
if (plot) {
if (missing(xlab))
xlab <- "Factor 1"
if (missing(ylab))
ylab <- "Factor 2"
if (missing(main))
main <- "Standardized Loadings"
plot(z1, z2, type = "n", xlab = xlab, ylab = ylab, main = main, sub = sub,
xlim = c(min(z1, -0.1), max(z1, 0.1)), ylim = c(min(z2, -0.1), max(z2, 0.1)),
cex = cex, cex.lab = cex.lab, cex.main = cex.main, cex.axis = cex.axis, cex.sub = cex.sub, ...)
abline(h = 0, v = 0, lty = 2)
text(z1, z2, labels = if (is.null(labels)) nams[itms] else labels, cex = cex, ...)
return.value <- cbind("Factor 1" = z1, "Factor 2" = z2)
} else {
return(cbind("Factor 1" = z1, "Factor 2" = z2))
}
} else {
z1 <- z2 <- z
f <- function (z, betas, strct) {
Z <- cbind(1, z[1], z[2])
colnames(Z) <- c("(Intercept)", "z1", "z2")
if (strct$inter)
Z <- cbind(Z, "z1:z2" = z[1] * z[2])
if (strct$quad.z1)
Z <- cbind(Z, "I(z1^2)" = z[1] * z[1])
if (strct$quad.z2)
Z <- cbind(Z, "I(z2^2)" = z[2] * z[2])
Z <- Z[, match(names(betas), colnames(Z)), drop = FALSE]
pr <- plogis(Z %*% betas)
}
if (plot) {
if (missing(xlab))
xlab <- "Factor 1"
if (missing(ylab))
ylab <- "Factor 2"
if (missing(zlab))
zlab <- "Probability"
if (missing(main))
main <- "Item Characteristic Surfaces"
col <- if (missing(col)) rep("white", length.out = length(itms)) else rep(col, length.out = length(itms))
old.par <- par(ask = TRUE)
on.exit(par(old.par))
}
grid. <- as.matrix(expand.grid(z1, z2))
dimnames(grid.) <- NULL
z <- vector("list", length(itms))
for (it in seq(along = itms)) {
item <- itms[it]
z[[it]] <- apply(grid., 1, f, betas = betas[item, ], strct = x$ltst)
dim(z[[it]]) <- c(length(z1), length(z1))
if (plot) {
persp(z1, z2, z[[it]], cex = cex, xlab = list(xlab, cex = cex.lab),
ylab = list(ylab, cex = cex.lab), zlab = list(zlab, cex = cex.lab),
main = list(main, cex = cex.main), sub = list(if (is.null(labels)) nams[item] else labels[it],
cex = cex.sub), col = col[it], ...)
}
}
return.value <- list(Factor1 = z1, Factor2 = z2, Prob = z)
if (!plot)
return(return.value)
}
}
invisible(return.value)
} |
database_init <- function(
path = tempfile(),
header = "name",
list_columns = character(0)
) {
memory <- memory_init()
database_new(memory, path, header, list_columns)
}
database_new <- function(
memory = NULL,
path = NULL,
header = NULL,
list_columns = NULL,
queue = NULL
) {
database_class$new(
memory = memory,
path = path,
header = header,
list_columns = list_columns,
queue = queue
)
}
database_class <- R6::R6Class(
classname = "tar_database",
class = FALSE,
portable = FALSE,
cloneable = FALSE,
public = list(
initialize = function(
memory = NULL,
path = NULL,
header = NULL,
list_columns = NULL,
queue = NULL
) {
self$memory <- memory
self$path <- path
self$header <- header
self$list_columns <- list_columns
self$queue <- queue
},
memory = NULL,
path = NULL,
header = NULL,
list_columns = NULL,
queue = NULL,
get_row = function(name) {
memory_get_object(self$memory, name)
},
set_row = function(row) {
name <- as.character(row$name)
memory_set_object(self$memory, name = name, object = as.list(row))
},
del_rows = function(names) {
memory_del_objects(self$memory, names)
},
get_data = function() {
rows <- self$list_rows()
out <- map(rows, ~as_data_frame(self$get_row(.x)))
do.call(rbind, out)
},
set_data = function(data) {
list <- lapply(data, as.list)
map(seq_along(list$name), ~self$set_row(lapply(list, `[[`, i = .x)))
},
exists_row = function(name) {
memory_exists_object(self$memory, name)
},
list_rows = function() {
self$memory$names
},
condense_data = function(data) {
data[!duplicated(data$name, fromLast = TRUE), ]
},
read_condensed_data = function() {
self$condense_data(self$read_data())
},
preprocess = function(write = FALSE) {
data <- self$read_condensed_data()
self$set_data(data)
if (write) {
self$ensure_storage()
self$overwrite_storage(data)
}
},
insert_row = function(row) {
self$write_row(row)
self$set_row(row)
},
append_data = function(data) {
self$append_storage(data)
self$set_data(data)
},
select_cols = function(data) {
fill <- setdiff(self$header, names(data))
na_col <- rep(NA_character_, length(data$name))
for (col in fill) {
data[[col]] <- na_col
}
as.list(data)[self$header]
},
enqueue_row = function(row) {
line <- self$produce_line(self$select_cols(row))
self$queue <- c(self$queue, line)
},
dequeue_rows = function() {
if (length(self$queue)) {
on.exit(self$queue <- NULL)
self$append_lines(self$queue)
}
},
write_row = function(row) {
line <- self$produce_line(self$select_cols(row))
self$append_lines(line)
},
append_lines = function(lines, max_attempts = 500) {
attempt <- 0L
while (!is.null(try(self$try_append_lines(lines)))) {
msg <- paste("Reattempting to append lines to", self$path)
cli::cli_alert_info(msg)
Sys.sleep(stats::runif(1, 0.2, 0.25))
attempt <- attempt + 1L
if (attempt > max_attempts) {
tar_throw_run(
"timed out after ",
max_attempts,
" attempts trying to append to ",
self$path
)
}
}
},
try_append_lines = function(lines) {
write(lines, self$path, ncolumns = 1L, append = TRUE, sep = "")
invisible()
},
append_storage = function(data) {
dir_create(dirname(self$path))
data.table::fwrite(
x = data,
file = self$path,
sep = database_sep_outer,
sep2 = c("", database_sep_inner, ""),
na = "",
append = TRUE
)
},
overwrite_storage = function(data) {
dir <- dirname(self$path)
dir_create(dir)
tmp <- tempfile(pattern = "tar_temp_", tmpdir = dir)
data.table::fwrite(
x = data,
file = tmp,
sep = database_sep_outer,
sep2 = c("", database_sep_inner, ""),
na = "",
append = FALSE
)
file.rename(from = tmp, to = self$path)
},
produce_line = function(row) {
paste(map_chr(row, self$produce_subline), collapse = database_sep_outer)
},
produce_subline = function(element) {
element <- replace_na(element, "")
if (is.list(element)) {
element <- paste(unlist(element), collapse = database_sep_inner)
}
as.character(element)
},
reset_storage = function() {
dir_create(dirname(self$path))
write(self$produce_line(self$header), self$path)
},
ensure_storage = function() {
if (!file.exists(self$path)) {
self$reset_storage()
}
},
ensure_preprocessed = function(write = FALSE) {
if (identical(self$memory$count, 0L)) {
self$preprocess(write = write)
}
},
read_data = function() {
if_any(
file.exists(self$path),
self$read_existing_data(),
self$produce_mock_data()
)
},
read_existing_data = function() {
database_read_existing_data(self)
},
produce_mock_data = function() {
out <- as_data_frame(map(self$header, ~character(0)))
colnames(out) <- self$header
out
},
deduplicate_storage = function() {
if (file.exists(self$path)) {
data <- self$condense_data(self$read_data())
data <- data[order(data$name),, drop = FALSE]
self$overwrite_storage(data)
}
},
validate_columns = function(header, list_columns) {
database_validate_columns(header, list_columns)
},
validate_file = function() {
database_validate_file(self)
},
validate = function() {
memory_validate(self$memory)
self$validate_columns(self$header, self$list_columns)
self$validate_file()
tar_assert_chr(self$path)
tar_assert_scalar(self$path)
tar_assert_chr(self$header)
tar_assert_chr(self$list_columns)
}
)
)
database_read_existing_data <- function(database) {
out <- data.table::fread(
file = database$path,
sep = database_sep_outer,
fill = TRUE,
na.strings = ""
)
out <- as_data_frame(out)
if (nrow(out) < 1L) {
return(out)
}
for (id in database$list_columns) {
out[[id]] <- strsplit(
as.character(out[[id]]),
split = database_sep_inner,
fixed = TRUE
)
}
out
}
database_validate_columns <- function(header, list_columns) {
if (!all(list_columns %in% header)) {
tar_throw_validate("all list columns must be in the header")
}
if (!is.null(header) & !("name" %in% header)) {
tar_throw_validate("header must have a column called \"name\"")
}
}
database_validate_file <- function(database) {
if (!file.exists(database$path)) {
return()
}
line <- readLines(database$path, n = 1L)
header <- strsplit(line, split = database_sep_outer, fixed = TRUE)[[1]]
if (identical(header, database$header)) {
return()
}
tar_throw_file(
"invalid header in ", database$path, "\n",
" found: ", paste(header, collapse = database_sep_outer), "\n",
" expected: ", paste(database$header, collapse = database_sep_outer),
"\nProbably because of a breaking change in the targets package. ",
"Before running tar_make() again, ",
"either delete the data store with tar_destroy() ",
"or downgrade the targets package to an earlier version."
)
}
database_sep_outer <- "|"
database_sep_inner <- "*" |
setClass("QuadraticDiscriminantClassifier",
representation(means="matrix",sigma="list",prior="matrix"),
prototype(name="Quadratic Discriminant Classifier"),
contains="NormalBasedClassifier")
QuadraticDiscriminantClassifier <- function(X, y, prior=NULL, scale=FALSE, ...) {
ModelVariables<-PreProcessing(X,y,scale=scale,intercept=FALSE)
X<-ModelVariables$X
y<-ModelVariables$y
scaling<-ModelVariables$scaling
classnames<-ModelVariables$classnames
modelform<-ModelVariables$modelform
Y <- model.matrix(~as.factor(y)-1)
if (is.null(prior)) prior<-matrix(colMeans(Y),2,1)
means <- t((t(X) %*% Y))/(colSums(Y))
sigma <- lapply(1:ncol(Y),function(c,X){cov(X[Y[,c]==1,,drop=FALSE])},X)
new("QuadraticDiscriminantClassifier", modelform=modelform, prior=prior, means=means, sigma=sigma,classnames=classnames,scaling=scaling)
}
setMethod("line_coefficients", signature(object="QuadraticDiscriminantClassifier"), function(object) {
stop("Not a linear decision boundary.")
}) |
rm(list=ls())
setwd("C:/Users/Tom/Documents/Kaggle/Santander")
library(data.table)
baseProducts <- c("ahor_fin", "aval_fin", "cco_fin", "cder_fin",
"cno_fin", "ctju_fin", "ctma_fin", "ctop_fin",
"ctpp_fin", "deco_fin", "deme_fin", "dela_fin",
"ecue_fin", "fond_fin", "hip_fin", "plan_fin",
"pres_fin", "reca_fin", "tjcr_fin", "valo_fin",
"viv_fin", "nomina", "nom_pens", "recibo"
)
targetVars <- paste0("ind_", baseProducts, "_ult1")
nbTargetVars <- length(targetVars)
sampleSubmission <- fread("Data/sample_submission.csv")
for(i in 1:nbTargetVars){
dummyTable <- sampleSubmission
dummyTable[, added_products := targetVars[i]]
write.csv(dummyTable, file.path(getwd(), "Submission", "Leaderboard probing",
"Submission files",
paste0("all_", baseProducts[i], ".csv")),
row.names = FALSE)
} |
Hajekestimator<-function(y,pik,N=NULL,type=c("total","mean"))
{
if(any(is.na(pik))) stop("there are missing values in pik")
if(any(is.na(y))) stop("there are missing values in y")
if(length(y)!=length(pik)) stop("y and pik have different sizes")
if(missing(type) | is.null(N)) {
if(missing(type)) warning("the type estimator is missing")
warning("by default the mean estimator is computed")
est<-crossprod(y,1/pik)/sum(1/pik)}
else if(type=="total") est<-N*crossprod(y,1/pik)/sum(1/pik)
est
} |
nca.deviation.plot <- function(plotdata,
xvar=NULL,
devcol=NULL,
figlbl=NULL,
spread="npi",
cunit=NULL,
tunit=NULL){
"XVAR" <- "melt" <- "xlab" <- "ylab" <- "theme" <- "element_text" <- "unit" <- "geom_point" <- "facet_wrap" <- "ggplot" <- "aes" <- "labs" <- "na.omit" <- "dist" <- NULL
rm(list=c("XVAR","melt","xlab","ylab","theme","element_text","unit","geom_point","facet_wrap","ggplot","aes","labs","na.omit","dist"))
if (!is.data.frame(plotdata)) stop("plotdata must be a data frame.")
if (is.null(xvar)){
stop("Missing x-variable against which the deviation data will be plotted.")
}else{
names(plotdata)[which(names(plotdata)==xvar)] <- "XVAR"
}
if (is.null(devcol)){
stop("Missing column names/numbers of the data frame containing deviation data.")
}else if (!is.null(devcol) && !is.numeric(devcol)){
if (!all(devcol%in%names(plotdata))) stop("All column names given as deviation data column must be present in plotdata")
}else if (!is.null(devcol) && is.numeric(devcol)){
if (any(devcol <= 0) | (max(devcol) > ncol(plotdata))) stop("Column number for deviation data out of range of plotdata.")
devcol <- names(plotdata)[devcol]
}
plotdata <- subset(plotdata, select=c("XVAR",devcol))
longdata <- melt(plotdata, measure.vars = devcol)
names(longdata)[c((ncol(longdata)-1):ncol(longdata))] <- c("type","dist")
longdata <- na.omit(longdata)
longdata <- subset(longdata, dist!="NaN")
if (nrow(longdata)==0){
ggplt <- NULL
}else{
fctNm <- data.frame()
npr <- length(devcol)
nc <- ifelse(npr<2, 1, ifelse(npr>=2 & npr<=6, 2, 3))
for (p in 1:npr){
if (devcol[p] == "dAUClast" | devcol[p] == "dAUClower_upper" | devcol[p] == "dAUCINF_obs" | devcol[p] == "dAUCINF_pred"){
if(is.null(cunit) | is.null(tunit)){
fctNm <- rbind(fctNm, data.frame(prmNm=devcol[p],prmUnit=gsub("^d", "", devcol)[p]))
}else{
fctNm <- rbind(fctNm, data.frame(prmNm=devcol[p],prmUnit=paste0(gsub("^d", "", devcol)[p]," (",cunit,"*",tunit,")")))
}
}else if (devcol[p] == "dAUMClast"){
if(is.null(cunit) | is.null(tunit)){
fctNm <- rbind(fctNm, data.frame(prmNm=devcol[p],prmUnit=gsub("^d", "", devcol)[p]))
}else{
fctNm <- rbind(fctNm, data.frame(prmNm=devcol[p],prmUnit=paste0(gsub("^d", "", devcol)[p]," (",cunit,"*",tunit,"^2)")))
}
}else if (devcol[p] == "dCmax"){
if(is.null(cunit)){
fctNm <- rbind(fctNm, data.frame(prmNm=devcol[p],prmUnit=gsub("^d", "", devcol)[p]))
}else{
fctNm <- rbind(fctNm, data.frame(prmNm=devcol[p],prmUnit=paste0(gsub("^d", "", devcol)[p]," (",cunit,")")))
}
}else if (devcol[p] == "dTmax" | devcol[p] == "dHL_Lambda_z"){
if(is.null(tunit)){
fctNm <- rbind(fctNm, data.frame(prmNm=devcol[p],prmUnit=gsub("^d", "", devcol)[p]))
}else{
fctNm <- rbind(fctNm, data.frame(prmNm=devcol[p],prmUnit=paste0(gsub("^d", "", devcol)[p]," (",tunit,")")))
}
}else{
fctNm <- rbind(fctNm, data.frame(prmNm=devcol[p],prmUnit=devcol[p]))
}
}
ggOpt_dev <- list(xlab(paste("\n",xvar,sep="")), ylab("Deviation\n"),
theme(axis.text.x = element_text(angle=45,vjust=1,hjust=1,size=10),
axis.text.y = element_text(hjust=0,size=10),
strip.text.x = element_text(size=10),
title = element_text(size=14,face="bold")),
geom_point(size=2),
facet_wrap(~type, ncol=nc, scales="free"))
longdata$type <- factor(longdata$type, levels=fctNm$prmNm, labels=fctNm$prmUnit)
if (is.null(figlbl)){
ttl <- ifelse (spread=="ppi",
"Deviation = (obs-medianSim)/d\nd = distance between medianSim and 95% parametric prediction\ninterval boundary proximal to the observed value\n",
"Deviation = (obs-medianSim)/d\nd = distance between medianSim and 95% nonparametric prediction\ninterval boundary proximal to the observed value\n")
}else{
ttl <- ifelse (spread=="ppi",
paste0("Deviation = (obs-medianSim)/d\nd = distance between medianSim and 95% parametric prediction\ninterval boundary proximal to the observed value\n",figlbl,"\n"),
paste0("Deviation = (obs-medianSim)/d\nd = distance between medianSim and 95% nonparametric prediction\ninterval boundary proximal to the observed value\n",figlbl,"\n"))
}
ggplt <- ggplot(longdata,aes(as.numeric(as.character(XVAR)),as.numeric(as.character(dist)))) + ggOpt_dev + labs(title = ttl) + theme(plot.title = element_text(size = rel(0.85)))
}
return(ggplt)
} |
ggplot_estimate_uncertainties <- function(JAB_stats, fill_colour = NULL) {
rank <- NULL
conf_int <- NULL
se2_jack <- NULL
se2_boot <- NULL
GOF_stat <- NULL
value <- NULL
variable <- NULL
GOF_stats <- unique(JAB_stats$GOF_stat)
num_stats <- length(GOF_stats)
for (i in 1:num_stats) {
GOF <- GOF_stats[i]
selected_stats <- JAB_stats[JAB_stats$GOF_stat == GOF,]
selected_stats_ranked <- selected_stats[order(selected_stats$seJab),]
num_selected <- nrow(selected_stats)
selected_stats_ranked$rank <- seq(from = 1, to = num_selected)
if (i == 1) {
all_stats <- selected_stats_ranked
} else {
all_stats <- rbind(all_stats, selected_stats_ranked)
}
}
all_stats$conf_int <- all_stats$p95 - all_stats$p05
all_stats$se2_boot <- all_stats$seBoot * 2
all_stats$se2_jack <- all_stats$seJack * 2
if (!is.null(fill_colour)) {
p1 <- ggplot() +
geom_area(data = all_stats, aes(rank, se2_jack, fill = fill_colour)) +
geom_line(data = all_stats, aes(rank, se2_boot, colour = "red")) +
geom_line(data = all_stats, aes(rank, conf_int, colour = "black")) +
xlab("Site index, ranked w.r.t. the Bootstrap estimates of the confidence intervals") +
ylab("Uncertainty") +
ylim(0, 0.5) +
scale_colour_manual(name = '', values =c('black'='black','red'='red'),
labels = c('Confidence interval (p95 - p05)',
'2 x standard error (Bootstrap)')) +
scale_fill_identity(name = '', guide = 'legend',labels = c("2 x standard error (Jackknife)")) +
facet_wrap(~GOF_stat, nrow = 2) +
guides(
color = guide_legend(order = 1),
fill = guide_legend(order = 2)
)
} else {
all_stats <- all_stats[, c("rank", "GOF_stat", "conf_int", "se2_boot", "se2_jack")]
melted <- melt(all_stats, id.vars = c("rank", "GOF_stat"), measure_vars = c("conf_int", "se2_boot", "se2_jack"))
melted$variable <- as.character(melted$variable)
melted$variable[melted$variable == "conf_int"] <- "Confidence interval (p95 - p05)"
melted$variable[melted$variable == "se2_boot"] <- "2 x standard error (Bootstrap)"
melted$variable[melted$variable == "se2_jack"] <- "2 x standard error (Jackknife)"
p1 <- ggplot(melted, aes(rank, value, colour = variable)) +
geom_line() +
xlab("Site index, ranked w.r.t. the Bootstrap estimates of the confidence intervals") +
ylab("Uncertainty") +
ylim(0, 0.5) +
scale_colour_manual(name = '', values =c("black", "red", "orange"),
labels = c('Confidence interval (p95 - p05)',
'2 x standard error (Bootstrap)',
"2 x standard error (Jackknife)")) +
facet_wrap(~GOF_stat, nrow = 2)
}
return(p1)
} |
test_that("ptype print methods are descriptive", {
tab1 <- new_table()
tab2 <- new_table(dim = c(0L, 1L, 2L, 1L))
expect_equal(vec_ptype_abbr(tab1), "table")
expect_equal(vec_ptype_abbr(tab2), "table[,1,2,1]")
expect_equal(vec_ptype_full(tab1), "table")
expect_equal(vec_ptype_full(tab2), "table[,1,2,1]")
})
test_that("can find a common type among tables with identical dimensions", {
tab1 <- new_table()
tab2 <- new_table(1:2, dim = c(1L, 2L, 1L))
expect_identical(vec_ptype2(tab1, tab1), zap_dimnames(new_table()))
expect_identical(vec_ptype2(tab2, tab2), zap_dimnames(new_table(dim = c(0L, 2L, 1L))))
})
test_that("size is not considered in the ptype", {
x <- new_table(1:2, dim = 2L)
y <- new_table(1:3, dim = 3L)
expect_identical(vec_ptype2(x, y), zap_dimnames(new_table()))
})
test_that("vec_ptype2() can broadcast table shapes", {
x <- new_table(dim = c(0L, 1L))
y <- new_table(dim = c(0L, 2L))
expect_identical(vec_ptype2(x, y), zap_dimnames(new_table(dim = c(0L, 2L))))
x <- new_table(dim = c(0L, 1L, 3L))
y <- new_table(dim = c(0L, 2L, 1L))
expect_identical(vec_ptype2(x, y), zap_dimnames(new_table(dim = c(0L, 2L, 3L))))
})
test_that("implicit axes are broadcast", {
x <- new_table(dim = c(0L, 2L))
y <- new_table(dim = c(0L, 1L, 3L))
expect_identical(vec_ptype2(x, y), zap_dimnames(new_table(dim = c(0L, 2L, 3L))))
})
test_that("errors on non-broadcastable dimensions", {
x <- new_table(dim = c(0L, 2L))
y <- new_table(dim = c(0L, 3L))
expect_error(vec_ptype2(x, y), class = "vctrs_error_incompatible_type")
})
test_that("vec_ptype2() errors on non-tables", {
expect_error(vec_ptype2(new_table(), 1), class = "vctrs_error_incompatible_type")
expect_error(vec_ptype2(new_table(), 1L), class = "vctrs_error_incompatible_type")
expect_error(vec_ptype2(new_table(), "1"), class = "vctrs_error_incompatible_type")
expect_error(vec_ptype2(1, new_table()), class = "vctrs_error_incompatible_type")
expect_error(vec_ptype2(1L, new_table()), class = "vctrs_error_incompatible_type")
expect_error(vec_ptype2("1", new_table()), class = "vctrs_error_incompatible_type")
})
test_that("common types have symmetry when mixed with unspecified input", {
x <- new_table()
expect_identical(vec_ptype2(x, NA), new_table())
expect_identical(vec_ptype2(NA, x), new_table())
x <- new_table(dim = c(0L, 2L))
expect_identical(vec_ptype2(x, NA), new_table(dim = c(0L, 2L)))
expect_identical(vec_ptype2(NA, x), new_table(dim = c(0L, 2L)))
})
test_that("`table` delegates coercion", {
expect_identical(
vec_ptype2(new_table(1), new_table(FALSE)),
zap_dimnames(new_table(double()))
)
expect_error(
vec_ptype2(new_table(1), new_table("")),
class = "vctrs_error_incompatible_type"
)
})
test_that("can cast to an identically shaped table", {
x <- new_table(1:5, dim = 5L)
y <- new_table(1:8, dim = c(2L, 2L, 2L))
expect_identical(vec_cast(x, x), x)
expect_identical(vec_cast(y, y), y)
})
test_that("vec_cast() can broadcast table shapes", {
x <- new_table(dim = c(0L, 1L))
y <- new_table(dim = c(0L, 2L))
expect_identical(dim(vec_cast(x, y)), c(0L, 2L))
x <- new_table(dim = c(0L, 1L, 1L))
y <- new_table(dim = c(0L, 2L, 3L))
expect_identical(dim(vec_cast(x, y)), c(0L, 2L, 3L))
})
test_that("cannot decrease axis length", {
x <- new_table(dim = c(0L, 3L))
y <- new_table(dim = c(0L, 1L))
expect_error(vec_cast(x, y), "Non-recyclable", class = "vctrs_error_incompatible_type")
})
test_that("cannot decrease dimensionality", {
x <- new_table(dim = c(0L, 1L, 1L))
y <- new_table(dim = c(0L, 1L))
expect_error(vec_cast(x, y), "decrease dimensions", class = "vctrs_error_incompatible_type")
})
test_that("vec_cast() errors on non-tables", {
expect_error(vec_cast(new_table(), 1), class = "vctrs_error_incompatible_type")
expect_error(vec_cast(new_table(), 1L), class = "vctrs_error_incompatible_type")
expect_error(vec_cast(new_table(), "1"), class = "vctrs_error_incompatible_type")
expect_error(vec_cast(1, new_table()), class = "vctrs_error_incompatible_type")
expect_error(vec_cast(1L, new_table()), class = "vctrs_error_incompatible_type")
expect_error(vec_cast("1", new_table()), class = "vctrs_error_incompatible_type")
})
test_that("can cast from, but not to, unspecified", {
x <- new_table()
expect_error(vec_cast(x, NA), class = "vctrs_error_incompatible_type")
expect_identical(vec_cast(NA, x), new_table(NA_integer_, dim = 1L))
x <- new_table(dim = c(0L, 2L))
expect_error(vec_cast(x, NA), class = "vctrs_error_incompatible_type")
expect_identical(vec_cast(NA, x), new_table(c(NA_integer_, NA_integer_), dim = c(1L, 2L)))
})
test_that("`table` delegates casting", {
expect_identical(
vec_cast(new_table(1), new_table(FALSE)),
new_table(TRUE)
)
expect_error(
vec_cast(new_table(1), new_table("")),
class = "vctrs_error_incompatible_type"
)
})
test_that("`new_table()` validates input", {
expect_error(new_table(1L, 1), "`dim` must be an integer vector")
expect_error(new_table(1:2, 1L), "must match the length of `x`")
})
test_that("ptype is correct", {
tab1 <- new_table(1L, dim = 1L)
tab2 <- new_table(1:2, dim = c(1L, 2L, 1L))
expect_identical(vec_ptype(tab1), new_table())
expect_identical(vec_ptype(tab2), new_table(dim = c(0L, 2L, 1L)))
})
test_that("can use a table in `vec_c()`", {
expect_identical(vec_c(new_table()), new_table())
expect_identical(vec_c(new_table(), new_table()), new_table())
x <- new_table(1:5, 5L)
y <- new_table(1:4, dim = c(2L, 2L))
expect_identical(vec_c(x, x), new_table(c(1:5, 1:5), dim = 10L))
expect_identical(vec_c(y, y), new_table(c(1:2, 1:2, 3:4, 3:4), dim = c(4L, 2L)))
expect_identical(vec_c(x, y), new_table(c(1:5, 1:2, 1:5, 3:4), dim = c(7L, 2L)))
})
test_that("names of the first dimension are kept in `vec_c()`", {
x <- new_table(1:4, c(2L, 2L))
dimnames(x) <- list(c("r1", "r2"), c("c1", "c2"))
xx <- vec_c(x, x)
expect_identical(dimnames(xx), list(c("r1", "r2", "r1", "r2"), NULL))
})
test_that("can use a table in `vec_unchop()`", {
x <- new_table(1:4, dim = c(2L, 2L))
expect_identical(vec_unchop(list(x)), x)
expect_identical(vec_unchop(list(x, x), list(1:2, 4:3)), vec_slice(x, c(1:2, 2:1)))
})
test_that("can concatenate tables", {
x <- table(1:2)
out <- vec_c(x, x)
exp <- new_table(rep(1L, 4), dimnames = list(c("1", "2", "1", "2")))
expect_identical(out, exp)
out <- vec_rbind(x, x)
exp <- data_frame(`1` = new_table(c(1L, 1L)), `2` = new_table(c(1L, 1L)))
expect_identical(out, exp)
y <- table(list(1:2, 3:4))
out <- vec_c(y, y)
exp <- new_table(
matrix(int(1, 0, 1, 0, 0, 1, 0, 1), nrow = 4),
dim = c(4L, 2L),
dimnames = list(c("1", "2", "1", "2"), NULL)
)
expect_identical(out, exp)
out <- vec_rbind(y, y)
exp <- new_data_frame(list(
`3` = int(1, 0, 1, 0),
`4` = int(0, 1, 0, 1)
),
row.names = c("1...1", "2...2", "1...3", "2...4")
)
expect_identical(out, exp)
skip("FIXME: dimnames of matrices are not properly concatenated")
})
test_that("can concatenate tables of type double (
x <- table(c(1, 2)) / 2
out <- vec_c(x, x)
exp <- new_table(c(0.5, 0.5, 0.5, 0.5), dimnames = list(c("1", "2", "1", "2")))
expect_identical(out, exp)
out <- vec_rbind(x, x)
exp <- data_frame(`1` = new_table(c(0.5, 0.5)), `2` = new_table(c(0.5, 0.5)))
expect_identical(out, exp)
}) |
morphomap2Dmap<-function (morphomap.shape,rem.out = FALSE,
fac.out = 0.5,smooth = FALSE,scale = TRUE,
smooth.iter = 5,gamMap = FALSE,nrow = 90,
ncol = 100,gdl = 250,method = "equiangular",
unwrap = "A",plot = TRUE,pal = blue2green2red(101),
aspect = 2)
{
thickarray<-morphomapThickness(morphomap.shape)
data_t<-morphomapDF(thickarray,rem.out = rem.out, fac.out = fac.out, smooth = smooth, scale = scale,
smooth.iter = smooth.iter, method = method, unwrap = unwrap)
data <- data_t$XYZ
labels <- data_t$labels
if (gamMap == FALSE) {
minx <- min(data$X, na.rm = T)
miny <- min(data$Y, na.rm = T)
maxx <- max(data$X, na.rm = T)
maxy <- max(data$Y, na.rm = T)
maxz <- max(data$Z, na.rm = T)
minz <- min(data$Z, na.rm = T)
atvalues <- seq(minz, maxz, length.out = 100)
xat <- seq(1, 100, length.out = 5)
ylabels<-round(seq(morphomap.shape$start,morphomap.shape$end,length.out = 5)*100,2)
yat<-round(seq(miny,maxy,length.out = 5),2)
map <- levelplot(data[, 3] ~ data[, 1] + data[, 2], xlab = "",
ylab = "Biomechanical length", aspect = aspect, main = "2D thickness map",
at = atvalues, col.regions = pal, scales = list(x = list(at = xat,labels = labels, rot = 90, alternating = 1),
y = list(at = yat,labels = ylabels, rot = 90, alternating = 1)))
if (plot == TRUE) {
graphics::plot(map)
}
mat <- data
}
if (gamMap == TRUE) {
m1 <- gam(Z ~ s(X, Y, k = gdl), data = data)
minx <- min(data$X, na.rm = T)
maxx <- max(data$X, na.rm = T)
miny <- min(data$Y, na.rm = T)
maxy <- max(data$Y, na.rm = T)
wx <- maxx - minx
wy <- maxy - miny
sx <- wx/ncol
sy <- wy/nrow
xx <- seq(minx, maxx, length.out = ncol)
yy <- seq(miny, maxy, length.out = nrow)
xp <- vector()
yp <- vector()
xc <- vector()
yc <- vector()
for (i in seq(1, nrow)) for (j in seq(1, ncol)) {
xp[(i - 1) * ncol + j] <- xx[j]
yp[(i - 1) * ncol + j] <- yy[i]
yc[(i - 1) * ncol + j] <- yy[i]
xc[(i - 1) * ncol + j] <- xx[j]
}
fit <- predict.gam(m1, list(X = xp, Y = yp))
data <- data.frame(X = xc, Y = yc, Z = fit)
if (scale == TRUE) {
x <- data$Z
thickvector <- (x - min(x))/(max(x) - min(x))
data$Z <- thickvector
}
minx <- min(data$X, na.rm = T)
miny <- min(data$Y, na.rm = T)
maxx <- max(data$X, na.rm = T)
maxy <- max(data$Y, na.rm = T)
maxz <- max(data$Z, na.rm = T)
minz <- min(data$Z, na.rm = T)
atvalues <- seq(minz, maxz, length.out = 100)
xat <- seq(1, 100, length.out = 5)
ylabels<-round(seq(morphomap.shape$start,morphomap.shape$end,length.out = 5)*100,2)
yat<-round(seq(miny,maxy,length.out = 5),2)
map <- levelplot(data[, 3] ~ data[, 1] + data[, 2], xlab = "",
ylab = "Biomechanical length", aspect = aspect, main = "2D thickness map",
at = atvalues, col.regions = pal, scales = list(x = list(at = xat,labels = labels, rot = 90, alternating = 1),
y = list(at = yat,labels = ylabels, rot = 90, alternating = 1)))
if (plot == TRUE) {
graphics::plot(map)
}
mat <- data
}
if(gamMap==TRUE){
out <- list(dataframe = mat, `2Dmap` = map,gamoutput=m1,data=data)}
if(gamMap==FALSE){
out <- list(dataframe = mat, `2Dmap` = map,gamoutput=NULL,data=data)}
} |
Rprof <- function(filename = "Rprof.out", append = FALSE, interval = 0.02,
memory.profiling = FALSE, gc.profiling = FALSE,
line.profiling = FALSE, filter.callframes = FALSE,
numfiles = 100L, bufsize = 10000L)
{
if(is.null(filename)) filename <- ""
invisible(.External(C_Rprof, filename, append, interval, memory.profiling,
gc.profiling, line.profiling, filter.callframes,
numfiles, bufsize))
}
Rprofmem <- function(filename = "Rprofmem.out", append = FALSE, threshold = 0)
{
if(is.null(filename)) filename <- ""
invisible(.External(C_Rprofmem, filename, append, as.double(threshold)))
} |
tabPanel('Line Graph', value = 'tab_line',
fluidPage(
fluidRow(
column(12, align = 'left',
h4('Line Chart')
)
),
hr(),
fluidRow(
column(12,
tabsetPanel(type = 'tabs',
tabPanel('Variables',
fluidRow(
column(2,
selectInput('line_select_x', 'X Axis Variable: ',
choices = "", selected = ""),
textInput('line_title', 'Title', value = ''),
textInput('line_xlabel', 'X Axis Label', '')
),
column(2,
selectInput('line_select_y', 'Y Axis Variable: ',
choices = "", selected = ""),
textInput('line_subtitle', 'Subitle', value = ''),
textInput('line_ylabel', 'Y Axis Label', '')
),
column(8,
plotOutput('line_plot_1')
)
)
),
tabPanel('Aesthetics',
column(4,
tabsetPanel(type = 'tabs',
tabPanel('Line',
column(6,
numericInput('line_width', 'Line Width', value = 1,
step = 0.1),
textInput('line_color', 'Color', value = 'black'),
numericInput('line_type', 'Line Type', min = 1, max = 5,
value = 1, step = 1)
)
),
tabPanel('Points',
column(6,
flowLayout(
selectInput('add_points', 'Add Points',
choices = c("TRUE" = TRUE, "FALSE" = FALSE),
selected = "FALSE"),
numericInput('point_shape', 'Shape', min = 0, max = 25,
value = 1),
numericInput('point_size', 'Size', min = 0.5, value = 1),
textInput('point_col', 'Color', 'black'),
textInput('point_bg', 'Background Color', 'red')
)
)
)
)
),
column(8,
plotOutput('line_plot_2')
)
),
tabPanel('Axis Range',
column(2,
uiOutput('ui_yrange_minl')
),
column(2,
uiOutput('ui_yrange_maxl')
),
column(8,
plotOutput('line_plot_3')
)
),
tabPanel('Additional Lines',
column(6,
tabsetPanel(type = 'tabs',
tabPanel('Add Lines',
fluidRow(
column(4,
numericInput('n_lines', 'Lines', min = 0, value = 0,
step = 1))
),
fluidRow(
column(3, uiOutput('ui_nlines')),
column(3, uiOutput('ui_ncolors')),
column(3, uiOutput('ui_nltys')),
column(3, uiOutput('ui_nlwds'))
)
)
)
),
column(6,
plotOutput('line_plot_4')
)
),
tabPanel('Additional Points',
column(6,
tabsetPanel(type = 'tabs',
tabPanel('Add Points',
fluidRow(
selectInput('extra_p', 'Add Points',
choices = c("TRUE" = TRUE, "FALSE" = FALSE),
selected = "FALSE")
),
fluidRow(
column(3, uiOutput('ui_pcolors')),
column(3, uiOutput('ui_pbgcolor')),
column(3, uiOutput('ui_psize')),
column(3, uiOutput('ui_pshape'))
)
)
)
),
column(6,
plotOutput('line_plot_5')
)
),
tabPanel('Others',
column(4,
tabsetPanel(type = 'tabs',
tabPanel('Color',
fluidRow(
column(6,
textInput('line_colaxis', 'Axis Color: ', 'black'),
textInput('line_coltitle', 'Title Color: ', 'black')
),
column(6,
textInput('line_collabel', 'Label Color: ', 'black'),
textInput('line_colsub', 'Subtitle Color: ', 'black')
)
)
),
tabPanel('Size',
fluidRow(
column(6,
numericInput('line_cexmain', 'Title Size: ',
value = 1, min = 0.1, step = 0.1),
numericInput('line_cexsub', 'Subtitle Size: ',
value = 1, min = 0.1, step = 0.1)
),
column(6,
numericInput('line_cexaxis', 'Axis Size: ',
value = 1, min = 0.1, step = 0.1),
numericInput('line_cexlab', 'Label Size: ',
value = 1, min = 0.1, step = 0.1)
)
)
),
tabPanel('Font',
fluidRow(
column(6,
numericInput('line_fontmain', 'Title Font',
value = 1, min = 1, max = 5, step = 1),
numericInput('line_fontsub', 'Subtitle Font',
value = 1, min = 1, max = 5, step = 1)
),
column(6,
numericInput('line_fontaxis', 'Axis Font',
value = 1, min = 1, max = 5, step = 1),
numericInput('line_fontlab', 'Label Font',
value = 1, min = 1, max = 5, step = 1)
)
)
)
)
),
column(8,
plotOutput('line_plot_6')
)
),
tabPanel('Text',
column(4,
tabsetPanel(type = 'tabs',
tabPanel('Text (Inside)',
fluidRow(
column(6,
numericInput(
inputId = "line_text_x_loc",
label = "X Intercept: ",
value = 1, step = 1),
numericInput(
inputId = "line_text_y_loc",
label = "Y Intercept: ",
value = 1, step = 1
),
textInput(inputId = "line_plottext", label = "Text:",
value = "")
),
column(6,
numericInput(
inputId = "line_textfont",
label = "Text Font: ",
value = 1, min = 1, max = 5, step = 1
),
numericInput(
inputId = "line_textsize",
label = "Text Size: ",
value = 1, min = 0.1, step = 0.1
),
textInput(
inputId = "line_textcolor",
label = "Text Color: ",
value = "black"
)
)
)
),
tabPanel('Marginal Text',
fluidRow(
column(6,
numericInput(
inputId = "line_mtext_side",
label = "Side: ",
value = 1, min = 1, max = 4, step = 1
),
numericInput(
inputId = "line_mtext_line",
label = "Line: ",
value = 1, step = 1
),
textInput(inputId = "line_mtextplot", label = "Text:", value = ""),
numericInput(
inputId = "line_mtextsize",
label = "Text Size: ",
value = 1, min = 0.1, step = 0.1
)
),
column(6,
numericInput(
inputId = "line_mtextadj",
label = "Adj: ",
value = 0.5, min = 0, max = 1, step = 0.1
),
numericInput(
inputId = "line_mtextfont",
label = "Text Font: ",
value = 1, min = 1, max = 5, step = 1
),
textInput(
inputId = "line_mtextcolor",
label = "Text Color: ",
value = "black"
)
)
)
)
)
),
column(8,
plotOutput('line_plot_7', height = '600px')
)
),
tabPanel("Legend",
column(6,
tabsetPanel(type = 'tabs',
tabPanel('General',
br(),
flowLayout(
selectInput('line_leg_yn', 'Create Legend',
choices = c("TRUE" = TRUE, "FALSE" = FALSE),
selected = "FALSE")
),
br(),
h4('Axis Position', align = 'left', style = 'color:black'),
flowLayout(
numericInput('line_leg_x', 'X Axis:', value = 1),
numericInput('line_leg_y', 'Y Axis:', value = 1)
),
br(),
h4('Legend Names', align = 'left', style = 'color:black'),
flowLayout(
numericInput('line_legnames', 'Select:', value = 0, min = 0, step = 1),
uiOutput('ui_line_legnames')
),
br(),
h4('Lines', align = 'left', style = 'color:black'),
flowLayout(
numericInput('line_leg_line', 'Select:', value = 0, min = 1, max = 5, step = 1),
uiOutput('ui_line_legline')
),
br(),
h4('Points', align = 'left', style = 'color:black'),
flowLayout(
numericInput('line_leg_point', 'Select:', value = 0, min = 0, max = 25, step = 1),
uiOutput('ui_line_legpoint')
)
),
tabPanel('Legend Box',
flowLayout(
selectInput('line_leg_boxtype', 'Box Type', choices = c('o', 'n'), selected = 'o'),
textInput('line_leg_boxcol', 'Box Color', value = 'white'),
numericInput('line_leg_boxlty', 'Box Border Line', value = 1, min = 1, max = 6, step = 1),
numericInput('line_leg_boxlwd', 'Box Border Width', value = 1, min = 0, step = 0.1),
textInput('line_leg_boxborcol', 'Box Border Color', value = 'black'),
numericInput('line_leg_boxxjust', 'Horizontal Justification', value = 0, min = 0, max = 1),
numericInput('line_leg_boxyjust', 'Vertical Justification', value = 1, min = 0, max = 1)
)
),
tabPanel('Legend Text',
flowLayout(
selectInput('line_leg_texthoriz', 'Horizontal Text', choices = c(TRUE, FALSE), selected = FALSE),
textInput('line_leg_textcol', 'Text Color', value = 'black'),
textInput('line_leg_title', 'Title', value = ''),
numericInput('line_leg_textfont', 'Text Font', value = 1, min = 1, max = 5, step = 1),
numericInput('line_leg_textcolumns', 'Columns', value = 1, min = 0, step = 1),
textInput('line_leg_titlecol', 'Title Color', value = 'black'),
numericInput('line_leg_textadj', 'Text Horizontal Adj', value = 0.5, min = 0, max = 1, step = 0.1)
)
)
)
),
column(6,
plotOutput('line_plot_8', height = '400px')
)
),
tabPanel('Plot',
fluidRow(
column(8, offset = 2,
plotOutput('line_final')
)
)
)
)
)
)
)
) |
`pickcolors` <-
function(COLLIST=colors(), BACK="white")
{
if(missing(COLLIST)) { COLLIST=colors() }
if(missing(BACK)) { BACK="white" }
ncol=5
cex = 1
if(length(COLLIST)>50)
{
ncol=15
cex=.6
}
DF = SELOPT(COLLIST, onoff=-1, ncol=ncol, ocols =COLLIST, cex=.6 )
PDF = paste(sep="", "\"", paste(DF, collapse="\",\""), "\"")
cat(file="Copy and paste this into your R session:","\n")
cat(file="","\n")
cat(file="",paste(sep="", "thecols", "=c(", PDF , ")") , fill=TRUE)
cat(file="","\n")
if(!is.null(DF))
{
return(DF)
}
else
{
return(NULL)
}
} |
fitplcs <- function(dfr, group, ...){
if(!group %in% names(dfr))
stop("You must provide a name in the dataframe to fit by.")
dfrs <- split(dfr, dfr[,group])
fits <- lapply(dfrs, function(x)fitplc(x, ...))
class(fits) <- "manyplcfit"
return(fits)
}
fitconds <- function(dfr, group, ...){
if(!group %in% names(dfr))
stop("You must provide a name in the dataframe to fit by.")
dfrs <- split(dfr, dfr[,group])
fits <- lapply(dfrs, function(x)fitcond(x, ...))
class(fits) <- "manyplcfit"
return(fits)
} |
test_that("coercing tbl_time to tibble works", {
df <- as_tbl_time(FANG, date)
x <- as_tibble(df)
expect_s3_class(x, c("tbl_df", "tbl", "data.frame"), exact = TRUE)
expect_null(attr(x, "index_quo"))
expect_null(attr(x, "index_time_zone"))
})
test_that("coercing grouped_tbl_time to tibble drops groupedness", {
df <- as_tbl_time(FANG, date)
gdf <- group_by(df, symbol)
x <- as_tibble(gdf)
expect_s3_class(x, c("tbl_df", "tbl", "data.frame"), exact = TRUE)
}) |
inputsRecordUI <- function(id){
ns <- NS(id)
box(
title = h2("2. Input Record"), width = 4, collapsible = TRUE, solidHeader = TRUE, status = "success",
selectizeInput(ns("InputSiteName"), label = "Site *", choices = NULL,
options = list(
placeholder = 'Please search or select a site below',
onInitialize = I('function() { this.setValue(""); }')
)
),
hr(),
selectizeInput(ns("InputParentName"), label = "Parent *", choices = NULL,
options = list(
placeholder = 'Please search inputs by name or site',
onInitialize = I('function() { this.setValue(""); }')
)
),
hr(),
textInput(ns("InputName"),
label = "Name *",
placeholder = ""),
verbatimTextOutput(ns("autoname")),
hr(),
selectizeInput(ns("InputFormatName"), label = "Choose Format *", choices = NULL,
options = list(
placeholder = 'Please search Formats by name',
onInitialize = I('function() { this.setValue(""); }')
)
),
p("or"),
hr(),
dateInput(
ns("InputStartDate"),
label = "Start Date",
format = "yyyy-mm-dd",
startview = "decade"
),
shinyTime::timeInput(ns("StartTimeInput"),
label = "Start Time (Hours - Minutes)",
seconds = FALSE),
dateInput(
ns('InputEndDate'),
label = 'End Date',
format = 'yyyy-mm-dd',
startview = 'decade'
),
shinyTime::timeInput(ns("EndTimeInput"),
label = "End Time (Hours-Minutes)",
seconds = FALSE),
textInput(ns("Timezone"),
label = "Timezone (UTC)",
placeholder = "UTC +/-"),
hr(),
textAreaInput(ns("InputNotes"),
label = "Notes",
height = '150px'),
actionButton(ns("createInput"), label = "Create Input"),
p("* Denotes a Required Field"),
hr(),
verbatimTextOutput(ns("summInputs"))
)
}
inputsRecord <- function(input, output, session){
inputsList <- list()
updateSelectizeInput(session, "InputSiteName", choices = sitenames, server = TRUE)
updateSelectizeInput(session, "InputParentName", choices = input_names, server = TRUE)
updateSelectizeInput(session, "InputFormatName", choices = formats, server = TRUE)
observeEvent(input$createInput, {
inputsList$siteName <- input$InputSiteName
inputsList$siteID <- sites %>% dplyr::filter(sitename %in% inputsList$siteName) %>% pull(id)
inputsList$parentName <- input$InputParentName
inputsList$parentID <- inputs %>% dplyr::filter(name %in% inputsList$parentName) %>% pull(id)
inputsList$formatName <- input$InputFormatName
inputsList$formatID <- formats_sub %>% dplyr::filter(name %in% inputsList$formatName) %>% pull(id)
inputsList$Name <- input$InputName
inputsList$StartDate <- input$InputStartDate
inputsList$StartTime <- input$StartTimeInput
inputsList$EndDate <- input$InputEndDate
inputsList$EndTime <- input$EndTimeInput
inputsList$Timezone <- input$Timezone
inputsList$Notes <- input$InputNotes
output$summInputs <- renderPrint({print(inputsList)})
})
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.